
PROGRAMMING GUIDE

• TUTORIAL

• USING TURBO VISION

• REFERENCE

BORLAND

Turbo Vision™

Version 2.0

Programming Guide

BORLAND INTERNATIONAL INC. 1800 GREEN HILLS ROAD
P.O. BOX 660001, scons VALLEY, CA 95067-0001

Rl

Copyright © 1992 by Borland International. All rights reserved. All
Borland products are trademarks or registered trademarks of
Borland International, Inc. Other brand and product names are
trademarks or registered trademarks of their respective holders.

PRINTED IN THE USA.

15 14 13

c o N T

Introduction 1
What's new in Turbo Vision? 1
What is Turbo Vision? 2
Why Turbo Vision? 3
What you need to know 4
How to use this,book 4

What's in this book? 4

Part 1 Learning Turbo Vision

Chapter 1 Stepping into Turbo Vision 7
What's in a Turbo Vision application? 8

Views, events and engines 8
Views 8
Events 8
Engines 9

Step 1: Creating an application 11
Constructing the simplest program . .. 11
Extending the application object 12

Creating a command unit 13
Step 2: Customizing menus and status
lines 14

Initializing the application 14
Customizing the status line 15

Setting the boundaries 15
Defining ranges of help contexts ... 16
Defining status keys 17

Customizing the menu bar 19
Setting the boundaries 19
Defining menu items ;........ 19
Defining submenus 20
Using functions to return menus ... 22

What you've accomplished 23
Separating events from responses 24
Programming flexibly 24

E N T s

Chapter 2 Responding to commands 25
What are commands? 25

Understanding commands 25
What are events? 26
Responding to events 26
Handling command events 27

Step 3: Responding to commands 28
Changing the video mode 28

Calling inherited methods 29
Displaying an About box. 29

Using message boxes 30
Combining message box flags 31
Reading message box return values -: 31

Enabling and disabling commands ... 31
Which commands can I disable? ... 32
Disabling commands 32
Enabling commands 32

Chapter 3 ·Adding windows 33
Step 4: Adding a window 33

Adding a simple window... 34
Assigning the window boundaries . 35
/Constructing the window object ... 35
Inserting the window. 35
Inserting more safely 35

Tiling and cascading 36
Adding an editor window. 36

Defining the file editor buffer 37
Setting up editor dialog boxes 37
Constructing the editor window ... 37

Using standard dialog boxes 38
Constructing a file dialog box 39
Executing the dialog box 39
Constructing the file editor window. 40

Step 5: Adding a clipboard window 40
Constructing an editor window 41

Assigning the clipboard editor 41
Showing the clipboard window 42

Chapter 4 Using streams and
resources 45

Step 6: Saving and restoring the desktop . 45
Registering with streams 46

Trapping stream errors 47
Saving the desktop 47

Writing the objects to a stream 48
Preserving the clipboard 49

Restoring the desktop 50
Loading the desktop object 50
Validating the object 51
Replacing the desktop 51

Step 7: Using resources 53
Creating a resource file 53

What is a resource file? 54
Writing resources to a file 54

Loading a menu bar resource. 55
Opening the resource file 55
Loading the menu bar resource 56
Closing the resource file '. 56

Loading a status line resource 57
Loading the status line object 57
Adjusting the status line position ... 57

Loading an About box resource 58
Defining a dialog box resource 58
Loading the dialog box resource ... 59
Executing the dialog box 60

Chapter 5 Creating a data-entry
screen 61

Step 8: Creating a data-entry window . .. 62
Creating a new window type 62
Limiting open windows 64

Sending messages 64
Responding to messages, 65

Adding controls to the window 66
Adding object fields 66
Setting boundaries and inserting ... 66

Step' 9: Setting control values ~ 69
Setting up a data record. 69

Determining data needs. 69

Creating the record structure 70
Setting controls 70
Reading control values 71

Step 10: Validating data entry 72
Assigning validator objects 72

Constructing a valida tor object 72
Assigning a valida tor to an input
line 73

Calling Valid methods 74
Validating on close 74
Validating on Tab 74
Validating on demand 75

Chapter 6 Collecting data 77
Step 11: Adding a collection of data 77

Creating a data object ~ 78
Loading the collection 79
Displaying a record 80

Saving the record ' 80
Moving from record to record 81
Adding new records 83
Canceling edits 84

Step 12: Creating a custom view 84
Creating the counting engine 85
Constructing the view 86
Drawing the view 86
Using the counter 87

Adding the counter to the window . 87
Manipulating the counter 88

Where to now? 89
Additional dialog boxes 89
Lookup validation 89

Part 2 Using Turbo Vision

Chapter 7 Turbo Vision overview 93
Working with object hierarchies ' 95

Basic object operations 96
Derivation 96
Instantiation 96
Abstract objects 97

Inheriting fields 98
Types of methods '. 99

Static methods. 99

Virtual methods 100
Abstract methods 100
Pseudo-abstract methods 100

Object typology .. 101
Primitive object types 101

TPoint " " 101
TRect 101
TObject ; 101

Views 102
Frames 102
Buttons .. 102
Clusters 103
Menus 103
Histories .. 103
Input lines 103
List viewers 103
Scrolling views 104
Scroll bars. .. 104
Text devices 104
Static text 104
Status lines 104

Group views 105
The abstract group 105
Applications 105
Desktops 105
Windows 106
Dialog boxes 106

Engines .. 106
Streams .. 106
Resources
Collections
String lists
Valida tors

Turbo Vision coordinates
Specifying points
Specifying boundaries
Local and global coordinates

Using hitmapped fields
Flag values
Bit masks
Bitwise operations

Setting bits
Clearing bits

107
107
107
107
107
108
108
108
109
110
110
110
110
111

iii

Toggling-bits 111
Checking bits 111
Using masks 112

Summary 112

Chapter 8 Views 113
What is a view? .. 113

Definition of a view 114
Defining a region 114
Drawing on demand 114
Handling events 115

What is a group? 115
Delegating to subviews 115

Using view objects 116
Constructing view objects. 116

Calling the inherited constructor .. 117
Managing view boundaries 117

Getting the view's coordinates 117
Moving a view 118
Resizing a view 118
Moving and resizing at the same
time " 119
Fitting views into owners 119

Drawing a view. 119
Drawing on demand 120

Changing view option flags 120
Customizing selection 120
Framing the view ... '" 121
Special event handling 121
Centering the view 121

Setting the view's state 122
Setting and clearing state flags 122
Responding to state changes 123

Dragging a view 124
Setting drag limits 124
Calling DragView 124

Handling the cursor 125
Showing and hiding the cursor ... 126
Changing the cursor style 126
Moving the cursor 126

Validating a view 126
Checking view construction 127
Checking.for safe closing 127

Data validation
Writing Draw methods

Selecting colors '
Writing directly

Writing characters
Writing strings

Writing through buffers
Setting the text color ... ;
Moving text into buffers
Writing buffers to the screen

Using group objects
Groups, subviews, and owners
Inserting subviews

Dividing the group area
Providing a background

Understanding subviews
What is a view tree?
What is Z-order?
Visualizing Z~order

Selecting and focusing subviews
Finding the focused view
How does a view get the focus? .. .

Changing grow modes
Drawing groups

Drawing in Z-order
Using cache buffers
Locking and unlocking draws
Clipping subviews

Executing modal groups
What is modality? ... '
Making a group modal
Finding the modal view
Ending a modal state

Managing subviews
Deleting subviews
Iterating subviews
Finding a particular subview

. Chapter 9 Event-driven
programming

Bringing Turbo Vision to life
Reading the user's input

The nature of events

128
128
128
129
129
129
129
130
130
131
131
132
133
134
134
135
135
138
138
139
140
140
141
142
142
142
143
143
144
144
145
145
145
146
147
147
147

149
149
149
151

iv

Kinds of events
Mouse events
Keyboard events
Message events
liN othing" events

Events and commands
Routing of events

Where do events come from?
Where do events go? ,

Positional events
Focused events
Broadcast events
User-defined events

Masking events
Phase

The Phase field
Commands

Defining commands
Binding commands
Enabling and disabling commands ..

Handling events
The event record

Clearing events
Abandoned events

Modifying the event mechanism
Centralized event gathering
Overriding GetEvent
Using idle time

Inter-view communication
Intermediaries
Messages among views
Who handled the broadcast?

Is anyone out there?
Who's on top?

Calling HandleEvent

Chapter 10 Application objects
Understanding application objects

The application is a view
The application is a group

The application owns subviews .. .
The application is modal

Init, Run, Done

151
152
152
152
152
153
153
153
154
154
154
155
156 ,
156
156
157
159
159
160
160
161
161
163
163
163
164
164
165
165
166
166
168
168
169
169

, 171
171
172
172
172
173
173

The Init constructor 173
The Run method 173
The Done destructor 174

Constructing an application object 174
Calling the inherited constructor 175

The TProgram constructor 175
Knowing when to call 175

Initializing subsystems 176
The memory manager 176
The video manager 177
The event manager 177
The system error handler 177
The history list manager 178

Changing screen modes , 178
Customizing the desktop 179

Constructing a desktop object 179
Using the inherited method 180
Replacing the inherited method ... 180

Inserting and executing windows ... 180
Inserting non-modal windows 181
Executing modal views , 181

Arranging windows 181
Setting the arrangement region ... 182
Setting tile direction 182

Changing the background 182
Changing the pattern character .,. 183
Drawing a complex background .. 183

Shelling to DOS. 185
Customizing the shell message 185

Customizing the status line 185
Defining status line boundaries 186

Using invisible status lines 186
Creating status definitions 187
Creating status keys 188

Using the NewStatusKey function. 189
Using status key functions 189

Adding status line hints 189
Updating the status line ... , 191

Customizing menus 191
Setting menu bar boundaries 192
Defining menu items 192

Using the NewItem function 193
Using the N ewSubMenu function . 193

v

U sing idle time 193
Context-sensitive Help 194

Chapter 11 Window and dialog box
o~ects 1%

Understanding windows " 195
How windows and dialog boxes
differ " 196

Working with windows , . " 196
Constructing window objects 197

Constructing default windows 197
Changing window flags 197

Inserting windows into the desktop . 198
Executing modal windows 199

Making a window modal 199
Ending the modal state 200
Handling data records 200

Changing window defaults. 200
Using standard window palettes .. 200
Changing the window title 201
Altering the window frame " 201
Using window numbers 202

Managing window size 202
Limiting window size 202
Zooming windows " 203

Creating window scroll bars '" 203
Working with dialog boxes 204

Dialog box default attributes 204
Modal dialog box behavior 205

Handling dialog box events 205
Using controls in a dialog box 205

Adding controls to a dialog box ... " 205
How users see tab order 206
How the programmer sees tab
order 206

Manipulating controls 206
Defining window data records 207
Setting control values 207
Reading control values 207
Handling controls in modal dialog
boxes 207

Using standard dialog boxes 208
Using message boxes 208

Message strings and parameters ., 208
Setting message box flags 209

Using file dialog boxes 209
Using change directory dialog boxes. 209

Chapter 12 Control objects 211
Using control objects 211

Constructing control objects 212
Initializing control objects , 212
Setting and reading control values .. 213

Setting control values. 213
Reading control values 214
Customizing data transfer , 215

Displaying static text 215
Displaying plain text 216

Formatting static text. 216
Constructing static text views 216
Setting and reading static text 217

Displaying parameterized text , 217
Formatting parameterized text ... , 217
Constructing parameterized text
controls 218
Setting and reading parameterized
text 218

Using scroll bars 219
Constructing scroll bar controls 219
Manipulating scroll bar controls 219

. Responding to scroll bars 220
Using cluster objects , 221

Working with cluster objects. 221
Constructing cluster objects 221
Pressing a button , 221
Telling if a button is checked 222
Disabling individual buttons 222

Using check boxes 222
Using radio buttons , 222
Using multi-state check boxes 223

Picking from lists 223
Working with list viewers 223

Constructing a list viewer 224
Getting list item text , 224
Responding to list selections 225

Using list box controls 226

vi

Building the list of strings 226
Constructing the list box 226
Assigning a list to a list box 227
Setting and reading list box values . 227

Displaying outlines 228
Basic outline use 228

Graphical hierarchy 228
Expanding and contracting 229
Iterating items 229
Focus and selection behavior 229
Updating the outline 229

Using the outline views 229
Creating the outline tree 229
Constructing the outline view 230
Getting the selected node 230
Disposing of an outline 230

Reading user input 230
Constructing input line controls 231
Setting and reading input lines 231
Manipulating input lines 231

Using history lists 231
Defining history lists :.. 232

Managing the history block 232
Constructing a history view 233

Labeling controls 233
Constructing label objects 234
Selecting controls with labels 234
Assigning shortcut characters 235

Chapter 13 Data validation objects 237
The three kinds of data validation 237

Filtering input 238
Validating each field 238
Validating full screens 239

Validating modal windows. 239
Validating on focus change 239
Validating on demand 239

Using a data valida tor 240
Constructing validator objects 240
Adding validation to input lines 240

How validators work 241
The methods of a validator 241

Checking for valid data 241

Validating a complete line 242
Validating keystrokes 242
Reporting invalid data 242

The standard valida tors 243
The abstract valida tor 243
Filter valida tors 243
Range valida tors 244
Lookup validators 244
String lookup validators 244
Picture valida tors 245

Chapter 14 Palettes and color
selection 247

Using color palettes 247
Understanding color palettes 248

Looking at a simple palette 248
Getting colors from the palette 248
Understanding color attributes 249
Mapping colors with palettes 249
A simple example of color
mapping ; 249
A different view of mapping. 251

Changing the default colors 251
Palettes centralize color
information 252
Changing a view's palette 252

Extending a palette 253
Adding a palette entry 253

Reusing an existing color 254
Adding a new color 254

Adding entries to owner palettes 254
Rewriting Draw methods 255

Letting users change colors 256
Using the TColorDialog 256

Defining color groups and items .. 256
Executing the dialog box 257

Saving and restoring colors 257

Chapter 15 Editor and text views 259
What is a text view? 259
Using the terminal view 260

Constructing the terminal view 260
Managing the buffer. 260

Assigning the text device 261

vii

Writing to the terminal view " 261
Using the editor object 263

How the editor works 263
Understanding the buffer 264
Deleting text 264
Inserting text 265
Undoing edits 265
Handling blocks 266

Using the Edit menu 266
Updating the active commands '" 267

Editor key bindings 267
Manipulating blocks 267

Editor options " 267
Searching and replacing 268

Using the memo field " 268
Memo colors .. ,.................. 269
Acting like a control 269

Handling Tab 269
Setting and reading values 269

Using file editors " 270
Constructing a file editor " 270
Working with files 270

Loading a file 271
Saving a file " 271
Making sure changes get saved ... 271

Working with buffers 272
Specifying buffer space 272
Managing file edit buffers " 273

Using the clipboard 273
Constructing the clipboard editor ... 273
Assigning the Clipboard variable ... 273

Using an editor window .. " " 274
Constructing the editor window 274
Other editor window considerations. 274

Chapter 16 Collections 277
Collection objects 278

Collections are dynamically sized ... 278
Collections are polymorphic 278
Type checking and collections 278

Collecting non-objects 279
Creating a collection. 279
Iterator methods 281

The ForEach iterator 281
The FirstThat and LastThat iterators 282

Sorted collections 283
String collections ~ 285

Iterators revisited 286
Finding an item ~.' 286

Polymorphic collections 287
Collections and memory management 289

Chapter,17 Streams 291
The question: Object 1/0. 292
The answer: Streams 292

Streams are polymorphic " 292
Streams handle objects 293

Essential stream usage 293
Setting up a stream 294
Reading and writing a stream 294

Putting it on. 295
Getting it back 295
In case of error 296

Shutting down the stream 296
Making objects streamable 296

Load and Store methods 296
Stream registration 297

Object ID numbers 298
The automatic fields 298

Register here 299
. Registering standard objects 299

The stream mechanism 299
The Put process 299
The Get process 300
Handling nil object pointers ' 300

Collections on streams: A complete
example , ... , , " 300

Adding Store methods ; 301
Registration records 302
Registering , 303
Writing to the stream 303

Who gets to store things? 304
Subview instances 304
Peer view instances 305

Copying a stream .. , , , 306
Random-access streams 306

Non-objects on streams 307
Designing your own streams 307

Stream error handling 308
Stream versioning 308

Version flags 308
Handling different versions 308

Chapter 18 Resources 309
Why use resources? 309
What's in a resource? 310
Creating a resource 311
Reading a resource , 312
String lists 313

Making string lists 314

Part 3 Turbo Vision Reference

Chapter 19 Turbo Vision reference 317
Abstract procedure 317
Application variable .. ; 318
AppPalette variable 318
apXXXX constants 318
AssignDevice procedure 318
bfXXXX constants ~ .. 319
ButtonCount variable , 320
cdXXXX constants 320
cfXXXX constants 320
CheckSnow variable , 321
ClearHistory procedure , 321
ClearScreen procedure , 321
Clipboard variable 321
cmXXXX constants 322
ColorIndexes variable 325
ColorGroup function 325
ColorItem function , 326
coXXXX constants , 326
CStrLen function ~ 326
CtrlBreakHit variable 327
CtrlToArrow function 327
CursorLines variable 327
DefEditorDialog function 328
Desktop variable 328
DesktopColorItems function , 328
DialogColorItems function , 328

viii

DisposeBuffer procedure 329
DisposeCache procedure , 329
DisposeMenu procedure " ... " .. 329
DisposeNode procedure '" " 329
DisposeStr procedure 330
drnXXXX constants 330
DoneDosMern procedure 331
DoneEvents procedure 331
DoneHistory procedure , 331
DoneMernory procedure 331
DoneSysError procedure 332
DoneVideo procedure. " 332
.DoubleDelay variable 332
dpXXXX constants 332
EditorDialog variable. 333
EditorFlags variable 33~
edXXXX constants 333
efXXXX constants 334
ErnsCurHandle variable 335
ErnsCurPage variable , 335
ErrorAttr variable , 335
ev XXXX constants. 336
fdXXXX constants 337
FindStr variable 337
~arneStrtype 337
FocusedEvents variable ... ~ 337
ForrnatStr procedure 338
FreeBufMern procedure 340
GetAltChar function 340
GetAltCode function 340
GetBufferSize function 340
GetBufMern procedure 340
GetKeyEvent procedure 341
GetMouseEvent procedure , 341
gfXXXX constants 341
hcXXXX constants '" , ;. 342
hcXXXX constants. 343
HideMouse procedure , .. , 344
HiResScreen variable 344
History Add procedure 344
HistoryBlock variable 344
HistoryCount function , 344
HistorySize variable 345

ix

HistoryStr function 345
HistoryUsed variable 345
InitDosMern procedure 345
InitEvents procedure 346
InitHistory procedure 346
InitMernory procedure 346
InitSysError procedure 346
InitVideo procedure 347
InputBox function. 347
InputBoxRect function , 347
kbXXXX constants 347
LoadHistory procedure , 350
Loadlndexes procedure 350
LongDiv function " 350
LongMul function. 351
LongRectype 351
LowMernory function 351
LowMernSize variable 351
MaxBufMern variable 352
MaxCollectionSize variable 352
MaxHeapSize variable 352
MaxLineLength constant 352
MaxViewWidth constant. 352
mbXXXX constants 353
MernAlloc function 353
MernAllocSeg function 353
MenuBar variable 353
MenuColorIterns function , 354
Message function 354
MessageBox function , 354
MessageBoxRect function 355
rnfXXXX constants 355
Min WinSize variable 356
MouseButtons variable 356
MouseEvents variable 356
MouselntFlag variable , 357
MouseReverse variable 357
MouseWhere variable , , 357
MoveBuf procedure , 357
MoveChar procedure 358
MoveCStr procedure 358
MoveStr procedure 358
NewBuffer procedure 358

NewCache procedure 359
NewItem function 359
NewLine function ; 360
N ewMenu function 360
NewNode function 360
NewSItem function 360
NewStatusDef function ,. 361
NewStatusKey function 361·
N ewStr function 361
N ewSubMenu function 361
ofXXXX constants 362
ov XXXX constants 363
PositionalEvents variable 364
PrintStr procedure 364
PString type ; 364
Ptr Rec type 365
RegisterColorSel procedure 365
RegisterDialogs procedure 365
RegisterEditors procedure 365
RegisterStdDlg procedure 366
RegisterType procedure 366
RegisterValidate procedure. 366
RepeatDelay variable 366
ReplaceStr variable 367
SaveCtrlBreak variable 367
sbXXXX constants 367
ScreenBuffer variable 368
ScreenHeight variable 368
ScreenMode variable 368
Screen Width variable , 369
SelectMode type 369
SetBufferSize function 369
SetMemTop procedure 369
SetVideoMode procedure 370
sfXXXX constants 370
Shadow Attr variable 371
ShadowSize variable 371
ShowMarkers variable 372
ShowMouse procedure 372
smXxxx constants 372
Special Chars variable 373
stXXXX constants 373
StartupMode variable 373

x

StatusLine variable 374
StdEditMenuItems function 374
StdEditorDialog function 374
StdFileMenuItems function .. , 374
StdStatusKeys function 375
StdWindowMenuItems function 375
StreamError variable 376
StoreHistory procedure " 376
Storelndexes procedure 376
SysColorAttr variable 376
SysErrActive variable 377
SysErrorFunc variable 377
SysMonoAttr variable 377
SystemError function 378
TApplication 379

Methods 380
TBackground 382

Field , 382
Methods .. 382
Palette .. 383

TBufStream 383
Fields 384
Methods .. 384

TButton 386
Fields 387
Methods .. 387
Palette .. 390

TByteArray type 390
TCharSet type 390
TChDirDialog object 391

Fields 391
Methods .. 392

TCheckBoxes .. 393
Methods .. 394
Palette .. 395

TCluster 395
Fields 396
Methods .. 396
Palette 399

TCollection 400
Fields 400
Methods .. 401

TColorDialog .. 406

Fields 407
Methods .. 407

TColorDisplayobject 409
TColorGroup type 409
TColorGroupList object 410
TColorlndex type 410
TColor Item type '~.. 410
TColorItemList object. 411
TColorSel type. .. 411
TColorSelector object 411
TCommandSet type 411
TDesktop 412

Fields 413
Methods .. '" 413

TDialog 415
Methods .. 416
Palette. .. 417

TDirCollection object 418
TDirEntry type 418
TDirListBox object 418
TDosStream ; 419

Field 419
Methods .. 419

TDrawBuffer type 420
TEditBuffer type 421
TEditor object 421

Fields 422
Methods .. 424
Palette .. 428

TEditorDialog type 428
TEditWindow object 430

Field 431
Methods .. 431

TErns Stream 432
Fields 432
Methods .. 433

TEventtype ~ 434
TFileCollection object 435
TFileD~log object 435

Fields 436
Methods .. 436

TFileEditor .. 438
Field 439

xi

Methods .. 439
TFilelnfoPane 441
TFilelnputLine 441
TFileList .. 441
TFilterValidator 441

Field 442
Methods .. 442

TFindDialogRec type '" 443
TFrame 443

Methods .. 444
Palette .. 445

TGroup 445
Fields 446
Methods .. 447

THistory .. 455
Fields 455
Methods .. 456
Palette .. 457

THistoryViewer 457
THistoryWindow 457
Tlndicator 458

Fields 458
Methods .. 459
Palette .. 459

TlnptitLine 460
Fields 460
Methods .. 461
Palette .. 464

TItemList type '.' 464
TLabel 465

Fields 465
Methods .. 466
Palette. .. 467

TListBox .. 467
Field " ... 468
Methods , 468
Palette .. 469

TListViewer . '" , .. 470
Fields 471
Methods .. 471
Palette .. ',' .. 474

TLookupValidator 474
Methods .. 475

TMemo object 475
Methods ... ~ 476
Palette 477

TMemoData type 477
TMenu type 477
TMenuBar 478

Methods .. 479
Palette .. 479 .

TMenuBox 480
Methods .. 480
Palette. .. 481

TMenuItem type 481
TMenuStrtype 482
TMenu View. .. 482

Fields 483
Methods .. 483
Palette .. 485

TMbnoSelector object 485
TMultiCheckBoxes 486

Fields 486
Methods '. .. 486

T~odetype 488
TObject 488

Methods .. 489
TOutline .. 489

Field 490
Methods .. 490

TOutline Viewer ' ; 491
Field 492
Methods 492
Palette 498

TPalette type 498
TParamText 499

Fields 499
Methods .. 499
Palette 500

TPoint 501
Fields 501

_ TPicResult type .. 501
TProgram .. 502

Methods .. 503
Palettes 507

TPXPicture Valida tor 512

xii

Field 512
Methods .. 512

TRadioButtons 514
Methods .. 515
Palette .. 515

TRangeValidator 516
Fields 516
Methods ~. 516

TRect 518
Fields 518
Methods 518

TReplaceDialogRec type 519
TResourceCollection 519
TResourceFile 520

Fields 520
Methods .. 520

TScrollBar ; 523'
Fields 523
Methods .. 524
Palette 526

TScrollChars type 527
TScroller .. 527

Fields ~ 528
Methods .. 528
Palette 530

TSearchRec. type ' 530
TSItem type ... '. 530
TSortedCollection 531

Field 531
Methods .. 532

TSortedListBox object 534
Fields 534
Methods- 534

TStaticText 536
Field ~ 536
Methods '. 536
Palette .. 537

TStatusDef type 537
TSta tusItem type 538
TStatusLine 539

Fields 540
Methods .. 540
Palette ... -........................ 542

TStream 542
Fields 542
Methods '.' .. 543

TStreamRec type 545
TStrlndex type 546
TStrIndexRec type 547
TStringCollection 547

Methods 547
TStringList .. 548

Methods .. 548
TStrListMaker ; 549

Methods .. 550
TSysErrorFunctype 550
TStringLookupValidator 551

Field. '" '" .. '" -... 551
Methods _ 551

TTerminal 553
Fields 553
Methods .. 554
Palette .. 555

TTerminalBuffer type 555
TTextDevice .. 556

Methods .. 556
Palette 557

TTitleStr type. .. 557

xiii-

TValidator 557
Fields 557
Methods .. 558

TVideoBuf type .. 560
TView 560

Fields 561
Methods .. 563

TVTransfer type _ , 576
TWildStr type '" 577
TWindow .. 577

Fields 578
Methods .. 579
Palette 581

TWordArray type 581
vmtHeaderSize constant 582
voXXXX constants 582
vsXXXX constants. 582
wfXXXX constants 583
WindowColorItems function 583
wnNoNumber constant 584
Word Chars variable 584
WordRec type 584
wpXXXX constants 584

Index 587

T A B

5.1: Dialog box controls and their data
. needs 69

7.1: Inheritance of view fields 99
7.2: Manipulating bitmapped fields 112
8.1: Methods that change state flags 122
9.1: Turbo Vision command ranges 160
11.1: Window flag meanings 197
12.1: Data transfer records for control

objects 214
19.1: Application palette constants 318
19.2: Button flags 319
19.3: Standard command codes 322
19.4: Dialog box standard commands ... 323
19.5: Standard Edit and Window menu

commands 323
19.6: Standard application commands ... 323
19.7: Standard view commands 324
19.8: Collection error codes 326
19.9: Control-key mappings 327
19.1 0: Drag mode constants 330
19.11: Standard event flags 336
19.12: Standard event masks 336
19.13: Format specifiers and their results .338
19.14: Grow mode flag definitions 342
19.15: Standard File menu item help

contexts 342
19.16: Standard Edit menu item help

contexts 343
19.17: Standard Window menu item help

contexts 343
19.18: Help context constants 343
19.19: Keyboard state and shift masks ... 348

xiv

L E s

19.20: Alt-Ietterkey codes 348
19.21: Special key codes 348
19.22: Alt-number key codes 349
19.23: Function key codes .. : 349
19.24: Shift.:.function key codes ... '.' 349
19.25: Ctrl+function key codes 349
19.26: Alt-function key codes 350
19.27: Mouse button constants 353
19.28: Option flags 362
19.29: Outline view constants 364
19.30: Scroll bar part constants 367
19.31: StandardScrollBar constants 368
19.32: State flag constants 370
19.33: Screen mode constants 372
19.34: Stream access modes 373
19.35: Stream error codes 373
19.36: System error function codes 377
19.37: System error function return

values 377
19.38: SystemError function messages .. 378
19.39: Dialog box palettes returned based on

Palette 417
19.40: TEditorDialog parameter values,

messages, and return values 429
19.41: Picture format characters 513
19.42: Stream record fields 546
19.43: Window palettes returned based on

Palette 579
19.44: Valida tor option flags 582
19.45: Validator status constants 583
19.46: Window flag constants 583
19.47: Standard window palettes 585

F G u R E s

1.1: Turbo Vision objects onscreen 10 14.4: Mapping the normal text color of a
1.2: Default TApplication screen 12 scroller view 251
3.1: The File Open dialog box from the 14.5: Adding entries to the window

StdDlgs unit 38 palettes 255
5.1: The finished order-entry window 62 15.1: Buffer with inserted text 264
6.1: Displaying the first record in the 15.2: Buffer after cursor movement 264

database 80 15.3: Buffer after deleting 'xxx' 265
7.1: Turbo Vision object hierarchy 94 15.4: Buffer after inserting 'lmn' 265
7.2: TWindow inheritance 98 15.5: Buffer after undo 266
7.3: Turbo Vision coordinate system 108 15.6: Editor flag bit mapping 268
7.4: Options bit flags 109 19.1: Button flags 319
8.1: TApplication screen layout 133 19.2: Drag mode bit flags 330
8.2: Basic Turbo Vision view tree 135 19.3: Editor flag bit mapping 334
8.3: Desktop with file viewer added 136 19.4: Event mask bit mapping 336
8.4: View tree with file viewer added ... 136 19.5: File dialog box option flags 337
8.5: Desktop with file viewer added 137 19.6: Grow mode bit mapping 342
8.6: View tree with two file viewers 19.7: Keyboard state mask flags 348

added " " 137 19.8: Message box flag mapping 356
8.7: Side view of a text viewer window .. 138 19.9: Options bit flags; 363
8.8: Side view of the desktop 139 19.10: Scroll bar parts 368
8.9: The focus chain 140 19.11: State flag bit mapping 371
9.1: TEvent. What field bit mapping 152 19.12: DragMode bit mapping 561
11.1: A typical dialog box 196 19.13: GrowMode bit mapping : ... 562
14.1: TScroller's default color palette 248 19.14: Options bit flags 562
14.2: Text color attribute mapping 249 19.15: Validator option flags 582
14.3: Mapping a scroller's palette onto a

window 250

xv

L s T

1.1: The simplest Turbo Vision program .. 11
1.2: TUTOR01.P AS, an extensible

application 13
1.3: TUTCONST.P AS, a unit defining

command constants 13
1.4: Creating the standard status keys 17
1.5: TUTOR02A.P AS, the application

with a custom status line 18
1.6: Constructing a simple menu bar in

TUTOR02B.P AS . " 20
1.7: Constructing a simple menu bar 21
1.8: TUTOR02C.P AS defines a complex

menu 22
2.1: Redefining the application's event

handler, from TUTOR03A.P AS 28
2.2: Adding an About box, from

TUTOR03B.P AS , 30
3.1: Inserting a window safely, in

TUTOR04A.P AS 36
3.2: Inserting a file editor window,

completing TUTOR04B.P AS 38
3.3: Opening a file to edit, making

TUTOR04C.P AS40
3.4: Creating a clipboard window41
3.5: Showing the clipboard window42
3.6: Showing the clipboard window in

front, which completes
TUTOR05.PAS43

4.1: Registering standard objects with
streams 46

4.2: Defining a simple stream error
procedure 47

4.3: Saving the desktop48
4.4: Saving the desktop without the

clipboard, making TUTOR06A.P AS . .49

xvi

N G s

4.5: Reading the desktop from a stream .. 50
4.6: TUTOR06B.P AS loads the new

desktop 52
4.7: Storing a menu object as a resource .. 54
4.8: Opening a resource file for an

application 55
4.9: Initializing a menu from a resource .. 56
4.10: Two ways to move the status line ... 58
4.11: Creating a dialog box resource 59
4.12: Executing a custom About box,

completing TUTOR07.P AS 60
5.1: Opening a customized window, from

TUTOR08A.P AS 62
5.2: Sending a broadcast message 65
5.3: Responding to a broadcast message,

which completes TUTOR08B.P AS ... 65
5.4: Adding a labeled control to a dialog

box 66
5.5: Constructing the data entry window,

from TUTOR08C.P AS 67
5.6: A data record for the order window

controls 70
5.7: Using SetData to set control values .. 70
5.8: Using GetData to read control values. 71
5.9: Adding validators to input lines 73
5.10: Validating data before saving,

completing TUTOR10.P AS 75
6.1: A simple wrapper object 78
6.2: A stream registration record for the

order object 79
6.3: Loading a collection from a stream ... 79
6.4: Loading the collection of order

records 80
6.5: Saving the updated collection to disk,

completing TUTOR11A.P AS 81

6.6: Moving among records, which makes
TUTOR11 B.P AS 81

6.7: Saving new or existing records 83
6.8: Canceling a new order completes

TUTOR11 C.P AS. 84
6.9: The counting engine for the custom

view, from the Count unit 85
6.10: Drawing the custom view 87
6.11: Manipulating the new counter view

completes TUTOR12.P AS. 88
7.1: A pseudo-abstract method 100
8.1: Constructing a view based on the

size of another 118
8.2: Fitting a view inside another ., 119
8.3: OverridingSetState to respond to

state changes 123
8.4: A typical use of DragView 125
8.5: A simple Draw method with two

colors of text 129
8.6: A Draw method that uses a text

buffer " 130
8.7: Ending a modal state on a command

event 146
10.1: The main loop of a Turbo Vision

program 173
10.2: Toggling high-resolution video

mode 179
10.3: Modifying the default desktop

object 180
10.4: Replacing the inherited desktop
. object 180
10.5: Creating a complex desktop

background 183
10.6: Setting the status line boundaries .. 186
10.7: TWOSTAT.PAS shows status lines

changing with help contexts. 187
10.8: The StdStatusKeys function 189
10.9: A program that gives context-sensitive

status line hints 190

xvii

10.10: Ensuring that the menu bar is
the top line 192

11.1: Inserting windows with
InsertWindow 198

11.2: Changing the window palette 201
11.3: Creating standard window scroll

bars 204
11.4: Adding controls in a dialog box's

constructor 205
12.1: Two ways to construct a control

object 212
12.2: Reading a list box's values 214
12.3: Customizing data transfer for an

input line 215
12.4: TScroller's response to scroll bar

changes 220
12.5: Responding to a list box broadcast .225
12.6: Contructing a list box and assigning

the list, from PICKLIST.P AS 227
12.7: Constructing a label object 234
13.1: A typical validator constructor 240
13.2: Adding data validation to an input

line 240
14.1: The Draw method for TView, also

used by TScroller 250
14.2: The color mapping algorithm

used by views 251
14.3: Adding an entry to the scroller

palette 254
14.4: Adding entries to the application

palettes 255
14.5: The MenuColorItems function '" .256
14.6: Passing groups of color items to

a color selection dialog box 257
15.1: Using a simple terminal view 261
15.2: Data record for a memo field 269
15.3: Assigning a clipboard editor 274

xviii

N T R o D u c T o N

This volume contains complete documentation for Turbo Vision,
the object-oriented application framework. It describes not only
what Turbo Vision can do and how, but also why. If you take the
time to understand the underlying principles of Turbo Vision,
you will find it a rewarding, time-saving, and productive tool:
You can build sophisticated, consistent interactive applications in
less time than you thought possible.

What's new in Turbo Vision?

Introduction

Turbo Vision 2.0 adds new objects to the hierarchy and adds some
new capabilities to the existing objects. Changes to existing objects
are backward-compatible, so existing Turbo Vision code should
compile without changes, and existing streams and resources
should load without error.

Turbo Vision 2.0 has the following new features:

• Support for data validation (see Chapter 13)

• More built-in application functions, including

• DOS shell
• Window tiling and cascading
• Safety checks on windows and dialog boxes
• Standard menu functions

• Multi-state check boxes

• A new outline viewer object

• Stream versioning

• Larger clusters of check boxes and radio buttons

In addition, this manual includes the following new material:

• Expanded tutorial

• More example programs
• Chapters explaining how to use windows, applications,

controls, editors, and data validators

• Expanded explanations of views and events

• More complete inheritance information in the reference section

What is Turbo Vision?

2

Turbo Vision is an object-oriented application framework for
windowing programs. We created Turbo Vision to save you from
endlessly recreating the basic platform on which you build your
application programs.

Turbo Vision is a complete object-oriented application framework,
including:

• Multiple, resizeable, overlapping windows
• Pull-down menus
• Mouse support
• Dialog boxes
• Data validation
• Built-in color installation
• Buttons, scroll bars, input boxes, check boxes and radio buttons
• Standard handling of keystrokes and mouse clicks

You might have used libraries of procedures and functions or
objects, and at first glance Turbo Vision sounds a lot like a library.
After all, you can buy libraries that give you menus, windows,
mouse bindings, and more. But beneath that superficial resem
blance is an important difference: Turbo Vision is not just a
library; it's an application framework.

With Turbo Vision, you never have to modify the source code.
You II change" Turbo Vision by extending it. The T Application
application skeleton remains unchanged inside APP.TPU. You
add to it by deriving new object types and change what you need
to by overriding the inherited methods with new methods that
you write for your new objects.

Also, Turbo Vision is a hierarchy, not just a disjointed box full of
tools. If you use any of it at all, you should use all of it. There is a

Turbo Vision Programming Guide

single architectural vision behind every component of Turbo
Vision, and they all work together in many subtle, interlocking
ways. You shouldn't try to just "pull out" mouse support and use
it-the "pulling out" would be more work than writing your own
mouse bindings from scratch.

Turbo Vision is also event-driven, enabling you to write flexible
programs that give your users control over what part of the
program they want to access, rather than having the program
dictate to them. The event-driven model is the same one used by
modern graphical environments like Microsoft Windows.

I

We created Turbo Vision to save you an enormous amount of
unnecessary, repetitive work, and to provide you with a proven
application framework you can trust and build on. To get the
most benefit from it, let Turbo Vision work for you.

Turbo Vision provides the basis for the integrated development
environment, which we produced in a fraction of the time it
would have taken to write it from scratch. Turbo Vision lets you
use this same foundation for your own applications.

Why Turbo Vision?

Introduction

After creating a number of programs with windows, dialog boxes,
menus, and mouse support at Borland, we decided to package all
that functionality into a reusable set of tools. Object-oriented
programming gave us the vehicle, and Turbo Vision is the result.

Because Turbo Vision takes a standardized, rational approach to
screen design, your applications acquire a familiar look and feel.
That look and feel is identical to that of the Turbo languages
themselves, and is based on years of experience and usability
testing. Having a common and well-understood look to an appli
cation is a distinct advantage to your users and to yourself. No
matter how arcane your application is in terms of what it does, the
way to use it will always be familiar ground, and the learning .
curve will be easier to ascend.

Turbo Vision is also fast. Using Pascal and assembly language,
we've optimized Turbo Vision to make it smooth and flicker-free,
so it doesn't slow down your applications.

3

What you need to know·

You need to be comfortable with object-oriented programming to
use Turbo Vision. Turbo Vision makes extensive use of object
oriented techniques, including inheritance and polymorphism.
These topics are covered in the chapter UObject-oriented
programming," in the User's Guide.

In addition to object-oriented techniques, you also need to be
familiar with the use of pointers and dynamic variables, because
nearly all of Turbo Vision's object instances are dynamically
allocated on the heap. If you're not familiar with pointers, or if
you want to review the use of pointers, see the chapter UUsing
Pointers" in the User's Guide.

How to use this book

4

What's in this

The Turbo Vision Programming Guide is expanded to make it
more complete and easier to use. If you're already familiar with
Turbo Vision, you'll probably want to skim Chapters 7, 13, and 19
to see what's new. If you're new to Turbo Vision, you should read
through all of Part 1, uLearning Turbo Vision." The tutorial walks
you through building a complete Turbo Vision application,
explaining the principles of Turbo Vision and event-driven
programming along the way.

book? This manual has four parts:

• Part 1 introduces you to the principles behind Turbo Vision and
provides a tutorial that walks you through writing a complete
Turbo Vision application.

• Part 2 gives greater detail on all the essential elements of Turbo
Vision, including explanations of the objects in the Turbo
Vision hierarchy and suggestions for how to write better appli
cations. Part 2 also covers collections, streams, and resources.
These are important data management tools provided with
Turbo Vision.

• Part 3 is a complete reference lookup for all the objects and
other elements included in the Turbo Vision units.

Turbo Vision Programming Guide

p A R T

1

Learning Turbo Vision

5

6 Turbo Vision Programming Guide

c H A p T E R

1

Stepping into Turbo Vision

In the next several chapters, you'll build a complete Turbo Vision
application, starting from the very simplest instance of the bare
framework and working up to a fairly complex data-entry system
with input validation and context-sensitive prompts.

The walk-through consists of twelve steps:

• Step 1: Creating an application

• Step 2: ~ustomizing menus and status lines

• Step 3: Responding to commands

• Step 4: Adding a window

• Step 5: Adding a clipboard window

• Step 6: Saving and loading the desktop

• Step 7: Using resources

• Step 8: Creating a data-entry window

• Step ?: Setting control values

• Step 10: Validating data entry

• Step 11: Adding collections of data

• Step 12: Creating a custom view

The source code for the application in this tutorial is provided at
various stages on your distribution disks. The files are named
TUTOR01.P AS, TUTOR02.P AS, and so on, corresponding to the
numbered steps in the tutorial.

Chapter 7, Stepping into Turbo Vision 7

At the end of the tutorial, you'll find some suggestions on how
you might add onto the finished pr:ogram to give it even more
capability.

What's in a Turbo Vision application?

Views, events
and engines

Views

Views are covered in detail
in Chapter 8.

Events

Events are explained in detail
in Chapter 9.

8

Before you start building your first Turbo Vision application, let's
take a look at "what's in the box" -what tools Turbo Vision gives
you to build your applications.

A Turbo Vision application is a cooperating society of views,
events, and engines. Let's look at each of those.

A view is any program element that is visible on the screen-and
all such elements are objects. In a Turbo Vision context, if you can
see it, it's a view. Fields, field captions, window borders, scroll
bars, menu bars, and push buttons are all views. Views can be
combined to form more complex elements like windows and
dialog boxes. These collective views are called groups, and they
operate together as though they were a single view. Conceptually,
groups may be considered views.

Views are always rectangular. This includes rectangles that
contain a single character, or lines which are only one character
high or one character wide.

An event is some sort of occurrence to which your application
must respond. Events come from the keyboard, from the mouse,
or from other parts of Turbo Vision. For example, a keystroke is
an event, as is a click of a mouse button. Events are queued by
Turbo Vision's application skeleton as they occur, then they are
processed in order by an event handler. The T Application object,
which is the body of your application, contains an event handler.
Through a mechanism that will be explained later on, events that
are not serviced by T Application are passed along to other views
owned by the program until either a view is found to handle the
event, or an /I abandoned event" error occurs.

For example, an F1 keystroke invokes the help system. Unless
each view has its own entry to the help system (as might happen

Turbo Vision Programming Guide

Engines

All these items are described
in Chapter 8, "Views."

in a context-sensitive help system), the F1 keystroke is handled by
the main program's event handler. Ordinary alphanumeric keys or
the line-editing keys, by contrast, need to be handled by the view
that currently has the focus; that is, the view that is currently
interacting with the user.

Engines, sometimes called "mute objects," are any other objects in
the program that are not views. They are "mute" because they
don't speak to the screen themselves. They perform calculations,
communicate with peripherals, and generally do the work of the
application. When an engine needs to display some output to the
screen, it must do so through the cooperation of a view.

This concept is very important to keeping order in a Turbo Vision
application: Only views may access the display.

Nothing will stop your' engines from writing to the display with
Pascal's Write or Writeln statements. However, if you write to the
display" on your own," the text you write will disrupt the text
that Turbo Vision writes, and the text that Turbo Vision writes (by
moving or sizing windows, for example) will obliterate this
"renegade" text.

Figure 1.1 shows a collection of common objects that might appear
as part of a Turbo Vision application. The desktop is the shaded
background against which the rest of the application appears.
Like everything else in Turbo Vision, the desktop is an object. So
are the menu bar at the top of the display and the status line at the
bottom. Words in the menu bar represent menus, which are
"pulled down" by clicking the words with the mouse or by
pressing hot keys.

Chapter 7, Stepping into Turbo Vision 9

10

Figure 1.1
Turbo Vision objects

onscreen

The text that appears in the status line is up to you, but typically it
displays messages about the current state of your application,
shows available hot keys, or prompts for commands that are
currently available to the user.

When a menu is pulled down, a highlight bar slides up and down
the menu's list of selections in response to movements of the
mouse or cursor keys. When you press Enter or click the left mouse
button, the item highlighted at the time of the button press is
selected. Selecting a menu item transmits a command to some
part of the application.

Your application typically communicates with the user through
one or more windows or dialog boxes, which appear and disappear.
on the desktop in response to commands from the mouse or the
keybQard. Turbo Vision provides a great assortment of window
machinery for entering and displaying information. Window
interiors can be made scrollable, which enbles windows to act as
portals into larger data displays such as document files. Scrolling
the window across the data is done by moving a scroll bar along
the bottom of the window, the right side of the window, or both.
The scroll bar indicates the window's position relative to the
entirety of the data being displayed.

Turbo Vision Programming Guide

Step 1: Creating an application

.i'# •• -~ni1s'M-
Step 2: Menu Status
Step 3: Commands
Step 4: Windows
Step 5: Clipboard
Step 6: Streams
Step 7: Resources
Step 8: Data entry
Step 9: Controls
Step 10: Validating
Step 11: Collections
Step 12: Custom view

Constructing the
simplest program

Listing 1.1
The simplest Turbo Vision

program

The usual way to get started with a new language or library is to
write the simplest program possible, such as a very short program
that displays the text "Hello, World!" on the screen. In this step,
you'll

• Create the absolute minimum Turbo Vision program
• Extend the basic application

The application object provides the framework on which you'll
build a real application. The simplest Turbo Vision program, then,
is just an instance of the base application object, T Application.
Listing 1.1 shows the very simplest Turbo Vision application.

program Minimali

uses APPi

var MyApp: TApplicationi

begin
MyApp.Initi
MyApp.Runi
MyApp.Donei

end.

In the object-oriented world of Turbo Vision, even your applica
tion is an object. As you'll see later, that object is also a view and a
group. The definition of the basic application object is in a unit
called App. Although the program in Listing 1.1 only uses that one
unit directly, App itself makes use of several other Turbo Vision
units. As you add to this program, you'll use parts of all of them.

If you run the program, you'll see a screen that looks like the one
in Figure 1.2. Note that the application has a blank menu bar at
the top of the screen, a status line at the bottom that indicates the
availability of the Alt+X hot key to exit the program, and a shaded
desktop in between.

Chapter 7, Stepping into Turbo Vision 11

\ Figure 1.2
Default TApplication screen

12

Extending the
application

object

Alt+X EXlt

Program Minimal shows the default behavior of the object type
T Application. In fact, TApplication can do a lot more than just
respond to Alt+X or a click the status line. What you see is just the
bare frame of a real application. As you start hanging more items
on the application framework, you'll find that the default
application already has functions built in to handle most of them.

In the remaining steps of this tutorial, you'll add new abilities to
the application object. If you're not accustomed to using libraries
of objects, you might be tempted to open APP.PAS and make
your changes directly to T Application's source code. You should
resist that temptation for several reasons.

• The purpose of an application framework is to provide a
standard, reliable foundation for all your applkations. If you
modify that basis for each of your programs, you defeat one of
the greatest benefits of using the framework.

• Modifying proven source code is a good way to introduce bugs.
Turbo Vision objects interact with each other in numerous .
interlocking ways, so making a change in one of the standard
objects could have unforeseen consequences in apparently
unrelated places.

• One of the great benefits of object-oriented programming is
extensibility. Instead of rewriting your code, you can derive a
new object type from. an existing one, and you only have to
write code for the parts that will differ, That way you keep your

Turbo Vision Programming Guide

Listing 1.2
TUTOR01.PAS, an extensible

application

Creating a command
unit

Listing 1.3
TUTCONST.PAS, a unit

defining command
constants

solid, reliable base for all your applications, and all your
customizations are in one convenient place.

The first step you should take is to derive a new application object
to which you'll add your changes, as shown in Listing 1.2.

program Tutor01;

uses App; (APP.TPU holds application objects

type
TTutorApp = object(TApplication) { define your application type
end;

var TutorApp: TTutorApp;

begin
TutorApp.Init;
TutorApp.Run;
TutorApp.Done;

end.

{ leaving room for future extensions

declare an instance of your new type

{ set up the application object
{ interact with the user

dispose of the application object

Normally you wouldn't declare a new object type with no new
fields or methods, but TTutor App will have new field and method
declarations added in future steps. TutorOl behaves exactly like
Minimal, since at this point TTutor App is exactly like its ancestor
object type, TApplication.

One aspect of making sure a Turbo Vision application is flexible
and extensible is making sure that commands are available at any
point in the program. Turbo Vision commands are integer-type
constants. The easiest way to handle this is to create a separate
unit that contains only constant definitions. Listing 1.3 shows part
of a unit containing all the command constant definitions for
Tutorial.

Don't worry too much about these command constants right now.
The important thing is to make them available. You'll be using
them extensively in the next several steps, and you'll see the
advantages of having them in a single location.

unit TutConsti

interface

const
cmOrderNew = 251;
cmOrderWin = 252;
cmOrderSave = 253;
cmOrderCancel = 254;
cmOrderNext = 255;

{ global constants for Turbo Vision Tutorial

Chapter 7, Stepping into Turbo Vision 13

cmOrderPrev = 250;
cmClipShow = 260;
cmAbout = 270;
cmFindOrderWindow = 2000;

const
cmOptionsVideo = 1502;
cmOptionsSave = 1503;
cmOptionsLoad = 1504;

implementation
end.

Keeping constants in a separate unit has several advantages. The
constant unit serves as a single, central location for all constants,
which helps you avoid duplicating constant definitions. It also
speeds up compilation of the program somewhat, as the unit will
rarely have to be recompiled.

Step 2: Customizing menus and status lines

Step 2: Menu/Status
Step 1: Basic App

Step 3: Commands
Step 4: Windows
Step 5: Clipboard
Step 6: Streams
Step 7: Resources
Step 8: Data entry
Step 9: Controls
Step 10: Validating
Step 11: Collections
Step 12: Custom view

Initializing the
application

In Step 3 you'll extend Init
itself, but you'll build on the

existing method, rather than
having to reproduce all its

operations.

14

Turbo Vision application objects divide the screen into three main
parts: the desktop, the menu bar, and the status line. In this step,
you'll learn a bit about each, then you'll learn how to

• Customize the status line

• Customize the menu bar

You'll rarely have occasion to modify the desktop object, but
you'll learn how to use its capabilities in Step 4.

When you initialize an application object, the Init constructor calls
three virtual methods called InitDesktop, InitMenuBar, and
InitStatusLine to set up objects to handle the desktop, the menu
bar, and the status line. This means you can change any of those
three objects without having to change the application's construc
tor. You just override the method that sets up the particular object.
You'll rarely want to change the desktop object, since its operation
is quite straightforward. But you'll nearly always customize the
status line and menu bar of your applications. .

Turbo Vision Programming Guide

Customizing the
status line The application object's virtual method InitStatusLine initializes a

status line object and assigns it to the global variable StatusLine.
To create a custom status line, you need to override InitStatusLine
to construct a new status line object and assign it to StatusLine.

Constructing a status line object takes three steps:

• Setting the boundaries of the status line
• Defining ranges of help contexts
• Defining status keys

Be sure to add the declaration of InitStatusLine to the type
declaration of TTutor App.

Setting the boundaries In general, the status line is the bottom line of the application
screen. You should rarely have occasion to put it elsewhere. The
default application assumes that its bottom line is a status line, so
if you move the status line somewhere else, you'll need to make
sure some other object, such as the desktop, takes over that last
screen line.

Because the boundaries of the status line depend on the bound
aries of the application itself, and because the application's
boundaries change depending on video modes, InitStatusLine
should query the application object for its boundaries and set the
status·line bounds accordingly.

Since all Turbo Vision views are rectangular, they store their
boundaries in a rectangle object of type TReet. TReet has two
fields, A and B, which represent the upper left and bottom right
corners of the view. A and B in turn are point objects, which have
two fields X and Y, which represent the column and row
coordinates of the point.

Views have a method called GetExtent that returns the bounding
rectangle of the view in its single var parameter. InitStatusLine will
call the application's GetExtent, then modify the returned
rectangle:

type
TTutorApp = object (TApplication)

procedure InitStatusLine; virtual;
end;

Chapter 7, Stepping into Turbo Vision

{ declare the new method }

15

Defining ranges of help
contexts

16

For full information on help
contexts, see Chapter 70,

"Application objects. II

procedure TTutorApp.lnitStatusLine;
var R: TRect;
begin

GetExtent (R) ;
R.A.Y := R.B.Y - 1;

{ get the application's boundaries}
{ set top to one above bottom }

Every view has an object field of type Word that holds its help
context. Help contexts serve two main purposes. They provide a
number that a context-sensitive help system can use to determine
what help screen to display, and they determine which status line
shows at the bottom of the screen.

A status line object contains a linked list of records, called status
definitions. A status definition holds a range of help contexts and a
list of status line items or status keys to display when the applica
tion's help context falls within the specified range. You create
status definitions by calling the function NewStatusDef.

The default status line object assigned to StatusLine defines a
single status definition with a range covering all possible help
contexts, so the same status line shows, no matter what the
current help context:

New(StatusLine, Init(R,
NewStatusDef(O, $FFFF,

StdStatusKeys(nil) ,
nil))) ;

{ use the boundaries passed in R }
cover help context range O .. $FFFF }

{ include standard status keys }
{ no further definitions }

For this application, you need two status definitions: one for most
help contexts, and a special one for help contexts $FOOO and
higher. In Step 7, you'll create a customized data entry window
that sets the help context to values higher than $FOOO. Creating a
second status definition is just a matter of supplying another
nested call to NewStatusDef:

procedure TTutorApp.lnitStatusLine;
var R: TRect;
begin

GetExtent (R) ;
R.A.Y. := R.B.Y - 1;
New (StatusLine, Init(R,

end;

NewStatusDef(O, $EFFF,
StdStatusKeys(nil) ,

NewStatusDef($FOOO, $FFFF,
StdStatusKeys(nil) ,

nil)))) ;

{ note the different range }

{ new range $FOOO .. $FFFF }
same status keys for now }

{ note one more parenthesis }

Turbo Vision Programming Guide

Now you have two status definitions covering two ranges of help
contexts, but they both display the same set of items. In the next
section, you'll define custom status line items for each range.

Defining status keys Each status definition has its own linked list of status keys, which
are the items you actually see on the status line (although you can
define keys with no text, as you'll see). Each status key consists of
four items:

You'll use commands
extensively in Step 3.

Listing 1.4
Creating the standard status

keys

• A text string that shows on the status line
• A keyboard scan code for a hot key
.Acommand
• A pointer to the next status key

Briefly, the text for a status key defines what shows on the status
line. Any text enclosed by tildes (' ,..,,') shows up highlighted. An
empty text string means the item doesn't show up on the screen at
all, but it still binds the hot key to the command.

The hot key can be any "special" key, such as a function key, an
Alt+ key combination, or a etrl + key combination. Turbo Vision's
Drivers unit defines mnemonic constants corresponding to all
common key combinations.

All you need to know about Turbo Vision commands at this point
is that they are integer constants. Turbo Vision defines some
standard commands, and you can define your own. Specifying a
command in a status key declaration binds the command to the
hot key and the status line item. Clicking the status key or
pressing the hot key generates the command.

Listing 1.4 shows the StdStatusKeys function, which returns the
default status keys.

function StdStatusKeys(Next: PStatusItem): PStatusItemi
begin

StdStatusKeys :=

endi

NewStatusKey(", kbAltX, cmQuit, { bind Alt+X to cmQuit
NewStatusKey(", kbF10, cmMenu, {these keys are invisible ...
NewStatusKey (1/, kbAltF3, cmClose, { ... but still bind hot keys
NewStatusKey(", kbF5, cmZoom,
NewStatusKey(", kbCtrlF5, cmResize,
NewStatusKey(", kbF6, cmNext,
Next)))))) i { append any keys passed in Next

The items displayed on the status line for each status definition
form a linked list of status keys, created by nested calls to the

Chapter 1, Stepping into Turbo Vision 17

18

Listing ,1.5
, TUTOR02A.PAS, the

application with a custom
status line

function NewStatusKey. In complicated status line declarations, all
these nested function calls can get confusing. One way tnsimplify
this code is to define functions that return status definitions or
lists of status keys, especially if you have items in common
between multiple status definitions. For example, calling
StdStatusKeys keeps you from having to declare Alt+X, F10, and the
other standard keys in every status definition.

Listing 1.5 shows the revised program, including the declararion
of several new status keys.

program Tutor02a;

uses App, Objects, Menus, Drivers, Views, TutConst;

type
TTutorApp = object (TApplication)

procedure InitStatusLine; virtual;
end;

procedure TTutorApp.InitStatusLine;
var R: TRect;
begin

GetExtent (R) ;
R.A.Y := R.B.Y - 1;
New(StatusLine, Init(R,

{ declare the new method }

NewStatusDef(O, $EFFF, { this is the "normal" range
NewStatusKey('-F3- Open', kbF3, cmOpen, { bind F3
NewStatusKey('-F4- New', kbF4, cmNew, { and F4
NewStatusKey('-AlttF3- Close', kbAltF3, cmClose, {and AlttF3
StdStatusKeys(nil)))), { and add the stand~rd keys

NewStatusDef($FOOO, $FFFF, { define another range
NewStatusKey('-F6- Next', kbF6, cmOrderNext,
NewStatusKey('-ShifttF6- Prev', kbShiftF6, cmOrderPrev,
StdStatusKeys(nil))), nil))));

nil) { no more defs for this status line
i); { closing parens for New and Init

end;

var TutorApp: TTutorApp;

begin
TutorApp.Init i;

TutorApp.Run;
TutorApp.Done;

end.

If you run the program now, you'll see it looks just the same,
except for the additional status keys. The Alt+F3 item is not
highlighted, however, and clicking it has no effect because the
em Close command you bound to Alt+F3 is disabled by default.

Turbo Vision Programming Guide

Customizing the
menu bar

Turbo Vision automatically disables items that generate disabled
commands. Once you open a window, Turbo Vision will enable
em Close and the AIt+F3 status line item.

Just as the application's InitStatusLine method constructs the
status line, InitMenuBar constructs the application's menu bar and
assigns it to the global variable MenuBar. To customize your
application's menus, you override InitMenuBar.

Like the status line, the menu bar is made up of a linked list of
items. The items on the menu bar can be either menu commands

. or links to a drop-down menu (called a submenu). The default
application has no items of any sort on its menu bar, so to create a
meaningful menu bar, you need to build one from scratch.

Creating a menu bar takes three steps:

• Setting the boundaries of the menu bar
• Defining menu items
• Defining submenus

After doing those three steps, you'll see how you can cut some
corners by using functions to return menu items and submenus.

Setting the boundaries Like the status bar, the menu bar needs to set its boundaries based
on the application's boundaries. But instead of the bottom line of
the screen, the menu bar occupies the top line on the screen.
Again, the easiest way to do this is to call the application view's
GetExtent method:

procedure TTutorApp.lnitMenuBari
var R: TRecti
begin

GetExtent(R) i

R.B.Y := R.A.Y + li
New (MenuBar , Init(R, ...)) i

Defining menu items In its simplest form, the application's menu bar looks and acts
almost like the status line: a horizontal list of items the user can
click to generate commands. Unlike the status line, however, the
menu bar is not context sensitive. The menu bar stays the same
unless the application explicitly alters it or replaces it.

Chapter 7, Stepping into Turbo Vision 19

Listing 1.6
Constructing a simple menu

bar in TUTOR02B.PAS

Turbo Vision constants,
including the hcXXXX and

kbXXXX codes, are listed in
Chapter 79, "Turbo Vision

reference. "

Each item in a menu has of six parts:

• A text label describing the menu command
• Another text label describing any hot keys
• A keyboard scan code for the hot key
.A command
• A help context
• A pointer to the next item

When a menu item appears directly on the menu bar, however,
the hot key description doesn't show up, but the hot key itself still
works. The help context is useful in case you want to provide
context-sensitive descriptions of menu items. Lines between menu
items don't show up on the menu bar, although they do show in
vertical menus.

Listing 1.6 shows an InitMenuBar method that declares a menu
bar with items for opening and saving files.

procedure TTutorApp.InitMenuBar;
var R: TReet;
begin

GetExtent(R) ;
R.B.Y := R.A.Y + 1;
MenuBar := New (PMenuBar, Init(R, NewMenu(

end;

NewItem('-N-ew', ", kbNoKey, emNew, heNew,
NewItem('-O-pen ... ', 'F3', kbF3, emOpen, heOpen,
NewItem('-S-ave', 'F2', kbF2, emS ave , heSave,
NewItem ('Sav;e -a-s ... ' " ", kbNoKey,. emSaveAs, heSaveAs,
NewLine (
NewItem('E-x-it', 'Alt+X', kbAltX, emQuit, heExit,
nil))))))))) ;

As with the status line you created, the only item that results in
any action is the Alt+X item that terminates the application. The
others generate commands you haven't yet defined responses to.

Menu items on the menu bar are quite limited, so they're rarely
used this way. You generally group menu items into submenus,
the vertical menu boxes that come from other menu items.

Defining submenus Items that create submenus have no hot keys, so they don't have
as many parameters as other items. The parameters they take are

• A text label for the submenu
• A help context

20 Turbo Vision Programming Guide

Listing 1.7
Constructing a simple menu

bar

~:~~ Wi ndow ::::::::: "'''''''''''''., 1;5:11" 111111111111111111 ..

m::::::::::::::: Zoom F5 ::
111111111111111111 ..
111,,"""1111111 ..
IIIIII'''UIIIIIII ..
111111111111111111111111 ..
111111111111111111111111 ..
111111111111111111111111 II
"llIlIlIlIlIlInlllllll ..
'1111111111111111"111111111111,.11 ,1111111111111111111111111111
1111111111111111111'111111111111111'''1111111111111111,,1111111111111

• A pointer to the first item in the submenu list
• A pointer to the next item or next submenu

To create a simple menu bar with a single submenu called 'File'
that has one item on it called 'Open', you override InitMenuBar
like this:

procedure TMyApp.lnitMenuBar;
var R: TRect:
begin

GetExtent (R) :
R.B.Y := R.A.Y + I:
MenuBar := New(PMenuBar, Init(R, NewMenu({create bar with menu}

NewSubMenu (, -F-ile', hcNoContext, NewMenu ({ define menu }
Newltem('-O-pen', 'F3', kbF3, cmOpen, hcOpen, { item}
nil)) , no more items }

nil) no more submenus }
))) ; { end of the bar }

end:

To add another item to the 'File' menu, replace the nil that's the
last parameter passed to NewItem with another call to NewItem:

MenuBar := New (PMenuBar, Init(R, NewMenu(
NewSubMenu('-F-ile', hcNoContext, NewMenu(

Newltem('-O-pen', 'F3', kbF3, cmOpen, hcOpen,
Newltem('-N-ew', 'F4', kbF4, cmNew, hcNew,
nil))) ,

nil)
))) ;

To add another submenu to the menu bar, replace the nil that's the
last parameter passed to NiwSubMenu with another call to
NewSubMenu:

MenuBar := New (PMenuBar, Init(R, NewMenu(
NewSubMenu('-F-ile', hcNoContext, NewMenu(

Newltem('-O-pen', 'F3', kbF3, cmOpen, hcOpen,
Newltem('-N-ew', 'F4', kbF4, cmNew, hcNew,
nil))), (closing parens for menu selections

NewSubMenu('-W-indow', hcNoContext, NewMenu(
Newltem('-N-ext', 'F6', kbF6, cmNext, hcNoContext,
Newltem('-Z-oom', 'FS', kbFS, cmZoom, hcNoContext,
nil)), (closing parens for menu selections

nil))) (closing parens for menus
)));

To add a line between menu items, call the function NewLine
between NewItem calls:

Chapter 7, Stepping into Turbo Vision 21

22

I Fi 1 e .~gmi.@

i!Jt!§i
New

.,
F4

Exit Alt+X

mri:iii::::::::::::ii:::::::::::::.ii.:::::::::::::I1:::::::::::::::

Using functions to
return menus

App a/so defines standard
File and Edit menus.

Listing 1.8
TUTOR02C.PAS defines a

complex menu.

MenuBar := New (PMenuBar, Init(R, NewMenu(
NewSubMenu('-F-ile', heNoContext, NewMenu(

Newltem('-O-pen', 'F3', kbF3, emOpen, heOpen,
Newltem('-N-ew', 'F4', kbF4, emNew, heNew,
NewLine(
Newltem('E-x-it', 'Alt+X', kbAltX, emQuit, heExit,
nil)))).),

NewSubMenu('-W-indow', heNoContext, NewMenu(
Newltem('-N-ext', 'F6', kbF6, emNext, heNoContext,
Newltem('-Z-oom', 'FS', kbFS, cmZoom, hcNoContext,
nil))) ,

nil))
)))i

Menu declarations can become complicated, especially if you
have menus nested within menus. One way to tame this complex
ity is to use functions to return linked lists of menU items. Turbo
Vision provides several such functions jn the App unit. For
example, the StdWindowMenultems function returns a pointer to a
list of standard window menu items:

function StdWindowMenuItems(Next: PMenuItem): PMenuItemi
begin

StdWindowMenultems :=
.NewItem(',-T-ile', ", kbNoKey, emTile, heTile,
Newltem('C-a-scade', ", kbNoKey, emCaseade, heCaseade,
Newltem('CI-o-se all', ", kbNoKey, emCloseAII, heCloseAII,
NewLine (
Newltem('-S-ize/Move', 'Ctrl+FS', kbCtrlFS, emResize, heResize,
Newltem('-Z-oom', 'FS'" kbFS, emZoom, heZoom,
Newltem('-N-ext', 'F6', kbF6, emNext, heNext,
Newltem('-P-revious', 'Shift+F6', kbShiftF6, emPrev, hePrev,
Newltem('-C-Iose', 'Alt+F3', kbAltF3, emClose, heClose,
Next))))))))) i

Although Tutorial has a fairly complex menu bar, its declaration is
much less complex because it relies on the standard menu
functions, StdFileMenuItems, StdEditMenuItems, and
StdWindowMenuItems:

procedure TTutorApp.lnitMenuBari
var R: TReeti
begin

GetExtent (R) i

R.B.Y := R.A.Y + Ii
MenuBar := New (PMenuBar, Init(R, NewMenu(

Turbo Vision Programming Guide

NewSubMenu (, -F-ile', hcNoContext, NewMenu (
StdFileMenuItems(nil)) ,

NewSubMenu('-E-dit', hcNoContext, NewMenu(
StdEditMenuItems(
NewLine (
NewItem('-S-how clipboard',

hcNoContext,
kbNoKey, cmClipShow,

nil)))) ,

NewSubMenu('-O-rders', hcNoContext, NewMenu(
NewItem (, -N-ew', , F9', kbF9, cmOrderNew, hcNoContext,
NewItem('-S-ave', ", kbNoKey, cmOrderSave, hcNoContext,
NewLine (
NewItem('Next', 'PgDn',. kbPgDn, cmOrderNext, hcNoContext,
NewItem('Prev', 'PgUp', kbPgUp, cmOrderPrev, hcNoContext,
nil)))))) ,

NewSubMenu('O-p-tions', hcNoContext, NewMenu(
NewItem('-T-oggle video', kbNoKey, cmOptionsVideo,

hcNoContext,
NewItem('-S-ave desktop',

hcNoContext,
kbNoKey, cmOptionsSave,

NewItem('-L-oad desktop',
hcNoContext,

kbNoKey, cmOptionsLoad,

end;

nil)))) ,

NewSubMenu('-W-indow', hcNoContext, NewMenu(
NewItem('Orders', ", kbNoKey, cmOrderWin, hcNoContext,
NewItem('Stock items', ", kbNoKey, cmStockWin, hcNoContext,
NewItem('Suppliers', ", kbNoKey, cmSupplierWin, hcNoContext,
NewLine (
StdWindowMenuItems(nil)))))),

NewSubMenu('-H-elp', hcNoContext, NewMenu(
NewItem('-A-bout ... ', ", kbNoKey, cmAbout, hcNoContext,
nil)), nil)))))))));

What you/ve accomplished

At this point it might not seem like you've done much. Although
you've defined a number of commands and set up ways to
generate the commands through menu items and status keys,
most of the commands are either disabled or just don't do
anything yet. If you're disappointed - don't be! You've
accomplished a lot.

Chapter 7, Stepping into Turbo Vision 23

Separating
events from

responses

Event-driven programming is
explained in Chapter 9,

"Event-driven programming. "

24

Programming
flexibly

In traditional, non-event-driven programming, if you wanted to
respond to the commands you've defined, you'd have to go back
into the code you'd just written and indicate what procedure
should be called when the user chooses each menu item, then do
the same for each status key. But you don't have to do that in
Turbo Vision. Each of those menu items and status keys generates'
a command. You just have to write a few routines that respond to
those commands-without touching the menu or status line code.

The Turbo Vision application framework takes you a step beyond
traditional modular programming. Not only do you code in func
tional, reusable blocks, but those blocks are more independent
and interchangeable.

Tutorial now has three ways to generate the command cmNew Win:
a status key, a menu item, and a hot key. In the next step, you'll
see how easy it is to tell your application to open a window when
that command shows up. But the most important thing is that the
application doesn't care how the command was generated, and
neither will the window.

Later on, if you decide you want to change the binding of the
command-move the menu selection or remap the hot keys, for
example-you don't have to worry or even think about how it
affects the response code. That's the biggest benefit of event
driven programming. It separates your user interface design from
your program workings and lets different parts of your program
function independently.

Turbo Vision Programming Guide

c H A p T E R

2

Responding to commands

Now that your program generates commands, you need to add
the ability to respond to those commands. In this,chapter you'll
learn about how commands work, then add code to the Tutorial
program to

• Change the video mode
• Display an "About" box
• Enable and disable commands

What are commands?

Understanding
commands

Throughout the last step, you set ul? ways for Tutorial to generate
commands, but we really touched only lightly on what com
mands really are. In this step, you'll learn a lot more about
commands and then write some code to respond to some of the
commands you generated in Step 2.

So far, you've learned that commands are integer constants,
usually represented by identifiers beginning with em (short for
"command"). You've seen several of the standard Turbo Vision
commands, such as emQuit and emNext, and defined your own
commands for Tutorial, such as em Open Window.You've also gotten
an indication that these commands are tied to certain actions,
such as pressing a hot key or choosing a menu item. In this

Chapter 2, Responding to commands 25

section, you'll see just.what we mean by "generating" a
command, how commands relate to events, and what it means to
"respond" to a command.

What are events? Already in this manual, we've referred several times to "event
driven programming" and some of its benefits. You've probably
understood that it involves writing your program so that it
responds to outside occurrences such as mouse clicks or key
strokes. Any such occurrence that your program needs to take
note of is called an event.

This is a simulated control
loop for a typical Pascal

program.

Event-driven programming is
often called "modeless

programming" because the
user can access any part of

the program, not just the
current "mode."

26

Traditionally, we've all written programs that perform some
action, wait for input from a user, then act on that input. Central
to this model of programming is th~ input loop, usually followed
by a branching statement. A simplified version might look like
this:

repeat
GetCommand;

until Command <> 0;
case Command of

1: DoSomething;
2: DoSomethingElse;
else EtCetera;

end;

The procedures DoSomething and DoSomethingElse either perform
some action and come back to the loop or perhaps contain their
own input/ action loops. The main drawback to this kind of
programming is that your code has to be tightly coupled
differ~nt parts of the program have to be aware of what other
parts are available or not available at any given time.

In event-driven programming, instead of having numerous input
loops, the whole program has one, called the event loop, which
interacts with all interfaces to the outside world and channels
information about what went on to the appropriate part of the
program. This structure allows great flexibility. For example, if
you pull down a menu, then decide that you want to click on the
status line, you don't have to first close the menu and get out of
"menu mode" before moving on to something else. The event
loop recognizes that your click on the status line is meant for the
status line, and tells the status line object to respond to a mouse
click. Closing the open menu happens automatically when you
move the input focus to the status line.

Turbo Vision Programming Guide

Responding to events For the moment we won't dwell on how the event loop decides
where to send events. The event-routing mechanism is described
in detail in Chapter 9, "Event-driven programming." The impor
tant thing to know is that the event loop packages information
about the event into a variant record of type TEvent and sends it .
to the object that needs to know about the event.

Handling command
events

This is a greatly simplified
portion of

TWin do w. Han dleEven t.

All visible Turbo Vision objects have virtual methods called event
handlers. These methods are always called HandleEvent, and
always take a single var parameter of type TEvent. Thus, when the
application's event loop detects an event, it figures out which
object should handle the event, creates an event record, and passes
that record to the object's HandleEvent method. The object then
examines the event record and decides what to do with the event,
if anything.

For example, if the event was a mouse click, the event record
contains information as to where on the screen the click took
place, which button was clicked, and whether it was a double
click. Pressing a key on the keyboard sends an event that includes
the scan code or character code of the key pressed.

In this step, you'll learn how to handle command events.

Every event record has a Word-type field called What that the
event loop fills with a constant indicating the type of event
described in the record. One of those constants is evCommand,
indicating a command event. If the event is a command event, the
record also contains a field called Command, which holds the
command constant bound to the menu item, status key, or hot key
that generated the command event.

For example, if you click the Alt+F3 status line item (or press
Alt+F3), the event loop generates a command event, setting the
event record's What field to evCommand, and the Command field to
cmClose. It then routes the event record to the active window.
Window objects know that when they receive a cmClose
command, they are to close, specifically by calling a method
called Close:

if Event.What = evCommand then
case Event.Command of

cmClose:
begin

Close;

Chapter 2, Responding to commands 27

ClearEvent (Event) ;
end;

Notice that after responding to the event, the object clears the
event by calling the method ClearEvent. This indicates to. other
objects that the event has been handled and that no further
processing is necessary.

Step 3: Responding to commands

Step 1: Basic App
Step 2: Menu/Status
Step 3: Commands
Step 4: Windows
Step 5: Clipboard
Step 6: Streams
Step 7: Resources
Step 8: Data entry
Step 9: Controls
Step 10: Validating
Step 11: Collections
Step 12: Custom view

Changing the
video mode

Listing 2.1
Redefining the application's

event handler, from
TUTOR03A.PAS

28

Manipulating bit flags is
explained in Chapter 7.

Now that you've seen the process in theory, it's time to actually
respond to some command events. In this step you'll respond to
commands to

• Change the video mode
• Display an About box

In addition, you'll learn to enable and disable commands.

If you pull down Tutorial's Options menu, you'll notice that the
first item is called Toggle Video Mode. The InitMenuBar method
binds that menu item to the command emOptionsVideo. To define
a response to that command, you need to give TTutorApp a
HandleEvent method that knows how to respond to
em Options Video. Listing 2.1 shows the event handler.

procedure TTutorApp.HandleEvent(var Event: TEvent);
begin

inherited HandleEvent(Event); {call the inherited method first
if Event.What = evCommand then { if unhandled, check for commands
case Event .Command of

cmOptionsVideo:
begin

{ check for known commands

SetScreenMode(ScreenMode xor smFont8x8); {toggle mode bit}
ClearEvent(Event); { mark the event as handled}

end;
end;

end;

If you run the program now, choosing the Toggle item on the
Options menu toggles the program's video mode between

Turbo Vision Programming Guide

Calling inherited
methods

Displaying an
About box

standard 2S-line mode and 43- or 50-line EGA/VGA mode by
toggling a bit called smFont8x8 in the ScreenMode variable. On
monochrome or CGA systems, this command will have no effect.

Notice that the first thing the new HandleEvent does is call the
HandleEvent inherited from T Application. As a rule, when you
redefine a virtual method in Turbo Vision, you want your new
method to call its inherited method at some point.

Calling the inherited method essentially tells the new method to
act like its ancestor type. In Listing 2.1, TTutorApp calls its
inherited HandleEvent method and then defines some more
behavior. That's like saying, "TTutor App should handle events like
T Application and also handle some others."

You can also define HandleEvent methods that remove some of
their inherited behavior by checking for certain events before
calling the inherited method, then clearing the event so the
inherited method doesn't get a chance to handle it. That's like
saying, "This object should handle events like its ancestor, except
for these certain events."

In general, if you want to eliminate some inherited behavior, you
either trap that behavior before calling the inherited method, or
don't call the inherited method at all. If you want to add to the
inherited behavior, you call the inherited method first, and then
define the desired additional actions.

Programs often have a menu option that brings up a box that
displays information about the program. This box is usually
called the" About box." Turbo Vision provides a utility called a
message box that you can use to show messages to users. In the
next section, you'll use a message box to create a simple About
box. Later, you'll create a somewhat fancier About box on your
own.

Tutorial's Help menu has an "About ... " item. The " ... " after the
name of the item indicates that the item brings up a dialog box.
That menu item is bound to the command cmAbout, so to display
your about box, you need to tell TTutor App's HandleEvent method
to respond to cmAbout. This time, instead of actually displaying
the About box from within HandleEvent, you'll call another

Chapter 2, Responding to commands 29

Listing 2.2
Adding an About box, from

TUTOR03B. PAS

Using message boxes

MessageBox is in the MsgBox
unit.

30

method, called DoAboutBox, which actually displays the About
box. Listing 2.2 shows the necessary code changes.

procedure TTutorApp.DoAboutBox;
begin { #3 centers a line; #13 is a line break }

MessageBox(#3'Turbo Vision Tutorial Application'#13 +
#3'Copyright 1992'#13#3'Borland International',
nil, mflnformation or mfOKButton); { specify title & button}

end;

procedure TTutorApp.HandleEvent(var Event: TEvent);
begin

inherited HandleEvent(Event); {call the inherited method first
if Event.What = evCommand then { if unhandled, check for commands
case Event.Command of { check for known commands

cmOptionsVideo:
begin

SetScreenMode(ScreenMode xor smFont8x8); toggle mode bit
ClearEvent(Event); { mark the event as handled}

end;
cmAbout:

end;
end;

begin
DoAboutBox;
ClearEvent(Event);

end;

{ call about box method }
{ mark the event as handled }

Now when you run the program, you can bring up the About box
from the menu, and close it by clicking OK.

The MessageBox function gives you an easy way to inform or warn
the user of a limited amount of information, and also enables you
to get limited feedback based on the button the user presses.

MessageBox takes three parameters. The first is the message string
to display. The message box automatically wraps the text if it
exceeds one line, but you can force a line break (as DoAboutBox
does) by putting a carriage return character (#13) in the string. If a
iine begins with #3, the message box centers that line instead of
left-aligning it.

The second parameter is a pointer to an array or record of data
items to substitute into the message string, if any. The message
string can contain formatting characters that get replaced by the
data items in the second parameter. For simple text messages, this
second parameter is nil.

Turbo Vision Programming Guide

Combining message
box flags

Reading message box
return values

Extended syntax rsx+} is the
default setting.

Enabling and
disabling

commands

The last parameter to MessageBox is a set of flag bits that indicate
the title to put on the message box and the buttons to place under
the text. The easiest way to set these bits is to use the predefined
message flag constants, which have identifiers starting with mf.

Use the or operator to combine one of mfInformation, mfWarning,
mfConfirmation, or mfError with one of mfOKButton, mfOKCancel,
or mfYesNoCancel.

Try substituting different combinations of mfXXXX constants into
the About box in Tutorial to see their different effects.

When the user clicks one of the buttons in a message box, the box
closes, and MessageBox returns the value of the command bound
to the clicked button. That value will always be cmOK, em Cancel,
cmYes, or cmNo, so you can use message boxes to ask simple
questions of the user and get simple yes-no or OK-not OK
answers.

In the case of an About box, you don't care how the user closes the
box-that's not important information, so you can ignore the
value returned by MessageBox. Using Turbo Pascal's extended
syntax, you can call a function as if it were a procedure,
essentially throwing away the return value.

Now that you've defined responses to some of the menu com
mands, it's a good time to learn more about Turbo Vision
commands in general. You've already seen that Turbo Vision
automatically disables some commands, such as disabling cmClose
where there's nothing to close. You'll also notice that on the
Window menu, the items for Next, Previous, Resize and Zoom
are disabled because there's nothing for them to act on. In the next
step, you'll actually add windows to the desktop, and you'll see
those commands become enabled.

Of course Turbo Vision can't automatically handle commands
that you define, and there might be times when you want to, for
example, disable a standard command that would otherwise be
available. In this section you'll learn how to enable and disable
single commands and groups of commands.

Chapter 2, Responding to commands 31

Which commands can
I disable?

You've already seen that commands are Word-type constants, but
you can only disable commands in the range 0 .. 255 because
command disabling operates on sets of commands, and Turbo
Pascal sets contain only elements in that range. When you define
commands, then, consider whether you'll ever need to disable
them before you assign a value. Since you can only disable a
limited number, you need to assign values accordingly.

Keep in mind.also that Turbo Vision reserves some commands for
its standard commands, including the range 0 .. 99 of commands
you can disable and 256 .. 999 of commands that you can't. So you
can define commands 100 .. 255 that you can disable and
1,000 .. 65,535 that you can't.

Disabling commands Turbo Vision provides a set type for holding sets of commands,
called TCommandSet. Every visual Turbo Vision object has a
DisableCommands method that takes a TCommandSet as its one
parameter and disables the commands in that set.

When you disable a command, it is disabled throughout the
application, because you don't want some other part of the
program generating a command you don't expect to have to
handle. All menu items, status keys, and buttons that generate a
disabled command are themselves disabled. You can click them,
but they have no effect, so they show up dimmed.

For example, none of the first commands on the Window menu
do anything yet, sO you might want to have the program disable
them initially, only enabling them when there's actually some
thing for them to do. A good place to do this is in the application
object's constructor:

constructor TTutorApp.lnit;
begin

inherited Init; { do standard application setup}
DisableCornmands([cmOrderwin, cmStockWin, cmSupplierWin]);

end;

Enabling commands Just as each visible Turbo Vision object can disable commands, it
has a corresponding EnableCommands method. In Step 11, you'll
use EnableCommands to reenable the Orders menu commands.

32 Turbo Vision Programming Guide

c H A p T E .R

3

Adding windows

So far you've customized your application's menu bar and status
line and seen how to respond to their commands. In this chapter,
you'll start adding windows to the desktop and managing them.

In this chapter, you'll do the following steps:

• Add a simple window

• Tile and cascade windows

• Add file editor windows

• Use a standard file open dialog box

• Add a clipboard window

Step 4: Adding a window

Step·1: Basic App
Step 2: Menu/Status
Step 3: Commands
Step 4: Wi ndows
Step 5: Clipboard
Step 6: Streams
Step 7: Resources
Step 8: Data entry
Step 9: Controls
Step 10: Validating
Step 11: Collections
Step 12: Custom view

Chapter 3, Adding windows

One of the great benefits of Turbo Vision is that it makes it easy to
create and manage multiple, overlapping, resizeable windows.
T1;le key to managing windows is the desktop, which knows how
to keep track of all the windows you give it and which can handle
such operations as cascading, tiling, and cycling through the
available windows.

The desktop is one example of a group in Turbo Vision; that is, a
visible object that holds and manages other visible items. You've
already used one group-the application itself, which handles the
menu bar, the status line, and the desktop. As you proceed, you'll
find that windows and dialog boxes are also groups.

33

34

Add'ing a simple
window

Like the menu bar and the status line, the desktop object is
constructed in a virtual method of the application object called
InitDesktop and assigned to a global variable, Desktop. By default,
Desktop covers all of the application screen that isn't covered by
the menu bar and status line.

Adding a window to the desktop in an application takes three
steps:

• Assigning the boundaries for the window
• Constructing the window object
• Inserting the window into the desktop

As a first step, you can add a plain window to the desktop·in
response to the New item on the File menu. That item generates a
cmNew command, so you need to define a response to that
command in the application's HandleEvent method. In this case,
just call a method called NewWindow, which you'll modify a few
times before you're through:

procedure TTutorApp.HandleEvent(var Event: TEvent);
begin

inherited HandleEvent(Event);
if Event.what = evCommand then
begin

end;

case Event.Command of
crnNew:

begin
NewWindow;
ClearEvent(Event);

end;

procedure TTutorApp.NewWindow;
var

R: TRect;
TheWindow: PWindow;

begin
R . As sign (0, 0, 60, 2 0) ;
The Window := New (PWindow,

{ assign boundaries for the window }

Init(R, 'A window', wnNoNumber));
DesktopA.lnsert(TheWindow) ;

{ construct window }
insert window into desktop }

end;

Turbo Vision Programming Guide

II

\

Assigning the window
boundaries

Constructing the
window object

The changes to HandleEvent should seem familiar by now.
New Window, though, contains some new things.

You've seen TRect-type variables before. However, for the menu
bar and status line, you set their sizes based on the size of the
application (using the GetExtent method). In NewWindow, you
assign the new window an absolute set of coordinates using
Assign.

The next statement constructs a dynamic instance of the generic
window object type, TWindow. Constructing a window requires
three parameters: the boundaries of the window, a string contain
ing the title for the window, and a number for the window. In this
case, your window has the title' A window' and no number,
because you've passed the constant wnNoNumber.

If you assign a number to a window, the user can activate the
window on the desktop by holding down the Alt key and typing
the window's number.

Inserting the window Insert is a method common to all Turbo Vision groups, and it's the
way a group gets control of the objects within it. When you insert
TheWindow into the desktop, you're telling the desktop that it is
supposed to manage TheWindow.

Inserting more safely

Chapter 3, Adding windows

If you run the program now and choose New from the File menu,
an empty blue window with the title 'A window' appears on the
desktop. If you choose New again, another, identical window
appears in the same place, because NewWindow assigns exact
coordinates for the window. Using your mouse, you can select
different windows.

The menu items under Window and the hot keys bound in the
status line now operate on the windows. Note that the menu and
status line items haven't changed. They don't know anything
about your windows. They just issue commands which the win
dows and desktop already know how to respond to.

The application object has several methods you can use to both
simplify some common operations and make those operations
"safer." By safer, we mean that it's less likely to cause a problem,
such as running out of memory. Your application object inherits a
method called Insert Window that takes care of the Desktop/\ .InsertO
part of inserting a window. In addition, InsertWindow makes sure

35

Listing 3.1
Inserting a window safely, in

TUTOR04A.PAS

Tiling and
cascading

Adding an editor
window

36

the window you're inserting was constructed successfully and
that you haven't run out of memory.

Using Insert Window, the NewWindow method looks like this:

procedure TTutorApp.NewWindowi
var

R: TRecti
TheWindow: PWindowi

begin
R.Assign(O, 0, 60, 20) i

New (TheWindow, Init(R, 'A window', wnNoNumber)) i

InsertWindow(TheWindow)i { insert window into desktop}
endi

It's a good idea to use Insert Window to insert windows into the
desktop unless you have a good reason to circumvent the safety
precautions it takes.

One thing the desktop knows how to do is tile and cascade win
dows. The application just needs to tell the desktop when to do
that. The default event handler in T Application responds to the
standard Window menu commands cmTile and cmCascade, calling
the T Application methods Tile and Cascade, respectively.

Such inherited standard behavior is one important reason to
remember to call inherited HandleEvent methods.

Now that you've seen how windows behave in general, you might
wantto include a more useful window, such as a file editor win
dow. The Editors unit in Turbo Vision defines just such a window,
so you can change New Window to insert an editor window instead
of a generic window.

Adding an editor window requires only two additional steps and
one changed step: .

• Defining a file edit buffer
• Setting up editor dialog boxes
• Constructing a file editor window

Turbo Vision Programming Guide

Defining the file editor
buffer

MaxHeapSize and file editor
buffers are explained fully in

Chapter 75.

Setting up editor dialog
boxes

Constructing the editor
window

Chapter 3, Adding windows

If you want your application to use any file editors (including the
clipboard), you need to initialize the MaxHeapSize variable from
the Memory unit, and you have to do it before constructing the
application object. MaxHeapSize sets aside a part of memory above
the regular heap to be used for file-editor buffers.

MaxHeapSize sets the number of 16-byte paragraphs the applica
tion can use for its regular heap, leaving the rest of free memory
for file-editor buffers. The changes in Tutorial shown in Listing 3.2
include setting MaxHeapSize to 8192, meaning it sets aside 128K
for the application heap, which is much more than enough for this
simple program.

The Editors unit has a procedural variable called EditorDialog that
handles all the dialog boxes for all editor objects in your program.
By default, EditorDialog doesn't really do anything, so before you
use editor objects, you should assign a function to EditorDialog
that shows useful dialog boxes and returns the proper values.

Turbo Vision provides such a function that you can use, called
StdEditorDialog. If you want fancier dialog boxes, you can define
your own, but StdEditorDialog is a good starting point. To use the
standard editor dialog boxes, just put the statement

EditorDialog := StdEditorDialog;

in the application's constructor. Listing 3.2 shows such an addition
to TTutorApp.Init.

The constructor for an edit window takes exactly the same
parameters as the generic window you already constructed. The
main things you have to change are the type of the window to
construct (PEdit Window instead of PWindow) and the title passed
for the window.

Constructing a file editor window with an empty title string
produces a window with the title "Untitled," which indicates that
whatever you type into the editor has not yet been assigned to a
specific file. Since you're creating this editor in response to the
File I New command, it's appropriate to create an untitled editor
window, as shown in Listing 3.2.

37

Listing 3.2
Inserting a file editor window,

completing TUTOR04B.PAS

38

Using standard
dialog boxes

Figure 3.1
The File Open dialog box

from the StdDlgs unit

The status line is always
available, no matter what

window or dialog box is
modal.

constructor TTutorApp.lnit;
begin

MaxHeapSize := 8192; set up file edit buffer area above heap
EditorDialog := StdEditorDialog; { use standard editor dialogs
inherited Init;
DisableCommands([crnOrderWin, crnStockWin, crnSupplierWin]);

end;

procedure TTutorApp.NewWindow;
var
- R: TRect;

TheWindow: PEditWindow; { note the change of type here }
begin

R . As sign (0, 0, 60, 2 0) ;
New (TheWindow, Init(R, ", wnNoNurnber)); {construct edit window}
InsertWindow(TheWindow);

end;

Having a file editor that creates new files is useful, but you need
to be able to edit existing files, too. To do that, you need to tell the
file editor which file you want to edit. Although you could use a
simple prompt that reads a file name from the user, a much better
approach is to show the user what files are available and allow
navigation to different directories. Turbo Vision's standard
dialogs unit, StdDlgs, provides a dialog box object that does just
that.

Once you've gotten the file dialog box object, you need to execute
it. Executing is a lot like inserting, as you did with the editor
windows, but it not only inserts the dialog box into the desktop, it
also makes the dialog box modal. Modal means that the dialog box
is the only active part of the application-you can click other parts
of the application, such as the menu bar, but they don't react.
Once you make a window or dialog box modal, you can't interact

Turbo Vision Programming Guide

Constructing a file
dialog box

Executing the dialog
box

Controls and their
initialization are explained in

Chapter 72, "Control
objects. "

Chapter 3, Adding windows

with any part of the application outside that window or dialog
box until you close it or execute another dialog box.

To edit existing files, you need to do the following:

• Construct a file dialog box
• Execute the file dialog box to prompt the user for a file name
• Construct an editor window for that file

The constructor for a file dialog box object takes five parameters:
three strings, a word containing option flags, and the number of a
history list. The strings passed are the initial file-name mask, such
as '*.*', the title of the dialog box, and the label for the input line
where the user will type the file name, in that order.

The options flags work much like those you used for the message
box earlier. They indicate what buttons appear in the box in addi
tion to the Cancel button that's always included. Depending on
whether you're using the dialog box to choose a file to open or a
file to save into, you use different combinations of constants
starting with fd.

For now, just pass any nonzero number as the number of the
history list. You'll see how easy it is to keep track of the file names
you've opened. '

ExecuteDialog works much like Insert Window. It checks to make
sure you've passed it a valid dialog box object and that it has
enough memory to complete the action. It then inserts the dialog
box into the desktop and makes it modal.

The second parameter passed to ExecuteDialog points to a data
record the dialog box can use for initialization when it becomes
modal. Every dialog box requires different data. For example, a
file dialog box takes a string to contain the file name. Passing nil
in this parameter indicates that you don't want the dialog box to
initialize its controls and that you don't want to read the control
values when it's done.

ExecuteDialog is a function that, like MessageBox, returns the value
of the command that closed the box. So if the user presses the
Cancel button, ExecuteDialog returns cmCancel; choosing OK
causes ExecuteDialog to return cmOK; and so on. Your program
can therefore tell if the user accepted the dialog box or canceled it,
reading the data from the controls only if the dialog box wasn't

39

Constructing the file
editor window

Listing 3.3
Opening a file to edit,

making TUTOR04C.PAS

canceled. Natice that Open Window apens an edit windaw anly if
the value returned by ExecuteDialog is nat equal to. cmCancel.

Canstructing the file editar windaw laaks very familiar. It's just
. what yau did in NewWindow, except yau pass the name af the file
instead af an empty string when yau canstruct the editar
windaw.

In respanse to. the em Open cammand from the Open item an the
File menu, yaur applicatian shauld call a new methad called
Open Window, ?s shawn in Listing 3.3.

procedure TTutorApp.OpenWindow;
var

R: TRect;
FileDialog: PFileDialog;
TheFile: FNameStr;

const

{ boundaries for edit window }
{ file selection dialog box }
{ string for the file name }

FDOptions: Word = fdOKButton or fdOpenButton;
begin

{ dialog options

TheFile := '~.*'; { initial mask for file names
New(FileDialog, Init(TheFile, 'Open file', '-F-ile name',

FDOptions, 1));
if ExecuteDialog(FileDialog, @TheFile) <> cmCancel then
begin

R.Assign(O, 0, 75, 20);
InsertWindow(New(PEditWindow, Init(R, TheFile, wnNoNumber)));

end;
end;

Step 5: Adding a clipboard window

40

Step 1: Basic App
Step 2: Menu/Status
Step 3: Commands
Step 4: Windows
Step 5: Clipboard
Step 6: Streams
Step 7: Resources
Step 8: Data entry
Step 9: Controls
Step 10: Validating
Step 11: Collections
Step 12: Custom view

Editars and editar windaws are much mare useful if yau can
cut and paste text to. and fram a clipbaard, meaning yau can
exchange text between windaws, rearrange text, and so. an. Turbo.
Visian's editars fully suppart a clipbaard feature.

The clipbaard is just an editar object that's always present in the
applicatian. If yau anly want the clipbaard to. wark in the back
graund, yau dan't even need to. give the clipbaard a windaw. In
Tutorial, hawever, yau'll create a clipbaard windaw so. yau can
display the clipbaard and its cantents.

Adding a clipbaard windaw takes twa steps:

Turbo Vision Programming Guide

Constructing an
editor window

Assigning the
clipboard editor

Listing 3.4
Creating a clipboard

window

ClipboardWindow is a new
field in the TTutorApp object.

Chapter 3, Adding windows

• Constructing an editor window
• Making the editor the clipboard

Constructing a window for the clipboard is just like constructing a
new file editor window. You assign the boundaries for the win
dow, construct an unnamed window with those boundaries, and
insert the window into the desktop. In the case of the clipboard
window, however, you don't want to see the window unless you
specifically ask for it. Before inserting the window, therefore, call
its Hide method. Hide makes an object invisible until you call its
Show method.

You should hide the window before inserting it. Otherwise, the
window will flash on the screen and disappear, which is annoying
to users. Since the validity check is usually handled by
InsertWindow, you need a separate check. TApplication's ValidView
function is the same validity test used by Insert Window and
ExecuteDialog. Va lid View returns nil if the view is invalid, or a
pointer to the view if it's valid. Listing 3.4 shows the use of
ValidView. Once you've validated the view, you can hide and
insert it.

The Editors unit defines a variable called Clipboard which other
editor objects use for cutting and pasting operations. If Clipboard is
nil, those operations have no effect. Since you're constructing a
clipboard window, you need to set Clipboard to point to the editor
in your clipboard window, as shown in Listing 3.4.

The only other thing you have to worry about with the clipboard
is that you disable its undo capability. Turbo Vision editor objects
can usually undo the most recent editing changes, but the clip
board editor can't support that. All that's required to disable undo
is to set the editor's CanUndo field to False.

constructor TTutorApp.lnit;
var R: TRect;
begin

MaxHeapSize := 8192;
inherited Init;
DesktopA.GetExtent(R) ; { get boundaries for window }

ClipboardWindow := New (PEditWindow, Init(R, ", wnNoNumber));

41

42

Showing the
clipboard

window

Listing 3.5
Showing the clipboard

window

Z-order is explained fully in
Chapter 8, "Views. //

if ValidView(ClipboardWindow) <> nil then
begin

{ make sure it worked }

ClipboardWindowA.Hide; { hide clipboard window}
InsertWindow(ClipboardWindow) ; insert hidden clipboard window }
Clipboard := ClipboardWindowA.Editor; {make editor clipboard}
ClipboardA.CanUndo := False; { can't undo in clipboard}

end;
end;

Now that you have a clipboard, you can cut and paste text
between windows at will. But what if you want to see or edit
what's in the clipboard? The clipboard window is hidden, so you
need a way to show it.

The standard Edit menu includes an item labeled 'Show
cJipboard' that generates the cmClipShow command. In response
to that command, have your application show the clipboard
window, as shown in Listing 3.5.

procedure TTutorApp.HandleEvent(var Event: TEvent);
begin

if Event.What = evCommand then
begin

case Event.Command of
cmClipShow:

begin
ClipBoardWindowA.Show;
ClearEvent(Event) ;

end;

If you have other windows open, you'll notice there's a problem
with this approach. The other windows are in front of the clip
board window. After all, it was the first window inserted into the
desktop; all the others were opened on top of the hidden
clipboard window. This layering of visible objects is known as
Z-order, and it's what allows groups to know which objects show
up in front of others, which window to activate when you use the
Window I Next command, and so on.

The solution is to make sure the clipboard window is in front of
all the other editors before you show it. All visible Turbo Vision
objects inherit a method called Select, which you can call to make
the given object the selected subview, or frontmost, in its group. If

Turbo Vision Programming Guide

I'

Listing 3.6
Showing the clipboard
window in front, which

completes TUTOR05. PAS

Chapter 3, Adding windows

you change the response to cmClipShow to include Select, it looks
like Listing 3.6.

procedure TTutorApp.HandleEvent(var Event: TEvent);
begin

if Event.What = evCommand then
begin

case Event.Command of
cmClipShow:

with ClipBoardWindowA do
begin

Select;
Show;
ClearEvent(Event) ;

end;

43

44 Turbo Vision Programming Guide

c H A p T E R

4

Using streams and resources
Now that you've made Tutorial do actual work, the next logical
step is to be able to save that work. Using Turbo Vision's streams
to store objects to your disk, you'll be able to save the state of
your desktop and restore it at a later time. You'll also see how you
can use an extension of streams, called resources, to simplify your
use of menus and status lines.

The two steps in this chapter will walk you through

• Saving objects to the disk
• Restoring objects from the disk
• Defining objects in resources

Step 6: Saving and restoring the desktop

Step 1: Basic App
Step 2: Menu/Status
Step 3: Commands
Step 4: Windows
Ste~5: Cltpb0ard

.1iC1!!·W1i§iiib
Step 7: Resources
Step 8: Data entry
Step 9: Controls
Step 10: Validating
Step 11: Collections
Step 12: Custom view

In order to save your desktop in a file, you need a mechanism for
storing numerous object types. After all, you need to store the
desktop object, various window objects, editor objects, and so on,
and then be able to read them back in.

Turbo Vision uses streams to store objects, either to a disk file or
to EMS memory. Rather than treating the file like a normal Pascal
file, streams represent a stream of bytes, written or read sequen
tially. Writing an object to a stream involves telling the stream
what kind of object it's getting, then sending the information that
describes the object. When reading the object back in from the

Chapter 4, Using streams and resources 45

Registering with
streams

Listing 4.1
Registering standard objects

with streams

46

stream, you first get back what kind of object it is, so you know -
how to interpret subsequent bytes.

Using streams is a lot easier than it sounds, as you'll see in this
step. Saving and loading the desktop takes three steps:

• Registering objects with streams
• Saving the desktop
• Loading the desktop

In order to use an object type with streams, you have to register
the type with Turbo Vision's streams. Registering is a way of
telling the stream what kind of objects they'll have to deal with,
how to identify them, and how to read or write the object's data.
Registration is best handled in the application's constructor,
ensuring that stream access occurs only after the objects are
registered.

Turbo Vision's units all have procedures that register their objects
for stream usage. For example, to register the objects in the Editors
unit, you call RegisterEditors. The desktop object itself is in the App
unit, and the windows and their components are in the Views
unit, so you'll have to call RegisterApp and RegisterViews, too.
Listing 4.1 shows the revised application constructor:

constructor TTutorApp.Init;
var R: TRect;
begin

MaxHeapSize := 8192;
EditorDialog := StdEditorDialog;
StreamError := @TutorStreamError;
RegisterObjects;
RegisterViews;
RegisterEditors;
RegisterApp;
inherited Init;
DesktopA.GetExtent(R);
ClipBoardWindow := New (PEditWindow, Init(R, " 0));
if ValidView(ClipboardWindow) <> nil then
begin

ClipboardWindowA.SetState(sfVisible, False);
InsertWindow(ClipboardWindow);
Clipboard := ClipboardWindowA.Editor;
ClipboardA.CanUndo := False;

end;
end;

Turbo Vision Programming Guide

Trapping stream errors

Listing 4.2
Defining a simple stream

error procedure

Saving the
desktop

That's all there is to it. Tutorial can now use object types from the
Objects, Views, App, and Editors units with streams.

In addition to registering objects, Listing 4.1 adds a safety fe&ture
to the application. The StreamError variable points to a procedure
that's called by any Turbo Vision stream when it encounters an
error. By default, StreamError is nil, so it's never called. Tutor06a
assigns it to point to a procedure called TutorStreamError, which
reports errors and halts, as shown in Listing 4.2.

procedure Tut.orStreamError(var S: TStream); far;
var ErrorMessage: String;
begin

case S.Status of
stError: ErrorMessage := 'Stream access error';
stInitError: ErrorMessage := 'Cannot initialize stream';
stReadError: ErrorMessage := 'Read beyond end of stream';
stWriteError: ErrorMessage := 'Cannot expand stream';
stGetError: ErrorMessage := 'Unregistered type read from stream';
stPutError: ErrorMessage :=

'Unregistered type written to stream';
end;
ClearScreen;
PrintStr('Error: ' + ErrorMessage);
Halt(Abs(S.Status));

end;

{ clear the display
{ show error message
halt with error level

TutorStreamError is not a very elegant error handler, but it reports
any errors encountered with streams.

As you saw in Step 4, the desktop object is a group, meaning it's a
view that manages other views. Part of managing those views is
making sure they are written to a stream when the group object is
written. That ability is built into TGroup, so when you write any
group to a stream, make sure it calls the stream writing method it
inherits.

To save the desktop and all the windows it contains, you need to
do three things:

• Open the stream
• Store the desktop object
• Close the stream

Chapter 4, Using streams and resources 47

Writing the objects to a
stream

48

Listing 4.3
Saving the desktop

In this case, since you're writing to a disk file, you could use the
TDosStream type, but you'll get somewhat better performance
using TBufStream, a buffered version of TDosStream. The DOS
stream associates a Turbo Vision stream with a DOS file, and the
buffered DOS stream lets you specify a buffer size for reading and
writing from the file.

The Store Desktop item on the Options menu in Tutorial generates
the command em Options Save, so you should extend the applica
tion's event handler to respond to emOptionsSave by calling a new
method called SaveDesktop:

procedure TTutorApp.HandleEvent(var Event: TEvent)i
begin

inherited HandleEvent(Event) i

if Event.What = evCommand then
begin

case Event.Command of
cmOptionsSave:

begin
SaveDesktoPi
ClearEvent(Event)i

endi

procedure TTutorApp.SaveDesktoPi
var DesktopFile: TBufStreami
begin

DesktopFile.Init('DESKTOP.TUT', stCreate, 1024)i
DesktopFile.Put(Desktop)i
DesktopFile.Donei

endi

{ open stream }
store desktop }

close the stream }

SaveDesktop is extremely simple. It initializes the buffered stream,
associating it with the file DESKTOP.TUT and giving it a lK
buffer. Using the stCreate constant tells the stream to create a new
file, even if onealready exists, much like Pascal's Rewrite
procedure.

Writing the entire desktop, including any windows on the desk
top, is accomplished by calling a single method, the stream's Put
method. Calling Put writes information a.bout the object to the
stream, which then calls the Store method of the object passed as
the parameter.

Any Turbo Vision object that will be used with streams needs to
have a Store method (and, as you'll see in the next part of this

Turbo Vision Programming Guide

Preserving the
clipboard

Listing 4.4
Saving the desktop without

the clipboard, making
TUTOR06A. PAS

step, a corresponding Load constructor) that writes its information
to the stream. Since TDesktop descends from TGroup, it writes all
the subviews inserted into it, including its background and
windows.

Don't call Store directly. You tell the stream to put the object, and
the stream calls Store at the appropriate time.

Calling the stream's Done method flushes the stream's buffer and
closes the associated file.

Right now you're probably thinking, "It can't be that simple."
And you're both right and wrong. It is that simple, and the
method in Listing 4.3 will save the desktop in such a way that you
can retrieve it again. But you're also right that there are other
things to consider, specifically the clipboard.

As you'll recall, when you created the clipboard window, you set
the global variable Clipboard to point to the clipboard window's
editor. Unfortunately, if you write the clipboard window to the
disk and then read it back, that pointer will no longer be valid,
and there will be no way to set it to point to the restored window's
editor without a great deal of effort.

The simple solution is to exclude the clipboard from loading and
saving operations. After all, there's rarely anything in the clip
board you want to save across sessions. Listing 4.4 shows a safer
way to save the desktop.

procedure TTutorApp.SaveDesktoPi
var DesktopFile: TBufStream;
begin

DesktopA.Delete(ClipboardWindow); {remove clipbaord from desktop}
DesktopFile.Init('DESKTOP.TUT', stCreate, 1024); { open stream}
DesktopFile.Put(Desktop); { store desktop}
DesktopFile.Done;
InsertWindow(ClipboardWindow);

end;

close the stream }
{ restore clipboard window }

Excluding the clipboard from the desktop save essentially makes
the clipboard part of the application, rather than part of the desk
top, although the desktop does get to manage it. In the next
section, you'll have to make arrangements to handle this as well.

Chapter 4, Using streams and resources 49

RestorinQ the
desktop

Loading the desktop
object

Listing 4.5
Reading the desktop from a

stream

50

Restoring 'the desktop is essentially the inverse of storing it, but
you need to take some precautions. Rather than just reading a
desktop object and calling it the desktop, you should check to
~ake sure it's a working desktop object. In this> step, you'll

• Load the object from a stream
• Ensure that it's a valid object
• Replace the existing desktop

Because loading a new desktop affects the way your program
works, you need to be more cautious than you were when you
simply wrote the desktop object to the stream. Ensuring the
validity of the loaded object and careful replacement of the
existing desktop are important steps.

The steps for loading the object correspond exactly to those for
saving it:

• Open the stream
• Read the object
• Close the stream

Listing 4.5 shows the code to retrieve the desktop object.

DesktopFile.Init('DESKTOP.TUT', stOpenRead, 1024);
TempDepktop := PDesktop(DesktopFile.Get)i
DesktopFile.Done;

{ open stream }
{ get the desktop }

{ close the stream }

There are two interesting points to note about this fragment of
code. First, it assigns the loaded desktop to a temporary variable,
rather than to Desktop itself, since you don't want to lose the old
Desktop should this newly-read object prove invalid, and since
you need to dispose of the old Desktop anyway to free the memory
it used. Second, you'll notice the use of the Get method. Get is the
counterpart of Put, which was the method you used to write the
object to the stream.

Get reads the information that Put wrote, so it knows what kind of
. object it's loading, and calls the object's Load constructor to read
the object from the stream. Load is a constructor, just like Init, but
instead of constructing the object based on the parameters passed
to it, Load constructs the object and. reads its values from the
stream passed as its parameter.

Turbo Vision Programming Guide

I.

I

I

I

I

Notice that Get returns a pointer of type PObject, you you have to
typecast the result into the proper type for your object. Since
you're reading a desktop object, you typecast the pointer returned
by Get into a PDesktop.

Validating the object Once you've obtained a desktop object from the stream, you need
to ensure that it's a valid object before using it to replace the
existing desktop. To do this, you call one of the application's
methods, ValidView.

Va lid View returns a pointer to the object if the object is valid, or nil
if it's invalid, after performing two important checks on a view
object:

• First, Va lid View checks to make sure the application didn't run
out of memory when constructing the object. The application
reserves some memory at the end of the heap for a safety pool. If
a memory allocation (such as constructing a dynamic object)
crosses into that safety pool, Va lid View returns nil.

• Second, ValidView calls the view's Valid method, which checks
to make sure the object was correctly constructed. If Valid
returns False, ValidView returns nil.

After loading the object from the stream, it's best to only use the
object after passing it by ValidView:

{ load the object }
if ValidView(TernpDesktop) <> nil then

{ replace Desktop with TernpDesktop }

Replacing the desktop Once you've decided that you have a valid desktop object, you're
ready to replace the existing desktop. Replacing the desktop takes
five steps:

• Deleting the desktop from the application
• Disposing of the old desktop object
• Setting the Desktop variable
• Inserting the new desktop
• Positioning the desktop

Deleting the old desktop and disposing of the object are impor
tant. Remember that the application is a group, too, and it's hold
ing a pointer to the desktop object as one of the views it's
supposed to manage. If you dispose of that object without
deleting it from the application object, the application object will
still try to dispose of the old view when it shuts down, causing a

Chapter 4, Using streams and resources 51

Listing 4.6
TUTOR06B.PAS loads the new

desktop

52

runtime error. Once you've deleted the old desktop, you can
safely dispose of it:

Delete(Desktop)i {delete the desktop from the application object
Dispose (Desktop, Done) i { dispose of the old desktop

With the old desktop safely out of the way, you can now insert the
new desktop:

Desktop := TempDesktoPi
Insert(Desktop)i

The last item isn't obvious, unless you've changed the video mode
between the time you saved the desktop and the time you loaded
it. Because the saved desktop object and any windows it contains
have their sizes and positions set based on the size of the applica
tion, you need to make sure those get adjusted to the current size.
Restoring a desktop meant for a 25-line screen on a 43- or 50-line
application leaves a lot to be desired!

Luckily, it's easy to set the boundaries of the desktop to suit the
current application view, and the desktop takes care of resizing its
windows:

GetExtent(R) i

R.Grow(O, -1) i

DesktopA.Locate(R)i

{ get the boundaries of the application }
{ allow for menu bar and status line }
{ set the boundaries of the desktop }

The last consideration, of course, is the clipboard window. Since
you excluded it when you saved the desktop, you need to do so
when loading the new desktop, too. Be sure to delete the clip
board window from the desktop before getting rid of the old
desktop, and reinsert it when the new desktop is in place.

Listing 4.6 shows the complete LoadDesktop method.

procedure TTutorApp.LoadDesktoPi
var

DesktopFile: TBufStreami
TempDesktop: PDesktoPi
R: TRect;

begin
DesktopFile.lnit('DESKTOP.TUT', stOpenRead, 1024);
TempDesktop := PDesktop(DesktopFile.Get);
DesktopFile.Done;
if ValidView(TempDesktop) <> nil then
begin

DesktopA.Delete(ClipboardWindow) i

Delete (Desktop) ;
Dispose (Desktop, Done);

Turbo Vision Programming Guide

Desktop := TempDesktop;
Insert(Desktop);
GetExtent (R) ;
R.Grow(O, -1);
DesktopA.Locate(R);
InsertWindow(ClipboardWindow) ;

end;
end;

Step 7: Using resources

Step 1: Basic App
Step 2: Menu/Status
Step 3: Commands
Step 4: Windows
Step 5: Clipboard
Step 6: Streams
Step 7: Resources
Step 8: Data entry
Step 9: Controls
Step 10: Validating
Step 11: Collections
Step 12: Custom view

Creating a
resource file

Resources are a handy way to define some of the visual elements
of your program and have the added benefit that you don't have
to include the initialization code in your application.

In this step, you'll do the following with resources:

• Create a resource file
• Load a menu bar from a resource file
• Load a status line from a resource file
• Load an About box from a resource file '

As you saw in Step 2, the codeto construct status line and menu
bar objects can get rather convoluted, involving numerous nested
function calls. One way to insulate your program from that kind
of complexity is to construct those objects from resources.

Before you can load objects into your program from a resource
file, you need to have a resource file to load from. One of the
beauties of resources is that your program doesn't care where the
resources come from, it just reads the objects and uses them.
Similarly, the program doesn't know or care what's in the
resource. When you load a menu bar, for example, the program
just gets a pointer to a menu bar object. Nothing in your code has
to know how many items are on the menu, what order they come
in, or what commands you've bound to them.

At some point, your program and your resources have to coor
dinate. After all, there's no point in loading a resource that only
generates commands that your program doesn't respond to.
Resources give you the flexibility to define the menu structure (or
the dialog box layout or whatever) outside your program,

Chapter 4, Using streams and resources 53

meaning you can modify those aspects of the user interface
without changing your program code.

What is a resource file? Resource files are closely tied to streams. In fact, resource files use
streams to store and retrieve objects. The main difference from the
program's view is that the resource file allows you to name the
stored objects and retrieve them in any order. When you initialize
a resource file, you pass it the stream that holds its objects. The
resource file itself maintains an index that keeps track of the
names and locations of all the resources.

Writing resources to a
file

Listing 4.7
Storing a menu object as a

resource

54

You can write any Turbo Vision object into a resource file, just as
you can with a stream. Because the resource file has an
underlying stream, you need to make sure you register any object
types you'll be reading or writing as resources.

Storing an object as a resource is almost exactly like storing it on a
stream, but you also need to give it a name. For example, suppose
you have a menu bar called MyMenu that you want to store in a
resource file under the name 'MAINMENU'. The code looks like
this:

var
ResFile: TResourceFile;
MyMenu: PMenuBar;

begin
MyMenu : = ... { Initialize the menu bar
ResFile.lnit(New(PBufStream l Init(/FILE.EXTI I stCreate l 1024)));
ResFile.Put(MyMenu l IMAINMENU /); { store the resource
ResFile.Done; { dispose of resource file and its stream}

end;

The example in Listing 4.7 uses a buffered stream to'hold the
resources,but you can use any kind of stream. Often, if you have
a large resource file, you'll copy the entire resource file to an EMS
stream or memory stream for faster access.

The file TUTRES.P AS on your distribution disks contains the
program that creates the resource file that holds the menu bar,
status line, and About box resources used in the next three steps.

Turbo Vision Programming Guide

Loading a menu
bar resource Loading any object from a resource file takes three steps:

Opening the resource
file

Listing 4.8
Opening a resource file for

an application

• Opening the resource file
• Loading the object
• Closing the resource file

If you load numerous objects from the same resource file, you
usually open the file only once, read all the objects, and then close
the file. If your application reads objects from the resource file at
various times during its operation, you might want to open the
file during program initialization and close it during shutdown.

Tutorial needs to access resources at various times during its
operation. The menu bar and status line are set up during the
initialization of the application, but a user might want to call up
the About box at any time, so you need to have the resource file
available at all times. The best solution for this is to open the
resource file in the application object's constructor and close it in
the application's destructor.

The order of the statements in the constructor isvery important,
because some steps depend on- others having already happened.
The following steps must be performed in order:

1. Stream registration
2. Resource file initialization
3. Application initialization

You need to register objects before opening the resource file,
because you want to be sure you can load objects at any time
when the resource file is open. The resource file needs to be open
before you call the inherited application constructor, because it
will call the virtual methods InitMenuBar and InitStatusLine,
which you're about to modify to read from the resource file.

Listing 4.8 shows the TTutor App's constructor modified to
initialize the resource file TUTORIAL.TYR.

var ResFile: TResourceFile;

constructor TTutorApp.lnit;
begin

MaxHeapSize := 8192;

Chapter 4, Using streams and resources 55

Loading the menu bar
resource

56

Listing 4.9
Initializing a menu from a

resource

Closing the resource
file

RegisterMenus;
RegisterViews;
RegisterEditors;
RegisterDialogs;
RegisterApp;

{ register objects with streams}

ResFile.lnit(New(PBufStream, Init('TUTORIAL.TVR', {init stream}
stOpenRead, 1024))); { open for reading, 1K buffer}

inherited Init; { initialize the application object }

end;

Initializing the application's menu bar from a resource works just
like creating it: You override the virtual method InitMenuBar. But
instead of calling all the nested functions to create submenus and
menu items, you load a menu object from the resource file. Listing
4.9 shows InitMenuBar modified to load a menu resource called
'MAINMENU' from the resource file.

procedure TTutorApp.lnitMenuBar;
begin

MenuBar := PMenuBar(ResFile.Get('MAINMENU'));
end;

That's all there is to it. The menu bar object loaded from the re
source file functions exactly like one you create. This code makes
the assumption that the menu bar resource was created with the
proper boundaries. Since all video modes currently supported by
Turbo Vision have the same screen width, this should not cause
problems. When you load a status line resource, you need to
make adjustments for different positions on the screen.

As)with streams, the resource file's Get method returns a pointer
of type PObject. You need to typecast that pointer into the appro
priate type for the object you load.

Closing and disposing of the resource file is just a matter of
calling the resource file objed~s destructor. Since you initialized
the resource file in the application constructor, you should
dispose of the resource file in the application destructor:

destructor TTutorApp.Done;
begin

ResFile.Done;
inherited Done;

end;

flush and close the resource file
dispose of the application object

Turbo Vision Programming Guide

Loading a status
line resource

Loading the status line
object

Adjusting the status line
position

Loading a status line object from a resource file works just the
same way as loading a menu bar. Since you added the code to
open and close the resource file in the last section, you don't have
to repeat that, so there are only two steps to concern yourself
with:

• Loading the status line object
• Adjusting the status line position

Loading a status line object from a resource file is just like loading
a menu bar, but you need to specify the name of a status line
resource:

procedure TTutorApp.InitStatusLine;
begin

StatusLine := PStatusLine(ResFile.Get('STATUS'));
end;

In the menu bar example, it was safe to assume that the menu bar
resource was designed to cover the top line of the screen, since
that's virtually always where menus are, and all top menu lines
have the same boundaries. But since different video modes put
the bottom line at different positions, it's not safe to assume that a
status line automatically has valid and useful boundaries. In the
next section, you'll adjust the boundaries of the loaded status line
to put it on the last line of the application screen.

When you created a status line object in Step 2, you assured that
the status line was always on the last line of the application by
reading the boundaries of the application and setting the status
line boundaries relative to that. The only difference with the
status line loaded from a resource is that you adjust its position
after you load it, rather than setting the position when you create

, the object. The method, however, is the same and will give you an
idea of how you can reposition existing views.

Listing 4.10 shows two alternative ways to position the status line
on the last line of the screen.

Chapter 4, Using streams and resources 57

Listing 4.10
Two ways to move the status

line

procedure TTutorApp.lnitStatusLinei
var R: TRecti
begin

58

Loading an
About box
, resource

StatusLine := PStatusLine(ResFile.Get('STATUS')) i
Get Extent (R) i

StatusLineA.MoveTo(O, R.B.Y -1) i

endi

procedure TTutorApp.lnitStatusLinei
var R: TRecti
begin

Status Line := PStatusLine(ResFile.Get('STATUS'))i
GetExtent (R) i

R.A.Y := R.B.Y -li
StatusLineA.Locate(R)i

endi

Neither of the approaches illustrated in Listing 4.10 is particularly
"better" than the other. In fact, MoveTo sets up a rectangle based
on the passed coordinates and the size of the view and then calls
Locate, so the methods are nearly identicaL

One common use of resources is the definition of complex dialog
boxes. The About box you defined in Step 3 by calling MessageBox
is rather limited. You can't define the title of the box, and you can
pass it only a single string of text. In this section, you'll create a
more interesting About box and store it as a resource.

Using a dialog box resource takes three steps:

• Defining the dialog box resource
• Loading the dialog box resource
• Executing the dialog box

Defining a dialog box Like any other Turbo Vision resource, a dialog box resource is just
resource a named object stored on a stream, so to create a dialog box

resource, you first need to create a dialog box object. Since you'll
be spending all of Steps 7 and 8 creating dialog boxes, we won't
go into all the details right riow .. For now, all you need to know is
that a dialog box object is a group, with other views called controls
inserted into it. Controls are specialized views that a user interacts
with, such as buttons, list boxes, and check boxes.

To create a dialog box object (or a control object to insert into a
dialog box),' you need to do three. things:

Turbo Vision Programming Guide

Listing 4.11
Creating a dialog box

resource

Loading the dialog box
resource

Be sure to call
RegisterDialogs before

loading a dialog box from a
stream or resource file.

• Set the boundaries of the dialog box (or control)
• Construct the object
• Insert the control or store the dialog resource

Listing 4.11 shows the code to create your new About box and its
controls.

R.Assign(O, 0, 40, 11); { set dialog box boundaries
AboutBox := New(PDialog, Init(R, 'About Tutorial')); {construct it
with AboutBoxA do
begin

Options := Options or of Centered; { make sure it's centered}
R.Assign(4, 2, 36, 4); set static text boundaries}
Insert (New(PStaticText, Init(R, construct static text control}

#3'Turbo Vision'#13#3'Tutorial program'))); { with this text}
R.Assign(4, 5, 36, 7); { set second static text boundaries}
Insert (New(PStaticText, Init(R, {construct static text control}

#3'Copyright 1992'#13#3'Borland International')));
R.Assign(15, 8, 25, 10); { set OK button boundaries
Insert (New(PButton, Init(R, 'O-k-', cmOk, bfDefault)))i

end;
ResFile.Put(AboutBox, 'ABOUTBOX'); {store dialog in resource file

As you saw when you stored the desktop on a stream, a group
object stores all the views it manages, so storing the dialog box
automatically stores all the controls you inserted into it. When
you load the About box from the resource, it automatically loads
all its controls, too.

When you call the resource file's Put method, you specify the
object you want to store and a name for that resource. That's
the same name you later use to load the resource with Get. In
Listing 4.11, the dialog box AboutBox is stored with the name
I ABOUTBOX'.

Loading the dialog box resource is just like loading any other
resource, so it should look familiar to you. All you have to do is
call the Get method of the resource .file object, passing it the name
of your dialog box resource. Because Get returns a generic PObject
pointer, you'll probably want to typecast the pointer into a
PDialog:

MyDialog := PDialog(ResFile.Get('MYDIALOG'))i

In many cases, you won't even need to assign the pointer to a
variable, as you'll see in the next section.

Chapter 4, Using streams and resources 59

60

Executing the dialog
box

Listing 4.12
Executing a custom About

box, completing
TUTOR07.PAS

To execute your dialog box, you use the same ExecuteDialog
method of the application object that you used in Step 4 to execute
the standard file open dialog box:

procedure TTutorApp.DoAboutBox;
begin

ExecuteDialog (PDialog (ResFile.Get ('ABOUTBOX')), nil);
end;

Since Get allocates memory and returns a pointer to it, and since
ExecuteDialog disposes of the dialog box after executing it, you
don't need to assign the About box's pointer to anything, which
makes DoAboutBox a very simple method.

Turbo Vision Programming Guide

c H A p T E R

5

Creating a data-entry screen

Up to this point, all the objects you've used have been standard
Turbo Vision objects, with the exception of the application object,
which you've extended considerably. That gives you an idea of
the power of Turbo Vision, but at some point you'll definitely
want to create some objects of your own. In this chapter, you'll

• Create a data-entry window
• Send messages between views
• Use control objects
• Validate entered data

Over the next several steps, you'll implement a simple inventory
system for a small business. The program isn't meant to be truly
useful, but it illustrates a lot of useful principles you will want to
use in your Turbo Vision applications.

