1986 Proceedmgs
FALL JOINT -
COMPUTER CONFERENCE

November 2-6, 1986—INFOMART® —Dallas, Texas
Sponsored by ACM and Computer Society of the IEEE

Harold S. Stone
Stanley Winkler

7
(¢t

Computer Society Order Number 743
Library of Congress Number 86-81582
IEEE Catalog Number 86CH2345-7
ACM Order Number 401860

ISBN 0-8186-0743-2

R i T T i 3 P S A

ECTRICAL C MPUTER
@ THE COMPUTER SOCIETY @ Association for Computing Machinery Q XNG ELECTRONICS ENGINEERS, INC. SOCIETY
OF THE IEEE — RESS)

- 4 I . WAL e

1986 Proceedings
FALL JOINT
COMPUTER CONFERENCE

November 2-6, 1986—INFOMART®—Dallas, Texas
Sponsored by ACM and Computer Society of the IEEE

Harold S. Stone, Proceedings Editor and Program Chairman
Stanley Winkler, Conference Chairman

Computer Soclety Order Number 743
Library of Congress Number 86-81582
|EEE Cataiog Number 86CH2345-7
ACM Order Number 401860

ISBN 0-8186-0743-2

THE INSTITUTE OF ELECTRICA. COMPUTER

@ THE COMPUTER SOCIETY Assaciation for Computing Machinery @ AND ELECTRONICS ENGINEERS NS SOCIETY A
OF THE IEEE cee PRESS @

The papers appearing in this book comprise the proceedings of the meeting mentioned on the cover
and title page. They reflect the authors’ opinions and are published as presented and without change,
in the interests of timely dissemination. Their inclusion in this publication does not necessarily constitute
endorsement by the editors, IEEE Computer Society Press, or the Institute of Electrical and Electronics
Engineers, Inc.

Published by IEEE Computer Society Press
1730 Massachusetts Avenue, N.W.
Washington, D.C. 20036-1903

COVER DESIGNED BY JACK I. BALLESTERO

IEEE Computer Society Order Number 743
Library of Congress Number 86-81582
IEEE Catalog Number 86CH2345-7
ACM Order Number 401860
ISBN 0-8186-0743-2 (paper)

ISBN 0-8186-4743-4 (microfiche)
ISBN 0-8186-8743-6 (case)

Prices (1986) ACM or IEEE Members: $60.00 prepaid
All others: $120 prepaid

Additional copies of the 1986 Proceedings may be ordered prepaid from:

ACM EE Service C Computer Society of the IEEE
A U I prvice Senter Post Office Box 80452 Computer Society of the IEEE
Post Office Box 64145 445 Hoes Lane World P | Cent
i Piscat NJ 08854 orldway Postal Genter Ave. de la Tanche
Baltimore, MD 21264 scataway Los Angeles, CA 90080 1160 Brussels, Belgium

Copyright and Reprint Permissions: Abstracting is permitted with credit to the source. Libraries are
permitted to photocopy beyond the limits of U.S. copyright law for private use of patrons those
articles in this volume that carry a code at the bottom of the first page, provided the per-copy fee
indicated in the code is paid through the Copyright Clearance Center, 29 Congress Street, Salem, MA
01970. Instructors are permitted to photocopy isolated articles for noncommercial classroom use
without fee. For other copying, reprint or republication permission, write to Director, Publishing serv-
ices, IEEE, 345 E. 47 St., New York, NY 10017. All rights reserved. Copyright © 1986 by The Institute
of Electrical and Electronics Engineers, Inc.

@ Association for Computing Machinery e e o AL THE COMPUTER SOCIETY

i

This 1986 edition of the proceedings of the Fall Joint Computer Conference, published on the 50th
anniversary of the writing of the paper

“On Computable Numbers, with an Application to the Entscheidungs Problem,”

is dedicated to the memory of

ALAN M. TURING

who wrote:

“My contention is that machines can be constructed which will simulate the behaviour of the human
mind very closely. They will make mistakes at times, and at times they may make new and very
interesting statements, and on the whole the output of them will be worth attention to the same sort of
extent as the output of a human mind.”

How close are we to his vision today?

Conference Committee

Harold S. Stone
Program

David C. Wood
Finance

Harry M. Kepner

Operations
Carla Elfeld
Samuel Fleming
M. Alex Harkins
Deanna Kirchoff.
Charlotte Lin
Peter Maverick
George Weinreich

Dennis J. Frailey
Registration and
Conference Advisor

Bruce Anderson
Publications

La Joyce Doran
William Lively
Resources

Rosetta L. Winkler
Conference Secretary

Joan W. Golden.

FJCC Steering Committee

Dick B. Simmons:
Chairman.

James H. Aylor
Roy L. Russo.
President, Computer Society-of the IEEE

William Habingreither
Wendy Chin

1986 Fall Joint Computer Conference

Stanley Winkler
Conference Chairman

Toni Shetler
Professional
Development

Karen Duncan
Helen Takacs
Judi Paulos
Kermit Paulos

Beth Stinnette

Executive Education Coordinator

David M. Hyatt
Industrial Liaison

A.T. Landberg
Alex A.J. Hoffman
Society Liaison -

Karen Duncan
Conference
Management

Thomas A. D’Auria
Special Events

Adrian J. Basili
Technical Advisor

Tim Durkin

Exhibits
Cynthia Cegelski
Lynda Rosenthal

Seymour J. Wolfson
Past Chairman

James Iverson

Paul W. Abrahams

President, Association for Computing Machinery

James Adams-
Pegotty Cooper

Program Committee

Referees

Abraham, J.A.
Adams, S.
Agarwal, R.
Agarwal, V.K.
Aida, H.
Aikens, J.
Allen, P.
Alonso, R.
Ammann, A.
Babaoglu, O.
Bard, Y.
Benjamin, J.
Bennett, B.T.
Berghel, H.
Birman, K.
Bose, P.

Brandenberg, J.

Brown, J.W.
Carey, M.
Carlsson, G.E.
Carter, W.C.
Chen, C.Y.
Cheng, V.
Chikayama, T.
Cook, J.
Cooper, E.
Copeland, G.
Cox, G.
Dana, C.

Dandapani, R.
David, R.

De Jong, K.
Driscoll, J.R.
Duchamp, D.
Eager, D.L.
Ezzat, A.
Freitas, R.
Ferrari, D.
Friedman, D.
Friedman, M.
Furthgott, D.
Gagliardi, R.
Gangopadhyay, D.
Garcia-Molina, H.
Gerasch, T.
Gilbert, R.
Goosen, H.
Goto, A.
Graham, D.
Hallmark, G.
Hansen, W.J.
Harandi, M.T.
Hassner, D.
Hayes, J.P.
Hellerstein, J.L.
Hillyer, B.
Homan, T.
Houghton, R.

1986 Fall Joint Computer COhference

Harold S. Stone, Program Chairman
Maureen Ferraro, Executive Program Coordinator

Lionel Baldwin
Laszlo Belady
Domenico Ferrari
Norman Gibbs

C. Lee Giles
William Howden
Kai Hwang
Laurel Kaleda
Elaine Kant

John Kender
David Kincaid
Kenneth Kolence
Jerome Kurtzberg

Stephen Lavenberg

Tony Marsland
John Meyer

Cleve Moler
Ryoichi Mori
Kenji Naemura
Anil Nigam
Arthur Parry
Richard Paul
James Peterson
Paul Purdom
David Rine

Daniel Siewiorek

Jack Stankovic
John White

Robert Wilensky

Michael Willett
Michael Wozny

1986 Fall Joint Computer Conference

Hutz, S.
Hwang, K.T.
Ibrahim, H.
Ihara, H.
Ishiguro, M.
Ishizuka, M.
Iyer, B.R.

Jha, N.
Johnson, M.S.
Kaneda, Y.
Kawaoka, T.
Kender, J.
King, R.
Kjell, B.
Kobayashi, S.
Kokubu, A.
Koo, R.
Korth, H.
Krishna, M.
Kung, H.T.
Kuper, G.
Kurose, J.
Landwehr, C.E.
Lee, I.
McCall, T.
McCluskey, E.J.
Malek, M.
Malhotra, A.
Masson, G.M.

Matsumoto, Y.
Melamed, A.
Mitra, D.

Mirchandaney, R.

Mok, A.
Moler, C.
Molina, H.G.
Morita, Y.
Mourad, S.
Mullarkey, P.
Muraoka, Y.
Murthy, S.
Nataraj, K.S.
Newman, T.
Neumann, P.G.
Ng, Y.W.
Nicola, V.
Nitta, K.
Norris, E.
Okada, Y.
Okugawa, S.
Omori, K.
O’Neill, D.M.
Patel, J.
Preparata, E.P.

Ramamritham, K.

Rashid, R.
Reddy, S.M.
Reeker, L.

Robinson, J.
Rosenberg, A.L.
Sabbah, D.
Sakai, K.
Sanders, W.H.
Sarin, S.

Sauer, C.H.
Scott, D.
Sekino, A.
Seth, S.C.
Sevick, K.C.
Sha, L.
Shibayama, E.
Shin, K.G.
Siewiorek, D.P.
Silberschatz, A.
Singh, A.
Smith, E.
Stankovic, J.
Stephenson, P.
Stewart, B.
Stone, H.S.
Sturgis, H.
Suwa, M.
Sylvester, J.
Tamaki, H.
Tanaka, H.
Tanaka, Y.
Toda, M.

Tokoro, M.
Tokuda, H.
Tomita, S.
Townsley, D.
Tripathi, S.
Tsujii, J.
Turn, R.
Valduriez, P.
Varman, P.J.
Vernon, M.K.
Waddle, V.
Wagner, K.
Wah, B.
Wang, H.
Wang, P.
Whang, K.Y.
White, J.R.
Willett, M.
Williamson, C.
Wolberg, G.
Wong, M.
Wozny, M.
Yemini, Y.
Yokota, M.
Yonezawa, A.
Young, H.
Yuba, T.
Zahorjan, J.
Zicari, R.

Table of Contents

Dedication to Alan M. Turing e iii
Conference COMMILIEE\ttt e et et ettt e e et e e e v
Program Committee e e vii
] () =<1 4
FJCC ’86—A Conference for the Profession—Stanley Winkler. R ¢31
FJCC ’86—A New Beginning—Harold S. Stone. xxiii
Conference-at-a-Glance e Xxvi
EDUCATION ARENA

TRACK ED-1: New Technology in Education. Track Chair: Lionel Baldwin, President, National
Technological University

Session 1 - Education by Satellite. Session Chair: Lionel Baldwin, National
Technological University (1-B)

AMCEE Programming for Computer Professionals, J. T. Fitch, AMCEE............... 1
NTU Computer Engineering Program, F. J. Mowle, D. G. Meyer, and P. H.

Swain, Purdue University i e 5
NTU Computer Science Program, S. Sahni, University of Minnesota. 11

Session 2 - Computers in Education. Session Chair: Arthur Melmed,
Consultant (4-B)

Workstations at Carnegie Mellon, B. A. Sherwood, Carnegie Mellon

UNIVEISILY . . .ottt ettt e e e e e e 15
Intelligent Tutoring Systems for Professionals, A. M. Lesgold, University of
Pitts UG 18
SOFTWARE SYSTEMS ARENA

TRACK SS-1: Software Engineering. Track Chair: Laszlo Belady, MCC

Session 1 - Object-Oriented Software. Session Co-Chairs: Clarence Ellis and
Ted Biggertsaff, MCC (2-C)
An Approach to Type Safety in a Traits System, G. Curry, Sequent Computer Systems25

Object-Oriented Programming for Macintosh Applications, L. Rosenstein,
K. Doyle, and S. Wallace, Apple Computer,Inc. 31

Classes versus Prototypes in Object-Oriented Languages, A. H. Borning,
University of Washington i 36

Why Properties Are Objects or Refinements of “is-a,” S. B. Zdonik, Brown
UNIVEISILY . . .ottt e e 41

ix

TRACK S§S-4: Programming Languages, Compilers and Environments. Track
Chair: John R. White, Xerox Corporation

Session 5 - Programming Languages. Session Chair: John White, Xerox
Corporation (7-B)

A Systolic Parsing Algorithm for a Visual Programming Language, A. W.
Bojanczyk and T. D. Kimura, Washington University 48

Learning, Research and the Graphical Representation of Programming, R. P.
Taylor, N. Cunniff, and M. Uchiyama, Columbia University 56

Command Language Support for Application Programs, C. C. Genet,
Grumman Data Systems Corp.o 64

ARTIFICIAL INTELLIGENCE ARENA

TRACK AI-2: Computer Vision. Track Chair: John Kender, Columbia University

Session 2 - Model-Based High-Level Vision. Session Chair: John Kender,
Columbia University (5-I)
Survey of Image Quality Measurements, 1. E. Abdou and N. J. Dusaussoy,
University of Delaware 71

A Spatial Knowledge Structure for Image Information Systems Using
Symbolic Projections, S-K. Chang and E. Jungert, University of Pittsburgh

and FFV Elektronik AB. 79
Document Image Understanding, S. N. Srihari, State University of of New
YorkatBuffalo. 87

TRACK AI-3: Robotics. Track Chair: Richard Paul, University of Pennsylvania
Session 1 - Robot Perception. Session Chair: Takeo Kanade, Carnegie Mellon
University (6-1)
Living in a Dynamic World, R. L. Andersson, AT&T Bell Laboratories. 97

CMU Sidewalk Navigation System: A Blackboard-Based Outdoor
Navigation System Using Sensor Fusion with Colored-Range Images, Y. Goto,
K. Matsuzaki, I. Kweon, and T.

Obatake, Carnegie Mellon University 105
Error Modelling in Stereo Navigation, L. Matthies and S. A. Shafer,
Carnegie Mellon University o i 114

Session 2 - Task-Level Robot Programming. Session Chair: Tomas Lozano-
Pérez, MIT (7-G)

Automatic Grasp Planning: An Operation Space Approach, M. T. Mason and

R. C. Brost, Carnegie Mellon University 124
Planning Stable Force-Closure Grasps, V-D. Nguyen, MIT. 129
Off-Line Planning for On-Line Object Localization, T. Lozano-Pérez and

W.E. L. Grimson, MIT SRR R R PP 138

Session 3 - Real-Time Robot Programming. Session Chair: Russell Taylor,
IBM T. J. Watson Research Center (8-G)

AML/X: A Programming Language for Design and Manufacturing, L. R.

Nackman, M. A. Lavin, R. H. Taylor, W. C. Dietrich, Jr., and D. D.
Grossman, IBM T. J. Watson ResearchCenter 145

Satyr and the Nymph: Software Archetype for Real-Time Robotics, J. B.
Chen, B. S. R. Armstrong, R. S. Fearing, and J. W. Burdick, Stanford
University. . ..o e e 160

The Meglos User Interface, R. D. Gaglianello and H. P. Katseff, AT&T Bell

Laboratoriesot e 169
A Robot Force and Motion Server, H. Zhang and R. P. Paul, University of
Pennsylvania. e 178

TRACK AI-4; Rule-Based Systems. Track Chair: David C. Rine, George Mason
University

Session 1 - Software Engineering Methods for Rule-Based Systems. Session
Chair, David C. Rine, George Mason University (5-C)

Software Engineering for Rule-Based Software Systems, R. J. K. Jacob and
J. N. Froscher, Naval Research Laboratory 185
Session 3 - Rule-Based Models and Applications. Session Chair:
Elaine Kant, Schlumberger Doll Research Center (8-C)

An Organizational Framework for Comparing Adaptive Artificial
Intelligence Systems, T. A. Blaxton and B. G. Kushner, BDM Corp. 190

An Object/Task Modeling Approach Based on Domain Knowledge and
Control Knowledge Representation, Q. Chen, Research Institute of

Surveying and Mapping, Beijing China. 200
A Plant Intelligent Supervisory Control Expert System, M. Ali and E. S.
Washington, University of Tennessee Space Institute 207

A Knowledge-Based Layout Design System for Industrial Plants, K.
Yoshida, Y. Kobayashi, Y. Ueda, Hitachi, Ltd., and H. Tanaka, S. Muto, and
J. Yoshizawa, Tokyo Electric Power Co. Inc. 216

Session 4 - Prolog and Frame-Based Methods. Session Chair: Kenneth De
Jong, George Mason University (9-C)

A Logic Programming Approach to Frame-Based Language Design, H-H.

Chen, I-P. Lin, and C-P. Wu, National Taiwan University 223
Interfacing Prolog to Pascal, K. Magel, North Dakota State University. 229
Knowledge-Based Optimization in Prolog Compiler, N. Tamura, IBM Japan,

Ltd. . 237

TRACK AI-5: Natural Language Processing. Track Chair: Robert Wilensky,
University of California at Berkeley

Session 1 - User Interfaces. Session Chair: Robert Wilensky, University of California
at Berkeley (1-1)

Communication with Expert Systems, K. R. McKeown, Columbia
UnivVersity. . ..o 241

Language Analysis in Not-So-Limited Domains, P. S. Jacobs, General
Electric Corporate Research and Development. 247

Providing Expert Systems with Integrated Natural Language and Graphical
Interfaces, P. J. Hayes, Carnegie Group, Inc. 253

TEAM: An Experimental Transportable Natural-Language Interface, P. :
Martin, D. E. Appelt, B. J. Grosz, and F. Pereira, SRI International 260

\

Xi

SUPERCOMPUTING ARENA

TRACK SC-1: Parallel Computation. Track Chair: Kai Hwang, University of
Southern California

Session 1 - Parallel Processing for AL Session Chair; Kai Hwang, University
of Southern California (1-D)

Parallel Processing of a Knowledge-Based Vision System, D. I. Moldovan
and C. I. Wu, University of Southern California

A Fault Tolerant, Bit-Parallel, Cellular Array Processor, S. G. Morton, ITT
Advanced Technology Center.ttt

Implementation of Parallel Prolog.on Tree Machines, H. Miura, Fujitsu Ltd.,
M. Imai, Toyohashi University, M. Yamashita, Hiroshima University, and
T. Ibaraki, Kyoto University i

Optimal Granularity of Parallel Evaluation of AND Trees, G-J. Li and B. W.
Wah, University of Hlinois at Urbana-Champaign

Session 2 - Parallel Algorithms for Supercomputing. Session Chair: Benjamin
Wah, University of Illinois at Urbana-Champaign (2-D)

Parallel Preprocessing and Postprocessing in Finite-Element Analysis on a
Multiprocessor Computer, P. S. Tseng, Carnegie Mellon University, and
K. Hwang, University of Southern Californiaat Los Angeles

A New Class of Parallel Algorithms for Solving Linear Tridiagonal Systems
S. Lakshmivarahan and S. K. Dhall, University of Oklahoma
A Parallel Computer Based on Cube-Connected Cycles for Wafer-Scale

Integration, M. J. Chung, E. J. Toy, and A. Gupta, Rensselaer Polytechnic
INSttULe e

TRACK SC-3: Multiprocessors. Track Chair: Daniel Siewiorek, Carnegie Mellon
University

Session 1 - Multiprocessors I. Session Chair: Zary Segall, Carnegie Mellon
University (4-D)
MUPPET - A Programming Environment of Message-Based
Multiprocessors, H. Muehlenbein, F. Limburger, S. Streitz, and S. Warhaut,
GMD, West GEIMANY ot e e e e et e et et

Distributed Functions Allocation for Reliability and Delay Optimization, S.

Hariri and C. S. Raghavendra, University of Southern California at Los -

ANgeles . .. e
DBCL: Data-Flow Computing Base Language with n-Value Logic, J. Herath,

N. Saito, K. Toda, Y. Yamaguchi, and T. Yuba, Kieo University,

Japan . .. e

Session 2 - Multiprocessors 2. Session Chair: Pat McGehearty,
Microelectronics and Computer Technology Corporation (5-D)

Evon: An Extended von Neumann Model for Parallel Processing, W.-M.
Ching, IBM T. J. WatsonResearch Center

Optimal Code Generation for Expressions on Super Scalar Machines, P.
Bose, IBM T. J. Watson ResearchCenter,

A Symmetric Concurrent B-Tree Algorithm, V. Lanin and D. Shasha,
Courant Institute, New York University i,

xii

Session 3 - High-Speed Techniques. Session Chair: William Brantley, IBM T.
J. Watson Research Center (6-D)

Architecture of a Fiber Optics Based Distributed Information Network
FORTIS: Local Area Network, P. C. Barr, Northeastern University, and

S.G. Krishnamoorthy, Framingham State College 390
On the Design of Fault-Tolerant Systolic Arrays with Linear Cells, C. Y.

Chen and J. A. Abraham, University of Illinois at Urbana e 400
The Design and Development of a Very High Speed System Bus—The

Encore Multimax Nanobus, D. J. Schanin, Infinity Systems, Inc. 410

TRACK SC-4: Optical Computing. Track Chair: C. Lee Giles, AFOSR/NE

Session 1 - Optical Computers. Session Chair: John Caulfield, University of
Alabama (1-A)

Optoelectronic Devices for Computing, F. J. Leonberger, UT Research

ContEr . e 419
Architectures for Optical Matrix Multipliers, R. A. Athale, BDM
COrporationt 422

Session 2 - New Directions in Optical Computing. Session Chair: C. Lee Giles,
AFOSR/NE (2-A)

Optical Realizations of Neural Network Models, D. Psaltis, C.I.T. 428
Optical Symbolic Computing, B.G. Kushner, BDM Coproration, and J. Neff,

DARPA . e 434
An Extendible Optically Interconnected Parallel Computer, A. D. McAulay,

Texas Instruments, INC. 441

Session 3 - Optical Interconnections for Computing. Session Chair: John Neff,
DARPA/DSO (3-A)

Optical Interconnect Technology Developments, L. D. Hutcheson,
CyberOptics COTporationttt et e e e e e 448

Optical Interconnection Systems for Digital Parallel Processors, A. A.
Sawchuk, University of Southern California N 457

Optical Interconnection Technology in the Telecommunications Network, D.
H. Hartman, Bell Communications Research. 464

TRACK SC-5: Networks. Track Chair: Michael Willett, IBM Corporation

.Session 1 - Implementing a Token-Ring Local Area Network, Session Chair:
- Michael Willett, IBM Corporation (4-A))

Standards and. Architecture for Token-Ring Local Area Networks, J. Winkler

candJ. Munn, IBM Corp. 479
The IBM Token-Ring Network: A Functional Perspective, Michael Willett,
IBM Corp. . oot e 489
Implementing the IEEE 802.5 Token-Ring Standard, M. C.-Hamner and J. J.
Carlo, Texas Instruments, INC. oottt e e e e e e 498

The Fiber Distributed Data Interface: A Bright Future Ahead, S. P. Joshi,
Advanced MICrO DEVICES oo ottt e e 504

xiii

ALGORITHMS ARENA

TRACK AL-1: Artificial Intelligence Algorithms. Track Chair: Tony A. Marsland,
University of Alberta

Session 1 - Computer Chess Techniques. Session Chair: Tony A. Marsland,
University of Alberta (3-H)

Phased State Space Search, T. A. Marsland and N. Srimani, University of

Alberta. . .. e 514
Improved Parallel Alpha-Beta Search, J. Schaeffer, University of
Adberta. . .. 519

TRACK AL-2: Numerical Methods. Track Chair: David R. Kincaid, University of
Texas at Austin

Session 1 - Vector and Parallel Algorithms. Session Chair: David R. Kincaid,
University of Texas at Austin (7-D)

New ADI Model Problem Applications, N. S. Ellner and E. L. Wachspress,

University of Tennessee. o e 528
Finite Element Analysis Using Advanced Processors, G. F. Carey and E.

Barragy, University of Texasat Austin i 535
Parallelism in Solving PDEs, J. R. Rice, Purdue University. 540

Geophysical Modeling - Migration Viewed as a Spectrum of Supercomputer
Applications, O. G. Johnson and O. Lheman, University of Houston. 547

Session 2 - Finite Differences, Finite Elements, and Grid Generation — A
Tutorial. Session Chair: Linda J. Hayes, University of Texas at
Austin(8-D)

A Tutorial on Finite-Difference Methods and Ordering of Mesh Points, D. M.

Young and D. R. Kincaid, University of Texas at Austin. 556
Finite Element Methods, J. T. Oden, University of Texas at Austin 560
Boundary Element Methods, S. R. Kennon, University of Texas at

AUSHD . .. 563
A Comparison of Grid Generation Techniques, S. R. Kennon, University of

Texas at Austin, and G. S. Dulikravich, Pennsylvania State University 568

TRACK AL-3: General Algorithms. Track Chair: Paul Purdom, Indiana University
Session 1 - Searching. Session Chair: Cynthia Brown, Northeastern
University (7-1)
Intelligent Backtracking Using Symmetry. C. Brown, L. Finkelstein,
Northeastern University, and P. W. Purdom, Jr., Indiana University. 576
Time-Space Tradeoffs for Tree Search and Traversal, D. A. Carlson,
University of Massachusetts at Amherst, 585
A Fast Probabilistic Algorithm for Four-Coloring Large Planar Graphs, R. A.
Archuleta and H. D. Shapiro, University of New Mexico. 595
Session 2 - Data Structures. Session Chair: Michael Loui, University of
Illinois (8-1)
Techniques for Collision Resolution in Hash Tables with Open Addressing, J.
I. Munro and P. Celis, University of Waterloo. 601

Performance Analysis of Concurrent Maintenance Policies for Servers in a
Distributed Environment, F. B. Bastani, W. Hilal, and 1.-R. Chen,
University of Houston 611

Xiv

Construction Through Decomposition: A Divide-and-Conquer Algorithm for
the N-Queens Problem, B. Abramson and M. M. Yung, Columbia

University. . .. e e

Session 3 - Optimization. Session Chair: Larry Russo, University of
Washington (9-1)

Two Flow Routing Algorithms for the Maximum Concurrent-Flow Problem,
J. Biswas, University of Texas at Austin, and D. W. Matula, Southern

Methodist Universityt

A Least-Cost Partition Algorithm, T. J.Marlowe, Jr., Seton Hall

UniVerSity. o o ottt e e e

A Polynominal Determination of the Most Recent Property in Pascal-Like

Programs, D. Armbruster, University of Stuttgart

MODELING AND MEASUREMENT ARENA
TRACK MM-1: Performance Modeling and Measurement. Track Chair: Stephen
Lavenberg, IBM T. J. Watson Research Center

Session 1 - Performance Modeling and Measurement. Session Chair: Stephen
Lavenberg, IBM T. J. Watson Research Center (1-G)

Frame Caching in Menu-Driven Videotex Systems, S. Lakshmi, S. Calo, and
P. Gupta, IBM T. J. Watson ResearchCenter

The Contribution to Performance of Instruction-Set Usage in System/370, O.

R. LaMaire and W. W. White, IBM T. J. Watson Research Center

Dynamic Load Sharing in Distributed Database Systems, P. S. Yu, S.

Balsamo, and Y. H. Lee, IBM T. J. Watson ResearchCenter.

A Load Index for Dynamic Load Balancing, D. Ferrari and S. Zhou,

University of Californiaat Berkeley

Session 2 - Performance Modeling Methods. Session Chair: Stephen
Lavenberg, IBM, T. J. Watson Research Center (2-G)

An Approximation of the Processing Time for Random Graph Model of
Parallel Computation, E. Gelenbe, University of Paris, R. Nelson, T.

Philips, and A. Tantawi, IBM T. J. Watson Research Center

Performance Analysis of Dynamic Locking, I. K. Ryu, University of
Southern California, and A. Thomasian, IBM T. J. Watson

Research CENMLET . . . o vt et e e e e e e e e e e e e

Session 3 - Performance Modeling Workstations. Session Chair: Stephen
Lavenberg, IBM T. J. Watson Research Center (3-B)

A Graphical Interface for Specification of Extended Queueing Network

Models, J. B. Sinclair and S. Madala, Rice University.

A Graphics-Oriented Modeler’s Workstation Environment for The RESearch
Queueing Package (RESQ), J. F. Kurose, K. J. Gordon, University of
Massachusetts, and R. F. Gordon, E. A. MacNair, and P. D. Welch, IBM

Hawthorne Research Laboratory. o .

The Performance Analysis Workstation: An Interactive Animated Simulation
Package for Queueing Networks, B. Melamed, AT&T Bell

Laboratories e e

XV

TRACK MM-2: The State of the Art of Capacity Management in MVS Systems.
Track Chair: Kenneth Kolence, Kolence Associates

Session 1 - Capacity Management 1. Session Chair: Kenneth Kolence,
Kolence Associates (3-G)

An Overview of the Capacity-Management Process, K. W. Kolence, Kolence

ASSOCIAES .+« o ottt et e e 741
An Overview of Performance and Predictions for MVS Systems and SNA

Networks, J. P. Buzen, BGS Systems, Inc.. 751
A Survey of the State of Art and Practice in I/0 Subsystem Modeling and

Analysis, B. J. Smith, IBM General Products Division 760

Session 2 - Capacity Management 2. Session Chair: Kenneth Kolence,
Kolence Associates (4-G)

The Evolving Role of Software Products in Capacity Management: A Survey,

P. C. Howard, EDP Performance Review 764
The Evolution of Workload Management in the Data Processing Industry: A
Survey, T. L. Lo, McDonnell Douglas 768
The Evolution of Software Performance Engineering: A Survey, C. U. Smith,
L & S Computer Technology, Inc. i 778
COMPUTER DESIGN ARENA

TRACK CD-1: Fault-Tolerant Computing. Track Chair: John Meyer, University of
Michigan
Session 2 - Evaluation. Session Chair: Kishor S. Trivedi, Duke University
(5-E)

Performability Analysis of Operation Modes of Configurable Duplex
Systems, B. R. Iyer, D. M. Diaz, and P. S. Yu, IBM T. J. Watson Research

CeMIEE . ..t e 785
Recognition of Error Symptoms in Large Systems, R. K. Iyer, L. T. Young,
and V. Sridhar, University of Illinois at Urbana-Champaign. 797

METASAN: A Performability Evaluation Tool Based on Stochastic Activity
Networks, W. H. Sanders and J. F. Meyer, Industrial Technology
Instituteo 807

A Hierarchical, Combinatorial-Markov Method of Solving Complex
Reliability Models, R. A. Sahner, Gould CSD, and K. S. Trivedi, Duke
University. 817

Session 3 - Testing. Session Chair: Edward J. McCluskey, Stanford
University (6-E)
Design of Systems with Concurrent Error Detection Using Software
Redundancy, K. A. Hua and J. A. Abraham, University of Illinois

atUrbana e 826
Stuck-At Fault Detection in Parity Trees, S. Mourad, J. L. A. Hughes, and

E. J. McCluskey, Stanford University. i 836
A Two-Level Guidance Heuristic for ATPG, T. Kirkland, MCC, and M. R.

Mercer, University of Texasat Austin. 841

xvi

TRACK CD-2: VLSI Design and Test: Theory and Practice. Track Chair: Jerome
M. Kurtzberg, IBM T. J. Watson Research Center

Session 1 - VLSI Techniques of Design Automation. Session Chair: Sheldon
AKers, University of Massachusetts at Amherst (1-E)

Automatic Intra-Device Pin and Element Reassignment (AIDPER)

Algorithm, H. A. Hershey and T. A. Onitiri, AT&T Bell Laboratories 848
A Knowledge-Based TDM Selection System, X. Zhu and M. A. Breuer,
University of Southern California at Los Angeles. 854

Deriving Module Interconnectivity from Behavioral Specifications and
Coupling a VLSI Layout Editor for Error-Free Routing, G. C.
Opalakrishnan,N. C. Lee, D. R. Smith, and M. K. Srivas, State University of
New YOrK. . ..o 864

Session 2 - VLSI Research in Universities. Session Chair: Timothy N. Trick,
University of Illinois at Urbana (2-E)

Recent Results in VLSI CAD at MIT, R. E. Zippel, P. Penfield, Jr., L. A.
Glasser, C. E. Leiserson, J. L. Wyatt, Jr., and J. Allen, Massachusetts

Institute of Technology. . . -« o oot 871
Highlights of CMU Research on CAD, CAM, CAT of VLSI Circuits, J. P.

Shen, Carnegie Mellon University 878
Research in Reliable VLSI Architectures at the University of Illinois, J.

A. Abraham, University of Illinois at Urbana-Champaign. 890
Highlights of VLSI Research at Berkeley, C. H. Sequin, A. R. Newton, and

A.L. Sangiovanni-Vincentelli, University of California at Berkeley 894

Session 4 - Expert Systems for Design and Test. Session Chair: Pradip Bose,
IBM T. J. Watson Research Center (7-E)

DEFT: A Design for Testability Expert System, J. A. B. Fortes and M. A.

Samad, Purdue University 899
Experiences in Prolog-Based DFT Rule Checking, G. Cabodi, P. Camurati,

and P. Prinetto, Politecnicodi Torino 909
A Rule-Based System for the Optimal State Assignment of Controllers, E.

Dupont, J. Idt, and G. Saucier, Lab. Circuitset Systems 915

TRACK CD-3: Computer Graphics. Track Chair: Michael Wozny, Rensselaer
Polytechnic Institute

Session 1 - Computer Geometry. Session Chair: Louis Doctor, Raster
Technologies, Inc. (8-E) ’
Constructive Solid Geometry: A Symbolic Computation Approach, L. L. Leff

and D. Y. Y. Yun, Southern Methodist University. 925
Creation and Smooth-Shading of Steiner Patch Tessellations, D. E. Breen,

Rensselaer Polytechnic Institute, 931
Algorithms for Normal-Vector Interpolation on Polygonal Surfaces, P. H.

Getto, Rensselaer Polytechnic Institute 941

Xvii

INTERNATIONAL DEVELOPMENT ARENA

TRACK ID-1: Computer Developments in Japan. Track Chair: Ryoichi Mori,
University of Tsukuba, Track Secretariat: Mr. Kenji Naemura, NTT Electrical
Communications Laboratories

Session 1 - Fifth Generation Computers I: Language Architecture. Session
Chair: Koichi Furukawa, ICOT (4-F)

Guarded Horn Clauses and Experience with Parallel Logic Programming, J.
Tanaka, K. Ueda, T. Miyazaki, A. Takeuchi, Y. Matsmoto, and K.

Furukawa, ICOT Research Center 948
“Kabu-Wake” Parallel Inference Mechanism and It s Evaluation, H.

Masuzawa, K. Kumon, A. Itashiki, K. Satoh, and Y. Sohma, Fujitsu Ltd. 955
A Very Fast Prolog Complier on Multiple Architectures, T. Kurokawa, N.

Tamura, Y. Asakawa, and H. Komatsu, IBM Japan. 963
A Relational-Database Machine Based on Functional Programming

Concepts, Y. Kiyoki, K. Kato, and T. Masuda, University of Tsukuba............. 969

Session 2 - Fifth Generation Computers II: Applications. Session Chair:
Koichi Furukawa, ICOT (5-F)

Knowledge-Based Expert System for Hardware Logic Design, T. Mano, F.
Maruyama, K. Hayashi, T. Kakuda, N. Kawato, and T. Uehara, Fujitsu,

Ltd. . 979
Research Activities on Natural Language Processing of the FGCS Project, T.

Yokoi, H.Miyoshi, K.Mukai, and Y. Tanaka, ICOT........................ 987
ARGOS/V: A System for Verification of Prolog Programs, T. Kanamori, H.

Fujita, H. Seki, K. Horiuchi, and M. Maeji, Mitsubishi Electric. 994

Session 3 - Advanced Microcomputer Developments. Session Chair: Iwao
Morishita, University of Tokyo (6-F)

A 32-Bit CMOS Microprocessor with Six-Stage Pipeline Structure, H.

Kaneko, Y. Miki, S. Nohara, K. Koya, and M. Araki, NECCorp 1000
Advanced Super Integration, T. Saito, T. Yamamoto, T. Shigematsu, K.
Nagao, S. Takeda, and Y. Suzuki, ToshibaCorp. 1008

A 16-Bit Microprocessor with Multi-Register Bank Architecture, H.
Maejima, H. Kida, T. Watanabe, S. Baba, and K. Kurakazu, Hitachi,
Ltd. 1014

Session 4 - Supercomputing Systems. Session Chair: Yoshikuni Okada,
Electrotechnical Laboratory (7-F)

Software-Oriented Approach for Supercomputer Design, K. Miura, Y.

Tanakura, and S. Kamiya, Fujitsu America 1020
Advanced Implicit-Solution Function of DEQSOL and Its Evaluation, C.

Kon’no, M. Saji, N. Sagawa, and Y. Umetani, Hitachi, Ltd. 1026
Fortran and Tuning Utilities Aiming at Ease of Use of a Supercomputer, H.

Katayama and M. Tsukagoshi, NECCorp.ciiiriinennnnn.. 1034

The IX Supercomputer for Knowledge-Based Systems, T. Higuchi, T.
Furuya, H. Kusumoto, K. Handa, and A. Kokubu, ETL. 1041

Session 5 - Interworking Systems. Session Chair: Kenji Naemura, NTT
Electrical Communications Laboratories (8-F)

Methods for Achieving Integrated Operation in a High-Performance Optical
Loop Inter computer Communications System, M. Kurata, S. Tsuruho, T.
Isogawa, and H. Nakashima, NTTttt 1050

xviii

Autonomous Decentralized Software Structure and Its Application, K. Mori,
H. Ihara, Y. Suzuki, K. Kawano, M. Koizumi, M. Orimo, K. Nakai, and

H. Nakanishi, Hitachi Ltd. i i e e 1056
Approaches to an Integrated Office Environment, M. Yoshida, M. Kotera, K.
Yokoyama, and S. Hikita, OkiElectric. 1064

OPERATING SYSTEMS AND DATA BASES ARENA

TRACK OSDB-1: Operating Systems. Track Chair: James Peterson, MCC

Session 1 - Applications of Petri-Nets. Session Chair: Paul Reynolds,
University of Virginia (7-H)
Use of Petri-Net Invariants to Detect Static Deadlocks in Ada. Programs, B.

Shenker, T. Murata, and S. Shatz, University of Illinois at Chicago 1072
A CAD Tool for Stochastic Petri-Nets, M. K. Molloy, Carnegie Mellon .

UnIVeISItY .« oot e it ettt e et e e e 1082
Petri — A UNIX Tool for the Analysis of Petri-Nets, I. R. Forman,

Microelectronics & Computer Technology Corp. u.. 1092

The GTPN Analyzer: Numerical Methods and User Interface, M. A.
Holliday, Duke University, and M. K. Vernon, University of Wisconsin
at Madison e e e e e 1099

Session 2 - Security and Protection in Computer Systems. Session Chair:
James Peterson, MCC (8-H)

Security and Privacy Requirements in Computing, R. Turn, California State

University at Northridge. 1106
Analyzing the Security of an Existing Computer System, M. Bishop, NASA
Ames ResearchCenter. e 1115

A Network Technique to Achieve Program and Data Security with Nominal
Communications Overhead, J. Driscoll, H. Srinidhi, University of Central
Florida, and T. S. Chesser, Martin Marietta Data Systems 1120

TRACK OSDB-2: Distributed Operating-Systems. Track Chair: Jack Stankovic,
Carnegie Mellon University

Session 1 - Distributed-Operating Systems. Session Chair: Jack Stankovic,
Carnegie Mellon University (5-H)

From RIG to Accent to Mach: An Evolution of a Network Operating System,

R. F. Rashid, Carnegie Mellon University. 1128
Load Balancing in NEST: A Network of Workstations, A. K. Ezzat, AT&T

Bell Laboratories.o e 1138
Checkpointing and Rollback-Recovery for Distributed Systems, R. Koo and

S. Toueg, Cornell Universityottt i e 1150

The Gutenberg Operating System Kernel, P. Chrysanthis, K. Ramamritham,
D. Stemple, University of Massachusetts, and S. Vinter, BBN
Laboratories vttt e 1159

Session 2 - Distributed Databases. Session Chair: Hector Garcia-Molina,
Princeton University (6-H)

CARAT: A Testbed for the Performance Evaluation of Distributed Database

Systems, W. H. Kohler and B-C. Jenq, University of Massachusetts. 1169
Request I — A Distributed Database System for Local Area Networks, M.
Rusinkiewicz and D. Georgakopoulos, University of Houston 1179

Xix

A Protocol for Failure and Recovery Detection to Support Partitioned
Operation in Distributed Database Systems, J. K. Kim and G. G.

Belford, University of Illinois Urbana-Champaign 1189
Replication in Distributed Systems: The Eden Experience, J. D. Noe, A. B.
Proudfoot, and C. Pu, University of Washington. 1197

TRACK OSDB-3: Data Bases. Track Chair: Anil Nigam, IBM T. J. Watson
:Research Center
Session 1 - Data Bases. Session Chair: Anil Nigam, IBM T. J. Watson
‘Research Center (1-H)

MAYBE Algebra Operators in Database Machine Architecture, L. L. Miller,
Iowa State University, and A. R. Hurson, Pennsylvania State

UnIVeISIEY . . .o e e e 1210
Pros-and Cons of Operating System Transactions for Database Systems, G.

Weikum, Technical University of Darmstadt, West Germany 1219
‘Main Memory Database Recovery, M. Eich, Southern Methodist University. 1226

A Relational-Database Machine Organization for Parallel Pipelined Query
Execution, M. Hirakawa, T. Tsuda, M. Tanaka, and T. Ichikawa,
Hiroshima University. e 1233

Index $0 AUthOrs e 1245

XX

The 1986 Fall Joint Computer Conference—
A Conference for the Profession

Stanley Winkler
Conference Chairman

A professional, technical conference is the term we have used to describe the 1986 Fall Joint
Computer Conference (FICC ’86). It was our aim to prepare the finest conference of the decade.
Sponsored by two great professional computer associations, the Association for Computing Machinery
(ACM) and the Computer Society of the IEEE, the FICC was conceived as a conference-for-all-
members. Specifically, the FJCC combines two meetings of the Societies customarily held in the fall
season: The ACM National Conference and the COMPCON Fall meeting of the Computer Society
of the IEEE. The ACM Council and the Computer Society Governing Board will meet during FJCC
’86, as will various Boards and Committees, following the tradition of conducting Society business
during the annual Fall Meeting.

Professional, technical conferences in the United States have a long and honorable history that can be
traced back to the Mechanics Institutes of the 1800s. These Institute meetings, made necessary by the
rapid technical advances of the Industrial Revolution, allowed professionals in the field of engineer-
ing to gather together and share problems and experiences. As the workforce became more special-
ized, it was no longer adequate for industry to rely on the transfer of technical knowledge from father
to son or from master to apprentice. Today, in the computer field, professional conferences remain an
important, if not the most important, means of exchange of ideas, information, and knowledge within
the profession. While classroom education can provide the basis for entry into the profession, the
essential continuing education is best acquired by interaction with one’s peers. This interaction
among peers is at once the function and the raison d’étre of professional, technical conferences.

Of course, times have changed, and our computing profession has changed with it. Thirty-five years
ago at the first joint meeting, in Philadelphia, the topics discussed encompassed most of the field as it
was known then. That completeness would be impossible to accomplish today. Nonetheless, it
seemed important to try, during FICC 86, to provide a broad-based review of the most significant
topics that confront the computing profession and industry. The salient feature of the 1986 Fall Joint
Computer Conference is its broad-based nature. Equally important is the fact that, broad-based
though it is, FJCC 86 presents full in-depth discussions of the topics selected. The technical program
for FICC 86, so ably developed under the leadership of Harold S. Stone, is a cornucopia of technical
delights prepared by experts for their fellow practitioners of the art of computing.

In his introduction to the FICC ’86 technical program (in this volume), Harold S. Stone refers to
FICC 86 as “a new beginning.” Since by definition all beginnings are new, one cannot quarrel with this
phrase. I think, however, that the French saying “the more things change, the more they remain the
same” also applies. I had the pleasant and comfortable feeling, on first seeing the finished FICC 86
technical program, that the program is a return to the best traditions of the past. It is, indeed, a
thoroughly modern program, broad-based and in full detail. It displays, without compromise, the
current state-of-the-art. A casual look at the Conference-at-a-Glance confirms this assertion. But the
technical program of the 1986 Fall Joint Computer Conference does more than provide a static
snapshot of the world of computing today. It describes and represents the directions that the leaders
of the computing profession are taking.

This illumination of the directions that the computing profession is taking is the most important
function of an FJCC. Significantly, this illuminationis not a prediction of:the future gained by gazing
into a crystal ball, or by the reading of tea leaves. It is, in fact, a self-fulfilling prophecy. The
participants in FICC "86, the speakers, panelists, discussants, and attendees, are not just talking about
professional leadership in the 1990s—they are making it happen. They can make it happen because
“they” are the leaders, the top, key people in.the profession and in the industry. The content of

XXi

FJCC 86 in its breadth and depth is outstanding— probably exceeding that of any conference held in
the last decade. This unprecedented breadth and depth is achieved through the nine conferences that
are held simultaneously during FICC ’86.

Each of these nine conferences is a front-line, major event of its own. The nine conferences are:
Artificial Intelligence, Supercomputing, Software Systems, Algorithms, Modeling and Measurement,
Computer Design, Computer Developments in Japan, Operating Systems and Data Bases, and
Education.

The fact that these nine conferences are going on at the same time is a significant added dimension to
the FICC *86 experience. Not only can FICC participants meet the experts in their own specialty, but
they can interact with the leaders in other specialties. This provides an enrichment for the individual,
and, at the same time, is very good for the profession. The interpersonal communication among
specialists in various fields of computer science and engineering stimulates thinking and creativity.
This “cross-cultural” communication induces the propagation of ideas and concepts from one field
into another, adding robustness and vibrancy to our profession.

This Proceedings provides a permanent record of the technical papers presented at the Conference.
Assuch, it is a valuable addition to the shelves of our personal and organizational libraries. It does not,
however, capture the other dynamic and exciting aspects of FICC ’86; absent are the discussions
following each presentation of a technical paper, the poster sessions where last minute ideas are put
forth, and the conversations in the hallways and lounges during coffee breaks and after sessions. Also
not reflected in the Proceedings are the special events such as the world class Chess Tournaments—
the 17th North American Computer Chess Championship and the 6th World Microcomputer Chess
Championship.

The FICC was designed to provide a complete educational experience. Complementing the technical
program, Toni Shetler and her committee arranged an unparalleled Professional Education Program
(PEP) and a very interesting Exhibitor Technical Forum. The Professional Education Program, which
took place during the first two days of the Conference, gave attendees the opportunity to learn new
skills and to sharpen old ones. There were one- and two-day courses, many of the hands-on variety.
The Exhibitor Technical Forums provided the opportunity for vendors to discuss and explain the
technology imbedded in their principal products. All of these activities were part of the effort to attain
the objective of FICC '86: to expand the professional horizons and capabilities of the conference
attendees.

It was my privilege to chair a Conference Committee of capable, dedicated individuals, who contrib-
uted their time and effort in the service of the profession by creating the FICC ’86. They are
listed elsewhere in this volume. To each of these friends I want to say, “Thank you.” There were many
others who helped us and to all of them I want to express my sincere appreciation. And finally, I want
to thank the participants because, in the final analysis, it is they who are the Conference.

XXii

The 1986 Fall Joint Computer Conference — A New Beginning

Harold S. Stone
Program Chairman

The Conference Role

The 1986 Fall Joint Computer Conference is a
conference of the future and of the past. The future
is embodied by the conference theme — Exploring
the Knowledge-Based Society — and the past by
its popular predecessor conference of the 1960s.
In looking forward, the conference offers technical
papers, panels, and tutorials to cover the topical
areas that form the technology base for the next
decade. Such areas as Artificial Intelligence,
supercomputers, design automation, computer
graphics, and networks are among the topics of
special attention. In looking backward to the
FICC’s of 20 years ago, the vast changes in the
discipline are evident, which underscores the
importance of providing state-of-the-art informa-
tion in subject areas destined to form the core of
the field in coming years.

Consider the change in the hardware technology
from the 1960s to the 1980s. The supercomputers
of the 1960s are the micros and minis of the 1980s.
Who would believe then that such computing
power would be available on the desk tops of
virtually every researcher, analyst, programmer,
and student. The workhorse of a typical scientific
installation in 1960 had 128K of 10 microsecond
memory. A low-cost microprocessor of 1986 has
256K of 150 nanosecond memory. A supercom-
puter of 1965 had 2M bytes of 1 microsecond
memory. A typical workstation of 1986 has 4M
bytes of 120 nanosecond memory. The dramatic
improvements in cost and performance made
possible through VLSI technology were truly
unimaginable in the days of the former FICC.

The impact of such changes on the computing field
are not yet fully assimilated, but the trends are
clear. Indays of expensive hardware, software was
viewed to be inexpensive, more or less by defaul:.
Where hardware was too costly to commit to a
special-purpose job, or where the functional
requirements were too vague to lock into hardware,
the often-used solution was to build hardware to
do approximately what was desired, and to leave
the final tailoring to software. That is, constrain
the major cost by freezing the hardware at some
stage, and fill in the remainder of the implementa-
tion with "inexpensive" software.

xxiii

All too often this approach had costly surprises in
store for the system developers. With hardware
frozen, the only freedom available to make such
systems work was in software development,
enhancements, and maintenance. Software costs
climbed continually during the life of systems since
software costs never ceased. In long-lived systems,
software costs eventually dwarfed the hardware
investment. Moreover, the inherent flexibility
attributed to software became a myth, as changes
to existing large-scale software became substan-
tially more difficult and eventually impossible to
implement. On the other hand, hardware became
far more flexible, as each new generation of
computers was succeeded by faster and less
expensive generations, each upward compatible
with its predecessors. The relative flexibility of
hardware and software as viewed in the 1960s had
turned upside down by the 1970s.

To improve the software situation, substantial
efforts in high-level languages increased
programmer productivity, but, productivity as
measured in lines of code, failed to attain high
multiples that was once viewed necessary to
prevent the massive cost of software production
from swamping the industry. Who would have
predicted how this view would change after
widespread introduction of the microprocessor?
With millions of - potential users instead of
hundreds, the sales price of software could be kept
relatively low per user, in spite of high costs for
development. Moreover, as new microprocessors
were introduced, it was totally impractical to
rewrite a new software base for each new offering.
Survivability of the microprocessor was largely tied
to the ability to move a complete software base to
the microprocessor, and this in turn created the
market for portable software. With relatively little
effort, it is possible today to move a complete
operating system plus compilers, editors, and
supporting tools to a totally new microprocessor
with a unique instruction set.

Instead of writing new code that reinvents old
software, the field has developed techniques to
reuse software that does the job. The net result is
that most software has become inexpensive on a
per-user basis. Expensive software still exists,

however, where user communities are small, and
where techniques are embodied in software for the
first time.

Having reflected on the changes in computing
technology from when the FYCC was at its former
height to the present time when the FYCC has been
reborn, can we conceive of the changes that will
take place in the next several years? For example,
what will happen to programming as a profession?
Will it be a profession that supports a population
that seems to grow exponentially? Or will there be
a limit to that growth that holds the population
constant? Or will the numbers collapse? All three
of these models are possible, depending on how the
field places computer power in the hands of the
user. The exponential growth models the growth
in the number of computers, and is a model in
which each computer system requires individual
programming. The constant-population model is a
model in which a fixed pool of people is able to
supply a growing population of machines, and is
probably an accurate reflection of the industry in
the next few years as portable software becomes
more widely used in place of specially tailored
software. The last model in which fewer program-
mers are able to supply a growing pool of machines
is one in which a relatively few "super” systems
created by highly skilled programming teams
account for large fractions of software use. The
remaining software can be supplied by a much
smaller pool of programmers under the first or
second models.

The potential for this last model clearly exists
today. If the model eventually becomes reality, the
industry will be far different from the one we know.
Are we ready for that event?

The 1986 FJCC is a conference where we can
examine the recent trends, hear the projections,
discuss the possibilities with the experts in each
field, and then prepare for the future. The key to
the FICC is the technical focus. We must be an
informed profession, and we must look forward in
technology.

The growth of the computer profession has brought
diversity, and the diversity has splintered the
profession a hundred ways into the SIGs and TCs
that form the technical leadership of the disciplines
within the profession. The diversity has created
journals, newsletters, conferences, and workshops
with single themes directed to the experts in the
various areas. Each of these activities has had its
positive benefits within the narrow focus area, but
the single-focus activities cannot provide for
advances that require the synthesis of ideas from
multiple disciplines. The FJCC is, by design, a
multiple-focus conference. Its purpose is to bring
together the experts across a range of disciplines so
that the mix of ideas can provide impetus for new
projects attaining new plateaus that are not readily
achievable within any one discipline.

Consider, for example, four different ways of

representing information. Individually, we might
have information represented as

e text,

® voice,

e graphics, or
e data base.

For each representation we can build a discipline
that deals with that representation exclusively, and
we create such disciplines as publishing, telephony,
computer graphics, and on-line information
utilities. Now reconsider the four representations,
and consider what happens when you join any two
together. A whole new discipline is created. If you
join text and voice, you obtain the voice-operated
typewriter, voice-data communications networks,
or spoken output from written text. If you combine
graphics and text, you create computer publishing,
intelligent copiers, and electronic encyclopedias.
But there is no need to focus on just the four data
representations. Pick any collection of special-
interest areas and consider what new challenges can
be formed by combining any two or three areas.
This gives an inkling of what can happen when you
bring together active thinkers from a variety of
areas and let the pot boil. This is the FICC.

Conference Management

How was the technical conference put together?
With a new conference we have no history from last
year, no experienced program committee to draw
upon, and no expectant audience ready to submit
materials to the annual gathering of the clan. This
conference was mounted as thirty tracks in the
major areas of computer science and engineering.
Each track chair had the charge to create a track
that best illuminated the area, whether through
solicited refereed papers, panels, or through invited
papers from recognized innovators. The confer~
ence call also produced papers in abundance, and
these were distributed to the tracks for referceing
according to the subject matter of the papers. In
all, 248 submissions were processed for the
conference. Of these, approximately 150 were
unsolicited and went through the conference
refereeing processing. Roughly one third of these
papers were accepted for the proceedings. The
remainder of the papers in the proceedings were
generated by the collective energy of the track
chairs. These were treated either as invited papers
not subjected to an external review or as solicited
papers that were reviewed and possibly modified
prior to publication in the proceedings. A number
of solicited papers were dropped from consider-
ation after the reviewing process, but the exact
numbers of such rejections is not known because
such papers were not coordinated centrally.

With a large fraction of solicited papers at this
conference, there became a potential for abuse of
the refereeing system. To assure high technical

.quality, it is essential that papers receive fair,

XXiv

independent assessments by competent reviewers.
Invited papers were not refereed, so the basis for
invitation had to be on the basis of past perform-
ance. Chairs of sessions have been selected for
their contributions, and they themselves are
candidates for invited papers in their own sessions.
However, for ethical reasons, no person at this
conference was permitted to accept a paper in
which that person or a close colleague was among
the authors. In each such instance in this
proceedings, the paper underwent independent
review and was accepted by a party other than the
session chair.

The success of the program is due entirely to the
efforts of the program committee members (listed
on page vii). Finally, I thank each of the following

for their contributions:

Sheldon Akers T. A. Marsland
Lionel V. Baldwin Nancy Martin
Laszlo Belady Edward J. McCluskey
Ted Biggerstaff Pat McGehearty
Barry Boehm Arthur S. Melmed
Pradip Bose John Meyer
Cynthia Brown Cleve Moler
William Brantley Robert Morgan
Luis Felipe Cabrera Ryoichi Mori
John Caulfield Iwao Morishita
Lori Clarke Kenji Naemura
Paul Cohen John Neff
Kenneth De Jong Anil Nigam

Louis Doctor Yoshikuni Okada
Clarence Ellis Arthur Parry
Richard Fairley Richard Paul
Domenico Ferrari James Peterson
Henry Fuchs Dhiraj K. Pradhan

Koichi Furukawa

Paul Purdom

Hector Garcia-Molina Paul Reynolds
Norman Gibbs Harriett Rigas

C. Lee Giles David Rine
Linda J. Hayes Larry Ruzzo
Philip J. Hayes Zary Segall

Alex Hoffman Daniel Siewiorek
William G. Hooper S. E. Smith
William Howden Jack Stankovic
Kai Hwang Russell Taylor
Laurel Kaleda Timothy N. Trick
Elaine Kant Kishor Trivedi
John Kender Wing Toy

Peter Kessler Andries van Dam
David R. Kincaid Benjamin Wah

Chandra M. R. Kintala
Ken Kolence

Richard L. Wexelblat
John R. White

Jerome Kurtzberg Robert Wilensky
Stephen Lavenberg Michael Willett
Tomas Lozano-Perez Michael Wozny

Michael Loui

XXV

In a list this long, the nature of the contributions
varies widely across the list. All contributions have
been important, and each party noted above
deserves their share of credit in the success of the
FICC. However, some contributions deserve
special mention. I greatly appreciate the work of
Ryoichi Mori and Kenji Naemura for producing the
papers in the International Developments Arena.
Les Belady, Jim Peterson, Jerry Kurtzberg, John
Meyer, David Rine, Steve Lavenberg, Jack Stankovic,
and Ken Kolence each produced top quality tracks
through their resourcefulness and continued efforts.

