CONFERENCE
PROCEEDINGS

VOLUME 38

SPRING JOINT

COMPUTER
CONFERENCE

-20, 1971

May 18

Atlant

New Jersey

ity,

ic C

The ideas and opinions expressed herein are solely those of the authors and are not necessarily representative of or
endorsed by the 1971 Spring Joint Computer Conference Committee or the American Federation of Information
Processing Societies.

Library of Congress Catalog Card Number 55-44701
AFIPS PRESS
210 Summit Avenue
Montvale, New Jersey 07645

©1971 by the American Federation of Information Processing Societies, Montvale, New Jersey 07645. All rights
reserved. This book, or parts thereof, may not be reproduced in any form without permission of the publisher.

Printed in the United States of America

Edited by Dr. Nathaniel Macon, Technical Program Chairman

CONTENTS

COMPUTING MACHINES—MENACE OR MESSIAH?—PANEL
SESSION

(No papers in this volume)

IMAGE OF THE INDUSTRY—PANEL SESSION

(No papers in this volume)

THE NEW TECHNOLOGY—HARDWARE DESIGN AND
EVALUATION

The DINKIAC I—A pseudo-virtual-memoried mini—For stand-alone

INEraCtive USe. . ..ottt e e e
A multi-channel CRCregister............................iiuion.
Features of an advanced front-end CPU...........................
Interpreting the results of a hardware systems momtor

LAW ENFORCEMENT AND JUDICIAL ADMINISTRATION—
PANEL SESSION (No papers in this volume)

APPLICATIONS REQUIRING MULTIPROCESSORS

4-way parallel processor partition of an atmospheric primitive-equation
predictionmodel L e

An associative processor for air traffic control.

COMPUTER AIDED MANAGEMENT OF EARTH RESOURCES—
PANEL SESSION (No papers in this volume)

RESPONSIVE GOVERNMENT—PANEL SESSION

(No papers in this volume)

COMPUTERS IN TRANSPORT—FOR MANAGEMENT NEEDS
OR SUPPLIERS’ DELIGHT?

A computer-aided traffic forecasting technique—The trans Hudson

A computer simulation model of train operations in CTC territory....

PRESENT AND FUTURE DATA NETWORKS—PANEL SESSION

(No papers in this volume)

11
15
23

39

49

61
77

83

93

. Morenoff
. Beckett
. G. Kesel
. J. Winninghoff
. M. Wolft
. J. Thurber

mwwwgm

. Lessieu
ohen
. McQuillan
0

o

. O’Donald
. Whiteman

E.
D.
J.
J.
B.
I
D. Borch

wweﬁzo“

TERMINAL ORIENTED DISPLAYS

A general display terminal system.
ATIDS—Advanced interactive display system.... ... e

CRT display system for industrial process................ e

Computer generated closed circuit TV displays with remote terminal
control.

COMPETITIVE EVALUATION OF INTERACTIVE SYSTEMS—
PANEL SESSION (No papers in this volume)

COMPUTERS IN THE ELECTORAL PROCESS

The theory and practice of bipartisan constitutional computer-aided
redistricting.
“Second-generation” computer vote count systems—Assuming a pro-
fessional responsibility.
MICROPROGRAMMING AND EMULATION
Evaluation of hardware-firmware-software trade-offs with mathe-

matical modeling.

System /370 integrated emulation under OS and DOS...............
A high-level microprogramming language (MPL)...................
A firmware APL time-sharing system

INTERACTIVE APPLICATIONS AND SYSTEMS

Designing a large scale on-line real-time system.
PERT—A computer-aided game.
Interactive problem-solving—An experimental study of “lockout”

TYMNET—A terminal-oriented communication network.
Implementation of an interactive conference system.

COMPUTATIONAL COMPLEXITY—PANEL SESSION

(No papers in this volume)

THE EVOLUTION OF COMPUTER ANIMATION—PANEL SESSION

(No papers in this volume)

SERVING USERS IN HIGHER EDUCATION

Who are the users?—An analysis of computer use in a university com-
puter center. e

103

113

123

131

137

143

151
163

169
179

191
199

205

211
217

231

S. S. Nagel

C. H. Springer
M. R. Alkus

H. Barsamiam

A. DeCegama

G. R. Allred

R. H. Eckhouse, Jr.
R. Zaks

D. Steingart

J. Moore

S. Ishizaki
J. Richter-Nielsen

B. W. Boehm
M. J. Seven
R. A. Watson
L. R. Tymes
T. W. Hall

E. Hunt
G. Diehr
D. Garnatz

INFORMATION AND DATA MANAGEMENT

An initial operational problem oriented medical record system—For
storage, manipulation and retrieval of medical data...............

Laboratory verification of patient identity.............

The data system environment simulator (DASYS)..................
Management information systems—What happens after implemen-

A methodology for the design and optimization of information proces-
Sl SYS IS . . .t v et e e

COMPUTER ASSISTED INSTRUCTION

Computer generated repeatable tests...........

R2—A natural language question-answering system.................

THE NEW TECHNOLOGY—STORAGE

Performance evaluation of direct access storage devices with a fixed
head per track.o

Drum queueing model.l .

Storage hierarchy VS OIS . . ot e
Optimal sizing, loading and re-loading in a multi-level memory hierarchy

TOPICS IN COMPUTER ARITHMETIC AND IN ARTIFICIAL
INTELLIGENCE

A structure for systems that plan abstractly.
Unconventional superspeed computer systems......................
High speed division for binary computers..........................
A unified algorithm for elementary functions.......................
A software system for tracing numerical significance during computer

program executlon.ottt e

SOFTWARE LIABILITY AND RESPONSIBILITY—PANEL SESSION

(No papers in this volume)

VENTURE CAPITAL—FINANCING YOUNG COMPANIES—
PANEL SESSION (No papers in this volume)

FROM THE USER’S VIEWPOINT-—PANEL SESSION

(No papers in this volume)

239

265

271

277

283

295

303

309

319

325

337

345

357
365
373
379

387

. R. Schultz
. V. Cantrill
G

L. Chalmers
W. Steuber

L. E. DeCuir
R. W. Garrett

D. E. Thomas, Jr.

J. F. Nunamaker, Jr.

F. Prosser
D. D. Jensen
K. Biss '
R. Chien

F. Stahl

T. Manocha
W. L. Martin
K. W. Stevens
G
S
H

W. W. Jacobs
T. C. Chen
H. Ling

S. Walther

H. 8. Bright
B. A. Colhoun
F. B. Mallory

PERIPHERAL PROCESSING—PANEL SESSION

(No papers in this volume)

COMPUTER PICTORICS

Automated interpretation and editing of fuzzy line drawings.........
Computer graphics study of array response

Computer manipulation of digitized pictures.......................

AN INTERNATIONAL VIEW—PANEL SESSION

(No papers in this volume)

SIMULATION OF COMPUTER SYSTEMS

The design of a meta-system..........
An interactive simulator generating system for small computers.

APPLICATION OF COMPUTERS TO TRAINING—PANEL SESSION

(No papers in this volume)

THE NEW TECHNOLOGY—DIAGNOSTICS AND RECOVERY

Multiband automatic test equipment—A computer controlled check-out

Coding techniques for failure recovery in a distributive modular memory
organization. e e e e

Recovery through programming system/370.......................
On automatic testing of one-line, real-time systems.

THE NEW TECHNOLOGY—SYSTEMS SOFTWARE

PORTS—A method for dynamic interprogram communication and job

control..... P
Automatic program segmentation based on boolean connectivity.
Partial recompilation.

PL/C—The design of a high-performance compiler for PL/I.........

GPL/I—A PL/I extension for computer graphics..................
ETC—An extendible macro-based compiler................ P

THE COMPUTER PROFESSIONAL AND THE CHANGING
JOB MARKET—PANEL SESSION

(No papers in this volume)

THE NEW TECHNOLOGY—FILE ORGANIZATION

A file organization method using multiple keys.....................
Arranging frequency dependent data on sequential memories. L.

Associative processing of inedrawings. i

393
401

407

415
425

451

459

467
477

485
491
497
503

511
529

539
545

557

K. Chang

W. Byram
V. Olds

P. LaLumiere
M
E.

acon

S.
G.
G.
L.
N.
M. E. Kiefer

T. Kuroda
T. Bush

Flynn

C.

. A. Szygenda
J.

. L. Droulette

. Balzer

. Ver Hoef
. Ayres
. Derrenbacher
. Morgan

. Wagner

. Smith

. Dickman

FomEOwoE R
ZzprrwEg

O

’Connell
Ramamoorthy

" THE NEW TECHNOLOGY—COMPUTER ARCHITECTURE

The hardware-implemented high-level machine language for symbol. ..

SYMBOL—A major departure from classic software dominated von
Neumann computing systems.,

The physical attributes and testing aspects of the symbol system.

SYMBOL—A large experimental system exploring major hardware
replacement of software.

EDUCATIONAL REQUIREMENTS FOR SYSTEMS ANALYSTS

A semi-automatic relevancy generation technique for data processing
education and career development.
An architectural framework for systems analysis and evaluation.

COMPUTER ACQUISITION—PURCHASE OR LEASE—
PANEL SESSION (No papers in this volume)

COMPUTATION, DECISION MAKING, AND THE
ENVIRONMENT—PANEL SESSION

(No papers in this volume)

563

575

589

601

617
629

. Chesley

. Laliotis
Lundstrom
. Calhoun

. Gerould

. Cook

HEEZ®RHEOR
®U>”>U?w

J. D. Benenati
P. Freeman

The DINKIAC I—A pseudo-virtual-memoried mini—For

stand-alone interactive use

by RICHARD W. CONN

University of California
Berkeley, California

INTRODUCTION

The past three years have witnessed the development
and sale of a large and unanticipated number of small
general purpose digital computers. These machines—
the mini-computers—originally intended for real-time
use in applications such as production control, now
serve many diverse functions, ranging all the way from
data buffers to the central processing units of small
time-sharing systems. One trade journal even reports a
sale to a home hobbyist claiming that initial costs are
comparable, and upkeep less, than for other “recrea-
tional” equipment such as boats or sports-cars.

Several manufacturers have offered a basic machine
with four thousand eight or twelve bit words, and with
teletype I/0, for under ten thousand dollars.!? Because
of keen marketing competition and recent developments
in integrated circuit technology these prices are con-
tinuously dropping. Memory costs, however, have not
kept pace with the decreased logic costs brought about
by the new IC’s. Before truly spectacular price drops
can be made the cost of memory must be reduced.

Memory in the above context evokes images of un-
delayed random addressability by word, or, more
specifically, of magnetic cores. Yet if we consider com-
puting systems generally, core memory represents but a
small percentage of a typical installation’s total storage.
High core fabrication costs have led—in all but the
tiniest systems—to the utilization of memory hier-
archies. Devices most commonly comprising these
hierarchies are, of course, the familiar magnetic cores,
drums, disks, and tapes.

The questions to be examined in this study are: How
cheaply can a machine adhering to storage hierarchy
principles be built? What will it look like? and What
good is it? To be in any position for viewing either of
the others we must first address ourselves to the ques-
tion, “What will it look like?” To do this the design of
the Dinkiae, a machine meeting the implied constraints,

will be summarily described. Explicitly stated these
constraints include cheapness, component availability,
and completeness in the sense that the user will not be
required to purchase additional hardware. Once the
Dinkiac design has been outlined, its usefulness can
be assessed, its performance and architecture confirmed
by simulation; construction details and alternate
features may be presented, and its cost ascertained.

THE DINKIAC

Physically, the Dinkiac will appear as a typical
keyboard—cathode-ray-tube display terminal. It will
consist of a typewriter-like, 64 key, keyboard; a small
CRT with a display capability of up to 84 characters
presented in seven rows of twelve characters each; a
row of lamps and switches; a single track low quality
tape cassette recorder; four magneto strictive delay
lines—all packaged together with the necessary register
and logic components. ;

With its 16 bit word size the Dinkiac will appear to a
machine language programmer as one of the larger
minis. A word will represent data as either a single
fixed point binary fraction in two’s complement form,
or as two eight bit character bytes, the last 6 bits of
each conforming to USASCII standards.

Each instruction will comprise one full word in a
fixed format with the first four bits (0-3) for the opera-
tion code; bit 4 a possible index register designator;
bit 5, an indirect bit; bits 6 and 7, a page (delay line)
address; and the last eight bits (8-15), the address
within a page of one of 256 sixteen bit words.

Main memory will be made up of four magneto-
strictive delay lines each storing 4096 bits. These lines
will have a bit rate of two megahertz for a maximum
access of a little over two milliseconds or an average
access of approximately a millisecond. Each of these
lines with a capacity of 256 words will be said to store

2 Spring Joint Computer Conference, 1971

a page of information. Processing may take place in
any one of these lines concurrent with an exchange of
information between secondary storage and some other
line, not including the first, or page zero line. (Many
readers will challenge the wisdom of choosing delay
lines over shift registers. The latter has a speed ad-
vantage as well as the greater potential for cost reduc-
tion, matching decreases in the other IC’s. There are,
however, no large cheap shift registers currently avail-
able, and since it is our intention to show that a cheap
instrument can be immediately constructed from off-
the-shelf components, we are forced to choose the
moderately priced and readily available delay line.®)

The previously noted cassette recorder will provide
secondary storage; a single tape retaining information
in one of 128 blocks of 256 words each. Bit storage and
retrieval rates will be around three kilohertz fixing
page transfers at around one and a half seconds. The
source and adequacy of these speeds will be discussed
in the simulation section.

As originally conceived, the Dinkiac included hard-
ware for automated page swapping, thus inspiring the
notion—echoed by the paper’s title—of a virtual
memory machine; the virtual space being the size of
the tape or more accurately the number of tape blocks
times the number of words in a block, i.e., 32K Dinkiac
words. Memory addressing was to have employed a
page Tegister-associative search scheme which operated
in the following manner: Three (because page zero is
not swappable) seven bit page address registers were
loaded under program control. An instruction pointing
to one of these registers (with the delay line address
bits) referred to the tape block indicated by that regis-
ter’s contents. The instruction’s address field indicated
one of 256 words within the page. The requested page
may or may not have been physically present in some
delay line. Three seven bit registers were to compare
their contents with that of the indicated page register
and, if found, switch in the associated line. Because of
the great disparity between word access and logic
switching time the hardware for this associative search
need not have been fast. If a specified page was not in
any of the delay lines it was to have been retrieved from
the cassette and stored in some line according to an
algorithm which first checked sequential delay lines to
find one in which the dirty bit had not been set. (The
dirty bit was set—by the memory store signal—for any
line which had been written into.) If all lines were
dirty one line was selected and written out before the
requested page was fetched. If program execution was
delayed awaiting the fetched page, the program counter
was stored and control transferred to a preset interrupt
location. The described addressing scheme is shown in
Figure 1.

Unfortunately this automation accounted for more
than 20 percent of the total logic costs. In addition the
primitive page swap algorithm may have proven un-
satisfactory and required additional commands or even
a complex sequence initiated from a read-only memory.
In any event, the logic has been reduced to near mini-
mum and any automated page swapping will now be
under software control.

It is assumed that this operating system software
will minimally include a keyboard input and display
program as well as a cassette directory and search
routine. Transfer instructions and busy flags will
facilitate its operation and attempts to execute instrue--
tions from pages in the process of being swapped will
still effect a transfer of control to the interrupt location.
The inclusion of a fixed memory interrupt location is
the primary reason for not swapping delay line zero.

While the cassette’s primary function is to provide
intermediate storage it also doubles as a cheap and
convenient source of input/output. Initial input, how-
ever, is entered by way of the alphanumeric keyboard.
Depressing a key will enter an encoded character into
an eight bit keyboard buffer, turn off a console lamp,
and set a one bit flag register. This flag may be inter-
rogated by a running program and is reset—along with
the lamp—Dby transferring the contents of the keyboard
buffer to the accumulator. Striking a key will not enter
a new character into the buffer while the flag is set.

Visual output is direct to a CRT from the first 42
word locations of the zero or non-transferable delay
line. These words are gated sequentially in pairs
(modulo 21) into a 32 bit output buffer on each cycle
through memory. The low order six bits in each of the
four bytes are, in turn, used as an input to a small
read-only memory. This memory in conjunction with
an appropriate .counter and shift register provides
serial output for modulating the CRT’s““Z”’ or intensity
input. These components together with a character,
line, and row counter, and two deflection amplifiers
and digital to analog converters, constitute the output
device. It should be noted that the memory itself pro-

Instruction Word

page / anoehti.»{l - E{; _: i—:'__—:l

address registers| |

Figure 1

The DINKIACI 3

vides for display buffering and that all information is
retained in character format. Scan conversion from the
32 bit buffer is performed as needed. Since it is possible
to change characters in the output portion of memory
before they have actually been displayed, it is antici-
pated that display programming will be handled as a
function of the machine’s interactive use. The most
obvious example is provided by the displaying of a key-
board input message.

An operation panel located between the keyboard
and display tube includes ‘power on’ and ‘interrupt’
toggles, ‘start’ and ‘go’ buttons, a five position rotary
switch, and eighteen display lamps. The start button
clears all registers except the program counter—into
which the start address (64)1, is forced—and loads tape
block zero into delay line zero. Once block zero has
been read the machine will begin instruction readout
from the start loeation.. Depending upon the state of
the machine, depressing ‘go’ will either initiate a read
of the next instruction—from the location currently
specified by the program counter—or begin the instrue-
tion execution. The interrupt toggle will set or reset an
interrupt step mode flip-flop. When set, this flag will
force a machine halt after each instruction read and
after each instruction execute. If ‘go’ is depressed while
halted following a read, the machine will proceed to
the execute. If it is depressed after the execute—and
without a reset from the toggle—the program counter
will be stored and the next instruction will be taken
from the interrupt location.

The interrupt arrangement permits program stepping
in one of two ways. For possible machine malfunction
or difficult logical sequences the display lamps may be
used in conjunction with the rotary switch to inspect
the contents of the major processor registers. For more
routine debugging, the user may choose to enter a
subroutine which will convert and store relevant
registers for subsequent display on the CRT. This mode
will allow him to view, for example, the contents of the
accumulator and the program counter—in any format
he has chosen—at every other push of the ‘go’ button.

Given the above design it should be helpful to briefly
consider a couple of the Dinkiac’s unique operational
and programming aspects. First and most obvious is
the procedure imposed by keyboard limited input.
Since all programs must be typed-in, it is probable
that the typical user will be concerned only with con-
versational routines such as JOSS, FOCAL, or conversa-
tional BASIC. These processors should be structured
in such a way that an anticipated routine will be
scheduled into a delay line and ready for use. For
example, an interactive algebraic processor could be
segmented such that routines for matching, scheduling,
and arithmetic operations are seldom or never swapped,

while more complex numerical subroutines are arranged
in a hierarchy of priorities with the most common
(square root, sine,...) at the top and those seldom
used (matrix operations, error exceptions and com-
ments, . . .) at the bottom. While the software designer
must try to segment these programs for the minimum
swapping delay, it should be borne in mind that in
conversational systems an occasional delay of several
seconds is no cause for concern.* Balance between com-
putation and user interaction is the significant factor.

It is hoped that by now the reader—having con-
sidered the design overview together with the cursory
remarks relating the machine with certain time-
sharing concepts—will have acquired sufficient in-
tuition to answer, for himself, the third of our ques-
tions, ¢ What good is it?”” or more graciously put “ What
market does the Dinkiae serve?” For our part we will
start with the statement that anyone now using a desk
calculator can—for the same price and without sacrifice
of calculator speeds or functions—enjoy the additional
benefits of a completely general purpose digital eom-
puter. Additionally, the machine will provide a single
user with a computing experience not unlike one he
would receive at a time-sharing terminal. That is, for
highly interactive work he can expect extremely fast
replies with respect to his own response time. For com-
pute bound requests, such as compilations or iterative
numeric calculations, he should suffer no greater frus-
tration than that engendered by a small well used
time-sharing system. It is accurate to add that for the
same jobs these periods of delay would compare favor-
ably with a mini time-sharing system.

Because the tape cassette secondary storage will
double as a fast I/0 device a library of special purpose
application cassettes can also be marketed. Examples
are: BASIC for the schools; ‘desk calculator’ for small
businesses; and, ‘preparing your federal tax return’
for the ‘home hobbyist.’

SIMULATION

Our concern with a computer simulation is twofold,
aiming first at determining the Dinkiae’s gross architec-
tural configuration, that is, the number and length of
its delay lines, and second, at obtaining some sense of
its overall performance. GPSS/360 (IBM’s General
Purpose System Simulator for the 360 series) was chosen
for this task—both for its ease of use and its ready
availability.s

For a simulation to serve its intended purpose the
assumptions upon which it rests must be both valid
and appropriate. The assumptions underlying this
simulation are of two kinds, the first has to do with

4 Spsing Joint Computer Conference, 1971

hardware component speeds and may be based on the
price quotes. of a number of manufacturers, the second
requires a knowledge of program behavior and is far
more tenuous. An early discussion of equipment char-
acteristics will provide a foundation for the subsequent
consideration of these less structured issues.

Magnetostrictive delay lines are offered in models
with delays of up to 10 milliseconds at the maximum
or 2MHz bit rate. Prices vary only slightly over the
range with the longest lines (in quantity lots) costing
less than 10 dollars more than the shortest. Since
prices are typically constant up to a delay of around
2.5ms, a 4K bit line costs no more than one with half
that capacity. Restricting the choice to sizes which
facilitate binary addressing, these delays and bit rates
imply that lines of up to 16K bits are feasible.

Because the Dinkiac is a single address machine all
non-jump instructions must be taken sequentially,
and if operands are positioned properly those with
fewer than 128 memory fetches will be executed at
delay line speed. (Switching time, even for slow transis-
tor logie, can always be accomplished during the delay
line to register transfers and may therefore be com-
pletely ignored.) A straight line program, then, will be
executed at about the product of the line speed times
the number of instructions. For the Dinkiac we have
described—with its 4K bit line—this would amount to
approximately 500 instructions/second while a 2K
line would double the rate and one with 16K bits would
cut it to a low of 125 instructions/second.

The tape cassette market is less stable than the
market for delay lines and one may find prices ranging
all the way from under thirty dollars to 100 times that
price. The machines on the low end are intended for
audio use while those at the other are designed for the
reliable high-speed transfer of digital data. Advertised
speeds for the expensive instruments give writing rates
at under 10,000 bits/second with reading rates to
20,000. Experiments indicate that digital (square wave)
recording on cheap audio equipment can be successful
at speeds of two to two and one-half thousand bits
per second. Specifications from a number of manu-
facturers marketing inexpensive recorders indicate that
for under 100 dollars one can. conservatively assume
the following characteristics: (1) Read/write speed of
3.75 ips with a recording density of 800 bpi (bit serial
recording) for a transfer rate of 3000 bps; (2) Search
speed (fast forward and rewind) of 75 ips; (3) Start/
stop time of 60 ms; and (4) Inter-record gap of 1%
inch.

The properties given above will be used in the simula-
tion, and to reinforce their conservative character,
cassette page transfer times will always include time
for the transfer of a full half inch inter-record gap as

well as the times for both starting and stopping the
tape. This caution also allows for any timing oversight
arising from the recording technique, which we have
assumed will follow teletype signal transmission meth-
ods, i.e., asynchronously, with a start pulse followed
by data followed by completion pulses. To time a 16K
block transfer, then, we will assume that 16,384 data
bits plus a 400 bit equivalent inter-record gap are
transferred at a rate of 3000 bps to which 120 ms,
start and stop time, are added. That is, block transfer
time = (((line size-+-400)/3000)+.120) seconds.

Tape search time will be based upon a full tape
capacity of half a million (2'?) information bits. (Later
we will include some results gathered when providing
for 256 blocks of the larger page sizes, i.e., for tapes of
220 and 22! bits.) Tape length, not including inter-
record gaps, is approximately 655 inches—2'° bits at
800 bpi. Total search time will be determined by
adding—to this length—a half inch for each record
and dividing by the 75 inches/second rate, or, total
search time= ((655+(no. of blocks on tape/2)/75)
seconds.

We may now specifically formulate three questions
we wish our simulation to answer: (1) What is the
best page size? (2) How many lines are necessary for
satisfactory performance? and (3) How will the
Dinkiae compare with other machines? Given some
assumption regarding the number of jumps expected
during the execution of a program plus the anticipated
distance of the jumps—i.e., what percentage of jumps
will remain within 10 words of the current address, 20
words, etc.—it is possible to run simulations based
upon the given transfer rates to obtain meaningful
results for the first two of these questions. If, however,
we wish to relate the Dinkiac’s performance to that of
other machines we will need some standard.

Fortunately, such a standard exists in terms of
average instruction time. Given anticipated percent-
ages for each instruction type and applying these per-
centages to the machine’s actual instruction execution
times, we can determine the time required for an
‘average’ instruction. Gibson has provided us with a
set of such percentages by tracing 55 IBM—7090 pro-
grams involving 250 million instructions.® The traced
programs were comprised of 30 FORTRAN source
programs, 5 machine-language programs, 10 assemblies,
and 10 compilations. Gibson’s set of percentages,
called the Gibson mix, has been used in many machine
comparison studies. Because the Dinkiac has no floating
point hardware, approximate averages for subroutine
execution times will be given for the floating point in-
structions. The same will be done for multiplies and
divides. The Gibson mix programs were scientific and
give a conservative average with respect to a similar

‘The DINKIACI 5

mix projected from the data processing field. Figure 2
is a table of Dinkiac instructions, ‘worst’ case times,
and the loosely corresponding Gibson percentage.
Execution times are given as delay-line revolutions.

Because subroutines are included, a single Gibson
mix instruction must represent more than one of the
Dinkiac’s. Specifically, 87 percent are one to one, 7.7
percent are ten to one, and 5.3 percent are twenty to
one. There are therefore 2.7 Dinkiac instructions to
each of Gibson’s and the average execution time for
these 2.7 instructions is 8.6 revolutions. At 2.7 words
for a Gibson instruction, each line of the 256 words/
line machine we presented is capable of ‘storing’ 94.8
Gibson instructions. Similarly a 128 word line will con-
tain 47.4 instructions, and so on. We have greatly
simplified the remaining calculations by assuming a
Gibson instruction size of 2.5 words and line lengths
which are integral multiples of that number—forcing
the use of 125 for the 128 word line, 250 for the 256 word
line, ete.

Returning now to the still unspecified assumptions
regarding program behavior, we find the question of
jumps partially resolved by the Gibson mix. The mix
assigns a 16.6 percent likelihood to the ‘Test and
Jump’ instruction. We will assume that the jump is
taken half this number, or 8.3 percent. To this we must
assign some number of jumps to compensate for those
subroutine loops' ineurred by our superimposition of
the Gibson instructions over the Dinkiac’s. Suppose 100
Gibson (270 Dinkiac) instructions are executed. Of
the 270 Dinkiac instructions, 8 will be for multiply and
divide, 69 for floating add and subtract, and 106 for
floating multiply and divide. Assuming a five instruc-
tion loop for the first two instruction types and a ten
word loop for the last, we will arrive at 26 jump in-
structions or slightly less than 10 percent of the in-
structions executed. We may further assume that
these subroutines will be retained in the zero delay
line and that return jumps will be back to the lines
from which the subroutines are called. The model
reflects this analysis.

The question of how far each jump goes with respect
to the current program address counter is not easily
answered and is closely allied to the question of how
often must a new page be fetched. Until some study is
made—similar to ‘Gibson’s but with just this aim—or,
until studies of -time-sharing systems provide further
insight into page swapping behavior, no well-grounded
assumption can be made. We will postulate that of the
jumps taken—mnot including the 10 percent headed for
delay line zero—50 percent will remain in the line
they are at while the remaining half will go to the lines
following with percentages of 50 percent, 37.5 percent,
and 12.5 percent, respectively. Here the delay line

sequencing is considered circular. This jump distance
assumption is, of course, inconsistent with the varying
line size and favors short lines. We will compensate for
this advantage by making a near worst case assumption
regarding page swapping, namely, that a-new page be
fetched once for every straight line pass through the
memory.

We. are now in a position to present details of the
model. Each GPSS ‘transaction’ will represent either
ten Gibson instructions or a signal to initiate the opera-
tion of some given line or tape. Each delay line consists
of a holding ‘queue’ for the transactions, a memory
‘facility’ and a ‘storage’ capable of accommodating the
appropriate number of instructions for a specified line
size. To avoid simulating the simultaneous execution
of instructions in more than one line, only sufficient
transactions to queue up for a single line are generated
at any one time. A transaction entering a facility (one
of the delay lines) from a queue ‘seizes’ that facility
precluding its use by any other transaction. An appro-
priate number (25 for 10 Gibson instructions) of in-
structions is ‘entered’ into the line storage and the total
storage entries compared with the line capacity. If the
storage is full, it is reset to zero; the facility is released;
a transaction is removed from the queue; and new
transactions are created for the next memory line. If
the storage is not full, 18.3 pereent of the transactions
go to a jump instruction sequence where the clock is
advanced 10¢jump’ times and the transaction is entered
into holding buffers according to the previously dis-
cussed jump distribution. In the 81.7 percent non-jump
cases, the clock is advanced by the time required for
ten line revolutions times a GPSS ‘function’ which
randomly chooses (on the basis of a given bias—in this
case the Gibson percentages) the number of revolutions.
The facility is then released to allow for another entry
from the queue; a transaction is removed from the
queue; and ten transactions (instructions) are
terminated.

