
BiiNTM SYSTEMS OVERVIEW

TM

BiiNTM SYSTEMS OVERVIEW

Order Code: 6AN9000-1AJOO-OBA2

LIMITED DISTRIBUTION MANUAL
This manual Is for customers who receive preliminary ver
sions of this product. It may contain material subject to
change.

BIINTM
2111 NE 25th Ave.

Hillsboro, OR 97124

© 1988, BiiNTM

PRELIMINARY

REV. REVISION HISTORY DATE

-001 Preliminary Edition 7/88

BiiNTM MAKES NO WARRANTY OF ANY KIND WITH REGARD TO THIS MANUAL, INCLUDING,
BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF :MERCHANT ABll..ITY AND FITNESS
FOR A PARTICULAR PURPOSE.

BiiNN assumes no responsibility for any errors that may appear in this documenL B~ makes no commitment to update nor to keep current the
infonnation contained in this documenL

No part of this document may be copied or reproduced in any fonn or by any means without written consent of BiiNN.

BiiNN retains the right to make changes to these specifications at any time, without notice.

The following are trademarks of BiiNTlI: BiiN, BiiN/OS, BiiN/UX, BiiN Series 20, BiiN Series 40. BiiN Series 60, BiiN Series SO.

Apple and MacTenninal are trademarks of Apple Computer. Inc. UNIX is a trademark of AT&T Bell Laboratories. Torx is a trademark of Camcar
Screw and Mfg. Ada is a certification mark of the Department of Defense, Ada Joint Program Office. DEC, VT100, and V AX are trademarks of
Digital Equipment Corporation. Smartmodem is a trademark of Hayes Corporation. mM is a trademark of Intemational Business Machines, Inc.
MUL Tm US is a registered trademark of Intel Corporation. Macintosh is a trademark of McIntosh Laboratory, Inc. Microsoft is a registered
trademark of Microsoft Corporation. Mirror is a registered trademark of SoftKlone Distributing Corporation. WYSE is a registered trademark of
Wyse Technology. WY-60 and WY-SO are trademarks ofWyse Technology.

Additional copies of this or any other BiiNTM manuals are available from:

ii

BiiNTM Corporate Literature DepL
2111 NE 25th Ave.
Hillsboro, OR 'f1124

PRELIMINARY

PREFACE

The BiiNTM Systems Overview describes major features and benefits of BiiNTM computer sys
tems.

Release Restrictions
Preliminary BiiNTM system releases do not provide some features described in this manual. See
the product release notes for more infonnation.

Organization
The BiiNTM Systems Overview contains seven short chapters:

• Chapter 1 describes the system's goals.

• Chapters 2 and 3 describe the hardware and software.

• Chapters 4 through 7 describe how the system achieves its major goals.

Related Publications

Preface

To begin using BiiNTM systems, see Getting Started with BiiNTM Systems.

To learn about programming BiiNTM systems, see the BiiNTM Systems Programmer's Guide.

To learn about the BiiNTM Operating System, see the BiiNTM/OS Guide.

iii

PRELIMINARY

iv Preface

PREUMINARY

CONTENTS

Chapter 1. System Goals
1.1 Support for Software Development 1-1
1.2 Scalable Performance ... 1-1
1.3 Fault Tolerance .. 1-2
1.4 Data Integrity 1-2
1.5 Distributed Computing .. 1-3
1.6 Support for Industry Standards .. 1-3

Chapter 2. Hardware
2.1 Series 60 Systems .. 2-1
2.2 VLSI Technology .. 2-2
2.3 Central Processing Unit ... 2-3
2.4 System Bus ... 2-3
2.5 RAM Memory ... 2-4
2.6 I/O Subsystems .. 2-4

Chapter 3. Software
3.1 Command Language Executive 3-1
3.2 Utilities .. 3-2
3.3 Programming Languages 3-2
3.4 Other Programming Tools 3-3

3.4.1 Emacs Text Editor .. 3-3
3.4.2 Linker and Librarian .. 3-3
3.4.3 Debugger ... 3-3
3.4.4 Software Management System 3-4

3.5 Database Management System .. 3-4
3.6 Forms 3-4
3.7 Reports .. 3-4
3.8 BiiNTM lUX .. 3-4
3.9 Graphics Support. 3-5
3.10 The BiiN

T
... Operating System .. 3-5

Chapter 4. Scalable Performance

4.1 Enhancing System Performance 4-1

Contents v

PRELIMINARY

4.1.1 Processor Performance .. 4-1
4.1.2 Memory Access Time ... 4-1
4.1.3 Bus Performance ... 4-2
4.1.4 Stable Store ... 4-2
4.1.5 1/0 Performance. 4-2

4.2 Transparent Multiprocessing 0 0 • • • • • • • • • • • • 4-2

Chapter 5. Fault Tolerance
5.1 Levels of Fault Tolerance .. 5-1
5.2 Basic System Reliability ... 5-1

5.2.1 Processor Reliability .. 5-1
5.2.2 System Bus Reliability .. 5-1
5.2.3 Memory Reliability ... 5-2
5.2.4 Disk Reliability .. 5-2

5.3 Fault Checking Systems ... 5-2
5.4 Fault Recovery for Continuous Operation 5-3
5.5 Complete Fault Coverage .. 5-3
5.6 Fast Troubleshooting and Online Repair 54

Chapter 6. Data Integrity

6.1 The Need for Protection within a Running Program 6-1
6.2 Object-Based Protection ... 6-1

6.2.1 What is an Object? .. 6-1
6.2.2 How are Objects Referenced? 6-2
6.2.3 The Inside and Outside Views of An Object 6-3
6.2.4 Switching Address Spaces Within a Program 6-3
6.2.5 Three-Fold Protection ... 6-4

6.3 Protecting Objects Stored on Disk 6-5
6.4 Ensuring Data Consistency with Transactions 6-6

Chapter 7= Distributed Computing

7.1 Developing Distributed Applications 7-1
7.2 How a Distributed Service Works 7-1
7.3 Distributed Disk Storage ... 7 -2

7.3.1 General Characteristics of Passive Store 7-3
7.3.2 Naming and Reference for Passive Objects. 7-3
7.3.3 Efficient Access to Passive Store 7-4
7.3.4 Handling Concurrent Access and Ensuring Consistency of Passive Objects. 7-5

7.4 Distributed Program Execution .. 7-6
7.5 Distributed System Administration 7-6
7.6 Support for Multiple Protocols .. 7-7
7.7 Flexible Network Topologies ... 7-7
7.8 Connecting to Non-BiiN™ Systems 7-7

PRELIMINARY

List of Figures

2-1. BiiNTM Hardware Architecture .. 2-1
3-1. BiiNTM Software ... 3-1
4-1. Transparent Multiprocessing ... 4-3
5-1. Fault-Checking Computational Subsystem 5-3
6-1. AD and Object .. 6-2
6-2. Linear Address Space and Domain 6-4
6-3. Three-Fold Object Protection .. 6-5
7-1. Communication and Cooperation Between Filing SelVice Instances 7-2
7-2. Passive Store is a Distributed Object Filing Service that Unifies All Nodes in a
BiiNTM System. .. 7-3
7-3. Single Activation Access to a Passive Object 7-5
7-4. Multiple Activation Access to A Passive Object. 7-5

PREUMINARY

List of Tables
2-1. Central Processing Unit Features 0 • • • • • • • • 2-3

viii Contents

PREUMINARY

SYSTEM GOALS 1
This chapter introduces the BiiNTM system's goals:

• Support for software development

• Scalable perfonnance

• Fault tolerance

• Data mtegrity

• Distributed computing

• Support for industry standards.

1.1 Support for Software Development
BiiNTM systems can run many existing applications and can be used to develop new applica
tions:

• Several widely-used and standardized programming languages are available: Ada, C,
COBOL, FORTRAN, Pascal, and SQL.

• BiiN™/UX, an implementation of UNIX System V, is provided.