‘Maureen Ferraro, Executive Program Coordina-

tor, provided the glue that held the team and the
participants together. As the conference grew from
embryo into infancy and then maturity, Maureen
was there with the detailed work to guide the devel-
opment. Tracking the papers and referees, manag-
ing the proceedings, and making personal contacts
to assure timely responses were typical of the many
tasks she tackled. The magnitude of the job could
exceed the capacity of many computers I have
known, and only occasionally challenged but never
exceeded her capacity to get the job done.

Finally, we come to the referees—anonymous to
the authors—recognized here in the proceedings.
We gratefully acknowledge the role played by the
referees (listed on page vii). No conference can
succeed without the wisdom of careful reviews to
assure the quality and accuracy of the published
material.

Conference at a Glance

PLENARY SESSION
Industrial Keynoter:H,Ross Perot
Tuesday, 8: 30-9: 30 Electronic I’ata Systems
Grand Grand Grand Governor's | Senator's Sapphire Topaz Thornton Grand
Ballroom B Ballroom D | Baliroom A | Lecture Lecture Room Room Room Ballroom E
Hall Hall ’
Room A Room B Room C Room D Room E Room F Room G Room H Room I
1 SC4-1 ED1-1 CIi-1 SCi1-1 CD2-1 MM1-1 OSDB3-1 Als-1
Tues. Caulfield: Baldwin: Hoffman: Hwang: Akers: Lavenberg: | Nigam: Wilensky:
04 Nov, Education Legal Parallel VLsI
10: 00 - Optical by Professional | Processing Design Performance | Databases User
12: 00 Computers Satellite Concerns for Al Automation Studies Interfaces
2 SC4-2 554-1 SS1-1 SC1-2 CD2-2 ED2-1 MM1-2 All-1 AIS-2
Giles: Van Dam: Ellis: Wah: Trick: Fairley: Lavenberg: | Martin: Granger:
Optical Object- VLSI Software Performance-| Design Natural
1:30- Computing Hypertext Oriented Parallel Research in | Engineering | Modeling Issues and Language
3:30 Directions Software Algorithms Academia Education Methods Practice Processing
3 SC4-3 MM1-3 §51-2 SC2-1 CD2-3 ED2-2 MM2-1 AL1-1 AIS-3
Neff: Lavenberg: Belady: Moler: Pradhan: Smith: Kolence: Marsland: Hayes:
Optical Performance- | Software- VLSI Fault- | Corporate Capacity- Computer Natural
3:45- Inter- Modeling Design Hypercube Tolerant Software Management | Chess Language
5:15 Connections | Workstations | Modes Computers Goals Engineering 1 Techniques | Panel
PLENARY SESSION
Keynoter: Kenneth Wilson, Nobel Laureate
Cornell University, Dept. of Physics
Keynoter: C. Gordon Bell
. National Science Foundation
Wednesday, 8: 30-9: 30
Room A Room B Room C Room D Room E Room F Room G Room H Room 1
4 SCs-1 ED1-2 CI1-2 SC3-1 CD1-1 ID1-1 MM2-2 S$54-2 Al2-1
Wed., Willett: Melmed: Kaleda: Segall: Toy: Furukawa: Kolence: Boehm: Kender:
05 Nov. Token-Ring | Computers Multi- Fault- Fifth- Capacity Software Computer
10: 00 - Local Area in Computer Processors Tolerant Generation | Management | Development | Vision
12: 00 Networks Education Standards 1 Applications | Computers 1 2 Environment | 1
5 SCs-2 .554-3 Ald-1 SC3-2 CD1-2 ID1-2 MM2-3 OSDB2-1 Al2-2
Willett: Kintala: Rine: McGehearty: | Trivedi: Furukawa: | Ferrari: Stankovic: Kender:
Integrated Engineering | Multi- Fifth- Insularity of | Distributed | Computer
1:30- Token-ring | Programming | Rule-Based | Processors Reliability Generation | Performance | Operating Vision
3:30 Networks Environments| Systems 2 Evaluation Computers Zj;xEvaluation Systems 2
6 SC5-3 SS4-4 Al4-2 . SC3-3 CD1-3 ID1-3 OSDB2-2 Al3-1
Hooper: Kessler: Wexelblat: Brantley: McCluskey: | Morishita: Garcia: Kanade:
Integration Issues in High- Micro-
3:45- of Voice Code Knowledge | Speed Testing Computer Distributed | Robot
5:15 and Data Generation | Enginecering | Techniques Developments Databases Perception
PLENARY SESSION
Turing Lecture
1986 ACM Turing Award Winner
Thursday, 8: 30-9: 30
Room A Room B Room C Room D Room E Room F Room G Room H Room I
7 $S3-1 Ss4-5 Al4-3 AL2-1 CD2-4 ID1-4 AI3-2 OSDB1-1 AL3-1
Thurs. Clarke: White: Cabrera: Kincaid: Bose: Okada: Lozano-Perez| Reynolds: Brown:
06 Nov. Problems in UNIX: Vectorand | Expert Super Task-Level | Application
10: 00 - Program Programming | Wave of Parallel Systems Computing Robot of Searching
12: 00 Testing Languages the Past? Algorithms Design/Test | Systems Programming | Petri-Nets
8 SC5-4 CD2-5 Al4-3 AL2-2 CD3-1 ID1-5 AI3-3 OSDB1-2 AL3-2
Kumar: Hsia: Kant: Hayes: Doctor: Naemura: Taylor: Peterson: Loui:
Network Rule-Based: | Finite- Inter- Real-Time Security/
1:30- Management | Design Models and | Element Computer Working Robot Protection Data
3:30 Languages Applications | Methods Geometry Systems Programming | Systems Structures
9 SS1-3 Al4-4 CD3-2 AL3-3
Morgan: Bottegal: Wozny: Ruzzo:
Application Computer Optimi-
3:45- of Logic Graphics zation
5:15 ADA Programming Standards Techniques

XXvi

EDUCATION ARENA

New Technology in Education Software Engineering Education

TRACK CHAIR: Dr. Lionel Baldwin TRACK CHAIR: Prof. Norman Gibbs
National Technological University Carnegie Mellon University

AMCEE PROGRAMMING FOR COMPUTER PROFESSIONALS

John T. Fitch
Associate Director

Association for Media-based Continuing Bducation for Engineers

ABSTRACT

The Association for Media-based Continuing Educa-
tion for Engineers (AMCEE) is a consortium of 33
engineering universities which provides off-
campus education via television and videotape.
Clients are engineers, industrial scientists, and
technical managers in business, industry, and
government. AMCEE operates a satellite delivery
system, offering six hours a day, five days a
week of non-credit continuing education courses.
The bulk of the courses, however, are delivered
on videocassettes, accompanied by study guides
and textbooks. The majority of these "short
courses" are in computer and communication re-
lated subjects.

INTRODUCTION

In a session on "Technical Education by Satel-
lite," it seems appropriate to talk specifically
about continuing education for computer profes-
.sionals, because the AMCEE programs aimed at that
audience have been among its most successful.
But first it might be worth a brief digression to
explain AMCEE ‘itself and its mission.

AMCEE is an acronym for the Association for
Media-based Continuing Education for Engineers.
It is a non-profit, tax exempt consortium of, at
present, ' thirty-three engineering universities.
What these schools have in common is programs of
off-campus graduate .and/or continuing education
using television and/or videotape. Most of the
members offer master's.degree programs and con-
tinuing education short courses to practicing en-
gineers, industrial scientists, and technical
managers who take their coursework -at the job
site rather than on campus. The medium that con-
nects the campus classroom with the industrial
site or government laboratory is either "live"
television using Instructional Television Fixed
Service (ITFS) microwave .channels, or a set of
courier-delivered videocassettes. Most of these
materials are in what is commonly called "candid
classroom" format, i.e. the courses are broadcast
or videotaped as they are being taught to a class
of on-campus students. Cameras are fixed to the
walls and ceiling ‘of the classroom, and the
equipment is often operated by students. ' Thus,
the production costs are marginal.

Bringing the classroom to the student offers con-
venience and flexibility, as well as significant

CH2345-7/86/0000/0001$01.00©1986 IEEE

cost-- and time-effectiveness. And all without
sacrificing academic quality. Several studies
have shown that off-campus students do as well or
better than their on-campus counterparts taking
the same course.

With a view toward providing better quality
materials to "increase the national effectiveness
of continuing education for engineers," twelve
universities joined together in 1976 to form
AMCEE. Its headquarters were placed on the cam-
pus of one of its members, the Georgia Institute
of Technology in Atlanta. The idea was that an
association of schools would make it economically
feasible to develop studio produced videocas-
settes and collateral printed materials for a na-
tional rather than a regional clientele. Thus,
1986 is the tenth anniversary of the consortium
which has since nearly tripled in size in terms
of membership =-- and increased by an order of
magnitude its services to business, industry, and
government. Table 1 is a list of the present
AMCEE membership.

Table 1 - Members of AMCEE

Auburn University

Colorado State University

Georgia Institute of Technology

GMI Engineering and Management Institute
Illinois Institute of Technology

Iowa State University

Massachusetts Institute of Technology
Michigan Technological University
North Carolina State University
‘Northeastern University

Oklahoma State University

Polytechnic University

Purdue University

Southern Methodist University
Stanford University

University of Alaska

University of Arizona

University of Florida

University of Idaho

University of Illinois at Urbana—qpampaign
University of Kentucky

University of Maryland

University of Massachusetts
University of Michigan

University of Minnesota

University of South Carolina
University of Southern California
University of Washington

During these first ten years, the medium of
delivery has been the videocassette, there being
no economical national equivalent of the 1local,
live ITFS. And videocassettes still offer
scheduling flexibility that prompts many clients
to opt for them, even when live television is
also available. Participants who miss ‘a session
because of travel or pressing business can catch
up with their colleagues by watching the video-
cassettes on their own.

Today, with over 90 per cent of the engineering
universities who offer media-based off-campus
education as members, AMCEE publishes an annual
catalog listing some 500 video courses in 16 en-
gineering and science disciplines from its 33
members. These disciplines cover all the tradi-
tional ones from aeronautical engineering to
mathematics as well as a number of interdiscipli-
nary and management subjects. During the last
fiscal year, AMCEE logged over 1500 orders from
some 850 clients and reached an estimated 22,000
individual participants.

SATELLITE DELIVERY

By 1985 the economics of satellite television had
made it feasible for AMCEE to re-evaluate the
possibility of live television delivery for its
programs. At the same time, a subset of AMCEE
member universities formed a sister organization,
the National Technological University (NTU) to
offer an accredited master's degree program on a
national basis. The two organizations agreed to
share a transponder on a recently launched satel-
lite in the "Ku" band. Unlike the more widely
used "C" band, used by the cable and movie chan-
nel companies, the Ku band is used primarily for
business communications. Several AMCEE clients
were already equipped to receive satellite
programs in this higher frequency part of the
-spectrum. Furthermore, because of the higher
power of the particular satellite selected (G-
Star I), it was possible to split the bandwidth
and power of a single transponder and still
provide reasonably good signals to carefully
specified and installed receivers -- thus further
improving the economics of this new delivery
mode.

In September 1985, the two organizations in-
augurated the "“AMCEE/NTU Satellite Network," NTU
providing candid classroom courses for credit
towards a master's degree, AMCEE providing non-
credit short courses for continuing education.
Currently, there are five origination sites where
"earth stations" are located that can transmit
classes up to the satellite. These are located
at Colorado State University; the Universities of
Massachusetts, Maryland, Maryland, and South
Carolina; and the Georgia Institute of Technol-
ogy. AMCEE, because it is located at Georgia
Tech, relies heavily on the "up-link" there.
Each weekday from 11:00 a.m. to 5:00 p.m. Eastern
time, AMCEE broadcasts a variety of short courses
and seminars, a total of 1500 hours of instruc-
tion per year. Many of the courses are pre-
recorded on videocassette, but some of them are

live with participant interaction via telephone
with the instructor. These are on engineering
and technical management topics, with the most
popular being those having to do with computers
and communications.

Organizations receiving the telecourses install
their own "down-links" and pay for the service
through a network registration fee and individual
course registration fees. Under license, they
can videotape transmissions for delayed use to
provide them with the scheduling flexibility
available through videocassette delivery. In
general, the pricing is similar for the two modes
of delivery, though the startup cost for par-
ticipation in the satellite network clearly makes
it more expensive, initially. So, one might ask
why a company might choose satellite over video-
cassette delivery. There is more than one
answer. For one thing, it is simply a lot easier
to walk into a room and turn on the TV than it is
to plan far enough ahead to order a set of
videocassettes, take delivery of them, keep them
safely, and return them after they've been used.
And when the program is a "live" event, there is
the added value =-- gratification, even excite-
ment, if you will -- in being able to call up the
instructor and ask a question that applies to
your own particular situation. As of this writ-
ing (Spring 1986) there were approximately 60
down-link receiving sites scattered across the
country.

But to concentrate on the difference in cost be-
tween videotape and television delivery systems
obscures a more important point: the dominant
cost of education is the participating engineer's
time. Anything, then, that can be done to con-
serve that time, by, for example, eliminating the
need to commute to a college campus undoubtedly
outweighs the higher cost of media-based deli-
very.

We have experienced minimal start-up problems
with the network, most having to do with the
novel split transponder and the necessity for
careful purchase, installation, and maintenance
of down-link equipment. Training directors
regularly call the AMCEE office with their 1lists
of registrants for a variety of courses. AMCEE,
in turn, coordinates the shipment of printed
materials -~ study guides and/or textbooks -- to
the receiving sites (usually!) in time for the
start of each course.

SPECIAL PROGRAMS

Occasionally (currently about once every other
month) AMCEE opens up its satellite network and
transmits a short seminar or longer telecourse on
a C-band transponder as well as on its Ku-band
network. This means that any organization with
access to a C-band down-link can receive the
programs, and even if they do not have access to
such equipment, there are many areas around the
country where participants can come to an AMCEE
member campus to watch the program. Furthermore,
the Hewlett-Packard Corporation has very gener-
ously opened many of its plants and offices to

outsiders who wish to participate. These special
"open network" broadcasts receive far wider
promotion than is given the rest of the schedule.
Instead of just being listed in the AMCEE publi-
cations, the Monitor and the Uplink, separate
brochures are published for each program and
mailed to several thousand prospective par-
ticipants.

These special broadcasts are usually reserved for
live events such as an April 1986 program on
"Computer Communications and Networking: A Tech-
nology Forecast" or a combination of videotape
and live broadcasts such as a June 1986 program
on "Microcomputer Software for Project Manage-
ment." The former -- the all “live" programs --
are usually videotaped as they occur and, if the
quality of the programs is high and the content
likely to have a reasonable shelf life, these
videotapes are then advertised for rental and
sale. Although these cassettes do not have the
advantage of the telephone interaction, they can,
nevertheless, be useful to those not able to
watch the satellite broadcast.

The latter type of program —-- the combination of
videotape and live —-- is a more frequently fol-
lowed model. Here, a set of videotaped lectures,
often made just prior to the broadcast, are used
as the backbone of the presentation. We find
that, by videotaping the lectures, the instructor
is subject to less pressure, errors can be cor-
rected, and there is time between lectures to
collect thoughts and materials. However, the in-
structor remains in the studio after the taping
is completed (or returns at a later date) for the
satellite broadcast. Then, after each videotape
is run, the instructor appears "live" on camera
and takes telephone questions from the par-
ticipants. The schedule is arranged so that any
time not used for questioning serves as a brief
intermission before the next videotaped lecture.

We are still developing this mode of operations
-- the whole concept of dual-band satellite
programs is still relatively new for us -- but
the scheme that appears to be emerging is one in
which we produce the videotapes at a television
studio at the University of Maryland (where we
produce most of the AMCEE videotaped courses) and
then up-link the actual broadcast from one of the
"candid classrooms" across campus at the en-
gineering school, which has a Ku-band earth sta-
tion, or we take the tapes to the University of
South Carolina (which has, in place, both Ku-band
and C-band earth stations). Exotic as all this
may sound when compared with offering a continu-
ing education program at a local college campus,
it is not, marginally, a very costly operation
(because the studios and up-links are already
"there"). Therefore, it does not require a very
large audience to break even (on the order of a
few hundred people).

COMPUTERS AND COMMUNICATIONS

As indicated earlier, among the most popular
courses delivered over the satellite network are
those having to with computers and/or communica-

tions. (This is also true to a lesser extent for
our videocassette distribution, but the videocas-
sette audience is greater and more diversified;
hence a program on metallurgy might do well on
tape but fail on the network where the clients
are still primarily high-tech companies with a
heavy concentration in the computer field.)
Table 2 lists the programs offered thus far on
the network on computer-related subjects.

Table 2 - Computer Related Courses on the
AMCEE/NTU Satellite Network

Applied Kalman Filtering

Communication Networks

Computer Communications

Computer Communications & Networking
DDN & DOD Protocol Standards
Distributed Processor Communication Arch.
Distributed Telecommunication Networks
Effective Use of Small Computers
Fortran 77

Fundamentals of Data Communications
Gallium Arsenide Integrated Circuits
IEEE 802: Local Network Standards
Integrated Services Digital Network
Interactive Computer Graphics

Kalman Filtering

Lisp at Work, Parts 1, 2, & 3

Local Area Networks

Local Network Technology & Selection
Microcomputer Software for Project Manage-
ment

Microprocessor Interfacing

Packet Switching Networks

Pascal, Part 1

Principles of Modern Software Engineering
Relational Database

Robotics: A Tutorial in Four Parts
16-Bit Microprocessor Programming
Software Management for Small Computers
Software Project Management
Telecommunications & The Computer
Vector Processors & Mini Computers

Neglecting individual lectures =-- usually on
management skills topics, these 30 courses repre-
sent approximately half of all the courses of-
fered on the network during the period from early
September through mid May, 1986. In other words,
all other disciplines made up the other £ifty
percent.

CONCLUSIONS

AMCEE currently broadcasts its non-credit courses
six hours a day, five days a week on the share
AMCEE/NTU satellite network in the Ku band, for a
total commitment of 1500 hours a year. In addi-
tion, AMCEE offers six or more "special™ events
each year on both the Ku-band network and on a C-
band transponder. These special programs include
both . three or four hour seminars as well as two
and three day short courses. Those tentatively
scheduled through June of 1987 are:

1986
Computer Organization & Archi-
tecture

November

1987

January Database Management Software
for Personal Computers

March Office Automation

May Computer & Network Security

June Microcomputer Software for

Project Management: An Update

For these "specials," it is clear that the sub-
ject matter is completely devoted to computer re-
lated subjects. Should this mode continue to be
as successful as it has proved thus far, AMCEE
will undoubtedly increase the frequency of these
open-circuit transmissions. At the same time,
the Ku-band network continues to grow as more
corporate sponsors and more sites are added, with
the expectation that it, too, will cross over
into the black during 1987.

NTU COMPUTER ENGINEERING PROGRAM

Frederic J. Mowle, David G. Meyer, Philip H. Swain

School of Electrical Engineering
Purdue University
West Lafayette, IN 47906

Abstract

Live teleconference from Purdue University
describing the Computer Engineering Program offered
by the National Technological University. Areas to be
covered include the degree program requirements, com-
ments by a course instructor, and comments by a
university administrative contact person. A live ques-
tion and answer session is planned.

Background Information

The National Technological University (NTU) was
established in Colorado as a nonprofit corporation in
1984. The academic programs offered by NTU draw
upon approved course offerings from the 21 participat-
ing universities, all of which are members of the Asso-
ciation for Media-Based Continuing Education for
Engineers (AMCEE). Although NTU’s charter
specifically prohibits offering baccalaureate or doctoral
degrees, NTU offers selected undergraduate classes
from participating universities to assure appropriate
foundation for master’s level coursework. NTU uses
advanced educational and telecommunications technol-
ogy to deliver instructional programs to graduate
engineers and technical professionals at their employ-
ment locations. Each NTU site is operated by a spon-
soring organization.

Academic Organization

The National Technological University relies upon
a faculty consisting of consultants selected from the
faculty of each participating institution. These faculty
consultants are organized in discipline groups to form
Graduate Faculties, typically with one representative
in each discipline from each participating institution.
At the present time, NTU offers Master of Science
degrees in five disciplines: Computer Engineering,
Computer Science, Electrical Engineering, Engineering
Management, and Manufacturing Systems Engineering.
Three standing Committees support each of the vari-
ous Graduate Faculties. The Curriculum Committee
in each discipline develops study programs and reviews
all courses submitted by the participating universities.
The Admissions and Academic Standards Committee
for each Graduate Faculty sets the policies governing
admission and criteria for students to continue as

CH2345-7/86/0000/0005$01.00©1986 IEEE

active degree candidates. The Staffing Committee in
each discipline monitors activities of faculty consul-
tants to assure that the proper faculty functions are
performed.

Participating Universities

At the present time, the following universities are
cooperating in the various degree programs offered by
the National Technological University. The course
suffix assigned each university is used to aid in the
identification of course offerings.

Course

University Suffix

Boston University

Colorado State University
Georgia Institute of Technology
Illinois Institute of Technology
Towa State University

Michigan Technological University
North Carolina State University
Northeastern University
Oklahoma State University
Purdue University

Southern Methodist University
University of Alaska

University of Arizona
University of Florida

University of Idaho

University of Kentucky
University of Maryland
University of Massachusetts
University of Minnesota
University of Missouri-Rolla
University of South Carolina

URQp@rundHQZZo9md—=CcdRam g

Method of Delivery

The National Technological University has its
administrative offices on the campus of Colorado State
University in Fort Collins, Colorado. However, the
faculty are located on the campuses of the participat-
ing universities and the students are located at their
work sites nationwide. Instructional programs are
delivered by the faculty from the home campuses to
the students through telecommunication technology.

The communication links facilitate student advis-
ing, faculty conferences, and special programming.

Briefly, the NTU distribution system is satellite-based,
using a satellite operating in the 12/14GHz (Ku) band.
A series of satellite uplink stations located at partici-
pating universities has been installed, and television
receive-only terminals are located at each organiza-
tional site of participating graduate students. The
space segment is provided over existing Ku-band
domestic communications satellites. The technical
operation of the network is controlled from a central
headquarters known as the NTU Network Control
Center, where schedules are prepared, satellite chan-
nels are monitored for technical quality, and return
communications (from student to instructor) are coor-
dinated.

To make optimal financial use of satellite tran-
sponder time and the realities of the working student’s
class time, many course transmissions are recorded at
the student’s site on videotape for use at the conveni-
ence of the student. Teleconferencing and electronic
mail, using one of the. packet-switched networks, are
the primary means of interaction between students
and instructors.

Computer Engineering

Program Description. The National Techno-
logical University Master of Science Degree Program in
Computer Engineering provides the means for
engineers with a Bachelor of Science in Electrical
Engineering, Computer Engineering, or Computer Sci-
ence to complete the requirements for Master of Sci-
ence. Applicants are considered only if sponsored by
their employing or affiliated organizations. Applicants
for admission to this program must submit Graduate
Record Examination (GRE) scores. GRE examinations
need only include the aptitude test (morning). Stu-
dents may submit the advanced test in Engineering or
Computer Science (afternoon) if they desire. Students
must also provide two or three letters of recommenda-
tion. Letters from their supervisor as well as a profes-
sor, if the applicant has been out of school for less
than four years, are required. The additional reference
is the student’s choice. The Curriculum Committee
designed the approved curriculum around the model
developed and published by the IEEE Computer
Society (1977) and the ACM (1977). However, The
National Technological University Master of Science
Degree Program in Computer Engineering has the dis-
tinguishing characteristic of required "breadth” courses
outside the field of computer engineering per se.

The Master of Science Degree Program in Com-
puter Engineering consists of 30 semester credits (or
the equivalent quarter credits) distributed through
three broad categories of courses: Core, Depth and
Breadth Courses. In addition, all successful candidates
for the Master’s Degree must participate in a non-
credit seminar. The curriculum features substantial
student choice in all three categories of courses,
thereby enabling the students to tailor their programs

of study to meet their specific needs and fulfill their
particular aspirations, all within a coherent framework
assuring academic excellence and state-of-the-art
preparation. The Breadth Courses expose the students
to a spectrum of topics. In this way, the University
insures that students become aware of important and
emerging areas that might otherwise be overlooked.
The NTU curriculum in Computer Engineering remains
open-ended with regard to advanced courses in order
to encourage the students to take advantage of
recently evolved courses concentrating on the latest
developments in the field.

Completion of the curriculum requires approxi-
mately one and one-half years of full-time, graduate
study. Students enrolled through The National Tech-
nological University, whose work schedules prevent
full-time study, should expect to fulfill the require-
ments in five years by registering for at least two
three-credit courses each academic year.

Academic Advising. Sound and responsive
academic advising constitutes an integral part of every
program of study offered by The National Technologi-
cal University. The Admissions and Academic Stan-
dards Committee of the Computer Engineering Gradu-
ate Faculty assigns to each admitted student an
academic advisor, who is a regular faculty member
drawn from one of the participating universities and
who contributes to the Master of Science Degree Pro-
gram in Computer Engineering. The academic advisor
assists the student to reach informed decisions about
the program of study, including course selections. In
addition, the academic advisor must approve all peti-
tions for exceptions to the prescribed program of
study. Communication between the student and the
advisor occurs, in most instances, by telephone,
although other media — including regular mail, elec-
tronic mail, and personal contact — are also available,
depending upon the circumstances in each instance.

Curricular Requirements. The National Tech-
nological University offers courses in Computer
Engineering and related fields at the "mezzanine" and
graduate levels. A mezzanine course is defined as one
appropriate for undergraduate students with senior
standing or for entering graduate students. However,
only graduate courses will count toward fulfillment of
the Depth Requirements in the Master of Science
Degree Program in Computer Engineering. Further,
candidates for the degree can count no more than 12
credits earned in mezzanine courses to fulfill the
requirements for the Master of Science Degree.

Each student should expect to enroll in ten or
more courses with a minimum of three Core Courses,
four Depth Courses, two Breadth Courses, one Elective
and a noncredit seminar. A total of 30 credits are
necessary for graduation. The required curriculum
consists of five parts.

Core Requirements

Each student must complete at least eight
credits of required Core Courses, with at least one
course in each identified area. Core courses are
divided into three general areas:

1. Software Systems

2. Computer Architecture

3. Algorithms and Data Structures
Depth Requirements

Each student must complete at least four
additional courses consisting of two courses from
each of two areas listed below, and all courses
taken to fulfill the Depth Requirements must be
graduate courses. Depth courses provide instruc-
tion on the most advanced and current topics in

seven distinct areas, three of which form the Core
Requirements described above:

1. Software Systems

2. Computer Architecture

3. Algorithms and Data Structures

4. Digital Design

5. Graphics

6. Intelligent Systems

7. Mathematics and Computational
Methods

With the advice of the academic advisor, the
student should plan a program of study that
assures appropriate depth in at least two areas.

Breadth Requirements

Each student must complete at least six
credits in Breadth Courses. Breadth Courses
focus on fields that relate to or support the study
of Computer Engineering, including:

1. Business Applications

2. Computer-Aided Design/
Computer-Aided Manufacturing

Signal Processing

3. Communications

4. Control and Robotics
5. Electrophysics

6. Mathematics

7.

8.

Theory of Computing

With the assistance of an academic advisor,
the student should plan an integrated program of
study that assures breadth overlaying the depth
achieved in Computer Engineering.

Elective Requirements

Each student must complete at least three
additional elective credits consisting of a Core,
Depth, or Breadth Course to bring the total
credits to 30.

Seminar Requirements

Each student must complete one noncredit
seminar offered by The National Technological
University.

Thests

The National Technological University offers

a nonthesis Master of Science Degree Program in

Computer Engineering. However, when desirable

and appropriate, as determined by the student in

consultation with an academic advisor, a thesis,

- with a maximum of six credits, can be substituted

for the Elective Course and one of the Depth
Courses.

Undergraduate Bridging Courses

Applications of computers are pervasive today,
affecting the work of most engineers and technical pro-
fessionals. It is natural, therefore, for people with very
diverse technical backgrounds to seek additional edu-
cation in computing. For that reason, NTU faculty
have identified the undergraduate prerequisites which
are necessary background for entering graduate study
in computer engineering and computer science. Eight
undergraduate bridging courses have been identified.
Detailed outlines of these courses can be found in the
National Technological University Bulletin.

Flow Chart of Undergraduate Computer Science
and Engineering Program

L1 L2
Fundamentals of Digital
Computer Programming Logic Design

| |

L3 Mi L4
Data <+——————— Discrete Microprocessors
Structures , Structures and Assembly
e ! N\ Level Programming
S | N
L5 ’/ | \
Operating ! \ L6
System : Digital Systems Design
Principles ! Computer Architecture
1
\ ‘ /
L7
Interfacing
&
Computer
Networks

L1 Fundamentals of Computer Programming

L2 Digital Logic Design

L3 Data Structures

L4 Microprocessors and Assembly Level Program-
ming

L5 Operating System Principles

L6 Digital System Design - Computer Architec-
ture

L7 Interfacing and Computer Networks
M1 Discrete Structures

The bridging courses are not available for gradu-
ate credit.
Courses of Instruction

The National Technological University categorizes
“the courses of instruction in accordance with the Core,
Depth, and Breadth Requirements within the curricu-
lum in Computer Engineering and arrays the courses
according to the list that follows. The courses are
arrayed by subject matter areas as identified by two-
letter prefixes which serve to identify specific subject
matter areas (e.g., SS refers to Software Systems, AC
to Architecture and Computer Design, DD to Digital
Design, et cetera). Courses are numbered as they fall
within each appropriate subsection. The suffixes fol-
lowing course numbers refer to section offerings and
-identify the institution offering the individual sections
of the course.

" Core Courses

Software Systems
SS10—19 Systems Programming
SS20—29 Programming Languages

Architecture and Computer Design
AC30—-39 Compuier Architecture
AC40—49 VLSI
AC50—-59 Embedded Computer Systems

Algorithms and Data Structures
AD 60—69 Data Structures
AD 70—79 Analysis of Algorithms

Depth Courses

Advanced Digital Design
DD 10—19 Advanced VLSI Design
DD 20—29 Reliable Computation
DD 30—39 Computer Arithmetic
DD 40—49 High Speed Computation
DD 50—59 Data Communications Systems
DD 60—69 Digital Hardware Design

Advanced Computer Architecture

CA10—19 Computer Architecture/ Operating
Systems

CA 20—29 Distributed Computer Systems

CA 30—39 I/O and Memory Systems Architec-
ture

Systems Programming
SP10—19 Advanced Techniques in Translator
Design
SP20—29 Advanced Operating Systems

SP 30—39 Data-Base Systems
SP 40—49 Modeling and Performance Evalua-
tion
Mathematics and Computational Methods
‘CM10—19 Numerical Analysis

CM20—29 Computational Methods for Linear
Algebra

CM30—-39 Partial Differential Equations and
Numerical Techniques for - Solving
Them

CM40--49 Stochastic Queuing Theory and Sta-
tistical Analysis

CM 50—59 Automata Theory

Advanced Software Techniques

AS10—19 Genzral Methods for Artificial Intelli-
gence

AS20—29 Knowledge-Based Systems
AS30-39 Robotics

AS40—49 Computer Graphics

AS50—59 Computer Networks

AS60—69 Computer Vision

AS70-79 Programming Languages for Al

Breadth Courses

Electrophysics
EP 10—19 Lasers
EP 20—29 Microelectronics
EP 30—39 Electronic Systems
EP 40—49 Optics
EP 50—59 Field Theory
EP 60—69 Solid State Devices

Communication and Control
CC10—-19 Digital Control Theory
CC20-29 Digital Communication Theory
CC30—-39 Coding Theory
CC40—49 Statistical Communications Theory
CC50—59 Information Theory
CC60—69 Speech Processing
CC70—-79 Image Processing

Operations Research

OR 10—19 Linear Programming and Its Applica-
tions

OR 20—29 Algorithms for Combinatorial Optim-
ization

Business Applications
BA10—19 Management Infermation Systems

BA20—29 Financial
Techniques

and Decision Analysis

Mathematics
MA 10—19 Discrete Structures
MA 20—29 Combinatorial Analysis
MA 30—39 Stochastic Processes, Queuing
Theory, and Statistical Analysis
MA 40—49 Advanced Calculus
Example Programs of Study

The following examples illustrate the flexibility
available to students wishing to specialize in specific
areas of computer engineering.

M.S. In Computer Engineering
Software Engineering Emphasis

Core Cred}ts :

SS 15-C Software Engineering I 2.7

AC 30-A Advanced Computer Architec- 3
ture L

AD 70-A Algorithms and Data Structures 3

Depth

AD 60-C Introduction to Data Structures 2.7

AD 61-C Advanced Data Structures 2.7

SP 30-C Distributed Data Base Systems 3

SP 15-B Theory of Programming 3
Languages

SP 20-C Introduction to Operating Sys- 2.7
tems

Breadth

CC 30-F Error Correcting Codes 3

MA 30-A Probability and Random 3
Processes

Elective

SS 20-A Programming Languages 3

31.8

* . . .
Fractional eredits due to conversion of quarter hours
to semester hours.

Computer Architecture Emphasis

Core Credits

SS 20-A Programming Languages 3

AC 30-A Advanced Computer 3
Architecture I

AD 60-B Data Structures 3

Depth

AC 31-A Advanced Computer 3
Architecture II

AC 32-A Testing and Diagnosis of 3
Digital Systems

DD 60-G Advanced Digital 3
Hardware Design

DD 50-A Computer Communica- 3

tions Networks

Breadth :
Digital Signal Processing 3

CC 20-F
MA 30-A Probability and Random 3
Processes
Elective
CA 10-H Microprogramming, 3
30
Acknowledgements

The computer engineering program was planned
and developed under the direction of Harold S. Stone,
aided by the members of the Computer Science and
Engineering Graduate Faculty.

S. K. Chang
Electrical Engineering Dept.
Illinois Institute of Technology

Paul Cohen-
COINS Graduate Research Center
University of Massachusetts

John Dickinson
Computer Science Dept.
University of Idaho

Frederic J. Mowle

(Chairman, Computer Engineering
Curriculum Committee)

School of Electrical Engineering

Purdue University

Robert A. Mueller
Dept. of Computer Science:
Colorado State University

Troy Nagle
Electrical Engineering Dept.
North Carolina State University

Gerald Peterson

Dept..of Electrical and
Computer Engineering

University of Arizona

Robert Pettus

(Chairman, Admissions and Academic
Standards Committee)

Dept. of Electrical and
Computer Engineering

University of South Carolina

Randy Reininger
Electrical and Computer Engineering
Oklahoma State University

Sartaj Sahni.

(Chairman, Computer Science
Curriculum Committee)

Department of Computer Science

University of Minnesota

Charles Silio

(Chairman, Staffing Committee)
Dept. of Electrical Engineering
.University of Maryland

Terry Smay
Dept. of EE/CPR E
Iowa State University

David B. Spell
Electrical Engineering Dept.
University of Alaska

Keith Stanek
Dept. of Electrical Engineering
Michigan Technological University

John Staudhammer

Electrical Engineering and Computer
and Information Sciences

University of Florida

John Wakerly
Consultant
Mountain View, CA

Special thanks for the success of the program is
due to the numerous course instructors, advisors, site

coordinators, administrative contact persons, and the
staff of NTU who make the program work.

Satellite Presentation

The formal presentation for this session will be
divided into three areas. Professor Frederic J. Mowle,
Chairman of the Computer Engineering Curriculum
Committee, will present an overview of the Computer
Engineering program. Professor David G. Meyer,
course instructor for CA 30-M, Advanced Microproces-
sors and System Design Components, will discuss the
NTU program from the viewpoint of a course instruc-
tor. Professor Philip H. Swain, Director of Continuing
Engineering Education at Purdue University, will dis-
cuss the NTU program from: the viewpoint of a Univer-
sity Administrative Contact Person.

Additional Information

Additional information on the various NTU pro-
grams can be obtained from:

National Technological University
P. O. Box 700

Fort Collins, CO 80522

(303) 491-6092

THE NTU COMPUTER SCIENCE PROGRAM

SARTAJ SAHNI

UNIVERSITY OF MINNESOTA

ABSTRACT

This paper describes the Computer Science Master’s program
of the National Technological University, Fort Collins,
Colorado.

1. NTU

The National Technological University (NTU) was established
as a non-profit private educational corporation in January
1984 in Colorado. Its exclusive mission is to serve the educa-
tional needs of graduate engineers and to award master’s
degrees in engineering related disciplines. Its charter prohibits
the award of baccalaureate and doctoral degrees. Currently,
NTU offers master’s degrees in: Computer Science, Computer
Engineering, Electrical Engineering, Engineering Management,
and Manufacturing Systems Engineering.

NTU was created with a unique mission: provide gradu-
ate engineers a quality master’s program in engineering that
can be successfully completed by enrollees without leaving
their place of employment. It differs from its parent organiza-
tion AMCEE (Association for Media-Based Continuing Educa-
tion for Engineers) primarily in that AMCEE does not grant
degrees. Through NTU, it is possible for practicing engineers
to obtain a master’s degree no matter how distant they may
be from the university. Further, their progress towards such
a degree is not adversely affected by a transfer within their
company or between employers that are NTU sponsors. Since
all students enrolled in NTU programs must be sponsored by
their employers, NTU students changing employers must
ensure that their new employer will sponsor them.

In order to best serve its mission, NTU has identified
four primary goals [1]: “The discovery, dissemination, applica-
tion, and preservation of knowledge within designated fields
of study, with special emphasis upon those engineering discip-
lines critical to the continued development and implementa-
tion of technology appropriate to an information knowledge-
intensive society.” ’

NTU has set itself the following seven objectives [1]:

(1) The Instructional Objectives
The University encourages and fosters the development
of innovative pedagogical and technological methods to
enhance learning and achievement.

(2) The Creativity Objéctives

The University encourages and fosters the development
of creativity among the faculty and students as the most
dynamic response to a rapidly changing technological
society. In an information, knowledge-intensive age,
people must have the developed capacity to glimpse the

CH2345-7/86/0000/0011$01.00©1986 IEEE

3)

@

(5)

(6)

(7)

(2

future as it unfolds and to act to shape it. The National
Technological University research seminar is directed to
this end.

The Student Relations Objectives

The University stresses the responsibility of the faculty
to the professional as well as instructional needs of the
students and the responsibility of the students for their
own individual growth and development.

The Human Resources Objectives

The University selects as participating faculty only those
persons with reputations for outstanding performance as
teachers and scholars, and offers selected programs to
assist these faculty members in their own professional
development.

The Support Objectives

The University provides the facilities and services essen-
tial to the fulfillment of the institutional mission. More-
over, the University strives for the refinement and
development of technological means to enhance the qual-
ity of the facilities and services.

The Organization and Administration Objectives
The University maintains a supportive organization and
administrative structure that rests firmly upon participa-
tory management and academic programs.

The Evaluation Objectives

The University maintains a process of continuous evalua-
tion of programs and services to ensure progress toward
the achievement of institutional goals.

There are three distinct aspects to NTU:

NTU Administrative Services

These are responsible for policy, admissions, maintenance
of records (including grades), award of degress, etc. The
NTU office in Fort Collins, Colarode provides these ser-
vices.

Participating Universities

These are schools from which NTU obtains the courses
that it provides its students. All courses offred by NTU
are regulary offered to graduate students at the partici-
pating universities. These courses are typically offered in
specially equipped classrooms at the participating univer-
sity campus. The lectures including any discussion and
question/answer sessions are either broadcast live over
satellite to sites at which NTU students are located or
are taped and then viewed with time delay at these sites.
In the case of live satellite broadcast, there is provision

for a talk back channel. So, it possible for NTU stu-
dents to ask questions in real time.

(3) Sponsoring Organizations
These are the entities that are permitted to enroll their
employees in NTU programs. Each sponsoring organiza-
tion must maintain suitable equipment at each of its
instructional sites for the receipt and viewing of the lec-
tures. To receive courses over satellite, a down link is
needed.

The universities that are participating in the NTU pro-
gram are:

(1) Boston University

(2) Colorado State University

(3) Georgia Institute of Technology
(4) Illinois Institute of Technology
(5) Iowa State University

(6) Michigan Technological University
(7) North Carolina State University
(8) Northeastern University

(9) Oklahoma State University

(10) Purdue University

(11) Southern Methodist University
(12) University of Alaska

(13) University of Arizona

(14) University of Florida

(15) University of Idaho

(16) University of Kentucky

(17) University of Maryland

(18) University of Massachusetts
(19) University of Minnesota

(20) University of Missouri-Rolla
(21) University of South Carolina

The sponsoring organizations are divided into two
categories: corporate subscribers and major site subscribers.
The corporate subscribers are:

(1) AT&T

(2) Digital Equipment Corp.
(3) Eastman Kodak Co.
(4) General Electric Co.
(5) CTE Spacenet Corp.
(6) Hewlett-Packard Co.
(7) Intel Corp.

(8) IBM Corp.

(9) Motorola

(10) NCR Corp.

(11) Tektronix, Inc.

The major site subscribers are:
(12) ALCOA
(13) General Dynamics Corp.
(14) General Instruments
(15) Honeywell, Inc.
(16) Magnavox Co.
(17) RCA Corp.
(18) Sandia National Labs.

A sponsoring organization may have several sponsoring
sites. There are approximately 75 sponsoring sites at present.

In the remainder of this paper, I shall provide an over-
view of the NTU master’s program in Computer Science.
This overview is not intended to serve as a substitute for the
NTU Bulletin [1]. Persons interested in knowing the exact
admission and graduation reuirements should read this bul-
letin carefully.

2. ADMISSION REQUIREMENTS

To be admitted to the NTU master’s degree in Computer Sci-
ence program, the applicant must have successfully completed
a Bachelor of Science Degree in Computer Science or a related
field. All applicants are also required to perform satisfactorily
in the aptitude test of the Graduate Record Examination
(GRE). In addition, applicants may be granted provisional
admission to enable them to make-up deficiencies prior to
obtaining regular graduate admission.

3. THE COMPUTER SCIENCE CURRICULUM

The Master of Science Degree Program in Computer Science
consists of 30 semester credits (or the equivalent quarter
credits). These must be appropriately distributed over the
three broad categories of courses: Core, Depth, and Breadth.
In addition, participation in a seminar is required.

CORE COURSES
The general categories for the core courses are:

(1) Algorithms and data structures
(2) Software systems

(3) Computer architecture
(4) Mathematics and theory of computation
(5) Artificial intelligence

DEPTH COURSES

The categories for the depth courses are listed below.
Together with each such category, a sampling of some of the
topics included in the category is provided.

(1) Computer Software
e Structure of higher level languages
e Translators
o Operating systems
e Database systems
e Software engineering
e Programming and algorithms for supercomputers
¢ Computer networks
e Computer graphics
e Security and protection mechanisms

(2) Computer Architecture
e Computer architecture operating systems
o Distributed computer systems
e I/O and memory systems architecture
e Supercomputer architecture
o CAD tools for VLSI design

(3) Mathematics & Theory of Computing
o Numerical analysis
e Methods for supercomputing
e Design & Analysis of algorithms
e Modeling and performance evaluation
e Automata theory
e Formal languages
e Complexity theory

(4) Artificial Intelligence

e General methods for artificial intelligence
e Knowledge based systems

e Knowledge representation

o Natural language processing
e Computational epistomology
e Logic programming

e Robotics

e Computer vision

e Speech recognition

e Pattern recognition

BREADTH COURSES

The general categories and a sampling of example topics
within these categories are summarized below:

(1) Operations Research

e Linear Programming

e Integer Programming

e Nonlinear Programming

e Queueing Theory

e Dynamic Programming

e Stochastic Methods

e Combinatorial Optimization
(2) Electrical Engineering
e VLSI Technology & Design
e Coding & Information Theory
e Computer Hardware Design
e Computer Communications

Business Applications
o Management Information Systems
e Computer Methods In Management

Mathematics

e Combinatorics

e Graph Theory

e Statistics

e Probability

e Recursion Function Theory
e Logic

(3

4

NTU is able to provide a very rich selection of courses in
each of the above categories. This stems from the fact that
NTU gets its courses from its participating universities.
These universites together have a combined engineering
faculty in excess of 2,800. The number of different computer
science and related courses taught at these universities
together is far larger than the number of such courses taught
at any one of these universities. In fact, it is safe to say that
NTU’s course offering, in computer science, is richer than that
of any single university in the country.

4. CREDIT DISTRIBUTION REQUIREMENT

The required 30 NTU credits should satisfy the following dis-
tribution:

(1) At least one course from each of the flve core categories.

(2) At least three courses from any one of the depth depth
categories.

(3) At least one course from a breadth category.

To meet the needs of students whose Bachelor’s degree is
not in Computer Science, NTU offers three bridging courses:

(1) Computer Programming
(2) Discrete Structures
(3) Data Structures and Algorithms

Credits earned for bridging courses cannot be applied
towards the 30 credits required for a master’s degree.

13

5. 1985-86 ENROLLMENT FIGURES

While NTU first started offering courses in Fall semester 1984,
the Computer Science program became available only in Fall
1985. The enroliment figures for the 85/86 academic year are
summarized in Table 1. The entries in this table are total
course enrollment counts. Thus the sum of the number of
students enrolled for credit in each course in the Fall semester
was 232. The actual number of students taking courses for
credit in this semester may be slightly less as it is possible for
one student to take several courses in a given semester. The
number of different courses made available during the
academic year exceeded 130. A little over 40 of these were
actually subscribed to by NTU students.

Fall | Winter & Spring | Total
Credit 232 200 432
Audit 92 105 197
Total 324 305 629

Table 1 1985/86 enrollment figures

In addition, 18 courses were made available for the summer
19086 session. Enrollment figures for this session were not
available at the time this paper was written. As is evident,
the Computer Science program is off to an excellent start.
Enrollments are expected to climb significantly in the next
few years.

6. MEDIA

NTU is committed to the use of state of the art technology to
provide the best delivery of its courses. Many of the courses
are broadcast live over satellite. The satellite link prvides for
a color transmission of the video. A two way audio channel is
also used. This permits live interaction with remote students.
The remaining courses are viewed with a time delay. These
get to the viewing sites either via satellite transmission during
off peak hours or via video tapes express mailed to the view-
ing sites. Live tutorial sessions are organized for courses that
are not broadcast live. This gives students an opportunity for
live interaction with the instructor and/or the teaching assis-
tants.

The lectures may be viewed by students at a time con-
venient to them. This is true even in the case of live broad-
casts as viewing sites have video taping facilities and taping
authorization. This flexibility is essential to the success of the
NTU program as all its students are full time employees.
Their primary responsibility is is to their employers. With
NTU, students need not organize their work schedules around
their class activities. Rather, the class activities are made to
fit around the work schedule. .

Interaction with the imstructor and teaching assistants
may take the form of telephone conversations or communica- -
tion via AT&T mail or the US postal service. Initial data
indicates that only about 10% of the students are currently
using AT&T mail. The use of this powerful electronic com-
munications system needs to be encouraged as a convenient
way to ask and answer questions that are of interest to all
students enrolled in a given course. Further, this could pro-
vide a fast inexpensive mechanism to get assigments to and
from remote sites. The delay currently involved in doing this
poses a serious problem. NTU is currently exploring the possi-
bility of adding an analog signal to the end of its video sig-
nals. This analog signal will encode classroom handouts.
Thus, these will become available at the same time as the lec-
tures.

7. SUMMARY

NTU has begun a new era of educational delivery. It prom-
ises to bring quality education leading to a graduate degree
into the work place. By combining the educational resources
of the country’s leading institutions, NTU is able to provide
curricula that is richer than found at any one of these institu-
tions. In fact, the services of NTU could also be benificially
used by participating (as well as nonparticipating) universities
to enrich their own offerings.

It is anticipated that by the end of this decade, NTU
will become one of the top producers of M.S. degrees in
engineering.

8. ACKNOWLEDGEMENTS

I am grateful to Dr Lionel Baldwin, President, NTU for pro-
viding some of the data used in this paper and also for
authorizing the use of material from the NTU Bulletin [1].

9. REFERENCES

[1] The National Technological University Bulletin, 1986-
1987 Academic Programs, NTU, Fort Collins, Colorado

WORKSTATIONS AT CARNEGIE MELLON

Bruce Arne Sherwood

CDEC, Carnegie Mellon, Pittsburgh PA 15213

ABSTRACT

Carnegie Mellon ~University intends to deploy
advanced-function workstations for students, faculty, and
staff. The basic goals and the organizational structures
created to attain those goals are described. Several
hundred workstations are currently deployed. There is an
overview of the Andrew and CMU Tutor software
environments.

In 1982 Carnegie Mellon University (CMU)
established the goal of giving all students ready access to
the wealth of information made possible by personal
computers, and providing the kind of computational
environment that would enhance learning. At the same
time, faculty would use these computers for research and
teaching, and the university itself would benefit, both in
improved administrative functions and more rapid
communications.

Scue other universities have adopted the goal of
providing every student with a personal computer, but
CMU’s plan is unusual in emphasizing advanced
"workstations” which are much more powerful than
typical personal or home computersl. While these
workstations are rather expensive today, the rapid pace of
computer evolution insures that these tools will be
inexpensive and widely available in the late eighties.
Because it takes significant lead time to integrate any
computer system into university life, Carnegie Mellon
started early to deploy and exploit machines which will
constitute the next generation of personal computers.

Another important component of the Carnegie
Mellon plan is to link these workstations together, giving
students, faculty, and staff immediate access to up-to-
the-minute programs and data. Fiber-optics links
between all major campus buildings already exist. By the
fall of 1986, IBM token-ring networks will be installed
inside the buildings to distribute information to offices,
classrooms, and to student residences.

ORGANIZATIONAL STRUCTURE

When the project was conceived, a contract between
Carnegie Mellon and IBM established the Information

CH2345-7/86/0000/0015$01.00©1986 IEEE

Technology Center (ITC) to develop system software to
support large-scale deployment of workstations. ITC, led
by its director and computer scientist James Morris, has
focused on two major aspects of the challenge: (1) a file
system to support several thousand networked
workstations, and (2) a friendly, graphics-oriented
operating framework for users of workstations.
Representatives from IBM work closely with professional
system designers, CMU graduate students, and
consultants from the Department of Computer Science,
doing the basic research and development necessary to
create this large-scale system. While much remains to be
done, the system is already operational and heavily used.
The various system-software components built by ITC
are collectively called the Andrew system™, honoring
Andrew Carnegie and Andrew Mellon.

The university also set up the Center for Design of
Educational Computing (CDEC) to help create
educational applications. The cognitive psychologist Jill
Larkin was the first director of CDEC, and the new
director is the philosopher Preston Covey. CDEC
consults with faculty, provides seed money for
educational projects, develops software tools to assist
educational programming, and runs a seminar series and
newsletter. CDEC serves as a liaison between faculty and
ITC, helping both groups define and refine the computing
environment necessary for education.

The environment for developing educational computer
applications is enhanced by CMU'’s strong Department of
Psychology with its special strength in cognitive
psychology, the study of thinking. The expertise on
learning from the Department of Psychology, combined
with the technical expertise of members of the
Department of Computer Science, promises to provide
exceptional new opportunities for students to learn and
for faculty to explore new ways to teach. Already,
unusual artificially intelligent” tutoring programs exist
which will be increasingly useful as Carnegie Mellon
installs workstations capable of handling these complex
programs.

The nature of the new generation of powerful,
sophisticated computers has made it possible for ITC to
develop system software which operates on a variety of
different computers. This will greatly reduce the current

. severe problems of obsolesence and of incompatibility

which plague educational computing. To encourage the
kind of sharing that is so important in an undertaking of

this size, CDEC works closely with the Inter-University
Consortium for Educational Computing (ICEC), headed
by Ken Friend, who is stationed at Carnegie Mellon. The
Consortium includes major universities which are strong
in the computing field, such as Brown, Cornell, Michigan,
MIT, and Stanford. For balance of viewpoints and
needs, ICEC also includes some smaller schools: such as
Vassar and Mills. "Through collaboration among these
universities and colleges, the Consortium hopes to

convince computer vendors that it is worthwhile to

develop. compatible systems. If exceptional educational
software developed at one institution could be readily
adapted -to the needs of others, the total equipment
market would be much larger than it is now.

Older organizations are playing new roles. The user

services section of the university computing center now -

offers short courses on how to use and program the
workstations. - The university library in association with
CDEC has created a software library with acquisition and
cataloging functions.

All of these organizations report to William Arms,
vice' president for academic services. John P. Crecine,
senior vice president: for academic affairs, has played a
central role in- formulating policies and plans concerning
the workstation project.

DEPLOYMENT HISTORY

In January 1985 fifty workstations were placed
around the campus to give faculty an early look at the
system and to start developing educational applications.
In January 1986 the first public cluster of advanced
workstations was made available for shared student use.
This cluster contained twenty-four IBM RT PC’s. By fall
1986 there are expected to be several hundred
workstations on campus, with about a hundred: of them
in public clusters. At present, even with quantity
educational discounts workstations cost close to ten
thousand dollars, which precludes individual student
ownership. However, by the-late eighties prices should
drop considerably, enabling. students to buy any of
several brands ofcompatible advanced workstations in
the campus computer store.

Although some students were involved as
programmers from the beginning of the project, other
kinds of student use were limited due to lack of public
machines. In the spring of 1986 other students could
begin to take advantage of the new resources®. For
example, undergraduate architecture students used a
powerful structural design package to synthesize and
visualize buildings, and students in a graduate physics
course on non-linear dynamics used a sophisticated
function plotter.

THE SOFTWARE ENVIRONMENT

The machines deployed at CMU (currently including
IBM RT PC’s, DEC Vaxstation 2’s, and Sun

workstations)' all use the Berkeley Unix 4.2 operating:

-system, which is a key to compatibility of applications.

The Andrew file system software (called Vice) intercepts
Unix file references and converts these references into
calls to file servers to which the workstations are
attached. Each file' server - handles about thirty
workstations, and the file servers are connected to each
other by a high-speed backbone link. As a result, a user
can log in to any workstation anywhere on campus and
file access is completely transparent. Whole files are
transferred over the network and cached on a local hard
disk. The workstation receives a message from a file
server if the scrver has a newer version of a previously
cached file. While there exist many implementations of
networked personal computers, Vice is unusual in being
designed from the beginning to be expandable to several
thousand workstations while providing good security for
data.

The Andrew programmer and user interfaces (called
Virtue) consist of a window manager, a text-processing
subroutine library, a database subroutine' library, and
applications such as editors, mail, and bulletin boards.
The Andrew window manager will soon be replaced by
the X window manager built by MIT, in order to enhance
compatibility above that provided by the underlying
Unix.. The text-processing subroutine library, called the
Base Editor, provides powerful display and manipulation.
of text, including italics and centering, scroll bars, and
real-time justification within a rectangle. Because it is'a
subroutine library, not a text editor, it is easy to invoke a
sophisticated text editor inside one’s own program. It
also has a marker facility which will keep track of a part
of a file and inform the surrounding program when a
marked section has been changed. The Base Editor:
library will soon be replaced by a new ”Multi-Object
Environment” which has the important enhancement of
permitting "insets” to be contained in documents. These
insets can be equations, graphs, tables, etc. Cutting and
pasting text containing these non-text items will be as
easy as current text operations.

