
EP 0 426 184 A2

APPENDIX 1

E x t e n d e d I n d u s t r y S t a n d a r d A r c h i t e c t u r e
(EISA) S p e c i f i c a t i o n 3 . 1

29

EP 0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPK SERVICES, INC.

TABLE OF CONTENTS

Foreword Lx
Notational Conventions x
Units of Measure xi
1. EISA Overview 1

1.1 Compatibility with ISA 1
1.2 Memory Capacity 1
1.3 Synchronous Data Transfer Protocol 2
1.4 . Enhanced DMA Functions 2

1.4.1 32-bit Address Support for DMA Transfers 2
1.4.2 8-, 16- or 32-bit Data Transfers from DMA Devices 3

1.5 Bus Master Capabilities 4
1.6 Data Size Translation 4
1.7 Bus Arbitration 4
1.8 Edge/Level Triggered Interrupts 4
1.9 Automatic System Configuration 5
1.10 EISA Feature/Benefit Summary 6

2. EISA Bus Specification 8
2.1 Signal Descriptions 8

2.1.1 Address and Data Bus Signal Group 8
2.1.2 Data Transfer Control Signal Group 1 1
2.1.3 Bus Arbitration Signal Group 16
2.1.4 Utility Signal Group 18
2.1.5 Summary of Signals 19
2.1.6 Signal Usage by System, Masters and Slaves 19

2.2 ISA Cycles 23
2.2.1 CPU CYCLES 23
2.2.2 MEMORY SLAVES 25
2.2.3 I/O SLAVES 25
2J2.4 BUS MASTERS 25

2.3 ISA CPU and Bus Master Cycles 27
23.1 8-bit Memory Cycles 27
2.3.2 8-bit I/O Cycles - 31
2.3.3 16-bit Memory Cycles 35
2.3.4 16-bit I/O Cycles 39

2.4 EISA CPU and Bus Master Cycles 42
2.4.1 Standard Memory and I/O Cycles 42
2.4.2 COMPRESSED Cycles 48
2.4.3 Burst Cycles ' 50

25 DMA Cycles 55
2.5.1 ISA Compatible DMA Cycles: ISA Compatible 55
2.5.2 Type "A" DMA Cycles 63
2.53 Type "B" DMA Cycles 68
2.5.4 Burst DMA (Type "C*) Cycles 73

iO

EP 0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCH I TECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

2.6 Data Bus Translations 79
2.6.1 32-bit EISA Bus Master to 16-bit EISA Slave Transactions 79
2.6.2 16-bit EISA Bus Master to 32-bit EISA Slave Transactions 83
2.6.3 32-bit EISA Bus Master to 16-bit ISA Slave Transactions 83
2.6.4 32-/ 16-bit EISA Bus Master to 8-bit ISA Slave Transactions 85
2.6.5 16-bit ISA Bus Master to EISA Slaves Transactions 86
2.6.6 32-bit DMA Device to 16-bit EISA Memory Transactions 92
2.6.7 16-bit DMA Device to 32-bit EISA Memory Transactions 93
2.6.8 8-bit DMA Device to 16- or 32-bit EISA Memory Transactions 93
2.6.9 16- or 32-bit DMA Device to 8- or 16-bit ISA Memory

Transactions 94
2.7 Locked Cycles 95
2.8 EISA Devices 97

2.8.1 Memory Slaves 97
2.8.2 I/O Slaves 103
2.8.3 Bus Masters 104
2.8.4 Burst Bus Masters 110
2.8.5 Downshift Burst Bus Masters 1 13
2.8.6 DMA Devices 115

2.8.6.1 Non-Burst EISA DMA Devices 119
2.8.6.2 Burst EISA DMA Devices 122
2.8.6.3 Misaligned DMA Transfers 131

2.8.7 System Board 131
2.8.7.1 Main Memory Access 131
2.8.7.2 Back-to-Back I/O Delay 132
2.8.73 Slot-specific I/O 132
2.8.7.4 I/O Address Decoding 134

2.9 Bus Arbitration 135
2.9.1 System Arbitration Priorities 139
2.9.2 Subsystem Priorities and Latencies 142
2.93 EISA Bus Master Arbitration Cycle Descriptions 147

2.10 Memory Refresh 149
2.11 Electrical Specifications 151

2.11.1 Power Consumption 151
2.11.2 DC Characteristics 151
2.11.3 Signal Routing and Capacitive Loading Requirements 154
2.11.4 AC Characteristics 155

2.11.4.1 ISA-compatible Tirning Parameters 156
2.11.4.2 EISA, DMA, and Refresh Timing Parameters 181

2.12 Mechanical Specifications 213
2.13 EISA Connector and Expansion Board Description 213

2.13.1 Physical Characteristics 214
2.13.2 Connector Specifications 215
2.13.3 Pin Description 226

System Board I/O Control Functions 228
3.1 DMA Description 235

3.1.1 DMA Controller Overview 235
3.1.2 DMA Controller Description 236

3.1.2.1 DMA Master Condition Operation 236
3.1.2.2 DMA Slave Condition Operation 237

31

EP 0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

3.1.3 DMA Transfer Modes 237
3.1.3.1 Single Transfer Mode 237
3.1.3.2 Block Transfer Mode 237
3.1.3.3 Demand Transfer Mode 23S
3.1.3.4 Cascade Mode 239

3.1.4 Transfer Types 239
3.1.5 Auto Initialize 239
3.1.6 Buffer Chaining 240
3.1.7 Ring Buffers 241
3.1.8 Software Commands 243
3.1.9 DMA Controller Register Descriptions 243

3.1.9.1 DMA Extended Mode Register 243
3.1.9.2 Chaining Mode Register 245
3.1.93 Chaining Mode Status Register 247
3.1.9.4 Channel Interrupt Status Register 247
3.1.9.5 Address and Word Count Registers 248

3.1.9.5.1 Base Word Count Register 248
3.1.9.5.2 Current Word Count Register 249
3.1.9.5.3 Base Address Register 250
3.1.9.5.4 Current Address Register 251
3.1.9.5.5 Address and Word Count Programming 252

3.1.9.6 DMA Command Register 256
3.1.9.7 Mode Register 257
3.1.9.8 Request Register 258
3.1.9.9 Mask Registers 258
3.1.9.10 DMA Status Register 260

3.1.10 Supported DMA Transfer Combinations 261
3.2 Interrupt Controller 265

3.2.1 Interrupt Controller I/O Address Map 265
3.2.2 Interrupt Sequence 265
3.23 Interrupt Controller Initialization 266
3.2.4 Initialization and Control Registers 268

3.2.4.1 Initialization Command Word 1 (ICW1) 268
3.2.4.2 Initialization Command Word 2 (ICW2) 269
3.2.43 Initialization Command Word 3 (ICW3) 270
3.2.4.4 Initialization Command Word 4 (ICW4) 271
3.2.4.5 Interrupt Mask Register (OCW1) 27 1
3.2.4.6 Operation Control Word 2 (OCW2) 272
3.2.4.7 Operation Control Word 3 (OCW3) 274
3.2.4.8 Edge/Level Control Register (ELCR) 275
3.2.4.9 Interrupt Request Register (IRR) 276
3.2.4.10 In-Service Register (ISR) 276

3.2.5 End-of-Interrupt 277
3.2.5.1 End of Interrupt (EOI) Command 277
3.2.5.2 Automatic End of Interrupt (AEOI) 277

3.2.6 Interrupt Controller Modes 277
3.2.6.1 Fully Nested Mode 277
3.2.6.2 Special Fully Nested Mode 278
3.2.6.3 Fixed Priority Mode 278
3.2.6.4 Rotating Priority Mode 278
3.2.6.5 Polled Mode 279
3.2.6.6 Special Mask Mode • 280

32

EP 0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

3.3 Non-Maskable Interrupts (NMI) 281
3.4 Interval Timers 287

3.4.1 Programming the Interval Timers 289
3.4.1.1 Interval Timer Control Word Format 289
3.4.1.2 Counter Operating Modes 290
3.4.13 Counter Initial Count Value 291

3.4.2 Monitoring Timer Status 291
3.42.1 Counter Read Operation 291
3.4.2.2 Counter Latch Command 292
3.4.23 Counter Read-Back Command 292

4. EISA System Configuration 294
4.1 Devices Supported by Automatic Configuration 295

4.1.1 Expansion Boards 295
4.1.1.1 EISA Expansion Boards 295
4.1.1.2 ISA Expansion Boards 295

4.1.2 System Board 295
4. 12. 1 System Board Peripherals That Use

Slot-Specific I/O Space 296
4.1.2.2 System Board Peripherals That Use System

Board I/O Space 296
4.13 Software Drivers That Require System Resources 296

4.2 Configuration Utility 297
43 Configuration Files 298

4.3.1 Configuration File Extensions 298
43.2 Expansion Board Identifier (Product ED) 299
4.3.3 I/O Port Initialization Information 299
43.4 System Resource Requests 299

4.4 Configuration File Filenames 300
4.5 The Configuration Procedure 301

4.5.1 Ckrifiguration File Syntax 301
4.52 Symbol Conventions 302
4.53 Numerical Value Conventions 303
43.4 Keyword and Field Specification Conventions 303

4.6 Configuration File Format 305
4.6.1 Board Identification Block 305
4.6.2 Initialization Information Block 3 1 1

4.6.2.1 I/O Port Initialization Statement Block 311
4.6.2.2 Switch Configuration Statement Block 313
4.6.23 Jumper Configuration Statement Block 317
4.6.2.4 SOFTWARE(Iiutialization) Statement Block

(Optional) 321
4.63 FUNCTION Statement Block 322

4.63.1 CHOICE Statement Block 325
4.63.2 SUBCHOICE Statement Block 327
4.63.3 GROUP Statement Block 331

4.6.4 Resource Description Block 334
4.6.4.1 DMA Channel Description Block 335
4.6.42 Interrupt Description Block 338
4.6.43 I/O Port Description Block 339
4.6.4.4 Memory Description Block 34 1
4.6.4.5 INfT Statements 345

13

EP 0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF DCPR SERVICES, INC.

4.6.5 Resource Group 348
4.6.5.1 LINK Groups 348
4.6.5.2 COMBINE Groups 349
4.6.5.3 Free Groups 351

4.6.6 P O R T V A R Q Variable 352
4.7 System Board Configuration File 353

4.7.1 Board Identification Block 353
4.7.2 System Description Block 353
4.7.3 SLOT Statement Block (Optional) 355

4.8 EISA System ROM Operations 356
4.8.1 EISA System ROM BIOS Routine Calls 356

4.8.1.1 Identify System Board Type 357
4.8.1.2 Read Slot Configuration Information, INT 15h,

AH=D8h, AL=00h (or 80h) 358
4.8.13 Read Function Configuration Information,

I N T 1 5 h , A H = 0 D 8 h , A L = 0 1 h (o r 8 1 h) 359
4.8.1.4 Clear Nonvolatile Memory, INT 15h, AH = D8h,

AL=02h (or 82h) 368
4.8. l i Write Nonvolatile Memory INT 15h, AH = D8h,

AL=03h(o r83h) 368
4.8.2 Initializing Nonvolatile Memory 379
4.83 Power-up Initialization of EISA Systems 379
4.8.4 Slot Initialization Sequence 380
4.8.5 Error Handling During Slot Initialization 382
4.8.6 Noncacheable Memory Map Initialization 383
4.8.7 Writable Memory Map Initialization 383

4.9 EISA System I/O Address Map 384
4.9.1 Expansion Board Address Decoding 385
4.9.2 Embedded Slot Address Decoding 387
4.93 System Board Address Decoding 387

4.10 EISA Product Identifier (ED) 389
4.10.1 EISA System Board ID 390
4.10.2 EISA Expansion Board Product ID 392
4.10.3 EISA Embedded Devices 394

4.11 Expansion Board Control Bits 395
4.12 System Software Use of Configuration Information 397

4.12.1 Slot Search by Product Independent Device Driver 397
4.12.2 Slot Search by a Product Dependent Device Driver 398
4. 123 Device Driver Initialization for EISA Expansion Boards 399

4.13 Creating TYPEs and SUBTYPES for Devices 400
4.13.1 TYPE Strings 400
4.13.2 SUBTYPE Strings 401
4.13.3 Standard TYPE Table 402

4.14 Configuration Example 404
4.14.1 Configuration File 404
4.14.2 Read Slot Configuration Information BIOS Routine 40S
4.14.3 Read Function Configuration Information BIOS Routine Call 408
4.14.4 Write Nonvolatile Memory BIOS Routine CALL 416

5. Glossary 420

34

ir 0 426 184 A2

EXTENDED INDUSTRY STANDARD AK'JHI I I UKt.
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

L I S T OF F I G U R E S
- igu re P a g e

1 CHRDY Sample Window
2 Memory Access to 8-bit ISA Slave - Standard Cycle (6 BCLK) 28
3 Memory Access to 8-bit ISA Slave (7 BCLK) 29
4 Memory Access to 8-bit ISA Slave (3 BCLK) 30
5 I /O Access to 8-bit ISA Slave - Standard Cycle (6 BCLK) 32
5 I/O Access to 8-bit ISA Slave (7 BCLK) 33
7 I/O Access to 8-bit ISA Slave (3 BCLK) 34
3 Memory Access to 16-bit ISA Slave - Standard Cycle (3 BCLK) 36
? Memory Access to 16-bit ISA Slave (6 BCLK) 37
10 Memory Access to 16-bit ISA Slave (2 BCLK) 38
11 I/O Access to 16-bit ISA Slave - Standard Cycle (3 BCLK) 40
12 I/O Access to 16-bit ISA Slave (6 BCLK) 4 1
13 32-bit Master to 32-bit Slave Memory Read Accesses 45
14 32-bit Master to 32-bit Slave Memory Write Accesses 46
15 Access to EISA Slave - 3 BCLK and Standard (2 BCLK) Cycles 47
16 Access to EISA Slave - COMPRESSED Cycle (1.5 BCLK) 49
17 32-bit Master to 32-bit Slave Burst Read Transfers 52
18 32-bit Master to 32-bit Slave Burst Write Transfers 53
19 Access to EISA Slave - Burst Cycles (With and Without Wait States) 54
20 32-bit DMA Read Transfer from 32-bit Memory - Type "A," "B,"

and Burst Cycles (No Wait States) 57
2 1 32-bit DMA Read Transfer from 32-bit Memory - Compatible Cycle

(No Wait States) 58
22 32-bit DMA Write Transfer to 32-bit Memory - Type "A," "B,"

and Burst Cycles (No Wait States) 59
23 32-bit DMA write Transfer to 32-bit Memory - Compatible Cycle

(No Wait States) 60
24 DMA Transfer from Memory Without Conversion - Compatible Cycle:

Demand Read 61
25 DMA Transfer to Memory Without Conversion - Compatible Cycle:

Demand Write 62
26 DMA Transfer from Memory Without Conversion - Type "A" Cycle:

Demand Read 64
27 32-bit DMA Transfer from 16-bit EISA Memory with Conversion

- Type "A" Cycle: Read 65
28 DMA Transfer to Memory Without Conversion - Type "A" Cycle

Demand: Write 66
29 32-bit DMA Transfer to 16-bit EISA Memory with Conversion

- Type "A" Cycle: Write 67
30 DMA Transfer from Memory Without Conversion - Type "B" Cycle

Demand Read 69
3 1 32-bit DMA Transfer from 16-bit EISA Memory with Conversion

- Type "B" Cycle: Read 70
32 DMA Transfer to Memory Without Conversion - Type "B" Cycle:

Demand Write 71
33 32-bit DMA Transfer to 16-bit EISA Memory with Conversion

- Type "B" Cycle Write 72

35

EP 0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCHIT^t i UKL
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

. 1 S T OF F I G U R E S (c o n t i n u e d)

r i g u r e ^ a g e

34 DMA Transfer from Memory Without Conversion - Burst D M A
Cycle: Demand Read 75

35 32-bit DMA Transfer from 16-bit EISA Memory with Conversion -
Burst DMA Cycle: Read 76

36 DMA Transfer to Memory Without Conversion - Burst DMA Cycle:
Demand Write 77

37 32-bit DMA Transfer to 16-bit EISA Memory with Conversion -
Burst DMA Cycle: Write 78

38 32-bit EISA Master to 16-bit EISA Slave Dword Access 82
39 16-bit ISA Master Read from EISA Slave 88
40 16-bit ISA Master Write to EISA Slave 89
41 16-bit ISA Master I/O Read from 16- or 32-bit EISA I/O Slave 90
42 16-bit ISA Master I/O Write to 16- or 32-bit EISA I/O Slave 91
43 LOCK Tuning Example 96
44 Memory Slave with Wait States 99
45 BURST EISA Memory Slave with Wait States 100
46 EISA Memory Slave (Burst Cycle) Page Boundary Condition 101
47 EISA Memory Slave (Standard Cycle) NOWS* Asserted 102
48 EISA Bus Master Write Cycle with Data Translation 106
49 EISA Bus Master Preempt During Normal Cycle 107
50 Bus Transfer from Master Control to Float - EISA Cycle

(with Wait States) 108
5 1 Bus Transfer from EISA Control to Float - Translated ISA Cycle 109
52 EISA Bus Master Preempt During Burst Cycle 1 1 1
53 Bus Transfer from Master Control to Float - EISA Burst Cycle 1 12
54 "Downshift" Bus Master Operations 114
55 EISA DMA Device Compatible Write Transfer 1 1 6
56 Type "B" EISA DMA Device (Block Memory Write) Transfer

Interrupted by DAK* < x > 117
57 BURST EISA DMA Device: Demand Memory Write Negation

of DAK* <x> and DRQ<x> in Same Cycle 118
58 Type "B" EISA DMA Device (Demand Memory Read) 120
59 Type "B" EISA DMA Device (Block Memory Write) T-C Asserted

by DMA Device 121
60 Burst EISA DMA Device (Demand Memory Write) Wait States

on Last Cycle 123
61 Burst EISA DMA Device (Block Memory Read) Page Boundary

Condition 124
62 Burst EISA DMA Device (Demand Memory Write) 126
63 Burst EISA DMA Device (Memory Read) Transfer Terminated

by Assertion of T-C 127
64 Burst EISA DMA Device T-C Asserted by DMA Device 128
65 Burst EISA DMA Device (Demand Memory Write) DRQ <x>

Negated at Wait State 129
66 Burst EISA DMA Device (Block Memory Read) Preemption

by Negation of DAK* <x> 130
67 Bus Master Starting a Normal Cycle Without a Bus Timeout 136
6S Bus Masterf: Continuing a Burst Cycle Without a Bus Timeout 136

36

:P 0 426 184 A2

EXTENDED INDUSTRY STANDARD AKCHI1 LCI U K t
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

L I S T OF F I G U R E S (c o n t i n u e d)

f i g u r e ^ a 9 e

i9 Bus Master Continuing a Downshift Burst Cycle Without a bus
Timeout 137

70 Centralized Arbitration }38
71 Fbced DMA Priority Arbitration Sequence 140
72 Rotating DMA Priority Arbitration Sequence 141
73 Bus Arbitration Between Two Bus Masters 148
74 Refresh Cycles (Standard and One Wait State) 150
75 ISA Bus Timing, System Timing A t
76 ISA Bus Timing, Bus Master Cycles J68
77 ISA Bus Timing, CPU Cycles (Device Perspective) J «
78 16- or 32-bit EISA Master and System Timing 183
79 16- or 32-bit EISA Master Assembly /Disassembly Timing 184
30 System Tirning (Assembly Cycles) 190
31 16- or 32-bit EISA Slave Tiining 19 1
32 System Tiining (COMPRESSED Cycles) 194
33 16- or 32-bit EISA COMPRESSED Cycle - Slave Timing 196
34 Refresh Cycle - Slave Timing 198
35 16- or 32-bit EISA Master Timing, Burst 200
36 16- or 32-bit EISA Slave Timing, Burst 202
S7 System DMA Tuning 204
38 DMA Device Timing Compatible, Type "A", and Type "B"

Memory Read Cycles 2(b
89 DMA Device Tiining Compatible, Type "A", and Type "B"

Memory Write Cycles 2°6
90 DMA Device Timing Burst Memory Read Cycle 210
9 1 DMA Device Timing Burst Memory Write Cycle 211
92 EISA Connector and Card-edges 216
93 EISA Expansion Board Dimensions 217
94 EISA Expansion Board Card-edge Detail 218
95 16-bit ISA Expansion Board Dimensions 219
96 16-bit ISA Expansion Board Card-edge Detail 220
97 8-bit ISA Expansion Board Dimensions 221
98 8-bit ISA Expansion Board Card-edge Detail 222
99 EISA Expansion Board Mounting Bracket 223
100 EISA Connector Dimensions 224
101 EISA Connector System Board Drill Pattern 225
102 EISA Pinout 22(
103 Power-Up Slot Initialization j o i k j b i

EP 0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

F o r e w o r d

Since its inception seven years ago, the growth of the personal computer market
has been driven by the emergence of a de-facto industry standard. The industry
standard started with the original IBM PC system architecture and has evolved to the
80386 architecture in use today.

The industry-standard architecture (ISA) provides enormous benefits to the PC
user community. It is a stable platform for software and hardware development that
gives customers the largest selection of products in the history of computing. ISA
compatibility across a wide range of products enables users to adopt new technologies
quickly and efficiently, while protecting their investment in expansion boards and
software. Availability of a variety of ISA compatible products has freed PC users from
a single-vendor, proprietary architecture ana given them real freedom of choice to
select the best computers, software and peripherals to meet their needs. Over the last
seven years, ISA has evolved to a customer-controlled standard rather than a vendor-
controlled s tandard .

Between 10 and 15 million personal computers based on the industry standard
architecture are in use today. There are tens of thousands of software products and
thousands of expansion boards and peripherals available for ISA compatible PCs.
Hundreds of personal computer models are available from dozens of manufacturers
that take advantage of the huge base of hardware and software. U.S. business has
invested nearly $100 billion in ISA personal computers, software, expansion boards,
peripherals and user training.

A steady progression of advances has resulted in performance and function
enhancements to the industry standard, while maintaining full compatibility with PC
hardware and software products. Microprocessors progressed from the 8088 and 8086
to the 80286 and then to the 80386. DOS has evolved to support over a gigabyte of
fixed disk storage space and expanded memory manager software has been developed
to allow DOS applications access to expanded memory. MS-Windows, OS/2, UNIX,
and XENLX and now provide multi-tasking capabilities on the 80286. Expansion bus
I/O and memory addressing were increased with the addition of a 16-bit data bus and a
24-bit (16 megabyte) address bus. Each advance was carefully engineered for full
compatibility with industry standard hardware and software.

Upon this firmly established foundation, the industry standard will continue to
strengthen and evolve. The future will bring even faster 80386 microprocessors and
eventually a compatible 80486 microprocessor. It will bring new, compatible versions of
operating systems, including advanced versions of DOS and an 80386 version of OS/2.

The combination of the 386 architecture and advanced operating systems will
stimulate the development of a new generation of PC applications traditionally
associated with departmental computer systems: like advanced networking,
cornrnunications • gateways, database access by multiple users and transaction
processing. These multi-user applications require the transfer of large volumes of da ta
and will create the need to extend the ISA data and address bus to 32-bits.

38

@P 0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCHITEv.1 UKL
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

This EISA specification is a joint effort by computer industry leaders to develop
he 32-bit extension for industry standard computers. It defines a high-performance,
jpen-architecture bus available to PC manufacturers, expansion board vendors,
;oftware developers and semiconductor suppliers without financial or technical
xmstraints.

Rotational Conventions

The following notational conventions are used throughout this specification.

Register Notation and Usage

The standard Intel naming conventions are used for the 80386 registers. AX.
BX, CX, and DX are the names of the general registers when used as word-length (16-
bit). AH, AL, BH, BL, CH, CL, DH, and DL are the names for the general registers
when they are used as byte-length registers (8-bit). When addresses are handled, BX

usually contains the offset. However, SI (source index) or BP (base pointer) may also
be used with the ES (extra segment) register.

Bit Notation

Bit fields within a byte or word are shown as a range of decimal numbers
separated by two dots and enclosed in angle brackets, as name <x:y>.

Signal Names

A bus is shown as the bus signal name followed by a range of decimal numbers
separated by two dots and enclosed in angle brachets, for example, SA< 19:0 > .

A slot-specific signal is shown as the signal name followed by a lower case x, for

example, AEXx.

Negative true logic is indicated by an asterisk (*) following the signal name, for

example, START*.

Radix Notation

Hexadecimal numbers are indicated by a lower case "h" following the digits, for

example, lOOh.

Bytes, Words, Double Words

A byte is 8 bits. A word is 16 bits. A dword is 32 bits.

39

iP 0 426 184 A2

EXTEK -D INDUSTRY STANDARD ARCh. i i C T U R E
CONFIDENTIAL INFORMATION OF 3CPR SERVICES, INC.

Units of M e a s u r e

The following units of measure are used throughout this specification.

A a m p
cm centimeter 102 meters
GB gigabyte 230 bytes
K kilo-ohm 103ohms
KB kilobyte 210 bytes
KHz kilohertz 103 her tz
MB megabyte 220 bytes
MHz megahertz 106 hertz
m m e t e r
us microsecond ICHsec
mA milliampere 103 amps
mm millimeter 103 me te r s
ms millisecond 10"3 sec
ns nanosecond 10'9 sec
pF picofarad 1012 farads
s s econd

microamps l O ^ a m p s
V volt
W watt

40

f U 4<it> IB4 Ait

EXTENDED INDUSTRY STAIN UAK U AKUti i t t i u ^
ONTIDENTIAL INFORMATION OF BCFR SERVICES, INC.

EISA Overview

The Extended Industry Standard Architecture (EISA) is a superset of the ISA 8-
nd 16-bit architecture. It extends the capabilities of that standard while maintaining
ompatibilify with ISA expansion boards.

ilSA introduces the following major advances:

32-bit memory addressing for CPU, Direct Memory Access (DMA) devices and
bus masters

16- or 32-bit data transfers for CPU, DMA and bus master devices

An efficient synchronous data transfer protocol that allows for normal single
transfers as well as high-speed Burst transfers

Automatic translation of bus cycles between EISA and ISA masters and slaves

• • Support of intelligent bus master peripheral controllers

• Enhanced DMA arbitration and transfer rates

• 33 MB/s data transfer rate for bus masters and DMA devices

Shareable interrupts, programmable for edge or level triggering

• Automatic configuration of system and expansion boards

1.1 compatibility witn ibA

EISA systems maintain full compatibility with the existing industry standard EISA

;onnectors are a superset of the 16-bit connectors on ISA system boards. ISA 8- and 16-bit
;xpansion boards can be installed in EISA slots. All EISA performance and function
snhancements are, similarly, superset features that maintain full compatibility with ibA

sxpansion boards and software.

1.2 Memory c a p a c i t y

EISA systems support a 32-bit address path. The main CPU, bus masters and D M A
devices can access the entire 80386 memory space. ISA memory cards can be used in the

lower 16 megabytes without modification. EISA memory cards can add as much memory
as needed for the application. The total memory' supported is limited only by the

packaging constraints of the individual product, rather than the system architecture.

EP 0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

1.3 Synchronous Data Transfer Protocol

The EISA bus achieves its speed and flexibility through the use of a synchronous
transfer protocol. Bus masters and multiple processors can synchronize their bus cycles to
a common clock to achieve maximum performance. The synchronous transfer protocol
also provides the cycle control necessary to execute Burst cycles with up to 33 MB/s data
transfer rate.

On the EISA synchronous bus, control signals, address lines and data bus use a bus
clock generated by the svstem board as the reference for a transfer. Unlike many systems,
however, the bus clock is not a fixed frequency. Since the system board is the source of
most bus cycles, the system board adjusts the bus clock frequency and phase to achieve the
maximum performance of the CPU and memory.

EISA provides a variety of cycle types to cover the range of speed and the
complexity requirements for different applications. The standard transfer cycle requires 2
clock cycles, but CPUs are permitted to generate a 1.5 clock COMPRESSED cycle for
slaves that request it At the high end of the performance spectrum are Burst cycles which
require 1 clock per transfer.

1.4 Enhanced DMA Func t ions

EISA systems provide a number of DMA enhancements, including: 32-bit
addressability, 8-, 16-, and 32-bit data transfers and higher performance arbitration and
data transfer cycles. EISA DMA provides ISA compatible modes, with ISA timing and
function as the default.

DMA offers a lower cost alternative to an intelligent bus master. The EISA D M A
functions are intended for I/O peripherals that do not require local intelligence on the
peripheral interface.

1.4.1 32-bit Address Support for DMA Transfe rs

EISA 32-bit address support enables ISA as well as EISA DMA devices to transfer
data to any 32-bit memory address. The default DMA supports ISA compatible 24-bit
address with no software or hardware modifications. DMA software can be modified to
support the 32-bit memory space, without modifications to the DMA hardware.

42

EP0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCHI rECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

1.4.2 8-, 16- or 32-bit Data Transfers from DMA D e v i c e s

Any DMA channel can be programmed for 8-, 16- or 32-bit data transfers. An 8-bit
DMA device uses the low 8 bits of the data bus, a 16-bit device uses the low 16 bits, and a
32-bit device uses the full 32-bit data bus.

A 32-bit DMA device can perform up to 33 MB/s data transfers using Burst cycles.

Performance Gains for DMA Devices

EISA DMA devices can be programmed for high-performance data transfers using
one of four DMA cycle types. The default cycle type, Compatible cycles, delivers a higher
data transfer rate than ISA compatible computers. The improvement is the result of
EISA's faster bus arbitration and requires no hardware or software modifications to ISA
compatible DMA devices. Type "A" and Type "B" cycles are EISA modes that, with special
prograrruning, allow some ISA compatible DMA devices to achieve even higher
performance. The Burst DMA (Type "C") cycle type is the highest performance D M A
cycle and is only available to DMA devices designed specifically for Burst.

The following table indicates peak data transfer rates for each DMA cycle type and
the DMA devices that are compatible with the cycle type.

DMA Cycle Types

DMA Transfer Rate Compatibility
Cycle Type (MB/s)

Compatible
8-bit 1.0 All ISA
16-bit 2.0 All ISA

Type "A"
8-bit 1.3 Most ISA
16-bit 2.6 Most ISA
32-bit 5.3 EISA Only

Type "B"
8-bit 2.0 Some ISA
16-bit 4.0 Some ISA
32-bit 8.0 EISA Only

Burst DMA (Type "C")
8-bit 8.2 EISA Only
16-bit 16.5 EISA Only
32-bit 33.0 EISA Only

43

•P 0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCHITECi UKL
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

1.5 Bus Master Capabilities

EISA based computers support a bus master architecture for intelligent peripherals.
The bus master architecture provides a high-speed data channel with data rates up to 33
MB/s using EISA Burst cycles. The bus master provides local intelligence by including a
dedicated I/O processor and local memory. It can relieve the burden on the main CPU by
performing sophisticated memory access functions, such as non-ordered scatter-gather data
transfers. Examples of applications that might benefit from a bus master implementation
include communication gateways, disk controllers, LAN interfaces, data acquisition
systems, and certain classes of graphics controllers.

1 .6 Data Size Translation

The EISA bus system provides a mechanism for EISA expansion boards to
communicate with ISA compatible devices. The EISA bus master or slave generates EISA
data and control signals, letting the system board copy the data to the appropriate byte
lanes and translate the control signals as necessary.

The system board provides the automatic translation for 16-bit ISA bus masters, 8-
or 16-bit memory and I/O slaves, and DMA devices. The system board also provides
automatic translation for transactions between 16- and 32-bit EISA devices.

1.7 Bus Arbitration

EISA systems also provide a centralized arbitration scheme that allows efficient bus
sharing among multiple EISA bus masters and DMA devices. The centralized arbitration
supports preemption of an active bus master or DMA device and can reset a device that
does not release the bus after preemption.

The EISA arbitration method grants the bus to DMA devices, DRAM refresh, bus
masters and CPU functions on a fair, rotational basis. The rotational scheme provides a
short latency for DMA devices to assure compatibility with ISA DMA devices. Bus masters
and the CPU, which typically have buffering available, have longer, but deterministic
latencies.

1 .8 Edge/Level Triggered Interrupts

EISA systems provide level-triggered, shareable interrupts. Any EISA interrupt can
be individually configured for level- or edge-triggered operation. Edge-triggered operation
provides full compatibility with existing, interrupt-driven, ISA devices. Level-triggered
operation facilitates the sharing of a single system interrupt by a number of devices. Level-
triggered interrupts might be used, for example, to share a single interrupt between a
number of serial ports.

44

=P 0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

1.9 Automatic System Configurat ion

EISA provides the capabilities for automatic configuration of system and expansion
boards. EISA expansion board manufacturers include configuration files with expansion
board products. The configuration files can be included with either new, fully
programmable EISA boards or switch-configured ISA products. The configuration files are
used at system configuration time to assign system resources (such as DMA channels,
interrupt levels) and thus prevent conflicts between the installed expansion boards. For
switch-configurable boards, the configuration files can be used to outline the proper
assignment of resources and instruct the user about the proper selection of switch settings.

To accomplish the automatic system and expansion board configuration, EISA

Erovides a method for accessing I/O port ranges that are slot specific. This means that a
oard using these ranges can be plugged into any slot in the system without the risk of I /O

range conflicts. These I/O ranges can be used for expansion board initialization or for
normal I/O port assignments that are guaranteed not to conflict with any other expansion
board installed in the system.

EISA also includes a product identification mechanism for systems and expansion
board products. The product identifier allows products to be identified during the
configuration and initialization sequences for the system and expansion boards. EISA
includes guidelines for selection of a product identifier. The identifier of each product is
selected by the product manufacturer and does not need the approval of any other party in
the industry.

45

)NFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

10

The following is a summary or ine Key icaiuiw. *uu ^w.^ .w
andard architecture.

eature

ull support ot industry
landara expansion boards

icscivca v . u j i u . « v . .
lvestment Provides maximum flexibility
i product selection.

SA expansion ooara size
omplex peripherals and ease of
nplementation.

tlaxnnum +d v power pei mui
if approximately 4.5 A

"UJLipJW —
ntelligent peripherals.

-ull-tunction jz-du auuress <xuu
lata buses xansfer rates for high-performance

jeripherals.

Support for greater than 16 MB of

memory.

edge-triggered interrupts

raCimaica miwi»[" o -j '
devices.

EP 0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

Feature Benefit

Enhanced DMA functions

• Efficient arbitration
cycles

• Support of demand and
block DMA transfers

• Fast DMA cycle
times

• Support of 32-bit address
and data size

Improved performance and memory
addressing for ISA and EISA DMA
devices.

Improved efficiency of DMA data block
transfers up to rates of 33 MB/s for 32-bit
DMA transfers.

Bus master support

• Support for multiple bus
master peripherals

• Efficient arbitration
cycles

• Automatic 32-, 16- or
8-bit data path
translation

• Support of 32-bit
transfers

• Support of fast Burst
cycles

Provides high performance and local
intelligence for sophisticated peripherals.
Data transfer rate up to 33 MB/s for 32-bit
bus master peripheral.

Enhanced ease of configuration for new
EISA boards and existing ISA expansion
boards.

Automatic expansion board
configuration

47

EP0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

2. EISA Bus Specification

2.1 Signal Descriptions

This section describes signals from each connector of the EISA bus.

2.1.1 Address and Data Bus Signal Group

This section describes the bus signals used for memory and I/O addressing and bus
signals used for the transfer of data.

BE* <3:0> - (EISA Connector)

BE* <3:0> are the byte enable signals that identify the specific bytes addressed in a
dword. BE* <3:0> are pipelined from one cycle to the next and must be latched by the
addressed slave if required for the whole cycle. The timing of these signals varies
depending on the cycle type. During normal cycles, they go valid before BALE goes active
and remain valid as long as the LA<31:2> lines remain valid. During DMA or 16-bit ISA
bus master cycles, they go valid at least 1/2 BCLK before the CMD* or ISA command
signals go active.

It is permissible for a 32-bit bus master to drive both of the high bytes of the data
bus on write cycles even if it only places valid data (as indicated by BE*<3:0> lines) on
one of the high bytes.

48

P U 426 184 A2

EXTENbcD INDUSTRY STANDARD AKL.H1 » tv. i o k c
:ONFIDENTIAL INFORMATION OF BCPR SERVICES, INC

Tie following table shows the allowable combinations.

Byte Bytes d r i v e n d u r i n g w r i t e Bytes d r i v e n by
e n a b l e s \ \ s l a v e on r e a d

at 3 2 - b i t 1 6 - b i t d o w n s h i f t
bus mas t e r m a s t e r m a s t e r 3 2 - b i t 1 6 - b i t 8 - b i t

BE* lane lane l ane lane lane l a n e
3 2 1 0 3 2 1 0 1 0 3 2 1 0 3 2 1 0 1 0 0

0 0 0 0 3 2 1 0 === 3 2 1 0 3 2 1 0 1 0 0
0 0 0 1 3 2 1 === 3 2 1 3 2 1 1 1

0 0 1 1 3 2 3 2 3 2 3 2 3 2 3 2 2

0 1 1 1 3 ? 3 3 ? 3 3 ? 3 3
1 0 0 0 ? 2 1 0 === ? 2 1 0 ? 2 1 0 1 0 0
1 0 0 1 7 2 1 === ? 2 1 ? 2 1 1 1

1 0 1 1 7 2 2 7 2 2 7 2 2 2
1 1 0 0 1 0 1 0 1 0 1 0 1 0 0
1 1 0 1 1 1 1 1 1 1
1 1 1 0 0 0 0 0 0 0

rhe character " = " means that the BE <3:1> code should never De generatea. ioc cnaraac. :
he data bus byte may be driven, but will be ignored.

D < 31:24 > - (EISA Connector)

D<31:24> are the highest-order 8 bits of the 32-bit EISA data bus. A 32-bit device
uses D<31:24> to transfer the fourth (highest) byte of a dword when the address line
BE* <3> is asserted.

D<23:16> - (EISA Connector)

D<23:16> are the second highest-order 8 bits of the 32-bit EISA data bus. A 32-bit
device uses D<23:16> to transfer the third (second highest) byte of a dword when the
address line BE* <2> is asserted.

D < 15:8 > - (ISA Connector)

D<15-8> are the high 8 bits of the 16-bit data bus. Sixteen-bit devices use these
lines to transfer the high half of a data word when SBHE*, BE*<3> or BE*<1> is
asserted, thirty-two-bit devices use D<15:8> to transfer the second (third highest) byte ot

a dword when the address line BE* < T> is asserted.

4a

:P 0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCHITECl UKb.
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

D < 7:0 > - (ISA Connector)

D<7:0> are the low 8 bits of the data bus. Eight-bit devices use these lines to
transfer data. A sixteen-bit device uses these lines to transfer the low half of a data word
.vhen the address line SA<0> is low or when BE*<2> or BE*<0> is asserted. Thirty-
two-bit devices use D<7:0> to transfer the first (lowest) byte of a dword when the address
line BE*<0> is asserted.

LA < 16:2 > - (EISA Connector)

The <16:2> are a part of the latchable address bus. The latchable address lines
(LA<31:2>) are pipelined from one cycle to the next and must be latched by the
addressed slave if required for the whole cycle. LA<31:2> are presented early enough in
the cycle decode to support 1.5 or 2 BCLK memory accesses. During standard cycles, they
go valid before START* is asserted and remain valid at least 1/2 BCLK after CMD* or
the ISA command signals are asserted. During DMA or 16-bit ISA bus master cycles,
LA<31:2> are valid at least one BCLK before the CMD* or ISA comrnand signals are
asserted. LA < 3 1:2 > can be driven by an expansion board acting as a bus master. An
EISA slave may latch the entire address (LA<31:2> and BE.*<3:0>) and status signals
(M-IO and W-R) on the trailing edge of START* or leading edge of CMD*.

LA < 23:17 > - (ISA Connector)

LA < 23: 17 > are a part of the 32-bit latchable address bus. They have the same
characteristics as LA<16:2>, except that they are wired to the 16-bit portion of the ISA
connector. An ISA slave can latch LA<23:17> with the trailing edge of BALE.

LA* < 31:24 > - (EISA Connector)

LA* < 3 1:24 > are the highest byte of the 32-bit latchable address bus. They have
the same characteristics as LA<16:2>, except that they use inverted logic. A high on a
LA* < 31:24 > address bit must be interpreted as an address bit of "0". A low must be
interpreted as an address bit of "1". (When the notation LA*<31:2> is used, only
LA. < 3 1:24 > are active low, the next are active high.

SA<19:0> - (ISA Connector)

The SA<19:0> lines address memory or I/O devices within the system. They form
the low-order 20 bits of the 32-bit address. On normal cycles SA<19:0> are driven onto
the bus while BALE is high and are latched by the system board on the trailing edge of
BALE. SA<19:0> are valid throughout the bus command cycle. On DMA or 16-bit ISA
bus master cycles SA<19:0> are valid nominally one BCLK before the command signals
and remain valid nominally one BCLK after the command signals go away.

50

* U 4^0 I OH At

EXTENDED INDUS IKY SIANUAK'J a k u . i i ^ i ur>.^
ONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

BHE* - (ISA Connector)

SBHE* (System Bus High Enable) indicates (when low) that expansion boards that

jpport 16-bit data transfers should drive data on the high half of the D< 15:0 > data bus.
)n normal cycles, SBHE' becomes valid on the bus when BALE is asserted and remains
alid until after the command (MRDC*, MWTC\ IORC, IOWC' or CMD') is negated.
)n DMA or 16-bit ISA bus master cycles, SBHE* is valid nominally one BCLK before the
ommand signals and remains valid nominally one BCLK after the command signals go

way.

JENx - (ISA Connector)

This slot-specific (the V refers to the slot number) signal, when negated (low),
ndicates that an I/O slave may respond to addresses and I/O commands on the bus.
UENx is asserted (high) during DMA cycles to prevent I/O slaves from mis-mterprenng
)MA cycles as valid I/O cycles. The system board must negate AENx when S 1 AK i ls
sserted for an I/O access, and AENx must remain negated until after CMD is asserted.
UENx is also used to disable I/O accesses to all other option slots during accesses to a
larticular slot's slot-specific I/O address range.

i.1 J2 Data TransTer uomroi &ignai u r o u p

This section describes the signals used to control data transfer cycles on the 8-, 16-

md 32-bit bus.

5CLK - (ISA Connector)

BCLK is provided to synchronize events with the main system clock. BCLK

jperates at a frequency between 8333 MHz and 6 MH^with a normal duty cycle of 50

jercent. BCLK is driven only by the system board. The BCLK period is sometimes
sxtended for synchronization to the main CPU or other system
sxample, the COMPRESSED cycle type extends each BCLK period by holding BCLK low

for half a cycle beyond the normal transition to high. The BCLK extension facilitates

synchronization during the US BCLK COMPRESSED cycle. During bus master accesses,
the system board extends BCLK only when required to synchronize with main memory.
Events must be synchronized to BCLK edges without regard to frequency or duty cycle
BCLK is always synchronous with the trailing edge of START* and the leading ^ g e o f
CMD*. BCLK may not be synchronous with the leading edge of START or the trailing
edge of CMD*.

MSBURST* - (EISA Connector)

An EISA CPU or bus master asserts MSBURST* to indicate to the slave (typically,
main memory) that the CPU or bus master can provide Burst cycles. MSBURST is
asserted with the LA<31:2> address lines for the second and all subsequent cycles of the

Burst and is sampled on the rising edge of BCLK by the slave.

' U H4K> I OH A<£

EXTEfNDEU IrNUU&IKT aiATXUAJVV «J"-r>r @ ^v-« «-'"^
ONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

LBURST* - (EISA Connector)

A slave (typically, main memory) indicates its support of Burst cycles by asserting
LBURST*. The slave develops SliURST* from the ^ < 3 J J 0 > a ddress lines and
[-IO and produces S LBURST* regardless of the state of MSBURST . SLBUKM is
unpled on the rising edge of BCLK by the main CPU, DMA controller or bus master.

I-IO - (EISA Connector)

The main CPU or an EISA bus master asserts M-IO to indicate the type cycle in

rogress as a memory cycle (high) or I/O cycle (low). M-IO is pipelined from one cycle to

le next and is latched by the addressed slave if needed for the whole cycle. M-IO should

e included in all decodes by EISA slaves. M-IO must not be used m decoding the signals
116* or 1016*.

JOCK* - (EISA Connector)

The main CPU or a bus master may assert LOCK* to guarantee exclusive memory
ccess during the time LOCK* is asserted. A bus master may also assert LOCK to
uarantee exclusive I/O access during the time LOCK* is asserted. Assertion of LOCK
llows bit test-and-set operations (as used for semaphores) to be executed as a unit, with
he bus lock preventing multiple devices from simultaneously modifying the semaphore bit.

- (EISA Connector)

A memory or I/O slave asserts EX32* to indicate that it supports 32-bit (dword)
ransfers. A two BCLK cycle is executed when a slave asserts EX32* during a. memory
iccess. The slave asserts EX32* after decoding a valid address on the LA<3L2> address
ines and M-IO. EX32* should not be latched by the slave. Both 16- and 32-bit EISA bus

nasters must monitor EX32* at the trailing edge of START* to determine if the slave

nipports 32- (and 16-) bit EISA transfers (asserted), or if the system board is performing
lata size translation (negated). If data size translation is being done and the master is a
J2-bit master, then the system board asserts EX32* to indicate completion of the
xanslation.

EX16* - (EISA Connector)

An EISA memory or I/O slave asserts EX16* to indicate that it supports 16-bit

[word) transfers. A 16-bit EISA bus master samples EX16* asserted to confirm a 16-bit
EISA slave. An EISA cycle (two BCLK) is executed when a slave asserts EX16 during a

memory access by the system board or a 16-bit EISA bus master. The ̂ s ave averts EX 16
after decoding a valid address on the LA<31:2> address lines and M-IO. EX16 should

not be latched by the slave. 16-bit EISA bus masters must monitor EX16* to determine it
the slave supports 16-bit EISA transfers (asserted), or if the system board is performing
data size translation (negated). If data size translation is being .done (ISA cycles) and the

master is a 16-bit master (indicated by the master asserting MASTER16), then the system
board asserts EX16* to indicate completion of the translation.

3<1

EP 0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

EXRDY - (EISA Connector)

EISA I/O and memory slaves negate. EXRDY to request wait state timing (each
wait state is one BCLK). The system board samples EXRDY on each falling edge of
BCLK after it asserts CMD*. The system board holds CMD* asserted during the entire
period EXRDY is negated, and at least one half BCLK after sampling EXRDY asserted.
EXRDY must be driven with an open-collector type buffer (a system board pull up resistor
provides the asserting drive current). The EISA slave should negate EXRDY during
START" or on the rising edge of BCLK at the end of START* if wait states are to be
added. The slave must allow EXRDY to float high (asserted) synchronously with BCLK
falling edge and must not hold EXRDY asserted longer than 25 /xs EXRDY should never
be driven high.

START* - (EISA Connector)

The START* signal provides timing control at the start of a cycle. The CPU or bus
master asserts START* after LA < 31:2 > and M-IO become valid and negates START* on
a rising edge of BCLK after one BCLK cycle time. BE* <3:0> and W-R may not be valid
at the leading edge of START*.

CMD* - (EISA Connector)

CMD* provides timing control within the cycle. The system board asserts CMD* on
the rising edge of BCLK, simultaneously with negation of START*. The system board
holds CMD* asserted until the end of the cycle. The end of the cycle normally is
synchronized with the rising edge of BCLK, but in certain cases is asynchronous. A bus
master does not drive CMD*.

W-R - (EISA Connector)

The status signal, W-R, identifies the cycle as a write (high) or read (low). W-R
becomes valid after assertion of START* and before assertion of CMD*. W-R remains
valid as long as address lines LA<31:2> are valid. W-R is driven from the same edge of
BCLK that activates the START* signal.

BALE - (ISA Connector)

BALE (when high) indicates that a valid address is present on the LA < 3 1:2 >
address lines. The LA<31:2> address lines or any decodes developed from them by ISA
devices are latched (with transparent latches) on the trailing edge of BALE if the address is
needed for the whole cycle. BALE is always high during a DMA or 16-bit ISA bus master
operation. EISA devices should not use BALE to latch addresses; the trailing edge of
START* or leading edge of CMD* should be used.

53

EP 0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

MRDC* - (ISA Connector)

The system board or ISA bus master asserts MRDC* to indicate that the addressed
ISA memory slave should drive its data onto the memory bus. MRDC* is asserted for read
accesses to memory, except when inhibited by assertion of EX32* or EX16* (an EISA
device responded). During ISA Compatible DMA cycles, MRDC* is asserted for read
accesses to memory addresses between OOOOOOOOh to OOFFFFFFh, regardless of the type of
memory responding. A DMA device should not use MRDC* to decode its I/O address.
MRDC* is also asserted for refresh cycles. MRDC* can be driven by an expansion board
acting as an ISA 16-bit bus master.

MWTC* - (ISA Connector)

The system board or ISA bus master asserts MWTC* to indicate that the addressed
ISA memory slave may latch data from the memory bus. MWTC* is asserted for write
accesses to memory, except when inhibited by assertion of EX32* or EX16* (an EISA
device responded). During Compatible DMA cycles, MWTC* is asserted for write
accesses to memory addresses between OOOOOOOOh to fJOF^FFFh, regardless of the type of
memory responding. A DMA device should not use MWTC* to decode its I/O address.
MWTC* can be driven by an expansion board acting as an ISA 16-bit bus master.

SMWTC* - (ISA Connector)

The system board asserts SMWTC* to indicate that the addressed memory slave
may latch data from the memory bus. SMWTC* is only asserted for ISA write accesses to
memory addresses between OOOOOOOOh to OOOrTFFFh. SMWTC* is derived from MWTC*
and has similar timing.

SMRDC* - (ISA Connector)

The system board asserts SMRDC* to indicate that the addressed memory slave
should drive its data onto the memory bus. SMRDC* is only asserted for ISA read
accesses to memory addresses between OOOOOOOOh to OOOFTTFFh or refresh cycles.
SMRDC* is derived from MRDC* and has similar timing.

IOWC* - (ISA Connector)

A DMA device can latch data from the data bus when IOWC* is asserted. An ISA
I/O slave latches data from the data bus when IOWC* asserted and AENx is negated. The
main CPU or bus master must drive valid data on the bus before asserting IOWC*.

IORC* - (ISA Connector)

A DMA device can drive data on the data bus after sampling IORC* asserted. An
ISA I/O slave drives data onto the bus while IORC* is asserted and AENx is negated
(low). The device must hold the data valid until sampling IORC* negated.

54

EP0 426 184 A2

EXTENDED INDUSTRY STANDARD a R C H I ^ C T U R E
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

CHRDY - (ISA Connector)

An ISA memory or I/O slave can negate CHRDY to lengthen a bus cycle from the
default time. The slave negates CHRDY after decoding a valid address and sampling the
command signal (MRDC*, MWTC, SMRDC*, SMWTC*, IORC* or IOWC*) asserted.
When the slave's access has completed, CHRDY should be allowed to float high (asserted).
Bus cycles are lengthened by an integral number of BCLK cycles. The ISA command
signals remain active at least one BCLK after the slave asserts CHRDY. CHRDY should
be driven with an open collector type of driver, and should never be driven high. CHRDY
may not be held low for more than 2.1 fis. EISA slaves should never negate CHRDY.

NOWS* - (ISA Connector)

An ISA memory slave asserts NOWS" (No Wait State) after its address and a
command have been decoded to indicate that the remaining clock cycles are not required.
NOWS* must be asserted before the falling edge of BCLK to be recognized during ISA
cycles. During EISA cycles, an addressed EISA slave may assert NOWS* before the main
CPU negates START* to generate COMPRESSED cycles (L5 BCLKs/cycle). A slave
should not assert NOWS* and negate EXRDY or CHRDY during the same cycle.

Ml 6* - (ISA Connector)

M16* signals the system that the addressed ISA memory is capable of transferring
16 bits of data at once. When M16* is asserted, during a memory read or write and is not
superceded by EX32* or EX16*, the ISA compatible three BCLK memory cycle is run.
M16* is decoded from LA<23:17>. M-IO is not included in the decode and M16* should
not be latched by the ISA slave. Only ISA memory slaves need to generate M16*; the
system board generates M16* from EX32* or EX16* for EISA memory slaves. M16*
should only be driven with an open-collector type of driver.

1016* - (ISA Connector)

A 16-bit ISA I/O slave asserts 1016* (after decoding a valid address on SA< 15:1 >)
to indicate its 16-bit data size. The system board defaults to a three BCLK I/O cycle when
it samples 1016* asserted by an ISA I/O slave (EX32* and EX16* negated). 1016* should
only be driven with an open-collector type of driver.

The system board does not automatically assert 1016* when a 16-bit ISA bus master
accesses an EISA I/O slave. EISA slaves that support 16-bit ISA bus masters must assert
1016* as well as EX32* (or EX16*) when addressed. The EISA I/O slave asserts 1016*
on decoding a valid address on LA<15:2>. EISA I/O slaves that do not support 16-bit
ISA bus masters need not assert 1016*.

55

EP 0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

2.1.3 Bus Arbitration Signal Group

This section describes signals used to arbitrate for bus control. These signals are a
combination of new EISA signals and existing ISA signals.

MREQx* - (EISA Connector)

MREQx* is a slot-specific signal used by EISA bus masters to request bus access.
The "x" refers to the slot number. Bus masters requiring use of the bus must assert
MREQx* until the system board grants bus access by asserting MAKx*. The requesting
device must hold MREQx* asserted until the system board asserts the appropriate MAKx*
signal. The system board samples MREQx* on the rising edge of BCLK. If MREQx* is
sampled asserted, the arbitration controller performs the arbitration and the system board
asserts MAKx* when the bus becomes available. The bus master can begin driving the bus
with address and other signals on the falling edge of BCLK when MAKx* is sampled
asserted.

When a bus master completes a transfer, it can release the bus by negating
MREQx* on the falling edge of BCLK. If no bus cycle is in progress when MREQx* is
negated, the bus master must float LA<31:2>, BE*<3:0>, MSBURST*, LOCK*,
D<31:0>, START*, M-IO, and W-R on or before the rising edge of BCLK after MREQx*
is negated If a cycle is in progress when MREQx* is negated, then the LA<31:2>,
BE*<3:0>, MSBURST*, LOCK*, START*, M-IO, and W-R signals must be floated by
the rising edge of BCLK at the end of the cycle. The data signals D<31:0> must be
floated on (EXRDY terrnination) or before (EX32* or EX16* terrnination) the falling
edge of BCLK after the end of the cycle. Cycle completion is indicated by the memory or
I/O slave asserting EXRDY or the system board asserting EX16* or EX32* after
completing bus conversions. A bus master must wait at least two BCLKs after releasing the
bus before re-asserting its MREQx*. The trailing edge of MREQx* must meet the setup
and hold time to the sampling point for proper system operation.

MAKx* - (EISA Connector)

MAKx* is a slot-specific signal that is asserted by the system board to grant bus
access to an EISA bus master. The V refers to the slot number. MAKx* is asserted from
the rising edge of BCLK and the bus master can begin driving LA<31:2>, BE*<3:0>,
MSBURST*, START*, M-IO, and W-R on the next falling edge of BCLK. The system
board negates MAKx* on the rising edge of BCLK after sampling MREQx* negated. The
system board can also negate MAKx* to indicate to an active bus master that another
device has requested the bus. The bus master must negate MREQx* to release the bus
within 64 BCLKs (8 /is) of sampling MAKx* negated.

56

EP 0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCH ITECTURE
CONFI DENTIAL INFORMATION OF BCFR SERVICES, INC.

DRQ < 7:5 > , DRQ < 3:0 > - (ISA Connector)

The DRQ<x> lines are used to request a DMA service from the DMA subsystem
or for a 16-bit ISA bus master to request access to the system bus. The request is made
when DRQ<x> is asserted. The system board allows DRQ<x> to be asserted
asynchronously. The requesting device must hold DRQ<x> asserted until the system
board asserts the appropriate DAK*<x> signal. For demand mode DMA memory-read
I/O-write cycles, DRQ<x> is sampled on the rising edge of BCLK, one BCLK from the
end of the cycle (the rising edge of IOWC'). For demand mode DMA memory-write I/O-
read cycles, DRQ<x> is sampled on the rising edge of BCLK, 1.5 BCLKs from the end of
the cycle (the rising edge of IORC*). For demand mode Burst DMA, DRQ<x> is
sampled each cycle on the rising edge of BCLK For 16-bit ISA bus masters, DRQ<x> is
sampled on the rising edge of BCLK, two BCLKs before the system board negates
DAK*<x>. The trailing edge of DRQ<x> must meet the setup and hold time to the
sampling point for proper system operation.

DAK* < 7:5 > , DAK* < 3:0 > - (ISA Connector)

The system board asserts a DMA channel's DAK* <x> to indicate that the channel
has been granted the bus. A DMA device is selected if it decodes DAK* <x> with IORC*
or IOWC* asserted. DAK*<x> can also be used to acknowledge grant of bus access to a
16-bit ISA bus master. The bus master must assert MASTER16* after sampling
DAK* <x> asserted. Address and cycle control signals must be floated and MASTER16*
must be negated before the system board negates DAK* <x>. For EISA block or demand
mode DMA transfers, DAK* <x> remains asserted until the transfer completes or until the
centralized arbitration controller preempts the DMA process. The preemption occurs after
another device requests the bus and 4 iis elapse.

T-C - (ISA Connector)

This signal is bidirectional, acting in one of two modes, depending on the
prograrruning of the channel. In the output mode, the system board asserts T-C to indicate
that a DMA channel's word count has reached terminal count. Terminal count is indicated
when the decrementing word count "rolls over" from zero to FFFFFFh. The system board
asserts T-C only while asserting the channel's DAK*<x>. A DMA device decodes T-C
with the appropriate DAK* <x> asserted to determine when the transfer has completed.

In the input mode, T-C can be used by a DMA slave to stop a DMA transfer.
During ISA Compatible, Type "A", or Type "B", transfers, T-C is sampled by the system
while IORC* or IOWC* is asserted. During Burst cycles, T-C is sampled at the same time
as the DRQ <x > input, on the rising edge of BCLK. If it is sampled asserted the transfer is
terminated, and if auto-initialize is programmed, the transfer restarts at the beginning.

MASTER 16* - (ISA Connector)

A bus master asserts MASTER16* to indicate 16-bit data size. A bus master can
assert MASTER 16* after the system board asserts DAK*<x> or MAKx*. The 16-bit
EISA bus master negates MASTER16* after completing the last transfer. An ISA master
negates MASTER16*, immediately when the system board negates DAK* <x>. A 32-bit
bus master can assert MASTER16* during START* to disable automatic 32-to-16-bit data
size translation for 16-bit EISA memory Burst slaves. It canthen perform 16-bit Burst
cycles to a 16-bit EISA slave.

57

EP 0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

REFRESH* . (ISA Connector)

REFRESH* is used to indicate (when low) a refresh cycle in progress. REFRESH*
causes SA<15:0> (or LA<15:2>) to drive the row' address inputs of all DRAM banks so
that when MRDC* (or CMD*) is asserted, the entire system memory is refreshed at one
time.

2.1.4 Utility Signal Group

This section describes a variety of general utility signals. These signals are all on the
ISA connector.

OSC - (ISA Connector)

OSC is a clock for use in timing applications. Its frequency is 1431818 MHz with a
50 percent duty cycle.

RESDRV - (ISA Connector)

Assertion of RESDRV causes a hardware reset of ISA and EISA expansion boards.
RESDRV is asserted by the reset controller during power up or after a bus timeout.
Software can cause assertion of RESDRV by setting I/O port 0461h bit 0 to a "1".
RESDRV is negated when the software resets this bit to a zero. RESDRV has a nn'nimum
pulse width equivalent to 9 BCLK periods (the nu'nimum time between two ISA I/O write
cycles). All devices that can prevent operation of the CPU, memory or system board I / O
must use RESDRV for hardware reset. Slaves that insert wait states based on internal
state machines, devices that require software initialization, and DMA devices are examples
of hardware that reset after sampling RESDRV asserted.

IRQ < 15:14 > , IRQ < 12:9 > , IRQ < 7:3 > - (ISA Connector)

The ERQx lines are used to interrupt the CPU to request some service. In
compatible mode, the interrupt is recognized when IRQx goes from a low to a high and
remains there until the appropriate interrupt service routine is executed. If programmed to
level-sensitive mode, the interrupt is recognized when the IRQx signal is asserted (low).
Another interrupt is generated at the end of the interrupt service routine if the IRQx signal
is still held low, allowing a single line to be shared by more than one device. IRQ < 15:3 >
are pulled up by the system board. A floated interrupt line is guaranteed to stabilize at a
TTL "high" after 500 ns. Interrupt service routines must reset the interrupt latch (which
floats the interrupt line), then wait at least 500 ns before issuing the end-of-interrupt
command and enabling interrupts.

IOCHK* - (ISA Connector)

An EISA or ISA expansion board can assert IOCHK* to signal the main CPU that a
serious error has occurred. Assertion of IOCHK* causes an NMI if Port 061h bit 3 is set to
"1" and NMIs are enabled. Parity errors and uncorrectable system errors exemplify
problems that might cause an expansion board to assert IOCHK*.

58

EP 0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

2.1.5 Summary of Signals

The following tabulation shows the EISA bus connector signals added for EISA
support:

Bus Signal
Pins Name Description

16 D<31:16> data lines
8 LA*<31:24> address lines
15 LA < 16:2 > address lines
4 BE*<3:0> byte enables
1 LOCK* bus lock
1 EX32* 32-bit EISA slave indicator
1 EX16* 16-bit EISA slave indicator
1 START* EISA start of cycle control
1 CMD* EISA end of cycle control
1 M-IO EISA memory or I/O indicator
1 W-R EISA write or read indicator
1 EXRDY EISA ready indicator
1 MREQx* slot specific bus request
1 MAKx* slot specific bus grant
1 SLBURST* Burst cycle indicator from slave
1 MSBURST* Burst cycle control from master

55 Total new pins on EISA connector

2.1.6 Signal Usage by System, Masters and S l aves

The following three tables indicate typical signal usage by an EISA system board, ISA
bus masters, ISA slaves, EISA bus masters and EISA slaves.

Table Legend:

I/O = Input and Output
I = Input
O = Output

= Signal Not Needed

Subscript "m" indicates that one or more of the signals in the group may be
implemented.

An I/O shown in parentheses () indicates that the signal is optional for this
device.

The following notes are referenced in one signal usage tables:

1. SLBURST and MSBURST are implemented together or both are omitted.

2. Only DMA devices that implement Burst cycles use EXRDY.

3. EISA DMA devices can be 8-, 16-, or 32-bits wide.

59

EP 0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

4. ISA DMA device can be either 8- or 16-bits wide.

5. DMA devices need not monitor BE' <3:0> unless they support partial-width
data transfers.

6. Only EISA slaves that support COMPRESSED cycles assert NOWS * .
7. EISA I/O slaves that need to be accessed by 16-bit ISA bus master must assert

1016* when addressed.

8. An 8-bit memory slave is assumed to only decode the SA< 19:0 > address lines
(1 megabyte maximum address). If a full decode is done, LA<23:17>,
MRDC*, IORC*, and BALE are also used.

9. BCLK is only required if the slave device supports Burst cycles or uses EXRDY.

10. A 16-bit EISA bus master thatdoes not drive the full 32-bit address will be
limited to 16 megabyte addressing.

11. A 32-bit EISA bus Burst master thatcan "downshift" to a 16-bit EISA Burst •
memory slave asserts MASTER16* during START*.

EISA /ISA Signal Usage - System Board +
I I I i ' " \

Signal
Name

AENx
BALE
BCLK
BE*<3:0>
CHRDY
CMD*
D<31:0>
DAK* < 7:0 >
DRQ < 7:0 >
EX16*
EX32*
EXRDY
1016*
IOCHK*
IORC*
IOWC*
IRQ < 15:3 >
LA*<31:24>
LA<23:2>
LOCK*

System
Board

O
O
O

I / O
I /O
O

I /O
o
I

I /O
I /O
I / O

I
I

I /O
I /O

I
I /O
I /O
O

Signal
Name

M-IO
M16*
MAKx*
MASTER16*
MRDC*
MREQx*
MSBURST*
MWTC*
NOWS*
OSC
REFRESH*
RESDRV
SA<19:0>
SBHE*
SLBURST*
SMRDC*
SMWTC*
START*
T-C
W-R

System
Board

I / O
I / O
o
I
I / O
I
I / O
I / O
I
o
I / O
o
I / O
I / O
I
o
o
I / O
I / O
I /O

+ The signals listed are required to support EISA functions. Additional signals are
•equired if the system board also contains EISA or ISA slaves.

SO

EP 0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

ISA Signal Usage - ISA Expansion Boards

ISA ISA ISA ISA ISA ISA
1 6 - b i t 1 6 - b i t 8 - b i t 8 - b i t

S igna l Bus Mem I/O Mem I/O DMA
Name Master Slave Slave S lave Slave Device N o t e s

AENx - - I - I
BALE - I - (I) - - 8
BCLK (I) (I) (I) (I) (I) (I)
CHRDY I (0) (0) (0) (0)
D<7:0> I/O I/O I/O I/O I/O I/O 4
D<15:8> I/O I/O I/O - - (I/O) 4
DAK*<7:0> lffl Im
DRQ<7:0> 0 Om
1016* I - 0 - -
IOCHK* (0) (0) (0) (0) (0) (0)
IORC* 0 - I - I I
IOWC* 0 - I - I I
IRQ<15:3> (Om) (Offl) (0ffl) (0) (0m) (Om)
LA<23:17> 0 I - (I) - 8
M16* I O - - -
MASTER16* 0 - - - -
MRDC* 0 I - . (I) - 8
MWTC* 0 I - (I) - 8
NOWS* - (0) - (0) (O)
OSC (I) (I) (I) (I) (I) (I)
REFRESH* (0) I - I -
RESDRV I I I I I I
SA<16:0> 0 I I I I
SA<19:17> - (I) - (I) - 8
SBHE* 0 I I
SMRDC* I
SMWTC* - - - I
T-C _ _ _ _ _ (!)

EISA connector signals are not used by ISA expansion boards and are not included
the preceding table.

61

EP 0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

Expansion Boards

3 2 - b i t 3 2 - b i t 3 2 - b i t 1 6 - b i t 1 6 - b i t 1 6 - b i t
EISA EISA EISA EISA EISA EISA EISA

S i g n a l Bus Mem I/O Bus Mem I/O DMA
Name Master Slave Slave Master Slave S lave Device N o t e s

AENx — - I - - I —
BCLK I (I) (I) I (I) (I) (I) 9
BE*<3:0> O I I 0 I I (I) 5
CMD* I I - I I
D<7:0> I/O I/O I/O I/O I/O I/O I / O
D<15:8> I/O I/O I/O I/O I/O I/O (I/O) 3
D<31:16> I/O I/O I/O - (I/O) 3
DAK*<7: 0> - - - - - - Im
DRQ<7:0> _ _ _ _ _ _ om
EX16* - - - I O O -
EX3 2* I 0 0 I - - -
EXRDY I (0) (0) I (0) (0) I 2
1016* - - (0) - - (0) - 7
IOCHK* (O) (0) (0) (0) (O) (O) (0)
IORC* - - - - - - I
IOWC* - - - - - - I
IRQ<15:3> (Om) (Om) (On) (Om) (0) (Om) (On)
LA<15:2> 0 I I 0 T I -
LA<23:16> 0 I - 0 I - -
LA*<31:24> 0 I (0) I - 10
LOCK* (O) (I) (I) (0) (I) (I)
M-IO 0 I I 0 I I -
MAKx* I - - I - - -
MASTER16* (0) - 0 - - - 11
MREQx* o - - 0 - - -
MSBURST* (O) (I) - (0) (I) - 1
NOWS* - (0) (0) - (0) (0) - 6
OSC (I) (I) (I) (I) (I) (I) (I)
REFRESH* - I - - I - -
RESDRV I I I I I I I
SLBURST* (I) (0) - (I) (0) - 1
START* 0 I I 0 I I -
T-C _ _ _ _ _ _ (I / O)
W-R 0 I I 0 I I -

Many ISA signals are not used by EISA expansion boards and are not included in
the preceding table.

62

EP 0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

2.2 ISA Cycles

2.2.1 CPU CYCLES

ISA systems provide different timing for cycles to and from 8- and 16-bit memory
and I/O slaves. ISA systems generate a default 6 BCLK memory or I/O cycle for 8-bit
slaves and a default 3 BCLK memory or I/O cycle for 16-bit slaves. All cycles can be
extended by the slave by negating CHRDY. Additionally, memory or 1/6 slaves can
shorten most cycles (except 16-bit I/O cycles) by asserting NOWS*. If both CHRDY is
negated and NOWS* is asserted, then wait states will be added.

ISA cycles begin with the system presenting a valid address on LA<23:17> , and one
BCLK period later, asserting BALE and presenting a valid SA< 19:0 > address.

For 16-bit memory accesses, the system asserts MRDC*, MWTC*, SMRDC*, or
SMWTC* on the first rising BCLK edge after SA< 19:0 > become valid. For 8-bit memory
accesses, and for all I/O accesses, the system delays an extra one-half BCLK period before
asserting the ISA command signal to allow extra time for address decode.

During write cycles, the system presents valid data on the first rising BCLK edge
after SA< 19:0> become valid. The slave can latch the data after the specified data valid
delay or on the trailing edge of the ISA command signaL During read cycles, a slave
presenting valid data, drives the data bus after receiving the ISA command signal. The
system latches the read data on the edge of BCLK on which the ISA command signal is
negated.

NOWS* is sampled on each falling edge of BCLK during the time that the ISA
command signal is asserted. This allows 8-bit slaves to shorten a standard 6 BCLK cycle to
a 3, 4 or 5 BCLK cycle. A 16-bit memory slave can shorten a standard 3 BCLK cycle to a 2
BCLK cycle. A 16-bit I/O slave cannot shorten cycles, since the ISA command signal is
delayed one-half BCLK period; therefore, NOWS* cannot be generated early enough to
shorten the cycle.

Systems built according to the EISA specification implement a sampling window for
CHRDY, instead of a distinct sample point. To guarantee the insertion of one wait state,
CHRDY must be held negated for a minimum time period while BCLK is high. If
CHRDY is negated before the rising edge of BCLK, it must be held for the specified hold
time past the rising edge. If CHRDY is negated after the rising edge of BCLK, then it
must be held negated for a specified pulse width. In either case, CHRDY may then be re-
asserted with setup to the next rising BCLK edge. Negation and assertion of CHRDY must
meet the pulse width, setup and hold time requirements specified in the ISA signal timing
parameter table.

33

EP 0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

Figure 1 - CHRDY "Sample Window"

BCLh

MKUC
MWTC

LHKUl
1 W.S

CHRDY
1 W.S.

CHRDY
1 W.S.

CHKUT
1 W.S.

; ; ; - + ! f+O j ; j j \

i j i i

SOIES;
1. Tl - CHRDY Mtelcd bold Umc.
J- T2 • CHRDY •iscrttd »rtup to BOX rwnj
3 Set ISA Bus Timini Parameter! for specific timing values

The CPU or master can extend the length of the cycle beyond the minimum
requirements indicated by the slave by keeping the ISA command signals asserted. Both
memory and I/O slaves are required to extend the end of the cycle until the ISA command
signals are negated.

34

EP0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCHi i ECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

The system indicates the size of a memory or I/O transfer being attempted by using
SBHE* and SA<0>. The following table shows the size of transfer for each combination
and which byte lane contains the data. Byte lanes not included in this table must not be
driven by the slaves during read cycles, and must be left unmodified during write cycles.

SBHE* SAO SIZE BYTE LANES

0
0
1
1

0
1
0
1

2
1
1
0

D < 1 5 : 8 > , D < 7 : 0 >
D<15:8>
D<7:0>

2.2.2 MEMORY SLAVES

Memory slaves can be either 8- or 16-bits wide. An 8-bit memory slave can use
either 20 address bits (SA<19:0>) or 24 address bits (LA<23:17>, SA<19:0>). When
using 20 address bits, the 8-bit slave must use SMRDC* and SMWTC* to guarantee that
only cycles to the first 1 MB of memory will be performed. A 16-bit memory slave must use
24 address bits and normally uses MRDC* and MWTC*.

A 16-bit memory slave asserts M16* after decoding LA<23:17>. The decode for
M16* must not include SA<19:0>, SBHE*, or any other control signals, since the timing
requirements for M16* cannot be assured if control signals are included.

Memory slaves can shorten default cycles by asserting NOWS*, or extend them by
negating CHRDY. However, the slave cannot control the maximum length of any cycle,
and is required to extend the length of write cycles and to hold read data valid on the bus
until the ISA command signals are negated.

2.2.3 I/O SLAVES

I/O slaves can be either 8- or 16-bit wide. I/O slaves decode addresses SA<9:0>
and AENx. A 16-bit i/O slave asserts 1016* when it decodes a valid address with AENx
low. The decode for 1016* should not include any control signals.

I/O slaves can shorten default 8-bit cycles by asserting NOWS*, or extend 8- or 16-
bit cycles by negating CHRDY. However, the slave cannot control the maximum length of
any cycle, and is required to extend the length of write cycles and to hold read data valid on
the bus until the ISA command signals are negated.

2.2.4 BUS MASTERS

The ISA bus master device driver programs a DMA channel for cascade mode. The
ISA bus master asserts DRQ<x> for that channel to request control of the bus. The
system board performs the bus arbitration and asserts DAK*<x>, granting control of the
bus to the 16-bit ISA bus master and disabling the system board address, data, and control
lines. The system board does not assert AENx during DAK* <x> to disable I/O accesses.
Consequently, an ISA bus master can perform normal I/O and slot-specific I/O accesses.
BALE is asserted with DAK* <x> to indicate valid address on the-LA<31:2> bus.

65

EP 0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

An ISA bus master asserts MASTER16*, but this line is ignored in EISA systems.
The ISA bus master then waits at least one BCLK before driving address, data, and control
lines to allow the system board to float its drivers. An ISA bus master presents
LA < 23: 17 > and SA<19:0>, driving the same address on LA < 19: 17 > and SA<19:17>.
ISA bus masters cannot pipeline addresses since the system board holds BALE asserted
while the ISA bus master drives the bus.

EISA does not assume that ISA masters are synchronized to BCLK. The EISA
system board assumes that they are asynchronous.' However, ISA masters should
synchronize control signals to BCLK if they are required to be compatible with ISA slaves
designed prior to the EISA specification which generate wait states synchronous with
BCLK,

EISA requires that all ISA masters monitor CHRDY and add wait states when
CHRDY is negated. An ISA master may optionally use NOWS* to shorten default cycles.
If both NOWS* is asserted and CHRDY is negated, then the ISA master must insert wait
states.

If an ISA master must run refresh cycles without releasing the bus, then it floats the
address buses and command lines and asserts REFRESH* with an open collector type
driver. The master must then wait for 1 BCLK period after MRDC* has been asserted and
negated before floating REFRESH* and driving the address and command buses. EISA
systems require ISA masters to wait for the end of MRDC* before regaining the bus during
refresh cycles, if proper operation is to be assured.

An ISA bus master releases the bus by floating its address, data, and control signals,
negating DRQ<x> and floating MASTER 16*. The system board samples D R Q < x >
negated on the rising edge of BCLK. The system board negates DAK*<x> on the third
rising edge of BCLK after sampling DRQ<x> negated. The ISA bus master negates
(floats) MASTER16* (if still asserted) when it samples DAK*<x> negated. On the next
BCLK the system board asserts the bus grant signal for the device that wins the bus
arbitration.

ISA bus masters use the same combinations of SBHE* and SA<0> as indicated for
CPU cycles to indicate the size of the transfer and the location of the data. It is the bus
master's responsibility to convert 16-bit transfers into two 8-bit transfers if a 16-bit slave
does not respond. However, the system board will provide data copying from D<7:0> to
D<15:8> for odd-address reads from a byte slave, and from D<15:8> to D<7:0> for
odd-address writes to a byte slave.

66

EP 0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION CF BCPR SERVICES, INC.

2.3 ISA CPU and Bus Master Cycles

The following comments apply to all ISA cycle description diagrams:

Note 1: Heavy black lines indicate the transfer of control from one bus master to another.

Note 2: Shaded areas indicate a "don't care" signal state.

Note 3: Black dots indicate signal sampling points.

2.3.1 8-bit Memory Cycles

Figures 2, 3, and 4 show the relevant signals for standard cycle (6 BCLK), one wait
state ISA Cycle (7 BCLK), and no wait state cycle (3 BCLK) memory accesses to 8-bit ISA
slaves.

67

EP 0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

Figure 2 - Memory Access to 8-bit ISA Slave -
Standard Cycle (6 BCLK)

bLLK

BALE

SA<19:0>

@] :] I j I j I j i j @ ' . 1

SMKDC'.SWWTC'
MRDC'.WWTC'

M16*

NOWS'

CHRDY

! i : i ! i i i ! i ! i ! i
[j ? ; I ' ' ' — "

10 - 1 700 TO 1 TC2 TO-3 TC< T0.5 T0.6 TO 7 T08 T09 TO A TO 8 Tl 0 Til Tl :

38

EP 0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

Figure 3 - Memory Access to 8-bit ISA Slave (7 BCLK)

BCLK

BALE

LA<23:17>

SA<I9:0>

SMRDC* .SMWTC'
MRDC'.MWTC

; 1 1 1 1 1 ' 1 1 i i i i I I I I . 1 i I 1 . 1 1 • 1 c • 1 1 • 1 > i < 1 | 1 ; 1 ' 1 ; 1]
, 1 , 1 , 1 , 1 : 1 . 1 I . I : i , i ' i i i ! i i i " i ; i

TO-I TOO TO 1 T02 T0.3 T0< T0.6 T06 T07 TO 8 T09 TO A TO B TOC TO D Tl 0 Til

69

EP 0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

Figure 4 - Memory Access to 8-bit ISA Slave (3 BCLK)

BCLK

BALE

LA<23:17>

SA<19:0>

SMRDC-.SMrrc*
WRDCVWWTC

M16*

NOWS*

CHRDY

Read D a t a

D<7:0>

Write D a t a

L _
I I I I I

; i ; t [• i . i
1 ' i i t 1 • 1 (: | |

l l t ^ P - - - .•••s».X«»<!:.

D<7:0>

TO -1 TOO TO 1 TO 2 TQ-J TO-4 TO S Tl O H 1

70

EP 0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

2.3.2 8-bit I/O Cycles

Figures 5, 6, and 7 show the relevant signals for standard cycle (6 BCLK), one wait
state ISA cycle (7 BCLK), and no wait state cycle (3 BCLK) I/O, byte accesses to 8-bit ISA
slaves.

71

cP 0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

frigure 5 - I/O Access to 8-bit ISA Slave -
Standard Cycle (6 BCLK)

IOWC*

u-(, .«... lu.g iw.o iu./ iu.o iu.s 1U.A 10. b TIC TJ I TJ.Z

cr 0 4_B 184 Aid

kXlLJNUtU I INDUSTRY STANDARD ARCHl l ECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

Figure 6 - I/O Access to 8-bit ISA Slave (7 BCLK)

BALE

AENx

SA<15:0>

IORC*,
IOWC*

1016* I

NOWS*

CHRDY

?ead D a t a

, : ; ; 1 i i i >-! TOO TO I T02 TO 3 TO 4 TO 5 T06 T07 TO 8 TO.9 TO* TOE TOC TOE TIC Ti i ti :

5

:P 0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCHITLC 1 UXL
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

Figure 7 -1 /0 Access to 8-bit ISA Slave (3 BCLK)

BCLK

BALE

AENx

SA<15:0>

IOWC*
IORC*

D<7:0>

TO — irO.O- TO 1 TO . 2 TO. 3 TO. 4 TO . O J 1 . u ' 11 1

/4

0

EP 0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

2.3.3 ' 16-bit Memory C y c l e s

Figures 8, 9, and 10 show the relevant signals for standard cycle (3 BCLK), three
wait state ISA cycle (6 BCLK) , and no wait state cycle (2 BCLK) memory, word accesses
to 16-bit slaves.