Chapter 5, Creating a data-entry screen 61

Step 8: Creating a data-entry window

Step 1: Basic App
Step 2: Menu/Status
Step 3: Commands
Step 4: Windows
Step 5: Clipboard
Step 6: Streams
Step 7: Resources
Step 8: Data entry
Step 9: Controls
Step 10: Validating
Step 11: Collections
Step 12: Custom view

Creating a new
window type

Figure 5.1
The finished order-entry

window

Listing 5.1
Opening a customized

window, from TUTOR08A.PAS

62

Data entry usually takes place in a dialog box. In this example, the
dialog box you'll create will not be modal like the ones you've
used so far. Rather than executing it (which makes it moda!),
you'll insert it, as you do with windows. A Turbo Vision dialog
box is just a specialized kind of window-the TDialog type is a
descendant of TWindow.

Creating your data-entry window will happen in three parts:

• Creating a new window type
• Preventing duplicate windows
• Adding controls to the window

Because you're going to make a number of customizations to your
data-entry window, you'll need to define a new object type for
that window, called TOrderWindow. Because the application needs
to keep track of the order window, you'll give the application
object a pointer to the order window object.

You'll also add a response to the menu command em Order Win,
which is bound to the Examine item on the Orders menu. When
you choose Orders I Examine, you want the order-entry window
to pop up, so you'll teach the application to handle that com
mand. Listing 5.1 shows these changes.

type
POrderWindow = ATOrderWindow;
TOrderWindow = object(TDialog)

constructor Init;
end;

{ order "window" is a dialog box }

Turbo Vision Programming Guide

I

, I

Option flags are explained in
Chapter 8, "Views."

TTutorApp = object(TApplication)
ClipboardWindow: PEditWindow;
OrderWindow: POrderWindow;

procedure OpenOrderWindow;
end;

constructor TOrderWindow.Init;
var R: TRect;
begin

R.Assign(O, 0, 60, 17);
inherited Init(R, 'Orders');
Options := Options or of Centered;
HelpCtx := $FOOO;

end;

{ give app a pointer to order win}

{ assign the boundaries }
construct the dialog box }

{ make sure it's centered}
{ set a new help context }

procedure TTutorApp.HandleEvent(var Event: TEvent);
begin

inherited HandleEvent(Event);
if Event.What = evCommand then

cmOrderWin: OpenOrderWindow;

end;

procedure TTutorApp.OpenOrderWindow;
begin '

{ open the order window }

OrderWindow : = New (POrderWindow, Ini t) ; {create a new in's'tance
InsertWindow(OrderWindow) ; { insert it into the desktop

end;

In the remainder of this step and the next one, you'll add more
abilities to TOrderWindow.

If you run the program now, you'll notice several changes. First, if
you choose Orders I Examine, a dialog box appears in the middle
of the desktop, with the title 'Orders'. Setting the of Centered bit in
the window's Options field makes sure the window centers itself
on the desktop.

You'll also notice that the status line changes when the dialog box
appears. That's because TOrder Window changes the current help
context (with its HelpCtx field). Since you defined a separate
status definition for the help context range $FOOO .. $FFFF in Step 2,
bringing up a view that sets the help context in that range auto
matically displays the proper status line. If you close the order
window, the status line reverts because the help context changes
back.

CHapter 5, Creating a data-entry screen 63

64

Limiting open
windows

Sending messages

What happens if you choose Orders I Examine while there's
already an order window open? Open Order Window assigns a new
order window to Order Window and inserts it into the desktop.
Now you have two order windows, which is no problem for the
desktop to manage, but the application object only knows about
the most recent one. This could cause problems when you start to
maintain your inventory, so you need to make sure you don't
open a new order window if there's already one open. Instead,
bring the open window to the front.

One way to approach this problem is to check Order Window and
only assign a new window if it's non-nil. This adds some extra
responsibilities for you, however, as you have to ensure that
Order Window is always nil if there's no valid order window. A
simpler solution is to let the window and the application
themselves handle the situation.

A more reliable way to find out if there's an order window open is
to let the order window itself tell you. Turbo Vision gives you the
ability to send messages to views. Messages are special events,
much like commands, which carry information to a specific view
object and allow the receiving view to send information back. In
this case, you'll use a broadcast message, which is a message that
the recipient sends on to each of its subviews. By defining a
special message that only order windows know how to handle,
you'll be able to determine that there is an order window if (and
only if) the message gets answered.

Sending messages is easy. You call a function called Message,
passing it a pointer to the recipient, some information about the
message, and a pointer to any data you might want to accompany
the message. In return, Message returns nil if no view responded
to the message, or a pointer to the view that handled the message
event. '

Listing 5.2 shows how to send a broadcast message to the desktop
object, which it will then send to all the windows it's managing. If
one of them responds, you can be sure it's the order window, and
instead of creating a new order window, you can just bring the
existing one to the front by calling Select.

Turbo Vision Programming Guide

Listing 5.2
Sending a broadcast

message

Responding to
messages

Listing 5.3
Responding to a broadcast
message, which completes

TUTOR08B.PAS

procedure TTutorApp.OpenOrderWindow;
begin

if Message (Desktop, evBroadcast, cmFindOrderWindow, nil) = nil then
begin

OrderWindow := New (POrderWindow, Init);
ApplicationA.lnsertWindow(OrderWindow);

end
else

if PView(OrderWindow) <> DesktopA.TopView then { if not already
OrderWindowA.Select; { put order window in front

end;

Since messages are just events, responding to messages is just like
responding to other events. In this case, you know that you want
the order window to respond to broadcast messages containing
the command cmFindOrder Window, so you give the order window
object a HandleEvent method that knows how to respond to that:

procedure TOrderDialog.HandleEvent(var Event: TEvent);
begin

inherited HandleEvent(Event); {handle all normal dialog events
if (Event.What = evBroadcast) and { look for a broadcast ...

(Event.Command = cmFindQrderWindow) then { ... with this command}
ClearEvent(Event); { and clear it }

end;

All that's required to respond to a message is to clear the event. In
addition to marking the event as handled, ClearEvent sets the
event record's InfoPtr field to the address of the view that called
ClearEvent, and Message returns the value from InfoPtr. So if you
need to know which view responded to a message, you can check
the value returned from Message.

In this case, you know what window responded (if any object
did), because the whole point of this step was to keep you from
creating more than one order window. Simply put, if Message
returns nil, it means no view handled the broadcast, so there is no
order window on the desktop. A non-nil return value indicates
that there is an order window, so it should be put in front of all
the windows on the desktop. .

Chapter 5, Creating a data-entry screen 65

Adding controls
to the window

Adding object fields

Setting boundaries and
inserting

Listing 5.4
Adding a labeled control to

a dialog box

66

In order to use the data-entry window you've created, you need to
give it data-entry fields. These fields are made up of various kinds
of Turbo Vision controls. Controls are the specialized views that
enable users to enter or manipulate data in a dialog box, such as
buttons, check boxes, and input lines.

Adding a control to a window takes three steps:

• Adding a field to the dialog box object (Optional)
• Setting the boundaries of the control
• Inserting the control

Before you actually create the control object, you need to consider
whether you'll need to access it directly later. In a modal dialog
box, there's usually no need or opportunity to do that, so you'll
rarely assign object fields to controls in them. In a modeless dialog
box such as the order window, you might have occasion to set or
read a particular control while the dialog box is open, so you
might want to assign fields for them.

In Step 9, you'll look at ways to set and read the values of all the
controls together. There are probably not a lot of occasions when
you'll need to access individual controls, so you probably won't
often create fields in your dialog box objects for specific controls.

Constructing control objects is similar to constructing the other
views you've seen already. You assign a rectangle with the
boundaries of the control, call the object's constructor, and insert
the resulting object into the dialog box object. In some,cases, this
can be accomplished in a single statement, but in other cases,
you'll want to keep a ten:t-porary pointer to the object so you can
link another control (usually a label object) to the control.

Listing 5.4 shows the code to add an input field with an associ
ated label to the dialog box. Notice that the label control takes
only a single statement, while the input line object takes an extra
step since you have to keep a pointer to it that you can pass to the
label's constructor.

constructor TOrderWindow.lnit;
var

R: TRect;
Field: PlnputLine; { temporary variable for input fields }

Turbo Vision Programming Guide

Listing 5.5
Constructing the data entry

window, from TUTOR08C.PAS

begin
R.Assign(O, 0, 60, 17);
inherited Init(R, 'Orders');
Options := Options or of Centered;
HelpCtx := $FOOO;

R.Assign(13, 2, 23, 3);
Field := New (PInputLine,
Insert(Field);

{ set boundaries for input field }
Init(R, 8)); { construct it }

R.Assign(2, 2, 12, 3);
Insert (New(PLabel, Init(R,

{ insert into dialog box }
set boundaries for label }

'-O-rder I:', Field))); construct & insert, linking to field}
end;

Listing 5.5 shows the full initialization for the data-entry window.

constructor TOrderWindow.Init;
var

R: TRect;
Field: PInputLine;
Cluster: PCluster;
Memo: PMerno;

begin
R.Assign(O, 0, 60, 17);
inherited Init(R, 'Orders');
Options := Options or of Centered;
HelpCtx := $FOOO;

R.Assign(13, 2, 23, 3);
Field := New(PInputLine, Init(R, 8));
Insert (Field) ;
R.Assign(2, 2, 12, 3);
Insert (New(PLabel, Init(R, '-O-rder #:', Field)));

R.Assign(43, 2, 53, 3);
Field := New (PInputLine, Init(R, 8));
Insert (Field) ;
R.Assign(26, 2, 41, 3);
Insert (New(PLabel, Init(R, '-D-ate of order:', Field)));

R.Assign(13, 4, 23, 5);
Field := New (PInputLine, Init(R, 8));
Insert (Field) ;
R.Assign(2, 4, 12, 5);
Insert (New(PLabel, Init(R, '-S-tock #:', Field)));

R . As sign (4 6, 4 , 53, 5);
Field := New (PInputLine, Init(R, 5));
Insert (Field) ;
R . As sign (2 6, 4 , 44 , 5);
Insert (New(PLabel,. Init(R, '-Q-uantity ordered:', Field)));

Chapter 5, Creating a data-entry screen 67

68

R.Assign(3, 7, 57, 8);
Cluster := New (PRadioButtons , Init(R,

NewS It em ('Cash
NewSItem ('Check "
NewS It em ('P .0.
NewSItem('Account', nil))))));

Insert (Cluster) ;
R.Assign(2, 6, 21, 7);
Insert (New (PLabel , Init(R, '-P-ayment method:', Cluster)));

R.Assign(22, 8, 37, 9);
Cluster := New (PCheckBoxes, Init(R, NewSItem('-R-eceived', nil)));
Insert(Cluster);

R.Assign(3, 10, 57, 13);
Memo := New (PMemo, Init(R, nil, nil, nil, 255)); {add memo field}
Insert (Memo) ;
R.Assign(2, 9, 9, 10);
Insert (New (PLabel , Init(R, 'Notes:', Memo)));

R.Assign(2, 14, 12, 16);
Insert (New(PButton, Init(R, '-N-ew', cmOrderNew, bfNormal)));
R.Assign(13, 14, 23, 16);
Insert (New(PButton, Init(R, '-S-ave', cmOrderSave, bfDefault)));
R.Assign(24, 14, 34, 16);
Insert (New(PButton, Init(R, 'Re-v-ert', cmOrderCancel, bfNormal)));
R.Assign(35, 14, 45, 16);
Insert (New (PButton, Init(R, 'N-e-xt', cmOrderNext, bfNormal)));
R.Assign(46, 14, 56, 16);
Insert (New(PButton, Init(R, '-P-rev', cmOrderPrev, bfNormal)));
SelectNext(False);

end;

Note that the order in which you add controls is very important,
because it determines the tab order for the dialog box. Tab order
indicates where the input focus goes when the user presses Tab.
Tab order is really the same as Z-order, which you learned about
in Step 4, but since controls don't generally overlap, you don't
notice that one is "it) front of" another.

If you run the appliction now, you'll find that you have a fully
functional data entry window. You can type data into. the input
lines, manipulate the radio buttons, and so on. In the next step,
you'll learn how to set and read the values of the controls, and
then add some responses to pressing the buttons along the bottom
of the order window.

Turbo Vision Programming Guide

Step 9: Setting control values

Step 1: Basic App
Step 2: Menu/Status
Step 3: Commands
Step 4: Windows
Step 5: Clipboard
Step 6: Streams
Step 7: Resources
S~: Data entry .1-· .••• r=-
Step 10: Validating
Step 11: Collections
Step 12: Custom view

Setting up a data
record

Determining data
needs

Table 5.1
Dialog box controls and their

data needs

Now that you have a data-entry window, you need to be able to
set initial values for the controls and read the data when you're
done. You've created the user interface, so now you need to create
the program interface. This step covers the three things you have
to do to let your application communicate with your dialog boxes:

• Setting up a data record
• Setting controls from the data record
• Reading controls into the data record

To set or read the values of the controls in a dialog box, you need
to create a buffer (usually a data record) to hold the data for each
control. The order of the fields in the data records corresponds to
the tab order of the controls; that is, the controls read their data
from the record in the same order you inserted the controls into
the dialog box.

To create the data record you have to do two things:

• Determine the data needs of each control
• Create a record structure

Each type of control requires a specific kind or amount of data to
initialize itself. For example, an input line reads a string of a
particular length, a set of radio buttons reads a Word-type value,
and a button reads nothing at all. The easiest way to organize the
data is to write down each control in the order you insert it into
the dialog box, and then write down next to it the data it takes, as
shown in Table 5.1.

Field Control Data needed

Order # input line string[8]
label none

. Date input line string[8]
label none

Stock # input line string[8]
label none

Quantity input line string[5]
label none

Payment method radio buttons V\brd
label none

Received check boxes Word

Chapter 5, Creating a data-entry screen 69

Creating the record
structure

Listing 5.6
A data record for the order

window controls

Setting controls

Listing 5.7
Using SetData to set control

values

70

Table 5.1: Dialog box controls and their data needs (continued)

Notes memo V\brd and array of Char
label none

New
Save
Cancel
Next

button none
button none
button none
button none

Once you have all the information for the controls, you can define
a record with the appropriate types of fields in the proper order.
Listing 5.6 shows a record type for the controls in TOrderWindow.

POrder = ATOrder;
TOrder = record

OrderNum: string[8];
OrderDate: string[8];
StockNum: string[8];
Quantity: string[5];
Payment, Received, MemoLen: Word;
MemoText: array[O .. 255] of Char;

end;

You'll use the same record structure for both setting and reading
the control values.

To set the values of the controls in a dialog box, you set the
desired values in a data record, then call the dialog box object's
SetData method, passing it the data record. SetData is a method
that dialog boxes inherit from TGroup. A group's SetData calls the
SetData methods of each of the subviews it manages, following
Z-order, which is why the fields of the record need to follow the
insertion order of the controls.

Add a global variable to Tutorial called Orderlnfo, of type TOrder,
to hold data for the current order. Once you initialize Orderlnfo,
you can set the controls in the dialog box by calling Set Data before
executing the dialog box, as shown in Listing 5.7.

var OrderInfo: TOrder;
constructor TTutorApp.Init;
begin

with Order Info do
begin

OrderNum := '42';

{ set initial OrderInfo fields }

Turbo Vision Programming Guide

Reading control
values

Listing 5.8
Using GetData to read

control values
completes TUTOR09.PAS.

StockNum := IAAA-9999 / ;
OrderDate := 101/15/61 / ;
Quantity := 111;
Payment : = 2;
Received := 0;
MemoLen : = 0;

end;
end;

procedure TTutorApp.OpenOrderWindow;
var R: TRect;
begin

if Message (DesktoPI evBroadcast l cmFindOrderWindow l nil) = nil then
begin

OrderWindow := New (POrderWindow l Init);
ApplicationA.InsertWindow(OrderWindow) ;

end
else

if PView(OrderWindow) <> DesktopA.TopView then
OrderWindowA.Select;

phowOrder(O) ; { ShowOrder sets the controls
end;

procedure TTutorApp. ShowOrder (AOrderNum: Integer);
begin

OrderWindowA.SetData(OrderInfo);
end;

{ set control values

Reading the valu~s of the controls in a dialog box is the inverse
process of setting them, using the complementary method
GetData instead of SetData. The dialog box's GetData calls the
GetData methods of each of its subviews in Z-order, giving each a
chance to write its value into the given data record.

Add a method to the application object that reads the values of
the order window's controls back into Orderlnfo in response to the
cmOrderSave command bound to the Save button in the order
window, as shown in Listing 5.8. Remember to add the method to
the object declaration and to add the command to the case
statement in the application's HandleEvent method.

procedure TTutorApp.SaveOrderData;
begin

OrderWindowA.GetData(OrderInfo);
end;

{ read values into Order Info }

Chapter 5, Creating a data-entry screen 71

Now if you run the application and bring up the order window, it
still has the default values assigned by the application's construc
tor. But if you modify the values of the controls in the window,
click the Save button, close the window and then reopen it, the
controls have the values they held when you closed the window.
Saving the data copied new values to the fields in Orderlnfo, so
you have persistent values for the controls in the dialog box.

In Step 11, you'll use the same mechanism to create and update a
simple database of inventory records.

Step 10: Validating data entry

Step 1: Basic App
Step 2: Menu/Status
Step 3: Commands
Step 4: Wi ndows
Step 5: Clipboard
Step 6: Streams
Step 7: Resources
Step 8: Data entry
Step 9: Controls
Step 10: Validating
Step 11: Collections
Step 12: Custom view

Assigning
validator objects

72

Now that you have a working-data entry window where you can
display, enter, and change data, you can address the issue of
validating that data. Validating is the process of assuring that a
field contains correct data. Turbo Vision gives you the ability to
validate individual fields or entire screens of data.

In general, you need to validate only input line controls-they are
the only controls that allow free-form input, other than memo
fields, which are assumed to be notes or comments that don't
have to be as precise.

Validating a data field takes only two steps:

• Assigning validator objects
• Calling Valid methods

Valida tor objects are all in the unit Validate. Be sure to add Validate
to the uses clause of any program or unit that uses validators.

Every input line object has a field that can point to a validator
object. Valida tor objects are simple objects that check the contents
of their associated input lines with some sort of criteria for valid
ity, such as a numeric range, a list of values, or a "picture" of how
the field should look.

There are two steps to assigning a validator object, although
they're usually accomplished in one statement:

• Constructing the valida tor object
• Assigning the valida tor to an input line

Turbo Vision Programming Guide

Constructing a
validator object

Assigning a validat~x to
. an input line

Listing 5.9
Adding validators to input

lines

Validator constructors are very simple, and since they aren't
views, they require only enough parameters to tell them how to
validate data. For example, a range valida tor takes only two
parameters: the low and high bounds of the valid range. The
following example shows how you could construct a valida tor
that allows only four-digit integer numbers:

RangeValidator := New (PRangeValidator, Init(lOOO, 9999));

Tutorial uses only two kinds of valida tors: range and picture
validators. All the different supplied valida tors are described in
detail in Chapter 13, "Data validation objects."

Input line objects have a method called SetValidator that assigns a
valida tor object to- the input line's Valida tor field. Since your
program will almost never need to access a particular valida tor
other than to assign it to the input line, you can generally con
struct and assign the valida tor in a single statement:

SetValidator(New(PRangeValidator, Init(lOOO, 9999)));

Once you've assigned the validator object, you don't have to
worry about it. The input line knows when to call the validator,
and the validator alerts the user if it detects invalid data. Listing
5.9 shows the changes to TOrder Window's constructor to add
validators to the four input line objects.

constructor TOrderWindow.Init;
begin

R . As si gn (13, 2, 23, 3);
Field := New (PInputLine, Init(R, 8));
FieldA.SetValidator(New(PRangeValidator,

Init(l, 99999))); { order number is a positive integer}
Insert (Field) ;

R.Assign(43, 2, 53, 3);
Field := New (PInputLine, Init(R, 8));
FieldA.SetValidator(New(PPXPictureValidator,

Ini t (, {# [# 1 } / { # [# 1 } / { # # [# # 1 } '" True)));
Insert (Field) ;

R.Assign(13, 4, 23, 5);
Field := New (PInputLine , Init(R, 8));

{ date is MM/DD/YY }

FieldA.SetValidator(New(PPXpictureValidator, { Paradox picture}
Init('&&&-####', True))); {stock # is 3 letters, -, 4 digits}

Chapter 5, Creating a data-entry screen 73

74

Calling Valid
methods

Insert (Field) ;

R.Assign(46, 4, 53, 5);
Field := New(PInputLine, Init(R, 5));
Fieldl\ .. SetValidator (New (PRangeValidator,

Init(l, 99999))); { quantity is positive integer}
Insert (Field) ;

end;

Now if you run the application and type a number such as 99999
in the order number field and try to close the window, a message
box appears informing you that the number is out of range,
returning you to the field in which the validation error occurred.
Similarly, errors in other fields prevent the closing of the window
until all errors are gone.

But you'll also find that you can save invalid data. By default, the
dialog box validates its fields only when you close the dialog box,
so in the next section you'll see how to validate data at other
times, such as before saving data.

The two key questions in validating are "What is valid?" and
"When do I validate?" You answered the first question by
assigning specific types of validator objects to input lines. The
second is somewhat more complex, however. Data validation
actually takes place in the Valid methods of input line objects, and
Valid can be called at different times.

There are three times when you might call Valid:

• When a window closes
• When the focus moves to another field (on Tab)
• When the user asks for validation

Validating on close By default, when you close any view, it calls its Valid method to
assure that it's allowed to close. The editor windows you created
in Step 4, for example, check to see that changes in the editor are
saved to disk (or consciously discarded) before they close.·

When you close a dialog box (as with any other group), the dialog
box's Valid method calls the Valid methods of all its subviews and
only returns True if all the subviews return True. Since an input
line's Valid checks with its valida tor object, closing a window has
the effect of validating all fields.

Turbo Vision Programming Guide

Validating on Tab You might want to force the user to enter valid data in a certain
field before moving to another field. To do that, you need to set
the input line's ofV alidate option flag. If ofV alidate is set, when the
user or program tries to move the focus from the input line, the
input line calls its Valid method, and if Valid returns False, it keeps
the focus.

Validating on demand

Listing 5.10
Validating data before

saving, completing
TUTOR10.PAS

You should use such validation only in cases where it's truly
necessary, since it's intrusive to the data entry process. However,
if it saves someone from entering a whole screen full of useless
data, it's worth the intrusion. .

Probably the most useful kind of validation is validation on
demand. That is, at some point you just tell the dialog box or an
individual field to validate itself. This is the solution for the
problem of saving invalid data: Validate the data before you save
it. The changes to SaveOrderData shown in Listing 5.10 prevent
copying the values of the controls into Orderlnfo unless all
controls report they have valid data.

procedure TTutorApp.SaveOrderData;
begin

if OrderWindowA.Valid(crnClose) then
OrderWindowA.GetData(OrderInfo);

end;

Note the use of em Close in the call to Valid. Valid can handle
different sorts of validity checks for different commands. By
default, Turbo Vision uses two kinds of validity checks. Passing
em Valid to Valid is used to determine whether the object was
constructed correctly. Calling ValidView uses the em Valid check.
You've also seen that windows and dialog boxes call Valid before
closing, passing em Close, the command that indicates they are
supposed to close.

Calling Va lid (em Close) is like asking "Would you be valid if I
asked you to close now?" Calling it before saving acts as a safety
check before saving the data.

Chapter 5, Creating a data-entry screen 75

76 Turbo Vision Programming Guide

c H A p T E R

6

Collecting data

Now that you have a working data-entry window, it makes sense
to connect it with a database. Keep in mind that this example is
intended to teach you about Turbo Vision, not about database
management or inventory control. Some aspects of the program
are necessarily simplified to allow you to focus on Turbo Vision
without too much attention to the underlying database.

To connect your data-entry window with the database, you'll do
the following:

• Load a collection of data records from a stream
• Display, modify, change and add records
• Enable and disable commands as appropriate
• Create a customized view

Step 11: Adding a collection of data

Step 1: Basic App
Step 2: Menu/Status
Step 3: Commands
Step 4: Windows
Step 5: Clipboard
Step 6: Streams
Step 7: Resources
Step 8: Data entry
Step 9: Controls
S~10: Validating
"1~I.ml.II·Ii~"
Step 12: Custom view

Chapter 6, Collecting data

Turbo Vision provides a flexible and powerful object-oriented
data management type called a collection. A collection is similar to
an expandable array of pointers that can point to any sort of data,
such as objects or records.

In this step, you'll do the following:

• Create a data object
• Load the data from a stream
• Display data records

77

78

Creating a data
object

Listing 6.1
A simple wrapper object

• Move from record to record
• Add new records
• Cancel edits

As you saw in Step 9, the data for setting the controls in a dialog
box comes in the form of a record, in this case, of type TOrder. But
if you want to use your collection of data on a stream, it has to be
an object descended from TObject. The solution is to create a
wrapper object, an object that's just an enabling shell around your
data.

A wrapper object for use with streams needs four things:

• A field or fields containing the data
• A Store method to write the data to the stream
• A Load constructor to read the data from the stream
• A registration record

Listing 6.1 shows the declaration of a simple wrapper object,
TOrderObj, that wraps around TOrder.

type
PO~derObj = ATOrderObji
TOrderObj = object (TObject)

TransferRecord: TOrderi
constructor Load(var S: TStrearn)i
procedure Store(var S: TStrearn)i

endi

constructor TOrderObj.Load(varS: TStream)i
begin

inherited Initi { construct the object }
S.Read(TransferRecord, SizeOf(TransferRecord))i {get stream data}

endi

procedure TOrderObj.Store(var S: TStrearn) i

begin
S;Write(TransferRecord, SizeOf(TransferRecord))i

endi
{ write record }

As you'll recall from Step 6, all objects used with streams must be
registered with streams, so you need to create a registration record
for TOrderObj. By convention, Turbo Vision stream registration
records take the name 'of the object type, but substitute an initial R
for the T in the type name. So the registration record for
TOrderObj would be ROrderObj. Listing 6.2 shows the declaration
of ROrderObj.

Turbo Vision Programming Guide

Listing 6.2
A stream registration record

for the order object

Loading the
collection

Listing 6.3
Loading a collection from a

stream

Chapter 6, Collecting data

const
ROrderObj: TStreamRec = (

ObjType: 15000;

) ;

VmtLink: Ofs(TypeOf(TOrderObj)A)i
Load: @TOrderObj.Load;
Store: @TOrderObj.Store

The only part of the registration record you have to think about is
the ObjType field. It must be a unique Word-type number. Turbo
Vision reserves all the numbers in the range 0 .. 99, but you can use
any other numbers for your objects. The only constraint is that
they must be unique. All the other fields are always created the
same way.

A collection can deal with any sort of pointer, but when it reads or
writes itself on a stream, it assumes that the items in the collection
are registered descendants of TObject that have Load and Store
methods. If that assumption isn't true, you have to override a few
of the collection's methods, as TStringCollection does. But since
you've created an object that fits what TCollection expects, you
don't have to modify TCollection at all ..

Listing 6.3 shows a procedure that loads a collection of order rec
ords from a stream. The file ORDERS.DAT on your distribution
disks holds a stream of several sample orders. Be sure to add the
global variable OrderColl, of type PCollection, to the program.
While you're adding that, also add an integer variable called
CurrentOrder, which you'll use to keep track of the position of the
order in the collection.

procedure LoadOrders;
var OrderFile: TBufStream;
begin

OrderFile.lnit(/ORDERS.DAT I
I stOpenRead l 1024);

OrderColl := PCollection(OrderFile.Get);
OrderFile.Done;

end;

Listing 6.3 shows some of the advantages of saving data in
collections. In a single step, you load all the data, without having
to read and allocate individual records, watch for the end of the
file, and so on. You just get the collection, and it takes care of
loading its items.

79

Displaying a
record

Listing 6.4
Loading the collection of

order records

Figure 6.1
Displaying the first record in

the database

Now that you have a collection of order records in memory, you
can use them to provide the data to the order window. Instead of
creating an initial record for Orderlnfo in the application's
constructor, you can now copy the first element from the
collection, as shown in listing 6.4. ,

constructor TTutorApp.Init;
begin

LoadOrders;
Current Order := 0;
OrderInfo :=

POrderObj (OrderCollA.At(CurrentOrder}}A.TransferRecord;
DisableCornmands([cmOrderNext, cmOrderPrev, cmOrderCancelJ);

end;

At first glance, this may seem a bit complicated. The collection's
At method returns the pointer to a particular item in the
collection. Since the collection holds untyped pointers, you need
to typecast it to a POrderObj so that you can access it's
TransferRecord field. That's the information you want to assign to
Orderlnfo.

Since you don't have responses to the listed commands, you'll
disable them for now. Later in this step, as you develop more
methods to deal with the database, you'll enable them when
appropriate. Now when you open the order window, it holds a
record from the database,as shown in Figure 6.1.

Saving the record When you click the Save button, SaveOrderData still copies the
values of the controls into Orderlnfo, but you now need to also
copy it into the data collection and save the updated collection to
the disk, as shown in Listing 6.5.

80 Turbo Vision'Programming Guide

I

I

'I

Listing 6.5
Saving the updated

collection to disk,
completing TUTORllAPAS

Moving from
record to record

Listing 6.6
Moving among records,

which makes TUTOR 1 1 B.PAS

Chapter 6, Collecting data

procedure TTutorApp.SaveOrderData;
begin

if OrderWindowA.Valid(crnClose) then
begin

OrderWindowA.GetData(OrderInfo) ;
POrderObj(OrderCollA.At(CurrentOrder))A.TransferRecord .

OrderInfo;
SaveOrders;

end;
end;

procedure SaveOrders;
var OrderFile: TBufStrearn;
begin

OrderFile.Init('ORDERS.DAT', stOpenWrite, 1024);
OrderFile.Put(OrderColl) ;
OrderFile.Done;

end;

Now that you can edit the first record in the database, you need to
be able to move to other records. You've defined the menu and
status line commands, so it's time to define responses to those '
commands. Make the application's HandleEvent method call
ShowOrder and change ShowOrder to move to the specified order,
as shown in Listing 6.6.

procedure TTutorApp.HandleEvent(var Event: TEvent);
begin

inherited HandleEvent(Event);
if Event.What = evCommand then
begin

end;

case Event.Command of
crnOrderNext:

begin
ShowOrder(CurrentOrder + 1);
ClearEvent(Event);

end;
crnOrderPrev:

begin
ShowOrder(CurrentOrder - 1);
ClearEvent(Event) ;

end;

81

82

procedure TTutorApp. ShowOrder (AOrderNum: Integer);
begin

Current Order := AOrderNum;
OrderInfo :=

POrderObj (OrderCollA.At(CurrentOrder))A.TransferRecord;
OrderWindowA.SetData(OrderInfo);
if Current Order > 0 then EnableCommands([cmOrderPrev])
else DisableCommands([cmOrderPrev]);
if OrderCollA.Count > 0 then EnableCommands([cmOrderNext]);
if Current Order >= OrderCollA.Count - 1 then

DisableCommands([cmOrderNext]) ;
end;

ShowOrder manipulates the cmOrderNext and cmOrderPrev
commands. By enabling and disabling the commands at the right
times, your response methods don't have to check whether it's
appropriate to respond. This is good for two reasons:

• Your ~ode is simpler. For example, if cmNextOrder is always
disabled when you're editing the last order in the collection,
your response to cmNextOrder doesn't have to check to make
sure there is a next order .

• The user knows what's happening. It's much better to disable an
inappropriate command than to offer it and then either not do
anything with it or flash a message saying the command is
inappropriate.

Of course, to make this scheme work properly, you need to set up
the Next and Prev commands properly when you open the
window initially:

procedure TTutorApp.OpenOrderWindow;
var R: TRect;
begi~

if Message(Desktop, evBroadcast, cmFindOrderWindow, nil) = nil then
begin

OrderWindow := New {POrderWindow, Init);
InsertWindow(OrderWindow) ;

end
else OrderWindowA.MakeFirst;
OrderWindowA.SetData(OrderInfo);
EnableCommands([cmOrderNew, cmOrderSave, cmOrderCancel]); { always}
if Current Order < OrderCollA.Count -1 then {if this is the last

EnableCommands([cmOrderNext]); { ... don't let us go to next}
end;

Turbo Vision Programming Guide

Adding new
records

Listing 6.7
Saving new or existing

records

Chapter 6, Collecting data

Adding a new record to the database is simple, but you need to
create a temporary data object to hold the new data so you can
insert it into the database. For this, you can add a global variable,
TempOrder, of type POrderObj. To add the new record, load your
empty record into the order window and have the user fill it in
and save it:

procedure TTutorApp.EnterNewOrderj
begin

OpenOrderWindowj { make sure there's a window}
Current Order := OrderCollA.Countj { point past last record}
TempOrder := New(POrderObj, Init)j { create temp order}
OrderInfo := TempOrderA.TransferRecordj { copy the data}
OrderWindowA.SetData(OrderInfo) j { set control values}
DisableCommands([cmOrderNext, cmOrderPrev, cmOrderNew]) j

endj

Saving the new record is slightly different, since you can't just
copy the data into an existing item in the colection. Listing 6.7
shows a modified SaveOrderData method that handles new
records.

procedure TTutorApp.SaveOrderDataj
begin

if OrderWindowA.Valid(cmClose) then
begin

OrderWindowA.GetData(OrderInfo)j
if CurrentOrder = OrderCollA.Count then only True if new item}
begin

TempOrderA.TransferRecord := OrderInfoj { copy the data
OrderCollA.Insert(TempOrder) j insert the new order

end
else POrderObj (OrderCollA.At(CurrentOrder))A.TransferRecord .

OrderInfoj
SaveOrdersj
EnableCommands([cmOrderNew, cmOrderPrev])j

endj
endj

Notice that you don't dispose of TempOrder-that pointer's still
being used by the collection, so you don't want to deallocate the
memory.

83

Canceling edits

Listing 6.8
Canceling a new order

completesTUTORllC.PAS.

One last feature that's easy to implement is canceling changes
you've made to a record, either when modifying an existing
record or when adding a new one. Responding to the command
cmOrderCancel, you can call CancelOrder:

procedure TTutorApp.CancelOrder;
begin

if Current Order < OrderCollA.Count then
ShowOrder(CurrentOrder)

{ if existing order ...
{ ... just reload values

{ otherwise else
begin

Dispose (TempOrder, Done);
ShowOrder(CurrentOrder...: 1);

end;
end;

dispose of temporary record }
{ load in last record }

Step 1<2: Creating a custom view

84

Step 1: Basic App
Step 2: Menu/Status
Step 3: Commands
Step 4: Windows
Step 5: Clipboard
Step 6: Streams
Step 7: Resources
Step 8: Data entry
Step 9: Controls
Step 10: Validating
Step 11: Collections
.,." •••. "'81"-

All these responsibilities are
described in detail in
. Chapter 8, "Views."

One thing you've probably noticed in using this simple database
is that you can't tell which record you're looking at, unless it
happens to be the first or last record, or how many total records
there are. A much nicer way to handle this is to show the user the
number of the record the window holds and how many total
records exist. Since Turbo Vision doesn't provide such a view for
you, you'll have to create one yourself.

To create your view, do the following:

• Create the internal counting engine
• Construct the view
• Give the view its appearance
• Add the view to the order window

Those three steps are universal to all views. In fact, there are only
four things that every view must be able to do. Briefly, they are:

• Cover its full rectangular area
• Respond to any events in that area
• Draw itself on the screen when told to
• Perform any internal functions

Turbo Vision Programming Guide

Creating the
counting engine

Listing 6.9
The counting engine for the

custom view, from the Count
unit

Chapter 6, Collecting data

The internal data for the counter is very simple. It needs to track
only two numbers: the current record and the total number of
records. For that, you'll give the object two numeric fields of type
Longint. You then provide methods to set, increment, and
decrement the values of each field:

type
PCountView = ATCountView;
TCountView = object (TView)

Current: Longint;
Count: Longint;
procedure SetCount(NewCount: Longint);
procedure IncCount;
procedure DecCount;
procedure Set Current (NewCurrent: Longint);
procedure IncCurrent;
procedure DecCurrent;

end;

procedure TCountView.SetCount(NewCount:Longint);
begin

Count := NewCount;
DrawView;

end;

procedure TCountView.lncCount;
begin

SetCount(Count + 1);
end;

procedure TCountView.DecCount;
begin

SetCount(Count - 1);
end;

procedure TCountView.SetCurrent(NewCurrent:Longint);
begin

Current := NewCurrent;
DrawView;

end;

procedure TCountView.lncCurrent;
begin

SetCurrent(Current + 1);
end;

85

procedure TCountView.DecCurrenti
begin

SetCurrent(Current - l)i
endi

Most of the methods are self-explanatory. After changing or
setting the field value, SetCount and SetCurrent call the inherited
method DrawView, which tells the view to draw itself if its
appearance needs to be updated. You'll add the actual means it
uses for that drawing in this step.

Constructing the
view Whenever you derive a new view, you need to make sure its

constructor takes care of initializing all the fields inherited from
the ancestor type as well as initializing any new fields. Usually,
that means you override the constructor but call the inherited
constructor first:

constructor TCountView.lnit(var Bounds:TRect)i
begin

inherited Init(Bounds)i
SetCount(O) i

SetCurrent(l)i
endi

, Bounds in this case is the parameter common to all views, deter
mining the rectangular region the view must cover. Since the
ability to handle a rectangular region (and to handle most simple
events) is inherited from TView, your TCountView object can rely_
on the inherited behavior.

Drawing the view

86

Every view must have its own method called Draw that knows
how to represent the contents of the view at any given time. Draw
methods almost never call their inherited methods, because that
would usually result in drawing over areas that have already
been drawn, resulting in an annoying flickering.

Drawing takes advantage of the view's color palette. The palette
maps colors onto the view's owner.

Listing 6.10 shows the Draw.and GetPalette methods for
TCountView.

Turbo Vision Programming Guide

II,
I,
I

Listing 6.10
Drawing the custom view

Using the counter

Adding the counter to
the window

Chapter 6, Collecting data

procedure TCountView.Draw;
var

B: TDrawBuffer;
C: Word;
Params: array[O . . 1] of Longint;
Start: Word;
First: String[10];
Display: String[20];

begin
C := GetColor(2);
MoveChar(B, '''', C, Size.X);
Params[O] := Current;

{ Uses same color as frame }

Params[l] := Count;
FormatStr(Display, ' -%d- of %d " Params);
{ If Current is greater than Count, display Current,highlighted }
if Current> Count then C := GetColor($0504)
else C := GetColor($0202);
MoveCStr(B, Display, C);
WriteLine(O, 0, Size.X, Length (Display) , B);

end;

function TCountView.GetPalette: PPalette;
const P: string[Length(CCountView)] = CCountView;
begin

GetPalette := @P;
end;

With the addition of Load and Store methods and a stream regis
tration record, RCountView, this completes the file COUNT.P AS.

To add the counter view to the order window, you need to add
Count to the application's uses clause, then do the following tasks:

• Add the view to the window
• Manipulate the counter

To make it easy to manipulate the counter view, add a field to the
order window object that points to the counter and construct the
view in the order window constructor. Don't forget to add
RegisterCount to the application's constructor so you can save
counter views on streams.

type
TOrderWindow = object (TDialog)

Counter: PCo~ntView; { add field for the counter }

87

88

Manipulating the
counter

Listing 6.11
Manipulating the new

counter view completes
TUTOR12.PAS.

constructor Init;
procedure HandleEvent(var Event: TEvent); virtual;

end;

constructor TOrderWindow.Init;
begin

R.Assign(5, 16, 20, 17); { locate the counter on the frame
Counter := New (PCountView, Init(R)); { construct view
CounterA.SetCount(OrderCollA.Count); set number of orders
Insert (Counter) ; { insert into window}
SelectNext(False) ;

end;

There are only a few times when you have to adjust the counter.
The current item needs to be updated when you display a new
record, and the item count needs to be updated when you add a
new record. Listing 6.11 shows the updated methods in
TTutorApp.

procedure TTutorApp.EnterNewOrder;
begin

OpenOrderWindow;
CurrentOrder := OrderCollA.Count;
TempOrder := New(POrderObj, Init);
OrderInfo := TempOrderA.TransferRecord;
with OrderWindowA do
begin

SetData(OrderInfo);
CounterA.SetCurrent(CurrentOrder + 1);

end;

end;

procedure TTutorApp.SaveOrderData;
begin

if OrderWindowA.Valid(cmClose) then
begin

OrderWindowA.GetData(Orderlnfo);
if Current Order = OrderCollA.Count then
begin

TempOrderA.TransferRecord := OrderInfo;
OrderColl A. Insert (TempOrder) ;
OrderWindowA.CounterA.IncCount;

end

end;
end;

Turbo Vision Programming Guide

Where to now?

Additional dialog
boxes

Lookup validation

Chapter 6, Col/ecting data

procedure TTutorApp.ShowOrder(AOrderNuffi: Integer);
begin

Current Order := AOrderNuffi;
OrderInfo :=

POrderObj (OrderCollA.At(CurrentOrder))A.TransferRecord;
with OrderWindowA do
begin

SetData(OrderInfo);
CounterA.SetCurrent(CurrentOrder + 1);

end;

end;

There are many additions and changes you could make to Tutorial
to make it more useful. This section suggests some approaches
you might use to implement them. A version of the program that
incorporates these changes is in the file TUTOR.P AS.

Tutorial contains these changes:

• Supplier and stock item dialog boxes
• Lookup validation

TUTOR.P AS implements modal dialog boxes for supplier and
stock item data bases, much like the order-entry window. The
main difference is that both of these new dialog boxes are modal,
and therefore respond to commands such as cmStockNext, rather
than having the application handle them.

The valida tors for some of the data items in the new dialog boxes
also show some additional examples of picture validators.

Since TUTOR.P AS has databases of stock items and suppliers, it
can implement lookup validation of data-entry fields for those
items. For example, in Step 10 you validated the stock number,
field in the order-entry window with a picture validator, which
made sure the number had the proper format. By using a lookup
valida tor, TUTOR.P AS can ensure that the items entered not only

89

90

have the proper format, but also match actual items in the
inventory.

I

Turbo Vision Programming Guide

p A R T

2

Using Turbo Vision

91

92
Turbo Vision Programming Guide

c H A p T E R

7

Turbo Vision overview

This chapter assumes that you have a good working knowledge
of Pascal, especially the object-oriented extensions. It also assumes
that you have read Part 1 of this book to get an overview of Turbo
Vision's philosophy, capabilities, and terminology.

Chapter 19, "Turbo Vision reference," describes the methods and
fields of each standard object type in depth, but until you acquire
an overall feel for how the hierarchy is structured, you can easily
become overwhelmed by the mass of detail. This chapter presents
an informal browse through the hierarchy before you tackle the
detail. The remainder of this part will give more detailed explana
tions of the components of Turbo Vision and how to use them.
Chapter 19, "Turbo Vision reference," provides alphabetical
reference material.

The view hierarchy tree is shown in Figure 7.1. Study this picture
carefully. To know that TDialog, for example, is derived from
TWindow, which is a descendant of TGroup, which is a descendant
of TView, reduces the learning curve considerably. Each new
derived object type you encounter already has familiar inherited
properties. You simply study whatever additional fields and
properties it has over its parent.

Chapter 7, Turbo Vision oveNiew 93

Figure 7.1: Turbo Vision object hierarchy

94 Turbo Vision Programming Guide

IV~UDATE Unit' I OBJECTS Unit'

As you develop your own Turbo Vision.applications, you'll find
that a general familiarity with the standard object types and their
mutual relationships is an enormous help. Mastering the minute
details will come later, but as with all OOP projects, the initial
overall planning of your new objects is the key to success.

Each group is described in a separate section of this chapter.
Within each of these groups there are also different sorts of
objects. Some are useful objects-you can create instances of them
and use them. Others are abstract objects that serve as the basis
for deriving related, useful objects. Before looking at the objects in
the Turbo Vision hierarchy, it will help to understand a little
about object hierarchies.

Working with object hierarchies

This section describes some of the basic properties of objects,
specifically applied to the Turbo Vision hierarchy. The topics
covered are

• Basic object operations
• Inheriting fields
• Types of methods

Chapter 7, Turbo Vision overview 95

96

Basic object
operations Given any object type there are two basic things you can do: You

can

• Derive a descendant object type
• Create an instance of that type ("instantiate" it)

If you derive a descendant object type, you have a new object type
on which the previous two operations again apply. The next
sections examine both of these operations, then explore the use of
abstract objects.

Derivation When you want to extend or change an existing object type, you
derive a new object type from an existing one:·

PNewScrollBar = ATNewScrollBari
TNewScrollBar = object (TScrollBar)

constructor Init(...);
endi

{ define pointer to new type }
{ derive from existing type}

In defining your new object, you can do three things:

• Add new fields
• Define new methods
• Override existing methods

If you don't do at least one of those things, there is no reason to
create a new object type. The new or revised methods and fields
you define add functionality to TScrollBar. New object types
nearly always redefine the Init constructor to determine the
default values and properties.

Instantiation Creating an instance of an object is usually accomplished by a
variable declaration, either static or dynamic:

MyStream: TBufStreami
SomeButton: PButton;

{ declare a static instance }
{ declare a dynamic instance }

MyStream would be initialized by TBufStream.Init with certain
default field values. You can find these by consulting the
TBufStream.Init entry in Chapter 19, "Turbo Vision reference."
Since TBufStream is a descendant of TStream, TBufStream.Init calls
TStreain.Init to set the fields inherited from TStream. Similarly,
TStream.Init is a descendant of TObject, so it calls the TObject

Turbo Vision Programming Guide

Abstract objects

In general, as you travel
down the hierarchy, the

types become more
specialized and less abstract.

constructor to allocate memory. TObject has no parent, so the buck
stops there.

The inheritance diagrams at the beginning of each object's entry in
Chapter 19 show you which fields and methods each object type
declares or overrides, with overridden methods in ancestor types
struck out.

The MyStream object now has default field values which you
might need to change. It also has all the methods of TBufStream
plus the method.s (possibly overridden) of TStream and TObject.
To make use of MyStream, you need to know what its methods do.
If the required functionality is not defined in TBufStream, you
need to derive a new descendant type.

Whether you can create a useful instance of an object type
depends on what kind of virtual methods the object has. Many of
Turbo'Vision's standard types have abstract methods that must be
defined in descendant types.

Many object types exist as "abstract" bases from which you can
derive more specialized, useful object types. The reason for
having abstract types is partly, conceptual but serves the practical
aim of reducing coding effort.

For example, the TRadioButtons and TCheckBoxes types could each
be derived directly from TView without difficulty. However, they
share a great deal in common. They both represent sets of controls
with similar responses. A set of radio buttons is a lot like a set of
check boxes in which only one box can be checked, although there
are other differences. This commonality warrants creating an
abstract object type called TCluster. TRadioButtons and
TCheckBoxes are then derived from TCluster with the addition of a
few specialized methods to provide their individual
functionalities.

It's never useful, and often not possible, to create an instance of an
abstract object type. An instance of TCluster, for example, would
not have a useful Draw method. It inherits TView.Draw without
overriding, so the cluster's Draw would simply display an empty
rectangle of the default color. '

If you want a fancy cluster of controls with properties different
from radio buttons or check boxes, you might try deriving a
TMyCluster from TCluster, or it might be easier to derive your
special cluster from TRadioButtons or,TCheckBoxes, depending on

Chapter 7, Turbo Vision overview 97

98

Inheriting fields

Figure 7.2
TWindow inheritance

which is closer to your needs. In aU cases, you add fields, and add
or override methods, with the least possible effort. If your plans
include a whole family of fancy clusters, you might find it conve
nient to create an intermediate abstract object type.

If you take an important trio of objects: TView, TGroup, and
TWindow, a glance at their fields reveals inheritance at work, and
also tells you quite a bit about the growing functionality as you
move down the hierarchy. Figure 7.2 shows the inheritance of
these objects.
TObject TView

Cursor
DragMode
EventMask
GrowMode
Hel pCtx
Next

HrH-
I::aaQ.

~
~
BlockCursor
Cal cBounds
bl:laR§eBal:lRaS
Cl earEvent
CommandEnab 1 ed
~
Di sab 1 eCommands
DragView
B-I>aw-
DrawView
Enab 1 eCommands
~
EventAvai 1
~
Exposed
Focus
GetBounds
GetCl i pRect
GetColor
GetCommands
~
Get Event
Get Extent
Ge:j;lIelJ3b:j;l!
Ge:j;PaleHe
GetPeerVi ewPtr
GetState
GrowTo
IlaRal eE eR:j;
Hide

Options
Origin
Owner
Size
State

HideCursor
KeyEvent
Locate
MakeFi rst
MakeGlobal
MakeLocal
MouseEvent
MouseInView
MoveTo
NextView
Normal Cursor
Prey
PrevView
PutEvent
PutInFrontOf
PutPeerVi ewPtr
Select
SetBounds
SetCommands
SetCmdState
SetCursor
~
~
Show
ShowCursor
£~ii!eb~lflas
~
TopVi ew
If.a.l..:i.El..
WriteBuf
WriteChar
WriteLine
WriteStr

TGroup

Buffer
Current
Last
Phase

HrH-
I::aaQ.

~
Awaken
ChangeBounds
DataSize
Delete
Draw
EndModal
EVentError
ExecView
Execute
First
Fi rstThat
FocusNext
ForEach
GetData
GetHelpCtx
GetSubVi ewPtr
HaRal eE eRt
Insert
InsertBefore
Lock
PutSubVi ewPtr
Redraw
SelectNext
SetData
~
~
Unlock
Val id

TWindow

Flags
Frame
Number
Palette
Title
ZoomRect

Init
Load
Done
Close
GetPalette
GetTitle
Handl eEvent
InitFrame
SetState
SizeLimits
StandardScroll Bar
Store
Zoom

Table 7.1 shows the fields that each object has, including those
inherited.

Turbo Vision Programming Guide

Table 7.1
Inheritance of view fields

, Types of methods

TView fields TGroup fields TWindow fields

Owner
Next
Origin
Size
Cursor
GrowMode
DragMode
HelpCtx
State
Options
EventMask

Owner
Next
Origin
Size
Cursor
GrowMode
DragMode
HelpCtx
State
Options
EventMask
Buffer
Phase
Current
Last

Owner
Next
Origin
Size
Cursor
GrowMode
DragMode
HelpCtx
State
Options
EventMask
Buffer
Phase
Current'
Last
Flags
Title
Number
ZoomRect
Palette
Frame

Notice that TGroup inherits all the fields of TView and adds
several more that are pertinent to group operation, such as
pointers to the current and last views in the group. TWindow in
turn inherits all of TGroup's fields and adds yet more which are
needed for window operation, such as the title and number of the
window.

In order to fully understand TWindow, you need to keep in mind
that a window is a group and also a view.

Turbo Vision methods can be characterized in four (possibly
overlapping) ways:

• Abstract methods
• Pseudo-abstract methods
• Virtual methods
• Static methods

Static methods A static method can't be overridden per se. A descendant type can
define a method with the same name using entirely different
arguments and return types, if necessary, but static methods do
not operate polymorphically. This is most critical when you call
methods of dynamic objects.

Chapter 7, Turbo Vision overview 99

Virtual methods

Abstract methods

Pseudo-abstract
methods

Listing 7.1
A pseudo-abstract method

100

For example, if PGeneric is a pointer variable of type PView, you
can assign pointers of any type from the hierarchy to it. However,
when you dereference the variable and call a static method, the
method called will always be TView's, since that is the type of the
pointer as determined at compile time. PGeneric/\ .StaticMethod is
always equivalent to TView.StaticMethod, even if you have
assigned a pointer of some other type to PGeneric. An example is .
TView.Init.

Virtual methods use the virtual directive. in their prototype declar
ations. A virtual method can be redefined (overridden) in
descendants but the redefined method must itself be virtual and
match the original method's header exactly. Virtual methods need
not be overridden, but the usual intention is that they will be
overridden sooner or later. An example of this is TView.DataSize.

Abstract methods are always virtual methods. In the base object
type, an abstract method has an empty body or a body containing
the statement Abstract set to trap illegal calls. Abstract methods
must be defined by a descendant before they can be used. Objects
with abstract methods are truly abstract-you must derive a new
type and override the abstract methods before you can create a
useful instance of that object type. An example is TStream.Read.

Unlike truly abstract methods that generate a run-time error,
pseudo-abstract methods offer minimal default actions or no
actions at all. They serve as placeholders, where you can insert
code in your derived objects.

For example, the TView type introduces a virtual method called
Awaken. Awaken contains no code, as shown in Listing 7.1.

procedure TView.Awaken;
begin
end;

By default, Awaken therefore does nothing. Awaken is called when
a group object has finished loading itself from a stream. Once it
loads all its subviews, the group calls each subview's Awaken
method. So if you create a view object that needs to initialize itself
when loaded from a stream, you can override Awaken to perform
that initialization.

Turbo Vision Programming Guide

Object typology

Primitive object
types

Not all object types are created equal in Turbo Vision. You can
separate their functions into four distinct groups:

• Primitive objects • Group views
• Views • Engines

Turbo Vision provides three simple object types that exist
primarily to be used by other objects or to act as the basis of a
h~erarchy of more complex objects. They are

• TPoint
• TRect
• TObject

TPoint and TRect are used by all the visible objects in the Turbo
. Vision hierarchy. TObject is the basis of the hierarchy. Objects of
these types are not displayable. TPoint is simply a screen-position
object (X, Y coordinates). TRect sounds like a visible object, but it
just supplies upper left, lower right rectangle bounds and several
non-display utility methods.

TPoint This object represents a point. Its fields, X and Y, define the
Cartesian (X,Y) coordinates of a screen position. The point (0,0) is
the top left corner of the screen. X increases horizontally to the
right; Y increases vertically downwards. TPoint has no methods.

TRect This object represents a rectangle. Its fields, A and B, are TPoint
objects defining the rectangle's upper left and lower right points.
TRect has methods Assign, Copy, Move, Grow, Intersect, Union,
Contains, Equals, and Empty. TRect objects are not visible views
and can't draw themselves. However, all views are rectangular:
Their Init constructors all take a Bounds parameter of type TRect to
determine the region they will cover.

TObject TObject is an abstract base type with no fields. It is the ancestor of
all Turbo Vision objects except TPoint and TRect. TObject provides
three methods: Init, Free, and Done. The constructor, Init, forms the
base for all Turbo Vision constructors by providing memory allo
cation. Free disposes of this allocation. Done is a pseudo-abstract
destructor that should be overriden by descendants. Any objects

Chapter 7, Turbo Vision overview 101

Iii

II

I

I,

you intend to use with Turbo Vision's streams must be derived I

Views

ultimately from TObject.

TObject's descendants fall into one of two families: views or non
views. Views are descendants of TView, which gives them special
properties not shared by non-views. Views can draw themselves
and handle events sent to them. The non-view objects provide a
host of utilities for handling streams and collections of other
objects, including views, but they are not directly "viewable."

The displayable descendants of TObject are known as views, and
are derived from TView, an immediate descendant of TObject. You
should distinguish "visible" from "displayable," since there may
be times when a view is wholly or partly hidden by other views.

A view is any object that can be displayed in a rectangular portion
of the screen. All view objects descend from the type TView.
TView itself is an abstract object representing an empty rectangu
lar screen area. Having TView as an ancestor, though; ensures that
each ~erived view has at least a rectangular portion of the screen
and a pseudo-abstract Draw method that just fills the rectangle
with a default color.

Turbo Vision includes the following standard views:

_ Frames _ Input lines _ Static text
_ Buttons _ List viewers _ Labels
_ Clusters _ Scrollers _ Status lines
_ Menus _ Scroll bars
_ Histories _ Text devices

Frames TFrame provides the displayable frame (border) for a TWindow
object together with icons for moving and closing the window.
TFrame objects are never used on their own, but always in
conjunction with a TWindow object.

Buttons A TButton object is a titled box used to generate a specific com
mand event when "pushed." They are usually placed inside
(owned by) dialog boxes, offering such choices as'''OK'' or
"Cancel." The dialog box is usually the modal view when it
appears, so it traps and handles all events, including its button
events. The event handler offers several ways of pushing a button:

1 02 Turbo Vision Programming Guide

mouse-clicking in the button's rectangle, typing the shortcut letter,
or selecting the default button with the Enter key.

Clusters TCluster is an abstract type used to implement check boxes and
radio buttons. A cluster is a group of controls that all respond in
the same way. Cluster controls are often associated with TLabel
objects, letting you select the control by selecting on the adjacent
text label.

Radio buttons are special clusters in which only one control can
be selected. Each subsequent selection deselects the current one
(as with a car radio station selector). Check boxes are clusters in
which any number of controls can be marked (selected).

Menus TMenu View and its two descendants provide the basic objects for
creating pull-down menus and submenus nested to any level. You
supply text strings for the menu selections (with optional high
lighted shortcut letters) together with the commands associated
with each selection.

By default, Turbo Vision applications reserve the top line of the
screen for a menu bar, from which menu boxes drop down. You
can also create menu boxes that pop up in response to mouse
clicks. Menus are explained in Chapter 10, "Application objects."

Histories The abstract type THistory implements a generic pick-list mechan
ism. THis tory works in conjunction with THis tory Window and
THistoryViewer. Histories are explained in Chapter 12, "Control
objects."

Input lines TlnputLine provides a basic input line string editor. It handles all
the usual keyboard entries and cursor movements. It offers
deletes and inserts, selectable insert and overwrite modes, and
automatic cursor shape control. Input lines are explained in
Chapter 12, "Control objects."

Input lines support data validation with validator objects.

List viewers The TListViewer object type is an abstract base type frOln which to
derive list viewers such as TListBox. TListViewer's fields and
methods let you display linked lists of strings with control over
one or two scroll bars. TListBox, derived from TListViewer,
implements the most commonly used list boxes, namely those

Chapter 7, Turbo Vision overview 103

displaying lists of strings such as file names. List viewers and list
boxes are explained in Chapter,12, "Control objects."

Scrolling views A TScroller object is a scrollable view that serves as a portal onto
another larger "background" view. Scrolling occurs in response to
keyboard input or actions in the associated TScrollBar objects.
Scrollers are explained in Chapter 8, "Views."

Scroll bars TScrollBar objects provide either vertical or horizontal control.
Windows containing scrolling interiors use scroU bars to control
the scroll position. List viewers also use scroll bars. Scroll bars are
explained in Chapter 12, "Control objects."

Text devices TTextDevice is a scrollable TTY-type text viewer/device driver.
Apart from the fields and methods inherited from TScroller,
TTextDevice defines virtual methods for reading and writing
strings from and to the device. TTextDevice exists solely as a base
type for deriving real terminal drivers. TTerminal implements a
"dumb" terminal with buffered string reads and writes. It is
essentially a text file device driver that writes to a view. Text
devices are explained in Chapter 15, "Editor and text views."

Static text TStaticText objects are simple views used to display fixed strings
provided by the field Text. They ignore any events sent to them.
The TLabel type adds the property that the view holding the text,
known as a label, can be selected (highlighted) by mouse click,
cursor key, or shortcut Alt+letter keys. Labels are associated with
another view, usually a control view. Selecting the label selects
the linked control and selecting the linked control highlights the
label as well. Static text and labels',are explained in Chapter 12,
"Control objects."

Status lines A TStatusLine object is intended for various status and hint
displays, usually at the bottom line of the screen. A status line is a
one-character high strip of any length up to the screen width. The
object offers dynamic displays reacting with events in the
unfolding application. Status lines are explained in Chapter 10,
"Application objects."

104 Turbo Vision Programming Guide

Group views
The importance of TView is apparent from the hierarchy chart
shown in Figure 7.1. Everything you can see in a Turbo Vision
application derives in some way from TView. But some of those
visible objects are also important for another reason: They allow
objects to act in concert.

Turbo Vision includes the following standard group views:
_ The abstract group _ Windows

_ Applications

_ Desktops

_ Dialog boxes

The abstract group TGroup lets you handle dynamically chained lists of related,
interacting subviews via a designated view called the owner of the
group. Since a group is a view, there can be subviews that are in
turn groups owning their own subviews, and so on. The state of
the chain is constantly changing as the user clicks and types
during an application. New groups can be created and subviews
can be added to (inserted) and deleted from a group. Groups and
subviews are explained in Chapter 8, "Views."

Applications TProgram is an abstract type that provides a set of virtual methods
for its descendant, T Application. T Application provides a program
template object for your Turbo Vision application. It is a
descendant of TGroup (via TProgram). Typically, it owns
TMenuBar, TDesktop and TStatusLine subviews. T Application has
methods for creating and inserting these three subviews. The key
method of T Application is T Application.Run which executes the
application's code. Application objects are explained in Chapter
10, "Application objects."

Desktops TDesktop is the normal startup background view, providing the
familar user's desktop, usually surrounded by a menu bar and
status line. Other views (such as windows and dialog boxes) are
created, displayed, and manipulated in the desktop in response to
user actions (mouse and keyboard events). Most of the actual
work in an application goes on inside the desktop. Destop objects
are explained in Chapter 10, "Application objects."

Chapter 7, Turbo Vision overview 105

106

Windows TWindow objects, with help from TFrame objects, are the bordered
rectanglar displays that you can drag, resize, and hide using
methods inherited from TView. A window object can also zoom
and close itself using its own methods. Numbered windows can
be selected with Alt+n hot keys. Window objects are explained in
Chapter II, "Window and dialog box objects."

Dialog boxes TDialog is a descendant of TWindow used to create dialog boxes
that handle a variety of user interactions. Dialog boxes typically
contain controls such as buttons and check boxes. The main differ
ence between dialog boxes and windows is that dialog boxes are
specialized for modal operation. Dialog boxes are explained in
Chapter II, "Window and dialog box objects."

Engines
Turbo Vision includes five groups of non-view objeCts derived
from TObject:

• Streams
• Resource files
• Collections
• String lists
• Validators

Streams A stream is a generalized object for handling input anq output. In
traditional device and file I/O, separate sets of functions must be
devised to handle the extraction and conversion of different data
types. With Turbo Vision streams, you can create polymorphic
I/O methods such as Read and Write that know how to process
their own particular stream contents.

TStream is the base abstract object providing polymorphic I/O to
and from a storage device. Turbo Vision also includes a number
of specialized streams, including DOS file streams, buffered DOS
streams, memory streams, and EMS streams. Streams are
explained in Chapter 17, "Streams."

Turbo Vision Programming Guide

Resources A resource file is a special kind of stream where generic objects
can be indexed via string keys. Rather than derive resource files
from TStream, TResouceFile has a field, Stream, associating a stream
with the resource file. Resources are explained in Chapter 18,
"Resources." .

Collections TCollection implements a general set of items, including arbitrary
objects of different types. Unlike the arrays, sets, and linked lists,
Turbo Vision collections allow for dynamic sizing. TCollection is
an abstract base for more specialized collections. Turbo Vision

. includes several specialized collection types, including an abstract
sorted collection and collections of strings. Collections are
explained in detail in Chapter 16, "Collections."

String lists TStringList implements a special kind of string resource in which
strings can be accessed via a numerical index. TStringList simpli
fies internationalization and multilingual text applications.
TStringList offers access only to existing numerically indexed
string lists. TStrListMaker supplies the Put method for adding a
string to a string list, and a Store method for saving string lists on
a stream.

Validators TValidator is an abstract validator object that's the basis for a
family of objects used to validate the contents of input lines. The
useful validators TFilterValidator, TRangeValidator,
TLookupValidator, TStringLookupValidator, and TPXPictureValidator
all derive their basic behavior from TValidator, but provide
different forms of validation. All the valida tor objects and their
use are explained in Chapter 13, "Data validation objects."

Turbo Vision coordinates

Turbo Vision's method of assigning coordinates might be different
from what you're used to. Unlike coordinate systems that desig
nate the character spaces on the screen, Turbo Vision coordinates
specify the grid between the characters. If this seems odd, you'll
soon see that the system works very well for specifying the
boundaries of view objects.

Chapter 7, Turbo Vision overview 107

Specifying points

Specifying
boundaries

Figure 7.3
Turbo Vision coordinate

system

Local and global
coordinates

108

A point in the coordinate system is designated by its x- and y
coordinates. The TPoint object type encapsulates the coordinates
in its fields, X and Y. TPoint has no methods, but itmakes it easy
to deal with both coordinates in a single item.

Every item on a Turbo Vision screen is rectangular, defined by a
rectangle-object of type TRect. TRect has two fields, A and B, each
of which is a TPoint, with A representing the upper left corner and
B holding the lower right corner. When specifying the boundaries
of a view' object, you pass those boundaries to the view's construc
tor in a TRect object.

For example, if R is a TRect object, R.Assign (0,0,0,0) designates a
rectangle with no size-it is only a point. The smallest rectangle
that can actually contain anything would be created with
R.Assign(O,O,l,l).

Figure 7.3 shows a TRect created by R.Assign(2,2,5,4).

01234567
o~~~~~~~~

3

4~+-~~~-+~~

R. Assign (2,2,5,4) produces a rectangle that contains six character
spaces. This makes it easy to calculate such things as the sizes of
rectangles and the coordinates of adjacent rectangles.

In some cases, you.have to be aware of which coordinate system
you're working in. Most of the time, a view only deals with its
own local coordinate system, which has its origin at the top left
corner of the view. When you place a control in a dialog box, for
example, you specify its location relative to the origin of the
dialog box. That way, when you move the dialog box, the control
moves with the dialog box.

Turbo Vision Programming Guide

Positional events are
explained fully in Chapter 9,

"Event-driven programming. "

The only time you have to worry about any other coordinate
system is when handling positional events such as mouse clicks.
Mouse clicks are handled by the application, and it records the
position of the click in the global coordinate system for the
application. The origin for global coordinates is the top left corner
of the screen. By determining where on the screen the user clicked
the mouse, the application can decide which view on the screen
should respond to the event.

When a view needs to respond to such an event, it has to convert
from global coordinates to local coordinates. Every view inherits a
method called MakeLocal that converts a point from global screen
coordinates to local view coordinates. If necessary, it can also
convert froin local to global coordinates, using another method,
MakeGlobal.

Using bitmapped fields

Figure 7.4
Options bit flags

Turbo Vision's views use several fields which are bitmapped. That
is, they use the individual bits of a byte or word to indicate
different properties. The individual bits are usually called flags,
since by being set (equal to 1) or cleared (equal to 0), they indicate
whether the designated property is activated.

For example, each view has a bitmapped Word-type field called
Options. Each of the individual bits in the word has a different
meaning to Turbo Vision. Figure 7.4 shows the definitions of the
b~ts in the Options word.

I I I

Ilmsbl 1 1 1 1 1
I, 1

1 1 1 1 1 1

I I
1
1Sb

ll

of Version
of Centered

L=: ofSe 1 ectab 1 e
ofTopSelect
ofFi rstCl i ck
of Framed
of PreProcess
of PostProcess
of Buffered
ofTil eable
of Center X
ofCenterY
of Val idate
ofVers i on20

Chapter 7, Turbo Vision overview 109

Flag values

Bit masks

Bitwise operations

In Figure 7.4, msb indicates the "most significant bit," also called
the "high-order bit" because in constructing a binary number, that
bit has the highest value (215). The bit at the lowest end of the
binary number is marked lsb, for "least significant bit," also called
the "low-order bit."

So, for example, the fourth bit is called ofFramed. If the ofFramed bit
is set to 1, it means the view has a visible frame around it. If the
bit is a 0, the view has no frame.

You generally don't have to worry about what the values of the
flag bits are unless you plan to define your own, and even in that
case, you only need to make sure that your definitions are unique.
The highest-order bits in the Options word are presently
undefined by Turbo Vision.

A mask is a convenient way of dealing with a group of bit flags
together. For example, Turbo Vision defines masks for different
kinds of events. The evMouse mask simply contains all four bits
that designate different kinds of mouse events, so if a view needs
to check for mouse events, it can compare the event type to see if
it's in the mask, rather than having to check for each of the
individual kinds of mouse events.

Turbo Pascal provides quite a number of useful operations to
manipulate individual bits. Rather than giving a detailed explan
ation of how each one works, this section will simply tell you what
to do to get the jQb done.

Setting bits To set a bit, use the or operator. For instance, to set the ,

110

of PostProcess bit in the Options field of a button called MyButton,
you use this code:

MyButton.Options := MyButton.Options or ofPostProceSSi

You should not use addition to set bits unless you are absolutely
sure what you are doing. For example, if instead of the preceding
code, you used

TurbO Vision Programming Guide

Don't do this! MyButton.Options := MyButton.Options + of PostProcess;

your operation would work if and only if the ofPostProcess bit was
not already set. If the bit was set before you added another one,
the binary add would carryover into the next bit (ofBuffered) ,
setting or clearing it, depending on whether it was clear or set to
start with.

In other words: adding bits can have unwanted side effects. Use
the or operation to set bits instead.

Before leaving the topic of setting bits, note that you can set
several bits in one operation by oring the field with several bits at
once. The following code sets two different grow mode flags at
once in a scrolling view called MyScroller:

MyScroller.GrowMode := MyScroller.GrowMode or gfGrowHiX or gfGrowHiY;

ClearinQ bits Clearing a bit is just as easy as setting it. You just use a different
operation. The best way to do this is a combination of two bitwise
operations, and and not. For instance, to clear the dmLimitLoX bit
in the DragMode field of a label called ALabel, you use

ALabel.DragMode := ALabel.DragMode and not dmLimitLoX;

As with setting bits, multiple bits can be set in a single operation.

Toggling bits Sometimes you'll want to toggle a bit, meaning set it if it's clear
and clear it if it's set. To do this, use the xor operator. For example,
to toggle the horizontal centering of a dialog box ADialog on the
desktop, toggle theofCenterX flag like this:

ADialog.Options := ADialog.Options xor of Center X;

Checking bits Quite often, a view will want to check to see if a certain flag bit is
set. This uses the and operation. For example, to see if the win
dow A Window may be tiled by the desktop, you need to check the
ofTileable option flag like this:

if AWindow.Options and of Tile able = of Tile able then ...

Chapter 7, Turbo Vision overview 111

112

Using masks Much like checking individual bits, you can use and to check to
see if one or more masked bits are set. For example" to see if an
event record contains some sort of mouse event, check

-Summary

Table 7.2
Manipulating bitmapped

fields

if Event.What and evMouse <> a then ...

Table 7.2 summarizes the bitmap operations:

To do this

Set a bit

Clear a bit

Toggle a bit

Check if a flag is set

Check for a flag in a mask

Use this code

field .~ field or flag;

field .- field and not flag;

field .- field xor flag;

if field and flag = flag then

if flag and mask <> 0 then ...

Turbo Vision Programming Guide

c H

What is a view?

Chapter 8, Views

A p T E R

8

Views

One of the keys to Turbo Vision is the system used to present
information on the screen, using views. Views are objects that
represent rectangular regions on the screen, and they are the only
way Turbo Vision applications display information to users.

In this chapter, you'll learn the following:

• What is a view?
• What is a group?
• How to use views
• How to use groups

Because views are objects, they all inherit their basic properties
from a common ancestor object type, TView. Turbo Vision also
defines specialized objects descended from TView, such as win
dows, dialog boxes, applications, desktops, menus, and so on.

Other chapters in this part of the manual describe how to use
these specific views, but this chapter focuses on the principles
common to all views.

Unlike Pascal programs you're probably used to, Turbo Vision
applications don't generally use Write and Writeln statements to
display information to the screen. Instead, Turbo Vision

113

Definition of a

applications use views, which are objects that know how to
represent themselves on the screen.

view The basic building block of a Turbo Vision application is the view.
A view is a Pascal object that manages a rectangular area of the
screen. For example, the menu bar at the top of the screen is a
view. Any program action in that area of the screen (for example,
clicking the mouse on the menu bar) will be dealt with by the
view that controls that area.

In general, anything that shows up on the screen of a Turbo
Vision program must be a view, which means it is a descendant of
the object type TView. There are three things that all views must
do:

• Manage a rectangular region
• Draw itself on demand
• Handle events in its boundaries

The standard views provided with Turbo Vision handle these
things automatically, and the views you create for your
applications will either inherit these abilities or you'll have to add
them to your objects. Let's look at each of these properties in more
detail.

Defining a region When you construct a view object, you assign it boundaries,
usually in the form of a rectangle object of type TRect. Boundary
rectangles and the Turbo Vision coordinate system are explained
in detail in Chapter II, starting on page 107, but it's important
when you think about the other two properties of a view that you
remember that a view is limited to the area defined by its
boundaries.

Drawing on demand The most important visual property ofa view is that it knows
how to represent itself on the screen. For example, when you
want to put a menu bar across the top of the application screen,

, you construct a menu bar view, giving it the boundaries of the top
line of the screen and defining for it a list of menu items. The
menu bar view knows how to represent those items in the
designated space.

114

You don't have to concern yourself with when the view appears.
You define a virtual method for the view called Draw that fills in

Turbo Vision Programming Guide

III
II
I

the entire area within its bounding rectangle. Turbo Vision calls
Draw when it knows that the view needs to show itself, such as
when a window is uncovered because the window in front of it
closes.

The two important things to remember about Draw methods are
these:

• The view must fill its entire rectangle .
• The view must be able to draw itself at any time.

Draw methods are explained completely starting on page 119.

Handling events The third property of any view object is that it must handle events
that occur inside its boundaries, such as mouse clicks and key
strokes. Event handling is explained in detail in Chapter 9,
"Event-driven programming," but for now just remember that a
view is responsible for any events within its boundaries, just as it
must draw everything within its boundaries.

What is a group?
Sometimes the easiest way for a view to manage its area is to
delegate certain parts of the job to other views, known as
subviews. A view that p.as subviews is called a group. Any view
can be a subview, but groups must be descendants of TGroup,
which is itself a descendant of TView. A group with subviews is
said to own the subviews, because it manages those subviews. .
Each subview is said to have an owner view, which is the group
that owns it.

The most visible example of a group view, but one you might not
ordinarily think of as a view, is the application itself. It controls
the entire screen, but you don't notice that because the program
sets up three other subviews-the menu bar, the status line, and
the desktop-to handle its interactions with the user. As you will
see, what appears to the user as a single object (like a window) is
often a group of related views.

Delegating to subviews Since a group is a view, all the normal rules of views still apply. A
group covers a rectangle, draws itself on demand, and handles
events within its boundaries~ The main difference with groups is
that they handle most of their tasks by delegating them to
subviews.

Chapter 8, Views 115

For example, the Draw method of a group generally doesn't draw
anything itself, but instead calls on ~ach of the group's subviews
in turn to draw itself. The result of the Draw methods of all the
subviews, therefore, must result in covering the group's entire
rectangle.

Using view objects

Constructing view
objects

116

All Turbo Vision views have TObject as an ancestor. TObject is
little more than a common ancestor for all the objects, ensuring
that all the objects can operate polymorphically with streams, for
example. The visible parts of Turbo Vision start with TView.

TView itself is an abstract object type that serves as a common
ancestor for all the views. There is little reason to create an
instance of TView unless you want to create a blank rectangle on
the screen for prototyping putposes. Although TView is visually
simple, it contains all of Turbo Vision's basic screen management
methods and fields. This section describes the follow;ing tasks
you'll need to perform on views:

• Constructing view objects
• Managing view boundaries
• Drawing the view
• Handling the cursor
• Setting state flags
• Validating the view

Although you will probably never construct an instance of TView,
all view objects, which descend from TView, call the TView
constructor as part of their constructors, so it's important that you
understand what the constructor does.

By convention, all Turbo Vision objects' constructors are called
Init. TView's Init constructor takes a single parameter, the
bounding rectangle of the view:

constructor TView.lnit(var Bounds: TRect)i

Turbo Vision Programming Guide

Calling the inherited
constructor

Managing view
boundaries

Getting the view's
coordinates

Chapter 8, Views

Before doing anything else, TView.Init calls the Init constructor it
inherits from TObject, which fills all fields of the view with zeros.
Since all other views' constructors eventually result in a call to
TObject.Init, be sure you don't initialize any fields before calling
the inherited constructor.

Init takes the Bounds parameter passed to it and sets two impor
tant fields based on it: Origin and Size. Origin is the upper right
corner of the bounding rectangle. Size holds the width and height
of the rectangle.

The location of a view is determined by two points: its top left
corner (called its origin) and its bottom right corner. Each of these
points is represented in the object by a field of type TPoint. Origin
indicates the top left corner of the view, and Size represents the
position of the lower right corner relative to Origin.

Origin is a point in the coordinate system of the owner view. If
you open a window on the desktop, its Origin field indicates the
x- and y-coordinates of the window relative to the origin of the
desktop. The Size field, on the other hand, is a point relative to the
origin of its own object. It tells you how far the lower right corner
is from the origin point, but unless you know where the view's
origin is located within another view, you can't tell where that
corner really is.

Once you've constructed a view, there are a number of methods
for manipulating the boundaries of the view. In particular, you
can do the following:

• Get the view's coordinates
• Move the view
• Resize the view

You'll find that there are many times when you need to get the
boundaries of a view, either because you want to change those
boundaries, or because you want to construct another view based
on those boundaries. TView has a method called GetExtent that
takes a single var parameter of type TRect and sets the rectangle to
the boundaries of the view.

117

For example, Listing 8.1 shows an application object method that
constructs and inserts a window that covers the left half of the
desktop view.

Listing 8.1
Constructing a view based

on the size of another

procedure TYourApplication.AddLeftWindow;
var

R: TRect;
LeftWindow: PWindow;

118

begin
DesktopA.GetExtent(R); { get coordinates of desktop}
R.B.X := R.B.X div 2; { move right side halfway to left}
LeftWindow := New (PWindow, Init(R, { use R as window size}

'Left window', wnNoNumber)); { give window title and,number }
InsertWindow(LeftWindow) ; { insert left window into desktop}

end;

The rectangle set by GetExtent always has its A field set to the
point (0,0), and B set to the size of the view. In other words,
GetExtent returns the view's coordinates in its own local
coordinate system.

To get the view's coordinates relative to its owner view, use the
method GetBounds instead of GetExtent. GetBounds returns the
view's coordinates in the owner view's coordinate system, setting
the A field of its parameter to the view's Origin field, and B to the
size of the view offset from the origin.

Moving a view To change the position of a view without affecting its size, call the
view's MoveTo method. MoveTo takes two parameters, the x- and
y-coordinates of the new origin of the view. For example, the
following statement moves a view two spaces to the left and one
space down:

MoveTo(Origin.X - 2, Origin.Y + 1);

Resizing a view To chaI\ge the size of a view without moving it (that is, without
changing the position of its upper left corner), you call the view's
GrowTo method. GrowTo takes two parameters, which determine

. the x- andy-coordinates of the bottom right corner of the view,
relative to the origin.

For example, the follo-wing code causes a view to dbuble both its
width and height:

GrowTo(Size.X, Size.Y);

Turbo Vision Programming Guide

Moving and resizing at
the same time

To set the size and position of a view in a single step, you call the
view's Locate method. Locate takes a rectangle as its single param
eter, setting that rectangle as the boundary of the view.

For example, the following code sets the boundaries of a view to
the given rectangle, regardless of the original size and position of
the view:

R.Assign(L 3, 27, 6);
Locate (R) ;

Fitting views into One of the most common manipulations of a view's coordinates
owners involves fitting one view into another. For example, creating the

interior of a window involves making sure the interior doesn't
cover any part of the window's frame. To do that, you assign the
interior's boundaries relative to the window, without having to
worry about the actual size and position of the window.

Grow is a TRect method that increases (or with negative param
eters, decreases) the horizontal and vertical sizes of a rectangle.
Used in conjunction with a view's GetExtent method, Grow makes
it easy to fit one view into another, as shown in Listing 8.2. The
types TThisWindow and PlnsideView are made up just for this
example.

Listing 8.2
Fitting a view inside another

procedure TThisWindow.MakeInside;
var

Drawing a view

Chapter 8, Views

R: TRect;
Inside: PInsideView;

begin
GetExtent(R); { sets R to boundaries of TThisWindow }
R.Grow(-l, -1); shrinks the rectangle by 1, both ways}
Inside := New (PInsideView, Init(R)); { creates inside view}
Insert (Inside) ; { insert the new view into the window}

end;

The appearance of a view object is determined by its Draw
method. Nearly every new type of view will need to have its own
Draw, since it is, generally, the appearance of a view that distin
guishes it from other views.

There are a couple of rules that apply to all views with respect to
appearance. A view must

119

• Cover the entire area for which it is responsible
• Be able to draw itself at any time

Both of these properties are very important and deserve some
discussion. For information on actually writing Draw methods,
see the section "Writing Draw methods," starting on page 128.

Drawing on demand In addition, a view must always be able to represent itself on the
screen. That's because other views may cover part of it but then be
removed, or the view itself might move. In any case, when called
upon to do so, a view must always know enough about its present
state to show itself properly.

Changing view
option flags

To learn how to manipulate
bitmapped options, see

"Using bitmapped fields" in
Chapter 7, "Turbo Vision

overview."

120

Note that this might mean that the view does nothing at all. It
might be entirely covered, or it might not even be on the screen,
or the window that holds it might have shrunk to the point that
the view is not visible at all. Most of these situations are handled
automatically, but it is important to remember that your view
must always know how to draw itself.

This is different from other windowing schemes, where the·
writing on a window, for example, is persistent: You write it there
and it stays, even if something covers it up then moves away. In
Turbo Vision, you can't assume that a view you uncover is
displayed correctly-after all, something may have told it to
change while it was covered.

All views inherit four fields from TView that contain bitmapped
information. That is, each bit in each field has a special meaning,
setting some option in the view. You can think of each bit as being
a Boolean value, but stored in a much more compact form.

The values of these option flags get set once, when you first con
struct the view, and normally stay set, although you can change
the values at any time. For complete information on each flag, you
should check Chapter 19, the entries for ofXXXX constants,
dmXXXX constants, and gfXXXX constants.

Options is a bitmapped word in every view. Various descendants
of TView have different Options set by default. The GrowMode and
DragMode flags, although present in every view, don't take effect
until the view gets inserted in a group, so they are explained in
the part of this chapter on groups. The fourth field, EventMask, is
described in Chapter 9, "Event-driven programming."

Turbo Vision Programming Guide

I

Customizing selection The Options word has three bits that govern selection of the view
by the user: of Selectable, ofTopSelect, and ofFirstClick.

Most views have of Selectable set by default, meaning the user can
select the view with the mouse. If the view is in a group, the user
can also select it with the Tab key. You might not want the user to
select purely informational views, so you can clear their
of Selectable bits. Static text objects and window frames, for
example, are not selectable by default.

The ofTopSelect bit, if set, causes the view to move to the top of the
owner's subviews when selected. This option is designed primar
ily for windows on the desktop, so don't use it for views in a
group.

The ofFirstClick bit controls whether the mouse click that selects
the view is also passed to the view for processing. For example, if
the user clicks a button, you want to both select the button and
press it with just one click, so buttons have ofFirstClick set by
default. But if the user clicks on an inactive window, you prob
ably only want to select the window and not process the click as
an action on the window once it's activated. This makes it less
likely that a user will accidentally close or zoom a window when
just trying to activate it.

Framing. the view If you set the ofFramed bit, the view has a visible frame around it.
This is useful if you create multiple "panes" within a window, or
if you want to emphasize a particular view. ofFramed does not
affect the frame of window and dialog box objects. Those are
separate views controlled by a field in the window object. The
ofFramed bit only affects views inserted into windows or dialog
boxes.

Special event handling The bits of PreProcess and of PostProcess allow a view to process
focused events before or after the focused view sees them; The
"Phase" section in Chapter 9, "Event-driven programming,"
explains how to use these bits.

Centering the view Views have two bits that control the centering of the view within
its owner. The of Center X bit centers the view horizontally, and
ofCenterY centers it vertically. If you want to center both
horizontally and vertically, you can use the mask of Centered,
which contains both of the centering bits.

Chapter 8, Views 121

Setting the view's
state

Setting and clearing
state flags

Table 8.1
Methods that change state

flags

.$etState works on only one
bit at a time.

122

EvelY view maintains a bitmapped field of type Word called State,
which contains information on the state of the view. Unlike
option flags and mode bits, which you set when you construct a
view (if a window is resizable, it is always resizable, for example),
state flags often change during the lifetime of a view as the state
of the view changes. State information includes whether the view
is visible, has a cursor or shadow, is being dragged, or has the
input focus.

The meaning of each state flag is covered in Chapter 19, "Turbo
Vision reference," under "sfXXXX state flag constants." This
section focuses on the mechanics of manipulating the State field.

Rather than manipulate state flags directly, you use a method
called SetState, which involves two separate kinds of activities:

• Setting or clearing state flags
• Responding to state changes

'For the most part, you don't need to change state bits manually,
since the most common state changes are handled by other
methods. For example, the sfCursorVis bit controls whether the
view has a visible text cursor. Rather than manipulating that bit
directly, you can call either ShowCursor or HideCursor, which take
care of toggling the sfCursorVis bit for you. Table 8.1 shows the
state flags and the methods that manipulate them. '

State flag(s)

sfVisible
sfCursorVis
sfCursorlns
sf Shadow
sf Active, sf Selected, sfFocused
sfDragging
sf Modal
sfExposed

Methods

Show,Hide
ShowCursor, HideCursor
BlockCursor, NormalCursor
None
Select
DragView
Execute
TGroup.Insert

In order to change a state flag that doesn't have a specific method
dedicated to it, you need to call the view's SetState method, pas
sing two parameters: the bit to change, and a Boolean flag
indicating whether to set the bit. For example, to set the sf Shadow
flag, you'd do the following:

Turbo Vision Programming Guide

I'
I'

i

I

I

I

I

I

Responding to state
changes

Listing 8.3
Overriding SetState to

respond to state changes

Chapter 8, Views

SetState(sfShadow, True);

Whenever a view gets the focus, gives up the focus, or becomes
selected, Turbo Vision calls SetState to change the appropriate
state flags. But changing state flags often requires that the view
make some other changes in response to the new state, such as
redrawing the view. If you want a view to respond in some
special way to a state change, you need to override SetState,
calling the inherited SetState to make sure the change occurs, then
responding to the new state.

A button, for example, watches State and changes its color to cyan
when it gets the focus. Listing 8.3 shows how TButton overrides
SetS tate:

procedure TButton.SetState(AState: Word; Enable: Boolean);
begin

inherited SetState(AState, Enable); { set/clear state bits
if AState and (sf Selected + sf Active) <> 0 then DrawView;
if AState and sf Focused <> 0 then MakeDefault(Enable);

end;

You should always call the inherited SetState from within a new
SetS tate method, because TView.SetState does the actual setting or
clearing of the state flags. You can then define any special actions
based on the state of the view. TButton checks to see if it is in an
active window in order to decide whether to draw itself. It also
checks to see if it has the focus, in which case it calls its
MakeDefault method, which grabs or releases the focus, depending
on the Enable parameter.

The programmer and Turbo Vision often cooperate when the state
changes. For example, TEditor toggles the state of the cursor when
the user enters or leaves insertion mode. In response to the user's
pressing Ins, the editor calls a private method called TogglelnsMode
that in turn calls SetState: '

procedure TEditor.ToggleInsMode;
begin

Overwrite := not Overwrite; { toggle Overwrite mode}
SetState(sfCursorIns, not GetState(sfCursorIns)); {toggle cursor}

end;

123

Dragging a view
One way to move a view is to let the user position or resize it with
a mouse. Moving a view with the mouse is called dragging. Each
view has a bitmapped field called DragMode that provides the
default limits to where the user can drag the view. To drag views,
you need to understand two tasks:

• Setting drag limits
• Calling DragView

Setting drag limits The bits in DragMode determine whether parts of the view can
move outside its owner. When you drag some views, such as
windows on the desktop, moving the view beyond the boundary
of the owner just causes the subview to be clipped at the owner's
boundary. In other words, it can move there, even if you can't see
it. The bits with names starting with dmLimit restrict a view from
being dragged outside its owner.

The mask dmLimitAli contains all t~e drag mode limit bits. Setting
dmLimitAll in a view means that the user won't be able to drag
any part of the view outside its owner. The individual bits are
dmLimitLoX, dmLimitLo Y, dmLimitHiX, and dmLimitHiY, which
restrict dragging beyond the left, top, right, and bottom bound
aries of the owner, respectively. By default, views have
dmLimitLo Y set, meaning the user can't drag the top of a view
beyond the top of its owner.

Calling DragView The actual dragging of the view is handled by a method called
DragView. Normally a view calls' DragView in response to a mouse
click. For example, when you click on the top bar of a window
frame, the window calls DragView to move the window. Similarly,
when you click on the bottom right corner of a window, it also
calls DragView, this time to resize the window.

DragView takes five parameters. The first is the event record that
initiated the dragging (usually a mouse down event). The second
is the dragging mode, which is a combination of either
dmDragMove or dmDragGrow with the limit flags in the view's
DragMode field. The three remaining parameters provide a
rectangle in which the view is allowed to move and the minimum
and maximum sizes for the view.

124 Turbo Vision Programming Guide

The code in Listing 8.4, from the example program DRAGS.P AS,
shows a typical use of DragView.

Listing 8.4
A typical use of DragView

procedure TDragBlock.HandleEvent(var Event: TEvent);
var

R: TRect;
Min, Max: TPoint;

begin
inherited HandleEvent(Event); .
if Event.What and evMouseDown = evMouseDown then
begin

if Event. Double then ChangeFlags
else
begin

OwnerA.GetExtent(R) ;
R. Grow (-1, -1);
SizeLimits(Min, Max);
case Event.Buttons of

mbLeftButton:
begin

DragView(Event, dmDragMove or DragMode, R, Min, Max);
ClearEvent(Event) ;

end;
mbRightButton:

end;
end;

end;
end;

begin
DragView(Event, dmDragGrow or DragMode, R, Min, Max);
ClearEvent(Event);

end;

Handling the

Chapter 8, Views

cursor Any visible view can have a cursor, although the cursor only
shows up when the view has the input focus. The cursor provides
a visual indication to the user of where keyboard input will go,
but it is up to the programmer to make sure the program actually
matches the cursor position to the input location.

TView has a field called Cursor, of type TPoint, that indicates the·
position of the cursor within the view, relative to the origin of the
view. Views have several methods devoted to handling the
cursor, which enable you to do the following:

• Show or hide the cursor
• Change the cursor sty Ie
• Move the cursor

125

Showing and hiding
the cursor

Changing the cursor
style

Moving the cursor

Validating a view

126

Views have two methods, ShowCursor and HideCursor, which
handle showing and hiding the text cursor, respectively. By
default, the cursor is hidden, although some descendants of
TView (notably input lines and editors) override this and show
their cursors by default.

One of the bits in every view's State field (sfCursorVis) controls
whether the view has a visible cursor. ShowCursor and HideCursor
set and clear the sfCursorVis bit. When the view gets the input
focus, Turbo Vision shows the cursor at the position indicated by
Cursor if sfCursorVis is set.

Turbo Vision supports two styles of text cursor, an underline
character and a solid block. The TView methods NormalCursor and
BlockCursor set the cursor style to underline' or block, respectively.
One style usually indicates an insert mode, the other a typeover
mode.

By default, the cursor style is normal, or underline. The
sfCursorlns bit in the view's State word controls which style cursor
the view uses. BlockCursor and NormalCursor set and clear the
sfCursorlns bit.

To change the position of the text cursor in a view, you call the
view's SetCursor method. SetCursor takes two parameters, repre
senting the x- and y-coordinates of the new position for the
cursor, relative to the origin of the view.

Avoid modifying the Cursor field directly. Instead, use SetCursor,
which changes the cursor location and also updates the display.

Every view has a virtual method called Valid that takes a com
mand constant as its one parameter and returns a Boolean value.
In general, calling Valid is a way of querying the view, asking "If I
sent you this command, would you approve?" If Valid returns
True, it's saying that it is valid for that command.

Valid is used for three different kinds of validation, although you
can override it to perform other sorts of operations. This section
covers the following uses of Valid:

Turbo Vision Programming Guide

Checking view
construction

Checking for safe
closing

Chapter 8, Views

• Checking for proper construction
• Checking for safe closing
• Data validation

Turbo Vision reserves a special command emValid, which it uses
to ensure that views construct themselves corredly. The applica
tion object method ValidView calls a view's Valid method, passing
em Valid as the parameter. Views should respond to such calls by
making sure that anything done during construction, such as
memory allocation, succeeded.

For example, the constructor for an input line view takes a maxi
mum length for the text string as one of its parameters, and tries
to allocate memory on the heap to hold a string of that many char
acters. The constructor itself doesn't check to make sure the allo
cation succeeded, but relies on Valid to make that determination.

The input line's Valid method checks to see if the parameter
passed was em Valid, and returns True only if the allocation for its
data buffer succeeded.

Other than the initial test to make sure a view constructed
properly, the most common time to check Valid is when closing a
view. For example, when you call a window object's Close method,
it calls Valid, passing emClose, to make sure it's safe to close the
window. Essentially, Valid(emClose) asks the view, "If I told you to
close now, would that be all right?" If Valid returns False, the view
should not close.

When passed em Close, therefore, Valid methods should ensure
that information is saved, buffers are flushed, and so on. A file
editor view, for example, should check to make sure that any
changes have been saved to the file before Valid returns True.

When writing Valid methods, you have two options when you
detect a reason why the view is not valid: have Valid return False,
or perform some action that makes the view valid and then return
True. For example, when a file editor with unsaved changes is
asked to validate on closing, it puts up a dialog box that asks the
user whether to save the changes. The user then has three options:
save changes and close, abandon changes and close, or don't
close. In the first two cases, Valid returns True, in the third, False.

127

Data validation Input line views can use Valid to determine whether the contents
of the text string contain legal values by checking with valida tor
objects. Chapter 13, "Data validation objects," explains this mech
anism in detail. The important thing to note here is that data
validation can take place when the user closes a window, but you
can use the exact same mechanism to validate at any other time.

For example, input line objects check the validity of their contents
when Valid is called with the em Close command. But you can just
as easily check the input as the user types it, calling Valid(em Close)
after each keystroke. That's essentially asking the input line, "If I
told you to close now, would your contents be valid?" This is
precisely the method used by a number of the valida tor objects
described in Chapter 13.

Writing Draw methods

Selecting colors

128

The appearance of any view is determined by its Draw method.
When you write Draw methods, you need to keep in mind the
principles outlined in the "Drawing a view" section that starts on
page 119. Turbo Vision and its views provide several tools you
can use to write a view's information to the screen.

Writing Draw methods involves the following task,S:

• Selecting colors
• Writing directly to the view
• Writing through buffers

When you write data to the screen in Turbo Vision, you don't
specify the color of an item directly, but rather rely on the entries
in the view's color palette. Palettes and color selection are
described in detail in Chapter 14, "Palettes and color selection,"
but this section covers a few of the basics.

When you specify a color to a function that writes directly to a
view, you'll pass it an index into its color palette.

So, for example, if a view has two kinds of text in it, normal and
highlighted, it's palette probably has two entries, one for normal
text and one for highlighted text. In the Draw method, you'd pass

Turbo Vision Programming Guide

Listing 8.5
A simple Draw method with

two colors of text

Writing directly

the appropriate index to GetColor depending on the attribute you
want. Listing 8.5 shows a simple draw method that writes two
strings in a view in different colors.

procedure TColorView.Draw;
begin

WriteStr(O, 0, 'Normal', 1);
WriteStr(l, 0, 'Hilite', 2);

end;

{ write 'Normal' in normal color}
{ write 'Hilite' in highlight color }

Views have two similar methods for writing characters and
strings to the view. In each case, you specify the coordinates
within the view where the text should start, the text to display,
and the palette index of the text color.

Writing characters The WriteChar method takes five parameters: the x- and y
coordinates of the first character to write, the character, the palette
index of the desired color, and the number of consecutive
characters to write. For example, the following code fills the third
line of a view with the letter W in the color specified by the
second palette entry:

writeChar(O, 2, 'W', 2~ Size.X);

Writing strings The WriteStr method takes four parameters: the x- and y
coordinates of the first character, the string to write, and the
palette index for the string's color. For example, the following
code writes the string 'Turbo Vision' in the lower left corner of a
view, in the color specified by the third palette entry:

Writing through
buffers

. ChapterS, Views

WriteStr(O, Size.Y - 1, 'Turbo Vision', 3);

The most efficient way to handle drawing large or complex views
is to write the text to a buffer, then display the buffer all at once.
Using buffers improves the speed of drawing, and reduces flicker
cause by large numbers of individual writes to the screen. You'll
usually use the buffer to write entire lines or entire views all at
once.

A buffer for drawing is an array of words, with each word repre
senting a character and its color attribute, the same way the video

129

screen represents each character. The type TDrawBuffer, defined in
the Views unit, provides a convenient array of words you can use
for draw buffers.

Drawing with a buffer takes two steps:

• Setting the text color
• Moving text into the buffer
• Writing the buffer to the screen

Setting the text color When writing to a buffer, you need to pass a color attdbute for the
text you're putting in the buffer. To obtain the color attribute, you
call the GetColor method. GetColor returns a color attribute when
passed a palette entry number. For example, to get the color
attribute for the third entry in a view's palette, do the following:

ColorAttribute := GetColor(3)i

GetColor and color mapping are explained in more detail in
Chapter 14, "Palettes and color selection."

Moving text into buffers There are four procedures in the Drivers unit you can use to put
text. into a draw buffer: MoveBuf, MoveChar, MoveCStr, and
MoveStr. Each works in much the same way, but each moves
different kinds of text into the buffer.

Listing 8.6
A Draw method that uses a

text buffer

130

In general, you want to fill the buffer with spaces, then move text
into the places where you want it, assuring that you don't leave
gaps in the buffer. Listing 8.6 shows two uses of procedures that
move text into a buffer.

procedure TCountView.Drawi
var

B: TDrawBufferi
C, Start: Wordi
Params: array[O .. l] of Longinti
First: String[10] i
Display: String[20]i

begin
C := GetColor(2)i
MoveChar(B, ,H" C, Size.X)i
Params[O] := Currenti
Params[l] := Counti

{ Uses same color as frame }
{ fill buffer with = }

FormatStr(Display, ' ~%d~ of %d " Params) i { format string}
{ If Current greater than Count, display Current as highlighted}

if Current > Count then C := GetColor($0504)
else C := GetColor($0202)i

Turbo Vision Programming Guide

MoveCStr(B, Display, C); { move string into buffer}
WriteLine(O, 0, Size.X, Length (Display) , B); { write string}

end;

Writing buffers to the Views have two methods that copy a draw buffer to the screen:
screen WriteBuf and WriteLine. Both take the same five parameters: the

x- and y-coordinates of the upper left corner of the area to write
to, the width of that region, the height of the region, and the
buffer that contains the text to write.

The difference between WriteBuf and WriteLine is that WriteLine
assumes that everything in the buffer is a single line, while
WriteBuf wraps the buffer around to multiple lines if it exceeds
the width of the writing region. If the height of the writing region
is greater than 1, WriteLine copies the beginning of the same text
to each line; WriteBuf writes continuously from the buffer.

For example, if a buffer called Buffer contains the characters
I ABCDEFGHIJ', the statement

WriteLine(O, 0, 5, 2, Buffer);

produces this text:

ABCDE
ABCDE

On the other hand, using WriteBuf, the equivalent statement

WriteBuf(O, 0, 5, 2, Buffer);

produces this output:

ABCDE
FGHIJ

Using group objects

Chapter 8, Views

You've already learned something about the most important
immediate descendant of TView, the TGroup. TGroup and its des
cendants are collectively referred to as grpups. Views not
descended from TGroup are called terminal views.

Bm~ically a group is just an empty box that contains and manages·
other views. Technically, it is a view, and therefore responsible for
all the things that any view must be able to do: manage a rectang
ular area of the screen, visually represent itself at any time, and

131

Groups, subviews,
and owners

132

handle events in its screen region. The difference is really in how it
accomplishes these things. Most of it is handled by subviews.

This section covers the following topics regarding group views:

• Groups, subviews, and owners
• Inserting subviews
• Understanding subviews
• Selecting and focusing subviews
• Groups and option flags
• Drawing groups
• Executing modal groups
• Managing subviews

Although you need to understand them, you should never need
to change the basic behavior of groups, such as inserting, draw
ing, and executing. Most of that behavior is simple and straight
forward. You will certainly find yourself changing some
properties of some descendants of TGroup, such as TWindow and
T Application, but you should never need to change basic group
methods.

For example, it might not be apparent, but the processes of
adding a menu bar to an application, a window to the desktop,
and a control to a dialog box are exactly the same. In each case,
you're inserting a subview into a group, executing the same code
inherited from TGroup.

A group is a holder for other views. You can think of a group as a
composite view. Instead of handling all its responsibilities itself, it
divides its duties among various subviews. A subview is a view
that is owned by another view, and the group that owns it is
called the owner view.

An excellent example is T Application. T Application is a view that
controls a region of the screen-the whole screen, in fact.
T Application is also a group that owns three subviews: the menu
bar, the desktop, and the status line. The application delegates a
region of the screen to each of these subviews. The menu bar gets
the top line, the status line gets the bottom line, and the desktop
gets all the lines in between. Figure 8.1 shows a typical
T Application screen.

Turbo Vision Prog~amming Guide

Figure 8.1
TApplication screen layout

Inserting subviews

Chapter 8, Views

MenuBa r
1111111111111 .. ' , ... ' 111'1111111111111111111' .. " " 1111111111" .. 11 .. '''' , ''1'1111111111111 .. 11 ' , " .. 111 ... 11111111 .. 111 ... "' ' .. '1111111111111111111111111 .. 111111
..... "11 .. ' '111 .. '11111111111111 .. ' ... ' , ... , .. " ... '111.11111.1 ... " 1111111111111.''' ' 11111111111111 ,11,.,11 '111.1'11111111111111111111111 ' 1111111111111
11111111111111111111 .. 111111 ' ' ... 11'"1111111111111.' .. ""' ... , ' 11111 .. 11111111.111 .. ' .. ' " .. ' .. ' '111111111111111111111, ,I' .. I1 .. '"IIIIIIIIIIIIIIII' ' .. , IU .. 11I11I11I1I111I1I1111111
11111111111111 .. '1 '"' 1111111111111111111 "', ... ' 11'11 •• 11 •• 11.11 •• 11111111 ••• 1111,.11 •• 11.11 •• , •• 11.11 •• 11111.1111'11 •• 11,,, •• 11 .. 11.11.1111111.1 ••• 111111' .. 111111 .. ' 11.11.11 •• 111111'.11' ... "'"'".11 •• 11 .. '
11 , ' 11 11.11 •• 11 11' 11.11 •• 11.11 •• " •• ".""'""11." '111.11."" ... 11' 11." 11 , 111 •• 11.11 111111 •• 111111' , 11.11.11111 •
.. " ".11'" •• 11"' " 11 11 •• '"1." •• "'" .. '" •• " 11 ••• 11'." ... '" ' 11.11.11.11.11 •• 11.".11 II .. lIlIn .. II ••• IIII.lIl1l1l1l1l1 II ... II II ... II.IIIIIIIIIIIIIIII'"'.
11 ... 11.11 11 •• 11 11 •• 11 •• "'".11 ' •• 11 1111 ... "1.".111.11.11111111 11.11 1111 .. 11 •• 11.11 ... '".11 " , ,11.11111111""'"11 , ... ,11.1111 111111'"11'"'"'" ... ' .. ' ••• 11 ,'''
•• 11 .. 1111 11' ... 11 ".11 11 ... , ' .. '.11 ... " , 11 ... , , , ,.11 .. ,.11 11 11 ... ' , ," •• " ' •• 1111 ••• 1111"111111.11 •• " .. ' " .. 1.11.11.11'1111"".11.1111"
""'"' 11 11' .. ,.11,11',11,,." 11 11 111111 '.11 •• 1111,.11 11' .. '.11' ... 11'.11 •• 11 "111.1111 •• ' 11 '"1111111111111"."'"'"1111111 11 •
.............. 11 ... ' ••• 11 •• "1111'"111111' '.11 ••• 11 11 ' ... "1"",11111'".11 11 11"1111.,11,11' 1111 11 11 '".,III.II.II' ... II ••• III ••• II.U'"III •• IIIII'"IIIII ' 11 111111
•• 11 '.11'""".'.11 •• 11 11 11 '.11"11111.'.11.'" .. ' •• 11 '.11 •• ""1".111'" ' .. 11 '".'".11'11.,.1111 ' .. 111111' •• 1111' ... 1111111' .. ' .. ' 1111 11 •• 11111111'11111111.
"11"'"'"'''' ... ' 1111 ' .. '"1111'11'.'"' 1111, ... '.1111111.,11'.11 ,.11 111 11.,11' .. 11.11,.11.11 ... '.11 •• 11 11 11.,11.111 ' 11.11 •• 11 111'.11 .. 11 .. ""'","'"'" 11 .. I •
•• 11 11 1111" " .. '.11 11 •••• 11.11' ... 1111 ... 11.11'"' 11 111."' .. '"'.11 11 11.11 •• 11.11.'" 111111 '.11.'", .. , .. ".11.11 ••• 11 1111 .. 1111.'"11"
... , " .. , ,'" " , , .. " , 1111.111111' ... ' , 11 " 1111'".11 ... '"1 .. '" ••
"11 ... 11.11' ••• ' 11 1111111111'11.'.11.11 ' 1111.11 1111.11.11.1111'.11 , ' .. '11.11.11' ,"""'""''''"'"''11'111,,",'''''''"'''''"'"1''"11111'11",",","," ... ,,,'.11 •
• 11 •• 11 11 11 11111" ... 11"11.11' .. ' •• 11 11111111' , ", .. ,.II ,IIUIl ... ' '" ' .. ,.II •• II.IIUIl III1I1.II ... '"II'UIl.II'.,.II.II ••• II.IIII II 'IIIII' •
....... 111111111' .. 11'" 11 1 •• 11.1111' .. ' 11 11, ,11" ' .. 11 ••• 11 11 •• '"11 ... " , 11' 11"' ... 11 , ••• 11 '"111'" ... '" 11.'
,1111111111', 11111.,1111 ... 1111., •• 1111 11 11.111.",',111111 ... 11 ... ' 11'"111.",1111111., 1111111,'.".,""" ' 11' •• 11.11,,11'"'"."." ... '"
.... 11 11111111 ... " .. '.11' 11 1111111"" •• 1111, 11 ... '.11 ... '" •• 11 ... '"""' 11 11 ... " 11 .. , ,.1111.11, ••• 111111,111111111 •• 11.'".11,", 11111,1111.11.11
, , ," ... , " ... 11" •• 11 ... ' , ' .. ' , "1 ' " , 11 .. ' ' .. ,'" ... ' .. ' , , ... ' ••• '., , 11.11'"' .. '"' ... 11' .. ,
'" 11 , ' .. 1111.11111'.11'"11"" 11 ' ... 1 , , , , ... ' 11.11 "" ... 11 .. ' , ""' 111111 ... ,11 11" ... ' '".11,11 ... 1111 •• '"' 11, 11
.. ' 111 11111.11'""11.".11' ,11 •• 11""' ... '" •• 11 111 11' .. , .. '" •• 11.11.'" 11'",'" •• 11'.11 11 '111111" ... 111".1111'.11 ... 1111 ' ... 1111.'".11.11."'"11'
"' , .. , .. 11 11 •• 11 ... , ".11' ... 11."' .. ' 11'.'11 " ... , .. ,.11 ' 111"'""" " II '""UIl •. ''' ... " " ..• ".II II '' ... IIII'".II'' .. ''''" .. '
.. ,11,,,,",,,,." ••• 11.11,'111111.11,.11.11,,,,,,,,,,," .. , ... ,.11 •• 111''', .. ""'.11.'" 11.11 ... 1'"1."'11'.1111'.11 '.11 •• 11 11""' ... "'.'11."" ••• 11 .. ' ... 111111"11'.11."11 .. ' .. ""11.' ' 1111111111'
.......... '.11.11'"111111'11'"."11 ... ' ... ' 11 •• 11'.11"".11"11 •• 11' .. ' 11 ', .. 111111,11.,11'" •• 11.11 '11" .. 1111'".' .. "" 11111111.11'"1111 •• 11 '1111111'".1111'"111111111.11 •
.. '.,11'"'.11 , 1111.11., .. 11'" 11 .. , ' '.11.1111".11 ... ' .. ' 11 , 1111'" ' ... , '" •• '.' '".'10 ' 1111'.11 111.11 .. '"'" •• 11 .. ,
............... 11 "".11'.11111111 •• 11'.11.11 11 ' ... '1 .. ' ... 11.,111.11 .. " 11 .. 11 ' .. '",.1111' 11 •• 11 '".'"' ... , •• , "".11 ' 11.11.,".1111111'.11' ... 11 •• 11.11 11, ... 11 •
... ".11,",,,".,"."'".".1111, ,.", ,11 •• 11,.11 •• "111"11'"'' ... , '" 11'"111'" 11," ".11 ... 1."'"1.".,.,,.".11 " ... 1111111'" ... ,.11.11' 1111""'" •• "11111,,1111'11,"' .. 11 ' 11, , 11 .. 11111111 •• 11.1111 '" 11 ' .. , 11 .. , , ... ' ' .. 1 '.11 11, •••• , UIlIlIl ' IIII.'.II.II'".' .. II ... '" •••• I I •
....... , 11 11111.,11111""."'""11.11' 11.11.'".'".".,11 •• 11, ... 1111 11 1111'.11.11."'.'" ' .. ' ... 1 .. 111','11'111111"11," .. ,,,.111 •• "'111"'"1111"111111'"11''''''''''11.1111,.'"11'"1111
...... 11 ... '" ... , ""'"' " ' •• 11." ... 11.11.11111111,11.,11 ... ' .. ' ... ' 1 111111.11111.111.11 11 1111.1111111 ••• 11 ' 111.'"'"'"1111'" •• ",111111.'"."111 ••• 111 ... 11 ..
, 11.11'" •• " " 111., '.11 , .. ' " 11'" , 11 ' .. '" 11 11 11 ••• 11 11 '"11'".11".11 11 , .. ,II ••

:mm:::::DeskTop::::::::::::::m:::::m:::::::::::::::::::::::::::::::::m::mm:::::::::::::::::::::::::::m::::::mil::m::::::::::m::::::::::::::::::::::::::
..... 11 ".1111"11' , ' 1111.1111 •• 11 .. " ' 11'.11.11.'''"' 1111 11 •• 11."1"'.11'."' 11 "'"'"1."' .. '.11.11 11 111'11.11."'".11.11 ••
• 11111.11.11.".11.11 •• 11 ... ' 11111".111 ... ' .. 11 11 •• 11 •• 11111111.11 •• 11 .. ' ' ... 1111.11' •••• 11'.11 ' 11'""'11.11'" '".111.'"'.11"11'"'".11 '" ••
............................. 111""'".11, ' .. , ' .. 11 11.".,11'"'" " 11.11 '"' ' ... 111 11." , 11.11 •• 11'"',11" .. ' 11 1111 , 1111.11.1111.11'".'" •• ' ... 11.'.' ' , .. , ... , .. , ... " .. '" 11 , ,,, , , .. ' ... , .. , , .. , , ,' " ,', , , " , , ..
1111111 .. ' ' 11.11.111111' .. '"'"11 ' ... , .. , ' "11.11'"111111 ... 11 •• 11 ' '" •• 11.1111.11"".'" ' 1111"'11"11111 11 11111"111111'.11 .. '., •• 11 11"'.1111.11
........... 11 111.'"11 .. ' ' "."1" ", .. , ... ' 11.11' ' , " 11 11 ' 11 '" •• 11"11.11 11.11."'11.11'II
......... 11 11.1111"111111 ' 1111.111'11'.11 ' .. ' •• 11 .. , 11'."'"1.11.11 , ... ' 1.11.' ... 11'"1."' .. ' ... , ... , 11' ... ,11,.11"11 11.11 ••• 1111 •• 1111 .. '"11.,11.11'"'"
'"11"11 1111 ' "'" ... 1'.1111.11."'"'"'." , " ,.'"11'".11' 11 •• 11.11 11,1111"",11'""11' 11.111111,"" .. 111111 11 11 .. 1,11'"11"','"' .. , ... 11 11'11 .. " ... 11
.. ,.11 1111 .. 1.1111 ... ' , , 11, 111'.".11.'" , .. , ' .. '.11' " , 11.'11111".''' , .. 11 111.11'''"11.11' •• 11 11" 111111.11.1111 •
... 11' 111 ... 11' •• 11'"' , "1111 ... 11 •• '".' .. ""11' 11 .. '.11 "1"."111'.11'.11.11 '"11111111.11'"' 11 .. 1 11111111'.1111'" ' 11.,11., .. ,11"'"'"11" .. '." .. '
"'" •• " .. ' , , .. '".'"1."1"."'." •• 11' ... ' 'U' ,.II , , " ,II' '"II'.II '." ,I1.""IIIIII'"I1"" U'".IIII'.II.II'" 11

!11111@lllllillllllllill~~llllil[~lllilllllliltlllllllI1III111111111
Status Line

Notice that the application itself has no screen representation
you don't see the application. Its appearance is entirely
determined by the views it owns.

To attach a subview to an owner, you insert the subview into the
owner using a method called Insert. Any group can have any
number of subviews, and any view can be a subview. The owner
treats its subviews as a linked list of views, keeping a pointer to
only one subview, using the Next field in each subview to point to
the next subview. .

At a minimum, the subviews of a group must cover the entire
area of the group's boundaries. There are two ways to handle this:

• Dividing the group
• Providing a background

In general, the first approach is used in cases where subviews
don't overlap, such as the application or a window divided into
separate panes. The background method is used in cases where
subviews need to overlap and move, such as the desktop, or cases
where the important subviews are separated, such as the controls
in a dialog box.

The following sections explain each of these cases.

133

Dividing the group Some groups, such as the application object, just divide their
area rectangular region into parts and permanently assign views to

each part.

Application objects and their
subviews are explained in
Chapter 70, "Application

objects."

Providing a
background

The desktop and its
background are explained in

Chapter 70, "Application
objects," starting on

page 782.

134

To create the screen s,hown in Figure 8.1, the constructor
T Application.Init creates three objects and inserts them into the
application:

InitDeskTop;
InitStatusLine;
InitMenuBar;
if DeskTop <> nil then Insert (DeskTop) ;
if StatusLine <> nil then Insert (StatusLine) ;
if MenuBar <> nil then Insert(MenuBar);

Only when they have been inserted are the newly created views
part of the group. In this particular case, TApplication has divided
its region into three separate pieces and delegated one to each of
its subviews. This makes the visual representation fairly straight-·
forward, as the subviews don't overlap at all.

There is no reason that views can't overlap. Indeed, one of the big
advantages of a windowed environment is the ability to have
multiple, overlapping windows on the desktop. Luckily, groups
(including the desktop) know how to handle overlapping
subviews.

The basic idea of a background is to assure that something is
drawn over the entire area of the group, letting other subviews
cover only the particular area they need to. One obvious example
is the desktop, which provides a halftone backdrop behind any
windows. If a window or group of windows covers the entire
desktop, the background is hidden, but if moving or closing
windows causes some part of the desktop to be uncovered, the
background ensures that something is drawn there.

A less obvious example is that of window and dialog box objects,
which use their frame objects as backgrounds. Since the frame
object has to cover all the edges of the window or dialog box, it
also fills in any areas that aren't covered by any other subview.
This is particularly useful when designing dialog boxes, where
you typically want to insert controls without having to worry
about the spaces between them.

Turbo Vision Programming Guide

I

~
I

I

I

Understanding
subviews

Any time you're dealing with a background or other overlapping
views, you need to understand how Turbo Vision decides which
views are "in front of" or "behind" others. The front-to-back posi
tioning of objects is determined by the objects' Z-order, which is
the topic of the next section.

There are two important aspects to the relationship between an
owner view and its subviews: the actual links between the views,
and the order of the views. This section answers two important
questions:

• What is a view tree?
• What is Z-order?

What is a view tree? When you insert subviews into a group, the views create a kind of
view tree, with the owner as the "trunk" and the subviews as
"branches." The ownership linkages of all the views in a complex
application can get fairly complex, but if you visualize them as a
single branching tree, you can grasp the overall structure.

Figure 8.2
Basic Turbo Vision view tree

This same kind of object is
depicted somewhat

differently in Figure 8.7.

Chapter 8, Views

For example, the application object owns three subviews, as
shown in Figure 8.1. The visible part of the desktop is its back
ground subview, so it's also an owner with a branch. The
corresponding view tree looks something like this: .

In a typical application, the user clicks with the mouse or uses the
keyboard and creates more views. These views normally appear
on the desktop, forming further branches of the tree. Say, for
instance, that the user clicks a menu item that opens a file viewer
window. The application constructs the window and inserts it
into the desktop, making the window another subview of the
desktop, and another branch of the view tree.

The window itself owns a number of subviews: a frame, a scroller
(the interior view that holds a scrollable array of text), and a
couple of scroll bars. The application now looks something like
Figure 8.3, with the corresponding view tree in Figure 8.4.

135

136

Figure 8.3
Desktop with file viewer

added

Figure 8.4
View tree with file viewer

added

MenuBar .
............................... 111111111111111111111111111 , 11 " 111111111111111111 ,111 ""11111111111111111111111111 " 111111111111111111111111111
.... ' 111111111111 .. ' 11 111111111' .. 11'" 11 " .. 1111111111 .. 111 111 , 1111 .. 1111111111111 ' " .. 11' ..
.... , ... , 111111111111111 11 1111111111111111111111111111 " 11111111111111111111111 ,11 1111111111111111111111111 "' ..
11I1111I11I11 , " .. IIIIIIUllllllllllllllll , ' .. " .. 1111.111111111111111111111111 " 1111'"",""""1""1"1111111""'"'"'"'"""""""""111'""" mm!c]" F·i .. i·~ v·i·~~·~·; .. ·w'i"~·d;~ j:::T;]'l·l · .. ·r
'""11" "

Fil e text

. .
" ", " ,

, , " .. '" •• 11'.11.'""'.11'"111""111,,""11"11","'".".,11"11"11""11111'"1111111'"1111"""""11"11'11'"11""11"1111""11""111111'11,'",11''',1111'"""11' .. 11,11,","," 1111 .. 11'"11111111111111111"
''''"1"11."111''''"'"""'''''''''"''"11''"11111"11""111"1""1'"""''"11""" 11 ... 11'"'" .. '1111111111, .. , ... 11 " ... " ... "" "".11.11111'"11,11111111"',.11 ... 1111.11.11 .. 111111.11.1111' .. 1111 ... ,
." ""," ""' ... " .. ,'"11' ... '.""" ... """ .. " " 1111.11,' .. ,"'" "." """ .. 11"11 " ... ' .. 1111"'1111"" ... ,.".11.111111 11 11 ' 1111 .. ,111111' .. "11 .. 111111.11 .. 1111 ••
• "'".""."" ... " 11.11"" .. ' .. ,'"1111'" .. , 11" ... 11 11."'"'" .. "'.11,.111"11 .. ,1111' .. 11 ... 1111" ' ," ""1111111.11.111111111 ," ... 11, ' .. 11 ... 11' .. ,.11., .. 111111111111
.".11.1111'"11"" 11 , ' .. " ... 1111111111111111'111.11'"111 11, 11 " "11' .. 1111.1111""111" ', , 11 ... '" •• """' .. ".11"11 " 11.' 111 .. .
................. 11""' 1111111"1111 ' ' ... ' 11 " ... 11 '"."."111" 11.' .. 11 ... 1111' ... 11 " ... , ... , ""11""11"."'"' ', , 11 '"11111111111""'1111
,"' ... '"11 11' .. 11' ... ' ""11" ,"11.111111 .. " , """.1111111111111111'"1111111' , " ... , ",' 111"' 11 " ' 11"11111.,11.111
.. "' .. 1111.""1"11"11111 , , .. , "' .. ,'"'""11111111111111 " , ""11.111111111"' .. "'11 ... 1' 11 .. ', , ... 11 .. '"1 .. 11'".1111'"11 .. ' ,
.. ,', , , ' 11"'"1' ... "1'" " .. , .. , .. , 11' .. "".11"" ... ' .. , " " ... " .. " 11 .. " ''"111"11'11 " ' "11 ... 11111"1111
1111"1111"1111 ' '" ' ... 11 •• 111 .. " .. ' .. ' ".11.11 .. "" 11""1"1111"' .. " .. " " " ' 11.'".11'"1" ... 111"11 '" 11"1 •• 11.11
....... '111.11111111 .. 11.111111111 .. ' ,' ... 111 .. ,11.1111111111"'"' ".11' "'"'"1 .. 11111""11" ... , , ' .. 11' 11111 111111'.1111111111111
.... , ," .. ' '" .. ' "."111111 .. , " .. , , ' 1111111111"" , " .. " " " 1111111 ' 11 , ' 1111 .. ,111.111111
.... , , .. , .. , .. , " , , 1 ' 111 , ,
......................... ' ... 1111111111.111.11111111 ... , ' .. , , , 11.11'"111111."111 ... ' , , ... " ... ,11.11""11""111"""11111 ' , ".11.'" ... ,.11111111111"11111111 ...
.. "'"1""1 .. 111111'"1'"1 .. "11 , , , " 11""1 .. 11111 ' .. "' .. ' .. 11 ... ''' ... " 111111'" ... 111111111 , , .. , ... 1 1111 ...

StatusLi ne

If the user clicks the same menu item again, opening another file
viewer window, Turbo Vision constructs a second window and
inserts it into the desktop, as shown in Figure 8.5.

Turbo Vision Programming Guide

Figure 8.5
Desktop with file viewer

added

Figure 8.6
View tree with two file

viewers added

Chapter 8, Views

MenuBar
." " '" ,11 , 111, , "' .. 11' .. '11 "' .. , '111111111111 ' ,111111111111111 '11 ... 1111111111111111111' .. ' ... ,1111111111111111' ... ,11 ' ... 111I
11 ' .. ,' ' 111111'"'" 1111 ... 11 , 111'"."' " 1111.11 ' 1111111111 , .. " 11 ... 111 111' ... 111111.11 ... ' , .. , 111111111II
......... , .. " 111111." 11 ... ' ' .. ' 11111111111 , 1111111111 "' .. ,' ,111' 111111.11" ' , ... 111111 •• , ... '" •• ' 11111111111111 ,11 ,
..... 1111111'".' ... ' " 11 111111111' .. " '11111111111" ," .. ' ... 11 11 " ' " 11.11 ••• 111111'"11 11.11.11 11'II ••
II ... 1111111 11 , 11 ... 11 ... 1111'

Fil e te

Fi 1 e text

... ,11 11.11.""." ' "" .. 11.""'" , ,1111 .. ,." 11.11 ' 11' ""'"" ... ' 11"", .. 11.11.11 ' ' 11' ,11 ... 11.'

.. '"""' ' ' '" ... " , , , ... , .. ' ... "" ""'"""' ' .. "'"."'"'"" ' " ", "." 11' •• ' ... "' ,, 11 ' ,
• ,' """ " ' '"'.11' ... ' '" , .. " '.11 " ' ... ,11"11'"".11 "" ... '.11" ' ... 111 1111' .. " 11111.11111111 .. ' 11
." " "'"'11'"11.11 ' 1111"" ... 1111111 11.', .. " .. 11 ... 1111111" 11111111 .. 11 .. ' .. " "11111."' , 11' .. 1111 ... '" "" 111111 , " 11 ... '
........... 11 ... 11"11"" ,"' " , .. '''" ,'",'" , ,,, ... 11 , ,, , ' ... 11 , " ,'" 1111 11.'

StatusL i ne

The view tree also becomes correspondingly J,11ore complex, as
shown in Figure 8.6.

As you'll see, the order of insertion determines the order in which
subviews get drawn and the order in which events get passed to
them.

If the user clicks on the second file viewer's close icon or on a
Close Window menu item, the second file viewer will close. Turbo
Vision then takes it off the view tree and disposes it. The window
will dispose of all its subviews, then dispose of itself.

Eventually, the user trims the views down to just the original four,
and indicates, by pressing Alt+X or by selecting Exit from a menu,
that the program should terminate. T Application disposes of its
three subviews, then disposes of itself.

137

138

What is Z -order? Groups keep track of the order in which subviews are inserted.

Z-order is the opposite of
insertion order.

Visualizing Z-order

Figure 8.7
Side view of a text viewer

window

That order is referred to as Z-order. The term Z-order refers to the
fact that subviews have a three-dimensional spatial relationship.
As you've already seen, every view has a position and size within
the plane of the view as you see it (the X and Y dimensions),
determined by its Origin and Size fields. But'views and subviews
can overlap, and in order for Turbo Vision to know which view is
in front of whiCh others, we have to add a third dimension, the
Z-dimension.

Z-order, then, refers to the order in which you encounter views as
you start closest to you and move back "into" the screen. Thelast
view inserted is the "front" view. Think of X-order as going from
left to right, Y -order from top to bottom, and Z-order from front
to back.