CMU TUTOR

While the system software is written in C, this
language is not well suited for applications programming
by non-expert programmers. To give such people the
ability to create.complex interactive. graphics programs
which exploit the rich capabilities of the workstation
environment, Bruce and Judith Sherwood have created a
programming environment called CMU Tutor"®7%,
While patterned on the MicroTutor language developed
in the PLATO project at the University of Illinois, CMU
Tutor has enhancements for the workstation
environment, including pop-up menus, variable window
size, mouse support, etc. Thanks to the Base Editor
keeping track of which routines have been changed and
therefore need recompilation, CMU Tutor operates as an
incremental compiler, which combines the revision speed
of an interpreted language. with the execution speed of"a .
compiled language. A tightly integrated graphics editor
generates source code from a display created using the
mouse. An' on-line help facility not only describes: the

language features in detail but provides sample routines
which can be run immediately thanks to the multi-
window and incremental-compiler environment.

During the summer of 1986, the Carnegie Foundation
of New York funded four one-week workshops on
advanced-function workstations and CMU Tutor for
faculty and support staff at universities in the
Interuniversity Consortium for Educational Computing.
The workshops were held at Carnegie Mellon, and in less
than one week many workshop participants created
significant interactive graphics programs written in CMU
Tutor. IBM funded.an additional week of workshops for
people from some non-ICEC universities.

- Work is underway to be able to execute CMU Tutor
programs on popular micros, including the IBM PC and
the Macintosh. A limited authoring capability will also
be available, although the workstation environment is a
more productive one for the creation of new materials.

REFERENCES

[1] Crecine, J. P. The next generation of personal
computers. Science 231, 935-943 (Feb. 28, 1986).

[2] Morris, J. H., Satyanarayanan-M., Conner, M. H.,
Howard, J. H., Rosenthal, D. S. H., and Smith, F.
D. Andrew: a distributed personal computing
environment. Communications of the ACM 29,
184-201 (March 1986).

[3] Trowbridge, D. Using Andrew for development of
educational applications. Proceedings of the IBM
Academic Information Systems University AEP
Conference, Alexandria, Virginia, 85-89 (June 1985)

[4] Trowbridge, D. A sampler of educational software
at ‘CMU. Proceedings of the National Educational
-Computing Conference, San Diego, 135-142 (June
1986).

[5] Sherwood, B. A. An integrated authoring
environment. Proceedings of the IBM Academic
Information Systems University AEP Conference,
Alexandria, Virginia, 29-35 (June 1985). Here it is
explained-that CMU Tutor gets its name from being
implemented in C, with MU being the Greek letter
for Micro.

[6] Sherwood, B: A., and Sherwood, J. N. CMU Tutor:
An integrated programming environment for
advanced-function workstations. Proceedings of the
IBM Academic Information Systems University AEP
Conference, San Diego (April 1986).

[7] Sherwood, B. ‘A., and Sherwood, J. N. The CMU
Tutor Language, Preliminary Edition. Stipes
Publishing Company, 10.Chester Street, Champaign,
[llinois 61820 (1986).

[8] Sherwood, J. N. CMU Tutor Reference Manual.
Carnegie Mellon University internal report (1986).
This is a printed version of the on-line reference
manual.

INTELLIGENT TUTORING SYSTEMS FOR PROFESSIONALS

ALAN M. LESGOLD

Learning Research and Development Center
University of Pittsburgh
Pittsburgh, Pennsylvania 15260

Abstract

Tools are becoming available for developing intelli-
gent tutoring systems to teach professional and
technical jobs. One basic tool is a method for
analyzing jobs that involve considerable. problem
solving, such as electronics troubleshooting. A second
tool is a combined device simulation and hypertext
design capability. Combined with recent develop-
ments in cognitive instructional science and artificial
intelligence, these tools promise affordable and
efficient computer-based tutors that can speed up
on-the-job learning.

Introduction

So far, most of the intelligent tutoring systems that
have been built have aimed at relatively simple
educational goals. However, it is now possible to
build systems that can address the very job-specific,
complex tasks that professional and technical workers
face in our rapidly changing society. While many
approaches seem worthy of investigation, | favor
job-situated, coached practice as the basic approach.

In such an approach, a series of problem forms are
developed that afford opportunities to exercise the
various bits of knowledge one wants to teach.
Trainees work through these problems in a cognitively
real simulation environment, receiving coaching as
necessary. Decisions about which variants of which
problems to present and how to coach are made
intelligently on the basis of aspects of the trainee's
performance. This means that the following
capabilities, among others, are needed to build such a
tutoring system: (a) a curriculum goal structure to
motivate the choice of problem forms and variants;
(b) a cognitively-real simulation of the work
environment, within which problems can be posed; (c)
adequate knowledge about how people at different
levels of skill think and act as they attempt to solve
the problems that will be posed. In the sections that

CH2345-7/86/0000/0018$01.00©1986 IEEE

follow, two tools are described that contribute to
developing these components. A task analysis
methodology is described that can drive the
development of the curriculum, as is a tool for
building the simulated work environment.

Effective Problem Space Descriptions: A Tool for
Cognitive Task Analysis

in order to decide what to teach, it is necessary to do
task analyses of the jobs that trained professionals are
asked to perform. Because the jobs a professional
does are largely thinking jobs, cognitive task analyses
are required — we need to know how professionals
think their way through problems. In our own work,
we have found it useful to begin by identifying an
expert who has to contend with the problems
produced by inadequate training. Such a person can
be helpful in identifying classes of problems that the
target group of professionals should be able to solve
but often are not. We then work with the expert to
develop an effective problem space for each such
problem. That is, we ask the expert to describe how
he would solve the problem and then probe deeply
for alternative solution methods that either other
experts or trainees might conceivably take.

We then use a differential empirical strategy to verify
the expert's analyses. We take other experts, new
professionals who are doing well, and new pro-
fessionals who are having difficulties and ask them all
to solve the problems for which we have preliminary
effective problem spaces developed. The general
differences between fast-track and slower new
professionals are used to develop a set of goals for the
tutor, its curriculum. The specific differences in
problem solution paths are used as a basis for the part
of the tutor that coaches problem solving perfor-
mance. So, a trainee is constantly solving problems
that are known to separate faster and slower new-
comers to the profession, and the tutor is prepared to
coach, assist, and demonstrate the steps that
newcomers are likely to find difficult.

A few specifics

The approach my colleagues and | have used can be
made clearer by looking at an example. One of our
projects is to develop a tutor for a particular Air force
specialty in which manual (non-automated) test
equipment is used to diagnose and repair faults in
navigational equipment for a particular airplane, the
F-15. To carry out this project, we needed to find out
what was difficult about this job, which involves
massive amounts of electronic circuitry. Our break-
through came not so much from our psychological
expertise but rather from interactions of three of us
(the author, Debra Logan, and Susanne Lajoie) who
had substantial cognitive psychological training with
an electronics expert (Gary Eggan) who had extensive
experience watching novice troubleshooting perfor-
mances. He pointed out that it was quite possible to
specify the entire effective problem space, even for
very complex troubleshooting problems. That is, he
could almost completely specify all of the steps that
an expert would take as well as all of the steps that
any novice was at all likely to take in solving even very
complex troubleshooting problems. In this case, the
task was to find the source of a failure in a test station
that contained perhaps 40 cubic feet of printed circuit
boards, cables, and connectors, but various specific
aspects of the job situation constrained the task

sufficiently so that the effective problem space could
be mapped out.

This then created the possibility that we could specify
in advance a set of probe questions that would get us
the information we wanted about technicians'
planning and other metacognitive activity in the
troubleshooting task. For what is probably the most
complex troubleshooting task we have ever seen,
there are perhaps 55 to 60 different nodes in the
problem space, and we have specific metacognitive
probe questions for perhaps 45. Figure 1 provides an
example of a small piece of the problem space and the
questions we have developed for it.

An examination of the questions in the Figure reveals
that some are aimed at very specific knowledge (e.g.,

How would you do this?), while others help elaborate
the trainee’'s plan for troubleshooting (consider Why
would you do this? or What do you plan to do next?).
Combined with information about the order in which
the trainee worked in different parts of the problem
space, this probe information permits reconstruction
of the trainee's plan for finding the fault in the circuit
and even provides some information about the points
along the way at which different aspects of the
planning occurred. In fact, we went a step further
and also asked a number of specific questions about
how critical components work and what their purpose
is. Finally, when a trainee was headed well away from

Figure 1
Examples of Problem Space Probes

Rerun
Test * Why did you rerun the test?
Tighten | -
Cables * Why would you do this?
Single * Why would you do this?
Step * How would you do it?
Check * What does it tell you?
\
Reseat/ Rerun * How do you do this?
Swap Test * Why would you do this?
A2A3A11
Check/ : How do you do this?
S Why would you do this?
wap * {5 this what you would do
DMM in the shop?
Swap : How do you do this?
Cabl Why would you do this?
ables * Is this what you would do
in the shop?
Fails
Again; * What do you think the problem is?
Same * What do you plan to do next?
Reading

a reasonable solution path, we would, at preplanned
points, redirect his efforts back to more fertile
ground.

After reviewing the records of performance in our
tasks, we developed six scales on which we scored
each airman. Each of these scales could be further
subdivided into subscales to permit more detailed and
task-specific issues to be addressed. The six scales
were titled plans, hypotheses, device and system
understanding, errors, methods and skills, and
systematicity. Table 1 gives two examples for each
scale of the items for which points could be earned (in
the error scale, more points means more errors and
thusis a lower score).

Table 1
Examples of Items Counted in each Subscale

Plans
® Extend and test a card.
® Trace through the schematic of an individual card.

Hypotheses
® There is a short caused by a broken wire or a bad
connection.
® The ground is missing from the relay.

Device and system understanding
® Understanding and use of the external control panel.
® Understanding of grounds and voltage levels in the test
station.

Errors
® Misinterpreting/misreading the program code, called FAPA,
for a test that the test station carries out under computer
control.
® Getting pin numbers for a test wrong.

Methods and skills
® Schematic understanding: Ability tointerpret diagrams of
relays, contacts, coils.
® Ability to run confidence check programs.

Systematicity
® The subject returns to a point where he knew what was
going on when a dead end is encountered.
® The path from the power source is checked.

Plans was a count of the number of plans mentioned
by the subject during his problem solving efforts. Any
time that the subject entered a new part of the
problem space, we prompted for a plan, but the lower
skill subjects, especially, often did not have one. That
is, they more or less randomly acted until a plan or
hypothesis came to mind. A count was kept of the
number of hypotheses offered by subjects at various
points in their work. Again, subjects were prompted
for hypotheses at the predetermined boundary points
between regions of the problem space. The high-skill
newcomers entertained more hypotheses, which is
what we would expect given that even they are at
intermediate skill levels. True experts were be
expected to have a more constrained set of probable
hypotheses.

The device and system understanding scale was based
upon specific questions that were put to the subjects
after they had performed the troubleshooting tasks.
We asked a fixed set of questions about each of the
components of the test station that played a role in
the problems we had posed. These questions probed
for knowledge about how the -component worked,
what role it played in the test station, what its general
purpose in electronic systems was, and what it looked
like.

The errors scale was simply a count of the number of
incorrect steps taken by the airman in trying to
troubleshoot the system.

The methods and skills measure tallied which of the
procedures needed to carry out the troubleshooting
of the test station were successfully demonstrated by
the subject.

20

Finally, the systematicity measure consisted of a set of
relatively broad criteria gauging the extent to which
troubleshooting proceeded in a systematic manner
rather than haphazardly or without a sense of goal
structure.

This, then, provided a first, relatively global view of
the skills that separated high and low skill first-term
airmen. We found out quite a bit from these analyses.
High skill airmen differed on most of the measures,
except for Plans. Looking a bit more closely, the
higher-skill airmen seemed not to be less inclined to
engage in metacognitive activity; rather, their
planning was more general, less conditioned to the
specific point in a specific problem solution at which
they found themselves. This suggested to us that it
might be necessary for us to teach very much in the
context of the skill domain. [t wasn't that the
high-expectation airmen were more likely to use
general planning strategies. Rather, they were only
better at concrete, domain-specific variants of those
planning methods. The missing knowledge to be
taught to less-promising airmen was domain-specific
planning, plus some specific skill components, such as
tracing schematics and using meters for active-circuit
measurement. Thus, we had a basis for specifying our
curriculum.

However, the knowledge coming from the six scales,
or even from slightly more specific tallies, was
insufficient to drive the specification of our problem
types. To do that, we needed to be able to look at
additional qualitative aspects of job-domain perfor-
mance. An impressive example of how to do this was
provided by Christopher Roth, an- LRDC student
working at HumRRO in Alexandria, Virginia. He took
our methods and applied them to a slight variant-of
the domain we studied. He also used the same
domain expert (Gary Eggan). However, he spent more
of the total effort comparing the specific problem-
space paths of experts and novices. The next few
figures illustrate the yield of this work.

Roth worked with Eggan to develop a collection of
diagnosis problems that were characteristic of real
problems faced in the work environment and that
were likely to be solved correctly by the best
technicians and not by many of the less-skilled first-
term airmen. People with experience in handling the
tasks on which many airmen have difficulty tend to
have a good sense of the kinds of problems that are in
this class (problems that are representative of the
domain, solvable by the better technicians, and not
solvable by a substantial number of workers), and
Eggan's advice has proven itself empirically. Figure 2
illustrates the effective problem space that Eggan
helped Roth construct for the problem. It was felt
that the bulk of problem solving activity would fall
within this space, for both experts and less-skilled

Figure 2
Effective Problem Space

Figure 3
Expert and Novice Subsets of Effective Problem Space

effective Problem Space

Hypothesis: Not a
hardware fault hardware fault
Downline Load (DLL)}
//TR\ -
S -
Check that DLL command Check thatswitches Check that DLL command]

Effective Problem Space
Hypothesis: Nota
‘ Problem: Operator Unable to J

Check th3t switches
Request a second DLL entered properly on T06 set correctly Re:;iﬁ? é:;?:g&"" entered properly on T06 set correctty
) Result; Can'tDLL

Result: Can'tDLL Result: Can't DLL Result:_Can't DLL

Hypothesis: Symptomdue Hypothesis: Symptom due
to hardware fault [10 hardware fault
-

Result: Gan't DLL
—
- - -4

| R

Select tro hooting strategy 4 Select troubleshooting strategy <
‘ﬂ\ &
Run diagnostics Use split-half strategy [~ Use functional analysis Run diagnostics Use split-half strategy [~ Use functional analysis
B — ek
' checu—-—/mheck o Check Che: - S0meck =

Result: Fails byte count byte count tine Have system! TryDLLon Result: Fails byte count byte count line Havesyste Try OLLon

witherror oy . - failover another console. with error B 1 i 1Y) % failover another console.
£ *no disc into console into/out of MUX adaptor in MU Result: Can Result: Can't of *no disc into console nto/out of MUX daptor in N_IU Result: Can Result: Cant
of 'no dis Result: Bad Result: Bad Result: still NOWOLL DLL any|console drive” Result: Bad Result: Bad Result: Still POWDLL DLL anyconsole
drive' by‘erum byleiount / can lDLL V} J byte gount byte gount y-can‘ DLL -
Conclude: Conclude: Fault ‘) ; Conclude: Conclude: Faul

condlude: condude: Condlude: Fault NOT in components c0:< ude: Condude: Condude: Tault NOT i~ (;:“:;nen“‘;

Fault Fault Fault in common common to ault Fault Fault in common iy

upstream upstream upstream | o onents both DLLS upst;iu upstream upstream components both DLLS

L
OR
-
Conclude: Bad Conclude: Bad
discdrive discdrive
v
Swap components on basis Swap components on basis
e of probability of fail of ease/probability of fail
R
»
Disc Disc Disc Disc VO Disc t Disc Dis¢ Disc Disc /0 Disc
pack adaptor cables board drive pack adapter cables board drive
Result: Still - . P Resuit: Still
can't DLL " - can‘tDLL
J Solution I Solution
workers.

Roth and Eggan then proceeded to run subjects on
this task. The problem was posed verbally to airmen
who had access to the full set of Technical Orders
(documentation for the devices involved). Technicians
were encouraged to offer their hypotheses, state their
plans, and announce specific steps they would take in
attacking the problem. Whenever an overt step was
stated by a technician, he was immediately informed
of the outcome of that step.

Figure 3 shows the basic results that Roth obtained.
The experts, whose performance is outlined with a
solid line, used a subset of the effective problem
space, avoiding some of the steps that were less likely
to be productive. The novices, whose empirical prob-
lem space is outlined in heavy dashes, failed to make
some of the expert moves and did make some moves
that experts would not make, such as swapping a disc
pack (see bottom left of Figure 3. Further, their
empirical problem space was discontinuous, a set of
islands.

21

To better understand what knowledge separated the
experts from the novices, Roth and Eggan then tried
to determine the specific knowledge that experts
used at critical points in the problem space.
Knowledge involved in making a move that experts
make and novices do not is a clear candidate for
inclusion in the curriculum. At the individual problem
tutoring level, a wrong choice at a decision point in
the effective problem space then becomes a mandate
for specific instruction on the knowledge that could
have led to correct performance.

Several-things became clear from this work. First,
there will be a lot of variability from one trainee to
the next, so that the coaching for this sort of problem
solving performance cannot be prespecified com-
pletely. Rather, some online intelligence will be
required. Second, the summary measures of planning,
systematicity, etc., do not provide the detail on which
instructional design and specific coaching must be
based. Third, the validity of any conclusion about
what a trainee is doing during an effort to solve one
of our problems must rest on a pattern of logical
relationships among the observed details of per-
formance, the expert knowledge of the domain, and

the cognitive psychology of expertise. That is, it is
reasonably easy for an electronics wizard and a
cognitive psychologist to get a good picture of what
knowledge a novice has or does not have, through
cognitive extensions of rational task analysis
approaches. This is a form of diagnosis more like what
a physician does in an individual case than like what a
testing expert does. Fourth, - the scientist can
reasonably ask what empirical support there is for this
approach. Several successful analyses of technical jobs
have taken place, in three different laboratories, but
continued work is needed.

Simulating the Work Environment

| turn now to a totally different kind of tool, a
software tool. Given the goal of building a problem-
based tutor, we need to be able to simulate the job
world in which the problem solving takes place. Here,

| also have an interesting discovery to report. Like a
number of laboratories, ours has been working on
tools for simulating devices. By a device, | mean a
network of objects that pass information between
themselves. for example, a resistor circuit can be
thought of as a set of objects, batteries and resistors
perhaps, that pass information about current and
voltage along paths that correspond to wires. To
simulate a resistor circuit, we need to specify a
method for each object that permits it to demonstrate
its behavior. For example, a resistor is an object that,
given modifications in its resistance, changes the
current it will pass at a given voltage, according to
Ohm's Law.

Of course, a device simulation must also model the
behavior of the device as a whole, and that overall
behavior is constrained by properties of its com-
ponents, too. Further, simulated of response to
changes must be instructive, which may require a
departure from reality at times, but that is not the
issue | want to address in this paper. What is critical
for the present purposes is that a device model must
be prepared to illustrate both local component
behavior and overall system behavior.

it rapidly occurred to my colleagues Jeffrey Bonar and
John Corbett that this loca/global distinction can be
applied recursively. A computer has as components a
number of subdevices; they in turn are composed of
boards; the boards are composed of chips; many of
the chips are arrays of logic gates. Thus, what we
really have to be able to simulate is an entity that has
an overall functional description and also a descrip-
tion in terms of the behaviors of its individual compo-
nents. Corbett has built a system that can do this,
called Flowchips. It is still evolving, but we already
know that it is a very powerful tool, both for
providing an environment in which problem solving

22

activity can take place and also for providing
explanatory simulations of complex objects.

The next step in the story represents a stroke of
genius, for which Bonar and Corbett, not |, deserve
the full credit. They reaiized one day that hierarchical
displays of devices are no different from hierarchical
displays of texts. Indeed, texts can be included as
components of devices, too. They are special com-
ponents, perhaps, that don't necessarily change; or
they are labels; or they are function descriptions that
changed as parameter thresholds are crossed, as in
labels on a capacitor that might say charging or
discharging or saturated. They can also be terse
statements of function that can be "opened up"” to
reveal more detailed statements of function, just as a
chip might be opened up to reveal its logic-gates
contents.

In the limit, then, a device model is more or less like a
hypertext system. Information is presented at
multiple levels of detail in multiple media (for us,
currently, line drawings and text). However, it also
has some special properties. The entities of which it is
composed are not passive. They propagate changesin
themselves throughout the simulation system; they
respond to the student or trainee not only by
elaboration, but also by demonstration, by
explanation, and most importantly by affording
opportunities for manipulation.

In an idea processor, the user can change an entry, but
the change is passive. In the Flowchips system now
under development by Corbett and Bonar at the
Learning Research and Development Center, the user
can make changes that affect the entire system and
can then open up the system to examine those
changes. For example, changing a few switch settings
might totally change which parts of a complex circuit
are active and also change the texts that explain what
different parts of the circuit are currently doing. It is
this level of device simulation that we believe is
crucial.

One final viewpoint on such change propagations is
worthy of note. If a change that has to do with a
parameter being simulated, such as voltage, can be
propagated through the system then it should also be
possible to propagate changes having to do with
pedagogy, such as advice that a particular student
reads poorly, has trouble interpreting graphics, speaks
only a particular language, is a computer scientist, not
an electrical engineer, etc. Hopefully, we can move
beyond our current efforts, which are much more
mundane, and consider adding directly to the device
simulation two other component objects, a student
model and a teacher of sorts.

In a real device, certain changes in parameter values
can be catastrophic. For example, pouring cold water
into a very hot steam plant can be deadly. In the kinds
of device simulations that now appear to be possible,
whether the simulation explicitly ‘'makes a big fuss
about such an act should be mediated by an intelli-
gent system that decides whether focusing attention
on the catastrophic implications of the last step taken
will be useful in teaching the student. Similarly, while
there are many aspects of a circuit to which an expert
should attend, an active simulation might elide over
some components and concentrate on others to which
a novice should be particularly attentive or which
relate to an active instructional goal.

23

SOFTWARE SYSTEMS ARENA

Software: Engineering

TRACK CHAIR: Prof. Laszlo Belady
MCC)

Unix

TRACK CHAIR: Prof. Domenico Ferrari
University of California at Berkeley

- TRACK CO-CHAIR: Dr. Luis Felipe Cabrera
IBM Research Laboratory

Program Testing

TRACK CHAIR: Prof. William Howden
University of California at San Diego

Programming Languages, Compliers

and Environments

TRACK CHAIR: Dr. John White
Xerox Corporation

AN APPROACH TO TYPE SAFETY IN A TRAITS SYSTEM

Gael Curry

Sequent Computer Systems

Abstract

This paper extends some of the multiple
inheritance subclassing ideas developed
for use in early versions of the Xerox
Star workstation. It first shows how to
capture the class hierarchy in compiler-
visible form. Next it shows how to
attribute a useful notion of "type" to
instances. Then it shows how a compiler
and a programmer relate to this approach.

1. Introduction

This paper describes an approach to
supporting type-safe multiple-inheritance
object-oriented programming. It is the
outgrowth of experience with traits as
supported in the Mesa language for Xerox
Star.

For completeness, the paper will first
describe what traits are, how they were
used in Star, and what the problems were.

Then, it will describe how to embed a
multiple-inheritance class hierarchy in
compiler-visible structures, and discuss
the meaning of type-safety in these terms.

2. Traits

This section reviews the central .iQeas
behind traits and compares them to similar
facilities in other environments.

2.1. Basic Concepts

A "trait" is a property that an object may
have which allows clients to interact with
the object in a certain way. To a client,
a trait appears as a set of operations,
any of which may be applied to any object

carrying the trait. For example, the
trait "stores_integer" may have two
associated operations: put_integer and
get_integer.

CH2345-7/86/0000/0025$01.00©1986 IEEE

25

A trait does not capture the essence of an
object. It captures the essence of a
property of an object. 1In this respect it
is different from an "abstract data type".
Traits are, however, similar to abstract
data types in the sense that they are

information-hiding encapsulations of
(properties of) objects.

Traits can be mixed rather freely in
objects. Often primitive traits are
independent of other primitive traits,
such as "stores_integer" and "has_name".
Under these circumstances, it is -quite
natural for objects to <carry several
traits.

Several traits can also be combined into
more complex traits. For example,
"is_integer_variable" could be considered
to be the combination of "stores_integer”
and "has_name". These compound traits can
then be carried by objects.

A "class" (for a given trait) is something
which generates 1instances whose only
property is the trait, and, by

implication, its subtraits.

Traits are described in greater detail in
[Curry8l1l] and [Curry83].

2.2. Similarities to Other Environments

The idea of primitive abstractions which
can be combined into more complex ones has
been used elsewhere.

In Smalltalk ([Goldberg83], the rough
analog to trait is "abstract class", a
class without instances. The "carries"
relation on traits corresponds to the
"superclass" relation on classes. See
[Borning82] for a description.

In KEE,
"units".

the rough analog to traits are
See [Intellis83].

In various versions of LISP, "flavors" are

the analog to "traits" [Weinreb80]. The
LOOPS extension to Interlisp also has
corresponding concepts [Bobrow83],

[stefik85].

A comprehensive comparison of the -various
approaches can be found in [Carnese84].
2.3. Differences from Other Environments
While conceptually similar to the various
other mechanisms previously mentioned,
traits were motivated by different types
of concerns. The approach arose out of
the need to control the complexity in the
Star implementation by increasing the
reusability and sharability of common
program fragments. Subclassing first, and
multiple-inheritance second, helped to
accomplished this.

There was another point of departure. It
was vital that the implementation of
multiple-inheritance be lightweight. For

this reason, message-passing approaches to
supporting multiple-inheritance were
rejected. Message-passing is an expensive
way of implementing inheritance in cases
where the very dynamic binding permitted
by message-passing is not required.

Since it was acceptable to hold the class
structure constant for a particular build
of Star, it became possible to precompute
(at load-time or earlier) all of the
values inherited by a class.

A more subtle difference between traits
and more dynamic systems also exists. The
central traits notion 1is that of an
abstract specification of a property of an
object; the semantic specifications of
trait operations are the constants. Other
schemes seem to focus more on message
passing; message names are the constants.
At issue 1is whether alternate methods
selected by a given message need to meet a
given specification.

3. Traits in Star

This section discusses the use of traits
in Star: the programming conventions,
binding times, and type-safety. The
casual reader can skip this section.

Traits were used extensively to build the
early versions of Star. Versions of Star
released in 1983 included some 260
different traits.

The Star programmer dealt with traits as a
pattern of programming conventions over
the Mesa language.

26

3.1. Mesa

Mesa was the systems implementation
language for Star. It is a strongly-
typed, modular language [Geschke77],
[Mitchell79]. "Definitions modules"”
represent the abstract interface to
"program modules," which implement the
interface.

The strong-typing of Mesa had a deep

influence on the Star programmer. Because
Star was such a large piece of software -
on the order of a thousand program modules
- any support for maintaining and making
comprehensible large software systems was
welcome. The Mesa compiler's support for
strong-typing was invaluable; breaches of
the type system (which traits seemed to
require) were frowned upon. The desire
for a type-safe way of supporting traits
led to the thoughts behind this paper.

3.2. Trait Client Programming Pattern

A trait appeared to its client as a Mesa
definitions module. The module would
contain a set of procedural interfaces for
trait operations. The first parameter of
each procedure was the handle to the
object (allegedly) carrying the trait. It
might be declared as:

"Op: PROC[oH:Handle, t:T]".
and would be invoked as:

"Trait.Op[oH, t];"

It was the client's responsibility to
ensure that, before applying a trait
operation to an object, that the object
did in fact carry the trait. 1In general,
there were no compile-time or run-time
guarantees that it did. It was a serious
error when a trait operation was applied
to an object not carrying the trait.

3.3. Trait Implementer Programming Pattern

Implementing a trait was more involved
than simply using one as described above.
The implementer of a trait had to obey
certain programming conventions since
traits were not supported directly by the
language.

Each instance reserved storage for all the
traits that it carried. The conventions
required that each trait declare how much
storage it needed in instances which would
carry it. For example, the trait
"stores_integer" would require enough
storage for one integer in every object
that carried it.

In addition, each class reserved storage
for all the traits that it carried. This
storage was used exclusively for storing
procedure values reflecting the inherited
"methods" of the class. The conventions

required that each trait declare how many
overridable operations it had.

A "trait manager" (TM) existed which
represented compile-time and run-time
knowledge of global aspects of the trait
hierarchy.

Each trait declared certain things about
itself to TM (e.g., amount of trait
storage required in each instance carrying
the trait, amount of trait storage
required in each class carrying the trait,
whether the trait would generate
instances, which (sub) traits it carried).
Each trait registered this information
with TM at 1load-time. Logically, this
could have all happened at compile time.

The TM used this information to determine
the 1locations of trait data in instance

storage, and of trait data in class
storage. Traits could query TM to
determine where their data was in

instances and classes. For accessing its
data, a trait would ask TM to help it open
a scope onto its data in the instance:
put_integer(oH: Handle, i:int]
p = TM.Data[oH, me];
p.storage = i;

addition, where carrying traits
were able to override this
trait's methods with their own, the trait
implementer needed to provide a "switch".
The pattern was similar; a trait would ask
TM to help it open a scope onto its data
in the class:
put_integer (oH: Handle, i:int]
p = TM.Ops[oH, me]l;
p.put_integer[oH, i];

In
(subclasses)

Initialization of instances and classes
was done by explicit bottom-up traversal
of the traits hierarchy by each individual
trait. That scheme was fine in the single
inheritance world (where there was only
one immediately carried trait, or
"superclass"), but broke down completely
for multiple-inheritance. A better
approach would have been for TM to drive
the static initialization of instances and
classes, rather than conversely.

was too involved to be
satisfactory. The whole scheme could have
been supported much more cleanly by a
compiler (if the information known to the
Star traits manager were only available at
compile-time).

The pattern

3.4. Pre—-calculated inheritance

The class information massaged by TM was
in fact static. All method overriding was
performed at boot-time, and recorded in

27

the class structure. It could as well
have been specified at compile-time (this

is not necessary for type safety as
described below).

3.5. Pre—calculated initial instances
Similarly, statically initialized

instances for each class could have been
calculated at compile-time.

3.6. Optimized instance, class layout

its data in
it does so via

When a trait accesses
instances or in classes,

TM. It actually has no idea where its
data is with respect to the class or
instance. It is the association of trait

storage with instances that is important,
not the location of the storage. In many
cases, it is possible to arrange that, for
all classes, trait data is in the same
object-relative location (class-
independent positioning). This can be
used to generate optimal accesses to trait
data.

single-inheritance systems, class-
positioning is always
For multiple-inheritance
it is easy to show that it is
impossible if no "holes" are
permitted in instance storage. In
general, class-independent positioning of
trait data in class and instance storage
is excessively expensive.

For
independent
possible.
systems,

sometimes

The Star trait manager originally
calculated a globally optimized layout for
trait data in instances and classes. A
recompilation of Star with this globally
optimized layout made trait data access
even faster.

3.7. Type-safety

There were many places where the Mesa type
system was breached by the traits
programming convention. We were unable to
find a safe pattern which still retained
the information-hiding benefits.

4. Problems with Traits in Star

While traits worked well enough to get the
job of building Star done, they had
certain drawbacks.

This section describes the major problems
encountered which using traits in Star.

4.1. Traits were unsupported

The most basic problem was simply that
that style of programming was unfamiliar.
As a language feature it was unsupported
by the production tools

4.2. Runtime support was required

interesting aspects of
multiple-inheritance is that runtime
support seems to be required to 1locate
trait data in instance storage (and class
storage), at least when no gaps are
permitted in instance storage. For
single-inheritance systems, the convention
of placing superclass data closest to the
base of instance storage provides class-
independent positioning for all traits.
For multiple-inheritance systems, there is
no convention which assures class-
independent positioning for all traits.
There will always be a trait whose data
(in an instance) can only be located by
accessing a runtime which can only be
constructed after all traits'
implementations are compiled.

One of the more

If gaps are permitted in instance storage,
a compile-time database of trait data
locations can eliminate the need for
runtime access.

4.3. Global optimization was performed

The Star traits mechanism went one step
beyond providing a runtime. It tried to
minimize access to the runtime by doing an
analysis of the entire traits hierarchy in
order to achieve class-independent
positioning as often as possible. From a
development standpoint, the optimization
was not a good idea, since addition of a
single new trait could require recompiling
all trait implementations.

4.4. Traits breached Mesa type system

Perhaps the most serious problem with
traits in Star was the fact that its use
fostered systematic breaching of the Mesa
type system.

For the trait client the danger 1lay in
invoking a trait operation on an object
which did not carry the trait.
Eventually, a run-time check was added;
the object's "create type", the highest
level trait it carried, had to carry the
trait introducing the operation.

For the trait implementer, the problem lay
in the way a scope was opened on trait
data in class and instance storage; a
(generic) TM function was used, returning
a pointer which was then coerced into a
trait-specific type.

these breaches

In practice, surprisingly,
Their

did not cause problems very often.
existence was disturbing, however.

28

In addition, the only checks which could
be implemented were run-time checks. This
deferred detection of what was basically a
type breach to late in the development
cycle.

5. Elements of a Solution

Static typing is always a compromise. In
exchange for compiler support for the more
static aspects of a program, the
programmer gives up some dynamic control.

The most important element of type-safe
multiple-inheritance traits programming is
to embed the trait hierarchy in structures
which are identifiable by a compiler. At
the very 1least, trait "names" and the
"carries" relation should be visible; the
compiler needs to be able to determine
whether one trait carries another or not.
For type-safety, only this is necessary.
It is also useful if method inheritance
can be precalculated at compile-time;
cases of inconsistent inheritance can be

resolved by the compiler. It is more
efficient to calculate the value of
statically-initialized instances at

compile-time also.

The second necessary element for type-safe
trait programming is a change of viewpoint
about what "type" is.

Conventionally, variables which hold
values of a given type are tagged with the
"create type" of the variable, reflecting
total knowledge of the characteristics of
the value. For example a variable which
holds an object of the (earlier-described)
type "is_integer_variable" would be tagged
with "is integer variable". This notion
of type does not help with type-safe
traits programming.

An alternate approach is to tag variables
holding values of a specific type with
(sub) traits carried by that type,
reflecting partial knowledge of the
characteristics of the value. In the case
above, a variable holding an object of
type "is_integer_variable" might be tagged
with "has name". This tagging allows the
programmer to apply the operation
"get_name" (for example) to the object.
Even though the operation "get_integer"
makes sense, it may not be invocable.

Syntactically, one might write:

<var>: Handle CARRYING <trait>
to declare <var> to hold handle values for
objects known to carry <trait>. A more
general approach allows the programmer to
express partial knowledge that an object
carries a set of traits:

<var>: Handle CARRYING <traitlist>.

"Type-safety" for trait clients means that

it is not possible to apply a trait
operation to an object which does not
carry the trait.

6. A Static Trait Hierarchy

This section describes how trait

information can be embedded in compiler-
visible structures - trait interfaces. A

trait interface 1is the means by which
trait clients know the types and
operations introduced by the trait. In
Mesa, a trait interface would be

represented as a "definitions module”.

A trait interface contains a single "trait

declaration”. A trait declaration
includes a "trait id" and a 1list of
carried traits (we exclude referential

Note that a trait interface

indirectly via different
importance of the trait
declaration 1is that it embeds a de-
scription of the traits graph (i.e.,
carries relation) in the set of trait
interfaces, in a form which can be
understood by the compiler.

circularity).
may be shared
paths. The

A trait interface contains a number of
operations introduced by the trait and
which can be applied to objects carrying
the trait. These are called "trait
operations", Every trait operation has a
distinguished parameter, which identifies
the object to which the operation is to be
applied. This parameter must be of type
Handle CARRYING <trait>,
where <trait> is the trait being declared.

In a trait interface, each trait operation
is described. For each operation, the
name, input and output parameters and
their types are listed. The semantics of

each trait operation are described. As is
usual with interfaces, the
"implementations" of trait operations are

usually not specified.

A trait interface specifies whether each
trait operation is rebindable and if so, a
preference for that operation. A syntax
such as: .

t: TRAIT[...]:

THandle: TYPE = Handle CARRYING t;

Op: TRAIT PROC[oH: THandle, ...}

PREFER OpDefault;

could be wused. Preferences are not
permanent bindings. That is, invoking a
rebindable trait operation bound with

PREFER cannot be guaranteed to invoke the
preference. For example, if the trait
operation is being applied to an object
carrying a higher 1level trait which
overrides the preference expressed here
with its own, then the preference of the
higher-level trait will be invoked
instead.

29

Each trait interface specifies preferences

for 1its rebindable operations. Higher
level traits must be able to override
preferences of traits they -carry. A

variant of the PREFER verb can be used.

For example, if the declared trait carries

a trait declared in another trait

interface "T", and "Op" is a rebindable

operation declared in "T", we could use:
T.Op: PREFER OpOverride.

This means that the trait defined here is

"overriding" the earlier preferences with
its own.
This ability of higher-level traits to

override preferences of lower level traits
is the basis for much of the power of
traits. In more dynamic subclassing
systems the same purpose 1is accomplished
by intercepting messages and executing
alternate "methods". In a traits system,
this "message-passing" overhead would be
incurred at compile time instead of run
time.

The traits hierarchy implicitly expressed
in the set of trait interfaces defines
operation inheritance paths. It a higher
level trait "Th" carries a lower level
trait "T1", then operations of Tl can be
applied to objects carrying Th.

Notice that from the perspective of a
given trait interface, everything about
the trait hierarchy below it is known.
The trait operations for this and all
carried traits are known, and preferences
for rebindable operations for this and all

carried traits can be calculated. If the
trait is a class, the inherited methods
for the class can be calculated and
conflicts resolved.

7. Client Perspective

From a trait client perspective, things

are straightforward. References to objects
are maintained as handles carrying the
needed traits. For example, a "page"
object could be composed of "heading",
"footing" and "body" objects. "page"
trait data could be declared as:
RECORD[
head: Handle CARRYING heading,
body: Handle CARRYING body,
foot: Handle CARRYING footing
l.
An Object
page.body may

handle 1is stored in
be a good deal more
elaborate than "body", but for the
purposes of "page", it does not matter.
The "page" object will only deal with the

object at the level of "body" or below.

whose

If a client wishes to apply an operation
introduced by a lower level trait to an

object, the compiler can validate and
perform the necessary coercion, since it
sees the entire traits hierarchy. For

example:
Object.Print[page. body].

In this case, page.body carries the "body"
trait, which we assume carries the
"object” trait. The compiler notices that
the programmer is attempting to apply an
operation introduced by "object" (namely
Print) to an object known to carry the
"body" trait. This is valid exactly when
"body" carries "object", a simple
reachability check on the traits graph.

On those occasions when a programmer
"knows" than an object carries a higher
level trait than the source quarantees, he
may coerce it explicitly. A runtime check
that the object really does carry the
trait can be performed to maintain safety.

8. Applications

The real value of traits is reusability.
Traits offer a way of capturing essential
abstractions more easily than single-
inheritance subclassing schemes. 1In order
to be truly useful this way, traits should
be implemented over some widely used
programming language. In addition to

being based on a widely-used language, an
extensive library of abstractions is
desirable.

The approach taken by the language C++

[Stroust86] is perhaps the best way to
deal with the need. In this case a
preprocessor "yirtually" extends a
standard, widely-used language.

Mesa, Modula, and ADA are perhaps the
languages best suited for these
extensions, since they provide strong-

typing support already, and support for

interface modules.

With some work, however, the approach may
be applied to FORTRAN as well.

9. Conclusion

This paper has indicated how to extend a
strongly-typed language to support traits-
based programming. There are two key
ideas. First, embed the trait hierarchy
in a set of statically defined interfaces.
This potentially eliminates message-
passing as a means of implementing
inheritance (since the compiler can now
manage inheritance and type checking).
Second, rely for type-safety on a notion
of "type" which reflects static knowledge
that an object carries a given trait,
rather than the notion of "create type".

The compller can then assist in automatic
coercion and type-checking, based on its
understanding of the (statically-
specified) trait hierarchy.

30

10. References

[Bobrow83]
Bobrow, D. and Stefik, M. The Loops
Manual. Technical Report, Xerox PARC,

December, 1983.

[Borning82]

Borning, A. and Ingalls, D. "Multiple-
Inheritance in Smalltalk-80". Proceedings

of the American Association for Artificial
Intelligence, 1982.

[Carnese84]

Carnese, D. "Multiple Inheritance in
Comtemporary Programming Languages",
Masters Thesis, MIT AI Lab, September,
1984.

[Curry8l]

Curry. G.; Baer. L.; Lipkie, D.; Lee, B.
"Traits: An Approach to Multiple-
Inheritance Subclassing", SIGOA Conference
on Office Information Systems,
Philadelphia, June, 1982.

[Curry83]

Curry, G.; Ayers, R.. "Experience with
Traits in the Xerox Star Workstation",
IEEE Transactions on Software Engineering,
September, 1984.

[Intelli83]

IntelliGenetics, Inc. "KEE User's
Manual". 1983.

[Geschke77]

Geschke, C.; Morris, J.; Satterthwaite, E.
"Early Experience with Mesa". CACM
20(8):540-553. August, 1977.
[Goldberg83]

Goldberg, A.; Robson, D. Smalltalk-80 -
the Language and its Implementation.
Addision Wesley, 1983.

[Mitchell79]

Mitchell, J; Maybury, W; Sweet, R. Mesa

Language Manual. Technical Report, Xerox
PARC. 1979. ’
[Weinreb80]

Weinreb, D; Moon, D. Flavors: Message-
passing in the Lisp Machine. Technical
Report AIM-602, MIT AI Lab, November,
1980.

[Stefik85]

Stefik, M; Bobrow, D. "Object-Oriented
Programming: Themes and Variations," AI
Magazine, Winter, 1985.

[Stroust86]
Stroustrup, B. The C++ Programming
Language. Addison Wesley, 1986.

Object-Oriented Programming for Macintosh Applications

Larry Rosenstein

Ken Doyle

Scott Wallace

Apple Computer, Inc.

Abstract

One of the attractions of the Apple® Macintosh™ is
the uniform user interface across applications.
Users judge a Macintosh program not only by its
functionality, but also by its adherence to the user
interface guidelines. Implementing the standard
user interface is tedious, however, because of the
many details that each developer must program.

This paper descmbes an obJect-omented system,
called MacApp,™ that is designed to improve both
programmer productivity and user interface
consistency. MacApp consists of a set of object types
that implement the standard Macintosh user
interface. Programmers customize MacApp not by
editing its source code, but by defining new object
types that override methods in MacApp.

Introduction

Apple’s Macintosh computer is noted for the
consistent user interface across applications. Users
judge Macintosh programs not only by their
functionality but also by their adherence to the
established user interface guidelines. For example,
they expect applications to use windows and
pull-down menus, to transfer data from one
program to another, and to provide an undo
operation for every command.

User interface consistency is encouraged by the
Macintosh Toolbox,! which is a set of several
hundred procedures and functions built into
read-only memory. The Toolbox provides the
low-level implementation of the standard user
interface, including windows, menus, and scroll
bars. :

The Toolbox does not provide an overall structure for
an application; it is up to each developer to call the
correct Toolbox routines in response to user actions.
Most of the source code needed to implement the
standard user interface is identical in all
applications. In addition, some of it can be tedious

CH2345-7/86/0000/0031$01.00©1986 IEEE

31

to write and debug. The time a programmer spends
implementing the user interface could be better
spent working on the specific features that make the
application unique.

The typical approach to assisting programmers has
been to provide a series of sample programs that
they can modify to suit their needs. We have taken a
different approach by implementing a generic
Macintosh application, called MacApp. MacApp
automatically handles the common user interface
details such as moving, resizing, and scrolling
windows. It is structured so that programmers can -
easily override the standard program behavior and
add application-specific behavior.

MacApp is written using object-oriented program-
ming techniques. It consists of a set of object types,
each of which corresponds to an aspect of the
Macintosh user interface, such as a document or
window. An object type defines the behavior of
instances of that type in terms of: (1) the state
information stored in every instance and (2) the
methods that act upon the state information. The
Document type in MacApp, for example, includes
the name of a disk file as part of its state and
methods for opening the file, reading the document
from disk, and closing the file.

Developers use MacApp by defining descendants of
the basic MacApp object types, which automatically
inherit the standard behavior of MacApp. They
customize MacApp, not by editing its source code,
but by overriding the methods they wish to change.
In the example above, the programmer would define
a descendant of the standard Document object type
and override the method that reads the disk file with
one that can interpret a particular file format. The
methods that open and close the disk file, however,
would be inherited from MacApp.

MacApp is similar in purpose to the Model, View,
Controller classes of Smalltalk-80;2 3 both provide a
standard framework within which to implement
applications. The design of MacApp was also
influenced by the Lisa® Toolkit,%: 3 which was an
earlier object-oriented system developed at Apple for
the Lisa operating system.

Why Object-Oriented Programming?

There are two basic reasons for using object-oriented
programming in MacApp.

First, object-oriented programming generally
promotes better programming style.5: 7 Programs
are easier to maintain, because the interactions
between objects are through well-defined method
interfaces. Also, code can be more easily reused and
extended through subclassing and inheritance.

The second. reason involves the structure of a
Macintosh application. All applications follow the
same basic structure, at the heart of which is an
event loop. The event loop reads an event from a
queue, classifies it, and then processes it. Pressing
the mouse button, for example, could be interpreted
as choosing a menu command, moving a window,
or selecting an icon, depending on where the user
was pointing at the time.

Since the event loop is common to every application,
it should be implemented once in MacApp and used
by every application. This is a radical change from
the typical application because the primary control
loop of the application resides in MacApp, and is not
implemented by the programmer.

Although MacApp can handle generic actions such
as moving a window, it cannot handle application-
specific actions such as choosing an icon.. For the
latter kind of actions, MacApp must make calls to
procedures written by the. programmer. This is
inconvenient to do in a conventional programming
language, because a procedure call must specify at
compile time which piece of code to execute.

Object-oriented programming is ideal for this
situation. Sending a message to an object corres-
ponds to calling a procedure. The difference is that
the method to be executed is determined at run time,
based on the type of the object. Although the same
effect can be achieved with pointers to procedures,
the resulting programs are more readable and
easier to maintain if they use. object-oriented
constructs.

Object Pascal

MacApp was developed using Object Pascal,” which
is an object-oriented extension of Pascal. Object
Pascal provides language constructs for defining
object types, similar to the facilities of Simula or
Smalltalk-80.2: 3 Object Pascal is descended from
Clascal,% 5 which is an earlier language designed
for the Lisa computer. Two important design goals
of Object Pascal were: (1) to. make it as simple as
possible to learn and use, and (2) to integrate the
object-oriented extensions with the rest of Pascal.

An object .type definition is written much like a

32

record type definition. For example, the following
defines a Shape object type:

Type Shape = Object

bounds: Rect; .

color: Integer;

Function Shape.Area: Integer;
Procedure Shape.Draw;

Procedure Shape.MoveBy(dh, dv: Integer);
End;

The main difference between a record definition and
an object definition is that the latter can contain
declarations of procedures and functions, which are
the methods of the object type.

Another difference is that an object definition can
contain an optional ancestor type designation. For
example, the following two object types have Shape
as their immediate ancestor object type:

Type Circle = Object(Shape)
Function Circle.Area: Integer; Override;
Procedure Circle.Draw; Override;
Procedure Circle.SetRadius(radius: Integer);
End;

Type Triangle = Object(Shape)
vertices: Array[l1..3] of Point;

Function Triangle.Area: Integer; Override;

Procedure: Triangle.Draw; Override;

Procedure Triangle.MoveBy(dh, dv: Integer);
Override;

Procedure Triangle.SetVertices(vl, v2, v3: Point);

End;

The descendent object type inherits all the fields and .
methods of its ancestors, and can add new fields and
methods. In the definition above, Circle inherits
the bounds and color fields and the MoveBy method
from Shape, and adds the new method SetRadius.
An object type can also override methods defined by
its ancestor; for example, Circle overrides the Area
and Draw methods.

In this example, Shape is an abstract object type.
There would not be any instances of Shape itself,
only of descendants such as Circle and Triangle.
The reason for defining a Shape object is.to.establish
a standard interface that all kinds of shapes can
share. As we will see below, it is possible to refer to
generic Shape objects without knowing until run
time if they will actually be Circle or Triangle
objects.

When a programmer declares a variable of a
particular object type, the variable is a reference to
an instance of that type. In the current Object
Pascal implementation, an object reference is a
pointer to a pointer to the actual object data. (In the
Macintosh terminology, a pointer to a pointer to a
data block is called a handle.)

Fields of an object can be referenced much like fields
of a record. For example:

Circle;
Shape;

aCircle:
aShape:

Var

aCircle.bounds := aRect;
oldColor := aShape.color;

Methods are invoked using the same syntax:

aCircle.MoveBy(10, 20);
aShape.Draw;

Since Circle and Triangle objects inherit all the
properties of Shape objects, they can be used in any
situation where a Shape is required. In particular,
the object reference ‘aShape’ could refer to a Circle,
or a Triangle. Because aShape is declared as a
Shape reference, the Object Pascal compiler
restricts accesses to aShape to those that are defined
in the Shape object type. For example, the compiler
would flag the statement ‘aShape.SetRadius(r); as a
syntax error, since Shape objects do not define a
SetRadius method. This is different from Smalltalk,
where the error would not be caught until the
statement was evaluated.

The determination of which method implementation
is called for a particular method call is made at run
time. To illustrate this, consider the following
procedure:

Procedure MoveTinyShapes(aShape: Shape);
Begin
If aShape.Area < medianArea Then
aShape.MoveBy(100, 0);
aShape.Draw;
End;

When the Object Pascal compiler compiles this
procedure it has no. way of knowing whether a
‘Circle object or a ‘Triangle object (or for that matter
an instance of an entirely new Shape subclass) will
be passed to MoveTinyShapes. Method calls such as
‘aShape.Draw do not directly call a particular
method. Rather, they call a special method dispatch
routine that examines the object to determine its
type and then refers to memory-resident method
tables to determine which method to call.

MacApp

MacApp is a generic Macintosh application. By
itself, it can be compiled into a runnable program
that would have many features of the Macintosh
user interface. For example, it would support
multiple windows that can be resized and scrolled.
The windows would be blank, however, since
MacApp does not specify what should appear in the
windows.

33

There are six basic object types that MacApp
programmers use:

Window
Command

Document
View

Application
‘Frame

Each of these object types correépond directly to an
aspect of the Macintosh user interface.

There is one Application object during the execution
of a program. The Application object receives events
such as mouse presses and distributes them to other
objects. It also handles desk ‘accessories and any

-commands that apply to the application as a whole,

such as opening a new document.

Document objects contain the data that the program
uses; for example, formatted text or a spreadsheet
model. In addition to providing methods for
manipulating data in memory, it also provides
methods for saving the data onto the disk and later
reading it back into memory. There can be more
than one type of Document object in a MacApp
program: an integrated application might define
both word processing and spreadsheet Document

types.

The Window, Frame, and View object types all deal
with displaying information on the screen. Window
objects represent Macintosh windows that can be
resized and moved. Frames are used to partition a
window into independent pieces, each of which
contains a View object. For example, MacDraw™
windows contain a tools palette as well as a drawing
area.

View objects translate between the Document’s data
structures and an image within a Frame. The
main function of the View object is to draw the data
when its Draw method is called. Before MacApp
calls the Draw method, it sets up the graphics
clipping and translation so that only the desired
portion of the image is drawn. MacApp calls the
same Draw method when printing each page of the
document; in this case, the graphics state is set up

- so that the image appears on the printer rather than

on the screen.

The last object type that MacApp programmers
commonly use is the Command. Command objects
provide a convenient framework for implementing
the Undo command, an important part of any
Macintosh application. Command * objects
encapsulate information about how to execute, as
well as undo, an operation.

When the user selects a command from a menu, the
application-does not immediately carry out the
operation. Instead, it creates a Command object
and returns that object to MacApp. MacApp will
then send a Dolt message to the Command. The
Dolt method is responsible for carrying out the
user’s command and updating the image on the

screen. It also must remember enough information
so that the operation can be undone if necessary.

If the user selects Undo from the menu, MacApp
sends an Undolt message to the same Command
object. The object restores the previous state of the
Document and again updates the screen image. If
the user selects undo again, MacApp sends the
message Redolt to the Command object.

A MacApp programmer will define a subclass of
Command for each kind of operation that can be
performed. For example, the Copy and Paste menu
commands would be handled by different Command
types. Often it is possible for one Command type to
handle several menu commands; the Cut, Copy,
and Clear commands are usually similar enough to
each other that a single type of Command object can
be written to handle all three.

In addition to the six basic object types described
above, MacApp also contains support for other
important application features, such as:; creating
and using dialog boxes, sending and receiving data
over the AppleTalk network, and recovering from
/O and out-of-memory errors

Experiences with MacApp

Programmers, both inside and outside of Apple,
have been using pre-release versions of MacApp
since April, 1985. Of the approximately 200 people
who have received MacApp, we have received
comments from about 20 developers who have been
actively using it in serious Macintosh applications.
Three of these applications have reached “beta” test
stage; one is a boat navigation program (which took
six months to develop), another is a recording studio
management program (nine months), and the third
is a stuctured program editor and run time system
(twelve months).

Before MacApp was developed, Macintosh
programmers would spend several weeks reading
Inside Macintosh! and example programs, in order
to understand the structure of an application.
Programmers who begin to use MacApp still spend
several weeks reading the MacApp documentation.
The important difference between the two
approaches is that with the same investment of
learning time, they end up with a much more
functional application. By writing about three pages
of source code, they can have a working application
that has multiple scrolling windows, that reads and
writes documents, and that prints.

Much of the difficulty in learning MacApp comes
from its use of object-oriented programming. It
takes time for a programmer who is not familiar
with object-oriented systems to understand method
calls and inheritance. In addition, MacApp
requires thinking about an application in a different

34

way, since most of the application control structure
is contained in MacApp itself. Once developers
overcome these obstacles, however, they are able to
produce applications more quickly with MacApp
than when using conventional programming
techniques.

Programs written using MacApp follow the user
interface guidelines more closely than most
Macintosh applications. In addition, they are
structured in a way that makes them easy to
maintain and enhance. While developing MacApp,
we talked to many Macintosh developers and
incorporated their ideas and techniques into the
final system.

There is a space and performance penalty for using
Object Pascal. Each method call requires the same
space as a regular procedure or function call; Object

- Pascal programs, however, also require memory

space for method tables (about 3,000 to 5,000 bytes for
a complete application). Method calls are also
slower than regular procedure calls; the extra time
required can range from 50 to 200 microseconds per
method call.

The penalties for using MacApp in a serious
applciation are much less, however, because most of
a MacApp program is written in standard Pascal.
We estimate that there is a 10 to 15% increase in
application size and a 5 to 15% performance
degradation, compared to a program written in
standard Pascal. In most cases, these
disadvantages are outweighed by the reduced
development time and maintenance costs.

At the time this paper was written, we were
beginning to look at ways to reduce the size of
MacApp applications and improve their
performance. Most of this involves standard code
tuning that any application requires before being
released. In addition, we are implementing an
approach that will speed up method calls by
analyzing the object type hierarchy.

Summary

We have developed an object-oriented system called
MacApp that is intended to help programmers
develop Macintosh applications. MacApp
automatically implements the standard features of
the Macintosh user interface and provides a
convenient way for programmers to implement
specific applications. Instead of editing the MacApp
source code, programmers define new object types
that override methods in MacApp, and inherit the
standard behavior.

MacApp is implemented using Object Pascal, a
version of Pascal that includes extensions for
object-oriented programming. The object-oriented
extensions were integrated with standard Pascal, so

that programmers who already know Pascal could
easily learn the language.

Applications written using MacApp follow the user
interface guidelines more closely than most
applications. In addition, MacApp encourages a
program structure that makes applications easier to
maintain and extend.

References

' [1] Apple Computer, Inc. Inside Macintosh,
Addison-Wesley Publishing, 1985.

[2] A. Goldberg, and D. Robson, Smalltalk-80, The
Language and its Implementation,
Addison-Wesley Publishing Company, 1983.