75

EP 0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

Figure 8 - Memory Access to 16-bit ISA Slave
Standard Cycle (3 BCLK)

BCLK

BALE

SBHE*

LA<23:17>

SA<19:0>

SMRDC'.SMWTC
MRDC'.MWTC'

\ I @ i •
'

i i ! i ; 1 ! 1 !
1

TO - 1 TO O TO 2 T03 TOS T1.0 T! 1

76

EP 0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

Figure 9 - Memory Access to 16-bit ISA Slave (6 BCLK)

BCLK

BALE

LA<23:17> I

SA<19:0> |

SMRDC. SMWTC*
MRDC'.MWTC*

M16* I

NOWS

TO -1 TOO TO.I T0.2 T0.3 TO 4 T0.6 TO 6 TO 7 TO 8 TO 9 TO A TO.B TIC Til

77

EP0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

Figure 10 - Memory Access to 16-bit ISA Slave (2 BCLK)

BCLK

78

EP 0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

* 16-bit I/O Cycles

Figures 11 and 12 show the relevant signals for standard cycle (3 BCLK) and thr<
state ISA cycle (6 BCLK) I/O word accesses to 16-bit ISA slaves.

79

EP 0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

Figure 11 - I/O Access to 16-bit ISA Slave -
Standard Cycle (3 BCLK)

BALE

AEflx

SBHE*

OÂ lU.Vs

IORC*
IOWC*

-nKUT

iu.u iu. I IU.Z T0..5 TO. 4 T0.5 11.0 T1.1

u

EP0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

Figure 12-1/0 Access to 16-bit ISA Slave (6 BCLK)

BCLK

BALE

AENx

SBHE*

SA<15:0>

IORC*
IOWC*

1016*

NOWS*

CHRDY

Read Da ta

~ l _
1 i ! i ; | i * l i i 1 i ; 1 ! 1 i * i I t i 1 _- t 1
: i - M ; i ; ; . i @@ \ n

i i * i i i i i ! 1 • | 1 1 1 • 1 1

' i i ' t i i i i i i J i i > i i

L i

D<15:0>

Write Da ta

D<15:0>

TO-J TOO TO I TO Z T03 T0.4 T05 T06 TO 7 T08 T0.9 TO* TO 8 Tl 0

81

EP 0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

2.4 EISA CPU and Bus Master Cycles

EISA systems provide standard, COMPRESSED and Burst cycle types for data
transfers between the main CPU and memory or I/O slaves. EISA bus masters may use
standard and Burst cycles, but may not use COMPRESSED cycles.

The following notes apply to the EISA cycle description diagrams:

Note 1: Heavy black lines indicate the transfer of control from one bus master to another.

Note 2: Shaded areas indicate a "don't care" signal state.

Note 3: Black dots indicate signal sampling points.

2.4.1 Standard Memory and I/O Cycles

The standard EISA cycle type completes one transfer each two BCLK periods (zero-
wait-state). It can be used to transfer data to or from an EISA memory or I/O slave. Each
wait state adds one BCLK period. The total transfer time can be calculated with the
following formula:

Total Transfer = N*(2 + Tw)*(l BCLK period)

"Where:
Tw = number wait states in each bus cycle
N = number of bus cycles for transfer

For example, an uninterrupted standard transfer of 256 bytes (64 dwords) completes
in 15.4 u.s for a 32-bit transfer and an 8.33 MHz BCLK. A 16-bit transfer completes
in 30.8 /is. This example assumes that no preempts occur during the transfer.

Standard EISA cycles begin with the CPU or bus master presenting a valid address
on LA<31:2> and asserting M-IO to indicate a memory or I/O cycle. The address can
become valid before the end of the previous cycle to allow address pipelining. The
memory or I/O slave decodes the address and asserts the appropriate signals to indicate
the type of slave and whether or not it can perform any special timings. The memory or
I/O slave asserts EX32* or EX16* to indicate support of EISA cycles. An I/O slave must
also decode AENx negated (low) to determine a valid address.

The CPU or bus master asserts START* to indicate the end of the previous cycle
and to indicate that the new cycle is now on the bus. The master also asserts W-R to
indicate a read or write cycle and BE*<3:0> to indicate the bytes being transferred and
their location on the EISA bus. 16-bit transfers use BE* < 3:2 > (address Al = 1) as well as
BE*<1:0> (address A1=0) to indicate the bytes to be transferred even though only the
low 16-bits of the data bus are used. LA<31:2> and BE*<3:0> remain valid until after
negation of START*. A slave that needs to latch the address does so on the trailing edge
of START*.

82

EP 0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

The system board asserts CMD* simultaneously with negation of START* to
control the data transfer to or from the slave. If a read cycle is being performed, the slave
presents the requested data when CMD* is. asserted and holds it valid until CMD* is
negated by the system board. For a write cycle, the CPU or bus master presents the data
prior to assertion of CMD* and the slave latches it on or before the trailing edge of CMD*.
The duration of START* and CMD* may vary, depending on the type and speed of the
devices performing the transfer.

Wait states can be added to the cycle by slow EISA memory or I/O devices. The
slave negates EXRDY after it decodes a valid address and samples START* asserted. The
slave may hold EXRDY negated for a maximum of 2.5 us to complete the transfer, but
must release EXRDY synchronous to the falling edge of BCLK to allow the cycle to
complete.

The slave must allow EXRDY to float high (asserted) synchronously with the BCLK
falling edge and must not hold EXRDY negated longer than 2.5 us.

An EISA I/O slave must assert 1016* as well as EX32* (or EX16*) when addressed
if 16-bit ISA bus master compatibility is necessary. 1016* is asserted after decoding a valid
address on the LA<31:2> address bus and is latched while CMD* is asserted. M-IO is not
included in the address decode for 1016*. EISA I/O slaves that do not need 16-bit ISA
bus master compatibility may assert EX32* (or EX16*) only.

The system board develops M16* from EX32* (or EX16*) to assure compatibility
with ISA bus masters. An EISA memory slave should not drive M16*.

EISA standard memory and I/O cycles are illustrated in flow diagrams. The flow
diagram is a hybrid diagram combining aspects of flow charts and timing diagrams. The
flow diagram is intended to demonstrate the basic concepts for various cycles performed on
the EISA bus. At least one sample of every possible "action" (such as wait states and Burst
termination) is provided, although, of course, every possible combination of bus cycle is not
shown.

The flow diagrams consist of flow-chart-like blocks and arrows, with board-specific
actions enclosed in the blocks. Line types (solid, dotted, bold) are used to differentiate
between the parts of the system involved (such as system board, slave, and bus controller).
The flow diagram is divided into horizontal sections, each section representing the BCLK
edge or level during which the enclosed action occurs." Note that at the beginning of many
cycle types BCLK may not be active. In this case the BCLK states are drawn with dotted
lines.

Flow diagrams do not follow the conventions of normal flow charts in that there is
no "decision" block. In essence, the flow diagrams answer a question such as 'To design a
32-bit one-wait-state EISA memory board, what signals apply during an access to the
board." The designer would then follow the flow diagrams for accesses to 32-bit memory,
and when a branch labeled "Wait states needed," appeared that branch would be followed
to add the desired number wait states.

Flow diagrams should be used to gain an initial understanding of the EISA bus
cycles. They also provide a means of following the sequence of signals wheji reading the
timing diagrams. Once the designer understands the basic cycle types, specific information
on timing and special cases should be obtained from the timing diagrams themselves. In
the event of a conflict of information, the timing diagrams should be assumed to be correct.

83

P 0 426 184 A2

EXTENDED INDUSTRY STANDARD AKCHI I fcC'l ' J X t
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

Figures 13 and 14 illustrate the flow of a data transter trom a 3Z-DU master to jz-du
;lave memory (read and write cycles). The figures include standard and COMPRESSED
rycles. Data transfers from a 16-bit master to a 16-bit slave are the same except for the use
DfEX16" instead o f E X 3 2 \

Figure 15 shows the relevant signals for 2 and 3 BCLK EISA slave accesses.

84

EP0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

Figure 13 - 32-bit Master to 32-bit Slave Memory
Read Accesses

CO-!' Present LAO.tl-C

; i ; low

Hosier:
Memory: Sjrstem:

Decode ADORE SS

Asset START..W-R Present BE'O

Nwmol or Lrlro Wot! State

±
Compressed

(?) tow

.j j t
start. ;

Assert BALE J
Sample START. , Assert BALE i

Assert Assert
HOWS'

. X. I Sample DC3?»
Neoole BALE Assert CUD-

sample
Negate START.

Sample r«2-. NOWS' Neoole BALL
Assert CM>

Negate START.
Present Ne*t Address

Hail Stole; Needed

w»: stales Not Needed

Sample EXRDY Present next ADDRESS

v

© LOW
Present OaTao
Neoole CX3?.

Neoole EXRDr

Sompte

Present OATAO
Heoote EX3;.,HQws.

Uore

'loot
:xrdy

Woit Stoles
Longer Heeded

Cyctesj

»0't Stales 5t.il Needed

t
Latch OATAO
Negole CMO- Assert START.. W-R Resent 8E-o

Uore Cvrt~s
Y.

| LotCh OATAO |
| Negate CU> i

"o'e
.:rdes <o Uore Cycles

Negate cui> ; ToIcMWTao-
Assert

START..W-R Present Bf.<>

| Neoole CUD- |
|" Lotch~OATAO~]

85

EP 0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

Figure 14 - 32-bit Master to 32-bit Slave Memory
Write Accesses

V y — Present LAO.U-O
Uosler.
Memory System

Ueeode ADDRESS

Assert START-.W-R Present B£.<>

Normol or Lttro Woil Stole
±

Compressed

Somoie i START- | Assert BAIX I
SOmpie START.

Assert BALE
"~"T" —

1

©
Assen EX32-
Pfesenl DATAO

Assert EX32-.NOWS.
Present
DATAO

sompie EX32-
teoote_8Aa:_

sample EX32- Assert CUD- Heoote START-

Sample EX32-. MOWS- Heoote BALE
Assert CUD-
Negate START. Present Next Address

hqi\ stoies Neeoe-a

wort notes Not Needed
Negate CXRDY

» '
Sample EXRDY

Neoole EXJ2-.
wows-

Uore
Cycles J

to -lore Cycles

©

© .

sample EXRDY Present Nert ADDRESS

loot I :xroy I

wegoie CX32-

wore Crcles >

wail Slotes
No Lonoer

Needed

von Stotes >t«!
*eeded

io More Cycles
Neoole CUD- ;

LOlcn DATAO
ASSeri ST ART., W-R

Vesenl B£-o

Neoote CUD- j
loicn OaTao

Ne«l
Cycle

latch OATAO lOtch OATAO
Negate CUD- | Assert ST ART..W-R

Neoote CUD-
"resent BEO- j

Nert
Cycle

56

EP 0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

Figure 15 - Access to EISA Slave - 3 BCLK and
Standard (2 BCLK) Cycles

LA<31:2>
M-IO

BE*<3:0>

START*

EX32
EX16

EXRDY

NOWS

1 @ 1 ; 1 1 ; 1 ; 1 r
ldo ioi id: ioj io< to.s n'o m if? ii3 12.0 in i?:

87

EP 0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFI DENTIAL INFORMATION OF BCPR SERVICES, INC.

2.4.2 COMPRESSED Cycles

The COMPRESSED cycle type completes one transfer each 1.5 BCLK period. It
can be used by the main CPU to transfer data to or from fast EISA memory or I/O slaves.
The total transfer time can be calculated with the following formula:

Total Transfer = N*(1.5 BCLK period) ms

Where: N = number of bus cycles for transfer

For example, an uninterrupted 32-bit COMPRESSED transfer of 256 bytes (64
dwords) completes in 115 lis with an 833 MHz BCLK. A 16-bit transfer completes
in 23 ms. This example assumes that no preempts occur during the transfer.

COMPRESSED cycles are a special case of Standard cycles in which the main CPU
presents a new address each 15 BCLK period and the system board reduces the duration
of CMD* to 05 BCLK The timing requirements for the generation of COMPRESSED
cycles are more strict than for normal EISA cycles, and, as such, special design methods are
required for both the systems and slaves that support these cycles. A slave indicates
support of COMPRESSED cycles by asserting NOWS* in time for the system board to
sample on the rising edge, of BCLK at the leading edge of CMD*. The slave must not
negate EXRDY after asserting NOWS*. The CMD*. pulse width is 1/2 BCLK for
COMPRESSED cycles, but the slave must be prepared to accept a CMD* pulse of 1 BCLK
or longer. The longer CMD* occurs when a bus master or other device initiates the cycle
instead of the main CPU.

Figure 16 shows the relevant signals for COMPRESSED read and write cycles
between a 32-bit master and a 32-bit slave. Observe the half-cycle extension of BCLK for
synchronization. Data transfers from a 16-bit CPU to a 16-bit slave are the same except for
the use of EX16* instead of EX32*.

88

EP 0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

Figure 16 - Access to EISA Slave - COMPRESSED Cycle
(1.5 BCLK)

89

EP 0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCFR SERVICES, INC.

2.4.3 Burst Cycles

The Burst cycle type provides a continuous sequence of 1 BCLK read or write
cycles. Burst cycles are zero-wait-state transfers to or from EISA memory. Burst cycles
cannot be used with I/O devices or ISA memory devices (slaves or masters). The total
time for a Burst transfer can be calculated with the following formula:

Total transfer = (l-t-T^ + N^O BCLK period) u s

Where:
T ^ = number wait states in initial bus cycle
N = number of bus cycles for transfer

For example, an uninterrupted 32-bit Burst of 256 bytes (64 dwords) completes in
7.8 us with an 833 MHz BCLK. A 16-bit transfer completes in 15.6 us. This
example assumes that no preempts occur during the transfer.

The first cycle in a Burst transfer begins like a standard cycle. The CPU or bus
master presents a valid address, and the memory slave, after decoding the address and
M-IO, indicates that it can perform Burst cycles by asserting SLBURST*. The CPU or bus
master samples SLBURST* on the rising edge of BCLK at the trailing edge of START*.
The CPU or bus master indicates its ability to do Burst cycles by asserting MSBURST* on
the falling edge of BCLK and presenting the second address to the slave. If the CPU or
bus master found SLBURST* asserted, it performs the transfer using Burst cycles, and the
system board, instead of negating CMD* keeps it asserted while the CPU or bus master
performs the Burst. The CPU or bus master reverts to a standard cycle and leaves
MSBURST* negated if the memory slave does not assert SLBURST* or if the slave type
does not support the Burst.

If the Burst cycle is a read, the Burst addresses are presented on the falling edge of
every BCLK, and the slave presents the data for that address for sampling l3 BCLK
periods later. If the Burst cycle is a write the CPU or bus master presents the data on the
rising edge of BCLK 1/2 cycle after presenting the address. This differs from standard
cycles in which the data is presented on the falling edge of BCLK. The CPU or bus master
tenninates the Burst cycle by negating MSBURST* at the address change and completing
the last transfer.

A Burst transfer must be all reads or all writes. Mixed cycles are not allowed. The
byte enables may change within the block. Although a Burst transfer normally performs
zero-wait-state cycles, a slave can add wait states during a Burst sequence by negating-
EXRDY before the falling edge of BCLK (with CMD* asserted). The master samples
EXRDY on the falling edge of BCLK and extends the cycle until EXRDY is asserted. The
master can still change to the next address even though EXRDY is negated. Note that it is
not possible to decode a valid address in time to negate EXRDY. The slave must know in
advance that wait states are needed. An intelligent slave can use the wait states to
interrupt the Burst sequence while it accesses local shared memory. A memory slave
cannot terminate a Burst.

-Addresses asserted during a Burst sequence to DRAM memory must be within a
1024 byte DRAM memory page (address lines LA<31:10> cannot change during the
Burst). To cross a DRAM page boundary, the Burst sequence must be terminated by the
CPU or bus master by negating the MSBURST* signal on the last cycle in the page. The
Burst sequence can be restarted on a new page.

90

EP 0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

Figure 17 shows a Burst read cycle from a 32-bit master to a 32-bit slave. Figure 18
shows the relevant signals for reads and writes between a 32-bit master and a 32-bit slave.
Data transfers from a 16-bit master to a 16rbit slave are the same except for the use of
EX16* instead ofEX32*.

91

EP 0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

Figure 17 - 32-bit Master to 32-bit Slave Burst
Read Transfers

80.K
Prcsenl LAO Assert U-O

Nosier Sieve Sritem

Oecode MORISS

.1-2

I 2 . HCh

Assert start. Neook w-R Present BC'0

Sfc>e Supports Burst lrorrsfcrs Slovt Don lot Support Bursts

2-3

0 L0«

I Sjrnpre I \ START. I
I Assert MI |

Assert £X32-. SLBURST*
7 3

SorrtAe start-
Assert a«

Assert £132-

I Samp* I EW2-
| Nejote BALE l Assert CUO

Sorrcie EXJ2>. SLBURST' Neoote START.

-* , Some* i EW2- I Neoote BALE 1
Assert CUC

TBTSlotes Weeded-

Sompte EX32'. SLBURST' Neoole START.
Ho* Stoics >WI States Needed""

0
Vol States

Neoote DtROY

©
No y»c Bursts More Bunts

Sample COW 1 n - -J nooTi î cti LAO. Bt'O Neoote MSBURST.

0

Sample EWDY Preset Hcvi
LX>. 8E*o Asert IrSBURST'

Present OATAO
Decode ACORESS

Vat Cyoa

I Nr/oole cuo.
lolctl OATAO Assert START Present BE-O
Neoote W-R (»ol*)

No Nor; Crete

Sample MS80RST.

I Neoole CUD- ,
LotOi OATAO 1 MSBURST-

Neoote SLBURSl'
SornfJe WSBURSt-

Present OATAO Decode AODRESS

lotrtt OATAO
Sample US8URSI.

Sarrtpitr EXfgft
WO. BE-O

float EXRW
wot Sides No Lonoer Needed

Somple EXRDr Present Hert LAO. SE'O

Won States SI* Needed
Present OATAO Decode ADDRESS

, Li! Trore.l«*s
I Neoole CUO*

EXROT

Sample EKR01 Present Hert LAO. BE-O

Float
EtRDT
Wort Stoles No tcnoer Needed

Won Slates Si»

No Uote Trprrsters Needed

won Siotes Hal Needed
Woit Stales Needed

lotcti OATAO Assert START PitjcH BE-O Neoote W-R (Note)

Neoole OfO*
Lotcfi DATAO

©

Moif tf ntrnl eye* n a «trie. onrfl »-P
o»v} <jo lo co»»c*port«V»q stoic •> -wite 0Vxj»c*n

92

EP 0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

Figure 18 • 32-bit Master to 32-bit Slave Burst
Write Transfers

P* *,@*@@< IM> *••»<• u-o St-.'-~

Oecooe ADtWCSS

Imrrt ST*1. Msrrt W-B @-went SC*<>
5*-w Suppon, Burrt Tron-Acs Sta** Don Mot Support Be*,

3 . 1 .

I A-atrt BALL [STWt. r«-- 6AL£

0 CM?.. SLaWST*

©

dm*
I Am**1 CU> 1

Neoote START*

Nr*rte I dkdy 1

Sanok CrRtTr
Lao. <E*<>

K3J* Neoote »<±£ Aoaert CUT>
W2?Taa«sT.
Neoote si«n.

oauo

<3>-

© .

Bunrtl Axe kn-li
Some-* tKRJJT P-menl Neil LAO. Bt-O Neoote MS8UBST-

LAO. Bt'O

Decode WOBtSS

Me* oaiao So"**- msburst.
I Neoote L1*V

Ararrrt SiAki *ve»enl se*<>

Decode atjcxss

So*-«-*e arm Pnpj<f*t Mel LAO. 8C-0 Neoote MSauRSl*
(oil Stoles

Sorr«le C*W Present Neil IAO. K*0
"loot Starr

Decooe AOOUCSS
Slota; *> Lonor: Neeoeo-

•fort itotes

Cycle,
Loteft OATAO ĉoote SLBURST* Some* WS8URS1.
Neoote CUT).

Uexe 1rt>r*fJ«f,

.men DATAO So-nr* US8UXS1*

f Negate 1
I MSBURST* j

Ne Uore Ttorwte-* Neeoed

WoJl Stain Kol I
•pit Staty? **g-fO>tf

Awert START
*wt w-ft <**<•)

***90«e CW>
•tfoet.? wsbursi.

©
Mote @ cyrV n o .*o<3. neoole *»-«

33

EP 0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

Figure 19 @ Access to EISA Slave - Burst Cycles
(With and Without Wait States)

BCLK

LA<31 2>
W-10

BE*<3:0>

W-R

START'

CMD'

EX32'
EX16'

EXRDY

MSBURST'

READ DATA

WRITE DATA

TOO T0.1 TO.? T0.3 T0« 10.5 T0.6 TO.' T0.8 10.9 IQA 10.8 TOX TQ.D 110 Tl.l
1) EISA Standard Access (Start of Burst)
2) EISA Burst Access
3) EISA Burst Access with One Wail State

4,5)
6)

EISA Burst Access
EISA Standard Access

94

EP 0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCHI TECTl-Kfc
CONFIDENTIAL INFORMATION OF BCPR SERVICES, :NC.

2.5 DMA Cycles

DMA devices can use one of four cycle control sequences to transfer data between
the DMA device and memory: ISA compatible cycles, Type "A" cycles, Type "B" cycles, or
Burst DMA cycles. Each cycle type can be run as a single cycle transfer (Single mode), or
as a continuous sequence of cycles (Block or Demand mode). See the DMA controller
section for more information on Single, Block and Demand DMA controller modes. The
DMA controller supports 8-, 16- and32-bit data transfer sizes. The DMA device reads or
writes the appropriate bytes on the bus for its data size.

DMA devices use IORC* and IOWC* for I/O reads and writes. The system board
asserts the appropriate I/O command signal (IORC* or IOWC*) with DAK*<x> and
negates the command signal when the data lines are valid (for a write) or when the system
board latches the data (for a read). The I/O command signal remains asserted during
memory wait states or data size translation The DMA device cannot add wait states.

2.5.1 ISA Compatible DMA Cycles: ISA Compa t ib l e

The ISA compatible DMA cycle type executes one transfer cycle in 8 BCLK periods.
Each wait state adds two BCLK periods. ISA DMA devices can use this cycle type to
transfer data between the DMA device and 32-, 16- or 8-bit memory. The total transfer
time can be calculated with the following formula:

Total Transfer = (l + N*(8+2*Tw))*(l BCLK period)

Where:
Tw = number wait states in each bus cycle
N = number of bus cycles for transfer

For example, an uninterrupted zero-wait-state 16-bit transfer of 256 bytes (128 words)
completes in 123.2 ms (2.07 MB/s) with an 8.33 MHz BCLK.

The first cycle of a DMA transfer begins with the system board presenting
LA<31:2>, BE* <3:0>, M-IO, and W-R on the falling edge of BCLK For memory reads,
the system board asserts START* on the next rising edge of BCLK. The system board
asserts CMD* and IOWC* on the next rising edge of BCLK. The system board holds
IOWC* asserted while the memory slave presents the data, then negates IOWC*. The
DMA device samples DAK* <x> and IOWC* asserted, then latches the data on the rising
edge of IOWC*. The system board holds IOWC* active for 3 BCLK periods and holds
CMD* asserted until 1/2 BCLK after negating IOWC*.

If the DMA cycle is an I/O read (memory write), the system board asserts IORC*
on the rising edge of BCLK after presenting the address. The system board then asserts
START* on the rising edge of BCLK, two BCLKs later. On the next rising edge of BCLK
the system board asserts CMD*. The DMA device must present the data when it samples
DAK*<x> and IORC* asserted, and must hold the data valid until the system board
negates IORC*. The system board holds CMD* asserted for 3 BCLK periods and holds
IORC* asserted until 1/2 BCLK after negating CMD*. A DMA device cannot add wan
states to a DMA cycle. It must conform to the system board cycle control.

95

!P 0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCHI I bL I U K t
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

The ISA-compatible DMA cycle is the same for all types ot memory, lne m k u l
or MWTC* signals are activated to allow ISA memory to be accessed unless the address is

greater than 16 megabytes and an EISA memory device responds. The MRDC* signal is
asserted at the same time as IOWC* is asserted and is negated at the same time that
CMD" is negated for I/O write (memory read) cycles. MWTC* has the same timing as
CMD* during I/O read (memory write) cycles.

"Verify" transfers have the same address, DAK*<x>, and T-C timing as other
compatible transfers but do not assert any command signals. This means that DMA
devices do not see an IORC* or IOWC* asserted and memory does not respond to memory
accesses.

Figure 20 show Type "A," Type "B," and Type "C (Burst) DMA reads. Figure 21
shows an ISA-compatible DMA read.

Figure 22 shows Type "A," Type "B," and Type "C (Burst) DMA writes. Figure 23
shows anlSA-compatible DMA write.

Figures 24 and 25 show the signals used in ISA-compatible DMA cycles.

96

EP0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

Figure 20 - 32-bit DMA Read Transfer from 32-bit Memory -
Type "A," "B," and Burst Cycles (No Wait States)

DMA Co"*

O

<3>

©

Pm—tt IA<>. , SA-f>. «-<> I •nrl w~m. u-K> sao. BC-<>

JW*M CW-f>.-0»<- -wl c*e>*.a*c*

Sao. eC -<> w-«. W-O

©
rw>* two*

No Uort.l̂ nflfn,

3 1

©

©

Me Mot Tr-onafr*!

o> -

'©"""-

<3>

ttcmow •*0>«-»« •*«< Control

97

EP 0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

Figure 21 - 32-bit DMA Read Transfer from 32-bit Memory -
Compatible Cycle (No Wait States)

Assert DRO*
i .

Perform ArbltroUoo. O'ant Bus
3 E

DMA COOlr0M«f DMA Device: Memory;

BCLK
DAK

ComDot -O-e

o
Prement LAO. SAO. BE-O Assert w— R. M — lO

Assert START*. M ROC*

Auerl EX3Z-

(S)

o

Assert CMO-.IOWC- Nejete START.

Somple EXRDY
Float EXRDY

"cf)""

Present OATAO

Somple CHRDY

Neejote IOWC » Somo'e DRQx
t-otcf. DATAO

C D Neqole CWD'.MROC-

More Tronsfers NO Wore Trpniif era
3 ^

present Next Address Somple- PRO*

Remove Address ond Control
Negate

Negate DAK*«

98

EP 0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

Figure 22 - 32-bit DMA Write Transfer to 32-bit Memory -
Type "A," "B," and Burst Cycles (No Wait States)

CAM Control

....-L-- - *r

© - ac»<> *+m<n
1

©

© -

S> -

© ~

<3>-

— i
And pn-O- So»**o*» Pf32"

ST ART. 1
Pre*e*t t-r*t o*Ta<> i

©

9

EP 0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

Figure 23 - 32-bit DMA Write Transfer to 32-bit Memory -
Compatible Cycle (No Wait States)

DROx

BCLK
Per f o r i-r» Arbitrot-on. Gront Bus

DMA Cont t OUe DMA Device: MeTiOry ;

Assert OAK).- Compolibltf
Present t_A< > . SAO BE-O Assert w — R . M — i O

C D

Assert IORC-
3 E

Alsert CX32-

c d

Assert START*. MWTC-

Assert DATAO

c d

Assert CUD" Negate START*

Somple EXRDY |
Float EXRDY

C D Somple CHRDY

Negate CMD- Sompie DROx
Lolch OATAO

C D Negate iORC-

No More Tea n3f c

C D Present NfjKt Address Somo'c DRQy
J

Remove Address ond Control
Negate CX32*

Nego t e OAK x -

100

EP 0 426 184 A2

EXTENDED INDUSTRY STANDARD .ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

Figure 24 - DMA Transfer from Memory Without Conversion -
Compatible Cycle: Demand Read

BCLK

DRQ<x>

J T J - I J T J T J 1 J T J T J T J T J 1 ^ ^

DAK'<x>

LA<31:2>
M-10

100 10 2 iOA t0.6 10 o t0 * tO.C ICE IO C 10.1 tO X 10 M 10 0 10.Q 10.S 10.U 10 » to 1
tC 1 t0.3 10 6 10 7 to 9 10 B 10 D 10 T 10.11 10.J 10 L tO K 10 P 10 R 10 T tO V 10 X 10 2

101

EP 0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

Figure 25 -DMA Transfer to Memory Without Conversion -
Compatible Cycle: Demand Write

BCLK

DRQ<x>

AENx

DAK'<x>

U<31:2>
M-iO

SA<19:0>

J T J l J l J T T U T r T J T J T r T ^

W-R

START*

CMD'

EX32*
EX16*

EXRDY

CHRDY

IORC*

UVfTC*

DATA

T-C

10.0 10.2 KM 10.6 10.8 tOJk IOC 10.E 10.C 10.1 10 K 10 H 10 0 10 q 10 S 10 U 10* 10 Y
10.1 10 3 10.6 10 7 10.9 IO.B 10.D 10.F 10.H I0.;_t0.l tON tCP 10.K 10 T 10 V to X 10 2

102

EP0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

2.5.2 Type "A" DMA Cycles

The Type "A" DMA cycle supports 8-, 16- or 32-bit DMA devices. Transfers that do
not require data size translation execute one cycle every 6 BCLK periods. The system
board automatically performs data size translation for transfers to mismatched memory.
The totaJ transfer time can be calculated with the following formula:

Total Transfer = (7+(N-l)*(6+Tw))'(l BCLK period)

Where:
Tw = number wait states in each bus cycle
N = number of bus cycles for transfer

For example, an uninterrupted zero-wait-state 32-bit transfer of 256 bytes (64
DWORDs) completes in 46.2 ms (534 MB/s) with an 8.33 MHz BCLK. A 16-bit
transfer (128 words) completes in 923 us (2.78 MB/s). This example assumes that no
preempts occur during the transfer.

Most ISA compatible DMA devices can transfer data 13 times faster by
programming the EISA controller to Type "A" transfers instead of ISA compatible timing
(the default). Type "A" transfers provide the performance improvement by reducing the
time required for the memory read or write operation and by reducing the duration of the
I/O command strobe (IORC* or IOWC*). No hardware modification is normally
required. This cycle type works as described only with fast, EISA memory. With non-
EISA memory or if data size translation is required, the cycle reverts to memory u'ming
similar to that used with bus masters. The I/O portion of the cycle (data setup time for
writes, and I/O read access time for reads) is the same as ISA compatible cycles. The
MRDC* ana MWTC* signals are not asserted unless the system must do a data size
translation for ISA memory.

Figures 26 through 29 show relevant signals for Type "A" DMA read and write
cycles between a DMA device and 32- or 16-bit memory.

103

EP 0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCHITECT UkE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

Figure 26 - DMA Transfer from Memory Without Conversion -
Type "A" Cycle: Demand Read

BCLK

DRQ<x>

AENx

DAK*<x>

LA<31:2>

SA<19:0>

W-R

START*

CMD*

EX32*
EX16*

EXRDY

IOWC*

MRDC*

DATA

T-C

- T T _ n J T T L r i r ^ ^

L.

i i

H.

K

10.0 10.2 70.« TO.S 70.B T0> 10.C 70.C 10.G TOJ 70.K 70.U 70.0 10.0 10.S 10.U 10W TOY 10.1
70 1 70.3 70.5 70.7 70.9 10.8 70.0 70T 70.H 10.J 70.L tO.N 70 P 70.R 70. T 70.V 10 » 10.2 1

10.13
)12

Note: The first memory cycle is shown with an extra W8il stale added by the memory slave.

104

SP0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

Figure 27 - 32-bit DMA Transfer from 16-bit EISA Memory with
Conversion - Type "A " Cycle: Read

BCLK

DRQ<x>

AENx

DAK*<x>

LA<31:2>

SA<19:0>

•T-R

START*

CUD*

EX16*

M16*

EXRDY

IOWC

MRDC*

DATA

T-C

J - L

100 10.1 10.5 10.3 10« 10.5 10.6 10.7 10S 10.9 I0J> 10.8 10.C 10.0 10.C 10.' 10.C 10.H I0J 10 J 10 k' IC.I 10 " '0™ "l/Vl m -

Note The memory cycles are shown with wail stales added by the 1 6— bit EISA memory slave

105

EP 0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

Figure 28 - DMA Transfer to Memory Without Conversion -
Type "A" Cycle: Demand Write

BCLK

DRQ<3(>

AENx

DAK*<x>

LA<31:2>

SA<19:0>

W-R

START*

CUD'

EX32*
EX16*

EXRDY

IORC*

MWTC*

DATA

T-C

J ^ T L T i r i r x r i j T j n r ^

I
I

i i

i

[' 1 : 1

l u t

i

K

L_LT

i -' I ' ' : l : I : l : I @ I ; 1 : I I I : I : I • l I I I > 1 - 1
TOO TO.? TO 4 TO 6 10 8 70> TO.C TO.C TO.G 10.1 TO.K TO U TOO TOO TOS TOU TOW TO Y

TO 1 T0.3 T0.5 T0.7 T0.9 10.B 10.0 TO f 10.H 10.J TO.L TO N TO P TOR TO 1 1C v T0.X

Note: The first memory cycle is shown with a wait stale added by the memory slave

106

EP 0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

Figure 29 - 32-bit DMA Transfer to 16-bit EISA Memory with
Conversion - Type "A" Cycle: Write

BCLK

drq<x> ;r

AENx

DAK'<x>

LA<31:2>

SA<19:0>

W-R

START*

CMD*

EX16*

M16*

EXRDY

IORC*

MWTC*

DATA

T-C

70.0 10! 10.2 10.3 10.' 105 10.6 10.7 10.8 10.9 10.A 10.8 I0.C 10.0 IO C 10 r 10C 10.H lo t 10.J 10« 10.1 10" 10 k 10.0 10 '

Note- The first memory cycle is shown with a wait state added by the memory slave.

107

EP 0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

di.o.o i ype b uma <jycies

The Type "B" DMA cycle supports 8-, 16- or 32-bit DMA devices. Transfers that do
not require data size translation execute one cycle every 4 BCLK periods. The system board automatically performs data size translation for transfers to mismatched memory.
The total transfer time can be calculated with the following formula:

Total Transfer = (2 + N'(4 + Tw))*(l BCLK period)

Where:
Tw = number wait states in each bus cycle
N = number of bus cycles for transfer

For example, an uninterrupted zero-wait-state 32-bit transfer of 256 bytes (64
DWORDs) completes in 31 ms (8.26 MB/s) with an 8.33 MHz BCLK. A 16-bit
transfer (128 words) completes in 61.7 ms (4.15 MB/s). This example assumes that no
preempts occur during the transfer.

Some ISA compatible DMA devices can transfer data two times faster by
jrogramming the EISA controller to Type "B" transfers instead of ISA compatible timing
;the default). Type "B" transfers provide the performance improvement by reducing the
ime required for the memory read or write operation and by reducing the data setup time
:or I/O writes, and read access time for I/O reads. ISA compatible DMA devices using
@elatively fast technology can use Type "B" cycles without hardware modification. This
:ycle type works as described only with fast, EISA memory. With non-EISA memory or if
iata size translation is required, the cycle reverts to memory timing similar to that used
vith bus masters. The MRDC* and MWTC* signals are not asserted unless the system
nust do a data size translation for ISA memory.

Figures 30 through 33 show the relevant signals for a Type "B" DMA write cycle
jetween a DMA device and 32-bit or 16-bit memory.

08

EP 0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

Figure 30 - DMA Transfer from Memory Without Conversion -
Type "B" Cycle: Demand Read

BCLK

DRQ<x>

AENx

DAK'<x>

LA<3!:2>

SA<19:0>

W-R

START'

CUD'
EX32*
EX16'

EXRDY

IOWC

MRDC

DATA

T-C

- T I J I J - I J T J I J I J I J I X I J ^ ^
I - > I I I I - I • S I : 1 ; I • t @ l I • I I > I I @ I I @ I t • ' • " @ • [I " i 1 i i ' | ' i ! i ! i ' i ' I i r i i i [i ' „ i I ̂ - ; I I (I i i f ' i i [i

_1T~ ; ; i * : ; ; . 'be*,* .**. \: @ 1 1 r ;

10.0 TO.? 10.4 70.6 10.8 T0> TO.C TO.C 70.C 70.1 TO.K 70 U 10.0 TOO 10 S 10.U TO* 10 V 10 11 10. 1 3
10 1 T03 70.5 10.7 TO 9 10 8 10 D T0f TO H 70.J 101 TON TOP TOP 101 10 V TO * TO 7 10 1?

Sole The firsl memory cycle is shown with a wait slate added by the memory siave

109

EP 0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

Figure 31 - 32-bit DMA Transfer from 16-bil EISA Memory with
Conversion - Type "B" Cycle: Read

W.V IU @ IV.t IV.J IU.. ty.J I) 1.9 KM IO.S TO.C IO.D TO.E TO I TO.C TO.H 10 1 10 J 10 K 101 10 u 10 H TOO TOP

loie: me memory cycles are shown with wan stales added by the memory slave.

10

EP0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, iNC.

Figure 32 - DMA Transfer to Memory Without Conversion -
Type "B" Cycle: Demand Write

BCLK

DRQ-:X.

AENx

DAK*<x>

LA<3!.2>

SA<!9.0>

W-R

START*

CMD*

EX32*
EX16*

EXRDY

IORC*

MWTC

DATA

T-C

I I ! I ! I ; I I I I I i i I ! I I I I I i I
J l J l J T J O J l J l J T J L r i ^

I • i @ ' j I ' I ' t I @ I : I t • [I i t i I ' i I i ' (I ' I ' I i ' i ' I ' r > • i @ i • i i i ' ' i • i ' i > i i '
i ' ' i g @ 1 A ' '- ' ' ' ' 1 1 1 1

I ' I I @ I

I

JTl

!

r f i L j i

1 1

h :

10.0 10.2 10< 106 10.8 10> 10.C 10.C 10.G 10.1 10.K 10.U 10.0 10.0 105 10.U 10* iot .on n o
ioi io.3 io.s io.7 io.9 io.b io.o io r io.h ioj lo.t ion io.p io* 10.1 io.v 10* ioz to i?

Note The first memory cycle is shown with a wail state added by the memory slave

111

EP 0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

Figure 33 - 32-bit DMA Transfer to 16-bit EISA Memory with
Conversion - Type "B" Cycle: Write

BCLK

DRQ<x>

AENx

DAK*<x>

LA<31:2>

SA<I9:0>

W-R

START*

CMD*

EX16*

M16*

EXRDY

IORC*

MWTC*

DATA

T-C

I I

I I I I , I ;

TO.O 10.1 10.J I0.J 10 < 10.5 10.6 107 10.8 10.9 10> 10.6 10.C 10.0 I0.C TO.r 10.C 10" W 10 J 10 1 let 10 u 10 h 10 0 10 f

Note. The first memory cycle is shown with a wait state added by the memory slave.

112

iP 0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCH I I LCI UK*.
;ONFIDENTlAL INFORMATION OF BCPR SERVICES, INC.

>.5.4 Burst DMA (Type "C") Cycles

Burst DMA (Type "C) cycles have characteristics similar to Burst cycles. Burst
DMA cycles can perform a sequence of 8-, 16- or 32-bit transfers between EISA Burst

nemory and the DMA device in 1 BCLK each.

The total time for a zero-wait-state transfer can be calculated with the following
'ormula:

Total transfer = (3+Twj + N)*(l BCLK period) ms

Where:
T^ = number wait states in initial bus cycle
N = number of bus cycles for transfer

For example, an uninterrupted transfer of 256 bytes (64 dwords) completes in 8.1 /as
(31.6 MB/s) with an 833 MHz B C L K

The DMA Device requests the bus by asserting its DRQ<x>. The system board
performs the arbitration, and asserts the appropriate DAK*<x> on the rising edge of
BCLK. On a later falling edge of BCLK the system board presents LA<31:2>,
BE*<3:0>, W-R and M-IO, with M-IO indicating memory (high). The system board
asserts MSBURST* to indicate its ability to support Burst cycles. The memory slave
decodes a valid address on LA<31:2> and asserts SLBURST*. When this is detected, the
system board asserts MSBURST* to indicated its ability to support Burst cycles. On the
next rising edge of BCLK, the system board asserts START* and samples SLBURST*
asserted. If the system board samples SLBURST* negated the cycle reverts to memory
timing similar to the standard memory cycle generated by EISA bus masters.

If the system board samples SLBURST* asserted, the system board continues the
transfer using Burst cycles. On the next rising edge of BCLK, the system board negates
START* and asserts CMD* and IOWC*. The DMA device decodes IOWC* with its
DAK* <x> asserted and samples the data bus on the rising edge of BCLK.

While the Burst cycles continue, the system board presents the pipelined address
(on LA<31:2>, BE*<3:0>) and MSBURST* on each falling edge of BCLK. The system
board presents the address 1/2 BCLK before the beginning of the next Burst cycle
(pipelined). Burst cycles continue until the system board negates MSBURST*. The

memory slave samples MSBURST* on each rising edge of BCLK.

On each rising edge of BCLK, the DMA device samples the data. The memory
slave drives new data on rising edges of BCLK coincident with the DMA device sampling
the data. The system board samples DRQ<x> on rising edges of BCLK at the beginning
of each cvcle (on the same BCLK edge that the DMA device is supposed to drive the data).
If the DMA device negates DRQ<x>, then, on the next falling edge of BCLK, the system
board tristates the address and negates MSBURST*. On the next rising edge of BCLK the

system board negates CMD* and IOWC*. The DMA device stops sampling the data when
IOWC* is negated. The memory slave floats the D<31:0> after the trailing edge of
CMD*-. The system board negates DAK*<x> on or after the same BCLK rising edge
where CMD* is negated.

113

EP 0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

A slave can add wait states during a Burst sequence by negating EXRDY before the
falling edge of BCLK (with CMD* asserted). The system board samples EXRDY on the
falling edge of BCLK and extends the cycle until EXRDY is floated (asserted). The DMA
device is also sampling EXRDY and waiting to sample the data. The system board can still
change to the next address even though EXRDY is negated. Note that it is not possible to
decode a valid address in time to negate EXRDY. The slave must know in advance that
wait states are needed. An intelligent slave can use the wait states to interrupt the Burst
sequence while it accesses local shared memory.

Addresses asserted during Burst DMA cycles to DRAM memory must be within a
1024 byte DRAM memory page (address line LA<31:10> cannot change during the
transfer). To cross a DRAM page boundary, the system board terminates the Burst DMA
sequence by negating the MSBURST* signal on the last cycle in the page. The system
board then restarts the sequence on the new page.

The system board generates the memory addresses and assures the sequence is
within a DRAM page. The system board supplies the transfer control and signal
translation. The DMA device must monitor its DAK* <x>, BCLK, EXRDY, and IORC*
or IOWC* signals to determine when to drive the data (on writes) or latch the data (on
reads).

The system board automatically reverts to normal cycles if the addressed memory
does not support Burst DMA cycles. If ISA memory devices are addressed, the system does
the appropriate signal and data size translations.

Figure 34 shows the relevant signals for a Burst (Type "C") DMA read cycle
between a 32-bit DMA device and 32-bit memory. Figure 35 shows the relevant signals for
a Type "C read cycle between a 32-bit DMA device and 16-bit EISA memory. Figures 36
and 37 show the write cycle.

114

EP0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCHI1ECTUR2
CONFI DENTIAL INFORMATION OF BCPR SERVICES, INC.

Figure 54 - DMA Transfer from Memory Without Conversion -
Burst DMA Cycle: Demand Read

BCLK

DRQ<x>

AENx

DAX'<x>

LA<31:2>

W-rR

EX32*

SA<19:0>

START*

CMD"

EXRDY

IOWC*

MRDC*

DATA

T-C

MSBURST-

SLBURST*

1) 32-
2) 2nd
3) 3rd
Note:

wmm

J i j : 1 ! ; i | ! 1 ! I ! 1 ! : ! M L _ J L

@ i i i t i , r . t i ' 1 1 • I - [• t • 1 • t 1 t 1 • ' 1 i t ; * , i » , i ; i ; i @ i j j i

i ; l t i . i (i (i j l . l : i ; i , ' 1 i 1

| ; | 'l i H 2 H 3 H « H 5 H 6 |— ! — ! — • ' r

; : ; ;i , \ h * h * h .*• h .
* \ r j i \ ; ; : ;

i ! i @ I I — li M M i ; s i j i j i ; i ; i M
1 i ; [i I i i ; i = i i i i i , i i i [I " 1 @ 1 ' t : (| i : 1 r 1 ;) : 1 j 1 ' 1 ' '

I ' 1 ! t ! ! 1 1 ! 1 ' 1 - I j 1 "' 1 ' t ; 1 1 t : i @ (• i i i i i : i ; i ; i ; i ; i @ ' . i i i i i t i i - i • i i . i 1 1 t 1 : 1 j 1 t t ; 1 1 I I 1

1 1 (! t ! : ! ' i 1 : ' 1 1 1 • I | f t : t •" 1 @ 1 1 I : t I - ' 1 I 1 1 i 1 ! 1 @ t • 1 1 t i 1 @ 1 t 1 1 1 1 I 1 t 1 * t ' 1 1 1 ' 1 • 1 1

10 0 10 1 10.2 10 3 10 < 10.5 10.6 10.7 10 8 10 9 10 i 10 B 10C 10.D lO.t 10/ 70 C TOM
bit DMA to 32-bit Memory. 1st Burst Cycle 4) 4th cycle with one wail stale
cycle 5) 5lh cycle
cycle 6) Last cycle fDR0<x>)
Vertical marks indicate possible times to negate DRQ<x>.

115

EP 0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

Figure 35 - 32-bit DMA Transfer from 16-bit EISA Memory with
Conversion - Burst DMA Cycle: Read

DRQ<x>

AENx

DAK*<x>

LA<3!:2>

SA<19:0>

W-R

START*

CMD*

EX32*

EXJ6*

MI6*

EXRDY

IOWC*

MRDC*

DATA

T-C

MSBURST*

SLBURST*
1O0 10.1 TO.7 10.3 10* 10.6 106 10 7 TO.fl 10.9 10.A 108 10*C TOO TO C TOf 10 C TOM TOr TC

Note The first memory cycle is shown with a "Bit 3tate added by the memory slave

16

EP 0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, IWT,

Figure 36 - DMA Transfer to Memory Without Conversion @
Burst DMA Cycle: Demand Write

BCLK

DRQ<X>

AENx

UAK*<X>

LA<31:Z>

SX32"

SA<19:0>

START*

CMD"

EXRDY

IOKC*

MWTC

DATA

T-C

MSBURST*

SLBURST*

= i - -i

10.0 10.1 10.? 10.3 10.4 10.5 10.6 107 10.6 '0.9 10.A 10.6 10.C 10.0 10 E lO.f IO C 10"
1) 32-bit DMA to 32-bit Memory. 1st Type "C" Cycle 4) 4th cycle with one wait state
2) 2nd cycle 5) 5th cycle •
3) 3rd cycle 6) Last cycle (DRX<x> Dropped)
Note. Vertical marks indicate possible times to negate DRQ<x>.

117

Cr* U H£0 1 04 H£

^ i i i n u c u i n u u a i n i ilAJVUAKU AKCMI 1 I'Mt,
CONFIDEiNTIAL INFORMATION OF BCPR SERVICES, INC.

. /̂ - M-Ull nansier 10 lo-Dii cisa fviemory wun conversion - Burst DMA Cycle: Write

• " — « '« ' -v-.u iu.D 'U.t IO.D lO-t. 10" tQ.lt *U«
)te: The first memory cycle is shown wR)i a wait stale added by 'the memory slave

EP 0 426 184 A2

EXTENuED INDUSTRY STANDARD ARCH> I ECTIRE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

2.6 Data Bus Trans la t ions

EISA systems provide a mechanism for EISA expansion boards to communicate
with ISA compatible devices. The EISA expansion board always communicates using EISA
cycles, since the system board automatically translates EISA cycles for ISA compatible
slaves.

The EISA bus provides a set of EISA data transfer cycle types that are optimized for
speed. EISA cycle control signals facilitate the fast cycles. ISA devices use ISA control
signals and need not recognize the EISA signals. Consequently, EISA cycles offer optimum
performance, while maintaining full compatibility with ISA devices.

The EISA cycles use many of the same signals as ISA data transfers. Portions of the
address and data bus, and some cycle control signals are common for all data sizes. The
new signals extend the address and data size to 32 bits and provide the fast cycle timing.

An EISA bus master can communicate with an ISA slave simply by generating the
EISA data and control signal, and letting the system board copy the data and translate the
control signals as necessary. Similarly, a 16-bit ISA bus master can communicate with an
EISA slave by generating the ISA data and control signals and letting the system board
copy the data and translate the control signals as necessary.

The following transactions are automatically translated:

• Transactions between 32-bit EISA bus masters and 16-bit EISA slaves

• Transactions between 16-bit EISA bus masters and 32-bit EISA slaves

• Transactions between 16- or 32-bit EISA bus masters and 8- or 16-bit ISA slaves

• Transactions between 16-bit ISA bus masters and 16- or 32-bit EISA slaves

• Transactions between 32-bit DMA devices and 16-bit EISA slaves

• Transactions between 16-bit DMA devices and 32-bit EISA slaves

• Transactions between 16- or 32-bit DMA devices and 8- or 16-bit ISA memory

• Transactions between 8- or 16-bit DMA devices and 16- or 32-bit EISA memory

2.6.1 32-bit EISA Bus Master to 1 6-bit EISA Slave T ransac t i ons

The system board automatically provides data size translations for data transfers
between 32-bit bus masters and 16-bit EISA slaves. A 32-bit bus master executing Burst
cycles to a 16-bit EISA slave may achieve higher performance by performing its own data
size translation.

119

EP 0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

The 16-bit EISA slave must develop SA<1> and the low and high byte enable
signals from BE*<3:0> if it cannot wait for the system to generate SA<1> and SBHE*.
However, if the slave samples BE'<3> or BE*<2> asserted at the same time as
BE*<1> and BE*<0>, it uses BE*<1> and BE*<0>. This special case can occur
during accesses by a 32-bit bus master. The following table illustrates the correspondence
between BE*<3:0>, SA<1> and SBHE*.

BE*<3> BE*<2> BE*<1> BE*<0> SA<1> SA<0> SBHE*

1 1 1 0 0 0 1
1 1 0 1 0 1 0
1 0 1 1 1 0 1
0 1 1 1 1 1 0

1 1 0 0 0 0 0
1 0 0 1 0 1 0
0 0 1 1 1 0 0

1 0 0 0 0 0 0
0 0 0 1 0 1 0
0 0 0 0 0 0 0

32-bit EISA Bus Master to 16-bit EISA Slave Read Cycles

A 32-bit bus master is granted bus control, then presents LA<31:2>. The 16-bit
EISA slave decodes a valid address from LA<31:2> ana asserts EX16*. The bus master
asserts START*, W-R, M-IO and BE*<3:0>. The system board samples EX32* and
EX16* on the rising edge of BCLK following the assertion of START*, and asserts CMD*.
At the same time, the bus master negates START* and samples EX32* . When EX32* is
sampled negated, the bus master holds LA<31:2> valid while it floats START* and
BE* <3:0> so the system board can perform the data size translation.

The system board negates CMD* after one BCLK period unless the slave negates
EXRDY to add wait states. The system latches D< 15:0 > on the trailing edge of CMD*.
It then asserts START*, and presents BE*<3:0> (with the high word enabled). The
system board negates START* and asserts CMD*. The slave latches the address on the
trailing edge of START*, and presents D< 15:0 >. The system board negates CMD* after
one BCLK period unless the slave negates EXRDY to add wait states. The system board
latches D<15:0> on the trailing edge of CMD*, copies D<15:0> to D<31:16> and
asserts EX32*. The system board then presents D<31:0> and floats BE*<3:0> and
START*.

The bus master regains bus control after sampling EX32* asserted on the rising
edge of BCLK, then presents a new address on LA<31:2> and BE* <3:0> on the falling
edge of BCLK. On the next rising edge of BCLK the bus master latches D<31:0> and
asserts START* for the next cycle.

120

EP 0 426 184 A2

fc,X TENDED INDUSTRY STANDARD ARCHITECTURE
CONFI DENTIAL INFORMATION OF BCPR SERVICES, INC.

JZ-Dit ElbA Bus Master to 16-bit EISA Slave Write Cycles

A 32-bit bus master is granted bus control, then presents LA<31:2>. The 16-bit
EISA slave decodes a valid address from LA<31:2> and asserts EX16*. The bus master
asserts START*, W-R, M-IO, BE*<3:0>, and D<31:0>. The system board samples
EX32*, EX16* and D<31:0> on the rising edge of BCLK following the assertion of
START* and asserts CMD*. At the same time the bus master negates START* and
samples EX32*. When EX32* is sampled negated, the bus master holds LA<31:2> valid
while it floats START*, BE*<3:0>, and D<31:0> so the system board can perform the
data size translation.

The system board drives D<31:0> and asserts CMD* after sampling EX32*
negated. The slave may sample D<15:0> while CMD* is asserted. The system board
negates CMD* after one BCLK period unless the slave negates EXRDY to add wait states.
The system board presents BE* <3:0> (with the high word enabled) and asserts START*.
The system board copies the latched data from D<31:16> to D<15:0>, negates START*
and asserts CMD*. The system board negates CMD* after one BCLK period unless the
slave negates EXRDY to add wait states. The slave latches the address on the trailing
£dge of START* and samples D < 15:0> on the trailing edge of CMD*.

The system board returns control to the 32-bit bus master by floating BE*<3:0>,
START* and D<31:0>, then asserting EX32*. The bus master samples EX32* asserted
3n the rising edge of BCLK and, on the next falling edge of BCLK, presents a new address.
Fhe bus master may assert START* for the next cycle on the next rising edge of BCLK.

Figure 40 shows the timing for a 32-bit EISA bus master access to a 16-bit EISA
ilave.

21

EP 0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

re 38 - 32-bit EISA Master to 16-bit EISA Slave Dword Access

BCLK

U<31:2>. M-IO

BE'<3:0>

W-R

BALE

START*

CMD*

EX32'

EX16*

EXRDY

READ DATA

WRITE DATA

Note Thick lines indicate where control transfers from Master to System
or Irom System to Master.

122

EP 0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCHt lECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

2.6.2 16-bit EISA Bus Master to 32-bit EISA Slave Transac t ions

The system board automatically provides data size translations for data transfers
between 16-bit EISA bus masters and 32-bit EISA slaves. This section provides an
overview of the translation cycle. The following paragraph describes both read and write
cycles.

A 16-bit bus master is granted control of the bus and presents LA<31:2>. The
32-bit EISA slave decodes a valid address from LA<31:2> and asserts EX32*. The bus
master asserts START*, W-R, M-IO, and BE*<3:0>. The system board samples EX32*
on the rising edge of BCLK following the assertion of START*, and asserts CMD*. At the
same time, the bus master negates START* and samples EX16* and EX32*. The bus
master performs a normal 16-bit cycle whenever it samples either EX32* or EX16*
asserted. The system board copies the data from the low word D< 15:0 > to the high word
D<31:16> during writes to odd word addresses, and copies from high to low during reads
from odd word addresses. No additional BCLKs are required for this data size translation.
The timing calculations for masters and slaves include the time to copy D<31:16> to
D<15 :0> .

2.6.3 32-bit EISA Bus Master to 1 6-bit ISA Slave T ransac t ions

This section provides an overview of the translation cycle.

The system board automatically performs the following signal translations so 32-bit
bus masters can use the 32-bit interface and timing when accessing ISA memory or I /O
slaves:

EISA command signals (START*, CMD*, M-IO, and W-R) are converted to
ISA command signals (SMRDC*, SMWTC*, MRDC*, MWTC*, IORC*,
IOWC*, and BALE).

ISA signals NOWS* and CHRDY are converted to EISA signal EX32 * .

• The timing is ISA compatible (3 BCLK standard for 16-bit).

• Data copying between D<31:16> and D<15:0> (D<7:0> for 8-bit transfers)
is performed.

123

P U 42b 184 A2

EXTENDED INDUSTRY STAIN DAK 1J A^cr;i i la. i o k c
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

The following table shows the system board translation 01 me dus maMei s
IE* <3:0> lines to the 16-bit slaves SA< 1:0> and SBHE' lines, p

BE*<3> BE*<2> BE*<1> BE*<0> SA<1> SA<0> SBHE*

1 1 1 0 0 0 1
1 1 0 1 0 1 o
1 0 1 1 1 0 1
0 1 1 1 1 1 0

1 1 0 0 0 0 0
1 0 0 1 0 1 o
0 0 1 1 i o 0

1 0 0 0 0 0 0
o o o i o i o
o o o o o o o

52-bit EISA Bus Master to 16-bit ISA Slave Read cycles

A 32-bit bus master is granted bus control, then presents LA<31:2>. The ISA slave
jecodes a valid address from LA<23:17> and asserts' M16*. The bus master asserts
START* and presents W-R, M-IO and BE* <3:0>. The system board converts BE*<3:0>
into SA<0>, and SBHE* and generates BALE. The system board samples EX32* and
EX16* negated and M16* asserted on the rising edge of BCLK foUowing the assertion of
START* and asserts CMD* and MRDC*. At the same time, the bus master negates
START* and samples EX32*. When EX32* is negated, the bus master holds LA<31:2>
ralid while it floats START* and BE* <3:0> so the system board can perform the data size
translation.

The system board negates MRDC* and CMD* and latches D< 15:0 > on the trailing
edge of MRDC* and CMD*. It asserts START* and presents BE*<3:0>, S A < 1 > ,
SA<0>, and SBHE* (with the high word enabled). The conversion from EISA to ISA
signals is performed again as the system board negates START* and asserts MRDC* and
CMD*. The system board latches D<15:0> on the trailing edge of MRDC* and CMD ,
copies D<15:0> to D<31:16>, and asserts EX32*. The system board presents D<31:0>
and floats BE* <3:0> and START*.

The bus master regains bus control after sampling EX32* asserted on the trailing
edge of MRDC* and CMD*, then presents a new address on LA < 31:2 > and BE* <3:0> .
On the next rising edge of BCLK the bus master latches D<31:0> and asserts START* for
thi next cycle.

r U 42b 1B4 A2

EXTENDED INDUSTRY STANDARD AKCttl i t v i u t u :
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

12-bit EISA Bus Master to 16-bit ISA Slave Write cycles

A 32-bit bus master is granted control of the bus and presents LA<31:2>. The
16-bit ISA slave decodes a valid address from LA<23:17> and asserts M16*. The bus
naster asserts START', W-R, M-IO, BE*<3:0>, and D<31:0>. The system board
inverts BE*<3:0> intoSA<l>, SA<0>, and SBHE* and generates BALE. The system
joard samples EX32* negated and M16* asserted on the rising edge of BCLK following
he assertion of START* and asserts CMD* and MWTC*. At the same tune, the bus
naster negates START* and samples EX32*. Since EX32* is negated, the bus master
jolds LA<31:2> valid while it floats START*, BE*<3:0>, and D<31:0> so the system
x>ard can perform the data size translation.

The system board latches D<31:0> on the trailing edge of START*, then
mmediately drives D<31:0> and asserts CMD* and MWTC*. The system holds MWTC*
ind CMD* asserted for 2 BCLKs (unless modified by NOWS* or CHRDY). The slave
atches D<15:0> while MWTC* is asserted. The system board asserts START*, and
jresents BE*<3:0>, SA<1>, SA<0>, and SBHE* (with the high word enabled^ The
system board copies the latched data from D<31:16> to D< 15:0>, negates START* and
isserts CMD* and MWTC*. The slave latches D<15:0> while MWTC* is asserted. The

system holds MWTC* and CMD* asserted for 2 BCLKs (unless modified by NOWS* or
CHRDY).

The system board returns control to the 32-bit bus master by floating BE* <3:0> ,
START* and D<31:0>, then asserting EX32*. The bus master samples EX32* asserted
md, on the next falling edge of BCLK, presents a new address. The bus master may assert
START* for the next cycle on the next rising edge of BCLK

2.6.4 32-/ 16-bit EISA Bus Master to B-Dtt isa &iave i r ansacuons

Transactions between 32- or 16-bit EISA bus masters and 8-bit ISA slaves use cycle
control similar to transactions between 32-bit bus masters and 16-bit ISA slaves (as
discussed above). The main difference is that M16* (or IOl6*) is not generated by the
8-bit slave and transfers are broken into 8-bit cycles instead of 16-bit cycles. The system
board provides ISA compatible 8-bit cycle timing for the slave (6 BCLK for 8-bit cycles).

EP 0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

2.6.5 16-blt ISA Bus Master to EISA Slaves T ransac t ions

The system board performs the following signal translations so EISA slaves can use
the EISA interface and timing when accessed by 16-bit ISA bus masters:

Address lines SA< 1:0 > are converted to BE* <3:0> lines

The ISA command signals (MRDC*, MWTC*, IORC*, IOWC*) are converted
to EISA command signals (START*, CMD*, M-IO, and W-R)

The EISA signal EXRDY is converted to the ISA signal CHRDY

• Data copying between D<31:16> and D< 15:0 > is performed

• M16" is asserted for EISA memory cycles

1016* is NOT asserted for EISA I/O accesses

• Address lines LA*<31:24> are pulled-up by resistors to logical zero.
LA< 16:2> are driven from SA< 16:2>

A 16-bit ISA master is granted bus control, then presents LA < 23: 17 > and
SA< 19:0> . Since the ISA master does not drive LA<31:24> *, this part of the address bus
is pulled up by resistors to logical zero. The system board'copies SA< 16:2> to LA< 16:2>
and converts SA< 1:0 > and SBHE* to BE* <3:0> as illustrated in the following table.

SA<1> SA<0> SBHE* BE*<3> BE*<2> BE*<1> BE*<0>

0 0 0 1 1 0 0
0 0 1 1 1 1 0
0 1 0 1 1 0 1
0 1 1 reserved reserved reserved reserved
1 0 0 0 0 1 1
1 0 1 1 0 1 1
1 1 0 0 1 1 1
1 1 1 reserved reserved reserved reserved

The system board asserts M-IO and negates W-R to indicate a memory read cycle
until the ISA master indicates that a different cycle is required.

The system board does not participate further in transactions between ISA masters
and ISA memory slaves. However, all ISA master I/O cycles are translated to EISA cycles
to provide proper operation with 8-bit EISA I/O slaves.

The EISA slave decodes a valid address from LA<31:2> and asserts EX32* or
EX16*, unless it is an 8-bit EISA I/O slave. The system board asserts M16* if either
EX32* or EX16* is asserted. EISA I/O slaves that must respond to 16-bit cycles from ISA
bus masters must assert 1016* directly.

126

iP 0 426 184 A2

EXTENDED INDUSTRY STANDARD AKCHl i bC I VKt.
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

If the ISA master asserts IORC* or IOWC , or it fcPUZ" or fcAiO" is asserted wnen
[he ISA master asserts MRDC or MWTC*, the system board will negate CHRDY and
perform the translation to an EISA cycle. -M-IO and W-R are changed if necessary to
Indicate the appropriate cycle. START* is asserted on the next rising edge of BCLK and
data are copied between D<15:0> and D<31:16> (or D<15:8> andD<7:0> for 8-bit 10
slaves) if required by BE* <3:0>. CMD* is then asserted on the next rising edge of BCLK.
The EISA slave latches write data and drives read data just as it would for any other EISA
cycle.

For all EISA slaves, except 8-bit EISA I/O slaves, EXRDY is then sampled or, the
next falling edge of BCLK. For 8-bit EISA I/O slaves; EXRDY is not sampled until the
fifth falling BCLK after CMD* is asserted. When EXRDY is sampled asserted, the system
board asserts CHRDY immediately. The ISA master samples CHDRY asserted, latches
read data after the appropriate delay, and negates the ISA command (MRDC*, MWTC*,
IORC* or IOWC*). The system board then negates CMD* on the next rising edge of
BCLK for write cycles, and when the ISA command (MRDC* or IORC) is negated for
read cycles.

Figures 39 and 40 show 16-bit ISA bus master accesses to an EISA memory' slave.
Figures 41 and 42 show 16-bit ISA bus master access to a 16- or 32-bit EISA I/O slave.

12/

EP 0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

Figure 39 - 16-bit ISA Master Read from EISA Slave

BCLK

DRQ<x> _

AENx

DAK'<x> —

MASTER 16* ~

LA<23:17> p
SA<J9:0>.SBHE* -

BALE _

MRDC*

CHRDY

LA<16:2> E

BE*<3:0> C

M-IO [~

W-R r

EX32*
EX16*

M16'

START*

CMD*

EXRDY

D<31:0>

TRAiNSLAHED; EISA (SIGNALS

i r

128

EP 0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

Figure 40 - 16-bit ISA Master Write to EISA Slave

BCLK

DRQ<x>

AENx

DAK*<x>

MASTER16*

LA<23:17>
SA<19:0>.SBHE*

BALE

MWTC'

CHRDY

U<16:2>

BE*<3:0>

M-10

W-R

EX32*
EX16*

M36<

START*

CMD*

EXRDY

D<31:0>

129

P 0 426 184 A2

EXTENDED INDUSTRY STANDARD AKCHI l LLi UKt
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

'igure 41 - 16-bit ISA Master I/O Read from 16- or 32-bit EISA I/O Slave

DRQ<x>

DAK*<x>

IAASTER16*

LA<23:17>
SA<19:0>.SBHE*

BALE

IORC*

CHRDY

LA<16:2>

BE*<3:0>

M-IO

tt-R

EX16*
EX32*

1016'

START*

CMD*

EXRDY

D<31:0>

I i I ! I I I ! I ' I
h i

13U

EP 0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

Figure 42 - 16-bit ISA Master I/O Write to 16- or 32-bit EISA I/O Slave

BCLK

DRQ<x>

AENx

DAK'<x>

MASTER] 6*

LA<23 17>
SA<19:0>.SBHE*

BALE

IOWC*

CHRDY

LA<16:2>

BE'<3:0>

M-IO

W-R

EXI6*
EX32'

1016'

START'

CMD1

EXRDY

D<31 0>

_ J • !
'

= j ; i - : : i i i

, i i 1 ! i ! I ! ! ! : ! ; ! ; ! : ! : T

;' 'i i i
°'

i ! ! i i i . i .
|' \

"
i i^^T'"';

i ; I - I i i ! I i ; i : i '
>' ! i| : i ! ! 1 I i i i !
• @ 1 1 i 1 i 1 ! 1 ! 1 ! i i I @ i @ ! I ; i : i • 1 @ i i i @ I i i 1 i 1 i_l 1 1 1 i i , ! i i I I i f—i 1 1- — i . i : i ! I ! I @ i i i - ' 1 i ' i 1 i i : i i I i

1 '@ 1 : ' i ~ — 1 I s ! ! ! !
i @ 1 I : i : i -@ 1 @ i i !

j l ; 1 . 1 j : j [I ; 1] j j i j .
i ' ! 1 l ! i i ; l ' l ' ' ' ' : 1 ; 1 i 1 1 1 ! 1 i 1 i ' ' 1 1 ' ! ! !
1 1 ! 1 ! TRANSLATED! EISA jSlGNALS! M i l l
i j i I j ; i j] j i j i j I i ! : ! i

r i H @
! M ! M M ! 1

131

EP 0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

2.6.6 32-bit DMA Device to 16-bit EISA Memory Transactions

The system board automatically performs data size translation between the 32-bit
DMA device and 16-bit EISA memory.

Memory Read (I/O Write)

The following paragraphs describe a single DMA read transfer between a 32-bit
EISA DMA device and 16-bit EISA memory.

The EISA DMA device requests a DMA transfer by asserting DRQ<x>. The
system board samples DRQ<x> asserted on the rising edge of BCLK and requests control
of the bus. The arbitration controller arbitrates the request and grants control of the bus to
the DMA controller. The system board then asserts DAK* <x> .

The system board presents LA<31:2> when DAK*<x> is asserted. The 16-bit
EISA memory decodes the address and asserts EX16*. The system board asserts START*,
W-R, M-IO, and BE*<3:0>. The system board samples EX32* and EX16* on the rising
edge of BCLK foDowing the assertion of START*, and asserts CMD*. IOWC* is also
asserted and held until the word assembly completes.

If the DMA was programmed as a Burst, the MSBURST* signal remains negated.

On the next rising edge of BCLK the system board latches D < 15:0 > and the system
board negates CMD*, asserts START* and presents BE'<3:0> (with the high word
enabled). The system board then, on the next BCLK rising edge, negates START* and
asserts CMD*. The 16-bit EISA memory decodes the address and presents D< 15:0 >. On
the next rising edge of BCLK the system board latches D<15:0>, negates CMD* and
copies the data from D<15:0> to D<31:16>. The system board presents the assembled
32-bit data on D<31:0> and negates IOWC*. The 32-bit EISA DMA device latches the
data on the trailing edge of IOWC*.

The 16-bit EISA memory may request wait states by asserting EXRDY, as in
Standard cycles.

In the case of a single transfer DMA cycie, the system board negates DAK*<x>
and releases the bus. If Block or Demand mode DMA is programmed, the DMA transfer
repeats the above block until preempted or completion.

Memory Write (I/O Read)

The following paragraphs describe a single DMA write transfer between a 32-bit
EISA DMA device and 16-bit EISA memory.

The EISA DMA device requests a DMA transfer by asserting DRQ<x>. The
system board samples DRQ<x> asserted on the rising edge of BCLK and requests control
of the bus. The system board arbitrates the request and grants control of the bus to the
DMA controller. The system board then asserts DAK* <x > .

132

EXTENDED INDUS IKY SIAJNUAKU l a c
ONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

The system board presents LA<Ji:z> wnen jj/vtv o <usuh.u. ju-uu
ISA memory decodes the address and asserts EX16*. The system board also asserts
DRC, and the EISA DMA device, sampling both IORC* and DAK' <x> asserted
resents its data on D<31:0> The system board asserts START , W-R, M-IO, and
;E*<3:0>. The system board samples EX32*, EX16*, and M16* on the rising edge of
iCLK following the assertion of START*, and asserts CMD*. When EX32* is sampled
egated and EX16* asserted the system board latches the 32-bit data and negates IORC .
"he EISA DMA device ceases driving the data bus when IORC* is negated, allowing the
/stem board to continue driving D< 15:0 >.

If the DMA was programmed as a Burst, the MSBURST* signal remains negated.

The 16-bit EISA memory can latch the data while CMD* is asserted. On the next
iCLK rising edge, the system board negates CMD*, asserts START*, and copies the upper
6 bits of the data to D< 15:0 >. On the next BCLK rising edge, the system board negates
TART* and the system board asserts CMD*. The ISA memory latches the data while
;MD* is active. One BCLK later, the system board negates CMD*, ending the transfer.

The DMA controller continues executing cycles until preemption or reaching
erminal count (for Block or Demand DMA modes). The DMA controller suspends DMA
•rocesses executed in single transfer mode after each cycle by negating DAK*<x> and
eleasing the bus.

£.6.7 16-DK DMA Device TO •«-«« ciom roeiiiuiy 1 1 a i » « w i u i «

The system board automatically performs data copying between D < 31:16 > and
}<15-0> so a 16-bit DMA device can communicate with a 32-bit EISA memory slave,
[he following paragraphs describes both DMA read and write transfers from 16-bit DMA
ievices to 32-bit EISA memory:

A 16-bit DMA device requests a transfer by asserting DRQ <x> . The system board
samples DRQ<x> asserted on the rising edge of BCLK and requests control of the bus.
Fhe system board arbitrates the request and grants control of the bus to the DMA
;ontroller. The system board then asserts DAK" <x> .

The DMA controller performs a 16-bit DMA read or write according to the
j a tl,*. 1->_k;t CTQA momnrv rln nnf affect the DMA tranSter

D<15-0> on reads and D<15:U> to u < j l : i o > on writes, meiciuic, a uuuU«i « ^
DMA transfer is performed, and a normal 16-bit memory access to the EISA memory
occurs, without any special cycles or timing needed. No additional BCLKs are required,
the timing calculations for the DMA device include copy time.

The svstem board automatically penorms aata copying su an o-uu vi*u^ u<~*^
communicate with a 16- or 32-bit EISA memory slave.

The system board performs the translation in a manner similar to the translation
between 16-bit DMA devices and 32-bit EISA memory discussed previously, except that the

system board copies data to the appropriate byte lane for the 16- or'32-bit memory.

2.6.8 B-DIt DMA Device tO ID- Or JZ-Ull CiaM wieinuiy nanaawiung

100

' U 4^0 1 04 AZ

EXTENDED INDUMKi SlArxu/VKU / v w . n i i D L i u ^
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

!.6.9 16- OP 32-uit DMA Device 10 o- or id-oii iom memui y uwiiiav,Uwiu

The system board automatically performs data size translation so a 16- or 32-bit
)MA device can communicate with an 8- or 16-bit ISA memory slave.

The system board performs the translation in a manner similar to the 32-bit DMA
ranslation to 16-bit EISA memory discussed previously, with the following differences:

A 16-bit ISA memory asserts M16* instead of EX16* (8-bit memory does not
assert anything).

The ISA memory uses CHRDY and NOWS* to control cycle timing instead of
EXRDY.

• The signals MRDC* or MWTC* (as appropriate) are asserted.

The timing is ISA compatible (3 BCLK standard for 16-bit, 6 BCLK for 8-bit
cycles).

f U 420 104 A2

EXTENi-rcD INDUSTRY STANDARD AKC rt.. ca. i u«vc
ONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

1.7 Locked c y c l e s

The main CPU or a bus master can assert LOCK* to guarantee exclusive memory
iccess during the time LOCK* is asserted. A bus master can also assert LOCK* to
guarantee exclusive I/O access during the time LOCK* is asserted. Assertion of LOCK*
illows bit test-and-set operations (as used for semaphores) to be executed as a unit, with
he bus lock preventing multiple devices from simultaneously modifying the semaphore bit.

The main CPU asserts LOCK* during the execution of certain instructions that
ollow a LOCK instruction prefix and while executing an XCHG instruction.

A bus master can perform locked bus cycles by asserting LOCK* in the first cycle of

i locked access before the end of CMD*. LOCK* is negated on or after the BCLK edge at
he trailing edge of CMD* on the last cycle of the locked access. The bus master must
legate LOCK* before releasing the bus. The LOCK* signal should be floated with the
jther control signals (START*, MSBURST*, etc.) at the end of the bus access.

The bus master must not initiate a sequence of locked cycles after the system board

legates MAKx* for a bus preemption. A locked sequence started with MAKx* asserted
nas at least 64 BCLK periods to complete. A locked sequence started after the system
ward negates MAKx* causes a bus timeout if it starts too late to complete before the 64
BCLK t imeout

The bus master must not initiate a sequence of locked cycles that cannot complete
before the 64 BCLK bus preemption timeout. For example, the bus master should avoid
sxecuting any locked sequence to a dword located in slow 8-bit memory. An 8-bit memory
mth 25 ms cycle time (maximum wait states) requires 10 ms to do a 32-bit read operation.
A locked read-modify-write that starts just before the system board negates MAKx* causes
a bus timeout to occur on the BCLK after the read portion of the locked sequence.

A bus master can access shared memory and I/O on successive controllers, leaving
them all locked until the bus master negates LOCK*.

An intelligent controller with shared local memory or I/O must monitor LOCK* at
the rising edge of BCLK. If a valid address within its local memory or I/O address range is
decoded with LOCK* and CMD* asserted, the controller must inhibit shared memory or
I/O access until it samples LOCK* negated. LOCK* is asserted (if at all) during the first
BCLK of CMD*. LOCK* remains asserted at least until the end of CMD* of the last cycle
to be locked. The slave, once addressed with LOCK* asserted, must wait until LOCK is
sampled negated before allowing shared access by the local device, even if intervening
cycles to other addresses or idle cycles are noted.

If a slave supj orts Burst, then it must lock together those cycles that have LOCK*
asserted at the end o'f each subcycle (sampling at rising edge of BCLK).

100

P 0 42b 184 A2

EXTENDED INDUSTRY STANDARD AKLHIltLi urc,
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

Figure 43 - LOCK liming bxampie

BCLK

START*

CMD'

LOCK' (Nole ,j f&&l

(1) (2) 14)

I S

^ck* (Note ii ; ?Ke» i 1 : : : \ J B s a

Cycle 1 and 2 are locked together, cycle 3 is not expected to De loCKeo. oy tne
master.

Note 1: LOCK* riming may be either way (or a combination of the two), the slave
must lock cycle 1 and 2 together, cycle 3 is not expected to be locked with the others by the
master, but may be at the option of the slave.

130

- U 420 1 B4 AZ

EXTENDED 1NDUS1KY S i AJMJAKU 1 1.^ I un.c
0NFIDENTLA.L INFORMATION OF BCPR SERVICES, INC.

.8 EISA Devices

.8.1 Memory Slaves

A memory slave monitors LA<31:2>, and, after decoding a valid memoryaddress,
sserts EX32* (32-bit slaves) or EX16* (16-bit slaves) to indicate its data size. The slave
an begin processing the cycle when START* is asserted. The slave can lengthen the cycle
.y negating EXRDY during START*. The slave can hold EXRDY negated for a
aaximum cycle time of 25 ms, and must float EXRDY synchronously with the falling edge
if BCLK. Setup and hold time to BCLK specifications must be met on EXRDi assertion
or proper system operation. On memory reads, a slave drives only the data bytes ; indicated
ry BE*<3:0>. On memory writes, the slave samples only the data bytes indicated by
$E*<3:0>. (See table of allowable BE*<3:0> combinations under BE*<3:0> signal
lescription.)

A memory slave that requires refresh must monitor REFRESH*. If the slave
amples REFRESH* asserted on the leading edge of START*, then it should use
.A<15:2> to generate the refresh address (LA<31:16> should be ignored). The bits
Iriven on LA<15:2> contain a scrambled refresh address. LA<15:10> contain the high
>rder refresh bits, LA<7:0> contain the low order refresh bits, LA<9> is refresh<l>,
ind LA<8> is refresh <0>. The refresh cycle is two BCLKs long (from leading edge of
5TART* to the trailing edge of CMD*) unless the slave extends the cycle by negating
BXRDY. For best system performance, a slave should not extend the refresh cycles.

Memory slaves that support Burst cycles must also support standard memory cycles
is described above. Burst memory slaves must also be able to transfer 32 bits of data (or
L6 bits for a 16-bit memory slave) each BCLK after the initial cycle. The actual amount of
lata transferred in a given cycle depends on the state of the BE* <3:0> lines. Dunne the
3urst sequence, the address changes on each falling edge of BCLK and the data should be
Iriven or latched on each rising edge of BCLK.

During a Burst read, the memory slave must not begin to enable the data onto the
uus until the specified time after the rising edge of BCLK. Only those bytes of data
specified by the BE*<3:0> lines should be driven and the data buffers that are not
;nabled for the next cycle must be floated within the specified float time. These
requirements allow the system to copy the data for 16-bit masters without bus conflict.

The Burst sequence provided to a Burst slave never crosses a 1024 byte address
boundary (LA<31:10> does not change during a Burst). A master or system terminates a
Burst sequence and restarts it with a new initial cycle if the Burst transfer does cross the
1024 byte boundary. Note that the address provided by the master is not required to be
sequential, only within the 1024 byte address boundary. Also, fewer than 32 bus of data

may be transferred, with the BE*<3:0> lines indicating the proper amount. The Burst

sequence is defined such that it must be all reads or all writes. The W-R line does not
change during a Burst. (See Figure 46.)

The Burst slave generates SLBURST* to indicate that it can accept a Burst, and
samples MSBURST* to determine if Burst cycles will be used by the master or system.
SLBURST* is decoded from the address and M-IO signals (the same decode logic as
EX32* can be used but the signal must be driven by a separate open collector type driver).
MSBURST* is sampled on the rising edge of BCLK at the end of each subcycle to
determine if another subcycle is to be run.

10/

EP0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCHITECTURE.
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

A memory slave can negate EXRDY to lengthen Burst subcycles (add wait states) in
one BCLK increments. The memory slave controls the number of wait states by asserting
(and floating) EXRDY from falling edges of BCLK (to meet the setup and hold
requirements). When wait states are added to the last subcycle of a Burst, the bus master
holds MSBURST* asserted until it samples EXRDY asserted. Figure 44 and 45 show the
relevant signals for an EISA memory slave with wait states added.