Except in the case of the zero line, the completion of
each line triggers a set of transactions for the next in a
round-robin fashion with the last line triggering the
first. Thirty percent of the completions from the zero
line may additionally store a transaction in one of the
holding buffers to simulate the subroutine return jumps.
A counter at the end of the last line starts an end-of-
job sequence which continues the program for only
those lines which have items in their holding buffers.
Completion of the last line also sends a transaction into
the tape queue. Transactions in the tape queue seize a
tape facility and then randomly ‘pre-empt’ one. of the
swappable delay lines. A pre-empted line is held until
‘returned’ and is precluded from seizure or use by any
other transaction. The tape and pre-empted line times

6 Spring Joint Computer Conference, 1971

INSTRUCTION TIME IN GIBSON
REVOLUTIONS PER-

(Worst case for CENTAGE

nonsubroutines)

Load and Store
Add and Subtract 1.5 38.9
Logical
Multiply and Divide 50. .8
(10 word subroutine)
Floating Point Mult. and Div. 100. 5.3
(single precision)
(20 word subroutine)
Floating Add and Sub.
(single precision) 25. 6.9
(10 word subroutine)
Shifts and Register ' 1. 9.7
Test and Jump . .5 16.6
Index 2. 21.8
Search or Compare

Figure 2

are advanced by one block transfer time and also,
when appropriate, by tape search time. Simulations
may be either “non-predictable”—in which case time
to search half of the tape plus or minus any random
interval up to that same amount is always applied—
or, they may be ‘‘predictable.” In the predictable or
“75 percent predictable” runs it is assumed that the
tape will have been correctly prepositioned in all but
25 percent of the transfers. At the completion of these
tape advance times.the pre-empted line is returned
and the tape released. A general program flow is given
in Figure 3.

Two results quickly emerged from the simulations,
most apparent is the ruling out of either very short,
or very long lines. The second, while less glaring, verifies
the adequacy of a four line machine. It is tempting to
continue the simulations with a greater number of
storage lines—and when shift register prices fall this
may prove feasible. Meanwhile, price considerations
for this study dictate that the number be kept as small
as possible. Upper and lower performance bounds were
found by running the simulation with either no, or
with complete, tape buffering.

The number of instructions executed during any one
simulation varies slightly due to the randomness of
the jumps. All runs, however, simulate the execution
of close to 12,300 instructions. Execution time varies
from a lower bound of two plus minutes (120,391 ms)
to an upper bound of almost 12 minutes (707,961 ms).
A table showing the total execution time in milliseconds
for thirty-one simulations is given in Figure 4. Figures
5 through 8 are graphs of the four general cases: four

lines both predictable and non-predictable and the
same for three lines. The dotted lines in Figures 5 and 6
are the results of allowing the number of tape informa-
tion bits to double once for the 256 word block and
twice for the 512 word block. That is, to maintain the
tape block count at 256. Each graph includes upper
and lower bounds in addition to the simulation’s finding
for the particular case. The graphs argue convincingly
for the 256 word page size, and yield insight into the
nature of the balance between instruction execution
and page transfer times.

DESIGN SPECIFICS AND OPTIONS

Sufficient detail to familiarize the reader with the
Dinkiac’s peculiarities was given in an earlier section.
Here we will add a few design particulars, as an aid to
cost estimation, and present some significant options.

The Dinkiac is designed around a five register bus
in a manner typical of the minis. Signals from decoded
instructions, together with outputs from a sequencer

Cenerate
Twital
Trawsachons
= Que
Conevat e Seix Liwe
Ne: . Nes Memoty w7 Advence
TRAGIALTIOMS 31 Tump? 1839 %
AMrsnece) th&
Dismeibvie (Fibson) lils;? bute
to 8ullevs [Terraincte. (O Buitevs
@ocve) konumi"&
Py Serne Line 4
evale
[T
b e e [Hesery Rvence
TRansasTioNS|) Tump? 19.32 5 Tump
Avence 5
(G'r.s; %) DI‘;::L:*Q.
Grmmate (0] é kA
€ters
Te wmate
e“.‘“ Qge, eewiin
Seize L
Counerele Ves * e
Nes '}t\":‘ﬁ{'u L 1¥.3% Advance
TRewsactioas & 10 Tum
Mva..e;) Ties 4
(Chson Tom
Distat b,
Henminte (o ; e
Bgf_G“s
Tevim imat
Boren 9“;. ermindte
3 Sewe Lwse
Cenercte Mo
oo ve 1fec ‘:_ﬁ No.-_«l-’ﬁ\l?, .32 Mvtoce
Tham sactions Complete? apl o
Ausnce 0 Jomp
Yes (G ®) Times
s Distetbute
[Temindte 10 ty
o Process
E“;::“r‘ TRawsack o 6‘)“——"—"
Suiee Bpe | |in Butlers | Ter minate
Pre -ewpt
Lineg 1,203 l
Aovenee.
(raawsier B>
Sovch o)l | Stulation

Figure 3

The DINKIACI 7

CASE 128 Word 256 Word 512 Word

Page Page Page
Lower Bound 120,391 ms 234,921 ms 479,801 ms
4 lines, 219 bits 217,246 245,853 505,688
75 percent predictable
4 lines, 2! bits 440,482 324,034 506,057
non-predictable
4 lines, 256 pages — 278,479 552,542
75 percent, predictable
4 lines, 256 pages —_ 454,316 695,778
non-predictable
4 lines, Upper Bound 285,037 331,847 549,388
75 percent predictable
4 lines, Upper Bound 602,615 472,056 586,818
non-predictable
3 lines, 219 bits 289,290 296,161 498,685
75 percent predictable
3 lines, 2 bits 547,898 402,066 532,240
non-predictable
3 lines, Upper Bound 372,937 364,044 583,955
75 percent predictable
3 lines, Upper Bound 707,961 559,366 681,738
non-predictable

Figure 4

and the storage completion lines, determine register
gating and the consequent bus information. The ma-
chine’s instruction set should prove helpful in conveying
an intuitive notion of its logical complexity, and is
given in Figure 9. Codes in that figure are in hexa-
decimal unless otherwise shown. ‘A’ designates the ac-
cumulator; ‘CB’ the carry bit;‘M’ the memory;‘ M BR’
the memory buffer register; ‘P’ the program counter;

700,000 na
608,000
500,000
100,000
300,000

200,000

100,000

128 256 512 words
page size

Figure 5—Four line—75 percent predictable

700,000 ms 4 A
7~
600,000 - e
-~
~
500,000
— g

© 400,000

m,m

200,000

100,000

128 256 512 words
page size

Figure 6—Four line—non-predictable

and, ‘Y’ a memory address. Dinkiac word size and
instruction format allow for the expansion and modifica-
tion of this basic instruction set in many ways. For
example, an index register may be added, or shifts
modified to shift by some specified amount. Multiply
and divide logic, too, could be included, and while
these instructions might violate the spirit of the ma-
chine, they could easily be executed within a single
memory cycle.

As implied in the simulation section, the number of
delay lines can be increased with only a minor modifica-
tion to the memory addressing scheme. In this case, the
storage lines would continue—as they are now—to be
synchronized with a single counter. Such a change
could be expected to improve performance by increasing
the data transfer-program execution overlap, but it

"would not alter the sequential instruction time which

you may recall is roughly 500 instruetions/second for
the 256 word/line machine. Reeall also that the
two MHz bit rate allows for an information exchange
between the memory buffer register and the chosen
delay line in eight microseconds. This speed would
allow the execution of non-memory referencing instrue-
tions from contiguous memory locations to proceed at
the rate of 125,000 per second for a phenomenal increase
of 250 times. A major factor contributing to the
Dinkiac’s easy circuit realization, however, lies in the
difference between memory and switching speeds, and
it is this great disparity that allows us to almost dis-
regard the latter. If we wish the increased speed with-
out altering this principle—which also enables us to
purchase the cheapest logic ecomponents—we must
provide both double memory buffer registers and the
logic for their utilization. This type of speed-up must
be carefully priced and reviewed in the light of the
simulation results.

8 Spring Joint Computer Conference, 1971

700,000 =8

600,000

100,000

300,000

200,000

100,000

128 256 512 words
page size

Figure 7—Three line—75 percent predictable

COSTS AND CONCLUSIONS

While the probability is high that any manufacturer
seriously considering marketing such a device is already
in either the small machine, display terminal or some
related business—an instructive way to garner a sense
of cost is to consider a prototype builder with no such
association but who can avail himself of quantity
prices for off-the-shelf items. If we assume a two to
one gate to flip-flop ratio—not unrealistic for the pro-
posed serial operation—meaningful logic costs can be
ascertained by a simple count of single bit storage
registers. Itemizing all registers—not integral with
some other priced item (as, for example, the delay line
input gates, . . .)—we arrive at a count of less than 200.
This eount is conservative, allowing bits for miscellane-
ous control and making no attempt to share or minimize
the number or size of the registers.

A notion of dollar value can be ascribed to the count

700,000 ms
600,000

500,000

\

100,000

300,000

200,000

100,000

128 256 512~ words
page size

Figure 8—Three line—non-predictable

by using quantity prices for standard off-the-shelf T'TL
gates from leading suppliers. Such an assignment comes
to $2.20 per bit where the flip-flop price is $1.60 and the
gate cost $.30. This approach is again conservative
taking into account no non-standard gates and using
no very slow, but adequate, logic. Computed in this
way the logic price to a backyard builder with connec-
tions is $440.

Similarly pricing the other components puts the

-delay line memory (four, 4096 bit lines) at $400 (in

large quantity); the cassette recorder at $100; the key-
board at $75; the CRT and related components at
$175(the display generator including read-only mem-
ory is available in lots of over 25 for less than $100);
a power supply at $120; and a crystal clock at $100.
The total, then, including logic is $1410. It is reason-
able to expect that quantity costs to a manufacturer—
including labor—would be a good deal less than this
amount. We may note in this respect that currently

DINKIAC INSTRUCTIONS
Memory Reference

STO Y 1xxx A—->My
ADD Y 2xxx A+My—A
SUB Y 3xxx A—My—A
JMP Y 4xxx Y-P
JAM Y 5xxx Y—P,if A<O
JAZ Y 6xxx Y—-P,if A=0
JSP Y T7xxx P+1-My, Y4+1-P
LDA Y 8xxx My—A
AND Y 9xxx AAMy—A
ISP Y Axxx My+1—-My, if My =0 then P+1—P
JCB Y Cxxx Y-P,if CB=1
Non-Memory Reference
NOP 0000 No Operation
HLT 0001 Halt
SNI 0002 P+1—P, if Interrupt Flag =1
SNK 0003 P+1-P, if Keyboard Flag =1
CLA 002- 0—A
CMA 003- 2€(A)—A
CLC 004~ 0—CB
CMC 005- 26(CB)—CB
LAK 006~ Keyboard Buffer—As_ss
LAB 007- MBR—A
SHR 008- Shift CB and A right 1
SHL 009- Shift CB and A left 1
RTR 00A- Rotate CB and A right 1
RTL 00C- Rotate CB and A left 1
RLR 001- Rotate A, 8
SCO Y 04xx If Cassette not Busy, P+1—P and Search

Cassette 0 for tape page xx.

RCO 0(10xx)s—— If Cassette not Busy, P+1—P and Read
tape 0 into memory page xx (where xx=1,
2, or 3).

WCO 0(11xx)s— If Cassette not Busy, P+1—-P and Write
tape 0 from memory page xx (where xx=1,
2, or 3).

Figure 9

The DINKIACI 9

advertised prices for display terminals are as low as
$1500, and include all Dinkiac components excepting
three delay lines (the displays have one), a cassette
recorder, and computer logic. This price, incidentally,
includes beautiful packaging. Suppose we add to the
$1500 the excluded items, priced as above, for a grand
total of $2340. There is nothing to indicate that a
Dinkiac cannot be profitably marketed for under
$3000.

This report has attempted to show that a general
purpose digital computer—suitable for a large class of
users, including those in small businesses and engineer-
ing firms, schools, and even private homes—can be
built to market for a price near the low end of the desk
calculator range. A GPSS simulation has shown the
optimum memory length to be the one in which time
for the execution of a page of instructions is closely
matched with tape block transfer time, and has con-
firmed the adequacy of four lines, even while assuming
highly unfavorable operating parameters. Additionally,
by modeling with ‘“Gibson instructions,” we were able

to acknowledge that the Dinkiac—while short on
“bandwidth” in comparison with large machines—is
certainly adequate for its intended purpose.

REFERENCES

1 D J THEIS L C HOBBS
Mini-computers for real time applications
DATAMATION No 39 March 1969

2 J W COHEN
Mini-computers
MODERN DATA No 55 August 1969

3 J H EVELETH
A survey of ultrasonic delay lines operating below 100 Mc/s
IEEE Proc Vol 53 No 10 October 1965

4 R B MILLER
Response lime in man-computer conversational transactions
AFIPS Conf Proc Vol 33 p 267 1968

5 G GORDON
A general purpose systems simulation program
.EJCC Proc p 87 1961

6 J J CLANCY
Notes on the ‘bandwidth’ of digital stmulation
SIMULATION Vol 8 No 1 January 1967

A multi-channel CRC register

by ARVIND M. PATEL

IBM Laboratories
Poughkeepsie, New York

INTRODUCTION

The Cyeclic Redundancy Check (CRC) is extremely
efficient and well suited for error detection in transmis-
sion, retrieval or storage of variable length records of
binary data. The cyclic check is capable of detecting
nearly all patterns of error with almost negligible
amount of redundancy. For example, a 16-digit (2
bytes) CRC character will detect all error-bursts of
length 16 or less and better than 99.99 percent of all
other error-bursts in binary records of any length. For
average record length of 1000 bytes this amounts to less
than 0.2 percent redundancy. Peterson and Brown’s
paper* is an excellent exposition on the subject of error
detection with cyelic codes.

A linear feedback shift register is essentially the
only hardware needed for encoding and decoding
variable length binary data for error detection by means
of CRC character. The CRC character is generated by
serially shifting the binary information into the feed-
back shift register as it is transmitted. The CRC char-
acter is then transmitted on the same channel at the
end of the information sequence. At the receiver, the
received sequence is processed in the same manner.
The generated CRC character is compared with the
received check character for detection of any errors in
the received message. The number of digits in the CRC
character determines the checking capability of the
code and, in general, equals the number of stages of
the encoding and decoding shift register.

Oftentimes, the information is transmitted in parallel,
a byte at a time, on a multi-channel system. The mes-
sage formats of serial and parallel systems are shown in
Figure 1. For the multi-channel system, one could pro-
vide a separate CRC character for each channel using
one shift register per channel. This, however, increases
redundancy and cost. Furthermore, if serial and parallel
formats are used alternatively in various parts of the
total data processing system, it becomes imperative to

11

use compatible hardware which produces same CRC
check.

This paper presents a method of constructing a
multi-channel ecircuit that allows parallel-processing
of binary data in generating the Cyclic Redundancy
Check (CRC). The multi-channel circuit is designed
to be compatible with the conventional serial CRC
register. This new circuit has the following advantages
over the serial CRC register:

1. It allows parallel processing of f bits of data (a
byte). This eliminates the serializing and buffering
of data that is transmitted or received in the form
of a byte.

2. The processing speed is f times faster, with rela-
tively small increase in hardware.

In the following section, a CRC register is described.
The serial and parallel (eight-channel) eircuits are illus-
trated using a practical example. In the section “Multi-
Channel CRC Register,” we develop the mathematics
for constructing a multi-channel CRC register. The
result on a parallel linear feedback shift register as a
GF(2) polynomial divider has been described by
Hsiao, et al.,2 but a parallel CRC register has not beer
constructed before in the form given in this paper.

CRC REGISTER

The Cyclic Redundancy Check (CRC) can be gen-
erated using a GF(2) polynomial divider circuit.® In
this circuit, to generate the check character, one shifts
the binary message sequence, followed by r (the degree
of the checking polynomial) zeros, into a polynomial
divider circuit. The need for shifting r zeros can be
eliminated* by changing the input connections of the
conventional polynomial divider ecircuit. This modified
circuit is conventionally known as the CRC register.

12 Spring Joint Computer Conference, 1971

| 1ot bytel 2 pyte kP byte | CRC bytes

INPUT
One
| <——— Serial Information ——= I < Check > I =" channel le x"lx‘|x5lx°[x"ixslx"xwlx"lx'zlx" x4 E ®

Figure 2—Serial CRC register

] 8 8 9 £, £
E E .% ______ z‘ = = 8 Parallel
b B v < S 2 Channels . . .
a, B Sy o 5} 1101011110010011) is processed in the CRC register
iy of Figure 2.

<—Parallel Information—> Check . . .
o e I Figure 3 presents a multi-channel CRC register

that processes eight bits (byte) in parallel. A single
Figure 1—Message formats for serial and parallel systems shift in this circuit with any eight-bit input sequence is
equivalent to eight consecutive shifts in the serial
circuit of Figure 2 with the same input sequence.
Table II is the state transition table of the multi-
channel CRC register as the same binary message (in
the form of two bytes) is processed through it. Note
that the parallel circuit of Figure 3 produces the same
CRC character eight times faster than the serial circuit
in Figure 2.

Figure 2 gives the circuit connections of a serial CRC
register whose checking polynomial is 14?5+,
This particular CRC register is used in the IBM 2701
system. For encoding, the binary message sequence is
entered serially at the high-order end of the feedback
shift register as shown in Figure 2 while the contents
of the shift register is shifted toward the high order
end. In this way, when the last bit of the message
sequence is entered, the contents of the shift register MULTI-CHANNEL CRC REGISTER
represents the check character. In decoding, the re-

ceived message bits are entered in the shift register in In this section, we develop the mathematics for ob-
the same manner as in encoding. Likewise, the received taining a multi-channel CRC register that can process
check character is then shifted in. When the last bit f bits in parallel to generate the CRC character or the
of the check character is entered, the contents of the syndrome. One shift in the parallel circuit is equivalent
shift register represent the syndrome. A non-zero to f shifts in the corresponding serial CRC register.
syndrome indicates an error in the received data. The number f is a positive integer, smaller than the
Table I is a complete state transition table of the degree r of the checking polynomial.
above process as a 16-bit binary message (namely, G(z) denotes the checking polynomial, often called

TABLE I—State Transition Table for Serial CRC Register

Time Contents of Shift Register’

t. Input 20 xl x2 xf{ x4 xS x8 3}7 xs 19 xw xll le xl3 z14 xlﬁ

0 — 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1

2 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0

3 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0

4 1 1 0 1 1 0 1 0 0 0 0 0 0 0 0 0 1

5 0 1 1 1 1 1 0 1 0 0 0 0 0 0 0 0 1

6 1 0 1 1 1 1 1 0 1 0 0 0 0 0 0 0 0

7 1 1 0 0 1 1 1 1 0 1 0 0 0 0 0 0 1

8 1 0 1 0 0 1 1 1 1 0 1 0 0 0 0 0 0

9 1 1 0 0 0 0 1 1 1 1 0 1 0 0 0 0 1

10 0 1 1 1 0 0 0 1 1 1 1 0 1 0 0 0 1

11 0 1 1 0 1 0 0 0 1 1 1 1 0. 1 0 0 1

12 1 0 1 1 0 1 0 0 0 1 1 1 1 0 1 0 0

13 0 0 0 1 1 0 1 0 0 0 1 1 1 1 0 1 0

14 0 0 0 0 1 1 0 1 0 0 0 1 1 1 1 0 1

15 1 0 0 0 0 1 1 0 1 0 0 0 1 1 1 1 0

16 1 1 0 1 0 0 1 1 0 1 0 0 0 1 1 1 0

CRC 1 0 1 0 0 1 1 0 1 0 0 0 1 1 1 0

A Multi-Channel CRC Register 13
TABLE II—State Transition Table for Parallel CRC Register
Time Number of Input Contents of Shift Register

t the Shift L Li L I I. It Is I 20 ozt 22 xd ot b b xT x® xd g0 il g2 g3 gM gls
0 — e e e — — o 0 0 0 0 0 0 0 0 0 0 0 0 O o0 o
8 1 11010111 0 1 0 0 1 1 1 1 0 1 0 0O 0 0 o0 0
16 2 1 001 0 011 $¥1 0 1.0 0 1 1 O 1 O O O 1 1 1 O

CRC Character 1 6 1 0 0 1 1 0 1 O O O 1 1 1 O

the generator polynomial. We use the following
notation:

G(x) =G+Gux+Gox?+- - - +-Gpar 1)

The state vector X;=[xo, %1, ... Zr]: denotes the
contents of the CRC register at time . T' denotes the
companion matrix of the polynomial G(x), correspond-
ing to the serial CRC register connections. Let z; denote
the data bit entering the serial CRC register at time .
Then the shifting operation of the serial CRC register
is given by the (mod-2) matrix equation

XH_1=XtT®ztG (2)
Z7
m
Zg
X! o) x® é
L~
Zs
' & '°—'é
fz4
X3 X” +
+|—e

o

Py

CHERERE

[o]

7 of) 15

X —*‘H X

LT

INPUT BINARY SEQUENCE: Z,Z;.25.23.24.Z5.2g:27

CHECKING POLYNOMIAL * 14+X2+x'3 +x'®

Figure 3—Eight-channel CRC register

where G is the vector [Go, Gy, Go---G,1], and T is
given by:

0 1 _
0 1
T= 1 (3)
0 1
G G Gy G |

Suppose that 2;, 2¢1q, . . . 2e05-1 are the f data bits (a
byte) entering successively into the serial CRC register
during the f consecutive shifting operations. The con-
tents of the CRC register at the end of f shifts is de-
noted by the vector X,,;. Using Equation 2 iteratively, .
f times, one can obtain:

Xt_‘.f = X;TfQZtGTf_'I @zt+1GTI_2 @ .. ’Zt+f_1G (4)

Here T is the jth power of the matrix T. Let Z, denote
the input data sequence, as follows:

9 zt+1) zt]

Let D denote the following partitioned matrix:

Z=[Z1s1, 2152, - -

- @ -
GT
D= GT? (5)
GT
Then, Equation 4 can be rewritten as:
Xy=XT'®Z.D (6)

The sequential circuit realizing Equation 6 has the
property that with the input byte Z, (f bits in parallel),
it changes from state X, to X, in a single shift. This
is the equivalent operation to f shifts of the corre-

14 Spring Joint Computer Conference, 1971

TABLE III-—Rows of The Matrix D

Number of Contents of the Serial CRC Register
the Shift 20 ozt 22 2 ot x5 28 T ® b g0 gt g2 g3 gl g1
0 G 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1
1 GT 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 1
2 GT. 1 1 0 1 1 0 0 0 0 0 0 0 0 0 0 1
3 GTs i 1 0 0 1 1 0 0 0 0 0 0 0 0 0 1
4 GT* 1 1 0 0 0 1 1 0 0 0 0 0 0 0 0 1
5 GTs 1 1 0 0 0 0 1 1 0 0 0 0 0 0 0 1
6 GTe 1 1 0 0 0 0 0 1 1 0 0 0 0 0 0 1
7 GT? 1 1 -0 0 0 0 0 0 1 1 0 0 0 0 0 1

sponding serial CRC register with the same input
data entered serially.
Note that the matrix T' can be partitioned as:

0] I,
T‘[a]

where I,, is the mXm identity matrix.
In general, it can be shown that 77 is equal to the
following partitioned matrix:

e[t

(7)

(8)

where D is given by Equation 5. One method of ob-
taining the matrix D is illustrated in the following
Table IIT using the example given in the section “CRC
Register.”

Note that the vectors G, GT, GT? . . . GT/ ' represent
the contents of the serial CRC register as the vector G
is shifted f—1 times. Table III lists these vectors for
the example in “CRC Register.” The matrices D and
T’ can be obtained using Table III and Equations 5
and 8. Now the implementation of Equation 6 leads to
the parallel circuit.

The matrix T/ contains D as a sub-matrix. Hence,
proper partitioning of the state vector will result in
savings in hardware. We can partition the state vector
X, into two parts:

X.=[X}!]| X2] 9)

where
th=[x07 Ty ... x""f_l:l (10)
Xt2=[xr—f; Lr—fily « o » xr—l:l (11)

Using Equations 8 and 9, we can rewrite equation 6 as
follows:

Xuy=X/0] Ir—lj®EXt2@Zt][D] (12)

Implementation of Equation 12 directly gives the
parallel circuit of Figure 2 in the example.

CONCLUSION AND COMMENTS

It is shown that corresponding to any polynomial g(z)
of degree r, one can generate a parallel CRC register
that processes f bits in parallel (f<r). The hardware
is minimized by proper partitioning of the matrices in
the state transition equation for the parallel circuit.
For f>r, the theory of this paper can be applied without
any change, except that the partitioning will then be
applied to the D matrix rather than to the 77/ matrix.
This is obvious sinee D, in this case, contains 77 as
one of its partitions.

ACKNOWLEDGMENT

The problem was originally suggested by Mr. W. D.
Benedict and Dr. M. Y. Hsiao.

REFERENCES

1 MY HSIAO K Y SIH
Serial-to-parallel transformation of feedback shift register
circuits
IEEE Transactions on Electronic Computers Vol EC-13
pp 738-740 December 1964
2 M Y HSIAO
Theories and applications of parallel linear feedback shift
register
IBM TR 1708 SDD Poughkeepsie March 1968
3 W W PETERSON
Error correciing codes
MIT Press 1961
4 W W PETERSON D T BROWN
Cyclic codes for error detection
Proceedings of the IRE pp 228-235 January 1961

Features of an advanced front-end CPU

by RICHARD BARR HIBBS

The Bunker-Ramo Corporation
New York, New York

INTRODUCTION

A central processing unit to handle data communications
chores as a front-end computer has historically been
either a maxi-computer, overpowered for the intended
job, or a mini-computer, stripped of many instructions
and architectural features that now ease the program-
ming burdens of commercial data processing. Front-end
CPU’s are evolving into general-purpose machines in
their own right due to demands for more generalized

proeessing by the front-end, such as code conversion,
~ message text pre-editing, and local (i.e., not performed
by the host computer) message switching. Front-end
CPU’s must be dual-purpose machines—a special-
purpose input-output structure to handle communica-
tions efficiently, and a general-purpose data handling
structure to perform tasks such as described above.
Certain desirable features of a front-end CPU are
described informally in this paper, then the architecture
of a proposed front-end CPU which incorporates these
features is presented.

DESIRABLE FEATURES OF A
COMMUNICATIONS PROCESSOR

The more densely a program can be coded, the more

reliable it may be considered to be. That is, if the set of
machine operation codes include null codes, privileged
codes, context-sensitive-codes, or codes which bypass
normal machine operation, then the set of codes is
inherently less reliable than a set which does not include
such codes.

The use of re-entrant coding techniques has a
beneficial side effect, the elimination of program code
which modifies other code or can itself be modified, and
reduces the frequency of instructions which can in
themselves, eycle indefinitely. Program modification is
probably the source of many ‘“phantom clobberers”
found in any large software system.

15

In an environment where multiprogramming is the
exception rather than the rule, the added hardware
complexity required to implement an indexed base-
displacement addressing scheme (a la 360) is question-
able, but for the frequent use made of virtual tables.
Manipulation of data and control information main-
tained in tabular form is required to implement
re-entrant coding techniques. To efficiently access table
structures, a variety of addressing schemes must be
available to the programmer.

Queueing of data and control information maintained
as elements in a linked list is the basic operation of
communications tasks. Low overhead queueing opera-
tions on several common types of queues will eliminate
an often unwieldy set of system subroutines. The
addition of coroutines and subcoroutines to the types of
program elements handled by the program control
structure would add two very useful facilities to any
computer coded as independent modules, and would be
particularly valuable in a front-end. Extending the
control instruction repertoire beyond the familiar
“BRANCH ON CONDITION, ”and “INCREMENT
(or DECREMENT) AND TEST FOR ZERO” is
needed to effectively make use of the new types of
program elements.

Rather than settling the question of word versus
byte-oriented computer organization, note that by
allowing partial-word operation on all data-ma-
nipulating instructions, a considerable amount of
masking and shifting can be eliminated from operating
programs, although only limited flexibility is available
without creating difficult instruction coding problems.

As the internal circuitry of a CPU is far more reliable
in operation than the attached communications lines,
the extra memory cycle time and additional hardware
necessary to provide memory parity or error detection
and correction is unacceptable. Advances in technology
coupled with the use of error-correcting codes may
change this point of view, however, in the near future.