[3] A. Goldberg, Smalltalk-80, The Interactive
Programming Environment, Addison-Wesley
Publishing Company, 1984.

[4] G. Williams, “Software Frameworks,” BYTE
Magazine, December 1984.

[56] K. Schmucker, Object-Oriented Programming
for the Macintosh, Hayden Book Company, 1986.

[6] B. Cox, Object Oriented Programming, An
Evolutionary Approach, Addison-Wesley
Publishing Company, 1986.

[7] L. Tesler, “Object Pascal Report,” Structured
Language World, volume 9, number 3.

Apple and Lisa are registered trademarks of Apple Computer,
Inc. Maclntosh is a trademark of McIntosh Laboratory, Inc.,
and is being used with the express permission of its owner.
MacApp and MacDraw are trademarks of Apple Computer,
Inc.

35

CLASSES VERSUS PROTOTYPES IN OBJECT-ORIENTED LANGUAGES

A H. BORNING*

* Department of Computef Science, FR-35, University of Washington, Seattle, Washington 98195

Abstract

Smalltalk uses classes to describe the common properties
of related objects. Unfortunately, the use of classes and
metaclasses is the source of a number of complications.
This paper discusses prototypes as an alternative to classes
and metaclasses. In a prototype-based language, copying
rather than instantiation is the mechanism provided to the
user for making new objects. Inheritance constraints are
proposed as a way of representing object hierarchies and
supporting the automatic updating of related objects when
edits are made.

1. Introduction

The Smalltalk-80 languagel, as well as a number of other
object-oriented languages, uses classes to describe the
common properties of related objects. Unfortunately,
classes and the class-instance relation are the source of a
number of complications. First, for an object to have a
distinct message protocol, a separate class must be created
for it. If, as in Smalltalk, classes themselves are objects,
then to allow different classes to understand different
initialization messages, each class must itself be an instance
of a different class (called a metaclass in Smalltalk).
Metaclasses add to the complexity of the language; a recent
study“ on difficulties encountered in teaching and learning
about Smalltalk indicates that metaclasses- are uniformly
regarded as the single worst barrier to learnability by both
teachers and students. Second, the emphasis on classes in
the programmer’s interface is .at odds with the goal of
interacting with the computer in a concrete way. When
designing a new object, one must first move to the abstract
level of the class, write a class definition, then instantiate it
and test it, rather than remaining at one level, incrementally
building an object. This problem is most apparent in
systems for graphical or visual programming.

The alternative suggested in this paper is the organization
of the programming environment around prototypes rather
than classes. A prototype is a standard example instance;
new objects are produced by copying and modifying
prototypes, rather than by instantiating classes.

The remainder of the paper is organized as follows. The
following subsections list some sources of complexity in
the current Smalltalk metaclass-class-instance mechanism,
and then describe a small gedanken experiment in language
design, in which prototypes are used instead of classes.
This very simple language has several limitations, and a
more realistic design is presented in Section 2. Following

CH2345-7/86/0000/0036$01.00©1986 IEEE

36

this is an enumeration of the advantages and disadvantages
of the proposal. The final section provides comparisons
and references to related work.

1.1. Some Sources of Complexity

One source of the complexity surrounding classes in
Smalltalk is the interaction of message lookup with the role
of classes as the generators of new objects, which gives rise
to the need for metaclasses. Another source is the use of
classes for several different functions.

In Smalltalk, when an object receives a message, the
interpreter goes to the object’s class and looks in its
method dictionary for a method for receiving that message.
If a method isn’t found, the interpreter looks in the class’s
superclass, and so on up the class hierarchy. Classes are
themselves objects, and to make new objects, one sends
appropriate messages to classes. In general these messages
will vary from class to class. For example, to make new
points, one wants to send an x:y: message to the class
Point, so that the x and y coordinates for the new instance
can be passed as arguments. Given the way message
lookup is done, this requires that the class Point be an
instance of a different class from (say) class Rectangle,
which should not understand the x:y: message, but rather a
different initialization message specific to rectangles. This
pragmatic need for class-specific initialization methods was
satisfied by the introduction of metaclasses: each class is an
instance of a separate metaclass. .However, as noted above,
this design decision has had unfortunate consequences for
the teachability and learnability of the language.

In regard to the use of classes for several different
functions, some of the roles that classes play in Smalltalk
are as follows:

® generators of new objects

o descriptions of the representation of their
instances

e descriptions of the message protocol of their
instances

e clements in the description of the object
taxonomy

ea means for implementing differential
programming (this new object is like some
other one, with the following differences ...)

o repositories for methods for receiving messages

e devices for dynamically updating many objects
when a change is made to a method

e sets of all instances of those classes (via the
alllnstances message)

While some of the above items are related, it is clear that
classes in Smalltalk are playing multiple roles.

1.2. A Gedanken Experiment in Language Design

To help unravel the complexity, let’s do a small
gedanken experiment in language design. Considerations. of
space and time efficiency are to be ignored for the moment,
to avoid needlessly intertwining semantic and
implementation considerations.

Suppose that objects are completely self-contained, so
that an object consists of srate and behavior. One can send
messages to an object asking it for information, asking it to
change its state, or asking it to change its behavior. The
only way to make a new object is to make a complete copy
of an existing object, copying both state and behavior.
Once the copy is made, there is no further relation between
the original and the copy. (Creating new objects by
copying eliminates the need for metaclasses, since creation
and modification messages are sent to prototypes or other
individuals rather than to classes.)

This is a clean model, and would be easy to teach about.
It handles object creation, modification, and representation.
What is missing? First, there is no notion of classification
of kinds of objects, either by message protocol or by
representation. Second, there is no way to update a whole
group of objects in a similar manner at one time (the
equivalent of such actions as adding new methods to a
class in Smalltalk). These are both important, and so the
model needs to be augmented to support classification and

updating.

2. A Proposal for a Prototype-Based Language

In this section a proposal for a more realistic language is
presented, in which the simple model described above is
augmented to support object classification and updating.
Many of the ideas used here have arisen from the author’s
work on constraint-oriented languages and systems™ ™ ~,
where a constraint describes a relation that must hold. In
this proposal, constraints are used to express inheritance
relations among objects. However, the set of inheritance
constraints used here is limited and straightforward to
maintain, and a general-purpose constraint representation
and satisfaction mechanism is not required.

In this proposed language (as in the language described
in the gedanken experiment), an object has state and
behavior. The state of an object is represented by a set of
named fields. We will on occasion be interested in an
object’s field names, and this list of names can be accessed
separately from the contents of the fields. There are two
components of an object’s behavior. The first component
is a method dictionary, which is similar to that in

37

Smalltalk, except that there may be several methods for
receiving a given message. (The way in which one method
is chosen, or several are combined, is discussed in Section
3.2.) The second component is a protocol that describes
the set of messages the object declares that it can
understand, the protocols required of the arguments to the
messages, and the protocols of the results returned by the
messages.

New objects are produced by copying other objects.
Thus, to make a new point, one would make a copy of the
prototypical point, with new values substituted for the x and
» fields. Once a prototype has been copied, there would be
no hidden relation between the prototype and the copy; any
further relations that were desired would be explicitly
represented using constraints.

2.1. Inheritance Constraints

The proposed language does not include a general
constraint mechanism. Rather, there is a fixed set of
inheritance constraints—constraints on an object’s field
names, methods, and protocol-built into the language.
These are as follows:

® inherits-field-names(x,y). This constraint holds
if every field name of y is also a field name of
Xx.

e inherits-behavior(x,y). This constraint holds if
all of the methods in y’s method dictionary are
also in x’s method dictionary.

o inherits-protocol(x,y). This constraint holds if
the protocol of y is a subset of the protocol of
x, ie., if every message that y can understand
is also understood by x, and if each object
returned by x in response to one of these
messages also obeys the corresponding protocol
declared in y.

In general these three constraints are independent. For
example, an object x might inherit the protocol of y but not
its methods (x would implement the necessary methods in
completely different ways). If an object y does not use all
of its fields, then x can inherit the behavior of y but not all
its field names. Of course, the constraints are not totally
independent~for example, if x inherits behavior from y, all
of the field names used by y must also be field names of x.

Nevertheless, it will often be the case that these three
constraints will be applied together, and so a descendant
constraint is defined as follows:

descendant(x,y) = inherits-field-names(x,y) A

inherits-behavior(x,y) A inherits-protocol(x,y)

2.2. Object Creation Messages

There are two messages available for creating new
objects: copy and descendant. The copy method makes a
complete copy of the receiver and returns it. There is no
further relation between the receiver and the copy. The
descendant method makes a copy, and also sets up a one-

way descendant constraint between the original and the
copy.

2.3. Examples of Use

In place of the class Point would be a prototype point.
The prototype point would have x and y fields, each
initialized to 0. (Alternatively they could be left as nil). It
would understand messages such as +, printOn:, and so
forth. To make a new point, one would evaluate

point x: 4 y: 6

which would make a descendant of the prototype point, and
then set its fields to 4 and 6. The code for point x:y: is as
follows: :

X: NEWX y: newy
T point descendant setx: newx sety: newy

The message setx:sety: is defined as in Smalltalk:

setx: newx sety: newy
X € newx.

y < newy.

The following messages would build a new kind of
object, threepoint, and define an addition method for it.

threePoint ¢ object descendant.
threePoint hasFields: ’x y z’.
threePoint hasMethod: ’+ p
T threePoint x: X +pX y:y+py zz+pz

Naturally, there would be user interface support for the
creation and modification of prototypes. This could be
done using a browser, which could have much the same
appearance and functionality as the browser in the current
Smalltalk system.

3. Implementation

The descendant method should be implemented as a
primitive, and the primitives for new and new: eliminated.
It might also be useful to implement copy as a primitive.
To make new variable-length objects, one would make a
copy or descendant of an appropriate prototype, and then
grow or shrink the copy as needed. It might be useful to
combine copying and growing in descendant: and copy:
methods.

To test the scheme, it could be implemented using the
present Smalltalk bytecode set by simulating the new
primitives. Classes would be given an additional field
named prototypes that points to the collection of prototypes
for that class. (Usually, a class would have a single
prototype, but multiple prototypes are possible.) Below is
the Smalltalk code for simulating Object copy and Object
descendant, along with some auxiliary methods.

38

copy
"if I am a prototype, need to copy my class;
otherwise just make a simple copy"
self isPrototype ifTrue: [T self class copy prototype]
ifFalse: [T self simpleCopy]

descendant
self bePrototype. "make sure that I'm a prototype"
T self simpleCopy

simpleCopy
"return a complete copy of me, taking account of
shared substructure. IdentityDictionary is a
dictionary in which == is used for key comparison"
T self copyWithDict: IdentityDictionary new

copyWithDict: dict
| copy f|
(dict includesKey: self) ifTrue: [T dict at: self]
"make the shell of the new copy, then fill it in"
copy ¢« self class new.
dict at: self put: copy.
1 to: self class instSize do:
[:i | f &« (self instVarAt: i) copyWithDict: dict.
copy instVarAt: i put: f].
T copy

bePrototype
"make me into a prototype, if I'm not already"
| newSelf |
self isPrototype ifTrue: [T self].
newSelf « self class newSubclass prototype.
1 to: self class instSize do:
[:i | newSelf instVarAt: i put: (self instVarAt: i)].
self become: newSelf.

isPrototype
T self class prototypes includes: self

These general methods would be overridden for classes,
and for primitive objects such as numbers.

3.1. Classes

For objects such as points and rectangles, the field
names, method dictionary, and protocol will be the same
for many objects. In an implementation, then, it is
reasonable to group these together into a class. Further,
rather than having multiple methods in a given dictionary,
the methods could be partitioned among sub- and
superclasses, as in Smalltalk. Thus, there would be classes
as well as prototypes. However, classes in general won’t
have global names, there won’t be any metaclasses, and the
user will usually interact with a prototype rather than a
class.)

3.2. Multiple Inheritance

An object can have descendant constraints that relate it to
several parents, i.e. multiple inheritance is supported. Each
of the three constraints that compose the descendant
constraint (inherits-field-names, inherits-behavior, and
inherits-protocol) establishes the correct relation when
multiple inheritance is used. The only difficult question is
which method (or methods) to execute in response to a
given message, if there are several conflicting inherited
methods.
based systems, and the same sorts of choices are applicable.
For simplicity, for the present the rules described in the
Smalltalk multiple inheritance implementation® are to be
used.

4. Evaluation

In this section, a (doubtless biased) listing of the benefits
and drawbacks of the proposed scheme as opposed to that
in the standard Smalltalk-80 language is presented.

4.1. Benefits
Some benefits of this scheme over the current one are:

o The initial explanation of the language is much
simpler. One can just talk about objects as
having state and behavior.

e Even at a deeper level, there are fewer
concepts—metaclasses are no longer needed. It
is simpler to explain how message lookup
occurs when teaching about the language.

e Fields are automatically given default values in
newly created objects (by copying the contents
of the corresponding field in the prototype).

e A prototype-based language would provide
better support for concrete, visual programming
systems.

e Any object can be given individualized
behavior. This could be useful for example in
debugging, when one might want to set a halt
in the method for one particular object, and not
for all instances of a class.

e The semantics of inheritance are described in
terms of constraints; sharing is regarded as
simply an implementation technique. This
distinction might be useful when building
distributed systems, systems that run on
multiprocessors without shared memory, object
servers, or the like. In such systems, sharing
would not be the only technique used to
implement inheritance.

4.2. Drawbacks

o The use of prototypes seems natural for things
like windows, but unnatural for such basic

However, this problem arises equally in class-

39

objects as integers. What is the prototypical
integer? The decision here is that all integers
are prototypes, that is, that a change to the
methods of any integer affects all integers.
Alternate possibilities are that 0 or 1 is the
prototypical integer, or else that the prototype
is a special integer whose value is undefined.
None of these possibilities seems completely
natural.

A related drawback is that the concreteness of
prototypes may be inappropriate for describing
such standard data structures as stacks or
queues. Rather than talking about a prototype
stack, one wants to talk about stacks in general.

There is a danger of inadvertently modifying a
prototype. One can of course inadvertently
modify a class in Smalltalk, but this seems less
likely since it has a different message protocol
from its instances.

e There is an efficiency problem in regard to
making new objects by copying. For example,
when building a new rectangle the system will
make a copy of the prototype rectangle,
probably only to replace its origin and corner
fields immediately with new values.

-The first drawback listed above applies to the extreme
situations in the language. This seems to be analogous to
the situation in Smalltalk itself. Objects and messages are
a great idea most places, but they seem bizarre for things
like integers (““3 + 4 means sending the message + 4 to the
object 3?7°’). However, the benefits of uniformity are such
that making 3 be an object that understands messages is the
right choice in Smalltalk.

Regarding stacks and similar data structures, the explicit
existence of classes in this scheme may a help, since one
can still talk about classes if one wants.

Regarding inadvertently modifying a prototype, I believe
that the solution to this is not to introduce a different
message protocol for prototypes, but to introduce some
form of protection. For example, one might make
prototypes read-only except in particular environments.
One should also be able to designate some messages (e.g.
setx:sety: for points) as being private, and allow this
message to be sent only by self.

Regarding the efficiency problem, an obvious step is to
code the descendant primitive efficiently. Beyond that, it

appears that code sequences like
point descendant setx: newx sety: newy will occur
frequently. Therefore, in addition to the descendant

primitive, for each object the system might automatically
compile a method for e.g. descendantWithx:y:, which would
accomplish the same thing, but more efficiently. This
would call a new primitive that makes a clone of the
receiver and then sets all of the instance fields in the clone.
(Since this message exposes the object’s representation, it is
best regarded as a private initialization message.)

5. Related Work

The idea of prototypes is not new, and discussions of
prototypes from a variety of perspectives appear in the
literature. (However, the idea of using constraints to
establish and maintain inheritance relations does appear to
be new.)

One sort of system in which prototypes have often been
used is-systems for visual or concrete programming. In
such applications, prototypes are more useful than classes,
since it is more straightforward to display them for viewing
and manipulation by the user; their concreteness also makes
them valuable for less experienced users. Examples of
systems of this sort that have been built in Smalltalk
include ThingLab3’ 4 Programming by Rehearsal’, the

Alternate Reality Kit?, and Animus” 10,

Languages in the Actor family are general-purpose
programming languages that use prototypes. Rather than
inheritance, the Actor languages use a more general concept
of delegation, in which any object may be. delegated to
handle a message for another; Lieberman! provides a
useful and readable discussion of both prototypes and
delegation. Lalonde!? describes an exemplar-based
Smalltalk (an exemplar is the same as a prototype); this
language allows a given class to have multiple exemplars,
an idea that has been borrowed and used in the design
described here. In Biggertalkw, an object-oriented
language implemented in Prolog, instances are like classes
in all respects, except that they cannot be further refined.
Finally, prototypes are often used in artificial intelligence
representation languages ™~ to store default or typical
information.

The language proposed in Section 2 does not include type
declarations. However, if type declarations were to be
.added, protocols would be the logical entity to use in the
declaration and checking of type. An object-oriented
language that does have strong typing, along with a
separation of protocol and implementation, is Trellis/Ow1'>,

Acknowledgements

Thanks to Dave Robson, Randy Smith, Adele Goldberg,
Tim O’Shea, and other members of the System Concepts
Laboratory at Xerox PARC, and to David Notkin and
Andrew Black at the University of Washington. This
research was sponsored in part by the Xerox Corporation,
and in part by the National Science Foundation under
grants MCS-8202520 and IST-8604923.

References

1. Goldberg, A.J., and Robson, D., Smalltalk-80: The
Language and .its Implementation, Addison-Wesley,
1983.

2. O’Shea, T., ‘“Why Object-Oriented - Programming
Systems Are Hard to Learn’’, Proceedings of the
ACM Conference on Object-Oriented Programming
Systems, Languages, and Applications, ACM,
September 1986.

40

10.

11.

12.

13.

14.

15.

- Borning,

* Simulations’’,

Borning, AH., ThingLab -- A Constraint-Oriented
Simulation Laboratory, PhD dissertation, Stanford,
March 1979, A revised version is published as
Xerox Palo Alto Research Center Report SSL-79-3
(July 1979).

Borning,
Aspects

AH., “The Programming Language
of ThinglLab, A Constraint-Oriented

' Simulation Laboratory’’, ACM Trans. Programming

Lang. and Systems, vol. 3, no. 4, October 1981, pp.
353-387.

Borning, AH., “‘Constraints and Functional
Programming”’, Tech. report '85-09-05, Computer
Science Dept, University of Washington, September
1985.

AH.,: and Ingalls, D.HH., ‘‘Multiple
Inheritance “in" Smalltalk-80’’, Proceedings of the
National Conference on Artificial Intelligence,
American Association for Artificial .Intelligence,
Pittsburgh, August 1982, pp. 234-237.

Gould, L., and Finzer, W., ‘‘Programming by
Rehearsal’’, Tech. report SCL-84-1, Xerox Palo
Alto Research Center, May 1984, A shorter version
appears in Byte, vol. 9 no. 6, June 1984

Smith, R.B., ‘“The Alternate Reality .Kit: An
Animated Environment for Creating Interactive
Proceedings of the 1986 IEEE
Computer Society Workshop on Visual Languages,
IEEE, June 1986.

Duisberg, R.A., ‘‘Animus: A Constraint Based

Animation System’’, Proceedings of the ACM CHI
'86 Conference on Computer-Human Interaction,
ACM, Boston, April 1986, pp. 131-136.

Duisberg, R.A., Constraint-Based Animation: The
Implementation of Temporal Constraints in the
Animus System, PhD dissertation, University of
Washington, 1986, Forthcoming

Lieberman, H., ‘‘Using Prototypical Objects to
Implement Shared Behavior in Object-Oriented
Systems’’, Proceedings of the ACM Conference on
Object-Oriented Programming Systems, Languages,
and Applications, ACM, September 1986.

LaLonde, W.R., Thomas, D.A., and Pugh, J.R., ‘“‘An
Exemplar Based Smalltalk’’, Tech. report TR-94,
Computer Science Department, Carleton University,
May 1986.

Gullichsen, E., ‘“‘BiggerTalk: Object-Oriented
P;%log”, ‘Tech. report STP-125-85, MCC, November
1985.

Fikes, R., and Kehler, T., ‘““The Role of Frame-
Based Representation in Reasoning’’, Comm.
ACM, vol. 28, no. 9, September 1985, pp. 904-920.

Schaffert, C., Cooper, T., Bullis, B., Kilian, M., and
Wilpolt, C., ‘“‘An Introduction to Trellis/Owl”’,
Proceedings of the ACM Conference on Object-
Oriented Programming Systems, Languages, and

Applications, ACM, September 1986.

Why Properties are Objects

or

Some Refinements of ‘‘is-a”’

Stanley B. Zdonik

Brown University
Department of Computer Science
Providence, RI 02912

Abstract

This paper contains several examples
that illustrate some problems with the is-a
relationship as defined by many object-
oriented programming languages. These
problems relate to two distinct areas: 1. the
confusion between the inheritance of
behavior and the inheritance of representa-
tion and 2. the lack of any requirement for
semantic relationships between a named
operation. on a type and a replacement
operation with the same name on a subtype.

We indicate how these problems can- be
improved by making some useful distinctions.
We then show how these distinctions can be
built into the system easily by treating pro-
perties as first-class objects and using the
basic specialization techniques of the
language to express the differences.

1. The Data Model

We have been developing an object-oriented data-
base system that provides a data model that strongly
resembles some of the type systems in many popular
object-oriented programming languages. As a database
system, however, all objects, including the types and
operations, persist beyond the current session and are
sharable between users and user processes. Our system
is also strongly influenced by work in the area of seman-
tic database models [ADP, Ch, Co, GAL, HM, MBW, 8§,
Ss].

Our model centers around the notion of a type. A
type is a behavioral template for its instances. The
behavior of a type T is expressed by a set of operations
O(T), a set of properties P(T), and a set of constraints
C(T). The type type defines an operation called

t This research was supported in part by the Office of Naval
Research and- the Defense Advanced. Research Projects Agency
under contract N00014-83-K-0146 and ARPA Order No. 4786.

CH2345-7/86/0000/0041$01.00©1986 IEEE

Instances that can be applied to any type. It returns a
set containing all instances of that type that are
currently in the database. The functions legal-
operations and legal-properties return the set of all
operations that can be applied to its argument and the
set of all legal properties that are defined for it argu-
ment repsectively. The following condition is always
met by a type definition T:

(x € Instances (T))

(0 €O(T)) (p €P(T)) (¢ € C(T))
o € legal-operations (x) and
p € legal-properties (x) and -

o(x)

Properties, operations, and constraints are all objects in
their own right. That is to say, there exists a type
called. Property that defines the general behavior of a
property, a type called Operation that defines the gen-
eral behavior of an operation, and a type called Con-
straint that defines the general operational characteris-
tics of a constraint. A type is also an object and as
such is an instance of a type called Type that describes
the behavior of all types. Since type Type is a type, it
is an instance of itself.

An operation is an active element in our database.

Tt is essentially a piece of code. All operations support

the operation invoke which takes an operation.and a set

.of arguments as parameters and invokes the given

operation on the set of parameters. Since operations are
code (written in a language like C), in order to use
them, the system must link any symbols used in this
code to the library routines and other code objects to
which they refer. This requires a dynamic linking.
loader.) :

A property can be conceptualized as a. piece of
string which binds together two objects. For example,
Cars can have owners. Therefore, we define a property
type that can link a Car to a Person. An instance of
this property type will link an individual car (e.g., my
car) to an individual owner (e.g., me). All properties
support the operation get-value which, given a property,
returns the value of that property. Get-value (my-car)
returns me.

Constraints are predicates. They are defined on
types and take an instance of the type as an argument.
All instances of a type must always satisfy that type’s
constraints.

A type in our model is an abstract data type
[LSAS] in the sense that it defines a private representa-
tion that is not visible to any code other than the opera-
tions that are defined on that type. The representation
(rep) is an object of some other abstract type. As we
shall see later, the rep is not even available to other
subtypes. The type is, therefore, the unit of modularity.

Inheritance is provided in our system by a special
property that is defined to hold between instances of the
type Type. This property is called is-a and if there is an
is-a property between types A and B such that B is-a A,
then all instances of B are also instances of A. All
behavior (operations, properties, and constraints) that is
defined on A is also defined on B. We say in this case
that B is a subtype of A and A is a supertype of B. It is
possible for a type to have several supertypes from
which it inherits behavior. We call this phenomenon
multiple inheritance. Circularity in the type lattice is
not allowed. It is important in the example that is
presented later to remember that is-a is just another
property.

Object-oriented databases [CM, DGM, MS, MSOP,
Zd1, ZW] differ from their programming language coun-
terparts in the following fundamental ways.

1. persistence

2. unique naming
3. sharing

4. transactions

Objects that are created by a process persist beyond the
lifetime of that process. The database system assigns all
objects a unique identifier that is guaranteed to remain
unique even across multiple processes. Any number of
applications can share the objects that reside in this
persistent memory space. In the process of using these
objects a given process can define the boundaries of
transactions that are guaranteed to be atomic and resi-
lient and that preserve some set of correctness criteria.
If we adopt a strong world view, these criteria might
encompass serializability, however, they may also be
defined to be weaker [SZR].

2. The Role of Properties

One of the strengths of the object-oriented
approach is the ability to create new types by specializ-
ing the behavior of old types. In our object-oriented
database [ZW1, ZW2], we treat properties as objects,
thus providing the ability to specialize the behavior of
properties by defining new subtypes of the type Pro-
perty. This paper describes this technique and discusses
a few interesting property subtypes as an illustration of
this approach. This example further illustrates how we
might fix what we consider to be a common defect that

42

occurs in some object-oriented systems. This defect
arises from the confusion between the inheritance of
specification and the inheritance of implementation.
The example illustrates how these concepts might be
separated.

It is, of course, possible to get the behavior of sim-
ple properties by defining a set of operations on the type
of the object to which the property applies. These
operations would get and set the value of the property.
For example, suppose that the type Person has a pro-
perty mother-of that relates a person to his or her
mother. We could achieve same behavior by defining a
get-mother-of and a set-mother-of operation on the type
Person.

In our view, properties are objects which implies
that as such they can partake in all behavior that
objects in general have. This means that it is possible
to define properties on properties since all object types
have the ability to define properties. This allows us to
model some situations more precisely. Suppose that
John loves Mary. This could be modeled as two
instances of type person with a loves property between
them. If we wanted to assert that the intensity of this
relationship is 8, placing the intensity on either John or
Mary would be somewhat inaccurate. The intensity
does not assert anything about John or Mary by them-
selves, but rather, it describes the loves property.

More importantly, by making properties be objects,
we can refine their behavior by defining subtypes for
them. Although there seem to be operations that do not
apply to properties, yet are influenced by their
definitions, a closer inspection reveals that these opera-
tions are really more complex composites that make use
of the operations of the property types. For example, all
objects are defined to have a get-property-value opera-
tion. This operation takes an object x -and a property
name p as arguments and returns the value of p if the
type of x is defined to support properties of the type of
p- This is an operation on x that appears not to use the
property object. In reality, the get-property-value
operation is implemented as follows:

get-property-value (x, p) =
get-value (get-property (x, p))

A useful modeling tool is that of a derived property.
A derived property is one whose value is dependent on
other information that is contained in the state of the
object. For example, employees might have a Salary
property which is stored with each employee. They
might also have a FICA-payment property that is not
stored at all. Instead its value is computed as a func-
tion of the employee’s salary.

It is possible to add the notion of a derived pro-
perty to our model by noticing that derived properties
are just like regular properties except that it is not pos-
sible to set their values. The derivation function is

embodied in the get-value operation for the property.
We define type property to have a get-value operation,
but no set-value operation. We define a subtype of the
type Property called Setable-property that adds the
set-value property. We then add another subtype of
Property that adds a property to Derived-properties
called the derivation-expression. The get-value opera-
tion for derived properties evaluates this expression.

3. Some Important Distinctions

We begin our extended example by pointing out
again that in our system a type exports an interface
that is the only way that other code can manipulate
objects of this type. This is also true for subtypes and
supertypes of a given type. For example, suppose that
the type Toyota is a subtype of the type Car. The
create operation on the type Toyota has a side effect of
invoking the create operation on the type Car and all
types between Car and type Entity (the root of - the
hierarchy). Each of these create operations may allo-
cate additional storage to store the state of its instance.
Type Car has a move operation defined on it. In
defining a drive operation for Toyota, if we want to
change the position of the car, we must call the move
operation defined at the Car level. The code for Toyota
cannot manipulate the state of the Car variables
directly.

This choice was made to incorporate in our system
the benefits of data abstraction to the fullest possible
extent. It now becomes possible to change the code for
any type without having to modify the code for any
other type (including subtypes and supertypes) as long
as the interface remains unchanged. If the code for type
Car changes but its operations and properties remain
fixed, the operations on type Toyota will still work since
they can only rely on the interface to Car. Of course, if
the code for Car changes, any instances of Car that are
already in the database might be affected. The problem
of coping with this problem has been discussed in [SZ,
Zd2).

In some systems such as Smalltalk [G,GR], it is pos-
sible for a subtype to directly access the instance vari-

ables of its supertypes. By saying that B is-a A, type B
inherits the specification and the implementation from

type A. B acquires all the operations defined on A as
well as all of the storage level representation that is
used to implement type A.

3.1. Behaves-like

We recognize that there are cases in which our
strong view of data abstraction may sometimes interfere
with what the programmer really needs to accomplish.
For these somewhat rare cases we make a few distinc-
tions about the is-a property. These distinctions will
attempt to separate the inheritance of behavior from the
inheritance of representation.

Our first example of this is a subtype of type Pro-

43

perty called Behaves-like. The is-a property that we
have already described is a subtype of Behaves-like.
Behaves-like makes a guarantee about the specification
of the two types that it relates. If B behaves-like A, B
must have at least the behavior of A. B may add addi-
tional behavior (properties, operations, and constraints),
but all of the behavior of A must be supported on B.

Unlike is-a, behaves-like has no side effect of creat-
ing instances of the higher-level types. This extra
behavior is added in the definition of the is-a property.
As a result, when B behaves-like A, no additional
storage is allocated for the supertype A if an instance of
B is created.

For example, this might be useful if we wanted to
define two types Stack and Small-stack. Stacks in gen-
eral might be represented by a list since that is most
flexible for things that can grow without bound, while
Small-stacks might be represented by an array since we
can require that a small-stack not grow beyond a cer-
tain limit. We would then specify:

Small-stack behaves-like Stack .

A create operation on the type Small-stack would have
the effect of allocating space for the array and not allo-
cating any space for the list that is the representation
at the Stack level. Small stack must reimplement all of

the behavior of the Stack. That’s what it means for it
to behave like a Stack. The system does not check this

requirement. We assume that the type definer is a good
citizen.

It is worth pointing out that the same effect could
be achieved by rearranging the type lattice such that a
third type called Generic-stack becomes the supertype of
both Stack and Small-stack. Generic stack would have
a null representation and be non-instantiable. That is
to say that there is no create operation defined on the
Generic-stack type. Generic stack could specify the
standard stack operations (i.e., push, pop, empty) and
the two subtypes could redefine these operations to work
with their respective storage structures.

Although this change works, suppose that a
definition for Stack already existed. Further suppose
that the definition of Small-stack is added at some point’
after many instances of Stack have already been
created. This is common since we are concerned with a
database system with persistent objects. Once a type
has been created, we can assume that there will be
many instances of it in our persistent store. Changing
the type hierarchy, is therefore a very difficult and
error-prone activity since the changed type structure
might not fully suport the old instances. Although work
is being done to ease some of these difficulties [SZ, Zd2],
we would like to minimize the number of times that type
changes occur. The behaves-like property allows us to
retain the old structure, while achieving the behavior
that we want.

3.2. Subsumes

There is another distinction that we often want to
make. This is exemplified by the is-a relationship in
Smalltalk. Here we would like a subtype to have access
to the representation of its supertypes. We define
another subtype of behaves-like called subsumes that
accomplishes this.

Subsumes also guarantees that a subtype have at

least the specifications of its supertypes, but it adds the

ability for the subtype to access any state that is avail-
able in the supertype instance. One way of thinking
about the subsumes property is that if B subsumes A,
then A exports it get-rep operation to the B type
module. The get-rep operation takes an object of an
abstract type and returns an object of the concrete type
(i.e., representation type). It is similar to the CLU
[LABMSSS] down operation.

Although this variation of the behaves-like is poten-
tially dangerous, we will give an example of where this
kind of capability is necessary. Suppose that we have a
type called Set. The representation of the Set type is an
array. The set type has no operations that can observe
or exploit the fact that an array is an intrinsically
ordered type. Further, suppose that we wish to define a
subtype of Set that is called Ordered-set. If we used
strict data abstraction, we would have to store some-
thing like ordered pairs in the unordered set. The first
element of the pair might be the set element and the
second element of the pair might be its position or index.
Because of information hiding, we have been forced to
reinvent the ordering that is already available in the
array data type. This is very inefficient.

Instead, by saying that Ordered-set subsumes Set,
we can allow the code for Ordered-set to access the
array directly. Now this code has the ability to exploit
the natural ordering for the array. Of course the code
for Ordered-set must maintain any rep invariant that is
specified in the Set module. The Ordered-set module
can add additional state of its own if this is deemed
necessary. A create on the type Ordered-set would then
allocate storage for both the Set and the ordered-set.
The difference here is in what is accessible.

We have distinguished three different types of
behavior related to the notion of is-a. We can define
these property types in terms of each other as shown in
Figure 1. Each of the arrows in this picture are
behaves-like properties.

4. Operation subtyping

Another problem with many object-oriented systems
is that the notion of operation refinement is not based
on any semantic properties of the operations involved.
In a language like Smalltalk, one may define an opera-
tion Op on a type B that has the same name as an
operation Op that has been previously defined on type
A, a supertype of B. If x is an instance of B, Op(x) will

behaves-like

behaves-like behaves-like

subsumes

Figure 1: Distinguished versions of is-a

invoke the definition of Op that is attached to the sub-
type. This definition will block the definition that is
provided by the supertype. Here, the paradigm is opera-
tion replacement, not operation refinement. There is no
requirement that the two operations named Op bear any
semantic relationship to each other. The only semantic
tie is that they share the same name.

The problem with this undisciplined use of names is
that if we insist that a type hierachy ought to induce a
subset relationship among the sets of all instances of the
types, we are left with a situation in which some
instances of a type may have wildly different behavior
from other instances of the same type. If Orange is-a
Food-stuff, both types might define a squeeze operation.
Squeezing a food stuff is defined to return a firmness
coefficient that is useful for determining how fresh that
item is, while squeezing an orange might have a side-
effect which is to produce a refreshing citrus drink.
Although all Food-stuffs support squeezing, some support
it with very different results than others.

We prefer to use a somewhat different technique for
operation (and property) refinement. Our technique is
based on the use of operations and properties that are
subtypes of each other as refinements. Therefore, our
solution to this problem is another example of why it is
useful to treat properties as objects having a type.

We will allow an operation Op2 on a subtype B to
refine an operation Opl on a supertype if and only if
Op2 behaves-like Opl. Notice here that there is no need
to define the two operations as having the same name.
In fact, if an operation Op on B is defined with the same

‘name as an existing operation Op on A and the two

operation types are not related by a behaves-like pro-
perty, the system flags this as an error.

In order for the above definitions to make sense, we
must explore the meaning of operation and property
subtypes a little more closely. What does it mean for an
operation type to be a subtype of another operation
type? What conditions must hold?

Let us suppose that the type Car has a paint opera-
tion defined on it. Paint takes two arguments: a car
and a color. Suppose that there is a subtype of car
called Model-T that defines an operation called Mpaint.
Mpaint takes a Model-T and the color black as argu-
ments and paints the model-T black. We can now ask
what the relationship between Paint and Mpaint is?

Cardelli [Ca) holds that, in general, an instance of a
subtype should be usable anywhere an instance of the
supertype is usable. By this definition, we would say
that Paint is a subtype of Mpaint to see this consider
the following piece of code:

procedure decorate-fleet (p:paint, c:car)

p (c, "black™);
end;

mt: Model-T:
decorate-fleet (Mpaint, mt);

Since Mpaint will work very well as the value of p in the
decorate-fleet procedure with a Model-T and "black" as
arguments, Paint will work just as well in the same con-
text. This leads us to say that Paint will work wherever
Mpaint works. Paint is, therefore, a subtype of Mpaint.
This is backwards from what intuition would tell us.

Instead we will adopt a point of view in which
Mpaint is a subtype of Paint. This is the case because
all of the constraints on Paint are met by Mpaint but
the opposite is not true. These constraints include the
pre-conditions on the argument list and the post-
conditions on the return value. In this way we can say
that the operation subtype inherits all pre-conditions,
post-conditions, and exceptions from the operation
supertype.

We can now give a more precise definition of opera-
tion refinement. Assume that B behaves-like A. We will
say that an operation Op2 on B refines an operation
Opl on A if and only if Op2 behaves-like Opl. B inher-
its all operations O defined on A such that O is not
refined by an operation defined on B.

A type is represented as a 5-tuple (N, O, P, C, S)
where N is its name, O is a set of operations, P is a set
of properties, C is a set of constraints, and S is a set of
supertypes. If T, = (N, O, P, C}, S,) and T, = (N,
0, P,, C,, S,), then

(op €0,) and = (op € 0,)
iff (op’ € O,) such that (op’ behaves-like op)

In order for an operation type to be a subtype of
another operation type, it too must obey the rule that it
have at least the behavior of its supertype. That is, the
subtype must inherit all operations, properties, and con-

45

straints (pre-conditions and post-conditions) from the
supertype.

5. Operation Refinement

We would like to define the behavior of new sub-
types such that changes in the semantics of operations
(and properties) will not have serious effects on old pro-
grams. It would be desirable to have a method that
would allow old programs to function properly in the
face of a changing type lattice.

There is a tradeoff between the amount of informa-
tion that we can rely on at compile-time and the ability
for programs to adapt at compile time. The more
assumptions that we build into compiled code, the more
brittle that code will be. In order to allow programs to
adapt at compile time, we are forced to defer certain
decisions until runtime. This often introduces additional
overhead because of the additional runtime checking.
Often this checking can be minimized if our compiler is
intelligent enough to introduce it only where necessary.

We introduce another subtype of the behaves-like
property type called refines. This property is used to
relate operation types. It is like behaves-like for opera-
tions except that it introduces an additional piece of
functionality. If B behaves-like A and an operation Op2
on B refines an operation Opl on A (i.e., Op2 refines
Opl), then an invocation of Opl with an instance of B
as an argument will cause Op2 to be invoked if all other
preconditions match. The preconditions include the
decalred types of the arguments to Op2. Opl may only
be refined once on a given subtype of A.

An example of this is given below in Figure 2. Here
Porsche behaves-like Car. Wash and Wash-gently are
defined on Car and Porsche respectively. Wash-gently
refines Wash. Suppose that we had the following code:

Procedure spring-cleaning (c:car)
wash (¢, "ivory")
end;

p: porsche;

spring-cleaning (p);

Car

Wash

refines

Porsche

Wash-gently

Figure 2: Example of Operation Refinement

Spring-cleaning is called with a porsche which gets
passed to the procedure wash along with a second argu-
ment of ivory. Since both arguments match the precon-
ditions for wash-gently, a refinement of wash, the wash-
gently code is used instead. This is the behavior that
you might want in the best of all worlds since you have
met all the requirements and would be very dismayed if
your porsche were scratched from the use of conven-
tional brushes. :

Notice that if in the previous example we had not
used ivory soap or if the wash-gently operation had not
been defined to be a refinment (perhaps it was only
defined to behave-like wash), none of this dispatching
would have occurred. It is available only through the
use of the refines property and only in cases where the
environment is right.

6. Property refinement

All of the above discussion about operation subtyp-
ing is applicable to properties. Rather than going
through all of that detail again for properties, we will
give an example of how property refinement would work.

Suppose that we have two types Person and
Porsche-owner with Porsche-owner as a subtype of Per-
son. Type person defines an Age property with a con-
straint that ages must be integers between 0.and 110.
Porsche-owner refines this age property by tightening
the constraint to be integers between 35 and 45.

Consider the following piece of code:

p: Person; :
po: Porsche-owner;

P == po;
p.age := 60;

Although the last line is legal, since it is possible to set
the age of some people to 60, in the example, p will be
assigned a Porsche-owner. The interpretation of p.age
will get the age property that is defined on Porsche-
owner not the one defined on Person. This property is
constrained such that 60 is an illegal value and the
assignment will not succeed.

Property refinement is accomplished by refining the
get-value and the set-value operations on the property
subtype. In the example, the set-value operation for age
of Porsche-owner refines the set-value operation for age
of Person such that set-value on age of Porsche-owner
raises an exception if it is given a value that is not
between 35 and 45.

7. Summary

We have presented some examples of the ways in
which distinctions ought to be made in the treatment of
the is-a hierarchy. We have shown that by treating pro-
perties as objects, it is possible to incorporate the
desired behavior into our system in a clean and homo-

46

geneous manner. We have also assumed that is-a is not
a special system-defined resource, but rather that it is
simply another property type that relates objects of type
type.

It should also be emphasized that this work has
been done in the context of an object-oriented database
system. In this paper, we have concentrated on some of
the linguistic characteristics of the data definition and
manipulation languages.

One of the strengths of the object-oriented para-
digm is the uniformity with which it treats information.
Here, we have extended the uniformity argument by
stating that properties or relationships should be treated
as objects as well as the more conventional examples.
Other systems have made a similar observation, most
notably the entity-relationship model [Ch] and several
knowledge representation systems [Brl, Br2]. In these
systems as in ours relationships or links are denotable.
The principle difference here is that we have added this
facility to a system that has a very strong notion of
type. We have incorporated this view into a paradigm
in which a type supports the notion of data abstraction
and information hiding. It gives us a modular way to
modify the behavior of a property. We do this by using
the inheritance mechanisms that are available on the
subtree of the type hierarchy that is rooted at the type
Property. This approach increases the expressive power
of our data modeling language, although it does not pro-
vide additional computational facility.

8. References

[ADP] J.M. Smith, S. Fox, and T. Landers, “ADAPLEX:
Rational and Reference Manual”, second edition, Com-
puter Corporation of America, Cambridge, Mass., 1983.

[Br1] R.J. Brachman, ‘“What IS-A Is and Isn't: An
Analysis of Taxonomic Links in Semantic Networks”,
IEEE Computer, October, 1983, pp 30-36.

[Br2] R.J. Brachman, “I Lied about the Trees Or,
Defaults and Definitions in Knowledge Representation”,
The Al Magazine, Fall, 1985.

[Ca] L. Cardelli, “The Semantics of Multiple Inheri-
tance”, in Semantics of Data Types, Lecture Notes in
Computer Science 173, Springer-Verlag 1984, to appear
in Information and Control.

[Ch] P.P.S. Chen, “The Entity-Relationship Model:
Towards a Unified View of Data”, ACM TODS 1, 1,
March 1976.

[CM] G. Copeland and D. Maier, “Making Smalltalk a
Database System’, Proceedings of the ACM SIGMOD,
Boston, Mass., June, 1984.

[Co] EF. Codd, “Extending the Database Relational
Model to Capture More Meaning”’. ACM Transactions
on Database Systems 4, 4 (December 1979), 397-434.

[DGL] K. Dittrich, W. Gotthard, P.C. Lockemann,
“DAMOKLES - A Database System for Software
Engineering Environments’, Proceedings of the IFIP 2.4
Workshop on Advanced Programming Environments,
Trondheim, Norway, June, 1986.

[GAL] A. Albano, L. Cardelli, and R. Orsini, “Galileo:
A Strongly Typed Interactive Conceptual Language”,
Technical Report 83-11271-2, Bell Laboratories, Murray
Hill, New Jersey, July, 1983.

[G] A. Goldberg. Introducing the Smalltalk-80 System.
Byte (August 1981), 14-26.

[GR] A. Goldberg and David Robson. Smalltalk-80: The
Language and its Implementation. Addison-Wesley,
1983.

[HM] M. Hammer, D. McLeod, “Database Description
with SDM: A Semantic Database Model”, ACM TODS
6, 3, September 1981, 351-387.

[LABMSSS] B.-Liskov, R. Atkinson, T. Bloom, E. Moss,
J.C. Schaffert, R. Scheifler, A. Snyder, CLU Reference
Manual, Springer-Verlag, New York, 1981.

[LSAS] B Liskov, A. Snyder, R. Atkinson, and C.
Schaffert, ‘“‘Abstraction Mechanisms in CLU”’, Communi-
cations of the ACM, Vol 20, No. 8, August, 1977.

[MBW] J. Mylopoulos, P.A. Bernstein, H.K.T. Wong,
“A Language Facility for Designing Database-Intensive
Applications’’, ACM Transactions on Database Systems,
Vol 5, No. 2, June, 1980, pages 185-207.

[MS] D. Maier, J. Stein, “Indexing in an Object-
Oriented DBMS’', Technical Report CS/E-86-006, Ore-
gon Graduate Center, Beaverton, OR, May, 1986.

[MSOP] D. Maier, J. Stein, A. Otis, A. Purdy,
“Development of an Object-Oriented DBMS”, Technical
Report CS/E-86-005, Oregon Graduate Center, Beaver-
ton, OR, April, 1986.

[S] D.W. Shipman, “The Functional Data Model and the
Data Language DAPLEX”, ACM TODS 6, 1 (1981),
140-173.

[Sc] JW. Schmidt, “Type Concepts for Database
Definition”, in Schneiderman, B. (editor), Databases:
Improving Usability and Responsiveness, Academic
Press, 1978.

[SS] J.M. Smith, D.C.P. Smith, “Database Abstractions:
Aggregation”’, CACM 20, 6 (1977).

[SZ] A.H. Skarra and S.B. Zdonik,* 'The Management of
Changing Types in an Object-oriented Database”,
Proceedings of The ACM Conference on Object-oriented
Programming Systems, Languages, and Applications,
Portland, OR, September, 1986.

[SZR] A.H. Skarra, S.B. Zdonik, and S.P. Reiss, “An
Object-Server for an Object-Oriented Database Sys-
tem”, IEEE International Workshop on Object-Oriented
Database Systems, Pacific Grove, CA, September, 1986.

47

[Zd1] S.B. Zdonik, “Object Mangement System Con-
cepts”’, Proceedings of the Second ACM-SIGOA Confer-
ence on Office Information Systems, Toronto, Canada,
June, 1984.

[Zzd2] S.B. Zdonik, “Maintaining Consistency in a Data-
base with Changing Types”, ACM SIGPLAN Notices,
September, 1986.

[ZW1] S.B. Zdonik and P. Wegner, “A Database
Approach to Languages Libraries and Environments’,
Proceedings of the Workshop on Software Engineering
Environments for Programming-in-the-Large, Harwich-
port, Massachusetts, June, 1985.

[ZW?2] S.B. Zdonik and P. Wegner, ‘“Language and
Methodology for Object-Oriented Database Environ-
ments’’, Proceedings of the Nineteenth Annual Interna-
tional Conference on System Sciences, Honolulu, Hawaii,
January, 1986.

A Systolic Parsing Algorithm for A Visual Programming Language

A. W. Bojanczyk and T.D. Kimura

Department of Computer Science
Washington University
St. Louis, MO 63130

ABSTRACT

In this paper we consider a.problem of parsing a two
dimensional visual programming language Shaw and Tell on a
two dimensional array of processors.

A program in Show and Tell is a bit mapped two dimensional
pattern satisfying a certain set of grammatical rules. The
pattern consists of a partially ordered set of rectilinear boxes
and arrows distributed over the space of nxn pixel area. The
corresponding directed graph, the box graph, where boxes are
nodes and arrows are directed edges, may not have a cycle in a
Show and Tell program..The cycle detection is the most
computationally intensive stage of the parsing section of a
Show and Tell program.

We propose to exploit the concept of systolic array in parsing
of Show and Tell programming language. A given bit pattern
is mapped onto nxn array of mesh connected processors with
one pixel assigned to one processing element. We show an
algorithm for cycle detection which runs in time proportional
to the size of a box graph. The complexity of any individual
processor is independent on n, the parameter describing the
size of the array.

1. Introduction

Thanks to the recent. advancement of VLSI technology, high
resolution graphics capabilities have become a dominant
computer interfacing mechanism for end users. Efficient
man-machine communication can be achieved through a
graphic interface because of its high bandwidth. Visual

programming! is a new. concept in software engineering that
takes advantage of such high bandwidth for designing better
software environments. In a-visual programming language, a
two-dimensional pattern (or an icon) is used to represent

various programming concepts, such as iteration, "

concurrency, recursion, and so forth. One key problem in
visual programming language design is to find a formal syntax
of such a two-dimensional language and a parsing algorithm
based on the formalism.

A systolic array? is a collection of identical processing
elements (PE, a CPU with local memory), mesh-connected in
a two dimensional form. Each PE communicates with its
neighbors by passing messages through a thin-wire. There is
no shared memory among the PE's. The concept of systolic
array was proposed to.take advantage of the reduced hardware
cost due to the VLSI technology advancement. Many systolic
algorithms are designed for numeric, database, and textual
applications.

CH2345-7/86/0000/0048$01.00© 1986 IEEE

48

‘We propose in this.paper another application area; a parsing of
two dimensional graphic programming language. A program
in a such a language is a bit-mapped two-dimensional pattern
satisfying a certain set of grammatical rules.” The systolic

- parsing problem is to construct a systolic array such that when

a visual program is mapped onto the array with one PE
assigned to one pixel, the array can decide whether the pattern
satisfies the grammatical rules or not. It is desirable for the
array to make the decision in linear time to the size of the
pattern. Itis also desirable that the complexity of each PE is
independent of the size of the array.

Show and Tell™ Language3 (STL) is a visual programming
language designed for novice computer users such as school
children and implemented on the Apple® Macintosh™
personal computer. A STL program is entered through mouse
clicking and it consists of a partially ordered set of boxes and
arrows. Arrows and boxes may not form a cycle in a STL
program. The cycle detection is algorithmically the most
complex component of the parsing section of the STL system.

As a part of our efforts to find formal specification methods
for visual programming languages (syntax and semantics), we
are investigating possible systolic parsing algorithms for STL.
In this paper we will present a design of a systolic array that
can detect a cycle in a 'box graph' in linear time to the size of
the graph, where box graph is an abstraction of a STL
program capturing features relevant to the detection of cycles.

In the next section we will briefly introduce STL to provide the
background for the problem. Section 3 will define the
problem in terms of a formal definition of box graph and
systolic array. Section 4 and 5 will describe the results; i.e.,
the design of a finite state machine that can detect a cycle in
linear time to the size of the box graph. Section 6 will
conclude with possible extensions of the results.

2. Show and Tell Language

Keyboardless programming is one of the main goals of the
STL design. A STL program can be created by using a mouse.
only. A keyboard is needed only for entering texual or
numeric data. STL is designed for computer users who are
not familiar with keyboarding.

An STL program consists of nested boxes connected by
arrows. Loops and cycles are not allowed. A.box may be
empty or may contain a data value, an icon which is a name of
a system or user-defined operation, or another STL program. .
Arrows allow data to flow from one box to another. An-

operation in a box will be executed when and only when all
incoming values have arrived at the box. Except for this data
dependency there is no inherent sequencing mechanism in
STL. The semantic model of STL is based on the concept of
dataflow. However, since there is no loop in an STL
program, once an operation is executed and the result is
registered in an-empty box, the'value will never change. There
are no side effects. Thus, STL is a functional parallel
programming language.

An empty box can be filled with a data object. Some empty
boxes are used for communication with the environment of the
program. They are called the base boxes of the program and
are depicted by a thicker box frame. They correspond to
formal parameters of a subroutine in traditional programming
languages. The STL interpreter executes a STL program by
filling the base boxes with appropriate solution values.

An STL program can be named by a user defined icon. Any
Macpaint™ picture can be used as a name. When a box
containing a user defined icon is evaluated by the STL
interpreter, the named program will be evaluated, after the
incoming data values are moved into the base boxes of the
called program. An icon in STL is a subroutine name.
Recursive definition of a program is also allowed.

An example of STL program is given in Figure 1. The
program defines the factorial function recursively. Note that
the program has one input and one output parameter. It
consists of four boxes one of which contains five boxes. The
inconsistent box, which is defined as any box that contains
conflicting information such as "5 flowing into 0", is shaded
by the interpreter, The data flows from the top to the bottom
of the graph. The name of the program is given on the upper
1eft comner of the editing window. The leftmost column
provides the editing tools for program construction. ‘Any box
that overlaps with other boxes or forms a cycle will be rejected
by the editing program of the STL system.

The language is implemented on the Apple® Macintosh™
personal computer. Using the editing tools provided by the
STL system, a user constructs a program on the editing
window through a sequence of mouse clicking and dragging.
In order to draw a box, for example, the user drags the mouse
from the upper-left comer of the box, causing a mouse-down
event, to the lower-right corner, causing a mouse-up event.
The editing program in the STL system recognizes these two
mouse events and constructs an internal data structure
representing the box, provided that the box is acceptable, i.e.,
the box does not overlap with other boxes nor forms a cycle
with the existing arrows.

" & File Edit Goodies Puzzle Answer Drowers ShowbTell

:

w
¢
~H
(&= f
B,
Bl
Ed

A Recursive STL Puzzle (Factorial Function)

The current STL system does not have capability of parsing a
bit mapped image as a STL program. For example, if the
factorial program of Figurel is constructed by MacPaint™,
and the resulting MacPaint file is pasted onto the editing
window of the STL system, the current STL editor program
will interprete the image as a background (comment) image of
some other program, and will not be able to parse the bit image
as a STL program. Thus, programming in MacPaint is not
possible with the current STL system.

In this paper we try to solve the problem of finding a parsing
algorithm for two-dimensional representation of STL
programs. One.approach is to find a formal syntax for STL
and to construct a parsing algorithm based on the formalism.
Our efforts in this direction is reported in a separate paper4.
Another ‘approach is to construct an algorithm which can
accept all and only images that represents a legal STL
program. We will take the second approach in this paper.

3. Problem Definition

. In this section we will define the problem. Our solution to the

problem will be given in the next section. First we will define
the concept of box graph as.a syntactic abstraction.of STL
program. Then, we will define the concept of ‘systolic array as
a model of parallel .computer architecture. Finally we will
define the problem of detecting a cycle in a box graph by an
systolic array in linear time to the size of the box graph. :

3.1 Box Graph

A box graph is a collection of boxes and arrows geometrically
distributed over the space of n x n pixel area. No two boxes
overlap with each other. No box contains another box. Every
arrow starts from the boundary of one box and ends on the
boundary of another box. Arrows may intersect with one
another, but they don't branch out. No two arrows intersect
with a box at the same location. There must be no loops or
cycles in a box graph, i.e., there is no sequence of arrows that
connects a box to itself. Boxes and arrows are composed of
horizontal and vertical line segments. No diagonal lines exist
in a box graph. An example of box graph is given in Figure 2.
Note that a box graph is an abstraction of a STL program in
hiding the type and the content of each box. Thus, in a box
graph no nesting of boxes exist. There is no semantics
associated with a box graph.

L
l P

—

Figure 2: An Example of a Box Graph

The exact definition of a well formed box graph as a bit image
will be given in the section 3.3.

3.2 Systolic Array

A systolic array is a collection of n x n processing elements
(PE: a CPU with local memory), mesh-connected in a two
dimensional form. See Figure 3. Each processor is a simple
finite state machine with local memory registers. The memory
size of a single processor is independent on n, the parameter
describing the size of the array. The processors communicate
only with their four nearest neighbors, i.e., north, east, south
and west neighbors. Knowing what operations the processors
must perform in order to solve a problem, we define a time
unit to be the maximal time that is necessary for a processor to
perform the most time consuming operation together with
loading and unloading its registers. Like the memory size, the
duration of the-time unit is independent on n. A
synchronization mechanism allows processors to exchange
data at time instants separated by integer multiples of a time
unit. We assume that processors are microprogammable. This
allows us to change the set of operations performed by each
processor when necessary. This approach is similar to one
adopted in the PSC project’.

| L 1

lHlH I__

Figure 3: A Systolic Array

3.3 Problem

To design a systolic array of size n x n that can decide whether
a given bit pattern is a well formed box graph or not, in O(n2)
steps with constant memory requirement for each PE, where

the bit pattern is mapped onto the array with one pixel assigned
to one PE.