Rather than thinking of the screen as a flat plane with things
written on it, consider it a pane of glass providing a portal onto a
three-dimensional world of views. Indeed, every group may be
thought of as a "sandwich" of views, as illustrated in Figure 8.7.

TWindow - "'--------:/4"'~~~~~~~~±~~~~r,';;: •• l,.;)i
(a pane of glass)

TScrolier _

TScrolibar -
TFrame -

The window itself is just a pane of glass covering a group of
views. Since all you see is a flat projection of the views behind the

Turbo Vision Programming Guide

Figure 8.8
Side view of the desktop

TDesktop

TWindow,
active and inactive

TBackground

Selecting and
focusing subviews

Chapter 8, Views

glass on the screen, you can't see which views are in front of
others unless they overlap.

By default, a window has a frame, which is inserted before any
other subviews. It is therefore the background view. In creating a
scrolling interior, two scroll bars are overlaid on the frame. To
you, in front of the whole scene, they look like part of the frame,
but from the side, you can see that they actually float "above" the
frame, obscuring part of the frame from view.

Finally, the scroller itself is inserted, covering the entire area
inside the border of the frame. Text is written on the scroller, not
on the window, but you can see it when you look through the
window.

On a larger scale, you can see the desktop as just a larger pane of
glass,covering a larger sandwich, many of the contents of which
are also smaller sandwiches, as shown in Figure 8.8.

Again, the group (this time the desktop) is a pane of glass. Its first
subview is a TBackground object, so that view is "behind" all the
others. This view also shows two windows with scrolling interior
views on the desktop.

Within each group of views, one and only one subview is selected.
For 'example, when your application sets up its menu bar, desk
top, and status line, the desktop is the selected view, because that
is where further work will take place.

139

The focused view is the end
of the chain of selected

views that starts at the
application.

Figure 8.9
The focus chain

Finding the focused
view

On monochrome displays,
Turbo Vision adds arrow

characters to indicate the
focus.

140

When you have several windows open on the desktop, the
selected window is the one in which you're currently working.
This is also called the active window (typically the topmost
window).

Within the active window, the selected subview is called the
focusedview. You can think of the focused view as being the one
you're looking at, or the one where action will take place. In an
editor window, the focused view is the interior view with the text
in it. In a dialog box, the focused view is the highlighted control.

In the application diagrammed in Figure 8.6, Application is the
modal view, and DeskTop is its selected view. Within the desktop,
the second (more recently inserted) window is selected, and
therefore active. Within that window, the scrolling interior is
selected, and because it is a terminal view (that is, it's not a
group), it is the end of the chain, the focused view. Figure 8.9
depicts the same view tree with the chain of focused views
highlighted by double-lined boxes. ~

Among other things, knowing which view is focused tells you
which view gets information from the keyboard. For more
information, see the section on focused events in Chapter 9,
"Event-driven programming."

The currently focused view is usually highlighted in some way on
the screen. For example, if you have several windows open on the
desktop, the active window is the one with the double-lined
frame. The others' frames are single-lined. Within a dialog box,
the focused control is l;Jrighter than the others, indicating that it is
the one acted upon if you press Enter. The focused control is
therefore the default control as well.

Turbo Vision Programming Guide

How does a view get
the focus?

Changing grow
modes

Chapter 8, Views

A view can get the focus in two ways, either by default when it is
crea ted, or by some action by the user.

When a group of views is created, the owner view specifies which
of its subviews is to be focused by calling that subview's Select
method. This establishes the default focus.

The user usually determines which view currently has the focus
by clicking a particular view. For instance, if the application has
several windows open on the desktop, the user can select
different ones simply by clicking them. In a dialog box, the user
can move the focus among views by pressing Tab, which cycles
through all the selectable views, by clicking a particular view, or
by pressing a hot key.

Note that some views are not selectable, including the back
ground of the desktop, frames of windows, and scroll bars. When
you construct a view, you can clear the view's afSelectable option
flag, after which the view won't let itself be selected. If you click
the frame of a window, for example, the frame does not get the
focus, because the frame object knows it can't be selected.

A view's GrowMode field determines how the view changes when
its owner group is resized. The individual bits in GrowMode allow
you to 1/ anchor" a side of your view to its owner, so that resizing
the owner also moves and/or resizes the subview, based on its
grow mode.

The gfGrowLoX bit anchors the left side of the view to its owner's
left side, meaning the view stays a constant distance from its
owner's left side. The bits gfGrowLaY, gfGrowHiX, and gfGrowHiY
anchor the top; right side, and bottom of the view to the corre
sponding parts of the owner. The mask gfGrowAll anchors all four
sides, resizing the view as the owner's lower right corner moves.
Window interiors often use gfGrowAll to keep them properly
sized within their frames.

The flag gfGrowRel is special, and intended only for use with
windows on the desktop. Setting gfGrowRel causes windows to
retain their relative sizes when the user switches the application
between different video modes.

141

Drawing groups

Drawing in Z-order

Using cache buffers

142

The example program DRAGS.P AS on your distribution disks
demonstrates how the different GrowMode flags affect an object in
a window.

Groups are an exception to the rule that views must know how to
draw themselves, because a group does not draw itself per se.
Rather, a TGroup tells its subviews to draw themselves. The
cumulative effect of drawing thesubviews must cover the entire
area assigned to the group.

A dialog box, for example, is a group, and its subviews-frame,
interior, controls, and static text-must combine to fully "cover"
the full area of the dialog box view. Otherwise, "holes" in the
dialog box appear, with unpredictable results.

You will rarely, if ever, need to change the way groups draw
themselves, but you do need to understand the following aspects
of group drawing:

• Drawing in Z-order
• Using cache buffers
• Locking and unlocking draws
• Clipping subviews

The group calls on its subviews to draw themselves in Z-order,
meaning that the last subview inserted into the group is the first
one drawn. If subviews overlap, the one most recently inserted
will be in front of any others.

All views have a bit in their Options word called ofBuffered, but
only groups make use of it. When this bit is set, groups can speed
their output to the screen by writing to a cache buffer. By default,
all groups have ofBuffered set and use buffered drawing.

The Turbo Vision memory management subsystem allocates
cache buffers for groups in the unallocated part of the heap, so if
your application also makes use of unallocated memory, you
could have conflicts with group buffers. The safest practice is to
use only memory you have allocated from the heap.

When a buffered group draws itself, it automatically stores its
screen image in a buffer if enough memory is available. The next
time the group is asked to draw itself, it copies the cached image

Turbo Vision Programming Guide

Locking and unlocking
draws

Clipping subviews

Chapter 8, Views

to the screen instead of asking all its subviews to draw
themselves. Obviously, copying the existing image is much faster
than regenerating the image.

Turbo Vision's memory manager disposes of these group buffers
whenever other memory allocations need the space. That is, if
another memory allocation would otherwise fail, Turbo Vision
will try to free enough memory by disposing of group cache
buffers. No information is lost when the buffer is disposed of, but
the group will have to redraw itself by calling all subviews the
next time it needs to draw itself.

You can also force a group to completely draw itself without
copying from the buffer by calling its Redraw method.

Complicated group views can sometimes cause flickering when
drawn, particularly when a number of views overlap. In order to
avoid flickering, you can lock the group while subviews draw,
then unlock the view when the buffer holds a complete group
image, at which point the group copies the buffer to the screen.

Calling a group's Lock method will stop all writes of the group to
the screen until a corresponding call to the method Unlock. When
Unlock is called, the group's buffer is written to the screen. Lock
ing can significantly decrease flicker during complicated updates
to the screen. For example, the desktop locks itself while it tiles or
cascades its subviews.

When the subviews of a group draw themselves, drawing is
automatically clipped at the borders of the group. Because sub
views are clipped, when you initialize a view and give it to a
group, the view needs to reside at least partially within the
group's boundaries. (You can grab a window and move it off the
desktop until only one corner remains visible, for example, but
something must remain visible for the view to be useful.) Only
the part of a subview that is within the bounds of its owner group
will be visible.

You can use this clipping to your advantage when writing com
plicated Draw methods. Normally, when you fill a draw buffer to
write to the screen, you fill enough characters to draw the entire
view. If the view is clipped, however, you might need to draw
only a few characters, or even skip whole lines.

143

Executing modal
groups

To find out the area that requires redrawing (that is, the part of
the view that is not clipped), call the method GetClipRect instead
of GetExtent. Like GetExtent, GetClipRect returns a rectangle in
local coordinates, but it includes only the part of the view not
clipped by its owner's boundaries.

Most complex programs have several different modes of operation,
where a mode is some distinct way of functioning: The integrated
development environment, for example, has an editing and de
bugging mode, a compiler mode, and a run mode. Depending on
which mode is active, keys on the keyboard might have varying
effects (or no effect at all).

Almost any Turbo Vision view can define a mode of operation, in
which case it is called a modal view, but modal views are nearly
always groups. The classic example of a modal view is a dialog I

box. Usually, when a dialog box is active, nothing outside it
functions. You can't use the menus or other controls not owned I

by the dialog box. In addition, clicking the mouse outside the .~
dialog box has no effect. The dialog box has control of your
program until the user closes it.

In order to use modal views, you need to understand four things:

• What is modality?
• Executing.a view
• Finding the modal view
• Ending a modal state

There is always a modal view when a Turbo Vision application is
running. When you start the program, and often for the duration
of the program, the modal view is the application itself, the
T Application object atthe top of the view tree.

What is modality? When you make a view modal, only that view and its subviews
can interact with the user. You can think of a modal view as
defining the II scope" of a portion of your program. When you
create a block in a Pascal program (such as a function or a proce
dure), any identifiers declared within that block are only valid
within that block. Similarly, a modal view determines what
behaviors are valid within it-events are handled only by the
modal view and its subviews. Any part of the view tree that is not
the modal view or owned by the modal view is inactive.

144 Turbo Vision Programming Guide

The status line is always "hot,"
no matter what view is

modal.

Making a group modal

Event loops are explained in
detail in Chapter 9, "Event

driven programming. "

Finding the modal view

Ending a modal state

Chapter 8, Views

There is one exception to this rule: The status line is available at
all times. That way you can have active status line items, even
when your program is executing a modal dialog box that does not
own the status line. Events and commands generated by the
status line, however, will be handled as if they were generated
within the modal view.

The most common kind of modal view (other than the application
itself, which is the default modal view in a Turbo Vision program)
is a dialog box, so Turbo Vision's application object provides an
easy way to execute modal dialog boxes on the desktop, the
ExecuteDialog method. ExecuteDialog is explained in detail in
Chapter 11, 'Window and dialog box objects."

In a more general case, you can make a group the current modal
view by executing it; that is, calling its Execute method.
TGroup .Execute implements an event loop, interacting with the
user and dispatching events to the proper subviews. In most
cases, you won't call Execute directly, but rather rely on ExecView.

ExecView is a group method that works much like Insert and
Delete surrounding Execute. It inserts a view into the group,
executes the new subview, then deletes the subview when the
user terminates the modal state (such as closing a modal dialog
box).

Every view has a method called TopView that returns a pointer to
the current modal view. There are a couple of times when you
might need that information, including ending the current modal
state (as described in the next section) and broadcasting an event
to all the currently available views (described in Chapter 9,
"Event-driven programming").

Any view can end the current modal state by calling the method
EndModal. EndModal takes a command constant as its only argu
ment, and passes it to the current modal view. This ends its modal
state, returning the command value as the result of the Execute
method that made the view modal. The previously modal view
then becomes the current modal'view. If there is no other modal
view, such as when you end the application object's modal state,
the application terminates.

145

Listing 8.7
Ending a modal state on a

command event

146

Managing
subviews

For example, Listing 8.7 shows part of the HimdleEvent method of
TDialog. Modal dialog boxes end their modal state when they see
the com.mand cmOK, cmCancel, cmYes, or cmNo. That command is
then returned by the Execute or ExecuteDialog call that made the
dialog box modal.

procedure TDialog.HandleEvent(var Event: TEvent);
begin

inherited HandleEvent(Event);
case Event.What of

eVCommand:
case Event.Command of

cmOk, cmCancel, cmYes, crnNo: {for any of these commands ...

end;
end;

end;

if State and sf Modal <> 0 then {if dialog box is modal
begin

EndModal(Event.~ommand); {end modal state with command}
ClearEvent(Event); { and mark event handled}

end;

The example program ENbcMD.P AS on your distributions disks
shows how to check the return value from a modal dialog box.

Once you've inserted a subview into a group, the group handles
nearly all the management of the subview for you, making sure
it's drawn, moved, and so on. When you dispose of a group
object, it automatically disposes of all its subviews, so you don't
have to dispose of them individually. So, for example, although a
dialog box's constructor is often rather lengthy and complicated,
constructing and initializing numerous controls as subviews, the
destructor is often not overridden at all, as the default dialog box
object uses the Done destructor it inherits from TGroup, which
disposes of each subview before disposing of itself.

Aside from the automatic subview management, you'll
sometimes need to perform the following tasks on a group's
subviews:

• Deleting subviews
• Iterating subviews
• Finding a particular subview

Turbo Vision Programming Guide

I

I I,

Deleting subviews Although a group automatically disposes of all its subviews
before disposing of itself, you sometimes want to remove a
subview while you're still using the group. An obvious example
is closing a window on the desktop: disposing of the desktop
disposes of all windows inserted into the desktop, but you'll often
need to remove a window in the course of running an application.

Iterating subviews

Finding a particular
subview

Chapter 8, Views

To remove a subview from its owner, use the owner's Delete
method. Delete is the inverse of Insert: it removes the subview
from the owner's list of subviews, but doesn't dispose of the
deleted view.

As you've seen several times in this chapter, groups handle a
number of their duties, such as drawing, by calling on all their
subviews in Z-order. The process of calling each subview in order
is called iteration. In addition to the standard iterations, TGroup
provides iterator methods that let you define your own actions to
be performed by or on each subview.

Sometimes you need to locate a particular subview within a
group, such as finding an editor window among the windows on
the desktop, or picking out the OK button in a dialog box. Group
objects provide a useful method for searching through subviews,
testing each one until a certain test is satisfied.

The TGroup method FirstThat takes a pointer to a Boolean function
as its parameter and applies that function to each of the groups
subviews in Z-order until the function returns True, at which
point FirstThat returns a pointer to the subview that tested true.

147

148
Turbo Vision Programming Guide

c H A p T E R

9

Event-driven programming

The purpose of Turbo Vision is to provide you with a working
framework for your applications so you can focus on creating the
"meat" of your applications. The two major Turbo Vision tools are
built-in windowing support and handling of events. Chapter 8
explained views, and this chapter discusses how to build your
programs around events.

Bringing Turbo Vision to life

Reading the

We have already described Turbo Vision applications as being
event-driven, and briefly defined events as being occurrences to
which your application must respond.

user's input In a traditional Pascal program, you typically write a loop of code
that reads the user's keyboard, mouse, and other input, then make
decisions based on that input within'the loop. You call proce
dures or functions, or branch to a code loop somewhere else that
again reads the user's input:

Chapter 9, Event-driven programming 149

150

repeat
B := ReadKey;
case B of

, i' :' InvertArray;
'e': Edi tArrayParams;
'g': GraphicDisplay;
'q': Quit := true;

end;
until Quit;

An event-driven program is not structured very differently from
this. In fact, it is hard to imagine an interactive program that
doesn't work this way. However, an event-driven program looks
different to you, the programmer.

In a Turbo Vision application, you no longer have to read the
user's input because Turbo Vision does it for you. It packages the
input into Pascal records called events, and dispatches the events
to the appropriate views in the program. That means your code
only needs to know how to deal with relevant input, rather than
sorting through the input stream looking for things to handle.

For instance, if the user clicks an inactive window, Turbo Vision
reads the mouse action, packages it into an event record, and
send~ the event record to the inactive window.

If you come from a traditional programming background, you
might be thinking at this point, "O.K., so I don't need to read the
user's input anymore. What I'll be doing instead is learning how
to read a mouse click event record and how to tell an inactive
window to become active." In fact, there's no need for you to
write even that much code.

Views can handle much of a user's input all by themselves. A
window knows how to open, close, move, be selected, resize, and
more. A menu knows how to open, interact with the user, and
close. Buttons know how to be pushed, how to interact with each
other, and how to change color. Scroll bars know how to be
operated. "The inactive window can make itself active without
any attention from you.

So what is your job as programmer? You define new views with
new actions, which need to know about certain kinds of events
that you define. You also teach your views to respond to standard
commands, and even to generate their own commands
("messages") to other views. The mechanism is already in place.

Turbo Vision Programming Guide

II

I

I'

All you have to do is generate commands and teach views how to
respond to them.

But what exactly do events look like to your program, and how
does Turbo Vision handle them for you?

The nature of events

Kinds of events

Events can best be thought of as little packets of information
describing discrete occurrences to which your application needs
to respond. Each keystroke, each mouse action, and any of certain
conditions generated by other components of the program, consti
tute a separate event. Events cannot be broken down into smaller
pieces. Therefore, the user typing in a word is not a single event,
but a series of individual keystroke events.

In the object-oriented world of Turbo Vision, you probably expect
events to be objects, too. But they're not. Events themselves per
form no actions. They only convey information to your objects, so

. they are record structures.

At the core of every event record is a single Word-type field
named What. The numeric value of the What field describes the
kind of event that occurred, and the remainder of the event record
holds specific information about that event: the keyboard scan
code for a keystroke event, information about the position of the

. mouse and the state of its buttons for a mouse event, and so on.

Because different kinds of events get routed to their destination
objects in·different ways, we need to look first at the different
kinds of events recognized by Turbo Vision.

Let's look at the possible values of Event. What a little more closely.
There are basically four classes of events: mouse events, keyboard
events, message events, and "nothing" events. Each class has a
mask defined, so your objects can determine quickly which
general type of event occurred without worrying about what
specific sort it was. For instance, rather than checking for each of
the four different kinds of mouse events, you can simply check to
see if the event flag is in the mask. Instead of

if Event.What and (evMouseDown or evMouseUp or evMouseMove or
evMouseAuto) <> 0 then ...

Chapter 9, Event-driven programming 151

Figure 9.1
TEvent. What field bit

mapping

you can use

if Event.What and evMouse <> 0 then .,.

The masks available for separating events are evNothing (for
"nothing" events), evMouse for mouse events, evKeyboard for
keyboard events, and evMessage for messages.

The event mask bits are defined in Figure 9.1.
r---.----.-----.-----r~r--_r_-,-----------,evMessage = $FFOO

..------evKeyboard = $0010
.---.----.---.--levMouse = $OOOF

evMouseDown. = $0001
evMouseUp = $0002

'-----levMouseMove = $0004
'------evMouseAuto = $0008

L-------evKeyDown = $0010
'------------levCommand = $0100

'------------evBroadcast = $0200

Mouse events There are basically four kinds of mouse events: an up or down
click with either button, a change of position, or an "auto" mouse
event. Pressing down a mouse button results in an evMouseDown
event. Letting the button back up generates an evMouseUp event.
Moving the mouse produces an evMouseMove event. And if you
hold down the button, Turbo Vision will periodically generate an
evMouseAuto event, allowing your application to perform such
actions as repeated scrolling. All mouse event records include the
position of the mouse, sa an obj{(ct that processes the event knows
where the mouse was when it happened.

Keyboard events Keyboard events are even simpler. When you press a key, Turbo
Vision generates an evKeyDown event, which keeps track of which
key was pressed. .

Message events Message events come in three flavors: commands, broadcasts and
user messages. The difference is in how they are handled, which
is explained later. Basically, commands are flagged in the What
field by evCommand, broadcasts by evBroadcast, and user-defined
messages by some user-defined constant.

"Nothing" events A "nothing" event is really a dead event. It has ceased to be an
event, because it has been completely handled. If the What field in
an event record contains the value evNothing, that event record
contains no useful information that needs to be dealt with.

152 Turbo Vision Programming Guide

I

I

I

I

II

I

Events and

When a Turbo Vision object finishes handling an event, it calls a
method called ClearEvent, which sets the What field back to
evNothing, indicating that the event has been handled. Objects
should simply ignore evNothing events.

commands Ultimately, most events end up being translated into commands.
For example, clicking an item in the status line generates a mouse
event. When it gets to the status line object, that object responds to
the mouse event by generating a command event, with the
Command field value determined by the command bound to the
status line item. Clicking Al t-X Exi t generates the cmQuit
command, which the application interprets as an instruction to
shut down and terminate.

Routing of events

Where do events

Turbo Vision's views operate on the principle "Speak only when
spoken to." That is, rather than actively seeking out input, they
wait passively for the event manager to tell them that an event
has occurred to which they need to respond.

In order to make your Turbo Vision programs act the way you
want them to, you not only have to tell your views what to do
when certain events occur, you also need to understand how
events get to your views. The key.to getting events to the right
place is correct routing of the events. Some events get broadcast all
over the application, while others are directed rather narrowly to
particular parts of the program.

come from? As noted in Chapter 10, "Application objects," the main process
ing loop of a T Application, the Run method, calls TGroup.Execute,
which is basically a repeat loop that looks something like this:

var E: TEvent;
E.What := evNothing;
repeat

{ indicate no event has occurred }

if E.What <> evNothing then EventError(E);
GetEvent (E) ; { pack up an event record }
HandleEvent(E); { route the event to the right place}

until EndState <> Continue; { until the quit flag is set }

Chapter 9, Event-driven programming 153

GetEvent, HandleEvent and
EventError are a/l described

in greater detail on pages
764, 767, and 763,

respectively.

Where do events
go?

Positional events

Z-order is explained in
Chapter 8, "Views."

Focused events

For details on focused views
and the focus chain, see

"Selected and focused
views" in Chapter 8, "Views."

154

Essentially, GetEvent looks around and checks to see if anything
has happened that should be an event. If it has, GetEvent creates
the appropriate event record. HandleEvent then routes the event to
the proper views. If the event is not handled (and cleared) by the
time it gets back to this loop, EventError is called to indicate an
abandoned event. By default, EventError does nothing.

Events always begin their routing with the current modal view.
For normal operations, this usually means your application object.
When you execute a modal dialog box, that dialog box object is
the modal view. In either case, the modal view is the one that
initiates event handling. Where the event goes from there
depends on the nature of the event. '

Events are routed in one of three ways, depending on the kind of
event they are. The three possible routings are positional, focused,
and broadcast. It is important to understand how each kind of
event gets routed.

Positional events are virtually always mouse events (evMouse).

The modal view gets the positional event first, and starts looking
at its subviews in Z-order until it finds one that contains the
position where the event occurred. The modal view then passes
the event to that view. Since views can overlap, it is possible that
more than one view will contain that point. Going in Z-order
guarantees that the topmost view at that position will be the one
that receives the event. After all, that's the ,one the user clicked.

This process continues until an object cannot find a view to pass
the event to, either because it is a terminal view (one with no
subviews) or because there is no subview in the position where
the event occurred (such as clicking open space in a dialog box).
At that point, the event has reached the object where the
positional event took place, and that object handles the event.

Focused events are generally keystrokes (evKeyDown) or
commands (evCommand), and they are passed down the focus
chain. .

The current modal view gets the focused event first, and passes it
to its selected subview. If that subview has a selected subview, it

Turbo Vision Programming Guide

Non-focused views may
handle focused events. See

the "Phase" section in this
chapter.

passes the event to it. This process continues until a terminal view
is reached: This is the focused view. The focused view receives
and handles the focused event.

If the focused view does not know how to handle the particular
event it receives, it passes the event back up the focus chain to its
owner. This process is repeated until the event is handled or the
event reaches the modal view again. If the modal view does not
know how to handle the event when it comes back, it calls
EventError. This situation is an abandoned event.

Keyboard events illustrate the principle of focused events quite
clearly. For example, in the Turbo Pascal integrated environment,
you might have several files open in editor windows on the
desktop. When you press a key, you know which file you want to
receive the character. Let's see how Turbo Vision ensures it
actually gets there.

Your keystroke produces an evKeyDown event, which goes to the
current modal view, the T Application object. T Application sends the
event to its selected view, the desktop (the desktop is always
T Application's selected view). The desktop sends the event to its
selected view, which is the active window (the one with the
double~lined frame). That editor window also has subviews-a
frame, a scrolling interior view, and two scrollbars. Of those, only
the interior is selectable (and therefore selected, by default), so the
keyboard event goes to it. The interior view, an editor, has no
subviews, so it gets to decide how to handle the character in the
evKeyDown event.

Broadcast events Broadcast events are generally either broadcasts (evBroadcast) or
user-defined messages.

Broadcasts can be directed
to an object with the

Message function.

Broadcast events are not as directed as positional or focused
events. By definition, a broadcast does not know its destination,
so.it is sent to all the subviews of the current modal view.

The current modal view gets the event, and begins passing it to its
subviews in Z-order. If any of those subviews is a group, it too
passes the event to its subviews, also in Z-order. The process
continues until all views owned (directly or indirectly) by the
modal view have received the event, or until a view clears the
event.

Broadcast events are commonly used for communication between
views. For example, when you click on a scroll bar in a file viewer,

Chapter 9, Event-driven programming 155

the scroll bar needs to let the text view know that it should show
some other part of itself. It does that by broadcasting a view
saying . "I've changed!" which other views, including the text, will
receive and react to. For more details, see the "Inter-view
communication" section in this chapter.

User-defined events As you become more comfortable with Turbo Vision and events,
you may wish to define whole new categories of events, using the
high-order bits in the What field of the event record. By default,
Turbo Vision will route all such events. as broadcast events. But
you may wish your new events to be focused or positional, and
Turbo Vision provides a mechanism to allow this.

Manipulating bits in mask$ is
explained in Chapter 7 7,

"OveNiew of the run-time
library."

Turbo Vision defines two masks, Positional and Focused, which
contain the bits corresponding to events in the event record's What
field that should be routed by position and by focus, respectively.
By default, Positional contains all the evMouse bits, and Focused

Masking events

Phase

156

contains evKeyboard. If you define some other bit to be a new kind
of event ,that you want routed either by position or focus, you
simply add that bit to the appropriate mask.

Every view object has a bitmapped field called EventMask which
is used to determine which events the view will handle. The bits
in the EventMask correspond to the bits in the TEvent. What field. If
the bit for a given kind of event is set, the view will accept that
kind of event for l}andling. If the bit for a kind of event is cleared,
the view will ignore that kind of event

For example, by default a view's EventMask excludes evBroadcast,
but a group's EventMask includes it Therefore, groups receive

. broadcast events by default, but views don't

There are certain times when you want a view other than the
focused view to handle focused events (especially keystrokes), For
example, when looking at a scrolling text window, you might
want to use keystrokes to scroll the text, but since the text win
dow is the focused view, keystroke events go to it, not to the scroll
bars that can scroll the view.

Turbo Vision provides a mechanism, however, to allow views
other than the focused view to see and handle focused events.

Turbo Vision Programming Guide

The Phase field

Although the routing described in the "Focused events" section of
this chapter is essentially correct, there are two exceptions to the
strict focus-chain routing.

When the modal view gets a focused event to handle, there are
actually three "phases" to the routing:

• The event is sent to any subviews (in Z-order) that have their
of PreProcess option flags set.

• If the event isn't cleared by any of them, the event is sent to the
focused view.

• If the event still hasn't been cleared, the event is sent (again in
Z-order) to any subviews with their of PostProcess option flags
set.

So in the preceding example, if a scroll bar needs to see keystrokes
that are headed for the focused text view, the scroll bar should be
initialized with its ofPreProcess option flag set.

Notice also that in this particular example it doesn't make much
difference whether you set of PreProcess or of PostProcess: Either one
will work. Since the focused view in this case doesn't handle the
event (TScroller itself doesn't do anything with keystrokes), the
scroll bars may look at the events either before or after the event is
routed to the scroller.

In general, however, use of PostProcess in a case like this; it pro
vides greater flexibility. Later on you might want to add
functionality to the interior that checks keystrokes. However, if
the keystrokes have been taken by the scroll bar before they get to
the focused view (of PreProcess), your interior never gets to act on
them.

Although there are times when you need to grab focused events
before the focused view can get at them, it's a good idea to leave
as many options open as possible. In that way, you (or someone
else) ,can derive something new from this object in the future.

Every group has a field called Phase, which has any of three
values: phFocused, phPreProcess, and phPostProcess. By checking its
owner's Phase flag, a view can tell whether the event it is handling
is coming to it before, during, or after the focused routing. This is
sometimes necessary, because some views look for different
events, or react to the same events differently, depending on the
phase.

Chapter 9, Event-driven programming 157

158

Consider the,case of a simple dialog box that contains an input
line and a button labeled" All right," with A being the shortcut key
for the button. With normal dialog box controls, you don't really
have to concern yourself with phase. Most controls have
of PostProcess set by default, so keystrokes (focused events) will get
to them and allow them to grab the focus if it is their shortcut
letter that was typed. Pressing A moves the focus to the "All right"
button.

But suppose the iilput line has the focus, so keystrokes get
handled and inserted by the input line. Pressing the A key puts an
"A" in the input line, and the button never gets to see the event,
since the focused view handled it. Your first instinct might be to
have the button check for the A key preprocess, so it can snag the
shortcut key before the focused view handles it. Unfortunately,
this would always preclude your typing the letter "A" in the
input line!

The solution is to have the button check for different shortcut

I
1,1

I
I

!

keys before and after the focused view handles the event. By I

default, a button will look for its shortcut key in Alt+letter form I_
preprocess, and in letter form postprocess. That's why you can
always use the Alt+letter shortcuts in a dialog box, but you can
only use regular letters when the focused control doesn't "eat"
keystrokes.

This is' easy to do. By default, buttons have both of PreProcess and
of PostProcess set, so they get to see focused events both before and
after the focused view does. But within its HandleEvent, the button
checks only certain keystrokes if the focused control has already
seen the event:

evKeyDown: { this is part of a case statement
begin

C := HotKey(TitleA);
if (Event.KeyCode = GetAltCode(C)) or

(OwnerA.Phase = phPostProcess) and (C <> #0) and
(Upcase(Event.CharCode) = C) or

(State and sf Focused <> 0) and (Event.CharCode = ' ') then
begin

PressButton;
CiearEvent(Event);

end;
end;

Turbo Vision Programming Guide

Commands

Defining
commands

Most positional and focused events are translated into commands
by the objects that handle them. That is, an object often responds
to a mouse click or a keystroke by generating a command event.

For example, by clicking on the status line in a Turbo Vision
application, you generate a positional (mouse) event. The applica
tion determines that the click was positioned in the area
controlled by the status line, so it passes the event to the status
line object, StatusLine.

StatusLine determines which of its status items controls the area
where you clicked, and reads the status item record for that item.
That item usually has a command bound to it, so StatusLine
creates a pending event record with the What field set to
evCommand and the Command field set to the command bound, to
that status item. It then clears the mouse event, meaning that the
next event found by GetEvent will be the command event just
generated.

Turbo Vision has many predefined commands, and you will
define many more yourself. When you create a new view, you
also create a command to invoke the view. Commands can be
called anything, but Turbo Vision's convention is that a command
identifier should start with "cm." Creating a command is
simple-you just create a constant:

const
cmConfuseTheCat = 100;

Turbo Vision reserves commands a through 99 and 256 through
999 for its own use. Your applications can use the numbers 100
through 255 and 1,000 through 65,535 for commands.

The reason for having two ranges of commands is that only
commands a through 255 may be disabled: Turbo Vision reserves
some of the commands that can be disabled and some of the
commands that cannot be disabled for its standard commands
anti internal workings. You have complete control over the
remainder of the commands.

The ranges of available commands are summarized in Table 9.1.

Chapter 9, Event-driven programming 159

160

Table 9.1
Turbo Vision command

ranges

Binding
commands

Enabling and
disabling

commands

Range

0 .. 99
100 .. 255
256 .. 999
1000 .. 65535

Reserved Can be disabled

Yes Yes
No Yes
Yes No
No No

When you create a menu item or a status line item, you bind a
command to it. When the user chooses that item, an event record
is generated, with the What field set to evCommand, and the
Command field set to the value of the bound command. The
command may be either a Turbo Vision standard command or
one you have defined. At the same time you bind your command
to a menu or status line item, you may also bind it to a hot key.
That way, the user can invoke the command by pressing a single
key as a shortcut to using the menus or the mouse.

Remember that defining the command does not specify the action
to be taken when that command appears in an event record. You
have to tell the appropriate objects how to respond to that
command.

There are times when you want certain commands to be unavail
able to the user for a period of time. For example, if you have no
windows open, it makes no sense for the user to be able to gener
ate em Close, the standard window closing command. Turbo Vision
provides a way to disable and enable sets of commands.

To enable or disable a group of commands, use the global type
TCommandSet, which is a set of numbers 0 through 255. (This is
why only commands in the range 0 .. 255 can be disabled.) The
following code disables a group of five window-related
commands:

var
WindowCommands: TCommandSet;

begin
WindowCommands := [crnNext, cmPrev, cmZoom, cmResize, cmClose];
DisableCommands(WindowCommands) ;

end;

Turbo Vision Programming Guide

Handling events

Once you have defined a command and set up some kind of
control to generate it-for example, a menu item or a dialog box
button-you need to teach your view how to respond when that
command occurs.

Every view inherits a HandleEvent method that already knows
how to respond to much of the user's input. If you want a view to
do something specific for your application, you need to override
its HandleEvent and teach the new HandleEvent two things-how
to respond to new commands you've defined, and how to
respond to mouse and keyboard events the way you want.

A view's HandleEvent method determines how it behaves. Two
views with identical HandleEvent methods will respond to events
in the same way. When you derive a new view type, you gener
ally want it to behave more or less like its ancestor view, with
some changes. By far the easiest way to accomplish this is to call
the ancestor's HandleEvent as part of the new object's HandleEvent
method.

The general layout of a descendant's HandleEvent would look like
this:

procedure TNewDescendant.HandleEvent(var Event: TEvent);
begin

{ code to change or eliminate parental behavior }
inherited HandleEvent(Event);
{ code to perform additional functions }

end;

In other words, if you want your new object to handle certain
events differently than its ancestor does (or not at all!), you would
trap those particular events before passing the event to the
ancestor's HandleEvent method. If you want your new object to
behave just like its ancestor, but with certain additional functions,
you would add the code to do that after the call to the ancestor's
HandleEvent procedure.

The event record

Up to this point, this chapter has discussed events in a fairly
theoretical fashion. We have talked about the different kinds of

Chapter 9, Event-driven programming 161

162

events (mouse, keyboard,message, and "nothing") as determined
by the event's What field. We have also discussed briefly the use of
the Command field for command events.

Now it's time to discuss what an event record actually looks like.
The DRIVERS. TPU unit of Turbo Vision defines the TEvent type
as a variant record:

TEvent = record
What: Word;
case Word of

evNothing: ();
evMouse: (

Buttons: Byte;

end;

Double: Boolean;
Where: TPoint);

evKeyDown: {
case Integer of

0: (KeyCode: Word);
1: (CharCode: Char;

ScanCode: Byte));
evMessage: {

Command: Word;
case Word of

0: (InfoPtr: Pointer);
1: (InfoLong: Longint).;
2: (InfoWord: Word) i
3: (InfoInt: Integer);
4: (InfoByte: Byte);
5: (InfoChar: Char));

TEvent is a variant record. You can tell what is in the record by
looking at the field What. Thus, if TEvent. What is an evMouseDown,
TEvent will contain:

Buttons: Byte;
Double: Boolean;
Where: TPointi

If TEvent. What is an evKeyDown, the compiler will let you access
the data either as

KeyCode: Word;

or as

CharCode: Char;
ScanCode: Byte;

Turbo Vision Programming Guide

I

~

Communication among
views and the Infoptr field
are covered in the "Inter

view communication"
section of this chapter.

Clearing events

Abandoned

The final variant field in the event record stores a Pointer, Longint,
V\brd, Integer, Byte or Char value. This field is used in a variety of
ways in Turbo Vision. Views can actually generate events them
selves and send them to other views. When they do, they often
use the InfoPtr field.

When a view's HandleEvent method has handled an event, it
finishes the process by calling its ClearEvent method. ClearEvent
sets the Event. What field equal to evNothing and Event.InfoPtr to
@Se1f,which are the universal signals that the event has been
handled. If the event then gets passed to another object, that
object should ignore this "nothing" event.

events Normally, every event will be handled by some view in your
application. If no view can be found that handles an event,
the modal view calls EventError. EventError calls the view
owner's EventError and so forth up the view tree until
T Application.EventError is called.

T Application.EventError by default does nothing. You may find it
useful during program development to override EventError to
bring up an error dialog box or issue a beep. Since the end user of
your software isn't responsible for the failure of the software to
handle an event, such an error dialog box in a shipping version
would probably just be irritating.

ClearEvent also helps views communicate with each other. For
now, just remember that you haven't finished handling an event
until you call ClearEvent.

Modifying the event mechanism

At the heart of the current modal view is a loop that looks
something like this:

var
E: TEventi

begin
E.What := evNathingi

Chapter 9, Event-driven programming 163

Centralized event
gathering

:164

Overriding
GetEvent

repeat
if E.What <> evNothing then EventError(E);
Get Event (E) ;
HandleEvent(E) ;

until EndState <> Continue;
end;

One of the greatest advantages of event-driven programming is
that your code doesn't have to know where its events corne from.
A window object, for example, just needs to know that when it
sees a em Close command in an event, it should close. It doesn't
care whether that command carne from a click on its close icon, a
menu selection, a hot key, or a message from some other object in
the program. It doesn't even have to worry about whether that
command is intended for it. All it needs to know is that it has
been given an event to handle, and since it knows how to handle
that event, it does.

The key to these "black box" events is the application's GetEvent
method. GetEvent is the only part of your program that has to

/ concern itself with the source of events. Objects in your applica
tion simply call GetEvent and rely on it to take care of reading the
mouse, the keyboard, and the pending events generated by other
objects.

If you want to create new kinds of events (for example, reading
characters from a serial port device driver), you would simply
override T Application.GetEvent in your application object. As you
can 'see from the TProgram.GetEvent code in APP.P AS, the
GetEvent loop scans among the mouse and the keyboard and then
calls Idle. To insert a new source of events,you either override Idle
to look for characters from the serial port and generate events
based on them, or override GetEvent to add a GetComEvent(Event)
call to the loop, where GetComEvent returns an event record if
there is a character available from the serial port.

The current modal view's GetEvent calls its owner's GetEvent, and
so on, all the way back tip the view tree to T Application. GetEvent,
which is where the next event is always actually fetched.

Because Turbo Vision always uses T Application.GetEvent to '
actually fetch events, you can modify events for your entire

Turbo Vision Programming Guide

Using idle time

An example of a heap
viewer is included in the

example programs on your
distribution disks.

application by overriding this one method. For example, to
implement keystroke macros, you could watch the events
returned by GetEvent, grab certain keystrokes, and unfold them
into macros. As far as the rest of the application would know, the
stream of events would be coming straight from the user.

procedure TMyApp.GetEvent(var Event: TEvent);
begin

inherited Get Event (Event) ; { call TApplication method}
{ special processing here }

end;

Another benefit of T Application.GetEvent's central role is that it
calls a method called TApplication.Idle if no event is ready.
T Application.Idle is a dummy (empty) method that you can over
ride in order to carry out processing concurrent with that of the
current view.

Suppose, for example, you define a view called THeap View that
uses a method called Update to display the currently available
heap memory. If you override T Application.Idle with the following,
the user will be able to see a continuous display of the available
heap memory ..

procedure TMyApp.Idle;
begin

inherited Idle;
HeapViewer.Update;

end;

Inter-view communication

A Turbo Vision program is encapsulated into objects, and you
write code only within objects. Suppose an object needs to
exchange information with another object within your program?
In a traditional program,. that would probably just mean copying
information from one data structure to another. In an object
oriented program, that may not be so easy, since the objects may
not know where to find one another.

Inter-view communication is not as easy as sending data between
equivalent parts of a traditional Pascal program. (Although two

Chapter 9, Event-driven programming 165

Intermediaries

parts of a traditional Pascal application can never achieve the
functionality of two Turbo Vision views.)

If you need to do inter-view communication, the first question to
ask is if you have divided the tasks up between the two views
properly. It may be that the problem is one of poor program
design. Perhaps the two views really need to be combined into
one view, or part of one view moved to the other view.

If indeed the program design is sound, and the views still need to
communicate with each other, it may be that the proper path is to
create an intermediary view.

For example, suppose you have a spreadsheet object and a word
processor object, and you want to be able to paste something from
the spreadsheet into the word processor, and vice versa. In a
Turbo Vision application, you can accomplish this with direct
view-to-view communication. But suppose that at a later date you
wanted to add, say, a database to this group of objects, and to
paste to and from the database. You will now need to duplic~te
the communication you established between the first two objects
between all three.

A better solution is to establish an intermediary view-in this
case, say, a clipboard. An object would then need to know only
how to copy something to the clipboard, and how to paste some
thing from the clipboard. No matter how many new objects you
add to the group, the job will never become any more
complicated than this.

Messages among

166

views If you've analyzed your situation carefully and are certain that
your program design is sound and that you don't need to create
an intermediary, you can implement simple communication
between just two views.

Before one view can communicate with another, it may first have
to find out where the other view is, and perhaps even make sure
that the other view exists at the present time.

First, a straightforward example. The StdDlg unit contains a
dialog box called TFileDialog (it's the view that opens in the
integrated environment when you want to load a new file).

Turbo Vision Programming Guide

Top View points to the current
modo/view.

TFileDialog has a TFileList that shows you a disk directory, and
above it, a FilelnputLine that displays the file currently selected for
loading. Each time the user selects another file in the FileList, the
FileList needs to tell the FilelnputLine to display the new file name.

In this case, FileList can be sure that FilelnputLine exists, because
they are both initialized within the same object, FileDialog. How
does FileList tell FilelnputLine that the user just selected a new
name?

FileList creates and sends a message. Here's TFileList.FocusItem,
which sends the event, and FilelnputLine's HandleEvent, which
receives it: .

procedure TFileList.FocusItem(Item: Integer);
var Event: TEvent;
begin

inherited FocusItem(Item) ; { call .inherited method first
Message (TopView, evBroadcast, cmFileFocused, ListA.At(Item));

end;

procedure TFileInputLine.HandleEvent(var Event: TEvent);
var Name: NameStr;
begin

inherited HandleEvent(Event);
if (Event.What = evBroadcast) and (Event.Command = cmFileFocused)

and (State and sf Selected = 0) then
begin

if PSearchRec(Event.InfoPtr)A.Attr and Directory <> 0 then
DataA := PSearchRec(Event.InfoPtr)A.Name t '\'t

PFileDialog(Owner)A.WildCard
else DataA := PSearchRec(Event.lnfoPtr)A.Name;
DrawView;

, end;
end;

Message is a function that generates a message event and returns a
pointer to the object (if any) that handled the event.

Note that TFileList.Focusltem uses the Turbo Pascal extended syn
tax (the $X+ compiler directive) to use the Message function as a
procedure, since it doesn't care about any results that come back
from Message.

Chapter 9, Event-driven programming 167

Who handled the
broadcast? Suppose you need to find out if there is a window open on the

desktop before you perform some action. How can you find this
out? The answer is to have your code send off a broadcast event
that windows know how to respond to. The "signature" left by
the object that handles the event will tell you who, if anyone,
handled it.

Is anyone out there? Here's a concrete example. In the Turbo Pascal IDE, if the user
asks to open a watch window, the code which opens watch win
dows needs to check to see if there is already a watch window
open. If there isn't, it opens one; if there is, it brings it to the front.

168

Sending oft the broadcast message is easy:

AreYouThere := Message(DeskTop, evBroadcast, cmFindWindow, nil);

There is a test in the code for a watch window's HandleEvent
method that responds to cmFindWindow by clearing the event:

case Event.Command of

cmFindWindow: ClearEvent(Event);

end;

ClearEvent not only sets the event record's What field to evNothing;
it also sets the InfoPtr field to @Self. Message reads these fields, and
if the event has been handled, it returns a pointer to the object
who handled the message event. In this case, that would be the
watch window. So following the line that sends the broadcast, we
include

if AreYouThere = nil then
CreateWatchWindow

else AreYouThereA.Select;
{ if there is none, create one }

{ otherwise bring it to the front}

As long as a watch window is the only object that knows how to
respond to the cmFindWindow broadcast, your code can be
assured that when it finishes, there will be one and only one
watch window at the front of the views on the desktop.

Turbo Vision Programming Guide

I.

i'
I

Who's on top? Using the same techniques outlined earlier, you can also
determine which window is the topmost view of its type on the
desktop. Because a broadcast event is sent to each of the modal
view's subviews in Z-order (reverse insertion order), the most
recently inserted view is the view "on top" of the desktop.

Calling
HandleEvent

"Peer" views are subviews
with the same owner:

Consider for a moment the situation encountered in the IDE when
the user has a watch window open on top of the desktop while
stepping through code in an editor window. The watch window
can be the active window (double-lined frame, top of the stack),
but the execution bar in the code window needs to keep tracking
the executing code. If you have multiple editor windows open on
the desktop, they might not overlap at all, but the IDE needs to
know which one of the editors it is supposed to b~ tracking in.

The answer, of course, is the front, or topmost editor window,
which is defined as the last one inserted. In order to figure out
which one is "on top," the IDE broadcasts a message that only
editor windows know how to respond to. The first editor window
to receive the broadcast will be the one most recently inserted. It
handles the event by clearing it, and the IDE will then know
which window to use for code tracking by reading the result
returned by Message.

You can also create or modify an event, then call a HandleEvent
directly. You can make three types of calls:

1. You can have a view call a peer subview's HandleEvent
directly. The event won't propagate to other views. It goes
directly to the other HandleEvent, then control returns to you.

2. You can call your owner's HandleEvent. The event will then
propagate down the view chain. (If you are calling the
HandleEvent from within your own HandleEvent, your
HandleEvent will be called recursively.) After the event is
handled, control returns to you. .

3. You can call the HandleEvent of a view in a different view
chain. The event will travel down that view chain. After it is
handled, control will return to you.

Chapter 9, Event-driven programming 169

1,1

I

~

170 Turbo Vision Programming Guide

c H A p T E R

1 1

Application objects

At the heart of any Turbo Vision program is the application
object. This chapter describes in detail all the different things
application objects do and how you customize them. It covers the
following topics:

• Understanding application objects
• Constructing an application object
• Customizing the desktop
• Shelling to DOS
• Customizing the status line
• Customizing the menu bar
• Using idle time
• Creating context-sensitive Help

Understanding application objects

An application object has two critical roles in your Turbo Vision
application. It is a view that manages the entire screen, and it is an
event-handling engine that interacts with the mouse, keyboard,
and other parts of the computer. There is interaction between
these two roles, but you can understand them separately. This
section explains these roles by looking at

• The application's role as a view
• The application's role as a group
• The three critical methods: Init, Run, and Done

Chapter 7 7, Application objects 171

The application is
a view At first, it might seem strange to think of an application as a view.

The application is
a group

The application owns
subviews

172

After all, a view is something visible, while an application is an
intangible concept. But the basic principle of a view is that it
occupies a rectangular area of the screen, and the application is
responsible for the entire screen.

Actually, the application object has a lot more to do than just
managing the screen, but that is one of its important duties, and
as such there are times when it's important to remember that the
application object is a view~

Not only is an application a view, it is also a group. Group views
have two special properties: the ability to own subviews, and the
ability to be modal. Application objects take advantage of both of
these.

The boundaries of an application view encompass the entire
screen, but the application itself isn't visible. It divides the screen
into three distinct areas and assigns a subview to handle each one.
By default, the application assigns a menu bar object to the top
line of the screen, a status line object to the bottom line, and a
desktop object to all the lines in between.

It's easy to remember the application's three subviews, since you
see them all during the running of the program, but it's sometimes
easy to forget that there's an application object owning all of them.
Other sections of this chapter deal specifically with menu bars,
status lines, and desktops, but it's important to remember that
behind them all is an application object. Most of an application's
behavior is easily understandable when you stop to think that it's
just another view, or just another group.

You can think of the application view as the ultimate owner of all
views in the program. If you follow the ownership chain from any
given view, it leads back to the application object.

Turbo Vision Programming Guide

I

I.

The application is
modal

Init, Run, Done

Listing 10.1
The main loop of a Turbo

Vision program

Most of the time, the application object is the modal view in a
running Turbo Vision application. The only exception is when
you execute another view (usually a dialog box), which becomes
the current modal view until its EndModal method gets called, and
the application again becomes modal.

As the modal view, the application handles or dispatches most
events, so it is an active participant in the running of the program.

The main block of a Turbo Vision application always consists of
three statements, calling the three main methods of the appli
cation object: Init, Run, and Done, as shown in Listing 10.1.

var AnyApp: TApplication;
begin

AnyApp. Init;
AnyApp.Run;
AnyApp.Done;

end.

You should never need to put any other statements into the main
block. Application-specific behavior should be set up in the Init
constructor and shut down in the Done destructor.

The Init constructor Because the application object (like all views) contains virtual
methods, you have to call its constructor before using the object.
By convention, all Turbo Vision objects have a constructor called
Init. The application's constructor sets up the application views
and initializes the application's subsystems, including the mouse
and video drivers, the memory manager, and the error handler. If
you override Init to add specific items to your application, be sure
to call the Init constructor inherited from T Application.

The Run method Run is a simple method, but an extremely important one. After
Init sets up the application object, Run executes the application
object, making it modal and setting the application in motion. The
bulk of Run's activity is in a simple repeat..untilloop, which looks
something like this pseudo-code:

Chapter 70, Application objects 173

repeat
Get an event;
Handle the event;

until Quit;

This isn't the actual code, but it shows the concepts. Run gets
pending events from the mouse or the keyboard or other parts of
the application, then handles the events either directly or by
routing them to the appropriate views. Eventually, some event
comes along that generates a Uquit" command, the loop
terminates, and the application finishes running.

The Done destructor Once the Run method terminates, the Done destructor disposes of
any objects owned by the application-the menu bar, status line,
and desktop and any objects you've added-then shuts down
Turbo Vision's error handler and drivers.

In general, your application's Done destructor should undo any
thing set up by the Init constructor, then call the Done destructor
inherited from TApplication, which handles disposing the
standard application subviews and shutting down the application
subsystems. If you override the application's Init, you'll probably
have to override Done, too.

Constructing ah application object

174

The application constructor is generally simple, taking no
parameters, but it performs a number of important functions.
When you define your application's constructor, there are
relatively few things you must do, but one of them is calling the
Init constructor inherited from T Application. The T Application
constructor does two important things that you need to
understand:

• Calling the inherited constructor
• Initializing subsystems

Calling the Init constructor inherited from T Application takes care
of these things completely. If you derive your application from
TProgram instead of T Application, make sure your constructor calls
its inherited constructor and sets up any subsystems you want to
use.

Turbo Vision Programming Guide

I,
" I

Calling the
inherited

constructor

The TProgram
constructor

These virtual methods are
described in the sections of

this chapter dealing with the
desktop, status line and

menu bar.

Knowing when to call

In most cases, when you override the Init constructor in your
application object, you include a call to the inherited constructor
and then add code. You can achieve most customizations by
overriding virtual methods, so you should rarely need to replace
the inherited constructor. The next section describes all the
behavior inherited from TProgram you need to replace if you
don't call the inherited constructor.

The TProgram constructor does several important things:

• Sets the variable Application to point to your application object
• Calls the virtual method InitScreen to set up the screen mode

variables
• Calls the constructor inherited from TGroup
• Sets State and Options flags
• Sets its video buffer
• Calls the virtual methods InitDesktop, InitStatusLine, and

InitMenuBar

Note that initialization of screen mode variables, the desktop
object, the status line object, and the menu bar object all take place
in virtual method calls, so you can override the appropriate meth
ods in your application object, and the inherited constructor will
call your redefined methods.

When redefining the application constructor, the order in which
you call the inherited constructor is very important. As a general
rule, you should call the inherited constructor first, then define
anything specific to your application:

constructor TNewApplication.Init;
begin

inherited Init;

end;

{ call TApplication.Init }
{ Your initialization code goes here }

Remember that application objects are views, and that the ulti
mate ancestor object, TObject, clears all fields in the object to zeros
and nils. Since calling T Application.Init results in a call to
TObject.Init, any changes you make to the application object's
fields prior to calling the inherited Init will be lost.

Chapter 70, Application objects 175

Initializing
subsystems

In general, the only time you must do something before calling the
inherited application constructor is if you use file editor objects.
You must allocate file editor buffers before constructing the appli
cation object, as described in Chapter 15.

The main difference between T Application and its ancestor type
TProgram is that T Application redefines the object's constructor and
destructor to initialize and then shut down five major subsystems
that make Turbo Vision applications work. The five subsystems
are

• The memory manager
• The video manager
• The event manager
• The system error handler
• The history list manager

Turbo Vision sets up each subsystem by calling a procedure in the
App unit. The T Application constructor calls each before calling the
Init constructor it inherits from TProgram:

constructor TApplication.lniti
begin

InitMemorYi
InitVideoi
InitEventsi
InitSysErrori
InitHistorYi
inherited Initi

endi

{ set up the memory manager }
{ set up the video manager }
{ set up the event manager }

set up the system error handler }
set up the history list manager }

{ call TProgram.lnit }

Although it's possible to create working applications derived
directly from TProgram, you should still use at least some of the
standard application subsystems. For example, to create an
application type that doesn't use the history list system, you could
derive a new type from TProgram much like T Application, but
without calling InitHistory in the constructor.

The memory manager The memory manager does three important things for Turbo
Vision:

• Sets up a safety pool
• Manages discardable draw buffers
• Manages relocatable file editor buffers

176 Turbo Vision Programming Guide

I

I~

The safety pool is an integral part of Turbo Vision. When you allo
cate memory for a Turbo Vision object, the memory manager
checks to make sure the allocation hasl)'t eaten into the safety
pool at the end of memory. This protection keeps your application
from simply running out of memory, and gives you a chance to
free memory and recover gracefully.

If there is free memory above the stack, group objects allocate
discardable draw buffers in that space. By keeping a copy of its
screen image, the group can save time when called upon to draw
itself. If another allocation needs that space, the group discards its
buffer and draws itself completely the next time.

If you use file editors in your applications, you need to set aside
memory above the heap for relocatable buffers, as explained in
Chapter 15, "Editor and text views." The memory manager
subsystem manages those buffers for you.

The video manager The procedure InitVideo sets up Turbo Vision's video manager.
The video manager keeps track of the screen mode at application
startup so it can restore the screen when the application termin
ates. InitVideo also sets the values of Turbo Vision's internal video
variables ScreenHeight, Screen Width, Screen Buffer, CheckS now,
CursorLines, and HiResScreen.

The corresponding procedure DoneVideo restores the screen to its
startup mode, clears the screen, and restores the cursor.

The event manager The procedure InitEvents checks to see if the system has a mouse
installed and, if a mouse is present, sets the variable MouseEvents
to True, enables the mouse interrupt handler, and shows the
mouse cursor. If Turbo Vision doesn't detect a mouse at startup,
the event manager ignores the mouse completely.

\

The system error
handler

The corresponding procedure DoneEvents shuts down the event
manager, disabling the mouse interrupt handler and hiding the
mouse cursor.

The system error handler do~s two things for your application:

• Traps DOS critical errors
• Intercepts Ctrl+Break keystrokes

By default, the critical-error handler traps DOS critical errors and
displays a warning message across the status line of the Turbo

Chapter 70, Application objects 177

See Chapter 20 in the
Language Guide for

information on the default
handling of errors.

Vision application, giving the user a chance to recover. The error
handler allows for user-installable error procedures as well.

The error handler also manages the trapping of the Ctrl+Break key,
enabling your program to react in some way other than
terminating.

If you don't call InitSysError to install the Turbo Vision error
handler, your application will handle critical errors and Cfrl+Break
just like any other Pascal application: Critical errors will produce
run-ti,me errors, and Cfrl+Break will be handled according to the
system settings.

The history list manager The procedure InitHistorg allocates a block of memory to hold
history lists for input lines. The variable HistorySize determines
the amount of ,memory allocated, which is lK by default. If you
want to allocate a different amount, you must change the value of
HistorySize before calling InitHistory, which means before calling
T Application.Init.

If the memory allocation succeeds, InitHistory sets the variable
HistoryBlock to point to the allocated memory. If the allocation
fails, HistoryBlock is nil, and all attempts to add to or read from
history lists will be ignored.

The corresponding procedure DoneHistory frees the memory block
allocated to HistoryBlock. DoneHistory uses HistorySize to deter
mine how much memory to free, so it is important that you not
change the value of HistorySize after calling InitHistory.

Changing screen modes

178

Turbo Vision keeps track of the current screen mode in a
bitmapped variable called ScreenMode. ScreenMode contains a
combination of the screen mode constants smMono, smBW80,
smC080, and smFont8x8. By default, a Turbo Vision application
assumes the screen mode that your DOS environment used when
you started up the application. If you were in 2S-line color mode,
that's what the Turbo Vision application uses. If you were in sa
line VGA text mode, the Turbo Vision application also starts up in
that mode.

In most cases, you won't switch among the monochrome, black
and-white, and color modes, since they're usually dependent on

Turbo Vision Programming Guide

Listing 10.2
Toggling high-resolution

video mode

the user's hardware. More commonly, you'll toggle between 25-
line normal mode and 43- or 50-line high resolution mode. To do
that, toggle the smFont8x8 bit in SereenMode by calling
SetSereenMode. Listing 10.2 shows part of an application's
HandleEvent method that responds to a command em Video by
toggling the 8x8 pixel font mode.

procedure TSomeApplication.HandleEvent(var Event: TEvent);
begin

inherited HandleEvent(Event);
if Event.What = evCommand then
case Event.Command of

cmVideo: SetScreenMode(ScreenMode xor smFont8x8) i

end;
end;

Customizing the desktop

Constructing a
desktop object

You will rarely change the desktop object. The default desktop
object covers the entire screen, other than the top line and bottom
line of the screen, and knows how to manage windows and dialog
boxes inserted in it. You might, however, need to change its size
or position or want to change the default background pattern.

This section describes how to

• Construct a desktop object
• Insert and execute windows
• Arrange windows
• Change the background pattern

Application objects call a virtual method called InitDesktop to
construct a desktop object and assign it to the global variable
Desktop. By default, InitDesktop gets the boundary rectangle of the
application and constructs a desktop view of type TDesktop that
covers all but the first and last lines of the application view.

To construct a desktop that covers a different area, you need to
override InitDesktop. For example, if your application has no
status line, you need to make sure the desktop object covers the
line that would normally belong to the status line. You can do this

Chapter 70, Application objects 179

either of two ways: calling the inherited method and modifying
the result, or replacing the inherited method entirely.

Using the inherited Since you know what the inherited InitDesktop method does, you
method can call that method and then modify the resulting object,

changing the desktop boundaries, as shown in Listing 10.3.

Listing 10.3
Modifying the default

desktop object

procedure TMyApplication.InitDesktop;
var R: TRect;
begin

inherited InitDesktop;
DesktopA.GetExtent(R);
Inc(R.B.Y);
DesktopA.Locate(R);

end;

{construct default desktop }
{ get its boundaries }

{ move bottom down one line }
{ set bovndaries to new size }

Replacing the inherited
method

You can also create an entirely separate desktop object, rather
than relying on the inherited method. Listing 10.4 shows an
InitDesktop method that constructs a desktop object that covers the
same area as that created in Listing 10.3.

180

Listing 10.4
Replacing the inherited

desktop object

Inserting and
executing

windows

procedure TMyApplication.InitDeskTop;
var R: TRect;
begin

GetExtent (R) ;
Inc (R.A. Y) ;
New (DeskTop, Init(R));

{ get the application's boundaries}
{ move top line to allow for menu bar }
{ construct desktop with those bounds }

The advantage to this approach is that it is a bit quicker, but it
relies on knowledge of the inherited method. That is, using the
inherited method assures you that any actions the inherited
method performs are still performed. If you replace the method,
you must ensure that you duplicate all the actions of the method

. you're replacing.

In nearly all cases, the desktop object owns all window and dialog
box objects in an application. Since the desktop is a group, you
can use the usual Insert and Execute methods to insert non-modal
and modal views, respectively. However, the application offers a
better, safer way to handle inserting and executing.

Turbo Vision Programming Guide

I

~

Inserting non-modal
windows

Executing modal views

GetData and SetOata are
explained in Chapter 72,

"Control objects. "

Arranging
windows

The application object inherits a method called Insert Window that
takes a window object as its parameter, and makes sure the
window is valid before inserting it into the desktop. Using
Insert Window rather than inserting windows directly into the
desktop ensures that any windows in the desktop have passed
two tests of validity, so you can be reasonably sure you've
avoided problems.

Insert Window performs two tests on the window object:

• Calls ValidView to make sure constructing the window didn't
cause the memory manager to reach into its safety pool.

• Calls the window's Valid method, passing the parameter
cmValid, which returns True only if the window and all its
subviews constructed correctly.

If both Valid and Va lid View indicate that the window is viable,
Insert Window calls the desktop object's Insert method to insert the

. window. If the window fails either test, Insert Window does not
insert the window, disposes of the window, and returns False.

The application's ExecuteDialog method is much like Insert Window.
The difference is that after determining the validity of the
window object, ExecuteDialog calls the desktop's Execute method
to make the window modal,rather than inserting it. As the name
implies, ExecuteDialog is designed with dialog boxes in mind, but
you can pass any window object you want to make modal.

ExecuteDialog also takes a second parameter, a pointer to a data
buffer for use by GetData and SetData. If the pointer is nil,
ExecuteDialog skips the GetData/SetData process. If the pointer is
non-nil, ExecuteDialog calls SetData before executing the window
and calls GetData if the user didn't cancel the dialog box.

Desktop objects know how to arrange the windows they own in
two different ways: tiling and cascading. Tiling means arranging
and resizing the windows like tiles, so that none overlap. Cascad
ing means arranging the windows in descending size from the top
left corner of the desktop, The first window covers the entire
desktop, the next moves to the right and down one space, and so
on. The result is a stack of windows that cascade down the
desktop, with the title bar and left side of each window visible.

Chapter 70, Application objects 181

182

Setting the
arrangement region

Setting tile direction

Changing the
background

Tiling or cascading are handled by T Application methods called
Tile and CascCl:de, respectively. By default the HandleEvent method
in T Application binds Tile and Cascade to the commands cmTile and
cmCascade. Those commands come from the Tile and Cascade
items on the standard Window menu.

In order to automatically tile or cascade windows, the windows
must have their ofI'ileable bit set. By default, window objects have
ofI'ileable set; dialog box objects do not. If you're going to use
modeless dialog boxes that you will want to tile or .cascade, be
sure to set ofI'ileable in the object's constructor.

By default, tiling and cascading use the entire desktop. If you
want to change the region used for tiling, your application object
must override the virtual method GetTileRect.

For example, if you have a non-tile able message window that
always covers the last four lines of the. desktop, you can arrange
the other windows to cover only the area above the message
window:

procedure TTileApp.GetTileRect(var R: TRect);
begin

DesktopA.GetExtent(R);
R.B.Y := R.B.Y'- 4;

end;

{ get the area of the desktop }
{ but exclude the last four lines }

The desktop enables you to control which way it tiles windows,
horizontally or vertically, By default, windows tile vertically,
meaning that if have two windows and tile them, one appears
above the other. If you set the desktop's TileColumnsFirst field
to True, the desktop will favor horizontal tiling. With
TileColumnsFirst set True, tiling two windows places them side
by-side.

The desktop object owns one other view by default, even before
you insert any windows, and that's the background view. The
background view is a very simple view that doesn't do anything,
but it draws itself in any otherwise uncovered portion of the
desktop. In Z-order, the background is behind all other views, and
since it's not selectable, it always stays there. The desktop stores a
pointer to its background view in a field called Background.

Turbo Vision Programming Guide

1,1'

1',1

Changing the pattern
character

Drawing a complex
background

Listing 10,5
Creating a complex desktop

background

Probably the only thing you'd ever want to do to the background
is change its background pattern. The default desktop object
displays a single character repeatedly over it's entire area.
Changing that single character is simple. Changing the back
ground to draw more than the single character is slightly more
complicated.

The easiest way to change the background's pattern character is to
wait until the desktop creates its default background. You can
then change the background object's Pattern field, which holds the
repeating character. The following example replaces the default
background character with the letter C.

procedure TMyApplication.lnitDesktopi
begin

inherited InitDesktoPi { construct default desktop }
DesktopA.BackgroundA,Pattern := 'e'i {change pattern character}

endi

The initial value of the background's patterQ. character is passed as
a parameter to the background view's constructor, which is called
by the desktop object's virtual method InitBackground. If you
derive your own desktop object, you can override InitBackground
to pass the desired character when you construct the background,
rather than changing it later. However, since the only reason
you'd be defining a new desktop object is to create a more com
plex background, you should probably just plug a new value into
Pattern from within InitDesktop.

Drawing a background with a pattern of more than one character
requires you to derive two new objects: a background object that
draws itself the way you want, and a desktop object that uses
your specialized background instead of the standard TBackground.

The program in Listing 10.5 implements a background object that
repeats a given string over the entire desktop.

program NewBacki

uses Objects, Drivers, Views, APPi

type
PMyBackground = ATMyBackgroundi
TMyBackground = object(TBackground)

Text: TTitleStri

Chapter 70, Application objects 183

184

constructor Init(var Bounds: TRect; Arext: TTitleStr);
procedure Draw; virtual;

end;
PMyDesktop = ATMyDesktoPi
TMyDesktop = object(TDesktop)

procedure InitBackground; virtual;
end;
TMyApplication = object (TApplication)

procedure InitDesktop; virtual;
end;

constructor TMyBackground.lnit(var Bounds: TRect; AText: TTitleStr);
begin

inherited Init(Bounds, ' ');
Text := AText;

construct the view
{ get text

while Length (Text) < SizeOf(TTitleStr) - 1 do
Text := Text + AText; { fill the entire string

end;

procedure TMyBackground.Draw;
var DrawBuffer: TDrawBuffer;
begin

MbveStr(DrawBuffer, Text, GetColor(l)); {put string into buffer
WriteLine(O, 0, Size.X, Size.Y, DrawBuffer); { write text

end;

procedure TMyDesktop.lnitBackground;
var R: TRect;
begin

GetExtent (R) ; { get desktop rectangle
Background := New (PMyBackground, Init(R, 'Turbo Vision '));

end;

procedure TMyApplication.lnitDesktop;
var R: TRect;
begin

GetExtent(R); { get application rectangle
R.Grow(O, -1); allow for menu bar, status line
Desktop := New(PMyDesktop, Init(R)); {construct custom desktop

end;

var MyApp: TMyApplication;
begin

MyApp.lnit;
MyApp.Run;
MyApp.Done;

end.

The key to the background object is its Draw method. Y oucan
accomplish fairly dazzling effects if you work at it. Keep in mind,
however, that the usual purpose of a background is to provide a

Turbo Vision Programming Guide

Shelling to DOS

Customizing the
shell message

neutral background behind the work your users will do, so you
don't want it to be too distracting.

T Application provides an easy way to allow users of your applica
tion to start a DOS shell. In response to the cmDosShell command
from the standard File menu, T Application calls its DosShell
method.

DosShell shuts down some of the application's subsystems before
actually starting the shell, then restarts them when the user exits
the shell. The command interpreter used by the shell is the one
specified by the COMSPEC environment variable.

Before executing the command interpreter, DosShell calls a virtual
method called WriteShellMsg to display the following message:

Type EXIT to return ...

You can customize the message by overriding WriteShellMsg to
display any other text. You should use the PrintStr procedure
instead of Writeln, however, to avoid linking in unneeded code.
The following code displays a different message:

procedure TShellApp.WriteShellMsg;
begin

PrintStr('Leaving Turbo Vision for DOS. Type EXIT to return.');
end;

Customizing the status line

The default application object constructor calls a virtual method
InitStatusLine to construct and initialize a status line object. To
create a custom status line, you need to override InitStatusLine to
construct a new status line object and assign it to the global
variable StatusLine. The status line serves three important
functions in the application:

• Showing commands the user can click with the mouse
• Binding hot keys to commands
• Providing context-sensitive hints to the user

Chapter 70, Application objects 185

186

Defining status
line boundaries

Listing 10.6
Setting the status line

boundaries

Using invisible status
lines

The first two functions are set up when you construct the status
line object.· Context-sensitive hints, on the other hand, are con
trolled by a status line object method called Hint.

The status line object constructor takes two parameters: a bound
ary rectangle and a pointer to a linked list of status definitions. 'A
status definition is a record that holds a range of help contexts
and the list of status keys the status line displays when the
application's current help context falls within that range. Status
keys are records that hold commands and the text strings and hot
keys that generate the commands.

Constructing a status line consists of three steps:

• Setting the boundaries of the view
• Defining status definitions
• Defining status keys

The status line nearly always appears on the bottom line of an
application, but you can put it anywhere you want. You can even
make an invisible status line that the user can't see or click, but
which still binds hot keys to commands.

The easiest way to place a status line on the bottom line of the
screen is to base its location on the bounding rectangle of the
application object, as shown in Listing 10.6.

procedure TYourApplication.lnitStatusLine;
varR: TRect;
begin

GetExtent (r) ;
R.A.Y := R.B.Y - 1;

get the application's boundaries}
{ set top one line above bottom }

{ use R as the bounding rectangle of status line }
end;

To use an invisible status line object, you can either assign a
bounding rectangle that's off the screen (for example, one line
below the bottom of the application's bounds) or to an empty
rectangle. For example, if you change the assignment in Listing
10.6 to

R.A.Y := R.B.Y;

Turbo Vision Programming Guide

I

I.

Creating status
definitions

Listing 10.7
TWOSTA T. PAS shows status

lines changing with help
contexts.

the status line has no height, and therefore doesn't appear on the
screen. Be sure to adjust the desktop object's boundaries to cover
the area the status line would normally cover.

Status definition records are normally created using the function
NewStatusDef, which makes it easy to create the linked list of
records by nesting calls to NewStatusDef. NewStatusDef takes four
parameters:

• The low boundary of the help context range
• The high boundary of the help context range
• A pointer to a linked list of status keys
• A pointer to the next status definition record, if any

The default status line object created by TProgram's InitStatusLine
method is very simple. It has only a single status defintion which
gets its list of status keys from the function StandardStatusKeys:

procedure TProgram.InitStatusLine;
var R: TRect;
begin

GetExtent(R); { get application boundaries}
R.A.Y := R.B.Y - 1; { use only bottom line}
New(StatusLine, Init(R, construct StatusLine using R }

end;

NewStatusDef(O, $FFFF, { cover all possible help contexts}
NewStatusKey('-Alt+X- Exit', kbAltX, cmQuit, { show Alt+X }
StdStatusKeys(ni1)), nil))); { include standard keys}

For simple applications, a single status line for the entire range of
help contexts is probably enough. If your application has different
views that might need different commands available on the status
line, you can provide them by giving those views different help
contexts and creating appropriate status definitions for each.

The simple program in Listing 10.7 (included on your distribution
disks in the file TWOSTAT.PAS) shows how status lines change
with help contexts.

program TwoStat;
uses Objects, Drivers, Views, App, Menus;
type

TStatApp = object (TApplication)
constructor Init;
procedure InitStatusLine; virtual;

end;

Chapter 70, Application objects 187

188

Creating status
keys

constructor TStatApp.Init;
var

R: TRect;
Window: PWindow;

begin
inherited Init;
DesktopA.GetExtent(R);
R.B.X := R.B.X div 2;
Window := New (PWindow, Init(R, 'Window A', 1));
InsertWindow(Window);
Desktopl\.GetExtent(R);
R.A.X := R.B.X div 2;
Window := New(PWindow, Init(R, 'Window B', 2));
Windowl\.HelpCtx := $8000;
InsertWindow(Window) ;

end;

procedure TStatApp.InitStatusLine;
var R: TRect;
begin

GetExtent (R) ;
R.A.Y := R.B.Y ~ 1;
New (StatusLine, Init(R,

NewStatusDef(O, $7FFF,
NewStatusKey('-F6- Go to B', kbF6, crnNext,
StdStatusKeys(nil)),

NewStatusDef($8000, $FFFF,
NewStatusKey('-F6- Go to A', kbF6, crnNext,
StdStatusKeys(nil)) , nil))));

end;

var StatApp: TStatApp;
begin

StatApp.Init;
StatApp.Run;
StatApp.Done;

end.

Once you've set up status definitions, each of them needs a list of
status keys. A status key record consists of four fields:

• A text string that appears on the status line
• A keyboard scan code for a hot key
.A command to generate
• A pointer to the next status key record, if any

Turbo Vision Programming Guide

Using the
NewStatusKey function

Using status key
functions

Listing 10.8
The StdStatusKeys function

Adding status line
hints

The easiest way to create a list of status keys is to make nested
calls to the function NewStatusKey. Creating a simple, single-item
status key list takes only one such call:

NewStatusKey('-Alt-Q- Quit', kbAltQ, cmQuit, nil);

To create a longer list, replace nil with another call to
NewStatusKey:

NewStatusKey('-Alt-Q- Quit', kbAltQ, cmQuit,
NewStatusKey('-F10- Menu', kbF10, cmMenu, nil));

If you use the same set of status keys for several different status
definitions, or even in several different applications, you'll prob
ably want to group them together in a function. The App unit
provides one such function for the common comands you use
most, called StdStatusKeys. Listing 10.8 shows the declaration of
StdStatusKeys.

function StdStatusKeys(Next: PStatusltem): PStatusltem;
begin

StdStatusKeys :=

end;

NewStatusKey(", kbAltX, cmQuit,
NewStatusKey(", kbF10, cmMenu,
NewStatusKey(", kbAltF3, cmClose,
NewStatusKey(", kbF5, cmZoom,
NewStatusKey(", kbCtrlF5, cmResize,
NewStatusKey(", kbF6, cmNext,
Next)))))) ;

Notice that by providing a pointer to a next item, you can use a
function like StdStatusKeys in the middle of a list of keys, rather
than just at the end.

The status line object type provides a virtual method called Hint
that you can override to provide context-sensitive status line
information to the right of any displayed status keys. Hint takes a
help context number as its single parameter and returns a string
based on that number. The default Hint inherited from TStatusLine
returns a null string for any input, so you have to override Hint to
get any meaningful messages.

Chapter 70, Application objects 189

Listing 10.9
A program that gives

context-sensitive status line
hints

190

program Hinter;
u~es Objects, Drivers, Menus, Views, App;

const
hCFile = 1001; hcFileNew = 1002; hcFileOpen = 1003;
hcFileExit = 1004; hcTest = 1005; hcWindow = 1100;
cmFileNew = 98; cmFileOpen = 99;

type
PHintStatusLine = ATHintStatusLine;
THintStatusLine = object(TStatusLine)

function Hint (AHelpCtx: Word): String; virtual;
end;
THintApp = object(TApplication)

constructor Init;
procedure InitMenuBar; virtual;
procedure InitStatusLine; virtual;

end;

function THintStatusLine.Hint(AHelpCtx: 'Word): String;
begin

case AHelpCtx of
hcFile: Hint := 'This is the File menu' ;
hcFileNew: Hint := 'Create a new file';
hcFileOpen: Hint := 'Open an existing file';
hcFileExit: Hint := 'Terminate the application';
hcTest: Hint := 'This is a test. This is only a test.';
hcWindow: Hint .- 'This is a window';

else Hint .- ";
end;

end;

constructor THintApp.lnit;
var

R: TRect;
Window: PWindow;

begin
inherited Init;
DesktopA.GetExtent(R) ;
Window := New (PWindow, Init(R, 'A window', wnNoNumber));
WindowA.HelpCtx := hcWindow;
InsertWindow(Window);

end;

procedure THintApp.lnitMenuBar;
var R: TRect;
begin

GetExtent(R); R.B.Y:= R.A.Y + 1;
MenuBar := New (PMenuBar, Init(R, NewMenu(

NewSubMenu (' -F-ile', hcFile, NewMenu (

Turbo Vision Programming Guide

I

I

I

.~

Updating the
status line

Newltem('-N-ew', ", kbNoKey, cmFileNew, hcFileNew,
Newltem('-O-pen ... ', 'F3', kbF3, cmFileOpen, hcFileOpen,
NewLine (
Newltem('E-x-it', 'Alt-X', kbAltX, cmQuit, hcFileExit,
nil))))) ,

Newltern('-T-est', ", kbNoKey, crnMenu, hcTest, nil)))));
end;

procedure THintApp.lnitStatusLine;
var R: TRect;
begin

GetExtent(R); R.A.Y:= R.B.Y - 1;
StatusLine := New(PHintStatusLine, Init(R,

NewStatusDef(O, $FFFF, StandardStatusKeys(nil) , nil)));
end;

var HintApp: THintApp;
begin

HintApp. Init;
HintApp.Run;
HintApp.Done;

end.

In a complex application that shows a lot of different hints, you
should use a string list resource to supply the strings instead of
the lengthy case. statement in Hint.

You should never need to update the status line manually. The
application object's Idle method calls the status line object's Update
method, so the status line keys and hints should never get out of
date.

Customizing menus

A menu in Turbo Vision has two parts: a menu list that holds the
descriptions of the menu items and the commands they generate,
and a menu view that shows those items on the screen.

Turbo Vision defines two kinds of menu views: menu bars and
menu boxes. Both views use exactly the same underlying lists of
menu items. In fact, the same menu items can showup in either a
bar or a box. The main difference is that a menu bar can only be a
top level menu, usually permanently located across the top line of
the application screen: A menu box can either be the primary

Chapter 70, Application objects 191

Setting menu bar
boundaries

Listing 10.10
Ensuring that the menu bar is

the top line

192

Defining menu
items

menu (usually a pop-up, or local menu) or more often a submenu
brought up by an item on a menu bar or another menu box.

The application's Init constructor calls a virtual method called
InitMenuBar to construct a menu bar and assign it to the variable
MenuBar. To define your own menu bar, you need to override
InitMenuBar to create your special menu bar and assign it to
MenuBar.

Creating a menu bar takes two main steps:

• Setting the menu bar boundaries
• Defining the menu items

Menu bars nearly always occupy the top line of the application
screen. The best way to assure that your menu bar covers this top
line is to set its boundaries based on those of the application, as
shown in listing 10.10.

procedure TYOurApplication.lnitMenuBar;
var R: TRect;
begin

GetExtent (R) ;
R.B.Y := R.A.Y +1;

end;

{ get application's boundaries}
{ set bottom one line below top }
{ use R to initialize menu bar }

Unlike menu bars, menu boxes adjust their boundaries to
accommodate their co:t;1.tents, so you don't have to worry about
setting the sizes of each submenu. You just set the boundaries of
the menu bar, and the menu objects take care of the rest.

The menu system uses two different kinds of records to define a
menu structure. Each of the record types is designed for use in a
linked list, having a pointer field to the next record.

• TMenu defines a list of menu items and keeps track of the
default, or selected, item. Each main menu and submenu holds
one TMenu record. The list of items is a linked list of TMenuItem
records.

Turbo Vision Programming Guide

Using the Newltem
function

Using the
NewSubMenu function

Using idle time

• TMenuItem defines the text, hot key, command, and help
context of a menu item. Every item in a menu, whether a
command or a submenu, has its own TMenuItem record.

When the menu is displayed as a bar, the hot key string is hidden,
although the hot key is still active.

The usual way to allocate and initialize a menu item record is
with the function NewItem. You can easily create lists of items by
nesting calls to NewItem.

A submenu is a menu item that brings up another menu instead
of generating a command. Generally, you create submenus by
calling the function NewSubMenu in place of NewItem. There are
really only two differences between NewSubMenu and NewItem:

• The submenu has no associated command, so NewSubMenu sets
the item's Command field to zero, and there is no hot key
assigned or described.

• In addition to pointing to the next item in its menu, the
submenu points to a TMenu record, which contains the list of
items in the submenu.

The application object's event loop calls a virtual method called
Idle whenever it finds no pending events in the event queue. That
means that y()u can use Turbo Vision to animate background
processes when it's not responding to user input.

To create a background process, you just override Idle and have it
perform whatever task you want to do in the background. Be
sure, however, to call the inherited Idle method, because the
default Idle takes care of such things as updating the status line
and notifying views that commands have been enabled or
disabled.

Make certain that any background processing you put into Idle
doesn't take too much time, or it will cause the application to
respond sluggishly to the user.

The TVDemo program on your distribution disks uses two views
from a unit called Gadgets. One of them is a clock view that
updates the time when told to do so by the application's Idle

Chapter 10, Application objects 193

method. The other is an indication of the amount of heap space
available, which is also updated by Idle.

Context-sensitive Help

194

Turbo Vision has built-in tools that help you implement context
sensitive help within your application. You can assign a help
context number to a view, and Turbo Vision ensures that when
ever that view becomes focused, its help context number will
become the application's current help context number.

To create global context-sensitive help, you can implement a
Help View that knows about the help context numbers that you've
defined. When HelpView is invoked (usually by the user pressing
F1 or some other hot key), it should ask its owner for the current
help context by calling the method GetHelpCtx.Help View can then
read and display the proper help text. An example Help View is
included on your Turbo Pascal distribution disks.

Context-sensitive help is probably one of the last things you'll
want to implement in your application, so Turbo Vision objects
are initialized with a default context of hcNoContext~ which is a
predefined context that doesn't change the current context. When,
the time comes, you can work out a system of help numbers, then
plug the right number into the proper view by setting the view's
HelpCtx field right after you construct the view.

Help contexts are also used by the status line to determine which
views to display. Remember that when you create a status line,
you call NewStatusDe/, which defines a set of status items for a
given range of help context values. When a new view receives the
focus, the help context of that item determines which status line is
displayed.

Turbo Vision Programming Guide

~

I

I

I

I

c H A p T E R

1 1

Window and dialog box objects

Window objects are specialized group views that provide the
distinctive framed, overlapping, titled windows that Turbo Vision
applications have on the desktop. Dialog boxes are specialized
windows, so anything described in this chapter that specifies
windows applies equally to dialog boxes. This chapter also
describes the properties unique to dialog box objects.

This chapter covers the following topics:

• Understanding windows and dialog boxes
• Working with windows
• Working with dialog boxes
• Using controls with dialog boxes
• Using standard dialog boxes

Understanding windows

Windows in Turbo Vision are different than windows in other
systems you might have used in the past. Instead of being a
subset of the screen that you can read from and write to, a Turbo
Vision window is a group view. This distinction is made clearest
by looking at a simple descendant of the window, the dialog box.

Figure 11.1 shows a typical dialog box that contains various
controls. It's pretty clear from looking at the dialog box how the
user interacts with it by typing in the input line, clicking buttons,

Chapter 7 7, Window and dialog box objects 195

Figure 11.1
A typical dialog box

How windows
and dialog boxes

differ

and so on. The user doesn't expect to be able to type on the
background areas.

In that respect, a dialog box is no different from any other Turbo
Vision window. It's not something you write on, but rather it's a
holder for other views. If you want text to show up in a window,
you insert a text view into the window. I

For the most part, window and dialog box objects are inter
changeable. Dialog boxes, however, have a few additional
refinements that make them particularly suited for use as modal
views. Remember that any group view can be modal, including
windows, dialog boxes, and applications. However, dialog boxes
include some behavior by default that users expect from modal
views.

Dialog box objects handle events slightly differently than other
windows. They

• Convert Esc keystrokes into em Cancel commands
• Convert Enter keystrokes to cmDefault broadcasts
• Close the dialog box (end the modal state) in response to

standard commands cmOK, em Cancel, cmYes, and cmNo

Working with windows

196

This section describes the various tasks you perform on all
window objects, including dialog box objects:

• Constructing window objects
• Inserting windows into the desktop
• Working with modal windows
• Changing window object defaults
• Managing window sizes
• Creating window scroll bars

Turbo Vision Programming Guide

Constructing
window objects

Constructing default
windows

Changing window
flags

Table 11.1
Window flag meanings

Window objects provide a certain amount of flexibility that allows
you to customize their behavior without having to derive new
window types.

This section covers the following topics:

• Constructing the default window object
• Changing window flags

The default window object constructor takes three parameters: a
bounding rectangle, a title string, and a window number. The
default window creates a group view with the given boundaries,
sets its title field to point to a copy of the title string, stores the
window number, and sets its state and options flags to give the
window a shadow and make it selectable.

Once you've called the window's constructor, you can modify any
of its fields as you would any other object. For example, to force
the window to be centered when you insert it on the desktop, set
the of Centered flag in its Options field:

Window: = New (PWindow , Ini t (R, , A window title', wnNoNumber)) i
WindowA.Options := WindowA.Options or ofCenteredi
ApplicationA.InsertWindow(Window)i

In addition to the standard view option flags, window objects
have a bitmapped Flags field that governs certain kinds of moving
and resizing behavior. The bits in the window flags field are
identified by constants starting with wf. Table 11.1 describes the
purpose of each of the flags.

Flag

wfMove
wfGrow

wfClose

wfZoom

Meaning

User can move the window by dragging the title bar.
User can resize the window by dragging the bottom
right corner.
User can close the window by clicking an icon in the top
left corner.
User c,an zoom or unzoom the window by clicking an
icon in the top right corner.

By default, windows have all four of the window flags set.

Chapter 7 7, Window and dialog box objects 197

Inserting windows
into the desktop

For information on the safety
checks performed by

InsertWindow, see Chapter
70, "Application objects. "

198

Listing 11.1
Inserting windows with

InsertWindow

Windows are normally inserted into the application's desktop
group, since you usually want the window to appear in the area
between the menu bar and status line views without overlapping
either of them. Inserting into the desktop ensures that windows
will be clipped at the desktop boundary.

The best way to insert a window into the desktop is to call the
application object's method Insert Window. Insert Window performs
two validity checks on the window object before inserting it. This
ensures that when it does insert a window, the user will be able to
use that window.

Insert Window is a function. It returns a pointer to the window
passed as a parameter if the window was valid, or nil if the
window wasn't valid. If the window wasn't valid, InsertWindow
disposes of it, so you don't need to access the pointer again. In
fact, in many case you'll probably not even bother to check the
function result. Because Insert Window takes care of both valid and
invalid windows completely, you can take advantage of extended
syntax (the $X+ compiler directive) to treat InsertWindow like a
procedure.

The program in Listing 11.1 shows a typical use of Insert Window
as a procedure. The file INSWIN.P AS on your distribution disks
contains the same program.

program InsWin;
uses Objects, App, Drivers, Views, Menus;

const cmNewWin = 2000;

type
TInsApp = object(TApplication)

WinCount: Integer;
procedure HandleEvent(var Event: TEvent); virtual;
procedure InitMenuBar; virtual;

end;

procedure TInsApp.HandleEvent(var Event: TEvent);
var R: TRect;
begin

inherited HandleEvent(Event);
if Event.What = evCommand then
begin

if Event.Command = cmNewWin then

Turbo Vision Programming Guide

I

Executing modal
windows

Making a window
modal

begin
Inc (WinCount) ;
DesktopA.GetExtent(R) ;
InsertWindow (New (PWindow, Init(R, 'Test window', WinCount)));

end;
end;

end;

procedure TInsApp.InitMenuBar;
var R: TRect;
begin

GetExtent (R) ;
R.B.Y := R.A.Y + 1;
MenuBar := New (PMenuBar, Init(R, NewMenu(

end;

NewItem('-A-dd window', 'F3', kbF3, cmNewWin, hcNoContext,
nil)))) ;

var InsApp: TInsApp;
begin

InsApp.Init;
InsApp.Run;
InsApp.Done;

end ..

Executing a modal window is similar to inserting a window into
the desktop. The two exceptions are that the window becomes the
application's current modal view, and that you can pass a data
record to the window for initializing its controls.

U sing modal windows requires you to understand three tasks:

• Making the window modal
• Ending the modal state
• Handling a data record

Executing a window is simple. Once you've constructed the
window object, you pass it to an application object method
called ExecuteDialog. As the name implies, you'll usually use
ExecuteDialog with dialog boxes, but you can execute any window
object.

ExecuteDialog takes two parameters, a pointer to the window
object, and a pointer to a data record for initializing the window
controls, as described in the next section. A simple use of
ExecuteDialog looks something like this:

Chapter 7 7, Window and dialog box objects 199

MyWindow := New (PWindow, Init(R, 'This will be modal', wnNoNumber));
ExecuteDialog(MyWindow, nil);

Passing nil as the data record pointer bypasses the automatic
setting and reading of control values.

Ending the modal state The only "trick" to dealing with modal windows, actually, is
making sure you provide a way to end the modal state. All
window objects inherit an EndModal method from TGroup, but
you have to make sure your object calls EndModal in response to
some event or events. Dialog box objects have that capacity built
in to their HandleEvent methods by default, but if you want to
execute other window objects, you need to add that yourself.

Handling data records ExecuteDialog automatically supports setting and reading the
window's controls. The second parameter passed to ExecuteDialog
points to a data record for the controls in the window. Data
records are explained in the section "Manipulating controls" on
page 206.

Changing
window defaults

Using standard window
palettes

200

After it executes a window, ExecuteDialog calls the window's
SetData method, passing the data record pointed to by the second
parameter. When the user terminates the window's modal state
without canceling (in other words, calling EndModal with any
command other than cmCancel), ExecuteDialog calls GetData to
read the values of the controls back into the data record.

Once you've constructed a window object, there are several
aspects of its appearance and behavior you can change. This
section explains the following:

• Using standard window palettes
• Changing the window title
• Altering the window fram~
• Using window numbers

Turbo Vision uses three standard color schemes for window
objects. The default color scheme is a blue window with a white
frame, yellow text, green frame icons, and cyan scroll bars. The
alternate color schemes are for gray windows (the default used by
dialog boxes), and cyan windows (which the IDE uses for
message and watch windows).

Turbo Vision Programming Guide

I

I

I~

For complete information on
color mapping, see Chapter

74, "Palettes and color
selection. "

Listing 11.2
Changing the window

palette

Changing the window
title

Altering the window
frame

The color scheme for a given window is controlled by the window
object's Palette field. By default, the window object's constructor
sets Palette to wpBlueWindow. To change to one of the other
palettes, set Palette to either wpCyan Window or wpGray Window.
The window object's GetColor method uses the value of Palette to
determine how to map colors onto the application object's palette.

For example, the constructor in Listing 11.2 creates a window that
uses the cyan window palette.

constructor TCyanWindow.Init(var Bounds: TRect; ATitle: TTitleStr;
ANurnber: Integer);

begin
inherited Init(Bounds, ATitle, ANurnber);
Palette := wpCyanWindow;

end;

{ default window }
change window palette }

The window object stores the title string passed to its constructor
in a field called Title. In general, however, you should access the
title string through the window object's GetTitle method, which
provides the opportunity to limit the length of the title string. In
general, the only part of the program that ever needs to access the
window title is the window's frame object, which calls the
window's GetTitle when it draws itself.

Get Title takes a single integer-type parameter that you can use to
limit the length of the returned string. By default, GetTitle ignores
the length parameter and returns the entire Title string, which the
frame then truncates if it exceeds the specified length. In many
cases, it doesn't matter what part of the string gets truncated.
However, if you want to preserve certain information, you can
override Get Title to return a string of the appropriate length that
retains the crucial information.

You can also use GetTitle to return different titles depending on
certain circumstances. For example, the type TEdit Window nor
mally displays the full path name of the file in the editor. If the file
doesn't yet have a name, GetTitle returns the string 'Untitled'
instead.

By default, a window object constructs an instance of type TFrame
to serve as its frame. Frame objects are very simple, and you will
rarely need to alter them. However, Turbo Vision makes it easy to
change the frame if you want to. .

Chapter 11, Window and dialog box objects 201

The default window object constructor Init calls a virtual method
InitFrame to construct a frame object and assign it to the window's
Frame field. After calling InitFrame, Init checks to make sure Frame
is non-nil, and inserts it if it can.

To construct a different frame, override InitFrame to construct an
instance of some type derived from TFrame and assign that object
to Frame. Init will then insert your derived frame into the window.

Using window numbers The last parameter passed to the default window constructor is a
number, which the window stores in its Number field. If the
number is between 1 and 9, the number appears on the window's
frame, to the right of the title, near the zoom icon. By default, the
keystrokes Alt-1 through Alt-9 select (activate aJ;l.d bring to the front)
the windows with the corresponding numbers.

I

I ~
I

Turbo Vision provides no mechanism for tracking which numbers
you have assigned and which are available. If you want to take I

advantage of window numbers, your application must manage I

the numbers itself. Turbo Vision only handles assigning the
passed numbers to the Number field and selecting the windows I~
when selected with the Alt keystrokes.

Managing
window size

Limiting window size

Turbo Vision also supplies the mnemonic constant wnNoNumber,
which you can pass to a window's constructor to indicate that the
window has no specific number.

By default, users can resize windows'by dragging the bottom
right corner to the desired position or zoom the window to fill the
desktop by clicking the zoom icon. Turbo Vision gives you a
measure of control over both of these behaviors, allowing you to
put limits on the size of windows and set the "unzoomed" size of
the window.

Like all views, the minimum and maximum sizes of a window are
determined by the virtual method SizeLimits. TWindow makes one
important change to SizeLimits, however. By default, a view's min
imum size is zero. TWindow overrides this to set the minimum
window size to the value stored in the variable Min WinSize.

By default, Min Win Size restricts windows to a minimum of 16
columns wide and 6 lines tall, which ensures that the size corner, '
close icon, and zoom icon are all visible, plus at least some of the

Turbo Vision Programming Guide

I

i

I

I

I

I

title. You might want to override SizeLimits for special types of
windows, such as to make sure that scroll bars on the frame are
still usable.

Zooming windows Every window object has a virtual method called Zoom that tog
gles the size of the window between filling the desktop entirely
and a particular "unzoomed" size specified by the window object
field ZoomRect. ZoomRect initially holds the boundaries of the
window when it was constructed. When you zoom a window to
fill the desktop, ZoomRect records the size the window had before
zooming.

Creating window
scroll bars

If you want to change the zooming behavior of a particular
window type (for instance, to always set the unzoomed size to a
particular value), you can override Zoom. You will probably not
want to call the Zoom inherited from TWindow in your descend
ant's method, since TWindow.Zoom sets the value of ZoomRecf to
the current size of the window if the window is not filling the
desktop.

The TWindow object type provides a function for generating
window scroll bars. If you have a windows whose entire contents
need to scroll, calling the method StandardScrollBar constructs,
inserts, and returns a pointer to a scroll bar object on the frame of
the window.

StandardScrollBar takes a single parameter that specifies the kind
of scroll bar you want. If you pass sbVertical, the method returns a
vertical scroll bar on the left side of the window frame. Passing
sbHorizontal produces a horizontal scroll bar on the bottom of the
window frame.

You can combine sbHandleKeyboard with either sb Vertical or
sbHorizontal (using the or operator) to enable the resulting scroll
bar to respond to arrow and page keys in addition to mouse
clicks.

The window constructor in Listing 11.3 uses StandardScrollBar to
create scroll bars for a scrolling interior that fills a window. Notice
that you don't have to insert the window scroll bars as you would
normally.

Chapter 7 7, Window and dialog box objects 203

Listing 11.3
Creating standard window

scroll bars

constructor TScrollWindow.Init(var Bounds: TRect; ATitle: TTitleStr;
ANumber: Integer);

var
R: TRect;
Interior: PScroller;

begin
inherited Init(Bounds, ATitle, ANumber);
GetExtent (R) ;
R.Grow(-l, -1);

{ construct window }
{ get window boundaries }

{ shrink rectangle }
Interior := New(PScroller, Init(R, construct scroller in R }

StandardScrollBar(sbHorizontal or sbHandleKeyboard),
StandardScrollBar(sbVertical or sbHandleKeyboard));

Insert (Interior) ; { insert the scroller
end;

Working with dialog boxes

Dialog box
default attributes

204

Dialog boxes can do anything any other window object can do.
The main differences between dialog box objects and window
objects are that dialog box objects have different default attri
butes, built-in support for modal operation, and adaptations for
handling control objects. This section discusses dialog box
attributes and modal operation. Us~ of controls has its o~n
section, starting on page 205.

The default properties of a dialog box object differ only slightly
from those of other window objects. The dialog box constructor
takes only two parameters instead of three, since dialog boxes
default to having no window number.

The following are the differences between default dialog boxes
and default window objects:

• Gray color scheme (Palette is wpGrayWindow)
• No window number
• Fixed size, so GrowMode'is zero and Flags excludes wfGrow and

wfZoom

These differences affect dialog boxes whether you use them as
modeless windows or execute them as modal dialog boxes.

Turbo Vision Programming Guide

. Modal dialog box
behavior

Handling dialog box
events

Dialog box objects have two methods that streamline their use as
modal views: HandleEvent and Valid.

Dialog box objects handle most events just like regular window
objects, but make two changes you'll only notice when you use
the dialog box as a modal view:

• The Enter and Esc are handled specially.

Enterbroadcasts a cmDefault message to the dialog box, causing
the default button to act as if it had been pressed. Esc is
translated into a cmCancel command .

• Certain commands automatically end the modal state.

The cmOk, cmCancel, cmYes, and cmNo commands all produce
calls to EndModal, with the command passed as the parameter.

Using controls in a dialog box

Adding controls
to a dialog box

Listing 11.4
Adding controls in a dialog

box's constructor

A common use of dialog box objects is as a holder for controls.
Controls are specialized views that allow user interaction such as
push buttons, list boxes, and scroll bars. Although you can insert
controls into a window object, dialog boxes are specifically
adapted to handle them.

Adding controls to a window is just like adding any other sub
views, and it's normally part of the window's constructor. After
calling the inherited window constructor, you can construct and
insert control objects, as shown in Listing 11.4.

constructor TCtlWindow.Init(var Bounds: TRect; ATitle: TTitleStr;
ANurnber: Integer);

var R: TRect;
begin

inherited Init(Bounds, ATitle, ANurnber);
R.Assign(5, 5, 20, 7);
Insert (New (PInputLine, Init(R, 15)));
R.Assign(10, 8, 20, 10);

{ construct the window }

{ insert a control }

Insert (New (PButton, Init(R, 'O-k-', crnOK, bfDefault))); {button}
end;

Chapter 11, Window and dialog box objects 205

How users see tab
order

How the programmer
. sees tab order

Manipulating
controls

To learn about GetOata and
SetOata methods for

individual controls, see
Chapter 72, "Control

objects. "

206

You need to be conscious of the order in which you insert the
controls. The order of insertion establishes the Z-order of the
views, which in turn determines the tab order of the controls. Tab
order is the ord~r in which controls receive focus in a window
when the user presses Tab.

Tab order is important because it determines

• The order of user interaction
• The order of control initialization

A good example of how users see tab order is a data entry form.
When the user finishes typing in one field and presses Tab to . .
move to the next field, focus should move to the next logical
control. If the programmer hasn't carefully considered the order
of the data entry fields, it annoys users and makes them less
productive. '

There are no acc~pted rules governing the order of controls in a
dialog box, but in general, it's a good 'idea to have an order. II

Whether the order goes top-to-bottom or left-to-right, there
should be a discernible pattern. •

As noted earlier, the order of control insertion into a window
determines the tab order, so when you write the initialization
code for a window, be aware of the order in which you create and
insert controls.

An important consideration is not only the actual code that
creates and inserts the controls, but also code that sets and reads
the controls' values, as described in the next section,
"Manipulating controls."

At any time after you construct a window object with controls,
you can set or read the values of all the controls using the
methods SetData and GetData. These methods differ from the
corresponding methods in controls and other views. All groups,
including windows and dialog boxes, inherit GetData and SetData
methods that iterate through their subviews in Z-order, calling the
subviews' GetData or SetData methods.

In the case of a window that contains controls, cqlling its SetData
calls the SetData method of each control, in order, so that instead

Turbo Vision Programming Guide

Defining window data
records

Setting control values

Reading control values

Handling controls in
modal dialog boxes

of having to manually initialize each control, you can have the
window do it for you. The parameter you pass to SetData is a
record that contains a field for each control in the window.

To define a data record for a window or dialog box, do the
following:

• List each control in Z-order
• Determine the data record for each control
• Create a record with a field for each control

A window object's SetData method calls each of its subview's
SetData methods in Z-order. The data record passed to each
subview is a subset of the record passed to the window's SetData.
The first control in Z-order gets the entire record. If it reads a
number of bytes from the record (as reported by its DataSize
method), SetData passes only the remaining part of the record to
the next subview. So if the first control reads 4 bytes, the win
dow's SetData gives the second subview a record starting four
bytes into the original record.

Reading the values of a dialog box's controls is the exact counter
part of setting the values. The dialog box object's GetData calls
Get Data for each subview in Z-order.Each subview gets a chance
to write a number of bytes (determined by its DataSize method)
into the data record for the dialog box.

If the second parameter to ExecuteDialog is non-nil, the application
sets the initial values of controls in the dialog box and reads their
values when the modal dialog box doses.

The second parameter to ExecuteDialog is assumed to be a pointer
to a data record for the dialog box. As with all data records for
setting and reading control values, you are responsible for
ensuring that the indicated record includes the data in the correct
order.

After constructing the dialog box arid performing validity checks,
ExecuteDialog calls the window's SetData method if the data record
pointer is non-nil. When the user terminates the window's modal
state, ExecuteDialog reads the values of the controls back into the
same data record by calling GetData, unless the modal state
terminated with the command cmCancel. In that case, no data
transfer takes place.

Chapter 7 7, Window and dialog box objects 207

Using standard dialog boxes

208

Using message
boxes

Message strings and
parameters

Turbo Vision provides three special kinds of dialog boxes you can
incorporate into your programs. This section explains how to use
each of the following:

• Message boxes
• File dialog boxes
• Change directory dialog boxes

The Turbo Vision unit MsgBox provides two useful functions that
display messages on the screen in a dialog box. Although message
boxes are not elegant, they are useful for showing error messages
or showing information while you debug an application.

The two functions, MessageBox and MessageBoxRect, differ only in
that MessageBoxRect takes a bounding rectangle as one of its
parameters, while MessageBox always uses a 40-column, 9-line box
for its messages. For most uses, MessageBox is easier to use. You'll
probably only need MessageBoxRect if you have to show a very
large message.

In order to use message boxes, you need to understand two kinds
of parameters:

• The message string and its parameters
• Message box flag options

The first two strings passed to MessageBox are the string to display
and a pointer to an array of parameters for the string. MessageBox
passes those two parameters directly to the procedure FormatStr,
which generates an output string by substituting values from the
parameter list into the message string. In most cases, you'll
probably pass a simple string with no parameters, passing nil as
the parameter list.

A simple use of a message box is as an About box:

procedure TMyApplication,ShowAboutBox;
begin

MessageBox ('My Program version 1. 0', nil,
mfInformation or mfOkButton);

end;

Turbo Vision Programming Guide

I

I

I

I,

Setting message box
flags

Using file dialog
-boxes

Using change
directory dialog

boxes

The file STRMERR.P AS on your distribution disks gives a more
complex example of using a message box to display detailed error
messages in a message box.

The last parameter to MessageBox is a bitmapped word describing
the title of the message box and the buttons that should appear in
the box. Turbo Vision defines mnemonic constants for each of the
flags. You almost always pass a combination of two constants, one
setting the title, the other the buttons. For example, the following
code generates a confirmation box with buttons labeled Yes, No,
and Cancel:

MessageBox('Shall I reformat your hard drive now?', nil,
mfConfirmation or mfYesNoCancel) i

All the possible flag values are listed in Chapter 19, "Turbo Vision
reference."

One common dialog box type is the file dialog box, used to
specify the name of a file to open or save. Turbo Vision's StdDlg
unit provides. a standard dialog box you can use for both loading
and saving files.

Another commonly used dialog box is the change directory dialog
box, which enables the user to see the disk's directory structure
and navigate among subdirectories. Turbo Vision's StdDlg unit
provides a standard dialog you can use to let users change the
current directory.

Chapter 7 7, Window and dialog box objects 209

210
Turbo Vision Programming Guide

c H A p T E R

12

Control objects

Control objects are specialized views that perform standard user
interface functions. This chapter describes the operations common
to using all control object types, and provides information on each
of the particular controls:

• Using control objects
• Using text controls
• Using scroll bars
• Using check boxes and radio buttons
• Picking from lists
• Displaying an outline
• Getting user input
• Using history lists
• Labeling controls

Using control objects

Chapter 72, Control objects

You can use control objects like any other views. Most often, you
put controls in dialog boxes for user input, but you can also use
them in windows. Although each kind of control has certain
unique properties, there are three general tasks you need to
understand for all controls:

• Constructing and inserting controls
• Initializing control values
• Setting and reading control values

211

Constructing
control objects

Listing 12.1
Two ways to construct a

control object

Initializing control
objects

212

In general, constructing control objects takes three steps:

• Assigning the bounding rectangle
• Calling the constructor
• Inserting into the owner

You can often combine the second and third steps into a single
statement, depending on whether you assign the control object to
a variable. For example, Listing 12.1 shows two ways to construct
the same static text control.

R.Assign(10, 2, 20, 3);
Control := New(PStaticText, Init(R, 'Borland'));
Insert (Control) ;

R . As sign (10, 2, 2 0, 3);
Insert (New(PStaticText, Init(R, 'Borland')));

In many cases, the second form, without assigning the control to a
variable, is all you need. If you need to access the particular con
trol (for il1stance, to assign it a label object or to manipulate that
particular control from within the program), you should assign it
to a variable.

Once you've constructed a control object, you can alter its proper
ties or set its initial value. For example, the following code
fragment shows how you can set a button object's of Center X flag to
assure that the button stays horizontally centered in its owner
window:

CenterButton := New(PButton, Init(R, 'O-k-', croOK, bfDefault));
CenterButtonA.Options := CenterButtonA.Options or of Center X;
Insert(CenterButton);

Similarly, you might want to give an input line an initial string
value, as this code fragment shows:

InitText := New(PInputLine, Init(R, 30));
InitTextA.DataA := Copy('Borland International', 1, 30);
Insert (InitText) ;

Turbo Vision Programming Guide

Setting and
reading control

values

You generally don't assign initial values to controls this way
when you're using modal dialog boxes. In that case, use a data
record to initialize all the controls at once.

In addition to setting initial values for controls (as discussed in
the preceding section), there are two situations in which you need
to be able to set or read the values of controls:

• When opening or closing a modal dialog box
• At any point in the life of a modeless window or dialog box

Controls take advantage of three methods built into all views to
enable your application to set or read the values of a control on
demand. Using DataSize, GetData, and SetData, you can change
the values of controls or read the current settings as needed.

This section describes in detail how to do the following:

• Set control values
• Read control values
• Customize data transfer

Setting control values You can set the value of a control object at any time by calling its
SetData method. SetData reads data from the record passed as its
argument and sets the control's value accordingly. Since each kind
of control needs somewhat different information, the data records
vary depending on the type of control.

Chapter 72, Control objects

SetData's parameter is an untyped var parameter, so you can pass
virtually anything to the control, but there are. some limits. First,
SetData (and the corresponding GetData method) expects the
record to contain the number of bytes specified by the DataSize
method. For example, the type TCheckBoxes has a data size of 2,
because it expects a data record that holds a Word-type number
(two bytes).

Table 12.1 shows the data size and data records for each of the
standard Turbo Vision controls.

213

Table 12.1
Data transfer records for Control type Data size (bytes) Data interpretation

control objects Button 0 None
Check boxes 2 One bit per check box
Input line MaxLen + 1 A Pascal string with the

length byte preceding the
text

Label 0 None
List box 6 A pointer to the list of

items and the number of
the selected item

Multi-state
check boxes 4 Varies depending on flags
Param text ParamCount * 4 The parameters to

substitute into the text
Radio buttons 2 The ordinal number of

the checked box
Scroll bar 0 None
Static text 0 None

Reading control values Reading the value of a control is the exact inverse of setting the
value. You call the control object's GetData method, passing a data
record, and GetData fills the record with a representation of its
value. The amount and type of data transferred is the same as for
SetData, as shown in Table 12.1.

Listing 12.2
Reading a list box's values

214

For example, to find out which item in a list box is currently
selected, use code similar to that in Listing 12.2.

type
TListBoxRec = record

ListPtr: PCollection;
Selectedltem: Word;

end;

function GetSelectedltem: Word;
var Listlnfo: TListBoxRec;
begin

define data.record for a list box}
{ pointer to the list of items }

{ number of selected item }

ListBox.GetData(Listlnfo) ;
GetSelectedltem := Listlnfo.Selectedltem;

end;

set record from control }
{ return selected item }

Most of the time, you won't need to read the values of individual
controls. More likely, you'll read the values of all the controls in a
window or dialog box, using the window or dialog box object's
GetData method.

Turbo Vision Programming Guide

I

I

I-

I·
I

I

Customizing data
transfer

Listing 12.3
Customizing data transfer for

an input line

Turbo Vision's control types are designed for general purpose use,
so they might not be the most efficient tools for a particular appli
cation. You can derive control objects that use more specialized
data records for setting and reading their values.

For example, if you have a program that uses input lines for
numeric input, it's not very efficient to have to transfer an entire
string to and from the object. It makes much more sense to use a
numeric value. Listing 12.3 shows the data transfer methods for a
simple numeric input line that handles Word-type values.

type
TWordInputLine = object (TInputLine)

function DataSize: Word; virtual;
procedure GetData(var Ree); virtual;
procedure SetData(var Ree); virtual;

end;

function TWordInputLine.DataSize: Word;
begin

DataSize := SizeOf(Word);
end;

procedure TWordInputLine.GetData(var Ree);
var ErrCode: Integer;
begin

Val (DataA
, Word(Ree), ErrCode);

end;

procedure TWordInputLine. SetData (var Ree);
begin

Str(Word(Rec), DataA
);

end;
{ set Data from Rec }

You can also customize data transfer for input lines by using data
validation objects. Chapter 13, "Data validation objects," explains
how to use validators.

Displaying static text

Chapter 72, Control objects

Static text objects are the simplest kind of controls. The type
TStaticText encapsulates a text string in a view, displaying the'
specified text in the bounding rectangle of the view. A static text
object is not designed to display text that changes often, but rather
to show a fixed string in a fixed position. Chapter 15, "Editor and

215

Displaying plain
text

text views," describes how to display large amounts of dynamic
text. By default, static text controls are not selectable, so the user
never actively interacts with them.

Turbo Vision also provides an object, TParamText, that displays
static text in a view, but allows you to substitute parameters into
the text for simple text formatting.

The rest of this section describes how to use the two static text
controls:

• Displaying plain text
• Displaying parameterized text

The basic TStaticText object handles strings that contain only
standard ASCII characters and two formatting control characters.
There are only two tasks you need to understand to use static text
objects:

• Formatting static text
• Constructing static text controls
• Setting and reading static text

Formatting static text Static text objects allow two kinds of formatting. A Ctrl+M
character (#13) in the text indicates a line break, so you can specify
multiple text :lines in a single string. Lines that begin with Ctrl+C
(#3) center themselves horizontally within the view.

For example, the string iTurbo Text'#13'Version 0.9' displays as

Turbo Text
Version 0.9

The string #3' Turbo Text'#13'#3Version 0.9' displays as

Turbo Text
Version 0.9

Constructing static text· The constructor for static text controls takes only two parameters:
views the bounding rectangle and the text for the control.

216

constructor TStaticText.lnit(var Bounds: TRect; AText: String);

The most important thing to remember is that the bounding
rectangle must be large enough to display the entire text string,
since text that goes outside the bounds will be clipped, or hidden.

Turbo Vision Programming Guide

Setting and reading
static text

Displaying
parameterized

text

Formatting
parameterized text

That means that multiple-line static text controls need to include
enough lines on the screen for all the lines of text, and each of the

, lines must be long enough to hold all of its text.

For example, the smallest rectangle that can display the string
'Borland' is assigned with

R.Assign(O, 0, 7, 1) i

To display 'Borland'#13'International', you need to assign a
rectangle with at least two lines and thirteen columns:

R.Assign(O, 0, 13, 2)i

Static text controls determine the text to draw by calling a virtual
method called GetText. You can therefore change the way it dis
plays text by overriding that one method (as, for example, param
eterized text controls do).

By default, static text controls can't set or read new values. The
static text string is set at initialization, and neither the GetData nor
Set Data methods transfers any data. DataSize returns zero.

The type TParamText allows you a bit more flexibility than the
plain static text control. In addition to displaying text strings, a
parameterized static text control lets you pass it varying param
eters, which it formats into its text using the FormatStr procedure.

The only two tasks you handle differently with parameterized
text controls than with static text controls are

• Formatting the text
• Setting and reading the control

Parameterized text uses the procedure FormatStr to substitute
parameters into an otherwise static text string. Each parameter is
four bytes, passed either in an array or in a record. Special for
matting characters in the text string tell FormatStr how to interpret

, what each parameter means. Each parameter can represent a
Longint-type number, a pointer to a string, or a character.

For example, suppose you have a record with two fields: a pointer
to the name of a file, and the size of that file in bytes:

Chapter 72, Control objects 217

218

Constructing
parameterized text

controls

Setting and reading
parameterized text

type
TFilelnfoRec = record

FileName: PString;
FileLength: Longint;

end;

var Filelnfo: TFilelnfoRec;

Using FormatStr, you can format a string that includes both the
file name and size, based on the values in the record:

FormatStr(ResultStr, 'File: %-12s, Size: %9d', Filelnfo);

To use this formatting in a parameterized text control, assign
'File: %-12s, Size: %9d' as the control's text string, and tell it to
substitute two parameters.

Parameterized text control constructors take only one more
parameter than static text controls. In addition to the bounding
rectangle and text string, you also pass the number of parameters
to substitute into the text:

-
constructor TParamText. Ini t (var Bounds: TRect; AText:. String;

AParamCount: Integer);

Init allocates enough space for AParamCount parameters. The
parameters get their values in the method SetData. SetData copies
DataSize bytes from the passed data record into the parameter list
of the control. Be sure SetData is called before drawing the control.

The substitution of parameters into text takes place in the virtual
GetText method. The Draw method inherited from TStaticText calls
GetText to determine what text to display. TParamText's GetText
calls FormatStr to merge the parameters in the parameter list into
the text string and returns the result.

Users never get a chance to change the values of the parameters to
a parameterized text control, so there's no reason to ever read the
values froma TParamText object. TParamText therefore uses the
GetData method it inherits from TStaticText, which does nothing.

On the other hand, it's important that you be able to set the
parameters, since that's what gets displayed. SetData therefore
copies enough data for all the parameters from the given data
record into its parameter list.

Turbo Vision Programming Guide

Using scroll bars

Constructing
scroll bar controls

. Manipulating
scroll bar controls

Chapter 12, Control objects

A scroll bar is a visual representation of a range of numbers. The
user manipulates the current value within that range (represented
by the indicator, or "thumb") by clicking the arrows at the ends of
the scroll bars, clicking the "page" areas between the arrows, or
directly moving the indicator.

Scroll bars give the user the ability to move quickly through a
large amount of information, such as scrolling through the text of
a document. Most scroll bars in Turbo Vision act closely with
another view, such as a scrolling view or a list box. Most of the
time you only need to construct a scroll bar object and connect it
to the other view; the other view takes care of everything else.

There are only three kinds of tasks you perform on scroll bar
controls:

• Constructing scroll bar controls
• Manipulating scroll bar controls
• Responding to scroll bars

Constructing a scroll bar control object is very simple. All you
have to specify is a single parameter, the bounding rectangle. If
the rectangle has a width of one character, the resulting scroll bar
is a vertical scroll bar. Any other size produces a horizontal scroll
bar.

All the other parameters of the scroll bar control are set after
construction, usually by an associated view. For example, when
you construct a scroll bar for a list box, you insert the scroll bar
into the owning window, then pass a pointer to the scroll bar as a
parameter to the list box constructor. The list box object then takes
care of setting the range of the scroll bar to values appropriate to
the size of the list box and its list of items .

Scroll bar objects provide three methods you can call to directly
manipulate the settings of a scroll bar: SetRange, SetStep, and
SetValue. SetRange assigns the minimum and maximum values for
the scroll bar's range. SetStep sets the amounts the value changes

219

Responding to
scroll bars

Listing 12.4
TScroller's response to scroll

bar changes

220

when the user clicks the page areas and arrows. SetValue sets the
value of the scroll bar indicator.

All three methods call a more general method, SetParams, which
takes care of setting all the parameters for the scroll bar, then
redraws the view and broadcasts a message to alert other views if
the scroll bar position changed.

Other views rarely just poll a scroll bar to find out its value. The
scroll bar object itself broadcasts a message to its owner when its
value changes, and other objects respond to that broadcast by
asking for the scroll bar value. .

When the scroll bar value changes, the scroll bar object calls its
ScrollDraw method, which broadcasts the following message:

Message (Owner, evBroadcast, cmScrollBarChanged, @Self)i

Objects responding to scroll bar changes need to check the InfoPtr
field of the broadcast event that notifies them of the scroll bar
change. If InfoPtr points to a scroll bar to which that view is sup
posed to respond, it should then ask the scroll bar for its value
and use that value to update its own appearance. Listing 12.4
shows how TScroller checks to see if either of its associated scroll
bars has changed.

procedure TScroller.HandleEvent(var Event: TEvent) i

begin
inherited HandleEvent(Event)i
with Event do
if (What = evBroadcast) and (Command = cmScrollBarChanged) and

((InfoPtr = HScrollBar) or (InfoPtr = VScrollBar)) then
ScrollDraw;

procedure TScroller.ScrollDraw;
var D: TPoint;
begin

if HScrollBar <> nil then D.X := HScrollBarA.Value
else D.X := 0;
if VScrollBar <> nil then D.Y := VScrollBarA.Value
else D.Y := 0;

Turbo Vision Programming Guide

Using cluster objects

Working with

Turbo Vision provides three kinds of controls that appear in
clusters, or groups of related controls: check boxes, radio buttons,
and multi-state check boxes. Although you can have a cluster that
holds only one check box, in most cases you have more than one.
In fact, although you can have a single radio button, it serves no
purpose, since the only way to "unpress" a radio button is to
press another button in the same cluster.

cluster objects There are several tasks that apply equally to all cluster objects:

Constructing cluster
objects

• Constructing a cluster
• Pressing a button
• Telling if a button is checked
• Disabling individual buttons

Cluster object constructors take only two parameters: a bounding
rectangle and a linked list of string items. When you assign the
bounding rectangle, be sure to allow room for the box to the left
of the text and for all the strings in the list.

The linked list of string items usually comes from a series of
nested calls to NewSItem, a function which allocates a dynamic
string on the heap with a pointer to the next such item. For
example, to construct a set of three check boxes, use the following
code:

var Control: PView;

R.Assign(ll, 6, 22, 9);
Control := New (PCheckBoxes, Init(R,

NewS It em (' -R-ed' ,
NewSltem('-G-reen' ,
NewSltem('-B-lue' , nil)))));

{ set boundaries }
{ construct cluster }

{ first item }
{ next item }
{ last item }

Pressing a button Although you rarely need to do so, you can simulate pressing an
individual item in the cluster by calling the cluster object's Press
method. Press is a virtual method, so each kind of cluster can react
appropriately. Press takes a single parameter, the number of the
item you want to press. The items have sequential numbers,

Chapter 72, Control objects 221

222

Telling if a button is
checked

Disabling individual
buttons

Using check
boxes

Using radio
buttons

starting with zero. Calling Press has the same effect as clicking the
item with the mouse.

Clusters have a virtual method called Mark that is the converse of
Press. Mark takes a single parameter indicating the item you want
to know about and returns True if the item is marked. Mark is not
meaningful for multi-state check boxes.

Cluster objects contain a mask indicating whether individual
items in the cluster are disabled. EnableMask is a Longint-type
bitmapped field, with each bit representing the state of one of the
clustered buttons. Since different descendants of TCluster
interpret their Value fields differently, there isn't a one-to-one
correspondence between the bits in EnableMask and the bits in
Value.

Each bit in EnableMask represents one of the first thirty-two items
in the cluster, with the low-:-order bit being the first item (item
number 0), and the high-order bit being the 32nd item (item
number 31). If the bit is set, the item is enabled. By default, cluster
objects set all the bits (EnableMask is $FFFFFFFF), so all items are
enabled. You can therefore disable any or all items by toggling the
appropriate bit or bits.

If EnableMask is 0, meaning that none of the items are enabled, the
cluster sets its state so that the whole control is not selectable.

Check box clusters interpret the lower half of the Value field as 16
separate bits, each one corresponding to one check box. If the bit
is set, the box is checked. If the bit is clear, the box is unchecked. If
you need more than 16 check boxes in a single cluster, you need to
derive a new type from TCheckBoxes that uses all 32 bits in Value.

Since only one of a set of radio buttons in a cluster is checked at a
time, clusters interpret the Value field as an integer number, the
value of which indicates the ordinal number of the checked item.
That means that in theory, you could have over 65,000 radio
buttons per cluster. Since you wouldn't be able to fit that many in
a view, the practical limit is considerably smaller.

Turbo Vision Programming Guide

I

\

I~

Using mUlti-state
check boxes

Picking from lists

Working with list

Multi-state check boxes work just like regular check boxes, except
they can have states other than chetked and unchecked. For
example, you can represent checked, unchecked, and indeter
minate states, or cycle through several possible values.

Because representing more than two states requires more than
one bit, the interpretation of the Value field is more complicated
for multi-state check boxes. Unlike check boxes and radio buttons,
multi-state check boxes override the constructor inherited from
TCluster:

constructor Init(var Bounds: TRecti AStrings: PSltemi
ASelRange: Bytei AFlags: Wordi const AStates: String)i

When you construct a set of multi-state check boxes, you must
indicate how many states each box can have (ASeIRange), and how
many bits in Value represent each item (AFlags). Turbo Vision
provides the constants cfOneBit, cfTwoBits, cfFourBits, and
cfEightBits that you can pass to represent one, two, four, or eight
bits per check box, respectively. The string passed in AStates must
contain a character to represent each state of the check box.

Turbo Vision provides a number of objects for managing lists,
including several views that allow the user to choose items from
lists. This section describes the abstract list viewer object,
TListViewer, and the list box control object, TListBox. The next
section describes a more specialized list view, the outline viewer.

This section describes the following tasks:

• Working with list viewers
• Using list box controls

viewers You'll never actually create an instance of TListViewer, but Turbo
Visionis list box control inherits much of its behavior from the
abstract list viewer, and it's likely that you'll want to create list
viewers of your own.

Chapter 72, Control objects 223

224

The abstract list viewer in TListViewer has everything you need to .
view and pick from a list, except the list. That is, it knows how to
display a list of items in a view, scroll through the list, select
items, and so on, but it doesn't know anything about the items it
would display. Instead, it defines a number of virtual methods
you'll override to customize the generic object for specific lists.

The simplest example of a working list viewer is a list box control
that uses a collection object as its list (usually a string collection).
The list you display can be any sort of list, such as an array.

To use list viewer objects, you need to understand the following
tasks:

• Constructing a list viewer
• Getting list item text
• Responding to list selections

Constructing a list Constructing a list viewer object is quite simple. The default list
viewer viewer takes four parameters: a bounding rectangle, the number

of columns to display, and pointers to two scroll bar objects.

constructor TListViewer.Init(var Bounds: TRecti ANumCols: Integeri
AHScrollBar, AVScrollBar: PScrollBar) i

When you derive a usable list viewer from TListViewer, you'll
probably redefine the constructor to make some assumptions for
you. For example, consider the object TFileList, which supplies the
two-column list of files in the file dialog box in the StdDlg unit.
TFileList's constructor takes only two parameters, the bounding
rectangle and one scroll bar, because it will always have two
columns a nil vertical scroll bar.

Getting list item text TListViewer provides an abstract method called GetText. The list
viewer's Draw method calls GetText for each item it needs to
display, passing the number of the item. When you create a list
viewer and supply it with a list, you are responsible for over
riding GetText to return the string you want displayed in the list.

For example, suppose you were building a list viewer to show the
members of a small club. Your list consists of an array of records,
with each record consisting of information about one member,
such as this:

Turbo Vision Programming . Guide

Responding to list
selections

Listing 12,5
Responding to a list box

broadcast

Chapter 12, Control objects

type
TMemberInfo = record

FirstName, LastName: string[25];
PhoneNumber: string[20];

end;

var
MemberArray: array [0 , .10] of TMemberInfo;

To display the names of the members in the list in the form "Last
name, first name" you have to override GetText:

function TMemberList.GetText(Item: Integer; MaxLen: Integer): String;
begin

with MemberArray[Item] do
Get Text := Copy (LastName + " ' + FirstName, 1, MaxLen);

end;

When the user selects an item in a list viewer, either by double
clicking an item or by moving the focus with arrow keys and
pressing Spacebar, the list viewer object broadcasts a command
event to its owner window with the command cmListItemSelected,
passing its address in the InfoPtr field. Any other object that needs
to know what item the user just selected can then query the list
viewer as to which item is focused.