Memory slaves can use COMPRESSED Cycles to improve data transfer rates. The
slave asserts NOWS* after sampling START* asserted. The system board samples
NOWS* on the trailing edge of START* and impresses the length of CMD* to 1/2
BCLK. Bus masters cannot execute COMPRESSED cycles. The slave must be able to
accept normal CMD* riming, even if it asserts NOWS*. (See Figure 47 for an illustration
of the signals relevant to this operation.) A slave must not assert EXRDY and NOWS*
during the same cycle. The bus timing parameter tables provide rninimum timing
specifications for address setup, START* and CMD*. The maximum time limits depend
on the device generating the cycle. A memory slave must be able to accept whatever
timing is generated.

A memory slave must latch the address (including M-IO and W-R) if it requires a
valid address after assertion of CMD*. The address may be latched with the trailing edge
of START* or the leading edge of CMD*. A slave that supports compressed cycles can use
the rising edge of BCLK after assertion of START*.

EISA is a 32-bit standard, with a bus and connector that provide a 32-bit data and
address bus. Sixteen-bit EISA expansion boards must support the 32-bit address bus and
connectors. Sixteen-bit EISA memory slaves must decode the entire 32-bit address to
maintain compatibility with all EISA systems. An EISA bus master can perform transfers
to any 32-bit memory address, even in systems with a 16-bit main CPU.

EISA memory slaves can have multiple noncontiguous memory segments at
addresses above 16 MB. Memory mapped at addresses between 0 KB and 640 KB must be
contiguous starting at zero. Memory mapped at addresses between 1 MB and 16 MB must
be contiguous starting at 1 MB.

Memory mapped I/O slaves that decode the full 32-bit address should be mapped at
an address above 2 GB.

138

:P 0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCHI IECIUKE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

Figure 44 - Memory Slave with Wait States

BCLK

START*

CMD'

i i . i i j ; . ! i ' i - i : i : i : i 1 i 1 1 1 1 1 l l c i • i i 1 1

i i i i i | i | i I i j j i | : ! !
| ! | ! j 1 | 1 | i ! ' ! ' \ > ' '

S ' • ; , t ' @ @ @ i
j | P ^ y ^ S ^ ^

! 1 M : ! ! 1 ! @ ! I ! ? ! : ! : ! :

ixrdy \ \ i \LU M l j i U / ! ! j 1 ; @@ M
i • i i s i i i ! i : i : i • ; •
1 1 ' 1 • 1 '! ' > 1 1 ! : :

HEAD DATA jti— —whrawwmJ \ r-™ n i @ — 1^^^* '
1 i 1 : 1 j 1 ! 1 j 1 1 ' 1 i 1 i 1 ! 1 ; 1 ! 1 ; 1 • ' @ "
i • i : i ; i . I ; I • i i i i

WRITE DATA 1
, , . , . (. ,

1
, - J | , . I S i l l

Note: Italicized signals indicate output ol slave.

1) CMD' extended by master or system

139

EP 0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

Figure 45 - BURST EISA Memory Slave with Wait States

BCLK

U<31:2>
M-10

BE*<3:0>

W-R

START*

CMD*

EX32'
EX1S'

EXRDY

MSBURST*

SLBURST

READ DATA

WRITE DATA H Z H Z H

1) EISA Standard Access (Start of Burst)
2) EISA Burst Access
3) EISA Burst Access

<0
5)

EISA Standard Access
EISA Burst Access with One Wait State

Note: Italicized signals indicate output of slave.

140

EP 0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

Figure 46 - EISA Memory Slave (Burst Cycle)
Page Boundary Condition

BCLK

LA<31.2>
M-10

BE*<3.0>

W-R

START'

CMD*

SX3Z'
EXJ6'

EXRDY

MSBURST*

SLBURST'

,»»w,-.»f

READ DATA

WRITE DATA 1 H 2 H 3 5 H 6

1) EISA Standard Access (Start of Burst)
2) EISA Burst Access
3) EISA Burst Access (last burst of page)

4) EISA Standard Access (start of new page!
5.6.7) EISA Burst Access

Note Italicized signals indicate output of slave device.

141

EP 0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

Figure 47 - EISA Memory Slave (Standard Cycle)
NOWS* Asserted

BCLK

U<31.2>. M-IO

BE*<3:0>

W-R

START*

CUD'

EX32'
EX1S'

NOWS'

READ DATA

l i i ! ! !| r . l i i l l II I II ; i i ! ;
i i i ! i : i 1 i i i i

; i ; I j ! | I ; ! ; ! ; ! : ! ;
L i i t 3 :t 1 : l i

' : ! 1 i i i i i 1 i | i j i ! | ; 1 i 1 ! 1 1 1 | 1 1 1 ! 1 ' I : I
i i ! iU l ! i i i i i j iLii u ; ! m \
i : i : i : i j i i r i i I ' 1 j 1 j l : 1 ! 1 i 1 j i i 1 ; @ j [@ '

it-
'

-1 1 m m - * - 4 B w r * »

WRITE DATA H .

Standard cycles mar lotto* assertion ot NOws*

Note: Italicized signals indicate output of slave device

142

@@ U 420 1 04

EXTENDED INDUSTRY ST ANDARD AKLr.u i uixi.
ONFIDENTIAL INFORMATION OF BCPR SER^CES. INC.

.8.2 I/O Slaves

An I/O slave asserts EX32' (or EX 16' for a 16-bit I/O slave) when and as long as a
alid I/O address is decoded on LA< 15:2> with M-IO and AENx low. EX32' should not
e latched.

The system board does not automatically assert 1016* when a 16-bit ISA bus master
ccesses an EISA I/O slave. EISA slaves that support 16-bit ISA bus masters must assert
016* as well as EX32* (or EX16*) when addressed. 1016* is asserted on decoding a valid
ddress on the LA<15:2> address bus. I/O slaves that do not support 16-bit ISA bus
[tasters need not assert 1016*.

The slave can begin processing the cycle when START* is asserted. The slave may
engthen the cycle by negating EXRDY during the time that START* is asserted.
Assertion of EXRDY must meet the setup and hold time specificanon to BCLK for proper
ystem operation. Therefore, the falling edge of BCLK should be used to float EXRDY.

<or read cvcies the slave drives only the data bytes indicated by BE* <3:0> when lOKL is
isserted. For write cycles, only the data bytes indicated by BE*<3:0> are written when
OWC* is asserted. (See table of allowable BE*<3:0> combinations under BE <3:0>
ignal description.)

I/O slaves can use COMPRESSED Cycles to improve data transfer rates. The slave
isserts NOWS* after sampling START* asserted. The system board samples NOWS on
he trailing edge of START* and compresses the length of CMD* to 1/2 BCLK. Bus
nasterslannot execute COMPRESSED cycles. The slave must be able to accept f o r m a l
"TrfD* timing, even if it asserts NOWS*. A slave must not assert EXRDY and NOWs
hiring the same cycle. The bus timing parameter tables provide minimum timing
ipecifications for address setup, START* and CMD*. The maximum time limits depend
ya the device generating the cycle. An I/O slave must be able to accept whatever timing is
generated.

A slave canextend cycle timing by negating then asserting EXRDY on BCLK edges.
Lhe system board and EISA bus masters maintain the relationship of BCLK to the trailing
»dge of START* and the leading edge of CMD*. BCLK toggles during all cycles, but its
Denod may be extended on some cycles. The BCLK high or low time always meets the
minimum specified in the bus timing parameter table.

An I/O slave must latch the address (including M-IO, W-R, and AENx) if it
requires a valid address after assertion of CMD*. The address can be latched with the
trailing edge of START* or the leading edge of CMD*. A slave that supports
COMPRESSED cycles must use the rising edge of BCLK after assertion of STAR 1 .

An EISA device (such as a bus master) can be designed to respond as an 8-bit I/O
slave as well as a 16- or 32-bit I/O slave. In this case, the slave need not drive EXj2 ,
EX16*. or 1016*. The slave uses LA<15:2>, AENx, M-IO, and BE*<3:0> for
addressing. It uses START*, CMD*, NOWS*, and EXRDY for timing control It uses
D<7:0> to transfer the data. The default timing for these cycles is 1 BCLK for S I AK ,
and 5 BCLKs for CMD*. Wait states can be added by negating EXRDY, and the detatilt
timing can be shortened by asserting NOWS* (in the same fashion as for ISA 8-bu slaves).

' U H/SD IOt Mil

LAlfclNUbU 1NDU&1KI s ia j>ua i \ i j w t n u i i v - . ^/.v^
OWIDENT1AL INFORMATION OF BCPR SERVICES, INC.

The 8-bit slave should not assert i n u w v aunng i i / ^ i ui ««•= — -
MD*. NOWS* can be asserted during the 2nd, 3rd, or 4th B O X when CMD is asserted

> shorten the standard 6 BCLK cycle to 3, or 5 BCLKs. If EXRDY is negated by the 8-bn

ave it has no effect until the fifth BCLK of CMD*. If EXRDY is sampled negated on the

dling edge of BCLK in the 5th BCLK of CMD* asserted, then the system board lengthens
MD* in BCLK increments until EXRDY is floated and sampled asserted. EXRDY
lould not be negated if NOWS* is asserted.

.8.3 Bus Mas t e r s

EISA bus masters are fully synchronous with BCLK. An EISA master drives

A<31:2>, BE*<3:0>, M-IO, W-R, D<31:0>, START*, MREQx*, and ̂ MSBURST (if

ecessary) from BCLK edges. The 32-bit master monitors E ^ 2 ^ ^ " ^ ^ ^
donitors both EX16* and EX32* and treats them as equivalent), EXRDY, and MAKx .
Tiese signals are also synchronous to BCLK.

A bus master requests control of the bus by asserting MREQx* and receives control

,ben it samples MAKx* asserted on the rising edge of B O X The bus master drives
A<31:2> and M-IO valid on the next falling edge of BCLK. On the next rising edge of

JCLK, W-R and BE* <3:0> are presented and START* is asserted. On write cycles, the

»us master presents valid data on the next falling edge of BCLK.

On the next rising edge of BCLK, the master negates START*, and the system
>oard asserts CMD*. the bus master samples EX32* (32-bit bus masters) and EX16
16-bit bus masters) on the same rising edge of BCLK to determine if the slave _bemg
Lccessed is an EISA slave with equal or greater data size. If the appropriate signal (EX32
)r EX16*) is sampled asserted, the bus master can present the next address on the fahing
idge of BCLK to begin the next cycle. The bus master must ̂ wait for EXRDY to be
ver ted before completing the cycle and asserting the next START* On read cycles, the

lata is sampled on the rising edge of BCLK after the slave asserts EXRDY. On write

rycles the bus master must hold the data valid until the falling edge of BCLK after the slave

isserts EXRDY.

If the bus master sampled EX32* negated (or both EX16* and EX32* negated for

16-bit bus masters), then the system board performs data size translation. The bus master
Boats D<31:0> (on write cycles), BE*<3:0>, START* (for all cycles) and MSBURST

[for Burst cycles) on the falling edge of BCLK (after negation of START*) and the system
board performs the data size translation. The bus master regains control of the cycle after
sampling EX32* (or EX16* for 16-bit bus masters) asserted on the nsmg edge of BCLK.
When the appropriate signal (EX32* or EX16*) is sampled asserted the bus master can

present the next address on the falling edge of BCLK to begin the next cycle. (See Figure
48.)

When the bus master no longer requires control of the bus it negates MREQx* on
the falling edge of BCLK. The bus master, on the falling edge of BCLK before the cycle is
finished, floats LA<31:2>, BE*<3:0>, M-IO, and W-R On the next rising edge
START* and MSBURST* (for Burst cycles) must be floated. On the next falling edge of

BCLK, the bus master floats D<31:0> (on writes). The system board negates MAKx
when it samples MREQx* negated.

SP0 426 184 A2

EXTENDED INDUSTRY STANDARD AP.CHl 1 1 CIURE
CONFIDENTIAL INFORMATION OF BCPS SERVICES, INC.

A bus master may be preempted by the system board or another bus master, rhe
system board negates MAKx*, indicating to the bus master that it must finish the current
bus cycle and relinquish control of the bus (by negating MREQx*) within 64 BCLK periods
(8 ms). It is suggested that masters complete operations within a shorter time (such as 32
BCLK periods) to reduce bus latency for other masters or the CPU. Figure 49 illustrates
the relevant signals of an EISA bus master preempted during a normal cycle.

Any 16-bit bus masters must drive MASTER 16* asserted from MAKx* and keep it
asserted until the bus is released. On bus "release", the MASTER16* line is floated. For
standard EISA cycles, "release" is the same time as START* is floated. For cycles where
bus assembly occurs the release is on the rising edge of BCLK after EX16* is sampled
asserted.

145

EP0 426 184 A2

EXTENDED INDUSTRY STANDARD AF CH ITSCTURE
CONFIDENTIAL INFORMATION OF BCPR SEPVICES, INC.

Figure 48 - EISA Bus Master
Write Cycle with Data Translation

Notes: Heavy lines indicate float by mssler device.
Italicized signals indicate output of master device.

1) EX32' may also be sampled on the falling edges of BCLK.

146

EP 0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCH. tECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

Figure 49 - EISA Bus Master
Preempt During Normal Cycle

BCLK

MREQx'

MAKx4

U<31£>
U-JO

BE'<3:0>
r -R

START'

EX32*

EXRDY

WRITE
D<T3J:0>

READ
D<31:0>

i ' i @ i ' i • i ' i j i ' I : j ; I
J T J T J T J T J T J I J I J I J T J ^ ^

Notes Heavy lines indicate float by master device.
Italicized signals indicate output of master device.

147

@P 0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCH ITt-C ru k l
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

<*igure 50 - Bus Transfer from Master Control to r loat -
EISA Cycle (with Wait States)

BCLK

LAO
i)

D<310>
•TOTES
UREQx*

START*

EXRDY

i ; ; >@ i ' 1 : -

1 « I

HI

Latest possible lime for release of START', data, and address is shown
Hole 1- The LAO includes LA<31:2>. BE'<3:0>. M-10. »-R. LOCK*, and MSBURST -
Note 2: The heavy lines indicate float.
Note 3: MREQx' must remain high for two BCLKs minimum as shown
Note 4: Earliest possible control by next device-

148

P 0 426 184 A2

EXTENDED INDUSTRY STANDARD AKLrti i urfj--
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

Figure 51 - Bus Transfer from blSA control 10 noai -
Translated ISA Cycle

ICLK

IE*<3:0> _

,A<>
ioLr I)

TOTES

tREQx'

t t e i t e z m 1 : LIU _

| • | • | • ♦ (D) • •

start* ; 1 : : ! i | j ! 1
: ! ; i • i ! i ! ' 1 :

•X32'

)<31:0>
?EAD

Latest possible tune for release or S 1 AK l data, ana aaaress is snown.

Note 1: The LA <> includes LA <31:2>, BE*<3:0>, M-IO,
W-R, LOCK', and MSBURST*.

Note 2: The heavy lines indicate float.

Note 3: MREQx* must remain high for two BCLKs minimum as shown.

Note 4: Earliest possible control by next device.

i4y

EP 0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

2.8.4 Burst Bus Masters

Burst bus masters must do everything defined for standard bus masters. In addition,
they support the use of the MSBURST" and SLBURST* lines and Burst cycles.

A bus master begins a set of Burst cycles by executing a Standard cycle and sampling
SLBURST* asserted on the rising edge of BCLK when START* is negated. The bus
master asserts MSBURST* with the next pipelined address (on the falling edge of BCLK).
MSBURST* must not be asserted if SLBURST* is sampled negated or if the bus master
samples EX32* negated (32-bit bus masters). In this case, the bus master completes the
cycle as a non-Burst master.

For read Burst cycles, the bus master presents a new address on each falling edge of
BCLK and samples the data for that address on the BCLK rising edge 1-1/2 BCLKs later.
On the last cycle of the Burst transfer, the bus master negates MSBURST* (on the falling
edge of BCLK). The bus master completes the cycle on the next rising edge of BCLK.

For write Burst cycles, the bus master presents a new address on each falling edge of
BCLK and presents valid data 1/2 BCLK later.

Burst cycles must be all read accesses or write accesses. Mixed read and write cycles
can not use Burst The bus master completes the Burst transfer by negating MSBURST*
during the last cycle of the transfer. All Bursts must occur within the 1024-byte page
boundary, and only address bits LA<9:2> or BE*<3:0> will change. The Burst transfer
must be split up into two or more separate transfers if tie transfer crosses a page
boundary.

If a bus master samples EXRDY on the falling edge of BCLK, it extends the cycle
until sampling EXRDY asserted. The master may still change to the next address even
though EXRDY is negated. (The master must then hold the address until EXRDY is
sampled active.) If a bus master samples EXRDY on the falling edge of BCLK on the last
cycle of a Burst transfer, it extends the assertion of MSBURST* until sampling EXRDY
asserted.

A Burst bus master may be preempted by the system board or another bus master.
The system board negates MAKx*, indicating to the bus master that it must finish the
current bus cycle and relinquish control of the bus (by negating MREQx* and
MSBURST*) within 64 BCLK periods (8 us). It is suggested that masters complete
operations within a shorter time (such as 32 BCLK periods) to reduce bus latency for other
masters or the CPU. Figure 52 illustrates the relevant signals of an EISA bus master
preempted during a Burst cycle.

150

)NFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

•eempt During Burst Cycle

-10 —

'E'<3:0>
'-R —

.AKUI

V<3J:0>

D<31:0>

1 ^ @ ; ! - ! @ - ! ! ! ; ! = ! ! ! I ! \ : ! - ! ; . . ! : : . : ; : , : . ! : @ : • @
Tl : ! ! : ! ! 1 : 1 ; • '• \]&*: rx r \ \ < ; ;

! ; ' . ' . \ | Si ! i ! ! ! ! *H ; 1 @ : ! : ', : i

! • ! - ! 1 ' : ' ! i j i : ! i ! : 1 - > • : '
]

! : ! < ! ; @ ' 1̂ U k i m e d - i @— !

j : | ; I : i : 1 i I : ! : ; ! . ! ; ! ! . ! . . !
! ; ! . , i i ! i ! i i ' @ 1 1 . : @ . '
' ; ! ! W m h li 1 i : : ; ; . i

| i ! i ! ; ! i 1 ! i i ! i ! i | ' ! 1 !_L_! — ; 1 1 1

j ; M j ; iLi_ll . i , i M j j j j @ \ M M [i
{ • j ; I ! • i j ! - i - 1 1 ; 1 @ 1 1 1 : i

Notes Heavv lines maicaie noai uy hiosici
Italicized signals indicate output of master device.

IP 0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCHITLCI UKt
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

7igure S3 - Bus Transfer from Master Control to r ioat -
EISA Burst Cycle

3CLK

AO - *<*f I)

3<31:0> It
•RJTES

Latest possible time for release of START', data, and address is snown.

Note 1: The LA < > includes LA <31:2>, BE*<3:0>, M-IO, W-R, LOCK*,
and MSBURST*.

Note 2: The heavy lines indicate float.

Note 3: MREQ* must remain high for two BCLKs minimum as shown.

Note 4: Earliest possible control by next device.

152

r* U 426 104 A2

EXTENDED INDUSTRY S I AJNUAKU AKLHi i fcLiut iL
ONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

:.8.5 Downsnm Burst bus Masters

A "Downshift" master is a 32-bit Burst bus master that can convert to a 16-bit Burst
ius master "on the fly."

A downshift bus master that intends to perform a Burst transfer must drive
1ASTER16 on each START* that it generates. This allows the system to tell the
lifference between the downshift master and a 32- or 16-bit master. The timing should be
he same as for START*.

This tvpe of master must monitor both EX32* and SLBURST* at the rising edge of
JCLK at the end of START* to determine the correct action for the remainder of the
ycle. The following table shows the system and master response to the slave for downshift
nasters.

EX32* SLBURST*

0 X 32-bit cycles: the system will not participate in the cycle. The
master completes the cycle with EX32* as a normal 32-bit
master.

1 0 16-bit Burst cycles: After START*, the system does not
participate in the cycle. In this case, the master is required to do
its own assembly or disassembly, mcluding the data copying. If
at START* and the first CMD* cycle the master has all
BE*<3:0> lines asserted, then at the next CMD* the master
should only have BE*<2> and BE*<3> asserted. For the
second cycle, the master needs to copy the data to the low word
of the bus for writes (or deal with it on the low word for reads).
For write cycles the master may drive the high word of the data
bus as long as BE*<3:2> require it even though the slave is
only 16-bit If at START* BE*<1> and BE*<0> are both
negated, then, at the end of START*, the master also enables its
low word data buffers with the same write data as on the high
word. One-half clock later, the system stops driving all of its
buffers and remains inactive until the end of the Burst.

1 1 16-bit non-Burst or ISA cycles: the system assumes the master is
a 32-bit master and performs the assembly as expected. In this
case, the master holds its write data buffers active until the
falling edge of BCLK after START*, then floats them and wans
for EX32* to be returned. |

P 0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCH1 1 iiC . oK±.
CONFI DENTIAL INFORMATION OF BCPR SERVICES, INC.

The following table shows the combinations of byte enables that require the
additional copying operation:

Copy Bytes
BE3 * BE2* BE1* BE0* 3:2 -> 1:0

1 1 1 0
1 1 0 1
1 0 1 1 *
0 1 1 1 *
1 1 0 0
1 0 0 1
0 0 1 1 *
0 0 0 1
1 0 0 0
0 0 0 0

Figure 54 illustrates an example of the downshift master in operation.

Figure 54 - "Downshift" Bus Master Operations
TO Tl T2 T3 T4 T5 .T6 T7 10

BCLK

BE*<3:0> i B

MSBURST*

EX32" I E

SLBURST* E Z

START*

MASTER 1 6*

CMD*

D<31:0>

i 1 ! i 1 1 1 i L 1

IIIIP 0011 0000 | 0011 1000 1011 |<

• ; | j j j i i ! i i

(a) (b) (c) (e) j (0 j

Note: The heavy lines indicate that both the system and the master are driving
together.

154

U 42b 104 A2

EXTENDED INDUSTRY STANDAKD A R « . n n t i . i u ^
:ONFIDENTlAL INFORMATION OF BCPR SERVICES, INC.

In the above diagram, the master transfers nine oytes oi uai* ucguuimjun *u uuu
mrd boundary. At Tl the master asserts BE* <3:2> and puts the data (a) on the two high
ivte lanes of the data bus. The system copies the data down to the two low byte lanes as
or all 32-bit masters. At time T2, the master senses that a 16-bit Burst memory slave is
.resent and begins to copy the high bytes of data to the low bytes (b), (duplicating the
fleet of the system). At time T3, the system stops copying the data leaving only the master
>n the data bus (c). At (d) the data is changed to that required for the next set of byte
nables The whole bus can be driven if desired. At (e) the data on the low word is
hanged again to a copy of the high word of data present at (d). This process is continued
intil the transfer is complete.

Note that the master should only assert MASTER16* if it intends to do Burst cycles,
f MASTER16* is asserted for a non-Burst transfer and a 16-bit EISA Burst slave responds,
he master is responsible for copying data through to the end of the cycle smce the system
vill stop copying at the end of T3.

».8.6 DMA Devices

A DMA device requests service by asserting DRQ<x>. DRQ<x> can be driven
inserted asyncronously. The system board samples DRQ<x> asserted and eventually
jjants bus control to the DMA channel by asserting DAK* <x> . A DMA device decodes
I/O accesses with IORC* (or IOWC*) and DAK* <x> asserted.

The DMA device cannot add wait states to a cycle and must accept the cycle type
•xecuted by the DMA controller. (Wait states are added by the system or the memory
slave.) Figure 55 illustrates the relevant signals for and EISA DMA device during a
ixjmpatible write transfer.

In certain cases, the system may preempt an EISA DMA device indicating to the
DMA device that it must finish the current bus cycle and relinquish control of the bus by
negating DRQ <x>. Figures 56 and 57 illustrate preempted DMA cycles.

EP 0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCH i rECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

Figure 55 - EISA DMA Device
Compatible Write Transfer

156

@P 0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCH 1 1 LCI UKL
CONFIDENTIAL INFORMATION OF BCFR SERVICFS. INC.

Figure 56 - Type "B" EISA DMA Device (Block Memory W rite)
Transfer Interrupted by DAK* <x >

1 j ' ; 1 j 1 , * , 1 . j I ' ! ! ! J I ! ! I { i ! ! I ! ! ! - ! ! @ j @ ! ' i 1 i ' ' 1 1 . 1 @ 1 I 1 ' 1 ' • ! ! ! ' ! ' i \ '@ i I '
I ! I ' 1 ' I ' I ' I ! I '-. I ' I ' 1 ' I ' J ' I i I @ I ~< I I I I '

Type A cyclei idd one dock ot IORC to the bepnnmt of etch cycle and one dock d bold lime to me etw 01 e»cn cycle

Note: Italicized signals indicate output of DMA device.

1) Transfer interrupted by negation of DAK'OcX

2) Cycle is longer due to a wait slate requested by the slave.

157

U t^D IOt

EX TElNUtD 1INUU51K1 m a p i u a m ; ^ i ^ ^
ONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

igure 57 - bUKil fcloA UlvtA uevice: ucmaiiu j.ivn.v.;
Negation ofDAK*<x> and DRQ<x> in Same Cycle

! i 1 1 t 1 I !
@ I I I @ I ! I - I • 1

«ote. iiancizea siguais uiuivow ».....
AU others are inputs.

1) When DRQ<x> is negated in demand mode, the DMA device expects
another full transfer. If DAK'<x> is negated in the same cycle due
to a preemption. DRQ<x> must be reasserted for a single transfer.

2) Wail state added by the system.

EP 0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

2.8.6.1 Non-Burst EISA DMA Devices

The system board asserts a DMA channel's DAK*<x> and asserts IOWC* to
indicate a memory read (I/O write) DMA cycle. The system board holds IOWC* asserted
until it presents valid data. If the memory slave requires wait states, or data size translation
is requued, the system board holds IOWC* asserted until finished. The DMA device is not
allowed to add wait states on its own; it must conform to the timing programmed into the
DMA controller. (See Figure 58 for an illustration of the relevant signals.) An exception
to this is ISA Compatible memory read (I/O write) cycles. For these cycles, DMA devices
can add wait states by negating CHRDY.

The DMA device doing memory write (I/O read) cycles will see its DAK* <x> go
active and the IORC* signal go active. The IORC signal remains active until the data is
latched by the EISA memory or the system board (if the memory needs 8 or 16-bit
disassembly). The slave is not allowed to add wait states on its own; it must conform to the
timing programmed into the DMA controller.

Normal demand and block modes of the DMA device are similar to single-cycle
mode except that DMA does not release the bus between cycles. For demand mode, the
DRQ<x> line is monitored to deterniine when to release the bus and stop cycling; for
block mode, the entire programmed block is transferred from one DRQ <x> .

The DRQ<x> signal is sampled for negation by the system on rising edges of
BCLK, one BCLK before the end of the IORC* or IOWC* asserted time. If wait states are
added by the memory slave, then this may be later than usual. For Type "A" and "ISA
compatible" timing modes, the system provides synchronization of DRQ<x>. For Type
"B" timing, DRQ<x> must meet the setup and hold time specifications for proper
operation.

In single cycle mode, DAK*<x> can be negated for a minimum of one BCLK
period between cycles in timing modes "A" or "B".

In "compatible" mode, the minimum time between DRQ<x> asserted and the
system responding with DAK* <x> is 1.0 ms (8 BCLKs).

The T-C signal (Terminal Count), when being driven by the system, should be
decoded with DAK* <x> and IORC* or IOWC*.

If T-C is being driven by the DMA device, to terminate or restart a DMA transfer
(see DMA progTarruriing), then the DMA device must go from floating the T-C line to
driving it low (negated) when DAK*<x> is asserted. When the transfer is to be
terminated, T-C should be asserted with the IORC* or IOWC* of the last cycle. T-C
should be negated when IORC* or IOWC* is negated. When DAK* <x> is negated, T-C
must be floated. (See Figure 59 for an illustration of the relevant signals.)

159

P 0 426 184 A2

EXTENDED INDUSTRY STAND ARO A^CHI I t t l U K t
DONFI DENTIAL INFORMATION OF BCPR SERVICES, INC.

rigure 58 - Type "B" EISA DMA Device (Demand Memory Keao;

rjpe A cycles «<W one dock of I0»C to the bejmmin 01 e»cB cycle «na one ciocn oi noia ume 10 uie zna w wn ijvn:

Note. Italicized signals indicate output of DMA device.

1} Cycle is longer due to a wait state requested by the slave.

loll

EP0 426 184 A2

EXTEiwED INDUSTRY STANDARD AKCh. iECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

Figure 59 - Type "B" EISA DMA Device (Block Memory Write)
T-C Asserted by DMA Device

BCLK _

DBQ<x> J

DAK'<x>

IORC

DATA

T-C

I I ' i : i I

i ! i i i i
i J r f v i l < ! >

I ! I i i i I i I
[fiL. i @ i

I I I I l ! I

I i

Type A cycles «dd one dock of IORC to the bc|innjn{ of e*eh cycle tnd one dock of hold lime to the end of each cycle

Notes: Heavy lines indicate float by DMA device.
Italicized signals indicate output of DMA device.

1) Cycle is longer due to a wait state requested by the slave.

161

r U 42b 1B4 A2

EXTENDED INDUSTRY STANDARD AKL'HlTbLiURc
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

!.8.6.2 Burst EISA DMA Devices

Burst mode of EISA DMA transfer is only useful (and allowable) for demand or
dock mode The Burst DMA device must monitor the signals BCLK, EXRDY,
)AK* <x>, and IORC* or IOWC* (depending on whether reading or writing). After the
irst transfer cycle (used to "prime" the memory and determine if the memory supports
iurst) transfers occur once per BCLK.

A Burst DMA device doing I/O write (memory read) cycles monitors BCLK,
-XRDY DAK*<x>, and IOWC*. The DMA controller asserts DAK*<x>, and, later,
isserts IOWC* on the rising edge of BCLK. DAK* <x> is held asserted for the duration
>f the Burst transfer and IOWC* is held asserted until a cycle translation occurs or, for
3urst compatible memory, until the Burst transfer completes. The Burst DMA device must
ample the data by the rising edge of BCLK. The DMA device samples EXRDY on each
ailing edge of BCLK while IOWC* is asserted. If the DMA device samples EXRDY
legated, mdicating addition of wait states by the memory system, then data must be latched
iter EXRDY is asserted, by the next rising edge of BCLK. When wait states are added to
he last subcycle of a Burst, the system board holds IOWC* asserted until it samples
5XRDY asserted. The DMA device is not allowed to add wait states on its own; it must
»nform to the timing provided by the system.

The system board automatically performs cycle translation for a Burst D M A
ransfer from memory that does not support Burst. The DMA device monitors IOWC* and
samples it negated while the system board performs the translation, then samples IOWC
isserted when the the DMA controller restarts the Burst transfer after the translation
jompletes.

A Burst DMA device doing I/O read (memory write) cycles monitors BCLK,
EXRDY, DAK*<x>, and IORC*. The DMA controller asserts DAK*<x> and, later,
[ORC* on the falling edge of BCLK. The DMA device must drive new data on the b u s o n
the next rising edge of BCLK and hold it until the following rising edge of BCLK. The
DMA device samples EXRDY on each falling edge of BCLK while IORC* is asserted. If
the DMA device samples EXRDY negated, indicating addition of wait states by the

memory system or the initial cycle of the Burst, then data must be held stable until the next
rising edge of BCLK after EXRDY is asserted. When wait states are added to the last
subcycle of a Burst, the system board holds IORC* asserted until it samples EXRDY
asserted. The DMA device is not allowed to add wait states on its own; it must conform to
the timing provided by the system. (See Figure 60.)

Addresses asserted during Burst DMA cycles to DRAM memory must be within a
1024 byte DRAM memory page (address line LA<31:10> cannot change during the
transfer). To cross a DRAM page boundary, the system board terminates the Burst DMA

sequence by negating the MSBURST* signal on the last cycle in the page. The system
board then restarts the seguence on the new page. Figure 61 illustrates a page boundary
condition from a Burst DMA device perspective.

The system board automatically performs cycle translation for a Burst DMA
transfer to memory that does not support Burst. When the system board determines that .
cycle translation is needed, it latches the data for the current cycle in a temporary register
and negates IORC* to indicate that the data is latched and the DMA device must float its
drivers. The DMA device floats its drivers while the system board performs the translation
and monitors IORC* to detect the DMA controller restarting the Burst transfer after the
translation completes.

P 0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCH* lfc>-i J K i
CONFI DENTIAL INFORMATION OF BCPR SERVICES, INC.

Figure 60 - Burst EISA DMA Device (Demand Memory write;
Wait States on Last Cycle

3CLK

DBQ<jc>

DAX'<x>

;orc

EXRDY

DATA

r-c

Note: Italicized signals indicate output oi me lima device
All others are inputs.

1) Wait stale added by system

2) Wait state added by memory slave

103

EP 0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

Figure 61 - Burst EISA DMA Device (Block Memory Read)
Page Boundary Condition

l I

BCLK

DRQ<x>

DAK'<x>

IOWC

EXRDY

DATA

T-C

J
I I I 1 1 . t I i 1 > (1 : 1 i 1 I ; 1 1 1 ' @

i ; m ! M M ! M < ! ' ! : ! ; ! !

! ! ! ! ! | r— (Pj(CE BOUNDAiY) ! ! ! i
i : ! I I ! ! i I I I ! 1 I = ! ! ! @ ! i

Note. Italicized signals indicate output of the DMA device.
All others are inputs.

164

EP 0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCHI TECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

The DMA device monitors IORC and samples IORC asserted when the DMA
controller restarts the Burst transfer after the translation completes.

For both Burst modes the system samples DRQ<x> on rising edges of BCLK. For
Block mode, DRQ<x> is ignored until the transfer has been completed. For Demand
mode the DMA device can negate DRQ<x> at the falling edge of BCLK during asserted
IORC or IOWC. If EXRDY is negated in a previous cycle, the DMA device must wait
one BCLK after EXRDY is sampled asserted (the current cycle) to negate D R Q < x > .
Note that one full transfer cycle follows the negation of DRQ<x>. (See Figure 62.) The
DMA device can also negate DRQ<x> on the first falling edge of BCLK after DAK* <x >
is asserted if only one cycle is desired.

In the normal case, T-C is an output and is asserted at the end of a transfer on the
falling edge of BCLK. This corresponds with the assertion of IORC for the last cycle or
leads the assertion of IOWC by 1/2 BCLK. If the memory adds wait states, then T-C
occurs earlier. T-C is negated on the rising edge of BCLK at (for IOWC), or after (for
IORC), the end of the cycle. The DMA device should sample T-C at the first falling edge
of BCLK during asserted IORC or IOWC for the cycle. If EXRDY is negated for a
cycle, T-C should not be sampled again until the BCLK after EXRDY is sampled asserted.
(See Figure 63.)

If T-C is being driven by the DMA device to terminate or restart a DMA transfer
(see DMA prograrnming), then the DMA device' must go from floating the T-C line to
driving it low (negated) when DAK*<x> is asserted. When the transfer is to be
tenninated, T-C should be asserted on the falling edge of BCLK with the IORC or
IOWC of the next to last cycle and held asserted for one BCLK. (See Figure 64.) If
EXRDY is negated in a previous cycle, the DMA device must wait one BCLK after
EXRDY is sampled asserted (the current cycle) to assert T-C Note that one full transfer
cycle follows the assertion of T-C When DAK* <x> is negated, T-C must be floated. The
system waits one BCLK after DAK* <x > is negated before driving T-C negated (low).

Figure 65 illustrates the special case where DRQ<x> is negated at a wait state.
Figure 66 illustrates the preemption of a Burst DMA Device.

165

EP0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

Figure 62 - Burst EISA DMA Device (Demand Memory Write)

tfCU\

DRQ<x>

DAK'<x>

IORC*

EXRDY

DATA

r-c

I I I 1 1 t -- 1 1 ! \ '-. \ ' I < @ 1 @ 1 ' I @ I • 1 1 I 1 • 1 • 1
J

I I ;
'

i | i t i i / j i I M M : M

1 1 M N 'H N
'

II N ' - i - H
j = j • | 1 j j | I4 ; 1 1 ; 1 I : |

Note. Italicized signals indicate output of the DMA device.
All others are inputs.

1) Wait state added by system
2) Wait state added by memory slave

66

EP0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

Figure 63 - Burst EISA DMA Device (Memory Read)
Transfer Terminated by Assertion of T-C

BCLK

VRQ<x>
D£MM'£>

BRQ<x>
BLOCK

DAK'OO

IOWC*

EXRDY

DATA

T-C

i ' \ I i i i I i ! i I : ' i i : !
J i i i i i i i i i I ! i ! ! : • : @ ' : :

1 \ 1 i I . 1 1 1 1 1 i 1 I • 1 • 1
i l : l : i ' l ! 1 . 1 i t i
: I I 1 1 i I i I I 1

1 i i i @ ! ! :
! ! ! ! ! ! ! ! ! j ! i ! ! ! i ! i ! ;

I ; i i M i i i i 1 i ! ; i i i r n

i ' I @ i I I i i ! i i i i ' \ i ! 1 ! i ' i ! i i : i ' i ! i i i i :
1 1 1 - — 1 1 i i i i i i @ i
i i ; i ; 1 1 — : 1 ; i : 1 : J i i j
i I @ i 1 i 1 ! P ! i 1 • i @@ '
i • i ' i • i i I i i i i i i @ i i : 1 i i ! 1 * 1 1 ; i / * i • 1 1 1 : r— *
! • ! ; : ; : ; : L _ / ' ! ! 1 i 1 i ' !
1 l ! 1 - 1 i 1 T ' i 1 i 1 I 1 ! 1 i i ; i ; i j 1 i i j i ; j j i j ; |

j
,

i ; j ; N >
.

; ! ; ; ;
i ' i ! i I i I i i j i ! i 1 i ! i ! 1 i * 1 " I ' 1 1 i 1 I 1 1 1 : I @ I I 1 I : i I i l i @ 1 1 : i
i ; i • i • i ! i (i i @ i j i j i ;
, I 1 @ 1 i 1 ! t 1 1 ! 1 ! 1 ! 1 ! 1
i ; i ; I j ; | ; I : | i] ; | i | ;

Note: Italicized signals indicate output of the DMA device.
All others are inputs.

167

P 0 426 104 A2

EXTENDED INDUSTRY STANDARD ARCH. I III i u k c
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

'igure 64 - Burst LISA DMA Device
T-C Asserted by DMA Device

3CLK

DRQ<x>
DEMAND

DRQ<x>
BLOCK

3AK'Oc>

owe

EXRDY

DATA

T-C

J i . 1 • i ; i ; i I i @ j : ; • ; i
1 i 1 i 1 i 1 i ' "@ ! ! ! ' ! @ - i ! 1 i i i ! ' 1 ' 1 ! 1 | • | '

J i i i @
, ,

* ; : |..4 -: @

j : j , i
| j ; K | j U J . | | ; | ; M

@ 1 ! i : i I i M ^ i ! h ; 1 ;
'

; @ ;

Note. Italicized signals indicate output oi me uma aevice.
All others are inputs.

Heavy lines indicate float by device

lfc>U

P 0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCHITECT UKJt
"ONFIDENT1AL INFORMATION OF BCPR SERVICES, INC.

rigure 65 - Burst EISA DMA Device (Demand Memory write.;
DRQ<x> Negated at Wait State

3CLK

DRQ<x>

)AK*<x>

Note: Italicized signals indicate output oi me uma aevice.
All others are inputs.

1) Wait state added by system

2) Wait slate added by memory slave

-it>y

EP0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

Figure 66 - Burst EISA DMA Device (Block Memory Read)
Preemption by Negation of DAK*

Note Italicized signals indicate output of the DMA device
All others are inputs.

1) Wait slate added by memory slave

170

U f .40 1 0«+ Mfc

EXTENDED IINDUolKi s i a j x u a k u ^ ^ ' ' ^ V r ' T w r
3NF1DENT1AL INFORMATION OF BCPR SERVICES. INC.

8.6.3 Misaiignea uwim

A DMA device may handle misahgned DMA transfers by performing data

ienment during the transfer. The DMA controller requests a misaligned transfer by
(C S Tparlal word or dword with BE'<3:0> during the first and last cycle The
M A ^ i S n n i n e s the number of bytes to transfer and appropriate byte lanes to use
,r^n ? f i S t r a n s ^ b y decoding BE'53:0>. The DMA t ™ * * ™ ™ * ^
jgnment for the first transfer and continues the same byte ahgnment until BE <3.0>
S e s another partial transfer (or until sampling the terminal count signal (T-C)

iserted).

For Type "A" and Type "B" transfers, the BE*<3:0> signals may be sampled with

le leadSg X t of IOWC' or with the rising edge of BCLK following the assertion of
D R c t t e either case the signals are set up to the edge by 100 ns and held from the edge

y at least 30 ns.

For TvDe "C transfers, the BE* <3:0> signals may be sampled with tie falling edge

f BCLK d X t o t o BCLK of each subcycle .(there is only one BCLK per subcycle
rnesTwait 3 s are added). To this edge there is 60 « of setup. an ! 2 ns of ho Id time,
^ernativelv the BE*<3:0> signals may be sampled with the rising ; edge of BCLK that
u S ^ S b ^ o r IOWC* tilling, edge for tie first subcycle). To this edge there ts

ns of setup and at least 55 ns of hold time.

Misaligned DMA Memory writes 11/ u Keaas;

On the first transfer, the DMA device copies j j ^ g f j f ^ I ^ J S 5 ^
ource register to the appropriate data bus byte lanes (indicated by BE <3.0>) and stores
S ^ i e f source register oytes in a holding register. On subsequent transfen . the DMA

levice copies the addressed bytes from the DMA source register and the contents of the
S g ^ s t e r to the appropriate data bus byte lanes (as indicated on *e &st <^de b

3E* <3:0>). For each transfer, the DMA device stores the unused DMA source register

jytes, then supplies them on the following cycle.

Misaligned DMA Memory Keaas u / u writes,

On the first transfer, the DMA device stores the bytes indicated by BE* <3:0> in a
aoldinJ T r e g S e ? On^ubsequent transfers, the DMA device copies the contents of the
oldSI r e f s i r and the appropriate bytes from the data bus (as r o u t e d on jhefirst eye

by BE*<3:0>) to the DMA destination register. For each transfer the DMA device

replaces the contents of the holding register with the unused bytes from the data bus.

2.8.7 system u o a r a

2.8.7.1 Main Memory Access

The EISA architecture does not require all memory (or I/O) access cycles to reflect

on the EISA bus. The main CPU (and other devices) can access the main memory system

without presenting address or timing control on the EISA bus.

i / i

IP 0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCHlTka uKi.
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

2.8.7.2 Back-to-Back I/O Delay

The EISA system board automatically forces a minimum 2- 1/2 BCLK (300 ns)
jelay between back-to-back ISA I/O accesses caused by separate CPU cycles. The delay is
measured from the trailing edge of an I/O command (IORC* or IOWC*) to the leading
idge of the next I/O command (IORC* or IOWC*). The delay provides recovery time for
ISA compatible I/O slaves.

The system board prevents the CPU from asserting START* for the next I/O cycle
until at least 1 BCLK after the trailing edge of IORC* or IOWC*. START" for a memory
cycle is asserted without the one BCLK delay. No delay is added to the data size
translation part of the I/O cycle (the delay is added to the beginning of the next cycle). No
delay is added for 16-bit ISA bus master I/O cycles, which execute at a speed determined
by the I/O slave's use of CHRDY. No delay is added for 32- and 16-bit EISA I/O cycles,
which execute at a speed determined by the I/O slave's use of EXRDY.

2.8.7.3 Slot-specific I/O

EISA systems reserve I/O spaces at OzOOOh-OzOFFh, 0z400h-0z4FFh, 0z800h-
0z8FFh, and OzCOOh-OzCFFh (where V is the slot number from 1-F) for slot-specific I / O
slaves on ISA and EISA expansion boards. These address ranges alias ISA system board
I/O address space. EISA system boards must fully decode I/O accesses to assure they
don't alias with slot-specific I/O slaves. The system board uses the slot-specific I/O range
where 'z* is zero for all system board I/O devices.

The system board disables the slot-specific I/O ranges by asserting the bus signal
AENx (high) if the address 'z' does not match the slot number and the least significant 12
address bits address a slot-specific range ((IzOWh-OzOFFh, 0z400-0z4FFh, Oz800-Oz8FFh, or
0zCOCM)zCFFh). Expansion boards that take advantage of the slot-specific I/O ranges
must, at a minimum, decode LA<8> and LA<9> (SA<8> and SA<9> for ISA I / O
slaves) address bits (decode to "0") with AENx negated (low) to assure they don't alias with
ISA expansion board I /O.

172

P 0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCHI lcC l U.Kb
:ONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

The following truth table shows an example ot a system ooara Atrxx aecoae; tne
AENx signals listed are low for the given combinations. Note that the signal AEN is
included which is high for DMA activity.

ivstem Board AENx Decode _i :
AEN MIO LA<9> L A < 8 > - A < 1 5 > LA<14> LA<13> LA<12>

AEN 15 0 0 0 0 1 1 1 1

AEN 14 0 0 0 0 1 1 1 0

AEN 13 0 0 0 0 1 1 0 1

AEN 12 0 0 0 0 1 1 0 0

AEN11 0 0 0 0 1 0 1 1

AEN10 0 0 0 0 1 0 1 0

AEN9 0 0 0 0 1 0 0 1

AEN8 0 0 0 0 1 0 0 0

AEN7 0 0 0 0 0 1 1 1

AEN6 0 0 0 0 0 1 1 0

AEN5 0 0 0 0 0 1 0 1

AEN4 0 0 0 0 0 1 0 0

AEN3 0 0 0 0 0 0 1 1

AEN2 0 0 0 0 0 0 1 0

AEN1 0 0 0 0 0 0 0 1

t r-i

:P 0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCRITibC I UKL
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

rhe following table specifies the expansion board AENx decode:

Expansion Board AENx Decode

Signal Decode

AENx 0

MIO 0

LA<9> 0

LA<8> 0

LA<11> x

LA<10> x

LA<7> x

LA<6> x

LA<5> x

LA<4> x

LA<3> x

LA<2> x

LA<1> x

LA<0> x
Note: x depends on the address being decoded.

The system board negates (low) AENx for slot-specific I/O cycles a short time after
asserting START*. For ISA I/O cycles, the system board holds AENx negated until at
least 1/2 BCLK after the trailing edge of IORC* or IOWC* to assure compatibility with
ISA I/O slaves. For EISA I/O cycles, the system board holds AENx negated while it holds
LA < 15:2 > valid.

A bus master need not add a delay between back-to-back I/O cycles to ISA I /O
slaves. The BCLK added to the end of a cycle during the system board's data size
translation satisfies the AENx hold requirement.

2.8.7.4 I/O Address Decoding

I/O addresses between 0400h and 04FFh are reserved for current and future EISA
system board peripherals defined by this specification. System board manufacturers can
use system board addresses 0800-08FFh and OCOO-OCFFh for manufacturer specific I /O
devices.

174

EP 0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFI DENTIAL INFORMATION OF BCPR SERVICES, INC.

2.9 Bus Arbitration

EISA provides centralized arbitration control to allow bus sharing among the CPU,
DMA controller, refresh controller and bus masters. A device asserts a bus request signal
to arbitrate for bus access. The centralized arbitration controller arbitrates the request and
the system board asserts a bus grant signal when the bus is available. The arbitration
period does not affect execution of bus cycles by the active device. If other arbiters
preempt the active device by asserting a bus request (MREQx* or DRQ<x>) while the
bus is busy, the system board negates the bus grant signal (DAK*<x> or MAKx*) to
indicate to the active device that it must release the bus, and the central arbitration
controller performs the arbitration.! After the active device releases the bus (indicated by
negation of the bus request signal), the system board asserts the appropriate bus grant
signal for the winning device.

An EISA bus master or. DMA device may be preempted by another device that
requests use of the bus. A bus master must release the bus within 64 BCLK periods (8 u s)
after sampling its MAKx* negated to prevent a bus timeout NM1. The DMA controller
stops the DMA transfer and releases the bus within 32 BCLK periods (4 ps) of a
preemption. The arbitration controller measures the bus timeout from the rising edge of
BCLK after negation of MAKx*. The arbitration controller counts 64 BCLK periods for a
bus master, then samples MREQx*. If MREQx* is still asserted, an NMI is generated and
the reset controller asserts RESDRV to reset the offending bus master.

Following the negation of MREQx*, the system allows the completion of the last
bus cycle before actually transferring control of the bus. This allows a bus cycle to be
started (START*) before the timeout, and actual bus transfer to occur on the BCLK
following the end of the cycle. This is true for cycles terminated by EXRDY or by EX32*
(or EX16*). For Burst transfers, MSBURST* must be negated with the negation of
MREQx*. For downshift Burst transfers, MSBURST* must be negated one transfer cycle
after the negation of MREQx*.

1. Only DMA devices that take advantage of EISA enhancements can be preempted

175

EP 0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

Figure 67 - Bus Master Starting a Norma! Cycle
Without a Bus Timeout

(The Ggure shows the latest possible time to start without a bus timeout)

BCLK

MREQx*

MAKx*

START*

CMD*

~ 1 l 4V-
1r-

63

4V-
4V-

Figure 68 - Bus Master Continuing a Burst Cycle
Without a Bus Timeout

(The figure shows the latest possible time to start without a bus timeout)

BCLK

MREQx'

MAKx'

CMD*

MSBURST*

W W

4V- 4V-

63

T l

176

EP 0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

BCLK

MREQx' .

MAKx"

CMD*

MSBURST'

EXRDY '

Figure 69 - Bus Master. Continuing a Downshift Burst Cycle Without a Bus Timeout

(The figure shows the latest possible time to start without a bus timeout)

AS-
4V-

4V-

63 64 64

Ar-
AV-

Note: A wait state is shown to illustrate an allowable extension.

The main CPU is given bus access when no other device is requesting use of the bus.
In addition, the CPU system should request bus access when it has a cycle to execute. In
cache-based systems, the request typically results from a cache miss. In noncached systems,
the CPU is always requesting the bus.

In some systems, depending on the characteristics of the CPU and associated
systems, it may be desirable for the arbitration system to allow the CPU to continue to hold
the bus for a period of time after preemption by another device (or as long as the CPU
continues to require the bus). This allows more time for the CPU to execute under heavily
loaded conditions. To limit system latency, bus hold time from preemption to CPU hold
request, should be kept to a maximum of 32 BCLKs. If this is done, then the maximum
time the CPU could keep the bus becomes the maximum CPU hold request time, plus 32
BCLKs. The CPU hold request maximum typically occurs during a sequence of LOCKED
cycles. Therefore, to keep arbitration time to a minimum, LOCKED cycles should only be
performed to high-speed memory.

Figure 70 illustrates the control signals that each arbiter uses for bus arbitration.
The preemptable arbiters include the mam CPU, the DMA controller and any EISA bus
master.

177

EP 0 426 184 A2

Lrponsion Bus
Hosiers

MAbttK 0

MASTER 1

"ASTER 14

EXTENDED INDUSTRY STANDARD ARCHITECTURE , CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

Figure 70 - Centralized Arbitration

CPU

CPU
BUS
REOUE:
(note)

MKQQ<

A
CPU
HOLO
REQUEST
(note)

r v

CPU
ACKNOWLEDGE
REQUEST
(note)

Exponsion 8uS
DMA Devices

MAKO*

MRQ I «
MAK 1 •

MRQ14*
MAK14«

CENTRALIZED

ARBITRATION

CONTROL

DMAREQ

OMAACK
— - H

D
M
A

C
0
N
T
R
0
L
L
E
R

0RQ<0>
DAK<0>«

DRQ<1>
DAK<1>»

DRQ<7>
0AK<7>« j

:hannel
o

J

CHANNEL
1

REFREO

@"[channel

REFRESH

REFRESH
CONTROLLER

Note: 'CPU Bus Request". "CEU Hold Request" and "CPU Acknowledge Request" are implementation-specific signals

78

r U 426 1B4 Ai£

EXTENDED INDUSTRY STANDARD A K L H M f . l U K t
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

2.9.1 System Arbitration priorities

The EISA system board uses a multilevel rotating priority arbitration method. On a
fully loaded bus, the order in which devices are granted bus access is independent of the
jrder in which they assert a bus request, since devices are serviced based on their position
n the rotation, the arbitration scheme assures that DMA channels access the bus with
ninimal latency. The DMA controller is given a high level of priority to assure
»mpatibility with traditional ISA expansion boards that require short bus latency. The
EISA bus masters have a low priority and their design must provide for longer latency.

DMA priorities can be modified by programming the DMA controller command
registers to rotating priority.

Figure 71 illustrates arbitration priorities with both DMA controllers programmed
[or fixed priority, and Figure 72 illustrates arbitration priorities with both DMA controllers
programmed for rotating priority.

i /a

EP 0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

Figure 71 - Fixed DMA Priority Arbitration Sequence

EP0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

Figure 72 - Rotating DMA Priority Arbitration Sequence

EP 0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCHITECT LIKL
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

The top priority level uses a 3-way rotation to grant bus access sequentially to a
DMA channel^ the refresh controller, and a device from the 2-way rotation (CPU or a bus
master). A DMA channel, the refresh controller, and a device from the 2-way rotation
each gain access to the bus at least one of every three arbitration cycles (depending on
what devices are requesting service). A device that does not request the bus is skipped in
the rotation.

NMI interrupts are given special priority. If an NMI interrupt occurs, the
arbitration mechanism is modified so that the bus masters and the DMA controller are
bypassed each time they come up for rotation. This gives the CPU complete control of the

This section illustrates the bus grant latency for a variety of system configurations.
The estimates are intended to illustrate latencies in practical system configurations. The
bus grant latency tabulations are based on the following assumptions:

An 8 MHz EISA bus.

• The CPU releases the bus within 9 us (32 BCLK periods plus 5ms completion
time for a locked cycle) after a preemption occurs.

• Bus masters release the bus within 10.6 ms (64 BCLK periods plus completion
time for the final cycle) after a preemption occurs.

• The DMA controller (programmed for block or demand mode) releases the bus
vvithin 5.8 us (32 BCLK periods plus completion time for the final cycle).

• Single cycle DMA completes in 1.1 ms.

• The DMA controller is programmed for fixed priority.

• A refresh cycle takes 13 ms.

• The CPU, DMA channels, and bus masters re-assert their bus request signal
immediately after relinquishing the bus after a preempt.

2.9.2 Subsystem Priorities and Latencies

182

f U 42b 104 A2

EXTENDED INDUSTRY STAN DAK.D aki hi i r -̂ i
ONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

The latency assumptions noted above are not vanu ior an ujiuiguiaiiu.o, au
etual latency may be different for any specific case. Some of the configuration specifics
hat affect latency include:

DMA devices programmed for ISA compatible BLOCK mode or ISA
compatible demand mode.

Another special case occurs when the main CPU operates directly from EISA
expansion bus memory, continuously requesting the bus. A device with a new
bus grant gets an immediate preempt because of the CPU request. The device
must release the bus within the 8ms time limit.

Slow memory affects latency, particularly when used by the CPU or bus masters
to do LOCKED cycles or 32-bit operations. An 8-bit ISA memory accessed
with 32-bit accesses can cause much longer latencies than usual particularly if
accessed with read-modify-write type instructions with a LOCK prefix.

The following bus grant latency tables include a separate table for each device type
hat arbitrates for the bus (the main CPU, the DMA controller, the refresh controller and

)us masters). The device grant latency total (at the end of each table) indicates the
levice's worst case latency for the configuratioa Each table includes four cases to
llustrate the bus grant latency for a variety of configurations.

The following table illustrates the latency calculation for a variety of DMA

xmfigurations:

DMA Latency Examples Case 1 Case 2 Case 3 Case 4

Bus Load Assumptions: Qty Qty Qty Qty

DMA Channels (Blk) 0 1 1 2
DMA Channels (Sgl Cyc) 2 1 2 1
Bus Masters 2 2 2 /

Bus Grant Sequence: (ms) ("s) (ms) (ms)

DMA Channel 0 1.1 5.0 5.0 5.0

CPU 9.0 9.0 9.0 9.0
DMA Channel 1 Grant Grant 1.1 5 .0
Bus Master na na 10.6 ~ 10.6
DMA Channel 2 na na Grant Grant

DMA Grant Latency 11.4 15.3 27.0 30.9

EP 0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

The following table illustrates the latency calculation for the refresh controller. 1 he
calculations show that distributed refresh occurs:

Refresh Latency Examples Case 1 Case 2 Case 3 Case 4

Bus Load Assumptions: Qty Qty Qty Qty

DMA Channels (Blk) 0 1 2 1
DMA Channels (Sgl Cyc) 2 1 1 1
Bus Masters 0 1 6 1

Bus Grant Sequence: (us) (us) (us) (us)

Refresh na na na 1.3
Bus Master na na na 10.6
DMA Channel na na na 1.1
Refresh na na na Skip
CPU na na na 9.0
DMA Channel na na na 5.0
Refresh na na na Grant
Bus Master 10.6 10.6 10.6 na
DMA Channel 1.1 5.0 5.0 na
Refresh Grant -Grant Grant na

Refresh Grant Latency 11.7 15.6 15.6 27.0

The following table illustrates the latency calculation for the mam CPU. Case 3
shows that the CPU latency does not increase when large numbers of bus masters are
added.

CPU Latency Examples Case 1 Case 2 Case 3 Case 4

Bus Load Assumptions: Qty Qty Qty Qty

DMA Channels (Blk) 0 1 1 2
DMA Channels (Sgl Cyc) 2 1 1 1
Bus Masters 1 1 2 6

Bus Grant Sequence: (us) (us) (us) (us)

DMA Channel 1 1.1 5.0 5.0 5.0
Refresh 1.3 13 13 1.3
Bus Master 10.6 10.6 10.6 10.6
DMA Channel 2 1.1 1.1 1.1 5.0
CPU Grant Grant Grant Grant

CPU Grant Latency 14.1 18.0 18.0 ' 21.9

184

U t-r£-V l o t

EXT£JNDr.D 1INDUS1KY MAIXUAAU AAV'"'' ,,Xrp Txt/-
ONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

The fol owing table illustrates me latency gaitumuuu .v " - r - ' "
a NMI. Case 1 snows the grant sequence without an NMI Case 2 shows the grant

uuence if a block mode DMA channel has. the bus when the ^ M l ^ asserted and a bus
i t e r is next in the rotation. Case 3 shows the grant sequence if a DMA channel has the
uTwben theNMl is asserted and the CPU is next in the rotation. Case 4 shows the grant

squence if a bus master has the bus when the NMI is asserted.

NMI Latency Examples Case 1 Case 2 Case 3 Uise 4

Bus Load Assumptions: Qty Qty Oty Qty

DMA Channels (Blk) 2 I I I
DMA Channels (Sgl Cyc) 0 0 0 u

Bus Masters 3 3 J
NMI asserted no yes yes yes

Bus Grant Sequence: (us) (us) (us) (us)

DMACnanne.O 5 0 SO na na

C h a n n e l . f*P «

g J u S Grant " • Grant Grant Grant

NMI Service Latency na 7.9 7.9 11.9

1 Oi>

EP 0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

The following table illustrates the latency calculation for an EISA bus master:

Bus Master Latency Case 1 • Case 2 Case 3 Case 4

Bus Load Assumptions: Qty Qty Qty Qty

DMA Channels (Blk) 0 1 1 1
DMA Channels (Sgl Cyc) 2 1 1 1
Bus Masters 1 1 2 6

Bus Grant Sequence: (us) (jss) (ms) (us)

DMA Channel 1 1.1 5.0 5.0 5.0
Refresh 13 1.3 1.3 13
CPU 9.0 9.0 9.0 9.0
DMA Channel 2 1.1 1.1 1.1 1-1
Bus Master 1 Grant Grant 10.6 10.6
DMA Channel 1 na na 5.0 5.0
Refresh na na 1.3 13
CPU na na 9.0 9.0
DMA Channel 2 na na 1.1 1.1
Refresh na na 13 13
Bus Master 2 na na Grant 10.6
DMA Channel 1 na ' na na 5.0
Refresh na na na 1.3
CPU na na na 9.0
DMA Channel 2 na na na 5.0
Refresh na na na 13
Bus Master 3 na na na 10.6
DMA Channel 1 na na na 5.0
Refresh na na na 1.3
CPU na na na 9.0
DMA Channel 2 na na na 5.0
Refresh na na na 13
Bus Master 4 na na na 10.6
DMA Channel 1 na na na 5.0
Refresh na na na 13
CPU na na na 9.0
DMA Channel 2 na na na 5.0
Refresh na na na 13
Bus Master 5.0 na na na " 10.6
DMA Channel 1 na na na 5.0
Refresh na na na 13
CPU na na na 9.0
DMA Channel 2 na na na 5.0
Refresh na na na 13
Bus Master 6 na na na Grant

Bus Master Grant Latency 12.5 16.4 463 173.5

186

EP 0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

2.9.3 EISA Bus Master Arbitration Cycle Descriptions

EISA bus masters use the slot-specific signals, MREQx' and MAKx* for bus
arbitration. The EISA bus master asserts MREQx* to request bus access. If the system
board samples MREQx* asserted, the centralized arbitration controller performs the
arbitration and the system board asserts MAKx* to acknowledge that the bus master may-
access the bus. The centralized system board can negate MAKx* while the bus master is
accessing the bus. The bus master must release the bus within 64 BCLKs (8 ms) after
negation of MAKx*. The centralized arbitration controller causes an NMI if a bus master
fails to release the bus within the 8 us time limit.

Figure 73 illustrates an arbitration sequence in which the slot 2 bus master preempts
the slot 1 bus master. The following procedure describes the arbitration sequence:

A. Master 1 requests control of the bus by asserting MREQ 1 * .

B. The system board samples MREQ1* asserted and arbitrates among all other
requests, eventually granting control of the bus to Master 1 by asserting
MAK1* on the rising edge of BCLK.

C Master 2 requests control of the bus by asserting MREQ2*.

D. The svstem board preempts Master 1 by negating MAK1* on the rising edge
of BCLK. Master 1 now has 64 BCLKs (a us) to relinquish control of the
bus.

E. Master 1 stops driving the address bus, data bus and the control signals, and
negates MREQ1*.

F. Master 1 still requires the bus, however, so it waits two BCLKs and asserts
MREQ1* again.

G. Master 2 is granted control of the bus by the system board, and begins driving
the bus signals and executing cycles.

H. Master 2 voluntarily relinquishes control of the bus by negating MREQ2*.

I. The system board samples MREQ2* negated and begins bus arbitration.

J. The system board gives Master 1 control of the bus again.

Note: There is typically a one BCLK delay between the time MREQx* is sampled by the
system and the time the' system responds.

187

EP 0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

Figure 73 - Bus Arbitration Between Two Bus Masters

BCLK |

MREQ'<1>

MDAK*<1>

MREQ*<2>

MDAK*<2>

EISA BUS [

n j i J i J i J T J T J i J i J i J n _ n

!®; i ! : i : I © ! ' I :©! 1 ! : ! = !
1 * 1 . 1 * 1 I t I I > [" 1 ' 1 *. 1 1 @ 1 - I 1 1 t

i. ! S j® i i j j® i ! j | i i j ! I I

i ! i i © ! i ! i i ! ! M ® ! : ! : !
1 1 : I . [t 1 : 1 1 I - 1 '- i : t '• I ' | : t i ' 1 : 1 . I

: I ; ! j ! i I ! !©; ! ; ! : b : ! i !
i t I I • 1 I 1 1 1 1

. t 1 ; 1 : @ 1 = 1 1 1 I 1 ! \ i i i 1 i i : t i - i : i 5 i J • 1 • 1 ; t) I . I - I t : [; i
: ! : i : 1 i ! I ! ! . M ... ! — 1 I > ! — ! — L _

SYSTEM @ MASTER 1 — * MASTER 2 — ; MASTER 1
I ___ 1 . , fi ; 1 — | 1 1 , ; — i ! 1 <

188

:P0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCH! 1 fcC l UKt
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

2.10 Memory Ref resh

The EISA system board performs memory refresh. EISA bus masters need not
;upply refresh cycles since the refresh controller can preempt the bus master and perform
he necessary refresh cycles, sixteen-bit ISA bus masters that hold the bus longer than 15
ts must supply memory refresh cycles.

A memory slave must monitor REFRESH* to detect a refresh address. If
REFRESH* is asserted before assertion of START*, the address on the bus is a refresh
iddress. The refresh cycle lasts from the leading edge of START* through the trailing
;dge of CMD* (2 BCLK periods) unless wait states are added by the memory slave
aegating EXRDY (EISA slaves) or CHRDY (ISA slaves). Memory slaves must not drive
data on the bus during refresh. To achieve maximum performance, memory slaves should
not add wait states to refresh cycles.

The refresh controller drives the refresh address onto the LA<15:2> address lines
[14 bits of refresh counter) and also enables the BE*<3:0> lines so that they can be
translated to SA<1:0> lines. The state of LA<31:16> is indeterminate. The refresh
address bit order on the LA < 15:2 > and SA< 15:0> bus is as follows:

13 12 11 10 9 8 1 0 7 6 5 4 3 2 1 0 R e f r e s h

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 LA<>,SA<>

Refresh requests are generated by two sources: system tuner l counter i, ana io-Dit
bus masters that assert REFRESH* when they are in control of the bus. The system timer
is programmed to request a refresh about every 15 microseconds.

The refresh controller performs distributed refresh and increments a counter each
time a refresh request is not serviced within the normal 15 us interval. The counter counts
up to four incomplete refresh requests. The refresh controller executes one refresh cycle
when it gains control of the bus, and decrements the pending refresh count. If more
refreshes are queued up, the refresh controller immediately requests the bus again, without
waiting the normal 15 us interval. In this case, if no other device requires use of the bus,
then the REFRESH* negated time can be as short as 1 BCLK

The incomplete refresh counter allows refresh to be held off for a maximum of 75

us without refresh loss. The counter helps prevent 16-bit ISA bus masters and ISA
compatible block or demand mode DMA devices from causing refresh loss when they do
not release the bus.

Figure 74 shows a standard and a one-wait state EISA refresh cycle.

taa

P 0 42b 184 A2

EXTENDED INDUSTRY STANDARD AKCrti l i u i u t
-ONFI DENTIAL INFORMATION OF BCPR SERVICES, INC.

igure 74 - Refresh Cycles (Standard and One wait Mate;

EP 0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

2.1 1 Electrical Specif icat ions

The electrical drive characteristics listed elsewhere in this specification assume a
maximum of 8 bus slots. Slot-specific elements of the EISA architecture logically support
up to 15 slots. Although an ElSA system can logically support up to 15 slots, a'practical
system configuration would be unlikely to have more than 8 slots.

2.1 1 .1 Power C o n s u m p t i o n

The following table describes the power specification for each slot. Total supply
current and thermal dissipation are product specific and beyond the scope of this
specification.

Supply Supply Guaranteed
Voltage Current Current

+5 Volts ±5% 4.5 amps 2.0 amps
-5 Volts ± 10% 2 amps
+ 12 Volts ± 5% IS amps
-12 Volts ± 10% 3 amps

NOTE: Current on any pin cannot exceed 0.5 amps for EISA pins and 1.5 amps
for ISA pins.

2.1 1 .2 DC Charac ter i s t ics

Six drive types are used in the EISA bus. They are as follows:

3SL 3-state light drive
TPL Totem Pole light drive
OCL Open Collector light drive
3SH 3-state heavy drive
3TPH Totem Pole heavy drive
OCH Open Collector heavy drive

191

EP 0 426 184 A2

EXTENDED INDUSTRY STANDARD ARChiTECTURL
CONFI DENT1AL INFORMATION OF BCPR SERVICES, INC.

The following table shows the DC output characteristics for each of the output
types.

Output DC Characteristics by Driver Type

3SL TPL OCL 3SH TPH OCH

min max min max min max min max min max min max

Voh(V) 2.4 2.4 2.4 2.4

Vol(V) 03 03 0.5 0.5 0.5 0.5

IoH(mA) -.4 -.4 -3 -3

IoL(mA) 5.0 5.0 5.0 24 24 24

The following table defines the DC characteristics of an input.

Input DC Characteristics
min max units

Vm 2.0 V
Vn. 0.8 V

192

EP 0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

The following table shows drive types required for each signal on the bus, signals
that may have expansion-slot loads, and system-board pull up or down resistors required.

Drive, Load, and Pull-up /Pull-down Requirements by Bus Signal

Signal Drive Input Load Pull- Pull- Notes
Name @ Type Per Slot (/* A) up down

II Ih (ohms) (ohms)

AENx TPL 800 -80
BALE TPH 800 -80
BCLK TPH 800 -80
BE*<3:0> 3SH 800 -80
CHRDY OCH 800 -80 1.0K 1
CMD* TPH 800 -80
D<31:0> 3SH 800 -80 8.2K 1
DAK* < 7:0 > TPL 800 -80 2
DRQ < 7:0 > 3SL 20 ' -20 5.6K 1,3
EX16* OCH 800 -80 300 1
EX32* OCH 800 -80 300 1
EXRDY OCH 800 -80 300 1
1016* OCH 800 -80 300 1
IOCHK* OCH 800 -80 4.7K 1
IORC* 3SH 800 -80 82K 1
IOWC* 3SH 800 -80 82K 1
IRQ < 153 > OCL 20 -20 82K 1,4
LA*<31:24> 3SH 800 -80 1.0K 1
LA<23:2> 3SH 800 -80
LOCK* 3SH 800 -80 1.0K 1
M-IO 3SH 800 -80
M16* OCH 800 -80 300 1
MAKx* TPL 800 -80
MASTER16' OCH 800 -80 300 1
MRDC* 3SH 800 -80 8.2K 1
MREQx* TPL 8.2K 1
MSBURST* 3SH 800 -80 8.2K 1
MWTC* 3SH 800 -80 8.2K 1
NOWS* OCH 800 -80 300 1
OSC TPH 800 -80
REFRESH* OCH 800 -80 300 1
RESDRV TPH 800 -80
SA<19:0> 3SH 800 -80
SBHE* 3SH 800 -80
SLBURST* OCH 800 -80 300 1
SMRDC* TPH 800 -80
SMWTC* TPH 800 -80
START* 3SH 800 -80 8.2K 1
T-C 3SH 800 -80
W-R 3SH 800 -80

193

P U 42b 184 A2

EXTENDED INDUSTRY STAJNDAKD a k l h i i ea. i u i u ,
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

40TES:

I. These pull-up and pull-down resistors are required on system ooaras oniv.

>. A maximum of 6 slots at a time may be filled with adapters connected to any
one of the individual DAK* <7:0> signals.

5. Low-level input leakage current on the DRQ < 7:0 > inputs is such that the pull
down resistors guarantee a logic low when no device is driving the signals. To

protect drivers from damage due to incorrect system configuration (totem-pole
and open-collector outputs sharing the same line) all DRQ outputs must include
a up to a 47 ohm series resistor between the driver output and the bus. This is
unnecessary if the driver can stand to be continuously driven to any voltage
between Vcc and ground without damage.

t. ISA compatible devices may drive the IRQ < 15:3 > signals with a totem pole
output and as such cannot share interrupts. To protect drivers from damage
due to incorrect system configuration (totem-pole and open-collector outputs
sharing the same line), IRQ<x> outputs must include up to a 47 ohm series
resistor between the driver output and the bus. This is unnecessary if the driver
can stand to be continuously driven to any voltage between Vcc and ground
without damage.

2.1 1 .3 Signal Routing and Capacitive Loaamg Requ i remen t s

Signal run lengths between the bus connector and the drivers and receivers on
expansion boards should be limited to 25 inches.

The following table shows the maximum allowable loading capacitance for
the tntnl load canaeitance an tne total toao capacitance an
lignals driven only by the system

ia4

EP 0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

Load Capacitance

Signal Input Load Capacitance
Name • Per Slot Total

(pf) (p0

AENx 20
BALE 20
BCLK 20
BE*<3:0> 20 240
CHRDY 20 240
CMD" 20
D<31:0> 20 240
DAK* < 7:0 > 20
DRQ < 7:0 > - 120
EX16* 20 240
EX32* 20 240
EXRDY 20 240
IOl6* 20 240
IOCHK* 20 240
IORC* 20 240
IOWC* 20 240
IRQ < 15:3 > 20 120
LA* < 3 1:24 > 20 240
LA<23:2> 20 240
LOCK* 20 240
M-IO 20 240
M16* 20 240
MAKx* 20
MASTER16* 20 240
MRDC 20 240
MREQx* - 120
MSBURST* 20 240
MWTC* 20 240
NOWS* 20 240
OSC 20
REFRESH* 20 240
RESDRV 20
SA<19:0> 20 240
SBHE* 20 240
SLBURST* 20 240
SMRDC* 20
SMWTC* 20
START* 20 240
T-C 20 240
W-R 20 240

2.1 1 .4 AC Character is t ics

The following bus timing specifications identify the minimum or maximum timing
parameters for EISA signals. To meet the bus timing specifications, an output signal's
timing must provide margin for the signal to propagate from the driver output to any
receiver input, and for transients caused by transmission line reflections to settle at a stable
TTL logic level.

195

r U 426 104 A2

EXTENDED INDUSTRY STAJNDAKD AM-ni iw. i l ' ^ r
ONFIDENT1AL INFORMATION OF BCPR SERVICES, INC.

Tie following definitions apply to all ot tne a l cnaractensucs.

ETUP - applicable to inputs, the time preceding a sampling event during which the state
high or low) of the incoming signal must not change.

IOLD - applicable to inputs, the time following a sampling event during which the state
high or low) of the incoming signal must not change.

)ELAY (min) - applicable to outputs, the minimum time following a timing event before
/hich the state (high or low) of the outgoing signal can change.

)ELAY (max) - applicable to outputs, the time following a timing event after which the
tate (high or low) of the outgoing signal must not change.

>.1 1 .4.1 lSA-compatiDie Timing p a r a m e t e r s

This section specifies the timing requirements for all ISA compatible devices. The
SA bus tiining is divided into two main groups, GPU cycles and bus master cycles.' ISA bus
nasters which do not synchronize their signals to BCLK must use the bus master cycle
roecifications. ISA bus masters which synchronize their signals to BCLK have the option i ot

ising CPU cycle specifications where the parameters are equivalent, and must use the CPU
:ycle specifications for NOWS*.

The following assumptions are included in the calculations which were used to
rreate these specifications:

1) A device which generates a signal can meet the timing specs into the
specified AC and DC load.

2) CPU cycle timing numbers are measured at the system board drivers and
receivers. Master timing numbers are measured at the master's drivers and
receivers.

3) Bus propagation delay has not been included in the ISA timing calculations.
It is the responsibility of the slave designer to guarantee that there is
sufficient margin in the design to allow for bus propagation delay.

4) Each driver for a signal must drive the signal such that it can settle to within
the TTL input DC spec (less than 0.8 volts or greater than 2.0 volts) at the
specified location on the bus within the specified delay time.

5) For drivers with open-collector type of outputs, the Valid" delay must include
the rise time of the puilup resistor and the bus capacitance, to guarantee that
the input is above a valid logic-high level (2.0 volts) if the input is negating
during the time in question.

The ISA timing specifications are based on the timing for an IBM(R) PC-AT Model
339. Three classes of timing parameters are shown, delays from one system or bus master
output to another, slave input-to-output delays, and system input setup.

EP 0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

Asynchronous slaves which do not use BCLK are required only to meet the input-to-
output delays specified. When a slave's outputs are a function of more than one input from
the system, the slave's design must guarantee that all of the delay specifications indicated
here are satisfied. However, for any one bus cycle the actual switching time of the output
will be determined by the latest specification to be satisfied.

NOWS* is a synchronous signal and masters and slaves which use it are required to
meet setup and delay times from BCLK.

Figure 75 shows the timing parameters for the ISA-compatible portion of the EISA
bus. Please note that Figure 75 is two pages long.

Figure 76 shows timing paramters for the ISA-compatible portion of the EISA bus
for bus master cycles.

Figure 77 is similar to figure 75, with the exception that the signals are illustrated
from the perspective of the device.

197

U t^O lo t

> ™ I ^ ^ INFORMATION OF BCPR SERVICES, INC.

gUre lZ) ' lOPk DUS liming, OVDicin i "» '»6

EP 0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

Figure 75 - ISA Bus Timing, System Timing

<

o

199

P 0 42b 184 AZ

EXTENDED INDUSTRY STAIN DAK U A K L M i l t t t d K t
:ONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

•arameter Table for figure 7i>

»»< ISACGttPATiBLESlGNAL i.-. liming ms) Note
^ V i - r l i " ' - - ' - - \ ^ r T ^ ^ .@ Min : Max

LA <23:1 7 > valid before BALE asserted 56

> LA<23:1 7 > valid before BALE negated 116

3 LA<23:17> valid before MRDC*,MWTC* asserted
Ja Memory Access to 16-blt ISA Siave 112
3b Memory Access to 8-bit ISA Slave _176

3 SA< 19:0> & SBHE* valid before BALE negated 28

10 SA< 19:0> & SBHE* valid before MRDC*,MWTC* asserted
10a Memory Access to 16-bit ISA Slave 24
10b Memory Access to 8-bit ISA Slave 88
10 SA<19:0> & SBHE* valid before SMRDC*,SMWTC* asserted
1 0c Memory Access to 1 6-bit ISA Slave _ _28 _
10d Memory Access to 8-blt ISA Slave 88 _
toe SA<19:0> & SBHE* valid before IORC*,IOWC* asserted S8

11 SA < 1 9:0 > & SBHE* valid before MRDC*,MWTC* negated
11a Memory Access to 16-blt ISA Slave - 2 BCLK 150
11b Memory Access to 16-btt ISA Slave - Standard Cycle (3 BCLK) 270
11c Memory Access to 16-btt ISA Slave - 4 BCLK 390
11d Memory Access to 8-bit ISA Slave - 3 BCLK 270
11e Memory Access to 8-blt ISA Slave - Standard Cycle (6 BCLK) 630
1 1 f Memory Access to 8-blt ISA Slave - 7 BCLK 750

12 BALE asserted before BALE negated 30

13 BALE asserted before MRDC'.MWTC* asserted
1 3a Memory Access to 1 6-bit ISA Slave 30
1 3b Memory Access to 8-bit ISA Slave 90
1 3 BALE asserted before SMRDC*,SMWTC* asserted
1 3c Memory Access to 1 6-bit ISA Slave 30
1 3d Memory Access to 8-bit ISA Slave 9°
13e BALE asserted before IORCMOWC* asserted 90

14 BALE asserted before LA<23:17> invalid 9 ° . .

U *t_V I U-T

)NFIDENT1AL INFORMATION OF BCPR SERVICES, INC.