The real power of a CPU is not measured by the

16 Spring Joint Computer Conference, 1971

43 4039 32109827 24
Lmry | ok |

L]
v
Q
Q
W
»

INSTR ADIR

Figure 1—Processor state register (PSR)

instruction cycle time, but rather by the amount of
processing performed by each instruction and the num-
ber of instructions necessary to perform a given
function.

Taking advantage of storage technology by buffering
main storage with high-speed local storage and placing
operating programs in read-only storage suggests a
return to Harvard-class computers with separate
addressing spaces for data and instructions. Immedi-
ately, the possibility of executing data or operating on
instructions is completely eliminated, thus improving
the reliability of the software. Storage protection is
unimportant for the program store of a Harvard-class
machine, but is still important in protecting constant
areas in data store from accidental destruction. Both
read and write protection of data store are useful, almost
mandatory, and should be provided for.

Conventional input-output channels of large-scale
computers are constructed to provide an efficient,
general scheme for input-output. By specializing the
input-output channels to handle communications only,
and by integrating channel controls within the front-end,
the power of the front-end computer is extended and
directed at communications. Assuming only communi-
cations lines and interprocessor channels are attached,
the lack of general facilities for input-output is not a
limitation of the processor.

GENERAL CP ARCHITECTURE

The communications processor (CP) is a multi-
accumulator, two’s complement, fixed-point binary,
stored program digital computer with separate address-
ing spaces for programs and data. CP control circuitry
‘interfaces with operating programs through the pro-
cessor state register (PSR), a control register which is
the central element of the interrupt mechanism. All
input-output channels and their controls are func-
tionally integrated within the CP itself to expedite
input-output operations by treating each device inter-
face as an addressable extension of CP data memory.

CP program memory consists of up to 65,536 words of
44 bits each, with the first 2,560 words reserved for
interrupt processes. The operand address of all program
transfer of control, queue manipulation, and input-out-
put instructions refer to locations in program memory.
Program memory is addressed consecutively from 0 to

the highest available address—an invalid address
generates an addressing error interrupt. The format and
interpretation of words contained in program memory is
described in the “Instruction Set” Section.

CP data memory, separately addressed from CP
program memory, contains up to 4,194,204 thirty-six
bit words. CP data memory is under control of a
protection lock assigned to each 2048 word module of
core and a protection key contained in the current PSR.
Storage addresses of data memory run from 0 to the
highest available address with invalid addresses
generating an addressing error interrupt. Locations 0 to
2048 are reserved as control words for input-output
channels.

The PSR consists of PRTY, KEY, T, P, CC, W, R
and INSTR ADDR fields, as shown in Figure 1. Only
the PRTY field may be modified by an operating
program without loading an entire new PSR. The
PRTY field specifies the “level’” at which the current
program is operating—O indicates non-interruptible,
critical processes and 15 indicates non-critical, com-
pletely interruptible processes. With 16 priority levels
at which the CP can operate, the dispatching urgency of
interrupts can be dynamically altered. Every request
for interrupt is at a priority determined sometime before
the request is generated. All ‘“‘program’ interrupts have
a fixed priority of 1, 2, or 3. All input-output interrupts
have a priority specified by the START I/0 instruction
which initiated the operation. When a request for
interrupt is presented whose priority is equal to or
greater (less numerically) than that specified by the
PRTY field, the interrupt request is granted, otherwise
the request is stacked by CP control for later servicing.

The KEY and T fields control access to CP data
storage. Data storage protection is always in effect.
When an instruection requires access to CP data storage,
the KEY is matched against the lock associated with
the memory module containing the desired address, with
access granted according to the match-up.

The CC field controls conditional transfer of control
instruction execution. The meanings of each bit are
defined according to the preceding instruction executed.
The CC field is reset following execution of all but
conditional transfer of control instructions. All condi-
tional transfer of control instructions interrogate the CC
field according to the mask given by the Rl field of the
instruction in order to determine whether or not a
branch will be taken. Matching one bits in any bit
position causes the branch to be taken.

The INST ADDR field contains the address of the
next instruction to be executed. It is updated sequen-
tially after execution of each instruction until a transfer
of control instruction takes a branch, when the branch
address becomes the next instruction address,

Features of an Advanced Front-End CPU 17

The W and R bits define the operating states of the
CP. If W is set, the CP is in the wait state and no
instructions are executed. Input-out does not stop,
however, when in the wait state. The R bit specifies
which set of general registers is used by each instruction.

Two interchangeable sets of general purpose registers
exist within the CP. Each register is 36 bits wide and is
designated by a number from 0 to 15. Fifteen of the 16
registers may be used as accumulators, index registers,
or base registers. Resister zero may be used only as an
accumulator.

The P field describes the current type of program
element being executed. A main program or subroutine
is indicated by 00 or 01, the distinction between them
being almost impossible to determine as a return branch
from a subroutine takes exactly the same form as an
indirect branch within any program element. A
coroutine is indicated by 10 and a subcoroutine is
indicated by 11. If a program transfer of control
instruction is executed which is invalid for the ecurrent
type of element, a program linkage interrupt is
generated.

When an interrupt request is granted, an address
presented along with the request is used to specify the
address in program memory from which to fetch a new
PSR. The old PSR, having been saved in a pushdown
stack, may be made the current PSR in order to
re-enter the interrupted routine at the end of the
interrupt service by executing an UNCHAIN
instruction.

As each interrupt is identified with a distinctive new
PSR, no interrogation of devices, i.e., polling of inter-
rupts, is required during interrupt serviee.

INSTRUCTION SET

Each CP instruction occupies one 44-bit word of CP
program memory in one of the formats shown in
Figure 2. Instructions operate between registers,
between storage and registers, or between storage
locations. In the register to register and storage to
register formats, three addresses are specified—two for
operands and one for the result. The result and one
operand are specified by the contents of the indicated
register. The other operand address refers either to CP
memory (storage to register format) or a general
register (register to register format). In the storage to
storage instruction format, a source and destination
address and a length code are specified. All references to
CP memory refer to CP data memory unless the
instruction is a control instruction (e.g., BRANCH ON
CONDITION, LOAD PSR, or PUSH).

Memory addresses of storage to register format

33 22
['s) 3635 21029 2625 221019 1615 1211 0
A] i
X | B DISPL

0PCODE awln Rt | R in

Storage to Register Format

%) 3635 21 1214 87 43 0

! oPcODE lmJ] R |R |3

Register to Register Formet

43 %35 3231 2827 1615 1211

0
OPCODE | R1 B1 % D1 B2)3 J
e b - —

Storage to Storage Format

Figure 2—Communications processor (CP) instruction formats

instructions are formed and interpreted according to
the addressing mode (AM) field of the CP instruction.
If AM is 00, the modifier (M), index (X), base (B), and
displacement (DISPL) are taken as an absolute 16 or
22-bit address and the addressing mode is called
DIRECT. If either program or data memory contains
fewer words than addressable by the full 16 or 22-bit
value, any reference to an address lying outside the
addressing space will generate an addressing interrupt.

If AM is 01, the addressing mode is called INDEXED
and the address is formed from two sums. The DISPL
field is added to the contents of the register specified by
the B field, unless the B field is zero. If the B field is
zero, the value zero is used in forming the first sum. To
the first sum, the contents of the register specified by the
X field are added, unless the X field is zero. If the X
field is zero, the value zero is used in forming the
second sum. The second sum is used as the data or
program memory address. The register specified by the
B field is considered to contain a signed, 35-bit integer,
even though the resulting sum will be truncated to a 16
or 22-bit address. The register specified by the X field is
considered to contain a signed, 17-bit integer. Addresses
are formed in a 36-bit register in the CP control section,
then truncated to the appropriate precision.

The high-order 18 bits of the register specified by the
X field are taken as a signed, 17-bit modifier of the
actual index, contained in the low-order 18 bits of the
register, according to the M field of the instruction. If M
is 00, the index is not modified. If M is 01, the modifier
is added to the index and the sum becomes the new
index. If M is 10, the modifier is subtracted from the
index and the difference becomes the new index. If M is

18 Spring Joint Computer Conference, 1971

L_Joof T o~ 1]
Birect Addressing

L Jof I » | I—4 T 1

BASE
LT T Tulel]
I
* T ad
L
ibfx] g] B | ApoREss o INDIRECT WORD

iz ¢] T | ADDRESS OF DATA
o] DATA]
Indipect Word Strycture
mrran T] apoREss or IwnIRECT WORD

| aoomass or 1ocarIve

—holix[p]

—{oju[x] ¢ v | ATORESS 0F INIERACT WORD
I_— |
“—{1op[z] #] ad | avommss or wcarve
I
[—'4001 DATA k i

Locative Word Structure

Figure 3—Communications processor (CP) addressing structure

11, the index is multiplied by the modifier and the
product becomes the new index. All index modification
is performed after current instruction execution, before
the next instruction is executed.

If AM is 10, the addressing mode is called

INDIRECT and the address is formed as described for
the INDEXED mode but is not the address of data or a
new program address, but the address of an indirect
word. The indirect (I) bit of the indirect word specifies
whether the address pointed to by the indirect word is
the address of another indirect word or the address of
data. If I is 0, the next word is data (or next instruction
address). If I is 1, the next word is another indirect word.
The M and X fields are interpreted for the indirect
word just as they are interpreted for an instruction,
with the contents of the register specified by the X field
added to the ADDRESS portion of the indirect word.
Multi-level indirection and indexing are thus possible.

If AM is 11, the addressing mode is LOCATIVE,
a combination of INDEXED and INDIRECT modes.
The address is formed as described for the INDEXED
mode, but is the address of a locative rather than that
of data or a new program address. A locative is
distinguishable as data, the address of data (beginning
of an indirect chain), the address of another locative, or
the address of the address of another locative (beginning
of an indirect chain ending with a locative). For a
transfer of program control instruction, LOCATIVE
mode has the same interpretation as INDIRECT mode.
The L field determines the interpretation of the loeative.
If L is 10, the locative contains the address of another
locative. If Liis 11, the locative begins an indirect chain
terminated by another locative. The M and X fields are
interpreted just as for the indirect word.

If the resulting address addresses CP data memory,
the protection KEY of the current PSR is compared to
the storage lock for that segment of data memory. If
they match, access is granted according to the tag bits
which match between the PSR and the storage lock. One
tag bit allows read access, and the other tag bit allows
write access. When the key does not match the lock a
protection interrupt is generated. The general CP
addressing structure is illustrated by Figure 3.

Storage-to-storage format instructions have fewer,
but similar, fields than do storage-to-register format
instructions. These are two address instructions, with
the source address given by the sum of the D2 field and
the contents of the register specified by B2 (unless zero)
and the destination address given by the sum of the
D1 field and the contents of the 9-bit characters of the
fields involved in an operation are contained in the
register specified by R1.

Program elements can be one of four types: main
program or open subroutine, closed subroutine, co-
routine, or subcoroutine. Program control is passed to
the main program or passed within any of the elements
by means of a BRANCH ON CONDITION or
BRANCH ON INDEX instruction. The BRANCH ON
CONDITION instruction substitutes a four bit mask

Features of an Advanced Front-End CPU 19

for the R1 field which is compared to the four bit CC
field of the current PSR. A match in any bit position
causes the branch to be taken to the address in program
memory given by the B, X, and DISPL fields in the
mode specified by the AM field. Note that the R2 and
PWD fields do not enter into the instruction execution.

The BRANCH ON INDEX instruction affects the
register specified by the X field. The X and M fields are
not used in determining the branch address. The R1
‘field specifies a register containing the value to be
compared to the index portion of the register specified
by the X field. Only the low-order 18 bits of the R1
register are used in the comparison. The R2 field
specifies a register containing a signed increment in bits
0-18 which modifies the index register according to the
M field when the branch is not taken. The M field is
interpreted as before. The branch is taken whenever
the specified test condition is met. The test conditions
are: index high, index equal, and index low. Transfer of
program control to a subroutine is made with a
BRANCH AND LINK instruction. The register
specified by the R1 field is taken as a four bit mask for
comparison against the CC field of the current PSR,
just as for the BRANCH ON CONDITION instruetion.
If any bits in the mask match the CC, the register
specified by the R2 field is first loaded with the address
of the next sequential instruction, then the branch is
taken just as for the BRANCH ON CONDITION
instruction.

A coroutine is a program element defined by its entry
locator, which specifies the address of the first instruec-
tion to be executed upon entry to the coroutine. An
INITIALIZE or LEAVE group instruction defines the
contents of the entry locator, and an ENTER group
instruction performs the co-transfer into the coroutine.
INITTIALIZE is a storage to storage format instruction
that sets the entry locator for the named coroutine to
the given address in CP program memory. LEAVE and
ENTER group instructions are also storage to storage
instructions which set the entry locator for the current
routine to the address of the next sequential instruction
then transfer indireet through the entry locator of the
target routine (if a coroutine or subcoroutine) or branch
to the target address (if a main program or subroutine).

A subcoroutine, like a coroutine, is defined by its
entry locator, and also by an exit locator. The entry
locator may be defined by an INITIALIZE or a
RETURN group instruction. Entry to a subcoroutine is
made by executing a CALL group instruction, which
sets the entry locator of the current module (f a
coroutine or subcoroutine) to the next sequential
instruction address and transfers control indirectly into
the target subcoroutine through its entry locator, then
sets the exit locator to the address of the next sequential

INITIALIZE
INITIALIZR
) 1 ~ENTRY INCATOR
/b
Yy y
TR L 1st INSTR-
MAIN FROGRAM L
/= retur point ’—\g
i
: /
.
e [(IR LAGATOR
A P s e
[D

Figure 4—Coroutine and subcoroutine structure

instruction following the CALL in the calling routine.
When a RETURN instruction is executed, the entry
locator of the current module is set to the next sequential
instruction address and a branch is taken to the return
point, indirectly through the exit locator. The entry and
exit locators occupy contiguous locations of CP program
memory. Figure 4 shows coroutine and subcoroutine
structure.

To provide low-overhead queueing operations, three
types of queues are maintained by hardware: pushdown
stacks, normal FIFO or head-tail queues, and double-
ended head-tail queues. A pushdown stack is defined as
a contiguous area of data memory with a locator word
in program memory. The locator word consists of
length, count, and pointer fields. The count is decre-
mented by one for each element pushed down into the
stack. The pointer initially contains the address of the
first available element, and is incremented by the length
field for each element added. Likewise, for each element
removed, the pointer is decremented by the length field.
If the count is zero then an attempt is made to add an
item, and overflow condition exists and a stack overflow
interrupt is generated.

Normal and double-ended head-tail queues are defined
as unbounded linked lists. Any head-tail queue may be
either normal or double-ended, defined by the needs of
the moment by the instruction executed to manipulate
an element. All instructions affect the queue pointer
words and the link word of the cell being manipulated.

20 Spring Joint Computer Conference, 1971

Notation

+ Addition A loglosl AND

- Subtraction v logieal OR

« Maltiplioation @ Coincidence

/ Divigion () Contents of

t Comparison M Rtfective Address

<— Replaces = Int
InMctbnl
ADD (R~ (M) + (R2)
MILTIFLY (RY, RA+L) — (M)« (R2)
mvioe (R)w— (R2,RU+1)/(M) 5 (RA+Y) +—REMAINDER,
AND (RD)= (M)A (RDY
o (R« (M)V (RY)
P (RO (W) B(R2)
LOAD WULTIFLE (A, R = (M M i)
STORR MULTIFLE (Mww""cn-uuﬂ*"Qnr"im')
INTERCHANGE (M) = (RY)
1OAD ADDRESS (RY)a— M
COMPARE MASKED Cwv (R2)1: ()
10AD PSR (POR) «— (M)

Figure 5—Representative CP instructions

To put a cell on the tail of the queue, a PUT instruction
is executed. A GET instruction removes a cell from the
head of the queue. FETCH removes from the tail, and
STORE adds to the head. Complete freedom in
intermixing these instructions would allow, for example,
a processing routine to break off processing a message
cell for a low-priority message by placing its pointer
back on the head of the processing queue in order to
respond to a request for processing of a high-priority
message cell.

Figure 5 describes the operation of representative
instructions of the CP instruction set in shorthand
notation.

INPUT-OUTPUT

Input-output is the reason for being of a front-end
computer. A high-powered processor such as has been
described here must be capable of sustaining high data
transfer rates in comparison with processing speed or it
will be severely mismatched to its task. In the CP
input-output proceeds simultaneously with processing
by allowing multiple access to data memory according
to priority of input-output (determined by a START
I/0 instruction). The processor always has lower
priority for data memory access than does input-output.
By providing one memory port for each 2048 word
module of data memory, the overall memory bandwidth

is increased; unless, of course, the operating programs
attempt to place all buffers in the same (few) modules.

All control information for each device attached to
the CP is contained in a line control word (LCW)
maintained on a per-device basis in the first 2048 word
module of CP data memory. When a START I/0
instruction is executed, the control words are activated
and a buffer address in data memory is provided, along
with the appropriate protection key. Input-output then
proceeds until an error occurs, the last data character
is transferred into memory, or a HALT I/0 instruction
is executed for the device. Control information may be
modified successfully whenever the control words are
not active, thus allowing the operating programs to
dynamically reconfigure the input-output to meet
shifting demands.

Each communications interface consists of receive and
transmit circuitry sufficiently general to allow selection
of functional characteristics by signals on the I/0
control bus. In order to dynamically reconfigure the
attached communications network, each unit must be
capable of handling several code structures and
transmission speeds.

For a small number of combinations of code and
speed, the communications interface for asynchronous
transmissions is not overly complex. The advantage of
being able to dynamically change operating character-
istics of a line is apparent for a time-sharing service,
which could use only as many line terminations as the
number of simultaneous users to serve several types of
terminals, rather than apportioning facilities according
to projected loads from the different types of terminals
which usually results in several unused lines when the
system is heavily loaded. :

Synchronous transmissions, if they involve any kind
of line discipline for transmission, are code-dependent;
so the only kind of dynamic reconfiguration would be
to change clock speeds for the line. This trick is now
being used by at least one terminal manufacturer to
overcome a noisy line—if too many errors occur at, say,
4800 baud, the unit switches to a 2400 baud clock to
improve transmission and reception.

Characters are assembled/disassembled at individual
line termination units (LTU), buffered, then stored a
word at a time in CP data memory. Memory words are
left-justified with zero pad. Common controls direct the
LTU to select a particular code structure/transmission
speed, collect assembled words according to dispatching
priority (specified by a START I/O instruction), and
direct transfer between CP data memory and the
LTU’s.

A complete interface is provided for a modem by
each LTU, and provision is made for the addition of an
Auto-Call Unit. All status-bearing and control leads

Features of an Advanced Front-End CPU 21

present at the modem interface are represented by bits
in the LCW, allowing an operating program having the
proper protection key to actually control the LTU at
the interface level. Additionally, for asynchronous lines,
the state-of-the-stop-bit is reported/controllable, allow-
ing detection and generation of open line conditions.
See Figure 6 for the layout of the LCW.

Syneronous LTU’s would be constructed according to
the requirements of the user, in order to provide
hardware for handling of line discipline. Redundancy
checking and message retransmission are handled more
easily by hardware than software.

As data can be manipulated easily in the CP as
nine-bit bytes, character-by-character line service is not
infeasible for applications requiring intimate inspection
of message traffic. On the other hand, a complete
message could be assembled in data memory before the
LTU acknowledges reception. The ability to select
between these methods of line service within the same
unit indicates some of the power of the CP.

First-generation computers had all input-output
control integrated within the CPU for simplicity of
construction. Later generations used special-purpose
controllers to handle all input-output devices. Now, the
newest round of computer announcements shows a
return to integrated peripheral controllers as a cost
saving and to upgrade performance of essential devices.
A dedicated communications controller would utilize
integrated device .control for both reasons. Similar
communications input-output controllers have been
built by at least one firm on an experimental basis, but
initial efforts provided a costly design. It is not out of
the question to expand such a controller to the capacity
indicated here, nor to integrate it with the logic of a
central processing unit.

CONCLUSION

A rather high-powered communications subsystem has
been described in varying degrees of detail. Certain
combinations of architectural features are unique in any
digital computer, especially so in a front-end which is
usually thought of as a small computer system. Many
advanced programmers probably make use of data
structures closely resembling locatives without realizing
that a name exists for such a structure, just as many

33
35 31 029 2221 0

. S
S| vraeacs
FRIT\o| " p1rs

ADDRESS OF DATA LNCATOR

O

Figure 6—Line control word (LCW) layout

utilize subcoroutines without knowing it. The revival of
some first-generation architectural features coupled with
the combination of more modern ones yields a machine
whose applications could be greatly expended with only
small conceptual changes. Still, the primary purpose in
attempting the design of a novel central processor was
to look for the new ways of handling familiar problems;
and the design has fulfilled the author’s intentions,
raised many questions to be answered, and provided new
techniques for discussion. The evolution of computer
systems seems to indicate a collection of peripheral
processors for a new configuration—the CP being such a
proposed component.

REFERENCES

1 L L. CONSTANTINE
Integral hardware-software design
Parts 8 and 9 Modern Data November 1968 and February
1969
2 R-W COOK M J FLYNN
System design of o dynamic microprocessor
IEEE Transactions on Computers March 1970
3 CJ WALTER A B WALTER M J BOHL
Impact of fourth generation software on hardware design
Computer Group News March 1969
4 E C JOSEPH
Evolving digital computer system architecture
Computer Group News March 1969
5 H W LAWSON JR
Programming-language-oriented instruction stream
IEEE Transactions on Computers May 1969
6 G D HORNBUCKLE E A ANCONA
The LX-1 microprocessor and its application to real-time
stgnal processing
IEEE Transactions on Computers August 1970
7 E A HAUCK B A DENT
Burroughs B6500/B7600 stack mechanism
Proceedings Spring Joint Computer Conference 1968
8 J G CLEARY
Process handling on Burroughs B6500
Proceedings Fourth Australian Computer Conference 1969

Interpreting the results of a hardware systems monitor

by J. 8. COCKRUM and E. D. CROCKETT

Memorex Corporation
Santa Clara, California

INTRODUCTION

Hardware monitors are widely used to enable the data
processing manager to effect cost reductions and im-
prove the efficiency of his installation. Several papers'=7
have presented hardware monitors and system measure-
ment, but have presented relatively little information
regarding the interpretation of the monitoring results.

A brief overview of hardware monitors and the neces-
sity of system measurement is presented. A section
deals with determining and measuring events—signifi-
cant occurrences to a unit of work being processed by
the system. A “performance optimization cycle” is de-
veloped and actual results of a monitoring run are
shown.

The body of this report treats the heretofore ne-
glected area of interpretation of the results. The stress
is on providing quantitative measures to assure that an
economic return on the computer system is obtained.

The system performance profile is presented and the
basic indicators in interpreting the profile are developed.
Methods are given for corrective actions of system re-
configuration, program change, data set reorganiza-
tion, job scheduling and operator procedures. Predictive
methods are developed whereby reconfigurations can
be evaluated prior to their implementations.

DESCRIPTION OF MONITOR

A hardware monitor consists of sensors, control logic,
accumulators, and a recording unit. The sensors are
attached on the back panels of the computer system
components—CPU, channels, disks, etc. The signals
from registers, indicators and activity lines picked up
by the sensors can be logically combined or entire
registers can be compared at the control panel and then
be routed to the accumulators for counting or timing
events, e.g., CPU active, any channel busy, disk seek
counts and times, ete. Typically, the contents of the

23

CPU

DEVICES
CHANNEL

v

COMPARE
LOGIC CONTROL
ACCUMULATORS

COUNT

TIME

!

—
ACCUMULATOR
CONTENTS

sz

COMPUTER
SYSTEM

DATA ™
REDUCTION
PROGRAM

\4
=

Figure 1—Hardware monitor system

ANALYSIS
SUMMARY
GRAPHS

_—b

accumulators are written periodically to a magnetic
tape unit. The magnetic tape is batch processed by a
data analysis program to produce a series of analysis,
summary and graphic reports. Figure 1 shows a hard-
ware monitoring system.

NECESSITY OF MONITORING

The complexity of the present computing systems
has made monitoring a necessity for effective manage-
ment. Effective management means optimizing the
computer system performance for increased through-
put, turn-around time, or a reduction in expenses; and
predicting future computer system needs. A hardware
monitor provides a tool to efficiently obtain these
management goals. It is easy to install and use, and

24 Spring Joint Computer Conference, 1971

measures simultaneous occurring events of hardware
and software operations without any interference to the
system being monitored.

Computer system performance optimization

A computer system can be optimized according to
different strategies. The most common strategy is to
optimize the system’s throughput, i.e., the rate at which
the workload can be handled by the system. Other
strategies include optimizing turnaround time (delay
between the presentation of the input to the system
and the receipt of the output), availability (percentage
of time during which the system is operating properly),
job time (length of time the system takes to perform a
single application), cost (the costs of the computer sys-
tem used in processing the workload), ete. Often a com-
bined optimation strategy will be followed, e.g., maxi-
mize throughput for a given cost. Although a hardware
monitor can be used for any optimization strategy, the
concern in this paper will be for throughput and cost,
since it is felt that these are the principal measures of
economic return on a system. To this end, consideration
will be given to system configuration including recon-
figuration and additions/deletions of components, pro-
grams, rotuines to be made resident/non-resident, data
set allocation, job scheduling and operating procedures.

The performance optimization cycle which will be
developed consists of computer system measurement,
evaluation, improvement and returning to new meas-
urements to start a new cycle.

Prediction of future needs

From the records obtained in the performance op-
timization cycle, not only is the current performance
known, but also a historical base is constructed for
predicting future needs. Based upon actual system
measurements it is possible to predict and evaluate
major changes in the capability of the system before
their implementation. System changes of reconfigura-
tion, addition/deletion of new devices and model
changes can be simulated and analyzed. Accurate pre-
diction of future needs dictates a continuing monitoring
program.

MONITORING EVENTS

An event in a computer system is an occurrence of
significance to a unit of work processed by the system.
A hardware monitor can count or time the duration of
events or combinations of events.

It is necessary to identify the events upon which the
system performance depends and quantitatively deter-
mine their interdependency. The basic events monitored
are components active, time spent performing various
operations, storage utilized, resource contention, sys-
tem resource overlapping, etc.

Single sensor events
The types of events which can be monitored in a

computer system using a single sensor for each are such
occurrences as:

CENTRAL PROCESSOR UNIT

CPU STOP or MANUAL

CPU WAIT

CPU RUN

MULTIPLEX CHANNEL BUSY
SELECTOR CHANNEL BUSY
PROGRAM CHECK INTERRUPT

1/0 INTERRUPT

ALLOW INTERRUPT CHANNEL

9. PROBLEM STATE

10. SUPERVISOR STATE

11. INSTRUCTION FETCH

12. EXTERNAL INTERRUPT

13. CONSOLE BUSY

14. STATUS OF THE SYSTEM IN RELATION
TO A PARTICULAR PROGRAM (IBM PSW
PROTECTION KEYS)

% NS o000

DIRECT ACCESS STORAGE DEVICE

CONTROL UNIT BUSY

NUMBER OF SEEKS
INTERRUPT PENDING

READ BUSY

WRITE BUSY

DATA BUSY BY MODULE
TOTAL SEEK TIME BY MODULE

NS ok W=

CONTROL UNITS

DEVICE BUSY
REWINDING TAPES
DATA TRANSFER
POLL of TERMINALS

00 =

UNIT RECORD EQUIPMENT

LINES PRINTED
CARDS READ
DEVICE BUSY
CARDS PUNCHED

BN

Interpreting Results of Hardware Systems Monitor 25

Multiple sensor events and comparators Examples of combination events are:

Events which require multiple sensors and compara- 1. CPU ACTIVE

o (CPU RUN A CPU WAITA CPU MANUAL)

2. ANY CHANNEL BUSY

1. INSTRUCTION ADDRESSES (CHANNEL 1 BUSY V CHANNEL 2

BUSYV...vCHANNEL N BUSY)

2. REGISTER CONTENTS 3. ANY CHANNEL BUSY ONLY

5 INTERFACE DATA (ANY CHANNEL BUSY A CPU WAIT)
4. TOTAL SYSTEM TIME

4. PARTITION BOUNDARIES (CPU ACTIVE+SYSTEM WAIT)

5. DATA SET BOUNDARIES 5. CPU-CHANNEL OVERLAP

(CPU ACTIVEAANY CHANNEL BUSY)
6. CHANNEL OVERLAP
(CHANNEL 1 BUSY ACHANNEL 2
BUSYA...ACHANNEL N BUSY)
7. SEEK ONLY

Combination events

Any number of combination events can be con- (CPU WAITAANY CHANNEL BUSYASUM
structed using the monitor and the data reduction OF SEEKS IN PROGRESS ON ALL
program. MODULES)

MEASURED 13/ 6/7¢ SYSTEM/3¢6C MCDEL 4. ANC 5C ANALYSIS

ANLFMERTC PROLCGUE

SYSTEM UTILIZATION MONITOR RECORDINGS WERE MADE CN 1C/ 6/7) STARTING AT 8.23. Ced
CRICGINAL S U ™ RECORDING INTERVAL = 1.C SECCALS.