For example, to have an input line that displays the cu,rrently
selected item from a list viewer, the input line's HandleEvent
method needs to respond to cmListItemSelected broadcasts, as
shown in Listing 12.5. The code in Listing 12.5 comes from the file
PICKLIST.P AS included on your distribution disks.

procedure TPickLine.HandleEvent(var Event: TEvent);
begin

inherited HandleEvent(Event); { perform as normal input line
if Event.What = evBroadcast then { watch for broadcast ...

end;

if Event.Command = cmListItemSelected then { ... of the command
begin

with PListBox(Event.InfoPtr)A do
DataA := Get Text (Focused, 30);

{ talk to broadcaster ...
{ ... and get focused text

{ update the input line
{ indicate that event was handled

DrawView;
ClearEvent(Event) ;

end;

225

226

Using list box
controls

Building the list of
strings

Constructing the list
box

Note that controls don't get broadcast messages by default. You
need to enable the receiving of broadcast messages by including
broadcasts in the control's event mask:-

R.Assign(5, 2, 35, 3);
Control := New(PPickLine, Init(R, 30));
ControlA,EventMask := ControlA,EventMask or evBroadcast;
Insert(Control);

The list box object, TListBox, is a useful descendant of TListViewer
that stores its list of items in a string collection. For many uses,
you can use the default list box object with no modifications. If
you have a list that doesn't store its ihformation in simple strings,
you can derive a different kind of list box.

To use the default list box object, do the following:

• Build the list of strings
• Construct the list box
• Assign the list to the box
• Set and read the control values

By default, list box objects expect string collections as their lists of
items. The List field that points to the associated list is of type
PCollection, though, so you can assign the li~t box any sort of
collection.

If you use anything other than a string collection, however, you
have to override the list box's GetText method to return a string
based on the specified item in the collection. For example, if your
collection contains numbers, you override GetText to convert the
numbers to strings so the list box can display them.

Constructing a list box object takes three parameters: a bounding
rectangle, the number of columns in the box, and a pointer to a
vertical scroll bar:

constructor TListBox.Init(var Bounds: TRect; ANumCols: Word;
AScrollBar: PScrollBar);

The list box's list is not part of the constructor. You're only
constructing the view part. Assigning the list is a separate step.

Turbo Vision Programming Guide

I

I

Assigning a list to a list
box

Listing 12.6
Contructing a list box and

assigning the list, from
PICKLlSlPAS

Setting and reading list
box values

Chapter 72, Control objects

Once you have a list box view, you can assign it a list of items.
List box objects have a virtual method NewList that enables you to
assign a list to the list box at any time. NewList disposes of any list
already assigned, then assigns the new collection as the current
list, adjusting the list box's range and focusing the first item in the
list.

constructor TPickWindow.Init;
var

R: TRecti
Control: PViewi
ScrollBar: PScrollBari

begin
R . As sign (0, 0, 40, 15) i

{ generic pointer for controls
{ pointer for list box's scroll bar

inherited Init(R, 'pick List Window') i

Options := Options or ofCenteredi
R.Assign(5, 2, 35, 3) i

assign window bounds
{ construct window

{ center window }
bounds for display line }

{ construct line } Control := New(PPickLine, Init(R, 30)) i

ControlA.EventMask := ControlA.EventMask or evBroadcast;
Insert(Control)i
R. As sign (4 , 1, 13, 2);
Insert (New (PLabel , Init(R,
R.Assign(34; 5, 35, 11);
New(ScrollBar, Init(R)) i

{ insert input line
{ bounds for label

'Picked:', Control)))i {insert label
{ bounds for scroll bar
{ construct scroll bar

Insert (ScrollBar) ; { insert scroll bar
R.Assign(5, 5, 34, 11); { bounds for list box
Control := New (PListBox, Init(R, 1, ScrollBar))i {construct box
Insert (Control) i { insert list box
PListBox(Control)A.NewList(New(PCityColl, Init))i {assign list
R.Assign(4, 4, 12, 5); { bounds for label
Insert (New (PLabel , Init(R, 'Items:', Control))); {insert label
R.Assign(15, 12, 25, 14); { bounds for button
Insert (New(PButton, Init(R, '-Q-uit', cmQuit, bfDefault))) i

end;

The data record for setting or reading a list box comes in two
parts, a pointer to the collection holding the list box's items, and a
number indicating the number of the selected item. For example,
you could define a record type:

type
TListBoxRec = record

Items: PStringCollection;
Selected: Integer;

end;

227 .

By default, the SetData for TListBox calls NewList, passing the
string list pointer from the data record to replace any existing list,
then sets the Focused field to the selected item from the record.

Displaying outlines

The program OUTDIR.PAS on
your distribution disks creates

and displays an outline of the
directories on a disk.

Basic outline use

Turbo Vision provides two useful view objects for displaying
outlines. One is an abstract outline viewer, the other displays an
outline of branching nodes. The relationship of TOutlineViewer,
the abstract view, and TOutline, the useful control, is much like
that of the abstract TListViewer and TListBox. TOutlineViewer
defines all the behavior necessary to display an outline, but
knows nothing about the items it might display. TOutline is a
specialized outline viewer that displays strings in a branching tree
of nodes.

To use outline views, you need to understand the following
things:

• The basic behavior of an outline view
• Specific outline tasks

Like a list box, most of the behavior of an outline view is
automatic, handled by the methods inherited from the abstract
outline viewer object type. The basic actions include the
following:

• Graphical hierarchy
• Expanding and contracting
• Iterators
• Focus and selection behavior
• Updating

Graphical hierarchy The outline viewer knows how to display three different kinds of
graphic lines to show the hierarchical relationships between the
items in the outline. You can change the way the outline displays
this graphic by overriding the method CreateGraph.

228 Turbo Vision Programming Guide

Expanding and
contracting

Iterating items

Focus and selection
behavior

Updating the outline

Using the outline

The user can hide or reveal detail about items with subitems
using the mouse or keyboard. In some cases, you might want to
adjust the display under program control, by calling the methods
Adjust and ExpandAll.

Outline views have iterator methods called FirstThat and For Each
that operate much like the like-named TGroup methods. Outline
viewers use the iterators internally, but you might find uses for
them in your applications.

When an item in the outline gets focused, the event handler calls a
method called Focused. When the user selects an item, the event
handler calls Selected. If you need to perform a particular action
when focus changes or the user selects an item, you can override
Focused or Selected.

Whenever the information in the outline changes, you need to call
the Update method. Update makes sure as many lines as possible
show in the view and that scroll bars stay synchronized with the
displayed data.

views To use outline views, you need to understand the following tasks:

Creating the outline
tree

Chapter 72, Control objects

• Creating the outline tree
• Constructing the outline view
• Getting the selected node
• Disposing of an outline

In order to display an outline, you have to have a tree of items for
the outline. A tree is much like a linked list, but it branches, so
that each node in the tree has not only a pointer to the next item
in the list, but also the possibility of subentries. Subentries are
called child nodes, and a node with child nodes is called a parent
node. The base of an outline tree is the root node, the node which
has no parent. The TOutline object displays an outline of a tree
made of nodes of type TNode.

TNode is a simple record. It contains a pointer to the next node at
its same level, the text string it displays in the outline, a pointer to

229

Constructing the
outline view

Getting the selected
node

Disposing of an outline

the first of its child nodes, and a Boolean flag indicating whether
those children are visible.

To create a node, call the function NewNode. NewNode allocates a
node, given a string and pointers to the child list and next node.
To construct a tree of nodes, you can nest calls to NewNode.

Constructing an outline view is quite simple. The constructor
takes only four parameters: a bounding rectangle, horizontal and
vertical scroll bars, and a pointer to the root node of an outline
tree.

The outline viewer's Foe field holds an integer number indicating
how far down from the top of the outline the focused item is
currently located. If Foe is 0, the root is focused. The GetNode
method takes an integer number and returns a pointer to the node
at that position. GetNode(Foe), therefore, returns the focused node.

TOutline's Done destructor takes care of disposing of the associ
ated outline tree before disposing of the view object. Nodes
allocated with NewNode need to be disposed of with DisposeNode.
TOutline.Done calls DisposeNode(Root), which recursively disposes
of the entire list.

Reading user input

230

Input line objects enable the user to type and edit single lines of
text. To get more than a single line of input, use the memo field
control, described in Chapter 15, "Editor and text views."

Input line objects support full user editing with the mouse and
keyboard, cutting and pasting. to the clipboard (if any), and data
validation of various kinds. This section explains basic use of
input line controls. Input validation is explained in Chapter 13,
"Data validation objects."

To use an input line control, you need to

• Construct the input line view
• Set and read the control value
• Manipulate the control values

Turbo Vision Programming Guide

Constructing
input line controls

Setting and
reading input

lines

Manipulating
input lines

Using history lists

Chapter 72, Control objects

Constructing an input line requires only two parameters: the
bounding rectangle for the view and the maximum length of the
input string:

constructor TInputLine.Init(var Bounds: TRecti AMaxLen: Integer) i

The input line allocates space on the heap for the maximum string
size and points it's Data field to that memory. You can manipulate
Data" as a normal string. If the full length of the string won't fit in
the view, the user can click left or right scrolling arrows to scroll
the input line text. Note that you need to allow for those two extra
characters in the size of the view.

The data record for setting or reading an input line control is a
string. The size of the string must be the same as the maximum
size of the text for the input line. Thus, if you construct an input
line control with a maximum length of 10, the data record must be
of type string[10].

You can directly manipulate certain fields of an input line object.
For example, you can change the contents of the text string
pointed to by Data, although it must not exceed the length
specified by MaxLen. MaxLen must never change after construct
ing the object, because the destructor uses MaxLen to deallocate
the memory assigned to Data.

You can also directly change CurPos, the position of the cursor in
the string, and Firstfos, the index of the first character displayed
in the view (which varies as the user scrolls the text). You should
not change the SelStart and SelEnd fields. If you need to change
the selected text, use the method SelectAll.

History lists enable the user to easily recall previous entries into
an input line. The history control itself, of type THis tory, is a small
view located next to the input line. When the user clicks the his-

23}

Defining history
lists

Managing the history
block

The history block variables
and the procedures that

manipulate them are in the
HistUst unit.

232

tory view, the history object displays the list of previous entries in
a history viewer in a history window. THistoryViewer and
TFIistory Window are handled automatically by the history object,
so you don't need to work with them directly.

The standard application object initializes the history list system
during its own initialization when it calls the procedure
InitHistory. Once that's done! you can link history lists to any
input lines in your application.

To use history lists, you need to understand the following tasks:

• Defining a history list
• Constructing a history view

The application's history list subsystem sets aside an area in mem
ory called the history block to store history items for all history
lists. A history list consists of string items and their associated ID
numbers within the history block.

When the user clicks the history view to display the history for a
given input line, Turbo Vision scans the history block for all
entries associated with the particular history ID for that input line
and displays them in a history window.

The history block acts as a first in, first out (FIFO) list of items. As
long as there is room in the history block, new items are added to
the block. When the block fills up, the oldest history items are
deleted to make room for new ones.

Because all history lists share the same block, a frequently-used
list could cause the items from other lists to scroll from the history
block. If you plan 'to use a lot of different history lists in an appli
cation, increase the value of the variable HistorySize before
initializing the application. HistorySize determines the size of the
history block.

You can save and restore the history block along with your
program's objects on a stream. The procedures StoreHistory and
LoadHistory take care of all the details for you.

Turbo Vision Programming Guide

Constructing a
history view Constructing a history view takes only three parameters: a

bounding rectangle, a pointer to the associated input line, and the
ID of a history list.

constructor THistory.lnit(var Bounds: TRecti ALink: PlnputLinei
AHistoryID: Word) i

The linked input line is usually the line located adjacent to the
history view. The history ID is the number you want to associate
with items entered in this input line. Different input lines can
share the same history list by using the same history ID number. If
you want to ensure that each input line has its own history list, be
sure to assign unique history IDs.

Once you construct and insert the history view, the management
of the history list and the association with the input line are auto
matic. The history list is persistent. If you destroy the history
object and construct another history view with the same ID, all
items previously entered in that history list will still be there, as.
long as they haven't been scrolled out of the history block.

Labeling controls

Chapter 72, Control objects

Label objects, using type TLabel, serve two functions. They pro
vide a description of another control, such as a group of radio
buttons or an input line, and they enable the user to select the
control with the mouse or keyboard without affecting the selected
control.

Label objects always serve as partners to other controls. For
example, if you have an input line in a dialog box, there's no
indication of what the user is supposed to type in the line if the
line has no label. Label objects provide the identifying text for the
other control and also enable the user to select the associated
control by selecting the label. If you just want to display some text
in a window or dialog box, use a TStaticText or TParamText object
instead of a label.

In order to make use of label objects, you need to understand
three things:

233

Constructing
label objects

Listing 12.7
Constructing a label object

Selecting controls
with labels

234

• Constructing label objects
• Establishing focus
• Assigning shortcut characters

The constructor for label objects is very simple. It takes only three
parameters: a bounding rectangle, a text string for the label, and a
pointer to the control object being labeled. A typical constructor
for a label object follows the constructor for its associated control,
as shown in Listing 12.7.

constructor TYourDialog.Init(var Bounds: TRect; ATitle: TTitleStr);
var

R: TRect;
Control: PView;

begin
inherited Init(Bounds, ATitle);
R.Assign(10, 2, 40, 3);
Control := New (PInputLine, Init(R, 30)); (construct control
Insert (Control) ; { insert the control
R . As sign (I, 2, 1 0, 3);
Insert (New(PLabel, Init(R, 'Flavor:', Control))); {link a label

end;

Note that you don't need to assign the label object to a variable,
since inserting it into the dialog box makes it a subview which the
dialog box object will dispose when you call its destructor. The
associated control, however, you assign to a temporary variable so
you can establish the link to the label.

Labels themselves never get the input focus, since the user can't
really interact with the label. When the user clicks the label or
selects the label by its shortcut key, the associated control actually
gets focus, and the associated label shows itself as active. Con
versely, if the user selects the associated control, giving it the
focus, the associated label sees the cmReceivedFocus broadcast,
recognizes that it came from its associated control, and again
shows itself as active.

Labels and their associated controls, therefore, always show up as
selected or unselected together. From the user's point of view,
they are a single unit.

Turbo Vision Programming Guide

I.

Assigning shortcut
characters When you assign the text for a label object, you can highlight a

character as a shortcut. Be careful to avoid asigning several
controls with the same shortcut, as only the first one in Z-order
will get selected when the user presses the shortcut key.

Chapter 72, Control objects 235

236
Turbo Vision Programming Guide

I

I

I

I

,I
I

C' H A P T E R

13

Data validation objects

Turbo Vision gives you several flexible ways to validate the
information a user types into an input line by associating
validator objects with the input lin~ objects. Using valida tor
objects makes it easy to add validation to existing Turbo Vision
applications or to change the way a field validates its data.

This chapter covers three topics related to data validation:

• The three kinds of data validation
• Using data validator objects
• How valida tors work

Data validation is handled by the Valid method of view objects.
You can validate the contents of any particular input line or data
screen at any time by calling the object's Valid, but Turbo Vision
also provides mechanisms to automate data validation. Most of
the time, you'll find that data validation takes almost no effort on
your part as programmer.

The three kinds of data validation

There are three distinct types of data validation, and Turbo Vision
supports all three directly. The three kinds of data validation are

• Filtering input
• Validating each item
• Validating complete screens

Chapter 13, Data validation objects 237

Filtering input

Validating each
field

238

Note that these methods are not mutually exclusive. A number of
the standard valida tors combine the different techniques in a
single validator.

It's important to remember that the validation is handled by the
valida tor object, not by the input line object. If you've already
created a customized input line object for a specialized purpose,
you've probably already duplicated capability that's built into
input lines and their validators.

The uHow valida tors work" section of this chapter describes the
various ways in which input line objects automatically call on
valida tor objects.

The simplest way to ensure that a field contains valida data is to
ensure that the user can only type valid data~ Turbo Vision
provides filter valida tors that enable you to restrict the characters
the user can type. For example, a numeric input field might I

restrict the user to typing only numeric digits. ~

Turbo Vision's filter validator object provides a generic mechan-
ism for limiting the characters a user can type in a given input
line. Picture validator objects can also control the formatting and
types of characters a user can type.

Sometimes you'll find it necessary to ensure that the user types
valid input in a particular field before moving to the next field.
This approach is often called "validate on Tab," since pressing Tab
is the usual way to move the input focus in a data entry screen.

An example is an application that performs a lookup from a
database, where the user types in some kind of key information in
a field, and the application responds by retrieving the appropriate
record and filling the rest of the fields. In such a case, your appli
cation needs to check that the user has typed the proper
information in the key field before acting on that key.

The Options field of Turbo Vision views has a bit that control
individual field validation. If a view's ofValidate bit is set, it
validates its contents when the view loses the input focus. If the
data in the field is invalid, the validator alerts the user and keeps
the focus in the field until the user provides valid data.

Turbo Vision Programming Guide

Validating full
screens You can handle validation of full data screens in three different

Validating modal
windows

Validating on focus
change

Validating on demand

ways:

• Validating modal windows
• Validating on focus change
• Validating on demand

When a user closes a modal window, the window automatically
validates all its subviews before closing, unless the closing
command was emCaneel. To validate its subviews, the window
calls each subview's Valid method, and if each returns True, the
window can close. If any of the subviews returns False, the
window is not allowed to close.

A modal window with invalid data can only be canceled until the
user provides valid data.

As with any view, you can set a window's ofV alidate option flag. If
. you use a modeless data entry window, you can force it to vali
date its subviews when the window loses focus, such as when
you select another window with the mouse. Setting a window's
ofV alidate flag prevents you from moving to another window that
might act on the data entry window's data before you've validated
those data.

You can tell a window to validate all its subviews at any time by
calling its Valid method, usually passing emClose as the parameter.
Calling Valid (em Close) essentially asks the window "If I told you
to close right now, would all your fields be valid?" The window
calls the Valid methods of all its subviews in Z-order and returns
True if all of them return True.

Calling Valid does not obligate you to actually close the window.
For example, you might call Valid(em Close) when the user presses
a Save button, ensuring the validity of the data before saving it.

You can validate any window, modal or modeless, at any time.
Only modal windows have automatic validation on closing,
however. If you use modeless data entry windows, you need to
ensure that your application calls the window's Valid method
before acting on entered data.

Chapter 73, Data validation objects 239

Using a 'data validator

Constructing
validator objects

Listing 13.1
A typical validator

constructor

Adding validation
to input lines

Listing 13.2
Adding data validation to an

input line

240

Using a data validator object with an input line takes only two
simple steps: '

• Constructing the valida tor object
• Assigning the valida tor to an input line

Once you've constructed the valida tor and associated it with an
input line, you never need to interact with the valida tor object
directly. The input line knows when to call validator methods at
the appropriate times.

Since valida tors are not views, their constructors require only
enough information to establish the validation criteria. For
example, a numeric range valida tor object takes two parameters:
the minimum and maximum values in the valid range, as show in
Listing 13.1.

.constructor TRangeValidator.Init(AMin, AMax: Integer);

Every input line object has a field called Valida tor, set to nil by
default, that can point to a validator object. If you don't assign
an object to Validator, the input line behaves as described in
Chapter 12, "Control objects." Once you assign a validator to
Validator, the input line automatically checks with the valida tor
when processing key events and when called on to validate itself.

Normally you construct and assign the valida tor in a single
statement, as shown in Listing 13.2.

InputLine := New (PInputLine, Init(R, 3)); {make 3-char input line}
InputLineA

• SetValidator (New (PRangeValidator, Init(lOO, 999)));
Insert (InputLine) ; { insert into owner window}

Turbo Vision Programming Guide

I

I.

How validators work

The methods of a

Turbo Vision supplies several kinds of validator objects that cover
most data validation needs. You can also derive your own vali
dators from the abstract validator types.

This section covers the following topics:

• The virtual methods of a valida tor
• The standard valida tor types

validator Every validator object inherits four important methods from the
abstract valida tor object type TValidator. By overriding these
methods in different ways, the various descendant validators
perform their specific validation tasks. If you're going to modify
the standard validators or write your own validation objects, you
need to understand what each of these methods does and how
input lines use them.

Checking for valid
data

The four validation methods are

• Valid
• Is Valid
• Is Va lidInput
• Error

The only methods called from outside the object are Valid and
Is ValidInput. Error and IsValid are only called by other validator
methods.

The main external interface to data valida tor objects is the method
Valid. Like the view method of the same name, Valid is a Boolean
function that returns True only if the string passed to it is valid
data. One component of an input line's Valid method is calling the
valida tor's Valid method, passing the input line's current text.

When using validators with input lines, you should never need to
either call or override the validator's Valid method. By default,
Valid returns True if the method Is Valid returns True; otherwise it
calls Error to notify the user of the error and returns False.

Chapter 73, Data validation objects 241

Validating a complete
. line

Valida tor objects have a virtual method called Is Valid that takes a
string as its only parameter and returns True if the string repre
sents valid data. Is Valid is the method that does the actual vali
dation, so if you create your own valida tor objects, you'll override
Is Valid in most cases.

You don't call IsValid directly. Use Valid to call IsValid, because
Valid calls Error to alert the user if IsValid returns False. Be sure to
keep the validation role separate from the error reporting role.

Validating keystrokes When an input line object recognizes a keystroke event meant for
it, it calls its valida tor's Is ValidInput method to ensure that the
typed character is a valid entry. By default, IsValidInput methods
always return True, meaning that all keystrokes are acceptable.
However, some descendant validators override Is Va lidInput to
filter out unwanted keystrokes.

For example, range valida tors, which are used for numeric input,
return True from Is ValidInput only for numeric di·gits and the
characters 1+' and 1_'.

Is Va lidInput takes two parameters. The first parameter is a var
parameter, holding the current input text. The second parameter
is a Boolean value indicating whether the validator should apply
filling or padding to the input string before attempting to validate
it. TPXPictureValidator is the only one of the standard validator
objects that makes use of the second parameter.

Reporting invalid data The virtual method Error alerts the user that the contents of the
input line don't pass the validation check. The standard validator
objects generally present a simple message box notifying the user
that the contents of the input are invalid and describing what
proper input would be.

. 242

For example, the Error method for a range validator object creates
a message box indicating that the value in the input line is not
between the indicated minimum and maximum values.

Although most descendant validator objects override Error, you
should never call it directly. Valid calls Error for you if IsValid
returns False, which is the only time Error needs to be called .

Turbo Vision Programming Guide.

I

~

The standard
validators Turbo Vision includes six standard validator object types,

inkuding an abstract valida tor and the following five specific
valida tor types:

• Filter valida tor
• Range valida tor
• Lookup valida tor
• String lookup valida tor
• Picture valida tor

The abstract validator The abstract type TValidator serves as the base type for all the
valida tor objects, but it does nothing useful by itself. You'll never
create an instance of TValidator. Essentially, TValidator is a vali
dator to which all input is always valid. IsValid and IsValidInput
always return True, and Error does nothing. Descendant types
override Is Va lid and/or IsValidInput to define which values
actually are valid.

You can use TValidator as a starting point for your own valida tor
objects if none of the other validation types are appropriate
starting points.

Filter validators Filter validators are a simple implementation of valida tors that
only check input as the user types it. The filter valida tor
constructor takes one parameter, a set of valid characters:

constructor TFilterValidator.lnit(AVaildChars: TCharSet) i

TFilterValidator overrides IsValidInput to return True only if all
characters in the current input string are contained in the set of
characters passed to the constructor. The input line only inserts
characters if Is ValidInput returns True, so there is no need to
override Is Valid. Because the characters made it through the input
filter, the complete string is valid by definition.

Descendants of TFilterValidator, such as TRangeValidator, can
combine filtering of input with other checks on the completed
string.

Chapter 13, Data validation objects 243

Range validators The range valida tor TRange Valida tor is a straightforward descen
dant of TFilterValidator that accepts only numbers and adds range
checking on the final results. The constructor takes two
parameters that define the minimum and maximum valid values:

Lookup validators

One example of a working
lookup valida tor is the string

lookup validator.

String lookup validators

244

constructor TRangeValidator.Init(AMin, AMax: Integer) i

The range valida tor constructs itself as a numeric filter valida tor,
accepting only the digits '0' .. '9' and the plus and minus charac
ters. The inherited Is ValidInput therefore ensures that only
numbers filter through. TRange Validator then overrides Is Valid to
return True only if the entered numbers are a valid integer within
the range defined in the constructor. The Error method displays a
message box indicating that the entered value is out of range.

The abstract lookup validator TLookupValidator provides the basis
for a common type of data validator, one which compares the
entered value with a list of acceptable items in order to determine
validity.

TLookupValidator is an abstract type that you'll never use as it
stands, but it makes one important change and one addition to
the standard abstract valida tor.

The one new method introduced by TLookup Validator is called
Lookup. By default, Lookup returns False, but when you derive a
descendant lookup validator type, you override Lookup to com
pare the passed string with a list, returning True if the string con
tains a valid entry.

TLookupValidator overrides IsValid to return True only if Lookup
returns True. In descendant lookup valida tor types, do not
override Is Valid, but rather override Lookup.

TStringLookup Valida tor is a working example of a lookup validat
or. It compares the string passed from the input line with the
items in a string list. If the passed string occurs in the list, the
string lookup validator's valid method returns True. The con
structor takes only one parameter, the list of valid strings:

constructor TStringLookupValidator.Init(AStrings: PStringCollection)i

To use a different string list after constructing the string lookup
validator, pass the new list to the validator's NewStringList
method. It disposes of the old list and installs the new list.

Turbo Vision Programming Guide

TStringLookupValidator overrides Lookup and Error, so that Lookup
returns True if the passed string is in the string collection and
Error displays a message box indicating that the string wasn't in·
the list.

Picture validators Picture validators compare the string typed by the user with a
picture or template that describes the format of valid input. The
pictures used are compatible with those used by Borland's
Paradox relational database to control user input. Constructing a
picture validator takes two parameters: a string holding the
template image and a Boolean value indicating whether to
automatically fill in literal characters in the picture:

constructor TPxpictureValidator.Init(const APic: String;
AAutoFill: Boolean);

TPXPictureValidator overrides Error, IsValidInput, and IsValid, and
adds a new method, Picture. The changes to Error and IsValid are
simple. Error displays a message box indicating what format the
string should have, and Is Valid returns True only if the function
Picture returns True. This allows you to derive new kinds of
picture valida tors by overriding only the Picture method.
Is ValidInput checks characters as the user types them, allowing
only those allowed by the picture format, and optionally filling in
literal characters from the picture.

The Picture method tries to format the given input string accord
ing to the picture format and returns a value indicating the degree
of its success: complete, incomplete, or error.

Chapter 73, Data validation objects 245

246
Turbo Vision Programming Guide

c H A p T E R

14

Palettes and color selection

No one ever seems to agree on what colors are "best" for any
computer screen. Rather than dictating the colors of screen items,
Turbo Vision enables both programmers and users to vary the
colors of views. This chapter covers the two features of Turbo
Vision you need to understand to work with colors: color palettes
and color selection objects.

Using color palettes

Instead of making you specify the color of every view in your
application, Turbo Vision uses a color palette in the application
object to map all the colors of all the views. For example, when
you create a menu bar, you don'thave to tell it what color you
want it to be. It gets that information from the application's color
palette. You can change that color by putting different informa
tion in the palette, which will change the color of every menu in
the application. If you want to have a single menu that's a
different color from all the other menus, you can map it onto a
different entry in the palette, which allows it to be special without
affecting any other views.

The only time you have to concern yourself with color palettes (or
colors, for that matter) is when writing Draw methods. Draw is the
only method that puts information on the screen.

The remainder of this section covers the following topics:

Chapter 74, Palettes and color selection 247

248

Understanding
color palettes

Looking at a simple
palette

Figure 14.1
TScrolier's default color

palette

• Understanding color palettes
• Using default colors
• Changing default colors
• Defining new colors
• Defining palettes for new views

When you write a Draw method for a Turbo Vision view, you
don't specify the actual color it will use. Instead, you'll call a
method called GetColor that asks the view's owner what color it
should be. The view, therefore, only has to know what kinds of
colors it needs to ask its owner about.

The palette for a view has entries for each distinct part of the view
that might have a different color. A window object's palette, for
example, has entries for the frame when it's the active window,
another for the frame when it's not active, one for the icons on the
frame, two for scroll bars, and two for scroller text. As you'll see, \
none of these entries is actually a color, but rather an indication of
where to find the color. I_

Before examining the more complex palettes, look at a simple one.
The palette for TScroller looks like this:

CScroller = #6#7;

Color palettes are actually stored in Pascal strings. This allows
them to be flexible arrays of varying length. CScroller,lhen, is a
two-character string, which you can think of as two palette
entries. The layout of the TScroller palette is defined as

{ Palette layout
{ 1 = Normal
{ 2 = Highlight

but it's more useful to look at it this way:
1 2

CScroller B
I ~------- Highlighted text
L-. --------- Normal text

A scroller object only knows how to draw two things: normal and
highlighted text. The default color of each is determined by the
palette entries. When displaying normal text, the Draw method
uses the color indicated by the first palette entry. To show
highlighted text, it uses the second entry.

Turbo Vision Programming Guide

Getting colors from the
palette

Understanding color
attributes

Figure 14.2
Text color attribute mapping

Mapping colors with
palettes

A simple example of
color mapping

To retrieve the color attribute indicated by a palette entry, views
have a virtual method called GetColor. GetColor takes a single
parameter, which is the number of an entry in the palette, and
returns the color attribute for that entry. To get the color attribute
for normal text, then, a scroller's Draw method would call
GetColor(1) .

The color attributes used by Turbo Vision are the same standard
video attribute bytes used by all DOS text depicted in Figure 14.2.
The lower four bits represent the foreground color, the next three
bits the background color, and the highest-order bit the blink
attribute.

bit - 7 6 5 4 3 2 1 0
IBlblblblflflflfl

The only place you actually find these attributes in Turbo Vision
is in the application's palette. All other palettes are indexes into
other palettes that eventually point to an entry in the application
palette. The next section explains this color mapping.

A view's palette entries are not actually colors, but indexes into the
view's owner's palette. That's an important point: Color mapping
has nothing to do with inheritance, but it has everything to do
with ownership. When you insert a view into a group, its color
mapping is determined by that group, and whatever group that
group is in, and so on. Inserting it into a different kind of group
(say, a window instead of a dialog box) could change its eventual
color completely.

Keep in mind that in normal use, you don't have to think at all
about how colors get mapped or what color a view will be. When
you write Draw methods you get colors from the view's palette by
calling GetColor, so you don't have to worry about how GetColor
returns an attribute.

To understand how GetColor returns a color from a palette entry,
it would help to trace what happens when you call the method.
The default Draw method for TScroller is the method il1-herited
from TView. It draws all text in the color indicated by the first
palette entry. TView.Draw is shown in Listing 14.1.

Chapter 74, Palettes and color selection 249

Listing 14.1
The Draw method for Niew,

also used by TScroller

If you don't understand Draw
methods, see Chapter 8,

"Views."

Figure 14.3
Mapping a scroller's palette

onto a window

250

procedure TView.Drawi
var B: TDrawBufferi
begin

MoveChar(B, , " GetColor(l), Size.X) i { fill line with spaces
WriteLine(O, 0, Size.X, Size.Y, B)i {fill whole view with lines

endi

Assume for the moment that the scroller object is inserted into a
normal blue window, which is in turn inserted into the desktop,
which is, of course, inserted in the application object. The color
mapping follows that chain of ownership.

Draw gets normal text color, the first entry in the scroller's palette,
by calling GetColor(l). GetColor takes its parameter and uses it as
an index into the palette; that first entry in the palette contains the
number 6. That 6 isn't a color attribute, though: it's a palette index.
Because a view knows that it has to map through its owner's
palette, it calls its owner's GetColor, to find the sixth entry in the
owner's palette. Figure 14.3 shows TWindow's palette and the
mapping of the scroller's normal text.

,.---------- Frame passive

I

,------------ Frame active

I

Frame icon \

I

,-,-' ----- Scroll bar page

I

Scroll bar controls

I
Scro 11 er norma 1 text

r--- Scroller selected text
I ,-- Reserved

12345 78

CBlueWindow

CScroller

L--________ -----' Normal text

The same process of calling owner views' GetColor methods
continues until it reaches the one view that has no owner: the
application object.

The sixth entry in TWindow's palette is 13, which is an index into
the palette of the window's owner (the desktop), which in turn

, indexes into the palette of its owner, the application. TDeskTop has
a nil palette, meaning that it doesn't change any mappings. You
can think of it as a "straight" or "transparent" palette. The first
entry is the number I, the second is 2, and so on.

The application does have a palette, a large one containing entries
for all the elements you might insert into a Turbo Vision
application. Its 13th element is $IE for color screens. Since the
application has no owner, the mapping stops there. Figure 14.4

Turbo Vision Programming Guide

!i

I

I

14

I

I

I

depicts the mapping of the scroller through the window and the
desktop to the application.

Figure 14.4
Mapping the normal text CColor

color of a scroller view

A different view of
mapping

Listing 14.2
The color mapping algorithm

used by views

Changing the
default colors

nil

CBlueWindow

CScroller

GetCo lor (1)

So now you have $lE, a text attribute byte that corresponds to
background color 1 and foreground color $E (or 14), which
produces yellow characters on a blue background. Again, don't
think of this in terms of yellow-on-blue. Rather say that you want
your text in the normal color for window text.

GetColor uses some intricate assembly language to perform the
color mappings. Listing 14.2 shows an equivalent Pascal method
that shows more clearly how views perform color mapping.

function TView.NotGetColor(Color: Byte): Byte;
var

P: PPalette;
Curr: PView;

begin
Curr : = @Self;
while Curr <> nil do
begin

P := CurrA.GetPalette;
if P <> nil then

Color := Byte(pA[Color]);
Curr := CurrA.Owner;

end;
NotGetColor := Color;

end;

{ start with current view }
{ continue while non-nil

{ get the palette
if the view has a palette ...

... get index into owner's palette}
{ point to owner view }

return the last color found }

The obvious way to change a view's color is to change its palette.
If you don't like your scroller's normal text color, your first in
stinct might be to change entry 1 (the normal text entry) in the
scroller's palette, perhaps from 6 to 5. Normal scroller text is then

Chapter 74, Palettes and color selection 251

Color attributes appear only
in the application s palette,
so thats the only place you

can change them.

252

Palettes centralize
color information

Changing a view's
palette

mapped onto the window entry for scroll bar controls (blue on
cyan, by default). Remember, 5 is not a color! All you've done is tell
the scroller that its normal text should look like the scroll bars
around it.

So what if you don't want bright yellow on blue? Colors are not
absolute. They are mapped through the owner's palettes, so
change the palette entry for normal window text in the appli.,.
cation object. Since that is the last non-nil palette, the entries in the
application palette determine the colors that will appear in all
views within a window.

Controlling color attributes from a central location makes sense.
Presumably you want all your windows to look similar. You
certainly don't want to have to tell every single window what
color it should be. If you change your mind later (or you allow
users to customize colors), you don't want to have to change the
entries for each and every window.

Also, a scroller or other interior does not have to worry about its
colors if it is inserted into some window other than the one you
originally intended. If you put a scroller into a dialog box instead
of a window, for example, it will not (by default) come up in the
same colors, but rather in the colors of normal text in a dialog box.

To change a view's palette, override its GetPalette method. To
create a new scroller object type that draws its normal text in the
window's frame color instead of the window's normal text color,
the declaration and implementation of the object would include
the following:

type
TMyScroller = object (TScroller)

function GetPalette: PPalette; virtual;
end;

function TMyScoller.GetPalette: PPalette;
const

CMyScroller = #1#7;
P: string[Length(CMyScroller)] = CMyScroller;

begin
GetPalette := @P;

end;

Turbo Vision Programming Guide

The types TPalette and String
are completely

interchangeable.

The only change made by TMyScroller is that it changes the first
entry in the scroller's palette from #6 to #1. In other words, it maps
the scroller's normal text onto the first entry in the window's
palette ("Frame Passive") instead of the sixth entry ("Scroller
Normal Text").

Note that the palette constant is a string constant because Turbo
Vision uses the String type to represent the palettes. This makes it
easier to manipulate palettes, since all the string functions and
operators can also be used with palettes.

Extending a palette

Adding a palette
entry

When you derive a new view type, you sometimes need to define.
new palette entries for new kinds of visual elements.

For example, you could create a new kind of scroller that
understands not only normal and highlighted text, but also some
kind of specially emphasized text.

Extending the palette takes three steps:

• Adding elements to the view's palette

• Ensuring that owner object types have the needed palette
entries

• Revising Draw to use the new color

Extending a view's palette is quite simple. Since the palette is a
string, you append as many entries to as you need the end of the
existing palette.

There are two cases you have to consider when adding a new
palette entry:

• Using a color that already exists in the owner view

• Creating a new kind of color item

Chapter 74, Palettes and color selection 253

Reusing an existing
color

Adding a new color

Listing 14.3
Adding an entry to the

scroller palette

Adding entries to
owner palettes

254

Using an already-existing color is the easiest because you don't
have to change the owner palette. For example, to make the
scroller's third palette entry use the owner window's scroll bar
color (the fourth entry in the window palette), you'd append #4 to
the existing scroller palette:

canst
CMyScroller = CScroller + #4;

Because this uses colors the owner window already knows about,
you can now go ahead and rewrite Draw to use the third scroller
color.

If you want your new view palette to use a color not already
defined in the owner view's palette, you still append an item 'to
the view's palette, but instead of pointing to an existing entry, you
point to a new entry that you'll add to the owner view. For
example, you can point to the ninth entry in the window's palette:

function TMyScroller.GetPalette: ppalette;
canst

CMyScroller = CScroller + #9;
P: string[Length(CMyScroller)]

begin
GetPalette := @P;

end;

{ append to existing palette }
= CMyScroller; .

{ point to the typed new palette

The catch, of course, is that the window object only has eight
entries in it palette, so you have to override the owner window's
GetPalette method to return a palette with the new ninth entry:

Any time you create a view that accesses more entries than its
owner view's palette has by default, make sure that you also
extend the owner view's palette. Accessing nonexistent palette
entries produces undefined results.

Extending the window palette to accomodate the new scroller
palette entry defined in Listing 14.3 is slightly more complicated
than extending the scroller view's palette, because there are
actually three standard window palettes, for blue, gray, and cyan
windows. Listing 14.3 shows how to add a ninth entry to all three
palettes.

Turbo Vision Programming Guide

'I
I

I

I

I

I

Figure 14.5
adding entries to the window

palettes

Listing 14.4
Adding entries to the .
application palettes

Rewriting Draw
methods

function TMyWindow.GetPalette: PPalette;
const

CMyBluewindow = CBlueWindow + #64; { add a ninth entry}
CMyCyanWindow = CCyanWindow + #65;
CMyGrayWindow = CGrayWindow + #66;
P: array [wpBlueWindow .. wpGrayWindow] of

string[Length(CMyBlueWindow)] =
(CBlueWindow, CCyanWindow, CGrayWindow);

begin
GetPalette := @P[Palette];

end;
{ return is based on Palette field }

This new ninth entry points to the 64th, 65th, or 66th entry in the
application's palette, depending on the color scheme of the win
dow. But again, those are new entries: the default application
palette has only 63 entries, so you have to add entries to the appli
cation palette as well.

But like the window palette, the application palette is actually
three different palettes, one each for color, black-and-white, and
monochrome systems. So modifying the application palette in this
case means adding three new entries to each of three palettes, as
shown in Listing 14.4.

function TMyApplication.GetPalette: PPalette;
const

CMyColor = CColor + #$25#$50#$OF;
CMyBlackWhite = CBlackWhite + #$OF#$OF#$OF;
CMyMonochrome = CMonochrome + #$OF#$OF#$7F;
P: array[apColor .. apMonochrome] of string[Length(CMyColor)]

(CMyColor, CMyBlackWhite, CMyMonochrome);
begin

GetPalette := @P[AppPalette];
end;

The scroller's palette entry 3 is now the new extra-highlight color.
If you use this new GetPalette using the CMyScroller that accesses
the ninth element in its owner's palette, be sure that the owner
uses the extended palette, and that the application uses the corre
sponding extensions. If you try to access the ninth element in an
eight-element palette, the results are undefined.

Once you have a palette that contains additional entries, you can
rewrite your Draw method to take advantage of the new color. In
the example in this section, TMyScroller.Draw can now pass any

Chapter 74, Palettes and color selection 255

value in the range 1..3 to GetColor and get a valid color. Passing
any other value returns the error attribute, blinking white on red.

Letting users change colors

Using the
TColorDialog

Defining color groups
and items

Listing 14.5
The MenuColorltems function

256

Turbo Vision's ColorSel unit provides a dialog box you can include
in your applications to enable users to alter the application's color
palette. This section describes

• Using the color selection dialog box
• Saving and restoring colors

The color selection dialog box, TColorDialog, gives users of your
programs easy access to the application's color palette by letting
they specify which kinds of items they want to alter. You control
which items they can change by passing lists of color groups and
color items to the dialog box.

Using the color selection dialog box takes two steps:

• Defining color groups and items
• Executing the color selection dialog box

Color items are just names you give to various color palette
entries. Color groups are linked lists of color items which in turn
have names. The Turbo Vision functions ColorItem and ColorGroup
make it easy to create such lists. In addition, The ColorSel unit
provides functions that return lists of the standard items, so you
only have to define new items and groups when you create new
views or extend the palettes of existing views. Listing 14.5 shows
one such function, MenuColorItems, which defines color items for
all the palette entries associated with menu views.

function MenuColorltems(const Next: PColorltem): PColorltemi
begin

MenuColorItems :=
Colorltem('Normal', 2,
Colorltem('Disabled', 3,
Colorltem('Shortcut', 4,
Colorltem('Selected', 5,
ColorItem('Selected disabled', 6,

Turbo Vision Programming Guide

I~

Listing 14.6
Passing groups of color items

to a color selection dialog
box

Executing the dialog
box

Saving and
restoring colors

end;

Colorltem('Shortcut selected', 7,
Next)))))) ;

By combining lists of color items, you create a list of color groups,
which you can then pass to the color selection dialog box
constructor, as shown in Listing 14.6.

D := New(PColorDialog, Init(",
ColorGroup('Desktop', DesktopColorltems(nil),
ColorGroup('Menus', MenuColorltems(nil),
ColorGroup('Dialog boxes', DialogColorltems(dpGrayDialog, nil),
nil))))) ;

Once you've defined your groups of color items, you pass that list,
and the palette to modify, to the constructor of TColorDialog.
Often, rather than passing the palette to the constructor, you'll
instead pass it as the data record for the dialog box when you
execute it. For example, to modify the palette currently being used
by the application, you do this:

if ExecuteDialog(D, ApplicationA.GetPalette) <> cmCancel then
begin

DoneMemory;
ReDraw;

end;

{ Dispose of all group buffers
{ Redraw application with new palette }

A Turbo Vision application stores the current state of the color
selection dialog box in a variable called Colorlndexes. To save the
user's current color choices, you call the procedure Savelndexes. To
restore a previous state, you call Loadlndexes. Both Savelndexes and
Loadlndexes take a single parameter, specifying the stream that
holds the color indexes.

The example program TVDemo shows the use of Loadlndexes and
Sforelndexes.

Chapter 74, Palettes and color selection 257

I

I

l~

258
Turbo Vision Programming Guide

I'
I

c A p T E R

15

Editor and text views

Turbo Vision provides two kinds of objects for handling text in
your applications. Text views display text in a flexible fashion,
while editor objects enable the user to enter and modify text. This
chapter covers the following uses of text views:

• The basic text view
• The "dumb" terminal view
• The basic text editor
• The memo editor
• The file editor
• The editor clipboard
• The edit window

What is a text view?

For details on scrol/er objects, Text views are simple descendants of TScroller that link a text file
see Chapter 8, "Views." device with a scrollable view. Turbo Vision defines an abstract

text device in type TTextDevice, which adds virtual methods for
reading strings from the text file and writing strings to the file.
The type TTextDevice doesn't do anything useful by itself, and
you'll never have reason to create an instance of it, but it provides
the foundation for more useful text views, specifically the
terminal view, TTerminal.

Chapter 15, Editor and text views 259

Using the terminal view

Constructing the
terminal view

The terminal view defined by type TTerminal is the only text view
type provided in Turbo Vision. It provides a scrolling "write
only" view onto a text file device. You'll probably find terminal
views most useful for debugging purposes or for monitoring the
contents of a text file.

Most of the behavior of a terminal view is handled for you. If
you're accustomed to dealing with text file devices, you'll have no
trouble dealing with TTerminal.

Using a terminal view takes three steps:

• Constructing the terminal view
• Assigning the text device
• Writing to the view

Note that although you can read from the terminal view, it always
returns an empty string.

Constructing the terminal view is only slightly different than
constructing any other scrolling view. In addition to the boundary
rectangle and scroll bar parameters, the constructor takes a Word
type parameter specifying the size of the terminal's buffer.

Managing the buffer The actual management of the text buffer is handled for you by
TTerminal. When you specify the size of the buffer, TTerminal
allocates that many bytes to a zero-based array of characters of
type TTerminalBuffer. All characters written to the terminal view
are placed in the buffer. Upon reaching the end of the buffer, the
terminal view automatically wraps around to the beginning of the
buffer again, keeping track of the beginning point of displayable
text.

260

TTerminal has several methods you can use to find out the status
of the buffer. The Boolean function Canlnsert indicates whether
inserting a given number of characters will cause the top line of
the buffer to be discarded. QueEmpty indicates whether the buffer
contains any characters. Calc Width returns the length of the
longest line in the text buffer.

Turbo Vision Programming Guide

•

Assigning the text
device

Writing to the
terminal view

Listing 15.1
Using a simple terminal view

Before a terminal view can interact with a text device, you have to
assign a device to the view. Turbo Vision provides a procedure
called AssignDevice that does for your text view exactly what the
standard procedure Assign does for a text file. It associates the
given text file with a terminal view, meaning that all future input
or output operations on the text file will read or write from the
terminal view.

For example, given a terminal view called Terminal and a text file
called TermText, you assign the text device to the terminal view as
follows:

ASsignDevice(TermText, Terminal);

Writing to the terminal view is just like writing to any text file
device. You use the Write and Writeln standard procedures. Once
you call AssignDevice to associate a text file device with a terminal
view, all output to the text file device appears in the terminal
view.

Note that as with any text file device, you need to call Rewrite or
Reset to open the text file. After that, you call Write or Writeln,
specifying the text device's identifier. For example:

AssignDevice{TermText, Terminal);
Rewrite{TermText);
Writeln{TermText, 'This appears in the view.');

The simple program in Listing 15.1 traps mouse events and writes
the coordinates of mouse clicks to a terminal view in a window.
The file TERMTEST.P AS on your distribution disks contains the
same program.

program TermTest;

uses Objects, Views, App, Drivers, TextViewi

type
PTermWin = ATTermWini
TTermWin = object (TWindow)

TermText: Text;
Terminal: PTerminal;

Chapter 75, Editor and text views 261

262

constructor Init;
procedure HandleEvent(var'Event: TEvent); virtual;

end;
TTermApp = object (TApplication)

constructor Init;
end;

constructor TTermWin.lnit;
var

R: TRect;
HScrollBar, VScrollBar: PScrollBar;

begin
DesktopA.GetExtent(R) ;
inherited Init(R, 'Terminal test window', wnNoNumber);
R.Gr.ow(-l, -1);
HScrollBar := StandardScrollBar(sbHorizontal or sbHandleKeyboard);
Insert(HScrollBar);
VScrollBar : = ,StandardScrollBar (sbVertical or sbHandleKeyboard);
Insert(VScrollBar);
New (Terminal , Init(R, HScrollBar, VScrollBar, 8192));
if ApplicationA.ValidView(Terminal) <> nil then
begin

AssignDevice(TermText, Terminal);
Rewrite (TermText) ;
Insert(Terminal);

end;
end;

procedure TTermWin.HandleEvent(var Event: TEvent);
begin

if Event.What and evMouseDown <> 0 then
begin

if Event.Buttons and mbLeftButton <> then
Write (TermText, 'Left ')

else Write(TermText, 'Right ');
Writelh(TermText, '(' ,Event.Where.X,

end;
inherited HandleEvent(Event);

end;

constructor TTermApp.lnit;
var TextWin: PTermWini
begin

inherited Init;
New (TextWin, Init);

Event.Where.Y, ') I);

if ValidView(TextWin) <> nil then InsertWindow(TextWin);
end;

var TermApp: TTermApPi
begin

TermApp.lnit;

Turbo Vision Programming Guide

TerrnApp.Runi
TerrnApp.Donei

end.

Using the editor object

How the editor

Turbo Vision defines an editor object type, TEditor, that
implements a small, fast, 64K editor with full mouse support,
clipboard operations, undo, autoindent and overwrite modes,
WordStar key bindings, and search and replace functions.

This section explains the following:

• How the editor works
• Using the Edit menu
• WordStar key bindings
• Editor options
• Searching and replacing
• Using scroll bars and indicators

works You should rarely need to get at the internal workings of the
editor object. It's most common uses, as a file editor and as a
memo field in a window, are handled by two descendant types,
TFileEditor and TMemo, both described in this chapter.

TEditor implements a "buffer gap" editor, meaning that it stores
its text in two pieces with a gap between them. Text before the
cursor is stored at the beginning of the buffer, and text after the
cursor at the end. The space between the text is the gap.

Characters inserted into the editor go at the beginning of the gap.
Deleted characters remain in the buffer, but at the end of the gap.
The editor supports undoing of insertions and deletions by main
taining the number of characters inserted and deleted. When
asked to perform an undo, the editor deletes the characters that
were inserted, moves the deleted characters to the beginning of
the gap, and positions the cursor after the formerly deleted text.

Chapter 75, Editor and text views 263

Understanding the
buffer

Figure 15.1
Buffer with inserted text

CurPfr, GapLen, BufLen, and
BufSize are 01/ fields of TEdifor.

Figure 15.2
Buffer after cursor movement

To see how the buffer operates, look at Figure 15.1, which shows
an edit buffer with the text 'abcdefghijkxxxopqrstuvwxyz' newly
inserted:

CurPtr
!
I-GapLen-j

lalblcldlelflglhl ilj Iklxlxlxlolplql rlsl tlulvHxlYlzlllllllllllllll1
I, BufLen ! I
I, BufSize I I
BufSize is the size of the buffer, set when you construct the editor
object. CurPtr indicates the position of the cursor, CapLen is the
length of the gap, and BufLen is the total number of characters in
the buffer. The sum of Cap Len and BufLen is always BufSize. If you
move the cursor to just after the 'xxx' characters, the buffer looks
like Figure 15.2. .

CurPtr
!

, 1-GapLen ----1
lalblcidielflglhlilnklxlxlxlllllill II II 1IIIolplqlrlsiti ulvHxlYlzl

BufLen = I· I I + I, I I
I, BufSize I I

Note that the gap is kept in front of the cursor, allowing for quick
insertion of characters without moving any text.

Deleting text The user can delete text either by backspacing over it, deleting the
character ahead of the cursor with Delete, or by selecJing a block of
text and pressing Delete. Your program can delete a selected block
by calling the method DeleteSelect. ,

264

If you delete 'xxx' using Backspace, the editor moves the characters
to the end of the gap and the cursor moves backward. The
DelCount field records the number of characters deleted. Figure
15.3 shows the state of the buffer after deleting 'xxx'.

Turbo Vision Programming Guide

I

~
I

I

Figure 15.3
Buffer after deleting 'xxx'

BufLen

CurPtr
!
I· GapLen II

lalblcidielflglhlililklllllllllill III Ixlxlxlolplqlrlsltl ulvHxlYlzl
H DelCount

I' II + I· II
I· BufSize I I

Inserting text Text insertions normally come either from keystrokes or from
pasting text from the clipboard. The editor has two methods,
InsertText and InsertFrom, that handle text insertion. InsertText
takes a given number of characters and inserts them into the
buffer. InsertFrom inserts the selected text from a specified editor
object's buffer. Both insertion methods call a lower-level insertion
method called InsertBuffer, but you shouldn't ever have to call that
directly.

Figure 15.4
Buffer after inserting 'Imn'

When you insert characters, the editor increments the insertion
count, InsCount, to record how many characters to delete with an
undo. If you now type 'lmn', the buffer looks like Figure 15.4.

CurPtr
!
I-GapLen-\

lalblcldlelflglhl iii Ikl qmlnlllllllllllllxlxlxlolplql rlsltlulvHxlYlzl
InsCount H H DelCount

BufLen I- II + I· II
I • BufSize I I

InsCount records the number of characters inserted.

Undoing edits Editor objects have a limited undo function, usually accessed by
the user through an option on the Edit menu, which calls the
editor object's Undo method.

If you now request an undo, the editor deletes 'lmn' and moves
'xxx' to where they were, restoring the buffer to what it was
before the edits, as shown in Figure 15.5.

Chapter 75, Editor and text views 265

266

Figure 15.5
Buffer after undo CurPtr

! I-GapLen-j
lalblcidielflglhlililklxlxlxllllllllllllliliolplqlrlsitlulvHxlYlzl

BufLen = I, -I + I, , I
I' BufSize -I

Undo cart only undo operations done between cursor movements.
As soon as the user or the program moves the cursor, all edits are
accepted. All undo information is lost because the gap moves.
Note that undo information takes space inside the buffer, which
could prevent the user from inserting text. Moving the cursor
reclaims that space.

Handling blocks The selection or marked block of text is always either before or
after the cursor. The fields SelStart and SelEnd indicate the
beginning and ending of the selection. Normally, the user selects
text with the mouse or keyboard, but your program can set the
selection by calling SetSelection, which also moves the cursor.

Using the Edit

Inserting text into the editor, either through a key press, or with
InsertText, replaces the selected text with the inserted text. If there
is no selection, the text is just inserted at the cursor.

menu All editor objects know how to respond to several commands
from the standard edit menu: cmCut, cmCopy, cmClear, cmPaste,
and cmUndo. The cut, copy, and clear commands act onthe selec
ted text in the editor. The paste command inserts the contents of
the clipboard editor at the cursor position. The undo command
undoes all edits since the last cursor movement.

Other editing commands, such as search and replace, are handled
by the window that owns the editor object by displaying an editor
dialog box that prompts the user for search and replace text and
options. The owner then calls the editor's Search method with the
appropriate options.

Turbo Vision Programming Guide

1 j
'I

III
I

I,

I

•

Updating the active
commands

Editor key
bindings

Not all editing commands are valid at all times. For example,
there's no point in sending the cmCut command if the user hasn't
selected any characters to cut. Editor objects have a method called
UpdateCommands that enables and disables commands based on
the current state of the editor and clipboard. It is called whenever
the state of the editor changes.

The commands to find, replace, and search again are always
active, while those to cut, copy, clear, and paste depend on
whether the user has selected text. The undo command is active
only if the user has inserted or deleted text since the last cursor
movement.

By default, editor objects bind commands to many of the familiar
WordStar key sequences used in the IDE, including cursor

. movements and text deletions. The main exceptions are the block
commands.

You can change these key bindings by overriding the
ConvertEvent method, which translates certain keyboard events
into command events.

Manipulating blocks Since TEditor does not use persistent blocks, it simulates the block
commands by copying text to and from the clipboard. For
example, Ctrl+K Ctrl+B begins selecting text. Ctrl+K Ctrl+K copies the
text to the clipboard. Ctrl+K Ctrl+C pastes the text from the clipboard
to the editor. This simulates quite closely the WordStar keystrokes.
You can also select a block of text by holding down the Shift key
with any of the cursor movement commands.

Editor options
Editor objects provide several options, selectable using Boolean
fields:

• CanUndo indicates whether the editor records undo informa
tion. Since undo information temporarily takes space from
inserts, you might find it advantageous to disable undo. You
should always set CanUndo to False for clipboard editors .

• Overwrite indicates whether the editor is in overwrite or insert
mode.

Chapter 75, Editor and text views 267

Figure 15.6
Editor flag bit mapping

Searching and
replacing

• Autolndent records whether pressing Enter causes the editor to
indent the new line to the column of the first nonspace
character of the previous line rather than to the leftmost
column. This is convenient for editing source code.

Editor objects also use a bitmapped variable in the Editors unit,
EditorFlags, to determine certain options that apply to all editors
in the application. EditorFlags controls creation of backup files and
certain search and replace options. Figure 15.6 shows the
mapping of the bits in EditorFlags.

I ~lSbl·

I I

efCaseSensitive = $0001
efWholeWordsOnly = $0002

'------efPromptOnRep 1 ace = $0004
'-------efReplaceAll = $0008

'-------efDoReplace = $0010
'--------------efBackupFi 1 es = $0100

The editor flag bits are reasonably self-explanatory. If you need
further details, consult Chapter 19, "Turbo Vision reference."

Search and replace operations are handled by command
responses. Instead of directly calling a text-search method, for
example, the user generates a cmFind command, which the editor
object responds to by displaying the appropriate dialog box
prompting for the search text and options.

Similarly, the cmReplace command causes the editor to prompt the
user for search text and replacement text, as well as options. The
dialog boxes used for these operations are controlled by the
EditorDialogs function.

Using the memo field

268

The memo object is a special extension of the editor object
designed for use as a control in a dialog box. It has no special
editing abilities, but it adds certain facilities needed for use as a
control:

• A palette that maps onto the dialog box
• GetData, SetData, and DataSize methods

Turbo Vision Programming Guide

Memo colors

Acting like a
control

Handling Tab

Setting and reading
values

Listing 15.2
Data record for a memo field

Most editor objects use the standard scroller palette, which
defaults to yellow characters on a white background. Because
memo objects generally exist only in dialog boxes, they map onto
a more natural black-on-cyan color combination.

In order to act like a control, memo objects have to handle two
things that other editors don't:

• Tabbing between fields
• Reading and writing values to a data record

Normally, an editor object handles Tab characters by inserting a
tab into the text. Since a memo acts as a control in a.dialog box, it
traps keyboard events with a character code of kbTab and assures
that the dialog box will handle the normal Tab behavior, moving
the focus to the next field. The memo object passes all other events
to the event handler it inherits from TEditor.

Controls need to set their values from a data record and read their
values back into that record. TMemo defines the three methods
needed to handle that transfer: DataSize, Get Data, and SetData.

DataSize returns the size of the editor's buffer, plus the size of a
length word. GetData and SetData treat the data record similar to a
long string, treating the first two bytes as the text length, and the
remaining bytes as the memo text.

The portion of the data record for the memo field should have
two entries. For example, Listing 15.2 shows the data record for a
simple dialog box that has only one control, a memo field.

{ Note that ABufSize is the same constant passed to the editor's
constructor as its maximum buffer size. }

type
TDialogData = record

MemoLength: Word;
MemoText: array[O .. ABufSize] of Char;

end;

Chapter 75, Editor and text views 269

~sing file editors

Constructing a file
editor

Working with files

270

A file editor is an editor object that's linked to a specific text file. It
has no extra editing functions, but it adds the following features:

• File loading and saving
• Flexible buffers

Using a file editor requires only one change in the editor construc
tor, but there are also some concepts you have to understand to
make best use of the file editor objects. This section covers:

• Constructing a file editor
• Working with files
• Working with buffers

The constructor for a file editor is almost identical to that of a
regular editor, but instead of the last parameter being a buffer
size, you pass the name of the file you want to edit. The file editor
will set up its own buffer, as described in the section "Working
with buffers" on page 272.

The file editor stores the name of the current file in a field called
FileName. If you pass an empty string as the file name, the file
editor assumes you're creating a new file.

If the global variable EditorFlags has its efBackupFiles bit set, the file
editor automatically keeps a copy of the last saved version of an
edited file (with its extension changed to .BAK) when saving a
file.

The obvious difference between a file editor and a standard editor
is the fact that the file editor needs to manage its associated file.
Most of this is handled transparently when you construct and
destruct the object, but if you want to customize behavior, you'll
need to know some detail about the following topics:

• Loading a file
• Saving a file
• Ensuring that changes are saved

Turbo Vision Programming Guide

Loading a file

Saving a file

Making sure changes
get saved

When you pass a file name to the file editor's constructor, the
object checks to see if the file name represents a valid file, then
calls the method LoadFile to assign a buffer and read the contents
of the file into the editor buffer. If the file is too large for the editor,
or if the editor can't allocate a l~rge enough buffer, the file editor
displays an "Out of memory" dialog box and LoadFile returns
False.

It's generally not a good idea to call LoadFile at any other time. If
you want to load a different file into the file editor, you're better
off disposing of the existing editor and constructing a new one in
its place. That ensures that associations between file names and
editor buffers stay valid, and that buffer memory is managed
properly.

In addition to the editing commands understood by all editor
objects, file editors respond to two additional commands: cmSave
and cmSaveAs. The event handler for TFileEditor calls the methods
Save and SaveAs, respectively, in response to those commands.
TFileEditor's UpdateCommands method calls the inherited
UpdateCommands and then enables cmSave and cmSaveAs.

The main difference between Save and SaveAs is that Save assumes
you want to use the file named in FileName to save the current
editor buffer, while SaveAs assumes you want to assign a new file.
If FileName is an empty string, Save calls SaveAs to assign a name
to the file. '

The actual saving of the file's text is handled by a method called
SaveFile. You should never call SaveFile directly; instead, you
should call Save or SaveAs. SaveFile takes care of keeping backup
copies of files if EditorFlags has its efBackupFiles bit set, then writes
the contents of the editor buffer into the file named by FileName.

If the user or another object tries to close a file editor that hasn't
had its changes saved (that is, it's Modified field is True), the file
editor's Valid method displays a dialog box warning the user that
the modifications need to be saved, giving the options of saving
or disposing of the changes. The user can then either save the
changes, throwaway the changes, or abort closing the editor (by

, having Valid return False).

Chapter 15, Editor and text views 271

272

Working with
buffers

Specifying buffer
space

File editors need somewhat greater flexibility in their buffer
handling than most editors, so instead of allocating file edit
buffers on the heap, Turbo Vision sets aside file edit buffer space
above the heap. That allows file edit buffers to grow, shrink, and
move. Most of the buffer handling is automatic, but you do have
to specify how much memory you want your application to set
aside.

Note that what you specify is the size of the regular Pascal heap,
with everything remaining made available for your file editors.
This ensures that your application always gets the amount of
memory it needs, with file editors sharing what remains.

The Editors unit declares a global variable called MaxHeapSize that
you must set if your application uses file editors. MaxHeapSize
defaults to 640K, meaning that your application's heap get all
available memory, with no memory available for file edit buffers.

If you try to use a file editor without setting aside buffer space,
your program will crash and possibly hang your system.

There are two things you need to be aware of about Ma~HeapSize:

• It specifies the size of your application's heap in 16-byte para
graphs. Memory beyond that amount is not available to the rest .
of your application, so be sure to allocate enough. Setting
MaxHeapSize to 4096, for example, sets aside 64K for the appli.:.
cation's heap, with everything else left for file edit buffers .

• You must set MaxHeapSize before allocating any memory from
the heap. The safest thing to do is make it the first statement in
your application object's constructor, before calling the inherited
constructor:

constructor TMyApp.lnit;
begin

MaxHeapSize := 4096;
inherited Init;

end;

{ this must come first }
{ this allocates memory }

Turbo Vision Programming Guide

I

I~

Managing file edit
buffers

You should never need to manipulate a file editor's buffer
yourself. TFileEditor overrides the virtual methods DoneBuffer,
InitBuffer, and SetBufSize to ensure that the editor uses file buffer
space rather than heap space, but you should never need to call
those directly.

File editor buffers come in 4K increments. That is, when LoadFile
requests a buffer for its file, it passes the size of the file to
SetBufSize, which attempts to allocate that many bytes, rounded
up to the nearest 4K boundary. If the size of the editor's gap
shrinks to zero, the file buffer grows in increments of 4K, if
memory is available.

Using the clipboard

Constructing the
clipboard editor

Assigning the
Clipboard

variable

Turbo Vision's editor objects all support cutting, copying, and
pasting with a clipboard, but to use these features, you have to
create a clipboard object. Any editor can serve as the clipboard,
but most often it's an unnamed file editor in an editor window so
that you can display and edit the clipboard easily.

Using the clipboard requires only two extra steps in your
application:

• Constructing the clipboard editor
• Assigning the editor to Clipboard

You can use any Turbo Vision editor object as your application's
clipboard, but you need to ensure that the clipboard is available at
all times. In general, that means having a separate editor dedica
ted to the clipboard. Using a file editor for the clipboard gives you
the benefit of flexible size without devoting a large part of your
regular application heap.

The Editors unit declares a global variable called Clipboard of type
PEditor that your application should assign its clipboard editor to
if you plan to allow clipboard operations. File editors behave
somewhat differently if they know they are the clipboard, and

Chapter 75, Editor and text views 273

Listing 15.3
Assigning a clipboard editor

cut, copy, and paste operations will fail if Clipboard is not assigned
to a valid editor object .

. Listing 15.3 shows a typical creation of a clipboard window, and
the assignment of its editor to Clipboard.

type
TMyApp = object (TApplication)

ClipWindow: PEditWindow;
constructor Init;

end;

constructor TMyApp.lnit;
begin

MaxHeapSize := 4096;
inherited Init;

{ allow 64K for file editors }

New (ClipWindow, Init(R, " wnNoNumber));
if ValidView(ClipWindow) <> nil then

{ construct application }
{ construct window }

{ if it's a valid window}
Clipboard := ClipWindowA.Editor; { make editor the clipboard }

end;

Using an editor window

Constructing the
editor window

274

Other editor
window

considerations

An editor window (type TEditWindow) is a window object
designed to hold a file editor. It changes its title to show the name
of the file being edited and automatically sets up scroll bars and
an indicator for the editor. The editor window keeps a pointer to
its associated editor through a field called Editor.

Constructing an editor window is exactly like constructing any
other window,with the exception that the second parameter
passed to the constructor is the name of a file to edit. The title of
the window reflects the file being edited: 'Clipboard' if the editor
is the application's clipboard or 'Untitled' if the file name is an
empty string, or the full path name of the file.

There are only two other ways in which an editor window
behaves differently from a plain window: its closing behavior and
its response to one broadcast command.

Turbo Vision Programming Guide

I'

I

I

I

I

I-

I

I

I

I

When told to close, an editor window will close like any other
window (including calling Valid for all its subviews), unless the
window holds the clipboard editor, in which case it hides itself
instead of closing. This enables you to edit the clipboard in a
window without losing it every time you close the window.

Editor windows respond to one broadcast command event that
normal windows don't need to handle. When the name of the file
in the editor changes (generally after a Save As operation), the
window receives a broadcast event with the command
cmUpdateTitle, which alerts the window that it needs to redraw its
frame to include the new file name.

Chapter 75, Editor and text views 275

276
Turbo Vision Programming Guide

I

I.

I

I

I

I~
I

I

c H

Chapter 76, Collections

A p T E R

16

Collections

Pascal programmers traditionally spend much programming time
creating code that manipulates and maintains data structures,
such as linked lists and dynamically sized arrays. Virtually the
same data structure code tends to be written and debugged again
and again.

As powerful as traditional Pascal is, it provides you with only
built-in record and array types. Any structure beyond that is up to
you.

For example, if you're going to store data in an array, you typic
ally need to write code to create the array, to import data into the
array, to extract array data for processing, and perhaps to export
data to I/O devices. Later, when the program needs a new array
element type, you start all over again.

Wouldn't it be great if an array type came with code that would
handle many of the operations you normally perform on an
array? An array type that could also be extended without dis
turbing the original code?

That's the aim of Turbo Vision's TCollection type. It's an object that
stores a collection of pointers and provides a host of methods for
manipulating them.

277

Collection objects

Collections are
dynamically sized

278

Collections are
polymorphic

Type checking
and collections

Besides being an object, and therefore having methods built into
it, a collection has two additional features that address short
comings of ordinary Pascal arrays-it is dynamically sized and
polymorphic.

The size of a standard Turbo Pascal array is fixed at compile time,
which is fine if you know exactly what size your array will always
need to be, but it may not be a particularly good fit by the time
someone is actually running your code. Changing the size of an
array requires changing the code and recompiling .

. With a collection, however, you set an initial size, but it can
dynamically grow at run time to accommodate the data stored in
it. This makes your application much more flexible in its compiled
form.

A second aspect of arrays that can be limiting to your application
is the fact that each element in the array must be of the same type,
and that type must be determined when the code is compiled.

Collections get around this limitation by using untyped pointers.
Not only is this fast and efficient, but a collection can then consist
of objects (and even non-objects) of different types and sizes. Just
like a stream, a collection doesn't need to know anything about
the objects it is handed. It just holds on to them and gives them
back when asked.

A collection is an end-run around Pascal's traditional strong type
checking. That means that you can put anything into a collection,
and when you take something back out, the compiler has no way
to check your assumptions about what that something is. You can
put in a PHedgehog and read it back out as a PSheep, and the
collection will have no way of alerting you.

As a Turbo Pascal programmer, you may rightfully feel nervous
about such an end-run. Pascal's type checking, after all, saves
hours and hours of hunting for some very elusive bugs. So you

Turbo Vision Programming Guide

I'

should proceed with caution here: You may not even be aware of
how difficulta mixed-type bug can be to find, because the com
piler has been finding all of them for you! However, if you find
that your programs are crashing or locking up, carefully check the
types of objects being stored in and read from collections.

Collecting non-objects You can even add something to a collection that isn't an object at
all, but this raises another serious point of caution. Collections
expect to receive untyped pointers to something. But some of
TCollection's methods act specifically on a collection of TObject
derived instances. These include the stream access methods
PutItem and GetItem as well as the standard FreeItem procedure.

This means that you can store a PString in a collection, for
example, but if you try to send that collection to a stream, the
results aren't going to be pretty unless you override the collec
tion's standard GetItem and PutItem methods. Similarly, when you
attempt to deallocate the collection, it will try to dispose of each
item using FreeItem. If you plan to use non-TObject items in a
collection, you need to redefine the meaning of "item" in GetItem,
PutItem, and FreeItem. That is precisely what TStringCollection, for
example, does.

If you proceed with prudence, you will find collections (and the
descendants of collections that you build) to be fast, flexible,
dependable data structures.

Creating a collection

Remember to define a
pointer for each new object

type.

Chapter 76, Collections

Creating a collection is really just as simple as defining the data
type you wish to collect. Suppose you're a consultant, and you
want to store and retrieve the account number, name, and phone
number of each of your clients. First you define the client object
(TClient) that will be stored in the collection:

type

PClient = ATClient;
TClient = object(TObject)

Account, Name, Phone: PString;
constructor Init(NewAccount, NewName, NewPhone: String);
destructor Done; virtual;

end;

Next you implement the Init and Done methods to allocate and

279

This is COLLEcn .PAS.

PrintAII and SearchPhone are
procedures that will be

discussed later.

280

dispose of the client data. Note that the object fields are of type
PString so that memory is only allocated for the portion of the
string that is actually used. The NewStr and DisposeStr functions
handle dynamic strings very efficiently.

constructor TClient.Init(NewAccount, NewName, NewPhone: String);
begin

Account := NewStr(NewAccount);
Name := NewStr(NewName);
Phone := NewStr(NewPhone);

end;

destructor TClient.Done;
begin

DisposeStr(Account) ;
DisposeStr(Name);
DisposeStr(Phone) ;

end;

TClient.Done will be called automatically for each client when you

I'

I

dispose of the entire collection. Now you just instantiate a I

collection to store your clients, and insert the client records into it.
The main body of the program looks like this: I,.

var
ClientList: PCollection;

begin
ClientList := New(PCollection, Init(50, 10));
with ClientList A do
begin

Insert (New(PClient, Init('90-167', 'Smith, Zelda',
'(800) 555-1212')));

Insert (New(PClient, Init('90-160', 'Johnson, Agatha',
'(302) 139-8913')));

Insert (New(PClient, Init('90-177', 'Smitty, John',
'(406) 987-4321')));

Insert (New(PClient, Init('91-100', 'Anders, Smitty',
'(406) 111-2222')));

end;
PrintAll(ClientList);
writeln; writeln;
SearchPhone(ClientList, '(406) ');
Dispose (ClientList, Done);

end.

Notice how easy it was to build the collection. The first statement
allocates a new TCollection called ClientList with an initial size of
50 clients. If more than 50 clients are inserted into ClientList, its
size will increase in increments of 10 clients whenever needed.

Turbo Vision Programming Guide

The next 2 statements create a new client object and insert it into
the collection. The Dispose call at the end frees the entire
collection-clients and all.

Nowhere did you have to tell the collection what kind of data it
was collecting-it just took a pointer.

Iterator meth.ods

The ForEach

Insert and deleting items aren't the only common collection
operations. Often you'll find yourself writing for loops to range
over all the objects in the collection to display the data or perform
some calculation. Other times, you'll want to find the first or last
item in the collection that satisfies some search criterion. For these
purposes, collections have three iterator methods: ForEach,
FirstThat, and LastThat. Each of these takes a pointer to a
procedure or function as its only parameter.

iterator ForEach takes a pointer to a procedure. The procedure has one
parameter, which is a pointer to an item stored in the collection.
ForEach calls that procedure once for each item in the collection, in
the order that the items appear in the collection. The PrintAIl
procedure in COLLECTI shows an example of a ForEach iterator.

Chapter 76, Collections

procedure PrintAll(C: PCollection); { print info for all clients

procedure PrintClient(p: PClient); far;
begin

with P" do

{ local procedure }

Writeln(Account", ":20-Length(Account"),' { show client info}
Name", ":20-Length(Name"),
Phone", ":20-Length(Phone"));

end;

begin
Writeln;
Writeln;
C".ForEach(@PrintClient);

end;

end of local procedure }

{ PrintAll }

{ Call PrintClient for each item in C

For each item in the collection passed as a parameter to PrintAll,
the nested procedure PrintClient is called. PrintClient simply
prints the client object information in formatted columns.

281

Iterators must call for local
procedures.

The FirstThat and
LastThat iterators

282

You need to be careful about what s6rt of procedures you call
with iterators. In this example, PrintClient must be a procedure
it cannot be an object's method~and it must be local to (nested in
the same block with) the routine that is calling it. It must also be
declared as a far procedure, either with the far directive or with
the $F+ compiler directive. Finally, the procedure must take a
pointer to a collection item as its only parameter.

In addition to being able to apply a procedure to every element in
the collection, it is often useful to be able to find a particular ele
ment in the collection based on some criterion. That is the. purpose
of the FirstThat and LastThat iterators. As their names imply, they
search the collection in opposite directions until they find an item
meeting the criteria of the Boolean function passed as an
argument.

FirstThat and LastThat return a pointer to the first (or last) item
that matches the search conditions. Consider the earlier example
of the client list, and imagine that you can't remember a client's
account number or exactly how his last name is spelled. Luckily,
you distinctly recall that this was the first client you acquired in
the state of Montana. Thus you want to find the first occurrence of
a client in the 406 area code (since your list happens to be in
chronological order). Here's a procedure using the FirstThat
method that would do the job:

procedure SearchPhone(C: PClientCollection; PhoneToFind: String);

function PhoneMatch(Client: PClient): Boolean; far;
begin

PhoneMatch := Pos(PhoneToFind, Client~.PhoneA) <>·0;
end;

var
FoundClient: PClient;

begin
FoundClient := CA.FirstThat(@PhoneMatch);
if FoundClient = nil then

Writeln('No client met the search requirement')
else
, with FoundClientA do

Writeln('Found client: ' AccountA,' , NameA,' , PhoneA);
end;

Turbo Vision Programming Guide

I

IIj

Again notice that PhoneMatch is nested and uses the far call
model. In this case, it's a function that returns True only if the
client's phone number and the search pattern match. If no object
in the collection matches the search criteria, a nil pointer is
returned.

Remember: ForEach calls a user-defined procedure, while FirstThat
and LastThat each call a user-defined Boolean function. In all
cases, the user-defined procedure or function is passed a pointer
to an object in the collection.

Sorted collections

Chapter 76, Collections

Sometimes you need to have your data in a certain order. Turbo
Vision provides a special type of collection that allows you to
order your data in any manner you want: the TSortedCollection.

TSortedCollection is a descendant of TCollection which automat
ically sorts the objects it is given. It also automatically checks the
collection when a new member is added and rejects duplicate
members.

TSortedCollection is an abstract type. To use it, you must first
decide what type of data to collect and define two methods to
meet your particular sorting requirements. To do this, you will
need to derive a new collection type from TSortedCollection. In this
case, call it TClientCollection.

Your TClientCollection already knows how to do all the real work
of a collection. It can Insert new client records and Delete existing
ones-it inherited all this basic behavior from TCollection. All you
have to do is teach TClientCollection which field to use as a sort
key and how to compare two clients and decide which one
belongs ahead of the other in the collection. You do this by
overriding the KeyOf and Compare methods and implementing
them as shown here:

PClientCollection = ATClientCollection;
TClientCollection = object (TSortedCollection)

function KeyOf(Item: Pointer): Pointer; virtual;
function Compare(Keyl, Key2: Pointer): Integer; virtual;

end;

283

Keys must be typecast
because they are untyped

pointers.

This is COLLECT2.PAS.

284

function TClientCollection.KeyOf(Item: Pointer): Pointer;
begin

KeyOf := PClient (Item) A.Name;
end;

function TClientCollection.Compare(Key1, Key2: Pointer): Integer;
begin

if PString(Key1)A = PString(Key2)A then
Compare := 0 { return 0 if they're equal}

else if PString(Key1)A < PString(Key2)A then
Compare:= -1 {'return -1 if Key1 comes first

else
Compare : = 1; { otherwise return 1; Key2 comes first

end;

KeyOf defines which field or fields should be used as a sort key. In
this case, it's the client's Name field. Compare takes two sort keys
and determines which one should come first in the sorted order.
Compare returns -1,0, or 1, depending on whether Keyl is less
than, equal to, or greater than Key2. This example uses a straight
alphabetical sort of the key (Name) strings.

Note that since the keys returned by KeyOf and passed to Compare
are untyped pointers, you need to typecast them into PStrings
before dereferencing them.

That's all you have to define! Now if you redefine ClientList as a
PClientCollection instead of a PCollection (changing the var
declaration and the New call), you can easily list your clients in
alphabetical order:

var
ClientList: PClientCollection;

begin
ClientList := New(PClientCollection, Init(50, 10));

end.

Notice also how easy it would be if you wanted the client list
sorted by account number instead of by name. All you would
have to do is change the KeyOf method to return the Account field
instead of the Name field.

Turbo Vision Programming Guide

I

I

I

I

II

I

I

I.
I

I

String collections

This is COLLECT3.PAS.

Chapter 76, Collections

Many programs need to keeping track of sorted strings. For this
purpose, Turbo Vision provides a special purpose collection,
TStringCollection. Note that the elements in a TStringCollection are
not objects-they are pointers to Turbo Pascal strings. Since a
string collection is a descendant of TSortedCollection, duplicate
strings are not stored.

Using a string collection is easy. Just declare a pointer variable to
hold the string collection. Allocate the collection, giving it an
initial size and an amount to grow by as more strings are added

var
WordList: PCollection;
WordRead: String;

begin
WordList := New(PStringCollection, Init(lO, 5));

WordList holds ten strings initially and then grows in increments
of five. All you have to do is insert some strings into the collec
tion. In this example, words are read out of a text file and inserted
into the collection:

repeat

if WordRead <> " then
WordListA.lnsert(NewStr(WordRead)) ;

until WordRead = ";

Dispose (WordList, Done);

Notice that the NewStr function is used to make a copy of the
word that was read and the address of the string copy is passed to
the collection. When using a collection, you always give it control
over the data you're collecting. It will take care of deallocating the
data when you're done. And that's exactly what the call to Dispose
does; it disposes each element in the collection, and then disposes
the WordList collection itself.

285

Iterators revisited

The CallDraw procedure in
COLLECT4.PAS shows how to
call a method from inside an

iterator call.

The ForEach method traverses the entire collection one item at a
time, and passes each one to a procedure you provide. Continuing
with the previous example, the procedure PrintWord is given a
pointer to a string to display. Note that Print Word is a nested (or
local) procedure. Wrapped around it is another procedure, Print,
which is given a pointer to a TStringCollection. Print uses the
ForEach iterator method to pass each item in its collecton to the
Print Word procedure.

procedure Print{C: PCollection);

procedure PrintWord{P PString); far;
begin

Writeln{pA); { Display the string}
end;

begin { Print
Writeln;
Writeln;
CA.ForEach{@PrintWord) ;

end;
{ Call PrintWord }

Print Word should look familiar; it's just a procedure that takes a
string pointer and passes its value to Writeln. Note the far
directive after Print Word's declaration. Print Word cannot be a
method-it must a procedure. And it must be a nested procedure
as well. Think of Print as a wrapper around a procedure that has
the job of doing something-displaying or modifying data,
perhaps-with each item in the collection. You can have more
than one procedure like the preceding Print Word, but each has to
be nested inside Print and each has to be a far procedure (using
the far directive or {$F+}).

Finding an item Sorted collections (and therefore string collections) have a Search
method that returns the index of an item with a particular key.
But how do you find an item in a collection that may not be
sorted? Or when the search criteria don't involve the key itself?
The answer, of course, is to use FirstThat and LastThat. You simply
define a Boolean function to test for whatever criteria you want,
and call FirstThat.

286 Turbo Vision Programming Guide

Polymorphic collections

This is COLLECT4.PAS.

Chapter 76, Col/ections

You've seen that collections can store any type of data dynamic
ally, and there are plenty of methods to help you access collection
data efficiently. In fact, TCollection itself defines 23 methods.
When you use collections in your programs, you'll be equally
impressed by their speed. They're designed to be flexible and
implemented to be fast.

But now comes the real power of collections: items can be treated
polymorphically. That means you can do more than just store an
object type on a collection; you can store many different objects
types, from anywhere in your object hierarchy.

If you consider the collection examples you've seen so far, you'll
realize that all the items on each collection were of the same type.
There was a list of strings in which every item was a string. And
there was a collection of clients. But collections can store any
object that is a descendant of TObject, and you can mix these
objects freely. Naturally, you'll want the objects to have some
thing in common. In fact, you'll want them to have an abstract
ancestor object in common.

As an example, here's a program that puts 3 different graphical
objects into a collection. Then a ForEach iterator is used to traverse
the collection and display each object.

This example uses the Graph unit and BGI drivers, so make sure
GRAPH.TPU is in the current directory or on your unit path
(Options I Directories I Unit directory) when you compile. When
you run the program, change to the directory that contains the
.BGI drivers or modify the call to InitGraph to specify their
location (for example, C: \ TP\BGI).

The abstract ancestor object is defined first.

type
PGraphObject = ATGraphObject;
TGraphObject = object(TObject)

X,Y: Integer;
constructor Init;
procedure Draw; virtual;

end;

You can see from this declaration that each graphical object can
initialize itself (Init) and display itself on the graphiCs screen

287

288

(Draw). Now define a point, a circle, and a rectangle, each
descended from this common ancestor:

PGraphPoint = ATGraphPoint;
TGraphPoint = object (TGraphObject)

procedure Draw; virtual;
end;

PGraphCircle = ATGraphCircle;
°TGraphCircle = object (TGraphObject)

Radius: Integer;
constructor Init;
procedure Draw; virtual;

end;

PGraphRect = ATGraphRecti
TGraphRect = object (TGraphObject)

Width, Height: Integer;
constructor Init;
procedure Draw; virtual;

end;

These three object types all inherit the X and Y fields from
PGraphObject, but they are all different sizes. PGraphCircleadds a
Radius, while PGraphRect adds a Width and Height. Here's the code
to make the collection:

List := New(PCollection, Init(10, 5));

for I := 1 to 20 do
begin

{ Create collection }

case I mod 3 of { Create an object }
0: P := New(PGraphPoint, Init);
1: P := New (PGraphCircle, Init);
2: P := New (PGraphRect, Init);

end;
ListA.Insert(P) ;

end;
{ Add it to collection }

As you can see, the for loop inserts 20 graphical objects into the
List collection. All you know is that each object in List is some
kind of TGraphObject. But once inserted, you'll have no idea
whether a given item in the collection is a circle, point or rec
tangle. Thanks to polymorphism, you don't need to know since
each object contains the data and the code (Draw) it needs. Just
traverse the collection using an iterator method and have each
object display itself:

Turbo Vision Programming Guide

I
I

')

I

procedure DrawAII(C: PCollection);

procedure CaIIDraw(P: PGraphObject); far;
begin

P".Draw;
end;

begin { DrawAll
C".ForEach(@CaIIDraw);

end;

var
GraphicsList: PCollection;

begin

DrawAII(GraphicsList) ;

{ Call the Draw method }

{ Draw each object }

This ability of a collection to store different but related objects
leans on one of the powerful cornerstones of object-oriented
programming. In the next chapter, you'll see this same principal
of polymorphism applied to streams with equal advantage.

Collections and memory management

Chapter 76, Collections

A TCollection can grow dynamically from the initial size set by Init
to a maximum size of 16,380 elements. The maximum collection
size is stored by Turbo Vision in the variable MaxCollectionSize.
Each element you add to a collection only takes four bytes of
memory, because the element is stored as a pointer.

No library of dynamic data structures would be complete unless
it provided some provision for error detection. If there is not
enoug,~ memory to initialize a collection, a nil pointer is returned.

If memory is not available when adding an element to a
TCollection, the method TCollection.Error is called and a run-time
heap memory error occurs. You may want to override
TCollection.Error to provide your own error reporting or recovery
mechanism.

You need to pay special attention to heap availability, because the
user has much more control of a Turbo Vision program than a
traditional Pascal program. If the user is the one who controls the
adding of objects to a collection (for example, by opening new
windows on the desktop), the possibility of a heap error may not

289

290

be so easy to predict. You may need to take steps to protect the
user from a fatal run-time error, with either memory checks of
your own when a collection is being used, or a run-time error
handler that lets the program recover gracefully.

Turbo Vision Programming Guide

I

I

I·

c H

Chapter 77, Streams

A p T E R

17

Streams
Object-oriented programming techniques and Turbo Vision give
you a powerful way of encapsulating code and data, and power
ful ways of building an interrelated structure of objects. But what
if you want to do something simple, like store some objects on
disk?

Back in the days when data sat by itself in a record, writing data
to disk was pretty clear-cut, but the data within aTurbo Vision
program is largely bound up within objects. You could, of course,
separate the data from the object and write the data to a disk file.
But you've achieved something important by joining the two
together in the first place, and it would be a step backwards to
take them a part.

Couldn't OOP and Turbo Vision themselves somehow be enlisted
in solving this problem? That's what streams are all about.

A Turbo Vision stream is a collection of objects on its way some
where: typically to a file, EMS, a serial port, or some other device.
Streams handle I/O on the object level rather than the data level.
When you extend a Turbo Vision object, you need to provide for
handling any additional data fields that you define. All the
complexity of handling the object representation is taken care of
for you.

291

The question: Object I/O

As a Pascal programmer, you know that before you can do any
-file I/O, you must tell the compiler what type of data you will be
reading or writing to the file. The file must be typed, and the type
must be determined at compile time.

Turbo Pascal implements a very useful workaround to this rule:
an untyped file accessed with BlockWrite and BlockRead. But the
lack of type checking creates some extra responsibilities for the
programmer, although it does let you perform very fast binary
I/O.

A second problem, though, is that you can't use files directly with
objects. Turbo Pascal doesn't allow you to create a typed file of
objects. And because objects may contain virtual methods who
addresses are determined at run time, storing the VMT informa
tion outside the program is pointless; reading such information
into a program is even more so.

Again, you can work around the problem. You can copy the data '.
out of your objects and store the information in some sort of file,
then rebuild the objects from the raw data again later. But that is a
rather inelegant solution at best, and complicates the construction
of objects.

The answer: Streams

292

Streams are
polymorphic

Turbo Vision allows you to overcome both of these difficulties, I

and gives you some side benefits as well. Streams provide a \ I

simple, yet elegant, means of storing object data outside your
program.

A Turbo Vision stream gives you the best of both typed and
untyped files: type checking is still there, but what you intend to
send to a stream doesn't have to be determined at compile time.
The reason is that streams know they are dealing with objects, so
as long as the object is a descendant of TObject, the stream can
handle it. In fact, different Turbo Vision objects can as easily be
written to the same stream as a group of identical objects.

Turbo Vision Programming Guide

i

I

I

I

I

I

Streams handle
objects All you have to do is define for the stream which objects it needs

to handle, so it knows how to match data with VMTs. Then you
can put objects onto the stream and get them back effortlessly.

But how can the same stream read and write such widely differ
ing objects as a TDeskTop and a TDialog, and not even need to
know at compile time what objects it is going to be handed? This
is very different from traditional Pascal I/O. In fact, a stream can
even handle new object types that weren't even created when the
stream was compiled.

The answer is registration. Each Turbo Vision object type (and any
new object types you derive from the hierarchy) is assigned a
unique registration number. That number gets written to the
stream ahead of the object's data. Then, when you go to read the
object back from the stream, Turbo Vision gets the registration
number first, and based on that knows how much data to read
and what VMT to attach to your data.

Essential stream usage

Chapter 77, Streams

On a fairly fundamental level, you can think about streams much
as you think about Pascal files. At its most basic, a Pascal file can
be simply a sequential 1/ a device: you write things to it, and you
read them back. A stream, then, is a polymorphic sequential 1/ a
device, meaning that it behaves much like a sequential file, but
you can also read or write various types of objects at the current
point.

Streams can also (like Pascal files) be viewed as a random-access
I/O devices, where you seek to a position in the file, read or write
at that point, return the position of the file pointer, and so on.
These operations are also available with streams, and are
described in the section "Random-access streams."

There are two different aspects of stream usage that you need to
master, and luckily they are both quite simple. The first is setting
up a stream, and the second is reading and writing objects to the .
stream.

293

Setting up a
stream

Reading and
writing a stream

294

All you have to do to use a stream is initialize it. The exact syntax
of the Init constructor will vary, depending on what type of
stream you're dealing with. For example, if you're opening a DOS
stream, you need to pass the name of the DOS file and the access
mode (read-only, write-only, read/write) for the file containing
the stream.

For example, to initialize a buffered DOS stream for loading the
desktop object into a program, all you need to is this:

var
SaveFile: TBufStreami

begin
SaveFile.Init(/SAMPLE.DSK I

I stOpen l 1024) i

Once you've initialized the stream, you're ready to go-that's all

I

I

there is to it. i

TStream is an abstract stream mechanism, so you can't actually I

create.an instance of it, but useful stream objects are all derived •
from TStream. These include TDosStream, which provides disk
I/O, and TBufStream, which provides buffered disk I/O (useful if
you read or write a lot of small pieces to disk), and TEmsStream, a
stream that sends objects to EMS memory (especially useful for
implementing fast resources). .

Turbo Vision also implements an indexed stream, with a pointer
to a place in the stream. By relocating the pointer, you can do
random stream access.

TStream, the basic stream object implements three basic methods
you need to understand: Get, Put, and Error. Get and Put roughly
correspond to the Read and Write procedures you would use for
ordinary file I/O operations. Error is a procedure that gets called
whenever a stream error occurs.

Turbo Vision Programming Guide

Putting it on Let's look first at the Put procedure. The general syntax of a Put
method is this:

SomeStream.Put(PSomeObject)i

where SomeStream is any object descended from TStream that has
been initialized, and PSomeObject is a pointer to any object des
cended from TObject that has been registered with the stream.
That's all you have to do. The stream can tell from PSomeObject's
VMT what type of object it is (assuming the type has been regis
tered), so it knows what ID number to write, and how much data
to write after it.

Of special interest to you as a Turbo Vision programmer,
however, is the fact that when you Put a group with subviews
onto a stream, the subviews are automatically written to the
stream as well. Thus, saving complex objects is not complex at
all-in fact, it's automatic! You can save the entire state of your
program simply by writing the desktop onto a stream. When you
restart your program and load the desktop back in, it will be in
the same condition it was in when you saved it.

Getting it back Getting objects back from the stream is just as easy. All you have
to do is call the stream's Get function:

Chapter 77, Streams

PSomeObject := SomeStream.Geti

where again, SomeStream is an initialized Turbo Vision stream,
and PSomeObject is a pointer to any type of Turbo Vision object.
Get simply returns a pointer to whatever it has pulled off the
stream. How much data it has pulled, and what type of VMT it
has assigned to that data, is determined not by the type of
PSomeObject, but by the type of object found on the stream. Thus,
if the object at the current position of SomeStream is not of the
same type as PSomeObject, you will get garbled information.

As with Put, Get will retrieve complex objects. Thus, if the object
you retrieve from a stream is a view that owns subviews, the
subviews will be loaded as well.

295

In case of error

Shutting down
the stream

Finally, the Error procedure determines what happens when a
stream error occurs. By default, TStream.Error simply sets two
fields (Status and Errorlnfo) in the stream. If you want to do
anything fancier, like generating a run-time error or popping up
an error dialog box, you'll need to override the Error procedure.

When you're finished using a stream, you call its Done method,
much as you would normally call Close for a disk file. As with any
Turbo Vision object, you do this as

Dispose (SomeStream, Done);

so as to dispose of the stream object as well as shutting it down.

Making objects streamable

296

Load and Store

All standard Turbo Vision objects are ready to be used with
streams, and all Turbo Vision streams know about the standard
objects. When you derive a new object type from one of the
standard objects, it is very easy to prepare it for stream, use, and to
alert streams to its existence.

methods The actual reading and writing of objects to the stream is handled
by methods called Load and Store. While each object must have
these methods to be usable by streams, you never call them
directly. (They ,are called by Get and Put.) So all you need to do is
make sure that your object knows how to send itself to the stream
when called upon to do so.

Because of OOP, this job is very easy, since most of the mechan
ism is inherited from the ancestor object. All your object has to
handle is loading or storing the parts of itself that you added; the
rest is taken care of by calling the ancestor's method.

, For example, let's say you derive a new kind of view from
TWindow, named after the surrealist painter Rene Magritte, who
painted many famous pictures of windows:

Turbo Vision Programming Guide

type
TMagritte = object (TWindow)

Painted: Boolean;
constructor Load(var S: TStream);
procedure Draw;
procedure Store(var S: TStream);

end;

All that has been added to the data portion of the window is one
Boolean field. In order to load the object, then, you simply read a
standard TWindow, then read an additional byte to accommodate
the Boolean field. The same applies to storing the object: you
simply write a TWindow, then write one more byte. Typical Load
and Store methods for descendant objects look like this:

constructor TMagritte.Load(var s: Stream);
begin

inherited Load(S);
S.Read(Painted, SizeOf(Boolean));

end;

procedure TMagritte.Store(var S: Stream);
begin

inherited Store(S);
S.Write(Painted, SizeOf(Boolean));

end;

{ load the ancestor type }
{ read additional fields }

{ store the ancestor type }
{ write additional fields }

Warning! It is entirely your responsibility to ensure that the same amount of
data is stored as is loaded, and that data is loaded in the same
order that it is stored. The compiler will return no errors. This can
cause huge problems if you are not careful. If you modify an
object's fields, make sure to update both the Load and Store
methods.

Stream
registration In addition to defining the Load and Store methods for a new

object, you will also have to register your new object type with the
streams. Registration is a simple, two-step process: you define a
stream registration record, and you pass it to the global procedure
RegisterType.

Chapter 77, Streams

To define a stream registration record, just follow the format.
Stream registration records are Pascal records of type TStreamRec,
which is defined as follows:

297

298

PStrearnRec = ATStrearnRec:
TStrearnRec = record

ObjType: Word;
VrntLink: Word;
Load: Pointer:
Store: Pointer:
Next: Word:

end:

By convention~ all Turbo Vision stream registration records are
given the same name as the corresponding object type~ with the
initial"T" replaced by an "R." Thus~ the registration record for
TDeskTop is RDeskTop~ and the registration record for TMagritte is
RMagritte. Abstract types such as TObject and TView do not have
registration records because there should never be instances of
them to store on streams.

Object ID numbers The ObjType field is really the only part of the record you need to
think about; the rest is mechanical. Each new type you define will
need its own; unique type-identifier number. Turbo Vision

I,

I

I

I

reserves the registration numbers a through 99 for the standard ~

The automatic fields

objects~ so your registration numbers can be anything from 100
through 65,535.

It is your responsibility to create and maintain a library of 10
numbers for all your new objects that will be used in stream I/O,
and to make the IDs available to users of your units. As with
command constants, the numbers you assign may be completely
arbitrary~ as long as they are unique.

The VmtLink field is a link to the objects virtual method table
(VMT). You simply assign it1as the offset of the type of your
object:

RSorneObject.VrntLink := Ofs(TypeOf(TSorneObjectjAj:

The Load and Store fields contain the addresses of the Load and
Store methods of your object, respectively.

RSorneObject.Load := @TsorneObject.Load:
RSorneObject.Store := @TSorneObject.Store;

The final field, Next, is assigned by RegisterType, and requires no
intervention on your part. It simply facilitates the internal use of a
linked list of stream registration records.

Turbo Vision Programming Guide

Register here

Registering
standard objects

Once you have constructed the stream registration record, you
call RegisterType with your record as its parameter. So, to register
your new TMagritte object for use with streams, you would
include the following code:

const
RMagritte: TStreamRec = (

ObjType: 100;

) ;

VmtLink: Ofs(TypeOf(TMagritte)A) ;
Load: @TMagritte.Load;
Store: @TMagritte.Store

RegisterType(RMagritte);

That's all there is to it. Now you can Put instances of your new
object type to any Turbo Vision stream and read instances back
from streams.

Turbo Vision defines stream registration records for all its
standard objects. In addition, each Turbo Vision unit defines a
RegisterXXXX procedure that automatically registers all of the
objects in that unit.

The stream mechanism

The Put process

Chapter 17, Streams

Now that you've examined the process you go through to use
streams, you should probably take a quick look behind the scenes
to see just what Turbo Vision does with your objects when you
Get or Put them. It's an excellent example of objects interacting
and using the methods built into each other.

When you send an object to a stream with the stream's Put
method, the stream first takes the VMT pointer from offset 0 of
the object and looks through the list of types registered with the
streams system for a match. When it finds the match, the stream
retrieves the object's registration ID number and writes it to the

299

The Get process

Handling nil
object pointers

stream's destination. The stream then calls the object's Store
method to finish writing the object. The Store method makes use
of the stream's Write procedure, which actually writes the correct
number of bytes to the stream's destination.

Your object doesn't have to know anything about the stream-it
could be a disk file, an chunk of EMS memory, or any other sort of
stream-your object merely says "Write me to the stream," and
the stream handles the rest.

When you read an object from the stream with the Get method, its
ID number is retrieved first, and the list of registered types is
scanned for a match. When the match is found, the registration
record provides the stream with the location of the object's Load
method andVMT. The Load method is then called to read the
proper amount of data from the stream.

Again, you simply tell the stream to Get the next object it contains
and stick it at the location of the new pointer you specify. Your
object doesn't even care what kind of stream it's dealing with.' The
stream takes care of reading the proper amount of data by using
the object's Load method, which in turn relies on the stream's Read
method.

All this is transparent to the programmer, but it shows you how
crucial it is to register a type before attempting stream I/O with it.

You can write a nil object to a stream. However, when you do, a
word of 0 is written to the stream. On reading an ID word of 0,
the stream returns a nil pointer. 0 is therefore reserved, and cannot
be used as a stream object ID number.

Collections on streams: A complete example

300

In Chapter 16, "Collections," you saw how a collection could hold
different, but related, objects. The same polymorphic ability
applies to streams as well, and they can be used to store an entire
collection on disk for retrieval at another time or even by another
program. Go back and look at COLLECT4.P AS. What more must
you do to make that program put the collection on a stream?

Turbo Vision Programming Guide

I

I

I

I·
I

I

The answer is remarkably simple. First, start at the base object,
TGraphObject, and "teach" it how to store its data (X and Y) on a
stream. That's what the Store method is for. Then, similarly define
a new Store method for each descendant of TGraphObject that adds
additional fields (TGraphCircle adds a Radius; TGraphRec adds
Width and Height). Next, build a registration record for each object
type that will actually be stored and register each of those types
when your program first begins. And that's it. The rest is just like
normal file I/O: declare a stream variable; create a new stream;
put the entire collection on the stream with one simple statement;
and close the stream.

Adding Store methods Here are the Store methods. Notice that PGraphPoint doesn't need
one, since it doesn't add any fields to those it inherits from
PGraphObject.

TGraphObject doesn't call
TObject.Store because

TObject has no data to store.

Chapter 77, Streams

type
PGraphObject = ATGraphObject;
TGraphObject = object (TObject)

procedure Store(var S: TStream); virtual;
end;

PGraphCircle = ATGraphCircle;
TGraphCircle = object (TGraphObject)

Radius: Integer;

procedure Store(var S: TStream); virtual;
end;

PGraphRect = ATGraphRect;
TGraphRect = object (TGraphObject)

width, Height: Integer;

procedure Store(var S: TStream); virtual;
end;

Implementing the Store is quite straightforward. Each object calls
its inherited Store method, which stores all the inherited data,
then the stream's Write method to write the additional data:

procedure TGraphObject.Store(var S: TStream);
begin

S.Write(x, SizeOf(X));
S.Write(Y, SizeOf(Y));

end;

301

302

procedure TGraphCircle.Store(var S: TStream);
begin

inherited Store(S);
S.Write(Radius, SizeOf(Radius));

end;

procedure TGraphRect. Store (var S: T,Stream);
begin

inherited Store(S);
S.Write(Width, SizeOf(Width));
S.Write(Height, SizeOf(Height));

end;

Note that TStream's Write method does a binary write. Its first
parameter can be a variable of any type, but TStream. Write has no
way to know how big that variable is. The second parameter
provides that information and you should follow the convention
of using the standard SizeD! function. That way, if you decide to
change the coordinate system to use floating point numbers, you
won't have to revise your Store methods.

Registration records Defining a registration record constant for each of the descendent
types is our last step. It's a good idea to follow the Turbo Vision
naming convention of using an R as the initial letter, replacing the
type's T.

Remember, each registration record gets a unique object ID
number (Dbjtype). Turbo Vision reserves 0 through 99 for its
standard objects. It's a good idea to keep track of all your objects
stream IDnumbers in one central place to avoid duplication.

const
RGraphPoint: TStreamRec = (

ObjType: 150;
VmtLink: Ofs(TypeOf(TGraphPoint)A) ;
Load: nil;
Store: @TGraphPoint.Store);

RGraphCircle: TStreamRec = (
ObjType: 151;
VmtLink: Ofs(TypeOf(TGraphCircle)A);
Load: nil;
Store: @TGraphCircle.Store);

RGraphRect: TStreamRec = (
ObjType: 152;
VmtLink: Ofs(TypeOf(TGraphRect)A) ;
Load: nil;
Store: @TGraphRect.Store);

{ No load method yet }

{ No load method yet }

{ No load method yet }

Turbo Vision Programming Guide

You don't need a registration record for TGraphObject beause it's
an abstract type and thus won't ever be instantiated or put onto a
collection or stream. Each registration record's Load pointer is set
nil here because this example is only concerned with storing data
onto a stream. Load methods will be defined and the registration
records will be updated in the next example (STREAM2.P AS).

Registering You must always remember to register each of these records
before performing any stream I/O. The easiest way to do this is to
wrap them all in one procedure and call it at the very beginning
of your program (or in your application's Init method):

Writing to the stream

This is STREAM 7.PAS.

Chapter 77, Streams

procedure StreamRegistration;
begin

RegisterType(RCollection) ;
RegisterType(RGraphPoint) ;
RegisterType(RGraphCircle) ;
RegisterType(RGraphRect);

end;

Notice that you have to register the TCollection (using its
RCollection record-now you see why naming conventions make
programming easier) even though you didn't define TCollection.
The rule is simple and unforgiving: it's your responsibility to
register every object type that your program will put onto a
stream.

All that's left to follow is the normal file I/O sequence of: create a
stream; put the data (a collection) onto it; close the stream. You
don't have to write a ForEach iterator to stream each collection
item. You just tell the stream to Put the collection on the stream:

var
GraphicsList: PCollection;
GraphicsStream: TBufStream;

begin
StreamRegistration; { Register all streams }

{ Put the collection in a stream on disk }
GraphicsStream.lnit('GRAPHICS.STM', stCreate, 1024);
GraphicsStream.Put(GraphicsList); { Output collection}
GraphicsStream.Done; { Shut down stream }

end.

303

This creates a disk file that contains all the information needed to
"read" the collection back into memory. When the stream is
opened and the collection is retrieved (see STREAM2.P AS), all the
hidden links between the collection and its items, and objects and,
their virtual method tables will be magically restored. This same
technique is used by the Turbo Pascal IDE to save its desktop file.
The next example shows you how to do that. But first you have to
learn about streaming objects that contain links to other objects.

Who gets to store things?

304

Subview

An important caution about streams: the owner of an object is the
only one that should write that object to a stream. This caution is
similar to one with which you have probably become familiar
while using traditional Pascal: the owner of a pointer is the one
that should dispose of the pointer.

In the midst of the complexity of a real-life application, numerous,
objects will often have a pointer to a particular structure. When
the time arrives for stream I/O, you need to decide who "owns"
the structure; that owner alone should be the one to send that
structure to the stream. Otherwise, you'll end up with multiple
copies in the stream of what was initially just one structure. When
you then read the stream, multiple instances of the structure will
be created, with each of the original objects now pointing at their
own personal copy of the structure instead of at the original single
structure.

instances Many times you'll find it convenient to store.pointers to a group's
subviews in local Instance variables. For example, a dialog box
will often store pointers to its control objects in mnemonically
named. fields for easy access (fields like OKButton or
FilelnputLine). When that view is then inserted into the view tree,
the owner has two pointers to the subview, one in the field and
one in the subview list. If you don't make allowances for this,
reading back the object from a stream will result in duplicate
instances.

The solution is provided in the TGroup methods called
GetSubViewPtr and PutSubViewPtr. When storing a field that is
also a subview, rather than writing the pointer as if it were just

Turbo Vision Programming Guide

Peer view

another variable, you call PutSubViewPtr, which stores a reference
to the ordinal position of the subview in the group's subview list.
This way, when you Load the group back from the stream, you can
call GetSubViewPtr, which makes sure the field and the subview
list point to the same object.

Here's a quick example using GetSubViewPtr and PutSubViewPtr
in a simple window:

type
TButtonWindow = object(TWindow)

Button: PButtoni
constructor Load(var S: TStrearn)i
procedure Store(var S: TStrearn) i

end;

constructor TButtonWindow.Load(var S: TStream)i
begin

inherited Load(S)i
GetSubViewPtr(S, Button);

endi

procedure TButtonWindow.Store(var S: TStrearn)i
begin

inherited Store(S)i
PutSubViewPtr(S, Button);

end;

Let's take a look at how this Store method differs from a normal
Store. After storing the window normally, all you have to do is
store a reference to the Button field, rather than storing the field
itself as you would normally do. The actual button object is stored
as a subview of the window when you call TWindow.Store. All you
have to do in addition is put information on the stream indicating
that Button is to point to that subview. The Load method does the
same thing in reverse, first loading the window and its button
subview, then restoring the pointer to that subview to Button.

instances A similar situation can arise when a view has a field that points to
one of its peers. A view is called a peer view of another if both
views are owned by the same group. An excellent example is that
of a scroller. Because the scroller has to know about two scroll
bars which are also members of the same window that contains
the scroller, it has two fields that point to those views.

Chapter 77, Streams 305

As with subviews, you can run into problems when reading and
writing references to peer views to streams. The solution,
however, is also similar. The TView methods PutPeerViewPtr and
GetPeerViewPtr provide a means for accessing the ordinal position
of another view in the owner object's list of subviews.

The only thing to worry about is loading references to peer views
that have not yet been loaded (that is, they come later in the
subview list, and therefore later on the stream). Turbo Vision
handles this automatically, keeping track of all such forward
references and resolving them when all the subviews of the group
have been loaded. The part you may need to consider is that peer
view references are not valid until the entire Load has been com
pleted. Because of this, you should not put any code into Load
methods that makes use of subviews that depend on their peer
subviews, as the results will be unpredictable.

Copying a stream

TStream has a method CopyFrom(S,Count), which copies Count
bytes from the given stream S. CopyFrom can be used to copy the
entire contents of a stream to another stream. If you repeatedly
access a disk-based stream, for example, you may want to copy it
to an EMS stream for more rapid access:

NewStream := NE2w(TEmsStream, Init(OldStream".GetSize))i
OldStream".Seek(O)i
NewStream".CopyFrom(OldStream, OldStream".GetSize) i

Random-access streams

306

So far, we have dealt with streams as sequential devices: you Put
objects at the end of a stream, and Get them back in the same
order. But Turbo Vision provides more capabilities than that.
Specifically, it allows you to treat a stream as a virtual, random
access device. In addition to Get and Put, which correspond to
Read and Write on a file, s'treams provide features analogous to a
file's Seek, FilePos, FileSize, and Truncate .

• The Seek procedure of a stream moves the current stream
pointer to a specified position (in bytes from the beginning of
the stream), just like the standard Turbo Pascal Seek procedure.

Turbo Vision Programming Guide

I

I.

Resources are discussed in
Chapter 78, "Resources."

• The GetPos function is the inverse of the Seek procedure. It
returns a Longint with the current position of the stream.

• The GetSize function returns the size of the stream in bytes.

• The Truncate procedure deletes all data after the current stream
position, making the current position the end of the stream.

While these routines are useful, random access streams require
you to keep an index, outside the stream, noting the starting
position of each object in the stream. A collection is ideal for this
purpose, and is, in fact, the means used by Turbo Vision with
resource files. If you want to use a random access stream, consider
whether using a resource file would do the job for you.

Non-objects on streams

You can write things that are not objects onto streams, but you
have to use a somewhat different approach to do it. The standard
stream Get and Put methods require that you load or store an
object derived from TObject. If you want to create a stream of
non-objects, go directly to the lower-level Read and Write
procedures, each of which reads or writes a specified number of
bytes onto the stream. This is the same mechanism used by Get
and Put to read and write the data for objects; you're simply
bypassing the VMT mechanism provided by Get and Put.

Designing your own streams

Chapter 17, Streams

This section summarizes the methods and error-handling capabil
ities of Turbo Vision streams so that you know what you can use
to create new types of streams.

TStream itself is an abstract object that must be extended to create
a useful stream type. Most of TStream's methods are abstract and
must be implemented in your descendant, and some depend
upon TStream abstract methods. Basically, only the Error, Get, and
Put methods of TStream an~ fully implemented. GetPos, GetSize,
Read, Seek, SetPos, Truncate, and Write must be overridden. If the
descendant object type has a buffer, the Flush method should be
overridden as well.

307

Stream error
handling TStream has a method called Error(Code, Info), which is called

whenever the stream encounters an error. Error simply sets the
stream's Status field to one of the constants listed in Chapter 19,
"Turbo Vision reference," under "stXXXX constants."

The ErrorInfo field is undefined except when Status is stGetError or
stPutError. If Status is stGetError, the ErrorInfo field contains the
stream ID number of the unregistered type. If Status is stPutError,
the ErrorInfo field contains the VMT offset of the type you tried to
put onto the stream. You can override TStream.Error to generate
any level of error handling, including run-time errors.

Stream versioning

Version flags

Turbo Vision version 2.0 supports a limited form of stream
versioning. Versioning allows applications written with version I

2.0 to read objects from streams created with version 1.0. Streams I
written by version 2.0 applications that include objects that.
changed between versions are not readable by applications
created with version 1.0.

Turbo Vision objects that have different fields than their version
1.0 counterparts have the ofVersion20 bit set in their Options field.
The ofVersion20 bit was undefined in version 1.0.

Handling different

308

versions Versioning is handled transparently by the Load constructors of
version 2.0 objects. After they call their inherited Load
constructors, they look for the ofVersion bits in the Options field
just read. Based on the version bits set, Load then reads the
remainder of the object as it was written, but stores the
information internally as a version 2.0 object.

Store methods for version 2.0 objects write only version 2.0
objects.

You can read any standard objects written by version 1.0 Turbo
Vision applications with version 2.0 programs without change.

Turbo Vision Programming Guide

c H A p T E R

18

Resources
A resource file is a Turbo Vision object that will save objects
handed to it, and can then retrieve them by name. Your applica
tion can then retrieve the objects it uses from a resource rather
than initializing them. Instead of making your application
initialize the objects it uses, you can have a separate program
create all the objects and save them to a resource.

The mechanism is really fairly simple: a resource file works like a
random-access stream, with objects accessed by keys, which are
simply unique strings identifying the resources.

Unlike other portions of Turbo Vision, you probably won't need
or want to change the resource mechanism. As provided,
resources are robust and flexible. You really should only need to
learn to use them.

Why use resources?

Chapter 78, Resources

There are a number of advantages to using a resource file.

Using resources allows you to customize your application with
out changing the code. For example, the text of dialog boxes, the
labels of menu items, and the colors of views can all be altered
within a resource, allowing the appearance of your application to
change without anyone having to get inside of it.

309

You can normally save code by putting all your object Inits in a
separate program. Inits often turn out to be fairly complex,
containing calculations and other operations that can make the
rest of your code simpler. You still have a Load in your application
for each object, but loads are trivial compared to Inits. You can
usually expect to save about 8% to 10% of your code size by using
a resource.

Using a resource also simplifies maintaining language-specific
versions of an application. Your application loads theobjects by
name, but the language that they display is up to them.

If you want to provide versions of an application with differing
capabilities, you can, for example, design two sets of menus, one
of which provides access to all capabilities and another which
provides access to only a limited set of functions. That way you
don't have to rewrite your code at all, and you don't have to
worry about accidentally stripping out the wrong part of the code.
And you can upgrade the program to full functionality by
providing only a new resource, instead of replacing the whole
program.

In short, a resource isolates the representation of the objects in
your program, and makes it easier for it to change.

What1s in a resource?

310

Before digging into the details of resources, you might want to
make sure you're comfortable with streams and collections,
because the resource mechanism uses both of them. You can use
resources without needing to know just how they work, but if you
plan to alter them in any way, you need to know what you're
getting into.

A TResourceFile contains both a sorted string collection and a
stream. The strings in the collection are keys to objects in the
stream. TResourceFile has an Init method that takes a stream, and a
Get method that takes a string and returns an object.

Turbo Vision Programming Guide

I

I

I~

Creating a resource·

This is RESOURC1.PAS.

Chapter 78, Resources

Creating a resource file is essentially a four-step process. You
need to open a stream, initialize a resource file on that stream,
store one or more objects with their keys, and close the resource.

The following code creates a simple resource file called MY.TVR
containing a single resource: a status line with the key 'Waldo'.

program Resourc1;

uses Drivers, Objects, Views, App, Menus;

type
PHaltStream = ATHaltStream;
THaltStream = object (TBufStream)

procedure Error (Code, Info: Integer); virtual;
end;

const cmNewDlg = 1001;
var

MyRez: TResourceFile;
MyStrm: PHaltStream;

procedure THaltStream.Error(Code, Info: Integer);
begin

Writeln('Stream error: " Code, '. (',Info,')');
Halt (1) ;

end;

procedure CreateStatusLine;
var

R: TRect;
StatusLine: PStatusLine;

begin
R.Assign(O, 24, 80, 25);
StatusLine := New (PStatusLine, Init(R,

NewStatusDef(O, $FFFF,
NewStatusKey('-Alt-X- Exit', kbAltX, cmQuit,
NewStatusKey('-F3- Open', kbF3, cmNewDlg,
NewStatusKey('-F5- Zoom', kbF5, cmZoom,
NewStatusKey('~Alt-F3- Close', kbAltF3, cmClose,
nil)))) ,

nil)

)) ;

MyRez.Put(StatusLine, 'Waldo');
Dispose (StatusLine, Done);

end;

311

begin
MyStrm := New(PHaltStream, Init('MY.TVR', stCreate, 1024));
MyRez.lnit(MyStrm);
RegisterType(RStatusLine);
CreateStatusLinei
MyRez.Done;

end.

Reading. a resource

This is RESOURC2.PAS.

312

Retrieving a resource from a resource file is just as simple as get
ting an object from a stream: You just call the resource file's Get
function with the desired resource's key as a parameter. Get
returns a generic PObject pointer.

The status line resource created in the previous example can be
retrieved and used by an application in this way:

program Resourc2;

uses Objects, Drivers, Views, Menus, Dialogs, App;

var
MyRez: TResourceFile;

type
PMyApp = ATMyApp;
TMyApp = object(TApplication)

constructor Init;
procedure InitStatusLine; virtual;

end;

constructor TMyApp.lnit;
const

MyRezFileName: FNameStr = 'MY.TVR';
begin

MyRez.lnit(New(PBufStream, Init(MyRezFileName, stOpen, 1024)));
if MyRez.StreamA.Status <> 0 then Halt(1);
RegisterType(RStatusLine) ;
TApplication.lnit;

end;

procedure TMyApp.lnitStatusLine;
begin

StatusLine := PStatusLine(MyRez.Get('Waldo'));
end;

Turbo Vision Programming Guide

I

I

\.
I

I

String lists

Chapter 78, Resources

var WaldoApp: TMyAPPi
begin

WaldoApp.lniti
WaldoApp.Runi
WaldoApp.Donei

end.

When you read an object off a resource, you need to be aware of
the possibility of receiving a nil pointer. If your index name is
invalid (that is, if there is no resource with that key in the file), Get
returns nil. After your resource code is debugged, however, this
should no longer be a problem.

You can read an object repeatedly off a resource. It's unlikely that
you would want to do so with our example of a status line, but a
dialog box, for example, might typically be retrieved many times
by a user during the course of an application's running. A
resource just repeatedly provides an object when it is requested.

This can potentially produce problems with slow disk I/O, even
though the resource file is buffered. You can adjust your disk
buffering, or you can copy the stream to an EMS stream using the
Switch To method if you have EMS installed.

In addition to the standard resource mechanism, Turbo Vision
provides a pair of specialized objects that handle string lists. A
string list is a special resource access object that allows your
program to access resourced strings by number (usually repre
sented by an integer constant) instead of a key string. This allows
a program to store strings out on a resource file for easy
customization and internationalization.

For example, the Turbo Pascal IDE uses a string list object for all
its error messages. This means the program can simply call for an
error message by number, and different versions in different
countries will find different strings in their resources.

The string list object is by design not very flexible, but it is fast
and convenient when used as designed.

The TStringList object is used to access the strings. To create the
string list requires the use of the TStrListMaker object. The regis
tration records for both have the same object type number.

313

Making string lists

314

The string list object has no Init method. The only constructor it
has is a Load method, because string lists only exist on resource
files. Similarly, since the string list is essentially a read-only
resource, it has a Get function, but no Put procedure.

The TStrListMaker object type is used to create a string list on a
resource file for use with TStringList. In contrast to the string list,
which is read-only, the string list maker is write-only. Basically, all
you can do with a string list maker is initialize a string list, write
strings onto it sequentially, and store the resulting list on a
stream.

Turbo Vision Programming Guide

p A R T

3

Turbo Vision Reference

315

i

I

\.

316 Turbo Vision Programming Guide

I

I

I

I

I

I

I

I

I

I

I

I

c H A p T E R

19

Turbo ·Vision reference

This chapter describes all the elements of Turbo Vision, including all the
object types, procedures, functions, types, variables, and constants. All
items are listed alphabetically.

The purpose of this chapter is not to teach you how to use these items-it
is only a reference. To learn to best use each of these elements, consult the
appropriate chapters in Part 2, "Using Turbo Vision."

To find information on a specific object, keep in mind that many of the
properties of the objects in the hierarchy are inherited from ancestor
objects. Rather than duplicate all that information endlessly, this chapter
only documents fields and methods that are new or changed for a partic
ular object. By looking at the inheritance diagram for the object, you can
easily determine which of its ancestors introduced a field, and which
objects introduce or redefine methods.

Abstract procedure Objects

Declaration procedure Abstract i

Function Calling this procedure terminates the program with run-time error 21l.
When implementing an abstract object type, call Abstract in those virtual
methods that must be overridden in descendant types. This ensures that
any attempt to use instances of the abstract object type will fail.

See also "Abstract methods" in Chapter 7

Chapter 7 9, Turbo Vision reference 317

Application variable

Application variable App

Declaration Application: PApplication = nil;

Function Throughout the execution of a Turbo Vision program, Application points
to the application object. The Init constructor of TProgram sets Application
to @Self, and the Done destructor clears it to nil. By default, T Application's
constructor calls TProgram.Init, so all application objects inherit this
behavior.

See also TProgram.Init

AppPalette variable App

Declaration AppPalette: Integer = apColor;

Function Selects one of the three available application palettes (apColor,
apBlackWhite, or apMonochrome). The InitScreen method of TProgram sets
AppPalette depending on the current screen mode. TProgram's GetPalette
method check's AppPalette to determine which of the three available
application palettes to return. You can override TProgram.InitScreen to
change the default palette selection.

See also TProgram.Getpalette, TProgram.InitScreen, apXXXX constants \

apXXXX constants

Values The following application palette constants are defined:

Table 19.1
Application palette

constants

Constant

apColar
apBlack White
apMonochrome

Value

a
1
2

Meaning

Use palette for color screen
Use palette for LCD screen
Use palette for monochrome screen

App

Function The apXXXX constants designate which of three standard color palettes a
Turbo Vision application should use for color, black and white, and
monochrome displays.

AssignDevice procedure TextView

Declaration procedure AssignDevice (var T: Text; Screen: PTextDevice);

318 Turbo Vision Programming Guide

I

I.

I
I

AssignDevice procedure

Function Associates a text file with a text device. AssignDevice works exactly llke the
Assign standard procedure, except that no file name is specified. Instead,
the text file is associated with the TTextDevice given by Screen (by storing
Screen in the first four bytes of the UserData field in TextRec(T).

Subsequent 110 operations on T will read from and write to Screen, using
the Str Read and Str Write virtual methods. Since TTextDevice is an abstract
type, Screen should point to an instance of a descendant of TTextDevice
such as TTerminal, which implements a fully functional scrolling view.

See also TTextDevice; TextRec (in the Programmer's Reference)

bfXXXX constants Dialogs

Values The following button flags are defined:

Figure 19.1
Button flags

Table 19.2
Button flags Constant

bfNormal
bfDefault
bfLeftfust
bfBroadcast
bfGrabFocus

Value

$00
$01
$02
$04
$08

Meaning

Button is a normal button
Button is the default button
Button label is left-aligned
Button notifies its owner when pressed
Button receives input focus when user clicks

Function Button objects have a bitmapped Flags field that holds a combination of
bfXXXX constants that determine the button's style. bfNormal indicates a
normal, non-default button. bfDefault indicates that the button is the
default button. It is your responsibility to ensure that there is only one
default button in a group. The bfLeftJust bit affects the position of the text
displayed within the button: If clear, the text is centered; if set, the text is
left -aligned.

bfBroadcast controls the way button objects generate events when pressed:

• If bfBroadcast is clear (the default setting), the button uses PutEvent to
generate a command event when pressed:

E.What := evCommand;
E.Command := Command;
E.lnfoptr := @Self;
Put Event (E) ;

Chapter 79, Turbo Vision reference 319

I

bfXXXX constants

• If bfBroadcast is set, the button uses Message to send a broadcast message
to its owner when pressed:

Message (Owner, evBroadcast, Command, @Self);

Setting bfGrabFocus causes the input focus to move to the button when the
user clicks it with the mouse. By default, buttons don't take the focus.

See also TButton.Flags, TButton.MakeDefault, TButton.Draw

ButtonCount variable Drivers

Declaration ButtonCount: Byte = 0;

Function ButtonCount holds the number of buttons on the mouse, or zero if no
mouse is installed. You can use this variable to determine whether mouse
support is available. The value is set by the initialization code in Drivers,
and should not be changed.

cdXXXX constants StdD.lg

Values
Constant

cdNormal

cdNoLoadDir

cdHelpButton

Value

$0000

$0001

$0002

Meaning

Create the dialog box normally, including loading
the directory.
Initialize the dialog box without loading the
directory contents. Used when creating a dialog
box to store on a stream.
Put a help button in the dialog box.

Function These constants define the values passed to a change directory dialog
box's Init constructor in the AOptions parameter.

See also TChDirDialog object

cfXXXX constants Dialogs

Values

320

Constant

cfOneBit
cfTwoBits
cfFourBits
cfEightBits

Value

$0101
$0203
$040F
$08FF

Meaning

1 bit per checkbox
2 bits per check box
4 bits per check box
8 bits per check box

Turbo Vision Programming Guide

cfXXXX constants

Function Multistate check boxes use the cfXXXX constants to specify how many C
bits in the Value field represent the state of each check box. The high-order
word of the constant indicates the number of bits used for each check box,
and the low-order word holds a bit mask used to read those bits.