• BiiNTM supports object-oriented programming methods, believed to increase software
productivity, reliability, and maintainability.

• The BiiNTM Operating System provides many advanced features that do not have to be
implemented by application writers.

• BiiNTM applications can nonnally run on systems with different levels of perfonnance, fault
tolerance, or distribution.

Chapler 3 provides more infonnation about the BiiNTU software development environment.

1.2 Scalable Performance

System Goals

BiiNTM systems can be used for a wide range of applications, with different and changing
perfonnance requirements:

• The BiiN
TU

computer family contains a range of systems to match different user require
ments. Users don't have to pay for perfonnance that is not needed.

• The maximum perfonnance available in BiiNTU systems is great enough for almost all ap
plications.

• BiiN
TU

systems can be expanded by adding modules, preserving existing hardware invest
ments.

PRELIMINARY

• Processing power, memory, and I/O can all be expanded independently.

• There is complete software compatibility between different BiiNTM systems.

Chapter 4 provides more information about BiiNTM systems' performance.

1.3 Fault Tolerance
BiiNTM systems can be used for applications that demand extremely high reliability or even
continuous operation. Some BiiNTM systems are fault tolerant and contain duplicated hardware
units used to detect faults and possibly recover from them as well. BiiNTM systems support
three levels of fault tolerance:

• Basic BiiNTM systems' are very reliable and detect many faults. For example, extra check
bits are built into BiiNTM memory modules to correct or detect memory errors.

• Fault-checking BiiNTM systems detect any fault and keep faults from harming data or
programs.

• Continuous BiiNTM systems detect any fault and recover from any single fault by im
mediately switching to backup modules.

The BiiNTM approach to fault tolerance has these advantages:

• The BiiNTM computer family provides a range of fault tolerance to match different user
requirements. Users don't pay for unneeded capabilities.

• There is complete software compatibility between systems with different levels of fault
tolerance. Software changes are not needed to take advantage of increasing levels of fault
tolerance.

• Fault-checking and continuous operation are implemented in hardware, so that such sys
tems run almost as fast as standard systems.

Chapter 5 provides more information about BiiNTM fault tolerant systems.

1.4 Data Integrity

1-2

BiiNTM systems can be used for applications that must protect valuable data from hardware
errors, software errors, or unauthorized access:

• Error Correction Codes and other checks detect and prevent errors in semiconductor or disk
memory.

• Access to data representations can be restricted to particular software modules.

• Software modules can be protected so that an error in one module doesn't overwrite data in
another module.

• Related changes to data can be grouped so that either all changes succeed or all changes are
automatically undone.

• Access to data can be restricted to exactly those individuals with a "need to know."

• Protection boundaries are flexible and controlled by application designers.

Chapter 6 provides more information about how BiiNTM systems ensure data integrity.

System Goals

PREUMINARY

1.5 Distributed Computing
A distributed computer system is a network of computers that can be used as if it is a single
computer. BiiNTM systems can be distributed:

• In a distributed BiiNTM system, all files, applications, and other resources are transparently
accessible at every computer in the network.

• BiiNTM applications are automatically distributed without special implementation effort, be
cause operating system services are distributed.

• There is complete software compatibility between distributed BiiNTM systems and stand
alone BiiNTM computers.

Chapter 7 provides more information about distributed computing.

1.6 Support for Industry Standards

System Goals

BiiNTM systems are easier to use and easier to connect with peripherals and networks because
they support many industry standards:

• Programming language standards

• UNIX operating system standards

• Network communication standards

• Electrical safety and emission standards.

Chapters 2 and 3 describe what standards are supported by BiiNTM hardware and software.

1-3

PRELIMINARY

1-4 System Goals

PRELIMINARY

HARDWARE 2
This chapter describes BiiNTM hardware systems and their major components. Figure 2-1 il
lustrates the hardware architecture. A BiiNTM computer uses a high-speed system bus to inter
connect all modules. Multiple CPUs, multiple I/O subsystems, and multiple memory boards
can be included in a single system.

I/O
SUBSYSTEM MEMORY

SYSTEM BUS

1
B

1
I MEMORY I

1

I/O
SUBSYSTEM

I/O
SUBSYSTEM

Figure 2-1. BiiNTM Hardware Architecture

Several features distinguish BiiNT'" systems:

• The hardware uses Very Large Scale Integrated circuits (VLSI chips) to increase perfor
mance and reliability while reducing space requirements and power consumption.

• The hardware directly supports key software functions, such as memory management,
protection, and fast fue access.

• The hardware supports industry standards for connecting disk drives, tape drives, networks,
terminals, printers, and other devices to systems.

• The hardware is modular, allowing subsystems to be mixed and matched to provide a range
of performance and of fault tolerance.

2.1 Series 60 Systems

Hardware

The BiiNTM Series 60 System provides a wide range of hardware performance. The Series 60
contains 12 available bus slots and room for four full-height and two half-height mass storage
devices. The Series 60 can be configured with:

2-1

PRELThfiNARY

1-8 processors

32-80 Mbytes of RAM memory, ifno more than five slots are used for
memory

2-10 I/O controllers, if no more than five slots are used for I/O

16-128 serial lines

Up to four 380M byte Wmchester disk drives (l.5 Gbytes total)

Any two half-height peripherals: 1.6Mbyte 5.25" diskette, 100Mbyte
Winchester hard disk, 125Mbyte cartridge tape.

2.2 VLSI Technology

2-2

BiiNTM systems are designed around four Very Large Scale Integrated circuits (VLSI chips):

CPU Central Processing Unit. The CPU is a 32-bit processor with on-chip
floating-point arithmetic, memory management, and OS support.

CP

BXU

MCU

Channel Processor. The CP is an I/O processor with up to eight inde
pendent concurrent tasks and up to 10M bytes/second data transfer.

Bus Exchange Unit. The BXU provides an interface between a CPU or
CP's Local Bus and the System Bus. Each BXU also controls up to 64K
bytes of fast cache memory.

Memory Control Unit. The MCU handles a memory board's System Bus
interface, controls up to 8M bytes of DRAM, and handles memory Error
Correction Code (BeC).

All these VLSI chips do the work of hundreds of smaller components in older computer sys
tems. Compared to many older computer systems, BiiNTM,s VLSI solutions are:

• Much more reliable

• Faster

• Smaller, requiring much less board space

• Economical to operate, requiring much less power and cooling.

Also, all BiiNTM boards and modules are designed with surface-mount technology, further in
creasing reliability and reducing system size.

Hardware

PREUMINARY

2.3 Central Processing Unit
Table 2-1 summarizes the BiiNTM CPU's features.

Table 2-1. Central Processing Unit Features

Feature Description

Instruction Processing Rate 5.5 MIPS (1 MIPS = VAX 1InSO)

Register Set 16 one-word local registers per call. 3 used for linkage and 13 general-
purpose. 20 global registers per process. 4 floating-point, 1 frame pointer and
IS general-purpose word registers. The CPU can cache four sets of local
registers.

Addressing and Memory 2S8 byte virtual address space, consisting of up to 226 objects each containing
Management up to 232 bytes. Physical memory is organized as 4Kbyte pages, and paged

virtual memory is supported. Object addressing and virtual address trans-
lation are provided on the chip.

Protection Each access to memory is automatically checked to see that a valid pointer is
used. that the pointer has required access rights, and that the access falls
entirely within the bounds of a valid objecL All objects are typed. Program
modules can check that an object has the proper type with a single instruction.

Arithmetic

Integer 8-bit, 16-bit, and 32-bit signed and unsigned integer arithmetic are supported.
Signed arithmetic faults on overflow; unsigned arithmetic does not.

Floating -point 32-bit, 64-bit, and SO-bit floating-point arithmetic are provided on chip.
Floating-point arithmetic conforms to the IEEE standard for binary floating-
point arithmetic. There is on-chip support for exponential, logarithmic, and
trigonometric functions.