Parameter Table for Figure 75 (continued)

, BALE assorted before MRDC*, MWTC*, SMRDC*. SMWTC* neaated
>a Memory Access to 16-bit iSA Slave - 2 BCLK —
>b Memory Access to 16-blt ISA Stave - Standard Cycle (3 BCLK) 274

,c Memory Access to 16-blt ISA Slave - 4 BCLK i_ l
id Memory Access to 8-blt ISA Slave - 3 BCLK _
>e Memory Access to 8-blt ISA Slave- Standard Cycle (6 BCLK) 634

if Memory Access to 8-blt ISA Slave -7 BCLK . _ _

3 BALE negated before LA<23:17> invalid —

2 MRDC'.MWTC* asserted before LA<23:17> Invalid . .
2a Memory Access to 16-blt ISA Slave . —
2b Memory Access to 8-blt ISA Slave —

3 MRDC'.MWTC* asserted before MRDC'.MWTC* negated
3a Memory Access to 16-bft ISA Slave - 2 BCLK ; — 221
3b Memory Access to 16-bit ISA SUave - Standard Cyde (3 BCLK) 230

3c Memory Access to 16-bit ISA Stave - 4 BCLK . _ _
3d Memory Access to 8-blt ISA Slave @ 3 BCLK —
3e Memory Access to 8-blt ISA Slave - Standard Cycle (6 BCLK) _ _
3f Memory Access to 8-blt ISA Steve -7 BCLK . — _ _
3 SMRDC.SMWTC* asserted before SMRDC.SMWTC* negated
3g Memory Access to 16-btt ISA Slave - 2 BCLK :_
3h Memory Access to 16-blt ISA Slave - Standard Cycle (3 BCLK)
3j Memory Access to 16-btt ISA Stave - 4 BCLK .
!3k Memory Access to 8-blt ISA Slave - 3 BCLK . . _
>3I Memory Access to 8-blt ISA Slave • Standard Cycle (6 BCLK) 53U

!3m Memory Access to 8-bft ISA Slave - 7 BCLK
>3 IQRC.IOWC* asserted before IORCIOWC* negated .
23o I/O Access to 16-bit ISA Slave - Standard Cyde (3 BCLK) .!«> _
23p 1 /O Access to 16-blt ISA Slave • 4 BCLK .
>3q 1 10 Access to 8-blt ISA Slave • 3 BCLK
23r I/O Access to 8-blt ISA Stave - Standard Cyde (6 BCLK)
23s I/O Access to 8-bit ISA Slave - 7 BCLK ... 550

24 MRDC'.MWTC* asserted before SA< 19:0 > invalid
24a Memory Access to 16-bit ISA Slave - 2 BCLK .
24b Memory Access to 16-bit ISA Slave - Standard Cyde (3 BCLK) . 272

24c Memory Access to 16-bit ISA Slave - 4 BCLK -
24d j Memory Access to 8-bit ISA Slave - 3 BCLK i _J __ 1 1

_.W I

P 0 426 184 A2

EXTENDED INDUSTRY STANDARD AKCH1 1 ea_ l UKx-
^ONFI DENTLAL INFORMATION OF BCPR SERVICES, INC

»arameter Table for Figure 75 (continued)

m ^ ^ ^ m m ^ ^ ^ ^ ^ m ^ ^ . ^ m ^ @- •

>4e Memory Access to 8-b* ISA Slave - Standard Cycle (6 BCLK) 572
>4f Memory Access to 8-blt ISA Slave - 7 BCLK 692
>4 SMRDC*,SMWTC* asserted before SA<19:0> Invalid
>4g Memory Access to 16-blt ISA Slave - 2 BCLK 152
>4h Memory Access to 1 6-bit ISA Slave - Standard Cyde (3 BCLK) 272
24j Memory Access to 16-bit ISA Slave -4 BCLK 392
24k Memory Access to 8-b* ISA Stave - 3 BCLK 212
241 Memory Access to 8-bfc ISA Slave - Standard Cyde (6 BCLK) 572
24m Memory Access to 8-blt ISA Slave - 7 BCLK 692
24 IORC.IOWC* asserted before SA<19:0> invalid
24o I/O Access to 16-blt ISA Steve - Standard Cyde (3 BCLK) 212
24p I/O Access to 16-btt ISA Steve - 4 BCLK 332
24q I/O Access to 8-bit ISA Slave - 3 BCLK 212
24r I/O Access to 8-bit ISA Steve - Standard Cyde (6 BCLK) 572
24s I/O Access to 8-blt ISA Slave - 7 BCLK 692

25 MRDC'.MWTC* asserted before next BALE asserted
25a Memory Access to 16-bit ISA Steve - 2 BCLK 160
25b Memory Access to 16-blt ISA Stave - Standard Cyde (3 BCLK) 280
25c Memory Access to 8-blt ISA Slave - 3 BCLK 220
25d Memory Access to 8-blt ISA Steve - Standard Cyde (6 BCLK) 580
25 SMRDC*,SMWTC* asserted before next BALE asserted
25e Memory Access to 16-btt ISA Slave - 2 BCLK 160
25f Memory Access to 16-blt ISA Slave - Standard Cyde (3 BCLK) 280 _
25g Memory Access to 8-blt ISA Slave - 3 BCLK 220
25h Memory Access to 8-blt ISA Steve - Standard Cyde (6 BCLK) 580
25 IORCMOWC* asserted before next BALE asserted a
25i I/O Access to 16-bft ISA Stave - Standard Cyde (3 BCLK) 220 a
25j I/O Access to 8-blt ISA Slave - 3 BCLK 220 _ a
25k I/O Access to 8-blt ISA Slave - Standard Cyde (6 BCLK) 580 a

26 MRDC*,MWTC* asserted before next MRDC.MWTC* asserted
26a Memory Access to 16-bft ISA Slave - 2 BCLK 228
26b Memory Access to 164* ISA Slave - Standard Cyde (3 BCLK) 350
26c Memory Access to 8-blt ISA Slave - 3 BCLK 290
26d Memory Access to 8-bit ISA Slave - Standard Cyde (6 BCLK) 650
26 SMRDC'.SMWTC* asserted before next SMRDC*.SMWTC* asserted
26e Memory Access to 1 6-bit ISA Slave - 2 BCLK - 98
26f Memory Access to 1 6-bit ISA Stave - Standard Cyde (3 BCLK) 222
26g Memory Access to 8-bit ISA Slave -3 BCLK 160

r U 4_b 184 A—

EXTENDED INDUSTRY STANDARD AKtM: l K.c_ i u k c
:ONFIDENTLAL INFORMATION OF BCPR SERVICES, INC.

Parameter Table for Figure 75 (continued)

W~ : ' - " * : "TIMING PABA^KIBW DESCRIPTION ... ~< , i ̂ ' Min Max.
>6h Memory Access to 8-blt ISA Slave - Standard Cyde (6 BCLK) 530
>6 IORC.IOWC asserted before next IORC.IOWC asserted . . a
>6i I/O Access to 16-blt ISA Slave - Standard Cyde (3 BCLK) 350 a
>6j 1 10 Access to 8-bit ISA Slave - 3 BCLK 290 a
'6k I/O Access to 8-bit ISA Slave -Standard Cyde (6 BCLK) 710 a

27a MRDC*, MWTC* negated before SA<19:0> Invalid 32
27b SMRDC.SMWTC* negated before SA<19:0> Invalid 32
27c IORC.IOWC* negated before SA<19:0> invalid 32

29a MRDCMWTC negated before next BALE asserted 36
29b SMRDC.SMWTC negated before next BALE asserted 36
29c IORC.IOWC negated before next BALE asserted 36 a

31 LA<23:17> valid to M16* valid 96

32 LA<23:1 7> valid to NOWS* asserted _
32a Memory Access to 16-blt ISA Slave - 2 BCLK 156
32b Memory Access to 8-blt ISA Slave -3 BCLK 280

33 LA<23:17> valid to CHRDY negated
33a Memory Access to 16-blt ISA Slave -4 BCLKs 284
33b Memory Access to 8-bit ISA Slave -7 BCLKs 654

34 LA < 23: 1 7 > valid to read data valid
34a Memory Access to 16-bit ISA Slave -2 BCLK 204
34b Memory Access to 16-bit ISA Slave - Standard Cyde (3 BCLK) __ 330
34c Memory Access to 16-blt ISA Slave -4 BCLK _ 456
34d Memory Access to 8-blt ISA Slave - 3 BCLK . 320
34e Memory Access to 8-bit ISA Slave - Standard Cyde (6 BCLK) .694
34f Memory Access to 8-blt ISA Slave -7 BCLK 820

36 BALE asserted to NOWS* asserted
36a Memory Access to 16-bit ISA Slave 70
36b Memory Access to 8-blt ISA Slave ... 196

IP 0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCHITbCl U K t
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

'arameter Table for Figure 75 (continued)

net > ISA COIfPAT£U£SiQNAL f; Timing (ns) Note
^ ^ ^ ^ ^ ^ k 6 m m m w ^ t M m p i i b A S ^ S S I S M m m .

37 BALE asserted to CHRDY negated
37a Memory Access to 16-bit ISA Slave -4 BCLKs 200
37b Memory Access to 8-bit ISA Stave - 7 BCLKs 560
37c I/O Access to 16-blt ISA Slave - 4 BCLKs 200
37d I/O Access to 8-bit ISA Slave -7 BCLKs 560

38 BALE asserted to read data valid
38a Memory Access to 16-blt ISA Slave - 2 BCLK 120
38b Memory Access to 16-blt ISA Slave - Standard Cyde (3 BCLK) 246
38c Memory Access to 16-blt ISA Slave - 4 BCLK 370
38d Memory Access to 8-blt ISA Stave - 3 BCLK _ 236
38e Memory Access to 8-blt ISA Slave - Standard Cyde (6 BCLK) 610
38f Memory Access to 8-bit ISA Slave - 7 BCLK 730
38h I/O Access to 16-blt ISA Slave - Standard Cyde (3 BCLK) 246
38j I/O Access to 16-blt ISA Slave -4 BCLK 370
38k I/O Access to 8-blt ISA Slave - 3 BCLK '. 236
381 I/O Access to 8-bit ISA Slave - Standard Cyde (6 BCLK) 610
38m I/O Access to 8-blt ISA Slave - 7 BCLK 730

40 SA < 1 9:0 > , SBHE valid to NOWS* asserted
40a Memory Access to 16-blt ISA Slave - 2 BCLK 68
40b Memory Access to 8-blt ISA Slave - 3 BCLK 192
40d I/O Access to 8-blt ISA Slave -3 BCLK 192 _ .

41 SA<19:0>, SBHE valid to CHRDY negated
41a Memory Access to 16-bit ISA Slave
41 b Memory Access to 8-blt ISA Slave 560
41c I/O Access to 16-bit ISA Slave 196
41 d I/O Access to 8-bit ISA Slave 560

42 SA< 1 9:0 > , SBHE valid to read data valid
42a Memory Access to 1 6-btt ISA Slave - 2 BCLK 1 1 6
42b Memory Access to 16-bft ISA Slave - Standard Cyde (3 BCLK) 242
42c Memory Access to 16-bit ISA Slave - 4 BCLK 366
42d Memory Access to 8-bit ISA Slave - 3 BCLK 232
42e Memory Access to 8-bit ISA Slave - Standard Cyde (6 BCLK) 606
42f Memory Access to 8-bit ISA Slave -7 BCLK 726
42h I/O Access to 1 6-bit ISA Slave - Standard Cyde (3 BCLK) 242
42j I/O Access to 1 6-bit ISA Slave - 4 BCLK 366
42k I/O Access to 8-bit ISA Slave - 3 BCLK . 232

@lAicmiLU i n u u o i M o 1 AJNUAJvD AKUH 1 1 fc 1 .1 U K_ CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

Parameter Table for Figure 75 (continued)

m~ -., TlMlMOPARAJ«sTERSl>aK»|-riOH r*s*ai*#; Mini- Max- "
421 I/O Access to 8-bit ISA Slave - Standard Cyde (6 BCLK) goe <2m I/O Access to 8-bft ISA Slave - 7 BCLK ' 7?fi

6 MRDC. MWTC*. SMRDC*, SMWTC*. IORC* IOWC*
asserted to NOWS* Asserted

»6a Memory Access to 16-bit ISA Slave - 2 BCLK " 15 16b Memory Access to 8-blt ISA Slave - 3 BCLK 80 I6d I/O Access to 8-bit ISA Slave - 3 BCLK 80

17 MRDC*. MWTC*, SMRDC*. SMWTC*, IORC*. IOWC* '" "
asserted to CHRDY negated

7a Memory Access to 16-blt ISA Slave - 4 BCLKs ""
7b Memory Access to 8-bit ISA Slave - 7 BCLKs 398 7c I/O Access to 16-bit ISA Slave - 4 BCLKs 80 b 7d I/O Access to 8-blt ISA Slave - 7 BCLKs " 398

8 MRDC*, SMRDC*, IORC* asserted to read data valid
8a Memory Access to 16-blt ISA Slave - 2 BCLK 70 8b Memory Access to 16-blt ISA Slave - Standard Cyde (3 BCLK) {94
8c Memory Access to 16-blt ISA Slave -4 BCLK 314 Bd Memory Access to 8-bit ISA Slave -3 BCLK 122 Be Memory Access to 8-bit ISA Stave - Standard Cyde (6 BCLK) 490 '
3f Memory Access to 8-blt ISA Slave -7 BCLK 610 3h I/O Access to 16-bit ISA Slave - Standard Cyde (3 BCLK) " " 130
3j I/O Access to 16-blt ISA Slave -4 BCLK 250 3k I/O Access to 8-bit ISA Slave - 3 BCLK 1Z2
3J I/O Access to 8-brt ISA Slave -Standard Cyde (6 BCLK) 490'
3m I/O Access to 8-brt ISA Slave - 7 BCLK "" " 610

> NOWS* setup to BCLK falling edge ' ~q

) NOWS* hold from BCLK falling edge " "'" 20

o

EP 0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

Parameter Table for Figure 75 (continued)

Ret . ISA COMPATIBLE SIGNAL Timing (ns) Note
of' - T l M I N O l ^ ^

54 CHRDY asserted to read data valid
54a Memory Access to 16-bft ISA Slave - 4 BCLKs 80
54b Memory Access to 8-blt ISA Slave - 7 BCLKs 70
54c I/O Access to 16-bit ISA Slave -6 BCLKs 80
54d I/O Access to 8-bit ISA Slave - 7 BCLKs 70

55 CHRDY asserted to MRDC*, MWTC*. SMRDC*. SMWTC*. 1 16
IORC*. IOWC* negated

56 CHRDY asserted to next BALE asserted 1 64

57 CHRDY asserted to SA < 1 9:0 > , SBHE Invalid 164

58 MRDC*, IORC*. SMRDC* negated to read data invalid 0

59 MRDC*. IORC*. SMRDC* negated to data bus float „ 30

61 Write Data valid before MWTC* asserted
61 a Memory Access to 1 6-bit ISA Slave -40
61b Memory Access to 8-bft ISA Slave (byte copy at end of START) 22
61 Write Data valid before SMWTC* asserted
61 c Memory Access to 16-btt ISA Slave -38
61 d Memory Access to 8-bit ISA Slave (byte copy at end of START) 24
61 Write Data valid before IOWC* asserted
61e I/O Access to 16-bft ISA Slave 22
61f I/O Access to 8-brt ISA Slave (byte copy at end of START*) 22

64 MWTC*, SMWTC*. IOWC*. negated to WRITE DATA invalid
64a MWTC* negated to WRITE DATA Invalid - 1 6-bit 25
64b MWTC* negated to WRITE DATA invalid - 8-bit 9
64c SMWTC* negated to WRITE DATA invalid -16-bit 25
64d SMWTC* negated to WRITE DATA invalid - 8-bit 9
64e IOWC* negated to WRITE DATA invalid 25

65 Write data valid to MWTC*. SMWTC*. IOWC* negated
65a Memory Access to 1 6-bit 1 SA Slave - 2 BCLK 86
65b Memory Access to 16-bit ISA Slave -Standard Cycle (3 BCLK) 212
65c Memory Access to 1 6-bit ISA Slave - 4 BCLK 586
65d Memory Access to 8-bit ISA Slave -3 BCLK . 208
65e Memory Access to 8-bit ISA Slave - Standard Cyde (6 BCLK) 564

206

P U 426 184 A2

EXTENDED INDUSTRY STANDARD AKCMi i t t i U K t
"ONFI DENT1AL INFORMATION OF BCPR SERVICES, INC.

•arameter Table for Figure 75 (conclusion;

V* --- - jra rnMPftTISLESIBNAL itminginsj Note
lei- % -> ;v • -T̂ Min Max
55f Memory Access to 8-bit ISA Slave - 7 BCLK 684

58 CHRDY negated hold time 40 c

59 CHRDY asserted setup time to BCLK rising 34

70 SA<19:0> & SBHE* valid before 1016* valid __160

71 BALE asserted before 1016* valid 160

72 AEN valid before BALE asserted 45

73 AEN valid before BALE negated. 100

74 AEN valid before IORC* asserted
74a AEN valid before IORC* asserted 100 ._
74b AEN valid before IOWC* asserted 100.

75 IORC*. IOWC* negated before AEN Invalid _ ...30

76 MRDC*. IORC*, SMRDC* asserted to read data enable 0

77 LA invalid to M1 6* float delay ... 0

78 SA invalid to 1016* float delay 0 .

Note (a) Assumes no back-to-back I/O delay. Back-tc-DacK i /u
delay adds integral number of BCLK periods to
this parameter.

Note (b) Systems designed prior to the ti5>A specification,
which sample CHRDY on the rising edge of BCLK
require parameter 47c max = 24 ns.

Note (c) CHRDY negated (low) hold time is measured from the
rising edge of BCLK or the negating (falling) edge of
CHRDY, whichever is later. Devices designed prior
to the EISA specification may require hold time to be
measured exclusively from the rising edge of BCLK.

EP 0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

Figure 76 - ISA Bus Timing, Bus Master Cycles

208

P U 426 184 A_

EXTENUED INDUSTRY 51 AJNDAKL» A K L H i i t L : u r x
;ONFIDENTL\L INFORMATION OF BCPR SERVICES, INC.

Parameter Table for Figure 76

15- or 32-bit EISA master timing:
@-^ D e s c r i p t o r : • • min-

MREQ* delay from BCLK falling 2.0 33.0

> MAK* setup to BCLK falling 10.0

3 MAK* held from BCLK falling 25.0

I LA addr, M-IO delay from BCLK falling 2.0 50.0

5 BE* < > ,W-R delay from BCLK falling 2.0 85.0

BE* o.W-R delay from BCLK rising ** see Note (a) ** 25.0

5 LA addr, M-IO, BE*, W-R, MSBURST float delay 2.0 50.0

7 LA addr, M40 setup to START* asserted 1 0.0

B START* delay from BCLK rising 2.0 25.0

9 EX32* (or EX1 6*) setup to BCLK rising (at CMD) 25.0

1 0 EX32* (or EX1 6*) held from BCLK rising (at CMD) 55.0

I I EX32* (or EX1 6*) setup to BCLK rising (assembly finish) 1 5.0

1 2 EX32* (or EX1 6*) held from BCLK rising (assembly finish) 50.0

1 3 EX32* (or EX1 6*) setup to BCLK falling (assembly finish) 80.0

14 EX32* (or EX16*) held from BCLK falling (assembly finish) 5.0

1 5 EXRDY setup to BCLK falling 1 5.0

2uy

@P 0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCH I fEC » UKt
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

'aramcter Table for Figure 76 (conclusion)

1 6- or 32-bit EISA master timing:
Description ' . • *• ' min max

1 6 EXRDY held from BCLK falling 5.0

17 LOCK* delay from BCLK rising 2.0 60.0

18 Data delay from BCLK falling (write) 2.0 40.0

19 Data ftLdel.from BCLK falling (write) ** see Note (b) ** 2.0 50.0

20 Data held after BCLK rising (read) 4.0
(for compressed cyde. from BCLK falling)

21 Data setup to BCLK rising (read) 15.0
(for com pressed cyde, to BCLK falling)

22 MASTER 16* asserted delay from BCLK falling (16-bit master) 2.0 30.0

23 MASTER 16* asserted delay from MAK*<x> asserted (16-bit master) 40.0

24 MASTER1 6* float delay from BCLK falling (16-bit master) 2.0 50.0

Note (a): BE< >* bits are allowed to change as early as the tailing
BCLK when the LA<> bits change.

Note (b): Parameter applies after any write cyde not followed by
another write cyde. or f dlowed by write cyde with some
BE<>* bits negated.

210

EP 0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

Figure 77 - ISA Bus Timing, CPU Cycles (Device Perspective)

211

EP 0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

figure 77 - ISA Bus Timing, CPU Cycles (Device Perspective)

>12

EP0 426 184 A2

NOTICE

In an e a r l i e r p r i n t i n g of V e r s i o n 3 .10 of the S p e c i f i c a t i o n ,
a p r o d u c t i o n e r r o r had r e s u l t e d and an a d d i t i o n a l f i g u r e was
i n a d v e r t e n t l y i n c l u d e d as F i g u r e 75, thus c a u s i n g the ' t w o
f o l l o w i n g f i g u r e s to be m i s l a b e l e d .

We have c o r r e c t e d t h i s p r o b l e n in t h i s p r i n t i n g of V e r s i o n
3 .1 . We have r e p l a c e d pages 157 t h r o u g h 180 of V e r s i o n 3 . 1 0 ,
Because of t h i s c o r r e c t i o n , t h e r e a re no r e p l a c e m e n t s for p a g e s
173 t h r o u a h 1 8 0 .

213

* U 4_b 1»4 Aid

EXTENDED INDUSTRY STANDARD AKLtin ca-i«Jivl
ONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

2.11.4.2 EISA, DMA, ana Heiresn linking Karameie i s

This section specifies the timing requirements for all EISA devices The
specification is divided into three main groups corresponding to the main types ot b lSA
devices: masters, slaves and DMA devices. Figures 78 through 91, and the associated

parameter tables, at the end of this section show the relevant signals and parameters for

the various cycle types.

The timing specifications for EISA are calculated to assist the system or option
board designer to verify his system. The following assumptions are included in the

calculations that were used to create these specifications.

1) A device that generates a signal can meet the tiining specs into the specified AC
and DC load.

2) All timing parameters are measured at the receiver and driver of the device

being specified.

3) Each signal is allowed 5 ns topropagate to the farthest load and to reflect back

to the source (one time). The propagation time is approximately 21/2 ns,
based on 16 inches of trace. A worst case propagation path is: 2 1/2 inches
from driver to connector, 6 inches from connector across backplane, and up to
7 1/2 inches from connector to receiver on the system board. This delay
(transmission line delay) is built into the calculations for the system.

4} Each driver for a signal must drive the signal so that it can settle to within the
TTL input DC spec (less than 0.8 volts or greater than 2.0 volts) within the

specified output delay plus the 5 ns.

5) For drivers with open collector type of outputs, the delay caused by the rise time
of the pullup resistor and the bus capacitance is included in the calculations tor

signals going from low to high. This is used instead of the 5 ns transmission line

delay. The equation used is as follows:

-ln(l-(2.0v-0.25v)/(4.75v-025v)) 'Rpullup* Csignal capacitance

This corresponds to a minimum Vcc level of 4.75v, a steady state logic low level of

0.25v, and the high level input voltage spec of 2.0v. If a driver's steady state logic
low value is lower than this, then additional time must be allowed for the KL rise

delay by reducing the specified signal output delay.

Note that the delay in generating the falling edge of the open collector outputs is

allowed to be slower than the EISA spec indicates. The extra delay allowed is equal
to the RC delay for the signal (as calculated above) minus 5 ns. Only the float delay
must actually meet the published spec.

For many logic families, notes 1 to 4 allow a designer to verify a design directly at
the output of the driver or input of the receiving logic. The 5 ns transmission and settling
time eliminates the need to check the system under various types of loading and with the

adapter in various slots.

U *t£0 lot t\c

ONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

If a logic dnver is used mat nas a very snuu use - \- — . — — -.
s) then the designer may have to plan for additional settling time or use senes damping
Kistors The dSgner should check these types of drivers in both large, fully loaded

/stems and small lightly loaded systems.

As an alternative to using the specified delay values and AC loads for drivers, the

esimer may instead guarantee timing at the destination receivers rather than at the source
Svf? to Skcase the designer must insure, through testing that aUpossib le receivers ̂ are
S " the TTLkiput specswdthin the EISA spec time plus 5 ns. This testmg should be

lone in both large fully loaded systems and small lightly loaded systems.

A large fully loaded svstem consists of maximum AC and DC loads on all eight

ards and the svstem board with the maximum wire lengths flowed between all po
Jmall lightly loaded systems consist of a single card with the minimum AC and DC load

md a system board with minimum reasonable wire lengths between all points.

\# -r*-w @ w • •

•NFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

Tire I O ' lw" v» J*"u" —j - —

IEQx'

UXx*

8-Bt tUsttrs)

-10

E*<3:0>
-R

TAKl

WD*

3(16'

LUUK'

K£AU UA1A

WKllt UA1A

j — j — 1

U t^O I Of « t

3NFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

gure ly - 10- or jx-uu ciort i«a»«-i
Assembly/Disassembly Timing

SOLe. JnlCK lines muiLdie wiicic cuiiu ui ua»oii.i. — -j
or from System to Master.

P 0 426 184 AZ

EXTENDED INDUSTRY STANDARD ARCHITECT URh.
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

Parameter Table for Figures 78 - 79

16- or 32 -oft EISA master timing:
DesoriptiaoS#^v~mv<- -s-.<. • @• ' - ^ - *• • - : min - -max

1 MREQ* delay from BCLK falling 2.0 33.0

2 MAK* setup to BCLK falling 1 0.0

3 MAK* held from BCLK falling 25.0

4 LA addr, M-IO delay from BCLK falling 2.0 50.0

5 BE* < > ,W-R delay from BCLK falling 2.0 85.0

BE* < > ,W-fl delay from BCLK rising ** see Note (a) ** 25.0

S LA addr, M-IO, BE*, W-R, MSBURST float delay 2.0 50.0

7 LA addr,M40 setup to START* asserted 10.0

8 START* delay from BCLK rising 2.0 25.0

9 EX32* (or EX1 6*) setup to BCLK rising (at CMD) 25.0

10 EX32* (or EX16*) held from BCLK rising (at CMD) 55.0

1 1 EX32* (or EX1 6*) setup to BCLK rising (assembly finish) 1 5.0

1 2 EX32* (or EX1 6*) held from BCLK rising (assembly finish) 50.0

1 3 EX32* (or EX1 6*) setup to BCLK falling (assembly finish) 80.0

14 EX32* (or EX1 6*) held from BCLK falling (assembly finish) 5.0

15 EXRDY setup to BCLK falling 15.0

218

EP 0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

Parameter Table for Figures 78 - 79

16- Of 32 -bit EISA master timing:

1 6 EXRDY held from BCLK falling 5.0

17 LOCK* delay from BCLK rising 2.0 60.0

18 Data deiay from BCLK falling (write) 2.0 40.0

19 Data ftt.del.from BCLK falling (write) ** see Note (b) ** 2.0 50.0

20 Data held after BCLK rising (read) 4.0
(for compressed cycle, from BCLK falling)

21 Data setup to BCLK rising (read) 1 5.0
(for compressed cycle, to BCLK falling)

22 MASTER16* asserted delay from BCLK falling (16-bK master) 2.0 30.0

23 MASTER16* asserted delay from MAK*<x> asserted (16-bit master) 40.0

24 MASTER16* float delay from BCLK falling (16-bit master) 2.0 50.0

Note (a): BE <>* bits are allowed to change as early as the falling
BCLK when the LAo bits change.

Note (b): Parameter applies after any write cycle not followed by
another write cycle, or followed by write cycle with some
BE <>* bits negated.

219

EP0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCHIT£CTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

Parameter Table for Figures 78 - 79

System timing (misc):

Note: The following timing specifications supplement or
supercede the master and master burst timing specifications.

24 BCLK high time 55.0

25 BCLK low time 55.0

26 BCLK period (when free running) 120.0 250.0
Max value can be longer when being stretched

27 CMD* delay from BCLK rising 2.0 25.0

ISA commands delay from BCLK 2.0 30.0
MRDC. MWTC. IORC, and IOWC

BALE delay from BCLK edge 2.0 25.0

SA <> . BHE* delay from BCLK edge 2.0 30.0

28 MAK* delay from BCLK rising 2.0 40.0

AENx high from BCLK falling delay (DMA, etc starts) 2.0 60.0

AENx low from BCLK falling (DMA, etc ends) 5.0 60.0

AENx valid delay from LA <> addr 0 /O cycle) 0.0 1 5.0

Data copy buffer float from BCLK 2.0 35.0

Data copy buffer delay (for bus to bus copies) 0.0 1 5.0

Data copy buffer enable from BCLK 2.0 35.0

MREQ* setup to BCLK rising 1 5.0

MREQ* setup to BCLK falling 80.0

MREQ* held from BCLK falling 2.0

BE*,W-R setup to BCLK falling (for SA1 .0.BHE xlat) 25.0

BE*.W-R hold from BCLK falling (for SA1 ,0,BHE xiat) 55.0

START* setup to BCLK falling (Master drives START*) 25.0

220

EP 0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

Parameter Table for Figures 78 - 79

System timing (misc):
§*<•. Description ;> ^^^r>5;^^.5jtA_. ̂ min max

START* hokJ from BCLK falling (Master drives START*) 45.0

MASTER 1 6* setup to BCLK rising 20.0

MASTER 1 6* held from BCLK rising 5.0

M16* setup to BCLK rising 18.0

M 1 6* hold from BCLK rising 25.0

NOWS* setup to BCLK rising (ISA cycles) 1 0.0

NOWS* hold (ISA cycles) 20.0

CHRDY negated setup to BCLK falling 15.0

CHRDY negated hold from BCLK rising (preset PW) 20.0

CHRDY asserted setup to BCLK rising 10.0

CHRDY asserted hold from BCLK rising 20.0

101 6* setup to BCLK falling 20.0

I0 1 6* hold from BCLK falling 20.0

Note: The following system board setup and delay timing
specifications include time for copy buffer input or output
and routing to the correct byte lanes.

ISA read data setup to BCLK rising (latch setup) 1 5.0

ISA read data hold from BCLK rising (latch hold) 2.0

ISA Write data delay from BCLK falling (assembly cycles) 2.0 55.0

ISA write data delay from BCLK rising (8-bit) 2.0 35.0

EISA Data delay from BCLK falling (write) 2.0 55.0

EISA Data setup to BCLK rising (read) 30.0

221

EP 0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

Parameter Table for Figures 78 - 79

System timing (misc):
Description J ^ ^ ^ . -min ^irant"
REFRESH* asserted delay from BCLK falling 2.0 60.0

REFRESH* negated delay from BCLK falling 2.0 40.0

BE* delay from BCLK rising (assembly cycles) 0.0 35.0

SA addr to LA addr delay (ISA master translate) 0.0 15.0

222

EP 0 426 184 A2

c-Ai LiNUED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF 3CPR SERVICES, I N C

higure 80 - System Timing (Assembly Cycles)

DATA

K£,AU
DATA

EX16'

Parameter Table for Figure 80

~ ISA COMPATIBLE SIGNAL TIMING PARAMETERS DESCSBPTiON ; Timing (ns)
:i "

. *• " 'v,^ SYSTEM TIMING (ASSEMBLY CYCtJES)̂ ,' ~ @ MIN MAX
1 Data setup to BCLK rising (grab data, write assemble) 1 o

2 Data held from BCLK rising (grab data, write assemble) 30

3 Data delay from BCLK falling (redrive data,read assem) 5 30

I Data float after BCLK rising (redrive data,read assem) 50

5 EX32* (or EX16*) delay from BCLK falling (assembly finish) 2 35

23

EP 0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

Figure 81 - 16- or 32-bit EISA Slave Timing

BULK

M-10

bt'<J:U>
V-R

3TAKT"

CMU"

EX32*
EX 16*

tXKUI

riUno

LOCK"

KEAU DATA

WKlIt UAJ A

Olfa'

Signals for EISA I/O Cycles

*
U < n » i

!24

EP0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

Parameter Table for Figure 81

8, 16 or 32-blt EISA slave timing:
Pmrt D e ^ r t p a o r i ^ ^ » P ^ f e A i ^ ^ ^ : "@ • 4^-« :v* i - m a x
1 LA addr,M-IO setup to START* asserted 10.0

2 LA addr,M40 setup to CMD* asserted or START* negated 120.0

3 LA addr,M-IO setup to BCLK rising (at CMD) 120.0

4 BE* < > ,W-R setup to CMD* asserted or START* negated 80.0

5 BE* <> ,W-fl setup to BCLK rising (at CMD) 80.0

6 LA addr M40,W-R,BE* held from CMD* asserted and START* negated 15.0

7 LA addr M40.W-R.BE* held from BCLK rising(normal) 20.0

8 START* pufse width 115.0

9 CMD* pulse width (standard) 115.0 5000

10 EX32* (or EX1 6*) float delay from LA addr, M-IO 2.0 54.0

1 1 EX32* (or EX16*) float delay from AEN (I/O cycles) 2.0 34.0

12 1016* delay from LA addr (I/O cycles) 2.0 54.0

1 3 EXRDY negated delay from BCLK rising (at CMD) 35.0

14 EXRDY negated delay from LAo.M-IOAEN 145.0

15 EXRDY negated delay from START* asserted 2.0 125.0

1 6 EXRDY negated delay from CMD* asserted or START* negated 5.0

17 EXRDY float delay from BCLK falling 2.0 40.0

1 8 LOCK* setup to BCLK rising 55.0

1 9 LOCK* held from BCLK rising 2.0

20 Data delay from CMD* assert, (read, 16 or 32-bit, 2 BCLK) 50.0
8-bit slave (6 BCLK) 530.0

225

EP 0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

Parameter Table for Figure 81

8, 16 or 32-bit EISA slave timing:
errn'?: D a s c 3 p ^ # ! ^ • V=- ™in max •
21 Data delay from START* assert.(read, 16 or 32-bit, 2 BCLK) 1 70.0

8-blt slave (6 BCLK) 650.0

22 Data delay from BCLK rising (read, 1 6 or 32-bit) 0.0 80.0
8-blt slave (6 BCLK) 560.0

23 Data float delay from CMD* negated (read) 30.0

24 Data delay (hold) from CMD* negated (read) 2.0

25 Data setup to CMD* asserted (write, 1 6 or 32-bit) -1 0.0
8-blt slave (6 BCLK) -35.0

26 Data setup to CMD* negated (write, 16 or 32-bit) 1 10.0
8-bit slave (6 BCLK) 564.0

27 Data held after CMD* negated (write) 25.0

28 AEN setup to CMD* asserted or START* negated (I/O cycles) 95.0

29 AEN held from CMD* asserted or START* negated (I/O cycles) 25.0

33 START* asserted to CMD* asserted setup 90.0

34 START* asserted to BCLK rising (at cmd) 90.0

35 START* asserted to CMD* negated (overlap) 30.0

36 CMD* asserted to START* negated (overlap) 25.0

37 START* negated to CMD* asserted (gap) 25.0

226

P 0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCH1 1 fc(- 1 UKJt
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

•igure 82 - System Timing (COMPRkSskU cycles;

)CLK

A<31 2>
-1-10

3E'<3:0>
l-R

START*

:MD*

EX32*
EX16*

NOWS*

READ D<31:0>

WRITE D<31:0>

ZZf

IP 0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCHITECT! UKt,
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

Parameter Table for Figure 82

ttsfc *ru - -v*. SYSTEM TIMING PARAMETERS DESCRIPTION Timing (ns)- Note
I K m*t'< • { c ^ p r e s ^ o ^ » c C e s > # ^ • - * W- ;min,; max- - -
1 START* negated or CMD* asserted delay from BCLK rising 2 25

2 LA Address, M-IO, W-R, BE* <> delay from START* negated or 1 5
or CMD* asserted

3 LA addr, M-IO delay from BCLK rising (at CMD* asserted), burst not supported 20 50
burst supported 20 45

4 BE* < > ,W-R delay from BCLK rising (at CMD* asserted) 20 85

5 CMD* asserted pulse width 50

6 NOWS* setup to BCLK rising (compressed cycles) 15

7 NOWS* held from BCLK rising (compressed cycles) " 5

8 Data held after BCLK falling (read) 4

9 Data setup to BCLK falling (read) 15 _.

1 0 Data delay from BCLK falling (write) (BCLK at START* asserted) 57

11 Data valid before BCLK rising at CMD* asserted (write) 15

12 Data valid before START* negated or CMD* asserted (write) 20

Note: The Master or Normal System timing numbers apply except wnere tne
above numbers add to or supercede them.

EXTENDED INDUSTRY S TANUAKU AJKCKi I £.<-•@ utv-.
CONFIDENTIAL INFORMATION OF BCFR SERVICES, : N C

igure 83 - 16- or 32-bit EISA COMrRLoofcL) cycie - aiave @ inuug

3CLX

LA<31:2>
tf-10. AENx

BE'<3:0>
@-R

START*

CMD*

EX32*
EX16*

NOWS*

READ D<31

WKITL U<iH:U>

d.<£.X

EP 0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

Parameter Table for Figure 83

16- or 32-bit EISA compressed cycle slave timing:
?• ?* DescapUortss*^ . - min ; max
1 LA<31:2> M40.W-R3E* hekJ from BCXK rislrig(compr) 20.0

2 CMD* pulse width (compressed) 50.0

3 NOWS* asserted delay from START* asserted (compressed) 0.0 70 0

4 NOWS* asserted delay from LA<> .M-IOAEN (compressed) 80.0

5 NOWS* asserted delay from BE*, W-R (compressed) 65.0

6 NOWS* float delay from START* negated (compressed) 0.0 30.0

7 Data delay from START* assert, (read compressed) 1 50.0

8 Data delay from CMD* assert, (read compressed) •, 5.0

9 Data delay from BCLK rising (read compressed) 0.0 30

1 0 Data setup to CMD* asserted and START* negated (write compressed) 20.0

1 1 Data setup to BCLK rising (write compressed) 1 5.0

12 Data setup to CMD* negated (write compressed) 85.0

13 Data held after CMD* negated (write compressed) 25.0

230

;P 0 426 184 A2

EXTENDED INDUSTRY STANDARD AKUH1 1 fcC 1 "JKt
CONFIDENTLAL INFORMATION OF BCPR SERVICES, INC.

Igure 84 - Refresh Cycle - Slave liming

C
- 5

231

ca i c m u t u i fsuusi KY STANDARD A RCH I vECTURF
CONFIDENTIAL INFORMATION OF BCPR SERVICES, iNC.

Parameter Table for Figure 84

nerresn cyae save timing:
Ŝ SSS DiJscHption :^e>r, @ - >: @ bmxu&m&b&K rnln • max

REFRESH* vaiid setup to SA <> address 0 0

> REFRESH* valid setup to MRDC* asserted 120 0

t REFRESH* valid boW from MRDC* negated " 20 0

SA <> address setup to MRDC* asserted (refresh) 70 0

SA <> address hold from MRDC* negated (refresh) 25 0

MRDC* pulse width (refresh) 235 0 ""

REFRESH* asserted setup to START* asserted 55 0

REFRESH* negated setup to START* asserted 1 0 0

REFRESH* held from CMD* negated 20 0

EP 0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

Figure 85 - 16- or 32-bit EISA Master Timing, Burst

READ DATA

WRITE DATA

1) EISA Standard Access (Slart of Burst) 4.5) EISA Burst Access
I) EISA Burst Access 6) EISA Standard Access
3) EISA Burst Access with One Wait State

133

EP 0 426 184 A2

fcAlt-rNUfcU INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

Parameter Table for Figure 85

16- or 32-bit EISA master timing. Burst:
t r - D e s c m x i ^ m ^ ^ ^ m ^ ^ ^ ^ ^ ^ ^ ^ ^ , — . min- @ max
1 U<31:2>, BE*<3:0> delay from BCLKtalling 2.0 450

2 MSBURST* delay from BCLK falling 2.0 35 0

3 SLBURST* setup to BCLK rising 15.0

I SLBURST* held from BCLK rising 25.0

j Data delay from BCLK rising (write) 5.0 400

5 Data hold from BCLK rising (write) 5.0

* Data held after BCLK rising (read) ' 50

! Data setup to BCLK rising (read) . 15 0

) MASTER 16* asserted delay from BCLK rising (downshift) 2.0 50 0

0) MASTER 16* float delay from BCLK rising (downshift) 20 40 0

34

EP 0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

Figure 86 - 16- or 32-bit EISA Slave Timing, Burst

BCLK

LA<31:2>
M-IO

BE*<3:0>

W-R

START*

CMD'

EX32*
EX16'

EXRDY

MSBURST*

SLBURST*

E

f u i i i i
-» — *

r

READ DATA

WRITE DATA

1) EISA Standard Access (Start of Burst)
Z) EISA Burst Access
3) EISA Burst Access with One Wait State

4.5) EISA Burst Access
6) EISA Standard Access

235

P U 42b 184 A2

EXTENDED INDUSTRY STANDARD ARCH I I be 1 uk jc
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

Parameter Table for Figure 86

16- or 32-bit EISA slave timing, Burst

LA addr,BE <> * setup to BCLK rising 5.0

> LA addr.BE <> * held from BCLK falling 2.0

3 MSBURST* setup to BCLK rising 15.0

i, MSBURST* held from BCLK rising 45.0

5 LA address to SLBURST* delay 2.0 55-0

5 Data delay from BCLK rising (read) 35.0 80.0

7 Data float delay from BCLK rising (read) @• 2.0 50.0

B Data enable delay from BCLK falling (read) ** see Note (a) ** 0.0 15.0

9 Data enable delay from BCLK rising (read) ** see Note (a) ** 35.0 80

1 0 Data setup to BCLK rising (write) 55.0

11 Data delay from BCLK rising (write) 5-° 65 0

12 Data held from BCLK rising (write) 5 0

Note (a): USE EITHER PARAMETER 8 OR 9

2Jt>

EP 0 426 184 A2

EXTENDED INDUSTRY STANDAFD ARCHITECT UKJt
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

BCLK

DRQ<x>

DAK'OO

LA<3L2>
W-R.
BE*<3:0>
M-10

T-C

Figure 87 - System DMA Timing

a > - * i

Note: DAK* may be asserted from either the falling or rising edge of BCLK

Parameter Table for Figure 87

1 DROx negated setup to BCLK rising 15

2 DROx negated setup to BCLK falling 80

3 DROx negated held from BCLK falling 2

4 DACKx delay from BCLK 10 50

5 LA<> ,BE<> ,W-R, delay from BCLK falling 2 50

6 M-IO, delay from BCLK falling 2 50

7 T-C delay from BCLK (DMA system output mode) 5 35

8 T-C setup to BCLK rising (DMA system input mode) 1 5

9 T-C held from BCLK rising (DMA system input mode) 25

Note: The System timing numbers apply except where the above numbers
add to or supercede them.

237

=P 0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

Figure 88 - DMA Device Timing
Compatible, Type "A", and Type "B" Memory Read Cycles

DRQ<x>

AENx

DAK'<x>

LA<3I:2>
M-IO

SA<19:0>

W-R

START*

CMDr

EX32*
EX16*

EXRDY

IOWC

MRDC

DATA

T-C

^^-<Z>-*T,

J. — GD

3-C

< 3 >

•<-<X»1

CJj>-»i

< dp - @

238

r* U 42b 104 FU.

EXTENDED INDUSTRY STANDARD AKUHl 1 l utvr.
;ONFI DENTIAL INFORMATION OF BCPR SERVICES, INC.

Figure »y - DMA Device liming
Compatible, Type "A", and Type "B" Memory Write Cycles

DRQ<x>

AENx

DAK'<x>

LA<31:2>
M-10

SA<19:0> @

W-R

START*

CMD"

EX32*
EX16*

EXRDY

10RC*

MWTC*

DATA

T-C

Q » j i<-

r t_

4 COD N*-®*-*!
« QD — H

I

:P 0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

Parameter Table for Figures 88-89 (Compatible Cycles)

DMA device timing (Compatible)

1 DROx valid delay from IORC* asserted 2.0 540.0

2 DROx valid delay from IOWC* asserted 2.0 300.0

3 DAKx* asserted to IORC* asserted 70.0

4 DAKx* asserted to IOWC* asserted 310.0

5 IORC* asserted pulse width 755 0

6 IORC* negated pulse width (continuous) 165.0

7 IORC* negated to DAKx* negated 100.0

8 IOWC* asserted pulse width 455.0

9 IOWC* negated pulse width (continuous) * • 455.0

1 0 IOWC* negated to DAKx* negated 1 55.0

11 Data delay from IORC* asserted 0-0 280.0

12 Data float from IORC* negated 2.0 50.0

1 3 Data held from IOWC* negated 20.0

1 4 Data setup to IOWC* negated 240.0

1 5 T-C asserted delay from IORC* (system input mode) 560.0

1 6 T-C asserted delay from IOWC* (system Input mode) 320.0
1 6a T-C negated delay from IORC* (input mode) 90 0
1 6b T-C negated delay from IOWC* (input mode) 90 0

17 T-C enable/disable delay from DAKx* (input mode) 40.0

1 8 T-C setup to IORC* negated (system output mode) 500.0

1 9 T-C setup to IOWC* negated (system output mode) 500.0

20 T-C held from IORC*/IOWC* negated (output mode) • 60.0

21 T-C pulse width (output mode) 700.0

240

P 0 426 184 A2

EXTENDED INDUSTRY STANDARD AKLHf i t t i I'tvr.
CONFIDENTIAL INFORMATION OF BCPR SERVICES, Irsc.

Parameter Table for Figures 88-89 (Type "A* Cycles)

DMA device timing (Type "A")

DROx valid delay from IORC* asserted 2.0 300

» DROx valid delay from IOWC* asserted 2.0 180.0

5 DAKx* asserted to IORC* asserted TOO

• DAKx* asserted to IOWC* asserted 190.0

5 IORC* asserted pulse width 395 0

3 IORC* negated pulse width (continuous) 165.0

7 IORC* negated to DAKx* negated 100.0

3 IOWC* asserted pulse width 335.0

3 IOWC* negated pulse width (continuous) 335.0

10 IOWC* negated to DAKx* negated 155.0

11 Data delay from IORC* asserted 0-0 280.0

12 Data float from IORC* negated 2.0 50.0

13 Data held from IOWC* negated 20 0

1 4 Data setup to IOWC* negated 240.0

1 5 T-C asserted delay from IORC* (system input mode) 320.0

16 T-C asserted delay from IOWC* (system input mode) 200.0
T-C negated delay from IORC* (Input mode) 90 0
T-C negated delay from IOWC* (input mode) 90 °

1 7 T-C enable/disable delay from DAKx* (input mode) 40 0

1 8 T-C setup to IORC* negated (system output mode) 300.0

1 9 T-C setup to IOWC* negated (system output mode) 240.0

20 T-C held from IORC*/10WC* negated (output mode) 60.0

21 T-C pulse width (output mode) 480.0

241

EP 0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

Parameter Table for Figures 88-89 (Type mB' Cycles)

DMA device timing (Type "B")
Dascr$ai^^ - . ^ m ^ ^ ^ - y ^ ^ S M &stk> @ - max" *

1 DROx valid delay from IORC* asserted 2.0 180.0

2 DROx valid delay from IOWC* asserted 2.0 60.0

3 DAKx* asserted to IORC* asserted 70.0

4 DAKx* asserted to IOWC* asserted 190.0

5 IORC* asserted pulse width 275.0

6 IORC* negated pulse width (continuous) 50.0

7 IORC* negated to DAKx* negated 35.0

8 IOWC* asserted pulse width 215.0

9 IOWC* negated pulse width (continuous) ". 215.0

10 IOWC* negated to DAKx* negated 100.0

11 Data delay from IORC* asserted 0.0 160.0

12 Data float from IORC* negated 2.0 50.0

13 Data held from IOWC* negated 20.0

1 4 Data setup to IOWC* negated 1 30.0

1 5 T-C asserted delay from IORC* (input mode) 1 90.0

1 6 T-C asserted delay from IOWC* (input mode) 70.0
T-C negated delay from IORC* (input mode) 30.0
T-C negated delay from IOWC* (input mode) 90.0

17 T-C enable/disable delay from DAKx* (input mode) 40.0

1 8 T-C setup to IORC* negated (output mode) 200.0

1 9 T-C setup to IOWC* negated (output mode) 1 80.0

20 T-C held from IORC* /IOWC* negated (output mode) • -30.0

21 T-C pulse width (output mode) 240.0

242

EP 0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCHI lECTuRE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

Figure 90 • DMA Device Timing
Burst Memory Read Cycle

BCLK

DRQ<x>

AENx

DAK'<x>

U<31:2>

W-R

EX32*

SA<19:0>

START*

CUD'

EXRDY

IOWC*

MRDC*

DATA

T-C

MSBURST

SLBURST*

Note: Vertical marks indicate possible limes to negate DRQO.

243

EP 0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCHI rFCTURE -
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

Figure 91 - DMA Device Tiining
Burst Memory Write Cycle

BCLK

DRQ<x>

AENx

DAK'<x>

LA<31:2>

W-R

EX32'

SA<19:0>

START*

CUD*

EXRDY

IORC*

MWTC*

DATA

T-C

MSBURST'

SLBURST'

Note. Vertical marks indicate possible times to negate DRQ<x>.

244

EP 0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

Parameter Table for Figures 90-91

DMA device timing (burst)

1 DROx negated delay from BCLK falling 2.0 35.0

2 DAKx* asserted to IORC* asserted 70.0

3 DAKx* asserted to IOWC* asserted 190.0

4 EXRDY setup to BCLK failing 1 5.0

5 IORC* delay from BCLK falling 2.0 30.0

6 IOWC* delay from BCLK rising 2.0 30.0

7 IORC* negated to DAKx* negated 100.0

8 IOWC* negated to DAKx* negated 35.0

9 data delay from BCLK rising (device read) 0.0 40.0

1 0 data hold from BCLK rising (device read) 5.0

1 1 data setup to BCLK rising (device write) 1 5.0

1 2 data held from BCLK rising (device write) 5.0

13 EXRDY held from BCLK falling 2.0

14 TO delay from BCLK falling (system input mode) 2.0 35.0

1 6 T-C enable/disable delay from DAKx* (input mode) 40.0

1 7 T-C setup to BCLK rising (system output mode) 1 5.0

18 T-C held from BCLK rising (system output mode) 55.0

245

:P 0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCHITECTURE
HONFI DENTLAL INFORMATION OF BCPR SERVICES, INC.

2.12 Mechanical Specif icat ions

This section provides the mechanical specifications of EISA expansion boards and
[he EISA connector. Mechanical specifications for ISA expansion boards are also
provided.

Electrical characteristics, including minimum power requirements of EISA
;xpansion boards, are specified in the Electrical Specifications section of this document.

2.13 EISA Connector and Expansion Board Descr ipt ion

The EISA connector is the same height and length as a 16-bit ISA expansion board
connector. The connector can accommodate current ISA expansion boards as well as EISA
expansion boards. The EISA connector does not take up any more space on the system
board than a standard ISA connector, and because of the stacked two-level arrangement of
the connector contacts, does not increase insertion force required.

The following table shows EISA connector compatibility.

EISA Connector Compatibility

E x p a n s i o n Board Type

8 - b i t 1 6 - b i t 3 2 - b i t

8 - b i t YES * NO
(PC/XT)

C o n n e c t o r
Type 16 - b i t YES YES NO

(AT)

3 2 - b i t YES YES YES
(EISA)

There is no mechanical restriction, but most 16-bit
expansion boards will not function properly in an 8-bit slot.

.246

P 0 42b 184 A2

EXTENDED INDUSTRY STAIN DAK D AKCHl l l ukjl.
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

5.13.1 Physical Character is t ics

The EISA connector is a single unit, and in appearance, resembles the existing ISA
lonnector. The difference between the EISA connector and the ISA connector is a second
evel of contacts in the EISA connector.

As illustrated in the following figure, ISA expansion boards can only be inserted into
he EISA connector far enough to make contact with the upper row of contacts (ISA
contacts). Stops, or "access keys," are molded into the EISA connector to prevent an ISA
;ard edge from making contact with the EISA contacts. An EISA expansion board's card
jdge connection goes deeper into the connector and makes contact with the second row of
»ntacts (EISA contacts). EISA expansion boards are notched to allow the card edge to be
jushed further into the connector and use the additional contacts.

The connector housing is made of a high-quality, glass-filled thermoplastic to
jrovide the durability required of surface mount manufacturing technologies.

As with a typical 16-bit ISA connector, the EISA connector is rated for 100 insertion
:ycles; the connector contacts maintain a niiriimum of 75 grains of contact force throughout
ht connector's rated life.

Insertion force is maintained at a level consistent with current ISA connector
implementations. A typical ISA expansion board installed in an EISA connctor requires an
insertion force of approximately 28 pounds. Because the EISA connector uses a two-level
contact design, the insertion force for a typical EISA expansion board requires only a
maxirrmm Ol35 pounds.

Expansion board layout has not been compromised. The contact pin solder tails
maintain a standard 0.1 inch spacing. This, in addition to a large number of ground pins,
assures that EMI characteristics are consistent with current ISA implementations. In
addition to providing ample ground pins in the EISA extension, contact length js optimized
to assure capacitance between contacts is less than two picofarads to minimize "crosstalk."

Two "locator pins" on the EISA connector simplify mounting the connector on the

system board. The locator pins allow the manufacturing process to be automated and
assure perfect alignment. Ahgnment of an EISA expansion board within the connector is
assured by referencing all dimensions to the datum located near the middle of the
connector. The connector manufacturer sizes this datum to insure that no additional
friction increases insertion force.

All EISA connector tolerances are specified within current manufacturing standards
and technologies; no special tooling or equipment is required to meet EISA hardware
specifications. In addition, the EISA specification includes an optional retention device
(mounting bracket) to ensure that EISA expansion boards maintain proper positioning.

Compatibililty with current manufacturing technologies, including surface mount
technologies, is maintained by designing the connector with an open bottom area to allow
washing of processing agents.

24/

u t&o lot nc-

3NFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

13.2 uonnec io r apewiiwjuui io

:haractenstics 01 me cioa *_uniie«.iui.

isertion rorce :

)urabihty:
intact Force:
Contact Resistance:

>urent Carrying
Capacity.

o IDS. typical lor uppci wuwvu v*^v
5 lbs. maximum for both levels combined
Measured with a .062 steel gauge)
00 cycles (minimum)
L67 lbs. (75 grams) (minimum)
nitial: 30 mffiiohms (maximum)
•nd-of-life: 40 milliohms (maximum)
amp per contact on lower (EISA) contacts
amps per contact on upper (ISA) contacts

rhis assures electrical compatibility with
jristing ISA expansion boards; a high level
>f current-carrying capacity on GNU and +5V
»ntacts may be required.

Environmental renonnance ui iuc l i o a

thermal:

Steady-state
Hurnidity:
Industrial Mixed
Rowing Gas:
Vibration:
Physical Shock:

Connector Materials

Housing:
Contact:
Contact Plating:

)hase and surface mount process

)0-95% RH at 40 degrees C

10 days, Class H
10 Gs, 10-500 Hz, 3 hours
100 Gs, 6 ms sawtooth, 18 shocks

Ulass-Hiieu uieriuupicLsut. vj^ •
Copper alloy
Gold' flash over 40 microinches precious
metal minimum over 50 microinches nickel
iriininrum in the contact area; tin lead on
the tails.

EP 0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

Figure 92 - EISA Connector and Card-edges

249

EP 0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC

Figure 93 - EISA Expansion Board Dimensions
WND01K TOR I/O CONNECTOR OPENING IN UAHNC CHASSIS

.ISO „,» (3.81) UA*
COMPONENT AND LEAD HEICH7

(1.58) 1 iEF — <h

(13 34) UA* -
COMPONENT HEIGHT

SCE riCURC 8 TOR OPTIC- BOARD PANEL DIMENSIONS

CORNER SMAU BE IN RELATION TO OATUVS B AND C FOR SYSTEM RETENTION DEVICE
both siOCS ' ' NO COMPONENTS IN THIS AREA

150 u,„ 4.06) U,N
iOTN SIDES :ard guide area

250

EP 0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

Figure 94 - EISA Expansion Board Card-edge Detail
0

O C*
*ft us 3Z @9

i e

o m

251

EP0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

Figure 95 • 16-bit ISA Expansion Board Dimensions
WNDOW rOR I/O CONNECTOR OPENING IN MATING CHASSIS

see figure 8 fob option board panel dimensions

(ia?) UM
COMPONENT AND LEAD HEIGHT

(1334) UA*
COMPONENT HEIGHT

(4.06) U,N
BOTH SIOES CARD CUIOE

— " — , ?f, 801H SIDES I J 'a) NO COMPONENTS IN THIS AREA

252

EP 0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

Figure 96 • 16-bit ISA Expansion Board Card-edge Detail

o a
o

253

EP 0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

Figure 97 - 8-bit ISA Expansion Board Dimensions

WNOOW fOK I/O CONNECTOR OPENING IN MATING CHASSS

062± ooe <1.S7±.20)

VrtNDOW FOR I/O -* CONNECTOR OPENING IN UATING CLASS

150 u.v (3.81) UA*
COUPONENT AND LEAD HEIGHT

-525 UAv (13.3*) MAX
COMPONENT HEIGHT

• see figure s for option s0ar2 PANC DiuEnS .

- DROP DOv*.' (SKIRT) ALLOWED « THIS AREA

• SEE FIGURE 7 CONN TAB AND PAD DIMENSIONS

4.1SO±.010 (106.171.25)

062 -rr ' (1.58) REF SYSTEM BOARD

TEE3

13«15 Rr. (340 7«)Rr-f

9.2351 005 (234.S7- 13)

DROP DO»N (SKIRT) NOT ALLOWED FOR NEW DESIGNS

, MIN

CORNER SHALL BE IN RELATION TO OAMUS B AND C FOR SYSTEM RETENTION OEMCE
'L- ,l2,l* B°,M SIOES (3 18) NO COMPONENTS IN THIS AREA

.160 ulw (4.06) UIN
BOTH SIDES CARD GUIOE AREA

254

EP 0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

Figure 98 - 8-bit ISA Expansion Board Card-edge Detail

X

255

EP 0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, »NC.

Figure 99 - EISA Expansion Board Mounting Bracket

.200 (5 08)

450 (11 43)

I 4 439
4 725 O1275)

(120.02) |

.100 (2.54)

075 e (1 90) h 2 PLCS
1C2 (4 11)

.030 __ (-76) n

256

EP 0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFI DENTLA L INFORMATION OF BCPR SERVICES, INC.

Figure 100 - EISA Connector Dimensions

257

EP 0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

Figure 101 - EISA Connector System Board Drill Pattern

On o ~ * —
° .

— \

258

DNFIDENTIAL INFORMATION OF BCPR SERVICES, IMC.

,13.3 nn ue iwiuuui i

This section provides a pin-out of the EISA connector. All 8- and 16-bit signals are

idudeA fSuk ?02 on the following page illustrates a top view of the connector to show

le pinout.

lote:

Reserved pins are for future use and will be assigned in the following order:
E12,E13,E14,F12,F14.

XXXXXX pins are strictly for system manufactorer-specific use. GeneraUv,
" S^e r ignab should not be connected and should be used to isolate signals

on the bus from adjacent power pins.

ilSA expansion boards should NOT connect to XXXXXX pins.

EP 0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

Figure 102 - EISA Pmout

ROWF R0WB
1 CUD I CND C RESDRV e -*»v 3 -*&v 5 *ftV A IRQ<0> • XXXXXX 6 -&V 5) XXXXXX fl DRQ<2>
t - 1ZV 7 XXXXXX e ho*s" 5 XXXXXX 9 -» I ZV 9 @* i av 10 CND JO M-IO 11 »M-rrc* I I LOCK" 1* 1URDC" 12 RESERVED

13 CWD t fc 14 »RC- 14 KESDtVED 16 DAX-<3> 16 W"<3> ie DRQ<3> ACCESS KEY IT ©AJC-<t> IT WT~<Z.> 18 DRO<l> ta bc**co> 30 RETRESH" 18 0,,D «> .CUC *° *'V .1 TO<T» '
t. L*-<«> M JBQ 12 CND 23 XR0<&> n la-<«> M mo<4> 24 LA*<Z4>
ACCESS KEY tO DAK-<2>

M *SV t. ~ftv " *SV 30 OSC »° °»° s: CND 31 LA<10>
R0» H
i l*<c» ROW D
r u.<«> i me-
3 LA<0> « loie-
« »&v 3 «Q<10>
6 UA<2> 4 U*Q<I1>
ACCESS KEY ft W9<12>
T D<C1«> ft IRQ<16>
ft D<10> T I*Q< 1 4 >
C CND ft DAK'<0>
10 D<Z1> f DHQ<0>
11 D<Z3> ,0 DAK" c&>
15 D<»4> DROe5>
13 CMD ,a t,AK-<«> 14 D<xr> J3 DKQ ACCESS KEY ,< °<a"> IS D»9<-r> " *SV .« 4.3V 10 — J @» WASTER 1 O" IO UAKx* IS CND

It Ik

CD „CD
®<»Sr>

® _ ® _

_ <S5 _ CD3 <S> © _

oj> <a>

ROW E A
1 IOCHK" I CMD* * D<T> ! START* 3 D<0> J EXRDY 4 D<S> (EX3Z- & D<4 > » OKT> 5 D<-"3> ICCXS5 KEY T D<2> " EXlfl- a d< i > S SLBURST* D D <0> » MSBURST-

10 W-R 10 CHRDY
II CND 11 ACS'
I*S RCSTRVrD 12 3A<1P>

13 »A<1B> 13 HE3XRVED
.4 KESXKVCT » «<I7>
1ft CND 16 *A<10>
ACCT93 KEY 14 «A«1»»
IT »C-<!> " mA',A>
1. LA-<r3l> 19 SA<,3>
IS OND 10 SA<1S>
ro LA-<30> t0 »**">
tl U-̂ SV «' »A<>°>
t2,LA-<IT> SA<»>
S3 LA"«S> "
24 CND *" SA<7>
ACCESS KEY " SA<0>

l̂ <ia» " «*<*>
«T LA<13> l' KA<4>
IB U<12> » SA<:1>
ts W<11> «•
SO CND »° SA<1>
31 LA<P> »« SA<°>
ROir G do* r
t cm 1 s»Hr-
3 LA<4> * L*<Z3>
4 LA<3> 3 LA<I2>
ft CND * LA<21>
ACCESS KtY 6 LA<20>
*> o<it> e la<i«>
• ' 0<1«> T LA<lft>
0 D<30> ft L>< 1 T>
IO D<ZI> « MRDC"
1 1 CMD j o MT̂TC"
1Z D<16> i, D<ft>
13 D<ie> 1Z D,0> 14 d«w> J3 D<;,o> ACCESS KEY D<J1> 15 CND 15 D< 12> IT D<:3a> 16 D<13> IO D«I> IT D<14> IO MRCQn* IO D<56>

Ro«s A. C. F and H an upper (ISA) contacls
Rows 8. D. E and G are lo«er (EISA) contacts

260

EXTENDED INDUSTRY S I AJNUAKU AKCii; . ^ i o i v e .
X)NFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

I. System Board I/O control Funct ions

The EISA svstem board includes I/O control circuitry for DMA data transfers,

nterrupt handling, system timers and other miscellaneous functions. The registers and
xjntrolports for these functions are decoded using a 16-bit address.

The foUowing table provides an overview of the EISA system I/O address map and
ndicates the system board I/O ranges.

Note- I/O addresses between lOOOh and FFFFh that are not identified as "Alias of
100b-3FFh" are reserved for slot-specific addressing of expansion boards.
The most significant digit in the address represents the slot number
(indicated in the table by "Slot 'z™, where 'z' can be any value from 1 to 15).
The system board I/O range resides at I/O addresses between OOOOh and
OFFFh ("z* = 0).

I/O addresses between 0400b and 04FFh are reserved for current and future
EISA system board peripherals defined by this specification. System board
manufacturers may use system board addresses 0800-08Fh and OCOO-OCFh
for manufacturer specific I/O devices.

IP0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCKITLL* U K t
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

system I/O Address Map

I/O address I/O Range
Range (hex): Reserved for:

0000-OOFF ISA System board peripherals
0100-03FF ISA expansion boards
0400-04FF Reserved - System board controllers
0500-07FF Alias of 100h-3FFh
0800-08FF System board
0900-OBFF Alias of 100h-3FFh
0CXX3-0CFF System board
0D00-0FFF Alias of 100h-3FFh

1000- 10FF Slot 1
1100-13FF Mas of 100h-3FFh
1400-14FF Slot 1
1500-17FF Alias of 100h-3FFh
1800-18FF Slot 1
1900-1BFF Alias of 100h-3FFh
1C0O-1CFF Slot 1
1DO0-1FFF Mas of 100h-3FFh " .

OzOOO-OzOFF Slot 'z'
0zl00-0z3FF Mas of 100h-3FFh
0z400-0z4FF Slot 'z'
0zS00-0z7FF Mas of 100h-3FFh
0z80O-0z8FF Slot 'z'
0z900-0zBFF Mas of 100h-3FFh
OzCOO-OzCFF Slot 'z*
OzDOO-OzFFF Mas of 100h-3FFh

262

:P 0 426 184 A2

EXTENDED INDUSTRY STANDARD AKCHI Tfck7» UKfc
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

The foUowing table lists a partial set of system board I/O ports. A system board
must decode the 16-bit address, except the "don't care" bits. "Don't care" bits are indicated
by an V in the binary I/O port address. Those I/O ports, which are "ro" (read only) or
"wo" (write only), and do not have the con-espondirig read/write port listed, as well as any
ports marked as "reserved," are reserved for future EISA expansion. The value read from
Vo" ports or reserved bits in "ro" or "rw" ports are undefined and may change in various
implementatioris. Write operations to reserved ports may cause system failure.

I / O
Port
Address

I/O Port Address
[binary)
MSB LSB

Register Description

OOOOh
OOOlh
0002b
0003b
0004h
0005h
0006h
0007h
0008h
0008h
0009h
OOOAh
OOOBh
OOOCh
OOODh
OOOEh
OOOFh
OOOFh

0000 00001
0000 00001
0000 00001
000000001
0000 00001
0000 00001
0000 00001
0000 00001
0000 00001
0000 0000!
0000 0000 1
0000 0000
0000 0000
0000 0000
00000000
00000000
0000 0000'
0000 0000

XXkOOOO
300x 0001
300x0010
300x0011
300x0100
300x0101
300x0110
300x0111
300x1000
300x1000
300x1001
300x1010
300x1011
DOOxllOO
DOOxllOl
000x1110
000x1111
OOQxllll

rw
rw
rw
rw
rw
rw
rw
rw
ro
wo
wo
wo
wo
wo
wo
wo
wo
ro

DMA Ch-0 Base & Current Address register
DMA Ch-0 Base & Current Count register
DMA Ch-1 Base & Current Address register
DMA Ch-1 Base & Current Count register
DMA Ch-2 Base & Current Address register
DMA Ch-2 Base & Current Count register
DMA Ch-3 Base & Current Address register
DMA Ch-3 Base & Current Count register
DMA(0-3) Status register
DMA(0-3) Command register
DMA(0-3) Request register
DMA(0-3) Wnte single mask bit
DMA(0-3) Mode register
DMA(0-3) Clear byte pointer
DMAI0-3) Master Clear
DMA(0-3) Clear Mask register
DMA(0-3) Write all mask bits
DMA(0-3) Mask Status register

0020h
0021h

0000 0000 OOlxxxOO
0000 0000 00 lxxxOl

rw
rw

INT-1 base address
INT-1 mask register

0040h

0041h
0042h
0O43h

0000 0000 OlOx 0000

0000 0000 010x0001
0000 0000 OlOx 0010
0000 0000 OlOx 0011

rw

rw
rw
rw

Programmable Interval Timer 1,
System Clock (Counter 0)
Refresh Request (Counter 1)
Speaker Tone (Counter 2)
Control Word register

0048h

0049h
004Ah
004Bh

0000 0000 OlOx 1000

0000 0000 OlOx 1001
0000 0000 OlOx 1010
0000 0000 OlOx 1011

rw

rw
rw

Programmable Interval Timer 2,
Fail-safe Timer (Counter 0)
Not implemented (Counter 1)
Reserved for System (Counter 2)
Control Word register

263

P U 42b 184 KZ

EXTENDED INDUSTRY STANDARD ARCHlTtC l UK.t
X)NFI DENTTAL INFORMATION OF BCPR SERVICES, INC.

[/O I/O Port Address
Port (binary)
Address MSB LSB

Register Description

306 lh 0000 00000110 0001
3070h 0000 0000 0111 OxxO

w
VO

NMI Status register
NMI Enable register

0080h
0081h
0082h
0083h
0084h
0085h
0086h
0087h
0088h
0089h
008 Ah
008Bh
008Ch
008Dh
008Eh
008Fh

0000 00001
0000 00001
000000001
0000 00001
0000 00001
0000 00001
000000001
0000 00001
0000 00001
0000 00001
0000 00001
0000 00001
0000 00001
0000 00001
0000 00001
0000 00001

000 0000
000 0001
000 0010
000 0011
000 0100
000 0101
0000110
0000111
.000 1000
.000 1001
.000 1010
.000 1011
.0001100
.000 1101
.000 1110
;0001111

w
w
w

w

@w

@w

rw

Reserved
DMA Ch 2 Low Page register
DMA Ch 3 Low Page register
DMA Ch 1 Low Page register
Reserved
Reserved
Reserved
DMA Ch 0 Low Page register
Reserved
DMA Ch 6 Low Page register
DMA Ch 7 Low Page register
DMA Ch 5 Low Page register
Reserved
Reserved
Reserved
Refresh Low Page register

m ^ ______
OOAOh 0000 0000 lOlx xxOO
OOAlh 0000 0000 lOlxxxOl

rw
rw

HNT-2 base address register
ENT-2 mask register

OOCOh
00C2h
00C4h
00C6h
0OC8h
OOCAh
OOCCh
OOCEh
OODOh
OODOh
00D2h
00D4h
00D6h
00D8h
OODAh
OODCh
OODEh
OODEh

0000 0000 :
oooo oooo :
00000000
oooo oooo:
oooo oooo:
oooo oooo:
0000 0000
0000 0000
0000 0000
0000 0000
0000 0000
0000 0000
00000000
00000000
0000 0000
00000000
0000 0000
0000 0000

1100 OOOx
1100 OOlx
L100 OlOx
L100 Ollx
1100 lOOx
1100 lOlx
1100 HOx
1100 l l l x
1101 OOOx
1101 OOOx
1101 OOlx
1101 OlOx
1101 Ollx
1101 lOOx
1101 lOlx
1101 HOx
1101 l l l x
1101 l l l x

rw
rw
rw
rw
rw
rw
rw
rw
ro
wo
wo
wo
wo
wo
wo
wo
wo
ro

DMA Ch-4 Base & Current Address regisier
DMA Ch-4 Base & Current Count register
DMA Ch-5 Base & Current Address register
DMA Ch-5 Base & Current Count register
DMA Ch-6 Base & Current Address register
DMA Ch-6 Base & Current Count register
DMA Ch-7 Base & Current Address register
DMA Ch-7 Base & Current Count register
DMA(4-7) Status register
DMA(4-7) Command register
DMA(4-7) Request register
DMA(4-7) Write single mask bit register
DMA(4-7) Mode register
DMA(4-7) Clear byte pointer
DMA(4-7) Master Clear
DMA(4-7) Clear Mask register
DMA(4-7) Write all mask bits register
DMA(4-7) Mask Status register

EP 0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

I/O I/O Port Address
Port (binary)
Address MSB LSB

Register Description

0400h
0401h
0402h
0403h
0404b
0405h
0406h
0407h

0000 0100 1
0000 0100 1
00000100'
0000 0100 1
0000 0100
0000 0100'
0000 0100
0000 0100

oooo oooo
0000 0001
0000 0010
00000011
00000100
00000101
0000 0110
0000 0111

rw

rw

rw

rw

Reserved
DMA Ch-0 High Base & Current Count
Reserved
DMA Ch-1 High Base & Current Count
Reserved
DMA Ch-2 High Base & Current Count

DMA Ch-3 High Base & Current Count

0408b.
0409h
040 Ah
040Ah
040Bh
040Ch
040Dh
040Eh
040Fh

0000 0100
00000100
0000 0100
0000 0100
00000100
0000 0100
0000 0100
00000100
0000 0100

00001000
00001001
00001010
00001010
0000 1011
00001100
00001101
00001110
00001111

ro
wo
wo
ro

Reserved
Reserved
DMA Interrupt pending register
DMA(0-3) Chaining Mode register
DMA(0-3) Extended Mode register
Host CPU/EISA Master
Reserved
Reserved
Reserved

046 lh 0000 0100 01100001
0462h 0000 0100 0110 0010

rw
wo

Extended NMI and reset control register
Software NMI register

0464h 0000 010001100100
0465h 0000 010001100101

ro
ro

Last EISA Bus Master granted (L)
Last EISA Bus Master granted (H)

0480b.
0481h
0482h
0483h
0484b.
0485b
0486h
0487h
0488h
0489h
048Ah
048Bh
048Ch
048Dh
048Eh
043Fh

0000 0100
0000 0100
0000 0100
0000 0100
0000 0100
00000100
0000 0100
0000 0100
0000 0100
0000 0100
0000 0100
0000 0100
0000 0100
0000 0100
0000 0100
0000 0100

1000 0000
10000001
1000 0010
1000 0011
1000 0100
1000 0101
1000 0110
10000111
1000 1000
1000 1001
1000 1010
1000 1011
1000 1100
1000 1101
1000 1110
10001111

rw
rw
rw

rw

rw
rw
rw

Reserved
DMA Ch 2 High Page register
DMA Ch 3 High Page register
DMA Ch 1 High Page register
Reserved
Reserved
Reserved
DMA Ch 0 High Page register
Reserved
DMA Ch 6 High Page register
DMA Ch 7 High Page register
DMA Ch 5 High Page register
Reserved
Reserved
Reserved
Reserved

04C2h 0000 0100 1100 0010
04C6h 0000 010011000110
04CAh 0000 010011001100
04CEh 0000 0100 1100 1110

rw
rw
rw

Reserved
DMA Ch-5 High Base & Current Count
DMA Ch-6 High Base & Current Count
DMA Ch-7 High Base & Current Count

265

:P 0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCH1I bCI UK±,
X)NFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

I/O I/O Port Address Register Description
Port (binary)
Address MSB LSB

04D0h 0000 010011010000 rw INT-1 edge/level control register
04Dlh 0000 010011010001 rw INT-2 edge/level control register
04D2h 0000 0100 1101 0010 Reserved
04D3h 0000 0100 1101 0011 Reserved

04D4h 0000 010011010100 wo DMA(4-7) Chaining Mode register
04D4h 0000 010011010100 ro DMA Chaining Mode Status register
04D5h 0000 010011010101 Reserved
04D6h 0000 010011010110 wo DMA(4-7) Extended Mode register
04D7h 0000 010011010111 Reserved

04D8h 0000 0100 1101 1000 Reserved
04D9h 0000 010011011001 Reserved
04DAh 0000 010011011010 Reserved
04DBh 0000 01001101 1011 Reserved
04DCh 0000 01001101 1100 Reserved
04DDh 0000 010011011101 Reserved
04DEh 0000 01001101 1110 Reserved
04DFh 0000 010011011111 Reserved

04E0h 0000 0100 1 110 0000 rw DMA CH0 Stop register bits < 7:2 >
04Elh 0000 0100 1110 0001 rw DMA CH0 Stop register bits < 15:8 >
04E2h 0000 0100 1110 0010 rw DMA CH0 Stop register bits <23:16>
04E3h 0000 010011100011 Reserved

04E4h 0000 0100 1110 0100 rw DMA CHI Stop register bits < T 2 >
04E5h 0000 0100 1110 0101 rw DMA CHI Stop register bits < 15:8 >
04E6h 0000 010011100110 rw DMA CHI Stop register bits < 23:16 >
04E7h 0000 0100 1110 0111 Reserved

04E8h 0000 0100 1110 1000 rw DMA CH2 Stop register bits <7:2>
04E9h 0000 0100 1110 1001 rw DMA CH2 Stop register bits < 15:8 >
04EAh 0000 0100 1110 1010 rw DMA CH2 Stop register bits <23:16 >
04EBh 0000 010011101011 Reserved

04ECh 0000 010011101100 rw DMA CH3 Stop register bits < 7:2 >
04EDh 0000 0100 1110 1101 rw DMA CH3 Stop register bits < 15:8>
04EEh 0000 0100 1110 1110 rw DMA CH3 Stop register bits <23:16 >
04EFh 0000 0100 1110 1111 Reserved

04F0h 0000 0100 1 1 1 1 0000 Reserved
04Flh 0000 010011110001 Reserved
04F2h 0000 0100 1111 0010 Reserved
04F3h 0000 010011110011 Reserved

266

U t£Q I Ot Mt.

ONFIDENTIAL INFORMATION OF 3 CPU SERYlCEis, I N C

I/O I/O Port Address Register Description
Port (binary)
Addres! MSB LSB

04F4h 0000 0100 1111 0100 rw DMA CHS Stop register bits <7:2>

04F5b 0000 010011110101 rw DMA CH5 Stop register bits < 15:8 >

04F6h 0000 0100 1111 0110 rw DMA CH5 Stop register bits <23:lo >

04F7h 0000 0100 1111 0111 Reserved

04F8h 0000 01001111 1000 rw DMA CH6 Stop register bits < 7:2 >
04F9b 0000 010011111001 rw DMA CH6 Stop register bits < 15:8 >
04FAh 0000 01001111 1010 rw DMA CH6 Stop register bits < 23:16 >

04FBh 0000 01001111 1011 Reserved

04FCh 0000 010011111100 rw DMA CH7 Stop register bits < 7 2 >
04FDh 0000 010011111101 rw DMA CH7 Stop register bits < 15:8 >
04FEh 0000 01001111 1110 rw DMA CH7 Stop register bits < 23:16 >
04FFh 0000 01001111 1111 Reserved

0C80h 0000 1100 1000 OOOO ro System Board ID Byte 1
OCSlh 000011001000 0001 ro System Board ID Byte 2
0C82h 000011001000 0010 ro System Board ID Byte 3
0C83b 000011001000 0011 ro System Board Bp Byte 4
0C84h 0000 1100 1000 0100 ro System Boarfi Enable |

' U 4ZD 1 »4 Aid

EXTENDED INDUSTRY STAIN UAKU AKCrti l E-c i unx.
ONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

.1 DMA Descript ion

EISA systems provide seven ISA compatible DMA channels. Any channel can be
rogrammed to provide EISA performance and addressing benefits to easting 8- and 16-bit
>MA devices while maintaimng full ISA compatibility. The EISA DMA oontroUer also
apports DEMAND and BLOCK mode DMA transfers that enable DMA channels to
erform multiple continuous transfers and high-speed bus cycles that achieve data transfer
ates up to 33 MB/s. In BLOCK mode the DMA channel performs a continuous transfer
f the data block. DEMAND mode also performs an uninterrupted transfer of the data
lock, but the DMA device can temporarily suspend the transfer and release the bus before
he end of the block. BLOCK or DEMAND mode transfers can be preempted by other
evices requesting the bus.

All DMA channels support an extended addressing mode. In this mode, the EISA
ddress register counts sequentially like a 32-bit up/down counter, so devices can
eouentiaUyaddress a 32-bit address range without progranirnaucaHy mcrementing the
ddress extension registers each time the DMA address crosses a 64K segment boundary
as in traditional ISA).

Any DMA channel can be programmed for 8-, 16- or 32-bit DMA device size and
SA Compatible, Type "A", Type "6", or Burst DMA (Type "C") timing modes. The system
K>ard performs data size translations necessary for DMA transfers between all DMA
levice sizes and any 8-, 16- or 32-bit memory.

*
The following table lists the variations of data transfer timing for each DMA device

ize supported.

DMA Transfer rate tanipatibuity
Cycle Type (MB/s)

C H f t W C 1-0 A11ISA
16-bit 2.0 All ISA

T ^ i t A " 13 Most ISA.
16-bit 2.6 M£sl5Ai
32-bit 53 EISA Only

TyPe"B" C TCA 8-bit 2.0 Some ISA
16-bit 4.0 | ° m f £ A
32-bit 8.0 EISA Only

Burst DMA (Type "C") r , r i o .
8-bit 8.2 EISA Only
16-bit 16.5 EISA Only
32-bit 33.0 EISA Only

3.1 .1 DMA controller uverview

The DMA circuitry incorporates the functionality of two 8237 DMA controllers,

plus the EISA enhancements. The address and data busses support a full 32-bit system
The DMA controller provides timing control for the enhanced EISA DMA cycle types ana

maintains compatibility with ISA DMA devices.

r u 4Zb 104 Aid

EXTENDbD INDUSTRY b I AfNUAJvL* AKLHi 1 I uivt.
ONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

The memory addressing circuitry supports the hill JZ-du aaarcss iui ivm^ ucviccb.
•ach channel includes a 16-bit ISA compatible current address register, an 8-bit ISA
ompatible page register for address lines LA<23:16> (low page registers) and an 8-bit
•ISA page register for address lines LA* <31:24 > (high page registers).

The DMA controller does not have to include the counter functions and DMA state
nachine for DMA channel 4 (which is used in 8237-based ISA products for cascading the
econd DMA controller). The channel 4 read/write registers are included to guarantee
ompatibilitY with existing software. The channel 4 counter functions and state machine

je not needed for compatibility.