A well formed box graph is defined as follows:

) A box and an arrow consists of line segments. A line
segment is one pixel wide. A line segment may be horizontal
or vertical, but never diagonal. Two paraliel line segments
must be separated by at least one pixel. An arrow does not
start at a corner of a box.

Figure 4: A legal box graph

50

The following configurations are not allowed.

Figure 5: Illegal Box Arrow Combination

(2) A box is a rectangle enclosed by line segments. A box
contains nothing and it has at least one empty pixel inside the
enclosure.

Figure 6: The Smallest Box

(3) An arrow head is represented by extra two pixels as
follows:

Enmmnnmnn
Figure 7: Legal Arrow Heads

The following configurations are not allowed:

Figure 8: Illegal Arrow Heads

(4) There must be no cycle. The following is an example of
cycle:

Figure 9: An Example of a Cycle in a Box Graph

3.4 Representation of the Box Graph

A box graph is made up of boxes and arrows (connecting
directed lines). Arrows and boxes in turn are made up of
pixels, single points of rectilinear grid. Although as
individuals the points are indistinguishable, they represent-

different elements of boxes and arrows, i.e., corners, T-
junctions (which are arrow tails), cross junctions, straight line
segments and arrow heads. These elements form basic
building blocks for any box or connecting arrow.

Decision of what a given non-empty pixel represents can be
made locally by examining its neighbourhood. The
neighbourhood about a pixel consists of all the pixels in a 3x3
window whose center is the given pixel. The pattern of the
neighbourhood determines the role played by each non-empty
central pixel. Figure 10 illustrates possible representation of
basic buildings blocks where 1's denote non-empty pixels, 0's
empty or background pixels and X's either of these two. There

is also unique pattern code associated with each pattern.

Note that all fifteen patterns are mutually exclusive.

There is a restriction that no arrow can start from a box
corner. This restriction excludes the possibility that a T-
junction could represent a box corner and a tail of an arrow
starting from that corner, or that a cross could represent a box
corner and tails of two arrows starting from that corner. See
Figure 11 for illustration.

Cross Line:
code: 1 2:horizontal 3:vertical
010 X 0X X1X
111 111 010
010 X 0X X1X
Corner:
4 :NW 5:NE 6:SE 7:SW
00X X000 01X X 10
011 110 110 011
X10 01X X00 00X
T-Junction:
8:north 9:east 10:south 1l:west
010 X110 X 00X 01X
111 011 111 110
X 0 X X10 010 01X
Arrow-head:
12:north 13:east l14:south 15:west
111 X111 X 0 X 11X
111 011 111 110
X 0X X11 111 11X
Figure 10: Basic Building Blocks
111111 111111
1 1 1 1
1 box 1 1 box 1
1 1 1 1
111111111 111111111
1
1
not allowed T-junction not allowed cross

Figure 11: Illegal Patterns

51

The representation of the arrow head involves two additional
non-empty pixels which are superfluous, they simply help to
identify the arrow-head. This is not the only possible
identification. There are many other but all, including the one
considered here, have some drawbacks.

4. Recognition of the Box Graph

This section describes the procedure for recognizing a box
graph which is initially defined by a set of non-empty pixels
distributed over a square nxn grid.

The grid is mapped onto the square array of processors with
one grid point assigned to one processor. Each processor has a
pixel register where non-empty pixel is represented by 1 and
background pixel by 0.

The recognition of the box graph proceeds in two stages. In
the first stage processors recognize the basic building blocks
by comparing the patterns of the neighborhoods with the
predefined patterns of the basic building blocks. Note
however, that basic building blocks still do not uniquely
determine elemments of rectangles or arrows. A corner may be
the box corner or turning point of an arrow. A line may be a
part of an arrow or a side of a box. Basic building blocks
together with specification whether they belong to rectangles
or arrows form box graph building blocks. In the second
stageof box graph recognition, the processors uniquely
determine the box graph building blocks.

4.1 Identification of Basic Building Blocks

All fifteen patterns defining the basic building blocks (see
Figure 10) are stored in local memories of all processors.
Processors which correspond to non-empty pixels have to
examine their neighborhood in order to determine what
building blocks they represent. Succesive shift operations
bring pixels from the neighborhood to the center processor.
The pattern of the neighborhood is compared to each of the
fifteen basic patterns. If there is a2 match to any predefined
pattern, the pattern code is stored in the pattern code register
(LPCR) of the center processor and the center processor is
marked as initially recognized. However, for some non-empty
pixels the pattern of the neighborhood do not match the pattern
of any basic building block. This is a side effect of the
representation of the arrow-head. Only the pixels that serve as
identifiers of arrow-heads may find themselves in such
position.

The resulting ambiguity can be solved in the following way.
The processors which were identified as arrow-heads transmit
that information to those neighbors which served as markers
of the arrow-heads. Because all arrow-heads were found, the
markers are not needed any longer and can be erased. The
erasing removes ambiguity. Now, by repeating the matching
process for all "undecided" processors the identification of
basic building blocks is complete, all non-empty pixels know
exactly what they represent.

Note that the identification of the basic building blocks takes
constant time, independent on n, the array size or even the
graph size.

4.2 Identification of the Graph

Once basic building blocks are identified, the array is set to
recognize the box graph. Processors have to decide whether

they constitute a part of an arrow or a box. In order to make
that decision processors must receive enough information
possibly coming from the distant regions.

Prior to the computation all processors are in the initial states.
In the course of the computation the processors change their
states until the final states are assumed. The initial state
corresponds to the starting information possessed by a
processor which, in case of non-empty pixel, is the pattern
code of the basic building block, while for empty pixels the
pattern code is zero. The final state means that a processor
recognized what element of the box graph it represents. The
processor stores the pattern code of the graph building block,
which is the code of the basic building block together with the
indication whether the building block is a part of an arrow or a
box.

For some processors the initial state is also the final state. This
is the case with the processors corresponding to the
background pixels. Similarly, the processors representing
arrow-tails (which are T-junctions), arrow-heads and arrow
crossings are in the final state to begin with. All other
processors need some additional information before they are
able to recognize what element of the box graph they
represent.

All decisions (or state changes) are made based on states of
some processors, bounding processors, lying in the same
vertical and horizontal line as the processor making a decision.
A bounding processor is such that contains information which
may influance states of processors in the same horizontal or
vertical line. First of all, any non-empty processor which is in
the final state is a bounding processors. Corners, T-junctions,
arrow heads and crossings are bounding for a processor which
is connected to any of them by a straight line of non-empty
processors. Any non-empty processor is bounding for another
non-empty processor which is separated from it by a straight
line of empty processors. In Figure 12 a possible situation is
illustrated. Numbers are codes of basic building blocks. The
top, the bottom, the leftmost and the rightmost processors are
the bounding processors for the central processor.

Figure 12: Bounding Processor

The array operates in the synchronous mode. Triggered by the
outside control the processors start executing their individual
programs. The program to be executed depends on the current
state of the processor. All processors pass the data about their
current knowledge to the north, east, south and west
neighbours. Simultaneously, processors receive similar data

52

from the neighbors. Based on the local data and the data
received from the neighbours the processors update their states
and also prepare data to be sent to the neighbours in the next
cycle.

Each processor has four special registers NR,SR,WR and ER
monitoring the states of the bounding processors above,
below, to the left and to the right of it. Figure 13 shows some
registers which are used for graph building blocks recognition.

NR=North Register
l SR=South Register

NR ER=East Register
I WR=West Register
LPCR
— WR Processor ER —
StateR
I LPCR= Local Pattern
SR Code Register

| StateR = State Register

Figure 13: Processor Registers

The StateR register describes the state of the processor. When
the processor is not in the final state, the content of StateR is
0. The content is A,B,E,H or T if the processor represtents
arrow, box, empty processor, arrow-head or arrow-tail
respectively.

The data which is sent by a processor to its neighbors is a
concatenation of LPCR and StateR registers of either the
processor itself or those of the bounding processors. All
incoming messages are evaluated against the information
possessed by the processor. A decision is made locally
whether the incoming data has higher priority than the
information evaluated by the processor. In the case when the
incoming data has higher priority it is transmitted further in the
same direction it came from. Otherwise, the processor
transmits the locally evaluated data.

The data representing empty pixels have the lowest priority.
The corresponding processors do not perform any
computation but simply shift the incoming data along vertical
and horizontal connections. The data representing non-empty
pixels which are in the final state have the highest priority. The
corresponding processors also do not perform any
computation. They ignore the incoming data but keep sending
the information what (final) part of the box graph they
represent to the immediate neighbors. If both incoming data
and local data represent the final states then, as the incoming
data is ignored, the local data has precedence. In the case
when the incoming data have the same code as the code of the
local data, the local data have the higher priority. The data
representing line have lower priority than the data representing
any other building block. The local data representing any
building block other than line have higher priority than any
incoming data except when the incoming data represents the
final non-empty state and the receiving processor is not in the
final state.

4.3 Arrow Identification

If a processor is not in the final state but one of its non- empty
neighbors is in the final state, then the final state of the
neighbor uniquely determines the final state of the processor.
That is if any of the nearest neighbors (north, south, west or
east neighbor) represents an arrow then the processor must be
a part of that arrow. Similarly, if a neighbor represents a box
then the processor is also a part of that box. Recall that arrow-
heads, arrow-tails or crossings are in the final state from the
very begining of the computation. As a consequence, any non-
empty processor which is connected to an arrow-head, arrow-
tail or crossing will assume the final state A or B on
completion of the first unit of time . Next, one by one,
succesive non-empty processors connected to arrow-heads,
arrow-tails or crossings by a chain of non-empty processors,
will be able to determine their final states.

In particular, as the maximal length of any straight, horizontal
or vertical, line is n, then any non-empty processor connected
to an arrow-head, arrow-tail or crossing by a straight line of
non-empty processors will assume the final state in at most n
units of time.

When a processor is a corner connected by a straight (non-
empty) line to another corner of opposite orientation then both
corners must belong to an arrow. (Two corners connected by a
line have the same orientation when traversing the line either
only right or only left turns are encountered, otherwise the
comners have the opposite orientation). Similarly, for a
processor representing a line, if both end of the straight part of
the line are corners of oposite direction then the line must be a
part of an arrow. Both cases are easily recognized by one of
the processors lying on the line that joins the two corners. The
processor will receive the information that the opposite
bounding processors are corners of opposite orientation and
recognize that it is a part of an arrow. Next the message will
spread along the line and eventually will reach the comers.

The recognition of a segment of an arrow between two corers
of opposite orientation takes no more than 2n units of time.

The constant two comes from the fact that the information
about two corners is combined in one of the processors lying
in between and next propagated back to the corners.

The only hard situation is when following a line only corners
of the same orientation are met. This can happen with a box or
a spiral, see Figures 14a and 14b below.

P o
e

1
1111111111111
1

Y
=
=
=
=
[y
=
oy
=
=
=
=
Y
(=
[y
=
=

B e
R e
[Ny
2O R
RS
[)

ey
-
=
=
=

1
1
1
1
1
1
1
1
1
1
1
1 1111111111
1

1

RPRERPRRPERRPE PR

=
Jany

1 111111

[
[
=
[
[
[

1111

Figure 14a: Spiral

53

1111111

1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1

1111111

Figure 14b: Box.

A box has the property that its interior is "empty". Spiral on
the other hand has one or more coils inside. This makes all
but the innermost coils of a spiral easy to recognize. However,
the innermost coil must end in a box so it is easy to recognize
anyway. The procedure is the following.

As we mentioned before, any non-empty processor which lies
on a line connecting two corners of the same orientation is
either a part of a box or an arrow. However, if there is a coil
inside then any corner of the inner coil will betray that.

Consider a processor which is the part of the outer coil and
which lies on the same vertical or horizontal line as the corner
of the inner coil. After at most n units of time (which is the
maximal distance in vertical and horizontal direction in the
array), the processor will have the information that two of its
bounding opposite processors represent corners of the same
orientation, i.e., the processor represents either a part of a box
or a spiral. However, the processor will also receive the
message that there is a corner inside. Hence, the processor
must represent a part of a spiral. This is conclusive, the
processor assumes the final state. That final state is
communicated along vertical and horizontal lines. Passing
through all nonempty processors the information eventually
reaches the two bounding corners which in turn can now
decide that they are parts of an arrow. The procedure is
simultaneously executed for all four sides of all outer coils.

Any spiral can be recognized in no more than 4n units of time.
All outer coils can be recognized in time at most 2n. This is
because at most n units of time are necessary to propagate data
from all three corners to the processor which makes the final
decision. Additional n units of time are needed to propagate the
message back to the corners. The innermost coil has the length
at most 4n and its end must be an arrow-head or an arrow tail.
As the end of the innermost coil is in the final state from the
begining of the computation this fact will propagate along the
innerleost coil in time equal to the length of the coil which is at
most 4n.

4.4 Box Identification

It remains to find a way for recognizing boxes. Without loss
of generality, consider processors forming upper and left side
of a box. These two sides are bounded by corners of the same
orientation with the upper-left corner being the only common
point. Note that a box is convex and "empty" inside. Thus all
processors lying on the upper and left sides have their
counterparts on the lower and the right sides, only empty
processors separate the opposite sides.

Now consider any north-west corner. This processor initiates
search for a box. A signal is sent from the north-west corner to
all processors forming upper and left sides (including

bounding corners) to check on their counterparts. The signal
propagates along both sides until it reaches the corners.

If any of the two corners has the opposite orientation than the
north-west corner, that corner immediatelly concludes that the
line is a part of an arrow. The corner assumes the final state,
terminates the search and propagates the information back to
the north-west corner. All processors in between, one by one,
assume the final states. Next, the north-west corner assumes
the final state and transmits this information to its neighbors.
Now, the information spreads along the second side, changing
the states of all processors on that side which are not in the
final states into the final states.

On the other hand, if the corner has the same orientation that
the north-west corner, the search continues. The corner which
received the signal from the north-west corner (and has the
same orientation as the north-west corner) replies by sending
boolean value true back to the north-west corner. This boolean
value stops at each processor it passes. Each processor which
the boolean value visits holds it until the check on the
processor counterpart is finished. If the result of the check
indicates that the counterpart may belong to the same box as
the processor, i.e., for the north/west side the south/east
bounding processor represents a line, the boolean value is
passed along the line, towards the north-west corner,

unchanged. Negative check, i.e., for the north side the south

bounding processor is not a line, indicates that the processor is
a part of an arrow. This is the final decision overruling other
actions the processor may contemplate to take. The search is
aborted. The information is sent to the neighbors and
transmited further in succesive units of time. Eventually all
processor on both sides starting from the north-west comer are
informed.

In case when all checks are positive, the north-west corner will
receive the boolean value true. The search along one side is
positive. If also the search along the second side is positive
this means that the interior of the structure is empty. As only a
box has this property, the structure must a box. The north-
west corner assumes the final state marking the corner as the
box comer. The information is transmited to the neighbors
which will propagate it further until all processors forming the
box are reached. The recognition of the box is now completed.

The recognition of a box takes no more than 4n units of time.
This follows from the fact that the message from the north-
west corner must travel to the south-east corner and back to the
north-west corner, which takes at most 4n units of time.

The results of this section can be summed up in the following
theorem.

Theorem 1: A well defined box-graph given as a colection of
basic building blocks can be recognized in at most 4n units of
time on an nxn array of processors. The size of the local
memory of any processor is independent on n.

5. Cycle Search

Let b be any box in the box graph G. By indeg(b) we denote
the number of arrows pointing at the box b and by outdeg(b)
the number of arrows originating at the box b.

The algorithm for establishing whether a box graph is acyclic
is based on the simple observation that removal of all boxes,
together with arrows originating at or pointing to them, for
which indeg(b)*outdeg(b)=0 will leave the subraph cyclic if

54

the graph is cyclic. If a graph is acyclic the procedure will
render the subgraph empty.

The cycle search is initiated by boxes north-west corners. For
every box the computation consits of two local phases,
checking phase, which may be repeated number of times for
the box, and erasing phase, which when entered is executed
only once for that box.

In the erasing phase each north-west corner propagates two
control bits, head and 1ail, along the box perimeter. The initial
values for these bits are zeros. The value of tail is changed to
one when at least one arrow-tail is found on the perimeter.
Similarly, the value of head is changed to one when at least
one arrow-head is found on the perimeter.

After at most 4n units of time (the maximal perimetr length of
any box), the north-west corner receives both control bits. The
next action depends on the value of the bits. When both are
ones this indicates that indeg(b)*outdeg(b)>0, i.e., there is at
least one arrow pointing to the box and at least one arrow
leaving the box. The north-west corner sets both bits to zero
and the checking cycle repeats.

In the case when indeg(b)*outdeg(b)=0 the north-west corner
initiates erasing phase. A single control bit erase is propagated
along the perimeter and further along all arrows leaving or
pointing to the box up to the point where another box is met.
When a processor receives the control bit ‘erase’ it marks itself
as erased and transmits the 'erase’ bit to all non-empty and not
erased neighbors. When the ‘erase’ bit is received by a
processor belonging to another box, which must be an arrow-
head or arrow-tail, the processor replaces the content of LPCR
register, which is the code of an arrow-head or an arrow-tail,
by the code of a line having the same direction as the direction
of the side the processor represented originally. This operation
removes one arrow-head or arrow-tail from the second box,
possibly changing the product of indeg and outdeg for that
box. The (local) erasing phase terminates at this point,
however a new (local) erasing may start at the second box.

It is clear that if the original box-graph is acyclic, the cycle
search procedure will terminate leaving all non-empty
processors marked as erased. The execution time is
proportional to the total number of marked processors. We
now prove this assertion. To do that we will use the standard
graph terminology. In addition, let card(b) and card((b1,b2))
denote the number of processors forming the box b and the
number of processors forming the arrow (bl,b2),
respectively. Finally, let card(G) denote the total number of
non-empty pixels forming the graph G. We are ready to prove
the main result of the paper.

Theorem 2:
If a box-graph is acyclic then the cycle serch procedure
terminates in time at most 3*card(G).

Proof: Without loss of generality we can assume that G is
connected.

As G is acyclic there is at least one box s, a source box, such
that indeg(s)=0 and outdeg(s)>0. Similarly, there is at least
one box t, a terminal box, such that outdeg(t)=0 and
indeg(t)>0.

Consider all source boxes b(1,1),b(1,2),..,b(1,i;), and all
arrows starting at these boxes. The arrows point at boxes
b(2,1),b(2,2),...,b(2,i5). Choose the source box b for which

the sum of card(b) and card((b,c)) of the longest arrow staritng
at that box is maximal. Let it be the box b(1,1) and the arrow
(b(1,1),b(2,1)). From the description of the cycle search
procedure it follows that after
2 * card(b(1,1)) + card((b(1,1),b(2,1)))

units of time all boxes b(1,1),b(1,2),..,b(1,i;) and all arrows
which started at these boxes are erased. (We take card(b(1,1))
twice as there are two traverses along the box perimeter, in the
first travers the product of outdeg and indeg is calculated, and
in the second, the erasing phase is processed).

Some of the boxes b(2,1),b(2,2),..,b(2,i,) in the resulting
subgraph may now become the source boxes for that subgraph
and some may have been partially or fully erased. Again,
consider all source boxes b(3,1),b(3,2),..,b(3,i3) and all
arrows originating at these boxes in the current subgraph.
Note that the intersection of the sets {b(2,1),b(2,2),..,b(2,i5)}
and {b(3,1),b(3,2),..,b(3,i3)} may be empty. Nevertheless, in
the current subgraph there is at least one source box.
Otherwise the subgraph would have been cyclis which is
impossible as the graph itself is acyclic. Choose the box b and
the arrow (b,c) starting at that box for which sum of card(b)
and card((b,c)) is maximal. Let it be the box b(3,1) and the
arrow (b(3,1),b(4,1)). After

3 * card(b(3,1)) + card((b(3,1),b(4,1)))

units of time all boxes b(3,1),b(3,2),.., b(3,i3) and all arrows
which started at these boxes are erased. (We count
card(b(3,1)) three times as now there may be up to three
trverses along the box perimeter. In the first travers the check
for the product of outdeg and indeg may still be negative. In
the second travers the fact that indeg=0 is discovered, and
finally in the third travers the erasing phase is processed).

As there are no cycles in the graph, the procedure must
terminate on one of the terminal boxes. This happens after

M=[2*card(b(1,1))+card((b(1,1),b(2,1)))]+...+
[3*card(b(2*m-1,1))+card((b(2*m-1,1),b(2*m,1)))]

units of time. But M<3*card(G) which completes the proof.
QED

In the worst case the procedure takes order of n**2 units of
time. The reason for this is that the longest "non-empty" path
cannot exceed the overall number of processor, which is
exactly n**2.

If there is a cycle in the graph, the procedure will not
terminate without the intervention of the outside control.
However, we know that after at most 3*n**2 units of time the
acyclic graph would have been erased. Thus after that time, if
there are still not erased processors in the array, the graph
must have cycles.

6. Conclusions

We introduced a concept of a box graph and proposed a
systolic algorithm for an nxn array of processors which
dedects cycles in a well defined box graph. The algorithm is
synchronous and its behavior in the worst case is proportional
to n**2. The memory requierement is constant per each
processor. When a graph is acyclic the algorithm can recognize
that fact in time proportional to the cardinality of the graph.
However, it cannot discover a cycle until "full time" n**2 is
reached. It is an open question whether it is possible to detect
cycle in time, say, proportional to the cardinality of a box

55

graph. This question is related to the another one. We assumed
that the array is synchronous. It is not known to the authors
whether the cycle search procedure could terminate if the array
operated in asynchronous manner.

In our considerations we assumed that the initial box graph
does not have flaws and that no arrow starts or ends at box
corners. The question is whether these assumption can be
relaxed while maintaining the execution time proportional to
cardinality of the graph.

7. References

1 G. Raeder. "A Survey of Current Graphical Programming
Techniques,” IEEE Computer, August 1985, pp 11-25.

2 H.T. Kung. "Why Systolic Architecture?," IEEE Trans.
Computer 15(1):37-46.

3 T.D. Kimura, J. W. Choi, and J. M. Mack. A Visual
Language for Keyboardless Programming. Technical Report
WUCS-86-6, Department of Computer Science, Washington
University, St. Louis, March 1986.

Show and Tell is a trademark of Computer Services
Corporation.

4 W.D. Gillett and T.D. Kimura. Parsing Two-Dimesional
Languages. Proc. COMPSACS86, Chicago, October 1986.

5 A.L. Fisher, HT. Kung, L.M. Monier, and Y. Dohl. "The
Architecture of a Programmable Systolic Chip," J. VLSI and
Computer Systems 1(2):153-169 (1984).

'LEARNING, RESEARCH, AND THE GRAPHICAL
REPRESENTATION OF PROGRAMMING

Robert P. Taylor
Nancy Cunniff
Minh Uchiyama

Center for Intélligent Tools in Education .
Department of Communication, Computing and Instructional Technology in Education

Teachers College, Columbia University
New York, New York

ABSTRACT

Although there are many programming languages, there
are few.alternatives in terms of presentation mode. This
paper describes the programming language FPL, a graphic
representation of classical programming. The premise behind
the design of FPL is that some novice learners: would benefit
more from a visual presentation of conceptual programming
structures rather than from the traditional textual
representation. FPL’s -interactive, graphic programming
environment, which supports the learner throughout the
programming process is discussed. This environment
provides a rich research ‘environment for the study of novice
programmers and the effect of this graphic programming
language. Preliminary research on FPL suggests that this
programming environment has a positive effect on the
-programs written by novices.

INTRODUCTION

Despite the number of languages available, the learner of
programming has few alternatives. Though there are many
detailed differences - encompassed by the range of most
programming languages available today, in one pedagogical
sense they afford no variety whatever: all rely exclusively on
text for representing ‘the program. For those teaching
programming-this is unfortunate. It means there is no graphic
alternative for the student who is more visually than textually
oriented.

This paper describes work addressing this problem. - It
involves FPL, a visually represented programming language,
and the interactive FPL environment used by novices for
learning computer programming.

The paper proceeds by successively describing:

. the contextual background;

. the FPL language; ‘

. the interactive environment in which FPL is used;

. FPL-based research on the learning of programming;
. concluding observations.

MAWN =

_CONTEXTUAL BACKGROUND: GRAPHICS AND
- ALTERNATIVES FORLEARNING TO PROGRAM

The work reported here assumes that a visual approach
to programming is an important alternative for many learners,

CH2345-7/86/0000/0056$01.00©1986 IEEE

56

‘alternatives available to them, in one sense, at least.

and discusses some appropriate development work and
resecarch based on that assumption. This first section
discusses the foundation for such an assumption.

Classical Programming

Classical programming refers to well-structured

- programming as done in‘a number of now well-established,

structurally similar languages such as Algol, Basic, Cobol,
Fortran, Pascal or PI/1. . A casual glance at programs written
in these languages makes one thing immediately obvious: all
are shaped by their adoption of our natural language. All use
words, punctuation, special characters and narrative sequence
to represent programs. In .particular, all use key words to
designate specific programming structures and to indicate a
program’s flow of control.

Classical programming is widely taught in educational
settings. However, it is not clear that the exclusively textual
representation characteristic of all the classical languages can
meet the needs of all types of learners equally well. Although
the sequential, linear nature of language may match the
computer’s organization (linear, sequential and rule-
governed), it does not necessarily match the way many people
think about problems and. problem solving, either on or off
the computer.

Graphics vs. Text

Although little is known about how graphics influence
learning, .intuition seems to suggest that the use of graphic
materials makes learning easier. "It is commonly
acknowledged ‘that the human mind is strongly visually
oriented and that people acquire information at a significantly
higher rate by. discovering graphical relationships in complex
pictures than by reading text"! (p. 12).

Educators. have long realized that not all learners have
identical ‘learning styles and preferences. Supporting
alternative learning styles by providing a variety of methods
and materials is an important and worthy educational goal.
Teachers and learners of computer programming have not had
The
textual focus of all of the commonly available languages
severely limits the learner’s options. A language that presents
programming graphically would provide visually oriented
learners with an appropriate alternative vehicle for learning
about programming,

A Graphical Approach To Programming

FPL graphically represents programming through the set
of 11 icons, each of which represents one programming
construct. Two icons are textless, the other nine include text,
in the form of variables and/or constants. Together, the icons
eliminate the need for key or reserved words, so variable
names and constants are the only textual elements in an FPL
program. Each icon is directly translatable into
corresponding text in a traditional classical language. For
example, Figure 1 shows the icons and their Pascal
translations.

In FPL the spatial arrangement of icons embodies the
flow of control so an FPL program is drawn, not listed.
Because they are entirely textual, traditional program listings
visually suggest sequential action, regardless of the actual
nature of the program flow. By contrast, an FPL drawing
more immediately indicates the program’s actual structure.
Refer to Figure 2 for a representative FPL program and its
textual Pascal equivalent.

Design Criteria ’
The design criteria were shaped by the underlying
purpose for FPL: to provide novices with a simple, visually
oriented alternative for learning classical programming.
These criteria can best be summarized by the following goals:
1. To reduce classical programming constructs to a
minimum set reflecting the underlying similarity of all
languages in this classical group;

2. To graphically represent each such construct with a
unique icon, and to represent the logic of
programming through these icons and the manner of
connecting and relating them;

3. To make each icon easy to draw and remember;

4, To implement the language in an easy to use
environment that provides extensive explanatory help
on demand and blocks any error with an immediate
and precise explanation.

The resulting system provides an alternative
programming vehicle for the student whose aptitude favors a
visual rather than a purely textual approach to learning and
remembering, in a supportive editing and testing
environment. It also provides a rich environment for studying
the programming process.

Readers who want a more complete description of the
FPL language should consult Programming Primer®, the FPL
icon design criteria, should see Taylor’s description®, and
those interested in the general visual programming context
should see IEEE’s Special Issue on Visual Programming?.

Visual Programming

Early attempts to define an' alternative mode for
representing logic in programming gave rise to standard
flowcharts. They became a widely used, popular vehicle for
planning and debugging program logic and - algorithms.
Despite on-going debate over the usefulness of this particular
tool, the value of graphical representation was recognized,
and many more attempts have been made to design viable
tools for graphically representing programming®. One
limitation of many of these early visual representations is that

they offer the programmer only a limited graphical .

representation; actual coding must still be done in standard
textual form.

Recent efforts to expand the use of visualization in
programming systems has given rise to the genre of "visual
programming,". defined by Grafton and Ichikawa® as

57

encompassing three distinct areas. of research: "graphic
techniques that provide both static and dynamic
multidimensional views of software, graphics-based very
high-level programming languages, and animation of
algorithms. and software" (p. 7). The field of visual
programming is a relatively new one, and much of the
development has focused on systems for graphic display of
the program flow and data values during execution and
debugging. Such systems make visual the dynamic nature of
a program. As Grafton and Ichikawa? point out, "...the ability
to see data flow and control structures of algorithms and
software as they execute will give software engineers and
computer scientists an ability to understand and ’feel’ the
action of software or algorithms" (p. 8). = Meyers® has
carefully reviewed many of these systems and has devised a
taxonomy for classification of the wide variety of languages,
environments and systems which claim to be "visual" in one
sense or another.

Systems employing any of the currently available visual
techniques can certainly help both novice and expert
programmers, but they often confine the use of graphic
representation to a limited subset of the actions involved in
the programming process. What is needed is an integrated
system that provides a programmer with a graphic tool for
program planning, an interactive, graphic, computer-based
interface for program writing, and a program execution
environment that permits examination of memory contents
while seeing data flow and control structures.. Such. a system
seems ideal for novices who are grappling with understanding
programming language constructs at the same time as they are
trying to understand how the computer actually acts on the
written program. An integrated, graphically represented
language would enhance understanding and simplify the cycle
of program composition, comprehension and debugging. It
ought to especially suit those novices who are more visually
than textually oriented.

The growing interest in visual programming suggests
that some developers, at least, believe graphic tools make it"
easier to understand ‘the complex action of the computer.
However, while intuition and. anecdotally - recorded .
observation may have persuaded many people of the viability:
of graphical systems, empirical research to confirm that
viability is still missing.

A firm understanding of the programming process, the
behavior of programmers, and the interaction of language,
graphics and programming achievement can only follow the
development of contrasting alternative. environments and
well-designed empirical research on their use. As a
graphically represented programming language, FPL and its
implementation constitute such an environment. The FPL-
based research described in the fourth section of this paper is
designed to illuminate specific aspects of the programming
process and thus contribute to our general understanding of it.

FPL (First Programming Language) reflects the structure
common to the entire family of classical languages and is
designed to facilitate learning that structure. However,
though it shares the structure, it does not share the exclusively
textual, keyword representation of that structure. Instead, FPL
uses iconic representation. The first two figures illustrate the
difference. Figure 1 presents the eleven FPL icons and their
equivalent in Pascal, a' representative classical language.
Figure 2 broadens the comparison by presenting parallel
versions of the same program.

CHECK FOR
NEGATIVE
INPUT |

CNT INTEGER 2
NAME STRING 12

lcur — 401) DATA] [l erint_oaral|

INTERNAL
DECLARATIONS

EPISODE ASSIGNMENT FILE OPEN BLOCK
VAR ent = 0; REWRITE(data); PROCEDURE print_dats
cnt : INTEGER; RESET(data);
F T
| cmf l CNT 94 CNT ¢ 10 .
EXTERNAL EXTERNAL T
ASSIGNMENT ASSIGNMENT
TO TRANSMIT TO RECEIVE WHILE EITHER
“WRITELN (CNT); . WHILE cnt < 10 DO IFent =5
READLN (cnt); BEGIN THEN
: BEGIN
END;
END
ELSE
(B A ‘L BEGIN
END
END END END
PROGRAM BLOCK DIGRESSION
END. END; END;

FIGURE 1: FPL lcons
with Pascal translations

e

COUNT INTEGER 3
SUM INTEGER 4
AVERAGE FIXED 4,2
NUM INTEGER 2

PROGRAM test(INPUT ,OUTPUT);
YAR
["Enter 10 numbers to be averaged.” & count : INTEGER:
sum : INTEGER;
average : REAL;
num : INTEGER;

! BEGIN
COUN T WRITELN(Enter 10 numbers to be averaged.);
- - sum :=0;
[‘Enter a number : "5 count := 0;
WHILE count < 10 DO
BEGIN
[suM ,SUM + NUM| WRITELNC'Enter @ number : *);
[COUNT <~ COUNT + 1] READLN(num);
. SUM :=sum + num;
: count :=count + 1;
END;
average := sum / count;
|AVERAGE « SUM / COUNT J WRITELN('The average is : ',average:4:2);
1 END.
["The average of the numbers is : ":aversge <>

FIGURE 2: FPL PROGRAM
and PASCAL TRANSLATION

58

THE FPL ENVIRONMENT:
STUDIO CREATION AND LAB TESTING

In one respect, FPL goes beyond the scope of many
other attempts at visual programming: the FPL environment
supports the user from the initial problem solving and
computer representation stage through debugging, refinement
and execution. The FPL environment runs on the IBM
PC/XT/AT family of microcomputers and has two parts, a
Studio and a Lab. In the Studio the program is created and
refined. Figures 3, 4, and 5 (discussed further below)
illustrate scenes of work in the Studio. In the Lab, the
program is executed and its execution monitored, via an
animated representation of the program, its I/O, and the
dynamic display of the value of user selected variables.
Figure 6 (also discussed further below) illustrates. with a
scene from the Lab. The Studio is discussed first and the
Lab, which is still in prototype, second.

4 N\
=TT TET TS TSR T
3 ;| |

S I X (M X (R) 1}
T - LT
------ i 1

A 4 E B D

I | . : .
/A _/ * §. Locate Tailor View Help Quit

G r4 L T \4 { Q

Enter a key letter :)

P
B - o
Enter a TARGET.
Enter { for help.
.
FIGURE 4: Sample icon entry screen
2 e
Trunk {2} of TEST
e
| “Enter score number : " : COUNT =--/-->
|
| SCORES[COUNT] ¢-=/--
. |
F | T
I ll- C SCORESICOUNT] <0) | |
) | (4)

| COUNT <--- COUNT +1 |

|
/N

L To resume, press RETURN

FIGURE S: Display of a single "trunk”

g —

Student name:

Press any key to continue,

PROGHH
BILLY

HECUTION

FIGURE 6: FPL LAB screen layout

59

The Graphi io: Pr ion and Editin

A student working in FPL is encouraged to sketch a
program first on paper, planning how to solve the problem.
When ready to enter or edit a version of his/her program, the
student invokes the FPL Studio.

From the studio, the user can create or refine his/her
program by adding new icons or by deleting, replacing or
modifying existing ones. When creating or refining, the user
focuses on a single icon, and the displayed context reflects
this, Figure 4, for example, illustrates a scene from a user’s
entry of an "I" or Internal Assignment icon; figure 7, entry of
an "X" or External Assignment icon. Though the user can
easily move in and out of broader visual contexts (see next
section, Program Viewing and Drawing), the immediate one
is that of the single icon. In that context, the user is
graphically prompted for each component of the entry (again,
see figures 4 and 7 for examples), in a set order, based on the
icon type. The user can freely intermix work on any icon
with access to and browsing within the help system (see
section below, System Support Features). The user can exit
from work on any icon via this help system, or following
system detection of any syntax error in the icon entry.

Enter . (End) : (Concatenate) or , (Tab)

Enter { for help.

(& —/

FIGURE 7: External Assignment icon prompt

While entering icons, the user is always returned to the main
entry prompt line (see figure 3) once entry of a specific icon
is completed. When refining generally, the user is returned to
a broader prompt to determine if he or she wishes to edit
further, and if so, where. In deciding where to edit, seeing
more context than a single icon is essential. For this, the user
must be able to scan all or part of his/her program.

Program Viewing and Drawing. There are two
different perspectives from which one can view the program

under construction: immediate and global. In the first, the
user can see the icons in the trunk currently being worked on.
In the second, the user can view any part of the program
whatever. Thus, though while working on a specific icon the
programmer sees only that one icon, more of the current
program can be viewed on demand. ‘

Immediate viewing (Figure 5) shows one vertical line, or
trunk, at a time, either the one being worked on, or any other
trunk the user chooses. If this doesn’t provide sufficient
context, once the user has finished entering any logically
complete version of his/her program, the system can create a
complete drawing of the program to date. At that point,
without leaving the Studio, the user can display the program
on screen (see Figure 8) or stop and print out a drawing of the
program on paper.

60

| COUNT INTEGER 2 |
| SCORES[10] INTEGER 2 |

;" :NUMBER --/-->

|
: | “Enter scores number
|

I | SCORES[COUNT] <--/--

To resume, press return.
\ i J

FIGURE 8: On-screen drawing

Program Preservation, When the programmer finishes
working on a program, it is saved on disk in an intermediate
representation form. At any later time, the programmer can
reenter the Studio, access that program, and work on it
further.

System Support Features. The FPL Studio offers
comprehensive support to the programmer throughout the
programming process by means of several special features
which are similar in many ways to features employed by
other grogramming language environments (e.g., Macintosh

Pascal’ and Support®).

1. Tailoring by the user. To better reflect the learning
styles and stages of different learners, the system can
be moderately tailored by the user, to control how
often he or she will be prompted to accept or cancel an
entry. The user can select any of three frequency
levels of such verification prompting :

a. Beginning user : user verification required
upon entry of each icon component and upon
completion of each entire icon;

b. Familiar user : user verification required only
at the completion of each entire icon;

c. Competent user : no verification required;
assumes user can edit if required.

The last enables the experienced user to work quickly;
the first and second allow less experienced users to
proceed more cautiously, at either of two lesser
speeds.

2. On-line help. The Studio includes a comprehensive
on-line help facility. At any point, the user can get
help by means of a character reserved for this purpose.
The system’s response allows the user to either see an
explanation specific to the immediate context, (see
figures 9 and 10 for examples) or by going through a
hierarchical menu structure, to access help on virtually
any aspect of FPL (see figure 11). Following the
invocation of the help system, the user may either
continue from the point of interruption or cancel the
entry or edit attempt which raised the need for help.

-
Okay, at this point,
here are the alternatives open to you:

Your entry The FPL software response

E Explain the entry just requested

M Display a Menu for various explanations
related to this entry

c Cancel this entry al together

} Forget the interruption and continue

Enter E, M, C, or } :

. J
FIGURE 9

Help System main prompt

4 N\

There are 2 different kinds of external assignments :
T (Transmit) and R (Receive)

The T type transmits information to the external world:

Enter M for More help on this subject,
S to Skip the rest of this help :

(. S

FIGURE 10: Sample help message

(‘on which topic would you like h
a MENU of explanations?
ENTRY Subject of Menu
G General Interest
D Declarations
A Assertions (in whiles and eithers)
X eXternal Assignments
| Internal Assignments
P Prompts at main entry line
} forget further explanations
Enter your choice: G, D, A, X, |, Por } :
. _/

FIGURE 11: Help System sub-prompt

3. Context driven error messages. The FPL Studio also
includes immediate, comprehensive syntax error
detection, and follows the detection of any illegal
entry with a message informing the user of the exact
error, explaining why it is an error. It then prompts
the user to either enter an appropriate choice or to
cancel the entry altogether. An example appears in
Figure 12. As a result, every completed FPL program
is free of syntax errors and can be executed. This
comprehensive error screening moves the novice
programmer directly to the logical level of debugging
without waylaying him/her in a swamp of
indecipherable or misleading compiler messages.

61

—

The target TYPE and the expression TYPE do not agree
NUMERIC <--- STRING
The assignment cannot be made.

Enter A (to enter an Alternative), or
S (to Skip thes icon entirely) :

| SCORESICOUNT] <——— NAME |

\ Enter { for help J

FIGURE 12:

The FPL Lab: Executing and Monitoring the Program

Since the FPL Studio always produces executable code,
the learner can immediately execute his/her program upon
leaving the Studio. However, simply executing it in
traditional fashion may do little to help the novice understand
the dynamics of any logical shortcomings. Given the aims of
FPL and the support it provides for program development,
such minimal execution support was inappropriate.
Consequently, we began to develop the FPL_Lab, as an
interactive, animated environment for program execution. It
completes FPL as a visual language, rounding out the
planning - entry - execution - debugging - refinement cycle in
a highly visual manner. The FPL Lab described below is a
prototype for the system we are developing.

Screen Design. The FPL Lab divides the screen into
four windows. See Figures 6 and 13 for typical screen scenes
from the FPL Lab. Each window is dedicated to the
presentation of one particular type of information. The
windows are :

1. the user’s FPL program drawing (in reduced size);

2. the precise icon being executed;

3. the contents of memory for one variable;

4. the normal I/O of the program.

Sample error message

The largest window, "FPL Program," displays a miniature
version of the program drawing. (To conserve space, all
icons there are reproduced without text, in outline only.) It
reveals the path of program execution by moving a lighted
"blip" about the miniature, from icon to icon, as each icon is
actually executed. Because space is so limited, even in this
miniature form most program drawings do not entirely fit in
this window. To overcome this limitation, the system shifts
the window’s contents to show the executing portion of the
program,

Since the Lab drawing of the program is textless, as each
icon is executed, a full scale version of that icon, including
any datanames and constants, is displayed in the "Program
Icon" window.

The "Storage" window displays the data value in
memory for any program variable the user selects, to help
him/her realize how variables work, and to show where and
when data values change.

Dynamic Program Representation. By comparing the
currently displayed icon, the memory values in the storage
window, and the textless program drawing, the user can
clearly see where, why, and when values are getting changed.
In short, the novice programmer "sees" the dynamics of
execution, a prerequisite to developing a real understanding
of what a computer program is.

Modes of operation. The FPL Lab has two modes of
operation: Step Mode and Quick Mode. In Step Mode (see
Figure 12), the program is executed one element (one icon) at
a time at a rate under user control. All four windows are
active to provide maximum visual feedback about all aspects
of the program.

In Quick Mode (see figure 14), only two windows are
active: "FPL Program" and "Program Execution”. The user
can watch the blip traverse the miniature program and can see

the normal output and input through the "Program Execution” _
window. This mode does not display individual icons or ™

storage values. It pauses only for the particular input entries
required by the program, and between pauses it moves at a
fixed and rapid pace.

RESEARCH: ASSESSING THE HELP FPL AFFORDS
NOVICES

FPL was designed originally as a language for novices.
We have continued to focus on that group, and have
developed the FPL environment so that it can be used as a
research laboratory for the study of the learning of
programming.

Visual vs Textual Programming; B i

Two recently completed pilot studies have indicated that
FPL may help novice programmers avoid some programming
bugs commonly found in beginners’ programs®!®. Both of
these studies compared programs written in FPL with Pascal
solutions to the same problem. The results of these studies
suggest that FPL’s graphic representation may help beginning
programmers avoid some common programming pitfalls.
Specifically, several types of syntax-related conceptual bugs
evident in Pascal programs are eliminated in the FPL
solutions. Also, bugs related to updating and initializations
were considerably more common in Pascal solutions than in
the FPL programs. There were some indications, however,

—r

that there are classes of bugs that appear to be language
independent, and thus have less to do with the language of
implementation than with the programmer’s understanding of
the flow of control of the program.

The results of these initial investigations were intriguing,
and we plan to continue this line of research with an eye
toward identification of ways of helping novices to avoid
conceptual bugs and to develop methods of effective
debugging. We think that development of a tool such as the
FPL Lab may be an important step in this process of
identification.

Study of On-Line Help and Errors

We have also recently completed a pilot study of FPL’s
on-line help system!!. The study investigated the use of the
help system by experienced and inexperienced computer
users. The results indicated that although computer-
experienced users seemed to use the help facility more than
inexperienced users, by the end of several weeks of work
using FPL, most users no longer asked for help at all. .

For extended analysis of both the help and error sub-
systems, the system records, by date and user identification
number, all help requests and error messages generated.
Analysis of this usage data pinpoints user difficulties with the
system, and provide general insight into the process of
learning programming. The resulting information is being
used to inform instructors about difficulties they are having
with introductory programming assignments.

Influence of Graphics on Learning

We continue to be intrigued by the influence of graphics
on learning, particularly in relation to programming. To
investigate the effect of the graphical interface of FPL, we are
beginning to study how learners with different learning
aptitudes use it. For example, we are investigating whether
learners with high spatial aptitudes understand and learn
programming more effectively when using this visual

PROGRAN LZON - - ¢

AGEGROUP

e

r—wm_
B0

AGEGROUP

FROGRAN ERECUTION

Student name: BILLY
Class (A/nt or M/ath): A
fge group (1) or (2)) |

|8 |

=
T

Press any key fo continue,

FIGURE 13: FPL LAB/STEP MODE

tive o~ FRL FROGRAN .

(e,
T |

g
U

|

- PROGRAN EAECUTION I

Student name:
Class (Wath or &/pt) 4

BILLY

FIGURE 14: FPL LAB/QUICK MODE

approach than when using a traditional textual approach. One
study now in design will compare comprehension of FPL
programs with comprehension of programs written in a
textual language.

We are also in the process of developing a non-graphic
version of FPL to be used in a full-scale study of novice
programmers. It will preserve the interface design as much as
possible, limiting the changes to replacement of the graphic
icons by key words. This will facilitate a comparative study
of a graphic and non-graphic language without the
confounding effects introduced by comparing subjects using
two entirely different editing and execution environments.
Such a study will address the question of whether a graphic
approach to programming is really more appropriate for some
learners than is a traditional, textual approach. Through a
group of such studies, we hope to prove that alternative ways
of teaching and learning programming are important in light
of the fact that learners are so different one from another.

SUMMARY

This paper describes the graphically represented
programming language FPL, the environment in which the
FPL user works, and some preliminary evaluative research.
The premise for the development of this system is that for
many learners, a language and environment that provides a
consistent, graphical representation throughout the
programming process is an appealing and effective
alternative, We theorize that the consistent visual approach
of FPL makes the abstract world of computer programming
more concrete, and consequently, helps at least some novices
to learn to program more easily and more effectively.
Furthermore, because we believe that it can be empirically
demonstrated, we have begun a series of studies aimed at
testing our theory.

Although our preliminary research does not conclusively
prove that FPL improves a novice’s learning of programming,
it certainly suggests that this alternative, graphic approach to
improve the lot of the visually-apt, would-be programmer
merits further exploration.

63

References
[1] Raeder, G. (1985, August). A survey of current graphical
programming techniques. IEEE Computer (pp. 11-25.)
[2] Schneyer, R. (1984). A survey of graphic algorithmic
representation techniques. Interface. Spring. (pp. 38-48).
[3] Grafton, R. B., Ichikawa, T., eds. (1985, August). Special
Issue on Visual programming IEEE Computer. (pp. 6-9.)
[4] Myers, B. A. (1986). Visual Programming, programming
by example and program visualization: A taxonomy. Human

Fg6g6t)or§ in Computer Systems: Proceedings of CHI'86 (pp. 59

[5] Taylor, R. P. (1982).
MA.: Addison-Wesley.
[6] Taylor, R. P. (1985). FPL: Graphical representation of
classical programming. Teachers College, Columbia
University: Department of Communication, Computing and
Instructional Technology in Education.

[7] Macintosh Pascal. (1984). Lexington, MA: Think
Technologies.

[8] Zelkowitz, M. (1986). The SUPPORT Environment for
the IBM PC. University of Maryland.

[9] Cunniff, N., Taylor, R. P., and Black, J. B. (1986). Does
programming language affect the types of conceptual bugs in
novices programs? A comparison of FPL and Pascal. Human
Factors in Computer Systems: ings of CHI'86 (pp.
175 - 182).

[10] Cunniff, N., Taylor, R. P., and Taylor, S. J. The effect of
programming language on the conceptual bugs in novices’
programs: A comparison of FPL and Pascal. (In press.)

[11] Taylor, S., Taylor, R.P. & Cunniff, N. (1985). The use
of on-line help in a programming environment. Teachers
College, Columbia University: Department of
Communication, Computing and Instructional Technology in
Education.

mming primer. Reading,

COMMAND LANGUAGE SUPPORT FOR APPLICATION PROGRAMS

Christine Genet

Grumman Data Systems Corporation
1000 Woodbury Road

Woodbury, New York

ABSTRACT

Efficient data analysis programs.must maxi-
mize the productivity of the data analyst/
computer combination. To do this, the ana-
lysts must be able to use the progranm
easily and efficiently. Thus, the human-
computer interface .is crucial to the design
of an effective data analysis program. We
develop an interpreter entitled KEYLAB that
allows an application programmer to create
programs driven by an English-like command
language that 1is based on the functional
decomposition of the applications require-
ments. We also develop a code generator
named "Keystone that creates the code neces-
sary for the human-computer interface. The
combination of these two programs allows a
programmer to develop an application pro-
gram with minimum effort and maximum uni-
form connection to functional requirements.

INTRODUCTION

Several types of human-computer interfaces
exist in 1industry today. These include
menu-driven systems, fill-in-the-blank
systems, and parametric systems. Menu-
driven systems are common in the micro-
computer industry where users tend to be
novice computer users. Parametric systems
are used in applications such as airline
reservation systems. Fill-in-the-blank
systems are common in engineering environ-
ments since these applications vrequire
input of alphanumeric values, integers, and
floating point values ! . KEYLAB (the
KEYword LAnguage Builder) is an interpreter
that helps application program designers
create a system that 1is controlled with
keyword commands, yet has characteristics
of a fill-in-the-blank system. The appli-
cation program designer designs the command
language so that the number of user type-
ins is minimized, thus making the program
easier to use. A programming aid entitled
Keystone uses the command language design
specification and generates the Fortran 77
code necessary to provide “the specified
command language. These: programs have

CH2345:7/86/0000/0064$01.00©1986 IEEE

11797

proven to be useful for our applications.

In a KEYLAB program, the user controls the
program flow by entering a series of key-
words and their associated arguments. The
complete set of keywords for a given appli-
cation program is called a command lan-
guage. The KEYLAB parser detects syntax
errors in the command string and immediate-
ly issues error messages to the user.

Command 1languages are based on the func-
tional decomposition of the problem. When
the program designer designs the command
language, he takes human factors into ac-
count to try and make the command language
more useable. Thus, the final command lan-
guage is somewhat different from the origi-
nal functional decomposition.

An example of a simple command language is
given by the following structured list. The
strings in quotations are short descrip-
tions of the keyword functions.

ARTIST
PICTURE "Display the picture”
SET "Set variables"
ROW "Screen rows"
HELPSET "Display HELP"Y
COLUMN "Screen columns”
BRUSH "Drawing symbol"
SCREEN "Background symbol"
STOP "Terminate program"
HELPART "Display HELP"
DISPLAY "Display variables"
DRAW "Draw X1,Y1 to X2,Y2"

A code generator named Keystone reads this
structured list and generates Fortran code
with stub-subroutines at each leaf of the
tree (e.g. ROW, COLUMN). The programmer
then completes the Fortran code for each
stub so that his program performs the de-
sired function. If a keyword (ex. ROW)
requires input, then the programmer ‘adds a
call to a KEYLAB subroutine to get this
input. The programmer compiles the Key-
stone-generated code, and his own code and
then 1links it to the KEYLAB 1library of
subroutines to complete the application
program.- Using Keystone leads to more co-

herent software design since the applica-
tion programmer concentrates primarily on
coding the analytic sections of the code
instead of on coding the human-computer
interface.

Command languages have proven to be an
effective human-computer interface for
various data analysis programs at Grumman.
TASKX, an advanced aircraft flutter anal-

ysis program 2 has used the KEYLAB proto-
type for three years and several new KEYLAB
codes are being developed now. Both appli-
cation programmers and program users -are
satisfied with the KEYLAB and XKeystone
programs.

KEYLAB - The KEYword LAnguage Builder

The application program users control KEY-
LAB : program execution .by typing keyword
commands in response to prompts. The combi-
nation of a command language heirarchy and
programmer-added syntax specify the valid
sequences of commands. KEYLAB scans the
input string from 1left to right without
backtracking. KEYLAB terminates scanning
and issues a message immediately when it
finds a .syntax error. KEYLAB also contains
simple help facilities to help the user.

PROGRAM FLOW

The command language heirarchy can be
thought of as a set of connected diction-
aries of command keywords. Each dictionary
in the command language is called a mode,
and each mode contains keywords which
either link to other modes, or cause execu-
tion of one of the program's analytical
functions. The tree structure in Figure 1
depicts a command language heirarchy with
seven dictionaries: COMMAND, INPUT, OUTPUT,
TABULAR, GRAPHIC, INTERACTIVE, AND TAPE.

The user controls the branching through
these modes by entering keywords. When the
user types "OUTPUT GRAPHIC" from the com-
mand level, execution transfers to the
GRAPHIC mode. If the user then wants to
execute a command in the INTERACTIVE mode,
he must enter a keyword which transfers
execution to the COMMAND mode (e.g. INPUT).
The user then enters the keywords to trans-=
fer program execution through the INPUT
mode to the INTERACTIVE mode. KEYLAB pro-
vides no facility to transfer program exe-
cution from the GRAPHIC mode to the INTER-
ACTIVE mode without first returning to the
top of the command 1level tree structure.
The command language designer takes this
into account when he designs the command
Jlanguage heirarchy.

KEYLAB FEATURES

When users forget what keyword to type,
they can type in a "?" at any point in the
program execution to see the currently

65

LEGEND:
mobe O

TABULAR

Figure 1. Example Command Language Design

available keywords. Also, if they are not
at the top of the functional decomposition,
"?2?" shows the keywords that the user can
type up to the top of the decomposition.
For example, if the user is in the. INPUT
mode in Figure 1 and enters "?", he will
see:

THE CURRENTLY AVAILABLE KEYWORDS ARE:

INTERACTIVE TAPE

If he enters "??" from the same point, he
will remain in the current 1level and see

keywords up to the top level.
THE CURRENTLY AVAILABLE KEYWORDS ARE:

INTERACTIVE
INPUT

TAPE
OUTPUT

They can also type in any keyword with the
substring HELP to 1list out the keywords
with a brief description. For the .simple
command language in the introduction, typ-
ing in HELPSET yields the following HELP
screen:

ROW - Number of rows in screen
COLUMN - Number of columns in screen
BRUSH -~ Drawing symbol
SCREEN - Background
KEYLAB has a feature that allows the users

to create their own procedures. Procedures
specify a sequence of program functions to
solve a specific problem. The wusers can
create these procedures before they run the
KEYLAB program by using the system editor.
They can also create these procedures by
using the KEYLAB procedure 1line editor

named KEDIT. KEDIT 1lets the users edit
procedures while they are running the ap-
plication program. Thus, a user executes a
procedure interactively by typing in the
procedure name. He then examines the re-
sults, modifies the procedure with KEDIT
and reruns the procedure. KEYLAB checks
procedure as well as interactive type-in
syntax.

KEYLAB stops parsing the input string when
a syntactically incorrect token is encoun-
tered. For example, if the user types in
"ROW 20 CO1", KEYLAB detects an error on
the third token in the string. Since it is
an undefined keyword, KEYLAB stops parsing
the string, issues an error message, and
reprompts the user. This ensures that the
system is reliable regardless of a user

error in keyword syntax 3 .

The application program detects other er-
rors such as range checking errors and
syntax errors and directs KEYLAB to issue
an error message. For example if the user
types in "SET A "5.0" and the valid range
for A is 10 < A < 20, then the application
program tells KEYLAB to stop parsing the
string. KEYLAB then issues the error mes-
sage, and reprompts the user.

DESIGNING A COMMAND LANGUAGE

Previous sections mentioned that a command
language for a program 1is based on the
furictional decomposition of the program,
but is modified to account for usability.
The command language design process is non=
trivial and is essential for an effective
-application program design. This is a four
step process.

The first step is to organize the require-
ments for the program on paper. The second
step is to decompose the overall problem
into a tree diagram and to assign keywords
to each function on the tree diagram. The
third step is to minimize the number of
keywords that the user has to type in. The
fourth step is to develop the command syn-
tax requirements for the command language
by imposing a logical order on the keyword
type-ins. This section describes each step
in the command language design process for
an example program named Artist.

The method of organizing requirements for a
given software system 1is chosen by the

application program designer . Here, we
state the objective of the program and then
describe the functions in the program that
accomplish this objective. The Artist ob-
jective is:

Artist allows the program user to
draw lines on a terminal screen.