Multiprocessing Available processors run the highest-priority waiting processes automatically,
Support without software intervention. Low-level process scheduling is done directly

by the processors. Single instructions are provided to lock and unlock
semaphores and to send and receive interprocess messages. Process preemp-
tion is supported.

Subprogram Call A single-instruction call can switch to a different address space for a called
Support subprogram. These different address spaces or domains can be used to give

each software module access to just those objects for which it needs access.

Interrupt Latency

Typical SJ.1S

Maximum 10 s

The CPU achieves its high execution speed by using concepts found in reduced-instruction-set
computer (RISC) designs:

• Several functional units can do different tasks in parallel, such as adding two numbers
while decoding the next instruction while fetching the instruction after that.

• Many simple instructions can be executed in a single cycle.

• A large register set reduces the number of memory accesses.

The CPU also excels in areas neglected by many microprocessor architectures, such as
floating-point arithmetic, memory management, and process management.

2.4 System Bus

Hardware

The BiiNTM System Bus is a 32-bit bus designed to support multiple processors, multiple
memory modules, and multiple I/O controllers.

2-3

PRELIMINARY

Each Series 60 system uses two parallel system buses, increasing system perfonnance.

The system bus interface is handled by a VLSlchip, the BXU (Bus Exchange Unit). Each
BXU also controls up to 64K bytes of fast cache memory.

2.5 RAM Memory
A BiiNTM memory board can contain 8M or 16M bytes, using IMbit DRAM chips. When
4Mbit DRAM chips are available, a single memory board will be able to provide 64M bytes.

The RAM memory is made very reliable by its use of an Error Correction Code (ECC) for
every memory word. The ECC mechanism is able to correct any single-bit error without loss
of data, and detect any double-bit error.

A memory board's control logic and bus interface is implemented by a single VLSI Memory
Control Unit (MCU).

2.6 1/0 Subsystems

2-4

BiiNTM I/O subsystems provide interfaces for mass storage, communications, and standard I/O
peripherals, such as printers and tenninals.

BiiNTM systems support two standard buses for connecting mass storage devices:

• ANSI byte-wide medium perfonnance Small Computer Systems Interface (SCSn

• ANSI double-byte-wide high perfonnance Intelligent Peripheral Interface (lPn.

BiiNTM systems support two standards for connecting systems to Local Area Networks (LANs):

• IEEE 802.2/3

• Ethernet Blue Book.

BiiNTM systems support several standards for serial communication:

• High-level Data Link Control (HDLC) balanced and unbalanced bit-oriented synchronous
protocols

• Synchronous Data Link Control (SDLC) unbalanced bit-oriented synchronous protocols

• 7-bit and 8-bit asynchronous protocols.

BiiNTM systems support several different physical layer interfaces that can be used for serial
communication:

• Full Modem Iriterface (EIA Standard RS-232-C and CCITI Recommendations V.21, V.22,
V.22bis, V.23, V.25bis, V.26, V.26bis, V.26ter, V.27, V.27bis, V.27ter, V.29, and V.32)

• Limited Modem Interface (EIA Standard RS-232-C and CCITI Recommendations V.21,
V.22, V.22bis, V.25bis, V.26bis, and V.26ter)

• Digital Interface (EIA Standard RS-422 and CCITI Recommendations X.21 and X.24)

• TTY current loop interface.

Hardware

PREUMINARY

SOFTWARE 3
This chapter describes BiiNTM software products, shown in Figure 3-1.

System
Utilities

COMMAND LANGUAGE
EXECUTIVE (CLEX)

BiiN/OS (BiiN operating system)

Figure 3-1. BiiNTM Software

BiiN/UX

(BiiN UNIX)

I X ~ndows I

Software products are presented in the order that a user might encounter them, beginning with
the command language and system utilities.

3.1 Command Language Executive

Software

The BiiN'fM Command Language Executive (CLEX) is a general-putpose command intetpreter
with these major features:

• Syntax checking and command error recovery are done by CLEX, unburdening the applica
tions programmer.

• CLEX automatically prompts for missing mandatory arguments.

• CLEX allows abbreviation of command names and queries the user to resolve ambiguous
selections. -

• CLEX's built-in help facility provides information about what commands are available, the
syntax of any command, or the meaning of any command argument.

3-1

PREUMINARY

• If your system has BiiN™/UX (BiiN™,s implementation of UNIX), then CLEX accepts
BiiNTM lUX commands directly, without needing to invoke a BiiNTM lUX shell.

• CLEX provides UNIX-like piping, I/O redirection, and command language control struc
tures.

• CLEX supports multiple jobs concurrently executing in multiple windows.

• CLEX provides "runtime" commands that are automatically part of the command set of any
utility that uses CLEX. For example, the set . current_directory command is
available within any such utility.

• CLEX can be used as a programming language. CLEX scripts can be stored in files and
invoked as commands.

3.2 Uti lities
The BiiNTM system provides many utilities (interactive commands) for users and for system
administrators. User utilities are provided for:

• Managing directories, files, and protection infonnation

• Controlling jobs

• Printing

• Grouping a series of commands within a transaction

• Managing CLEX variables.

System administrator utilities are provided for:

• System configuration

• Managing disks and volume sets

• Managing spool queues

• Monitoring system operations

• Controlling and accounting for system resources

• Managing user accounts

• Backing up or restoring system data

• Managing tenninals, printers, and other devices.

3.3 Programming Languages

3-2

Six standard programming languages are available for the BiiNTM system:

Ada

C

An implementation of the Ada programming language as specified by
ANSI/MIL-STD-18ISA-1983.

An implementation of the draft ANSI standard, X3Jl1/86-1S1, that is also
compatible with AT&T System V C. Two function libraries are available:

• A UNIX-derived libary that includes UNIX-compatible system calls, for
customers moving UNIX applications to the BiiNTM system.

Software

COBOL

FORTRAN

Pascal

SQL

PRELIMINARY

• A native function library that is not derived from UNIX and does not
include UNIX-compatible system calls.

An implementation of the COBOL 85 standard.

An implementation of the FORTRAN 77 standard, with extensions
specified by MIL-STD-1753.

An implementation of the ANSI/IEEE 770 X.397-1983 standard.

An implementation of the industry-standard structured query language for
accessing relational database management systems. SQL is provided with
the BiiNTM database management system.

Ada, C, COBOL, FORTRAN, and Pascal confonn to the IEEE 754-1985 standard for binary
floating-point arithmetic.

3.4 Other Programming Tools
Besides programming languages, the BiiNTM system provides many other tools needed in a
complete and productive programming environment.

3.4.1 Emacs Text Editor

BiiNTM Emacs is a full implementation of this popular editor. Emacs is a multi-window screen
editor that can be extended using command macros and a built-in version of the MLisp pro
gramming language. Programming support includes automatic indenting and parenthesis
checking for C and Pascal programs.

3.4.2 Linker and Librarian

The BiiNTM Systems Linker is a multi-language builder of runnable programs. Modules written
in any BiiNTM language can be linked together. Developers can use the linker to group program
modules in separate domains, to take advantage of the system's inter domain protection fea
tures.

The BiiNTM Systems Librarian is a programming tool for managing libraries of compiled
program modules. Libraries are useful because all modules in a library can be made available
during linking by specifying a single library name. The linker only links in those library
modules actually referenced by a program being linked.

3.4.3 Debugger

The BiiNTM Application Debugger is a high-level debugging tool with these major capabilities:

• Debugging programs at the source-code level, using program-defined names.

• Debugging programs at the machine level, using memory addresses and register names.

• Debugging programs that use multiple processes.

• Logging debugging sessions to files.

Software 3-3

PRELIMINARY

3.4.4 Software Management System

The BiiNTM Software Management System (SMS) is a tool for managing software development
projects. SMS includes a version control system, configuration management system, project
tracking tools, and other useful tools.

3.5 Database Management System
Information about the BiiNTM database management system (DBMS) will be provided in a
future release of this manual. The selected DBMS is expected to support SQL, the industry
standard Structured Query Language.

