ht x\'\
el
el

it Xf‘im‘,
s

e
s S
i ,u;,k i .

S : i
,, m%‘«‘"“ i ‘M il ;. e »‘m“mx

e Gt ,
“mx, e it B
s tm g, SR
iy

4 i
*gf), ,W

S
’x

i
b
%u,
LP;*;M
b "n
o n:;»,,,‘ w i
x; g ’“"b,'ﬂ““ x i
P, (X“g) e L,
Q;‘m ﬂ«’mg‘r i L*ﬂs«,‘! m :x»»m*x
bk o m 2 'L "§’
Ty J i e
wfsﬂ o i
P a«* i
u:« ’;m xl g ’:42!’

e i T
s »b;‘ i
i

i Bl
e

et

*\ ﬁ; i
('\ ‘« i

s;x S
Aol
e,

e -
xll“‘}m, s jﬂ‘«;:%“
el i
Slx i
s i

i w,“ ,m,sax, iy
u i wi‘f“x
i Lol
L
b
i
o

7
a

e @
i ‘»m i
g R g
e,
L .
‘w

Rk ‘l
oo

\wﬁu
X“v el

n, Ty

w,«,;», it

b ceb

wi :

éa |

‘
. o

i

il
S

S
g; ‘w,@

,
e

o
Uak
s |

T w
) Ir
“F""*«s,f g :» !n’“
i m
“ ‘““ “ w&*x!?s

S
A % |
L]
m

; .
u,@:m
Al

Yxf\‘mx k,&
At
L »x; ‘«‘, »}‘\s’”u,"‘;
L w,!;:,n i
o w*;., 2 a’%]
i
o
i g
e ru,w i
T
L
e et
i ity n,”v,wh .;zx;, s,
I iy
e i .
S
i

B,
i
o w m»;isnm‘i\.
s Ay
,f:% 2 «ﬁjf«, ,nu«
;» G x;w; o ;;»
Rt xs“" ““x
Tkt . ,N(,,)
el i
i i o
: ",“* x:‘f” m"‘»;x(“m i
; i B

I m %
,,x.(oA (,« ,m. E
Lo
s M«W&.»N,N

iw e
o R g Sl
NG e

L
iy
4
L
«m ‘,;v (;n)m ,,,,xm ki
SR e
L ,,,sh,‘m
‘mg,;w iche
u.“’“ oy S ‘
S

.

o
nx;‘f‘@.;,é» i

“M

Bl
L
i X "
S
’u,m «m, Gt

e
N

Lol
‘w,

Ax» i

Ll ‘s,ﬁi,f‘"
\“,,;),Wﬂ s
. n“;- i
o ;
il
uw th,%

m! i)
%‘3

‘." e Lué A
i Gy
31‘%23 ‘1;
o ;5“‘

iy ';‘;w

‘«u
i
Lx mg

A s »j;j é%a
RN *m ,, ‘»’»1
i m w A i
. m, i x,,
“‘j‘s“mx » ’x‘u “‘« » w“?xq
g ; by v
‘mu J
«f‘m
5 ,,)“;‘3(o
«;,»xx‘»m .

m,‘bu, ‘-)

el
f

- m(A, »;'”
gl

Ly

o ,»,x(v y

il
T
5

i
s e
m»,‘ W
it S)

X ;L»i o,

i
i S
i Gl
e «m! i ‘v* AR «m‘,,, i

AFIPS

CONFERENCE
PROCEEDINGS

VOLUME 43

1974

NATIONAL
COMPUTER
CONFERENCE
AND
EXPOSITION

May 6-10, 1974
Chicago, lllinois

The ideas and opinions expressed herein are solely those of the authors and are
not necessarily representative of or endorsed by the 1974 National Computer
Conference or the American Federation of Information Processing Societies,
Ine.

Library of Congress Catalog Card Number 55-44701
AFIPS PRESS
210 Summit Avenue
Montvale, New Jersey 07645

©1974 by the American Federation of Information Processing Societies, Inc.,
Montvale, New Jersey 07645. All rights reserved. This book, or parts thereof,
may not be reproduced in any form without permission of the publisher.

Printed in the United States of America

PREFACE. .. . e Stephen S. Yau
General Chairman

FOREWORDD e e o T. M. Bellan
Technical Program Chasrman

CONTENTS

ASSOCIATIVE PROCESSING

Some problems in associative processor applications to data base management. 1 P. B. Berra
RADCAP—AnD operational parallel processing system. 7 J. D. Feldman
L. C. Fulmer
STARAN parallel processor system software.......... 17 E. W. Davis
Some thoughts on associative processing languages. 23 W. W. Patterson
ADVANCES IN DATA BASE MANAGEMENT
User/system interface within the context of an integrated corporate data base........ 27 G. Altshuler
B. Plagman
DUCHESS—A high level information system 35 B. J. Taylor
S. C. Lloyd
An analytical model for information processing systems. 41 S. Huang
‘ A. L. Goel
A model for a generalized data access method..............., 45 R. L. Frank
' K. Yamaguchi
A data base management problem specification model. 53 ° G. T. Capraro
P. B. Berra
Integrating data base management into operating systems—An access method approach. 57 A. C. 8. Moreira
C. Pinheiro
, L. F. D’Elia
A prototype system for interactive data analysis................ 63 G. Levitt
D. H. Stewart
B. Yormark
Quantification in a relational data system............ 71 N. R. Greenfeld
INFORMATION SYSTEMS FOR HEALTH CARE
A public health data system.......... 77 J. C. Peck
F. M. Crowder
Automated patient record summaries for health care auditing....................... 81 R. Chalice
O. M. Haring
R. Hochsprung
An integrated health care information processing and retrieval system............... 93 K. C. O’Kane
R. J. Hildebrandt
Interface for rapid data transfer and evaluation................................... 107 P. Shah
R. Haidle
G. Czerlinski
TECHNOLOGICAL AIDS FOR THE PHYSICALLY DISADVANTAGED
An alternate interface to computers for the physically handicapped—The autominitoring
communication board. 115 G. C. Vanderheiden
A. M. Volk
C. D. Geisler
A computing environment for the blind............... 121 M. A. Rahimi
J. B. Eulenberg

A computer based system of speed training aids for the deaf—A progress report.......

Computer-assisted instruction in mathematics and language arts for deaf students.

COMPUTERS IN COMMUNICATION AND VOICE RECOGNITION

Integrated voice/data compression and multiplexing using associative processing.
Speech as a man-computer communication channel. oo oo oL

OPERATING SYSTEMS—I

Verifiable secure operating system software............

An Interactive software engineering tool for memory management and user program
eVAlUALION.

INFORMATION SYSTEMS FOR AMBULATORY CARE

Development and implementation of a medical/management information system at the
Harvard Community Health Plan.,

RECENT DEVELOPMENTS AND APPLICATIONS OF CAI

OPERATING SYSTEMS—II

Experimental data on page replacement algorithm...................
Some programming techniques for processing multi-dimensional matrices in a

PAgINg eNVIFONIMENT.o o ittt it et e
The double paging anomaly.

HEALTH CARE PLANNING AND ACCEPTANCE OF COMPUTER SYSTEMS

Effective planning for and justification of the extension of data processing in hospitals. . . .
A resource allocation and planning system for the development and operation of health

care delivery systems. Tt
Medical data processing in the United States.....................................

BUSINESS DATA PROCESSING EDUCATION—A DECADE OF FAILURE

Why industry won’t hire your graduates. i
How the data processing industry has failed education........................ P
A springboard for data processing education in Oklahoma.
Career education in business data processing teacher edueation.

EQUIPMENT MONITORING AND INFORMATION USE (PART I)

Computer control of component insertion.

125

127

133
139

145

153

159

167
169
175

179

185
195

201

207
215

227
231
235

239 -

241

R. S. Nickerson
D. N. Kalikow
K. N. Stevens
P. Suppes

J. D. Fletcher
L. D. Wald

R. Turn

J. Popek
S. Kline

G.
C.
W. W. Millbrandt
J.

Rodriguez-Rosell

N. Justice

G. O. Barnett
R. Lurie

W. Cass

V. Bunderson
R. B. Davis
W. M. Richardson

N. A. Oliver

J. L. Elshoff
R. P. Goldberg
R. Hassinger

R. B. Freibrun

B. W. Bise
M. J. Ball

G. B. Shelly

T. J. Cashman
D. A. Pierce

J. M. Kinzer, Jr.

&,
=

emis

DISPLAY PROCESSING AND TECHNOLOGY

Display techniques for interactive text manipulation...............................
Line processor—A device for amplification of display terminal capabilities for text
MAnIPUIAtION e e
The Grafix I image processing system. i iiiiinann..
Hardware/software design considerations for high speed/low cost interactive graphic
communication SyStems. B

SYSTEM IMPLEMENTATION TECHNIQUES

APL as a development tool for special purpose proeessors.

Narrowing the generation gap between virtual machines and minicomputers..........

Pipelining—The generalized concept and sequencing strategies......................

NETWORK INTERFACES

Interfacing communication networks to IBM System/360 and System/370 host
processors—An end users VIeWpOInt.t

COMPUTER SCIENCE EDUCATION—RECOMMENDATIONS FOR CHANGE

Implications of changes in the secondary school mathematics curriculum for the computer
science and computer engineering curricula.
A cognitive model for structuring an introductory programming curriculum.

On the preparation of computer science professionals in academie institutions.........

THE HIGH COST OF SOFTWARE—CAUSES AND CORRECTIONS

Understanding the software problem................
Automated monitoring of software quality

Embedded computers—Software cost considerations

ARTIFICIAL INTELLIGENCE AND RELATED TOPICS

An examination of Tie-Tac-Toe like games
Provable programs and processors. i
A language-independent programmers’ interface

IMPROVING COMPUTER SYSTEM EFFECTIVENESS

Guidelines for the use of infinite source queueing models in the analysis of computer
system performance

Data base concepts applied to generalized programming packages...................

On-line user-computer interface—The effects of interface flexibility, terminal type and
experience performance

247

257
267

273

279

285

289

299

303
307

313

321
327

333
337

343

349
357
365

371

375

379

C. H. Irby

D. 1. Andrews
A. K. Griffith

T. L. Boardman, Jr.

w2

. Levy

. Doyle

. Heller

. J. Theberge

. E. Beaverstock

. V. Ramamoorthy
. H. Kim

RogmHeE®

J.T.

. Pryke

unini

—~ =
==

E. Sloan

B. Kreitzberg
Swanson

J. A. Archibald, Jr.
M. Katzper

G. K. Kapur

C. Testa

M.
C.
L.

J. B. Slaughter
J. A. Clapp

J. E. Sullivan
J. H. Manley

OPERATION STATUS OF LARGE SCALE DATA PROCESSING

The Control Data STAR-100—Performance measurements.
Operational experiences with the TI advanced scientific computer.

Multiprocessor performance analysis.uoiiieeeiiii ..

STARAN parallel processor system hardware.....................................

SOFTWARE FOR COMPUTER SYSTEMS ACQUISITION

A program for software quality control.
Experiences in COBOL compiler validation.......................................

System for efficient program portability............. L.

An experiment in the use of synthetic programs for system benchmarking.

MINI- AND MICRO-COMPUTERS IN DATA COMMUNICATION SYSTEMS

A microprocessor implementation of a dedicated store-and-forward data communication

THE PROPHET SYSTEM—COMPUTING IN PHARMACOLOGY
The implementation of the PROPHET system....................................

Applications of the PROPHET system in correlating crystallographic structural data
with biological information.

Applications of the PROPHET system in molecular pharmacology—Structure activity
relationships in monamine oxidase inhibitors.............. L
Applications of the PROPHET system in human clinical investigation...............

MANUFACTURING CONTROL SYSTEM

A simple distributed systems approach to manufacturing information systems........
Interactive computer graphics application of the bi-cubic parameter surface to engineer-
Ing design problems.outi i

385
389

399

405

411
417

423

431

439

447

453

457

469

473
477

485

491

C. J. Purcell
W. J. Watson
H. M. Carr
J. Mitehell

C. Knadeler
G. Lunsford
S. Yang

K. E. Batcher

8

; O]iver

. N.

. M. Cook
N Baird
J ohnson

HREEZQTEQER
w2 O P
g
R

P

M. D. Lippman

C. B. Hergenhan

M. M. Rochkind
. Mollenauer

L. R. Kneppelt

G. J. Peters

Twinkle Box—A three-dimensional computer input device..........................
APLG—An APL based system for interactice computer graphies....................

DARMOUTH TIME SHARING SYSTEM—THEN AND NOW

Project FIND—An integrated information and modeling system for management.

MICROPROGRAMMING TECHNOLOGY

Design considerations for microprogramming languages.

A flexible disk controller.t

PLANNING AND DESIGN OF DATA COMMUNICATIONS NETWORKS

Planning and design of data communications networks...................... e
Management planning in the data communications environment.
Effective use of data communications hardware.
New line tariffs and their impact on network design....... e
Tools for planning and designing data communications networks.

AUTOMATED WAREHOUSING

Automatic storage and retrieval system control. o

COOPERATIVE GOVERNMENT UTILIZATION OF INFORMATION
PROCESSING SYSTEMS

Supporting government cost planning of industrial wastewater treatment.............
The base-data cluster concept—A cooperative metropolitan approach to computer
Utilization.

ARCHITECTURAL PARAMETERS

Efficiency in generalized pipeline networks. e
An approach to the design of highly reliable and fail-safe digital systems.............

A study of fault tolerant techniques for associative processors.......................

PROGRAMMING AND PROGRAMMING LANGUAGES

Toward the development of machine-independent systems programming languages. . . .

LPL—A generalized list processing language
Generalized structured programming

TECHNOLOGY INVESTMENT MANAGEMENT

Computer performance analysis in mixed on-line/batch workloads...................
Systems performance/measurements—A quantitative base for management of computer
Two hat management—Project management with a difference
Controlled testing for computer performance evaluation

513
521

529

537

545

553
561
565
577
583

593

613

621

625

637

643

653

659
665

R. P. Burton
W. K. Giloi
J. Encarnacao

J. 8. McGeachie
D. L. Kreider

G. R. Lloyd

A. van Dam

R. G. Harris

J. E. Sustman
J. F. MeDonald

W. Chou

L. Hopewell

P. McGregor
M. Gerla

A. Kershenbaum

P. R. Witt

E. H. Pechan III
R. A. Luken
J. E. Mendelssohn

L. Stitelman

C. V. Ramamoorthy
H.F.1Li

H. Chuang

S. Das
B. Parhami
A. Avizienis
K. Magel
A. van Dam
M. Michel

B. G. Claybrook
J. J. Martin

J. Lockett

P. Malick
R. W. Kleffman
A. C. Shetler

INSTALLING AN ON-LINE INFORMATION SYSTEM IN THE
MANUFACTURING ENVIRONMENT

Installing an on-line information system in a manufacturing environment.

STORE ORDERING SYSTEMS

Remote data collection case study telephone order processing system (TOPS).........

COMPUTER SYSTEM DESIGN CONSIDERATIONS FOR CONTROL
APPLICATIONS

Use of a multi-programming mini-computer for real-time control applications.........
A data bank for on-line process control.

Design of a mini-computer network for the automatic determination of amino acid
sequences in proteins. T

An approach to the optimization of an Olefins plant.

NETWORK PERFORMANCE MEASUREMENTS

Computer performance variability....
On measured behavior of the ARPAnetwork.

THE COMPUTER—CAREER GUIDANCE TOOL OF THE PRESENT
AND FUTURE

The potential role of the computer in intuition and self development.
Use of computer in relation to critical guidance factors.............................

SELECTED TOPICS ON SYSTEM SIMULATION AND INTERACTION

Effective demonstration of mini-computer-based systems by a novel digital simulation.
Twenty commandments for managing the development of tactical computer programs.
An optimal pollution surveillance schedule generating system (OPGENS)............

Use of a micro-computer in a missile simulator..........

ADVANCES IN MEMORY TECHNOLOGY

Charge-coupled devices for computer memories.,

Block-oriented random access MNOS memory.ottt

DOT memory Systems.iveiiunneineennni.. R

Capabilities of the bubble technology.......... ..ottt i

701

709

737
743

749

753

761
767

781
791

799

807

821

827

837
841

847

T. J. Archbold

M. H. Resnick

T. E. Bell
L. Kleinrock
W. E. Naylor

D. V. Tiedeman
R. N. Cassell

HegQr=®

. Kosonocky

. Chambers

. Sauer
. Brewer

. Hadden, Jr.
J Spain
. 1. Jauvtis
. T. Duben
. Chang

PR

EWMWU"‘U‘“HQ

STANDARD FOR COMPUTER NETWORKS

Some computer network interconnection issues................. ...l

CONTINUING EDUCATION AND CAREER DEVELOPMENT FOR
COMPUTER PROFESSIONALS

Step-by-Step—A career structure for systematic EDP growth.......................
Career development—A new approach to performance appraisal.

SWITCHING AND SORTING NETWORKS

Interconnection networks—A survey and assessment.
An economical construction for sorting networks............... e

CONTINUING EDUCATION AND TRAINING THROUGH THE USE OF CAI

Business and industry in the 70’s find computer-aided instruction a practical answer to

training Problems. e
The role of computer assisted instruction (CAI) in management information systems. .
Computer assisted instruetion in industry
The use of computer assisted instruction at MeDonnell Douglas Corporation.

PANEL SESSION PAPERS AND PAPER ABSTRACTS...............cooiiet.

AMERICAN FEDERATION OF INFORMATION PROCESSING SOCIEITIES, INC.
(AFIPS)

1974 NATIONAL COMPUTER CONFERENCE COMMITTEES

DISCUSSANTS, MODERATORS AND PANELISTS

REVIEWERS

- SESSION CHAIRMEN AND AREA DIRECTORS

AUTHOR INDEX

857

861

867

873

881
889

897
903

909
921

929
933
947
953

959

A. M. McKenzie

N. L. Ayer
W. C. Andrews
L. J. Sontag
P. D. Oyer

D. L. Ray

D. R. Skeen
R. M. Henry

R. L. Nolan
C. M. Traver

K. J. Thurber
D. C. Van Voorhis

=

. G. Kerr

R. J. Collins

. P. Breen
H. Goddard

=)

PREFACE

The 74 NCC has the objective of providing a forum for
computer specialists, users, potential users and manufacturers
to exchange information on new developments in computer
science and technology and their applications in various
areas.

The Conference Program focuses on five broad computer
science and technology areas, and ten applications areas.
Science and technology areas cover the latest developments
which should enable users to make more efficient use of their
resources in a wide range of areas. The applications areas not
only demonstrate how computer technology can indeed be
used to improve the efficiency of current operations, but also
point out potential usage in many other areas which should
generate new demands for further development in computer
science and technology. Although each area forms a ‘“con-
ference within a conference,” all fifteen areas form a com-
prehensive and cohesive program, instead of disjointed
.subprograms.

The Conference also features major addresses, a number of
sessions of special interest and other activities ranging from
a computer art fair, a science fair, a science theatre, to tours
and an “Oklahoma Night’ reception.

You'll find there are about 250 companies and organiza-
tions from the computer industry participating in the ex-
hibits and occupying about 85,000 square feet. In spite of the
size of the Conference and Exhibits, we have been able to
arrange all of the Conference Program and Exhibition at one
place—MecCormick Place and the adjacent McCormick Inn.
This arrangement should greatly help you receive the full
benefits of both the Conference Program and the Exhibits.

The 74 NCC is the result of the enthusiasm, talents and
efforts of many individuals from all the segments of the
information processing community. In particular, I would
like to thank the members of the 74 NCC Committees and
AFIPS staff for their devoted efforts. A great deal of credit,
however, should go to the session organizers, session chair-
men, speakers, panelists and reviewers. Finally, I would like
to express my appreciation to AFIPS, the NCC Board and
the NCC Cemmittee for their full support during the or-
ganization of the Conference.

Stephen S. Yau—General Chairman
Northwestern University
Evanston, Illinois

FOREWORD

The Conference Program has been structured around the
theme of computer productivity as it relates to the user. It
represents a comprehensive analysis of the U.S. computing
and data processing field, covering applications of user areas,
the latest developments of computer science and technology,
and a number of current high interest topics relative to the
impact of computers on today’s society. A degree of inter-
national flavor has been added by the introduction of selected
papers and panelists that can demonstrate positive and
interesting differences in computer development and applica-
tion in various geographical areas.

Through the concerted efforts of a committee of prominent
technologists and industry specialists, the program has been
developed to meet the information requirements of the
corporate executive dependent on effective computer utiliza-
tion, staff and line management of user organizations,
management within the computing field, applications
specialists and the computer professional. Each of the pro-
gram areas has been shaped to form a “conference within a
conference,” and provides a forum where outstanding indus-
try representatives demonstrate how recent innovations in
computer technology and its application are being employed
to contribute to more effective operation of their organization.
In structuring the program schedule, serious consideration
has been given to provide an opportunity for the attendees to
benefit not only from presentations in their primary area of

interest, but also to have the opportunity to be exposed to
other areas of industry and technology that may be attacking
similar problems.

A significant amount of time and effort on the part of a
large number of interested, dedicated, professionals has gone
into the development of this program. Its success, measured
by your reception, is due to the participation of many volun-
teers who gave freely of their time and talents to organize
sessions, prepare papers, referee submissions, and willingly
offer advice and counsel to the Committee, who ultimately
had the task of consolidating this input into the outstanding
program that it is. To all who participated in the develop-
ment of this program, our thanks for a job well done!

In an attempt to provide a more complete record of the
Conference Program for all attendees, we have tried some-
thing new this year. In addition to publishing the formal
papers, and in some cases abstracts where detailed paper
material was not available at publication date, there are also
included a few panel overviews and panelist position state-
ments. Unfortunately, all panels are not represented because
of the unavailability of some information at publication date.

T. M. Bellan—

Technical Program Chairman
MecDonnell Douglas Corporation
St. Louis, Missouri

Some problems in associative processor applications

to data base management

by P. BRUCE BERRA

Syracuse University
Syracuse, New York

INTRODUCTION

Associative memories and processors have been discussed in
the literature for the past 15 years and a small number of
hardware devices have actually been built.?* The usefulness
of these devices can only be proven through actual applica-
tions. A number of these applications have been considered
and include air traffic control,? computer graphies,?% in-
formation retrieval,® numerical analysis,” networks'®!® and
among others, data base management.24810,11,15,17

Vast computer resources are required for the managing
of large data bases. With hardware costs coming down, and
software and personnel costs going up it is important that
one investigate the application of associative devices to the
field of data base management to ascertain what gains might
be made.

In this paper, some background is given on the application
of these devices to data base management. This is followed
by a review of existing literature in the field. Searching, a
most important, capability of an associative device is then
considered. It is shown that several data base management
functions such as retrieval and update have searching at
their core and therefore are well suited to these devices.
Furthermore, due to the simpleness of the associative storage
structure, increased performance can be obtained in some of
the other functions of data base management and therefore
one must look to these also. It is concluded that these devices
have a place in the solution of data base management prob-
lems but represent only a step on the way to more sophisti-
cated hardware/software/firmware devices designed especial-
ly for data base management problems.

DATA BASE MANAGEMENT

With the rapid growth of the computer field has come a
commensurate growth in the need for software systems to
manage vast amounts of numeric and non-numeric data.
The development of these systeros, called data base manage-
ment systems, has kept pace so that there are more than 200
such systems with varying levels of capability in existence
today. However, there does not seem to be any universally

accepted definition for the term data base management sys-

tem. But, there does seem to be some universality on the
capabilities that such systems should have and some of the
functions that they must perform. It seems apparent that
one must go through a process of data definition in order to
create a data base. This implies that there is a data structure
that somehow represents the logical relationships among the
data and some storage structure that is utilized in the actual
storing of the data on physical media. One is given a free
rein in the selection of a data structure and it often appears
naturally in the problem. However, the storage structure is
yet another matter. One is limited to either a sequential or a
random storage structure. If one is fortunate there can be a
one-to-one mapping between the data structure and the
storage structure. However, this is generally not the case
and redundancies must then be incurred.

Once the data base has been loaded one wants to formulate
queries and extract data from it. This implies some sort of
processing capability whether it be through a high level
language such as COBOL or PL/1 or through some self
contained capability.

Intermixed with the above is a consideration of the ques-
tions of how much storage is being used to store the data
and how much is allocated to non-data such as directories,
pointers, etc. Also, one must not leave out consideration for
updating the data base by adding new pieces of data and
deleting or changing old ones. Beyond this, such ill defined
terms as flexibility, ability to respond to changing require-
ments, data independence, data administrator and others
are often used. But this offers no difficulty here since most
of the work in the application of associative devices to this
field has been concerned with the more well defined aspects
of data base management.

ASSOCIATIVE MEMORIES/PROCESSORS

Several of the papers referred to in this paper®7.14.17.2
contain background material on associative memories and
processors so only limited background will be provided here.
The interested reader can refer to the cited papers.

Essentially, associative memories address words in storage
by content and can perform several different parallel search

10 National Computer Conference, 1974

Figure 6—Typical printed circuit assembly from STARAN associative array

network and uses about the same fixed amount of logic as
the processing element; e.g., 1/8 to 1/32 gates per bit of
storage. The memory and the flip network together are
called the Multi-dimensional Array (MDA) memory.

MDA associalive array

Figure 5 shows the organization of a 256 X256 associative
array based on the MDA memory. The nondestructive stor-
age function is provided by the memory, which consists of
256 standard LSI memory chips, each 256 X1 bits. Access
to word or bit slices is provided in the flip network, which
consists of standard MSI logic circuits. The logic necessary
for the associative and arithmetic functions is contained in
the serial processing elements, which are implemented with
standard SSI logic circuits.

‘The entire associative array based on a serial by bit archi-

tecture uses about 2-1/2 gates per bit compared to 40 gates
per bit for the competing parallel by word and bit custom
LSI approach. The complete associative array is constructed
using standard printed circuit assemblies such as the one
shown in Figure 6. Figure 7 shows how the associative array
is viewed by the programmer. Table II gives the performance
data for the 256 X256 array. This associative array forms
the basis for the STARAN associative processor.

TABLE II—STARAN Associative Array Performance

Multi-Dimensional Access (Bit Slice or Word Slice)
Array Module Speed:

Typical Search

Typical Add or Subtract

Read Bit or Word Slice (256 Bits)
Write Bit or Word Slice (256 Bits)

150 Nanoseconds/Bit
800 Nanoseconds/Bit
150 Nanoseconds
300 Nanoseconds

2 National Computer Conference, 1974

COMPARAND

REGISTER AVE 4
MASK
REGISTER 0 i1

RESPONSE
STORE

=
ARMON ALVIN 128 APPLE LN 472-5509
DREW PAMELA 715 LANCASTER AVE 476-6209 4
GOLDFARB SAM 53120 FOURTH ST 536-7112
LEE ROBERT 2 PEACHTREE AVE 321-5122
ORLOWSKY JULIUS 26 ELM ST 798-6453
ZWING ALVIN 92372 ROSECROFT DR 211-6675 L

Figure 1—Associative memory telephone example

instructions such as exact match, maximum, minimum, and
others, plus Boolean operations. Associative processors can
be looked upon as associative memories with arithmetic
capabilities such as add, subtract, multiply or divide. Present
implementations of these devices operate in a bit slice mode.
That is, the operations are performed in parallel on one bit
from each word. By processing each bit slice in succession
the entire contents of the memory can be processed. To
attain full parallelism one would have to construct the ma-
chine so that every bit position of every word would be
processed simultaneously. For a comparison of various ar-
chitectures see Shore.”

Perhaps an example, albeit trivial, will be useful in illus-
trating the concepts of an associative memory in searching
a data base. Suppose the data base is loaded in memory as
shown in Figure 1, and we would like to search for the records
of those persons who live on AVENUES and have a 4 as the
first digit of their telephone number. The Comparand Regis-
ter is first loaded with AVE and 4 in the proper positions.
The Mask Register is then loaded with ones in the position
of interest and zeros otherwise. This has the effect of masking
out unwanted positions in memory. An exact match search
is then performed which results in a mark in the Response
Store indicating that Pamela Drew’s record satisfies the
query. The record can then be removed for further processing
if required. This simple example also serves to illustrate the
mapping between relational data base management systems
and associative hardware devices.

SOME RECENT RESULTS

There is a vast wealth! of information on data base man-
agement in a sequential computer environment but a dearth
when an associative resource has been considered. Notable
research that has been conducted in data base management
and associative devices includes work by Moulder,*” Linde,
Gates and Peng,®® DeFiore and Berra®+7 and Goti.?* In all
of the above, simplifying assumptions had to be made for
one reason or another and therefore no generalized data base

management system utilizing an associative resource exists
today.

In previous research by DeFiore and Berra?*7? mathemati-
cal models were developed for sequential inverted list and
associative systems utilizing the criteria of retrieval, update,
storage requirements, and flexibility. The critical assumption
of all data fitting into main memory (both sequential and
associative) was made and thus limited the generality of the
results.

In the case of retrieval and update, equations were de-
veloped that could be used to ecount the number of interroga-
tions to main memory. The equations for retrieval were
more complex than those for update since multi-criteria
retrievals were considered while only single criteria updates
were considered. The equations for the associative system
were less complex than those for the inverted list system
owing primarily to the search capability of the associative
system. In the case of storage, equations for the number of
bits used to store data and any redundancies were developed.
This analysis yielded six equations, two each for retrieval,
update and storage. Since the pairs of equations had the
same units ratios were taken. This resulted in equations for
retrieval and update that gave the ratio of the number of
interrogations to memory for the sequential system to the
number of interrogations to memory for the associative sys-

. tem. The equation for storage was formed in a similar way.

It was felt that some numerical results would be important.
In order to facilitate this some additional assumptions had
to be made, primarily to remove summation terms. A dis-
cussion of the development of these equations and the re-
sulting numerical data can be found in Reference 6.

The general results are given as follows. For single criteria
searches the ratio of the number of interrogations to memory
for the sequential system to the associative system was pro-
portional to the logarithm of the list length being searched,
and for multi-criteria searches ratios of 50 to 1 were common.
Also, the ratio for updating was about 30 to 1 for updating a
single item in a list of 16. However, the ratio was only about
3 to 1 for updating all items in the list, indicating the attrac-
tiveness of the sequential batch updating. The amount of
storage required for the sequential system was from 2 to 4.5
times as much as for the associative system. Flexibility is
rather difficult to define but in this work it concerned the
amount of indexing that was available in the associative
system versus what could be made available in the sequential
system. It also concerned the ease with which one could move
from one relation to another in the associative system or up
and down a hierarchy in a sequential system. Because of the
ease of mapping between the logical data structure and the
storage structure; and the search capabilities of the associa-
tive device, it was concluded that the associative system
possessed greater flexibility.

Also included in this work was the implementation of a
system on an existing associative memory and the comparison
of the implemented system with an existing sequential data
base management system.® This helped to verify the general
equations that were discussed above.

Moulder!” has developed an associative system that is in

Some Problems in Associative Processor Applications to Data Base Management 3

operation on an experimental basis utilizing the STARAN
Associative Array Processor.! The hardware includes a small
sequential computer and a parallel head/track disk that are
connected to the STARAN through a custom input/output
unit. The sample data base being utilized in tests is hier-
archical in nature and resides on the disk. The data base
management system software includes data definition, file
creation, interrogation and update modules. A search is per-
formed in the following way. The STARAN memory is
loaded from the disk in approximately 100 usec. and searched
in another 100 usec. Then the next load of data is brought in
and searched. Proceeding in this manner the entire data
base can be searched in approximately two revolutions of the
disk through this interleaving of loading and searching opera-
tions.

In a somewhat more general way, Goti!® considered a
system with a large data base and investigated ways of
dividing the data base into memory loads so that the desired
data could be retrieved while minimizing the average number
of memory loads searched. Again the assumption is made
that the data are in fixed format and all data in a record must
be brought into the memory. However, this work allows for
the development of a directory that can be utilized in the
selection of which memory loads to search, whether the
memory loads contain full records or keys to records.

Linde, Gates and Peng® developed a hypothetical Associa-
tive Processor Computer System (APCS) in order to in-
vestigate real time data management system functions. As
opposed to the work by DeFiore and Moulder who used bit
slice machines, the above authors suggested a byte slice
machine. They investigated search, retrieval and update
since they found that these are the functions most able to
use an associative memory with advantage.

They normalized the APCS to the IBM 370/145 computer
and found that the performance improvements varied from
32 to 110 times faster for search and retrieval and from 15
to 210 times faster for update. For loading the associative
memory, their design included either a 14 or a 4 million byte
mass storage device with a parallel I/O bandwidth of 1.6
billion bytes/second, depending upon the function being con-
sidered.

For the past few years, research has been carried out in
distributed logic systems. Some of this work has been directed
toward placing logic elements on rotating storage devices.
These devices can be designed to have the same search
capabilities as the associative memory. This work ean be
looked upon as a lower cost solution to the associative
memory size problem but at the expense of slower speed.3.12,20

To this author’s knowledge, there is little else in the litera-
ture concerning data base management and associative pro-
cessing with the exception of some early work by Green,
Minker and Shindle! and some recent work by Downs® with
Illkiac IV.

SOME ADVANTAGES OF ASSOCIATIVE DEVICES

Having reviewed the existing literature concerning the
application of associative memories and processors to data

base management one can ask about the usefulness of these
devices for this type of problem. Looking to the work of
previous authors we see that the functions of search, retrieval,
and update have been considered. The amount of computer
storage utilized for the data and any redundancies has also
been considered. Finally, the flexibility of a system has been
considered.

Ignoring parallel arithmetic operations for a moment, the
operation that associative devices can offer to the solution
of data base management problems is rapid search of data in-
memory. And search operations are at the heart of such data
base management funetions as retrieval (both single and
multi-criteria), update, merging and sorting.

Although one cannot directly attribute an effect of search-
ing to the amount of storage utilized there is nevertheless an
indirect effect. For instance, we learned from Reference 6
that the amount of storage required in main memory was
from 2 to 4.5 times greater for the sequential computer
than for the associative device primarily because directories
were not needed in the latter case. Although the above refer-
enced work was carried out under the assumption of all data
fitting into memory, one can extrapolate to a data base con-
sisting of a great many memory loads. Thus, this would repre-
sent a considerable saving in the amount of storage required
for the data base as well as having much less data to search.

Although flexibility is difficult to quantify, the fact that
each bit or any combination of bits of a word can be used as
a key for searching indicates that flexibility is increased for
the associative device, at least in those operations that have
been considered in the literature so far. ,

Another possible indirect advantage of these devices is in
the software. Although the data are sparse at this point, it
appears that the programming of these devices is consider-
ably simplified both in logic and in the compactness of code.

In studying the use of associative memories and processors
in data base management, it has become clear that the arith-
metic capabilities of the associative processor are seldom
required in data base problems since the opportunity for the
parallel processing of large quantities of data rarely exists.
So, at the present time it seems that it would only be useful
to utilize associative memories in this field. One exception
to this concerns mass updating of the data base in a real
time environment. For instance, in air traffic control applica-
tions the data base of tracks may have to be manipulated in
real time and the need may arise to update all tracks simul-
taneously. But this kind of mass updating would seldom be
required for a business or industrial type data base manage-
ment problem.

SOME DISADVANTAGES OF ASSOCIATIVE DEVICES

The application of associative memories and processors
to data base management is not without its own share of
problems. The associative memory must be loaded before any
searching can take place and this may not be an easy task.
From a technological point of view the problem has essential-
ly been solved but it may take a sizable amount of high

4 National Computer Conference, 1974

speed storage to keep the associative device rapidly supplied
with data for processing. As indicated earlier, in work by
Moulder'? a head/track disk is used to supply the associative
processor with data. After the memory has been loaded
it may take only 100 usec. to search and retrieve the neces-
sary data before the memory is ready for loading again. Also
indicated earlier was work by Linde, Gates and Peng® in
which a 14 or 4 million byte mass storage device with a
parallel I/0 bandwidth of 1.6 billion bytes/second was as-
sumed.

Another problem that exists is that of fixed field formatting.
As can be seen in Figure 1, the data must be left or right
justified in order to exploit the parallel search capability of
the memory. This means that the same number of bits must
be allocated to the same data items in each record (i.e., 10
character positions for Su or Pennacchia). This may be
wasteful of storage but must be done in order to allow rapid
search. A possible solution to this problem is the use of
delineators but this creates some additional problems that
may well degrade the performance of the system.

Still another problem that presently exists is the current
size of the memory. Sequential computers have been mass
produced for many years now but associative devices are in
the one of a kind stage. Because of this they are necessarily
small and costly. However, as more problems are solved
using these devices, the sizes will increase and the costs will
be reduced. With sequential computers there is always a

demand for a larger machine than is presently available and

this should not be any different with associative devices.
In order to help alleviate the problem there may well be a
virtual memory philosophy applied to associative processors
but this is probably still a few years off.

FUTURE RESEARCH

One of the messages of this paper is that it appears at the
present time that associative memories and processors have
a potential for reducing some of the pressing problems in the
field but that they are by no means the final answer; only
a step on the way to more sophisticated devices. It has long
been the contention of this author that there are thousands
of data base problems in existence today that would support
the development of computers strictly for the solution to
these problems. Imagine the vast amounts of data the various
government agencies must manage, let alone all of the in-
dustrial organizations and businesses that are aspiring to
integrated corporate data bases. Imagine also the vast
amount of computer resources that are wasted in processing
largely non-sequential data on sequential computers.

Now what can be said of the future? It seems clear to this
author that for the next few years the associative device will
remain essentially a peripheral to a sequential computer.
One reason is that we just don’t know enough about the
generic functions that must be performed in data base man-
agement and therefore can’t really define what we need from
the hardware. Another reason is that we are used to thinking

in terms of the sequential computer. Hopefully this will
change but it will be a slow and sometimes painful process.
One need only witness the behavior of those who have at-
tempted to make the transition to the parallel field with a
bagful of good sequential algorithms only to find out that
some poor obscure sequential algorithms worked more effi-
ciently in the parallel environment than the ones in his/her
bag.

The research that has been reported on in this paper has
considered only limited sized data bases largely because of
the small size of the associative device and the I/0 problem.
But, what of the large data base problem? The work
by Goti® is important in this area. Using mathematical
models his approach was that of partitioning the data base
into blocks that could be made approximately equal in size
to an associative resource. This could then facilitate the
processing of the records once they were found. The data
base was assumed to be on conventional sequential storage
media. Although his work is independent of whether one
uses an associative resource or a sequential resource the
processing of some sort of directory to the data base can be
enhanced through the use of the associative resource. This
leads to the consideration of what kind of directory to build
when one has the resource available. We are presently con-
sidering this problem but results are not available as yet.

During the next few years work will continue in the place-
ment of logic on rotating devices in order to obtain the same
search capabilities as the associative memory. The added
advantage is mostly in terms of cost but the fixed format
and I/O problems are reduced considerably. The size limita-
tion still exists and speed is of course slow in comparison to
an associative device but for some applications this presents
no problem.

In the opinion of this author, the real gains will come when
we are able to provide a one-to-one mapping between the
data structure and the storage structure for a wide class of
data structures. Some information is available already in
that the data structures for some relational data base man-
agement systems have more of a one-to-one mapping with
associative devices than with sequential devices. But, to
really address the area we need to study large numbers of
data base management problems independently of any ex-
isting systems in order to define a set of generic functions.
We can then select the most efficient implementations of
these functions whether in hardware, firmware, software or
combinations of the three. This will take a great deal of
time and effort but will be extremely important to the
efficient solutions of data base management problems.

REFERENCES

1. Berra, P. B., Some References in Data Management, May, 1973,
available from the author on request. (Approximately 200 refer-
ences.)

2. Berra, P. B., “A Synopsis of Research Results in the Applications of
Associative/Parallel Processors to Operations Research, Data
Management and Change Detection,” 1972 Sagamore Compuler
Conference Proceedings, Syracuse University, August 23-25, 1972,

Some Problems in Associative Processor Applications to Data Base Management 5

10.

11.

12.

13.

14.

. Copeland Jr., G. P., G. J. Lipovski and S. Y. W. Su, “The Archi-

tecture of CASSM : A Cellular System for Non-numeric Processing,”
Proceedings of the 1st Annual Symposium on Computer Architecture,
Dec. 9-11, 1973.

. DeFiore, C. R., An Associative Approach to Data Management,

unpublished doctoral dissertation, Syracuse University, May, 1972.
(Also as RADC-TR-72-248, September, 1972.)

. DeFiore, C. R. and P. B. Berra, “A Data Management System

Utilizing an Associative Memory,” AFIPS Conference Proceedings,
Vol. 42, June, 1973.

. DeFiore, C. R. and P. B. Berra, “A Quantitative Analysis of the

Utilizations of Associative Memories in Data Management,”
IEEE Transactions on Electronic Computers, February, 1974.

- DeFiore, C. R., N. J. Stillman, and P. B, Berra, “Associative Tech-

niques in the Solution of Data Management Problems,” Proceedings
1971 ACM National Conference.

. Downs, H. G., “Real-Time Algorithms and Data Management on

Illiac IV,” IEEE Transactions on Electronic Computers, Vol. C-22,
No. 8, August, 1973.

. Goodyear Aerospace Corporation, “The Application of an Associa-

tive Memory to Chemical Information Storage and Retrieval,”
GER 13224, April 14, 1967.

Goti, J. C., Optimal n-Rectangular Partitioning of Large Data Bases
Jor Multiple Atiribute Retrieval, unpublished doctoral dissertation,
Syracuse University, November, 1973.

Green, R. 8., J. Minker, and W. E. Shindle, “Analysis of Small As-
sociative Memories for Data Storage and Retrieval Systems,”
Vols. 1 & 2, RADC-TR-65-397, July, 1966.

Healy, L. D., G. J. Lipovski and K. L. Doty, “The Architecture of a
Context Addressed Segment-Sequential Storage,” AFIPS Con-
Jference Proceedings, Vol. 41, December, 1972.

Linde, R. R., R. Gates, and T. Peng, ““Associative Processor Appli-
cations to Real-Time Data Management,” AFIPS Conference
Proceedings, Vol. 42, June, 1973.

Minker, J., “Bibliography 25: An Overview of Associative or Con-

15.

16.

19.

20.

21.

22.

24.

25.

tent-Addressable Memory Systems and a KWIC Index to the
Literature: 1958-1970,”” University of Maryland and Auerbach
Corporation, Computing Reviews, October, 1971.

Miranker, W. L., “A Survey of Parallelism in Numerical Analysis,”
SIAM Review, Vol. 13, No. 4, October, 1971.

Minsky, N., “Rotating Storage Devices as Partially Associative
Memories,” AFIPS Conference Proceedings, Vol. 41, 1972.

. Moulder, R., “An Implementation of a Data Management System

on an Associative Processor,”” AFIPS Conference Proceedings, Vol.
42, June, 1973.

. Orlando, V. A., Associative Processing in the Solution of Network

Problems, unpublished doctoral dissertation, Syracuse University,
February, 1972.

Orlando, V. A. and P. B. Berra, “The Solution of the Minimum Cost
Flow and Maximum Cost Flow Network Problems Using Associa-
tive Processing,” AFIPS Conference Proceedings, Vol. 41, 1972.
Parhami, B., “A Highly Parallel Computing System for Informa-
tion Retrieval,” AFIPS Conference Proceedings, Vol. 41, December,
1972.

Rudolpb, J. A., “A Production Implementation of an Associative
Array Processor-STARAN,” AFIPS Conference Proceedings, Vol.
41, 1972.

Rudolph, J. A., L. C. Fulmer, and W. C. Meilander, ‘“The Coming of
Age of the Associative Processor,” Elecironics, February, 1971.

. Shore, J. E., “Second Thoughts on Parallel Processing,” NRL

Report 7364, Naval Research Laboratory, Washington, D. C,,
December 30, 1971.

Stillman, N. J., A Feasibility Study of the Applicability of a Hardware
Associative Memory to Computer Graphics, unpublished doctoral
dissertation, Syracuse University, February, 1972. (Also as RADC-
TR-72-57, April, 1972.)

Stillman, N. J., C. R. DeFiore, and P. B. Berra, “Associative Pro-
cessing of Line Drawings,” AFIPS Conference Proceedings, Vol. 38,
1971.

RADCAP—An operational parallel processing facility

by JAMES D. FELDMAN and LOUIS C. FULMER

Goodyear Aerospace Corporation
Akron, Ohio

SUMMARY

An overview is presented of RADCAP, the operational asso-
ciative array processor (AP) facility installed at Rome Air
Development Center (RADC). Basically, this facility con-
sists of a Goodyear Aerospace STARAN¥* associative array
(parallel) processor and various peripheral devices, all inter-
faced with a Honeywell Information Systems (HIS) 645
sequential computer, which runs under the Multics time-
shared operating system. The RADCAP hardware and soft-
ware are described only briefly here since they are detailed
in companion papers presented at this conference.t? The
latter part of this paper dwells on the objectives of the
RADCAP facility and plans for its use.

The STARAN associative parallel processor is a processor
based on an associative or content addressable memory and
a related ensemble of bit serial processing elements. STARAN
is considered to be the first practical associative processor
ever produced.? This claim of practicality is based on the
fact that the design concept for the associative memory of
STARAN allows the use of the same high-volume, standard,
large-scale integrated (LSI) circuit memory devices that are
in widespread use by the computer industry. In faet, every
electronic component used in the STARAN associative par-
allel processor is-available from your local components dis-
tributor. The significance of this fact is that now, for the
first time, associative processors enjoy the same cost per bit
of storage as does the conventional computer.

HISTORICAL BACKGROUND

From the time Slade and McMahon first deseribed their
catalog memory* in 1957, many attempts have been made to
implement an associative memory. Some of these attempts
were successful, but until recently none has been very practi-
cal. Table I lists some of the device technologies that have
been used in the past to implement associative memo-
ries in the laboratories and in a few experimental models.
Except for a few special applications of plated wire, none of
these device technologies have ever been used successfully
for conventional memory technology. Further, for associa-

* TM, Goodyear Aerospace Corporation, Akron, Ohio.

tive memory applications, none of these device technologies
have been very practical. All had one common character-
istic—high cost per bit of storage. The exotic nature of the
device, the custom nature of the associative cell, and the
resulting low volumes were the factors contributing to the
high cost per bit.

The extension of an associative memory to an associative
processor by the addition of serial arithmetic units to each
word of associative storage was demonstrated using plated-
wire technology and was reported® in 1970. At about that
same time a new version of the STARAN associative parallel
processor was in the formative design stages at Goodyear
Aerospace Corporation. Two choices for the device tech-
nology of the associative array were available: plated wire
or LSI. Plated wire was quickly discarded as a “squeezed”
memory technology caught between the well established
magnetic core memory and the emerging solid-state
integrated circuit memories. The choice was to go with LSI,
and the temptation to design a custom LSI associative array
was great.

The design of the associative array could be made parallel
by word and bit and could include a repetitive cellular
structure that would lend itself nicely to an LSI array. The
cell could be designed to include all of the desirable char-
acteristics of an associative processor: nondestructive read-
out storage, logic for the associative and arithmetic func-
tions, and access to the cell in both the word and bit slice
directions.

Figure 1 is a simplified diagram of a two-dimensional
custorn LSI associative array, where each cell has been de-
signed to include the desirable storage, logic, and access
characteristics of an associative processor. The largest neg-

TABLE I—Associative Memory Element Technologies

Cryogenics

Cryoelectrics

Multiaperture Ferrites (MADS, MALE, BIAX)
Ferroelectrics

Toroidal Cores (FLUXLOK, BILOC)

Discrete Trapsistor Associative Cells

Discrete Integrated Circuit Associative Cells
Plated Wire

Custom LSI

8 National Computer Conference, 1974

STORAGE, LOGIC AND ACCESS
PROVIDED BY EACH CELL

00 01 02 03
——4 — —tp

{ 1 l

10 11 12 13
- [b p——

L i i L

20 - 21 - 22 - 23
I l 1 L
._J 30 - 3t o 32 - 33

L 1 i L

BIT ACCESS REGISTER

WORD ACCESS REGISTER

Figure 1—Custom LSI associative memory (parallel by word and bit)

ative technical factor in this approach is the large num-
ber of gates for each associative cell. In one design® of this
type, the associative cell required about 40 gates. The high
gate count implies more silicon per cell and, therefore, lower
yield and higher cost. A second technical factor is the large
number of pins required to package the two-dimensional
LSI array. Another design’ that packages 128 associative
cells requires a 40-pin package and 256 cells requires a 56-
pin package. Tradeoffs between pin count and logic com-
plexity are possible but limited. The high pin count results
in the use of expensive nonstandard integrated circuit pack-
ages. A third technical factor in a design of this type is that
heat dissipation, geometry, and economics dictate the use
of external sense amplifiers.

Even if all of the above technical problems could be solved
economically, the largest problem is a nontechnical one—
that of low volume. Due to the custom nature of the device,
it can only be used in the associative processor for which it is
designed, and unless an integrated circuit is produced in
response to a tremendous volume demand, its cost will al-
ways be relatively high. Related to this custom device prob-
lem is the fact that the designer of the associative processor
must bear the high nonrecurring costs by himself, usually
with a single source which further insures relatively high
prices, and without the benefit of a background of reliable
data for the specific device. Then, due to the high nonrecur-
ring investment and the low volumes, the associative pro-
cessor designer will not be able easily to take advantage of
the technological advances that are occurring rapidly in the
integrated eircuit industry and he soon has an obsolete device
on his hands.

Further, the integrated circuit industry does not want to
be involved in low volume production programs. An excerpt
from a 1973 report for the government entitled “Approaches

to Custom Large Scale Integration”® is quoted below to
support this point.

“It 1s increasingly apparent that LSI offers considerable
benefits, most of them related to cost, in the implemenia-
tion of the digital portion of any system of reasonable com-
plexity, provided it is produced tn high volume. High
volume can be taken for granted in standard LSI devices,
such as memories. Such is not the case for logic, however,
which, ¢n order to be near optimum, must be custom for
each function; the volume in which it is produced there-
fore depends entirely on the number of systems to be buil.
W hile the total number of systems required by the malitary
may be large, the number of any one system type is often
small. However, in order to reap the full cost benefits of
LSI, the volume must be kigh, at least of the order of 8100,000
to $200,000 per year per chip, and preferably higher.
Only at this level does it become economically feasible to
fully optimize the design by handcrafting for maximum
area utilization and performance, to “tweak” the process
Jor maximum yield, and to packege at the lowest cost.
These cost savings are not realized ai lower volume.

The following summarizes the major comments made by
the industry:

o High volume s the most tmportant business criterion.

o Low-volume LSI development work was done prin-
cipally with mildtary funding. Work stopped when
Sfunding dried up.

e Low-volume LSI is bad business for the big semi-
conductor companies.

o Only systems houses with captive IC' capability can
respond to low-volume LSI requirements.

o Manufacturing in IC houses is geared to very large
lots.

o The customer must be very sophisticated if he wants
low-volume LSI, preferably he generates his own de-
sign.

o Limiting resources are: 1. Capital equipment;
2. Manpower. These cannot be wasted on low-volume
bustnesses.

o Eyery effort should be made to use standard products.

The custom LSI approach was considered for STARAN
but was discarded primarily due to the nontechnical factors
discussed above. A custom LSI approach, although tech-
nically appealing, would result in an impractical implementa-
tion of the associative processor. That approach can never
break out of the “cost-volume hangup.”

The GAC approach to using LSI for the associative proces-
sor was just the opposite of the custom LSI approach. In-
stead of combining the requirements of storage, logic, and
access into one custom LSI chip, the requirements were
divided to see if they could be implemented using several
standard, high-volume large-, medium-, and small-scale inte-
grated circuit chips. Figure 2 is a schematic representation of
the approach to the problem. If this problem could be solved,
the resulting cost of associative processors would be low and
the “cost/volume hangup” would be solved.

RADCAP—An Operational Parallel Processing Facility 9

DIVIDE AP MEMORY
INTO THREE PARTS

——— | —

STORAGE ACCESS LOGIC
USE STANDARD USE STANDARD USE STANDARD
{HIGH VOLUME} {HIGH VOLUME} {HIGH VOLUME}
LSt MS1

RAM CHIPS LOGIC CIRCUITS LOGIC CIRCUITS

[__}

AP MEMORY COSTS
ARE LOWEST
POSSIBLE

—

Figure 2—Approach to implementing an associative processor memory

Storage

Figure 3 shows a typical standard LSI 1024 X1 memory
chip in a 16-pin package. These memories are (or soon will
be) available in high-volume production in various device
technologies (MOS, TTL, ECL, CMOS) and are in wide-
spread use in the conventional computer industry for main-
frame memory. Since they are committed to replace the
magnetic core being used for that purpose, the volume lever-
age for lower cost is already at work. For use in a serial by bit
(slice) associative processor, this memory chip is functionally
equivalent to single plated wire and can satisfy the non-
destructive storage requirement very nicely. The number of
gates per bit of storage is approximately two.

Logic

In a serial by bit associative processor, the logic necessary
to perform the associative and arithmetic functions is em-
bodied in a small bit-serial processing element sometimes
called a response store or a serial arithmetic unit. Typically,
this processing element has a complexity of about 32 gates
and consists of three or four flip-flops and some logic gates.

32
—— LINES

}

1024 BITS

1i32

LINES
10 iN 32 x 32

ADDRESS ARRAY
LINES)

1/32

ADDRESS
DECODER p
»| READ/WRITE
CONTROL

${ AND SENSE

DATA IN

DATA OUT
>

WRITE ENABLE

CHIP SELECT

POWER GROUND

Figure 3—Standard LSI random access memory (1024-bit chip in 16-pir
package)

ADDRESS
PROBLEM

ACCESS IS

DATA

LIMITED TO

|

N/ouT BIT SLICES
FOUR MEMORY MODULES
0o | oo} 02| o3 ——>
w0 | 1n 2|3 +—>
20 | 2| 2| = —>
30 | 31 | 32| 3 ——p
o 1 2 3

\ / ACCESS
AND
STORAGE LoGIc

Figure 4—Standard LSI memory used in an associative processor

It is easily constructed of small-scale integrated (SSI) cir-
cuits. When operated with a 256-bit store, the processing
element, adds 32/256 or 1/8 gate per bit of storage. With a
1024-bit store, the ratio is 32/1024 or 1/32 gate per bit of stor-
age.

Access

Figure 4 shows a simplified diagram of four LSI memory
chips connected to four serial processing elements. This or-
ganization is very similar to the plated-wire serial by bit
associative processor mentioned earlier. The problem with
this design is that access to a bit slice is accomplished in one-
bit read or write time but access to a word or part of a word
requires (n) bit read or write times (where n is the number
of bits to be read or written). It would be desirable to access
either a bit slice or a word slice in one read- or write time.
There may also be cases where it is desirable to access in a
mixed mode (words and bits) addressing technique that
allows up to 256 cells to be accessed at once.

The problem of access to either bit slices or word slices or
combinations of the two has been solved with a proprietary
GAC design that uses a logical network between the memory
and the processing elements. This network is called a flip

INPUT

256
256 256
FLIP
PR
MEMORY NETWORK ELESIE?‘I??G

(ACCESS)

ﬁ\
g

[STORAGE} LogGIC)

OuTPUT

Figure 5—Organization of a STARAN associative array

RADCAP—An Operational Parallel Processing Facility 11

RADCAP FACILITY

Figure 8 shows a block diagram of the hardware within
the RADCAP facility. The 645, which has been in existence
at RADC for several years, is a very large computer system
with a multitude of peripherals typical of large time-shared
systems. In March 1973, hardware was delivered to RADC
in the form of a STARAN parallel processor with four arrays,
a custom input/output unit (CIOU), a hardware perfor-
mance monitor, and a variety of peripherals. Subsequently,
the CIOU was used to interface STARAN with a 645 I/0
channel. At the same time, STARAN software was inter-
faced with the 645 Multics time-shared operating system.

At present, the RADCAP facility is totally operational
and includes system software to allow for operation in both
a STARAN stand-alone mode and an integrated STARAN/
Multics mode.

STARAN PARALLEL PROCESSOR

STARAN ecan perform search, arithmetic, and logical op-
erations simultaneously on either all or selected words of its
memory. Figure 9 shows the basic STARAN elements. The
most important are the associative array and its unique
multi-dimensional access capability, which, along with the
other elements, are described in more detail in referenced
publications.!3? Listed below are brief descriptions of the
STARAN elements:

1. Associative array: provides multi-dimensional access,
content-addressable memory with 65,536 (2!%) bits of

TO/FROM CONTROL

O n v BITS _ ____ 256
OrTTTT TTTY
i =
13 by 4
Hi 1
BIT 1 [g
2
' SLICE N
'—
1 L
: i
'—
8| L2
-
g' ¢ : > z
B H
N 1 w
H N WORD ¢4
| 3 SLICE T
[N Z
[} N 1 o
l ¥ !
! N i
b N A
n N >
[R AR,
256 PE'S

256 WORDS x 256 BITS PER ARRAY

Figure 7—STARAN associative processor array

RADC
WARDWARE
PERFORMANCE
MONITOR
/7 77
L L £) \
STARAN S/iooee 45 COMPUTER
ASSBLIATIVE PROCESSOR cesToM WITH MULTICS
“ ARRAYS) ve TIME SHARED
T OPERATME SYSTEM
ror -1
7.
E H gzl (13
] £ =] |28 N—
i : 28| 13 wen
TERMINALS

Figure 8—RADCAP facility

storage and 256 processing elements; permits parallel
arithmetic, search, and logical operations.

2. AP control: performs data manipulation within asso-
ciative arrays as directed by program stored in AP
control memory.

3. AP control memory: stores AP control instructions.
Can also store data and act as buffer between AP
control and other system elements.

4. Sequential controller and memory: performs main-
tenance and test functions, controls peripherals, main-
tains job control, provides means for operator com-
munication between various STARAN elements, and
assembles STARAN programs written in MAPPLE
(Macro-Associative Processor Programming Lan-

guagk).
5. External functions: transfers control information
among STARAN elements.

STARAN has been designed to provide a flexible I/0
capability. The standard peripherals for STARAN are listed
below, along with a typical list of optional peripherals:

1. Standard: cartridge disk drive and control, paper tape
reader, paper tape punch, and keyboard printer.

AP CONTROL mENSRY }ﬁ‘,—.
t J Lowa
l e
————n{ EXTERNAL FURCTION LOGIC J._““’___.
: mxm n}num
1 wreT/
| ouTRuT
;——’ ?‘_F:"rv;m T)

Figure 9—STARAN block diagram

12 National Computer Conference, 1974

2. Optional: line printer, card reader, magnetic tape,
keyboard ecrt, and other peripherals, as desired, that
are compatible with the Digital Equipment Corpora-
tion (DEC) PDP-11.

All these peripherals interface with the STARAN system’s
sequential controller, a PDP-11 mini-computer. STARAN
also provides facilities for interfacing with other processors.
The four buses provided (see STARAN block diagram,
Figure 9) are the direct memory access, the buffered I/0, ex-
ternal function, and parallel 1/0.

The direct memory access is a 32-bit bus for STARAN to
address external memory. The AP control or the sequential
controller can access external memory at a rate dependent
upon this memory’s cycle time.

The buffered I/0 is a 32-bit bus for processors to address
STARAN. Depending upon which portion of control memory
is accessed, the access rate is 0.4 to 1.0 microsec per 32-bit
word.

The external function is a bus for exchange of control
signals. Discrete signals and interrupts can be both generated
and acecepted across this bus.

The parallel I/0 is a bus for STARAN array I/0. Up to
256 bits per array (e.g., one bit per array word) can be pro-
vided. If all 32 arrays are implemented, up to 8192 bits can
be utilized in parallel at a transfer rate less than one micro-
second, dependent upon the desired application.

STARAN PERFORMANCE SUMMARY

In a high-speed, asynchronous, pipe-line type processor
such as STARAN, it is difficult to summarize performance
since speeds vary with instruction types, types of loops, ete.
Also, the overall effective speed depends upon the number
of words in the arrays over which the simultaneous opera-
tions are occurring. However, an effort is made below to list
the performance and the features of 256.X256 associative
array, the control unit, and the interface portion of
STARAN:

Associative Array Features

« Up to 32 arrays per system

e Multi-dimensional access (bit slice or word slice)

e Array module speed:
Typical search:
Typical add or subtract: 800 nsec/bit
Read bit or word slice (256 bits): 150 nsec
Write bit or word slice (256 bits): 300 nsec

150 nsec/bit

Control Unit Features

e Two separate processors: AP control, sequential con-
troller

o Solid-state control memory capaeity: 2K X 32 standard,
4K X 32 maximum

e Solid-state control memory speed: 150 nsec/instruction
(typical)

o Bulk core capability: 16K X 32 standard, 32K X 32 maxi-
mum .

o Bulk core speed: 1 microsec (read or write)

Interface Capabilities

o STARAN to address external memory: rate-memory
dependent

o External processor to address STARAN: 0.4 to 1.0 mi-
crosec/32-bit word

e Parallel I/0 to/from associative arrays: less than 1.0
microsec/8192 bits (maximum)

o Control signals and interrupts

Custom Input/Output Unit (CIOU)

Figure 10 shows a simplified block diagram of the
STARAN/RADCAP custom input/output unit (CIOU). As
indicated, the CIOU contains a parallel input/output (PIO)
module, a 645 computer interface, and an internal perfor-
mance monitor. The CIOU functions as a mini-processor much
the same as the control unit portion of STARAN. Processing
within one array module (e.g., under STARAN control)
may be concurrent with I/O in another array module (e.g.,
under PIO control).

As directed by instructions stored in PIO control memory,
the optional PIO module manipulates data among and within
the associative arrays concurrent with operations as directed
by AP control. The PIO module contains eight ports, with
256 bits per port to accommodate associative array I/0
and to permute data.

The 645 interface logic provides a communication path
between the 645 computer and the STARAN system. This
interface logic contains a 30-character queue and a 32-bit
status register, which are tied to a 645 I/O channel. The
status register contains interface control signals, and the
queue buffers data being transferred to or from the 645.

The internal performance monitor, although contained in
the CIOU, is best discussed in the following description of
the hardware performance monitor.

U PARALLEL I1/0 MODULE

MEMORY
o5 INTERNAL
INTERFACE |— — — e e e —] PERFORMANCE
LoGIC MONITOR

CONTROL

PORTS

Figure 10—Simplified block diagram of custom I/O unit

RADCAP—An Operational Parallel Processing Facility 13

Hardware performance monztor

To help meet a RADCARP facility objective of measuring
system performance, a hardware performance monitoring
capability has been provided by an internal performance
monitor in the CIOU cabinet and an external performance
monitor system. Measurements can be made to determine
instruction execution timing, control memory and bus utiliza-
tion, array utilization, and activity in the pager, the PIO
module, and the 645 interface.

The internal performance monitor is used exclusively for
STARAN instruction execution times and instruction event
times. The events counted and timed are the execution of
flagged instructions in AP control. Between a start flag and
an end flag, a timer increments at a 100-nsec rate. Overflows
from this counter interrupt the sequential controller. In
addition, the sequential controller can interrogate the event
counter and timer.

The external performance monitor is a self-contained sys-
tem that can monitor any point of STARAN or the custom
1/0. Data are acquired via probes that detect logical signal
changes in either an event count or elapsed time mode.
Several probes can be logically connected via a patchboard
to trigger a counter. At regular intervals, the contents of the
counters are written as a record on a magnetic tape unit.
The performance monitor software then evaluates the col-
lected data and produces the results in the form of reports
and graphs. The software for the performance monitor runs
on the 645.

Physical description of hardware

All the elements shown in the STARAN block diagram
(Figure 9), including the associative arrays, are built using
dual-in-line IC’s (integrated circuits) mounted on multi-
layer printed circuit boards. Thus, the physical construction
of STARAN and the CIOU is similar to that of typical
high-speed sequential processors.

Figure 11 shows Goodyear Aerospace’s STARAN demon-

TABLE IIl—Approximate STARAN Component Count*

No. of
Printed No. of
STARAN* No. of No. of Cireuit Integrated

Model Arrays Cabinets Boards « Circuits
S-250 1 3 220 9,000
S-500 2 3 276 11,500
S-750 3 3 332 14,100
S-1000 4 4 412 16,700
S-1250 5 4 468 19,300
S$-1500 6 4 524 21,900
S-1750 7 5 604 24,900
$-2000 8 5 660 27,500
S-4000 16 8 1156 48,700

* Without input/output.

Figure 11 —STARAN demonstration and evaluation facility

stration and evaluation facility: Table III gives the approxi-
mate numbers of cabinets, boards, and IC’s for the various
STARAN models. These figures do not account for I/0
logic, since this varies from one installation to another. The
STARAN/RADCAP CIOU, which includes the parallel I/0
option for all four arrays, contains approximately 200 boards
and 8,000 IC’s.

Although up to three arrays can be packaged in one
cabinet, the RADCAP configuration has two arrays per
cabinet for symmetry. Figure 12 shows the equipment that
was delivered to RADC. This includes a sequential control
cabinet, an AP control cabinet, two AP memory cabinets
for the four associative arrays, and a CIOU cabinet. The
disk drive and line printer are mounted in separate cabinets.
The keyboard/printer, the card reader, and the graphics
display console can be mounted on table tops or pedestals.
As mentioned earlier, the internal performance monitor is
packaged within the CIOU cabinet. The external perfor-

SEQUENTIAL CONTROL CABMET

KEYB0ARD/PRMTER
CONTROL ComsoLe

Figure 12—STARAN complex at RADC

14 National Computer Conference, 1974

LIVE/SMULATED
DATA DEVELOP HIGHER DRDER SYSTEM
ALGORITHMS LANGUAGE SOFTWARE
FOR DEVELOPMENT OEVELOPMENT

RUNM PROGRAM
ON TESTBED

PERFORMANCE
MOKITORING

WPROVE
SOLUTION
ALGORTTHM

EVALUATE
SOLUTION

FINAL PERFORMANCE

AMALYSIS AND

ASSOCIATIVE PROCESSOR EVALUATION

COMPUTER SYSTEM
BESCRIPTION

l ﬂtlﬂclﬂ::nm |

Figure 13—Flow of RADCAP research project

mance monitor, not shown in Figure 12, mounts on a table
top.

Summary of system software

The system software available for STARAN/RADCAP is
capable of operating STARAN in a stand-alone mode or,
when integrated with the 645, in a STARAN/Multics con-
figuration. The system software is based upon a disk opera-
ting system, which provides ready access to system programs,
device independent I/0, and a file system. Operation of
STARAN can be under direct control of the user at the
control console or run in a batch mode with a control stream
from an input device like the card reader.

The total assembly package for STARAN has a macro-
language processor, an APPLE assembler, and a relocating
linker. Programs are written in the APPLE and MAPPLE
languages. Extensive string handling and substitution are
implemented in the macro-preprocessor. APPLE is a symbo-
lic language that includes mnemonics for parallel and asso-
ciative operations. The linker combines separately assembled
object modules by relocating code as necessary and resolving
globally defined symbols.

Control of processing in STARAN is through interactive
system Ttoutines. These routines are the interface between
application program execution and the user. They allow
the user to start and halt STARAN, to load programs and
overlays, and to debug programs with trace, memory modi-
fication, and dump commands.

Diagnostic programs for STARAN hardware are disk resi-
dent. The programs can be called individually, in groups
related to specific parts of the hardware, or as a total set for
complete system testing. Fault detection and location are
provided.

Additional software for the integrated STARAN/Multics
operation is designed to handle the interface between the
computers and the use of STARAN from Multics. For the
interface, a special device driver module has been added to
the STARAN disk operating system. This driver is similar

to drivers used for peripherals. It has been specialized for
Multics and can accommodate 16 open files simultaneously.
A device interface module (DIM) has been added to Multics
as the counterpart to the device driver. These two modules
are basic parts of each machine’s operating system and are
transparent to the programmer.

STARAN can be operated from Multics by commands a
user inputs at a terminal or from a file. File control procedures
handle STARAN related keyboard inputs and provide the
interface between the DIM and the MULTICS storage sys-
tem. With these procedures, a user process executing in the
645 can call for execution of a STARAN program.

To facilitate the assembly of STARAN programs, a cross
assembler is provided for time-shared use in Multies. This
assembler accepts MAPPLE and APPLE as inputs.

Objectives and uses

The basic objective of the RADCAP facility is to explore
the performance of a hybrid computer configuration (STA-
RAN associative processor interfaced with a 645 sequential
processor) on real-world, real-time problems. A specific goal
is to determine the cost-effectiveness of associative/parallel
processing in such an environment. Associative processing has
been studied extensively in both theoretical and simulation
studies, but no significant practical operating experience with
them exists. Experimentation is necessary to provide “hard”
data and fill in the presently existing void. Practical operating
experience also is required so that a general-purpose assoei-
ative processor configuration could be developed if results
warrant it.

The RADCAP facility will be used in an experimental
program to evaluate the internal performance of this hybrid
computer configuration by means of hardware and/or soft-
ware performance monitors to determine internal component
utilization and system bottlenecks. Programming aspects of
associative processing also will be investigated. Associative-
processing programming is not well understood and repre-
sents radical departures from the traditional programming
approach. The program loop is being replaced by hardware
processing elements. This requires a whole new programming
attitude. Programming languages suitable for associative
processors probably will be quite different from present ones.
This basic uncertainty must be éxplored and some practical
operating experience gained. As a test problem, indicative
of high data rate and real-time processing requirements, the
data processing functions of an air surveillance system
(AWACS) have been chosen. The primary functions to be
investigated are tracking (both passive and active), display
processing, and weapons control.

The scope of the research program can be described with
the aid of Figure 13. The flow will begin with the develop-
ment of associative-sequential algorithms for each of the
AWACS data processing functions. As these algorithms are
being developed, the application engineers will make known
to a language and system software group those instruction
level and system routine functions required to support the
AWACS processing functions.

RADCAP—An Operational Parallel Processing Facility 15

Based on this input, the language group will develop a
language and implement this language on the RADCAP
testbed. The system software activity will implement rou-
tines to support the command language. The applications
program will then be run on the testbed using, where possible,
nonsynthesized data as input. The machine activity will be
monitored to gather statistics on utilization, identify system
bottlenecks, and determine the efficiency with which the
algorithms provide solution.

The data collected will then be analyzed to determine
where cost-effective improvements can be made to software
and/or hardware in order to improve the cost-effective per-
formance of the system. These changes will be incorporated
into the system via micro-program or software routines. If
the change is to be a hardware design, that design will be
made to the gate level so that performance and cost-effective-
ness determination can be made.

‘When the solution to the problem is finally refined, it will
be contrasted with known sequential solutions.

Initially each of the AWACS data processing functions
will be treated separately. The final task will then be to
develop a system executive and integrate all the functions
to reflect the real world.

REFERENCES

1. Batcher, K. E.,, STARAN Parallel Processor System Hardware,
GER-15996, Akron, Ohio, Goodyear Aerospace Corporation, 19
November 1973.

2. Davis, E. W., STARAN Parallel Processor Sysiem Software, GER-
15997, Akron, Ohio, Goodyear Aerospace Corporation, Akron,
Ohio, 19 November 1973.

3. Rudolph, J. A., “A Production Implementation of an Associative
Array Processor—STARAN,” 1972 Fall Joint Computer Conference
Proceedings, December 1972, pp. 229-241.

4. Slade, A. E. and H. O. McMahon, “The Cryatron Catalog Memory
System,”” 1957 Fall Joint Computer Conference Proceedings, Vol. 10,
pp. 115-120.

5. Fulmer, L. C. and W. C. Meilander, “A Modular Plated Wire As-
sociative Processor,” Proceedings of IEEE Compuier Group Con-
ference, June 1970.

6. Shore, J. E., “Second Thoughts on Parallel Processing,” NRL
Report 7364, December 30, 1971, page 7.

7. Kressler, R. R., C. E. Peet, Jr., and F. B. Frazee, “Development of
an LSI Associative Processor,” Air Force Avionics Loboratory Tech-
nical Report 70-142, August 1970.

8. Boyle, J. T. and C. A. Neugebauer, “Approaches to Custom Large
Scale Integration,” Air Force Avionics Laboratory Technical Report
73-66, March 1973.

9. Batcher, K. E., “Flexible Parallel Processing and STARAN,”
1972 WESCON Technical Papers, Session 1.

STARAN parallel processor system software

by EDWARD W. DAVIS

Goodyear Aerospace Corporation
Akron, Ohio

INTRODUCTION

This paper is concerned with the features and concepts of
system software for a parallel associative array processor—
STARAN * Definitions of parallel processors have appeared
often. Essentially they are machines with a large number of
processing elements. They have the capability to operate
on multiple data streams with a single instruction stream.
STARAN is a line of parallel processors with a variable num-
ber of processing elements.

Along with the multiple processing elements, STARAN
has a memory organization that allows access either by
location or association. That is the address of a memory
word can be used explicitly, or words can be selected by
association based on their content. Processing elements can
operate on data selected associatively, making the machine
an associative processor. v

An alignment, or permutation, network in the machine
provides a flexible interconnection between processing ele-
ments. This network is used to align data in the memory
with the processing elements requiring the data and to pro-
vide communication between processors. This results in an
array organization, making the machine an array processor.
STARAN is thus a true parallel, associative, array processor.

It is expected that one might be curious about the use of
this machine: the operating system, language processing soft-
ware, user program development, and execution control aids.
This paper gives a brief description of software for all these
purposes. Some parts will be recognizable as fundamental
members of the software for other general purpose computing
systems. Special development was required, however, to
handle features unique to the parallel organization.

The programming language is new. It includes declarations
for defining storage in the arrays and instructions for using
the parallel and associative properties of the machine. Inter-
active execution control software has been written. It simpli-
fies development and debugging of user programs. This
software differs from conventional debugging tools by the
extensions related to the array memory organization. Discus-
sion of the language and control software, plus methods of
interfacing STARAN to other machines, are the major points
of the paper.

* TM, Goodyear Aerospace Corporation, Akron, Ohio.

17

STARAN SYSTEMS

STARAN is an operational computing system. The hard-
ware architecture is described in a companion paper pre-
sented at this conference! and in other literature? A par-
ticular installation and its potential use is described in a
companion paper.* This paper is concerned with a descrip-
tion of the existing system software. There are two modes of
operation. First, STARAN can be operated as a stand-alone
parallel processing system. Peripherals for this mode typically
include a card reader, line printer, paper tape reader and
punch, and cartridge type disk unit. Second, STARAN and
a cooperating, or host, machine can be operated in an inte-
grated fashion. This means that: (1) commands to the
STARAN disk operating system can originate in the other
machine, (2) the storage system of the host is available to
STARAN wusers for. program or data storage, and (3) a
single task can use both machines to satisfy its processing
requirements. All peripherals belonging to a stand-alone
STARAN and to the host are available when the machines
are integrated.

This paper describes the software for the STARAN stand-
alone mode of operation, then covers the additional software
used with the integrated mode.

Since the STARAN processor architecture is detailed in a
companion paper! only a basic diagram is given in Figure 1.
The multi-dimensional access associative arrays and their
controls are the main architectural features. The sequential
control, a Digital Equipment Corporation (DEC) PDP-11
minicomputer, has a minor role in the architecture but is
important for software considerations. Other architectural
features are mentioned later in the paper.

SOFTWARE FOR STARAN STAND-ALONE MODE
Software for the STARAN stand-alone mode of operation

can be discussed from the standpoints of the operating sys-
tem, language processing, and execution control procedures.

Batch disk operation system

In this paper, an operating system means the collection of
routines that give the user appropriate control of the com-

18 National Computer Conference, 1974

ASSOCIATIVE - COMMON
CONTROL < MEmORY |-
MEMORY (WINDOW)
SEQUENTIAL
ASSOCIATIVE CONTROL
CONTROL MEMORY
SEQUENTIAL
CONTROL DIsK
STANDARD
PERIPHERAL
DEVICES
MULTIDIMENSIONAL 256
L1 access || processing |—
ARRAY 0 ELEMENTS
MULTIDIMENSIONAL 256 PARALLEL
- access 1 procEssING o
ARRAY 1 ELEMENTS
| [HurTiomENsioNAT 7%
ACCESS 1 PROCESSING |—
ARRAY » (s < 32) ELEMENTS

Figure 1—STARAN block diagram

puting system, inform him of system status, provide input/
output (I/0) facilities, and provide access to system pro-
grams. STARAN features a disk operating system (DOS)
and has a batch processing capability. The batch command
stream can be assigned to any character input device, allow-
ing control to originate at the control console or from a user’s
file on the batch device.

The disk is a file structured bulk storage medium. All
system software is resident on the device for easy, rapid
access by the user.

Listed below are the standard programs supplied with the
DEC PDP-11 batch system:

Program Name Function

MACRO Macro-assembler

LINK Linker

LIBR Librarian »

pip File utility package

EDIT Text editor

oDT On-line debugging
package

FORTRAN Fortran compiler

These programs are not discussed further since primary

emphasis in this paper is on the STARAN-related software
that has been added to the above list to build the STARAN
disk operating system.

One general rule used in software development was to
avoid changes to the basic DEC batch system. This rule was
intended to simplify any future change to a new DEC
release.

Language processing

APPLE—Programs for STARAN are written in the
APPLE* assembly language (Associative Processor Program-
ming LanguagE).> This language has some mnemonics that
generate one machine language instruction and others that
generate a sequence of machine instructions. The one-to-
many mnemonics generally implement a parallel algorithm
for arithmetic or search operations using the arrays. Thus,
APPLE is at a higher level than sequential machine assembly
languages.

APPLE produces relocatable or absolute program sections
and has a conditional assembly capability. Groups of in-
structions in the language are listed below:

. Assembler directives
. Branch instructions
. Register load and store
. Array instructions
a. Loads
b. Stores
¢. Associative searches
d. Parallel moves
e. Parallel arithmetic operations
5. Control and test instructions
6. Input/output (I/0) instructions

F o

Most of these groups of instructions resemble those of
other typical assemblers. The unique group—array instruc-
tions—deals with operations on the multi-dimensional access
arrays and the registers in their processing elements (PE).
Some general comments apply to all the array instructions
listed above. Operations take place only on arrays enabled
by the array select register.? Fields are of variable length
within each array word and are defined for various instruc-
tions by field pointers and length counters. The common
register, a part of associative control, can contain an operand,
which is used in common by all selected array words.

More detail is presented below on the array instructions;
i.e., loads, stores, associative searches, parallel moves, and
parallel arithmetic operations.

The “load” array instructions load the processing element
(PE) registers or the common register with data from arrays.
Logical operations may be performed between the current
PE register contents and the array data. The language has
mnemonics for the common logical operations, while the
machine supports all 16 functions of two logical variables.

* TM, Goodyear Aerospace Corporation, Akron, Ohio

STARAN Parallel Processor System Software 19

A given load instruction can increment, decrement, or leave
as is an array field pointer. Thus, a single one of these in-
structions can load registers, perform logic, and change
pointer values. Operations to set, clear, or rotate the PE
registers are included in this group.

The “store” array instructions are used to move PE or
common register data into the arrays. A mask feature is
provided that allows writing only in mask enabled array
words. As with the load instructions, logical operations may
be performed between the current PE registers contents and
the array data. Also, the array field pointer can be incre-
mented, or left unchanged.

The “associative search” array instructions allow the pro-
grammer to search for particular conditions in the arrays.
Only those words enabled by the mask register take part in
the searches. Searches can be performed that compare a
value in the common register with a value in a field of all
array words. Another variety of search compares one field
of a word with a second field of the same word for all array
words. Comparisons can be made for such conditions as
equal, not equal, greater than, greater than or equal, etc.
Maximum and minimum searches also can be performed.
Combinations of searches yield such functions as between
limits and next higher. Additional mnemonics in this group
are provided to resolve multiple responders to the searches.

The ‘““parallel move” instructions are provided to move an
array memory field to another field within the same array
word. As with searches, a word is active for this instruction
only when enabled by the mask register. Types of moves are
direct, complement the field, increment or decrement the
field, and move the absolute value.

The “parallel arithmetic” array instructions allow the
programmer to perform parallel operations in the arrays.
These operations are subject to mask register word enabling.
Arithmetic can use a value in the common register as one
operand and a value in a field of all array words as the parallel
operand. Alternatively, one field of a word can be arith-
metically combined with a second field of the same word for
all array words. Operations supplied by APPLE are add,
subtract, multiply, divide, and square root.

Macro—A macro language is provided to increase the
user’s flexibility at assembly time.® The macro language has
a large set of arithmetic, logical, relational, and string manip-
ulation operators. Adding macro variable symbol handling,
conditional expansion capability, and ability to nest macro
calls make it possible to write powerful macro instructions.
System and user macro libraries have been implemented.

Benefits to the user are the ability to define new
mnemonics, redefine existing mnemonics, and conveniently
generate standard instruction sequences.

Mnpemonics have been added to the basic APPLE lan-
guage by including macros in the system library. Primarily,
the added mnemonics are floating point instructions. They
are fixed field length operations in both single and double
precision.

Building Load M odules—Software used to convert source

language programs into executable load modules includes

RELOCATABLE ABSOLUTE
APPLE SOURCE APPLE SOURCE OBJECT LOAD
PROGRAM INTEAMEDIATE FILE MODULE

1 1

1 !
WAPPLE MACRO-ASSEMBLER

MODULE

1

AreL RAN
£ STA

MACRO-
ASSEMBLER LINKER

APPLE SOURCE ADDITIONAL
WITH NG MACROS OBIECT MODULES

Figure 2—Language processing software

an APPLE asserbler, macro-preprocessor, and relocating
linker. Figure 2 shows this software and the flow of programs
or modules through it.

Building load modules begins with the original program
written in APPLE. This source program may contain macro
instructions. Translation of the source into a machine lan-
guage object module is by MAPPLE (APPLE assembler
with Macro-preprocessor on the front end). If it is known
that the source program does not contain maero instruc-
tions, it is possible to input the source directly to the APPLE
assembler.

A relocatable object module is converted to an absolute
load module by the STARAN linker. Multiple object modules
may be input to the linker since it has the function of re-
solving symbols defined across object module boundaries
(global symbols) as well as adjusting addresses for reloca-
tion.

Use of the language processing software is fully described
in the STARAN User’s Guide.”

Ezecution control

Execution control software is discussed below, covering
loading, executing, and debugging programs on STARAN.
Four modules are involved: the loader, STARAN program
supervisor, debug module, and control module.

Loader—Output of the STARAN linker is shown in Figure
2 as an absolute load module. The loader has the straight-
forward task of moving a load module into STARAN control
memory beginning at the address specified in a text block.
Options on loading are to load and not execute or to load
and begin execution either at an address given with the
load module or at one given with the load command. The
load module is accessible from a user program to enable
calling for a load from an executing program. This means
that overlay modules can be brought in dynamically.

STARAN Program Supervisor (SPS)—The SPS is the
software interface between the associative and sequential
portions of STARAN. This module has services for system
users when programming in APPLE and when programming
a PDP-11 routine to interact with an APPLE program.

For the APPLE program, SPS makes the I/0 instructions
of the disk operating system (DOS) available, provides a
program overlay capability, and provides a programmable
interrupt to a PDP-11 routine. The PDP-11 routine inter-

20 National Computer Conference, 1974

GAC STARAN SOFTWARE

| S sTanan

STARAN sPs SOADER

HOST MACHINE

USEn
piGER |
[sranan

sTaran
SUB- DEBUG
ROUTINES MODULE

‘ STARAN I sraran —_
1AGNOSTICS [1
lS'ORABE ' uTILITY
SYSTEM PACKAGE
MaCRO
PRE

PROCESSOR
CHANNEL STORAGE l_usfﬂ —‘
wrenrace | ST 1
MODULE

——
MODULE L

P10
ROUTINES

satce CHANNEL
DEVICE
005 DRIVER

aPPLE
DEC
STANDARD
SOFTWARE

caRc
RERDER

Figure 3—System software diagram

TERMINAL
HANDLING
MODULE

acts through a software link, which receives the APPLE
interrupts, and through the issuing of control information to
the associative control logic.

In addition, SPS supplies interface services. It transfers
data between associative and sequential memory through
the common memory window (Figure 1). SPS also fields
associative processor error interrupts.

Concurrent execution of associative and sequential rou-
tines, with interaction, is made possible by SPS.

STARAN Debug Module (SDM)—The SDM helps the
user debug APPLE programs by giving him control of the
execution of the program being debugged, and access to
memory and registers. Such features as single step, trace,
and breakpoint provide good execution eontrol. Dumps of
all memory areas can be taken, with both word slice and bit
slice available for the multi-dimensional access arrays. All
memory locations also can be modified.

STARAN Conirol Module (SCM)—This final operational
module is the interface between the user and execution of a
STARAN program. By running SCM, the user enters a
mode in which STARAN related commands are recognized.
Such commands as start, halt, and continue execution are
processed directly by SCM. When the load command is
used, SCM passes control to the loader for that function.
If debug aids are needed, a simple command adds all debug
module features to SCM.

All the operational software modules are described more
fully in the STARAN User’s Guide.”

SOFTWARE FOR THE INTEGRATED MODE

General

The integrated use of the STARAN parallel processor and
a host sequential computer makes additional software neces-
sary. One major concern is the interface between the com-
puters; this requires a software module in both machines. A
second cencern involves reasonable ease of use for the inte-

grated mode; procedure packages are added as needed to
satisfy this concern.

Figure 3 is a block diagram of the software modules in
STARAN and a typical host machine. Interface software
can be seen as the channel device driver in STARAN and
the channel interface module in the host. Routines that
might be added to simplify operation in the integrated mode
are the storage system module to provide access to the host’s
storage, a terminal handling module to provide smooth inter-
action with a terminal user, and a set of utilities.

The STARAN/HIS-645 software

Figure 4 shows the relationship between software modules
in STARAN and the HIS-645, which runs under the Multics
time-shared operating system.? This facility exists at Rome
Air Development Center (RADC), N. Y. and is described
in a companion paper presented at this conference.* As indi-
cated, Multics contains three categories of software: com-
mand level, user process, and system related. Command level
software is brought into execution by user-supplied com-
mands, as from a Multics terminal. User process software
consists essentially of subroutines called from a user pro-
gram. System-related software is the collection of routines
that support use of the system, such as handling input and
output, and are usually called indirectly by the user program.

Additional details on the design and use of this software
are described in the STARAN/HIS-645 User’s Guide.?

Interface Modules—The two modules for the interface,
shown in Figure 4, are the 645 device driver in the STARAN

GAC STARAN HIS 645

STARAN MULTICS
DISK OPERATING SYSTEM

{Dos)

SYSTEM RELATED SOFTWARE

STARAN
HIS 645
DEVICE DRIVER (E:]E.‘S).:E INTERFACE MODULE e

USER PROCESS SOFTWARE

ARITHMETIC =

MULTICS
FORMAT :::cggz;:sol ft—- STORAGE
ROUTINES n SYSTEM

COMMAND LEVEL SOFTWARE

CROSS “STARAN" L 3
ASSEMBLER COMMAND

]

Figure 4—STARAN /645 system software relationship

STARAN Parallel Processor System Software 21

batch disk operating system (DOS) and the STARAN device
interface module (DIM).

The 645 device driver provides the interface between the
DOS monitor and the 645 computer. It communicates with
the monitor as do other device drivers for standard per-
ipherals. If the device looks like an input for character
information, then batch commands can come from it. The
batch stream can be assigned to the device. This is the sig-
nificance, for Multics, of the batch feature on the DOS.

In reality, the device treated by the 645 driver is used
for much more than character input. The 645 appears as
three logical devices.

One device looks like the disk, logically. The driver sup-
ports both ASCII and binary transfer modes, both formatted
and unformatted. At any one time, up to 14 data-sets may
be open on this device. .

A second device looks like a card reader, logically. It is a
read-only device with an ASCII transfer mode. This unit
serves as the batch command stream input so a Multics
user can control the system.

The third device looks like a paper tape punch, logically.
It is a write-only device with ASCII and binary transfer
modes. Job log output, in the integrated mode, is always
assigned to this unit.

STARAN DIM—In Multics terminology, a device inter-
face module (DIM) coordinates communications with a par-
ticular physical device. Data manipulation by the STARAN
DIM assumes all Multics data is in character form. It con-
verts characters into the form needed for output to STARAN
and converts data received from STARAN into Multics
character form. This means, for example, that Multics arith-
metic data must be converted to a character form prior to
output, and from characters following input. The conversion
is done by a procedure superior to the DIM. The DIM also
handles retransmission of bad data and reports a failure to
its caller after a specific number of unsuccessful tries on the
same data.

In the Multics software structure, the DIM is located in a
position inferior to the file control procedures, shown in
Figure 4 and described in the next part of this paper.

System Use Modules—The file control procedures (FCP)
greatly simplify operation of STARAN from Multics. It
enables a Multics user process (program) to interact with
STARAN by initializing the interface, handling communica-
tion between the machines, and terminating the interface.
The FCP also makes the necessary calls to the DIM to
initialize and terminate the interface.

With FCP, a user process, executing in the 645, can call
for STARAN, and it can pass commands, programs, and
data to STARAN. The FCP raises the point at which the
user becomes involved from sequences of calls to the DIM
to a more symbolic call to FCP routines from the user
process.

User involvement in the interface to STARAN is raised
still higher from the user process to the Multics command
level by a “STARAN” module. Essentially, this module is a
supplied user process that passes parameters used in the

terminal command to the FCP. The parameters identify
the STARAN batch command stream input and output de-
vices. The module calls appropriate FCP routines to estab-
lish interaction with STARAN.

In typical operation of STARAN from a terminal, this
Multics command is used with STARAN commands also
coming from the terminal. Initializing and terminating the
interface are not a concern of the user. The Multics terminal
becomes very similar to the STARAN control console when
this module is used.

STARAN and the 645 differ in the lengths of their data
representations. STARAN has a 32-bit control memory, while
the 645 has a 36-bit word length. Arithmetic format routines
are provided to convert either integer or floating point data
between the 645 format and the format used by the DIM
for transmission to STARAN.

A cross assembler has been written in PL/1. This is a
functionally equivalent version of the MAPPLE assembler
to be run in Multies. It is available to terminal users on the
time-shared basis. It accepts APPLE and macro statements
and produces STARAN object code in the Multics character
format required by the DIM for transmission to STARAN.

STARAN /25 integrated mode

A second method of interfacing STARAN with a host
machine has been implemented in the Evaluation and Test
Facility at Goodyear Aerospace Corporation. This facility
has an XDS Z5 as the host. The direct memory access
capability of STARAN has been used to allow an 8K area
of =5 memory to be used as STARAN control memory.
Either programs or data may be stored here with control
provided by interrupts between the machines. Software for
this system is a communications library package with sub-
routines callable from FORTRAN or machine language in
the Z5.

CONCLUSION

A brief description has been given of software packages that
compose the system for the operational STARAN parallel
associative array processor. Also described is the additional
software that makes STARAN operational when integrated
with HIS-645 or XDS =5 sequential computers. The goal of
all the software is to provide tools to use STARAN in the
stand-alone and integrated modes. The tools are intended to
increase convenience for the user and improve total system
throughput.

Many modules have been discussed. Some of these are
essentially transparent to the user, some may not be needed
by certain users, and some may be required by all users.
For stand-alone STARAN operation, the programmer must
know APPLE and the use of the assembler and linker. He
must be able to run the control module and load programs.