For example, cfTwoBits indicates that Value uses two bits for each check
box (making a maximum of 16 check boxes in the cluster), and masks each
check box's values with the mask $03.

See also TMultiCheckBoxes object

CheckSnow variable Drivers

Declaration CheckSnow: Boolean;

Function CheckS now performs the same function as the flag of the same name in the
Crt unit. Snow checking is only needed to slow down screen output for
some older CGA adapters. InitVideo sets Checksnow to True only if it
detects a eGA adapter. You can set the value to False at any time after the
InitVideo call for faster screen I/O.

See also In it Video

ClearHistory procedure HistList

Declaration procedure ClearHistory;

Function Removes all strings from all history lists.

ClearScreen procedure Drivers

Declaration procedure ClearScreen;

Function Clears the screen. Clearscreen assumes that InitVideo has been called first.
You seldom need to call Clear Screen, as explained in the description of
InitVideo.

See also In it Video

Clipboard variable Editors

Declaration Clipboard: PEditor = nil;

Chapter 79, TurbQ Vision reference 321

Clipboard variable

Function Clipboard points to an editor object used for transfer of data between other
editor objects. Any editor object can serve as the clipboard. The clipboard
editor should not support undo (that is, its CanUndo field should be False).

cmXXXX constants

Function These constants represent Turbo Vision's predefined commands. They are
passed in the Command field of evMessage events (evCommand and
evBroadcast), and cause the HandleEvent methods of Turbo Vision's stan
dard objects to perform various tasks.

Turbo Vision reserves constant values a through 99 and 256 through 999
for its own use. Standard Turbo Vision objects' event handlers respond to
these predefined constants. Programmers can define their own constants
in the ranges 100 through 255 and 1,000 through 65,535 without
conflicting with predefined commands.

Values The following standard commands are defined in the Views unit and used
by all views:

Command' Value

command codes em Valid 0 Passed to a view's Valid to check the validity of a newly
instantiated view.

322

emQuit

em Error

emMenu

em Close

cmZoom
emResize
emNext
emPrev

1

2

3

4

5
6
7
8

Terminates the application by calling the application
object's EndModal method, passing emQuit.
Never handled by any object. Can be used to represent
unimplemented or unsupported commands.
Causes a menu view to call ExeeView on itself to perform
a menu selection process, the result of which might
generate a new command through PutEvent.
Closes a window. If the window is modal, a command
event with a value of emCaneel is generated with
PutEvent. If the window is modeless, the window's Close
method is called.
Causes a zoomable window to call Zoom.
Causes a resizable window to call DragView on itself.
Selects the next window on the desktop.
Selects the previous window on the desktop.

The following standard commands are used to define default behavior of
dialog box objects: '

Turbo Vision Programming Guide

Table 19,4
Dialog box

standard
commands

Table 19,5
Standard Edit and

Window menu
commands

cmXXXX constants

Command Value Meaning

cmOK 10 OK button was pressed.
em Cancel 11 Dialog box was canceled by Cancel button, close icon

or Esc key.
em Yes 12 Yes button was pressed.
cmNo 13 No button was pressed.
em DefauIt 14 Default button was pressed.

An event with one of the commands cmOK, cmCancel, cmYes, or cmNo
causes a modal dialog box to terminate it's modal state (by calling
EndModal) and return that value. A modal dialog box typically contains at
least one button with one of these command values. By default, dialog
boxes generate a cmCancel command event in response to a kbEsc
keyboard event.

The cmDefault command causes the default button to simulate a button
press. By default, dialog boxes generate a cmDefault command event in
response to a kbEnter keyboard event.

The following comands are used for clipboard and window operations,
and are generated by the standard Edit and Window menus:

Command

cmCut
em Copy
cmPaste
em Undo
em Clear
em Tile
em Cascade

Value Meaning

20 Cut selected text to clipboard
21 Copy selected text to clipboard
22 Paste clipboard text
23 Undo last edit
24 Clear selected text
25 Tile all tileable windows on desktop
26 Cascade all tileable windows on desktop

See also StdEditMenuItems function, StdWindowMenuItems function

Function Turbo Vision 2.0 defines new command constants for the items on the
standard file menu.

Values The App unit defines the following standard application commands:

Table 19,6
Standard

application
commands

Constant

cmNew

Value Meaning

Open new file, from File I New
Open existing file, from File I Open
Save current file, from File I Save
Save and rename file, from File I Save As
Save all open files, from File I Save All

em Open
cmSave
cmSaveAs
cmSaveAll
cmChangeDir
cmDosShell
cmCloseAll

30
31
32
33
34
35
36
37

Change current directory, from File I Change Dir
Shell to DOS, from File I DOS Shell
Close all open files, from File I Close All

Chapter 79, Turbo Vision reference 323

I

cmXXXX constants

See also StdFileMenuItems function

The following standard commands are defined for use by standard views:

Table 19.7
Command Value Meaning Standard view

commands emReeeivedFoeus 50 TView.setstate uses the Message function to
emReleasedFoeus 51 send an evBroadeast event with one of these

values to its owner whenever sfFoeused
changes. This informs any peer views that the
view has received or released focus, and that
they should update themselves appropri-
ately. Label objects, for example, respond to
these commands by highlighting or
unhighlighting themselves when the view
they label is focused or unfocused.

emCommandsetChanged 52 The application's Idle method broadcasts an
event with this value whenever it detects a
change in the current command set. The

I broadcast goes to every view in the applica-
I

tion that accepts broadcast events. Views

I

should react to command set changes by
redrawing themselves as needed.

I" emserollBarChanged 53 A scroll bar uses the Message function to send
cmserollBarClieked 54 a broadcast event with one of these values to

I its owner whenever its value changes or the
user clicks the scroll bar. Views connected to I

the scroll bar, such as scrollers and list
I

viewers, can then react to the broadcast.

emseleet WindowNum 55 Causes a window to select itself if the InfoInt
of the event record corresponds to the
window's Number field. TProgram's
HandleEvent responds to Alt+ 1 through Alt+9
keyboard events by broadcasting a
emS elect WindowNum event with an InfoInt of
1 through 9.

emListItemseleeted 56 List viewer objects broadcast events with a
Command value of emListItemSeleeted to their
owners whenever an item in the list is
selected.

cmReeordHistory 60 Causes a history object to record the current
contents of the linked input line object.
Buttons send these broadcasts to their owners
when pressed, causing all history objects in
the dialog box to record at that time.

See also TView.HandleEvent, TCommandSet

Values The following constants are used by TEditor objects:

324 Turbo Vision Programming Guide

I

I

cmXXXX constants

Command Value Meaning

cmFind 82 Invoke the text search dialog box
cmReplace 83 Invoke the text search and replace dialog box
cmSearchAgain 84 Repeat the previous text search

TEditor.HandleEvent maps various keystrokes into the following
commands:

Command Value Command Value

cmCharLeft 500 cmNewLine 512
cmCharRight 501 cmBackSpace 513
cmWordLeft 502 cmDelChar 514
cm WordRight 503 cmDelWord 515
cmLineStart 504 cmDelStart 516
cmLineEnd 505 cmDelEnd 517
cmLineUp 506 cmDelLine 518
cmLineDown 507 cmlnsMode 519
cmPageUp 508 cmStartSelect 520
cmPageDown 509 cmHideSelect 521
cm Text Start 510 cmlndentMode 522
cmTextEnd 511 cmUpdateTitle 523

Values The StdDlgs unit defines the following commands for file dialog boxes:

Command

. cmFileOpen
cmFileReplace
cmFileClear

Value Meaning

800 Returned from TFileDialog when Open clicked
801 Returned from TFileDialog when Replace clicked
802 Returned from TFileDialog when Clear clicked

Colorlndexes variable ColorSel

Declaration Colorlndexes: PColorlndex = nili

Function Holds the current state of the application's color selection dialog box,
enabling the program to easily save and restore the state for future use.

See also Loadlndexes procedure, StoreIndexes procedure

ColorGroup function ColorSel

Declaration function ColorGroup (Name: String i Items: PColorItemi
Next: PColorGroup): PColorGrouPi

Chapter 79, Turbo Vision reference 325

ColorGroup function

Function Allocates a new group of color items on the heap with the name given by
Name and the list of color items passed in Items and returns a pointer to
the group. Next points to the next group in a linked list of groups, with nil
indicating the end of the list.

See also TColorGroup type

Colorltem function ColorSel

Declaration function ColorItem (Name: String i Index: Byte i Next: PColorItem): PColorItemi

Allocates a new color item on the heap with the name given by Name and
the color index given by Index. Next, points to the next color item in a
linked list, with nil indicating the end of the list.

coXXXX constants Objects

Function The coXXXX const~nts are passed as the Code parameter to
TCollection.Error when a collection detects an error during an operation. ,-

Values The following standard error codes are defined for all collections:

Table J9.B
Collection error

codes

Error code

coIndexError

co Overflow

See also TCollection

CStrLen function

Value

-1

-2

Meaning

Index out of range. The Info parameter passed to the
Error method contains the invalid index.
Collection overflow. TCollection.SetLimit failed to
expand the collection to the requested size. The Info
parameter passed to the Error method contains the
requested size.

Drivers

Declaration function CStrLen (S: String): Integer i

Function Returns the length of string 5, where 5 is a control string using tilde
characters (' -') to designate shortcut characters. The tildes are excluded
from the length of the string, as they will not appear on the screen. For
example, given the string '-B-roccoli' as its parameter, C5trLen returns 8.

See also MoveC5tr

326 Turbo Vision Programming Guide

CfrlBreakHit variable

CtrlBreakHit variable Drivers

Declaration CtrlBreakHit: Boolean = False;

Function Set True by the Turbo Vision keyboard interrupt driver whenever
Ctrl+Break is pressed. This allows Turbo Vision applications to trap and
respond to Ctrl+Break as a user control. You can clear the flag at any time by
setting it to False.

See also SaveCtrlBreak

CtrlToArrow function Drivers

Declaration function CtrlToArrow(KeyCode: Word): Word;

Function Converts a WordStar-compatible control key code to the corresponding
cursor key code. If the low byte of KeyCode matches one of the control key
values in Table 19.9, the result is the corresponding kbXXXX constant.
Otherwise, KeyCode is returned unchanged.

Table 19.9
Control-key

mappings

Keystroke

Ctrl+A
Ctrl+C
Ctrl+D
Ctrl+E
Ctrl+F
Ctrl+G
Ctrl+H
Ctrl+R
Ctrl+S
Ctrl+V
Ctrl+X

CursorLines variable

Declaration CursorLines: Word;

Lo(KeyCode)

$01
$03
$04
$05
$06
$07
$08
$12
$13
$16
$18

Result

kbHome
kbPgDn
kbRight
kbUp
kbEnd
kbDel
kbBack
kbPgUp
kbLeft
kblns
kbDown

Drivers

Function Set to the starting and ending scan lines of the cursor by InitVideo. The
format is that expected by BIOS interrupt $10, function 1 to set the cursor
type.

Chapter 19, Turbo Vision reference 327

CursorLines variable

See also InitVideo, TView.ShowCursor, TView.HideCursor, TView.BlockCursor,
TView.NormalCursor

DefEditorDialog function Editors

Declaration function DefEditorDialog(Dialog: Integer; Info: Pointer): Word;

Function DefEditorDialog is the default value assigned to the EditorDialog variable.
For a description of the general use of editor dialog functions, see the
entry for the TEditorDialog type. DefEditorDialog shows no dialog boxes at
all, and simply returns the. value em Cancel, as if any dialog it was called to
show had been canceled.

See also TEditorDialog type, EditorDialog variable

Desktop variable App

Declaration Desktop: PDesktop = nil;

Function Stores a pointer to the application's desktop object. Application objects use
the virtual method InitDesktop, called by the application's Init constructor,
to construct a desktop object and assign a pointer to it to Desktop. To
change the default desktop, override InitDesktop in your application object
to construct a different kind of desktop object and assign it to Desktop.

See also TProgram.InitDesktop

DesktopColorltems function ColorSel

Declaration function DesktopColorItems (const Next: PColorItem): PColorItem;

Function Returns a linked list of TColorItem records for the standard desktop object.
For programs that allow the user to change desktop colors with the color
selection dialog box, DesktopColorItems simplifies the process of setting up
the color items.

DialogColorltems function ColorSel

Declaration function DialogColorItems (Palette: Word; const Next: PColorItem): PColorItem;

328 Turbo Vision Programming Guide

DialogColorltems function

Function Returns a linked list of TColorItem records for the standard dialog box
object. For programs that allow the user to change dialog box colors with
the color selection dialog box, DesktopColorItems simplifies the process of _.
setting up the color items. iii

DisposeBuffer procedure Memory

Declaration procedure DisposeBuffer (P: Pointer) i

Function Disposes of the buffer PA. P must be a buffer allocated by New Buffer.

See also . NewBuffer procedure

DisposeCache procedure Memory

Declaration procedure DisposeCache (P: Pointer) i

Function Disposes of the cache buffer PA. P must be a cache buffer allocated by
NewCache.

See also NewCache procedure

DisposeMenu procedure Menus

Declaration procedure DisposeMenu (Menu: PMenu) i

Function Disposes of all the elements of the specified menu (and all its submenus).

See also TMenu type

DisposeNode procedure Outline

Declaration procedure DisposeNode (Node: PNode) i

Function Disposes of an outline node created by NewNode, including recursively
disposing of any child nodes.

See also NewNode function

Chapter 79, Turbo Vision reference 329

DisposeStr procedure

DisposeStr procedure Objects

Declaration procedure DisposeStr (P: PString) i

Disposes of a string allocated on the heap by the NewStr function.

See also NewStr

dmXXXX constants Views

Values The DragMode bits are defined as follows:

Figure 19.2 dmLimitAll = $FO I I
Drag mode bit flags Ilmsbl

1 1 1 1 1
11 sbjl

330

I I ~: dmDragMove = $01
dmDragGrow = $02
dmLimitLoX = $10
dmLimitLoY = $20
dmLimitHiX = $40
dmLi mitH i Y = $80

Function Drag mode constants serve two purposes. Constants beginning with
dmLimit are used in a view's DragMode field to indicate which parts, if any,
of a view should not move outside the owner view when dragged. Those
beginning with dmDrag specify how the view responds to dragging: by
moving or by growing.

Table 19.10
Drag mode

constants

DragMode and the drag mode constants combine to form the Mode
parameter of the TView.DragView method. Normally, you combine either
dmDragGrow or dmDragMove with DragMode and pass the result in Mode.
The example program DRAGS.P AS illustrates how changing the drag
mode flags affects a view when dragged.

The drag mode constants are defined as follows:

Constant

dmDragMove
dmDragGrow
dmLimitLoX
dmLimitLoY
dmLimitHiX
dmLimitHiY
dmLimitAll

Meaning

Move,the view when dragged.
Change the size of the view when dragged.
The view's left-hand side cannot move outside Limits.
The view's top side cannot move outside Limits.
The view's right-hand side cannot move outside Limits.
The view's bottom side cannot move outside Limits.
No part of the view can move outside Limits.

A view's DragMode field contains any combinatio:t;l of the dmLimitXX flags.
By default, TView.Init sets the field to dmLimitLoY. Currently, the
DragMode field is used only in a TWindow to construct the Mode parameter
to Drag View when a window is moved or resized.

Turbo Vision Programming Guide

DoneDosMem procedure

DoneDosMem procedure Memory

Declaration procedure DoneDosMemi

Function Frees up memory for DOS shells or execution of another program.
DoneDosMem releases all cache buffers, then calls SetMemTop to the end of
the last item on the heap, making th rest of the heap available. When the
shell or subprogram returns, you need to call InitDosMem to restore the
full heap to your application. For an example of the use of InitDosMem
and DoneDosMem, see the implementation of T Application.DosShell in
APP.PAS.

See also InitDosMem procedure, SetMemTop procedure

DoneEvents procedure Drivers

Declaration procedure DoneEvents i

Function Terminates Turbo Vision's event manager by disabling the mouse
interrupt handler and hiding the mouse. Called by T Application.Done.

See also T Application.Done, InitEvents

DoneHistory procedure HistList

Declaration procedure DoneHistory i

Function Frees the history block anocated by InitHistory. Called by
T Application.Done.

See also InitHistory procedure, T Application.Done

DoneMemory procedure Memory

Declaration procedure DoneMemory i

Function Terminates Turbo Vision's memory manager by freeing all buffers
allocated through GetBufMem. Called by TApplication.Done.

See also T Application.Done, InitMemory

Chapter 79, Turbo Vision reference 331

II

DoneSysError procedure

DoneSysError procedure Drivers

Declaration procedure DoneSysError;

Function Terminates Turbo Vision's system error handler by restoring interrupt
vectors 09H, 1BH, 21H, 23H, and 24H and restoring the Ctrl+Breakstate in
DOS. Called by T Application.Done.

See also T Application.Done, InitSysError

DoneVideo procedure Drivers

Declaration procedure DoneVideo;

Function Terminates Turbo Vision's video manager by restoring the initial screen
mode (given by StartupMode), clearing the screen, and restoring the cursor.
Called by T Application.Done.

See also TApplication.Done, InitVideo, StartupMode variable

DoubleDelay variable Drivers

Declaration DoubleDelay: Word = 8;

Function Defines the time interval (in 1/18.2 parts of a second) between mouse
button presses in order to distinguish a double click from two distinct
clicks. Used by GetMouseEvent to generate a Double event if the clicks
occur within this time interval.

See also TEvent.Double, GetMouseEvent

dpXXXX constants Dialogs

Values

332

Constant

dpBlueDialog
dpCyan Dia log
dpGrayDialog

Value Meaning

1
2
3

Dialog box background is blue
Dialog box background is cyan
Dialog box background is gray

Turbo Vision Programming Guide

dpXXXX: constants

Function Dialog box objects use the dpXXXX constants to specify which of the three
standard color palettes to use. By default, dialog box objects use
dpGray Dialog. You can choose one of the other ,standard palettes by setting D
the dialog box's Palette field to one of the other dpXXXX constants after
constructing the dialog box object.

EditorDialog variable Editors

Declaration Edi torDialog: TEdi torDialog = DefEdi torDialog i

Function EditorDialog is a global procedural variable. It holds the editor dialog
function defined for all editors in the application. By default, EditorDialog
holds the function DefEditorDialog, which bypasses the display of the
dialog boxes and returns cmCancel.

Turbo Vision also provides a usable set of editor dialog boxes through the
StdEditorDialog function.

See also StdEditor Dialog function

EditorFlags variable Editors

Declaration EditorFlags: Word = efBackupFiles + efPromptOnReplacei

Function EditorFlags is a bitmapped global variable that controls the behavior of
editor objects throughout the application. The bits are defined by the
efXXXX constants. By default, EditorFlags causes file editors to save
backup versions of edited files and causes search~and-replace operations
to prompt before replacing text.

See also efXXXX constants

edXXXX constants Editors

Function Editor objects pass these constants to the EditorDialog function to specify
which of several possible dialog boxes the function should display. The
standard editor dialog boxes provided by StdEditorDialog respond to all of
these. You should only need to use these constants if you write your own
editor dialog boxes.

Chapter 79, Turbo Vision reference 333

edXXXX constants

Values
Constant Value Meaning

edOutOfMemory 0 Display an "out of memory" warning.
edReadError 1 Error reading a file.
edWriteError 2 Error writing a file.
edCreateError 3 Could not create a file.
edSaveModifY 4 File being closed has unsaved changes.
edSaveUntitled 5 Untitled file being closed; ask to save

changes.
edSaveAs 6 Saving file with new name or saving for

first time.
edFind 7 Prompt user for text to find.
edSearchFailed 8 Tell user that search string not found.
edReplace 9 Prompt user for text to search for and

replace with.
edReplacePrompt 10 Ask whether to replace the located search

text.

See also EditorDialog variable, TEditorDialog type

efXXXX constants Editors

334

Function Editor flag constants are used to control the bitmapped global variable
EditorFlags. Most of the flags affect the way search and replace operations
behave, but one flag determines whether file editors create backup files.

Values

Figure 19.3
Editor flag bit

mapping

Constant

efCaseSensitive

efWhole Words Only

efPromptOnReplace
efReplaceAll

efDoReplace

efBackupFiles

Value

$0001

$0002

$0004
$0008

$0010

$0100

Meaning

Treat uppercase and lowercase letters
differently.
Search only for whole words (separated by
spaces, tabs, or end-of-line).
Prompt the user before replacing text.
Search for and replace all instances of the search
text.
Replace search text if found. Used internally by
TEditor.
Make backup copies of edited files, using the
extension .BAK.

Turbo Vision Programming Guide

I

I

~

EmsCurHandle variable

EmsCurHandle variable Objects

Declaration EmsCurHandle: Word = $FFFF i

Function Holds the current EMS handle as mapped into EMS physical page a by a
TEmsStream. TEmsStream avoids costly EMS remapping calls by caching
the state of EMS. If your program uses EMSfor other purposes, be sure to
set EmsCurHandle and EmsCurPageto $FFFF before using a TEmsStream
this will force the TEmsStream to restore its mapping.

See also TEmsStream.Handle

EmsCurPage variable Objects

Declaration EmsCurPage: Word = $FFFF i

Function Holds the current EMS logical page number as mapped into EMS physical
page a by a TEmsStream. TEmsStream avoids costly EMS remapping calls
by caching the state of EMS. If your program uses EMS for other pur
poses, be sure to set EmsCurHandle and EmsCurPage to $FFFF before using
a TEmsStream-this will force the TEmsStream to restore its mapping.

See also TEmsStream.Page

Error Attr variable Views

Declaration const ErrorAttr: Byte = $CF i

Function Contains a video attribute byte used as the error return value of a call to a
view's GetColor method. If GetColor fails to correctly map a palette index
into a video attribute byte (because of an out-of-range index), it returns
the value in ErrorAttr.

The·default ErrorAttr value represents blinking high-intensity white
characters on a red background. If you see this color combination on the
screen, it probably indicates a palette mapping error.

See also TView.GetColor

Chapter 79, Turbo Vision reference 335

II

evXXXX constants

evXXXX constants Drivers

Function These mnemonics indicat~ types of events to Turbo Vision event handlers.
evXXXX constants appear in several places:

• In the What field of an event record
• In the EventMask field of a view object
• In the PositionalEvents and FocusedEvents variables

Values The following event flag values designate standard event types:

Table 19.11
Standard event

flags

Table 19.12
Standard event

masks

Figure 19.4
Event mask bit

mapping

Constant

evMouseDown
evMouseUp

-evMouseMove
evMouseAuto
evKeyDown
evCommand
evBroadcast

Value

$0001
$0002
$0004
$0008
$0010
$0100
$0200

Meaning

Mouse button depressed
Mouse button released
Mouse changed location
Periodic event while mouse button held down
Key pressed
Command event
Broadcast event

The following constants mask types of events:

Constant

evNothing
evMouse
evKeyboard
evMessage

Value

$0000
$OOOF
$0010
$FFOO

Meaning

Event already handled
Mouse event
Keyboard event
Message (command, broadcast, or user-defined)
event

The event mask bits are defined as follows:
.-..---.-----r-.----.--.----r-----------,evMessage = $ FFOO

r------,evKeyboard = $0010
.---.--.----r-'evMouse = $OOOF

evMouseDown = $0001
evMouseUp = $0002

'-----'evMouseMove = $0004
'------evMouseAuto = $0008

'--------evKeyDown = $0010
'------------evCommand = $0100

'---------------evBroadcast = $0200

The standard event masks can be used to quickly determine whether an
event belongs to a particular "family" of events. For example,

if Event.What and evMouse <> 0 then DoMouseEvent(Event) i

See also TEvent, TView.EventMask, GetKeyEvent, GetMouseEvent, HandleEvent
methods, PositionalEvents, FocusedEvents

336 Turbo Vision Programming Guide

fdXXXX constants

fdXXXX constants StdDlg

Function The fdXXXX constants are passed in the AOptions parameter to the
constructor of TFileDialog objects.

Values

Figure 19.5
File dialog box

option flags

Constant

fdOkButton
fdOpenButton
fdReplaceButton
fdClearButton
fdHelpButton
fdNoLoadDir

See also TFileDialog

FindStr variable

Declaration FindStr: string[80] = ";

Value

$0001
$0002
$0004
$0008
$0010
$0100

I

Meaning

Put an OK button in the dialog.
Put an Open button in the dialog.
Put a Replace button in the dialog.
Put a Clear button in the dialog.
Put a Help button in the dialog.
Do not load the current directory contents into
the dialog at Init. This means you intend to
change the WildCard by using SetData or store
the dialog on a stream.

Editors

Function FindStr holds the last string searched for in a search operation.

FNameStr type

Declaration FNameStr = string [79] ;

Function DOS file name string

FocusedEvents variable

Declaration FocusedEvents: Word = evKeyboard + evCommand;

Objects

Views

Function Defines the event classes that are focused events. The FocusedEvents and
PositionalEvents variables are used by TGroup.HandleEvent to determine

Chapter 79, Turbo Vision reference 337

I

FocusedEvents variable

how to dispatch events to the group's subviews. If an event class isn't
contained in FocusedEvents or PositionalEvents, it's treated as a broadcast
event.

See also PositionalEvents variable, TGroup.HandleEvent, TEvent, evXXXX constants

FormatStr procedure Drivers

Declaration procedure FormatStr (var Result: String i const Format: String i var Params) i

Function A generalized string formatting routine that works much like the C
language's vsprintf function. Given a string in Format that includes format
specifiers and a list of parameters in Params, FormatStr produces a
formatted output string in Result.

The Format parameter can contain any number of format specifiers
directing what format to use to display the parameters in Params. Format
specifiers are of the form % [-:-J [nnnJ x, where

• % indicates the beginning of a format specifier.

• [-] is an optional minus sign (-) indicating the parameter is to be left
aligned (by default; parameters are displayed right-justified).

• [nnn] is an optional, decimal-number width specifier in the range 0 .. 255
(0 indicates no width specified, and non-zero means to display in a field
of nnn characters).

• X is a format character:

• 's' means the parameter is a pointer to a, string.

• 'd' means the parameter is a Longint to be displayed in decimaL

• 'c' means the low byte of the parameter is a character.

• 'x' means the parameter is a Longint to be displayed in hexadecimal.

• '#' sets the parameter index to nnn.

For example, if the parameter points to a string containing I spiny' for
printing, the following table shows specifiers and their results:

Table 19.13
Format specifiers
and their results

Specifier

%68
%-68
%38
%-38
%068
%-068

Result

, spiny'
'spiny'
tiny'
'spit
'Ospiny'
'spinyO'

338 Turbo Vision Programming Guide

I

I

I-

FormatStr procedure

Params is an untyped var parameter containing enough parameters to
match each of the format specifiers in Format. Params must be a zero-based
array of Longints or pointers or a record containing Longints or pointers.

For example, to print the error message string Error in file [file name]
at 1 ine [1 ine number], you could pass the following string in Format:
'Error in file %s at line %d'. Params, then, needs to contain a pointer to a F
string with the file name and a Longint representing the line number in the
file. This could be specifed in an array or in a record.

The following example shows two type declarations and variable
assignments that both produce acceptable values to be passed as Params to
FormatStr:

type
ErrMsgRec = record

FileName: PString;
LineNo: Longint;

end;

ErrMsgArray = array[O .. 1] of Longint;

const TemplateMsg = 'Error in file %s at line %d';

var
MyFileName: FNameStr;
OopsRec: ErrMsgRec;
DarnArray: ErrMsgArray;
TestStr: String;

begin
MyFileName := 'WARTHOG.ASM';
with OopsRec, do
begin

FileName := @MyFileName;
LineNo := 42;

end;
FormatStr(TestStr, TemplateMsg, OopsRec);
Writeln(TestStr);
DarnArray[O] := Longint(@MyFileName);
DarnArray[l] := 24;
FormatStr(TestStr, TemplateMsg, DarnArray);
Writeln(TestStr) ;

end.

See also SystemError function, TParamText object

Chapter 79, Turbo Vision reference 339

FreeBufMem procedure

FreeBufMem procedure Memory

Declaration procedure FreeBufMern(P': Pointer) i

Function Frees the cache buffer referenced by the pointer P by calling DisposeCache.
FreeBufMem is provided for compatibility with earlier versions of Turbo
Vision; you should use DisposeCache directly instead.

See also DisposeCache procedure

GetAltChar function Drivers

Declaration function GetAltChar(KeyCode: Word): Chari

Function Returns the character, Ch, for which Alt-Ch produces the 2,.byte scan code
given by the argument KeyCode. Gives the reverse mapping to GetAltCode.

See also GetAltCode

GetAltCode function Drivers

Declaration function GetAltCode (Ch: Char): Wordi

Function Returns the 2-byte scan code (keycode) corresponding to Alt-Ch. This
function gives the reverse mapping to GetAltChar.

See also GetAltChar

GetBufferSize function Memory

Declaration function GetBufferSize (P: Pointer): Wordi

Function Returns the size in bytes of the buffer PA. P must point to a buffer
allocated by NewBuffer.

See also NewBuffer procedure

GetBufMem procedure Memory

Declaration procedure GetBufMern (var P: Pointer i Size: Word) i

340 Turbo Vision Programming Guide

I

,I

I'

'I

I

I

GetBufMem procedure

Function Allocates a cache buffer of Size bytes and stores a pointer to the buffer in P
by calling NewCache. GetBufMem is provided for compatibility with earlier
versions of Turbo Vision. You should call NewCache directly instead.

See also NewCache procedure

G,etKeyEvent procedure Drivers

Declaration procedure GetKeyEvent (var Event: TEvent);

Function Checks whether a keyboard event is available by calling the BIOS INT
16H service. If a key has been pressed, Event. What is set to evKeyDown and
Event . KeyCode is set to the scan code of the key. Otherwise, Event. What is
set to evNothing. GetKeyEvent is called by TProgram.GetEvent.

See also TProgram.GetEvent, evXXXX constants, TView.HandleEvent

GetMouseEvent procedure Drivers

Declaration procedure GetMouseEvent (var Event: TEvent);

Function Checks whether a mouse event is available by polling the mouse event
queue maintained by Turbo Vision's event handler. If a mouse event has
occurred, Event. What is set to evMouseDown, evMouseUp, evMouseMove, or
evMouseAuto; Event.Buttons is set to mbLeftButton or mbRightButton;
Event.Double is set to True or False; and Event. Where is set to the mouse
position in global coordinates (corresponding to T Application's coordinate
system). If no mouse events are available, Event. What is set to evNothing.
GetMouseEvent is called by TProgram.GetEvent.

See also TProgram.GetEvent, evXXXX events, HandleEvent methods

gfXXXX constants Views

Function These mnemonics are used to set the GrowMode field in all TView and
derived objects. The bits set in GrowMode determine how the view will
grow in relation to changes in its owner's size.

Values The GrowMode bits are defined as follows:

Chapter 19, Turbo Vision reference 341

gfXXXX constants

Figure 19.6
Grow mode bit

mapping

Table 19.14
Grow mode flag

definitions

r-.,----,----.--,gfGrowAll = $OF

~ gfGrowLoX = $01
gfGrowLoY = $02

'-------gfGrowHi X = $04
'------,gfGrowHi Y = $08

'------'-----gfGrowRel = $10

Constant

gfGrowLoX

gfGrowLoY

gfGrowHiX

gfGrowHiY

gfGrowAll
gfGrowRel

Meaning if set

The left-hand side of the view maintains a constant distance
from its owner's right-hand side.
The top of the view maintains a constant distance from the
bottom of its owner.
The right-hand side of the view maintains a constant distance
from its owner's right side.
The bottom of the view maintains a constant distance from the
bottom of its owner's.
The view moves with the lower-right corner of its owner.
When used with window objects in the desktop, the view
changes size relative to the owner's size. The window maintains
its relative size with respect to the owner even when switching
between 25 and 43/50 line modes.

Note that LoX = left side; LoY = top side; HiX = right side; HiY = bottom
side.

See also TView.GrowMode

hcXXXX constants App

Function The menu items defined by the standard menu item functions
StdFileMenuItems, StdEditMenultems, and StdWindowMenuItems assign
help contexts for each item. The App unit defines constants beginning with
he for each standard menu item.

,~ Turbo Vision reserves help context ranges 0 .. 999 and $FFOO .. $FFFF.

Values The App unit defines three sets of help contexts, for the standard items on
the File, Edit, and Window menus. The following tables show the
meaning of each.

Table 19.15
Constant Value Meaning Standard File menu

item help contexts hcNew $FFOl File I New
hcOpen $FF02 File I Open
hcSave $FF03 File I Save
hcSaveAs $FF04 File I Save As
hcSaveAll $FF05 File I Save All

342 Turbo Vision Programming Guide

'. I

I

I

hcXXXX constants

Table 19.15: Standard File menu item help contexts (continued)

hcChangeDir $FF06 File I Change Dir
hcDosShell $FF07 File I DOS Shell
hcExit $FF08 File I Exit

Table 19.16
Standard Edit menu Constant Value Meaning

item help contexts hcUndo $FFI0 Edit I Undo
hcCut $FFll Edit I Cut
hcCopy $FF12 Edit I Copy
hcPaste $FF13 Edit I Paste
hcClear $FF14 Edit I Clear

Table 19.17
Standard Window Constant Value Meaning

menu item help hcTile $FF20 Window I Tile
contexts hcCascade $FF21 Window I Cascade

hcCloseAll $FF22 Window I Close All
hcResize $FF23 Window I Resize
hcZoom $FF24 Window I Zoom
hcNext $FF25 Window I Next
hcPrev $FF26 Window I Prev
hcClose $FF27 Window I Close

hcXXXX constants

Values The following help context constants are defined:

Table 19.18
Help context

constants

Constant

hcNoContext
hcDragging

Value

o
1

Meaning

No context specified
Object is being dragged

Views

Function The default value of TView.HelpCtx is hcNoContext, which indicates that
there is no help context for the view. TView.GetHelpCtx returns hcDragging
whenever the view is being dragged (as indicated by the
sf Dragging state flag).

Turbo Vision reserves help context values 0 .. 999 and $FFOO .. $FFFF for its
own use. You can define your own constants in the range 1,000 .. 65,280.

See also TView.HelpCtx, TStatusLine. Update

Chapter 79, Turbo Vision reference 343

HideMouse procedure'

HideMouse procedure Drivers

Declaration procedure HideMouse;

Function The mouse cursor is initially visible after the call to InitEvents. HideMouse
hides the mouse and increments the internal "hide counter" in the mouse
driver. ShowMouse decrements this counter, and shows the mouse cursor
when the counter becomes zero. Thus, calls to HideMouse and ShowMouse
can be nested but must also always be balanced.

See also InitEvents, DoneEvents, ShowMouse

HiResScreen variable Drivers

Declaration HiResScreen: Boolean;

Function Set to True by InitVideo if the screen supports 43- or 50-line mode (EGA or
VGA); otherwise, set to False. I

See plso In it Video I,
HistoryAdd procedure

Declaration procedure HistoryAdd(Id: Byte; const Str: String);

Function Adds the string Str to the history list indicated by ld.

See also HistoryStr function, HistoryCount function

HistoryBlock variable

Declaration HistoryBlock: Pointer = nil;

HistList

HistList

Function Points to a buffer called the history block used to store history strings. The
size of the block is defined by HistorySize. The pointer is nil until set by
InitHistory, and its value should not be altered.

See also InitHistory procedure, HistorySize variable

HistoryCount function HistList

Declaration function HistoryCount (Id: Byte): Word;

344 Turbo Vision Programming Guide

HistoryCount function

Function Returns the number of strings in the history list with ID number Id.

See also HistoryAdd procedure, HistoryStr function

HistorySize variable HistList

Declaration HistorySize: Word = 1024;

Function Specifies the size of the history block used by the history list manager to
store values entered into input lines. The size is fixed by InitHistory at H
program startup. The default size of the block is lK but can be changed
before InitHistory is called. The value should not be changed after the call
to InitHistory.

See also InitHistory procedure, HistoryBlock variable

HistoryStr function

Declaration function HistoryStr (Id: Byte; Index: Integer): String;

Function Returns the Indexth string in the history list with ID number Id.

See also HistoryAdd procedure, HistoryCount function

HistoryUsed variable

Declaration HistoryUsed: Word = 0;

HistList

HistList

Function U sed internally by the history list manager to point to an offset within the
history block. The value should not be changed.

InitDosMem procedure Memory

Declaration procedure InitDosMem;

Function Reclaims all available heap space for the application following shelling to
DOS or executing another program by calling SetMemTop to place the end
of the heap at the top of available memory. For an example of the use of
InitDosMem and DoneDosMem, see the implementation of
T Application.DosShell in APP.P AS.

See also DoneDosMem procedure, SetMemTop procedure

Chapter 79, Turbo Vision reference 345

InitEvents procedure

InitEvents procedure Drivers

Declaration procedure InitEventsj

Function Initializes Turbo Vision's event manager by enabling the mouse interrupt
handler and showing the mouse. Called by
T Application.Init.

See also DoneEvents

InitHistory procedure HistList

Declaration procedure Ini tHistory j

Function Called by T Application.Init to allocate a block of memory on the heap for
use by the history list manager. The size of the block is determined by the
HistorySize variable. After InitHistory is called, the HistoryBlock variable
points to the beginning of the block.' '

See also TProgram.Init, DoneHistory procedure

InitMemory procedure Memory

Declaration procedure Ini tMemory j

Function Initializes Turbo Vision's memory manager by installing a heap
notification function in HeapError. Called by T Application.Init.

See also DoneMemory

InitSysError procedure

Declaration procedure Ini tSysError i

Drivers

Function Initializes Turbo Vision's system error handler by capturing interrupt
vectors 09H, IBH, 21H, 23H, and 24H and clearing the Ctrl+Break state in
DOS. Called by T Application.Init.

See also DoneSysError

346 Turbo Vision Programming Guide

I

',

,'I

InitVideo procedure

InitVideo procedure Drivers

Declaration procedure Ini tVideo;

Function Initializes Turbo Vision's video manager. Saves the current screen mode in
StartupMode and switches the screen to the mode indicated by ScreenMode.
The Screen Width, ScreenHeight, HiRes Screen, CheckS now, ScreenBuffer, and
CursorLines variables are updated accordingly. The screen mode can later
be changed using SetVideoMode. InitVideo is called by TApplication.Init.

See also DoneVideo, SetVideoMode, smXXXX

InputBox function

Declaration function InputBox (const Title, ALabel: String; var S: String;
Limit: Byte): Word;

MsgBox

Function Displays a 60-column, 8-line dialog box with the title specified in Title, a
text label given by ALa bel, an OK button, a Cancel button, and a single
input line that initially contains the string passed in S. Returns the value
returned by ExecView when it finishes executing the dialog box. If the user
does not cancel the dialog box, S contains the string typed by the user.
Limit is the maximum number of characters in the input line string.

,lnputBoxRect function MsgBox

Declaration function InputBoxReet (var Bounds: TReet; const Title, ALabel: String;
var S: String; Limit: Byte): Word;

Function Works exactly like InputBox, but allows you to specify a bounding
rectangle for the dialog box.

See also InputBox function

kbXXXX constants Drivers

Function There are two sets of constants beginning with "kb," associated with the
keyboard.

Values The following values define keyboard states and can be used when

Chapter 7 9, Turbo Vision reference 347

I

kbXXXX constants

Table 19.19
Keyboard state and

shift masks

Figure 19.7
Keyboard state

mask flags

Table 19.20
Alt-letter key codes

Table 19.21
Special key codes

348

examining the keyboard shift state which is stored in a byte at absolute
address SegO040:$17. For example,

var
ShiftState: Byte absolute Seg0040:$17i

if ShiftState and kbAltShift <> 0 then AltKeyDoWTIi

Constant

kbRightShift
kbLeftShift
kbCtrlShift
kbAltShift
kbScrollState
kbNumState
kbCapsState
kblnsState

IlmSbl 1 1 1 1

Value

$0001
$0002
$0004
$0008
$0010
$0020
$0040
$0080

1 1 1

Meaning if set

The right Shift key is currently down
The left Shift key is currently down
The Ctr/key is currently down
The A/tkey is currently down
The keyboard is in the Scroll Lock state
The keyboard is in the Num Lock state
The keyboard is in the Caps Lock state
The keyboard is in the Ins Lock state

1 1 1 1 1

I

1 11 Sbll

I L= kbRi ghtShi ft = $0001
kbLeftShi ft = $0002
kbCtr1 Shi ft = $0004
kbA 1 tShi ft = $0008
kbScro 11 State = $0010
kbNumState = $0020
kbCapsState = $0040
kblnsState = $0080

The following values define keyboard scan codes and can be used when
examining the TEvent.KeyCode field of an evKeyDown event record:

Constant Value Constant Value

kbAltA $lEOO kbAltN $3100
kbAltB $3000 kbAltO $1800
kbAltC $2EOO kbAltP $1900
kbAltD $2000 kbAltQ $1000
kbAltE $1200 kbAltR $1300
kbAltF $2100 kbAltS $lFOO
kbAltG $2200 kbAltT $1400
kbAltH $2300 kbAltU $1600
kbAltI $1700 kbAltV $2FOO
kbAltJ $2400 kbAltW $1100
kbAltK $2500 kbAltX $2DOO
kbAltL $2600 kbAlty $1500
kbAltM $3200 kbAltZ $2COO

Constant Value Constant Value

kbAltEqual $8300 kbBack $OE08
kbAltMinus $8200 kbCtrlBack $OE7F
kbAltSpace $0200 kbCtrlDel $0600

Turbo Vision Programming Guide

kbXXXX constants

Table 19.21: Special key codes (continued)

kbCtrlEnd $7500 kbGrayMinus $4A2D
kbCtrlEnter $lCOA kbGrayPlus $4E2B
kbCtrlHome $7700 kbHome $4700
kbCtrlIns $0400 kblns $5200
kbCtrlLeft $7300 kbLeft $4BOO
kbCtrlPgDn $7600 kbNoKey $0000
kbCtrlPgUp $8400 kbPgDn $5100
kbCtrlPrtSc $7200 kbPgUp $4900
kbCtrlRight $7400 kbRight $4DOO
kbDel $5300 kbShiftDel $0700
kbDown $5000 kbShiftIns $0500
kbEnd $4FOO kbShiftTab $OFOO
kbEnter $lCOD kbTab $OF09
kbEsc $011B kbUp $4800

Table 19.22
AIt-number key Constant Value Constant Value

codes kbAltl $7800 kbAlt6 $7DOO I kbAlt2 $7900 kbAlt7 $7EOO
kbAlt3 $7AOO kbAlt8 $7FOO
kbAlt4 $7BOO kbAlt9 $8000
kbAlt5 $7COO kbAltO $8100

Table 19.23
Function key codes Constant Value Constant Value

kbFl $3BOO kbF6 $4000
kbF2 $3COO kbF7 $4100
kbF3 $3DOO kbF8 $4200
kbF4 $3EOO kbF9 $4300
kbF5 $3FOO kbFl0 $4400

Table 19.24
Shift-function key Constant Value Constant Value

codes kbShiftFl $5400 kbShiftF6 $5900
kbShiftF2 $5500 kbShiftF7 $5AOO
kbShiftF3 $5600 kbShiftF8 $5BOO
kbShiftF4 $5700 kbShiftF9 $5COO
kbShiftF5 $5800 kbShiftFl0 $5DOO

Table 19.25
Ctrl+function key Constant Value Constant Value

codes kbCtrlFl $5EOO kbCtrlF6 $6300
kbCtrlF2 $5FOO kbCtrlF7 $6400
kbCtrlF3 $6000 kbCtrlF8 $6500
kbCtrlF4 $6100 kbCtrlF9 $6600
kbCtrlF5 $6200 kbCtrlFl0 $6700

Chapter 79, Turbo Vision reference 349

kbXXXX constants

Table 19.26
Alt-function key

codes
Constant

kbAltFl
kbAltF2
kbAltF3
kbAltF4
kbAltF5

Value

$6800
$6900
$6AOO
$6BOO
$6COO

See also evKeyDown, GetKeyEvent

LoadHistory procedure

Constant

kbAltF6
kbAltF7
kbAltF8
kbAltF9
kbAltF10

Declaration procedure LoadHistory (var S: TStream);

Value

$6DOO
$6EOO
$6FOO
$7000
$7100

HistList

Function Reads the application's history block from the stream S by reading the size
of the block, then the block itself. Sets His tory Used to the end of the block
read. Use LoadHistory to restore a history block saved with StoreHistory.

See also HistoryUsed variable, StoreHistory procedure

Loadlndexes procedure ColorSel

Declaration procedure LoadIndexes (var S: TStream);

Function Loads a set of color indexes from the stream S and stores it in the variable
Colorlndexes. By storing and reloading Colorlndexes on a stream, an
application can restore the state of the color selection dialog box, enabling
the user to easily modify or undo color changes.

See also Colorlndexes variable, Storelndexes procedure

LongDiv function

Declaration function LongDiv(X: Longint; Y: Integer): Integer;
inline($59/$58/$5A/$F7/$F9);

Objects

Function A fast, inline assembly division routine, returning the integer value X/Yo

350 Turbo Vision Programming Guide

I,'
I

I

I-
!

LongMul function

Declaration function LongMul(X, Y: Integer): Longint;
inline($5A/$58/$F7/$EA);

LongMul function

Objects

Function A fast, inline assembly coded multiplication routine, returning the long
integer value X * Y.

LongRec type Objects

Declaration LongRec = record
Lo, Hi: Word;

end;

Function A useful record type for handling double-word length variables.

LowMemory function Memory

Declaration.. function LowMemory: Boolean;

Function Returns True if memory is low, otherwise False. True means that a memory
allocation call (for example, by a constructor) was forced to "dip into" the
memory safety pool. The size of the safety pool is defined by the
LowMemSize variable.

See also Chapter 7, "Turbo Vision overview," InitMemory, TView.Valid, LowMemSize

LowMemSize variable Memory

Declaration LowMemSize: word = 4096 div 16;

Function Sets the size of the safety pool in 16-byte paragraphs. The default value is
the pratical minimum,.but it can be increased to suit your application.

See also InitMemory, Safety pool,TView.Valid, LowMemory

Chapter 79, Turbo Vision reference 351

I

MaxBufMem variable

MaxBufMem variable Memory

Declaration MaxBufMem: Word = 65536 div 16;

Function Specifies the maximum amount of memory, in 16-byte paragraphs, that
can be allocated to cache buffers.

See also GetBufMem, FreeBufMem

MaxColiectionSize variable Objects

Declaration MaxCollectionSize = 65520 div SizeOf (Pointer) ;

Function MaxCollectionSize determines the maximum number of elements a
collection can contain, which is essentially the number of pointers that can
fit in a 64K memory segment.

MaxHeapSize variable Memory

Declaration MaxHeapSize: Word = 655360 div 16;

Function Defines the maximum size of the buffer heap, in 16-byte paragraphs. The
buffer heap is used by file editor objects to allocate movable, resizeable
buffers without eating into the application's heap space.

See also NewBuffer procedure, TFileEditor.InitBuffer

MaxLineLength constant Editors

Declaration MaxLineLength = 256;

Function MaxLineLength is the maximum length of a line in an editor object.

MaxViewWidth constant

Declaration MaxViewWidth = 132;

Function The maximum width of a view.

See also TView.Size field

Views

352 Turbo Vision Programming Guide

mbXXXX constants

mbXXXX constants Drivers

Function These constants can be used when examining the TEvent.Buttons field of
an evMouse event record. For example,

if (Event.What = evMouseDown) and
(Event.Buttons = rnbLeftButton) then LeftButtonDown;

Values The following constants are defined:

Table 19.27
Mouse button

constants

Constant

mbLeftButton
mbRightButton

See also GetMouseEvent

MemAlioc function

Value

$01
$02

Meaning

Set if left button was pressed
Set if right button was pressed

Declaration function MernAlloc (Size: Word): Pointer;

Memory

Function Allocates Size bytes of memory on the heap and returns a pointer to the
block. If a block of the requested size cannot be allocated, a value of nil is
returned. Unlike the New and GetMem standard procedures, MemAlloc
will not allow the allocation to dip into the safety pool. Dispose of blocks
allocated by MemAlloc with FreeMem.

See also New, GetMem, Dispose, FreeMem, MemAllocSeg

MemAllocSeg function Memory

Declaration function MernAllocSeg (Size: Word): Pointer;

Function Allocates a segment-aligned memory block. Corresponds to MemAlloc,
except the offset part of the resulting pointer value is always zero.

See also MemAlloc

MenuBar variable App

Declaration MenuBar: PMenuview = nil;

Chapter 79, Turbo Vision reference 353

I

MenuBar variable

Function Stores a pointer to the application's menu bar (a descendant of
TMenuView). The MenuBar variable is initialized by
TProgram.InitMenuBar, which is called by TProgram.Init. A value of nil
indicates that the application has no menu bar.

MenuColorltems function ColorSel

Declaration function MenuColorItems (const Next: PColorItem): PColorItem;

Function Returns a linked list of TColorItem records for the standard menu views.
For programs that allow the user to change menu colors with the color
seleCtion dialog box, MenuColorItems simplifies the process of setting up
the color items.

Message function Views

Declaration function Message(Receiver: PView; What, Command: Word; InfoPtr:
Pointer): Pointer;

Function Message sets up an event record with the arguments What, Command and
InfoPtr then, if possible, calls ReceiverA .HandleEvent to handle the event.

Messagereturns nil if Receiver is nil, or if the event is not handled
successfully. If the receiver handles the event (that is, HandleEvent returns
Event. What as evNothing), Message returns Event.InfoPtr. The latter can be
used to determine which view actually handled the dispatched event,
because ClearEvent sets InfoPtr to point to the object that cleared the event.

What is usually evBroadcast. For example, the default TScrollBar.ScrollDraw
sends the following message to the scroll bar's owner:

Message (Owner, evBroadcast, cmScrollBarChanged, @Self);

The above message ensures that the appropriate views are redrawn
whenever the scroll bar's Value changes.

See also TView.HandleEvent, TEvent type, cmXXXX constants, evXXXX constants

MessageBox function MsgBox

Declaration function MessageBox (const Msg: String; Params: Pointer; AOptions: Word): Word;

354 Turbo Vision Programming Guide

MessageBox function

Displays a 40-column, 9-line dialog box centered on the screen. The dialog
box contains the message passed in Msg, inserting any parameters passed
in Params. AOptions contains some combination of the mfXXXX message
flag constants, determining which buttons appear in the message box.
MessageBox uses the FormatStr procedure to incorporate any parameters
passed in Params into Msg.

See also mfXXXX constants, FormatStr procedure

MessageBoxRect function MsgBox

Declaration function MessageBoxRect (var R: TRect; const Msg: String; Params: Pointer;
AOptions: Word): Word;

Function Works exactly like MessageBox but allows you to specify a bounding
rectangle for the dialog box.

See also MessageBox function

mfXXXX constants MsgBox I
Function Turbo Vision's message box functions, MessageBox and MessageBoxRect,

use mfXXXX constants to specify the type of message being displayed and
the buttons that appear in the box.

Values The following constants designate the type of message box displayed by
MessageBox when passed in the AOptions parameter:

Constant

mfWarning
mfError
mfInformation
mfConfirmation

Value

$0000
$0001
$0002
$0003

Meaning

Display a Warning box
Display an Error box
Display an Information Box
Display a Confirmation Box

The following constants, passed in the AOptions parameter of MessageBox
or MessageBoxRect, determine which buttons appear in the message box:

Constant

mfY esButton
mfNoButton
mfOKButton
mfCaneelButton
mfY esNo Can eel
mfOKCaneel

, Chapter 79, Turbo Vision reference

Value

$0100
$0200
$0400
$0800
$OBOO
$OCOO

Meaning

Put a Yes button into the dialog
Put a No button into the dialog
Put an OK button into the dialog
Put a Cancel button into the dialog
Standard Yes, No, Cancel dialog
Standard OK, Cancel dialog

355

mfXXXX constants

.----.---------------mfOKCancel = $OCOO
1f---'------r-r------------m ... fYesNoCancel = $OBOO

Figure 19.8
Message box flag

mapping
I I I ~fConfi rmati on = $0003

·1~llms~bl~~~1 ~I~I ~1~~~~~ll~Sbll

I
I I L-mfError = $0001 I L--mfInformation = $0002
"-------------mfYesButton = $0100

"---------------mfNoButton = $0200
'---------------mfOKButton = $0040

"---------------mfCancelButton = $0080

See also MessageBox function, MessageBoxRect function

MinWinSize variable Views

Declaration MinWinSize: TPoint = (X: 16; Y: 6);

Function Defines the minimum size of a window object. The value is returned in
the Min parameter on a call to TWindow.sizeLimits. Min Win Size is global.
Its value affects all windows, unless a particular window type overrides
sizeLimits to ignore Min Win Size.

See also TWindow.sizeLimits

MouseButtons variable Drivers

Declaration MouseButtons: Byte;

Function Contains the current state of the mouse buttons. MouseButtons is updated
by the mouse interrupt handler whenever a button is pressed or released.
Use the mbXXXX constants to examine MouseButtons .

. See also mbXXX constants

MouseEvents variable Drivers

Declaration MouseEvents: Boolean = False;

Function Set to True if InitEvents detects a mouse; otherwise set to False. If False, the
application's event loop bypasses all mouse event routines.

See also GetMouseEvent

356 Turbo Vision Programming Guide

MouselntFlag variable

MouselntFlag variable Drivers

Declaration MouselntFlag: Byte i

Function Used internally by the Turbo Vision mouse driver and by views. Set
whenever a mouse event occurs.

MouseReverse variable Drivers

Declaration const MouseReverse: Boolean = False i

Function Setting MouseReverse to True causes the event manager to reverse the
mbLeftButton and mbRightButton flags in the Buttons field of TEvent
records.

See also mbXXXX constants, TEvent type

MouseWhere variable Drivers II
Declaration MouseWhere: TPoint i

Function Contains the current position of the mouse in global coordinates. The
mouse interrupt handler updates Mouse Where whenever the mouse
moves. Use MakeLocal to convert to local, window-relative coordinates.
Mouse Where is passed to event handlers together with other mouse data.

See also GetMouseEvent, GetEvent methods, MakeLocal

MoveBuf procedure Drivers

Declaration procedure MoveBuf (var Dest i var Source i At tr: Byte i Count: Word) i

Function Moves text and video attributes into a buffer for use with a view's
WriteBuf or WriteLine methods. Dest must be TDrawBuffer (or an
equivalent array of words) and Source must be an array of bytes. Count
bytes are moved from Source into the low bytes of corresponding words in
Dest. The high bytes of the words in Dest are set to Attr or remain
unchanged if Attr is zero.

See also TDrawBuffer type, MoveChar, MoveCStr, MoveStr

Chapter 79, Turbo Vision reference 357

MoveChar procedure

MoveChar procedure Drivers

Declaration procedure MoveChar(var Dest; C: Char; Attr: Byte; Count: Word);

Function Moves characters into a buffer for use with a view's WriteBuf or WriteLine.
Dest must be a TDrawBuffer (or an equivalent array of words). The low
bytes of the first. Count words of Dest are set to C or remain unchanged if
Ord(C) is zero. The high bytes of the words are set to Attr or remain
unchanged if Attr is zero.

See also TDrawBuffer type, MoveBuf, MoveCStr, MoveStr

MoveCStr procedure Drivers

Declaration procedure MoveCStr (var Dest; const Str: String; Attrs: Word);

I

I

I.

Function Moves a two-colored string into a buffer for use with a view's WriteBuf or
WriteLine. Dest must be a TDrawBuffer (or an equivalent array of words). I ..

The characters in Str are moved into the low bytes of corresponding
words in Dest. The high bytes of the words are set to Lo(Attr) or Hi(Attr). I'.'
Tilde characters (-) in the string toggle between the two attribute bytes
passed in the Attr word.

See also TDrawBuffer type, MoveChar, MoveBuf, MoveStr

MoveStr procedure Drivers

Declaration procedure MoveStr(var Dest.; const Str: String; Attr: Byte);

Function Moves a string into a buffer for use with a views WriteBuf or WriteLine.
Dest must be a TDrawBuffer (or an equivalent array of words). The
characters in Str are moved into the low bytes of corresponding words in
Dest. The high bytes of the words are set to Attr or remain unchanged if
Attr is zero.

See also TDrawBuffer type, MoveChar, MoveCStr, MoveBuf

NewBuffer procedure Memory

358

Declaration procedure NewBuffer(var P: Pointer; Size: Word);

Allocates a movable, resizeable buffer of Size bytes in the space reserved
for file editor buffers above the regular heap and assigns it to P. You can

Turbo Vision Programming Guide

See also

NewBuffer procedure

later change the amount of memory allocated to P by calling SetBufferSize.
You must dispose of the buffer by calling DisposeBuffer, rather than
FreeMem or Dispose.

The memory manager can move the buffer at any time, but it updates the
value of P when it does so. That means P itself is always a valid pointer,
but other values based on P could become invalid without warning.

DisposeBuffer procedure, GetBufferSize function, SetBufferSize function

NewCache procedure Memory

Declaration procedure NewCache (var P: Pointer; Size: Word);

Function Allocates a cache buffer of Size bytes to the pointer P. If there is no room
for a cache buffer of the requested size, P is'set to nil.

If the memory manager later needs to reclaim the cache space for another
allocation, it disposes of the memory allocated to P and sets P to nil. Be
sure to test cache buffers before dereferencing them, as your application
has no control over whether or when the memory manager might reclaim
the cache memory.

Turbo Vision uses cache buffers to cache the contents of group objects
whenever those objects have the ofBuffered flag set, greatly increasing
performance of redraw operations.

See also DisposeCache procedure

Newltem function Menus

Declaration

Function

See also

function New It em (Name, Param: TMenuStr; KeyCode:, Word; Command: Word;
AHelpCtx: Word; Next: PMenultem): PMenultem;

Allocates and returns a pointer to a new TMenuItem record that represents
a menu item (using NewStr to allocate the Name and Param string pointer
fields). The Name parameter must be a non-empty string, and the
Command parameter must be non-zero. Calls to NewItem, NewLine,
NewMenu, and NewSubMenu can be nested to create entire menu trees in
one statement. For examples of this, see Chapter 10, "Application objects."

T Application.InitMenuBar, TMenu View type, NewLine, NewMenu,
NewSubMenu

Chapter 79, Turbo Vision reference 359

Newline function

Newline function Menus

Declaration function NewLine (Next: PMenuItem): PMenuItem;

Function Allocates and returns a pointer to a new TMenuItem record that represents
a separator line in a menu box. .

See also T Application.InitMenuBar, TMenu View type, NewMenu, NewSubMenu,
NewItem

NewMenu function Menus

Declaration function NewMenu (Items: PMenuItem): PMenu;

Function Allocates and returns a pointer to a new TMenu record. Sets the Items and
Default fields of the record to the value given by the Items parameter.

See also T Application.InitMenuBar, TMenu View type, NewLine, NewSubMenu,
NewItem

NewNode function Outline

Declaration function NewNode (const AText: String; AChildren,. ANext: PNode): PNode;

Function Creates and allocates a node record of type TNode for an outline list and
returns a pointer to the new node. NewNode sets the new node's Text,
ChildList, and Next fields to AText, AChildren, and ANext, respectively.

See also . DisposeNodeprocedure, TNode type

NewSltem function Dialogs

Declaration function NewSItem (const Str: String; ANext: PSItem): PSItem;

Function Allocates andreturns a pointer to a new TSItem record. Sets the Value and
Nextfields of the record to NewStr(Str) and ANext, respectively. The
NewSItem function and the TSItem record type allow easy construction of
singly-linked lists of strings. For an example of this, see Chapter 12,
"Control objects."

360 Turbo Vision Programming Guide

NewStatusDef function

NewStatusDef function

Declaration function NewStatusDef (AMin, AMax: Word; AItems: PStatusItem;
ANext: PStatusDef): PStatusDef;

Menus

Function Allocates and returns a pointer to a new TStatusDef record initialized with
the given parameter values. Calls to NewStatusDef and NewStatusKey can
be nested to create entire status line definitions in one Pascal statement.
For an example of this, see Chapter 10, "Application objects."

See also T Application.InitStatusLine, TStatusLine, NewStatusKey

NewStatusKey function Menus

Declaration function NewStatusKey (const AText: String; AKeyCode: Word; ACommand: Word;
ANext: PStatusltem): PStatusltem;

Function Allocates and returns a pointer to a new TStatusItem record initialized
with the given parameter values (using NewStr to allocate the Text pointer
field). If AText is empty (which results in a nil Text field), the status item is •
invisible but still binds KeyCode to the given Command. iii

See also T Application.InitStatusLine, TStatusLine, NewStatusDef

NewStr function Objects

Declaration function NewStr (const S: String): PString;

Function Allocates a dynamic string on the heap. If S is null, NewStr returns a nil
pointer. Otherwise, NewStr allocates Length(S)+l bytes containing a copy
of S and returns a pointer to the first byte.

Strings created with NewStr should be disposed of with DisposeStr.

See also DisposeStr

NewSubMenu function

Declaration function NewSubMenu (Name: TMenuStr; AHelpCtx: Word; SubMenu: PMenu;
Next: PMenultem): PMenultem;

Chapter 79, Turbo Vision reference

Menus

361

NewSubMenu function

Function Allocates and returns a pointer to a new TMenuItem record which
represents a submenu (using NewStr to allocate the Name pointer field).

See also T Application.InitMenuBar, TMenuItem type, NewLine, Newltem

of XXX X constants Views

362

Function These mnemonics refer to the bit positions of a view's Options field.
Setting a bit position to 1 indicates that the view has that particular
attribute. Clearing the bit position means that the attribute is off or
disabled. For example,

MyWindow.Options := of Tile able + of Selectable;

Values The following option flags are defined:

Table 19.28
Option flags Constant

of Selectable

ofTopSelect

ofFirstClick

ofFramed

of PreProcess

of PostProcess

ofBuffered

Meaning if set

The view should select itself automatically, for example, by a
mouse click in the view, or a Tab in a dialog box.

The view should move in front of all other peer views when
selected. When the ofTopSelect bit is set, a call to Select
corresponds to a call to MakeFirst. Windows (TWindow and
descendants); by default, have the ofTopSelect bit set, which
causes them to move in front of all other windows on the
desktop when selected.

A mouse click that selects the view is also processed as a
normal mouse click after selecting the view. Has no effect
unless of Selectable is also set. If clear, the selecting mouse click
has no further effect.

The view should have a frame drawn around it. A window,
and any descendant of TWindow, has a frame object as its last
subview. When drawing itself, the frame object also draws a
frame line around any other subviews that have ofFramed set.

The view should receive focused events before they are sent
to the focused view.

The view should receive focused events if the focused view
failed to handle them.

[for group objects only] A cache buffer should be allocated if
sufficient memory is available. The group buffer holds a
screen image of the whole group so that group redraws can
be speeded up. In the absence of p. buffer, TGroup.Draw calls
on each subview's DrawView method. If later New and
GetMem calls cannot gain enough memory, group buffers Will
be deallocated to make memory available.

Turbo Vision Programming Guide

II

I

I

I

I-
I

Figure 19.9
Options bit flags

ofXXXX constants

Table 19.28: Option flags (continued)

ofTileable The desktop can tile (or cascade) this view. Used only with
window objects.

ofCenterX .

ofCenterY

of Centered

ofValidate

ofVersion

ofVersionlO

ofV ersion20

The view should be centered on the X-axis of its owner when
inserted into a group.

The view should be centered on the Y-axis of its owner when
inserted into a group.

The view should be centered on both axes of its owner when
inserted into a group.

The view should call Valid before losing the input focus.

The view contains version-dependent fields. See Chapter 17
for details on versioning.

The view is a version 1.0 view. See Chapter 17 for details on
versioning.

The view is a version 2.0 view. See Chapter 17 for details on
versioning.

The Options bits are defined as follows:

I
Ilmsbl I I I I I 1 1 1 1 I 1 1

I

1

I

ofVers i on = $3000
of Centered = $0300

11 Sbll

L::=. ofSe 1 ectab 1 e = $0001
ofTopSelect = $0002
ofFirstClick = $0004
ofFramed = $0008
of PreProcess = $0010
of PostProcess = $0020
of Buffered = $0040
ofTileable = $0080
of Center X = $0100
ofCenterY = $0200
of Validate = $0400
ofVersion20 = $1000

See also TView.Options

ovXXXX constants Outline

Function The CreateGraph method of TOutlineViewer receives a parameter called
Flags that holds a combination of ovXXXX constants. Flags determines
how the outline viewer should draw the graphic portion of the outline.

Chapter 79, Turbo Vision referenc;e 363

ovXXXX constants

Values The following constants are defined:

Table 19.29
Outline view

constants

I
Undefined

Constant

ovExpanded
ovChildren
ovLast

PositionalEvents variable

Value

$01
$02
$04

Declaration positionalEvents: Word = evMouse;

Meaning

Node is expanded (sho",: child nodes)
Node has child nodes
Node is the last child of its parent

Views

Function Defines the event classes that are positional events. The HandleEvent I

method of a group object uses FocusedEvents and PositionalEvents to I

determine how to dispatch events to the group's subviews. If an event
class isn't contained in FocusedEvents or PositionalEvents, the group treats it l_
as a broadcast event.

See also TGroup.HandleEvent, TEvent type, evXXXX constants, FocusedEvents
variable

PrintStrprocedure Drivers

Declaration procedure PrintStr (S: String);

Function Prints the string S on the screen, using DOS function call 40H to write to
the DOS standard output handle. Has the same effect as Write(S), except
that PrintStr doesn't require the file I/O run-time library to be linked into
the application.

PString type Objects

Declaration PString = "String;

Function Defines a pointer to a string.

364 Turbo Vision Programming Guide

,I

PtrRec type

PtrRec type Objects

Declaration PtrRec = record
Ofs, Seg: Word;

end;

Function A record holding the offset and segment values of a pointer.

RegisterColorSel procedure

Declaration procedure RegisterColorSel;

.ColorSel

Function Calls RegisterType for each of the object types defined in the ColorSel unit:
TColorSelector, TMonoSelector, TColorDisplay, TColorGroupList,
TColorItemList, and TColorDialog. After a call to RegisterColorSel, any of
those type can be read from or written to streams.

See also RegisterType procedure

RegisterDialogs procedure Dialogs

Declaration procedure RegisterDialogs;

Function Calls RegisterType for each of the standard object types defined in the
Dialogs unit: TDialog, TlnputLine, TButton, TCluster, TRadioButtons,
TCheckBoxes, TListBox, TStaticText, TParamText, TLabel, and THistory. After
a call to RegisterDialogs, any of those types can be read from or written to a
stream.

See also TStreamRec, RegisterTypes

RegisterEditors procedure Editors

Declaration procedure RegisterEditors;

Function Calls RegisterType for each of the object types defined in the Editors unit:
TEditor, TMemo, TFileEditor, Tlndicator, and TEdit Window. After a call to
RegisterEditors, any of those types can be read from or written to a stream.

See also RegisterType

Chapter 79, Turbo Vision reference 365

II

RegisterStdDlg procedure

RegisterStdDlg procedure StdDlg

Declaration procedure RegisterStdDlgi

Function Calls RegisterType for each of the object types defined in the StdDlg unit:
TFilelnputLine, TFileCollection, TFileList, TFilelnfoPane, TFileDialog,
TDirColleciion, TDirListBox, and TChDirDialog. After a call to
RegisterStdDIg, any of those type can be read from or written to a stream.

See also RegisterType

RegisterType procedure Objects

Declaration procedure RegisterType (var S: TStreamRec);

Function Registers an object type with Turbo Vision's streams, creating an entry in a
linked list of known objects. Streams can only store and return these
known object types. Each registered object needs a unique stream
registration record of type TStreamRec.

See also TStream.Get, TStream.Put, TStreamRec

RegisterValidate procedure Validate

Declaration procedure RegisterValidatei

Function Calls RegisterType for each of the valida tor object types defined in the
Validate unit: TPXPictureValidator, TFilterValidator, TRangeValidator,
TLookupValidatot, and TStringLookupValidator. After calling
RegisterValidate, your application can read or write any of those types with
streams.

See also RegisterType procedure

RepeatDelay variable Drivers

Declaration RepeatDelay: Word = 8;

Function Defines the number of clock ticks {1/18.2 parts of a second) that must
transpire before evMouseAuto events are generated. The time interval
between evMouseAuto events is aJways in increments of one clock tick.

See also DoubleDelay, GetMouseEvent, evXXXX constants

366 Turbo Vision Programming Guide

I

I.
I

ReplaceStr variable

ReplaceStr variable Editors

Declaration ReplaceStr: string [80 1 = I I ;

Function Holds the last replacement string used in a search-and-replace operation.

See also FindStr variable, TEditor.DoSearchReplace

SaveCtrlBreak variable Drivers

Declaration SaveCtrlBreak: Boolean = False;

Function The InitSysError routine stores the state of DOS CtrltBreak checking in this
variable before it disables DOS Ctrl+Break checks. DoneSysError restores
DOS CtrltBreak checking to the value stored in SaveCtrlBreak.

See also InitSysError, DoneSysError

sbXXXX constants Views

Function These constants define the different areas of a TScrollBar in which a mouse
click can occur.

Table 19.30
Scroll bar part

constants

The TScrollBar.ScrollStep method converts these constants into actual scroll
step values. Although defined, the sblndicator constant is never passed to
ScrollStep.

Constant

sbLeftArrow
sbRightArrow
sbPageLeft
sbPageRight
sbUpArrow
sb DownArrow
sbPageUp
sbPageDown
sblndicator

Value

o
1
2
3
4
5
6
7
8

Meaning

Left arrow of horizontal scroll bar
Right arrow of horizontal scroll bar
Left paging area of horizontal scroll bar
Right paging area of horizontal scroll bar
Top arrow of vertical scroll bar .
Bottom arrow of vertical scroll bar
Upper paging area of vertical scroll bar
Lower paging area of vertical scroll bar
Position indicator on scroll bar

Chapter 79, Turbo Vision reference 367

sbXXXX constants

Figure 19.10
Scroll bar parts

~~-sbUpArrow

111~-SbPageUp

Sjblndi cator---~li~_sbPageDown
;~-sbDownArrow

;:::::::::::::::::::f::::::::::::::::::::m::::.::::::::::::::m:::::f:::::::::::::::::::::::::::::m:::::::~

I sbPageLeft sbPageRight I
sbLeftArrow sbRightArrow

The following values can be passed to the TWindow.StandardScrollBar
method:

Table 19.31
StandardScroliBar

constants

Constant Value Meaning

Scroll bar is horizontal
Scroll bar is vertical

sbHorizontal
sbVertical
sbHandleKeyboard

$0000
$0001
$0002 Scroll bar responds to keyboard commands

See also TScrollBar, TScrollBar.ScrollStep

ScreenBuffer variable

Declaration ScreenBuf fer: Pointer;

Function Pointer to the video screen buffer, set by In it Video.

See also InitVideo

ScreenHeight variable

Declaration ScreenHeight: Byte;

Drivers

Drivers

Function Set by InitVideo and SetVideoMode to the screen height (lines of the current
video screen).

See also InitVideo, SetVideoMode, Screen Width

ScreenMode variable Drivers

Declaration ScreenMode: Word;

368 Turbo Vision Programming Guide

I

I~

Screen Mode variable

Function . Holds the current video mode. Set initially by the initialization code of the
Drivers unit, ScreenMode can be changed using SetVideoMode. ScreenMode
values are usually set using the smXXXX screen mode mnemonics.

See also InitVideo, SetVideoMode, smXXXX

ScreenWidth variable Drivers

Declaration ScreenWidth: Byte;

Function

See also

Set by InitVideo to the screen width (number of characters per line).

In it Video

SelectMode type

Declaration SelectMode = (NormalSelect I EnterSelect I LeaveSelect);

Function Used internally by Turbo Vision.

See also TGroup.ExecView, TGroup.SetCurrent

SetBufferSize function

Declaration function SetBufferSize (P: Pointer; Size: Word): Boolean;

Views

Memory

Function Sets the size of the buffer pointed to by P to Size bytes. pA must be a buffer
allocated by NewBuffer. Returns True if the new allocation succeeds;
otherwise returns False, and the size of the buffer remains unchanged.

See also NewBuffer procedure, GetBufferSize function

SetMemTop procedure Memory

Declaration procedure SetMemTop (MemTop: Pointer) i

Function Sets the top of the application's memory block. The initial memory top
corresponds to the value stored in the HeapEnd variable. SetMemTop is
typically used to shrink the application's memory block before executing a
DOS shell or another program and to expand the memory block
afterward.

Chapter 79, Turbo Vision reference 369

I

SetVideoMode procedure

SetVideoMode procedure Drivers

Declaration procedure SetVideoMode (Mode: Word) i

Function Sets the video mode. Mode is one of the constants smC080, smBW80, or
smMono,optionally with smFont8x8 added to select 43- or 50-line mode on
an EGA or VGA. SetVideoMode initializes the same variables as InitVideo

. (except for the StartupMode variable, which isn't affected). SetVideoMode is
normally not called directly. Instead, you should use your application
object's SetScreenMode method, which also adjusts the application palette.

See also In it Video, smXXXX constants, TProgram.SetScreenMode

sfXXXX constants Views

Function These constants correspond to bits in TView.State fields. Yau should never
modify State fields directly; instead, use the view's SetS tate method.

Values The following state flags are defined:

Table 19.32
State flag constants Constant Meaning if set

370

sfVisible

sf Cursor Vis

sfCursorlns

sfShado1p

sf Active

sf Selected

sfFocused

sfDragging

The view is visible on its owner. sfVisible is set by default. A
view's Show and Hide methods modify sfVisible. An sfVisible view
is not necessarily visible on the screen, since its owner might not
be visible. To test for visibility on the screen, call the view's
Exposed method.

The view's cursor is visible. The default is clear. ShowCursor and
HideCursor modify sf Cursor Vis.

The view's cursor is a solid block. The default is clear, making
the cursor an underline. BlockCursor and NormalCursor modify
sfCursorlns.

The view has a shadow.

The view is the 'active window Or a subview in that window.

The view is the currently selected subview within its owner.
Every group object has a Current field that points to its currently
selected subview (or is nil if no subview is selected). There can
be only one currently selected subview in a group.

The view has the input focus. A view is focused if it is selected
and all owners above it are also selected, that is, if the view is on
the chain that is formed by following each Current pointer of all
groups starting at Application. The last view on the focused chain
is the final target of all focused events.

The view is being dragged.

Turbo Vision Programming Guide

sfXXXX constants

Table 19.32: State flag constants (continued)

sfDisabled The view is disabled. A disabled view ignores all events sent to
it.

sf Modal

sfExposed

The view is modal. When a view starts executing (through an
ExecView call), that view becomes modal. The modal view
represents the apex (root) of the active event tree, getting and
handling eve.nts until its EndModal method is called. During this
"local" event loop, events are passed down to lower subviews in
the view tree. Events from these lower views pass back up the
tree, but go no further than the modal view.

The view is owned directly or indirectly by the Application
object, and therefore possibly visible on the screen. The Exposed
method uses this flag to determine whether any part of the view
might be visible on the screen.

The state flag bits are defined as follows:

Figure 19.11
State flag bit

mapping

See also

Ilmsbl 1 1

TView.state

ShadowAttr variable

1 1 1

Declaration ShadowAttr: Byte = $08;

1 1 1 1 1 1 1

I I
1 11 sbll

L= sf Vi si b 1 e = $0001
sfCursorVis = $0002
sfCursorlns = $0004
sf Shadow = $0008
sfActi ve = $0010
sfSe 1 ected = $0020
sfFocused = $0040
sfDraggi ng = $0080
sfDisabled = $0100
sf Modal = $0200
sf Exposed = $0800

Views

Function This value controls the color of the "shadow" effect available on those
views with the sf Shadow bit set. The shadow is usually a thin, dark region
displayed just beyond the view's edges giving a 3-D illusion.

See also shadowsize

ShadowSize variable Views

Declaration ShadowSize: TPoint = (X: 2; Y: 1);

Function This value controls the size of the shadow effect available on those views
with the sf Shadow bit set. The shadow is usually a thin, dark region

Chapter 79, Turbo Vision reference 371

ShadowSize variable

displayed just beyond the view's right and bottom edges giving a 3-D
illusion. The default size is 2 in the X direction, and 1 in the Y direction.

TProgram.InitScreen initializes ShadowSize as follows: If the screen mode is
smMono, ShadowSize is set to (0,0); otherwise, ShadowSize is set to (2, 1),
unless smFont8x8 (43- or 50-line mode) is selected, in which case it is set to
(1, 1).

See also TProgram.InitScreen, ShadowAttr

ShowMarkers variable Views

Declaration ShowMarkers: Boolean = False;

Function Specifies whether indicators should appear around focused controls.
TProgram.InitScreen sets ShowMarkers to True if the video mode is
monochrome. Otherwise, it is False. You can also set ShowMarkers to True
in color and black-and-white modes.

See also TProgram.InitScreen, SpecialChars variable

ShowMouse procedure Drivers

Declaration procedure ShowMouse;

Function ShowMouse decrements the "hide counter" in the mouse driver and makes
the mouse cursor visible if counter becomes zero.

See also InitEvents, DoneEvents, HideMouse

smXXXX constants Drivers

Function These mnemonics are used with SetVideoMode to set the appropriate video
mode value in ScreenMode.

Values The following screen modes are defined by Turbo Vision:

Table 19.33
Screen mode

constants

Constant

smBW80
smC080
smMono
smFont8x8

Value

$0002
$0003
$0007
$0100

See also SetVideoMode, ScreenMode

Meaning

Black-and-white mode with color video
Color mode
Monochrome mode
43-line or 50-line mode

372 Turbo Vision Programming Guide

'I

SpecialChars variable

SpecialChars variable Views

Declaration SpecialChars: array[O .. 5] of Char = (#175, #174, #26, #27, , " , ')i

Function Defines the indicator characters used to highlight the focused view in
monochrome video mode. The variable ShowMarkers controls whether
these characters appear.

See also ShowMarkers variable

stxxxx constants Objects

Function There are two sets of constants beginning with st used by the Turbo
Vision streams system.

Values The following mode constants are used by TDosStream and TBufStream to
determine the file access mode of a file being opened for a Turbo Vision
stream:

Table 19.34
Stream access

modes

Constant

stCreate
stOpenRead
stOpen Write
stOpen

Value

$3COO
$3DOO
$3D01
$3D02

Meaning

Create new file
Open existing file with read access only
Open existing file with write access only
Open existing file with read and write access

A stream object's Error method places one of the following values in the
stream's Errorlnfo field when a stream error occurs:

Table 19.35
Error code Value Meaning Stream error codes

stOk 0 No error
stError -1 Access error
stInitError -2 Cannot initialize stream
stReadError -3 Read beyond end of stream
st WriteError -4 Cannot expand stream
stGetError -5 Get of unregistered object type
stPutError -6 Put of unregistered object type

See also TStream

StartupMode variable Drivers

Declaration StartupMode: Word = $FFFF i

Chapter 79, Turbo Vision reference 373

StartupMode variable

Function Init Video stores the current screen mode in this variable before it switches
to the screen mode given by ScreenMode. DoneVideo restores the screen
mode to the value stored in StartupMode.

See also InitVideo, DoneVideo, ScreenMode

StatusLine variable App

Declaration StatusLine: PStatusLine = nil;

Function Points to the application's status line, or nil if the application has no status
line. The application object's virtual method InitStatusLine constructs a
status line object and assigns it to StatusLine. You can define a customized
status line by overriding InitStatusLine to construct the desired status line
object and set StatusLine to point to it.

See also InitStatusLine

StdEditMenultems function App

Declaration function StdEditMenuItems (Next: PMenuItem): PMenuItem;

Function Returns a pointer to a list of menu items for a standard Edit menu., You
can use the list either as the entire menu, or as part of a larger list of items.

The standard Edit menu items are Undo, Cut, Copy, Paste, and Clear.

StdEditorDialog function Editors

Declaration function StdEditorDialog (Dialog: Integer; Info: Pointer): Word;

Function Displays a dialog box based on the value of Dialog and the information
passed in Info. StdEditorDialog is intended as a working set of editor dialog
boxes to be assigned to EditorDialog.

See also EditorDialog variable, TEditorDialog type

StdFileMenultems function App

Declaration function StdFileMenuItems (Next: PMenuItem): PMenuItem;

374 Turbo Vision Programming Guide

StdFileMenultems function

Function Returns a pointer to a list of menu items for a standard File menu. You
can use the list either as the entire menu, or as part of a larger list of items.

The standard File menu items are New, Open, Save, Save As, Save All,
Change Dir, Dos Shell, and Exit.

StdStatusKeys function App

Declaration function StdStatusKeys (Next: PStatusItern): PStatusIterni

Returns a pointer to a linked list of commonly used status line keys. The
default status line for T Application uses StdStatusKeys as its complete list of
status keys. You can append StdStatusKeys to your user-defined status line
definitions to ensure that all your status lines maintain the standard
command and key bindings.

The following is the implementation of StdStatusKeys:

function StdStatusKeys(Next: PStatusItern): PStatusIterni
begin

StdStatusKeys :=

endi

NewStatusKey(", kbAltX, crnQuit,
NewStatusKey(", kbF10, crnMenu,
NewStatusKey(", kbAltF3, crnClose,
NewStatusKey (, " kbF5, crnZoOffi,
NewStatusKey(", kbCtrlF5, crnResize,
NewStatusKey(", kbF6, crnNext,
Next)))))) i

StdWindowMenultems function

Declaration function StdWindowMenuIterns (Next: PMenuItern): PMenuIterni

App

Function Returns a pointer to a list of menu items for a standard Window menu.
You can use the list either as the entire menu, or as part of a larger list of
items.

The standard Window menu items are Tile,Cascade, Close All,
Size/Move, Zoom, Next, Previous, and Close.

Chapter 79, Turbo Vision reference 375

Stream Error variable

StreamError variable Objects

Declaration StrearnError: Pointer = nil;

Function StreamError points to a procedure called by a stream's Error method when
a stream error occurs. The procedure must be a far procedure with one var
parameter that is a TStream. That is, the procedure must be declared as

procedure MyStrearnErrorProc(var S: TStrearn); far;

StreamError allows you to globally override all stream error handling. If
StreamError is nil, no generalized stream error handling occurs. To change
error handling for a particular type of stream, you should override that
stream type's Error method.

StoreHistory procedure HistList

Declaration procedure StoreHistory (var S: TStrearn);

Function Writes the currently used portion of the history block to the stream S, first
writing the length of the block then the block itself. Use the LoadHistory
procedure to restore the history block.

See also LoadHistory procedure

Storelndexes procedure ColorSel

Declaration procedure Storelndexes (var S: TStrearn);

Function Stores a set of color indexes from the Colorlndexes variable on the stream S.
By storing and reloading Colorlndexes on a stream, an application can·
restore the state of the color-selection dialog box, enabling the user to
easily modify or undo color changes.

See also Colorlndexes variable, Loadlndexes procedure

SysColorAttr variable Drivers

Declaration SysColorAttr: Word = $4E4F;

Function The default color used for error message displays by the system error
handler. On monochrome systems, SysMonoAttr is used in place of
SysColorAttr. Error messages with a cancel/retry option are displayed on

376 Turbo Vision Programming Guide

SysColorAHr variable

the status line. The previous status line is saved and restored when
conditions allow.

See also SystemError, SysMonoAttr

SysErrActive variable Drivers

Declaration SysErrActive: Boolean = False;

Function Indicates whether the system error manager is currently active. Set True
by InitSysError.

SysErrorFunc variable Drivers

Declaration SysErrorFunc: TSysErrorFunc = SystemError;

Function SysErrorFunc is the system error function, of type TSysErrorFunc. The
system error function is called whenever a DOS critical error occurs and
whenever a disk swap is required on a single floppy system. ErrorCode is a
value between 0 and 15 as defined in Table 19.36, and Drive is the drive
number (O=A, I=B, etc.) for disk-related errors. The default system error
function is SystemError. You can install your own system error function by
assigning it to SysErrorFunc. System error functions cannot be overlayed.

Table 19.36
System error

function codes

Error code

0 . .12
13
14
15

Meaning

DOS critical error codes
Bad memory image of file allocation table
Device access error
Drive swap notification

Return values of the function should be as follows:

Table 19.37
System error

function return
values

Return value

o
1

Meaning

User requested retry
User requested abort

See also SystemError function, TSysErrorFunc type, InitSysError procedure

SysMonoAttr variable

Declaration SysMonoAttr: Word = $7070;

Chapter 79, Turbo Vision reference

Drivers

377

SysMonoAttr variable

Function The default attribute used for error message displays by the system error
handler. On color systems, SysColor Attr is used in place of SysMonoAttr.
Error messages with a cancel! retry option are displayed on the status
line. The previous status line is saved and restored when conditions'
allow.

See also SystemError,SysColorAttr

System Error function Drivers

Declaration

Function

Table 19.38
SystemError function

messages

function SystemError(ErrorCode: Integer; Drive: Byte): Integer;

This is the default system error function. It displays one of the following
error messages on the status line, depending on the value of ErrorCode,
using the color attributes defined by SysColorAttr or SysMonoAttr.

Error code

o
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

Message

Disk is,write-protected in drive X
Critical disk error on drive X
Disk is not ready in drive X
Critical-disk error on drive X
Data integrity error on drive X
Critical disk error on drive X
Seek error on drive X
Unknown media type in drive X
Sector not found on drive X
Printer out of paper
Write fault on drive X
Read fault on drive X
Hardware failure on drive X
Bad memory image of FAT detected
Device access error
Insert diskette in drive X

See also SysColorAtrr, SysMonAttr, SysErrorFunc

378 Turbo Vision Programming Guide

I

I

I
I

I

I,

T Application

TObject TView

Cursor Options
DragMode Origin
EventMask Owner
GrowMode Size
Hel pCtx State
Next

i-fH..t- HideCursor
bea6- KeyEvent
9&fte. Locate
Awa*e!T MakeFirst
BlockCursor MakeGlobal
Cal cBounds MakeLocal
GllaR!:leBsYREIs MouseEvent
Cl earEvent MouseInView
CommandEnab 1 ed MoveTo
~ NextView
Di sabl eCommands Normal Cursor
DragView Prev
Bf>aw. PrevView
DrawVi ew PutEvent
Enab 1 eCommands PutInFrontOf
~ PutPeerViewPtr
EventAvail Select
~ SetBounds
Exposed SetCommands
Focus SetCmdState
GetBounds SetCursor
GetCl i pRect ~
GetColor ~
GetCommands Show
~ ShowCursor
~ SizeLimits
GetExtent ~
Getlle~ !3Gt* TopView
GetPa~ eHe IJ.a+HI.
GetPeerVi ewPtr WriteBuf
GetState WriteChar
GrowTo WriteLine
"aReI~ e~ eRt WriteStr
Hide

TGroup

Buffer
Current
Last
Phase

i-fH..t-
Load
9&fte.
Awaken
ChangeBounds
DataSize
Delete
Draw
EndModal
EventError
ExecView
Execute
Fi rst
FirstThat
FocusNext
ForEach
GetData
GetHelpCtx
GetSubVi ewPtr
loIaREIl el!: 'eRt
Insert
InsertBefore
Lock
PutSubVi ewPtr
Redraw
SelectNext
SetData
SetState
Store
Unlock
Val id

TProgram

i-fH..t-
9&fte.
CanMoveFocus
ExecuteDi a log
GetEvent
GetPal ette
loIaREIl e~l, eRt
Idl e
Ini tDeskTop
I nitMenuBar
Ini tScreen
In; tStatusL; ne
InsertWi ndow
OutOfMemory
Put Event
Run
SetScreenMode
Val idView

TApplicafion

App

TApplication

Init
Done
Cascade
DosShell
GetTi 1 eRect
Handl eEvent
Tile
Wri teShe 11 Msg

T Application is a simple "wrapper" around TProgram and differs from
TProgram only in its constructor and destructor methods. Normally, you
will derive your application objects from T Application. Should you require a
a different sequence of subsystem initialization and shutdown, however,
you can derive your application from TProgram and manually initialize
and shut down the Turbo Vision subsystems along with your own.

In version 2.0, T Application adds several new methods for handling
standard application commands. T Application now has a HandleEvent
method th.at handles commands from the standard menus, and methods
that tile and cascade windows and shell to DOS.

Chapter 79, Turbo Vision reference 379

TApplicafion

380

Methods
Init constructor Init;

Done

Override:
Sometimes

Constructs an application object by first initializing all the Turbo Vision
subsystems (the memory, video, event, system error, and history list
managers) and then calling the Init constructor inherited from TProgram.

See also: InitMemory, InitVideo, InitEvents, InitSysError, InitHistory,
TProgram.Init

destructor Done; virtual;

Disposes of the application object by first calling the Done destructor
inherited from TProgram and then shutting down all the Turbo Vision
subsystems.

See also: TProgram.Done, DoneHistory, DoneSysError, DoneEvents,
Done Video, DoneMemory

Cascade procedure Cascade;

Calls GetTileRect to get the region over which windows should cascade,
then if Desktop is not nil"calls the desktop's Cascade method, passing the
tiling rectangle.

See also: T Application.GetTileRect, TDesktop.Cascade

DosShell procedure DosShell;

Starts a DOS shell. DosShell first shuts down the system error handler,
eve~t manager, video manager, and DOS memory manager subsystems,
then calls WriteShellMsg to display any user message, then executes the,
command interpreter indicated by the DOS environment variable
COMSPEC.

When the user exits from the DOS shell, DosShell restarts the subsystems,
then calls Redraw to refresh the application views.

See also: T Application. WriteShellMsg

GetTileRect procedure GetTileReGt (var R: TRect); virtual;

Sets R to the rectangle on the desktop that tiled or cascaded windows
should cover. By default, GetTileRect returns the extent of the entire
desktop view. Both the Cascade and Tile methods call GetTileRect to
determine the area for rearranging windows.

Turbo Vision Programming Guide

I

14

TApplication

Your application can override GetTileRect to return a different rectangle,
for example to exclude areas covered by message windows.

See also: T Application.Cascade, T Application. Tile

HandleEvent procedure HandleEvent (var Event: TEvent); virtual;

Handles most events by calling the HandleEvent method inherited from
TProgram, then responds to three of the standard application commands,
cmTile, cmCascade, and cmDosShell, by calling the methods Tile, Cascade,
and DosShell, respectively.

In version 1.0, TApplication did not override TProgram.HandleEvent.

See also: TProgram.HandleEvent, T Application. Cascade,
T Application.DosShell, T Application. Tile

Tile procedure Tile;

Calls GetTileRect to get the region over which windows should tile, then if
Desktop is not nil, calls the desktop's Tile method, passing the tiling
rectangle .

. See also: T Application.GetTileRect, TDesktop.Tile

WriteShellMsg procedure Wri te$hellMsg; virtual;

Prints a message to the user before shelling to DOS. The DosShell routine
calls WriteShellMsg just before executing the command interpreter. By
default, WriteShellMsg displays the following message:

Type EXIT to return ...

You can override WriteShellMsg to display any message to users. You
should print the message using the PrintStr procedure rather than using
Writeln, since PrintStr does not require the use of the runtime library.

See also T Application.DosShell

Chapter 79, Turbo Vision reference 381

a

TBackground

TBackground App

382

Field

TObject TView

Cursor
DragMode
EventMask
GrowMode

He1 pCtx
Next
Options
Origin ,

Owner
Size
State

l-R+t- GetCommands . Prey
I::eatI- GetData PrevVi ew
Done Get Event Put Event
Awaken GetExtent PutlnFrontOf
B1ockCursor GetHe 1 pCtx PutPeerVi ewPtr
Ca 1 cBounds GetPal ette Se 1 ect
ChangeBounds GetPeerVi ewPtr SetBounds
C1 earEvent GetState SetCommands
CommandEnab 1 ed GrowTo SetCmdState
DataSi ze Hand1 eEvent SetCursor
Di sab 1 eCommands Hi de SetData
DragVi ew Hi deCursor SetState
~ KeyEvent Show
DrawVi ew locate ShowCursor
Enab 1 eCommands MakeFi rst Si zeLimits
EndModa 1 MakeG1 oba 1 £t.&f'e-
EventAvail Makeloca1 TopView
Execute MouseEvent Va 1 i d
Exposed MouselnVi ew Wri teBuf
Focus MoveTo Wri teChar
GetBounds NextVi ew Wri tel i ne
GetC1 i pRect Norma 1 Cursor Wri teStr
GetCo1or

TBackground

Pattern,

Init
load
Draw
GetPa1ette
Store

TBackground is a'simple view consisting of a uniformly patterned
rectangle. It is usually owned by a TDesktop.

PaHern Pattern: Char; Read only

The bit pattern giving the view's background.

Methods
Init constructor Init(var Bounds: TRect; APattern: Char);

Creates a background object with the given Bounds by calling the Init
constructor inherited from TView. Sets GrowMode to gfGrowHiX +
gfGrowHiY, and Pattern to APattern.

See also: TView.Init, TBackground.Pattern

Load constructor Load (var S: TStream);

Constructs and loads a background object from the stream S by calling the
Load constructor inherited from TView and then reading the Pattern
character.

See also: TView.Load

Turbo Vision Programming Guide

I

I·.

TBackground

Dravv' procedure Draw; virtual;

Override: Seldom Fills the background view rectangle with the current Pattern in the default
color.

GetPaleHe function GetPalette: PPalette; virtual;

Override: Seldom Returns a pointer to the default background palette, CBackground.

Store procedure Store(var S: TStream);

Palette

TBufStream

Stores the background view on the stream by calling the Store method
inherited from TView and then writing the Pattern character.

See also: TView.Store, TBackground.Load

Background objects use the default palette CBackground to map onto the
first entry in the application palette.

CBackground \1 . ~ 1\

Color

Objects

TObject TStream TDosStream TBufStream

Status Handl e Buffer

~ Errorlnfo BufSi ze = HH-t- BufPtr
CopyFrom gefIe. BufEnd
Error ~
Fl ush ~ Init
Get· Rea4 Done
~ ~ Fl ush
~ ~ GetPos
Put Wr4-te- GetSize
Rea4 Read
ReadStr Seek
Reset Truncate
~ Write
~
Wr4-te-
WriteStr

TBufStream implements a buffered version of TDosStream. The additional
fields specify the size and location of the buffer, together with the current
and last positions within the buffer. In addition to overriding the eight
methods of TDosStream, TBufStream defines the abstract TStream.Flush
method. The TBufStream constructor creates and opens a named file by
calling TDosStream.Init, then creates the buffer with GetMem.

Chapter 79, Turbo Vision reference 383

TBufStream

TBufStream is significantly more efficient than TDosStream when a large
number of small data transfers take place on the stream, such as when
loading and storing objects using TStream.Get and rStream.Put.

Fields
BufEnd BufEnd: Word; Read only

If the buffer is not full, BufEnd gives an offset from the Buffer pointer to the
last used byte in the buffer.

Buffer Buffer: Pointer; Read only

A pointer to the start of the stream's buffer

BufPtr BufPtr: Word; Read only

BufSize

Methods

An offset from the Buffer pointer indicating the current position within the
buffer.

BufSize: Word; Read only

The size of the buffer in bytes

Init constructor Init(FileName: FNameStr; Mode, Size: Word);

Constructs the object and opens the file named in FileName with access
mode Mode by calling the Init constructor inherited from TDosStream.
Allocates a buffer of Size bytes on the heap. Sets BufPtr and BufEnd to
zero. Typical buffer sizes range from 512 bytes to 2,048 bytes.

See also: TDosStream.Init

Done destructor Done; virtual;

Override: Never Calls Flush to flush buffer contents to disk, then disposes of the buffered
stream object by calling the Done destructor inherited from TDosStream.
Frees the memory allocated to the buffer.

See also: TBufStream.Flush, TDosStream.Done

Flush procedure Flush; virtual;

Override: Never Flushes the stream's buffer provided the stream's status is stOK. The Done
destructor calls Flush to make sure all data get written to the disk before
disposing of the stream object. .

See also: TBufStream.Done

384 Turbo Vision Programming Guide

i

I.

I

I

I

I

I

i

I

TBufStream

(7etPos function GetPos: Longint; virtual;

Override: Never Returns the value of the stream's current position (not to be confused with
BufPtr, the current location within the buffer).

See also: TBufStream.Seek

(7etSize function GetSize: Longint; virtual;

Override: Never Flushes the buffer then returns the total size in bytes of the stream.

See also: TBufStream.Flush

Read procedure Read(var Buf; Count: Word); virtual;

Override: Never If the stream's status is stOK, reads Count bytes into the Bufbuffer starting
at the stream's current position.

Buf is not the stream's buffer, but an external buffer to hold the data read
in from the stream.

See also: TBufStream. Write, stReadError

Seek procedure Seek (Pos: Longint); virtual;

Override: Never Flushes the buffer then resets the current position to Pos bytes from the
start of the calling stream. The start of a stream is position O.

See also: TBufStream.Flush, TBufStream.GetPos

Truncate procedure Truncate; virtual;

Override: Never Flushes the buffer then deletes all data on the stream from the current
position to the end by calling the Truncate method inherited from
TDosStream. The current position is set to the new end of the truncated
stream.

See also: TBufStream.Flush, TDosStream. Truncate

Write procedure Write(var Buf; Count: Word); virtual;

Override: Never If the stream's status is stOK, writes Count bytes from the Bufbuffer to the
stream, starting at the current position.

Buf is not the stream's buffer, but an external buffer to hold the data being
written to the stream. When you call Write, Buf points to the variable
whose value is being written to the stream.

See also: TBufStream.Read, st WriteError

Chapter 79, Turbo Vision reference 385

a

TBuHon

TButton

386

TObject TView

Cursor
DragMode
EventMask
GrowMode

Hel pCtx
Next
Opti ons
Origin

Owner
Size
State

HH-t- GetCommands Prey
I:::ea6- GetData PrevVi ew
~ Get Event PutEvent
Awaken GetExtent PutInFrontOf
BlockCursor GetHelpCtx PutPeerViewPtr
Ca 1 cBounds GetPal ette Sel ect
ChangeBounds GetPeerVi ewPtr SetBounds
Cl earEvent GetState SetCommands
CommandEnabl ed GrowTo SetCmdState
DataSi ze ioIaREll eE eRt SetCursor
Di sabl eCommands Hi de SetData
DragVi ew Hi deCursor ~
~ KeyEvent Show
DrawVi ew Locate ShowCursor
EnableCommands MakeFirst SizeLimits
EndModal MakeGlobal £.t.e.Ioe.
EventAvai 1 MakeLoca 1 TopVi ew
Execute MouseEvent Va 1 i d
Exposed MouselnVi ew Wri teBuf
Focus MoveTo WriteChar
GetBounds NextVi ew WriteLi ne
GetCl i pRectNorma 1 Cursor Wri teStr
GetColor

TButton

Title
Command
Fl ags
AmDefaul t

Init
Load
Done
Draw
DrawState
GetPal ette
Handl eEvent
MakeDefaul t
Press
SetState
Store

Dialogs

A TButton object is a view with a title and a shadow that generates a
command when pressed, most often found in dialog boxes; Users can
press buttons by pressing the highlighted letter, by tabbing to the button
and pressing Spacebar; by pressing Enter when the button is the default
(indicated by highlighting), or by clicking the button with a mouse.

With the color and black-and-white palettes, buttons have a three
dimensional look and appear to move when clicked. On monochrome
systems, Turbo Vision borders buttons with brackets, with other ASCII
characters to indicate whether the button is default, selected, and so on.

Like the other controls defined in the Dialogs unit, TButton is a "terminal"
object that you can insert into any group without having to override any
of its methods.

There can only be one default button in a window or dialog box at any
given time. Buttons that are peers in a group grab and release the default
state via evBroadcast messages. Disabling or enabling the command bound
to a button also disables or enables the button itself.

Turbo Vision Programming Guide·

\.

TBuHon

Fields
AmOefault AmDefault: Boolean; Read only

If True, the button is the default (and therefore "pressed" when the user
presses Enter). Otherwise, the button is normal.

See also: bfXXXX button flag constants

Command Command: Word; Read only

The command word of the event generated when the user presses the
button.

See also: TButton.Init

Flags Flags: Byte; Read/write

Flags is a bitmapped field used to indicate whether button text is left
aligned or centered. The individual flags are described under "bfXXXX
button flag constants" in this chapter.

See also: TButton.Draw, bfXXXX button flag constants

Title Title: PString; Read only

A pointer to the button label's text.

Methods
Init constructor Init(var Bounds: TRect; ATitle: TTitleStr; ACommand: Word;

AFlags: Byte);

Creates a button object with the given bounds by calling the Init
constructor inherited from TView. Allocates a title string Title by calling
NewStr(ATitle). AFlags serves two purposes: If AFlags and bfDefault is
nonzero, AmDefault is set to True; in addition, AFlags indicates whether
the title should be centered or left-aligned by testing whether AFhlgS and
bfLeftJust is nonzero.

Options is set to (of Selectable + ofFirstClick + of PreProcess + of PostProcess).
EventMask is set to evBroadcast. If the given ACommand is not enabled,
sfDisabled is set in the State field.

To define a shortcut key for the button, put tildes (,..,) around one of its
characters in ATitle, which becomes the shortcut letter.

See also: TView.Init, bfXXXX button flag constants

Load constructor Load (var S: TStream);

Chapter 79, Turbo Vision reference 387

I

TButton

Constructs a button object and initializes it from the stream S by calling
the Load constructor inherited from TView. Sets other fields by calling
S.Read, and sets State according to whether the command in the Command
field is enabled. Used in conjunction with Store to save and retrieve button'
objects on a TStream. '

See also: TView.Load, TButton.Store

Done destructor Done; virtual;

Override: Never Disposes of the memory assigned to the button's Title, then cails the Done
destructor inherited from TView to dispose of the view.

See also: TView.Done

Dravv procedure Draw; virtual;

Override: Seldom Draws. the button with appropriate palettes for its current state (normal,
default, disabled) and positions the label according to the bfLeftJust bit in
the Flags field.

388

See also: TButton.DrawState

DravvState procedure DrawState(Down: Boolean);

GetPaleHe

Override:
Sometimes

HandleEvent

Override:
Sometimes

Draws the button in either a pressed or unpressed state. If Down is True,
DrawState draws the button as pressed, otherwise draws the button as
unpressed. Draw calls DrawState with Down set False to draw the view.
HandleEvent calls DrawState in response to mouse clicks and drags,
depending on the location of the click.

See also: TButton.Draw

function GetPalette: PPalette; virtual;

Returns a pointer to the default palette, CButton.

procedure HandleEvent(var Event: TEvent); virtual;

Responds to being pressed in any of three ways: mouse clicks on the
button, its shortcut key being pressed, or being the default button when a
cmDefault broadcast arrives. When the user presses a button, the button
generates a command event with PutEvent, setting Event.Command to the
value in the button's Command field and Event.InfoPtr to @Self.

Buttons also recognize the broadcast commands cmGrabDefault and
cmReleaseDefault, to become or "unbecome" the default button, as
appropriate, and cmCommandSetChanged, which causes them to check
whether their commands have been enabled or disabled.

Turbo Vision Programming Guide

I
II

TButton

Handles all other events by calling the HandleEvent method inherited from
TView. '

See also: TView.HandleEvent

MakeOefault procedure MakeDefault(Enable: Boolean);

Press

Override:
Sometimes

SetState

Override: Seldom

Store

This method does nothing if the button is already the default button.
Otherwise, notifies its Owner of the change in the button's default status
with a broadcast command. If Enable is True, broadcasts the cmGrabDefault
command, otherwise, sends cmReleaseDefault. Redraws the button to
reflect the new status.

See also: TButton.AmDefault, bfDefault

procedure Press; virtual;

Called to generate the effect associated with "pressing" a button object.
The default method sends an evBroadcast event with a command value of
cmRecordHistory to the button's owner (causing all THistory objects to
record the contents of the input line objects they control), and then uses
PutEvent or Message to generate an event depending on the value of the
bfBroadcast flag. You can override Press to change the behavior of a button
when pressed, but you'll probably want to call the inherited method in
your modified Press method.

procedure SetState(AState: Word; Enable: Boolean); virtual;

Calls the SetState method inherited from TView to actually set the state
flags, then calls DrawView if the button has been made sf Selected or
sf Active. If the button receives focus (AState contains sfFocused), the button
grabs or releases default from the default button by calling MakeDefault.

See also: TView.SetState, TButton.MakeDefault

procedure Store(var S: TStream);

Stores the button object on the stream S by calling the Store method II
inherited from TView, then calling S. Write to store the Title and Command
values. Used in conjunction with TButton.Load to save and retrieve
TButton objects on streams.

See also: TView.Store, TButton.Load, TStream. Write

Chapter 79, Turbo Vision reference 389

TBuHon·

Palette
Button objects use the default palette CButton to map onto CDialog palette
entries 10 through 15.

CButton

Text Normal
Text Default.----'
Text Selected-----'
Text Disabled---------'

TByteArray type

Shadow
'----Shortcut Selected

'-------Shortcut Defaul t
'--------Shortcut Normal

Declaration TByteArray = array[O .. 32767] of Byte;

Function A byte array type for general use in typecasts.

See also TStringListMaker

TCharSet type

Declaration TCharSet = set of Char;

Objects

Objects

Function Filter valida tor objects use a field of type TCharSet to define the legal
characters a user can type in a filtered input line.

See also TFilter Valida tor. Valid Chars

390 Turbo Vision Programming Guide

I

I

I'

TChDirDialog object

TChDirDialog object StdDlg

TObject TView

Cursor
DragMode
EventMask
GrowMode
Hel pCtx
Next

HH-t-
bea6:-
B&fIe.
Awa*efI.
BlockCursor
Cal cBounds
bt:lafl§eBsl:lfl8S
Cl earEvent
CommandEnab 1 ed
~
Di sabl eCommands
DragView
~
DrawVi ew
Enab 1 eCommands
~
EventAvail
~
Exposed
Focus
Get Bounds
GetCl i pRect
GetColor
GetCommands
~
GetEvent
GetExtent
Ge:t;lIel J3b~m
GeUal eHe
GetPeerVi ewPt r
GetState
GrowTo
Hafl81 e~ efl:E
Hide

Fields

Opti ons
Origin
Owner
Size
State

Hi deCursor
KeyEvent
Locate
MakeFi rst
MakeGlobal
MakeLocal
MouseEvent
MouseInVi ew
MoveTo
NextView
Normal Cursor
Prey
PrevView
Put Event
PutInFrontOf
PutPeerVi ewPtr
Select
Set Bounds
Set Commands
SetCmdState
SetCursor
~
~
Show
ShowCursor
£~ i!eb~lIlH;s

~
TopVi ew
\La-t4-&
WriteBuf
WriteChar
WriteLine
WriteStr

TGroup

Buffer
Current
Last
Phase

f.t:TH-
bea4
B&fIe.
Awaken
ChangeBounds
Ba-t-a£4.re.
Del ete
Draw
EndModal
EventError
ExecView
Execute
Fi rst
Fi rstThat
FocusNext
ForEach
GeWa-:t;a-

GetHel pCtx
GetSubVi ewPtr
lIafl81 e~ efl:E
Insert
I nsertBefore
Lock
PutSubVi ewPtr
Redraw
SelectNext
~
~
~
Unlock
\La-t4-&

TWindow

Fl ags
Frame
Number
Palette
Title
ZoomRect

f.t:TH-
bea4
Done
Close
Ge:EPaleHe
GetTitle
lIafl81 e~ efl:E
InitFrame
SetS tate
SizeLimits
StandardScro 11 Bar
~
Zoom

TDialog

f.t:TH-
bea4
GetPalette
fiafl81 e~ efl:E
\La-t4-&

TChDirDialog

Di rInput
DirList
OkButton
ChDi rButton

Init
Load
DataSize
GetData
Handl eEvent
SetData
Store
Val id

TChDirDialog implements a dialog box labeled "Change Directory" that
provides an input line to accept a directory name from the user. The input
line has a history list, and a directory list box with a vertical scroll bar
shows a tree of all available directories.

ChDirBuHon ChDirButton: PButton;

ChDirButton points to the button object that changes to the directory
currently indicated in the input line Dirlnput.

Dirlnput Dirlnput: PlnputLine;

Chapter 79, Turbo Vision reference 391

a

TChDirDialog object

392

Dirlnput points to an input line object where the user can type the name of
a directory to change to. By default, the input line shows the path name of
the directory currently selected in the file tree.

DirList DirList: PDirListBox;

DirList points to a list box containing an outline of the directories on the
current disk.

OkBuHon OkButton: PButton;

OkButton points to the button object that closes the dialog box.

Methods
Init constructor Init(AOptions: Word; HistoryId: Word);

Creates a change-directory dialog box object with the options specified in
AOptions, and associates the history list designated by HistoryID with the
directory input line pointed to by Dirlnput. AOptions contains a
combination of the cdXXXX constants.

See also: cdXXXX constants

Load constructor Load (var S: TStream);

Creates and loads a change-directory dialog box object from the stream S
by calling the Load constructor inherited from TDialog, then reading the
additional fields defined in TChDirDialog.

See also: TDialog.Load

DataSize function DataSize: Word; virtual;

By default, DataSize returns zero. If you derive a new object from
TChDirDialog that uses SetData and GetData methods to transfer data to
the dialog box, you need to also override DataSize to return the size in
bytes of the data used by SetData and GetData.

GetData procedure GetData(var Ree); virtual;

By default, GetData does nothing. If you derive objects from TChDirDialog
, that have controls whose values need to be read, you need to override

GetData to copy DataSize bytes from Rec. If you override GetData, you also
need to override DataSize and SetData.

HandleEvent procedure HandleEvent (var Event: TEvent); virtual;

Handles events in the dialog box by first calling its inherited HandleEvent
from TDialog to handle standard dialog box behavior, then processes the

Turbo Vision Programming Guide

I.

TChDirDialog object

commands cmRevert and cmChangeDir which can be generated by buttons
in the dialog box.

SetData procedure SetData(var Ree); virtual;

By default, SetData does nothing. If you derive objects from TChDirDialog
that have controls whose values need to be set, you need to override
SetData to copy DataSize bytes into Rec. If you override SetData, you also
need to override DataSize and GetData.

Store procedure Store(var S: TStream) i

Stores the dialog box object on the stream S by first calling the Store
method inherited from TDialog and then writing the additional fields
introduced by TChDirDialog.

Valid function Valid(Command: Word): Boolean; virtual;

TCheckBoxes

Returns True if Command is anything other than cmOK.1f the user pressed
the Ok button, generating the cmOK command, Valid checks the contents
of the Dirlnput input line to make sure it names a valid directory. If the
directory is valid,Valid returns True; otherwise, it invokes an "Invalid
directory" message box and returns False.

TObject TView

Cursor
DragMode
EventMask
GrowMode

He1pCtx
Next
Options
Origin

Owner
Size
State

Hf.:i4- GetCommands Prey
I::ea4- ~ PrevView
Bef!e. Get Event Put Event
Awaken Get Extent PutInFrontOf
B1ockCursor Getllel ~Gt)(PutPeerVi ewPtr
Ca 1 cBounds GetPal ette Se 1 ect
ChangeBounds GetPeerVi ewPtr Set Bounds
C1 earEvent GetState SetCommands
CommandEnab 1 ed GrowTo SetCmdState
~ lIaRell eE: 'eRt SetCursor
Disab1eCommands Hide ~
DragView HideCursor ~
9-!>aw- KeyEvent Show
DrawVi ew locate ShowCursor
Enabl eCommands MakeFi rst Si zel imi ts
EndModa 1 MakeG1 oba 1 &t&Pe-
EventAvail Makeloca1 TopVi ew
Execute MouseEvent Val i d
Exposed MouselnVi ew Wri teBuf
Focus MoveTo WriteChar
Get Bounds NextVi ew Wri tel i ne
GetC1 i pRect Norma 1 Cursor Wri teStr
GetColor

TCluster

Value
Se1
Enab1eMask
Stri ngs

Init
load
Done
ButtonState
DataSize
DrawBox
DrawMu 1 t i Box
GetData
GetHe1pCtx
GetPa1ette
Hand1 eEvent
~
MovedTo
Mu1 tiMark
P-I"es5-
SetButtonState
SetData
SetState
Store

Dialogs

TCheckBoxes

Draw
Mark
Press

Chapter 79, Turbo Vision reference 393

TCheckBoxes

Methods

TCheckBoxes is a specialized cluster of one to 16 controls. Unlike radio
buttons, any number of check boxes can be marked independently, so the
cluster has boxes checked by default. The user can mark check boxes with
mouse clicks, cursor movements, and Alt+letter shortcuts. Each check box
can be highlighted and toggled on/off (with Spacebar). An X appears in the
box when it is selected. .

Other parts of your application typically examine the state of the check
boxes to determine which options the user chose (the IDE, for example,
has compiler/linker options selected in this way).

Check box clusters often have associated TLabel objects to give the user an
overview of the clustered options.

Note that TCheckBoxes does not override the TCluster constructors,
destructor, or event handler. Derived object types, however, might need to
override them.

Dravv procedure DrqWi virtuali

Override: Seldom Draws the TCheckBoxes object by calling the inherited TCluster.DrawBox
method. The default check box is" [1 "when unselected and" [Xl "
when selected.

Note that if the boundaries of the view are sufficiently wide, check boxes
may be displayed in multiple columns.

See also: TCluster.DrawBox

Mark function Mark(Item: Integer): Booleani virtuali

Override: Seldom Returns True if the Item'th bit of Value is set, that is, if the Item'th check
box is marked. You can override this to give a different interpretation of
the Value field. By default, the items are numbered 0 through 15.

394

See also: TCheckBoxes.Press

Press procedure Press (Item: Integer)i virtuali

Toggles the Item'th bit of Value. You can override this to give a different
interpretation of the Value field. By default, the items are numbered 0
through 15.

See also: TCheckBoxes.Mark

Turbo Vision Programming Guide

Palette

TCluster

TCheckBoxes

By default, check boxes objects use CCluster, the default palette for all
cluster objects.

4

CCl uster rlklli =r16:::!:::1=r=7 :!:=18F~1 =r18::!]1

Text Normal~ Shortcut Sel ected
Text Sel ected Shortcut Normal

TObject TView

Cursor
DragMode
EventMask
GrowMode

HelpCtx
Next
Opti ons
Origin

Owner
Size
State

lfI.:i-t. GetCommands Prey
I::ea4 ~ PrevView
Qe.R.e. Get Event Put Event
Awaken GetExtent PutInFrontOf
BlockCursor GetllelllGtl(PutPeerVi ewPtr
Ca 1 cBounds GetPal ette Se 1 ect
ChangeBounds GetPeerVi ewPtr SetBounds
Cl earEvent GetState SetCommands
CommandEnab 1 ed GrowTo SetCmdState
~ lIaREll eE eRt SetCursor
DisableCommands Hide ~
DragVi ew Hi deCursor ~
Draw KeyEvent Show
DrawVi ew locate ShowCursor
EnableCommands MakeFirst SizeLimits
EndModal MakeGlobal ~
EventAvai 1 Makeloca 1 TopVi ew
Execute MouseEvent Va 1 i d
Exposed MouseInVi ew WriteBuf
Focus MoveTo Wri teChar
GetBounds NextVi ew Wri tel i ne
GetCl i pRect Norma 1 Cursor Wri teStr
GetColor

TCluster

EnableMask
Sel
Strings
Val ue

Init
load
Done
ButtonState
DataSize
DrawBox
DrawMu 1 t i Box
GetData
GetHelpCtx
GetPalette
Handl eEvent
Mark
MovedTo
MultiMark
Press
SetButtonState
SetData
SetState
Store

Dialogs

A cluster is a group of controls that all respond in the same way. TCluster
is an abstract object type that provides the behavior common to check
boxes and radio buttons.

While buttons generate commands and input lines are used to edit strings,
clusters enable the user to toggle bits in the Value field, which is of type
Longint. The two standard descendants of TCluster use different
algorithms when changing Value: TCheckBoxes simply toggles a bit, while
TRadioButtons toggles the enabled one and clears the previously selected
bit. Both inherit almost all of their behavior from TCluster.

Chapter 79, Turbo Vision reference 395

II

TCluster

396

Fields
EnableMask EnableMask: Longint j

EnableMask contains the enabled state of the first 32 items in a cluster, with
each bit corresponding to a cluster item. The lowest order bit controls the
first item in the cluster. If the EnableMask bit is set, the item is enabled.
Clearing the bit disables the corresponding cluster item. Disabled cluster
items cannot be pressed. By default, the cluster constructor sets
EnableMask to $FFFFFFFF, meaning that all items are enabled.

Sel Sel: Integer j Read only

The currently selected item of the cluster.

Strings Strings: TStringCollectionj Read only

Value

Methods

The list of items in the cluster.

Value: Longintj Read only

Current value of the control. The actual meaning of this field is
determined by the methods developed in the object types derived from
TCluster.

Init constructor Init (var Bounds: TRectj AStrings: PSItem) j

Clears the Value and Sel fields. The AStrings parameter is usually a series
of nested calls to the global function NewSItem, allowing you to create an
entire cluster of radio buttons or check boxes in one constructor call:

var Control: PViewj

R.Assign (30, 5, 52, 7) j

Control := New (PRadioButtons, Init(R,
NewSItem('-F-orward' ,
NewSItem('-B-ackward', nil))))j

To add additional radio buttons or check boxes to a cluster, just copy the
first call to NewSltem and replace the title with the desired text. Then add
an additional closing parenthesis for each new line you added and the
statement will compile without syntax errors.

See also: TSItem type

Turbo Vision Programming Guide

TCluster

Load constructor Load (var S: TStream);

Done

Override:
Sometimes

Creates a TCluster object by first calling the Load constructor inherited
from TView, then setting the Value and Sel fields with S.Read calls. Finally
loads the Strings field for the cluster from S with Strings.Load(S). Use in
conjunction with TCluster.Store to save and retrieve TCluster objects on a
stream.

See also: TCluster.Store, TView.Load

destructor Done; virtual;

Disposes of the cluster's string memory allocation then destroys the view
by calling the Done destructor inherited from TView.

See also: TView.Done

BuHonState function ButtonState (Item: Integer): Boolean;

Returns the enabled state of the Itemth button in the cluster. A True value
indicates the button is enabled; False indicates disabled. Cluster objects
call ButtonState in their Draw and HandleEvent methods to ensure that
disabled items look different and that users can't interact with disabled
items.

See also: TCluster.EnableMask

DataSize function DataSize: Word; virtual;

Override: Seldom Returns the size of Value. If you derive new types from TCluster that
change Value or add other fields, you need to override DataSize to return
the size of any data transferred by GetData and SetData.

See also: TCJuster.GetData, TCluster.SetData

DravvBox procedure DrawBox(const Icon: String; Marker: Char);

Called by the Draw methods of descendant types to draw the box in front
of the string for each item in the cluster. Icon is a 5-character string (, [l' T
for check boxes,' () , for radio buttons). Marker is the character to use
to indicate the box has been marked (, x' for check boxes, '.' for radio
buttons).

See also: TCheckBoxes.Draw, TRadioButtons.Draw

DravvMultiBox procedure DrawMultiBox(const Icon, Marker: String);

Multistate check boxes call DrawMultiBox instead of DrawBox, passing a
string of characters instead of a single character for the marker. The
characters in Marker correspond to the possible states of the button.

Chapter 79, Turbo Vision reference 397

TCluster

See also: TCluster.DrawBox, TCluster.MultiMark

GetOata procedure GetData (var Ree); virtual;

Override: Seldom Writes the Value field to Rec. If you derive new object types from TCluster
that change the Value field, you need to override GetData in order to work
with DataSize and SetData.

See also: TCluster.DataSize, TCluster.SetData

GetHelpCtx function GetHelpCtx: Word; virtual;

Override: Seldom Returns the value of Sel added to HelpCtx. This enables you to have
separate help contexts for each item in the cluster. Reserve a range of help
contexts equal to HelpCtx plus the number of cluster items minus one.

GetPalette function GetPalette: PPalette; virtual;

Override: Returns a pointer to the default palette, CCluster.
Sometimes

HandleEvent procedure HandleEvent (var Event: TEvent); virtual;

Override: Seldom Calls the HandleEvent method inherited from TView, then handles all
mouse and keyboard events appropriate to this cluster. The user selects
individual items within the cluster by mouse click or cursor movement
keys (including Spacebar). Redraws the cluster to show the newly selected
controls.

See also: TView.HandleEvent

~ark function Mark(Item: Integer): Boolean; virtual;

Override: Always The default TCluster.Mark returns False. Any new object types derived
from TCluster must override Mark to return True if the Itemth control in
the cluster is marked, otherwise, False. Draw calls Mark to determine
which items are rp.arked so it can draw the proper box for each item.

~ovedTo procedure MovedTo (Item: Integer); virtual;

Override: Seldom Moves the selection bar to theItemth control of the cluster. HandleEvent
calls MovedTo in response to mouse click or arrow key events.

~ulti~ark function MultiMark(Item: Integer): Byte; virtual;

Returns the mark state of the Itemth button in a multistate cluster. In
regular clusters, each button has only two states, so Mark returns a
Boolean value. But multistate clusters need to provide more information,
so multistate clusters call MultiMark instead of Mark.

See also: TCluster.Mark

Press procedure Press (Item: Integer); virtual;

398 Turbo Vision Programming Guide

I

I

I

I

I

I

I

I

I

I

I

I

I

TCluster

Override: Always HandleEvent calls Press when the user "presses" the Item'th control in the
cluster by clicking the mouse or pressing Spacebar. Press is an abstract .
method that you must override whenever you derive a new type from
TCluster.

See also: TCheckBoxes.Press, TRadioButtons.Press

SetBuHonState procedure SetButtonState (AMask: Longint; Enable: Boolean);

Sets or clears the bits in EnableMask corresponding to the bits set in AMask.
If Enable is True, any bits set in AMask are enabled in EnableMask; if Enable
is False, the bits are cleared. If disabling individual buttons produces a
complete cluster of disabled buttons, SetButtonState makes the cluster
unselectable.

SetOata procedure SetData(var Ree); virtual;

Override: Seldom Reads the Value field from the given record and calls DrawView to update
the cluster. If you derive new types from TCluster that change Value or
add other fields, you must override SetData to work with DataSize and
GetData.

See also: TCluster.DataSize, TCluster.GetData, TView.DrawView

SetState procedure SetState(AState: Word; Enable: Boolean); virtual;

Override: Seldom Calls the SetState method inherited from TView to set or clear the state bits
passed in AState, then calls DrawView to update the cluster if AState is
sf Selected.

See also: TView.SetState, TView.DrawView

Store procedure Store(var S: TStream);

Palette

Stores the cluster object on the stream 5 by first calling the Store method
inherited from TView, then writing Value and Sel to 5, then storing the
cluster's Strings field by using its Store method. Use in conjunction with
TCluster.Load to save and retrieve TCluster objects on a stream.

See also: TCluster.Load, TStream. Write

TCluster objects use CCluster, the default palette for all cluster objects, ~o
map onto entries 16 through 18 of the standard dialog box palette.

Chapter 19, Turbo Vision reference 399

II

TColiection

TColiection

Fields

1 4

CClos •• r Jj I 171 1~
Text Normal I Shortcut Selected
Text Selected Shortcut Normal

Objects

TObject TCollection

Count Items
Delta Limit

Init ForEach
Load Free
Done FreeA 11
At FreeItem
AtDelete GetItem
At Free IndexOf
AtInsert Insert
AtPut LastThat
Delete Pack
Del eteA11 PutItem
Error SetLimit
Fi rstThat Store

I

TCollection is the base type for implementing any collection of items, 'I '

including other objects. TCollection is a more general concept than the II
traditional array, set, or list. Collection objects size themselves
dynamically at run time and offer a base type for many specialized types
such as TSortedCollection, TStringCollection, and TResourceCollection. In
addition to methods for adding and deleting items, TCollection offers
,several iterator routines that call a procedure or function for each item in
the collection.

TCollection assumes that the items in the collection are derived directly or
indirectly from TObject, so it can call the item's Done destructor to dispose
of items. If you want to use a collections of items that don't descend from
TObject, be sure to override the Freeltem,method to dispose of the item
properly. The string collection, for example, implements a collection of
dynamic Pascal strings.

Count Count: Integer i Read only

400

The current number of items in the collection, up to MaxCollectionSize.
Note that collections index their items based at 0, meaning that Count is
often higher by 1 than the index of the last item.

See also: MaxCollectionSize variable

Delta Delta: Integer i Read only

Turbo Vision Programming Guide

TColiection

The number of items by which to increase the Items list whenever it
becomes full. If Delta is zero, the collection cannot grow beyond the size
set by Limit.

Increasing the size of a collection is fairly costly in terms of performance.
To minimize the number of times it has to occur, try to set the initial Limit
to an amount that will encompass all the items you might want to collect,
and set Delta to a figure that will allow a reasonable amount of expansion.