3.6 Forms
The Fonn Editor is used to layout fOlms used for interactive data entry. Features of BiiNTM
fOlms include:

• Conditional fields, only used if a particular condition is true.

• Group fields, for entering or displaying repeating data elements.

• Protected fields, output-only fields that cannot be modified. Such fields can be computed
from other fields during program execution.

• Subfolms, fOlms nested within other fOlms.

• Key catchers, subprogram calls that customize the handling of particular keys pressed by
the user.

• Processing routines, subprogram calls triggered by user entry of particular fields. Process
ing routines can be used to do additional input validation. For example, if a source account
ID field and a destination account ID field must have different values, then a processing
routine can check for the difference.

A procedural interface to forms is used to display a fonn in a window and then read entered
data as a record stream.

3.7 Reports

3-4

The Report Editor is used to layout reports generated by your application. Features of BiiNTM
reports include control of page headings and footings, control breaks, and column sums. The
procedural interface to reports is used to write a stream of records to a report.

BiiNTM lUX is a software product that provides a user interface and many utilities derived from
AT&T's UNIX System V operating system. BiiN™rox includes:

• Two command interpreters, or shells (sh and esh), each of which can also be used as a
programming language

Software

PRELIMINARY

• File and directory utilities

• The awk and sed text processing tools and a variety of text editors

• A program builder (make) and a source-code control system (SeeS)

• Many other utilities designed for the software engineer.

Applications written for UNIX are often written in e and rely on a set of UNIX system calls. A
UNIX-derived function library that includes the system calls is available as a separate e func
tion library. Some applications also depend on shell scripts, common commands in those
scripts, or make scripts. All these parts are provided: system calls (in the e function library),
the shell programs, common commands, and the make utility. The BiiNTM lUX documentation
provides a special manual, Porting UNIX System V Applications to BiiNTM Systems, to help
customers move existing System V applications to the BiiNTM system.

3.9 Graphics Support
The BiiNTM X Window System (X) supports graphics applications. X is a portable standard for
developing windowing applications, supported by virtually all vendors of graphics worksta
tions. X is designed to be device-independent, portable across operating systems, and stable
yet extensible. Unlike traditional windowing systems, X is designed to work well in a net
worked or distributed environment. Both Ada and C interfaces to X are provided.

BiiNTM systems support both character tenninals and graphics tenninals. Graphics applications
can only run on graphics tenninals. All BiiNTM software products and all character-oriented
applications can run on either type of tenninal.

3.10 The BiiNTM Operating System

Software

The BiiNTM os is a multiuser, multitasking operating system that supports:

• Multiprocessing, in which multiple CPUs simultaneously execute within a single computer.

• Flexible protection of data and programs, in which only those users or modules with a
"need to know" can access a particular entity.

• Transaction processing, in which related changes to data can be grouped so that either all
changes succeed or all are automatically undone.

• Distributed computing, in which multiple interconnected computers behave like a single
computer system.

• Concurrent programming, in which multiple processes within a program execute concur
rently.

• Real-time programming, in which resources are preallocated and programs must respond
quickly to interrupts and other asynchronous events.

• Record-oriented applications, which use record-structured files and indexes for storage,
fonns for data entry, and reports for data output.

Subsequent chapters in this book describe some of these features in more detail.

3-5

PRELIMINARY

3-6 Software

PREUMINARY

SCALABLE PERFORMANCE 4
This chapter shows how BiiNTU systems are designed for high performance and to provide a
range of performance.

4.1 Enhancing System Performance
This section describes how the BiiNTU system design enhances system performance. System
features that enhance performance include:

• A high-performance 32-bit processor

• A high-speed System Bus

• Extensive caching to reduce the time needed to access both main memory and disk

• Use of separate Channel Processors to handle I/O.

4.1.1 Processor Performance

The BiiNTU system maximizes individual processor performance in several ways:

• The CPU provides on-chip floating-point arithmetic and memory management, avoiding
the overhead of communicating with separate coprocessors.

• The CPU uses reduced instruction set computer (RISC) concepts· to boost performance,
including extensive pipelining, single-cycle execution of many instructions, simplified in
struction formats, and a large register set. "Register scoreboarding" identifies registers that
can be used in an instruction before a previous instruction has finished executing.

• The CPU provides special instructions and microcode sequences for very fast subprogram
calling, interrupt handling, process switching, and interprocess communication.

See the BUN"' Systems CPU Architecture Reference Manual for more information about the
CPU.

4,. 1 .. 2 Memory Access Time

Extensive caching is used to reduce the time needed to read or write data. Caching keeps
frequently referenced data within or "close" to the CPU, to reduce access time:

• Each CPU contains a 512 byte instruction cache and a stack-frame cache. The stack-frame
cache holds up to four sets of local registers.

• Each BXU manages 32K bytes of fast cache memory per CPU. Many memory reads "hit"
in the cache, avoiding the extra time needed to access memory via the System Bus. When
writing data, the CPU can continue execution while the BXU writes the data through to
memory via the System Bus.

Scalable Performance 4-1

PRELIMINARY

4.1.3 Bus Performance

The BiiNTM System Bus uses several techniques to enhance perfonnance:

• Up to 16 bytes can be read or written as a single bus operation, reducing the number of bus
operations and increasing bus bandwidth.

• Other bus activity is allowed in the time between a bus request and the corresponding reply.
Up to three bus operations can be active at the same time.

• Because many memory accesses are handled by cache hits, CPUs issue fewer bus requests
and use less bus bandwidth. This allows more CPUs to run in one system without saturat
ingthe bus.

• A Series 60 system contains two parallel buses connected in a crossbar arrangement. Bus
traffic tends to be evenly distributed over the two buses, alleviating bus bottlenecks.

See the BiiNTM Hardware Subsystems Reference Manual for more infonnation about the Sys
tem Bus.

4.1.4 Stable Store

Stable store is RAM memory used to cache disk blocks. A battery backup ensures that stable
store contents are maintained even if system power is lost. Stable store greatly reduces the
time needed for disk access:

• Blocks being read from disk are often already in stable store, avoiding a disk access.

• Blocks being written to disk are simply written to stable store, avoiding the delay of wait
ing for a disk access. Writing blocks to disk is done later and asynchronously by the OS.

• If an application uses small and short-lived files, those files may be created, used, and then
deleted entirely within stable store, without any disk accesses. For example, the transaction
sexvice uses such short-lived files to keep infonnation about active transactions.

4.1.5 I/O Performance

A BiiNTM system's I/O is handled by separate Channel Processors (CPs). The CP is a
programmable I/O processor that can transfer data at up to 10M bytes/second. The CP can
handle up to eight independent I/O tasks simultaneously, supporting several different
peripherals. The BiiNTM approach to I/O perfonnance has these advantages:

• The CPs free up CPU cycles and increase overall throughput. In a system with four CPUs
and four CPs, there may really be eight processors running simultaneously instead of four.

• I/O perfonnance can be scaled independently from CPU perfonnance, by adding additional
I/O boards.

4.2 Transparent Multiprocessing

4-2

A BiiNTM computer can contain from one to eight CPUs. Each processor can execute a dif
ferent process in the computer's shared memory. With one processor, processes take turns
executing on the single processor. With several processors, several processes can execute with
true concurrency. The only difference is in execution speed.

Scalable Performance

PRELIMINARY

BiiNTM provides transparent mUltiprocessing: No software changes are required if the number
of processors changes. All processes and processors share a common dispatch port, a meeting
place for processes and processors. All ready processes waiting to run are placed in the com
mon queue. When a processor needs a process, it simply takes the process at the head of the
common queue and begins to execute it.

Figure 4-1 shows two processes running (A and B) and two waiting at the dispatch port (C and
D) in a two-CPU system. If process A blocks, perhaps waiting for an I/O operation to com
plete, then it releases its CPU. The CPU would then go to the dispatch port and "dispatch" the
first waiting process, C. The dispatching action removes C from the list of waiting processes,
binds it to a CPU, and begins execution. Later, when process A is again ready to run, it will be
added to the list of processes waiting at the dispatch port.