22 National Computer Conference, 1974

He will probably be interested in the debug module. The
STARAN program superivsor is transparent for most users.
It is not necessary to know any of the sequential control
programs or languages.

REFERENCES

1. Batcher, K. E., STARAN Parallel Processor System Hardware,
GER-15996, Goodyear Aerospace Corporation, 19 November 1973.

2. Rudolph, J. A., “A Production Implementation of an Associative
Array Processor—STARAN,” 1972 Fall Joint Computer Con-
ference Proceedings December 1972, pp. 229-241.

. STARAN Reference Manual, GER-15636A, Goodyear Aerospace

Corporation, September 1973.

. Feldman, J. D. and L. C. Fulmer, RADCAP: An Operational

Parallel Processing Facility, GER-15946B, Goodyear Aerospace
Corporation, 21 December 1973.

. STARAN APPLE Programming Manual, GER-15637A, Good-

year Aerospace Corporation, September 1973.

. STARAN MACRO Programming Manual, GER-15643, Goodyear

Aerospace Corporation, September 1973.

. STARAN User’s Guide, GER-15644, Goodyear Aerospace Corpora-

tion, September 1973.

. Organick, E. I., The Multics System, MIT Press, 1972.
. STARAN/HIS-645 User's Guide, GER-15641, Goodyear Aero-

space Corporation, September 1973.

Some thoughts on associative processing languages

by WILLIAM W. PATTERSON

Rome Air Development Center
Griffiss AFB, New York

INTRODUCTION

Much effort has been expended in developing array and
associative processors (AP’s). The most notable of the former
are Burroughs’ ILLTAC IV and Honeywell’s PEPE, while
the present representative of the latter technology is the
STARAN built by Goodyear Aerospace Corp. However,
very little has been published on higher order languages
which take advantage of the unique characteristics of these
architectures. There is at least one effort to develop tech-
niques which will extract the parallelism in ordinary FOR-
TRAN code,! as well as a number of efforts to formally
describe the parallelism in algorithms. Examples are in
References 2 and 3. It is true that many algorithms can be
put into efficient parallel code using these techniques; how-
ever, there is a large body of problems which must be re-
examined and recast into new algorithms which match the
parallelism of the machine to the natural parallelism of the
problem. These new algorithms will require a new language
which gives the programmer the flexibility to use the features
of the machine directly. The PFOR language* developed for
PEPE is probably the only existing language for an array
processor, and some preliminary work for the RADC AP
project® is the only published attempt on AP languages.
This paper will look at associative processing from the point
of view of a programmer who has tried to write programs
for an AP, and therefore will propose constructs which are
convenient for the programmer and not necessarily for the
compiler writer. They do, however stem from a reasonable
knowledge of the basic architecture of the AP, and hence
will tend to parallel it.

It is necessary at this point to talk about the general
architecture of the AP and, in the process, define some
terms that will be used in the paper. The two main units in
the AP are the control unit and the associative processing
elements. The control unit includes a mainframe memory,
which holds the programs, constants and common single
valued variables; local arithmetic capability that can be
used to perform processes which concern only the common
variables; and control logic to drive the associative processing
elements. The associative processing elements each consist
of an associative word of 256 or more bits, and loglc to
process the data in that word. The associative word is di-

vided into several fields of either fixed or varying length.

23

Normally, if the fields are of varying length, they are defined
by the variables of the problem. Since the conventional
computer performs operations sequentially, the term ‘‘se-
quential” will be used in the sequel to distinguish the con-
ventional computer; however, the modifiers ““sequential”’ and
““associative” may be left out if the context makes it clear
which is meant.

LANGUAGE

In designing a language such as this, two choices are
possible; one can design a complete new language, or he can
modify an existing language to include the proper constructs.
The latter approach was chosen because very few problems
are completely associative and it is anticipated that most
installations that include an AP will also have a conventional
computer with facilities for communication between the two.
This allows the programmer to write all his code in the same
basic language, identifying the associative parts. The lan-
guage chosen is PL/1 for several reasons, not the least of
which is the author’s familiarity with the language. However
there are more cogent reasons; the first is that the basic
block structure of PL/1 lends itself to segregation of se-
quential and associative tasks into separate routines. Other
reasons include its basic self-documenting qualities, its ex~
treme flexibility which allows its use for a large number of
problems and the fact that it has a degree of parallelism
already built in which might be exploited.

Declaration

The associative tasks in the problem should be segregated
from the sequential tasks on a procedure level. This is easily
facilitated by defining an associative procedure as qualified
procedure much like the presently defined recursive pro-
cedure. The form of the procedure declaration statement
would be:

label: PROCEDURE (parameters) attributes
ASSOCIATIVE nr_entries;

or alternately:

label: PROC (parameters) attributes ASSOC nr_entries.

24 National Computer Conference, 1974

This statement would tell the compiler that procedure (label)
should be compiled into AP code. The parameters and
attributes fields are optional and follow the same rules as in
PL/1. The optional nr_entries field tells the number of as-
sociative entries needed by this procedure,* where an as-
sociative entry is one of a number of identical sets of vari-
ables, each of which has a unique set of values and each of
which will be processed in parallel with all the others. As-
sociative entries are distinet from associative words, since it
is quite possible to have more than one entry per word or
to have one entry fill more than one word. However, the
task of controlling these configurations is best left to the
computer. This allows the programmer to specify an associ-
ative entry of the length appropriate to the problem, and
conceptually think of an entry as an associative word (this
being the case, no distinction will be made between the two
in the sequel). An example of a set of associative entries is a
radar track file which keeps a record of all the tracks being
monitored by a radar set or system (for example, an air
traffic control radar). Each entry stores all the information
about one track, such as position coordinates, track quality
and any keys or flags which give additional information
about the vehicle being tracked.

It should be noted here that if a sequential procedure
calls an associative procedure or vice-versa, and there are
no data dependencies, then the two procedures can run con-
currently on the two machines. Therefore, suitable WAIT
statements must be inserted when the calling procedure needs
data from the called procedure. This will cause the calling
procedure to wait at this point in its execution until the
procedure it called has finished, thus assuring that the data
required is properly updated. X

The question now arises as to what variables should be
passed between associative and sequential procedures. The
normal PL/1 convention is that a variable declared in a
procedure is available to all procedures it calls but not to
procedures that call it. This seems impractical in this case
since any call from one type of procedure to the other implies
that the data must be passed over a physical channel. For
this reason, the author favors the restriction that only
formally declared parameters be passed between different
types of procedures, with the normal rules applying to calls
between two procedures of the same type. This dichotomy
should not be troublesome to the programmer, since he must
know that he is working on two different machines.

In associative processing, there are two basic types of
variables. The first type is the common variables and con-
stants which are single valued and therefore are held in the
mainframe memory. The second type is the associative
variables which have a value for each of the associative
entries. The distinction between these two types of variables
will be made in the variable declaration of the associative
procedure. The variables of the first type would be declared
in the normal manner, where the STATIC attribute would

* If this field is absent, then the default would be that nr_entries =the
number of associative words in the machine.

indicate that the variable would be assigned a static location
in the AP mainframe memory. Associative variables would
be declared in the same manner except that the keyword
ASSOCIATIVE (abbreviated ASSOC) would be appended
after the declaration. This declaration then defines a field
in each associative word. For example, the variable which
represents the range coordinate of the tracks in the track
file mentioned above would be declared:

RANGE FIXED BIN(x1,x2) ASSOCIATIVE;

This indicates an associative variable called RANGE, a fixed
binary quantity of precision x1 (i.e., a field of x1 bits in each
associative word) with fractional part x2.

Dimensionality of associative variables has to be handled
differently than with sequential variables, of course. The first
dimension of all the associative variables is the number of
associative entries. Since this number is contained in the
procedure declaration, it would not appear in the variable
declaration. If arrays are desired in each entry, then, of
course, the normal convention would apply. Clearly, if an
array is passed from a sequential procedure to an associative
procedure and is stored as an associative variable, then the
associative declaration should not include the first dimension
of the array. '

Association

The major unique feature of the AP is the ability to make
associations; that is, it is possible to make parallel compari-
sons either between a comparand held in the control portion
of the AP and a field in each of the associative words or
between two fields in each of the associative words. Normally
the processing which follows is performed only on those
words that give an affirmative response or, in the jargon
“respond,” or on a subset of these words. It is convenient
to talk about the words that have responded as being active.
There are two basic association actions to be performed. The
first is to associate only on those words that are active, and
thereby further reduce the number of active words. This will

“be performed by an ASSOCIATE statement. The second

type of association is used to reactivate a number of words
after a series of ASSOCIATESs. This is accomplished by per-
forming an association on all associative words and is invoked
by the ACTIVATE statement. Most AP’s have the capability
to associate on the basis of the three basic relational operators,
greater than (>), less than (<), and equal (=).

An ASSOCIATE statement would consist of the keyword
ASSOCIATE followed by a conditional statement which
include conditions using one or a combination of the above
relations or logical combinations of the conditions using
logical AND (&), logical OR (+), and logical NOT (—).
As an example of this type of statement, suppose that the
associative variables RANGE_DIST and AZ DIST hold
the polar vector distance of each track from a current radar
return, and we wish to determine which of these tracks is
within a certain distance from the point of the return, where

Some Thoughts on Associative Processing Languages 25

that distance is held in mainframe memory in locations
called RANGE_WINDOW and AZ_WINDOW. The state-
ment would be:

ASSOCIATE RANGE_DIST<RANGE_WINDOW
& AZ _DIST<AZ_WINDOW;

This statement would leave active all associative words
which contained a track which fell within the window and
deactivate all others.

There are two special capabilities of the AP that should
be included in this section. These are the capability to find
the minimum value in a given field and to activate all words
which have that value in that field and an analogous capa-
bility to find the maximum. These capabilities can be in-
voked by an ASSOCIATE statement as follows:

To find the minimum value:

ASSOCIATE MINIMUM variable_name;
and to find the maximum value:

ASSOCIATE MAXIMUM variable name;

Where “variable_name” is the name of the variable assigned
in that field.

The second type of association statement is used to re-
activate a larger set of associative words. It is the ACTI-
VATE statement and it works the same as the ASSOCIATE
statement except that the keyword at the beginning of the
statement is ACTIVATE, and it activates all words that
meet the condition, not just the previously active ones. In
addition, the keyword without any condition has meaning
and that is that all associative words should be activated.
Pursuing the radar tracking example to illustrate the con-
ditional ACTIVATE statement, suppose that you wish, after
a series of associations which identified a small number of
tracks, to reactivate all associative words that contain valid
tracks and that each track entry contains a one bit flag
called BUSY which is 1 for every valid track and 0 for all
others. The statement:

ACTIVATE BUSY;

would activate all valid tracks. :

There are instances when it is necessary to activate one
and only one associative word in a group but it is not critical
which word is activated. In this case, the associative processor
has the provision to activate the first word which meets the
conditions of the search. This provision can be invoked by
adding the keyword FIRST to the ASSOCIATE or ACTI-
VATE statement. For example, suppose that in the radar
tracking problem, we wish to establish a new track, using the
first empty word. The word can be activated with the
statement:

ACTIVATE FIRST —BUSY;

Another feature that is quite useful is the capability to
select a subset of the active words for execution of a short
series of instructions without deactivating the other words.

This can be invoked by using a FOR statement, which has
the same syntax as the normal IF statement, except that
the keyword FOR is substituted for IF. This signifies that
all associative processing elements which meet the condition
would execute the code between the THEN and END
brackets. If an ELSE portion is included in the statement,
it would be executed by all active words which do not meet
the condition. This means that both parts of the statement
are executed each time the statement is encountered.

Assignment

The last type of statement that will be discussed is the
assignment statement. The simplest type, of course, is the
move:

X=Y;

Let us now consider the four possible combinations of vari-
ables. If both X and Y are common variables, then the move
is carried out in the normal manner. If both X and Y are
associative variables then the statement constitutes a move
of data from field Y to field X in each of the active words.
If X is an associative variable and Y is a common variable,
the statement constitutes a broadcast of the data in location
Y to field X in all active associative words. If X is a common
variable and Y is an associative variable, only one word can
supply data, since there is only one location in mainframe
memory to receive it. The source chosen is field Y of the
first active word.

For more complex assignment statements, containing two
or more variables on the right side of the equal sign, it is
clear that if any one of the variables is associative, then the
operation must be performed in the associative processing
elements. Once the answer is found, the assignment will
follow the rules shown in the preceding paragraph. For
example, suppose we wish to calculate the distances used
earlier for association, given that the information on a new
report is stored in a structure in mainframe memory called
REPORT. The code would be:

RANGE_DIST=ABS(REPORT.RANGE—-RANGE);
AZ DIST=ABS(REPORT.AZ—AZ);

Since RANGE and AZ are both associative variables, these
calculations would both be performed in the associative
processing elements; and since RANGE_DIST and AZ_DIST
are both associative variables, the result would be transferred
directly to the proper fields in each associative word.

CONCLUSION

This paper has proposed language forms, based on the PL/1
language, which will give the programmer the capability to
directly use all of the features of an associative processor
without having to revert to assembly language coding. Many
of the statements will transiate into one or two lines of
machine code, but this is necessary to use of the full power

26 National Computer Conference, 1974

of the machine. The capability is important, because there
are a class of problems which will require new algorithms to
effectively use the machine by matching the parallelism of
the machine to the parallelism of the problem.

REFERENCES

1. Lamport, L., “The Coordinate Method for the Parallel Execution
of DO Loops,” Proceedings of the 1973 Sagamore Computer Con-
ference, pp. 1-12, August 1973.

. Muroaka, Y., Parallelism Ezposure and Ezploitation in Programs,

Ph.D. Dissertation, U. of Illinois, Urbana, 1971.

. Ramamoorthy, C. V., J. H. Park and H. F. Lee, “Compilation

Techniques for Recognition of Parallel Processable Tasks in Arith-
metic Expressions,” IEEE Transactions on Computers, Vol. C-22,
pp. 986-998, November 1973.

. Dingledine, J. R., H. G. Martin and W. M. Patterson, “Support

and Operating System Software for PEPE,” Proceedings of the
1978 Sagamore Computer Conference, pp. 170-178, August 1973.

. DeFiore, C. R., A. A. Vito and L. Bauer, “Toward the Develop-

ment of a Higher Order Language for RADCAP,” Proceedings of
the 1972 Sagamore Computer Conference, pp. 99-112. August 1972.

User / system interface within the context of an

integrated corporate data base

by GENE ALTSHULER

Stanford Research Institute
Menlo Park, California

and
BERNARD PLAGMAN

The Federal Reserve Bank of New York
New York, New York

Man will constitute to a higher and higher degree the limiting
factor in man-computer achievements.!

INTRODUCTION

The world to come may be viewed as demanding the making
of more decisions per unit time, the taking into account of
more variables per decision, and the greater commitment of
resources per decision. ... At the same time that the en-
vironment is pressing for faster decisions, new esoteric tech-
nologies are demanding longer planning cycles, earlier and
higher commitments of resources, and better integration and
coordination of a greater number of interacting elements
that make up new systems.?

The recognition of the truth in this statement is not by
any means recent. Nevertheless, only since the application
of the digital computer to the commerecial environment has
the potential of a solution existed. Not until the invention,
application, and maturity of this technology was it deemed
possible that methods could be found to deal effectively
with the problem. It was realized that the unaided human
being could not hope to deal with the complex emerging
environment of modern business. Numerous works have dealt
with the limitations of human information processing (for
example, References 3, 4, and 5).

It was only some five years after the application of the
computer to commercial data processing that the notion
evolved that the ultimate extension of computerization was
not simple and repetitive transaction processing. It was
realized that managers process information as do clerks—
though certainly not in transaction form, and against a wider
universe—and that computer systems can and should be
developed to aid them in this process. The term Management
Information Systems arose to encompass this concept, and
much was written and many attempts were made to develop
MIiSs. More often than not these aittempts failed. Early
proponents of the MIS concept did not realize that the task

27

of creating, maintaining, and accessing extremely large and
structurally complex data bases to be shared by multiple
users with diverse information requirements would
necessitate all of the following:

o Extremely sophisticated resource and task management
software.

e Very fast hardware logic and peripherals.

o Large-scale, inexpensive memory.

» Software to create, maintain, and access vast amounts
of data.

» Supportive subsystems to integrate and augment the
human user effectively.

Today, a search for even one example of the prophesied
total or integrated management information system might
prove futile. The unavailability of software to create, main-
tain, and access corporatewide data is one fundamental
technical reason for the failures. Recognition of this state of
affairs has led to great activity toward the development of
constructs,’-7-82 requirements,'’®* and specifications®? for
what have been termed Data Base Management Systems
(DBMS). Numerous DBMSs are in various stages of im-
plementation, development, and use.’*1% It is important,
however, to view the DBMS as a necessary but not fully
sufficient component for the creation of information systems
that will provide support for human problem solving. The
task of problem solving is essentially a human one, and we
do not in any sense forecast that it will be totally assumed
by computers. What is recognized is that the human problem
solver, unaided, is not able to cope sufficiently with the data
that are available to be brought to bear on today’s problems.
On the other hand, the machine alone cannot identify the
problems so as to begin to solve them. What we propose is a
man-machine symbiosis where a synergistic relationship is
established. When the problem solver or decision maker has
been formally and implicitly introduced into the system
definition, an interface can be clearly established between

28 National Computer Conference, 1974

man and machine. It is to this interface, embodied in the
concept of the User System Interface (USI), that the sub-
stance of this paper is directed. Within this context the aim
of this paper is to:

o Introduce the concept of the USI via the decision process
that it must support.

o Architecturally place the USI concept as an element
within the ICDB.

o Discuss some design considerations of the USIL.

THE DECISION PROCESS

Many researchers have published papers relating to the
construction of conceptual frameworks of human problem-
solving activities, for example Simon,!® Newell et al.,'” Ger-
rity,!® and Miller.1?:2021.2 For convenience we refer to their
models as describing the ‘““decision process.”

Barkin and Lasky® have synthesized much of the pre-
ceding work and have established a sequential decision
process that succeeds in subdividing the whole process into
three distinct phases:

1. Intelligence Phase Identification of the problem

2. Design Phase Generation of alternative solu-
' tions
Evaluation of alternatives and
selection of the final solution.

3. Choice Phase

Miller’s work is closely related to this structure, for it can
be viewed as subdividing the above three broad phases into
specific tasks:

1. Intelligence Phase

a. Status Inquiry—Equivalent to simple-inquiry. The
operation involves retrieval or update by a unique
identifier and/or attribute of interest.

b. Briefing—Request for information about what is
being accomplished or what has been accomplished,
usually according to a set of categories about sub-
ject matter of interest or responsibility of the spe-
cific user.

c. Exception Detection—Comparison of briefing in-
formation (what is) with planning information
(what should be) and interpretation of the devia-
tions. An exception exists if the user decides to
take action, even if that action is further inquiry.

d. Diagnosis—Posing of test questions to be answered,
leading by a logical process of exclusion to the
source of the gross symptoms.

2. Design Phase

a. Construction—The building of new systems based
on selected alternatives. The supporting system
does two main chores: It applies the rules and
constraints to each design action taken, and it
remembers the work already donc by the user.

b. Evaluation/Optimization—Possible graphical simu-

lation of systems, where the problem solver uses a
graphic lanaguage to construct a model that will
simulate the problem set.

3. Choice Phase

a. Planning/Choosing—The matching of requirements
sets (what do I have to do?) against resource sets
(what do I have to do it with?). This is, in effect,
multiple-category statistics matching.

b. Discovery—Such operations as selective browsing
through a trail of references in search for ideas
that lead to concepts of trade-off structure and
complex system behavior, or examination of differ-
ent slices and cuts of quantitative data from a
variety of experiments to derive a “hunch” as to
control variables that might explain diverse phe-
nomena. The key is that the user may not know in
advance just what he is going to ask for or even
exactly how he will make use of what he is exposed
to.

The decision process, as outlined in this sequential list of
activities, is the process that the USI must support, for it is
inherent in almost all activities humans engage in. Individual
modules of the USI will provide specific support to some or
all of the activities in the decision process. Languages, for
example, will provide support across the entire process, while
simulation tools can assist in the design and choice phases.

Present-day computers (systems) are primarily designed to
solve preformulated problems or to process data according
to predetermined procedures.”® How then do we deal with
problems in which the time-frame for solution or the unique-

SOF

DECISION
TYPE
ANTICIPATABLE UNANTICIPATABLE
DATA
TYPE !
T
‘n
|«
P <
B i
|
| PAST AND ‘
QUANTIFIABLE ,—~ PRESENT | FUTURE
. ;

NON-
QUANTIFIABLE

|
|

Figure 1—Decision model

User/System Interface Within the Context of an Integrated Corporate Data Base 29

ness of situation does not allow, or even call for, the specifica-
tion, coding, testing, debugging, and documentation of pro-
cedural logic? ‘

Decision can be classified as falling into two types: Antici-
patable or preformulatable decisions are those that we know
in advance must be made in the future, and unanticipatable
decisions are those that cannot be predicted or foreseen.
Although we cannot identify all the specific problems that
fall into the two categories, we can nevertheless establish
some general characteristics. The identification of these two
types of decisions and the need to integrate data into the
decision process are expressed in the model in Figure 1.
Anticipatable decisions tend to be repetitive, thus susceptible
to preestablished logic and less significant in terms of
resources allocated. The converse is true for unanticipatable
decisions.

Data relate directly to decisions; neither decision logic
nor data alone are sufficient to support a decision. Data are
not homogeneous; for our purposes they are divisible into
quantitative data, which can be expressed numerically, and
nonquantitative data, which cannot be expressed numer-
ically. Quantitative data may be thought of as being hard or
soft, soft being correlative or having a low level of confidence,
such as Gross National Product estimates or the Consumer
Price Index, and hard having a very high level of confidence,
such as the units of production in a manufacturing facility.

Nonquantitative data are things like the mood of the
corporate stockholders, employee morale, or the legal con-
straints on a corporation for acquisition. Such data are cer-
tainly essential as input to the decision process and may be
stored and retrieved by a computer, against key words, in
narrative form, but they are not susceptible to algorithmic
manipulation. Because of the lack of ability to deal precisely
with nonquantitative data, the best we can hope for it is to
bring more and more of such data into the realm of the
quantifiable, so as to increase the scope of our decision
processes.

ARCHITECTURAL PLACEMENT WITHIN AN
INTEGRATED CORPORATE DATA BASE

The ICDB is not a system. It is a concept under which
systems should be implemented. The ICDB concept and the
USI element have been evolved to handle the duality of
problems in supporting anticipatable and unanticipatable
decisions with quantifiable and nonquantifiable data, in part
because proponents of DBMS software have been attempting
to establish this subelement as a panacea. As we pointed out
earlier, considerable work and attention have been paid to
the DBMS following recognition of the fact that the com-
plexity of creating, maintaining, and accessing a repository
of corporatewide data was an order of magnitude higher than
available software could handle.

The ICDB is formally defined as:

The consideration of the collection, storage, and dis-
semination of data as a logical, centrally controlled, and
standardized utility function.®

Any attempted implementation of the ICDB concept im-
plies the development of five subsystems or elements:

1. The Data Bank—The logically centralized repository
of all the data used by a corporation.

2. The Data Dictionary/Directory System—The reposi-
tory of all the definitive information (meta-data)
about the Data Bank, such as characteristics, rela-
tionships, and authorities.

3. Data Base Administration—A machine-aided human
function, with responsibility and authority over all
data-related activities.

4. The Data Base Management System—A software
function performing the storage, retrieval, and main-
tenance of data.

5. The User/System Interface—The necessary subsys-
tems to permit multiple classes and types of users to
direct the system to effectively structure and associate
available data into information and thus to com-
municate with and fully utilize the system’s resources.

At the beginning of this paper, we stated that “today, a
a search for even one example of the prophesied total or
integrated management information system would prove
futile.” We stand by this statement even though one can
point to certain very powerful data management software
implementations, existing dictionary/directory systems, a
variety of generalized query languages, and a fair number of
data base administrators in place.

What has been lacking is that the conceptual construct to
integrate all these elements has not been established and
there has been a paucity of attention and work in the area of
user/system interface. (We will concede the point that the
need for the USI has been identified for many years, num-
erous times.)

Architecturally, aspects of the USI affect all five ICDB
subsystems or elements, since ultimately all aspects of the
structure must service the user. For instance, the DBMS
must be able to retrieve data that may physically reside in
only one form and remap them, as specified, into many
different forms. Further, the DBA must provide the data in
the first place (data collection) and tune the system so that
all users are served optimally.?s But the actual execution of
the functions embodied in these two subsystems is essentially
transparent to the end users. Therefore, the remainder of
this paper focuses on the interface points of the various sub-
systems that are not transparent to the end users. Two of
these are the user languages and the decision process aug-
mentation tools.

USER LANGUAGES

In all probability, because language is so much a part of
our everyday lives, we tend to view it as a homogeneous
entity. This assumption is invalid, for in reality a language
is employed by various classes and types of users, each user
applying it to different depths and in different ways. For
example, an engineer and a psychologist may both use

30 National Computer Conference, 1974

COMMON

COMMON

LANGUAGE LANGUAGE

Figure 2—Natural language subset interaction

English as their natural or native language, and in their
dealings outside their respective fields virtually no com-
munication problems should arise (assuming both possess
natural language competency). But extreme problems will
arise when either attempts to cross over into the other’s
discipline (assuming no more than average familiarity with
the other field). This is so because each discipline tends to
create, hopefully out of necessity, specific jargon or nomen-
clature unto itself. The practitioners of these disciplines, then,

tend to communicate in subsets of their natural or native

languages. This characterizes language users into types
centering around their expertise, the types of users being as
varied as the specific professions, such as accounting and
engineering.*®

The Venn diagram in Figure 2 portrays graphically a
simplistic situation. The “common core’ is the native lan-
guage base that is essentially used by all those to whom the
language is common, no matter what their specific disci-
plines or even in the absence of a specific discipline. Further,
disciplines may have varying degrees of mutual dependency,
among themselves and with the common core.

At the extremes we may find mutually independent disci-
plines with virtually no overlap with the common core. A
major problem can arise if an enterprise encompasses a

multiplicity of mutually- independent disciplines with mini- -

mal overlap with the common core, for then the vocabulary
support essential in the user language area will tend to be
significant. A second major problem may arise when disci-
pline crossover takes place, in that different nomenclature
may be associated with the same entity. A solution to the
problem of a multiplicity of user types using the same data
bank is a synonym resolution capability, in effect a complex-
to-simple mapping.

A second dimension to the problem is that we have varying
levels of application of a specific profession or discipline.
For example, a bookkeeper, a cost accountant, and a com-
pany controller, or a nurse, a general practitioner, and a
specialist. Recognition of such hierarchies characterizes lan-
guage users, even within a type, into broad classes. Extrapo-
lating on the work of Senko?” we have structured users into

three classes, for the purpose of directing our research into
user language development:

1. Structurally independent
2. Structurally parametric
3. Structurally dependent.

The structurally independent user is generally charac-
terized by his lack of interest in the storage structure of data
and his interest in the specific data values and sometimes
specific attributes of items of metadata (data about data,
e.g., frequency of update, source). This class of user is
usually personified by a manager who would, in all prob-
ability, have an information model in mind. The work into
natural language recognition and programming is directed
at this class, in that the ultimate objective is the ability to
express a request for information in natural language and
have the system do all the work necessary to interpret the
request, search the data bank, select the necessary data,
structure and/or associate the data, and return the informa-
tion.?®

The structurally parametric user is characterized by a
limitation on what he may want to see data about (a finite
subset of the data bank) and the number of ways he will
want to see this subset structured or associated. The require-
ment is for a specific logical view, not a physical one. Thus
the parametric user will typically invoke one of an array of
preestablished transactions varying only in the values sup-
plied at the time of retrieval. For example, someone within
the purchasing department might request the part numbers
of all the parts produced in plant three that are used in
assembly A and have an inventory lower than four weeks
production. Such a request can generally be anticipated in
advance; for example, a boolean query on “X” of “N”
fields in an employee record, so a screen display or hardecopy
report can be prestructured and invoked by a transaction
macro with associated parameters. The parametric user can
reside anywhere within an organization.

The structurally dependent user is one whose basic con-
cern is the physical or storage structure of data and their
characteristics and attributes and who has little or no con-
cern with specific data values. His primary objective is to
optimize repetitive procedural manipulation of data and
not tointerpret or use the results. Jobs that typify this class
are the programmer and analyst where a data base adminis-
tration function does not exist or, of course, the data base
administration funetion, if it is in place.

It is important to note that an individual within a job
may slide between specific classes or users, on the basis of
the function of the job he is performing at the moment. For
example, an analyst when looking into the feasibility of
developing a system will, on the basis of user requirements
and specifications, be operating as a structurally independent
user. At this time his prime concern will be to see whether
the proper data elements exist within the data bank to
satisfy his clients’ needs. On the surface it would seem that
this task could be simply supported with an absolute mini-
mum of data retrieval, but in reality multiple queries em-
bodying substantial amounts of data might be required. For

User/System Interface Within the Context of an Integrated Corporate Data Base 31

example, if an analyst in a manufacturing environment were
developing a system for the credit department with the
intent of allowing the order clerk to approve a shipment,
two fields would have to be accessed: customer balance and
credit limit. But in reality there might be multiple fields
labeled customer balance, each potentially representing dif-
ferent data values based on different frequencies of update
and calculation algorithms. For example, the files might be
so structured that customer balances were maintained for
each product line, and a separate field might have been
established by the marketing department to represent the
average monthly customer balance. In all probability all
these fields would be labeled simply ‘‘customer balance”
(to each of these applications, one of these fields would be
the customer balance required). Thus a numbef of attri-
butes about a field would have to be called for by the analyst
before he could make the determination whether to use an
existing field or to create a new field. (Depending on organiza-
tional structure and the establishment of a data administrator
function, this type of determination might not be performed
by an analyst.) Once into the general design of a system,
the analyst would have to operate as a structurally dependent
user, for to instruct the ICDB as to the proper data struc-
tures (logical representations) he would have to be cognizant
of the storage structures (physical representations) embody-
ing the elements with which he was concerned and the exact
physical characteristics and attributes of these data items.
Whether it would require many languages or one to satisfy
the above requirements is not of immediate concern. What
is important is that we provide the facilities for multiple
types of users to operate on the same data without attempting
to force these users out of their own natural language sub-
sets. Further, it is important that the language facilities
provided support multiple classes of users, so that query,
parametric, and meta-data requests can be satisfied.

USER SYSTEM INTERFACE AUGMENTATION
TOOLS

A reasonable amount of work has taken place in the area
of operands, possibly because they are more tangible and
thus more susceptible to definition. We have identified the
need for three types of operands: arithmetic, graphical, and
modeling.

Arithmetic operands are by far the most simplistic; they
relate closely to the original rationale behind the develop-
ment of the digital computer, that is, to the ability to per-
form basic arithmetic operations with a machine, orders of
magnitude faster than a human being could unaided. Basic
arithmetic operations are continuously performed on data
under the preestablished logic approach. But when we are
dealing with unanticipatable decisions, the time frame cannot
accommodate the development of this logie, and thus we
must be able to either establish it on an ad hoc basis or
presupply it, and possibly both.

The concept of the ad hoc establishment of procedural
logic is infinitely more difficult than that of attempting to

anticipate needs and presupplying the needed tools; there-
fore we feel that we should approach the problem via the
anticipation of generalized needs and the prior establish-
ment of a catalog of tools. (The discipline that attempts to
deal with the ad hoc establishment of procedural logie is
natural language programming; the best estimate for sub-
stantive accomplishments in this field is from ten to twenty
years. On the other hand, the selection of bits and pieces
of preestablished procedural logic from a catalog and the
structuring of these into a program may be considered the
first step in this development, although the ultimate goal
is for this process to take place automatically on the basis
of a problem statement expressed in natural language.)

Examples of arithmetic operands to be supplied range
from the most basie, such as addition, subtraction, division,
and multiplication, to some of the more sophisticated, such
as confidence limits and standard deviations. All of them
would be callable via macros and capable of accepting as
input the subset of data the user has selected and retrieved
from the data bank.

The need for graphical operands is supportable, on the
basis of observation of the way people extract and synthesize
information from masses of data. In fact, it has become ob-
vious to observers that people have a mechanistic inability
to extract the essence or primary aspects of large tables of
data without resorting to graphical or other means. Thus
people pictorially represent large collections of numeric data,
and upon the completion of the ‘“picture,” relationships,
trends, and key factors become almost obvious. Computers
perform graphical operations almost embarrassingly well,
and this is one of those functions better left to the machine
than to the human being. What must be supplied is, again,
a catalog of graphs—curves, histograms, pie charts, or scatter
diagrams—plus the ability to contract or expand the axes
and to store, retrieve, overlay, and combine such graphs.

Lastly, and placed here because we are furthest away from
its realization on the basis of the state of the art, is interactive
modeling and simulation. Again, observations of people in-
volved in the process of decision making have given rise to
the understanding that, when one is faced with a problem
involving a number of variables, intuitive modeling or simu-
lation—or both—takes place. For instance, when we are
faced with the relatively simple task of purchasing a number
of different items available only at several different locations,
a simplistic but identifiable transportation model is con-
structed by taking into account current location, available
conveyance, and such constraints as one-way streets and
closing times of various purveyors, and a hopefully optimal
route is intuitively plotted.

Interactive computer-aided modeling is a necessary ad-
junct to the use of arithmetic and grapbical operands, for it
would allow the users to play ‘“what if”’ games with extracted
data, identify and isolate key relationships between variables,
and identify and diseard meaningless or insignificant vari-
ables. Further, by the imposition of the formalized discipline
of modeling, it would aid in the identification of all necessary
variables. The key difference between the modeling/simula-
tion operand being discussed and the modeling and simula-

32 National Computer Conference, 1974

tion tools currently available is that the former should be
interactive and be accessible via the available query lan-
guages. Thus we would be able to use these tools without
resorting to specialized languages and be able to operate in a
conversational mode.

CONCLUSION AND SUMMARY

The USI is not a new concept. It is the eollection of multiple
existing concepts into a new environment, the ICDB. By
establishing an ICDB environment and providing appropri-
ate interface mechanisms, the various phases and steps of
the decision process can be supported. It will not suffice to
develop the DBMS and feel that we have “solved the prob-
lem.” It is necessary to recognize that the end user must be
served by facilitating the proper support of the decision
process with the necessary data. This support will come in
the form of user languages and specific types of augumenta-
tion tools collectively referred to as operands.
The essential points to be realized are:

1. The concept comprises five elements, which, when
viewed collectively, form a unified whole. Certainly,
each element, in and of itself, can be used effectively
by an organization and to varying degrees can allevi-
ate some of the problems now faced. There are two
basic reasons for viewing, planning for, and imple-
menting the concept as a whole:

a. The concept is synergistic, in that the whole is
greater than the sum of its parts. A data bank is
worth more to an organization when it can be
fully utilized by all those who require access to the
data stored within it. Further, extremely flexible
user languages will truly begin to return their cost
of acquisition when they have a full-fledged data
bank to access and a DBMS to structure and re-
trieve the data.

b. EDP is evolving toward large data bases and.

multiple modes of reference. The primary question
is that of the cost/benefit trade-offs and the proper
growth rate at which to approach the objective.
It is almost unquestioned that the approach must
be via a disciplined, coordinated coneept. -

2. It is the decision process that we are trying to aid
and support and not a specific level within the hier-
archy of the organization, a specific function, or that
nebulous and elusive figure called the manager. The
decision process is the common denominator among
all users. If this process is facilitated, those who carry
out the basic functions of a firm will be aided and sup-
ported, and there will be no need to identify where
within the structure they reside.

3. The ICDB concept is so broad that we could not
begin to cover it in a single paper. This is the third
paper in a series. We had originally planned to write
one paper on each of the five basic elements, but
while the first (8) was being written a sixth (9) was
suggested. Although we plan to write and present

papers on the additional three elements, the DBMS,
the Data Bank, and the Data Base Administrator,
we have not yet done so, and a seventh paper has
already been suggested, regarding the planning and
implementation for the ICDB concept. Consequently,
many obvious questions (questions that we have been
thinking about and on which we have begun to formu-
late our thinking) have not been addressed. The work
is far from complete. It is hoped that the series can
be completed in the near future, and all comments
are welcome on the work that has been completed,
as well as suggestions for that yet to come.

REFERENCES

1. Carbonell, J. R., “On Man-Computer Interaction: A Model and
Some Related Issues,” IEEE Trans. on Systems Science and Cyber-
netics, Vol. S8SC-5, No. 1, January 1969, p. 16.

2. Scott, A. E., “Information Systems—How Do We Get from Here to
There?,”” GUIDE Secretary Distributions, Vol. 29, Denver, Colorado,
November 1969.

3. Miller, J. G., “Adjusting to Overloads of Information,” in Organiza-
tions, Vol. II, J. Litter (ed.), John Wiley and Sons, 1969.

4. Simon, H. A., Models of Man, John Wiley and Sons, 1957.

5. Schroder, H., M. Driver, and S. Strueferts, Human Information
Processing, Holt, Rinehart and Winston, 1967.

6. Engles, R. W., A Tutorial on Data Base Organization, IBM Corpora-
tion, San Jose, California, June 1969.

7. Meltzer, H. 8., Data Base Concepts and an Architecture for a Data
Base System, IBM Corporation, San Jose, California, August 1969.

8. Plagman, B. K. and G. P. Altshuler, “A Data Dictionary Directory
System Within the Context of an Integrated Corporate Data Base,”
AFIPS8 Conference Proc., Vol. 41, Montvale, New Jersey, 1972.

9. Plagman, B. X. and G. P. Altshuler, “An Integrated Corporate
Data Base Concept and Its Application,” Proc. 1972 ACM SIG-
FIDET Workshop on Data Description and Access, New York, 1972.

10. GUIDE/SHARE Taskforce Report, ‘“Data Base Management
System Requirements,” GUIDE Secretary Distribution (GSD-023),
November 1970.

11. Construction Management System Action Group, Data Manage-
ment System Reguiremenis, Miami, Florida, June, 1971.

12. CODASYL Systems Committee, 'Daia Base Task Group Report,
April 1971, Association for Computing Machinery, New York.

13. CODASYL Systems Committee, Feature Analysis of Generalized
Data Base Management Systems, Association for Computing Ma-
chinery, New York, May 1971.

14. Trends in Data Management, Parts I and 11, EDP Analyzer, (R. G.
Canning, Pub.) May-June 1971, Vista, California.

15. Schubert, R. F., “Basic Concepts in Data Base Management Sys-
tems,” Datamation, Vol. 18, No. 7, July 1972.

16. Simon, H. A., New Science of Management Decisions, Harper and
Rowe, New York, 1960.

17. Newell, A., J. C. Shaw, and H. A. Simon, “Elements of a Theory of
Human Problem Solving,” Psycholog. Rev., Vol. 65, May 1958.

18. Gerrity, T. P., “Design of Man Machine Decision Systems: An
Application to Portfolio Management,” Sloan M anagement Rev.,
Winter 1971.

19. Miller, R. B., Psychology for a Man-Machine Problem Solving Sys-
tem, TR 00.1246, IBM Corporation, Data Systems Division
Development Laboratory, Poughkeepsie, New York, February 1965.

20. Miller, R. B., Response Time in Man-Compuler Conversational
Transactions, TR, 00.1660-1, IBM Corporation, Systems Develop-
ment Division, Poughkeepsie, New York, January 1968.

21. Miller, R. B., Archetypes in Man-Computer Problem Solving, TR
00.1909, IBM Corporation, Systems Development Division, Pough-
keepsie, New York, August 1969.

User/System Interface Within the Context of an Integrated Corporate Data Base 33

22.

23.

24.

Miller, R. B., A Conceptual Primer on Information Sysiems for
Managemeni, AR-0989-00-POK, IBM Corporation, Systems De-
velopment Division, Poughkeepsie, New York, August 1971.
Barkin, S. R. and J. A. Lasky, The Analysis and Design of Man-
Machine Decision Systems: A Behavioral Perspective, Working Paper
Series, Management Information Systems Research Center, Uni-
versity of Minnesota (unpublished).

Licklider, J. C. R., “Man-Computer Symbiosis,” IRE Trans. on
Human Factors in Elecironics, Vol. HFE-1, pp. 4-11, March 1960.

26.

27.

28.

. Ghosh, 8. P., “File Organization: The Consecutive Retrieval Prop-

erty,” Communs. ACM, Vol. 15, No. 9, September 1972.

GUIDE International Ine., “User Language System Requirements,”
GUIDE Secretary Distribution, 1973.

Senko, M. E., File Organization and Ma t Information Sys-
tems, IBM Research Laboratories, San Jose, California (unpub-
lished).

Montgomery, C. A., “Is Natural Language an Unnatural Query
Language?” Proc. ACM 1972, pp. 1075-1078, August 1972.

DUCHESS—A high level information system

by BRUCE J. TAYLOR and S. C. LLOYD

Duke University
Durham, North Carolina

The amount of time which has elapsed between Liebritz’s
first theoretical description of a computing machine and
today’s commonplace use of digital computers as extensions
of Man’s intellectual faculties is a little more than three
hundred years. This period has witnessed the birth and death
of many trends in the art of mechanical computing, some no
more than fads and others becoming established as funda-
mental truths which are now accepted as axioms of computer
science. One of the most firmly established of these latter
trends is the quest for generality. As early as 1833, Charles
Babbage discerned that in the ideal computing machine, the
human operator should have completely flexible control not
only over the data to be processed, but also over the al-
gorithms.

The history of computing since Babbage has beeen marked
by a terrific emphasis upon flexibility. Turing and Von
Neuman laid a theoretical basis of generality in control
structures. Recent work in macro-modules (Clark and Bell)
has started an explosion in the generality even of hardware.
On the software scene, the growth of the concept of modular
“structured programming” has opened new horizons in the
generality of the programming process. However, it is the
myriad computer languages that most clearly point out the
trend towards generality. Of the hundreds of programming
languages which have grown up in the past decade, all but a
few have been designed with a delineated scope of applica-
bility. No matter how well such a language covers its par-
ticular field, it is forever relegated to that very restricted
area. The most important languages of the modern era,
FORTRAN, PL/1, ALGOL, and COBOL, are all marked
by a common feature: each provides facilities general enough
and powerful enough to implement a wide class of algorithms.

Sadly, the field of information processing and data base
management has lagged behind these trends. It seems that
the field of information processing systems is characterized
by a welter of small systems each designed to implement a
given complement of algorithms (such as storage, retrieval,
and cross-tabulations). While this set of algorithms is often
very large, and the designers may have anticipated many of
the needs of the target installations, still we await the advent
of a data base management which satisfies Babbage’s ideal
of flexible control.

35

The DUCHESS project marks an attempt to design an
information management system containing facilities for
implementing a wide range of data manipulation algorithms.
To this end, we have taken steps to generalize the three
basic subdivisions of an information system: the data base,
the control structure, and the operating system which sup-
ports the system. The primary emphasis in the following
discussion will lie upon the desirability and practicality of
making every feature of the system as general as possible.

It would be appropriate at this point to present an over-
view of the DUCHESS system to serve as a reference for
discussions to follow. DUCHESS is implemented on a DEC
PDP-11 minicomputer with 28 K words of memory. Pe-
ripheral resources available to the system include: two RK11
disk drives (2.4 megabytes each), a console teletype, and
several CRT-type conversational terminals. It should be
mentioned that the DUCHESS concept is not specific to a
PDP-11; it could be easily implemented on any machine
with similar computational capabilities.

The software side of the DUCHESS system may be di-
vided into four distinet modes: (1) a data base access and
management system; (2) a high level programming language
with which to implement the data management algorithms.
This language provides facilities for interfacing with the
data base access module; (3) a complement of user service
routines which implement often-used system functions; (4) a
multi-user executive system which multiplexes the resources
outlined above between multiple users, each in control of
one of the CRT terminals. Because the length of this paper
is limited, only the first two modules will be discussed. The
user routines and the executive are essentially transparent
to the user and do not significantly relate to the concept of
generality which this paper illustrates.

DATA BASE—DATA DEFINITION LANGUAGE

The first question facing the designer of any data manage-
ment system is “What data will the system need to record?”
In the case of DUCHESS the answer to this question came
easily: we would provide facilities for recording any type of
data which can be transcribed into a computer-readabie
format. The next step was to select a suitable set of datatypes

36 National Computer Conference, 1974

for the representation of data. The following set was chosen as adequate to record any type of data:

DATATYPE DESCRIPTION
1. CODE (n) This type is used to record a selection from within a set of
n mutually exclusive choices. Typically, ‘“multiple
choice” data is recorded in this format.
2. BOOLEAN A special case of the CODE datatype used to record yes/

3. FIXED (d, p)

no data. The only permissible values are 0 (false) and 1
(true).

A fixed point number of d digits with p digits to the right
of the implied decimal point. The default for d and p is
6 and O respectively.

4. FLOAT A floating-point number of standard PDP-11 floating
point format
5. DATE This datatype is used to record dates (a frequently used
datatype) in a compact format.
6. TIME Like the DATE datatype, this datatype records often-
used sort of data in a compact format.
7. TEXT (n) This type is used to record character strings known length
(as, for example, a set of three initials).
Character strings are truncated or padded with blanks to
. fit the storage field.
8. TEXT This is the general case of the TEXT datatype used to re-

cord varying length character strings, such as names

INTERNAL STORAGE FORMAT

log n contiguous bits

1 bit

1 or 2 words (single or double precision is
chosen by the values of d and p). Decimal
Point location is implicit.

2 words mantissa
1 word exponent

1 word

The date is compressed upon storage and
re-expanded at retrieval.

1 word.

Time is expressed as hours, minutes and
seconds since midnight.

n consecutive bytes (0 <n <256)

1 word pointer into a ‘“free text buffer.”
Within the free text buffer-one byte for

and addresses with no wastage

It is immediately evident that, by recognizing many
different datatypes and choosing the most efficient represen-
tation for each, DUCHESS can gain a considerable savings
in data storage space over other systems. Consider, for in-
stance, a certain item of data which may take on any one of
four different states. It is evident that the storage of this
datum should take no more than two bits to record the
alternatives. However, most data management systems allo-
cate space for non-text nodes on word boundaries. This
means that, on a 16-bit machine like the PDP-11, 14 bits
are wasted. In a data base of ten thousand records, this
wastage amounts to more than 8.5 K words of wasted storage
space which could have been reclaimed if an appropriate
data type (like CODE(n)) with allocation on bit boundaries,
had been available. DUCHESS solves the problem of data
alignment within records by aggregating all bit-aligned vari-
ables into one field, all byte-aligned variables into another
field, and all word-aligned variables into a third field. In
this way, only one “filler” space is required per field.

It was decided that DUCHESS needed facilities to record
both fixed and variable length character strings. Fixed length
strings are stored in the most obvious manner: the appropriate
number of contiguous bytes are allocated to the string. The
iength byte which normally precedes a DUCHESS character
string is not carried in the record because the length of the

each plus one length byte (0<length<
256)

string is bound via the data definition facilities. The fact
that the location of a fixed-length character string is always
known as an offset provides for rapid access via simple
address arithmetic. For variable-length strings, the process
is somewhat more complex. One word of storage is allocated
in the fixed length section of the record for a pointer into
free text buffers which are allocated on demand. Thus, it
takes two references to access a variable-length text string
stored in a DUCHESS record.

The most natural format devised for a data base represen-
tation is that of a multi-level hierarchy. It speaks well of the
information management field that this format has been
almost universally adopted. Human beings tend to look at a
large mass of data (like that represented in a typical data
base) in terms of its logical subdivisions. Hence, the structural
hierarchy fits very naturally into a human’s conception of
the information recorded in a data base. DUCHESS, like
other hierarchical information systems, faces a significant
problem in converting a human’s data base definition specifi-
cations (called the “hierarchy document”) into a compact
model of the format of a data record.

The user must describe the data to be recorded by pre-
paring a ‘“‘hierarchy document” for the system. The format
of this document is very similar to the format of a PL/1
structure. As an example, we will consider the following

Duchess 37

portion of a hierarchy:

1 BOOK SEGMENT
2 AUTHOR SEGMENT
3 NAME
4 FIRST TEXT
4 LAST TEXT
4 INITIAL TEXT (1)
2 REVIEWER SEGMENT
3 NAME
4 FIRST TEXT
4 LAST TEXT
4 INITIAL TEXT (1)

This document is used as input into a “hierarchy compiler”
which constructs a model of the record format for the data
base. This compiled version is used to create and initialize
the data base file and in compiling application programs.

The above example illustrates two forms of data par-
titioning under DUCHESS. The simplest form is illustrated
by the level 3 node called NAME. Note that this node
serves purely as a structuring device and carries no data
whatsoever. However, one bit is allocated for each such node
in the record. This bit is initially clear and is set whenever
one of the nodes below it is given a value. This node type
acts as a BOOLEAN node, so that it is possible to poll a
node such as NAME and determine whether or not anyone
of its sub-items has been altered from its initial state. The
assignment of a value to a variable automatically invokes
the mechanisms to post such nodes, a process called upward
spreading. Of course, this spreading action will continue up-
ward as far as necessary, each spreading operation triggering
a spread to the next higher level until a previously posted
level or the root node is reached.

The above example also illustrates the use of the segmented
data structure in the DUCHESS data base. This concept of a
data-dependent data structure is one of the most powerful
features of the DUCHESS system and deserves somewhat
of an introduction. One of the most significant problems
facing a user of a data base system is the tradeoff between
his desire to provide space for all possible data and the
knowledge that missing data wastes the space allocated for
it. The ideal solution to this problem would be to provide a
structure wherein no space is allocated for the storage of a
datum until it is actually needed. With such a system, the
developer could feel free to include even the smallest item
of data in his hierarchy structure, knowing that no space
will be used unless there is actually data to be recorded.
Several information systems have adopted such philosophies
with varying degrees of success. The most common technique
is to sequentially allocate space within the record value, as
it is stored, is prefixed by a node identifier. At retrieval time,
the entire record is searched sequentially for the desired node
identifier. If the identifier is found, the accompanying data
is read back. Certainly, this technique solves the problem
mentioned and may be acceptable for use in an inherently
sequential medium such as magnetic tape. However, the
sequential nature of the search required completely negates
the advantages gained in using a high-speed random access

A. Fixed Format Record

1
JOHN FIRST
SMITH LAST NAME AUTHOR
Q. INITIAL
< BOOK
NN SN ’
\\\\\\\ k&\ FIRST
Q
N\ unused \\\\\F\S LAST NAME REVIEWER
\ N TN
SN N pyraL
= 7
B. Segmented Record
~{ AUTHOR
BOOK
1 || ReviEwWER
\\’) JOHN FIRST
SMITH LAST NAME
Q. INITIAL

Figure 1—Fixed vs. segmented record format

device like a disk. Furthermore, the space allotted for the
node identifiers often incurs significant overhead as opposed
to fixed field organizations. Clearly, “there’s gotta be a
better way.”

Data segmentation is an attempt to strike a workable
balance between complete freedom in hierarchy planning and
the advantages of associating fixed offsets with node infor-
mation. To this end, there is another DUCHESS datatype
not mentioned in the preceding list, the SEGMENT type.
To the person generating the hierarchy, the use of the
SEGMENT datatype signifies that all nodes immediately
subordinate to the segment node are considered as a single
logical entity. In terms of our example, assume for & moment
that the REVIEWER substructure is not used in every
record. By coding REVIEWER with the datatype SEG-
MENT, the developer indicates that space is not to be
allocated in the record for the REVIEWER substructure
until one of the terminal sub-fields (FIRST, LAST, or
INITTAL) are assigned a value. When the value of any of
these fields is recorded in the record, an appropriate amount
of space is allocated for the entire segment containing the
target node. The allocated space is then linked to its “parent”
segment in the record so that later access to the data can
descend from the father into the newly allocated segment.
It may be useful here to present a visual comparison between
the “standard” storage technique and the DUCHESS seg-
ment structure. In our example, assume that the only infor-
mation recorded is the name of the author, JOHN Q. SMITH.
The REVIEWER substructure is still in the initial state.
Compare the two storage structures diagrammed in Figure 1.
For purposes of illustration, the structures shown above have
been considerably simplified. Nonetheless, the substantial
savings in unused space within the record should be im-

38 National Computer Conference, 1974

mediately evident. The DUCHESS structure uses one word
for a null pointer to represent the missing REVIEWER
structure (always with the option of filling in the structure
by allocating space for the segment and establishing the
REVIEWER link in the BOOK segment). By contrast, the
fixed record format requires many bytes of unused space,
simply to maintain the record structure. Thus, an infre-
quently used item costs the developer considerably less if he
uses the DUCHESS system of allocation. We feel that this
fact contributes significantly to the flexibility of the system.

Because the tradeoff of data to be recorded versus storage
used is so important to the data base developer, DUCHESS
provides a facility similar to the sequential search method
mentioned earlier. Each $egment of the hierarchy may con-
tain certain nodes labeled SPARSE. Such nodes generally
represent data which will only rarely be stored in the record.
Associated with each segment is a variable sized “sparse
buffer’ to contain the values of all the SPARSE nodes
declared within the segment. When none of the SPARSE
nodes is assigned, the sparse buffer is not allocated and
takes up no storage. Upon assignment of a SPARSE node,
a sparse buffer is allocated within the record and linked to
the parent segment. Within this sparse buffer, the data of
the SPARSE node is recorded, preceded by a node identifier.
At retrieval time, the sparse buffer is sequentially searched
for the node identifier requested. This process seems identical
with the sequential technique mentioned earlier. However,
since SEGMENT nodes can be declared as SPARSE, the
DUCHESS implementation of this data structure actually
represents a mixture of fixed and variable record structure.

At this point, we will anticipate some objections by ad-
mitting that the preceding paragraphs glossed over some
serious problems raised by the new structure. In a fixed
record format system, each datum has a certain offset from
the beginning of the record and is instantly accessible by a
simple address calculation. In the DUCHESS segmentation
system, each item of data is associated with an offset from
the base of its segment. The process of locating the segment
is mainly one of following a linked list through the data
base file. We admit that this is a potentially horrendous
task. However, we have succeeded in building enough
“intelligence’” into the system so that nearly all of the list
searching can be obviated and the remaining traversal will
not seriously detract from system performance. Once again,
we feel that the flexibility gained by implementing this more
sophisticated record structure is well worth the extra proc-
essing involved. The technique of avoiding the inherent
segment lookup is discussed in the next section on the
DUCHESS programming language.

DUCHESS PROGRAMMING LANGUAGE

We have already described in part our effort to produce a
powerful and flexible data base structure. We believe that
this data structure can efficiently record any sort of data
which can be transcribed into the computer’s input devices.
However, this structure would be virtually worthless without

an equal degree of freedom in the facilities available for
manipulating the recorded data. As mentioned earlier, most
data management systems provide a stock set of algorithms
for data manipulation. However extensive this set may be,
it cannot possibly cover all the needs of an installation
which makes frequent use of a data base. A decision was
made early in the DUCHESS development to implement a
high-level language with two central features: (1) a set of
commands designed specifically to interact naturally with
the DUCHESS data base system; and (2) an instruction
set of sufficient generality that any data-processing algorithm
could be realized without having to ‘“strain” either the
language or the data base. It order to stay close to a familiar
model, we decided to pattern our language after PL/1. The
primary difference between the DUCHESS language and
PL/1 lies in three areas: (1) the DUCHESS language is a
subset of PL/1; we saw no need to implement the more
esoteric features of full PL/1. (2) A full set of CRT terminal
input/output commands has been added to the GET/PUT
reperoire to take advantage of the conversational abilities
of a video terminal. (3) The variable reference structure of
PL/1 has been supplanted by one which interfaces more
naturally with the DUCHESS data base structure. It is this
third factor which is discussed in the remainder of the paper.
Recall the objections to the operational characteristic of
the DUCHESS segmented data structure raised in the last
chapter: the process of looking up a segment through the
segment pointers is a slow operation and costly in storage
accesses. If a “segment lookup” was required for each refer-
ence to a node in the data base, the system would be im-
possibly slow. However, it is only necessary to perform the
“segment. lookup” on the initial reference to a segment.
The use of a concrete example might serve to clarify the
process of “descending’” through the segments. Consider the
process of setting the name of the author to JOHN Q.
SMITH. The requisite DUCHESS statements are:

AUTHOR.NAME.FIRST =JOHN’;
AUTHOR.NAME.LAST = ‘SMITH’;
AUTHOR.NAME.INITIAL=‘Q’

The actions performed are as follows:

(1) Look up the BOOK segment

(2) Look up AUTHOR segment within the BOOK seg-
ment

(3) Assign NAME.FIRST

(4) Assign NAME.LAST

(5) Assign NAMEMIDDLE

Notice that only two ‘“‘segment lookup” operations are
necessary to locate the segment AUTHOR. Once this segment
is located, all operations within the segment become auto-
matic since the segment base is known. To highlight another
feature of this process, consider the job of setting the name
of the reviewer to JAMES H. DOE after having carried out
the process above:

(1) Discard the base of the AUTHOR segment

Duchess 39

(2) Look up the REVIEWER segment within the BOOK
segment

(3) Assign NAME.FIRST

(4) Assign NAME.LAST

(5) Assign NAME.INITIAL

Because the segment BOOK had been located in the process
preceding this one, the base address of the BOOK segment
was already known and hence it was unnecessary to search
for it again.

This process of remembering the locations of segments in
the “active reference path” is known as “locality manage-
ment.” A locality is the address within the file of a given
segment of a given record and the addresses within the
record of all its “father’” segments. A locality behaves much
like a stack: when a program references a segment ‘‘deeper”’
in the hierarchy then the last reference, the top segment of
the locality is used as a starting site for the segment lookup,
thus short-circuiting part of the lookup procedure by using
data already on the stack. Similarly, when a reference is
made to a node “higher” in the hierarchy or down a different
branch of the hierarchy tree, segments are “popped” off the
locality stack until either the target segment is the top one
on the locality stack or until the locality stack is in an
appropriate state to begin the lookup procedure (as in the
preceding example). In order not to overwork a single
locality stack, DUCHESS can maintain up to 256 separate
active localities. Thus if an applications program needs to
reference data from several different segments concurrently,
each of the segments can be included in the set of active
localities. In these ways, proper locality management in the
DUCHESS language removes the primary objection to use
of the segmented data structures.

We have described a system of locality management that
lets the programmer move around efficiently within the
hierarchy structure. However, we find that this new freedom
imposes tremendous responsibilities upon the programmer to
set up the localities properly before attempting to access a
node of the file. Clearly, this new expansion of responsibilities
is unacceptable. To confront this new problem, we introduced
an element of “intelligence” into the system by placing the
bulk of the responsibility of locality management upon the
DUCHESS compiler. The compiler accepts as input not
only the user’s program but also the processed versions of
the hierarchy documents for all files to be accessed in the
program. Through use of these documents, the compiler
has an intimate knowledge of the structure of the data base.
When the compiler is called upon to generate code to access
a node of the data base, it can check the set of current
localities open (even at compile time) for a locality which
will provide the appropriate segment base. If no such locality
is available, code is generated to establish a locality stack
for such usé. Although the user retains the facilities for ex-
plicit locality control (and he may exercise explicit control
over key localities in order to “fine tune”” system operation),
the compiler has the facilities for carrying out all the “dirty
work” of locality management.

In order to ensure that the compiler has enough infor-

mation to properly manage the localities, it is important
that the user write code which follows the stack nature of
locality growth. That is, any references to a node in the
data base should be preceded by the appropriate locality
management code (generated either by the compiler or by
the user). At compile time it must be possible to exhaustively
enumerate the paths the program control might take and,
in the code for each path, generate the appropriate locality
management code. The major obstacle to such analysis is
the abuse of the GOTO statement. The target statement of a
GOTO has two distinct entry paths, one by natural program
flow and the other by the action of the GOTO statement.
Each of these entry locations requires a different sort of
locality management to bring the active localities into the
state needed by the target statement. In the case where
one statement is the target of multiple GOTO statements,
the problem becomes, for all intents and purposes, inscluble.
Apparently, we need a mechanism for insuring that each
DUCHESS statement has exactly one entry path: the
natural program flow. The mechanism chosen is distressingly
simple; the DUCHESS compiler prohibits any form of the
GOTO statement. To assume the function of this control
statement, a set of control structures have been imple-
mented, providing such facilities as bypassing a group of
instructions, iterative looping, looping on condition, and a
form of multi-way branching. The basis of these control
structures results from current investigations in ‘structured
programming.’ It has been shown that not only can the
task of compilation be made more efficient and object code
be optimized but surprisingly, programs written with such
restraints are easier to debug. We anticipate that new pro-
grammers, after an initial period of adjustment, will adapt
well to a new sort of control structure.

In this paper (which, in retrospect, seems woefully inade-
quate to convey the new ideas generated in the course of the
DUCHESS design) we have tried to illustrate that the
primary problem with most modern information systems
lies in an inherent rigidity both in their data structure and
in the control structure. This ridigity tends to lead their
users into assuming that the scope of information manage-
ment systems should include only those functions presently
implemented: storing, retrieval, searching and sorting, and

‘elementary analysis. The ideal information system should

have these capabilities plus opportunities for developing
individualized procedures, via a programming language or
other means. We hope that the DUCHESS project will
illustrate that the practical implementation of such a flexible
system is not only possible but no more difficult that the
design and implementation of a rigidly restricted system.
Furthermore, we demonstrate that this flexibility does not
come with a higher price tag, for DUCHESS efficiency
compares favorably with its less flexible predessors.

REFERENCES

1. Dean, A. L. (editor), Proceedings of 1972 ACM-SIGFIDET Work-
shop Data Description, Access, and Conirol, (available from the
ACM).

40 National Computer Conference, 1974

2. Gates and Poplawski, “A Simple Technique for Structured Variable
Lookup,” Communications of the ACM, Vol. 16, No. 9, September
1973, pp. 561-564.

3. Jones et al., CODASYL Data Base Task Group Report, April 1971,
(available from the ACM).

4. McKeenan, Horning, and Wortman, A Compiler Generator, copy-
right 1970, Prentice-Hall Inc., Englewood Cliffs, N.J.

5. Ornstein, Stucki, and Clark, “A Functional Description of Macro-
modules,” Proceedings of the Spring Joint Computer Conference,
1967, p. 337.

An analytical model for information processing systems”

by SHENG-CHAO HUANG

Sperry Gryoscope
Great Neck, New York

and
AMRIT L. GOEL

Syracuse Unwversity
Syracuse, New York

INTRODUCTION

Information processing systems are an important sector in the
application of computer technology to the fields of on-line
data processing and the management of large complicated
data bases.! With an increase in the number of systems being
designed and used, there has been an increasing emphasis on
the modeling and performance evaluation of such systems.
In Reference 4 Nunamaker presented a procedure for the
design and optimization methodology of such systems. In
some cases,’® the evaluation procedure was reduced to the
evaluation of file structure and data base organization.
Kobayashi’ gave an algebraic modeling of information
structures. In this paper, we carry out the study of mean
response time by taking into consideration host processor
environment, user characteristics and the data base structure.
Total system response time is the main goal of this in-
vestigation.

An information processing system is defined here as a total
operating environment consisting of users; information
management system, which includes jobs and procedure,
data definition and other software packages; host computer
system; and data base structures. The interrelationship
among elements of this total system is shown in the following
block diagram.

Information) Host
. System Management [<= Computer < Data
users System System Base

In general, the information management system can be
considered as a special purpose operating system consisting
of two parts. The first part is called the main system which
has the capability of file creation, data maintenance, job and
procedure creation, ete. The second part includes subsystems
which could be treated as the internal service system for
data access, data index, storage allocation, privacy protec-
tion, restart and recovery and other miscellaneous funections.

* This research was supported, in part, by RADC, Rome under contract
number F-30602-72-C-0281.

41

The information management system interfaces with its
host processor through the host operating system. The data
base is stored in the memory hierarchical structure of the host
system. Thus, a user can reach his data only through the path
shown in the above diagram.

Total system model parameters to be included in the sequel
are (1) user characteristics, (2) overhead time from the
information management system and the host processor, (3)
host processor operating environment which would determine
the waiting time of a job and the main memory space allo-
cated for the job execution, and (4) the data base structure
which is reflected in the logic data relationship and the
physical data storage.

In the next section, we briefly present an algebraic and
topological model of the data structure within an information
processing system.

DATA BASE STRUCTURE AND
DISTANCE MATRICES

Let E be the set of entities to be considered within an
information processing environment. Let

o= (I...,IIL)

be the distinct properties assigned to the elements of E. Then
II is to be treated as a mapping from the entity space E to
the property space V, i.e.,

IoI: E-5V=VXVyX+++ XV,

The point II(e) € V is then called the record of e€ E. A subset
D of V such that D={II(e); e€ E} is called the data base of
the entity E. If

D=F,UF; U--- UF,

then F; is called a data file in D, where ¢ is an empty set.
From now on, we shall use z;, =1,..., N, to denote a
recordin D or F, i.e., z;=I1(¢;), e;€ E.
For every z; in D, a unique physical space is assigned in
the secondary storage device. Let S indicate the physical
storage space. Then the address assignment can be considered

and F;NF;j=¢ for isj,

42 National Computer Conference, 1974

as a one-to-one mapping « from D to §, i.e.,

D—8. (1)

. al

An essential element of information processing is data retrieval
which could be treated in two parts. One part is the mapping
a1 from S to D, and the other part is the data transmission
from the secondary storage device to the main memory. One
such operation is to find and retrieve all records within the
data base which possess certain property values. Explicitly,
let G be a subset of a data file F, such that

G={z:2€F, p(z) =T} (2)

where p is a logic function and 7T is defined as logical true.
This implies a continual data retrieval within a system. For
example, the data retrieval for p is to find all records in F
such that p is true. To start with, the first record has to be
retrieved and after that other records will be retrieved
sequentially according to the topological relationship between
these records. In the next paragraph this topological relation-
ship is defined probabilistically.

Let 3, @3, . . . , zy be all records within a system which are
of interest to us. In other words, zy,...,zy could be all
records in a data base or in a certain data file. Suppose for an
arbitrary retrieval function p,, we want to obtain records
among i, . . . , Zy. We define a probability matrix P® of p,
with its elements for 7, j=1, ..., N, being

Py =probability that the first record to be obtained is
record z;,
P,y =probability that z; is demanded immediately after
the retrieval of z;,
and

P;r=probability of reaching the end of the process
immediately after the retrieval of ..

Note that there are many different jobs to be processed and
the number of occurrences of processing for a job vary from
one to another. Assume that there are M application pro-
grams and M retrieval functions, py, . . ., pur. Furthermore,
assume that the probability of occurrence of p, is p, such that
>°¥ p.=1. Then we can define a matrix P

Pol Poz...PoN P()e
P=| Py Py...Py P. |, 3)

PNI PNZ---PNN PNe

whose elements are defined as follows

M
Po;= Ep"p()ir: t=1,...,N; pe=0,
r=]
M
Pij= E PrPii’; ‘i7j=17 ey 1\!?, (4)
r=]
and
M
Pio= Y ppid, i=1,...,N.
r=]
In practice, p,, r=1,..., M, and hence P is a function of

time. However, for simplicity, we shall assume that p,’s are
constants and hence P is a constant matrix. Note that, for
i=0,1, ..., N, it can be easily shown that

N

2 pitpe=1 (5)

7=1
The matrix P defined above is called the “logical distance
matrix’’ or the “reference matrix.”” It represents a pattern of
reference behavior in a particular system and can be con-
sidered as the measurement of logical distance among ele-
ments within a data file or a data base. It is apparent that the
elements of P are the parameters determined by the user’s
characteristics and differ from one installation to another. .

The mapping « defined in (1) assigns a physical space to

every x in D. This should be done is such a way that the
preservation of distance is obtained as much as possible. The
physical distance, £;;, between z; and z; is defined as the time
required for the retrieval of z; immediately after the retrieval
of z;. It is not necessarily true that ¢;;=t;;. Note that ¢;; is a
random variable and let E(#;) denote the expected value of
t;;, Thus we can define the ‘“physical distance matrix” in a
data base as follows

E(tn) E(w)...E(@w) E(t.)

E(T)= | E(t) E(tm).._lE(tw) E) |, ()

E(tv) E(tw) ... E(tyy) E(ive
where

;

E(t;) =the mean time to obtain z; from the secondary
memory to the main memory when z; is the first
record in the string of reference and

E(t()e) =E(t15) =t =E(tN¢) :0

The distance matrix defined in (6) is not only dependent on
the physical file organization of the data base in the memory
hierarchy, but is also dependent on the search and indexing
methods within an information management system.

THE MEAN RETRIEVAL TIME

From the previous analysis it can be seen that the following
quantity 7’ can be used for the evaluation and optimum
design of physical storage assignment,

N N
T'= 2 2 puB(ts), ™

=0 j=1
where N is defined as before. Obviously, it is desirable to keep
T’ as small as possible. In order to do so, one problem in the
address assignment is to minimize (7) with respect to
E(t;), ,5=1,..., N, subject to certain appropriate con-
straints. Because p./’s are determined by the user’s char-
acteristics, they are to be treated as constants in the
minimization procedure. Since it is not the main concern of
the paper at this point, we shall go back to the modeling

aspect of the average retrieval time.

The model given in (7) does not take into consideration

An Analytical Model for Information Processing Systems 43

the fact that in certain jobs the string of references may be
quite long and some records may be referred to more than
once during the execution of a job. This means that, for a
fixed amount of main memory allocation, a record may
already be in residence when it is referred to so that a search
in the secondary memory space is unnecessary. Now assume
that the main memory space allocated for the execution of an
information processing job be m page frames (or blocks). For
a given job r, define a matrix Q"= (¢i/), ,j=1,..., N, so
that ¢;; is the probability of z; being in residence immediately
after the retrieval of z;. Thus a matrix for missing records
probability in the execution of job r could be defined as
[I—Q]= (1—gq;;) where I is defined as a matrix with all
entries equal to 1. It can be readily seen that the searching
probability of record z; immediately after the retrieval of z;
is given by p:;;7(1—¢;;7). This naturally leads to the definition
of “search matrix” A,, as follows:

Por” Doz” -« Pon" Do
A= pu"(l1—qu") pe'(l—qw") ...pw (l—qw") pi"

pvt"(1—gn1") pae"(1—awa™) - . . pan™ (L —gun") pre
(8)

Note that Q" matrix should be different for different jobs.
However, its probability average can be obtained in the same
way as we obtained the matrix P in the previous section. It
should be pointed out that since ¢;;”’s are functions of time,
the search matrix A, is also dependent upon the duration of
a job being in the execution stage.

Suppose a job r is being processed and it keeps a string of
records as reference, ie., let K={x;, ..., 2x,} be the set of
records referred to during the processing of a job. Then the
total time spent in data retrieval is given by

N N
T,=B(t)+ 22 22 pi (1—gi) E(t:) €)
i=1 j=1
where E (£,") is the expected retrieval time for the first record.
In general, ¢;7 depends upon p;/ as well as on the time
sequence. However, for simplicity, we here assume that

% , for k.>m
Qi = (10)
0, for k.<m

Equation (10) is based on the assumption that the system
has reached its steady state where all the allocated main
memory space has been occupied. Thus, this part of analysis
could be considered as a steady state analysis. The transient
case, which deals with the time interval between the starting
of a job and the time when all the main memory space is
occupied, shall be considered in another paper. Assuming
k.>m and substituting (10) into (9), we obtain

T.=E({t7)+ 2 2 pif’ (1— %) E(t:;) (11)

=1 7=l

Note that parameters k. and p;;” are predetermined by the
application programs and jobs. Hence, all of them should be
considered part of the user’s characteristics. The value of m is
hardware dependent and E(;;) are characteristics of physical
file organization and search mechanism. Thus, equation (11)
gives the total retrieval time for a job r in terms of the user’s
characteristics, physical file organization, searching methods
and the hardware constraints.

If the total number of jobs within an information pro-
cessing system is M and if each job r has the probability p.
of being processed, then the expected value of the total
retrieval time for a job is

M N N m
B(T) = Lo {EG)+ T T (1-F) B} (2)

=1 j=1

Equation (12) ean be further simplified by letting
1 N
E(ty) = N > E(t)=E(t), for r=1,...,M, (13)
=1
and

M
2 Pepii = Pis;

r=1

By substituting (13) and (14) into (12), we have

M -
PrePij Dii

E —_— = = 14

r=1 k" k ()

N N
BT =B+ X Xps(1- F) B (9)

=1 j=1

Note that & and ps; are the parameters inherent within the
set of all possible user’s jobs and thus represent a measure of
the user’s characteristics.

It needs to be noted that E (¢;;) consists of two major parts;
one part is the search of data address and the other part is to
get the data from specific address in the secondary memory
to the main memory. The first part depends on the search
method and the way files are organized, while the second
part depends upon the way data are stored on the secondary
storage device. This means that both the search method and
the file organization are the parameters in equation (15).

TOTAL SYSTEM RESPONSE TIME

The total system response time is defined as the interval
between the time a user submits his job and the time when
the satisfactory result is obtained. Suppose that the host
system is multiprogrammed and a job presented to it will be
forced to spend some time in the system queue. Thus, the
total response time could be divided into two portions:
waiting time T, and processing time T',. Since it is not our
intention to investigate the queueing properties of the host
system, we simply assume that the mean waiting time is T
under the operating environment. Then the total system
response time, T, could be expressed as

T=T,+T, (16)

The time spent in job processing could be viewed as the
sum of the time for information fetching, time for job execu-

44 National Computer Conference, 1974

tion which includes decoding and binding, etc., and the over-
head time which will include input-output overhead as well as
system overhead. Let T'g, T'. and T, denote the times spent in
data fetching, the time for job execution and the overhead
time, respectively. Then T, can be written as

Ty=Ta+ T+ To, (17)
or
E(T,) =E(Tz)+E(T.)+E(T,). (18)

In some information management systems the job execution
is divided into two stages. In the first stage a job is prepared
by the management system before transfer to the host
operating system for real execution. The procedure at this
stage of work could include data search and retrieval, data
binding, data decoding, ete. During the second stage of pro-
cessing, the prepared jobs are executed through the host
operating system. Under such a circumstance, E(T,) could
be further divided into two terms:

E(Te) =E(Tom)+E(Ta), (19)

where E(T..) is the mean time for the pre-execution of a job
which is under the control of the information management
subsystem and E(Ta) is the mean execution time under the
supervision of the host operating system. Likewise, the over-
head time can also be classified into two categories as follows:

E(To) =E(Ton) +E(Twn) (20)

where T, is due to the management subsystem and T is
the responsibility of the host operating system.,

Assume that the overhead factor is approximately equal
for both the information management system and the host
operating system. Then we can write

E(To) =3E(T,), (21)

where & will be called the overhead coefficient. Substituting
(21) into (18), the processing time becomes

1
E(T,) = 1% LE(Tr)+E(T.)] (22)
It then follows from (22), (15) and (16) that the mean

response time of an information processing system could be
expressed as follows:

E(T) = Put — [E(T) +5(T)]

_ 1 - I m ‘ i
= Tw+1—_g [E’(to) +22 2 pi;’(l—kT)E(tif) +E(Te)J

=1 j=1

(23)

In some cases T can be assumed to be linear with respect
to the task length, i.e., for some constant C,

E(T.) =Ck.
Then (23) could be rewritten as

- 1
E(T)=Tu.+ (_1?85

N N
X [E(t0)+ > 2 pis (1— %) E(t,-,-)+015] (24)
=1 j=l1

Equations (23) and (24) indicate that the response time of
an information processing system is a function of the user’s
characteristics, host processor operation environment, over-
head factor, and the data base structure. The user’s char-
acteristics are reflected in the fact that k£ and p,;’s are param-
eters determined by the jobs and procedures. The average
waiting time in the host system’s queue and the overhead
time could be considered as the host system operating
environment and the E(t;;)’s and p:/s could be considered
as properties of the data base structure.

REMARKS

Since the research reported here is a first step toward analytic
modeling and performance evaluation of information pro-
cessing systems, the results obtained here are by no means
final. Further research in this direction is needed. Currently,
two research efforts are being pursued; one in the area of
model refinement and the other in the area of data procure-
ment and analysis.

REFERENCES

1. Tobias, M. J., and G. M. Booth, “The Future of Remote Informa-
tion Processing Systems,” Proceedings FJCC 1972, pp. 1025-1035.

2. Dixon, P. J., and J. Sable, “DM-1: A Generalized Data Manage-
ment System,” Proceedings SJCC 1967, pp. 185-198.

3. Fichten, J. P., “The Weyerhaeuser Information Systems—A Prog-
ress Report,” Proceedings FJCC 1972, pp. 1017-1024.

4. Nunamaker, J. F., Jr., “A Methodology for the Design and Opti-
mization of Information Processing Systems,” Proceedings SJCC
1971, pp. 283-294.

5. Myers, J. E., and 8. K. Chooljian, “An Approach to the Develop-
ment of an Advanced Information Management System,” Proceed-
ings SJCC 1970, pp. 297-306.

6. Severance, D. G., and A. G. Merten, “Performance Evaluation of
File Organizations through Modeling,” Proceedings ACM 1972,
pp. 1061-1072.

7. Kobayshi, I., “An Algebraic Model of Information Structure and
Information Processing,” Proceedings ACM 1972, pp. 1090-1104.

A model for a generalized data accéss method”*

by RANDALL L. FRANK

The University of Utah
Salt Lake City, Utah

and

KOICHI YAMAGUCHI

The University of Michigan
Ann Arbor, Michigan

INTRODUCTION

The proliferation of the methods used in modern operating
systems to access data is apparent. In the operating system
08/360 alone there exist multiple ways of accessing se-
quential data (BSAM, QSAM, BPAM), indexed sequential
data (BISAM, QISAM) and directly addressable data
(BDAM).* If one adds to this the variations of the above
used by various systems that run under the control of
08/360, such as IBM’s data base management system
IMS/360, there exists almost a countless number of ways to
access and store data within a computer system.

This proliferation of data access methods has left persons
involved in the design, implementation or evaluation of new
or existing access methods with an almost hopeless task.
In order to better understand the nature of data access
methods, a model has been developed in whose terms existing
and proposed data aceess methods can be stated. This paper
will discuss the components of such a generalized data access
method and give examples of its use in modeling existing data
access methods. Parts of the model to be presented are at a
further state of development than others, and, therefore, at
times a formal discussion of parts of the model may be
replaced by a more informal functional description.

A discusston of existing data access methods

Sinee the need for such a generalized data access method is
in part based on the fact that we lack a common basis with
which to discuss data access methods, it is difficult to offer
very many global remarks about existing data access meth-
ods. Nevertheless, several general observations about data
access methods will be offered.

* Research sponsored in part by the Air Force Office of Scientific Re-
search, Air Force Systems Command, USAF, under Grant No. AFOSR-
72-2219. The United States Government is authorized to reproduce and
distribute reprints for governmental purposes notwithstanding any
copyright notation hereon.

45

Computing hardware, in general, tends to be rather in-
hospitable to the average users of a computing system. In
particular, input/output hardware and its associated protocol
tend at times even to make system’s programmers cringe.
Thus, one of the more important functions of data access
methods is to provide a cleaner user interface between the
user and the underlying hardware.

While the hardware on a given computing system remains
fairly constant, user requirements and needs change con-
stantly. Thus, another important function of data access
methods is to take a fixed hardware/input-output environ-
ment and provide a virtual environment which more nearly
matches the environment desired for a particular application.
However, any time an operating system designer attempts to
provide a fixed number of such virtual applications oriented
environments, users will come along whose requirements are
not met by the access methods provided. Thus, many
operating systems provide for “escape” access methods which
allow the user (and, indeed, require him) to interact with
the intricacies of the input/output hardware, providing him
with only basic support. An example of such a facility is the
EXCP (Execute Channel Program) access method in
08/360.5

Clearly, it would be desirable to provide for tailored ac-
cessing methods without forcing a user to spend undue
amounts of time learning the details of a particular hardware
system. One purpose of the generalized data access method
model to be presented here is to allow for such data access
methods tailoring at a fairly high level. Thus, the parameters
to such a model must be in the form of user-oriented, and
where possible, machine independent languages. The user
should be able to state his access method requirements in
languages natural to his application, rather than those con-
venient to a particular machine.

Goals of this research

Several of the goals of this research effort have been
alluded to above. Four primary goals to be set forth for this

46 National Computer Conference, 1974

effort are:

(1) the ability to model existing and proposed access
methods.

(2) the ability to compare different data access methdds
in a common terminology.

(3) to provide a facility with which one can easily create
and try out new access methods tailored to a par-
ticular application.

(4) to enable one to read and write files which are foreign
to a particular hardware/software system.

The first two goals above are highly interrelated, and
amount to providing a common language with which to
discuss data access methods. Attempts to perform com-
parative analysis of file organizations and access methods
(see, for example, Severance?) have found that before any
analysis could be performed, a common model had to be
developed. While models have been developed to facilitate
the analysis of specialized aspects of data access methods,
for example, performance aspects, little work has been done
previously in developing a model with applicability to a
wide range of problems.

As was mentioned earlier, when the access methods pro-
vided by a vendor are not ideal for a particular application,
one is forced to either make do with an existing access
method, or design one from the ground up, and specify it
usually at the machine level. It is interesting to note that
even computer vendors have found their own provided access
methods unsuitable for some of the applications software
they provide. For example, IBM, in designing IMS/360,
decided not to use the standard access methods of OS/360,
but instead to develop new ones particular to IMS, such as
HISAM.% Even programs such as the IBM Mathematical
Programming System/360 have ignored operating system
provided access methods in favor of specialized accessing
techniques using the above mentioned EXCP facility. While
these above two major software efforts could afford the time
and expense needed to develop new access methods from
scratch, the normal user, finding himself in a situation where
existing access methods lead to sub-optimal results, often
cannot afford the time or money, or lacks the expertise, to
design and program a new access method. Thus, a high-level
access method design facility is called for..

The fourth goal, which was the original motivation behind
this work, has to do with the translation of foreign data
files. Foreign in this sense implies software and/or hardware
incompatabilities. In the course of research in general file
translation at The University of Michigan,! it became ap-
parent that two of the functional components of a generalized
data translator were readers and writers.

Since the basic premise of The University of Michigan
research was that data translation could be performed using
a very high level stored data description language, it follows
that these general readers and writers would likewise have
to be driven by statements in this high level language. While
the basic design of such general readers and writers is often
simpler than that of a completely general data access method,
much of the underlying model is the same. For example, in

general data translation the question of the data base update
function can be ignored while in a general data access method
this is a necessary function.

A review of related work

There are several research and/or developmental efforts
that are related to our endeavors. However, none of them
appear to fully comply with all four of our goals as stated in
the previous section. Some of the more interesting research
includes work on formulating a model for data description
by IBM and by the Stored-Data Definition and Translation
Task Group of CODASYL, and a development of a descrip-
tion-driven data translator at The University of Michigan.

Data independent architecture model (DIAM)

A group at IBM research in San Jose has formulated a
model for describing data structures, as well as data accessing
properties of a wide variety of data base systems.® The
model, called the Data Independent Architecture Model
(DIAM), uses a limited number of basic concepts so that it
can be useful not only in describing and ecomparing various
aspects of existing data base systems, but also in designing
and implementing new data accessing methods.

The DIAM structure is based upon the four hierarchically
related models in describing data, starting at the very ab-
stract view of data in terms of entities and relationships
among them, down to the encoding on physical devices. The
most interesting features of DIAM are seen in the second
and the third levels in the structure, the String (Access
Path) Model, and the Encoding Model. In the String Model,
various access path structures independent of their encoding
techniques and physical implementations are described by
varying parameter values of the three types of access path
(strings) and by specifying simple operations on these strings.

The stored representation of each element of the access
path structure thus defined is depicted in the Encoding
Model. All the relevant information on encoding each ele-
ment of the access path structure is collected in a fundamental
unit, called the Basic Encoding Unit (BEU), so that vari-
ations in encoding can be nicely expressed in terms of the
BEU structure and the process of data factoring applied on
BEUs. The combination of these three concepts, access path
structures, BEUs, and data factoring, provides DIAM with
a general capability of characterizing and evaluating existing
and proposed data base systems.

Stored-data definition and translation task group
(SDDTTG)

In 1970 a task group of the CODASYL Systems Com-
mittee, the Stored-Data Definition and Translation Task
Group (SDDTTGQ), was formed to formulate a stored-data
definition language, which is a means of explicitly and
formally defining data as they appear on physical media, in

A Model for a Generalized Data Access Method 47

order to facilitate data exchange among possibly dissimilar
systems. The initial results of the Task Group were reported
at the 1970 SIGFIDET (then SICFIDET) Workshop.1t

Two major criteria have been set forth by the Task Group
in developing a model for stored-data description. One is the
generality of the model so that it cannot only be applied to
existing structures, but also easily be extended to new
structures. The other is the separation of logical aspects of
stored-data from its physical representation in storage.

In accordance with this guide line, the Task Group intro-
duced a model at the 1972 SIGFIDET Workshop.?* The
model is based on the stored-data description models de-
veloped by Smith® and by Taylor.®* The model currently
being revised by taking the concepts presented in DIAM
into consideration consists of two independent streams of
data description. One stream describes logical aspects of
stored-data, and the other describes the structure of storage
media on which the data is represented. These two descrip-
tions are combined into one in order to complete the total
description of stored-data.

Data translation project

The Data Translation Project at The University of Michi-
gan has expressed as its goal the development of a general
methodology for transferring data from one environment to
another. With this research goal in mind, the project under-
took, as its first year’s work, the task of developing a proto-
type data translator, in order to demonstrate the feasibility
of the technical approach (i.e., a language-driven data trans-
lator as stated in an earlier section), and to gain a better
understanding of the problems associated with data trans-
lation.!

The prototype translator developed translates files gener-
ated by NIPS, which operates on an TBM/360 computer,
into input files for WWDMS, which operates on a Honeywell
H-6000 computer.? Although in a rather restricted manner,
the major components of the translator are driven by two
forms of high level languages: stored-data definition language
and translation definition language. The stored-data defi-
nition language is used to describe input and output files
and the translation definition language is used to make an
association between input and output file descriptions. After
a successful accomplishment of the first year’s task, the
project is currently undertaking the task of developing a more
general data translator by relaxing the allowable classes of
input and output files, as well as by making the translator
more language-driven.

OVERVIEW OF THE GENERALIZED DATA
ACCESS METHOD MODEL

This section will present and motivate the overall structure
of the generalized data access method model. Successive
sections will discuss in depth the various components of
the model.

The elements of the model to be presented shortly can be

divided into two categories, namely language elements and
algorithms. The generality of the model is derived from the
fact that the algorithms are driven by high-level language
descriptions of the desired access method to be modeled.
Thus, the algorithms do not as such constitute a particular
access method, but merely allow for the simulation of any
access method which can be described in the language ele-
ments of the model.

A block diagram of the model will be useful for future
discussion, and is shown below:

access
method
description
language
generalized operating secondary
ing system storage
/ algorithms ("supervisor” device
—
requestor-
data- data
core manipulation
image language

Figure 1—A model for a generalized data access method

The main substantial difference between the above model
and those of existing specialized access methods is the ad-
dition of the access method description language. However,
it is this additional element which enables the remaining
components to act in a generalized fashion.

The operating system component is placed in the model
based upon the realization that such a generalized access
method would not be used in a vacuum. However, the
operating system here is meant to represent just the minimal
environment necessary to support the generalized access
method in a multi-user environment. The operating system
assumed here exclides components currently thought of as
file systems and specialized access methods. These latter
components would be built on top of the generalized access
method. Thus, the entire model could be considered to be
within the realm of a comprehensive operating system.

The “verbs” of the data manipulation language are, of
necessity, somewhat dependent on the access method de-
seribed. For example, access methods which provide for no
direct addressing could not (easily) support a data manipu-
lation command requesting that the system deliver a record
whose key has a certain value.

However, this is not meant to imply that there is a fixed
data manipulation language. The verbs in the data manipu-
lation language are only restricted by the descriptive capa-
bilities of the access method description language and the
algorithms which use that language. Thus, one could define,
for an inherently sequential access method, a “find direct”
verb. However, the semantics for such a verb in a sequential
access method might necessitate a linear search of the data
base or file.

Certain data manipulation language constructs, such as
“next” relative to a current position in a file, are easily
implementable for most aceess methods. However, its imple-

48 National Computer Conference, 1974

mentation may have very different specifications for different
structures on secondary storage. The definition of “next”
would be quite different for a sequentially organized file as
opposed to a list structured file. Thus, while the external
semantics of “next’” are access method invariant, its imple-
mentation may vary widely.

Thus, the data manipulation language is only access
method independent to the extent that one specifies not
only an access method in the access method description
language, but also an implementation for all desired data
manipulation commands. Precisely which data manipulation
commands should be specified for all access methods will
not be discussed here, although, through example, certain
common data manipulation commands will be presented.

Limatations of the instial research and design effort

In order to limit the scope of the work, several assumptions
were made as to the desired level of generality. These limi-
tations have to do primarily with the class of machines usable
with a single implementation of the generalized accessing
algorithms.

The primary interest here is in studying differing access
methods and not in the detailed input/output hardware of
computer systems. Therefore, it was decided that description
of the access methods would stop at the level above that of
the actual input/output instructions of a machine. This
restriction limits the usability of an implementation of the
generalized accessing algorithms to a given machine archi-
tecture. This also implies that the generalized accessing
algorithms are responsible for, via “hard code,” the trans-
lation of access requests in the data manipulation/access
method description languages into actual 1/0 commands for
a particular machine.

While many aspects of I/O device architecture are de-
scribed in the languages of the model, it is assumed that the
accessing algorithms know, in a pre-defined sense, how to
interpret such descriptions for a given machine architecture.
For example, one section of the access method description
language discusses the development of secondary storage
device addresses. However, the accessing algorithms would
be responsible for converting a data request to/from such
an address into actual hardware I/O commands. These
might include a seek request to a particular cylinder, followed
by a transfer request.

An obvious extension of this work would be to provide
languages for the description of the structure of the I/0
instructions of a machine. Further levels of description might
include generalized bandling of I/O interrupts and error
conditions. While this area is being investigated, it will not
be considered further in this paper.

THE ACCESS METHOD DESCRIPTION LANGUAGE

Central to the concept of the generalized data access
method is that of high level languages for describing access
methods. The access method description language is itself

made up of several sub-languages. The two most important,
ones, to be discussed here, are the device description language,
and the accessing language.

Since the accessing language is based upon primitives
defined in the device language, the device description lan-
guage will be presented first.

The device description language

The device description language is based on an assumption
about the current nature of secondary storage devices.
Namely, that such devices can be described in hierarchical
terms, with each element of the hierarchy using only elements
of lower levels as its components.

For example, one possible hierarchical description of a
disk drive consists of storage cells at the lowest level, ie.,
positions where bits or characters of data can be placed.
At higher levels, records can be viewed as being composed
of storage cells, tracks of records, cylinders of tracks, and
a disk volume as being composed of eylinders.

It should be noted that this decomposition of a secondary
storage device into hierarchical levels is not unique for a
particular device, but merely possible. For example, in the
above device description, tracks on a single disk surface
could be considered to make up the next higher level of the
hierarchy. These disk surfaces would then comprise a disk
volume.