To do this, the program user must be able

66

to do the following:

the number of rows on screen
the number of columns on screen
Choose a brush symbol

Choose a background symbol

Draw a line from X1,Y1 to X2,Y2
Display what was drawn

Display all variables that were chosen
Terminate the program

Choose
Choose

The second -step in the command language
design process is to organize these re-
quirements into a functional decomposition.
In our case, we will create a decomposition
with four modes; SET, KEDIT, .DISPLAY, and
ARTIST. The ARTIST mode contains the key-
words SET, STOP, KEDIT, HELPART, DISPLAY,
and DRAW. The SET mode contains the key-
words ROW, HELPSET, COLUMN, BRUSH, and
SCREEN. The DISPLAY mode contains the key-
words COLUMN, BRUSH, PICTURE, HELP, SCREEN,
and ROW. The SET mode allows the user to
set values for the desired variables. The
DISPLAY mode allows the user to view what
he has drawn and the variables that were
set. The STOP keyword allows the user to
terminate the application program. The
KEDIT keyword allows the user to make use

of the KEYLAB run-time editor. The HELP
keywords display a 1list of the current
keywords and their definitions. The DRAW

keyword allows the user to specify a start-
ing and ending point for a line. Figure 2
shows the entire functional decomposition
for Artist.

The third step in command language design
is to try to minimize the users type-ins by
changing the decomposition. This is easily
done by following two simple rules:

1. Decrease the depth of the decomposition
by eliminating modes

2. Change the functionality of keywords to
eliminate keywords.

If the user ran the program corresponding
to the functional decomposition in Figure
2, he would have to type in the following
command string to set all of the desired
variables and display them.

SET ROW 10 COLUMN 20 BRUSH "*" SCREEN
".," DISPLAY ROW COLUMN BRUSH SCREEN
To draw a line on the screen, the user

would type in the command string:

DRAW 1,1 5,5 DISPLAY PICTURE

To simplify this command string we can add
a keyword to the ARTIST mode named PICTURE
that displays +the picture, and we can
change the DISPLAY mode into a keyword that
displays all of the variables that were
set. This modified decomposition is shown
in Figure 3.

LEGEND:
MODE (@)
KEYWORD [

sTOP

HELPART DRAW

ROW HELPSET | | coLumn BRUSH SCREEN

COLUMN

BRUSH PICTURE HELP SCREEN ROW

Figure 2.

LEGEND:
MODE (@)
KEYwWoRD £

PICTURE SET sToP

ROW HELPSET | | COLUMN BRUSH SCREEN

Figure 3.

The new command string to set and display
all of the variables with four fewer tokens
than before is:

SET ROW 10 COLUMN 20 BRUSH "¥" SCREEN
w.m DISPLAY

The new command string to draw the line is:

DRAW 1,1 5,5 PICTURE

With this acceptable sequence of type-ins,
the program designer now adds rules to the
command syntax so that the user is forced
to type in keywords in the correct order.
For example, the user should not draw until
he has selected both brush and screen sym-
bols. This means that the programmer
doesn't let the user execute the DRAW com-

Artist Functional Decomposition

ARTIST

KEDIT

67

HELPART DISPLAY DRAW

Command Language Design

mand until BRUSH and SCREEN have been set.

This syntax is known as Reverse Polish
Notation > and helps to minimize the user
type-ins. In our example, the syntax rules
are:

1. Set BRUSH before DRAW.

2. Set SCREEN before DRAW.
3. Set ROW before DRAW.
}; Set COLUMN before DRAW.
5. DRAW before PICTURE.

This completes the Artist command language
design. In Artist, we have only considered
the case of one user input per keyword as
in the case of ROW, or COLUMN. When more
user inputs are desired per keyword, then
the command language designer has to con-
sider the possibility that the user may

want to go back and change only one vari-
able out of the entire string of inputs.
Guidelines that we have found useful are:

1. When your program user is not likely to
change one variable at a time (no mis-
takes), then you can program up to
approximately seven inputs per keyword.

When your program user 1is 1likely to
change one variable at a time (to
change only one parameter in an analy-
sis) then it is better to program only
one input per keyword.

The following section describes how to take
your final command language design, gener-
ate a code skeleton using Keystone, and
then add the code necessary to complete the
application program.

KEYSTONE
Keystone allows the application program
designer to specify a command language and
generate an executable program skeleton

that runs with the specified keywords. The
application program designer then adds the
keyword functionality and syntax to com-
plete the application program.

The programmer writes the command language
design in the Keystone input file. Succes-
sive indentations 1in this file correspond
to successive levels in the tree diagram.
The input file for the example program
Artist is shown in Figure 4.

ARTIST
PICTURE
SET

ROW
HELPSET
COLUMN
BRUSH
SCREEN
STOP
KEDIT
HELPART
DISPLAY
DRAW

Figure 4. Artist's Keystone Input File

Keystone reads this structured 1list and
generates Fortran code with stub-subrou-
tines corresponding to each keyword at each
leaf of the tree (e.g. ROW, COLUMN, LINE,
DISPLAY). The stub-subroutines contain
print statements to which the programmer
later replaces with the code for the key-
word function. A stub subroutine looks like
this:

SUBROUTINE row

Print (6,%*) 'Code for ROW goes here'
RETURN

END

68

-successfully

The programmer compiles this code and links
it to the KEYLAB library. He then runs this

skeleton via the command language that was

specified in the functional decomposition.

Thus, when the programmer runs the program

corresponding to the decomposition in

Figure 3 and types in the commands "SET ROW

COLUMN DISPLAY", the program outputs the

following lines:

The code for ROW goes here
The code for COLUMN goes here
The code for DISPLAY goes here

As the programmer develops analytical por-
tions of the code, he substitutes them for
the Keystone-generated Print statements. If
the keyword requires input of a real,
integer, or alpha- the programmer adds a
call to a KEYLAB routine. This call tells
KEYLAB what type of input (e.g. real input,
alphanumeric input) to expect the user to
enter at this point. To make sure that the
program is reliable regardless of an error
in the value of a number input, the appli-
cation program must check that the number

input by the wuser 1is within a certain
range. The program then calls a KEYLAB
subroutine that 1issues an error message

such as "0 < ROW < 20".

The programmer also adds code so that the
syntax specified in the command language
design is present in the final application.
For example, the program must check to make
sure that the user SETs all variables such
as SCREEN, ROW, COLUMN, and BRUSH before he

attempts to DRAW a 1line. Thus, the user
runs the application with the keywords
specified by the program designer and the
syntax 1imposed on the command 1language
heirarchy.
EXPERIENCE WITH USE

In general, application program users,
programmers, and managers have been satis-

fied with the capabilities of KEYLAB and
Keystone as a method of human-computer
interaction and as a code generation pro-
gramming aid. These programs have been used
in data plotting application
programs, aircraft trajectory estimation,
flutter analysis, and others.

Program users find that it is easy to con-
centrate on their analysis while they are
controlling the application program with
keyword commands. They also 1like consis-
tency of the ‘human-computer interface
across applications. Once they know KEYLAB
features from learning one KEYLAB program,
they can easily learn another KEYLAB pro-
gram. Users like the procedure file capa-
bility since it allows them to set up a
procedure with large groups of frequently
executed commands and interactively enter
any additional input that they need to
complete the analysis. They can use these

same procedures in either the interactive
or batch mode. . -

The programmers' programming time is con-
centrated on the analytical sections of the
code instead of on the human-computer in-
terface details. Programmers also tend to
produce easily maintainable code since the
command language structure forces the pro-
grammers to write modular code. Also,
programmers who write ANSI-standard Fortran
77 write portable code since the generated
code is all portable.

From a manager's perspective, the Keystone
input file provides a quick and simple way
to verify that a given application program
satisfies all of 1its functional require-
ments. This input file can be used to pro-
vide a working skeleton of the human-
computer interface to the end-user before
the programmer adds the functionality to
the keywords. Thus, the user interface can
be designed and tested separately from the
analytical portions of the code.

The primary complaint with the existing
system is that Keystone is initially frus-
trating to wuse Dbecause the input file
structure is error-prone. Once a programmer
has developed a successful template input
structure, this problem is alleviated and
Keystone users are generally satisfied with
the ease with which they can subsequently
modify their command language structure by
adding or deleting modes and keywords.

The input file structure to Keystone could
be changed to a less error-prone type of
input file such as the Backus-Naur form
(bnf) 6 . Currently, the Keystone code

generator is adequate for even our largest
(25,000 Fortran lines) stand-alone applica-

tion programs so there is no reason to
change the input file structure at this
time.

It will probably be useful to incorporate

some table-driven range-checking into KEY-
LAB so that the application programmer
doesn't have to add code to check the range
of user input. Thus, KEYLAB would then
detect both type and range errors. This
would place the burden of making sure the
system is reliable regardless of user error
on the KEYLAB interpreter instead of on the
application programmer and would provide
more consistent error messages to the user.

CONCLUSTON

The KEYLAB interpreter provides a conven-
ient and simple way to control a scientific
application program. The command language
design and the KEYLAB features add to the
flexibility of the application program.

Command language designers go through a
four-step process when they design a com-

mand language. First, they organize the
requirements for the program on paper.
Second, they organize the problem into a

tree design and assign Keywords to each
function. Third, they minimize the number
of keywords. Finally, they impose rules on
the command language structure to create a
language syntax.

The Keystone program allows a program de-
signer to quickly implement a language
design into executable code. Once the com-
mand language is finalized, the programmer
adds the analytical sections of code and
the command syntax to the program. Also, if
the command language design 1is changed
later, the input file can easily be modi-
fied to account for these changes.

Both users and application programmers are
satisfied with the KEYLAB interpreter and
the Keystone code generator. In the future,
however, the Keystone input file structure
may be changed to make it less error-prone.
KEYLAB may also be modified to detect out-
of-range input errors.

REFERENCES

(1) Schneiderman, Ben, Software Psychology:

Human Factors in Computer and Informa-

tion Systems, Little, Brown, and Co.,
Bogton, Massachusetts, pp. 238-241,
1980.

(2) Russo, M.L., Richards, P.T., and
Perangelo, H.J., "Identification of
Linear Flutter Models,"™ presented at
the AIAA 2nd Flight Testing Conference,
Las Vegas, Nevada, November 16-68,
1983.

(3) Wasserman, Anthony I., Pircher, Peter
A., Shewmake, David T. "Building Reli-

able Interactive Information Systems",
Vol. SE-12, p. 147, 1986.

69

(4) Barnard, H., Metz, Robert F., and
Price, Arthur L., "A Recommended Prac-
tice for Describing Software Designs:
IEEE - Standards Project 1016" IEEE
Transactions on Software Engineering,
Vol. SE-12, pp. 258-263, 1986.

(5) Tenenbaum, Aaron M., Data Structures
Using Pascal, Prentice - Hall, Inc.
Englewood Cliffs, New Jersey, 1981.

(6) Pratt, Terrence W., Programming Lan-
guages: Design and Implementation,
Prentice-Hall, Inc., Englewood Cliffs,

New Jersey, pp. 301-308, 1975.

ARTIFICIAL INTELLIGENCE ARENA

Artificial Intelligence Technology

TRACK CHAIR: Dr. Elaine Kant
Schlumberger Doll Research Center

Computer Vision

TRACK CHAIR: Prof. John Kender
Columbia University

Robotics

TRACK CHAIR: Prof. Richard Paul
University of Pennsylvania

Rule Based Systems

TRACK CHAIR: Prof. David Rine
George Mason University

Natural Language Processing

TRACK CHAIR: Prof. Robert Wilensky
University of California at Berkeley

SURVEY OF IMAGE QUALITY MEASUREMENTS

Ikram E. Abdou - Nicolas J. Dusaussoy

Department of Electrical Engineering
University of Delaware
Newark, DE 19716

ABSTRACT

Image quality is one of the most important fac-
tors in the evaluation of any imaging system. This
measure can be used to compare the performance
of the different systems and to select the appro-
priate processing algorithm for any given appli-
cation. Image quality can be defined in general
terms as an indicator of the relevance of the in-
formation presented by an image to the task we
seek to accomplish using this image. Although
there are many techniques developed to measure
image quality, little has been done to unify the
various concepts, or to test their relevance to spe-
cific applications. In this paper, we address the
various issues related to image quality. We begin
with a survey of the various factors that should
determine the image quality measures. Then, we
review and analyze the different analytical meth-
ods used in measuring the image quality for both
image processing and image understanding appli-
cations. We survey experimental approaches to
evaluate image quality in another section. Finally,
we discuss some of the advantages of image quality
measurements.

1. INTRODUCTION

The most important factors in the evaluation of any
imaging system are the system cost, the processing speed,
and the quality of the produced images. While the system
cost and speed are dependent on many factors including
the advancement in technology and the progress in hard-
ware and software implementation, the image quality is
a technology-independent measure, which can be used to
compare the performance of the different systems and to
select the appropriate processing algorithm for any given
application. Image quality is determined by the relevance
of the information presented by the image to the task we
seek to accomplish using this image. Image quality can
be divided into image fidelity, which measures the depar-
ture of a processed image from some standard image, and
image intelligibility, which denotes the ability of man or
machine to extract relevant information from an image.!

Image quality is calculated for various applications
of imaging systems for which three different aspects of
quality evaluation appear. First, quality evaluation tech-
niques are necessary to measure the performance of an
imaging device; the high performance of a system is usu-
ally indicated by the good quality of the final product.
The second aspect is that quality evaluation techniques

CH2345-7/86/0000/0071$01.00©1986 IEEE

71

are the basis for the design of any image processing or un-
derstanding system as they form the framework for the
optimization of the system. Finally, a very important
aspect is assurance; quality assurance receives great at-
tention because in many cases, it is necessary to ensure
the presence or non-presence of features of interest in an
image.

The techniques developed to measure image quality
depend on the field of application. As we will see later,
such applications are diverse and, therefore, there is no
single standard procedure to measure image quality.
However, there are some basic concepts that are reflected
in the image quality measures. A summary of these ideas
is given in [1, 2, and 3.

In this paper, we address the various issues related
to image quality. We begin with a survey of the various
factors that should be considered in determining image
quality measures. Then, we review and discuss the dif-
ferent analytical methods used in measuring the image
quality for both image processing and image understand-
ing techniques. We survey experimental approaches to
evaluate image quality, in another section. Finally, we
discuss some of the advantages of image quality measure-
ments.

2. FACTORS DETERMINING IMAGE QUALITY

In defining image quality, there are various factors re-
flecting the field of application, the end user, the param-
eters and characteristics of the system being evaluated.

2.1. The Field of Application

The field of application should affect the choice of an
image quality measure because it determines the charac-
teristics of the imaging task we would like to evaluate.
These characteristics, specific to each field, are very well
known in various applications including text reproduction
that deals with binary images,*> medical radiology,%7:8
industrial inspection,® 10 and aerial photography.® Prac-
tical image quality measures must evaluate these charac-
teristics and therefore, may vary according to the field of
application. More general areas, where the evaluation of
image quality is also of prime importance, such as image
transmission,!! general optical systems,?12 and electronic
image display,!® deal with several kinds of images. Qual-
ity measures should evaluate the overall performance of
these systems. They are usually standard methods that
can be used in most applications of these systems and they
resume to rate image fidelity and image intelligibility.

2.2, The End User of the System

Another important factor in evaluating image quality
of a system is the end user which can be a human ob-
server or a computer. The measures we use should reflect
this fact. If the end user is human, the quality measures
. should be based on a psychophysical model. However, be-
.cause of the difficulties encountered in taking subjective
measurements, many researchers worked on establishing
relations between subjective evaluation .and some quan-
titative figure of merit.}41% On the other hand, if the
.images are processed by a computer, the image quality
can be based on the classification accuracy of the:system.
One example is the use of receiver operating characteris-
tic to evaluate diagnostic systems.!® We believe that it is
much easier to develop quantitative models for.-automated
analysis systems, and we will discuss some of these ideas
in a.following section.

2.3. System Parameters and Characteristics

‘The various physical and mathematical parameters re-
lated to the specific application also need-to be consid-
ered. For instance, in' computerized tomography'?, there
are a set of parameters relating to the signal being de-
tected and to the imaging and displaying system. In this
case, the object parameters such as size, shape, and con-
trast, and also the image forming parameters such as the
‘spatial strength of signals used, the rate of collecting data,
and noise are considered in the evaluation of the system.
If the images are intended for a human observer, we need
to define the display system, the viewing-conditions, and
the observer a priori knowledge. Of course, a more quan-
titative model can be established to determine the impor-
tant .image characteristics if the images are going to be
processed automatically. All these.parameters affect the
success of an imaging system, and should be included in
any evaluation.

Furthermore, .several characteristics of the imaging
system provide ‘a guide to determine the useful quality
measures. These are linearity, isotropy, contrast sensi-
tivity, spatial invariance, spatial resolution, and also the
image characteristics such as uniformity and sharpness.

3. ANALYTICAL METHODS

. In the previous section, we discussed the-various fac-
tors that can be considered in-evaluating the quality of an
image. In this section, we describe the different methods

- used to evaluate the image quality. We consider both im-
age processing .and image understanding techniques. In
image processing, an input image is transformed to an
output image in which features are enhanced, while in
image understanding, the goal is to extract meaningful
‘information and to derive a.description of the scene. To
achieve this goal, image understanding systems incorpo-
rate many scientific disciplines including image process-
ing, pattern recognition, artificial intelligence, physics,
and neurophysiology.!®

In the design and the evaluation of -either technique,
we can use either analytical or experimental methods. In
the analytical approach, models are developed to describe
the interaction between the imaging device and some sim-
ple and standard signals; these-models are used to predict

72

the performance in practical applications. This approach
is. more general and does not require expensive equip-
ment. However, because -of the approximation involved
in applying it, the results .obtained may not accurately
reflect the actual performance. Also, in many cases, we
need to use simulation methods to measure the system
response for the signals of interest because the complex-
ity of the system makes the analytical solution extremely
difficult. In the experimental approach, test patterns -or
phantoms- are built to represent the various objects of in-
terest; performance is then measured by either rating the
images using human observers or by introducing a figure
of merit which takes the different imaging parameters into

-account.!

In this section, we begin with a discussion of the ana-
lytical methods that are used to evaluate image processing

-gystems. Then, we describe in detail the different models

used to evaluate the performance of an image understand-
ing system. In the following section, we will survey some
experimental methods usedin both image processing and
image understanding systems.

3.1. Image Processing Systems

In measming the performance of an image processing

-gystem, we distinguish between two:cases depending on

the ratio of the energy of the signal to that of the noise. If
the signal -to- noise ratio (SNR) is high, the system per-
formance is basically defined in terms of parameters such
as the point spread function and the modulation trans-
fer function. When the SNR is low, factors such as noise
equivalent quanta, and the detection efficiency determine
the system performance. The contrast can also be a tool
to distinguish noiseless from noisy systems. Wagner de-
fines a noiseless system as one processing high contrast

. images- in contrast to noisy system processing low con-

trast images.!® In the following section, we review meth-

- ods that apply to noiseless, .and noisy systems.

3.1.1. Noiseless System

When the SNR is high, system performance is deter-
mined by the sharpness and clarity -of the images pro-
duced. Another important factor is the ability to resolve
close patterns and to detect small size objects. A set
of measurements in the spatial and frequency domains
allows us to predict system performance for the above
mentioned signals. We begin with the spatial. measure-
ments.

a. Spatial response measurements

" The spatial response is one method that can be used

-to'measure the image quality. The spatial response can

be defined in terms of the response to an input point
source §(z,y) which is.known as the point spread func-
tion (PSF).of the system.®2° The point spread function is
also known by other names such as the impulse response,
‘Green’s function, or Fraunhofer diffraction pattern 3..In
optics, thé PSF can be determined by the image of a

- star, considering the star as a point source. The PSF can
‘be ‘seen as the degradation caused by the system on the
_point source Sblurring effect). Similarly, the line spread

function (LSF) is determined when the point source is re-
placed by a line infinitely long and narrow. ‘If the input
is an abrupt step in brightness, i.e.- a straight edge, then
the output is the edge spread function (ESF).

The spread functions are a good basis to assess char-
acteristics of the image processing technique. Spatial res-
olution can be deduced from the PSF. For instance, in
optics, the PSF is a diffraction pattern with minimas and
maximas, and. the central bright patch is known as the
Airy disc. The Rayleigh’s criterion gives the resolution as
the radius of the Airy’s disc.? The shape, size, and diam-
eter of the central lobe of the PSF not only are related
to the spatial resolution, but also to the sharpness of the
images being produced. Another characteristic, isotropy,
applies if the PSF exhibits central symmetry.

Although the spread functions are simple and easy to
determine in many applications, their use is limited to
linear and spatial invariant systems. When these charac-
teristics apply, the spread functions are really appropriate
to the evaluation task, because they completely describe
the performance; the system response to any arbitrary
input image can be determined in terms of a convolution
with the impulse response. On the other hand, if they do
not apply, the determination of the performance is more
delicate, and may be completely inaccurate.

The various spread functions are related for linear and
spatial invariant processing techniques. First, it should be
noted that the PSF has two dimensions, while the ESF
and LSF have one. However, LSF and ESF exist for each
line or edge orientation. If PSF(z,y) represent the im-
pulse response at a point of spatial coordinate (z,y), and
LSF(z') the line spread function for a line of orientation
y', where z' is orthogonal to y’ then, the LSFis the inte-
gral of the PSF in the direction y':3!

LSF(z) = f " pSF(z,y) dy'. 0

-0

Moreover, the LSF is the derivative of the ESF:
d
n _ ’
LSF(z') = —dz,ESF(:z). (2)

For isotropic systems, the LSFs and ESFs at different line
and edge orientations are all identical because the PSF is
rotationally invariant.

Another method to measure the spatial response is the
resolving power which indicates the ability to discriminate
fine details in an image.'® Resolving power is expressed
in terms of discernible line pairs per unique distance. The
resolving power is easy to measure and can be applied to
nonlinear as well as linear systems; therefore it is widely
used in spite of the many questions in regard to its ac-
curacy. Resolving power - or resolution - alone is not a
sufficient measure for determining the relevance of the in-
formation presented by an image.?? Although a practical
and convenient guide to the performance, it is unreliable
if it is used as a unique measure. Resolving Power is
different for objects of various shape, size and contrast;
hence the resolution in real images may be considerably
different from the resolution measured.

Other spatial measurements that are helpful in deter-
mining the system performance, are the image uniformity,
which measures the amplitude distortion for constant re-
gions, and the system sensitivity, which determines the
smallest amplitude that can be detected.?3:24

b. Frequency response measurements

An important contribution' to' the evaluation of im-
age quality has resulted from the two dimensional Fourier
analysis. In the Fourier domain, another category of func-

73

tions are defined: the transfer functions.
The Fourier transform of the PSF gives the optical
transfer function (OTF):

OTF(u,v) =//PSF(2, y) exp (27i(uz + vy)) dzdy. (3)

In general, the OTF is a complex function for- which:
the International Comission on Optics defines its magni-
tude as the modulation transfer function (MTF) and its
phase as the phase transfer function (PTF):

OTF(u,v) = MTF(u,v)exp (i PTF(u,v)). (4)
The term optical may seem to restrict these very gen-

eral definitions to optical systems. However, the methods
of treating an optical image are analogous to those of pro-

cessing a signal. “Transfer.functions can serve to predict.. -

the quality of the formed images for any systems with few-
exceptions. They have the same inconveniences as those -
of the spread functions for which linearity and spatial in-
variance are necessary conditions to ensure confidence in
the evaluation of the-quality.

Indeed, they considerably simplify the analysis of sys-
tems whose characteristics are linearity and spatial invari-
ance, because the OTFs and MTF's. of a series of separa-
ble cascaded systems can be obtained by multiplying the
OTFs and MTFs of each individual subsystem:!:3°

OTF(u,v) = [[OTFi(x,v).. (5)

Conversely, the PSF requires convolution, a tedious pro-
cess, of the separate PSFs. Just as the PSF, the OTF is:
a complete function to determine the output O of a sys-
tem; the response is easily computed in terms of a product
in the spatial-frequency domain of the input I with the

OTF:
O(u,v) = I(u,v) x OTF(u,v). (8)

The OTF specifies the output that result from sinusoidal
pattern input (as the PSF is the output that result from.
a point source) for all spatial frequencies. The sinusoidal
pattern input undergoes changes in modulation expressed.
by the MTF and in phase expressed by the PTF, function
of its spatial frequencies u and v. Its profile remains un-
altered because no harmonic distorsions are introduced.
Burgess: noticed that the Fourier. transform of the LSF
gives a cross section of the OTF at the same angle.?® For
isotropic. systems, all LSFs. are identical; therefore the
OTF is rotationally invariant as the PSF.

The MTF can be determined by measuring the ratio
between the output and the input of a sinewave function..
However; in some. applications, it is easier to measure the -
square-wave response-function (SWRF) and. then deter-
mine the MTF in terms of the SWRF components. 37
Another frequency response function that can. be applied
to linear and nonlinear systems is the contrast function.2®

Some of the image quality parameters in the frequency -
domain are; the amount of the amplitude, phase, and
harmonic distortion, and the high- frequency cutoff.3

3.1.2. Noisy images -

Any component of the signal that does not convey rel-
evant information car be ‘considered noise. Examples of
noise are the fluctuation in the source signal, random-
ness in the detector output, and superimposed structures

which are not related to the signals of interest.?® If these
variations are relatively large compared to the signal, they
will be the limiting factor in the performance of the imag-
ing system. Therefore, it is necessary to develop the ap-
propriate tools to evaluate noisy systems. Such tools are
derived from a statistical analysis, the basis of the theory
of signal detection. One of the characteristics of a noise
bound system is the smallest signal difference that can be
detected. 1930

In dealing with noise, one simplified model considers
the noise at various locations to be independent. For
this model, a simple technique is to evaluate the stan-
dard deviation o that measures the spread of the noise

values. In computerized tomography, the noise is evalu-

ated by experimentally measuring o. A uniform phantom
composed from only one material is scanned and recon-
structed. Then, the sensitivity to the noise can be studied
by estimating the standard deviation o:

- Zi,j(f(i’j)_ﬁ)z :
o= (Bl B 0

- where i is the sample mean and N the number of pixels.
The advantages of using a uniform phantom is that the
reconstructed image is free of artifacts and distortions.
Therefore, o is related -only to the quantum and scat-
tered noise. For certain reconstruction techniques, it is
theoretically possible to relate the noise in projections to
that in the reconstruction image.%!

Such an assumption is not always true, especially af-
ter the noise is processed through the system. A more
powerful descriptor related to the noise correlation is the
noise power spectrum or Wiener spectrum.?? The Wiener
spectrum is determined by the Fourier transform of the
autocorrelation function that indicates how the noise is
correlated from point to point (Wiener-Khinchin theo-
rem). The Wiener spectrum deals with all the various
kind of noise appearing in the system and, furthermore,
at various spatial frequencies. For instance, the Wiener
spectrum Wo(u,v) at the output of a linear system is
easily related to the Wiener spectrum Wi(u,v) at the in-
put, MTF of the system, and additional noise components
Wa(u,v) at the output:

Wo(u,v) = Wi(u,v) x MTF?(u,0) + Wa(u,v). (8)

Another more accurate model to measure the perfor-
mance of imaging detectors for which the noise structure
is taken into consideration, is the noise equivalent quanta
(NEQ) and detective quantum efficiency (DQE).3® The
noise equivalent quanta measures the ratio of the effective
number of information bearing quanta used to form an
image, and the detective quantum efficiency determines
the efficiency of the photon detectors in terms of the ra-
tio of NEQ to the actual number of quanta used. These
descriptors combine together the MTF, the Wiener spec-
trum, and the sensitometric response of the system.

3.2. Image Understanding Systems

The idea of applying some image understanding mea-
sures to evaluate the image quality was introduced a few
decades ago. However, the emphasis was on human image
understanding. Recently, automatic image understanding
has become feasible, and, for some specific applications,
is the only practical solution.'® In [34], an example of an

74

automated computer tomography system is given. It is
important to note, however, that very little has been done
in this area, and more work is needed. In this section, we
survey some of the methods that can be used to evaluate
the performance of image understanding systems. This
includes definitions of detection, orientation, recognition,
and identification; the receiver operating characteristic
(ROC); and measures based on information theory. In
addition to these methods, any of the image processing
techniques can be also used in evaluating image under-
standing systems. '

3.2.1. Detection, orientation, recognition, and
identification

The process of extracting information is called acqui-
sition. There are different levels of acquisition which de-
pend upon various parameters: size, contrast, noise, tar-
get and background characteristics, viewing conditions,
automatic procedures, etc. Johnson considered the case
when human observer processes the information and di-
vide the acquisition into four categories: detection, orien-
tation, recognition, identification.3
a. Detection: an object is present, but the recorded infor-
mation is insufficient to assign a class to it.

b. Orientation: an object is present and its orientation,
symmetry, or asymmetry are discerned.

c. Recognition: this is the first level of sorting the de-
tected object into classes (house, man, animal, car, ...).
d. Identification: this is the second level of sorting the
detected object into elements of specific classes (motel,
policeman, dog, jeep, ...).

These four levels correspond to different levels of im-
age quality: the first level requires the lowest quality; the
last, the highest.

Johnson conducted a set of experiments to measure
the minimum number of resolvable lines across the crit-
ical dimension of various targets required for each level
of acquisition. Then, he produced tables giving the min-
imum number of resolved lines per minimum dimension
of a specific object necessary at a stated level of acquisi-
tion. He found that, if the experimental conditions are the
same for the targets and the test bars, the transformation
targets into the number of resolved line pairs per critical
dimension is independent of contrast and scene noise. His
experimental results show that an object is detected for
about 1 line pair, oriented for about 1.5, recognized for
about 4, and identified for about 6.5 line pairs per critical
object dimension.

Other methods to measure human performance are
given in [35, and 36].

3.2.2. Receiver Operating Characteristic

The receiver operating characteristic (ROC) measu-
res the relation between the probability of false alarm
and correct detection as the decision level is changed. It
is a useful tool for measuring image understanding per-
formance when the image description is limited to few
choices, such as the existence or nonexistence of abnor-
mality in a patient,!® or deficiency in a product. The
ROC is more suitable for automatic image understanding
systems.

3.2.3. Information theory measures

In some image understanding applications, we want to

find the lowest level of signals that can be used to detect
a given object. In other applications we may want to
find the smallest features that can be detected. In either
case, information theory may be helpful in establishing
such bounds because it can relate the parameters of the
system to the information required.

The information we would like to acquire may be small
areas of size a (pixels) needed to be resolved and small
density changes d over the area a needed to be detected.
This information may be accepted with a tolerable prob-
ability P. P can be defined by & where R is the number
of pixels in which on the average one pixel will be classi-
fied incorrectly. The information required is represented
by the triplet (a,d, P). Thus, the parameters should be
determined to obtain the desired information in terms
of (a,d,P). For instance, the exposure E necessary to
record the features of interest can be related to (a,d, P).
Examples of work in this area are given in [37, and 38|.
Clearly, this analysis can be applied to either manual or
automatic processing systems.

3.2.4. Image Segmentation measures

Many image understanding systems require dividing
the scene into segments which have similar properties, as
a first step toward classification. These properties may
describe each pixel independently such as the signal inten-
sity, or relate to a local area such as texture.3® Recently,
some effort was directed toward the performance evalua-
tion of such systems. Methods to evaluate edge detection
operators was described in [40]. In [41] various texture al-
gorithms were compared. General analysis of image seg-
mentation techniques were reported in [42, and 43]. Judg-
ing by the existing literature, it is clear that more needed
to be done, especially in unifying these results with those
obtained for image processing systems. All the work dis-
cussed so far corresponds to what is known as low level
image understanding systems, because they make little
use of the knowledge available about the contents of the
scene. A more difficult problem is the analysis of high
level image understanding systems; a survey of such sys-
tems with some qualitative comparison is given in [44].

An example is the work on low level image segment-
ation.4345 In this work, a segmentation error that mea-
sures the distance between two different segmentation
outputs is used as a measure of performance. These mea-
sures are used to evaluate a segmentation system that
divides images into areas and lines. Such methods are ex-
tremely important for the development of a reliable image
analysis model.

4. EXPERIMENTAL METHODS

All the image quality measures, described in the pre-
vious section, are analytical. In this section, the experi-
mental approach to measuring image quality is described.
This approach is flexible and in many cases more accu-
rate than the analytical model, because it can be made
as close as possible to the actual application. Its dis-
advantage is that it is more costly and time consuming.
In the early stages of design, experimental methods are
based on simulation of the system. Later on, the same
measurements are made using the actual system. Such
measurements are usually more accurate and expensive
than the analytical measurements.

75

Experimental measurements are usually made on test
patterns that represent the interesting features in the im-
ages being processed. They can be as simple as a bar
chart or as complicated as a 3-dimensional body phan-
tom. The following are examples of such test patterns.
a. Resolving power charts.3
b. Spatial resolution patterns.
c. Star test patterns.26
d. Perceptibility measurement patterns.
e. Organ phantoms patterns,28:3!

f. Industrial patterns.4748

Basic resolution patterns consist of parallel bars hav-
ing the same size and shape, with a spacing between bars
equal to their width. These basic resolution patterns can
be assembled in groups of different characteristics g::;—
trast, size, orientation) to form the resolution test ¢ .
Instead, a circular test pattern made of equally spaced
wedges of identical sizes can be built to form a star pat-
tern. The advantages of such a test pattern is that the
density along a circle centered at its center is a square
wave which has a spatial frequency proportional to the
number of constituting wedges and to the inverse of the
radius r of the circle. The patterns (a-d) are examples
of charts constituted of bars and wedges. On the other
hand, patterns or phantoms (e-f} represent as close as
possible the objects (body tissues, industrial parts, ...)
in the real application. They can be very complex and
diverse depending on the application.

17,28

46

4.1. Qualitative methods

Any of the previous patterns can be processed using
the imaging system being evaluated, and the performance
can be measured either qualitatively or quantitatively. In
the qualitative approach the processed images are shown
under the same conditions to a group of observers who are
asked to judge their quality. The observers may be cho-
sen from expert or non-expert viewers.! Ultimately, qual-
itative methods are used as simple, natural, and some-
what reliable methods. However, to ensure confidence in
the judgements, many observers must participate, which
makes the qualitative methods cumbersome to employ.
Although these subjective methods are suitable for the
complicated test patterns described in e and f, they may
also be applied to any of the other test patterns.

4.2. Quantitative measures

A better way for measuring the image quality for the
patterns (a - d), is to introduce quantitative measures.
These measures can be the resolution limits or the mod-
ulation transfer function. Also, it can be a one num-
ber merit function chosen such that it correlates with a
subjective evaluation.! Examples of merit functions are
the mean absolute error and the mean square error. The
mean absolute error is defined in the general form:

_ L (=9) — 1(f (=, v))| dz dy
M= S e ey @

and the mean squared error is:

([(= 8) = 1(F ()] dzdy) P
MSE"(A @) dz dy) - (10)

where v is an arbitrary operator, f the original image
and f the degraded image. The domain of definition of
f is a. They are the standard measures used to judge
various processing techniques. Several transformations
have been determined for the operator 4 in order to com-
pare the performance of the systems intended for human
observers.! To get more reliable measures 4 must be

adapted to important factors such as the end user of the
system.

5. USE OF IMAGE QUALITY MEASURES

In the previous sections, many measures of image qual-
ity were reviewed. In turn, we would like to discuss the us-
age of quality measures; quality measures can be applied
to evaluate, to design, and to control imaging systems.
We consider these three different important applications
separately.

a. Performance evaluation. Image quality measures are
used to evaluate the performance of processing and under-
standing techniques. It is important to use standard and
qualified evaluation methods with confidence to compare
several imaging systems.

b. Design and optimization. A second application of im-
age quality measures is the design and the optimization
of imaging systems. It is very important when we design
a new system to minimize its cost, and also to maximize
the processing speed and image quality. Therefore, the
design engineers must be able to choose optimum param-
eters that satisfy image quality requirements.

c. Control. A more efficient system requires quality mea-
sures that can serve to control in real time the parameters
of the system. Such a system is adaptive to the input im-
ages and can select the optimum parameters that produce
the best image quality. These quality measures must esti-
mate the relevance of the output information in real time
to adapt the system parameters or the processing algo-
rithms. Moreover, since they control the system, a large
confidence in using them for this purpose is required. It
is important to note that in certain field, particularly in
image understanding, a successful search for new mea-
sures that can do this job without a reference to standard
images is required.4®

6. CONCLUSION

In this paper, we described the various factors that
should determine the image quality measures. In addi-
tion, we discussed many of the methods that are used in
the evaluation of image quality, for both the image pro-
cessing and image understanding applications.

Many methods have been developed for the image
processing application. They correspond to various ap-
proaches either analytical, such as spatial response mea-
surements and frequency response measurements, or ex-
perimental. These measures have been adapted to many
fields of application. However, there is still a need to in-
troduce a unified model for the measurement of image
quality and develop standard test patterns or test objects
to compare the performance of various imaging systems.

On the other hand, very little has been done in the im-
age understanding area. Major design measures that reli-
ably indicate the performance of any image understanding
technique still need to be developed. With the increas-
ing interest in automatic image understanding. standard
test patterns should be defined and used to measure the
performance of various image understanding techniques.

76

This will help in comparing the algorithms developed at
different research centers.

Finally, judging from the existing literature, it is clear
that while image quality evaluation has been applied to
many areas such as medical radiology, aerial photography,
industrial inspection, and design of optical systems, more
work is still needed. We hope that this paper will inform
the scientific community about the need for such work.

ACKNOWLEDGEMENTS

This work is supported in part by the University of
Delaware Center for Composite Materials, funded by the
NSF Engineering Research Centers under Grant CDR-
8421409, and the University of Delaware Industrial Part-
ner Program.

REFERENCES

[1] W. K. Pratt, Digital Image Processing, Wiley-
Interscience, New York, 1978.

[2] W. B. Wetherell, “The Calculation of Image Qual-
ity”, in Applied Optics and Optical Engineering, Vol.
VII, R. Shannon, J. Wyant, ed. Academic Press,
New York, 1980.

[3] G. C. Brock, Image Evaluation for Aerial Photogra-
phy, The Focal Press, London, 1970.

[4] D. M. Costigan, Electronic Delivery of Documents
and Graphics, Van Nostrand Reinhold, New York,
1978.

[5] J. C. Stoffel, Ed., Graphical and Binary Image Pro-
cessing and Applications, Artech House, Dedham,
MA, 1982,

[6] A. G. Haus, Ed., The Physics of Medical Imaging:
Recording System Measurements and Techniques,
American Assoc. of Physicists in Medicine, New
York, 1979.

[7] R. G. Waggener and C. R. Wilson, Eds., Quality
Assurance tn Diagnostic Radiology, American Assoc.
of Physicists in Medicine, New York, 1980.

[8] Quality Assurance in Nuclear Medicine, World
Health Organization, Geneva, 1982,

[9] D. A. Garrett and D. A. Bracher, Real-Time Ra-

diologic Imaging: Medical and Industrial Applica-

tions, American Society for Testing and Materials,

Philadelphia, 1980.

R. S. Sharpe, et al., Eds., Quality Technology Hand-

book, 4t* Ed., Butterworths, London, 1980.

W. K. Pratt, Ed., Image Transmission Techniques,

Academic Press, New York, 1979.

L. R. Baker, Ed., Quality Assurance in Optical &

Electro-Optical Engineering, Proc. of SPIE, Vol. 73,

1973.

L. M. Biberman, Perception of Displayed Informa-

tion, Plenum Press, New York, 1973.

H. L. Snyder, “Image Quality and Observer Perfor-

mance,” in Perception of Displayed Information, L.

M. Biberman, Ed., Plenum Press, New York, 1973.

F. A. Rosell, and R. H. Willson, “Recent Psycho-

physical Experiments and the Display Signal -to-

Noise Ratio Concept”, in Perception of Displayed

Information, L. M. Biberman, Ed., Plenum Press,

New York, 1973.

C. E. Metz, “Applications of ROC Analysis in Di-

agnostic Image Evaluation”, in The Physics of Med-

ical Imaging: Recording Systems Measurements and

[10]
[11]
[12]

(13]
[14]

(15]

[16]

(17]

(18]

[19]

(20]

(21]

(22]

[23]

(24]

(25]

(6]

(27]

(28]

(29]

(30]
[31]

(32]

Techniques, A. G. Haus, Ed., American Assoc. of
Physicists in Medicine, New York, pp. 546-572, 1979.
K. E. Weaver, and D. J. Goodenough, “Imaging Fac-
tors and Evaluation - Computed Tomography Scan-
ning”, in The Physics of Medical Imaging: Recording
Systems Measurements and Techniques, A. G. Haus,
Ed., American Assoc. of Physicists in Medicine,
New York, pp. 309-355, 1979.

L. E. Druffel, “Summary of the DARPA Image Un-
derstanding Research Program”, in Pattern Recog-
nition Theory and Applications, J. Kittler, et al.,
Eds., D. Reidel Publishing Co., Holland, pp. 265-
281, 1982.

R. F. Wagner, “Toward a Unified View of Radio-
logical Imaging Systems. Part II: Noisy Images”,
Medical Physies, Vol. 4, No. 4, pp. 157-174, 1977.
S. Rowland, “Computer Implementation of Image
Reconstruction Formulas”, in Image Reconstruction
from Projections, G. Herman Ed., Springer Verlag,
Berlin, 1979.

G. K. Sanderson, “Image Assessment: LSF and
MTF”, in The Physics of Medical Imaging: Record-
ing Systems Measurements and Techniques, A. G.
Haus, Ed., American Assoc. of Physicists in Medi-
cine, New York, pp. 118-137, 1979.

P. Rosenberg, “Detection, Detectability and Recog-
nizability”, Photogrammetric Engineering,
Dec. 1971.

J. R. Wolff, “Calibration Methods for Scintillation
Camera Systems”, in Quantitative Organ Visualiza-
tion in Nuclear Medicine, P. J. Kenny, and E. M.
Smith, Eds., University of Miami Press, Coral
Gables, FL, pp. 229-259, 1971.

W. J. MacIntyre, et al., “Report of the ICRU Task
Group on Scanning”, in Quantitative Organ Visu-
alization tn Nuclear Medicine, P. J. Kenny, and E.
M. Smith, Eds., University of Miami Press, Coral
Gables, FL, pp. 167-184, 1971.

M. L. Giger, and K. Doi, “Investigation of Basic
Imaging Properties in Digital Radiography. 1. Mod-
ulation Transfer Function”, Medical Physics, Vol.
11, No. 3, pp. 287-295, 1984.

A. E. Burgess, “Interpretation of Star Test Pattern
Images,” Medical Physics, Vol. 4, No. 1, pp. 1-8,
1977.

G. T. Barnes, “The Use of Bar Pattern Test Objects
in Assessing the Resolution of Film/ Screen Sys-
tems”, in The Phystcs of Medical Imaging: Record-
ing Systems Measurements and Techniques, A. G.
Haus, Ed., American Assoc. of Physicists in
Medicine, New York, pp. 138-151, 1979.

R. Sarper, “Evaluation of Imaging Factors in Nu-
clear Medicine”, in The Physics of Medical Imaging:
Recording Systems Measurements and Techniques,
A. G. Haus, Ed., American Assoc. of Physicists in
Medicine, New York, pp. 390-408, 1979.

R. S. Holland, “Fundamentals of Radiographic
Noise”, in The Physics of Medical Imaging: Record-
ing Systems Measurements and Techniques, A. G.
Haus, Ed., American Assoc. of Physicists in Medi-
cine, New York, pp. 152-171, 1979.

P. Sprawls, The Physics and Instrumentation of Nu-
clear Medicine, University Park Press, Baltimore,
1981.

L. Shepp, and B. Logan, “The Fourier Reconstruc-
tion of a Head Section”, IEEE Trans. on Nuclear
Science, Vol. NS-21, pp. 21-43, June 1974.

M. L. Giger, K. Doi, and C. E. Metz, “Investigation

77

33]

(34]

(35]

(36]

(37]

(38]

(39]

[40]

[41]

[42]
[43]

[44]

[45]

[46]

[47]

(48]

of Basic Imaging Properties in Digital Radiography.
2. Noise Wiener Spectrum”, Medical Physics, Vol.
11, No. 6, pp. 797-805, 1984.

J. M. Sandrik and R. F. Wagner, “Absolute Mea-
sures of Physical Image Quality: Measurement and
Application to Radiographic Magnification”, Meds-
cal Physics, Vol. 9, No. 4, pp. 540-549, 1982.

J. Winter, “Automated Computer Tomography Im-
age Analysis Using Contour Map Topology”, IEEE
Trans. on Medical Imaging, Vol. MI-3, No. 4, pp.
163-169, Dec. 1984.

J. A. Bencomo, L. M. Marsh, and T. J. Morgan, “An
Evaluation of Digital Processing Capabilities for Im-
proving Detection of Low Contrast Round Objects in
a Radiography by Contrast Detail Diagrams”, Proc.
of the SPIE, Applications of Digital Image Process-
ing VII, San Diego, pp. 379-383, Aug. 1984.

A. E. Burgess, R. F. Wagner, and R. J. Jennings,
“Human Signal Detection Performance for Noisy
Medical Imaging”, Intl’ Workshop on Physics and
Engineering in Medical Imaging, Pacific Grove, CA,
pp. 99-105, March 1982.

I. Brodie and R. A. Gutcheck, “Radiographic Infor-
mation Theory and Application to Mammography”,
Medical Physses, Vol. 9, No. 1, pp. 79-95, 1982.

L. Brodie and R. A. Gutcheck, “Radiographic In-
formation Theory: Correction for X-Ray Spectral
Distribution”, Medical Physies, Vol. 10, No. 3, pp.
293-300, 1983.

R. M. Haralick, “Statistical and Structural
Approaches to texture.”, Proc. of the IEEE, Vol.
67, No. 5, pp. 786-804, May 1979.

I. E. Abdou, and W. K. Pratt, “Quantitative Design
and Evaluation of Enhancement/ Thresholding Edge
Detectors”, Proc. of the IEEE, Vol. 67, No. 5, pp.
753-763, May 1979.

R. W. Conners, and C. A. Harlow, “A Theoretical
Comparison of Texture Algorithms”, IEEE Trans.
on Pattern Analysis and Machine Intelligence, Vol.
PAMI-2, No. 3, pp. 204-222, May 1980.

E. L. Hall, Computer Image Processing and Recog-
nitton, Academic Press, New-York, 1979.

M. D. Levine, and A. M. Nazif, “An Experimental
Rule-Based System for Testing Low Level Segmenta-
tion Strategies”, in Multicomputers and Image Pro-
cessing, K. Preston Jr., and L. Uhr, Eds., Academic
Press, New York, pp. 149-160, 1982.

T. O. Binford, “Survey of Model-Based Image Anal-
ysis Systems”, The Int]’ Journal of Robotics Re-
search, Vol. 1, No. 1, pp. 18-64, Spring 1982.

A. M. Nazif, and M. D. Levine, “Low Level Image
Segmentation: An Expert System”, IEEE Trans.
on Pattern Analysis and Machine Intelligence, Vol.
PAMI-8, No. 5, pp. 555-577, 1984.

R. Bollen, “Evaluation of Image Quality Perform-
ances of Radiographic Systems by the Perceptibil-
ity Curve (PC) Method”, in The Physics of Med:-
cal Imaging: Recording Systems Measurements and
Techniques, A. G. Haus, Ed., American Assoc. of
Physicists in Medicine, New York, pp. 588-613, 1979.
F. Hopkins, and I. Morgan, “X-Ray Computed To-
mography for Aerospace Components”, Scientific
Measurement Systems, Technical Report, January
1983.

P. Burstein, R. Mastronadi, and T. Kirchner, “Com-
puterized Tomography Inspection of Trident Rocket
Motors: A Capability Demonstration”, Materials
Evaluation Journal, pp. 1280-1284, November 1982.

ADDITIONAL REFERENCES

- R. B. Arps, et al., “Character Legibility versus Reso-

_lution in Image Processing of Printed Matter”, IEEE
Trans. Man. Machine Systems, Vol. MMS-10, No. 3,
pp. 66-71, Sept. 1969.

P. C. Bunch, et al., “A Free Response Approach to the
Measurement and Characterization of Radiographic
Observer Performance,” Proc. of SPIE, Application
of Optical Instrumentation in Medicine, VI, Vol. 127,
Boston, MA, pp. 124-135, Sept. 1977. ’

B. Chiang, et al., “Spatial Resolution in Industrial To-
mography”, IEEE Trans. on Nuclear Science, Vol. NS-
30, pp. 1671-1676, April 1983. :

R. T. Chin, and C. A. Harlow, “Automated Visual In-
spection: A Survey”, IEEE Trans. on Pattern Analy-
813 and Machine Intelligence, Vol. PAMI-4, No. 6, pp.
557-573, 1982.

G. Cohen, and F. A. DiBianca, “Information Content
and Dose Efficiency of Computed Tomographic Scan-
ners”, in The Physics of Medical Imaging: Recording
Systems Measurements and Techniques, A. G. Haus,
Ed., American Assoc. of Physicists in Medicine, New
York, pp. 356-365, 1979.

N. Dusaussoy, “Performance Evaluation of Parallel Pro-
jection Computerized- Tomography”, M. Sc. Thesis,
University of Delaware, 1986.

E. M. Granger, and L. R. Baker, Eds, “Image Quality:
an Overview”, Proc. of SPIE, Vol. 549, July 1985.

R. Halmshaw, “Fundamentals of Radiographic Imag-
ing,” in Real-Time Radiologic Imaging: Medical and
Industrial Applications, ASTM STP 716, D. A. Gar-
rett, and D. A. Bracher, Eds., American Society for
Testing and Materials, pp. 5-21, 1980.

R. Y. Han, and R. J. Clark, “Characterization and
Evaluation of Automatic Target Recognizer Perform-
ance,” Proc. of the SPIE, Applications of Digital Image
Processing VII, San Diego, pp. 341-351, Aug. 1984.
K. M. Hanson, “Detectability in the presence of Com-
puted Tomographic Reconstruction Noise”, Proc. of
SPIE, Application of Optical Instrumentation in Medi-
cix}re'l, VI, Vol. 127, Boston, MA, pp. 304-312, Sept.
1977.

G. Herman, Image Reconstruction from Projections,

Academic Press, New York, 1980.

L. Kaufman, “Nuclear Medicine Imaging,” in Medsical
Imaging Techniques. A Comparison, K. Preston, Jr., et
al., Eds., Plenum Press, New York, pp. 263-285, 1979.
W. Kropatsch, “Segmentation of Digital Images Using
A Priori Information about the Expected Image Con-
tents”, in Pictorial Data Analysis, R. M. Haralick, Ed.,
Springer Verlag, Berlin, pp. 107-132, 1983.

J. D.McGee, D. McMullan, and E. Kahan, Eds., Photo-
lEgétgronic Image Devices, Academic Press, London,
J. D. McGee, D. McMullan, E. Kahan, and B. L. Mor-
gan, Eds., Photo-Electronic Image Devices, Academic
Press, London, 1969.

J. D.McGee, D. McMullan, and E. Kahan, Eds., Photo-
Electronic Image Devices, Academic Press, London,
1072.

P. R. Moran, “A Physical Statistics Theory for De-
tectability of Target Signals in Noisy Images. 1. Math-
ematical Background, Empirical Review, and Develop-
ment of Theory”, Medical Physics, Yol. 9, No. 3, pp.
401-413, 1982.

C. Parma, et al., “Experiments in Schema-Driven In-
terpretation of a Natural Scene”, in Digital Image Pro-

78

cessing, J. Simon, and R. Haralick, Eds., D. Reidel
Publishing Co., Holland, pp. 449-509, 1981.

G. U. V. Rao, “Measurement of Modulation Transfer
Functions,” in Quality Assurance in Diagnostic Radiol-
ogy, R. G. Waggener and C. R. Wilson, Eds., American
Assoc. of Physicists in Medicine, New York, pp. 79-
104, 1980.

P. Reimers, et al., “Recent Developments in the Indus-
trial Application of Computerized Tomography with
Ionizing Radiation”, Journal of NDT International, Vol.
17, No. 4, pp. 197-207, Aug. 1984.

H. Roehrig, et al., “X-Ray Image Intensifier Video Sys-
tem for Diagnostic Radiology: Part 1, Design Charac-
teristics”, Proc. of SPIE, Application of Optical In-
strumentation in Medicine, VI, Vol. 127, Boston, MA,
Pp. 216-225, Sept. 1977.

C. Scheid, “Performance Measurements of Fluoroscopic
Systems,” in Real-Time Radiologic Imaging: Medical
and Industrial Applications, ASTM STP 716, D. A.
Garrett, and D. A. Bracher, Eds., American Society
for Testing and Materials, pp. 168-179, 1980.

G. Seeley, et al., “Psychophysical Evaluation Corre-
lated with System Measures: Part 2,” Proc. of SPIE,
Application of Optical Instrumentation in Medicine,
VI, Vol. 127, Boston, MA, pp. 226-231, Sept. 1977.
P. F. Sharp, “Physical Limitations to the Quality of
X- and Gamma Ray Images”, in Technical Advances in
Biomedical Physics, P. P. Dendy, D. W. Ernst, and A.
Sengun,- Eds., Martinus Nijhoff Pub, The Hague, pp.
219-234, 1984.

P. F. Sharp, “The Presentation of Photon-Limited Im-
ages,” in Technical Advances in Biomedical Physics, P.
P. Dendy, D. W. Ernst, and A. Sengun, Eds., Martinus
Nijhoff Pub, The Hague, pp. 235-258, 1984.

R. Shaw, “Some Modern Aspects of Image Evaluation”,
in The Physics of Medical Imaging: Recording Systems
Measurements and Techniques, A. G. Haus, Ed., Amer-
ican Assoc. of Physicists in Medicine, New York, pp.
390-408, 1979.

F. C. Southon, “CT Scanner Comparison”, Medical
Physics, Vol. 8, No. 1, pp. 62-75, 1982.

P. Sprawls, and J. C. Hoffman, “Image Quality in Com-
puterized Axial Tomography”, Proc. of SPIE, Appli-
cation of Optical Instrumentation in Medicine, IV, Vol.
70, Atlanta, GA, pp. 310-316, Sept. 1975.

S. R. Sternberg, “Industrial Morphology”, Proc. of the
SPIE, Applications of Digital Image Processing VII,
San Diego, pp. 202-213, Aug. 1984.

E. Takenaka, T. linuma, and M. Inoue, “New Phan-
toms for Measuring Low Contrast Resolution and Com-
parison of Several CT Scanners when Using Them”,
Proc. Intl. Workshop on Physics and Engineering
in Medical Imaging, Pacific Grove, CA, pp. 203-208,
March 1982.

J. P. J. de Valk, “Diagnostic Processing and Analysis of
Medical Images”, in Technical Advances in Biomedical
Physics, P. P. Dendy, et al., Eds., Martinus Nijhoff Pub,
The Hague, pp. 271-286, 1984.

M. V. Yester, and G. T. Barnes, “Geometrical Limi-
tations of Computed Tomography (CT) Scanner Reso-
lution”, Proc. of SPIE, Application of Optical Instru-
mentation in Medicine, VI, Vol. 127, Boston, MA, pp.
296-302, Sept. 1977.

L T. Young, “The Use of Digital Image Processing
Techniques for the Calibration of Quantitative Micro-
scopes”, Proc. of the SPIE, Applications of Digital
Image Processing, Geneva, Switzerland, pp. 326-335,
April 1983.

A Spatial Knowledge Structure for Image Information Systems
Using Symbolic Projections

Shi-Kuo Chang and Erland Jungert#¥
Information Systems Laboratory
Department of Computer Science

University of Pittsburgh

- ABSTRACT: We present a new pictorial data
structure for image information systems.
This pictorial data structure consists of a
run-length encoded basic data structure for
images, symbolic projections representing the
orthogonal relations among objects or sub-
objects in an image, and rules to derive com-
plex spatial relations from the symbolic pro-
jections. Based wupon this approach, a
knowledge-based image information system can
be designed, which supports spatial reason-

ing, 1image information retrieval, and image
manipulation.
1. Introduction

Image information systems (IIS) are

heavily dependent on how images are stored in
an image database according to certain pic-
torial data structures. Many different pic-
torial data structures have been proposed:
some are pixel-oriented [CHOCK84], some util-
ize quadtrees or their variants [SAMMET84],
and some are vector-based [JUNGERT85]. To
make an image information system more intel-
ligent and more flexible, it is important
that the system be capable of integrating a
knowledge-base into its pictorial data struc-

ture. The pictorial data structure should
also be object-oriented, so that users can
easily retrieve, visualize and manipulate

objects in the image database.