EXECUTING
PROCESSES

/ A /J4.Z---I~ II~~~ I I ~

f
DISPATCH

PORT

I I WAITING
~ __ "'I'_P_R_O_C_ES_S_E_S_

Figure 4-1. Transparent Multiprocessing

Transparent multiprocessing has these advantages:

• Programs don't depend on the number of processors. Software is independent of the mul
tiprocessing hardware.

• Writing parallel programs is straightforward, using well-understood techniques for manag
ing multiple processes.

• The individual processors are general-purpose computers, and each can execute a different
instruction stream simultaneously. This makes a transparent multiprocessor very flexible
and able to speed up the execution of almost any kind of parallel problem.

BiiNTM,s implementation of transparent multiprocessing handles all process dispatching and
low-level process scheduling in the CPU microcode; no software intervention is required.

Scalable Performance 4-3

PRELIMINARY

4-4 Scalable Performance

PRELIMINARY

FAULT TOLERANCE 5
Fault tolerant computer systems can detect errors in their own operation and automatically
recover from errors whenever possible. BiiNTM systems support a range of fault tolerance
options, including systems for continuous computing. Such systems include redundant
hardware resources that can detect any single hardware failure and recover from such failures
without interrupting system operation.

5.1 Levels of Fault Tolerance
BiiNTM systems can provide any of three levels of fault tolerance:

basic

fault checking

continuous

Relies on the system's built-in fault detection and handling mechanisms,
but with no duplication of hardware resources.

Duplicates VLSI chips-CPU, CP, BXU, MCU-to provide comprehen
sive fault detection for those chips and their associated subsystems. If an
unrecoverable fault is detected, the affected subsystem is shut down so that
penn anent data is not damaged.

Duplicates almost all hardware subsystems. For VLSI chips, fault
checking pairs are duplicated. Each hardware subsystem has a backup that
is immediately available if it fails. Any single hardware fault automati
cally reconfigures the system and continues execution without a system
restart.

5.2 Basic System Reliability
A fault tolerant system must have highly reliable building blocks. Each BiiNTM subsystem has
been designed for high reliability.

5.2.1 Processor Reliability

These features enhance CPU reliability:

• Each CPU tests itself when it is initialized.

• CPU instructions do extensive error checking; any random error in the CPU itself is likely
to trigger instruction errors that will stop program execution.

5.2.2 System Bus Reliability

These features ensure System Bus reliability:

• Each bus has two parity lines that detect any single-bit error. Parity is checked for each bus
cycle. If an error occurs, the erring bus operation is retried once before reporting a per
manent error.

Fault Tolerance 5-1

/

PRELIMINARY

• Because a Series 60 system has two System Buses, the system can continue to run without
interruption if one bus fails. If a bus fails, the system automatically reconfigures itself to
use just the one remaining bus.

5.2.3 Memory Reliability

These features ensure RAM memory reliability:

• A BiiNTM,s RAM memory uses an Error Correction Code (BCC) for every memory word.
The ECC mechanism is able to correct any single-bit error without loss of data, and detect
any double-bit error.

• If a memory chip fails, a "spare bit" memory chip for that memory array can be switched in
to replace the bad chip.

5.2.4 Disk Reliability

These optional features enhance disk reliability:

• End-to-end checking stores a check-code with each block of data written to disk. When an
I/O unit reads a disk block, it computes a new check-code and compares it to the retrieved
code value. If the retrieved and computed values do not match, then an error is signaled to
the operating system.

• Mirroring replicates a volume set (a logical mass storage device) on different disks. Each
block written to the volume set is written to both disks. Blocks are read from only one
disk, the primary disk. If data is lost on the primary disk, the lost data can still be
recovered from the backup "shadow" disk.

5.3 Fault Checking Systems

5-2

Fault checking detects faults in hardware modules by pairing modules and continuously com
paring the output of the paired modules. The two paired physical modules then function as one
"logical" module. For example, two CPU modules, each consisting of CPU, BXUs, and cache,
can be paired into a single logical CPU (Figure 5-1). All inputs are routed to both CPUs while
their outputs are compared by the BXUs. Any discrepancy in outputs raises a fault and shuts
down the entire logical CPU.

Fault Tolerance

PRELIMINARY

MASTER CHECKER

CACHE

BXU BXU BXU

SYSTEM BUS 0

SYSTEM BUS 1

Figure 5·1. Fault·Checking Computational Subsystem

Fault checking can be used to detect faults in computational subsystems (CPUs and BXUs),
I/O subsystems (CPs and BXUs), and memory subsystems (MCUs). In a fault-checking I/O
subsystem, only the CPs and BXUs are paired and not the device controllers and devices.
End-to-end checking can be used to improve fault coverage for some devices. In a fault
checking memory subsystem, only the MCUs are paired and not the RAM memory array.
Fault detection for the RAM array is already provided via Error Correcting Codes.

5.4 Fault Recovery for Continuous Operation
Quad Modular Redundancy (QMR) enables continuous operation of a properly configured
Series 80 system by pairing fault-checking modules. If one fault-checking module fails, then
the other can take its place. Module replacement is done automatically by the system without
interfering with running applications. Replacement is typically accomplished within 100
microseconds of a fault.

QMR can be used for computational subsystems (CPUs and BXUs), I/O subsystems (CPs and
BXUs), and memory subsystems (MCUs and RAM). A QMRed memory subsystem uses two
fault-checking memory subsystems which each control one RAM array, so there is a primary
and shadow RAM array.

5.5 Complete Fault Coverage
The fault-tolerant capabilities of the BiiNTM system extend to the system monitor EPROM
chips, clocks, system support modules, power supplies, and fans. All of these subsystems can
also be twinned and configured to automatically disable faulty modules and switch to backups
if faults occur.

Fault Tolerance 5-3

PRELIMINARY

5.6 Fast Troubleshooting and Online Repair

5-4

The BiiNTM system comes with a comprehensive suite of hardware diagnostics for identifying
hardware problems. These features help reduce downtime:

• System boards and modules can be replaced online while a system is running and without
interrupting system execution.

• System diagnostics can be executed remotely, by a service technician at another site con
nected by modem to the system being tested.

Fault Tolerance

PREUMINARY

DATA INTEGRITY 6
This chapter explains how BiiNTM systems protect your data from human errors, software er
rors, and unauthorized access. Chapter 5 explains how BiiNTM systems protect your data from
hardware failures.

6.1 The Need for Protection within a Running Program
A modem application program can contain hundreds of software modules. By design, each
module handles a particular task or deals with one particular type of data. In fact, a faulty
module that makes an error in addressing its data-and such errors are common-can corrupt
or destroy any data in the program, even if the destroyed data is managed by another module.
Such bugs have often occurred in even well-tested, widely-distributed, commercial computer
programs, forcing revisions or recalls.

Addressing errors are pernicious because the module that causes an error may be entirely
unrelated to the module that detects the error, if the error is detected at all. Worse, what data
gets corrupted may depend on where data is allocated in memory each time the program runs.

6.2 Object-Based Protection
BiiNTM systems use a unifonn protection scheme that is secure, flexible, efficient, and enforced
by the hardware.

All data and programs in a BiiNTM system are stored in objects. This section introduces objects
and the advantages of an object-oriented architecture.

6.2.1 What is an Object?

An object is a typed, protected segment of memory.

You are probably already familiar with several object types. Files, directories, andprograms
are among the types supported by the system.

Each object can contain from 0 bytes to 4 Gigabytes. The contents of an object are called its
representation.

Objects can be dynamically created, resized, and destroyed.

The number of objects in your system is essentially unlimited. A particular BiiNTM computer
can contain up to 226 (more than 64 million) objects in its active memory at any time. Object
types are themselves objects and applications can create new types as needed.

Data Integrity 6-1

PRELThfiNARY

6.2.2 How are Objects Referenced?

6-2

An access descriptor (AD) is a protected pointer to an object The only way to reference an
object is via an AD.