Thus, the device description language must not contain
any assumptions as to the hierarchical breakdown of devices,
and must allow for any realistic description. As such, there
are no ‘“‘pre-defined” names for components of devices. Any
semantics associated with a device component (such as
“record’”) are given by the user when the accessing of the
device is described in the accessing language. The accessing
language description is done in terms of the device com-
ponents specified in the device description language.

Rather than present detailed syntactic and semantic de-
seriptions of statements in the language, a functional descrip-
tion of the language will be presented, followed by possible
examples of its use. The language is at a state of development
where detailed syntactic decisions have not been completely
specified. The examples, therefore, are meant to merely give
the flavor of the language.

Elements of the device description language

The two major functions of the device description language
are to define the aforementioned device hierarchy, and to
describe the scheme used in addressing the device.

As an example device, the IBM 2314 disk drive will be
used.” In order to minimize the complexity of the example,
many low level details associated with such a device will be
ignored. Included in this category are problems such as
damaged track demarcation and alternate track selection.
In a working system based on this model, problems like this
would necessarily have to be described and handled.

A Model for a Generalized Data Access Method 49

The device hierarchy is described from the “bottom up”
so as to allow for components of one level to be used in the
description of higher levels. Keywords in language are under-
lined. The syntax here is merely illustrative, and should not
be viewed as a formal specification.

The first section of the language defines the device hier-
archy, and gives attributes of each level of the hierarchy.

DEVICE IBM-2314 DESCRIPTION;
STORAGE CELL IS BYTE;
BYTE CONTAINS 8 BITS;
COMPONENT IS RECORD:
RECORD COMPONENTS ARE BYTE;
LENGTH OF RECORD IS MIN 1 BYTE
MAX 7294 BYTE;
COMPONENT IS TRACK;
TRACK COMPONENTS ARE RECORD;
LENGTH OF TRACK IS MIN 1 RECORD
MAX 71 RECORD AND MAX 7294 BYTE;
COMPONENT IS CYLINDER;
CYLINDER COMPONENTS ARE TRACK;
LENGTH OF CYLINDER IS 20 TRACK;
COMPONENT IS IBM-2314;
IBM-2314 COMPONENTS ARE
CYLINDER;
LENGTH OF IBM-2314 IS 200
CYLINDER;

In the above description, an IBM-2314 has been described
as containing a basic storage cell of an 8 bit byte. The words
BYTE, RECORD, TRACK, etec., have no special meaning
in the language, but were chosen to make the description
more readable. RECORD is defined as comprised of a mini-
mum of 1 BYTE and a maximum of 7294 BYTE. TRACK
is composed of RECORD, subject to two length constraints,
namely a maximum of 71 RECORD and 7294 BYTE. This
dual constraint is needed since the unit RECORD has a
variable length, and therefore specifying only the number
of RECORD per TRACK is not sufficient.

The remaining elements of the description should be
obvious from the above description. The primary purpose of
this information is to drive the device dependent accessor,
which is deseribed in a later section.

In the second part of the device description language, the
addressing structure of the device is defined.

ADDRESS ENCODING IS DISK-ADDR;
WIDTH IS 40 BITS;
REPRESENTATION IS HEX;
ADDRESS FIELDS ARE CYLINDER-NUM,
TRACK-NUM, RECORD-NUM;
CYLINDER-NUM FIELD IS 16 BITS;
POSITION IN DISK-ADDR IS 0 THRU 15;
RANGE I8 0 THRU 199;
REPRESENTS CYLINDER WITHIN IBM-2314;
TRACK-NUM FIELD IS 16 BITS;
POSITION IN DISK-ADDR IS 16 THRU 31;
RANGE IS 0 THRU 19;
REPRESENTS TRACK WITHIN CYLINDER;

RECORD-NUM FIELD IS 8 BITS;
POSITION IN DISK-ADDR IS 32 THRU 39;
RANGE IS 1 THRU 71;
REPRESENTS RECORD WITHIN TRACK;

Here a 40 bit disk address named DISK-ADDR is de-
seribed. An address is divided into fields, and the structure
of each field, and what it represents, is specified. A permissible
range of values for each field is given in the RANGE state-
ment. Where the particular field is located within the address,
is specified in the POSITION statement. The REPRESENTS
statement relates the address field to the device hierarchy.

The accessing language

It is envisioned that a single specification of a device
would be sufficient for any access method implemented on
that device. The above description of the IBM-2314 could
support many very different access methods for files on
such a device. ’

The accessing language, on the other hand, describes how
data on a device is to be accessed. This is done primarily by
defining accessing primitives, which would then be invoked
by a user to access the data. Once again, there are no pre-
defined primitives. Any primitives which are needed must
be defined in the accessing language in terms of access paths
to a device.

Elements of the accessing language

Once again, this language will be presented in terms of an
example. The example presented here borders on the trivial,
but hopefully will at least give a flavor of the language,
and how it is used to describe an accessing technique.

The access method presented here is for a sequential read
of an existing file on the previously defined IBM-2314. In

. this example only the most basic functions are presented in

order to minimize the complexity of the example.

ACCESS METHOD SEQUENTIAL-READ;

DEVICE IS IBM-2314;

STATUS INFORMATION IS CURRENT-
ADDRESS;

FORMAT CURRENT-ADDRESS IS
DISK-ADDR;

SPECIAL CONDITIONS ARE END-OF-
TRACK, END-OF-CYLINDER, END-OF-
FILE;

CONDITION END-OF-CYLINDER;

RECOGNITION ADDRESS FIELD
TRACK-NUM IN CURRENT-
ADDRESS GREATER THAN 19

ACTION SET ADDRESS FIELD
TRACK-NUM IN CURRENT-
ADDRESS TO 0;
INCREMENT ADDRESS FIELD
CYLINDER-NUM IN CURRENT-
ADDRESS BY 1;

50 National Computer Conference, 1974

CONDITION END-OF-TRACK;
RECOGNITION HARDWARE;
ACTION SET ADDRESS FIELD

RECORD-NUM IN CURRENT-
ADDRESS TO 1;

INCREMENT ADDRESS FIELD
TRACK-NUM IN CURRENT-
ADDRESS BY 1;

CONDITION END-OF-FILE;
RECOGNITION HARDWARE;
ACTION RETURN ENDFILE

STATUS;

In this first section of the language the format of certain
status information maintained by the accessing algorithms
is described. In this case status information named CUR-
RENT-ADDRESS is being kept. The format of this status
information is the same as the previously defined DISK-
ADDR.

The remainder of this section defines certain exceptional
conditions that can occur during the processing of the data.
The criteria for the recognition of the special condition are
specified, as well as the action that is to be taken when the
special condition occurs. In some cases the recognition of
the special condition is assumed to be performed by the
hardware, while in other cases the accessing algorithms
themselves must recognize the special conditions.

The final part of the accessing language defines the ac-
cessing primitives, and the semantics associated with each.
Here only very simple semantics have been specified.

ACCESS PRIMITIVES ARE OPEN, READ,
BACKSPACE, SKIP;
ACCESS PRIMITIVE OPEN;
PARAMETERS ARE FILE-ADDRESS;
FORMAT FILE-ADDRESS IS DISK-
ADDR;
PROCEDURE SET CURRENT-ADDRESS
TO FILE-ADDRESS;
ACCESS PRIMITIVE READ;
PARAMETERS ARE BUFFER-ADDRESS;

FORMAT BUFFER-ADDRESS IS

PRIMARY MEMORY ADDRESS:
LOGICAT, ACCESS UNIT IS RECORD;
PROCEDURE TRANSFER FROM
CURRENT-ADDRESS INTO BUFFER-
ADDRESS;

INCREMENT ADDRESS FIELD
RECORD-NUM IN CURRENT-
ADDRESS BY 1;

ACCESS PRIMITIVE BACKSPACE;
PROCEDURE DECREMENT ADDRESS
FIELD RECORD-NUM IN CURRENT-
ADDRESS BY 1;
ACCESS PRIMITIVE SKIP;
PROCEDURE INCREMENT ADDRESS
FIELD RECORD-NUM IN CURRENT-
ADDRESS BY 1;

In this simple implementation of a sequential access
method on disk, a very basic OPEN function is specified.
Here it is assumed that the accessing program provides the
starting disk address for the file. In a more realistic imple-
mentation, the name of a file would be provided, and the
specification for OPEN would cause a search of a table of
contents on the disk volume for the starting address of the
file. Needless to say, this would cause a great deal more
complexity in the specification of OPEN.

The only primitive here which actually causes the transfer
of information is READ. In the description of READ the
unit of information transferred between the accessing algo-
rithms is named in the LOGICAL ACCESS UNIT phrase.
In this simple case it is assumed that a complete physical
disk RECORD is passed to the acecessing program. In more
realistic descriptions, this simple correspondence between
physical units of transfer and logical transfer units would
obviously not hold. The procedure for mapping physical
transfer units to logical transfer units would also have to be
specified in this case.

The access primitive SKIP and BACKSPACE merely
update the status information CURRENT-ADDRESS.
Thus, on future invocations of READ the order in which
records are returned is altered.

GENERALIZED ACCESSING ALGORITHMS

In order to assure the generality of the data access method
being developed, the algorithms used in the method must be
invariant, regardless of the data to be accessed. In other
words, they must not depend on particular characteristics
of the data. Although the development of such totally data
independent, but practical, algorithms seems improbable,
several approaches can be taken toward that direction.

The approach taken here is to identify a set of primitive
operations of which algorithms used in various data access
methods are comprised. These operations are primitive in
the sense that the semantics of each operation must be
unambiguous and simple, and parameters to direct each
operation must be limited in number and well defined. Then
by reducing the process of data accessing into a series of
these primitive operations, and by varying parameter values
for these operations, the algorithms which can be used for
accessing various classes of data are obtained. In the model,
these parameters are specified in the form of a high level
language as discussed in a previous section.

As mentioned previously, it is not foreseen that a single
set of algorithms will be sufficient to cover all cases of
stored-data. However, hopefully pursuit of this approach
will result in a limited number of sets of algorithms (or a
single set of algorithms with multiple entries, if preferred)
which cannot only be applied to any existing data access
methods, but also easily be extended to new data access
methods. Since the development of such algorithms is still
in its infancy, presented here are functional descriptions of
components of generalized accessing algorithms.

A Model for a Generalized Data Access Method 51

Components of generalized accessing algorithms

In discussing accessing algorithms, it is important to recog-
nize two types of accessing units. One is a unit to which the
data base (or operating) system provides a means of ad-
dressability. We term this a physical access unit. The other
is a unit of information which is subject to access requests
(i.e., a basic communication unit between the user and the
system). This we term a logical access unit. This dichotomy
is the underlying coneept of the model.

As depicted in Figure 2, generalized accessing algorithms
consist of three components: a Controller, a Device De-
pendent Accessor, and a Device Independent Accessor. The
functional descriptions of these components will not be par-
ticularly novel in the sense that they can readily be seen in
existing specialized access methods. However, they are differ-
ent from those in conventional access methods to the extent
that functions of each component are totally driven by the
explicit descriptions of aceess methods.

Controller

The Controller is the part of the system which directs the
entire operation of data accessing. Besides the normal func-
tion of coordinating linkages between various components
of the system, the Controller has three additional functions
to carry out: parsing of access requests, selection of an access
path, and determination of access request fulfillment.

The Controller determines the validity of an access request
expressed in a data manipulation language. Legitimacy of
the request may include access security considerations. This

Access
Request

Controller

SA

Device and
Access

Description

Structure
Mapping

Description h
Tables

A
Device

Independent Depend
Accessor

Stored-
Data

Figure 2—Components of generalized accessing algorithms

Device

Accessor

process is performed by consulting structure mapping de-
seription tables which are obtained from the accessing de-
seription of the language. Once the validity of the access
request is established, the request is transformed into a more
convenient form for further processing. The complexity of
this process depends on the allowable types of requests in
the system.

Given the parsed form of the aceess request, the Controller
then selects an appropriate (logical) access path to fulfill
the request. It should be noted that there may exist more
than one access path which can be qualified to satisfy the
request. Therefore, the process of access path selection in-
cludes the determination of all access paths qualified, fol-
lowed by the selection of the “best’” one among them.
This selection process is also driven by structure mapping
deseription tables.

When a logical access unit is identified by the Device
Independent Accessor, the Controller determines if it satisfies
the access request. If so, the control is returned to the user.
If not, the Controller requests the Device Independent
Accessor to provide the “next” logical access unit on the
access path selected. This request may, in turn, invoke the
Device Dependent Accessor.

Device dependent accessor

Stored-data is an organized collection of physical access
units. Its organization usually depends strongly upon the
characteristics of a device on which the data is located. It is
highly desirable that components of the accessing algorithms
function as independently of these salient characteristics of
devices and file organizations as possible. The function of
this component is to remove such device and organization
dependent characteristics from stored-data, so that the
Device Independent Accessor can function independent of a
particular device used and the addressing mechanism em-
ployed in the stored-data. v

By examining the way that the access path selected by the
Controller is encoded on the device, the Device Dependent
Accessor transmits a physical access unit from the secondary
storage into the main memory. This process is driven by a
set of tables, called device and access description tables,
whose contents are derived primarily from the device de-
scription. These tables are rather independent of the tables
which drive the Device Independent Accessor. Thus, by
driving the two components of the model using a set of
independent tables, the model provides a very powerful
and flexible means of accessing the data. By simply changing
tables to be used by each component, the model permits the
user to access the data, with different access and mapping
strategies, which may reside on various storage devices.

Another function which must be earried out by this com-
ponent is a problem resulting from the possible differences
in elementary data representations between the system which
created the data and the system under which the algorithms
operate. This problem is a very common one when the

52 National Computer Conference, 1974

accessing of foreign data files is considered. These architec-
tural differences can also be resolved in the same technical
approach (ie. the description driven approach). However,
it is felt that inclusion of problems arising from architectural
differences is beyond the scope of our immediate research.

Device independent accessor

Given a physical access unit in a buffer, this component
performs two major functions. The first function is to extract
and identify a logical access unit from the physical access
unit. Here the term ‘“‘extract” is used to mean to separate
one unit from another and the term ‘4identify’”’ to mean to
recognize the name of the access unit. It should be noted
that the order between the extraction and the identification
of a unit is not definite. For example, the unit may first be
extracted and then identified. On the other hand, the identifi-
cation of the unit may be necessary to extract the unit.

The boundaries of physical access units may or may not
correspond to the boundaries of logical access units within a
particular data base architecture. In other words, the re-
lationships between these two types of access units are in
general m:n. Therefore, in order to extract a logical access
unit, multiple physical access units may be required. This
is accomplished by invoking the Deviee Dependent Accessor
repeatedly.

The second function is, given a logical access unit as a
result of the first function, to decompose it into its con-
stituents. This decomposition process is carried out by the
use of storage templates constructed from structure and
mapping description tables. A storage template is a collection
of named elements which schematically represent a logical
access unit. One template is created for each type of logical
access unit. It should be noted that a complete storage
template for certain logical access units may not be con-
structed solely from the information in structure and mapping
description tables. The construction of such a template may
have to be deferred until the decomposition process of the
access unit is initiated. In other words, some storage tem-
plates may be constructed dynamically.

CONCLUSIONS

It has been impossible in this paper to discuss in detail many
of the really interesting questions one confronts when dis-
cussing access methods. Qut of necessary space limitations,
only the basic components of the model for generalized data
access have been presented.

The question of generalized data access is by no means a
solved one. The model presented here is intended as a research

tool and not a production model. In the current languages
the level of procedurality, particularly in describing access
primitives, is much higher than desired. A great deal of
emphasis in the design of the languages was placed on the
factoring of information common to multiple accessing meth-
ods in common places, so that it would not have to be
repeated. However, more work must be done in this area.

It is also felt that there are too many ‘‘pre-defined”
keywords in the languages, which limit the generality of the
model. Lower level descriptions of these current keywords
are needed.

However, the current model gives us an important base
to build upon. An implementation of the current model is
planned, and it is expected that this will give us greater
insight into additional problems. Even with the basic current
model we now have the ability to model many different
access methods in a common language. This alone has given
us valuable insight into the nature of access methods, as
well as having shown us weaknesses in the current model.

REFERENCES

1. Data Translation Project, Functional Design Requirements for a
Prototype Data Translator, Technical Report, Ann Arbor, The Uni-
versity of Michigan, 1972.

, Program Logic Manual for the University of Michigan Proto-
type Data Translator, Technical Report, Ann Arbor, The University
of Michigan, 1973,

3. Fry, J. P, R. L. Frank, E. A. Hershey III, “A Developmental
Model for Data Translation,” Proceedings of the ACM SIGFIDET
Conference on Data Description, Access and Control, November 1972.

4. IBM Corporation, 0S/360 Data Management Services, form #GC26-
3746.

, O8/360 Data Management for Systems Programmers, form

#GC28-6550.

, Information Management System /360, version 2, General

Information Manual, form #GH20-0765-4.

, 2814 Direct Access Storage Facility and 2844 Auziliary Stor-
age Conlrol, form #A26-3599.

8. Senko, M. E. et al., A Data Independent Architecture Model 1: Four
Levels of Description from Logical Structure to Physical Search
Strategies, Technical Report RJ 982, San Jose: IBM, February 1972.

9. Severance, D. G., Some Generalized Modeling Structures for Use in
Destign of File Organizations, Ph.D. Dissertation, The University of
Michigan, 1972.

10. Smith, D., An Approach te Daia Description and Conversion, Ph.D.
Dissertation, The University of Pennsylvania, 1971.

11. Storage Structure Definition Language Task Group, Design Objec-
tives for a Storage Structure Definiiion Language, 1970.

12. Stored Data Definition and Translation Task Group, ‘‘An Approach
to Stored Data Definition and Translation,” Proceedings of the
ACM SIGFIDET Conference on Data Descripiion, Access and Con-
trol, November 1972.

13. Taylor, R. W., Generalized Data Base Management System Daia
Structures and their Mapping to Physical Storage, Ph.D. Disserta-
tion, The University of Michigan, 1971.

A data base management problem specification model

by GERARD T. CAPRARO
Rome Air Development Center
Griffiss AFB, New York

and

P. BRUCE BERRA

Syracuse University
Syracuse, New York

INTRODUCTION

The data base management systems (DBMS) area has been
growing at an accelerating pace over the past few years.
There have been and are DBMS studies being conducted at
many different government, industrial and university es-
tablishments. The work however, is primarily concerned
with the software and hardware problems of building DBMS
with unique capabilities. However, large scale research is
not being conducted in the area of determining the interface
between the DBMS and the data base problems they were
created to solve. Each data base problem is as unique as the
users of DBMS.

The data base problem must somehow be solved in the
space of DBMS. Defining the data base problem in such a
way that one can develop the solution in the DBMS space
is no easy task. Presently, the user cannot define the data
problem to the DBMS community in a language in which
both can communicate effectively. This communication prob-
lem can result in a data base user obtaining DBMS that:
(a) cannot handle the data problem efficiently; (b) will not
handle the data problem efficiently in the future as the
user’s needs change; or (¢) is much more powerful than the
present and future needs require.

Some authors have addressed this problem. Dodd” and
D’Imperio® consider some of the basic problems. Dodd points
out that it was the user’s needs that caused the existence of
different data organizations or structures in DBMS. D’Im-
perio states that in order to take advantage of different data
organizations, the system designer must have a thorough
understanding of the data. Assuming that Dodd and D’Im-
perio are correct, it can be concluded that, if data are going
to be placed efficiently in a computer, the data and their
usage should be thoroughly understood before a data struc-
ture is chosen.

The philosophy of knowing the data and their usage
thoroughly before choosing a data structure is fine in concept
but in reality the people who are designing the system are
not necessarily the people who are going to use it. Benjamin®
looks at information system development from 1950 to the

53

present and the communications that existed between the
users and the designers of these systems. Between 1950 and
1964 typical information systems processed billing, payroll
and stockholder records in a job shop environment as single
functions. When the 3rd generation computer came on the
scene (1964-1968), the number of single function systems had
increased enormously and they were sharing parts of a now
larger data base. At the same time, there was an increase in
hardware and software capability which gave the system
designers the opportunity to coordinate the single function
systems into a more comprehensive system.

The important factor that Benjamin infers, but does not
state, is that between 1950 to 1964, under a single function
system, the problem-solver or user couldn’t convey his/her
total needs to the system designer or programmer such that
the problem could be implemented on the computer in an
efficient way. When these single functions were coordinated
into a comprehensive system, the communications between
the user and the programmer was still degraded. Benjamin
makes this inference when he claims that the users’ jobs
relating to general decision and control were limited and that
strategic management systems jobs for planning and modeling
were deficient; ‘. . . in that their data requirements were not
wholly consistent with that of the operational systems used
by the rest of the organization.” When Benjamin gives
advice to system developers for “Mastering the Organization”
he states that: ““...the system developer must learn to
understand the organization. Having learned how to write
efficient code and how to integrate a number of small com-
ponents into an effective and reliable system, he is free to
tackle systems that encompass functional areas of the organi-
zation at different levels. ...” Benjamin goes on to state
that one of the four things the system developer must do to
master the organization is: ““...to learn how to specify
hierarchically large systems. Rapid progress will depend in
part upon the development of specification languages that
will allow for the complex definitions required. . . .”

Other authors have expressed the need and impact of a
user specification language. Merten and Teichroew? state in
their conclusion: “. . . the design of problem statement lan-

54 National Computer Conference, 1974

guages and the design and construction of problem statement
analyzers are formidable research and development tasks.
In some sense the design task is similar to the design of
standard programming languages and the design and con-
struction of compilers and other language processors. How-
ever, the task appears more formidable when one considers
that these languages will be used by non-computer personnel
and are producing output which must be analyzed by these
people. . ..”

The creation of problem specification languages for com-
puter-based information systems is being attempted today.
Teichroew provides a survey of these languages and defines
the specification for a “requirements statement language.”

Therefore, the purpose of this paper is to present possible
answers to the following questions:

a. What responsibilities in the designing or choosing of
DBMS should be assigned to the data base user?

b. How can the user effectively interact with the DBMS
designers to ensure that the data problem is treated
properly once implemented on a digital computer?

c. How will the user and the system designer effectively
communicate with each other once (a) and (b) have
been determined?

A method by which this may be accomplished is to develop
a model based on the fundamental factors involved in
choosing or building DBMS for data base management
problem. These fundamental factors should include a state-
ment of the data problem, the computer hardware that is to
be utilized for any particular data problem, and the computer
software available on the computer system. The model should
be such that the user’s specification of the data problem can
be utilized by the system designer to determine whether or
not the data problem can be solved. There should be feedback
to the user from the system designer in the same language
in which the user specified the problem. This will enable the
user to see how the specification of the problem has been
changed due to system design problems and/or hardware or
software limitations that may occur in the solution of the
data problem.

The remainder of this paper presents a first attempt at a
conceptual model that satisfies the above requirements. Ad-
ditional work has been performed in the partial development
of a user oriented problem specification language (PSL).3

DATA BASE MANAGEMENT SYSTEM PROBLEM
SPECIFICATION MODEL

A purpose of this medel, in the form of spaces and func-
tions, is to try to provide a language for defining data base
management problems and by so doing to find a solution
based upon the problem definition. Even with the functions
underived the model provides a language to help define the
relationships of different work being performed in the data
base management field.

Essentially, the use of the term spaces is an attempt to
group entities in the data base management field so that

those entities can be evaluated as to where and how they
enhance the finding of solutions to data base management
problems. Along with spaces are functions which are derived
to describe the interrelations between the spaces. The group-
ing of these spaces and functions will, hopefully, help in
describing the data base management system model and
provide a language criteria for discussing data base manage-
ment system design and evaluation.

The Data Base Management System Problem Specification
Model (DBMPSM) can be described as shown in Figure 1.

Let the input space, I, be made up of sets whose elements
are a subset of the attributes of the total data base. Each
set shall deseribe either a physical form in which data may
enter the data handling system or any data maintenance
which by being performed is equivalent to a physical form
of input data. Sets of the space I could be magnetic tapes
containing digital test data, personnel forms, questionnaires,
ete.

Let the output space, O, be made up of all the questions
(or jobs) that a user may wish to ask of the data base plus
any maintenance that has to be performed on the data
periodically within the data handling system. Elements or
tasks contained in the space O can be defined as sets where
each set could be updated personnel files, calculating sta-
tistics from stored data, performing queries on value limits
of particular attributes, etc. These sets shall contain the
attributes needed to perform the requirement defined by the
sets that make up the space O.

P & V are the functions that will develop a problem
specification language (PSL). V(0) is a function that de-
scribes the requirements on the space PS due to the space O.
P(I) is a function that describes the requirements on the
space PS due to the space I. The union of these two functions
will define the problem specification language.

The space problem specification, PS, is defined by the data
base and the user’s requirements through the utilization of
the PSL.

The space PS will bridge the communications gap between
the user and the computer systems designer. It will provide
a specification of the data problem in a language that both
the user and computer software people can utilize to maximize
the probability of determining the proper solution to the
first data problem question of “dees the user need te enter
his/her data onto a digital computer?” If the answer defined
by the interpretation of PS is no, then PS should be used to
help define what is needed. If the answer is yes, then the
functions Q; and @, can be utilized to help determine the
logical file structures needed.

The logical file structure (LFS) space contains all current

s Q (Ps) LFS R, (LFS) ADB P

Probles Logical Available Standard

P
[_(}L.‘ Specifi- File Daca Base [P} o frvare
cation Q,(LFS) Structure R, (ADBIS) Management Programs
Fm—— et - Systems

T(S5P)

V()

Figure 1—System problem specification model (DBMSPSM)

A Data Base Management Problem Specification Model 55

logical file structures available from the available data base
management system (ADBMS) space. Examples of these file
structures could be random files, random serial files, tree
file structures, chain file structures, ete.

The function Q, is defined as a function that will provide
the capability of defining the logical file structure Q.(PS)
specified by the problem specification. If Q,(PS) is not avail-
able within the space LFS, then one of two alternatives are
available.

(1) Qu(PS) can be used as the logical file structure and in
conjunction with the space PS a solution of the data
base management problem can be solved by building
a tailored solution space.

(2) The function Q. can be utilized. The function Q.
provides the capability of defining which logical file
structure in LES defined by Q:(PS) and will also define
the changes to the space PS that have to be accepted
if the logical file structures in the space LFS are
accepted. This is vitally important to the user for
he/she can determine by the changes made to space
PS the impact that will occur because the specification
of the problem has been changed.

If, however, Qu(PS) does define a logical file or files con-
tained within the space LFS, then a Data Base Management
System and/or computer physical storage structure can be
developed.

The space, ADBMS, contains all the Data Base Manage-
ment Systems available to the user. For each DBMS in
ADBMS ali of its pertinent factors are contained and de-
scribed, i.e., physical data storage techniques, query lan-
guage, special software and hardware capabilities, logical file
structures, etc.

The function R; is defined as a funetion that has the
capability of defining the physical file storage structure or
structures R,(LFS) dictated by the logical file structures
contained in the space LFS or derived by Q:(PS). If R,(LFS)
is not contained in the space ADBMS, then one of two
alternatives are available.

(1) Ry(LFS) can be used as the computer physical file
storage structure and in conjunction with the space
P8, a solution of the data base management problem
can be solved by a tailored solution space.

(2) The function R, can be utilized. The function R,
will provide the capability of defining which physical
file storage structure(s) in ADBMS is closest defined
by Ri(LFS) and will also define the changes to the
logical file structures in LFS that will have to be
accepted. This again, as stated for alternative (2) in
utilizing Q.(LFS), provides the user a feedback capa-
bility through Q:(LFS) to evaluate the impact that
will oceur because the specification of his/her problem
has been changed.

If, however, R;(LLFS) does define a physical file storage
structure contained within the space ADBMS, then the
DBMS associated with this structure can be chosen. If,
however, there are more than one physical file storage struc-

tures defined by R;(LFS) and no DBMS in the space
ADBMS contains all of the physical file storage structures,
then the user is faced with the same two alternatives as
described above.

The function W maps into those elements of the output
space, O, which can be provided for directly, because of the
DBMS chosen in ADBMS. Certain DBMS’ have inherent
capabilities that can provide all or some of the needs that
are defined by the output space. These capabilities could be
such things as queries on files due to specific values or ranges
of values, file editing, report production capabilities, ete.

The function 8 is that function which in conjunction with
W(ADBMS) defines the output space, S(ADBMS)U
W(ADBMS)=0.

The standard software program space, SSP, is that space
containing software programs resident on the computer sys-
tem chosen. If S(ADBMS) TS8P, then SSPUW(ADBMS) =
0. If, however, S(ADBMS) QQSSP, then external software
routines must be written.

These external routines are defined by function T; where
T(SSP) =S(ADBMS)—[S(ADBMS) NSSP]. They can be
programs coded, for example, in a standard compiler lan-
guage (i.e., FORTRAN IV, COBOL, etc.) in conjunction
with a special language of the DBMS (query language).

CONCLUSIONS

This research effort was undertaken to try to develop a
feasible model in which the user of a data base could ef-
fectively interface with the design and/or choosing of a data
base management system. Over the past few years the data
user has been slowly taken out of the sequence of events
that lead to the solution of his/her data problem on a digital
computer. The conceptual model developed, DBMSPSM, is
a first attempt to put the data base user as the driving force
in finding a solution to his/her deseription of the problem.

To develop all of the functions and spaces that make up
the DBMSPSM appears to be a very large task. The first
portion that must be performed in this task is to develop a
problem specification language (PSL). This must be ae-
complished first since it is the basis of the model and all
feedback to the user must be described in the PSL. Once
this PSL is completed it should be tested on an existing
data problem to determine its feasibility and ease of imple-
mentation in trying to specify a data problem (derive the
problem specification (PS) space). If this proves successful
then the funetions (Q; and Q.) necessary to map the PS
space into the logical file, structure (LFS) space need to be
derived. This procedure of derivation and testing should
continue until the DBMSPSM is completed by having the
entire model implemented on a digital computer.

REFERENCES

1. Benjamin, R., “A Generational Perspective of Information System
Development,” Communications of the ACM, Vol. 15, No. 7, July
1972, pp. 640-643.

56 National Computer Conference, 1974

2. Bloom, B., “Some Techniques & Tradeoffs Affecting Large Data 7. Dodd, G., “Elements of Data Management Systems,” Compuling
Base Retrieval Times,” Proc. ACM 24th Nat. Conf. 1969, pp. 83-95. Surveys, ACM, June 1969, pp. 117-133.

3. Capraro, G., A Data Management System Problem Specification 8. Mealy, G., “Another Look at Data, FJCC,” 1967, pp. 525-534.
Model, RADC-TR-73-193, June 1973. 9. Merten, A. and D. Teichroew, “The Impact of Problem Statement

4. Chapin, N., “A Deeper Look at Data,” Proc. 23rd ACM. NAT. on Evaluating and Improving Software Performance,” FJCC, 1972,
Conf. 1968, pp. 631-638. pp. 849-857. ‘

5. Chapin, N., “Common File Organization Techniques Compared,” 10. Teichroew, D., “A Survey of Languages for Stating Requirements

FJCC, 1969, pp. 413-422.

. D’Imperio, M., “Data Structures and their Representation in

Storage,”’ Annual Review in Automatic Programming, Vol. 5, pp. 1-75.

for Computer-Based Information Systems,” FJCC, 1972, pp. 1203-
1224.

Integrating data base management into operating systems—An

access method approach

by ALBERTO CEZAR DE SOUZA MOREIRA

The Light and Power Company
Sdo Paulo, Brazil

and

CLAUDIO PINHEIRO and LUIZ FERNANDO D’ELIA

UNIVAC Brazil
Sao Paulo, Brazil

INTRODUCTION

It appears that the final word about Data Management and
Data Base Management has not yet been said. Different
authors stress different points in the rather sparse bibli-
ography on the subject. Different program products and
packages are oriented toward completely distinet ap-
proaches, diverging progressively from a standardization
rather than converging to it.

Therefore the authors felt inclined to attempt a small
contribution in this field by establishing their own approach
toward the problem of implementing a data base software
that behaves according to those concepts. The bases of the
adopted approach are: (a) to integrate closely the data base
management software with the operating system as an access
method, (b) to implement user interfaces that are similar to
the standard data management access methods, and (¢) to
concentrate in flexible data structures and low core usage.

This paper intends to go beyond the usual problems of
data independence, transition from non-database methods,
standardization and others. It intends to present an under-
structure over which to build the solutions for the afore-
mentioned problems. It describes the authors’ implementation
of the proposed approach and discusses some of the important
concepts involved. Data structures, retrieval logic and user
interface are examined and their relationships with the overall
approach is enlightened.

GENERAL APPROACH—AN ACCESS METHOD

The Data Management function in a computer system is
the interface between the user programs and those parts of
the operating system that deal more directly with the
Input/Output devices and their hardware.

Data Management provides centralized services to the
active users in the multiprogramming mix. It interchanges

57

user and files, performing housekeeping and maintenance
tasks and creating an adequate environment to file access
and query. It manages computer resources granting access
to Input/Output devices and sharing them between the
users and at the same time securing data against errors and
accidents.

The authors cannot think of Data Managemeni as a
program package or product. It is an integrated part of the
operating system, interfacing with it at a very low level.
User programs use Data Management as a normal communi-
cation path with the operating system, forwarding requests
and receiving services from the facilities implemented. To
implement those basic access facilities as a set of user pro-
grams would not give any advantage over the integrated
approach. It would certainly add an extra level of system
complexity and overhead, for the interface between user
programs and files would be established at user program
level (which in turn would have to interface with the user
files through some basic access routines) rather than at very
basic physical Input/Output level.

A data base oriented Data Management System should
be no exception. From the software point of view a data base
is a set of user data files in which structural relationships
between the existing data elements have been implemented.
What is desired here is to have the capability of accessing
data fields, segments, records or other structures by name,
relieving user programmers from the physical aspects of this
usage. This is not different from the aims of traditional Data
Management; only the requirements placed on the flexibility
and power of the implemented data structures are much
more stressing.

Data must be accessed in multi-sequential, random and
hierarchical orders; programs must be as independent of
physical data layouts as possible; multiple users and multi-file
data bases must be accommodated. And all this must be
done in such a way that user programs are kept completely
unaware of the physical side of the hardware and software.

58 National Computer Conference, 1974

This approach reflects the belief that the interface between

3‘;2:’;‘“ the operating system and a data management function can
""" v - be advantageously placed at the access method level. It
_____ L brings easy transition from non-database programs through
i::;!;ase the common interface presented to the operating system by
_____ o= the access method. It connotes a powerful centralized soft-
i e ware that can be in the future the standard logical I/0
T parts Work interface for the whole operating system together with its
------ r-- Efffff‘__ compilers, service processors and utility routines.
' - DBAM was designed to operate in a wide range of com-
................. L teteeeeeee= puters and operating systems. It can be run with small
Where used Inventory 'g;;‘;‘g:‘i’gﬁring modifications in virtually any byte oriented machine, from .

Figure 1—Hierarchical relationships

This is the approach that the authors have chosen to
implement DBAM. A Data Base Access Method—this is the
essence of its design. It aims to put data base resources at
user’s hand, integrating him with the operating system at
the lowest possible level. The standard user interface allows
the user to communicate his needs to the operating system
through DBAM is an integrated part of the operating system,
presenting a common interface together with all other acecess
methods and preparing an easy building of the high level
language standard interfaces by simple and straightforward
compiler extensions.

Another important point considered by the authors was to
divorce data base management from data communications.
Handling remote terminals and concentrators, queuing and
dequeuing messages, must be the object of another access
method. Some interactions will exist in the sense that certain
storage techniques when handling telecommunications may
need interfaces between the Data Transmission Access
Method and one of the file management access methods
available, but these are just interrelations between the
various components of the operating system rather than user
programs exchanging data. From the standpoint of a user
who wants to implement an on-line applications program,
it is important that the operating system has the capability
of both dealing efficiently with telecommunications Input/
Output and allowing the implementation of a minimum
access time file structure oriented to the particular appli-
cation. This does not imply necessarily a close integration
"between the data communications and the file retrieval
capabilities, but a simultaneous integration of both the data
communications and the data management with the operating
system in such a way to permit the user to express his needs
in both fields.

The data base access method is therefore an operating
system component available to service his users in a shared
way. Its design must express a tendency toward excellency
and high service level; the usual requisites of Data Manage-
ment functions must be met. Sequential and random retrieval,
associative and hierarchical structures, multilist and inverted
list processing, low core usage, fast response times and
efficient management of system resources must be comple-
mented by management-oriented features like easy transition,
data independence and data security.

very small to very large configurations. Users have available
a standard and general software able to work in a variety
of environments.

DATA STRUCTURES AND ADMINISTRATION
General concepts

An effective data management access method must be able
to handle a variety of data structures and organization
methods. Multiple hierarchical and associative relationships,
sequencing by multiple sort fields and flexible list manipu-
lation schemes must be available.

Data elements

Three basic data elements are recognized by DBAM:
fields, segments and records. Fields are the smaller units of
data with a logical meaning. Segments are sets of fields
stored together as a whole and bearing a logical relationship.
Records are collections of hierarchically related segments.

A user program to control loading in distribution trans-
formers may have, for example, two segments of data: the
transformer segment with transformer data and the con-
sumer segments with all data of those consumers electrically
connected to that specific transformer. Individual data such
as transformer maximum load or consumer connected load
are some of the fields of our segments. A particular trans-
former segment with its associated consumers is the trans-
former record. Furthermore, we might have a feeder record
composed by a feeder segment and all segments related to
transformers connected to that feeder.

Hierarchical relationships

The subordination of a segment te another is what is
basically understood as a Hierarchical relationship. The sub-
ordinate segment is called ‘“Parent,” and the subordinated
is called “Child” or “son.” A given parent can subordinate
many sons under the same specific relationship, or it can
subordinate several hierarchical relationships with many sons
each one. Also a son can be subordinated by several parents,
one for each hierarchical relationship of which that son takes
part. A dependent segment may for its turn subordinate

Integrating Data Base Management into Operating Systems—An Access Method Approach 59

several hierarchical relationships of its own, allowing a multi-
level multi-parent multi-child tree of hierarchical relation-
ships.

As an example, consider a sample manufacturing control
system. In Figure 1 it is shown the relationship between a
part and its manufacturing process by means of the hierarchi-
cal relationship between a Parts segment and an Operation
segment. Also, an inventory segment is depicted as the
necessary subordination for an inventory control application
and a Where-used segment to help in the bill of materials
preparation. For a scheduling operation, work center seg-
ments relate the manufacturing operations to the work centers
where they are performed. Also, for purchasing, purchase
order and purchase items segments are necessary. The
structure of Figure 1 is therefore satisfactory to a range of
different application programs.

Associative relationships

Many applications need that association between data
segments or records based on the equality of a certain field.
Furthermore, it may be necessary to access sequentially all
segments having some common feature or satisfying a set
of common criteria such as fixed field values, segment type,
keys and others. This kind of segment relationship is called
an Associative relationship.

It is possible to include a data segment simultaneously in
a number of associative relationships. The segment can also
participate of hierarchical relationships of its own.

As an example of simultaneous hierarchical and associative
relationships, consider the case of Figure 2.

In the electric billing application depicted, a customer has
up to four different segment types. The Electric Data,
Debits and Payments segments are hierarchically subordi-
nated to the Customer Personal Data segment. This subordi-
nation will allow the applications programs of the Billing
System to selectively process the customer records and to
worry only with data. However, there will be a need to
process customers according to certain particular character-
istics such as type (commercial, industrial, residential), city
district, connected load range, etc. It is possible then to

Personal
Data (1)
1
i :
i .
Electric Debits Payments
Data 02020200 mmmee= L memeeeee—

Personal Data: (1),(4),(5),{7) = residential customers
associative relationship

: (1),(2),(3),(7) = associative relationship
by district.

Figure 2—Simultaneous hierarchical and associative relationships

associate all Customer-Personal Data segments according to
those criteria, defining an associative relationship for each
valid common characteristic. Notice that by defining the
relationships at the segment level it is possible to associate
the customer data record as a whole, for all other data
segments are hierarchically subordinated to it.

Associative relationships have a number of optimizing
features available. Searches are always performed using the
shortest path available. Sequence fields are checked before
the search starts and proper location to begin retrieval is
found, saving many mass storage accesses. Special provisions
have been made for inverted list (that is, list length=1)
search and processing. '

Data base organization

The user data base is a set of files where data is stored in
a blocked direct access format. Block sizes are fixed and
specified by the user for each one of the data base files.
Access is done at the physical input/output level. Segments
are fit into the file blocks and packed together so that
different segments can be specified.

The addressing technique uses two different location modes.
It is possible to have both directly addressable and non-
addressable segments. Independently of the characteristics
of the hierarchical relationships defined for the segment,
an addressable segment must have a key that goes through
a scrambling process called ‘Randomizing’ to generate a
calculated disc block address. Segments are then fit in that
block if space is available. If no room is available in that
block, a new trial is done based on user specifications. The
maximum number of trials before a no-room or no-find eon-
dition is generated is also a user choice.

For each defined relationship a double 4 byte pointer is
generated to point both to the next and to the previous
segment in the list. This technique allows extensive file up-
date without need of file reorganization and also permits the
implementation of broken chain methods for list recon-
struction.

It is also possible to increment the size of a file without
reorganizing the data base. Any new file extent, up to a
certain limit, will be recognized by the access method and
bring an automatic adjustment to the new situation.

Data base control

Data base control is done by using a ‘Schema’ file that
contains all pertinent information about data structures and
characteristics. Segment, record and field descriptions, as-
sociative and hierarchical relationship control data, file de-
seriptions, list headings and queries are stored. Program
Information Blocks, that interface user programs with the
data base, are also resident in the Schema file.

With the aid of file, data and relationship deseriptions—
DBAM access the data base to perform user writes and
reads. Retrieval logic is controlled by the stored queries.
Automatic search and retrieval operations are possible by

60 National Computer Conference, 1974

Records Program o Files -
= Information ! ———
i : Blocks :
T TEmemsmmes [
1 1
[l]
] 1
] i
1] i
b e [S I R
——esssmeees Relationships =====<]'Segments
----- e [Btk i
1]
1 1
1 i
[—
| Fields
e
i
L
[‘
Passwords

Figure 3—Hierarchical relationships in the schema file

the use of Program Information Blocks. These PIBs are
treated as ‘registrations’ of user programs in the data base.
They contain interface information, statistics and the data
base path the program sees, so that an automatic retrieval
operation following these relationships is possible.

The data in the Schema file is grouped in segments and
stored in the same format used to maintain the user data
base. Several hierarchical relationships are established be-
tween these segments. They help the user to control and
audit his data base and his user programs. Data dictionaries,
cross-reference listings involving programs, data and re-
lationships, periodic structure audits and checkups, are
facilitated. Figure 3 contains the main hierarchical relation-
ships implemented in the Schema file.

ACCESSING THE DATA BASE
Retrieval logic

The retrieval logic is built in such a way that the user
“sees’ a straightforward structure of relationships connecting
his data, orienting him to follow those relationships just like
he follows the roads and streets that compose the way from
his house to the office.

The user sees a two-dimensional grid formed by the as-
sociative and hierarchical relationships that were established
at data base generation time. The data base is then a col-
lection of segments linked by both associative and hier-
archical dimensions.

Those dimensions are independent but not equivalent.
Associative relationships are treated as global entities, re-
lating segments and records in an overall manner. The
associative capability is used to establish main paths within
the data base and allow generalization. The hierarchical
dimensions in a local entity, as a search or a sequential
retrieval will always depend on the existence of a parent that
restricts the operations to the local level.

Suppose (recall Figure 2) that we want to retrieve the
debits of all residential customers of a given city-district.

The relationship that ties up all Customer segments of

that district is an associative relationship. The tie between
a Customer segment and a Debits segment is a hierarchical
relationship.

When retrieving the debits, the user logic could be:

1. Global search on the associative relationship that ties
all customers of that district and retrieve the next
residential customer.

2. Local search on the hierarchical relationship that ties
the Customers to the Debits in order to pass to the
user the Debits segments.

3. Repeat steps 1 and 2 until list end.

Once the global search is started, the local search of item 2
does not disturb it. It is always possible to perform a search
in one of the dimensions independently of the other.

The user may interrupt a sequential search and retrieve
data randomly. He may or may not return to the original
search. He may define a pre-established sequence of hier-
archical relationships in a Program Information Block and
do an automatic search based on that sequence. He may also
do a retrieval based on segments rather than on relation-
ships, and, in local searches, he may progress ‘“bottom up”’
retrieving hierarchical parents rather than hierarchical de-
pendent segments.

The user always has a ‘“‘current position” in the data base.
Also there will always be an active associative relationship
and a current active hierarchical path. The DBAM retrieval
module “remembers” its most recent hierarchical path and
also keeps track of all path interchanges. The active paths
represent “roads” he can choose at retrieval time and are
signaled by the interchanges DBAM can remember.

As an example let us consider the case of Figure 4. The
user might search all segments under the “a” associative
relationships until he finds A,. At this point, 4, is the
current position and “a” is the active relationship.

User might then start a hierarchical search to find segment
B, and then segment C. It is possible now to either go back
to A, and restart the associative search (that is still active)
or retrieve segment E, or retrieve segment D, backing up to
segment B,. The path already travelled is remembered to-
gether with all interchange points like 4, and B,.

If an associative relationship was defined for segments
type D, the user could stop the hierarchical search and
proceed through this new associative path which would then
become active in place of the previous active relationship
“@”; also all previous hierarchical paths would be lost because
a new global search would be starting.

Qualifications

With qualifications the user can perform selective search
according to specified parameters. A qualification is a re-
striction that then may be established in order to selectively
retrieve certain segments or record.

The qualifications provide also the means to pass key
values, relationship names and segment or record types to

Integrating Data Base Management into Operating Systems—An Access Method Approach 61

DBAM. Among the entities that may be used to qualify a
retrieval are:

. a relationship name

. a segment name

. a record name

. a Program Information Block name
. a key value

. a field value

-0 o T

Theoretically the user may have a request with no qualifi-
cation. All items are either optional or defaulted.
Following are some sample qualifications.

a. To ask for a EMPLOYEE segment:
(*SEGMENT.EQ.EMPLOYEE)

b. To specify a key value:
(*KEY.EQ.950032)

¢. To limit a field VALUE to be less than 45:
(VALUE.LT.45)

d. To include a Program Information Block in the

qualification:

(*PIB.EQ.FT325V10)

The qualification can be associated by logical AND, OR
or NAND (AND NOT) connectives. For example: the qual-
ification

(*SEGMENT.EQ.EMPLOYEE).AND.(AGE.
LT.45).AND.(JOB.EQ. ENGINEER)

means that the user wants EMPLOYEE segments for em-
ployees less than 45 years old who are engineers.

The OR connective is used to connect two different qualifi-
cations and means that a list merge is to be done. The
qualification

(*SEGMENT.EQ EMPLOYEE).AND.(AGE.
GT.60).AND.(JOB.EQ DIRECTOR). OR.
(*SEGMENT.EQ.EMPLOYEE).AND.
(FATHER.EQ.PRESIDENT)

means that all segments that describe either directors older
than 60 or employees who are sons of the president will be
passed to the user.

A set of qualifications is called a QUERY. The user may
" store queries in the Schema file and retrieve them at run
time. Therefore, the Schema also contains a “Query Library”’
where queries are stored as segments in the common DBAM
format.

When handling a query, DBAM tries to make the better
use of the data base structure. If a global search is made
over an inverted list, list headings are merged or intersected.
If two or more associative relationships are intersected, the
search is made in the shorter path. If sequence data is
specified, the sequence fields in the list headings are searched
and the proper sublist is used as a starting point.

Writing
Writing on the data base is controlled by the Schema
Control data entered at Data Base Generation time. The

Associative relationship "a"

A ———— -———— — —— ———
n-2 An-l n Ane1 A2 An+3
1
1
1
1
]
]
]
1
]]
1]
1 1
]]
1 1
1]
1
By oe-Byp B3 ____ By E
1
]
1
]
1
1
1
1 1
1 1
]]
1 1
1 i
] 1
D
l =--—- Dz c

Figure 4—The DBAM retrieval logic

Schema contains descriptions of all relationships, sequence
fields and sequencing options applicable to user data.

USER INTERFACE
Iniroduction

The user interface with Data Base Access Method involves
a two-sided approach. Data Manipulation Language will be
used by application programmers and systems analysts. Data
Description Language will be a tool for a Data Base Ad-
ministrator or other high level professional in the Operations
area.

Data description

A major point in data deseription is to make language con-
text and concepts as close as possible to the real data struc-
ture. It is easy to understand data structures as associations
of records and fields by means of relationships, but the intro-
duction of new words, structures and abstract concepts
evolved from the computer science practice widens the gap
between systems analysts and Data Management.

A simple language is the best approach. Data Description
Language must be data and structure oriented. One record
for each data base entity, that’s all that is needed. Cross
references, duplicate information or redundancies must be
avoided. The authors believe that adapting data description
to high level languages as COBOL or PL/I may make data
maintenance cumbersome and complicated due to the natural
inefficiency of the language context.

The approach used in DBAM is to have a command for
each file, data element, relationship, program or query stored

62 National Computer Conference, 1974

in the Schema file. Information is entered only once. No
double checking or pairing of commands is needed. No extra
training is needed but the general understanding of the
implemented structures and concepts.

Data manipulation

There are some major objectives to be achieved by the
design of an interface between a user and his Data Manage-
ment software. First, a common interface in assembler lan-
guage must be written so that all other software may com-
municate with Data Management at a basic level. From this
level, all language processors may generate assembler lan-
guage sequences to access Data Management from high level
language user verbs and specifications.

This approach is widely used in non-database Data Man-
agement. It should be no different in data base oriented
Data Management. A user programmer must be able to
OPEN, CLOSE, GET and PUT just like in any other access
method. There are several advantages in using this approach,
like easy transition from non-database methods, fast pro-
grammer and systems analyst training and simplicity of data
base manipulation.

As an example, let us consider the basic user interface in
OS. The user program must build a Data Base Control
Block for its data base which contains basic data base infor-
mation and behaves just like a standard DCB. It is built
using most of the standard OS keywords as MACREF,
DSORG, DDNAME, EODAD, OPTCD and others. A job
control language DD statement may also contain DBCB
information.

An OPEN statement initializes processing, building up
linkages to the access method and its buffers. SETL state-
ment initializes associative and hierarchical searches using
relationship names. GET and PUT are used to access user
data in the data base or insert new data. Also a LOCK

command may be used to update a data element, granting
exclusive access until the operation ends.

CONCLUSIONS

In the present paper the authors intended to defend a number
of points regarding Data Management and Data Bases
and present a real implementation of a Data Base Access
Method in which the concepts presented are implemented.

DBAM runs in 16K bytes under OS, demonstrating that
high effectiveness and low core usage can be simultaneously
attained. Also a wide range of data structures can be imple-
mented, from hierarchical relationships to multilist and in-
verted list associative links.

Data Base management can be interfaced with the oper-
ating system at a very basic Input/Output level. It should
be an access method rather than a program package. Its
communication with the I/O devices should be done at
physical I/0 level. The adoption of this philosophy brings
steady evolution from older systems by progressive and
simple change of the access methods as well as keeping the
original operating system philosophy as much as possible.

A Data Base Access Method can be a standard interface
for all the components of the operating system. The whole
non-removable mass storage can be thought as a data base
within which Source Programs, Load Modules, Work Areas,
Message Queues and other system entities are the active
segments. The logic of the operating system can be imple-
mented as data relationships between the segments, saving a
lot of programming headaches. Operating efficiency and pro-
gramming and systems analysis economies would be achieved
just like any commercial oriented data base applications
program. Core usage and running time would certainly
decrease.

Data Base Management and Operating Systems integra-
tion may be the key for future developments in this area.

A prototype system for interactive data analysis

by GERALD LEVITT, DAVID H. STEWART and BEATRICE YORMARK

The Rand Corporation
Santa Monica, California

INTRODUCTION

The analysis of small and simple data collections is com-
monly accomplished through the application of “canned”
statistical analysis programs. For larger more complex data
collections, however, such programs often do not satisfy a
researcher’s needs. In these cases, the additional use of
specially developed computer programs may be necessary.
These programs frequently require modification and re-
formatting of data to meet their input requirements. These
additional complexities are compounded when a researcher
attempts to investigate alternative hypotheses or pursue
hunches requiring further transformations or restructuring
of the original data collection. Often, this process involves
the services of a professional programmer making repeated
program modifications and computer runs.

To study these difficulties, a prototype computer system
called the Data Analysis System (DAS) was developed which
aids researchers in accessing their data and assisting them in
interactively applying a variety of standard analytic proce-
dures in a unified and consistent manner. Through a com-
prehensive graphical terminal, researchers are able to:
review data in tabular or graphical form, subset and re-
structure the data for hypothesis testing and formulation,
and apply many standard statistical tests.

The DAS, although similar to other systems addressing
a data analysis capability, differs from those systems in
one or two basic respects: (1) the availability of a natural
definitional language to manage and restructure data col-
lections; and (2) the ability to easily and quickly form
graphical presentations of data both in their collected and
restructured forms.!*

This paper presents both the basic design notions used
to develop the system and a functional description of the
facilities it provides.

DESIGN CONCEPTS
Data analysis concepts

The Data Analysis System (DAS) design goals have
drawn heavily upon Tukey’s characterization of the data
analysis process. Five of these characteristics important in
the design of the DAS are discussed below.?

1. Summarizaiion

Summarization is viewed as the process of formal sta-
tistical description. It consists of using statistical models to
test for hypothesized relationships. Applications of sum-
marization techniques include the ability to use the residuals
of summarization processes as data. An example of this in
the DAS is the ability to display the results of a linear
regression and a plot of its residual against explanatory
variables.

2. Ezposure

Tukey defines Exposure as the . .. effective laying open
of data to explore the unanticipated”. This can be accom-
plished by using standard statistical methods on the data
in a flexible way to elucidate new hypotheses and reveal
possibly unknown relationships. It is the ingredient that
has been missing in computer-assisted data analysis because
it requires a level of informality in the use of techniques
not normally considered within the domain of formal sta-
tistics.

3. Iterative Naiure

The data analysis process is characterized by the re-
peated restructuring of data collections and multiple ap-
plications of summarization and exposure techniques. This
process is intrinsically iterative—no step is clearly the last
before it is taken. Human judgment is needed at almost
every step. The analyst must be allowed to flexibly choose a
model for summarization and apply it to any set of data.
An important goal of DAS is to facilitate the interplay
between exposure and summarization.

4. Scaling of Data

One of the goals of data analysis is the search for sim-
plicity in the description or explanations of relationships
between variables.

To permit the use of simpler analysis models there must
be a facility for easy transformation of variables.

5. Missing Daia

Often data used in the analysis process suffer from missing
observations. Dealing with missing values, particularly in

64 National Computer Conference, 1974

multivariate forms of analysis, can be a problem. The pat-
terns of missing observations often vary from variable to
variable. Data in this form can result in a loss of predictive
strength due to the loss of numerous observations.

An important aspect of the DAS approach is to provide
a means of easily identifying, manipulating and managing
missing observations.

Information language

One of the important goals of the DAS effort was to
produce a system that could be used naturally by an ana-
lyst. In order to represent the system to these users and
to allow them to use it in a natural way, we formalized an
information language for data analysis. This information
language presents terms and constructs for dealing with
the data and analysis process. Several of the important
aspects of this information language are discussed below.

1. World View

The world view captured by the information language of
the DAS sees data bases and operations on them as func-
tions of the analysis process rather than as an information
retrieval system providing file retrieval. The DAS language
therefore allows the user to define, label and indicate how
data groups are to be used in the analysis process without
requiring the user to either understand or deal with the
underlying files and data manipulation mechanisms.

2. Nature of the Data

A great deal of the data for analysis is collected and
stored in discretely identifiable units called cases. Cases may
be in part an artifice of the data collection process or in
part a predetermined structure specified by the analyst.

3. Attributes

The data of a case can be conceptually divided into differ-
ent categories called afiribute classes. The term varible is
often used to connote the same property as an attribute.
An attribute class is defined by its name and associated set
of values which may be: empty; consist of only one datum,;
or consist of a large class of related data. For example, in
hospital data the attribute “patient name”’ would be asso-
ciated with one datum, the attribute ‘“patient temperatures”
with series of data and the attribute “patient age’’ null if that
datum was unobtainable. A particular case, in turn, is com-
pletely defined by the enumeration of its contribution to
attribute class values.

4. Sets

Cases that are described by the same attribute classes
may be collected to form a group called a set. Each case in
a set is assigned a unique identifier used thereafter to refer
to the case or a particular attribute value of a case. Con-
ceptually, a set may be thought of as a matrix whose rows

are labeled by case identifiers, and columns labeled by
attribute names. Sets play a very important role in the
process of data analysis. Many of the activities of data
analysis specify, construct and evaluate sets.

User interface

Of primary concern in the design and implementation of
the prototype system has been the interface between the
user and the system. It is of utmost importance that the
medium of communication be convenient and appropriate
to the data analysis context, resulting in users feeling as if
they were dealing directly with their problems.

Because the analysis environment requires facilities as
broad in scope as data management, statistical analysis
and graphing, the tools the analyst must use to carry out
these functions can become exceedingly complex and re-
quire many steps or procedures to accomplish a single task.
It is with a respect for the power of graphic presentation
and its relationship to other analytic tasks that we have
placed a primary emphasis on user control of the system
through a graphic medium.

The methodology employed in creating the interface
utilizes a display tube with a sensitive surface at which the
user can point to invoke system responses. In addition to
graphs and diagrams, the objccts displayed on the screen
include menus of functional options of the system, tutorials,
and requests by the system for action from the user.

A general theme throughout this communication is that
the user should be informed of what is expected of him,
whether or not he has control, and, what the system is
doing. Also incorporated in the user interface is an extensive
subsystem of tutorials used to further clarify the user-
system status. Used in another mode, tutorials are presented
to explain the state of the system and the standard con-
ventions of the hardware and data analysis.

The interface assists the user in selecting and using the
functions of the system. In turn, it elicits the specific func-
tions requested and re-receives control of the system when
a particular function has terminated its activities. Since
functional modules can elicit modules subordinate to them,
another task of the physical user interface is context man-
agement. By context management is meant performing the
housekeeping to determine how a function was entered and,
as a result, determine the alternatives and actions necessary
to return to a previous context, go to a new context, or
return to the initial context. An important task of the user
interface is to make this complexity transparent to the user.

FUNCTIONAL CHARACTERISTICS
The initial display context

The DAS provides its users with two basic classes of
capabilities. The first class consists of operations which are
executed on sets; they include the creation of sets, the
deletion of sets and the display of set data and associated

A Prototype System for Interactive Data Analysis 65

data summary statistics (e.g., max., min., avg.). The see-
ond class consists of a variety of statistical methods which
can be applied to the data contained in sets; these include
the histogram, scattergram, plot, barchart, crosstabulations
(2-way) and stepwise linear regression.

These capabilities are presented to the user for their
selection as options in our initial display context. The
options are organized in two display menus as pictured
Figure 1. A third display menu provides the user with an
added set of options which when selected will generate
tutorial information about the system itself, its operation
and each of its set manipulation and analysis capabilities.

Normally, a user invokes the desired capability by touch-
ing the appropriate option name in one of these menus;
when this happens the display context immediately be-
comes that of the option selected. If the user first selects
OPTION in the tutorial menu, however, the context does
not change. Instead, the user may then point to an item in
any one of the other menus to display tutorial information
about it. The user may easily switch from the invoke mode
to tutorial mode and back again by touching the appro-
priate sensitive areas.

This initial display context is presented when the user
first logs on to the DAS and when he returns to it from
some other context.

Selection of sets and attribuies

All system analysis capabilities require the selection of a
set and one or more of its attributes before that capability
can be executed. The process involves two menus. The
first is 2 menu of set names. This menu is displayed auto-
matically whenever it is needed. On selecting a set from
this menu (using the pointing device), a second menu con-
taining the attributes of that set is then also displayed.

DATA ANALYSIS OPTIONS

S8BT OPERATIONS ANALYSIS TUTORIALS
CREATER SET PLOT OPERATIONS
OBSTROY 8ET HISTOGRANM SYSTEN
SBT SUMMARY DISPLAY BAR CHART OPTIONS
TABULAR DISPLAY CROSSTABS

STEP-WISE REBGRESSION

YOU ARB NOW IN INVOKE MODE
YOU MAY 8BLECT ANY QF THEB ABOVE OPTIONS

COMMUNICATION WITH THE DATA ANALYSIS BYSTEM 18 VIA THE
DISPLAY POINTING DEVICE (LIGHT PEN OR STYLUS). USE YOUR
POINTING DBVICE TO TOUCH THE NAME (ON THE DISPLAY SUR-
PACB) OF THE OPTION YOU SISH TO INVOKE.
TO AID IN YOUR SELECTION NOTB THE FOLLOWING OPTIONS
WHICH APPEAR WITH MOST DISPLAYS:
HELP - PROVIDES A DESCRIPTION OF YOUR CURRENT STATUS
TUTORIAL - PROVIDES A SUNMARY OF THE OPTION SELBCTEBD
TC OSTAIN ADDITIONAL INPOAMATION AERFORE STARTING, TOUCH
THE "OPEBRATIONS* a ~BYSTEMS~ OPTIONS R THE TUTORIAL
MNENU ABOVE.

Figure 1

PLOT DISPLAY

SET NAMES ATTRIBUTE NAMES
SARTELLE [coPYOPTH
COP1ES | SRVYOPTN |

TrinveGas T TSORTOPTN
KOTF INN CPUSCADS
NORMSORT ELAPTIME

SARTELLE ELAPTIME

NUMBR10E <--

LISPLAY PLOT USING MAX & MIN ATTRIBUTE VALUES X-AXES
) Y-AX18 | ELAPTIME

SELECT MAX & MIN ATTRIBLTE VALLES

YOU MAY SELECT AN ATTRIBUTE FOR THE AXT1S INDICATED
YOU MAY SELECT ONE OF THE ABOVE QPTIONS

Figure 2

The desired attribute can then be selected for the capability
about to be executed.

The actual disposition of the attribute once selected
depends on the context in which the selection oceurs. If it
is in a preplot context, for example, the attribute name
will flash along side the axis on which its data will be plot-
ted. Figure 2 illustrates this selection process.

In Figure 2 the attribute NUMBRIOS of set SAWTELLE
was selected for plotting along the X AXIS. Note that
both the set and attribute names selected are displayed at
the bottom of their respective menus. The small arrow at
the sides of each menu when touched will cause a new set
of names to be displayed.

Loading the data analysis data base

Data are entered into the DAS through a batch compo-
nent called the Data Base Loader. The main function of
this component is to transform the input data collection
into an output data file organized to facilitate interactive
data manipulation and display in the on-line mode. This
latter data file is referred to as the Data Analysis Data
Base (DADB).

In addition to forming the DADB, the loader also con-
structs a dictionary defining set and attribute names,
identifies and transforms missing values to a unique form,
provides a facility for selecting random subsamples of cases,
and stores a description of the data collection for eventual
retrieval and display in the interactive mode. This added
information is provided to the Loader in the form of a
data definition directory.

Creation and description of sets

The set formation facility in the DAS provides a mecha-
nism for naming and preserving data relationships in the
system. As the analysts use of the data becomes more and
more qualified, he requires a mechanism to express these
qualifications and name them. The set formation facility
also serves the purpose of allowing the analyst to delete
data items and cases from the body of data he is working
with to provide a simpler analysis or to concentrate on
specific variabies. Set formation provides a method for
recombining data sets and attributes to produce aggre-
gate sets.

66 National Computer Conference, 1974

Command Bxpreseion Set §pecification Expression
1 I

" CREATE SET ' A prom S1s Szs Syrevs Sy |

WiTH ATTRIBUTES:
A!. = £ (s, 8,7 830..8,)

A; = £ (89, 8y, 83...8;)

[T Attribute Specification Ewxpreessions

Aj £ {8y, 850 S3seee8y)
4

WHERE :

s [~ Membership Specification Expression

1>azands~3<s‘

Figure 3—Set formation language

1. Set Formation Process

Set formation is achieved by the use of a language. This
language, in turn, drives the data management system. The
set formation command, although having a superficial ap-
pearance of a programming language, is a definitional
command. It describes the characteristics of the resulting
set.

In the present implementation of the Data Analysis Sys-
tem the user types into the terminal the command form to
be executed. The system saves the command form for every
set created and permits easy retrieval for editing and re-
execution as well as set description. In addition, during the
set creation process a set of basic summary statistics are
computed for every attribute in the set created. These are
also retrievable for review.

2. Syntax and Semantics of Set Creation Language

Every statement in the command language consists of
four expressions:

—Command expression

—Set specification expression
—Attribute specification expression
—Membership specification expression

The manner in which these expressions fit together in a
statement is represented in the paradigm in Figure 3.

Command Ezpressions

The command expression of the statement specifies that a
set is to be created. This includes a variety of forms, i.e,
FORM SET, FORM, CREATE, CREATE SET. The
number of sets and their function in the statement is deter-
mined by the command scope.

Set Specification Expressions

Figure 3 is an illustration of the form of the set formation
command. In the example, the “A’ and “S;, Sy, S;, ... 8,”
are sets in the set specification expressions. “A” is a char-
acter string chosen by the user to be used as a name for the

set to be created. This name will be added in the dictionary
of set names. “S;, S, 83, ...8,” is a series of character
strings representing names of sets already created and
maintained by the system.

Attribute Specification Expressions

Attribute specification is accomplished by functional
expressions involving attributes of the sets specified. The
attribute specification expression of the command, that is,
“A; = (81,85 8;,...8,)” in Figure 3 defines a character
string “A,” which is to be the name of an attribute of the set
being created. It also specifies, from the source sets, which of
their attributes are to be used in forming the object attribute.

The source set attributes to be used can be manipulated
before being included in the new set. The mathematical
functions allowed for this operation are the standard set
available with FORTRAN compilers. In addition to these
mathematical functions Boolean subexpressions are per-
mitted to define alternative functional forms for an attri-
bute. In this manner alternative functional forms can be
used based upon the value set for specified attributes in
each case.

Membership Specification Expressions

The membership specification in the command applies
a restriction on membership. This specification limits mem-
bership by filing, in the object set, only those cases whose
attribute values satisfy the Boolean expressions of mem-
bership.

Membership specification is accomplished by a Boolean
expression of attribute values of the members of the sets
specified. This expression follows a “WHERE” clause and
results in the command being executed only on those cases
of the specified sets where the conditions of the logieal
expression are found to be true.

3. Formation of Subsets

One of the uses of the set formation language is the crea-
tion of subsets. This is accomplished by the use of the
membership specification expression. Cases for the subset
are chosen on the basis of their attributes values satisfying
the Boolean expression. Those cases whose values do not
satisfy the expression are not included in the subset.

4. Formation of Sets by Union and Intersection

In addition to creating proper subsets the set formation
language can be used to define sets that are formed from
more than one parent set. This type of formation can be
performed by either the union or intersection operation.
When each case (or observation) of data is included in the
master set (i.e., the DADB) at loading time a unique identifier
is assigned. This identifier is perpetuated throughout all
sets in which an observation may be defined as a member.

When the set specification expression contains more than
one set name for the source set, a union or intersection

A Prototype System for Interactive Data Analysis 67

specification is ineluded. These processes are performed on
the identifier attributes in the source sets and are used to
reassemnble data groupings in a building block fashion or to
locate those observations contained in sets of data repre-
senting different characteristics.

5. Set Summary Display

As discussed earlier, when a set is created a group of
summary statistics are computed for each attribute. The
set summary display option permits the user to retrieve
these statistics as shown in Figure 4.

By changing set names the user can selectively recall
related attributes from other sets and easily compare the
statistics. Figure 4 shows a case where the user has called
up 2 attributes (CPUSCNDS, ELAPTIME) for 2 different
sets (SAWTELLE, FINNEGAN). In this case FINNEGAN
is a proper subset of SAWTELLE and the set summary
facility is being used to compare the two sets.

Analysis of sets

The Data Analysis System allows the user flexibility in
analyzing and viewing his data and its interrelationships by
providing the following analytical packages:

e Two variable plots with curve fitting
e histograms

o barcharts

cross tabulations

o stepwise regression

The following is a review of the above tools and their
associated features.

Two Variable Plots

To obtain a two variable plot the user requests the ploi
option and chooses the two attributes for the respective

SET DISPLAY

SET NAMES ATTRIBUTE NAMES
SAWTELLE PRNTOPTN
COPIFS COPYOPTN
YFinNEGAN T YsOrRTOPTN T
XOTFINN CPUSCADS
NORMSORT ELAPTIME
FINNFGAN FLAPTIMF
SETNAWF SAWTELLF" SARTELLE SAWTFLLE FINNEGAK FINNEGAN
ATTNAME CPUSCNDS SORTOPTN ELAPTIME P D ELAPTIME
gssszT==d ===23T=sSST == TTTSTIITEIT s ==szsss=I===
MINIMUM 0.00 0. 0.00
MAX IMUM 283.00 1. 3519.00
RANGE 283.00 1. 3619.00
MEAN 25.48 . 551.30
STANDEV 82.89 0. 814.42
VARTANC 3984.72 °. 243285.31
Sawpsiz 76.00 18. 16
RMEAKSO 344882.43 2.00 72237138.00
ITTTTTI=) EETTSISITT szss==zss=ssS Tz=TT=TTST

70
s} []
—
561)
—
Yapr
F : —] | |
B o} ml
g
E 35+ —
g o -
Y 28 —
21+
14
7+
0 =
15.00 24.8% 34.68 44.52 54.36 64%.20 74.0% B83.88 93.72
AGEIND1
SET: 15017
csea 5 s serserssrssssrsrsssarerntens
HIN= 17.00 NO. OF INTERVALS=
HAX= 96.00 INTERVAL S1ZE= 3.28
HEAN= 49.1% CHI-SQUARE= 229.63
VARIANCE= 358.52 DEG. OF FREE.= 22
STD. DEV.= 18.93 NO. OF POINTS= 905
* (2222 LT T saeans veesdesssnsnansnesas

Figure 5—Histogram display

axes of the graph (as shown in Figure 1, 2). The system
automatically computes the grid using the minimum and
maximum values of the chosen attributes. When the com-
puted scattergram is displayed, the user receives, in addition
to the graph, a set of statistics for each attribute. The sta-
tistics displayed include: minimum data value, maximum
data value, sample size, mean, standard deviation, variance.

With the plot displayed, the user may rescale the grid
to focus attention on different sets of ranges. This option
is used, for example, when there are outliers or clustered
data values.

Also, after the plot appears on the screen the user may
choose to fit the data with a line. By choosing this option,
the system computes the best fit of the data in the form:

y=ax+b

The computed line is displayed along with values for a,
b, and the statistics indicating ‘‘goodness of fit” (i.e., corre-
lation coefficient, r2).

Histogram

To compute and display the frequency distribution for
an attribute having numeric values, the user indicates this
to the system by choosing the histogram option and the
attribute for which the histogram is to be drawn. The histo-
gram is computed by using the maximum and minimum
attribute values and the sample size. The computed histo-
gram is displayed along with relevant statistics (see Figure
5).

When the frequency distribution has been displayed, the
user has the option of rescaling the grid (if, for example,
he detects an outlier) and redisplaying the histogram using
these new values. As in the plot option, the user may recom-
plete and display the histogram as often as necessary to
achieve desired results.

68 National Computer Conference, 1974

Barchart

The barchart option allows the user to obtain a frequency
distribution display for an attribute having discrete numeric
or alphanumeric values. Along with the displayed barchart,
the values for relative and absolute frequency are displayed
similarly to the histogram. If the data is numeric, the follow-
ing statistics are also displayed: minimum velue, mazimum
value, mean, number of observalion, variance, standard devia-
tion.

Crosstabs

The crosstab option of the DAS gives the user the ability
to display a 2-way crosstab. After indicating to the system
that he wants the crosstab display, he chooses the two at-
tributes which are to be cross tabulated. At this point the
user has two options. He can let the system automatically
generate the crosstab by computing the row and column
values from the attribute data values or he can choose the
values for the rows and columns explicitly.

Along with displaying the absolute frequency count for
each cell, the user can indicate that he wishes the system
to compute and display one of the following relative fre-
guency percentages:

e percent of row total
o percent of column total
o percent of total sample size

The crosstab is displayed along with row and column
totals, and relevant statistics for each attribute.

After the crosstab has been displayed, the user has the
option of changing the row and/or column vaiues, choosing
a different relative frequency count to be displayed and
redisplaying the crosstab with these new values. As in the
other packages, new crosstabs may be computed and dis~
played as often as the user desires.

Stepwise Regression

The stepwise regression option is entered when the user
indicates to the context manager to perform a regression
analysis. Upon entering the package, he chooses a dependent
variable and up to 29 independent variables to be included
in the analysis. After the attributes have been chosen, the
user has the option of setting his own tolerance limits for
the regression (i.e., F-to-enter, F-to-remove, tolerance level
& maximum number of steps), or of letting the system use
its default values. The regression computation may proceed
in two different ways: (1) The user can direct the system to
perform the regression automatically letting the system
choose the variables to be entered or removed at each step
until the analysis is complete (i.e., one of the tolerance
limits has been reached) or; (2) He can explicitly choose
the variables to be entered or removed at each step, thus
allowing him to have control over the variables to be entered
or removed regardless of the tolerance levels.

This option is usually used when a definite model is being
pursued.

At each step of the regression, or for the last step if the
first mode is chosen, the following information is displayed:

step number

variable entered/removed

standard error of the estimate

multiple r

analysis of variance table

list of variables in the regression equation
list of variables not in regression equation

® o © o ©o o o

When the regression is completed, a summary table is
produced which summarizes the results of the regression
at each step.

Also, at any point during the regression analysis, the user
can view the following statistics are displayed for each
variable in the regression:

mean, standard deviation, correlation
with other variables, covariances with
other variables

After the summary table has been produced, the user can
display a tabular listing of the residuals and plot the resid-
uals against any of the variables in the regression.

If the user discovers either at the end of the regression
or during the regression that he has not chosen the correct
variables, or that the tolerance limits should be changed,
he can stop the regression, change the relevant information
and restart the analysis. This can be done as often as is
necessary to test the hypothesis.

IMPLEMENTATION
Reliance upon existing software

It was our intent, from the outset of the Data Analysis
project, to capitalize upon as much existing software as
possible. We felt that by doing this we could direct our
efforts to those portions of the system which were unique
and had not been addressed before.

The following are several highlights of this approach:

o Implementation Language

The major part of the Data Analysis System was
written in standard FORTRAN IV. The decision was
made to use FORTRAN since most computer systems
support it and thus provided options for portability.

e DAS Language Processor

The command language developed for the Data Analy-
sis System is translated using APARELS (A Parse
Request Language). APAREL is used as a series of
commands in the standard PL/1 language. APAREL
was chosen since it not only freed us from developing a

A Prototype System for Interactive Data Analysis 69

language parser of our own, but also avoided the de-
velopment of a unique translator for the DAS language.

o Graphics Software

All of the graphics manipulation and display was ac-
complished using the Integrated Graphics System
(IGS)7 developed at The Rand Corporation. IGS is a
series of graphic routines callable from languages with
standard 0S/360 linkage.

o Analysis Pac.kages

Whenever possible, the analysis packages provided by
the system were taken from standardized, widely used
packages and adapted to the interactive environment
of the Data Analysis System. For example, this was
done with the stepwise regression facility. For this we
used the stepwise regression package of the BIOMEDS
Library (BMDO2R).

Hardware and sysiems

The prototype system has been implemented at The
Rand Corporation on an IBM 360 model 65 computer
under OS/MVT. The total amount of storage needed to
run the system is 228K.

The hardware used for the graphical displays in the
prototype system is the Rand Videographics System (VGS)?
and a pointing device. The VGS consists of an interactive
graphics console comprised of a cathode ray tube (CRT)
and a keyboard. The pointing device can be either a data
tablet or a light pen.

EXPERIENCE
Variety of users and responses

The Data Analysis system has been exposed to a variety
of data bases, researchers, and research methodologies.
These applications have included: the analysis of medical
research data, studies in computer performance analysis,
studies in the production of software and use in econometric
and management sciences.

The response of these users to the system has been diverse
which, in part, can be explained by the diversity of the
data analysis process itself, i.e. there does not seem to be a
single or predominant approach to analyzing a body of
data. Significant variance in response seems also linked to
both the analysts expectations from the data and the pre-
conditioning of previous analysis experiences.

Two possible appeals of system

Some found the system most useful for data description
and general “getting acquainted” with the data before
applying in depth analysis techniques not supported by the
system. For these users, the histogram, barcharting and
plotting capabilities were used extensively to gather insights
before applying more robust tests to the data.

Others found the system more useful for searching for
unanticipated relationships in the data. These users found
the system useful in forming hypotheses about the data
and the phenomena under investigation. In some cases they
felt that the data description capabilities of the system
were better served by a batch processing system. These
users said they generally began their analysis by performing
data description on all variables routinely and were not
disposed to performing this activity in an interactive mode.
They felt this process was too routine for them to be inter-
acting directly with the computer.

ACKNOWLEDGMENT

The authors would like to extend special thanks to Tom
Wisniewski of RAND who was an integral member of the
team that designed and implemented the Data Analysis
System. Thanks are also due Carol Johnson of RAND who
programmed the cross tabulation module of the system.

REFERENCES

1. Shure, G. H., TRACE—Time Shared Routines for Analysis, Classifi-
cation and Evaluation, System Development Corporation, TM
2621/001/00, October 1966.

2. Miller, James R. III, DATANAL: An Inierpretive Language for
On-Line Analysis of Empirical Data, MITRE Corporation MTR-
487, September 1967.

3. Hall, D. J, and G. H. Ball, “PROMENADE—An Interactive
Graphics Pattern-Recognition System,” In Proceedings of IFPI
Congress, 1968, Edinburgh, Secotland.

4. Bowman, S., and R. A. Lickhalter, “Graphical Data Management
in a Time-Shared Environment,”” Proceedings SJCC, 1968, Thomp-
son Press.

5. Tukey, J. W.,, and M. D. Wilk, “Data Anpalysis and Statistics:
An Expository Overview,” Proceedings, Fall Joint Computer Con-
ference, 1966, San Francisco, Spartan Books, Washington, D. C.

6. Balzer, R. M., and D. J. Farber, APAREL—A Parse Request
Language, The Rand Corporation, RM-5611-1-ARPA, September,
1969.

7. Brown, G. D., and C. H. Bush, The Integraied Graphics System
for the IBM 2250, The Rand Corporation, RM-5531-ARPA, Oc-
tober, 1968.

8. Dixon, W. J., Editor, BM D—Biomedical Computer Programs, Uni-
versity of California Press.

9. Armerding, G. W., and T. O. Ellis, The Video Graphics Project,
The Rand Corporation, D-17788, September, 1968.

Quantification in a relational data system*

by NORTON R. GREENFELD

University of Southern California
Marina del Rey, California

The desire to express interrelationships between symbolic
objects has been with us for some time, along with exploration
of relationship systems which are operational in a computer.
These systems coalesced under the term relational data
systems (RDS), and a technology for dealing with this kind
of data evolved. Relational systems have been through
feasibility tests, experimental usage! and should become
generally available to the computing community in the near
future. The advantages which account for the expanding use
of RDSs are a simple, formal definition which allows associ-

ative processing, extreme flexibility in both structure and .

use, an ability to be efficiently implemented, and a notation
and conception which is not dependent upon any particular
physical data representation.

Earlier stages saw the use of relational systems in computer
graphics,? natural language systems,?* general data manage-
ment tasks,®® and artificial intelligence research.”-# Experi-
ence with such systems has shown, however, that while the
technology is adequate for small problems, for practical work
it needs further development, especially in the area of
quantification over relational forms.

By quantification here we mean substitutional quantifi-
cation, as opposed to other kinds such as referential or ob-
jective quantification. These others involve general problems
of deduction, a topic much too large for this paper. The
limitation to quantification over describable entities leaves
us none of the philosophical problems, but only ones of
engineering. Substitutional quantification is still important:
it is our only means of summarizing, and searching across
large portions of a data base. Thus, “Is there some NCC
paper longer than 20 pages?” or “Which NCC papers discuss
data base problems?” are examples of simple queries with
quantifiers. A more complex example might be: “How many
NCC papers in this conference reference at least four NCC
papers which reference at most three other NCC papers?”’
Methods for making queries like these efficient have been
investigated as part of the REL project and are incorporated
into the current REL English system.® This paper will

* This research was carried out as part of the REL Project, principal
investigators Bozena H. Dostert and Frederick B. Thompson, at the
California Institute of Technology. It is supported by Office of Naval
Research Contract N00014-67-A-0094-0024, National Science Founda-
tion Grant #GH-31573, Rome Air Development Center Contract
#F30602-72-C-0249.

71

discuss the nature of the problems and the types of solutions,
along with some implications for relational systems design.

RELATIONAL DATA SYSTEMS

The following brief overview presents a vocabulary of
relational systems. An RDS consists of a set of objects
(often called entities, items, atoms, ete.) and a set of relations.
Objects are primitive in the sense that they have no further
structure, but can only be distinguished from one another
and enter into interrelationships with each other. A relation
is a set of ordered tuples (with the same number of elements
in each). The degree of a relation R, written deg(R), is the
number of elements in each of its tuples. A relationship is
any single tuple in a relation, denoted by [R Al... An],
where R is the relation name and Al through An form the
tuple which is contained in R. Mathematically, given sets S1,
..., Sn, an n-ary relation is a subset of 81X ... XSn. Si is
called the ¢th domain of the relation. Most RDSs single out
the relations of degree 1 and call them sets or classes, and
this convention will be followed here.

The primitive operations usually allowed in an RDS are:

1. creation and deletion of objects (or equivalently, the
acquiring of the name of a heretofore unused object
from a presumably infinite but fixed universe of
discourse);

. creation and deletion of relations;

3. the addition or deletion of a given relationship to a

given relation;

4. a predicate which determines if a given relation con-
tains a given relationship;

5. a retrieval function which, given a partially specified
relationship, finds all relationships which match. A
partially specified relationship means one in which
some subset of the components of that relationship
have been replaced by free variables.

]

Implementation questions in the past have dealt mainly
with problems of efficient representation and access algo-
rithms. The earliest representations were the LISP property
list:10 each atom had associated with it a list of the form
(propi valuei propZ vaiueZ . . . propn valuen). Semanticaliy,
binary relations (prop) associate the atom with (value).

79 National Computer Conference, 1974

Operationally, given an atom and a “property,” a linear
search was conducted to find the value. Furthermore, only
this particular access path is facilitated: to find the set of all
pairs associated by a given property requires an inordinate
amount of effort.

The need for symmetrical access in an efficient manner
was-first recognized by the LEAP originators.® This system
basically used hash-coding and redundant data storage to
achieve outstanding performance. The implementation saves
binary relations (roughly) by hash-coding any two of the
three elements involved (in a relationship) together to get
a location to store the third element. Thus, the data is
triply redundant and access by any two items is fast. Access
by any single item was facilitated by further structure,
essentially a threaded list through the hashed items. Other
implementations of relational systems represent relations as
vectors of n-tuples, or matrices.*2 This representation is
symmetrical, relatively simple and slow (by comparison)
for retrieval of single items, though fast for bulk retrieval
or update.

The relational systems mentioned above have all imple-
mented substitutional quantification by means of explicit
generators. The meaning of the term is clear from the follow-
ing algorithmic interpretation of the predicate calculus state-
ment “For all x, P(x)”:

. generate first (next) object in the universe

. if no more to generate, exit with value “true”

. bind the variable x to the name of the generated object
. evaluate P(x)

. if value is “false,” exit with value “false”

. otherwise (value is “true’’), continue at Step 1.

[« B, BN SNV R

Thus the classic quantifiers, for-all and for-some, can be
interpreted as rather simple algorithmic forms. Note that
the interpretation of P in no way depends upon its being
used inside the scope of a quantifier, an important system
simplification. The diversity of desired quantifiers has re-
quired other forms, and to describe their interpretation as
generators we will use LEAP as the prototypal example.

LEAP has items, sets, and triples. Items are atomic, and
objects are either items or numbers. Sets are unary relations,
distinguished in syntax and implementation. A triple is a
notation whose first element is the name of a binary relation
and whose second and third elements are the components
of that relation.

LEAP is embedded in an ALGOL-like language and uses
the following syntax for a triple: [A.O =V], signifying ‘“Attri-
bute of Object= Value.” A retrieval can be requested by
replacing any one or two elements of a triple by a variable
name in an appropriate LEAP statement.

LEAP has one construction for a quantified expression,
the (loop statement) whose syntax is

FOREACH (associative context) DO (statement)

The {associative context) is a conjunction of Boolean expres-
sions and retrieval triples. The operation of this construct

can be described more easily in terms of a paraphrase:

FOREACH (binding list) SUCH THAT (associative
context) DO (statement)

where (binding list) contains those variables mentioned in
(associative context) that are not already bound to some
value. (This latter syntax is actually used in SAIL,Y a
descendant of LEAP.) The processing of this statement
entails considering each of the conjunects in the (associative
context) in sequence, and using them both to filter values of
variables already found and to retrieve possible values of
other variables. The result of this process is a set of simul-
taneous values for all the variables in (binding list), each of
which satisfy (associative context). The iterative execution
of (statement) then takes place, with (binding list) variables
being bound appropriately each time.

Note that in this LEAP operation, (associative context)
is stated in terms of the primitive relational retrieval request
of single relationships, and the system in fact implements the
combined request by translating to that level. Both this
imposed conceptual view and the implementation originate
problems, which will be discussed in the next section.

PROBLEMS OF SIZE

The implementation of relational structures described
above and the interpretation of quantifiers as generators have
proved adequate in the past, but new applications with new
requirements have revealed deficiencies. In most cases the
problems are ones of efficiency, though there are also some
conceptual implications.

The most immediate efficiency problem is one of size:
today’s data bases dwarf yesterday’s. This large size means
that a hierarchical memory environment is important, and
dramatically influences the relevant operational character-
istics of algorithms. Since the larger memory stores are
slower and have more inertia than the smaller, primary
stores, an algorithm’s reference pattern to memory influences
its elapsed time for execution. Particularly in the case of
huge amounts of data, a slow execution time may be deemed
equivalent to “impossible.”

The LEAP hash-coded data structure was designed spe-
cifically with these problems in mind. For any single request
to the data base, usually only one block of data need be
brought from secondary to primary memory. That is, the
algorithm references locations that are close to the desired
data. None of the other implementations are as efficient for
this purpose.

However, another important time for efficiency occurs
during a quantified search, when a great deal of the data base
must be checked. This is where the explicit generator method
may be ineffective. To take the simplest case, for example,
suppose we wish to find the image of a given class C, already
known, under a given binary relation R. The LEAP statement
would be

FOREACH x IN CAND [R.x = y] DO PUT y IN IMaGE.

Quantification in a Relational Data System 73

Execution consists of generating the next member of the
set C and binding that value to x, then doing an associative
lookup on R and x, and for each value y found, adding it to
the class IMAGE. In this simple case the best that LEAP
can do is to reference some part of the relation R for each x
value. If the data about R all fits into main memory simul-
taneously, then it will likely be brought in once and left
there. However, when the relation R contains more data than
will fit, a frequent occurrence, the reference pattern of this
generator algorithm becomes unbearable.

To make this clear, suppose the routine has available K
areas in main memory in which to place blocks of data, and
suppose the data about relation R occupies M*K blocks.
To find the value of R.x for a given, generated x, the system
determines which block of R contains the information, and
if that block is not already in main memory, brings it in.
Since hash coding algorithms work best with uniformiy dis-
tributed hashing functions, we can assume that any of the
M*K blocks is equally likely to be required. Thus there is a
probability of 1-1/M that a block must be brought in from
the slow secondary memory for each value given x, that is,
each member of the class.

The implications of this statement become more apparent
when one considers that it is now easy to find data bases
with classes containing from 1,000 to 100,000 members, and
relations which are 10 to 100 times larger than available
main memory. In these circumstances the hash technique
will perform 1,000 to 100,000 input/output operations, while
other methods, described below, require from 100 to 1,000.

The argument can be made, of course, that future gener-
ations of computers will have much larger primary memories
and so this particular problem will disappear. What is not
taken into account is that as our machine capabilities grow,
the problems we wish to tackle will grow proportionally or
even faster. In the case of memory size, larger capacity will
make small problems extremely easy, but data bases are
growing faster than our ability to manipulate them. The
techniques mentioned here and elsewhere, and the foreseeable
hardware developments, do not even allow us to deal effec-
tively with the really immense data bases already available
today.

SIZE PROBLEM SOLUTION

The solution to the memory reference problem has been
rediscovered many times: group requests both spatially and
temporally. For special purposes one can arrange the physical
representation of the data and the accessing algorithms to
maintain a locality of reference. In an RDS this means
identification of those basic operations performed on relations
by quantifiers and implementation with algorithms that have
the appropriate characteristics. These operations become
new “primitives” to the system and thus force new con-
ceptualizations of the environment which have impact beyond
the immediate reason for their introduction. Some of these
implications will be mentioned in succeeding sections.

A complete list of primitive operations for a relational

system falls beyond the scope of this paper, but some ex-
amples will convey the intent. Suppose R and S are n-ary
and i-nary relations, respectively.

1. the permutation of R by k [k a permutation of the
integers 1 through n] is that relation T such that if
(R1, ..., Rn) is in R then (R(k1), ..., R(kn))
isin T.

2. the union of R and S (both n-ary) is that relation T
which contains (T1, ..., Tn) if that relationship is
in either R or S.

3. the restriction of R by S is that relation T such that
if (RI,...,Rn)isin Rand (R1,...,Ri)isin 8
(and i< =n), then {(R1,...,Rn)isin T.

These new operations subsume certain quantified state-
ments, similar in effect to a Skolemization. The use of these
operators allows system recognition of particular quantifi-
cational circumstances, and thus efficient handling. If, in
fact, most use of quantifiers can be buried within such
primitives, then extremely effective relational systems can
be built and utilized over a variety of domains.

To consider the problem of efficient implementation, we
use the restriction operator as a concrete example. In general,
the algorithm must find all relationships in R whose initial
components match some relationship in S. Because of the
statement of the operation, an obvious implementation sug-
gests itself. If a relation is stored as a vector of tuples, the
classic technique of sort/merge works marvelously.

The analysis of input/output activity is enlightening.
Suppose that R is stored on Rb blocks of secondary memory
and contains Rr relationships. In most systems, the number
of relationships per block ranges from 100 to 1,000. Similarly,
S occupies Sb blocks and contains Sr members. Since we are
considering the case in which R and S are very large compared
with available main memory, the hash-code technique must
input approximately Sr blocks of R (one for each element
of S). The dual algorithm will require Rr blocks of S.

A sort of R needs about 2Rb*log(Rb) blocks to be input
and output to a temporary file, and so the entire process of
sorting R and S, and then merging the two will require

2Rb*log(Rb) +25b*log(Sh) + (Rb+Sb)

input/output operations. To compare these figures, assume
for the moment that Sb=Rb=n and Sr=Rr=Xn (with K
between 100 and 1,000). Then the sort/merge performs on
the order of n*log(n) operations, while the hash-code requires
Kn. Under these circumstances, assuming K at the minimum
of 100 and only 10 frames of main memory available for the
sort, the breakeven point between these two algorithms is
n=10724. For any smaller relations, sort/merge is better,
and for any larger ones the hash coding is again more effi-
cient. Obviously even data bases of the near future will be
much smaller.