S UM TAPE PrRASE SUMMARIZED 3¢ S U M TAPE RECCRD(S) INTC EACH WCRK FILE RECGRD.

S UM CGUNTERS wWILL BE SUMMARIZED EVERY 1C WORK FILE RECORDS, BEGINNING AT 0o AND ENDING AT 999999,5 SECCNCS.

CCUNTER 1C TIMEZEVENT CESCRIPTICA BASE 1D
© 0 T TCTAL ELAPSEC TIME c
1 |13 T CPL ACTIVE MCDEL 50 G
2 2 T FRCBLEM STATE MODEL 50 G
3 3 T ELAPSEL TIME METER RUNNING MOCEL 4C G
4 4 T SELECTCR CHANNEL 1 BUSY MCCEL 50 G
S 5 T SELECTCR ChANNEL 2 BUSY MCCEL 5C C
] 6 T ANY CHANNEL BUSY MCCEL 50 G
7 7 T ANY CHANNEL BUSY AND CPU WAIT ~CCEL 5C G
8 e T CHANNEL 1 AND 2 OVERLAP MCOEL S0 C
S S T 2314 BUSY TG MCCEL 40 G
1r A T 2314 BLSY TC M»(GCEL 52 G
11 8 T MCDEL 4C HAS 2314,MIDEL 53 wWANTS [e
12 c T #CCEL S50 HAS 23149MCCEL 40 WANTS G
13 c T NCCEL 4G USING 2314,MCCEL SC wAIT CNLY G-
14 € ¥ FCOEL SC IMN MANUAL STATE 4
15 F T PRCBLEVM STATE ANC MOCEL 50 CPU ACTIVE G
16 G Sa4a0s0084% SOFTWARE CLOCK #exssessniss G
17 H CONTENTICN RATIO BETWEN MCDEL 40 ANC SC $
18 1 CPU WAIT FMCCEL 59 G
19 J CPL WAIT CALY MCDEL 59 G
2u K CPU ACTIVE CNLY MOCEL 5C 6
21 L NEw ANY CHANNEL BUSY MCCEL 50 »
22 » NEw SYSTEM TIME MCDEL 50 €
23 N NEW ANY CHAANEL BUSY ANC WAIT MQCEL 5C M
24 [+ NEw WALIT MCCEL 59 M
25 P INCREASE IN MODEL 50 SYSTEM TIME G

INTERMECIATE SUMMARY wIlL BE PRINTED EVERY 5 INVERVAL SUMMARIES.

Figure 2—Description of events monitored and combined

26

Spring Joint Computer Conference, 1971

MEASURED 1C/ 6770
FILE SUMMARY OVER PREVIOLS

COUNTER

Y gt o
PUWNMEHIOIODI~NOVMEVNNO

15

10

COZERIFr A mTONMMOOTPOO~NO ML, WNMO

SYSTEM/36C MCDEL 4C ANC 50 ANALYSIS

3C0.0 SECCNDSe BEGINNING AT 9. 5. Ce0O AND ENDING AT S.1C. C.C
DESCRIPTION BOARD IC ¢ Jos 1D 24 COUNTER VALUE PERCENT
TOVAL ELAPSED TIME 296. 550980 100,10
CPU ACTIVE MODEL 50 74.228955% 25.G0
PROBLEM STATE MODEL 59 170.242988 57.33
ELAPSED TIME METER RUNNING MCDEL 40 29€.68658C $9.98
SELECTOR CHANNEL 1 BUSY MCDEL 50 119.28489%2 40,21
SELECTOR CHANNEL 2 BUSY MCDEL 50 5,19000C 1.75
ANY CHANNEL BUSY MODEL 5C 123.248992 41.51
ANY CHANNEL BUSY AND CPU WAIT MCDEL 50 101.813993 34.29
CHANNEL 1 AND 2 OVERLAP MCDEL 50 1326000 0.45
2314 BUSY TC MODEL 40 21.1219SS Te11
2314 BUSY TO MODEL 50 119.,437592 40.22
MCDEL 4G HAS 2314,MODEL 50 WANTS 5.523000 1.99
MODEL 50 HAS 2314,MODEL 4C WANTS 12.422999 4018
MODEL 40 USING 2314.MODEL 50 WAIT ONLY O.C 0.0
MODEL S0 IN MANUAL STATE 0.0 0.0
PROBLEM STATE AND MODEL 50 CPU ACTIVE S 384959 3.16
*xuaRben08% SOFTWARE CLOCK ##aesssdnsns 296.539850 100.00
CONTENTION RATIC BETWEN MCDEL 40 ANC S50 0.476777
CPU WAIT MODEL SO 222.110855 75.G¢C
CPU WAIT ONLY MCDEL SC 12¢.896862 49,71
CPU ACTIVE ONLY MODEL 50 52793956 17,78
NEW ANY CHANNEL BUSY MCDEL SO 124.578951 41.77
NEw SYSTEM TIME MCDEL 50 298, 269850
NEw ANY CHANNEL BUSY AND WAIT MODEL 50 103.143962 34,58
NEW wWAIT MODEL 50 224,040855 75.11
1.2300G6C 0.45

INCREASE IN MODEL 5C SYSTEM TIME

PCY
PCT
PCY
PCY
PCT
PCY
PCT
PCT
PCT
PCT
PCcTY
PCT
PCY
PCY
PCT
PCT
PCT

PCY
PCT
PCT
PCT

PCY
PCT
pCT

CF
OF
OF
OF
oF
OF
OF
OF
GF
OF
OF
OF
OF
CF
aF
CF
OF

OF
GF

oF
OF

OF
af

CCUNTER
COUNTER
COUNTER
COUNTER
COUNTER
COUNTER
COUNTER
COUNTER
COUNTER
COUNTER
CCUNTER
COUNTER
COUNTER
COUNTER
COUNTER
COUNTER
COUNTER

CCUNTER
COUNTER

‘COUNTER

COUNTER

CCOUNTER
COUNTER
COUNTER

Figure 3—Interval summary of event activity

MEASUREC 1(/ 6/7¢

SYSTEM/3€C

MGDEL 4C ANT 57 ANALYSIS

D L A R R i Al L L e e e L e i e s AL eI el L
INTERMECIATE/FINAL SUMMARY
P L e R e L e e A e e e R e A i AL Al it a il

FILE SUMMARY OVER PREVIOLS 3C:f.C SECCADSs BEGINNING AT 8.30. ueD ANC ERCING AT G6.2Ce Cof
CGULNTER 10 CESCRIPTICN BCARC IC ¢ JCEB (D 24 CCUNTER vaALUE P

4 [4 TGTAL ELAPSED TINE 25654572195
1 1 CPU ACTIVE MGDEL 50 £31.427543
2 2 PRCBLEM STATE MUDLL %) 1577, 766861
3 3 ELAPSEC TIME METER RUNNING MCCEL 40 2513.L2575S
4 4 SELECTOR CHANNEL 1 8USY MCDEL 50 926.257936
s 5 SELECTOR CHANNEL 2 BUSY MCCEL 59 19.126956
[6 ANY CHANNEL BUSY MCDEL S5C S41.£935935
7 7 ANY CHANNEL BLSY AND CPL WAIT MCCEL 50 714.257551
] 8 CHANNEL 1 AND 2 CVERLAP MCDEL SO 3, 761700
) 9 2314 BUSY TC MCOUEL 40 2654867581
10 A 2314 BUSY TC MODEL SC S24.7H163¢
11 8 MCDEL 40 HAS 2214sMUCEL 5C WANTS 59.567956
12 c MODEL 5C HAS 2314,MCDEL 4C WANTS 136.537950
13] MCDEL 4u LSING 2314,MCDEL 5C wAIT CALY C.23300U
14 E MODEL 50 IN MANUAL STATE Ser

15 F PROBLEM STATE ANC MOLEL 5O CPU ACTIVE 255.195682
1€ G FEREEARIEBER SCETWARE CLOCK #xwsknzsdssn 2565.45665%9
17 H CONTENTIGN RATIC BETWEN MCDEL 4C ANC 5¢ Ge%28839
18 1 CPU WAIT MOCEL SO 21384028756
16 J CPU WAIT ONLY MCDEL 57 14234772895
24 [CPU ACTIVE CNLY MODEL 5¢C €0:3.6£5658
21 L NEW ANY CHANNEL BUSY “IOEL S0 $45,484935
22 4 NEW SYSTEM TIVME MUDEL 5C 2573.241653
23 N NEW ANY CHANNEL BuUSY ANC wAIT MODEL 50 718.742951
24 0 NEW wAIT MODEL SO 2141.813756
25 P INCREASE IN MODEL SC SYSTEM TIME 3. 785000

ERCENT

100.C9
28,00
53.13
S3.10
31.2C
f.64
31.71
24,.0¢
Cal2
2.%5
21.13
2.9z
4.71
TlCl
J.0
3459
107,90

72,30
47,95
23034
31.82

24,15
72,04
0.13

PcY
PCT
PCY
PCT
PCT
PCT
PCY
PCY
PCT
pcT
PCT
PCY
PCY
PCT
PCT
eCY
PCT

CF
CF
CF
OF
GF
CF
CF
CF
QF
LF
CF
CF
CF
of
CF
CF
CF

PCT
PCY
PLT
PCT

CF
CF
CF
CF

GF
aF
CF

L4
PcY
pCY

CCUNTER
CCOUNTER
CCUNTER

CCUNTER
CCUNTER
CCUNTER
CCUNTER
CCUNTER
COUNTER
CCUNTER
CCUATER
CCUNTER
CCUNTER
COUNTER
COUNTER
CCUNTER
CCUNTER
CCUNTER
CCUNTER
CCUNTER

CCUNTER
CCUNTER
CCUNTER
COUNTER

#‘*‘#*lt*#tt‘t‘t#"t*‘“#‘_’"‘“O“*“V‘l‘ttOt'tt#‘#*“3‘#“‘*3*“"*3*‘*‘t#t*t‘t*#*t##‘*#‘*#*tt‘*#tt#ittit*t"t't'tt‘#*‘.t*?t**t‘
INTERMECIATE/FINAL SUMMARY
AEEERRERRERE AR EER AR RS RR R RERE R AR RN AR AR BN B R R A AR R AR TR R AR AR LSRRI R R SAR R R LIRS ERE RSN R RS RIS IS S RNk

Figure 4—Final summary of event activity

Interpreting Results of Hardware Systems Monitor 27
STATISTICAL SUMMARY FOR 12 CBSERVATIONS, BEGIANING AT N.L ANC ENDING AT $95699,9 SECCNDS.
EACH CBSEPVATION REPRESENTS THE ABSCLUTE INCREASE IN COUNTER VALUE SINCE THE PREVICLS GBSERVATICN.
CCUNTER OESCRIPTION MINIMUM MAXIMUM MEAN S.0.
? Eg;nkcfnic:sﬁg[);:vg‘_ 296,935980 257.0C968¢ 296.552866 216107
2 PRCELEM STATE MUDkt S ;.zggg’?? ;7‘5}.2322886 I ohonze kb.75lli7
‘ 5L .003005 5.6 € 132.505326 a.3e30
: r;ué::cs%ﬁténf ’,\'ETER RUNNING MCODEL 4C 42.751997 296:94998c 253.(089f6 :: ;:Zf;z
HANNEL 1 BUSY WCDEL 50 13.931999 121.785552 8U.687244 32.079067
5 SELECTCK CHANNEL 2 BUSY MCOEL 50 0.0 £.476C0C 1.593917 2054287
3 :2: :::N:;L gusy MCOEL 5 i 13.901959 123,248552 E1.965661 33'r-1«§9cl~
CHANNEL BUSY ANC CPL WAIT MUCEL 50 12.4659<9 1024350553 62.64745€ 27.212%8
: c:AmgL 1 AND 2 OVERLAP MCDEL SG Ce0 1.326C0(f.313417 noe9scar
. 7.492¢
2 55:: rug: ;0 MODEL 40 2.0 89.715654 24,665581 32.271344
WUSY TO MIDEL 50 13,906999 121.835552 80.078161 32.813%
11 MCDEL 4 KAS 2314,MODEL 5G WANTS Ve 15.526555 5.059382 a131as
12 MEUEL S5 HAS 2314,MODEL 4C WANTS ¢.0 41.016667 110868;:; areiioe
13 MCDEL 4L LSING 2314sMODEL S¢ WAIT CNLY 0ol 85,536554 11.207495 2eresss0s
:g MCOEL 5G IN MANUAL STATE C.0 246 oc Zi.?nﬁz
PRUORLFM STATE ANC MCDEL SC CPU ACTIVE C.415)n . ot
e i 3l. E
16 REXKEOKERASE SCETWARE CLECK #axessssssss 296.93985 5;2.33233 253,3323‘.‘ e o
17 CCHTENTICN RATIO BETWEN PCDEL 43 ANC 50 G0 £.E56ACS 2.33876¢ 1).5:‘1,.5j6
19 Est ::;I ggfstnagt . 121.505862 26R. 542850 225.855871 I.E:nwﬁ
3 o ReTIVE GeLy MCI[SEL 50 hz.gg:i{bb 276.476851 163,248137¢ 56.5€69522
i .561007 132.226551 51,730,662 e2293
g; SE: :rs;Yg:A?r]«Sé ggé;Lngg:L 50 13.991959 1c4.578551 A2.261161 ::zfgfiz
» pYSTE 296,939850 268.26985¢ 257,250 20 o
23 :::w Arg:'cségzsusgusv ANC WAIT MCCEL 50 12.465999 103.143963 ZZ; z:;g;e z;:(’;ég;
z "o - 121450, 52 a sc 2612 T123¢
25 INCREASE IN MUDEL 50 SYSTEM TIME s zal:ggsgé'L 2"5122;} ‘L’ZSLZ‘
9 e b ' e 26e3

Figure 5—Statistical summary of event activity

8. CPU ACTIVE ONLY
(CPU ACTIVEAANY CHANNEL BUSY)

9. CPU ACTIVE DURING PROGRAM
STATUS WORD (CPU ACTIVEADECODE
OF PSW) e.g., PROBLEM STATE,
SUPERVISOR, PROGRAM, ete.

10. I/O ACTIVE ONLY
(CPU RUN A CPU WAIT A CPU MANUAL)

11. SYSTEM WAIT
(CPU RUNA CPU WAITACPU MANUAT,) or
(TOTAL SYSTEM TIME-CPU ACTIVE)

12. SEEK WITHIN DATA SET
(SEEKAWITHIN DATA SET
BOUNDARIES)

13. INSTRUCTION WITHIN PARTITION
(INSTRUCTION FETCH WITHIN
PARTITION BOUNDARIES)

The next section shows the results of system event
monitoring.

RESULTS

Typical results obtained from monitoring the system
events given in the previous section can be shown by
reproducing actual output from a data reduction pro-
gram. Figure 2 shows the description of the events
monitored and combined. Figure 3 shows an interval
summary of event activity. Figure 4 shows a final sum-

mary of the event activity. Figure 5 shows a statistical
summary of the events. Graphic results are easily cor-
related with various activities and give a clear picture
of the sequence of events. Figures 6-10 show the histo-
grams of CPU ACTIVE, SELECTOR CHANNEL 1
BUSY, SELECTOR CHANNEL 2 BUSY, ANY
CHANNEL BUSY ONLY, and CPU WAIT.

The next section deals with the interpretation of these
results.

INTERPRETATION

The areas which can be investigated to optimize
throughput or cost of a computing system are system
configuration, programs, routines resident/non-resident,
data set allocation, job scheduling and operation meth-
ods. In a multiprogram environment, throughput is a
measure of the time required to process a fixed amount
of work or simply stated the number of jobs per day. A
good assumption is that the CPU processing time is
constant whether the jobs are run sequentially or multi-
jobbed in an interweaving process. The improved
throughput by multijobbing should come by over-
lapping system resources, e.g., CPU activity on one job
overlapped with I/0 activity on another job. This in-
creases the percentage of time the CPU is active to
yield better system utilization. Unfortunately, the de-
sired positive effects of multiprogramming are not
always obtained, e.g., competition may exist between
two different jobs for the same direct access device. It

28 Spring Joint Computer Conference, 1971

MEASURED 1C/7 &/7C SYSTEM/360C MUDEL «C AND SC ANALYSIS
CPL ACTIVE MCDEL 5C (BASE=G}

el 10 20 3c 4C 50 60 7¢ 8¢ . 90 10¢
Jce SECS. x X X X X X x X X X X TIME

EERERE LRSS RS ERREARSIER NSRS SRS (12323 ERARERSEEEBERPERRRNREE VR KIS
24 aL.e 11111111 8.31.30.9
24 lec.c llllllllllllllllllllllll : . . - . - . Be23. 0ot
24 276.¢ LALILLALLALLLAILNILI1NIARL0II12L00020E 101 B . 8.34.3C.6
24 365..0 L1111111111111111111111110 1111, e 8.36. G.0
24 452.¢ 11111111111111111111111111111 8.37.30.0
24 545.C 111111111111111111111111111111111 8.39. CaC
24 €3C.C 111111111 - . 8e4C0e30.0
24 729.C 11111111111112111 . - . . . - . 8.42. C.0
24 81C.¢ lll . . - . . . 8,43.30,C
26 €3¢0 111100020 020020000020220101010101101 . . - . . - - B8s45. 0.0
24 $53.0 1130R000200000000020002000020 & . - . . - - . B8+46.30,.0
24 1(80.0 1030300101000 200000000000002102011 - . 8es48s 0.0
24 117C.C 1111111111111 - . . - . B8e4Ge3(,0
24 12664¢ LLLI1LMLLILLLRLLLLILIL 8.51. C.C
24 1350.C lll . . . - . 8.52.3C.0
24 L44Ge2 BLRRTRLLQRQQB2220020000 0B 020R02200 2000020000000 00 0202222000000 0R002211 . . . 84540 Lol
24 153C.0 T1000RRB0000QRR0RQ000RR0302100200020200002002000000122121220212121110101111 . - - . 8+55.30.0
24 1620.0 1111111LI11LIL0L0LL10001000 8.57. C.C
24 171C.C 1111101111512111001111° 8.58.30.0
24 182¢.0 ° 1111111111111111111111 e Se 0. UG
24 186C.C 111111113111211282112121021 . - - . 9 le3(eC
24 16800 11211101010 %20120001110110 . . - 9e 3. 0.0
24 2CTC 9D 11111t111100000012122010 Se 4e30,0
24 2160C I1010102122413121121012121111 - . . Ge b0 el
24 2252.0 110200003101012221020111L121102121 Ge T.30,0
] 234C.C 1111110012 0200020010220100 . . - - - . . . Se e N0
24 243060 1111020000000 000000000100208001102 9.1G630.C
24 2520.¢ LLL111ILLI111111212120100111000011111012 1111 9ed2. .2
24 2€12.C 11111111111111111111111111 111111111 9.13.30.C
24 270C.0 11111111 Sel5. Co0
24 2715C.C 1111111111111)1111 - . . . 9.16.30.¢C
24 288G.0 1111111111111 - . . . - Ge18. (ol
24 257¢.C 111111111 S.19.30.0
24 3¢68.C 1111 9.21. CuG
24 3150, 1 S.22.3C.8
24 3240.C 11111 . . . - 9e24e Qa0
24 33360,C llllllllllllllllll - . . . 942543040
24 3420,.C 111 - . . - - - - . . - 9.27¢ Cof
24 3810 C 1 - 9.2843C60
24 3€C3.0 1 . . - - 9.3u. G,C

EERERRREERSEIREEEARREN R AR AR RSB EIRRRABRESR AR EEREREREREER KN AREEXERARKAEEREESE R SR g R AR
Jca SECS, X X X L X X x X X X x TIME

c 10 2C 3¢ 4C 59 6C 7C 80 86 1cC

Figure 6—Histogram of CPU active
is crucial in any performance optimizing cycle that the Bastc indicators
system resources be overlapped for the job stream and
that competition for resources be eliminated. This can Some of the basic indicators to look for in interpreting
have far greater effects on throughput and cost than a system performance profile are:
on increasing the speed -of the system components. In-
deed, it is often possible to increase throughput while SMALL CHANNEL OVERLAP,
at the same time returning or delaying purchase of sys-
: . t gt | ying p . Y CHANNEL IMBALANCE,
em components, or going to slower components. :
P , Or going p HIGH CHANNEL UTILIZATION,
LARGE WAIT ONLY, and
: LARGE CPU ACTIVE ONLY
System performance profile
In order to look at the overlapping of system re- 1. SMALL CHANNEL OVERLAP

sources, a system performance profile which shows the
activity of the CPU, channels and the amount of over- The probable cause for small channel overlap
lapping between them is constructed as shown in Figure when the channel utilization is high is poor device
11. The system performance profile shows the overall placement on the channels resulting in sequential
system utilization. It may be immediately apparent operations. The control units and devices should
that some of the system components are essentially be monitored and the job stream examined in

unused. order to determine the data sets used. The device

Interpreting Results of Hardware Systems Monitor 29

MEASURED 1C/ 6/17¢

SYSTEM/36C MUDEL 4C AND 5¢ ANALYSIS

SELECTCR CHANNEL 1 BUSY MCCEL 50 (BASE=G)
3 ic 20 3c 40 50 60 7¢ 86 90 1cc
SECS. X x X x 3 X x x X X X TIME
AR AR L L R Rttt e R A R R R 2 R e e i s T e T Y P Pttt
90.0 444444« 8.31.30.C
186.C 4444444uu«euuuuaua«uu. . N - 8.33. 0.G
2700 444444446464644440444644604444404044044 84364.3C.0C
3EGL0 44644444444444446446444444 N . . N s . . . 8436. Col
45C.C 444464444644444444444444444 . - 8437.30.C
540.C 444444444444444444466444464444444444 8439, Ceu
€3C.0 444444444 8440.30.0C
T20.C 4444644444444444444644 862« 0.0
BlCe0 44446444444444644444646440404000404060404 . . . N . . . 8443.30.C
SCO.0 44446444444444444444444448444444444444 8+45. C.0
590.C 4444444444644444444046044044040006466044 N N . . . B 8.4643CeC
1UBC.D 44444444464444444444404060604004806044 e 8.48, 0.0
LIT0.0 44444444444444444444, * 8449.30,0
126060 4444444444444444464444044644444444 8.51. C.0
135040 44444444444446444404466440444444449044444, N 8.52,30,0
L44U.0 4444444444444440444 o o 8.54, 0.0
153040 4446444444.4«44444444«4444444464444444444. e 8.55.3C.0
1620.0 4444444444444444444464644044646646446446046, e 8¢57. 0.0
FT10.0 44444444444444644444644446444444 o . . 8.58.3C,0
1800.0 44446444464444446444664404644440444 " Se Ue Co0
189C.0 44444444444444444444444640644404644404444040404004 . o . . . e 9. 1.30.0
180,60 44464444444444444644444444444444400404440404 . N« 9. 3, 0,0
20T7C.C 4444444444444444466464444444464464000404 e 9. 4.30.0
216040 444444444444444444446444046444440400400440404 . . N . . e 9. 6. 0.C
225C.0 444444444444444444044644444444444540644444 . . M . . « 9. 7,30.0
234u.C 44444444464444404404440060406480040060444 « S. 9., 0.2
2430.0 444444444644644444444444444444464044460000044 o o 9.10.30.0
252C.0 4444444444444444466444646044444464064044 « 9.12. 0.C
2€10.0 444444444444444444444444404444446454046004060040604 o . N . . « 9.13,30.C
2700.0 444444444444444 . . . e . . . « Se15. 0.0
279¢C,C 44«4«644“44«4444444464«4444444444u . . N . . . e 9416.30.0
28BC.0 44444446446444444444 N « 9.18. 0.0
257C.0 4444444 o e 9.19,30.0
3C6Ce0 4444444 9.21. 0.0
3150.0 4 - - . . . 9.22.30.0
3246.0 4444 Se24. Co0
3335.0 4444«“444444«44444«44#444«4464«“444. . . . o o e 9.25.30.0
3420.0 44444 - - . . . 9¢27.: 0.0
3¢10.C 4 . . . - $.28.30.,0
3600.0 4 9+30. 0,0
ERERRREERRIEIRIERS RN P RS RR RN RR RS PR 2 23] Otttttt#ttttttttti#t.ttttt‘.#
SECS. X X X X X X X X X X X TIME
[} ic 20 30 40 50 60 1c 80 90 1ce

Figure 7—Histogram of selector channel 1 busy

and data set information will provide sufficient
data so that a rearrangement of devices and data
sets to produce better balance can be achieved. A
new gystem performance profile should be con-
structed to verify the change.

A small channel overlap when the channel utiliza-
tion is low, means that all the work can be put on
one channel with little effect on the job stream
processing time.

2. CHANNEL IMBALANCE

If the channel utilization is high, but the channel
lIoad is not balanced, the device activity needs to
be measured to determine device rearranging. A
new system performance should be constructed to
verify the results.

Low channel utilization would indicate that all the

work .can be placed on one channel with little
effect on the system throughput.

3. HIGH CHANNEL UTILIZATION

The system data sets should be examined. There
may be a problem as to which routines are resident/
non-resident. A measurement should be made to
determine transfer time of system routines relative
to total device active time. If the transfer time is
high, make all system routines non-resident and
measure their activity to determine which routines
to make resident/non-resident.

Another possible cause is record blocking in data
sets on direct access devices. Measure the 1/0 de-
vice utilizations and examine the data sets on each
device to locate ones in which a larger number of
records could be placed in each block to increase
the efficiency of access.

30

Spring Joint Computer Conference, 1971

MEALURED 19/ 6717 SYSTEM/3EL MGDEL 4C ANC 5C ANALYSIS

SELECTCR CHANNEL 2 BUSY MQCEL 52 (BASE=G)
[} 10 24 ac 40 S5u 6(72 82 G:,(lC’;‘ —_—
x X X X X €
¢ SECS- :tttt“‘tl:‘t‘tt‘.*“““"".".'.‘.“‘“‘t.t.“‘.““‘t““t"ttt‘tt“:‘t‘“t‘tt“t.t“tt“t“t‘t“ st
’ B 8e3le3Ce0
99.(“ : N B B : Be32, Col
IO : : : ; : : : ; ; e
31:::«, 5 : . . - 3.30. Te8
453.¢ 5 . - . . - :.37.3&1.(‘;
:ML: s . . -3?. GCe
63(4.: 5 - 53.4\:.3’_‘.(3
724 .C 5 - - . . - . . . - . Beb2e o3
31;-.(5 3.43.3C.C
GurE 5 8450 CC
S;O.:‘ 5 : - . 3.66.30.:
* .
178340 5555555 - :::g:sg.g
1173.0 S . . - - - P C.O
12620 5 - . .5 . (..C
1350.5 5 Bzl
1442,0 5 - - . . . - . . - . .55-3(:..
153G6.C S 8.51. ..t:
1629.0 5555 - . . . - . :-56.3:.;
1712.0 55¢5 . - . . - 9. “‘: u."
3 O . L - 4 -:
1895.C 5 : X X : : : X X X Dosl il
168).G S . - : - : ;: 4:3z:;
2070.¢ 5 '
leeu:z 5 : . . - z. 6;.32.2
225040 55 . . . - 9: 9. L.:
o] TR
PR S : : : X : ; . : Dosholic
e
2529:0 5 - . :.}g.);.t&
5 213.3C.G
2100 3 : : : : : X : : : RN
279C¢.C 5 - Z‘:ﬂ:aﬁ:o
83040 5 . -
§€1g:‘: 5 : : 9e19.30.3
306C.C 5 LI
3150.0 S . . . - - q.ga. ;.:
324c,0 5 . . . - 9.25.3 ..)
3333%.0 5 . . . - - 7. (:.‘-)
342040 S - . . 3'§9.33:;
3510.C 5 . . . - . . : : : : 9:3”: P
‘ - . .
J60C.¢ 2“.‘*“";“‘.“"*’&'#‘t‘tt‘:‘t“‘#'it;*l#tt#‘tt‘*"'t“"t't#tt!t#t‘.tt#l.titt.t“.tt‘t“tttnt‘t‘; T
X X X X x X X X £
° SECS. ; lé 2C 3¢ 40 5¢ 6C ¢ P ¢ 1C¢

Figure 8—Histogram of selector channel 2 busy

4. LARGE WAIT ONLY

If the profile shows a large amount of WAIT
ONLY, measure the SEEK ONLY. A large portion
of SEEK ONLY time of the WAITAANY
CHANNEL BUSY time, means the system is
waiting for seeks to complete. This indicates a poor
data set placement. The direct access devices
should be measured to find the cause of arm con-
tention. The AVERAGE SEEK TIME can be
determined by measuring the SEEK TIME and
count of the NUMBER OF SEEKS on each de-
vice. This information should be correlated with
the console log to determine which programs and
hence which data sets caused the arm contention.
Measurements can also be made of SEEK
WITHIN DATA SET to determine the number of
seeks and the duration of seeks within each data
set. Partitioned data sets can be examined to see
if there is excessive arm movement between the
sequential sets. SEEK TIME can be reduced by

rearranging the data sets on the same pack or
moving them to different disk packs.