In most computer systems, a pointer is simply an arbitrary bit pattern used as an address. Such
pointers can be corrupted without detection by the hardware or OS. ADs are specially tagged
memory words that can only be created or modified in carefully controlled ways. Changing an
AD in an unauthorized way invalidates the AD.

An AD contains both addressing infonnation, used to find the object in memory, and also
access rights, that indicate what operations are possible with the AD (Figure 6-1).

Access

Read Rep} Representation
Write Rep

Rights

Use }
Modify Type Rights

Control

Object

Figure 6-1. AD and Object

There are five access rights stored in each AD:

Read rep rights Required to read an object's representation. This right is checked and
enforced by the CPU on every read access.

Write rep rights Required to write an object's representation. This right is checked and
enforced by the CPU on every write access.

Three type rights Required for type-specific operations, such as list rights for listing a direc
tory. These rights can be defined differently and renamed for each type of
object. These rights are checked and enforced by software.

Different users or programs may have ADs with different rights to the same object. Mary may
have an AD with all rights to a directory and John may have an AD with only list rights.

To reference a particular field within an object, a program can use a two-part virtual address:
a 32-bit offset to a byte within the object plus an AD to the object.

Data Integrity

PRELIMINARY

6.2.3 The Inside and Outside Views of An Object

A key concept in object-based protection is a strong distinction between using a type of object
and implementing a type of object For example, almost every program or subsystem running
on a BiiNTM system uses directories. However just one module in the operating system imple
ments directories. Only that module, the type manager for directories, needs the inside view of
directories, with rep rights to access their internal representation. Every other module or
program that uses directories only needs the outside view, and thus holds directory ADs with
appropriate type rights but no rep rights. The outside view of directories is opaque; a directory
is a black box and you cannot see inside. A directory or any other object is defmed entirely by
the operations provided by its type manager.

Hiding implementation details from object users has two very good effects:

• The implementation of an object type can be completely changed. So long as the same
operations are provided with the same behavior, you are guaranteed that no using programs
will fail, because it is not possible for any using program to know or depend on the im
plementation.

• It is not possible for any program module outside the type manager to corrupt the represen
tation of a directory. In a program written as a collection of type manager modules, no
module can corrupt data managed by any other module.

When another module calls an object's type manager to perfonn some operation, it supplies an
AD to the object, an AD without rep rights. The type manager and only the type manager has
a special "key" that allows it to tum on rep rights on ADs to objects that it manages. The type
manager uses the key to tum on rep rights and then perfonns the requested operation.

6.2.4 Switching Address Spaces Within a Program

A BiiNTM program can be partitioned into multiple protected modules, each with its own linear
address space or domain. See Figure 6-2. A linear address space contains up to 232 bytes
mapped onto four objects by the GDP: static data, instructions, stack, and a special object used
only by the OS. Each domain provides access to a particular collection of objects that can be
reached from the objects mapped by its linear address space. Only those program modules
with a "need to know" about a particular object have access to it, and then only have the access
rights that they need. For example, each type manager can be placed in its own domain.

Data Integrity 6-3

Linear Address
Space

PREliMINARY

...... -- -- ---------- 1

...... --- ---

----- _ J

St t· D t a IC a a

1-

Instructions .I

1-

Stack

...,.,,,,,,,,,,,,,.,.,.,,,,,,,,,,,,,.,.,.,,,,,,,,,,,,,,..,.,ot-- == = = = = ~-..."I ____ .."
+-\'t-

,"""",""""""'---'''t-- - _ _ _ Reserved for as

----= ~-,---I ----I

Figure 6-2. Linear Address Space and Domain

Domain

Procedure
Table

When one domain calls a routine in another domain, switching address spaces is done by the
CPU, as part of the call.

BiiNTM programmers can choose either a one-domain (linear) or multiple-domain (structured)
organization for their programs:

• A program that does not use object-based protection can be compiled entirely into one
domain. Because there is a single linear address space for the entire program, linear ad
dresses can be used for pointers.

• A program that uses object-based protection can be compiled into multiple domains. Be
cause linear addresses are only valid within a particular domain, ADs or virtual addresses
are nonnally used for pointers.

The organization of modules into domains can be varied to trade greater protection for greater
execution speed. For example, related type managers can be grouped into the same domain.

6.2.5 Three-Fold Protection

6-4

Each object in a BiiNTM system is protected in three ways, as shown in Figure 6-3:

• Limited access: Only those modules with a "need-to-know" can reference the object

• Type checking: If an object's type is not the proper type required by an operation, then the
operation fails.

• Right checking: If the AD used does not have rights that allow the operation, then the
operation fails.

Data Integrity

o

PRELIMINARY

All objects in a system.

Object accessible to the current
subprogram call.

o

Figure 6-3. Three-Fold Obj ect Protection

6.3 Protecting Objects Stored on Disk
BiiNTM systems are unique in extending "need-to-know" protection to all objects stored on disk,
as well as objects in active memory. However, the mechanism for protecting objects on disk is
somewhat different, for good reasons:

• Within a running program, intennodule protection is achieved by giving different protected
modules different address spaces, each containing only those objects that the module has a
need to reference. On disk, it is both impractical and undesirable to give every user a
different "address space" or different directory structure. In fact, there is a system-wide
hierarchical directory structure shared by all users.

• Within a running program, once an AD is handed out to a module, the AD cannot be
reclaimed; access can't be revoked. This is normally not a problem because a particular
program run is usually brief. ADs and objects on disk are long-lived; it is quite possible
that access to an object may be granted to a user for some time and then need to be revoked.

Both these problems are solved by BiiNTM,S authority-based protection of objects on disk. An
object on disk can reference an authority list that describes exactly who can access the object

Data Integrity 6-5

PRELIMINARY

and with what rights. Each entry in an authority list is an <ID, type rights> pair. An ID
represents either a user or a class of users, such as all users in a particular department. A user
or a running program has an associated ID list containing several IDs, like a key ring with
several keys. Authority list evaluation compares an ID list and authority list to find matching
IDs and compute the resulting type rights.

Authority-based protection solves both problems described above:

• Access is restricted via authority lists rather than by using multiple address spaces.

• Access to an object can be revoked for a user or group by simply changing its authority list.

6.4 Ensuring Data Consistency with Transactions

6-6

Consider a banking program that is transferring funds from your checking account to your
savings account The program subtracts $1,000 from your checking account. Then the system
crashes, before the money is added to your savings account. The bank's accounts are now
inconsistent and funds have been lost Transactions are a mechanism to prevent such inconsis
tency. A transaction groups a related series of operations so that either all the operations
succeed or all are aborted and undone. For example, enclosing a funds transfer in a transaction
ensures that either all the accounts involved are updated or that all the changes are rolled back.

Transactions are provided by the transaction service within the OS. Some notable charac
teristics of transactions are:

• Transactions are normally used to maintain the consistency of objects stored on disk, and
not used for objects in active memory.

• The operations within a transaction appear to happen atomically-all together. Partial
results are not visible to other transactions.

• Transactions protect against all possible reasons that a sequence of operations does not
complete, including system crashes, I/O errors, and program exceptions.

• Transactions can be distributed, involving objects at many nodes in a distributed system.

• Transactions can be nested, with subtransactions within transactions.

• Timeouts can be associated with transactions, ensuring that a transaction is aborted if it
does not complete within a certain time.

• Transactions can involve many different object types, not just fIles.

• Most OS services that manage objects on disk are transaction-oriented, including passive
store, the filing service, and the directory service.

• Developers can create new transaction-oriented type managers.

Data Integrity

PRELIMINARY

DISTRIBUTED COMPUTING 7
Connecting computers with communications lines-networking-is becoming commonplace.
Networked computers can talk with each other, but they do so at "ann's length." Networks can
be difficult to use in several ways:

• Special commands must be used to transfer files or start a computing session on another
system.