See also: Limit, TCollection.Init

Items Items: PItemList; Read only

A pointer to an array of item pointers.

See also: TItemList type

Limit Limit: Integer; . Read only

Methods

The currently allocated size (in elements) of the Items list.

See also: Delta, TCollection.Init

Init constructor Init(ALimit, ADelta: Integer);

Constructs a collection object, setting Limit to ALimit and Delta to ADelta.
The collection allocates enough space to handle ALimit items, but the
collection can grow in increments of ADelta until memory runs out or the
number of items reaches MaxCollectionSize.

See also: TCollection.Limit, TCollection.Delta

Load constructor Load (var S: TStream);

Constructs and loads a collection from the stream S. Load calls GetItem for
each item in the collection.

See also: TCollection.GetItem

Done destructor Done; virtual;

Override: Often Deletes and disposes of all items in the collection by calling FreeAll and
setting Limit to O.

See also: TCollection.FreeAll

~t function At (Index: Integer): Pointer;

Returns a pointer to the item at the position Index in the collection. At lets
you treat a collection as a zero-based indexed array. If Index is less than

Chapter 79, Turbo Vision reference 401

II

TColiection

402

zero or greater than or equal to Count, At calls Error with an argument of
coIndexError, then returns nil.

See also: TCollection.IndexOf

AtDelete procedure AtDelete (Index: Integer) ;

Deletes the item at the Index'th position from the collection and moves the
following items up by one position. Decrements Count by 1, but does not
reduce the memory allocated to the collection. If Index is less than zero or
greater than or equal to Count, AtDelete calls Error with an argument of
coIndexError.

AtDelete does not dispose of the deleted item. Use AtFree if you need to
both delete and dispose of items.

See also: TCollection.FreeItem, TCollection.Free, TCollection.Delete

AtFree procedure TCollection .AtFree (Index: Integer) i

Deletes and disposes of the item at the given Index. Equivalent to

Item := At(Index);
AtDelete(Index);
FreeItem (Item) ;

{ get pointer to the item }
{ remove pointer from collection }

{ dispose of the item }

Atlnsert procedure AtInsert (Index: Integer; Item: Pointer);

Inserts Item at the Index'th position and moves any following items down
by one position. If Index is less than zero or greater than Count, AtInsert
calls Error with an argument of coIndexError and does not insert Item.

If Count is equal to Limit before inserting the new item, the collection calls
SetLimit to increase the memory allocated to the collection. If SetLimit fails
to expand the collection, AtInsert calls Error with an argument of
coOverflow and does not insert Item.

See also: TCollection.At, TCollection.AtPut, TCollection.SetLimit

AtPut· procedure AtPut(Index: Integer; Item: Pointer);

Replaces the item at position Index with Item. If Index is less than zero or
greater than or equal to Count, AtPilt calls Error with an argument of
coIndexError.

See also: TCollection.At, TCollection.AtInsert

Delete procedure Delete (Item: Pointer);

Deletes the item given by Item from the collection. Equivalent to
AtDelete(IndexOf(Item)). Delete does not dispose of Item. If you need to
delete _and dispose of an item, call Free.

Turbo Vision Programming . Guide

TColiection

See also: TCollection.AtDelete, TCollection.DeleteAll

OeleteAIi procedure DeleteAll;

Error

Override:
Sometimes

FirstThat

Deletes all items from the collection by setting Count to zero. DeleteAll
does not dispose of the items in the collection.

See also: TCollection.Delete, TCollection.AtDelete

procedure Error (Code, Info: Integer); virtual;

Called by various other collection object methods when they encounter
errors. By default, this method produces a run-time error of (212 - Code),
where Code is one of the coXXXX constants, indicating the nature of the
error. You can override Error to notify the user of details of the error or
recover from the error without terminating the program.

See also: coXXXX collection constants

function FirstThat(Test: Pointer): Pointer;

FirstThat applies a Boolean function, given by the function pointer Test, to
each item in the collection until Test returns True. Returns a pointer to the
item for which Test returned True, or nil if Test returned False for all items.
Test must point to a far local function taking one Pointer parameter and
returning a Boolean value. For example

function Matches (Item: Pointer): Boolean; far;

~ The Test function cannot be a global function.

Assuming that List is a TCollection, the statement

P := List.FirstThat(@Matches);

corresponds to

I : = 0;
while (I < List.Count) and not Matches(List.At(I)) do Inc(1);
if I < List.Count then P := List.At(I) else P := nil;

See also: TCollection.LastThat, TCollection.ForEach

ForEach procedure ForEach(Action: Pointer);

ForEach applies an action, given by the procedure pointer Action, to each
item in the collection. Action must point to a far local procedure taking
one Pointer parameter. For example

procedure PrintItem(Item: Pointer); far;

Chapter 79, Turbo Vision reference 403

II

TColiection

404

~ The Action procedure cannot be a global procedure.

Assuming that List is a TCollection, the statement

List.ForEach(@PrintItem);

corresponds to

for I := 0 to List.Count - 1 do PrintItem(List.At(I));

See also: TCollection.FirstThat, TCollection.LastThat

Free procedure Free (Item: Pointer);

Deletes Item from the collection and disposes of Item. Equivalent to

Delete (Item) ;
FreeItem (Item) ;

{ remove pointer from collection }
{ dispose of Item }

See also: TCollection.FreeItem, TCollection.Delete

FreeAIi procedure FreeAll;

Freeltem

Override:
Sometimes

Deletes and disposes of all items in the collection. To remove all items
from the collection without disposing of them, call DeleteAll.

See also: TCollection.DeleteAll

procedure FreeItem(Item: Pointer); virtual;

The Freeltem method must dispose the given Item. By default, FreeItem
assumes that Item points to a descendant of TObject, and thus calls Item's
Done destructor:

if Item <> nil then Dispose (PObject (Item) f Done);

Descendant collection objects that don't use descendants of TObject as
their items, such as string collections, must override FreeItem to dispose of
the given Item.

~ FreeItem is called by Free and FreeAll, but it should never be called directly.

Getltem

Override:
Sometimes

See also: TCollection.Free, TCollection.FreeAll

function TCollection.GetItem(var S: TStream): Pointer; virtual;

Reads an item from the stream S. By default, GetItem assumes that the
items in the collection are descendants of TObject, and thus calls
TStream.Get to load the item:

GetItem := S.Get;

Turbo Vision Programming Guide

TColiection

Descendant collection objects that don't use descendants of TObject as
their items, such as string collections, need to override GetItem to read the
appropriate item from the stream and return a pointer to it.

Load calls GetItem to read each item in the collection. This method can be
overridden but should not be called directly.

See also: TStream.Get, TCollection.Load, TCollection.Store

IndexOf function IndexOf (Item: Pointer): Integer; virtual;

Override: Never Returns the index of Item. IndexOf is the converse operation to At. If Ite11! is
not in the collection, IndexOf returns -1.

See also: TCollection.At

Insert procedure Insert (Item: Pointer); virtual;

Override: Never Inserts Item into the collection, and adjusts other indexes if necessary. By
default, Insert adds Item to the end of the collection by calling
AtInsert(Count, Item). Descendant collection types, such as sorted
collections, might insert items at other points.

See also: TCollection.AtInsert

LastThat function LastThat (Test: Pointer): Pointer;

LastThat applies a Boolean function, given by the function pointer Test, to
each item in the collection in reverse order until Test returns True. Returns
a pointer to the item for which Test returned True, or nil if Test returned
False for all items. Test must point to a far local function taking one Pointer
parameter and returning a Boolean. For example

function Matches (Item: Pointer): Boolean; far;

~ The Test function cannot be a global function.

Assuming that List is a TCollection, the statement

P := List.LastThat(@Matches);

corresponds to

I := List.Count - 1;
while (I >= 0) and not Matches(List.At(I)) do Dec(I);
if I >= 0 then P := List.At(I) else P := nil;

See also: TCollection.FirstThat, TCollection.ForEach

Pack procedure Pack;

Deletes all nil pointers in the collection.

Chapter 79, Turbo Vision reference 405

II

TColiection

Putltem

Override:
Sometimes

See also: TCollection.Delete

procedure PutItem(var S: TStream; Item: Pointer); virtual;

Writes Item to the stream S. By default, PutItem assumes that the items in
the collection are descendants of TObject, and thus calls TStream.Put to
store the item:

S.Put (Item);

Descendant collection types that don' tuse descendants of TObject as their
items, such as string collections, must override PutItem to write Item to the
stream.

Store calls PutItem for each item in the collection. This method can be
overridden but should not be called directly.

See also: TCollection.GetItem, TCollection.Store, TCollection.Load

SetLimit procedure SetLimit (ALimit: Integer); virtual;

Override: Seldom Expands or shrinks the collection by changing the memory allocated for
items to handle ALimit items. If ALimit is less than Count, it is set to Count,
and if ALimit is greater than MaxCollectionSize, it is set to
MaxCollectionSize. Then, if ALimit is different from the current Limit,
SelLimitallocates a new Items array that holds ALimit elements, copies the
old Items into the new array, and disposes of the old array.

See also: TCollection.Limit, TCollection.Count, MaxCollectionSize variable

Store procedure Store(var S: TStream);

TColorDialog

406

Stores the collection and all its items on the stream S. Store calls PutItem
for each item in the collection.

See also: TCollection.PutItem

ColorSel

The color dialog box is a specialized dialog box titled 'Colors' which
enables users to change palette colors throughout an application while
viewing the selected color combinations in the dialog box.

TColorDialog uses a number of specialized views, including TColorItem,
TColorGroup, TColorSelector, and TColorDisplay. For a complete explanation
of how to use the color dialog box, see Chapter 14.

Turbo Vision Programming Guide

I

I·

TColorDialog

Fields
BakLabel BakLabel: PLabel;

Points to the label for the background color selector.

BakSel BakSel: PColorSelector;

Points to the background color selector for the dialog box.

Display Display: PColorDisplay;

Points to the color display object for the dialog box. The color display
shows text in the currently selected colors.

ForLabel ForLabel: PLabel;

Points to the label for the foreground color selector.

ForSel ForSel: PColorSelector;

Points to the foreground color selector for the dialog box.

Grouplndex Grouplndex: Byte;

Indicates which group in the color group list was most recently focused.

Groups Groups: PColorGroupList;

Points to the color group list for the dialog box. The color group list shows
all the groups of items for which the user can select colors.

MonoLabel MonoLabel: PLabel;

Points to the label for the monochrome attribute selector.

MonoSel MonoSel: PMonoSelector;

Points to the selector for monochrome attributes.

Pal Pal: TPalette;

Holds a copy of the. palette being modified.

Methods
Init constructor Init(APalette: TPalette; AGroups: PColorGroup);

Creates a 62-column, 19-1ine dialog box with the title ~Colors' by calling
the Init constructor inherited from TDialog, adding of Centered to the
Options flags. Sets Pal to APalette. Creates and inserts a color group list
linked to AGroups and a color item list linked to AGroups".Items, with
their associated scroll bars and labels. Creates and inserts color selectors

Chapter 19, Turbo Vision reference 407

TColorDialog

408

for foreground and background colors, assigning them to ForSel and
BakSel, and creates and inserts labels for the selectors, assigning them to
ForLabel and BakLabel. Creates and inserts a hidden monochrome selector
and its label. Creates and inserts Ok and Cancel buttons and gives the
focus to the color group list.

See also: TDialog.Init

Load constructor Load (var S: TStream);

Creates and loads a color dialog box from the stream S by first calling the
Load constructor inherited from TDialog, then reading subview pointers
for the subviews introduced by TColorDialog, and finally reading the
palette.

See also: TDialog.Load

DataSize function DataSize: Word; virtual;

Returns the size of a palette, which is the amount of data passed to or
from a color dialog box by SetData or GetData.

See also: TColorDialog.GetData, TColorDialog.SetData

GetData procedure GetData (var Ree); virtual;

Calls GetIndexes to copy the selected items in each group into Colorlndexes,
then copies DataSize bytes from Rec into Pal, by typecasting Rec into type
TPalette.

See also: TColorDialog.DataSize

Getlndexes procedure GetIndexes (var Colors: PColorlndex);

Sets the color indexes in Colors to the indexed colors in each group in
Groups. TColorDialog.GetData uses GetIndexes to set the indexes in
Colorlndexes to the indexes in each group in Groups. By storing
Colorlndexes on a stream, you can then restore the state of the dialog box
using Loadlndexes and SetData.

See also: Colorlndexes variable

HandleEvent procedure HandleEvent (var Event: TEvent); virtual;

Calls the HandleEvent method inherited from TDialog to deal with
standard dialog behavior, then responds to broadcasts of cmNewColorIndex
commands by setting the new color in the dialog box's color display.

See also: TDialog.HandleEvent, TColorDisplay.SetColor

Turbo Vision Programming Guide

TColorDialog

Set Data procedure SetData (var Ree); virtual;

Copies DataSize bytes from Rec to Pal, specifically by typecasting Rec to
type TPalette. If ShowMarkers is True, displays the monochrome selector
and hides the color selectors.

See also: TColorDialog.DataSize, ShowMarkers variable

Setlndexes procedure SetIndexes (var Colors: PColorlndex);

Sets the indexes in each color group in Groups to the corresponding index
from Colors. TColorDialog.SetData calls SetIndexes to set the color group
indexes from ColorIndexes, restoring the selected items from the last time
ColorIndexes was set from Groups.

See also: TColorDialog.SetData

Store procedure Store(var S: TStream);

Writes the color dialog box to the stream S by first calling the Store
method inherited from TDialog, then writing pointers for the subviews
introduced by TColorDialog, and finally writing the palette stored in Pal.

See also: TDialog.Store

TColorDisplay object ColorSel

TColorDisplay is a simple view that shows a given text string in the color
selected in its dialog box's color selectors. Color selection dialog boxes use
a color display view to show the user what selected color combinations
look like.

Details of TColorDisplay's fields and methods are in the online Help.

TColorGroup type

Declaration TColorGroup = record
Name: PString;
Index: Byte;
Items: PColorltem;
Next: PColorGroup;

end;

ColorSel

Function A color group defines a named group of related items for which a user
can select colors. Name holds the name of the group, Index holds the
ordinal position of the color in the color list, and Items points to the first

Chapter 79, Turbo Vision reference- 409

a

TColorGroup type

item in a linked list of color items. Next points tothe next item in a linked
list of color groups.

A color dialog box contains a group list box that uses as its list a linked list
of TColorGroup records.

Use the ColorGroup function to create and initialize color group records.

See also ColdrGroup function

TColorGroupList object ColorSel

A color group list is a specialized list box object that provides a scrollable
list of named color groups for selection in a color selection dialog box.
TColorGroupList behaves like a regular list box, but its list is a linked list of
TColorGroup records.

Details of TColorGroupList's fields and methods are in the online Help.

TColorlndex type ColorSel

Declaration TColorIndex = record
GroupIndex: Bytei
ColorSize: Bytei
ColorIndex: array[O .. 255] of Bytei

endi

Function Color selection dialog boxes use TColorlndex records to save the ordinal
position of the focused items in the color group list and the color item list,
enabling the dialog box to restore its previous state when loaded. You
never need to use this type directly. It's used by the Loadlndexes and·
Storelndexes procedures.

See also Loadlndexes procedure, Storelndexes procedure

TColorltem type ColorSel

410

Declaration TColorItem = record
Name: PStringi
Index: Bytei
Next: PColorItemi

endi

Turbo Vision Programming Guide

I

I

I-
I

TColorltem type

Function A color item defines a named item in a group for which a user can select
colors. Name holds the name of the color item, and Index holds the index
of the application color palette entry that defines the color of the item.
Next points to the next item in a linked list of color items.

A color dialog box contains an item list box that builds its list from a
linked list ofTColorItem records. '

Use the ColorItem function to create and initialize new TColorItem records.

TColorltemList object ColorSel

A color item list is a specialized descendant of TListViewer that provides a
list of the items in a color group for which a user can select colors. The list
for a color item list comes from the Items field of a TColorGroup record.
Color Selection dialog boxes use a color item list to enable the user to pick
groups of color items for color selection.

Details of TColorItemList's fields and methods are in the online Help.

TColorSel type ColorSel

Declaration TColorSel = (csBackground, csForeground) i

Function Color selector objects use the TColorSel enumerated type to specify what
kind of selector it is, background or foreground.

See also TColorSelector.SelType

TColorSelector object ColorSel

Color selector objects display the colors available for a given view. There T
are two variations, one for background colors and one for foreground
colors. Color selection dialog boxes use one of each kind to show the
available color choices as well as the currently-selected colors.

Details of TColorSelector's fields and methods are in the online Help.

TCommandSet type Views

Declaration TCommandSet = set of Byte i

Chapter 79, Turbo Vision reference 411

TCommandSet type·

Function TCommandSet is useful for holding arbitrary sets of up to 256 commands.
It allows for simple testing whether a given command meets certain
criteria in event handling routines and lets you establish command masks.

For example, TView's methods EnableCommands, DisableCommands,
GetCommands, and SetCommands all take arguments of type TCommandSet.
You can declare and initialize command sets using the Pascal set syntax:

CurCommandSet: TCommandSet = [0 .. 255] - [cmZoom, cmClose, cmResize, cmNext]i

See also cmXXXX, TView.DisableCommands, TView.EnableCommands,
TViewGetCommands, TView.SetCommands.

TDesktop App

TObject TView

Cursor
DragMode
EventMask
GrowMode
HelpCtx
Next

J.R4.t.
I::ea4
BefIe.
Awa*efI.
BlockCursor
Cal cBounds
Gt:laR!jeBsI:lRaS
Cl earEvent
CommandEnab 1 ed
~
Di sabl eCommands
DragView
Bf>aw.
DrawVi ew
Enabl eCommands
~
EventAvail
~
Exposed
Focus
GetBounds
GetCl i pRect
GetColor
GetCommands
~
Get Event
GetExtent
GetllelflGb
GetPalette
GetPeerVi ewPtr
GetState
GrowTo
HaRal el!; eRt
Hide

412

Opti ons
Origin
Owner
Size
State

HideCursor
KeyEvent
locate
MakeFirst
MakeGlobal
Makelocal
MouseEvent
MouseInVi ew
MoveTo
NextView
Normal Cursor
Prey
PrevView
Put Event
Put! nFrontOf
PutP.eerVi ewPtr
Select
SetBounds
SetCommands
SetCmdState
SetCursor
~
~
Show
ShowCursor
SizeLimits
~
TopVi ew
IJ.a.l.:i.€I.
WriteBuf
WriteChar
Wri tel ine
WriteStr

TGroup

Buffer
Current
last
Phase

J.R4.t.
load
Done
Awaken
ChangeBounds
DataSize
Del ete
Draw
EndModal
EventError
ExecView
Execute
First
FirstThat
FocusNext
ForEach
Getoata
GetHel pCtx
GetSubVi ewPtr
HaRel el!; eRt
Insert
I nsertBefore
lock
PutSubVi ewPtr
Redraw
SelectNext
SetData
SetState
Store
Unlock
Val id

TOeskTop

Background
Til eCol umnsFi rst

Init
Cascade
Handl eEvent
Ini tBackground
Tile
Ti leError

Turbo Vision Programming Guide

Fields

TDesktop

The desktop isa simple group that owns the background view upon
which the application's windows and other views appear. TDesktop
represents the desktop area of the screen between the top menu bar and
bottom status line.

The desktop object has one new field in version 2.0, allowing you to
specify default tiling behavior.

Background Background: PBackground

Points to the desktop's background object.

TileColumnsFirst TileColumnsFirst: Booleani

Methods

TileColumnsFirst controls whether tiling windows on the desktop favors
windows stacked vertically or horizontally. By default, TileColumnsFirst is
False, maintaining the behavior of version 1.0, which favors stacking
windows vertically. Setting the field True will favor horizontal tiling, so
for example tiling two windows places them side-by-side, rather than one
above the other.

See also: TDesktop.Tile

Init constructor Init(var Bounds: TRect) i

Creates a desktop group with size Bounds by calling the Init constructor
inherited from TGroup. Sets GrowMode to gfGrowHiX + gfGrowHiY. Calls
InitBackground to construct a background view, and if Background is
non-nil, inserts it.

See also: TDesktop.InitBackground, TGroup.Init, TGroup.Insert

Cascade procedure Cascade (var R: TRect) i

Redisplays all tileable windows owned by the desktop in cascaded
format. The first tile able window in Z-order (the window "in back") is
zoomed to fill the desktop, and each succeeding window fills a region
beginning one line lower and one space farther to the right than the one
before. The active window appears "on top," as the smallest window.

If the desktop is unable to cascade the windows, it leaves them in place
and calls TileError

See also: ofTileable, TDesktop.Tile, TDesktop.TileError

Chapter 79, Turbo Vision reference 413

a

TDesktop

HandleEvent procedure HandleEvent (var Event: TEvent); virtual;

Override: Seldom Calls the HandleEvent method inherited from TGroup, then takes care of
the commands cmNext (usually the hotkey F6) and cmPrevious by cycling
through the windows (starting with the currently selected view) owned
by the desktop.

InitBackground

Override:
Sometimes

See also: TGroup.HandleEvent, cmXXXX command constants

procedure InitBackground; virtual;

Constructs a background view for the desktop and assigns it to
Background. TDesktop.Init calls this method, then inserts Background into
the desktop. Descendant objects can change the background type by
overriding this method and assigning a different background object to .
Background.

See also: TDesktop.Init

Tile procedure Tile(var R: TRect);

TileError

Override:
Sometimes

414

Redisplays all ofTileable views owned by the desktop in tiled format. If the I

desktop cannot arrange the windows, it leaves them in place and calls I_
TileError.

See also: TDesktop.Cascade, ofTileable, TDesktop.TileError

procedure TileError;virtual;

TileError is called if an error occurs during Tile or Cascade. By default,
TileError does nothing. You might want to override TileError to notify the
user that the application is unable to rearrange the windows.

See also: TDesktop. Tile, TDesktop.Cascade

Turbo Vision Programming Guide

TDialog

TObject TView

Cursor Opti ons
DragMode Origin
EventMask Owner
GrowMode Size
Hel pCtx State
Next

±-A4-t- Hi deCursor
baa& KeyEvent
Bef\e. Locate
Awa*efr MakeFi rst
BlockCursor MakeGlobal
Ca 1 cBounds MakeLocal
btiaR§eBsl:IREIs MouseEvent
Cl ear Event MouseInView
CommandEnabl ed MoveTo
~ NextView
Di sab 1 eCommands Normal Cursor
DragView Prey
9f!aw. PrevView
DrawVi ew Put Event
Enabl eCommands PutInFrontOf
~ PutPeerVi ewPtr
EventAvail Select
~ SetBounds
Exposed SetCommands
Focus SetCmdState
GetBounds SetCursor
GetCl i pRect ~
GetColor ~
GetCommands Show
GeWa-t-a- ShowCursor
Get Event g~ ii!eb~R'lH;s
GetExtent ~
Ge:elle~ I3G:el~ TopView
Ge:ePa~ eUe \La-t-HI-
GetPeerVi ewPtr WriteBuf
GetState WriteChar
GrowTo WriteLine
~laAeI~ eL eAt WriteStr
Hi de

TGroup

Buffer
Current
Last
Phase

±-A4-t-
bea&
Bef\e.
Awaken
ChangeBQunds
DataSi ze
Delete
Draw
EndModal
EventError
ExecView
Execute
Fi rst
Fi rstThat
FocusNext
ForEach
GetData
GetHel pCtx
GetSubVi ewPtr
HaReI~ eE eR:e
Insert
InsertBefore
Lock
PutSubVi ewPtr
Redraw
Sel ectNext
SetData
~
~
Unlock
IJ.a..t.:Hl-

TWindow

Fl ags
Frame
Number
Palette
Title
ZoomRect

±-A4-t-
baa&
Done
Close
Ge:ePa~ eHe
GetTitl e
HaAeI~ eE eRt
InitFrame
SetState
SizeLimits
StandardScroll Bar
Store
Zoom

TDialog

Dialogs

TDialog

Init
Load
GetPal ette
Handl eEvent
Val id

TDialog is a specialialized descendant of TWindow, specifically designed
for modal use and for holding controls. Dialog box objects differ from
windows by default in the following ways:

• GrowMode is zero; that is, dialog boxes are not growable.

• Flag masks wfMove and wfClose are set; that is, dialog boxes are
moveable and closable (a close icon is provided).

• The TDialog event handler calls TWindow.HandleEvent, but also handles
the special cases of Esc and Enter key responses. Esc generates a cmCancel
command, while Enter generates the cmDefault command.

• Dialog boxes have no window numbers.

• The TDialog.Valid method returns True on cmCancel, otherwise it calls its
TGroup. Valid.

Chapter 79, Turbo Vision reference 415

a

TDialog

~ In version 2.0, dialog boxes now support blue and cyan palettes in
addition to the default gray palette. Previous versions of TDialog ignored
the Palette field. Dialog box objects can now specify a palette by assigning
dpXXXX constants to Palette.

Methods
Init constructor Init(var Bounds: TRecti ATitle: TTitleStr) i

Load

HandleEvent

Override:
Sometimes

Creates a dialog box with the given size and title by calling the Init
constructor inherited from TWindow, passing Bounds, ATitle, and
wnNoNumber. Sets GrowMode to 0, and Flags to wfMove + wfClose. This
means that, by default, dialog boxes can move and close (via the close
icon) but cannot grow (resize).

TDialog does not define its own destructor, but uses Close and Done
inherited via TWindow, TGroup, and TView.

See also: TWindow.Init

constructor Load(var s: TStrearn) i

Reads a dialog box object from the stream 5 by first calling the Load
constructor inherited from TWindow, then updating the palette
information as needed. Load checks the Options flags of the loaded dialog
box, and if the ov Version bits are ofV ersionl 0, Load sets the Palette field to
dpGrayDialog and updates Options to include ofVersion20.

See also: TWindow.Load

procedure HandleEvent(var Event: TEvent)i virtual;

Handles most events by calling the HandleEvent method inherited from
TWindow, then handles Enter and Esc key events specially. In particular,
Esc generates a cmCancel command, and the Enter key broadcasts a
cmDefault command.

HandleEvent also handles cmOK, cmCancel, cmYes, and cmNo command
events by ending the modal state of the dialog box.

See also:· TWindow.HandleEvent

GetPalette function GetPalette: PPalette i virtual i

Override: Seldom Returns a pointer to the palette given by the palette index in the Palette
field. Table 19.39 shows the palettes returned for the different values of
Palette.

416 Turbo Vision Programming Guide

Table 19.39
Dialog box palettes
returned based on

Palette

Valid

Override: Seldom

Palette

Palette field

dpBlueDialog
dpCyan Dia log
dpGrayDialog

Palette returned

CBlueDialog
, CCyanDialog
CGrayDialog

TDialog

In version 1.0, GetPalette always returned a pointer to the default palette,
CDialog. For backward compatibility, CDialog is still available. The default
palette in version 2.0, CGrayDialog, is identical to CDialog.

See also: TWindow.Palette

function Valid (Command: Word): Boolean; virtual;

Returns True if the command given is cmCancel or if the Valid method
inherited from TWindow returns True.

See also: TGroup.Valid

Dialog box objects use different palettes, depending on the value of the
Palette field. Note that the CDialog palette used by all dialog boxes in
version 1.0 is identical to the default dialog box palette, CGrayDialog, in
version 2.0.

CGrayDialo

CBl ueDialo

CCyanDialo

9

9

9

ive
ve

Frame Pass
Frame Acti
Frame Icon
Scroll Bar
Scroll Bar

Page
Controls

CGrayDialog

CBlueDialog

CCyanDialog

Button Normal
Button Defaul
Button Select
Button Disabl
Button Shortc

t
ed
ed
ut

4

32 33 34 35 36

64 65 66 67 68

96 97 98 99 100

I I I I

37 38

69 70

101 102

I I

8

39

71

103

I

40

72

104

~ Labe 1 Shortcut
Label Highl ight
Labe 1 Normal
Stati cText

10 11 12 13 14 15 16 17 18

41 42 43 44 45

73 74 75 76 77

105 106 107 108 109

I I I I

46 47

78 79

110 111

I I

48

80

112

l

49

81

113

~, Cl uster Shortcut
Cluster Selected
Cl uster Normal
Button Shadow

Chapter 79, Turbo Vision reference 417

a

TDialog

CGrayDi a 1 og

CBl ueDi a log

CCyanDi a log

InputLine Nor
InputLine Sel
InputLine Arr
Hi story Arrow

mal

CGrayDi a log

CBlueDialog

CCyanDi a log

ected
ows

19 20 21 22 23 24 25

50 51 52 53 54 55 56

82 83 . 84 85 86 87 88

114 115 116 117 118 119 120

J I I I I L-I Hi storyWi ndow Scroll Bar control s
Hi storyWi ndow Scroll Bar page
Hi story 5i des

26 27 28 29 30 31 32

57 58 59 60 61 62 63

89 90 91 92 93 94 95

121 122 123 124 125 126 127

L i stVi ewer Normal
L i stVi ewer Focuse
ListViewer Select
L i stVi ewer Di vi de

~ I I I I
L:=I Reserved

Reserved
InfoPane

d
ed
r

See also: GetPalette method for each object type

TDirColiection object StdDlg

TDirCollection is a collection of TDirEntry records used by TDirListBox.

Details of TDirCollection's fields and methods are in the online Help.

TDirEntry type StdDlg

Declaration TDirEntry = record
DisplayText: PString;
Directory: PString;

end;

Function TDirEntry is a simple :record type holding directory path strings and
descriptions. These records are used in TDirCollection objects to hold
directory information for the change-directory dialog box.

See also TDirCollection object

TDirListBox object StdDlg

418

TDirListBox is a specialized kind of list box that displays a tree of
directories stored in a TDirCollection object, for use in the TChDirDialog.

Turbo Vision Programming Guide

TDosStream

Field

TDirListBox object

By default, the directories appear in a single column with a vertical scroll
bar.

Details of TDirListBox's fields and methods are in the online Help.

TObject TStream

Status
Errorlnfo

Copy From
Error
Fl ush
Get
~
~
Put
Rea&
ReadStr
Reset
£ee*
~
~
WriteStr

TDosStream

Handl e

Init
Done
GetPos
GetSize
Read
Seek
Truncate
Write

Objects

TDosStream is a specialized stream derivative implementing unbuffered
DOS file streams. The constructor lets you create or open a DOS file by
specifying its name and access mode: stCreate, stOpenRead, stOpen Write, or
stOpen. The one additional field of TDosStream is Handle, the traditional
DOS file handle used to access an open file.

Most applications will use the buffered derivative of TDosStream,
TBufStream, rather than an unbuffered DOS stream. TDosStream overrides
all the abstract methods of TStream except for TStream.Flush.

Handle Handle: Word Read only

Handle is the DOS file handle used to access an open file stream.

Methods
Init constructor Init(FileName: FNameStr; Mode: Word);

Creates a DOS file stream with the given FileName and access mode. If
successful, the Handle field is set with the DOS file handle. If opening the
file fails, Init calls Error with an argument of stInitError.

Chapter 79, Turbo Vision reference 419

a

TDosStream

The Mode argument must be one of the values stCreate, stOpenRead,
stOpen Write, or stOpen. These constant values are explained in this chapter
under "stXXXX constants."

Done destructor Done; virtual;

Override: Never Closes and disposes of the DOS file stream.

See also: TDosStream.Init

(;etPos function GetPos: Longint; virtual;

Override: Never Returns the stream's current position. The first position in the stream is O.

See also: TDosStream.Seek

(;et~ize function GetSize: Longint; virtual;

Override: Never Returns the size in bytes of the stream.

Read procedure Read (var Buf; Count: Word); virtual;

Override: Never Reads Count bytes from the stream, starting at the current position, into
the But buffer.

See also: TDosStream. Write, stReadError

Seek procedure Seek (Pos: Longint); virtual;

Override: Never Sets the current position to Pos bytes from the beginning of the stream.
The first position in the stream is O.

See also: TDosStream.GetPos, TDosStream.GetSize

Truncate procedure Truncate; virtual;

Override: Never Deletes all data on the stream from the current position to the end.

See also: TDosStream.GetPos, TDosStream.Seek

Write procedure write (var Buf; Count: Word); virtual;

Writes Count bytes from the But buffer to the stream, starting at the
current position.

See also: TDosStream.Read, st WriteError

TDrawBuffer type Views

Declaration TDrawBuffer = array[O .. MaxViewWidth-l] of Word;

420 Turbo Vision Programming Guide

TDrawBuffer type

Function The TDrawBuffer type is used to declare buffers for Draw methods.
Typically, data and attributes are stored and formatted line by line in a
TDrawBuffer, then written to the screen:

var
B: TDrawBuffer;

begin
MoveChar(B, ' " GetColor(l) , Size.X);
WriteLine(O, 0, Size.x, Size.Y, B);

end;

{ fill buffer with spaces
{ write buffer to screen

See also TView.Draw, MoveBuf, MoveChar, MoveCStr, MoveStr

TEditBuffer type Editors

Declaration TEditBuffer = array[O .. 65519] of Char;

TEditor object

TEditBuffer defines an array of characters for editing. TEditor and TMemo
objects use TEditBuffer arrays to hold their edit buffers.

TObject TView

Cursor
DragMode
EventMask
GrowMode

Hel pCtx
Next
Options
Origin

Owner
Size
State

f..A4.;I;. GetCommands Prey
beaEJ.. GetData PrevVi ew
~ GetEvent Put Event
Awaken GetExtent PutInFrontOf
B1ockCursor GetHel pCtx PutPeerVi ewPtr
Ca 1 cBounds GetPal ette Sel ect
bRaR!je8sI:lRBS GetPeerVi ewPtr SetBounds
Cl earEvent GetState SetCommands
CommandEnab 1 ed GrowTo SetbRlBState
DataSi ze "'aRel e~ eRt SetCursor
Di sabl eCommands Hi de Setoata
DragVi ew Hi deCursor ~
Ifloaw. KeyEvent Show
DrawVi ew locate ShowCursor
EnableCommands MakeFirst Sizelimits
EndModal MakeGlobal Store
EventAvail Makeloca 1 TopVi ew
Execute MouseEvent v.a-:I-HI-
Exposed MouseInView WriteBuf
Focus MoveTo Wri teChar
GetBounds NextVi ew Wri tel i ne
GetCl i pRect Norma 1 Cursor WriteStr
GetColor

TEditor

AutoIndent
Buffer
BufLen
BufSize
Can Undo
CurPos
CurPtr
Del Count
Delta
Drawline
DrawPtr
Gap len

Init
load
Done
BufChar
BufPtr
ChangeBounds
Convert Event
CursorVi si bl e
De 1 eteSe 1 ect
DoneBuffer
Draw
GetPalette
Handl eEvent
Ini tBuffer

HScrollBar
Indi cator
InsCount
IsVal id
limit
Modifi ed
Overwrite
Selecting
Sel End
Sel Start
VScroll Bar

InsertBuffer
InsertFrom
InsertText
ScrollTo
Search
SetBufSize
SetCmdState
SetSel ect
SetState

Editors

Store
TrackCursor
Undo
UpdateCommands
Val id

TEditor implements a simple, fast 64K editor view for use in Turbo Vision
applications. It provides mouse support, undo, clipboard cut, copy, and

Chapter 79, Turbo Vision reference 421

TEditor object

Fields

paste, automatic modes for indenting and overwriting, key binding, and
search and replace. You can use editor views for editing files and for
multiple-line memo fields in dialog boxes or forms.

Several other objects such as TMemo and TFileEditor provide immediately
useful editor objects, but they all derive their basic functions from TEditor.

Use of editor objects is described fully in Chapter 15, "Editor and text
views."

. Autolndent Autolndent: Boolean;

If Autolndent is True, the editor automatically indents typed lines to the
column where the preceding line starts; otherwise new lines start at the
leftmost column.

Buffer Buffer: PEditBuffer;

Points to the buffer where the editor obje~t holds the text currently being
edited. The buffer can hold up to 64K characters.

See also: TEditBuffer type

ButLen BufLen: Word;

BufLen holds the numbers of characters between the start of the buffer and
the current cursor position.

ButSize BufSize: Word;

BufSize is the size in bytes of the text buffer.

CanUndo CanUndo: Boolean;

CanUndo indicates whether the editor supports undo. By default,
TEditor.Init sets CanUndo to True, indicating that the editor can undo
changes.

CurPos CurPos: TPoint;

CurPos is the line/ column position of the cursor. within the file. Cursor.X
gives the cu'rrent column and Cursor. Y gives the current line.

CurPtr CurPtr: Word;

Cur Ptr is the position of the cursor in the edit buffer.

DelCount DelCount: Word;

422 Turbo Vision Programming Guide

TEditor object

Number of characters in the end of the gap that were deleted from the
text. DelCount is used to undo the deletions.

Delta Delta: TPoint;

Delta is the top line and leftmost column shown in the view. Delta.X is the
leftmost visible column and Delta. Y is the topmost visible line.

DrawLine DrawLine: Integer;

DrawLine is the column position on the screen where inserted characters
are drawn. The Draw method uses DrawLine to optimize what parts of the
view it redraws.

DrawPtr DrawPtr: Word;

DrawPtr is the buffer position of the cursor, used by Draw.

GapLen GapLen: Word;

GapLen is the size of the" gap" between the text before the cursor and the
text after the cursor. The gap is explained in Chapter 15.

HScroliBar HScrollBar: PScrollBar;

Points to the horizontal scroll bar object associated with the editor. A nil
indicates there is no such scroll bar.

Indicator Indicator: P Indicator;

Points to the indicator object associated with the editor. An indicator
object shows the line and column currently being edited.

See also: TIndicator object

InsCount InsCount: Word;

Number of characters inserted into the text since the last cursor
movement. InsCount is used to undo the insertions.

IsValid IsValid: Boolean;

Holds True if the view is valid. Is Valid is used by the Valid method.

See also: TEditor. Valid

Limit Limit: TPoint;

Limit contains the maximum width and length of the text. Limit.X gives
the length of the longest line, while Limit.Y gives the number of lines in
the file.

Modified Modified: Boolean;

Chapter 79, Turbo Vision reference 423

TEditor object

424

Modified contains True if the edit buffer has changed.

Overwrite Overwr i t e: Boo 1 ean;

If Overwrite is True, typed characters replace existing characters in the
buffer; otherwise, the editor inserts typed characters.

Selecting Selecting: Boolean;

Selecting is True if the user is selecting a block, such as after marking the
start of the block, but before marking the end. At all other times, Selecting
is False.

SelEnd SelEnd: Word;

SelEnd is the position in the buffer of the end of selected text.

SelStart SelStart: Word;

SelStart is the position in the buffer of the start of selected text.

VScroliBar VScrollBar: PScrollBar;

Methods

Points to the vertical scroll bar object associated with the editor. A nil
indicates there is no such scroll bar.

Init constructor Init(var Bounds: TRect; AHScrollBar, AVScrollBar: PScrollBar;
AIndicator: PIndicator; ABufSize: Word);

Creates a view with the boundaries specified in Bounds by calling the Init
constructor inherited from TView. Sets GrowMode to gfGrowHiX +
gfGrowHiY, Options to Options or of Selectable, and EventMask to
evMouseDown + evKeyDown + evCommand + evBroadcast. Shows the cursor
in the editor, and assigns the fields HScrollBar, VScrollBar, Indicator, and
BufSize to the values passed in the parameters. Sets CanUndo to True.

Allocates an edit buffer by calling InitBuffer. If the allocation fails, Init calls
EditorDialog to display an "Out of memory" warning and sets the buffer
size to zero. Calls SetBufLen(O) to initialize the buffer.

See also: TView.Init, TEditor.InitBuffer, TEditor.SetBufLen

Load constructor Load (var S: TStream);

Constructs and loads an editor object from the stream S by first calling the
Load constructor inherited from TView, then reading the fields introduced
by TEditor. Allocates and initializes the buffer in the same manner as
TEditor.Init.

Turbo Vision Programming Guide

•

TEditor object

See also: TView.Load, TEditor.InitBuffer, TEditor.SetBufLen

Done destructor Done; virtual;

Deletes the edit buffer by calling DoneBuffer, then disposes of the editor
object by calling the Done destructor inherited from TView.

See also: TEditor.DoneBuffer, TView.Done

ButChar function BufChar (P: Word): Char;

Returns the Pth character in the buffer.

ButPtr function BufPtr (P: Word): Word;

Returns the buffer position of the Pth character in the buffer, taking into
account that the gap might be behind that character.

Change Bounds procedure Change Bounds (var Bounds: TRect); virtual;

Changes the boundaries of the editor view to Bounds, then adjusts Delta to
make sure the text is still visible and redraws the view if necessary. As
with the TView method it overrides, TEditor.ChangeBounds is called by
other methods, but should not be called directly.

Convert Event procedure Convert Event (var Event: TEvent); virtual;

Used by HandleEvent to handle key binding and basic editing operations.
If you want to change or extend the default key bindings, you should
override ConvertEvent.

See also: TEditor.HandleEvent

CursorVisible function CursorVisible: Boolean;

Returns True if the cursor is visible within the view.

DeleteSelect procedure DeleteSelect;

Deletes the selected text, if any. For example, after ClipCut copies selected
text to the clipboard, it deletes the text from the buffer with DeleteSelect.

DoneBuffer procedure DoneBuffer; virtual;

Deallocates the memory assigned to the edit buffer and sets Buffer to nil.

Dravv procedure Draw; virtual;

Draws the portion of the editor text that is currently in view. That is, it
draws the lines that are within the boundaries of the view, taking into
account the value of Delta.

GetPaleHe function Getpalet te: PPalette; virtual;

Chapter 79, Turbo Vision reference 425

II

TEditor object

Returns a pointer to CEditor, the default editor view palette.

HandleEvent procedure HandleEvent (var Event: TEvent); virtual;

Handles events for the editor view by first calling the HandleEvent method
inherited from TView, then calling ConvertEvent to remap keystrokes to
commands, and then processing specific editor behavior.

Editor specific events handled include

• Mouse: Selection of text
• Key: Character insert/overwrite
• Command: cursor movement, selection, editing, clipboard stuff
• Broadcast: scroll bar changes

InitBuffer procedure InitBuffer; virtual;

Calls MemAlloc to allocate Bufsize bytes of memory from the heap to an
edit buffer, then assigns it to Buffer.

InsertBuffer function InsertBuffer{var P: PEditBuffer; Offset, Length: Word;
AllowUndo, SelectText: Boolean): Boolean;

I

I,

I

I

This is a low-level text insertion routine used by InsertFrom and InsertText; •

426

you will rarely, if ever, call it directly.

InsertBuffer inserts Length bytes of text from P (starting with P[Offset}) into
the text buffer at CurPtr, deleting any selected text. If AllowUndo is True,
InsertBuffer records information that will enable the user to undo the
insertion. If Select Text is True, the inserted text will appear as a selected
block once inserted.

Returns True if the insertion succeeds. If the insertion fails (because
insertion would exceed the buffer size), InsertBuffer calls EditorDialog to
show an "Out of memory" warning, then returns False.

See also: TEditor.InsertFrom, TEditor.InsertText

InsertFrom function InsertFrorn (Editor: PEditor): Boolean; virtual;

Inserts the selected text from Editor into the editor buffer by calling
InsertBuffer.

See also: TEditor.InsertBuffer

InsertText function InsertText (Text: Pointer; Length: Word;

ScroliTo

SelectText: Boolean): Boolean;

Copies Length bytes from Text into the editor buffer, selecting the inserted
text if Select Text is True.

procedure ScrollTo{X, Y: Integer);

Turbo Vision Programming Guide

TEditor object

Moves column X and line Y to the upper left corner of the edit view and
redraws the view as needed.

Search function Search (const FindStr: String; Opts: Word): Boolean;

Searches the editor buffer starting at CurPtr for the text contained in
FindStr. Opts contains zero for a default search, efCaseSensitive for a case
sensitive search, or efWholeWordsOnly to match whole words only.

Returns True and selects the matching text if a match occurs; otherwise,
returns False.

SetBufSize function SetBufSize(NewSize: Word): Boolean; virtual;

Returns True if the buffer size can be changed to NewSize. By default,
SetBufSize returns True if NewSize is less than or equal to BufSize.
SetBufSize doesn't actually change the buffer size; it only indicates
whether such a change can work. The actual change in buffer size should
be done by SetBufferSize.

See also: SetBufferSize function

SetSelect procedure SetSelect (NewStart, NewEnd: Word; CurStart: Boolean);

Sets the text between positions NewStart and NewEnd to be selected and
redraws the view if needed. If CurStart is True, SetSelect places the cursor
at the beginning of the selected block, otherwise it places the cursor at the
end of the block.

SetState procedure SetState(AState: Word; Enable: Boolean); virtual;

Calls the SetS tate method inherited from TView to actually set state flags,
then hides or shows the scroll bar and indicator views associated with the
editor, showing them if the editor is active, hiding them if it's inactive.
After updating the associated views, SetState calls UpdateCommands to
enable or disable commands based on whether the editor is active. If you
want to enable or disable additional commands, you should override
UpdateCommands rather than SetState.

See also: TView.SetState, TEditor.UpdateCommands

Store procedure Store(var S: TStream);

Writes the editor object to the stream S by first calling the Store method
inherited from TView, then writing the fields introduced by TEditor.

See also: TView.Store

TrackCursor procedure TrackCursor (Center: Boolean) i

Chapter 79, Turbo Vision reference 427

I

TEditor object

Forces the view to scroll so it includes the cursor position. If Center is True,
the line including the cursor moves to the middle of the view.

Undo procedure Undo;

Undoes the changes since the last cursor movement, restoring the edit
buffer to the state it had at the last cursor movement.

UpdateCommands procedure UpdateCommands; virtual;

Updates commands based on the current state of the editor. cmUndo is
enabled only if edits occurred since the last cursor movement. Sets the cut,
copy, and paste commands to states appropriate to whether the editor is a
clipboard and whether there is selected text. Enables cmClear if there is
selected text. Enables all the search and replace commands.

Be sure to call the inherited TEditor. UpdateCommands method if
descendant objects override UpdateCommands.

Valid function Valid (Command: Word): Boolean; virtual;

Palette

Returns whether the editor view is valid for the command passed in
Command. By default, Valid ignores the Command parameter and returns
the value of the Is Valid field. Is Valid is False only if the constructor was
unable to allocate an edit buffer.

Editor objects use the default palette CEditor to map onto the 6th and 7th
entries in the standard window palette.

1 2

CEditor I~ I 2L
Normal~ Highlight

TEditorDialog type Editors

428

Declaration TEditorDialog = function (Dialog: Integer; Info: Pointer): Word;

Function TEditorDialog is a procedural type used by TEditor objects to display
various dialog boxes. Because dialog boxes are application dependent,
editor objects don't display their own dialog boxes directly. Instead, they
call the EditorDialog function, which displays the appropriate dialog box
based on the value passed in the Dialog parameter.

The Dialog parameter should be one of the edXXXX constants. Info can
point to any additional data the dialog box function might need.

Turbo Vision Programming Guide

I

I

I

II

TEditorDialog type

Dialog box functions need to provide valid behavior for all values of
Dialog. The StdEditorDialog function provides usable responses for all legal
values of Dialog. Table 19.40 summarizes the values for Info, the expected
message, and returns values for each value of Dialog.

Table 19.40
Dialog constant Values Description TEditorDialog

parameter values, edOutOfMemory Info nil
messages, and Message Inform user that application ran out of memory

return values Return Ignored

edReadError Info PString pointing to file name
Message Inform user of file read error
Return Ignored

edWriteError Info PString pointing to file name
Message Inform user of file write error
Return Ignored

edCreateError Info PString pointing to file name
Message Inform user that program couldn't create file
Return Ignored

edSaveModify Info PString pointing to file name
Message Ask user whether to save changes before closing file
Return cmYes to save changes, cmNo to not save changes,

cmCancel to not close file

edSaveUntitled Info PString pointing to file name
Message Ask user whether to save untitled file
Return cmYes to save file, cmNo to not save file, cmCancel to

not close file

edSaveAs Info PString pointing to buffer to hold file name
Message Prompt user for file name
Return cmCancel to not save file; anything else to save file

with the name in the buffer pointed to by Info

edFind Info Points to a record of type TFindDialogRec
Message Prompt user for search text and options
Return cmCancel if user chooses not to search; otherwise, fill a the record pointed to by Info

edSearchFailed Info nil
Message Tell the user the text wasn't found
Return Ignored

edReplace Info Points to a record of type TReplaceDialogRec
Message Prompt user for search text, replacement text, and

options
Return cmCancel if user chooses not to search; otherwise, fill

the record pointed to by Info

edReplacePrompt Info An object of type TPoint with the global coordinates
of the start of the located text

Message Ask the user if text should be replaced

Chapter 79, Turbo Vision reference 429

TEditorDialog type

Table 19.40: TEditorDialog parameter values, messages, and return values
(continued)

Return cmYes to replace text and continue search; cmNo to
not replace text, but continue search; cmCancel to
not replace text and terminate search

See also edXXXX constants, EditorDialog variable, DefEditorDialog function,
StdEditorDialog flJ.nction

TEditWindow object Editors

430

TObject TView

Cursor
DragMode
EventMask
GrowMode
Hel pCtx
Next

J.i:I..H-
I:ea4-
Qe.Re.

Awa*eft.
BlockCursor
Cal cBounds
Gl:taR!je8sYREIs
ClearEvent
CommandEnab 1 ed
~
Di sabl eCommands
DragView
Q.r>aw.
DrawVi ew
Enab 1 eCommands
~
EventAvai 1
~
Exposed
Focus
GetBounds
GetCl i pRect
GetColor
GetCommands
~
Get Event
GetExtent
Ge:l;lIell3G:I;j~
Ge:l;PaleHe
GetPeerVi ewPtr
GetState
GrowTo
lIaREIl e!;; eR:I;
Hide

Options
Origin
Owner
Size
State

Hi deCursor
KeyEvent
Locate
MakeFi rst
MakeGlobal
MakeLocal
MouseEvent
MouselnVi ew
MoveTo
NextView
Normal Cursor
Prey
PrevView
PutEvent
Put I n FrontOf
PutPeerVi ewPtr
Select
SetBounds
SetCommands
SetCmdState
SetCursor
~
~
Show
ShowCursor
S~j!el:~R'tHs
~
TopView
\La-+.:k!.
WriteBuf
WriteChar
Wri teLi ne
WriteStr

TGroup

Buffer
Current
Last
Phase

J.i:I..H-
I::ea.Q.
Qe.Re.

Awaken
ChangeBounds
DataSize
Delete
Draw
EndModal
EventError
ExecView
Execute
First
Fi rstThat
FocusNext
ForEach
GetData
GetHelpCtx
GetSubVi ewPtr
HaREIl e!;;"eRt
Insert
InsertBefore
Lock
PutSubVi ewPtr
Redraw
Sel ectNext
SetData
~
~
Unlock
Val id

TWindow

Flags
Frame
Number
Palette
Title
ZoomRect

J.i:I..H-
I:ea4-
Done
G+ese-
GetPalette
~
lIaREIl e!;; eR:I;
InitFrame
SetState
SizeLimits
StandardScroll Bar
~
Zoom

TEditWindow

Editor

Init
Load
Close
GetTitle
Handl eEvent
Store

An editor window isa window specifically designed to hold an editor
object, specifically either a file editor or the clipboard. Editor windows
change their titles to show the name of the file being edited, and
automatically create scroll bars and an indicator for the editor. If you don't
pass a file name to the editor window, the file is untitled.

Turbo Vision Programming Guide

TEditWindow object

. Field
Editor Editor: PFileEditor;

Points to the editor object associated with the editor window.

Methods
Init constructor Init(var Bounds: TRect; FileName: FNameStr; ANumber: Integer);

Constructs an editor window object by first calling the Init constructor
inherited from TWindow to create a window with the boundaries specified
in Bounds, no title, and the window number passed in ANumber, then
constructing and inserting horizontal and vertical scroll bars and an
indicator object. Finally, Init constructs a file editor object, passing it the
boundaries of the area inside the window frame, the scroll bars, the
indicator, and the file name passed in FileName.

See also: TWindow.Init, TFileEditor.Init

Load constructor Load (var S: TStream);

Creates and loads an editor window from the stream S by first calling the
Load constructor inherited from TWindow, then reading the editor field
introduced by TEditWindow.

See also: TWindow.Load

Close procedure Close; virtual;

Calls the Close method inherited from TWindow unless the editor is a
clipboard, in which case it calls Hide to hide the clipboard editor.

See also: TWindow.Close

GetTitle function GetTitle(MaxSize: Integer): TTitleStr; virtual;

Returns the name of the file in the editor or 'Clipboard' if the editor is a
clipboard.

HandleEvent procedure HandleEvent (var Event: TEvent); virtual;

Handles events for the editor window by calling the HandleEvent method
inherited from TWindow, then handles the cmUpdateTitle broadcast event
by redrawing the window's frame to change its title. cmUpdateTitle
broadcasts occur when the name of the file being edited changes ..

See also: TWindow.HandleEvent

Chapter 79, Turbo Vision reference 431

a

TEditWindow object

Store procedure Store(var S: TStream);

Writes the editor window object to the stream S by first calling the Store
method inherited from TWindow, then writes the editor to the stream
using PutSub ViewPtr.

See also: TWindow.Store, TGroup.PutSubViewPtr

TEmsStream Objects

432

Fields

TObject TStream

s
~

Status
Errorlnfo

CopyFrom
Error
Flush
Get
Get-Pes
~

. Put
ReaEI
ReadStr
Reset
£ee*
~
Wf>.:i..t.e.
WriteStr

TEmsStream

Handle
PageCount
Size
Position

Init
Done
GetPos
GetSize
Read
Seek
Truncate
Write

TEmsStream is a specialized stream derivative that implements streams in
EMS memory. The additional fields provide an EMS handle, a page count,
stream size, and current position. TEmsStream overrides the six abstract
methods of TStream as well as providing a specialized constructor and
destructor.

When debugging a program using EMS streams, the IDE cannot recover
EMS memory allocated by your program if your program terminates
prematurely or if you forget to call the Done destructor for an EMS stream.
Only the Done method (or rebooting) can release the EMS pages owned by
the stream.

Handle Handle: Word; Read only

The EMS handle for the stream.

PageCount PageCount: Word; Read only

The number of allocated pages for the stream, with 16K per page.

Position position: Longint; Read only

Turbo Vision Programming Guide

•

TEmsStream

The current position within the stream. The first position is O.

Size Size: Longint; Read only

The size of the stream in bytes.

Methods
Init constructor Init(MinSize, MaxSize: Longint);

Creates an EMS stream with the given minimum size in bytes. Calls the
Init constructor inherited from TStream, then sets Handle, Size and
PageCount. Calls Error with an argument of stInitError if initialization fails.

EMS drivers earlier than version 4.0 don't support resizeable expanded
memory blocks. With a pre-4.0 driver, an EMS stream cannot expand
beyond its initial size once allocated. To properly support both older and
newer EMS drivers, an EMS stream's Init constructor takes two
parameters which specify the minimum and maximum size of the initial
EMS memory block allocation. Init always allocates at least MinSize bytes .

• If the EMS driver version number is-greater than or equal to 4.0, Init
allocates only MinSize bytes of EMS, and then expands the block as
required by subsequent calls to TEmsStream. Write, ignoring MaxSize .

• If the driver version number is less than 4.0, Init allocates as much
expanded memory as available, up to MaxSize bytes, and an error
occurs if subsequent calls to. TEmsStream. Write attempt to expand the
stream beyond the allocated size.

Done destructor Done; virtual;

Override: Never Disposes of the EMS stream and releases EMS pages used.

See also: TEmsStream.Init

(;etPos function GetPos: Longint; virtual;

Override: Never Returns the stream's current position. The first position is O.

See also: TEmsStream.Seek

(;etSize function GetSize: Longint; virtual; .

Override: Never Returns the size of the stream in bytes.

Read procedure Read(var Buf; Count: Word); virtual;

Override: Never Reads Count bytes from the stream, starting at the current position, into
the But buffer.

See also: TEmsStream. Write, stReadError

Chapter 79, Turbo Vision reference 433

TEmsStream

Seek procedure Seek (Pos: Longint); virtual;

Override: Never Sets the current position to Pos bytes from the start of the stream. The first
position is O.

See also: TEmsStream.GetPos, TEmsStream.GetSize

Truncate procedure Truncate; virtual;

Override: Never Deletes all data on the stream from the current position to the end. Sets
the current position to the new end of the stream.

See also: TEmsStream.GetPos, TEmsStream.Seek

Write procedure Write(var Buf; Count: Word); virtual;

Override: Never Writes Count bytes from the But buffer to the stream, starting at the
current position.

See also: TStream.Read, TEmsStream.GetPos, TEmsStream.Seek

TEvent type Drivers

434

Declaration TEvent = record
What: Word;
case Word of

evNothing: ();
evMouse: (

Buttons: Byte;

end;

Double: Boolean;
Where: TPoint);

evKeyDown: (
case Integer of

0: (KeyCode:. Word);
1: (CharCode: Char;

ScanCode: Byte)); ,
evMessage: (

Corrnnand: Word;
case Word of

0: (InfoPtr: Pointer);
1: (InfoLong: Longint);
2: (InfoWord: Word);
3: (InfoInt: Integer);
4: (IrtfoByte: Byte);

'5: (InfoChar: Char));

Turbo Vision Programming Guide

TEventtype

Function The TEvent variant record type plays a fundamental role in Turbo Vision's
event handling strategy. Both outside events, such as mouse and
keyboard events, and command events generated by inter-communicating
views, are stored and transmitted as TEvent records.

See also evXXXX, HandleEvent methods, GetKeyEvent, GetMouseEvent

TFileColiection object StdDlg

TFileCollection is a sorted collection of TSearchRec records. File dialog
boxes use TFileCollection objects to provide alphabetically sorted file lists.

Details of TFileCollection's fields and methods are in the online Help.

TFileDialog object

TObject TView

Cursor Opti ons
DragMode Origin
EventMask Owner
GrowMode Size
Hel pCtx State
Next

l-fI.H- HideCursor
bea& KeyEvent
Befte. Locate
Awa*eft. MakeFirst
BlockCursor MakeGlobal
Cal cBounds MakeLocal
Gl:1aR§eB9I:1RBS MouseEvent
ClearEvent MouselnVi ew
CommandEnab 1 ed MoveTo
~ NextView
Di sab 1 eCommands Normal Cursor
DragView Prey
B-Paw- PrevView
DrawView Put Event
Enab 1 eCommands PutInFrontOf
~ PutPeerVi ewPtr
EventAvai 1 Select
~ Set Bounds
Exposed SetCommands
Focus SetCmdState
GetBounds SetCursor
GetCl i pRect ~
GetColor ~
GetCommands Show
~ ShowCursor
Get Event S~ii!eb~FAHs
GetExtent ~
Ge:Ule~ J3G~l~ TopView
Ge~Pa~ eUe ¥a-t+€I-
GetPeerVi ewPtr WriteBuf
GetState WriteChar
GrowTo WriteLine
IlaRB~ el!; eR~ WriteStr
Hide

TGroup

Buffer
Current
Last
Phase

l-fI.H-
bea&
Befte.
Awaken
ChangeBounds
DataSize
Del ete
Draw
EndModal
EventError
ExecView
Execute
First
Fi rstThat
FocusNext
ForEach
~
GetHelpCtx
GetSubVi ewPt r
HaRB~ el!;I eR~
Insert
I nsertBefore
Lock
PutSubVi ewPtr
Redraw
Sel ectNext
~
~
~
Unlock
¥a-t+€I-

Chapter 79, Turbo Vision reference

TWindow

Flags
Frame
Number
Pal ette
Title
ZoomRect

l-fI.H-
bea&
Befte.
Close
Ge~Pa~ eUe
GetTitle
HaRB~ ei;; 'eR~
InitFrame
SetState
SizeLimits
StandardScroll Bar
~
Zoom

TDialog

l-fI.H-
bea&
GetPalette
HaRB~ el!;>, eR~
¥a-t+€I-

TFil eDi a log

Fi leName
Fil eli st
Wil dCard
Oi rectory

Init
Load
Done
GetData
GetFi 1 eName
Handl eEvent
SetData
Store
Val id

StdDlg

435

a

TFileDialog object

TFileDialog is a standard file name input dialog box.

436

Fields
Directory Directory: PString;

Directory points to a string containing the current directory name.

File List FileList: PFileList;

FileList points to the file list object in the dialog box.

See also: TFileList object

FileName FileName: PFilelnputLine;

FileName points to the file input line object in the dialog box.

See also: TFileInputLine object

WildCard WildCard: TWildStr;

WildCard contains the current drive, path, and file name.

Methods
Init constructor Init(AWildCard: TWildStr; const ATitle, InputName: String;

AOptions: Word; Historyld: Byte);

Constructs a file dialog box with the title given by A Title by calling the Init
constructor inherited from TDialog. Initializes the WildCard field to the
value of A WildCard. Creates a file input line object and assigns it to the
FileName field, setting the initial value of FileName to WildCard. Creates a
label object using the string passed in InputName and associates it with
FileName. Also creates a history list object with the ID passed in HistoryID
and associates it with FileName.

Creates a file list object with an associated label, 'Files', and a vertical
scroll bar.

Depending on the values passed in the bitmapped parameter AOptions,
Init constructs and inserts buttons for Ok, Open, Replace, Clear, and Help.
There is always a Cancel button. If AOptions includes fdNoLoadDir, the
dialog box does not load the current directory contents into the file list;
otherwise, it reads the current directory and builds the list. Use
fdNoLoadDir when you want to store the dialog on a stream so you don't
write an entire directory listing to the stream along with the dialog box.

A file information pane object is constructed and inserted at the bottom of
the dialog box.

Turbo Vision Programming Guide

I.

TFileDialog object

See also: TDialog.Init, fdXXXX constants

Load constructor Load (var S: TStream) i

Constructs and loads a TFileDialog object from the stream S by first calling
the Load constructor inherited from TDialog and then reading the fields
introduced by TFileDialog and reading the current directory information.

See also: TDialog .Load

Done destructor Done i virtual i

Disposes of the file dialog box object by first disposing of the Directory
string, then calling the Done destructor inherited from TDialog.

See also: TDialog.Done

GetData procedure GetDa ta (var Rec) i virtual i

Reads a string from Ree, casts it into type PathStr, and expands it to a full
path name by calling GetFileName.

See also: TFileDialog.GetFileName

Get File Name procedure GetFileName (var S: PathStr) i

Expands the name of the currently selected file into a fully qualified path
name, including drive, path, and file name and stores it in S.

HandleEvent procedure HandleEvent (var Event: TEvent) i virtual i

Handles most events by calling the HandleEvent method inherited from
TDialog, then handles the commartds emFileOpen, emFileReplaee, and
emFileClear by calling EndModal with the command constant as its
parameter, thus returning the command to the view that executed the file
dialog box.

See also: TDialog.HandleEvent, TGroup.EndModal

SetData procedure SetDa ta (var Rec) i virtual i

Calls the SetData method inherited from TDialog to ensure that all
subviews get a chance to read data from Ree, then if the remaining data in
Ree is a file name, checks the validity of the file name by calling Valid and
making FileName the selected subview.

See also: TDialog.SetData

Store procedure Store(var S: TStream) i

Chapter 79, Turbo Vision reference 437

I

TFileDialog object

Writes the file dialog box object to the stream S by first calling the Store
method inherited from TDialog, then writing the fields introduced by
TFileDialog.

See also: TDialog.Store

Valid function Valid(Comrnand: Word): B.oolean; virtual;

Returns True if Command is em Valid, indicating successful construction of
the object. For all other values of Command, Valid first calls the Valid
function inherited from TDialog. If TDialog.Valid returns True, Valid tests
the current FileName string to ensure that it's a valid file name. If the file
name is valid, Valid returns True; otherwise it calls up an "Invalid file
name" message box and returns False.

See also: TDialog.Valid

TFileEditor Editors

TObject TView TEditor TFHeEditor

438

Cursor
DragMode
EventMask
GrowMode .

HelpCtx
Next
Opti ons
Origin

Owner
Size
State

J.fH+ GetCommands Prey
b&a4- GetData PrevVi ew
Q&f\e- Get Event PutEvent
Awaken GetExtent PutInFrontOf
BlockCursor GetHel pCtx PutPeerVi ewPtr
Ca 1 cBounds GetPal ette Sel ect
Gl:laA§eBslIAels GetPeerVi ewPtr SetBounds
Cl earEvent GetState SetCommands
CommandEnab 1 ed GrowTo SetGRlelState
DataSi ze HaAEIl e~ eAt SetCursor
Di sab 1 eCommands Hi de SetData
DragVi ew Hi deCursor ~
Q.paw. KeyEvent Show
DrawVi ew locate ShowCursor
EnableCommands MakeFirst Sizelimits
EndModal MakeGlobal Store
EventAva i 1 Makeloca 1 TopVi ew
Execute MouseEvent IJ.a..l.4.el..
Exposed MouselnVi ew WriteBuf
Focus MoveTo WriteChar
GetBounds NextVi ew Wri tel i ne
GetCl i pRect Norma 1 Cursor Wri teStr
GetColor

Autolndent
Buffer
Buflen
BufSize
CanUndo
CurPos
CurPtr
DelCount
Delta
Drawline
DrawPtr
Gaplen

±-fr:i..t.
I:eaEI-
Done
BufChar
BufPtr
ChangeBounds
Convert Event
CursorVisible
Del eteSel ect
QSAeBIIHel"
Draw
GetPalette
HaAelle~ eAt
IAHBII:f:fel"

HScroll Bar
Indi cator
InsCount
IsValid
Limit
Modifi ed
Overwrite
Selecting
Sel End
SelStart
VScrollBar

InsertBuffer
InsertFrom
InsertText
ScrollTo
Search
SetBII:fSi ii!e
SetCmdState
SetSel ect
SetState
~
TrackC~rsor
Undo
Yj3elateGSfllfRaA8S
IJ.a..l.4.el..

FileName

Init
load
DoneBuffer
Handl eEvent
InitBuffer
loadFi le
Save
SaveAs
SaveFi le
SetBufSi ze
Store
UpdateCommands
Val id

A file editor object is a specialized descendant of TEditor, designed to edit
the contents of a text file.

Turbo Vision Programming Guide

I

I.

TFileEditor

Field
FileName: FNameStr;

FileName is the name of the file being edited.

Methods
Init c'onstructor Ini t (var Bounds: TRect; AHScrollBar I AVScrollBar: PScrollBar;

AIndicator: PIndicator; AFileName: FNameStr);

Constructs a file editor object by first calling the Init constructor inherited
from TEditor, passing Bounds, AHScrollBar, AVScrollBar, and AIndicator,
with a buffer size of zero, then expanding AFileName and loading the file
by calling LoadFile. -'

See also: TEditor.lnit, TFileEditor.LoadFile

Load constructor Load (var S: TStream);

Creates and loads a file editor object from the stream 5 by first calling the
Load constructor inherited from TEditor, then reading the file name. If the
file name is valid, Load then loads the file into the buffer by calling
LoadFile.

See also: TEditor.Load

DoneBuffer procedure DoneBuffer; virtual;

If the buffer is non-nil, DoneBuffer calls DisposeBuffer to dispose of the
buffer.

See also: DisposeBuffer procedure

HandleEvent procedure HandleEvent (var Event: TEvent); virtual;

Handles events for the file editor by first calling the HandleEvent method
inherited from TEditor, then handles command events to save the file
being edited.

See also: TEditor.HandleEvent

InitBuffer procedure InitBuffer; virtual;

Allocates an edit buffer on the heap for the file text by calling New Buffer.

See also: NewBuffer procedure

LoadFile function LoadFile: Boolean;

Returns True if the file does not exist (meaning the user edits a new file) or
the file loaded successfully, otherwise returns False. Reads the text of the

Chapter 79, Turbo Vision reference 439

a

TFileEditor

file specified by FileName into the edit buffer, setting the buffer length to
the size of the file read.

Save function Save: Boolean;

Saves the contents of the editor buffer to the disk by calling SaveAs if the
file has no name, or SaveFile if the file has a name already.

See also: TFileEditor.SaveAs, TFileEditor.SaveFile

SaveAs function SaveAs: Boolean;

Calls EditorDialog to invoke a dialog box to get a file name for the edited
text. If the user does not cancel the dialog box, SaveAs changes the title of
the edit window to reflect the new name of the file, then calls SaveFile to
save the buffer. SaveAs returns the value returned from SaveFile.

See also: EditorDialog procedure, TFileEditor.SaveFile

SaveFile function SaveFile: Boolean;

If EditorFlags contains the efBaekupFiles bit, SaveFile renames the original II

file to its original name with an extension of .BAK. Writes the contents of I

the edit buffer to the file specified by FileName, and sets the Modified flag i-
to False. Returns True if the file save succeeds, otherwise returns False after
displaying an appropriate dialog box explaining the failure.

SetBufSize function SetBufSize (NewSize: Word): Boolean; virtual;

Increases or decreases the size of the edit buffer in 4K increments,
adjusting GapLen as necessary.

Store procedure Store(var S: TStrearn);

Writes the file editor object to the stream S by first calling the Store
method inherited from TEditor, then writing the file name and selected
text offsets.

UpdateCommands procedure Upda teCommands; virtual;

440

Calls the UpdateCommands method inherited from TEditor, then enables
the emSave and emSaveAs commands that apply only to the file editor.

Valid function Valid (Command: Word): Boolean; virtual;

If Command is em Valid, returns the value of Is Valid, which is only False if
the file editor could not create its buffer or read its file. Otherwise, Valid
checks the Modified field to see if altered text needs to be saved before
closing. If Modified is True, Valid brings up a dialog box to give the user the
chance to save changes. If the user can'cels the dialog box, Valid returns

Turbo Vision Programming Guide

TFilelnfoPane

False,leaving the editor open; otherwise the buffer is either saved or lost,
depending on the user choice, and Valid returns True.

TFilelnfoPane StdDlg

TFilelnfoPane represents a file information pane, a view that displays the
information about the currently selected file in the file list of a TFileDialog.

'j Details of TFilelnfoPane's fields and methods are in the online Help.

TFilelnputLine StdDlg

TFileList

TFilelnputLine is a special input line used by TFileDialog that updates its
contents in response to a cmFileFocused command from a TFileList. File
input lines allow editing of file names that include optional paths and
wildcards.

Details of TFilelnfoPane's fields and methods are in the online Help.

StdDlg

TFileList is a sorted list box that assumes it contains a TFileCollection as its
collection. When a file name becomes selected, the file list object
broadcasts a cmFileFocused message, which informs TFilelnputLine and
TFilelnfoPane objects that they need to update their displays to reflect the
new selection. By default, the file list is a two-column list box with an
optional horizontal scroll bar below it.

Details of TFileList's fields and methods are in the online Help.

TFilterValidator Validate a
TObject TValidator

Options
i-fri.+ Status
Free
Done Init

Load
Error
IsValid
IsValidlnput
Store
Transfer
Valid

Chapter 79, Turbo Vision reference 441

TFilterValidator

442

Field

Filter validator objects check'an input field as the user types into it. The
validator holds a set of allowed characters. If the user types one of the
legal characters, the filter valida tor indicates that the character is valid. If
the user types any other character, the validator indicates that the input is
invalid.

Va IidCh'ars ValidChars: TCharSet;

Methods

Contains the set of all characters the user can type. For example, to allow
only numeric digits, set ValidChars to ['0' .. '9']. ValidChars is set by the
A ValidChars parameter passed to the Init constructor. '

Init constructor Init(AValidChars: TCharSet);

Constructs a filter validator object by first calling the Init constructor
inherited from TValidator, then setting ValidChars to AValidChars.

Load constructor Load (var S: TStream);

, Constructs and loads a filter valida tor object from the stream 5 by first
calling the Load constructor inherited from TValidator, then reading the set
of valid characters into Valid Chars. '

See also: TValidator.Load

Error procedure Error; virtual;

Displays a message box indicating that the text string contains an invalid
character.

IsValid function IsValid(const S: string): Boolean; virtual;

Returns True if all characters in 5 are in the set of allowed characters,
ValidChar; otherwise returns False.

IsValidlnput function IsValidlnput (var S: string; SuppressFill: Boolean): Boolean;
virtual;

Checks each character in the string 5 to make sure it is in the set of
allowed characters, ValidChar. Returns True if all characters in 5 are valid;
otherwise, returns False.

Store procedure Store(var S: TStream);

Stores the' filter validator object on the stream 5 by writing ValidChars.

Turbo Vision Programming Guide

I

II

TFindDialogRec type

Declaration TFindDialogRec = record
Find: String[80];
Options: Word;

end;

TFindDialogRec type

Editors

Function Find text dialog boxes, invoked by EditorDialog when passed edFind, take a
pointer to a TFindDialogRec as their second parameter. Find holds the
default string to search for. Options holds some combination of the
efXXXX editor flag constants, specifying how the search operation should
work.

See also TEditorDialog type

TFrame Views

TObject TView

Cursor
DragMode
EventMask
GrowMode

Hel pCtx
Next
Options
Origin

Owner
Size
State

H:H-t- GetCommands Prey
Load Get Data PrevVi ew
Done Get Event Put Event
Awaken GetExtent PutInFrontOf
BlockCursor GetHel pCtx PutPeerVi ewPtr
Ca 1 cBounds GetPal eUe Se 1 ect
ChangeBounds GetPeerVi ewPtr SetBounds
Cl earEvent GetState SetCommands
CommandEnab 1 ed GrowTo SetCmdState
DataSi ze HaREIl el!: eRt SetCursor
Di sab 1 eCommands Hi de SetData
DragVi ew Hi deCursor ~
Bf:.aw. KeyEvent Show
DrawVi ew Locate ShowCursor
Enab 1 eCommands MakeFi rst Si zeLimits
EndModal MakeGlobal Store
EventAvail MakeLocal TopView
Execute MouseEvent Va 1 i d
Exposed Mouse I nVi ew WriteBuf
Focus MoveTo Wri teChar
GetBounds NextVi ew WriteL i ne
GetCl i pRect Normal Cursor WriteStr
GetColor

TFrame

Init
Draw
GetPalette
Handl eEvent
SetState

TFrame provides the distinctive frames around windows and dialog
boxes. Users will probably never need to deal with frame objects directly,
as they are added to window objects by default

Chapter 79, Turbo Vision reference 443

TFrame

Methods

Init constructor Init(var Bounds: TRect);

Calls the Init constructor inherited from TView, then sets GrowMode to
gfGrowHiX + gfGrowHiY and sets EventMask to EventMask or evBroadcast,
so TFrame objects default to handling broadcast events.

See also: TView.Init

Dravv procedure Draw; virtual;

Override: Seldom Draws the frame with color attributes and icons appropriate to the current
State flags: active, inactive, being dragged. Adds zoom, close and resize
icons depending on the owner window's Flags. Adds the title, if any, from
the owner window's Title field. Active windows are drawn with a double
lined frame and any icons, inactive windows with a single-lined frame
and no icons.

See also: sfXXXX state flag constants, wfXXXX window flag constants

GetPalette function GetPalette: PPalette; virtual;

Override: Seldom Returns a pointer to the default frame palette, CFrame.

HandleEvent procedure HandleEvent (var Event: TEvent); virtual;

Override: Seldom Handles most events by calling the HandleEvent method inherited from
TView, then handles mouse events specially. If the mouse is clicked on the
close icon, TFrame generates a cmClose event. Clicking the zoom icon or
double-clicking the top line of the frame generates a em Zoom event.
Dragging the top line of the frame moves the window, and dragging the
resize icon moves the lower-right corner of the view and therefore
changes its size.

See also: TView.HandleEvent

SetState procedure SetState(AState: Word; Enable: Boolean); virtual;

Override: Seldom Calls TView.SetState, then if the new state is sf Active or sfDragging, calls
DrawView to redraw the view.

See also: TView.SetState

444 Turbo Vision Programming Guide

Palette

TGroup

TFrame

Frame objects use the default palette, CFrame, to map onto the first three
entries in the standard window palette.

4 5

CFrame \ii I 2~3 I
Pas s i ve Frame~l!:==;=====;====;=====T'==~
Passive Title l~~~~e Title
Active Frame'-------'

TObject TView

Cursor Opti ons
DragMode Origin
EventMask Owner
GrowMode Size
Hel pCtx State
Next

J..R..:i-t.. Hi deCursor
I::&a6- KeyEvent
gefle- Locate
Awa-kefl. MakeFirst
BlockCursor MakeG10bal
Cal cBounds MakeLocal
Gl=laR§eBsI:IRaS MouseEvent
Cl earEvent MouseInView
CommandEnabl ed MoveTo
~ NextView
Di sabl eCommands Normal Cursor
DragView Prev
Bloaw- PrevVi ew
DrawView Put Event
Enab 1 eCommands PutInFrontOf
~ PutPeerVi ewPtr
EventAvai 1 Select
~ SetBounds
Exposed SetCommands
Focus SetCmdState
GetBounds SetCursor
GetCl i pRect ~
GetColor ~
GetCommands Show
(;e.Wa.t.a.. ShowCursor
Get Event SizeLimits
Get Extent ~
Getl-lell3Gb TopView
GetPalette V-a-t+EI-
GetPeerVi ewPtr WriteBuf
GetState WriteChar
GrowTo WriteLine
liaRal ee eR'i: WriteStr
Hide

TGroup

Buffer
Current
Last
Phase

Init
Load
Done
Awaken
ChangeBounds
DataSi ze
Del ete
Draw
EndModal
EventError
ExecView
Execute
First
Fi rstThat
FocusNext
ForEach
GetData
GetHelpCtx
GetSubVi ewPtr
Handl eEvent
Insert
I nsertBefore
Lock
PutSubVi ewPtr
Redraw
Sel ectNext
SetData
SetState
Store
Unlock
Val id

Views

TGroup objects and their derivatives (which we call groups for short)
provide the central driving power to Turbo Vision. A group is a special
breed of view. In addition to all the fields and methods derived from
TView, a group has additional fields and methods (including many

Chapter 19, Turbo Vision reference 445

TGroup

446

Fields

overrides) allowing it to control a dynamically linked list of views
(including other groups) as though they were a single object. We often talk
about the subviews of a group even when these subviews are often
groups in their own right.

Although a group has a rectangular boundary from its TView ancestry, a
group is only visible through the displays of its subviews. A group draws
itself via the Draw methods of its subviews. A group owns its subviews,
and together they must be capable of drawing (filling) the group's entire
rectangular Bounds. During the life of an application, sub views are
created, inserted into groups, and displayed as a result of user activity
and events generated by the application itself. The subviews can just as
easily be hidden, deleted from the group, or disposed of by user actions
(such as closing a window or quitting a dialog box).

Three derived object types of TGroup, namely TWindow, TDesktop, and
T Application (via TProgram) illustrate the group and subgroup concept.
The application typically owns a desktop object, a status line object, and a
menu view object. TDesktop is a TGroup derivative, so it, in turn, can own
TWindow objects, which in turn own TFrame objects, TScrollBar objects,
and so on.

TGroup objects delegate both drawing and event handling to their
subviews, as explained in Chapter 8, "Views" and Chapter 9, "Event
driven programming."

TGroup overrides many of the basic TView methods in a natural way. For
example, storing and loading groups on streams can be achieved with
single calls to TGroup.Store and TGroup.Load, which in turn iteratively
store and load the group's subviews.

You'll rarely construct an instance of TGroup itself; rather you'll usually
use one or more of TGroup's derived object types: T Application, TDesktop,
and TWindow.

Buffer Buffer: PVideoBuf i Read only

Points to a buffer used to cache the group's screen image, or nil if the
group has no cache buffer. Cache buffers are created and destroyed
automatically, unless the ofBuffered flag is cleared in the group's Options
field.

See also: TGroup.Draw, TGroup.Lock, TGroup.Unlock

Current Current: PVieWi Read only

Turbo Vision Programming Guide

TGroup

Points to the subview that is currently selected, or nil if no subview is
selected.

See also: sf Selected, TView.Select

Last Last: PView Read only

Points to the last subview in the group (the one furthest from the top in
Z-order). The Next field of the last subview points to the first subview,
whose Next field points to the next subview, and so on, forming a circular
list.

Phase phase: (phFocused, phPreProcess,' phPostProcess); Read only

Methods

The current phase of processing for a focused event. Subviews that have
the of PreProcess and/or of PostProcess flags set can examine Owner/\ .Phase to
determine whether a call to their HandleEvent is happening in the
phPreProcess, phFocused, or phPostProcess phase.

See also: of PreProcess, of PostProcess, TGroup.HandleEvent

Init constructor Ini t (var Bounds: TRect);

Constructs a group object with the given bounds by calling the Init
instructor inherited from TView, then sets of Selectable and ofBuffered in
Options, and sets EventMask to $FFFF.

See also: TView.Init

Load constructor Load (var S: TStrearn);

Loads an entire group from a stream by first calling the Load constructor
inherited from TView, then using S.Get to read each subview. After
loading all subviews, the group makes a pass over the subviews to fix up
all pointers read using GetPeerViewPtr.

If an object type derived from TGroup contains fields that point to II
subviews, it should use GetSubViewPtr within its Load to read these fields. II
If the owner is nil, calls Awaken after all subviews are loaded.

See also: TView.Load, TGroup.Store, TGroup.GetSubViewPtr, TStream.Get

Done destructor Done; virtual;

Override: Often Hides the group using Hide, disposes of each subview in the group, and
finally calls the Done destructor inherited from TView.·

See also: TView.Done

Chapter 79, Turbo Vision reference 447

TGroup

Awaken procedure Awaken; virtual;

Calls the Awaken methods of each of the group's subviews in Z-order.

See also: TView.Awaken

ChangeBounds procedure ChangeBounds (var Bounds: TRect); virtual;

Override: Never Changes the group's.bounds to Bounds and then calls CalcBounds followed
by ChangeBounds for each subview in the group.

See also: TView.CalcBounds, TView.ChangeBounds

DataSize function DataSize: Word; virtual;

Override: Seldom Returns the total size of the group's data record by calling and
accumulating DataSize for each subview.

448

See also: TView.DataSize

Delete procedure Delete (P: PView);

Deletes the subview P from the group and redraws the other subviews as
required. Sets P's Owner and Next fields to nil. Delete does not dispose of P,
however. ,

See also: TGroup.Insert

Draw procedure Draw; virtual;

Override: Never If a cache buffer exists, then the buffer is written to the screen using
WriteBuf. Otherwise, calls Redraw to draw all the group's subviews.

See also: TGroup.Buffer, TGroup.Redraw

EndModal procedure EndModal (Command: Word); virtual;

Override: Never If the group is the current modal view, it terminates its modal state,
passing Command to ExecView (which made this view modal in the first
place), which then returns Command as its result. If this group is not the
current modal view, it calls the EndModal method inherited from TView.

EventError

Override:
Sometimes

See also: TGroup.ExecView, TGroup.Execute

procedure EventError(var Event: TEvent); virtual;

Execute calls EventError whenever the event-handling loop encounters an
event it can't handle. The default action is: If the group's Owner is not nil,
EventError calls the owner's EventError. Normally this chains back to
T Application's EventError. You can override EventError to trigger
appropriate action.

Turbo Vision Programming Guide

TGroup

See also: TGroup.Execute, TGroup.ExecView, sf Modal

ExecView function ExecView(P: PView): Word;

ExecView is the modal counterpart of the modeless Insert and Delete
methods. Unlike Insert, after inserting a view into the group, ExecView
waits for the view to execute, then removes the view, and finally returns
the result of the execution. ExecView is used in a number of places
throughout Turbo Vision, most notably to implement T Application.Run
and TProgram.ExecuteDialog.

ExecView saves the current context (the selected view, the modal view,
and the command set), makes P modal by calling PA.SetState(sfModal,
True), inserts P into the group (if it isn't already inserted), and calls
PA.Execute. When PA.Execute returns, the group is restored to its previous
state, and the result of pA .Execute is returned as the result of the Exec View
call. If P is nil, ExecView returns cmCancel.

See also: TGroup.Execute, sf Modal.

Execute function Execute: Word; virtual;

Override: Seldom Execute is a group's main event loop. It repeatedly gets events using
GetEvent and handles them using HandleEvent. The event loop is
terminated by the group or some subview through a call to EndModal.
Before returning, however, Execute calls Valid to verify that the modal
state can indeed be terminated.

The actual implementation of TGroup.Execute is shown below. Note that
EndState is a private field in TGroup which gets set by a call to EndModal.

function TGroup.Execute: Word;
var E: TEvent;
begin

repeat
EndState := 0;
repeat

GetEvent (E) ;
HandleEvent(E);
if E.What <> evNothing then EventError(E);

until EndState <> 0;
until Valid(EndState) ;
Execute := EndState;

end;

See also: TGroup.GetEvent, TGroup.HandleEvent, TGroup.EndModal,
TGroup.Valid .

First function First: PView;

Chapter 79, Turbo Vision reference 449

a

TGroup

Returns a pointer to the group's first subview (the one closest to the top in
Z-order), or nil if the group has no subviews.

See also: TGroup.Last

FirstThat function FirstThat (P: Pointer): PViewi

FirstThat applies a Boolean function, given by the function pointer P, to
each subview in Z-order until P returns True. The result is a pointer to the
subview for which P returned True, or nil if P returned False for all
subviews. P must point to a far local function taking one Pointer
parameter and returning a Boolean value. For example:

f~nction MyTestFunc{P: PView): Boolean; f~r;

The SubViewAt method shown below returns a pointer to the first
subview that contains a given point.

function TMyGroup.SubViewAt{Where: TPQint): PView;

function ContainsPoint{P: PView): Boolean; fari
var

Bounds: TRecti
begin

PA.GetBounds{Bounds)i
Contains Point := (pA.State and sf Visible <> 0) and

Bounds.Contains{Where);
end;

begin
SubViewAt := FirstThat{@ContainsPoint);

end;

See also: TGroup.ForEach

FocusNext function FocusNext (Forwards: Boolean): Boolean;

If Forwards is True, FocusNext gives the input focus to the next selectable
subview (one with its of Selectable bit set) in the group's Z-order. If Forwards
is False, the method focuses the previous selectable subview. Returns True
if successful; otherwise, returns False.

If the view's ofValidate bit is set, it calls Valid(cmReleaseFocus) to determine
whether it's allowed to release focus. If Valid returns False, the view keeps
the focus and FocusNext returns False.

See also: TView.Focus

ForEach procedure ForEach (P: Pointer) i

450 Turbo Vision Programming Guide

TGroup

ForEach applies an action, given by the procedure pointer P, to each
subview in the group in Z-order. P must point to a far local procedure
taking one Pointer parameter, for example:

procedure MyActionProc{P: PView); far;

The MoveSub Views method shown below moves all subviews in a group
by a given Delta value. Notice the use of Lock and Unlock to limit the
number of redraw operations performed, thus eliminating any unpleasant
flicker.

procedure TMyGroup.MoveSubViews{Delta: TPoint);

procedure DoMoveView{P: PView); far;
begin

pA.MoveTo{pA.Origin.X + Delta.X, pA.Origin.Y + Delta.Y);
end;

begin
Lock;
ForEach{@DoMoveView} ;
Unlock;

end;

See also: TGroup.FirstThat

GetOata procedure GetData {var Rec} ; .virtual;

Override: Seldom Calls GetData for each subview in reverse Z-order, incrementing the
location given by Rec by the DataSize of each subview.

See also: TView.GetData, TGroup.SetData

GetHelpCtx function GetHelpCtx: Word; virtual;

Override: Seldom Returns the help context of the current focused view by calling the
selected subview's GetHelpCtx method. If no subview specifies a help
context, GetHelpCtx returns the value of its own HelpCtx field.

GetSubViewPtr procedure GetSubViewPtr {var S: TStream; var P} ;

Loads a subview pointer P from the stream S. GetSubViewPtr should only
be used inside a Load constructor to read pointer values that were written
by a call to PutSubViewPtr from a Store method.

See also: TView.PutSubViewPtr, TGroup.Load, TGroup.Store

HandleEvent procedure HandleEvent (var Event: TEvent); virtual;

Override: Offen A group handles events by passing them on to the HandleEvent methods
of one or more of its subviews. The actual routing, however, depends on
the event class.

Chapter 79, Turbo Vision reference 451

TGroup

• For focused events (by default evKeyDown and evCommand; see
FocusedEvents variable), event handling happens in three phases:

• Pre-process. The group sets its Phase field·to phPreProcess and passes
the event to the HandleEvent methods of any subviews that have the
of PreProcess flag set.

• Process. The group sets Phase to phFocused and passes the event to
the HandleEvent method of the currently selected subview.

• Post-process. The group sets Phase to phPostProcess and passes the
event to the HandleEvent methods of any subviews that have the
of PostProcess flag set.

• For positional events (by default evMouse, see PositionalEvents variable),
the group passes the event to the HandleEvent method of the first
subview (in Z-order) whose bounding rectangle contains the point in
Event. Where.

• For broadcast events (events that aren't focused or positional), the
group passes the event to the HandleEvent method of each subview in
the group in Z-order.

If a subview's EventMask field masks out an event class,
TGroup.HandleEvent will never send events of that class to the subview. For
example, the default EventMask of TView disables evMouseUp,
evMouseMove, and evMouseAuto, so TGroup.HandleEvent will never send
such events to a standard TView.

See also: FocusedEvents, PositianalEvents, evXXXX event constants,
TView.EventMask, HandleEvent methods

Insert procedure Insert (P: PView) ;

Inserts the view P into the group's subview list. The new subview appears
in front of all other subviews. If the subview has its ofCenterX or ofCenterY
flags set, it is centered accordingly in the group. If the subview has its
sfVisible flag set, it will be shown in the group; otherwise, it remains
invisible until specifically shown: If the subview has the afSelectable flag
set, it becomes the group's currently selected subview.

See also: TGroup.Delete, TGroup.ExecView, TGraup.Delete

InsertBefore procedure InsertBefore (P, Target: PView) ;

452

Inserts the view P into the group's subview in front of the view given by
Target. If Target is nil, the view is placed behind all other subviews in the
group.

See also: TGraup.Insert, TGroup.Delete

Turbo Vision Programming Guide

TGroup

Lock procedure Lock;

PutSubViewPtr

Locks the group, delaying any screen writes by subviews until the group
is unlocked. Lock has no effect unless the group has a cache buffer (see
ofBuffered and TGroup.Buffer). Lock works by incrementing a lock count,
which is decremented correspondingly by Unlock. When a call to Unlock
decrements the count to zero, the entire group is written to the screen
using the image constructed in the cache buffer.

By "sandwiching" draw-intensive operations between calls to Lock and
Unlock, you can reduce or eliminate unpleasant screen flicker. For
example, the TDesktop.Tile and TDesktop.Cascade methods use Lock and
Unlock to reduce flicker while rearranging windows.

Lock and Unlock calls must be balanced, otherwise a group might end up in
a permanently locked state, causing it to not redraw itself properly when
so requested.

See also: TGroup.Unlock

procedure PutSubViewPtr(var S: TStream; P: PView);

Stores a subview pointer P on the stream S. You should only use
PutSubViewPtr inside a Store method to write pointer values that can later
be read by a call to GetSubViewPtr from a Load constructor.

See also: TGroup.GetSubViewPtr, TGroup.Store, TGroup.Load

Redraw procedure Redraw;

Redraws the group's subviews in Z-order. TGroup.Redraw differs from
TGroup.Draw in that Redraw will never draw from the cache buffer.

See also: TGroup.Draw

SelectNext procedure SelectNext (Forwards: Boolean);

If Forwards is True, SelectNext selects (makes current) the next selectable
subview (one with its of Selectable bit set) in the group's Z-order. If Forwards
is False, the method selects the previous selectable subview.

SelectNext ignores validation and always selects the next subview. If you
need to validate views on focus change, call FocusNext instead of
SelectNext.

See also: ofXXXX option flag constants, TView.FocusNext

Chapter 79, Turbo Vision reference 453

a

TGroup

SetOata procedure SetData(var Rec); virtual;

Override: Seldom Calls SetData for each subview in reverse Z-order, incrementing the
location given by Rec by the DataSize of each subview.

See also: TGroup.GetData, TView.SetData

SetState procedure SetState (AState: Word; Enable: Boolean); virtual;

Override: Seldom First calls the SetState method inherited from TView, then updates the
'subviews as follows:

454

• If AState is sf Active, sfExposed, or sfDragging, calls each subview's SetState
to update the subview correspondingly .

• If AState is sfFocused, calls the currently selected subview's SetState to set
its sfFocused flag.

See also: TView.SetState

Store procedure Store(var S: TStream);

Stores an entire group on a stream by first calling the Store method
inherited from TView, then using TStream.Put to write each subview.

If an object type derived from TGroup contains fields that point to
subviews, it should use PutSub ViewPtr within its Store to write these
fields.

See also: TView.Store, TGroup.PutSubViewPtr, TGroup.Load

Unlock procedure Unlock;

Unlocks the group by decrementirig its lock count. If the lock count
becomes zero, then the entire group is written to the screen using the
image constructed in the cache buffer.

See also: TGroup.Lock

Valid function Valid (Command: Word): Boolean; virtual;

Calls the Valid method of each subview in Z-order and returns True if
every subview's Valid returns True; otherwise, returns False. TGroup.Valid
is used at the end of the event handling loop in TGroup.Execute to confirm
that termination is allowed. A modal state cannot terminate until all Valid
calls return True. A subview can return False if it wants to retain control.

See also: TView.Valid, TGroup.Execute

Turbo Vision Programming Guide

I

I'

THistory

Fields

TObject TView

s
~

Cursor
DragMode
EventMask
GrowMode

Hel pCtx
Next
Options
Origin

Owner
Size
State

l-tTH- GetCommands Prey
I:ea4 GetOata PrevVi ew
Done GetEvent Put Event
Awaken Get Extent PutlnFrontOf
BlockCursor GetHelpCtx PutPeerViewPtr
Cal cBounds GetPal ette Se 1 ect
ChangeBounds GetpeerVi ewPtr SetBounds
Cl ea rEvent GetState SetCommands
CommandEnab 1 ed GrowTo SetCmdState
DataSi ze HaRsl e[eRt SetCursor
Di sabl eCommands Hi de SetOata
DragVi ew Hi deCursor SetState
Q.I:>aw. KeyEvent Show
DrawVi ew locate ShowCursor
Enab 1 eCommands MakeFi rst Si zel imi ts
EndModal MakeGlobal ~
EventAvail MakeLocal TopView
Execute MouseEvent Va 1 i d
Exposed Mousel nVi ew WriteBuf
Focus MoveTo WriteChar
GetBounds NextVi ew Wri tel i ne
GetCl i pRect Norma 1 Cursor WriteStr
GetColor

THistory

Li nk
Historyld

lnit
load
Draw
GetPa 1 ette
Handl eEvent
lni tHi storyWi ndow
RecordHi story
Store

THistory

Dialogs

A THistory object implements a pick-list of previous entries, actions, or
choices from which the user can select a "rerun." THistory objects are
linked to an input line object and to a history list. History list information
is stored in a block of memory on the heap. When the block fills up, the
oldest history items are deleted as new ones are added.

THistory itself shows up as an icon (•) next to an input line. When the
user clicks the history icon, Turbo Vision opens up a history window (see
THistoryWindow) with a history viewer (see THistoryViewer) containing a
list of previous entries for that list.

Different input lines can share the same history list by using the same ID
number.

HistorylD HistoryID: Word; Read only

Each history list has a unique ID number, assigned by the programmer.
Different history objects in different windows may share a history list by
using the same history ID.

Chapter 79, Turbo Vision reference 455

a

THistory

Link Link: PlnputLine; Read only

A pointer to the linked TInputLine object.

Methods
Init constructor Init(var Bounds: TRect; ALink: PlnputLine; AHistoryld: Word);

Creates a history view of the given size by calling the Init constructor
inherited from TView, then setting the Link and Historyld fields to ALink
and AHistoryld. Sets Options to ofPostProcess and EventMask to evBroadcast.

See also: TView.Init

Load constructor Load (var S: TStream);

Creates and initializes a history object from the stream 5 by calling the
Load constructor inherited from TView and reading Link and HistoryId
from S.

See also: TView.Load

Dravv procedure Draw; virtual;

Override: Seldom Draws the history icon (•) in the default palette.

GetPaleHe function Getpalette: PPalette; virtual;

Override: Returns a pointer to the default palette, CHistory.
Sometimes

HandleEvent procedure HandleEvent (var Event: TEvent); virtual;

Handles most events by calling the HandleEvent method inherited from
TView, then responds to two special events:

• If the user clicks the history list icon or presses .t while in the associated
input line, this history view cot:J.structs a history window. By default,
the window is one space larger than the linked input line, and six lines
taller, but clipped to fit inside the owner dialog box. HandleEvent passes
that bounding rectangle to InitHistory Window to actually construct the
history window .

• If the linked input line loses the input focus, or the history icon gets an
explicit cmRecordHistory command, HandleEvent calls RecordHistory to
record the current contents of th~ input line in the history block.

See also: TView.HandleEvent, THistory.InitHistoryWindow,
THistory.RecordHistory

InifHisforyWindovv function InitHistoryWindow (var Bounds: TRect): PHistoryWindow; virtual;

456 Turbo Vision Programming Guide

THistory

Constructs a history window object with the bounding rectangle passed in
Bounds and the history ID in HistoryID, returning a pointer to the newly
constructed window. Also sets the help context for the history window to
the linked input line's help context. THis tory's event handler calls
InitHistory Window in response to mouse clicks the history icon or certain
keystrokes in the linked input line.

See also: THistoryWindow.Init, THistory.HandleEvent

RecordHistory procedure RecordHistory(const S: String); virtual;

Adds the string S to the history list associated with the view, identified by
HistoryID.

See also: HistoryAdd procedure

Store procedure Store(var S: TStream);

Palette

THistoryViewer

Saves a history object on the stream S by calling the Store method
inherited from TView, then writing Link and Historyld to S.

See also: TView.Store

History icons use the default palette, CHistory, to map onto the 22nd and
23rd entries in the standard dialog box palette.

1 2

CHi story ij22 I 2ft
Arrow~ Sides

Dialogs

THistoryViewer is a straightforward descendant of TListViewer used by the T
history list system. The history viewer appears inside the history window
set up by clicking the history icon. For details on how THistory,
THistoryWindow, and THistoryViewer cooperate, see the entry for THistory
in this chapter.

Details of THistoryViewer's field and methods are in the online Help.

THistoryWindow Dialogs

THis tory Window is a specialized descendant of TWindow used for holding
a history list viewer when the user clicks the history icon next to an input

Chapter 79, Turbo Vision reference 457

THistoryWindow

Tlndicator

Fields

line. By default, the window has no title and no number. The history
window's frame has a close icon so the window can be closed, but cannot
be resized or zoomed.

For details on the use of history lists and their associated objects, see the
entry for THistory in this chapter.

Details of THis tory Window's field and methods are in the online Help.

TObject TV; ew

Cursor
DragMode
EventMask
GrowMode

He1 pCtx
Next
Options
Origin

Owner
Size
State

f.R+.t- GetCommands Prey
load GetData PrevVi ew
Done Get Event Put Event
Awaken GetExtent PutlnFrontOf
B1ockCursor GetHel pCtx PutPeerVi ewPtr
Ca 1 cBounds GetPal ette Se 1 ect
ChangeBounds GetPeerVi ewPtr SetBounds
C1 earEvent GetState· SetCommands
CommandEnab 1 ed GrowTo SetCmdState
DataSi ze Hand1 eEvent SetCursor
Di sab 1 eCommands Hi de SetData
DragVi ew Hi deCursor ~
Bloaw- KeyEvent Show
DrawVi ew locate ShowCursor
Enab1eCommands MakeFirst SizeLimits

. EndModa 1 MakeG1 oba 1 Store
EventAvail Makeloca 1 TopVi ew
Execute MouseEvent Va 1 i d
Exposed MouselnVi ew Wri teBuf
Focus MoveTo Wri teChar
GetBounds NextVi ew Wri tel i ne
GetC1 i pRect Norma 1 Cursor Wri teStr
GetCo1or

TInd;cator

location
Modified

Init
Draw
GetPa 1 ette
SetState
SetVa1ue

Editors

An indicator object implements a line and column counter in the lower
left corner of an editor window. Editor window objects create indicators
by default, and associate them with editor objects. Indicators can also
work with edit~rs outside the context of an editor window, however.

Location Locat ion: TPoint;

Location holds the current column and line position to display. Editor
objects update Location automatically.

Modified Modified: Boolean;

458 Turbo Vision Programming Guide

'.

Methods

Tlndicator

Modified is True if the text in the associated editor has changed. Draw
check Modified and shows a special character to alert the user of the status
of the edit buffer.

Init constructor Init(var Bounds: TRect);

Constructs an indicator with the boundaries specified in Bounds by calling
the Init constructor inherited from TView, then anchors the view to the
bottom left corner of the owner window by setting GrowMode to
gfGrowLo Y + gfGrowHiY.

See also: TView.lnit

Dravv procedure Draw; virtual;

Draws the indicator in the form line:column, followed by a p if Modified is
True.

GetPaleHe function Getpalette: PPalette; virtual;

Returns a pointer Clndicator, the default indicator palette.

SetState procedure SetState(AState: Word; Enable: Boolean); virtual;

Calls the SetState method inherited from TView to handle normal state
setting, then redraws the indicator if the sfDragging flag is set; meaning
that the indicator needs to redraw itself using the frame's dragging color,
rather than the normal color.

See also: TView.SetState

SetValue procedure SetValue (ALocation: TPoint; AModified: Boolean);

Palette

Sets Location to ALocation and Modified to AModified and redraws the
indicator. Editor objects call this method to keep the indicator's values
current.

Indicator objects use the default palette Clndicator to map onto the second
and third entries in the standard application palette. These are the same
colors used by window frames.

1 2

Clndi cator Q I [1
Norma 1 ~ Dragged

Chapter 79, Turbo Vision reference 459

I

TlnputLine

TlnputLine

Fields

TObject TView

Cursor
DragMode
EventMask
GrowMode

HelpCtx
Next
Opti ons
Origin

Owner
Size
State

HH-t- GetCommands Prey
bea6- ~ PrevView
~ Get Event Put Event
Awaken GetExtent PutInFrontOf
BlockCursor GetHel pCtx PutPeerVi ewPtr
Ca 1 cBounds GetPal ette Sel ect
ChangeBounds GetPeerVi ewPtr SetBounds
Cl earEvent GetState SetCommands
CommandEnabl ed GrowTo SetCmdState
~ IlaAell e[eAt SetCursor
Di sab 1 eCommands Hi de ~
DragVi ew Hi deCursor £e.t.£t-a-t.e.
~ KeyEvent Show
DrawVi ew Locate ShowCursor
Enab 1 eCommands MakeFi rst Si zeLimits
EndModal MakeGlobal ~
EventAvail MakeLoca 1 TopVi ew
Execute MouseEvent IJ..a..t..HI.
Exposed MouselnView WriteBuf
Focus MoveTo Wri teChar
Get Bounds NextVi ew Wri teLi ne
GetCl i pRect Norma 1 Cursor Wri teSt r
GetColor

TInputLine

Data
Max Len
CurPos
Fi rstPos
Sel Start
Sel End
Val idator

Init
Load
Done
DataSi ze
Draw
GetData
GetPalette
Handl eEvent
SelectAll
SetData
SetState
SetVa 1 i dat~r
Store
Val id

Dialogs

A TlnputLine object provides a basic input line string editor. It handles
keyboard input and mouse clicks and drags for block marking and a
variety of line editing functions (see TlnputLine.HandleEvent). The selected
text is deleted and then replaced by the first text input. If MaxLen is
greater than the X dimension (Size.X), horizontal scrolling is supported
and indicated by l~ft and right arrows.

The GetData and SetData methods are available for writing and reading
data strings (referenced via the Data pointer field) into the given record.
TlnputLine.SetState simplifies the redrawing of the view with appropriate
colors when the state changes from or to sf Active and sf Selected.

Input lines frequently have labels, history lists, and perhaps validators
associated with them.

You can modify the basic input line to handle data types other than
strings. To do so, you'll generally add additional fields to hold the data,
and then override the Init, Load, Store, Valid, DataSize, GetData, and SetData
methods.

CurPos CurPos: Integer i Read/write

Index to insertion point (that is, to the current cursor position).

460 Turbo Vision Programming Guide

I.

TlnputLine

See also: TlnputLine.SelectAll

Data Data: PString; Read/write

Pointer to the string containing the edited information.

FirstPos FirstPos: Integer; Read/write

Index to the first displayed character.

See also: TlnputLine.SelectAll

MaxLen MaxLen: Integer; Read only

Maximum length allowed for the string, excluding the length byte.

See also: TlnputLine.DataSize

SelEnd SelEnd: Integer; Read only

Index to the end of the selection area (that is, to the last character block
marked).

See also: TlnputLine.SelectAll

SelStart SelStart: Integer; Read only

Index to the beginning of the selection area (that is, to the first character
block marked).

See also: TlnputLine.SelectAll

Validator valida tor : PValidator;

Methods

Points to the data valida tor object associated with the input line, or nil if
the input line has no valida tor. You should use the Set Validator method to
assign a value to Validator, rather than assigning the value directly.

See also: TlnputLine.SetValidator

Init constructor Init(var Bounds: TRect; AMaxLen: Integer);

Constructs an input line control with the given argument values by
calling the Init constructor inherited from TlnputLine. Sets State to
sfCursorVis, Options to (of Selectable + ofFirstClick), and MaxLen to AMaxLen.
Allocates AMaxlen + 1 bytes of memory and sets Data to point at this
allocation.

See also: TView.Init, TView.sfCursorVis, TView.ofSelectable,
TView.ofFirstClick

Chapter 79, Turbo Vision reference 461

I

TlnputLine

Load constructor Load (var S: TStream);

Constructs and initializes an input line object from the stream S by first
calling the Load constructor inherited from TView to load the view, then
reading the integer fields off the stream using S.Read. Allocates MaxLen +
1 bytes for Data, and then reads the string-length byte and data from S
using S.Read. Use Load in conjunction with Store to save and retrieve input
line objects on streams.

Override this method if you define descendants that contain additional
fields.

See also: TView.Load, TlnputLine.Store, TStream.Read

Done destructor Done; virtual;

Override: Seldom Disposes of the memory allocated to Data, then calls the Done destructor
inherited from TView to dispose of the input line object.

DataSize

Override:
Sometimes

Draw

Override: Seldom

GetData

Override:
Sometimes

GetPaleHe

462

See also: TView.Done

function DataSize: Word; virtual;

Returns the size of the record for GetData and SetData calls. By default, it
returns MaxLen + 1. Override this method if you define descendants to
handle other data types.

See also: TlnputLine.GetData, TlnputLine.SetData

procedure Draw; virtual;

Draws the input line and its data. The view has different colors depending
on whether it has the focus, with arrows drawn if the text string exceeds
the size of the view (in either direction). Selected (block marked)
characters are drawn with the appropriate palette.

procedure GetData(var Ree); virtual;

Returns the value of the input line string. By default, GetData writes
DataSize bytes from the string DataA to Rec. You can override GetData if
you define descendants to handle non-string data types. For example, a
numeric input line could convert the string value to a number and copy
the number into Rec. If you override GetData, you must also override
SetData to read the same data returned by GetData, and override DataSize
to return the size of the data passed.

See also: TlnputLine.DataSize, TlnputLine.SetData

function GetPalette: PPalette; virtual;

Turbo Vision Programming Guide

Override:
Sometimes

HandleEvent

Override:
Sometimes

TlnputLine

Returns a pointer to the default palette, ClnputLine.

procedure HandleEvent{var Event: TEvent); virtual;

Calls the HandleEvent method inherited from TView, then handles all
mouse and keyboard events if the input line is selected. This method
implements the standard editing capability of the box.

Editing features include: block marking with mouse click and drag; block
deletion; insert or overwrite control with automatic cursor shape change;
automatic and manual scrolling as required (depending on relative sizes
of Data string and Size.X); manual horizontal scrolling via mouse clicks on
the arrow icons; manual cursor movement by arrow, Home, and End keys
(and their standard Ctrl key equivalents); character and block deletion with
Del and Ctrl+G. The view is redrawn as required and the TlnputLine fields
are adjusted appropriately.

See also: sfCursorlns, TView.HandleEvent, TlnputLine.SelectAll

SelectAIl procedure SeleetAll (Enable: Boolean);

SetOata

Override:
Sometimes

Sets CurPos, FirstPos, and SelStart to O. If Enable is True, SelEnd is set to
Length(Data/\), selecting the whole input line; if Enable is False, SelEnd is set
to 0, deselecting the whole line. Finally, redraws the view by calling
DrawView. .

See also: TView.DrawView

procedure SetData{var Ree); virtual;

By default, reads DataSize bytes from Rec into Data/\ and calls
SelectAll(True) to display the newly set text as selected. Override this
method if you define descendants to handle non-string data types, using
this method to convert your data type to a string for editing by TlnputLine.

See also: TlnputLine.DataSize, TlnputLine.GetData, TView.DrawView

SetState procedure SetState{AState: Word; Enable: Boolean); virtual;

Override: Seldom Called when the input line needs redrawing following a change of State.
Calls the SetState method inherited from TView to set or clear the bites)
passed in AState in the input line's State field. Then if AState is sf Selected or
if AState is sf Active and the input line is sf Selected, calls SelectAll(Enable).

See also: TView.SetState, TView.DrawView

SetValidator procedure SetValidator (AValid: PValidator);

Chapter 79, Turbo Vision reference 463

a

TlnputLine

If the input line already has an associated validator, SetV"Jidator disposes
of the existing validator by calling its Free method. Sets Validator to AValid.
You should pass nil to dispose of an associated validator without
assigning a new one.

Store procedure Store(var S: TStream);

Stores the view on the stream S by first calling the Store method inherited
from TView, then writing the five integer fields and the Data string with
S. Write calls. Use in conjunction with Load to save and restore entire input
line objects. Override this method if you define descendants that contain
additional fields.

See also: TView.Store, TlnputLine.Load, TStream. Write

Valid function Valid(Command: Word): Boolean; virtual;

Palette

TltemList type

If the input line has no associated valida tor object or Command is cmCancel,
Valid returns the value returned from a call to the Valid method inherited
from TView.

If the input line has a validator, it checks the validator to determine its
return value. If Command is cm Valid, Valid returns True if the validator's
Status is vsOK, otherwise, it returns False. If Command is anything other
than cmValid or cmCancel, Valid passes DataA to the validator's Valid
method. If the valida tor's Valid returns False, the input line calls Select to
take the input focus and returns False.

See also: TView.Valid, TValidator.Valid

Input lines use the default palette, ClnputLine, to map onto the 19th
through 21st entries in the standard dialog palette.

4

Passive
Act i ve--------'

Arrow
Selected

Objects

Declaration TItemList = array [0 .. MaxCollectionSize - 1] of Pointer;

Function An array of generic pointers used internally by TCollection objects.

464 Turbo Vision Programming Guide

I

I

I.

TLabel

Fields
Light

TObject TView

Cursor
DragMode
EventMask
GrowMode

HelpCtx
Next
Options
Origin

Owner
Size
State

HH+ GetCommands Prey
I::ea4 GetData PrevVi ew
BefTe. Get Event PutEvent
Awaken GetExtent PutInFrontOf
BlockCursor GetHel pCtx PutPeerVi ewPtr
Ca 1 cBounds GetPal ette Se 1 ect
ChangeBounds GetPeerVi ewPtr SetBounds
Cl earEvent GetState SetCommands
CommandEnab 1 ed GrowTo SetCmdState
DataSi ze HaREIl e~"eRt SetCursor
Di sabl eCommands Hi de SetOata
DragVi ew Hi deCursor SetS tate
B-l<>aw- KeyEvent Show
DrawVi ew Locate ShowCursor
EnableCommands MakeFirst SizeLimits
EndModa 1 MakeGl oba 1 £t&pe.
EventAvail MakeLocal TopView
Execute MouseEvent Val i d
Exposed MouselnVi ew Wri teBuf
Focus MoveTo WriteChar
GetBounds NextVi ew Wri teLi ne
GetCl i pRect Normal Cursor WriteStr
GetColor

TStaticText TLabel

Text

HH+
I::ea4
Done
B-l<>aw-
GetPal ette
GetText
£t&pe.

Light
Link

Init
Load
Draw
GetPal ette
Handl eEvent
Store

TLabel

Dialogs

A TLabel object is a piece of text in a view that can be selected
(highlighted) by mouse click, cursor keys, or Alt+letter shortcut. The label
is usually "attached" via a PView pointer to some other control view such
as an input line, cluster, or list viewer to guide the user. Selecting (or
"pressing") the label will select the attached control. Conversely, the label
is highlighted when the linked control is selected.

Light: Boolean; Read only

If True, the label and its linked control has been selected and will be
highlighted.

Link Link: PView; Read only

Pointer to the control associated with this label.

Chapter 79, Turbo Vision reference 465

I

TLabel

466

Methods
Init constructor Init(var Bounds: TRect; const AText: String; ALink: PView);

Creates a label object of the given size and text by calling the Init
constructor inherited from TStaticText, then sets Link to ALink for the
associated control. Sets Options to of PreProcess and of PostProcess and
EventMask to evBroadcast. AText can designate a shortcut letter for the label
by surrounding the letter with tildes (/~/).

You should never construct a label object with a nil link. Use static text
objects for unlinked labels.

See also: TStaticText.Init

Load constructor Load (var S: TStream);

Constructs and loads a label object from the stream S by first calling the
Load constructor inherited from TStaticText, then calling
GetPeerViewPtr(S, Link) to re~stablish the link to the associated control.

See also: TLabel.Store

Draw procedure Draw; virtual;

Override: Never Draws the view with the appropriate colors from the default palette.

GetPalette function Getpalet te: PPalette; virtual;

Override: Returns a pointer to the default palette, CLabel.
Sometimes

HandleEvent procedure HandleEvent (var Event: TEvent); virtual;

Override: Never Handles most events by calling the HandleEvent method inherited from
TStaticText. If the label receives an evMouseDown event or shortcut key
event, the linked contrqI is selected. This method also responds to
cmReceivedFocus and cmReleasedFocus broadcast events from the linked
control in order to adjust the value of the Light field and redraw the label
as necessary.

See also: TView.HandleEvent, cmXXXX command constants

store procedure Store(var S: TStream);

Stores the view on the stream S by first calling the Store method inherited
from TStaticText, then recording the link to the associated control with
PutPeer ViewPtr.

See also: TLabel.Load

Turbo Vision Programming Guide

'I

I

I

I

1

I

Palette

TListBox

TLobel

Labels use the default palette, CLabel, to map onto the 7th, 8th and 9th
entries in the standard dialog palette.

4

CLabe' ~I ~
Text Normal Shortcut Selected
Text Sel ected Shortcut Normal

TObject TView

Cursor
DragMode
EventMask
GrowMode

HelpCtx
Next
Options
Origin

Owner
Size
State

HH-t- GetCommands Prey
I::ea4- Ge-Wa:ta- Pre v View
Done Get Event PutEvent
Awaken GetExtent PutlnFrontOf
BlockCursor GetHel pCtx PutPeerVi ewPtr
Ca 1 cBounds GetPal ette Se 1 ect
GllaA!leBsl:lAels GetPeerVi ewPtr SetBounds
Cl earEvent GetState SetCommands
CommandEnabl ed GrowTo SetCmdState
~ IoIaAell eE\ eAt SetCursor
DisableCommands Hide ~
DragView HideCursor ~
Bf>aw. KeyEvent Show
DrawVi ew locate ShowCursor
EnableCommands MakeFirst SizeLimits
EndModal MakeGlobal ~
EventAvail Makeloca 1 TopVi ew
Execute MouseEvent Va 1 i d
Exposed Mouse I nVi ew WriteBuf
Focus MoveTo Wri teChar
GetBounds NextVi ew Wri tel i ne
GetCli pRect Norma 1 Cursor WriteStr
GetColor

TL i stViewer

HScroll Bar
VScroll Bar
NumCol s
TopItem
Focused
Range

HH-t-
I::ea4-
ChangeBounds
Draw
Focusltem
GetPalette
~
Handl eEvent
IsSelected
Sel ectItem
Set Range
SetState
~

TListBox

li st

Init
load
DataSize
GetData
GetText
Newli st
SetData
Store

TListBox is derived from TListViewer to help you set up the most

Dialogs

commonly used list boxes, namely those displaying collections of strings. T
List box objects represent displayed lists of strings in one or more
columns with an optional vertical scroll bar. The horizontal scroll bars of
TListViewer are not supported. The inherited TListViewer methods let you
highlight and select items by mouse and keyboard cursor actions. TListBox
does not override HandleEvent or Draw.

TListBox has an additional field called List not found in TListViewer. List
points to a collection object that holds the items to be listed and selected.
Inserting data into the collection is your responsibility, as are the actions
to be performed when an item is selected.

Chapter 79, Turbo Vision reference 467

TListBox

Field

TListBox inherits its Done method from TView, so it is also your
responsibility to dispose of the contents of List when you are finished with
it. A call to NewList will dispose of the old list, so calling NewList(nil) and
then disposing the list box will free everything.

List List: Pcolleetion; Read only

List points at the collection of items to scroll through. Typically, this might
be a collection of PStrings representing the item texts.

Methods
Init constructor Init(var Bounds: TReet; ANumCols: Word; ASerollBar: PSerollBar);

Constructs a list box control with the given size, number of columns, and
the vertical scroll bar passed in AScrollBar by calling the Init constructor

I

inherited from TListViewer with a nil horizontal scroll bar parameter. I

Sets List to nil (empty list) and Range to O. Your application must provide a I,.
suitable collection holding the strings (or other objects) to be listed. Set
List to point to this collection using NewList.

See also: TListViewer.lnit, TListBox.NewList

Load constructor Load (var S: TStream);

DataSize

Override:
Sometimes

GetData

Override:
Sometimes

. Constructs a list box object and loads it with values from the stream S by
first calling the Load constructor inherited from TListViewer then reading
List from S with S.Get.

See also: TListViewer.Load, TListBox.Store, TStream.Get

function DataSize: Word; virtual;

Returns the size of the data read and written to the records passed to
GetData and SetData. By default, TListBox.DataSize returns the size of a
pointer plus the size of a word (for List and the selected item).

See also: TListBox.GetData, TListBox.SetData

procedure GetData(var Ree); virtual;

Writes TListBox object data to the target record. By default, this method
writes the current List and Focused fields to Rec.

See also: TListBox.DataSize, TListBox.SetData

GetText function GetText(Item: Integer; MaxLen: Integer): String; virtual;

468 Turbo Vision Programming Guide

Override:
Sometimes

NewList

TListBox

Returns the Itemth string from the list box object. By default, GetText
returns the string obtained from the Item'th item in the string collection
using PString(List/\.At(Item))/\. If List contains non-string objects, you will
need to override this method. If List is nil, Get Text returns an empty string.

See also: TCollection.At

procedure NewList(AList: PColleetion); virtual;

Override: Seldom If AList is non-nil, a new list given by AList replaces the current List. Sets
Range to the Count field of the new TCollection, and focuses the first item
by calling FocusItem(O). Finally, the new list is displayed with a DrawView
call. If the previous List field is non-nil, NewList disposes of it before the
assigning the new list.

Set Data

Override:
Sometimes

Store

Palette

See also: TListBox.SetData, TListViewer.SetRange, TListViewer.FocusItem,
TView.Draw View

procedure SetData(var Ree); virtual;

Replaces the current list with List and Focused values read from the given
Rec record. SetData calls NewList so that the new list is displayed with the
correct focused item. As with GetData and DataSize, you might need to
override this method for your own applications.

See also: TListBox.DataSize, TListBox.GetData, TListBox.NewList

procedure Store(var S: TStream);

Writes the list box to the stream S by first calling the Store method
inherited from TListViewer and then writing the collection onto the stream
by calling S.Put(List).

See also: TListBox.Load, TListViewer.Store, TStream.Put

List boxes use the default palette, CListViewer, to map onto the 26th
through 29th entries in the standard application palette.

CListViewer

Active'----'
Inacti ve-------'
Focused---------'

4

Divider
Sel ected

Chapter 79, Turbo Vision reference 469

a

TLisfViewer

TListViewer

470

TObject TView

Cursor
DragMode
EventMask
GrowMode

He1pCtx
Next
Opti ons
Origin

Owner
Size
State

f.R..H- GetCommands Prey
~ GetData PrevVi ew
Done GetEvent Put Event
Awaken GetExtent PutlnFrontOf
B1ockCursor GetHe 1 pCtx PutPeerVi ewPtr
Ca 1 cBounds GetPal ette Se 1 ect
bRaR!jeBsI:IR8S GetPeerVi ewPtr Set Bounds
C1 earEvent GetState SetCommands
CommandEnab 1 ed GrowTo SetCmdState
DataSi ze flaR81 eE: eRt SetCursor
Disab 1 eCommands Hi de SetData
DragView HideCursor ~
9f>aw. KeyEvent Show
DrawVi ew locate ShowCursor
Enab1eCommands MakeFirst SizeLimits
EndModa1 MakeG1oba1 ~
EventAvail Makeloca 1 TopVi ew
Execute MouseEvent Va 1 i d
Exposed MouselnVi ew WriteBuf
Focus MoveTo Wri teChar
Get Bounds NextVi ew Wri tel i ne
GetC1 i pRect Norma 1 Cursor WriteStr
GetCo1or

. TL i stVi ewer

HScro 11 Bar
VScro11 Bar
NumCo1 s
TopItem
Focused
Range·

Init
load
ChangeBounds
Draw
FocusItem
GetPa1 ette
GetText
Hand1 eEvent
IsSe1 ected
Se1ectItem
SetRange
SetS tate
Store

Views

The TListViewer object type is a base type from which to derive list
viewers of various kinds, such as TListBox. TListViewer's basic fields and
methods offer the following functionality:

• A view for displaying linked lists of items (but no list)

• Control over one or two scroll bars

• Basic scrolling of lists in two dimensions

• Loading and storing the view and its scroll bars from and to a TStream

• Ability to mouse or key select (highlight) items on list

• Draw method that copes with resizing and scrolling

"TListViewer has an abstract Get Text method, so you need to supply the
mechanism for creating and manipulating the text of the items to be
displayed.

TListViewer has no list storage mechanism of its own. Use it to display
scrollable lists of arrays, linked lists, or similar data structures. You can
also use its descendants, such as TListBox, which associates a collection
with a list viewer.

Turbo Vision Programming Guide

'I

I
I

TListViewer

Fields
Focused Focused: Integer; Read only

HScroliBar

The item number of the focused item. Items are numbered from 0 to Range
-1. Init sets Focused to 0, the first item. Focused changes with mouse clicks
or Spacebar selection.

See also: Range

HScrollBar: PScrollBar; Read only

Pointer to the horizontal scroll bar associated with this view. If nil, the
view does not have such a scroll bar.

NumCols NumCols: Integer; Read only

The number of columns in the list viewer.

Range Range: Integer; Read only

The current total number of items in the list. Items are numbered from 0
to Range-1.

See also: TListViewer.SetRange

Topltem TopItem: Integer; Read/write

The item number of the top visible item. Items are numbered from 0 to
Range - 1. This number depends on the number of columns, the size of the
view, and the value of Range.

See also: Range

VScroliBar VScrollBar: PScrollBar; Read only

Methods

Pointer to the vertical scroll bar associated with this view. If nil, the view
does not have such a scroll bar.

Init constructor Init(var Bounds: TRect; ANumCols: Integer; AHScrollBar, AVScrollBar:
PScrollBar) ;

Constructs and initializes a list viewer object with the given size by first
calling the Init constructor inherited from TView. Sets NumCols to
ANumCols. Sets Options to <ofFirstClick + of Selectable) so that mouse clicks
that select the list viewer are also passed to HandleEvent. Sets EventMask to
evBroadcast, Range and Focused to o. Sets VScrollBar and HScrollBar to the
vertical and/or horizontal scroll bars passed in AVScrollBar and
AHScrollBar.

Chapter 7 9, Turbo Vision reference 471

a

TLisfViewer

If you provide valid scroll bars, Init adjusts their PgStep and ArStep fields
according to the TListViewer size and number of columns. For a single
column TListViewer, for example, the default vertical PgStep is Size. Y - 1,
and the default vertical ArStep is l.

See also: TView.Init, TScrollBar.SetStep

Load constructor Load (var S: TStream);

Constructs and loads a list viewer object from the stream S by first calling
the Load constructor inherited from TView, then reading the scroll bars
using calls to GetPeerViewPtr, and finally reading the integer fields using
S.Read.