There is another algorithm which beats both of the
previously mentioned ones over a certain range of data base
sizes. Called the SUBSET algorithm, it also requires the
storage of a relation as a vector of tuples. Using the same

74 National Computer Conference, 1974

notation as before, suppose the algorithm can ascertain that
it has enough main memory available for K blocks of a
relation. It can divide the relation R into subrelations,
each of which occupies (K-2) blocks or less. The algorithm
then iterates over these subrelations, and for each, brings it
into main memory in its entirety. It uses one frame for
input of S (one block at a time), and the second free frame
for an output area. (There is a dual algorithm that sub-
divides S.) This algorithm obviously displays more knowledge
and control of its environment, but in return for this com-
plexity, the algorithm can be a factor of five or so better
than the sort/merge algorithm. This algorithm requires
Sb*ceil(Rb/K) (ceil means next-greatest-integer) input/out-
put operations. This algorithm is of order n T 2 in I/O oper-
ations (and CPU usage), and thus sort/merge is theoretically
better in both. However, experimental results with the REL
system prove that the SUBSET algorithm is the one to use
for relations just a few times larger than available main
memory. The REL data base manager actually computes
the expected resource drain from each of the above algorithms
and dynamically invokes the best one.

Notice that the physical representation of relations de-
pends upon the algorithm used, and this in turn upon the
predominant operations applied. As seems to be the case
elsewhere, no general technique satisfies all requirements
and circumstances. A well-designed interface to an RDS,
however, with additional knowledge of the pecularities of the
situation, may enable the RDS itself to select the appropriate
representation.

OTHER KINDS OF GENERAL OPTIMIZATION

Once the door is opened on the processing of quantified
relational expressions, several general kinds of possible optimi-
zations emerge. These have little relationship to the problem
of size discussed above.

The first, and somewhat obvious, optimization is- the
removal of constant expressions from quantified phrases.
This “do-loop optimization” is well-known by compiler
writers, and consists of moving expressions in a hierarchical
iterative structure outward as far as possible. Thus the
statement

FOREACH x IN setl DO
FOREACH y IN set2 DO
If sister of x = mother of y THEN PRINT
&®¥);
should be translated to:

FOREACH x IN setl DO
BEGIN temp « sister of x;
FOREACH y IN set2 DO
IF temp =mother of y THEN PRINT

x);
END;

In the particular case of relational systems, the primitives
are small in number and have no side effects, and thus are

ideal candidates for this kind of iterative optimization. There
are basically two means for this. The first is a prepass over
the quantificational form which identifies constant expres-
sions and moves them, creating temporary variables as
needed. The second method is akin to the operation of the
Vienna Definition Language. Here each expression, when
evaluated, replaces itself on the expression tree. Before every
iteration, those expressions dependent upon the iteration
variable get restored in the tree. Thus constants, relative to
that particular iterative block, get evaluated only once, the
first time through. This is the technique used by REL
English language system, since the semantic operations are
large and relatively few in number. With either method,
though, there are large potential savings of execution effort.

The second general optimization area deals with ordering.
This term covers several different problems and these espe-
cially pinpoint the need for considering relations as real
entities with properties and primitive manipulatory oper-
ations. As an example of one type, consider the question of
how to find the image of a class C under the composite re-
lation RS. The system can either (1) find the image of C
under S, then the image of the result under R, or (2) it can
compute the composite relation RS and then directly find
the image of C. This type of problem can be termed a “linear
ordering”’ optimization. It is exactly here that the “explicit
generator” view of quantification tends to hide the problem.
The linear ordering optimizations deal with the associativity,
commutivity, and distributivity of high order relational
primitives. No research on linear ordering optimization has
yet emerged in the literature.

Another type of ordering problem is one of simultaneous
relational equations. In this case the system is asked to
retrieve some objects that satisfy multiple relationship con-
straints. Thus, “find all x such that P(x)” and P(x) is a set
of relationships, possibly including some internal quantifi-
cation. These constraints, in fact, are used to guide the
search. The problem concerns finding an optimum evaluation
order, or, if the system allows simultaneous execution
streams, finding the combination of parallelism and se-
quentiality that is optimum. The problem complications are
that any particular atomic constraint can be used either
to retrieve items or to filter already-found items, and there
are differential cost functions of many parameters.- A-simple
example, again from LEAP, is that of finding the sons of Bill:

FOREACH fatherx=Bill AND sex.x=male DO
PUT x IN sons

The order in which the clauses are processed may have a
marked effect on performance, since it is expected that there
will be many more males than children of Bill. But the
analysis is much more complex, depending in part upon the
asymmetries of access. Simultaneity optimizations are par-
ticularly needed in the pattern matching programs contained
in modern artificial intelligence languages'? (“patterns” being
partially specified relationships). Some research on the prob-
lem in the static, compile-time environment has been done,3
and the Automatic Programming project at the University

Quantification in a Relational Data System 75

of Southern California’s Information Sciences Institute is
currently investigating this area in the dynamic context.

CONCLUSION

This discussion of relational forms in quantificational situ-
ations has shown that efficient processing is possible, but at
the cost of complexity. Each data representation and pro-
cessing algorithm pair have a certain range of circumstances
where that pair is appropriate. Relational Data Systems,
then, can be built with one and only one such pair present,
but this means a restricted domain of applicability. For a
widely diverse domain, the system must be able to in-
corporate a variety of forms. To prevent difficulties in the
use of such a collection, a stable, general interface is needed.
This relational language should be independent of the par-
ticular representations chosen, and certainly should not
hinder the use of some class of representations. It is the con-
tention of this paper that the simple paradigm of quantifiers
as explicit generators obstructs system recognition of some
important situations and programmer recognition of the
independent reality of relations.

The goal for future designers of Relational Data Systems
consists of both a general descriptive language for relation-
ship structures, and a system that implements those struc-
tures in appropriate ways, depending on the total environ-
ment. In the near future, of course, configuration decisions
will be made by the programmer, but research into dynamie
system decision-making may enable the programmer to ignore
the problems of physical data representation, knowing that
this will be done efficiently, and concentrate instead on the
harder problems of logical structure.

REFERENCES

1. Final Report AUER-1776-TR-1, Relational Data System Study,
Auerbach Corporation, Doc. #RADC-TR-70-180, July 1970.

2. Rovner, P. D, and J. A. Feldman, An AMBIT/G programming
language implementation, MIT Lincoln Laboratory, Lexington,
Mass., June 1968.

3. Thompson, F. B., P. C. Lockemann, B. H. Dosturt, and R. S.
Deverill, “REL: A Rapidly Extensible Language System,” Proc.
24th National ACM Conference, August 1966, pp. 399-417.

4. Kellogg, C. H., “A Natural Language Compiler for On-Line Data
Management,” FJCC 1968, pp. 473-492.

5. Levien, R. E., and M. E. Maron, “A Computer system for inference
execution and data retrieval,” Comm. ACM 10, 11, November 1967,
pp. 715-721.

6. Codd, E. F., “A Relational Model of Data for Large Shared Data
Banks,”” Comm. of the ACM, Vol. 13, No. 6, June 1970, pp. 377-387.

7. Green, C., “Application of Theorem-Proving to Problem Solving,”
Proc. International Joint Conference on Artificial Intelligence, D. E.
Walker and L. M. Norton, Eds., Washington, D.C., 7-9 May 1969.

8. Feldman, J. A., and P. D. Rovner, “An Algol-based associative
language,” Comm. ACM 12, 8, August 1969, pp. 439-449.

9. Greenfeld, N. R., Computer System Support for Dala Analysis,
REL Project Report #4, California Institute of Technology, Pasa-
dena, California, March 1972.

10. McCarthy, J., et al., LISP 1.5 Programmer’s Manual, MIT Press,
Cambridge, Mass., 1962.

11. VanLehn, K. A., SAIL User Manual, Stanford Artificial Intelligence
Laboratory Memo AIM-204, Palo Alto, California, July 1973.

12. Bobrow, D. G. and B. Raphael, New Programming Languages for
AT Research, Tutorial Lecture presented at the Third International
Joint Conference on. Artificial Intelligence, Stanford, California
August 1973.

13. Hilbing, F. J., The Analysis of Strategies for Paging a Large Associa-
tive Data Structure, Ph.D. diss., Industrial Engineering, Stanford
U., Stanford, Calif., March 1969.

14. Balzer, R. M., et al., Domain-Independent Automatic Programming,
University of Southern California Information Sciences Institute
Report ISI/RR-73-14, Marina del Rey, California, November 1973.

A public health data system

by JOHN C. PECK and FRANCIS M. CROWDER

Clemson University
Clemson, South Carolina

In mid-December, 1972 Clemson University became
actively engaged in the technical development of a Public
Health Data System for the Appalachian II District Health
Department. Phase I of the implementation (ending June
30, 1973) has now been completed and has allowed both the
Health Department and Clemson to more accurately measure
development costs and benefits.

PUBLIC HEALTH PROBLEMS

Several factors which distinguish public health care from
other clinic or hospital care are:

1. The size of the target population requires the necessity
for extremely large volumes of data.

2. The widespread geographical distribution of the
target population and public health service facilities
makes record access extremely difficult.

3. The mobility of the target population is relatively
high. A patient may require service in several facilities
which have no records or knowledge of health care
in other facilities.

4. Redundant data (name, address, sex, race, etc.) is
captured not only in facilities at remote geographical
locations but also within different programs within
the same facility. In addition, many immunizations,
lab tests and other services may be provided un-
necessarily because of inadequate data access ar-
rangements.

5. Standards for reporting of health care service are
nonexistent; and because of the large number of
health care providers who treat the patient, records
are many times incomplete or ambiguous.

6. Manual systems typically present health care in-
formation in a source oriented sequence as opposed
to a problem oriented sequence. Lab records are all
stored together, immunizations together, presecribed
medications together, etc. The problem oriented
approach stores all information relating to each
specific problem together. The results of a lab test,
for example, must be interpreted in reference to the
medications which are being taken. By storing in-
formation in the problem sequence, each patient
complaint can be followed from beginning to end by

77

any health care provider currently treating the
patient.

7. Time series analysis of health related data becomes
difficult with manual records. For example, a blood
pressure of 140/80 may not be abnormal for some
patients; however, if three months ago it was 120/60
then the physician may have ample reason for concern.

8. Investigation of trends in health care or disease
becomes extremely laborious if not impossible with
manual records.

9. Without a centralized data base drugs and/or physical

conditions which conflict are difficult to discover.

For example, many drugs should not be taken together

or perhaps not be taken by pregnant women. If

patients are being treated out of different facilities
with different sets of records, conflicts of this nature
may be difficult to determine.

Federal and state reporting requirements are becoming

more time consuming and, therefore, provide less

time for the health care professional to spend treating
patients.

10.

AUTOMATED HEALTH CARE

With an automated data file and remote access to the
data, many of the problems inherent in manual records
can be overcome. In addition, information processing and
reporting procedures which were impossible to undertake
with manual systems become simplified.

A brief description of the major points of implementation
included in Phase I follows.

1. A master file consisting of patient related personal
and socioeconomic data as well as pointers linking
the patient to specific public health programs is
created and maintained from cathode ray terminals
(CRT’s) located in each clinic. These terminals are
connected to the Clemson University IBM 370/155
computer via telephone lines and can access and mod-
ify health related data under certain circumstances.
As data is entered into this file it is edit checked for
validity and flagged if incorrect or inconsistent so that
the CRT operator may make corrections immediately.
Records for approximately 100,000 persons in a two

78 National Computer Conference, 1974

PATIENT NUMBER 417-68-0390-
S0C SEC NUMBER 417-68~0390-
PATLENT NAME SICK

MARITAL STATUS 1 MARRIED

DATE ENTERED 12/17/73

BERTHA IR DATE BIRTH
SEX 1 MALE RACE

06716750
5 OTHER WH.

ADDRESS STALL HEIGHTS
COUNTY STATE 39

CITY CLEMSON CITY
ZIPCODE 29631 CENSUS TRACT i12.00

TELEPHONE 803-656-4233 EMPLOYED 2 NO EDUCATION 17

FAMILY INCOME AVAILABLE 00123 NUMBER CHILD-HSHLD 01
NAME HEAD HSHLD NONE SINCE THIS
LEGAL GUARDIAN RECORD

ADDRS GUARDIAN U R SICK

IS A TEST

REFERRING SRCE 01 GREENVILLE COUNTY HEALTH DEPARTMENT
OTH AGY CONTACT ©f GVL CO HL DPT 02 SELF PROGRAMS ENROLLED

@4 AM RED CROSS 01 IMMUN 02 FAM FL

94 LEAD SC 05 CHILD D
REIMBURSEMENT 97 MEDICARE 92 MEDICAID 06 CHILDAY 07 M&I
04 AFDC-SCREEN 05 PLEA-SCREEN 08 HOME HS 0% VD

10 TUBERC 12 CRIF CH

Figure 1—Patient master

county area are now accessible online. Expansion to a
thirteen county area will be completed within the
next eighteen months. (See Figure 1.)

2. A cross reference file, based upon the spelling of the
last name, provides for quick and easy access to the
master file data. When a patient master record is
required the last name (and birthday, if known) is
entered into the computer with the CRT. The
computer then searches for all patient records whose
last name ‘“‘sounds” approximately the same as the
name entered and displays them on the screen of the
CRT. If the birthday was entered then only those
patients with the sound-alike name and born on that
day are displayed. (See Figure 2.)

3. Lab data related to a specific patient can be displayed

in a time series format in which the last three lab

reports are displayed side by side. Previous lab
data can be displayed by backing up in the file using

a “B”’ command on the CRT. (See Figure 3.)

Patient history data can also be displayed for any

specific patient. This data provides a history not

only for the patient but also for ancestors and siblings

of the patient. (See Figure 4.)

5. Family planning regular checkup data is displayed

in a time series format similar to lab data. A backup

feature for checkups before the last three is also

available. (See Figure 5.)

Immunization data can be displayed in o format which

indicates the sequence number of each innoculation

in a series along with the date of the innoculation.

L

&

(See Figure 6.)

ELAINE H SHOOK 12725746

RUTH F SHECK 03701706

BERTHA I R SICK Q4/16750

JAMES R SHOOK 03/09/63

3 MELLSSA SHOOK 117063787

BOOGI 75561 SHANNEY L SHOOK 10/29/72
600044620 KEVIN SCHAACK 02/14/55
BAOO57027 RICHARD R SHOOK 046/09/66
B5OOO5PEY7 LINDA G SHOOK Qi/01704
HORGHETHE DAVID SHOUR 08710766
BOOGA63HT HEYWARD A SHOOK 10/03/568
80007500 SHUIANA 7 SHOOK Q77187468

Figure 2—Cross reference display

#*% ENTER B FOR EARLIER TESTS %%

FAT. SICK BERTHA IR *xnx LAR *¥¥xx FAT. NO 417-68-0390—
~DATE 06/20/73 04/30/73 12/01/72 06/20/73 04/30/73 12/01/72
WEC 43,1 10,3 URINE CAST WAXY HYAL WAXY
HCT 42% 44% 24% " CRYST CA-0X UACID TRFOS
HGE f48% “ YEAST MANY RARE HANY
KBC 20 MIL 31 MIL * BACT FEW RARE FEW
HCV 001 “ AMOR RARE FEW RARE
MCH 003 " MUCOUS FEW HANY FEW
HCHCZ 006% " TRICH HANY FEW MANY
BLOOD-FE 064 EPITH DRETABLD RENAL VAGINAL
BLOOD GRF 3} FECAL 0CC FOS TRACE NEG
KH D+ RFR W REC NONREC
RH TITER - STOOL 0&F HOOK WHIF

CODMBS + G ¢ CULT ISOL CERV NOT CERV

URINE SG 1.004 1.001 FTA REC BL

* BLOOD SFOS MFOS © STS TITER VD 0664 VD 0036

" BILIR MFOS TRACE TRACE RUBELLA 1ST 0128

" KET TRACE SFOS MFOS TOXOPLAM 0256

" GLUC HFOS TRACE SFOS HB ELECT At 10

“ PROT SFOS MPOS] - az 20

“ PH 8 7 7 " F 30

“ WBC 21-49 6-10 1-5 . s 40

" RBC 6-10 50-100 6

Figure 3—Laboratory display

7. A “write” function is provided which allows the CRT
operator to obtain a hard copy printout of any
display on the CRT. In addition, special mark sense
forms for the eollection of additional immunization
data can be prepared by the computer.

8. A “help” function is provided which lists all commands
for the CRT operator in the event he cannot remember
how to interact with the system. (See Figure 7.)

9. A “send” function is provided so that the CRT
operator can communicate with the computer operator
on the Clemson campus about any special procedures
required on problems he might be experiencing.

10. Special data recovery programs have been written
to guarantee integrity of data in the event of a device
malfunction in which the data being collected online
is destroyed.

Special security functions ensure that unauthorized
personnel cannot access patient records. In addition,
several levels of security clearance are provided for
special data access functions. A predefined user
identification and password must be supplied before
the program can be initiated. Certain users can access
all patient data while other users can access only a
subset of the data. A clerk in the front office of the
Health Department, for example, can enter and
update patient records; however, he may not access
medical records for the patient.

11

41 /700 - S BERTHA I R ADHMITTED 04/30/73

IN EMERGENCY SICKIE ALWAYS Z ©B03-242-6160 REF of

AGE ONSET 16 FREQ DURATION 05 FLOW LIGHT FAIN SLIGHT INT BiLD NONE

GRAV 12 FPARA 02 AB 01 § 01 LIVING CHILD ©7 IMM 06 SPON-A O IND-A 1

FEYAL 1 NEONATAL 1 INFANT { FREM 1 LAST FREG 06/72

FREV CON FOAM FRES CONT IUD PT CHOICE FPILL wl

FAST DISEASE HISTORY (1=FOSITIVE, 2=SLIGHT, 3=MODERATE., 4=SEVERE)

1~ALLERGIES OR ASTH 1-CARDIOVASCULAR DI 1-RENAL DISEASE 1-VARICOSITIES

1-CONTRACEPTIVE COM {-FHLEBRITIS t-CANCER OR TUMORS 1-DRUG SENSITIVITY

1-URINARY STRESS

SURGICAL & TRAUMA HISTORY

AFPENDECTOMY CERVICAL CONIZATION OVARIAN CYSY

ECTOFIC FREG. GALLBLADDER SURG. C-SECTION

EAMILY HISTORY (1=MOTHER, 2=FATHER, 3=PARENTS, 4=GRANDPARENTS, 5=SIBLINGS
6=PARENTS&SIBLINGS, 7=0THERS)

i~ANEMIA

4-HYFERTENSION

6-0THER - SEE MRS

EL

HASTECTOMY

I -ALLERGY

1 HEART DISEASE
1-DRUG SENSITIVE
SIGNIF ICANT FINDINGS

2-CANCER
3-KIDNEY TROUELE

3-DIABETES
F-RHEUMATIC FEVER

EENT TEETH NGDES BREAST
CARDIAC VARICOSITIES SKELETAL PELVIC
RECTAL

Figure 4—Family history display

A Public Health Data System 79

FAT NAME BERTHA I R SICK FAT NO 417-65-0390-
DATE 08/01/73 ©6/20/73 04/30/73 08/01/73° 06/20/73 ©4/30/73
BF $/D 1744110 1787141 160/110 LMF 03/28/73 @3/28/73 03/28/73
HEIGHT 5-07 5-97 5-07 INTERVAL 30 30 30
WEIGHT 135 130 125 DURAT 05 05 05
EREAST TEND BRILI BILI RIGHT AMT #oD MOD MoD
HASS RIGHT RIGHT RIGHT CRaMP R R
DRAIN LEFT RIGHT RIGHT SEV MOD MOD MaoD
HEADACHE MILD MILD HMILD FREQ GCCAS 0ccas 0CCAS
FRER FREQ FRER 0CCAS DISCH HEAVY HEAVY HEAVY
DURAT 96 10 07 FRE® FREQ FRE@ - FRE@
DIZZINESS MOD HOoD MOD COLOR GREEN GREEN GREEN
FRE® FRE@ FRE@ GCCAS SYMPTOM IR IT IR OD IR OD IT
DURAT 93 04 ©2 N.M.BLEED SLIGHT SLIGHT SLIGHT
NAUS&VOM. IRR IRR aM TIME M-C M-C H-c
FREG DAILY FRE® occas FRE® a3 03 03
DURAT 34 31 31 DURAT 2-3 2-3 2-3
EDEMA HANDS HANDS HANDS CONTRAC ¢ LOOF ¢ LooF ¢ LDOF
FREQ 0CCAS FRE@ occas AMT
MENS R UNR R RET/DATE 10/63/73 08/01/73 06/20/73
VARIC.EXT BILI RIGHT RIGHT CLINIC 010 016 010
SEV BOTH FAIN FAIN PROVIDER 999 997 999

Figure 5—Family planning display

Phase II is currently in various phases of implementation
and includes the following projects.

1. Scheduling subsystem to appoint patients to various
clinics or health care providers subject to various
constraints. Included in this subsystem is automatic
notification of pending and missed appointments
along with related reports for governmental and
accounting requirements.

2. Data base management graphics display subsystem.
A language allowing questions to be asked about
statistics related to the data base will be developed.
Answers to these questions will be answered in
graphical form on a graphics display terminal. A typ-
ical question might be: “What percentage of the
women between the ages of 15 and 35 in the family
planning program over the last six years have also been
enrolled in the venereal disease program?’’ The answer
to the question might be a graph in the form:

100

P

E

R 50

C

E

N /

' /
-
|]] [1
| | I | |

1968 1969 1970 1971 1972 1973

3. Maternal Health subsystem.
4. Child Health subsystem.

5. Tuberculosis subsystem.

6. Veneral Disease subsystem.

IMMUNIZATION RECORD

PATIENT NAME BERTHA I R SICK FATIENT NO. 417-68-0390
POLIO 07/07/65 5 06/06/55 5 05/05/45 4 03/04/40 3 02/04/40 2
DPT 07/07/65 4 - 06/06/55 4 05/05/45 4 03/04/40 3 02/04/40 2
DT 08/09/73 4 08/01/71 4
SMALL POX ©5/05/60 @ 01/04/40 0
MEASLES o1/04/40 @

MUNMFS 03/03/42 ©
RUBELLA 02702741 ©
PENICILLIN 08/08/72 @
INFLUENZA 07/Q7/76 ©

Figure 6—Immunization display

COMMANDS -
B BACKUF IN FILE
C CHILD HEALTH DISFLAY
CHILD HEALTH HISTORY
DELETE PREVIOUS MASTER RECORDP DISFLAYED
END SESSION
FAMILY PLANNING DATA DISPLAY
FAMILY FLANNING HISTORY
HELF RERUEST
IMMUNIZATION HISTORY
LAE DATA DISFLAY
MORE RECORDS DISFLAY RERUEST
FATIENT MASTER DISPLAY REGUEST
SFECIAL IMMUNIZATION FORM
SEND MESSAGE TO OFERATOR
UFDATE MASTER
WRITE SCREEN INFORMATION ON PRINTER

o~
x

I

=C ;ﬁ U T MS o

Figure 7—Help display

APPROACHES TO IMPLEMENTATION

During the initial design phase of the Public Health Data
System, several assumptions concerning the ultimate
operating environment were made:

1. The program should be able to support an arbitrarily
large number of terminals. Thus, modules must be
designed to support re-entrant coding techniques.

2. Input/output logic should be confined to a central
module so that commercially available data base
management packages can be used if economically
advantageous.

3. Program organization should lend itself well to
conversion to a teleprocessing monitor system such
as CICS (IBM), INTERCOM (GTE), or TASK
MASTER (TURNKEY ASSOC.).

The development of the current operating package was
carried out through several phases on Clemson University’s
IBM 370/155. The time sharing option (TSO) of IBM’s
operating system (OS/MVT) was used in the first phase of
development for several reasons:

1. Program preparation and debugging was much easier
in an interactive environment.

2. The main storage requirement for a non-time-shared
implementation during program development would
have been prohibitively expensive.

3. Only one data communications system was under
development on the computer system so that costs
for package systems could not be shared.

As developments of additional system features were
begun and as the number of terminals serviced by the system
increased, phase two of the technical development was
initiated. The objective of this phase was to modify the
system to run outside the time sharing region with a mixed

80 National Computer Conference, 1974

environment message control program. Several factors
prompted this change:

1. In the TSO environment each user had a separate
copy of the program and was swapped between
memory and disk storage as time was shared between
users. With a large number of time sharing users the
swap time became excessive and response time for
transactions unacceptably large.

2. When an input or output operation is started by a
time sharing program, no other time sharing program
may be serviced until that I/O operation has been
completed. Chaining through index structures and
overflow areas using IBM’s index sequential access
method was locking out other time sharing users
for the duration of the I/0.

3. Even with the carefully designed overlay structure
implemented in the modular program, main memory
allocated to the time sharing region became in-
sufficient.

In order to move away from the time sharing environment,
a driver program was written which provides the following
functions:

1. Data blocks for each terminal required for re-entrant
(multiple user) support must be maintained in
memory or disk storage. A paging routine, using a
least recently used algorithm, coordinates the swap-
ping of data blocks between memory and disk storage.

2. Additional security provisions became available
since the driver program controls and coordinates
input and output to all terminals and users.

3. Special operation commands allow privileged users
to assume the role of a master station and control
the activity of other terminals and users.

The primary disadvantage of removing the system from
the time sharing region was that a considerable amount of
main storage must be dedicated for long periods of time
throughout the day. Changes in the file organizations and
access methods are now under way which will reduce the
operating system data management storage requirements.

FUTURE DEVELOPMENT

Future developments dépend upon many factors—the
most important of which include continued acceptance by

medical personnel and adequate funding. Eventual plans
include the complete automation of the medical record to
be stored in a centralized data base with computer terminals
in all health care centers in a multiple county area. Records
will be cross indexed by both problem and source so as to
provide standardized and organized files which can be
quickly accessed by health care providers.

Consultants in the medical profession will provide direction
in the design of information displays and interpretation. This
procedure will greatly help overcome many of the acceptance
problems.

Additional computer hardware will eventually become
a neeessity if the system is to become completely operational.
A central processor on the order of an IBM 370/145 will
be dedicated to the application. A backup processor must
be available to support the system in the event of a hardware
failure on the main system. The Clemson University com-
puter would serve as the backup computer without signifi-
cantly degrading performance for campus users. Production
will be restricted to the Health Department computer
while development and systems support work will be re-
stricted to the Clemson University computer.

During January 1974 Clemson University will acquire
an IBM 370/158 and will run VS2. At that time all overlays
and paging currently provided by the PHDS control program
will be performed by the operating system. All ISAM
files will be converted to VSAM which will provide faster
access in the new environment.

A terminal monitor system capable of supporting multiple
applications will be installed. IBM’s time sharing option
will still be used for program development but not for
production support.

Terminal independent input/output subroutines, which
make possible logical level programming for CRT’s of
arbitrary screen size and special features, will be written.
Device dependent characteristics will be specified as constants
and used with table driven logic keyed to terminal identifica-
tion or line number.

The relationship now enjoyed by Clemson University
and the Appalachian II Public Health Department will
hopefully continue to benefit Clemson by providing areas
for research in medical information systems and benefit
the .public health in South Carolina by providing the
necessary technical expertise to successfully implement the
automated systems.

Automated patient record summaries for

health care auditing®

by ROBERT CHALICE, OLGA M. HARING, and RONALD HOCHSPRUNG

Northwestern University Medical School
Chieago, Illinois

Purpose and Objectives

At Northwestern University Medical Center, a computer
printed summary report showing a patient’s current condi-
tion appears to be especially useful in outpatient therapy. A
printed summary report lends itself to the objectives of:

1. Displaying a patient’s current condition in an or-
ganized, up-to-date, accurate, and legible form.

2. Auditing patient care in a uniform and consistent
manner by processing the machine readable summary
data.

With these objectives in mind, we are presently evaluating
the summary report form shown in Appendix A, within a
Cardiac-Pulmonary-Renal outpatient clinic at Northwestern
University Medical Center. The care received by 240
patients who have printed summaries will be compared to the
care received by a control group of 240 patients with
nonsummarized charts.! Prior to each patient visit an
up-to-date computer printed summary is inserted into
the surnmarized chart. The summary report is then avail-
able as an aid to the physician who treats the patient.
The assumption is that a higher quality of information
will contribute to a higher quality of care. Preliminary
studies by Janda? and Middlekauff® support this conclusion.
Our current evaluation of the effects of the record summary on
patient care began in October of 1972 and will extend over a
three year period.

During the fall and winter quarters of 1969-70, the ac-
ceptability and utility of the Record Summary System to
50 fourth-year medical students and 20 physicians were
evaluated.? The students were given timed tests in which they
were required to retrieve specified information from both
summarized and nonsummarized charts of comparable
length. Students and physicians were given questionnaires on
specific points and also were urged to criticize the whole
program. The timed tests indicated that significant time sav-
ing and increased accuracy were achieved through the sum-
marized record. Physicians stated that the summary was
useful for patient care in its present form. They agreed
* This project is supported by Grant Number HS00674-02 1
Department of Health, Education and Welfare.

rom the

81

without exception that the traditional record is frustrating
and urgently needs reorganization.

In a pilot study carried out by Middlekauff in 1971, an
attempt was made to determine not only the general feasi-
bility and acceptability of the record summary but its effect
on the quality of care given in the CPR clinic. The details of
this study have been reported elsewhere.? Briefly, he selected
80 patients at random and summarized the charts of 40 of
them. Each patient was assigned to one of ten attending
physicians or one of ten fourth-year medical students, so
that each of the 20 clinicians saw either four patients with a
record summary or four patients without such a summary,
for three months.

The quality of care was assessed in several ways. First, a
set of standards based on the literature and agreement among
Northwestern specialists was established for diagnostic and
follow-up care. Second, each patient was asked to fill out a
questionnaire containing eight questions after each of two
visits to the clinic. Questions concerned symptoms and the
patient’s satisfaction with the care he received. Third, a
record was made of the time the patient spent in the clinic,
the number of suggestions made by the supervising physician
and the number actually followed, and the changes in physical
signs and results of laboratory tests between the first and
the second visit. It was found that a larger proportion of
standards were met for patients with summarized records
than for those with nonsummarized records. Positive changes
in physical signs and laboratory findings from the first to the
second visit were more frequent and negative changes less
frequent among patients with summarized records than
among those without summaries. Questionnaires showed no
difference in total satisfaction scores or in symptoms between
patients with and without summarized records. ’

CONTENT OF THE PATIENT SUMMARY REPORT

Each summary report is computer printed and displays a
patient’s current condition in terms of:

IDENTIFICATION DATA

LAST HOSPITAL ADMISSION
PROBLEM LIST

BRI 03 F) V)

VITAL SIGNS

82 National Computer Conference, 1974

CARDIAC-PULMONARY-RENAL DIAGNOSES
MEDICATIONS

DIETS AND OTHER THERAPY
PROCEDURES ORDERED

ROUTINE LAB TESTS

OTHER LAB TESTS

COMMENTS AND SUGGESTIONS

The Cardiac-Pulmonary-Renal diagnoses are individually
listed, since these pertain directly to the specialty of the
particular clinic under study. The nineteen routine labora-
tory tests have also been specially selected as those tests
which should be regularly performed on a yearly basis for
patients attending this elinic.

Problem oriented reporting is used whenever possible
within the summary.* The summary, as shown in appendix
A, contains a problem list, showing the status and disposition
of all the patient’s problems whether active, inactive, or re-
solved. Medications and diets are listed along with a refer-
ence to the problem for which they are prescribed. Pro-
cedures ordered are also tied to particular problems.

Computer Processing

The summary reports are currently maintained, updated,
and printed by using a Control Data 6400 computer at
Northwestern University. Utilizing a computer provides us
with the following advantages:

1. Summary reports can be printed quickly on demand.

2. Frequent updates of summary data can be accom-
plished quickly and easily.

3. The data base is available in a machine readable form
for high speed processing by other programs.

In addition to facilitating the maintenance of the data
base and the display of information from it, computer pro-
grams can review the currency and consistency of patient
data. A machine readable data base containing a particular
patient’s problem list, therapy, vital signs, medications and
other relevant data makes it possible to methodically and
meticulously check for anomalies in data, as well as responses
to therapy, drug interactions, or other conditions that might

Oct. 1972 Feb. 1973
Completely Abstract a New Summary 2 to 3 hr. 1to2hr.
Keypunch and Print a New Summary 134 hr. 1 hr.
TOTAL TIME FOR NEW SUM- 3.5to4.5hr. 2to 3 hr.
MARY
Update Last Printed Summary 20 min. 10 min.
Keypunch Revisions and Print New 1 hr. 14 hr.
Summary
TOTAL TIME FOR UPDATED 1.33 hr. .66 hr.
SUMMARY

Figure 1—Times required to produce and update summaries

warrant action. In addition, appropriate therapy can be sug-
gested. Currently under consideration is a program to com-
ment on the therapy given to hypertensive patients, accord-
ing to accepted standards for treatment.

Today there is a demand by the government,® the medical
profession, and also the public, that quality in medical eare
be assured. To do this it is essential that there be continual
assessment of suitable methods for defining, evaluating and
improving medical care.® Provision of a machine readable data
base of patient summary information contributes to these
goals of continual assessment, and the assurance of quality
health care.

Initial Systems Design

Our desire from the start of this project has been to produce
some objective statistical comparisons between the care re-
ceived by summarized patients as opposed to the care re-
ceived by nonsummarized patients. Because of this desire,
we chose to quickly implement an initial system for maintain-
ing and printing patient summaries in order to allow for an
early comparison of care with the nonsummarized control
group. In the meantime, a more sophisticated online system
is under development, and will be discussed later. Because
of its ease of implementation, a batch, card oriented system
was chosen as the initial system for regular production of
summaries. At the present time, we produce summaries for
about 450 patients by using a batch oriented FORTRAN
program. The summary data for a particular patient are
presently maintained on an individual card deck for that
patient. Updates of the summary data are made by changing
the appropriate fields on the patient’s data cards. Printed
summary reports are produced by the FORTRAN program
which reads and formats the summary data for output. The
system is simple, and does satisfy the first objective of dis-
playing up-to-date, well organized summary reports on
patients.

Present Audit of Patient Care

The second objective of uniformly auditing patient care is
accomplished by the batch oriented system in two ways.
Prior to each patient visit the patient’s last printed summary
is updated by physicians and medical students who review the
patient’s chart. They may, at their option, provide sugges-
tions to be included in the summary. These suggestions are
then added to the last page of the summary for reference by
the physician who treats the patient at his next visit. An audit
of patient care by medically trained individuals is thus
provided. Presently, the chart is the source of all summary
data, although online collection of data in the clinic is being
considered.

A second audit of care is also performed by the summary
program as each patient’s data is processed. Comments are
automatically generated which call attention to important

Automated Patient Record Summaries for Health Care Auditing 83

missing data, as well as important procedures which have not
been performed at desired regular time intervals. Among the
comments which can be generated are the following:

Time
Interval

1. PATIENT IS DUE FOR A COMPLETE
YEARLY PHYSICAL EXAM. LAST PHYS-

ICAL WAS | 1yr.

2. PLEASE RECORD PATIENT’S BLOOD
PRESSURE AT EACH VISIT.

3. THE FOLLOWING PROBLEMS AND
THEIR STATUS NEED REVIEWING:

4. PLEASE REVIEW CARDIAC-PULMO-
NARY DIAGNOSES ON PAGE 4.

5. PLEASE ENTER CARDIAC-PULMO-
NARY-RENAL DIAGNOSES ON PAGE 4.

6. PLEASE COMPLETE CARDIAC-PULMO-
NARY-RENAL DIAGNOSES ON PAGE 4.

7. PLEASE FIND OUT IF THE PATIENT IS
STILL TAKING MEDICATIONS LISTED
ON PAGE 5.

8. PLEASE FIND OUT IF PATIENT IS
STILL MAINTAINING DIETS AND
OTHER THERAPY LISTED ON PAGE 5. 6 mos.

9. PLEASE ORDER: / routine test names / 1 yr.

10. PLEASE FIND OUT IF PATIENT HAS
ANY DRUG ALLERGIES OR IDIOSYN-
CRASIES.

11. PLEASE SPECIFY PROBLEMS FOR
WHICH EACH OF THE FOLLOWING
DRUGS IS PRESCRIBED.

14 yr.

3 mos.

6 mos.

The time interval shown after some of the comments indi-
cates that a comment should be generated when the date of
a particular procedure or review lapses beyond the time
indicated. Those of the above comments which are applicable
to a particular patient are automatically printed on the last
page of his summary, just after those comments that were
manually provided by physicians and medical students.

The comment “PLEASE ORDER:” by which routine
tests are suggested on a yearly basis deserves some special
consideration since those routine tests which should be
ordered must be listed by name. Furthermore, particular tests
which need to be ordered must be grouped when appropriate
and ordered as the multiple tests: SMA-6, SMA-14, and
SMA-18. A comparison of costs is nedeed in order to decide
when to order a particular multiple test instead of ordering a
few components individually. The following rules are used
by the computer program in suggesting that tests be ordered:

1. An SMA-6 includes electrolytes and is less expensive,
50 an SMA-6 is always ordered in preference to order-
ing electrolytes separately.

2. A full SMA-§ is always ordered in place of one or

more components’ to be ordered individually because

the cost of the SMA-6 is the same as the cost of
ordering one component.

3. A full SMA-14 is ordered in place of three or more
components to be ordered individually because the
cost of the full SMA-14 is the same as the cost of
ordering three components individually.

4. If ordering an SMA-14 is indicated by step 4. and
any electrolytes are to be ordered, then an SMA-18 is
ordered because it is less expensive than ordering an
SMA-14 and electrolytes separately.

This kinds of cost consciousness is not generally attributed
to physicians, so the summary program is designed to suggest
that tests be ordered in a way that minimizes the cost to the
patient. It should be mentioned, though, that the summary
program does suggest that all nineteen routine tests be per-
formed on a yearly basis, and therefore probably results in
more laboratory tests being ordered for summarized patients.

The present card oriented system does satisfy the desired
objectives and does illustrate the utility of a machine read-
able data base of patient summary information. The card
oriented system is, however, unwieldy and is not very prac-
tical for large numbers of patients. Cards deteriorate; single
fields on punched cards are difficult to update; and card
processing is extremely slow when compared to using higher
speed media such as magnetic tape, disk, or drum.

Future Online System

The advantages of maintaining a patient summary data
base using online, random access storage, such as disk or
drum, are numerous:

1. Data can be immediately updated or displayed online
by using terminals.

2. A query language can be used to perform selective
information retrieval.

3. Multiple programs with different purposes can make
use of the data base simultaneously.

4. Higher speed processing is possible over larger volumes
of data than could be processed by a card oriented
system. In particular, rapid auditing of large numbers
of patients is practical.

5. The data can be structured into tables, lists, chains,
and groups which more accurately reflect the inherent
relationships among data items.

6. Functions can be performed at a distance through the
use of modems and data communications devices.

With these types of advantages in mind, we are currently
developing an online data base management system referred
to as DMS/11* using a Digital Equipment Corporation

*Presented at the Digital Equipment Corporation Users’ Society Fall
Symposium, Nov. 29, 1973, San Francisco.

84 National Computer Conference, 1974

PDP/11 minicomputer with the following configuration:

Central Processor
16K Bytes of core memory
3 Disk drives with 2.4 million characters/drive
1 High speed paper tape reader/punch
2 CRT display terminals
1 Operators’ consol
1 Line printer at 100 lines/minute

The above equipment configuration is purposely limited in
an attempt to illustrate that a minicomputer based, data
management system is capable of the kind of data manage-
ment usually reserved for large scale machines. We are
interested in the minimal configuration that will provide an
online patient summary system. However, the DMS/11
system under development is designed as a generalized data
management system which can be applied to data bases
other than the special purpose patient summary data base.
The recommendations of the CODASYL data base task
force are being followed to provide generalized file structures
and generalized access techniques.”

PRESENT PERSONNEL AND OPERATING COSTS

Timings of manual procedures were taken in October of
1972, just after the project began, as well as a few months
later in February of 1973. The personnel time involved in
producing a new summary or in updating an old one is shown
in Figure 1.

As can be seen, there was significant improvement between
the two dates on which timings were surveyed. Under our
present system the cost of personnel involved in producing a
completely new summary is about $9.00, while the cost of
producing an updated summary is about $3.00. The cost of
computer time involved is about 20¢ per summary report
printed, and is almost negligible in comparison to personnel
costs.

Admittedly, the present system is a compromise design,

quickly implemented to provide summary reports for evalua-
tion purposes. Nonetheless, cost figures are provided to show
the kind of costs that can be expected in using a batch
oriented system to produce summary reports. We expect that
by using an online system, we will be able to reduce these
personnel costs by a factor of two. This estimate stems from
the fact that the cost of data entry (i.e. keypunching) will be
reduced by having the updater or abstracter enter data
directly into a CRT display terminal. It is true that the
online system requires a dedicated minicomputer, but it is
our hope that adhering to a minimal computer configuration
will keep the initial equipment costs within the financial
reach of most medical institutions. As the system is devel-
oped, we hope that we will succeed in the objective of cost
effectiveness, so that the benefits of the system can be realized
practically.

REFERENCES

1. Haring, Olga M., “A Problem Oriented Record Summary for Use
in the Clinie, Chicago Medicine, Vol. 76, No. 24, December 1, 1973,
pp. 1003-1004.

2. Janda, Kathryn E., A Meihod for Determining the Conient and Form
of a Physician Acceptable Medical Record, M.S. thesis, Northwestern
University, 1969.

3. Middlekauff, George W., Evaluation of ¢ Summarized Record Sys-
tem in an Out-patient Clinic, Ph.D. dissertation, Northwestern
University, 1972.

4, Weed, Lawrence L., Medical Records, Medical Education and
Patient Care, Cleveland, The Press of Case Western Reserve Uni-
versity, 1969.

5. Sanazaro, Paul J., Richard L. Goldstein, James S. Roberts, David B.
Maglott, and James W. McAllister, “Research and development in
quality assurance: The experimental medical care review organiza-
tion program,” New England Journal of Medicine, Vol. 237, No. 22,
November 30, 1972, pp. 1125-1131.

6. Payne, Beverly C., and Thomas F. Lyons, Method of Evaluating and
Improving Personal Medical Care Qualily: Episode of Illness Study,
Ann Arbor, University of Michigan School of Medicine, February
1972.

7. CODASYL Data Base Task Group Report, Association for Comput-
ing Machinery, April 1971.

Automated Patient Record Summaries for Health Care Auditing

85

APPENDIX A

DOEs J
999999
NEXT VISIT TO

PAGE 1
CURRENT TO 11-06-73
11-16-73 PRINTED 02/27/74

NUCRSS=-5

CLINICAL RECORD SUMMARY
NUMBER S

PLEASE LOOK AT THE LAST PAGE AND CONSIDER THE COMMENTS

AND SUGGESTIONS.

UPDATED:

REVIEWED:

KEYPUNCHED$

FEEL FREE TO CORRECT OR COMMENT ON THIS SUMMARY.
THANK YQU,

DRe. OILGA M. HARING

TABLE OF CONTENTS

PROBLEM LIST: PAGE 3
VITAL SIGNS: PAGE &

CARDIAC=-PULMONARY=-
RENAL DIAGNOSES: PAGE &«

TREATMENT ¢ PAGE 5
ROUTINE LAB TESTS: PAGE 6
OTHER LAB TESTS: PAGE 7

SUGGESTIUNS: PAGE R

8¢ National Computer Conference, 1974

DOEs U PAGE 2?2
9999g9 CURKENT TO 11-06-73
36 3 48 48 35 3t 3¢ 4 PATIENT TUENTIFICATION 3 46 38 303k 48 3k 38
JOHN DOE. SOCe SEC. NOo 0C0-106-2000
37 YR. OLD BLACK MALE 69 IN.

04600 NOWHEREs UeSeA. PHONE ¢ XX0-000C

FIRST VISIT TO NUMC 07-30-068 -PRECLIN
LAST VISIT TO NUMC 08-02-73 - DERM

LAST COMPLETE P.E. 04-13-73

DRUG ALLERGIES AND

IDIOSYNCRASIES
o LAST HOSPITAL ADMISSION HER BRI
HOSPITAL PMH
DATE ADMITTED 12-29-68 DATE DISCHARGED 01-10-69

DISCHARGE DIAGNOSES

0l. GANGLION LTe. WRIST AND LT. FOOT
02. ESSENTIAL HYPERTENSION

Automated Patient Record Summaries for Health Care Auditing

87

DOEs J
999999

L 2-2-2-x:21")

PROBLEM

0l. HYPERTENSION

02+ ALCOHOLISM

03. LEUKODERMA

04e SPRAIN,

LT. ANKLE

DYSHIDROSIS,
LT. HAND

05

6.
7.

OBESITYs MILD
TINNITUS

$8. HEADACHES

TEMPORARY PROBLEMS

A, INFLAMMATORY
SKIN CHANGES

PROBLEMS IN ALL ORGAN SYSTEMS

VISITS TO MANAGING CLINICS

DATE
NOTED

07-30-68

08-30-71

08-13-068

09-09-68
16-13-72

09-10-71

04-19-73

AND

MANAGING
CLINIC

CPK

ORTHO

DERM

CPR
CPR

NEURO

DERM

LAST
NOTED

07-12-73
05-21-71
08-02-73

08=-13-68

09-09~-68
10-13-72

10-25-73

08=-02-73

PAGE 3

CURRENT TO 11-066-73

STATUS

ACTIVE

ACTIVE

RESOLVED

ACTIVE

ACTIVE

ACTIVE

36 36 3¢ 3¢ 3¢ 3k 3t 47

DISPOSITION

RX ON P 5

RX ON P 5

RX ON P 5

RX ON P 5

88 National Computer Conference, 1974

DOEy J . PAGE 4
999999 CURKENT T0O 11-06-73
S VITAL SIGNS AT RECENT VISITS Wi

DATE CLINIC DOCTOR+STUDENT WT BP-SUPINE PULSE-RAD RESP TEMP
04-13-73 CPR BROWN 174 139/92 -—- ——- 984
§1-19-73 CPR LEVINE 176 140/1190 -——- —— S8.8
10-13-72 CPR WALKER 177 1487114 SIT 76 16 Y8e4
¢8-11-73 CPR SMITH 175 140/118 SIT -—— .- 98.6
07-14-72 CPR BROWN 173 130/99 92 16 98.6
§6~16-72 CPR BROWN 175 1507104 SIT 68 18 YR {
06-09-72 CPR BROWN 174 150798 6v 16 97.5
¢4-14-72 CPR BROWN 179 1607120 72 16 YB.W G
01-21-72 CPR HUNTER 175 150/10# 72 16 YR.6
T2 T CARDIAC-pPULMONARY-RENAL CLINIC H3Eaetire

FIRST VISIT TO CPR
LAST VISIT TO CPR
DOCTOR:
STUDENT :

»

HEART
HEART
ETIOLOGY
ANATOMY

PHYSIOLOGY

16-25-63
04=13-73 CPR VISIT SCHEDULED FOR
BROWN
OIAGNOSES

POTENTIAL HEART DISEASE

HYPERTENSIUN

11=-10-73

FUNCTIONAL CLASSIFICATION
THERAPEUTIC CLASSIFICATION
CLASSIFICATION REVIEWED

CIRCULATION HYPERTENSIONs ESSENTIAL
LUNGS NORMAL
KIDNEYS NORMAL

Automated Patient Record Summaries for Health Care Auditing 89

DOE, J FAGE 5

999999 CURRENT TO 11-06-73

S MEUDICATIONS 448 3% 36 4 46 3 3¢

FOR DOSE RX RX LAST RX

PROB DRUG AND SIZE SCHED BEGIUN CLINIC REVIEWED TAKEN

1 HYDROCHLORO- 50 MG. QU 06-72 CPR $8-10=-73 ===
THIAZIDE

1 RESERPINE Ue25 MG GO 04=72 CPr 08-16-73 ---

1 HYDRALAZINE 125 MG, QD 10=-72 CPR 08=10-73 ===

1 KCL LIQUID 15 CC. bIb 01-73 CPR UB=1¢=73 ===

S VAL ISONE 0.1 PCT. g 08=-68 DERM -— ———

7 MEPROBAMATE 400 MG. GHS 10-72 CPR -—— -———

8 FIORINAL 1-2 Ga=6HR 01-7¢ NEUROD 10-25-73 ==~

8 CAFERGOT WESLEY {6-07-73

8 SAUSERT 2 MG 81D n6=28 NFURO 19=-25-73

A PSORALEN 15 MO QD 08-73 DERM 10-25-73

A KENALOG CREAM 025 TIv 05-73 DERM 10=25=-73 ===

-== NO DIETS OR OTHEK THEKAPY =-=

3636 3 3¢ 4 38 30 4 PROCEDUKES ORDERED 3636 3¢ 36 4% 32 3t 3¢
FOR DATE

PROB PROCEDURE CLINIC ORDERED REPORTED (YES=NO)

8 BUN NEURO 87-26-73 NO

ENT CONSULT NEURO 19-25-73 NO

90 National Computer Conference, 1974

DOEs U
999999

48 48 3 3 40 32 40 4t

TEST

le CHEST X=RAY
2. ECG

3. UKINE

BLOOD

4o RBC

5. HGB

6« CELL PACK
7. WBC

8. DIFFERENTIAL

9 VDRL
16+ BUN
11. URIC ACID
12. CREATININE
13. FBS
14+ 2 HR. PCS
15. CHOLESTEROL
16, SODIUM
17. POTASSIUM
18+ CHLORIDES

19, CO2

LATEST
DATE

04-06=73
07-12-71

06-28-73

06-28~73

(8-01-68
07-23-73
04-06-73
07-23-73
06-28-73
10-25-68
04-C6-73
06-28~-73
06-28-73
06-28-73

06=28-73

ROUTINE TESTS

RESULT

NORMAL
NORMAL

NORMAL

14.8
14.8
45

4509

NORMAL

NONREACTIVE
12
7.3

1.5

PREVIOUS
DATE

-y W an - -

07-12«71

12-30-69

07-12-71

06-28-73
04=-06-73
G6=-28=-73

06-28=-73

06-28-73
08=12~71
04-06-73
04=18=-69
04-06-73
04-06=73
04-06-73

04=-06-73

PAGE 6

CURRENT 70 11-06-73

RESULT

NORMAL
NORMAL

ABNORMAL

5100

46 3% 3 38 3 3k 3 3

CHANGES

NONE
NONE

BETTER

NONE
NONE
NONE

NONE

NONE
NONE
NONE

NONE

WORSE
NONE
" NONE

NONE

Automated Patient Record Summaries for Health Care Auditing

91

DOEs J
993999

L 2-X-2-2-2-X: 23

GROUP

URINE/RENAL FUNCTION

BLOOD

BLOOD

SEROLOGY/IMMUNOLOGY

MICROBIOLOGY/CYTOLOGY

TEST
NAME

24 HR. URINE

VMA
URINE

ELECTROLYTES
CHEMISTRY ONE

SGOT

SGPT

LDH

ALK« PHOS.
GLUCOSE
SERUM LIPID
CPK

CALCIUM

LATEST
DATE

11-12-68

10-13-66

$4-06-73
68-12-71
04=-06~73
§4-06-73
04-06-73
$4-06-73
G4=-00~-73
G4-06-73

CHEMISTRY TwO AND THREE

BILIRUBINSTOT
TOTAL PROTEIN

ALBUMIN
GLOBULIN
GTT

BSP

REITERS
LE PREP

RIGHT FOREARM

BIOPSY

URINE CULTURE

04-06-73
04-06-73
04-06-73
03-09-71
16-25-68
10-13-66

08-01-68
01-15-69
68-30-73

01-20-69

NUCLEAR MEDICINE STUDIES

RENOGRAM
BRAIN SCAN

10-13-66
06-21-73

OTHER TESTS

RESULT

2.1 MG,

NGRMAL

100

NONREACTIVE
NONREACTIVE
ABNORMAL

NEGATIVE

NORMAL
NORMAL

PREVIOUS
DATE

08-12-71
08-12-71
(3=09-71

03=29-71
03-09-71
09-13-65

01-13-69

PAGE 7

CURRENT TO 11-06-73

3¢ 3¢ 3¢ 3¢ 1 $p 3t 3¢
RESULT CHANGES
28 WORSE
at NONE
Gels WOKSE
Te71 NONE
Se02 NONE
3.11 NONE
NONKREACT IVENONE

92 National Computer Conference, 1974

DOEs U
999999

L322 2-1-3° ¥

TEST
GROUP NAME

LATEST
DATE

RADIOLOGICAL PROCEDURES

LT. ANKLE

IvpP

CERVICAL SPINE
SKULL

SKULL

ORBITS
MISCELLANEOUS
EEG

DOEs J
999999

L2 2 221 ¥

07-30-71
10-13=-66
10-13-66
10-13-66
06-21-73
06-21-73

OTHER TESTS

RESULT

NORMAL
NORMAL
NORMAL
NORMAL
NORMAL
NORMAL

11-29-71 # ABNORMAL

PREVIOUS
DATE

10-13~-66

COMMENTS AND SUGGESTIONS

CONT#D PAGE 7

RESULT

NORMAL

CURRENT TO

le THE FOLLOWING PROBLEMS AND THEIR STATUS NEED REVIEWING:

0l. HYPERTENSION

03+ LEUKODERMA
06. OBESITYs MILD

07.

TINNITUS
A. INFLAMMATORY

SKIN CHANGES

2. PLEASE REVIEW CARDIAC PULMONARY RENAL DIAGNOSES ON PAGE 4,

3. PLEASE COMPLETE CARDIAC PULMONARY RENAL DIAGNOSES GN PAGE 4,

4« PLEASE FIND OUT IF PATIENT IS STILL TAKING MEDICATIONS LISTED ON PAGE g

o« PLEASE ORDER:
ECG

CURRENT TO 11-06-73

38 3¢ 38 3 47 41 3F 3%

CHANGES

PAGE 8

11-06-73

3538 38 3 38 36 34 3¢

6. PLEASE FIND OUT IF PATIENT HAS ANY DRUG ALLERGIES OR IDIOSYNCRASIES.

An integrated health care information processing and retrieval

system

by KEVIN C. O’KANE and RICHARD J. HILDEBRANDT

The Pennsylvania State University
University Park, Pennsylvania

INTRODUCTION

In this paper we present the design and some initial experi-
ences with a computerized medical records system (called
the CSAR System) currently in use in several departments
of the Milton S. Hershey Medical Center of The Pennsylvania
State University. The purpose of this work has been to
develop a high-speed efficient information system for the
storage, retrieval and dissemination of the total patient
medical record.

Initially, we were concerned primarily with the develop-
ment of a system for epidemiological research. That is, a
system which could be used to isolate population cross-
sections from extensive patient data bases at very high
speeds. For example, we wanted a system which could, in
a few minutes or less, identify from a population of a hundred
thousand or more those patients whose records indicated
fulfillment of criteria such as: . .. between ages 25 and 30
with three or more pregnancies, type AB blood and a family
history of eancer. . ..”

Coupled with the need for a research system, we sought
a design which could deliver an improved medical record into
the day-to-day process of health care delivery. That is, a
more legible, complete, accurate, accessible and standardized

—)
SECTI0MAL

CEO~_ [Gaop
> i ‘
=,

LOCAL
MEDICAL
SYSTEM

REGIONAL

REGIONAL

MED!CAL
SYSTEN

Figure 1—Distributed network of medical information systems

93

medical record at equal or lower overall cost. The selected
system design would need to be capable of maintaining a
patient’s total medical record, not just a recent portion of it.
The system would need to be able to flexibly access and
portray on command all and only that information deemed
relevant by the system’s user. The design would need to be
very efficient and economical so as to be able to store at
reasonable cost historical data over a period of several years.

Furthermore, we wanted a system design which would
incorporate both the above in a modular scheme so as to
permit simultaneous but independent software development
on many aspects. This implied a design consisting of two
parts: First, a data base independent system nucleus which

SELECT Di1SPLAY
STATEMENTS) STATEMENTS
CSAR NUCLEUS CSAR NUCLEUS
LANGUAGE LANGUAGE
SECTION SECTION

DISPLAY KEYS

SELECT KEYS

KEY
CONTRO
FILE
.
FILE

PAGE

KEY

S~
CONTRD
FiLE)
37
ke

PAGE

CSAR NUCLEUS
RETRIEVAL
SECTION

CSAR NUCLEUS
RETRIEVAL
SECTION

PAGE #

SUB-POOL
1D NUMBERS

RECORD
ADDRESSES
ADDRESS

CSAR NUCLEUS) ey
OQUTPUT FILF
HANAGER

SUB-PNOL NUMBER

b
\.../

SHR-POOL

PATIENT NUMBERS;

CSAR NUCLEUS
POOL MANAGER

/- RECOPD

APPLICATION
ouTPUT
PACKAGE

PRINTED RESULT

Figure 2—Basie system cycle

94 National Computer Conference, 1974

CHIEF _COMPLAINT

PRESENT ILLNESS DATA
PAST HISTORY

REVIEW SYSTEMS
FAMILY HISTORY
SOCIAL HISTORY

LAB TEST RESULT DAY TIME
[o, —
o Y e
— [.3
LAB TEST gRESULT DAY TIME
CYTOLOGY] YV — Yr—a/i—1
[SURGICAL |] YT 1
— oata
] 1
1 1
|HEMATOLOGY |

LABORATORY RECORDS

DIAGNOSTIC RECORDS

TREATMENT RECORDS

INTERIM HISTORY RECORDS

(vADMISSION DATES /PROBLEM LIST
T Mool DATES

INTERIM PHYSICAL EXAM RECORDS -t

ICDA CODE

HOSPITAL SERVICES RECORDS

NURSING RECORDS

INITIAL HISTORY RECORD

ADMISSIONS RECORDS

Master Pgtient Index
Patient Number

MASTER PATIENT INDEX
[PATIENT NUMBER] [PRIMARY REFERENCE RECORD\’ Name
OUTPATIENT RECORDS o Date of Burth
EMERGENCY ROOM RECORDS H»x

PHYSICAL EXAM RECORD

Guarantor Nome Address
Social Security No
Drstrict Code

Phone Number

Sex/ Maritol Status

Date First Admission

PHYSICAL THERAPY
OCCUPATIONAL THERAPY

TREATMENT
ANDEX PHYSICIAN THERAPY

g MINSTERED fADMINISTERED
-

Primary Reference Record

Nome

PHYSICAL EXAMINATION Social Security Number
VITAL SIGNS HEART Patient Number
GENERAL CONDITION ABDOMEN Sex,Race, Marital Status, Birth Dote
SKIN PELVIC Address . Telephone Number, Birth Place
HEENT RECTAL Guarantor
NECK EXTREMITIES Eye Color, Educational Leve!, Dexterity
LYMPHATICS JOINTS Financial Support (Place of Employment)
BREASTS POSTURE Next of Kin,Reterring (Personal Physician)
CHEST NEUROLOGIC Occupation , Religion, Insurance

Blood Group, Hypersensitivities
Other Critical Indicators

* Dota Structures Similar to that of Admission Records
t Dato Structure Not Shown

Last Complete Hls'ory Dote

Last Complete Physical ~ Date
Laboroatory Tests - Date Most Recent

List Previous Admxssnons and Outpatient Visits

Date in- Date out OPc Diognosis, Attending Physicion
Residen! Physician

ANDEX _____
iMEDICATION
i THERAPY

PSYCO THERAPY

DIETARY BwNISTERED mnmsmnso
SURGERY \OIETARY CODE DATA
ANESTHESIA

SURGICAL PROCEDURE /' ADMIMSTERED ﬂAWlHISYERED l——
.l

HOSPITAL SERVICES

NESTHESIA CODE\
FINANCE AND ACCOUNTING

CENTRAL STORES DATE TIME

[CENTRAL PROCESSING /

IME
MWSTERED AWI NISTERED r
E/ ID”A
PHARMACY

DIETARY DATA

OCCUPATIONAL THERAPY

PHYSICAL THERAPY

Figure 3—Structure of a medical record

would provide centralized input/output, file management,

information processing and information retrieval services for

other parts of the system. Second, applications interface
packages which would deal with data base and user de-

TABLE I—List of Active Keys

Key-Word Meaning
PROBLEM . . . « « « o = o o o &« ICDA DIAGNOSIS

PAP . . « 4+ 4 4 & « « + « . . . PAP SMEAR RESULTS

USCR. « « « « « «-w-w = + « + . URINE SCREEN RESULTS

ABSCR . . + + « « -« .' ANTI-BODY SCREEN RESULTS
BLOOD TYPE BLOOD TYPE

RPR w +« +« + « + » » . PROTEIN REACTION

RUBEL . . - « « « « « « » « . . RUBELLA TEST RESULTS

2HGL « « « « « = + « « + « . . 2-HOUR GLUCOSE RESULTS

. ESTIMATED DATE OF CONFINEMENT
HGB « « « « « = « « + « « « » - HEMOGLOBIN TEST RESULTS
MEDICATION « « « « DRUGS BEING ADMINISTERED
NAME . . +« « « « .. « « « « « . PATIENT NAME

RE .« ¢ v v v v v e v 0 s RH FACTOR

HCT HEMATOCRIT TEST RESULTS

NEXT APPOINTMENT APPOINTMENT LIST

ACTIVE PROBLEM ACTIVE DIAGNOSIS

THERAPY + » « v « o & THERAPIES BEING ADMINISTERED

pendent aspects as printed output formats, update formats
and so forth. In such a scheme, each data base dependent
application could develop independently of the others within
a common environment of conventions and structures.

Another important design aspect is that of system expanda-
bility. That is, whether the system is capable of integrated
growth without data base fragmentation. The design must
assume at the outset that as the population serviced by the
system grows, an upper limit to the capacity of any one
computer implementation will be eventually achieved. At
this point the population must be divided among more than
one computer. As the number of such divisions grows, it
must nonetheless remain possible for a user at any system
to access data or perform searches at any other system or
set of systems conveniently. That is, the user at an inter-
active terminal should not be aware of multiple machine
data base segmentation.

DISTRIBUTED NETWORK OF MEDICAL
INFORMATION SYSTEMS

In order to fulfill the third specification mentioned above,
that of expandability, a Distributed Network of Medical
Information Systems is proposed. This is outlined in Figure
1. It will consist of many local medical information systems

An Integrated Health Care Information Processing and Retrieval System 95

$CSAR - SYSTEM FILES OPEN.
$CSAR - CSAR D.1 {OBSYS/TRSYS)
$CSAR - SUB-POOLS WILL BE ACCUMULATED.,

1 $NO LIST; /*DON'T LIST PATIENT NUMBERS AFTER SELECT STATEMENTS*/

2 SELECT:

RH = NEG;3

$CSAR - SUB-POOLS SELECTED:
$CSAR ~ PATIENT MUMBERS SELECTED:

3 $AND3

/*NEGATIVE RH FACTORX*/

$CSAR — SUB-PODLS WILL BE INTERSECTED.

4 SELECT:

81L.00D TYPE = 03

$CSAR - SUR-PDOLS SELECTED:
$CSAR — PATIENT NUMBERS SELECTED:

5 $AND3

$CSAR = SUB-POOLS WILL BE INTERSECTED.

6 SELECT:

PRORLEM =

Y06 %%

$CSAR - SUB-POOLS SELECTED:
$CSAR - PATIENT NUMBERS SELECTED:

7 $AND;

/*PREGNANCY ICDA

$CSAR - SUB-POOLS WILL BF INTERSECTED.

8 SELECT:

EDC =

73/11/%*35

$CSAR — SUB-PQONLS SELECTED:
$CSAR — PATIENT NUMBERS SELECTED:

9 $SORT:

$CSAR — PATIENT NUMBERS SORTED.
$CSAR —~ PATIENT NUMBERS SELECTED:

10 DISPLAY:

NAME

RS °ATRICTA
SRR OANNE E
GBS SUJZANNE R

WY CAROL

CENSUS;

NBK

0 O —
0 0 S
00 aEuys
00 V.S

SEX/MARITAL

FEMALE, MARKIED
FEMALE, MARRIED
FEMALE, MARRIED

FEMALE, MARRIED

/XESTIMATED DATE OF CONFINEMENT*/

PHCNE

() -
(717) 367-0000
(7171 533-uNE

(717) 2713-onme

Figure 4—SELECT statement examples

CODEx/

/*CONFINEMENT IN NOV 73,

ATTND

50 SR
50 .
50
50 N

11

ANY

23

BT/RH

59

24

23

DAY*/

4

WGT

134

105

150

EDC

lL1/eam/ 173
i1/9m/73
11/88/73

il/@m/13

96 National Computer Conference, 1974

2 SELECT: 1F: ATTENDING = SOYR: /*ATTENDING PHYSICIAN CODEx/
$CSAR - SUB-PONLS SELECTED: 1
$CSAR - PATIENT NUMBERS SELECTED: 128

3 $AND; /#UAND"™ NFXT PATIENT NUMBER LIST WITH CURRENT LIST#*/
$CSAR - SUB-POOLS WILL RE INTERSECTED.

4 SELECT: IF: PROBLEM = YO6.%%; /¥PREGNANCY ICDA CODEx*/

$CSAR - SUB-POOLS SELECTED: 11
$CSAR ~ PATIFENT NUMBERS SELECTED: 125

5 $SET BASF; /=RETAIN THIS NUMBER%/
$CSAR - THE BASE IS: 1.250000E+02

6 $AND; /%VAND® NEXT PATIFENT NUMBER LIST WITH CURRENT LIST*/
$CSAR — SUB-POCLS WILL BE INTERSECTED,

7 SELECT: IF: PAP = @xejokhkdkxiskdkkkxy fXACCEPT ANY VALUEx/

$CSAR - SUB-PODLS SELECTED: 25
$CSAR - PATIENT NUMRERS SELECTFD: 83

B DISPLAY: PFERCENTAGE: /*PERCENTAGE PREGNANT FCR 508ER WITH PAP TESTS*/
$CSAR — CURRENT PATIENT NUMBER LIST IS 66.4% OF THE BASE.

9 $XDOR; /=MEXCLUSIVF OR"™ NEXT PATIENT NUMBER LIST WITH CURRENT LIST*/
$CSAR - SUB-POOLS WILL BE EXCLUSIVE OR'ED.

10 SELECT: IF: PRGBLEM = YO6.%%35 /*PREGNANCY*/
$CSAR - SUB-POOLS SELECTED: 11
$CSAR ~ PATIENT NUMBERS SELECTED: 274
11 $AND; /% INTERSECT PATIENT NUMBER POOLS*/

$CSAR - SUB-POOLS WILL BE INTERSECTED.

12 SELECT: IF: ATTENDING = SO@EB: /*PHYSICIAN CODE*/
$CSAR - SUB-PNOLS SELECTED: i
$CSAR - PATIENT NUMBERS SELECTED: 42

13 DISPLAY: PERCENTAGE; /%PERCENTAGE PREGNANT FCR SOSEE WITHOUT PAP TESTS*/
$CSAR - CURRENT PATIENT NUMBER LIST IS 33.6% OF THE BASE.

Figure 5—SELECT statement examples

An Integrated Health Care Information Processing and Retrieval System g7

BN ANE B

PHONE: (717) 944-UlN
BIRTH: 12/10/49
DATTENT NUMBER: OOgNENE
FEFMALE, MARRIFD

ATTENDING: 50004 BLOOD TYPE: A
USUAL WEIGHT: 126 EDC: GEES/ 73
NEXT APPUINTMENT: /__1 AT

—— s ¥ — v

CURRENT PROBLEM LIST

05711/73 RH INCCMPATIBILITY

05/11/73 HX OF HIGH BIRTHWFIGHT INFANT

08713773 GESTATIONAL DIARETFS
08711773 HX FETAL DEATH IN UTERD

WITH

PAGE 1

ADDRESS:

REFERRED BY:

NEG

- ———— - ——— - ——— - - —— - = - -

634.50
T184.4H
250.AA
179.0H

— - — —— —— ——— ———— — ————— T —— T —

CSAR SYSTEM TUMOR REGISTRY WORKSHEET

T=___._F p= R= BP=

PRIMARY SITE:

STAGE OF MALIGNANCY FDR PRIMARY SITE,

ICDA CODE=___.__3 DESCRIPTICN:

WT= LBS

s s Loty ot R

THIS CBSERVATION:

1. IN SITU 5. CANCER PRESENT, STAGE UNKNCWN
2. LOCALIZED 6. NO EVIDENCE OF CANCER

3., RFGIONALIZED 7o NOT KNOWN If CANCER PRESENT
4, REMDTE METASTASIS 8. NON-MALIGNANT TUMGCR

REMOTE METASTASIS TO:

1. LUNG 5« CENTRAL NERVOUS SYSTEM
2. LIVER 6. PERITONEUM

3. BOME 7o INTESTINAL TRACT

4, LYMPH NODES 8. OTHER

Figure 6—Tumor registry worksheet

connected centrally into regional control systems which
could themselves, in turn, be connected into state-wide or
larger networks. Each local facility will maintain its local
data base which may be interrogated locally. In addition to
this, however, each local facility can route requests to the
central facility for access to information not stored locally.
In turn, the central facility will poll, simultaneously, the
proper set local facilities with the forwarded request. Replies
will be collected and returned to the requesting station. The
central control point need not be much more than a mini-
computer with a suitable amount of telecommunications
equipment and disk buffers for queueing of information.
Alternatively, the central control point could be a major
shared computer facility providing centralized facilities for
many small medical centers.

The great advantages of a design such as this are its
simplicity flexibility and modularity. Control systems are
easily designed. Flexibility and modularity is achieved across
the network in that each local system can differ totally
from each other system so long as it communicates its
requests and replies according to a standard network proto-
col. This will permit a wide variety of local development to
take place simultaneously.

Furthermore, if the central control points are regional
shared resources, this design will permit smaller installations
to access and benefit from computational and program
library facilities which would otherwise be unavailable. The
development of a distributed medicai information network
will enable individual institutions to specialize in designated
areas of program development, library maintenance and so

98 National Computer Conference, 1974

SEREENE JANE 8

PHONE: (717) 944-NE ADDRESS:
BIRTH: 12/10/48

PATIENT NUMBER: 000G REFERRED BY:
FEMALE, MARRIED

ATTENDING: 50004 BLOOD TYPE: A NEG

USUAL WEIGHT: 126 EDC: G/ T73

NEXT APPDINTMENT: /__7 AT WITH

o sm 7 e T e et s e 2t e ——

CONDITION OF PATIENT AT THIS ORSERVATION:
CAPABLE 0OF NDRMAL ACTIVITY:

1. ASYMPTOMATIC
2. SYMPTOMATIC

UNABLE TO WORK:

3. CAPABLE DOF SELF-CARE
4, NOT CAPABLE NF SELF-CARE

SEVERLY DISABLED:

5. NOT TERMINAL
6., TERMINAL

DEAD:

T. AUTOPSIED
8. NOT AUTOPSIED

DIAGNOSTIC PROCEDURES PERFORMEDR, THIS OBSERVATICN
l. EXFOLIATIVE CYTOLOGY 4. X-RAY
2. HEMATOLOGY 5« AUTOPSY
3. HISTOLOGY 6. NOTHER

SCHEDULED FOLLOW-UP VISIT: /__7

NEW MEDICATIONS: CnoE DESCRIPTION

DISCONTINUED MEDICATIONS: CODE DESCRIPTION

NEW THERAPIES: ICCA CODE DESCRIPTICN

DISCONTINUED THERAPIES: ICDA CODE DESCRIPTICN

Figure 6-2

An Integrated Health Care Information Processing and Retrieval System 99

WS AN S
PHONE: {717) S44-GEED
BIRTH: 12/10/48

PATIENT NUMRER: 00«

FEMALE, MARRIED
ATTENDING: 50004
USUAL WEIGHT: 126
NEXT APPOINTMENT: /

DISCONTINUED PROBLEMS:

NFW PRNALEMS:

PROGRESS NOTES:

INITIALS EXAMINING PHYSICIAN:

ADDRESS:

REFERRED 8Y:

BLAOD TYPE: A NEG
EDC:

07/Em/ 73

AT ____ WITH ___
1CDA CODE DESCRIPTICN
ICDA CODE DESCRIPTICN

— s 2 . o . s

Figure 6-3

forth. The benefits of these efforts could be shared by all.
Thus a medical facility in a small rural hospital could have
access to the same tools at the same cost as a large metro-
politan hospital. In general, this cost should be lower than
it now is due to the elimination of duplication.

PROTOTYPE IMPLEMENTATION

At present, a prototype of a local medical information
system is being tested. The prototype is written in PL/I
and is being run on The Pennsylvania State University’s
IBM 370/165 research computation facility at University
Park, Pennsylvania. The user population, at the Milton S.
Hershey Medical Center in Hershey, Pennsylvania (103 miles
distant), interact with the system via a Remote Job Entry
system and a state-wide remote batch network. It is antici-
pated that work will commence shortly to transfer those
portions of the system which are completed onto a small
computer located in Hershey. Research and development,
however, will still be carried out at University Park.

The basic system cycle is given in Figure 2. Figure 3 is an
overview of the computer structure of the medical record.
For purposes of explanation, user requests are divided into
two classes: the “SELECT” statement and the “DISPLAY"
statement. Others, however, are available but not considered
here.

With the “SELECT” statement, the user specifies eriteria
for a population cross-section search. For example:

SELECT: IF: RH=NEG AND PROBLEM =Y06.0;

This request seeks the identity of all those patients with a
negative RH factor who are pregnant (ICDA [1] Code). The
result of this request is a list of patient identification numbers
(hospital numbers) of those patients who fulfill the stated
criteria. An example is given of such a request in Figure 4.
The relational operators “>=", “<=" and “- =" may
also be used as can be seen in Figures 4 and 5. Asterisks are
used to indicate that any recorded value for the selected
field position will be acceptable. Table I gives a suramary of
those keys which are currently active for selection.

Pools of patient identification numbers are normally
ordered by ascending value (default sort). This can be
changed by the “SORT” statement as is shown in Figure 4.
This is particularly useful when preparing patient charts for
clinic visits. By selecting those patients who are scheduled
for a given day, it is then possible to sort them by hour and
by physician thereby greatly reducing clerical effort.

Having settled upon a list of patient identification numbers
and having ordered them as desired, actual displays of data
from patient records can be requested with the “DISPLAY”
statement. Figures 6 and 7 give several examples of patient
data displays. At present, there are three applications pack-

100 National Computer Conference, 1974

W ANF 8

PHONE: (T717) 9442
RIRTH: 12/10/489
PATIENT NUMBER: 00(ER
FEMALE, MARRIED
ATTENDING: 50004
USUAL WEIGHT: 126
NEXT APPGINTMENT: __/__/ AT

RLOCD TYPE:

CURRENT PROBLEM LISY

i - - - - - - = - — - —— - - W - -

057/11/73 RH INCOMPATIBILITY

05/711/73 HX OF HIGH BIRTHWEIGHT INFANT

08713773 GESTATIONAL DIABFTES
08711/73 HX FETAL DEATH IN UTERD

- . i o o o 0 S e ol S S o e S o o i T S S — —— T " T Y~ o o "~ o 2 7 o T o o2 -~ >\

PRENATAL VISIT

BLOOD PRESSURE: _ /

—— —————

ALBUMINS

WEEK OF GESTATINN:

—

HEIGHT 2F FUNDUS {({M):

STATINON OF PRESENTING PART:

NEW PRO3LEMS
1.

2

DISCONTINUED PRNMBLEMS
l.

2e

NOTES:

LAB TESTS NEEDED:

RETURN VISIT

INITIALS:

PAGE 1

EDC: 07T/ /T3

e

AT: WITH:

NEG

WITH

— v

634.50
778.4H
250.AA
779.0H

WEIGHT :
EDEMA:

LOGCATION OF FETAL HEART:

WITH ULTRASOUND ONLY?

FETAL PCSITICN:

ESTIMATED FETAL WEIGHT:

s g e e

NEW MEDICATIONS

l.

2.

DISCONTINUED MEDICATICNS

1.

2

Figure 7—Obstetrics outpatient system example

An Integrated Health Care Information Processing and Retrieval System

101

s ANE &
(717) 944 GEB
12/10/47
PATIENT NUMBER:
MARRIED
50004
USUAL WEIGHT:
MEXT APPOINTMENT:

PHONE:
BIRTH:

FEMALE,
ATTENDING:

PAGE 2

olo? 4
BLOOD TYPE: A NEG

EDC: O7/4R/ 73

/__7 AT

126
WITH

PROGRESS NOTES

—— > —— - A - ——— - - - —— - D —— D = - o ———— "

05/711/173.1
05/25/13.1
06/708/73.1

06/15/173.1
N6/15/13.2

06/7/22/73.1
06/29/773.1
DT7/713/773.1

07/20/73.1

WELL . 2HR. BLOOD SUGAR= 122

WELL
WFLL,

HAS PREGNANCY GRANULOMA 0OF GUMS. RH TITER
TODAY. WILL START NRAL CONTRACEPTICN 3 WKS PP,

WELL .
WELL .
SOFT. SR

HISTORY OF 9—-10# INFANTS. CX CLOSED,

PELVIC=MOVING ANTERIORLY, 1CM,SCFT,10%EFF, WEN

07/27/73.1 HX 0OF MENSTRUAL INTFRVALS UP TC 40 DAYS
07/727/73.2 COMING OFF PILLS. CX LONG, POST, CLCSED. PT
07/27/73.3 & HUSBAND ACCEPT PRORLEM WELL. 4R

08/03/73.1 CX-LONG, 1CM. NOT RIPE., NOT RIPE ENCUGH TO
08/03/73.2 INDUCE. INFANT 10# + NOw. &N

03/@F/73.1 PT INFORMED OF PROBABLY DEMISE. TC COME IN
08/W/T73.2 MONDAY, 1F FHT AUDIBLE WILL INDUCE. IF NOT,
08/W/73.3 WAIT CX RIPENING PROBABLY, CX 2 CM DIL, 60% EFF
08/8W/73.4 MEMBRANES STRIPPED, F Y

08/@R/T3.1 DELIVFRED 5130GM MALE, APGAR 0,0.

ages in operation: (1) an Obstetrics Outpatient Clinic Sys-
tem; (2) an Obstetrics Labor and Delivery Information
System and; (3) a Regional Tumor Registry System. Ex-
amples of pre-printed work-sheets and displays for these are
given in Figures 6 and 7. Other systems, including a General
Outpatient Clinic System which will be similar to the Ob-
stetrics version, are in preparation.

——— . ——— - - - - - - —— = —— - —

SYSTEM DESIGN

Details of the system file structure and design are given
in References 2 and 3. The overall design of the system con-
sists of two parts. The first of these is a system nucleus which
is largely data independent except for certain driver tables.

102 National Computer Conference, 1974

WUBSER JANE &

PHONE: (717) 9445
BIRTH: 12710747
PATIENT NUMBRER: 00/
SEMALE, MARRIED

PAGE 3

ATTENDING: 50004 BLOOD TYPE: A NEG

USUAL WEIGHT: 126 EDC: O7/@m/73

NEXT APPOINTMENT: __/__/__ AT ____ WITH ___

MEDICATIONS

DATE GENERIC MAME AND DOSAGE CODE DIRCTNS DUR RT DSCNTND
05/11/73 FERROUS SULFATE 300MG 26201 1TID PO %%/ %k /%%
08714773 NRTHONOVUM 1/50 PO %/ %k /%%
08/14/73 CNLACE 100MG 65206 1TID PO ok /%ok [Hk
08/11/73 RHUOGAM 82107 IM %K/ & k%
CURRENT PROBLEM LIST

05/11/73 RH TINCOMPATIBILITY 634.50

05/11/73 HX OF HIGH RIRTHWE IGHT INFANT 778.4H

08/13773 GESTATIONAL DIABETES 250.AA

08/11/73 HX FETAL DEATH IN UTEROD 779.0H

INACTIVE PROBLEM LIST

05/11/73 PREGNANCY Y06.00 08/11/73
07/13/73 LARGE BARY FOR DATES 777.41 08/11/73
08/10/73 FETAL DEATH IN UTERD 779.98 08/11/73
08/11/73 SHOULDER DYSTNCIA 656,88 08/11/73
08/11/73 4' PERINEAL LACERATION 658434 08/11/73

- — e - ———— — —— - ——— - T —— = s " ot o s Y .t o e . s B i i e " i Ve, . o < o < o o . " S

THERAPY L IST

——— ——— — ——— ———— o ———— -

08711773 078.3C

The second part consists of data dependent applications
packages.]

The system nucleus monitors and provides basic input/
output services. It reads the system command language and,
based upon entries in driver tables, constructs various popu-
lation cross section keys (“SELECT” statement keys),
patient data description keys (“DISPLAY” statement keys)
and output report generation format tables. Nucleus routines

—— e et T~ 7 < o S . 7 o o o > o s

08711/73 650,00 SPONTANEQUS DELIVERY
REPAIR 4' LACERATION

- — . ———n - P - A N - ——— - A . . S - WS - = - A WS M A W WY e W N - - A A . en m - . - - -

retrieve patient numbers (for “SELECT” statement keys)
and record addresses (for “DISPLAY” statement keys). The
basic file structure is that of a blocked key file.?

The nucleus performs the logical operations (AND, OR,
XOR) upon pools of retrieved patient numbers. In the case
of record addresses (from “DISPLAY” statements), it re-
trieves the records and passes them to the proper applications
package along with report format description tables.

-

An Integrated Health Care Information Processing and Retrieval System 103

During updates the nucleus monitors the optimal place-
ment of patient records on bulk storage files. It automatically
repositions patient records in order to maintain the complete
record set for each patient on a single direct access disk
cylinder thereby greatly reducing device arm movement.
Other functions of the nucleus include sorting, timing and
statistics collection. A built<in PL/I sub-set interpretive
compiler permits dynamically entered user functions to
interact with retrieved data.

Typically, applications interface packages are concerned
with output print formats and updates. Routines vary in
size and complexity depending upon the nature of the appli-
cation. Data entered into a patient record as a result of any
application package is available to any other package.

The system maintains four main files. These are: (1) a
control file; (2) a key file consisting of pages or blocks of
ordered keys; (3) a pool file containing sets (sub-pools) of
patient numbers and (4) a bulk-file containing actual data
records. Key-to-bulk file record address (“DISPLAY” re-
requests) and key-to-patient number sub-pool (“SELECT”
requests) are performed in the block structured key file.
This works as follows:

At system initiation the control file is loaded. It lists the
high and low key values for each block in the key file. Within
each block keys are ordered from low to high. Associated
with each key is a 32-bit number which is either: (1) a
relative record address in the bulk-file or (2) the relative

SRR) ANF B

PHONE: (717) Y44-GmmS
BIRTH: 12/10/47
PATIENT NUMBER: 004N
FFMALE, MARRIED
ATTFNDING: 50004 BLOOD TYPE: A NEG
USUAL WETGHT: 126 FDC: 07/88/73

PAGF 4

NEXT APPOINTMENT: __/_ /_ _ AT ____ WITH ___

NATE TIME STUDY RESULT
01/12/713 RPR NEG
02723/73 2HGL 122
08/10/173 FIBR 793
08/13/73 Q700 GLuC 126
08/13/73 0730 GLUC 176
08/13/13 0800 GLUC 243
08/13/73 0830 GLuc 274
08/13/73 0500 GLUC 254
08/13/13 1000 GLUC 163
08/13/73 1200 GLUC 69
08/13/73 0730 useG NEG
08/13/73 0800 UsG NEG
08/13/73 0830 UsG NEG
08/13/73 0s00 usG NEG
08713773 1000 usG NEG
08/13/73 1200 uUsG NEG

DATE WK HCT USCR ABSCK

OL/12/773 *% 37.3 NEG L2221
02727773 %% kkxx kkdkk NEG
06715773 *% #x%kkx *kkkx NEG
08/10/73 %% 39,5 k% kkkxk
08/13/73 %% 40,] k¥*k dokokk

Figure 74

N JANE 8 PAGE 5

PHONE: (T17) 944-SER

BIRTH: 12/10/47

OATIENT NUMBER: OO

FEMALE, MARRIED

ATTENDING: 50004 RLOOD TYPE: A NEG
USUAL WEIGHT: 126 EDC: O7/48/73

NEXT APPOINTMENT: _ _/_ /__ AT ____ WITH ___

%% BLOOD PRESSURE REYCND NCRMAL LIMITS **#*

81000 PRESSURE

130
.S .
. S S S$Ss -
.S S SSS$SSSSS S
- S .
. o] .
- 0 .
«0 .
. 0 .
« D 0DDDDD DD o] D .
. 0 .
- 60

MAXIMUM DIASTOLIC: 96
MINIMUM DIASTOLIC: 60

MAXIMUM SYSTOLIC: 130
MINUMIM SYSTNLIC: 104

Figure 7-5

record address of a sub-pool of patient numbers in the pool
file. A positive value indicates the first case and a negative
value the second.

For retrieval, incoming keys are compared against the
block high and low keys. If the incoming key lies outside
the ranges of all, then nothing is retrieved. On the other
hand, if the key lies within the range of some block, it is
loaded (if not already resident). The block is searched in a
binary manner. A list is developed consisting of the numbers
(called registry numbers) associated with accepted keys.
These are passed on to other parts of the nucleus.

The advantage of this type of retrieval technique is its
speed and simplicity. Maximum time of search for an explicit
key is, with a resident control file, independent of the size
of the key file as bulk file. At worst case, the system must
load a new page. Non-explicit searches vary in time de-
pending upon the number of keys selected.

Experience indicates that, after an initial period of time,
the rate at which new keys enter the system becomes linear
and rises at a rate far less than corresponding increases in
the size of the bulk file. This is also true of the pool file.
The key file, at this writing, is 5 percent of the bulk file and
pool file in size.

It is anticipated that the internal organization of blocks
in key file will be restructured in the near future to that of
m-way trees. This will reduce the amount of storage required.
Further, it should decrease the number of page swaps.

PERFORMANCE

Presently, after 10 months of operation, there are about
500 patient records resident on the system. With the intro-

104 National Computer Conference, 1974

MR JANE & PAGE 6

PHONE: (717) 944-2B

BIRTH: 12/10/47

PATIENT NUMBER: 00/t

FEMALE, MARRIED '

ATTENDING: 50004 BLOOD TYPE: A NEG
USUAL WEIGHT: 126 EDC: O7/8A/73

NEXT APPOINTMENT: __/

/. AT ____ WITH

DATE TIME WK 8P ED WT AL FH FD PF ST SZ EXM
01/12/73 **:*%x 14 130/ 80 00 127 *% LMS ** #% *x %k VGS
02/09/73 #¥:xx 18 110/ 70 00 131 00 LMS 17 #*%x %% %% KHCG
03/09/73 *¥:%xx 22 120/ 75 ** 133 00 RLQ 18 ** % *x DRH
04/06/73 **:xx 26 110/ 70 00 141 TR RLQ 18 #*%* %% *%x DRH
05/11/73 **:%x 31 120/ 68 00 148 00 RLQ 26 VT FL ** DRH
05/25/73 **:%%x 34 104/ 68 00 150 TR LLG 27 VT FL *% DRH
06/08/73 **:¥xx 36 110/ 70 00 152 00 LLQ 31 VT FL ** DRH
06/15/73 *x*:%x 37 110/ 64 00 152 00 RLQG 31 VT FL ** DRH
06/22/73 **:#%%x 38 110/ 60 00 153 TR LLQ 30 VT EN ** DRH
06/29/73 **:%% 38 112/ 70 00 154 00 LLG 32 VY FL *% DRH
07/06/73 *%:%%x 40 112/ 70 00 154 00 RLQ 37 VT DP *%x DRH
07/13/73 *%:%x 41 108/ 60 00 156 00 RLQ 35 VT DP *%x DRH
07/20/73 **:%x 42 108/ 70 00 156 00 LLQ 42 VT FL 44 WJM
07/27/73 **:*x% 43 126/ 96 00 158 00 LLQ 34 VT FL ** DRH
08/03/73 #%:x% 44 120/ 90 TR 160 00 RLQ 38 VT FL **x DRH
08/10/73 **:x% 45 110/ 70 00 158 00 NHS 41 VT FL 45 DRH
WK = WEEK OF GESTATION: FD = HEIGHT OF FUNDUS{CM);
ED = EDEMA; PF = PRESENTATION OF FETUS;
WT = MATERNAL WEIGHT; ST = STATION;
AL = ALBUMIN; SZ = FETAL SIZE(X100 GMS);
FH = POSITION OF FETAL HEART; EXM = EXAMINER;
$CSAR - END OF SUMMARY FOR: SN JANE W

Figure 7-6

duction of the recently completed Regional Tumor Registry
Information System package, this is expected to reach 5,000
in the next 12 months. At present, the cost per patient per
month is about $0.12 using an IBM 3330 Disk Storage
device (this includes cost of the pack and drive plus shared
costs of the controller and channel). The cost per patient
record printout varies with respect to the size of the record,
but is generally on the order of $0.05 to $0.15 for a moder-
ately large record. Retrieval (“SELECT” statements) times
vary upon the amount of patient numbers retrieved and are

not significantly influenced by file size (this is characteristic
of block structured techniques). In general, between 500 and
750 patient numbers per second can be retrieved.

CONCLUSION

We believe that the present system design can be exploited
to handle the entire patient medical record economically.
Hayving compieted work on the basic system nucleus, several

An Integrated Health Care Information Processing and Retrieval System 105

applications packages are under development. One such REFERENCES
project is in the area of billing and finance. By including an

additional flag in the field for each chargeable item or service, 1. Eighth Revision, I tional Classification of Disease Adapted for

the system can be used to produce an integrated patient Use in the United States, U. S. Department of Health, Education
account statement. Another project is in the area of de- and Welfare, Public Health Service Publication No. 1693.

veloping an automatie constructor which will enable an 2. O’Kare, K. C., The Design and Implementation of an Integrated
implementor to define new applications by means of a high- M efiicalll nformation System, Ph.D. Thesis, The Pennsylvania State
level Sys.tem ‘deﬁl:litictn langu, age' Based 0]? such a deﬁn?tion, 3. g’x;z‘;zr:,lt{{’. lg.ns:nd R. J. Hildebrandt, Operations Manual for the
appropriate applications routines and driver tables will be CSAR System, Department of Computer Science, The Pennsylvania

generated. State University, 1973.

Interface for rapid data transfer and evaluation

by PRADEEP SHAH,* RUDY HAIDLE and GEORGE CZERLINSKI

Northwestern University
Chicago, Tlinois

INTRODUCTION

Minicomputers are quite useful for the acquisition and redue-
tion of data from physical and biomedical research equip-
ment. Minicomputers have become progressively less expen-
sive and are now comparatively easily available for research
investigators. At that point, the problem arises to interface
minicomputers effectively to research equipment. This inter-
facing task became recently somewhat {facilitated by
specialized books and articles.2? Quite recently minicom-
puters were utilized for multiple ion detection in combined
gas chromatography—mass spectrometry.4> A computer cen-
tered instrument for simultaneous measurements of absorp-
tion and fluorescence was also described quite recently.®
Finally, a computer system for the acquisition and analysis
of temperature jump data was described.” Although a Bioma-
tion 802 transient recorder was used as fast analog-to-digital
converter by the latter authors, they utilized a Digital
Equipment Corporation PDP 11/20-8k and a teletypewriter
ASR-33 as equipment connected to the output of the Bioma-
tion 802. In this paper we will describe the use of a Digital
Equipment Corporation PDP 8/e-8k minicomputer as active
processor between the Biomation 802 and a Hazeltine 2000
CRT terminal, which is also connected to a Hazeltine dual
tape cassette.