The system board uses DRQ<x> and DAK* <x> with IORC* and IOWC* for read
md write operations to the DMA device. The DMA device transfers data directly to the

nemory slave unless data size translations are required. DMA read and write operations
o memory use the normal memory interface.

In ISA compatible timing mode, the 16-bit command signals, MRDC* and MWTC*,

ire generated during DMA access to EISA memory slaves for addresses less than 16

kbytes. MRDC* and MWTC* are generated for addresses greater than 16 Mbytes if an
iISA memory slave does not respond by asserting EX32* or EX16".

J.1 J2 DMA controller Description

The DMA controller operates in either of two operating conditions.

The DMA controller operates in Master Condition while controlling DMA data
ransfers and supporting a 16-bit ISA bus master's use of a channel's D R Q < x > ,
DAK*<x> arbitration signals.

The DMA controller operates in Slave Condition while monitoring the bus and

jecoding read or write I/O cycles that the main CPU and bus masters use to program or
sxamine the DMA registers. The DMA controller only accepts read or write accesses to its

registers while in Slave Condition.

3.1 .2.1 DMA Master condition o p e r a t i o n

The DMA controller generates the cycle control for DMA data transfers while

operating in the Master Condition. The DMA controller supplies the address and

read/write indication, then controls the cycle execution.

The DMA controller also operates in the Master Condition when a 16-bit ISA bus
master uses a DMA channel for bus requests. No DMA transfers occur, but the active
state of the DMA controller's Master Condition precludes use of the channel for normal
transfers or the programming of the DMA controller.

The DMA controller is in the Master Condition when any channel's DAK*<x> is

asserted.

K U 42b 1H4 A2

EXTENDED INDUSTRY STANDARD AKLh« l iic 1
ONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

.1 .2.2 DMA Slave Condition o p e r a t i o n

The main CPU can perform read or write accesses to the DMA controller's 8-bit
IO ports when in the Slave Condition. The DMA controller accepts read and write
ccesses while no DMA data transfers are in progress, until the system board asserts any
hannel's DAK'<x>. If a transfer is in progress, the main, CPU or a bus master can
equest the bus, and, after winning the. arbitration, can access the DMA registers. The
)MA controller operates in the Slave Condition while a non-device has a bus grant.

;.1 .3 DMA Transfer Modes

A DMA channel operates in one of the following four transfer modes: Single
ransfer, Block transfer, Demand transfer, or Cascade mode.

1.1 .3.1 Single Transfer Mode

A DMA channel programmed for Single Transfer Mode performs one transfer for
sach arbitration cycle. The DMA software programs the channel's Base Word Count
egister for the appropriate number of transfers to perform. The DMA controllw
iecrements the channels Current Word Count register and increments its Current Address
•egister after each transfer. The transfer completes when the Current Word Count register
@caches terminal count (the word count "rolls over" from zero to FFFFFFh) or when an
jxternal end of process is received. Tenninal Count or EOP causes the current registers to
>e reloaded from the base registers if the channel is programmed for autoimuahze. If the
dtannel is programmed and ready for chaining, the next chain buffer is enabled.

A DMA device requests a Single Transfer Mode DMA transfer by asserting
DRQ<x> and holding it until sampling DAK* <x > asserted. The DMA device may hold
DRQ<x> asserted throughout the single transfer. The system board negates DAK. <x>
and the DMA channel releases the bus after the single transfer. If DRQ<x> remains
asserted, the DMA controller immediately requests the bus again. The arbitration
controller performs the arbitration, and asserts the winning channel's DAK* <x> to signal
the bus grant. The DMA channel then performs another single transfer. The current
registers hold the intermediate address and word count values between arbitration cycles.

3.1 .3.2 Block Transfer Mode

A DMA channel programmed for Block Transfer Mode performs a block of
transfers for each arbitration cycle. The DMA software programs the ^annel s Base w o r d
Count register for the appropriate number of transfers to perform. The DMA controller
decrements the channel's Current Word Count register and increments its Current Address
register after each transfer. The transfer completes when the Current Word Count register
reaches terminal count (the word count "rolls over" from zero to FFFFFFh) or when an
external EOP is received. Terminal Count or EOP causes the current registers to be
reloaded from the base registers if the channel is programmed for autoiiutialize. It the
channel is programmed and ready for chaining, the next chain buffer is enabled.

:P 0 426 184 A2

EXTENDED INDUSTRY STANDARO AKCrilTKCl iWfc
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

A DMA device requests a Block Mode DMA transfer by asserting UKU<x> and
lolding it until sampling DAK*<x> asserted. The DMA device may hold D R Q < x >
isserted throughout the block transfer or may release DRQ<x> after sampling
DAK*<x> asserted. The transfer can be interrupted (except when programmed in ISA
x>mpatible timing mode) if another device requests the bus. In this case, the system board
legates the DMA channel's DAK*<x> and the DMA channel immediately requests the
jus again. The arbitration controller performs the arbitration, and asserts the winning
:hannel's DAK* <x> to signal the bus grant The DMA channel then continues the block
transfer. The DMA device does not have to re-assert DRQ<x> if the transfer is
interrupted by another device. The current registers hold the intermediate address and
@vord count values between arbitration cycles.

A DMA device that uses ISA compatible timing should not be programmed for
block mode. It is possible to lock out other devices (including refresh) if the frans/er 0011111
is programmed to a large number. Block mode can effectively be used with Type "A", Type
*BC or Burst DMA timing since the channel can be interrupted while other devices use the
bus.

3.1 .3.3 Demand Transfer Mode

A DMA channel programmed for Demand Transfer Mode performs a group of
transfers for each arbitration cycle. The DMA software programs the channel's Base Word
Count register for the appropriate number of transfers to perform. The DMA controller
decrements the channel's Current Word Count register and increments its Current Address
register after each transfer. The transfer continues until the device negates DRQ<x>, the
Current Word Count register reaches ternnnal count (the word count "rolls over" from zero
to FFFFFFh) or an external EOP is received. Terminal Count or EOP causes the current
registers to be reloaded from the base registers if the channel is programmed for
autoinitialize. The negation of DRQ<x> interrupts the transfer until the DMA device is
ready for more data, but does not terminate the transfer.

A DMA device requests a Demand Mode DMA transfer by asserting DRQ <x > and
holding it until sampling DAK* <x> asserted. The DMA device holds DRQ<x> asserted
until it runs out of data or until the transfer terminates. The transfer can be interrupted
(except when programmed for ISA compatible timing) if another device requests the bus.
The system board then negates the DMA channel's DAK*<x>. The DMA channel
requests the bus again by asserting or continuing to assert DRQ<x>. The arbitration
controller performs the arbitration, and asserts the winning channel's DAK* <x> to signal
the bus grant The DMA channel may then continues the block of transfers. The current
registers hold the intermediate address and word count values between arbitration cycles.

A DMA device that uses ISA compatible timing should not be programmed for
demand mode unless the device releases the bus periodically to allow other devices to use
the bus. It is possible to lock out other devices (including refresh) if the transfer count is
programmed to a large number. Demand mode can effectively be used with Type "A",
Type "B", or Burst DMA timing since the channel can be interrupted while other devices
use the bus.

271

=P 0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

3.1.3.4 Cascade Mode

A DMA channel programmed for Cascade Mode enables a 16-bit bus master to use
the DMA arbitration signals. DMA channel 4 uses cascade mode, to expand the number
of DMA channels available.

DMA channel 4 is the DMA expansion channel used to cascade the DMA channel
0-3 controller block to the DMA Channel 4-7 controller block. DMA Channel 4 is always
programmed for cascade mode. DMA requests and grants for channels 0-3 propagate
through the priority network at channel 4. For fixed priority arbitration, channels 0-3 are
higher priority than channels 5-7. For rotating priority, channels 0-3 can only win the
arbitration when channel 4 wins in the rotation of channels 4-7. Channel 4 is used only for
cascading the additional channels. It cannot service DMA transfer requests.

A 16-bit ISA bus master must use a DMA channel programmed to Cascade Mode
for bus arbitration. The 16-bit ISA bus master asserts the DMA channel's DRQ<x> to
request the bus, and monitors DAK*<x> for acknowledgement of bus grant to the bus
master. Setting a DMA channel to cascade mode floats the address and command signals
(MRDC*, MWTC*, IORC*, IOWC*), leaving the 16-bit ISA bus master free to drive the
address and control signals. The system board pull-up resistors hold LA* < 3 1:24) at a logic
"0".

3.1.4 Transfer T y p e s

Each of the three DMA transfer modes (Single, Block and Demand) can perform
Read, Write and Verify types of transfers. Write transfers move data from an I/O device
to memory by activating memory write and IORC* (enabled by DAK*<x> asserted and
AENx high). Read transfers move data from memory to an I/O device by activating
memory read and IOWC* (enabled by DAK*<x> asserted and AENx high). Verify
transfers cause the DMA controller to perform pseudo read and write cycles. It generates
addresses, and produces DAK* <x> and terminal count, but the memory and I/O control
lines remain inactive. Verify transfers are only allowed in ISA compatible timing mode
and have the address, DAK* <x>, and T-C timing associated with that mode.

3.1.5 Auto Initialize

An Autoinitialize channel automatically loads the Current Page, Current Address
and Current Word Count registers from the Base. Page, Base Address, and Base Word
Count registers each time the DMA controller reaches terminal count or an external EOP
is received. By programming a bit in the Mode register, a channel can be set up for Auto-
im^alization. The mask bit is not set at the end of a transfer when the channel is in
autoinitialize mode. Following autoinitialize, the channel is ready to perform another
DMA service without CPU intervention as soon as the DMA device requests and wins the
bus again.

272

:P 0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCH! VfcCI u K t
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

3.1 .6 Buffer Chaining

The buffer chaining mode of a channel is useful for transferring data from a
peripheral to several different areas of memory within one transfer operation (from the
DMA device's viewpoint). This is accomplished by causing the DMA controller to
interrupt the CPU for more programming information while the previously programmed
transfer is still in progress. The DMA controller then loads the new transfer information
Buitomatically when the previous transfer completes. In this way, the entire transfer can
complete without interrupting the operation of the DMA device. This mode is most useful
forsingle cycle or demand modes of the controller where the transfer process allows time
for the CPU to execute the interrupt routine.

A channel can be initialized for buffer chaining by programming the DMA base
registers with the appropriate initial values, then prograrnming the Chaining Mode register
to "enable chaining mode." The DMA controller automatically loads the base register
values into the current registers. The base registers must then be programmed with the
appropriate values for the next group of DMA cycles.

The DMA transfer starts after the DRQ<x>, DAK*<x> bus arbitration. When
the Current Word Count register reaches terminal count, the DMA controller loads the
Current registers from the Base registers, sets the appropriate bit in the "Channel Interrupt
Status register," then asserts IRQ13. The pending IRQ13 indicates that the Base registers
are empty and chaining mode is enabled. A T-C is not generated for the DMA device.

The Base registers must be updated and the Chaining Mode register must be set to
"base register update complete" before the Current Word Count register reaches zero
(terrninalcount), or the DMA controller abnormally terrninates the data transfer by setting
the charmers bit in the "Channel Interrupt Status register," and setting the channel's "mask
bit" in the "Mask register." Abnormal terrnination of the DMA transfer causes the D M A
channel to become unstable and is likely to cause an overrun. Software can deteraiine that
chaining mode has abnormally terminated by inspecting the Mask Status register (after
having set the Chaining Mode register to "base register update complete"). If the Mask
Status register indicates the channel is disabled, then the DMA channel is in an unstable
state. The recovery procedure should reinitialize the DMA channel and restart the DMA
device.

The HIQ13 interrupt handler reads the Channel Interrupt Status register to
deteraiine that the DMA controller asserted IRQ13 and to identify the channel requesting
service. The interrupt handler updates the channel's base registers, then programs the
Chaining Mode register for "base register update complete."

The I/O write that signals "base register update complete" also resets the D M A
channel's assertion of IRQ13 and the channel's bit in the Channel Interrupt Status register.
The interrupt handler must then restore normal IRQ 13 processing to assure service to
other devices (like the 387 coprocessor) that might also have a pending IRQ 13.

The DMA controller asserts IRQ13 only after reaching terminal count or external
EOP (with chaining mode enabled). It does not assert IRQ13 during the initial
programming sequence that loads the DMA base registers twice.

When chaining mode is enabled, only the Base registers are loaded by the CPU.
The Current registers load automatically after the Current Word Count register reaches
terminal count. The processor can read the Current registers, but not load them.

273

=P 0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC

3.1.7 Ring Buffers

The EISA DMA controller includes a set of Stop registers that may be used to
implement a ring buffer. The ring buffer data structure reserves a fixed portion of memory,
on doubleword boundaries, to be used for a DMA channel. Consecutive reception frames
or other data structures are stored in adjacent portions of the ring buffer memory.

The beginning and end of the ring buffer area are defined in the Base Address
register and the Base Address register plus the Base Word Count. The mconiing frames
(data) are deposited in sequential locations of the ring buffer. When the DMA reaches the
end of the ring buffer (the word count has expired), it autoinitializes, taking it back to the
start of the ring buffer. The DMA then begins depositing the incoming bytes in the ring
buffers sequential locations-providing that the host CPU has read the data that was
previously placed in those locations. The DMA deterniines that the CPU has read certain
data by the value that the CPU writes into the Stop register.

Once the data of a frame is read by the CPU, the memory location it occupies
becomes available for other incoming frames. The Stop register prevents the DMA from
over-writing data that has not yet been read by the CPU. After the CPU has read a frame
from memory it must update the Stop register to point to the location that was last read.
The DMA does not deposit data into any location beyond that pointed to by the Stop
register.

Once the DMA detects that it has reached the address pointed to by the Stop
register, the DMA channel is masked off and an overrun is likely to occur.

274

=P 0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

The CPU can only program the Stop registers with doubleword addresses; the two
least significant bits of address are not stored. Also, the stop registers store values to
compare against A<23:2> only, so the size of the ring buffer is limited to 16 megabytes.

Diagram of a Ring Buffer Data Structure

S t o p
R e g i s t e r — >

C u r r e n t
A d d r e s s
R e g i s t e r

Frames Read by CPU

Memory Space I s
A v a i l a b l e for New

Frames

Frames Not Read
by CPU

Memory Space Is No t
A v a i l a b l e for New

Frames

c u r r e n t
R e c e p t i o n

Frame

Unused A r e a

A v a i l a b l e f o r
Incoming D a t a

Base A d d r e s s
R e g i s t e r

Base Addre s s R e g i s t e r
+

Base Byte c o u n t

275

EP 0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

3.1.8 Software C o m m a n d s

The following three software commands can be executed while the DMA controller
is in Slave Condition. The commands are' executed by performing an I/O write to the
command's I/O port address. The value written is ignored. The software commands are:

Clear Byte Pointer-Write Only
Channels 0-3 - Port OOOCh
Channels 4-7 - Port 00D8h

The Clear Byte Pointer command clears the internal latch used to address the upper
or lower byte of the lo^bit address and Word Count registers. The latch is also cleared at
power-on and by a DMA controller Master Clear command. The CPU may read or write a
16-bit DMA controller register by performing two consecutive accesses. The Clear Byte
Pointer command precedes the first access. The first I/O write to a register port loads the
least significant byte, and the second access automatically accesses the most significant
byte.

Master dear-Write Only
Channels 0-3 - Port OOODh
Channels 4-7 - Port OODAh

The Master Clear instruction clears the Command, Status, and Request registers,
sets the Mask register to disable DMA requests, and executes a Clear Byte Pointer
command. Any operation in progress in the affected channels is aborted.

Clear Mask Register-Write Only
Channels 0-3 - Port OOOEh
Channels 4-7 - Port OODCh

The Clear Mask register command enables all four DMA channels by clearing the
mask bits.

3.1 .9 DMA Controller Register Descr ipt ions

3.1 .9.1 DMA Extended Mode Regis ter

The Extended Mode register is used to program the DMA device data size and
timing mode. The register assumes default value after power-on reset. The DMA master
clear command does not reset this register.

The DMA controller can be programmed for 8-, 16- or 32-BrT DMA device data
size. Channels 0-3 default to the ISA compatible mode, "8-bit I/O, count by bytes" and
channels 5-7 default to the ISA compatible mode, "16-bit I/O, count by words (address
shifted)."

The following table lists each of the DMA device transfer sizes. The column
labeled "Word Count register" indicates that the register contents represents either the
number of bytes to transfer (bytes) or the number of 16-bit words to transfer (words). The
column labeled "Current Address Register Increment" indicates the number added to the
Current Address register after each DMA transfer cycle.

276

EP 0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

In "16-bit I/O, Count by Words (address shifted)" mode, the address bus, which
contains a byte address, increments by two for each DMA transfer. The Current Address
register contains a word address, consequently it increments by one.

DMA Device Data Size Word Count Current Address
Count by Byte/Word Register Register Increment

8-bit I/O, count by bytes bytes 1
16-bit I/O, count by words words 1

(address shifted)
16-bit I/O, count by bytes bytes 2
32-bit I/O, count by bytes bytes 4

The DMA controller can be programmed for one of four cycle timing modes to
transfer data between the DMA device and memory: ISA compatible cycles, Type "A"
cycles, Type "B" cycles, or Burst DMA cycles.

The DMA timing mode defaults to ISA Compatible timing. The device driver for
an expansion board that supports Type "A," Type "B," or Burst DMA riming should
initialize the DMA controller for the fastest timing mode supported by the DMA device,
without regard to the memory slave being accessed. The system board automatically
determines the transfer rate supported by the memory slave and adjusts the cycle control
appropriately. •»

A DMA device that uses ISA compatible timing should not be programmed for
BLOCK mode and should not be programmed for DEMAND mode unless the device
releases the bus periodically to allow other devices to use the bus. It is possible to lock out
other devices (mduding refresh) if the transfer count is programmed to a large number.
BLOCK and DEMAND mode can effectively be used with Type "A" Type "B" or Burst
DMA (Type "C) timing since the channel can be interrupted while other devices use the
bus.

The T-C line is programmable for two purposes. In the (default) output mode, T-C
signals terminal count from the DMA channel. In the input mode, T-C is used by the
DMA device to terminate a transfer (EOP or End of Process;.

277

EP 0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

The last functior^rograrnmable through the DMA Extended Mode register is the
"Stop register enable." This bit is used to control the Stop register function and defaults to
disabled.

DMA Extended Mode Register - Write Only
Channels 0-3 - Port 040Bh
Channels 4-7 - Port 04D6h

7 6 5 4 3 2 1 0

DMA Channel Select
00 Channel 0 (4) select
01 Channel 1 (5) select
10 Channel 2 (6) select
11 Channel 3 (7) select

Addressing Mode
00 8-bit I/O, count by bytes
01 16-bit I/O, count by words

(address shifted)
10 32-bit I/O, count by bytes
11 16-bit I/O, count by.bytes

DMA Cycle Timing Mode
00 ISA Compatible timing
01 Type "A" riming mode
10 Type "B" timing mode
11 Burst DMA (Type "C") timing mode

0 T-C is an output for this channel
1 T-C is an input for this channel

0 Stop register enabled
1 Stop register disabled

3.1.9.2 Chaining Mode Register

The Chaining Mode register pair can be used to enable or disable DMA buffer
chaining and indicate when the DMA Base registers are being programmed.

Software initializes the DMA controller for buffer chaining by writing the first
buffer address to the Base registers, then setting the chaining mode to "enable." (The
DMA channel must not be in Auto initialize mode.) The DMA controller then loads the
Current registers. _

Software then loads the second buffer address into the Base registers
and sets the chaining mode to "programming complete, begin chaining" to start the actual
DMA transfer.

Software can set the Chaining mode to "Disable" to terminate chaining mode and
return to the "normal" mode. The DMA controller may also, disable Chaining after
abnormally terminating a chaining operation. The default values for channels 0-7 are
Disable Chaining mode. Chaining mode must be explicitly disabled by software, it is not
cleared except by a reset or master clear.

EP 0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

See the "Buffer Chaining" section for more information about the use of this
register.

Chaining Mode Register - Read/Write
Channels 0-3 - Port 040Ah
Channels 4-7 - Port 04D4h

L J _ DMA Channel Select
00 Channel 0 (4) select
01 Channel 1 (5) select
10 Channel 2 (6) select
11 Channel 3 (7) select

' — ' Enable/Disable Buffer Chaining Mode
00 Disable chaining mode
01 Enable chaining mode for programming
10 Illegal
11 Programming complete, begin chaining

1 0 IRQ 13
1 Generate T-C

— ' — ' Reserved (set to 0)

The following sequence illustrates use of the Chaining Mode register:

1. The Base Address and Base Word Count register are loaded with the address and
count for the first buffer to be transferred.

2. The enable chaining mode bits for the appropriate channel are set to "01," causing
the Base Address and Base Count registers to load into the Current Address and
Current Word Count registers.

3. The second buffer's address and word count are loaded into the Base Address and
Base Count registers.

4. The enable chaining mode bits for the appropriate channel (bits 2, 3) are set to "11"
to begin the chaining sequence.

5. When a chaining mode interrupt occurs, indicating completion of a buffer transfer,
the Base Address and Base Word Count registers are loaded with the address and
count for the next buffer to be transferred.

6. The "enable chaining mode" bits for the appropriate channel are set to "11" to
prepare for the next transfer and to clear the interrupt.

279

EP 0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

3.1.9.3 Chaining Mode Status Regis ter

Software can determine if chaining mode is enabled or disabled bv reading the
Chaining Mode Status register. The bit is set if the channel is enabled for cndning mode.
The bit is clear if the channel is not enabled for chaining mode. The register is cleared by a
power-on reset.

Chaining Mode Status Register - Read Only
Port 04D4h

7 6 5 4 3 2 1 0

Channel 0
Channel 1
Channel 2
Channel 3
Reserved
Channel 5
Channel 6
Channel 7

enabled I
enabled I
enabled I
enabled {

enabled <
enabled (
enabled I

Jif bit is set)
if bit is set)
if bit is set)
j£ bit is set)

'if bit is set)
if bit is set)
Lif bit is set)

3.1.9.4 Channel Interrupt Status Regis ter

The "Channel Interrupt Status" register indicates a pending IRQ 13 caused by the
DMA controller. The DMA controller asserts IRQ 13 after reaching terminal count, with
chaining mode enabled. It does not assert IRQ 13 during the initial programming sequence
that loads the base registers twice. The default value for all channels is no interrupt
pending.

The appropriate bit in the interrupt latch is automatically cleared when the
"chaining mode enabled" bits are set to "11" or when cleared to "00."

Channel Interrupt Status Register - Read Only
Port 040Ah

4 3 2 1 0

Interrupt on '
Interrupt on <
Interrupt on '
Interrupt on 1
Reserved
Interrupt on 1
Interrupt on i
Interrupt on '

Channel 0 (
Channel 1 (
Channel 2 (
Channel 3 (

Channel 5 I
Channel 6 (
Channel 7 (

if bit is set)
if bit is set)
if bit is set)
if bit is set)

if bit is set)
if bit is set)
if bit is set)

280

EXTENDED INDUSTRY S I AJNUAKU AK^ni : r-u i uivr.
'ONTTDENTIAL INFORMATION OF BCPR SERVICES, INC.

1.1.9.5 Address and wora count Hegis iers

S.1 .9.5.1 Base word count Regis te r

Each DMA channel has a write-only, 24-bit Base Word Count register that stores
he programmed word count value. The DMA controller performs one transfer in addition

o the programmed number of transfers.

The Base Word Count register consists of two parts, the 16-bit 8237 compatible
iegment, and the 8-bit high word count segment The two segments are mapped at
liferent I/O addresses and must be programmed separately. The main CPU programs the
5237 compatible segment by executing the Clear Byte Pointer command, then performing
wo consecutive 8-bit I/O writes to the appropriate address. The mam CPU programs the

high word count segment by performing an 8-bit I/O write to the appropriate address.

The Base High Word Count Segment must be programmed after the Base Word
Count 8237 Compatible Segment Any I/O write to the Base Word Count 8237

Compatible Segment sets the Base High Word Count Segment (and Current High Word
Count Segment)to zero.

EP 0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

Base Word Count Register Segments (Write Only)
DMA I/O address I/O address

Channel 8237 Compatible High Word
Segment Count Segment

16-bits 8-bits

0 OOOlh 0401h
1 0003h 0403h
2 0005h 0405h
3 0007h 0407h
5 00C6h 04C6h
6 OOCAh 04CAh
7 OOCEh 04CEh

3.1 .9.5J2 Current Word Count Regis te r

Each DMA channel has a read-only, 24-bit Current Word Count register. The
DMA controller decrements the word count after each transfer. The intermediate value of
the word count is stored in the Current Word Count register during the transfer. The
DMA controller generates terminal count and stops decrementing when the Current Word
Count register "rolls over" (decrements from r F h h r r h) . The Current Word Count register
then contains FFFFFFh until reloaded.

The Current Word Count register consists of two parts, the 16-bit 8237 compatible
segment, and the 8-bit high word count segment The two segments are mapped at
different I/O addresses and must be read separately. The main CPU reads the 8237
compatible segment by executing the Clear Byte Pointer command, then performing two
consecutive 8-bit I/O reads from the appropriate address. The main CPU reads the high
word count segment by performing an 8-bit I/O read from the appropriate address.

Each Current Word Count register segment is automatically loaded simultaneously
with the respective Base Word Count register when not in Chaining mode.

282

EP 0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, I N C

Autoinitialize causes both Current Word Count register segments to load from the
respective Base Word Count register segments.

Current Word Count Register Segments (Read Only)
DMA

Channel
I/O Address

8237 Compatible
Segment

16-bits

I/O Address
High Word

Count Segment
8-bits

0
1
2
3
5
6
7

OOOlh
0003b
0005h
0007b
00C6h
OOCAh
OOCEh

0401h
0403h
0405b
0407h
04C6h
04CAh
04CEh

3.1 .9.5.3 Base Address Regis te r

Each DMA channel has a 32-bit write-only Base Address register that is
programmed with the base address for DMA transfers. The Base Address register does not
increment or decrement The 32-bit Base Address register consists of a 16-bit register (low
address word), an 8-bit low page register (second highest address byte) and an 8-bit high
page register (high address byte). Each register segment is mapped at a different I / O
address and must be programmed separately.

Base Address (8237 Compatible Segment)

The Base Address register includes a 16-bit 8237 compatible segment. The 8237
compatible segment combines with the low page segment and high page segment to
provide the low address word of the 24-bit ISA compatible DMA address or the 32-bit
EISA DMA address.

The main CPU programs the 8237 compatible segment by executing the Clear Byte
Pointer command, then performing two consecutive 8-bit I/O writes to the appropriate
address.

Base Address (Low Page Segment)

The 8-bit low page segment of the Base Address register combines with the 8237
compatible segment to provide the high byte of the 24-bit ISA compatible DMA address
space. The low page segment combines with the high page segment to provide the second-
most-significant-byte of the 32-bit EISA DMA address.

The main CPU programs the low page segment by performing an 8-bit I/O write to
the appropriate address.

283

EP 0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

Base Address (High Page Segment)

The 8-bit high page segment of the Base Address register combines with the ISA
compatible segments to provide the high byte of the 32-bit EISA DMA address.

The main CPU programs the high page segment by perforrning an 8-bit I/O write to
the appropriate address. The high page segment must be programmed after the low page
segment and 8237 compatible segment Any write to the low page segment or 8237
compatible segment clears the high page segment

Base Address Register Segments (Write Only)

DMA I/O address I/O address I/O address
Channel 8237 Compatible Low Page High Page

Segment Segment Segment
16 bits 8 bits 8 bits

0 OOOOh 0087h 0487h
1 0004h 0083h 0483h
2 0008h 008 lh 0481h
3 OOOCh 0082b 0482h
5 00C4h 008Bh 048Bh
6 00C8h 0089h 0489h
7 OOCCh 008 AH . 048Ah

3.1 .9.5.4 Current Address Regis ter

Each DMA channel has a 32-bit read-only Current Address register. The DMA
controller automatically increments or decrements the address after each transfer; the
intermediate values of the address are stored in the Current Address register during the
transfer. The 32-bit Current Address register consists of a 16-bit register (low address
word), an 8-bit low page register (second highest address byte) and an 8-bit high page
register (high address byte). Each register segment is mapped at a different I/O address
and must be read separately.

Each Current Address register segment is automatically loaded simultaneously with
the respective Base Address register segment (unless chaining mode is enabled).

Auto initialize causes all current address register segments to load from the
respective base address register segments.

Current Address (8237 Compatible Segment)

The Current Address register includes a 16-bit 8237 compatible segment. The 8237
compatible segment combines with the low page segment and high page segment to
provide the low address word of the 24-bit ISA compatible DMA address or the 32-bit
EISA DMA address.

The main CPU reads the 8237 compatible segment by executing the Clear Byte
Pointer command, then performing two consecutive 8-bit I/O reads from the appropriate
address.

284

f U 4Zt> 1B4

EXTENDbU liNDuSTKY a l AJNUAivi>' a r l h : i r.v. i u i u .
ONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

:urrent Address (Low Page Segment)

The 8-bit low page segment of the Current Address register combines with the 8237
»mpatible segment to provide the high byte of the 24-bit ISA compatible DMA address

ipace The low page segment combines with the high page segment to provide the second-
nost-significant-byte of the 32-bit EISA DMA address.

The main CPU reads the low page segment by performing an 8-bit I/O read from

ne appropriate address.

Current Address (High Page Segment)

The 8-bit high page segment of the Current Address register combines with the ISA

compatible segments to provide the high byte of the 32-bit EISA DMA address.

The main CPU reads the high page segment by performing an 8-bit I/O read from
the appropriate address.

Durrent Address Register Segments (Read Only)
1 i

DMA
Channel

I/O address
8237 Compatible

Segment
16 bits

I/O address
Low Page
Segment

8 bits

t/u aaaress
High Page
Segment

8 bits

0
1
2,
3
5
6
7

OOOOh
0004h
0008h
OOOCh
00C4h
00C8h
OOCCh

uus/n
0083h
0081h
0082h
008Bh
0089b
008 Ah

i^to/n
0483h
0481h
0482h
048Bh
0489h
048Ah

3.1 .9.5.5 Address and Word count Programming

ISA Compatible Addressing and Word Count

Any I/O write to the Base Address low page segment or 8237 Compatible Segment
sets the Base Address high page segment to address zero and causes that DMA channel to

use ISA compatible addressing.

Any I/O write to the Base Word Count 8237 compatible segment sets the Base
Word Count high segment (and Current Word Count high segment) to zero for ISA

compatibility.

EP 0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

32-bit Addressing and Word Count

An I/O write to tbe Base Address high page segment puts the DMA channel into
enhanced addressing mode and causes the Current Address register to function as a 32-bit
up/down counter. The high and low page registers increment (or decrement)
automatically, without software assistance. The Base Address high page segment must be
programm ed last to cause 32-bit addressing. Any I/O write to the Base Address low page
segment or 8237 compatible segment causes the DMA channel to use ISA compatible
DMA addressing.

The Base Word Count high segment must be programmed after the Base Word
Count 8237 Compatible segment. Any I/O write to the Base Word Count 8237 compatible
segment sets tbe Base Word Count high segment (and Current Word Count high segment)
to zero.

•8-bit I/O, Count By Byte" Mode
(ISA Compatible)

The Base Address register can be programmed to any byte address if the Extended
Mode register is set for "8-bit I/O, Count by Byte" mode. The low and high page segments
act like direct extensions of the address counter. The high page segment should be
programmed with address bits corresponding to LA<31:24> (not inverted). The low page
segment should be programmed with address bits corresponding to LA<23:16>. The 8237
compatible segment should be programmed with address bits corresponding to SA< 15:0> .
The Base Word Count register should be programmed with the number of bytes to transfer
minus one. For example:

Physical memory address for transfer: 12345678h
Bytes to transfer: 80h
High Page segment contents = 12h
Low Page segment contents = 34h
Base Address register = 5678h

(perform two sequential writes: 78h, then 56h)
Base Word Count register = 7Fh

286

EP 0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

"16-bit I/O, Count By Word (Address Shifted)' Mode
(ISA Compatible)

The Base Address register must be programmed to an even address if the Extended
Mode register is set for "16-bit I/O, Count by Word (address shifted)" mode. The 17 low-
order address bits must be shifted right by one bit (the LSB is ignored) before loading into
the Base Address 8237 compatible segment The high page segment should be
programmed with address bits corresponding to LA<31:24> (not inverted). The most
significant seven bits of the low page segment should be programmed with address bits
corresponding to LA < 23: 17 > and the LSB of tbe low page segment should be
programmed with a "0". The 8237 compatible segment should be programmed with address
bits corresponding to SA<16:1>. SA<0> is not used since the address bus increments by
two and the transfer is always to or from an even address. The Base Word Count register
should be programmed with the number of 16-bit words to transfer minus one. For
example:

Physical memory address for transfer: 87654320h
Bytes to transfer: 80h

16-bit words to transfer: 40h
High Page segment contents = 87h
Low Page segment contents = 64h
Base Address register = A190h

(perform two sequential writes: 90h, then Alh)
Base Word Count register = 3Fh

"16-bit I/O, Count By Byte" Mode

The Base Address register can be programmed to any byte address if the Extended
Mode register is set for "16-bit I/O, Count by Byte" mode. The high page segment should
be programmed with address bits corresponding to LA < 31:24 > (not inverted). The low
page segment should be programmed with address bits corresponding to LA < 23:16 > . The
8237 compatible segment should be programmed with address bits corresponding to
SA<15:0>. The Base Word Count register should be programmed with the number of
16-bit bytes to transfer minus one.

Note that most DMA devices require the address to be aligned on a dword
boundary. If programmed to a misaligned address, the DMA controller transfers a partial
dword only on the first and last transfer. For example:

Physical memory address for transfer: 12345678h
Bytes to transfer: 80h
High Page segment contents = 12h
Low Page segment contents = 34h
Base Address register = 5678h

(perform two sequential writes: 78h, then 56h)
Base Word Count register = 7Fh

287

P 0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCHl i b l i u k c
rONFI DENT1AL INFORMATION OF BCPR SERVICES, INC.

32-bit I/O, Count By Byte" Mode

The Base Address register can be programmed to any byte address if tbe Extended
vtode register is set for "32-bit I/O, Count by Byte" mode. (Note that most DMA devices
equire the address to be aligned on a dword boundary.) The high page segment should be
jrogrammed with address bits corresponding to LA < 31:24 > (not inverted). The low page
iegment should be programmed with address bits corresponding to LA < 23: 16 > . The 8237
jompatible segment should be programmed with address bits corresponding to SA< 15:0 >.
rhe Base Word Count register should be programmed with the number of bytes to transfer
ninus one.

Note that most DMA devices require the address to be aligned on a dword
xmndary. If programmed to a misaligned address, the DMA controller transfers a partial
iword only on the first and last transfers. For example:

Physical memory address for transfer: 12345678h
Bytes to transfer 80h
High Page segment Contents = 12h
Low Page segment Contents = 34h
Base Address register = 5678h

(perform two sequential writes: 78h, then 56h)
Base Word Count register = 7Fh

ana

EP0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

3.1.9.6 DMA Command Register

The DMA Command register can be programmed by software to initialize the
DRQ<x> and DAK*<x> logic levels to active nigh or low, and initialize the channel
group arbitration priority scheme for fixed or rotating. Software can also enable or disable
the DMA channel group by setting or clearing bit 2 of the Command register. Disabling
channels 4-7 also disables channels 0-3, since channels 0-3 are cascaded into channel 4.
The Command Registers can be cleared by power-on reset and by the Master Clear
instruction.

DMA Command Register - Write Only
Channels 0-3 - Port 0008h
Channels 4-7 - Port OODOh

L Reserved (0)
— Reserved (0)

— DMA Channel Select
0 Channels 0-3 (4-7) enable
1 Channels 0-3 (4-7) disable .

— Reserved (0)

Arbitration Priority
0 Fixed priority
1 Rotating priority

Reserved (0)

DRQ Sense Assert Level
0 DRQ <3:0> (< 7:5 >) sense asserted high
1 DRQ < 3:0 > (< 7:5 >) sense asserted low

DAK* Assert Level
0 DAK* < 3:0 > (< 7:5 >) assert low
1 DAK* < 3:0 >(< 7:5 >) assert high

289

EP 0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

3.1.9.7 Mode Register

Each DMA channel has a 6-bit Mode register. The Mode registers are programmed
by setting bits 0 and 1 for the appropriate channel, then writing to the Mode register port
address. The channel's Mode register latches the sue mode bits (based on the value of bits 0
and l) .

Mode Register - Write Only
Channels 0-3 - Port OOOBh
Channels 4-7 - Port 00D6h

DMA Channel Select
00 Channel 0 select
01 Channel 1 select
10 Channel 2 select
11 Channel 3 select

Data Transfer Type
00 Verify transfer
01 Write transfer
10 Read transfer
11 Illegal

0 Disable Auto initialization
1 Enable Auto initialization

0 Address increment select
1 Address decrement select

DMA Channel Mode Select
00 Demand mode select
01 Single mode select
10 Block mode select
11 Cascade mode select

Note: Channel 4 must be programmed for cascade mode. All other modes are
disallowed.

Note: The address decrement mode only applies to "8-bit I/O, Count by Byte"
mode and "16-bit I/O, Count by Word (address shifted)" mode. Results in
other modes are undefined.

290

EP 0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, I N C

3.1.9.8 Request Regis ter

Software can initiate a DMA service request by setting any DMA channel's Request
register bit. The DMA controller responds to the software request as though DRQ<x> is
asserted. The request bits are not maskable. Any channels request bit can be set or
cleared under software control. The DMA controller automatically clears a channel's
request bit after the channel's Current Word Count register reaches terminal count or an
external EOP is received. A DMA channel must be in Block Mode before a service
request can be initiated by software. The Request register is cleared by power-on reset.

Request Register - Write Only
Channels 0-3 - Port 0009h
Channels 4-7 - Port 00D2h

DMA Channel Select
00 Select channel 0
01 Select channel 1 (
10 Select channel 2 (
11 Select channel 3 (

0 Clear request bit
1 Set request bit

Reserved (0)

3.1.9.9 Mask Regis ters

Each channel has a mask bit that, when set, disables a DMA service request caused
by an asserted DRQ<x>. A channel's mask bit is automatically set when the Current
Word Count register reaches terminal count (unless the channel is programmed for auto
initialization or chaining mode). Any channel's mask bit can be set or cleared under
software control. Power-on reset disables all DMA channels by setting the Mask register
bits. A Gear Mask register command enables the four DMA channels.

Note: If channel 4 mask bit is set, then channels 0-3 are masked off. This is
because channels 0-3 are cascaded into channel 4.

291

EP 0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

Write Single Mask Bit

This register can be used to set or clear any mask register bit.

Write Single Mask Bit - Write Only
Channels 0-3 - Port 000 Ah
Channels 4-7 - Port 00D4h

6 5 4 3 2 1 0

DMA Channel Select
00 Select channel 0 (4) mask bit
01 Select channel 1 (51 mask bit
10 Select channel 2 (6) mask bit
1 1 Select channel 3 (7) mask bit

0 Clear mask bit
1 Set mask bit

Reserved (0)

Write All Mask Bits/Mask Status Register

This register can be used to write or read all four bits of the Mask register with a
single command.

Write All Mask Bits/Mask Status Register - Read/Write
Channels 0-3 - Port OOOFh
Channels 4-7 - Port OODEh

7 6 5 4 3 2 1 0

0 Clear channel 0 (4) mask bit
1 Set channel 0 (4) mask bit

0 Clear channel 1 (5) mask bit
1 Set channel 1 (5) mask bit

0 Clear channel 2 (6) mask bit
1 Set channel 2 (6) mask bit

0 Clear channel 3 (7) mask bit
1 Set channel 3 (7) mask bit

Reserved (0)

292

iP 0 426 184 A2

EXTENDED INDUSTRY STANDARD AJKCHl I bCI UKx-
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

3.1 .9.1 0 DMA Status Register

The DMA Status register contains status information about the DMA channels that
can be read by the CPU. This information identifies channels that reached a terrninal
count and channels that have pending DMA requests. Bits 0-3 are set every time terminal
count is reached by the corresponding channel. These bits are cleared upon power-on and
on each Status Read. Bits 4-7 are set whenever their corresponding channel is requesting
service.

DMA Status Register - Read Only
Channels 0-3 - Port 0008h
Channels 4-7 - Port OODOh

7 6 5 4 3 2 1 0

Channel 0 (
Channel 1 (
Channel 2 (
Channel 3 (
Channel 0 (
Channel 1 (
Channel 2 (
Channel 3 (

4) at terminal count
5) at terminal count
5) at terminal count
7) at terminal count
4) request
5) request
6) request
7) request

The following table shows the results of reaching DMA terminal count or an
external EOP (End of Process). If the Stop register limit is reached, the mask is set and
other conditions are unchanged.

Program Status DMA Software Current
Mode Terrninal Mask Request Registers

Count bit bit

Normal set set clear no change

Autoinit set clear ., clear reload

Chaining
(normal) clear clear clear reload

Chaining
(over-run) ???? set clear ????

293

3NFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

1.10 *>UppOneu UIVIM i iansra v u i u w i i - " " —

The following tables indicate the legal DMA transfer modes. The notes apply to all

e tables.

Note 1- The system board does not perform data size translation for any DMA
transfers that use ISA compatible DMA timing, including when

performing 16-bit transfers to 8-bit memory.

Note 2- The system board performs data size translation for Type "A" and

Type TB" DMA cycles. The system board can use direct ttansfer or

byte lane copying for DMA operations between the DMA device and

memory wit£ a word width equal to or larger than the DMA device.

Transfers between a DMA device and memory with a smaller width

than the DMA device require data size translauon by the system
board. For memory writes (I/O reads), the f ^ ^ " ™ ^
DMA device to float, its data lines by negating IORC . For memory
readsa/O writes), the system board holds IOWC* asserted until the
t u i t i o n completes, then negates IOWC* so the DMA device can

sample the data on the trailing edge.

Note 3- The system board performs data size translation for Burst DMA

cycles The system board can use direct transfer or byte lane copying
for DMA operations between the DMA device and burst memory
with a ̂ ord I width equal to or larger than, the DMA device Transfers

between a DMA device and memory with a smaller width than the

DMA device require data size translation by the system board. For

memory writes (I/O reads), the system board causes tbe DMA device

to float its data hues by negating IORC*. For memory reads (I /O

writes), the system board holds IOWC* only at the end of J
latior, Transfers between a DMA device and memory that does

not support Burst DMA cycles reverts to Standard EISA memory

cycles.

«— W 1

r U 184 Aid

EXTENDED INDUSTRY STAJNUAKD A K t H U t L i u w i
:ONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

general . tote: I6sh indicates an ISA compatible addressing type with a 16-bit data
size and shifted address. The DMA address register is shifted left one
bit and executed as a word address (ISA compatible), consequently,
misaligned transfers cannot be performed. EISA 16-bit data size does
not require the address shift, and can support misaligned transfers if
the DMA device performs the byte alignment.

} MA lranster combinations

T r a n s f e r DMA Timing Data Mem
Type Mode Type Size Bus N o t e s

na Cascade na na ISA

V e r i f y S i n g l e Compat ib le 8 ISA Note 1
V e r i f y S i n g l e Compat ib le 16sh ISA Note 1
V e r i f y S i n g l e Type 'A' 8 EISA Note 2
V e r i f y S i n g l e Type 'A' I6sh EISA Note 2
V e r i f y S i n g l e Type 'B' 8 EISA Note 2
V e r i f y S i n g l e Type 'B' 16sh EISA Note 2

V e r i f y Demand Compat ib le 8 ISA Note 1
V e r i f y Demand Compat ib le 16sh ISA Note 1
V e r i f y Demand Type 'A' 8 ' EISA Note 2
V e r i f y Demand Type 'A' 16sh EISA Note 2
V e r i f y Demand Type 'B' 8 EISA Note 2
V e r i f y Demand Type 'B' 16sh EISA Note 2

V e r i f y Block Compat ib le 8 ISA Note 1
V e r i f y Block Compat ib le 16sh ISA Note l
V e r i f y Block Type 'A' 8 EISA Note 2
V e r i f y Block Type 'A' 16sh EISA Note 2
V e r i f y Block Type 'B' 8 EISA Note 2
V e r i f y Block Type 'B' 16sh EISA Note 2

EP0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

DMA Transfer Combinations (Read)

T r a n s f e r DMA Timing ' Data Mem
Type Mode Type S i z e Bus N o t e s

Read S i n g l e C o m p a t i b l e 8 ISA Note 1
Read S i n g l e C o m p a t i b l e 16sh ISA Note 1
Read S i n g l e Type 'A' 8 EISA Note 2
Read S i n g l e Type 'A' 16sh EISA Note 2
Read S i n g l e Type 'A' 3 2 EISA Note 2
Read S i n g l e Type 'A' 16 EISA Note 2
Read S i n g l e Type 'B' 8 EISA Note 2
Read S i n g l e Type 'B' 16sh EISA Note 2
Read S i n g l e Type 'B' 32 EISA Note 2
Read S i n g l e Type 'B' 16 EISA Note 2

Read Demand C o m p a t i b l e 8 ISA Note 1
Read Demand C o m p a t i b l e 16sh ISA Note 1
Read Demand Type 'A' 8 EISA Note 2
Read Demand Type 'A' 16sh EISA Note 2
Read Demand Type 'A' 32 EISA Note 2
Read Demand Type 'A7 16 EISA Note 2
Read Demand Type 'B' 8 EISA Note 2
Read Demand Type 'B' •„ 16sh EISA Note 2
Read Demand Type 'B' 3 2 EISA Note 2
Read Demand Type 'B' 16 EISA Note 2
Read Demand B u r s t DMA 8 EISA Note 3
Read Demand B u r s t DMA 16 EISA Note 3
Read Demand B u r s t DMA 32 EISA Note 3

Read Block C o m p a t i b l e 8 ISA Note 1
Read B lock C o m p a t i b l e 16sh ISA Note 1
Read B lock Type 'A' 8 EISA Note 2
Read Block Type 'A' 16sh EISA Note 2
Read Block Type 'A' 32 EISA Note 2
Read B lock Type 'A' 16 EISA Note 2
Read B lock Type 'B' 8 EISA Note 2
Read B lock Type 'B' 16sh EISA Note 2
Read Block Type 'B' 3 2 EISA Note 2
Read Block Type 'B' 16 EISA Note 2
Read Block B u r s t DMA 8 EISA Note 3
Read Block B u r s t DMA 16 EISA Note 3
Read B lock B u r s t DMA 3 2 EISA Note 3

296

EP 0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

DMA Transfer Combinations (Write)

T r a n s f e r DMA Timing Data Mem
Type Mode Type ' S i z e Bus N o t e s

W r i t e S i n g l e C o m p a t i b l e 8 ISA Note 1
W r i t e S i n g l e C o m p a t i b l e 16sh ISA Note l
W r i t e S i n g l e Type 'A' 8 EISA Note 2
W r i t e S i n g l e Type 'A' I6sh EISA Note 2
W r i t e S i n g l e Type 'A' 32 EISA Note 2
W r i t e S i n g l e Type 'A' 16 EISA Note 2
W r i t e S i n g l e Type 'B' 8 EISA Note 2
W r i t e S i n g l e Type 'B' 16sh EISA Note 2
W r i t e S i n g l e Type 'B' 32 EISA Note 2
W r i t e S i n g l e Type 'B' 16 EISA Note 2

W r i t e Demand C o m p a t i b l e - 8 ISA Note 1
W r i t e Demand C o m p a t i b l e 16sh ISA Note 1
W r i t e Demand Type 'A' 8 EISA Note 2
W r i t e Demand Type ' A' 16sh EISA Note 2
W r i t e Demand Type 'A' 32 EISA Note 2
W r i t e Demand Type 'A' 16 EISA Note 2
W r i t e Demand Type 'B' 8 EISA Note 2
W r i t e Demand Type 'B' 16sh EISA Note 2
W r i t e Demand Type 'B' 32' EISA Note 2
W r i t e Demand Type 'B' 16 EISA Note 2
W r i t e Demand Burs t DMA 8 EISA Note 3
W r i t e Demand B u r s t DMA 16sh EISA Note 3
W r i t e Demand Bur s t DMA 32 EISA Note 3

W r i t e Block C o m p a t i b l e 8 ISA Note 1
W r i t e Block C o m p a t i b l e 16sh ISA Note 1
W r i t e Block Type 'A' 8 EISA Note 1
W r i t e Block Type 'A' 16sh EISA Note 1
W r i t e Block Type 'A' 3 2 EISA Note 2
W r i t e Block Type 'A' 16 EISA Note 2
W r i t e Block Type 'B' 8 EISA Note 1
W r i t e Block Type 'B' 16sh EISA Note 1
W r i t e Block Type 'B' 32 EISA Note 2
W r i t e Block Type 'B' 16 EISA Note 2
W r i t e Block Burs t DMA 8 EISA Note 3
W r i t e Block Burs t DMA 16sh EISA Note 3
W r i t e Block Burs t DMA 32 EISA Note 3

297

EP 0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

3.2 Interrupt Controller

EISA systems provide an ISA compatible interrupt controller with the EISA
enhancement. Interrupts can be set as edge sensitive or level sensitive. The EISA
interrupt controller incorporates the functionality of two 8259 interrupt controllers. A total
of 15 interrupts are available, not mcluding IRQ2 (on the master interrupt controller),
which is used to cascade interrupts from the slave interrupt controller.

The EISA master interrupt controller (INT-1) provides IRQ<7:0> and the slave
interrupt controller (INT-2) provides IRQ < 15:8 >. The INT-2 interrupt output is
connected to IRQ2 of ENT-1 . The interrupts have the following priority arrangement
(highest priority to lowest): IRQO, ERQl, IRQ8, IRQ9, IRQ10, IRQ11, IRQ12, IRQ 13,
IRQ14, IRQ15, IRQ3, IR04, IRQ5, IRQ6, IRQ7.

3.2.1 Interrupt Controller I/O Address Map

The following table shows the I/O port address map for interrupt registers:

Interrupt I/O # of Interrupt Controller
Block Address Bits Register

IRQ < 7:0 > 0020h 8 INT-1 Base Address
IRQ<7:0> 0021h 8 INT-1 Mask register
IRQ < 7:0 > 04D0h 8 INT-1 Edge/Level register

IRQ < 15:8 > OOAOh 8 LNT-2 Base Address
IRQ < 15:8 > OOAlh 8 INT-2 Mask register
IRQ < 15:8 > 04Dlh 8 INT-2 Edge/Level register

3.2.2 Interrupt Sequence

The following shows the interrupt sequence for an 80x86-type system. (An EISA
interrupt controller must never be programmed to the 8259's 8080 mode.)

1. One or more IRQ < 15:0 > lines are asserted, setting the corresponding
Interrupt Request register bit.

2. The interrupt controller evaluates the requests and interrupts the CPU.

3. The CPU acknowledges the interrupt and responds with an interrupt
acknowledge cycle (see the CPU data sheet for a description of the CPU's
interrupt acknowledge cycle).

4. During the interrupt acknowledge cycle, the interrupt controller sets the
highest priority In-Service register bit and clears the corresponding Interrupt
Request register bit. INT-1 presents the ID of the interrupt controller
requesting service (the highest priority In-Service interrupt code) to INT-2 at
the end of the interrupt acknowledge cycle. Neither interrupt controller
drives the data bus during this cycle.

298

EP 0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC

5. The CPU initiates a second interrupt acknowledge cycle to read the interrupt
vector. Duringthis cycle, INT-1 or INT-2 presents the 8-bit interrupt vector
on D<7:0>. The interrupt vector consists of the interrupt code^presented
on D<2:0> and the interrupt controller vector address (INT-1 vector
address is 00001b, INT-2 vector address is 01110b), presented on D<7:3>.
An interrupt from the cascaded interrupt controller causes INT-2 to present
the vector. Any other interrupt causes INT-1 to present tbe vector.

6. This completes the interrupt cycle. In the AEOI mode, the In-Service
register bit is cleared at the end of the second interrupt acknowledge.
Otherwise, the In-Service register bit remains set until an appropriate EOI
command is issued at the end of the interrupt service routine.

The IRQx inputs must remain asserted until after the leading edge of the first
interrupt acknowledge. If an IRQx input is negated before the interrupt acknowledge, the
interrupt controller drives the vector for IRQ7 (TRQ15 on the cascaded interrupt
controller) during the second interrupt acknowledge cycle.

3.2.3 Interrupt Controller Initialization

There are two types of command words that the CPU can use to program the EISA
interrupt controller:

*
• Initialization Command Words

INT-1 and INT-2 must be initialized before normal operation. Initialization is
performed by programming ICW1, ICW2 and ICW3 to INT-1 and INT-2. Some
configurations also require ICW4 be programmed.

« Operation Command Words
The interrupt controller can be commanded to operate in various modes. The
modes are as follows:

Fully Nested Mode

Special Fully Nested Mode

Fixed Priority Mode

Rotating Priority Mode

Special Mask Mode

Polled Mode

INT-1 and INT-2 are initialized separately, and can be programmed to operate in
different modes. The typical power-up default settings (INT-1 INT-2) are as follows:
80x86 mode, Edge-sensitive (IRQ<15:0>), normal End-of-Interrupt, Non buffered mode,
Special Fully Nested'Mode disabled, fixed priority, cascade mode. INT-1 is connected as
the master interrupt controller, its ICW3 = 4h, its vector address = 8h. INT-2 is connected
as the slave interrupt controller, its ICW3 = 2h, its vector address = 70h.

299

EP 0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

Ihe following table shows the typical BIOS initialization sequence for an EISA
interrupt controller:

Port Value Description of Operation

020h llh INT-1, ICW1
021h 08h INT-1, ICW2 vector address for 000020h
021h 04h INT-1, ICW3 indicates slave connection
021h Olh INT-1, ICW4 8086 mode
021h B8h LNT-1, Interrupt mask (may vary with option)
04D0h OOh INT-1, Edge/Level Control register

OAOh llh INT-2, ICW1
OAlh 70h INT-2, ICW2 vector address for OOOlCOh
OAlh 02h INT-2, ICW3 indicates slave ID
OAlh Olh INT-2, ICW4 8086 mode
OAlh BDh INT-2, Interrupt mask (may vary with option)
04Dlh OOh INT-2, Edge/Level Control register

An I/O write to the INT-1 or INT-2 base address with D<4> = "1", is interpreted
as Initialization Command Word 1 (ICW1). For EISA systems, two I/O writes to
oase address + 1" must follow the ICW1. The first write to "base address + 1" performs
(CW2, the second write performs ICW3. A third write to "base address + 1" (if the IC4 bit
is set on the ICW1) performs ICW4.

An I/O write that does not follow an ICW1 to the INT-1 or INT-2
"base address + 1" loads the Interrupt Mask register.

No Operation Command words can be written before the initialization sequence is
:omplete.

100

EP 0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCHITECT URE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

The following flow chart illustrates the sequence software must follow to load the
interrupt controller Initialization Command Words. The sequence must be executed for
INT-1 and INT-2.

ICWl-Por t 020h (OAOh)

ICW2-Port 021h (OAlh)

ICW3-Port 021h (OAlh)

No (IC4=0)
c Is ICW4 Needed?

£es (IC4=1)

ICW4-Port 021h (OAlh)

READY TO ACCEPT
INTERRUPT REQUESTS

3.2.4 Initialization and Control Regis ters

3.2.4.1 Initialization Command Word 1 (1CW1)

An I/O write to the INT-1 or INT-2 base address with D<4> = "1", is interpreted
as Initialization Command Word 1 (ICW1).

LTIM: This bit is disabled in EISA systems. Its function is replaced by the
Edge/Level Control register, described elsewhere.

ADI: Ignored.for EISA,

SNGL: This bit is set to "0" for EISA. It indicates that there is more than one
interrupt controller in the system.

IC4: If this bit is set - ICW4 has to be read. IF ICW4 is not needed, set
IC4=0.

301

EP0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

Note that the bit description in the ICW1 diagram below applies only to ICW1. If
D<4> indicates OCW2 or OCW3, the bit definitions are documented under the
appropriate section.

Initialization Command Word 1
(ICW1, OCW2 and OCW3 are accessed through a common port)
INT-1 - Port 020h (program to Ollh)
INT-2 - Port OAOh (program to Ollh)

D7 D6 D5 D4 D3 D2 Dl DO

A7 | A6 A5 1 LTIM ADI SNGL IC4

1 = ICW4 Needed
0 = No ICW4 Needed

1 = Reserved for EISA
0 = Cascade mode

Ignored for EISA
Ignored for EISA

0'«= Indicates OCW2 or OCW3
1 = Indicates ICWl

Ignored for EISA

3.2.4.2 Initialization Command Word 2 (ICW2)

The first in a sequence of I/O writes (after an ICWl) to tbe INT-1 or INT-2
"base address + 1" is interpreted as Initialization Command Word 2 (ICW2).

ICW2 initializes the interrupt controller with the 5 most-significant bits of the
interrupt vector address. LNT-1 or INT-2 presents the 8-bit interrupt vector on D<7 :0>
during the second interrupt acknowledge cycle. The interrupt vector consists of the
interrupt code, presented on D<2:0> and the interrupt vector address (INT-1 vector
address is 08h, INT-2 vector address is 070h), presented on D<7:3>. An interrupt on
ERQ-2 causes INT-2 to present tbe vector. Any other interrupt causes INT-1 to present the
vector.

302

EP0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

The CPU calculates the pointer address to the interrupt service routine by
multiplying the vector by 4. The CPU then branches to and executes the interrupt service
routine.

Initialization Command Word 2
INT-1 - Port 021h (program to 08h)
INT-2 - Port OAlh (program to 070h)

D7 D6 D5 D4 D3 D2 Dl DO

T7 T6 T5 T4 T3

1 1 1 Reserved for EISA (Set to 0)

1 ' 1 ' Interrupt vector address

3.2.4.3 Initialization Command Word 3 (ICW3)

The second in a sequence of I/O writes (after an ICWl) to the INT-1 or INT-2
"base address + 1" is interpreted as Initialization Command Word 3 (ICW3). ICW3 must
be programmed for INT-1 and INT-2 in EISA systems. -

Initialization Command Word 3
Master Device - Port 02 lh (program to 04h)

For INT-1, the master interrupt controller, ICW3 is programmed to 04h. The bit
corresponding to INT-2 must be set for EISA systems. An interrupt request on ERQ2
causes INT-1 to enable LNT-2 to present the interrupt vector address during the second
interrupt acknowledge cycle.

D7 D6 D5 D4 D3 D2 Dl DO

0 0 0 0 0 1 0 0

1 = Interrupt Request Input has a slave
0=Interrupt Request Input does not have a slave

Initialization Command Word 3
Slave Device - Port OAlh (program to 02h)

For INT-2, the slave interrupt controller, ICW3 must be programmed to 02h. An
interrupt request on IRQ2 causes INT-1 to enable INT-2 to present the interrupt vector
address during the second interrupt acknowledge cycle.

D7 D6 D5 D4 D3 D2 Dl DO

0 ID2 ID1 IDO

Slave ID (program to 02h)

303

P 0 426 184 A2

EXTENDED INDUSTRY STANDARD AKCHITfcCl U R t
-ONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

J.2.4.4 nftlallzation Command word 4 (i c w 4)

The third in a sequence of I/O writes (after an i c w i ; to tne t m - t or i m - z
base address + 1" is interpreted as Initialization Command Word 4 (ICW4).

SFNM: If SFNM = 1 the special fully nested mode is programmed.

BUF: Programmed to "0" for EISA.

M/S: Ignored for EISA.

AEOI: If AEOI = 1 the automatic end-of-interrupt mode is programmed.

uPM: Microprocessor mode: Programmed to T for EISA.

Initialization Command Word 4
INT-1 - Port 021h = Olh
INT-2 - Port OAlh = Olh

D7 D6 D5 D4 D3 D2 uu

0 0 0 SFNM BUF M/S AEOI UPM
1 1 1 — , 1 — i — i — i — ' — i — i —

1 = 80X80 MUDfc
0 = Reserved

1 = Auto EOI
0 = Normal EOI

X = Ignored for EISA

0 = Non-Buffered Mode
1 = Reserved

1 - Special Fully Nested Mode
0 = Not Special Fully Nested Mode

3.2.4.5 Interrupt Mask Register (OCW1)

An I/O write (that does not follow an ICWl) to the INT-1 port 021h or INT-2 port
OAlh loads the Interrupt Mask register. The register can be read at the same address.

Any interrupt can be masked by setting the appropriate Interrupt Mask register bit.
All mask bits are loaded by writing a byte with the appropriate bit pattern to the Interrupt
Mask register I/O port address. The register defaults to interrupts enabled (all bits

cleared) after power-on reset. The Interrupt Mask register can be read at any time alter
the initialization sequence.

oU4

!P 0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCH! I b-U l u k u
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

The register illustrated below indicates the eight mask bits. The interrupt is masked
by setting the bit to "1". The interrupt is enabled by clearing the bit to "0".

Interrupt Mask Register (OCW1) - Read/Write
IRQ < 7:0 > - Port 02 lh
IRQ < 15:8 > - Port OAlh

7 6 5 4 3 2 1 0

Mask bit :
Mask bit :
Mask bit :
Mask bit ;
Mask bit :
Mask bit :
Mask bit :
Mask bit :

for LRQO (
for ERQ1 1
for 1RQ2 (
for IRQ3 (
for LRQ4 (
for IRQ5 (
for TRQ6 (
forIRQ7(

LRQ8)
ERQ9)
CRQ10)
IRQ11)
[RQ12
[RQ13)
DRQ14)
IRQ 15)

3.2.4.6 Operation Control Word 2 (OCW2)

End-of-Interrupt (EOI) commands and interrupt priority rotation commands can be
executed by writing a byte with the appropriate bit pattern to the interrupt controller base
address. D<4 3 > = "00" to cause execution of OCW2 commands.

Bits 0-2 (L0-L2) determine the interrupt acted upon, and bits 5-7 (EOI, SL, R)
select the command.

305

EP 0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

Note that the bit description in the OCW2 diagram below applies only to OCW2. If
D<4:3> indicates ICWl or OCW3, the bit definitions are documented under the
appropriate section.

OCW2
(ICWl, OCW2 and OCW3 are accessed through a common port)
IRQ < 7:0 > -Port020h
IRQ < 15:8 > -PortOAOh

D7 D6 D5 D4 D3 D2 Dl DO

R SL EOI 0 0 L2 LI L0

Interrupt acted upon
000 = IRQO ORQ8)
001 = IRQ1 QRQ9)
010 = m Q 2 O R Q 1 0)
011 = IRQ3 (IRQ11)
100 = IRQ4 QRQ12)
101 = IRQ5 (TRQ13)
110 = BRQ6 (1RQ14)
111 = IRQ7(1RQ15)

ICW1/OCW2/OCW3 Select
00 = Execute OCW2 Command
01 = OCW3 (See OCW3 command)
10 = ICWl (See ICWl command)
11 = ICWl (See ICWl command)

OCW2 Commands:

End of Interrupt
001 = Non-Specific EOI
011 = Specific EOI

Automatic Rotation
101 = Rotate on Non-Specific EOI
100 = Set rotate in AEOI Mode
000 = Clear rotate in AEOI Mode

Specific Rotation (uses L0-L2)
111= Rotate on Specific EOI
110 = Set priority Command

No Operation
010 = No Operation

306

DNFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

2.4.7 Operation uonuui wuru o \vjw»»o/

Soecial Mask Mode can be enabled or disabled, and a "Read Interrupt Request
: g i s t e 7 c o n l ^ o r ^ a d In-Service register" command can be executed by wrmng a byte

ith the appropriate bit pattern to the interrupt controller base address. D<4.3> - 01

> execute of OCW3 commands.

Soecial Mask Mode can be enabled by executing an OCW3 .command I with

i< 6*5 > = n An OCW3 command with D<&5> = "10" disables Speaal Mask Mode.

ji OCW3 command with D< 6:5 > = "00" or "01" also disables Speaal Mask Mode.

Note that the bit description in the OCW3 diagram below applies only to OCW3. If

><4:3> indicates ICWl or OCW2, the bit definitions are documented under the

ppropriate section.

ICW3 -Read /Wri te
(ICWl, OCW2 and OCW3 are accessed through a common port)
IRQ < 7:0 > - P o r t 0 2 0 h
IRQ < 15:8 > -PortOAOh

37 D6 Ob U4 uj U£ ux uu

0 ESMM SMM 0 1 P RR RIS
— ' — i ' — i — h — n — h — h — h

00 = No Action
01 = No Action
10 = Interrupt Request register
11 = In-Service register

'oil Command
I = Execute Poll Command
0 = No Poll Command

3CW2/OCW3 Select
00 = OCW2 (See OCW2 commands)
01 = Execute OCW3 Command
10 =-ICWl (See ICWl command)
II = ICWl (See ICWl command)

Interrupt Mask Mode
00 = No action
01 = No action
10 = Normal mask mode
11 = Special mask mode

' u tea I OH Me

EXTENDED INDUS IKY 51AJNUAKD A K L n u t u i u i v i .
ONFIDENT1AL INFORMATION OF BCPR SERVICES, INC.

.2.4.8 :dge/Levei control Hegisier ifcLOttj

The Edge/Level Control register provides a bit tor eacn in te r rup t s urogram uie
interrupt to edge sensitive or level sensitive. Edge sensitive mode is the default and is fully
compatible with ISA expansion boards. Expansion boards that use level sensitive
interrupts can be used in shared interrupt configurations.

Interrupts programmed for edge sensitive (Bit = "0") are recognized by a low-to-
itigh transition on the corresponding IRQx input. The IRQx mput can remain high without

generating another interrupt

Interrupts programmed for level sensitive (Bit = T) are recognized by a low' level

on the corresponding IRQx input There is no need for an edge detection. The interrupt
request must be removed (by negating the IRQx input) before the mterrupt service routine
issues the EOI command or enables CPU interrupts (by executing STT instruction i on
80386). Another interrupt occurs if the IRQx remains asserted after executing an t o t
command.

In both the edge and level triggered modes the IRQx inputs must remain asserted
until after the leading edge of the first interrupt acknowledge. If an IRQx mput is negated
before the interrupt acknowledge, the interrupt controller drives the vector for 1KQ/
(IRQ 15 for INT-2) during the interrupt acknowledge cycle.

A noise glitch on IRQ < 7:0 > can cause a spurious interrupt on IRQ7. A noise glitch
on IRQ < 15:8 > can cause a spurious interrupt on 'IRQ15. An IRQ7 or IRQ 15 mterrapt
service routine should read the In-Service register to determine the source of an IRQ / (or
IRQ15) interrupt A valid interrupt's In-Service register bit is set during the interrupt
acknowledge. A spurious interrupt does not set the In-Service register bit.

The IRQ7 and IRQ15 interrupt service routines should also detect a re-entrant
execution, to recognize a spurious interrupt that occurs during a valid interrupt service (the
In-Service register bit remains set from the valid interrupt). A re-entrant execuuon
indicates the second execution resulted from a spurious interrupt

TRQjO, IRQ1, IRQ2, IRQ8 or IRQ13 are always set for edge sensitive.

IRQ13 appears externally to be edge sensitive, even though it is shared internally
with the chaining interrupt.

Edge/Level Triggered Control Register - Read/ Write
IRQ < 7:0 > - Port 4D0h
IRQ < 15:8 > - Port 4Dlh

L

4DUh

Reserved - 0
Reserved - 0
Reserved - 0
IRQ3
IRQ4
IRQ5
IRQ6
IRQ7

w i n

(Reserved - 0)
(IRQ9)
(IRQ10)
(IRQ11)
f IRQ 12)
(Reserved - 0)
(IRQ14)
(IRQ15)

EP 0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC

3.2.4.9 Interrupt Request Register (IRR)

The Interrupt Request register is an 8-bit register that contains the status of- each
interrupt Bits that are set indicate penciing interrupts. Bits that are clear indicate
interrupts that have not requested service. The interrupt controller clears the Interrupt
Request register's highest priority interrupt bit during an interrupt acknowledge cycle, and
sets the corresponding bit in the In-Service register. The Interrupt Request register is not
affected by the Mask register.

The Interrupt Request register can be read by issuing an OCW3 with R R = T and
RIS="0", followed Dy an I/O read of the interrupt controller base address. The Interrupt
Request register can only be read after the Initialization Control register prograrxuriing
sequence completes.

It is not necessary to issue an OCW3 each time the Interrupt Request register is
read. An I/O read of the interrupt controller base address defaults to reading the Interrupt
Request register after the initialization sequence and after issuing an OCW3 with 'RR="l"
and RIS="0". Until OCW3 is issued with a different value for RR and RIS, or a Poll
command is executed, subsequent reads of the interrupt controller base address continue to
return the contents of the Interrupt Request register.

The Poll command overrides an Interrupt Request register read when OCW3 bit
P = T .

3.2.4.10 In-Service Register (ISR)

The In-Service register is an 8-bit register that indicates which interrupts are being
serviced. Bits that are set indicate interrupts that have been acknowledged and their
interrupt service routine started. Bits that are cleared indicate interrupts that have not
been acknowledged (or interrupts that are not pending). Only the highest priority interrupt
service routine executes at any time, since the lower priority interrupt services are
suspended while higher priority interrupts are serviced. The In-Service register is updated
when an End of Interrupt Command is issued. The mask register disables a pending
interrupt's In-Service bit from being set.

The In-Service register can be read by issuing an OCW3 with R R = T and R I S = T ,
followed by an I/O read of the interrupt controller base address. The In-Service register
can only be read after the Initialization Control register programming sequence completes.

It is not necessary to issue an OCW3 each time the In-Service register is read. An
I/O read of the interrupt controller base address defaults to reading the In-Service register
after issuing an OCW3 with RR="1" and RIS=T. Until OCW3 is issued with a different
value for RR and RIS, or a Poll command is executed, subsequent reads of the interrupt
controller base address continue to return the contents of the In-Service register.

The Poll command overrides an In-Service register read when OCW3 bit P="l".

309

@P 0 426 184 A2

EXTENDED INDUSTRY STANDARD ARQni rECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

$.2.5 End-oMnterrupt

3.2.5.1 End of Interrupt (EOI) Command

An mterTupt service routine executes an EOI command to clear an interrupts In-
Service bit The EOI command to a cascaded interrupt controller must be followed by an
EOI to the primary interrupt controller.

EOI commands can be either Specific or Non-Specific. A Specific EOI command
includes, as part of the command, the In-Service bit to clear. A Non-Specific EOI
command clears the highest priority In-Service bit that is set.

The Non-Specific EOI command is executed for an interrupt controller
programmed for Fully Nested Mode. The interrupt controller resets the In-Service bit of
the highest priority interrupt (the last interrupt serviced). If the Interrupt Controller is in
the Special Mask Mode, a Non-Specific EOI does not clear a masked interrupts In-Service
bit ANon-SpecificEOIisexecutedwithOCW2(EOI.= l , S L = 0 , R = 0) .

The Specific EOI command is executed for an interrupt controller programmed for
a mode that does not preserve the fully nested priority structure. A Non-Specific EOI
cannot be used since the highest priority interrupt is not necessarily the last interrupt
serviced. The Specific EOI command includes, as part of the command, the In-Service bit
to reset A specific EOI is executed with OCW2-(EOI=l, SL-1, R=0, and L0-L2 = In-
Service bit to reset).

3.2.5.2 Automatic End of Interrupt (AEOI)

An interrupt controller programmed for AEOI mode automadcally performs a Non-
Specific EOI after the trailing edge of an interrupt acknowledge. AEOI mode is selected
by executing an ICW4 with AEOI = "1".

AEOI mode should be used only when a nested multilevel interrupt structure is not
required within a single Interrupt Controller. The AEOI mode can only be used in a
primary Interrupt Controller and not a cascaded controller.

3.2.6 Interrupt Controller Modes

3.2.6.1 Fully Nested Mode

The interrupt controller enters Fully Nested Mode after initialization unless
programmed to another mode. The interrupt requests are ordered in priority from IRQO
(highest) through IRQ7 (lowest). Priorities can be changed by setting the interrupts to
rotating priority mode.

When an interrupt is acknowledged, the highest priority request is determined and
its vector placed on the bus. The interrupts In-Service register bit is set during the
acknowledge cycle. This bit remains set until the interrupt service routine issues an EOI
command or AEOI clears the In-Service bit (on the trailing edge of the interrupt
acknowledge cycle). The interrupt controller disables interrupts of the same or lower
priority while the In-Service register bit is set. The interrupt controller acknowledges
higher priority interrupts if the CPU has enabled interrupts (using an STI instruction on the
80386).

310

EP0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

3.2.6.2 Special Fully Nested Mode

A slave interrupt controller can be programmed for Special Fully Nested Mode in
systems that require the interrupt priorities to be conserved within each cascaded interrupt
controller. The master interrupt controller must be programmed for Fully Nested Mode.
Special Fully Nested Mode is similar to Fully Nested Mode, with the following exceptions:

INT-1 recognizes multiple interrupt requests from a slave interrupt controller. In
the Fully Nested Mode an interrupt from a slave interrupt controller locks out further
interrupts from the same controller until the first interrupt service completes.

An interrupt service routine must determine if the interrupt serviced was the only
one from the slave interrupt controller. The routine executes a non-specific EOI command
to the slave interrupt controller and then reads its In-Service register. If all bits of the In-
Service register are "0", no interrupts are pending and a non-specific EOI can be executed
for INT-1. If another interrupt is pending, no EOI should be sent.

3.2.6.3 Fixed Priority Mode

The interrupt controller defaults to fixed priority mode, with IRQO the highest
priority and ERQ7 the lowest priority. The priorities can be changed by programming an
interrupt as the lowest priority. Other interrupts assume fixed priorities in sequence above
the lowest. For example, if IRQ5 is programmed as the lowest priority device, the priority
order becomes (lowest to highest): IRQ6, IRQ7, IRQO, IRQ1, IRQ2, IRQ3, IRQ4, IRQ5.

The Set Priority command is issued in OCW2 where: R=l, SL=1; L0-L2 is the
binary priority level code of the lowest priority interrupt.

In Specific Rotation mode, internal status is updated by software control during
OCW2. However, it is independent of the EOI command. Interrupt priorities can be
changed during an EOI command by using the Rotate on Specific EOI command in OC W2
(R= 1, SL= 1, EOI= 1 and L0-L2 = interrupt assigned lowest priority).

3.2.6.4 Rotating Priority Mode

The interrupt controller can be programmed to service pending interrupts
sequentially based on an 8-way rotation. Each interrupt rotates to the highest priority,
receives service, then becomes the lowest priority. In the case where all interrupts are
constantly asserted, each interrupt receives one service out of eight interrupt acknowledge
cycles. The following figure illustrates the rotation:

311

EP0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

Before Rotation: IRQ4 the highest priority interrupt requesting service. Priority order
(highest to lowest): IRQO, IRQ1, IRQ2, IRQ3, IRQ4, IRQ5, IRQ6, IRQ7.

In-Service Register

IRQ7 IRQ6 IRQ5 IRQ4 IRQ3 IRQ2 IRQl IRQO

0 1 0 1 0 0 0 0

Highest Priority
Lowest Priority

After Rotation: IRQ4 serviced and changed to lowest priority. IRQ5 changed to highest
Sriority. Priority order (highest to lowest): IRQ5, IRQ6, LRQ7, LRQ0, IRQl, ERQ2, ERQ3,

*Q4.

In-Service Register

IRQ7 IRQ6 IRQ5 IRQ4 IRQ3 IRQ2 IRQl IRQO

Lowest Priority
Highest Priority

There are two ways to cause priority rotation using OCW2: the Rotation on Non-
Specific EOI Command (R=l, SL=0, EOI=l) and the Rotate in Automatic EOI Mode
which is set by (R=l, SL=0, EOI=0) and cleared by (R=0, SL=0, EOI=0).

3.2.6.5 Polled Mode

The Polled Mode can be used to conserve space in the interrupt vector table.
Multiple interrupts that can be serviced by one interrupt service routine do not need
separate vectors if the service routine uses the poll command.

The Polled Mode can also be used to expand the number of interrupts. The polling
interrupt service routine can call the appropriate service routine, instead of providing the
interrupt vectors in the vector table.

An interrupt service routine executes a "Clear Interrupts" instruction (CLI for
80386) before issuing a poll command. A poll command is issued by setting P="l" in
OCW3. A poll commana overrides an Interrupt Request or In-Service register read when
OCW3 bits P = "l" and RR="1".

An I/O read of the interrupt controller base address that follows a poll command is
treated like an interrupt acknowledge. If an interrupt is pending, the interrupt controller
sets the appropriate In-Service bit and, in response to the next I/O read of the interrupt
controller base address, drives a byte with the interrupt code onto the bus. If no interrupt
is pending, the interrupt controller sets the most significant bit to "0" and drives the byte
onto the bus.

312

EP0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

The interrupt controller freezes the contents of the In-Service register alter the poll
command, until the I/O read of the interrupt code.

The interrupt controller responds to an I/O read of the I/O controller base address
(after a poll command) by driving D< 7:0 > with a byte that has the following format:

D7 D6 D5 D4 D3 D2 Dl DO

I — — W2 Wl WO

W0-W2: Binary code of the highest priority interrupt requesting service.

I = "1" if an interrupt is pending
"0" if no interrupt is pending.

3.2.6.6 Special Mask Mode

The Special Mask Mode enables all interrupts not masked by a bit set in the Mask
register. Interrupt service routines that require dynamic alteration of interrupt priorities
can take advantage of the Special Mask Mode. For example, a service routine can inhibit
lower priority requests during a part of the interrupt service, then enable some of them
during another part.

Without Special Mask Mode, if an interrupt service routine acknowledges an
interrupt without issuing an EOI to clear the In-Service bit, the interrupt controller inhibits
all lower priority requests. The Special Mask Mode provides an easy way for the interrupt
service routine to selectively enable only the interrupts needed by loading the Mask
register.

The Special Mask Mode is set by OCW3 where: SMM=1", and cleared with
SMM="0".

313

EP 0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

3.3 Non-Maskable interrupts (NMI)

EISA systems indicate an error condition by generating a non-maskable interrupt.
A software mechanism is also provided to generate an NMI.

The following address map indicates the port addresses of registers used for NMI
handling.

I/O Read/# of
NMI register Address Write Bits

NMI Status register 006 lh rw 8
NMI Enable register 0070h w 8
Extended NMI register 046 lh rw 8
Software NMI register 0462h w 8

Port 061h, bits <6> and <7> and port 0461h bits <5>, <6> and <7> indicate
the source of an NMI interrupt The following paragraphs describe the ports 06 lh and
046 lh bits.

Parity Error from System Memory

Port 061h bit 7 is set (PARITY ERROR) if system memory detects a parity error.
This interrupt is enabled by setting Port 061h bit 2 to "0". To reset the parity error set port
061h bit 2 to "1" (Disable Parity Interrupt) and then clear it to "0" (Enable Parity Interrupt).

Assertion of IOCHK*

Port 061h bit 6 is enabled (IOCHK' NMI) if an expansion board asserts IOCHK1
on the ISA/EISA bus. This interrupt is set by setting port 06 lh bit 3 to "0". To reset the
interrupt, set port 06 lh bit 3 to "1" (Disable IOCHK* NMI) and then clear it to "0" (Enable
IOCHK* NMI).

Fail-Safe Timer Timeout

Port 0461h bit 7 is set (FAILSAFE NMI) if the fail-safe timer count has expired
before being reset by a software routine. This interrupt is enabled by setting port 0461h bit
2 to T . To reset the interrupt, set Port 0461h bit 2 to "0" (Disable Failsafe Interrupt) and
then set it to "1" (Enable Failsafe Interrupt).