• Both people and programs using a network must often know where in the network desired
data or resources are located. If data or resources are moved, then programs and
procedures fail and must be updated. This is burdensome in a network of a dozen systems
and is a major problem in a larger network.

• Administering a computer network can have special problems. For example, if the utility
to add a user is not designed for the networked environment, then adding a new user to 50
computers in a network may require 50 separate actions by the system administrator.

Distributed computing is to networking as day is to night. A distributed computer system
contains many computing nodes, spread out in space and networked together, but the entire
collection of nodes appears to users and programs as a single geographically distributed com
puter system. In a distributed computer system, you don't need to know what node your
program is running at, what node your file is stored at, or what the paths are between the nodes
that you use. Users and programs can use the same operating procedures regardless of whether
they are using a single node or are spread out across multiple nodes. The goal of distributed
computing is to make the network transparent to users, so that networking details become
invisible and unimportant.

7.1 Developing Distributed Applications
Your BiiNTM applications are automatically distributed, without any special implementation
effort, because the operating system services that they use are distributed. Files, program
execution, I/O devices, and users can all be on different nodes.

At the same time, the BiiNTM OS provides many ways to tailor the use of distribution, if
developers choose. Developers can implement new distributed services using the same tech
niques used within the OS. For example, a developer creating an electronic mail application
could implement it as a new distributed service.

7.2 How a Distributed Service Works
Distributed computing is implemented by the BiiNTM as. The OS provides many distinct
services, such as the filing service, tenninal service, and transaction service. Most OS services
are implemented as distributed services that can transparently provide service at any node of a
distributed system.

Distributed Computing 7-1

PREUMINARY

There is a copy, or instance, of a distributed service at each node within the network. The
instances communicate as necessary. For example if a user job accesses a file F, the job calls
the fuing service at its node. If F is stored at another node, the filing service instances at the
two nodes communicate and cooperate to perfonn the needed access (Figure 7-1).

Filing
Service Request

---- Reply

Figure 7-1. Communication and Cooperation Between Filing Service
Instances

Communication between instances of a distributed service is independent of both the under
lying network protocols and the paths that messages take through the network. Such com
munication uses a high-level transport protocol that hides network details.

7.3 Distributed Disk Storage

7-2

Perhaps the hardest and most important problem for designers of distributed systems is how to
provide a distributed filing system. The problems to solve include:

Naming and Reference

Efficiency

Concurrency

Consistency

To be independent of the underlying network, naming objects or otherwise
pointing to them must be done without using network path or location
infonnation.

Because there is transparent access to objects stored at other nodes-ofien
without the explicit knowledge of your application-it is important that
access be efficient and not unduly slow down applications.

Because a distributed system may have more simultaneous users and jobs
than any single node, it must gracefully handle concurrent access to objects
by different jobs.

If a distributed system allows multiple versions of an object to exist simul
taneously at different nodes, then there must be mechanisms for recon
ciling changes and ensuring overall consistency.

Distributed Computing

PRELIMINARY

A BiiNTM system's distributed filing system is called passive store and provides solutions for
all these problems. In many ways, passive store is the glue that holds together a distributed
BiiNTM system (Figure 7-2).

Figure 7-2. Passive Store is a Distributed Object Filing Service that
Unifies All Nodes in a BiiNTM System.

7.3.1 General Characteristics of Passive Store
Passive store has these general characteristics:

• Arbitrary objects can be stored on disk. (Objects are described in Chapter 6).

• Objects are retrieved from disk or activated on demand, transparent to applications.

• Objects are stored on disk (passivated or updated) on command. Updating can be con
trolled either by applications or by a program module that manages a particular object type.

• An object can have multiple active versions simultaneously, in different jobs. An object
can have only one passive version.

• Conventional files and directories are two types of objects that can be stored on disks. Not
just files but any kind of object can be stored in directories.

• How passive store behaves can be customized for each type of object.

7.3.2 Naming and Reference for Passive Objects

Passive objects can be referenced in two ways, with familiar pathnames or with object pointers
called access descriptors (ADs).

Distributed Computing 7-3

PREUMINARY

Pathnames are multi-level readable names that identify a stored object. For example, the full
pathname of a user's home directory might be
I I Ispirit_motors/sales/home/dagnyt. Several forms ofpathnames are sup
ported. For example, if Dagny is in her home directory, then the relative pathname widget
can be used as shorthand for the full pathname .
I I I spiri t_motors I sales/homel dagnyt/widget. The full pathname contains a
logical naming domain, I I I spiri t _motors I sales, typically corresponding to a depart
ment within a company. Changes in the networks used by the department or the company
don't invalidate such pathnames. The as clearinghouse service maintains a distributed map of
where to find nodes, users, and volume sets used by full pathnames.

When a passive object is created, it is given a permanent unique identifier. Part of the iden
tifier identifies the object's volume set, the "logical disk" that contains the object. The object's
unique identifier remains valid even if its volume set is moved to another disk, to another node,
or to any other BiiNTM system at any time or place. An AD (pointer) to a passive object
references the object by its unique identifier.

When an AD is loaded from disk into a node's virtual memory, it is transfonned to a cor
responding active AD. The reverse transformation takes place when an AD is written to disk.
Applications only need to use one kind of AD, the hardware-supported active form. The as
transparently handles the mapping between active and passive ADs.

7.3.3 Efficient Access to Passive Store

7-4

Consider two extremes in accessing an object at another node:

1. An application wants to write a new value for a single byte in the object and will not use
the object again.

2. An application repeatedly reads large amounts of data from an object and uses the object as
long as it is executing.

The most efficient implementation of the first operation simply sends a message to the node
where the object is stored, and perfonns the operation at that -node. This avoids the overhead
of copying the entire object over the network and then back again for a small one-time change.
The most efficient implementation of the second operation activates the object over the net
work and creates an active version for the application. The application can then use that active
version repeatedly without further network traffic. Passive store supports both sorts of access
models:

single activation Operations go to the object, which is only activated on its home node.
Network: messages are sent to and from the home node for each operation
requested from another node. See Figure 7-3.

multiple activation The object goes to operations. The object is activated over the network for
each remote job that uses it. When ajob updates the object's passive
version, the updated version is copied back over the network to its home
node. See Figure 7-4.

The choice of an activation model is concealed within the implementation of a particular dis
tributed service, and is not visible to applications.

Distributed Computing

Application
Job

PREUMINARY

Passive
Version

Reply

Application
Job

Figure 7-3. Single Activation Access to a Passive Object

Passive
Version

D

Figure 7-4. Multiple Activation Access to A Passive Object

7.3.4 Handling Concurrent Access and Ensuring Consistency of Passive
Objects

In the single-activation model, an object is only activated at its home node in a "home job."
That job can act as a server and maintain a queue of requests, servicing one request at a time
for a particular object. This ensures that the object is not changed or used in inconsistent ways
by two different clients simultaneously.

In the multiple-activation model, several applications may simultaneously have active versions
of an object, and may make changes that are inconsistent. Two techniques for handling con
current access are supported by the OS:

• A job using an object can reserve the object for its exclusive use, preventing other jobs
from using the object until it is released.

Distributed Computing 7-5

PREUMINARY

• If one job updates an object's passive version, the OS marks any active versions in other
jobs as out-of-date. If one of those other jobs attempts an update, the update is rejected.
The other job can then "reset" its active version and redo whatever change it made to the
object This optimistic approach to concurrency and consistency does not block other jobs
and incurs no overhead except when updates clash.

The service implementer chooses an approach to handling concurrent access and ensuring
consistency. The choice is not visible to users of the service. Whatever choices are made, the
OS never allows a passive object to be updated from an out-of-date active version.

7.4 Distributed Program Execution
Users can take advantage of distribution to balance processing loads between hardware nodes
on a Local Area Network: (LAN). You may be logged into node A but can easily request that a
job run on a particular node. For example, if a user knows that a major job will make heavy
use of files on a particular node, then the user might request that node.