Before the use of the minicomputer, we had produced data
on paper tape in rather large quantities. The rolls of paper
tape were then transferred to a large computer via an over-
night carrier. Unfortunately, the large volume of long rolls
of paper tape caused some operational problems at the main
computer center. Furthermore, ten minutes were required
for the production of paper tape with about 1,000 (8 bit)
points per experiment from the Biomation 802. For our
experiments, three minutes are required for thermal equil-
ibration after a temperature jump and also for full attain-
ment of a new equilibrium value after a pH jump. In other
words, our Biomation 802 transient recorder is utilized on
two types of chemieal relaxation experiments: perturbation
with the temperature jump apparatus and with the con-

* Current address: Equipment and Software Systems, Burroughs
Corporation, Detroit, Michigan 48232.

107

centration jump apparatus (a pH-jump is a special case of a
concentration jump).

The current arrangement allows us to conduct our experi-
ments about ten times faster than before. We fill tape
cassettes with data which are subsequently transferred
through communication lines onto a large computer for thor-
ough statistical analysis. This paper will describe the layout
of the software and the details of the hardware configura-
tion. No changes were made on the Biomation 802, allowing
us to use a teletypewriter and the previously employed inter-
face (Dijiscan Model B203) as back-up for this computer
system. However, we have not needed to use the back-up
system since the minicomputer was first brought into opera-
tion in June of 1973. The equipment is used rather extensively
in two research projects on the mechanism of action of
enzymes.%*®

METHODS

The experimental arrangement centered around a Digital
Equipment Corporation PDP 8/e-8k minicomputer, inter-
faced both to a Hazeltine 2000 CRT terminal with dual tape
cassette unit, and to a Biomation 802 transient recorder.
The latter is connected either to one of our temperature
jump instruments!® or to our pH-jump apparatus.® The de-
tails are best described by several figures.

A schematic of the temperature jump apparatus with
detection of transmission changes is shown in Figure 1.
A similar instrument is also available for detection of fluo-
rescent changes, containing a half reflecting mirror between
light source and cell (containing the chemical system). The
mirror transmits excitation light and reflects fluorescence,
emitted back from the cell. The temperature jump instru-
ments are equipped with special AC-coupling circuits to
improve the detection of small changes behind large (fast)
transients.’! Three types of stopped flow instruments are
available with the slowest one in considerable use: This is a
pH-jump apparatus with detection of transmission changes
and a time resolution of about 0.1 seconds.

The Iayout of the equipment around the PDP 8/e mini-
computer is shown in Figure 2 without a 10 times wide band

108 National Computer Conference, 1974

A7 A~
of

Tektronix
5498
Push —=——Oscilloscope

button
D
|-—>S closed

~3ugj° ’f Ui

pa v, B S

Figure 1—Schematics of a temperature jump apparatus with detection
of transmission changes. The schematic shows abbreviated the current
overall configuration of the apparatus. When a push button is pressed,
a timing circuit is initiated, triggering first the oscilloscope deflection at
A. After one centimeter of progression of the oscilloscope beam, a
trigger pulse is generated at B, initiating the closing of the spark gap
switch G. After about 0.5 millimeter further propagation of the oscillo-
scope beam, a trigger is generated at C, opening the grounding switch
S in the detection circuit. The grounding switch is closed again at time
D (or later). The extended grounding (from B to C) is used to prevent
any processes to be shown on the oscilloscope screen, which are faster
than the one currently under investigation and settings of the oscillo-
scope deflections, which are optimal for detection

amplifier, which is located in front of the Biomation 802
and amplifies the signal derived from the temperature jump
experiments. The data acquisition is controlled through inter-
action with displays on a Hazeltine 2000 CRT terminal.
The controlling messages and the associated flow diagrams
are shown in Figures 3, 4 and 5. More subroutines are
actually used than shown in these three figures. A teletype-
writer may also be connected and is essential for the initial
loading of the binary program from a paper tape. (We en-
countered some problems in trying to use the Hazeltine
cassette as alternate storage space for the programs: the
problems are due to the fact that the interfacing Hazeltine
terminal behaves inconsistently with respect to non-dis-
playable characters, when transmitted for recording onto the
cassette.) ‘

The geometric layout of the various integrated circuits on
the interface board of the PDP 8/e are shown in Figure 6.
Enough space is left to add additional control functions. The
functional circuit diagram is distributed over Figures 7, 8
and 9, all of which are mounted on one DEC interface
board M1709. The remote control of the Biomation 802 is
not implemented yet. The instruction set of the interface is
as follows (where xx stands for 63, the device code for the
transient recorder):

6z20: Interrupt off.
Turns off the interrupt flip-flop, i.e., clears it. This stops

any interrupts due to data ready signals from the Biomation
802.

6zz1: Skip on flag.
The instruction following 6xx1 will be skipped if the next
word from the Biomation 802 is available and such a signal
has already come from the Biomation 802 to the interface
board.

6zz2: Interrupt on.
Turns on the interrupt flip-flop, i.e., sets it to 1 and this way
enables the Biomation equipment to interrupt normal execu-
tion of a program when next word is ready on the line.

Biomation 802
transient recorder

8 bits A/D
conversion max.

0.5 usec/ sample,
1000 samples

[(11)

parallel transfer of
250 bits/sec. under
program control

PDP/e - 8k
serial serial
1200 bits/sec 110 bits/sec
full duplex half duplex
Hazeltine 2000 ASR 33 tele—
CRT terminal typewriter
T 1
: l independent
| | serial
| [300 bits/sec
| | half duplex
dual . ¢pe.
tape 6400
cassette computer
unit I

Figure 2—Overall diagram of the computerized data acquisition system.
The output of the amplifier in Figure 1 is connected to an isolation am-
plifier, producing also a ten times amplifieation for adaptation to the
input characteristics of the Biomation 802 transient recorder. A Tek-
tronix 602 storage oscilloscope is connected to the Biomation 802 to
show the stored information. The transient recorder is directly connected
to a PDP 8/e minicomputer with control information normally appearing
on the Hazeltine 2000 CRT screen. Some minor editing is available
before the data are transferred from the core of the PDP 8/e onto the
Hazeltine tape cassette unit. From there, data are transferred onto the
disk of a large CDC 6400 via telephone lines

Interface for Rapid Data Transfer and Evaluation 109

6zx3: Available for future expansion.

6xz4: Load the control register.
This instruction will output the control bits which may do
one of the following:

(a) Effectively control execution of instruction 6xx5 (load)
(b) Effectively control execution of instruction 6xx6 (read)
(c¢) Start output from the Biomation 802. This will clear
flag and pin 7 of the Biomation 802 will be grounded.
(Ref: Biomation Manual—the user is required to
ground pin 7 to start data transfer.)
Accumulator is cleared at the end of the instruction.
6zx5: Load scales or control lines.
Depending upon bit setting of instruction 6xx4, lower 6-7
bits of the accumulator are loaded into either the “voltage
scale’” buffer or “sweep time” buffer or “extra control lines”

-
Z;ELECT MODE OF OPERATION (R,D,G6,P, E)\

N A

\

\poper tope/

transfer

display
on CR{‘

;
call SETCNT

| / / PUT 802 IN SINGLE SWEEP MODES \

A K;? Y
A ZPUT CASSETTE IN ONLINE -C®NT — CHAR. MODES\ 4
\E:r—./ Biomation 802

--qdoLFrcmsfer 1024 decimal numbers l—.
7lr data buffer in core 4'4___—

Figure 3—Program Flow Chart of main program in the minicomputer
and of short subroutines. The actual text of the control information
from the minicomputer is directly shown. The five letters in the first
print statement stand for:

R = Record data in core onto dual tape cassette
D = Display data in core on the CRT terminal
G = Go to Get new data from Biomation 802

P = Punch data onto paper tape of tty

E = End the program.

Starting point is at the beginning of core of the minicomputer, address

0000. The main program starts at Octal 0200. The data buffer starts at

Qctal 2000 and is Octal 2000 long. Location of the messages foliows and
the program ends at Octal 4400

RG_.,,_

/ PUT CASSETTE IN ONLINE-CONT-CHAR. MODES \

/_HIT RETURN TO CONTINUE \

TYPE IN THE HEADER CARDS \

/ OUTPUT COMPRESSION { YES OR NO)\
/ WHICH CASSETTE DRIVE (1 OR 27\

¥

TRY AGAIN
1 or 2>y _NO
?
YES
[/ REWIND TAPE (YES OR NO) \
\ans/ —
YES POSITION AFTER
/ ... FILES (cr, 1,2,3...)
o =%

/1S EVERYTHING READY \

execute

[Gato_buffer in core J=1

Figure 4—Flow Chart of subroutine SETCNT, responding to branch D.
Sections of collected data may be presented on the sereen without further
editing capability

buffer register. Accumulator is cleared at the end of the
instruction.

The “voltage scale” and “‘sweep time” buffers-drive cor-
responding scale lines high only if ‘“voltage scale” and “‘sweep
time” knobs are positioned ‘“‘external” on the front panel of
the Biomation 802.

“Extra control lines” (6 of them) give open collector out-
put which can be pulled up to +15 volts (maximum current
of 20 ma). Their main use will be for “relay” controls.
(Note: When “sweep time” multiplier is neither x1 nor x2
then it is x4. Similarly when ‘‘voltage scale’”’ multiplier is
neither x1 nor x2 then it is x5.)

6226 Read scales or control lines.

Depending upon instruction 6xx4 bit setting, ‘‘voltage scale”,
“sweep time”’ or “control lines” are sensed and loaded into
the accumulator. If more than one “read” control is turned
on by 6xx4, the effect will be to “OR” the lines into the
accumulator.

Control lines are [compare sections 5.5 to 5.7 of Biomation
Manual] (i) Z Enhance (pin 6) goes to 1, when “sweep

110 National Computer Conference, 1974

D————
Display Data buffer
of buffer in core
on CRT

!

/STARTING FROM LINE NUMBER\

—

103 - -
e
YES TRY AGAIN

——{ Counter }—={ RETURN)

A

Figure 5—Flow Chart of subroutine RECO, responding to branch R.
Before the data are transferred from the core into the tape cassette,
everything has to be set so that subsequent processing takes place
smoothly and the data are properly identified by the “header card”’, a
line of up to 80 columns. Also some controls for the cassette are included
in this program. The text as actually printed on the CRT screen is
explicitly listed in the print statements. The printing ‘“Position after...”
represents an abbreviation of the question: “How many files would you
like to skip forward?”’

time’’ scale goes from A to B; (ii) External Sweep (pin 28)
equals 1 if front panel time switch is set to “External’;
(i) External voltage scale (pin 26) equals 1 if front panel
voltage scale knob is set to “External”.
6z27: Word command.

Read next word from Biomation into the accumulator, lower
eight bits. This instruction will clear the ‘“flag” and then
the Biomation 802 will set it when next data is ready. If
the entire Biomation 802 buffer is to be transferred into the
PDP 8/e the following need to be done:

(1) Accumulator = 1; 6xx4, start output mode.
(ii) Execute 6xx7 1024 times to get 1024 points and store
them.
(iii) Accumulator = 0; 6xx4 to return Biomation 802 tc
normal display mode. Note: Two ranges of time in

which one can transfer data from the Biomation 802
into the PDP 8/e exist: (a) less than 500 usec per
word (b) greater than 2 msec per word.

If time taken to transfer data is not critical, range (b) is
recommended.

RESULTS

Over the last few months, data were acquired with the
described equipment on three different instruments, namely
the temperature jump apparatus with detection of trans-
mission changes (electron transfer experiments on cyto-
chrome ¢), the temperature jump apparatus with fluorescence
detection (binding of the fluorescing coenzyme NADH to
liver alcohol dehydrogenase in the presence of inhibitors),
and concentration jump experiments with detection of trans-
mission changes at 633 millimicrons (detecting the various
protonic forms of ferricytochrome c).

After users became familiarized with the various parts
and their integrated action, they rapidly acquired mastery
of the equipment and could perform soon experiments faster
than before. Previously, the output of the Biomation 802
was transferred through an interface into a teletypewriter
paper tape punch. As the teletypewriter produces only ten
characters per second, ten minutes are required for the out-
putting of the data. With this new equipment, data are
transferred out of the Biomation 802 and into the mini-
computer within four seconds for a full set of 1024 “‘points’.
Although the subsequent transfer into the Hazeltine cassette
unit takes a bit longer, a new experiment can in fact be
conducted every three minutes, adequate for thermal equil-
ibration in the thermostatted temperature jump cells and
for almost all of the concentration jump experiments.

Although enough space is left on the PDP 8/e-8k, to write
programs for the evaluation of the data, only the program

E34 E32 E3N E28 E26 E24

3804 3848 7475 8551 8551 8881 74174
4 pin 14 pinl 116 pin 16 pinl |14 pin 14 pin| 16 pin
—J —J ——J —_—
—AM— AN —MA—
W5 K iK X

A —AAA— A~ AN ‘2‘*
i 1K 1K 1K X

E3% E35 £33 E31 E29 E27 E25 E23 E20 £18
“n 7474 7402 7404 7475 8551 8551 888t 3881 7405
14 pl 14 pin 14 pig (14 pin 16 pinf 16 pin 16 ptn 14 pin 14 pin 14 pin
IK
—AAA—
L5

El6
14 pin

Figure 6—Layout of integrated ecircuits on the interface board of the
PDP 8/e; encircled numbers refer to Biomation 802 pins

Interface for Rapid Data Transfer and Evaluation 111

'I}'_O4|
53 O—| I—
52 8 2 § ; 2 (OPEN COLLECTOR
51 6 7 5 2 OUTPUT IS FOR
EI9 E22 FUTURE USE) |
:; :(2> 9 8 52 O—3 g3g [oo sweer

— 2
50 — 3
33E10 49] 10— 1
E—Y 48 14 15 13 12— 51 O—s tol!
@l 10 8 12 LOAD
E36 B 9 7 O VOLTAGE
4

ﬁ | 818 71 M
oO—J |1 L READ SWEEP
29E10 30 Lhs T 45 exxa glo
EXTRA CONTROLS
X1 ACI! t »
(59 4 3 3 1O ovi
@ —X2l7 2 R 4| ACI0S o1 23EI0 O—I2 Lo READ VOLTAGE
500us| . EIT E21 | aco C 1 a8 3 5 |_L_READ CONTROL
(aa) 9 14 8 10— bsI O— £20 [,
(G212 13 12 131AC8 ~ gy 47 O—8 14
5 6 1010t 25911
> = a6 O—I7 EXTRA CONTROLS
e == I 1" ?
- 4 9
@ SOms|, 3 3 . AC7 O svi 13 sl0 NOT USED
500ms‘7 Ele 2 6524 4 AC8 o 8UI
. Ssec AC5
@ ° 4 8 0 O Bs2 6XX8 FIRST DISCONNECT PIN 3,6,9,1t
56 10 2509 250 OF E3 FRCM ITS PRINTED CIRCUIT
EAD CONTROL 29E14 BOARD CONNECTION AND THEN
L_‘i:l . R CONNECT TO E34 PIN 3.
6XX6
25 12
0ol E33 M3
30E 8 ——-W0)

READ SWEEP

Figure 7—Control circuit diagram for the interface board of the PDP 8/e

30
OJ@OIO 18512 ,
6Xx83 BINIT LOAD VOLTS @ . @lj i
25 2 i 30EH [.
29Ei6-— 3 - s g RETIN
READ VOLTS ! aile ~
’ ACHI E25 x2
53 O—F——i1 5____@
ACI0
| 52 ()-——Ah03 12 415003
51 O—2 i3 O
——o pvI 50 O_f‘cﬂ__|4 3%
O DUl SISEIZ
O ost 30E14] 'ijs_z—“?j

O ori LOAD SWEEP Yc‘s G—M@

ACO? ea7 500ms
49 il 512007345y
100 mV 25 ACgs 12 4 Ez'zc@

: EXT.
3 11— 8vI 47 ACO5 47 0O ACOS |5 5
iomv . E23 O s 3 @)

@-2"Yle Py —e -} e B4 3

| = I18EI2

Figure 8—Load and read circuit diagram for the interface board of the PDP 8/e

112

National Computer Conference, 1974

6XX6 25
6XX7 28

2k
2N3704

6XX7

O

5s &)

WORD
COMMAND

@-2en . o
@A 5 6
. ACO9 . 65
@458 5 ¢4
. ACO7 . 63

ACO8

Aco!
61
@4 5 6o

26

3{%04

O 8

Figure 9—Gating circuit diagram for the interface board of the PDP 8/e

described in Figures 2, 3 and 4 was implemented. We de-
cided on a small software package for the PDP-8/e, as a
large library of data evaluation programs had previously
been developed and was available in FORTRAN on the
CDC 6400 of Northwestern University’s Vogelback Com-
puting Center. All programs are written for interactive pro-
cessing, originally for use by teletypewriters. A program on
the disk of the CDC 6400 provides for transfer of data from
the Hazeltine dual tape cassette onto the disk of the CDC
6400 via ordinary communication lines. The data are then
thoroughly evaluated in several stages, as schematically
shown in Figure 10. Further details on the evaluation of
data are presented in two Appendices. Appendix I describes
the sequence of computer programs for the evaluation of
data derived from pH-jump experiments (compare Refer-
ence 8), in Appendix IT a sequence of computer programs
is described for the evaluation of data from chemical relaxa-
tion experiments on a full enzyme catalyzed reaction cycle
(compare Reference 9).

DISCUSSION

As was mentioned in the Introduction, an alternate com-
puter based data acquisition and reduction system for chemi-
cal relaxation experiments is available. In that case, con-
siderable software was developed and is kept in 8k of core
of the minicomputer for further data reduction. This method

FLOW OF DATA PROCESSING (pH-jump experiments) :

1000 points per experiment

n < 50 data-pairs

non-linear least squares to 781 and AS t 8S
Xequilibrium and rate constants from t~' vs pH

equilibrium and photometric conversion constants
from AS vs pH

Figure 10—Flow of Data Evaluation, as used in a concentration jump

apparatus (pH jump within about 0.1 seconds and subsequent changes

much slower). Although a floating point package was available, it was

not used because of its size and as a subsequent program (“TRANSL”,

see Appendices) was already available on disk and operating on integer

data input. The data, as produced by the Biomation 802, are stored in
numbers from 0 to 255

is quite feasible if punched paper tape is the only medium of
permanent storage of data. As we have higher speed equip-
ment available, we prefer to keep our data initially on dual
tape cassettes, subsequently for on-line evaluation on disk
(of the CDC 6400 in Evanston) and matrices of primary
and secondary data on seven track IBM magnetic tape (at
high density). IBM punched cards of these data matrices
can also easily be produced. To facilitate identification of
individual data sets, every set contains a header- and a
trailer-card, containing system specific information. The
software is designed such that data sets are easily sorted out
and interpreted.

Although the described equipment serves mainly for rapid
data acquisition, the operating program may be further
expanded, and still a considerable amount of central core is
available for programming. However, it is doubtful that any
non-linear least squares analyses could be conducted within
the PDP 8/e without the addition of a disk with support
system. A current disadvantage is the slow transfer rate of
the data into the large CDC 6400. An increase in the trans-
mission rate to the CDC 6400 would be highly desirable.
Nevertheless, the current configuration is of considerable
advantage and should be of interest to others, utilizing tran-
sient recording equipment.

ACKNOWLEDGMENTS

The authors appreciate funding of the PDP 8/e¢ minicom-
puter by the National Science Foundation (GM-20823) and
of all associated work by the National Institutes of Health
(AA00282-02). They are also indebted to Drs. M. Wagner
and R. Zabinski for testing the usage of the equipment.

REFERENCES

1. Malmstedt and C. G. Enke, “Digital Electronics for Scientists,”
Benjamin, N.Y., 1969.

Interface for Rapid Data Transfer and Evaluation 113

2. Enke, C. G., and R. E. Dessy, “Laboratory Computer Interfacing,”
Prelim. Edition, W. A. Benjamin, Inc., Menlo Park, Calif.

3. R. E. Dessy and J. A. Titus, “Computer Interfacing,” Analyt. Chem.
45, 124A, 1973,

4. Holland, J. F., C. C. Sweeley, R. E. Thrush, R. E. Teets and M. A.
Bieber, “On-Line Computer Controlled Multiple Ion Detection in
Combined Gas Chromatography-Mass Spectrometry,” Analyt.
Chem. 45, 308, 1973.

5. Watson, J. T., D. R. Pelster, B. J. Sweetman, J. C. Frolich and J. A.
Gates, “Display-Oriented Data-System for Multiple Ion Detection
with Gas-Chromatography-Mass Spectrometry in Quantifying Bio-
medically Important Compounds,” Analyt. Chem. 45, 2071, 1973.

6. Holland, J. F., R. E. Teets, and A. Timnick, “A Unique Computer
Centered Instrument for Simultaneous Absorbance and Fluores-
cence Measurements,” Analyt. Chem. 45, 145, 1973.

7. Hilborn, D. A., L. W. Harrison and G. G. Hammes, “An On-Line
Computer System for the Acquisition and Analysis of Temperature
Jump Data,” Computers and Biomedical Research 6, 216, 1973.

8. Czerlinski, G., and V. Bracokova, “Kinetics of the Interconversions
among the Electron-Transfer-Linked Forms of Ferricytochrome c,”
Arch. Biochem. Biophys. 147, 707, 1971.

9. Czerlinski, G., and J. O. Erickson, “Chemical Relaxation Studies
on the Horse Liver Alcohol Dehydrogenase System,” Enzyme Com-
munications, I (in press).

10. Czerlinski, G., “Versatile Temperature Jump Apparatus for Follow-
ing Chemical Relaxations,” Rev. Sci. Instr. 33, 1184, 1962.

11, Czerlinski, G., ‘“Timed Signal Grounding Switch for Observation of
Low Level Signals Following Large Transients,” Rev. Sci. Instr. 39,
1730, 1968.

APPENDIX I

Sequence of Computer Programs for the Evaluation of
Data from the Cytochrome c-Sysiem

BIQI is a program stored on the Digital Equipment
Corporation minicomputer PDP 8/e-8k and provides for
the transfer of data from the Biomation 802 transient re-
corder to the Hazeltine dual tape cassette unit. Data sections
may be displayed on the Hazeltine 2000 cathode ray tube
and a heading to each set of data may be added from the
key board.

PRETRAN is a program stored on disc of the Control
Data Corporation 6400 computer in Evanston and called
to transfer data from the Hazeltine dual tape cassette unit
onto disc. Except for the control cards to obtain this pro-
gram, all other systems operations are invisible to the user
and built into the program via executive calls. The user
only submits the name of the file, which he needs later on
for further evaluation. This program also contains a sub-
routine to assist the user with difficulties, which he might
have in obtaining data from the various instruments.

TRANSL is a program stored on disc of the CDC 6400
computer and called to reduce the data matrix to a size
which can be easily handled by subsequent programs. As
at least five data points from the Biomation 802 transient
recorder are interdependent, due to the electronic rise time
of the analog input circuitry, a minimum of five points
ought to be averaged. Generally, ten to twenty points are
averaged initially and the number of points averaged gen-
erally increases along the increasing data sequence at the

option of the user. At this point, it is up to the user to dis-
tribute the points of the new data matrix reasonably well
around the estimated relaxation time constants. If more
numbers are supplied from disc than can be placed into a
data matrix of fifty pairs, the remaining points are eliminated
(this may oceur when comparatively fast relaxation processes
have been recorded on the Biomation 802; this should be
generally avoided.) The abscissa of the data pair is computed
from the time deflection and the number of data averaged.
The ordinate is the average value of the data used for aver-
aging and an error is also computed from the deviation of
individual data points from the average.

DATA@Pn is a program to analyze the input data matrix
of not more than 50 pairs with a non-linear least squares
subroutine, utilizing the Marquardt' method. A constant
plus a sum of exponentials is generally assumed as under-
lying equation. For n=1, the data may be evaluated assum-
ing up to three exponential terms. The program with n=2
is an abbreviated one, assuming only one exponential term
and a constant. In most of our evaluations, we are able to
utilize this abbreviated program. The program produces
three parameters per data set together with a standard error
per parameter. The parameter in the exponent is equivalent
to an apparent rate constant (or better: the inverse of a
chemical relaxation time) while the remaining two parameters
correspond to signal amplitudes (or better: equilibrium signal
changes). As many data matrices are processed by this pro-
gram, a new data matrix is produced, containing these
parameters as a function of analytical conditions.

CYTOC?2 is a program to evaluate the factors in the ex-
ponents from the previous program as a function of pH,
resulting in “true” rate parameters. This program utilizes
a non-linear least squares analysis program and offers a
variety of models for the interpretation of the data.

SEQUEN2 evaluates the signal amplitudes the (parameters
obtained from DATA@Pn) and according to models which
correspond to protonic dissociations of protein forms. For
PH jump experiments, no further evaluations are needed.
However, for chemical relaxation experiments the protein
concentration is varied initially at fixed pH. Another pro-
gram (POWERSE) is then used before the pH dependence
of the apparent parameters is evaluated by CYT@OC2 and
SEQUEN2.

POWERSE is a program utilizing a linear least squares
analysis of a data matrix and useful for a variety of inter-
mediate calculations. Standard errors of the parameters are
also produced. Although the program allows for the utiliza-
tion of a power series? as input function, we rarely find the
need to analyze our data beyond linear terms (original func-
tions are frequently rearranged to give a linear expression).

REFERENCES

1. Marquardt, D. W., “An Algorithm for Least Squares Estimation of
Non-Linear Parameters,” J. of STAM Z, 431441, 1963.

2. Golub in “Numerical Methods for Solving Linear Least Squares
Problems,” Numerische Mathemaiik 7, 206-216, 1965.

114 National Computer Conference, 1974

APPENDIX II

Sequence of Computer Programs for the Evaluation of
Data from Liver Alcohol Dehydrogenase Experiments

Operation of the first four programs (namely BI@I, PRE-
TRAN, TRANSL and DATA@Pn) is identical to those,
described in Appendix I. The algorithm of Marquardt® is
thus used in DATA@Pn. Output from DATA@Pn is picked
up by the following programs.

LADHn is a program specifically designed for liver alcohol
dehydrogenase, with various versions available. Currently
n=2 is in use and n=3 is in development. This program is
used to analyze only the exponential parameters as a func-
tion of the analytical concentration of the components and
of pH. No inhibitor is present. Equilibrium concentrations
are computed from analytical concentrations with a specially
developed subroutine? which solves the fourth order equation
effectively by numerical means. Such a high order equation
has to be solved, as the enzyme concentration is at least
equal to or larger than the smallest dissocation constant
and/or comparable with the analytical concentration of
other components.

POWERSE is an auxiliary program used for least squares
analysis of data which can be described by a power series®

(eventually after rearrangement). Generally, the power series
is not extended beyond the linear term.

SEQUENnN with n=3 or n=>5, representing different ver-
sions. This program was designed for the analysis of experi-
ments with liver alecohol dehydrogenase in the presence of
imidazole. At this point, only the exponential factor is uti-
lized in this program. A special subroutine* was developed,
as in the absence of ethanol a cubie equation has to be solved
to compute the equilibrium concentrations from the analyti-
cal concentrations. The subroutine computes these concen-
trations numerically in an effective manner. A variety of
models are available to describe the experimental reciprocal
relaxation times in terms of individual rate constants.

REFERENCES

1. Marquardt, D. W., “An Algorithm for Least-Squares Estimation of
Non-Linear Parameters,” J. of SIAM 2, 431441, 1963.

2. Czerlinski, G. H., “Subroutine for Rapidly Converging Computa-
tions of Equilibrium Concentrations for Dehydrogenase Systems,”
Comp. Prog. Biomed. 1, 275-280, 1971.

3. Golub in “Numerical Methods for Solving Linear Least Squares
Problems,” Numerische Mathematik 7, 206-216, 1965.

4. Czerlinski, G. H., and R. Kobbe, “Subroutine for the Computation
of Equilibrium Concentrations for the Elementary Biomolecular
Cycle,” Progr. Biomed. 3, 87-92, 1973.

An alternate interface to computers for the physically
handicapped—the auto-monitoring

communication board

¥

by GREGG C. VANDERHEIDEN, ANDREW M. VOLK, and C. DANIEL GEISLER

University of Wisconsin-Madison
Madison, Wisconsin

INTRODUCTION

For many individuals severe physical handicaps have com-
pletely cut off most avenues of personal development and
employment. Their physical involvement bars them from
any constructive or creative activities requiring physical or
manipulative abilities. Moreover, their inability to speak,
write or efficiently operate even simple communication de-
vices severely impairs their ability to develop and exercise
their mental capacities. This latter problem is basically an
output problem in which a normally functioning intellect is
trapped within a body having no effective means of com-
municating or interacting with the environment. Fortunately
with today’s technology, especially miero electronics and the
computer, new avenues are being opened for these individuals
which promise them not only a chance for a more effective
education and a more meaningful mode of self expression,
but also a means of self support through employment.

The major problem in trying to realize the full potential
of these individuals is in finding efficient means of communi-
cation for them. Information output should consist of both
written communication and discrete commands with which
they can control certain elements or devices in their environ-
ments. This paper will describe a new approach (The Auto-
Monitoring Technique) and a new aid (The Auto-Com) which
help to solve this problem for many severely physically
handicapped people.

It will also describe how the computer can multiply the
speed and effectiveness of this communication, further in-
creasing the potential of these individuals. Implications for
the education, employment, and overall enhancement of life
for the physically handicapped will be discussed.

THE AUTO-MONITORING TECHNIQUE

The first problem in applying the potential of the computer
to severely physically handicapped individuals involves pro-
viding an interface which they can control efficiently. There
are basically three approaches that have been used to allow

them some measure of control: encoding techniques, scanning

115

techniques, and techniques employing a direct selection such
as a keyboard.

The encoding systems utilize one or more switches which
the person operates in a repetitive fashion to encode his out-
put. The Morse code, for example, might be used in such an
encoding system. This approach works best with people
who have small but quick and well controlled movements
such as might be found in the breath eontrol of a para- or
quadraplegic. For people with cerebral palsy and otber afflic-
tions which render them weak or limit their coordination,
these types of aids are very slow and often cannot be operated
without many mistakes.

The scanning systems are the most prevalent form of
communication aid available today.'** Unfortunately, few
of them are computer compatible in their present form. In
these devices, the alphabet is generally arranged in a rec-
tangular matrix approximately seven by seven. The device
steps an indicator or cursor across the columns until signalled
by the individual using the device. The cursor then moves
down the column until the individual signals the device
again. The letter thus selected is then printed out on a type-
writer, strip printer, or other output device. To control the
scanning device, the person operates a single switch especially
designed to take advantage of some one movement over
which he has control. Because the scanning indicator must
pause at each letter long enough for the user to activate the
switch, this scanning process is very time consuming. This is
especially true if the person has sporadic movements or can-
not make a discrete response quickly. This approach does
have the advantage that it can be used by almost any in-
dividual no matter how severe his physical disability. How-
ever, if the person can find some other means of control, it
should be explored because of the very slow speed of this
technique.

It was in trying to find an aid for those individuals whose
movements were too sporadic or uncoordinated for the en-
coding systems and yet not restricted enough to resort to
the scanning technique, that the auto-monitoring technique
was discovered. The problem at hand was that of developing
a communication aid for those individuals who have some
gross pointing skills but who are unable to operate a key-

116 National Computer Conference, 1974

MAGNET
ACTIVATION AREA

MAGNETIC REED
SWITCH, CLOSED IN
THE PRESENCE OF
MAGNET

OPEN MAGNETIC
REED SWITCHES

Figure 1-—Magnet (pointer) closes magnetic switch below surface when-

ever the center of the magnet is within the activation area. Switch

closure is not acknowledged unless magnet remains within activation
area for a fixed period of time

board of any kind, even with special modifications. A scheme
whereby the user would directly select each output letter
was deemed most appropriate for these individuals because
of their ability to point and the inherent simplicity and speed
of a direct selection technique. The problem then was one of
finding a way to optimally utilize their limited pointing skills.

After many experiments, a solution was found to lie in
the combination of a matrix of proximity switches located
beneath a smooth surface and the use of a delayed activation
mechanism. Using this technique, the operator need not
push or pull any levers, buttons or switches. He need only
slide a pointer into the vicinity of a switch and hold it near
the switch for a short time (see Figure 1). In order for
the system to respond, the particular switch involved must
be closed continuously throughout the short, though ad-
justable, period of time. If the switch is opened before that
period expires, the system resets, ignoring the switch closure.
This feature means that switches only momentarily activated
due to the passage of the pointer over them are ignored.
Only when the pointer is kept within the sensitive area of a
switch uninterruptedly for the set period of time, will the
automonitoring system acknowledge the switch closure.

Thus the switch matrix is sensitive to lack of motion
rather than to discrete motions as in normal switching
arrangements. Pointing briefly to other switch locations as
the user moves the pointer around over the surface will
cause no false triggering. Nor will mistakes occur due to
movements or momentary loss of control by the individual
while trying to point to a given switch. If the operator loses
control of his motion, the system just waits “patiently”
until the operator regains his control. By adjusting the
activation area of these proximity switches to the proper
size, errors due to small tremors and inaccuracies of pointing
were also almost entirely eliminated.

It should be noted that this delayed-action proximity-
switching technique was modeled after the same process
that a second person would use if he were to monitor a handi-
capped person’s movements in trying to point to various
letters painted on the surface of a board. Hence the term
auto-monitoring.

Using this technique, it is possible to locate a large number
of switches within an individual’s range of motion without
causing any problems due to accidental triggering of switches
adjacent to the desired one. Moreover, because the proximity
switches are located beneath the surface of the board, the
operator need only slide the pointer around over the smooth
surface of the board, never having to pick his hand up or
support its weight in the air. The removal of the necessity to
suspend his hand above the switching array and the removal

‘of the vertical dimension from the required movement pat-

terns have greatly increased the hand control of the cerebral
palsied individuals worked with. The combination of all of
these features has allowed even very severely cerebral palsied
children to use devices which utilize the auto-monitoring
technique.

THE AUTO-COM

The first application of the auto-monitoring technique is
in the Auto-Monotoring Communication Board (Auto-Com).
In the present model of the Auto-Com, the auto-monitoring
technique is realized with a matrix of 84 magnetic reed
switches mounted on 134 inch centers. Each switch is lo-
cated directly underneath the center of a letter painted on
the surface of the board and can be activated by a magnet
anywhere within a 54 inch radius of this center (Figure 1).
Both visual and auditory feedback have been provided to
aid the person using the board.

The Auto-Com itself is completely contained within a

1824 X114 inch wooden case (Figure 2). It weighs about

814 pounds and is designed to mount directly onto the arms
of a wheelchair in the same manner as a lapboard would. In
fact, the Auto-Com has been designed so that it can be used
as a lapboard when not in use as a communication device.

In addition to the Auto-Com itself, there are two other
necessary components of the system—a magnet and an out-
put device. The magnet is mounted on whatever object or
part of the body the child can best point with. In most cases
the magnet is mounted on a handpiece consisting of a clear
plexiglass base with a custom molded hand-grip (see Figure
3). The magnet, which functions as the pointer for the child,
is mounted well away from the hand-grip. This affords
maximum visibility of the letters as the child slides the mag-
net over them. To facilitate the sliding motion, the bottom
of the handpiece is partially covered with felt. This hand-
piece serves both to stabilize the operator’s hand and to
smooth and damp his motions.

The principal output form of the Auto-Com at the present
time is an ordinary television set equipped with a com-
mercially available TV controller that allows the user to
print letters on the television screen. This particular output

An Alternate Interface to Computers for the Physically Handicapped 117

3 TELETYPE (FOR
—/ PERMANENT COPY)
: ~. <€
ORDINARY
TELEVISION —
[ALPHANUM
TELEVISION
CONTROLLER
== @’CURSOR (MAGNET)
| v
LY
$ \\@ 2363 Z
LIEZES |uons Z

7 \J[“— GENERATOR
3N
|
|
|
|
|
I
|

|
i |
' TIMING lFeEDBACK |
SEN /NG CovrroL ORIVERS i
/ NTATR/IX !
AIAGCGNETIC REELD | OR
‘ SCANNING, ouTPUT
Su? TCHES) ENCOOER STAGE :
I
| K
\ 3

Figure 2—Exploded diagramatic view of the Auto-Com system showing major functional blocks

has been chosen because it provides good visibility, feedback,
portability, and correctability. The Auto-Com has also been
used with other output devices: teletypewriters, special type-
writers, and strip printers. Any output device using the
standard ASCII Code can be used with the Auto-Com; the
exact output form of which is a 20 milliamp current loop
with the information in standard 110-BAUD 11-bit serial
format. Thus the Auto-Com can interface directly with any
computer aceepting this standard serial input. Figure 3 shows
a photograph of the Auto-Com with two of its output devices.

Operation of the Auto-Com is simple and straightforward.
Even children can operate the Auto-Com with only minutes
of instruction. To print a letter the user simply grasps the
handpiece (a velcro strap arrangement is provided for in-
dividuals who have no grasping abilities) and slides the mag-
net over to the letter he wants printed. For those who cannot,
use the handpiece, the magnet can be mounted on a ring,
headstick, shoe, or anywhere else that would be advantageous
for him.

This simplicity of operation, combined with the two-
dimensional movement feature of the auto-monitoring tech-

nique, has proven so desirable that several centers have
indicated a desire to secure Auto-Coms to use with some of
their students who now can use specially modified type-
writers. The reasons they cite for wanting an Auto-Com
despite its higher cost are ease of operation, reduction of mis-
takes, and increased use time before fatigue.

Future developments

The present program for the Auto-Com is centered around
its development as a communication aid. A large emphasis
is being placed on making it as flexible as possible and in-
creasing its utility in the educational setting. Toward these
ends, emphasis is being placed on the development of these
features:

Complete portability

A portable model of the Auto-Com, which runs on batteries
and contains its own miniature strip printer, has been de-
signed. With this unit an individual will be able to move

118 National Computer Conference, 1974

Figure 3—Earlier model of Auto-Com with handpiece and two of its

output devices: a teletype terminal and a TV screen with Ann Arbor

TV controller. A newer model will also have a built-in strip printer for
output

freely about his school or home and always have his ‘“voice”
with him. Attached to his chair and doubling as a lap board,
it will always be with him requiring no special set up for
each use.

In addition to the strip printer, this portable Auto-Com
contains a small FM transmitter which will enable it to
control the TV controller without hookup wires. A large
screen television set with TV controller could then be placed
nearby and controlled by the individual from anywhere in
the room. This feature is seen as particularly powerful in a
classroom setting where the student could move about freely
and participate in class discussions much like the other
students by using the TV screen printout as his voice. The
selection of either the strip printer or the serial ASCII
telemetry unit is controlled by the user. In this manner the
operator, when working in a computer environment, could
easily switch back and forth between the printer (for com-
munication) and the telemetry unit (for communication with
a computer). He would also be able to talk to the computer
from any position in the room, thus lessening his mobility
problems.

Printed copy

Printed copy may be obtained at any time by simply
connecting the Auto-Com to a teletypewriter or modified
typewriter instead of the TV controller. However, this elim-
inates the feedback and correctability features of the tele-
vision set. To provide for both printed copy and correct-
ability a transfer option is being developed which will
automatically transfer the contents of the television screen
to a printing device on command from the Auto-Com surface.

Price

Throughout the design, heavy emphasis has been placed
upon keeping the price of this aid to an absolute minimum.
The rapid advance of integrated circuit technology has made

this type of aid possible and economically feasible. As the
technology increases, the cost will continue to decline. A
major component of the Auto-Com cost still lies in the out-
put device. For this reason, a large portion of our research
effort has been directed toward securing or developing in-
expensive output modes. If the Auto-Com were used in
conjunction with a computer system, where it would be used
mostly as an “alternate keyboard,” the cost of the output
system would be eliminated and the price further reduced.

An Auto-Com system, then, can take two basic forms de-
pending on its intended use. It can take the form of a com-
plete system if it is going to be used as a communication aid,
or it can take the form of a simple keyboard if it is to be
used as an interface with a computer or other data processing
system.

When used as a communication aid, the final Auto-Com
system will consist of two parts, each designed to handle
different functions in communication.

(1) The portable Auto-Com. Highly mobile, this unit has a
miniature self-contained, strip printer for its output.
When used alone, it is designed primarily for conversa-
tion. With the FM output, it can also control a
stationary output system.

(2) The stationary oulput system. These television and
output printer media provide the feedback and page
format most useful in educational settings and for
extended independent work. The system will be de-
signed so that several individuals, each with his own
portable Auto-Com, could share a common printer
or CRT display.

When used as a keyboard for data entry, the Auto-Com
can take either the form of the full portable Auto-Com as
described above, or a simpler form of the Auto-Com having
no strip printer and deriving its power from the computer or
a separate power source.

The Auto-Com wordmaster

A natural next step in the evolution of the Auto-Com as
a communication aid is the addition of entire words to the
surface of the board. With this option, the operator could
then cause entire words, phrases, or sentences to be printed
out by pointing to a single square on the Auto-Com. This
would permit him to communicate in a word-by-word fashion
as in speech rather than having to spell everything out. For
computer use, commonly-used words, phrases, or symbol sets
could be substituted for the words.

An attachment dubbed the ‘“Wordmaster’” has been de-
veloped to do this. Now under initial evaluation, the Word-
master/Auto-Com is expected to provide an increase in speed
of approximately 2-4 times over that of the original Auto-
Com. Moreover, it will enable even more people, especially
children, to use the Auto-Com. The ability to spell will no
longer be a prerequisite for use of the Auto-Com. It also
opens up the possibility of using pictures on the surface of
the board to specify the output words. This technique may

An Alternate Interface to Computers for the Physically Handicapped 119

be used either to accelerate reading skills or to provide com-
munication for those who are prereaders or who have reading
problems, but do possess adequate expressive skills.

THE USE OF COMPUTERS WITH THE AUTO-COM
AND OTHER COMMUNICATION AIDS

There are two basic ways in which the computer and com-
munication aids ean be combined to augment each other.
The first is an arrangement in which the communication aid
serves as an “alternate keyboard,” allowing handicapped
individuals with no previous means of access to a computer
to benefit from the computer’s capabilities. In the second
relationship, a computer is used to augment the communica-
tion aid by increasing the speed, efficiency, and utility of the
aid.

As an alternate keyboard

When used as an alternate keyboard, the purpose of the
communication aid is to provide the user with an interface
that is specifically designed for his particular abilities. The
simplest form of communication aid which can accomplish
this purpose is the “guarded” keyboard. IBM makes spe-
cial keyboard handguards and armrests for most of their
typewriter models including their I/0 typewriters. The Cere-
bral Palsy Communication Group has also developed a special
keyboard guard for the Teletype Model 33 teleprinter. Using
this keyguard, a cerebral palsied student at the University
of Wisconsin-Madison has successfully completed the re-
quirements for a B.A. Degree in Computer Sciences. For
programming, he operated the modified teletype terminal
from his dormitory room, using the time-sharing facilities of
the University’s Univac 1108 computer. In this manner, he
was also able to overcome the transportation difficulties
associated with constant travel to and from the Computing
Center.

For individuals too severely handicapped to use any of
these guarded keyboards, the Auto-Com may provide a
solution. Because it has been designed to output in 110-
BAUD serial ASCII, the Auto-Com is directly compatible
with any computer which accepts input from a teletypewriter.
Although the scanning and encoding aids available today
are not directly compatible with computer inputs, they too
could be modified to permit them to be used as computer
interfaces for the handicapped. Thus, any person, no matter
how serious his physical handicap, or what form it takes,
can be outfitted with an aid which would allow him to readily
communicate with a computer.

The relative unimportance of speed in working with a
computer, either a dedicated mini-computer or a larger time-
shared computer, opens up the possibility of computer-
related jobs for the physically handicapped. The computer
does not get impatient and the user is unhurried—he is
able to work at his most comfortable and efficient rate. More-
over, the computer also offers the handicapped person the
opportunity to remain at home while working. Phone lines
provide him with a direct link between his home and the

computer. Since mobility, and sometimes nursing care, are
major problems for the physically handicapped, the ability
to work directly from his home or from a rehabilitation
center, can make the difference between a person being
employable or not.

Access to computers also opens up to the physically handi-
capped the whole world of individualized instruction. In
the education of the handicapped, where individualized in-
struction is very often needed but rarely available, the com-
puters can provide the educational programs these students
need at a pace in keeping with their physical abilities.

The power of the computer in individualized instruction is
well illustrated by the PLATO project at the University of
Illinois, Champaign-Urbana. This computer-based educa-
tional system is designed to handle up to a thousand remote
terminals all communicating with a central computer. The
system has educational programs ranging all the way from
pre-kindergarten through post-doctoral studies. The PLATO
terminal uses a standard computer keyboard as one of its
input forms. These keyboards could easily be replaced by
communication aids specifically designed for use by the
handicapped, thus allowing them access to the PLATO sys-
tem. The Auto-Com, for example, can be interfaced with the
PLATO system by simply using a patch-cord.

To expand the function of a communication aid

When used in conjunction with a computer, the power of
a communication aid can be greatly expanded. With limited
ability to produce output signals, the handicapped person’s
rate of communication can only be increased by increasing
the information sent by each of his commands. The use of
computers, with their immense information storage capabili-
ties and flexible peripheral devices can greatly increase the
information transfer rate of the handicapped.

The Auto-Com with Wordmaster attachment, for example,
presents the user with a choice of the alphabet, numbers,
and a list of 191 words, a number limited largely by memory
storage and display considerations. Sixty-three of the words
have been predetermined and are stored in a permanent
memory. They are also printed on the board and are accessi-
ble through an “upper case’” arrangement. The other 128
words are chosen by the individual user and are written into
an interchangeable ROM unit. These latter words are printed
on interchangeable cards and can be selected in “third” and
“fourth case” modes. Using a computer, this vocabulary
could be greatly expanded and its display and selection
features considerably improved. A large enough wordset
could be established so that the user could converse easily
in a completely word-by-word fashion instead of having to
spell out most of his messages letter-by-letter. Even phrases
and whole sentences could easily be stored in the computer,
increasing the options of the user still further. At some point
the vocabulary size will get so large that it would take more
information to specify a specific entry than it wouid take to
spell it out. Work is now being done to identify that boundary
and to study ways of developing vocabularies that can be

120 National Computer Conference, 1974

made fully functional without reaching that point of in-
efficiency.

The use of computers in the communication problem of
the handicapped need not be limited to maximizing output
information only. The text storage and editing capabilities
available in many present computer terminals could prove
of immense value to those physically handicapped who can-
not otherwise easily review, correct, or modify their written
work. The written work of others could also be stored and
transmitted in digital form to the handicapped person in his
home or work area. It is not inconceivable that whole books,
magazines and other written information could be made
available to the physically handicapped in this form (both
for recreational and professional use). Answering the phone
(perhaps with computer generated speech), controlling a
room’s ventilation and lighting, and providing a good measure
of self-care are all feasible today through computer controlled
devices.

It has been suggested by futurists that within a few
decades many workers in the U.S. will be able to perform
their jobs from their homes using communication technology
now being developed. The video-telphoene, two-way cable
TV, and computer technology all suggest more flexibility for
home-centered employment. The ability of handicapped in-
dividuals to use these devices will enable them to take a
more useful and rewarding place in that future society.

In other applications, the computer could contain
algorithms for controlling machines with complex functions.
In this useage, the handicapped person would specify the
various operations he wanted performed and the computers
would execute the various steps necessary to perform them.
One command from the handicapped person could initiate
a string of individual commands from the computer, thus
increasing the effective speed and efficiency of the handi-
capped person.

Thus the combination of the computer and communica-
tion aids can provide the physically handicapped with many
opportunities not otherwise available to them. These oppor-
tunities touch many areas: education, personal advancement,
employment, recreation, communication, and social inter-
action. Furthermore, the cost of these systems should con-
tinue to decline with the advance of technology and the
increase in the development of low cost electronic functional
modules. If the concept of home based employment via
tele-communication links proves economically and admin-
istratively feasible, then the occupational opportunities for
the physically handicapped seem to be limited only by
the efficiency of the communication and-interaction sys-
tems that are available. As new and more efficient tech-
niques for utilizing the intact abilities of the handicapped
are developed and interfaced with computer systems, the

effective capabilities of these individuals will continue to
increase allowing their mental capacities to be more and
more fully realized and utilized.

ACKNOWLEDGMENTS

We would like to thank all those members of the Cerebral
Palsy Communication Group who have contributed to the
development of the Auto-Com/Wordmaster. In particular,
we would like to note the efforts of David F. Lamers, Warren
P. Brown, Gerald A. Raitzer, Robert J. Norton, David E.
Church, Deberah Harris, and Claudia L. Scheibel. The tech-
nical counsel of Professor Leo Jedynak is also acknowledged.

We would also like to thank all those who have provided
the monetary support necessary to carry out this research,
especially the University of Wisconsin, the Madison Public
School System, the Robert J. Ritger Memorial Fund, the
Dane County Chapter of United Cerebral Palsy, the Bacon
Foundation, and most recently from the National Science
Foundation, who is presently funding our research efforts.

Many industrial concerns have also contributed to the
group in the form of information and the donation of prod-
ucts. The most notable of these are Ann Arbor Terminals,
Ann Arbor, Michigan; Hamlin Inc., Lake Mills, Wisconsin;
Texas Instruments; Intel; Signetics; and Canon Inec.

REFERENCES

1. Stalder, E. K., Editor, “Patient Uses Ingenious Device As Means of
Communication,” The NIH Record, Vol. XVI, No. 24, p. 1.

2. Excerpts from Annual Report—Orthotic Research Unit, Ontario
Cripple Children’s Centre, 350 Rumsey Road, Toronto, Ontario,
1972,

3. Sampson, D., “A Communication Device for Patients Unable to
Speak,” Med. and Biol. Engrg., Vol. k, pp. 99-101.

4. Hume, B. C., General Manager, Cenlre Industries, Allambie Road,
Allambie Heights, New South Wales.

5. Hackler, N., North Electric. Galion, Ohio (Personal communica-
tion).

6. King, G. (Editor), “Communication System for the Handicapped,”
Electromechanical Design, Vol. 17, No. 1, p. 6.

7. Howard, W., Bush Eleciric, 1245 Folsom Street, San Francisco,
California 94103.

8. Jefcoat, R.; P.0.8.M. Research Project, 63 Mandeville Road,
Aylesbury, Bucks.

9. Steele, J. D., Zambeite Electronics Lid., 3, Avon Way, Shoeburyness,
Essex 5s39DZ.

10. Kafafian, H., CRI Second Report, Cybernetics Research Institute,
2233 Wisconsin Avenue NW, Washington, D.C. 20007 (Personal
conversation).

11. MEFA GmbH Bonn, 518 Eschweiler, Postfach 466, Germany.

12. Micheelsen, V. Wissing, Reva Aids, Solvgade 32, Copenhagen K,
Denmark.

A computing environment for the blind

by MORTEZA AMIR RAHIMI and JOHN B. EULENBERG

Michigan State University
East Lansing, Michigan

INTRODUCTION

Much of the early work on applying computer technology
to the development of sensory aids for the blind was de-
voted to systems for transforming ink-print texts into a
Braille format.? %12 This continues to be an important use
of computers, but the disadvantages of Braille render it a
poor substitute for the modes of information access nor-
mally available to people with normal sight. Braille is em-
bossed on bulky paper. The surface area required for tactile
diserimination of the Braille dots add to the problem, since
this means that a Braille text takes up more space than a
corresponding ink-print text. Furthermore, the ability to
read Braille takes considerable time to acquire, and not all
visually handicapped persons can read Braille, due to con-
comitant handicaps or because their visual impairment
came fairly late in life. Braille also has the disadvantage
that it is unreadable to almost all sighted persons; blind
persons cannot read what sighted persons can read, and
vice versa. Many blind persons are excellent typists, so
they can indeed communicate in writing to the sighted, but
they have no way of proofreading their own typing.

All of these facts call for alternate channels of communica-
tion for the blind. Nowhere is this more keenly felt than
among those blind persons who are involved in computers
and who are sensitive to the great potential which computers
hold for information processing and for transforming one
mode of representation into another. A recent issue of the
Newsletter of the ACM Special Interest Group on Com-
puters and the Physically Handicapped [SIGCAPH NEWS-
LETTER, Number 8, July 1, 1973] carried an article sum-
marizing the responses of blind computer programmers to a
comprehensive questionnaire on their experiences and
special needs. Among the responses to the question “What
special tools or equipment, if any, would you like to see
developed?”’, were these: “faster means of reading than
braille”, “a machine to read inkprint printouts from the
computer”’, “efficient method of verifying punch ecards”,
“card reader enabling me to make corrections myself”,
“faster way of inserting cards in the card deck”, “device to
show which columns I am punching”, “auditory output or
input echo”, and ‘“random access books”.

One means for meeting these demands 1s by adapting a
digitally controlled voice synthesizer to provide under-

121

standable computer output through the auditory channel.®%
45781011 Thig application of electronic voice synthesis has
been apparent to workers in the field of voice and speech
synthesis for a long time, especially in the form of systems
for going directly from ink-print to speech, incorporating
optical character readers.® Unfortunately, the actual ma-
chinery for delivering voice output has been large and
expensive, usually taking the form of one-of-a-kind
monstrosities in research laboratories. Even when made
commercially available, they required considerable sophis-
tication in acoustic phonetics and electronics on the part
of the user.4?

One alternative to the spcech synthesis approach is the
vocal response unit, which allows fast random access to
encoded audio recordings of actual human speech. A repe-
toire of words and short utterances can be stored on a
computer memory, and a computer can rapidly assemble
concatenations of these speech units to form intelligible simu-
lated spoken output. The principal disadvantages of this
method lie in the relatively large amounts of computer
power which must be devoted to storing and accessing the
speech data and in the substantial initial investment re-
quired in making the vocal response unit available.

The recent advent of relatively inexpensive, easily por-
table, digitally controlled electronic voice synthesizers which
can convert signals representing phonetic transeription into
the corresponding acoustic signal has made practical the
development of voice-mode computer communication sta-
tions which make only modest demands on the computer.!
This means that the considerable information storage and
information manipulation capabilities of the computer can
be exploited by a blind user without the intermediary of
Braille. Such functions as document preparation and text
editing, information retrieval, and interactive mathematical
calculation can now be implemented in an output format
which does not involve the printed page. Of course, this use
of the auditory channel for computer output can also be
used by sighted users, and, in fact, this constitutes an
advantage over the use of Braille output, since it is a mode
of output which can be shared by both the blind and the
sighted at the same time.

In this paper, we will describe our work in developing
just such a communications station. We will briefly describe
the hardware and software needed to implement the station,

122 National Computer Conference, 1974

‘I, phone line
f Y
Coupler
L)
AJY
—
Switch I
CRT Voice
T - Synthesizer
71N
Figure 1

and we will discuss the actual experimental use of our sys-
tem by the blind. Finally, we will give our views on the
implications of our work for the development of new types
of computer languages designed to take advantage of the
auditory mode of output.

Hardware and software

The design of software and hardware was guided by the
following set of objectives:

e The cost of the terminal should be comparable to that
of ordinary CRT or teleprinter terminals.

"o The terminal should use standard communications
equipment.

e The terminal should be usable with any timesharing
interactive system.

e The software invoived should be implementable under
all standard operating systems, requiring no special
modification to the system.

Hardware

Figure 1 shows the hardware configuration. Is consists of a
voice synthesizer, a speaker, a standard terminal keyboard,

and support electronics. Communication with the com-
puter is achieved normally at the rate of 300 Baud which
supports the speech rate of the synthesizer. This Baud
rate is not essential since the terminal does have a buffer
memory.

The phonetic images of words and sentences are built up
by concatenation of 8-bit symbols representing the phones
of English in the buffer memory. The string in the buffer is
sent to the synthesizer for pronunciation when a special
control character is received by the buffer mechanism. The
8-bit code consists of six bits representing the phone and
two bits representing one of four levels of intonation. Since
the communication takes place with 7-bit ASCII characters,
the 4 lower bits of two consecutive ASCII characters are
actually used.

The terminal allows for echoing of the keys without access
to the computer.

Software

Two types of software are available. First, the software
designed specially -for voice output. This includes a text
editor, a Fortran interpreter, and a number of other pro-
grams. In these programs the output messages are pho-
netically encoded for direct transmission to the terminal.
The second type of software includes routines to convert
the output of any program to the desired phonetic form.
Using a lexicon as well as the rules of orthographic-to-
phonetic correspondence, this conversion package will
change any numeric or English text to phonetic transeription.
Components of this package and their interconnection are
shown in Figure 2.

Lexicat

Entres —e] Phoneticizing |)
in English System Lexicon
Orthography '
Aules of Or ‘
Phonetic Cor M s
Analyzer

Text

n Er Text
1 lﬂ'ﬂ“ Reader
Orthography
—
Coded
Phonetic
Strings \
Text /
23 B "
e Vo sy |
Transcription BaaS

Figure 2

A Computing Environment for the Blind 123

APPLICATIONS OF THE EXPERIMENTAL
COMMUNICATIONS STATION

We have as yet had only a limited amount of experience
with actual use of our system by the visually handicapped.
For the most part, the response has been enthusiastic, and
we have received quite a few suggestions for additions and
improvements. The unfamiliarity of the “machine accent”
does pose a problem for first-time users, but we have found
that only a short period of time is required before the users
adapt their perception to the idiosyncracies of the synthe-
sized speech. Our major applications thus far have been in
three areas:

(1) Fortran Interpreter

We have adapted a locally designed Fortran interpreter
to provide an interactive computer programming capability
with voice output. Statements, data, and error diagnostic
messages are all accessible through the synthesizer. The
interpreter is used in teaching Fortran to blind students.

(2) Text Editor

An audio-output text-editing system has been developed
which allows a blind user to prepare various kinds of texts:
letter, reports, study notes, etc. The user can have the
computer read back to him any portion of a stored text
which he specifies. He can also delete, move, and insert
material. When he wishes, he can dispose a copy of a text
to the line printer to obtain an ink-print copy or record the
audio version of a text onto a tape.

(3) Computer-assisted Instruction (CAT)

Several experimental lessons in the elements of computer
science and linguistics have been written in the PLANIT
CAI language, with all the computer-generated messages
heard over the synthesizer. Students attending the Michi-
gan School for the Blind, Lansing, have tried these lessons
out.

IMPLICATIONS FOR NEW COMPUTER LANGUAGES

Probably the most fascinating aspect of our experience
in using this voice output system is the impetus which it
has given us to constructing a special computer language
for handling non-visually presented material.

In designing a computer communications system for the
blind, it is not enough merely to give the printed output
characters a voice. Rather, we must examine what elements
of computer output format are oriented specifically to the
visual channel of perception and which are not. And we
must turn our attention to ways of using the audio channel
so as to take advantage of its capacity for carrying infor-
mation.

It is not unreasonable to say that most of our present-day
formatting conventions are oriented to the visual appearance
of the printed page. Columns of numbers present themselves
to the eye as units of form. Skipped lines and indentations
set units of text apart from one another. Given the poten-
tials of spoken output, what kind of auditory formats can
we employ to create similar effects for arranging data?

Pauses, intonational pitch contours, stress patterns, vowel
length and vowel quality are devices which human lan-
guage uses to superimpose formal structures on sequences
of segmental phonemes. Just as a printer uses different type
faces to set off parts of a text without disturbing the actual
spelling of words, a voice output format system for a com-
puter can range over several ‘“dialect” styles to indicate
variations in the status of output data. Cantillation styles
or melodies can be designed to facilitate recognition of text
units.

The orthographic system used in everyday English writing
is an abstraction of certain features of speech, and the
amount of the speech signal which goes unrepresented by
our spelling is quite substantial. By and large, our spelling
does not take account of interspeaker differences in pro-
nounciation, speech rate, emotional overtones, and various
other prosodic features. In reconstituting the acoustic signal
via a voice synthesizer, we have considerable choice in the
parameters which relate to this indeterminate portion.

It is important, too, to recognize that the very terms
voice synthesizer and speech synihesizer, when applied to a
specific device capable of delivering a finite repetoire of
sounds in unlimited permutations, are really too restrictive.
Just as an automobile is far more than a ‘“horseless car-
riage” and radio is far more that “wireless telegraphy”,
the voice or speech synthesizer need not be seen only as a
device for simulating human speech. At this point, one can
only speculate on the kinds of new “languages” which may
grow from man’s encounter with a machine that talks, but
it is clear that the speech synthesizer can be used as an
instrument for exploring alternate modes of encoding infor-
mation: new symbol systems which share some of the char-
acteristics of speech, but which are specifically suited to
the computer’s powers and limitations, just as natural human
languages reflect in their structure the inherent mental and
physical powers and limitations of human beings.

One important benefit of this exploration of alternative
auditory symbol systems lies in the development of sensory
aids for the blind. At the time of Louis Braille, the blind
were taught to read by feeling the shapes of large letters
embossed on paper, if taught at all. Braille’s brilliant achieve-
ment consisted in taking man’s natural sense of tactile
discrimination and developing out of it a symbol system
which bears little physical resemblance to the visually-
oriented writing system. In so doing, he greatly -enhanced
the ability of the blind to communicate. In the same way,
we hope that the development of voice output systems for
computers will lead to fuller utilization of the blind persons
cognitive abilities.

REFERENCES

1. Chapman, W. D., “Prospectives in voice response from computers,”
Proc. Internatl., Conf. Commun., 1970.

2. Cleave, John P., “Braille Transeription”, Mechanical Transiaiion,
II: 3, December, 1955.

3. Cooper, F. S.,, J. H. Gaitenby, I. G. Mattingly and N. Umeda,
“Reading aids for the blind: a special case of machine-to-man

124 National Computer Conference, 1974

communication”, TEEE Trans. Audio and Electroacoustics, Vol.
AU-17, pp. 266-270, December 1969.

. Flanagan, J. L., Speech Analysis, Synthesis, and Perception, New
York Academic Press, 1965.

. Flanagan, J. L., C. H. Coker, L. R. Rabiner, R. W. Schafer and
N. Umeda, “Synthetic Voices for Computers”. IEEE Spectrum,
Vol. 7, No. 10, pp. 22-45, October, 1970.

. Gammill, Robert C., Braille Translation by Compuler, Report No.
9211-1, Department of Mechanical Engineering, Massachusetts
Institute of Technology, Contract No. SAV-1-11-62, October,
1963.

. Holmes, J. N., I. G. Mattingly and J. N. Shearme, ‘“Speech synthe-
sis by rule”’, Language and Speech, Vol. 7, pt. 3, pp. 127-143, July-
Sept., 1964.

. Kelley, J. L., Jr., and L. J. Gerstman, “An artificial talker driven

10.

11.

12.

from a phonetic input,” J. Acoust. Soc. Am., Vol. 33, p. 835 (A)
1961.

. Lee, F. F., “Reading Machine: from text to speech’, IEEE Trans.

Awudio and Eleciroacoustics, Vol. AU-17, pp. 275-282, December,
1969.

Nye, P. W., J. D. Hankins, T. Rand, I. G. Mattingly and F. S.
Cooper, “A Plan for the Field Evaluation of an Automated Reading
System for the Blind,” TEEE Transactions on Audio end Eleciro-
acoustics, Vol. AU-21, pp. 265-268, June, 1973.

Rahimi, M. A. and J. Bryson Eulenberg, “A Computer Terminal
with Synthetic Speech Output,” Behavioral Research Methods and
Instrumentation.

Schack, Ann S. and R. T. Mertz, assisted by Fred Brooks, Braille
Translation System for the IBM 704, Preliminary write-up, 1961,
International Business Machines Corporation.

A computer-based system of speech-training aids for the

deaf—A progress report”

by R. S. NICKERSON, D. N. KALIKOW, and K. N. STEVENS

Bolt Beranek and Newman, Inc.
Cambridge, Massachusetts

This paper is a progress report on an effort to develop a
computer-based system of speech-training aids for the deaf.
The project was begun with the assumption that an attempt
to design such a system would probably fail, and that a more
promising approach would be to attempt to evolve one
through use. Accordingly, a system incorporating some of
the capabilities that it was thought would be useful for
speech training was developed, and installed at the Clarke
School for the Deaf where it is now being used on an experi-
mental basis in a remedial speech-training program. The
expectation was that the capabilities of the system would be
modified and extended as attempts to use it provided insights
concerning what features it should have. To ensure that such
insights do in fact guide the system’s evolution, developers
and users are engaged in a continuing dialogue concerning
the desirability and fezsibility of specific modifications and
extensions, both in the training procedures that are used in
conjunction with the system and in the characteristics of the
system itself.

The general considerations that governed the initial de-
velopment of the system were the following. Deaf students
receive only minimal acoustic information from the speech
of others and from their own voealizations. The speech skills
they acquire are based on cues they receive from their residual
hearing and from visual observations of the gestures of
others. Often these skills are inadequate and incorrect, and
the students thus need special training in order to help them
to produce intelligible speech. As a part of this training, it is
customary for a teacher to produce speech-like patterns or
to describe the patterns to the child and for the student to
try to imitate these patterns. The student is encouraged by
the teacher if he produces the correct speech gesture. Three
problems arise in this kind of training situation: (1) the
relevant attributes of the speech sample produced by the
teacher often cannot be seen, felt, nor heard by the student;
(2) the student must rely on the teacher to indicate whether
or not his production is acceptable; and (3) the teacher must
make a subjective judgment as to the adequacy of the stu-

* This is an abbreviated version of a paper that has been submitted for
publication to American Annals of the Deaf.

dent’s production. All three of these problems provide moti-

“vation for developing a set of displays for use in a speech-

125

training situation.

The idea of using visual displays of speech parameters to
aid in speech training of the deaf is, of course, very old. In
recent years, numerous instruments have been developed to
produce a variety of different visual patterns.»? Our system
incorporates within a single unit some of the kinds of dis-
plays described previously by others (although usually in
modified form), as well as some new displays.

The system is built around a small digital computer, the
Digital Equipment Corporation PDP-8E. Speech information
is obtained from a miniature accelerometer attached by thin
double-stick tape either to the throat or the nose, and from
a headmounted voice microphone. The accelerometer (BBN
Model 501), which is approximately .3 inches in height and
diameter, and weighs about 1.8 grams, is used to simplify
the extraction of certain parameters that are relatively diffi-
cult to derive from a microphone output. When the
accelerometer is attached to the throat it gives a waveform
that has periodic peaks at the frequency of the glottal output
during voiced sounds. The output is fed to a pitch extractor
circuit that measures the time between positive-going zero
crossings of the waveform and reports the pitch periods to
the computer. When attached to the nose, the accelerometer
provides a signal that is a measure of the amount of acoustic
coupling to the nasal cavity through the velarpharyngeal
port. In this case, the output, which is 10-15 dB higher when
the velum is lowered—during nasalized sounds—than when
it is raised, is fed to a component that rectifies and low-pass
filters it, and sends the result on to the computer. The use
of the aceelerometer for the acquisition of pitch and nasality
information is described more fully by Stevens, Kalikow,
and Willemain.? The output of the voice microphone is fed
into a filter bank that reports to the computer the energy in
each of 19 frequency bands within the range 100-6560 Haz.
Data from the pitch extractor or nasality circuit (only one
of these components is operational at a given time in the
current system) and the filter bank are sampled by the com-
puter 100 times per second, and used to generate a variety of
visual displays. Control inputs from the user are given to

126 National Computer Conference, 1974

the computer via a set of push-buttons and analog knobs.
For further details concerning the system, see Nickerson
and Stevens.*?

Several different types of displays have been programmed.
One provides the child with a game-like situation in which
he can “shoot baskets’” by performing certain vocal exercises.
Another represents certain speech parameters in terms of
changing features of a cartoon face. Still another provides
the capability of displaying individual speech parameters
(amplitude, voicing, fundamental frequency, nasality) either
singly or in various combinations as time functions. The
system continuously records, both digitally and on analog
tape, the most recent two seconds of speech. Most displays,

therefore, have freeze and replay capabilities. Some of the

programs permit the teacher to produce a target pattern on
the display which the child can then be asked to attempt to
match. They also incorporate the capability of moving pat-
terns about on the display so as to facilitate visual comparison
of a representation of a student’s utterance against a target
that he may be attempting to match. In addition, they pro-
vide the means of showing, on request, the values of some of
the parameters that are displayed.

Our initial experience with the system has been encourag-
ing; however, it seems clear that how effective any speech-
training aids will prove to be in practice will be bounded
above by the specifics of the ways in which they are used.
As technical developments make it feasible to do increasingly
complex real time analyses of speech and to generate nearly
anything one wants by way of displays, it becomes more and
more apparent that pedagogical uncertainties impose the
real limits on what one can expect to accomplish with speech-
training aids, no matter how technologically sophisticated
they may be.

A thought experiment demonstrates this point. Imagine a
machine that could perform in real time any type of analysis
of speech that one wished, and generate any display that
one might specify. The fact is that we do not really know
what analyses should be performed or what displays should
be developed. Moreover, even if we knew the answer to
these questions, it is not clear that enough is known about
speech acquisition among the deaf to provide the basis for
the training procedures that would take full advantage of
such capabilities. What does seem clear to us is that the
flexibility of a computer-based system provides opportunities
for the type of exploration that is likely to be required to
make progress on these problems.

Finally, the sort of close collaboration between researchers
and teachers that we have attempted to maintain in this
project is essential, we believe, if efforts to evolve effective

trﬂan;nrf aids are to hatre a rnocr\nnbln n}'\apnn of Sueeass,

AAAAA Iy re ve a reasonable chance of sucee
This is not a new idea. Kopp® expressed the need for a greater
interaction between teachers and researchers by suggesting
that the field would benefit ‘“if we could make more teachers
researchers;, and more researchers teachers.” Other writers

have also advocated such interaction,”? but few serious at-
tempts to collaborate seem to have been made. The strategy
is a reasonable one, we feel, not only for the development of
this particular system but for that of any complex system
that is to involve a real time interaction between men and
computers on problems for which approaches are not highly
formalized and the solutions are not well understood. As
David? has pointed out, the great versatility of the computer
represents both an opportunity and a challenge. The op-
portunity is for creativity and innovation; the challenge is
to be diseriminating and practical. A close coupling between
a system’s developers and its users is perhaps the only way
to assure a balance between innovativeness and practicality
from which something both new and useful may emerge.

ACKNOWLEDGMENTS

Each of the following individuals has contributed significantly
to the design, implementation, and use of the system
described in this report: Robb Adams, Patricia Archam-
bault, Arthur Boothroyd, Douglas Dodds, Ann Rollins,
Robert Storm, and Thomas Willemain.

This project was sponsored by the U.S. Office of Educa-
tion Media Services and Captioned Films Branch of the
Bureau of Education for the Handicapped, under Contract
No. OEC-0-71-4670 (615). We are pleased to acknowledge
the encouragement and helpful suggestions of Lois Elliott,
who served as contract monitor during the initial stages of
the project.

REFERENCES

1. Levitt, H., “Speech processing aids for the deaf,” JEEE Transac-
tions on Audio and Electroacousiics, 1973, AU-21, pp. 269-273.

2. Pickett, J. M., “Recent research on speech-analyzing aids for the
deaf,”” IEEE Transactions on Audio and Eleclroacoustics, 1968,
AU-16, pp. 227-234.

3. Stevens, K. N., D. N. Kalikow and T. R. Willemain, ‘“The Use of a
Miniature Accelerometer for Detecting Glottal Waveforms and
Nasality,” Submitted to The Journal of Speech and Hearing Research,
1974, in press.

4. Nickerson, R. 8. and K. N. Stevens, “An Experimental computer-
based System of Speech Training Aids for the Deaf,” in Proceedings,
Conference on Speech Communication and Processing, Newton, Mass.,
April 1972, pp. 238-241.

5. Nickerson, R. 8. and K. N. Stevens, ‘“Teaching Speech to the Deaf:
Can a Computer Help?”’ IEEE Transactions on Audio and Electro-
acoustics, 1973, AU-21, pp. 445-455.

6. Kopp, G. A., “The Application of Recent Findings in the Field of
Speech Correction,” The Volia Review, 1938, 40, pp. 638-640.

7. Borrild, K., “Experience with the Design and Use of Technical Aids
for the Training of Deaf and Hard of Hearing Children,” American
Annals of the Deaf, 1968, 113, pp. 168-177.

8. Denes, P. D., “Speech Science and the Deaf,” The Volta Review,
1968, 70, pp. 603-607.

9. David, E. E., Jr., “Speech in the Computer Age,” The Volta Review,
1962, 64, pp. 394-397.

*

Computer-assisted instruction in mathematics and language arts

for deaf students*

by PATRICK SUPPES and JOHN DEXTER FLETCHER

Stanford University
Stanford, California

INTRODUCTION

This paper summarizes a three-year project running from
July 1, 1970 to June 30, 1973, which was concerned with re-
search and development in computer-assisted instruction
(CAI) for hearing-impaired or deaf students. CAI curricu-
lums developed by the Institute for Mathematical Studies in
the Social Sciences (IMSSS) at Stanford University were
used by more than 1,000 deaf students during the 1970-71
school year and by more than 2,000 deaf students during
the 1971-72 and 1972-73 school years.

THE STANFORD CAI SYSTEM

The central processor. for the Institute’s computer system
is a Digital Equipment Corporation PDP-10. In addition
to 256K of core memory, short-term storage of programs
and student information was provided by sixteen 180,000,000~
bit disk modules; long-term storage of student response data
was provided by magnetic tape. Communication with remote
student terminals in participating schools was provided by
private telephone lines. High-speed data transmission (gen-
erally 2400 or 4800 baud) and time-division multiplexing
were used to communicate with clusters of 16 or more student
terminals. Of the more than 180 terminals connected to the
Institute system in 1972-73, about 125 terminals could be
used simultaneously with no appreciable detriment to the
system’s speed of response. Any curriculum could be run at
any time on any student terminal.

Figure 1 shows a map of the United States on which super-
imposed lines indicate the network operating in 1972-73.
As can be seen, high-speed data transmission to Austin,
Texas and Washington, D.C. was used to distribute pro-
grams in the southwest and on the east coast. Also shown is
a direct line to New Mexico, which supported a similar in-
stallation at Isleta Pueblo, an Indian reservation approxi-
mately 20 miles from Albuquerque, New Mexico.

The student terminals were Model 33 teletypewriters,
which communicated with the central computer system at a
rate of about 10 characters per second. In a typical school,

* This research was supported by Office of Education Grant OEG-
0-70-4797(607), OE Project No. 14-2280.

127

one room containing 8 to 15 student terminals was assigned
for CAIL. Ordinarily one person was chosen by the school as
the CAI terminal proctor; this same person was in charge
of the equipment and the supervision of students in the
terminal room.

When a student seated in front of a terminal presses the
start key, the program responds by typing

HI
PLEASE TYPE YOUR NUMBER AND NAME.

Each student receives a number, which he inputs together
with his first name. He uses the same number for all courses
and types a one-letter identifier as a prefix to indicate which
course he is requesting.

SUMMARY OF CAI CURRICULUMS

All CAI curriculums developed by the Institute were avail-
able to students in the participating schools for the deaf.
The curriculums most relevant and most widely used were
mathematics strands, arithmetic word problem solving, and
a special language arts course developed solely for deaf
students. In addition, a basic English course (available from
Computer Curriculum Corporation), an algebra course, a
computer programming course in AID, a computer program-
ming course in BASIC, and a deductive logic and algebra
course were used on various occasions by a number of stu-
dents. A quantitative summary of usage for 1971-72 is shown
in Table L.

We give here a brief description of the elementary mathe-
matics curriculum and the language arts curriculum.

Elementary mathematics strands

The objectives of the curriculum were (a) to provide
supplementary individualized instruction in elementary
mathematics at a level of difficulty appropriate to each
student’s level of achievement, (b) to allow acceleration in
any concept area in which a student demonstrates proficiency
and repeated drill in areas of deficiency, and (¢) to provide
a daily profile report of each student’s progress through the
curriculum.

128 National Computer Conference, 1974

Local links
to Stanford:

Berkeley
Cupertino - San Jose
East Palo Alto

Los Altos

San Carlos

San Francisco
Stonford

Baltimore ,Md.

Ft. Worth

San ﬂfonio

Isleta Pueblo, N.M.

|

Austin

5
Washington, D.C.

Sulphur, Okla.

Dallas

ine, Fla.
Beaumont, Tex. St.Augustine, Fla

Houston

Figure 1—IMSSS national network, 1972-73

A strand is a series of problems of the same operational
type (e.g., number concepts, addition, subtraction, fractions)
arranged sequentially in equivalence classes according to
their relative difficulty. The 14 strands in the program and
the grade levels spanned by each strand cover the core
elementary-school mathematics curriculum.

A student in the strands program works on fewer than 14
strands; the actual number depends on his grade level and
performance. The strands approach provides a high degree
of individualization because each student’s lesson is prepared
for him daily by the computer, the lessons are presented as
mixed drills at a level of difficulty in each strand determined
by the student’s prior performance, and the student moves
up each strand at his own pace.

Details of -the curriculum are given in Suppes,! Suppes,
Goldberg, Kanz, Searle, and Stauffer,? and in Searle, Lorton,
and Suppes.’

Language arts

After carefully considering the language difficulties of
hearing-impaired students, we designed the language arts
curriculum to stress the structure of English, with particular
emphasis on the roles of syntax and inflection and on the
meaning of function words. An inductive rather than a de-
ductive strategy was used. The course does not explicitly
state ‘rules’ of English usage, rather it presents items illus-
trating aspects of standard English usage singly and in com-
bination. Incidental learning of basic sentence patterns is

enhanced by presenting curriculum items in complete sen-
tences. Fewer than one-tenth of the exercises present the
student with single words or isolated phrases. Incidental
learning is also enhanced by requiring many constructed
rather than multiple-choice responses.

There are four general course objectives. Students are to:

(1) Recognize specified grammatical categories;

(2) Recognize and supply various forms of given grammat-
ical structures;

(3) Seleet appropriate grammatical units to complete a
specified structure; and

(4) Perform specified transformations on grammatical
structures.

The curriculum is divided into 218 lessons of 20-30 exer-

TABLE I—Institute CAI Curriculums Used by Participating Schools
for the Deaf, 1971-72

Curriculum Number of students
Elementary Mathematics (Strands) 2146
Arithmetic Word Problem Solving 107
Language Arts 1071
Algebra) 83
Basic English 165
Computer Programming in AID 93
Computer Programming in BASIC 124
Logic and Algebra 216

Total Students 2279

Computer-Assisted Instruction in Mathematics and Language Arts for Deaf Students 199

cises. Separate topics are presented in separate lessons and
often there is a sequence of lessons on a single topic. The
lessons are ordered to provide a cumulative basis of concepts
building upon one another. Several lessons review topics
presented in preceding lessons.

The course was described in detail by Fletcher and Beard,*
Fletcher, Jamison, Searle, and Smith,> and Fletcher and
Stauffer.®

It should be emphasized that the network was primarily
developed to bring elementary mathematics and language
arts to deaf students. Use of the other courses was on an
optional and relatively infrequent basis in relation to the
total number of students, but the network was flexible
enough to provide additional work for students who wanted
it, ranging from a secondary-school course in English to
computer programming.

EVALUATION OF ACHIEVEMENT

During the course of the three years of the project a
number of detailed studies were undertaken to measure the
achievement of students using the CAI courses. We sum-
marize here the two main studies dealing with achievement
in the elementary mathematics strands curriculum and in
the language arts curriculum.

Mathematics strands experiment

The purpose of the experiment was to measure the effect
of varying numbers of mathematics strands sessions on
arithmetic computation grade placement (GP) measured by
the strands curriculum and by an on-line, computer-ad-
ministered version of the Stanford Achievement Test (SAT)
Arithmetic Computation subscale. This on-line version of
the SAT was called the Modified SAT or MSAT. Construc-
tion and administration of the MSAT was detailed by Suppes,
Fletcher, Zanotti, Lorton, and Searle.” Each student was
allowed to take only a specified number of mathematics
sessions at the terminal. All other sign-ons were spent work-
ing language arts lessons.

Three hundred eighty-five students from among those who
were taking both CAI mathematics strands and CAT lan-
guage arts, whose average GP on strands was between 2.4
and 5.9, and who had taken at least 15 mathematics strands
sessions, began the experiment. The students selected were
assigned at random to five experimental groups that differed
in the maximum number of mathematics strands sessions
they permitted during the experimental period of approxi-
mately 70 school days. Treatment groups 1, 2, 3, 4, and 5
were assigned 10, 30, 70, 100, and 130 sessions, respectively.

Session limits were imposed on a calendar basis so that
students with low numbers of sessions received them dis-
tributed throughout the experimental period. A participating
student had no control over whether he received a mathe-
maties strands or language arts lesson. Whether he signed
on for mathematics strands or language arts a student was

given a mathematics strands lesson if he was eligible for one.
Otherwise, he received a language arts lesson.

Five models were tested to study the relationship between
the two independent variables of pretreatment scores and
the number of mathematics strands sessions on the one hand
and the dependent variable of posttreatment scores on the
other. We tested a linear regression model in the two de-
pendent variables, a linear regression model with an inter-
action term between the two independent variables, a multi-
plicative Cobb-Douglas model of econometric type, a log-
quadratic model in the two independent variables, and an
exponential model in the two independent variables. Detailed
results are not summarized here.

Parameters for the five models were generated twice, once
using mathematies strands average GP as pretreatment and
posttreatment achievement measures and once using MSAT
GP scores. The linear model with interaction accounted for
more of the variance in the dependent variable (posttreat-
ment average GP) than did any of the other models, but
despite the inclusion of a term for the interaction of number
of sessions with pretreatment GP, it represented only a slight
improvement over the simple linear model. Assuming N;=
120 or slightly less than one session per -day for a school
year and taking a;=.0123 from the linear model, we can
project T;:— T:1=1.48. That is to say, if a student from this
population takes about one strands session per day for an
entire school year, we can expect his strands average GP to
increase by about a year and a half. Data presented later
show that strands average GP underestimated both GP
measured by paper-and-pencil administrations of the SAT
and GP measured by the MSAT. This improvement of 1.48
can be compared with an expected GP increase over a school
year of .3 to .4 in the SAT computation subtest for hearing-
impaired students receiving ordinary instruction.®

Among the models and parameters using MSAT GP as
pretreatment and posttreatment measures, the multiplica-
tive model from econometrics that assumed weighted inter-
action of number of sessions with pretreatment GP accounted
for more of the variance in the posttreatment measure than
did any other model, but, as with strands average GP, it
represented only a slight improvement over Model I, the
simple linear model. Again, assuming N;=120 and taking
a;=.0084 from the linear model, we can project Tip—Ti=
1.01. That is to say, if a student from this population takes
about one strands session per day for a school year of 120
net days, we can expect his MSAT GP to increase by about
one year. Roughly, we can expect an increase of .1 in MSAT
GP for every 12 sessions taken. '

Suppes, Fletcher, Zanotti, Lorton, and Searle’ concluded
that the mathematics strands CAI curriculum can lead to
substantial increases in mathematics computation GP when
used by hearing-impaired students. The increases are suffi-
cient to bring the students to GP gains expected of normal-
hearing students. Moreover, these gains can be achieved by
students working intensely for only a few minutes a day in
a supplementary drili-and-practice program. The time spent
at a computer terminal by each student ranged from 6 to 10
minutes for each session.

130 National Computer Conference, 1974

In addition, Suppes, Fletcher, Zanotti, Lorton, and Searle’
concluded that a simple linear model of student achievement
gives a good account of the posttreatment distribution of GP
measured either by the MSAT or by the strands GP. The
investigation of other models, including models with inter-
action terms, did not lead to any substantial improvement in
accounting for posttreatment GP variance. The results of
the analysis, including the application of the linear model,
indicate that greater numbers of CAI sessions are beneficial
for all students, across all levels of pretreatment achievement.

Language arts experiment

This experiment was analogous to the mathematics strands
experiment described by Suppes, Fletcher, Zanotti, Lorton,
and Searle.” Each student was allowed to take only a specified
number of language arts sessions. All other sign-ons were
spent working mathematics strands sessions.

Two hundred thirty students from among those who were
taking both CAI mathematics strands and CAI language
arts in 1972-73 were selected for the experiment, and were
assigned at random to one of five experimental groups that
differed in the maximum number of 10-minute language arts
sessions they permitted. Students assigned to groups 1, 2, 3,
4, and 5 were permitted 20, 45, 70, 95, and 120 sessions,
respectively. The subjects were selected from students in the
California School for the Deaf, Berkeley, California; the
Oklahoma School for the Deaf, Sulphur, Oklahoma; and the
Texas School for the Deaf, Austin, Texas. Random assign-
ment of these subjects to the five treatment groups was
stratified so that roughly the same number of students from
each school could be assigned to each of the treatment groups.
When the experiment began, 45 students were assigned to
group 1, 46 were assigned to group 2, 46 were assigned to
group 3, 47 were assigned to group 4, and 46 were assigned
to group 5. One-way, fixed-effects analysis of variance and
five models of student progress were used to investigate
student performance at the end of the 80-school-day experi-
ment period. The five models of student progress investi-
gated were the same as those used in the mathematics strands
experiment.

The assistance of teachers and proctors was sought to help
students achieve the number of language arts sessions they
were assigned. Teachers were urged not to give compensatory
off-line work to those students assigned to low numbers of
on-line sessions, and, in general, not to alter the classroom
work of any student because of his participation in the experi-
ment.

Fletcher and Beard* reported that complete data were ob-
tained for 197 subjects. However, 46 of these subjects had
received 100 or more sessions in 1971-72 and these subjects
were removed from the experiment prior to any data analyses
which were then performed on the 151 remaining subjects.
In the analysis of variance there were 33, 27, 26, 33, and 32
subjects in treatment groups 1, 2, 3, 4, and 5, respectively.
Students in groups 1, 2, 3, 4, and 5 received an average of

22, 46, 69, 88, and 106 sessions, respectively. These averages
were lower than expected for groups 3, 4, and 5, but the
treatment groups appeared sufficiently distinet to proceed
with analysis of variance. The F-ratio for this analysis was
not statistically significant, indicating that the range of
sessions considered did not have a significant effect on post-
test scores. The paper-and-pencil language arts test developed
by the project appeared to be reliable and fairly valid. The
correlation between pretest and posttest scores on the test
was .910 with an F-ratio for significance of regression be-
yond p<.01, and the correlation between posttest scores
and number of lessons completed was .645 with an F-ratio
for significance of regression beyond p<.01.

Models I, II, III, IV, and V accounted for 83 percent,
83 percent, 66 percent, 83 percent, and 33 percent, respec-
tively, of posttest score variance. The only model to which a
term that included a measure of sessions taken contributed
significantly was Model V. In all other models the only sig-
nificant independent variable was the pretest score. An addi-
tional model, Model VI, was investigated. This model was
of the form

E(Tz) =ao+a1T1+a2N+a3L,

where T, refers to posttest score,

T, refers to pretest score,
N refers to number of sessions taken,
L refers to number of lessons completed,

and 2y, a4, 82, and a; are parameters of the model. Model VI
accounted for 85 percent of the variance in posttest scores.
Both sessions and lessons, in addition to pretest scores, con-
tributed significantly (p<.01) to the model. However, the
regression coefficient in Model VI for number of sessions
taken was negative, indicating an inverse relationship be-
tween number of sessions taken and posttest scores when
number of lessons completed was taken into account.

Fletcher and Beard* concluded that the course is of sig-
nificant value to students whose ratio of lessons completed
to sessions taken is high but of much less value to students
whose ratio of lessons completed to sessions taken is low.
The relationship between sessions taken and posttest scores
was concluded to be more complex than anticipated.

Language arts item analysis

Fletcher and Beard* reported several results from their
item analysis of the language arts curriculum that are not
widely noted in the literature on deafness.

First, the ‘“dircctions” lessons were far easier than antic-
ipated, given the general impression among deaf -educators
that deaf students experience difficulty in following direc-
tions. Some reasons for this result may be that the directions
in these lessons and in the curriculum were easier to follow
than those given in classroom instruction, that the directions
given in the language arts CAI were more clearly communi-
cated to students than the directions given in classroom

Computer-Assisted Instruction in Mathematics and Language Arts for Deaf Students 131

instruction, and that deaf students have less difficulty follow-
ing directions than generally supposed. More research is
required to decide among these alternatives.

Second, although pronouns were generally far easier than
anticipated, items on possessive pronouns were extremely
difficult for the students. Specifically, possessive pronouns
that differ in number (his boxes, their box) and/or gender
(his sister, her husband) from the nouns they modify were
seldom completed correctly.

Third, copulas joining subjects with predicate comple-
ments that differ in number from their subjects were very
difficult for the students. Copulas for items such as the
following:

The house (is, are) blue and white.
The girls (seem, seems) lonely.

were seldom completed correctly.

Fourth, the students had very little trouble with contrac-
tions with the exception of “I’'m,” which was far more
difficult than anticipated.

CONCLUSIONS

We began this project with the conviction that we had a
powerful instructional tool at our disposal. Our aims were
to demonstrate that CAI could be used to advantage by
deaf students, that it could support serious research in deaf
education, and that a favorable argument could be made for
the economics of CAI. Behind these aims was the general
intent of initiating large-scale use of CAI in schools for the
deaf. To some extent we successfully met each of these aims.

It seems reasonable to conclude that CAI can be used
successfully by deaf students. We did not set out to apply
CAI to all of deaf education; we attempted only what we
could do well. The curriculums concentrated on the skill
subjects of mathematics and language arts, and, within these
subjects, we emphasized aspects that were most amenable
to computer presentation. Under these constraints we
achieved favorable results. Certainly, the gains in mathemat-
ics computation ability that were two to three times greater
than those expected from classroom instruction and the
precision with which GP increase could be predicted as a
function of CAI sessions are notable.

We also concluded that CAI provides a substantial founda-
tion for research on the problems and processes of deaf
education. The range of research undertaken by this project
barely represents the diversity of inquiry that can be sup-
ported by CAI. The unobtrusive and precise control over
experimental conditions made possible by computer presenta-
tions, as well as the accuracy and speed of computer arith-

metic and data retrieval, permits a wide spectrum of experi-
mental possibilities that we have only begun to explore.

The major drawback of CAI, however, is its.cost. Com-
puters require a sizable commitment of funds, both for
acquiring capital equipment and for maintaining operations.
Fortunately, the steady increase in the quality of available
CALI is matched by a steady decrease in its costs. In the mid-
1960’s, when CAI first became available, it cost about $40
per student contact hour. Currently, CAI offered by the
TMSSS system costs $1.50-$2.50 per student contact hour,
depending on communication expenses. For the immediate
future we can expect continued decreases in the costs and
continued increases in the quality of CAI

The proof of this project is in its impact on deaf education.
Specifically, the willingness of the participating schools to
support CAI from their own funding sources is the ultimate
test of the project’s impact. To date 13, of the 15 schools
that participated in this project have committed funds to
continue their CAI activity in 1973-74. The two remaining
schools have not decided what CAI implementation alterna-
tive to adopt. Two schools that received no CAI from this
project will be added to those supporting CAI in one network
that directly resulted from this project. We expect the growth
of CAI in schools for the deaf to continue.