If the SEEK ONLY is insignificant, operation
problems are indicated. Possible causes are difficult
operator set up procedures, too few operators, poor
job scheduling, etc. Measure the amount of NOT
READY TIME which occurs on each device dur-
ing the day. This can indicate operation problems
or equipment malfunction. A large amount of
WAIT ONLY TIME often occurs at shift changes.

5. LARGE CPU ACTIVE ONLY

A large CPU ACTIVE ONLY time .coupled with
a low CPU-CHANNEL OVERLAP indicates the
benefits of multiprogramming are not being ob-
tained. Possible reasons are poor job scheduling
(a balance is needed between CPU and I/0 bound
jobs); poor data set allocation (data set should

Interpreting Results of Hardware Systems Monitor

31

MEASURED 10/ 6/7C SYSTEM/36C MODEL 4C ANC 50 ANALYSIS
ANY CHANNEL BUSY AND CPU WAIT MCCEL SC (BASE=G)

[} 10 29 3c 0 50 60 70 80 90 160
JCB SECS. X X X 13 X X X X X X X TIME

AEREEEEERR AR ERBAPEEX RS XX AR BRI RSN AR ER SRR ESEBEE R EE LA SRR AR R R BB AR SR SRR R R LS SRR R RS SRR S 4
24 SC.0 1 . . . - - - . . . 83143040
24 18C.C 77771111777777777171771 . - - 8.33., C.0
24 270.0 T7TINNNTNNIINNTINNINTY . . . - Be34e30,0
24 3600 TTTTNTTTTNT . . . - Re360 Col
24 45C.C ITINITININNT 8437.3C,0
24 S54C. U 17771177777777771171777711 . . - 8¢39+ Cof)
24 630.0 e - . - - . 8e443Ce0
24 1260 7771777717110 o . o B8e42s Col
24 810G IR AR AR R R R RN RR AR R ARAN R A . . - 8e4343C.0C
24 SO0ULC TT77TTITITTINNILINNNNNNNNNT o 8,45, V.0
24 €90,6 T7ITTTTTIINTINANNNNINNNNNINNNY . - 8.46430.0
24 1¢80.¢C T7777ITIITNNNNTNITIILITINNTINNT. . . o 8.48. 000
24 1170.0 TTIINNNINNNINNNNINTT . . - - - Be49+30.0
24 1260+C IR RN R AR R AR RRRERED N AN - - B8.5le Cod
24 1354,0 ARERRARERR RN NA N . - 8.52.30.0
4 1444,0 IIININT . - - 854« GoO
24 1533%.C 77777777171117771111. . - 8553040
24 1622.C 71777771117717177177171717171717711 . - - 8e57+ Col
24 1710.C TTIITINITTITTIIATNNNNNINNNNNNT . - - - - . - . 8.58.30,0
24 1800.0 TIITTTTTTVINNTNNTATIIINNNINT . . - S. 0o v.0
24 18940.0C TYITTTTTITIANANNNITIITNNINININIINIIITNT Se 1430.0
24 168G.0 TTIITIININITIINI NN NNTTNNTTNIIIIIINITY - - . - . - . 9. 3¢ Le0
24 2¢T70.C 77IITNNTINTITNNNNNIINNTNNITNTNNT . - - 9¢ 4¢3Ce0
24 2160,0 TN IR 9. 6 Co0
24 2259%.0 IV INNITI NN NNTNT - - - Se Te30,0
24 234G.,0 TIMIMINITININTNTINIINIINININNNNNNTY . - 9. 9. CoC
24 2430.0 T NNITITNNITNNNNITNINNNNINNINTUY B - - 9+10e30.0
24 252¢.C TIITITININNINIITINNINNNNNIIT . . . - 9.12¢ 0.0
24 2610.0 T11IITITITNITNININITNINNTININNNNNNY Ge134304G
24 20,0 7111177717777 o . . - . . . 94154 LoV
24 279C.C 17771117771171177711711177771177 . - . . - - . Sel6430.0
24 2880,0 MmN . . - - 9.18. Co0
24 2€70.0 nnn - - - . . . 941943046
24 3(€0.0 mnn . . . - - - . . - . 9.21. 0.0
24 3150.C 7 - 9e22430,0
24 324¢C.0 1 . . - 9e24¢ 0.0
24 3330.0 717711777771717111717117771711111717 . - . - . - - $e25e3040
24 342C.C 1117 - - . Ge2Te Qo0
24 351GC.C 7 . - . . - $e28.30.0
24 360C.C 7 Se30¢ 040G

FEERREBREERESEIREIERIARERRIREN S OSSP ST SPPPPEPPE
Jos SECS. X X X x X x x X X x X TIME

(] 1c 2¢ 3c 40 5C 6C 7C 89 9C 1cc

Figure 9—Histogram of any channel busy only

be on different channels so they do not have to be
retrieved sequentially), or inefficiently written
programs. Several of the production jobs which
use a large part of the system resources should be
selected and run stand alone in the system to
create an individual job profile. These profiles show
data set usage to make data set placement changes
and processing phases which are CPU or I/0
bound to enable efficient job scheduling. This will
increase CPU utilization and system throughput.

If the system performance still shows a large
amount of CPU ACTIVE ONLY time, code op-
timization of the programs which contribute most
to the system load should be undertaken. Com-
parators can be used to gather statistics of fre-
quency distribution of instructions or set of in-
structions, branches, iteration in data dependent
loops, and percentage time in subroutines. From
the statistics gathered, the programmer can see
where efforts should be directed for code optimi-
zation.

Predictive methods for system reconfiguration

It is possible to evaluate system configurations and
calculate the effect on the job stream time resulting
from that reconfiguration. The basic measured data is
used in equations which define the new configurations
to calculate a new job stream time. This new job stream
time can be compared with the old job stream time
from the measurement, to see if the change produced

the desired effect.

1. SYSTEM TIME EQUATION

The time to process a job stream is composed of
the overlapped and unoverlapped time of each of
the units in the computing system. There are
many alternate ways of expressing an equation for
the system time. For example, the system time for
the system profile of Figure 11 can be expressed
by the sum of any of the nonoverlapping times
which equal the total system time, e.g., SYSTEM

32 Spring Joint Computer Conference, 1971

VEASURED 1C/ 6/170 SYSTEM/36C MODEL 4GC AND 5C ANALYSIS
CPL WAIT MCDEL SO (BASE=G)
v 1c 20 30 40 59 6C 1C 80 S0 1¢o
Jos SECS. X X X X X X X X . X X X TIME
FEEEBEEASRASEREXBENERAREF NS B X RN REEEREER AR S REE R RE R SRR AR R R KRS ERKE SRR R RS SRR NSRS S S N
24 90.0. (SRR O N R R R R R R R N NS RN iR R AN R RN iR R R R Rttt ettt naitasiniaanisasitasintisese] . £,31.30,C
24 180.0 IR RN N R R R RN S RN R R PO E R e RN R R R RN AR R RN RT RN E RN ReRtT . . - 8.33. 0.C
‘24 27040 ISR RS R R R R R R R R R R R RS D RO R RSO RO RN SRR RE RO RS0 8e34.3C.C
24 3160.0 SRR R RN R RN N O R R R R R R R R R R R N R RSN R RS NI RN R NN IR SRR AT . . . Be36. Uol
24 45046 S8 R RN R R R R R PR R RN G RO RO R RO R RN RO RN RN RN RN OREE . . . 8e3743C.0
24 5640.C AR SRR R N R R R RN R iR RSN 0N 000000 R TR0 . . . 8.39, 2.¢C
26 €37.0 ILOEUIITI DI U ORI EE R R L L RO R I I R R O D ERCEER IR ET N RR I TN L aE EnnLeraits e 8.4G.3C.C
24 1200 [RS ES R NEE N R R R R RN R R R R IR N RN R RN R RN RSO IR0 RE03828011 . . B2, 0,¢C
24 81U.0 1SRN R SR A e R R R R RO R SRR RN a O aER RPN ER R4 Bs43.30.0
24 $:G,.0 [0S N RN R R RN RO RN RNt R Nttt isinineittaeiemny . . . B8+45. Co0
24 690,90 19T R R RN e R RN R R R NN SRRttt e et aiasniisneiteanssizsit! . . - He4643C,C
24 1480.0 LR E It L I e v s IR p e I IRt e R s R eI e s sy etaseIs . . . Beb8as LoC
24 117 ILUUIERNLE LR R LR NI RE A R LR R R R CER T ER N EE R ERRR T RE L EET e r it b eranreneey . . 8.49.30.C
24 1260.C | SRR RN R R R R RN RN RN R R RN NN RNt R R R eR Rt staneiRs R IRIstImn . . 8.51s CoC
24 13%2,¢C TILUSI TR eI n s eIy eseensLaenl . . - . . . Be5243C.C
24 1443,0 (SRR RN REREIRINANENTEEE N - . - . - . . Be54, ULC
24 1539.9 TTILTLR e T e e I eIt . - Be55430e0C
24 1622.0 1S N R R R e R R R AN R RN N RNt s R e iaRatntatatinesntasnsiataning . . - Be57s LWl
24 1706.0 LLTLERIEIIUNIIOEII EE nRR i Rn IO bt i b TR R ErEe RO i e L O CLE IR Rntnaey o . e 8.58.3C.C
24 180C.0 SR R R R R RIS N RN R R R R N R R R R R R O R R R R RN RN RGN RN RN RN NI . . Ge Ue 040
24 1390.0 IR R RN R R R R R R AR R R R R RN RN Rt aR iRt i st it anaern i tnasssiteinel! . . . S
24 158U.6G (SRR R R SRR R P RN R R R R R RS R R R R R R RN R N R R R R R R R R RN RN RO RTINS TR NRERERR T . . . 9.
24 2C7C.C I R R R R SR R R R RN R R RN R R R R RN N R R R RS RN RN SRR NSRRI RN RE4R10ER . . . 9e 4.3ULC
24 2169.0 1R SRR R R R R R N R R O R R RN R RN R RN RN R R RN RN RN aNat RN RRIAER! . . . S. 6. C.C
24 2250,0 (SR RN RN S R SRR S R AR R R R R RN RO RO RSN RERaRNNERNNRRRERT . . . 9. T.30,.C
24 2349440 ISR R R R R A RS RN e R R R ISRt NN et aRs e sttt RatssscRinsniItat! . . . 9e 96 Col
24 243040 (RSO RN R R R R RN R R RN PR R R R RN AR R AR RN N AR RN R0RR0ETE N . . - el C
24 2520.C (SRR RS RPN R R R RN RN R RN a TR RNt NaRes! - 9126 Gl
24 2610.0 LRI LE L o Rt LRI PR LRIt R e etenatnt $.13.,30,6G
24 27190,0 (S SRR RS R N R R R R R R R RN R R R R R RN R R R RN RN R N R RN RN RN IR N NIRRT N RGNV NGIRCREA! . 9415 CoC
24 279G.0 SRR e R N TR AR NN R RNt n st ta i s u iRt Rttt e tinRssRttsninsntssuset:; . . Ge16e30C,0
24 2889.C I E R A R R R R R R R R R R R R S A NN RN R NIRRT RN NN R e R NI NI INeaacinEnasvey! . - Sel8. U
l4 25700 lil[x(ll[lllxlxlllKllll[!llx[llilll[lil[l(ll-lllllllllllllxlll[lllllllllll[][l!lllllllllllll! - 9¢19.37,0
24 3C60.0 lIlllIllllllllll‘llllllllllllllllllll[lllllllllilllllllllllllllllllllllllllllllllllll(ll[llllllll . S.21s L0
24 31590,¢ |3 N R R R RS R R R R R N R R R R R RO R R R R RN N R R R R RN RN RN NI RNt RN AN RGN RRSTRLART! Ge22430,0
24 3240.0 lIKllfllllllllllllllllllllllllllllllllllllll'l[llllllllll[lllllllllllllllllllllll[l!llllll(xlxll N Q. 24, 0,6
% 3330.0 ISR N R R R R R R N N R R R R R R RN N RN R RN SRR R R NN RN et NEsRani o s eEesRsNnt! . - Ge25¢30,0
24 342),C I LI R L e R R I R YDA R R RN I QR IR I e R e et e e e e e eeeeneray 9¢27s toC
24 3510.C lllllllllll‘llllllllllllllllllllllllllllllllllllll!lIlIllIlllllllllllllll!l[lllllllllllllllllll[lllll Ge25030 0
24 3600,0 | R SR N R R R R R R R O R R R RN IR RN R R R R RN NI Ra iRt Ni e RNt iRt RR NN staCITIE Se3le Ul
2322222 PRS2 2SRRI RS AL L] £d 13 *e%% EEEXFRLXESLERARBESHBRREESESSIRDES
JC8 SECS. X X X x X X X X X X x TIVE
C 1Cc 20 3ic 40 s¢ 6C 7C 80 92 1cc
Figure 10—Histogram of CPU wait
TIME=CPU ACTIVE ONLY TIME-+ANY
CHANNEL BUSY TIME-+CPU WAIT ONLY TOTAL - -
TIME. The system time equation forms the basis
for estimating the effect of all configuration CPU ACTIVE [UR—
changes.
SYSTEM WAIT ' —
CHANNEL 1 BUSY
2. THROUGHPUT TIME REDUCTION —_
CHANNEL 2 BUSY S
A change in the speed of a unit only affects the
; . . CHANNEL OVERLAP
throughput by reducing the nonoverlapped time —_
o.f that unit. This assumption is a good approxima- ANY CHANNEL BUSY ¥ !
tion of the system behavior and will be used
throughout the analysis to calculate the effect of CPU ACTIVE ONLY +—
configuration changes. The resulting reduction in
the overlapped time does not affect the overall CPU CHANNEL OVERLAP —
system time. Th i i
A f e. The relatlonshlps of the components ANY CHANNEL BUSY ONLY ' _ .
will vary but the sum of the times of the unaffected
units will not change. As an example, the substitu- WAIT ONLY ey
tion of a faster CPU will have the effect of reducing
the total system time by the amount of time that ‘ ELAPSED TIME

the CPU ACTIVE ONLY TIME is reduced. In

Figure 11—System performance profile

Interpreting Results of Hardware Systems Monitor 33

order to calculate the effect of increasing the speed TOTAL SYSTEM

of a component, a measurement, must be made o

which isolates the nonoverlapped portion of that CPU ACTIVE —_—

component. Thus, to calculate the effect of in-

creasing the CPU speed one must make a measure- CPU WAIT ~

ment that will isolate the CPU ACTIVE ONLY ANY CHANNEL BUSY ' '

TIME, and for increased device speed, the meas-

urement must isolate ANY CHANNEL BUSY CPU ACTIVE ONLY ; .

ONLY TIME. Improvement factors will be ap-

plied to these nonoverlapped times and then added SEEK ONLY —

to the other times which make up the system time WAIT ONLY

to calculate a new system time. —
TIME

Configuration change equations Figure 12—System profile including 1/0 measurement

1. INCREASED CPU SPEED for the change in seek speed is used, e.g., the ratio

. - of the new average seek time divided by the old

The CPU ACTIVE ONLY TIME, ANY CHAN- average seek time. The new system time is given

NEL BUSY TIME and WAIT ONLY TIME are by the equation: NEW SYSTEM TIME=CPU

measured. Then an improvement factor for the ACTIVE ONLY TIME+ANY CHANNEL

increase in the CPU speed is used to modify the BUSY TIME+SEEK ONLY TIME/IMPROVE-
system time equation. For a CPU which is twice MENT FACTOR+CPU WAIT ONLY TIME.

as fast, the improvement factor is 2. The new
system time is NEW SYSTEM TIME=CPU
ACTIVE ONLY TIME/IMPROVEMENT FAC-

TOR-+ANY CHANNEL BUSY TIME+CPU
WAIT ONLY TIME. The CPU ACTIVE TIME, ANY CHANNEL

BUSY ONLY TIME and WAIT ONLY TIME

are measured. An improvement factor is used for

the decrease in CPU speed and the new system

time is calculated by the equation: NEW SYSTEM

TIME=CPU ACTIVE TIME/IMPROVE-

2. INCREASED DEVICE SPEED MENT FACTOR+ANY CHANNEL BUSY
ONLY TIME+WAIT ONLY TIME.

4. SLOWER CPU

This new system time is the time to process
the job stream that was measured by the monitor.

The CPU ACTIVE TIME, ANY CHANNEL

BUSY ONLY TIME and CPU WAIT ONLY Notice that this equation is not the same as for
TIME are measured. Then an improvement factor calculating the effect of substituting a faster CPU.
for the increased device speed is used, e.g., for In the case of the slower CPU, the assumption is
direct access devices use the ratio of the new aver- made that the overlap between the CPU and the
age rotational delay divided by the old average channels remain constant, instead of decreasing as
rotational delay. Next calculate a new system time in the faster CPU case.

by the following equation: NEW SYSTEM
- TIME=CPU ACTIVE TIME+ANY CHAN-
NEL BUSY ONLY TIME/IMPROVEMENT
FACTORAH-CPU WAIT ONLY TIME.

5. SLOWER I/0 DEVICES

The CPU ACTIVE ONLY TIME, ANY CHAN-
NEL BUSY TIME and WAIT ONLY TIME are

3. INCREASED/DECREASED SEEK SPEEDS measured. An improvement factor for the decrease

in device speed is used for calculating the new

The CPU ACTIVE ONLY TIME, ANY CHAN- system time: NEW SYSTEM TIME=CPU
NEL BUSY TIME, SEEK ONLY TIME, and ACTIVE ONLY TIME+ANY CHANNEL -

WAIT ONLY TIME are measured. Figure 12 BUSY TIME/IMPROVEMENT FACTOR+

shows the measured times. An improvement factor CPU WAIT ONLY TIME.

34 Spring Joint Computer Conference, 1971

TOTAL SYSTEM — —
CPU ACTIVE ONLY A
CHANNEL 1 BUSY | e—|

CHANNEL 2 BUSY

CHANNEL OVERLAP
(CHANNEL 1 BUSY AND 4
CHANNEL 2 BUSY)

CPU WAIT ONLY —

TIME

Figure 13—System profile with channels measured separately

This equation is not the same as for substituting
faster I/O devices. For slower I/O devices, the
overlap between the CPU and channels is assumed
to remain constant instead of decreasing as in the
faster 1/0 device case.

6. ALL WORK ON ONE CHANNEL

The CPU ACTIVE ONLY TIME, CHANNEL 1
BUSY TIME, CHANNEL 2 BUSY TIME, ...,
CHANNEL N BUSY TIME, and CPU WAIT
ONLY TIME are measured. The system profile is
shown in Figure 13. The equation for the new
system time using only one channel is: NEW
SYSTEM TIME=CPU ACTIVE ONLY
TIME-+sum of CHANNEL BUSY TIMES+
CPU WAIT ONLY TIME.

7. CHANNEL BALANCING

This calculation is composed of two parts:

Part 1: Measure CPU ACTIVE TIME,
DEVICE DATA BUSY TIMES,
CHANNEL BUSY TIMES and CPU
WAIT ONLY TIME.

Part 2: Examine the DEVICE DATA BUSY
TIMES and specify a new device allo-
cation on the channels so that a better
balance of the channels is achieved.
Calculate a new ANY CHANNEL
BUSY ONLY TIME. The new sys-
tem time is given by: NEW SYSTEM
TIME=CPU ACTIVE TIME-
NEW ANY CHANNEL BUSY

ONLY TIME+CPU WAIT ONLY
TIME.

An example of channel balancing is
given in the next section, Example 3.

8. SEVERAL CHANGES IN A SINGLE RUN

The new system time is equal to the sum of the
nonoverlapped times + the largest values of the
overlapped times. It is necessary to very carefully
consider the overlapped areas and determine which
area is least affected by the speed change. Using
the system profile shown in Figure 14, what is the
effect of increasing the speed of the CPU by 2,
I/0 devices by 1.5, and seek times on the new
devices by 2.5?

Each area of the system profile is examined to
determine which values to use for the new system
time.

AREA 1 The CPU ACTIVE ONLY TIME be-
comes CPU ACTIVE ONLY TIME/2.

AREA 2 Since the CPU ACTIVE TIME will be
decreased more than the ANY CHAN-
NEL BUSY TIME, AREA 2 is changed
to CPU ACTIVE TIMEAANY CHAN-
NEL BUSY TIME/1.5.

AREA 3 The new SEEK ONLY TIME is SEEK
ONLY TIME/2.5.

TOTAL SYSTEM

CPU ACTIVE e —
AREA 1
CPU ACTIVE ONLY —
CPU ACTIVE AND AREA 2
ANY CHANNEL BUSY —
CPU WAIT . .
13 1
AREA 3
SEEK ONLY . —
AREA 4
ANY CHANNEL BUSY ONLY
AREA 5§
CPU WAIT ONLY +—
ANY CHANNEL BUSY |
TIME

Figure 14—System profile for multiple system changes

Interpreting Results of Hardware Systems Monitor 35

AREA 4 The ANY CHANNEL BUSY ONLY

TIME becomes ANY CHANNEL BUSY ggi §§E§é@?& %NY
ONLY TIME/1.5. N
AREA 5 The CPU WAIT ONLY TIME is un- '
changed. SEEK ONLY TIME
Thus, ’ 25
NEW SYSTEM TIME ANY CHANNEL BUSY ONLY TIME+
=CPU ACTIVE ONLY TIME+ L5
2 CPU WAIT ONLY TIME.

EXAMPLES

All examples will use the same configuration and be run for the same period of time (3600 seconds).
Configuration
1—CPU
2—CHANNELS
4—DIRECT ACCESS DEVICES ON EACH CHANNEL

(D1, D2, D3, D4) on channel 1
(D5, D6, D7, D8) on channel 2

EXAMPLE 1
Putting all of the channel work on one channel
COUNTER DESCRIPTION SECONDS PERCENT
Co CPU ACTIVE ©1200.00 33.33
C1 CHANNEL 1 BUSY 900.00 25.00
c2 CHANNEL 2 BUSY 60.00 1.66
C3 ANY CHANNEL BUSY 945.00 26.25
C4 ANY CHANNEL BUSY A WAIT - 630.00 17.50
C16 ELAPSED TIME 3600.00 100.00
C17 C0-(C3-C4) CPU ONLY - 885.36 24.59
C18 C16-C0-C4 WAIT ONLY 1769.64 49.15

The NEW ANY CHANNEL BUSY is the sum of the channe! activity
C19 C14-C2 NEW ANY CHANNEL BUSY 960.00
The NEW SYSTEM TIME is CPU ONLY+ANY CHANNEL BUSY+WAIT ONLY

C20 C174+-C19+C18 3615.00
C21 C20-C16 SYSTEM SLOW DOWN 15.00 .41

The above equation shows that there would be an increase in running time of 15 seconds by putting all work on one
channel. The 15 seconds is exactly the amount of overlap that occurred when the work was on both channels.

36 Spring Joint Computer Conference, 1971

EXAMPLE 2
Substituting a CPU that is twice as fast as the old CPU
COUNTER DESCRIPTION SECONDS PERCENT
Co CPU ACTIVE 1200.00 33.33
C1 CHANNEL 1 BUSY 900.00 25.00
C2 CHANNEL 2 BUSY 60.00 1.66
C3 ANY CHANNEL BUSY 945.00 26.25
C4 ANY CHANNEL BUSYA WAIT 630.00 17.50
Ci16 ELAPSED TIME 3600.00 100.00
C17 C0-(C3-C4) CPU ONLY 885.36 24.59
C18 C16-C0-C4 WAIT ONLY 1769.64 49.15

The new system time is CPU ONLY/IMPROVEMENT FACTOR+ANY CHANNEL BUSY-WAIT ONLY

C19 C17/24+C3+4+C18 3157.32
C20 C16-C19 SYSTEM IMPROVEMENT 442.68 12.29
TIME

The above equation shows that there will be a decrease in running time of 442.68 seconds.

COUNTER DESCRIPTION SECONDS PERCENT

Cc21 C16/C19 RST 1.14

Cc22 (C0-C17)/2 NEW CPUA CHANNEL 157.32 4.98

OVERLAP
C23 C19-C0/2 NEW WAIT TIME 2557.32 80.99
C24 Co/2 NEW CPU ACTIVE 600.00 19.00
EXAMPLE 3
Balancing Channels
COUNTER DESCRIPTION SECONDS PERCENT

Cco CPU ACTIVE 1200.00 33.33
C1 CHANNEL 1 BUSY 900.00 25.00
C2 CHANNEL 2 BUSY 60.00 1.66
C3 ANY CHANNEL BUSY 945.00 26.25
C4 ANY CHANNELAWAIT 630.00 17.50
C5 DEVICE 1 DATA BUSY 150.00 4.16
C6 DEVICE 2 DATA BUSY 100.00 2.77
C7 DEVICE 3 DATA BUSY 350.00 9.72
C8 DEVICE 4 DATA BUSY 300.00 8.33
C9 DEVICE 5 DATA BUSY 10.00 .27
C10 DEVICE 6 DATA BUSY 30.00 .83
C11 DEVICE 7 DATA BUSY 15.00 .41
Ci12 DEVICE 8 DATA BUSY 5.00 .13
C16 ELAPSED TIME 3600.00 . 100.00

This measurement shows that channels 1 and 2 are not balanced with respect to utilization. An examination of the
device utilizations shows that a better device allocation is:

Channel 1 should have devices 2, 3, 5, 7 for a channel utilization of 475 seconds.

Channel 2 should have devices 1, 4, 6, 8 for a channel utilization of 486 seconds.

Interpreting Results of Hardware Systems Monitor 37

Next a new system time is computed

COUNTER DESCRIPTION SECONDS PERCENT
C17 C16-C0-C4 WAIT ONLY 1769.64 49.15
C18 C64-C74C94-C11 NEW CHANNEL 1 475.00 13.19

BUSY
C19 C54-C8+C10+4-Ci2 NEW CHANNEL 2 486.00 13.74
BUSY

Since there does not exist an ANY CHANNEL BUSY for the new device arrangement, it will be estimated by using
probability theory. ’

C20 C18\C19 869..04 24.89

The new ANY CHANNEL BUSY ONLY is assumed to be proportional to the old ANY CHANNEL BUSY ONLY
TIME

COUNTER DESCRIPTION SECONDS PERCENT
21 (C20/C3)*C4 597.64

The NEW SYSTEM TIME is CPU ACTIVE4-ANY CHANNEL BUSY ONLY+WAIT ONLY
C22 C0+C214-C17 NEW SYSTEM TIME 3567.68

C23 C16-C22 SYSTEM IMPROVEMENT 32.32 .89
TIME

The above equation shows that there will be a decrease in system time of 32.32 seconds.

EXAMPLE 4

Calculating a new system time when different types of devices are on the same channel.
The basic configuration will be expanded to include tape as well as disks on channel 2. Then a new system time will
be calculated for tapes that are twice as fast. Since tapes and disks exist on the same channel, the measurement

should isolate the time that only the tape is operating so that the unit improvement factors can be applied.

The following measurement is made:

COUNTER DESCRIPTION SECONDS PERCENT
Co CPU ACTIVE 1200.00 33.33
C1 CHANNEL 1 BUSY 900.00 25.00
C2 CHANNEL 2 BUSY 700.00 19.44
C3 ANY CHANNEL BUSY ‘ 1424 .88 39.58
C4 ANY CHANNEL BUSY AWAIT 949.68 26.38
C5 'TAPES BUSY ADISK ON 640.00 17.77
CHANNEL 2 NOT BUSY
C6 TAPES ONLY AWAIT 426.24 11.84
C16 ELAPSED TIME 3600.00 100.00

C17 C16-C0-C4 WAIT ONLY TIME 1450.32 40.28

38 Spring Joint Computer Conference, 1971

The NEW ANY CHANNEL BUSY ONLY is equal to ANY CHANNEL BUSY ONLY—TAPE ONLY/IM-
PROVEMENT FACTOR. The NEW SYSTEM TIME is equal to CPU ACTIVE4+NEW ANY CHANNEL BUSY
ONLY+WAIT ONLY. '

C18 C0+C4-C6/24-C17 NEW SYSTEM 3386.88
TIME
C19 C16-C18 SYSTEM IMPROVEMENT 213.12 5.92
TIME

Equation 19 shows that substituting a tape twice as fast will reduce the system time by 213.12 seconds.

SUMMARY

The paper has presented a description of hardware
monitors, effective methods of optimizing installation
throughput and costs, provision for a historical base
for predicting future system needs, and significant
events to measure. The interpretation of the monitoring
results are discussed in detail. Consideration is given
to system configuration, programs, routine resident/
non-resident, data set allocation, job scheduling and
operation methods. Stress is placed on predicting im-
provements based on actual systems measurements in
order to optimize the system with the actual job stream.
The performance optimization cycles and the interpre-
tation of the system performance profile were developed.