In this paper, we present a new approach
for image information system design, based
upon a pictorial data structure using symbol-
ic projections [CHANG861]. The Dbasic data
structure for image encoding is the run-
length code (RLC) [JUNGERT86]. The technique
of symbolic projection is used to generate a
description of the RLC-encoded symbolic pic-
ture [CHANG86]. When the objects have com-
plex shapes and their minimum enclosing rec-
tangles overlap, orthogonal relations can be
found to preserve basic spatial relations.
Production rules can then be applied to
derive: more complex spatial relations from
the 2D string representation of symbolic pro-
jections. Based upon this approach, a
knowledge-based image information system can
be designed, which supports spatial reason-
ing, image information retrieval, and image
manipulation.

Figure 1 is the schematic diagram of an
image information system with the proposed
pictorial data structure. The icon-oriented
user interface utilizes the following modules
to perform its function:

-simple query
jects based
coordinates.

-knowledge-based query processor:
processes complex queries involving
spatial relations.

-spatial operators: for creating new
objects or testing certain spatial
relations.

-image overlay system:
display, window
image overlay.

-image generator: converts
tures into images.

processor: retrieves ob-
upon their names or

performs
management

image
and

RLC struc-

Icon-User-Interface Display

System

Ve |

ap/Ima,
Overlay
System

Display

-—
i
| Inage
]
1
!
|

Image-
Genera-
tion

—

ﬁ / Shictoriai
/ o /___8

Knowledgd Spatial
Qs Operatorsy

Simple
Qs

Working Memory

OR &
Symb. Proj.

Figure 1

Database
le—t

DBMS

Image
Database

! l Knowledge

KBS Base

Schematic Diagram of an image
information system

Raw
base. The
projections,

imgges are stored in an image data-
image attributes, the symbolic
and the RLC encoded images are

79

CH2345-7/86/0000/0079$01.00© 1986 IEEE

stored in a pictorial database managed by the
DBMS (database management system). The pro-
duction rules are stored in the knowledge~
base and managed by the KBS (knowledge-base
management system). A working memory is used
to keep all temporary data, such as newly
created objects, extracted orthogonal rela-
tions, derived spatial relations, and other
kinds of application-dependent data.

The image
proposed data structure is especially suit-
able for geographic information systems, but
it will also be suitable for many
plication areas.

2. Basic Data Structure using Run-Length

Codes

Run lengthr code has been used primarily
for compacting image data. It can be used as
a basic object-oriented data structure in
image information systems. The principle of
the data structure is illustrated in Figure
2. In this example, map overlays are used.
A map overlay is an image used for map pro-
duction and contains normally just one single
object type, e.g., lakes or forests. Figure
2 shows that contrary to the general RLC, the
information outside the objects is not saved.
Only the object information or the object
lines that belong to an object are saved.
However, so far we cannot talk about objects,
just about lines belonging to an object
some type. For each line we keep the coordi-
nates of its starting point, the length of

the 1line and the type of the object to which
the line belongs. This structure is well
adapted to a relational database. The rela-

tional scheme of the run-length coded 1lines

is:
RLC - C (¥, X, length, type, nc)

where the identifying key is underlined.

Y

-

Figure 2 Run-length encoding

To identify each single line, - only the
coordinates of the starting point of each
line are needed. As will be seen later the
order of the coordinates are of importance.
The attribute:nc, .is used for identification

informationA'system with the

other ap-

of

of image

80

of objects and will be discussed further
below.
So far we have only discussed object

types which are spatially distributed in such
a way that it is possible to "walk"!" around
them, i.e., they are closed object types.
The RLC encoding is, however, also valid for
object types that are linear, e.g. roads, or
of point type, e.g. landmarks. For these
types, the lines are always one pixel 1long.
The latter types are trivial compared to the
closed types. It has to be pointed out that
the 1linear object. types are equivalent to
vector structures. The relations for the
linear and the point types are respectively:

RLC - L (¥, %, type, nc)
RLC - P (¥, X, type, nc)

In an object-oriented system, all ob-
jects must Dbe identified in an uniform way.
This can be done either by using the name - of
the object or by using unique coordinates.
Here both methods are used. Names ' are used
because the users are more familiar with
them.

In order to simplify retrieval of ob=-
jects in the database each object in the
database will include coordinates that
correspond to the minimum enclosing rectangle

of the object. Figure 3 illustrates the
correspondence between the object and the
rectangle.
(Y,.x1) B _’—\
x(yk,xk)

(Yzlxz)
Figure 3 Minimum enclosing rectangle of

. an object and its key.
The object relations corresponding to
the description given above will include not

only the given attributes but also applica-

tion dependent attributes, e.g. the depth or
ph-value of a lake. However, such attributes
will not be discussed further here. An ob-

Jject relation for closed
therefore look like:

object types will

OBJ - CR (Name, Yk, Xk, nec, Y1, X1, Y2, X2)

) The relations for linear and point ob-
ject. types will be similar although there are

no rectangles. needed for the point object
types.
The -nc attribute " is - a.unique integer

attribute that corresponds to the name of the

object. Since RLC relations always include
this attribute, there is a 1logical 1link
between each RLC-line and the object in the

object relation.

By using run-length encoded data a user
can define an image (su¢h as a map) covering
a certain area and display it. Furthermore,
it is easy to display the data, because .com-
pared to e.g. vector data the problem of cut-
‘ting the image in order to make it fit into
the display device is just a question of cut-
ting horizontal run-length lines.

An important advantage in using the RLC
data structure is that since the 1lines are
first ordered with respect to ‘their y-
coordinates, .all lines on a
can be accessed in sequence. Therefore, all
lines within the interval [Ymax, ¥min] can be
read in sequence and the lines displayed in
the same sequential order. <Consequently, the
process of displaying and reading image data
is always done in sequence and it does not

have to ‘be changed when handling the same
relation. This process 1is illustrated in
Figure 4.
RLC-database
Y X
r’““J
direction
direction of
of search
eaa |
Ymin
Caia | Xmay
Figure 4 Sequential presentation of image
data from RLC.
The RLC structure has .some additional
- advantages for map presentation. First, the

method is scale independent. for at least some
scale intervals. Hence it is fairly simple
to implement zooming. Second, there is no
need to . implement any "fill" operations for
the displaying of objects, because filling
will be performed.automatically when inter-
preting RLC objects. Similarly, ‘the holes
inside an object will be generated automati-
cally when the object is displayed.

3.: Spatial Operators on RLC Objects

The creation of new objects from exist-
ing RLC objects can be done by set theoretic
operations such as union, intersection, ~ex-
clusive or, etc.

81

certain y-level-

(a) Union: Suppose 01 and 02 are two overlap-

ping objects of closed type (i.e. the boun-
dary is a non-self-intersecting closed
curve). As illustrated in Figure 5a, the
union of these two closed objects, 01 « 02,

can be constructed by combining the RLC for
each specific y value as follows (assuming x1
=< x2):

01: y, x1, m
02: y, x2, n
01 u 02: y, x1, m ; x2, n (for x1+m<x2)
¥y, x1, x2+n-x1 (for x1+m>=x2)
(b) Iptersection: Suppose 01 and 02 are two
overlapping objects of closed type. As il-
lustrated in Figure 5b, the intersection of
these two closed objects, ©O1 n 02, can be
constructed by intersecting the RLC for each
specific. y "value :as follows (assuming x1 =<
x2):
01: y, x1, . m
02: y, x2, n
01 n 02: y, x2, xl+m=-x2 (for x1+md>=x2)
no line (for x1+m<x2)
(¢) Execlusive Or: As illustrated in Figure
5¢c, the exclusive-or of two overlapping
closed objects can be constructed as follows

‘(assuming x1 =< x2):

0z

[C2]

Figure 5 Spatial operators on RLC objects

01: y, x1, m
02: y, x2, n
01 xor 02: y, x1, x2-x1; x1+m, Xx2+n-x1-m
(for xl1+m>=x2)
y, x1, m; x2, n
(for x1+m<x2)

The above described operators can be
used to create new objects from existing
objects, or to test the relationships among
objects. For example, to decide whether an

object 01 is contained in another object 02,
it suffices to show that 01 y 02 02, or
equivalently, 01 n 02 01. Using this test,
we can find the objects situated 1inside
another closed object, for example, the is-
lands inside a lake. The complement of an
object 01 contained in another object 02 can
be found by 01 xor 02.

To decide whether a point object (or a
linear object) 01 is contained in another
object 02, we can check the RLC for each
specific y value as follows:

01: y, xi
02: y, x2, n
=< x1 =X X2 + n

Test: x2

(d) Horizontal Extension: Suppose 01 and 02

are two nonoverlapping closed objects. As
illustrated in Figure 5d, the horizontal
extension of 01 and 02 can be constructed as
follows:

01: y, x1, m

02: y, x2, n

01~02: y, min(x1,x2), (max(x1+m,x2+n)
-min(x1,x2))

In the above, min(x,y) = x if y is unde-
fined, and max(x,y) = x is y is undefined.

(¢) JYertical Extensiop: Similarly, we can
define the vertical extension of two nonover-
lapping closed objects 01 and 02, as illus-
trated in Figure 5e. To facilitate computa-
tion, the vertical RLC for 01 and 02 should
first be found. The vertical extension of 01
and 02 can be constructed as follows:

01:
02:
01i{02:

X

x: y2, n .

x, min(y1,y2), (max(yl+m,y2+n)
-min(y1,y2))

5f illustrates an alternative way
the vertical extension by first
finding x°' max(x1,x3) and x" min(x2,x4),
and then -taking the union of the two shaded
areas and the rectangle (x',x"; y2,y3).

Figure
to compute

L4, Symbolic Projections

We now describe the methodology of sym-
bolic projections [CHANG86]. Let V be a set
of symbols, or the vocabulary. Each symbol

82

could represent a pictorial object, a pixel,
ete. A 1D string over V is any string x1 x2
ese Xn, n >= 0, where the xi's are in V. A

2D string over V, written as (u,v), is a pair
of 1D strings.

We can use 2D strings to represent pic-

tures in a natural way. As an example, con-
sider the picture shown in Figure 6.

i d i H !
i i b }c i
iaia] i
Figure 6 A symbolic picture f

The vocabulary is V = {a, b, ¢, d}. The
2D string representing the above picture f

is,
(u,v) =(ad<ab<c, aa<be<d)

In the above, the symbol '<' denotes the
left-right spatial relation in string u, and
the below-above spatial relation in string v.
Therefore, the 2D string representation can
be seen to be the symbolic projection of pic-
ture f along the x- and y- directions.

A symbolic picture f is a mapping' M x M
~> W, where M = {1, 2, ..., m}, and W is the
power set of V (the set of all subsets of V).
The empty set {} then denotes a null object.
In Figure 6, the "blank slots" can be filled

by empty set symbols, or null objects. The
above picture is,
£(1,1) = {a} £(1,2) = {} £(1,3) = {d}
£(2,1) = {a} £(2,2) = {b} £(2,3) = {}
£(3,1) = {} £(3,2) = {c} £(3,3) = {}
In [CHANG86], we have shown. that given
f, we can construct the corresponding 2D
string representation (u,v), and vice versa,

such that all left-right and below-above spa-
tial relations among the pictorial objects in
V are preserved. In other words, let R1 be
the set of left-right and below-above spatial
relations induced by f. Let R2 be the set of
left-right and below-above spatial relations
induced by (u,v). Then R1 is identical to
R2, for the corresponding f and (u,v).

2D string representation provides a sim-
ple approach to perform subpicture matching

on 2D strings. The rapnk of each symbol in a
string u, which is defined to be one plus the
number of '<' preceding this symbol in u,

plays an important role in 2D string match-
ing. We denote the rank of symbol b by r(b).
The strings "ad<b<ec" and "a<e" have ranks as
shown in Table 1:

string v string u
ad<b<Kec a<ec
11 2 3 1 2

Table 1 Ranks of strings

A substring where all symbols have the
same rank is called a local substring.

A string u is copntaiped in a string v,
if u is a subsequence of a permutation string
of v.

A string u is a type-i 1D subseguence of

string v, if (a) u is contained in v, and (b)
if a1l wl b1 is a substring of u, al matches
a2 in v and b1 matches b2 in v, then

(type-0) r(b2)-r(a2)>=r(b1)-r(at) or

r(b1)-r(al1)=0
(type-1) r(b2)-r(a2)>=r(b1)-r(a1)>0
r(b2)-r(a2)=r(b1)-r(a1)=0
(type-2) r(b2)-r(a2)zr(bi1)-r(al)

or

Now we can define the notion of type-i
(i=0,1,2) 2D subsequence as follows. Let
(u,v) and (u',v') be the 2D string represen-
tation of f and f', respectively. (u',v') is
a fype-i 2D subseguence of (u,v) if (a) u' is
type-i 1D subsequence of u, and (b) v*' is
type-i 1D subsequence of v. We say f' is a
type-i sub-picture of f.

In Figure 7,
type-0 sub-pictures

f1, f2 and f3 are all
of f; f1 and f2 are

type-1 sub-pictures of f; only f1 is type-2
sub-picture of f. The 2D string representa-
tions are:
f (ad<b<ec, a<be<d)
f1 (a<b, a<b)
f2 (a<c, ace)
f3 (ab<ec, a<be)
i d | i '
i ibici
i a | H i
f
i i b ! ic i ibitecl
ial i {a i 1 ial i
f1 f2 f3
Figure 7 Picture matching examples
Therefore, to determine whether a pic-
ture f' is a type-i sub-picture of f, we need

only determine whether (ut',v') is a type-i 2D

83

subsequence of (u,v). The picture matching
problem thus becomes a 2D string matching
problem. Efficient 2D string matching algo-
rithms have been developed [CHANG86] and
applied to pictorial information retrieval
problems.

5. Orthogonal Relations

All run-length encoded objects have the
minimum enclosing rectangle available, hence
three types of spatial relations between
objects can be identified. These are for
objects with:

-nonoverlapping rectangles
-partly overlapping rectangles
-completely overlapping rectangles

The case with non-overlapping rectangles
is trivial and will never cause any problems
because the object relations are simple. The
other two might sometimes cause problems,
especially when one of the objects partly
surrounds the other. Figure 8 demonstrates a
problem of this type. The fundamental issue
here is to find a method that easily
describes the relations between the objects.
The method is called orthogonal relations,
because it deals with spatial relations that
are orthogonal to each other.

U

Figure 8 Two objects with overlapping
MERs
The basic idea is to regard one of the

objects as a "point of view object"™ (PVO) and
then view the other object in four direction
(north, east, south, west). Hence, at 1least
one or at most four subparts of the other
object can be "seen" from the PVO. The part
of the object that actually is "seen" is in
the interval where the two rectangles over-
lap, partly or completely. This is illus-
trated in Figure 9 and Figure 10. The sub-
object can be regarded as point objects, i.e.
the centroid of the rectangle that enclose
each subobject. It is a fairly simple opera-
tion to identify and generate these points
from the RLC. The next step is then to iden-
tify the relation between the objects by
using the 2-D projection method described in
section 3.

LA

X

Figure 9 The PVO and its corresponding

orthogonal relations
]

Figure 10 The PVO and its corresponding
orthogonal relations for partly
overlapping MERs

Each one of the sub-objects constitutes

an orthogonal relational object of the origi-

nal object and since they are regarded as
points, a sparse vector description ~of the
original object is generated. From this

viewpoint it does not matter whether the ori-
ginal object is of closed or linear type.
This makes the methods powerful. However, it
is of importance that the subobjects are
interpreted correctly. Figure 11a shows a
correct interpretation of a north and a west

segment while the interpretation of the same
element in Figure 11b is erroneous. The
natural interpretation is to look clockwise,
Hence, nine different combinations can be
identified.
2 points: N-E, E- S, S~ W, W-N
3 points: N-E- S, E-S~-W, S-W-N, W
- N~ E
4 points: N - E - S - W
N N
A [3
s N
v
s)
wa(‘ P)\;q Wy iVOx //
(@) ®)
Figure 11 A correct (a) and an erroneous

(b) interpretation of orthogonal
relations

84

No other interpretations are allowed.
It is also possible to regard the element in
between the orthogonal ones. But this is not
necessary since enough information is avail-
able anyway (see Section 5 for further dis-
cussions).

The technique of finding orthogonal
relations is described in the following algo-
rithm.

Procedure Ortho(x,y)
begin
/%¥0rtho(x,y) finds orthogonal relations
of object x with respect to object y*/

/¥find the minimum enclosing rectangles¥*/
find Mer(x); find Mer(y);

/%#find four relational objects of object y
intersecting the extensions of object x¥*/

y-W = W-extension(Mer(x)) n Mer(y);
y-E = E-extension(Mer(x)) n Mer(y);
y-N = N-extension(Mer(x)) n Mer(y);
y-S = S-extension(Mer(x)) 0 Mer(y);

return({y-W,y-E,y=-N,y=-S});
end

6. A Knowledge-based Approach to Spatial Rea-
soning

From the 2D string representation, we
can derive the spatial relations without any
loss. From these spatial relations, we can
derive even more complex spatial relations.
Therefore, combining the 2D string represen-
tation with a knowledge-based system, we can
provide flexible means of spatial reasoning,
image information retrieval and management.

The knowledge-based approach to spatial
reasoning is illustrated by two examples
below.

Example 1: An island outside a coast line.

Figure 12 illustrates the orthogonal
relations. The 2D symbolic projections are
then
U:Cc1<c2i
Vi:Cc2<Ctl i

The following rule is now applied

ifU:ri<r2za2pandV :r2<rt1p
then

*¥% facts ** (south r p) (west r p)

¥% verbalization ¥¥ "The object <p> is
partly surrounded by the object <r> on its
south and west side".

Figure 12 The orthogonal relations between
an island and a coastline.
When applying this rule to the example,

r will be substituted by C and p by i, i.e.,
(south C i) and (west C i). These facts are
now stored in the fact database. The verbal-
ization is sent to the user.

Examﬁdg 2: A forest near a lake.

In Figure 13, L1, L2 and L3 illustrates
the orthogonal relational objects which are
part of the 1lake. The 2D symbolic projec-
tions are:

U : L3 <FL1<L2

' L3 F L2 < L1

This is matched with the following rule

<

if u and V rtp r3

r2

rt <pr2<r3

then
#% facts ** (west r p)(north r p)(east r p)

##% yerbalization ¥¥ "The object <p> is
partly surrounded by the object <r> on its
west, north and east side".

In this example, we will substitute p by the
Forest f and r by the lake L.

By successively applying rules that
correspond to each one of the basic orthogo-
nal relation types, it is possible to identi-
fy all object-to-object relation. For exam-
ple, the fact identified in Example 2 is
(west L F), (north L. F) and (east L F).

X

The orthogonal relations between
a forest F and a lake L.

Figure 13

-bolic

85

T. Discussion

As mentioned in Section 1, an image
information system should support both simple
query processing and knowledge-based complex
query processing. Complex query processing
may involve the generation of objects wusing
set-theoretic operators described in Section
3. For example, we can retrieve all type-1
and type-2 objects within a specified area,
and generate the union (or intersection) of
these objects. As illustrated in Figure 14,
the icon-oriented user interface is well-
adapted to this task. By searching the
knowledge-base and matching against the sym-
projections, Wwe can answer complex
queries such as:

"find all objects to the south of X"
"find all spatial relations between
objects X and "

A pictorial example of such queries
using an icon-oriented approach will allow
the user to have a friendly and intuitively
meaningful way for specifying queries. The
pictorial query can then be transformed into
symbolic projections and used to retrieve
matching pictures in the database.

speaking, expert systems are
not particularly good at handling spatial
data [WATERMAN86]. Symbolic reasoning is
generally not possible because this type of
data requires large amount of memory to keep
track of the various spatial relations.
Moreover, this process is normally slow when
conventional methods are wused. Orthogonal
relations represented as chains of 2D symbol-
ic projections constitute a basis for effi-
cient use of spatial knowledge. For example,
another potential application is path finding
in a map. The symbolic projections can be
used by a planning expert system to generate
an approximate route. The approximate route
can then be algorithmically refined to a
definite path wusing previously developed
algorithms [LOZANO83, WONG86]. The proposed
pictorial data structure therefore can be
very useful in designing expert systems for
spatial reasoning, as well as knowledge-based
image information systems.

Generally

—— —

e —— ~
FaPad ~oS
s N
union/ 7 Area N \\
7
. i
T N -)
A
| <)
| \ }
"l_‘m_eil N Type-2 Genexate
1
2 & Bk
Figure 14 Icon-oriented user interface for

image manipulation

References:

[CHANGB6] S. K. Chang et. al., "Iconic Index-
ing by 2D Strings", Proceedings of IEEE
Workshop on Visual Languages, Dallas, Texas,
June 25-27, 1986.

[CHOCK84] M. Chock, A. F. Cordonas and A.
Klinger, "Database Structure and Manipulation
Capabilities of the Picture Database Manage-
ment System (PICDMS)", IEEE Trans. on Pattern
Analysis and Machine Intelligence, Vol. 6,
No. 4, July 1984, 484-492,

[JUNGERT85]1 E. Jungert et. al., "Vega - A
Geographical Information System", Proc. of
the First Scandinavian Research Conference on
Geographical Information Systems, Linkoping,
Sweden, June 13-14, 1985.

[JUNGERT86] E. Jungert, "Run Length Code as
an Object-Oriented Spatial Data Structure",
Proceedings of IEEE Workshop on Languages for
Automation, Singapore, August 27-29, 1986.

[LOZANO83] T. Lozano-Perez, "Spatial Plan-
ning: a Configuration Space Approach", IEEE
Trgns. on Computers, Vol. C-32, No. 2, - Feb.
1983.

[SAMMET84] H. Sammet et. al., "Processing
Geographic Data with Quadtrees", Seventh
International Conference on Pattern Recogni-
tion, Montreal, Canada 1984.

[WATERMAN86] D. A. Waterman, A Guide to
Eipert Systems, Addison Wesley, Readings,
Mass., 1986.

[WONG86] E. K. Wong and K. S. Fu, "A
Hierarchical Orthogonal Space Approach to
Three-Dimensional Path Planning", Trans. on
Robotics and Automation, Vol. RA-2, No. 1,
March 1986, 43-53.

Acknowledgements:

This research was supported in part by NSF
Grant DMC-8510804 and NRL Contract
NOOO14-86~C-2038 of U.S.A., and by FFV elek-
tronik AB of Sweden.

*Note: Dr. Erland Jungert is with FFV Elek-
tronik AB, Linkoping, Sweden.

86

DOCUMENT IMAGE UNDERSTANDING

Sargur N. Srihari

Department of Computer Science
State University of New York at Buffalo
Buffalo, NY 14260

ABSTRACT

A digital document image is an optically scanned and
digitized representation of a printed page that consists of blocks
of text, line drawings, half-tone pictures, and icons. Document
image understanding is a goal-oriented problem involving
detecting and interpreting different blocks and coordinating the
interpretations to achieve an end result. We examine several
solutions to subproblems in document understanding tasks. The
subproblems range from pixel processing issues to symbolic
linguistic reasoning to global control.

INTRODUCTION

A document image is a visual representation of a printed
page such as a journal article page, a magazine cover, a
newspaper page, etc. Typically, it consists of blocks of text,
i.e., letters, words, and sentences that are interspersed with half
tone pictures, line drawings, and symbolic icons. A digital
document image is a two-dimensional array representation of a
document image obtained by optically scanning and raster
digitizing a hard copy document. It may also be an electronic
version that was created in that form, say, for a bit-mapped
screen or laser printer. An example of a document image is
shown in Figure 1.

Document image understanding (or simply, document
understanding) is a goal oriented problem that may involve
interpreting photographs (which is a vision problem),
interpreting text (which may involve natural language
understanding), interpreting line drawings such as graphs, in
such a way that the interactions of the different components is
accounted for. Some examples of document understanding
tasks are: (i) integrate the pictorial content of a newspaper
photograph with accompanying narrative title, (ii) determine the
paste-on destination address on a colorful magazine cover: itis
necessary to locate and orient the most plausible textual block, to
read it and verify that it has the correct syntax, and (iii) make
inferences from an annotated x-y plot.

Document understanding implies the correct recognition of
each of its constituent components. The recognition has to be
both in terms of high level components such as columns and
paragraphs, as well as in terms of low level components such as
words and lines in the case of text; curves, rectangles, and solids
in case of graphics; and image regions in case of half-tone
pictures.

Document image analysis is the task of deriving a high level
representation of the contents of a document image. The spatial
structure of a document can be represented in several ways.
Two representations of the image of Figure 1 are shown in
Figure 2. The first is an analogical representation that gives the
spatial extent of blocks including paragraphs and the second is a
propositional representation in the form of a partial semantic
network whose nodes represent document entities and arcs
represent relationships. Each of them assumes blocks as units
where each block can be associated with details like size, shape,
number of black pixels and texture information. This

1.

CH2345-7/86/0000/0087$01.00©1986 IEEE

87

"

Fretiing Corrosion of Separable Electrical Contacts

Figure 1. An example of a document image.

information can then be utilized to discriminate between blocks.
Methods for deriving the blocks can take advantage of the fact
that the structural elements of a document, i.e., columns,
paragraphs, titles, figures, lines of text, symbols, etc., are
generally laid out in rectangular blocks aligned parallel to the
horizontal and vertical axes of the page.

Document Understanding Components

Document understanding involves the use of several types
of knowledge including visual, spatial, and linguistic. In
determining objects from the background, say, by thresholding
or by edge detection and grouping, the parameters necessary to
perform such operations constitute visual knowledge. Labeling
regions involves the use of spatial knowledge, e.g., the layout
of a typical document. Determining the font and identity of
characters also involves spatial knowledge, i.e., the structure of
textual symbols, words, and the distinguishing characteristics of
each font. Reading words in blurred or poorly registered text, is
a process that involves spatial as well as linguistic knowledge,
e.g., lexicon of acceptable words. Determining the role of a
block of text, e.g., “is this a title?,” is a process requiring
spatial, syntactic as well as semantic knowledge. Considerable
interaction among different types of knowledge may be
necessary. For instance, assigning a role to a textual region may
require not only knowledge of spatial layout, but also an
analysis of its textual syntax and semantics, and an interpretation
of neighboring pictorial and iconic regions.

The various processes necessary for document analysis are
shown in Fig. 3. The task has been divided into three phases.
Phase 1 consists of two steps: optical scanning and digitization
and binarization. Phase 2 consists of block segmentation and
labeling. The result of phase 2 is a set of regions. (possibly
overlapping) labeled as text, graphics, half-tone, etc. Phase 3
consists of several parallel operations for processing text,
graphics, and half-tone images. Document understanding
involves feedback paths not shown in Fig. 3.

=

—————

Figure 3. Document Understanding Components.

2. SCANNING AND BINARIZATION

An optically scanned document image is usually an integer
(gray-valued) array; it is obtained by a process of spatial
sampling and simultaneous conversion of light photons to
electric signals. A high-resolution bit map is sufficient to
capture shades of gray in the eye of the human perceiver (such
images ‘are called half-tone). An optically scanned document
image can be converted into a bit map by a global thresholding
operation: pixel values below the threshold are deemed to be
black (value 1) and those above deemed white (value 0). The
threshold itself can either be predetermined or calculated from
the image histogram, e.g., the valley of a bimodal histogram.

A global threshold, i.e., one that applies to the entire
image, may sometimes be impossible to obtain due to varying
background color. One solution is adaptive thresholding which
is to compare the gray value of the pixel to the average of the
gray values in some neighborhood about the pixel.. If the pixel
is significantly darker than the neighboring pixels, it is called
black; otherwise it is white. One such adaptive thresholding
algorithm [14] that is appropriate for a printed document
considers'a 9 x 9 region around a pixel (x, y). The central 3 x 3
tegion including (x, y) is called A1 and four 3 x 3 regions 8-
connected to A are jointly called Ay. The average pixel value of
A is compared to the weighted average pixel value of A;. The
idea in choosing the regions in this manner is that of a black
pixel that is part of a line of text should only be compared to the
white spaces above and below the line.

Color
A document with significant colored regions is usually

88

scanned as three gray level images with red (R), green (G), and
blue (B) filters. A colored image can be converted into a single
‘bit map by approximate methods. Color thresholding is useful
to extract regions of a particular color. Thus if the objective
were to determine the address label which is known to be white
then one can focus only on the white regions and perform
further feature tests (e.g., rectangularity, presence of text) [21].

Resolution ’

Scan resolution is of importance in document
understanding. Scanning resolution for text and line drawings
can be decided as follows. The width of a typical character
stroke is about 0.2mm (0.008 inch), with some of the widest
strokes up to about 1mm; a 10-point character measures about
0.5mm (0.014 inch) between ascender and descender lines. A
sampling rate of 240ppi corresponds to about 0.1mm/pixel
which guarantees that at least one pixel will fall totally within the
stroke; this resolution corresponds to 33 pixels between the
ascender and descender lines. In the case of engineering
drawings the minimum line width is approximately 0.3mm.
Thus the minimum resolution needed is approximately 100 ppi.

3. BLOCK SEGMENTATION

Approaches for segmenting document image components
may be roughly divided into techniques that are top-down or
bottom-up. Top-down techniques divide the document into
major regions which are further divided into sub- regions, etc.
They often use knowledge about document structure, e.g., that
the layout is in the form of rectangular blocks. Bottom-up
methods progressively refine the. data by layered grouping

. operations. Although no practical system takes a pure approach,

every system can be identified as being predominantly aligned
with one of the two philosophies.

3.1. Top-Down Approaches

We will describe three top-down approaches: smearing,
projection profile cuts, and the Hough transform.

Smearing

The smearing technique [24] involves scanning documents
as black/white images A run-length smearing algorithm (RLSA)
then operates on the image under which any two black pixels
(1's) which are less than a certain threshold ¢ apart are merged
into a continuous stream of dark pixels. White pixels (0's) are
left unchanged. For example, if the input sequence was
00011000001100100001 and the value of ¢ was 3 then the result
of the RLSA on this sequence would be

11111000001111100001.

The RLSA is first applied row-by-row and then column-
by-column, yielding two distinct bit maps. The two results are
then combined by applying a logical AND to each pixel location.
The resulting RLSA image contains a smear wherever printed
material appears on the original image. The thresholds t, and #,,
in the two directions need not be the same. The segmentation is
expected to yield blocks each of which should contain only one
type of data (text, graphics, half-tone, etc.).

Projection Profile Cuts

Based on the observation that printed pages are primarily
made up of rectangular blocks, a page can be recursively cut into -
rectangular blocks. Thus the document is represented in the form

of a tree of nested rectangular blocks. The application of cuts is

based on the configuration of the pixels. A “local” peak detector
is applied to horizontal and vertical “profiles” to detect local
peaks (corresponding to thick black or white gaps) at which the
cuts are placed; it is local in that the width is determined by the
nesting level of the recursion, e.g., gaps between paragraphs are
thicker than those between lines [11, 25].

A complete hierarchical recursive tiling of a page can be

represented as a tree. An X-Y tree, is obtained by using
horizontal or vertical partitions at alternating levels of the tree.
The root represents the entire page and can be considered either a
single horizontal or vertical partition. The succeeding nodes,
and finally the leaves are obtained by a process of alternating
horizontal and vertical cuts. The number of horizontal or vertical
cuts placed at each level is variable, so the resulting tree is not
binary. A node that represents a horizontal (vertical) partition
has a set of descendents that represent a complete vertical
(horizontal) tessellation of the parent node.

Hough Transform

A document typically contains several straight lines.
Forms and tables contain solid lines. Line drawings, e.g., block
diagrams, predominantly have straight lines. Columns of text
are separated by straight rivers of white space. Text usually
consists of several parallel textured thick lines.

The Hough transform is a technique for detecting
parametrically representable forms, e.g., straight lines, in noisy
binary images. It involves transforming each black pixel (x, y)
in the original image into a curve in the parametric space. In the

case of detecting straight lines the transformation usedis K= x
cos T +y sin T. For each point (x;, y;), T is varied from O to J

to yield the corresponding curve in the (K, T) space. An array
of accumulators is set up by quantizing values of K and 7. The
accumulators corresponding to values of (K, T) yielded by the
transformation are incremented by one. It can easily be shown
that if points are collinear along the line specified by parameters
(Kp, Tp), then each such point (x;, y;) will necessarily increment
accumulator (K, Tp). Thus each value in the accumulator array
corresponds to the strength of evidence for a straight line with
the corresponding parameters. For a 512 x 512 image, K
values extend from —368 to +368 (This value is arrived at by
assuming the origin of the (K, T) space to be at the center of the
512 x 512 image and hence the maximum value of K is 256 x
2).

The accumulator array resulting from applying the Hough

transform to a portion of the document image of Figure 1 is
shown in Figure 4. The portion corresponds to the “abstract” in
the left column. In general the array can be checked for the
particular orientation which has the maximum number of
transitions to and from a2 minimum value. Transitions
corresponding to text are usually regular and uniform in width
and thus are easy to identify. In the case of text containing both
upper and lower case, they register a maximum value at the
center line of the characters and slightly lower values
corresponding to the ascender and descender lines. Textual lines
have another property that there are “white” lines perpendicular
to the beginning and ending columns and this information can be
used to confirm line orientations. First, the number of vertical
columns in a page needs to be determined because a multi-
column page may not have any (K, T) orientation with low
counts. Subsequently, the spacings between the text lines can
be identified, on the basis of the average width of significant (X,
T) values for a particular T.

The distance histograms along the line and its
perpendicular orientation can be used to get the inter-word and
inter-line distances. By incorporating these, the thresholds for
the run-length smearing algorithms can be derived and big
blocks of data can be grouped together [16].

3.2. Bottom-Up Approaches

Bottom-up analysis is based on successive steps of
refinement of the input image. The image is first processed to
determine the individual connected components. At the lowest
level of analysis, there would be individual characters and other
large figures. In the case of text the characters are merged into
words, words are merged into lines, lines into paragraphs and
paragraphs into even larger blocks, if such a merging is

89

possible. In a bottom-up technique it is usually necessary to
determine whether a connected component is a part of: text, line
drawing, or threshold region of a half-tone picture. Possible
features for performing this classification are: size, branching
structure, topology, and shape measures.
Size

A commonly used method is to determine the size of a
component, by counting the number of pixels, and consider it
not to be a character if it lies within arange. A disadvantage of
this method is that the size of characters has to be known
beforehand, which is not always possible. However, size is a
useful first feature,

N,' ,a’w’."}/.".ar
10

[
o,

o

7
?g‘/@;’r;

= B
‘”’4// u
(it

Figure 4. The Hough Transform &.::.:muiwior array. Text lines
appear as a series of peaks in the 0° column.

Branching Structure

The geometrical complexity of an object can be measured
in terms of the number of linear components (branches) that the
figure is composed of. If the complexity is high then the object
is probably part of a line drawing, half- tone picture, or form,
i.e., it contains too many branching structures to be a printed
character. An algorithm can be designed to determine
geometrical complexity of several components while the imageis
scanned raster fashion. This is done by keeping track of the
several components in each line and their connectivity with
respect to components in the previous line. A description -of
each connected component consisting of, say, its size, location,
horizontal and vertical extents is maintained. Clusters of
structures of similar type can then be identified. An example of
this clustering approach is shown in Figure 5. A pass is made
on the binary data to determine all connected components, which
are individual characters. On the basis of proximity, size and
other features the characters are merged into lines [2].

Topology)

The topological properties of a component are useful in
determining if it is a character. The Euler number of a binary
image is defined as the number of components. minus the
number of holes. For a component which is a character the
Euler number is one (1), zero (0), or negative one (—1). A fast
algorithm can be designed for computing the Euler number ofa
binary image. More generally, the adjacency tree of a binary
image contains all topological information (Figure 6).
Control for Bottom-Up Grouping

The order of application of different operators can be based
on their complexity, e.g., most characters can be quickly
determined by their component size. However if characters
touch a line, as often in the case of line drawing graphics, the
characters have to be segmented from lines. One technique for
segmenting characters from line structures is to determine the
high neighborhood line density (NLD) areas in the line
structures [8]. Such areas are candidates.

E= 2

Figure 5. Bottom-up grouping technique. Character blocks are
merged into words, words into lines, etc. using a clustering
technique.

[t (0

Figure 6. Adjacency tree: (a) input graphics, (b) outermost
component aj, (¢) inner component ajy, and (d) complete
adjacency tree.

The application of different operators for bottom-up
grouping can be coordinated by a production system. Examples
of specific rules in such a system are:
if connected components [c]'s size [s] is larger than z,
then the component is graphics with likelihood Ly,
if neighborhood line density (NLD) on graphics is high,
then the high NLD area is a character area with likelihood L.

A sketch of control flow follows:

1. Size, position, and direction data of every connected
component is collected.

2. The components are classified according to size into
graphics, characters, and noise and their likelihoods are
determined.

3. Character components are grouped together as character
areas using vector distance rules.

4. High NLD areas in graphics components ar¢ separated out as
charagters touching lines and their likelihoods are
determined.) .

5. If another character exists near the touching character area its
likelihood value is increased.)

6. The cut-off part in a faded line is repaired.

4. LABELING
Blocks determined by a segmentation process usually need

to be labeled in a subsequent step. There are several techniques
for classifying a given block into one of a small set of
predetermined document categories.

Statistical Approach

Simultaneously with component coloring, the following
measurements are taken: total number of black pixels in the
segmented block, minimum x-y coordinates of a block and its
x-y lengths, total number of black pixels in the original image
for the block, and number of horizontal white-black transitions
in the original image block.

The next step is to classify each block according to
content. This is done by computing several features for each
block from the above measurements and then using a linear
pattern classifier. The features computed are: the height of a
block, its eccentricity, the ratio of the number of black pixels to
the area of the surrounding rectangle, and the mean horizontal
length of the black runs in the original data from the block.

A block is determined to be text if it is a textured stripe of
mean height H,, and mean length of black run R,,. The
distribution of values in the R-H plane derived from sample
documents are observed to determine the discriminant function.
Low R and H values represent regions containing text. To
determine the threshold values of R and H that define the text
region in the R-H plane, an adaptive method is used. This
method estimates R,,, H,, and the standard deviation of R and
H. These values are then used to classify the various blocks by
using the following pattern classification scheme that assumes
linear separability:

e Text:

ifR < C21 x Rm and H < C22 X ly‘:m,
* Horizontal solid black lines:

ifR>Cy1 xR, and H <Cyy xH,,,
¢ Graphic and Half-tone images:

if E> 1/C23 and H>C22me, and

* Vertical solid black lines:
ifE<1/Cy3 and H>Cyy xH,,.

A Distance Mapping Shape Measure

A shape measure for determining whether a component is a
character, line drawing, or thresholded gray-level image is as
follows [22]. Given a connected component S first a distance d
is computed for each pixel of S as follows. Distance d is a
function of the two Cartesian coordinates x, y ((x, y) € S) and

an angle ¢ measured from the x axis (0° <¢ 180°). It is defined
as the length of a line segment BB, that passes through the

point (x, y) of S and makes an angle ¢ with the horizontal. The
two opposite border points By, B, of S are such that the line
segment B, B, is entirely inside S. Three distance mappings are:

D pin (x, y) = Mig[d(x, y,)], or the length of the shortest.

chord through (x, y),

Dopax (x,) = mzx(p[d(x, ¥, ¢)], or the length of the
longest chord through (x, y), and D, (x,) = Dpax (5,) /
Dpip (x, y).

. These mappings reflect geometrical properties of objects
within binary images. By averaging D,,;, within S the mean
minimum border to border distance dmin can be calculated. This
provides a fairly good estimate for the mean line thickness of
line shaped patterns. To discriminate between line shaped
patterns and more compact ones, the average of D, , g 15 @

useful measure. Similarly, dmax reflects the mean maximum
border to border distance.

Further shape factors are desirable: d,,;, can be used to
derive a shape factor which equals one for the most compact

pattern, an ideal circle, and is greater than one in all other cases:
ft =Ald?,;, with C; =16/ 97z in continuous space (or
number of pixels in disscrete space). This global measure
reflects the “line shapeness” of pattern, i.e., their compactness
independent of A more specific characterization can be obtained
by means of additional features, e.g., f, = C3 x A / d~2,,,, with

Cy, =4/ 7 in continuous space (1.2.388 in discrete space)
which is invariant with respect to the size of the pattern. Unlike
fisf2 is capable of discriminating a straight line from an L-
shaped line having about an equal number of pixels and about
equal line-thickness.

Handwriting versus Print Discrimination .

Given a region that contains either printing or cursive
script, a method can be devised to determine its nature by
observing regularities of white-to-black and black-to-white
transitions. Figure 7 illustrates.

L]
A Qf Kaddin
’
195 Lo A

| 4z 7

e Qelin st 4 30324
‘ i
»] H
>

2300 PACZLAKL DRIVE NE, U1V

TRANSAMIR'CA "NILRANCE GAOY
P11 ATUANTA, GEOSGIA Xide3

P

ta)

(O]

Figure 7. Printed text can be distinguished from cursive
script by determining regularities: (a) printed text and
histogram of black-white transitions in vertical direction, (b)
cursive script and corresponding histogram.

The method involves computing several filter histograms
of the test region. One example of a filter is a white-to-black
transition separated from another white-to-black transition by n
units along the horizontal direction. The histogram is obtained
by counting the number of such transitions that occur for each
value of n. Different histograms are obtained by considering a
white-to-black transition separated from a black-to-white
transition in the horizontal/vertical directions. The histograms
for printed text tend to have several regular peaks while
handwriting tends not to have such peaks. Thus the test
becomes one of classifying the histogram as regular/irregular.
The classification can be done either by treating the histogram
itself as a feature vector or by extracting an appropriate feature
vector from the histogram.

Rule-Based Approach

A method of associating labels like line-of-characters,
paragraph, title, author, abstract, text columns or text lines,
column, photo, etc., to the blocks on the basis of their extent,
absolute and relative position is then needed. This can be done
by a rule-based expert system that uses a knowledge-base
comprising layout and composition rules for specific classes of
documents [11]. Using physical (syntax) information, the rule-
based system proceeds on its labeling of the blocks (referred to
as semantics).. These rules can determine line-of-characters,
paragraphs, columns, photos etc. using concepts of width,
aspect ratio, number of cuts, number of siblings at a particular
stage and other such related information. Rules are of the

91

following type:
* line of characters: sequence of adjacent character blocks of
some height, separated by character-segmenting rule,

* paragraph: sequence of blocks of line-of-character of same
length, separated by line finding rule,

¢ column: large blocks with approximately equal frequency of
“1” and “0” pixels, and

* photo: sequence of paragraph blocks of same width,
separated by paragraph-cutting rule.

For a complete consistent set of rules, the lébeling process
has worst case complexity equal to the product of the number of
blocks and the number of labels.

5. GRAPHICS PROCESSING

Line drawings and tables are commonly encountered in
documents. Their analysis involves a raster to vector
conversion. The aim of a raster to vector process is to convert a
binary pixel representation of line-work into a connected set of
segments and nodes. A segment is typically a primitive such as
a straight line or a parametric curve. Straight lines in vector
form are specified by their start positions, extent, orientation,
line width, pattern, etc. There have been several different
approaches to vectorization, including: pixel- based thinning,
run-length based vectorization, and contour-based axis
computation.

Pixel-based thinning algorithms require multiple passes
through the data set. During each pass object pixels are deleted
based on local neighborhood criteria. Such methods gradually
thin thereby thinning the image down to unit width (Figure 8).
A single pass algorithm could be obtained by using a set of local
3 x 3 operators and applying them in a quasi-parallel manner to
generate a marked skeleton; quasi-parallel application means
dividing the image into four disjoint sub-images and applying
the operators to each sub-image in turn [5]. These techniques are
slow as they operate on individual pixels rather than on groups
of pixels. Also a lot of time is wasted in looking at white pixels
more than once; only about ten percent of the pixels on any page
of text are black and hence this wastage is quite considerable.

Run-length based vectorization [15] differs from pixel-
based thinning in that the image does not go through multiple
passes to get at a thinned image of unit width. Instead, vectors
are drawn with certain approximations resulting in this. The
method aims at this by tracking the black segments along scan
lines and using aggregates of such segments to operate upon.
The algorithm achieves the objective by converting the input run
length encoded image into a graph and analyzing the graph. The
graph also has information which could be used to provide many
more useful features for character recognition. It is found that
this method works better for lines perpendicular rather than
parallel to scan lines. The complexity of pixel based thinning is
of the order of the number pixels. The complexity of run-length
based thinning is approximately of the order of the number of.
run length code segments.

Some problems that need to be specially examined are
handling of dotted lines, determining end points of lines,
effectiveness of thinning, determination of vector intersection
and curve fitting versus piecewise linear approximation. Issues
in understanding of graphics are discussed in [3, 4, 10].

6. TEXT RECOGNITION

A text recognition or reading technique takes an image of
text and maps it into an ordinal machine representation, e.g.,
ASCII. Methods of reading text can be divided into two related
but distinct categories: isolated character recognition and
character recognition in context. When the types of font are
known a priori, or when few fonts are encountered, a highly
reliable isolated character recognition technique can be designed.

Figure 8. Example of Thinning Line Drawings.

Isolated character recognition involves extracting a set of
predetermined features from the character image. The features
used are chosen for their ability to discriminate between classes.
For instance, character height in millimeters is useful for
distinguishing between lower case letters with ascenders, (e.g.,
b, d, h, k, 1, t) and letters without, (e.g., a,c, e, n, 0, 1,5, U,
V, W, X, Y, Z). Thus the character is regarded as a point x in a
multi-dimensional feature space. Classification is accomplished
by using discriminant functions which effectively partitions the
feature space; typically each class i has an associated
discriminant function d; and x is assigned to the class that

maximizes d; (x). The discriminant functions d;, or their

parameters, are determined statistically from a large set of
samples during a training phase. Character recognition
techniques quite often use only binary-valued features. since
they lead to simpler feature representation and discriminants

6.1. Isolated Character Recognition

Typical of such a method is one [17] that treats a binary
character image on a 16 x 16 grid as a 256-element binary
feature vector x . The classifier uses second order polynomial
discriminant functions derived using least mean squared error
considerations. The form of the discriminant function is: d; =
ag; + ay1iy1 + @2iyy + ... + @yiym , where y; are either
components of x or products of pairs of components. Since the
number of such terms is large, (i.e., 256 + 256C,), only a subset
is used. Approximately m = 1200 is determined where the pairs
of pixels are heuristically chosen. In the 16 x 16 raster field,
more pairs are chosen at the center than in the periphery. The set
of coefficients aji are represented as a matrix A of size k x m.
Thus the computation of the k discriminant functions can be
expressed as the matrix multiplication: d[k x I]= Alkxm] .
y[m x 11 . The index of the member of d which is closest to
unity is the class to which the input is assigned.

6.2. Character Recognition in Context

In most printed documents characters hardly ever appear in
isolation. Several approaches to recognizing characters in
context are known [19]. Contextual information is usually in the
form of a lexicon of acceptable words. It can also be in the form
of n-grams, i.., legal letter types, or letter transition
probabilities.

One approach is to recognize characters of words and then
post process (correct) any errors by using a lexicon of words
and a distance measure between words. Another approach is to
use lexical information to limit the number of possibilities in
recognizing individual characters to find the nearest word. This
is done by weighting the choices for a given character by (i) its
occurrence in the lexicon and (ii) its frequency of occurrence in
the text. Thus the unlikely choices are eliminated and the

92

resultant is guaranteed to be in the lexicon. Integrating
contextual information into the character recognition process
leads to better performance than the two step approach of
character recognition followed by error correction {20]. The
third approach is to extract features from the entire word and
attempt to classify it using a lexicon organized by word feature.
A simple set of features are used in a first level analysis to select
a neighborhood of words and a more detailed analysis
discriminates between a small subset of character classes [6].

6.3. Type Font Analysis

A document analysis system needs to distinguish between
text of different fonts. In the terminology of typography, a font
is a collection of upper and lower case letters and special
characters of one particular typeface, style, and size. The
tvneface determines the overall design of one character shapes.

The style refers to the average stroke width of the characters,
!)oldface versus lightface (normal), and the posture of the body,
italic versus roman,

The task of character recognition is considerably simplified
if the font is determined ahead of recognition. Variability of
characters is due to two sources: the type font and noise. Given
the English alphabet in several fonts, the style of any given
letter, say “B,” is different in each font. However within any
one type font certain aspects of the style of the “B” are identical
to the stylistic aspects of the other characters in that font, e.g.,
the lower left sides of “B” and “D.” By providing a framework
within which this repetition of stylistic aspects in a type font can
be expressed explicitly, it can be used subsequently to augment
the recognition algorithm, e.g., knowing the font, a decision
procedure for that font can be applied.

Determining the stylistic consistency of a given font
involves finding elements such as serifs and then finding their
relationships to strokes to which they are joined. A set of rules
for type font analysis considering only machine printed fonts
taken from the Roman and sans-serif families is given in [1].
6.4. Linguistic Analysis
The role of language in the recognition of images of text
has been little explored beyond the word level. Here we
describe a linguistic approach to recognize whether a given two
dimensional block of text is an address. If it is an address, a
parse tree is obtained. The method exploits spatial information
in its analysis, i.e., the space between words or lines is
important.

In determining the destination address on a mail piece
image with several two-dimensional blocks of text, it is
necessary to syntactically analyze the recognized characters in a
candidate block by using spatial information such as character,
word and line spacing [21]. A system has been developed to
perform this syntax analysis by attempting to parse (label)
subelements of the block of text and produce a parse tree
representing the labeling of the constituents [13]. This labeling
identifies words corresponding to the city, state, zip code, and
street name, among others. Several significant changes have
been made to a standard Augmented Transition Network (ATN)
parser [18] including word abbreviations, spatial feature
analysis, and heuristic parsing.

This module takes as input a sequence of lines of sentences
(subsequently called a sentence block). This input, in the form
of ACSII characters, is then preprocessed to record the number
of horizontal blocks before each word and record this spatial
information as lexical features of the input word. A similar
preprocessing operation is performed to record the vertical
spacing between lines in the block but with the spatial separation
recorded as a special word inserted directly between the line of
the input and later handled as another word in the input stream.
This provides the parser with spatial information needed to
check if a word or line is “too far away” from the remaining

words to be considered.

This preprocessed sentence block will be accepted by the
parser if and only if the sentence block has the syntax of an
address block. If the input sentence block is acceptable in terms
of the grammar and lexicon, then the structure (parse tree) of the

‘Tegion will be passed to the generalized rule-based region labeler

for use in the determination of the correct sending address as

opposed to the return address.

The address recognition module incorporates the four
assumptions described below:

1. When a block in initially segmented and passed to this
address recognition unit, extraneous printed material may be
present in the block. This is dealt with by adding heuristic
arcs (described below) to the grammar which will allow
crude matching of the beginning of each line and result in the
skipping of the remainder of the text line suing the
generalized TO arc [18].

2. If the text block contains an ambiguous address, then the
output will be a parse tree representing all possible
interpretations of the block.

3. This unit will not perform context matching between the city,
state, and street name with the five of nine digit zip code.
Context checking is also not performed between other
components of the address since it is not a necessary
condition for a text block to be an address block.

Parser Modifications

The major changes to the standard parser include the
capturing of spatial features such as end of line and word
spacing, and the addition of abbreviation handling.

Spatial Properties: A major parser modification was the
addition of a spatial acquisition mode for capturing the number
of spaces before each word and adds this spatial information to
each lexical form of the current input word. This information
includes the number of blank spaces prior to a word, the
distance to the left, top, and right margins and also the length of
the word. Below is a partial input to the parser after the initial
conversion of physical spaces in the input to lexical features
associated with the words.

(buffalo(((root . buffalo)
(ctgy . city)
(parts . 1)
(head-space 3)
(left-margin-space 3)
(top-margin space 0)
(word-length 7)
(right-margin-space 29)
(line-length 32)))

o)

If vertical spacing is present in the input, then the block will be
linearized with the insertion of a new line word of the form:
@nnnn where @ represent the start of a new line, and the nmnn
represents the number of units (lines) in the vertical spacing.

Abbreviations: Since many of the words in an address
block are abbreviations such as Ave, St, NY, PA, S, N, W, a
method was developed to associate these abbreviations with their
expanded forms. To facilitate the lexical look-up of
abbreviations and avoid the repetition of lexical words with
sumilar meaning, a new property was used to equate a word with
a series of other words.

A grammar corresponding to the bottom two lines of a
standarc_i address has includes the structures of the PO box,
street, city, and state fields as well as the five (or nine) digit zip
code. This grammar is complicated by the possible presence of
punctuation between words and the spatial information
mentioned above. Sometimes the punctuation and spatial
information is important. For instance, if a comma is present,

93

then it is a separator between the city and state name. Also, if a
new line word is present, then it is most likely the termination of
a multiple word phrase such as a city, state, or street name.

The grammar, in addition to containing arcs representing
the bottom two lines of a standard address also contains heuristic
rules for detecting and skipping other possible input lines. That
is, if the first word on a line is a personal title (Dr., Mr., Ms.,
Miss, or Mrs.), or a personal first name, then the remainder of
the line would be ignored. Another skipping rul€ is for the
detection of a standard presort codes usuaily present on the top
line of an address block.

For a sentence block to be parsed as an address region,
several constituents must be identified. For instance, if more
than one line is present in the address region, then the
city/state/sip line must start on a new line. Another necessary
element for a block to be parsed as an address block is the
presence of a state name followed by a zip code (either on the
same input line of on the following input line).

The grammar, initially, makes one pass through the input,
attempting to locate a possible state name. If a state name is not
found, then the parse will fail. If, however, a state name is
found, then the state name and line number are recorded for later
processing and a second pass is made through the input utilizing
a more robust grammar for detection of other constituents. This
preliminary detection of the state name provides an efficient
means for detecting a necessary component of the address and
reduces the computational cost of parsing the entire address
region.

Lexicon

The lexicon contains generally five different types of
entries corresponding to the street, city, and state names, street
keywords (such as avenue, street, circle, parkway), and other
keywords most often present in the address region of mail pieces
such as personal names and titles. As was mentioned
previously, the lexicon need not contain all possible street and
city names but parses of an input sentence blocks containing
these “missing” cities of street names would result in weak
parses.

The grammar entails 106 states, 178 arcs, and a small text
lexicon which contains 188 unique words with entries for all 50
states (and their abbreviations), 32 cities, 20 street names, and
20 street keywords. To judge the effectiveness of the keyword
approach in guessing a city name, the Directory of Post Offices
(DOPO) data base was used. A total of 25,630 on word city
names were encountered with over thirty percent (7,843) of
these city names ended in the above mentioned letters. For two
word citv names. 7.437 cities were encountered with over

seventy-four percent (5,522) of these having first or last words
as those mentioned above for two word city names. This shows
that these patterns are a good indication of a city name, however,
testing was also done to compare the number of English words
(advertising material) that would be wrongly mapped into a city
name based on these rules. Using the Brown Corpus containing
43,264 English words, a total of only 79 (0.18%) English
words matched the one word patterns. A comparison of the two
word pattern was not possible with the lack of contextual
information in the corpus.

The parses of an input sentence which has been accepted
using the grammar and lexicon is shown below, where the
preprocessed input sentences are also stored in the parse tree as
the first element using the form mentioned above.

(address(input-sentence
(11241] main @2 n || javan |.| y |.|152102] |;|4128})
(line starts (00)))
(spatial (word (O W4 1 W40 W10W11W41W10WI1
OW10W11W50W10W4))
(line (L9 2 L23))))
(prepass (states((state (state-name (new york))

(puncts (11 1.D)))
(level (01)))
((street-line (street-number |1241]) (direction nil)
‘(street-name main) (street-keyword nil)
(apartment nil) (puncts nil) (street-guess nil))
(bottom-line (city (city name (north java))
(parts 2 (puncts (|| nil)) (guess t))
(state (state-name (new york)) (puncts (|.| |.])))
(zip (zip-location after-state)
(ninezip |151024128)) (fivezip nil))))).