REFERENCES

1. Suppes, P., “Computer-assisted Instruction for Deaf Students,”
American Annals of the Deaf, 1971, 116, pp. 500-508.

2. Suppes, P, A. Goldberg, G. Kanz, B. Searle and C. Stauffer,
Teacher’s Handbook for CAI Courses, Tech. Rep. No. 178, Stanford,
California, Institute for Mathematical Studies in the Social Sciences,
Stanford University, 1971.

3. Searle, B. W., P. Lorton, Jr. and P. Suppes, Structural Variables Af-
fecting CAI Performance on Arithmetic Word Problems of Disad-
vantaged and Deaf Students, Tech. Rep. No. 213, Stanford, Cali-
fornia, Institute for Mathematical Studies in the Social Sciences,
Stanford University, 1973.

4. Fletcher, J. D., and M. H. Beard, Computer-assisted Instruction in.
Language Arts for Hearing-impaired Students, Tech. Rep. No. 215,
Stanford, California, Institute for Mathematical Studies in the
Social Sciences, Stanford University, 1973.

5. Fletcher, J. D., D. T. Jamison, B. W. Searle and R. L. Smith,
Compuler-assisted Insiruciion for the Deaf at Stanford University,
USOE Annual Rept., Stanford, California, Institute for Mathe-
matical Studies in the Social Sciences, Stanford University, 1973.

6. Fletcher, J. D., and C. M. Stauffer, “Learning Language by Com-
puter,” The Volta Review, 1973, 75, pp. 302-311.

7. Suppes, P., J. D. Fletcher, M. Zanotti, P. V. Lorton and B. W.
Searle, Evaluation of Compuier-assisted Instruction in Elemeniary
Mathematics for Hearing-impaired Studenis, Tech. Rep. No. 200,
Stanford, California, Institute for Mathematical Studies in the
Social Sciences, Stanford University, 1973.

8. Gentile, A, and S. Di Francesea, Academic Achievement Test Per-
formance of Hearing-impaired Students, Series D, No. 1, Washing-
ton, D.C., Office of Demograpbic Studies, 1969.

Integrated voice /data compression and multiplexing using

associative processing”

by LEON D. WALD

Honeywell Sysiems and Research Division
Minneapolis, Minnesota

INTRODUCTION

The Associative Communications Multiplexer (ACM) con-
cept is based upon the Associative Processor (AP). For the
purposes of the following discussion, an AP will be defined
as an ensemble of processing Elements (PEs), each capable
of storing information, comparing that information with an
internal or externally applied comparand argument, and
performing arithmetic operations between the various internal
and external operands. The same operation—store, compare,
or process—may be executed on the differing local data,
simultaneously in all or any subset of processing elements.
A single control unit, with internal program memory, sup-
plies instructions in parallel to all PEs to control their
operations.

Associative processing can be effectively applied wherever
a set of common operations must be performed on many
pairs of operands. Numerous instances of this requirement
may be found in the area of voice and data communications.
The Associative Communications Multiplexer has been de-
signed to apply these techniques in three functional areas,
which are described below.

Digitization and loading of multichannel input data

Since an associative processor can execute calculations
simultaneously for all elements, data I/O often must also
be parallel to retain the speed advantage. In the ACM, this
capability is utilized to simultaneously sample and digitize
all analog input channels. At the same time, digital channels
are also sampled.

Simultaneous compression and concentration of multiple
channels

The ACM also applies associative processing to compres-
sion and concentration of multichannel data. A number of
parallel algorithms may be used to compute figures of merit

* This work was supported in part by the Rome Air Development
Center, Contract No. F30603-71-C-0350.

133

for all channels which represent relative significance of the
data at a particular sample time. The calculation tends to
yield high figures of merit for active channels and much
lower values for those, including digital channels, in the
pause mode.

Parallel selection of most-significant data

The parallel search capability of the ACM is used to
select the most significant data for transmission each cycle.
Figures of merit for all channels are compared by priority
group and those with highest priority and activity are trans-
mitted, up to the channel capacity. Thus, dynamic asyn-
chronous multiplexing is achieved wherein the compression
and quality of analog channels are automatically adjusted
to account for changes in overall system activity, while
keeping the high speed channel loaded to capacity and
without necessitating buffering or delay.

ORGANIZATION OF THE ACM

The ACM is comprised of three subsystems as indicated
in Figure 1. The I/0O subsystem performs the interface
functions, sampling, digitizing, and buffering. This unit also
reconstructs the analog signals after transmission, and re-
synchronizes digital channels. The Associative Processor
(AP) executes the compression algorithm, and transfers the
most significant samples to the output buffers, from which
they are transmitted via the high speed digital data link.
The control unit provides overall system synchronization
and control and features stored programs, both at the basic
operation {(microinstruction) and algorithm (main program)
levels, for maximum flexibility.

The architecture is a highly modular ensemble of nearly
identical computing elements. Although several versions of
the I/O circuitry are necessary to interface the various
analog and digital sources, each Processing Element (PE) is
identical to all others and is comprised of at least one byte
of Associative Memory (AM), a few registers, an adder, and
a number of Random Access Memory (RAM) bytes.

Two detailed organizations have been considered for the

134 National Computer Conference, 1974

INPUT/ ASSOCIATIVE
ourpPUT PROCESSING
UNITS FLEMENTS

HIGH SPEED HIGH SPEED
INPUT [TRANSMISSION
BUFFER LINE

I

r W
110 {AM 1 AUt R [RAM]PE
B — 1 1
T

v v
VOICE 4—;l£AM 1AUT R JRAN|PE,
AND

LOW SPEED ﬁ h
DIGITAL 1
LINES]
¥
]

\f—bl I/OIAM!lA'J i R :RAM[PE v

CONTROL
UNIT

HIGH SPEED HIGH SPEED
OUTPUT [~ TRANSMISSION
BUFFER LINE

CODE:

AM = ASSOCIATIVE MEMORY
Al = ARITHMETIC UNIT

R = REGISTERS

RAM = RANDUM ACCESS MEMORY

Figure 1—Associative communications multiplexer block diagram

PEs. The least complex combines a fully parallel AM with
bit slice arithmetic and access to the RAM, and would be
adequate only for the simplest compression techniques. The
second PE architecture permits data transfer and arithmetic
to be parallel by 8-bit bytes and is thus much faster.

The parallel PE organization is shown in Figure 2. The
associative memory is not shown explicitly, since the adder/
subtractor performs the associative comparison function re-
quired for this application. Essentially, the RAM is made to
look associative. Compared to a conventional AM, the adder
offers the advantage that inequality (such as greater than)
searches can be accomplished as rapidly as equality searches.
To maximize this advantage, the global data buss has been
given direct access to the adder.

The RAM, which is addressed from the control unit using
the RAM Address Register (RAAR), would typically store
32 8-bit bytes. The data from both registers, from the
Input/Output Processor (IOP), and from the global data
lines can be stored in memory by using the adder output
bus. This implementation allows the locations within memory
to be treated as registers, permitting operations that take a
word from memory, add or subtract 2 word from a register
or the input lines, and put the result back in the same
memory location.

Local operands are placed in the two general registers,
TRRI1 and TRR2. The latter has a built-in shift capability.
The tag register, 4 bits in length, permits storage of infor-
mation such as connect status and search response history.
The Element Activity (EA) flip-flop state may be modified
under control of these tags.

A number of simple logic blocks (L1, L2, and L3) aid in
control of the element. These function to indicate zero,
limit, and overflow conditions, aid in shifting and rounding,
and control the activity commands.

The ACM system, and particularly the PEs, when built,
will make extensive use of medium and large scale inte-

gration. The ACM is organized so that channels may be
added or deleted simply by modifying appropriately the
numbers of each type of chip in the AP. Changes in pro-
gramming or control unit hardware will not be required.

ACM OPERATION

Operation of the ACM may be clarified through consider-
ation of the six basic steps in sequence as they are performed
each cycle. First, in the Measurement step, input signals are
sampled. Next, these samples are converted to digital form
and stored in buffers in the Conversion step. During the third
step, Input, the samples are transferred in parallel to the
AP. Redundancy and pauses are removed in the fourth step,
Compression. Output, the fifth step, involves selection and
readout of the most significant data. Finally, in the Recon-
struction step, analog waveforms are reproduced from the
transmitted data and digital data streams are retransmitted
into the low speed lines at appropriate data rates.

Since the Compression and Output functions are so basic
to the ACM concept, these will be discussed in greater
detail. Operation of a typical compression algorithm is illus-
trated in Figure 3, which shows several digitized samples for
a single analog channel. This Zero Order Predictor (ZOP)
algorithm begins with a transmitted point. A horizontal
prediction line through this point and a horizontal corridor
of width 28, symmetric to the point, are constructed. The
values chosen for & for each of the channels will determine
relative speech quality levels. If a common value is used for
all channels, then choice of this parameter is arbitrary.

As each succeeding point is received by the AP, the
corridor boundaries are adjusted (reducing the corridor
width) so that the upper and lower limits are respectively
no more than & above or below the point. The sequence is
continued, even if the corridor width becomes negative, until

SLoBAL {_Piocssslucnmsm; _I §§§SQ'§S

DATA
| TRR 27 TRRL |

BUS
| :fﬂ L]

PARALLEL
TRANSFER

SELECT
ro/FROM GATES

SELECT
GATES

ADDER/SUBTRACTOR

= |

R

CONNECT STATUS ——
VECTOR INPUT

Figure 2—Byte-organized processing element

Integrated Voice/Data Compression and Multiplexing Using Associative Processing 135

a transmission for that channel occurs. The process is dupli-
cated for all other channels in the system.

The prediction lines essentially represent the output of
the digital-to-analog conversion process at the remote ACM
receiver assuming no transmission errors. The final recon-~
structed waveform (the approximation to the original input)
is thus a filtered and smoothed version of the solid line shown
in Figure 3.

It should be emphasized that nothing in the figure or the
compression algorithm should be taken as a sufficient con-
dition for transmission. Transmission may not occur even
for negative corridor width or points outside the corridor,
but depends entirely on activity relative to that of the other
chanpels. For example, with reference to the figure, the
following conditions where transmission occurred are illus-
trated:

e Point a—The sample is within a positive corridor.
o Point b—The sample is outside a positive corridor.
o Point d—The sample is outside a negative corridor.

At point ¢ transmission did not occur, in spite of the fact
that the corridor is negative and the point is relatively far
from the prediction line.

This compression corridor, which decreases monotonically
with time, is a measure of channel activity and may be used
as an inverse figure of merit. In the ACM, the output or
data selection algorithm compares all such widths by priority
class during each cycle. In this way, data are transmitted
from as many active channels in the top priority category
down to a prescribed significance level as high speed output
channel capacity will allow. The process is repeated suc-
cessively for the lower priority classes as long as channel
capacity remains. The result is a dynamic asynchronous
analog/digital multiplexing technique which conserves trans-
mission capacity by sending only the most significant infor-
mation (i.e., channels exhibiting the greatest data change
since the previous transmission).

A description of typical algorithm execution within the
AP will serve to illustrate some of the ways in which associ-
ative and parallel processing can be used in compression

CORRIDOR BOUNDARY

PREDICTION LINE -—=

CORRIDOR BOUNDARY

\'0)

- ® TRANSMITTED SAMPLE
© UNTRANSMITTED SAMPLE

t —

Figure 3—Zero order predictor compression algorithm

INPUT ALGORITHM
CONSTANTS AND
INITIALIZE

!

INPUT FIRST (NEXT)
DATA SAMPLES

I(ﬁ INPUT CHANNELS)

TRANSMIT SAMPLES AS REQUIRED
BY PREVIOUS OUT OF TOLERANCE
OR WILD POINT CONDITIONS

!

COMPUTE COMPRESSION &
WILD POINT PARAMETERS
(e.g. FIGURE OF MERIT)

b

OUTPUT
CHANNEL
FULL ?

NO YES

TAG CHANNELS
REQUIRING TRANS-
MISSION OF NEXT
SAMPLE

TRANSMIT SAMPLES
IN ORDER OF CHANNEL
PRIORITY & FIGURE
OF MERIT

L1 '

UPDATE AND PRINT
STATISTICAL SUMMARY
DATA AS APPROPRIATE

YES NO

Figure 4—Associative communications multiplexer simulation

and multiplexing. For the AP, a processing cycle begins
when the latest data samples are loaded into the RAMs in
the corresponding PEs. To compress using ZOP, the sample
in each PE is first subtracted from the current predicted
value to determine whether it is above or below the pre-
diction line. Then, the difference between the sample and
the appropriate corridor boundary is compared with &, and
the boundary is modified if necessary. Completing the com-
pression operation, the corridor width is formed as the differ-
ence of the boundaries.

Each of these operations is executed in parallel over as
many PEs as required. Where a branch occurs in the algo-
rithm, each PE determines the status of the appropriate
condition and sets a tag accordingly. The control unit then
issues a command setting the Element Activity (EA) flip-
flops in the PEs conditioned by the tags, followed by a
sequence of instructions corresponding to one of the branches.
Thus, only the PEs required to execute the branch become
active, and respond, in parallel, to the instructions. Later,
the alternate branches are handled in an analogous manner.

Execution of the data selection routine is similar but is
dominated by the use of the AP’s associative search capa-
bilities rather than by parallel arithmetic operations. All
PEs are first asked to compare their channel priority codes to
the code corresponding to top priority which is presented on
the global data bus. PEs indicating a match are enabled, in

136 National Computer Conference, 1974

POINT-TO-POINT

BRANCHING (LOCAL DISTRIBUTION TO MULTIPLE PIPES)

AM .
, —e A
" Torsr] BUFFER
§256 B | g

BUFFER

ATRAFFIC + B TRAFFIC = MAX T2 TRAFFIC

—

FIXED OR DYNAMIC
ALLOCATION

Figure 5—Network configurations

sequence, for transfer of the data samples, via the global
bus, to the high speed transmission buffer. The next lower
priority code is then presented and the process is repeated.
Within some priority classes, searches are also made for PEs
characterized by corridor width below a specified threshold.
This permits transmission ordered by channel activity levels
but avoids the necessity for relatively slow minimum searches.
When the transmission buffer is full, indicating that high
speed channel capacity has been reached, data selection is
terminated.

To measure the applicability of these and other compres-
sion and selection algorithms to actual voice data, a computer
simulation has been written. This program, illustrated in
block diagram in Figure 4, is written in FORTRAN and
runs on an XDS 9300. It accepts 6 channels of digitized
voice from magnetic tape as input, duplicates the ACM
compression, noise suppression and output selection func-
tions, and generates a 6-channel digital voice output tape.
Since the input may be structured to be more active (with
respect to pauses) than actual two-way tclephone specch,

ACM systems of up to 24 channels may be simulated. For

example, if the six inputs include normal pauses between
words and sentences but no time for the speakers to listen,
then the system is processing twice the information normally
characteristic of six channels, and is equivalent to a 12-
channel system.

The simulator processes the voice data by examining, in
sequence, the six sample values in each sampling period.
Compression parameters such as corridor width are then
computed for each channel. The current sample is also com-
pared with recent history for that channel, and if outside
prescribed limits, is designated “wild.” Channels for which
samples are not wild are ordered by corridor width. They are
then successively tagged for transmission, beginning with the
minimum width and proceeding until the assumed channel
capacity has been reached. Those samples “transmitted” are
transferred unchanged to the output tape. Samples for the
remaining channels are calculated, as in the receiver ACM,
in accordance with the reconstruction algorithm.

The ACM simulator has been used to measure the applica-
bility of a number of compression and selection algorithms to
speech. Among these are the Zero Order Predictor (ZOP)
described earlier, the First Order Predictor (FOP) which
uses sloping prediction lines and corridors, and combinations
of the two algorithms. For these tests, actual speech segments
for a variety of speakers and sentences were converted to

SAME PHYSICAL ROUTE
SLOT #1

#16 34
#BO\M

DEDICATED CONTEND
N
FOR SLOTS l 1
#16 - 430,
#31 - #46 BUFFER BUFFER
ACM
SITE B
FRAME _ _ T _
& CONTROL SLOTIS 1 - 15 SLOTS 16 - 30 SLOTS 31 - 46

Figure 6—A multi-point network

¥y

Integrated Voice/Data Compression and Multiplexing Using Associative Processing 137

8000 12-bit samples per second. Input channel timing was
structured for several average activity levels and channel
capacity was varied.

In general, test results were good, and support the validity
of the ACM concept. Simple ZOP was found to yield the
highest voice quality. Distortion and noise were found to be
almost indistinguishable at a compression ratio of 4, ac-
ceptable at 8, and fairly severe at 12, the highest ratio used.
Word and speaker recognition remained high even at maxi-
mum compression.

Although these speech processing experiments were by no
means exhaustive or completely rigorous, they did lead to a
number of interesting insights. For example, the superiority
of a zero order algorithm over a first order one demonstrates
that the theoretical ability of a piecewise linear approxi-
mation to more nearly fit the speech waveform does not
result in higher quality. In fact, the studies showed that
FOP tended to overshoot and hunt at waveform peaks and
in regions of inactivity. This results in distortion, noise,
and waste of channel capacity as extra points are transmitted
to correct the errors. The latter produce additional distortion
since other channels are hindered in their attempts to trans-
mit at the most opportune times.

Detailed study of the way these algorithms operate upon
actual voice has suggested some directions for improvement.
A form of extrema detection algorithm, the Peak-Valley
Interpolator (PVI) has been developed specifically for the
ACM. Theoretically, PVI should result in higher compression
by a factor of 2-3 and simultaneously in improved speech
quality. Since it was not tested during this program, however,
these conclusions remain to be validated.

ACM APPLICATIONS

The general applications area for the ACM can be defined
as that where many channels of voice or a combination of
voice and data must be transmitted efficiently over a costly
high speed link. The ACM can fit into many communication
system configurations.

The simplest ACM application is to the point-to-point
system (Figure 5). Two remotely located ACM’s are linked,
and a one-to-one correspondence exists between channels of
the one and those of the other. A given low speed channel on
one end always corresponds to the same low speed channel
on the other end. Switching between these channels can be
added very simply (as an Associative Processor function)
for a slightly more complex system.

A simple 2-branch network is also shown in Figure 5. On
the basis of a destination address stored in the associative
memory of the central ACM, each channel is directed through
one of the output buffers and one high speed line to the
appropriate remote ACM. Although a fixed channel allo-
cation is shown, a dynamic one could be used as well.

Multipoint or loop applications are also possible, where
several ACM’s are interconnected as shown in Figure 6.
Available time slots on the high speed line could be assigned

dynamieally on the basis of the relative activity at the various
multiplexers. The technique shown assigns permanently a
fraction of these slots to each remote ACM with remaining
slots up for contention. Each ACM would attempt to use
these contention time slots to transmit all its channels down
to a preseribed activity level.

The ACM is capable of handling a variety of input types
in almost any combination. These types include:

¢ Voice (analog or predigitized)

o Digital Data (real-time or non-real-time)
—Terminal-to-terminal
—Terminal-to-computer
—Computer-to-computer
—Telemetry

e Analog data ,

—Sensing and process control.

‘Included in this list are data for most of the commonly
used information transfer applications, such as record mes-
sage traffic, time-sharing systems, data gathering and com-
puter load sharing.

Within the digital data category, both synchronous .and
asynchronous data can be handled. Low speed asynchronous
data (to 600 bps) can be processed simply (but inefficiently)
by treating the waveform as a compressible analog signal.
This approach permits considerable flexibility for dialup
voice/data terminals. Low to medium speed asynchronous
data (to 2400 bps) can also be synchronized and buffered
by character, automatically stripping off start and stop
characters and deleting pauses. Information is thus accumu-
lated at its normal (low) rate, transmitted in single character
bursts at the ACM high speed output rate, and retransmitted
by the remote ACM at the original data rate.

ACM treatment of synchronous data can be quite similar,
in that the data can be buffered, concentrated, and trans-
mitted at the high rate. However, since basic synchronous
data rates are usually quite high (above 2400 bps) and the
number of this type of channel will be quite low in a normal
ACM application, it may not be worth the extra hardware
to concentrate. Channels with data at rates below the maxi-
mum ACM input rate (64K bps) will of course be inter-
leaved, achieving significant transmission efficiency.

CONCLUSIONS

The concept and design for the Associative Communications
Multiplexer have been described, and applications to many
areas of voice/data communications have been shown. The
system is designed to allow economical transmission of voice
and data in cases where cost of the transmission facility is
dominant. Examples of such situations include satellite
links, submarine cables, and certain long distance land lines.

A simulation of the ACM has been described which demon-
strated many of the system’s characteristics in processing
speech. Listening tests, using actual voice inputs, confirmed
that eightfold speech compression is possible and consistent

138 National Computer Conference, 1974

with reasonable quality. These conclusions, and the effects
of digital data, channel errors and many other factors are
under more detailed investigation at the present time.

The ACM embodies a novel approach to the problems of
compression and multiplexing since it combines digital and
voice data in a single facility, and offers flexibility due to the
system’s modularity and programmability. Degradation due
to overload is graceful and recovery is automatic and rapid.
The system should ultimately be low cost, compact and
reliable since its digital, modular architecture is ideally suited
for large scale integration.

BIBLIOGRAPHY

1. Johnson, M. D., and D. C. Gunderson, “An Associative Data Ac-
quisition System,” Proceedings of the 1970 Iniernational Telemetry
Conference, April 1970.

. Wald, L. D., “An Associative Memory Using Large-Scale Integra-

tion,”” NAECON ’70 Record, May 1970, pp. 277-281.

. Wald, L. D., “An Associative Processor for Voice/Data Communi-

cations,” Proceedings of the 1972 Sagamore Compuier Conference,
August 1972, pp. 135-144.

. Hanlon, A. G., “Content Addressable and Associative Memory

Systems—A Survey,” IEEE Transactions on Electronic Compulers,
August 1966, pp. 509-521.

. Stump, J. W., and L. W. Gardenhire, “Digital Voice Compression

Study,” Final Report Contract DCA100-67-C-0018, Radiation In-
corporated Systems Division, October 1967.

. Canover, M. F., “Investigation of Data Compression Techniques,”

Final Report Coniract NAS9-10876, TRW Systems Group, 15
September 1971.

. Ristenbatt, M. P. and D. R. Rothschild, “Asynchronous Time

Multiplexing,” IEEE Transactions on Communications Technology,
June 1968, pp. 349-357.

. VanBlerkom, R., G. R. Schwarz, and R. J. Ward, “An Adaptive

Composite Data Compression Algorithm with Reduced Computa-
tion Requirements,” IEEE National Telemetering Conference Proc.,
1968.

Speech as a man-computer communication channel

by REIN TURN

The Rand Corporation
Santa Monica, California

INTRODUCTION

Many computer applications require continuous interaction
between men and computers. Typically, men communicate to
computers data and programs, requests for processing and
information retrieval, and other information required for the
performance of computer-aided tasks. In turn, computers
communicate to men the results of processing operations, the
requested information, and any other messages they are
programmed to produce.

The principal means for man-computer communication are
manual, visual, and audio channels. The manual channel
includes all mechanically operated input devices. The visual
channel consists of printouts, displays and signals for visual
sensing by man and electro-optical sensing by computers.
The audio channels are the computer equipment and systems
for recognizing spoken utterances, as well as the equipment
for producing spoken output.

The choice of man-computer communiecation channels
depends on numerous operational, human, and economic
factors. Among these are the ease of use of the channel in the
context of the man-computer tasks, the nature of the inter-
action language, the ability to maintain desired interaction
rates, and the effects of the operational environment. The
processing and storage requirements of the communication
channel, and its cost-benefit advantages or disadvantages
over competing channels, are important economic factors. An
ideal channel is easy and natural to use, compatible with the
total system, provides operational advantages and is
cost-effective.

Most of the present man-computer communication chan-
nels are manual for man-to-computer communication and
visual for computer-to-man communication. Their character-
istics and design factors have been thoroughly analyzed and
are widely available.!

The use of the speech channel is still in its infancy.
However, the first generation speech synthesis equipment is
becoming commercially available? and the current research in
computer recognition of speech®* is likely to make speech

* Any views expressed in this paper are those of the author. They should
not be interpreted as reflecting the views of The Rand Corporation or
the official opinion or policy of any of its governmental or private re-
search sponsors.

139

communication between man and computer technically and
economically feasible in a few years. Limited capability
isolated-word recognition systems are already being tested
for simple control applications.® Several continuous speech
understanding and recognition systems are being developed
in the research laboratories.

Speech has the potential for becoming a versatile man-
computer communication medium. This paper discusses its
attractive features, problem areas, and application criteria
for this purpose. A description of specific implementations of
speech recognition systems, however, is beyond the scope of
this paper.

SPEECH CHARACTERISTICS

It is a natural activity for a person to mentally encode his
observations, ideas, and requests into a natural language—one
that he uses in his daily communications with other persons—
and express these in spoken form. Natural languages have
evolved over long periods of time and, characteristically,
permit great flexibility in expression and enormous variety in
shades of meaning. That is, the mapping of mental images
into natural language statements is a many-to-one process.

The expression of a given natural language statement in
speech is another many-to-one transformation—the generated
acoustic signals differ from speaker to speaker as functions of
their voice tract physiology, age, sex, dialect, physical
condition and emotional state.

The receiver of a spoken utterance must resolve the
inherent uncertainties on the basis of context and his
accumulated experience and knowledge. He uses his mental
“‘model” of the speaker, the circumstances associated with the
communication, and his “world model.” Various non-verbal
signals by the receiver also enter the understanding process.
Sometimes the uncertainty cannot be resolved at all and
further clarifying communications with the speaker are
necessary.

The use of natural language utterances for speech communi-
cation with computers is beset with the difficulties outlined
above. Since it is not practical to provide the computer with
all the contextual information required to resolve the
ambiguities, some restricted the language must be
used. For example, the vocabulary may be limited to a few

form of

140 National Computer Conference, 1974

hundred words that are used with unique meanings, and
rigid syntactical rules may be imposed. Further constraints
may be placed on the speakers (e.g., it may be required that
isolated-word speech, rather than continuous speech, be
used). Despite the loss in expressional power and flexibility
that such restrictions entail, there are situations where speech
is attractive for man-computer communication.

The following sections discuss the intrinsic characteristics
and the associated attractive features and problem areas of
speech input to computers. A part of this discussion is based
on material which has previously appeared in literature.s-

Message generation and encoding

The constant use of speech has made humans very skillful
in communicating with others through this channel—speech
can be produced effortlessly, spontaneously, at a high rate,
and under almost all environmental conditions. Hence, the
first characteristic of speech:

1. Speech is man’s natural end primary communication
channel.

The associated attractive features from the point of view of
man-computer communication are:

e The use of speech is familiar and convenient when the
interaction language is similar to the speaker’s native
tongue and is easy to pronounce.

o Speech is highly suitable and the preferred channel for
spontaneously generated utterances.

o Speech is potentially the highest rate versatile communi-
cation channel for computer input.

o Using speech for man-computer communication may
permit the “participation” of a computer in human
discussions and teleconferences.

The speech input channel loses some of its attractiveness as
the language departs more and more from natural language
(e.g., when words are artificial and difficult to pronounce and
when abbreviations, special characters, and punctuation
marks are used). Some applications are not at all suitable for
speech input, such as entering graphic data. Clearly it is more
natural to trace out a curve on a graphie input tablet than to
read the coordinates.

The potential speed advantage of spoken input is illus-
trated in Table 1. However, it must be borne in mind that a
high data rate is not necessarily a high nformation rate.

The possibility of simultaneous communication with both
men and machines has interesting implications. For example,
a computer and its data base may become an active partici-
pant in a conference.

Interaction with other channels

The next speech characteristic pertains to its interaction
with the other channels available for man-computer com-

munication:

2. The speech channel is independent of the visual channel
or human voluntary motor activities (other than those
required for speech production).

The only muscles required for speech production are those
that operate the vocal cavity, tongue, jaw and lips, and that
control breathing. Other muscles and other bodily activities
interfere only insofar as they affect breathing or require
conflicting mental activities. Hence, an attractive feature is:

o Communication using speech can take place simulta-
neously with other visual or manual tasks, when the
speaker is moving around, and in total darkness.

This is a very important feature of the speech channel. In
numerous situations communication with the computer is not
the only task. A standard example is piloting an aircraft
while attempting to interact with the onboard computer.

Speech propagation

Speech propagates in the atmosphere in the form of pressure
waves. These are reflected from and around objects. They can
be easily changed into electrical form. The related speech
characteristic is:

3. Speech propagation is omnidirectional. No free line of
stght is required.

This leads to the following attractive feature:

o For speech input, the speaker can be in an arbitrary
orientation relative to the microphone, at a considerable
distance, or behind a barrier.

Microphones with various “fields-of-view’’ and sensitivities
can be constructed and a computer input console would need
not be user-centered, but could be “stretched out” to allow
optimal placement of various input-output devices and
displays. The user can walk around while entering informa-

TABLE I—Representative Data Rates for Man-computer
Communication

Data rate

Communication mode (words/sec.) Remarks

Oral reading?

Random words 2.1-2.8 Selected from 5000 word dic-
tionary
Random words 3.0-3.8 Selected from 2500 most

familiar monosyllable words
Spontaneous speaking? 2.0-3.6

Handwriting? .3- .4

Handprinting?® 2- .5

Typing® 1.6-2.5 Skilled

Typing® .2- 4 Inexperienced
Stenotypett 3.3-5 Chord typewriter
Touch-tone telephone? 1.2-1.5

Thumb-whee}®
Rotary dialing®?

1.8 digits/sec. Sequence of 10 digits
1.5 digits/sec. Sequence of 10 digits

e

Speech as a Man-Computer Communication Channel 141

tion through the speech inpuf devices. The number and type
of receivers may also vary:

o The speech target audience can vary freely from many
(using loudspeakers) to a few (using earphones), in both
cases low cost equipment can be used. This feature is
important for security and privacy.

The easy conversion into electrical form leads to another
attractive feature which has the potential of converting a
conventional telephone instrument into a computer terminal:

o Speech communication with computers is compatible
with existing voice communication networks and sys-
tems. This allows remote input from locations where no
special computer-related equipment is available.

Among the problems associated with these characteristics
is the interference of speech communications both by
ambient acoustic noise and the electrical noise in the voice
communication system. Another problem area is the transi-
tory nature of speech—no hard copy is produced of speech
input. A tape recording can be made but is inconvenient
to use.

Speaker characterisiics

The acoustic characteristics of speech signals depend on the
structure of the speaker’s vocal tract and its dynamies.
Infections and other pathological conditions in the vocal tract
also affect the speech quality. Articulation and timing are
influenced by fatigue. Unusual emotional conditions can
change the normal speech characteristics, such as the pitch
and speaking rate. Hence the characteristic:

4. Speech contains a great deal of information about the
speaker.

This characteristic leads to two attractive features and two
problem areas in the application of speech for man-computer
interaction:

o The use of speech allows checking the speaker’s identity
for access control purposes.

o The use of speech has the potential for monitoring the
physical and emotional state of the user.

To implement speaker identification capability, carefully
chosen speech samples can be analyzed and a set of parameters
computed and stored. To authenticate a person’s identity the
person speaks a predetermined sentence which is also
analyzed and the extracted parameters are compared with the
stored ones. Considerable research is in progress on this
topic.!* An ability to monitor the operator’s physical or
emotional state' is important in man-computer tasks where
the operator’s actions, or inactions, may have drastic
consequences, such as in air traffic control applications.

The problem areas associated with these features have to do
with the complications in the design of speech recognition

systems caused by speaker-to-speaker variability, and the

variability in voice characteristics of a given speaker. It may
be necessary to train the system to recognize each individual
speaker’s voice characteristics and to store such information
in the system. Affected are the required amounts of storage
and processing.

Environmental tnfluences

Speech generation and propagation are both affected by
the environmental conditions. Some of these, such as
temperature, humidity, or insufficient working space, affect
the speech generation only indirectly (e.g., by accelerating the
onset of fatigue and emotional conditions); others have more
direct effects. The associated speech characteristic is:

5. Speech production is affected by mechanical forces on the
speaker and composition of the atmosphere.

Experiments have shown that both vibration and accelera-
tion affect speech intelligibility.!®* Changes in the atmosphere,
such as the presence of helium in submarine systems, also
affect speech by changing the pitch and intelligibility.1
However, weightlessness does not appear to have any effects.

Any ambient acoustic noise -in the environment will
interfere with the speech signal. This condition may be quite
acute in systems containing equipment in operation (aircraft
engines, teletype terminals) or other speakers. Among the
techniques available for alleviating the noise interference
problem are noise-cancelling microphones, special signal
processing techniques, and the use of specially selected,
high-intelligibility vocabularies.’?-1

Speech in computer-to-man communication

Unlike the use of speech for computer input, automatic
synthesis of spoken messages by computers is now practical.
This is indicated by a recent survey of the state of the art in
voice response systems® and by the number of firms actively
engaged in marketing these systems.?

The attractive features of the use of speech for computer-
to-man communication include the following:

o Speech is a natural way for humans to receive communi-

cations from others. It is compatible with the use of

speech as a computer input channel.

Several spoken messages can be received and compre-

hended simultaneously.

Spoken messages can be received without interrupting

the use of the manual or visual channels, in motion, or in

total darkness.

In receiving spoken output from the computer, the

operator can be in an arbitrary orientation relative to the

computer, some distance from the computer, or behind

a barrier.

e Any number of listeners can receive the spoken message
from the computer simultaneously.

« Speech reception by humans is not appreciably affected

142 National Computer Conference, 1974

by weightlessness, vibration, or mechanical forces on the
listener.

There are also some problem areas. For example, the rate
of receiving spoken messages is much slower than through the
visual channel. The transient nature of speech requires that it
be recorded on a tape if hard copy is required, but in this form
it is not readily scannable by the human operator.

The ambient acoustic noise interferes with the reception
and comprehension of spoken messages from the computer
when they are broadcast or sent over a telephone instrument.
However, the human auditory system is rather remarkable in
its ability to select out and concentrate on a specific message
and ignore others (this is the so-called “cocktail party”
effect).

IMPLEMENTATION OF SPEECH INTERFACE

The design of an effective yet economical man-computer
interface is a complex process that must take into account the
nature of the tasks to be performed; the human roles,
capabilities, and shortcomings in performing these tasks; the
task performance environment; and the capabilities of the
interface equipment. The task characteristics and the human
roles determine whether a speech interface is suitable. The
associated system design and performance requirements
determine whether a speech interface will be technologically
and economically feasible.

Design criteria

The principal roles of a human operator in a man-computer
system are: decision maker, problem solver, controller,
monitor, retriever or inquirer, and sensor or transducer. The
most demanding of these is the human role as decision maker
in real-time command-control systems where his performance
is especially affected by the criticality of the consequences of
the decisions, the diversity of the decisions to be made, and
their dynamics.

The following considerations influence the design of a
man-computer interface.

s Nature, time characteristics and variability of the tasks.

o Intensity level of the task performance and the operator’s
response requirement.

o Input and output loading of the operator.

o Operator’'s and system’s physical state during task
performance. Operator’s physical safety and other stress
conditions.

o Operator’s level of isolation when performing the task.

o Environmental conditions.

e Training and skill level of the operator.

Based on these and the discussion of speech characteristics
in the previous section the suitability of a speech interface for
performing a given set of man-computer tasks can be

ralirata

evaiiuaiea.

The speech understanding and recognition systems used to
implement a speech interface are charaeterized by a series of
design features which reflect the acoustic and linguistic
processing aspects of these systems. These design features
have been discussed for continuous speech understanding
systems in detail by Newell, et al.8 Included are the following:

e Vocabulary size and syntactical structure.

o Number of speakers, their dialects and speaking habits.

o User training and system tuning; the degree of speaker-
independence.

o Ambient noise environment and the transducer char-
acteristics. ‘

o Requirements for and availability of eontextual “world
model.”

o Recognition error rate.

o Response time.

These establish the requirements for the system hardware—
the special-purpose acoustic signal processing equipment and
the general-purpose digital computer for pattern matching
and linguistic processing. Tradeoffs can be performed between
the various sets of the characteristics, especially between
those involving the interface capabilities (vocabulary, syntax,
speaker independence), performance (error rate, response
time), and equipment (processing power, storage capacity,
cost).

State of the art and potential applications

As mentioned previously, isolated-word speech’ recognition
systems are already being offered on the market and are being
tested. Typically, these systems can be trained to recognize
utterances employing small vocabularies and highly restrictive
syntax. The pause between words must be greater than .2
seconds.

The implementation of continuous speech recognition and
understanding systems is much more difficult. One of the
problems is the absence of word boundary indications in the
acoustic signals and the dependence of the signal representing
a word on the predecessor and successor words. This problem
makes the use of linguistic and semantic information a
necessity. The variability of individual speaking and articula-
tion habits further complicates the recognition tests. Table IT
shows the recognition accuracy that has been achieved by
various experimental and prototype speech recognition
systems.?

There are a number of man-computer application areas,
mainly in the ‘“user’s hands busy” category, where a speech
interface for computer input-output could provide significant
performance improvement. Among these are:

o Computer-aided fault diagnosis and isolation; computer-
aided instruction; medical diagnosis; performance of
scientific experiments.

o Data input in taking inventory, making observations, or

tracking moving targets.

Speech as a Man-Computer Communication Channel 143

TABLE II—Speech Interface Performance Data

Capability Correct

recognition

Researcher Vocabulary Speakers percentage
Vicens (1969) 54 isolated 1 98-100
54 isolated 10 79
560 isolated 1 91
Yilmaz (1971) 16 isolated 10 99
Hill (1969) 16 isolated 12 unknown 78
Medress (1972) 100 isolated 5 94
Glenn (1971) 10 isolated digits many >99
Doddington (1973) 10 continuous digits many >99
Tappert & Dixon 250 continuous several 75

(1971)

o Monitoring computer-controlled processes.
¢ Controlling teleoperator systems and robots.

Other application areas are computer data base management,
information retrieval, and computer-aided programming. The
ultimate application is the perennial inventors’ dream—the
speech-operated typewriter for unconstrained language. It is
not likely that such a device can be realized in the next
decade, or even this century. Restricted versions, however,
are likely to be implemented.

CONCLUDING REMARKS

The use of speech as a man-computer interface offers several
attractive features over the conventional manual and visual
channels. The most important among these are the inde-
pendence of speech from the manual and visual channpels
which permits performing other tasks while communicating
with the computer; the omnidirectional nature of the speech
propagation, which permits the operator to use a computer
while in motion or remote from the transducers; the ability to
communicate simultaneously with men and computers; and
the potential for using a telephone instrument as a complete
computer terminal.

Despite the attractive characteristics of speech described in
this paper, its use in a particular man-computer task makes
sense only when its use is natural for performing the task and
compatible with the environment. Hence the nature of the
interaction involved must be thoroughly analyzed before
committing to the use of a speech interface. However,
together with other modes of man-computer communieation,
the speech-based interfaces can help an operator to concen-
trate on the tasks he is performing rather than on operating
the interface equipment.

ACKNOWLEDGMENTS

The author would like to thank his colleagues at The Rand
Corporation, Alan S. Hoffman, Robert C. Gammill, Gabriel F.
Groner and Thomas F. Lippiatt for their helpful suggestions.

REFERENCES

1. Meadow, C. T., Man-machine Communicaiion, John Wiley & Sons,
New York, 1970.

2. Hornsby, T. G., Jr.,, “Voice Response Systems,” Modern Data,
November 1972, pp. 46-50.

3. Hill, D. R, “An Abbreviated Guide to Planning Speech Interaction
with Machines; the state of the art,” Iniern. J. of Man-Machine
Studies, Vol. 4, 1972, pp. 383-410.

4. Walker, D. E., “Automated Language Processing,” in C. A. Cuadra
(Ed.) Annual review of information science and technology, American
Society for Information Science, Washington, D.C., 1973.

5. “Spoken Words Drive a Computer,” Business Week, December 2,
1972.

6. Lea, W. A., “Establishing the Value of Voice Communication with
Computers,” IEEE Transactions on Audio and Electroacoustics,
Vol. AU-16, No. 2, June 1968, pp. 184-197.

7. Hill, D. R., “Man-machine Interaction Using Speech,” in Advances
in compuiers, Vol. 11, Academic Press, New York, 1971, pp. 127-163.

8. Newell, A. et al., Speech Understanding Systems, North-Holland
Publishing Co., Amsterdam, 1973.

9. Pierce, J. R., and J. E. Karlin, “Reading Rates and the Information
Rate of the Human Channel,” Bell System Technical Journal, Vol.
36, 1957, pp. 497-516.

10. Hershman, R. L., and W. A. Hillix, “Data Processing in Typing:
Typing Rates as a Function of Kind of Material and Amount
Exposed,” Human Factors, October 1965, pp. 483-492.

11. Seibel, R., “Data Entry Through Cherd, Parallel Devices,” Human
Faclors, April 1964, pp. 189-192.

12. Deininger, R. L., “Rotary Dial and Thumbwheel Devices for
Manual Entry of Sequential Data,” IEEE Transactions on Human
Factors In Elecironics, September 1967, pp. 227-230.

13. Su, L., On Speaker Identification, Technical Report TR-EE 72-4,
Purdue University, Lafayette, Indiana, January 1972.

14. Williams, C. E., and L. R. Simmering, “Emotions and Speech:
Some Acoustical Correlates,” The Journal of Acoustical Society of
America, Vol. 52, No. 4, 1972, pp. 1238-1250.

15. Glenn, J. W., R. N. Gordon and G. Moschetti, Voice Initiated
Cockpit Control and Integration (VICCI) System Test for Environ-
mental Factors, Scope Electronies, Inc., Reston, Virginia, 20 April
1971.

16. Nixon, C. W, et al., “Study of Man During a 56-day Exposure to
an Oxygen-Helium Atmosphere at 258 mm. Hg. Total Pressure:
XVI. Communications,” Aerospace Medicine, Vol. 40, No. 2,.
February 1969, pp. 113-123.

17. Neely, R. B, 2nd D. R. Reddy, “Speech Recognition in the Presence
of Noise,” Working papers in speech recognition, I., Department of
Computer Science, Carnegie-Mellon University, Pittsburgh, Penn-
sylvania, April 21, 1972.

18. Drucker, H., “Speech Processing in High Ambient Noise Environ-
ment,” IEEE Transactions on Audio and Electroacoustics, Vol. AU-
16, June 1968, pp. 165-168.

19. Webster, J. C., and C. R. Allen, Speech Intelligibility in Naval
Aireraft Radios, Technical Report NELC/TR 1830, Naval Elec-
tronics Laboratory Center, San Diego, Calif., 2 August 1972.

Verifiable secure operating system software”

by GERALD J. POPEK and CHARLES 8. KLINE

University of California
Los Angeles, California

INTRODUCTION

While the desire for reliable security in multiuser computer
systems has grown significantly, the computing community’s
knowledge of how to provide the requisite protection is still
inadequate. Security is a “weak link” phenomenon; one
link whose condition is unsatisfactory is the operating system
software. It has often been pointed out that currently ‘“no
protection system implementation of any major multiuser
computer system is known to have withstood serious attempts
at circumvention by determined and skilled users.””! The
community is replete with apocryphal claims of secure sys-
tems that inevitably have failed.

Out of these difficulties and concerns has grown a good
deal of activity. One part of the community has addressed
the questions of how a system ought to be modularized,
what its primitive elements ought to be, and what logical
structure would be most useful. The useful concepts of
capabilities and domains® have come from that activity.
The Multics and Hydra systems are current examples of
ongoing complex software systems in which serious attempts
have been made to carefully design and structure the soft-
ware with respect to protection considerations.®#

Despite the value of these concepts and empirical labora-
tories, our knowledge concerning the reliability of protection
systems is disturbingly inadequate. Currently, it is not pos-
sible to provide a meaningful guarantee that a system actu-
ally provides the controlled protection which the design
claims. It is not possible to state with assurance that clever
users will be unable to circumvent the controls, and thereby
gain access to information, operations, or other resources
which the design intended to prohibit.

What is required is a system which can do more than
resist attacks by penetration teams. One would greatly prefer
software which in a real sense has been proven correct with
respect to certain precisely stated security predicates. Such
a result would provide software protection of high quality,
and help relieve fears that some feature or flaw had been
overlooked.

At UCLA, a multiuser computer system is being con-

* This research was supported by the Advanced Research Projects
Agency of the Department of Defense under contract number DAHC-
15-73-C-0368.

145

structed in which it is expected that verification of the security
properties of the software will be successfully performed.
That is, meaningful and demonstrable operating system security
is within our grasp. While the system is not yet complete,
work has progressed far enough that the viability and quality
of the resulting system and proofs seem assured. In the
following, we discuss concepts which have contributed to the
system’s design, as well as issues that arose during that
design process. It is expected that the approaches described
here have more general applicability.

Note that this work only concerns the protection enforce-
ment mechanisms of the operating system software. Properly
functioning, essentially error free hardware is assumed. The
problem of authentication, that is, reliable identification of
the user who presents himself to the system, also is not
considered, except that a suitable environment is provided
in which an authentication procedure could easily operate.

In addition, the flavor of protection toward which this
work is initially directed is fairly simple. Mechanisms to
support mutually suspicious subsystems, memoryless pro-
cedure calls, inference, or control of statistical access are not
explicitly considered. Nevertheless, the insights provided by
the goals of isolation and limited sharing apply to the more
complex needs.

We now discuss a number of thoughts found relevant to
the design of secure operating system software.

DEFINITIONS OF SECURITY

Before continuing to discuss the general facets of the
UCLA design philosophy, it will help to explain a distinction
we make between security and viability. We believe oper-
ating system security involves a set of essentially negative
constraints. One desires to verify that certain actions cannot
occur. For example, it will not be possible for the process
associated with user x to have loaded with it a segment as-
sociated with user y. It will not be possible for users of class
x to access files of class y.

One can coherently argue that such a point of view is
incomplete; the null system satisfies negative constraints
vacuously. What is required, the argument might continue,
is inclusion of the idea of viable productivity—that the
system actually supports useful activity. For example, if a

146 National Computer Conference, 1974

user could cause the process scheduler not to run any pro-
cesses, would this not be a security flaw? This point is well
taken. Certainly productivity is of importance since it em-
bodies the primary reason for the existence of the system.

Nevertheless, we argue that a meaningful distinction can
be made between the prevention of undesired actions and
the need for productive activity. To have verified the negative
constraints is a useful and nontrivial step, and those con-
straints certainly contribute to the overall viability of the
operating system.

These negative constraints express the security policy. For
each user, we can translate these negative constraints into
a list of which security objects this user should and should
not be able to access and with what access types. Security
objects are the physical and logical parts of a computer
system that need to be controlled, protected, or whose status
needs to be guaranteed. An incomplete list of examples in-
cludes terminals, communication lines, processes, and files.

Security policy may be expressed in terms of accessible sets.
For user A, accessible[t,A] is the set which defines what
objects this user is to be allowed to access at time t. All
other accesses are to be prohibited. Each entry in the set is
an object, access type pair.

For each active object D. (device or CPU), we define
access[t,D] as the set of accesses (object, access type pairs)
that object D makes at time t. We also define owner|t,D] as
the user on whose behalf the device is performing accesses
at time t. For example, the CPU always acts for some given
process. Then protection is enforced if ¥t ¥D access[t,D] is a
subset of accesstble[t,owner{t,D]] We say that a system is
secure if

(1) accessible sets describe the desired security policy
and
(2) protection is enforced.

The preceding is a simple conception of security. Neverthe-
less, it can yield meaningful protection and a comfortable
user environment as we demonstrate below. Such questions
as whether user A can steal user B’s files are, for example,
directly handled by this model. Note that point one above
contains aspects which will not be mathematically verifiable,
since what is involved is a mapping to precise specifications
from the intuitive notions which express user desires. One
can check internal consistency of the resulting specifications,
however.

THE CONCEPT OF AN OPERATING SYSTEM
SECURITY KERNEL

The value of segregating operating systems code into more
or less disjoint layers has been clear for some time. One
interesting question that presents itself concerns what the
lowest level of the operating system ought to contain. De-
signs focussed around message handling, process primitives,
and others have been suggested. Recent efforts concerning
the ‘“nucleus” of the operating system are illustrated by
Brinch Hansen® and Wulf.* There is still considerable debate

over this question, and its importance is not likely to decrease
as systems grow more complex and additional layers, such
as more sophisticated data management code, are added.

It is our contention that the very lowest system level,
the subnucleus, ought to contain the security relevant por-
tions of operating systems primitives, and nothing else.
The subnucleus that contains this isolated code we call the
security kernel of the operating system. Note that such a
design differs widely from current practices, as ilustrated
by 0S/360 in which that code is strewn throughout the
operating system.

It has been pointed out many times that security is a
crucial, basic quality of today’s complex systems. The value
of carefully designed modularity in the structure of operating
system code is also clearly recognized. These two thoughts
conjoin; enforcement of the intended modularity by security
controls is of great aid in developing and understanding the
system software. It is easier to obtain reliable enforcement
of modularity if the proper functioning of those mechanisms
which provide that enforcement does not depend at all on
other code. That is, modularity enforcement code should
depend on as few and as simple modules as possible. If
security is basic to a system, then the code which provides
security should also be basic, with few dependencies, hence
at the lowest levels of an operating system.

It is exceedingly difficult to understand the interactions of
security relevant software when the code and the implications
of the design decisions which produced .that code are dis-
tributed throughout the operating system. The difficulties
arising from this distribution are illustrated by the large
number of known security flaws which involve the interaction
of a number of characteristics of an operating system design
and implementation. As one simple example, in a number of
systems, the code which checks a security condition and the
code which takes the action guarded by that check are
separated by some distance in the execution sequence. It is
possible under certain conditions, an interrupt perhaps, for
the user to change the parameters examined by the check
before the action occurs. Such flaws usually depend on the
availability of parameters to user code and the interrupti-
bility of the check-action pair.® As the subleties of these
interactions are seen, the near hopeless quality of poorly
planned and distributed security relevant code becomes more
and more clear.

The isolation and centralization of security relevant code
provides more than merely a better basis for understanding
that code, important as that understanding is. By isolating
that code at the heart of a system, running on the bare
hardware, its correct functioning does not depend on the
proper behavior of other modules of operating system soft-
ware. This fact provides several advantages. Outer layers of
the software may be written and modified without need to
reevaluate the security of the entire system. Maintenance is
then eased. In addition, the resulting security kernel as a
relatively small, isolated, independent set of programs is
susceptible to a formal verification of its correctness with
respect to security. The importance of this property is diffi-
cult to over-emphasize.

Verifiable Secure Operating System Software 147

A note of caution is important here, however. It has been
suggested that once the behavior of the security kernel has
been verified, the security of the entire operating system
software has been guaranteed. Such a statement is not
necessarily true. If one’s concept of the kernel includes only
security primitives, then it is quite conceivable that those
primitives could be inappropriately applied at an outer level,
allowing relatively subtle interactions of operatmg system
features that lead to security flaws.

As an example, in the bulk input of a well-known time
sharing system, I/0 is handled by a separate process. A
card deck, along with the desired file name and the target
directory, is effectively given to the I/O process which loads
the deck into a file and places an entry in the target directory.
To do this, the I/O process has powerful access privileges.
By this means, anyone may place an arbitrarily named file
in any directory.

When a user executes a system command, his directory is
searched before the public directory for that command name
to obtain the code to execute. The interaction of this search
order with the power of the I/O process results in security
failure. To exercise this flaw, one merely prepares a program
that performs an arbitrary action, and has it loaded into
the directory of a highly privileged user. If the program
is given a common command name (like SYSTAT or DI-
RECTORY, for example) then that arbitrary program will
be inadvertently executed, with the capabilities of the
privileged user, when he types the command. With care, no
one will even know the error occurred. To indicate the
subtlety of such flaws, it should be noted that if the search
order used by the monitor were reversed, that is, if system
directories were searched before user directories, this par-
ticular flaw would vanish.

In the UCLA work, this class of problems has been ex-
amined closely, and solutions to it are suggested below in
the sections on virtual machines and verification. As a result,
we are convinced that the kernel concept can yield certified
security if it is carefully employed.

Another effective argument in favor of the securlty kernel
approach results from the fact that it has been possible to
separate security relevant code from the rest of the operating
system software and centralize that code. While the verifi-
cation of the UCLA system was not complete when this
paper was written, the kernel isolation design had been
finished for some time.

Exactly what capabilities belong in the kernel is perhaps
best explained by detailed examples, but several general
remarks can be made. First, the distinetion of Wulf* between
mechanism and policy is useful. For example, while the
policy contained in the scheduling process ecan and should
be excluded from the kernel, the code which serves as the
mechanism to load a process must be part of the kernel.
Otherwise, parts of several processes could be loaded to-
gether (for example, the general accumulators from process
1 and the memory management registers of process j).

Second, the kernel ean be allowed to make calls to outer
layers of the system as long as the proper behavior of the
kernel does not depend on those outer calls. For example, the

scheduler may be called by the kernel to determine which
process to run next. What reply the kernel receives is irrele-
vant to protection questions. The hierarchical structure is
necessary for proof dependencies only, not flow of control or
other behavior. This ability to allow certain outward calls is
one means by which nonprotection issues can be largely
excluded from the kernel code. Of course, as noted by Wulf,*
when the kernel calls the scheduler is itself a scheduling de-
cision; thus this and other questions have not been completely
excluded.

VIRTUAL MACHINES AND SECURITY

The concepts of virtual machine designs, in the sense of
CP-67 or VM370, bave grown in popularity and importance
recently. One can view the virtual machine monitor (also
called a control program, or hypervisor) as providing some
basic functions of the traditional operating system, such as
separation of processes, device scheduling and processor allo-
cation. It does not enrich the process environment by pro-
viding user services. Instead, the environment produced,
called a virtual machine, is essentially logically identical
to the bare machine. For discussions of the value of virtual
machines to operating systems design and program trans-
ferability as well as construction details, see References 7,
8 and 9.

Virtual machine designs have significant advantages in
multiuser computer security systems, however, apart from
the values mentioned above. One of these advantages accrues
from a praetical question—the amount of work required to
produce a secure multiuser system. Earlier, the desirability
of a security kernel was discussed. The presence of kernel
code, however, changes the environment that any program
sees when it is run. Operations such as changing relocation
register values and direct execution of I/0 may not be per-
formed, and attempts to do so either will be impossible
(when relevant areas are excluded from an address space,
for example) or will abort. One is thus faced with either
designing or modifying all programs to run properly with
the kernel, or providing layers of code over the kernel in order
to construct a more suitable program interface. The latter
option could imply the building of an entire operating system.

Instead, one might layer over the kernel a skeletal virtual
machine monitor (VMM). Such a task is simpler than that
of building an operating system. The VMM contains no
user services, and its code is devoted in large part simply to
simulating those portions of the bare machine which have
been usurped by the presence of the VMM itself. An ele-
mentary scheduler is of course necessary, and careful at-
tention must be paid to I/0. Nevertheless, a VMM is still
much simpler than an operating system, as might be illus-
trated by the relative sizes of CP-67 and 0OS/360. The UCLA
PDP-11/45 contains certain hardware modifications to re-
duce the amount of supporting code for the VMM in the
kernel. See the appendix for details.

Typically, user services on a virtual machine system are
obtained by running a standard operating system in one of

148 National Computer Conference, 1974

the virtual machine environments. Thus, construction of a
VMM is a relatively simple and cheap way to obtain a clean
interface for programs, and the amount of effort required to
demonstrate the utility of the kernel is decreased.

Such an approach involves protecting and controlling entire
virtual machines. Hence two users running under an oper-
ating system in a single virtual machine are accorded no
protection from one another by the security kernel, although
they are protected from other virtual machines. The obvious
solution to this problem is to run each user with his own
operating system in a separate virtual machine, using execute
only sharing of common operating system code to maintain
efficiency.

A second advantage of a virtual machine approach how-
ever is more intrinsic, but also accrues in part from its
simplicity. Earlier, it was demonstrated with the example
of bulk I/O that, depending on one’s conception of the
kernel, it was potentially possible for higher levels of software
to misuse kernel primitives in a fashion that could lead to
a security flaw. This problem is diminished if the higher
levels of software are simpler.

Inter-segment linking, access control over spooling pro-
cesses, and many other operating system features are absent
in a virtual machine monitor. The complexity of the “pro-
tection semantics” associated with aspects of operating
systems such as those mentioned above, as well as the
necessary supporting code, can easily lead to security errors.
By contrast, a virtual machine system projects a very simple
environment from the point of view of security. Sharing
may be provided by very simple methods while still main-
taining the richness of an individual user’s environment.

This relative simplicity makes it practical to demonstrate
that there do not exist interactions of the sort mentioned
earlier which cause security flaws. Essentially, there are
many fewer features to interact.

COMMUNICATION CHANNELS

Another relevant view of security deals with the control
of communication. For example, a system for which a user
with one clearance could not pass certain data to a user
with a lower clearance no matter how hard both try would
be of value to the military. This problem essentially is one
of showing that there does not exist a communication path
between two processes. Up to this point, we have been con-
sidering a fairly specific definition of security, albeit one
that ean involve fairly subtle interactions of code. However,
as pointed out by Lampson,® there are a number of con-
ceptual channels of flow of information in a shared system.
First, there is the obvious one that most people speak of in
the context of security, the explicit passing of files and other
units of information, reading another user’s work space, and
the like.

But there are others, often involving the passing of re-
sources—assigning and deassigning devices, or making service
demands on the system that other users can sense. Exactly
what channels exist, what their respective potential band-

widths are, and what mechanisms and costs are needed to
seal them are all questions that need to be resolved in order
to decide how these communications channels should be
handled.

Of these channels, we first distinguish between those which
depend on timing considerations, and those which do not.
A timing dependent case is demonstrated by process A
sensing the CPU load of the system caused by process B.
In the context of a virtual machine system, one way these
channels may be blocked, at least in so far as the running
programs are concerned, is by properly simulating the passage
of virtual time to VMs, and not providing a real time measure.

Timing independent channels also exist, however. Con-
sider the following case. Let P1 and P2 be separate processes
who are not to communicate. The devices D1 and D2 are
dises controlled by a common scheduler S. Requests for
I/0 may be considered as messages from P1 and P2 to S,
and completions as messages from S to P1 and P2. Notice
that in this example, both P1 and P2 are using both devices.

In keeping with the kernel design philosophy, it is desired
that S be kept out of the kernel. How then are P1 and P2
prevented from communicating via the scheduler S? Both
send S information, and both receive information from S.
Are we forced to prove assertions about S? If our system
already existed, its design were as above and we were at-
tempting to secure it in retrospect, without major redesign,
the answer is likely to be yes.

Instead, let the kernel do all the moving of information,
and treat the messages as being contained in “locked boxes.”
A scheduler may read (but not change) such a locked box.
Label messages from P1 and P2 with their destination, D1
or D2. The return messages from devices are similarly
labelled from either D1 or D2. The scheduler now merely
queues requests and hence cannot change message contents.

SOURCES, SINKS, AND THE MORSE CODE
PROBLEM

The above design does not completely block interprocess
communication, for a “Morse Code’’ mechanism still remains.
That is, both P1 and P2 can pass S two types of tokens that
S can distinguish: D1 type and D2 type. Hence S can receive
an arbitrary binary encoded communication from each of the
two processes. Furthermore, S can send a nearly arbitrary
message back to each process by ordering the return of
completions (nearly arbitrary only because he may run out
of tokens of one or the other type or both). We have been
had by a malevolent scheduler. Skeptics should remember
that binary codes are the charwomen of contemporary
computing.

This problem however is not intrinsic to security systems
nor an inherent defect in the kernel concept, but rather
merely one of inappropriate design. Split the device scheduler
8 into two schedulers, S1 and 82, one for each device. Now
each scheduler, if we continue to operate in “locked box’’
mode, deals in only one variety of token, and hence there is
no binary communication channel.

Verifiable Secure Operating System Software 149

The preceding is a rather attractive solution. The sched-
ulers 81 and S2 need not be proven at all, and they may
have full access to information necessary for scheduling.
Little compromise with respect to performance has been
made. The two schedulers may even share common code,
as long as their writable storage is separated. The task of
providing proven security has been eased, with the only
important cost having been careful design.

The above solution is valid because S1 and S2 are purely
information sinks. While they receive message contents, there
is no way for them to broadcast, so long as only one request
per process per scheduler may be pending at any time.
They only request that the kernel return device status to
the processes.

More generally, the solution is effective because the flow
of information with respect to S1 and 82 is one way. In this
case, the two are sinks. It would have been equally sufficient
with respect to security if they had been pure sources. Of
course in this case that would not provide the desired fune-
tionality. The principle here that does generalize usefully is
that one can reduce the security problem significantly by
first isolating as much as possible, often in ways that are not
immediately apparent. This principle has been applied to
the UCLA kernel a number of times, the device schedulers
and virtual machine simulators being two examples.

At this point one might argue that these subtle channels
are in certain respects irrelevant because they seem to require
the active, coordinated cooperation of all the parties involved
in the ecommunieation. If two users wish to communicate,
let them; isn’t that the strength of multiuser systems any-
way? However, in the disc scheduling example raised earlier,
even without process P1’s cooperation, it would have been
possible for P2 to learn about P1’s I/O characteristics. More
important, security may be compromised by incorrect high
level design. Errors in outer modules, such as the scheduler,
are exploitable. Careful proof procedures should discover
these cases.

VERIFICATION

It is important to realize that even if no security verifi-
cation were actually performed, the design philosophy de-
scribed here and the discipline imposed by the intent to
verify, together, bave already increased the reliability of the
security aspects of the system. Nevertheless, there is more
which can profitably be done; verification is an attainable
goal. :

Program verification tools are not yet in a well developed
state. The largest program that is known to the authors to
have been verified to date contains somewhat more than two
thousand instructions; small compared to most operating
systems.!! Hence, it is necessary to severely limit the size of
the program about which one wishes to prove certain prop-
erties. The UCLA kernel is approximately 500 lines of high
level code. We are in the process of verifying that eode and
expect to be able to complete this task with a reasonable
amount of effort.

It is important to realize that program verification is not
the whole of operating system security, although it is a very
important part. Verification establishes the consistency of a
program with a separate, essentially static statement of
what that program is, or is not, to do. In order to apply
verification, one first needs explicit definitions of security,
and those definitions must be translated, eurrently by hand,
into predicates that may be handled by mathematical means.
Second, one is faced not by a large flowchart, but rather by
a number of kernel primitives, which potentially may be
invoked in any order. In addition to verifying certain prop-
erties of the primitives themselves, it is necessary to demon-
strate that there is no order of invocation of primitives that
would result in a security violation. If the primitives are
thought of as composing an action space, then one needs to
demonstrate that there does not exist a path through that
space, the result of which would make one of the security
predicates not true.

There are a number of strategies which can make this
proof process easier. After carefully categorizing every inde-
pendently addressible object and action to make the model
complete, naming techniques can be employed to segment
the proof task. If we can demonstrate that objects only
have a user’s name associated with them if they are members
of his accessible set, then we can show protection enforcement
by showing he can only access objects with his name.

As a second proof strategy, certain required predicates
may be included as run time checks. For example, in a
military system, one might wish to guarantee that a user
with secret clearance is not able to access a top-secret file.
One way to guarantee that constraint is to embed a run-time
check in the (only) I/0 routine.

All of these considerations help to make the verification
task possible although far from easy. They also support the
undesirability of ex post facto verification.

THE UCLA-VM SYSTEM

Let us give some examples of the previous remarks from
the UCLA-VM system. A sketch of the structure of the
UCLA virtual machine system is shown in Figure 1, with
the VMM broken into its attendant parts. The objects in
the system have been specifically defined and are homo-
geneously treated and viewed by the kernel. That is, the
kernel has no knowledge of the internal structure of any
security objects with the exception of the protection data.
This data is the basis for security decisions, and plays a role
analogous to the contents of the Lampson-Graham-Denning
protection matrix.? It is packaged into security objects so
that access to the data may be controlled. Thus, control is
obtained over the way protection decisions are changed. The
blindness of the kernel to other objects’ internal structure
simplifies matters, but it implies that only actions among
objects are monitored; no intra-object control is provided.
As a result, activity within a virtual machine is not controlled
by the kernel. Two users running in a single virtual machine
are accorded no protection from one another by the kernel.

150 National Computer Conference, 1974

BARE HARDWARE
KERNEL
INTERRUPT HANDLER

Figure 1—Virtual machine design

In order to be protected, they must each run in a separate
virtual machine.

The modularity shown in the figure is needed for security.
Each VM has an associated simulator. This code performs
the task of simulating the virtual machine environment.
However, these simulators are not proven correct. Thus to
assure security of each user’s data, each simulator must be
logically separate with no shared writable storage. For
similar reasons, and to avoid Morse code problems (as dis-
cussed earlier), the CPU scheduler and all shared device
schedulers must be logically separate.

However, to be of practical utility, some sharing among
virtual machines is necessary. For example, one virtual ma-
chine contains the only ARPA network® interface software,
and it is highly desirable that the network be available to
other virtual machines. Hence, a shared read/write segment
facility between two virtual machines is included. The simu-
lators for two virtual machines may share such a segment if
so indicated by the protection data. Pseudo device interfaces
to the shared segments are also provided so that standard
operating systems may communicate with one another with-
out other special facilities.

Thus, the design which is being verified supports only
limited sharing, via shared read/write segments and pseudo
devices. As a result, the system is rather simple and the
semantics of security fairly straightforward. This simplicity
has béen a substantial aid to the system’s development. In
addition, shared execute-only segments are also supported,
so that multiple users running in multiple virtual machines
but executing under separate incarnations of the same oper-
ating system can use the same code.

In Figure 1, portions of the system’s structure are high-
lighted. It is these portions upon whieh the security of the
system depends. The kernel of course is inciuded, but two
modules outside of the kernel are too. The initiator and
updater perform authentication as part of their primary
functions. A user first presents himself through a terminal
to the initiator, who eventually passes him to a virtual
machine.

The updater’s task concerns the changing of protection

oL pPI

data. It is only through this port that access to the data is

potentially possible. This procedure is necessary since the
state of the protection data must be guaranteed in order for
the rest of the mechanisms discussed here to be meaningful.
One needs a reliable channel to the kernel which does not
pass through unverified VM-simulator and operating system
code in order to inspeet and change that data with confidence.
The UCLA-VM System is useful for practical work besides
being a testbed for the development of techniques for con-
structing secure operating system software. The PDP-11/45
serves as an entry way to the ARPANET, replacing older
equipment. The network interface software is provided by
ANTS (ARPA Network Terminal System), which expects a
bare machine on which to run. In addition, it will now be
possible for the processing power of the 11/45 to be available
for network measurements® as well as local computing, not
allowed by ANTS. The virtual machine monitor provides
the ability to eoncurrently run a number of applications,
each of which logically expects a bare machine, and also
yields a good environment for instructional purposes, es-
pecially for “hands on” operating systems experience.

COSTS OF SECURITY

The costs of providing multiuser computer security are
incurred in at least several ways: construction, user con-
venience, and performance. Let us consider each of these in
the concext of a UCLA-like system.

The cost of construction of the verified kernel with simple,
understood semantic layers above it (the VMM), is certainly
reasonable. The project will have consumed a small number
of man years of high quality effort and no unusual equipment.
A significant amount of this work would not be required if
the task were repeated for another machine, and much of it
is a basis for extensions.

In terms of convenience, while the system is not yet
operational, it is clear from other systems that a virtual
machine environment is a comfortable one for many users.
The simple sharing mechanisms provide a necessary basis for
network communication and inter-machine interaction.

With regard to performance, a definite answer will not be
available until operational tests are made. Nevertheless, a
number of remarks can be made. A definite upper bound on
the performance cost of security can be obtained by com-
paring the performance of a procedure under the virtual
machine monitor with its performance on the bare machine.
Of course, that bound will also include the overhead of the
virtualization process as well as limitations imposed by
security.

It has been suggested that the cost of security in general
may be expensive. This expense will result from overhead
imposed by the necessity to follow procedures which, without
security considerations, could have been obviated. Indeed,
we have found places in which the procedures to perform a
desired task are considerably more lengthy than they would
normally be, I/0 to a shared device being a case in point.

Nevertheless, we expect our security degradation bound
will demonstrate that the fears of inefficiency are incorrect.

Verifiable Secure Operating System Software 151

We will also estimate what portion of the observed overhead
is due to virtualization costs. Hence, we confidently expect
to demonstrate that a simple, but useful form of verified
multiuser security may be obtained at a quite acceptable
cost.

CONCLUSIONS

This work has been intended to demonstrate several points.
First, and perhaps most important, ¢t is practicable to have
verified software securily in multiuser computing systems.
Second, the approaches of kernel design, virtual machine
monitors, and mathematical verification of the properties of
software contribute usefully to the task of providing verifiable
security.

Nevertheless, a great deal remains to be done. It has been
and continues to be a taxing effort to obtain this high level
of software security for any given system, in part because
our tools and concepts are still unrefined. These facts are
encouraging, for they suggest that considerable progress can
be expected.

Furthermore, the system described here provides only
limited sharing, and does not, for example, address the
problems of mutually suspicious subsystems or memoryless-
ness at all. It has been argued that multiprogramming of
resources, rather than information, is still the predominant
activity, at least among the security conscious segment of
the computing community. Although this segment would be
satisfied by a virtual machine approach, there remain vital
activities for which reliable control of sharing is crucial, and
those activities are not expected to decrease in the future.

APPENDIX

The security kernel and virtual machine monitor are being
constructed for a DEC PDP-11/45 that is being attached to
the ARPANET at UCLA. The PDP-11/45 has a three state
architecture which naturally lends itself to the needs of the
kernel, VMM, and user environments. However, the Unibus
I/0 structure of this machine does not lend itself conve-
niently to virtualization, since nearly every instruction is po-
tentially an I/0 instruction and most be simulatable, unlike
the limited set that normally accompanies machines with
more conventional I/0 processors.

However, much more important than this inconvenience
with respect to I/0 is the fact that the standard PDP-11/45
cannot be virtualized at all. In Reference 8, it is stated that
hardware must have certain characteristics in order for a
VMM to be constructible. Briefly, instructions that affect
control of the processor, or whose behavior are disturbed by
the presence of the VMM, are termed sensitive instructions.
All sensitive instructions must be privileged in order that
they may trap to the VMM to have their effect simulated.
In the standard PDP-11/45, there are nine instructions for
which trapping is necessary but which are not privileged.
This fact makes the machine impossible to virtualize.

In addition, one would like trapping of instructions to be
a function of the mode in which attempted execution of the
instruction occurred. The reason such behavior is desirable
is a result of the following considerations. It will be natural
to run the kernel in the most privileged mode, the virtual
machine monitor in the next most privileged mode, and the
virtual machines in least privileged mode. One then prefers
that instructions which trap in a virtual machine be re-
flected by the hardware to the VMM, while it may be
necessary that the same instruction executed by the VMM
trap to the kernel. Such mode dependent trapping has been
suggested before.’

In the case of recursive virtualization, in CP-67 for in-
stance, this behavior is simulated by the software. The
hardware traps all instructions to privileged mode, and soft-
ware reflects some of them out. Here, however, there is an
additional motivation. The existence of mode dependent
trapping makes it unnecessary to have the reflection software
in the kernel. It needn’t exist at all. As emphasized in the
body of this paper, the need to exclude non-security code
from the kernel is almost as important as including all the
relevant code. The DEC/UCLA bardware modification pack-
age also includes other features for efficiency and/or con-
venience.

REFERENCES

1. Schell, R., Private communication, USAF/ESD L. G. Hanscom
Field, September 1972.

2. Lampson, B. W., “Dynamic Protection Structures,” Proceedings of
FJCC, 1969.

3. Saltzer, J., “Protection and Control of Information Sharing in
Multies,” ACM /SIGOPS Symposium on Operating System Prin-
ciples, Yorktown Heights, October 1973.

4. Wulf, W., HYDRA: The Kernel of ¢ Multiprocessor Operating Sys-
tem, Carnegie-Mellon University, 1973.

5. Brinch Hansen, P., “The Nucleus of a Multiprogramming Sys-
tem,” CACM, April 1970.

6. Bisbey, R., Private Communication, USC/Information Sciences
Institute, June 1973.

7. Buzen, J. P. and U. Gagliaridi, “The Evolution of Virtual Machine
Architecture,” AFIPS Conference Proceedings, Volume 42.

8. Popek, G. J. and R. Goldberg, “Formal Requirements for Virtualiz-
able Third Generation Architectures,” Communications of the ACM,
Vol. 17, No. 7, July 1974.

9. [IBM CP-67] IBM Corporation, Control Program-67/Cambridge
Monitor System, IBM Type III release No. 360D-05.2.005, IBM
Program Information Department, Hawthorne, New York.

10. Lampson, B. W., “Dynamic Protection Structures,” AFIPS Con-
ference Proceedings, Volume 35.

11. Ragland, Larry C., A Verified Program Verifier, Ph.D. Thesis,
University of Texas, Austin, 1973.

12. Graham, G. 8. and P. J. Denning, ‘“Protection—Principles and
Practice,”” AFIPS Conference Proceedings, Volume 40.

13. Roberts, L. G. and B. D. Wessler, “Computer Network Develop-
ment to Achieve Resource Sharing,” AFIPS Conference Proceed-
ings, Volume 36.

14. Kleinrock, L. and W. E. Naylor, On Measured Behavior of the
ARPA Network, to be published.

15. Goldberg, R. P., “Architecture of Virtual Machines,” AFIPS
Conference Proceedings, Volume 42.

An interactive software engineering tool for memory management

and user program evaluation®

by WOLFGANG W. MILLBRANDT and JUAN RODRIGUEZ-ROSELL

Brown University
Providence, Rhode Island

INTRODUCTION

As the‘use of virtual memory becomes more and more
accepted, the problem of effective storage management
becomes more and more important. To date most efforts
to optimize the use of memory have been directed at devising
memory management strategies at the operating system
level that minimize the number of page faults. For example,
Comeau! has shown that the loading sequence of subroutines
can have a considerable effect on paging activity. Hence
page-fault-optimizing loaders, linkage editors and compilers
have been proposed. Although the concepts of “locality”
and “working set”’ have been known for some time (c.f.
Denning?), little effort has been made to provide the pro-
grammer with suitable tools for making his programs
“more local”. This seems to stem from the fact that, short
of notions of “modular coding”, little is known about what
sorts of programming habits actually result in local code.
Consequently, most optimization techniques used to date
have assumed that user programs were an unmodifiable
input to the operating system.

Techniques for increasing locality of user programs
and thereby reducing the paging overbead in a virtual
memory environment have been investigated by Comeau,’
Hatfield” and Ferrari.’ The methods presented involve the
automatic restructuring of program modules into relocatable
segments to increase the likelihood that page references
that are close in time will also be close in space. In the
Hatfield study the use of online displays to determine
optimal segment sizes and view the effects of program
reordering was found to be exceedingly helpful, but use of
their system as an everyday programmer feedback and user
program monitoring tool was never fully exploited.

The Brown University Display for Working Set References
(affectionately known as BUDWSR) was primarily de-
veloped as a user-oriented tool to fill the need for user
feedback systems-by enabling the programmer to inter-
actively monitor the memory referencing behavior of his

* This work is sponsored in part by the National Science Foundation,
grant GJ-28401X, the Office of Naval Research, contract NOGO14-67-A-
0191-0023, and the Brown University Division of Applied Mathematics.

153

modules. It was hoped that the programmer would be able
to get a “feeling’’ of what it means to write localized code,
and hence be able to modify his programming techniques
in order to reduce, or at least have more control over, the
memory resources required by his program. Although
BUDWSR has not been in existence long enough for us to
evaluate its effectiveness as a programmer training or
feedback tool, we have already been able to establish some
simple guidelines that allow the programmer to measure
and hence increase the memory utilization of his programs.
These guidelines could be used as a basis for establishing
engineering standards for program evaluation. Furthermore,
BUDWSR has proven itself to be an extremely powerful
systems programmer tool that greatly facilitates the manual
repackaging of modules in order to increase memory
utilization.

SYSTEM ORGANIZATION

The system (c.f. Figure 1) essentially consists of a System/
360 machine language interpreter and a satellite display
processor. The user runs his program in much the same way
as he would in a normal CP/CMS? environment except that
the interpreter counts the references made to memory pages
(the page size is user defined) and periodically transfers
its tables to the satellite computer. The interpreter runs in
a 512K byte virtual machine and simulates a 256K CMS
environment for the user’s program; the data gathered
thus reflects only the activity of the user’s program and is
not dependent on the virtual machine’s external environ-
ment. Since the System/360 instruction set is highly
formatted, the basic data gathering facilities of the inter-
preter are fairly simple* and represent an acceptable cost

* Most RR format instructions can be executed directly via the System/
360’s execute instruction, while most RX, RS, and SI format instrue-
tions can simply be executed after computation of the base displace-
ment address. Optionally, BUDWSR will not perform complete inter-
rupt processing, e.g., interpretation stops when an interrupt is generated
by the instruction stream, and resumes when control is returned from
the interrupt handler. Since many of the CMS nucleus pages are in
shared care, references o the nucleus code should not result in any
significant paging overhead to the user.

154 National Computer Conference, 1974

SYSTEM/360~67 SATELLITE

META4~B 1
CONSOLE

1 I
CONSOLE JOYSTICK CRT
FUNCTION
KEYBOARD
S

Figure 1

VIRTUAL
MACHINE

(roughly 50 times the cost of the original program) for
gathering memory utilization statistics.

The basic display (c.f. Figure 2a) produced by the satellite
consists of page addresses plotted against time (measured
in number of instructions). For each page address and time
interval the system plots a small vertical spike whose height
indicates how often that page was referenced during that
time interval. At the start of the trace the user may define
an arbitrary page size (from 8 bytes to 128K bytes) and time
interval (from 1 to 65,535 instructions). Furthermore, he
may ask the satellite to perform a non-destructive com-
pression of the reference data, e.g., the user may ask the
interpreter to gather statistics for 128 byte pages, and then
view the results for 128, 256, . . ., or 128K byte pages. This
allows him to view the programs behavior both on a global
level (using for example a 4K byte page size) and to selec-
tively ‘“zoom-in”’ on any local peculiarities. To aid the
programmer in identifying and restructuring inefficient
modules, a cumulative reference count for each page, and

module names and entry points (obtained from the CMS
loader tables) are also displayed.

The satellite part of the system also uses the page reference
data to produce a graph of the working set size versus
time (c.f. Figure 2b). Thus the user not only has available
which specific memory pages were referenced. but also a
summary of the total memory used during a time interval.
The working set size is computed in bytes for the user
specified page size and also for the System/360-67 page
size (4K). With a small page size (typically 128 bytes) the
difference in the working set sizes indicates the amount
of wasted space in the System/360-67 working set. Cur-
rently, we have measured only working set sizes and re-
entry rates for an individual process. In reality, the amount
of memory allocated to a process is a function of the
paging algorithm and the load of the system. (Some data on
system page fault and re-entry rates can be found in
Rodriguez-Rosell and Dupuy.®) We have not copcerned
ourselves with simulations to determine page fault rates
as a function of memory size or the operating system’s
memory management policy. In general the amount of real
memory available to the user is beyond his control; however,
by using BUDWSR, the programmer can improve the
locality of his programs while developing them, conceivably
even changing to algorithms or data structures that might
prove less noxious to the system. In return, he hopes that
if his process uses memory efficiently the operating system
will allow his process to execute rapidly.

The use of the satellite processor® came about quite
naturally in that we approached program monitoring as two

e TTA. amcr
o m_ngy
L Lo m——y
[atiiy
et oy
L]
atese - —— — ——— -nrs
L4 - ——— —— ——— — v
F . —tn . ttts. APttt SPAAPOPP]
Lo * AN " [oied
Lionndid Shddide ["
MO - oo —e AP - P
;s MWWWAWWAWWWWM i
-ma AWMV =2
-miew - MAWWWAANVAWAMAA A Avcnn -ean
e AWV -
[* AP Pt o -
orese -~ AW - ="
[and Al AR A A ANANIIA -e
ey A -_rw
s1oass —AMAAAMAAAS ~l
nbes AnnanlNNCONII: AN P~ "
now - AW, F 7Y
fnces - - 3
o - A AvArrmn -
700 AN, .
Naw AW AV
L d ANANNRNNNNNANNNPD, [4
nsew ANWAAMAMAA -mey
o1 - - A
new AN A -myur
s - AAVAAAANA At L el
sarew M i
new - A [ad
[7 p— PO - - A -1
Neom -re
Nows v FIF
oo - M L id
sless A e
Sl A-A DIFF
Ol A arre o A o s A o — - narrorn -mors
03008 A - NP5 FODIRT
Slawm N ~ _—c
Ny A KD FORTRAN
Nlamw M -
Sl A FA
10N ~orn D>
BLBBED Norore. ancneros. An cotromien oom A A - - ANAA 1%
N e - ——— -l
L. L

Figure 2a

An Interactive Software Engineering Tool for Memory Management and User Program Evaluation 155

separate tasks, data gathering and analysis. We also wished
to be able to monitor the output of the tracing program while
it was running, rather than wait for off-line hard copy output
of the execution record of the monitored program. Thus the
satellite performs the multiple tasks of communication
with the System/360 interpreter, updating the disk-resident
master file containing the page references, and updating the
display itself as new data are transfered by the interpreter
or when the user “scrolls’* through, or locally alters the
page size for the memory display. The use of the satellite
to process the trace data makes the system extremely
flexible. Thus whenever we wish to determine whether or
not a specific memory utilization parameter is meaningful,
it is a simple matter to add code to the satellite program
in order to calculate and display the parameter.

Another effect of using a satellite processor rather than a
process running on the virtual machine itself is the fact that
the interpretation and display data handling proceed in
parallel in ‘“real time.” The interpreter runs unmolested by
user interrupts for larger page sizes or different display lists.
Thus it is possible to view a trace of a system, repackage it,
and/or retrace it with different parameters all in the span
of a few minutes. For monitoring an interactive system,**
we can view a trace at the same time we are specifying
commands to that system in order to quickly isolate and
reduce the memory requirements for inefficient command
modules. Since the trace data are immediately available
after each time interval, it is also unnecessary to correlate
the data from an entire run (such as would be given by an
off-line plot) to the specific command or sequence of com-
mands that generated the data. It is of course also possible
to view previously taken trace data in a stand-alone mode of
the satellite.

PARAMETERS FOR EVALUATION FOR PROGRAM
MEMORY UTILIZATION

To date the system has demonstrated its usefulness
through several practical applications. Many of the facts
noticed about program behavior could of course have been
predicted by use of common sense, and the reader may thus
find some of the results rather unstartling. However, the
fact that most of the observed traits are found in a large
class of programs indicates that common sense rules (such
as presented in the next section) are not used or even fully
understood. It is hoped that by providing effective systems
measurement tools and developing memory utilization
standards, programmers will be made aware of their bad
techniques (and also their good ones). Furthermore it has
been found that a display is quite effective in pointing out
some of the parameters that may be used to define standards

* In general, the information to be displayed is larger than the available
display area (e.g., the CRT display can effectively represent 50 4K-
byte pages, but not 800 256-byte pages).

** For example, some of this paper was edited under a text editor being
monitored (see below).

RO

AJ s
LA NPAA S v

ARRRRXNRRARARARRANY

vl WA LN

Figure 2b

for efficient memory utilization. The following parameters
have been found to be particularly useful:

Working set size—the number of pages that are referenced
during a time interval, times the page size (hence the working
set size is expressed in total number of bytes that are de-
manded by the program). In general, when we refer to a
programs working set size, we are referring to its mean size
over all the intervals.

Memory utilization—ratio of memory used based on the
user specified page size as compared to the total amount of
memory allocated based on the 4K page size of the System/
360-67. With a small user page size (typically 128 bytes)
this ratio approaches the percentage of the total allocated
memory actually used by the program. It should be noted
that although working set sizes vary significantly from
program to program, the memory utilization factor con-
sistently ranged between the rather low values of 30 to
50 percent for most of the programs observed. Generally
programs having the higher utilization factor had been
optimized with respect to instruetion stream execution,
with most of the remaining inefficiencies a result of poor
data referencing characteristics.

Working set entry rate—this parameter indicates the
amount of the current working set that was not present in
the previous working set. It is useful to separate this param-
eter into two components. The first, which we will attribute
to locality unstability, is a significant change in the size of
the working set from one time interval to the next. The
working set size will temporarily increase as a program
moves from one locality to another and pages from both
localities remain in the working set (see, for example, the

156 National Computer Conference, 1974

trace of the FORTRAN F Compiler in Figures 2a and b).
Consistently unstable working sets are indicative of poor
process behavior.

The second component of the working set entry rate, we
will attribute to page replacement rate. It is a measure of
the change in the membership of the working set as a result
of single pages entering or leaving the working set. Thus
programs with a nearly constant working set size may still
have a non-zero re-entry rate due to page replacement within
the working set. This component of the re-entry rate was
found to be meaningful only for programs with large (>40K)
working sets. Program references to infrequently used data
areas or error routines seem to result in a small set of “fringe”
pages that wander in and out of an otherwise stable working
set. Little if any page replacement was observed for programs
with small working sets.

It should be noted that individual parameters are quite
sensitive to the time interval used in collecting the data.
Thus it is quite possible to use a small time interval to arti-
ficially reduce the size of the working set. This is however
offset by the fact that if a program is using memory in-
efficiently, reducing the time interval will correspondingly
increase the re-entry rate of new pages into the working
set. Conversely, although a long time interval will increase
the size of the working set, it will also decrease the re-entry
rate. The time dependencies of the parameters can be used
quite advantageously in the process of packaging system
modules. Thus we can first choose a long time interval and
package to reduce the total size of the working set as much
as possible. We can then use a small time interval to re-
package the heavily used routines found by the first pack-
aging into a stable working set configuration. After the
initial packaging iterations it is still possible to fine tune a
user system by appropriate time interval selection. Thus
if we are optimizing an interactive text editor we might
select a time interval that spans a single editing function;
if we are optimizing 2 CPU bound applications program we
might choose a time interval that corresponds to the op-
erating system’s time slice, etc.

SOME CASE STUDIES
FRESS—A file retrieval and editing system

FRESSS is a sophisticated interactive text handling system.
It has run in a 120K MVT partition (using dynamic loading),
but in the CP-67 environment it was found more convenient
to relinquish the memory management to the virtual paging
system. Even though FRESS is a highly modular system, and
entirely code in assembly language, it was designed and
implemented without paging load criteria in mind. Thus it
was not too surprising that the FRESS users were typically
the first to be impacted at times when Brown’s 67 neared
saturation.

The following observations of the unpackaged (e.g., as
Ioaded by the CMS loader) version generally accounted for

this behavior:

e The working set size was rather large, roughly 128K
(with a 4K page size and a time interval of 5,000
instructions).

o The working set was extremely unstable, i.e., the working
set size would vary from 60 to 128K between any two
user activated functions.

e And finally, the amount of the CP-67 working set
actually used during any one time interval was typically
around 30 percent.

Fortunately it was possible to remedy most of the above
characteristics by simply reloading the system. Thus after
noting which modules were frequently in use, and which
were not,* and hand specifying the module loading order,
the following results were obtained:

e The working set size dropped to 80K (a reduction of
30 percent)

o The working set size became more stable, generally
changing by less than 16K for the common editing
functions.

e The page utilization figure increased to 50 percent.

Even with the increased memory utilization achieved by a
repackaging of the FRESS system, further reductions of
another 20K in the size of the working set still seem possible
by breaking up some of the larger modules and alignment
of some data areas on 4K page boundaries (some guidelines
to enhance the “packageability” of programs are presented
in the next section).

The CSS editor

The CSS editor® is a line oriented text editor that is pro-
vided as a user service on the NCSS time sharing service.
Since NCSS’s Duplex 67 must frequently support many
users the following statistics should not be too surprising:

o The working set size was a small 12K+4K (with a 4K
page size).

e The working set was very stable due to the fact that
most of the commonly used functions had been loaded
onto the first CMS user memory page.

o The memory utilization fluctuated from 30 to 50 percent
depending on the user function. The lower memory
utilization figures were usually due to editing functions
that generated data references across the 4K page
boundaries. Since many fixed length line data files
contain about 40 percent blanks, onc wonders how
much the utilization factor would increase if some data
compression were built into the editor.

* In particular some modules, such as the command language interpreter,
are executed for every command; some, such as the various editing func-
tions are seldom invoked at the same time, but do share some common
subroutines, etc.

An Interactive Software Engineering Tool for Memory Management and User Program Evaluation 157

SCRIPT AND NSCRIPT

SCRIPT and NSCRIPT are text formatting programs
that can be used in conjunction with the CMS or CSS text
editors. NSCRIPT is an MIT version of SCRIPT that
supports some more advanced features such as footnote
placement and user macros. For purposes of comparison
we monitored both programs while they processed the
same input file (obviously none of the extra features provided
by NSCRIPT were included in the file). We let the user draw
his own conclusions from a comparison of the following
data:

e The SCRIPT working set size was 8K.
o The working set was stable.
o Memory utilization ranged from 50 to 70 percent.

e The NSCRIPT working set size was 24K.
o The working set was stable.
e Memory utilization ranged from 30 to 50 percent.

FORTRAN F Compiler

The Figures 2a and b are representative of any particular
Fortran compilation, e.g., changing the source program to
be compiled may change the duration of each phase but
will not significantly change the characteristics of the two
graphs (here we are assuming that no exceptional conditions
such as error messages occur). The page size for Figure 2a
is 2K bytes (for a more detailed description of the figures see
the first part of this paper). The plots in Figure 2b are
working set size with a 4K page size (top line), working set
size with a 128 byte page size (center line), and entry rate
for 4K pages (bottom line). The time interval for both
figures is 10,000 instructions.

Some CPU stmulation programs

One of the earlier demonstrations of our system was for
some representatives of a systems measurement group at
the Mitre Corporation who brought two of their programs
for observation on our system. The first was a Fortran
program which had been analyzed as to the number and
kinds of source statements it contained. The second program
(also written in Fortran) accepted the analysis data as input
and simulated the “resource usage” behavior of the first
program. We were to observe the behavior of both programs
to see how good a job the simulator program was doing.
Although the CPU load of the two programs could have
been considered to be equivalent, we observed with
BUDWSR that their memory utilization patterns were in
no way related to each other. This might serve as a reminder
that program behavior is still poorly understood, and that a
good deal of empirical data gathering might still be in
order.

SOME PRACTICAL GUIDELINES TO INCREASE
MEMORY UTILIZATION

Many of the suggestions in this section can also be found
in Morrison.® We have presented here those situations that
have been observed to have the greatest potential for
reducing the memory requirement of a program. Most of
these observations are applicable only to the instruction
stream of the monitored program, and not to the data
references. We are currently experimenting with monitoring
only data referencing (read and/or write) patterns in order
to be able to understand some of the finer details of memory
management. It should also be noted that a good systems
programming tool, such as BUDWSR, is an invaluable
addition to the commonly used guidelines.

¢ System modules should be as small as possible since
this greatly facilitates global repackaging,.