314

P 0 426 184 A2

EXTENDED INDUSTRY STANDARD AKCHI 1 tL l UKJs
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

Jus Timeout

Port 0461b. bit 6 is set (BUS TIMEOUT) if more than 64 BCLKs (8 ajs) -have
slapsed from the rising edge of BCLK after MAKx* was negated until the master negates
vlREQx*. A bus timeout also occurs if a memory slave extends a cycle long enough that
CMD* remains asserted more than 256 BCLKS (32 as). The DMA controller does not
;ause a bus timeout. The bus timeout interrupt is enabled by setting port 0461h bit 3 to "1"
)r disabled by setting port 0461h bit 3 to "0". To clear the bus timeout interrupt, set Port
)461h bit 3 to "0" (Disable Bus Timeout Interrupt) and then set it to "1" (Enable Bus
rimeout Interrupt). The system board asserts RESDRV when a bus timeout occurs.
Clearing the bus timeout status bit causes the system board to negate RESDRV.

Software Generated NMI

Port 0461h bit 5 is set (NMI I/O PORT) if an I/O write access occurred to Port
3462h (the data value written to the port does not matter). This interrupt is enabled by
string port 0461h bit 1 to "1". To reset the interrupt, set port 0461h bit 1 to "0" (Disable
^ftvflT/0 port Interrupt) and then set it to "1" (Enable NMI I/O Port Interrupt).

Bus Reset

Port 0461h also supports bus reset. Bit 0 can be used to perform a system bus reset
without resetting other devices in the system. To reset the ' system bus set Port 046 lh bit 0
to "1" which asserts the RESDRV signal on the ISA/EISA bus. Bit 0 should be set long
enough for the system bus devices to be properly reset, and then port 046 lh bit 0 should be
cleared to continue normal operation. When performing a system bus reset, standard
system board devices such as timers, keyboard, etc. are not reset.

Speaker Control and Memory Refresh

Port 061h also supports speaker control and memory refresh status.

31b

EP 0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

NMI Status and Control Ports

Port 06 lh provides NMI status and control, speaker control and memory refresh
status. Port 046 lh provides additional NMI status and control.

NMI Status and Control Port •
Port 061h

—̂ Gate signal for speaker timer (R/W)
0 = timer 1, counter 2 (speaker) disabled
1 = timer 1, counter 2 (speaker) enabled

— 0 = Speaker timer off (R/W)
1 = Speaker timer on

0 = System board parity error enabled
1 = Parity error disabled and cleared (R/W)

1 = IOCHK* NMI disabled and cleared
0 = IOCHK* NMI enabled (R/W)

Toggles after each refresh request

State of speaker timer (Read Only)
(Must be "0" for writes)

0 = Speaker off
1 = Speaker on

1 = IOCHK* asserted (IOCHK* NMI)
0 = IOCHK* negated (No IOCHK* NMI)

(Read only, must be "0" for writes)

0 = No parity error NMI from system board
1 = Parity error NMI requested

(Read only, must be "0" for writes)

316

EXTENDED INDUSTRY STAJNUAKD AKtm i c l i u r £
:ONFIDENTIAL INFORMATION OF BCPR SERVICES, I N C

Sxtended NMI Status and Control fort
Port 0461h

0 = Normal Bus reset operation (K/ w;
1 = Bus reset asserted (RSTDRV)

0 = NMI I/O port disabled
1 = NMI I/O port enabled (R/W)

0 = Fail-safe NMI disabled and cleared
1 = Fail-safe NMI enabled (R/W)

32-bit Bus Timeout
0 = with NMI disabled and cleared
1 = with NMI enabled

1 Reserved (Read Only)
(Must be "0" for writes)

' NMI I/O Port status (Read Only)
(Must be "0" for writes)

0 = No NMI pending
1 = NMI pending

I NMI from Bus Timeout (Read Only)
(Must be "0" for writes)

0 = No NMI pending
1 = NMI pending

NMI from fail-safe timer (Read Only)
(Must be "0" for writes)

0 = No NMI pending
1 = Fail-safe timer active and NMI pending

Note: If the NMI enable/disable bit (port 70h bit 7) is disabled, port 0461h bits 7, 6, and 5
read "0" even if an NMI from that source is pending.

Note- The interrupt service routine should examine NMI status bits and correct the NMI
source one at a time. After an NMI source has been cleared and the corresponding
bit reset, the NMI status bits should be checked again in case more than one source
of NMI has occurred at one time. If another status bit is active then it should also
be handled. It is possible that by doing this the routine may see an NMI interrupt
immediately following another, with the second interrupt showing no active status
bits. The second interrupt should then be ignored. This logic is required to insure
that no NMI interrupts are lost, as the 8086 class CPUs do not allow NMI routines
to be interrupted by another NMI, but store a second NMI edge for execution after
the IRET.

:P 0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

Software NMI Generation Port

Port 0462h provides a software mechanism to cause an NMI. A write to any Pon
0462h bit causes an NMI if interrupts are enabled.

Software NMI Generation Port - Write Only
Port 0462h

7 6 5 4 3 2 1 0

i — ' — 1 — 1 — 1 — 1 — 1 — t— Any write causes NMI

Port 70h provides a mask register for the NMI interrupt, as shown below. The most-
iignificant bit (bit 7) enables or disables the NMI interrupt. NMIs are disabled from all
sources if bit 7 is programmed to "1". Writing an 80h to port 70h masks the NMI.

NMI Enable/Disable and Real-time Clock Address Port

The NMI enable/disable bit shares port 70h with the real-time clock device. The
real-time clock device uses port 70 bits 0 to 6 to address CMOS memory locations. Writing
to port 70h sets both the NMI enable/disable bit and the CMOS memory address pointer.
Accesses to CMOS must correctly initialize the CMOS address pointer, and must maintain
the correct state of the NMI enable/disable bit.

NMI Enable/Disable and Real-time Clock Address Port - Write only
Port 070h

Real-time clock address

0 = NMI enabled
1 = NMI disabled

Last EISA Bus Master Granted

A CPU-readable latch identifies the EISA bus master that most recently had control
of the bus. The latch is located at port address 0464h and is read only. A single bit is
cleared to "0" after each arbitration cycle to indicate the slot that was most recently granted
the bus. Port 0465h is reserved for an additional status latch for seven more bus masters.

An NMI service routine can read this latch to determine which bus master
controlled the bus when a bus preempt timeout occurred. The NMI service routine can
then display the bus master that caused the fault (although a slave may have caused the
fault by hanging up the bus master), and reinitialize the system.

318

EP 0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

32-bit Bus Master Status Latch -
Slots 1-8 - Port 0464h
Slots 9-15 - Port 0465h

Read Only

' — Slotl (Slot 9)
— Slot 2 (Slot 10)
— Slot 3 (Slot 11)
— Slot 4 (Slot 12)
— SlotS (Slot 13)
— Slot 6 (Slot 14)
— Slot 7 (Slot 15)
— Slot 8 (Reserved)

319

:P 0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

3.4 Interval Timers

EISA systems contain five counter/timers that are equivalent to those found in the
Intel 8254 Programmable Interval Timer. The counter/timers are programmed by I /O
accesses and are addressed as though they are packaged in two separate 8254 Interval
Timers. Timer 1 contains three counters, timer 2 contains two counters (EISA systems do
not implement the middle counter of timer 2). The counter clocks are developed from an
external 1431818 MHz crystal oscillator.

The timer 1 counter 0, OUT pin connects to IRQO, and provides a system timer
interrupt (IRQO) for time-of-day, diskette time-out, and other system timing functions. The
timer 1 counter 1 OUT signal generates DRAM refresh requests. The timer 1 counter 2,
OUT signal generates the speaker tone.

Timer 2 counter 0, implements a fail-safe timer. The OUT pin is connected to the
NMI interrupt to the CPU, allowing the timer to generate NMI interrupts at a regular
interval, thus preventing the system from locking up. Timer 2 counter 1 is not
implemented. Timer 2 counter 2 is designated as available for use by system board
manufacturers and can implement any additional timing function needed.

320

-* U 104 Ae

EXTENDED INDUSTRY S IAINUAKU A K t n n c u i u i ^
IONFI DENTIAL INFORMATION OF BCPR SERVICES, INC.

lie following tables lists the interval timer runciions.

Interval Timer 1 Interval Timer 2
Counter 0 Counter 0

Function System Timer Fail-safe Timer

Gate Always on Always on

Clock In 1.193 MHz 2983 KHz

Clock Out IRQO NMI Interrupt

Interval Timer 1 Interval Timer 2
Counter 1 Counter 1

Function Refresh Request Not implemented

Gate Always on Not implemented

Clock In 1.193 MHz Not implemented

Clock Out Request refresh Not implemented

Interval Timer 1 Interval Timer 2
Counter 2 Counter 2

Function Speaker Tone CPU speed control

Gate Programmable (Port 61h) Refresh Request

Clock In 1.193 MHz BCLK

Clock Out Speaker input CPU speed control

0<£ I

EP 0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

The following table shows the I/O address map of the interval timer counters:

I/O I/O Por t Addres s
P o r t (b inary) R e g i s t e r D e s c r i p t i o n

A d d r e s s MSB LSB

0040h 0000 0000 010X 0000 Programmable I n t e r v a l Timer 1,
System Clock (Counte r 0)

0041h 0000 0000 010X 0001 Re f r e sh Reques t (Counter 1)
0042h 0000 0000 010X 0010 Speaker Tone (Coun te r 2)
0043h 0000 0000 010X 0011 Con t ro l Word r e g i s t e r

0048h 0000 0000 010X 1000 Programmable I n t e r v a l Timer 2,
F a i l - s a f e Timer (Counte r 0)

0049h 0000 0000 010X 1001 R e s e r v e d
004Ah 0000 0000 010X 1010 Counter 2
004Bh OOOO 0000 010X 1011 ' Con t ro l Word r e g i s t e r

3.4.1 Programming the Interval Timers

The counters are programmed by the following procedure:

1. Write the Control Word to the control address

2. Write the initial count value for the counter

3.4.1.1 Interval Timer Control Word Format

The Control Word specifies the counter, the operating mode, the order and size of
the count value, and whether it counts down in a 16-bit or binary-coded decimal (BCD)
format The control word is always written first, before count values can be loaded into a
counter.

322

EP0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

If a counter is programmed to read or write two-byte counts, the following
precaution applies: A program must not transfer control between writing the first and
second byte to another routine which also writes into that same counter. Otherwise, the
counter will be loaded with an incorrect count. The count must always be completely
loaded with both bytes.

Interval Timer Control Word Format
Timer 1: Port0043h
Timer 2: Port004Bh

7 6 5 4 3 2 1 0

0 = Binary Countdown
1 = BCD Countdown

000 =ModeO
001 = Mode 1
010 = Mode 2
011 = Mode 3
100 = Mode 4
101 = Mode 5

00 = Counter Latch command.
01 = R/W least-significant byte
10 = R/W most-significant byte
11 = R/W least-, then most-significant byte

00 = Select counter 0
01 = Select counter 1
10 = Select counter 2
11 = Read Back command

3.4.1.2 . Counter Operating Modes

The following table lists the sue operating modes for the interval counters.

Mode F u n c t i o n

0 A s s e r t s OUT s i g n a l at e n d - o f - c o u n t
1 Hardware r e t r i g g e r a b l e o n e - s h o t
2 Rate g e n e r a t o r (d i v i d e - b y - n c o u n t e r)
3 S q u a r e - w a v e o u t p u t
4 S o f t w a r e - t r i g g e r e d s t r o b e
5 H a r d w a r e - t r i g g e r e d s t r o b e

323

EP 0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, I N C

3.4.1 .3 Counter Initial Count Value

Each counter is a 16-bit word. However, since the interface to the timer is 8 bits,
the count value must be programmed in two I/O operations. The control word determines
the protocol for prograrnming the counter. It is possible to program the least significant
byte only, the most significant byte only, or both, one after another (LSB then MSB). Note
that the first two options require two I/O writes (the control word and then the value)
while the third option requires three writes (the control word, LSB, then MSB).

3.4.2 Monitoring Timer Status

It is possible to determine the current status of each of the five counters, including
the current count value, without disturbing the count in progress. There are three methods
for reading the counters:

1. Simple I/O read from counter address

2. Counter Latch command

3. Read-back Command

3.4.2.1 Counter Read Operation

An I/O read access to the address of the desired counter returns the current value
of the counter. However, the CLK input to the counter must be disabled when the read
occurs to prevent the count changing during the read operation and returning an invalid
value. Since the GATE controls for Timer 1 counter 0, Timer 1 counter 1, and Timer 2
counter 0 are always enabled, it is not possible to guarantee the results of an I/O read to
these counters. One of the other two methods must be used to detenriine count value for
these counters.

324

EXTEND ELI INDUSTRY STAiNDAKLl A K t n u c n u i u .
IONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

.4.2.2 Counter Latch c o m m a n a

The Counter Latch command is a control wprd that causes the current value of the
elected counter to be latched at the time the Counter Latch command is written to the
bntrol Word register. Once the latch command has been given, the value can be read by
n I/O access to the appropriate address. The Counter Latch command format is given
elow:

Counter Latch Command format

4 3 2

Reserved (0)

00 = Designates this byte as a Counter Latch command

Counter Select (or Read-Back Command)
00 = Latch Counter 0
01 = Latch Counter 1
10 = Latch Counter 2
11 = Select Counter Read-Back Command

(See Read Back command)

3.4.2.3 Counter Read-BacK c o m m a n a

The Read-back command is used to determine me count vaiue, programme iuuu6,
ind current states of the OUT pin and Null Count flag of the selected counter or counters.
Ihe Read-back command is written to the Control Word register, which causes the current

status of the above mentioned variables to be latched. The value of the counter and its
status can then be read by I/O accesses to the counter address. The following tables show
the format for the Read-back command and the Status Byte.

Counter Read-Back Command Format:

Reserved (U)
1 = Select counter 0
1 = Select counter 1
1 = Select counter 2
0 = Latch status of selected counters
0 = Latch count of selected counters

11 = Specifies counter read-back command

EP 0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

The status byte can be read from the counter base address after the counter Read-
Back command. The status byte has the following format:

Counter Status Byte Format:
Timer 1: Port 040h
Timer 2: Port 048h

n Binary /BCD Countdown Mode
0 = BINARY Countdown
1 = BCD Countdown

Counter Mode
000 = M o d e 0
001 = M o d e l
010 = Mode 2
011 = Mode 3
100 = Mode 4
101 = Mode 5

Counter Latch Status
00 = Counter latch command
01 = R/W least-significant byte
10 = R/W most-sigriificant byte
11 = R/W least, then most-significant byte

Returned Status:
0 = Control register contents not moved into CE
1 = Control register contents are moved into CE

OUT Pin Status
0 = OUT Pin is 0 (low)
1 = OUT Pin is 1 (high)

326

EP 0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

4. EISA System Configuration

EISA provides a mechanism for automatic configuration of expansion boards and
the system board. The EISA configuration mechanism consists of the following
components:

• A software utility to configure the system board and expansion boards

• A software interface to the configuration utility that Configuration File
Extensions can use to control and customize the configuration process

• Configuration files that accompany the software utility

• Configuration files that accompany the system board and expansion boards

• Nonvolatile memory for storing configuration information

• A mechanism to save and restore a backup copy of the system configuration
information

• BIOS routines to read and write contents of nonvolatile memory

• Automatic detection and initialization of expansion boards by the system ROM
power-up routine

• 1024-byte I/O address space for each EISA expansion board (slot-specific)

Expansion board manufacturers include a configuration file (also referred to as a
CFG file) with each EISA expansion board, and optionally, with switch-programmable ISA
products. The configuration utility, which is provided by the system manufacturer, uses the
information contained in the configuration files to determine a conflict-free configuration
of the system resources. The configuration utility stores the configuration and initialization
information into nonvolatile memory and saves a backup copy on diskette. The system
ROM power-up routines use the initialization information to initialize the system during

Eower-up,
and device drivers use the configuration information to configure the expansion

oards during operation.

327

@P 0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

1.1 Devices Supported by Automatic Configurat ion

EISA systems provide automatic configuration for expansion boards plugged into
be expansion bus, peripheral devices built into the system board, and software drivers that
lse system resources, such as an expanded memory (LIM EMS) emulator. The following
nformaU'on provides an overview of the mechanism used for automatic configuration of
he devices.

1.1 .1 Expansion Boards

Expansion boards install into EISA and ISA bus connectors. Each bus connector is
•eferred to as a slot The bus connectors are numbered sequentially from 1 to "n" (with 15
is a maximum V). For example, an EISA system with 7 bus connectors has slots
lumbered from slot 1 to slot 7.

4.1.1.1 EISA Expansion Boards

Each EISA slot has I/O address decoding hardware that provides the installed
expansion board with a unique, 1024 byte, slot-specific I/O address space. EISA expansion
boards use the slot-specific I/O address space for I/O registers (Le., configuration and
operational registers). The EISA system ROM uses configuration information from
nonvolatile memory to initialize the configuration registers during power-up.

Refer to the section entitled Expansion Board Address Decoding and the one
entitled System Board Slot-Specific I/O, of this specification for detailed uiformation on
the slot-specific I/O ranges.

An EISA expansion board must contain a readable product ID and must support the
expansion board control bits ENABLE and IOCHKERR. Refer to the section entitled
Expansion Board Control Bits and the one entitled EISA Product Identifier of this
specification for detailed information.

4.1 .1 .2 ISA Expansion Boards

The EISA configuration utility also aids in configuration of ISA expansion boards
that provide a configuration file. The utility uses the information from the configuration
file to determine the correct switch and jumper settings and I/O port initializations for ISA
expansion boards. The configuration utility displays the proper switch and jumper settings
to the user.

ISA initialization and operational registers must occupy the ISA compatible
expansion board I/O space (100h-3FFh). ISA systems do not support the EISA slot-
specific I/O ranges. The EISA system ROM power-up routines automatically initialize the
ISA registers that are specified in the configuration file.

4.1.2 System Board

Peripherals integrated onto the system board require automatic configuration
support similar to expansion board peripherals. System board peripherals can be designed
to use EISA slot-specific I/O ranges and the ISA system board I/O range.

328

EP 0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCHITECT URE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

4.1 .2.1 System Board Peripherals That Use Slot-Specific I/O s p a c e

A svstem board peripheral that uses slot-specific I/O is functionally similar to an
expansion bus peripheral, but it is integrated onto the system board rather than installed in
a bus connector. EISA automatic configuration treats the system board peripheral as an
expansion board peripheral, except that it is referenced as an embedded device."

4.1 2 2 System Board Peripherals That Use System Board I/O s p a c e

System board peripherals that use ISA expansion board I/O space (100h-3FFh) can
be treated as "virtual devices." The configuration utility stores the configuration and
initialization information for "virtual devices in nonvolatile memory during configuration.
The system ROM automatically initializes the virtual device during power-up.

4.1 .3 Software Drivers That Require System R e s o u r c e s

Software drivers that require system resources (i.e., memory allocation) are also
treated as "virtual devices." Twoexamples include, a software driver that emulates
expanded memory (LIM EMS) requires memory allocation for the page frame, or a
software driver that requires a buffer which memory allocation to store data during a data
transfer.

329

EP 0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

4.2 Configuration Utility

The EISA system manufacturer is responsible for supplying a configuration utility.
The configuration utility uses configuration files to resolve conflicts in assignment of system
resources such as interrupt levels and DMA channels. The configuration utility also
extracts initialization information that is used for system board and expansion board
initialization. The information is stored in nonvolatile memory and a backup is saved on
diskette.

The type of nonvolatile memory and method of writing the data is not included in
the EISA standard and is determined by the system manufacturer. The system
manufacturer also provides BIOS routines to initialize the expansion boards with the
information stored in nonvolatile memory. The BIOS routines also read configuration
information from nonvolatile memory for device drivers and other system software.

All references to the configuration utility included in this specification refer to the
configuration utility available from Micro Computer Systems, Inc. of Irving, Texas.

The configuration utility is used to configure ah EISA computer. The configuration
process provides the following functions:

• Read and parse configuration files

• Automatically allocate resources to create a conflict-free system

• Saves, configuration to diskette, which allows a common configuration to be
ported to other similarly-configured machines

• Write configuration information into nonvolatile memory

System board and expansion board products can include CFG File Extensions that
extend the capabilities of the configuration utility and customize the configuration process.
For example, a CFG File Extension can be used to detect options installed on an expansion
board, to accept and process user input (other than menu selections), or to write
configuration information to non-EISA nonvolatile memory.

330

EP 0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

4.3 Configuration Files

The configuration files contain the expansion board ID, system resource
requirements and initialization information for system board or expansion board devices.

The initialization information provides data for power-up initialization. The
configuration utility stores the appropriate I/O port initialization information in
nonvolatile memory. The system ROM reads the information from nonvolatile memory
during power-up and initializes the I/O ports.

System resource requirements include memory, I/O ports, interrupts, and DMA
channels. The configuration utility verifies that system resource selections do not conflict
with resource allocations already selected for other devices. The configuration utility then
stores the appropriate svstem resource information in nonvolatile memory. The system
ROM reads the mformation from nonvolatile memory during power-up and initializes the
devices and expansion boards.

A device driver can use a BIOS routine Call to determine the proper expansion
board initialization and to determine the system resource configuration.

A software driver can use the BIOS routines to identify the functions of expansion
devices and the resources allocated to the devices. The driver can determine the contents
of each slot, its functions, the initialization information, and the system resources allocated
for each function.

4.3.1 Configuration File Extensions

System board and expansion board products can include CFG File Extensions (also
called overlay files,) that customize the configuration process. 2

CFG File Extensions can be used to determine the installed hardware by reading
from the hardware registers or other means. For example, the overlay may detect the
presence of floating point coprocessors, disk drives (and determine drive type), or total
amount of memory installed on a memory expansion board.

The overlay can control the configuration of a system board or expansion board. It
can access the hardware, provide the user interface and process the user-specified
configuration selections. Or the overlay can provide a limited set of configuration services
and rely on the configuration utility to perform its normal functions.

Interaction between the configuration utility and the CFG File Extension is specific
to the utility. Therefore, the CFG file extension must be written such that it uses the
calling conventions and interface handling routines recognized by the utility.

2 A specification for CFG File Extensions is available from Micro Compuier Systems. Inc. of Irving. TX. It descnDes
overlays specific to the utility that allow system manufacturers to customize (he configuration process.

331

EP 0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, I N C

4.3.2 Expansion Board Identifier (Product ID)

The expansion board identifier (product ID) is a unique product identification code
that can be read by the system ROM or other software to identify or locate an expansion
board. Information that can be combined in an expansion board ID includes the
manufacturer's ED, product number and revision level. The exact method for- selecting an
expansion board ID is described in the section entitled, Product Identifier (ID).

EISA expansion boards must contain a readable product ID. The power-up routines
use the ID to determine the slot in which the expansion board is installed. The expansion
board is then programmed by the system ROM with the configuration parameters that are
stored in nonvolatile memory.

ISA expansion boards should have a product ID provided in the configuration file.
The product ID may or may not be readable. An expansion board ED is recommended for
ISA expansion boards since it can be stored in nonvolatile memory with other
manufacturer-specified information, such, as the initialization information and resource
requirements. The data stored in nonvolatile memory can then be accessed by software
drivers to determine the expansion board configuration.

4.3.3 I/O Port Initialization Information

The configuration file contains I/O portvinitialization information necessary to
configure an expansion board. The I/O port initialization information specifies the I /O
port addresses and values for each alternative configuration.

4.3.4 System Resource Reques t s

Devices that require system resources include the resource request in the
configuration file. The CFG file can contain requests for the following system resources:

• Memory-the amount of memory supported, starting address, whether it is
writable or cacheable, and initialization parameters required

• I/O ports-port addresses and initialization parameters required

• Interrupts-interrupts supported, whether the. interrupt can be shared, whether
it is edge- or level-sensitive, and any initialization parameters required -

• DMA channels— the choice of DMA channels, whether the channel can be
shared, the channel's data size, the channel's cycle timing, and any initialization
parameters required

332

IP 0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

4.4 Configuration File Filenames

The filename of an EISA or ISA configuration file consists of an exclamation point
followed by the product ID and a filename extension, CFG. The exclamation point must
be included as the initial character of all CFG filenames. Valid filenames have the
following format:

IACE1234.CFG 1XYZ5678.CFG lABCOOOO.CFG

The filename convention is the same for a system board, expansion board,
embedded device or virtual device. For example, an expansion board with a product ED of
ACE0101 has a configuration file named 1ACE0101.CFG.

The expansion board manufacturer should ensure that the configuration file
filename is updated to reflect revisions to the expansion device. For example, ap roduc t
with an ID of ACE101 may have a configuration file named 1ACE0101.CFG. A
subsequent revision of the product would have an ID of ACE 102. Therefore, the
configuration file should be named IACE0102.CFG. This ensures that the appropriate
CFG file is loaded for the device.

The configuration utility includes a mechanism to manage duplicate IDs. For
example, the configuration files for two expansion boards^with ID ACE 1234 installed in the
same system could be renamed when copied to the configuration diskette: the first
configuration file detected is copied to IACE1234.CFG the second configuration file
detected is copied and renamed from 1ACE1234.CFG to 1ACE1234.CFG. The next one is
renamed to 2ACE1234.CFG.

333

r U 42b l«4 A2

EXTENDED INDUSTRY STANDARD A R C H M f c t l U K t
IONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

i.5 The Configuration p r o c e a u r e

EISA system configuration requires the following hardware and software:

An EISA computer system
• The EISA system board configuration file
• The configuration utility
• Optionally, EISA expansion boards and configuration files

g)tionally, ISA expansion boards and configuration files
SA or ISA Configuration File Extensions (where needed)

The following procedure describes an example configuration process for an EISA

ystem with EISA and ISA expansion boards. This example configuration requires a
rootable EISA computer with a display, keyboard and floppy diskette attached.

Start the procedure with the computer power switch "OFF."

Install EISA boards in the computer to allow "automatic detection" of the devices.

Insert the configuration utility diskette.

Turn the computer power switch "ON," booting from the configuration utility diskette.

Use the configuration utility commands to copy each configuration file and CFG File
Extension to the configuration utility diskette. The configuration utility automatically
renames the CFG files from expansion boards 'with duplicate IDs.

Let the configuration utility automatically select a conflict-free configuration. The
user may override the automatic selections.

Set the switches on ISA expansion boards to the positions indicated by the
configuration utility.

Turn the computer power switch "OFF and install the ISA expansion boards in the
expansion slots as indicated by the configuration utility.

Remove the configuration utility diskette.

Turn the computer power switch "ON" to the configured system, booting from the
normal boot device (for example, the fixed disk).

Incorporate the software options into the operating system startup files as indicated
by the configuration utility. The startup files can execute programs that require
command line parameters (for example, /s, /g).- The configuration utility mdicates
the proper parameters. For example, the configuration utility lists entries for the
CONFIG.SYS and AUTOEXECBAT files of an MS-DOS operating system

Reboot the system.

4.5.1 Configuration File byntax

The following sections specify the syntax conventions -used in this document and for

configuration files.

r U 42b 184 A2

EXTENDED INDUSTRY STAN DAK U A t t u m i c ^ i u i u i
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

\2. Symbol conven t ions

The configuration file syntax uses the following special symbols.

Empty braces indicate a null value.

The backslash within a text field identifies an embedded character. Embedded
characters include the \t for up to an 8-space tab (or to the next tab stop), \n
for a line feed, \" for quotation marks, and \\ for a backslash.

Embeds a tab within text
Tab stops are: 1, 9, 17, 25, 33, ...

Replaces \n with a carriage return, line feed The configuration utility
automatically wraps text at the right margin to the next line (word wrap) for
free-form text fields.

Embeds a quotation mark character within text that has quotation marks
delimiting the entire field.

Embeds a \ (backslash) character within text

Information enclosed in quotation marks is free-form ASCII text The text can
contain embedded characters, including tabs and line feeds. Quotation marks
can be used within a text field by entering a \".

The dash (hyphen) separates the minimum and maximum values in a range.

The vertical bar is equivalent to an OR statement Items separated by a vertical
bar (|) indicate that only one of the items is allowed.

ice A blank space is equivalent to an AND statement Information separated by a

space indicates all items are included. The space serves to group items of an
inclusive list For example, the statement (x cmdy) or (y and z) is denoted:
x y | y z.

The semicolon precedes comments in the configuration file. The configuration
utility ignores text that follows the semicolon (up to the end of the line).

EP 0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, I N C

4.5.3 Numerical Value Convent ions

Numerical values withiri a configuration file must adhere to the following
conventions:

• All numerical values are assumed to be decimal unless otherwise indicated.
Decimal values can include a trailing d or D.

• Binary port values must be written with the MSBit on the left and may include
a trailing b or B. A "1" or "0" in a bit position indicates the bit value.

• Decimal fractions are not allowed.

• Address values may be. expressed as megabyte (indicated by an M suffix),
kilobyte (indicated by a K suffix), or byte (no suffix). Values for megabytes or
kilobytes must be given in decimal units but cannot include a trailing d or D.
For example, two kilobytes can be represented either by 2K or 2048d, but not by
2Kd.

• Hexadecimal values must include a trailing h or H. In the case of hexadecimal
values that begin with an alpha character, such as C68h, the value must also
have a leading 0 (zero). Ana when noting slot-specific EISA port addresses, the
value must be preceded by a 0Z (zero 2). For example, slot-specific port C80h
would be represented as 0ZC80h.

• An x in a binary value indicates the bit is not used or a dont care.

• An r in a binary value indicates the hardware register must be read and the
actual bit value masked into the "r" bit position.

• An n in a binary value for a tripole jumper indicates the jumper is not installed.

4.5.4 Keyword and Field Specification Convent ions

Within this document the following conventions are followed when describing the
configuration file.

Value indicates that an ASCII string or number is required in this field; any
numerical unit format can be entered for a value.

{} may be selected to indicate that none of the resource selections are
used.

List indicates that a set of resource selections can be included in the field,
each delimited vertical bar (| , logical OR).

Rangelist indicates that a set of resource address range selections or lists can be
included in the field, each delimited by a vertical bar (|, logical OR).

Valuelist indicates that a set of values can be included in the field, each
delimited by a vertical bar (| , logical OR).

336

- U 420 IB4 A2

X)rmDENTIAL INFORMATION OF BCPR SERVICES, INC

extlist indicates that a set of ASCII values can he mciuaea in me nciu, ine
textlist must be contained within double quotes, with each string
delimited by a space.

Switchlist indicates that a set of switches can be included in the field, each
delimited by a space. A switchlist can also comprise a range of
switches.

fumperiist indicates that a set of jumpers can be included in the field, each
delimited by a space. A jumperlist can also comprise a range of
jumpers.

^Ulist indicates that a set of bit positions can be included in the field. A
bitlist can also comprise a range of bits.

yarameteriist indicates that a set of ASCII values can be included in the description
field of a software statement; the parameterlist must be contained
within double quotes, with each string delimited by a vertical bar
(|, logical OR).

] Items within square brackets are optional.

CAPS Keywords are indicated by all capital letters. For example, BOARD,
ID, NAME, and COMMENTS are 'keywords and are indicated by all
capitals.

italic Italic text used in the syntax provides descriptive information about
the indicated field. For example, names, values, lists and ranges are
indicated by italic text

ASCII text ASCII characters 20-255h are valid for fields that require ASCII t e x t
Null strings are allowed.

(Optional) When used within a statement title, indicates that the statement
provides additional information, but is not required in the
configuration file.

30/

EP 0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, I N C

4.6 Configuration File Format

<
A

 ̂ configuration file consists of a board identification block, one or more initialization imonnation blocks, and one or more function statement blocks. The
configuration file begins with a board identification block, which provides the nam.' and ID
of the board as well as slot information. The initialization information blocks include the
values to mitialize I/O ports and for ISA boards, mformatioQ about jumper and switch
settings. The function statement blocks specify tbe resource requirements of the functions
of the board. AdtMoiiauy, CFG files for svstem boards may include a system description
block (following the board identification block), which icludes information specific to the
system board.

Every configuration file must include the board identification block. The
mitializarion information blocks and function statement blocks are optional, but must be
included to utilize automatic configuration.

The configuration file has the following structure:

Board Identification Block
Beard Identification and Slot Information

[System Description Block]
[Initialization Information Block

I/O port requests
Switch and jumper settings
Software initialization information]

[Function Statement Block
Configuration Selections

[Resource requirements]]

[Function Statement Block
Configuration Selections
[Resource requirements]]

4.6.1 Board identification Block

Each configuration file must begin with a board identification block. Four required
fields must be included in the board identification block to provide the basic ID
requirements of the board; optional fields can be included to provide additional board
identification information.

System boards require special configuration files and are covered in the section
intitled, System Board Configuration File.

538

EP 0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, I N C

The board identification block has the following format.

BOARD
ID = V-character ID" ' ^Product ID
NAME = "descriptive name"
MFR »= "manufacturer name"
CATEGORY = "3-character category"
SLOT » ISA8|ISA16|ISA80R16| OTHER | EISA |VTR|EMB[(n)] [."text"]...]
LENGTH = value] -Jm millimeters
AMPERAGE « value] :5V current used, in mA
SKIRT = YES) NO]
READ ED = YES | NO] Readable product ID
BUSMASTER = value] ;Maximum acceptable latency (in^s)
IOCHECK = VALID [INVALID]
DISABLE = SUPPORTED | UNSUPPORTED]
COMMENTS = 'general information"]
HELP = "help mfonnadori(]

BOARD Statement (Required)

Syntax:
BOARD

The BOARD statement identifies the beginning of the Board Identification Block.

ED Statement (Required)

Syntax:
LD = "7-character ID"

The ID statement contains the seven-character expansion board LD. The LD is the
uncompressed, ASCII representation of the product ED (see the section entitled,
EISA Product Identifier, for information on compressed IDs). The seven-character
ID consists of a three-character manufacturer code, a three-character hexadecimal
product identifier, and a one character hexadecimal revision number. For example,
the second revision of an expansion board manufactured by the ACME board
company might have an uncompressed ID such as ACE0102.

NAME Statement (Required)

Syntax:
NAME = "descriptive name"

The NAME statement contains text that identifies the product. Part numbers and
other information may also be included. The NAME text field can contain up to 90 ASCII
characters.

339

EP 0 426 184 A2

INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, I N C

JVLr K statement (Required)

Syntax:
MFR = "manufacturer name"

The MFR statement contains a text field that identifies the board manufacturer The MFR text field can contain up to 30 ASCII characters.

<~Ai£ArUKr statement (Required)

Syntax:
CATEGORY = "3-character category"

The CATEGORY statement contains a 3-character text field (use uppercase for
consistency) that identifies the board's functional category. The configuration utility
displays the CATEGORY text field (in upper case) during system configuration.

The CATEGORY statement must use one of the following categories:

COM = communications device NPX = numeric coprocessor KEY «= keyboard OSE = operating system/environment
MEM *= memory board OTH = other

oLAj i statement (Optional)

Syntax:
SLOT = value [.text"]...

The SLOT statement identifies the type of slot in which the expansion board can be
installed. Options that can be entered in the value field include: ISAS, ISA16, ISA80R16,
EISA VTR, EMB(n), OTHER, and at a text string If the SLOT statement is omitted, the
iefault is ISA16. For expansion devices that occupy physical slots (ISA8, ISA16,
[SA80R16, EISA, and OTHER), the value entered in the SLOT field is the actual size of
he board's card edge. For example, an expansion board with an 8-bit card edge is set to
SLOT = ISA8, an expansion board with a 16-bit card edge is set to SLOT = ISA16, and so
)n. ISA80R16 is provided for 16-bit expansion boards that can also operate in an 8-bit
[lot

A text string can be included with the slot statement following the value field. More
ban one text string can be included. Each text string must be enclosed in double quotes, [he text is typically used to describe the slot. For example: SLOT=EISA,"MEMORY"
ould be used to describe an EISA slot reserved for a memory expansion board.

[his entry specifies an 8-bit ISA expansion board (fits in any slot of correct length).

Mr t. = mmnmnchon board
MSD = mass storage device
SET = network board

PAR = parallel port
PTR = pointing device
5iS = system board
vTD = video board

5AS

40

EP 0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, I N C

ESA16
This entry specifies a 16-bit ISA expansion board (fits in an EISA or 16-bit slot of
correct length).

ISA80R16
This entry specifies an ISA expansion board configurable as 8- or 16-bit (fits in any
EISA or ISA slot of correct length).

EISA
This entry indicates an EISA expansion board that requires a correct length EISA slot
(fits in EISA slot only).

EMB[(n)]
This entry indicates a system board peripheral that uses slot-specific I/O space
(embedded device). Tbe slot-specific I/O range used determines the tl* The
configuration utility searches for the device by checking the embedded device IDs if
the "n" is omitted. Tbe embedded devices are numbered sequentially from "y + 1" (y
equals the number of expansion bus connectors) to 15.

The system board configuration registers use the slot-specific I/O space, slot number
0. and are addressed as embedded device 0, EMB(O).

VTR
This entry indicates a virtual device. Virtual devices do not have slot-specific I/O or
a readable ID.. This entry, is included for virtual devices so the configuration utility
can perform conflict resolution and drivers can obtain configuration information
regarding the devices. Any peripheral, device or software that needs a configuration
file and is not covered by the other device types can be specified as a virtual device.
Virtual devices are assigned numbers from 16 to a maximum of 64.

OTHER
This entry identifies a vendor-specific expansion slot.

LENGTH Statement (Optional)

Syntax:
[LENGTH = value]

The LENGTH statement specifies the length of the board in millimeters (a decimal
integer). The LENGTH statement does not apply to embedded devices or virtual devices.

Expansion boards should include a LENGTH statement. The configuration utility
cannot optimize the slot allocation if expansion boards do not specify length. If the
IJENGTH statement is omitted the configuration utility defaults to 330.

341

EP 0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

AMPERAGE Statement (Optional)

Syntax:
[AMPERAGE = value]

The AMPERAGE statement, when included in the board identification block,
specifies tbe maximum amount of continuous 5V current (in milliamps) required by the
base configuration of the expansion board. Installable options can specify additional 5V
current requirements with an AMPERAGE statement in the CHOICE Statement Block
(described later in this specification). The AMPERAGE statement does not apply to
embedded devices or virtual devices.

Devices that require +5 volt power should include an AMPERAGE statement
The configuration utility cannot perform an accurate power usage verification if expansion
boards do not specify their power requirement If the AMPERAGE statement is omitted,
the configuration utility defaults to AMPERAGE = 0.

SKIRT Statement (Optional)

[SKIRT = YES | NO]

The SKIRT statement indicates the presence of a drop-down skin. (A drop-down
skirt is an extended lower portion of an 8-bit expansion board that prevents installation into
a 16-bit slot) The default is NO.

READID Statement (Optional)

fREADLD = YES | NO]

READID specifies whether or not the expansion board has an LD that can be read
from the EISA LD registers. The default value is NO.

BUSMASTER Statement (Optional)

Svot&x*
[BUSMASTER = value]

Tbe board identification block may include a BUSMASTER statement to identify
the expansion board as a bus master and to specify the maximum acceptable latency. The
latency value is a specification of the worst case acceptable time (in microseconds) from
the bus master bus request to the bus grant. The configuration utility assumes an
expansion board is not a bus master if the BUSMASTER statement is omitted.

Syntax:

Syntax:

342

EP 0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC

IOCHECK Statement (Optional)

Syntax:
[IOCHECK = VALID | INVALID]

IOCHECK is an optional statement that indicates support of the EISA expansion
board control register IOCHKERR bit VALID indicates that the expansion board
responds to reads of its IOCHKERR bit INVALID indicates that the expansion board
does not respond to reads of the IOCHKERR bit The default is VALID.

DISABLE Statement (Optional)

Syntax:
[DISABLE = SUPPORTED | UNSUPPORTED]

DISABLE is an optional statement that indicates support of the EISA expansion
board control register ENABLE bit SUPPORTED indicates that the expansion board can
be disabled by clearing the ENABLE bit UNSUPPORTED indicates that the expansion
board cannot be disabled by clearing the expansion board control register ENABLE b i t
The default is SUPPORTED.

COMMENTS Statement (Optional)

Syntax:
[COMMENTS = "general information']

The COMMENTS statement provides information about the expansion board. The
configuration utility displays the contents of the COMMENTS text field in a window at
least 40 characters wide. This COMMENTS text field can contain up to 600 ASCII
characters.

HELP Statement (Optional)

Syntax:
[HELP = "help information'']

The HELP statement provides information about the expansion board if the user
requests help during the configuration. The configuration utility displays the HELP
information m a window at least 40 characters wide. The HELP text field can contain up
to 600 ASCII characters.

343

=P 0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, I N C

Example Board Identification Block

The following example illustrates a board identification block for a multifunction
board.

B O A R D
LD - "ACE0102" Revision 02
NAME = "EISA Multifunction Board"
MFR @ "ACME Inc."
CATEGORY = "MFC ;Multifunction board
SLOT « EISA :Requires EISA slot
LENGTH « 330 full length board
AMPERAGE = 3000 ;3000 mA max current draw
SKIRT = NO
READID = YES
COMMENTS «= The EISA Multifunction Board provides

an asynchronous communication port,
a parallel port, a game port and
4 megabytes of memory. "

HELP = The EISA Multifunction Board supports
full automatic configuration.
You may want to select the expanded
memory configuration instead of taking
the default, which is extended memory. "

The SKIRT and length statements could be omitted from this board identification
block, since the specified values equal the default value.

4.6.2 Initialization Information Block

The initialization information block consists of one or more of the following
statement blocks:

I/O port initialization statement block

Switch configuration statement block

Jumper configuration statement block

Software initialization statement block

All expansion boards that require configuration must provide an initialization
information block (LTB) in the configuration file. (A shorthand method described in the
I/O Port JNTT statement discussion in the section entitled ENTT Statements, can be
substituted for certain ILBs.)

4.6.2.1 - I/O Port Initialization Statement Block

The I/O Port Initialization statement block begins with the IOPORT(i) statement.
The syntax of the I/O port initialization statement block is:

IOPORT(i) = address ;I/0 port address
[SIZE = BYTE | WORD | DWORD] ;Number of bits in I/O port
[INTTVAL = {LJOC(bitlist) } valuelist] initialization value

344

EP 0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

lOPORT(i) Statement (Required)

Syntax:
lOPORT(i) = address

The IOPORT(i) statement specifies the address of an I/O port Each I/O port
must have a separate lOPORT(i) statement with a different identifier, "i". The "i" can be
any positive integer value from 1 to 32767. Resource and initialization statements use the
IOPORT(i) to specify I/O port addresses.

See the TORTVAR(j) Variable" section for an alternative method of specifying the
I/O port address.

SIZE Statement (Optional)

Syntax:
[SIZE - BYTE | WORD | DWORD]

The SIZE statement specifies the number of bits in the I/O port The default is
BYTE.

rNTTVAL Statement (Optional)

Syntax:
[LNITVAL= [LQC(bklist)] valuelist]

The 1MTVAL statement specifies the source of the values written to a n
initialization p o r t

The valuelist portion specifies the source of each bit of a binary value. An "r" in a bit
position indicates the bit value must be read from the port An V in a bit position
indicates the configuration utility determines tbe bit value based on the selected
configuration. A "1" or "0" in a bit position indicates the bit is reserved and must be
imtiauzed to the specified value. The valuelist must be in MSBit to LSBit order.

The INTTVAL statement may include the lDC(bitlist) string to reference individual
bits. The bitlist contains a list or range of bit positions. The elements of the bhlist must be

- in MSBit to LSBit order. The following example illustrates valid INITVAL syntax.

INTTVAL 0000111100001111b ;WORD port

INTTVAL 00001111b ;BYTE port

INTTVAL

INTTVAL LOC(7-0) OOllOOrr

LOC(7-2) 001100

LOC(7 6 1 0) 0011

;Byte port with r bits

;Byte port (range)

INTTVAL ;4 bits specified

345

EP 0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, I N C

Example I/O Port Initialization Statement Block

The following example illustrates an I/O port initialization statement- block. The
two most significant bits are read from the I/O port, the next two bits are "1" and "0"
respectively, and the four least significant bits are deterniined by the configuration utility.

IOPORT(1) = 3F8h ;I/0 port address
INTTVAL = rrlOxxxxb f i t pattern

4.6.2J2 Switch Configuration Statement Block

The switch configuration statement block begins with the SWTTCH(i) statement
The syntax of the switch configuration statement block is:

SWITCH (i) = value jNumber switches in set
NAME = 'switch name or description"
STYPE « DIP | ROTARY | SLIDE Type of switch
VERTICAL «= YES | NO] .Switch orientation
REVERSE = YES | NO] -.Switch numbering scheme
LABEL «= UXXswitchlist) textlist] -.Switch labels
INTTVAL = UDCtswUchlist) valuelist] jSwitch settings
PACTORY «= lJOC(switchhst) valuelist] factory setting
COMMENTS = "configuration comments"]
HELP = "configuration help information"]

SWITCH(i) Statement (Required)

Syntax:
SWrrCH(i) = value

The SWTTCH(i) statement specifies the number of switch positions in a set Each
set of switches must have a separate SWrTCH(i) statement with a different identifier, "i".
The "i" can be any positive integer value from 1 to 32767. The maximum number of
switches is "16" for aP switch types. Value indicates the number of switches in the switch
block.

NAME Statement (Required)

Syntax:
NAME = "switch name or description"

The NAME statement contains the switch name as it is designated in the user
documentation. The name can be up to 20 characters long.

346

EP0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, I N C

STYPE Statement (Required)

Syntax:
STYPE = DLP | ROTARY | SLIDE

The STYPE statement designates the type of switch as DIP, ROTARY, or SLIDE.
A DIP switch is a set of switches, each having an "ON" and "OFF" position. A ROTARY
switch is a set of switches with a rotating selector that can be set to one switch position. A
SLIDE switch is a set of switches arranged linearly with a slide mechanism that can be set
to one switch position. All switches within the set are numbered beginning with 1.

VERTICAL Statement (Optional)

Syntax;
[VERTICAL = YES j NO]

The VERTICAL statement indicates the orientation of the switch on the expansion
board. Refer to the figure below for an illustration of switch orientation. Tbe VERTICAL
statement defaults to *NO."

REVERSE Statement (Optional)

Syntax:
[REVERSE = YES | NO]

The REVERSE statement specifies the order that a DLP switch is numbered.
REVERSE = YES indicates 1234.-, REVERSE = NO indicates ...4321 order. Refer to
the figure below for an illustration of switch numbering. The REVERSE statement
demults to "NO."

6 5 4 3 2 1

REVERSE=NO
VERTICAL=NO

1 2 3 4 5 6

REVERSE=YES
VERTICAL=NO

REVERSE=NO
VERT I CAL= Y ES

RE VERS E= YES
VERTI CAL= YES

LOC(switchlist) valuelist

The switch configuration statements LABEL, INTTVAL and FACTORY include
the U^C{switchlist) valuelist (or textlist) string to reference individual switches. The
switchlist contains a list or range of switch numbers. The elements of the switcldist must be
in ascending order if REVERSE = YES or descending order if REVERSE =NO. A space
must be included between elements as a delimiter.

347

=P 0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC

The textlist specifies the ASCII switch name and the vahiekst specifies the switch
setting for each switch position. The valuelist must use tbe same order as the switchUst. A
DD? switch can be set for "1" to indicate "ON," "0* to indicate "OFF," or V to indicate "don't
care." The dip switch settings are not delimited with a space. The vahielist for a rotary or
slide switch includes a "1" in the position number of the selected position. Zeros fill the
other positions.

Ihe following examples illustrate valid lXX2(switchlist) valuelist strings:

E V E R S E = Y E S
flTVAL = LOQ1 2 3 4) 0011 ;List of DLP switches

REVERSE = YES
INTTVAL = LOQ1 2 3 4) 0011

REVERSE = NO
INTTVAL = LOQ43 2 1) 1100

REVERSE = YES
INTTVAL = LOC0-4) 0011

REVERSE = NO
INTTVAL = LOC(4-l) 1100

REVERSE = YES
INTTVAL = LOC(l 2 3 4) 00x1

;List of DLP switches

;Range of DLP switches

;Range of DLP switches

;DLP switches with a donl care

REVERSE = YES
INTTVAL = LOC(l-8) 00010000 ;8-position rotary or slide switch

LABEL Statement (Optional)

Syntax:
[LABEL » UXXswtichlist) textlist]

The LABEL statement specifies labels for individual switches. Each label can
compose up to 10 characters. If the LABEL statement is omitted, the default label is the
switch number (-4321 for normal switches and 1234... for reverse switches). The following
example illustrates use of the LABEL statement:

LABEL = LOC(4-l) "SW14" "SWl-3" "SW1-2" "SW1-1"

INITVAL Statement (Optional)

Syntax:
[INTTVAL = lX)C(switchlist) valuelist]

The INTTVAL statement specifies the settings for factory-set switches that must not
be changed. If the INTTVAL statement is omitted, switch settings are determined by the
configuration program or are "don't care." This statement is particularly important for
switches that control undocumented options. The following example illustrates use of the
INTTVAL statement:

INTTVAL = LOC(4 3 21) xxxO ;DIP switch 1 may not be changed

348

EP 0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

FACTORY Statement (Optional)

Syntax:
[FACTORY = lX)C(switcMst) valuelist]

The FACTORY statement indicates the factory settings for the switches.

COMMENTS Statement (Optional)

Syntax:
[COMMENTS = 'configuration comments"]

The COMMENTS statement contains information to assist the user in configuring a
switch. The COMMENTS text field can contain a maximum of 600 characters. The
configuration utility displays the text in a window at least 40 characters wide.

HELP Statement (Optional)

Syntax:
[HELP = "configuration help information"]

The HELP statement contains information that is -displayed to the user if requested.
The HELP text field can contain a ma-Tinnim of 600 characters. The configuration utility
displays the text in a window at least 40 characters wide.

Example Switch Configuration Statement Block

The following example illustrates a switch configuration statement block.

INITIALIZATION INFORMATION BLOCK
S WrTCH(1) = 8 ; 1st switch-8 positions

NAME = "SWITCH BLOCK 1"
STYPE = DLP ;DD? switch type
VERTICAL = YES : Vertical orientation
FACTORY = LOQ8-1) 1 1 110000 factory setting = 111 10000
INTTVAL = LOQ8-1) xxxxxxxO ;One reserved switch

SWITCH(2) = 2 ;2nd Switch-2 positions
NAME = "SWITCH BLOCK 2"
STYPE = SLIDE ;SLIDE switch type
LABEL » L 0 O 2 1) TRQ9" TRQ8" position labels LRQ9, LRQ8
FACTORY = LDC(2 1) 10 ;IRQ9 Setting

349

cr 0 426 184 A2

tUAitunuzu INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, I N C

jumper uoniigurauon statement b iock

xnc jumper corihguration statement block begins with the JUM?ER(i) statement The syntax of the jumper configuration statement block is:

jujYLrjcK^i; = value

The JUMPER(i) statement specifies the number of jumper positions in a set Each
jet of jumpers must have a separate JUMPER(i) statement with a different identifier, L
the "i can be any positive integer value from 1 to 32767. The value field has two meanings
lere depending on the type of jumper defined For inline jumpers, value refers to the
lumber of connections. For tnpole and paired jumpers, value refers to the number of
npole or paired sets.

statement tKecraireaj

ine i namc statement contains the jumper name as it is designated in the user iocumentation. The description can contain a maximum of 20 characters.

[TYPE Statement (Required)

iyntax:
TYPE « INLINE | PAIRED | TPJPOLE

The JTYPE statement designates the type of jumper as INLINE, PAIRED, or TUPOLE. INLINE jumpers are arranged in a straight line, such that each post can be
onnectcd to an adjacent post. PAIRED jumpers are arranged as a series of double posts, uch that any single pair can be connected across the two posts. TRIPOLE jumpers are
rranged as a series of triple posts, such that the middle post can be connected to either of
tie two adjacent posts.

t \>wurx*K\\) statement (.Kequirea;

>yniax. rf r» m r -

iyntax: if A 1 r c

iP 0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCHITW- l UK*.
X)NFIDENTIAL INFORMATION OF BCPR SERVICES, INC

[he foUowing figure illustrates each of the three J 1 YrJiS.

) o o o o
j o o o o
5 4 3 2 1

P a i r e d
*EVKRSE«N0
7ERTICAL-N0

> o o o o i n l i n e
L 2 3 4 5 REVERSE-YES

VERTICAL-NO

3 O O O O P r i p o l e 3 o o x
3 o o 2
3 o o 3
3 o o 4

r r l p o l e
3 O O O O
3 O O O O
L 2 3 4 5

SEVERS E= YES
/ERTICAL=N0 /ERTICAL=YES

VERTICAL Statement (Optional)

[VERTICAL = YES \ NO]

The VERTICAL statement indicates the orientation of the jumper on the expansion
board The VERTICAL statement defaults to "NO."

REVERSE Statement (Optional)

Syntax:
[REVERSE = YES | NO]

The REVERSE statement specifies the order that a jumper is numbered.
REVERSE = YES indicates 1234_ REVERSE = NO indicates ...4321 order. The
REVERSE statement defaults to "NO."

LOCQumperiist) valuelist

The jumper configuration statements LABEL, INTTVAL and FACTORY include
the iJdCQumperust) valuelist string to reference individual jumper positions. The jumperiist
contains a list of jumpers. The valuelist specifies the setting for each jumper. The valuelist
must not be delmited with a space and must use the same order as the jumperiist.

A paired or tripole jumperiist can use a range to indicate the jumpers. The elements
of the jumperiist must be in ascending order if R E VERSE = YES, or descending order if
REVERSE - NO. A space must be included between elements as a delimiter.

The jumperiist specifies inline jumpers by indicating the connection between two
posts with a caret For example, LOC(6A5 4*3 2*1) specifies the jumpers between posts 6
and 5, between posts 4 and 3, and between posts 2 and 1. The elements of the jumperiist
must be in ascending order if REVERSE = YES, or descending order if REVERSE=NO.
A space must be included between elements as a delimiter.

The paired and inline jumper valuelist settings can be indicated as "1" for "ON"
(jumper installed), "0" for "OFF" (jumper not installed), or "x" for "don't care."

3bi

EP 0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, I N C

A tripoJe jumper valuelist settings can be indicated as "1" for "ON" (jumper installed
in upper or right position), "0" for "OFF" (jumper installed in lower or left position unless
otherwise marked), V for "NONE" (jumper not installed) or V for "don't care."

The following examples illustrate valid WCQumperust) vahielist strings:

JTYPE =TRLPOLE
R E V E R S E - Y E S
INrrVAL «= LOQl 23 4) 0011

JTYPE = PAIRED
REVERSE = NO
INTTVAL = LOC(43 2 1) 1100

JTYPE =PATJRED
REVERSE = YES
INITVAL « LOC(l-4) 0011

JTYPE.=TRIPOLE
REVERSE = NO
INTTVAL = LOC(4-l) 1100

JTYPE = PAIRED
REVERSE = YES
INTTVAL = LOC(l-4) xOll

JTYPE - TRJPOLE
REVERSE = YES
INITVAL « LOC(l-4) xOll

JTYPE =TRJPOLE
REVERSE = YES
INTTVAL « LOCX1-4) nOll

JTYPE = L M J N E
REVERSE = NO
INITVAL = LOC(6*5 4*3 2*1) 101

fist of tripole jumpers

;List of paired jumpers

;Range of paired jumpers

f ange of tripole jumpers

;Range of paired jumpers with "x"

f a n g e of tripole jumpers with "x"

'.Range of tripole jumpers with "n"

fist of inline jumpers

LABEL Statement (Optional)

Syntax:
[LABI [LABEL = UDC(jumperiist) textlist]

The LABEL statement specifies labels for individual jumpers. Each label can be
composed of up slO characters. If the LABEL statement is omitted, the default label is the
switch number (.-4321 for normal jumpers and 1234... for reverse jumpers). The following
example illustrates use of the LABEL statement:

LABEL = LOC(4*3 2*1) "IRQ2" "IRQ3" ;TRQ2" (4*3), "IRQ3" (2*1)

352

EP 0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONTIDENTIAL INFORMATION OF BCPR SERVICES, INC.

INTrVAL Statement (Optional)

Syntax:
(TNITVAL = IXXXjumperust) valuelist]

The INITVAL statement specifies the settings for factory-set jumpers that must not
be changed. If the INTTVAL statement is omitted, jumper settings are determined by the
configuration program are "dont care." This statement is particularly important for
jumpers that control undocumented options andrequire specific settings. The following
example illustrates use of the INTTVAL statement:

INTTVAL = LOC(4 3 2 1) 0011 ;Paired (or tripole) jumper settings

FACTORY Statement (Optional)

Syntax:
[FACTORY = iJdCQumperksi) valuelist]

The FACTORY statement indicates the factory settings for the jumpers.

COMMENTS Statement (Optional)

Syntax:
[COMMENTS = "configuration comments"]

The COMMENTS statement contains information to assist the user in configuring a
jumper. The COMMENTS text field can contain a maximum of 600 characters. The
configuration utility displays the text in a window at least 40 characters wide.

HELP Statement (Optional)

Syntax:
{HELP = "configuration help information"]

The HELP statement contains information that is displayed to the user if requested.
The HELP text field can contain a maximum of 600 characters. The configuration utility
displays the text in a window at least 40 characters wide.

353

EP0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, I N C

Example Jumper Configuration Statement Block

The following example illustrates a jumper configuration statement block.

•JNITIALLZATION INFORMATION BLOCK
JUMPER(l) = 5 ;lst set-5 positions(6 posts)

NAME = "J101"
JTYPE = INLINE ; Inline jumper type
VERTICAL = YES -.Vertical orientation
LABEL o LOC(6*5 4*3 2*1) Test" TRQ8" TRQ9" .Labels Test, LRQ8, ERQ9
INTTVAL = LOC(6*5 4*3 2* 1) Oxx Reserved jumper
FACTORY = LOC(6*5 4*3 2* 1) 001 factory Setting = TRQ9

The configuration utility displays a diagram to illustrate the jumper settings. For
example:

o 6
Test

o 5

o 4
LRQ8

o 3

• 2
TRQ9 |

• 1

J101

4.6.2.4 SOFTWAREflnltialteation) Statement Block (Optional)

Syntax:
SOFTWARE® = "description"

The software statement block begins with the SOFTWARE (i) statement. The
syntax of the software configuration statement block is:

•Note: there are no other statements in the block.

LRQ8

TRQ9

The software initialization statement block provides user information and
instructions about software drivers for display during system configuration. The
instructions may, for example, indicate the software options to incorporate into the
operating system startup files or a program that must be executed to initialize an expansion
board. The software initialization statement block can include entries for the
CONFIG.SYS and AUTOEXECBAT files of an MS-DOS operating system.

The startup files may execute programs that require command line parameters (for
example, /s, /g).

Each software statement must have a separate SOFTWARE(i) statement with a
different identifier, "i." The "i" can be any positive integer value from 1 to 32767." The
description can be a maximum of 600 characters.

354

EP 0 426 184 A2

BJLIlUNDiSD INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC

the configuration utility displays the software description with switch settings and
other configuration information, during system configuration.

See the section on INTT Statements for more details about the software(i)
statement.

*».o.o 1-ur.Li i hjn s tatement b iock

A FUNCTION statement block consists of the following statements:

• FTJNCTTON Statement-identifies the name of the expansion board function
(for example, "Asynchronous communications port").

• TYPE Statement-identifies the function type (for example: a conmunications
port is type "COM").

• CHOICE Statements with resource description blocks-identify the
configuration alternatives (Le., initializations, I/O ports, interrupts, D M A
channels and memory).

Ihe FUNCTION statement block has the following format:

FUNCTION = 'junction name"
TYPE = 'Junction type"]
COMMENTS = "information"]
CONNECTION = connector orientation and description"]
HELP « "information"]

CHOICE « ^configuration name"
[Resource Description Block]

[CHOICE = "configuration name"
Resource Description Block]

[CHOICE = "configuration name"
Resource Description Block]

[SUBFUNCnON STATEMENT BLOCK]

A separate function statement block must be supplied for each function" of a
nultifunction expansion board. The following example illustrates the two function
tatement blocks for an expansion board with a communications port and a parallel port.

FUNCTION = "Asynchronous communications port"
CHOICE = "configuration name"

Resource Description Block
FUNCTION = Tarallel port"

CHOICE = "configuration name" _ Resource Description Block

EP 0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, I N C

FUNCTION Statement (Required)

Syntax:
FUNCTION = "function name"

Each function statement block begins with a function statement that specifies the
function name. The function name consists of free-form ASCII text with a maximum of 100
characters. All function names within a single configuration file must be unique, but
different configuration files can have common function names.

The configuration utility displays the function name during configuration, but does
not store it in nonvolatile memory.

TYPE Statement (Optional)

Syntax:
[TYPE = "function type"]

A functions statement block is supplemented with a TYPE statement that identifies
the function type with a three-character ASCII string. The foUowing table identifies
commonly used function types.

Tbe TYPE statement should use one of the listed types when applicable. A T Y P E
statement can contain a type not included in the "Commonly Used Function Types" table
above, but all types must be three-character ASCII strings. The type is stored in
nonvolatile memory as upper-case. It should be entered in the configuration file in upper-
case for consistency.

The function type can be supplemented by appending multiple, conmia-delimited,
ASCII strings to the initial three-character type. The supplemental type ASCII strings are
not limited to three characters. For example, an asynchronous communications port can
have the following TYPE statement

The configuration utility stores the TYPE statement's ASCII string in nonvolatile
memory during configuration. EISA systems provide a total of 80 bytes of nonvolatile
memory to store the TYPE statement's ASCII string and SUBTYPE statement's ASCII
string. The 80 bytes include the comma and semicolon delimiters between the type and
SUBTYPE string fragments.

A device driver can use the type string to determine the general class of
functionality of a device. The device driver can use the subtype string to determine the
configuration of a device.

Commonly Used Function Types

KEY-keyboard
MEM-memory board
MSD-mass storage device
NET-network adapter
NPX-numeric coprocessor
OTH-o the r

PAR-parallel port
PTR— pointing device
COM-comrminications port
VID— video display adapter
SYS-system board
OSE— operating system/environment

TYPE = "COMASY"

356

@P0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCHITECT URE
~X)NFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

The resource description block section SUBTYPES are dicussed later in tins
;pecification.

COMMENTS Statement (Optional)

Syntax:
[COMMENTS = "mfarmation"]

A function statement block can include a COMMENTS statement that provides
relevant iriformation about the function. The comment could identify an expansion board
manufacturer and part number, configuration instructions or any other useful information.
Tbe comment consists of free-form ASCII text with a maximum of 600 characters. The
rewrfrgn ration utility displays the text in a window at least 40 characters wide.

The configuration utility displays the comment during configuration when the
function is selected. It does not store the comment in nonvolatile memory.

HELP Statement (Optional)

The HELP statement contains information that is displayed to the user it requested.
The help text field can contain a maximum of 600 characters. The configuration utility
displays the text in a window at least 40 characters wide.

CONNECTION Statement (Optional)

Syntax:
CONNECTION = "connector orientation and description1'

A configuration file can specify the orientation and description of connectors by
mduding the CONNECTION statement in the FUNCTION statement block.

The connection string consists of an ASCII string with a maximum length of 40
characters. Typical connection strings include- "top," "bottom," "upper," lower," "middle,"
etc. The configuration utility includes a command that displays the connection string.

= "help mfarmation"

357

EP 0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC

4.6.3.1 CHOICE Statement Block

Each function statement block is accompanied by at least one choice statement
block that specifies the initializations and system resource requirements of a possible
configuration. The configuration utility uses the first choice statement block as the default
Multiple choice statement blocks are sequentially arranged in the order of preference. The
choice statement block begins with a choice statement that specifies the "name" of the
configuration. A choice statement block has the following syntax:

CHOICE = "configuration name"
SUBTYPE = "device description"]
DISABLE = YES | NO"]
AMPERAGE = value]
TOTALMEM = rangetist [STEP = value]]

. Resource Description Block

A ccmumuiications port, for. example, can have the following function statement
block and associated choice statement blocks:

FUNCTION = "Asynchronous Communications Port"
CHOICE = "COMl"

Resource Description Block
CHOICE = "COM2"

Resource Description Block

The system resource requirements (described in the "Resource Description Block"
section) for the named configuration follow the CHOICE s tatement

CHOICE Statement (Optional)

Syntax:
CHOICE = "configuration name"

The choice statement block begins. with a CHOICE statement that specifies the
"name" of the configuration. The "name" is an ASCII string with a maximum of 90
characters.

During, configuration, the configuration utility displays all CHOICE statement
configuration names for the selected function. The configuration utility does not store the
name in nonvolatile memory.

DISABLE Statement (Optional)

Syntax:
[DISABLE = YES \ NO]

A CHOICE statement can be used to disable the expansion board function. Each
function to be disabled requires a separate DISABLE = YES statement. The default is
DISABLE = NO. The following example illustrates use of the DISABLE = YES
statement

358

:P 0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCHI lTSCTl UKfc.
CONFIDENTIAL INFORMATION OF BCPR SERVICES, I N C

^UNCTION = "O^mmunicaUons Port"
CHOICE = "COM1"

Resource Description Block
CHOICE = "COM2"

Resource Description Block
CHOICE = "Disable (Communications Port"

DISABLE = YES

SUBTYPE Statement (Optional)

Syntax:
[SUBTYPE = "device description"]

Each choice statement block can contain a subtype statement that names the
configuration (with a short mnemonic) associated with the choice. The subtype can be
supplemented by appending multiple, semirolonKielimited, ASCII strings to the initial
subtype.

A device driver can use the SUBTYPE string to determine the configuration of a
device. The device driver may use the type string to determine the general class of
functionality of a device.

A communications port may have SUBTYPE statements as follows:

FUNCTION = "Internal Modem"
TYPE = "COMASY^MDM"
CHOICE - "Modem assigned to COM1"

SUBTYPE «• "COM1"
Resource Description Block

CHOICE = "Modem assigned to COM2"
SUBTYPE = "COM2"
Resource Description Block

The SUBTYPE should be a short ASCII string. The SUBTYPE string supplements
the type string by identifying the selected configuration (the type string identifies the type
of device). The configuration utility stores the concatenated type ana SUBTYPE ASCII
strings, with a semicolon delimiter, in nonvolatile memory during configuration. EISA
systems provide a total of 80 bytes of nonvolatile memory to store the type statement's
ASCII string and SUBTYPE statement's ASCII string. The 80 bytes include the comma
and semicolon delimiters between type and SUBTYPE string fragments.

359

EP 0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, I N C

AMPERAGE Statement (Optional)

Syntax:
[AMPERAGE = value]

The AMPERAGE statement, when included in the choice statement block, specifies
the maximum amount of continuous 5V current (in milliamps) required by the option
specified by the choice statement block. The total 5V current mdudes the amount
specified in the board identification block plus the amount specified for the selected
options. The AMPERAGE statement does not apply to virtual devices.

TOTALMEM Statement (Optional)

Syntax:
TOTALMEM = rangelist [STEP = value]

A choice statement block can contain a TOTALMEM statement that indicates the
total amount of memory specified by the choice. The TOTALMEM statement is required
for a memory block that can have its allocation split between system memory (SYS) and
expanded memory (EXP).

See the TOTALMEM statement and example in the section entitled, Memory
Description Block, for more detailed information. > (

4.6.3.2 SUBCHOICE Statement Block

The purpose of the subchoice statement block is to handle resource statement
alternatives that are too complex for individual CHOICE statements (for example, memory
configurations of some memory boards).

A choice statement block can include statements that specify alternative
configurations. A subchoice statement block can use any statement that is valid for a
choice statement block. The subchoice alternatives must be automatically selectable by the
configuration utility with information available from the configuration files. The
configuration utility does not present subchoice alternatives for selection by a user,
although the user can scroll through the resources specified in subchoice statement blocks.

The syntax for the SUBCHOICE statement is shown below:

SUBCHOICE
Resource Description Block

A choice statement block can have as many subchoice statement blocks as needed.
The configuration utility sequentially checks each subchoice resource description block and
selects the first one that does not conflict with other devices in the configuration.

The combination of the choice resource description block and one subchoice
resource description block contains the resource and initialization requirements for the
configuration. The configuration utility includes the choice and the selected SUBCHOICE
resource requirements in the data written to nonvolatile memory for use by the power-up
routines.

360

:P 0 426 184 A2

EXTENDED INDUSTRY STANDARD A K L t t U t u UKt
CONFIDENTIAL INFORMATION OF BCPR SERVICES, I N C

The following example illustrates a configuration file fragment tnat specines a
nemory allocation that back fills 128K of memory into the base address range between
512K and 640K if only 512K is installed. The remainder of memory on the expansion
x>ard is allocated to extended memory. The user selects the total amount of memory on
he expansion board and views the subchoice alternatives. The subchoice selection
"between back fill and extended memory) does not require input from the user, since the
imount of base memory installed is available from the configuration file. The subchoice
rtatement blocks are included in a single choice statement block that is presented to the
jser:

CHOICE = "Add Base and Extended Memory"
TOTALMEM = 128K-2048K STEP 128K

; 128K base memory back fill into range 5 12K-640K
; (5 12K base memory already installed)

SUBCHOICE
FREE ;128K back fill

MEMORY = 128K
ADDRESS = 512K
MEMTYPE = SYS

COMBINE -.Extended Memory for the rest
MEMORY = 0K-1920K STEP 128K
ADDRESS = 1M
MEMTYPE = SYS

; No base memory back fill
(640K base memory already installed)

SUBCHOICE
COMBINE 'All Extended Memory

MEMORY = 128K-2048K STEP 128K
ADDRESS = 1M-16M STEP 128K
MEMTYPE = SYS

361

EP 0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

Selection of the starting address could be presented to the user as a sequence of
CHOICE statements for selection by the user:

; 128K base memory back fill into range 5 12K-640K
; (512K base memory already installed)

CHOICE = "Add Base and Extended Memory"
TOTALMEM = 128K-2048K STEP 128K
FREE ;128K back fill

MEMORY = 128K
ADDRESS = 512K
MEMTYPE = SYS

COMBINE ;Extended Memory for the rest
MEMORY = 0K-1920K STEP 128K
ADDRESS = 1M
MEMTYPE = SYS

; No base memory back fill
; (640K base memory already installed)

CHOICE « "Add Extended Memory"
TOTALMEM = L28K-2048K STEP 128K

COMBINE All Extended Memory
MEMORY = 128K-2048K STEP 128K
ADDRESS = 1M-16M STEP 128K
MEMTYPE = SYS

The configuration utility presents each named choice to the user for selection. The
user can make the selection or let the configuration utility automatically make the
selection.

SUBCHOICE statements are not appropriate if the user rnight need to make the
selection. For example, the user may need to select a serial port as COM1 or COM2. The
configuration utility presents the choices to the user, and the user either makes the
selection manually or lets the configuration utility select automatically.

SUBCHOICE Statement (Optional)

Syntax:
[SUBCHOICE]

The subchoice statement block begins with a SUBCHOICE statement The
SUBCHOICE statement does not have a name field for display, since subchoice statement
blocks are selected automatically by the configuration utility.

SUBFUNCTION Statement Block (Optional)

A function statement block may contain one or more subfunctton statement blocks
that specify the configuration information for a set of related components with separate
resource or initialization requirements. A subfunction statement block provides separate
configuration of the functions components.

362

F U 426 184 A2

EXTENDED INDUSTRY STANDARD AKLni i c ^ i j u * ^
X)NF1DENTIAL INFORMATION OF BCPR SERVICES, I N C

A subfunction statement block can use any statement mat is vaua lor d luutuou
tatement block. The syntax of a subfunction statement block is:

SUBFUNCTION = "function name"
TYPE = "function type*]
COMMENTS = "information"] . . m CONNECTION = "connector orientation and description
HELP * "information"]

CHOICE = "configuration name"
Resource Description Block

[CHOICE = "configuration name"
Resource Description Block]

[CHOICE = "configuration name"
Resource Description Block]

The configuration utility stores the resource and initiahzation information . from
mbfunction statement blocks with the function information. Subfunction statement blocks

ire not stored as separate functions in nonvolatile memory.

Syntax:
SUBFUNCTION = "name"

The subfunction statement block begins with a subfunction statement that specifies
be name of the configuration. The name is an ASCII string with a maximum ot
rharactcrs.

During configuration, the configuration utility displays all CHOICE configuration
names for the selected subfunction.

The following example illustrates use of subfunction statement blocks to configure
the parity and baud rate for an asynchronous communications port The example mciudes
the statement blocks with type and subtype strings. The resource and initialization
statements are omitted for simplicity.

FUNCTION = "1200/2400 Baud Modem"
TYPE = "COMASY.MDM"
SUBFUNCTION = "Port Address".

CHOICE = "COM1 Serial Port"
SUBTYPE = "COM1"

CHOICE = "COM2 Serial Port"
SUBTYPE = "COM2" , OT, SUBFUNCTION = "Parity Selection" ;No SUBTYPE under SF

CHOICE = "ODD"
SUBTYPE = "PARITY = ODD" -.SUBTYPE under CHOICE

CHOICE = "EVEN"
SUBTYPE = "PARITY = EVEN"

SUBFUNCTION = "Baud Rate Selection"
CHOICE — "1200 Baud"

SUBTYPE = "BAUD = 1200" -.SUBTYPE under CHOICE
CHOICE = "2400 Baud"

SUBTYPE = "BAUD =2400"

EP 0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

The type/subtype string for the "1200/2400 Baud Modem" function (with COM1,
odd parity and 2400 baud selections) in nonvolatile memory is:

"COMrASY,MDM;COMl;PARITY'=ODD;BAUD=2400"

The example above used SUBTYPE statements under the CHOICE statements but
not under the SUTiFUNCTION statements. The following example illustrates an
alternative method with the SUBTYPE statements under the SUBFUNCTION and the
CHOICE statements:

FUNCTION = "1200/2400 Baud Modem"
TYPE = "COM,ASY,MDM"
SUBFUNCTION = Tort Address"

CHOICE = "COM1 Serial Port"
SUBTYPE = "COM1"

CHOICE = "COM2 Serial Port"
SUBTYPE = "COM2"

SUBFUNCTION = Tarity Selection"
TYPE = PARITY TYPE under SUBFUNCTION '
CHOICE = "ODD"

SUBTYPE = "ODD" ;SUBTYPE under CHOICE
CHOICE = "EVEN"

SUBTYPE = "EVEN"
SUBFUNCTION = "Baud Rate Selection"

TYPE = BAUD ' TYPE under SUBFUNCTION
CHOICE = "1200 Baud"

SUBTYPE = "1200" ;SUBTYPE under CHOICE
CHOICE = "2400 Baud"

SUBTYPE = "2400"

The type/subtype string for the "1200/2400 Baud Modem" function (with COM1,
odd parity and 2400 baud selections) in nonvolatile memory is:

" (X)M^Y,MDM;COMl,PAI<rr r ' ;ODD,BAUD^400"

4.6.3.3 GROUP Statement Block

A group statement block may be used to enclose a set of functionstatement blocks
that specify the configuration information for a set of related components with separate
resource or irjitializauon requirements.

364

EP0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

A set of grouped function statement blocks allows separate configuration of a
function's components. A grouped function statement. block can use any statement that is
valid for independent function statement blocks. The syntax of a grouped set of function
statement blocks is:

GROUP = "name"
fTYPE « type"]

FUNCTION = "name"
[TYPE = "Junction type"]
(COMMENTS = "information"]
[HELP = "mformation"]
CHOICE = W "

resource description block

[CHOICE = "name"
resource description Block]

FUNCTION = "name*
TYPE = "function type"]
COMMENTS = "mformation"]
HELP = "mformation"]

CHOICE = Siame"
resource description block

[CHOICE = "name"
resource description block]

FUNCTION = "name"
[TYPE - function type"]
[COMMENTS = "mformation"]
[HELP * "mformation"]
CHOICE = "name"

resource description block

[CHOICE = "name-
resource description block]

FUNCTION = "name"

ENDGROUP

The configuration utility saves the resource and initialization information for each
function specified in the grouped set as a separate function entry in nonvolatile memory.
The group statement block may include a TYPE statement. The group type string
prepends to each TYPE string in the set of grouped function statement blocks. The
configuration utility stores the group type string in nonvolatile memory for a grouped
function statement block that omits the type statement.

Presentation of options during configuration and TYPE string prepending in
nonvolatile memory are the only differences between a set of groupea FUNCTION
statement blocks and a set of independent FUNCTION statement blocks.

365

EP0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC

GROUP and ENDGROUP Statements (Optional)

Syntax:
[GROUP = "name"]

[ENDGROUP]

A grouped set of function statement blocks begins with the GROUP statement and
ends with an ENDGROUP statement The group name can be a maximum of 60
characters. Each GROUP statement must have a rorresDonding ENDGROUP statement

Example Use of Grouped FUNCTION Statement Blocks

The following configuration file fragment illustrates the use of grouped function
statement blocks that specify tbe configuration options for a fixed disk controller and disk
drive. For simplicity, the configuration file fragment includes the TYPE and SUBTYPE
statements, but does not include resource or initialization statements. The G R O U P
statement block and some function statement blocks have a TYPE statement

GROUP = Fixed Disk Drives ;Fixed disk controller group
TYPE = "MSD" ;Prepends to each FUNCTION TYPE

FUNCTION = "Fixed Disk Controller Selection"
TYPE = "DSKCTL"
CHOICE = "Primary Controller"

SUBTYPE = T R T
CHOICE « •Secondary Disk Controller"

SUBTYPE = "SEC"
FUNCTION * "Device for Unit 1"

TYPE = "UNTT1"
CHOICE = "Not Installed"

SUBTYPE = "DSKDRV,TYP=00"
CHOICE « "300mb - TYPE 38"

SUBTYPE = "DSKDRV,TYP=38"
CHOICE = "130mb - TYPE 43"

SUBTYPE = "DSKDRV,TYP=43"
FUNCTION = "Device for UNIT 2"

TYPE = "UNTT2"
CHOICE = "Not Installed"

SUBTYPE = "DSKDRV,TYP=00"
CHOICE = "300mb - TYPE 38"

SUBTYPE = "DSKDRV,TYP=38"
CHOICE = "130mb - TYPE 43"

SUBTYPE = "DSKDRV,TYP=43"
E N D G R O U P

366

P 0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCHlTfcCi uku.
X)NFIDENTTAL INFORMATION OF BCPR SERVICES, I N C

The grouped function statement blocks are stored separately in nonvoiauie memory,
fhe type string for each of the function statement blocks includes the group type string
prcpended to the function type string). Nonvolatile memory contains the following type
itrings (assumingthe choice selections are: primary controller with a 300 MB drive for
JNTTl and UNTT2 is not installed).

FUNCTION = "Fixed disk Controller Selection"
TYPE string: MSD,DSKCTL;PRI

FUNCTION = "Device for Unit 1" .
TYPE STRING: MSD,UNTT1,DSKDRV,TYP=38

FUNCTION = "Device for Unit 2"
TYPE string: MSD,UNTT2,DSKDR V.TYP = 00

(.6.4 Resource Description Block

A resource description block may accompany each CHOICE statement to identify
he initialization and svstem resource requirements of the named configuration. The
esource description block can contain any of the following information:

• DMA Channel Description Block-specifies the choice of DMA channels
supported, whether the channel can be shared, the channel's data size, the
channel's cycle timing, and any initialization necessary

• Interrupt Description Block-specifies the choice of interrupts supported,
whether the interrupt can be shared, whether the interrupt is edge or level
sensitive, and any imtialization necessary

• I/O Port Description Block-specifies the port address, and any initialization
necessary

• Memory Description Block-specifies the amount of memory supported, the
starting address, and whether the memory is cacheable it also identifies the

memory as RAM or ROM, defines the memory usage (system, expanded,
virtual or other), and specifies any initialization necessary to configure the
memory

Switch and Jumper Description Blocks-specify the switch and jumper settings
for the configuration

• Programmable Port Initialization Block-specifies the initialization for
programmable ports for the configuration

• Software Initialization Block-specifies any software initialization necessary

The syntax of a DMA resource description block is as follows:

[DMA = list
[SHARE = YES | NO | "text"]
SIZE » BYTE | WORD | DWORD]
TIMING = DEFAULT | TYPEA | TYPEB | TYPEC]]

3b/

f U 42b 1H4 A2

EXTENDED INDUSTRY STANDARD ARCHU&ii u m .
:ONFIDENTIAL INFORMATION OF BCPR SERVICES, INC

The syntax of an I/O port resource description biocK is as rouows.