See also: TView.Load, TListViewer.Store

ChangeBounds procedure ChangeBounds (var Bounds: TRect); virtual;

Override: Never Changes the size of the list viewer object by calling the ChangeBounds
method inherited from TView. If the viewer has a horizontal scroll bar,
ChcmgeBounds adjusts PgStep as needed.

~e also: TView.ClumgeBounds, TScrollBar.ChangeStep ~
Draw procedure Draw; virtual; I

Override: Never Draws the list viewer object with the default palette, calling GetText for I
each visible item. Takes into account the focused and selected items and
whether the view is sf Active.

See also: TListViewer.GetText

Focusltem procedure FocusItem (Item: Integer); virtual;

Override: Never Makes the given item focused by setting Focused to Item. FocusItem also
sets the Value field of the vertical scroll bar (if any) to Item and adjusts the
TopItem field.

See also: TListViewer.IsSelected, TScrollBar.SetValue

GetPaleHe function Getpalette: PPalette; virtual;

Override: Returns a pointer to the default palette, CListViewer.
Sometimes

GetText function GetText(Item: Integer; MaxLen: Integer): String; virtual;

472 Turbo Vision Programming Guide

TLisfViewer

Override: Always This is an abstract method. Derived types must supply a mechanism for
returning a string for the item Item, not exceeding MaxLen characters.

HandleEvent

Override: Seldom

IsSelected

Override:
Sometimes

Selectltem

Override:
Sometimes

See also: TListViewer.Draw

procedure HandleEvent(var Event: TEvent); virtual;

Handles most events by calling the HandleEvent method inherited from
TView. Mouse clicks and "auto" movements over the list change the
focused item. The user can select items with double mouse clicks.
Keyboard events are handled: Spacebar selects the currently focused item;
the arrow keys, PgUp, PgOn, Ctr/+PgOn, Ctr/+PgUp, Home, and End are tracked
to set the focused item. Finally, broadcast events from the scroll bars are
handled by changing the focused item and redrawing the view as
required.

See also: TView.HandleEvent, TListViewer.FocusItem

function IsSelected(Item: Integer): Boolean; virtual;

Returns True if the given Item is focused, that is, if Item = Focused. Can be
overridden to provide a multiple-selection list viewer.

See also: TListViewer.FocusItem

procedure SelectItem(Item: Integer); virtual;

Selects the Item'th item in the list and notifies its peers. The default
SelectItem method sends a cmListItemSelected broadcast to its owner as
follows:

Message (Owner, evBroadcast, cmListItemSelected, @Self);

See also: TListViewer.FocusItem

SetRange procedure Set Range (ARange: Integer);

Sets Range to ARange. If the list viewer has a vertical scroll bar, its
parameters are adjusted as needed. If the currently focused item falls a
outside the new Range, Focused is set to O.

See also: TListViewer.Range, TScrollBar.SetParams

SetState procedure SetState(AState: Word; Enable: Boolean); virtual;

Override: Seldom Calls the SetState method inherited from TView to change the list viewer
object's state if Enable is True. Depending on the AState argument, this can
result in displaying or hiding the view. Additionally, if AState is sf Selected
and sf Active, the scroll bars are redrawn; if AState is sf Selected but not
sf Active, the scroll bars are hidden.

Chapter 79, Turbo Vision reference 473

TLisfViewer

See also: TView.SetState, TScrollBar.Show, TScrollBar.Hide

Store procedure Store(var s: TStrearn)i

Palette

Writes the list viewer object to the stream S by first calling the Store
method inherited from TView, then writing the scroll bar objects (if any)
by calling PutPeerViewPtr, and finally saving the integer fields using
S.Write.

See also: TView.Store, TListViewer.Load

List viewers use the default palette, CListViewer, to map onto the 26th
through 29th entries in the standard application palette.

CListViewer

Active-------'
Inact i ve--------'
Focusedl---------'

4

Divider
Selected

TLookupValidator Validate

474

TObject TVal idator

Options
HrH- Status
Free
Done Ini t

Load
Error
I-s¥a-t+eI
IsVal idInput
Store
Transfer
Valid

TLookupVal idator

A lookup validator compares the string typed by a user with a list of
acceptable values. TLookupValidator is an abstract validator type from
which you can derive useful lookup validators. You will never create an
instance of TLookupValidator. When you create a lookup validator type,
you need to specify a list of valid items and override the Lookup method to
return True only if the user input matches an item in that list. One
example of a working descendant of TLookup Validator is
TStringLookup Valida tor.

Turbo Vision Programming Guide

I

I

I

I

,I

I

I

1

I.

I I,
I

TLookupvalidator

Methods
IsValid function IsValid(const S: string): Boolean; virtual;

Calls Lookup to find the string S in the list of valid input items. Returns
True if Lookup returns True, meaning Lookup found S in its list; otherwise,
returns False.

See also: TLookup Valida tor. Lookup

Lookup function Lookup(const S: string): Boolean; virtual;

Searches for the string S in the list of valid entries and returns True if it
finds S; otherwise, returns False. TLookupValidator's Lookup is ~n abstract
method that always returns False. Descendant lookup validator types
must override Lookup to perform a search based on the actual list of
acceptable items.

TMemo object

TObject TView

Cursor
DragMode
EventMask
GrowMode

Hel pCtx
Next
Options
Origin

Owner
Size
State

HH-t- GetCommands Prey
beaQ. Ge-Wata- PrevVi ew
gefIe. Get Event Put Event
Awaken GetExtent PutInFrontOf
BlockCursor GetHel pCtx PutPeerVi ewPtr
Ca 1 cBounds GetPal eHe Se 1 ect
GllaR!:)eBsI:IRBS GetPeerVi ewPtr SetBounds
Cl earEvent GetState SetCommands
CommandEnabl ed GrowTo SetGIIIBState
~ HaRBl eE' eRt SetCursor
DisableCommands Hide ~
DragView HideCursor ~
Braw- KeyEvent Show
DrawVi ew locate ShowCursor
EnableCommands MakeFirst SizeLimits
EndModal MakeGlobal Store
EventAvail Makelocal TopView
Execute MouseEvent v.a.:I44
Exposed MouselnView WriteBuf
Focus MoveTo Wri teChar
Get Bounds NextVi ew Wri tel i ne
GetCl i pRect Norma 1 Cursor Wri teStr
GetColor

TEditor

Autolndent
Buffer
Buflen
BufSize
CanUndo
CurPos
CurPtr
Del Count
Delta
Drawline
DrawPtr
Gap len

Init
I::&aEI-
Done
BufChar
BufPtr
ChangeBounds
ConvertEvent
CursorVi si bl e
Del eteSe 1 ect
DoneBuffer
Draw
GetPaleHe
HaRBl eE eRt
InitBuffer

HScroll Bar
Indi cator
InsCount
IsVal id
limit
Modi fied
Overwrite
Selecting
Sel End
SelStart
VScrollBar

I nsertBuffer
InsertFrom
InsertText
ScrollTo
Search
SetBufSize
SetCmdState
SetSel ect
SetState
S-t&l>e-
TrackCursor
Undo
UpdateCommands
Val icj

TMemo

load
DataSize
GetData
GetPalette
Handl eEvent
SetData
Store

Editors

The memo object is a specialized descendant of the standard editor object
designed to work like a control inside a dialog box or form. It supports the
Tab key and the GetDatal SetData mechanism and has a palette similar to
that of an edit object.

Chapter 79, Turbo Vision reference 475

TMemo object

Methods
Load constructor Load (var S: TStream);

Reads a memo object from the stream 5 by first calling the Load
constructor inherited from TEditor, then reading the length of the text
buffer and the text associated with the editor.

See also: TEditor.Load

OataSize function DataSize: Word; virtual;'

Returns the size of the data transferred by GetData and SetData. By
default, that amount is the length of the buffer plus the size of the length
word.

See also: TMemo.GetData, TMemo.SetData

GetOata procedure GetData (var Ree); virtual;

Copies DataSize bytes data from the editor's text buffer to Rec. GetData
treats Rec as a TMemoData record, setting the Length field to BufLen, then I

copying the text from the text buffer. to the Buffer field. If the text does not
fill the entire buffer, Rec is padded with null characters. GetData enables I-
your application to read the text from a memo field in a dialog box or data
form.

See also: TMemo.DataSize, TMemo.SetData

GetPaleHe function Getpalette: PPalette; virtual;

Returns a pointer to CMemo, the default memo palette.

HandleEvent procedure HandleEvent (var Event: TEvent); virtual;

Calls the HandleEvent method inherited from TEditor if the event is not a
keystroke or not a Tab character. This ensures that the dialog box or
window that owns the memo view gets to handle Tab.

See also: TEditor.HandleEvent

SetOata procedure SetData (var Ree); virtual;

Copies DataSize bytes of information from Rec to initialize the data buffer.
SetData treats Rec as a TMemoData record, using the Length field to set the
memo's buffer size and copying the characters in the Buffer field to the end
of the edit buffer.

Store procedure Store(var S: TStream);

476 Turbo Vision Programming Guide

,I

I

I

TMemo object

Writes the memo object to the stream S by first calling the Store method
inherited from TEditor, then writing the length of the edit buffer and the
text from the buffer.

Palette

See also: TEditor.Store

Memo objects use the default palette CMemo to map onto the 26th and
27th entries in the standard dialog box palette.

1 2

CMemo 1j26 I 2{!

Normal-=-oJ Highl ight

TMemoData type Editors

Declaration TMemoData = record
Length: Word;
Buffer: TEditBuffer;

end;

Function TMemo objects use TMemoData records in their GetData and SetData
methods to read or write the length of their text buffers and the actual text
of the buffer.

TMenu type Menus

Declaration TMenu = record
Items: PMenuItem;
Default: PMenuItem;

end;

Function The TMenu type represents one level of a menu tree. The Items field points
to a list of TMenuItem records, and the Default field points to the default
item within that list (the one to select by default when bringing up this
menu). A TMenuView object (of which TMenuBar and TMenuBox are
descandants) has a Menu field that points to a TMenu. TMenu records are
created and destroyed using the NewMenu and DisposeMenu routines.

See also TMenuView, TMenuItem, NewMenu, DisposeMenu, TMenuView.Menu field

Chapter 79, Turbo Vision reference 477

a

TMenuBar

TMenuBar

478

TObject TView

Cursor
DragMode
EventMask
GrowMode

HelpCtx
Next
Options
Origin

Owner
Size
State

lfH.:t,. GetCommands Prey
beaEI- GetData PrevVi ew
gefIe. Get Event PutEvent
Awaken Get Extent PutInFrontOf
BlockCursor GetHel pCtx PutPeerVi ewPtr
Ca 1 cBounds GetPal eUe Se 1 ect
ChangeBounds GetPeerVi ewPt r SetBounds
Cl earEvent GetState SetCommands
CommandEnab 1 ed GrowTo SetCmdState
DataSi Ze liaRtH e['eRt SetCursor
Di sab 1 eCommands Hi de SetData
DragVi ew Hi deCursor SetState
Bf>.aw. Key Event Show
DrawVi ew Locate ShowCursor
Enab 1 eCommands MakeFi rst Si zeLi mits
EndModa 1 Ma keG 1 oba 1 £t.e.pe.
EventAvail MakeLoca 1 TopVi ew
~ MouseEvent Valid
Exposed Mousel nVi ew WriteBuf
Focus MoveTo WriteChar
GetBounds NextVi ew WriteL i ne
GetCl i pRect Norma 1 Cursor Wri teStr
GetColor

TMenuView

ParentMenu
Menu
Current

lfH.:t,.
Load
Execute
FindItem
GeUtelilReet
GetHel pCtx
GetPalette
Handl eEvent
HotKey
NewSubView
Store

TMenuBar

lnit
Done
Draw
GetItemRect

Menus

TMenuBar objects represent the horizontal menu bars from which menu
selections can be made by

• Direct clicking
• F10 selection and shortcut keys

• Selection (highlighting) and pressing Enter

• Hot keys

The main menu selections are displayed in the top menu bar. This is
represented by an object of type TMenuBar usually owned by your
T Application object. Submenlls are displayed in objects of type TMenuBox.
Both TMenuBar and TMenuBox are descendants of the abstract type
TMenuView (a child of TView).

For most Turbo Vision applications, you will not be involved directly with
menu objects. Once you override the application~s InitMenuBar method to
set up a menu structure using nested New, NewSubMenu, Newltem and
NewLine calls, the default menu behavior handles the creation and
management of menu views.

Turbo Vision Programming Guide

I

I

I

I

I

I

II

I

!

I

TMenuBar

Methods
Init constructor Init(var Bounds: TRect; AMenu: PMenu);

Constructs a menu bar with the given Bounds by calling the Init
constructor inherited from TMenuView. Sets GrowMode to gfGrowHiX. Sets
Options to of PreProcess to allow hot keys to operate. Sets Menu to AMenu,
providing the menu items.

See also: TMenuView.Init, gfXXXX grow mode flags, ofXXXX option flags,
TMenuView.Menu

Done destructor Done; virtual;

Disposes of the menu object by first calling the Done destructor inherited
from TMenuView, then calling. DisposeMenu to dispose of the lists of menu
items.

See also: TMenuView.Done, DisposeMenu procedure

Dravv procedure Draw; virtual;

Override: Seldom Draws the menu bar with the default palette. The Name arid Disabled fields
of each TMenuItem record in the linked list are read to give the menu
legends in the correct colors. The Current (selected) item is highlighted.

GetltemRect procedure GetItemRect (Item: PMenuItem; var R: TRect); virtual;

Override: Never Overrides the abstract method in TMenuView. Returns the rectangle
occupied by the given menu item in R. HandleEvent uses GetItemRect to
determine if a mouse click occurred on a given menu item.

See also: TMenuView.GetItemRect

Palette
Menu bars, like all menu views, use the default palette CMenu View to
map onto the 2nd through 7th entries in the standard application palette.

CM,""V'" U I 3 [4 [5 [e:g
Text Normal~ I I ~ Selected Shortcut
Text Di sab 1 ed Se 1 ected Di sab 1 ed
Text Shortcut Se 1 ected Normal

Chapter 79, Turbo Vision reference 479

a

TMenuBox

TMenuBox

Methods

TObject TView

Cursor
DragMode
EventMask
GrowMode

HelpCtx
Next
Options
Origin

Owner
Size
State

ffH.+ GetCommands Prey
I:eaQ. GetData PrevVi ew
Done GetEvent Put Event
Awaken GetExtent PutInFrontOf
BlockCursor GetHel pCtx PutPeerVi ewPtr
Ca 1 cBounds GetPal eHe Se 1 ect
ChangeBounds GetPeerVi ewPtr Set Bounds
Cl earEvent GetState SetCommands
CommandEnabl ed GrowTo SetCmdState
DataSi ze HaRen eli: eRt SetCursor
DisableCommands Hide SetData
DragVi ew Hi deCursor SetState
9f>aw. KeyEvent Show
DrawVi ew Locate ShowCursor
EnableCommands MakeFirst SizeLimits
EndModa 1 MakeGl oba 1 £.t.e.Ioe.
EventAva il MakeLoca 1 TopVi ew
~ MouseEvent Val id
Exposed MouselnVi ew WriteBuf
Focus MoveTo Wri teChar
GetBounds NextVi ew WriteL i ne
GetCl i pRect Normal Cursor WriteStr
GetColor

TMenuView

ParentMenu
Menu
Current

ffH.+
Load
Execute
FindItem
GeHtelfiReet
GetHelpCtx
GetPalette
Handl eEvent
Hot Key
NewSubView
Store

TMenuBox

Init
Draw
GetItemRect

Menus

TMenuBox objects represent vertical menu boxes. These can contain
arbitrary lists of selectable actions, including submenu items. As with
menu bars, color coding is used to indicate disabled items. Menu boxes
can be instantiated as submenus of the menu bar or other menu boxes, or
can be used alone as pop-up menus.

Init constructor Init(var Bounds: TRecti AMenu: PMenui AParentMenu: PMenuView) i

Init adjusts the Bounds parameter to accommodate the width and length of
the items in AMenu, then creates a menu box by calling the Init
constructor inherited from TMenu View.

Sets the of PreProcess bit in Options so that hot keys will operate. Sets State
to include sf Shadow. Sets Menu to AMenu, which provides the menu
selections, and ParentMenu to AParentMenu.

See also: TMenuView.Init, sfXXXX state flags, ofXXXX option flags,
TMenu View.Menu, TMenu View.ParentMenu

Dravv procedure Draw; virtual;

Override: Seldom Draws the framed menu box and menu items in the default colors.

480 Turbo Vision Programming Guide

I

I

I

I

I

,I

I

I

I

I

1

I

I

TMenuBox

GetltemRect procedure GetItemRect (Item: PMenuItem; var R: TRect); virtual;

Override: Seldom Overrides the abstract method in TMenu View. Returns the rectangle
occupied by the given menu item. HandleEvent calls GetItemRect to
determine if a mouse click occurred on a given menu item.

See also: TMenuView.GetItemRect

Palette
Menu boxes, like all menu views, use the default palette CMenuView to
map onto the 2nd through 7th entries in the standard application palette.

4

c y;.. 0 I 3 I 4 15 I ~
Text Normal~ I I I Selected Shortcut
Text Di sab 1 ed· Se 1 ected Di sab 1 ed
Text Shortcut Se 1 ected Normal

TMenultem type Menus

Declaration TMenuItem = record
Next: PMenuItem;
Name: PString;
Command: Word;
Disabled: Boolean;
KeyCode: Word;
HelpCtx: Word;
case Integer of

0: (Param: PString);
1: (SubMenu: PMenu);

end;
end;

Function The TMenuItem type represents a menu item, which can be either a normal
item, a submenu, or a divider line. Next points to the next TMenultem in a T
list of menu items, or is nil if this is the last item. Name points to a string
containing the menu item name, or is nil if the menu item is a divider line.
Command contains the command event (see cmXXXX constants) to be
generated when the menu item is selected, or zero if the menu item
represents a submenu. Disabled is True if the menu item is disabled, False
otherwise. KeyCode contains the scan code of the hot key associated with
the menu item, or zero if the menu item has no hot key. HelpCtx contains
the menu item's help context number (a value of hcNoContext indicates
that the menu item has no help context). If the menu item is a normal

Chapter 79, Turbo Vision reference 481

TMenultem type

item, Param contains a pointer to a parameter string (displayed to the
right of the item in a TMenuBox), or is nil if the item has no parameter
string. If the menu item is a submenu (Command = 0), SubMenu points to
the submenu struCture. '

TMenultem records are created using the NewItem, NewLine, and
NewSubMenu functions. '

See also TMenu, TMenu View, Newltem, NewLine, NewSubMenu

TMenuStr type Menus

Declaration TMenuStr = string [31] i

Function A string type used by Newltem and NewSubMenu. The maximum menu
item title is 31 characters.

See also NewItem, NewSubMenu

TMenuView Menus

482

TObject TView

Cursor
DragMode
EventMask
GrowMode

Hel pCtx
Next
Options
Origin

Owner
Size
State

l-R+t- GetCommands Prey
I:ea9- GetData PrevVi ew
Done Get Event Put Event
Awaken Get Extent , PutlnFrontOf
BlockCursor GetHe 1 pCtx PutPeerVi ewPtr

'CalcBounds GetPalette Select
ChangeBounds GetPeerVi ewPtr SetBounds
Cl earEvent GetState SetCommands
CommandEnab 1 ed GrowTo SetCmdState
DataSi ze HaREll eEO eRt SetCursor
DisableCommands Hide SetData
DragVi ew Hi deCursor SetState
Draw KeyEvent Show
DrawVi ew Locate ShowCursor
EnableCommands MakeFirst SizeLimits
EndModal MakeGlobal £t.&!oe.
EventAvai 1 MakeLoca 1 TopVi ew
~ MouseEvent Val id
Exposed MouselnVi ew Wri teBuf
Focus MoveTo WriteChar
Get Bounds NextVi ew WriteLi ne
GetCl i pRect Norma 1 Cursor WriteStr
GetColor

TMenuView

ParentMenu
Menu
Current

Init
Load
Execute
FindItem
GetItemRect
GetHel pCtx
GetPalette
Handl eEvent
Hot Key
NewSubView
Store

TMenu View provides an abstract menu type from which menu bars and
menu boxes (either pull-down or popup) are derived. You will probably
never construct an instance of TMenu View itself.

Turbo Vision Programming Guide

I

I.

TMenuView

Fields
Current Current: PMenuItem; Read only

A pointer to the currently selected menu item.

Menu Menu: PMenu; Read only

Points to the TMenu record for this menu, which holds a linked list of
menu items. The Menu pointer allows access to all the fields of the menu
items in this menu view.

See also: TMenuView.FindItem, TMenuView.GetItemRect, TMenu type

ParentMenu ParentMenu: PMenuView; Read only

Methods

Points to the menu view that owns this menu. Note that TMenuView is not
a group. Ownership here is a much simpler concept than TGroup
ownership, allowing menu nesting: the selection of submenus and the
return back to the "parent" menu. Selections from menu bars, for
example, usually result in a submenu being "pulled down." The menu bar
in that case is the parent menu of the menu box.

See also: TMenuBox.Init

Init constructor Init(var Bounds: TRect);

Constructs a menu view of size Bounds by calling the Init constructor
inherited from TView. Sets EventMask to evBroadcast. This method is not
intended to be used for constructing instances of TMenuView; rather it
should be called by descendant types, such as TMenuBar and TMenuBox.

See also: TView.Init, evBroadcast, TMenuBar.Init, TMenuBox.Init

Load constructor TMenuVie~.Load(var s: TStream)i

Creates a menu view object and loads it from the stream 5 by first calling
the Load constructor inherited from TView and then reading the items in
the menu list.

See also: TView.Load, TMenuView.Store

Execute function Execute: Word; virtual;

Override: Never Executes a menu view until the user selects a menu item or cancels the
process. Returns the command assigned to the selected menu item, or

Chapter 79, Turbo Vision reference 483

a

TMenuView

zero if the menu was canceled. This method should never be called except
by Exec View.

See also: TGroup.ExecView

Findltem function FindItern(Ch: Char): PMenultern;

Returns a pointer to the menu item that has Ch as its shortcut key (the
highlighted character). Returns nil if no such menu item is found or if the
menu item is disabled. Note that Ch is case-insensitive.

GetltemRect procedure GetIternRect (Item: PMenuItern; var R: TRect); virtual;

Override: Always This method returns the rectangle occupied by the given menu item in R.

484

It is used to determine if a mouse click has occurred on a given menu
selection. Descendants of TMenu View must override this method in order
to respond to mouse events.

See also: TMenuBar.GetItemRect, TMenuBox.GetItemRect

GetHelpCtx function GetHelpCtx: Word; virtual;
Override:

Sometimes
By default, GetHelpCtx returns the help context of the current menu item.
If this is hcNoContext, the parent menu's current context is checked. If there
is no parent menu, GetHelpCtx returns hcNoContext.

See also: hcXXXX help context constants

GetPaleHe function Getpalette: ~Palette; virtual;

Override: Returns a pointer to the default CMenuBar palette.
Sometimes

HandleEvent procedure HandleEvent (var Event: TEvent); virtual;

Override: Never Called whenever a menu event needs to be handled. Determines which
menu item has been selected with the mouse or keyboard (including hot
keys) and generates the linked command by calling PutEvent. Also
responds to cmCommandSetChanged by updating the active items if
necessary.

See also: TView.HandleEvent, TView.PutEvent

HotKey function HotKey(KeyCode: Word): PMenuItern;

Returns a pointer to the menu item associated with the hot key given by
KeyCode. Returns nil if no such menu item exists, or if the item is disabled.
Hot keys are usually function keys or Alt+ key combinations, determined
by arguments in NewItem and NewSubMenu calls during InitMenuBar.
HandleEvent uses HotKey to determine whether a keystroke event selects
an item in the menu.

Turbo Vision Programming Guide

I

I

I-

TMeouView

NewSubView function NewSubView (var Bounds: TRect j AMenu: PMenu j
AParentMenu: PMenuView): PMenuViewj virtualj

Constructs a new menu box with the given Bounds, AMenu, and
AParentMenu, and returns a pointer to it.

Store procedure Store(var S: TStream)j

Palette

Writes the menu view object (and any of its submenus) to the stream S by
first calling the Store method inherited from TView, then writing each
menu item to the stream.

See also: TMenu View .Load

All menu views use the default palette CMenuView to map onto the 2nd
through 7th entries in the standard application palette.

4

CMenuView II!:::~I =;=2 !==I =;=3 !==I =;=4 ,==1 =;=5 1'===;==!6~=7;==!J1
Text Normal~ I I I Selected Shortcut

. Text Disabled-------'· Selected Disabled
Text Shortcut Se 1 ected Normal

TMonoSelector object ColorSel

A monochrome selector view enables a user to select monochrome video
attributes for displayed items, much as one would select colors for those
same items on a color display. The possible attributes are normal,
highlighted, underlined, or inverse video. Although a monochrome
selector looks like a set of radio buttons, it actually descends directly from
TCluster.

Details about TMonoSelector are included in the online Help.

Chapter 79, Turbo Vision reference 485

I

TMultiCheckBoxes

TMultiCheckBoxes Dialogs

486

Fields

TObject TView

Cursor
DragMode
EventMask
GrowMode

HelpCtx
Next
Options
Origin

Owner
Size
State

lfl+.t- GetCommands Prey
I:ea4- ~ PrevVi ew
Bef\e. GetEvent PutEvent
Awaken Get Extent PutlnFrontOf
BlockCursor Getllel IlGtJE PutPeerVi ewPtr
Ca 1 cBounds GetPal ette Sel ect
ChangeBounds GetPeerVi ewPtr Set Bounds
Cl earEvent GetState SetCommands
CommandEnab 1 ed GrowTo SetCmdState
~ HaRen e[eRt SetCursor
DisableCommands Hide ~
DragVi ew Hi deCursor ~
Bf>aw. KeyEvent Show
DrawVi ew Locate ShowCursor
Enabl eCommands MakeFi rst Si zeL imits
EndModa 1 MakeGl oba 1 £tef'e.
EventAvail MakeLoca 1 TopVi ew
Execute MouseEvent Va 1 i d
Exposed MouselnVi ew Writ~Buf
Focus MoveTo Wri teChar
GetBounds NextVi ew WriteLi ne
GetCl i pRect Norma 1 Cursor Wr; teStr
GetColor

TCl uster

Enabl eMask
Sel
Str; ngs
Value

lfl+.t-
I:ea4-
Bef\e.
ButtonState
~
DrawBox
DrawMu 1 t i Box
~
GetHel pCtx
GetPalette
Handl eEvent
Mark
MovedTo
t4l:1ltit4al"l(
Ilf'e.s.s
SetButtonState
~
SetS tate
£tef'e.

TMul t i CheckBoxes

Fl ags
Sel Range
States

Init
Load
Done
DataSize
Draw
GetData
MultiMark
Press
SetData
Store

Flags Flags: Word;

Flags is a bitmapped field that holds one of the cfXXXX constants.

See also: cfXXXX constants

SelRange SelRange: Byte;

SelRange is the actual number of states a check box in the cluster can
assume.

States States: PString;

Methods

States points to a string holding characters to represent each of the check
box's possible states.

Init constructor Init(var Bounds: TRect; AStrings: PSltem;
ASelRange: Byte; AFlags: Word; const AStates: String);

Constructs a cluster of multistate check boxes by first calling the Init
constructor inherited from TCluster, then setting the SelRange, and Flags

Turbo Vision Programming Guide

TMultiCheckBoxes

fields to the values passed in ASelRange and AFlags, respectively, and
allocating a dynamic copy of AStates and assigning it to States.

ASelRange indicates the number of states each check box can have. AFlags
is one of the cfXXXX constants, indicating how many bits in Value
represent each check box. AStates has a character to display for each
possible state.

See also: TCluster.Init

Load constructor Load (var S: TStream);

Constructs a cluster of multistate check boxes and loads it from the stream
S by first calling the Load constructor inherited from TCluster, then
reading the values of the fields introduced by TMultiCheckBoxes.

See also: TCluster.Load

Done destructor Done; virtual;

Disposes of the multistate check boxes object by first deallocating the
dynamic string States, then calling the Done destructor inherited from
TCluster.

DataSize function DataSize: Word; virtual;

Returns the size of the data transferred by GetData and Set Data, which is
SizeOf(Longint).

See also: TMultiCheckBoxes.GetData, TMultiCheckBoxes.setData

Dravv procedure Draw; virtual;

Draws the cluster of multistate check boxes by drawing each check box in
turn, using the same box as a regular check box, but using the characters
in States to represent the state of each box insteaq. of the standard blank
and 'X'.

Get Data procedure GetData (var Ree); virtual;

Typecasts Rec into a Longint and copies Value into it.

MultiMark function MultiMark(Item: Integer): Byte; virtual;

Returns the state of the Itemth check box in the cluster.

Press procedure Press (Item: Integer); virtual;

Changes the state of the Itemth check box in the cluster. Unlike regular
check boxes that simply toggle on and off, multistate check boxes cycle
through all the states available to them.

Chapter 79, Turbo Vision reference 487

a

TMultiCheckBoxes

SetData procedure SetData (var Rec); virtual;

Typecasts Rec into a Longint, and copies its value into Value, then calls
DrawView to redraw the checkboxes to reflect their new states.

Store procedure Store(var S: TStream);

Writes the cluster of multistate check boxes to the stream S by first calling
the Store method inherited from TCluster, then writing the fields
introduced by TMultiCheckBoxes.

See also: TCluster.Store

TNode type Outline

Declaration TNode = record
Next: PNode;
Text: PString;
ChildList: PNodei
Expanded: Boolean;

end;

Function Outline objects use records of type TNode to hold the lists of linked strings
that form the outline. Each node record holds the text for that item in the
outline in its Text field. ChildList points to the first in a list of subordinate
nodes, or holds nil if there are no items subordinate to the node. Next
points to the next node at the same Qutline level as the current node.
Expanded is True if the outline view shows the subordinate views listed in
ChildList or False if the subordinate nodes are hidden.

When creating your outline list, allocate new nodes using the NewNode
function, and dispose of the nodes with DisposeNode.

See also DisposeNode procedure, NewNode function

TObject Objects

488

TObject

Init
Free
Done

TObject is the starting point of Turbo Vision's object hierarchy. As the base
object, it has no ancestor but many descendants. Apart from TPoint and

Turbo Vision Programming Guide

•
I

I

I

I.
II

Methods
Init

Done

TObjecf

TRect, in fact, all of Turbo Vision's standard objects are ultimately derived
from TObject. Any object that uses Turbo Vision's stream facilities must
trace its ancestry back to TObject.

constructor Init;

Allocates space on the heap for the object and fills it with zeros. Called by
all derived objects' constructors.

TObject.Init will zero all fields in descendants, so you should always call
TObject.Init before initializing any fields in the derived objects'
constructors.

destructor Done; virtual;

Performs the necessary cleanup and disposal for dynamic objects.

Free procedure Free;

Disposes of the object and calls the Done destructor.

TOutline

TObject TView

Cursor
DragMode
EventMask
GrowMode

Hel pCtx
Next
Options
Origin

Owner
Size
State

I-R-H- GetCommands Prey
Load GetData PrevVi ew
~ Get Event PutEvent
Awaken Get Extent PutInFrontOf
BlockCursor GetHel pCtx PutPeerVi ewPtr
Cal cBounds GetPal eHe Sel ect
ChangeBounds GetPeerVi ewPtr SetBounds
Cl earEvent GetState SetCommands
CommandEnabl ed GrowTo SetCmdState
DataSi ze liaAell et eAt SetCursor
Di sab 1 eCommands Hi de SetData
DragVi ew Hi deCursor ~
IW-aw- KeyEvent Show
DrawVi ew Locate ShowCursor
EnableCommands MakeFirst SizeLimits
EndModa 1 MakeGl oba 1 Store
EventAvail MakeLocal TopView
Execute MouseEvent Va 1 i d
Exposed MouseInVi ew WriteBuf
Focus MoveTo WriteChar
GetBounds NextVi ew WriteL i ne
GetCl i pRect Norma 1 Cursor Wri teStr
GetColor

Chapter 79, Turbo Vision reference

Outline

TOutl ineViewer TOutl ine

Foc

I-R-H-
~
CreateGraph
Draw
ExpandAll
FirstThat
Focused
ForEach
GetChi ld
GetGraph
GetPh:lIflGIl~ 1 elI"eA
Get Node
GetPal ette
~
GeHe*
Handl eEvent
l-IasGIl~ 1 ell'eA
Istl!llaAeleel
IsSel ected
Selected
SetState
Update

Root

Init
Done
Adjust
GetChi ld
GetNumChi 1 dren
Get Root
GetText
HasChi 1 dren
IsExpanded

489

II

TOutline

Field

TOutline implements a simple but useful type of outlirie viewer. It
assumes that the outline is a linked list of records of type TNode, so each
node consists of a text string, a pointer to any child nodes, and a pointer
to the next node at the same level.

Root Root: PNode;

Points to the root node of the outline tree.

Methods
Init constructor Init(var Bounds: TRect; AHScrollBar,

AVScrollBar: PScrollBar; ARoot: PNode);

Constructs an outline view by passing Bounds, AHScrollBar, and
A VScrollBar to the Init constructor inherited from TOutline Viewer. Sets
Root to ARoot, then calls Update to set the scrolling limits of the view based
on the data in the outline. I

See also: TScroller.Init I'
Done destructor Done; virtual;

Disposes of the outline view by first disposing of the root node, which
recursively disposes of all child nodes, then calling the Done destructor
inherited from TScroller.

See also: TScroller.Done

~djust procedure Adjust (Node: Pointer; Expand: Boolean); virtual;

Sets the Expanded field of Node to the value passed in Expand. If Expand is
True, this causes the child nodes linked to Node to be displayed. If Expand
is False, Node's child nodes are hidden.

GetRoot function GetRoot: Pointer; virtual;

Returns Root, which points to the top of the list of nodes for the outlin-e.

GetNumChiidren function GetNumChildren (Node: Pointer): Integer; virtual;

Returns the number of nodes in Node's ChildList, or zero if ChildList is nil.

GetChiid function GetChild (Node: Pointer; I: Integer): Pointer; virtual;

Returns a pointer to the Ith child in Node's ChildList.

GetText function Get Text (Node: Pointer): String; virtual;

490 Turbo Vision Programming Guide

TOutline

Returns the string pointed to by Node's Text field.

HasChiidren function HasChildren (Node: Pointer): Boolean; virtual;

Returns True if Node's ChildList is non-nil; otherwise returns False.

IsExpanded function IsExpanded(Node: Pointer): Boolean; virtual;

Returns the value 6f Node's Expanded field.

TOutlineViewer

TObject TView

Cursor
DragMode
EventMask
GrowMode

HelpCtx
Next
Options
Origin

Owner
Size
State

~ GetCommands Prev
Load GetData PrevVi ew
Done Get Event Put Event
Awaken Get Extent PutInFrontOf
BlockCursor GetHe 1 pCtx PutPeerVi ewPtr
Ca 1 cBounds GetPal ette Sel ect
ChangeBounds GetPeerVi ewPt r Set Bounds
Cl earEvent GetState SetCommands ~
CommandEnabl ed GrowTo SetCmdState
DataSi ze HaREIl e(eRt SetCursor
DisableCommands Hide SetData
DragVi ew Hi deCursor ~
9-Paw- KeyEvent Show
DrawVi ew Locate ShowCursor
EnableCommands MakeFirst SizeLimits
EndModal MakeGl oba 1 Store
EventAvail MakeLocal TopView
Execute MouseEvent Val i d
Exposed MouselnView WriteBuf
Focus MoveTo WriteChar
GetBounds NextVi ew WriteLi ne
GetCl i pRect Normal Cursor WriteStr
GetColor

TOutl ineViewer

Foc

Init
Adjust
CreateGraph
Draw
ExpandAll
Fi rstThat
Focused
ForEach
GetChil d
GetGraph
GetNumChi 1 dren
Get Node
GetPalette
GetRoot
GetText
Handl eEvent
HasChil dren
IsExpanded
IsSelected
Sel ected
SetState
Update

The outline viewer object type provides the abstract methods for

Outline

displaying, expanding, and iterating the items in an outline. T
TOutlineViewer, however, makes no assumptions about the actual items in
the outline. Descendants of TOutlineViewer, such as TOutline, display
outlines of specific kinds of items.

Chapter 79, Turbo Vision reference 491

TOutlineViewer

492

Field
Foc Foe: Integer;

Indicates the item number of the focused node in the outline.

Methods
Init constructor Init(var Bounds: TReet; AHSerollBar, AVSerollBar: PSerollBar);

Constructs an outline viewer object by first calling the Init constructor
inherited from TSeroller, passing Bounds, AHSerollBar, and AVSerollBar.
Sets GrowMode to gfGrowHiX + gfGrowHiYand sets Foe to zero.

See also: TSeroller.Init

}\djust procedure Adjust (Node: Pointer; Expand: Boolean); virtual;

Adjust is an abstract method that descendant outline viewer types must
override to show the child nodes of Node if Expand is True, or hide them if
Expand is False. Called when the user expands or collapses Node. If
HasChildren returns False for Node, Adjust will never be called for that
node.

See also: TOutlineViewer.HasChildren

CreateGraph function CreateGraph (Level: Integer; Lines: Longint; Flags: Word;
LevWidth, EndWidth: Integer; const Chars: String): String;

Draws a graph string suitable for returning from GetGraph. Level indicates
the outline level. Lines is the set of bits decribing the levels which have a
"c0r:ttinuation" mark (usually a vertical line). For example, if bit 3 is set,
level 3 is continued beyond this level.

Flags gives extra information about how to draw the end of the graph (see
the ovXXXX constants). LevWidth is how many characters to indent for
each level. EndWidth is the length of the end characters.

The graphic is divided into two parts: the level marks, and the end or
node graphic. The level marks consist of the Level Mark character
separated by Level Filler. What marks are present is determined by Lines.

The end graphic is constructed by placing one of the End First characters
followed by EndWidth - 4 End Filler characters, followed by the End Child
character, followed by the Retract/Expand character. If EndWidth equals 2,
End First and Retract/Expand are used. If EndWidth equals 1, only the
Retract/Expand character is used .. Which characters are selected is
determined by Flags.

Turbo Vision Programming Guide

TOutlineViewer

The layout for the characters in the Chars string is:

4 8

Character Typical Description

Level filler Used between level markers.

Level Mark 'I' Used to mark the levels
currently active.

End First (not last child) , ~' Used as the first character of
the end part of a node
graphic if the node is not the
last child of the parent.

End First (last child) , L' Used as the first character of
the end part of a node
graphic if the node is the last
child of the parent.

End Filler ' , Used as filler for the end part
of a node graphic.

End Child '-' If EndWidth > Lev Width, this
character will be placed on
top of the markers for next
level. If used it is typically a
T.

Retracted '+' Displayed as the last
character of the end node if
the level has children and
they are not expanded.

II Expanded ' , Displayed as the last
character of the end node if
the level has children and
they are expanded.

Chapter 79, Turbo Vision reference 493

TOutlineViewer

494

For example, GetGraph calls CreateGraph with the following parameters:

CreateGraph(Level, Lines, Flags, 3, 3, , '#179#195#192#196#196'+'#196);

To use double lines instead of single lines use:

CreateGraph(Level, Lines, Flags, 3, 3, , '#186#204#200#205#205'+'#205);

To have the children line drop off prior to the text instead of underneath,
use the following call:

CreateGraph(Level, Lines, Flags, 2, 4, , '#179#195#192#196#194'+'#196);

Dravv procedure Draw; virtual;

Called to draw the outline view. Essentially, Draw calls Get Graph to get the
graphical part of the outline, then appends the string returned from
GetText.

The line containing the focused node in the outline displays in a distinct
color. Nodes whose child nodes are not displayed are highlighted.

See also: TOutlineViewer.GetGraph, TOutlineViewer.GetText

ExpandAIl procedure ExpandAll (Node: Pointer);

If Node has child nodes, ExpandAll recursively expands Node by calling
Adjust with the Expand parameter True, then expands all its child nodes by
calling ExpandAll for each of them.

See also: TOutlineViewer.Adjust

FirstThat function FirstThat (Test: Pointer): Pointer;

FirstThat iterates over the nodes of the outline, calling the function
pointed to by Test until Test returns True. Test must point to a far local
function with the following syntax:

function MyIter(Cur: Pointer; Level, Position: Integer;
Lines: LongInt; Flags: Word): Boolean; far;

Turbo Vision Programming Guide

I

TOutlineViewer

The parameters are as follows:

Cur A pointer to the node being checked.

Level

Position

The level of the node (how many nodes are above it),
zero-based. This can be used in a call to either GetGraph
or· CreateGraph.

The display order position of the node in the list. This
can be used in a call to Focused or Selected. If in range,
Position - Delta. Y is location the node is displayed on the
view.

Lines Bits indicating the active levels. This can be used in a call
to GetGraph or CreateGraph. It dictates which horizontal
lines need to be drawn.

Flags Various flags for drawing (see ovXXXX flags). Can be
used in a call to Get Graph or CreateGraph.

Focused procedure Focused (I: Integer); virtual;

Called whenever a node receives focus. The I parameter indicates the
position of the newly focused node in the outline. By default, Focused just
sets Foc to 1.

ForEach function ForEach (Action: Pointer): Pointer;

Iterates over all the nodes. Action points to a far local procedure that
ForEach calls for each node in the outline. The syntax for the iterator
procedure is as follows:

procedure MyIter(Cur: Pointer; Level, position: Integer;
Lines: LongInt; Flags: Word); far;

The parameters are as follows:

Cur A pointer to the node being checked.

Level The level of the node (how many nodes are above it),
zero-based. This can be used in a call to either GetGraph
or CreateGraph.

Position The display order position of the node in the list. This
can be used in a call to Focused or Selected. If in range,
Position - Delta. Y is location the node is displayed on the
view.

Lines Bits indicating the active levels. This can be used in a call
to Get Graph or CreateGraph. It dictates which horizontal
lines need to be drawn.

Chapter 79, Turbo Vision reference 495

TOutlineViewer

Flags Various flags for drawing (see ovXXXX flags). Can be
used in a call to GetGraph or CreateGraph.

GetChiid function GetChild (Node: Pointer i I: Integer): Pointer i virtual i

GetChild is an abstract method that descendant outline viewer types must
override to return a pointer to the Ith child of the given Node.

If HasChildren returns False, indicating that Node has no child nodes,
GetChild will not be called for that node. You can safely assume that when
an outline viewer calls.GetChild, the given node has at least I child nodes.

See also: TOutline Viewer.HasChildren

GetGraph function GetGraph (Level: Integer i Lines: Longint i Flags: Word): String i

Returns a string of graphics characters to display to the left of the text
returned by GetText. By default, Get Graph calls CreateGraph with the
default character values. You only need to override GetGraph if you want
to change the appearance of the outline.

For example, instead of calling CreateGraph to show the hierarchy, you
might return a string of characters to merely indent the text by a given
amount for each level.

GetNumChiidren function GetNumChildren (Node: Pointer): Integer i virtual i

496

GetNumChildren is an abstract method that descendant outline viewer
types must override to return the number of child nodes in Node. If
HasChildren returns False for Node, GetNumChildren will never be called.

See also: TOutline Viewer.HasChildren

GetNode function GetNode (I: Integer): Pointeri

Returns a pointer to the Ith node in the outline; that is, the node shown I
lines from the top of the complete outline.

GetPaleHe .function Getpalette: PPalettei virtuali

Returns a pointer to the default outline palette, COutlineViewer.

GetRoot function GetRoot: Pointer i virtual i

GetRoot is an abstract method that descendant outline viewer types must
override to return a pointer to the root node of the outline.

GetText function GetText(Node: Pointer): Stringi virtuali

GetText is an abstract method that descendant outline viewer types must
override to return the text of Node.

Turbo Vision Programming Guide

·1

I

I

I

TOutline Viewer

HandleEvent procedure HandleEvent (var Event: TEvent); virtual;

Handles most events for the outline viewer by calling the HandleEvent
method inherited from TScroller, then handles certain mouse and
keyboard events.

HasChiidren function HasChildren(Node: Pointer): Boolean; virtual;

HasChildren is an abstract method that descendant outline viewers must
override to return True if the given Node has child nodes and False if Node
has no child nodes.

If HasChildren returns False for a particular node, the following functions
are never called for that node: Adjust, ExpandAll, GetChild,
GetNumC~ildren, and IsExpanded.

Those methods can assume that if they are called, there are child nodes for
them to act on.

IsExpanded function IsExpanded (Node: Pointer): Boolean; virtual;

Is Expanded is an abstract method that descendant outline viewer types
must override to return True if Node's child nodes should be displayed. If
HasChildren returns False for Node, Is Expanded will never be called for that
node.

IsSelected function IsSelected(I: Integer): Boolean; virtual;

Returns True if Node is selected. By default, TOutlineViewer assumes a
single-selection outline, so it returns True if Node is Focused. You can
override IsSelected to handle multiple selections.

Selected procedure Selected (I: Integer); virtual;

Called whenever a node is selected by the user, either by keyboard control
or by the mouse. The I parameter indicates the position in the outline of
the newly selected node.

By default, Selected does nothing; descendant types can override Selected to
perform some action in response to selection.

SetState procedure SetState(AState: Word; Enable: Boolean); virtual;

Sets or clears the AState state flags for the view by calling the SetState
method inherited from TScroller. If the new state includes a focus change,
SetState calls DrawView to redraw the outline.

See also: TScroller.SetState

Chapter 79, Turbo Vision reference 497

a

TOutline Viewer

Update procedure Update;

Palette

Updates the limits of the outline viewer. The limit in the vertical direction
is number of nodes in the outline. The limit in the horizontal direction is
the length of the longest displayed line.

Your program should call Update whenever the data in the outline
changes. TOutlineViewer assumes that the outline is empty, so if the
outline becomes non-empty during initialization, you must explicitly call
Update. Also, if during the operation of the outline viewer the data being
displayed change, you must call Update and the inherited DrawView.

Outline viewer objects use the default palette COutline Viewer to map onto
the 6th through 8th entries in the standard window palette.

4

CO"H","_:!] I 7 I ~
Norma 1 color I Not expanded color
Focus color . Select color

TPalette type Views

Declaration TPalette = String;

Function A string type used to declare Turbo Vision palettes.

See also GetPalette methods

498 Turbo Vision Programming Guide

TParamText

Fields

TObject TView

Cursor
DragMode
EventMask
GrowMode

Hel pCtx
Next
Opti ons
Origin

Owner
Size
State

Hri+ GetCommands Prev
beaQ. GetData PrevVi ew
gef!e. GetEvent Put Event
Awaken Get Extent PutInFrontOf
BlockCursor GetHelpCtx PutPeerViewPtr
Ca 1 cBounds Get Pal ette Se 1 ect
ChangeBounds GetPeerVi ewPtr SetBounds
Cl earEvent GetState SetCommands
CommandEnabl ed GrowTo SetCmdState
~ Handl eEvent SetCursor
DisableCommands Hide ~
DragVi ew Hi deCursor SetS tate
Bi>aw- Key Event Show
DrawVi ew locate ShowCursor
EnableCommands MakeFirst Sizelimits
EndModal MakeGlobal ~
EventAvail MakeLoca 1 TopVi ew
Execute MouseEvent Val i d
Exposed MouseInVi ew WriteBuf
Focus MoveTo . Wri teChar
GetBounds NextVi ew Wri tel i ne
GetCl i pRect Norma 1 Cursor Wri teStr
GetColor

TParamText

Dialogs

TStat i cText TParamText

Text ParamCount
Par.amLi st

Hri+
beaQ. Init
Done Load
Draw DataSize
GetPalette GetText
~ SetData
~ Store

TParamText is a derivative of TStaticText that uses parameterized text
strings for formatted output, using the FormatStr procedure.

ParamCount ParamCount: Integer;

ParamCount indicates the number of parameters contained in ParamList.

See also: TParamText.ParamList

Paramlist ParamList: Pointer;

Methods

ParamList is an untyped pointer to an array or record of pointers or
Longint values to be used as formatted parameters for a text string.

Init constructor Init(var Bounds: TRect; const AText: String; AParamCount: Integer);

Constructs a static text object by calling the Init constructor inherited from
TStaticText with the given Bounds and a text string, AText, that may
contain format specifiers in the form % [- J [nnnJ x, which will be replaced by

Chapter 79, Turbo Vision reference 499

a

TParamText

500

the parameters passed at run time. The parameter count, passed in
AParamCount, is assigned to the ParamCount field.

Format specifiers are described in detail in the entry for the FormatStr
procedure.

See also: TStaticText.Init, FormatStr procedure

Load constructor Load (var S: TStream);

Constructs a TParamText object and "loads its value from the stream S by
first calling the Load constructor inherited from TStaticText and then
reading the ParamCount field from the stream.

See also: TStaticText.Load

OataSize function DataSize: Word; virtual;

Returns the size of the data required by the object's parameters, that is,
ParamCount * SizeOf(Longint).

GetText procedure GetText (var S: String); virtual;

Produces a formatted text string in S, produced by merging the
parameters contained in ParamList into the text string in Text, using
FormatStr(S, Text/\, ParamList/\).

See also: FormatStr procedure

SetOata procedure SetData(var Ree); virtual;

The view reads DataSize bytes into ParamList from Rec.

See also: TView.SetData

Store procedure Store(var S: TStream);

Palette

Stores the object on the stream S by first calling the Store method inherited
from TStaticText and then writing the ParamCount field to the stream.

See also: TStaticText.Store

TParamText objects use the default palette CStaticText to map onto the
sixth entry in the standard dialog palette.

CStaticText II ~ II
Text

Turbo Vision Programming Guide

I

I·'

TPoint

TPoint Objects

TPo;nt

TPoint is a simple object representing a point on the screen.

Fields

X x: Integer

X is the screen column of the point.

y Y: Integer

Y is the screen row of the point.

TPicResult type Validate

Declaration TPicResult = (prComplete, prIncomplete, prEmpty, prError, prSyntax, prAmbiguous,
prIncompNoFill) ;

Function TPicResult is the result type returned by the Picture method of
TPXPicture Va lida tor .

See also TPXPictureValidator.Picture

Chapter 79, Turbo Vision reference 501

a

TProgram

TProgram

502

TObject TView

Cursor
DragMode
EventMask
GrowMode
Hel pCtx
Next

J..R..:i..t.
bea&
QeRe.

~
BlockCursor
Cal cBounds
G~aR!leB9I:lRS5
ClearEvent
CommandEnab 1 ed
~
Di sab 1 eCommands
DragView
Bf>aw.
DrawView
Enab 1 eCommands
~
EventAvail
~
Exposed
Focus
GetBounds
GetCl i pRect
GetColor
GetCommands
~
~
Get Extent
Gelillelf3Glili
GeliPaleHe
GetPeerVi ewPtr
GetState
GrowTo
lIaRslei; eRli
Hide

Options
Origin
Owner
Size
State

HideCursor
KeyEvent
Locate
MakeFi rst
MakeGlobal
MakeLocal
MouseEvent
MouseInView
MoveTo
NextView
Normal Cursor
Prey
PrevView
PutEvent
PutInFrontOf
PutPeerVi ewPt r
Select

. SetBounds
SetCommands
SetCmdState
SetCursor
~
~
Show
ShowCursor
SizeLimits
~
TopVi ew
V-a+4-tI-
WriteBuf
WriteChar
WriteLine
WriteStr

TGroup

Buffer
Current
Last
Phase

J..R..:i..t.
Load
QeRe.
Awaken
ChangeBounds
DataSize
Delete
Draw
EndModal
EventError
ExecView
Execute
First
Fi rstThat
FocusNext
ForEach
GetData
GetHelpCtx
GetSubVi ewPt r
lolaRsl eli;"eRli
Insert
I nsertBefore
Lock
PutSubVi ewPt r
Redraw
Sel ectNext
SetData
SetS tate
Store
Unlock
Valid

TProgram

Init
Done
CanMoveFocus
ExecuteDi a log
GetEvent
GetPalette
Handl eEvent
Idl e
InitDeskTop
Ini tMenuBar
Ini tScreen
InitStatusLi ne
InsertWi ndow
OutOfMemory
Put Event
Run
SetScreenMode
Val idView

App

TProgram provides the basic template for all standard Turbo Vision
applications. All such programs must be derived from TProgram or its
descendant, T Application. T Application differs from TProgram only in its
default constructor and destructor methods. Both object types are
provided for added flexibility when designing nonstandard applications.
For most Turbo Vision work, your program will be derived from
T Application.

TProgram is a TGroup descendant because it needs to contain your
desktop, status line, and menu bar views.

The base application object TProgram has three new methods in version
2.0. CanMoveFocus is used internally by the application to determine
whether it can activate a window when the user is in a validating'

Turbo Vision Programming Guide

I~

Methods
Init

Override:
Sometimes

Done

Override:
Sometimes

TProgram

window. The other two methods are the safe methods of inserting
windows and executing dialog boxes on the desktop.

constructor Init;

Sets the Application global variable to @Self; calls InitScreen to initialize
screen mode dependent variables; calls the Init constructor inherited from
TGroup, passing a Bounds rectangle covering the full screen; sets State to
sfVisible + sf Selected + sfFocused + sf Modal + sfExposed; sets Options to 0; sets
Buffer to the address of the screen ·buffer given by Screen Buffer; and finally
calls InitDesktop, InitStatusLine, and InitMenuBar, and inserts the resulting
views into the TProgram group.

See also: TGroup.Init, TProgram.InitDesktop, TProgram.InitStatusLine,
TProgram.InitMenuBar

destructor Done; virtual;

Disposes the Desktop, MenuBar, and StatusLine objects, and sets the
Application global variable to nil, then calls the Done destructor inherited
from TGroup.

See also: TGroup.Done

CanMoveFocus function CanMoveFocus: Booleani

CanMoveFocus returns True if the desktop can safely change its selected
window. The method determines whether such a change is possible by
having the desktop call its active windows' Valid method with the
command cmReleasedFocus.

If the window holds invalid data that would possibly not get valiqated if
the user moved the focus out of the active window, its Valid should return
False, causing CanMoveFocus to also return False, thus preventing the
window from losing the focus.

ExecuteDialog function ExecuteDialog(P: PDialog; Data: Pointer): Word;

Calls Valid View to ensure that P is a valid dialog box, then executes P in
the desktop. When the user closes the dialog box, ExecuteDialog disposes
of the dialog box and returns the command that ended the modal state, as
returned by ExecView. If ValidView returns nil, meaning the dialog box
was not valid, ExecuteDialog returns cmCancel.

If Data is not nil, ExecuteDialog automatically handles setting and reading
the dialog box's controls, using Data/\ as the data record. ExecuteDialog
initially calls P/\.SetData, to set the controls. If the user does not cancel the

Chapter 19, Turbo Vision reference 503

TProgram

dialog box, ExecuteDialog calls pA . GetData to read the new values of the
dialog box's controls before disposing of the dialog box object.

You should call your application object's ExecuteDialog method rather than
calling DesktopA.ExecView directly. ExecuteDialog is a much more
convenient way to handle setting and reading of control values and also
has built-in validity checks.

See also: TProgram.ValidView, TGroup.ExecView

GetEvent procedure GetEvent (var Event: TEvent); virtual;

Override: Seldom The default TView.GetEvent simply calls its owner's GetEven;t, and since a
TProgram (or T Application) object is the ultimate owner of every view,
every GetEvent call will end up in TProgram.GetEvent (unless some view
along the way has overridden GetEvent).

GetPalette

Override:
Sometimes

TProgram.GetEvent first checks if PutEvent has generated a pending event;
if so, GetEvent returns that event. If there is no pending event, GetEvent
calls GetMouseEvent; if that returns evNothing, it then calls GetKeyEvent. If
both return evNothing, indicating that no user input is available, GetEvent
calls Idle to allow "background" tasks to be performed while the
application waits for user input. Before returning, GetEvent passes any
evKeyDown and evMouseDown events to the StatusLine for it to map into
associated evCommand hot key events.

See also: TProgram.PutEvent, GetMouseEvent, GetKeyEvent

function GetPalette: PPalette; virtual;

Returns a pointer to the palette given by the palette index in the
AppPalette global variable. TProgram supports three palettes, apColor,
apBlack White, and apMonochrome. The AppPalette variable is initialized by
TProgram.InitScreen.

See also: TProgram.InitScreen, AppPalette, apXXXX constants

HandleEvent procedure HandleEvent (var Event: TEvent); virtual;

Override: Always Handles most events by calling the HandleEvent method inherited from
TGroup. Handles Alt+ 1 through Alt+9 key events by generating an
evBroadcast event with a Command value of cmSelect WindowNum and an
InfoInt value of 1..9. TWindow.HandleEvent reacts to such broadcasts by
selecting the window if it has the given number.

Handles an evCommand event with a Command value of cmQuit by calling
EndModal(cmQuit), which in effect terminates the application.

504 Turbo Vision Programming Guide

I

I

I.

Idle

Override:
Sometimes

InitOesktop

Override: Seldom

TProgram

Your application object will nearly always override HandleEvent to
introduce handling of commands specific to your application.

See also: TGroup.HandleEvent

procedure Idle; virtual;

GetEvent calls Idle whenever the event queue is empty, allowing the
application to perform background tasks while waiting for user input.

The default TProgram.Idle calls StatusLineA • Update to allow the status line
to update itself according to the current help context. Then, if the
command set has changed since the last call to TProgram.Idle, a broadcast
event with a Command value of cmCommandSetChanged is generated to
allow views that depend on the command set to enable or disable
themselves.

If you override Idle, always make sure to call the inherited Idle. Also, make
sure that any tasks performed by your Idle don't suspend the application
for any noticeable length of time, since this would block user input and
give an unresponsive feel to the application. .

procedure InitDesktop; virtual;

Constructs a desktop object for the application and stores a pointer to it in
the Desktop global variable. TProgram.Init calls InitDesktop, so you should
never call it directly. You can override InitDesktop to construct a user
defined descendant of TDesktop instead of the default TDesktop.

See also: TProgram.Init, TDesktop, TWindow.Init

InitMenuBar procedure Ini tMenuBar; virtual;

Override: Always Constructs a menu bar object for the application and stores a pointer to it
in the MenuBar global variable. TProgram.Init calls InitMenuBar, so you
should never call it directly. Your applications will nearly always override
InitMenuBar to provide a user-defined menu bar instead of the default
empty TMenuBar.

InitScreen

Override:
Sometimes

See also: TProgram.Init, TMenuBar, TWindow.Init

procedure InitScreen; virtual;

TProgram.Init and TProgram.SetScreenMode call InitScreen every time the
screen mode is initialized or changed. This is the method that actually
performs the updating and adjustment of screenmode-dependent
variables for shadow size, markers and application palette.

See also: TProgram.Init, TProgram.SetScreenMode

Chapter 79, Turbo Vision reference 505

I

TProgram II

I,

InitStatusLine procedure Ini tStatusLine; virtual;

Override: Always Constructs a status line object for the application and stores a pointer to it .
in the StatusLine global variable. TProgram.Init calls InitStatusLine so you
should never call it directly. Your applications will usually override
InitStatusLine to construct a user-defined status line instead of the default
TStatusLine.

See also: TProgram.Init, TStatusLine

InserfWindow function InserbWindow(P: PWindow): PWindow;

Calls Va lid View to ensure that P is a valid window, and if it is, calls
CanMoveFocus to see if inserting the window would cause a validation
problem in the active window. If CanMoveFocus returns True,
InsertWindow inserts P into the desktop and returns P. If CanMoveFocus
returns False, Insert Window disposes of P and returns nil.

You should call your application object's Insert Window method rather than
calling Desktopl\.Insert directly. Not only does InsertWindow automatically
check the validity of window objects, it uses CanMoveFocus to protect the
validation of data in the active window.

See also: TProgram.CanMoveFocus, TGroup.Insert

OutOfMemory procedure OutOfMemory; virtual;

Override: Often Va lid View calls OutOfMemory whenever it detects that LowMemory is True.
OutOfMemory should alert the user tq the fact that there is not enough
memory to complete an operation. For example, using the MessageBox
routine in the MsgBox unit:

procedure TMyApp.OutOfMemory;
begin

MessageBox('Not enough memory to complete operation.',
nil, mfError +mfOKButton);

end;

See also: TProgram.ValidView, LowMemory variable

PutEvent procedure Put Event (var Event: TEvent); virtual;

Override: Seldom The default TView.PutEvent simply calls its owner's PutEvent, and since a
TProgram (or T Application) object is the ultimate owner of every view,
every PutEvent call will end up in TProgram.PutEvent (unless some view
along the way has overridden PutEvent).

506

TProgram.PutEvent stores a copy of the Event record in a buffer, and the
next call to GetEvent will return that copy.

Turbo Vision Programming Guide

TProgram

See also: TProgram.GetEvent, TView.PutEvent

Run procedure Run i virtual i

Override: Seldom Runs the application by calling the Execute method (which TProgram
inherited from TGroup).

See also: TGroup.Execute

SetScreenMode procedure SetScreenMode (Mode: Word) i

Sets the screen mode. Mode is one of the constants smC080, smB W80, or
smMono, optionally with smFont8x8 added to select 43- or 50-line mode on
an EGA or VGA. SetScreenMode hides the mouse, calls SetVideoMode to
actually change the screen mode, calls InitScreen to initialize any
screenmode-dependent variables, assigns ScreenBuffer to TProgram.Buffer,
calls ChangeBounds with the new screen rectangle, and finally shows the
mouse.

See also: TProgram.InitScreen, SetVideoMode, smXXXX constants

ValidView function TPrograrn. ValidView{P: PView): PViewi

Palettes

Checks the validity of a newly instantiated view, returning P if the view is
valid, nil if not. First, if P is nil, a value of nil is returned. Second, if
LowMemory is True upon the call to ValidView, the view given by P is
disposed, the OutOfMemory method is called, and a value of nil is
returned. Third, if the call P".Valid(cmValid) returns False, the view is
disposed and a value of nil is returned. Otherwise, the view is considered
valid, and P, the pointer to the view, is returned.

Va lid View is often used to validate a new view before inserting it in its
owner. Both Insert Window and ExecuteDialog call ValidView. You can call
Valid View directly in cases where you don't want to immediately insert or
execute a view.

See also: LowMemory, TProgram.OutOfMemory, Valid methods

The palette for an application object controls the final color mappings for
all views in the application. All other palette mappings eventually result
in the selection of an entry in the application's palette, which provides text
attributes.

In version 2.0, the standard application palettes have been extended to
accommodate blue and cyan dialog boxes in addition to the default gray
dialog boxes. The version 1.0 palettes CCoior, CBlackWhite and

Chapter 79, Turbo Vision reference 507

TProgram

508

CMonochrome are still included in App for compatibility with existing
programs that have extended the default palettes.

The version 2.0 palettes CAppColor, CAppBlack White, and CAppMonochrome
are identical to the version 1.0 palettes, but the entries from 64 to 127 are
new.

The" first entry is used by TBackground for the background color. Entries 2
through 7 are used by both menu views and status lines.

CAppColor

CAppBlackW

CAppMonoch

Background
Normal Tex
Disabl ed T
Shortcut t

hite

rome

t
ext
ext

$71

$70

$70

I

$70 $78

$70 $78

$07 $07

I I

4 5

$74 $20

$7F $07

$OF $70

I I

$28 $24

$07 $OF

$70 $70

L=: Shortcut select ion
Di sab 1 ed se 1 ect ion
Norma 1 selection

Entries 8 through 15 are used by blue windows.

CAppColor

CAppBlackW

CAppMonoch

Frame Pass
Frame Acti
Frame Icon
Scroll Bar

hite

rome

ive
ve

Pa e

8

$17

$07

$07

I

9 10 11 12 13 14 15

$IF $IA $31 $31

$OF $07 $70 $70

$OF $07 $70 $70

I I I I

$IE

$07

$07

I

$71 $00

$70 $00

$70 $00

Reserved
Scro 11 er Selected Text
Scroller Normal Text
Scroll Bar Reserved

L=.

Entries 16 through 23 are used by cyan windows.
16 17 18 19 20 21 22 23

CAppColor

CAppBlackW

CAppMonoch

Frame Pass
Frame Acti
Frame Icon
Scroll Bar

hite

rome

ive
ve

Page

$37

$07

$07

I

$3F $3A

$OF $07

$OF $07

I I

$13 $13

$70 $70

$70 $70

I I

$3E

$07

$07

I

$21 $00

$70 $00

$70 $00

L= Reserved
Scroller Selected Text
Scroller Normal Text
Scro 11 Bar Reserved

Entries 24 through 31 are used ~y gray windows.
24 25 26 27 28 29 30 31

CAppColor

CAppBlackW

CAppMonoch

Frame Pass
Frame Acti
Frame Icon
Scroll Bar

hite

rome

ive
ve

Pae

$70

$70

$70

J

$7F $7A $13

$7F $7F $70

$70 $70 $07

I J I

$13 $70

$07 $70

$07 $70

I I

$7F $00

$07 $00

$07 $00

L=! Reserved
Scroller Selected Text
Scroll er Normal Text
Scroll Bar Reserved

Turbo Vision Programming Guide

TProgram

Entries 32 through 63 are used by gray dialog box objects. See TDialog for
individual entries.

CAppColor

CAppBlackW

CAppMonoch

hite

rome

i ve
ve

Frame Pass
Frame Acti
Frame Icon
Scroll Bar
Scroll Bar

Page
Controls

CAppColor

CAppBl ackWhi t

CAppMonochrom

Button Normal
Button Defaul
Button Select
Button Disabl
Button Shortc

CAppColor

CAppBlackWhit

e

e

t
ed
ed
ut

e

e

32 33 34 35 36 37 38 39 40

$70 $7F $7A $13 $13 $70 $70 $7F $7E

$70 $7F $7F $70 $07 $70 $70 $7F $7F

$70 $70 $70 $07 $07 $70 $70 $70 $7F

I I I I I I ~

41 42 43 44 45 46 47 48 49

$20 $2B $2F $78 $2E $iO $30 $3F $3E

$07 $OF $OF $78 $OF $78 $07 $OF $OF

$07 $07 $OF $70 $OF $70 $07 $OF $OF

I I I I I I ~

50 51 52 53 54 55 56

$lF $2F $lA $20 $72 $31 $31

$OF $70 $OF $07 $70 $70 $70

$07 $70 $07 $07 $70 $07 $07

Labe 1 Shortcut
Label Highlight
Label Normal
StaticText

Cl uster Shortcut
Cluster Selected
Cl us ter Normal
Button Shadow

CAppMonochrom

InputLine Nor
InputLine Sel
InputLine Arr
Hi story Arrow

mal~
ected I I I

~I HistoryWindow ScrollBar controls
HistoryWindow Scroll Bar page
History Sides ows

CAppColor

CAppBl ackWhi te

CAppMonochrome

ListViewer Normal
L i stVi ewer Focused

57 58 59. 60 61 62 63

$30 $2F $3E $31 $13 $00 $00

$07 $70 $OF $07 $07 $00 $00

$07 $70 $OF $07 $07 $00 $00

Reserved

L i stVi ewer Sel ectedl------'
ListViewer Divider-------'

Cl uster di sabl ed
L----InfoPane

Chapter 79, Turbo Vision reference 509

a

TProgram

510

Entries 64 through 95 are used by blue dialog box objects. See TDialog for
individual entries.

CAppColor

CAppBlackW

CAppMonoch

hite

rome

ive
ve

Frame Pass
Frame Acti
Frame Icon
Scroll Bar
Scroll Bar

Page
Control s

CAppColor

CAppBl ackWhi t

CAppMonochrom

Button Normal
Button Defaul
Button Select
Button Disabl
Button Shortc

e

e

t
ed
ed
ut

e

e

64 65 66 67 68 69 70 .71 72

$17 $lF $lA $71

$07 $OF $OF $07

$70 $70 $70 $07

I I I I

$71 $lE $17

$70 $07 $07

$07 $70 $70

I I

$lF $lE

$OF $OF

$70 $OF

L= Labe 1 Shortcut
Label Highl ight
Labe 1 Normal
Stati cText

73 74 75 76 77 78 79 80 81

$20 $2B $2F $78 $2E $10 $30

$70 $78 $7F $08 $7F $08 $70

$07 $07 $OF $70 $OF $70 $07

I I I I I I

82 83 84 85 86 87 88

$70 $2F $7A $20 $12 $31 $31

$7F $OF $70 $70 $07 $70 $70

$07 $70 $07 $07 $70 $07 $07

$3F $3E

$7F $7F

$OF $OF

L=: Cl uster Shortcut
Cl uster Sel ected
Cl uster Normal
Button Shadow

mal~
ected

CAppColor

CAppBlackWhit

CAppMonochrom

I nputLi ne Nor
InputLine Sel
InputLi ne Arr
Hi story Arrow

I I I L=: Hi storyWi ndow Scroll Bar controls
HistoryWindow Scroll Bar page

qws

CAppColor

89 90 91 92 93 94 95

$30 $2F $3E $31 $'13 $38 $00

$70 $07 $7F $70 $07 $78 $00

$W $70 $OF $07 $07 $70 $00

Hi story Si des

Reserved

CAppBl ackWhi te

CAppMonochrome

ListViewer Normal
Li stVi ewer Focused
ListViewer Selected------'
ListViewer Divider'--------'

Cluster disabled
'-----InfoPane

Turbo Vision Programming Guide

TProgram

Entries 96 through 127 are used by gray dialog box objects. See TDialog for
individual entries.

CAppColor

CAppBlackW

CAppMonoch

hite

rome

ive
ve

Page

Frame Pass
Frame Acti
Frame Icon
ScrollBar
Scroll Bar Controls

CAppColor

CAppBlackWhit

CAppMonochrom

Button Normal
Button Defaul
Button Select
Button Disabl
Button Shortc

CAppColor

CAppBl ackWhi t

e

e

t
ed
ed
ut

e

e

mal

CAppMonochrom

InputLine Nor
InputLine Sel
InputLine Arr
Hi story Arrow

ected
ows

CAppColor

CAppBl ackWh i te

CAppMonochrome

ListViewer Normal
L i stVi ewer Focuse
ListViewer Select
ListViewer Divide

d
ed
r

Chapter 79, Turbo Vision reference

96 97 98. 99 100 101 102 103 104

$37 $3F $3A $13

$70 $7F $7F $70

$70 $70 $70 $07

I I I I

$13 $3E $30

$07 $70 $70

$07 $70 $70

I I

$3F $3E

$7F $7F

$70 $OF

L= Labe 1 Shortcut
Label Highl ight
Labe 1 Normal
StaticText

105 106 107 108 109 110 111 112 113

$20 $2B $2F $78 $2E

$07 $OF $OF $78 $OF

$07 $07 $OF $70 $OF

I I I I

$30 $70

$78 $07

$70 $07

I I

$7F $7E

$OF $OF

$OF $OF

L=: Cl uster Shortcut
Cl uster Sel ected
Cl uster Normal
Button Shadow

114 115 116 117 118 119 120

$lF $2F $1A $20

$OF $70 $OF $07

$07 $70 $07 $07

I I I

$32

$70

$70

I

$31 $71

$70 $70

$07 $07

L= HistoryWindow ScrollBar control s
HistoryWindow Scroll Bar page
History Sides

121 122 123 124 125 126 127

$70 $2F $7E $71

$07 $70 $OF $07

$07 $70 $OF $07

I I I

$13

$07

$07

I

$38 $00

$78 $00

$70 $00

L=: Reserved
Cl uster di sabl ed
InfoPane

511

TPXPicture Validator

TPXPictureValidator Validate

Field
Pic

Methods

TObject TValidator

Options
Status

l-R-H-
I::eaEI-
~
~
Is"al ielIRJ3l:lt
~
Transfer
Val id

TPXPi ctureVa 1 i dator

Pic

Init
. Load

Done
Error
IsVal id
IsValidlnput
Pi cture
Store

Picture validator objects compare user input with a picture of a data
format to determine the validity of entered data. The pictures are
compatible with the pictures Borland's Paradox relational database uses to
control data entry. For a complete description of picture specifiers, see
TPXPicture Va 1 ida tor's Picture method.

Pic: PString;

Points to a string containing the picture that specifies the format for data
in the associated input line. The Init constructor sets Pic to a string passed
as one of its parameters.

Init constructor Init(const APic: string; AutoFill: Boolean);

Constructs a picture valida tor object by first calling the Init constructor
inherited from TValidator, then allocating a copy of APic on the heap and
setting Pic to point to it, then setting the voFill bit in Options if AutoFill is
True.

See also: TValidator.Init

Load constructor Load (var S: TStream);

Constructs and loads a picture valida tor object from the stream $ by first
calling the Load constructor inherited from TValidator, then reading the
value for the Pic field introduced by TPXPictureValidator.

See also: TValidator.Load

Done destructor Done; virtual;

512 Turbo Vision Programming Guide

i

I

I

I

TPXPicture V alidator

Disposes of the string pointed to by Pic, then disposes of the picture
valida tor object by calling the Done destructor inherited from TValidator.

Error procedure Error; virtual;

Displays a message box indicating an error in the picture format,
displaying the string pointed to by Pic.

IsValidlnput function IsValidInput (var S: string; SuppressFill: Boolean): Boolean;
virtual;

Checks the string passed in 5 against the format picture specified in Pic
and returns True if Pic is nil or Picture does not return prError for 5;
otherwise, returns False. The 5uppressFill parameter overrides the value in
voFill for the duration of the call to IsValidInput.

5 is a var parameter, so Is ValidInput can modify its value. For example, if
5uppressFill is False and voFill is set, the call to Picture returns a filled string
based on 5, so the image in the input line automatically reflects the format
specified in Pic.

See also: TPXPictureValidator.Picture

IsValid function IsValid(const S: string): Boolean; virtual;

Compares the string passed in 5 with the format picture specified in Pic
and returns True if Pic is nil or if Picture returns prComplete for 5,
indicating that 5 needs no further input to meet the specified format.

See also: TPXPicture Validator.Picture

Picture function picture(var Input: string): TPicResult; virtual;

Table 19.41
Picture format

characters

Formats the string passed in Input according to the format specified by the
picture string pointed to by Pic. Returns prError if there is an error in the
picture string or if Input contains data that cannot fit the specified picture.
Returns prComplete if Input can fully satisfy the specifed picture. Returns
prIncomplete if Input contains data that fits the specified picture but not
completely.

Table 19.41 shows the characters used in creating format pictures.

. Type of character

Special

Match

Character

?
&

.@

Description

Accept only a digit
Accept only a letter (case-insensitive)
Accept only a letter, force to uppercase
Accept any character
Accept any character, force to
uppercase
Take next character literally

Chapter 79, Turbo Vision reference 513

a

TPXPicture Validator

Table 19.41: Picture format characters (continued)

All others

See also: TPicResult type

*
[]
{}

Repetition count
Option
Grouping operators
Set of alternatives
Taken literally

Store procedure Store (var s: TStrearn);

TRadioButtons

514

Stores the picture valida tor object to the stream S by first calling the Store
method inherited from TValidator, then writing the string pointed to by
Pic.

TObject TView

Cursor
DragMode
EventMask
GrowMode

Hel pCtx
Next
Options
Origin

Owner
Size
State

Ht# GetCommands Prey
I:ea6- ~ PrevView
9&fte. Get Event Put Event
Awaken GetExtent PutInFrontOf
BlockCursor Getlle~I3Gtl(PutPeerViewPtr
Ca 1 cBounds GetPa~ ette Se 1 ect
ChangeBounds GetPeerVi ewPtr Set Bounds
Cl earEvent GetState SetCommands
CommandEnabl ed GrowTo SetCmdState
~ ~laflEl~eEieflt SetCursor
DisableCommands Hide ~
DragView HideCursor ~
Bloaw- KeyEvent Show
DrawVi ew locate ShowCursor
EnableCommands MakeFirst Sizelimits
EndModa 1 MakeGl oba 1 £t.e.loe.
EventAvail Makelocal TopView
Execute MouseEvent Val i d
Exposed MouseInView WriteBuf
Focus MoveTo Wri teChar
GetBounds NextVi ew Wri tel i ne
GetCl i pRect Norma 1 Cursor Wri teStr
GetColor

TCluster

Val ue
Sel
EnableMask
Stri ngs

Init
load
Done
ButtonState
DataSize
DrawBox
DrawMul ti Box
GetData
GetHelpCtx
GetPalette
Handl eEvent
Ma-!>lf.
~
MultiMark
P-Pes-s
SetButtonSta te
~
SetS tate
Store

Dialogs

TRadi oButtons

Draw
Mark
MovedTo
Press
SetData

TRadioButtons objects are clusters of up to 65,536 controls with the special
property that only one control button in the cluster can be selected.
Selecting an unselected button will automatically deselect (restore) the
previously selected button. Most of the functionality is derived from
TCluster including Init, Load, and Done. Radio buttons usually have an
associated TLabel object.

Turbo Vision Programming Guide

TRadioButtons

TRadioButtons interprets the inherited TCluster. Value field as the number
of the "pressed" button, with the first button in the cluster being number
O.

Methods
Dravv procedure Draw; virtual;

Override: Seldom Draws buttons as" () "surrounded by a box.

~ark function Mark(Item: Integer): Boolean; virtual;

Overide: Never Returns True if Item = Value, that is, if the Item'th button represents the
current Value field (the "pressed" button).

See also: TCluster.Value, TCluster.Mark

~ovedTo procedure MovedTo (Item: Integer); virtual;.

Override: Never Assigns Item to Value.

See also: TCluster.MovedTo, TRadioButtons.Mark

Press procedure Press (Item: Integer); virtual;

Override: Never Assigns Item to Value. Called when the Item'th button is pressed.

SetData procedure SetDa ta (.var Rec); virtual;

Override: Seldom Calls the SetData method inherited from TCluster to set the Value field,
then sets Sel field equal to Value, since the selected item is the "pressed"
button at startup.

See also: TCluster.SetData

Palette
TRadioButtons objects use CCluster, the default palette for all cluster
objects, to map onto the 16th through 18th entries in the standard dialog
palette.

1 2 4

CC''''er Jlj 11711~
Text Normal I Shortcut Selected
Text Sel ected Shortcut Normal

Chapter 79, Turbo Vision reference 515

TRangeValidafor

TRangeValidator Validate

516

Fields

TObject TValidator

l-R4-t,.
Free
Done

Options
Status

l-R4-t,.
bea&
~
~
Is"al i ElIFll3l:1t
£t.e.pe.

~
Val id

TFi 1 terVal i dator TRangeVa lidator

ValidChars

l-R4-t,.
bea&
~
~
IsVal idlnput
£t.e.pe.

Min
Max

Init
Load
Error
IsVal id
Store
Transfer

A range valida tor object determines whether the data typed by a user falls
within a designated range of integers.

Max Max: Longint;

Max is the highest valid long integer value for the input line.

Min Min: Longint;

Min is the lowest valid long integer value for the input line.

Methods
Init constructor Init(AMin, AMax: Longint);

Constructs a range valida tor object by first calling the Init constructor
inherited from TFilterValidator, passing a set of characters containing the
digits '0' .. '9' and the characters' +' and' -'. Sets Min to AMin and Max to
AMax, establishing the range of acceptable long integer values.

See also: TFilterValidator.Init

Load constructor Load (var S: TStream);

Constructs and loads a range valida tor object frolll the stream 5 by first
calling the Load constructor inherited from TFilterValidator, then reading
the Min and Max fields introduced by TRangeValidator.

See also: TFilterValidator.Load

Error procedure Error; virtual;

Displays a message box indicating that the entered value did not fall in
the specified range.

Turbo Vision Programming Guide

I

I

II
I

I

I

TRangeValidafor

IsValid function IsValid(const S: string): Boolean; virtual;

Converts the string S into an integer number and returns True if the result
meets all three of these conditions:

• It is a valid integer number .
• Its value is greater than or equal to Min .
• It's value is less than or equal to Max.

If any of those tests fails, Is Valid returns False.

Store procedure Store(var S: TStream);

Stores the range validator object on the stream S by first calling the Store
method inherited from TFilterValidator, then writing the Min and Max
fields introduced by TRangeValidator.

See also: TFilterValidator.Store

Transfer function Transfer(var S: String; Buffer: Pointer; Flag: TVTransfer): Word;
virtual;

Incorporates the three functions DataSize, GetData, and SetData that a
range validator can handle for its associated input line. Instead of setting
and reading the value of the numeric input line by passing a string
representation of the number, Transfer can use a Longint as its data record,
which keeps your application from having to handle the conversion.

S is the input line's string value, and Buffer is the data record passed to the
input line. Depending on the value of Flag, Transfer either sets S from the
number in Buffer/\ or sets the number at Buffer to the value of the string S.
If Flag is vtSetData, Transfer sets S from Buffer. If Flag is vtGetData, Transfer
sets Buffer from S. If Flag is vtDataSize, Transfer neither sets nor reads data.

Transfer always returns the size of the data transferred, in this case the size
of a Longint.

See also: TVTransfer type

Chapter 79, Turbo Vision reference 517

a

TRect

TRect

Fields

TRect

A
B

Ass i gn
Contains
Copy
Empty
Equal s
Grow
Intersect
Move
Union

A A: TPoint

Objects

A is the point defining the top left corner of a rectangle on the screen.

B B: TPoint

B is the point defining the bottom right corner of a rectangle on the screen.

Methods
Assign procedure Assign (XA, YA, XB, YB: Integer);

Assigns the parameter values to the rectangle's point fields. XA becomes
A.X, XB becomes B.X, and so on.

C:ontains function Contains(P: TPoint): Boolean;

Returns True if the rectangle contains the point P.

C:oPY procedure Copy (R: TRect);

Copy sets all fields equal to those in rectangle R.

Ennpty function Empty: Boolean;

Returns True if the rectangle is empty, meaning the rectangle contains no
character spaces. Essentially, the A and B fields are equal.

Equals function Equals (R: TRect): Boolean;

Returns True if R is the same as the rectangle.

c;rovv procedure Grow (ADX, ADY: Integer);

518 Turbo Vision Programming Guide

TRect

Changes the size of the rectangle by subtracting ADX from A.X, adding
ADX to B.X, subtracting ADY from A.Y, and adding ADY to B.Y.

Intersect procedure Intersect (R: TRect);

Changes the location and size of the rectangle to the region defined by the
intersection of the current location and that of R.

Move procedure Move (ADX ,ADY : Integer);

Moves the rectangle by adding AD X to A.X and B.X and adding ADY to
A.Yand B.Y.

Union procedure Union(R: TRect);

Changes the rectangle to be the union of itself and the rectangle R; that is,
to the smallest rectangle containing both the object and R.

TReplaceDialogRec type

Declaration TReplaceDialogRec = record
Find: String[80];
Replace: String[80];
Options: Word;

end;

Editors

Function Search and replace dialog boxes invoked by EditorDialog when passed
edReplace take a pointer to a TReplaceDialogRec as their second parameter.
Find and Replace hold the default string to search for and replace with,
respectively. Options holds some combination of the efXXXX editor flag
constants, specHying how the search and replace operation should work.

See also: TEditorDialog type

TResourceCollection Objects

TResourceCollection is a descendant of TStringCollection used with
TResourceFile to implement collections of resources. A resource file is a
stream that is indexed by key strings. Each resource item, therefore, has
an integer Pos field and a string Key field. The overriding methods of
TResourceCollection are mainly concerned with handling the extra string
element in its items.

TResourceCollection is used internally by TResourceFile objects to maintain a
resource file's index.

Chapter 79, Turbo Vision reference 519

a

TResourceFile

TResourceFile Objects

520

Fields

TObj ect TResourceFi 1 e

Stream
Modified

Init
Done
Count
Delete
Fl ush
Get
KeyAt
Put
SwitchTo

TResourceFile implements a stream that can be indexed by key strings.
When objects are stored in a resource file, using TResourceFile.Put, a key
string, which identifies the object, is also supplied. The objects can later be
retrieved by specifying th~ key string in a call to TResourceFile.Get.

To provide fast and efficient access to the objects stored in a resource file,
TResourceFile stores the key strings in a sorted string collection (using the
TResourceCollection type) along with the position and size of the resource
data in the resource file.

As is the case with streams, the types of objects written to and read from
resource files must have been registered using RegisterType.

Modified Modified: Boolean; Read/write

Set True if the resource file has been modified.

See also: TResourceFile.Flush

Stream Stream: PStream; Read only

Pointer to the stream associated with this resource file.

Methods
Init constructor Init (AStream: PStream);

Initializes a resource file using the stream given by AStream and sets the
Modified field to False. The stream must have already been initialized. For
example:

ResFile.lnit(New(TBufStream, Init('MYAPP.RES', stOpenRead, 1024)));

Turbo Vision Programming Guide

TResourceFile

During initialization, Init looks for a resource file header at the current
position of the stream. The format of a resource file header is

type
TResFileHeader = record

Signature: array[l .. 4] of Char;
ResFileSize: Longint;
IndexOffset: Longint;

end;

where Signature contains 'FBPR/, ResFileSize contains the size of the entire
resource file excluding the Signature and ResFileSize fields (Le. the size of
the resource file minus 8 bytes), and IndexOffset contains the offset of the
index collection from the beginning of the header.

If Init does not find a resource file header at the current position of
AStream, it assumes that a new resource file is being created, and thus
constructs an empty index.

If Init sees an .EXE file signature at the current position of the stream, it
seeks the stream to the end of the .EXE file image, and then looks for a
resource file header there. Likewise, Init will skip over an overlay file that
was appended to the .EXE file (as will OvrInit skip over a resource file).
This means that you can append both your overlay file and your resource
file (in any order) to the end of your application's .EXE file. (This is, in fact,
what the IDE's executable file, TURBO.EXE, does.)

See also: TResourceFile.Done

Done destructor Done; virtual;

Override: Never Flushes the resource file, using TResourceFile.Flush, and then disposes of
the index and the stream given by the Stream field.

See also: TResourceFile.Init, TResourceFile.Flush

Count function Count: Integer;

Returns the number of resources stored in the resource file.

See also: TResourceFile.KeyOf

Delete procedure Delete (Key: String);

Deletes the resource indexed by Key from the resource file. The space
formerly occupied by the deleted resource is not reclaimed. You can
reclaim this memory by using Switch To to create a packed copy of the file
on a new stream.

See also: TResourceFile.SwitchTo

Chapter 79, Turbo Vision reference 521

a

TResourceFile

522

Flush procedure Flushi

If the resource file has been modified (checked using the Modified field),
Flush stores the updated index at the end of the stream and updates the
resource header at the beginning of the stream. It then resets Modified to
False.

See also: TResourceFile.Done, TResourceFile.Modified

G;et function Get (Key: String): PObjecti

Searches for Key in the resource file index. Returns nil if the key is not
found. Otherwise, seeks the stream to the position given by the index, and
calls Stream/\ .Get to create and load the object identified by Key. An
example:

DesktopA.Insert(ValidView(ResFile.Get('EditorWindow'))) i

See also: TResourceFile.KeyAt, TResourceFile.Put

Key At function KeyAt (I: Integer): String i

Returns the string key of the Ith resource in the calling resource file. The
index of the first resource is zero and the index of the last resource is
TResourceFile.Count minus one. Using Count and KeyAt you can iterate
over all resources in a resource file.

See also: TResourceFile.Count

Put procedure Put (Item: PObjecti Key: String)i

Adds the object given by P to the resource file with the key string given by
Key. If the index already contains the Key, then the new object replaces the
old object. The obj~ctis appended to the existing objects in the resource
. file using Stream/\ .Put.

See also: TResourceFile.Get

SwitchTo function SwitchTo (AStream: PStreami Pack: Boolean): PStreami

Switches the resource file from the stream it is on to the stream passed in
AStream, and returns a pointer to the original stream as a result.

If the Pack parameter is True, the stream will eliminate empty and unused
space from the resource file before writing it to the new stream. This is the
only way to compress resource files. Copying with the Pack parameter
False provides faster copying, but without the compression.

Turbo Vision Programming Guide

I

I,
I

I

I

I.

TScrollBar

Fields

TObject TView

Cursor
DragMode
EventMask
GrowMode

HelpCtx
Next
Options
Origin

Owner
Size
State

lfI.H- GetCommands Prey
beae- GetData PrevVi ew
Done Get Event Put Event
Awaken Get Extent PutInFrontOf
BlockCursor GetHel pCtx PutPeerVi ewPtr
Ca 1 cBounds GetPal ette Se 1 ect
ChangeBounds GetPeerVi ewPt r Set Bounds
Cl earEvent GetState Set Commands
CommandEnabl ed GrowTo SetCmdState
DataSi ze lIaFiEll eE: eFit SetCursor
DisableCommands Hide SetData
DragVi ew Hi deCursor SetState
Bf>aw. Key Event Show
DrawVi ew Locate ShowCursor
EnableCommands MakeFirst SizeLimits
EndModal MakeGlobal ~
EventAvail MakeLocal TopView
Execute MouseEvent Val i d
Exposed MouseInVi ew Wri teBuf
Focus MoveTo Wri teChar
GetBounds NextView WriteLine
GetCl i pRect Norma 1 Cursor Wri teStr
GetColor

TScroll Bar

ArStep
Max
Min
PgStep
Val ue

Init
Load
Draw
GetPalette
Handl eEvent
Scroll Draw
Scroll Step
SetParams
SetRange
SetStep
Set Va 1 ue
Store

TScroliBar

Views

ArStep ArStep: Integer; Read only

Max

ArStep is the amount added to or subtracted from the scroll bar's Value
field when an arrow area is clicked (sbLeftArrow, sbRightArrow, sbUpArrow,
or sbDownArrow) or the equivalent keystroke made. Init sets ArStep to 1 by
default.

See also: TScrollBar.SetStep, TScrollBar.SetParam, TScrollBar.ScrollStep

Max: Integer; Read only

Max represents the maximum value for the Value field. Init sets Max to 0
by default.

See also: TScrollBar.SetRange, TScrollBar.SetParams

Min Min: Integer; Read only

Min represents the minimum value for the Value field. Init sets Min to 0 by
default.

Chapter 79, Turbo Vision reference 523

a

TScroliBar

See also: TScrollBar.SetRange, TScrollBar.SetParams

PgStep PgStep: Integer; Read only

PgStep is the amount added to or subtracted from the scroll bar's Value
field when a mouse click event occurs in any of the page areas (sbPageLeft,
sbPageRight, sbPageUp, or sbPageDown) or an equivalent keystroke is
detected (Ctrl (;-, Ctr/~, PgUp, or PgDn). Init sets PgStep to 1 by default. You
can change PgStep using SetStep, SetParams or SetLimit.

See also: TScrollBar.SetStep, TScrollBar.SetParams, TScroller.SetLimit,
TScrollBar.ScrollStep

Value Value: Integer; Read only

The Value field represents the current position of the scroll bar indicator.
This specially colored marker moves along the scroll bar strip to indicate
the relative position (horizontally or vertically depending on the scroll bar
orientation) of the scrollable text being viewed relative to the total text
available for scrolling. Many events can directly or indirectly change
Value, such as mouse-clicking the designated scroll bar parts, resizing the
window, or changing the text in the scroller. Similarly, changes in" Value
may need to trigger other events. TScrollBar.Init sets Value to 0 by default.

See also: TScrollBar.SetValue, TScrollBar.SetParams, TScrollBar.ScrollDraw,
TScrollBar.Init

Methods

524

Init constructor Init (var Bounds: TRect);

Creates and initializes a scroll bar with the given Bounds by calling the Init
constructor inherited from TView. Sets Value, Max, and Min to 0, PgStep
and ArStep to 1. Sets the shapes of the scroll bar parts to the defaults in
TScrollChars.

If Bounds produces Size.X = 1, you get a vertical scroll bar; otherwise, you
get a horizontal scroll bar. Vertical scroll bars have the GrowMode field set
to gfGrowLoX + gfGrowHiX + gfGrowHiY; horizontal scroll bars have the
GrowMode field set to gfGrowLo Y + gfGrowHiX + gfGrowHiY.

Load constructor Load (var S: TStrearn);

Constructs then loads a scroll bar object from the stream 5 by calling the
Load constructor inherited from TView and then reading the five integer
fields with S.Read.

See also: TScrollBar.Store

Turbo Vision Programming Guide

TScroliBar

Dravv procedure Draw; virtual;

Overide: Never Draws the scroll bar depending on the current Bounds, Value and palette.

See also: TScrollBar.ScrollDraw, TScrollBar.Value

GetPaleHe function Getpalette: PPalette; virtual;
Override:

Sometimes Returns a pointer to CScrollBar, the default scroll bar palette.

HandleEvent procedure HandleEvent (var Event: TEvent); virtual;

Override: Never Handles scroll bar events by calling the HandleEvent method inherited
from TView, then analyzing Event. What. Mouse events are broadcast to the
scroll bar's owner (see Message function) which must handle the
implications of the scroll bar changes (for example, by scrolling text).
HandleEvent also determines which scroll bar part has received a mouse
click(or equivalent keystroke). The Value field is adjusted according to the
current ArStep or PgStep values and the scroll bar indicator is redrawn.

See also: TView.HandleEvent

ScrollDravv procedure ScrollDraw; virtual;

Override: Seldom ScrollDraw is called whenever the Value field changes. By default,
ScrollDraw sends a cmScrollBarChanged broadcast to the scroll bar's owner:

Message (Owner, eVBroadcast, cmScrollBarChanged, @Self);

See also: TScrollBar. Value, Message function

ScrollStep function ScrollStep (Part: Integer): Integer; virtual;

Override: Never By default, ScrollStep returns a positive or negative step value depending
on the scroll bar part given by Part, and the current values of ArStep and
PgStep. Part should be one of the sbXXXX scroll bar part constants
described in this chapter.

See also: TScrollBar.SetStep, TScrollBar.SetParams, sbXXXX constants

SetParanns procedure SetParams(AValue, AMin, AMax, APgStep, AArStep: Integer);

SetParams sets the Value, Min, Max, PgStep, and ArStep fields to the values
passed in AValue, AMin, AMax, APgStep, and AArStep. Some adjustments
are made if your arguments conflict. For example, Min cannot be set
higher than Max, so if AMax < AMin, Max is set to AMin. Value must lie in
the closed range [Min,Max], so if A Value < AMin, Value is set to AMin; and
if AValue > AMax, Value is set to AMax. The scroll bar is redrawn by
calling DrawView. If Value is changed, ScrollDraw is also called.

Chapter 79, Turbo Vision reference 525

II

TScroliBar

526

See also: TView.DrawView, TScrollBar.ScrollDraw, TScrollBar.SetRange,
TScrollBar.SetValue

SetRange procedure SetRange (AMin, AMax: Integer) i

SetRange sets the legal range for the Value field by setting Min and Max to
AMin and AMax. SetRange calls SetParams, so DrawView and ScrollDraw
will be called if the changes require the scroll bar to be redrawn.

See also: TScrollBar.SetParams

SetStep procedure Set Step (APgStep, AArStep: Integer) i

SetStep sets PgStep and ArStep to APgStep and AArStep, respectively. This
method calls SetParams with the other parameters set to their current
values.

See also: TScrollBar.SetParams, TScrollBar.ScrollStep

SetValue procedure SetValue (AValue: Integer) i

Sets Value to A Value by calling SetParams with the other parameters set to
their current values. Draw View and ScrollDraw will be called if this call
changes Value. \t
See also: TScrollBar.SetParams, TView.DrawView, TScrollBar.ScrollDraw,
TScroller.ScrollTo

Store procedure Store(var S: TStrearn)i

Palette

Writes the scroll bar object to the stream S by first calling the Store method
inherited from TView, and then writing the five integer fields to the
stream using S. Write.

See also: TScrollBar.Load

Scroll bar objects use the default palette, CScrollBar, to map onto the 4th
and 5th entries in the standard application palette.

2 3

CScroll Bar II 4 I 5 I bll
Page I LInd; cator
Arrows--------'·

Turbo Vision Programming Guide

TScroliChars type

TScrollChars type Views

Declaration TScrollChars = array [0 .. 4] of Char i

Function An array representing the characters used to draw a TScrollBar.

See also TScrollBar

TScrolier Views

TObject TV;ew

Cursor
DragMode
EventMask
GrowMode

Hel pCtx
Next
Opti ons
Origin

Owner
Size
State

HH-t- GetCommands Prey
bsaEl- GetOata PrevVi ew
Done Get Event Put Event
Awaken GetExtent PutInFrontOf
BlockCursor GetHel pCtx PutPeerVi ewPtr
Ca 1 cBounds GetPal ette Se 1 ect
GRaR§eB9I:lR~5 GetPeerVi ewPtr SetBounds
Cl earEvent GetState SetCommands
CommandEnab 1 ed GrowTo SetCmdState
DataSi ze HaREIl e[eRt SetCursor
Di sabl eCommands Hi de SetOata
DragVi ew Hi deCursor ~
Draw KeyEvent Show
DrawVi ew Locate ShowCursor
EnableCommands MakeFirst SizeLimits
EndModa 1 MakeGl oba 1 £.t.&pe.
EventAvail MakeLoca 1 TopVi ew
Execute MouseEvent Va 1 i d
Exposed Mouse I nVi ew WriteBuf
Focus MoveTo Wri teChar
GetBounds NextVi ew WriteL i ne
GetCl i pRect Norma 1 Cursor Wri teStr
GetColor

TScrol1er

HScroll Bar
VScroll Bar
Delta
Limit

Init
Load
ChangeBounds
GetPalette
Handl eEvent
Scroll Draw
ScrollTo
SetLimit
SetS tate
Store

TScroller provides a scrolling virtual window onto a larger view. That is, a T
scrolling view lets the user scroll a large view within a clipped boundary.
The scroller provides an offset from which the Draw method fills the
visible region. All methods needed to provide both scroll bar and
keyboard scrolling are built into TScroller.

The basic scrolling view provides a useful starting point for scrolling
views such as text views.

Chapter 79, Turbo Vision reference 527

TScrolier

528

Fields
Delta Delta: TPoint; Read only

Delta holds the X (horizontal) and Y (vertical) components of the scroller's
position relative to the virtual view being scrolled. Automatic scrolling is
achieved by changing either or both of these components in response, for
example, to scroll bar events that change the Value field(s). Conversely,
manual scrolling changes Delta, triggers changes in the scroll bar Value
fields, and leads to updating of the scroll bar indicators.

See also: TScroller.ScrollDraw, TScroller.ScrollTo

HScroliBar HScrollBar: PScrollBar; Read only

Limit

VScroliBar

Methods

HScrollBar points to the horizontal scroll bar associated with the scroller. If
there is no such scroll bar, HScrollBar is nil.

Limit: TPoint; Read only

Limit.X and Limit. Yare the maximum allowed values for Delta.X and Delta. Y

See also: TScroller.Delta

VScrollBar: PScrollBar; Read only

VScrollBar points to the vertical scroll bar associated with the scroller. If
there is no such scroll bar, VScrollBar is nil.

Init constructor Init(var Bounds: TRect; AHScrollBar, AVScrollBar: PScrollBar);

Constructs and initializes a: scroller object with the given size and scroll
bars. Calls the Init constructor inherited from TView to set the view's size.
Sets Options to of Selectable and EventMask to evBroadcast. AHScrollBar
should be nil if you do not want a horizontal scroll bar; similarly,
A VScrollBar should be nil if you do not want a vertical scroll bar.

See also: TView.Init, TView.Options, TView.EventMask

Load constructor Load (var S: TStream);

Loads the scrolling view from the stream 5 by first calling the Load
constructor inherited from TView, then restoring pointers to the scroll bars
using GetPeerViewPtr, and finally reading the Delta and Limit fields using
S.Read.

See also: TScroller.Store

Turbo Vision Progtamming Guide

TScrolier

Change Bounds procedure ChangeBounds (var Bounds: TRect); virtual;

Override: Never Changes the scroller's size by calling SetBounds. If necessary, the scroller
and scroll bars are then redrawn by calling DrawView and SetLimit.

See also: TView.SetBounds, TView.DrawView, TScroller.SetLimit

GetPalette function Getpalette: PPalette; virtual;

Override: Returns a pointer to CScroller, the default scroller palette.
Sometimes

HandleEvent procedure HandleEvent (var Event: TEvent); virtual;

Override: Seldom Handles most events by calling the HandleEvent method inherited from
TView. Broadcast events with the command cmScrollBarChanged, if they
come from either HScrollBar or VScrollBar, result in a call to ScrollDraw.

See also: TView.HandleEvent, TScroller.ScrollDraw

Scro"Oraw procedure ScrollDraw; virtual;

Override: Never Checks to see if Delta matches the current positions of the scroll bars. If
not, sets Delta to the correct value and calls DrawView to redraw the
'Scroller.

See also: TView.DrawView, TScroller.Delta, TScroller.HScrollBar,
TScroller. VScrollBar

Scro"To procedure ScrollTo(X, Y: Integer);

Sets the scroll bars to (X,Y) by calling HScrollBarA.SetValue(X) and
VScrollBarA.SetValue(Y), and redraws the view by calling DrawView.

See also: TView.DrawView, TScroller.SetValue

SetLimit procedure SetLimi t (X, Y: Integer);

Sets Limit.X to X and Limit.Y to Y, then calls HScrollBarA.SetParams and
VScrollBarA .SetParams (if these scroll bars exist) to adjust their Max
field(s). These calls might trigger scroll bar redraws. Finally, calls a
DrawView to redraw the scroller if necessary.

See also: TScroller.Limit, TScroller.HScrollBar, TScroller. VScrollBar,
TScrollBar. SetParams

SetState procedure SetState (AState: Word; Enable: Boolean); virtual;

Override: Seldom This method is called whenever the scroller's state changes. Calls the
SetState method inherited from TView to set or clear the state flags in
AState. If the new state is sf Selected and sf Active, SetS tate displays the scroll
bars, otherwise they are hidden.

Chapter 79, Turbo Vision reference 529

TScrolier

See also: TView.SetState

Store procedure Store(var S: TStream);

Palette

Writes the scroller to the stream S by first calling the Store method
inherited from TView, then storing references to the scroll bars using
PutPeerViewPtr, and finally writing the values of Delta and Limit using
S.Write.

See also: TScroller.Load, TStream. Write

Scroller objects use the default palette, CScroller, to map onto the 6th and
7th entries in the standard window palette.

1 2

CScroller ij6 I a
Normal~ ~ Highlight

TSearchRec type StdDlg

Declaration TSearchRec = record
Attr: Byte;
Time: Longint;
Size: Longint;
Name: string[12];

end;

Function TSearchRec records are used in file collection objects to hold information
on the files collected. TSearchRec is actually a subset of the SearchRec type
defined in the Dos unit, with the 21 bytes of unused information stripped.
Attr is a bitmapped byte holding file attributes as defined by the Dos unit.
Time is a DOS date-and-time stamp that can be decoded with the
UnpackTime procedure in the Dos unit. Size is the size of the file in bytes.
Name is a string containing the file name.

See also: Dos unit in the Language Guide

TSltem type Dialogs

530

Declaration TSItem = record
Value: PString;
Next: PSItem;

end;

Turbo Vision Programming Guide

TSltem type

Function The TSItem record type provides a singly-linked list of PStrings. Such lists
can be useful in many Turbo Vision applications where the full flexibility
of string collections is not required (see TCluster.Init, for example). A
utility function NewSItem is provided for adding records to a TSItem list.

TSortedColiection Objects

Field

TObj ect TCo 11 ect ion

Count
Delta

Init .
beaEI-
Done
At
AtDelete
At Free
AtInsert
AtPut
Delete
DeleteAll
Error
Fi rstThat

Items
Limit

ForEach
Free
FreeAll
FreeItem
GetItem
~
~
LastThat
Pack
PutItem
SetLimit
~

TSortedCo 11 ect ion

Dupli cates

Load
Compare
IndexOf
Insert
KeyOf
Search
Store

TSortedCollection is a specialized derivative of TCollection implementing
collections sorted by key. Sort order is determined by the virtual method
Compare, which you override to provide your own definition of element
ordering. As you add new items, they are automatically inserted in the
order given by Compare. You can locate items with the method Search. If
Compare needs additional information, override the virtual method KeyOf,
which returns a pointer for Compare.

TSortedCollection implements sorted collections both with or without
duplicate keys. The Duplicates field controls whether duplicates are
allowed. It defaults to False, indicating that duplicate keys are not
allowed, but after creating a sorted collection, you can set Duplicates to
True to allow elements with duplicate keys in the collection.

Duplicates Duplicates: Boolean;

Determines whether the collection accepts items with duplicate keys. By
default, Duplicates is False, and calling Insert for an item whose key
matches that of an item already in the collection causes the collection to
not insert the new item; the collection keeps only the first item inserted
with a given key.

Chapter 79, Turbo Vision reference 531

a

TSortedCollection

Methods

If you set Duplicates to True, the collection inserts duplicate-key items
immediately before the first existing item with the same key.

See also: TSortedCollection.Insert, TSortedCollection.Search

Load constructor Load (var S: TStream);

Constructs and loads a sorted collection from the stream S by first calling
the Load constructor inherited from TCollection, then reading the Duplicates
field introduced by TSortedCollection.

See also: TCollection.Load

Compare function Compare (Key1, Key2: Pointer): Integer; virtual;

Override: Always Compare is an abstract method that must be overridden in "all descendant
types. Compare should compare the two key values, and return a result as
follows:

IndexOf

Override: Never

532

-1 if Keyl < Key2
o if Keyl = Key2
1 if Keyl > Key2

Keyl and Key2 are pointer values, as extracted from their corresponding
collection items by the TSortedCollection.KeyOf method. The
TSortedCollection.Search method implements a binary search through the
collection's items using Compare to compare the items.

Make sure Compare returns all possible values -I, 0, and 1. Even
collections that will never hold duplicate items need to return 0 if Compare
receives matching keys. If Compare never returns 0, Search will not
function properly.

See also: TSortedCollection.KeyOf, TSortedCollection.Compare

function IndexOf(Item: Pointer): Integer; virtual;

Uses TSortedCollection.Search to find the index of the given Item. If the. item
is not in the collection, IndexOf returns -1. The actual implementation of
TSortedCollection.IndexOf is:

if Search (KeyOf (Item) , I) then IndexOf := I else IndexOf := -1;

Turbo Vision Programming Guide

I

I

I.

TSortedColiection

See also: TSortedColiection.Search

Insert procedure Insert (Item: Pointer); virtual;

Override: Never Calls TSortedColiection.Search to determine if the item already exists, and if
not, where to insert it. If no item with the same key as Item is already in
the collection, inserts Item at the correct index position. If an item with the
same key does exist and Duplicates is False, the collection ignores the
duplicate item. If Duplicates is True, the collection inserts Item before the
first existing item with the same key.

KeyOf

Override:
Sometimes

The actual implementation of TSortedColiection.Insert is:

if not Search(KeyOf(Item), I) or Duplicates then AtInsert(I, Item);

See also: TSortedColiection.Search

function KeyOf(Item: Pointer): Pointer; virtual;

Given an Item from the collection, KeyOf should return the corresponding
key of the item. The default KeyOf simply returns Item. KeyOf is
overridden in cases where the key of the item is not the item itself.

See also: TSortedColiection.IndexOf

Search function Search(Key: Pointer; var Index: Integer): Boolean; virtual;

Override: Seldom Returns True if the item identified by Key is found in the sorted collection.
If the item is found, Index is set to the found index; otherwise, Index is set
to the index where the item would be placed if inserted. Search relies on
Compare to locate the specified item.

See also: TSortedColiection.Compare, TSortedCollection.Insert

Store procedure Store(var S: TStream);

Writes the sorted collection and all its items to the stream S by first calling
the Store method inherited from TCollection, then writing the Duplicates
field introduced by TSortedCollection.

See also: TCollection.Store

Chapter 79, Turbo Vision reference 533

TSortedListBox object

TSortedListBox object StdDlg

TObject TView TListViewer TL i stBox TSortedL i stBox

534

Cursor
DragMode
EventMask
GrowMode

Hel pCtx
Next
Options
Origin

Owner
Size
State

HTH- GetCommands Prey
I:e.1a- ~ PrevVi ew
Done Get Event PutEvent
Awaken Get Extent PutInFrontOf
BlockCursor GetHelpCtx PutPeerViewPtr
Ca 1 cBounds GetPal ette Se 1 ect
bRaR§eBeliRels GetPeerVi ewPtr SetBounds
Cl earEvent GetState SetCommands
Command Enab 1 ed GrowTo SetCmdSta te
~ HaRell eE;"eRt SetCursor
DisableCommands Hide ~
DragVi ew Hi deCursor Set£ta.t.e.
9f>a.w. KeyEvent Show
DrawVi ew locate ShowCursor
EnableCommands MakeFirst SizeLimits
EndModa 1 MakeGl oba 1 &t&Pe-
EventAvail Makeloca 1 TopVi ew
Execute MouseEvent Va 1 i d
Exposed MouselnVi ew Wri teBuf
Focus MoveTo Wri teChar
GetBounds NextVi ew Wri tel i ne
GetCl i pRect Normal Cursor Wri teStr
GetColor

HScroll Bar
VScroll Bar
NumCol s
Topltem
Focused
Range

HTH-
I:&a6-
ChangeBounds
Draw
Focus Item
GetPalette
GeHE!*t
IlaRell eE; i eRt
IsSelected
SelectItem
SetRange
SetState
&t&Pe-

List

ff:ri.t
load
DataSize
GetData
GetText
Newl::..:j.s.t.

. SetData
Store

SearchPos
Shi ftState

Init
GetKey
Handl eEvent
Newlist

TSortedListBox is a TListBox that assumes it has a TSortedCollection instead
of just a TCollection. It will perform an incrementalseatch on the contents.
It is used as the ancestor of the file list box, TFileList.

Fields
SearchPos SearchPos: Word;

SearchPos indicates which character position is being checked for
incremental searching.

ShiftState ShiftState: Byte;

Methods

ShiftState holds the current state of the keyboard shift keys for multiple
selection purposes.

Init constructor Init(var Bounds: TRect; ANumCols: Word; AScrollBar: PScrollBar);

Constructs a sorted list box by calling the Init constructor inherited from
TListBox, passing the bounding rectangle Bounds, number of columns
ANumCols, and horizontal scroll bar AScrollBar. The ShiftState field is
initialized to zero, and the cursor is shown at the first item.

Turbo Vision Programming Guide

II

I

TSortedListBox object

See also: TListBox.Init

HandleEvent procedure HandleEvent (var Event: TEvent); virtual;

Handles normal list box events such as mouse clicks and cursor keys by a
call to the HandleEvent method inherited from TListBox.

Other keyboard events are handled directly to implement incremental
searching. That is, if the user presses a character key, the first item name
beginning with that character gets focused. If the user presses another
character key, focus will move to the first item whose second character
matches the pressed character, if such an item exists; otherwise, the focus
stays. This process continues until the user either selects an item or moves
the focus with arrow keys or the mouse, in which case incremental search
reverts to the first character.

The SearchPos field tracks which character is currently being matched in
the incremental search. Pressing Backspace backs up the incremental search
one character, to the item selected by the previous character.

G7etKey function GetKey(var S: String): Pointer; virtual;

Sorted list boxes need a key on which to sort their entries. GetKey returns a
pointer to the key for the string S. By default, GetKey returns a pointer to
S. Depending on the sorting strategy your derived objects use, you will
probably want to override GetKey to return some other key.

NewList procedure NewList (AList: PCollection); virtual;

Replaces the sorted collection currently pointed to by List by calling the
NewList method inherited from TListBox, which disposes of List and sets
List to AList, which should point to a sorted collection. NewList then resets
SearchPos to zero, so that incremental searches in the new list start with
the first character in the item string.

See also: TListBox.NewList

Chapter 19, Turbo Vision reference 535

TStatic Text

TStatic Text Dialogs

536

Field

TObject TView

Cursor
DragMode
EventMask
GrowMode

Hel pCtx .
Next
Options
Origin

Owner
Size
State

HH4- GetCommands Prey
I:eaEI- GetData PrevVi ew
geRe- Get Event Put Event
Awaken Get Extent PutlnFrontOf
BlockCursor GetHelpCtx PutPeerViewPtr
Ca 1 cBounds GetPal ette Se 1 ect
ChangeBounds GetPeerVi ewPtr SetBounds
Cl earEvent GetState SetCommands
CommandEnab 1 ed GrowTo SetCmdState
DataSi ze Handl eEvent SetCursor
DisableCommands Hide SetData
DragVi ew Hi deCursor SetState
Ifpaw. Key Event Show
DrawVi ew Locate ShowCursor
EnableCommands MakeFirst SizeLimits
EndModa 1 MakeGl oba 1 £.t&loe.
EventAvail MakeLocal TopView
Execute MouseEvent Va 1 i d
Exposed MouselnVi ew Wri teBuf
Focus MoveTo Wri teChar
GetBounds NextVi ew Writeli ne
GetCl i pRect Norma 1 Cursor Wri teStr
GetColor

TStati cText

Text

Init
Load
Done
Draw
GetPal ette
GetText
Store

TStaticText objects represent the simplest possible views: they contain
fixed text and they ignore all events passed to them. They are generally
used as messages or passive labels. Descendants of TStaticText perform
more active roles.

Text Text: PString; Read only

A pointer to the text string to be displayed in the view.

Methods
Init constructor Init(var Bounds: TRect; const AText: String);

Constructs a static text object of the given size by calling theJnit
constructor inherited from TView, then sets Text to NewStr(AText).

See also: TView.Init

Load constructor' Load (var S: TStream);

Constructs and initializes a static text object from the stream 5 by first
calling the Load constructor inherited from TView, then reading Text with

Turbo Vision Programming Guide

TStaticText

S.ReadStr. Use in conjunction with TStaticText.Store to save 'and retrieve
static text views on a stream.

See also: TView.Load, TStaticText.Store, TStream.ReadStr

Done destructor Done i virtual i

Override: Seldom Disposes of the Text string then calls the Done destructor inherited from
TView to dispose of the object.

Dravv procedure Draw; virtual;

Override: Seldom Draws the text string inside the view, word wrapped if necessary. A Ctrl+M
in the text indicates the beginning of a new line. A line of text is centered
in the view if the line begins with Ctr/+C.

GetPaleHe function Getpalette: PPalette; virtual;

Override: Returns a pointer to the default palette, CStaticText.
Sometimes

GetText procedure GetText (var S: String); virtual;

Override: Returns the string pointed to by Text in S.
Sometimes

Store procedure TStaticText.Store(var S: TStream);

Palette

Writes the static text object on the stream S by first calling the Store
method inherited from TView, reading Text with S. WriteStr. Use in
conjunction with Load to save and retrieve static text views on a stream.

See also: TStaticText.Load, TView.Store, TStream. WriteStr

Static text objects use the default palette, CStaticText, to map onto the 6th
entry in the standard dialog palette.

CStaticText II ~ II
Text color

TStatusDef type

Declaration TStatusDef = record
Next: PStatusDef;
Min, Max: Word;
Items: PStatusItem;

end;

Chapter 79, Turbo Vision reference

Menus

537

TstatusDef type

Function The TStatusDef type represents a status line definition. The Next field
points to the next TStatusDef in a list of status lines, or is nil if this is the
last status definition. Min and Max define the range of help contexts that
correspond to the status line. Items points to a list of status line items, or is
nil if there are no status line items.

A TStatusLine object (the actual status line view) has a pointer to a list of
TStatusDef records, and will always display the first status line for which
the current help context is within Min and Max. A Turbo Vision
application automatically updates the status line view by calling
TStatusLine. Update from TProgram.Idle.

TStatusDef records are created using the NewStatusDef function.

See also TStatusLine, TProgram.Idle, NewStatusDef function

TStatusltem type Menus

538

Declaration TStatusItem = record
Next: PStatusltem;
Text: PString;
KeyCode: Word;
Command: Word;

end;

Function The TStatusItem type represents a status line item that can be visible or
invisible. Next points to the next TStatusltem within a list of status items,
or is nil if this is the last item. Text points to a string containing the status
item legend (such as I Alt+X Exit'), or is nil if the status item is invisible (in
which case the item serves only to define a hot key). KeyCode contains the
scan code of the hot key associated with the status item, or zero if the
status item has no hot key. Command contains the command event (see
cmXXXX constants) to be generated when the status item is selected.

TStatusltem records function not only as definitions of the visual
appearance of the status line, but are also used to define hot keys, that is,
an automatic mapping of key codes into commands. The
TProgram.GetEvent method calls TStatusLine.HandleEvent for all
evKeyDown events. TStatusLine.HandleEvent scans the current status line
for an item containing the given key code, and if one is found, it converts
that evKeyDown event to an evCommand event with the Command value
given by the TStatusItem.

TStatusItem records are created using the NewStatusKey function.

Turbo Vision Programming Guide

I

I

I·

TStatusltem type

See also TStatusLine, NewStatusKey, TStatusLine.HandleEvent

TStatusLine Menus

TObject TView

Cursor
DragMode
EventMask
GrowMode

He1 pCtx
Next
Options
Origin

Owner
Size
State

lfH+ GetCommands Prey
I:ea4 GetData PrevVi ew
Befte. Get Event Put Event
Awaken GetExtent PutInFrontOf
B1ockCursor GetHe1 pCtx PutPeerVi ewPtr
Ca 1 cBounds GetPal ette Se1 ect
ChangeBounds GetPeerVi ewPt r SetBounds
C1 earEvent GetState SetCommands
CommandEnab 1 ed GrowTo SetCmdState
DataSi ze HaRell el! eRt SetCursor
Di sab 1 eCommands Hi de SetData
DragVi ew Hi deCursor SetState
Braw- KeyEvent Show
DrawVi ew Locate ShowCursor
Enab 1 eCommands MakeFi rst Si zeLimits
EndModa1 MakeG1oba1 ~
EventAvail MakeLoca1 TopView
Execute MouseEvent Va 1 i d
Exposed Mousel nVi ew WriteBuf
Focus MoveTo Wri teChar
GetBounds NextVi ew WriteLi ne
GetC1 i pRect Norma 1 Cursor Wri teStr
GetCo1or

TStatusLine

Items
Defs

lnit
Load
Done
Draw
GetPa1ette
Hand1 eEvent
Hint
Store
Update

The TStatusLine object is a specialized view, usually displayed at the
bottom of the screen. Typical status line displays are lists of available hot
keys, displays of available memory, time of day, current edit modes, and
hints for users. The items to be displayed are set up in a linked list by the
application object's InitStatusLine method, called by the application's
constructor. The status line displayed depends on the help context of the
currently focused view. Like the menu bar and desktop, the status line is
normally owned by a T Application group.

Status line items are records of type TStatusltem, which contain fields for a
text string to be displayed on the status line, a key code to bind a hot key
(typically a function key or an Alt+key combination), and a command to be
generated if the displayed text is clicked with the mouse or the hot key is
pressed.

Status line displays are help context-sensitive. Each status line object
contains a linked list of status line Defs (of type TStatusDej), which define
a range of help contexts and a list of status items to be displayed when the

Chapter 79, Turbo Vision reference 539

a

TStatusLine

current help context is in that range. In addition, hints or predefined
strings can be displayed according to the current help context.

Fields
Defs Defs: PStatusDef i Read only

A pointer to the current linked list of TStatusDef records. The list to use is
determined by the current help context.

See also: TStatusDef, TStatusLine.Update, TStatusLine.Hint

Items Items: PStatusItemi Read only

Methods

A pointer to the current linked list of TStatusItem records.

See also: TStatusItem

Init constructor Init(var Bounds: TRecti ADefs: PStatusDef)i

Constructs a status line object with the given Bounds by calling the Init
constructor inherited from TView. Sets the of PreProcess bit in Options, sets
EventMask to include evBroadcast, and sets GrowMode to gfGrowLoY +
gfGrowHiX + gfGrowHiY. Sets Defs to ADefs. If ADefs is nil, sets Items to nil;
otherwise, sets Items to ADefsA .Items

See also: TView.Init

Load constructor Load (var S: TStream) i

Constructs a status line object and loads it from the stream S by first
calling the Load constructor inherited from TView and then reading the
Defs and Items from the stream.

See also: TView.Load, TStatusLine.Store

Done destructor Done i virtual i

Override: Never Disposes of all the Items and Defs in the status line object, then calls the
Done destructor inherited from TView to dispose of the object.

See also: TView.Done

Dravv procedure Drawi virtuali

Override: Seldom Draws the status line by writing the Text string for each status item that
has one, then any hints defined for the current help context, following a
divider bar.

540 Turbo Vision Programming Guide

TStatusLine

See also: TStatusLine.Hint

GetPaleHe function GetPalette: PPalette; virtual;

Override: Returns a pointer to the default palette, CStatusLine
Sometimes

HandleEvent procedure HandleEvent (var Event: TEvent); virtual;

Override: Seldom Handles most events sent to the status line by calling the HandleEvent
method inherited from TView, then checking for three kinds of special
events.

• Mouse clicks that fall within the rectangle occupied by any status item
generate a command event with Event. What setto the Command in that
status item.

• Key events are checked against the Key Co de field in each item; a match
causes a command event with that item's Command.

• Broadcast events with the command cmCommandSetChanged cause the
status line to redraw itself to reflect any hot keys that might have been
enabled or disabled.

See also: TView.HandleEvent

Hint function Hint (AHelpCtx: Word): String; virtual;

Override: Often By default, Hint returns a null string. You can override it in descendant
status line objects to return a context-sensitive hint string for the AHelpCtx
parameter. A non-null string will be drawn on the status line after a
divider bar.

See also: TStatusLine.Draw

Store procedure Store(var S: TStream);

Writes the status line object to the stream S by first calling the Store
method inherited from TView, then writing all the status definitions and
their associated lists of items onto the stream. The saved object can be
recovered by using TStatusLine.Load.

See also: TView.Store, TStatusLine.Load

Update procedure Update;

Selects the correct Items from the lists in Defs, depending on the current
help context, then calls DrawView to redraw the status line if the items
have changed.

See also: TStatusLine.Defs

Chapter 79, Turbo Vision reference 541

a

TStatusLine

Palette

TStream

Fields

Status lines use the default palette CStatusLine to map onto the 2nd
through 7th entries in the standard application palette.

2 4

CStat .. U.. IQ [3['I 51 ~
Text Normal~ I I. I Selected Shortcut
Text Disabled· Selected Disabled
Text Shortcut Sel ected Normal

TObject TStream

Status
Init ErrorInfo
Free
Done CopyFrom

Error
Flush
Get
GetPos
GetSize
Put
Read
ReadStr
Reset
Seek
Truncate
Write
WriteStr

Objects

TStream is a general abstract object providing polymorphic 110 to and
from a storage device. You can create your own descendant stream objects
by overriding the virtual methods GetPos, GetSize, Read, Seek, Truncate,
and Write. Turbo Vision itself does this to derive TDosStream and
TEmsStream. For buffered stream descendants, you must also override
TStream.Flush.

Errorlnfo ErrorInfo: Integer Read/write

542

Errorlnfo contains additional information when Status is not stOk. For
Status values of stError, stInitError, stReadError, and st WriteError, Errorlnfo
contains the DOS or EMS error code, if one is available. When Status is
,stGetError, Errorlnfo contains the object type 10 (the ObjType field of a
TStreamRec) of the unregistered object type. When Status is stPutError,

Turbo Vision Programming Guide

TStream

ErrorInfo contains the VMT data segment offset (the VmtLink field of a
TStreamRec) of the unregistered object type.

Status Status: Integer Read/write

Methods

Indicates the current status of the stream. The value of Status is one of the
stXXXX constants. If Status is not stOk, all operations on the stream are
suspended until Reset is called.

See also: stXXXX stream constants

CopyFrom procedure CopyFrom (var S: TStreami Count: Longint) i

Error

Override:
Sometimes

Copy Count bytes to the stream from stream S. For example:

{Create a copy of entire stream}
NewStream := New (PEmsStream, Init(OldStreamA.GetSize)) i
OldStreamA.Seek(O)i
NewStreamA.CopyFrom(OldStream, OldStreamA.GetSize) i

See also: TStream.GetSize, TObject.Init

procedure Error (Code, Info: Integer)i virtuali

Called whenever a stream error occurs. The default Error stores Code and
Info in the Status and ErrorInfo fields and then, if the global variable
StreamError is not nil, calls the procedure pointed to by StreamError. Once
an error has occurred, all stream operations on the stream are suspended
until Reset is called.

See also: TStream.Reset, StreamError variable

Flush procedure Flushi virtuali

Override:
Sometimes

An abstract method that must be overridden if your descendant
implements a buffer. This method can flush any buffers by clearing the
read buffer, by writing the write buffer, or both. The default TStream.Flush
does nothing.