¢ A module should execute as much of its code as possible
when it is called. Hence special cases and error condi-
tions should be diagnosed inline, but handled by calls
to separate modules.

o Large initialization sections should be handled as calls
to separately created modules if necessary. This has
the effect of compacting the more frequently used code
and also allows the programmer to group together the
various initialization sequences. The most common
case of inefficient memory usage found by our observa-
tions was the first 128 to 512 bytes of initialization code
in a module, that were executed only at entry to the
system.

o Quite frequently the packaging of subroutine libraries
used by higher level languages was not done with virtual
memory in mind. Thus the system programmer should
be especially cautious of some unnecessary overhead
brought about by inappropriate loading of run time
routines. For example the following PL/I statements
generate a 16K to 24K working set in our CMS en-
vironment (note that this figure does not include the
pages used by the CMS I/0 handler!):

TEST: PROC OPTIONS(MAIN);
DCL I BIN FIXED;
DO I=1 TO 10;
PUT LIST (I);
END;
END TEST;

o Careful consideration should be given to user manage-
ment of his data structures, i.e., it is often preferable
to allocate a few large chunks of memory, rather than
many small ones, so that data references may be or-
ganized in an efficient manner. The same holds true
for data organization using the Fortran COMMON
statement.

o Heavily used routines and frequently referenced control
blocks or 1/0 buffers should be allocated in an order

158 National Computer Conference, 1974

such that they do not cross page boundaries un-
necessarily.

o Software implemented stacks for a subroutine’s save
area and local variables may be of considerable use in
efficiently organizing data references.

o Error message text and error message handlers should
be grouped separately from normal flow of control.
Frequently used “prompt” messages should of course
be kept separate from the error message modules.

o The use of literal pools at the end of large programs
(or more typically at the bottom of the first 4K of a
program) should be avoided. Better yet, literal data
should be treated as part of the instruction stream and
placed as soon as possible after its use.

CONCLUSIONS AND FUTURE WORK

It is clear from our experience that the use of on-line displays
and satellite processors as measurement tools is far more
flexible than use of batch-oriented measurement systems.
Satellites will be increasingly used to monitor and assist
both the operating system and user software. From an
operating system point of view, it is expected that monitoring
processors will be attached to large mainframe CPU’s! as
an integral part of the operating system (as is done with the
CDC STAR-100). Thus we hope that as the larger systems
become more complex, data gathering facilities (such as
page reference counts and general paging activity) will be
implemented in the microcode of the mainframe CPU and
be directly available to the satellite for processing, thus
bypassing the need for system measurement via interpreters,
simulators and the like. Just as today, the mainframe
relinquishes I/Q operations to the channel, future main-
frames may pass on user behavior data (by means of control
store) to a satellite that will compute new working set size
parameters, while the mainframe processes another user.
Furthermore, this arrangement makes the behavior of the
mainframe system insensitive to the data analysis com-
plexity, as well as allowing modification of the data analysis
by a reprogramming of the satellite.

From a user software point of view, it is expected that
some standards (for CPU and memory utilization) will be

established for programs in production use. Thus the fact
that by a simple repackaging it is frequently possible to
increase the memory utilization by 20 to 30 percent may
indicate that quantitative rules such as ‘““use 50 percent or
more of the memory allocated,” could be established. These
rules, however, will be of little use if we do not provide
adequate measurement tools, such as BUDWSR, that allow
the user to monitor his programs.

In view of the recent technological developments, it is
very possible that future computer systems will have very
large random access memories, possibly of the order of 50
megabytes. A new dimension is then added to the evaluation
problem, for then the determining factor will be data locality,
rather than program execution locality. Programs will
fit entirely in memory, but the larger data base oriented
systems of the future will certainly need techniques to
increase the data locality at all levels in the data base
hierarchy. Engineering tools are necessary to evaluate and
control solutions to user requirements.

REFERENCES

1. Comeau, L. W., “A Study of user program optimization in a Paging
System,” ACM Symposium on Operating System Principles, Gatling-
burg, Tennessee, October 1967.

2. CP/CMS User's Guide, Form GH20-0859-2, IBM Corp. Technical
Publications Dept.

3. CSS SCRIPT Reference Manual, National CSS, Inc., 460 Summer
St., Stamford, Conn. 06901.

4. Denning, P. J., “Virtual Memory,” Computing Surveys, Vol. 2, No.
3, September 1970.

5. Ferrari, D., “The Method of Critieal Working Sets for the Auto-
matic Improvement of Program Locality,” to be published.

6. FRESS User’s Guide, Text Systems Inc., 106 Highland Ave.,
Barrington, R.I.

7. Hatfield, D. J., and J. Gerald, “Program Restructuring for Virtual
Memory,” IBM Systems Journal, Vol. 10, No. 3, 1971.

8. Morrison, J. E., “User Program Performance in Virtual Storage
Systems,” IBM Systems Journal, Vol. 12, No. 3, 1973.

9. Rodriguez-Rosell and J. Dupuy, “The Evaluation of a Time Sharing
Page Demand System,” Spring Joint Computer Conference, 1972.

10. Stabler, G. M., and Andries van Dam, “Intelligent Satellites for
Interactive Graphics,” NCC, 1973.

11. Withington, F. G., Trends in Computer Technology in the Fuiure
—Is Ceniralization Inevitable?, A.D. Little, Inc. 1973.

Development and implementation of a medical /management
information system at the Harvard Community Health Plan

by NORMA JUSTICE, G. OCTO BARNETT, ROBERT LURIE and WILLIAM CASS

Massachusetts General Hospital and Harvard Community Health Plan

Boston, Massachusetts

The Harvard Community Health Plan (HCHP) is a multi-
clinie prepaid group practice currently serving 37,000 greater
Boston subscribers. The original clinic in Kenmore Square,
Boston opened in October, 1969. A second clinic opened in
Cambridge in July, 1973, in order to meet a projected sub-
seriber population of 75,000 by .1977.

DESIGN GOALS

Since the founding of HCHP, representatives of the Lab-
oratory of Computer Science (LCS) at Massachusetts Gen-
eral Hospital and the Harvard Plan have participated in a
joint effort to design and implement an optimal computer-
based medical records system.

The objectives they accepted were those of any traditional
medical record system:

1. to provide a mechanism for the recording, storage, and
retrieval of information necessary for patient care;

2. to meet the administrative needs of health care man-
agement.

Over the last fifty years, medical practice has changed from
the single family physician to the concept of a team of medi-
cal care specialists, working in a co-ordinated fashion. Be-
cause of the multiple physician/patient relationships this
implies, the medieal record has come to oceupy a key role
in care delivery. This is particularly true in a prepaid group
practice where there is strong emphasis on health mainte-
nance and continuity of care, and where medical services are
rendered by a number of specialized health care professionals.
Similarly, the need for accurate and timely information col-
lection and analysis are essential for the health plan manage-
ment to determine eligibility and to assess patterns of care
being delivered.

Measured against the needs of both the providers and the
administrators, the classical paper-based medical record is
often grossly deficient, cumbersome, and expensive to main-
tain and control. The over-all objectives of the project are
to develop a computer-based system that can serve both

159

primary patient care and administrative needs, be less ex-
pensive both in terms of provider time and medical record
room costs, and provide a base for expansion to eventually
support all the information processing needs of the HCHP.

The particular advantages a computer-based system offers
include the following:

1. An accurate, up-to-date, and readily accessible regis-
tration and patient identification system is main-
tained. The membership file is the source of admin-
istrative data which provides health center manage-
ment with statistical and billing information for
successful management and planning.

2. The medical record information is not stored in a
single physical document which is available at only
one geographical location at any single point in time;
instead, the information is stored in a dynamic in-
formation base which can be instantaneously up-
dated and displayed from many different locations
simultaneously.

3. The computer system can be used to organize the
medical information by any of a number of different
rules or algorithms. The information can be sum-
marized to correspond to the particular problems of
the patient or the particular needs of a specialty in
sharp contrast to the strict chronological organization
of the classical paper-based system.

. The computer system assists in the primary care
process by collecting existing data which should be
brought to the provider’s attention, e.g., reports of
all abnormal laboratory test results, identification of
patients receiving certain medications which should
be discontinued, and identification of patients with
certain characteristics warranting special considera-
tion.

5. The computer-based system facilitates the HCHP
commitment to an active program of quality assur-
ance by monitoring particular case activities as to
conformance to pre-defined standards of patient care.
When deviations from the specified standards occur,
the computer system can flag this information, and
bring it to the attention of the provider.

160 National Computer Conference, 1974

6. The importance of supporting services such as labora-
tory test reporting, patient scheduling activity, and
claims processing is recognized in this unified system
since data need be collected and entered only once to
be available for all functions.

7. The availability of a comprehensive, accessible data
base is an essential factor to facilitating research into
the delivery problems of ambulatory care, the promise
of which was one of the essential motivating factors
which originally led to the establishment of the HCHP.

8. The management, filing, assembling, and distribution
of paper medical records can be a costly procedure,
sinee it is labor-intensive, and since above a certain
level even marginal improvements reflect significant
cost increments. The expectation is that the computer-
based system will prove to be a less expensive method
of collecting, storing and retrieving this information.

In summary, the computer-based medical record system
developed at HCHP satisfies the dual goals of providing both
the data necessary to keeping valid, timely, and readily
accessible information needed for routine and emergency
patient care in an ambulatory practice, and the data neces-
sary for management and supervision of a health care de-
livery system. It must be emphasized, however, that the
computer-based system is a developmental activity. The
essence of the system is not just its technological challenge,
but its radically different approach to the combination of
data recording and retrieval patterns by its users.

EVOLUTION

It should be understood that the HCHP M/MIS is not
the result of a recent one-time project. Rather it is an evolu-
tionary development effort that is dedicated to a continuing
improvement in health care services through the use of
computerized medical records.

This record system has evolved in phases, with the latest
enhancements reflecting the fourth phase. Each step has
allowed the realization of additional record system objectives
while maintaining established system reliability and while
simultaneously, the feasibility of the next evolutionary step
was being explored.

The first phase, which began in 1969, was in essence a
duplicate system using both a paper-based medical record
and a computer-based information system. Originally, this
redundancy was required because the reliability and pro-
vider acceptance of a computer-based system had yet to be
demonstrated.

Initially only data entry was on-line, being executed from
Teletype terminals in the medical records room. All retrieval
of computer-based records was in batch mode. Although it
obviously had far to go to be ideal, the first phase did allow
the achievement of several record system objectives. A struc-
tured, organized, legible medical record was instituted as
the basis for peer review activities. In addition, it was firmiy

established that a computerized medical record was accept-
able to physicians and nurses at the HCHP.

Significant difficulties, however, were encountered in main-
taining the duplicate system. Whereas data collection pro-
cedures for the computer system worked well, the paper-
based system never kept up-to-date the assembling and filing
of the profusion of patient transactions. Neither could the
paper record be delivered in time for non-scheduled visits or
telephone encounters. The paper record was often incom-
plete, particularly regarding care activities in the recent
year. When complete, it was too frequently unavailable to
the provider. In addition, it became obvious that the manual
collating, filing, and assembling of information necessary to
the maintenance of-an up-to-date record was one of the
most expensive activities of the record system.

In 1972, a second phase of development introduced
Cathode Ray Tubes into the clinical areas for the first time,
thus allowing a physician or nurse to directly recall a sum-
mary subset of a patient’s medical record from the com-
puter’s files.! In 1973 a phase was introduced allowing pro-
viders to search through all encounter reports (a record of
the patient’s visit) and to flow chart (chronologically list)
diagnoses, test results, and vital signs. This offered providers
the opportunity of directly accessing a patient’s complete
computer medical record when the paper record was un-
available or incomplete.

A vital benefit of phases one through three was to prove
that it was possible to realize a high degree of real-time
system reliability and that the HCHP providers could work
successfully with a computer-based system. With this en-
couragement, a fourth phase was begun—a system designed
to maximize the use of computer-stored information and to
minimize the use of the paper-based document. The most
significant enhancement was the approval to greatly expand
the medical content of the computer-based information sys-
tem by including the physician’s dictated comments and use
the computer data bank as the primary storage repository
for medical records information.

MEDICAL SYSTEM

The fourth and latest phase of development will be imple-
mented in February, 1974. Basically this phase includes the
addition of dictation provisions and new expanded encounter
forms. The primary objective of the new medical system
is that the relevant medical information be available to the
provider at or before patient arrival (encounter).

This information will be made available to the provider
in two different formats: (a) as computer-generated reports
when there is several hours notice as in the case of scheduled
visit, or (b) on the CRT for all telephone consultations, walk-
in visits or when additional information is desired to supple-
ment computer-generated reports.

Patients cause an encounter report to be added to the
medieal record by a visit or a telephone consultation with a
provider or other health center professional. In each case,

Development and Implementation of a Medical/Management Information System 161
DOEs J PAGE 1
599995 CURRENT TO 11=06-73 DOEs J PAGE 3
NEXT VISIT 1O 11-10-73 PRINTED 11/20/73 999995 CURRENT TO 11-06-73
NUCRSS-5 - PROBLEMS IN ALL ORGAN SYSTEMS ey
AND
CLINICAL RECORD SUMMARY VISITS TO MANAGING CLINICS
NUMBER S
DATE MANAGING LAST
PROBLEM NOTED CLINIC NOTED STATUS DISPOSITION
0l. HYPERTENSION 07-30-68 07-12-73 ACTIVE RX ONP 5
62 ALCOHOLISM 05-07-69 CPR 05-21-71 === ——
03, LEUKODERMA 07-30-68 CPR 08-02-73 ACTIVE RX ONP 5
O4e SPRATNs 08-30-7T1 ORTHO === RESOLVED ===
PLEASE LOOK AT THE LAST PAGE AND CONSIDER THE COMMENTS LT. ANKLE
AND SUGGESTIONS. FEEL FREE TO CORRECT OR COMMENT ON THIS SUMMARY.
G5. DYSHIDROSIS, 08-13-68 DERM 08-13-68 -=- RX ON P 5
THANK YOU, LT+ HAND
DR. OLGA M. HARING 06. OBESITYs MILD 09-09-68 CPR 09-09-68 ACTIVE ===
07, TINNITUS 10-13-72 CPR 10-13-72 ACTIVE RXONP S
08. HEADACHES 09-10-71 NEURO 10-25-73 === RX ON P 5
TEMPORARY PROBLEMS
Ae INFLAMMATORY 04=~19-73 DERM 08-02-73 ACTIVE RX ON P S

TABLE OF CONTENTS

SKIN CHANGES

PROBLEM LIST: PAGE 3 DOEy J. PAGE &
999999 CURRENT TO 11-06-73
VITAL SIGNS: PAGE 4
CARDIAC-PULMONARY~
RENAL DIAGNOSES: PAGE & Erasnnns VITAL SIGNS AT RECENT VISITS Lt
oOATE TREATMENT ¢ PAGE 5 DATE CLINIC DOCTOR+STUDENT WT BP~SUPINE PULSE-RAD RESP TEMP
Ul D: = - S weme-
a—- ROUTINE LAB TESTS: PAGE 6
REVIEWED: 04-13-73 CPR BROWN 174 130/92 —— - 9844
— OTHER LAB TESTS: PAGE 7
KEYPUNCHED: 01-19-73 CPR LEVINE 176 140/110 - -—- 98,8
——— SUGGESTIONS PAGE 8
10-13-72 CPR WALKER 177 148/114 SIT 76 16 98.4
08-11-73 CPR SMITH 175 140/118 SIT === --- 9846
PAGE 2
95209 CURRENT TO 11-06=73 97-14-72 CPR BROWN 173 130/90 92 16 98.6
06-16-72 CPR BROWN 175 150/104 SIT 68 18 98.0
eeeses PATIENT IDENTIFICATION [P 06-09-72 CPR BROWN 17¢ 150,98 60 16 97.8
#*
04-14-72 CPR BROWN 179 160/120 72 16 98.0
01-21-72 CPR HUNTER 175 150/108 72 16 98.6
JOHN DOEs S0C, SEC. NO. 000-10-2000
37 YR, LD BLACK AeEE: *R0-0000
0000 NOWHEREs UsSeAs #ERURG N CARDIAC-PULMONARY=-RENAL CLINIC HeRDSEES
FIRST VISIT TO CPR 10-25-68
FIRST VISIT TO NUMC 07-30-68 -PRECLIN LAST VISIT TO CPR 04-13-73 CPR VISIT SCHEDULED FOR 11-10-73
LAST VISIT TO NUMC 08-02-73 - DERM DOCTOR? BROWN
STUDENT: pising
LAST COMPLETE P.E. 04-13-73 DIAGNOSES
DRUG ALLERGIES AND HEART
IDIOSYNCRASIES
HEART POTENTIAL HEART DISEASE
ETIOLOGY HYPERTENSION
ANATOMY
PHYSIOLOGY
ADMISSION preset FUNCTIONAL CLASSIFICATION
anssnane LAST HOSPITAL THERAPEUTIC CLASSIFICATION
CLASSIFICATION REVIEWED
HOSPITAL PMH CIRCULATION HYPERTENSIONs ESSENTIAL
01-10-69
DATE ADMITTED 12-29-68 DATE DISCHARGED 0 LUNGS NORMAL
DISCHARGE DIAGNOSES KIDNEYS NORMAL

0l. GANGLION LT, WRIST AND LT. FOOT])
02. ESSENTIAL HYPERTENSION Flgu_re 1 (oontmued)

Figure 1

162 National Computer Conference, 1974

00Es J PAGE 5

999999 CURRENT 70 11-06-73

HRERLERG MEDICATIONS EEBRRRER

FOR DOSE RX RX LAST RX

PROB DRUG AND SIZE SCHED BEGUN CLINIC REVIEWED TAKEN

1 HYDROCHLORO~ 50 MG. Q0 06-72 CPR 08-10=73 ===
THIAZIDE

1 RESERPINE 0.25 MG. QD 04~72 CPR 08=10=73 ===

1 HYDRALAZINE 125 MG. <] 10-72 CPR 08=-10~73 =~=
KCL LIQUID 15 cC. BID 01-73 CPR 08=10-73 ===
VALISONE 0.1 PCTe === 08-68 DERM ——- —
MEPROBAMATE 400 MG. QHS 10-72 CPR — ———

FIORINAL 1-2 Q4~6HR 01-72 NEURO 10-25=73 ===

1

5

7

8

8 CAFERGOT WESLEY 06=07-73
8

A

A

SAUSERT =9 2 M6 BID 06-28 NEURO 10-25-73
PSORALEN 10 M6 a0 08-73 DERM 10-25-73
KENALOG CREAM 025 T10 05-73 DERW 10-25-73 ~==

=== NO DIETS OR OTHER THERAPY -==

REREENBY PROCEDURES ORDERED LRABRERE
FOR DATE
PROB PROCEDURE CLINIC ORDERED REPORTED (YES~NO)
;--- ;G;-“"- NEURO 07-26~-73 NO
ENT CONSULT NEURC 10-25-73 NO
295593 CURRENT TO 11206575
BRREERBR ROUTINE TESTS PRRRERRE
TEST t:}gsr RESULT ;ﬁ;xous RESULT CHANGES
1. CHEST X=RAY 04-06-73 NORMAL 07-12-71 NORMAL NONE
2. ECG 07-12-71 NORMAL 12-30-69 NORMAL NONE
3. URINE 06-28-73 NORMAL 07-12=71 ABNORMAL BETTER
BL.OOD
4o RBC 07-23-73 14.8 06-28-73 4,76 NONE
5. HGB 06-28-73 14.8 04-06=-73 15.1 NONE
6e CELL PACK 07-23~73 45 06-28=73 43 NONE
7. wBC 06-28-73 4500 06=-28-73 5100 NONE
B. DIFFERENTIAL 06-28-73 NORMAL el —— .-
9+ VDRL 08-01-68 NONREACTIVE === —— ——
10+ BUN 07-23-73 12 06=-28-73 12 NONE
11, URIC ACID 04=06-73 7.3 08~12-71 7.5 NONE
12, CREATININE 07-23~73 1.5 04=06-73 1.20 NONE
l:;. ;BS 06-28-73 loi 04=18-69 100 NONE
l4e 2 HR. PCS 10-25-68 52 — -—— —
15, CHOLESTEROL 04-06-73 225 - — -—
16+ SODIUM 06-28~73 * 137 04=06~73 134 WORSE
17, POTASSIUM 06-28-73 3.8 04=06-73 3.8 NONE
18+ CHLORIDES 06-28-73 109 04=-06-73 104 NONE
19, €02 06-28-73 2648 04-06=-73 27.5 NONE

Figure 1 (continued)

new information is captured by the provider on an encounter
form which has now been expanded to allow more self-
encoding and to include biographic information. Each en-
counter is maintained as a separate entry in the medical

DOEs J, PAGE 7
999999 CURRENT 70 11-06-73
TRBRREOS OTHER TESTS EERRRE G
TEST LATEST PREVIOUS
GROUP NAME DATE RESULT DATE RESULT CHANGES
! 24 HR. URINE 11-12-68 2.1 MG. - — —
VMA
URINE 10-13-66 NORMAL -—- -— -
ELECTROLYTES
BLOOD CHEMISTRY ONE
SGOT 04-06-73 #* 69 ¢8=-12-71 28 WORSE
SGPT 08-12-71 28 -— .- —
LOH 04-06-73 100 08-12-71 47 NONE
ALK. PHOS. 04-06-73 # 95 03-09-71 Gelt WORSE
GLUCOSE 06-06-73 95 ——— -— -——
SERUM LIPID 04-06-73 835 —— -—— ——
CPK 04~06-73 167 — —— —
CALCIUM 04-06-73 9.8 -— — —
BLOOD CHEMISTRY TWO AND THREE
BILIRUBIN,TOT 04~06-73 0.4 -— -—— —
TOTAL PROTEIN 04-06-~73 7.2 03-09-71 7.71 NONE
ALBUMIN 04-06-73 4,3 03-09-71 5.02 NONE
GLOBULIN 03-09-71 2,69 09-13-68 3.11 NONE
G6TT 10-25-68 NORMAL — —— .
BSP 10-13-66 NORMAL — -— -—
SEROLOGY/ IMMUNOLOGY
REITERS 08-01-68 NONREACTIVE =-- -— ——
LE PREP 01-15-69 NONREACTIVE 01-13-69 NONREACTIVENONE
MICROBIOLOGY/CYTOLOGY
URINE CULTURE 01-20-69 NEGATIVE — —_— ——
NUCLEAR MEDICINE STUDIES
RENOGRAM 10-13-66 NORMAL —— -——- ——
BRAIN SCAN 06-21-73 NORMAL -—— -— ——
RADIOLOGICAL PROCEDURES
LTe ANKLE 07-30-71 NORMAL -—— —— —
Ive 10~13-66 NORMAL —— —-—— —
CERVICAL SPINE 10-13-66 NORMAL —— -— ——
SKULL 10-13~66 NORMAL —— - —
SKULL 06=-21~73 NORMAL 10-13-66 NORMAL NONE
ORBITS 46-21-73 NORMAL —— —— -
DOE» J. CONT#D PAGE 7
999999 CURRENT TU 11-08-73
P ey OTHER TESTS REHBRRS
TEST LATESY PREVIOUS
GROUP NAME DATE RESULT DATE RESULT CHANGES
RADIOLOGICAL PROCEDURES
RIGHT FOREARM 08~30-73 * ABNORMAL —— — —
BIOPSY
MISCELLANEOUS
EEG 11-29-71 * ABNORMAL - — —

DOEy J.

999999 PAcE 8

CURRENT TO 11-06-73

HERELBED

COMMENTS AND SUGGESTIONS RERRE.

1. THE FOLLOWING PROBLEMS AND THEIR STATUS NEED REVIEWING:

06+ OBESITYs MILD

07« TINNITUS
2. PLEASE REVIEW CARDIAC PULMONARY RENAL DIAGNOSES ON PAGE 4.
3. PLEASE COMPLETE CARDIAC PULMONARY RENAL DIAGNOSES ON PAGE 4.
4s PLEASE FIND OUT IF PATIENT IS STILL TAKING MERICATIONS LISTED ON PAGE Se
S« PLEASE ORDER:

ECG

$. PLEASE FIND OUT I

“

FPATIENT HAS ANY DRUG ALLERGIES OR IDIOSYNCRASIES.

Figure 1 (continued)

record. All data, including dictation, from any encounter is
available upon request either on hard copy or as a CRT
display.

Information such as laboratory test results, X-ray findings,

Development and Implementation of a Medical/Management Information System 163

STATUS REPORT (1/18/74)

#88-08-08-T
PUBLIC, JANE O.

EFF 3/79
GRP B¢

PRIMARY MD
PRIMARY RN

G. PLOTKIN
J. O'REILLY

10 ALBANY RD., LINCOLN, MASS. @21¢¢

34 YRS MARRIED 2 CH CAUCASIAN LEGAL AIDE
ENJOYS TENNIS, SKIING, EXTENSIVE EUROPEAN TRAVEL WITH LAWYER/HUSBAND. SINCE
CHILDREN IN SCHOOL, HAS BECOME PART TIME LAW STUDENT AT BU. 1/15/74

MAJOR PROBLEMS
AP3¢ DRUG ALLERGY-PENICILLIN 3/24/70 - 2 - 1/5/73 (SMITH)
B120 DIABETES MELLITUS 3/24/70 - 16 - 1/5/74 (O'REILLY) #D

MINOR PROBLEMS
K230 HEMORRHOIDS 6/25/72 - 3 ~ 9/5/73 (PLOTKIN)
PAIN, NO BLEEDING
G270 UPPER RESPIRATORY INFECTION #T 8/8/73 (O'REILLY)

PRESUMPTIVE & RULE OUT
0241 P POLYNEUROPATHY, DIABETIC 1/8/73 ~ 3 - 9/5/73 (PLOTKIN) #C

INACTIVE PROBLEMS

G160 HAYFEVER 6/24/71 - 8 - 8/17/72 (PLOTKIN)
N0O90 S/P FRACTURE: HUMERUS 1957

S100 S/P APPENDECTOMY 1952

HOSPITALIZATIONS
K991 ABDOMINAL PAIN (PBB) 9/20/73 (PLOTKIN)
B120 DIABETES MELLITUS (BIH) 1/29/73 (PLOTKIN)

CURRENT THERAPY
1122 INSULIN NPH USO, 65U. Q.D., 3 MOS., 5/14/70 - 9 - 9/10/73 #cC
H166 PREPARATION H PRN 11/1/72 - 4 - 9/15/73

THERAPY HISTORY

1121 TOLBUTAMIDE 500 MG. B.I.D. 3/24/70 - 2 - 4/16/70
TEST RESULTS

A126 HEMATOCRIT 43.2 (1/5/74) (6) #C

A128 HEMAGLOBIN 13.2 (1/5/74) - (6)

Al47 WBC 8.9 (1/5/74) (6)
F465 CHOLESTEROL 200 (9/5/73) (1)
E315 GLUCOSE 134 (1/5/74) Q17)
RO33 CHEST WNL (8/24/73) (2)

CONSULTATIONS & REFERRALS
SOCIAL SERVICE 1/15/74 (O'REILLY)

Figure 1 (continued)

and ECG results are, of course, recorded on separate forms
designed to code the appropriate results.

The status report (Figure 1) is a summary of the patient’s
medical history and can be viewed as both a brief summary of
important administrative and medical data which can be
scanned in seconds and as a table of contents to the patient’s
complete medical record. Nine categories of information are
contained in this important document:

. Registration information

. Primary provider

. Social and demographic data
Diagnoses and problems list
. Hospitalizations

Current therapy

Therapy history

. Test results

. Consultations and referrals.

© 0O U WM

This group of computer-generated reports provided before
a patient visit will include all information deemed relevant
by each specialty group. For example, in internal medicine,
it will be comprised of the status report, the last encounter
report to the primary provider, all intervening encounter
reports, the last encounter report for each major problem,
and a laboratory test summary. The service-level design
goal is that for over 90 percent of the typical patient care

visits, the computer reports generated and delivered prior
to an encounter will be sufficient. If further information is
needed, the CRT may be used to access all previously re-
corded medical information stored in the computer.

As a better understanding of the particular needs of each
specialty group and of particular medical problems is reached
through the use of the system and feedback from its users,
other standard computer-generated reports will be created.
For example, flowehart presentations—the chronological list-
ing of the diagnoses, tests, or therapies related to a specific
problem of a specific patient—will be provided routinely for
pediatric visits (e.g., height and weight growth charts) and
for prenatal visits. In process of development is a flowchart
presentation for the routine management of the patient with
hypertension.

No medical records system is adequate that has not pro-
vided for prompt updating of patient records. To be effective
and establish credibility with the user, the record must be
current and comprehensive in addition to being accurate.
A control system has been developed by the HCHP man-
agement that ensures that an encounter form has been input
within established time limits.

MANAGEMENT SYSTEM

In addition to medical information the patient file contains
administrative data which provides health center manage-
ment with statistical and billing information vital to success-
ful management and planning. Enrollment in the Plan creates
the demographic and registration portion of the patient’s
file. This nucleus, combined with the information entered
from each medical encounter, establishes the basis for the
management information system.

A variety of administrative and management functions
are necessary and available. Mailing labels are generated to
send medical history questionnaires and health center in-
formation to subscribers. Forms are produced which are used
for the generation of membership identification cards. Mem-
bership information becomes the control system for capitation
billing as well as fee-for-service billing of non-members.

Hospitalizations and outside referrals are noted by the
provider on the encounter form, input to the computer, and
made available on inquiry to verify patient insurance claims.

Using the population as the denominator, utilization and
membership statistical reports are available. For example,
certain reports can provide data organized by age, sex,
geographic location, medical specialties involved or any com-
bination thereof.

Cost/Membership ratios allow management emphasis on.
specific cost centers. Facility utilization can be assessed
via patient encounter statistics. Management, thus informed,
can better plan for future requirements including “what-~if”’

Special studies allow personalized attention. A simple ex-

164 National Computer Conference, 1974

ample is the production of mailings notifying members satis-
fying certain medical criteria of their need for flu shots.

These are some of the features which provide the HCHP
management with the information services necessary to effici-
ent, effective operations, controls, and planning,

QUALITY ASSURANCE—A FUTURE OBJECTIVE

The primary objective of the medical record system
deseribed in considerable detail in the preceding pages is to
ensure that readily accessible, legible and accurate informa-
tion is available for each and every patient seeking medical
services at the Harvard Community Health Plan. An im-
portant by-product of this endeavor will be the potential of
the system as a tool for monitoring the general quality of the
services that are delivered.

As you are aware, the profession has entered an era in
which it will not be enough to practice good medical care—
it is now expected to demonsirate in rather precise ways that
this is the case. The federal authorities have already enacted
legislation designed to ensure that the services which they
fund, such as Medicare and Medicaid, are of acceptable
quality. It is therefore safe to predict that in the near future
Blue Cross/Blue Shield and commercial insurance carriers
will do likewise. Moreover, consumer groups, which are be-
coming organized at the Harvard Community Health Plan,
will be making similar demands.

It is anticipated that, when properly used, reliable and
comprehensive data available in the computer will enable
almost complete obviation of the laborious process of in-
dividual manual medical record review when appraising the
quality of care in various clinical situations.

Furthermore, numerous aspects of utilization, such as
prescribing patterns, the keeping of appointments, over and
under-utilization, membership turnover, the use of hospital
facilities and many other matters will be available in a form
more accurate, more comprehensive, and more accessible
than was previously the case.

It seems probable that in the near future, the whole process
of quality assurance, including peer review and utilization,
will, with the help of the new record system; become part
of the ongoing information system at the Harvard Com-
munity Health Plan.

TECHNICAL CONSIDERATIONS

A universal characteristic of information systems is that
objectives and procedures will change with time. In part
these changes are related to inadequacies in the initial plan-
ning stages. In a large sense, however, they are related to the
inherent effect of a successful introduction of computer
technology into a new field. It is the hallmark of such a system

that the users modify their initial attitudes, raise their ex-
pectations and make increasing demands on information
handling services. This general characteristic, and others
unique to medical records systems, should prompt the sys-
tems designer to implement in a high level language.? Certain
specific characteristics of this language system should also be
considered:

1. It should be procedural, one which can be easily
modularized.

2. Tt should have powerful string processing capabilities.
Much of the information in a medical system is textual
in nature; names, clinical results, free text dictation.

3. It must be able to search and manipulate data quickly
and easily. I/0 should be flexible, allowing for experi-
mentation in formatting and terminal selection.

4. Tt must have the capability for the development and
maintenance of a large data base. A data manage-
ment system for patient care requires a relatively
complex data base for several reasons:

(a) The data can assume a variety of types and
formats.

(b) The data items are dynamic in size; fixed di-
mensioning of data or data fields is unacceptable.

(e) The file must be organized for rapid easy access
of specific sections, e.g., one is often interested
in a particular encounter or laboratory value
rather than in a whole patient file.

The designers of the Harvard M/MIS feel that the
MUMPS system meets or exceeds all these requirements.
MUMPS (Massachusetts General Hospital Utility Multi-
programming System)? is a compact time-sharing system
implemented at the Laboratory of Computer Science on
Digital Equipment Corporation PDP-9’s and PDP-15’s. The
interpreted MUMPS language includes extensive capabilities
for string processing, terminal I/O and manipulation of a
dynamic, hierarchical data base. For the project described
here, if one also includes criteria of cost and availability,
there is effectively no competition.

CONCLUSION

The joint Laboratory of Computer Science/Harvard Com-
munity Health Plan Medical/Management Information Sys-
tem venture represents a successful advancement in the use
of one technology to enhance the effectiveness of another.
Project experience indicates that, properly served, the goals
of administration and the medical profession are not di-
vergent but concurrently support quality health care. Care-
ful consideration of the users needs succeeded in dispelling
skepticism and has paid magnificent dividends in the user
satisfaction realized since implementation.

Finally, credit must be given to a strong HCHP manage-
ment commitment to the development of M/MIS. It took

Development and Implementation of a Medical/Management Information System 165

this commitment and a generous ration of faith to overcome REFERENCES
the obstacles, setbacks and frustrations of this long develop-
ment and hold firmly to the goals they envisioned. The in- 1. Grossman, J. H., G. O. Barnett, T. D. Koepsell, H. R. Nesson,

vestment has been high, but it is our convietion that both J. L. Dorsey and R. R. Phillips, “An Automated Medical Record
System,” J.A.M.A., Vol. 224, No. 12, pp. 1616-1621, 1973.

the system presently m ex1_ster'1ce a.n‘d the potential of the 2. Barnett, G. O., “The Modular Hospital Information System,”
8y sbem. yet to be realized justify this development. All of Compuiers in Biomedical Research, Fourth Volume, edited by Bruce
us envision the day when the paper medical record will be Waxman, Ph.D. and Ralph W. Stacey, Academic Press, in press.

only a limited archival storage and an instantly retrievable 3. Greenes, R. A., A. N. Pappalardo, C. W. Marble and G. Q. Barnett,

“Design and Implementation of a Clinical Data Management

computer medical record will be the operational mainstay of MEN: .
System,” Computers in Biomedical Res., 2, pp. 469-485, 1969.

the medical profession.

A status report on the TICCIT project

by C. VICTOR BUNDERSON

Brigham Young University
Provo, Utah

In September of this year, two TICCIT systems installed
at Phoenix College and the Alexandria Campus of Northern
Virginia Community College will be operating with students
in mathematics and English courses. This will begin the first
phase of a two-year study involving the evaluation, improve-
ment, and the demonstration of the concepts of learner-
controlled courseware administered by a low-cost computer-
controlled television system.

The TICCIT system, unlike other CAI systems produced
by manufacturers or engineering-oriented laboratories, is
designed around a set of educational goals and instructional
principles. Goals for institutions, including low cost, reduced
time to complete material, and increased enrollment, in-
fluenced the design of TICCIT. The goals also include
content goals related to the mathematics and English content
programmed for the system. Perhaps the most innovative
goals are those for students, which include mastery, efficiency,
improved learning strategies, improved attitudes of approach
rather than avoidance, and responsibility. Other goals relate
to creation of some new roles of teachers and other educators
who will be involved with this complex system. For computer-
assisted instruction to survive in existing educational
institutions, it must serve the needs of teachers, as well as the
needs of students.

167

Developmental versions of the TICCIT system have been
in operation at Brigham Young University for more than a
year. During the last few months, software became available
so that editing, debugging, and student tests could be
accomplished on the system. Preliminary generalizations
from the authoring process, student tests and from other
experiences using this evolving system are the subjects of
this paper.

The presentation was organized around the goals described
above. First of all, the hardware and software were briefly
described and their relationship to the institutional goals
were delineated. Second, experiences with the system as an
innovation in courseware authoring, inputting, debugging,
and evaluating student data were discussed. While it was
still too early to discuss data from student tests, which had
barely begun as this conference convened, an informal
description of students’ early reaction to a learner control
command language was given.

One result of the TICCIT project has been to develop an
implementation plan describing, among other things, the
proposed new roles of teachers in the new system. Progress
toward the definition of teachers’ roles in this system was
briefly described.

What classroom role should the PLATO computer system play?

by ROBERT B. DAVIS

University of Illinots
Urbana, Illinois

Inserting computers into the ecology of an elementary
school classroom involves a combination of promise and
uncertainty that parallels similar technological innovations in
other areas, whether heart pacers, arfificial kidneys, tran-
quilizers, atomic power plants, transportation, food produc-
tion or virtually any other area one can think of. In each
instance we lack a complete description of the original ecology,
and we cannot be, a priori, fully aware of new possibilities.

This note explores a small part of this territory in the case
of the PLATO computer system, as used in relation to
elementary school mathematics and reading. Our purpose is
to emphasize the large range of possible roles that computers
might play, probably with varying degrees of effectiveness.
Because of the many possibilities it should become clear that
the question “Can PLATO teach?”’ is improperly phrased,
and should be replaced by the question “What useful roles
can PLATO play in the classroom?”’

THE PLATO SYSTEM

From a student’s point of view, the PLATO computer
system is a terminal with a screen somewhat like a television
set, plus a keyboard somewhat like a typewriter. In fact, the
screen is a plasma panel, consisting of a quarter of a million
tiny, independently controlled points of light, in the form of
minute bubbles of neon gas. Because the plasma panel uses
digital data, it is absolutely free from distortion of the kind
that limits the usefulness of CRT’s. The information rate
into each terminal precludes showing “movies” a 1a TV, but a
considerable amount of animation is possible—a train can run
across the screen, for example, or a bird could fly across.
A touch panel allows the computer to known where a child
touches the panel, if he does. A random access audio unit
allows the computer to “talk” to students with good quality
reproduction of the human voice, or of other sounds. Slides
can be shown on the screen, via rear-view projection.

In fact, although students are ordinarily unaware of it,
these terminals are connected to a time-shared computer
(CDC 6000 series). The screen can be thought of as the page
of a book on which the computer can write or draw, the child
can write or draw, and modest animation is possible, plus
pictures from the rear-view projection of slides. The use of a
large time-shared computer means that many programs or

169

“lessons” are simultaneously available (the “Library of
Congress”’ effect), together with a considerable amount of
computing power. The computer keeps records on the
performance of each student during his or her previous
sessions with the terminal.

THE “NATIONAL DEMONSTRATION” OF PLATO

Obviously, the PLATO computer system is a powerful and
flexible tool that should be capable of playing many useful
roles in the classroom. To begin to test these possibilities, an
official “demonstration’ is under way, costing approximately
8 million dollars. During the academic years September
1974—June 1975 and September 1975—June 1976 PLATO
will be in operation with a reading program in kindergarten
and grade one, and a mathematics program in grades 4, 5,
and 6, with 100 terminals in elementary schools in Champaign
and Urbana, Illinois. The results will be observed and
described by Educational Testing Service, of Princeton,
New Jersey.

The goal of this demonstration is to identify one or more
useful roles that PLATO can play in elementary school
classrooms.

CHILDREN’S MATHEMATICAL THOUGHT

As one part of the job of getting ready for this demonstra-
tion, the PLATO courseware group has been studying the
mathematical thinking of children who are in grades 5, 6, and
7 in an individualized paper-and-pencil school mathematics
program that does NOT use computers.! This has given us a
direct view of how these children solve and discuss various
mathematical problems, from which we can infer a great deal
about the way they think about mathematics. From this, and
from direct observation of the school program, we can infer
what transactions are taking place in the classroom, and how
the cumulative experience with these transactions is effecting
the child’s thinking.

One typical result is the following: the school program
presents the child with a pamphlet showing an illustrative
example, followed by problems of the same type for the child
to work out. When completed, this pamphlet is turned in,
corrected, and returned to the student with an indication of

170 National Computer Conference, 1974

which problems were solved correctly, and which are wrong.
Among the transactions that do not occur are: students
talking about their work to adults or to other students,
experience in physical uses of mathematics (as in making an
accurate scale drawing of the school playground), and student
diagnostic analysis to decide how to attack a problem (since
problem sets are homogeneous).
A fifth-grade girl in the program, asked to add

3+ 4= ,
wrote

34+ 4=.7.
Asked to add

3.4+ 4. = ,
she wrote

3.+4 =17
but, asked to add '

3+4 =,
she wrote

344 =7

How large is .7.? Is it bigger than 6, or smaller than 1? She did
not know. The symbol .7. was of course meaningless to her,
but this did not trouble her; many of the notations of
mathematics were meaningless to her, and she had learned to
accept that situation gracefully. To her, those little periods
were something to be copied as one who does not speak
French might copy accent marks in copying a French
sentence.

This example is typical of students in this school program,
and in toto such examples seem to support the assessment that
math in this program was presented essentially as a matter of
meaningless symbols, and learned as meaningless symbols.

THE ECOLOGY OF THE CLASSROOM

Assuming that what a child learns is influenced by the
transactions in the classroom it becomes important to study
these transactions. We are thus asking: “What can we learn
about the ecology of the classroom BEFORE we allow
computers to intrude there?”

As a suggestion of the variety of things that go on, we offer
the following imcomplete list.

What do teachers do?

They arrange for a child to have a new experience (by
taking the child to a zoo, or by showing a film, or by
handing the child a thermometer, etc.)

They encourage the child to talk about that experience.

They orchestrate, if they do not compose, the curriculum
(and some teachers compose it).

They explain something new by reference to things that
are more familiar.

They arrange for student A to help student B.

They review things the child has done, and encourage
him to reinterpret his experiences.

They demonstrate how to do something.

They suggest things to get a child started on a new line
of thought.

They supervise.

They observe a student, and offer constructive ecriticism.

They show appreciation for student work or student
discoveries.

They provide drill (as with flash cards for addition facts).

They lead a child to recognize some of the consequences
of his thinking, a kind of elementary school adaptation
of reductio ad absurdam.

They assign tasks.

They set goals.

They administer tests or other diagnostic procedures.

They help establish values and priorities.

They listen when a child needs an adult to talk to.

By their physical presence, they reassure.

They give a child the sense that someone cares about
him, remembers who he is, recognizes him, and remem-
bers what he did yesterday.

They set expectations.

They answer questions.

By their own behavior, they set an example (for instance,
some children believe at first that in order to read you
must know the story from memory beforehand, and
they ‘“read’” this way, until it suddenly dawns on them
that the adults are doing something different—namely,
decoding the written symbols).

They guide a student performance.

They dole out helpful hints.

They influence the social reward system (but they
cannot usually control it to the point of total denial of
peer-group inputs).

But—a child is not alone in the room with the teacher.
Other children play a major role. If, for example, a child
hears other children recite, he may develop his ability to
listen critically for weak spots in the other child’s argument,
or to identify hints that he can use himself. He will be subject

. to. “social facilitation,” acquiring goals from high-status

children who have those goals. If he wishes to enter an
argument, he may get practice in developing alternative
conceptualizations, much as an attorney finds a way to
construe a case. He is surely aware of how other children
appraise his performance.

Perhaps the most important step a student takes is to
accept a social contract to allow others to influence what he
does and even how he thinks. The different extent to which
two students do this may be the major difference between
them.

Another important thing that students do is to work out
their own rational explanation of what seems to be happening,
in the form of explanatory rules or goals.

Students also, and to varying degrees, explore, discover,
practice, make original creations, learn to take pride in their

What Classroom Role Should the Plato Computer System Play 171

work, learn to organize their time, learn different ways to
deal with different people or different situations, learn to
resolve internal conflicts, and so on. Students may (not often
enough) study problems in order to work out their own line
of attack. They develop heuristic analysis strategies. They
learn to have confidence in some things, and not to have
confidence in others.

Typically, in mathematics, teachers do NOT explain a task
clearly, but instead carry it out, and leave students the job
of inferring the goal from observing and imitating the
activity. A few teachers reverse this, and make sure the
children have a clear understanding of the task, after which
the teacher leaves it up to the child to devise a method of
carrying out the task (this is one variant of ‘“discovery”
teaching).

Other things happen: teachers teach some things badly;
some important items are left out altogether; teachers
themselves learn a great deal in their own classrooms, about
children in general, about specific individual children, and
about the curriculum subjects (for example, from textbooks,
reference books, etc.). Outside of the classroom, teachers
learn from in-service courses and from independent study.

WHAT PLATO IS TRYING TO DO

Which of the items on our list—or on the much longer lists
that can be made—should PLATO attempt to address?
Which are logical, or “natural,” tasks for PLATO? We can
get some guidance from past PLATO experience: for example,
it does not seem natural for PLATO to try to answer questions.
Most questions are badly stated, and often very specific to
that setting. Although PLATO offers CAI lessons on
PLATO authoring in the TUTOR language, most novice
programmers seek human question answerers, and their
questions are often as specific as “Why is my program doing
this (with a demonstration)?” Children’s questions tend to be
even more obscurely stated, and even more situation-
specific. When one really has a question, usually part of the
difficulty is that one is unable to state it clearly.

Can PLATO show a student the consequences of his own
thinking, in a reductio ad absurdam fashion? We have one
modest start in this direction, in a lesson on average velocity,
authored by Bruce Sherwood, and designed for university
students: if a student gives a wrong formula for average
velocity—say, ve-vi—PLATO states a simple word problem
(“A car accelerates uniformly from 40 mph to 60 mph. What
is its average speed during this acceleration?”). Students
nearly always answer this correctly (50 mph). Then PLATO
responds: “But your formula ve-v; gives 20 mph.”

Can this technique be extended into elementary school?
Possibly, but the misconceptions of elementary school
children are considerably deeper and more elusive, and one
would need a very clear presentation of the contradiction
before one could convince them. (At present we are not
attempting this.)

For the present 5th grade mathematics courseware, we are
recognizing four aspects of mathematical knowledge, and

explicitly pursuing three of them. The four are:

(1) knowing meanings (usually in concrete terms) of the
various symbols, operations, concepts, ete.
(i) skill in symbol manipulation
(iii) competence in using heuristic problem-analysis strate-
gies
(iv) having appropriate attitudes and expectations.
We deal with the fourth, above, only implicitly; the first
three we tackle explicitly.
Some of the methods used can be suggested by a few
examples:

Example 1. “Darts and balloons.” A vertical number line
appears on the screen, with 0 and 1 indicated. The line can be
interpreted as a wall, to which (using random numbers)
PLATO attaches five balloons. If a student types 14 (or 0.5,
or 4 + 14, and so on), a dart flies across the screen and
thuds into the wall one-half of the way from 0 to 1. If it hits
a balloon, the balloon bursts.

The simplest goal of this learning experience is to guarantee
that children have a reasonable notion of the size of any
common fraction. But more is possible; children transform
this into many different lessons. One girl typed %, not near
any balloon; but, with the distance from 0 to } available to
her as a unit, she measured this off with her fingers, and
found % for n = 2, 3, and 4. If she found a balloon, she burst it.
If any remained, she tried £; and so on.

One adult studied the tolerance—how close to the mid-line
of a balloon must you hit in order to burst the balloon?

This should serve to remind us that learning experiences
are complex things, not easily described, and not identifiable
by brief statements of simple objectives.

Example 2. The Game “WEST.” This is, in effect, a board
game. The game board, and three spinners, appear on the
PLATO screen. By pressing a key, the student “spins” the
spinners, thus obtaining integer values for Nj, N,, and Ns.
Under simple rules (e.g., no operation sign used more than
once), the player forms an expression (such as N; X (N: +
N3)), and—provided he states the value of this expression
correctly—he moves forward by this amount.

The evident explicit goal here is to provide a large amount
of painless practice in arithmetic; but notice that there are
also other goals: for example, to get students started thinking
about the maximum value of such expressions.

Example 3. Names for Today’s Date. In pursuing some of
the possibilities for letting students create, letting them be
pround of their work, letting them share and compete with
one another, a lesson has been designed that says: “Today’s
date is November 7 (or whatever it is). What names can you
make up for today’s date?”” The student now enters whatever
names he chooses, such as

2 X 314
\ LY /9

(md(x9) — @

After he has entered as many names as he wishes, he

172 National Computer Conference, 1974

presses the “NEXT” key, and PLATO displays the complete
list of all names entered thusfar, including his own, with the
names of the students who entered them. He now—having
looked at the work of the other students—may enter still
more names if he wishes.

Example 4. Programming PLATO. This lesson sequence
also deals with allowing children to create within mathe-
matics, much as they would in art or poetry—specifically,
they can create original computer programs. The program-
ming language is pictorial, and is developed by touching
pictures on the PLATO screen. Sub-routines can be created,
named, and used by name as instructions in future programs.
A typical program might put trees in various locations,
outline a street, then have a boy cross the street just in front
of a car that drives down the street.

This is an experimental venture, the value of which may
not be known for some time.

Example 5. The definition of fractions. What is interesting
in this sequence is the underlying teaching strategy: the
sequence begins with something children know very well
indeed—whether a chocolate bar has been shared fairly, or
not, among two, three, or four children. So the action is
familiar; but while this familiar action is being carried on, it is
being discussed in the language of fractions—thus, the first
introduction of this language is by use, not definition. After
some use, a new level is reached : operating on a “meta” level,
PLATO and the student cycle back through what they have
just done, but this time, instead of doing it, they analyze it.

Example 6. Interterminal Games. Two or more terminals
can be interconnected (by the courseware) so that children
can play games against live opponents, in real time.

Summary

Obviously, PLATO can attempt to address a fairly
sizable range of typical classroom activities. Courseware is
now being created to pursue a scattering of these. Presumably
other classroom transactions would not be natural (or feasible)
on PLATO. For the National Demonstration, we hope to
show that there are some classroom tasks which we have
correctly identified as appropriate and feasible via PLATO.
On a few of our nominees we may fail to achieve success,
either because the task is unsuitable, or else because we have
not created appropriate courseware or appropriate conditions
of use.

THE SESSION SELECTOR

On PLATO, one has great freedom in deciding whether
choices are to be made by the children, or by the teacher, or by
PLATO itself. When the choice is made by PLATO, the
Session Selector program does it.

Good lessons, like good concerts and good chess games,
have a beginning, a middle, and an end. The Session Selector
plans PLATO lessons this way, choosing first the main
course, which will appear to the student in the middle slot.
This choice is the most carefully made, and utilizes the records
of the individual student, plus the curriculum tree. After the
choice for Slot IT has been made, appropriate review or
introductory material is chosen for Slot I; some appropriate
games or other favorites of the children are then made
available for Slot ITI. Although PLATO plans in the order I1,
I, ITI, the student of course encounters the slots in their usual
order: the lesson begins with the Slot I selection, then goes on
to Slot II, and ends with the Slot III games.

INTERACTIONS BETWEEN USE AND
HARDWARE/SOFTWARE

It is probably obvious that the way PLATO is used in
schools shapes the demands on the hardware and. system
software, and is in turn shaped by the capabilities of the
hardware and the software. We cite one example: the
allocations of extended core storage (ecs) on PLATO
originally assumed that, on the average, twenty students
were using the same lesson at the same time. A few years ago
this might have been feasible—schools commonly had “a math
period,” “‘a reading period,” and so on. It was not unusual for
the teacher to say: “All right, children, now let’s everyone
turn to page 43 in our readers.” Today, in the schools we are
working with, this would be unusual. They have moved
toward the “integrated day”’ approach; #ime is no longer
subdivided, but space is—there is no “reading period,” but
there is a “reading corner,” and there’s always somebody over
there reading. To accommodate to such schools, it has been
necessary to rearrange memory allocation on PLATO, so
that, on the average, it is necessary for four students to be
using the same lesson. Since, when fully developed, PLATO
may be serving 2,000 students at the same time, the 4-to-1
average may not impose too severe a restriction.

THE SHORT TERM VALUE OF PLATO

There are long-term hopes that PLATO may be an effective
economy option, highly cost-effective because it makes the
classroom more capital intensive and less labor intensive, and
that the use of PLATO may significantly improve the quality
of education. Both of these hopes may be realized, but
probably not immediately. For the short term, PTLATO is at
a developmental stage, where the task confronting us is to see
which classroom transactions we can handle well via PLATO,
and to acquire the means of doing so.

But even in the short run, PLATO has considerable value
as a research tool: as more classroom jobs are assigned to
PLATO, we gain a far greater degree of control over what is
going on in the classroom, which allows us to get far better

What Classroom Role Should the Plato Computer System Pldy 173

data on the importance of different kinds of transactions. The
will-o’-the-wisp elusiveness, subtlety, and complexity of
traditional classrooms never allowed us, for example, to study
the effect of omitting much or all of the usual arithmetic drill,
inserting instead games such as WEST that provide less-
controlled experience with arithmetical operations. In the
traditional open classroom, as Featherstone? points out, one
often found that every child had learned to read, but you
could not identify when, where, or how this had taken place.
PLATO should give us a far greater ability to pinpoint the
contributions made by the various kinds of activities and
transactions, which in turn allows one to plan the future role
of PLATO on the basis of a more secure rational theory.

BIBLIOGRAPHY

1. Erlwanger, S. H., “Benny’s Conception of Rules and Answers in
IPI Mathematics,” Journal of Children’s Mathematical Behavior,
Vol. 1, No. 2, Autumn, 1973, pp. 7-26.

2. Featherstone, J., Schools Where Children Learn, Liveright, NYC,
1971.

3. Davis, R.; “Observing Children’s Mathematical Behavior as a
Foundation for Curriculum Planning,” Journal of Children’s
Mathematical Behavior, Vol. 1, No. 1, winter, 1971-72, pp. 7-59.

4. Hammond, A. L., “Computer-Assisted’ Instruction: Two Major
Demonstrations,” Science, Vol. 176, June 9, 1972, pp. 1110-1112.

5. Bitzer, D. L., B. A. Sherwood and P. Tenczar, Computer-Based Sci-
ence Education, CERL Report X-37, May, 1973, University of II-
linois, Urbana, Illinois.

Computer assisted instruction comes of age in a public school

system

by WILLIAM M. RICHARDSON

Monigomery County Public Schools
Rockville, Maryland

INTRODUCTION

During the late 1960’s a number of public schools began
experimenting with the development and use of computer-
assisted and computer-managed instruction. Funding for
these public school projects was provided primarily by
Title ITI of the Elementary and Secondary Education Act of
1965, or other sources of federal funds. Due to the reduced
availability of federal funding, few new public school CAI
projects have been initiated since 1970. It is, however, very
encouraging to analyze the results of the few active public
schools CAT projects.

The paper will provide evidence that CAI/CMI can
produce increased achievement when properly integrated into
the instructional process. In deference to some of the early
concerns with the application of computer technology, it will
be shown that the computer can in fact provide greater
individual and personalized instruetion to students. Although
computer-assisted and computer-managed instruction are not
today cost-affordable when applied to all students within a
school system, it will be shown how the use of CAI can be
cost-justifiable for selected student target populations. In
addition, public school systems have shown that they can
effectively work with computer technology as both users and
developers. The concluding premise of the paper is that the
public education sector is rapidly approaching the time when
it can effectively utilize widespread CAI as a direct aid to
the instructional program.

BACKGROUND

The MCPS Title ITI CAI Project goals were the demonstra-
tion of the feasibility of computer-assisted instruction as an
instructional medium and the assessment of its role in the
K-12 public school setting. The project currently utilizes 31
time-shared computer terminals cable connected to the
IBM 1500 instructional system. The project fulfilled its
stated objectives by (1) developing, using, and evaluating
over 40 modular instructional CAI and CMI packages, (2)
providing the Montgomery County Public School System
with a cadre of 70 individualis capable of deveioping and using
CAI instruction, (3) providing an orientation to CAI to

175

approximately 5,000 school administrators, supervisors, and
teachers, and (4) making recommendations to MCPS con-
cerning the future implementation of CAI.

Program design teams composed of project staff and
classroom teachers developed approximately 40 modular
instructional packages, most of which are in the mathematics
and science areas. The instructional design for each program,
including objectives, entering behaviors, hierarchy, and
strategy has been completely documented in the Project
Reflect Title 111 Final Report, June 30, 1972.

Federal funding for the project ended in June 1971. Since
that date, MCPS has supported a staff of 12.5, maintenance
on the computer and all additional expenses of the program.
The manufacturer is providing the computer system lease free
for instructional purposes.

RESULTS

Experiences over the six-year period have shown that
learning and teaching philosophies could be altered, and that
individualization with computer support is logistically feasi-
ble. When school faculties are provided with valid CAI/CMI
materials related to student needs, teachers are able to
integrate new technology into the regular instructional
process. In this connection, experience has shown that
teachers need time and training to effectively utilize these
materials. In addition, it was found that selected teachers
have the talents and interests to develop effective indi-
vidualized CAI modules.

Year-long research studies on achievement, class size, and
teacher-student interaction were completed in June 1972.

Results of these studies showed that:

1. Fifty-eight matched pairs of sixth-grade students with
one-half hour weekly CAI experience as part of their
regular arithmetic made significantly greater mean
gains in achievement (¢ = 2.08, df = 114, p<.05);

2. High school students in two computer-managed geom-
etry classes, which averaged over 33 students, showed
no significant differences in mean gain scores than
students in three traditional classcs with an average

of 23 students (t = 1.23, df = 81, n.s.); and

176 National Computer Conference, 1974

3. Secondary mathematics students enrolled in three
classes with CAI and CMI support received signifi-
cantly more individual attention from their teachers
than students in three traditional classes (F = 38.78,
df = %, p <.01).

In addition, a mini-study with a few special education
students was conducted in one secondary school. Ten students
from this school participated in a four-month study to
determine if they could benefit from the use of the arithmetic
materials prepared for the regular school population. Results
of this study, in which the analysis of data was prepared as
though the average 1.Q. were normal, showed significantly
greater gains in achievement than could be expected in the
time period allotted (¢ = 2.71,df = 9, p <.05).

Evidence collected by the CAI Program and substantiated
by other CAI installations showed that the hardware system
and terminal components used for instruction must function
in a reliable manner and that the response time for students
must not exceed three (3) seconds.

IMPLICATIONS

It would appear that with minimal use at the elementary
school level, students can be expected to increase their
proficiency in basic arithmetic skills. Four terminals per
school can provide 300 students a half hour CAI session each
week and result in significant achievement gains.

‘When computer support for diagnosis and preseription is
provided, students can receive significantly more individual
attention from their teachers. In secondary schools utilizing
the computer for management in geometry, class size may be
increased with no loss in achievement.

Students in special education present a different kind of
problem and require special consideration. However, it may
be that computer-assisted instruction serves as a means by
which the less able student can effectively organize his
mathematical thinking. Every student who was pretested and
posttested in this study showed a gain in arithmetic scores.

THE YEARS AHEAD

The CAI Program has acquired strong evidence that
computers can have an important role in the instructional
process. Although it is anticipated that CAI will be economi-
cally feasible for wide-spread utilization within 3-5 years, it
must be understood that with the existing IBM 1500 CAI
system or the proposed IBM 370 system’ that CAI is not
currently economically feasible for all students. Therefore,
the use of this technology should be limited to instruction for
those students for whom the significant achievement gains
justify the expenditure of extra dollars. To be specific, it is
recommended that CAI be provided to those students who
are achieving below grade level, to special education students,
to those situations where increased class sizes can help
displace hardware costs, or for computer education courses
and problems soiving which requires computer support.

Based upon the experiences of the last six years, results of
evaluation studies and cost analysis, two major CAI Program
thrusts are anticipated for the 1974-75 school year, elementary
arithmetic and secondary mathematics.

ELEMENTARY ARITHMETIC

Validated CAI arithmetic packages will be provided to
students achieving one or more years below grade level in 13
elementary schools. This will provide approximately 4,000
students with 30 minutes per week of CAI diagnosis and drill
in operations with whole numbers, fractions, and percents.

The CAI arithmetic materials will be provided to under-
achieving students based upon the following predictions:

1. That the achievement of at least 90 percent of the
underachieving students using the CAI programs will
be at or above grade level in arithmetic within two
years. This means that a child entering the fourth
grade one or two grade levels behind, will enter the
sixth grade at or above grade level in arithmetic
skills. The total two-year cost per student will be $216.
This amount will provide the student with CAI for a
one-half hour period for each week for two years at a
cost of $6 per hour which covers computer, staff,
communications, and all other program costs.

As computer equipment and instructional terminal
costs are projected to decrease dramatically within the
next five years, the cost for improved arithmetic
achievement should be reduced from $216 to $72 or
less per student for a similar two-year period by 1978.

2. That arithmetic achievement for students in special
education will be substantially increased above ex-
pectancy. It is predicted that 80 percent of these
students will achieve an increase in arithmetic skills of
one grade level per school year. The cost for this
achievement is $108 per student per year, which will
provide one-half hour per week of CAI. By 1978, it is
projected that similar results can be obtained for
special education students for $36 per year.

The above projections are supported by evaluation data
collected at the CAI Program. The 1971-72 sixth-grade study
showed significantly greater achievement through CAI than
by traditional instruction. A retention study conducted in the
fall showed that these significant gains were maintained. In
addition, using the lowa Test of Basic Skills arithmetic scores
given in October 1972, showed the CAI students with 2 mean
grade score of 7.52, and the control students with a mean
grade of 7.02. A 1972-73 fourth-grade study showed that
CAI students made an average gain of 7.7 months in four
months as compared with the control students mean gains of
4.5 months. An examination of the low halves showed the
CAI group making a mean gain of 5.74 in raw score as
compared with the control with a mean gain of 2.68 in raw
score. All of the above CAI students received CAI 30 minutes
per week.

Computer Assisted Instruction Comes of Age in a Public School System 177

During the past three school years, students from a special
education high school have used the CAI arithmetic pro-
grams at Einstein High School. The average gain for these
students during the 1971-72 school year was 7.6 months after
40-50 minutes of CAI use per week during a four-month
period. During the 1972-73 school year, these students made
a mean gain of one year in arithmetic achievement using CAI
for an average of only 17.8 hours. National studies which
have been conducted with mentally retarded adolescents
show that achievement in the basic skills is difficult to
maintain and increased achievement is rare. Special education
students whose basic skills are improved will be able to
perform simple clerical tasks and therefore increase the
possibilities of their securing gainful employment.

SECONDARY MATHEMATICS

One computer-managed (CMI) and ten computer-assisted
(CAI) instruction packages will be provided to 7 senior high
schools beginning in September 1974. The two objectives for
this action are:

1. To provide greater individualization and personaliza-
tion with equal or greater achievement at potentially
lower cost. Classes with computer management support
may have 40 percent more students than classes
without this technology; and

2. To increase achievement for students who are
underachieving.

Computer support to the secondary mathematics program
is based upon the following predictions:

—That computer-managed geometry classes can be indi-

vidualized. Class size can be increased by 40 percent and
each student will receive significantly more individual
attention from his teachers than in traditional classes.
Students will achieve as well or better than in traditional
classes with average or underachieving students achieving
above expectancy. Increasing the number of students in
six classes will offset $7200 of the $18,000 program costs
per school.

—With two nationally known computer hardware developers
predicting a cost of 60¢-80¢ per terminal hour by 1978,
the $18,000 terminal cost will be between $3600 and $4800
per year against a saving of $9000 in teachers sa'aries
(assuming a conservative 5 percent per year salary
increase). This would represent a net savings of between
$700 and $900 per section of geometry per year.

CAI Program data supports the above statements on
individual attention and overall achievement. A doctoral
study by a MCPS administrator provided the information
relative to average students in CAI classes achieving above
expectancy.

SUMMARY

As in MCPS, other school systems that are active in CAI are
moving forward and will be providing CAI exposure to
greater and greater numbers of students. This trend marks a
significant departure from the CAI activities of the last few
years, and will provide expanded knowledge on the implemen-
tation planning necessary to achieve widespread effective
utilization of CAI. The author feels that school use of CAI
may, at least, be moving into the next phase of the implemen-
tation cycle.

Experimental data on page replacement algorithm

by N. A. OLIVER

General Motors Research Laboratories
Warren, Michigan

INTRODUCTION

Although paged VM (Virtual Memory) systems are being
implemented more and more, their full capabilities have not
yet been realized. Early research in this field pointed to
possible inefficiencies in their implementation.3 Subsequent
studies, however, led to the conclusion that paged VM
systems could provide a productive means to run large
programs on small main memory, if proper techniques are
employed.*” One of the most influential of these is the
choice of an efficient page replacement algorithm (RA) to
minimize page traffic between the different levels of memory.

This paper compares the performance of two RAs about
which little system performance measurement data is avail-
able. They are: the Global Least Recently Used (LRU) and
the Local LRU with fixed and equal size main memory
buffer allotted to each task. The number of page faults
caused during execution of programs under each RA is used
as an inverse criterion for its effectiveness.

These studies were conducted at the General Motors Re-
search Laboratories (GMR) on the CDC STAR-1B* Virtual
Memory computer® (core size=65K of 64 bit words; aux-
iliary/main memory access time ratio of 50000) with the
Multi-Console-Time-Sharing (MCTS) operating system.®

PAGE REPLACEMENT ALGORITHMS

A basic problem in paged VM systems is deciding which
page should be removed from main memory when an ad-
ditional page of information is needed. Obviously, it should
be a page with the least likelihood of being needed in the
near future. Therefore a simple criterion for the “goodness”
of a page RA is the minimization of page traffic between the
main and auxiliary memories which is measured by the
number of faults that occur during program execution.

One of the most popular page replacement strategies is
LRU (Least Recently Used) strategy. The following RAs are
based on it:

1. Global LRU RA: The replaced page is the one that
has not been referenced for the longest period of real

* STAR-1B is a microprogrammed prototype version of the STAR-100
CDC computer.

179

time, regardless of the task to which it belongs. This
RA, which is a varying partitions RA by default, is
heavily considered in literature.51*1! Comparison re-
sults with various RAs obtained via simulation tech-
niques and interpretive execution!2:1 are available.
However, few if any (non-simulation) system mea-
surements have been conducted. Existing (and fully
developed) VM operating systems utilizing variations
of this RA known to the author are: CP/67,14.15
Multics,#1¢ MTS,* V817 and VS2.18

. Local LRU with fixed main memory paging buffer
per task RA: The least recently used selection is
made from pages belonging to the task which gener-
ated the page fault. Some treatment!::10.13.19,20 gnd
measurements of this RA were found in literature.
However, only one operating system (besides the
interim version of MCTS) implements a remote vari-
ation of this RA. It is the original IBM version of
TSS.H,ZI

. Local LRU with varying (working set)® partitions
RA (WSRA): The replaced page is the least recently
used page which does not belong to a working set of
any task. Extensive literature is available.4:56.7.11,13.19,
202,222 Two true implementations (Burroughs
B6700% and CP/67 at IRIA France?®) and one ap-
proximation (the current version of TSS?) of this
RA are known with limited measurement results.

Due to the implementation difficulties of the WSRA, only
limited (special-case) measurements were taken of it.

THE TESTING ENVIRONMENT
System characteristics

Page-table: The STAR computer page-table?® provides an
address translation mechanism for all memory references. It
points to pages of main memory in use and provides the
mapping between the virtual address and the physical lo-
cation of a page. The page-table ordering is hardware main-
tained; its entries (one for each page) are LRU ordered.
Thus, the most recently accessed pages migrate to the top
of the table while the least. recently used move to the bottom.
(The difference in address translation time between top and

180 National Computer Conference, 1974

TABLE I—Results of Identical-tasks Test

Number of Global LRU Local LRU Local /Global Extreme paging

Customer tasks tested terminals (#P.F.) (#P.F.) LRU buffer

Malus compilation of 185 source lines 1 88 88 1.000
2 245 488 1.991 23-68

3 627 2241 3.574

4 3765 4674 1.241

5 6049 7863 1.299

6 9348 13901 1.487

Malus compilation of 450 source lines 1 119 119 1.000
: 2 428 4078 9.528 18-73

3 10474 11943 1.140

OPL compilation of 160 source lines 1 86 86 1.000
2 133 242 1.819 30-61

3 446 751 1.683

OPL compilation of 575 source lines 1 143 143 1.000
2 382 917 2.400 24-67

INV matrix inversion 200X 200 1 103 103 1.000
2 15524 15548 1.001 45-46

3 15628 15688 1.001

LIST_CAT sorting routine 1 104 104 1.000
2 116 120 1.034 43-48

3 125 190 1.520

PANICD dump formatting routine 1 448 448 1.000
2 461 477 1.035 44-47

3 490 498 1.016

4 520 519 0.998

bottom entries of the page table, due to longer search time,
is insignificant relative to the other system time parameters.)

Level of multiprogramming: The MCTS operating system
can be multiprogrammed up to a level corresponding to the
maximum number of terminals supported by the system,
which is seven.

Scheduling: A round robin scheduling scheme among the
multiprogrammed tasks is employed. Tasks which are in
page or other I/O wait state are skipped. When a task’s
time-slice expires that task is replaced by a task waiting for
service and which is also chosen in a round robin fashion.
If none is waiting the task with expired time-slice is allowed
to continue. (In this study the level of multiprogramming is
always equal to the number of running tasks and thus the
time-slice parameter is not utilized.)

Paging space: It includes a maximum of 92 pages. Each
page contains 512 64-bit words. On the interim MCTS
system, this space is equally divided among the multi-
programmed tasks.

Paging mechanisms

In the interim version of MCTS, each task has a private
page-table. Depending on the paging space, each multi-
programmed task is allotted a fixed number of pages. The
Local LRU RA is used for page replacement.

For comparison purposes, MCTS was reprogrammed with
the Global LRU RA. Only the paging mechanism was
changed. No other system parameters such as multipro-
gramming, scheduling, paging space, etc., were modified.

The modifications for the Global LRU involved the use
of a single page-table for all the customer tasks. All available
pages in main memory were put into a general pool. When a
page fault occurred, the Global LRU page which was the
last entry in the hardware-managed single page-table, was
replaced. No sharing of pages was allowed.

TESTING TECHNIQUES

In an effort to choose typical and diverse applications,
these GMR developed customer tasks were tested:

Malus—A compiler for PL/I-like language designed to
generate object code for the STAR computer. Two compila-
tions, one of 185 and the other of 450 source lines were
measured.

OPL—A compiler for computer graphics language. Again,
two compilations, one of 160 and the other of 575 source
lines were examined.

INV—A matrix inversion routine. Measurements were
taken for inversion of a 200200 order matrix.

LIST_CAT—A sorting routine. For this study a list of
700 names was sorbed in several different orders.

PANICD—A compute-bound routine designed to format
MCTS core dumps for printing. It formatted about 50000
words for these tests.

The tests were performed by running identical and non-
identical tasks simultaneously from a varying number of
terminals. Each set of tests was executed twice, once with
the Global LRU system and then repeated with the Local

Experimental Data on Page Replacement Algorithm 181

LRU system. The total paging space was held constant in
each case for both systems.

RESULTS
Identical-tasks test

Table I displays the average number of page faults per
task (# P.F.) generated by identical multiprogrammed tasks
which are running simultaneously on each of the two paging
systems for varying number of terminals. Also included are
ratio values representing the relative performance of the
Local LRU in relation to the Global LRU. (The “extreme
paging buffer” column will be explained later.) :

While experimenting with the Global LRU system, it was
observed that the number of pages used by each of the
simultaneously running tasks varied considerably during exe-
cution. On the other hand the number of pages used by
each task with the Local LRU system remained constant
(by design). For example, in the two terminal Malus compi-
lation of 450 Source lines (Table I), which displays the most
extreme difference, the Local LRU system divided the avail-
able 91 pages between the two tasks giving one 45 and the
other 46 pages. With the Global LRU, on the other hand,
tasks competed with each other for pages in main memory
and the number of pages which each “owned” as a function
of the elapsed execution time is displayed in Figure 1.

As these two identical tasks were started at the same
instant, one would tend to think that they would split the
core pages evenly among them and each would oceupy close
to half of memory at any given time (as in the Local LRU
case). But as can be seen from Figure 1 this did not happen.
These tasks dynamically changed the number of pages which
they occupied with significant fluctuation.

One explanation might be that while executing, most
programs change their locality® characteristics and conse-
quently their working set size changes. If tasks are allowed
to compete for pages, they tend to accumulate as many
working set pages as they can in order to run effectively.
For this purpose they use pages obtained from other tasks
which at that moment (due to the negligible difference in
starting time) are executing at other stages of the same
program at which they usually have different locality prop-
erties and possibly require, or are forced to occupy, a smaller
working set of pages.

In addition, it was observed that even though the above
two tasks, started virtually at the same time, one task
finished executing well ahead of the other. This can be
clearly observed in Figure 1. At the start of execution Task
#1 had 51 pages while Task #2 had only 40. Afterwards in
most cases Task #2 had more pages. At point A Task #2
completed its execution and its pages started migrating to
Task #1. At point B all of main memory belonged to Task
#1. Due to this page migration from one task to the other
and vice versa, Task #2 ran better up to point A and thus
Task #1 was able to run efficiently from point B to com-
pletion.

A ﬂk N = Number of pages used hy task #1.
{Number of pages used by task #2 = 91 - W) B

|

TASK #1

il
100

- — = -
150 200 250
Elapsed execution time (sec.)

Figure 1—Variation in the number of pages “‘owned” by each of two
tasks while executing under the Global LRU policy

The elapsed execution time with the Global LRU system
was considerably shorter for high Local/Global ratios. But
whenever the ratio was close to one, this time was virtually
equal. As an example, in the case displayed in Figure 1 the
compilation under the Global LRU system lasted only 231
seconds while under the Local LRU system the same com-
pilation took 746 seconds.

The compilation cases generated considerably more page-
faults under the Local LRU RA. But the difference in number
of page-faults generated is less severe for LIST_CAT, and
there is almost no difference in the INV and PANICD cases.
This could be explained by the different working set char-
acteristics of these programs. The Malus and OPL compilers
change their working set sizes dynamically at a high rate
while the rest of the tasks tend to have a fixed size or slowly
changing working sets of pages. An indication of the rate of
change of the working set size, in each case, for a multi-
programming level of two, can be obtained from the “ex-
treme paging buffer” column in Table I. The figures in this
column represent the number of pages each of the two tasks
“owned” during the most extreme situation for that run
with the Global LRU RA. As the extreme buffer difference
gets larger, so does the performance ratio which is displayed
in the adjacent column of Table I.

Non-identical-tasks test

At this point we felt that although the Loeal LRU showed,
in some cases, poor performance when running the same
tasks one against the other, it might still be a useful tool to

182 National Computer Conference, 1974

TABLE II— Results of Non-identical-tasks Test

Global LRU Local LRU Local/Global

Customer tasks tested (#P.F.) (#P.F.) LRU

Malus compilation of 450 1075 7239 6.734
source lines

OPL compilation of 575 1017 4271 4.200
source lines

INV matrix inversion 200X 1221 4822 3.949
200

PANICD dump formatting 519 557 1.073
routine

prevent a complete system degradation in cases where some
of the running tasks are in a thrashing state while others are
not. We thought that by having a separate page table and
a fixed number of pages for each task, the thrashing task
would only degrade itself without affecting the rest of the
system.)

To test this situation, a four non-identical task mixture
displayed in Table IT was simultaneously run from four
terminals. This experiment was designed so that all the
tasks except PANICD would thrash with both the Global
and Local LRU systems. Under the Local LRU every task
“owned” one fourth of core while under the Global LRU
all tasks compete for pages. Thus PANICD which does not
thrash when running with one-fourth of core should have
benefited from the ‘“protection” provided to its paging
buffer under the Local LRU algorithm whereas under the
Global LRU the thrashing tasks could affect its performance
by “taking away’” its essential pages because they are in
high need for pages.

But as can be seen in Table II, the number of page-faults
which PANICD generated was not affected at all by the
thrashing tasks.

The explanation to these unexpected results might be that
tasks which are running effectively (PANICD), reference
frequently (and thus “protect’) their slow changing working
set of pages. On the other hand the thrashing task needs
many pages, each page for a short interval, and does not
reference the same pages too often. Thus the pages of the
thrashing task are, in most cases, the least recently used
pages which migrate to the bottom of the page-table and
are consequently overwritten. The thrashing task is only
slightly affected by this process since chances are that it will
need many other pages before requiring the pages which were
just lost.

Working set replacement algorithm measurements

As we did not implement this RA which implies use of
varying partitions with varying working-set sizes, we decided
to test at least a special case of it, which is running a task
with a fixed working set size in a fixed size partition.

PANTCD has a small and fixed size working set of pages.

(It contains the procedure pages, one input and one output
data pages.) This fact explains the similar performance of
the Local and Global LRU for PANICD as shown in Tables
I and II. The slight difference in the number of page faults
is attributed to the execution of some system programs
known as “command language” before and after the actual
execution of PANICD. These programs require large and
rapidly changing working set sizes and thus contribute to
the fewer number of page faults for the Global LRU in
most cases.

In order to get relative performance measurements of the
WSRA versus the Global LRU we decided to eliminate the
effect of the “command language” by initiating the measure-
ments only after all the multiprogrammed PANICD tasks
have started their actual execution and terminate the data
collection just before the first PANICD task branches back
to the “command language.” Thus a fixed size working set
was required by each PANICD task at any time.

Since the WSRA requires that each multiprogrammed
task have at least its working set of pages in main memory at
all times, a Local LRU level of multiprogramming which
provides a partition larger then the working set size will
actually satisfy the WSRA requirements. The results for
running identical PANICD tasks from a different number
of terminals (corresponding to different levels of multi-
programming) are presented in Table III.

The column “dump units processed per second’ presents
the fotal number of dump-pages formatted by all the
PANICD tasks, divided by the elapsed time required to run
all the tasks at each multiprogramming level. Thus this
column represents the real throughput of the entire system.
The other column ‘“number of page faults per dump unit
processed” shows the total number of page faults generated
by all tasks, divided by the total of all the dump-pages
formatted.

The throughput of the system increases with the level of
multiprogramming, for both systems, up to the level of three
and four while the number of page faults per unit dump
remains low. Beyond the level of four both systems are
thrashing and the throughput consequently deteriorates.
Thus under the WSRA policy we would have run the system

TABLE III—System Throughput and Page Fault Frequency for
Increasing Levels of Multiprogramming

Number of Global LRU Local LRU (WSRA)
terminals
(multiprog. Dump units #PF/dump Dump units #PF/dump
level) proc./sec. units proe. proc./sec. units proc.
1 0.37 4.21 0.37 4.21
2 0.42 4.22 0.42 4.22
3 0.46 4.23 0.46 4.23
4 0.46 4.24 0.46 4.23
5 0.42 7.55 0.42 7.82
6 0.39 11.90 0.40 10.19
7 0.29 20.30 0.31 21.10

Experimental Data on Page Replacement Algorithm 183

at a multiprogramming level not higher than four. But for
levels one through four the Global and Local LRU, which in
this case is identical to the WSRA, perform virtually the
same.

Above the level of four the Local LRU (WSRA) does
show better performance and that is probably due to the
fact that with the Global LRU system a task which is waiting
the longest on the scheduler queue and is the next one to run
its pages become the least recently used ones and are over-
written. As this happens only after reaching a thrashing
level of multiprogramming, a Global LRU RA can be useful
only if the system can detect when overloading ocecurs.
Such a performance monitor (based, for example, on the
page-faulting level of the entire system) could be used to
reduce the multiprogramming level whenever thrashing oc-
curs to prevent performance degradation.

CONCLUSIONS

The results of this study strongly indicate that artificially
restricting the main memory space which a task may utilize
in a paged VM system results in an increased page traffic
between the different levels of memory and consequently in
considerable loss of efficiency. Tasks, especially if they re-
quire rapidly changing working set sizes, should be allowed
to compete freely for the space which each may occupy at
any given time.

The Global LRU RA performed better than the Local
LRU RA with fixed partitions and matched the performance
of the Local LRU with varying partitions (WSRA), for a
non-thrashing situation, in this study. The following Global
LRU virtues should be noted:

1. It is a simple varying partitions RA in which the
partition size is controlled by the RA itself and not
by the operating system.

2. It is highly unlikely that thrashing tasks can “over-
take”” main memory and thus “hurt” the performance
of non-thrashing tasks. This is due to the fact that
non-thrashing tasks reference frequently and thus
“protect” their essential pages from becoming the
LRU ones. On the other hand the thrashing task
needs many pages, each for a short interval, and
does not reference the same pages too often. Thus the
pages of the thrashing task are, in most cases, the
LRU ones and are consequently overwritten.

3. Critics of the Global LRU strategy (including the
author?) claim that with the Global LRU RA, the
task which is idle for the longest time while waiting
on the scheduler queue, and which is the next to run,
is most likely to find its pages missing. Evidence of
this has been found in these studies. But it turns out
that the space could be utilized more effectively by
the current running task than it would have been if
these pages had been reserved without utilization for
the delayed task.

4. In addition to the performance advantage (reduction
of execution time and number of page faults), the
Global LRU with the single page-table is easier to
manage and requires less operating system space than
the Local LRU with multi-page-tables and fixed paging
buffer system.

The Global LRU algorithm is especially useful for simple,
round robin scheduled operating systems. For more sophisti-
cated systems, however, the multi-page-table approach might
be useful due to requirements other than efficiency, such as:
priority scheduling, etc. But since no artificial restrictions
should be imposed on main memory space it seems that the
working-set-partitions RA’s such as the WSRA’ and PFF
might well be the only class of paging strategies able to
perform effectively utilizing multi-page-tables. However, the
WSRA will require a “smart” mechanism to determine the
following: (A) The size of the task’s working set at any
given time. (B) When a task is in a working set expansion
phase and needs more pages, which of the other multipro-
grammed tasks will be the one to lose pages. (C) What
action should be taken when there are a few available pages
in core but not enough to start a new task. In the Global
LRU case no information about (A) is needed; the decision
about (B) is trivial; as for (C) the new task is started and
it “fights” to build its working set from pages which are
probably non-useful to other tasks.

The WSRA has a clear advantage over the Global LRU;
It prevents system overloading. Thus if the Global LRU is
to be used, a special system performance monitor could be
used to reduce the level of multiprogramming whenever over-
loading occurs.

ACKNOWLEDGMENT

I wish to thank G. G. Dodd for his support of this study and
advice on organizing the paper. Also I am grateful to R. R.
Brown, J. W. Boyse, M. Cianciolo and the rest of the MCTS
personnel for their cooperation. Last but not least I wish to
thank P. J. Denning and W. W. Chu for their constructive
criticism of this paper.

REFERENCES

1. Coffman, E. G. and L. C. Varian, ‘“Further Experimental Data on
the Behavior of Programs in a Paging Environment,” Comm. ACM,
11, July 1968, 471-474.

2. Fine, G. H., C. W. Jackson and P. V. Mclsaac, “Dynamic Program
Behavior under Paging,” Proc. 21st Nat. Conf. ACM, ACM Pub.
P-66, 1966, pp. 223-228.

3. Kuehner, C. J. and B. Randell, “Demand Paging in Prospective,”
Proc. AFIPS 1968 Fall Joint Comp. Conf., Vol. 33, pp. 1011-1018.

4. Denning, P. J., “Virtual Memory,” Computing Surveys, Vol. 2,
No. 3, Sept. 1970, pp. 153-189.

5. Denning, P. J., “The working-set model for program behavior,”
Comm. ACM., Vol. 11, May 1968, pp. 323-333.

6. Chu, W. W., N. Oliver, and H. Opderbeck, ‘“Measurement Data
on the Working Set Replacement Algorithm and Their Applica-

184

National Computer Conference, 1974

10.

11.

12.

13.

14.

15.

16.

tions,” Proc. Brooklyn Polytechnic Imstitute Symposium on Com-
puter-Communications Networks and Teletraphic, Vol. 22, Apr. 1972.

. Oliver, N., Optimization of Virtual Paged Memories, Master thesis,

Univ. of Calif. Los Angeles, 1971.

. Holland, S. A., and C. L. Purcel, “The CDC STAR-100 a large

scale network oriented computer system,’ IEEE Proc. of the
International Computer Sociely Conference, Boston, Mass., Sep. 22-24,
1971.

. Brown, R. R., J. L. Elshoff, and M. R. Ward, et al., Collection of

MCTS Papers, to be published, G. M. Res. Labs., Warren, Mich.
1974.

Belady, L. A., “A Study of Replacement Algorithms for a Virtual-
storage Computer,” IBM Syst. J., Vol. 5 No. 2, 1966, pp. 78-101.
Denning, P. J., “Thrashing: Its Causes and Prevention,” Proc.
AFIPS 1968 Fall Joint Comp. Conf., Vol. 33, pp. 915-922.
Thorington, J. M., J. D. Irvin, “An Adaptive Replacement Al-
gorithm for Paged-memory Computer Systems,” IEEE Trans.
Vol. ¢-21, Oct. 1972, pp. 1053-1061.

Chu, W. W. and H. Opderbeck, “The Page Fault Frequency Re-
placement Algorithm,” Proc. AFIPS 1972 FJCC, Vol. 41, pp. 597-
609. .

Alexander, M. T., Time Sharing Supervisor Program, Univ. of
Mich. Computing Center, May 1969.

Bayels, R. A, et al., Conirol Program-67/Cambridge Monitor System
(CP-67/CMS), Program Number 360D 05.2.005, Cambridge, Mass.,
1968.

Organick, E. 1., A Guide to Multics for Sub-System Writers, Project
MAGC, 19689.

17.
18.
19.

20.

21.

23.

25.

26.
27.

28.

IBM 0O8/Virtual Storage 1 Features Supplemeni, No. GC20-1752-0.
IBM OS/Virtual Storage 2 Features Supplement, No. GC20-1753-0.
Coffman, E. G. and T. A. Ryan, “A Study of Storage Partitioning
Using a Mathematical Model of Locality,” Comm. ACM 15, March
1972, pp. 185-190.

QOden, P. H. and G. S. Shedler, A Model of Memory Contention in a
Paging Machine, IBM Res. Tech. Rep. RC3056, IBM Yorktown
Heights, N. Y., Sept. 1970.

IBM System/360 Time Sharing Operating System Program Logic
Manual, File No. 8360-36 GY28-2009-2, New York 1970.

. Denning, P. J. and 8. C. Schwartz, “Properties of the Working-

Set Model,” ACM, 15, March 1972, pp. 191-198.

DeMeis, W. M. and N. Weizer, “Measurement Data Analysis of a
Demand Paging Time Sharing System,” ACM Proc. 1969, pp. 201-
216.

. Openheimer, G. and N. Weizer, ‘“Resource Management for a

Medium Scale Time-sharing System,” Comm. ACM, Vol. 11, May,
1968, pp. 313-322.

Spirn, J. R. and P. J. Denning, ‘“Experiments with Program Local-
ity,” Proc. AFIPS 1972 FJCC, Vol. 41, pp. 611-621.

Private communication with P. J. Denning.

Doherty, W. J., “Scheduling TSS/360 for Responsiveness,” Proc.
AFIPS 1970 FJCC, Vol. 37, AFIPS Press, Montvale, N. J., pp.
97-112.

Curtis, R. L., “Management of High Speed Memory in the STAR-
100 Computer,” IEEE Proc. of the International Computer Sociely
Conference, Boston, Mass., Sep. 22-24, 1971.

Some programming techniques for processing multi-dimensional
matrices in a paging environment

by JAMES L. ELSHOFF

General Motors Research Laboratories
Warren, Michigan

INTRODUCTION

Although virtual memory systems are supposed to free the
programmer from space management problems, the systems
do not always succeed. In fact, programmers find that by
ignoring the fact that real core is limited, the cost of executing
their programs sometimes makes them unusable, not to
mention some of the detrimental effects the program has on
the throughput of the overall system. This problem seems to
be especially prevalent when large matrices of data are
involved. The data are usually referenced in a cyclical pattern
and when the entire matrix will not fit in core, the number of
page faults encountered during execution is maximized. The
focus of this paper is to analyze programming techniques
which will reduce the number of page faults in matrix opera-
tions and thereby improve program performance.

Program behavior in a paging environment has been
studied!?-* from several points of view. Specifically, Brawn,
Gustavson, and Mankin® have concerned themselves with
processing vectors in a paging environment. Moler and
Dubrulle®” have looked at two separate matrix operations
with respect to execution in a virtual memory environment.
Several storage schemes and related operations for matrices
were analyzed with respect to paging systems by McKellar
and Coffman.? Also, Guertin® presented some programming
examples to improve program behavior in a demand paging
system.

The work presented in this paper was done on the premise
that a programmer must be aware of how his program will
reference the data during execution. The programmer will
not be completely free of space management considerations
in the design of his algorithms. The material presented deals
with the mathematically simple problems of matrix addition,
transposition, and multiplication. The methods of problem
analysis and the programming guidelines are intended to
give the working programmer new tools for doing a better
job.

THE WORKING ENVIRONMENT"

Although the material presented in this paper is directly
extendable to matrices with more than two dimensions, the

185

matrices used in the examples will all be two-dimensional for
the sake of simplicity. The indices will refer to the row and
column of the matrix from left to right. An M XN matrix A
will have M rows numbered 1 through M and N columns
numbered 1 through N. All matrices will be assumed to be
stored rowwise. A 2X2 array A will have its elements mapped
into linear virtual memory space in the order A(1,1), A(1,2),
A(2,1), A(2,2). The order of the subscripts within the sub-
seript list may be reversed throughout this paper for column-
wise storage.

The paging algorithm executed by the operating system
will be the least recently used LRU algorithm.2 This
algorithm was chosen because most operating systems
available either use this algorithm or an approximation to it.
Also, the experimental results shown in the latter sections of
the report were generated on a computer with LRU hard-
ware. Note that this algorithm is used as a basis for the
derivation of formulas and is not essential to the premises
upon which this paper is founded.

The total number of page faults processed during a com-
plete matrix operation will be used as a measure of the
program performance. The CPU time required to perform
the matrix operation will be considered to be constant.
Implementation of some of the programming techniques
described herein may increase program execution time due to
additional loop controls, but this is considered to be negligible
because the additional CPU time is measured in microseconds
while the time to process a page fault is measured in tens of
milliseconds.

The examples used are coded using PL/I DO statements
for conciseness and readability. Except for matrix mapping
functions, the programs being considered are really language
independent. FORTRAN programmers may have to use IF
loops instead of DO loops since they cannot specify negative
increments on their DO statements. Furthermore, the
programs shown are not written to minimize CPU time.
Overlaying each two-dimensional matrix with a vector is an
obvious method of reducing CPU time.

Table I lists some of the symbols and their respective
meanings which are used throughout this paper. The notation
[a7] will be used to signify the smallest integer greater than or
equal to a and | a] will signify the largest integer less than
or equal to a.