[PORT = list/rangelist [STEP - value [COUNT = VALUE]
[SHARE = YES I NO ("text"}
[SIZE = BYTE | WORD J DWORD]]

The syntax of an interrupt resource description block is as follows:

[IRQ = list
[SHARE « YESJ NO | "text"]
[TRIGGER = LEVEL | EDGE]]

The syntax of a memory resource description block is as follows:

[MEMORY - rangeUst [STEP •= value)
[ADDRESS « rangeUst [STEP « value]]
WRITABLE = YES | NO]
MEMTYPE = SYS | EXP i VLR | OTH]
CACHE = YES J NO]
SHARE = YES NO {"text"]
SIZE = BYTE | WORD | DWORD]
DECODE = 20 i 24 | 32]

1.6.4.1 DMA Channel Description Block

A DMA channel description block consists of a group of statements that specifies
±.c DMA channels reauired by an expansion board function. The configuration nie can
»ntain a m ^ ^ - m of four DMA description blocks for any one function. The syntax ot a
DMA channel description block is:

DMA = DMA channel number
SHARE = YES I NO \"texf\
SIZE = BYTE | WORD I DWORD]
TIMING = DEFAULT | TYPEA | TYPEB | TYPEC]

An OR operator can be used to separate multiple DMA channel lists (as i ^ t x a t e d
in the foUowing syntax) if each list supports identical SHARE, SIZE and TIMING
characteristics:

DMA = value [value] ...
SHARE = YES | NO | "text"]
SIZE = BYTE I WORD [DWORD]
TIMING = DEFAULT | TYPEA | TYPEB | TYPEC]

JOB

f U 42b 1 U4 A2

EXTENDED INDUSIKY b i AJMJAKU A K L n n ^ i u i ^
»NFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

Multiple DMA channel description blocks must De used ior a iuncuou wiui uwiuwc
DMA channels that have different share, size or timing characteristics, as illustrated m the
bUowing syntax:

DMA = DMA channel number ;lst DMA channel
SHARE = YES | NO | "text"]
SIZE « BYTE I WORD | DWORD]
TIMING - DEFAULT | TYPEA I TYPEB | TYPEC]

DMA = DMA channel number ;2nd DMA channel
SHARE = YES I NO I "text"]
SIZE « BYTE I WORD I DWORD]
TIMING = DEFAULT | TYPEA | TYPEB | TYPEC]

An expansion board function can request up to four DMA channels. Each channel
ielected during system configuration is stored in nonvolatile memory with the appropriate
bare, size and timing characteristics. The DMA device driver can retrieve the DMA
nformation from nonvolatile memory and use it to initialize the DMA device.

The system ROM automatically determines the I/O port address and initialization
rahies and programs the following DMA controller registers:

DMA controller (Extended Mode Register)
DMA channel cycle timing
DMA data size and addressing mode

DMA controller (DMA Command Register)
DRQ and DAK* assert level (high/low)
Fixed or rotating priority

The configuration file should not provide initialization values for prograrmning the
DMA controUerExtended Mode Register. The configuration file should also not provide
mtialization values for the DMA Command Register priority scheme. If the D M A
diannel is not shared, the configuration file can specify the DRQ and DAK assert levels
by including the initialization value for the DMA Command Register bits that determine
the assert level (DRQ defaults to assert when high, DAK* defaults to assert when low).

DMA Statement (Optional)

Syntax:
DMA = value [| value] ...

The DMA statement marks the beginning ot a u m a aescnpuon diock anu s p c ^ c
the DMA channel number (or list of channels or multiple lists of channels) supported by
the configuration.

' U 420 1 04 A2

EXTENDED INDUSTRY STAN u aku A K L n n t c i uivr,
ONFIDENTIAL INFORMATION OF BCPR SERVICES, I N C

HARE Statement (Optional)

yntax:
sHARE = YES | NO | "text"]

The SHARE statement specifies whether the function can share the DMA channel,
he default for SHARE is NO. A text identifier can be specified to indicate ; that the
motion can only share the DMA channel with a device that has a matching identifier. The
ientifier can be up to 10 characters.

DMA channels can be shared by two devices that never require the channel

Imultaneousfy. For example, a floppy drive and tape drive attached to the same controUer
ould share a DMA channel since the floppy drive and tape drive never use the channel at

ie same time.

Two devices that may need to transfer data at the same time cannot share a DMA

faannel. Two network adapters, for example, would have conflicting requirements for a

ingle DMA channel

SIZE Statement (Optional)

Iyntax:
SIZE «= BYTE | WORD (DWORD] >

The SIZE statement indicates the DMA device data transfer width as BYTE,

VORD or DWORD. The default size is BYTE for DMA channels 0-3 and WORD tor
hannels 4-7.

[TMTNG Statement (Optional)

TIMING = DEFAULT 1 TYPEA | TYPEB | TYPEC]

The TIMING statement indicates the bus cycle type executed by the DMA

xmtroller during the transfer. The default transfer cycle type is default, which is

^mpatible withlSA DMA devices. Higher performance ISA devices can use typeA . o r
typVB for faster transfers. DMA devices that support EISA bus cycles can use type C

(burst) DMA transfers, which provide the highest data transfer rate.

The DMA cycle types and tirning are described in section 2 of this specification.

Example DMA Channel Request biock

The ACME tape controller can use DMA channel 3 or 5 and cannot share the

channel. The ACME tape controller uses 16-bit DMA transfers ^ «n » p r t J p e B
timing. The following diagram illustrates the DMA request block for the ACMfc tape
controller:

DMA = 3 | 5
SHARE = NO
SIZE = WORD
TIMING = TYPEB

o/u

EP0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC

4.6.4.2 Interrupt Description Block

An interrupt description block consists of a group of statements that specifies the
interrupt requirements of an expansion board. The configuration^ file can contain a
maximum of seven interrupt description blocks for any one function. The interrupt
description block has the following format:

IRQ « valuef I value] ...
[SHARE = YESJ NO j "text"]
[TRIGGER = LEVEL | EDGE]

Multiple mterrupt request blocks must be used for a function with multiple
interrupts that have different share and trigger characteristics, as illustrated in the
following syntax:

IRQ = value
[SHARE = YES I NO j "texf]
[TRIGGER = LEVEL j EDGE]

IRQ = value
[SHARE = YES I NO | "text"]
[TRIGGER = LEVEL | EDGE]

An OR operator can be used to separate multiple interrupts (as illustrated in the
following syntax) if each interrupt supports identical share and trigger characteristics:

IRQ = value [I value] ...
[SHARE = YESJ NO | text"]
[TRIGGER = LEVEL j EDGE]

IRQ Statement (Optional)

Syntax:
IRQ = Interrupt number

The IRQ statement marks the beginning of an interrupt request block and specifies
the interrupt number (or multiple interrupts) supported by the configuration.

Each mterrupt selected during system configuration is stored in nonvolatile memory
with the appropriate share and trigger characteristics. The interrupt device driver can
retrieve the interrupt controller initialization iriformation from nonvolatile memory to
deterrnine the method of handling interrupts.

The system ROM automatically determines the I/O port address and initialization
values and programs the interrupt controller edge/level register. The configuration file
should not provide initialization values for programming the interrupt controller edge/level
register.

371

EP 0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC

SHARE Statement (Optional)

Syntax:
[SHARE = YES | NO | "text"]

The SHARE statement indicates whether tbe function can share this interrupt The
default value for this field is NO. For EISA boards capable of sharing interrupts, this field
should be SHARE = YES. A text identifier can be specified to indicate that the function
can only share the interrupt with a device that has a rnatching identifier. The identifier can
be up to 10 characters.

TRIGGER Statement (Optional)

Syntax:
[TRIGGER = LEVEL | EDGE]

The TRIGGER statement specifies whether the ROM initializes the interrupt
controller to edge or level triggered. The default is TRIGGER = EDGE. In most cases, if
the SHARE statement is YES, the TRIGGER statement should be set to "LEVEL;
however, there are some designs that require shared, edge-triggered mterrupts, so a
TRIGGER - LEVEL statement does not necessarily have to follow a SHARE = YES
s ta tement

Example Interrupt Description Block

The ACME tape controller needs two interrupts. It can use interrupts 12 or 15, but
it cannot share the assigned interrupts. The ACME tape controller needs the chosen
interrupts to be edge triggered. Note that share and trigger fields could be omitted,
because the defaults are used.

IRQ = 12 1 15
SHARE = NO
TRIGGER = EDGE

4.6.4.3 I/O Port Description Block

An I/O port description block consists of a group of statements that specifies the
I/O ports used by a device. The configuration file can contain a maximum of 20 I/O port
description blocks for any one function. The I/O Port Request Block has the following
format:

PORT = range/list [STEP = value [COUNT = value]]
[SHARE = YES | NO | "text"]
SIZE = BYTE | WORD | DWORD]

372

:P 0 426 184 A2

EXTENDED INDUSTRY STANDARD AKcHI I tCI UKi.
X)NFIDENTIAL INFORMATION OF BCPR SERVICES, INC

PORT Statement (Optional)

Syntax:
PORT = list/range [STEP = value [COUNT = value]]
OT
PORT = list

The I/O Port Request Block begins with a PORT statement The PORT statement
can specify a single address, a list of addresses, or a rangelist that specifies the selections
for the port address.

The STEP parameter that follows the rangeUst identifies the address increment of
the port selections. The COUNT parameter specifies the number of ports allocated from
the selected STEP address block. If the COUNT parameter is omitted, the configuration
utility uses a default COUNT value equal to the STEP value. If the STEP parameter is
emitted, the configuration utility allocates the entire range (a COUNT without STEP is
invalid). Tbe foUowing examples illustrate a PORT statement with a rangeUst:

•allocates 16 ports: 3O0h-30Fh
PORT = 300h-30Fh

allocates 4 ports: 300h-303b or 304h-307h or 308h-30Bh or 30Ch-30Fh
PORT = 300h-30Fh STEP = 4

allocates 2 ports: 300h-301h or 3C4h-305h or 308h-509h or 30Ch-30Dh
PORT = 300h-30Fh STEP = 4 COUNT = 2

SHARE Statement (Optional)

Syntax:
[SHARE = YES | NO \ "text"]

The SHARE statement specifies whether the function can share the requested
ports. The configuration utility uses a default of NO (the port cannot be shared) if the
SHARE statement is omitted. A text identifier can be specified to indicate that the
function can only share the port address with a device that has a matching identifier. The
identifier may be up to 10 characters.

SIZE Statement (Optional)

SvHt£DC
[SIZE - BYTE | WORD | DWORD]

The SIZE statement specifies the size of the I/O port as BYTE (8-bit), WORD (16-
bit) or DWORD (32-bit). The default size is BYTE.

373

r U 42b 184 A2

EXTENDED INDUSTRY STANDARD AKCrtl l ea, i ut\x,
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

1.6.4.4 Memory Description biock

The memory description block specifies the amount ot memory on an expansion
soard and its starting address, whether the memory is cacheable, whether it is RAM or
ROM, the type of memory (system, expanded, virtual or other), and initialization
requirements of the memory. The configuration file can contain a maximum of nine

rnemory description blocks for any one function. The memory request block has the
following format:

MEMORY = list/range [STEP = value]
ADDRESS = ranselist [STEP = value]]
'WRITABLE = YES | NO]
MEMTYPE = SYS | EXP I VIR j OTH]
SIZE = BYTE | WORD | DWORD]
DECODE = 20 | 24 | 32]
CACHE » YES | NO]
SHARE = YES | NO | "text"]

VD2MORY Statement (Optional)

Syntax:
MEMORY = range [STEP = value]

The MEMORY statement signifies the begmning of the memory description block.
The range following the MEMORY statement specifies the minimum and maximum
amount of memory that can be put on the board. Each possible memory configuration can
be listed separately (such as, 1M, 2M, 3M for one to three megabytes) or a minimum-to-
maximum range can be specified (1M-3M). A minimum value of IK is required and the
minimum-to-maximum range must be at least IK. The maximum range value is 54

megabytes.

If a range is specified, the STEP field must also be included to define the smallest
increment by which additional memory can be added to the board.

ADDRESS Statement (Optional)

Syntax:
ADDRESS = range [STEP = value]
or
ADDRESS = list

J /4

EP 0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCHITECT UKt
IX)NFIDENTIAL INFORMATION OF BCPR SERVICES, INC

The ADDRESS statement specifies the starting address of the memory. Ine
ADDRESS statement is optional for memory if expanded or other is chosen for the
memory type. The ADDRESS statement is required for system and virtual memory. The
STEP parameter that follows the range identifies the addresses within the range that can be
jsed as the starting address. The following example illustrates the valid starting address
selections:

MEMORY = 1M
ADDRESS = IMAM STEP = 1M

Starting Ending
Address Address

ICOOOOh IFFFFFh
200000h 2FFFFFh
300000h 3FFFFFh
400O00h 4FFFFFb

WRITABLE Statement (Optional)

Syntax:
[WRITABLE = YES | NO]

The WRITABLE field indicates whether the memory is RAM or ROM; for R O M
this field is NO. The default is YES.

MEMTYPE Statement (Optional)

Syntax:
[MEMTYPE = SYS | EXP | VTR | OTH]

The MEMTYPE field specifies whether the memory is SYStem (base and extended
memory), EXPanded (LLM EMS memory available for use by an expanded memory
manager), or OTHer (address' space used for memory mapped I/O or bank-switched
memory). The default is SYS. VIRtual indicates that the address space is used, but no
physical memory occupies the address (address of a IIM page frame). Accesses to VTR

- memory do not generate addresses on the EISA bus. OTH is intended primarily for
memory mapped I/O devices such as network adapters. OTH should include an
ADDRESS statement only if it resides in the physical address space.

SIZE Statement (Optional)

Syntax:
[SIZE = BYTE | WORD | DWORD]

The SIZE statement identifies the memory as" BYTE (8-bit), WORD (16-bit) or
DWORD (32-bit) memory. The SIZE defaults to DWORD if the SIZE statement is
omitted.

375

P 0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCHITECT UKJt
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

JECODE Statement (Optional)

Syntax:
DECODE = 20 | 24 | 32]

DECODE is an optional statement that specifies the number of address lines
lecoded by a memory expansion board. The default is 32 for all memory boards.

CACHE Statement (Optional)

Syntax:
CACHE = YES j NO]

The CACHE statement indicates whether the memory contents can be stored in
ache memory. The memory on a graphics board, for example, generally should not be
stored in a cache memory. The default is NO.

SHARE Statement (Optional)

Syntax:
[SHARE = YES | NO 1 "text"]

The SHARE statement indicates whether the memory in this space can be shared by
another device. The default is NO. A text identifier can be specified to indicate that the
function can only share the memory address range with a device that has a matching
identifier. The identifier can be up to 10 characters.

TOTALMEM Statement (Optional)

Syntax:
TOTALMEM = list/range [STEP = value]

A choice statement block can contain a TOTALMEM statement that indicates the
total amount of memory specified by the CHOICE The TOTALMEM statement is
required for a memory block that can have its allocation split between system memory
(SYS), other memory (OTH) and expanded memory (EXP).

The TOTALMEM statement can include each possible memory size or p r o ™ ! ^
minimum-to-maximum range of possible configurations. A range must include the STfcF
keyword to indicate the smallest memory increment that can be added to the memory
board.

3/6

EP 0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC

The foUcwing example illustrates a fragment of the configuration file for uuualizing
a memory expansion board. The choice statement block includes a TOTALMEM
statement from which the user selects the amount .of memory installed on tbe expansion
board. The two memory request blocks allow tbe user to select the memory allocation
between system (SYS) and expanded (EXP) memory. The configuration utility uses the
TOTALMEM statement to verify that tbe total SYS, OTH and EXP memory selected by
tbe user does not exceed the memory installed on the memory expansion board. The total
amount of memory specified by the TOTALMEM statement does not include memory
selected as MEMTYPE * or VTR.

CHOICE = "Add Memory"
TOTALMEM = 4M | 8M I 12M
MEMORY «= OM | 4M | 8M | 12M

MEMTYPE « SYS
ADDRESS «= 1M-256M STEP = 1M

MEMORY @= OM I 4M | 8M | 12M
MEMTYPE *= EXP

The following statements are equivalent:

TOTALMEM = 4M | 8M I 12M ;List
TOTALMEM = 4M-12M STEP = 4M ;Range with STEP

The configuration utility also uses the TOTALMEM statement to deterrnine the
proper configuration from subchoice statement blocks.

ROM and RAM Memory Configuration Example

ACME has a network board with 64 Kbytes of RAM and a 2 Kbyte ROM The
board can accommodate up to 512 Kbytes of RAM added in 64 Kbyte increments. The
RAM must begin in the 1-2 megabyte range and is writable, but not cacheable. The 2-
Kbyte ROM can be accessed at (JCOOOOh, ODOOOOh, or OEOOOOh. The ROM is not writable
but it is cacheable. None of the board's memory can be shared.

The following example shows the portion of the configuration file that describes the
memory, beginning with the RAM, followed by the ROM.

-.NETWORK BOARD RAM
MEMORY - 64K-512K STEP = 64K

ADDRESS « IM-lFFFFFh STEP = 64K
WRITABLE = YES
MEMTYPE = OTH
CACHE = NO

•.NETWORK BOARD ROM
MEMORY = 2K

ADDRESS = OCOOOOh | ODOOOOh | OEOOOOh
WRITABLE = NO
MEMTYPE = OTH
CACHE = YES

377

EP 0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

4.6.4.5 INIT S t a t e m e n t s

INIT statements specify the initializations for alternative configurations. An TNTT
statement can be used to initialize any of the following:

DMA
IRQ
P O R T
MEMORY

The configuration utility determines the initialisations for the selected configuration
and stores them in nonvolatile memory. The system ROM power-up routine performs the
initializations.

I/O Port rNTT Statement

Syntax:
INTT = IOPORT(i) [LOC(bitlist)] valuelist
or
INIT « P O R T A D R (a 4 t a) [[BYTE | WORD | DWORD] list

The I/O port TNTT statement specifies an I/O port and the binary value to write to
the port for the configuration.

The TNTT statement can specify the I/O port address, port size, and value directly in
the PORTADR(ai<ireir) form of the statement The default port size is BYTE. This
statement syntax provides a shorthand form of specifying I/O port values where no
initialization information block is required. When this shorthand format is used, all bits
must be specified with a 1, 0, or r (i.c, x's are not allowed to specify bits in this format).

The INTT statement can also indicate the address with an IOPORT(i) statement
combined with the IOPORT(i) form of the INIT statement The port size is specified with
the IOPORT(i) statement, not in the INTT s ta tement

The list portion specifies the binary values to initialize the port. The values must be
binary.

The TNTT statement can include the LOC(bitlist) string to reference individual bits.
The bitlist contains a list or range of bit positions. The elements of the bitlist must be in
MSBit to LSBit order. A space must be included between elements as a delimiter.

INIT = PORTADR(OzSOOh) WORD 00001 11 100001 11 lb ;WORD port

TNTT = PORTADR(0z800h) 00001 111b ;Byte port

INTT = PORTADR(0z800h) 001 lOOrr ;Byte port with V

INTT = IOPORT(l)(0z800h) LOC(7-2) 001 100 ;Byte port (range)

INIT = IOPORT(2)(Oz800h) LOC(7 6 1 0) 0011 ;4 bits specified

INTT = IOPORT(3)(0z800h) 00001 1 1 1

378

r 0 42b 184 A2

EXTENDED INDUSTRY S TANDAK.U A K U l l l t L i ui\x.
XJWIDEmiAL INFORMATION OF BCPR SERVICES, INC.

Switch INIT Statement

Syntax:
NTT = SWTTCH(i) LOC{swUchlist) valuelist

The switch INIT statement specifies the switch positions and the appropriate setting
'or the configuration. SWTTCH(i) indicates the switch being initialized. lX)UpvuchUst)
>ahielist identifies the switch positions and specifies the setting.

The LOCXwifcMtf) contains a list or range of switch positions. The elements of the
witchlist must be in ascending order if REVERSE = YES, or descending order if
REVERSE = NO. A space must be included between elements as a delimiter.

The valuelist specifies the switch setting for each switch position. The valuelist must
lse the same order as the switchlist. A DIP switch can be set for "1" to indicate "ON," or "0"
0 indicate "OFF." The dip switch settings are not delimited with a space. The vahiekst for
1 rotary or slide switch indicates the selected position number by a "1" in the appropriate
>it position.

Jumper INTT Statement

Syntax:
INTT = JUMPER(i) iJOQjumperiist) valuelist

The jumper LSTT statement specifies the jumper positions and the appropriate
setting for the configuration. JUMPER(i) indicates the jumper being initialized.
JjOCtjumperiist) specifies the jumper positions being specified.

The LOCQumperiist) contains a list of jumper positions. The valuelist specifies the
setting for each jumper position. The valuelist must not be delimited with a space and must
use the same order as the jumperiist.

The jumperiist specifies paired and tripole jumpers by their jumper positions A
paired or tripole jumperiist can use a range to indicate the jumpers. The elements of the
jumperiist rnust be in ascending order if REVERSE = YES, or descending order if
R£VERSE=NO. A space must be included between elements as a delimiter.

The jumperiist specifies inline jumpers by indicating the connection between two
posts with a caret For example, LOC(r2 3*4 5*6) specifies the jumper between posts 1
and 2, between posts 3 and 4, and between posts 5 and 6. The elements of the jumperiist
must be in ascending order if REVERSE = YES, or descending order if REVERSE = NO.
A space must be included between elements as a delimiter.

Paired and inline jumper valuelist settings can be indicated as "1" for "ON" (jumper
installed), "0" for "OFF* (jumper not installed). The paired jumper settings are not
delimited with a space.

A tripole jumper valuelist settings can be indicated as "1" for "ON" (jumper installed
in upper or right position), "0" for "OFF (jumper installed in lower or left position) n for

jumper not installed. The tripole jumper settings are not delimited with a space.

3/y

EP0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, I N C

Software INIT Statement (Optional)

Syntax:
INTT = SOFTWARE^) "parameter" [j parameter)...

The software INTT statement specifies the command line parameter that invokes a
software command for the selected configuration. The (i) indicates the SOFTWARE^)
statement that contains text to display with the parameters. The parameters specify an
ASCII string that appends to a software command, which specified in the SOFTWARE^ i)
text For example, the following configuration file fragment illustrates use of the software
INTT statement and SOFTWARES) statement that specify an entry into an MS-DOS
AUTOEXECBATfi le :

SOFTWAREO) =
This example software initialization
statement indicates that the NET.EXE
file with command line parameters must
be placed in the AUTOEXECBAT file: \ n \ n
NETJEXE /I=n / D - n where:"

FUNCTION = "Expanded Memory Allocation"
CHOICE = "4MB Expanded Memory"

INTT = SOFTWARE(l) "/I =4 /D=3"

380

EP 0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

4.6.5 Resource Group

A resource description block must have one or more group of resource and
initialization statements. The elements of the resource description block are grouped
together based on their interdependence. All resource and initialization statements must
be in a group. Tbe three types of group are:

• LINK groups, in which selection of any one resource in the group determines
the selection of all other resources and initializations in the group.

• COMBINE groups, in which each resource selection is independent, but the
initialization is determined by the combination of resource selections.

• FREE groups, in which each resource selection is independent, and the
initializations are independent of the resource selections.

The groups begin with a keyword (LINK, COMBINE or FREE) and end at the next
group keyword or at the end of the resource description block.

4.6.5.1 LINK Groups

The elements of linked group have a direct relationship with each other. The
selection of one resource determines the other resources "in the group and the initialization.
Each statement in a linked group must have the same number ot options. If the first option
is chosen for one resource, the configuration utility automatically selects the first option for
the other resource statements and the initialization statements. The syntax of a linked
group is:

LINK
resource statement

resource statement
INIT statement

INIT statement

The following example illustrates the use of a linked group that provides selection of
the interrupt or DMA channel. The user (or configuration utility) can select tbe interrupt
or the DMA channel, but after making the one selection, the other resource and the
initialization must correspond to the same option. An IRQ = 3 selection forces the
configuration utility to select DMA = 2 and IOPORT(l) initialization 00001111b. A
DMA - 5 selection forces the configuration utility to select IRQ = 4 and IOPORT(l)
initialization 11110000b.

LINK
IRQ = 3 | 4
DMA = 2 | 5
INIT = IOPORT(l) 00001111b | 11110000b

381

EP0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

4.6.5.2 COMBINE Groups

The elements of combined groups have an indirect relationship with each other.
Each resource selection is independent, but the initialization is directly determined by the
combination of resource selections. The syntax of a linked group is:

COMBINE
resource statement

resource statement
INIT statement

INTT statement

The following example illustrates the use of a combined group that provides
selection of a memory size and starting address. The user (or configuration utility) can
select any memory size and starting address, and the configuration utility automatically
selects the initialization that corresponds to the selected memory size and starting address.
The table after the example lists the initialization value for each possible combination.

COMBINE
MEMORY = 4M
ADDRESS = 1M

8M -.Memory size
4M jStarting address

INTT = IOPORT(2) 00001111b | 01001111b | 10001111b | 11001111b

Memory Starting Port
Size Address Initialization

4M 1M 00001111b
4M 4M 01001111b
8M 1M 10001111b
8M 4M 11001111b

382

EP0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC

The following example illustrates the use of a combined group in which the starting
address selection and the initialization use a range with a step. The user for configuration
utility) can select any memory size and starting address, and the configuration utility
automatically selects the initialization that corresponds to the selected memory size and
starting address. The table after the example lists the initialization value for each possible
combination.

COMBINE
MEMORY = 4M i 8M I 12M
ADDRESS = 4M-256M STEP = 4M
rNTT = IOPORT(l) OOOOOOOOb-lOllllllb

Memory Starting INTT
Size Address Value

4M 4M OOOOOOOOh
4M 8M 00000001b
4M 12M 00000010b
4M 16M 00000011b

4M 244M OOllilOOb
4M 248M 00111101b
4M 252M 00111110b
4M 256M 00111111b

12M 244M lOllilOOb
12M 248M 10111101b
12M 252M 10111110b
12M 256M 10111111b

The following COMBINE fragment and INTT table illustrates the initialization
value assignment sequence:

COMBINE
RESOURCEl l 2 3
RESOURCE2 1 2 3
RESOURCE3 1 2 3
TNTT = OOOOlb-llOllb

383

:P 0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCHITtL l UKL
X)NFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

INTT RESOURCEl Part RESOURCE2 Part RESOURCE3 Part
Value of Combination of Combination of Combination

00001b RESOURCEl option 1 RESOURCE2 option 1 RESOURCE3 option 1
00010b RESOURCEl option 1 RESOURCE2 option 1 RESOURCE3 option 2
00011b RESOURCEl option 1 RESOURCE2 option 1 RESOURCE3 option 3

00100b RESOURCEl option 1 RESOURCE2 option 2 RESOURCE3 option 1
00101b RESOURCEl option 1 RESOURCE2 option 2 RESOURCE3 option 2
001 10b RESOURCEl option 1 RESOURCE2 option 2 RESOURCE3 option 3

00111b RESOURCEl option 1 RESOURCE2 option 3 RESOURCE3 option 1
01000b RESOURCEl option 1 RESOURCE2 option 3 RESOURCE3 option 2
01001b RESOURCEl option 1 RESOURCE2 option 3 RESOURCE3 option 3

01010b RESOURCEl option 2 RESOURCE2 option 1 RESOURCE3 option 1
01011b RESOURCEl option 2 RESOURCE2 option 1 RESOURCE? option 2
01100b RESOURCEl option 2 RESOURCE2 option 1 RESOURCE" option 3

01101b RESOURCEl option 2 RESOURCE2 option 2 RESOURCE3 option 1
01110b RESOURCEl option 2 RESOURCE2 option 2 RESOURCE3 option 2
01111b RESOURCEl option 2 RESOURCE2 option 2 RESOURCE" option 3

10000b RESOURCEl option 2 RESOURCE2 option 3 RESOURCE3 option 1
10001b RESOURCEl option 2 RESOURCE2 option 3 RESOURCE3 option 2
10010b RESOURCEl option 2 RESOURCE2 option 3 RESOURCE3 option 3

10011b RESOURCEl option 3 RESOURCE2 option 1 RESOURCE3 option 1
10100b RESOURCEl option 3 RESOURCE2 option 1 RESOURCE3 option 2
10101b RESOURCEl option 3 RESOURCE2 option 1 RESOURCE? option 3

10110b RESOURCEl option 3 RESOURCE2 option 2 RESOURCE3 option 1
10111b RESOURCEl option 3 RESOURCE2 option 2 RESOURCE? option 2
11000b RESOURCEl option 3 RESOURCE2 option 2 RESOURCE" option 3

11001b RESOURCEl option 3 RESOURCE2 option 3 RESOURCE* option 1
11010b RESOURCEl option 3 RESOURCE2 option 3 RESOURCE3 option 2
11011b RESOURCEl option 3 RESOURCE2 option 3 RESOURCE3 option 3

4.6.5.3 Free Groups

The elements of free-form groups have no relationship with each other. Each
resource selection is independent and tne initializations are independent of the resource
selections. The syntax of a free-form group is as follows:

F R E E
resource statements
INIT statements

384

f U 42b 1U4 A2

EXTENDED INDUSTRY blAMUAKU a k u u i l l i uiu^
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

The following example illustrates the use ot a tree-torm gruuy ui wmui m v ^,
r 5 can be selected! The IRQ selection is independent of all other resource declarations.
Tie example does not include any IRQ initialization.

F R E E
IRQ = 2 | 3 | 4 i 5

*.6.6 PORTVARU) vanao ie

Syntax:
[OPORT(i) = PORTVARG)
combined with:
PortvarO') = address

The variable, PORTVARO'), can be used to modify an IOPORTfi) address based on
i configuration selection. Each variable must have a separate PORTVARO) s ^ F l ^ 1
with a different identifier, T. The T can be any positive mtege r j^ue from 1 to 32767.
Ihe PORTVARO') variable replaces the address portion of; the IOPORT(i) statement The

jorifiguration utility assigns an address to the IOPORT(i) based on a PORTVARO)
assignment statement within a choice or subchoice statement block.

The following configuration file segment illustrates the use of roRTVAIW) to
initialize a serial port interrupt The example indicates an initialization value 00000001b is
written to port address 3F9h for a COM1 selection or written to po r̂t address 2F9h for a
COM2 selection. The configuration utility replaces the PORTVAR(3) variable with the

port address (3F9h or 2F9h) based on the CHOICE selected.

IOPORT(l) = PORTVAR(3)
FUNCTION = "Serial Port"

CHOICE = "COM1"
PORTVAR(3) = 3F9h
INTT = IOPORT(l) 0000000 lb

CHOICE = "COM2"
PORTVAR(3) = 2F9h
INTT = IOPORT(l) 00000001b

P U 42b 184 A2

EXTENDED INDUSTRY STANDARD ARCHITECT u n r ,
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

[.7 System Board configuration m e

System board configuration files must supply additional information not required by
xpansion boards to the configuration utility. This information includes the amount of
lonvolatile memory available, the number of expansion slots on the system board, the
tower available at each slot, and the size and type of each expansion slot The system
lescription block supplies the additional information.

1.7.1 Board Identification b iock

The board identification block for system boards uses the same syntax as an
atpansion board identification block. The CATEGORY statement must equal "sys" and
he SLOT statement must equal EMB(O). The syntax of the board identification block is:

B O A R D
LD = "7 character ID"
NAME = "system board product name"
MFR = "system board manufacturer name"
CATEGORY = "SYS"
SLOT = EMB(O)
AMPERAGE = value ;System board + 5 V current usage in mA

i.7.2 System Description b iock

The system description block includes a SYSTEM statement, the amount of
lonvolatile memory, and a description of the available slots. The system description block
follows the board identification block in the configuration file. The syntax of the system
iescription block is:

SYSTEM
NONVOLATILE = value] ;Bytes of nonvolatile memory
AMPERAGE = value] ;Total +5V current (mA) from power supply
'SLOTH) = ISA8 | ISA16 | EISA | OTH [."text"] [."text"]...]

[LENGTH = value]
SKIRT = YES | NO]
BUSMASTER = YES | NO]

SLOT(n) = ISA8 | ISA16 | EISA | OTH
[LENGTH = value]
SKIRT = YES | NO]

SYSTEM Statement (Required)

Syntax:
SYSTEM

The SYSTEM statement identifies the beginning of the system description block.
The SYSTEM statement follows the board identification block in the configuration file.

JBt>

P 0 426 184 A2

EXTENDED INDUSTRY STANDARD AKCH1 Tfc-Ci uiu,
X5NFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

NONVOLATILE Statement (Optional)

iyntax:
NONVOLATILE = value

The NONVOLATILE statement specifies the total bytes of EISA nonvolatile
memory in the system. The NONVOLATILE statement does not include the 64 bytes of
[SA compatible nonvolatile memory.

The configuration data for one expansion slot, one virtual device or one embedded
device (including the system board-EMB(O)), can use no more than 340 bytes of
nonvolatile memory. A slot with a multifunction expansion board installed can use 340
ijytes total for all expansion board functions. EISA systems must support at least 340 bytes
Df nonvolatile memory for each expansion slot, plus nonvolatile memory for the system
board functions.

The system board designer can use the following equation to determine the
mjnjrniim amount of EISA nonvolatile memory required:

Nonvolatile Memory = . . . ,
(Expansion Slots+System Board + Embedded Devices + Virtual Devices) 340

Where:

Expansion Slots = number of expansion connectors
A whole number between 1 and 15

System Board
EMB(0)-system board

Embedded devices = number of embedded devices on system board
A whole number between

1 and (15 - Physical Slots)

Virtual devices = number of system board virtual devices
Virtual devices > 1

The following example illustrates the nonvolatile memory calculation for a system
board with 1 embedded device, 8 expansion connectors and 2 virtual devices:

Assumptions:

System Board 1
Physical Slots = 8
Embedded devices = 1
Virtual devices = 2

Total = 12

Minimum Nonvolatile Memory = 12 ' J4U = 4U«u oytes

3a/

r U 420 104 A2

EXTENDED INDUSTRY STAJNUAKU A K t H i i n n u i u ,
ONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

MPERAGE Statement (Optional)

yntax:
*vMPERAGE= value]

An AMPERAGE statement specifies the total amount of +5 volt power (in
nlliamps) available to expansion devices installed on the expansion bus.

value = power supply current

1.7.3 SLOT Statement biock (opt ional ;

!LOT(i) - ISA8 | ISA16 | EISA | OTH [."text"] [."text"]...

The SLOT(i) statement is used to specify an expansion slot as 8-bit ISA (ISA8), 16-
)it ISA (ISA16), or 32-bit EISA (EISA). The i represents the slot number.

The SLOT(i) statement does not apply to the system board, embedded devices or
TTtual devices, when included as part of the system description block.

LENGTH Statement (Optional)

"yntax:
LENGTH = value]

A LENGTH statement can accompany a SLOT(i) statement to specify the
xiaximum length board (a decimal integer in millimeters) that can be installed in the slot.

System boards should include a LENGTH statement The configuration utility
rannot opumize expansion board slot allocation if system boards do not specify the slot

engths. If the LENGTH statement is omitted, the configuration utility assumes the
iiaximum length of 341 millimeters and assigns slot numbers without regard to slot length.

SKIRT Statement (Optional)

Syntax:
[SKIRT = YES | NO]

Each SLOT(i) statement can also be accompanied by a SKIRT statement that

specifies whether the slot supports a skirted expansion board. The default is YES it tne
SLOT(i) statement does not have an accompanying SKIRT statement.

BUSMASTER Statement (Optional)

Syntax:
[BUSMASTER = YES |. NO]

The BUSMASTER statement specifies whether an EISA sbt accepts a bus master

expansion board. The slot defaults to BUSMASTER « YES if the BUSMASTER

statement is omitted from the slot statement block and the slot is an EISA slot.

EP 0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

4.8 EISA System ROM Operations

EISA system ROM provides the following services to support automatic hardware
configuration:

• The EISA system ROM power-up routines use the configuration information
stored in nonvolatile memory to initialize the system board and expansion
boards.

• The EISA system ROM provides BIOS routines that simplify reading and
writing configuration data in nonvolatile memory.

4.8.1 EISA System ROM BIOS Routine Calls

Two BIOS routines are called by the configuration utility to initialize nonvolatile
memory. One BIOS routine clears configuration information from nonvolatile memory
and the other stores configuration information in nonvolatile memory. The BIOS routines
are part of the INT15 handler and have the following call interface:.

Clear Nonvolatile Memory
INT 15b, AH=D8h, AL=02h (or 82h)

Write Nonvolatile Memory
INT 15h, AH=D8h, AL=03h (or 83h)

Device drivers and the power-up BIOS routines use two other BIOS routine to
retrieve configuration information from nonvolatile memory. One BIOS routine returns a
subset of the configuration information stored in nonvolatile memory for one expansion
board. The other routine returns all the configuration information about one expansion
board function. Tbe BIOS routines are called through the INT 15h handler with the
following call interface:

Read slot configuration information
LNT 15h, AH=D8h, AL=00h (or 80h)

Read function configuration information
INT 15b, AH=D8h, AL=01h (or 81h)

389

=P 0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

The BIOS routines are bimodal (real or protected mode) and can be called for
execution as 32- or 16-bit code. Protected mode execution is accomplished by simulating
an INT 15h instruction (push flags, call far) to the address pointed to by the INT 15h vector
(0000:0054h). If INT 15h no longer points to the system ROM, then the industry standard
entry point for INT 15h, FOCO:F859h, can be called directly. Tbe INT 15b BIOS routines
require 1536 bytes allocated from the stack for temporary RAM variables.

Protected mode operating systems that can create a code segment descriptor can
call the INT 15h BIOS routines by creating a descriptor that has a base address of FOOOOh
and executing a far call to the offset address of the industry standard entry point. The code
segment descriptor must have a limit of FFFFh, and must have I/O privilege (current
privilege level of code segment being executed must be equal to or less than IOPL). The
code segment descriptor can have a D-bit of Oh (16-bit addressing and operands) or lh (32-
bit addressing and operands). The address segment D-bit can be set to Oh or lh (indicating
16- or 32-bit data size) independent of the code segment D-bit setting.

A code segment other than FOOOOh may be used as long as it includes the 64 Kbytes
starting at FOOOOh and has I/O privilege (current privilege level of code segment being
executed must be equal to or less than IOPL).

The INT 15h system ROM BIOS routines adhere to the following conventions:

• Do not perform any segment register-dependent operations (all branch
instructions are relative to the instruction pointer)

• Do not change the segment registers (including the code segment)

• Return to the calling routine with the interrupt flag unmodified

• Do not use privileged instructions (LMSW, LSL, etc.)

• Do not write data using a code segment (CS) override

4.8.1.1 Identify System Board Type

A device driver can identify an EISA system board by detecting the upper case
"ASCII string "EISA" at memory address FOO0:FFD9h through FOO0:FFDCh.

390

EP 0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

4.8.1 J2 Read Slot Configuration Information, INT 1 5h, AH = D8h,
AL=00h (or 80h)

This BIOS routine reads a subset of the configuration information for one expansion
board or the system board from nonvolatile memory. The BIOS routine returns a summary
that includes all functions of the expansion board.

INT 15h, AH = D8h, AL= OOh (or 80h)

INPUT:

AH = 0D8h
AL = OOh (If CS specifies 16-bit addressing)
AL = 80h (If CS specifies 32-bit addressing)
CL = Slot Number (including embedded and virtual devices)

0 System board
1 Slot 1
2 Slot 2
n Slot n

OUTPUT:

AH = OOh Successful completion (carry flag =«0)
80h Invalid slot number (carry flag = 1) '
82h Nonvolatile memory corrupt (carry flag = 1)
83h Empty slot (carry flag = 1)
86h Invalid BIOS routine call (carry flag - 1)
87h Invalid system configuration (cany flag = 1)

391

EP 0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTUL INFORMATION OF BCPR SERVICES, INC.

AL =

7 6 5 4 3 2 1 0

Duplicate ID number
0000 If no duplicate ID
0001 If 1st duplicate ID

1111 If 15th duplicate ID
Slot type
00 = Expansion slot
01= Embedded device
10= Virtual device
l l=Reserved
Product LD
0= readable
l=not readable
Duplicate LD
0=No duplicate LD.
1= Duplicate IDs.

This nibble indicates which CFG
file is loaded when duplicate file

— names are present, (i.e., the first
is called !AAArmrm.CFG; the
next is lAAAnnnn.CFG, the next
is 2AAAnnnn.CFG and so on.

BH = Major revision level of configuration utility
BL = Minor revision level of configuration utility
CH = Checksum (MSByte) of configuration file
CL = Checksum (LSByte) of configuration file
DH = Number of device functions
DL = Combined function information byte

Bit 7: Reserved (0)
Bit 6: Reserved (0)
Bit 5: Slot has one or more port initialization entries
Bit 4: Slot has one or more port range entries
Bit 3: Slot has one or more DMA entries
Bit 2: Slot has one or more interrupt (IRQ) entries
Bit 1: Slot has one or more memory entries
Bit 0: Slot has one or more function type definitions

Dl and SI = Four byte compressed ID
- Dl(lsb) =Byte0 -

Dl (msb) = Byte 1
SI (lsb) = Byte 2
SI (msb) = Byte 3

4.8.1 .3 Read Function Configuration information, INT 1 5h,
AH = 0D8h, AL= 01 h (or 81 h)

This BIOS routine reads ail the configuration information for one expansion board
function. The BIOS routine transfers the data block that contains the configuration
information for the expansion board function to a table in memory. The BIOS routine
stores the data block at the starting address pointed to by DS:S1. The table's data structure
is defined later in this section.

392

bP U 426 184 A2

u-Ain-rxucLF INDUSTRY STAIN uARU ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

me cauer can execute me "Read Slot Configuration Information" BIOS routine to determine the number of expansion board functions, and execute the "Read Function
Configuration Information" BIOS routine to retrieve the data block for each function. The
BIOS routine retrieves the function data block indicated by the function number in register CH. The caller can inspect the TYPE and SUBTYPE fields in each data block to identify he function. 1

nix ion, sun — uuoa, Ajj=uin (oroinj

INPUT:

AH = 0D8h
AL = Olh Of CS specifies 16-bit addressing)
AL = 81h (If CS specifies 32-bit addressing)
CH = Function number to read (0...n-l)
CL = Slot Number (including embedded and virtual slots)

0 = System Board
1 = Slot 1
2 = Slot 2
n = Slot n

DS = Segment for return data buffer
SI = Offset to return data buffer (16-bit call)
ESI = Offset to return data buffer (32-bit call) -

)UTPUT:

AH - OOh Successful completion (carry flag = 0)
80b Invalid slot number (carry flag = 1)
81b Invalid function number (cany flag = 1)
82h Nonvolatile memory corrupt; (cany flag = 1)
83h Empty Slot (carry flag = 1)
86h Invalid BIOS routine call (cany flag = 1)
87h Invalid system configuration (carry flag = 1)

iduumu v^unnguraiion uaia biock structure

The 320-byte data block pointed to by DS:SI contains the configuration information
sr one expansion board function. The field sizes of the data block are fixed sizes. A
onfigurauon file must not specify resources or initializations that cannot fit within this
ata structure. The 320-byte data block has the following structure:

EP 0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFI D ENTI AL INFORMATION OF BCPR SERVICES, INC.

Four-Byte Compressed ID Total Bytes = 4
Offset = OOh

ByteO
Bit 7 Reserved (0)
Bit 6:2 Character 1
Bit 1:0 Character 2

Byte 1
Bit 7:5 Character 2
Bit 4:0 Character 3

Byte 2
Bit 7:4 1st hex digit of product number
Bit 3:0 2nd hex digit of product number

Byte 3
Bit 7:4 3rd hex digit of product number
Bit 3:0 1-digit product revision number

ID and Slot Information Total Bytes = 2
Offset = 04h

ByteO
Bit 7 - 0= no duplicate ID is present

1= duplicate is present
Bit 6 - 0= ID is readable

1 = ID is not readable
Bit 5:4 - Slot type

00= expansion slot
01= embedded slot
10= virtual slot
11= reserved

Bit 3:0 - Numeric identifier for duplicate CFG filenames (IDs)
0000 = No duplicate CFG filenames
0001 = 1st duplicate (CFG file 1ACE0105)
0010 = 2nd duplicate (CFG file 2ACE0105)

1111 = 15th duplicate (CFG file FACE0105)

Byte 1
Bit 7 - 0= configuration is complete

1 = configuration is not complete
Bit 6:2 - Reserved (0)
Bit 1 - 0= EISA IOCHKERR not supported

1= EISA IOCHKERR supported
Bit 0 - 0= EISA ENABLE not supported (expansion board cannot be disabled)

1 = EISA ENABLE not supported (board can be disabled)

394

:P 0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

CFG File Extension Revision Level Total Bytes = I
Offset = Don

Byte 0 = Minor revision level (0 if no CFG File Extension)
Byte 1 = Major revision level (0 if no CFG File Extension)

Selections Total Bytes = 26
Offset = 08h

Byte 0 = 1st Selection
Byte 1 = 2nd Selection

Byte 25= 26th Selection

Function Information total bytes = l
Offset = 022h

ByteO , J Bit 7 - 0= function is enabled
1 = function is disabled

Bit 6 - CFG extension Free-form data
Bit 5 - Port initialization entry(s) follows
Bit 4 - Port range entry(s) follows
Bit 3 - DMA entry/?) follows
Bit 2 - Interrupt (IRQ) entry(s) follows
Bit 1 - Memory entry(s) follows
Bit 0 - Type/subtype ASCII string entry follows

TYPE and SUBTYPE ASCII String Total Bytes = 80
Offset = 023h

Byte 0 = 1st character of ASCII string
Byte 1 = 2nd character of ASCII string

Byte 79 = 80th character of ASCII string

For example, TYPE = COM,ASY-lCOMl produces:
Byte 0 = C Start of TYPE String
Byte 1 = O
Byte 2 = M „ . „ Byte 3 = , Delimiter for TYPE string fragments
Byte 4 = A
Byte5 = S
Byte 6 = Y End of TYPE stnn°
Byte 7 = : - Delimiter for SUBTYPE string
Byte 8 = C Start of SUBTYPE string
Byte 9 = O
Byte 10= M
Byte 11=1 End of SUBTYPE string
Byte 12=0 Zero fill to end of field
Byte 13= 0

Byte 79= 0

395

EP 0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

Bit 4:3 -

Memory Configuration Total Bytes = 63 J * Offset = 073h
Byte 0 = Memory configuration byte

Bit 7 - 0 = Last entry
1 = More entries follow

Bit 6 - Reserved (0)
Bit 5 - 0 = Not snared memory

1 = Shared memory
Bit 4:3 - Memory Type

00 = SYS (base or extended)
01 = EXP (expanded)
10 = VTRtual
11 = OTHer

Bit 2 - Reserved (0)
Bit 1 - 0 = Not Cached

1 = Cached
Bit 0 - 0 = Read Onlv (ROM)

I = Read/Write (RAM)

Byte 1 = Memory Data Size
Bit 7:4- Reserved (0)
Bit 3-2 - Decode Size

00 = 20
01 = 2 4
10 = 32
II = Reserved (0)

Bit 1:0 Data Size (Access size)
00 = BYTE
01 = WORD
10 = DWORD
11 = Reserved (0)

Byte 2 = LSByte Memory start address (divided by lOOh)
Byte 3 = Middle Byte Memory start address
Byte 4 = MSByte Memory start address
Byte 5 = LSByte Memory size (bytes divided by 400h)
Byte 6 = MSByte Memory size (0 in this word means 64M)

Interrupt Configuration Total Bytes = 14
Offset = 0B2h

ByteO
Bit 7 - 0 = Last entry

- 1 = More entries follow
Bit 6 - 0 = Not Shared

1 = Shared
Bit 5 - 0 = Edge Triggered

1 = Level Triggered
Bit 4 - Reserved (must be 0)
Bit 3:0 - Interrupt (0-F)

Byte 1 = Reserved (0)

396

EP0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

DMA Channel Description Total Bytes = 8
Offset = OCOh

ByteO
Bit 7 - 0 = Last entry

1 = More entries follow
Bit 6 - 0 = Not Shared

1 = Shared
Bit 5:3 - Reserved (0)
Bit 2:0 - DMA Channel Number (0-7)

Byte 1
Bit 7:6 - Reserved (0)
Bit 5:4 - DMA Timing

00 - Default (ISA compatible) timing
01 - Type "A" timing
10 - Type "B" timing
11 - BURST (Type "C") timing

Bit 3:2 - Transfer size
00= 8-bit (byte) transfer
01 = 16-bit (word) transfer
10= 32-bit (dword) transfer
11= Reserved

Bit 1:0 - Reserved (0)

Port I/O Information Total Bytes = 60
Offset = 0C8h

ByteO
Bit 7 - 0 = Last entry

1 = More entries follow
Bit 6 - 0 = Not Shared

1 = Shared
Bit 5 - Reserved (0)
Bit 4:0 - Number of Ports (minus 1)

00000 = 1 port
00001 = 2 sequential ports

11111 = 32 sequential ports

Byte 1 = LSByte I/O Port Address
Byte 2 = MSByte I/O Port address

397

EP 0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

Initialization Data Total Bytes = 60
Offset = 0104h

Byte 0 = Initialization Type
Bit 7 - 0 = Last entry

1 = More entries follow
Bit 6:3 - Reserved (0)
Bit 2 - Port value or Mask value

0 - Write value to port
1 - Use mask and value

Bit 1:0 - Type of access
00 - Byte address (8-bit)
01 - Word address (16-bit)
10 - Dword address (32-bit)
11 - Reserved (0)

Byte 1 = LSByte of port I/O address
Byte 2 = MSByte of port I/O address

LP Byte 0, Bit 2 = 0 (no mask), THEN
Bit 1.-0 = Port width to write

00= Byte 3 = Port value
01 = Byte 3 = LSByte of port value

Byte 4 = MSByte of port value
10 = Byte 3 = LSByte of port value

Byte 4 = 2nd byte or port value
Byte 5 = 3rd byte of port value
Byte 6 = MSByte of port value

11= Reserved
LP Byte 0, Bit 2 = 1 (use mask), THEN

Bits 1:0 = Number of bytes/port value/mask
00= Byte 3 = Port value

Byte 4 = Port mask (byte)
01 = Byte 3 = LSByte of port value

Byte 4 = MSByte ofport value
Byte 5 = LSByte of Port mask (word)
Byte 6 = MSByte of Port mask (word)

10= Byte 3 = LSByte ofport value
Byte 4 = 2nd byte of port value
Byte 5 = 3rd byte of port value
Byte 6 = MSByte of port value
Byte 7 = LSByte ofport mask (dword)
Byte 8 - 2nd byte ot port mask (dword)
Byte 9 = 3rd byte of port mask (dword)
Byte 10 = MSByte of port mask (dword)

11= Reserved (0)

Free-form Configuration Data Block Structure

When the Free-form data bit is set in the Function Information byte (bit 6), the 320-
byte data structure has the following specific format.

398

EP 0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

Four-Byte Compressed ID Total Bytes = 4
Offset = OOh

ByteO
Bit 7 Reserved (0)
Bit 6:2 Character 1
Bit 1:0 Character 2

Byte 1
Bit 7:5 Character 2
Bit 4:0 Character 3

Byte 2
Bit 7:4 1st hex digit of product number
Bit 3:0 2nd hex digit of product number

Byte 3
Bit 7:4 3rd hex digit of product number
Bit 3:0 1-digit product revision number

ID and Slot Information Total Bytes = 2
Offset = 04h

Byte 0
Bit 7 - 0= no duplicate ID is present

1 - duplicate is present
Bit 6 - 0= TD is readable

1 = ID is not readable
Bit 5:4 - Slot type

00= expansion slot
01 = embedded slot
10= virtual slot
11= reserved (0)

Bit 3:0 - Numeric identifier for duplicate CFG filenames (IDs)
0000 = No duplicate CFG filenames
0001 = 1st duplicate (CFG file 1ACE0105)
0010 = 2nd duplicate (CFG file 2ACE0105)

1111 = 15th duplicate (CFG file FACE0105)

Byte 1
Bit 7 - 0= configuration is complete

1= configuration is not complete
Bit 6:2 - Reserved (0)
Bit 1 - 0= EISA IOCHKERR not supported

1 = EISA IOCHKERR supported
Bit 0 - 0= EISA ENABLE not supported (expansion board cannot be disabled)

1= EISA ENABLE not supported (board can be disabled)

399

EP 0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

CFG File Extension Revision Level Total Bytes = 2
Offset = 06h

Byte 0 = Minor revision level (0 if no CFG File Extension)
Byte 1 = Major revision level (0 if no CFG File Extension)

Selections Total Bytes = 26
„ „ Offset = 08h
Byte 0 = 1st Selection
Byte 1 = 2nd Selection

Byte 25 - 26th Selection

Function Information Total Bytes = 1
„ „ Offset = 022h
ByteO

Bit 7 - 0= function is enabled
1 = function is disabled

Bit 6 - CFG extension Free-form data (= 1)
Bit 5 - Port initialization entry(s) follows
Bit 4 - Port range entry(s) follows
Bit 3 - DMA entry(sf follows
Bit 2 - Interrupt (IRQ) entry(s) follows
Bit 1 - Memory entry(s) follows
Bit 0 - Type/subtype ASCII string entry follows

TYPE and SUBTYPE ASCII String Total Bytes = 80
„ „ Offset = 023h
Byte 0 = 1st character of ASCII string
Byte 1 = 2nd character of ASCII string

Byte 79 = 80th character of ASCII string

Freeform Data Total Bytes = 2 to 205
Offset = 73h

Byte 0 = Length of following data block
Byte 1 = 1st byte of freeform data

Byte 204 = 204th byte of freeform data

IP 0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCHU W_l UKt.
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

4.8.1.4 Clear Nonvolatile Memory, INT 15h, AH=D8h, AL=ozn (or a^n;

This BIOS routine clears all EISA nonvolatile memory locations. The contiguration
utility uses the "Clear Nonvolatile Memory" BIOS routine Call prior to writing
(Xinnguration information to nonvolatile memory.

The Clear Nonvolatile Memory BIOS routine does not clear the 64-byte ISA
nonvolatile memory.

INT 15h, AH=D8h, AL=02h (or 82h)

INPUT:

AH =
AL =
AL =
BH =
BL =

OUTPUT:

AH =

D8h
02h (Tf 'CS specifies 16-bit addressing)
82h (If CS specifies 32-bit addressing)
Configuration utility major revision level
Configuration utility minor revision level

AH = OOh Successful completion (cany flag = 0)
84h Error clearing nonvolatile memory (carry flag = 1)
86h Invalid BIOS routine call (carry flag = 1)
88h Configuration utility not supported (carry flag = 1)

If 88h is returned in AH, indicating an unsupported revision of the configuration
utility, then the major revision number of the configuration utility that is supported is
returned in AL.

4.8.1.5 Write Nonvolatile Memory INT 15n, An=Don, AL=wn (or twn;

This BIOS routine writes configuration information for one slot into EISA
nonvolatile memory. The "Write Nonvolatile Memory" BIOS routine also computes a CRC
code (or checksum) after each call. The CRC code (or checksum) is a cumulative
calculation that includes all data written to nonvolatile memory since the last "Clear
Nonvolatile Memory" BIOS routine Call.

401

EP 0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

The Write Nonvolatile Memory BIOS routine does not write to the 64-byte ISA
configuration memory.

INT ISh, AH= D8h, AL=03h (or 83h)

AH = D8h
AL = 03h (If CS specifies 16-bit addressing)
AL = 83h (If CS specifies 32-bit addressing)
CX = Length of data structure (CX = 0 indicates empty slot)

Length includes two bytes for configuration file checksum
DS = Segment of data buffer
SI = Offset of data buffer (16-bit call)
ESI « Offset of data buffer (32-bit call)

AH = OOh Successful completion (carry flag =0)
84h Error writing nonvolatile memory (carry flag = 1)
85h Nonvolatile Memory is full, (carry flag = 1)
86h Invalid BIOS routine call (carry flag = 1)

Standard Configuration Data Block Structure

The stracture referenced by DS:SI in the Write Nonvolatile Memory BIOS routine
CALL for a slot with a single function has the following format:

Four-Byte Compressed ID Total Bytes = 4

INPUT:

OUTPUT:

ByteO
Bit 7
Bit 6:2
Bit 1:0

Reserved (0)
Compressed character 1
Compressed character 2

Byte 1
Bit 7:5
Bit 4:0

Compressed character 2
Compressed character 3

Byte 2
Bit 7:4
Bit 3:0

1st hex digit of product number
2nd hex digit ot product number

Byte 3
Bit 7:4
Bit 3:0

3rd hex digit of product number
1-digit product revision number

102

P 0 426 184 A2

EXTENDED INDUSTRY STANDARD AKUHl l t t l U K U ,
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

Selections TotaJ Bvtes = 2 to 27

Byte 0 = Length of following selections field
Byte 1 = 1st Selection
Byte 2 = 2nd Selection

Byte 26 = 26th Selection

Function Information Total Bytes = 1

ByteO
Bit 7 - 0= function is enabled

1= function is disabled
Bit 6 -CFG extension free-form data
Bit 5 - Port initialization entry(s) follows
Bit 4 - Port range entry(s) follows
Bit 3 - DMA enfxWs) follows
Bit 2 - Interrupt (IRQ) entry(s) follows
Bit 1 - Memory entry(s) follows
Bit 0 - Type/subtype ASCII string entry follows

TYPE and SUBTYPE ASCII String Total Bytes = 2 to 81

Byte 0 = Length of following ASCII string field
Byte 1 = 1st character of ASCII string
Byte 2 = 2nd character of ASCII string

Byte 80= 80th character of ASCII string

For example, TYPE = COMAS Y;COMl produces:
Byte 0 = OCh Length of string field
Byte 1 = C Start of TYPE string
Byte 2 = O
Byte 3 = M
Byte 4 = , Delimiter for TYPE suing fragments
Byte 5 = A
Byte 6 = S
Byte7 = Y End of TYPE string
Byte 8 = ; Delimiter for SUBTYPE string
Byte 9 = C Start of SUBTYPE string
Byte 10= O
Byte 11= M
Byte 12 = 1 End of SUBTYPE string

4U3

P 0 426 184 A2

EXTENDED INDUSTRY STANDAKU akcmi l tu i ukjc
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

ID and Slot Information 1 otai Bytes = z

ByteO
Bit 7 - 0= no duplicate ID is present

1 = duplicate is present
Bit 6- 0= LT> is readable

1= LD is not readable
Bit 5:4 - Slot type

00= expansion slot
01 = embedded slot
10= virtual slot
11= reserved (0)

Bit 3:0 - Numeric identifier for duplicate CFG filenames (IDs)
0000 = No duplicate CFG filenames
0001 = 1st duplicate (CFG file 1ACE0105)
0010 = 2nd duplicate (CFG file 2ACE0105)

1111 = 15th duplicate (CFG file FACE0105)

Byte 1
Bit 7 - 0= configuration is complete

1 = configuration is not complete
Bit 6:2- Reserved (0)
Bit 1 - 0= EISA IOCHKERR not supported

1= EISA IOCHKERR supported . Bit 0 - 0= EISA ENABLE not supported (expansion board cannot be disabled)
1= EISA ENABLE not supported (board can be disabled)

CFG File Extension Revision Level Total Bytes = 2

Byte 0 = Minor revision level (0 if no CFG File Extension)
Byte 1 = Major revision level (0 if no CFG File Extension)

Function Length Total Bytes = 2

Length does not include these two bytes, or the checksum at the end of nonvolatile
memory
Byte 0 = LSB length of following function entry
Byte 1 = MSB length of following function entry '

4U4

EP 0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

Memory Configuration Total Bytes = 7 to 63

Byte 0 = Memory configuration byte
Bit 7 - 0 = Last entry

1 = More entries follow
Bit 6 - Reserved (0)
Bit 5 - 0 = Not shared memory

1 = Shared memory
Bit 4:3 - Memory Type

00 = SYStem (base or extended)
01 = EXPanded
10 = VTRtual
11 = OTHer

Bit 2 - Reserved (0)
Bit 1 - 0 = Not Cached

1 = Cached
Bit 0 - 0 = Read Only (ROM)

1 = Read/Write (RAM)

Byte 1 = Memory Data Size
Bit 7:4 - Reserved (0)
Bit 3:2 - Decode Size

00 = 2 0
01 = 24
10 = 32
11 = Reserved (0)

Bit 1:0 - Data Size (access size)
00 = BYTE
01 = WORD
10 = DWORD
11 = Reserved (0)

Byte 2 = LSByte Memory start address (d
Byte 3 = Middle Byte Memory start addr*
Byte 4 = MSByte Memory start address
Byte 5 = LSByte Memory size (bytes divic
Byte 6 = MSByte Memory size

Interrupt Configuration

ByteO
Bit 7 - 0 = Last entry

1 = More entries follow
Bit 6 - 0 = Not Shared

1 = Shared
Bit 5 0 = Edge Triggered

1 = Level Triggered
Bit 4 - Reserved (0)
Bit 3:0 - Interrupt (0-F)

3yte 1 = Reserved (0)

Total Bytes = 2 to 14

= UsByte Memory start address (divided by lOOh)
= Middle Byte Memory start address
= MSByte Memory start address
= LSByte Memory size (bytes divided by 400h)
= MSByte Memory size

i05

EP0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

DMA Channel Description Total Bytes = 2 to 8

ByteO
Bit 7 - 0 = Last entry

1 = More entries follow
Bit 6 - 0 = Not Shared

1 = Shared
Bit 5:3 - Reserved (0)
Bit 2:0 - DMA Channel Number (0-7)

Byte 1
Bit 7:6 - Reserved (0)
Bit 5:4 - DMA Timing

00 - Default (ISA compatible) tiining
01 - Type "A" timing
10 - Type "B" timing
11 - BURST (Type "C) timing

Bit 3:2 - Transfer size
00= 8-bit (byte) transfer
01= 16-bit (word) transfer
10= 32-bit (dword) transfer
11= Reserved (0)

Bit 1:0 - Reserved (0)

Port I/O Information Total Bytes = 3 to 60

ByteO
Bit 7 - 0 = Last entry

1 = More entries follow
. Bit 6 - 0 = Not Shared

1 = Shared
Bit 5 - Reserved (0)
Bit 4:0 - Number or Ports (minus 1)

00000 = 1 port
00001 = 2 sequential ports

11111 = 32 sequential ports

Byte 1 = LSByte I/O Port Address
Byte 2 = MSByte I/O Port address

W6

EP 0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

Initialization Data Total Bytes = 4 to 60

Byte 0 = Initialization Type
Bit 7 - 0 = Last entry

1 = More entries follow
Bit 6:3 - Reserved (0)
Bit 2 - Port value or Mask value

0 - Write value to port
1 - Use mask and value

Bit 1:0 - Type of access
00 - Byte address (8-bit)
01 - Word address (16-bit)
10 - Dword address (32-bit)
11 - Reserved (0)

Byte 1 = LSByte of port I/O address
Byte 2 = MSByte ofport I/O address

If Byte 0, Bit 2 = 0 (no mask), THEN
Bit 1:0 = Port width to write

00= Byte 3 = Port value
01 = Byte 3 = LSByte of port value

Byte 4 = MSByte of port value
10= Byte 3 = LSByte ofport value •

Byte 4 = 2nd byte of port value
Byte 5 = 3rd byte' of port value
Byte 6 = MSByte of port value

11= Reserved (0)
If Byte 0, Bit 2 = 1 (use mask), THEN

Bits 1:0 = Number of bytes/port value/mask
00= Byte 3 = Port value

Byte 4 = Port mask (byte)
01 = Byte 3 = LSByte of port value

Byte 4 = MSByte ofport value
Byte 5 = LSByte of Port mask (word)
Byte 6 = MSByte of Port mask (word)

10= Byte 3 = LSByte of port value
Byte 4 = 2nd byte or port value
Byte 5 = 3rd byte ofport value
Byte 6 = MSByte of port value
Byte 7 = LSByte of port mask (dword)
Byte 8 = 2nd byte of port mask (dword)
Byte 9 = 3rd byte of port mask (dword)
Byte 10= MSByte of port mask (dword)

11= Reserved (0)

07

EP 0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

Configuration Data for 2nd function Function length

Configuration Data for 3rd function Function length
* *

Configuration Data for nth function Function length for nth function = 00

Configuration File Checksum Total Bytes = 2

Byte 1 = MSByte of configuration file checksum
Byte 0 = LSByte of configuration file checksum

Free-form Configuration Data Block Structure

When the free-form data bit is set in the Function Information byte (bit 6), the data
block pointed to by DS:SI has the following specific format.

Four-Byte Compressed ID Total Bytes = 4

ByteO
Bit 7 Reserved (0)
Bit 6:2 Compressed character 1
Bit 1:0 Compressed character 2

Byte 1
Bit 7:5 Compressed character 2
Bit 4:0 Compressed character 3

Byte 2
Bit 7:4 1st hex digit of product number
Bit 3:0 2nd hex digit of product number

Byte 3
Bit 7:4 3rd hex digit of product number
Bit 3:0 1-digit product revision number

108

EP 0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

ID and Slot Information Total Bytes = 2

ByteO
Bit 7 - 0= no duplicate ID is present

1 = duplicate is present
Bit 6- 0= ID is readable

1 = ID is not readable
Bit 5:4 - Slot type

00= expansion slot
01= embedded slot
10= virtual slot
11= reserved (0)

Bit 3:0 - Numeric identifier for duplicate CFG filenames (IDs)
0000 = No duplicate CFG filenames
0001 = 1st duplicate (CFG file 1ACE01Q5)
0010 = 2nd duplicate (CFG file 2ACE0105)

1111 = 15th duplicate (CFG file FACE0105)

Byte 1
Bit 7 - 0= configuration is complete

1 = configuration is not complete
Bit 6:2 - Reserved (0)
Bit 1 - 0= EISA IOCHKERR not supported

1= EISA IOCHKERR supported
Bit 0 - 0= EISA ENABLE not supported (expansion board cannot be disabled)

1= EISA ENABLE not supported (board can be disabled)

CFG File Extension Revision Level Total Bytes = 2

Byte 0 = Minor revision level (0 if no CFG File Extension)
Byte 1 = Major revision level (0 if no CFG File Extension)

409

EP 0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

Selections Total Bytes = 2 to 27

Byte 0 = Length of following selections field
Byte 1 = 1st Selection
Byte 2 = 2nd Selection

Byte 26 = 26th Selection

Function Information Total Bytes = 1

ByteO
Bit 7 - 0= function is not disabled

1 = function is disabled
Bit 6 -CFG extension free-form data (= 1)
Bit 5 - Port initialization entry(s) follows
Bit 4 - Port range entry(s) follows
Bit 3 - DMA entryfs) follows
Bit 2 - Interrupt (IRQ) entry(s) follows
Bit 1 - Memory entry(s) follows
Bit 0 - Type/subtype ASCII string entry follows

TYPE and SUBTYPE ASCII String Total Bytes = 2 to 81

Byte 0 = Length of following ASCII string field
Byte 1 = 1st character of ASCII string
Byte 2 = 2nd character of ASCII string

Byte 80= 80th character of ASCII string

Free-form Data Total Bytes = 2 to 205
Byte 0 = Length of following data block
Byte 1 = 1st byte of freeform data

Byte 204 = 204th byte of freeform data

The following paragraphs specify the data structure fields that are not obvious from
the configuration language specification.

Configuration File Checksum

The configuration file checksum is a 16-bit logical (modula 64k) sum of ASCII
values in the configuration file.

Configuration File Extension Revision Level

The Configuration File Extension revision level specifies the revision number for-
the overlay file. The configuration file extension checks the revision number when
reconstructing the user displays from a backup copy of the configuration (a configuration
saved to a disk file) or from reading nonvolatile memory (backtracking).

410

EP 0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

Function Length

Specifies the number of nonvolatile memory bytes that contain the function
information. The two bytes of function length are not included in the count. The
configuration file checksum bytes are not included.

Selections field

Nonvolatile memory contains numbers that indicate the function choices and
resource alternatives selected during configuration. The configuration utility uses the
selection numbers during a reconfiguration to display the default selections to a user
(backtrack).

The backtrack routine reads selection numbers from nonvolatile memory for display
as the defaults. Selections from all group types (COMBINE, LINK or FREE) have a
selection number, even if there is only one resource to select

1. Selection number of Choice in the Function or Subfunction.

2. Selection number of Subchoice (if it exists).

3. Selection number of alternate choice in each group for LINK and COMBINE
groups or the selection number for each resource in a FREE group.

4. When a Read Function Configuration Information BIOS routine call is issued, the
information in Subfunctions are included in the Function. Thus the selection
numbers in Subfunctions are grouped with the Function selection numbers.

These selection numbers are repeated as needed.

Note 1: Each memory resource selection number requires one word of
storage. Other resource selection numbers require one byte each.

Note 2: The selection numbers for a Function include the selections for its
Subfunctions.

EXAMPLE #1:

CFG FILE
FUNCTION = ...

CHOICE(O) = ...0
LINK

Resource 1 = 1 2
Resource2 = 3 4

;2nd alternate was chosen (1)

;CHOICE 0 was chosen

F R E E
- Resource3 = 5 | 7 ;2nd alternate was chosen (1)

;lst resource was chosen (0)
;3rd alternate was chosen (2)

Resource4 = 6
Resources = 7 1 8 1 9

CHOICE(l) = ...

411

f U 42B 184 AZ

EXTENDED INDUSTRY STANUARD AKCH11U.CI ukjc.
:ONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

L8.2 Initializing Nonvolatile Memory

The EISA configuration utility begins initializing nonvolatile memory by issuing the
Clear Nonvolatile Memory" BIOS routine Call that clears the configuration information
rom EISA nonvolatile memory. The configuration utility then issues repetitive "Write
Nonvolatile Memory" BIOS routine Calls to load all EISA system board, embedded device,
irtual device, and expansion board configuration data.

The configuration utility first builds a data structure that includes the configuration
□formation for slot 0 (the system board), then executes the "Write Nonvolatile Memory
JIOS routine Call with a pointer to the data structure. The configuration utility repeats
he sequence for each slot and device.

».8.3 Power-up initialization ot tibA s>ysiems

EISA systems must assume a reset condition after power-up reset occurs.
Expansion boards can decode only the slot-specific I/O addresses used for initialization
md must assume a disabled state.

The BIOS power-up routine performs the following steps to initialize EISA systems:

It confh-ms the validity of configuration information in nonvolatile memory. If
the configuration information is not valid the power-up routine aborts
automatic configuration, issues an error message, then continues the power-up
sequence.

• It compares the EISA product ID and slot information in nonvolatile memory
with the actual installed hardware to confirm that the configuration has not
changed. If the expansion board installed in a slot does not match the
information stored in nonvolatile memory the power-up routine aborts
initialization.

• It uses the configuration data to initialize the system board, expansion boards,
embedded devices and virtual devices.

• It enables the system board, expansion boards, embedded devices and virtual
devices for operation.

The system ROM automatically determines the I/O port address and initialization
values and programs the following registers:

Interrupt controller edge/level register
DMA controller (Extended Mode Register)

DMA channel cycle timing
DMA data size and addressing mode

DMA controller (DMA Command Register)
DRQ and DAK' assert level (high/low)
Fixed or rotating priority scheme

The power-up routine initializes the system board and all EISA expansion boards

before determining system memory size or searching for I/O devices (such as printer ports,
communications ports, VGA etc.). Since memory boards that have optional configuration
as system or expanded memory are included in the memory size determination, neither an

option ROM nor an operating system-dependent device driver is required.

4i a

r 0 426 184 A2

EXTENDED INDUSTRY STAJNUAKU A n u i u t L i u i m
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

.8.4 Slot Initialization sequence

The EISA power-up routine initializes expansion slots, embedded devices, virtual
evices, and the system board configuration registers. The initialization takes place during
very cold or warm boot.

The flow chart in Figure 103 specifies the EISA slot initialization sequence:

Figure 103 - Power-Up Slot Initialization

dio or narm oooî .

tart of USA slot iniuauzauon

©

9

epon conilgurauon error j

begin win sioi l = u |
increment l i
to next slot [

el configuration error byte
n nonvolatile memory. Uien
bort initialization.

lead corJigurauon storage imormauon lor
lot Z. function 1
INT 15h ah=D8h. al=l. ch=function. cl=Z)

INT 15h returns) All configured pnysical ana
. . @ t _!_«.. :_.t ..4 cr=i. an=oun; ••<"@•

XirtuaKlfL

Y No J NO
©

configuration
complete, continue
with default poxer
up sequences.

4 I o

EP 0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

Figure 103- Power-Up Slot Initialization (Continued)

board

414

U ti£0 I Of

DNFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

The system KUM power-up routine can iniuaiu.c umw. —
icessary to bring the system up. The power-up routine must then initialize devices

jquentially by slot number and function number.

The power-up routine initializes critical devices first, then proceeds to initialize the

ISA system board, EMB(O). The power-up routine then begins expansion board
t i&zation beginning with expansion slot 1. The power-up routine issues a TRjad
unction Configuration Information" BIOS routine Call for slot 1 function 1. The power-

p routine checks the product ID field of the data block returned for slot 1 function 1 to

etermine if the slot was configured as empty or with an expansion board installed.

If nonvolatile memory indicates the slot has an expansion board instaHed, and the

sadable ID bit indicates a readable ID, the power-up routine performs the I/O read to

infirm that the product ID matches nonvolatile memory. If the product m read

Deration indicates a not ready condition on the first try, the power-up routine wans 100
Siseconds, then retries the ED read. The power-up routine issues an error message of the

Dread s S indicates a not ready condition after the 100 millisecond delay, then aborts

ntialization.

If the product ID matches nonvolatile memory, the power-up routine performs the

litialization bv setting the I/O ports to the values indicated m nonvolatile memory and
r o ^ r S S g L f s 7 s t e m b o W controllers to properly allocate the system resources

squired by the expansion board.

After initialling each of the expansion board functions and the required system

esources, the power-up routine enables the expansion board men issues ±e Read
S o n Configuration Information" BIOS routine Call for slot 2 function 1. The power-

p routine continues the process until all functions m all expansion slots, embedded slots

nd virtual slots are configured.

The power-up routine does not initialize installed EISA or ISA expansion boards

hat do not have configuration information stored in nonvolatile memory.

1.8.5 Error Hanaung uunng oiui iuiuaiu.au<jii

Several error conditions can arise during slot initialization.

If an expansion board indicates a not ready condition when its product ID is read

he power-up routine waits 100 ms then retries the product ID read If the J P ™ ™ * ^
still indicates a not ready condition an appropriate error is displayed and the power-up
routine continues EISA expansion board initialization with the next slot.

If the ID of the EISA expansion board does not match the contents of nonvolatile

memory then an appropriate error is displayed and the power-up routine continues fclSA

expansion board initialization with the next slot.

If nonvolatile memory indicates the presence of an EISA board with an ID and no

matching board is found then an appropriate error is displayed and the power-up routine

continues EISA expansion board initialization with the next slot.

If the ID of a slot is tagged. not readable in the nonvolatile memory information

then the ooter up routines attempt to read a valid ID from the slot being initialized. If a

valid r o S T S d I ^ A e slot then an appropriate error is displayed and the power-up
routine continues EISA expansion board initialization with the next slot.

EP 0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

If the nonvolatile memory information indicates that a slot is empty and a valid ID is
read from the slot, then an appropriate error is displayed and the power-up routine
continues EISA expansion board initialization with the next slot.

An error is displayed if nonvolatile memory slot information does not match what is
determined to be in the slots.

An "incomplete configuration" message is displayed if the nonvolatile memory ID
and Slot Information incomplete configuration bit is set.

4.8.6 Noncacheable Memory Map Initialization

EISA systems with cache memory can use the data in nonvolatile memory to
construct a noncacheable address map. The power-up routine identifies noncacheable
memory address ranges from the configuration information in nonvolatile memory. The
power-up routine supplies the noncacheable addresses to hardware that disables the
memory cache during accesses to the noncacheable addresses.

4.8.7 Writable Memory Map Initialization

EISA systems can use the data in nonvolatile memory to construct a writable
address map. The power-up routine identifies RAM and ROM memory address ranges
from the configuration information in nonvolatile memory. The power-up routine suppues
the RAM and ROM addresses to hardware that disables memory writes during accesses to
the ROM addresses.

416

' U 420 1 0<* H2

EATEN DEU tlNUUSiKr &1AI\UAKU A l R W U i c i - i u i u !
lONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

1.9 EISA system i/u Address Map

The system I/O address map that follows illustrates the extended I/O address space
Lvailable for EISA system boards and expansion boards. An EISA system board has 768

>ytes of I/O space in addition to the 256 bytes available for ISA system boards. Each EISA

:xpansion slot and embedded device has 1024 bytes of slot-specific I/O address space m
idaition to the ISA I/O space allocated to expansion boards.

The system I/O address map indicates the I/O address space used for EISA system
ward devices and EISA expansion board devices. The address map also indicates; address

•anges that are aliases of the ISA expansion board I/O space (100h-3FFh). The alias

iddresses may only be used by expansion boards that can assure no confhct^occursbetween
he alias address and normal ISA expansion board I/O addresses (100h-3FFh). I he

xrafiguration utility does not identify conflicting use of ISA alias addresses.

The system board decodes the EISA slot-specific I/O address ranges and all I/O for

rystem board devices from LA<15:2> with BE*<3:0>. The EISA slot-specific I/O ranges
ie decoded from LA<15:2> with LA<9:8> zero, TCe system board decodes
LA<15:12> with LA<9:8> zero to generate the slot-specific signals, AENx. The EISA

dot-specific device decodes the individual bytes in the I/O range from
BE*<3:0> (LA<9:8> must be zero). The slot-specific ranges are: OzOOOh-OzOFFh,
3z400h-0z4FFht 0z800h-0z8FFh, OzCOOh-OzCFFh (where V represents the slot number).
They do not conflict with any ISA expansion board. EISA exparmon boards should not use

any address (or alias address) in the ISA I/O range (l00h-3FFh) except for ISA

Mmpatibility.

EXTENDED INDUSTRY MAJ>iliaau A K t n u c i - i u i ^
3NFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

I/O address I/O Range
Range (hex): Reserved for

0000-OOFF EISA/ISA System board
0100-03 FF ISA expansion boards
0400-04FF Reserved, EISA System board
controllers
0500-07FF Alias of 100h-3FFh
0800-08FF EISA System board
0900-OBFF Alias of 100h-3FFh
0C0O-0CFF EISA System board
0DOO-0FFF Alias of 100h-3FFh

1000- 10FF Slot 1
1100-13FF Alias of 100h-3FFh
1400-14FF Slot 1
1500-17FF Alias of 100h-3FFh
1800-18FF Slot 1
190O-1BFF Alias of 100h-3FFh
1C00-1CFF Slot 1
1D0O-1FFF Alias of 100h-3FFh

OzOOO-OzOFF Slot 'z'
0zl0O-0z3FF Alias of 100h-3FFh
0z400-0z4FF Slot 'z'
0z500-0z7FF Alias of 100h-3FFh
0z800-0z8FF Slot 'z'
0z900-0zBFF Alias of 100h-3FFh
uzCOO-OzCFF Slot 'z'
OzDOO-OzFFP Alias of 100h-3FFh

J.9.1 Expansion aoara Aaaress u e w u m y

An expansion board that uses the slot-specific I/O ranges may during I/O cycles
decode address bits LA<11:2>, and BE'<3:0> with AENx negated (low) to address any

byte in the slot-specific I/O range. An expansion board that does not need the fu 1 I /O

address range can decode fewer address bits, depending on the number of p o ^ requffed

The expansfon board must, at a minimum decode address bits LA < 9:8 ;> low and AENx

negated (low) to assure that the I/O address does not conflict with the ISA expansion
board I/O address range.

See section 2.8.7 in this specification for additional information about EISA I /O

decoding and the use of AENx to control slot-specific I/O addressing.

A device driver addresses the expansion board slot-specific addresses with a full 16-

bit I/O address. The device driver appends the expansion board address bits, < 11:0>. to

the high order four bits represented by the hexadecimal slot number to form the 16-bit

address, <15:0>.

*t 1 a

ONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

Slot-specific addresses UzUSUti tnrougn uzwjjh aic »«»Cu «« r ~ -
lot-specific address 0zC84h is reserved for expansion board control bits All other slot-

jecific addresses can be used by the expansion board for configuration registers and

sneral purpose I /O.