See also: TDosStream.Flush

(;et function Get: PObjecti

Reads an object from the stream and returns a pointer to it. The object
must have been previously written to the stream by Put. Get first reads an
object type ID (a word) from the stream. It then finds the corresponding
object type by comparing the ID to the ObjType field of all registered
object types (see the TStreamRec type), and finally calls the Load

Chapter 7 9, Turbo Vision reference 543

TStream

constructor of that object type to construct and initialize the object. If the
object type ID read from the stream is zero, Get returns a nil pointer; if the
object type ID has not been registered (using RegisterType), Get calls
TStream.Error and returns a nil pointer; otherwise, Get returns a pointer to
the newly created object.

See also: TStream.Put, RegisterType, TStreamRec, Load methods

(;etPos function GetPos: Longint; virtual;

Override: Always Returns the stream's current position. This is an abstract method that must
be overridd~n.

See also: TStream.Seek

(;etSize function GetSize: Longint; virtual;

Override: Always Returns the total size of the stream. This is an abstract method that must
be overridden.

Put procedure Put (P: PObj ect) ; I

Writes the object P to the stream. The object can later be read from the I

stream using TStream.Get. Put first finds the type registration record of the Iii
object by comparing the object's VMT offset to the VmtLink field of all
registered object types (see the TStreamRec type). It then writes the object
type ID (the ObjType field of the registration record) to the stream, and
finally calls the Store method of that object type to write the object.

If P is nil, Put writes a word containing zero to the stream. If the object
type of P has not been registered (using RegisterType), Put calls
TStream.Error and doesn't write anything to the stream.

See also: TStream.Get, RegisterType, TStreamRec, Store methods

Read procedure Read(var Buf; Count: Word); virtual;

Override: Always This is an abstract method that must be overridden in all descendant
types. Read should read Count bytes from the stream into But and advance
the current position of the stream by Count bytes. If an error occurs, Read
should call Error, and fill But with Count bytes of O.

544

See q.lso: TStream. Write, TStream.Error.

ReadStr function ReadStr: PString;

Reads a string from the current position of the calling stream, returning a
PString pointer. TStream.ReadStr calls GetMem to allocate (Length + 1)
bytes for the string.

See also: TStream. WriteStr

Turbo Vision Programming Guide

,]

I

I

I

I

TStream

Reset procedure Reset;

Resets any stream error condition by setting Status and ErrorInfo to O. Reset
enables you to continue stream processing after correcting an error
condition.

See also: TStream.Status, TStream.Errorlnfo, stXXXX error codes

Seek procedure Seek (Pas: Longint); virtual;

Override: Always This is an abstract method that must be overridden by all descendants.
TStream.Seek sets the current position to Pos bytes from the start of the
calling stream. The start of a stream is position O.

See also: TStream.GetPos

Truncate procedure Truncate; virtual;

Override: Always This is an abstract method that must be overridden by all descendants.
Truncate deletes all data on the calling stream from the current position to
the end.

See also: TStream.GetPos, TStream.Seek

Write procedure Write (var Buf; Count: Word); virtual;

Override: Always This is an abstract method that must be overridden in all descendant
types. Write should write Count bytes from Buf onto the stream and
advance the current position of the stream by Count bytes. If an error
occurs, Write should call Error.

See also: TStream.Read, TStream.Error.

WriteStr procedure Wri teStr (P: PString);

Writes the string pA to the calling stream, starting at the current position.

See also: TStream.ReadStr

TStreamRec type

Declaration TStreamRec = record
ObjType: Word;
VmtLink: Word;
Load: Pointer;
Store: Pointer;
Next: Word;

end;

Chapter 79, Turbo Vision reference

Objects I

545

TStreamRec "type

Function A Turbo Vision object type must have a registered TStreamRec before its
objects can be loaded or stored on a TStream object. The RegisterTypes
routine registers an object type by setting up a TStreamRec record.

Table 19.42
Stream record fields

The fields in the stream registration record are defined as follows:

Field

ObjType
VmtLink
Load
Store
Next

Contents

A unique numerical id for the object type
A link to the object type's virtual method table entry
A pointer to the object type's Load constructor
A pointer to the object type's Store method
A pointer to the next TStreamRec

Turbo Vision reserves object type IDs (ObjType) values 0 through 999 for
its own use. Programmers can define their own values in the range 1,000
to 65,535.

By convention, a TStreamRec for a Txxxx object type is called Rxxxx. For
" example, the TStreamRec for a TCalculator type is called RCalculator, as
shown in the following code:

type
TCalculator = object(TDialog}

constructor Load(var s: TStrearn};
procedure Store(var S: TStrearn};

end;

const
RCalculator: TStrearnRec = (

ObjType: 2099;
VrntLink: Ofs(TypeOf(TCalculator)A) ;
Load: @TCalculator.Load;
Store: @TCalculator.Store};

begin
RegisterType(RCalculator} ;

end;

See also RegisterType

TStrlndex type Objects

Declaration TStrlndex = array[O .. 9999] of TStrlndexRec;

Function Used internally by TStringList and TStrListMaker.

546 Turbo Vision Programming Guide

TStrlndexRec type

TStrlndexRec type Object

Declaration TStrIndexRec = record
Key, Count, Offset: Word;

end;

Function Used internally by TStringList and TStrListMaker.

TStringColiection Objects

TObj ect TCo 11 ect ion

Count
Delta

Init
bea6-
Done
At
AtDel ete
AtFree
AtInsert
AtPut
Delete
DeleteA1l
Error
FirstThat

Items
Limit

ForEach
Free
FreeA 11
~
~
~
f..R.s.e.I4
LastThat
Pack
~
SetLimit
£.t.e.Fe.

TSortedCo 11 ect ion TStri "gCo 11 ecti on

Dupl i cates

Load
~
IndexOf
Insert
KeyOf
Search
Store

Compare
FreeItem
GetItem
PutItem

TStringCollection is a simple derivative of TSortedCollection implementing a
sorted list of ASCII strings. The Compare method is overridden to provide
ASCII string ordering. You can override Compare to allow for other
orderings, such as those for non-English character sets.

Methods
Compare function Compare (Keyl, Key2: Pointer): Integer; virtual;

Override:
Sometimes

Compares the strings Keyl" and Key2" as follows: return -1 if
Keyl < Key2; a if Keyl = Key2; and + 1 if Keyl > Key2.

See also: TSortedCollection.Search

Freeltem procedure FreeItem(Item: Pointer); virtual;

Override: Seldom Removes the string Item" from the sorted collection and disposes of the
string.

Getltem function GetItem(var S: TStream): Pointer; virtual;

Override: Seldom By default, reads a string from the stream S by calling S.ReadStr.

See also: TStream.ReadStr

Chapter 79, Turbo Vision reference 547

a

TStringColiection

Putltem procedure PutItem(var S: TStreamj Item: Pointer) j virtualj

Override: Seldom By default, writes the string Item A to the stream Sby calling S. WriteStr.

TStringList

Methods

See also: TStream. WriteStr

Objects

TObject TStri ngL i st

Init Load
Free Done
BefIe. Get

TStringList provides a mechanism for accessing strings stored on a stream.
Each string in a string list is identified by a unique number (its key)
betvyeen a and 65,535. String lists take up less memory than normal string
literals, since the strings are stored on a stream instead of in memory. I

Also, string lists permit easy internationalization, as the strings are not I
"burned into" the program. I • TStringList has methods only for accessing strings; you must use
TStrListMaker to create string lists.

Note that TStringList and TStrListMaker have the same object type ID
(ObjType field in a TStreamRec), and that they can therefore not both be
registered and used in the same program.

Load constructor Load (var S: TStream) j

Loads the string list index from the stream S and stores internally a
reference to S so that TStringList.Get can later access the stream when
reading strings.

Assuming that TStringList has been registered using
RegisterType(RStringList), here's how to instantiate string list (created
using TStrListMaker and TResourceFile.Put) from a resource file:

ResFile.lnit(New(TBufStream, Init('MYAPP.RES', stOpenRead, l024)))j
Strings := PStringList(ResFile.Get('Strings'))j

See also: TStrListMaker.Init, TStringList.Get,

Done destructor Done j virtual j

548 Turbo Vision Programming Guide

I

I

I

I

I

I

T5tri ng List

Override: Never Deallocates the memory allocated to the string list.

See also: TStrListMaker.Init, TStringList.Done

(;et function Get (Key: Word): String;

TStrListMaker

Returns the string given by Key, or an empty string if there is no string
with the given Key. An example:

P := @FileName;
FormatStr(S, StringsA.Get(sLoadingFile), P);

See also: TStrListMaker.Put

TObj ect TStrL i stMaker

Init
Done
Put
Store

Objects

TStrListMaker is a simple object type used to create string lists for use with
TStringList.

The following code fragment shows how to create and store a string list in
a resource file.

const
sInformation
sWarning
sError
sLoadingFile
sSavingFile

var

= 100;
= 101;
= 102;
= 200;
= 201;

ResFile: TResourceFile;
S: TStrListMaker;

begin
RegisterType(RStrListMaker);

ResFile.Init(New(TBufStream, Init('MYAPP.RES', stCreate, 1024)));
S.Init(16384, 256);

S.Put(sInformation, 'Information');
S.Put(sWarning, 'Warning');
S.Put(sError, 'Error');
S.Put(sLoadingFile, 'Loading file %s.');

Chapter 79, Turbo Vision reference 549

TStrListMaker

S.Put(sSavingFile, 'Saving file %s.');

ResFile.Put(@S, 'Strings');
S.Done;
ResFile.Done;

end;

Methods
Init constructor Init(AStrSize, AIndexSize: Word);

Creates an in-memory string list of size AStrSize with an index of
AIndexSize elements. A string buffer and an index buffer of the specified
size is allocated on the heap.

AStrSize must be large enough to hold all strings to be added to the string
list-each string occupies its length plus one bytes.

As strings are added to the string list (using TStrListMaket.Put), a string
index is built. Strings with contiguous keys (such as sInformation,
s Warning, and sError in the example above) are recorded in one index I

record, up to 16 at a time. AIndexSize must be large enough to allow for all I
index records generated as strings are added. Each index entry occupies 6 •
bytes.

See also: TStringList.Load, TStrListMaker.Done

Done destructor Done; virtual;

Frees the memory allocated to the string list maker.

See also: TStrListMaker.Init

Put procedure Put (Key: Word; S: String);

Add the given string S to the string list with the given numerical Key.

Store procedure Store(var S: TStream);

Stores the string list on the stream S.

TSysErrorFunc type Drivers

Declaration TSysErrorFunc = function (ErrorCode: Integer; Drive: Byte): Integer;

Function TSysErrorFunc defines the type of a system error handler function.

See- also SysErrorFunc, SystemError, InitSysError, DoneSysError

550 Turbo Vision Programming Guide

TStringLookupValidator

TStringLookup v alidator Validate

Field

TObj ect TVa 1 ida tor

Options
Status

~
be-a4
~
f.s..IJ.a..l.+€
IsVal idlnput
£t.&pe.

Transfer
Val id

TLookupVal idator TStringLookupVal idator

~
Strings

~d
~ Init

Load
Done
Error
Lookup
NewStri ngL i st
Store

A string lookup valida tor object verifies the data in its associated input
line by searching through a collection of valid strings. Use string lookup
validators when your input line needs to accept only members of a certain
set of strings.

Strings Strings: PStringCollectioni

Methods

Points to a string collection containing all the valid strings the user can
type. If Strings is nil, all input will be invalid.·

Init constructor Init(AStrings: PStringCollection) i

Constructs a string lookup valida tor object by first calling the Init
constructor inherited from TLookupValidator, then setting Strings to
AStrings.

See also: TLookup Validator.Init

Load constructor Load (var S: TStream) i

Constructs and loads a string lookup valida tor object from the stream S by
first calling the Load constructor inherited from TLookupValidator, then
reading the string collection Strings.

See also: TLookup Validator.Load

Done destructor Done i virtual i

Chapter 79, Turbo Vision reference 551

a

TSfringLookupValidafor

552

Disposes of the list of valid strings by calling NewStringList(nil), then
disposes of the string lookup object by calling the Done destructor
inherited from TLookup Va lida tor.

See also: TLookupValidator.Done, TStringLookupValidator.NewStringList

Error procedure Error; virtual;

Displays a message box indicating that the typed string does not match an
entry in the string list.

Lookup function Lookup (const s: string): Boolean; virtual;

Returns True if the string passed in S matches any of the strings in Strings.
Uses the Search method of the string collection to determine if S is present.

See also: TSortedColiection.Search

NewSfringLisf procedure NewStringList (AStrings: PStringCollection);

Sets the list of valid input strings for the string lookup validator. Disposes
of any existing string list, then sets Strings to AStrings. Passing nil in
AStrings disposes of the existing list without assigning a new one.

Store procedure Store(var S: TStream);

Stores the string lookup validator on the stream S by first calling the Store
method inherited from TValidator and then writing the string collection
held in Strings.

Turbo Vision Programming Guide

I

I

I'

TTerminal

TTerminal TextView

TObject TView TScroller TTextOevice TTerminal

Cursor
DragMode
EventMask
GrowMode

Hel pCtx
Next
Options
Origin

Owner
Size
State

HH-t- GetCommands Prey
bea4 GetData PrevVi ew
~ Get Event PutEvent
Awaken GetExtent PutlnFrontOf
BlockCursor GetHe 1 pCtx PutPeerVi ewPt r
Ca 1 cBounds GetPal eUe Se 1 ect
GI:laAfjeBsI:IA8S GetPeerVi ewPtr SetBounds
Cl earEvent GetState SetCommands
CommandEnabl ed GrowTo SetCmdState
DataSi ze loIaA81 e[eAt Set Cursor
DisableCommands Hide SetData
DragView HideCursor ~
Bf>aw. KeyEvent Show
DrawVi ew locate ShowCursor
EnableCommands MakeFirst SizeLimits
EndModal MakeGlobal ~
EventAvail Makeloca 1 TopVi ew
Execute MouseEvent Va 1 i d
Exposed Mouse I nVi ew WriteBuf
Focus MoveTo Wri teChar
GetBounds NextVi ew Wri tel i ne
GetCl i pRect Norma 1 Cursor WriteSt r
GetColor

HScrollBar
VScrollBar
Delta
limit

HH-t
load
Change Bounds
GetPalette
Handl eEvent
Scroll Draw
ScrollTo
Setl imit
SetS tate
Store

Buffer
BufSi ze
QueBack
QueFront

Init
Done
BufDec
BufInc
CalcWidth
Can Insert
Draw
Nextl i ne
Prevl i nes
Que Empty
StrRead
StrWrite

TTerminal implements a "dumb" terminal with buffered string reads and
writes. The default is a cyclic buffer of 64K bytes. The terminal view is an
example of a text file device driver connected to a scrolling view.

Fields
Buffer Buffer: PTerminalBuffer; Read only

Points to the first byte of the terminal's buffer.

BufSize BufSize: Word; Read only

The size of the terminal's buffer in bytes.

QueBeck QueBack: Word; Read only

Offset (in bytes) of the last byte stored in the terminal buffer.

QueFront QueFront: Word; Read only

Offset (in bytes) of the first byte stored in the terminal buffer.

Chapter 79, Turbo Vision reference 553

a

TTerminal

Methods
Init constructor Init(var Bounds: TReet; AHSerollBar, AVSerollBar: PSerollBar;

ABufSize: Word);

Done

Override:
Sometimes

Constructs a TTerminal object with the given Bounds, horizontal and
vertical scroll bars, and buffer by calling the Init constructor inherited
from TTextDevice with the Bounds and scroller arguments, then creating a
buffer (pointed to by Buffer) with BufSize equal to ABufSize. Sets GrowMode
to gfGrowHiX + gfGrowHiY. QueFront and QueBack are both initialized to 0,
indicating an empty buffer. Shows the cursor at the view's origin, (0,0).

See also: TScroller.Init

destructor Done; virtual;

Deallocates the buffer and calls the Done destructor inherited from
TTextDevice to dispose of the object.

See also: TScroller.Done, TTextDevice.Done

BufDec procedure BufDee (var Val: Word);

Used to manipulate queue offsets with wrap around: If Val is zero, Val is
set to (BufSize -1); otherwise, Val is decremented.

See also: TTerminal.BufInc

Buflnc procedure BufIne (var Val: Word);

Used to manipulate queue offsets with wrap around: Increments Val by 1,
then if Val >= BufSize, Val is set to zero.

See also: TTerminal.BufDec

<:alcVVidth function CaleWidth: Integer;

Returns the length of the longest line in the text buffer.

Canlnsert function CanInsert (Amount: Word): Boolean;

Returns True if the number of bytes given in Amount can be inserted into
the terminal buffer without having to discard the top line.

Dravv procedure Draw; virtual;

Override: Seldom Called whenever the TTerminal scroller needs to be redrawn, for example,
when the scroll bars are clicked on, the view is unhidden or resized, the
Delta values are changed, or when added text forces a scroll.

NextLine function NextLine (Pos :Word): Word;

554 Turbo Vision Programming Guide

I'

TTerminal

Returns the buffer offset of the start of the line that follows the position
given by Pos.

See also: TTerminal.PrevLines

PrevLines function PrevLines (Pas :Word; Lines: Word): Word;

Returns the offset of the start of the line that is Lines lines previous to the
position given by Pos.

See also: TTerminal.NextLine

QueEmpty function QueErnpty: Boolean;

StrRead

Override:
Sometimes

StrWrite

Override: Seldom

Palette

Returns true if QueFront is equal to QueBack.

See also: TTerminal.QueFront, TTerminal.QueBack

function StrRead(var s: TextBuf): Byte; virtual;

Abstract method returning O. You must override StrRead if you want a
descendant type to be able to read strings from the text buffer.

procedure StrWrite(var s: TextBuf; Count: Byte); virtual;

Inserts Count lines of the text given by S into the terminal's buffer. This
method handles any scrolling required by the insertion and selectively
redraws the view with DrawView.

See also: TView.DrawView

Terminal objects use the default palette, CScroller, to map onto the 6th and
7th entries in the standard application palette.

1 2

CScroller Q I tl
Normal~ Highlight

TTerminalBuffer type TextView

Declaration TTerrninalBuffer = array[O .. 65534] of Char;

Function Used internally by TTerminal.

See also TTerminal

Chapter 79, Turbo Vision reference 555

a

TTextOevice

TTextDevice

Methods

TObject TView

Cursor
DragMode
EventMask
GrowMode

Hel pCtx
Next
Opti ons
Origin

Owner
Size
State

HH-t- GetCommands Prey
I::eaEI- GetData PrevVi ew
Done Get Event Put Event
Awaken GetExtent PutInFrontOf
BlockCursor GetHelpCtx PutPeerViewPtr
Ca 1 cBounds GetPal eHe Se 1 ect
bl:1aR[leBsl:IRaS GetPeerVi ewPtr SetBounds
Cl earEvent GetState SetCommands
CommandEnabl ed GrowTo SetCmdState
DataSi ze !laRal el!: eRt SetCursor
DisableCommands Hide SetData
DragView HideCursor ~
Draw KeyEvent Show
DrawVi ew Locate ShowCursor
Enabl eCommands MakeFi rst Si zeLimits
EndModal MakeGlobal ~
EventAvai 1 MakeLoca 1 TopVi ew
Execute MouseEvent Va 1 i d
Exposed MouselnVi ew Wri teBuf
Focus MoveTo WriteChar
GetBounds NextVi ew WriteL i ne
GetCl i pRect Norma 1 Cursor WriteStr
GetColor

TScroller

HScrollBar
VScrollBar
Delta
Limit

Init
Load
ChangeBounds
GetPa 1 ette
Handl eEvent
Scroll Draw
ScrollTo
SetLimi t
SetState
Store

. TextView

TTextDevice

TTextDevice is a scrollable TTY type text viewer / device driver. Apart from
the fields and methods inherited from TScroller, TTextDevice defines
virtual methods for reading and writing strings from and to the device.
TTextDevice exists solely as a base type for deriving real terminal drivers.
TTextDevice uses TScroller's constructor and destructor.

StrRead function StrRead (var S: TextBuf): Byte; virtual;

Override: Often Abstract method returning 0 by default. You must override StrRead in any
descendant type to read a string from a text device into S. StrRead returns
the number of lines read.

StrWrite procedure StrWr-ite (var S: TextBuf; Count: Byte); virtual;

Override: Alwavs Abstract method to write a string to the device. It must be overridden by
derived types. For example, TTerminal.Str Write inserts Count lines of the
text given by S into the terminal's buffer and redraws the view.

556 Turbo Vision Programming Guide

TTextDevice

Palette
Text device objects use the default palette CScroller to map onto the 6th
and 7th entries in the standard application palette.

1 2

CScroller ij6 I t!
Normal~ Highlight

TIitleStr type Views

Declaration TTitleStr = string[80];

Function This type is used to declare text strings for titled windows.

See also TWindow. Title

TValidator Validate

Fields

TObject TVal idator

Options
J.R.H;. Status
Free f---------j
Done Init

Load
Error
IsVal id
IsValidlnput
Store
Transfer
Val id

TValidator defines an abstract data validation object. You will never
actually create an instance of TValidator, but it provides much of the
abstract functions for the other data validation objects.

Options Options: Word;

Options is a bitmapped field used to control options for various
descendants of TValidator. By default, TValidator.Init clears all the bits in
Options.

See also: voXXXX constants

Status Status: Word;

Chapter 79, Turbo Vision reference 557

TValidator

558

Methods

Indicates the status of the validator object. If Status is vsOK, the validator
object constructed correctly. Any value other than vsOK indicates that an
error occurred.

See also: TInputLine.Valid, Valida torOK constant

Init constructor Init;

Constructs an abstract valida tor object by first calling the Init constructor
inherited from TObject, then setting the Options and Status fields to zero.

See also: TObject.Init

Load constructor Load (var S: TStream);

Constructs a valida tor object by calling the Init constructor inherited from
TC?bject, then reads the Options word from the stream S.

See also: TObject.Init

Error procedure Error; virtual;

Error is an abstract method called by Valid when it detects that the user
has entered invalid information. By default, TValidator.Error does nothing,
but descendant types can override Error to provide feedback to the user.

IsValidlnput function IsValidInput (var S: string; SuppressFill: Boolean): Boolean;
virtual;

If an input line has an associated valida tor object, it calls Is ValidInput after
processing each keyboard event. This gives valida tors such as filter
valida tors an opportunity to catch errors before the user fills the entire
item or screen.

By default, TValidator.Is Va lidInput returns True. Descendant data
validators can override Is Va lidInput to validate data as the user types it,
returning True if S holds valid data and False otherwise.

S is the current input string. SuppressFill determines whether the valida tor
should automatically format the string before validating it. If SuppressFill
is True, validation takes place on the unmodified string S. If SuppressFill is
False, the validator should apply any filling or padding before validating
data. Of the standard validator objects, only TPXPictureValidator checks
SuppressFill.

Because S is a var parameter, Is Va lidInput can modify the contents of the
input string, such as forcing characters to uppercase or inserting literal
characters from a format picture. IsValidInput should not, however, delete

Turbo Vision Programming Guide

TValidator

invalid characters from the string. By returning False, IsValidlnput
indicates that the input line should erase the offending characters.

IsValid function IsValid(const S: string): Boolean; virtual;

By default, TVa lida tor.Is Valid returns True. Descendant validator types can
override IsValid to validate data for a completed input line. If an input line
has an associated valida tor object, its Valid method calls the valida tor
object's Valid method, which in turn calls IsValid to determine whether the
contents of the input line are valid.

See also: TlnputLine.Valid, TValidator.Valid

Store procedure Store(var S: TStream);

Writes the validator object to the stream 5 by writing the value of the
Options field.

Transfer function Transfer(var S: String; Buffer: Pointer; Flag: TVTransfer): Word;
virtual;

Transfer allows a valida tor to take over setting and reading the values of
its associated input line, which is mostly useful for valida tors that check
non-string data, such as numeric values. For example, TRange Va lida tor
uses Transfer to read and write Longint-type values to a data record, rather
than transferring an entire string.

By default, input lines with validators give the validator the first chance to
respond to Data5ize, GetData, and SetData by calling the validator's
Transfer method. If Transfer returns anything other than 0, it indicates to
the input line that it has handled the appropriate transfer. The default
action of TValidator. Transfer is to return 0 always. If you want the valida tor
to transfer data, you need to override its Transfer method.

Transfer's first two parameters are the associated input line's text string
and the GetData or SetData data record. Depending on the value of Flag,
Transfer can set S from, Buffer or read the data from 5 into Buffer. The T
return value is always the number of bytes transferred.

If Flag is vtDataSize, Transfer doesn't change either S or Buffer, but just
returns the data size. If Flag is vtSetData, Transfer reads the appropriate
number of bytes from Buffer, converts them into the proper string form,
and sets them into 5, returning the number of bytes read. If Flag is
vtGetData, Transfer converts S into the appropriate data type and writes
the value into Buffer, returning the number of bytes written.

See also: TlnputLine.DataSize, TlnputLine.GetData, TlnputLine.SetData

Chapter 79, Turbo Vision reference 559

TValidator

Valid function Valid(const S: string): Boolean;

Returns True if IsValid(S) returns True. Otherwise, calls Error and returns
False. A validator's Valid method is called by the Valid method of its
associated input line.

Input lines with associated valida tors call the valida tor's Valid method
under two conditions: either the input line has its ofV alidate option set, in
which case it calls Valid when it loses focus, or the dialog box that contains
the input line calls Valid for all its controls, usually because the user
requested to close the dialog box or accept an entry screen.

See also: TlnputLine. Valid, TValidator.Error, TVa lida tor.Is Valid

TVideoBuf type Views

Declaration TVideoBuf = array[O .. 3999] of Word;

TView

560

Function This type is used to declare video buffers.

See also TGroup.Buffer

TObject TView

Cursor
DragMode
EventMask
GrowMode

HelpCtx
Next
Options
Origin

Owner
Size
State

Init GetCommands Prey
Load Get Data PrevVi ew
Done Get Event Put Event
Awaken GetExtent PutInFrontOf
BlockCursor GetHel pCtx PutPeerVi ewPtr
Ca 1 cBounds GetPa 1 ette Se 1 ect
ChangeBounds GetPeerVi ewPtr SetBounds
Cl earEvent GetState SetCommands
CommandEnab 1 ed GrowTo SetCmdState
DataSi ze Handl eEvent SetCursor
Di sab 1 eCommands Hi de SetData
DragVi ew Hi deCursor SetState
Draw KeyEvent Show
DrawVi ew Locate ShowCursor
EnableCommands MakeFirst SizeLimits
EndModa 1 MakeGl oba 1 Store
EventAvail MakeLoca 1 TopVi ew
Execute MouseEvent Val id
Exposed MouselnView WriteBuf
Focus MoveTo WriteChar
GetBounds NextVi ew WriteLi ne
GetCl i pRect Normal Cursor WriteStr
GetColor

Views

Turbo Vision Programming Guide

II
I,
I

Fields

TView

The TView object type exists to provide basic fields and methods for its
descendants. You'll probably never need to construct an instance of TView
itself, but most of the common behavior of visible elements in Turbo
Vision applications comes from TView.

Cursor Cursor: TPoint; Read only

The location of the hardware cursor within the view. The cursor is visible
only if the view is focused (sfFocused) and the cursor turned on
(sfCursorVis). The shape of the cursor is either underline or block
(determined by sfCursorlns).

See also: SetCursor, ShowCursor, HideCursor, NormalCursor, BlockCursor

DragMode DragMode: Byte; Read/write

Figure 19.12
DragMode bit

mapping

Determines how the view should behave when mouse-dragged.

The DragMode bits are defined as follows:
1r---rI----.I,---,-I------dmLimitAll = $FO

Ilmsbl I I I 11Sbii

I I
I LdmDragMove = $01
L--dmDragGrow = $02

L-------dmLimitLoX = $10
'--------dmLimitLoY = $20

L---------dmLimitHiX = $40
L-----------dmLimitHiY = $80

The DragMode masks are defined in this chapter under" dmXXXX
DragMode constants."

See also: TView.DragView

EventMask EventMask: Word; Read/write

EventMask is a bit mask that determines which event classes will be
recognized by the view. The default EventMask enables evMouseDown, a
evKeyDown, and evCommand. Assigning $FFFF to EventMask causes the
view to react to all event classes; conversely, a value of zero causes the
view to not react to any events. For detailed descriptions of event classes,
see "evXXXX event constants" in this chapter.

See also: HandleEvent methods

GrowMode GrowMode: Byte; Read/write

Determines how the view will grow when its owner view is resized.
GrowMode is assigned one or more of the following GrowMode masks:

Chapter 79, Turbo Vision reference 561

TView

562

Figure 19.13
GrowMode bit

mapping

.----.--.----.-g fG rowA 11 = $0 F

gfGrowLoX = $01
gfGrowLoY = $02

'------gfGrowHiX = $04
L-----gfGrowHi Y = $08

'-------gfGrowRe1 = $10

Example: GrowMode : = gfGrowLoX or gfGrowLoYi

See also: gfXXXX grow mode constants

He.lpCtx HelpCtx: Wordi Read/write

The help context of the view. When the view has the focus, this field will
represent the help context of the application unless the context number is
hcNoContext, in which case the context defaults to the help context of its
owner.

See also: TView.GetHelpCtx.

Next Next: PViewi Read only

Pointer to the owner view's next subview in Z-order. If this is the last
subview, Next points to Owner's first subview.

Options Options: Wordi Read/write

Figure 19.14
Options bit flags

The Options word flags determine various behaviors of the view.

The Options bits are defined as follows:

IlmSbl I I I I I I 1 1
I I

undJined

1 1 I 1

j I

I 11 sbll

L=

of Centered = $0300

of Selectable = $0001
ofTopSe 1 ect = $0002
ofFi rs tC1 i c k = $0004
of Framed = $0008
of PreProcess '= $0010
of PostProcess = $0020
of Buffered = $0040
ofTileab1e = $0080
of Center X = $0100
ofCenterY = $0200

For detailed descriptions of the option flags, see" ofXXXX option flag
constants" in this chapter.

Origin Origin: TPointi Read only

The (X, Y) coordinates, relative to the owner's Origin, of the top left corner
of the view.

See also: MoveTo, Locate

Turbo Vision Programming Guide

TView

Owner Owner: PGroup; Read only

Owner points to the group object that owns this view. If nil, the view has
no owner. The view is displayed within its owner and will be clipped by
the owner's bounding rectangle.

Size Size: TPointj Read only

The size of the view.

See also: GrowTo, Locate

State State: Word; Read only

Methods

The state of the view is represented by bits in the State field. Many TView
methods test and/or alter the State field by calling SetState~
GetState(AState) returns True if the view's State is AState. The State bits are
represented mnemonically by sfXXXX constants, described in this chapter
under "sfXXXX state flag constants."

Init constructor Init(var Bounds: TRect);

Override: Often Constructs a view object with the given Bounds rectangle. Init calls the Init
constructor inherited from TObject, then sets the fields of the new TView to
the following values:

Owner
Next
Origin
Size
Cursor
GrowMode
DragMode
HelpCtx
State
Options
EventMask

nil
nil
(Bounds.A.X, Bounds.A.Y)
(Bounds.B.X - Bounds.A.x, Bounds.B.Y - Bounds.A.Y)
~m .
o
dmLimitLoY
hcNoContext
sfVisible
o
evMouseDown + evKeyDown + evCommand

TObject.Init will zero all fields in TView descendants. Always call the
inherited Init constructor before initializing any fields.

See also: TObject.Init

Load constructor Load (var S: TStream) j

Override: Often Constructs a view object and loads it from the stream S. The size of the
data read from the stream must correspond exactly to the size of the data
written to the stream by the view's Store method. If the view contains

Chapter 79, Turbo Vision reference 563

a

TView

pointers to peer views, Load should use GetPeerViewPtr to read these
pointers. An overridden Load constructor should always call its inherited
Load constructor.

The default TView.Load sets the Owner and Next fields to nil, and reads the
remaining fields from the stream. Owner and Next are set by the view's
owner after all subviews have loaded.

See also: TView.Store, TStream.Get, TStream.Put

Done destructor Done; virtual;

Override: Often Hides the view and then, if it has an owner, deletes it from the group.

Awaken procedure Awaken; virtual;

The default TView.Awaken does nothing. When a group is loaded from a
stream, the last thing the Load constructor does is call the Awaken methods
of all subviews, giving those views a chance to initialize themselves once
all subviews have loaded. This guarantees that all pointers read with
GetPeerViewPtr are valid.

If you create objects that depend on other subviews to initialize
themselves after being read from a stream, you can override Awaken to
perform that initialization.

See also: TView.GetPeerViewPtr

BlockCursor procedure BlockCursor;

Override: Never Sets sfCursorlns to change the cursor to a solid block. The cursor will be
visible only if sfCursorVis is also set (and the view is visible).

See also: sfCursorlns, sfCursorVis, TView.NormalCursor, TView.ShowCursor,
TView.HideCursor

Calc Bounds procedure CalcBounds (var Bounds: TRect; Delta: TPoint); virtual;

Override: Seldom When a view's owner changes size, the owner calls CalcBounds and
ChangeBounds for all its subviews. CalcBounds must calculate the new
bounds of the view given that its owner's size has changed'by Delta, and
return the new bounds in Bounds.

TView.CalcBounds calculates the new bounds using the flags specified in
GrowMode.

See also: TView.GetBounds, TView.ChangeBounds, gfXXXX grow mode
constants

Change Bounds procedure ChangeBounds (var Bounds: TRect) i virtual;

564 Turbo Vision Programming Guide

TView

Override: Seldom ChangeBounds must change the view's bounds (Origin and Size fields) to
the rectangle given by the Bounds parameter. Having changed the bounds,
ChangeBounds must then redraw the view. ChangeBounds is called by
various TView methods but should never be called directly.

TView.ChangeBounds first calls SetBounds(Bounds) and then calls DrawView.

See also: TView.Locate, TView.MoveTo, TView.GrowTo

ClearEvent procedure ClearEvent (var Event: TEvent);

Standard method used in HandleEvent to signal that the view has
successfully handled the event. Sets Event. What to evNothing and
Event.InfoPtr to @Self.

See also: HandleEvent methods

CommandEnabled function CommandEnabled(Command: Word): Boolean;

Returns True if Command is currently enabled; otherwise, it returns False.
Note that when you change a modal state, you can disable and enable
commands as needed; when you return to the previous modal state,
however, the original command set will be restored.

See also: TView.DisableCommand, TView.EnableCommand,
TView.SetCommands.

DataSize function DataSize: Word; virtual;

Override: Seldom DataSize must return the size of the data read from and written to data
records by SetData and GetData. The data record mechanism is typically
used only in views that implement controls for dialog boxes.

TView.DataSize returns 0 to indicate that no data is transferred.

See also: TView.GetData, TView.SetData

DisableCommands procedure DisableCommands (Commands: TCommandSet);

Disables the commands specified in the Commands parameter.

See also: TView.CommandEnabled, TView.EnableCommands,
TView.SetCommands.

DragView procedure DragView(Event: TEvent; Mode: Byte; var Limits: TRect;
MinSize, MaxSize: TPoint) i

Drags the view using the dragging mode given by dmXXXX flags in Mode.
Limits specifies the rectangle (in the owner's coordinate system) within
which the view can be moved, and Min and Max specifies the minimum
and maximum sizes the view can shrink or grow to. The event leading to

Chapter 79, Turbo Vision reference 565

a

TView

the dragging operation is needed in Event to distinguish mouse dragging
from use of the cursor keys.

See also: TView.DragMode, dmXXXX drag mode constants

Dravv procedure Draw; virtual;

Override: Always Called whenever the view must draw (display) itself. Draw must cover the
entire area of the view. This method must be overridden appropriately for
each descendant.

In general, you shouldn't call Draw directly, since it is more efficient to use
DrawView, which draws only views that are exposed, that is, if any part of
the view is visible on the screen. If required, Draw can call GetClipRect to
obtain the rectangle that needs redrawing, and then only draw that area.
For complicated views, this can improve performance noticeably.

See also: TView.DrawView

DravvVievv procedure DrawView;

Calls Draw if 'fView.Exposed returns True, indicating that the view is I

exposed (see sfExposed). You should call DrawView rather than Draw I~
whenever you need to redraw a view after making a change that affects its
visual appearance.

See also: TView.Draw, TGroup.lJeDraw, TView.Exposed

EnableCommands procedure EnableCommands (Commands: TCommandSet);

Enables all the commands in the Commands parameter.

See also: TView.DisableCommands, TView.GetCommands,
TView.CommandEnabled, TView.SetCommands.

EndModal procedure EndModal (Command: Word); virtual;

Override: Never Terminates the current modal state and returns Command as the result of
the ExecView function call that created the modal state.

See also: TGroup.ExecView, TGroup.Execute, TGroup.EndModal

EventAvaii function EventAvail: Boolean;

Returns True if an event is available for GetEvent.

See also: TView.MouseEvent, TView.KeyEvent, TView.GetEvent

Execute function Execute: Word; virtual;

Override: Seldom Execute is called from TGroup.ExecView whenever a view becomes modal.
If a view is to allow modal execution, it must override Execute to provide

566 Turbo Vision Programming Guide

TView

an event loop. The result of Execute becomes the value returned from
ExecView.

TView.ExecView simply returns cmCancel.

See also: siModal, TGroup.Execute, TGroup.ExecView.

Exposed function Exposed: Boolean;

Returns True if any part of the view is visible on the screen.

See also: sfExposed, TView.DrawView

Focus function Focus: Boolean;

Selects and focuses the view, returning True if the view's owner returns
True from Focus, and if the view is neither selected nor modal, or if the
view has no owner. Otherwise, returns False.

The difference between Focus and Select is that Focus can fail. That is,
another view might not give up the focus, usually because it holds invalid
data that must be corrected before giving up the focus.

See also: TView.Select

GetBounds procedure GetBounds (var Bounds: TRect);

Returns, in Bounds, the bounding rectangle of the view in its owners
coordinate system. Bounds.A is set to Origin, and Bounds.B is set to the sum
of Origin and Size.

See also: TView.Origin, TView.Size, TView.CalcBounds,
TView.ChangeBounds, TView.SetBounds, TView.GetExtent

GetClipRect procedure GetClipRect(var Clip: TRect);

Returns, in Clip, the minimum rectangle that needs redrawing during a
call to Draw. For complicated views, Draw can use GetClipRect to improve
performance noticeably.

See also: TView.Draw

GetColor function GetColor(Color: Word): Word;

Maps the palette indexes in the low and high bytes of Color into physical
character attributes by tracing through the palette of the view and the
palettes of all its owners.

See also: TView.GetPalette.

GetCommands procedure GetCommands (var Commands: TCornmandSet) i

Sets Commands to the current command set.

Chapter 79, Turbo Vision reference 567

TView

See also: TView.CommandsEnabled, TView.EnableCommands, .
TView.DisableCommands, TView.SetCommands.

GetOata procedure GetData (var Ree); virtual;

Override: Seldom GetData must copy DataSize bytes from the view to the data record given
by Rec. The data record mechanism is typically used onlyin views that
implement controls for dialog boxes.

The default TView.GetData does nothing.

See also: TView.DataSize, TView.SetData

GetEvent procedure Get Event (var Event: TEvent); virtual;

Override: Seldom Sets Event to the next available event. Returns evNothing if no event is
available. By default, it calls the view's owner's GetEvent.

GetExtent

See also: TView.EventAvail, TProgram.Idle, TView;HandleEvent,
TView.PutEvent

procedure GetExtent(var Extent: TReet);

Sets Extent to the extent rectangle of the view. Extent.A is set to (0,0), and
Extent.B is set to Size.

See also: TView.Origin, TView.Size, TView.CalcBounds,
TView.ChangeBounds, TView.SetBounds, TView.GetBounds

GetHelpCtx function GetHelpCtx: Word; virtual;

Override: Seldom GetHelpCtx must return the view's help context.

The default TView.GetHelpCtx returns the value in the HelpCtx field, or
. returns hcDragging if the view is being dragged (see sfDragging).

See also: HelpCtx

GetPaleHe function GetPalette: PPalette; virtual;

Override: Always GetPalette must return a pointer to the view's palette, or nil if the view has
no palette. GetPalette is called by GetColor,WriteChar, and WriteStr when
converting palette indexes to physical character attributes. A return value
of nil causes no color translation to be performed by this view. GetPalette
is almost always overridden in descendant object types.

The default TView.GetPalette returns nil.

See also: TView.GetColor, TView. WriteXXX

GetPeerViewptr procedure GetPeerViewptr (var S: TStream; var P);

568 Turbo Vision Programming Guide

I

I

I'

I

I

I

I

TView

Loads a peer view pointer P from the stream S. A peer view is a view with
the same owner as this view-a TScroller, for example, contains two peer
view pointers, HScrollBar and VScrollBar, that point to the scroll bars
associated with the scroller. GetPeerViewPtr should only be used inside a
Load constructor to read pointer values that were written by a call to
PutPeerViewPtr from a Store method.

The value loaded into P does not become valid until the view's owner
completes it's Load operation; therefore, dereferencing a peer view pointer
within a Load constructor does not produce the correct value. Peer view
pointers can be dereferenced in Awaken methods, which are called by the
group Load after all subviews exist.

See also: TView.PutPeerViewPtr, TGroup.Load, TGroup.Store, TView.Awaken

(7etState function GetState(AState: Word): Boolean;

Returns True if the bit(s) given in AState is (are) set in the field State.

See also: State, TView.SetState

(7rovvTo procedure GrowTo(X, Y: Integer);

Grows or shrinks the view to the given size by calling Locate.

See also: TView.Origin, TView.Size, TView.Locate, TView.MoveTo

HandleEvent procedure HandleEvent (var Event: TEvent); virtual;

Override: Always HandleEvent is the central method through which all Turbo Vision event
handling is implemented. The What field of the Event parameter contains
the event class (evXXXX), and the remaining Event fields further describe
the event. To indicate that it has handled an event, HandleEvent should
call ClearEvent. HandleEvent is almost always overridden in descendant
object types.

HandleEvent handles evMouseDown events as follows: If the view is not
selected (sf Selected) and not disabled (sfDisabled) and if the view is a
selectable (of Selectable), then the view selects itself by calling Select. No
other events are handled by TView.HandleEvent.

See also: TView.ClearEvent

Hide procedure Hide;

Hides the view by calling SetState to clear the sfVisible flag in State.

See also: sfVisible, TView.SetState, TView.Show

HideCursor procedure HideCursor;

Chapter 79, Turbo Vision reference 569

TView

570

Hides the cursor by clearing the sfCursorVis bitin State.

See also: sfCursorVis, TView.ShowCursor

KeyEvent procedure KeyEvent (var Event: TEvent);

Returns, in Event, the next evKeyDown event. It waits, ignoring all other
events, until a keyboard event becomes available.

See also: TView.GetEvent, TView.EventAvail

Locate procedure Locate (var Bounds: TRec t) ;

Changes the bounds of the view to Bounds and redraws the view in its
new location. Locate calls SizeLimits to verify that Bounds is valid, and then
calls ChangeBounds to change the bounds and redraw the view.

See also: TView.GrowTo, TView.MoveTo, TView.ChangeBounds

MakeFirst procedure MakeFirst;

Moves the view to the top of its owner's subview list. A call to MakeFirst
corresponds to PutInFrontOf(Ownerl\.First).

See also: TView.PutInFrontOf

MokeGlobal procedure MakeGlobal (Source: TPoint; var Dest: TPoint);

Converts the Source point coordinates from local (view) to global (screen)
and returns the result in Dest. Source and Dest can be the same variable.

See also: TView.MakeLocal

MakeLocal procedure MakeLocal (Source: TPoint; var Dest: TPoint);

Converts the Source point coordinates from global (screen) to local (view)
and returns the result in Dest. Useful for converting the Event. Where field
of an evMouse event from global coordinates to local coordinates, for
example MakeLocal(Event. Where, MouseLoc).

See also: TView.MakeGlobal, TView.MouselnView

MouseEvent function MouseEvent (var Event: TEvent; Mask: Word): Boolean;

Returns the next mouse event in the Event argument. Returns True if the
returned event is in the Mask argument, and False if an evMouseUp event
occurs. This method lets you track a mouse while its button is down, such
as in block-marking operations for text editors.

Here's an extract of a HandleEvent routine that tracks the mouse with the
view's cursor:

Turbo Vision Programming Guide

TView

procedure TMyView.HandleEvent(var Event: TEvent);
begin

TView.HandleEvent(Event) ;
case Event.What of

evMouseDown:
begin

repeat
MakeLocal(Event.Where, Mouse);
SetCursor(Mouse.X, Mouse.Y);

until not MouseEvent(Event, evMouseMove);
ClearEvent(Event);

end;

end;
end;

See also: TView.EventMask, TView.KeyEvent, TView.GetEvent.

MouselnView function MouseInView(Mouse: TPoint): Boolean;

Returns true if the Mouse argument (given in global coordinates) is within
the calling view.

See also: TView.MakeLocal

MoveTo procedure MoveTo(X, Y: Integer);

Moves the Origin to the point (X,Y) relative to the owner's view without
changing the view's Size.

See also: Origin, Size, TView.Locate, TView.GrowTo

NexfView function NextView: PView;

Returns a pointer to the next subview in the owner's subview list. Returns
nil if the view is the last subview in its owner's list.

See also: TView.PrevView, TView.Prev, TView.Next

NormalCursor procedure NormalCursor;

Clears the sfCursorlns bit in State, thereby making the cursor into an
underline. If sfCursorVis is set, the new cursor will be displayed.

See also: sfCursorIns, sfCursorVis, TView.HideCursor, TView.BlockCursor,
TView.HideCursor

Prev function Prev: PView;

Returns a pointer to the previous subview in the owner's subview list. If
the calling view is the first one in its owner's list, Prev returns the last view

Chapter 79, Turbo Vision reference 571

TView

in the list. Note that Prev treats the list as circular, whereas PrevView treats
the list linearly.

See also: TView.NextView, TView.PrevView, TView.Next

PrevView function PrevView: PView;

Returns a pointer to the previous subview in the owner's subview list, or
nil if the view is the first subview in its owner's list. Note that Prev treats
the list as circular, whereas PrevView treats the list linearly.

See also: TView.NextView, TView.Prev

PutEvent procedure Put Event (var Event: TEvent); virtual;

Override: Seldom Puts Event into the event queue, causing it to be the next event returned
by GetEvent. Only one event can be pushed onto the event queue in this
fashion. Often used by views to generate command events, for example:

Event.What := evCommand;
Event.Command := cmSaveAll;
Event.lnfoPtr := nil;
PutEvent(Event);

The default TView.PutEvent calls the view's owner's PutEvent.

See also: TView.EventAvail, TView.GetEvent, TView.HandleEvent

PutlnFrontOf procedure PutInFrontOf (Target: PView);

Move the calling view in front of Target in the owner's subview list. The call

TView.PutlnFrontOf(OwnerA.First);

is equivalent to TView.MakeFirst. This method works by changing pointers
in the subview list. Depending on the position of the other views and their
visibility states, PutInFrantOf may obscure (clip) underlying views. If the
view is selectable (see afSelectable) and is put in front of all other subviews,
the view becomes selected.

See also: TView.MakeFirst

PutPeerViewPtr procedure PutpeerViewPtr (var S: TStream; P: PView);

Stores a peer view pointer P on the stream S. A peer view is a view with
the same owner as this view. PutPeerViewPtr should only be used inside a
Stare method to write pointer values that can later be read by a call to
GetPeerViewPtr from a Laad constructor.

See also: TView.PutPeerViewPtr, TGraup.Laad, TGraup.Stare

Select procedure Select;

572 Turbo Vision Programming Guide

TView

Selects the view (see sf Selected). If the view's owner is focused then the
view also becomes focused (see sfFocused). If the view has the ofTopSelect
flag set in its Options field then the view is moved to the top of its owner's
subview list (by calling MakeFirst).

See also: sf Selected, sfFocused, ofTopSelect, TView.MakeFirst

SetBounds procedure SetBounds (var Bounds: TReet);

Sets the bounding rectangle of the view to Bounds. Sets Origin to Bounds.A,
and Size to the difference between Bounds.B and Bounds.A. SetBounds is
intended to be called only from within an overridden ChangeBounds
method-you should never call SetBounds directly.

See also: TView.Origin, TView.Size, TView.CalcBounds,
TView.ChangeBounds, TView.GetBounds, TView.GetExtent

SetCmdState procedure SetCmdState (Cormnands: TCormnandSet i Enable: Boolean) i

Enables Commands if Enable is True or disables Commands if Enable is False.
SetCmdState is a shortcut to using EnableCommands or DisableCommands.

See also: TView.DisableCommands, TView.EnableCommands

SetCommands procedure SetCormnands (Cormnands: TCormnandSet);

Changes the current command set to the given Commands argument.

See also: TView.EnableCommands, TView.DisableCommands

SetCursor procedure Set Cursor (X f Y: Integer);

Moves the hardware cursor to the point (X,Y) using view-relative (local)
coordinates. (0,0) is the top left corner.

See also: TView.MakeLocal, TView.HideCursor, TView.ShowCursor

SetOata procedure SetData(var Ree); virtual;

Override: Seldom GetData must copy DataSize bytes from the data record given by Rec to the a
view. The data record mechanism is typically used only in views that
implement controls for dialogboxes.

SetState

Override:
Sometimes

The default TView.SetData does nothing.

See also: TView.DataSize, TView.GetData

procedure SetState(AState: Word; Enable: Boolean); virtual;

Sets or clears bits in the State field. AState specifies the state flags to
modify (see sfXXXX), and the Enable parameter specifies whether to turn
the flag off (False) or on (True). SetState then carries out any appropriate

Chapter 79, Turbo Vision reference' 573

TView

action to reflect the new state, such as redrawing views that become
exposed when the view is hidden (sfVisible), or reprogramming the
hardware when the cursor shape is changed (sfCursorVis and sfCursorlns).

If a view overrides SetState, it should always call its inherited SetState
method first, to ensure the specified bits get set or cleared.

SetState is sometimes overridden to trigger additional actions based on
state flags. The TFrame type, for example, overrides SetState to redraw
itself whenever a window becomes selected or is dragged:

procedure TFrame.SetState(AState: Word; Enable: Boolean);
begin

inherited SetState(AState, Enable);
if AState and (sf Active + sf Dragging) <> 0 then Drawview;

end;

Another common reason to override SetState is to enable or disable
commands that are handled by a particular view:

procedure TMyView.SetState(AState: Word; Enable: Boolean);
const

MyCommands = [cmCut, cmCopy, cmPaste, cmClear];
begin

inherited SetState(AState, Enable);
if AState = sfFoc~sed then

end;

if Enable then
EnableCommands(MyCommands) else
DisableCommands(MyCommands) ;

See also: TView.GetState, TView.State, sfXXXX state flag constants

Show procedure· Show;

Shows the view by calling SetState to set the sfVisible flag in State.

See also: TView.SetState

ShowCursor procedure ShowCursor;

SizeLimits

Override:
Sometimes

574

Turns on the hardware cursor by setting sfCursorVis. Note that the cursor
is invisible by default.

See also: sfCursorVis, TView.HideCursor

procedure SizeLimits(var Min, Max: TPoint); virtual;

Sets Min and Max to the minimum and maximum values that the Size
field can assume. Locate won't allow the view to be larger than these
limits.

Turbo Vision Programming Guide

i

I

Store

Override: Often

The default SizeLimits returns (0, 0) in Min and Owner".Size in Max.

See also: TView.Size

procedure Store(var S: TStream);

TView

Writes the view to the stream S. The size of the data written to the stream
must correspond exactly to the size of the data read from the stream by
the view's Load constructor. If the view contains peer view pointers, Store
should use PutPeerViewPtr to write these pointers. An overridden Store
method should always call its parent's Store method.

The default TView.Store writes all fields but Owner and Next to the stream.

See also: TView.Load, TStream.Get, TStream.Put

TopView function TopView: pview;

Valid

Override:
Sometimes

Returns a pointer to the current modal view;

function Valid(Command: Word): Boolean; virtual;

This method is used to check the validity of a view after it has been
constructed (using Init or Load) or when a modal state ends (due to a call
to EndModal).

A Command parameter value of cmValid (zero) indicates that the view
should check the result of its construction: Valid(emValid) should return
True if the view was successfully constructed and is now ready to be used,
False otherwise.

Any other (nonzero) Command parameter value indicates that the current
modal state (such as a modal dialog box) is about to end with a resulting
value of Command. In this case, Valid should check the validity of the view.
The most common validation command is em Close, indicating that the
window is about to close.

If the view's ofV alidate flag is set, Valid is called with the command T
emReleaseFocus before the view loses the input focus. If Valid returns False,
the view will not release the focus.

Valid should alert the user in case the view is invalid, for example, by
using the MessageBox routine in the MsgBox unit to show an error
message.

The default TView. Valid simply returns True.

See also: TGroup.Valid, TDialog.Valid, TProgram.ValidView

WriteBuf procedure WriteBuf (X, Y, W, H: Integer; var Buf);

Chapter 79, Turbo Vision reference 575

TView

Writes the buffer Buf to the screen starting at the coordinates (X, y), and
filling the region of width Wand height H. Should only be used in Draw
methods. The Buf parameter is typically of type tDrawBuffer, but it can be
any array of words, each word containing a character in the low byte and
an attribute in the high byte.

See also: TView.Draw, TDrawBuffer type

WriteChar procedure WriteChar(X, Y: Integer; Ch: Char; Color: Byte; Count: Integer);

Beginning at the point (X,Y), writes Count copies of the character Ch in the·
color determined by the Color'th entry in the view's palette. Should only
be used in Draw methods.

See also: TView.Draw

Write Line procedure TView.WriteLine(X, Y, W, H: Integer; var Buf);

Writes the line contained in the buffer Buf to the screen, beginning at the
point (X,Y), and within the rectangle defined by the width Wand the
height H. If H is greater than 1, the line is repeated H times. Should only I
be used in Draw methods. The Buf parameter is typically of type I
TDrawBuffer, but it can be any array of words, each word containing a •
character in the low byte and an attribute in the high byte.

See also: TView.Draw

WriteStr procedure TView.WriteStr(X, Y: Integer; Str: String; Color: Byte);

Writes the string Str with the color attributes of the Color'th entry in the
view's palette, beginning at the point (X,Y). Should only be used in Draw
methods.

See also: TView.Draw

TVTransfer type Validate

Declaration TVTransfer = (vtDataSize, vtSetData, vtGetData) i

Function Validator objects use parameters of type TVTransfer in their Transfer
methods to control data transfer when setting or reading the value of the
associated input line.

See also TValidator. Transfer

576 Turbo Vision Programming Guide

TWild5tr type

TWildStr type StdDlg

Declaration TWildStr = PathStr i

Function TWildStr is identical to the PathDir type defined in the Dos unit. It is used
in standard dialog box types to pass wildcard file name templates.

TWindow Views

TObject TView

Cursor
DragMode
EventMask
GrowMode
Hel pCtx
Next

HH-t-
I::eaEI-
BefIe.
Awa*eIT
BlockCursor
Cal cBounds
GllaR§eBsl:IR8s
ClearEvent
CommandEnab 1 ed
~
Di sab 1 eCommands
DragView
B-Faw-
DrawView
Enab 1 eCommands
~
EventAvail
~
Exposed
Focus
Get Bounds
GetCl i pRect
GetColor
GetCommands
~
Get Event
GetExtent
Ge:eHe ~ flG:e!E
Ge:ePa~ eUe
GetPeerVi ewPtr
GetState
GrowTo
HaR8~ e!;"eR:e
Hide

Options
Origin
Owner
Size'
State

HideCursor
KeyEvent
Locate
MakeFi rst
MakeGlobal
MakeLocal
MouseEvent
MouseInVi ew
MoveTo
NextView
Normal Cursor
Prey
PrevView
Put Event
PutInFrontOf
PutPeerVi ewPtr
Select
SetBounds
SetCommands
SetCmdState
SetCursor
~
.~

Show
ShowCursor
£~i!eb~R'1as
~
TopVi ew
v..rt+tI-
WriteBuf
WriteChar
WriteLine
WriteStr

TGroup

Buffer
Current
Last
Phase

HH-t-
I::eaEI-
BefIe.
Awaken
ChangeBounds
DataSize
Delete
Draw
EndModal
EventError
ExecView
Execute
First
FirstThat
FocusNext
ForEach
GetData
GetHelpCtx
GetSubVi ewPtr
HaR8~ e!; eR:e
Insert
InsertBefore
Lock
PutSubVi ewPtr
Redraw
SelectNext
SetData
~
~
Unlock
Valid

TWindow

Flags
Frame
Number
Pal ette
Title
ZoomRect

Init
Load
Done
Close
GetPal ette
GetTitle
Handl eEvent
InitFrame
SetState
SizeLimits
StandardScroll Bar
Store
Zoom

A TWindow object is a specialized group that typically owns a TFrame
object, an interior TScroller object, and one or two TScrollBar objects. These
attached subviews provide the "visibility" to the TWindow object. The
TFrame object provides ~he familiar border, a place for an optional title
and number, and functional icons (close, zoom, drag). TWindow objects

Chapter 79, Turbo Vision reference 577

a

TWindow

Fields

have the "built-in" capability of moving and growing via mouse drag or
cursor keystrokes. They can be zoomed and closed via mouse clicks in the
appropriate icon regions. They also "know" how to.work with scroll bars
and scrollers. Numbered windows from 1-9 can be selected with the Alt+n
keys (n = 1 to 9).

Flags Flags: Byte i Read/write

Frame

The Flags field c~ntains combinations of the following bits:

wfMove = $01
wfGrow = $02

'-----lwfClose = $04
'--------lwfZoom = $08

For definitions of the window flags, see "wfXXXX window flag constants"
in this chapter.

Frame: PFramei

Frame is a pointer to the window's associated TFrame object.

See also: TWindow.InitFrame

Read only

Number Number: Integer i Read/write

The number assigned to this window. If Number is between 1 and 9, the
number appears in the frame title, and the window can be selected with
the Alt+n keys (n = 1 to 9).

PaleHe Palette: Integer i Read/write

Specifies which palette the window is to use: wpBlueWindow,
wpCyan Window, or wpGray Window. The default palette is wpBlue Window.

See also: TWindow.GetPalette, wpXXXX constants

Title Title: PStringi Read/write

A character string giving the title that appears on the frame.

Zoom Rect ZoomRect: TRect i Read only

The normal, unzoomed boundary 6f the window.

578 Turbo Vision Programming Guide

TWindow

Methods
Init constructor Init(var Bounds: TRect; ATitle: TTitleStr; ANumber: Integer);

Constructs a window view with the boundaries passed in Bounds by
calling the Init constructor inherited from TGroup. Sets State to include
sf Shadow. Sets Options to <of Selectable + ofTopSelect). Sets GrowMode to
gfGrowAll + gfGrowRel. Sets Flags to <wfMove + wfGrow + wfClose +
wfZoom). Sets Title to NewStr(ATitle), Number field to ANumber. Calls
InitFrame, and if the Frame field is non-nil, inserts it in this window's
group. Finally, sets ZoomRect to Bounds.

See also: TFrame.InitFrame

Load constructor Load (var S: TStream);

Constructs a window view and loads it from the stream S by first calling
the Load constructor inherited from TGroup, then reading the additional
fields introduced by TWindow.

See also: TGroup.Load

Done destructor Done; virtual;

Override: Disposes of the window and any subviews.
Sometimes

Close procedure Close; virtual;

Override: Seldom· Calls the window's Valid method with a Command value of cmClose and if
Valid returns True, closes the window by calling its Done method.

GetPaleHe

Override:
Sometimes

Table 19.43
Window palettes

returned based on
Palette

function GetPalette: PPalette; virtual;

Returns a pointer to the palette given by the palette index in the Palette
field. Table 19.43 shows the palettes returned for the different values of
Palette.

Palette field

wpBlue Window
wpCyan Window
wpGray Window

Palette returned

CBlue Window
CCyan Window
CGray Window

See also: TWindow.Palette

GetTitle function GetTitle(MaxSize: Integer): TTitleStr; virtual; .

Override: Seldom GetTitle should return the window's title string. If the title string is longer
than MaxSize characters, GetTitle should attempt to shorten it; otherwise, it
will be truncated by dropping any text beyond the MaxSize'th character.

Chapter 79, Turbo Vision reference 579

a

TWindow

TFrame.Draw calls OwnerA.GetTitle to obtain the title 'string to display in
the frame.

The default TWindow.GetTitle returns the string TitleA, or an empty string
if Title is nil. .

See also: TWindow.Title, TFrame.Draw

HandleEvent procedure HandleEvent (var Event: TEvent) i virtuali

Override: Often Handles most events by first calling the HandleEvent method inherited
from TGroup, then handles events specific to windows as follows:

• Commarid events, if Flags permits that operation:

• cmResize (move or resize the window using DragView)
• em Close (close the window using Close) .
• cmZoom (zoom the window using Zoom)

• Keyboard events with a KeyCode value of kbTab or kbshiftTab select the
next or previous selectable subview.

• Broadcast events with a Command value of cmselect WindowNum select
the window if the Event.Infolnt field is equal to Number.

See also: TGroup.HandleEvent, wfXXXX constants

InitFrame procedure Ini tFrarne i virtual i

Override: Seldom Constructs a frame object for the window and stores a pointer to the frame
in the window's Frame field. InitFrame is called by Init but should never be
called directly. You can override InitFrame to construct a user-defined
descendant of TFrame instead of the standard frame.

See also: TWindow.Init

SetState procedure SetState(AState: Wordi Enable: Boolean)i virtuali

Override: Seldom First calls the setstate method inherited from TGroup. Then, if Astate is
equal to sf Selected, activates or deactivates the window and all its
subviews by calling setstate(sfActive, Enable), and calls EnableCommands or
DisableCommands for cmNext, cmPrev, cmResize, em Close, and cmZoom.

See also: TGroup.setstate, EnableCommands, DisableCommands

SizeLimits procedure SizeLirnits(var Min,Max: TPoint) i virtuali

Override: Seldom First calls the sizeLimits method inherited from TGroup, then sets Min to
Min Win Size.

See also: TView.sizeLimits, Min Win Size variable

StandardScroliBar function StandardScrollBar (AOptions: Word): PScrollBar i

580 Turbo Vision Programming,Guide

I

I~

TWindow

Constructs, inserts, and returns a pointer to a "standard" scroll bar for the
window. "Standard" means the scroll bar fits onto the frame of the
window without covering corners or the resize icon.

AOptions can be either sbHorizontal to produce a horizontal scroll bar
along the bottom of the window or sbVertieal to produce a vertical scroll
bar along the right side of the window. You can combine either with
sbHandleKeyboard to allow the scroll bar to respond to arrows and page
keys from the keyboard in addition to mouse clicks.

See also: sbXXXX scroll bar constants.

Store procedure Store(var S: TStream);

Writes the window to the stream 5 by first calling the Store method
inherited from TGroup, then writing the additional fields introduced by
TWindow.

See also: TGroup.Store

Zoom procedure TWindow. Zoom; virtual;

Override: Seldom Zooms the window. This method is usually called in response to a

Palette

em Zoom command (triggered by a click on the zoom icon). Zoom takes into
account the relative sizes of the calling window and its owner, and the
value of ZoomRect.

See also: emZoom, ZoomReet

Window objects use the default palettes CBlue Window (for text windows),
CCyanWindow (for messages), and CGrayWindow (for dialog boxes).

8

CGrayWindo w I 24 I 25 I 26 I 27 I 28 I 29 I 30 I 31 I
I I

CCyanWindo w 116 I 17 I 18 I 19 I 20 I 21 I 22 I 23 I
I I

CBlueWindo w I 8 I 9 I 10 111 I 12 I 13 I 14 I 15 I
Frame Pass
Frame Acti
Frame Icon
Scroll Bar

iVe--.J I
I I I I

I ~I Reserved
ve

Page

Scroller Selected Text
Scroller Normal Text
Scro 11 Bar Reserved

TWordArray type Objects

Declaration TWordArray = array[O .. 16383] of Word;

Chapter 79, Turbo Vision reference 581

a

TWordArray type

Function A word array type for general use.

vmtHeaderSize constant Objects

Declaration vmtHeaderSize = 8;

Function Used internally by streams, collections, and views as an offset.

voXXXX constants Validate

Function Constants beginning with vo represent the bits in the bitmapped Options
word in validator objects.

Values The validator Options bits are defined as follows:

Figure 19.15
Validator option

flags

Table 19.44
Validator option

flags

Ilm'l' I :
Undefi ned

Constant

voFill

voTransfer

voReserved

Value

$0001

$0002

$OOFC

IIIII ~
I I I I I I

voFi 11 = $0001
voTransfer = $0002

'----'------'------'---'-----'--voRese rved = $00 Fe

Meaning

Used by picture validators to indicate whether
to fill in literal characters as the user types.
The validator handles data transfer for the input
line. Currently only used by range validators.
The bits in this mask are reserved by Borland.

vsXXXX constants Validate

Function Input line objects use vsOK to check that their associated validator objects
were constructed properly. When called with a command parameter of
em Valid, an input line object's Valid method checks its valida tor's Status
field. If Status is vsOK, the input line's Valid returns True, indicating that
the validator object is ready to use.

The only value defined for Status other than vsOK is vsSyntax, used by
TPXPietureValidator to indicate that it could not interpret the picture string
passed to it. If you create your own valida tor objects, you can define error
codes and pass them in the Status field.

Values The Validate unit defines two constants used by valida tor objects to report
their status:

582 Turbo Vision Programming Guide

Table 19.45
Validator status

constants

Constant

vsOK
vsSyntax

Value

o
1

vsXXXX: constants

Meaning

Valida tor constructed properly
Error in the syntax of a picture valida tor's
picture

See also TValidator.Status

wfXXXX constants Views

Function These mnemonics define bits in the Flags field of TWindow objects. If the
bits ,are set, the window has the corresponding attribute: The window can
move, grow, close, or zoom.

Values The window flags are defined as follows:

Table 19.46
Window flag

constants

Constant

wfMove

wfGrow

wfClose

wfZoom

wfMove = $01
wfGrow = $02

'-----'wfClose = $04
'-------'wfZoom = $08

Value

$01

$02

$04

$08

Meaning

Window can be moved.

Window can be resized and has a grow icon in the lower
right corner.

Window frame has a close icon that can be mouse-clicked
to close the window.

Window frame has a zoom icon that can be mouse-clicked
to zoom the window.

If a particular bit is set (=1), the corresponding property is enabled;
otherwise, if clear (=0), that property is disabled.

See also TWindows.Flags

WindowColorltems function ColorSel

Declaration function WindowColorItems (Palette: Word; const Next: PColorItem): PColorItem;

Function Returns a linked list of TColorItem records for standard window objects.
For programs that allow the user to change window colors with the color

Chapter 79, Turbo Vision reference 583

I

wnNoNumber constant

selection dialog box, WindowColorltems simplifies the process of setting up
the color items.

wnNoNumber constant Views

Declaration wnNoNumber = 0;

Function If a window object's Number field holds this constant, it indicates that the
window is not numbered and cannot be selected via the Alt+number key. If
the Number field is between 1 and 9, the window frame displays the
number, and Alt+number selection is available.

See also TWindow.Number

WordChars variable Editors

Declaration WordChars: set of Char = [' 0' .. ' 9', 'A' .. ' Z', , _', , a' .. ' z' 1 ;

Function Editor objects use WordChars to determine whether a character is part of a
word. Such functions as cursor movements and searching by whole words
need to know where words start and end.

WordRec type Objects

Declaration WordRec = record
Lo, Hi: Byte;

end;

Function A utility record allowing access to the Lo and Hi bytes of a word.

See also LongRec

wpXXXX constants Views

584

Function These constants define the three standard color mapping assignments for
windows. By default, a window object has a Palette of wpBlue Window. The
default for dialog box objects is wpGray Window.

Values· Turbo Vision defines three standard window palettes:

Turbo Vision Programming Guide

I

I

II

Table 19.47
Standard window

palettes

Constant Value

wpBlueWindow a
wpCyan Window 1
wpGray Window 2

wpXXXX constants

Meaning

Window text is yellow on blue.
Window text is blue on cyan.
Window text is black on gray.

See also TWindow.Palette, TWindow.GetPalette

Chapter 79, Turbo Vision reference 585

586 Turbo Vision Programming Guide

A
A

TRect field 518
abstract .

methods 1 ~O, 317
objects 97-98

Abstract procedure 317
Adjust

N

TOutline method 490
TOutlineViewer method 492

AmDefault
TButton field 387

Application variable 318
applications 171-194,379-381,502-511

appearance of 318
as groups 172
as modal views 144, 173
as views 132, 172
constructing 174-1 78

overview 173
constructor 380, 503
desktop and 505
destructing 174
destructor 380, 503
event handling 504
events and 504
execution 507
global variable 318
idle time 505
main block 173
menu bars and 505
overview 105
palettes 504, 507-511
Run method 153, 507
running 173
screen modes 178

changing 179
status lines and 506

Index

D E

subsystems 176-178
AppPalette variable 318
apXXXX constants 318
ArStep

TScrollBar field 523
Assign

TRect method 108, 518
AssignDevice procedure 318
At

TCollection method 401
AtDelete

TCollection method 402
AtFree

TCollection method 402
AtInsert

TCollection method 402
AtPut

TCollection method 402
AutoIndent

TEditor field 422
Awaken

B
B

TGroup method 447
TView method 564

TRect field 518
Background

TDesktop field 413
background 182-185, 382-383

appearance of 414
changing

example 183
constructor 382
desktop and 413
drawing 382
palette 383
pattern 382

x

587

changing 183
background processes 193-194
Background variable 182
BakLabel

TColorDialog field 407
BakSel

TColorDialog field 407
bfXXXX constants 319
bitmapped fields 109, 110
bits

checking 111
clearing 111
masking 112
setting 110
toggling 111

BlockCursor
TView method 564

BMenu View palette 479
Bounds

TView field 101
broadcast events See events, broadcast
BufChar

TEditor method 425
BufDec

TTerminal method 554
BufEnd

TBufStream field 384
Buffer

TBufStream field 384
TEditor field 422
TGroup field 446
TTerminal field 553

buffered
drawing 420

locking and 452
unlocking 454

streams 383-385
views 142

buffers
allocating 358
disposing 329
editors 421
file editor 272-273
group 446
memory

assigning 340
freeing 340

588

moving 357
characters into 358
strings into 358

screen 368
size 340, 369
streams 384

end pointer 384
flushing 384
position pointer 384
size of 384

terminal 554
beginning 553
end 553
position 554
size of 553

video 560
writing to screen 575

Bufinc
TTerminal method 554

BufLen
TEditor field 422

BufPtr
TBufStream field 384
TEditor method 425

BufSize
TBufStream field 384
TEditor field 422
TTerminal field 553

ButtonCount variable 320
buttons 386-390

behavior of 158
color of 388
commands 387
constructor 387
default 319, 387, 389
destructor 388
drawing 388
event handling 388
flags 319, 387
labels 319, 387
mouse 320, 353, 356
normal 319, 387
overview 102
palette 390
phase and 157
streams and 387, 389

Turbo Vision Programming Guide

I

II

I

I

I

I·

I,
I

ButtonState
TCluster method 397

c
cache buffers

allocating 359
disposing 329

CalcBounds
TView method 564

CalcWidth
TTerminal method 554

CanInsert
TTerminal method 554

CanMoveFocus
TProgram method 503

CanUndo
TEditor field 422

CAppBlackWhite palette 508
CAppColor palette 508
CAppMonochrome palette 508
Cascade

TApplication method 181,380
TDesktop method 413

cascading windows 181-182
CBackground palette 383
CBlueDialog palette 417
CButton palette 390
CCluster palette 395, 399, 515
CCyanDialog palette 417
CDialog palette 417
cdXXXX constants 320
centering See views, centering
CFrame palette 445
cfXXXX constants 320
CGrayDialog palette 417
change directory dialog boxes 209
ChangeBounds

TEditor method 425
TGroup method 448
TListViewer method 472
TScroller method 528
TView method 564

changing directories 391-393
characters

writing to screen 576

Index

ChDirButton
TChDirDialog field 391

check boxes 393-395, See also clusters
multi-state 486-488

CheckSnow variable 321
CHistory palette 457
CInputLine palette 464
CLabel palette 467
ClearEvent

TView method 152, 163, 565
TView method

messages q,nd 168
ClearHistory procedure 321
ClearScreen procedure 321
clipboard editor 273-274

constructing 273
example 274

Clipboard variable
assigning 273

clipping 143,567
clipping rectangle 143
CListViewer palette 469, 474
Close

TEditWindow method 431
TWindow method 579

clusters 221-223, 395-400, See also radio
buttons; check boxes
color of 398
constructing 221
constructor 396
destructor 397
drawing 397
enable mask 396
event handling 398
items

assigning 221
disabling 222
marked 222
pressing 221

overview 103
palette 399
streams and 396
values 396, 397, 398, 399

CMenuView palette 479,481,485
cmListItemSelected command 225
cmReceivedFocus command 234
cmSave command 271

589

cmSaveAs command 271
cmUpdateTitle command 275
cmXXXX constants 159, 322-325
collections 277-290, 400-406, 464

arrays vs. 278
constants 326
constructor 401
destructor 280, 401
directory 418
dynamic sizing 278
errors 289, 403

codes 326
examples 279-281, 283-284
file 435
groups and 279
items 401

constructor 279
defining 279
deleting 402, 404
deleting all 403, 404
freeing 402
indexed 401, 405
inserting 280, 402, 405
number 400
replacing 402

iterator methods 281-283, 403, 405
list boxes and 468
maximum size 289
non-objects and 279
overview 107
packing 405
pointers and 278, 289
polymorphism and 278
resource 519
size 280, 400

increasing 280, 400
maximum 352, 401, 406

sorted 283-284, 531-533
items

comparing 284
keys 283, 284

streams and 310, 401, 404, 406
string 285-286, 547-548
type checking and 278

color See palettes
color indexes

storing 376

590

color selection dialog boxes 256-257, 406-409
Coiorindexes variable 325
Command

TButton field 387
CommandEnabled

TView method 565
,commands 159-160

binding 160
buttons and 387
defining 159
dialog boxes

standard 322
disabling 159, 160,565
enabling 160, 565, 566
events and 153
focused events and 159
positional events and 159
reserved by Turbo Vision 159, 322
sets of 411, 567, 573
standard 322, 322-325

dialogs 322
Compare

TSortedCollection method 532
TStringCollection method 547

constants
application palettes 318
button flags 319
collections 326
commands 322-325
grow mode 341
help context 343
keyboard 347
multi-state check boxes 320
option flags 362
outline viewer 363
screen modes 372
scroll bar parts 367
state flags 370-371
stream 373
valida tor options 582
valida tor status 582

Contains
TRect method 518

controls 211-235, See also dialog boxes, £ontrols
binding labels to 465

Turbo Vision Programming Guide

button See buttons
cluster See clusters
constructing 212
history lists See history lists
initializing 212
input lines See input lines
inserting 205
label See labels
list boxes See list boxes
list viewers See list viewers
modal dialog boxes and 207
phase and 157
reading 214
selecting with labels 234
setting 213-214
static text See text, static
tab order

setting 205
ConvertEvent

TEditor method 425
coordinate system 107-109, 117,501
coordinates

global 570
local 570

Copy
TRect method 518

CopyFrom
TStream method 306, 543

Count
TCollection field 400
TResourceFile method 521

coXXXX constants 326
CreateGraph

TOutline Viewer method 492
CScrollBar palette 526
CScroller palette 530, 555, 557
CStaticText palette 537
CStatusLine palette 542
CStr Len function 326
CtrlBreakHit variable 327
CtrlToArrow function 327
CurPos

TEditor field 422
TInputLine field 460

CurPtr
TEditor field 422

Index

Current
TGroup field 446
TMenu View field 483

current modal view
finding 145

Cursor
TView field 561

cursor 125-126
hiding 569
location of 573
mouse

hiding 344
showing 372

position 561
input lines 461

size of 327
type 370, 564, 571
visible 370, 574

CursorLines variable 327
CursorVisible

TEditor method 425
cllstomization 309, 310

string lists and 313
CWindow palette 581

D
Data

TInputLine field 461
data records

defining 207
input lines 231
memo fields 269, 477

data validation 237-245
DataSize .

TChDirDialog method 392
TCluster method 397
TColorDialog method 408
TGroup method 448
TInputLine method 462
TListBox method 468
TMemo method 476
TMultiCheckBoxes method 487
TParamText method 500
TView method 565

591

default
behavior

views 150
button 387, 389

Defs
TStatusLine field 540

DelCount
TEditor field 422

Delete
TCollection method 402
TGroup method 448
TResourceFile method 521

DeleteAll
TOpllection method 403

DeleteSelect
TEditor method 425

Delta
TCollection field 280, 400
TEditor field 423
TScroller field 528

deriving object types 96
desktop 412-414

appearance of 414
background 413
cascading windows on 413
constructing 1 79
constructor 413
creation by application 505
event handling 413
global variable 328
inserting windows 181
overview 105
tiling windows on 414

'errors 414
desktop objects 179-185
Desktop variable 328
DesktopColorItems function 328
dialog boxes 204-209, 415-418, See also

windows
attributes

default 204
windows vs. 204

buttons See buttons
check boxes See check boxes
color of 416
color selection 406-409

592

commands
standard 322

constructor 416
controls

values
reading 207

event handling 416
executing 181
file 435-438
history lists See history lists
input 347
input lines See input lines
labels See labels
list boxes See list boxes

. list viewers See list viewers
modal 144
modal use'

events and 205
overview 106
palette 417
palettes 332
radio buttons See radio buttons
standard 208-209
static text See text, static
stream registration and 365
streams and 416

DialogColorItems function 328
directories

changing 391-393
Directory

TFileDialog field 436
directory collections 418
directory list boxes 418-419
DirInput

TChDirDialog field 391
DirList

TChDirDialog field 392
DisableCommands

TView method 565
Display

TColorDialog field 407
display access 9
DisposeBuffer procedure 329
DisposeCache procedure 329
DisposeMenu procedure 329
DisposeN ode procedure 329
DisposeStr procedure 330

Turbo Vision Programming Guide

dmXXXX constants 330
Done

TApplication method 380
TBufStream method 384
TButton method 388
TCluster method 397
TCollection method 401
TDosStream method 420
TEditor field 425
TEmsStream method 433
TFileDialog method 437
TGroup method 447
TInputLine method 462
TMenuBar method 479
TMultiCheckBoxes method 487
TObject method 489
TOutline method 490
TProgram method 503
TPXPictureValidator method 512
TResourceFile method 521
TStaticText method 537
TStatusLine method 540
TStringList method 548
TStringLookup Valida tor method 551
TStrListMaker method 550
TTerminal method 554
TView method 564
TWindow method 579

DoneBuffer
TEditor method 425
TFileEditor method 439

DoneDosMem procedure 331
DoneEvents procedure 331
DoneHistory procedure 331
DoneMemory procedure 331
DoneSysError procedure 332
DoneVideo procedure 332
DOS

shelling to 185
DosShell

TApplication method 185,380
DoubleDelay variable 332
dpXXXX constants 332
dragging 124-125

defined 124
DragMode

constants 330

Index

TView field 561
DragView

TView method 565
Draw

buffered 420
clipping 567
colors and 247
groups and 142-144
TBackground method 382
TButton method 388
TCheckBoxes method 394
TEditor method 425
TFrame method 444
TGroup method 448
THistory method 456
TIndicator method 459
TInputLine method 462
TLabel method 466
TListViewer method 472
TMenuBar method 479
TMenuBox method 480
1;'MultiCheckBoxes method 487
TOutline Viewer method 494
TRadioButtons method 515
TScrollBar method 524
TStaticText method 537
TStatusLine method 540
TTerminal method 554
TView method 119, 566

draw buffer 420
writing to screen 575

DrawBox
TCluster method 397

DrawLine
TEditor field 423

DrawMultiBox
TCluster method 397

DrawPtr
TEditor field 423

DrawState
TButton method 388

DrawView
TView method 566

Duplicates
TSortedCollection field 531

593

E
Editor

TEditWindow field 431
editor dialog boxes

standard 374
editor windows 274-275, 430-432

constructing 274
title 274

updating 275 ,
validating 274

editors 263-275,421-428
blocks 266
buffers 264-266, 421
commands 267
file See file editors
key bindings 267
line length' 352
options 267
text

deleting 264
inserting 265

undoing 265
Empty

TRect method 518
EmsCurHandle variable 335
EmsCurPage variable 335
EnableCommands

TView method 566
EnableMask

TCluster field 396
using 222

EndModal
TGroup method 448
TView method 566

engines 9
Equals

TRect method 518
Error

TCollection method 289, 403
TFilterValidator method 442
TPXPictureValidator method 513
TRangeValidator method 516
TStream method 294, 296, 308, 543

overriding 308
TStringLookup Validator method 552
TValidator method 242, 558

594

ErrorAttr variable 335
ErrorInfo

TStream field 296, 308, 542
errors

abandoned event 8, 155, 448
collections 289, 403

codes 326
handler 377, 378, 550

initializing 346
handling

groups and 454
standard 332

hangs 278
streams 296, 308, 373, 376, 542, 543

resetting 544
system 378

event-driven programming 149-169
event manager 177
event record 151, 161-,163,336,434
EventAvail

TView method 566
EventError 163

TGroup method 448
TView method 153, 155

EventMask
TView field 156, 561

events 150, 151-158
abandoned 8, 155, 163, 448
broadcast 155, 168, 354
clearing 152, 163, 565

. command 160
commands and 153
constants 336
defined 151
defining additional types 164
focused 154,337,447

command 154
commands and 159
example 155
keyboard 154 '
routing 154, 156, 157

getting 153, 163, 449, 566, 568
handled 152
handling 8, 161,575 '
keyboard 140, 152,' 155, 156, 162, 341, 570,

See also events, focused
manager 331

Turbo Vision Programming Guide

, 'I

I,;

I'

I

initializing 346
masks 151, 156,336,561
message 152, 166, 168, 354

responding to 168
mouse 121, 150, 152, 154, 162,341,356,

357, 362, 366, 570, See also events,
positional

nothing 152
positional 154, 364

commands and 159
queuing 506, 572
routing 153, 154
types 151,336

evXXXX constants 336
Execute

TGroup method 153, 449
TMenu View method 483
TView method 566

ExecuteDialog
data records and 207
TProgram method 503
using 181

ExecView
TGroup method 449

ExpandAll
TOutline Viewer method 494

Exposed
TView method 567

F
fields 98-99

validating 238
file collections 435
file dialog boxes 209, 435-438
file editors 270-273, 438-441

buffer space 272
buffers 272-273

managing 273
changes

saving 271
constructing 270, 439
files 439-440
loading files 271
saving text 271

file information panes 441
file input lines 441

Index

file list boxes 441
FileList

TFileDialog field 436
FileName

TFileDialog field 436
TFileEditor field 439

files
access modes 373
handles 419
loading 271
objects and 292
resource 309, See also resources, file

creating 311
string lists and 313-314

saving 271
type checking and 292
vs. streams 291
writing objects to 292

filter validators
overview 238

FindItem
TMenu View method 484 .

First
TGroup method 449

FirstPos
TInputLine field 461

FirstThat
TCollection method 282, 403
TGroup method 450
TOutlineViewer method 494

Flags
TButton field 387
TMultiCheckBoxes field 486
TWindow field 578

flags
bitmapped 109-112
buttons 319, 387
checking 111
clearing 111
defining 110
interpreting 110
message box 355
option 109, 362, 562
Options 120
setting 110
state 370-371, 563
toggling 111

595

window 578
windows 197,583

Flush
TBufStream method 384
TResourceFile method 521
TStream method 543

FNameStr type 337
Foe

TOutline Viewer field 492
Focus

TView method 567
focus chain See also views, focused

events and 154
Focused

TListViewer field 471
TOutline Viewer method 495

focused See also selected
events 337, See events, focused
item

list viewer 471,472,473
views 8, 370

default 141
FocusedEvents variable 337
FocusItem

TListViewer method 472
FocusNext

TGroup method 450
ForEach

TCollection method 281, 403
TGroup method 450
TOutline Viewer method 495

ForLabel
TColorDialog field 407

FormatStr procedure 338-339
ForSel

TColorDialog field 407
Frame

TWindow field 578
frames 443-445

color of 444
constructor 444
customizing 201
drawing 444
event handling 444
palette 445
views 121,362
windows 578

596

creating 580
overview· 102

Free
TCollection method 404
TObject method 489

FreeAll
TCollection method 404

FreeBufMem procedure 340
FreeItem

TCollection method 279, 404
TStringCollection method 547

G
GapLen

TEditor field 423
Get

TResourceFile method 522
TStream method 294, 295, 300, 543
TStringList method 549

GetAltChar function 340
GetAltCode function 340
GetBounds

TView method 567
GetBufferSize function 340
GetBufMem procedure 340
GetChild

TOutline method 490
TOutlineViewer method 496

GetClipRect
TView method 567

GetColor
palettes and 248
TView method 248, 567

GetCommands
TView method 567

GetData
ExecuteDialog and 207
TChDirDialog method 392
TCluster method 398
TColorDialog method 408
TFileDialog method 437
TGroup method 451
TInputLine method 462
TListBox method 468
TMemo method 476
TMultiCheckBoxes method 487

Turbo Vision Programming Guide

TView method 568
use with windows and dialog boxes 207
using 214

GetEvent
modifying 164
overriding 164
TProgram method 504
TView method 153, 164,568

GetExtent
TView method 117, 568

GetFileN arne
TFileDialog method 437

GetGraph
TOutlineViewer method 496

GetHelpCtx
TCluster method 398
TGroup method 451
TMenu View method 484
TView method 194, 568

GetIndexes
TColorDialog method 408

GetItem
TCollection method 279, 404
TStringCollection method 547

GetItemRect
TMenuBar method 479
TMenuBox method 480
TMenu View method 484

GetKey
TSortedListBox method 535

GetKeyEvent procedure 341
GetMouseEvent procedure 341
GetNode

TOutlineViewer method 496
GetNumChildren

TOutline method 490
TOutline Viewer method 496

GetPalette
overriding 252
TBackground method 383
TButton method 388
TCluster method 398
TDialog method 416
TEditor method 425
TFrame method 444
THistory method 456
TIndicator method 459

Index

TInputLine method 462
TLabel method 466
TListViewer method 472
TMemo method 476
TMenu View method 484
TOutlineViewer method 496
TProgram method 504
TScrollBar method 525
TScroller method 529
TStaticText method 537
TStatusLine method 541
TView method 252, 568
TWindow method 579

GetPeerViewPtr
TView method 305, 568

GetPos
TBufStream method 384
TDosStream method 420
TEmsStream method 433
TStream method 306, 544

GetRoot
TOutline method 490
TOutlineViewer method 496

GetSize
TBufStream method 385
TDosStream method 420
TEmsStream method 433
TStream method 307, 544

GetState
TView method 569

GetSub View Ptr
example 305
TGroup method 304, 451

GetText
TListBox method 468

overriding 226
TListViewer method 472
TOutline method 490
TOutline Viewer method 496
TParam Text method 500
TStaticText method 537

GetTileRect
TApplication method 182,380

GetTitle
TEditWindow method 431
TWindow method 579

gfXXXX constants 341

597

GroupIndex
TColorDialog field 407

Groups
TColorDialog field 407

groups 8, 131-147,445-454, See also views
appearance of 448, 453, 454
collections and 279
constructor 447
data size of 448
defined 115
destructor 447
drawing 142-144,448
error handling 454
event handling 451
events and 448, 449, 451
executing 145
help context and 451
inserting subviews 452
iterator methods and 450
locking 143, 452-
making modal 145
modal 144-146
overview 105-106
reading from streams 295
redrawing 143, 453
resizing 448
streams and 295, 447, 454
unlocking 143
values

reading 451
setting 454

writing to streams 295
Grow

TRect method 119, 518
GrowMode

constants 341
TView field 141, 561

GrowTo
TView method 569

H
Handle

TDosStream field 419
TEmsStream field 432

handle
DOS file 419

598

EMS
current 335

HandleEvent See also events, handling
calling directly 169
generallayout 161
inheriting 161
overriding 161
TApplication method 381
TButton method 388
TChDirDialogmethod 392
TCluster method 398
TColorDialog method 408
TDesktop method 413
TDialog method 416
TEditor method 426
TEditWindow method 431
TFileDialog method 437
TFileEditor method 439
TFrame method 444
TGroup method 451
THistory method 456
TInputLine method 463
TLabel method 466
TListViewer method 473
TMemo field 476
TMenu View method 484
TOutline Viewer method 496
TProgram method 504
TScrollBar method 525
TScroller method 529
TSortedListBox method 535
TStatusLine method 541
TView method 153, 161, 569
TWindow method 580

HasChildren
TOutline mehtod 491
TOutlineViewer method 497

hcN oContext constant 194
hcXXXX constants 343
heap

maximum size 352
top of 369

help context 194, 343
focused view and 194
groups and 451
menus and 484
reserved 343

Turbo Vision Programming Guide

'\1

I

II

status lines and 194, 540
views and 562, 568

HelpCtx
TView field 562

Hide
TView method 569

HideCursor
TView method 569

HideMouse procedure 344
Hint

TStatusLine method 541
hints 189

example 189
status lines and 541

HiResScreen variable 344
history block

loading 350
storing 376

history list subsystem 178
history lists 231-233, 455-457

clearing 321
color of 456
constructor 456
drawing 456
icon 456
input lines and 455
overview 103
palette 457
viewers 457
windows 457-458

history views
constructing 233

History Add procedure 344
HistoryBlock variable 344
HistoryCount function 344
HistoryID

THis tory field 455
HistorySize variable 345
HistoryStr function 345
HistoryUsed variable 345
hot keys

menus and 484
phase and 158

HotKey
TMenu View method 484

HScrollBar
TEditor field 423

Index

TListViewer field 471
TScroller field 528

1/ 0 See also streams
ID numbers

history lists 455
objects 298
stream

reserved 300
Idle

overriding 193
TProgram method 164, 165, 505

idle time
using 164, 165

IndexOf
TCollection method 405
TSortedCollection method 532

Indicator
TEditor field 423

indicators 458-459
inheritance 98-99

streams and 296
Init

TApplication method 380
TBackground method 382
TBufStream method 384
TButton method 387
TChDirDialog method 392
TCluster method 396
TCollection method 401
TColorDialog method 407
TDesktop method 413
TDialog method 416
TDosStream method 419
TEditor method 424
TEditWindow method 431
TEmsStream method 433
TFileDialog method 436
TFileEditor method 439
TFilterValidator method 442
TFrame method 444
TGroup method 447
THis tory method 456
TIndicator method 459
TInputLine method 461

599

TLabel method 466 InitMenuBar
TListBox method 468 TProgram method 505
TListViewer method 471 InitScreen
TMenuBar method 479 TProgram method 505
TMenuBox method 480 InitStatusLine
TMenu View method 483 TProgram method 506
TMultiCheckBoxes method 486 InitSysError procedure 346
TObject method 489 InitVideo procedure 347
TOutline method 490 input
TOutlineViewer method 492 filtering 238, 242
TParamText method 499 input lines 230-231,460-464
TProgram method 503 appearance of 461
TPXPictUreValidator method 512 color of 462
TRangeValidator method 516 constructing 231
TResourceFile method 520 constructor 461
TScrollBar method 524 cursor position 231, 460
TScroller method 528 data 461
TSortedListBox method 534 records 231
TStaticText method 536 size of 462
TStatusLine field 540 destructor 462

I

TStatusLine method 540 drawing 462 I

TStringLookupValidator method 551 event handling 463 I·
TStrListMaker method 550 file name See file input lines
TTerminal method 554 history lists and 455
TV alidator method 558 length
TView method 563 maximum 461
TWindow method 579 linking to valida tors 240

InitBackground manipulating 23'1
overriding 183 overview 103
TDesktop method 414 palette 464

InitBuffer phase and 158
TEditor method 426 selected 461, 463
TFileEditor method 439 selection 231

InitDesktop streams and 461
overriding 179 text
replacing 180 changing 231
TProgram method 505 validating 464

InitDosMem procedure 345 validators 461
InitEvents procedure 346 assigning 463
InitFrame value

overriding 201 setting 462, 463
TWindow method 580 InputBox function 347

InitHistory procedure 346 InputBoxRect function 347
InitHistoryWindow InsCount

THistory method 456 TEditor field 423
initialization See constructor Insert
InitMemory procedure 346 TCollection method 405

600 Turbo Vision Programming Guide

TGroup method 133, 452
TSortedCollection method 533

InsertBefore
TGroup method 452

InsertBuffer
TEditor method 426

InsertFrom
TEditor method 426

insertion point See input lines, cursor
InsertText

TEditor method 426
InsertWindow

TProgram method 506
using 181

instantiating objects 96
intermediary objects 166
internationalization 313

resources and 310
Intersect

TRect method 519
IsExpanded

TOutline method 491
TOutlineViewer method 497

IsSelected
TListViewer method 473
TOutlineViewer method 497

IsValid
TEditor field 423
TFilterValidator method 442
TLookupValidator method 475
TPXPicture Valida tor method 513
TRangeValidator method 516
TV alidator method 242, 559

IsValidInput
TFilterValidator method 442
TPXPictureValidator method 513
TValidator field 242
TV alidator method 558

Items
TCollection field 401

items See also collections
collections and 401
list boxes and 468
list viewer

number 471
iteration

defined 147

Index

iterator methods 281-283, 403, 405
collections and 281-283

K

example 281, 282
far local requirement 281, 282
FirstThat 282
ForEach 281
groups and 450
LastThat 282

kbXXXX constants 347
key bindings

editors 267
KeyAt

TResourceFile method 522
keyboard See also events, focused

constants 347
events 152, 341, 570
scan codes 340

KeyEvent
TView method 570

KeyOf
TSortedCollection method 533

keys
resources and 309, 522
sorted collections 533

keystrokes
validating 242

L
labels 233-235, 465-467

binding to controls 465
color of 466
constructing 234
constructor 466
drawing 466
event handling 466
palette 467
selected 465
selecting controls with 234
shortcuts 235

Last
TGroup field 447

LastThat
TCollection method 282, 405

601

Light scroll bars and 471
TLabel field 465 size of 471

Limit listboxes
TCollection field 401 items
TEditor field 423 assigning 227
TScroller field 528 Load

lines methods 296, 300
writing to screen 576 example 297

Link TBackground method 382
THistory field 455 TButton method 387
TLabel field 465 TChDirDialog method 392

List TCluster method 396
TListBox field 468 TCollection method 401

assigning 226 TColorDialog method 408
list boxes 226.,228, 467-469 TDialog method 416

colledions and 468 TEditor method 424
constructing 226 TEditWindow method 431
constructor 468 TFileDialog method 437
data TFileEditor method 439

size of 468 TFilterValidator method 442
directory 418-419 TGroup method 447

I,. file See file list boxes THistory method 456
I

items 468 TInputLine method 461
assigning 226 TLabel method 466
replacing 469 TListBox method 468
retrieving 468 TListViewer method 472

overview 103 TMemo method 476
palette 469 TMenu View method 483
setting 227 TMultiCheckBoxes method 487
sorted 534-535 TParamText method 500

constructor 534 TPXPictureValidator method 512
keys 535 TRangeValidator method 516

value TScrollBar method 524
getting 468 TScroller method 528
setting 469 TSortedCollection method 532

list viewers 223-228, 470-474 TStaticText method 536
appearance of 471 TStatusLine method 540
color of 472 TStreamRec field 298
constructing 224 TStringList method 548
constructor 471, 472 TStringLookup Valida tor method 551
drawing 472 TValidator method 558
event handling 473 TView method 563
items 224 TWindow method 579
overview 103 vs. Init 309
palette 474 LoadFile
resizing 472 TFileEditor method 271, 439
responding to selections 225 LoadHistory procedure 350

602 Turbo Vision Programming Guide

LoadIndexes procedure 350
Locate

TView method 570
Location

TIndicator field 458
Lock

TGroup method 452
locking groups 143
LongDiv function 350
LongMul function 351
LongRec type 351
Lookup

TLookupValidator method 475
TStringLookup Valida tor method 552

LowMemory function 351
LowMemSize variable 351

M
MakeDefault

TButton method 389
MakeFirst

TView method 570
MakeGlobal

TView method 570
MakeLocal

TView method 570
Mark

TCheckBoxes method 394
TCluster method 398
TRadioButtons method 515

masks 110
bitmapped fields and 112
events 337

Max
TRangeValidator field 516
TScrollBar field 523

MaxBufMem variable 352
MaxCollectionSize variable 289, 352
MaxHeapSize variable 352

assigning 272
when to set 272

MaxLen
TInputLine field 461

MaxLineLength constant 352
MaxViewWidth constant 352
mbXXXX constants 353

Index

MemAlloc function 353
MemAllocSeg function 353
memo fields 268-269, 475-477

data record 269
data records 477
palette 269
setting 269
Tab key response 269

memory
allocation 353
buffer

assigning 340
freeing 340

EMS
handle 335
page 335

errors 289
manager 331, 351

initializing 346
maximum 369
safety pool 351

memory subsystem 176-177
Menu

TMenu View field 483
menu bars 191-193,478-479, See also menu

boxes; menus
boundaries 192
constructor 479
creation by application 505
destructor 479
drawing 479
global variable 353
mouse and 479
palette 479

menu boxes 480-481, See also menu bars;
menus
constructor 480
drawing 480
mouse and 480
palette 481

menu items
defining 192

MenuBar variable 353
MenuColorItems function 354
menus 477, 478-479, 482-485, See also menu

bars; menu boxes
color of 484

603

components 10
constructor 483
creating 360
disposing of 329
event handling 484
help context and 481, 484
hot keys and 481, 484
items 481, 483, 484

creating 359
disabling 481
selected 483
shortcuts 484

lines
creating 360

links between 483
overview 103
palette 485
shortcuts and 484
streams and 485
submenus,

creating 361
message box flags 355
message boxes 208-209, 354
Message function 354
MessageBox function 354
MessageBoxRect function 355
messages 354

events 152
methods

abstract 100, 317
iterator See iterator methods
overriding 96, 100
pseudo-abstract 100
static 99
virtual 100

mfXXXX constants 355
Min

TRangeValidator field 516
TScrollBar field 523

Min WinSize variable 202, 356
modal

dialog boxes 144
views 144-146,371

applications as 144
current 575

604

events and 154
executing 449, 566

scope and 144
status line and 144
terminating 448, 566

modal state
ending 145

modal windows
executing 199-200

Modified
TEditor field 423
TIndicator field 458
TResourceFile field 520

monochrome selectors 485
MonoLabel

TColorDialog field 407
MonoSel

TColorDialog field 407
mouse

buttons 353, 356
number of 320
swapping 357

cursor
showing 372

detecting 320
driver 332, 366
events 152, 332, 341, 356, 362, 366, 570
hiding cursor 344
location of 357, 571

MouseButtons variable 356
MouseEvent

TView method 570
MouseEvents variable 356
MouseIntFlag variable 357
MouseIn View

TView method 571
MouseReverse variable 357
MouseWhere variable 357
Move

TRect method 519
MoveBuf procedure 357
MoveChar procedure 358
MoveCStr procedure 358
MovedTo

TCluster method 398
TRadioButtons method 515

MoveStr procedure 358
MoveTo

TView method 571

Turbo Vision Programming Guide

multi-state check boxes 486-488
MultiMark

N

TCluster method 398
TMultiCheckBoxes method 487

NewBuffer procedure 358
NewCache procedure 359
New Item function 359

using 193
NewLine function 360
NewList

TListBox method 469
using 227

TSortedListBox method 535
NewMenu function 360
NewNode function 360
N ewSItem function 360

using 221
NewStatusDef function 361

help context and 194
using 187

NewStah.lsKey function 361
using 189

NewStr function 361
N ewStringList

TStringLookup Valida tor method 552
NewSubMenu function 361

using 193
NewSubView

TMenu View method 484
Next

TStreamRec field 298
TView field 562

NextLine
TTerminal method 554

NextView
TView method 571

nil objects
streams and 300

nodes
outline

creating 360
disposing 329

non-objects
collections and 279

Index

NormalCursor
TView method 571

Number
TWindow field 578

NumCols
TListViewer field 471

o
objects

abstract 97-98, 101
base 488-489
controls 211-235
deriving new 96, 296
files and 292
hierarchy 93

base of 101
instantiating 96
intermediary 166
mute 9
nil

streams and 300
non-visible 106
persistent 292
primitive 101
reading from streams 295
stream ID numbers 298

reserved 298
stream registration 293
streams and 291, 293, 295, 296, 298
visible See views
writing to files 292
writing to streams 295

ofTileable flag 182
oN alidate option flag 238
oN ersion20 constant 308
ofXXXX constants 362, See also flags, Options
OkButton

TChDirDialog field 392
operators

bitwise 110
Options

flags 362
TValidator field 557
TView field 562

Origin
TView field 117, 562

605

outline viewers 228-230, 491-498
constructing 492

outlines 489-491
OutOfMemory

TProgram method 506
Overwrite

TEditor field 424
ovXXXX constants 363
Owner

TView field 563
owner views 563

defined 115
streams and 304

p
Pack

TCollection method 405
page

EMS
current 335

PageCount
TEmsStream field 432

Pal
TColorDialog field 407

Palette
TWindow field 578

palette
application 318

palettes 248-256, 498
default

overriding 251
dialog boxes 332
expanding 253
GetColor and 248, 567
layout 248
mapping 249

errors 335
example 249

nil 250
string functions and 253
windows 584

PApplication See TApplication object
ParamCount

TParamText field 499
parameterized text 217-218, 499-500

constructing 218

606

constructor 499
formatting 217
parameters

count 499
list 499

setting 218
ParamList

TParamText field 499
ParentMenu

TMenu View field 483
Pattern

TBackground field 382
PBackground See TBackground object
PBufStream See TBufStream object
PButton See TButton object
PChDirDialog See TChDirDialog object
PCheckBoxes See TCheckBoxes object
PCluster See TCluster object
PCollection See TCollection object
PColorDialog See TColorDialog object
PColorDisplay See TColorDisplay object
PColorGroupList See TColorGroupList object
PColorItemList See TColorItemList object
PColorSelector See TColorSelector object
PDeskTop See TDeskTop object
PDialog See TDialog object
PDirCollection See TDirCollection object
PDirListBox See TDirListBox object
PDosStream See TDosStream object
PEditor See TEditor object
PEditWindow See TEditWindow object
peer views 305, 568, 572
PEmsStream See TEmsStream object
PFileCollection See TFileCollection object
PFileDialog See TFileDialog object
PFileEditor See TFileEditor object
PFileInfoPane See TFileInfoPane object
PFileInputLine See TFileInputLine object
PFileList See TFileList object
PFrame See TFrame object
PGroup See TGroup object
PgStep

TScrollBar field 524
Phase See also phase

TGroup field 157, 447
phase 447

postprocess 157, 362

Turbo Vision Programming Guide

i

I,~

preprocess 121, 157,362
PHistory See THistory object
PHistoryViewer See THistoryViewer object
PHistoryWindow See THistoryWindow object
Pic '

TPXPictureValidator field 512
Picture

TPXPictureValidator method 513
PIndicator See TIndicator object
PInputLine See TInputLine object
PLabel See TLabel object
PListBox See TListBox object
PListViewer See TListViewer object
PMemo See TMemo object
PMenuBar See TMenuBar object
PMenuBox See TMenuBox object
PMenu View See TMenu View object
PMonoSelector See TMonoSelector object
PMultiCheckBoxes See TMultiCheckBoxes

object
PObject See TObject object
points 501
polymorphism 278

static methods and 99
streams and 292

Position
TEmsStream field 432

positional events See events, positional
PositionalEvents variable 364
postprocess See phase
POutline See TOutline object
POutline Viewer See TOutline Viewer object
PParamText See TParamText object
PProgram See TProgram object
PRadioButtons See TRadioButtons object
preprocess See phase
PResourceCollection See TResourceCollection

object
PResourceFile See TResourceFile object
Press

TButton method 389
TCheckBoxes method 394
TCluster method 398
TMultiCheckBoxes method 487
TRadioButtons method 515

Prey
TView method 571

Index

PrevLines
TTerminal method 555

PrevView
TView method 572

PrintStr procedure 364
PScrollBar See TScrollBar object
PScroller See TScroller object
pseudo-abstract methods 100
PSortedCollection See TSortedCollection object
PSortedListBox See TSortedListBox object
PStaticText See TStaticText object
PStatusLine See TStatusLine object
PStream See TStream object
PString type 364
PStringCollection See TStringCollection object
PStringList See TStringList object
PStrListMaker See TStrListMaker object
PTerminal See TTerminal object
PTextDevice See TTextDevice object
PtrRec type 365
Put

TResourceFile method 522
TStream method 294, 295, 299, 544
TStrListMaker method 550

PutEvent
TProgram method 506
TView method 572

PutInFrontOf
TView method 572

PutItem
TCollection method 279, 406
TStringCollection method 547

PutPeerViewPtr
TView method 305, 572

PutSubViewPtr
example 305
TGroup method 304, 453

PValidator See TValidator object
PView See TView object
PWindow See TWindowobject

Q
QueBack

TTerminal field 553
QueEmpty

TTerminal method 555

607

QueFront example 311
TTermiilal field 553 customization and 309, 310

deleting 521

R file 520-522

radio buttons 514-515, See also clusters
overview 107

Range
reading 312, 522

TListViewer field 471
example 312-313

Read
saving code with 309

TBufStream method 385
streams and 310

TDosStream method 420
string lists and 313-314

TEmsStream method 433
uses of 309
vs. streams 307

TStream method 300, 307, 544 writing 522
ReadStr

TStream method 544
Root

TOutline field 490
RecordHistory Run

THistory m~thod 457 TProgram method 507
rectangles 518-519
Redraw

5 TGroup method 453
I

RegisterColorSel procedure 365 safety pool 1 76
I

RegisterDialogs procedure 365 size of 351 III
RegisterEditors procedure 365 Save
RegisterStdDlg procedure 366 TFileEditor method 271, 440
RegisterType procedure 297, 366 SaveAs
RegisterValidate procedure 366 TFileEditor method 271, 440
registration SaveCtrlBreak variable 367

new types and 297 SaveFile
record TFileEditor method 440

example 299 sbHorizontal constant
records 297 using 203

naming 298 sb Vertical constant
streams 293, 297, 299 using 203

registration records sbXXXX constants 367
stream 545-546 scan codes

RepeatDelay variable 366 keyboard 340
ReplaceStr variable 367 scope
reserved modal views and 144

commands 322 screen
help contexts 343 buffer 368
stream ID numbers 298, 300, 366 clearing 321

reserved commands 159 high resolution 344
Reset mode 368, 372, 373

TStream method 544 setting 507
resources 309-314 size of 368, 369

collections and 310,519 writing characters to 576
creating 311 writing draw buffer to 575

608 Turbo Vision Programming Guide

writing lines to 576
writing strings to 576

ScreenBuffer variable 368
ScreenHeight variable 368
ScreenMode variable 368

using 178
screens

validating 239
Screen Width variable 369
scroll bars 219-220, 523-526

arrows 523
color of 525
constructing 219
constructor 524
drawing 524
event handling 525
list viewers and 471
manipulating 219
overview 104
paging 524
palette 526

. parts 367, 525, 527
phase and 157
responding to 220

example 220
scrollers and 525, 528
standard 580
value 524, 525

maximum 523
minimum 523
setting 525-526

window 203
example 203

ScrollDraw
TScrollBar method 525
TScroller method 529

scrollers 527-530
appearance of 529
color of 529
constructor 528
Delta values 528

limits 528
setting 529

drawing 529
event handling 529
overview 104
palette 530

Index

scroll bars and 525, 528
size of

changing 528
ScrollStep

TScrollBar method 525
ScrollTo

TEditor method 426
TScroller method 529

Search
TEditor method 427
TSortedCollection method 533

SearchPos
TSortedListBox field 534

Seek
TBufStream method 385
TDosStream method 420
TEmsStream method 433
TStream method 306, 545

Sel
TCluster field 396

Select See also focused, views
modes 369
Options field and 120, 362
TView method 140, 572

SelectAll
TlnputLine method 463

Selected
TOutlineViewer method 497

Selecting
TEditor field 424

SelectItem
TListViewer method 473

SelectMode type 369
SelectNext

TGroup method 453
SelEnd

TEditor field 424
TlnputLine field 461

SelRange
TMultiCheckBoxes field 486

SelStart
TEditor field 424
TlnputLine field 461

SetBounds
TView method 573

SetBufferSize function 369

609

SetBufSize
- TEditor method 427
TFileEditor method 440

SetBu~tonSta te
TCluster method 399

SetCmdState
TView method 573

SetCommands
TView method 573

SetCursor
TView method 573

SetData
ExecuteDialog and 207
TChDirDialog method 393
TCluster method 399
TColorDialog method 409
TFileDialog method 437
TGroup method 454
TInputLine method 463
TListBox method 469
TMemo method 476
TMultiCheckBoxes method 487
TParamText method 500
TRadioButtons method 515

, TView method 573
use with windows and dialog boxes 207
using 213-214

SetHelpCtx
TView method 194

SetIndexes
TColorDialog method 409

SetLimit
TCollection method 406
TScroller method 529

SetMemTop procedure 369
SetParams

TScrollBar method 525
SetRange

TListViewer method 473
TScrollBar method 526

SetScreenMode
TProgram method 507

SetSelect
TEditor method 427

SetState
overriding 123
TButton method 389

61'0

TCluster method 399
TEditor method 427
TFrame method 444
TGroup method 454
TIndicator method 459
TInputLine method 463
TListViewer method 473
TOutlineViewer method 497
TScroller method 529
TView method 573
TWindow method 580

SetStep
TScrollBar method 526

SetValidator ,
TInputLine method 463

SetValue
TIndicator method 459
TScrollBar method 526 _

SetVideoMode procedure 370
sfXXXX constants 370-371
sfXXXX state flag constants See also flags, state
Shadow Attr variable 371
shadows

attributes 371
size of 37t
views 370

ShadowSize variable 371
shelling to DOS 185
ShiftState

TSortedListBox field 534
shortcut keys See hot keys
shortcuts

labels 235
'Show

TView method 574
ShowCursor .

TView method 574
ShowMarkers variable 372
ShowMouse procedure 372
Size

TEmsStream field 433
TView field 117, 563

SizeLimits
overriding 202
TView method 574
TWindow method 580

smXXXX constants 372

Turbo Vision Programming Guide

snow-checking 321
SpecialChars variable 373
standard dialog boxes

change directory 391-393
StandardScrollBar

example 203
TWindow method 580
using 203

StandardStatusKeys function 189
StartupMode variable 373
State

flags 370-371, 569
TView field 563

States
TMultiCheckBoxes field 486

static
methods 99
text

overview 104
static text 215-218

boundaries 216
changing text 217
constructing 216
formatting 216

Status
TStream field 296, 543
TV alidator field 557

status definitions See status lines, definitions
status keys

defining 188
reusing 189
standard 189

status lines 185-191,539-542
boundaries 186
color of 541
commands

binding 160
generating 159

constructor 540
context-sensitive example 187
creation by application 506
definitions 187, 537, 540

creating 361
destructor 540
drawing 540
event handling 541
global variable 374

Index

help context and 194,540
hints 189, 541

example 189
invisible 186
items 538, 540
keys

creating 361
modal views and 144
overview 104
palette 542
positional events and 159
streams and 540, 541
updating 191,541
usage 10

StatusLine variable 374
events and 159

StdEditMenuItems function 374
StdEditorDialog function 374
StdFileMenuItems function 374
StdStatusKeys function 375
StdWindowMenuItems function 375
Store

methods 296, 299
example 297

TBackground method 383
TButton method 389 .
TChDirDialog method 393
TCluster method 399
TCollection method 406
TColorDialog method 409
TEditor method 427
TEditWindow method 431
TFileDialog method 437
TFileEditor method 440
TFilterValidator method 442
TGroup method 454
THistory method 457
TInputLine method 464
TLabel method 466
TListBox method 469
TListViewer method 474
TMemo method 476
TMenu View method 485
TMultiCheckBoxes method 488
TParamText method 500
TPXPictureValidator method 514
TRangeValidator method 517

611

TScrollBar method 526
TScroller method 530
TSortedCollection method 533
TStaticText method 537
TStatusLine method 541
TStreamRec field 298
TStringLookup Valida tor method 552
TStrListMaker method 550
TValidator method 559
TView method 575
TWindow method 581

StoreHistory procedure 376
StoreIndexes procedure 376
Stream

TResourceFile field 520
StreamError variable 376
streams 291-308, 542-545

access modes 373
buffered 294, 373, 383-385, See also buffers,
streams
constructor 294
copying 306, 543
defined 291
designing 307
destructor 296
DOS 294, 373, 419-420
EMS 294, 432-434
error codes 308, 373, 543
error-handling 296, 542, 543, 544
errors 376
flushing 543
groups and 295, 454
indexed 294
Load methods and 296
mechanism 299
nil objects and 300
non-objects and 307
object ID numbers 298

reserved 298
objects and 291, 293, 296
overriding 307
overview 106
owner views and 304
peer views and 305
polymorphism and 292, 293
position 306, 544

seeking 545

612

random access 293, 294, 306
resources and 307

reading from 295, 300, 543, 544
strings 544

registration 293,297,299,366
dialog boxes 365
records 297, 545-546

resetting 544
resources and 310
seeking position 306
size of 307, 544
status 543
Store methods and 296
subviews and 295, 304, 451, 453
truncating 307, 545
type checking and 293, 299, 300
using 293
versioning 308
virtual method tables and 293
vs. files 291, 293
vs. resources 307
writing to 295, 299, 544, 545

strings 545
string lists 107, 313-314, 548-550

adding strings to 550
constructor 548, 550
destructor 548, 550
indexes 546, 547
makers 549-550
making 314
resource files and 313-314
retrieving strings from 549
uses of 313

Strings
TCluster field 396
TStringLookupValidator field 551

strings
allocating 361
collections of 547-548
disposing 330
dynamic 364
file name 337
formatting 338-339
length 326
lists of 530
menu items 482
moving into buffers 358

Turbo Vision Programming Guide

streams and 544, 545
window titles 557
writing to screen 576

StrRead
TTerminal method 555
TTextDevice method 556

StrWrite
TTerminal method 555
TTextDevice method 556

stXXXX constants 373
subsystems

application 176-178
subviews

clipping 143
deleting 147, 448
disposing of 137
events and 451
first 449, 570
focused See views, focused
inserting 452
iterating 147
iterator methods and 450
last 447
locating 147
managing 146-147
next 571
order 570, 571, 572
previous 571, 572
selected 446, 453, 572
streams and 295, 304, 451, 453, 572

SwitchTo
TResourceFile method 313, 522

SysColorAttr variable 376
SysErrActive variable 377
SysErrorFunc variable 377
SysMonoAttr variable 377
system error subsystem 177
SystemError function 378

T
Tab key

focused control and 141
Tab order 141, See also Z-order
tab order

setting 205

Index

TApplication object 379-381, See also
applications
overview 105
TProgram vs. 379

TBackground object 382-383, See also
background

TBufStream object 294, 383-385, See also
streams, buffered

TButton object 386-390, See also buttons
overview 102

TByteArray type 390
TCharSet type 390
TChDirDialog object 391-393
TCheckBoxes object 393-395, See also check

boxes
TCluster object 395-400, See also clusters

overview 103
TCollection object 277,400-406, See also

collections
overview 107

TColorDialog object 406-409
TColorDisplay object 409
TColorGroup type 409
TColorGroupList object 410
TColorIndex type 410
TColorItem type 410
TColorItemList object 411
TColorSel type 411
TColorSelector object 411
TCommandSet type 411
TDesktop object 412-414, See also desktop

overview 105
TDialog object 415-418, See also dialog boxes

overview 106
TDirCollection object 418
TDirEntry type 418
TDirListBox object 418-419
TDosStream object 294, 419-420, See also

streams, DOS
TDrawBuffer type 420
TEditBuffer type 421
TEditor object 421-428
TEditorDialog type 428
TEditWindow object 430-432
TEmsStream object 294, 432-434, See also

streams, EMS

613

terminal views 260-263, 553-555
assigning text devices 261
constructing 260
text buffer 260
writing to 261

TEvent type 162, 161-163,434, Seealso event
record

Text
TStaticText field 536

text
devices 553-557

assigning 318
overview 104
terminal buffer 555

formatted 499-500
static 536-537

centering 537
color of 537
constructor 536
destructor 537
drawing 537
overview 104
palette 537

text devices
assigning to terminal views 261

text views 259-263
TFileCollection object 435
TFileDialog object 435-438
TFileEditor object 438-441
TFileInfoPane object 441
TFileInputLine object 441
TFileList object 441
TFilterValidator object 441-442
TFindDialogRec type 443
TFrame object 443'-445, See also frames

overview 102
TGroup object 445-454, See also groups

overview 105
THistory object 455-457, See also history lists

overview 103
THistoryViewer object 457, See also history

lists, viewers
THistoryWindow object 457-458, See also

history lists, windows
Tile

TApplication method 181,381
TDesktop method 414

614

TileCohimnsFirst
TDesktop field 182, 413

TileError
TDesktop method 414

tiling windows 181-182, 362, 414
errors 414

TIndicator object 458-459
TInputLine object 460-464, See also input lines

overview 103
TItemList type 464
Title

TButton field 387
TWindow field 578

title strings
buttons 387
windows 557, 578, 579

TLabel object 465-467, See also labels
TListBox object 467-469, See also list boxes

overview 103
TListViewer object 470-474

overview 103
TLookupValidator object 474-475
TMemo object 475-477
TMemoData type 477
TMenu type 477
TMenuBar object 478-479, See also menus
TMenuBox object 480-481, See also menus
TMenuItem type 481
TMenuStr type 482
TMenu View object 482-485, See also menus

overview 103
TMonoSelector object 485
TNode type 488
TObject object 101,488-489, See also objects,

base
TopItem

TListViewer field 471
TopView

TView method 575
TOutline object 489-491, See also outlines
TOutlineViewer object 491-498
TPalette type 498
TParamText object 499-500
TPicResult type 501
TPoint object 101, 108,501
TProgram object 502-511, See also applications

overview 105

Turbo Vision Programming Guide

II
1.1

,I'

TPXPictureValidator object 512-514
TrackCursor

TEditor method 427
TRadioButtons object 514-510, See also radio

buttons
TRange Validator object 516-517
Transfer

TRangeValidator method 517
TValidator method 559

TRect object 101, 108,518-519
TReplaceDialogRec type 519
TResourceCollection object 519, See also

collections, resource
TResourceFile object 107,310,520-522, See also

resources
Truncate

TBufStrearri. method 385
TDosStream method 420
TEmsStream method 434
TStream method 307, 545

TScrollBar object 523-526, See also scroll bars
overview 104

TScrollChars type 527
TScroller object 527-530, See also scrollers

overview 104
TSearchRec type 530
TSItem type 530
TSortedCollection object 531-533, See also

collections, sorted
TSortedListBox object 534-535
TStaticText object 536-537, See also text, static

overview 104
TStatusDef type 537
TStatusItem type 538
TStatusLine object 539-542, See also status line

overview 104
TStream object 294, 542-545, See also streams

overview 106
TStreamRec type 297, 545-546
TStrIndex type 546
TStrIndexRec type 547
TStringCollection object 279,547-548, See also

collections, string
TStringList object 107,313,548-549, See also

string lists
TStringLoo~upValidator object 551-552

Index

TStrListMaker object 313, 549-550, See also
string lists

TSysErrorFunc type 550
TTerminal object 553-555, See also text, devices

overview 104 .
TTerminalBuffer type 555
TTextDevice object 556-557, See also text,

devices
overview 104

TTitleStr type 557
Turbo Vision

coordinate system 107-109
object overview 101

TValidator object 557-560, See also validators
as abstract type 243

TVideoBuf type 560
TView object 560-576, See also views
TVTransfer type 576
TWildStr type 577
TWindow.object 577-581, See also windows

overview 106
TWordArray type 581
type checking

collections and 278
files and 292
streams and 293, 299, 300

typecasting
collections and 284

u
Undo

TEditor method 428
undoing edits 265
Union

TRect method 51.9
Unlock

TGroup method 454
unlocking groups 143
Update

TOutlineViewer method 498
TStatusLine method 541

UpdateCommands
TEditor method 267, 428
TFileEditor method 440

615

V
Valid

TChDirDialog method 393
TDialog method 417
TEditor method 428
TEditWindow method 274
TFileDialog method 438
TFileEditor method 271, 440
TGroup method 454
TInputLine method 464
TV alidator method 241, 560
TView method 575 .

validating on demand 239
validating on Tab 238
validating screens 239
V,alidator

TInputLine field 461
Validators

option flags 557
validators 107, 557-560

assigning to input lines 463
constructing 240, 558
data transfer 559
error handling 242, 558
filter 441-442

overview 238
using 243

linking to input lines 240
lookup 474-475

using 244
picture 245,512-514
range 516-517

using 244
status 557
streams and 558, 559
string lookup 551-552

using 244
using 237-245
validity test 558, 559, 560

ValidChars
TFilterValidator field 442

ValidView
TProgram method 507

Value
TCluster field 396
TScrollBar field 524

616

video
buffer 560
high resolution 344
manager 332·

initializing 347
mode 368, 372, 373

setting 370
snow-checking 321

video subsystem 177
views 8, 113-147, 560-576

applications as 132
buffered 142
centering 121,363
color of 567, 568
color palettes 247, 567, 568
communication between 165, 354
constructor 563
data

reading 568
setting 573
size of 565

defined 114
destructor 564
detecting 168
disabled 370
drag modes 561
dragging 124-125,370,565
drawing 119-120, 128-131,566
enabled 370
error-handling 575
event handling 569
events and 161,569,575
exposed 567
fields

initializing 117
focused 8, 141,370

events and 154
framed 121,362
groups of 131
grow modes 341, 561
help context 562, 568
hiding 569
inserting 452
location 101, 117,363,562,567, 568

changing 564, 570, 571
messages between 166
modal 371, 566, See modal views

Turbo Vision Programming Guide

current 575
events and 154, 155

option flags 362, 562
overlapping 134
overview 102-106
owner See owner views
peer 305, 568, 572
position

setting 573
resizing 141
selectable 120, 362
selected 370, 446, 453, 572
shadowed 370, 371
size 117
size of 101, 356, 563

changing 564, 569
limits 574
maximum 352

state flags 563
terminal 131

events and 154
topmost

finding 169
trees See also view trees
unhiding 574
valid 575
validating 126-128
visible 370, 574

virtual method tables
files and 292
streams and 298

virtual methods 100
vmtHeaderSize constant 582
VmtLink

TStreamRec field 298
VMTs See virtual method tables
voXXXX constants 582
VScrollBar

TEditor field 424
TListViewer field 471
TScroller field 528

vsXXXX constants 582

w
wfXXXX constants 583

Index

WildCard
TFileDialog field 436

window numbers 202
window palettes

example 201
standard 200

WindowColorItems function 583
windows 195-204,577-581, See also groups

active 370
attributes

dialog boxes vs. 204
cascading 181-182,413
closing 164, 579

icon 583
color of 579
constructing 197
constructor 579
controls

values
setting 207

customizing 200-202
destructor 579
dialog boxes vs. 196
disposing 579
elements 10
event handling 580
executing 199-200
flags 197, 578, 583
frames 578

creating 580
overview 102

inserting into desktop 181, 198-199
modal 199-200
moveable 583
numbering 578, 584
numbers 202
overview 106
palette 578, 581, 584
resizing 583
scroll bars and 580
size 202-203

limiting 202
size of 578

limits 580
minimum 356

tiling 181-182, 362

617

title
changing 201
context-sensitive 201

titles 557, 578, 579
topmost 121

finding 169
validating 181
zooming 203, 578, 581, 583 .

wnNoNumber constant 584
using 202

Word Chars variable 584
WordRec type 584
wpXXXX constants 584
Write

TBufStream method 385
TDosStream method 420
TEmsStream method 434
TStrearh method 307,545
TStream procedure 299

WriteBuf
TView method 575

WriteChar
TView method 576

WriteLine
TView method 576

618

WriteShellMsg
TApplication method 185, 381

WriteStr

x
X

y
y

Z

TStream method 545
TView method 576

TPoint field 108, 501

TPoint field 108, 501

Z-order 138-139, 154, 155, 169, 362
altering 452
changing 570, 572
defined 138

Zoom
TWindow method 581

ZoomRect
TWindow method 578

Turbo Vision Programming Guide

B o R L A N D
Corporate Headquarters: 1800 Green Hills Road , P.O. Box 660001 , Scotts Valley, CA 95067-0001 , (408) 438-8400. Offices in: Australia,
Belgium, Canada, Denmark, France, Germany, Hong Kong , Italy, Japan, Korea, Malaysia, Netherlands, New Zealand , Singapore, Spain ,
Sweden, Taiwan, and United Kingdom . Part #11 MN-TPL01-70 • BOR 4685