186 National Computer Conference, 1974

In order to facilitate analysis, the first element of an array
will be stored as the first word in a page. The matrix dimen-
sions will satisfy the inequalities N <S < N2 That is, at least
one row of the matrix will fit in a page but not the whole
matrix. The programming techniques hold when S<N but
the formulas derived will not. In order to make the problem
of interest, k<) p; is also assumed. Furthermore, the
executing code and the temporary variables are resident in
real memory.

THREE PROGRAMMING TECHNIQUES

In this section three programming rules will be described
which can be applied to multi-dimensional array operations
in order to improve program performance. The circumstances
under which each may be applied and the benefits that may
be expected are presented.

Ordering nested loops

Let A be an M XN matrix and B be an N element vector.
Write a program so that each element of B contains the sum
of all of the elements in the corresponding column of A.
bi= Y.ia;. Each element of B is initialized to zero.

An obvious solution to this problem is to write a loop which
will sum each column. Then enclose the loop in a second loop
which will traverse all the columns.

DO COL = 1 TONBY 1; /#* Traverse each column */
DOROW =1TOMBY 1;
/* Sum a column */
B(COL) = B(COL) + A(ROW,COL);
END;
END;

Now consider the reference pattern on matrix A, A(1,1),
A(2,1), A(3,1),...,which causes each page spanned by
matrix A to be referenced on each pass through the outer
loop. By interchanging the DO statements the elements in
matrix A will be referenced in the order in which they are
stored. Thus, all of the elements in a single page will be
processed while the page is in core. Furthermore, each page is
only required to be in core once.

DO ROW = 1TO M BY 1; /* Traverse each row */
DOCOL =1TONBY 1;
/* Add all row elements */
B(COL) = B(COL) + A(ROW,COL);
END;
END;

The minimum number of page faults Fnin=pa-+ps, since
each page of both matrices must be brought into core at least
once. For any number of real memory pages k, where
2<k<Fmnin, the first program will have F=Npa+ps page
fauits while the second program will have F=F,. page
faults. Certainly the first program is related to N?in this case
because of the LRU paging algorithm that is assumed. But

TABLE I—Definitions of Symbols

Symbol Meaning

AB,C Name of a matrix

F Number of page faults

LM,N Dimension of a matrix

Pa Number of pages spanned by matrix A

k Number of pages of real (core) memory available for data
ra Number of rows of matrix A in one page

S Page size in words (matrix elements)

q; Number of rows processed per pass through loop indexed

by i

even considering an optimum paging algorithm, the number
of page faults F= (k—1) +N(ps—k+2), where ps=1, page
faults is the best that can be done. Thus, even when k=pa,,
an optimum paging algorithm cannot get F=F i, in the case
of the first program.

Rule 1. Nest loops so that the innermost loop defines the
subscript with the minimum distance between
elements when all other subscripts are held con-
stant.

Rule 1 is a further generalization of a rule published by
Guertin.? The rule may be applied iteratively to determine
the second from innermost loop once the innermost loop is
fixed, etc. The rule applies to most cases where nested loops
are encountered and should always be considered by the
programmer. In order to apply the rule, the programmer
must understand the storage mapping algorithm of the
language being used as well as the problem being solved.

Guertin discusses many variations and applications of
Rule 1. One of the variations is paraphrased here as an
example. Consider the following program which is like the
first except that no initialization of the vector B is assumed.

DOCOL = 1TONBY I;
B(COL) = 0;
DO ROW = 1 TO N BY 1;
B(COL) = B(COL) + A(ROW,COL);
END;
END;

/* Initialize B */

If the nested loops are interchanged, the program will no
longer execute properly. But B can be initialized to zero in a
separate loop at only a small additional cost. Better yet,
initialize B with the first row of A and regain the additional
loop time by eliminating M additions.

DOCOL =1TONBY;
B(COL) = A(1,COL);

END;

DOROW =2TOMBY 1;
DOCOL =1 TONBY I;

B(COL) = B(COL) + A(ROW,COL);

END;

END;

/* Initialize B */

Some Programming Techniques for Processing Multi-Dimensional Matrices in a Paging Environment 187

Processing multiple rows

Let A and B be N XN matrices and write a program to
transpose B into A, a;;=Db;i.

DOROW =1TONBY1;
DOCOL=1TONBY 1;
A(ROW,COL) = B(COL,ROW);
END;
END;

Rule 1 cannot be applied to this problem. Either A or B
will have each of its pages referenced for each pass through
the outer loop.

The number of page faults encountered in performing this
transpose operation is F=p,+4Npg in the working environ-
ment that has been described. Obviously the product Nps
causes the number of page faults to be high. N is the number
of rows in the A matrix. If A has more than one row in a page,
why not process all of the rows at one time? Let the rows in
one page ra be represented by the variable RPP and the
following program results.

DO ROWS = 1TO N BY RPP;
/* Page of rows */
MAXROW = MAX(ROWS + RPP-1,N);
DO COL =1TONBY1;
DO ROW = ROWS TO MAXROW BY 1;
/* Each row in the page */
A(ROW,COL) = B(COL,ROW);
END;
END;
END;

The number of page faults is reduced to F=pa+[N/ra lps
by processing multiple rows. For a small ra, pa and ps are
very large and the reduction is significant. For a larger ra,
the [N/r,] factor is much smaller and the reduction is still
significant.

A reasonable question to ask is why not process 2ra rows
during each pass through the outer loop. In this problem the
number of page faults would be halved. But what if k=2?
Then the second factor is halved but the first factor becomes
2[N/raIpa and the expected gain becomes a loss. Processing
multiple rows reduces the page faults as long as all of the rows
being processed remain in real memory. Consider that letting
RPP=N in the above example is tantamount to inverting
the DO statements in the original program.

Rule 2. Process all the elements in a page which vary with
respect to the subseript causing maximum paging
while that page is in core and the other subseripts
are held constant.

Rule 2 generally applies to those problems for which Rule 1
cannot minimize the page faults. Such problems can be
characterized in several ways. (1) The same index may be
used in different subscript positions within the locp. (2) A
single element is referenced more than one time during the
course of execution. (3) An extensive calculation is per-

formed within the loop which results in insufficient real
memory pages even after applying Rule 1.

There is no reason why Rule 2 cannot be applied to more
than one index. McKellar and Coffman® describe a matrix
storage scheme which lends itself to matrix operations which
apply Rule 2 to every subscript. For the storage scheme con-
sidered within this paper, Rule 2 has less effect on subscripts
toward the right in the subsecript lists since there are fewer
elements per page which vary only in the right-hand sub-
seripts.

Alternating mairiz traversal direction

Consider the transpose problem used in the last section.
The total number of page faults F =pa+ Npp was reduced by
attacking the factor N, the number of rows in the A matrix.
Another approach is to reduce the factor ps, the number of
pages spanned by the B matrix. Since B is too large to fit in
real memory, and since the algorithm references B in a eyclic
manner, each page of B is removed from real memory be-
tween references. Thus, ps can be effectively reduced by
referencing an arbitrary page more than once while the page
is in real memory. The cyclic reference pattern is broken in
order to accomplish this end.

COLSTART = 1;
COLEND = N;
COLDIFF = 1;
DOROW =1TONBY 1;
DO COL = COLSTART TO COLEND BY
COLDIFF;
A(ROW,COL) = B(COL,ROW);
END;
TEMP = COLSTART;
COLSTART = COLEND;
COLEND = TEMP;
COLDIFF = —COLDIFF;
END;

The new program references the B matrix by going down
the first column, B(1,1), B(2,1),..., B(N,1), and up the
second column, B(N,2), B(N—1,2),..., B(1,2). The pro-
gram continues to alternate the direction of column traversal
until the matrix operation is complete. Since the pages
referenced near the end of one column traversal are the same
as those referenced at the beginning of the following column
traversal, a number of page faults may be eliminated. With
the LRU paging algorithm that has been assumed, F=
pa+ps+(N—1)(psg—k+1). Thus, for each of N—1 column
traversals the number of page faults that can be eliminated
is the number of real memory pages available for the B
matrix.

Rule 3. Let the increment of a faster varying subscript
alternate its sign each time a more slowly varying
subseript changes, when the more slowly varying
subscript appears to the right of the faster varying
subseript.

188 National Computer Conference, 1974

Rule 3, like Rule 2, should be applied after Rule 1. Rule 3 is
based on a paging algorithm which keeps the most recently
referenced pages in real memory. Although few paging sys-
tems have a true LRU paging algorithm, most systems do
approximate the LRU algorithm. Consequently, benefits may
not always be as great as indicated here, but results will be
significant. Rule 3 produces positive results when applied to
all subseripts except the leftmost. Rule 3 will not generally
apply to the outermost loop of a set of nested loops.

Summary of rules

Three rules have been given which may be used in order to
decrease the total number of page faults encountered while
performing matrix operations. Each rule attacks the problem
from a different point of view and requires different knowl-
edge on behalf of the programmer. Rule 1 eliminates page
faults by aligning the reference pattern for the matrix ele-
ments with the storage mapping function; the programmer
must know the storage mapping function. Rule 2 uses the
programmer’s knowledge of page size in the computer system
in order to break a large problem into a series of smaller
problems which generate fewer page faults. Finally, Rule 3
assumes a paging algorithm which approximates an LRU
algorithm in order to reduce the number of page faults;
consequently, the programmer must learn something about
the paging strategy in the system.

THE TRANSPOSE OPERATION

An in-place matrix transpose operation is now analyzed
with respect to the programming rules just given. The
standard algorithm appearing in print

DOROW =1TON-1BY 1;
DO COL = ROWTO N BY I;
TEMP = A(ROW,COL);
A(ROW,COL) = A(COL,ROW);
A(COL,ROW) = TEMP;
END;
END;
will cause pa page faults in processing the first row. For each
additional row in the first page, pa—1 page faults will be
incurred assuming the first page remains in core. When all
processing has been completed on the first page, the rows on
the second page will cause page faults on the remaining pages
of the matrix in a similar manner. Finally, a point is reached
where the remaining portion of the matrix will fit in real
memory. The total number of page faults is given by

F=pat+(ra—1) (pa—1)+(pa—1)
+(ra=2) (pa—2) +---+(k—1).

Applying the algebra pertaining to arithmetic progressions,
the summation reduces to

1 rA' rd o
F=pa+ 2 (pa®—pa—k*+k).

Two formulas were developed for analysis of the in-place
transpose algorithm when multiple rows were processed each
time through the outer loop. The first formula applies to the
case where r,>q, all of the rows fit within one page.

[ta—qT

1
F=p+ 5(+1) (Pa*—pa—Kk*+k).
The second formula is derived from the case where the
multiple rows being processed span an integral number of
pages, ar=q, where a is a positive integer.

pe (24 (o i1,
2 a a -

This formula also assumes that all of the multiple rows
being processed will remain in real memory, a<k.
The number of page faults is given by

FpA—k'I)(FpA—l«ﬂ)
———2 +2 21'———2 -1

when the matrix operation alternates the direction of loop
traversal in order to reuse the matrix pages in real memory.
All pages are assumed to be full in this case.

Finally, both the multiple row rule and the alternating
direction rule can be applied in the same program. This
combination results in the number of page faults being
reduced to

F=pat %rp_:_g [2(pA—k) —a <£p—“§k—1 —1)]

F=k+ (pA—k—

where a is a positive integer such that ar=q and a<k.

Figure 1 shows the number of page faults generated by
each program as a function of real memory size. A matrix
which spans 20 pages, pa=20, is assumed. The number of
rows processed at one time is equal to the number of rows in a,
single page, in this case ra=>5 and a=1. As larger matrices
are considered, the curves maintain their relative position
but the spread between them becomes greater.

Programs were written which applied the programming
rules in the manner described in order to validate the ex-
pected results. A 101X 101 matrix was transposed in place.
A 512 word page contained 5 rows plus 7 elements. The
matrix spanned 20 pages less 39 words. Five rows were pro-
cessed at a time when the multiple row rule was used. An
LRU paging algorithm was applied by the operating system.
These tests were run on a dedicated machine with no inter-

TABLE II—Summary of Transpose Operation Data

Paging Expected Measured Measured
Buffer Page Page —————
Algorithm Size (k) Faults Faults Expected
Standard 15 445 450 1.011
Multiple Rows 14 119 148 1.243
Alternating Direction 15 131 144 1.099
Combination 15 35 64 1.828

Some Programming Techniques for Processing Multi-Dimensional Matrices in a Pagirig Environment 189

1000
900 -
800 —
0 Standard
Page
600 -
Alternating
Faults Direction
500 -
koo -
300
Mualtiple Rows
200 =
Thrashing Cembination
00 - === "™ - - == - -
Not Thrashing
0
T T T T 1 T T T T T
2 4 6 8 10 12 1 16 18 20

Pages of Real Memory

Figure 1—Comparison of transposition algorithms for a matrix spanning
twenty pages

ference. The parameters, which did not fall within the con-
straints under which the formulas were derived, were (1)
the last page spanned by the matrix was not full and (2) a
page did not exactly contain an integral number of rows.
Table II summarizes the results from these runs.

Additional statements had to be added to the standard
program when the programming rules were applied. Table III
shows the additional CPU time required by the new programs
and also the less total CPU time, memory, and channel
resources that are needed.

An arbitrary thrashing level was indicated by a super-
imposed line on Figure 1. The line represents approximately
one page fault each 10 milliseconds in its present location.
This line is of special interest since the distance between the
line and a curve above the line is directly proportional to the
length of time the program will thrash. The duration of such

TABLE III—Transpose Operation Resource Utilization

Problem System Total Elapsed 1/0

Algorithm CPU CPU CPU Time Time
Standard 819 9.900 10.719 77.5 66.8
Multiple Rows 985 3.256 4.241 26.2 22.0
Alternating Direction 917 3.168 4.085 25.5 21.3
Combination 1.110 1.408 2.518 11.0 8.5

All times are in seconds.

300 —
200 -
Page
Feults Measured
100 -
° 17 T 1 [1 {]
2 3 Lk s 10 15 25
Rows

Figure 2—Error in the multiple row transpose operation

detrimental effects is shown in Table ITI. The duration would
be even worse if this program were a customer in a time-
sharing system where the program would be regularly
removed from real memory. Thus, the 35 percent increase
in CPU time for the transpose operation shown in Table IT1
is negligible when compared to the overall reduction of 76
percent in total CPU time and 86 percent in elapsed time.
Another experiment was performed with the transpose
operation. The purpose was to determine the validity of the
formula for the multiple row transpose operation since the
[ra—ql/q factor and the [ps—k7/a factor introduce error
when the result of the division is not an integer. Figure 2
shows the error introduced. The error for the formula with
the [pa—k1/a factor is nearly constant and is attributable to

= STARTROW

1
<=L ASTROW

3

N ~
~
L
1 3 L b 2
N
N A

L

2
= ENDROW

Figure 3—Transpose reference pattern using combination of rules

190 National Computer Conference, 1974

the fact that a page does not contain a integral number of
rows. No attempt will be made to apply this result to other
multiple row formulas; however, please note that error bounds
are easily calculated on each of these formulas if such a
comparison is desired.

A program which will perform an in-place transpose with
both the multiple row rule and the alternating direction rule
applied is shown as Example 1. Although the program may
seem complicated initially, it really is easily understood.
Figure 3 shows the manner in which the array is referenced
with respect to the outer loop. All of the elements in the
areas shown with a 1 are interchanged during the first pass
through the DO WHILE loop. The second pass interchanges
the elements in the areas marked with a 2. The operation
continues until the elements in the areas marked L are inter-
changed. The variable names from the program shown in
Figure 3 relate to the first pass through the DO WHILE
loop.

STARTROW = 1;
ENDROW = N;
DIFF = 1;
DO WHILE ((STARTROW-ENDROW)*DIFF < 0);
IF DIFF > 0 /* DETERMINE LAST ROW FOR
THIS LOOP */
THEN LASTROW = MIN (STARTROW +
RPP * DIFF,ENDROW) — DIFF;
ELSE LASTROW = MAX (STARTROW +
RPP * DIFF,ENDROW) — DIFF;
DO COL = STARTROW 4 DIFF TO LASTROW
BY DIFF;
IF DIFF > 0 /* DO NOT CROSS
DIAGONAL #/
THEN TLASTROW = MIN(COL-DIFF,
MAXROW);
ELSE TLASTROW = MAX(COL-DIFF,
MAXROW);
DO ROW = STARTROW TO TLASTROW
BY DIFF;
TEMP = A(ROW,COL);
A(ROW,COL) = A(COL,ROW);
A(COL,ROW) = TEMP;
END;
END;
TEMP = STARTROW; /+*+ ALTER DIREC-
TION #/
STARTROW = ENDROW;
ENDROW = TEMP + RPP * DIFF;
DIFF = —DIFF;
END;

Example 1—In Place Transpose Processing Multiple Rows
and Alternating Directions

MATRIX MULTIPLICATION

In order to further investigate the programming rules
given earlier, consider a simple program for performing

matrix multiplication. Let A, B, and C be LXM, M XN, and
LXN matrices, respectively. A program which computes
C=A=*B is shown.

DOROW =1TOLBY1;
DOCOL =1TONBY I;
C(ROW,COL) = 0;
DO INNER = 1TOM BY 1;
CROW,COL) = C(ROW,COL) +
A(ROW,INNER) * B(INNER,COL);
END;
END;
END;

Whenever this standard matrix multiply program is
executed, at least one page of both matrix A and matrix C
and all of matrix B must be resident in core in order to get
reasonable performance; otherwise, each page of B is going
to cause LN page faults. In fact, for any amount of real
memory pages k, where pg+2>k>3, the number of page
faults encountered by the above program is given by

F=ps+LNps+pec.

According to rowwise storage scheme that has been as-
sumed, the DO statements with the ROW and COL indices
are in the proper order. The B matrix is referenced in column-
wise fashion while the A and C matrices are referenced in a
rowwise fashion. If the two DO statements in question are
interchanged, the number of page faults increases to

F=Mpas+LNpze+Mpc.

By the reordering rule the DO statements with the COL
and INNER indices should be interchanged if possible. The
index COL never appears in any subsecript position but the
rightmost; therefore, the DO statement controlling the COL
index should be innermost. Furthermore, the INNER and
COL indices are only used together when the B matrix is
referenced, and INNER is to the left of COL in that case.
The number of page faults is reduced to

F=pas+Lps+pc

TABLE IV—Matrix Multiply Page Fault Formulas

Rulel Rule2 Rule3 Page Fault (F)

L1
X pa+ o Nps+4pc

X patk—2+LN(pp—k+2)+pc

I
X X pa+ TPB’I'PC
X X pat+k—24+L{ps—k+2)+pc
L1
X X PA+k—a—c+'q—N(pB—k+'&+0)+Pc
9]
X X X PA+k-3-C+T(PB_k+&+C)+pO

Some Programming Techniques for Processing Multi-Dimensional Matrices in a Paging Environment 191

by interchanging the DO statements and adding an appro-
priate loop to initialize the C matrix.

The DO statements controlling the ROW and INNER
indices should not be interchanged since ROW is always in
the leftmost position. Calculating the number of expected
page faults verifies this fact, since interchanging the DO
statements results in more page faults.

F=Mpa+LMps+pc

The multiple row rule and alternating direction rule may
also be applied to the matrix multiplication operation. Table
IV shows the formulas for the number of page faults expected
when different combinations of the rules are applied. The
variables a and ¢ represent the number of pages required to
hold q rows of the A and C matrices respectively, where q is
the number of rows being processed during each pass through
the outermost loop. All of the formulas only hold for the
condition a+c<k; that is, all the rows of A and C being
processed during one outer loop traversal remain in real
memory.

Each of these formulas has been evaluated for a matrix
multiplication. Each matrix is assumed to be 101X101,
L=M=N=101, spanning 20 pages, pa=ps=pc=20. The
multiple row algorithms will process five rows at a time, q=5
and a=c=1. The amount of real memory varies. The results
are displayed on the semi-logarithmic graph in Figure 4. For
matrix multiplication the number of page faults can be
reduced from over 200,000 to near 100 by application of the
programming techniques described.

The matrix multiplication algorithms were programmed

300,000 —
Columnwise Reference
Standard Algorithm
100,000 |
s Alternating Direction
50,000 —| Multiple Rows
Alternating Dire(%
1 and
Multiple Rows
10,000 |
Page 3
Faults -~
5,000 -
i Reordering Loops
Alternating Direction
1,000 | and
. Reordering Loops
500 Multiple Rows and Reordering Loops
koo —
300 Combination of
All Rules
200 -

100 | N S E EED S S B I
» 6 8 10 12 1 16 18 20

Pages of Real Memory

Figure 4—Comparison of matrix multiplication algorithms for matrices
spanning twenty pages

and executed. The environment was like that described for
the transpose operation in Section IV. Tables V and VI show
the measurements made. For those algorithms generating
more than 2500 page faults, partial runs were completed
and the results extrapolated.

Table VI illustrates several significant points about the
application of the programming rules to matrix multiplica-
tion. The increase in problem CPU time is about the same for
each rule or combination of rules. The elapsed time to com-
plete the specified matrix multiply was reduced from 5.4
hours to 4.2 minutes by applying the rules. The programmer
should consider all three rules. After applying the reordering
rule, the programmer could be satisfied with a 99.9 percent
decrease in page faults in exchange for a 12.7 percent increase
in problem CPU time. By continuing with the other two
rules, the problem CPU time is increased an additional 0.2
percent while the page faults are reduced by another 88.4
percent.

The matrix multiplication program which resulted when all
three rules were applied to the standard program and then
used to generate the data shown in Tables V and VI is shown
as Example 2.

INSTART = 1;
INEND = M;
INDIFF = 1;

DO BASEROW = 1TO L BY RPP;
LASTROW = MAX(BASEROW 4 RRP-1,L);
DO ROW = BASEROW TO LASTROW BY 1;
DOCOL=1TONBY1;
C(ROW,COL) = 0;

END;
END;
DO INNER = INSTART TO INEND BY
INDIFF;
DO ROW = BASEROW TO LASTROW
BY 1;

DOCOL =1TONBY1;
C(ROW,COL) = C(ROW,COL) +
A(ROW,INNER) #* B(INNER,
COL);
END;
END;
END;
TEMP = INSTART;
INSTART = INEND;
INEND = TEMP;
INDIFF = —INDIFF;
END;

Example 2—Matrix Multiplication With All Rules Applied

REMARKS ON APPLICABILITY AND SUMMARY

In this paper the problem of performing matrix operations on
large matrices is being considered from the point of view of
the application programmer. The motivation is to reduce the
number of page faults encountered while performing the

192 National Computer Conference, 1974

TABLE V—Summary of Matrix Multiplication Data

TABLE VI—Matrix Multiply Resource Utilization

Rule Measured Rule
Expected Measured Problem System Total Elapsed I/0

1 2 3 Page Faults Page Faults Expected 1 2 3 CPU CPU CPU Time Time
204060 204266 1.001 197.3 4493.9 4691.2 19460 14768.4
X 2060 2098 1.018 X 222.3 46.2 268.5 420 151.7
X 42460 42629 1.003 X 221.7 937.8 1159.6 4242 3082.1
X 71460 71986 1.007 X 224.5 1583.7 1808.2 7013 5204.6
X X 460 499 1.084 X X 222.6 11.0 233.6 269 36.1
X X 760 873 1.148 X X 222.7 19.2 241.9 305 63.1
X X 14900 16306 1.094 X X 229.6 358.7 588.3 1767 1178.9
X X X 210 314 1.495 X X X 222.7 6.9 229.6 252 22.7

matrix operation in order to improve the performance of the
application program. Three rules have been given which may
be applied by the application programmer to a source pro-
gram in order to reduce the number of page faults. (1) Nest
loops so that matrix elements are referenced in the same order
as they are stored. (2) Process all the rows in one page while
the page is in real memory. (3) Alternate the direction of
* traversing a matrix to rcuse pages not purged from real
memory.

When virtual memory was first introduced, one of its
major advantages was said to be that of allowing the pro-
grammer to work in a real memory environment without
concern about overlays. Shortly thereafter, material began to
appear discussing the iocality and compactness of a program.
Some papers actually discussed program design in terms of
the average number of real memory pages an operating
system would allocate to the application. Clearly, the freedom
of the programmer is abridged when space considerations
must be made. ‘

Applying the rules described in this paper does not really
diminish the freedom of the programmer but does allow the
programmer to get better performance from the application
program by using additional knowledge. The programmer
may use knowledge of (1) the matrix mapping function of the
language, (2) the word size and page size of the machine,
(3) the paging algorithm, or (4) some combination of these
items in order to reduce the number of page faults generated
by the program.

The data presented show that using the rules will not only
improve the performance of the application but may also
greatly lessen the demands on the resources of the system.
For a slight increase in problem CPU time, reductions can be
realized in total CPU time, elapsed time or real memory
costs, and channel time. Yet, when both 2 FORTRAN
library and a PL/I library on a paging system were checked,
the standard matrix transpose operation and the standard
matrix multiplication operation used as examples in this
paper were programmed.’®!! Several other matrix operations

Units are seconds.

that were checked could have been easily improved in an
obvious manner. In addition to program libraries, individuals
concerned with program performance should be aware of the
code executed when a program refers to all of the elements of
matrix by a simple reference to the matrix by name. PL/I
has several of these matrix operations defined. Also, several
languages allow the notation A(I, *) to refer to all of the
elements in row I of matrix A. Program performance may be
improved by explicitly writing the loop controls to access all
of the elements in the row.

In an early part of this paper, the class of problems was
restricted to those in which at least one row of a matrix
could be contained in a page. That restriction was for the
purpose of deriving formulas only. The programming tech-
niques apply to matrices of any size. In fact, the programming
rules may be ‘applied to the problem of folding in processing
large matrices in a non-paging environment.

The importance of applying a rule so that the number of
page faults depends on the amount of real memory available
should not be overlooked. For example, only the alternating
direction rule introduced this dependency into the matrix
multiplication operation. All of the matrix multiplication
algorithms not employing alternating directions would have
performed the same in three pages of real memory as in any
larger number of pages until the point at which all of the data
would fit in real memory. On the other hand, those algorithms,
which depend on the amount of real memory available, had
better performance for each page of real memory allocated
to them.

BIBLIOGRAPHY

1. Sayre, D., Is Automatic “Folding” of Programs Efficient Enough to
Displace Manual?,” CACM 12, 12 (December 1969), pp. 656-660.
2. Denning, P. J., “The Working Set Model for Program Behavior,”

CACM, May 1668, pp. 323-333.

Some Programming Techniques for Processing Multi-Dimensional Matrices in a Paging Environment 193

. Belady, L. A., “A Study of Replacement Algorithms for a Virtual
Storage Computer,” IBM Syst. J. 5, 2, 1966.

. Coffman, E. G. and L. C. Varian, “Further Experimental Data on
the Behavior of Programs in a Paging Environment,” CACM 11,7
July 1968, pp. 471-474.

. Brawn, B. 8., F. G. Gustavson, and E. 8. Mankin, “Sorting in a
Paging Environment,” CACM 13, 8, August 1970, pp. 483-494.

. Moler, C. B., “Matrix Computations with Fortran and Paging,”
CACM 15, 4, April 1972, pp. 268-270.

. Dubrulle, A. A., “Solution of the Complete Symmetric Eigenprob-
lem in a Virtual Memory Environment,” IBM J. Res. Dev. 16, 6,
November 1972, pp. 612-615.

10.

11.

. McKellar, A. C. and E. G. Coffman, ‘“Organizing Matrices and

Matrix Operations for Paged Memory Systems,” CACM 12, 3
March 1969, pp. 153-165.

. Guertin, R. L., “Programming in a Paging Environment, Data-

mation, February 1972, pp. 48-55.

——— System /360 Scientific Subroutine Package, Version III, Pro-
grammer’s Manual, IBM Edition GH20-0205-4, August 1970,
White Plains, New York.

System /360 Scientific Subroutine Package (PL/I), Program
Description and Operations Manual, IBM Edition H20-0586-0,
January 1968, White Plains, New York.

The double paging anomaly

by ROBERT P. GOLDBERG

Harvard University
Cambridge, Massachusetts

and

Honeywell Information Systems
Waltham, Massachusetts

and

ROBERT HASSINGER

Liberty Muiual Insurance Company
Hopkinton, Massachusetts

INTRODUCTION

Belady’s paging anomaly! has illustrated that certain page
replacement algorithms can cause more page faults as the
size of memory increases. Mattson? has shown that there
exists a class of algorithms called stack algorithms (such as
LRU least recently used) which cannot cause more page
faults as memory size increases. In this paper, we investigate
the dynamics of double-paging, i.e., running a paged oper-
ating system, e.g., IBM’s OS/VS23 under a paged virtual
machine monitor, e.g., VM/370.* In particular, we show that
an increase in the size of the memory of the virtual machine
without a corresponding inerease in its real memory size
can lead to a significant increase in the amount of paging,
even for the LRU algorithm.

DOUBLE PAGING

Virtual machine systems*?® provide the environment in
which double paging phenomena can occur.* The core of
a virtual machine system is the virtual machine monitor or
VMM. The VMM has certain similarities to conventional
operating systems in that it supports a user interface or
“extended machine” on which user programs can be run.
However, the extended machine supported by a VMM is the
full functional counterpart of an existing computer, and
may be the same computer that the VMM is itself running
on. Since the VMM can support programs which utilize the
full functionality of a computer system, the VMM can
support complete operating systems in the same way that
operating systems support user programs. It is thus possible
to run two incompatible operating systems on a single com-
puter at the same time, or to run one operating system in

*In this paper we use the term ‘“‘double paging’’ to refer only to these
phenomena. It does not refer to any other popular uses of this term.

195

production mode while system programmers are simultane-
ously modifying another active copy of that same operating
system.

Figure 1 uses IBM’s VM/370 to illustrate the organization
of a virtual machine svstem. The VM/370 Control Program
(the VMM) is shown, running on a bare System/370 and
supporting two virtual machines, VM1 and VMZ2. Since the
virtual machines are identically equivalent to complete
System/370 computer systems, any of the System/370 oper-
ating systems, such as 0S/VS2 can be run on virtual machine
VM1. OS/VS82, in turn, supports an “OS/VS2 Extended
Machine”” on which a user program is being run.

While paging is not an essential requirement for a virtual
machine system,®7-? the two facilities form a very powerful
combination together. In particular, with paging, it becomes
possible for the memory of the virtual machine(s) created
to be larger than the real memorv. This facility has been
used very effectively by CP-67 and VM/370 to run various
operating systems and applications which require a very
large memory 4101

If the VMM supports a virtual machine which includes
paging, then it is possible to run any paged operating system
(including the VMM) on this virtual machine. In this case,
we define:

¢ Level 2 memory—virtual memory of virtual machine

e Level 1 memory—memory of virtual machine

e Level 0 memory—memory of real machine, ie., real
memory.

The Level 2 memory is mapped via paging into Level 1
memory. The Level 1 memory is mapped, in turn, into
Level 0 memory.* Under these circumstances. we have
double paging.

Conventional computer systems do not provide direct

* The term level is used bere informally rather than in the strict sense as
defined in Goldberg.57

196 National Computer Conference, 1974

SYSTEM/370 BackNG .
LEVELO onmmonmess
VM/370
PAGING PAGING
) e)
BACKING BACKING
STORE SYSTEM/370 SYSTEM/370
LEVEL |
0s/vs2
PAGV
EXTENOED
MACHINE
w LEVEL 2
USER
PROGRAM

Figure 1—VM/370 virtual machine organization illustrating double
paging

hardware support for double paging. Thus, in systems such
as VM/370, software must be used to simulate the double
paging mechanism. When a process is to be activated in
Level 2 memory, its page mappings from Level 2 to Level 1
and from Level 1 to Level 0 must be combined to yield a
single composed mapping directly from Level 2 to Level 0.
Goldberg’? and Parmelee! discuss the mechanisms for soft-
ware support of double paging in conventional computer
systems and Goldberg®? discusses proposed computer archi-
tectures, called virtualizable architectures which typically pro-
vide direct hardware support for efficient double paging
mechanisms. In this paper we shall not examine mechanisms.
Rather we shall be concerned only with policies, i.e., the
page replacement algorithms, and see how thev are affected
by double paging.

Figure 1 illustrates two examples of double paging which
can arise in the operation of VM/370. VM/370 uses paging
to create the (illusion of) memory for virtual machines VM1
and VM2. OS/VS2 which is running on VM1, in turn, uses
paging to create a large address space (virtual storage) ex-
tended machine for its user programs. On VM2, another
copy of VM/370 is running, producing a second level of
virtual machines. In the figure, the second level virtual
machine is running CMS, an operating system which does
not utilize the paging mechanism. Thus, both user programs
shown in the figure will be affected by double paging.

Every paged system requires a backing store to preserve
each page’s contents when the page is not in the real or
virtual memory. In Figure 1, the backing store shown at
Level 0 holds pages of Level 1 (VM1 or VM2) which are

not resident in Level 0 memory. The two Level 1 backing
stores, in turn, hold pages of the Level 2 memory which are
not resident in Level 1 memory.

The illustration of Figure 1 does oceur in real world
situations. As paging becomes more common in “target”
machines, double paging will become more common in en-
capsulated systems. Examples of encapsulated systems in-
clude both the virtual machine systems (as illustrated above)
for identical host and virtual machines, and integrated
emulators® for dissimilar (paged) machines. An example of
the latter might be running the PDP-10 TENEX System
under an integrated emulator under OS/VS2*,

Other environments where double paging can be ex-
pected are in the newly proposed complex virtualizable
architectures.®?* Related considerations arise in the manage-
ment of multi-level (three or more) memory systems.'s

DYNAMICS OF DOUBLE PAGING

We will examine the effect of choice of page replacement
algorithms and sizes of memory upon the dynamics of double
paging. We restrict our attention to demand algorithms
operating in fixed memory spaces. Thus we will study one
virtual machine at a time and ignore other effects introduced
by resource multiplexing among VMs. Furthermore, when
we examine the paging behavior of a reference string, we
examine the behavior of the original string. We ignore any
effective “rewriting” (or renaming) of the string which might
occur.

Thus:

(1) Weignore “interference’ to the reference string caused
by any VMM traps and simulation.

(2) We assume that pages are treated homogeneously by
algorithms, i.e., pages are not ‘“locked.”

(3) We assume page replacement algorithms and tables
are not themselves in virtual memories. We assume
they are external to the system or in hardware.

Loosening these ground rules makes the analysis more com-
plex and might become the basis for future studies.
Furthermore, we make the following assumptions:

(1) Memory sizes in number of page frames are called
o, N1, N2.

(2) mo, ns with ny > ng will be known and fixed.

(3) We can set n; but once set it will be fixed.

(4) The same algorithm is used for level 2—1 and
level 1 — 0 paging.

(6) A demand page replacement algorithm is used and
all free pages will be utilized, i.e., n; > no, n2 > n1.

(6) We count total page faults and ignore the fact that
different backing store devices might be used at each
level.

With the above assumptions and terminology we can

* This is merely a hypothetical example.

The Double Paging Anomaly 197

identify four distinet operating regions. They are illustrated
in Figure 2.

(a) no=n1=ns
This case arises if no=ns. Then by assumption 5
(above) n: must equal ny and n.. In this case, after
the initial pages are brought into each memory no
additional paging occurs.
(b) no=n1<ne
This case arises if ny<n, and we choose to set
n1=ng. In this case, after the initial pages are brought
into level 0 memory there is only paging for level 2—1.
(€) mo<mi=ns
This case arises if ny<n, and we choose to set
ni=ns. In this case, after the initial pages are brought
into level 1 memory there is only paging for level 1—0.
(d) no<ni<ne
This case arises if no<n.—1 and we choose some
intermediate value for ni. Paging activity occurs for
level 2—1 and level 1—-0.

Case (a) is trivial and uninteresting. After start up, cases
(b) and (c) exhibit identical behavior to a one level paging
system. However, these cases remain of interest for compari-
son with the double paging case (d).

LRU ALGORITHM APPLIED TO DOUBLE PAGING

As noted above, stack algorithms such as LRU (least
recently used) have a number of desirable properties. Among

@) s n=n, A NO PAGING
I S
o n "2
—/ M
b) n=n<n A LEVEL 2 -» | PAGING

¢) no<n=n i ™ LEVEL |+ O PAGING

L
L

d) n_ < n <N, LEVEL 2—+1 AND

LEVEL 1-+0 PAGING

Figure 2—Dynamics of double paging

1

123242521415 Reference String

LRU

2 pages T L L Faults 4 Faults

!
123242521415 | Stack
1232|4252141

sxx x| 2 xx & | Faunes

n =S

LRU 123242521415 | stack 4 Faults
3 pages
n =3 1232/4252141
m =3 1133445224

LRU *or A ‘l * * Faults
1 pages
n, = 4

12324r2521415
nl=5 123274252141 Stack 2 Faults
113'3445224

Y13sass:2

Figure 3—Single level LRU: Increase in memory size cannot increase
number of faults

these is the stack property that any increase in memory size
cannot cause an increase in the number of page faults.?

In Figure 3, we illustrate the stack property by applying
the LRU algorithm to a reference string which is run in a
(conventional single paging) memory with three different
sizes. The figure indicates page faults with an asterisk (¥),
and shows the stack contents at each point in time. In
order to provide a uniform basis of comparison for all
examples, faults are counted only after the largest stack has
been filled.

The largest stack size is 4 and this stack will be filled after
reference string elements 12324 have been run. We delimit
this starting point with a dashed vertical line. and in Figures
3-6 count only those asterisks which fall to the right of the
dashed vertical line. When the reference string consisting of
five distinct page names (n;=>5) is run in a two page memory
(no=2), four faults occur. When memory is increased to
three pages (no=3), four faults still occur. When memory is
increased to four pages (no=4), the number of faults drops
to two.

In double paging, we must specify the reference string
(same as above), the replacement algorithm (LRU), and the
memory sizes (to be indicated below). Figures 4-6 apply
LRU algorithms at both levels to the same reference string.
We fix the reference string memory n;=5 and the real
memory no=2. Then, we count the number of faults as the
virtual machine memory =, is varied.

Figure 4-6 are similar to the single level paging case of
Figure 3. The reference string, stack values, faults, and
beginning of count (dashed vertical line) are shown. However,
in these figures, the TOTAL faults are given by the sum of
level 2—1 faults and level 1—0 faults.

In Figure 4, reference string memory ns=>5, virtual machine
memory n1=2, and real memory n,=2. After start-up we
count 4 Level 2—1 faults and 0 Level 1—0 faults for a total
of 4 faults. This is double paging case (b).

Figure 5 illustrates the anomalous double paging behavior
which can arise in case (d). We keep the same real memory
size no=2, and the same reference string memory ny=>5.

198 National Computer Conference, 1974

Level 2 Ref. String 123242521415
|
Level 1 Virtual Space R B 4 Level 2 = 1 Faults
LRU
2 pages 123242521415
12352la252141
I
Level 0 Real Space »r | 0 Level 1—> 0 Faults
LRU .
2 pages 123242521415
1235204252141
1
TOTAL 4 Faults
n =2
n =2
ny; =S

Figure 4—Double paging with LRU: Case (b)

However, we increase the size of the virtual machine’s
memory n1=3. As can be seen, the paging behavior becomes
significantly worse. There are still 4 Level 2—1 faults but
now there are also 4 Level 1—0 faults for a total of 8 faults.
Thus, the number of faults has doubled. Figure 5 details
how this increase has occurred. The small circles in Figure 5
indicate those pages in Level 1 which cause an extra induced
fault in Level 0. The arrows point from the Level 1 pages to
the extra Level 0 pages which are needed. Finally, the large
circles in Level 0 indicate page renaming operations, i.e.
what used to be page 1 is now page 4. For the LRU algorithm,
each Level 2—1 fault causes an extra Level 1—0 fault to
oceur also.

In Figure 6, we further increase virtual machine memory
size n1=4, keeping reference string memory n.=5 and real
memory no=2. There are still 4 Level 1—0 faults but the
number of Level 2—1 faults has dropped to 2. Thus, the
page fault total has decreased to 6.

We can summarize the results of this example as:

For a given reference string in a double paging system, an
increase in the size of the memory of the virtual machine

S
Level 2 Ref. String 12324 25 21 4 15

|

Level 1 Virtual Space | * * * x| = * oo * |4 Level 2 = 1 Faults
LRU

3 pages 1232 Je2z s2 1 41
123 laa 25 2 14

Qbe 9,

!
Level 0 Real Space R * s a
LRU

2 pages lzszﬁ&)z@zéﬂQ}hU

N~
1232242252211411

|

4 Level 1 = 0 Faults

<] -

o)

TOTAL 8 Faulrs
n, = 2

np =3

Figure 5—Double paging with LRU: Case (d)

T
Level 2 Ref. String 1232 AIZ 5 21 415

* 2 Level 2 =% 1 Faults

Level 1 Virtual Space * k& ll *
LRU

4 pages 12324{2 s2 1415

12324 25 2141

113]3 44 5224

4 Level 1=—% 0 raults

Level 0 Real Space * * *
LRU

i
2 pages 12324'2@2@415
' 5 1
|
|
s

TOTAL 6 Faults

n, =2
n =4

ny =5
Figure 6—Double paging with LRU: Case (d)

without a corresponding increase in its real memory size
can lead to a significant increase in the number of page
faults, even for the LRU algorithm.

THE ANOMALY EXPLAINED

The double paging anomaly occurs when ne>ne+1, 1o and
ns are fixed and we have n;=ny (Case (b)). We increase
n=mny+1 (Case (d)) and the amount of paging increases
significantly.

The anomaly can be explained for the LRU algorithm by
an inspection of the reference stacks of Figure 5. The level 1
stack contains three entries whereas the Level 0 stack con-
tains only two entries. When a page is at the bottom of the
level 1 stack and is a candidate for next removal, it already
has fallen out of the level 0 stack and has been swapped.
Thus, in order to swap an entry from the level 1 stack, it
must first be swapped into the level 0 stack.* Since LRU
algorithms are operating at both levels, the level 0 removal
algorithm will make exactly the worst choice each time.

2f +

CASE
(b) CASE (d)

CASE
TOTAL FAULTS e

swapped into memory.

The Double Paging Anomaly 199

Thus, it will always have to swap in the page which it most
recently swapped out.

For the LRU algorithm, worst performance occurs for
Case (d) with ni=mne+1. As n; increases, the number of page
faults continues to decrease (the stack property) until ni=n.
and we have Case (c¢). While the actual performance depends
upon the reference string and memory sizes, the trend can
be seen in Figure 7. The figure is drawn as a continuous curve
even though it is really a series of steps.

Surprising results hold not only for the LRU algorithm
but for other double paging replacement algorithms as well.
For example, with the same reference string used above,
the FIFO (first in first out) algorithm also doubles from
5 to 10 the number of page faults in going from n;=2 to
n1=3. On the other hand, with the very unlikely MRU
(most recently used) algorithm, the number of page faults
remains constant as n, is varied between n,=2 and n,=35.

VM/370 avoids some of the difficulties explored in this
paper through the use of certain specialized algorithms which
allow locking (dedicated) pages in main memory. While this
procedure may decrease susceptibility to the double paging
anomaly, it reduces resources available to other users and
might adversely affect global performance. In any case, we
have shown that in double paging situations great care must
be exercised.

As noted above, virtual machine recursion®7 implies the
ability to run a VMM under a VMM under a VMM
It is known that in order to test VM/370 software before
System/370 hardware was available, IBM ran specially
modified versions of CP-67 several levels deep. In the new
complex virtualizable architectures mechanisms are provided
for supporting arbitrarily deep recursion. In these systems,
the double paging problem generalizes to the m-level paging
problem.

CONCLUSION

Progress in understanding complex phenomena is often made
through the discovery and explanation of anomalous behavior
which arises in apparently simple situations. In this paper
we have examined one aspect of the resource allocation

problem in a large computer system. We have observed that
when rational locally optimal algorithms are combined to-
gether, distinctly suboptimal global behavior can sometimes
result.

REFERENCES

1. Belady, V. A., “A Study of Replacement Algorithms for a Virtual-
Storage Computer,” I1BM SystemsJournal, Vol. 5, No. 2, 1966.

2. Mattson, R. L., J. Gecsei, D. R. Slutz and I. L. Traiger, “Evaluation
Techniques for Storage Hierarchies,”” IBM Systems Journal, Vol. 9,
No. 2, 1970.

3. IBM, Introduction to OS/VS2 Release 2, IBM Corporation Publica-
tion No. GC28-0061.

4. IBM Virtual Machine Facility/370—Planning Guide, IBM Cor-
poration, Publication No. GC20-1801-0, 1972.

5. Buzen, J. P., U. O. Gagliardi, “The Evolution of Virtual Machine
Architecture,” Proceedings AFIPS National Computer Conference,
1973.

6. Goldberg, R. P., “Architecture of Virtual Machines,” Proceedings
AFIPS National Computer Conference, 1973.

7. Goldberg, R. P., Architectural Principles for Virtual Computer Sys-
tems, Ph.D. Thesis, Division of Engineering and Applied Physics,
Harvard University, Cambridge, Massachusetts, 1972.

8. Goldberg, R. P. (ed.), Proceedings ACM SIGARCH-SIGOPS
Workshop on Virtual Computer Systems, Cambridge, Massachusetts,
1973.

9. Goldberg, R. P., “Virtual Machines: Semantics and Examples,”
Proceedings IEEE Computer Society Conference, Boston, Massachu-
setts, 1971.

10. Meyer, R. A. and L. H. Seawright, “A Virtual Machine Time
Sharing System,” IBM Systems Journal, Vol. 9, No. 3, 1970.

11. Parmelee, R. P., T. L. Peterson, C. C. Tillman and D. J. Hatfield,
“Virtual Storage and Virtual Machine Concepts,” IBM Systems
Journal, Vol. 11, No. 2, 1972.

12. Goldberg, R. P., Virtual Machine Systems, MIT Lincoln Labora-
tory Report No. MS-2687, (also 281-0036), Lexington Massachu-
setts, 1969.

13. Mallach, E. G., “Emulation—A Survey”, Honeywell Compuier
Journal, Vol. 6, No. 4, 1973.

14. Lauer, H. C. and D. Wyeth, “A Recursive Virtual Machine Archi-
tecture,” Proceedings ACM SIGARCH-SIGOPS Workshop on
Virtual Computer Systems, Cambridge, Massachusetts, 1973.

15. Scheffler, L. J., “Optimal Folding of a Paging Drum in a Three
Level Memory System,”’ Proceedings of ACM SIGOPS Fourth
Symposium on Operating Systems Principles, Yorktown Heights,
New York, 1973.

Effective planning for and justification of the extension of data

processing in hospitals

by RICHARD B. FREIBRUN

Compucare, Inc.
Chicago, Illinois

Starting with the basic premise that: There is a significant
role for data processing as a viable tool to assist in patient
care and administrative management of hospitals, then we
can dispense with the assumption that it should no longer
be necessary to convince administrators of the need for
computerization in hospitals. This premise seems to be sub-
stantiated by the significant increase in the application of
computer technology over the last several years as docu-
mented by a 1972 American Hospital Association Survey
that indicated that of 552 hospitals sampled, 81 percent had
one or more in-house computers and an additional 5 percent
used out-of-house computer services.

By virtue of today’s socio-economic environment and con-
tinuing advancements in medicine it is a given fact that
hospitals are becoming more complex and are offering more
services. The management of a more complex and diverse
institution offering a broader range of services becomes much
more difficult. To compound the complexity problem, there
continues to be a shortage of qualified professional personnel
and those qualified professionals now in the field are being
used heavily in clerical tasks. All of these trends make the
hospital a very difficult institution to manage.

In addition to the pressures on the industry eaused by
complexity, there have also been a number of clearly visible
trends related to attempts to solve this problem through the
use of data processing technology. Within the last year there
have been many clearly recognizable trends.

e A greater number of vendors with installed systems.

e A number of new vendors entering the field.

¢ A number of established vendors leaving the field.

« Heightened interest and understanding of integrated
clinical data processing concepts by administrators.

o Pressures for internal cost reduction and quality of
care justifications caused by Phase III, Phase IV,
C.0.L.C., P.S.R.O.s, ete.

e The need for new management information to insure
C.0.L.C. “guideline” compliance.

« Continued growth of professional societies in the Health
Care Data Processing area, i.e., HISSG (Hospital Infor-
mation Systems Sharing Group), Society for Computer

201

Medicine, HMSS (Hospital Management Systems So-
ciety).

o AHA Interest: Advisory Panels

Numerous Institutes

o The recognition by administrators that Data Processing
is an expensive resource that must be managed as such.

e The growing recognition of the need to justify programs
of computerization before investments are made with
the corresponding subsequent requirement of “tracking’’
the performance of that investment once made.

o The recognition by administrators that the use of Data
Processing in hospitals has been costly with marginal
return, if any, from the computer investment.

Currently, computers in most hospitals are employed in
financial applications, such as patient billing, payroll and
accounts receivable. The pressures of increased workloads
and insurance company and other agency reporting require-
ments make the automation of these functions often necessary
and certainly useful. However, this rarely yields an ap-
propriate return on a data processing investment, except
occasionally in terms of improved cash flow through the
more efficient control and more rapid collection of aceounts
receivable. ‘

The real benefit of automation lies in its use in the handling
of information in the clinical departments. The large quantity
of information pertaining to the care of the patient which is
processed in these areas provides excellent justification for
properly executed programs of extended automation. Certain
clinical departments lend themselves more readily to auto-
mation because of their high volume of data and their
high cost of operation, typically represented by personnel
costs, i.e., Laboratory, Radiology, Central Supply, Pharmacy,
Dietary. Nursing, representing approximately 40 percent-50
percent of a hospital’s budget, becomes an excellent source for
systems improvement opportunities through the reduction of
clerically intensive tasks performed as a result of a physi-
cian’s order for a clinieal service.

A relatively small number of hospitals have proceeded
with programs of extended automation beyond the Business
Office. These systems typically have involved one or more

202 National Computer Conference, 1974

Although benefits, as a rule have not been achieved, a
well planned program can indeed:

Reduce Costs
Increase Revenue

Enhance Quality of Care (Through Better Accuracy and

(FOR TOMORROW) Free Professional Personnel from Clerical Tasks
and
Reduce Systems Complexity and Opportunities for Error

IWﬁﬂﬂm
DOCLMENTS ILES . . .
STEPS ——— ———— This may appear as an impossible set of goals but when the
complexity of information processing within a hospital is
NURSING UNIT k1| V3 7 better understood, the goal is more achievable.

Illustrative of this point is the ordering of a lower G.I.

RADIOLOGY B 6 > series procedure. This is a common procedure which typically
SUPPORT SERVICES affects a number of areas in the hospital. At one hospital
- DIETRY 5 4 1 which we have examined in depth, we found that the manual
- ATION 8 2 1 system they were using to communicate information required
82 steps, 32 separate documents and resulted in the filing of

PHARMACY iVl 4 3

19 documents (Figure 1). The Nursing Unit was involved in
both sides of the procedure, Radiology, of course, took the
pictures, Dietary was invoived in a special diet for the
patient, Transportation was involved to bring the patient
to Radiology and back to the Nursing Unit, Pharmacy was
Figure 1 involved in providing certain preparatory drugs, the Business
Office, of course, was involved in the billing. Through a
proposed automation technique at this particular hospital,
the steps involved were reduced from 82 to 23, the documents
o The collection of the doctor’s order at the source (the involved from 32 to 5 and the documents filed from 19 to 2
nursing unit).
e The transmission of that order to the interested service
department (Lab, X-Ray, Pharmacy, cte.).
e The processing of the information (patient charge post-
ing, Pharmacy inventory update, Lab test result).
e The retrieval of the information (transmission and dis-
play at the source for use in the care of the patient).
e The ultimate storage of the information as a component
of the patient’s medical record.

BUSINESS OFFICE

TOTAL

s lo
& =
“l‘o‘ lN

of the following features:

LOWER G6.I. SERIES
(FOR TOMORROW)
The experience of hospitals in the past, which have ven-
tured beyond the Business Office, has indicated that many
seemingly viable automation programs have not produced the
results at the costs anticipated for them. Difficulties have
been encountered in these programs primarily for the fol-

ST NasETs L Rnee

lowing reasons: NURSING UNIT -8 = | 17
¢ The selected approach to automation has required large RADIOLOGY ey
front-end investments in anticipation of future benefits 7 %3 =
(cost reduction, better quality of care, ete.). This high SUPPORT SERVICES
risk approach, accompanied by the failure to achieve the - DIETARY =0 40 +o
desired benefits, has resulted in 2 waste of resources and - TRANSPORTATICN &4 >0 o
tremendous dissatisfaction on the part of the hospitals
involved. PHARNACY -4 -+ =0
e The selected approach to automation did not fit the
hospital’s or the vendor’s ability to achieve. When BUSINESS OFFICE So 4o

programs were undertaken, well thought out plans for
implementation were not developed, and activities were
not carefully monitored—as a result, the benefits were
not realized. Figure 2

TOTAL =223 =y 52

Effective Planning for and Justification of the Extension of Data Processing in Hospitals 903

(Figure 2). By decreasing the number of steps, cost reduction
could be obtained and the quality of care of that particular
hospital eould be enhanced.

One of the major factors impacting “quality” of care is
“opportunity” for error (Figure 3). It follows that the more
tasks that must take place, the more opportunity for error.
By reducing the tasks that take place manually, the oppor-
tunity for error is correspondingly reduced. It has been our
experience that those innovations which reduce costs in a
hospital are the same things that enhance the quality of care.

As a result of internal and external pressures and obvious
opportunities for improving hospital operations, many hos-
pitals have approved large programs for the extended use of
the computer. Most hospitals have not, however, achieved
the expected benefits intuitively projected for these programs.
In actuality, automation has increased costs, had little affect
on patient care, increased the complexity of managing the
hospital and increased the management burden. Why is this
true? The prime causes of lack of complete success in com-
puter effort results from a number of factors:

There has been an oversimplification of the problem
coupled with a general lack of recognition that you can’t
change overnight. You must change in a pre-planned careful
fashion and the ‘“Management of Change” requires skills
above and beyond those that might be currently available
within the Hospital Organization. Too frequently, hospitals
have acted intuitively in this matter. They feel that the
computer will be beneficial but they do not define the
benefits and the plan to realize those benefits. Instead they
typically move ahead without clear justification or clear
computer program objectives. When the computer program
does not achieve what administration expected, they are, of
course, unhappy. This might be characterized as a function
of inadequate planning.

Hospital computer programs being considered today typi-
cally require large front-end investments and thus auto-
matically become high risk programs particularly when
measured in terms of achieved benefits. The large commit-~
ment necessary at the front end will lock a hospital into a
program from which there is no turning back. Thus with
inadequate planning, the program becomes a very high risk
affair.

Another factor is the over excessive influence by vendors
and suppliers in the decision making process. Vendors, by
their nature, tend to oversell and encourage large commit~
ments. Unless the hospital grabs hold of the problem and
adequately defines its needs in a preplanned way, it risks
t0o much vendor control and influence of the program.

The proliferation of vendors in the field causes still another
difficulty. Each vendor has his own approach, plan and
product and makes a number of claims which are appealing
while attempting to establish his difference. Because of the
large number of vendors, it is extremely difficult to evaluate
capabilities and make an intelligent choice of a program.

In examining some of the general characteristics of hos-
pitals considering extending data processing into so called
“HIS/MIS” programs, we find that they are typically larger
and therefore more complicated hospitals who can potentially

OPPORTUNITIES FOR ERROR

Common
Pieces Number Number Opportunities
of of of for
information Documents Transcriptions Error
Nursing Unit 15 5 5 315
Pharmacy 6 4 3 72
Business Office 10 4 1 40

TOTAL 487

Figure 3

gain a greater benefit from computerization and have certain
characteristics in common:

o These hospitals almost universally are concerned about
the problem of using the computer more extensively
and rank the computer problem high amongst those
that need to be solved in the next several years.

e They are very acutely aware of previous failures and
are very concerned about making a major commitment
in light of the less than successful results of the industry.

» They are presently spending a lot of money on com-
puters.

o These hospitals are generally spending between two and
four dollars per patient day currently, and are using
the computer primarily in the Business Office, with
varying degrees of effectiveness.

The thing that they all have in common is that they
recognize the need for even further expenditures and are
presently trying to decide upon their next step while con-
sidering questions like:

o Should we use the computer outside the Business Office
or shouldn’t we?

e Should we consider a shared service vendor instead of
our in-house computer?

e Should we make a full-fledged commitment to a “total”
HIS/MIS?

o Should we buy a package?

o Should we develop our own?

o What application first? Why?

o How much will each application cost? Why?

e How estimated?

e What are the varying costs, benefits and risks of the
different next steps?

o What effect do regulatory and community agencies have?

The problem is very complicated. There are a number of
conflicting pressures which have resulted in an ambivalent
attitude and a lack of decisiveness toward the extended use
of computers in hospitals. On the one hand, the adminis-
trator knows that he will have to use the computer more
extensively but on the other hand, he is unhappy at the
prospect of greater expenditures in an area whose performance

204 National Computer Conference, 1974

has been mixed, at best. The problem is more of what to do
rather than what not to do.

In addition to the difficulty caused by these factors there
is a general lack of recognition of the requirements necessary
for managing an automation effort. There is a tendency to
use inadequate control methods and to inaccurately define
the goals of the program. This has led to underestimates of
costs, and overestimates of benefits. If there is anything
that makes management unhappy, it’s underestimates of
costs and overestimates of benefits. This has been followed
by a communication gap between management and computer
technologists. There has generally been too much emphasis
on technology and too little emphasis on establishing:

« Proper program management

e Proper program objectives

e Proper program planning

o Proper system design

o Proper project control and tracking

It is in this area that hospital management falls down.

The technology required to make “hospital information
systems” work has been available for several years and has
been appropriately used in a number of industries. The com-
plexity of the hospital, however, makes it more difficult to
use computers in that environment than in most other en-
vironments. This is not a technical problem. This is a manage-
ment problem and should be treated from that perspective.

In approaching this problem there are a number of ques-
tions which must be asked and answered before a satisfactory
solution can be achieved.

What should be done first?

What should be done second?

‘What should be done third?

Which applications are feasible?

Which applications are justifiable?

In what order should you prioritize your program?

o How much should be spent? Over what period of time?

o How will such expenditures be justified?

e Who should T expend with?

e Over what length of time can the ultimate system be
reasonably installed? Is it six months, one year, ten
years, fifteen years?

o How can I be reasonably certain of the accuracy of my
plan?

o What are the checkpoints which tell me I'm succeeding—

and should proceed—or failing—and should stop and

re-evaluate?

¢« o o o o

All of these questions must be carefully addressed before
undertaking implementation of a program. A proper approach
to the extended use of computers in hospitals must include
the use of sound business justification and planning tech-
niques preliminary to the start of implementation of the
program.

Compucare, through its experience with many hospital

utomation projects, has developed techniques which support

a
hospitals in thege difficult decisions and which tend to greatly

reduce the risk of their actions. Utilizing the minimum
criteria of:

¢ Reduction to cost
e Increase to revenue and
« Enhancement to patient care

as key indicators against which to proceed. The approach
we have developed and apply generally follows this guideline:

1. Assess the present computer program to determine
the effectiveness and benefits of the current Data
Processing budget.

2. As a result of the assessment a plan of action should
be developed to improve the existing program in the
short range considering:

—Computer capacity—over/under
—Projects to “kill”

—Staff and development techniques
—Available budget dollars

3. The definition of the benefits of automation by system
in terms of the potential for:

—Reduced costs
—Increased revenue
—Improved patient care

4. An assessment of the risks of automation including:

—Development and operating costs
—Vendor performance capability
—Change to hospital policies and procedures

5. The ranking and prioritizing of identified projects of
value

6. A determination of an affordable level of expenditure
considering:

—Auwvailable dollars

—Contention for resources

—Regulatory pressures

—Value of the opportunities/benefits to be achieved

7. The screening of the commercial availability of system
packages to meet the hospital’s opportunities/benefits
and to:

—Develop requests for proposal as required
~—Firm up cost data
—Integrate projects

8. Selection of the most appropriate approach based on
the criteria of:

—Early return on investment

—Funding future development costs through the
achievement of cost savings, as quickly as possible

—Low risk

9. The definition of the techniques by which progress

can be meagured to help assure the achievement of

Effective Planning for and Justification of the Extension of Data Processing in Hospitals 205

the benefits by:

——Setting measurement benchmarks for each approved
project

—Establishing benefit realization plans

—Establishing a project reporting system

The result of strict adherence to the described approach

should be the development of plans that would keep costs
and benefits of new systems in parallel as much as possible,
while additionally insuring early return on investment and
the opportunity to modify the plan without losing the
economies identified. It is this kind of sound business analysis
that identifies the attendant risks while clearly measuring
achievement that is going to make certain hospitals success-
ful in their data processing programs.

A resource allocation and planning system for the development
and operation of health care delivery systems

by BERNARD W. BISE

Peat, Marwick, Mitchell & Company
Washington, D.C.

INTRODUCTION

Hardly a week passes when one does not hear or read about
the crisis in American health care. To the consumer and the
health and medical care provider, there is a growing recogni-
tion of the inadequacies inherent in the distribution, delivery
and financing of this Nation’s health care. The majority of
Americans today rely on the independent physician for medi-
cal care, consulting an array of specialists for specific prob-
lems and utilizing the hospital as the predominant facility in
which to receive treatment. Medical care is purchased pri-
marily on a fee-for-service basis when acquired by an in-
dividual.

Our present fragmented system—or better, non-system—
of medical care has evolved such that only the acutely ill
patient may enter into the medical care system and then
only if he has the health insurance or personal finances to
cover the cost of his care. Insurance notwithstanding, the
person whose illness requires extended hospitalization and/or
treatment by sophisticated procedures and technology will
‘almost certainly experience long-term financial indebtedness,
if not bankruptcy. Individuals who believe themselves ill
and/or those who wish to remain healthy will find access to
the system difficult if not impossible.

That a comprehensive health and medical care program
for all Americans can be financed and delivered through
existing mechanisms is not the issue. The addition of re-
sources—manpower, facilities, and money—to the present
medical care environment will not alleviate the crisis. The
system must be reorganized and restructured to meet the
various levels of health and medical care needs of the Ameri-
can public.

During the past few years and probably for the first time
in modern history, there has been an attempt—by private
industry, consumer groups, and the Federal government—
to reverse the trend of increasingly costly conventional medi-
cal care. Generally, the innovative delivery systems emerging
allow the health care planner to examine carefully the real
and perceived needs of the health care consumer. These
alternative systems apply resources at appropriate levels, so

207

as to be fully responsive to needs of both the consumer and
the provider.

Many of these new alternative health care delivery or-
ganizations have entered the planning stage of development
and a few have become operational. Regardless of the differ-
ences in their organizational structure, health and medical
care benefits program, and provider relationships, certain
common characteristics among these organizations have
emerged. The most prominent stems from the underlying con-
cept that financing care and delivering care are interrelated
activities which are best served when coordinated within
the same organization. Health care planners are becoming
involved in a new business in which questions extend beyond
medical practice. The planning and effective management of
health care delivery require the application of a broad range
of business skills and tools—marketing, production, finance—
to supplement the delivery of medical care. Recent experi-
ence has shown that, indeed, a failure to devote adequate
attention to the financial implications of program decisions
has resulted in either total financial failure or significant
reduction in the operational scope of the delivery system.

As is true for most new business enterprises, the new de-
livery systems have experienced great uncertainty in attempt-
ing to make realistic operating projections. There is scant
historical data on which to forecast either potential enroll-
ment or operating cost parameters. The health care planner
must be able to examine the financial implications of alterna-
tive decisions made during strategic planning. Faced with
such uncertainties, PMM&Co. has developed a computerized
analytical system—Resource Allocation and Planning System
for the Development and Operation of Health Care Delivery
Systems (RAAP)—which may assist the health care planner
in projecting potential operating outcomes, resulting from
management decisions on potential target beneficiary pop-
ulations, health and medical care resource utilization, require-
ments, allocation, and cost. The final output of this system
is a pro forma cash flow statement which estimates the
future financial condition of the delivery system, resulting
from the service demand, resource utilization, and allocation
proposed by the health care planner.

208 National Computer Conference, 1974

COMPUTE
PROJECTED
BENEFICIARY
POPULATION

l

SELECT
HEALTH AND MEDICAL
CARE PROGRAM
STRUCTURE

!
! !

COMPUTE PROJECTED
HEALTH AND MEDICAL
CARE PROGRAM
UTILIZATION RATES

COMPUTE
REVENUES

|
1 !

COMPUTE PROJECTED
MANPOWER RESQURCE
REQUIREMENTS AND

COMPUTE PROJECTED
FACILITIES
REQUIREMENTS

ALLOCATION

l |
l

COMPUTE PROJECTED
RESOURCE COSTS

|

l

COMPUTE PROJECTED
CASH FLOW

Exhibit I—RAAP system framework
RAAP SYSTEM DESCRIPTION

The Resource Allocation and Planning System (RAAP)
is a computer-assisted analytical system used by the health
care planner to forecast or project operating results under a
variety of operational assumptions and to reforecast as
operating experience grows. Heretofore, developing projec-
tions of this kind was a long and painstaking effort; conse-
quently, many organizations failed to examine all meaningful
alternatives because of the tedious computations required.

The focal point of the RAAP system is a discreet timestep
computer model. A “model” may generally be defined as the
body of information gathered about a system for the purpose
of studying the system. Since the purpose of the study is to
determine the nature of the information gleaned, there is no
unique system model.

The task of deriving 4 system model may be divided
broadly into two subtasks: (a) establishing the model struc-
ture and (b) supplying the data. Establishing the structure
determines the limits of the system and identifies the vari-
ables, attributes, and activities of the system. The data pro-
vide the attributes’ values and defines the relationships.in-
volved in the activities.

PMM&Co. believes that both short- and long-range viabil-
ity of a health care delivery system is dependent on manage-
ment’s comprehension of the relationship between utilization
forecast and financial planning. The majority of financial and
operational decision-making must be based on the delivery

system utilization forecast. PMM&Co. further believes that
resource requirements and the allocation of those resources
to provide the health and medical care services and benefits
is in large measure a dynamic process. The projection of
maximum health and medical care program utilization and
the application of resources necessary to meet that demand
during the initial period of operations is likely to lead to sig-
nificant negative cash flows which the delivery system might
find difficult to overcome in subsequent years. We believe
that resource requirements and allocation should be sched-
uled, based upon projected incremental monthly controlled
utilization. This is not to say that there may not be a re-
quirement for initial capital outlay for program start-up.
However, dynamic resource utilization based upon
incremental monthly projected resource utilization demands
will aid in the establishment of a financially viable program
during the initial phases of operation.

The RAAP system is structured around this concept. Ex-
hibit I illustrates the logic flow of the model framework.
Resource utilization and allocation, as well as operating ex-
penses and revenue, are estimated based upon expected
program utilization by the potential beneficiary population.
To develop the pro forma cash flow projection the system
requires quantitative data on the size of the target population
and expected health and medical care program use-rates by
the beneficiary population. The combination of population
size and use rates determines probable resource requirements
and allocation and the resultant cash flow.

One of the primary values of RAAP is its rapid examination
of alternative strategies which need to be considered during
the initial planning periods. Most factors used in the system
can be readily modified to meet differing assumptions, and
the impact of these assumptions can easily be computed.
When the health care planner has developed a formalized
operational and organizational structure, the RAAP system
will project likely operating results against which the planner
can measure the delivery system actual performance. The
system is an effective management planning tool and also
permits the delivery system to analyze systematically alter-
native decisions and evaluate operational experience.

The RAAP system operates in a ‘“time-sharing” mode, a
concept which allows one computer to process several user
applications simultaneously, resulting in lower individual
cost. The RAAP system has been designed such that it can
be used directly from the health care planner’s office merely
by using a portable computer terminal and a common office
telephone. The operating mode of RAAP is “conversational”
in the sense that specific assumptions which the planner may
wish to vary (i.e., salary rates, hospital per diem rates,
program utilization rates, etc.) are entered each time the
program is run permitting rapid comparison of alternative
assumptions and corresponding financial and operational
implications.

Some of the potential analyses that may be made by RAAP
are:

o initial estimation of operating results;
e analysis of the impact of varying premium rates;

A Resource Allocation and Planning System for the Development and Operation of Health Care Delivery Systems 209

analysis of the impact of varying beneficiary population

size or market penetration;

analysis of the impact of rising hospital costs or changing

hospital utilization;

analysis of the impact of alternative service delivery

structure;

o analysis of the effect of including a dental care program;
and, .

e analysis of the impact on manpower requirements and

costs of program structure.

One of the major values of the system is its capability to
highlight the costs associated with gradual staff increases
proportionate to service demand, as opposed to the hiring of
a fixed “start-up” staff. When used in conjunction with
other management information, the system can evaluate the
impact of current trends and their effect on staffing and costs.

Effective use of the RAAP system requires the health care
planner to develop a set of operating assumptions which are
used as inputs to the system. The information used to de-
velop these operating assumptions usually emanates from
preliminary studies of the potential beneficiary population
and available health and medical resources. In general terms,
the types of information required to formulate system as-
sumptions are:

o demography of potential beneficiary population;

o expected level and rate of program utilization;

¢ nature, scope and potential benefits package;

o expected health and medical resources use rates;

o expected levels of compensation to health and medical
care providers; and,

e expected organizational and operational structure.

Based on the input assumptions outlined above, the RAAP
system produces 15 output reports. The user has the option
of choosing the number and order of printing of these reports
in accordance with his particular needs. The reports are as
follows:

o projected monthly market penetration;

e projected family mix of beneficiary population;

» projected health and medical care program utilization;

» projected space requirements;

e projected manpower requirement, allocation and cost
by programs of care;

o projected management and administrative manpower
requirements and cost;

e projected long-term debt service obligation; and

e projected pro forma cash flow statement.

Perhaps one of the more important benefits of the RAAP
system is its requirement for an initial set of formal input
information. The input information will require the planner
to make certain decisions relating to the delivery system’s
organization and operation. Obviously, this is a most difficult
task and requires much research, data collection, and analy-
sis. The RAAP system provides a formal approach to such
an effort. Having established the initial data bases of in-
formation, the RAAP system allows the planner to study

the impact of alternative decisions in terms of resources
and cost. The projected cash flow analysis alone is not a
sufficient budgeting tool, but it does require the development
of resources and cost data that are key elements and form
a basis for a system that can be used to control program
cost.

RAAP SYSTEM PLANNING APPLICATION

PMM&Co. realizes that the design and implementation of
a comprehensive health care delivery system necessitates
decision-making in many areas, such as organizational struc-
ture, legal and tax status, benefits package design, staffing,
and marketing. Our experience suggests that unfortunately
the financial implications of decisions made in these areas
appear to have been ignored, unrecognized, or improperly
emphasized, ultimately resulting in relatively substantial
losses. Entrepreneurs have learned to prevent financial catas-
trophies by basing operational decisions on sound business
judgments. Health planners now need to adapt and apply
their concepts of prevention to the body fiscal (management)
as well as the body physical (subsecriber) for ensuring the
solvency of the former permits continued service to the latter.

The RAAP system is applicable in the planning of, and
projecting the likely operating results of, many types of
health care delivery systems. Systems such as:

o ambulatory care centers;

e group practices;

 hospital ambulatory care departments;
o medical foundations; and,

o health maintenance organizations

to name a few, might use the RAAP system to assist the
health care planner in the development of programmatically
and financially sound delivery systems.

During the previous two years, Peat, Marwick, Mitchell &
Co. (PMM&Co.) has been assisting HMOs in developing
operationally sound and financially viable programs of health
and medical care delivery. A major portion of our assistance
has been projecting potential operating revenues and costs.

It is the Health Maintenance Organization (HMO) which
appears to hold the greatest promise of providing the required
elements of a new and responsive health care delivery system.
The HMO coneept envisions an organized and well-managed
system providing a comprehensive package of health and
medical care programs and services which shift from a
disease/hospital-care orientation to a prevention and ambula-
tory care approach. This concept implies an obligation to
render family-oriented health and medical care with an
emphasis on continuity of care from preventive through
rehabilitative services, on patient education and counseling,
on ambulatory diagnosis and treatment, and on legitimate
and expeditious referrals to appropriate specialists. The
HMO’s fundamental economic distinction is its method of
payment—revenues based upon coverage of the voluntarily
enrolied population served rather than reimbursement of
fees to providers for services to consumers.

210 National Computer Conference, 1974

THIL

g8

578 0.7 74 1274 105 275 3.75 475 575 675 775 8.76|9.76 10.75 11751275 1.76 12.76 3.06 &.7€ 5.76 6.7 7.76 9.7

3t OPERATIONNL YEAR 2nd OPERATIONAL YEAR

N, YRR

Exhibit II—Projected enrollment growth curve

The following pages present a sample application of the
RAAP system to a hypothetical HMO. The sample applica-
tion will illustrate the development of the required input
data elements necessary to compute the likely resource re-
quirement and cost, and the projected pro forma cash fiow
statement. For the purposes of this example the necessary
research, data collection, and analysis of the target popula-
tion has been completed. Adjusted to the findings and con-
clusions, benefits package and price structure have been
developed. The HMO planner also has developed an alterna-
tive organizational and operational structure. The planner
now wishes to assess the financial viability of his program.

Lacking any actual operational data for the proposed
HMO, the planner must develop a set of operational assump-
tions which are used to project the likely HMO operating
results. The assumptions pertain to:

o the HMO’s enrollment level and growth rate;
o the HMO’s resources utilization rate; and,
o the HMO’s resources capacity and cost.

In each of these three areas the following assumptions were
made.

Enrollment Level and Growth Rate

» Experience of newly-formed HMOs suggests that a pene-
tration of 10 percent of the potential target beneficiary
population during the first year is not unrealistic. Ac-
cordingly, the planner assumes a 10 percent penetration
of the employees of the major employer in the identified
target area. Accordingly, an enrollment population of
employed family contracts, distributed as 20 percent
single-member families, 20 percent two-member families,
and 60 percent three-or-more member families with an
average family size of 3.5 people/family are assumed.

e An operational start-up date of September 1974, with
a two-year experimental operational period.
An initial enrollment population of 10 percent of the
expected total enrollment is projected with growth at a
rate based on a cumulative normal distribution growth,
which allows for: (a) a slow build-up phase, first three
months; (b) an exponential growth phase, next seven
months; and (¢) a leveling-off phase, the last two months
of the first year, with a steady state population after
one year of operation. (Exhibit IT)

Resource Ulilization Rates

o Resource utilization (i.e., manpower, money, facilities
and equipment) are directly determined by enrollment
population on a month-to-month basis, without anticipa-
tory staffing.

o An average ambulatory care use-rate of 8.7 ambulatory

care visits per person per year (based on an average of

Kaiser-Portland Health Plan and OEO data reported

in Medical Care, 10:187-200, May-June 1972), with 4.2

visits/person/year for general health and medical care

programs, 2.0 visits/person/year for mental health pro-
grams and 2.5 visits/person/year for dental health pro-
grams.

A hospital use rate in patient day per 1000 enrollees

based upon HMO’s estimate of expected use, and at a

cost represented by the average daily billed charges of

the hospital. ‘

Prescription drugs provided at an average rate of four

(4) prescriptions per member per year at an average

cost to the plan of $3.00 per prescription.

Resource Capacity and Cost

o Professional manpower requirements for ambulatory and
in-hospital care programs under a ‘‘team approach”
will be met by one or more “physician tecams”: (a)
composed of one full-time equivalent (FTE) physician
and 1.5 FTE paraprofessionals (physician’s assistant or
nurse practitioner); (b) servicing 35 patients per day

CLIENT NAME?
ENROLLMENT TABLE NAME?TEST3

BENEFIT PACKAGE COMPONENTS
MEDICAL SUPPLEMENTAL-YES=171

DENTAL CARE-YES=170

AHBULATORY TEANMS-YES=1?1

PERCENT 1,2,3+ PERSON FAMILIES?20,20,60

3+ PERSON FAMILIES, AVG. NO./FAMILY=?3,5

CAPITATION RATE FOR 1,2,3+ PERSON FAMILIES?18,62,44.99,65,42
AVG. ANNUAL PATIENTS DAY5/1000?700

HOSPITAL PER DiEN?130,00

WHAT 1S TARGET ENROLLMENT?1400

WHAT IS STARTING ENROLLMENT2Z40

WHAT IS PLANNED PERIOD STARTING MONTH AND YEAR?09, 74
WHAT IS PLANNED PERIOD ENDING MONTH AND YEAR?08,75
§§QU|RED REPORTS?1

21
24
25
210
711
212
213
299

Exhibit III—Projected resource requirements and cost—10 percent
market penetration

A Resource Allocation and Planning System for the Development and Operation of Health Care Delivery Systems 211

TARGET ENROLLMERT BY NMONTH

10 YR TARGET INCREMENT 1-PER. 2-PER. 3+PER. PROJECTED REFERRALS
10 74 851, 111, 170 170 510
11 74 362. 111, a2 577
i 1ise! 173! 27 17 63 MO YR # PERSONS FTE - 1D. COST ‘OF
495, . 29 298 9
2 75 2105. 611. i1 b 1263 10 74 ENROLLED REFERRALS REFERRALS
375 2938, 332, 587 537 1762 2298, 0.5 1532,
4§ 75 3770, gsz. 754 754 2262 11 74 2597, 0.5 1732
575 4603, 33, 320 g 2761 .
¢ 75 5435, 833, 1087 1957 3261 12 74 3077, 0.6 2051,
775 6201, 766. 1240 1240 3720 175 4036, 0.8 2691,
8 75 6845, 6l4, 1359 1360 4107 275 5684, 1.1 3790
3 75 7500. 585, 1480 1480 40 3 75 7932, 16 5258,
4 75 10180, 2.0 5787,
ENROLLUIENT BY TYPE OF FANILY 575 12428, 2.5 8285,
110 YR ENROLLHENT wxssxssssxssasTYPE OF FAUILYaxasanenwsesas [1000T 6 75 14675, 2.9 9784,
CONTRACTS ~ 1-PERSON 2-PERSON 3-PERSON TOTAL DOLLARS 7.75 16743, 3.3 11162
10 74 351. 170, 350, 1787, 2298, 44230, 8 75 18482 . .
11 74 952, 192, 385, 2020, 2597, 49999, . 3.7 12321,
12 7 1140, 225, 456. 2393, 3077, 55230, 975 199380, 4,0 13320,
175 1495, 299, 593, 3139, 4036, 77601,
2 75 2105. 421, 842, 421, s634. 109421,
375 2835, 583, 1175, 5169, 7952, 152689,
S5 uos 1. dma ame. Dase. s
6 75 S435, 1087, 2174, 11418, 16675, 282400, PROJECTED HOSPITAL CARE
575 osus CEE O+ | 1T S '
3 75 7500, 1680, 2960, 15540, 15953. eence. "o YR E:ggi?gg HOSPl!’ZQé HOSE’(I)Z:?;.
10 74 2298, 134.0 14744,
Exhibit IV—Project HMO subscriber enrollment 11 74 2597, 151.5 16667,
12 74 3077. 179.5 19744,
175 4036, 235,4 25397,
(8-hour session); (¢) compensated on the basis of $45,000 % ;g ;ggg Zé%g gggg;
. . . . 23 -
per year per FTE physician and $18,000 per year per 4 75 10130, 593.8 65320.
FTE paraprofessional, including all fringe benefits and (53 ;g iﬁg;g ;gg.g ;Z 17!6&1_; .
all in-hospital care services; and (d) available to trust 7 75 16743, 976.7 107436,
participants on a 16-hour per day basis (8:00 a.m. to 8 75 18482, 1078.1 118590,
9 75 19980, 1165.5 128205,

12:00 midnight, or 2 sessions per day).

Professional manpower requirements for ambulatory and
in-hospital consultation/referral care programs will be PROJECTED MANAGENENT & ADMINISTRATIVE EXPENSE
met by approximately 0.20 FTE physicians/1000 par-

10 YR # PERSONS MAMNPOWER MGHT&ADNMIN

ENROLLED REQ'D-FTE cOsTS
RO D uT . i OF NFALTH & MEDICAL RESCURCES
P:UJEETEQ:UPIF_%?):?or--(-)------mml:u‘rnnv CARE v_lrsnsn--;;;;\[HASPITAL V£ ITS ig 74 2298, 6.4 5750.
D ENROLLED GEMERAL MENTAL DERTAL ' i 74 2597 7.3 6500
. 1187, 134, . . .
O TS R o . 12 74 3077, 8.6 7700,
17 2597. aos. us 0. 1342, 152, 175 4036, 11.3 10100,
45, . . 57, .
12 7 h 3077, 1077, 513. a. 1570, 9. 275 5684, 15.9 14225,
D 54, ;r,. 0. 20;2. s 375 7932, 22,2 19850,
1g e wn S o 10! e 475 10180, 28,5 25474,
2 75 18 5684, 1990. 97, 0. 21‘3; s?; g ;553 12428, 34.8 31099,
o 99. u7. 0. il . 14675, 41,1 36724
. 0. k097, 403, .
i T - . o 205 N 775 16743, 46.9 41899,
s 7SN 10180, 3563. 1697, 0. 5202. 594 8 75 18482, 51.7 46249 .
n . . . 263, .
s 7511 12628, 350! 2071, 0. Gh21. 725. 975 199380, 55.9 49999,
0 217, 104 0. JEre L4
A T A o 378 5! Exhibit VI
7756 16743, 5860. 2191 o. asl. a7
D 293, 140. . . .
8751 18482, 6463, 3080, 0. 9549, 1078,
D 323, 154, o. 4§17, 35. . i
g5 n e, 6993, 3330, 9. e 1iee. ticipants, compensated on the basis of $50,000 per year
per FTE physicians including all fringe benefits, roughly
AMBULATORY CARE FACILITY SPACE REQUIRENENT dlStnbUted as fO]lOWS:
150, FT./ENROLLEE= 10980,
1.5 5A. FT./ENROLLEE= 29970, Otolaryngology 0.04 FTE
Dermatology 0.03 FTE
PROJECTEN MAMPOWER REQUIIREMENTS FOR AMAULATORY CARE Opht'hahnologJ’ 0.03 FTE
10 YR AV VISITS TEAIS seeaseafFULL TINE EQUIVALEHTS#waenex MANPOUER .
e PER DAY REQ'D PHYSICIAUS * MIRSES PATAPROF TOTAL EST c0ST Radiology 0.03 FTE
s9. .7 1.7 2.3 2.5 6.5 11949, .
T AR Leoae Zo e beon Orthopaedics 0.02 FTE
D 79.5 2.3 02, . .
T s 5o no o wsoos o zomas Clinical Pathology 0.02 FTE
275 146,.8 4.2 4,2 . 6.3 16. .
375 2068 5.8 5.9 7.9 8.8 22,5 w1251 Neurology/Neurosurgery 0.01 FTE
675 263.0 7.5 75 1001 113 259 52310, :
5 75 321.0 9.2 9.2 12.4 13,6 35.3 GLG29. Anaesthesiology 0.01 FTE
6 75 379.1 10.8 10,8 pUN Y 16.2 41,7 76319, .
715 432.5 12,4 12,4 16.7 18.5 47.6 87073, Specml Surgery 0.01 FTE
s 75 WI7E 1306 1306 184 20,5 5215 96113,
375 s16.2 147 1.7 1909 22,1 56.8 103905,

o Professional Manpower Requirements for program man-
Exhibit V—Ambulatory health and medical care program utilization agement and administrative services will be met by
projections supplementing 2.8 person/1000 private sector partici-

212 National Computer Conference, 1974

PROJECTED REVENUES & EXPENSE

PROJECTED REVERUES

SOURCE QTR 12 74 QTR 3 75 QTR 6 75 QTR 9 75
SUBSCRIPTIONS 153458, 339801, 717678, 1062671,
CONTRIBUTIONS
OTHER
TOTAL REVENUE 153458, 339801. 717678. 1062671.
PROJECTED EXPENSES
AMBULATORY CARE . 41458, 91801. 193588, 287092,
DENTAL CARE 0. 0. 0. 0.
HOSPITAL CARE 51154, 113269, 239231, 354230,
REFERRAL CARE 5315, 11768. 24855, 36803.
PHARNACY 12197, 27008, S7043. 84463,
HGMT, &ADHII N, 19950, L4174, 93298, 138147,
G & A COST 6643, 14710, 31669, L6004,
FACILITIES & MAINT,
DEBT SERVICE u60L, 10194, 21530, 31830,
EXCESS LIAB. NS, 9208, 20388. 43061, 63760,
TOTAL EXPENSES 150528. 333313. 703975, 1042380,
PROJECTED CAS! FLOV
NET CASH FLOU 2930, 6488, 13703, 20290,
STEADY STATE PHASE
PROJECTED REVENUES & EXPENSE
PROJECTED REVENUES
SOURCE QTR 12 75 QTR 3 76 QTR 6 76 QTR 9 76
SUBSCRIPTIONS 1153823, 1153323, 1153823, 1153823,
CONTRIBUTIONS
OTHER
TOTAL REVENUE 1153823, 1153823, 1153823, 1153823,
PROJECTED EXPENSES
ANMBULATORY CARE 311713, 311718, 311718, 311718,
DENTAL CARE 0. 0.) 0. 0.
HOSPITAL CARE 384615, 380615, 384615, 334615,
REFERRAL CARE 39960, 39960. 39900, 39960.
PHARMACY 81708, 91703. 91708, 91708.
NGHT,. &ADHEN, 149997, 149997, 149997, 149997,
G & A COST 49950, 49950, 49950, 49950,
FACILITIES & MAINT,
DEBT SERVICE 34615, 34615. 34615, 34615,
EXCESS LIAB, INS, 69229, 69229. 69229, 69229,
TOTAL EXPENSES 1131792, 1131792, 1131792, 1131792,
PROJECTED CASH FLOU
NET CASH FLOV 22031, 22031, 22031, 22031,

Exhibit VII—Projected pro forma cash flow initial build-up year

TOTAL
2273608,

2273608,

614240,

0.
757884,
78741,
180711,
295569,
98426,

63208,
136416,
2230196,

43412,

TOTAL
4615291,

4615291,

1246871,

0,
1538460,
159340,
366833,
599938,
199800,

138459,

276917,
4527168,

88123,

A Resource Allocation and Planning System for the Development and Operation of Health Care Delivery Systems

pants, compensated on the basis of 13 percent of program
revenues.

e An annual general and administrative (G&A) rate of
approximately $10,000 per 100 participants per year to,
cover such items as equipment rental, utilities, main-
tenance, insurance, supplies, travel, ete.

e A debt service rate of 3.0 percent of program costs to
cover initial capital outlay costs.

e Purchase of excess liability insurance to absorb losses

in excess of 125-150 percent of income at a cost of 4 per-

cent of income.

An actuarially determined monthly capitation structure

of $18.62, $44.99 and $65.42 for one-person, two-person

and three-plus person families, respectively.

The allocation of resources required to meet the anticipated
health and medical care program utilization by the projected
enrollment for the recommended delivery system are pre-
sented in Exhibits III through VII.

For the HMO, the major input assumptions are presented
in Exhibit III. These assumptions include the family mix
and size; capitation rate; average anticipated hospital use
rate and charges; projected enrollment target; and the enroll-
ment level to be achieved prior to the HMO going opera-
tional.

Exhibit IV illustrates monthly and cumulative enrollment
targets based on the overall growth target pattern set by
the user, and the number of individuals covered by the
HMO based on the monthly enrollment targets and the per-
centages of two, three, or more person families. The report
also shows monthly income based on the capitation rates
provided by the user.

Exhibit V illustrates the projected ambulatory health and
medical eare program utilization by the enrolled population.
The number of expected monthly and daily visits for general
health and medical episodie care and mental health care are
presented. The projected monthly hospital patient-days are
also presented, together with the average daily census. The
projected ambulatory care space requirements are also pre-
sented. The projected manpower requirements by category
are presented with their cost.

Exhibit VI projects the number of full-time equivalent
physicians required for specialist referrals and the correspond-
ing projected costs; the estimated in-patient hospital days
and the associated per diem rate costs; and the projected
manpower requirements for management and administra-
tion of the HMO and their associated costs (as a percentage
of revenues).

The results in Exhibits ITI through VI represent projected
operating results for the initial build-up year. The resource
requirements for each month of the steady, stable period
would be the data presented in the twelfth month of the
build-up year.

Pro Forma Cash Flow Projections

Having developed needed resource requirements and their
costs, there remains then, finally and most importantly, the

213
PROJECTED REVENUES & EXPENSE
PROJECTED REVENUES
SOURCE QTR 12 74 QTR 3 75 NTR 6 75 ONTR 9 75 TOTAL
SUBSTRIPTIONS 153458, 339501, 717678, 1062671, 2273608,
CONTRIBUTIONS
OTHFR
TOTAL REVENUE 153458, 339501, 717678, 1062671, 2273608,
PROJECTED EXPENSES
AMBUIATORY CARE 41458, 91301. 193888. 287092, 61u240,
NENTAL CARE o, 0. c. e, c.
HOSPITAL CARE 52981. 117314, 267774, 366882, 784951,
REFERRAL CARE 5315. 11765, 24855, 36803, 78741,
PHARMACY 12197. 27008. 57043, BL463, 180711,
MGMT. RADMIN, 18956. LL174, 93298. . 138147, 295564,
G & A COST 6643, 14710, 31069, B6COL, 98426,
FACILITIES & MAINT,
DEBT SERVICE 4604, 10194, 21530, 3188C. 68208,
EXCESS LIAB. INS. 9208. 20388. 43061, 63760. 136416,
TOTAL EXPENSES 152355, 337358, 712519. 1055031, 2257263,
PROJECTED CASH FLOW
NET CASH FLOW 1163. 2443, 5159. 7639, 16345,

Exbibit VIII—Revised pro forma cash flow

question of assessing the financial viability of the HMO’s
operation as developed by the planner. The net results of
the revenue and expense projections computed in the pre-
ceding pages are displayed in a single pro forma cash flow
statement, Exhibit VII. The computations of cash flow (in-
come less expenses) is a simple and straightforward process.
Net cash flow is computed monthly over the planning period
and is displayed quarterly for the planning period. This
report shows projected subscription revenues and blank lines
for other income. It also shows cost projections by program
area—ambulatory care (team or nominal), dental care (op-
tional to the user), referrals, hospital care and management
and administration.

The net positive cash flow generated by the hypothetical
HMO suggests that the alternative delivery structure pro-
posed by the planner is a financially viable option. Because
any forecast is subject to uncertainties, projections sum-
marized for the HMO are not represented as specific results
which will be obtained, but rather as operating results which
can reasonably be expected under the assumed conditions.

The RAAP system as presented in this document cannot
guarantee the long- or short-term success of an HMO. How-
ever, the system provides the HMO planner with a formal
procedure to assist the planner in understanding the rela-
tionship that exists among the proposed program of health
and medical care benefits, utilization patterns, resource re-
quirement, and costs. In addition, when the planner has
formally established the HMO’s organizational and opera-
tional structure and entered operations, the RAAP system
provides a baseline against which actual operational results
can be measured.

RAAP SYSTEM PERFORMANCE APPLICATION

When the health care planner has formally established
the delivery system’s organizational and operational structure
and management has commenced operations, the delivery

214 National Computer Conference, 1974

system’s actual performance must be continuously monitored.
A delivery system’s ultimate success or failure is determined