REFERENCES

1 C T APPLE
The program monitor—A device for program performance
measurement
ACM 20th Nat Conf 1965 pp 66-75

2 P CALINGAERT
System performance evaluation: Survey and appraisal
Comm ACM 10 January 1967 pp 12-18

3 G ESTRIN D HOPKINS B COGGAN
S D CROCKER
Snuper computer—A computer in instrumentation
automation
FJCC 1967 pp 645-656

4 F D SCHULMAN
Hardware measurement device for IBM System /360 time
sharing evaluation
Proc ACM Nat Meeting 1967 pp 103-109

5 D J ROEK W C EMERSON
A hardware instrumentation approach to evaluation of a
large scale system
ACM Nat Conf 1969 pp 351-367

6 A J BONNER
Using system monitor output to improve performance
IBM Systems Journal 8 1969 pp 290-298

7 How to find bottlenecks in computer iraffic
Computer Decisions April 1970

4-way parallel processor partition of an atmospheric
primitive-equation prediction model

by E. MORENOFF

Ocean Data Systems, Inc.
Rockville, Maryland

and

W. BECKETT, P. G. KESEL, F. J. WINNINGHOFF and P. M. WOLFF

Fleet Numerical Weather Ceniral
Monterey, California

INTRODUCTION

A principal mission of the Fleet Numerical Weather
Central is to provide, on an operational basis, numeri-
cal meteorological and oceanographic products peculiar
to the needs of the Navy. Toward this end the FNWC
is also charged with the development and test of numeri-
cal techniques applicable to Navy environmental fore-
casting problems. A recent achievement of this de-
velopment program has been the design, development,
and beginning in September 1970, operational use of
the FNWC five-layer, baroclinic, atmospheric predic-
tion model, based on the so-called “primitive-equa-
tions,” and herein defined as the Primitive Equation
Model (PEM).

The PEM was initially written as a single-processor
version to be executed in one of the two FNWC com-
puter systems. In this form the PEM was exercised as
a research and development tool subject to improve-
ment and revision to enhance the meteorological fore-
casts being generated.

The development reached a point in early 1970 where
the PEM was skillfully simulating the essential three-
dimensional, hemispheric distribution of the atmos-
pheric-state parameters (winds, pressure, temperature,
moisture, and precipitation). Its ability to predict the
generation of new storms, moreover, was particularly
encouraging. The FORTRAN coded program, however,
required just over three hours to compute a set of 36
hour predictions. To be of operational utility, it was
clear that several types of speed-ups were in order.

The principal effort in the development of the opera-
tional version of the PEM was directed at partitioning
the model to take advantage of all possible computa-

39

tional parallelism to exploit the four powerful central
processing units available in the FNWC computer in-
stallation. Additional speed-ups involved machine lan-
guage coding for routines in which the physies were
considered firm, and the substitution of table look-up
operations for manufacturer supplied algorithms. The
resultant four-processor version of the PEM was con-
sidered ready for final testing in August 1970, four
months after work was initiated.

The one-processor version of the PEM required 184
minutes of elapsed time for the generation of 36-hour
prognoses. The four-processor version, on the other
hand, requires only one hour of elapsed time to produce
the same results.

This paper summarizes the principal factors involved
in the successful operation of the 4-processor version of
the PEM. Operating System modifications needed to
establish 4-way inter-processor communications
through Extended Core Storage (ECS) are described in
the second section. The PEM struecture is described in
the third section. The partitions into which the PEM
is divided are examined in the fourth section. The fifth
section is devoted to the methods employed for syn-
chronizing the execution of the partitions in each of the
multiple processors and the model’s mode of operation.
The results of the PEM development and reduction to
operational use are summarized in the last section.

FNWC COMPUTER SYSTEMS
COMMUNICATIONS

The Fleet Numerical Weather Central operates two
large-scale and two medium-scale computer systems as

40 Spring Joint Computer Conference, 1971

e

!

SATELLITE COUPLER

Figure 1 —FNWC computer system configuration

shown in Figure 1. The two CDC 2200 computer sys-
tems communicate with each other through a random
access drum. One of the CDC 3200 computers is linked
to one of the CDC 6500 computers by a manufacturer-
supplied satellite coupler. The two dual-processor CDC
6500 computer systems are linked with each other
through the one million words of Extended Core Stor-
age (ECS).

Normally, the ECS is operated in such a manner
that 500,000 words are assigned to each of the two
CDC 6500 computer systems with no inter-communica-
tion permitted. A mechanism was developed by the
FNWC technical staff allowing authorized programs in
each of the four central processors of the two CDC
computer systems to communicate with each other and,
at the same time, be provided with software protection
from interference by non-authorized programs.

There are three classifications of ECS access, normal,
master and slave, designated for each job in the sys-
tem by an appropriate ECS access code and a pass key.
For normal ECS access these fields are zero. If the ECS
access code field designates a job as a master, then the
associated pass key will be interpreted as the name of
ECS block storage assigned to that job. A slave has no
ECS assigned to it but is able to refer the ECS block
named by its pass key.

A master job in one of the CDC 6500’s may have
slave jobs in the other CDC 6500. A communication
mechanism called 1SI was established between the
operating systems by FNWC technieal staff to faeili-
tate implementation of the master-slave ECS access
classification. 18I is a pair of bounce PP routines (one
in each machine) which provide a software, full duplex
block multi-plexing channel between the machines via
ECS. Messages and/or blocks of data may be sent over

this channel so that 1SI may be used to call PP pro-
grams in the other machine or to pass data such as
tables or files between the machines.

Obtaining a master/slave ECS access code is accom-
plished by two PP programs: ECS and 1EC. A job
wishing to establish itself as a master first requests a
block of ECS storage in the same manner of a normal
access job. Once obtained, the labeling of this block of
ECS storage is requested by calling the PP program
ECS with the argument specifying the desired pass key
and the access code for a master. The program ECS
searches the resident control point exchange areas
(CPEA) for a master with the same pass key. If one is
found the requesting job is aborted even if the program
ECS used 18I to call 1EC in the other machine. 1IEC
will perform a similar search of the CPEA in its own
machine and return its findings to the program ECS
via 1SI. If the other machine is down, or if no matching
key ean be found, the label is established, otherwise the
requesting job is aborted. Before returning control to
the requesting job, the program ECS increments the
ECS parity error flag and monitors via a special moni-
tor function developeq at FNWC. A non-zero value of
this flag has the effect of preventing ECS storage moves
in the half of ECS assigned to the particular machine.

Similarly, a job wishing to establish itself as a slave
calls the PP program ECS with the appropriate pass
key and access code. ECS searches its own machine’s
CPEA for a master with a matching key. If none is
found, 1EC is called on the other machine via 18I and
the search is repeated in the other CPEA. If still none
is found, this fact is indicated to the requesting job. If
a match should exist in either machine, the original
ECS will have the address (ECRA) and field links
(ECFL) of the requesting job saved in its CPEA and
will be given the ECRA and ECFL of the matching
master.

Modifications made to the ECS storage move pro-
gram allow ECS storage moves in a machine with no
master present. Modifications to the end of job pro-
cessor reset the ECRA and ECFL of slaves to their
values and decrement the ECS parity error flag in the
monitor when a master terminates.

ATMOSPHERIC PREDICTION MODEL
STRUCTURE

Several developmental variations of a five-layer baro-
clinic atmospherie prediction model, based on integra-
tions of the so-called primitive equations, were designed
and developed by Kesel and Winninghoff! in the 1969-
1970 period at FNWC Monterey.

The governing equations are written in flux form in a

4-Way Parallel Processor Partition 41

manner similar to Smagorinsky et al.,? and Arakawa.’
The corresponding difference equations are based on
the Arakawa technique. This type of scheme precludes
nonlinear computational instability by requiring that
the flux terms conserve the square of an advected pa-
rameter, assuming continuous time derivatives. Total
energy is conserved because of requirements placed
upon the vertical differencing; specifically, the special
form of the hydrostatic equation. Total mass is con-
served, when integrated over the entire domain. Linear
instability is avoided by meeting the Courant-Frled—
richs-Lewy criterion.

The Phillips* sigma coordinate system is employed
in which pressure, P, is normalized with the underlying
terrain pressure, w. At levels where sigma equals 0.9,
0.7, 0.5, 0.3, and 0.1, the horizontal wind components,
u and v, the temperature, T, and the height, Z, are
carried. The moisture variable, q, is carried at the
lowest three of these levels. Vertical velocity,w = — ¢,
is carried at the layer interfaces, and calculated diag-
nostically from the continuity equation. See Figure 2.

The Clarke-Berkovsky mountains are used in con-
junction with a Kurihara® form of the pressure-force
terms in the momentum equations to reduce stationary
“noise’” patterns over high, irregular terrain.

The Richtmyer centered time-differencing method is
used with a ten-minute time step, but integrations are
recycled every six hours with a Matsuno (Euler back-
ward) step to greatly reduce solution separation. The
mesh length of the grid is 381 kilometers at 60 North.
The earth is mapped onto a polar stereographic projec-
tion for the Northern Hemisphere. In the calculation
of map factor and the Coriolis parameter, the sine of
the latitude is not permitted to take on values less than
that value corresponding to 23 degrees North.

Lateral diffusion is applied at all levels (sparingly)
in order to redistribute high frequency components in
the mass and motion fields. Surface stress is computed
at the lowest layer only.

A considerable part of the heating ‘“package’ is
fashioned after Mintz and Arakawa,® as described by
Langlois and Kwok.” The albedo is determined as a
function of the mean monthly temperature at the
earth’s surface. A Smagorinsky parameterization of
cloudiness is used at one layer (sigma equals 0.7), but
based on the relative humidity for the layer between
0.7 and 0.4. Dry convective adjustment precludes hy-
drostatic instability. Moisture and heat are redistrib-
uted in the lowest three layers by use of an Arakawa-
Mintz small-scale convection parameterization
technique. Small-scale convective precipitation occurs
in two of the three types of convection so simulated.
Evaporation and large-scale condensation are the main
source-sink terms in the moisture conservation equa-

Variables SiGMA

wily — :

Figure 2—Diagram of levels and variables

tion. Evaporation over land is based on a Bowen ratio,
using data from Budyko.

In the computation of sensible heat flux over water,
the- FNWC-produced sea surface temperature distri-
bution is held eonstant in time. Over land, the required
surfaee temperature is obtained from a heat balance
equation. Both long- and short-wave radiative fluxes
are computed for two gross layers (sigma=1.0 to. 0.6
and from 0.6 to 0.2). The rates for the upper gross
layer are assigned to the upper three computational
levels. Those rates for the lower gross layer are ass1gned
to the lower two computational levels.

The type of lateral boundary conditions which led to
the over-all best results is a- constant-flux restoration
technique devised by Kesel and Winninghoff, and imple-
mented in January 1970,

The technique was des1gned to accomplish the follow-
ing objectives:

a. To eliminate the necessity of altering the initial
mass structure of the tropical-subtropical atmos-
phere as is the case when cyclic continuity is
used.

b. To eliminate the problems associated with the
imposition of rigid, slippery, insulated-wall
boundary conditions; particularly those con-
cerning the false reﬂectlon of the computa’monal
mode at outflow boundaries.

c. To preserve the perturbation component in the

42 Spring Joint Computer Conference, 1971

aforementioned areas in the prognostic period
(although no dynamic prediction is attempted
south of 4 North the output is much more
meteorological than fields which have been fat-
tened as required by cyelic continuity).

The procedure is as follows: All of the distributions
of temperature, moisture, wind, and terrain pressure
are preserved at initial time. A field of restoration co-
efficients which vary continuously from unity at and
south of 4 North to zero at and north of 17 North is
computed. At the end of each ten minute integration
step the new values of the state variables are restored
back toward their initial values (in the area south of
17 North) according to the amount specified by the
field of restoration coefficients. The net effect of this
procedure is to produce a fully dynamic forecast north
of 17 North, a persistence forecast south of 4 North,
and a blend in between. The mathematical-physical
effect is that the region acts as an energy sponge for
externally (outwardly) propagating inertio-gravity
oscillations.

The basic inputs associated with the initialization
procedure are the virtual temperature analyses for the

. Northern Hemisphere at 12 constant pressure levels
distributed from 1000 MBS to 50 MBS, height analyses
at seven of these pressure levels, moisture analyses at
four levels from the surface up to 500 MBS. In addition,
the terrain height, sea level pressure and sea surface
temperature analyses are used.

Several types of wind initialization have been tried:
geostrophic winds (using constant Coriolis parameter);
linear balance winds; full balance winds; winds obtained
by use of an iterative technique. Aside from geostrophic
winds the quickest to compute is the set of non-diver-
gent winds derived from solution of the so called linear
balance equation. These are entirely satisfactory for
short-range forecasts (up to three days).

The degree of prediction skill currently being ob-
served from the tests is very gratifying. It is clear that
little or nothing is known about the initial specification
of these parameters over large areas of the Northern
Hemisphere, particularly over oceans and at high
altitudes.

As noted at the start of the section, the equations
are written in flux form and an Arakawa-type conserva-
tive differencing scheme is employed. No attempt will
be made to exhibit herein a complete set of the corre-
sponding difference equations, since it is well beyond
the scope of this paper to do so. Rather, it will suffice
to show the main continuous equation forms (using
only symbols such as H, Q, and F, to denote all of the
diabatic heating effects, moisture source and sink terms,
and surface stress, respectively).

There are five prognostic equations, one of which
must be integrated prior to parallel integration of the
remaining four. These are the continuity equation, the
east-west momentum equation, the thermodynamic
energy equation, and the moisture conservation equa-
tion. Heights (geopotentials) are computed diagnos-
tically from the hydrostatic equation (the scaled
vertical equation of motion). Vertical velocities are
calculated from a form of the continuity equation. The
pressure-force terms are shown in their original forms.
[The pressure surfaces are actually synthesized ‘“locally”’
about each point, by means of the hypsometric con-
version of pressure changes to geopotential changes;
and geopotential differences are computed on these
pressure surfaces.] This Kurihara-type modification
tends to reduce inconsistent truncation error when
differencing the terrain pressure (which remains fixed
in any column) and geopotentials of sigma surfaces
(the “smoothness” of which varies with height).

A. East-West Momentum Equation

onu 1{ 9 (uwr)] (umr)} A (wu)

— = —-mX—| —)+ —) fr—"
at dr\ m oy\ m do

i) 0
+1.»uf—m{—"’+1_sz—"}+szmr+lf'z
‘ likA az,

B. North-South Momentum Equation
onv ad [uvw ad [vvr Juww
e 2% — — —_ —
at m {a:::(m >+6y(m)}+ Jdo

—mf—m{r‘-’f+RTa—"}+Kv2w+F,,
ay" " ay

C. Thermodynamic Energy Equation

onT] (ruT)] (m;T)}
— =X — —)+ —
at ‘ dx\ m ay\ m

+WG—%@+H 4+ Kv?nT
3

(3]
el T e T ™M Yz T Y ey

D. Moisture Conservation Equation

dor_ _ [0 (wue) | 8 (me\| wdawe)
at m{6x<m)+6y(m)}+ do +Qm

where @ =moisture souree/sink term

4-Way Parallel Processor Partition 43

E. Continuity Equation

s

F. Hydrosta.tic Equation

9%_ _ET
s o
PARTITIONING THE MODEL

The PEM may be considered in three distinct sec-
tions: the data input and initialization section; the
integration section repeated in each forecast time step;
and the output section. Each sixth time step, the basic
integration section is modified to take into considera-
tion the effects of diabatic heating. This includes in-
coming solar radiation, outgoing terrestrial radiation,
sensible heat exchange at the air-earth interface, and
evaporation, Condensation processes, in contrast, are
considered every time-step. Each - thirty-sixth time
step, the results of the preceding forecast hours are
output and the integrations reiterated.

Processwr 1 Processr 2 Processer 3 Processar 4
& J,__l)
loitialzalim 1 lialzation 2 hilaintn 3
? S —3
|n I I l
Toe Sp | Tme Sty 1 Tm S 1 Tme Step !
1 v , ¥ 3

m_r—ummrmumm
| S I 1

& & F Y
Imma T S % T Swp % T Sy %

T ¥
:i]msiul’m&nhlshl-mk
* F 9

Figure 3—Overall model partition structure

The basic structure of the PEM, as represented by
the governing set of difference equations and the
method of their solution, is naturally suited for parti-
tioning for parallel operation and concurrent execution
in multiple processors. The particular partitioning im-
plemented was selected in order to insure approximately
equal elapsed time for the execution of concurrently
operating partitions. Four-way partitions were princi-
pally emaployed, although both three-way and two-way
partitions were introduced where appropriate.

The basic partition of the model was based on the
observation that during each time step in the forecast
proc¢ess the momentum equations in the east-west and
north-south directions, the thermodynamic energy
equation, and the moisture equation could each be exe-
cuted concurrently in each of four different processors.
By virtue of the centered time-differencing method, the
forcing functions to be evaluated in the solution of
each of these equations require data generated during
the preceding time step and accessed on a read only
basis during the current time step. Hence parallel pro-
cessing could be achieved by providing separate tem-
porary locations for storage of intermediate results
during execution of a time step by each processor and
by providing a mechanism to insure that each processor
is at the same time step in the solution of its assigned
equation and, where required, at the same level within
that time step.

With this four-way partitioning within the basic time
step as a starting point, additional possibilities for
simultaneity in the model’s operation were observed
and further partitions developed. For example, prior
to the execution of the four-way partitioning within
each time step a three-way partition was implemented
which allowed the continuity equation to be solved for
the interface vertical velocities and the local change of
lower boundary pressure at the same time that geo-
potential-field correction terms are generated. The
model’s initialization section was similarly partitioned
three ways and the output section two ways. Finally,
the heating effects computations were implemented as
a three-way partition.

The four-way, three-way and two-way partitions
were packaged and compiled as four separate programs,
one for each of the four FNWC processors. The overall
structure of the partitioned model is illustrated in
Figure 3. Following completion of the output section
at time step (36), the integration sequence is recycled
from time step (1) as shown.

Processor 1 is designated as the ‘“master” processor
and Processors 2, 3, and 4 as the ‘“‘slave” processors,
both in the sense described in the inter-computer com-
munications section and in the sense that each time step
is initiated by command from Processor 1 and termi-

44 Spring Joint Computer Conference, 1971

L o &

Py P 1
r tmmnuutmunmmj

'

Figure 4—Typical time step partition structure

nated by Processor 1 acknowledgment of a ‘‘ complete”
signal emanating from each of Processors 2, 3, and 4.
At the completion of each step, results from the com-
putations of that time step are transferred from tem-
porary to permanent locations in storage and the next
time step initiated. Once again, the transfer is initiated
by command from Processor 1 and terminated by Pro-
cessor 1 acknowledgment of a transfer complete signal
received from Processors 2, 3, and 4.
The structure of a typical time step partition is
illustrated in Figure 4. At the start of the time step a
three-way split is initiated by Processor 1 during which
time Processor 1 integrates the continuity equation to
obtain vertical velocities and Processors 2 and 3 com-
pute the ten pressure-force-term geopotential correction
fields in the east-west and north-south directions, re-
spectively. At this time Processor 4 is not executing a
portion of the model and may either be idling or operat-
ing on an independent program in a multi-programmed
mode. The completion of the assigned tasks by Pro-
cessors 2 and 3 are signaled to Processor 1 which then
initiates the basic four-way split. The variables u, v, T
and e represent the new values of the variables obtained

through integration of the east-west and north-south
oriented momentum equations, the thermodynamic
energy equation and the moisture conservation equa-
tion, respectively. The variable L represents the com-
putation of the effects of the large scale condensation
process.

Once the computations of the u,;, v; and T; (=1, 2,
3, 4, 5) are initiated in Processors 1, 2, and 3, respec-
tively, they proceed independently of one another to
the end of the time step. Each “¢” value represents
another layer in the five-layer atmospherie model.

An added consideration is introduced into the com-
putations of Processor 4, however. Before the effects of
the large scale condensation process can be computed
for a layer, both the Thermodynamic Energy equation
and the Moisture Conservation equation must be solved
at that layer. Hence, a level of control is required to
synchronize the execution of Processor 4 with Processor
3 within the individual time step computations. Fur-
ther, the Dry Convective Adjustment computation in
Processor 4 requires the completion of all five layers
of the Thermodynamic Energy equation before it can
be initiated so that a second level of intra-step control
is required. At the conclusion of the Dry Convective
Adjustment computation, the Hydrostatic equation is
integrated in Processor 4 to obtain the new geopotential
fields. The time step is concluded with the transfer of
intermediate time step results from temporary to
permanent storage.

The basic time-step partition structure is modified
each sixth time step to include the effects of a diabatic
heating. The heating section was implemented as a
three-way partition illustrated in Figure 5. Additional
intra-step level control is required to synchronize the
execution of each of the partitions as shown in the
figure. Note that the heating partition in Processor 3 is
itself divided to allow as great a deégree of simultaneity
as possible with the execution of partitions in Processors
1and 2. ‘ ’

The output section, executed each thirty-sixth time
step (at the completion of six forecast hours), is parti-
tioned as shown in Figure 6. The output section parti-
tions were placed in Processors 3 and’4 principally for
central memory space considerations, more central
memory being available in these processors than in
Processors 1 and 2. The basie function of each output
partition is co-ordinate transformation of the forecast
variables and conversion to forms suitable for the user
community. ;

Each output partition is initiated by command from
Processor 1. Processor 4 may immediately begin pro-
cessing of the east-west and north-south momentum
equation variables but must wait on the transformation
of the Phi fields until Processor 3 has completed the

4-Way Parallel Processor Partition 45

Preprocessor program. A three-way partition was not
implemented since the Preprocessor must be completed
prior to the transformation of the Thermodynamic
energy equation and moisture conservation equation
variables.

To increase total system reliability a checkpoint re-
start procedure was designed and coded. At each out-
put step (6, 12, 18, ..., 72 hours) all of those data fields
required to restart the PEM are duplicated from their
permanent ECS locations onto a magnetic tape by
Processor 1, at the same time that Processors 3 and 4
are processing the output forecast fields. The essential
difference between these two data sets is that the re-
start fields contain the variables on sigma surfaces as
opposed to the pressure surface distributions required
by the consumers.

The “restart’” procedure itself requires less than a
minute. If the prediction model run is terminated for
any type of failure (hardware, software, electric power,
bad input data, ete.), the restart capability ensures
that the real time loss will be less than ten minutes.

In addition to the four processor version of the At-
mospheric Prediction Model a two-processor version
was also implemented. The primary motivation for the
second implementation was to provide a back-up capa-
bility with graceful degradation which could be oper-
ated in the event one or two of the central processing
units were down for extended periods. The two-pro-

Processor 2

Lo

Processwr 3 Processw 4

o

P =

wu |r||

Nt (3)
|t o i |
s
o T Tiee s-{mdu o xum‘ut-n Swap]-J

1 v

Figure 5—Influence of heating on time step computation

bs
L

Geopetestial Correction
Fields

-

Note: Primes {') indicate that outpul varisbles are on prasswe swiaces.

[Compats o Vst Lcmu1m St

Fnll:

Figure 6—Output partition structure

cessor version will also be used as the vehicle for further
research and development efforts to improve the mete-
orological and numerical aspects of the model, and the
quality (skill) of the resultant forecasts.

PARTITION SYNCHRONIZATION AND
EXECUTION

The parallel execution of the multiple partitions is
realizable because it is possible to postulate a mecha-
nism by which the operation of each partition in each
of the multiple processors can be exactly synchronized.
This mechanism is an adaptation to the requirements
of the PEM and the characteristics of the FNWC
computer installation of a general program linkage
mechanism known as the Buffer File Mode of Oper-
ation..9.10

Implicit in the Buffer File Mode of Operation is the
concentration of all inter-program communications
through Buffer Files. A Buffer File is a set of fixed
length blocks organized in a ring structure and placed
in each data path from one program to another. The
program generating the data to be passed places the
data into the Buffer File once its operations on that
data have been completed. The program to receive the
data finds the data to be operated on in the Buffer
File.

The flow of data through the Buffer File is unidirec-
tional; that is, one program may only write data to the
Buffer File and the other may only read data from the

46 Spring Joint Computer Conference, 1971

Buffer File. Pointers are maintained which indicate
which blocks in the Buffer File have last been written
into and read from by the two programs involved in
the data transfer. The Buffer File Mode of Operation
can be used to synchronize the operation of otherwise
asynchronously operating programs in the same or
different processors by either of two methods.

In the first instance, program synchronization is
effected by regulating the streaming of data through
the Buffer File from one program to another. The pro-
gram writing data to a Buffer File cannot proceed be-
yond the point in its execution when it is necessary to
place data into the Buffer File and there is no room for
additional data in the Buffer File. Similarly, a program
reading data from the Buffer File cannot proceed be-
yond the point in its execution when it requires data
from the Buffer File and there is no additional data in
the Buffer File. The execution of a program, either
waiting for additional data in its input Buffer File or
for additional space in its output Buffer File, is tem-
porarily delayed, and thereby brought into synchroni-
zation with the execution of the other program.

In the second instance, program synchronization is

effected by conveying “change of state” or ““ condition”
information from one program to the other. The Buffer
File block size is chosen on the basis of the quantity of
information to be passed between programs. The in-
ternal state change of a program is noted as a block of
data in that program’s output Buffer File. The fact
that there has been a change in state of the program
can readily be sensed by the other program which then
can read the block of data from the Buffer File. The
second program can determine the nature of the change
in state of the first program by examination of the data
in the block it has read from the Buffer File.
" The bi-directional transfer of the program state in-
formation is realized by the introduction of Buffer File
pairs. The first Buffer File can only be read from by the
first program and written to by the second program,
while the second can only be read from by the second
program and written to by the first program. This
method of exchanging state information between
programs not only provides a mechanism for synchro-
nizing the execution of two otherwise asynchronously
executed programs, but also eliminates the internal
program housekeeping which would normally be needed
to coordinate the accesses and the sequences of such
accesses of the programs to the program state infor-
mation. .

The PEM synchronization mechanism, referred to
herein as the Partition Synchronization Mechanism
(PSM), is based on the latter alternative. The applica-
tion of the PSM to the multi-processor FNWC com-

puter environment requires the Buffer Files to reside
in some random access storage device jointly accessible
by each of the processors. The device which satisfies
this requirement is the ECS, operated in the manner
previously described. '

A pair of Buffer Files is assigned between each two
partitions for which bi-directional transfer of state in-
formation is required. Hence in the typical time step
partition structure illustrated in Figure 4 and amplified
in Figure 5, Buffer File pairs are assigned between
partitions resident in Processors 1 and 2, 1 and 3, 1 and
4,2 and 4, and 3 and 4.

The nature of the change of state information to be
passed between any pair of partitions in the PEM is
whether or not one partition has reached a point in its
execution where sufficient data has been developed to
allow the other partition to initiate or continue its own
execution. This can be represented as a single “ GO-NO
GO” flag to be sensed by the second partition. Hence,
in the PEM the Buffer File recirculating ring structure
reduced to a simple single one word block maintained
in ECS.

Referring to Figure 3, it can be seen that the issuance
of 2 ““GO-NO GO” signal by a partition is equivalent to
either a command to “split”’ the straight line execution
of the model into multiple partitions or to “join” the
execution of the multiple partitions into a lesser num-
ber of partitions. A five character Buffer File naming
convention was established to facilitate identification
of which process was involved.

The first two characters of the name serve to identify
whether the Buffer File is associated with an inter-step
or inter-level signal; the former is designated by the
characters “IS” and the latter by the characters “IL”.
The third character specifies whether a split (“S”) or a
join (*J”) is being signaled. The fourth and fifth char-
acters specify the Processors in which the partitions
writing and reading the Buffer File are located respec-
tively. Hence Buffer File ISS12 is used by the partition
resident to Processor 1 to split its operation by initi-
ating execution in Processor 2 in going from one time
step to another.

When the PEM is to be executed the four programs
of which it is comprised are loaded, one into each of
the four Processors. The programs in Processors 2, 3
and 4 are immediately halted upon initiation and man-
ually delayed until the program in Processor 1, the
master Processor, has been assigned the necessary ECS
for the model’s execution and has initialized all Buffer
Files to reflect a NO GO condition. Processors 2, 3 and
4 are then permitted to enter a programmed loop in
which each periodically tests a Buffer File to determine
when it may initiate processing of its first partition.

4-Way Parallel Processor Partition 47

While in this programmed loop the slave Processors
may either be engaged in the execution of unrelated
programs or simply remain in a local counting loop.

Upon completion of the data input phase of its opera-
tion, Processor 1 removes the hold on the execution of
Processors 2 and 3 which then proceed with the initiali-
zation phase while Processor 4 remains at the hold
condition. At the completion of its portion of the initiali-
zation phase, Processor 1 holds until receipt of a GO
signal from Processors 2 and 3, signifying the comple-
tion of their assigned partitions. Processors 2 and 3
again enter a hold status after providing the GO signal
to Processor 1. Finally, Processor 1 initiates the itera-
tive integration section by signaling the GO condition
for Processors 2, 3 and 4. At the completion of the exe-
cution of the partitions in Processors 2, 3 and 4 the
master Processor is notified via the appropriate Buffer
Files and each once more enters the hold condition and
remains there until Processor 1, having verified that
each partition has been completed, signals the transfer
of the time step results from temporary to permanent
storage. This process then continues to repeat itself,
modified as previously deseribed in each sixth and
thirty-sixth time step.