Because BiiNTM systems are distributed, the OS distinguishes between jobs and processes.
Both jobs and processes are units of program execution. A job is a virtual computer; each job
has its own address space, memory resource, and processing resource. Just as a BiiNTM com
puter can contain multiple processors, a job can contain multiple processes running concur
rentlyand sharing data and resources. Jobs do not share memory with each other and interact
"at anns length." Jobs interact in the same way whether they are at the same node or different
nodes; thus jobs are the units of distributed execution. All processes within a job run at one
node and can share memory. Processes in a job can interact quickly and efficiently using
shared data structures.

7.5 Distributed System Administration

7-6

The BiiNTM system provides administrative utilities so that a central system administrator can
manage an entire distributed system with hundreds or thousands of nodes:

• Add a user or manage user infonnation for the entire system.

• Control access to stored data throughout the entire system.

• Set resource limits and control resource accounting for the entire system.

• Manage spool queues and I/O devices for the entire system.

• Manage backups for the entire system.

• Manage the Clearinghouse that locates nodes, users, and volume sets within the system.

Because a distributed system can span many computers, BiiNTM system administration supports
decentralized administration, in which multiple administrators each administer a local part of a
system. For example:

• A particular user can be made the administrator of a particular volume set.

• A particular user can be given control rights for a particular spool queue.

• An administrator can be assigned for a particular organization or naming domain in the
Clearinghouse, representing a particular division or department within the company.

Distributed Computing

PREUMINARY

7.6 Support for Multiple Protocols
The BiiNTM system initially supports these industry-standard network protocols:

• Ethernet Local Area Network (LAN) or IEEE 802.2 and 802.3 LAN (up to 10 Mbit/sec)

• HDLC, RS-422 (up to 1 Mbit/sec)

• X.2S standard for packet-switched wide area networks (speed depending on the underlying
network).

Future product offerings may add support for additional protocols.

The BiiNTM architecture for network communication and for distributed computing adheres to
the International Standard Organization's Reference Model of Open Systems Interconnection.

7.7 Flexible Network Topologies
A single BiiNTM distributed system can use several networking protocols. For example, LANs
can be used within each department at a company site, HDLC lines can interconnect the LANs
at the site, and X.2S connections can be used to interconnect the site and other sites world
wide.

7.8 Connecting to Non-BiiN™ Systems

Because BiiNTM systems support industry-standard protocols, data can easily be transferred to
and from non-BiiN™ systems. Two products ease such transfers:

• The File Transfer utility is an open network application that supports standardized file
exchange between BiiNTM and non-BiiN™ systems. The utility follows the ISO standard on
File Transfer, Access, and Management (Ff AM).

• The COBOL High-level-language Communication Facility (HCF) implements and extends
a subset of the COBOL facilities for data exchange between programs communicating via a
network.

Distributed Computing 7-7

PRELIMINARY

7-8 Distributed Computing

A

Access descriptor 6-2
Access rights 6-2
Activation model 7-4
AD 6-2
Ada 3-2
Administrator utilities 3-2
Asynchronous communication 2-4
Authority list 6-5
Authority list evaluation 6-6

B

Basic fault tolerance 5-1
BiiN/OS 3-5
BiiNlUX 1-1.3-1.3-4
Bus 2-3.4-2.5-1
Bus Exchang~ Unit 2-2. 2-4. 4-1
BXU 2-2.2-4.4-1

c
C 3-2.3-5
Caching 4-1
Central Processing Unit 2-2.2-3.4-1.5-1
Channel Processor 2-2. 4-2
Chips 2-2
Clearinghouse 7-4
CLEX 3-1
COBOL 3-3
Command interpreter 3-1.3-4
Command language 3-1. 3-4
Command Language Executive 3-1
Concurrent execution 3-2
Concurrent programming 3-5
Configuration management 3-4
Continuous operation 1-2.5-1.5-3
CP 2-2.4-2
CPU 2-2.2-3.4-1.5-1
Current loop interface 2-4

D

Data integrity 1-2. 6-1
Data protection 1-2. 6-1
Database 3-4
Database management system 3-4
DBMS 3-4
Debugger 3-3
Diagnostics 5-4
Disk 5-2
Disk mirroring 5-2
Dispatch port 4-3
Distributed computing 1-3.3-5.7-1
Distributed filing system 7-2
Distributed services 7-1
Domain 6-3
DRAM 2-4, 5-2

Index

PREUMINARY

E

ECC 2-2. 2-4. 5-2
Editor 3-3.3-5
Emacs 3-3
End-to-end check 5-2
Error Correction Code 2-2. 2-4. 5-2
Ethemet 2-4

F

Fault checking 1-2.5-1.5-2
Fault coverage 5-3
Fault recovery 5-3
Fault tolerance 1-2.5-1
Fault tolerance levels 5-1
Fde transfer 7-7
Floating-point arithmetic 3-3
Fonn editor 3-4
Fonns 3-4
FORTRAN 3-3

G

Goals 1-1
Graphics 3-5

H

Hardware 2-1
Hardware architecture 2-1
HDLe 2-4
Help facility 3-1
High-level Data Link Control 2-4

I

I/O 2-4.4-2
I/O subsystem 2-4
10
mEE 802.2/3 2-4
Intelligent Peripheral Interface 2-4
IP1 2-4

K

L

Librarian 3-3
Linear address space 6-3
Linker 3-3
Local area networks 2-4

INDEX

1

M

MCU 2-2
Memory 2-4, S-2
Memory Control Unit 2-2
Mirrorin, S-2
MLisp 3-3
Modem interface 2-4
Multiple activation 7-4
Multiprocessing 4-2, 3-S

N

Networks 1-3, 7-1

o
Object 6-1
Object type 6-1
Object-based protection 6-1
Online repair S-4
Operatin, system 3-S
OS 3-S

p

Pascal 3-3
Passive store 7-2, 7-3
Patbnames 7-3
Performance 1-1,4-1
Performance range 1-1
Program libraries 3-3
Programming languages 1-1,3-2
Programming tools 3-3, 3-S
Project tracking 3-4

Q

QMR S-3
Quad Modular Redundancy S-3

R

RAM 2-4,S-2
Real-time programming 3-S
Rccord-oricnted applications 3-S
Rep rights 6-2
Report editor 3-4
Reports 3-4
Representation rights 6-2
Rights 6-2
RS-232-C 2-4
RS-422 2-4
Runtime commands 3-2

2

PREUMINARY

s
SCSI 2-4
SOLC 2-4
Serial communication 2-4
Series 60 2-1,2-3
Single activation 7-4
Small Computet Systems Interface 2-4
SMS 3-4
Software 3-1
Software development 1-1
Software Management System 3-4
Spare bit S-2
SQL 3-3,3-4
Stable store 4-2
Standards 1-3
Structured Query Language 3-3, 3-4
Surface mount 2-2
Synchronous communication 2-4
Synchronous Data Link Control 2-4
System administrator utilities 3-2
System Bus 2-3,4-2, S-l
System ,oats 1-1

T
Taaaed memory 6-2
Text edilor 3-3, 3-S
Text processing 3-S
Transaction processin, 3-S
Transactions 4-2, 6-6
Transparent multiproc:essin, 4-2
Troubleshootin, S-4
TrY current loop interface 2-4
Type manager 6-3
Type rights 6-2

u
Unique identifier 7-4
UNIX 1-1,3-1,3-4
User utilities 3-2, 3-4
Utilities 3-2, 3-4

v
Vol1 2-4
V.22 2-4
V.22bis 2-4
V.23 2-4
V.2Sbis 2-4
V.26 2-4
V.26bis 2-4
Vol6ter 2-4
Vol7 2-4
Vol7bis 2-4
V.27ter 2-4
V.29 2-4
V.32 2-4
Version control 3-4,3-5
Virtual address 6-2
VLSI chips 2-2
Volume set mirroring 5-2

Index

x
X Window System 3-5
X.21 2-4
X.24 2-4

Index

PRELIMINARY

3

PRELIMINARY

4 Index