7. PICTURE PROCESSING

A document image understanding system needs to integrate
the information contained in photographs with the information
contained in other fields such as with the text and line drawings.
Often an understanding of the photographs is critical to
understanding the narrative. Deriving descriptions of the
contents of photographs is the subject of many computer vision
projects today.

8. CONTROL STRUCTURES

The coordination of several processes is of central
importance in a document understanding system. The control
structure allows the application of the appropriate process. For
instance, there may be more than one way of binarization. The
method to be applied is determined by the control structure.

Several efforts towards designing control structures for
document understanding are described [8, 9, 12, 23]. A method
based on production systems and blackboard communication
first proposed in the context of speech understanding holds
promise for document understanding.

The mechanism described in [8] is based on a production
system. When the production system needs data the mechanism
causes the appropriate module to start collecting data. In this
mechanism each connected component is treated as a data unit.

An array, which is a specialized blackboard is used for the
tead/write area in both the production system and program
modules. The blackboard is made up from three planes of
identically sized arrays. Data, indicators, and program modules
names and arguments are respectively stored in these planes.
Data concerning positions, size, likelihood, and attributes for
connect components are stored in the first data plane. The
indicator plane indicates whether or not the value in the
corresponding position in the first plane has already been
collected. When the production system requires some data for
matching, the indicator is checked first. If the desired data has
already been collected, the values in the data plane are
transferred to the production system. In the case where the data
has not yet been collected, the program module stored in the
third plane is activated and its function is carried out. The
program module function determines the data and forwards the
values to the data array.

Advantages of using production systems in document
understanding are:

* easy to apply either an additional technique to an object that
is hard to interpret with only one technique, or a retry
process having modified parameters,

» processing knowledge is expressed as rules, thus software
maintenance (e.g., modifying or patching of a program)
becomes easier, and

*» as the processing is not carried out over the entire picture
uniformly, but only in necessary segments, high efficiency
is obtained.

An Expert System

A production system that is organized with different levels
of production rules that perform an analysis of a document
image, and interpret and classify the various regions of printed
matter on the document is given in [12]. The control flow is as

follows: the document is first digitized and the resulting digital
image is segmented to obtain data about the various printed
regions in the document. This data includes the intrinsic
properiies (e.g., shape, size, aspect ratio, etc.) of each of the
identified regions, as well as the spatial relationships between
the various identified regions in the document image. The
control structure then uses the knowledge base to examine this
data, and attempts to arrive at a consistent classification for each
of the identified regions, or blocks. The system consists of
three levels of rules. :

If the data from the initial segmentation of the image is not
sufficient for an unambiguous interpretation of the document
image, then the system decides to obtain more data from the
given image. Thus, any further image processing operations
that are required are progressively invoked under the supervision
of the inference engine. These operations could include further
segmentation of the image, color filtering, text reading, etc.

A goal-driven (top-down) approach is used by this system,
which uses a hypothesize-and-test strategy for arriving at its
conclusions. Thus, the system makes hypotheses about
different intermediate conclusions and chains backwards through
the rules in order to test the hypotheses. In trying to satisfy a

hypothesis, some other hypotheses may be generated which
must first be tested before the original hypothesis can be
considered to be justified. Thus, an entire set of backward-

-chaining processes are set up, and the system only reaches a

94

satisfactory conclusion when all these processes have run to
completion.

The Knowledge Base

The knowledge base consists of a set of rules that embody
knowledge about the general characteristics about document
images. These rules are expressed in terms of predicates in first
order predicate logic. The rules in the knowledge base are
Knowledge rules. These rules define the general characteristics
expected of the usual components of a document image, and the
usual relationships between such components in the image. The
usual relationships, e.g., the title being above the author names,
the abstract being above the first paragraph of text, the footnotes
being at the bottom of the page, etc. are generally true of such
documents. Intrinsic properties, like the block-to-white pixel
ratio for half-tone figures in the image being larger than the
corresponding ratio for text, are also true in general for such
blocks. From such known facts about these kinds of document
images, rules are constructed that can be used by the inference
engine to make inferences about the various identified blocks on
the given document image.

The Control Structure

The control structure for the expert system consists of an
inference engine which uses the knowledge base to make
unambiguous inferences about the classification of various
blocks in a given document image. The inference engine is also
rule-based, and contains two levels of rules: Control Rules and
Strategy Rules. These rules regulate the analysis of the
document image, and decide when a consistent interpretation of
the image has been obtained. The inference engine uses a top-
down approach in arriving at its solution, since the solution
space is not very large, and a lot of knowledge exists (in the
knowledge base) about the domain. A backward-chaining
process is used by the control structure.

The rules comprising the inference engine are also coded in
terms of predicates in first-order predicate logic. The control
structure determines the order in which these rules are executed
in order to test various conditions effectively. Control rules can
be focus-of-attention rules or meta-rules. For example, at any
given stage of the analysis, control rules can decide that all the
relevant knowledge rules for footnotes be executed so as to test
whether the given block is a footnote. Strategy rules can guide
the search in a more general way, i.e., they can determine what

strategy is to be followed at any given time for analyzing the
image. - This means that the strategy rules determine what the
order of execution of the control rules will be.

Representation of Uncertainty

The system has to deal with many situations where a
combination of rules, rather than a single rule, lends credence to
a particular hypothesis. Thus, the success of each of these rules
adds evidence towards that hypothesis. If the total evidence
obtained from the successful rules is sufficiently high, then the

hypothesis is assumed to be true, and the next stage in the
analysis process can then be tackled with the assumption that the
given hypothesis has been confirmed. To deal with such a
scenario, each Knowledge Rule in the system is given a certain
confidence value between 0 and 1. When the knowledge rules
for testing the characteristics of a certain type of block are
executed, the confidence values for all the rules that succeed are
added up. The sum thus obtained indicates the certainty factor
for the conclusion obtained from the control rule which invoked
these knowledge rules. This certainty factor is used for the
purpose of ordering the conclusions at any given stage so that
the more likely conclusions can be examined in further detail
before the less likely ones. This has the effect of making the
search process more efficient, thus reducing execution time in
the system.

Discussion

The wisdom of using production rules to represent
knowledge has been the topic of discussion among many Al
researchers. In the domain document understanding, a rule-
based system is extremely elegant because unlike natural scenes,
documents are very structured in character, and thus knowledge
about features of documents can be very effectively formulated
in terms of production rules. There are other advantages to
using production rules in document image understanding. First,
it is easy to apply either an additional strategy to a region that is
hard to interpret with only one strategy, or a retry process
having modified parameters. Second, software maintenance
becomes easier, since addition/modification of rules is a
relatively simple process that does not disrupt the rest of the
system. Third, in a production system the processing is not
carried out over the entire image uniformly, but only on
necessary segments; thus, high efficiency is achieved. All these
reasons make production rule-based systems eminently suitable
for use in the domain of document understanding.

9. DISCUSSION

Document image understanding is a task that begins with
pixel processing and ends with complex symbolic reasoning.
Thus it is an area of research that draws upon techniques of
image processing, pattern recognition, computer graphics,
natural language processing, and artificial intelligence. There is
an intense level of activity in this field in Japan and in Europe.
Interest in this topic is also growing in the United States.

Several of the components for building a document
understanding system are now well-understood, e.g.,
component detectors, line detectors, single font character
recognizers, text parsers, etc. Several other components need to
be refined, e.g., techniques for text region determination.
Multifont character recognition without operator input will
continue to be a challenging problem for the foreseeable future.
The problem of raster to vector conversion of line drawings is
not as formidable but several problems remain, e.g., handling of
dotted lines, global considerations in thinning, etc.

The coordination of component processes is a problem that
has been addressed in other domains such as speech
understanding. The coordination of document understanding
processes will have to be done using similar techniques with
access to domain knowledge. Due to advances in several related
areas it can be concluded that document analysis is now a task
that is well defined and of a moderate level of complexity. Thus

95

 the prospects of tangible results are reasonably good.
ACKNOWLEDGEMENT

Several members of the Document Image Understanding
Group at Buffalo contributed to this work. In particular, Jon
Hull, Debashish Niyogi, Paul Palumbo, Joseph Piazza, Steve
Tylock, and Ching-Huei Wang. Gregory Zack of Xerox
Webster Research Center provided the impetus for this work and
many suggestions. This work was supported in part by the
United States Postal Service contracts 104230-84-D0962 and
104230-85-M3349.

10. BIBLIOGRAPHY

[11 C. Cox, B. Blesser and M. Eden, The application of type
font analysis to automatic character recognition, Proc. of
Second IJCPR, Copenhagen, 1974, 226-232.

W. Doster, Different states of a documents content on the
way from the Gutenbergian world to the electronic world,
Proc. Seventh ICPR, Montreal, 2, 1984, 872-874.

M. Ejiri, T. Miyatake, S. Kakumoto, S. Shimada, and H.
Matsushima, Automatic recognition of design drawings
agc(i) maps, Proc. Seventh ICPR, Montreal, 2, 1984, 1296-
1305.

R.P. Futrelle, A framework for understanding graphics in
technical documents, Proc. IEEE-CS Expert Systems in
Government Symposium, McLean, VA, 1985, 386-390.

J.F. Harris, I. Kittler, B. Llewellyn, and G. Preston, A
modular system for interpreting binary pixel
representations of line structured data, in J. Kittler, K.S.
Fu, and L.F. Paul (eds.), Pattern Recognition Theory and
Applications, D. Reidel, 1982, 311-351.

J.J. Hull and S.N. Srihari, A computational approach to
visual word recognition: hypothesis generation and
testing, Proc. IEEE-CS Conference on CVPR, Miami
Beach, 1986, 156-161.

K. Inanaga, T. Kato, T. Hiroshima, and T. Sakai,
MACSYM: A hierarchical parallel image processing
system for event- driven pattern understanding of
documents, Pattern Recognition, 17(1), 1984, 85-108.

K. Kubota, O. Iwaki, and H. Arakawa, Document
understanding system, Proc. Seventh ICPR, Montreal 1,
1984, 612- 614.

I. Masuda, N. Hagita, T. Akiyama, T. Takahashi, and S.
Naito, Approach to a smart document reader system, Proc.
IEEE-CS Conference on CVPR, San Francisco, 1985,
550-557

F.S. Montalvo, Diagram understanding: the intersection
of computer vision and graphics, Mass. Inst. of
Technology, AI Memo 873, 1985.

G. Nagy, S.C. Seth, and S.D. Stoddard, Document
analysis with an expert system, Proc. Pattern Recognition
in Practice II, Amsterdam, June 19-21, 1985.

D. Niyogi and S.N. Srihari, A rule-based system for
document understanding, Proc. AAAI-86: Fifth National
Artificial Intelligence Conference, Philadelphia, 1986.

P. Palumbo and S.N. Srihari, Text parsing using spatial
information for recognizing addresses in mail pieces, Proc.
Eighth ICPR, Paris, 1986.

P. Palumbo, P. Swaminathan and S.N. Srihari, Document
Image Binarization: comparison of techniques, Proc. SPIE
Symposium on Digital Image Processing, San Diego,
1986.

T. Pavlidis, A hybrid vectorization algorithm, Proc.
Seventh ICPR, Montreal, 1, 1984, 490-492.

[2]

(31

4

(3]

(6]

(71

(8]

9

[10]

[11]

[12]

(13]

[14]

[15]

[16]

(17]

(18]

[19]

[20]

[21]

[22]

(23]

241

[25]

A. Rastogi and S.N. Srihari, Recognizing textual blocks in
document images using the Hough transform, TR 86-01,
Dept. of CS, SUNY at Buffalo, 1986.

J. Schurmann, A multifont word recognition system for
postal address reading, IEEE Trans. Computers, C-27, 8,
1978, 721-732.

S.C. Shapiro, Generalized augmented transition network
grammars for generation from semantic networks,
American J. of Computational Linguistics, 8(1), 1982, 12-
25.

S.N. Srihari, Computer Text Recognition and Error
Correction, IEEE Computer Society Press, Silver Spring,
MD, 1984.

S.N. Srihari, J.J. Hull, and R. Choudhari, Integrating
diverse knowledge sources in text recognition, ACM

Transactions on Office Information Systems, 1(1), 1983,
68- 87.

S.N. Srihari, J.J. Hull, P.W. Palumbo, D. Niyogi and C-
H Wang, Address Recognition Techniques in Mail
Sorting: Research Directions, TR85-09, Dept. of CS,
SUNY at Buffalo, August 1985.

F.M. Wahl, A new distance mapping and its use for shape
measurement on binary patterns, Computer Vision,
Graphics and Image Processing, 23, 1983, 218-226.

C-H. Wang and S.N. Srihari, Object recognition in
structured and random environments: locating address
blocks on mail pieces, Proc. AAAI-86: Fifth National
Artificial Intelligence Conference, Philadelphia, 1986.

K.Y. Wong, R.G. Casey and F.M. Wahl, Document
analysis system, IBM Journal of Research and
Development, 26(6), November 1982, 647-656..

H. Zen and S. Ozawa, Extraction of the fair document
from mixed mode manuscript, Proc. Conference CVPR,
San Francisco, 1985, 544-549.

96

LIVING IN A DYNAMIC WORLD

R.L. ANDERSSON

AT&T Bell Laboratories
Crawford’s Corner Road (Rm. 4B607)
Holmdel, NJ 07733

ABSTRACT

Today’s robot systems take an egocentric view of the world,
assuming that the world is largely static and changes from state
to state only in response to robot actions. To a large extent, this
is a consequence of the limited bandwidth of current
environmental sensing systems, in particular, doing any kind of
vision takes most of a second or more.

We have designed and constructed a vision system based on
a VLSI chip that locates objects at the full 60 Hz camera frame
rate. Two systems provide a three dimensional description of
object motion. In this environment, the robot must be capable of
a sense of time: it must consider new data in the context of the
old, and it must be aware of the temporal characteristics of its
mechanism and processing electronics. We are exploring these
concepts by creating a robot ping-pong player.

1.. INTRODUCTION

Conventional robots live in a world that changes in very
discrete steps, in response to clearly defined causes. Robot
actions are interlocked with status lines and control signals to
the outside world:

move_to input_bin
wait_for part_present
withdraw part
move_to punch
activate punch
wait_for punch_done
withdraw part
wait_for output_empty
move_to output_bin
release part

All events of interest are either directly sensed or directly
caused by the robot, typically requiring a large number of
discrete binary sensors. Sensors like vision can be brought into
this framework by suitably restricting their functionality to
discrete events (their function is also limited to start with), for
example: take a picture now, the part is missing, the part is bad,
or a good part is at (10 cm, 15 cm, 45 deg). The program can
' be represented by a simple finite state machine, and the time
variable is effectively suppressed. We will refer to this model of
programming as the discrete time approach. Although we can
solve many useful tasks this way, it begins to break down as the
robot, task; and environment become more sophisticated.

Consider retrieving an object from a conveyor belt. The
manipulator must be at the right place at the right time at the

CH2345-7/86/0000/0097$01.00©1986 IEEE

97

right velocity to make a smooth pickup. The conventional
approach is to take a single snapshot of an object to find its
position, then update its position using an encoder mechanically
mounted on the conveyor belt. Paul [10] illustrates servoing to a
moving frame of reference such as a conveyor. Pragmatically,
this may be fine for many low accuracy applications, but
suppose one would like to pick up the object using visual
information exclusively. One approach is that of Weiss [11],
who considers servoing directly based on visual feedback, though
our eventual application precludes this.

An alternative approach which appears similar to how a
person might perform the task is to try to lead the object by a
distance proportional to the expected time to get there at some
reasonable expenditure of energy. As the arm approaches the
object, we can refine its target position based on the currently
observed object position and the arm’s position and velocity. In
contrast to the previous discrete time model, this strategy is a
continuous time approach.

Continuous time systems require high sensor bandwidth —
many sensor data points per second, and low latency — the time
from the acquisition of data until it is applied to the control
output. The latency is often significantly larger than the
reciprocal of the bandwidth due to the use of pipelined parallel
processing. In the case of single shot events, latencies include the
fixed overhead of initiating and completing an operation.

The system latency is the sum of latencies due to the sensors,
the processors, and the actuators. The real world doesn’t stop
while each latency expires, so in a rapidly changing
environment, the sensor data is incorrect by the time the
actuator reaches a position based on that data. An object
moving at only a meter per second (moderate walking speed)
moves a millimeter per millisecond, so a millisecond error will
cause most assembly operations to fail, and an error of one robot
trajectory generator cycle causes a 2-3 cm error, enough to
totally miss an object to be picked up from the conveyor. Since
people perform assembly operations at up to 15 m/sec, timing
into the tens of microseconds range might be required.

We are interested in creating systems which can operate in
situations with tight timing, position, and velocity constraints
characteristic of a continuous time environment. The work
described here is only part of a larger effort to make more
intelligent robot controllers. In this paper we will scrutinize the
requirements of a sense of time and outline a hardware and
software approach to achieving it. We will begin by discussing
our test problem in more detail.

2. ROBOT PING-PONG

As a sample problem, we have chosen a robotic form of
ping-pong proposed by Billingsley [4,8]. Ping-pong requires low
latency in the sensors, actuators, and processing stages, and
accurate system timing if the ball is to be directed along the
desired trajectory. The robot controller must be capable of
satisfying simultaneous position, velocity, and acceleration
constraints.

The modified ping-pong table is shown in Figure 1. It has
been scaled down from a standard table to make it easier for
(stationary) robots. The rules are generally structured to make
the game as feasible as possible, and to make it possible for any
successful robots to be able to play each other. For example, the
ball must pass through each end of the table; no shots off the
side are allowed, and both robots and the background must be
black.

Ball velocity can approach 10 meters per second, so available
response time can range down to 0.2 seconds. A typical value is
more like 0.4-0.5 seconds. Required paddle velocity is 1-2
m/sec, tightly controlled as a function of direction. The paddle
velocity need not be too high as the outgoing ball velocity is
twice the paddle velocity plus the incoming velocity, subject to
the elasticity of the paddle/ball.

Complexity is added to the system by the mechanical
configuration of the robot. The robot/paddle configuration must
be able to cover a large (relative the robot’s size) position and
orientation set, and able to generate a controlled high speed
motion at each point with minimal windup.

To generate the required speed and reach, we use a PUMA
260 robot with the paddle at the end of a roughly 0.5 meter
stick perpendicular to joint six. A relatively slow motion of joint
six provides large paddle speeds. The robot is hung upside down
to keep the robot base from getting in the way. The paddle
swings down on the ball rather than up. The robot positioning
informally maximizes the usable working volume. Other robots
with a larger reach, such as the PUMA 560, lack the necessary
speed. SCARA robots are fast enough but don’t have six
degrees of freedom.

Ping-pong requires only 5 degrees of freedom, but the robot
produces six. The free dimension corresponds to rotating the
handle of the paddle in the plane of the paddle surface. Since
the robot’s wrist is half a meter away, the paddle orientation has
a drastic effect on reachability and orientability, and picking it
well is essential to good performance.

For simplicity, we ignore both spin and drag in trajectory
calculations. The paddle velocity may be computed in closed
form by requiring the paddle velocity to be normal to the paddle
surface. Incoming and outgoing spins will require approximate
techniques, perhaps with learning (iterative numerical solutions
would be too slow).

2.1 Computer System Architecture

Our system is physically distributed over several processors.
Each processor consists of a Pacific Microsystems PM68K
processor (SUN-type 68000 based), a SKY Computers floating
point board, 1 MB of memory, a network interface, a clock
board we will discuss later, and miscellaneous 1/0 devices. The
network is a custom small-area network featuring high
bandwidth and low latency [1]. Star connections fan out from a
backplane bus to the individual processors.

98

Table

Figure 1. Robot ping-pong table.

The processor runs a multi-tasking operating system designed
for real time performance, but with UNIX® (AT&T Bell
Laboratories) look-alike calls [5]. The primary intertask (intra-
or inter- processor) communications structure is a channel, a
form of bi-directional UNIX pipe. A short (say 10 byte)
message may be sent from one processor to another in about a
millisecond, including all software overhead.

Software is written on a microVAX® (DEC) host running
Unix, and downloaded into the 68000’s for execution. The
68000s may access files on the host, typically to read calibration
data and write debugging output.

2.2 Software Architecture

Although the network is homogenous, we overlay a structure
by means of the channels we open, and the allocation of
peripheral devices to processors. The allocation is performed "by
hand" based on observed execution times for different systems
components. The structure for robot ping pong is shown in
Figure 2. Rtd is a specialized debugger, "chief" is a sequencer,
and the SP2000 is a video tape system, the Kodak/Spin Physics
Motion Analysis System, able to record 2000 full frames per
second. Debugging tools are an important factor in constructing
working systems.

Two vision processors drive two moment generator systems
each, such that each processor has a stereo pair. One pair is
looking at the far side of the table, one at the near side to
achieve the proper field of view. All four cameras are genlocked
together, so the vision processors can synchronously output an
(x,y,z) triplet or "I don’t see anything" at the 60 Hz frame rate.
The image being processed is quite simple, consisting solely of a
white ball against a black background. However, the ball can
be greatly blurred due to its motion relative the camera. The

vision system will be described in greater detail in a following -

section.

The next processor ("tranal”) takes the (x,y,z) data and
segments and fits it on the fly to create parabolic segments. The
trajectory data is predicted forward to find the intersection of
the trajectory with a fixed vertical plane at the end of the table,
which serves as a common "point of reference.” This intersection

Rtd Chief SP

A

BL —=

Eye0
BR — \

Cameras

Tranal Robot

TL —3

Eyel

TR —=

Figure 2. Task Structure.

data is then passed on to the final processor, the robot controller,
still at the 60 Hz rate but with some additional latency.

2.3 Robot Controller Architecture

The robot itself is a Unimation PUMA 260. However, the
electronics have largely been replaced. The LSI-11 and six
6503s normally controlling the robot have been replaced with a
total of four 68020 based machines: one is a PM68K machine
with a 68020 daughterboard, the other 3 are custom machines
also with 68020 daughterboards (Figure 3). The standard
PM68K processor serves as the main processor. Two custom
boards serve as joint processors, each controlling three joints.
The third slave processor is strictly computational, off-loading
the main processor. The memories of the slave processors are
accessible to the host but not vice versa, and slaves can interrupt
or be interrupted by the host, but not each other.

To execute a typical motion, the program running on the
main processor (the "user" program) calls up a motion initiator
which performs the initial planning, computing variables for the
path interpolation. The data is placed in the computational
slave’s memory, where the slave uses it to compute way points
along the trajectory at a "major cycle" rate, say 16 msec, in
response to interrupts generated by the main processor. The
way points are sent to the joint processors by the main
processor. The joint processors are interrupted at a "minor
cycle" rate of 1 msec by an external source, causing the servo
function to be executed. One of the joint processors interrupts
the main processor every sixteenth minor cycle to create the
major cycle.

The purpose of this involved structure is to minimize the
amount of work required of the main processor to support
ongoing motions, maximizing the time available for planning,
while keeping the details visible to the planner. A totally shared
memory architecture would even further reduce the nuisance
work required of the main processor.

3. REAL TIME VISION WITH MOMENTS

The cornerstone of the research described in this paper is a
vision system which operates in "real time." The system provides

Sun SKY 1 MB S/Net
68020 | | FFP | | RAM | | mtf’e ;== S/Net
Multi-
o , Bus
Joint Joint To
%?,;rce Proc Proc CLOX je— Other
1-3 4-6 Clox’s
Intf’e Intf’c
1-3 4-6
123 456
Joints

‘Figure 3. Robot controller architecture.

data with a sufficiently high bandwidth and sufficiently low
latency that the data may be regarded as continuous for the
class of problems we wish to consider, those involving interaction
with a relatively macroscopic robot arm. A real time system is
one that does its job in a time determined by external
constraints, not just a system which is fast. Such a system can
be used to watch moving objects, both in a conventional sense,
or in more specialized domains such as aligning holes to be
punched, or the apparent motion may be induced by the motion
of the camera, when the camera is mounted on a robot arm or
positioner. We would like to construct systems capable of
extracting information -useful for manipulation and inspection
from gray scale images of three dimensional scenes in real time.

In general, we need to have full six dimensional information
about the scene, three translational degrees of freedom
describing object position, and three rotational degrees of
freedom describing object orientation. For a vision system
watching unknown objects, at least two camera views are
required to extract the six degrees of freedom, i.e. stereo
(binocular) vision is required. Ping-pong balls are rotationally
symmetric (three degenerate degrees of freedom), therefore only
the three translational degrees of freedom need be computed.
The 3-D vision system must first process each two dimensional
monocular image, then combine the results to form the three
dimensional analysis. Let us take a brief look at existing vision
systems.

Commercial vision systems are monocular, and most are
capable of processing only binary images, typically by
thresholding and run length compressing the image to reduce the
amount of data before storing it in a fairly general purpose
processor. Once read in, the data is processed for many tenths
of a second before some decision is made. The canonical basis
for these schemes is [6]; there are many current commercial
imitators. Most of these systems are too slow to even be
considered for continuous time robot control, but some.systems
using specialized hardware are approaching this regime. The
extensibility of these binary image schemes into the gray scale
three dimensional world is limited, however.

Image processing algorithms wused for satellite image
processing and television graphics, for example, can sometimes
be made to run in real time with appropriate hardware when
they operate on only local areas of the image. These algorithms
take an image as input, and produce an image as output, such as
an edge finding operator that produces a "line drawing." Such
algorithms are not directly useful for robotics as they don’t
reduce the amount of information which needs to be processed,
although they may simplify subsequent feature extraction
operations. Reducing the amount of data to be processed without
eliminating essential image content is fundamental to processing
images in real time.

Research systems typically read a gray scale image into a
frame buffer before processing it for several seconds, minutes, or
even hours. Both two and three dimensional systems are under
study. Although these systems are steadily advancing in
capability, their low processing rate precludes their use for robot
control. As research continues, we expect more of the features
of these systems to be integrated into hardware running at real
time rates.

A primary objective in constructing the vision system to be
described was to build a system capable of processing simplified
scenes at the "real time" rate necessary to use the data for robot

control, to see what sort of system was necessary, and what

would happen when we tried to use it. The overall approach is
to make a "feature extractor” capable of extracting certain
useful information from a complete video image streaming by at
60 frames per second, without having to store it for later
processing. More complicated systems might be built by
combining multiple types of feature extractors operating in
parallel with multiple image processors connected in series.
Once we can perform the necessary monocular processing at the
proper rate on a reasonable sized piece of hardware, we can
duplicate monocular processors and add further processing to
generate the full three dimensional data. We'll start off by
describing the monocular processing.

3.1 Moment Generator

Moments have been in use in computer vision for some time
[7,9], and their use in physics and statistics goes back much
farther. The equation defining the moments M™" of an intensity
array a; ; is:

Mm,n - Eai,jimjn
i
where m+n(m,n>0) is the order of the moment, i is the
column, and j is the row.

n

The zero through second order moments are sufficient to find
the area, center of gravity, angle to major axis, and standard
deviation along major and minor axes for an object,
approximating the object as an ellipse. Second and higher order
moments may be combined to form invariants which are used to
characterize an object for purposes of discriminating among
members of some set of objects.

The amount of time required to compute gray scale moments
has hindered their use. On a VAX 11/780 with floating point
accelerator, a direct calculation of the zero through second order
moments of a 256*256 image takes 6.5 seconds.

The moment computation has been integrated onto a VLSI
chip capable of computing a single zero through second order
moment of a gray scale image in real time. Since there are six
such moments, the moment processor module contains six chips.

A number of techniques have been used to make the chip
possible, which will be discussed below.

3.1.1 Power Vector Generation.
generation as a dot product:

Mm.n - Ea‘ptm,n - (E,p—m,n)
t

We consider moment

0))

where the elements of the vectors are in the same order as a
normal TV scan: t=i+256j. The element p;; of p will be
referred to interchangably with p;5s6;-

The equation defining p™" is

3

The element p®° is one for all t. The first order moments
require a counter for either x or y, depending on the moment.
We can write the next value of each second order p as a
function of the previous one, for example:

m,n sm :n.
pPij =1"J

4)

with special cases for top of screen and left margin. We can
build an iterative p generator composed of a single counter, a
shifter, an adder, some "and" gates, and a small control
programmable logic array (PLA).

PR =P +2i +1

3.1.2 Bit Decomposition. We can decompose a as

a=2a,+2%a5+- - +a,

(5)
If we substitute equation (5) into (2) and distribute, we obtain:
M™" = 27(a5,p™") + 25(@ep™") + -+ - + @e,p™™) (6)

Computation of the dot products in Equation (6) requires only 1
by n bit multiplication, which may be implemented by n "and"
gates, where n is the number of bits in p.

At the end of each frame, we must compute

M™ =2'F, +2°F¢+ -+ F, V)]

where

Fk - (Eksﬁm‘n) (8)

Equation (7) can be evaluated only once per frame (60 times
per second) using Horner’s Method of polynomial evaluation.
The calculation is performed by the vision processor which
controls the system.

The F}, accumulators are identical, simplifying the layout of
the chip. The bitwise decomposition used to obtain fast
operation also provides significant flexibility, making possible the
computation of moments of different regions at the same time,
for example.

3.1.3 Implementation. The techniques described above allow a
moment generating L.C. to be constructed (Figure 4). The chip
was designed using the MULGA symbolic layout system [12] in
a 2.5 micron CMOS process and contains 10,214 transistors.

Six moment generator chips are placed on a Multi-Bus®
(Intel) board with associated support logic. A preprocessor
works independently on the intensity for each F; bit, "and"-ing
together an intensity map output and a location map output.

The intensity map converts intensity values to the desired
precision and alignment. The map may implement binary
thresholding, intensity windowing, non-linear response
correction, or any combination of the above, for example. The
intensity map may be used to correct for scene illumination

Figure 4. Moment generator chip.

problems or changes.

The location map defines the region of activity of each Fy; a
bit is on if that F; is to be activated at that position on the
screen. To reduce the size of the location map, and simplify the
host’s job, regions are quantized into 8 by 8 pixel blocks.

Additional information on the chip design may be found in
[2], and on its use in [3].

3.2 Three Dimensional Processing

Two moment generator systems are capable of processing the
images from a pair of TV cameras at the full 60 Hz rate.
Moments are a linear operator that commutes with other linear
operators, so in theory, the moments of the background could
simply be subtracted from the moments of the image, leaving
the moments of the ball. In practice, noise from the camera and
analog front end dominates the signal from the ball.

Instead, the intensity maps are used to separate object and
background as follows. Intensities below a certain threshold are
clipped to zero, saying in effect that anything sufficiently black
should be ignored, in particular, various highlights off the
backgrounds and supporting structures. On the other hand, any
intensity above the threshold is considered as a gray scale value
(relative the threshold). Importantly, this means that as the
image of the ball is smeared towards black by the motion blur,
the ball doesn’t suddenly vanish, and the gray scale processing
effects anti-aliasing, improving the numeric quality of the
resulting centroids.

In the thus simplified scenes, once the vision processor has
executed Equation 7 several times and performed
M0

MO,O

- M
Y= y00

the location of the centroid is known in each image. While the
second order moments aren’t needed to find the location of ping
pong balls, it is interesting to notice that they contain
information about the motion blur that can be recovered

©

f-

101

quantitatively.

Given that we have only a single object in the field of view,
the standard problem of stereo vision, finding corresponding
points in the two images, is eliminated. Since the orientation of
the cameras is hard to control in practice, rather than a
disparity based calculation, we represent each camera as a 4x3
matrix, and find the ball location by solving four equations (one
for each coordinate of each camera) in three unknowns (x, y,
z) using least squares. The calculation can be done in closed
form in 3 msec on the 68000/SKY combination.

3.3 Experiment: Catching Balls

The three dimensional vision system and robot controller
function, and have been used to conduct a preliminary
experiment: catching a hand thrown ping pong ball in a
styrofoam coffee cup. The system reliably caught balls on
trajectories resulting in viable robot configurations. The
program made no attempt to catch balls that were not catchable
by its straightforward strategy. Work progresses on replacing
the "user" robot program for catching with a much more
sophisticated one for hitting the ball, but the other system
components remain largely unchanged.

This initial experiment verified the operation of the vision
system and robot controller, and served as an impetus for the
analysis in the following sections.

4. LOW LEVEL EFFECTS OF TIME

As soon as the rate of change of the environment becomes
comparable to the time constants of the components of the
robotic system, we have to consider its effect on every part of
the system, from sensor to processor to actuator. The next
several subsections will detail these effects for each component.

4.1 Sensors

Unless the variables we are sensing are constant over time,
any particular sensor output is meaningless unless associated
with some particular time. The statement (sensor output) "the
ball is 3 feet off the table" is useless, as it is inaccurate as soon
as generated. Sensor values must be stamped with the time at
which they are taken, as this defines the only time they have any
validity.

Furthermore, the design of the sensor must be compatible
with rapidly varying inputs, and able to define a precise
timestamp for a given sensor reading. For example, sample and
holds on the inputs to analog to digital converters prevent
incorrect results from being generated, and the sample/hold’s
control input defines the sampling time very precisely.

Vision systems are no exception to the rule. TV cameras are
designed for relatively slowly changing scenes. The electrical
output of a camera is some complex function of the time varying
light input over the time interval (—oo,now) depending on the
type of camera.

For example, vidicons have a decay function such that the
output at any time might be affected by some bright image
many frames ago, in effect, the same as the persistence effects
seen on CRT displays. Each point of the image is sampled at a
different time as the beam sweeps over it, so a vertical bar
moving horizontally generates pictures of a diagonal bar. This
clearly makes the image interpretation process more complex.

On the other hand, CCD cameras operate as pipelined
device, integrating one image while reading out the previous one.

There is no coupling from one image to the next, and no time
varying response characteristics. Every pixel is effectively
sampled at the same time. Because the electrical output due to a
photon is not (strongly) dependent on the interval from its
arrival to the end of the sampling interval, the center of gravity
of a blurred image represents the average center of gravity
during the sampling interval. For objects moving at essentially
constant velocity over a sampling interval, we can assert that the
object was at the center of gravity of the blurred image at the
midpoint (center of gravity) of the sampling interval. The
center of gravity is not affected by the motion blur from CCD
cameras, so we can further assert that at the middle of the
integrating interval of the frame, the object really was at the
computed location. In addition to their better accuracy versus
vidicons, this is another good reason for using CCD cameras
(which we do).

4.2 Actuators

The primary question with actuators is understanding just
what the temporal component of a command signal is. For
example, consider a simple binary output to close a gripper. The
semantics of this signal have an implied "now" component: close
it now! However, from a planning perspective, for example a
program trying to minimize robot cycle time, these semantics
are unhelpful, as the gripper may in fact take forever to close. A
conservative designer in a discrete time architecture might even
put in a microswitch that says "the hand is now closed," which
may ensure that the system works, but does nothing to help
planning.

What we really would like to be able to assert is that after a
certain period of time, a certain state will resuit. In the gripper
example, this means we should be able to assert that after 50
msec perhaps, the gripper will be closed. By making this
additional piece of information available to the system, we make
possible additional optimizations such as starting to close the
gripper before the manipulator has arrived at the part.

Of course, adding more arbitrary time constants to a system
isn’t desirable, which indicates the utility of systems modeling:
we need to have good models of our actuators, whether they are
binary actuators or whole manipulators. The gripper-closed limit
switch is an aid to making models.

When applied to servo systems, the control signals may
similarly be given temporal characteristics, one common
example being the position waypoint to which a servo is trying to
position the joint. In our system the semantics of the waypoint
from the trajectory generator to the servo is that the servo
should position the joint at the specified position at exactly the
start of the next major cycle, when the next waypoint is
specified.

In order for the servo system to be successful at convincing
the joint to arrive at the specified destination at the specified
time, various perturbing torques must be compensated. The
output torque which must be generated to make an action occur
must be supplied by the terms found in the servo equation of the
joint. If the torque actually required by the manipulator differs
from that computed by the servo function with no errors, the
torque discrepancy must be "made up" by terms that are present,
generally by a position or velocity error as the joint is moving.
For example, the velocity damping necessary for stability will
cause steady steady state position errors (lags) unless the desired
velocity is fed forward into the servo equation [10]. Similar
effects arise due to acceleration, friction, gravity, and inertial

102

couplings between joints. Integrators can help, but only under
quasi-static conditions, and make performance worse in rapidly
changing conditions.

To summarize the section, we must add temporal semantics
to the control signals sent to actuators, and we should develop
good models of the system’s response to the control signals. The
better the models we have, the better the system performance.

4.3 Processing

Software events are not dependable in a multiprogramming
environment because they are subject to the vagaries of the
scheduling of device interrupts, the execution of higher priority
tasks, and refresh interrupts. Newer processors are subject to
additional factors such as instruction and memory management
cache hits which are variable depending on previous events.
Accordingly, we can’t count on the processor performing the
same repetitive action at the same relative time. Events can be
well defined only by the hardware, not by software.

The imprecision of software controlled events suggests that
we should be careful to build robot peripheral devices such that
the application of control signals or latching of sensor readings is
performed by hardware clocks, rather than under software
control. Rather than having an interrupt request the program to
directly read a value, we should have the interrupt latch the
value into a register, which is then read by the program.
Likewise, outputs should be latched by the peripheral devices
under software control, but not applied to the actuators until the
next hardware servo clock. As well as protecting against other
competitors for CPU cycles, an additional level of latching
isolates data dependencies in the control algorithm timing (we
may even use different algorithms at different times) from
affecting actuator timing. This amounts to pipelining the system.
The slight additional cost of a register is compensated by the
gain in repeatability of timing. Our robot controller is pipelined
both at the major cycle rate and at the minor cycle rate.

The processing system also has significant latencies which
must be taken into account. At some point in time, the software
must commit to generating a control signal for some specific
time. For example, consider changing the target of a robot
motion while the arm is moving. To obtain a smooth trajectory,
the preliminary setup calculations used to drive the trajectory
interpolation must be evaluated based on some assumed initial
position and time in the future. The program must know its
execution time from the commit point to actually generating the
control signal. This time should be minimized to reduce the
number of potential interferences.

Once again, the more the program "knows," the better its
performance. If the processing can be broken into two sections,
an invariant portion that doesn’t depend on the time varying
variables and can be done first, and a second (minimal) section
which does require this information, the program can obtain a
timestamp at the completion of the first section reflecting the
actual prevailing conditions. This time varying code can make
the system hard to debug, but eliminates stored latency times,
which must be conservative and tend to become outdated.

A sufficiently well controlled program may also be able to
predict that the processor will be occupied by an interrupt for a
certain time, and be able to compensate its own latency estimate
accordingly. Clock driven interrupt processes can easily be
predicted based on the .time of their last occurrence and
frequency.

4.4 The ‘Clox’ Board

We need to make accurate timing information available to
the processor. Even though most microprocessor systems have
free running timers (clocks) that are readable by software (often
with substantial overhead), they are not useful for timestamping
sensor or actuator data. The presence of software in the
measurement path guarantees inaccuracy, because the processor
may execute a fairly arbitrary sequence of instructions between
the time of occurrence of the event and the time the software
reads the timer.

In a real robotic system like ours for ping-pong, the sensors
and actuators are distributed across multiple processors.
Humans have trouble getting to meetings at the same time
because we all have wristwatches with a different time (though
this isn’t the only factor at work). Likewise, in a distributed
microprocessor system each processor has its own time, and
times from different processors are not comparable. What we
need to maintain a consistent view of time across the system is a
"wall clock” accessible to all processors at once.

We implement the wall clock with a specialized "clox" board
that resides in each processor, and a specialized clock bus
connecting them. A wall clock must have the same value at
cach instant to each processor on a network. At first glance, this
may seem to require that the clox boards be connected by a
large number of wires, one for each bit. Since a clock has only
two degrees of freedom, only two signals are actually required:
one to specify the rate, and one to specify the offset. The
simplest implementation uses one wire to carry an actual 1 Mhz
hardware clock (square wave), and another to carry pulses one
clock long to effect synchronization. One board is selected to
generate the clock signal for all of the boards. Its clock
frequency may be externally calibrated to ensure that the
absolute accuracy is commensurate with the resolution. We are
implementing the wall clock by a network of synchronized
wristwatches.

Each processor must have a way of determining the
occurrence times of events in devices attached to it. In general,
this would require that a wire be attached to some suitable
signal in the device and to the clox board, but this isn’t
particularly convenient. As an implementation technique, we can
instead monitor activity on the processor’s interrupt lines, which
are generally driven directly from the same hardware signals we
need to monitor. This has the advantage of not requiring odd
wires jumping around between boards. An interrupt line must be
dedicated to each signal the clock board is to be used to
‘monitor. An event register latches the time of occurrence of the
interrupt transition for subsequent reading by the processor
when it handles the interrupt.

The clox board contains a software readable clock register
which may be used by programs for time variant decision
making. In addition, it is useful to be able to obtain software
event times for diagnostic purposes: how long does this routine
take on average? at most? Because of the simplicity of the
access protocol, we need not call it via an operating system trap.
The low cost of access means that we may routinely track
execution times.

A novel consequence of having a "wall clock” is that software
event occurrence times may be compared across processors,
directly measuring software latencies across the network, for
example. Such numbers may be obtained even for rare single
shot situations. A simple example measures the latencies of a

103

processor to processor write. Processor A executes:

timel = now (;
write (channel, buffer, count);
time2 = now ();

and processor B executes:

time3 = now ();
read (channel, buffer, count);
time4 = now 0Q;

where now is a macro that gets the current time. By examining
the times 1-4, we can easily determine: the execution time of the
write, the execution time of the read, whether the read or the
write began first, and most importantly, the time from when
processor A started sending the data to the time processor B had
it and could perform further processing.

5. TOWARDS A SENSE OF TIME

In the previous sections, we have taken a detailed look at the
microscopic treatment of time. In this section, we’d like to take
a broader look at the overall implications and trends.

5.1 Knowledge of Manipulator Capabilities

A recurring theme was the need for the system to know more
information about itself: sensor characteristics, actuation delays,
processing latencies. The same need is present in higher levels of
the system, not only for timing related information, but general
knowledge about robot capabilities as well.

Present robot controllers are sadly ignorant of their own
capabilities in the temporal sense. Most controllers can compute
that they can move to certain position, but not be able to specify
the time required to do so, or be able to make the motion occur
in a prespecified length of time. The former capability is
necessary to evaluate alternative motions or plan intercepts with
moving objects, the latter to be able to execute them.

We have these capabilities in our system, but only in a crude
sense, treating each joint as decoupled and with only a rough
joint performance figure. For maximum accuracy and thus
performance, we need to be able to model the robot dynamics,
including actual actuator torques, inertias, and couplings. As the
specification of the motion becomes more complex, such as
straight line motion or a series of continuous motions, it becomes
more and more difficult to predict the motion time without
actually executing it, at least in simulation.

5.2 Continuous Sensor Integration

New data can be generated by sensors like the moment
generator at a 60 Hz rate. If we evaluate each data point
independently, we suffer the expense of generating an entirely
new plan for each data point, and the risk that the series of
plans may be incompatible with one another. A better approach
is to evaluate new data in the context of the old.

The processing time required to generate an initial plan is
almost certainly much greater than the time required to fine
tune an existing one. In robot ping pong, the initial plan requires
selecting the desired return, appropriate robot configuration, and
a series of trajectory segments. As new data on the ball
trajectory becomes available, tuning a few details may suffice to
update the plan.

On the other hand, when a sudden discontinuity in input
data occurs, for example, after a ball bounces with a lot of spin,
we must take a drastically different action. Rather than picking

a totally new plan, we should operate within the confines of
actions we have already taken, as the arm will be in motion, and
this constrains the possible destinations. The decision criteria for
making a switch in overall plan should be expressed in terms of
the actions, not the input data, so that we avoid needless
thrashing.

The process of understanding new data in the context of the
old and making incremental refinements in the planned actions
seems much more similar to a human’s continual perception of
time than the discrete time approach of robot controllers.

The work described in the section is still in progress, and is
being driven by the observed needs of the task. The natural
requirement for self-knowledge, especially about processing
capabilities, is an interesting development which bears further
observation. As the tasks get more complicated, the amount of
self-knowledge must increase. Perhaps this is a step (albeit a
small one) in the direction of machine self-awareness.

6. CONCLUSIONS

As we improve robot performance and increase the
complexity of robot tasks, we will need .to change the way we
think about robots from an event driven perspective to a
continuous time model. The development of real time sensor
systems is accelerating the trend. We can start now by paying
careful attention to the sources of timing related effects.
Ultimately, robot systems will have to be able to understand the
dynamic nature of the world they live in.

7. ACKNOWLEDGEMENTS

Robotics is a multi-disciplinary field; I've been fortunate to
be able to stand on the projects of many other researchers.
Thanks to Bob Gaglianello and Howard Katseff for Meglos, and
Brian Ackland and Neil Weste for MULGA. Thanks also to
John Jarvis for helping all this take place, and Richard Paul for
letting me tap his formidable experience. Special thanks to
Richard Seide and George Whyte for admirable work as
construction crew.

REFERENCES

(1] S.R. Ahuja, "S/Net: A High Speed Interconnect for
Multiple Computers,” IEEE Journal of Selected Areas
in Communication, SAC-1, No. 5, November 1983, p.
751-756.

[2] R.L. Andersson, "Real time video moment generator
chip," in N. Weste, K. Eshraghian, "Principles of
CMOS VLSI Design: A Systems Perspective,”
Addison-Wesley, 1985, p. 407-424.

[3] R.L. Andersson, "Real Time Gray Scale Video
Processing Using a Moment Generating Chip," IEEE
Journal of Robotics and Automation, Vol. RA-1, No.
2, June 1985.

[4] J. Billingsley, "Machineroe joins new title fight,"
Practical Robotics, May/June 1984, p. 14-16.

R.D. Gaglianello, H.P. Katseff, "Meglos: An Operating
System for a Multiprocessor Environment,”
Proceedings of the 5th International Conference on
Distributed Computing Systems, May 1985.

[6] G.J. Gleason, G.J. Agin, "A Modular Vision System
For Sensor-Controlled Manipulation and Inspection,”

{s]

[71

(8]

[9]

[10]

[11]

[12]

Proceedings of the 9th International Sympbsiixm on
Industrial Robots, SME/RIA, p. 5§7-70, March 1979.

M. Hu, "Visual Pattern Recognition by Moment
Invariants," IRE Transactions on Information Theory,
IT-8, February 1962, p. 179-187.

D. Loewenstein, "Computer Vision and Ranging
Systems for a Ping-Pong Playing Robot," Robotics
Age, August 1984, p. 21-25.

A.P. Reeves, A. Rostampour, "Shape Analysis of
Segmental Objects Using Moments," Proceedings of
the IEEE Computer Society Conference on Pattern
Recognition.and Image Processing, p. 171-174, August
1981.

Paul, R.P, "Robot Manipulators, Mathematics,
Programming, and Control,” MIT Press, 1981.

L.E. Weiss, A.C. Sanderson, C.P. Neuman, "Dynamic
Visual Servo Control of Robots: An Adaptive Image-
Based Approach,” IEEE International Conference on
Robotics and Automation, March 1985, p. 662-668.

N.H.E. Weste, "Virtual Grid Symbolic Layout,"
Proceedings of the 18th Design Automation
Conference, June 1981, p. 225-233.

CMU Sidewalk Navigation System:
A Blackboard-Based Outdoor Navigation System

Using Sensor Fusion with Colored-Range Images

Y. Goto, K. Matsuzaki
I. Kweon, T. Obatake

Robotics Institute, Carnegie-Mellon University
Pittsburg, PA. 15213

Abstract

We describe the CMU Sidewalk Navigation System, which can
drive a vehicle in the outdoor environment of the CMU campus.
The system includes all modules necessary for outdoor navigation
-- modules for route planning, local path planning, vehicle driving,
perception, and map data. The perception module uses sensor
fusion with color and rage data to analyze complex outdoor
scenes accurately and efficiently.

1. introduction

The goal of the CMU SCVision group is to create an autonomous
mobile robot system capable of operating. in outdoor
environments.! The complexity of the environment requires the
system to have a powerful perception ability, capable of analyzing
natural objects, and a planning ability which can work in non-
uniform conditions. Because this navigation system will be very
large, we need mechanisms to combine programs into whole
systems and mechanisms for parallelism in computation.

We already have several systems towards the goal: a-road
following system with color classification [5], road network
navigation with a simple map [1], scene analysis with a laser range
sensor [2], and the blackboard [4].

The CMU Sidewalk Navigation System is a milestone system
toward ogur goal. In this system, we focus on two points. The first
is to build a whole system based on a good system architecture so
that the system is both complete (containing every necessary
module) and efficient. We achieve that goal by adopting a
blackboard-based architecture. The second point is to create
perception modules with sensor fusion that work well in our
outdoor environment.

The test site for the CMU Sidewalk Navigation System is the
CMU campus, containing a network of sidewalks and
intersections, along with grass, slopes, and stairs. The system can
drive the vehicle through these objects to get to its destination.

1This research was sponsored by the Defense Advanced Research Projects
Agency, DOD, through ARPA Order No. 5351, and monitored by the U. S. Army
Engineer Topographic Laboratories under contract DACA 76-85-C-0003. The
views and conclusions contained in this document are those of the authors and
should not be interpreted as representing the official policies, either expressed or
implied, of the Defense Advanced Research Projects Agency or of the U.S.
Government.

CH2345-7/86/0000/0105$01.00©1986 IEEE

2. System Architecture for the Outdoor
Navigation System

2.1. Hardware Configuration

The hardware for the CMU sidewalk navigation system consists
of three SUN-3 workstations, the vehicle, the color TV camera, and
the laser range sensor. The workstations are linked together with
Ethernet, and the workstations and the vehicle are linked with
radio communication. Figure 1 shows the vehicle called
Terregator.

2.2. System Architecture

2.2.1. Stages of Navigation
In order to create a reasonable system architecture, we have to -
start by analyzing outdoor navigation.

If the navigation system uses only one uniform navigation mode,
the system architecture issue is not essential. But, in general,
outdocr navigation includes several navigation. modes. The
example shown in Figure 2 illustrates this situation. The vehicle
running from the starting point to the destination has to follow the
road, turn at the intersection, climbing the slope and cross the
terrain. Turning at the intersection needs a more complex method
to drive the vehicle than following the road. Perception for
crossing the terrain is different from perception for turning at the
intersection. in following the road we can use assumption that the
ground is flat, which makes perception- easier. But climbing the.
slope does not satisfy this assumption. This is one reason why the

=z

L

Figure 2: Outdoor Navigation

outdoor navigation system needs good system architecture.

We decompose navigation into two processing stages. The first
stage is the route planning stage, and the second stage is /local
navigation. In the route planning stage the system selects the best
navigation route, from several possible routes to get to the
destination from the starting point. The system divides the whole
route into a sequence of route segments. In each route segment,
objects on which the vehicle can run are constant. The navigation
system can drive the vehicle using a single uniform driving mode,
for example, following the road or turning at the intersection, and
a single perception mode. In this stage, using the map data is
essential.

Local navigation is navigation within one route segment. In the
local navigation stage, the navigation mode is constant and the
main task is to drive the vehicle along the route segment. Local
navigation uses perception to find a safe passage for the vehicle,
and to determine the actual vehicle driving path.

In contrast, our earlier and simpler navigation system did not
have the route planning capability and has only one navigation
mode for local navigation.

The system architecture of the CMU sidewalk navigation system
is indicated in Figure 3. We decomposed the whole system into
several medules. The modules indicated with blocks are separate
processes, running independently, and communicating with each
other through the BLACKBOARD. in selecting this decomposition
of the whole system into these modules, we followed the principle
of information hiding. The CAPTAIN module and the MAP
NAVIGATOR module are responsible for the route planning, and
they do not know the result of perception or how to drive the
physical vehicle. The PILOT module, the PERCEPTION module
and the HELM module are responsible for the local navigation,
and they do not know the destination, the whole route, or the
sequence of route segments. What they know is limited to only
one route segment at one time. We will explain the system
architecture in detail in the following sections.

2.2.2. The Blackboard-Based Architecture

Our BLACKBOARD provides modules with communication and
synchronization facilities [4]. Using a blackboard-based
architecture brings two main advantages to building our
navigation system.

106

CAPTAIN PILOT
MAP :
NAVIGATOR BLACKBOARD ERCEPTIO
NAVIGATION

MONITOR HELM

Figure 3: System Architecture

The first advantage is parallelism in execution. We decompose
the whole system into several parallel modules. Because the most
time consuming operation is perception, it is an independent
process, the PERCEPTION module, running on its own machine,
and not disturbing other modules. Because the HELM module
which drives the physical vehicle needs real-time response, it is
another separate process. Communication and synchronization

of all modules are handled by mechanisms of the BLACKBOARD.

The second advantage is that using a biackboard makes it easier
to combine several programs into a whoie system. Our,
BLACKBOARD provides a good mechanism to connect modules,
and limits the interactions among modules. For instance, each
module can work in its most natural and convenient coordinate
frame, with the BLACKBOARD converting among reference
frames. We use the principle of information hiding so that the
interfaces between modules are small. This keeps communication
costs low and allows good modularity. The details of the
BLACKBOARD are explained in following sections.

2.3. Module Structure
In this subsection we explain each module.

2.3.1. The CAPTAIN Module and the Mission

At the upper level of the system is the CAPTAIN module that
receives instructions from the controlling person and oversees the
mission. The mission consists of a number of steps, and the
CAPTAIN sequences through the steps. For each step, there is a
destination that tells where to go and one or more constraints that
tell how to go. For example, "go to intersection D" gives a
destination and "keep right” gives a constraint. Each mission
step also has a trigger condition and an action which will be
executed if the trigger condition is satisfied. Triggers can be used
to move on to the next mission step when one step is completed.

The CAPTAIN sends the destination and the constraints of each
mission step to the MAP NAVIGATOR one step at a time, and gets
the result of mission step, success or fail, from the MAP

"NAVIGATOR.

2.3.2. The MAP NAVIGATOR and Route Planning

The MAP NAVIGATOR does the route planning based on a
destination and a constraint sent from the CAPTAIN, gives the
PILOT directions for driving along the route, and reports the resuit
of the mission to the CAPTAIN.

The MAP NAVIGATOR contains two main parts, the ROUTE
SELECTOR, and the ROUTE SEGMENT DESCRIBER (see Figure
4). The ROUTE SELECTOR creates the route plan, and
decomposes it to a sequence of the route segments so that each
route segment has only one navigation mode. The current system
has several navigation modes: follow-road, turn-at-intersection,
go-through-intersection, and go-through-siope. Our future system
will have another navigation mode, cross-country, in order to
navigate on open terrain.

The ROUTE SEGMENT DESCRIBER generates the description
of the route segment. The purpose of route segment description
is to provide the PILOT with the information necessary for
navigation within the route segment. It includes path objects (e.g.,
pieces of road, intersections), navigation modes, the conditions to
exit from the route segment, the constraints to drive the vehicle,
and object descriptions. Path objects are the objects on which the
vehicle should run. Object descriptions describe the location and
the shape of the objects (such as landmarks) which the
PERCEPTION module can see while running on the route
segment. This description is created by copying a part of the Map
data, and is used as a prediction for the PERCEPTION module.
One important point is that only the MAP NAVIGATOR maintains
the Map data.

The route segment description is sent to the BLACKBOARD and
forwarded to the PILOT.. When the PILOT finishes the route

segment, it reports the result. If the result is success, the ROUTE
SEGMENT DESCRIBER sends next route segment description.

CAPTAIN

ROUTE
SELECTOR

ROUTE SEGMENT
DESCRIBER

PILOT

Figure 4: The MAP NAVIGATOR Module

107

2.3.3. The PILOT and Local Path Planning

The PILOT, the PERCEPTION and the HELM work together for
local navigation. The PILOT operates continuously to conduct the
navigation within the route segment. The PILOT contains several
sub-modules that form a sequence as shown in Figure 5, to
process each area to be traversed.

MAP
NAVIGATOR
}
1

DRIVING
MONITOR

DRIVING UNIT
FIN