Inter-level holds and go’s are generally implemented

in the same manner as the inter-step holds and go’s

described in the preceding paragraph. There is one ex-
ception, however. In the partition executed in Processor
4 in the iterative integration section, a separate Buffer
File is provided to control the initiation of the execution
of the large scale condensation effects computation at
each of levels 1, 2 and 3. The separate Buffer file at
each level is predicated on the need to allow the parti-
tion in Processor 3 to proceed on with its execution
after signaling the start of execution of Processor 4 at
each level without waiting for an acknowledgment of
completion of that level by Processor 4.

This emphasizes a particularly important aspeet of
the operation of the PEM. The execution of the parti-
tions in the different processors cannot get out of syn-
chronization with one another. Each is always working
on the same time step at the same time. If the parti-
tion in one of the Processors is delayed, for example,
while that Processor solves a higher priority problem,
then all the Processors at the completion of the proecess-
ing of their partitions will hold until the delayed Pro-
cessor ‘“ catches-up.” The execution of the partitions will
not fall out of synchronization.

CONCLUSIONS

The Atmospheric Prediction Model developed at
FNWC was partitioned to be operated in a 4-Processor

and a 2-Processor configuration, in addition to the 1-
Processor configuration for which it was initially de-
signed. The 4-Processor version is currently in opera-
tional use at FNWC while the 2-Processor version
provides a back-up capability in the event of equipment
malfunction and a new research and development tool.

A Partition Synchronization Mechanism was de-
veloped for purposes of synehronizing the execution of
the partitions being executed in each of the multiple
processors. The nature of PSM is such as to insure that
each partition is always operating on data in the same
time step. The ability to guarantee this synchronization
implies it is possible to allow other independent jobs
to co-exist and share what computer resources are
available with the Partitioned Atmospheric Prediction
Model.

The PSM fully utilizes modifications to the operating
systems of each of the two CDC 6500 dual processor
computers to allow programs in each of the four pro-
cessors to communicate with each other using ECS. In
addition to the intercomputer communications the
FNWC operating system modifications insure software
protection from interference by non-authorized pro-
grams.

As a consequence of employing the 4-Processor ver-
sion of the Atmospheric Prediction Model, the same
meteorological products were generated in 60 minutes
rather than the 184 minutes required of the 1-Processor
version. This reduction in time allowed the incorpora-
tion of a new and more powerful output section and the
extension of the basic forecast period from 36 hours to
72 hours. The 72 hour forecast is produced in an elapsed
time of 2 hours. ‘

The next step in the evolution of the FNWC PEM
involves expanding grid size from 63X63 points to
89X 89 points. To accommodate the additional central
memory and processing requirements required of such
a shift in grid size, partitioning of the horizontal do-
main rather than the computational burden is under
consideration. It is estimated that partitioning the
horizontal domain will reduce overall ecentral memory
requirements by one-half and allow the 72 hour fore-
cast on the expanded grid to be performed in only
four hours as opposed to the five and one-third hours
required by the current partitioning method. The re-
sults of these new efforts will be reported on in a later
paper.

REFERENCES

1 P G KESEL F J WINNINGHOFF
Development of a multi-processor primitive equation
atmospheric prediction model

48

Spring Joint-Computer Conference, 1971

Fleet Numerical Weather Central Monterey California
Unpublished manuseript 1970
2 J SMAGORINSKY S MANAGE
L L HOLLOWAY JR
Numerical results from a 9-level general circulation model of
the atmosphere
Monthly Weather Review Vol 93 No 12 pp 727-768 1965
3 A ARAKAWA
Computational design for long term numerical integraiion of
the equations of fluid motion: Two dimensional incompressible
Slow '
Journal of Computer Physics Vol 1 pp 119-143 1966
4 N.A PHILLIPS
A coordinate system having some special advaniages for
numerical forecasting
- Journal of Meteorology Vol 14 1957
5 Y KURIHARA
Note on finite difference expression for the hydrostatic relation
and pressure gradiant force
Monthly Weather Review Vol 96 No 9 1968
6 A ARAKAWA A KATAYAMA Y MINTZ
Numerical simulation of the general circulation of the

atmosphere
Proceedings of WMO/IUGG Symposium of NWP Tokyo
1968

7 W E LANGLOIS H C W KWOK
Description of the Miniz-Arakawa numerical general
circulation model
UCLA Dept of Meteorology Technical Report No 3 1969

8 E MORENOFF J B McLEAN
Job linkages and program strings
Rome Air Development Center Technical Report TR-66-71
1966

9 E MORENOFF J B McLEAN
Inter-program communications, program string structures and
buffer files)
Proceedings of the AFIPS Spring Joint Computer
Conference Thompson Books pp 175-183 1967

10 E MORENOFF

The table driven augmented programming environment: A
general purpose user-oriented program for extending the
capabilities of operating systems
Rome Air Development Center Technical Report
TR-69-108 1969

An associative processor for air traffic control

by KENNETH JAMES THURBER

Honeywell Systems and Research Center
St. Paul, Minnesota

INTRODUCTION

In recent years associative memories have been receiv-
ing an increasing amount of attention.!—® At the same
time multiprocessor and parallel processing systems
have been under study to solve very large problems.t5
An associative processor is one form of a parallel pro-
cessor that seems able to provide a cost effective solu-
tion to many problems such as the air traffic control
(ATC) problem.

In general, an associative processor (AP) consists of
an associative memory (AM) with arithmetic capability
on a per word basis. Usually, the arithmetic logic is a
serial adder and the associative processor can thus
perform arithmetic operations on the data stored in it
on a bit serial basis in parallel over all words.

The two main types of associative processors are a
distributed-logic type and bit-slice type (non-distrib-
uted logic). The most significant difference in the two
types is that the distributed-logic associative processor
has logic at every bit position, while the bit-slice as-
sociative processor has logic only on a per-word basis.
The differences in features of these two approaches are
summarized in Table I.

The distributed-logic associative processor has sig-
nificant speed advantages for the equality search and

TABLE I-—Summary of the method of operation of distributed
and bit-slice associative processors

Operations Distributed Logic it-Slice
Eaualify S }

Other Search

Operations Serial-By-Bit

Arithmetic Operations | Serial-By-Bit Berial -By-Bit

Word Write Parallel-By-Bit iieria’l-By-mt

read /write operations since these operations are per-
formed simultaneously over all bits of every word. On
the other hand the bit-slice processor may have a speed
advantage for processing operations because it will
usually be able to perform bit-slice read and write
operations faster than the distributed-logic processor.
Thus for a specific problem, the faster of the two ap-
proaches will depend on the mix of operations required.

The design of an associative processor that combines
the best features of the above approaches and can be
applied effectively to problems such as air traffic con-
trol is given in this paper. This system has the flexi-

HOST
(General Purpose
Sequential Computer)

1/O Interface and

Controller
1/0
Interface Parallel
(Associative)

ﬁ Processor

Word Read

Parallel -By-Bit Ler,,ial-By-Bit

49

Figure 1(a)—Block diagrém of the overall computing system

50 Spring Joint Computer Conference, 1971

To General Purpose Computer
1/O Interface

4

Controller Data Flip Flop
(uséd as data register

for bit slice processor)

Serial Adders (one per word)

I Data Register l

I - J Register for bit
Mask Rpgister slice processor)
Word 1 |
-
Word 2] L e B A
Word 3 - - Wor
L]
Assocxaﬁ.ve * & * RAM
Memory ° ¢ °
° (] ° L4
(Part A) (Part B)
— —
Word N I_\Worr) N

Word Select Register
(one bit per word)

SearcH Resulta
Register
(one bit per word)

Figure 1(b)—Block diagram of the associative processing system

bility to solve the problems that associative processors
can solve and do it in a more effective manner than
any other processor using the same operation speeds.

SYSTEM DESCRIPTION

There is a large class of problems to which a parallel
processor can be applied. However, even this class of
problems requires both types of processing; i.e.,
sequential and parallel. Figure 1(a) shows a general
block diagram of a parallel processing system. (For the
purposes of this paper, the parallel processor is an asso-
ciative processor.) The system consists of a host
(sequential computer), a control unit for the asso-
ciative processor (and interface beween the controller
and host), the associative processor, and the interface
between the associative processor and its controller.
The interface unit to the associative processor s there
because generally the associaitve processor and host are
incompatible. For example, in a bit slice type associative
processor 1/0 is accomplished bit serial, whereas, in the
host sequential computer I/0 is usually accomplished in
word parallel. This represents a basic limitation to the
overall system! This paper presents a design of an asso-
ciative processor that does not have this limitation and

which has the interface unit built into the system as an
integral part of the associative processor.

The overall system is shown in the block diagram in
Figure 1(b). The system consists of the following parts:

1. A hybrid associative processor (AP)
2. A microprogrammed controller, and
3. The input output interface.

The input output interface is designed to interface
the processor with the host computer. The interface
contains registers and gating (such as shown in Figure
2) that perform the following functions: voltage level
translations, acceptance of a word from the host
processor, routing the word to its appropriate destina-
tion (controller or associative processor), and acceptance
of a word from the distributed logic portion of the
associative processor and transmission of desired

To AP*

tion

Gatmg
Regis ter

Level Translators

Gating to Determine
I.evel Translators

Register

To

Controller From AH

From HOST
or (Cpntroller

O,

Input Indicator
Flip Flop

v
To HOST

Outputfdndicator
Flip Flop

Toggle Register (Manual Controlsl

Indicator Register

Gating to Controller or AD ’

*AP Means Associative Processor

Figure 2—Block Diagram of the I/0 Interface

Associative Processor for Air Traffic Control 51

portions of this data to the host processor, a host word
at a time.

The microprogrammed controller (Figure 3) accepts
instructions from the HOST and then performs the func-
tions called for by the HOST. The controller’s memory
consists of ROM and RAM. The section of ROM
stores the (microinstructions for less-than-search, ete.,
and the remaining ROM stores constants and other
necessary fixed data for the system. The controller also
has read/write memory for storing the programs that
can be called by the HOST. These programs are written
with instructions that are either microinstructions or
machine instructions such as equality search, etc. The
instructions the HOST sends to the controller activates
the programs. This arrangement enables easy design
of the software since, the micro-programs, the programs,
and HOST/AP interaction software can be written
almost independently after they have been defined.
The bloek diagram of the controller is shown in Figure 3.

The associative processor is shown in Figure 4. It
consists of two different parts which share the adders
and results. registers. One part is a distributed logic
associative memory. The memory has the advantage
of being able to read and write words in word-parallel
form thus eliminating the input/output bottleneck that
will oceur if only serial-by-bit read/write capabilities
are present. The other portion of the processor is a
RAM oriented in such a manner that it can do a bit-
slice read and write. With the addition of the per-word
arithmetic hardware this memory has the fast bit-
slice capabilities that we desire for arithmetic opera-
tions. This combination gives us the advantages of both

Input Data/Instructions Output Data
| Ada Program t
> Address ress Store Input loutput
Counter Read /Write i g
Memory
1 |
Address T
Load Timing and
M Cogic v Central
v Control
Register
T T Index Index
+ ‘ ‘ounter| Limit
laddress Address Address m::;;"“l"i P Reglste
L_g}ioaa [J{counter |_gipecoder |y
Logic (ROM) —
Comparison
1 Logic
Instruction
Decoder
Mask/Argument
Generate*
Logic
Search Results v 1 I
Register Status Memory TO FROM

Control

Mask and
Stanat Memory Mas

Argument Registers

Figure 3—Block Diagram of the Controller for the Associative
Processor

Word Select Register

// tone, !n per word)

/:?; slice of Part B
f what is
ord of
is
ans of

addressed oy
the decoder.

i
£

I
z
z

- SRPP.

e e ———————— e

RS

/’ Cne bit of RAM
contains only storage

capabitit:.

ne bit iati
3 y 5 bot
capabilic. E% 1 S dosbdalnfrihasadss

i L]
*A typical Associative Processor Word consists of a word from Part A,
a serial bit of the search results register, a bit of the word
nd a word from Part B (one bit of many unique RAM
words used to form a word for Part B).

i
-4

Figure 4—Block Diagram of the Associative Processor

types of associative processors; i.e., all-parallel equality
search and read/write features of the distributed logic
approach along with the high speed arithmetic capa-
bilities of a non-distributed logic approach.

The operation of the processor requires that the
RAM operate as follows. The RAM ecan be thought of
as being rotated 90° from its normal position. When an
address is placed on the input lines to the decoder a
“RAM” word is selected, but because of the orienta-
tion of the RAM this “RAM” word is a bit slice (a
single bit of all data words) to the AP. This bit slice
can then be read out into the registers or adders. In
addition this bit slice can be gated by the word select
register if a subset of words is to be selected. (See the
Appendix for a description of an associative memory
and its associated registers.) To perform an associative
search is very simple. If the bit slice is being compared
to a one, it is just read out. If the equality search is on
zero, the bit slice is read and every bit complimented.
This procedure then yields a 1 in the search results
register in every matching bit position. This method
allows the bit slice portion of the AP to be implemented
using standard off the shelf RAM and conventional
IC logic.

PROCESSOR CAPABILITIES

Table II is a comparison of typical associative pro-
cessor - speeds available. The distributed logic system
speeds are based upon the Honeywell semiconductor
associative memory. A description of the Honeywell
associative memory can be found in Reference 1. The
bit slice (non-distributed) processor speeds are based
upon a bipolar RAM implementation and are what
can be achieved with current TTL technology.® The
bit slice processor uses the decoder as a mask register

52 Spring Joint Computer Conference, 1971

TABLE II—Typical operation speeds for the distributed,
bit-slice, and hybrid associative processors

Distributed Bit Slice Hybrid
art,

Bit Stice Read 300ns - 100ns 300ns 100ns
AR
Bit Slice Write 200ns 100ns 200ns 100ns
DL Al
BitSlice Search 300ns 100ns 300ns 100ns -
iot avail e ot available
Parallel Masksble Equality Search 300ns (100ns /bit) 300ns (100na /bit)
Equality Search 300ns 100ns /bit 300ns 100ns /bit
Not available T00na7 ot available
Parallel Word Read 100ns /word {100ns /bit/word) word (100ns /bit/word)
[———— = oY 2 NOT TVRTTRUTE"
Parallel Word Write 100ns {100ns /bit/word) 100ns 100ns /bit/word)
Add Bit Stice to Bit Slice .
and Store in a Bit Slice 900ns 400ns 900ns 4008
Multiple Match Resolve 100ns 100ns 10008 100ns.

and a single flip flop to hold data since it operates in a
bit serial fashion. Data will be shifted into the flip flop
serially while the decoder address is changed. The
speed of the parts is shown in Table I1.

The hybrid processor has certain features that can
be used to advantage. The two parts of the system have
complimentary properties!

High speed I/O can be obtained from the hybrid.
No data has to be taken from the bit slice part in a bit
serial manner. For example if 50 words of 20 bits were
to be read from the processor the output time is 5 us
(11 ws) if the words were in the distributed logic por-
tion (bit slice portion). (The extra 6 us are consumed
by reading 20 bit slices from the RAM and storing in
the AM portion.) Compare this to a bit slice processor
that required 100 us (20X50X100ns) for the same
I/0. For most applications this processor has been
found to have an I/0 rate 10 times that of a bit slice
processor and 14 that of a distributed logic processor.
In addition, consider the speed of arithmetic multipli-
cation. Multiplication (assume 20 bit operands and 40
bit result) in the distributed logic processor requires
about 360 us ((20)2(.9) or n? bits slice addition opera-
tions) compared to 160 s for a bit slice processor. The
worst case in the hybrid processor would be when both
20 bit operands were in the AM and the result was to
be stored in the AM. A worst case algorithm would
read 40 bits into the RAM, multiply, and store the 40
bits in the AM. This would require 188 us.

The arithmetic multiply is nearly twice as fast as the
distributed logic processor and about the same speed
as the bit slice processor.

Arithmetic addition speeds are not significantly en-
hanced by this processor and are the same as for a bit
slice or distributed logic processor depending upon
where the operands are stored and the result is to be
stored. :

Table III is a table summarizing the results of com-
paring the three processor types. The characteristics of
the hybrid processor may be described as faster and

more flexible than either of the two standard imple-
mentations of associative processors. The values in
Table III are for typical operations for problems that
have been studied. The hybrid processor combines the
best of both standard processing approaches and this
can be seen in the table. For most associative processing
applications, the hybrid approach should be far superior
when compared to either of the othér two approaches.

DESCRIPTION OF THE AIR TRAFFIC
CONTROL PROBLEM

Three areas of the air traffic control problem will be
discussed in this paper. These are tracking, conflict
detection, and display processing. For the ATC appli-
cation the AP size will be 512 words of 104 bits of dis-
tributed logic memory and 128 bits of a bit slice type
memory. One track will be assigned to each 232 bit
word. The controller will require about 2000 words of
read/write memory, 500 words of ROM for micropro-
grams, and 2500 words of ROM for system constants.

This processor has been sized to accommodate 512
tracks in the terminal area (64 mile radius). In the
terminal area the general purpose computer to which
the processor interfaces would probably be the ARTS
IIT (HOST).

Tracking

The tracking function has three main subfunctions
that it must perform. These are: correlation of target
reports, positional correction of correlated tracks (cor-
rection); and positional prediction (prediction) for all
tracks.

The correlation function includes the following
operations:

[y

Obtaining target reports from the HOST.

2. Range and azimuth correlation of target reports
against all tracks stored in the associative pro-
cessor (AP).

3. Tagging the target report for prediction and/or
correction. B

" 4. Storing the target report in the track file.

TABLE IIT—Summary of the computational capabilities of the
distributed, bit-slice, and hybrid associative processors

Distributed I ogic Bit Slice Hybrid

1 upit/second Lunitsl

10 units fsecond

1/0 20 units/gecond Lunit/secand Aunitel, o

Arithmetic 1 unit/second 3 units /second

2-3 units /second

Bit Stice Processing 1 unit/second 3 units /second 2-3 units/second

Associative Processor for Air Traffic Control 53

BEGIN

ports availatle
from the HOST

return control
to the Executive
Routine

?

read target
report

A
between
limits search

Logical
with

AND

between
limits search

increase
firmness of
track

decrease obtain new
firmness of %,§ for the
track track

tag track for
update
calculation

store target
report
information in
track ®

G

Figure 5(a)—Path taken by a target report that correlates
uniquely with a track in the associative processor (track file)

tag track for
E prediction
L ;

4
hd

establish a new
track with this .
target report

are

decrease 1 respon: e beacon
firmness of codes equal
the track A
4 more than
1 résponse
obtain new
«y,pB for the
track decrease
bin size
y
tag track for
update
calculation y
between
limits seard
<Ps
establish logical AND
turning tracks with s
between
limits search
<bs

any
tracts
responding

NO

increase the
firmuess of
the track

9

Figure 5(b)—Path taken to establish a new track or a turning
track

Figure 5 is a flow chart for this portion (correlation)
of the air traffic control function. The correlation func-
tion will be done as target reports are available from
the HOST. The correlation function will be performed
once for each target report; i.e., once for each track in
the system. Therefore for 256 tracks, the function will
be called 256 times every four seconds (one radar scan),
ete.

When actually performing the functions on all tracks,
the tracks to be corrected will be corrected, and then
all tracks will be predicted to their next position.

All tracks correlated during the last 14 second will be
updated, therefore groups of tracks will be updated
eight times per seeond or thirty-two times per scan (4
seconds for a complete radar scan). To correct the
tracks position, four equations must be solved.

These are:

(Xc)n=(Xp)n+a(XR_Xp)n (1)

54 Spsing Joint Computer Conference, 1971

are
beacon
codes equal

?

incre.ase the) NO
bin size 3

|!=l+1 | more than 1

decrease between
bin size limits search]
<6<

logical
AND

decrease bin between
@--—“size and set ® limits search
1=1 <ps

Figure 5(c)—Path taken by a target that correlates with more
than one track

(Yc)n=(YP)n+a(YR—Yp)n (2)
(Xc)n=(Xc>n—1+ﬁ/t(XR——X:P)n (3)
(Yc) n= (Yc) n—1+B/t(YR'— YP)" (4)

where X, means X corrected; Xz means X reported
by radar return; X, means X predicted; and « and 8
are constants determined by the tracks past history or
firmness. '

The prediction equations are as follows:

(Xp)n= (Xm) n—1+(Xc) n—1T (1)
(Yp)n= (Ym) n—1+(Yc)n—1T (2)
where
(Xm) n—1= (Xc) n—-1 OF (Xp) n—1
and

(Ym) n—1= (Yc) n—1 O (Yp) n—1

The turning track equation is given by the following
formula:

(X0)a=NIV sin(0==RN) — X]+ X, (0

where,
N =time

V =velocity

R=rate of turn

A similar equation can be derived for Y values. After
the prediction calculation, the turning tracks will be
calculated.

Conflict detection

Figure 6 is a flow chart for a conflict detection scheme.
This algorithm uses X, Y oriented rectangles to do gross
filtering of the data. The remaining tracks that are
potential conflicts are then subjected to a detailed cal-
culation involving the law of cosines to determine if the
circular shapes overlap. Any conflicts are then out-
putted to the HOST for conflict resolution and false
alarm checking.

Figure 7(a) shows the ideal conflict detection areas.
The circle around the airplane is an area of immediate
danger. The larger area is an area of potential future
danger. In order to effectively process a conflict algo-
rithm a search is made over rectangular areas surround-
ing the shapes. This is shown in Figure 7(b). Figure
7(c) shows the basic philosophy behind the conflict
equation. It is desired to know if any circles overlap,
however, this is a very hard search to accomplish. Re-
finements and approximations to this criteria designed

increase the
bin size

establish
turning
tracks

codes equal

Figure 5(d)—Path that establishes turning tracks for target
reports that correlated with more than one track

Associative Processor for Air Traffic Control 55

Enter

X, Y, 7
Filtering for
the l.arge

Lircle

[Emall Circle
[Calculation

NO dbtain Next
Track

Large Circle
Calculation

YES
NO

Was this NO
the Small
Circle
Calculation,
» #7t.i8 assumed that the HOST contains a

YES Conflict Resolution Routine and all the
AP must do is identify conflicts and pass
them to the HOST via this subroutine.

fenter Conflict
Resolution
Fubroutine ™

Figure 6—Overall conflict detection algorithm

Area of Immediate
Collision Danger

Area of Potential
Danger

Figure 7(a)—The privileged airspace around an aircraft

"Small Square"/

"Small Circle”

"large Circle'|

"large Square”

Airplane

4

Figure 7(b)—Conflict areas for the conflict detection algorithm

to shape the search areas more like those shown in
Figure 7(a) have been considered but are beyond the
scope of this paper.

Figure 7(c) shows the equation that is derived from
the conflict detection function. This equation is just
the Law of Cosines applied to the conflict detection
problem to determine if the circular shapes overlap. To
avoid a possible conflict the following must be true:
[p*+p*—2ppi cos(6—0;)]—[(R+R;)?]>0. This equa-
tion must be true for all aircraft being compared to the
aircraft being processed.

Display processing

The display processing function will send the display
data to the HOST after filtering the data. It is assumed
that there is reserved storage in the HOST that con-
tains the detailed filter information for each display
(i.e., for each display there is a node of data containing
the X, Y, Z limits that the display is controlling) and
information to assemble the display data in the HOST
refresh memory.

It is assumed that the display data are read out to the
HOST, the display data assembled, and the display
data entered into the refresh memory. This is done
twice a second; i.e., the complete display routine is
processed twice a second. The HOST will receive the

56 Spring Joint Computer Conference, 1971

that is sent over with the positional information. The
algorithm for this function is given in Figure 8.

Definition and allocation of memory fields

The Associative Processor contains the following
fields:

e X corrected X position

e Y. —corrected Y position

o Z—altitude if the plane has a beacon transponder
otherwise zero

o BC—Beacon transponder code otherwise zero

e GPID—A code that identifies this track uniquely.
Allows the HOST to identify each track

NOTE: 2, ' o Firm—the firmness of the track (essentially a
Y S =Jfb"+p 2y ~2PPicos (-5 measure of the consistency of correlation of the
track)

» a—a tracking coefficient for the X positional values
derived from a least squares fit tracking algorithm

X. Y. Z
Filtering
for
Display 1

4

Store in
Bit Stice |

0 NO 1=1+1
I RETURN l o
. Read Out Filtered unction

Controlled By
Words for Each ‘ontrolled By

J
I=1, 10 Hand Off ;
- Read Out 3
i ivati f th flict detecti uation and Aceepted By 4
Figure 7(c)—Derivation of the conflict detection eq Accepte :
one of its possible refinements [e — i
J=y +1 Search for
=1 Display I in
Function J
GPID field of the word, X position, ¥ position, and
3 y
altitude and thus can assemble the full and partial data —% g —
. - . Al 1t slices be
blocks, along with the tabular list information as each Bit Stice | temporarily suailoble.
track is sent to the appropriate display refresh memory.
In order to perform this function the HOST needs a
table of information of each track stored in its memory. Read QUi ared S
This function is performed quite fast since it is all =110

searches and reading. All of the detailed display
information that does not change very fast is kept in the -
HOST and can be identified by use of the GPID field Figure 8—Display filtering algorithm

Associative Processor for Air Traffic Control 57

e (3—a tracking coefficient for the Y positional values
derived from a least squares fit tracking algorithm

e Temp—temporary storage fields

o CB—controlled by field. The number in this field
designates the display that is controlling this track

o AB—accepted by field. The number in this desig-
nates the display that has accepted the track if it
was being handed off from one display to another.

e HO—hand off to. This field designates the display
the track is being handed off to.

¢ RO—read out by. This field designates the num-
ber of the display reading out tracks other than
those under its control.

e TAB—Tabular—this field designates the number
of the display on whose tabular list this track
appears

e Update Flag—Designates tracks that correlated,
but have to have their positions corrected and
predicted.

o Conflict Detection Flag—designates tracks that
need a conflict detection check

e X,—Predicted X position

o Y ,—Predicted Y position

o f,—predicted azimuth

o p,—Predicted p position

e X.—corrected X velocity

e Y, —corrected Y velocity

Figure 9 shows the manner in which the fields of
each word have been allocated. When the system is
first initialized, there will be a momentary bottleneck
because a lot of data will have to be put into the RAM;
however, this bottleneck should be less than a bit slice
processor. After this initialization has been accom-
plished the number of changes in the information in the
RAM will be small. The fields were distributed between
the AM and the RAM in order to minimize output
from the RAM. None of the fields in the RAM portion
of the system are read out and sent to the HOST. They
are either fields that change slowly and have to be
written into the memory from data received from the
HOST (CB, AB, HO, RO, TAB) or fields that are cal-
culated and never have to be read out to be sent to the
HOST (Flags, Xy, Yy, 05, pp, Xo, Yo).

In the associative memory, we have the data which
require that a quick output capability be available.
Data fields that we would like to be able to read out in
word parallel, such as X,, Y., Z, BC and GPID, have
been included in the AM. Also, data fields that need a
word parallel read and write capability, such as Firm-
ness Factor (FIRM), «, and g8, have been included in
the AM. This organization gives as the best speed solu-
tion to the input problem by overcoming the bit serial
input output problems of the non-distributed logic ap-

proach and the slow bit slice read of the distributed
logic approach.

Timing and I/0 Data Estimates

The following timing and I/0 estimates were made
assuming that (1) 512 tracks are contained in the as-
sociative processor; (2) 128 tracks must be correlated
per second (512 tracks per radar scan); (3) the updating
routine is processed eight times a second; (4) the con-
flict detection algorithm is processed on each track two
times per scan (that is 256 conflict detection checks are
made every second); (5) all display information is up-
dated twice per second; and (6) a software organiza-
tion as discussed in the next section is used.

In order to time the conflict detection algorithm it
was assumed that the maximum number of responses
to the XY Z filtering was 6 for the small square and 45
for the large square. Because of the accuracy required
it was decided that the trignometric functions would
be done fastest by table look from the ROM in the
controller.

Under the above assumptions it is estimated that
with the speeds in Table II, the performance of the air
traffic control problem for 512 tracks will utilize 50
percent of the processors capability. The 50 percent
use includes all overhead and bookkeeping functions.
Comparable estimates were made for a bit slice pro-
cessor and a distributed logic processor. Using the speeds
given in Table II, both of these processor require ap-
proximately 65 percent of the processor’s capabilities.
Therefore, the hybrid processor can handle approxi-
mately 30 percent more processing than either of the
other two processors.

Input to the AP and its controller is estimated at
1200 words per second. Output to the ARTS III is
estimated at 30,000 words per second. Therefore an
approximate total of 31,000 words of I/O per second
are anticipated for worst case operation. In the air
traffic control problem as formulated here, I/0 does not
seem to present a major problem.