An EISA expansion board can also use the ISA expansion board I/O ranges, but

mst assure that the addresses do not conflict with other ISA expansion boards.

Tbe following address ranges are not aliases of ISA expansion board I/O addresses

nd should be used by an EISA expansion bo;.rd for I/O registers:

I/O address I/O Range
Range (hex): Reserved for:

1000-10FF Slot 1
1400-14FF Slot 1
1800-18FF Slot 1
1C00-1CFF Slot 1

2000-20FF Slot 2
2400-24FF Slot 2
2800-28FF Slot 2
2CXrO-2CFF Slot 2

OzOOO-OzOFF Slot'z'
0z40O-0z4FF Slot'z'
0z800-0z8FF Slot'z'
OzCOO-OzCFF Slot'z'

*+ i o

P 0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCHi x fc.L.1 utu^
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

The following address ranges are aliases of ISA expansion board I/O addresses:

I/O address I/O Range
Range (hex): Reserved for:

1100-13FF Alias of 100h-3FFh
150O-17FF Alias of 100h-3FFh
1900-1BFF Alias of 100h-3FFh
1D00-1FFF Alias of 100h-3FFh

2100- 13FF Alias of 100h-3FFh
250O-27FF Alias of 100h-3FFh
2900-2BFF Alias of 100h-3FFh
2D00-2FFF Alias of 100h-3FFh

0zl00-0z3FF Alias of 100h-3FFh
Oz5OO-0z7FF Alias of 100h-3FFh
0z9OO-0zBFF Alias of 100h-3FFh
OzDOO-OzFFf Alias of 100h-3FFh

Slot-specific addresses OzCSOh through OzUJih are reservea ior tne proauci u j .
Slot-specific address 02C84h is reserved for expansion board control bits. All other slot-
specific addresses can be used by the expansion board for configuration registers and
general purpose I /O.

An EISA expansion board that uses the ISA expansion board I/O ranges must
assure that the addresses do not conflict with other ISA expansion boards.

4.9.2 Embedded Slot Address u e c o a m g

Embedded slot address decoding works exactly like expansion board address

decoding except that the embedded device is integrated onto the system board. The
embedded slots -use slot numbers that start after the last expansion slot number, t o r

example, the first embedded slot is slot 8 if the EISA system has 7 expansion slots.

4.9.3 System Board Address Decoding

An EISA system board decodes 16 address bits during I/O cycles. The system board

configuration registers and controller registers are mapped into the address ranges between
OOOOh and OCFFh that are not aliases of ISA expansion board I/O addresses.

4k!U

cr 0 426 184 A2

iSAlfc-INUhU INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

me touowing address ranges are not aliases of ISA expansion board I/O addresses
and can be used by an EISA system board for I/O registers:

I/O address I/O Range
Range (hex): Reserved for:

0000-OQFF ISA System board peripherals
0100-03FF ISA expansion boards
0400-04FF Reserved - System board controllers
0800-08FF System board
0COO-0CFF System board

lhe fallowing address ranges are aliases of ISA expansion board I/O addresses and
annot be used by an EISA system board:

I/O address I/O Range
Range (hex): Reserved for:

0500-07FF Alias of 100h-3FFh
0900-OBFF Alias of 100h-3FFh
0D00-0FFF Alias of 100h-3FFh

k!1

fcP U 184

^ a i ^ , u c u m u u o i K r o 1 AJNUAKD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

ti^A proauct identifier (ID)

cio/v expansion Doaras, embedded devices and system boards have a four byte product identifier (ID) that can be read from I/O port addresses 0zC80h through 0zC83h
^ZZ or S ^ } ^ ^ 0 3 1 ^ - For example, the system board ID can be read from I/O port
^™£*??J£80h 'OC83h ^ the sIot 1 Product ID can be read from I/O port addresses l(JoUh-lCo3h.

The first two bytes (0zC80h and 0zC81h) contain a compressed representation of
? ® manufacturer code. The manufacturer code is a three character code (uppercase ASCII characters in range "A"-"Z") chosen by the manufacturer and registered with the firm that distributes this specification. System board and expansion board manufacturers follow the same procedure to choose and register their manufacturer code.

The manufacturer code "ISA" should be used to indicate a generic ISA adapter.

The three character manufacturer code is compressed into three 5-bit values so that
it can be incorporated into the two I/O bytes at 0zC80h and OzCSlh. The compression
procedure is:

Find hexadecimal ASCII value for each letter
ASCII for "A" - "Z": "A" = 41h, "Z" = 5Ah

Subtract 40h from each ASCII value
Compressed "A" = 41h-40h = Olh = 0000 0001
Compressed "Z" = 5Ah-40h = lAh = 0001 1010

Retain 5 least significant bits for each letter
Discard 3 most significant bits (they are always zero)
Compressed "A" = 00001, Compressed "Z" = 11010-

Compressed code = Concatenate "0" and the three 5-bit values
"AZAH = 0 00001 11010 00001 (a 16-bit value)
0zC80h = 00000111, 0zC81h = 01000001

zCSShy1* folIow*ng fiSures snow tne format of the product ID (addresses 0zC80h -

iuuuci lu, lsi Dyte: uzi^sun

r \ - - r r r r

.no cnaracter ot compressed manufacturer code
(bit 1 of OzCSOH is most significant bit)

st character of compressed manufacturer code
(bit 6 of 0zC80h is most significant bit)

Reserved (0)

EP 0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

Product ID, 2nd byte: OzCSlh

-3rd character of compressed manufacturer code
(bit 4 of 0zC8lh is most significant bit)

-2nd character of manufacturer's code
(continued from OzCSOh)

Product ID, 3rd byte: 0zC82h

7 6 5 4 3 2 1 0

Product ED, 4th byte: 0

7 6 5 4 3 2 1 0

-Product number

Revision number

Reporting Not Ready During Access to the Product ID Register

An EISA device that requires a long power-up sequence may report a not ready
condition when the power-up routine attempts to read the product ID. The expansion
board must complete its power-up sequence and report its product ID within 100 ms after
reporting the not ready condition. The expansion board supplies the following data in port
0zC80h to indicate the not ready condition:

Product ID, 1st byte: 0zC80h

xxxx = Don't care
111 = Not ready
Reserved (0)

4.10.1 EISA System Board ID

The first two bytes of the system board ID are a compresse'd representation of the
manufacturer code. The third byte and first five bits of the fourth byte can be used by the
system board manufacturer for any purpose desired. The least significant 3 bits of the
fourth byte indicate the EISA bus revision level.

The compressed system board manufacturer "code has the same format as an
expansion board manufacturer code and is illustrated in the "EISA Product Identifier"
section of this specification.

423

EP 0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCHi t'ECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

The I/O addresses for the system board ID bytes are:

System Board ID, 1st byte: 0C80h
System Board ID, 2nd byte: 0C81h
System Board ID, 3rd byte: 0C82h
System Board ID, 4th byte: 0C83h

The following diagrams show the format of the system board ID.

System Board ID, 1st byte: OC80h

7 6 5 4 3 2 1 0

-2nd character of compressed manufacturer code
(bit 1 of 0C80h is most significant bit)

-1st character of compressed manufacturer code
(bit 6 of 0C80h is most sigriificant bit)

-Reserved (0)

System Board ID, 2nd byte: 0C81h

-3rd character of compressed manufacturer code
(bit 4 of 0C81n is most significant bit)

-2nd character of manufacturer's code
(continued from 0C80h)

System Board ID, 3rd byte: 0C82h

-Reserved for manufacturer's use

System Board ID, 4th byte: 0C83h

7 6 5 4 3 2 1 0

-EISA bus version (initial version = 001)

-Reserved for manufacturer's use

424

P 0 426 184 A2

EXTENDED INDUSTRY STANDARD AKL.ru l t d UKJtt.
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

dentifying an EISA Expansion Board

1. Write FFh to 0C80h

The procedure precharges the system board ID register (at I/O address OC80h).

2. Read OC80h

If contents of 0C80h equals FFh, discontinue the identification process, the
system board does not nave a readable ID.

If contents of 0C80h does not equal FFh and the most significant bit is a zero:
the system board supports a readable ID that can be read at 0C80h-0C83h.

4.10.2 EISA Expansion Board Product id

The first two bytes of the 4-byte product ID are a compressed representation of the
manufacturer code. The third byte represents the product number and the fourth byte
represents the product's revision level.

A revised expansion board that requires a modification to its configuration file must
have a new product number and revision level in its ID. A revised expansion board that
does not require a modification to the configuration file can use its original product
number, with a new revision level.

The system ROM power-up routine reads the first four bytes of the ID to compare
against the configuration information stored in nonvolatile memory. A match of the
hardware ID and the ID stored in nonvolatile memory confirms that the configuration has
not changed since system configuration. Bits 3:0 of the fourth byte are not used by the

power-up routine.

Device drivers can use the product ID to determine the type of expansion board
installed and the revision level.

The compressed expansion board manufacturer code has the same format as a
system board manufacturer code and is illustrated in the "EISA Product Identifier" section
of this specification.

The I/O addresses (where "z" is the slot number) for the product ID bytes are:

Product ID, 1st byte: 0zC80h
Product ID, 2nd byte: 0zC81h
Product ID, 3rd byte: 0zC82h
Product ID, 4th byte: 0zC83h

42b

EP0 426 184 A2

fcXTblNUUD INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

lhe following diagrams illustrate the third and fourth byte of the product ID.

Expansion Board Product ID, 3rd byte: 0zC82h

2nd hexadecimal digit of product number
(bit 3 is most significant bit)

1st hexadecimal digit of product number
(bit 7 is most significant bit)

expansion Board Product ID, 4th byte: 0zC83h

l l l l l

Hexadecimal digit of revision level
(bit 3 is most significant bit)

3rd hexadecimal digit of product number
(bit 7 is most significant bit)

EP0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

Identifying an LISA Expansion Board

1. Write FFh to OzCSOh

The procedure precharges the expansion board ID register (at I/O address
OzCSOh).

2. Read 0zC80h

If contents of 0zC80h equals FFh, discontinue the identification process, the
expansion board does not have a readable ID.

If contents of 0zC80h does not equal FFh and the most significant bit is a zero:
the expansion board supports a readable ID that can be read at 0zC80h-OzC83h.

4.10.3 EISA Embedded Devices

The ID of an EISA embedded device has the same format as an expansion board
product ED. The ID of an embedded device- can be accessed through I/O addresses
3zC80h-0zC83h, where V is the embedded slot number.

@27

U t^o l o t

EXTENDED INDUblKX SlAJNUA^u ^ n i i ^ i ^
DNFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

11 Expansion Boara uonirui oiu.

Port 0zC84h contains ENABLE, IOCHKERR, and IOCHKRST bits for software

mtrol of programrnable expansior i boards EISA ^ " g ^ g ^ S ^ ^ t
OCHKERR = INVALID" in the CFG file if ENABLE and IOCHKERR bits are not

ipported. Tbe Expansion Board Control Bits are shown in the following figure.

expansion Board Control tsits - uz^a^n

@

iNAiJUi t reaa /wrue;
0 = Expansion board disable
1 = Expansion board enable

OCHKERR (read only)
0 = No error pending
1 = A serious error detected by the

expansion board
OCHKRST (write only)

0 = Normal operation
1 = When pulsed to 1 for 500 ns, the

expansion board is reset
Reserved (set to 0)

Jit 0 - Enable Bit (Read/wri te)

The ENABLE bit can be set to enable an expansion board for operation, or cleared

o disable operation. The bit can be read to determine the enabled or disabled state. The
°xpaS£n bJoa?d ̂ dears ENABLE after sampling RESDRV asserted and enten> a d o t t e d
fete. The expansion board must only decode sfot-specific I/O ^ S ^ t when
[he expansion board must disable all bus drivers while in the disabled state except .when

esponding to slot-specific I/O. EISA expansion boards must fully support the ENABLE

)it functions.

Sit 1 - IOCHKJEKK Bit (Keaa uniy;

The IOCHKERR bit can be read to determine if ^ « ^ ° ° ^ ^ ^ j E f
irror. The expansion board indicates a pending error by setting IOCHKERR, clearing the

ENABLE bit and entering the disabled state.. The expansion 1 ̂ °^d ^ay but ^
required to assert the bus signal IOCHK' when it sets IOCHKERR. Pulsing IOCH KRST
Sets IOCHKERR. EISA expansion boards must respond to a read access of the

IOCHKERR bit. EISA expansion boards that do not need to indicate errors may always

respond with the IOCHKERR bit cleared.

An expansion board sets IOCHKERR to indicate that * serious error has occurred.

Parity errors and uncorrectable system errors exemplify problerm that JJgg «use an

exDansion board to set IOCHKERR. An expansion board always holds IOCHKEKK set
S e S se r t iS the bus signal, IOCHK'. The main CPU or bus master can poll the

IOCH KERR, bi t for each expansion board to determine which board caused an error.

EP 0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

Bit 2 - IOCHKRST Bit (Write Only)

Pulsing ICCHKRST to a T for at least 500 ns resets an expansion board's
hardware. The expansion board resets all logic, assumes a disabled state, clears
[OCHKERR and clears ENABLE when IOCHKRST is pulsed. EISA expansion boards
that never set the IOCHKERR bit may ignore write accesses to the IOCHKRST b i t

Example Sequence for an IOCHKERR

The system ROM power-up routine initializes the expansion board and sets the
ENABLE bit to begin operation.

The expansion board begins decoding memory and I/O addresses outside the slot-
specific I/O range and enables its bus drivers to drive the bus signals.

The device driver determines the slot-specific I/O address from the configuration
data in nonvolatile memory. The device driver can then control the device operation.

The expansion board detects a serious error, clears the ENABLE bit, sets its
IOCHKERR bit and asserts IOCHK*. The expansion board stops decoding memory
addresses and I/O addresses outside its slot specific range and it floats all bus drivers
(except the one driving IOCHK*) unless responding to slot-specific I /O.

The expansion board detects a serious error, clears the ENABLE bit, sets its
IOCHKERR bit and asserts IOCHK*. The expansion board disables all bus signal
drivers except the one driving IOCHK*. The expansion board stops decoding
memory addresses and I/O addresses outside its slot specific range.

The assertion of IOCHK* invokes the NMI service routine. The NMI service
routine sequentially polls the IOCHKERR bit for each EISA device until it finds a device
with IOCHKERR set The NMI service routine then begins the recovery procedure
(restore the operation or disable the expansion board).

To restore the expansion board, correct the error, then pulse IOCHKRST to "1" for
at least 500 ns to clear the IOCHKERR bit and negate the IOCHK* bus signal. The NMI
service routine can then invoke the device driver to initialize the expansion board and set
the ENABLE bit for operation.

To disable the expansion board, the NMI service routine must pulse IOCHKRST to
T for at least 500 ns to clear the IOCHKERR bit and negate the IOCHK* bus signal. The
NMI service routine can also display a message to the user indicating the action taken.

The NMI service routine returns execution to the routine interrupted by NMI. If
multiple devices asserted IOCHK*, or if another device asserted IOCHK* during the NMI
service, the NMI routine is invoked again to repeat the IOCHKERR poll and recovery
procedure.

429

EP 0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

4.12 System Software Use of Configuration Information

Device drivers and system software can use the configuration information from
nonvolatile memory for the following purposes:

• Determine the slot number of an EISA device

• Determine the I/O address of the EISA device registers specified during
configuration

• Determine configuration information

• Determine the system resources used by an EISA or ISA device

• Initialize the device for operation

Use of the configuration memory by a product dependent device driver may differ
from use by a product independent device driver. A device driver is product dependent if
the driver is provided for use with a particular product (i.e., an ACE Ethernet network
board). A device driver is product independent if the driver is provided for use with
products from a variety of vendors (such as a parallel port).

4.12.1 Slot Search by Product Independent Device Driver

A product independent device driver should check the TYPE string of each function
in each slot (including expansion slots, embedded devices and virtual devices) to determine
the slot in which the desired function is installed. The driver should begin searching at Slot
0, function 1 and sequentially increment through each function of each slot until the last
slot has been checked.

The device driver can use the "Read Slot Configuration Information" to determine
the number of functions located in any slot and use the "Read Function Configuration
Information" BIOS routine Call to read the configurauon' information (which includes the
TYPE string) for the function. The device driver terminates the search when it finds a
function with the desired TYPE string or when the "Read Slot Configuration Information"
BIOS routine Call returns an "Invalid slot number" error. The error indicates that all slots
have been checked.

Device Driver Search for TYPE String

The following example illustrates a device driver search for a parallel port with
TYPE = "PAR."

The device driver performs the search by executing a "Read Slot Configuration
Information" BIOS routine Call for each slot to determine if a device is installed and the
number of functions present in the slot. The device driver begins the search by executing a
"Read Slot Configuration Information" BIOS routine Call for slot 0 to determine the
number of functions addressed as slot 0.

430

:P 0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

The device driver then executes a "Read Function Configuration intormauon 1U5
routine Call for slot 0 function 1. The BIOS routine reads the function configuration
information from nonvolatile memory and writes it to a table in system memory. The
device driver inspects the TYPE field in the returned table to determine if the first three
:haracters of the TYPE string equal "PAR," which indicates a parallel port The device
driver continues executing "Read Function Configuration Information" BIOS routine Calls
and inspecting the TYPE field for each slot 0 function.

The device driver then executes a "Read Slot Configuration Information" BIOS
routine Call for slot 1 to determine the number of functions addressed as slot 1. The
device driver requests the function information from nonvolatile memory and inspects the
TYPE field for each function in slot 1. The device driver continues the slot search until it
locates one or all functions with TYPE = "PAR", or until the "Read Function
Configuration Information" BIOS routine Call indicates that all slots have been searched
b̂y returning "invalid slot").

If the device driver finds a function with TYPE = "PAR", it can deteraiine the
initialization and resource requirements from the table returned by a "Read Function
Configuration Information" BIOS routine Call.

Device Driver Search for SUBTYPE String

A driver can search for a specific configuration of a function by scanning the
SUBTYPE strings. The following example illustrates a device driver search for a serial
port with SUBTYPE = "COM1."

The device driver first finds an asynchronous communications port by searching for
the TYPE string fragment "COMASY." The driver then scans past the remainder of the
TYPE field (delimited by the semicolon) and compares the SUBTYPE string fragments to
"COM1." If a SUBTYPE string fragment does not match "COM1", the driver continues
searching for another TYPE "COMASY" and checking the SUBTYPE for "COM1."

4.12.2 Slot Search by a Product Dependent Device Driver

A product dependent device driver should check the product ID of the device in
each slot (including expansion slots, embedded devices and virtual devices) to deteraiine
the slot in which its corresponding product is installed. The driver should begin searching
at Slot 0 and sequentially increment through each slot until the last slot has been checked.

The device driver can use the "Read Slot Configuration Information" BIOS routine
Call to read the product ID of the device in any slot. The device driver terminates the
search when it finds the correct product ID or 'when the BIOS routine Call returns an
"Invalid slot number" error. The error indicates that all slots have been checked.

431

f U 4ZtJ 104 Ai£

EXTENDED INDUSTRY STANDARD ARCH1TEC1 u n t
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

1.12.3 Device Driver initialization tor tit>A txpans ion o o d i u s

The device driver can use information from nonvolatile memory to determine EISA
:xpansion board configuration and initializations necessary to restore expansion board
@egisters to their power-up condition.

The EISA system ROM initializes the following interrupt and DMA controller
configurations after performing all I/O initializations indicated in nonvolatile memory. A
ievice driver may not change the configurations:

Interrupt controller edge/level register
DMA controller (Extended Mode Register)

DMA channel cycle timing
DMA data size and addressing mode

DMA controller (DMA Command Register)
Fixed or rotating priority scheme

A DMA device that shares the DMA channel may not change the following DMA
xintroller configuration:

DMA controller (DMA (Command Register)
DRQ and DAK* assert level (high/low)

The device driver can use the "Read Function Configuration Information" BIOS
routine Call to get the configuration parameters from nonvolatile memory. The
configuration parameters returned from nonvolatile memory represent the expansion
board configuration initialized by the system ROM power-up routines. Subsequent
operation of the expansion board may leave the configuration in a different state. Device
drivers can read the expansion board configuration registers to determine the configuration
after power-up.

U 42B 184 A2

a s m n u z u INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

creat ing i i f ts ana s u b t y p e s for Devices

The TYPE and SUBTYPE identifiers are used by product independent device drivers to identify, initialize and operate an installed device that is compatible with the device driver. System board and expansion board manufacturers must specify consistent and expandable TYPE and SUBTYPE identifiers for their products.

The following guidelines should be followed when creating TYPE and SUBTYPE
;tnngs to assure consistency and expandability.

The first segment of the TYPE string should identify the most general device
characteristics (such as video, communications port) followed by TYPE string segments that identify more detailed device characteristics (such as VGA video adapter
X c h r o n o u s communications port). For example, the TYPE string for a VGA video

jter is "VTD, VGA", where "VID" identifies a video board and "VGA" indicates V G A
xmpatibility. The TYPE string for the asynchronous communications port is "COMMAS Y",
vnere "COM" identifies a communications board and "ASY" indicates compatibility with
±ie PC-AT asynchronous p o r t

New TYPE segments should be appended to the' TYPE string when a device is
snnanced with additional capabilities. A device driver compatible with the original product ietermmes its ability to control the device after checking the original TYPE segments A ievice driver that supports enhanced capabilities checks the appended TYPE segments to letermine the level of capability supported by the device .

<
For example, the TYPE string for a VGA video adapter (ACE) with a 1024x768

ugh resolution mode might be: "VID,VGAACE1024X768". Device drivers that support
n1?* ^ video adaPter ^ VGA compatible and device drivers that support 024x768 identify the video adapter as compatible with the 1024x768 mode.

Another vendor (XYZ) may offer a compatible video adapter with a new 1280x1024
?™eTr^1T1ie TYPE strin8 for the 1280x1024 video adapter might be:
vTD,VGAACE1024X768,XYZ1280X1024". Device drivers that support VGA identify 3e video adapter as VGA compatible, device drivers that support 1024x768 identify the
I™3 adapter as compatible with the 1024x768 mode, and device drivers that support 280X1024 identify the video adapter as compatible with the 1280X1024 mode.

' U lOt M£

EXTENDED INDUSTRY 5TATNDAK.U f t i w , n u c i . i u ^
ONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

[.132 s u b t y p e s t r ings

The SUBTYPE string identifies the device options selected during configuration. A

levice driver can scan the TYPE string to determine that the device is compatfble wim the
Liver then scan the SUBTYPE string to determine the device ; configuration. For
S e the S o adapter described above might use the SUBTYPE field to indicate the

@ower-up video display mode.

^UNCTION "VGA Video Adapter" u« c 1 ^ r ^ v g A -viD(VGAACE1024x768,XYZ1280xl024"
CHOICE(l) = "VGA Default Mode"

SUBTYPE = "DMODE=VGA"
CHOICE(2) = "1024X768" Default Mode

SUBTYPE = "DMODE=ACE1024X768"
CHOICE(3) = "1280X1024" Default Mode

SUBTYPE = "DMODE=XYZ1280X1024"

The device driver can utilize the SUBTYPE string to determine the default mode

;et during power-up. The TYPE/SUBTYPE string for a selection of VGA as the default

>ower-up video mode is:

•^TD,VGAACE1024x768,XYZ1280xl0^4;PMODE=VGA"

A device driver should read the device configuration registers for confi ̂ r a t i o n

»nfiguration registers.

t o t

EP0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCHITECT UKr*
CONFIDENTIAL INFORMATION OF BCPR SERVICES, I N C

1.1 3.3 Standard TYPE Table

The following TYPEs should be used wherever possible for the applicable devices,
system and expansion board manufacturers can create additional TYPEs for devices that
io not apply to the standard TYPEs listed here. For example, a manufacturer of a fax
joard can create a new TYPE = "FAX" or can use tbe "COM" prefix (i.c, "COM,FAX").
rhe new TYPEs become a de facto standard if other vendors use the same TYPE.

The standard device TYPEs for commonly used devices that are part ot the industry
standard system architecture are listed below.

DEVICE TYPE DEVICE DESCRIPTION

"COMAS Y" ISA compatible 8250-based serial port
"COMASYJTFO" ISA compatible 16550-based serial port (with FIFO)
"COM.SYN" ISA compatible SDLC port
"KEY,nnn,KBD = xx" Standard keyboards XX = country,

nnn = number of keys.
083
084
101
103

xx = Keyboard Code .
AE = Arabic - English
AF = Arabic - French
AU = Australia
BE = Belgium
BF = Belgium - Flemish
CE = Canadian - English
CF = Canadian - French
CH = China
DN = Denmark
DU = Dutch
EE = European - English
FN = Finland
FR = France
GR = Germany
HA = Hungary
IT = Italy
IS = Israel
KA = Kangi
LA = Latin America
ME = Middle East
NE = Netherlands
NO = Norway
PO = Portugal
SP = Spain
SW = Sweden
ST = Switzerland
SF = Swiss - French
SG = Swiss - German
TA = Taiwan
UK = United Kingdom
US = United States

435

EP 0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, I N C

DEVICE TYPE DEVICE DESCRIPTION

^CPU,8086" 8086 compatible microprocessor
"CPU,80286" 80286 compatible microprocessor
]|CPU,8Q386SX" 80386SX compatible microprocessor
"CPU,80386" 80386 compatible microprocessor
"CPU.80486" 80486 compatible microprocessor

"MSDJDSKCTL" ISA compatible fixed disk controller
"MSD,FPYCTL" ISA compatible floppy disk controller
"MSDTAPCTL" Primary tape controller

"NPX.287" Intel 287 numeric coprocessor
"NPX38T Intel 387 numeric coprocessor
"NPX387SX" Intel 387SX numeric coprocessor for 386SX
"NPX,W1 167" Weitek 1 167 numeric coprocessor
"NPX.W3167" Weitek 3167.numeric coprocessor

"JOY1* ISA compatible joystick adapter

TAR" ISA compatible parallel port
TARJ3ID" Bidirectional parallel port

"PTR,8042M 8042 pointing device'fmouse) interface

"VTD.MDA" ISA compatible monochrome adapter
"VTD,MDA,MGA" Hercules monochrome adapter
"VTD.CGA" Requires no write sync dunng retrace
"VID,CGA,RTR" Requires write sync during retrace
"VTACGA" ISA compatible CGA adapter
irVTD,EGA" ISA compatible EGA adapter
"VTD,VGAB ISA compatible VGA adapter

SP0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCrilThCl UK*.
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

1.14 Configuration Example

This section contains the configuration data structures associated with an example
EISA Ethernet communication board. The example illustrates the configuration
nformation for initialization ports, a DMA channel, an interrupt, RAM memory and ROM

nemory.

The example includes the configuration file, the configuration data structure
@eturned by a "Read Function Configuration Information" BIOS routine CalL and the
X)nfjguration data structure passed to the "Write Nonvolatile Memory" BIOS routine.

4.14.1 Configuration File

An example of a configuration file for an.ethernet controller board is presented on
Lhe following pages. The CFG filename for this file is 1ACE105.CFG

BOARD
ID = "ACE0105"
NAME = "ACME Ethernet Interface board - Revision 5"
MFR = "ACME Board ManufacL"
CATEGORY = " N E T
SLOT = EISA
LENGTH = 330
READID = yes

IOPORT(l) = 0zc94h
INTTVAL = OOOOxxxx

IOPORT(2) = 0zc98h
INTTVAL = xxxxxxxxxxxxxxrr

IOPORT(3) = 0zc9ah
INTTVAL = xxxxxxrr

IOPORT(4) = 0zc9bh
INTTVAL = rrrrrxxx

IOPORT(5) = 0ZC85h
INTTVAL = xxxxxxxx

IOPORT(6) = 0ZC86h
INTTVAL = Orrxxxxx

IOPORT(7) = 0ZC86h
INTTVAL = lrrxxxxx - -

SOFTWARE(l) = "ACELINK.EXE - \n if using MS DOS
Place the following command line in AUTOEXEC.BAT: \ n
\ t \ tACELINK /S = n /A = n\n
Use the following values with the - .
/S and /A parameters:"

437

P U 426 184 f\Z

EXTENDED INDUSTRY STANDARD AKCHI l tL I u k j s
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

Function description starts here

3ROUP = "Ethernet network interface"
TYPE = "NET,ETH"

^TJNCTTON = "Network Interface Location"
CHOICE = "File Server Init - Node 0"

SUBTYPE = "LANO"
F R E E

INTT = SOFTWARE(l) "/S = l /A=0"
TNTT = IOPORT(5) LOC (5-2) 0000

CHOICE = "Network user init. - Node 1"
SUBTYPE = "LANl"
F R E E

TNTT « SOFTWARE(l) "/S=0 / A = l "
INTT = IOPORT(5) LOC (5-2) 0001

CHOICE = "Network user init. - Node 2"
SUBTYPE = "LAN2"
F R E E

INIT = SOFTWARE(l) "/S=0 /A=2"
INTT = IOPORT(5) LOC (5-2) 0010

; Additional detail may be added

CHOICE = "Network user init. - Node 15"
SUBTYPE = "LAN15"
F R E E

INTT = SOFTWARE(l) 7S=0 /A=15M
TNTT = IOPORT(5) LOC (5-2) 1111

FUNCTION = "System resources alloc/init."
CHOICE = "System Resources"

; DMA channel operates in Type C (burst) timing
LINK

DMA = 5 | 7
SHARE = no
SIZE = dword
TIMING = TYPEC

INTT = IOPORT(5) LOC (0) 0 | 1
; Interrupt is level-sensitive

LINK
IRQ = 2 1 5

SHARE = ves
TRIGGER = level

INTT = IOPORT(5) LOC (1) 0 | 1

43a

EP0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

; Network board local ROM
COMBINE

MEMORY = 2K
ADDRESS = 0C0000H | ODOOOOh | OEOOOOh
MEMTYPE = oth
WRITABLE = no
SHARE = no
SIZE = byte
CACHE = yes
DECODE = 32

rNTT = IOPORT(6) LOC (3-0) 1100 | 1101 | 1110

; Network board local Ram
FUNCTION = "Local RAM Initialization"

CHOICE = "64K RAM"
SUBTYPE = "64K"
COMBINE

MEMORY = 64K
ADDRESS = 100000H-1FOOOOH STEP = 64K
WRITABLE = yes
MEMTYPE = oth
SIZE = dword
CACHE = no

INTT = IOPORT(7) LOC(4 3 2 1 0) 00000-01111
CHOICE = "128K RAM"

SUBTYPE = "128K"
COMBINE

MEMORY = 128K
ADDRESS = 100000H-1FOOOOH STEP = 64K
MEMTYPE = oth
WRITABLE = yes
SIZE = dword
CACHE = no

INTT = IOPORT(7) LOC(4 3 2 1 0) 10000-11111
E N D G R O U P

439

EP 0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, I N C

; Serial Port section
FUNCTION = "Serial Port"

TYPE = "COM,ASY"
CHOICE = "COM1"

SUBTYPE = "COM1"
F R E E

IRQ = 4
SHARE = yes
TRIGGER = level

PORT = 3f8h-3£fh
SHARE = no
SIZE = byte

INTT = IOPORT(l) LOC (3-0) 0000
INTT = IOPORT(2) LOC (15-2) 00000011111100
INTT = IOPORT(3) LOC (7-2) 110000
INTT = IOPORT(4) LOC (2-0) 010

CHOICE = "COM2"
SUBTYPE = "COM2"
F R E E

IRQ = 3
SHARE = yes
TRIGGER = level

PORT = 2F8h-2ffh
SHARE * no
SIZE = byte

INTT = IOPORT(l) LOC (3-0) 0000
INTT = IOPORT(2) LOC (15-2) 00000011111100
INTT = IOPORT(3) LOC (7-2) 110000
INTT = IOPORT(4) LOC (2-0) 000

CHOICE - "Port disable"
SUBTYPE = "Port disable"
DISABLE = yes
F R E E

INTT = IOPORT(4) LOC(0) 0

440

EP 0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

4.14.2 Read Slot Configuration Information BIOS Rout ine

The following example illustrates a "Read Slot Configuration Information" BIOS
routine Call. The data block returned by the BIOS routine indicates an ACME Ethernet
Board installed in slot 4.

Assume the following register assignments prior to executing the "Read Slot
Configuration InformaUon" BIOS routine Call:

INT 15h, AH = D8h, AL= OOh

INPUT:

AH = 0D8h
AL = 0 ;Read Slot Configuration Information
CL = 4 ;Slot number for ACME Ethernet Board

The following register values illustrate the parameters returned by the "Read Slot
Configuration Information" INT15 Call:

OUTPUT:

AH = OOh-Successful Completion (carry flag = 0)
AL = OOh-No duplicate IDs and board ID is readable
BH = Olh-Major Revision Level of Configuration Utility
BL = Olh-Minor Revision Level of Configuration Utility
CH = ADh-Checksum of Configuration File (MSByte)
CL = 09h-Checksum of Configuration File (LSByte)
DH = 04h-Number of Functions on this board
DL = 0011111 lb-Combined Function information byte
Dl and SI = Four byte compressed ID

DI(lsb) = 04h (byte 0)
Dl(msb) = 65h (byte 1)
Sl(lsb) = Olh (byte 2)
Sl(msb) = 05h (byte 3)

4.14.3 Read Function Configuration Information BIOS Routine Call

The following examples illustrate the "Read Function Configuration Information"
BIOS routine call. The data block returned by the BIOS routine indicates an ACME
Ethernet Board installed in slot 4.

441

U tiiO lot M*L

EXTENDED INUUSlKX s i a i ^ a k u «-
ONFIDENTIAL INFOPvMATION OF BCPR SERVICES, INC.

Assume the following register assignments puui iu ^ w » « 6
bnfiguration Information" 1NT15 call:

NT 15h, AH= U8h, A L = u m

N P U T :

AL = Ollf ̂
-Read Function Configuration Information

CL = 04h ;SIot number for ACME Ethernet Board

OH - OOh ;Read the data block for function 0

DS:SI = 29B9:0600 ;pointer to the data block returned

The following register values illustrate the parameters returned by the "Read

Function Configuration Information" BIOS routine call:

OUTPUT:

AH = OOh Successful completion (carry flag = 0)

The table on the following page iiiusumcs uk uaw. uiu« -j —
Function Configuration Information" BIOS routine call for function 0.

*T*Tt

EP0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

Off-
set

Byte
Value Description

OOh

04h

06h

08h

22h
23h

1
2
3
4
5
6
7
8
9

10
11

35
36
37
38
39
40
41
42
43
44
45
46
47
48

104h
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276

04h
65h
Olh
05h
OOh
03h
Olh
Olh
OOh
OOh

0
0

21h
N
E
T
»

E
T
H
> L

A
N
0
0
0

261
94h
4Ch
OOh
85h
98h
4Ch
FOh
03h
03h
OOh
84h
9Ah
4Ch
COh
03h

1st Byte Expansion Board ID: ACE0105 (0465h)
2nd Byte Expansion Board ID
first and second hex digit of product number
third digit of product number/l-digit revision number
ID and slot information
Miscellaneous ID Information
Major Configuration Utility Revision Level
Minor Configuration Utility Revision Level
1st Selection
2nd Selection
Not Used

Function information (00001111b)
TYPE string starts here

Delimiter that separates TYPE string fragments

End of TYPE string
Delimiter to append subtype string

End of SUBTYPE string
Not Used

80h Initialization Byte IOPORT(l)
LSB IOPORT ADDRESS
MSB IOPORT ADDRESS
PORT VALUE
Initialization Byte IOPORT(2)
LSB IOPORT ADDRESS
MSB IOPORT ADDRESS
LST PORT VALUE
MSB PORT VALUE
LSB PORT MASK
MSB PORT MASK
Initialization Byte IOPORT(3)
LSB IOPORT ADDRESS
MSB IOPORT ADDRESS
PORT VALUE
PORT MASK

443

@P 0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

Off- Byte
set # Value Description

277 84h Initialization Byte IOPORT(4)
278 9Bh LSB IOPORT ADDRESS
279 4Ch MSB IOPORT ADDRESS
280 OOh PORT VALUE
281 F8h PORT MASK
282 80h Initialization Byte IOPORT(5)
283 85h LSB IOPORT ADDRESS
284 4Ch MSB IOPORT ADDRESS
285 OOh PORT VALUE
286 84h Initialization Byte IOPORT(6)
287 86h LSB IOPORT ADDRESS
288 4Ch MSB IOPORT ADDRESS
289 OCh PORT VALUE
290 60h PORT MASK
291 04h Initialization Byte IOPORT(7)
292 86h LSB IOPORT ADDRESS
293 4Ch MSB IOPORT ADDRESS
294 80h PORT VALUE
295 60h PORT MASK

127h 296 OOh Not Used
OOh "

13Fh . OOh "

444

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

_̂ uiuic musiraies ine aata djocic returned by trie Read Function
^nfiguration Information" BIOS routine call for function 1. The register setup is the same is for the last call except CH=01h.

Off- Byte
set # Value Description

OOh 1 04b 1st Byte Expansion Board ID: ACE0105 (0465h) 2 65h 2nd Byte Expansion Board ID
3 Olh first and second digit of product number
t tiiird digit of product number/l-digit revision number 04h 5 OOh ED and slot information
6 03h Miscellaneous ED Information

06h 7 Olh Major Configuration Utility Revision Level
8 Olh Minor Configuration Utility Revision Level

08h 9 OOh 1st Selection
10 OOh 2nd Selection
11 OOh 3rd Selection
12 OOh 4th Selection
13 OOh 5th Selection
14 OOh Not Used

OOh -
OOh "

...

EP 0 426 184 A2

fcAifclNUKD INDUSTRY S TANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

u n -
set

Byte
Value Description

zzn
23h

/ j n

UJfl

J3
36
37
38
39
40
41
42
43

110
117
118
119
120
121
122
123

180
181

194
195

Oil

Ufn
N
E
T
i
E
T
H

OOh
OOh
OOh
18h
08h
OOh
OCh
OOh
02h
OOh
OOh
OOh
OOh
22h
OOh
OOh
OOh
OOh
05h
38h
OOh
OOh
OOh
OOh
OOh
OOh

Function information (00001111b)
TYPE string starts here

Delimiter that separates TYPE string fragments

fcnd of TYPE string
Not Used

Memory Configuration: ROM - (00011000b)
ROM memory size (byte)
LSByte ROM Start Address (ODOOOOh/ 1 OOh = ODOOh)
Middle Byte ROM Start Address
MSByte of ROM Start Address
LSByte ROM size (2048/400h = 0002h)
MSByte ROM size
Sot Used

Interrupt configuration: IRQ2 (00100010b)
Reserved
Not Used

DMA configuration: DMA channel 5 (00000101b)
32-bit BURST transfers (00111000b)
Not Used

Not Used

46

EP 0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

The following table illustrates the data block returned by the "Read Function
Configuration Information" BIOS routine call for function 2. The register setup is the same
as for the last call except CH =02h.

Off- Byte
set # Value Description

OOh 1 04h 1st Byte Expansion Board ID: ACE0105 (0465h)
2 65h 2nd Byte Expansion Board ID
3 Olh first and second hex digit of product number
4 05h third digit of product number/l-digit revision number

04h 5 OOh ED and slot information
6 03h Miscellaneous ID Information

06h 7 Olh Major Configuration Utility Revision Level
8 Olh Minor Configuration Utility Revision Level

08h 9 OOh 1st Selection
10 OOh 2nd Selection
11 OOh 3rd Selection
12 OOh Not Used

OOh "
OOh

22h 35 03h Function information (0000011 lb)
23h 36 N TYPE string starts here

37 E
38 T
39 , Delimiter that separates TYPE string fragments
40 E
41 T
42 H
43 ; Delimiter to append subtype string
44 6
45 4
46 K End of SUBTYPE string
47 OOh Not Used

OOh
OOh "

73h 116 19h Memory Configuration: RAM - (00011001b)
117 02h RAM Memory Data Size (Dword)
118 OOh LSByte ROM Start Address (ODOOOOh/lOOh = ODOOh)
119 lOh Middle Byte ROM Start Address
120 OOh MSByte of ROM Start Address
121 40h LSByte ROM size (2048/400h = 0002h)
122 OOh MSByte ROM size
123 00 h Not Used

Ooh "
OOh "

447

EP 0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

The following table illustrates the data block returned by the "Read Function
Configuration Information" BIOS routine call for function 3. The register setup is the same
as for the last call except CH=03h.

Off- Byte
set # Value Description

OOh 1 04h 1st Byte Expansion Board ID: ACE0102 (0465h)
2 65h 2nd Byte Expansion Board ID
3 Olh first and second digit of product number
4 05h third digit of product number/ 1-digit revision number

04h 5 OOh ID and slot information
6 03h Miscellaneous ID Information

06h 7 Olh Major Configuration Utility Revision Level
8 Olh Minor Configuration Utility Revision Level

08h 9 Olh 1st Selection
11 OOh 2nd Selection
12 OOh 3rd Selection
13 OOh Not Used
: OOh "

22h 35 15h Function information (00011001b)
23h 36 C TYPE string starts here

37 O
38 M
39 , Delimiter that separates TYPE string fragments
40 A
41 S
42 Y End of SUBTYPE string
43 ; Delimiter to append subtype string
44 C
45 0
46 M
47 2 End of SUBTYPE string
48 OOh Not Used
: - OOh "

B2h 179 23h Interrupt configuration: IRQ3 (00100011b)
180 OOH Reserved
181 OOh Not Used

: OOh "
C8h 201 07h Port IO Range entry (000000 l i b)

202 F8h LSB Port Address
203 02h MSB Port Address
204 OOh Not Used

: OOh "

448

EP0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

4.14.4 Write Nonvolatile Memory BIOS Routine CALL

The following example illustrates a Write Nonvolatile Memory BIOS routine call.

INT 15h, AH = D8h, AL= 03h

INPUT:

AH = 0D8h
AL = 03h
CX = 004 l h
DS:SI = 15AA0244

OUTPUT:

AH = OOh Successful completion (carry flag = 0)

The data structure that is passed to the Write Nonvolatile Memory BIOS routine for
the ACME Ethernet board example:

Off- Byte
set # Value Description

OOh 1 04h 1st Byte Expansion Board ID: ACE0105 (0465h)
2 65h 2nd Byte Expansion Board ID
3 Olh first and second digit of product number
4 05h third digit of product number/l-digit revision number

04h 5 OOh ID and slot information ((XXWOOOOb)
6 03h Reserved

06h 7 Olh Major Configuration Utility Revision Level
8 Olh Minor Configuration Utility Revision Level

OOh if no CFG File Extensions
08h 9 34h LSB length of function 0 entry

10 OOh MSB length of function 0 entry
OAh 11 02h Length of following selections field

12 OOh 1st selection
13 OOh 2nd selection

ODh 14 21h Function 0 information byte (00100001b)
OEh 15 OCh Length of following ASCII TYPE string
OFh 16 4Eh N TYPE string starts here

17 45h E
18 54h T
19 2Ch , Delimiter- separates TYPE string fragments
20 45h E
21 54h T
22 48H H End of TYPE string
23 3Bh ; Delimiter to append SUBTYPE string
24 4Ch L SUBTYPE string starts here
25 41h A
26 4Eh N
27 30h 0

449

EP 0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, I N C

Off- Byte
set # Value Description

lBh 28 80h Initialization Byte IOPORT(l)
29 94b LSB IOPORT ADDRESS
30 4Ch MSB IOPORT ADDRESS
31 OOh PORT VALUE
32 85h Initialization Byte IOPORT(2)
33 98h LSB IOPORT ADDRESS
34 4Ch MSB IOPORT ADDRESS
35 FOh LST PORT VALUE
36 03h MSB PORT VALUE
37 03h LSB PORT MASK
38 OOh MSB PORT MASK
39 84h Initialization Byte IOPORT(3)
40 9 Ah LSB IOPORT ADDRESS
41 4Ch MSB IOPORT ADDRESS
42 COh PORT VALUE
43 03h PORT MASK
44 84h Initialization Byte IOPORT(4)
45 9Bh LSB IOPORT ADDRESS
46 4Ch MSB IOPORT ADDRESS
47 OOh PORT VALUE ' .
48 F8h PORT MASK
49 80h Initialization Byte IOPORT(5)
50 85h LSB IOPORT ADDRESS
51 4Ch MSB IOPORT ADDRESS
52 OOh PORT VALUE
53 84b Initialization Byte IOPORT(6)
54 86h LSB IOPORT ADDRESS
55 4Ch MSB IOPORT ADDRESS
56 OCh PORT VALUE
57 60h PORT MASK
58 04h Initialization Byte IOPORT(7)
59 86h LSB IOPORT ADDRESS
60 4Ch MSB IOPORT ADDRESS
61 80h PORT VALUE
62 60h PORT MASK

3Eh 63 lAh LSB length of function 1 entry
64 OOh MSB length of function 1 entry
65 05h Length of following selections field
66 OOh 1st Selection
67 OOh 2nd Selection
68 OOh 3rd Selection
69 OOh 4th Selection
70 OOh 5th Selection

450

r 0 42b 184 A2

EXTENDED INDUSTRY STANDARD ARUH1 l t L i
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

Off- Byte
set # Value • Description

46h 71 OFh Function 1 Information Byte (000011 l l h)
47h 72 07h Length of following ASCII string field
48h 73 4Eh N Type String Starts Here

74 45h E
75 54h T
76 2Ch , Delimiter that separates TYPE string
77 45h E
78 54h T

4Fh 80 18h Memory Config Byte (00011010b OTH cacheable ROM)
Although this memory is cacheable, caching isn't
implemented in this configuration and is so represented.

81 08h Memory Data Size - Byte
82 OOh LSB Mem Start Address (divided by lOOh)
83 OCh Middle Mem Start Address
84 OOh MSB Memory Start Address
85 02h LSB Memory Size (bytes divided by 400h)
86 00b MSB Memory Size (0002«400 = 800h = 2k)

56h 87 22h Interrupt Configutation Byte .m
Although this interupt may be shared, it doesn t need
to be in this configuration and is so represented.

88 OOh Reserved
58h 89 05h DMA Configutation: DMA Channel 5 (00000101b)

90 38h 32-bit BURST Transfers (0011 1000b)
5Ah 91 18h LSB length of function 2 entry

92 OOh MSB length of function 2 entry
93 03h length of following Selections field
94 OOh 1st Selection
95 OOh 2nd Selection
96 OOh 3rd Selection

60h 97 03h Function 2 Info. Byte
61h 98 OBh Length of follow string field
62h 99 4Eh N

100 ~45h E
101 54h T
102 2Ch , Delimiter that separates TYPE string
103 45h E
104 54h T
105 48h H
106 3Bh ; Delimiter to append SUBTYPE string
107 36h 6
108 34h 4
109 4Bh K

401

;P 0 426 184 AZ

EXTENDED INDUSTRY STANDARD ARCHITECT UKE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

Off-
set

Byte
Value Description

6Dh

74h

76h

7Ah
7Bh
7Ch

88h

8Ah

8Dh

8Fh

110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137

138
139
140
141
142
143
144
145

19h
02h
OOh
lOh
OOh
40h
OOh
17h
OOh
03h
Olh
OOh
OOh
15h
OCh
43h
4Fh
4Dh
2Ch
41h
53h
59h
3Bh
43h
4Fh
4Dh
32h
23h

OOh
07h
F8h
02h
OOh
OOh
09h

ADh

Memory Configuration Byte (00011001b)
Memory Data Size (Dword)
LSB Memory Start Address (divided by lOOh)
Middle Mem Start Address
MSB Memory Start Address
LSB Memory Size (bytes divided by 400h)
MSB Memory Size (0040*400 =10000h = 16k)
LSB length of function 3 entry
MSB length of function 3 entry
length of following selections field
1st Selection
2nd Selection
3rd Selection
Function 3 Information Byte
Length of following ASCII string field
C
O
M
, Delimiter that separates TYPE string
A
S
Y
; Delimiter to append SUBTYPE string
C
O
M
2
Interrupt Configuration Byte
Although this interupt may be shared, it doesn't need
to be in this configuration and is so represented.
Reserved
Port IO Range entry (00000011b)
LSB Port Address
MSB Port Address
LSB Last Function Length = 0
MSB Last Function Length = 0
LSB Configuration file Checksum
MSB Configuration file Checksum

402

EP 0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

5. GLOSSARY

8-bit ISA Slave
This slave device interfaces only to the 8-bit data bus and uses only the ISA signals. This is
the simplest and slowest of the slave devices and was first developed for use with the IBM
PC®.

16-bit EISA Master
A device that uses the EISA control signals to perform bus operations independent of the
host CPU. Data accesses are restricted to the lower 16-bits of the data bus, but all EISA
control signals are used.

16-bit EISA Slave
A memory or I/O device that uses the EISA control signals to interface to the bus. Data
accesses are restricted to the lower 16-bits of the data bus, but all EISA control signals are
used.

16-bit ISA Master
A device that uses the ISA bus control signals to perform bus operations independent of
the host CPU. Only the 16-bit ISA data bus ana ISA control signals are used, limiting
speed and performance. Access is possible to host system memory and I/O, as well as to
any slave (ISA or EISA) on the bus.

32-bit Connector
The physical bus connector used in Extended Industry Standard Architecture (EISA)
computers to extend the address and data size to 32 bits, and provide the fast cycle timing.

32-bit EISA Master
A device that uses the EISA control signals to perform bus operations independent of the
host CPU. Data accesses utilize the full 32 bits of the data bus, and all EISA control
signals are used.

32-bit EISA Slave
A memory or I/O device that uses the EISA control signals to interface to the bus. Data
accesses utilize the full 32-bits of the data bus, and all EISA control signals are used.

Assert
A signal is asserted by driving it to a logical true state. For positive-true signals this state is
high logic voltage, and for negative-true signals this state is the low logic voltage.

IBM PC is * registered trademark of International Business of Machines.

453

IP 0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC

Jus Cycle
K bus cycle is the action that occurs on the bus in order to transfer data.

Jus Latency
rhe tune that elapses from when a bus master requests control of the bus. until the bus
naster is given control of the bus.

3us Transfer
\ bus transfer is one or more bus cycles. For example, a DMA transfer consists of many
DMA read or write cycles.

Byte Lane
A byte lane is one of the four possible bytes that comprise the 32-bit datapath on the EISA
jus. Each byte lane corresponds to one of the four byte enable signals BE* <3:0>.

DMA Controller ^ w This device provides control of the larger part of the system's DMA (Direct Memory
Access) facility. The DMA controller responds to requests from the DMA device and
provides address and control signals to the memory slaves and DMA device.

DMA Device
The DMA device is typically located on a peripheral board on the EISA or ISA bus The
DMA device initiates DMA transfers, which are controlled by signals generated by the
system DMA controller. The DMA device either presents or receives data during a DMA
transfer and uses several signals to inform the DMA controller of the status of the transfer.

EISA Bus . j j A bus which includes all of the features and facilities provided by the industry standard
architecture (ISA) bus and also includes extensions defined in this document. The
extensions use an additional connector for new signals which, together with the existing ISA
signals, provide the ability to perform additional cycles not available on the ISA bus.

EISA Master
A device which uses EISA's extended control signals to perform bus operations
independent of the host CPU. The EISA bus master can request control of the bus, and
assume complete control of all signals when it is granted the bus. The master can perform
all memory and I/O cycles possible on the EISA bus, accessing both the system and any
other such device on the EISA or ISA buses.

EISA Slave e .
A memory or I/O device which uses EISA's extended control signals to interface to the bus.
An EISA slave does not initiate bus cycles. It simply responds to the control signals
presented by the host CPU or other bus master.

454

EXi-WDED INDUSTRY STANDARD- ̂ - ^ T g ^ 1 ^
ONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

hen a signal is floated it is placed in the high impedance state, no longer driving the

jnal to a logic 1 orO.

hfmkin system processor. The host CPU typically ̂ has its : own loaJ I bus ^ ^ ± e C P V
faccess cache or local memory without using the EISA bus. The host CPU accesses die

ISAbus like any other bus master, with the exception of a few special features The data

ze of the host CPU does not determine the EISA bus size; the CPU can have a 8-, 16-, or

2-bit data bus and still access the 16- or 32-bit EISA bus.

be bus" used in the Industry Standard Architecture (ISA) computers (originally embodied

i me IBM personal computer AT or PCAT. The ISA bus provides the signals needed to

erform the basic memory, I/O, and DMA functions of the system.

l e S e a l bus connector used in-the Industry Standard Architecture (ISA) computers

originally embodied in the IBM personal computer AT or PCA 1).

JdevicTthat uses the ISA control signals to interface to the bus An | ^ ^ £ e s ™J
nitiate bus cycles. It responds to the control signals presented by the host CPU or other

>us master.

s igna l is negated by driving it to a logical false state. For positive-true signals ±\s state is

he fowlogic voltage, and for negative-true signals this state is the high logic voltage.

Ap\Pripheral is a hardware board that plugs into the ISA orEISA bus connectors. The
peripheral contains all of the circuitry associated with the function of the board. The

peripheral can be either a bus master or a bus slave.

The S s T o t specific is used in reference to certain signals of address ranges which are

unique to a particular bus connector.

*too

P 0 426 184 A2

EXTENDED INDUSTRY STANDARD AKCHllkClUKE,
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

ndcx

AC Characteristics 155
Address Bus

Signal Group 8,10
Address Decoding

Embedded Slot 387
Expansion Board 385
System Board 387

Address Map
System I/O 229

ADDRESS Statement 341
Addressing Mode 245
AENx 11
AMPERAGE Statement 309,327,355
Arbitration

DMA 256,258
Arbitration Priorities

System 139
Autoinitialize 239
Automatic Configuration

Devices Supported 295
EISA Expansion Boards 295
Expansion Boards 295
ISA Expansion Boards 295
Procedure 301
Software Drivers That Require System

Resources 296
System Board 295
System Board Peripherals That Use Slot-

Specific I/O Space 296
System Board Peripherals That Use System

Board I/O Space 296
Back-to-Back I/O Delay 132
BALE 13 "
Base Address

8237-Compatible Segment 250
High Page Segment 251
Low Page Segment 250

Base Address Register 250, 251
16-btt I/O 254
32-bit I/O 255
8-bit I/O "Count By Byte" Mode

(ISA Compatible) 253
Base Word Count Register 248, 249
BCLK 11
Bitlist 304
Block Transfer Mode 237
3oard Identification Block 305, 353

AMPERAGE Statement 309
BOARD Statement 306
BUSMASTER Statement 309
CATEGORY Statement 307
COMMENTS Statcmcni 310

uioACLC oiaicrncm oxu
HELP Statement 310
ID Statement 306
IOCHECK Statement 310
LENGTH Statement 308
MFR Statement 307
NAME Statement 306
READID Statement 309
SKIRT Statement 309
SLOT Statement 307

BOARD Statement 306
Buffer Chaining 240
Buffer Chaining Mode

Enable/Disable 246
Burst Bus Masters 110
Burst Cycles 42,50
Burst DMA 73
Burst EISA DMA Devices 122
Bus Access

Granting 16
' . ' Requesting 16
Bus Arbitration 4, 135
Bus Arbitration Signals 16
Bus grant latency 142
Bus Master 104

Carjabuities 4
Last Granted 285

Bus Master Arbitration Cycle 147
Bus Master Cycles 27,42
Bus Master Latency 146
Bus Master Status Latch

32-bit 286
Bus Reset 282
Bus Signals 19

AENx 11
BALE 13
BCLK 11
BE*<3:0> 8
CHRDY 15
CMD' 13
DAK* 17
DRQ 17
EX16* 12
EX32 12
EXRDY 13
1016* 15
IOCHK* 18
IORC* 14
IOWC* 14
IRQ 18
LOCK' 12
M-IO 12

4bb

EP 0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

Index

M16* 15
MAKx* 16
MASTER16* 17
MRDC* 14
MREQx* 16
MSBURST 11
MWTC* 14
NOWS* 15
OSC 18
REFRESH* 18
RESDRV 18
SBHE* 11
SLBURST 12
SMRDC* 14
SMWTC* 14
START* 13
Summary 19
T̂ C 17
W-R 13

Bus Timeout 282
BUSMASTER Statement 309, 355
CACHE Statement 343
Capacitive Loading Requirements 154
Cascade Mode 239
CATEGORY Statement 307
CFG File Extension Revision Level 362, 367
Chaining Mode Register 245,246
Chaining Mode Status Register 247
Channel Interrupt Status Register 247
CHOICE Statement 322,325
CHOICE Statement Block 325

AMPERAGE Statement 327
CHOICE Statement 325
DISABLE Statement 325
SUBTYPE Statement 326
TOTALMEM Statement 327

CHRDY 15
Clear Byte Pointer 243
Clear Mask Register 243
Clock 18
CMD* 13
COMBINE Groups 349
COMMENTS Statement 310, 316, 320, 324
COMPRESSED Cycles 42, 48
Compressed ID 361,366
Compressed Manufacturer Code 389
Configuration File 404

Board Identification Block 305
CHOICE Statement Block 325
Format 305
FUNCTION Statement Block 322
Initialization Information Block 311

Resource Description Block 334
Resource Groupings 348
SUBCHOICE Statement Block 327
Syntax 301
System Board 353

Board Identificadon Block 353
BUSMASTER Statement 355
LENGTH Statement 355
NONVOLATILE Statement 354
SKIRT Statement 355
SLOT Statement Block 355
System Description Block 353
System Statement 353

Configuration File Filenames 300
Configuration Files 298
Configuration Information,

System Software Use of 397
Configuration Utility 297
CONNECTION Statement 324
Counter. Latch Command 292
Counterplead Operation 291
Counter Read-Back Command 292
Counter Status Byte 293
CPU Latency 144
Current Address,

8237 Compatible Segment 251
High Page Segment 252
Low Page Segment 252

Current Address Register 251, 252
Current Word Count Register 249, 250
D<15:8> 9
D<23:16> 9
D<31:24> 9
D<7:0> 10
DAK*<3:0> 17
DAK*<7:5> 17
Data Bus

Signal Group 8
Data Bus Translations 79

16- or 32-bit DMA Device to 8- or 16-bit ISA
Memory 94

16-bit DMA Device to 32-bit EISA Memory
93

16-bit EISA Bus Master to 32-bit EISA Slave
83

16-bit ISA Bus Master to EISA Slaves 86
32-/16-bit EISA Bus Master to 8-bil ISA

Slave 85
32-bit DMA Device to 16-bit EISA Memory

92
32-bit EISA Bus Master to 16-bit EISA Slave

79

457

EP 0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

Index

Read Cycles 80
Write Cycles 81

32-bit EISA Bus Master to 16-bit ISA Slave
83

Read Cycles 84
Write Cycles 85

8-bit DMA Device to 16- or 32-bit EISA
Memory 93

Data Bus
D<15:8> 9
D<23:16> 9
D<3L24> 9
D<7:0> 10

Data Size Translation 4
Data Transfer Protocol

Synchronous 2
Data Transfer- Type 257
DC Characteristics 151
DECODE Statement 343
Demand Transfer Mode 238
DISABLE Statement 310, 325
DMA

32-bit Address Support 2
Acknowledge 17
Addressing

32-bit 253
ISA Compatible 252

Arbitration Priority 256
Auto-initialize 239
Block Mode, 235
Block Transfer Mode 237
Buffer Chaining 240
Burst DMA Tuning 244
Cascade Mode 236, 239
Cycle Types 3
DEMAND Mode 235
Demand Transfer Mode 238
Description 235
Enhanced Functions 2
ISA Compatible BLOCK Mode 143
ISA Compatible Demand Mode 143
ISA Compatible Timing Mode 236
Master Condition 236
Registers

High Page 236
Low Page 236

Request 17
Ring Buffers 241
Single Transfer Mode 237
Slave Condition 237
Software Commands 243

Clear Byte Pointer 243

Clear Mask Register 243
Master Clear 243

Terminal Count 260
Tuning Mode 244,245
Transfer Combinations 26L 262
Transfer Types 239
Type "A," Timing 244
Type "B," Timing 244
Word Count

32-bit 253
ISA Compatible 252

DMA Channel Description 364
DMA Channel Description Block 334,335
DMA Channel Mode Select 257
DMA Channel Select 245, 246, 256, 257, 258
DMA Command Register 256
DMA Controller 235, 236
DMA Controller Registers 243

Base Address Register 250
Base Word Count Register 248

' . Chaining Mode Register 245
Chaining Mode Status Register 247
Channel Interrupt Status Register 247
Current Address Register 251
Current Word Count Register 249
DMA Command Register 256
DMA Status Register 260
Extended Mode Register 243
Mask Registers 258
Mask Status Register 259
Mode Register 257
Request Register 258

DMA Cycles 55
Burst 55
ISA Compatible 55
Type "A". 55, 63
Type "B" 55, 68
Type 'C 73- • -

DMA device
Data Transfer Timing Size 235

DMA Devices 115
Data Transfers from 3
Performance 3

DMA Latency 143
DMA Statement 336
DMA Status Register 260
DMA Transfers

Misaligned 131
Downshift Burst Bus Masters 113
DRAM

Refresh 18
DRQ<3:0> 17

458

IP 0 426 184 A2

EXTENDED INDUSTRY STANDARD AKCHI I be t u K t
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

ndcx

DRQ < 7:5 > 17
Edge/Level Triggered Control Register 275
EISA

Features 6
Pin-out 226

EISA Bus 8
Signals 8

EISA Connector 213
Compatibility 213
Environmental Performance 215
Materials 215
Physical Characteristics 214
Specifications 215

EISA CPU Cycles 42
EISA Devices 97

Burst Bus Masters 122
Burst DMA Devices 122
Bus Masters 104
DMA Devices 115
Downshift Burst Bus Masters ID
I/O Slaves 103
Memory Slaves 97
Non-Burst EISA DMA Devices 119
System Board 131

EISA System Configuration 294
Electrical Specifications 151
Embedded Devices 394
End of Interrupt

Automatic 277
Command 277
Handling 277

EX16* 12
EX32" 12 -
Expansion Board

Identifying 392, 394
Expansion Board Control Bits 395

Enable 395 -
IOCHKERR 395,396
IOCHKRST 396

Expansion Board Identifier 299
EXRDY 13
Extended Addressing Mode 235
Extended Mode Register 243
FACTORY Statement 316, 320
Fail-safe Timer 281
F«ed Priority Mode 278
Flow Diagrams 43
Free Groups 351
Free-form Configuration Data Block Structure

365
Frcc-fonn Data 375
Fully Nested Mode 277

FUNCTION Statement 322, 323
FUNCTION Statement Block 322

CHOICE Statement Block 325
COMMENTS Statement 324
CONNECTION Statement 324
FUNCTION Statement 323
HELP Statement 324
SUBCHOICE Statement Block 327
SUBFUNCTION Statement Block 329
TYPE Statement 323

GROUP and ENDGROUP Statements 333
GROUP Statement Block 331

ENDGROUP Statement 333
GROUP Statement 333

HELP Statement 310, 316, 320, 324
I/O Address Decoding 134
I/O Address Map .

EISA System 384
I/O Addresses 228
I/O Control Functions

Svstem Board 228
I/O Cycles

16-bit 39
8-bit 31
Standard 42

I/O Delay
Back-to-Back 132

I/O Port Description Block 334, 339
I/O Port Initiauzation 299
I/O Port Initialization Statement Block 311
I/O Ports

System Board 230
I/O Slaves 103
ID and Slot Information 361, 366
ID Statement 306
In-Service Register 276
rNTT Statements 345

I/O Ports 345
Jumper 346
Software 347
Switch 346

Initialization and Control Registers 268
Initialization Data 365
Initiauzation for EISA Expansion Boards,

By Device Driver 399
Initialization Information Block 311

I/O Port Initialization 311
INITVAL Statement 312
IOPORT(i) Statement 312
SIZE Statement 312

Jumper-Configuration Statement Block 317
COMMENTS Statement 320

459

!P 0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

ndcx

FACTORY Statement 320
HELP Statement 320
INTTVAL Statement 320
JTYPE Statement 317
LABEL Statement 319
NAME Statement 317
REVERSE Statement 318
VERTICAL Statement 318

SOFTWARECO Statement 321
Switch Configuration

COMMENTS Statement 316
FACTORY Statement 316
HELP Statement 316
INITVAL Statement 315
LABEL Statement 315
NAME Statement 3D
REVERSE Statement 314
STYPE Statement 314
SWITCH® Statement 313
VERTICAL Statement 314

Switch Configuration Statement Block 313
Enitialization of EISA Systems 379
Initialization Sequence

Slot 380
INITVAL Statement 312,315,320
Intelligent Peripherals

See Bus Master
Interrupt 18

See also, End of Interrupt 277
Interrupt Controller 265

BIOS Lritialization Sequence 267
Edge/Level Control Register 275
I/O Address Map 265
In-Service Register 276
Initialization 266
liutialization and Control Registers 268
Initialization Command Word 1 268
Initialization Command Word 2 269
Initialization Command Word 3 270
Initialization Command Word 4 271
Initialization Command Words 268
Interrupt Mask Register 271
Interrupt Request Register 276
Master 265
Modes

Fixed Priority 278
Fully Nested 277
Polled 279
Rotating Priority 278
Special Fully Nested 278
Special Mask 280

Operation Control Word 2 272

Operation Control woroj z/4
Slave 265

Interrupt Description Block 334, 338
Interrupt Mask Register 271,272
Interrupt Request Register 276
Interrupt requests

Multiple 278
Interrupt Sequence 265
Interrupts

Clear 279
Edge/Level Triggered 4
Non-maskable 281
Pending 278

Interval timer
Control Word Format 289
Counter Initial Count Value 291
Counter Latch Command 292
Counter Operating Modes 290
Counter Read Operation 291
Counter Read-Back Command 292

! . Functions 288
' Monitoring Status 291

Programming 289
Interval Tuners 287
1016* 15
IOCHECK Statement 310
IOCHK* 18
IOPORT® Statement 312
IORC* 14
IOWC* 14
IRQ 18
IRQ Statement 338
ISA,

Compatibility with 1
ISA CPU Cycles 27
ISA Cycles 23
JTYPE Statement 317
Jumper Configuration Statement Block 317
JUMPER(i) Statement 317
Jumperiist 304
LABEL Statement 315,319
Latency

CPU 144
DMA 143
EISA Bus Master 146
NMI 145
Refresh 144

LENGTH Statement 355
LINK Groups 348
List 303
Load Capacitance 155
LOCfjumpcrlist) 318

460

r U 42b 1«4 Aid

i
EX.^NDED INDUSTRY STANDARD ARCHITECTURE

ONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

iacx

^C(switchkst) 314
JDCK* 12,95
ôckcd Cycles 95

16 15
tiaia Memory Access 131
@AAKx* 16
vtask Registers 258

Write All Mask Bits 259
Write Single Mask Bit 259

faster Clear 243
vtASTER16* 17
Vlcchankal Specifications 213
Memory Capacity 1
Memory Configuration 363
Memory Cycles

16-bit 35
8-bit 27
Standard 42

Memory Description Block 334, 341
Memory Map Initialization

Noncacheable 383
Writable 383

Memory Refresh 149,282
Memory Slave 97
MEMORY Statement 341
MEMTYPE Statement 342
MFR Statement 307
Misaligned DMA Memory Reads (I/O Writes)

D l
Misaligned DMA Memory Writes (I/O Reads)

D l
Misaligned DMA Transfers D l
Mode Register 257 -
MRDC* 14
MREQx* 16
MSBURST* 11, 50, 73, 74, 122
MWTC* 14
M-IO 12,83
NAME Statement 306, 3D, 317
NMI 18,281

Enable/Disable 285
Real-time Clock Address Port 285
Software NMI Generation Port 285

NMI Latency 145
NMI Status and Control Port

Extended 284
NMI Status and Control Ports 283
No Wait State

Sec NOWS* 15
Non-burst DMA Devices 119
Non-maskable Interrupts

Assertion oflOCHK* 281

a US KCSGl iAi.
Bus Timeout 282
Fail-Safe Tuner Timeout 281
Memory Refresh 282
Parity Error from System Memory 281
Sec also NMI 281
Software Generated NMI 282
Speaker Control 282

Nonvolatile Memory
Tnjtiali-ring 379

NONVOLATILE Statement 354
NOWS* 15
DSC 18
♦arameterlist 304
Parity Error

System Memory 281
'in-out 226
'oil Command 276
'oiled Mode 279
Port I/O Information 364
»ORT Statement 340
3ORTVAR(j) Variable 352
5ower Consumption 151
'owcr-up Routine 379
Priority

Fixed D9
Rotating D9

Product ID 299
EISA Expansion Board 392

Product Identifier 389
Programmable Port Initialization Block 334
RangeUst 303
READID Statement 309
Refresh Controller 149
Refresh Latency 144
REFRESH* 18,97,149
Request Register 258
RESDRV 18
Reset

Hardware 18
Resource Description Block 334

DMA Channel Description Block 335
DMA Statement 336
SHARE Statement 337
SIZE Statement 337
TIMING Statement 337

I/O Port Description Block 339
PORT Statement 340
SHARE Statement 340
SIZE Statement 340

Interrupt Description Block
IRQ Statement 338

401

:P 0 426 184 A2

EXTEi.UED INDUSTRY STANDARD ARCHITECT U K t
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

ndex

SHARE Statement 339
TRIGGER Statement 339

Memory Description Block 341
ADDRESS Statement 341
CACHE Statement 343
DECODE Statement 343
MEMORY Statement 341
MEMTYPE Statement 342
SHARE Statement 343
SIZE Statement 342
TOTALMEM Statement 327,343
WRITABLE Statement 342

Resource Group 348
Resource Groupings

Combine 348
Free 348
Link 348

REVERSE Statement 314,318
Ring Buffer

Data Structure 242
Ring Buffers 241
ROM BIOS Routine Calls

dear Nonvolatile Memory 368
EISA System 356
Identify System Board Type 357
Read Function Configuration Information

359,408
Read Slot Configuration Information 358,

408
Write Nonvolatile Memory 368,416

ROM Operations
EISA System 356

Rotating Priority Mode 278
SBHE* 11
Scatter-gather 4
Semaphores 12
SHARE Statement 337, 339, 340, 343
Signal Routing 154
Signal Translations 236
Signal Usage

EISA Expansion Boards 22
ISA Expansion Boards 21
System Board 20

Single Transfer Mode 237
SIZE Statement 312, 337, 340, 342
•5KIRT Statement 309,355
SLBURST* 12,73
Slot Initialization

Error Handling 382
Slot Search

by a Product Dependent Device Driver 398
by Product Independent Device Driver 397

SLOT Statement jKSI
EISA 308
EMB[(n)] 308
ISA16 308
ISA8 307
ISA80R16 308
OTHER 308
VTR 308

SLOT Statement Block 355
Slot-specific I/O 132
SMRDC* 14
SMWTC* 14
Software Commands 243
Software Generated NMI 282
Software Iniriali7arion Block 334
SOFTWARE(Initialization) Statement Block

321
Speaker Control 282
Special Fully Nested Mode 278
Special Mask Mode 280
@Standard Configuration Data Block Structure

360,369
START* 13, 15
STYPE Statement 314
SUBCHOICE Statement 329
SUBCHOICE Statement Block 327

SUBCHOICE Statement 329
SUBFUNCTION Statement 330
SUBFUNCTION Statement Block 329

AMPERAGE Statement 327
SUBFUNCTION Statement 329,330
SUBTYPE Statement 326

SUBTYPE
Creating 400

SUBTYPE ASCII String 362, 367
SUBTYPE Statement 326

" SUBTYPE String
Device Driver Search 398

SUBTYPE Strings 401
Switch and Jumper Description Blocks 334
Switch Configuration Statement Block 313
SVVTTCH(i) Statement 313
Switchlist 304
System Arbitration Priorities 139
System Board 131

I/O Address Decoding 134
System Board ID 390
System Configuration

Automatic 5
System Description Block 353
System Resource Requests 299

DMA channels 299

462

EP 0 426 184 A2

EX .NDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

Index

I/O ports 299
Interrupts 299
Memory 299

SYSTEM Statement 353
T-C 17
Terminal Count 17
Test-and-set Operations 12
Textlist 304
Timing Parameters

EISA 181
ISA Compatible 156

TIMING Statement 337
TOTALMEM Statement 327, 343
Transfer Rate 244

DMA 235
Transfer Types 239
TRIGGER Statement 339
TYPE

Creating 400
Type'A" 63
Typc-B" 68
TYPE Statement 322,323
TYPE String

Device Driver Search 397
TYPE Strings 400

Standard 402
Utility Signals 18
Value 303
Valuelist 303
VERTICAL Statement 314,318
Virtual devices 308
Word Count Programming 252
WRITABLE Statement 342
W-R 13

463

	486_book
	About This Book
	The MindShare Architecture Series
	Organization of This Book
	Who Should Read This Book
	Prerequisite Knowledge
	Documentation Conventions
	Hex Notation
	Binary Notation
	Decimal Notation
	Signal Name Representation
	Identification of Bit Fields

	We Want Your Feedback
	E-Mail/Phone/FAX
	Bulletin Board
	Mailing Address

	License Agreement
	Chapter 1: 486 Overview
	System Performance Prior to the 80486
	The Memory Bottleneck
	The Static Ram, or SRAM, Solution
	The External Cache Solution
	Advantage: Reduces Many Memory Accesses to Zero Wait States
	Disadvantage: Memory Accesses Still Bound By Bus Speed

	The 80486 Solution: Internal Code/Data Cache
	Faster Memory Accesses
	Frees Up the Bus

	The Floating-Point Bottleneck
	The 80386/80387 Solution
	The 80486 Solution: Integrate the FPU

	The 80486 Microarchitecture
	The Intel Family of 486 Processors

	Chapter 2: Functional Units
	The 80486 Functional Units
	Introduction
	The 80486 Bus Unit
	The 80486 Cache Unit
	The Instruction Pipeline/Decode Unit
	Instruction Prefetch
	Two-Stage Instruction Decode
	Execution
	Register Write-Back

	The Control Unit
	The Floating-Point Unit
	The Datapath Unit
	The Memory Management Unit (MMU)

	Chapter 3: Hardware Interface
	Hardware Interface
	General

	Clock
	Address
	Data Bus
	Data Bus Parity
	Bus Cycle Definition
	Bus Cycle Control
	Burst Control
	Interrupts
	Bus Arbitration
	Cache Invalidation
	Cache Control
	Numeric Error Reporting
	Bus Size Control
	Address Mask
	SL Technology
	Boundary Scan Interface
	Upgrade Processor Support

	Chapter 4: The 486 Cache and Line Fill Operations
	The 486 Caching Solution
	The 486 Internal Cache
	The Advantage of a Level 2 Cache

	The 486 with an L2 Look-Through Cache
	Handling of I/O Reads
	Handling of I/O Writes
	Handling of Memory Reads
	Handling of Memory Writes
	Handling of Memory Reads by Another Bus Master
	When a Write-Through Policy is Used
	When a Write-Back Policy is Used

	Handling of Memory Writes by Another Bus Master
	When a Write-Through Policy is Used
	When a Write-Back Policy is Used

	The Bus Snooping Process
	Summary of the L2 Look-Through Cache Designs
	The 486 with an L2 Look-Aside Cache
	Anatomy of a Memory Read
	The Internal Cache's View of Main Memory
	L1 Memory Read Request
	The Structure of the L1 Cache Controller
	Set the Cache Stage
	The Cache Look-Up
	The Bus Cycle Request
	Memory Subsystem Agrees to Perform a Line Fill
	Cache Line Fill Defined
	Conversion to a Cache Line Fill Operation
	L2 Cache's Interpretation of the Memory Address
	The L2 Cache Look-Up
	The Affect of the L2 Cache Read Miss on the Microprocessor
	Organization of the DRAM Main Memory
	The Cache Line Fill Transfer Sequence
	The First Doubleword Is Read from DRAM Memory
	First Doubleword Transferred to the L2 Cache and the 80486 Microprocessor
	Memory Subsystem's Treatment of the Next Three Doubleword Addresses
	Transfer of the Second Doubleword to the Microprocessor
	Memory Subsystem Latching of the Third and Fourth Doublewords
	Transfer of the Third Doubleword
	The Beginning of the End
	Transfer of the Fourth and Final Doubleword
	Internal Cache Update
	Summary of the Memory Read

	Burst Transfers from Four-Way Interleaved Memory
	Burst Transfers from L2 Cache
	The Interrupted Burst
	Cache Line Fill Without Bursting
	Internal Cache Handling of Memory Writes
	Invalidation Cycles (486 Cache Snooping)
	L1 and L2 Cache Control

	Chapter 5: Bus Transactions (Non-Cache)
	Overview of 486 Bus Cycles
	Bus Cycle Definition
	Interrupt Acknowledge Bus Cycle
	Special Cycles
	Shutdown Special Cycle
	Flush Special Cycle
	Halt Special Cycle
	Stop Grant Acknowledge
	Write-Back Special Cycle

	Non-Burst Bus Cycles
	Transfers with 8-,16-, and 32-bit Devices
	Address Translation
	Data Bus Steering

	Non-Cacheable Burst Reads
	Non-Cacheable Burst Writes
	Locked Transfers
	Pseudo-Locked Transfers
	Transactions and BOFF# (Bus Cycle Restart)
	The Bus Cycle State Machine
	I/O Recovery Time
	Write Buffers
	General
	The Write Buffers and I/O Cycles

	Chapter 6: SL Technology
	Introduction to SL Technology Used in the 486 Processors
	System Management Mode (SMM)
	System Management Memory (SMRAM)
	The SMRAM Address Map
	Initializing SMRAM
	Changing the SMRAM Base Address

	Entering SMM
	The System Asserts SMI
	Back-to-Back SMI Requests
	SMI and Cache Coherency

	Pending Writes are Flushed to System Memory
	SMIACT# is Asserted (SMRAM Accessed)
	Processor Saves Its State
	Auto-HALT Restart
	SMM Revision Identifier
	SMBASE
	I/O Instruction Restart

	The Processor Enters SMM
	Address Space
	Exceptions and Interrupts

	Executing the SMI Handler
	Exiting SMM
	Processor’s Response to RSM
	State Save Area Restored
	Maintaining Cache Coherency When SMRAM is Cacheable

	486 Clock Control
	The Stop Grant State
	Stop Clock State
	Auto-HALT Power Down
	Stop Clock Snoop State

	Chapter 7: Summary of Software Changes
	Changes to the Software Environment
	Instruction Set Enhancements
	The Register Set
	Base Architecture Registers
	The System-Level Registers
	Control Register 0 (CR0)
	Cache Disable (CD) and Not Write-Through (NW)
	Alignment Mask (AM)
	Write-Protect (WP)
	Numeric Exception (NE)

	Control Register 2 (CR2)
	Control Register 3 (CR3)
	Control Register 4 (CR4)
	Global Descriptor Table Register (GDTR)
	Interrupt Descriptor Table Register (IDTR)
	Task State Segment Register (TR)
	Local Descriptor Table Register (LDTR)

	Virtual Paging
	The Floating-Point Registers
	The Debug and Test Registers

	Chapter 8: The 486SX and 487SX processors
	Introduction to the 80486SX and 80487SX Processors
	The 486SX Signal Interface
	Register Differences

	Chapter 9: The 486DX2 and 486SX2 Processors
	The Clock Doubler Processors

	Chapter 10: Write Back Enhanced 486DX2 Processor
	Introduction to the Write Back Enhanced 486DX2
	Advantage of the Write-Back Policy
	The Write-Through Policy
	The Write-Back Policy

	Signal Interface
	New Signals
	Existing Signals with Modified Functionality

	The MESI Model
	Write Back Enhanced 486DX2 System without an L2 Cache
	Cache Line Fill
	Bus Master Read — Processor Snoop
	Bus Master Write — Processor Snoop

	Write Back Enhanced 486DX2 System with an L2 Cache
	The L2 Cache with a Write-Through Policy
	The L2 Cache with a Write-Back Policy
	Snoop Cycle During Cache Line Fill

	Special Cycles
	Clock Control

	Chapter 11: The 486DX4 Processor
	Primary Feature of the 486DX4 Processor
	Clock Multiplier
	16KB Internal Cache
	5vdc Tolerant Design

	Glossary
	Index
	Contact Mindshare

	EISA_Specification_3.1