Software organization

A very simple organization of the AP and interface
is assumed. The HOST can transmit only data or one
of four instructions to the AP. The instructions are as
follows:

Correlate (number of tracks)

e Update

o Conflict Detection Probe (number of tracks)
e Display

58 Spring Joint Computer Conference, 1971

12 12 8 15 10 4 6 6 31
GP
Xe Y. 4 BC |ID Firm o B Temp
104 Bit AM
34 4 4 4 4 4 11 12 12 12 12 12 12
Temp JCB | ABJHO [RO JTA X, Y 8 1o, 1Xc | Yo

PE'p | pI'P

Update Flag Conflict Detection Flag

128 Bit Bipolar RAM
(1 bit of 128 different RAM words used as
a 128 bit Associative Processor word)

Figure 9—Allocation of fields in the memory word

The AP only transmits the results of the performance
of the above functions to the HOST. The programs for
the instructions are stored in the 2000 word read/write
memory in the AP controller. These programs are
written in terms of the AP’s macroinstructions (multi-
ply, add, less than search, etc.) which in turn call for the
execution of the appropriate microprogram to be exe-
cuted from the controller’s ROM. The microprograms
are written in terms of the basic machine instructions
such as equality search, bit slice read, word read, etc.

CONCLUSION

A new type of an associative processor has been de-
signed. This processor combines the best properties of
the bit slice and distributed logic associative processors.
The processor provides the flexibility that will enable
it to out perform either of the other two processors on
most applications. In typical applications, the processor
can handle 30 percent more processing then either of the
other two types of processors.

In general, the processor has the I/0 and equality
search capabilities of a distributed logic associative
processor combined with the bit slice and arithmetic
processing capabilities of a bit slice processor, thus
making it more effective than any other associative
processor. This processor overcomes the main draw-
back of current associative processors, ie., I/O
problems.

The processor was applied to the air traffic problem.
It was sized for 512 tracks which corresponds to a 1975
traffic load for most terminal areas with a 64 mile

radius. A microprogrammed controller was used to
provide future flexibility. The processor was about 50
percent loaded (for 512 tracks) considering overhead
functions. This processor can provide a viable solution
for the ATC problem.

The air traffic control system used memory speeds
that are available from current MOS associative mem-
ories and off the shelf bipolar RAM’s. The processor is
built from a combination of a distributed logic associa-
tive memory and a bipolar RAM. The processor has
one word per track (104 bits AM and 128 bits RAM
per word) or 512 words of memory. Each word has a
serial adder plus associated registers. Several tables
(ROM) are needed because certain functions will be
performed by table look up.

ACKNOWLEDGMENT

The author wishes to thank L. D. Wald and D. C.
Gunderson for their assistance and pateienc in helping
the author gain an understanding of associative tech-
niques. Thanks are also given L. D. Wald for the de-
tails of the control unit for the associative processor.
The author wishes to thank the following personnel of
the FAA for their help in understanding the air
traffic control problem: Lawrence Shoemaker, James .
Dugan, John Harrocks, and Jack Buck.

REFERENCES

1 L D WALD
MOS associative memories
The Electronic Engineer August 1970 pp 54-56

2 L D WALD
An associative memory using large scale integration
National Aerospace Electronics Conference Dayton Ohio
May 1970

3 A G HANLON
Content-addressable and associative memory systems—A
survey
IEEETEC Volume EC-15 No 4 1966 pp 509-521

4 J A GITHENS
A fully parallel compuler for radar data processing
National Aerospace Electronics Conference Dayton Ohio
May 1970

5 J C MURTHA
Parallel processing techniques in avionics
National Aerospace Electronics Conference Dayton Ohio
May 1970

6 J W BREMER
A survey of mainframe semiconductor memories
Computer Design May 1970 pp 63-73

7 R E LYONS
The application of associative processing to air traffic control
ler Symposium International Sur La Re’gulation du
Trafic, Trafic Ae’rien Versailles June 1970 pp 6A-31 to
6A-40

Associative Processor for Air Traffic Control 59

8 J A RUDOLPH et al
With associative memory, speed is no barrier
Electronics June 22.1970
9 N A BLAKE J C NELSON
A projection of future ATC data processing requirements
Proceedings of the IEEE March 1970

APPENDIX—DESCRIPTION OF AN
ASSOCIATIVE MEMORY

An associative memory (AM) is a device that com-
bines logic at each bit position along with storage
capacity. A n word AM with p bits per word can store
n binary words of p bits. In addition, certain logic
operations can be performed on the words stored in the
AM. In particular, search operations can be performed
simultaneously, over all words. These operations can
identify words in the memory that are related to the
externally supplied test word. For this reason AM’s
are sometimes referred to a content addressable mem-
ories (CAM). The types of operations that can be per-
formed are:

Fully parallel maskable equality search

Bit serial inequality searches

« Bit serial incrementation of fields

e Bit serial maximum (minimum) search (identifies
the maximum or minimum stored word)

A brief example is given to illustrate the use of an
associative memory. An eight-word associative memory,
with four three-bit fields, is shown in Figure 10. In
addition to the memory that stores the words, an AM
must have a search register for storage of the word to
be compared with the stored words, a mask register to
designate which of the bit positions of the search word
are to be included in the search operation, a results
register for storing the results of the search, and a word
select register to select the words to be searched over.
For the example, word seven has not been selected as
shown by the contents of the word select register in
Figure 10. In Figure 10, the contents of the mask regis-
ter show that only the first field of the search register
is to be included in the search. An equality search
operation in the above associative memory will result
in the simultaneous comparison of the contents of the

I 010 l 110 I 000 I 000 I

Data Register

I 111 l 000 l 000 I 000 Mask Register
WORD 1 110 111 101 110 J)_‘ F—]—
WORD 2 o011 111 101 110 0 1
MM
WORD 3 olio 110 101 111 1 1
— e
WORD 4 101 110 101 101 0 1
WORD 5 110 000 001 001 0 1
» WORD 6 o010 110 000 010 13 1
o e
WORD 7 010 110 010 110 0 0
— el
WORD 8 111 111 011 Y110 [1
FIELD 1 2 3 4 E
Search Wdrd
Results Select
Register Register

Figure 10—An associative memory

first field of the search register with the contents of the
corresponding field of all stored words. It can be noted
that only stored words three and six satisfy the search
and are therefore identified by 1’s in the results register
after the search. Word seven would have satisfied the
search; however, it was not in the set of words desig-
nated for performance of the search by the word select
register.

In many associative memory applications, such a
search operation would normally be followed by a read-
out operation (whereby the identified words are se-
quentially read out) or another search operation (in
which case the search results register would be trans-
ferred into the word select register). One notes that a
series of searches can be performed and the results
ANDed together if the results in the search results
register are used as new contents of the word select
register.

A multiple match resolver (MMR) is also an integral
part of the memory. This is indicated by the arrow in
Figure 10. The MMR indicates the “first match” in
the memory if there were any matches.

A computer aided traffic forecasting technique—The trans-

Hudson model

by EUGENE J. LESSIEU

The Port of New York Authority
New York, New York

INTRODUCTION

The transportation problems of the New York Metro-
politan region are many and diverse and there are
several major governmental agencies concerned with
and working towards solutions to these problems.
Among these problems is that of planning, providing
and maintaining transportation facilities across the
Hudson River between the states of New York and
New Jersey. Although the trips across the river con-
stitute only a small part of the total regional travel,
they amount to over one million trips a day.

Over the past years, the Port Authority has collected
and analyzed much data on the volume of traffic
crossing the river by all modes. It has also eonducted
origin and destination surveys to study many of the
characteristics of this trans-Hudson traffic. Through
the years, the region has grown, the data have become
more voluminous, and the analysis more complex. It
was becoming more difficult to do comprehensive
research and analysis with the data and it was ap-
parent that some sort of formalized information
system was necessary to research the trend changes
in the volume and the pattern changes in the O and
D.

The purpose of traffic research is primarily for fore-
casting. If one understands the reasons for traffic
changes as they occur, then one can more reliably pre-
dict future traffic changes based on these reasons.
Traffic may shift to a new facility because it makes
travel faster. Traffic may grow at one facility and not
at another because it is a lower cost facility, or because
rapid development is taking place in the market area
of one facility and none in the other.

With this in the background, the Port Authority
embarked on the development of a system of traffic
data handling that would be aimed at researching

61

traffic patterns and their influences, and forecasting
traffic based on this research program. Because of the
large amount of data available and complex research
techniques applicable only to computer solution, the
use of a high speed computer as a tool was mandatory.

REVIEW OF AVAILABLE TOOLS

There have been many urban transportation studies
in the past decade. Techniques have varied but in
most cases new methods are built upon old ones. When
the Port Authority decided to embark on the trans-
Hudson study, it was natural to review all existing
processes. It was discovered that the focus of most
other studies was generally to depict and forecast all
traffic patterns in an entire region with perhaps a
special focus on the Central Business Distriets (CBD).
With the Port Authority’s major focus being on only
the Hudson River Crossings, it was decided that much
of the theory and many of the techniques applied were
inappropriate for our problem.

There are many theories of movement; gravity model,
intervening opportunity, ete. Most of these however,
are strongest in describing the phenomenon that most
trips are short trips—as distances increase between
zones less trips occur. In the traffic that erosses the
river, there are few short trips. Most of the trips across
the river are major trips—not simply going down the-
street for a quick shopping trip (which by the way
makes up a considerable part of the region’s total
travel). The feeling was that if we were to isolate these
major trips from total trips we would have to have addi-
tional theories and a different system from that used
by others.

With regard to techniques, most of the other studies’
end product was a traffic assignment on each link

62 Spring Joint Computer Conference, 1971

(representing a transportation system segment) of a
multi-link network (sometimes thousands). With only
the few links that cross the Hudson River of interest
to us, many of the efficiencies of the existing techniques
would be wasted on our problem.

There was, however, one technique which we con-
sidered indispensable and that was the general net-
work tracing and least-path calculating process. There
were several programs available that used the Moore’s
algorithm or some adaptation thereof, that we could
count on using.

There was available in house a computer, magnetic
tapes containing all the trip data from our O and D
surveys, and the rudiments of a computerized data
bank. This bank had a data matrix of 180180 cells
with space for 50 pieces of information in each cell.
There were programs available to put the O and D
data and other data into the bank. There were programs
to modify the data once in the bank, and there were
programs to extract and manipulate the data so that
they could be fed into other standard analytical pro-
grams. We decided to use this data bank and modify
it to our needs.

Of equal importance to us was our finding that an
existing multiple regression program was available
that would accept our data in both size and format,
had the flexibility to manipulate the data easily and
produced printed results sufficient for analysis.

It seemed, then, that we had sufficient tools to put a
whole system together and that we could start, get
results, and improve the system as we went along.
Some interesting comments regarding this assumption
are related later in the paper.

DESIGN OF THE RESEARCH AND
FORECASTING SYSTEM

Knowing the tools available, the system was designed
around them. It was necessary, of course, to review
and organize the input data and to specify the output
requirements. Further demands on the system were
that there had to be a complementary flow of data
through the system for research and testing and fore-
casting, and the system should be designed to provide
for continuous use and change as later data become
available.

Our output requirements were specified, of course, by
the job we set out to do—forecast trips across the
Hudson River by facility. Exactly which process to
use to get down to the level of facility traffic forecasting
was considered in depth. Standard metropolitan
transportation studies had usually developed the

system by a three stage-process—(1) Trip generation
or interchange; (2) Modal split and (3) Traffic assign-
ment. Trip interchange concerns the total number of
person trips between zones. Modal split describes the
process of determining what share of the total trips
will be made by each mode. Traffic assignment is the
term used to describe which route or which specific
transportation facility will be used once the mode of
travel is chosen.

As mentioned earlier, we had collected a great deal
of origin-destination data on the various modes of
transportation across the river. After a long study of
trip data it was decided that, in order to get an ex-
plainable group of trips, the trips should be segregated
into several sets. First, peak period travel and off peak
travel were known to exhibit entirely different char-
acteristics particularly with regard to modal choice,
but also with regard to associating travel times and
costs to the trips since congestion is greater in the peak.
The second separation deemed necessary was a classi-
fication by residence, since trips from 4 to B would

Tappan Zee Bridge

! 35— Penn Station
'~ ! PATH Uptown

PATH Hudson Terminal
CNJ Ferry

Figure 1—Hudson River crossings

Computer Aided Traffic Forecasting Technique 63

have different modal choice and different trip gener-
ating characteristics depending on whether the home
based end were 4 or B.

To describe mode and facility classification of these
trips, a little geography of this region is necessary. The
map shows the river crossings available. There were
seven vehicular crossings: The Tappan Zee Bridge,
George Washington Bridge, Lincoln Tunnel, Holland
Tunnel and three Staten Island bridges. There were
three rail facilities: PATH downtown (to Hudson
Terminal), PATH uptown and the Pennsylvania Rail
tunnel. There were two railroad passenger ferries and
there were two locations where major flows of inter-
state buses occurred.

Because of space limitations in the data banks and
because analysis of the system revealed that specific
definition of some crossings was unnecessary for our
future forecasting requirements, it was decided to
collapse the crossings into the following mode and
facility groups:

Auto mode—Tappan Zee Bridge
George Washington Bridge
Lincoln Tunnel
Holland Tunnel
three Staten Island Bridges
Bus mode—P. A. Bus Terminal (at Lincoln Tunnel)
George Washington Bridge Bus Station
Rail mode—Penn Station
PATH downtown (Hudson Terminal)
PATH uptown
CNJ ferry

Traffic using the other ferry (Erie Lackawanna Rail
passenger ferry) was included with the PATH down-
town traffic because the two crossings were parallel and
served an identical market and it was known that the
ferry service was soon to be eliminated.

Up to now, we have eleven facilities within three
modes and four classifications of trips (Peak, Off-peak,
residence east, residence west). In order to get data to
explain why trips might be made over one facility or
another or one mode versus another, travel network
characteristics data had to be collected. The items of
data we felt would be important, could be collected,
and could be forecasted were travel time, travel cost
and number of transfers.

The trip interchange part of the forecasting problem
is probably the most difficult in deciding what informa-
tion is needed to study trip interchange characteristics
and attempt to forecast future trip volumes. Many
variables can be included in the study part of it in
developing relationships that explain differences in

trip making. But it must be remembered that only
those explanatory variables that themselves can be
forecast can be used to explain trips if one wishes to
forecast as well as explain. With these restrictions we
chose population, employment and area (so that
densities could be used) and some description of
proximity. It was the latter item that established the
basis for the construction of the master program that
ties together the entire forecasting system.

The data needed to cover the complete range of
studies and models planned had to be placed in a data
bank so that it was readily accessible for both develop-
ing the models and using them for forecasting. A data
bank is nothing more than an arrangement of informa-
tion stored (on tape) in some meaningful indexed form.
In the system developed, the index was geographical
zones.

The data bank programs that had already been de-
veloped had space for a 180X 180 zone classification,
but we used only part of this. We classified 100 zones
west of the Hudson as ‘7"’ zones and 80 zones east of
the river as “j”’ zones. The reference index then con-
tained 8,000 ¢—j cells that could be referenced by an
¢ —j number. A map of these zones is shown in Figure 2.

Within each of the cells we had space for 50 different
data items. With reference to the earlier desecription of
data it can be seen that we had eleven facilities and
four classifications of trips (residence east, residence
west, peak and off-peak). We also had time, cost and
transfer data for each of the facilities and population
and employment, and area data for each of the zones.

Summing these up:

5 auto facilities X2 network variables =10
6 transit facilities X3 network variables =18 .
11 facilities X trips for 2 residence classes =22

4 demographic variables =4
space for new facilities in forecast years =10
64

It can be seen that the 50 data item spaces of a single
bank were easily exceeded, and it was necessary to
devise a method to utilize more than one bank. Such a
method was developed which in essence, simply keyed
to the fact that a single bank was only critical when
using it as input to the forecasting system. In the model
development stages, separate banks could be used for
each of the models—assignment, modal split and trip
interchange. A listing of the data in the various banks
developed is shown in Figure 3.

Considering the data bank limitations and the fact
that peak and off-peak traffic differ in many respects,

64 Spring Joint Computer Conference, 1971

DETAIL OF MANHATTAN

Figure 2——Port Authority analysis zones

it was naturally decided to approach the peak and off-
peak as two separate and distinet efforts, and to fore-
cast each time period independently. A set of banks of
similar format but with entirely different data is used
for the off-peak. The only similarities between the
peak and off-peak is the process used and the demo-
graphic data.

From inspection of the data bank listing it can be
seen that the first Data Bank (1964 I) contains the
most fine grained data; facility network data and
facility trips. This bank is used for developing the
assignment model. A secondary Data Bank (1964 1I)
was developed (it could have been placed in the same
bank except for lack of space) by collapsing the facility
network data to mode network data through the con-
cept of weighted average of the facility network data
using the existing trips as the weighing factor. The
second bank also contains weighted average total net-
work data developed by a similar concept of using the
existing modal trips as weighing factors. This bank is
used for developing the modal split and trip inter-

change models and therefore also contains population,
employment, area data.

For testing the models a data bank similar to Data
Bank I is used since the fine grain facility detail is
necessary. Modal total trips are also in this bank
(1964 M) so that the assignment and modal split
models ean be tested on some existing base total.
Forecasting is done with a similar Bank (1985 M) which
contains estimated future network characteristics and
zone populations and employments.

The process is more fully explained under the dis-
cussion of the master program.

FLOW OF INFORMATION THROUGH THE
SYSTEM

Figure 4 shows how the basic data is gathered and
made use of within the system. The source data has
been discussed in general earlier.

Item # 19641 196411 1964M 19854

1 Atl (GWB) AAt Atl Atl

2 At2 (LT) AAc At2 At2

3 At3 (HT) AVE a At3 At3

4 At4 (SIB) AW e At Ath

5 At5 (TZB) ABt At5 At5

6 ABc At6 (new)
7 Acl (GWB) AVE a ACl ACl

8 Ac2 (LT) BWWe Ac2 AC2

9 Ac3 (HT) ARt Ac3 Ac3

10 Ac4 (SIB) ARc Ach Ach

11 Ac5 (TZB) RVE Ac5 AcS

12 AVl (GWB) RVW Acb (new)
13 AV2 (LT) Pi Pi Pi

14 AV3 (HT) Ei Ei Ei

15 AV4 (SIB) Area 1 Area i Area }
16 AV5 (TZB) Pi Pi

17 Btl (GWB) P} Btl Btl

18 Bt2 (PABT) Ej Bt2 Bt2

19 Bcl (GWB) Area j Bel Bel

20 Bc2 (PABT) Bc2 Ba2

21 BV1 (GWB) PC Ej Ej

22 BV2 (PABT) ABF Area j Area j
23 Rtl (P. Sta) ARF Rel Rtl

24 Rt2 (HT) R Rt2 Rt2

25 Rt3 (new)
26 Rt4 (PUP) , R4 Rt4

27 PC PC

28 Rt6 (CNJ) Rt6

29 Rcl (P. Sta) Rel Recl
30 Re2 (HT) Rc2 Rc2

31 Re3 (new)
32 Rc4 (PUP) Rch Rch

33

34 Rc6 (CNJ) Rc6

35 RV1 (P. Sta) AVEa reserved
36 RV2 (HT) AVWWe for
37 BVEa output
38 RV4 (PUP) BWWe

39 RVEa l

40 RV6 (CNJ) RWWe

41

42

43 BF1l (GWB) BF1 BF1
44 BF2 (PABT) BF2 BF2

45 RFl (P, Sta) RF1 RF1

46 RF2 (HT) : RF2 RF2
47 RF3 (new)
48 RF4 (PUP) RF4 RF4
49

50 RF6 (CNJ) RF6

A = auto t = travel time

B = bus ¢ = travel cost PC = parking cost
V = trip volume i = zones west of river
F = transfers = zones east of river
P = population Ea = residence east
E = employment We = residence west

R = rail
AA = avg. auto
AB = avg. bus
AR = avg. rail

Figure 3—Data bank formats

Computer Aided Traffic Forecasting Technique 65

The determination of the proper values to be placed
in the data bank merits some attention. Auto trip data
were taken from the continuous sample origin-destina-
tion surveys taken at the Port Authority’s facilities
and the Tappan Zee Bridge. Bus trip data were based
on origin-destination surveys taken at the two bus
terminals. Rail trip data, including the PATH system
were synthesized from a PATH origin-destination
survey, origin-destination surveys of those rail lines
involved in the Aldene Plan (Central Railroad of New
Jersey; Pennsylvania Railroad—Shore Branch), from
various railroad conductor counts, and from the Man-
hattan Journey-to-Work Surveys taken in 1961-1962.

For auto times and costs, it was necessary to build
peak and off-peak link and node networks. Travel time
for each facility was calculated along the minimum
time path with all of the other trans-Hudson facilities
removed from the system. Travel distances were found
by skimming over those paths. Costs were based on
over-the-road costs of 2.8¢ per passenger mile, plus
tolls and average parking costs. The 2.8¢ figure was
developed by an independent study and was based on
out-of-pocket vehicle costs divided by average vehicle
occupancy.

The bus and rail time, cost, and transfer matrices
were developed by adding rows and columns for what
might be called a common point network. Travel times
were determined from each zone west of the Hudson
to a Manhattan terminal (Penn Station for example).
Then travel times were determined from that terminal
to each zone east of the Hudson. The same was done
for costs and transfers. This depicted, quite naturally,
how a bus or rail trip is made, and it was necessary only
to add the rows and columns to determine the full 7—j
matrix of all time, cost, and transfer data.

Population, employment and area data were ex-
tracted and updated from Federal and State Census
Data.

It is interesting from an information handling aspect,
to describe some of the trials and tribulations of
manipulating the various pieces of input data from
their original form to a finally completed data bank.

First, a guiding decision was made in the develop-
ment stages that all attempts would be made to use
“in house” computer services. The Port Authority
had for internal use both an IBM 7070 and an IBM
360-40. A data bank had already been built for some
similar work using the 7070. We had also done some
earlier work on the auto networks using the Control
Data Corporation’s Tran-Plan Programs and some
further work using the Bureau of Public Roads Trans-
portation Planning programs run on an IBM 7094.

To make a long story short, we decided to utilize
as many of the existing programs as possible to build

SOURCE DATA

DATA

BANK

BUILD
PROGRAM

DATA
BAFK DATA
UPDATE BANK
PROGRAM

DATA EXTRACTED
EXTRACT DATA
PROGRAM

ADDITIONAL
DATA

MULTIPLE
REGRESSION
PROGRAM

MODELS

MASTER
PROGRAM

Figure 4—Model development process

the data bank. The auto network data was run on the
CDC 3600 and converted on the 3600 to input com-
patible for the 7070 programs. The bus and rail net-
work data was constructed from punch cards on the
IBM 7094 with the BPR program and converted to
the input format with that same CDC 3600 program.
The trip data was transferred to the desired input
format from its original state by an IBM 360 program
and converted to proper input format for the data
bank, with the IBM 7070. The population, employment
and area data was directly input to the bank from
punched cards.

The data extract program was written originally for
the 7070 and we used it in the early stages to extract
data compatible for input to a known regression pro-
gram run on an IBM 7094.

In the course of the work all new programs were
written for use on the IBM 360. Further, all the pro-
grams originally written for the 7070 were rewritten
for the IBM 360 and made more flexible in the process.
We also hunted up regression programs and altered

66 Spring Joint Computer Conierence, 1971

them for our needs, so that regressions too could be
run on the IBM 360. During the progress of the work,
the Port Authority in-house computer was changed
to an IBM 360-75 and all programs were modified where
necessary to operate on it.

As is the case with all information handling systems,
errors can be expected in processing data from one
stage to another. It is necessary then to have some
means of correcting the errors. A flexible data bank
update program was developed to accomplish this.
Since the amount of data in the bank is so large, the
program not only provides for correcting individual
pieces of data, but also provides for massive changes
with a few simple instructions. If, for example, it was
discovered that the bus travel time on the west side
of the river was five minutes too short from one zone
1t would mean that travel time from that zone to all
zones on the other side would be wrong. Correcting
this can be done with three punched cards. This up-
data program is also used extensively to create forecast
year network data and to change this data to describe
_many different alternate transportation systems for
study.

Once the data is in the data banks and verified as
correct, it is necessary to extract this data, in certain
pre-determined groups and in certain formats in order
to perform the regressions to develop the models. For
each of the models, the data is extracted in a different
form. '

For the assignment model, we used a rating system
for each of the facilities and a rating had to be calcu-
lated and placed on the extract tape along with the time,
cost and transfer difference for each of the facilities.
The modal split being done in two stages required two
separate extracts. Further, a classification system was
used in the Bus vs. Rail modal split and each class
required a separate data extract. The trip interchange
also used a classification system that required many
separate extracts to properly group the necessary data.

Since multiple regression programs vary greatly as
to their capacity and flexibility, it is necessary to
formulate the data in the extract stage so that it can
be easily used by the regression program. We have
used a number of regression programs, none of which
we can get to work on our own computers with the
fiexibility we would like. Both the extracting of data
and the preparation of the instruction to the regression
program are tedious jobs. They require rigorous at-
tention to detail. Ratios cannot be calculated by divid-
ing by zero; natural logs cannot be taken of negative
numbers, ete. :

Model development also is not a simple undertaking.
If a hypothesis is stated such that trips=k-+a popula-
tion+b employment+-¢ travel time, and the regression

shows that this is not a linear relationship then other
forms of the variables might be tried such as logs, ratios,
powers, ete. If this shows a poor fit then data might
be reclassified so that different groups will be included.
If this proves negative, then new variables have to be
sought to try to explain the variation in trips. The latter
approach also presents problems for, as explained
earlier, every explanatory variable used for forecasting
must be forecastable itself. This means that each
search for a new variable must be thorough to the
point of satisfying this condition.

A brief description of the models that have been
developed to date and the theory behind their develop-
ment is contained in the following section.

Assignment models

The assignment technique employed is based on the
concept that each crossing facility within a mode of
travel competes with all others for the trips to be
made within that mode between each origin-destina-
tion pair. While it is true that there is also competition
between modes, as well as between facilities within a
mode, considerable literature is in existence that indi-
cates there are different factors that govern choice of
mode. These factors might not easily be handled in an
allocation method that does not specifically identify
the mode. The technique considered for allocation
within mode does not necessarily identify the facility,
per se, in its concept.

The assignment model is based on a rating system
first introduced by Cherniack. The concept assumes
that the traveler compares the travel time, travel cost,
and, in the case of bus and rail, the numbers of transfers
for the alternatives he can choose from. In evaluating
the alternatives, the traveler perceives the fastest
facility and compares that time to the times of the
other facilities; he perceives the least expensive facility

~and compares that cost to the costs of the other facili-

ties; he perceives the most convenient alternative and
compares it to the others; or, more realistically, he
perceives some combination of all factors. He then
rates the alternate facilities and gives the highest
rating to the one that he perceives to have the best
combination of time, cost, and convenience and a lesser
rating to those he perceives to not have these advant-
ages. Conversely, if the use of each facility is based on
the cumulative rating of all users, then each facility
could be given a rating based on its traffic volume
compared with the traffic volume of all other competing
facilities. The facility with the highest volume gets the
highest rating and others, comparatively lower ratings.

Using multiple regression techniques the relationship

Computer Aided Traffic Forecasting Technique 67

between these three factors and the comparative usage
of the facilities was explored for each mode. The func-
tion considered can be expressed as follows:

R1=T1/TH=f (t1—ts, c1—cc, F1—Ff) where,
R1=rating of facility 1; the ratio of trips via facility
1, T'1, to trips via facility most heavily used, T'H.
t1=door to door travel time via facility 1,
ts=door to door travel time via the fastest facility
cl=travel cost via facility 1,
cc=travel cost via the least expensive facility,
Ff=number of transfers via the facility with the
fewest transfers,
F1=number of transfers via facility 1

The R value or rating will equal 1.0 if the facility
in question is the most heavily used and will be less
than 1.0 for all lesser used facilities. Also, the differ-
ences will equal zero if the facility in question is the
best for the particular transportation variable. The
ratings and the differences (to be known as At, Ac, AF,
for time, cost, and transfer differences, respectively)

PEAK COMBINED CBD & NON-CBD
1.00
s N
a > .
z N \‘{(
£ .50 \
«
3 x Y
.28 5 —] ~
—] 2 .
S R aste
t= 5 Ace
° - 535644t~ .072785C -1.91485
Ree
OFF - PEAK CBD
1.00, -
.78 \%
] \
Z
i 0 ~J
« e
e 3
25 K p .
R et
t=5) AC =10
e Rme 6950681~ .037724C-2.0518!
OFF ~PEAK NON~CBD
1.00,
A " \
0
[<]
z -
- -50
; \ , | \
< 3
.23 \\ =) —)
\ﬁk o2
al-s J R Leil
e 3 10 15 23 «] TES’; °
At (MINU
ac (CEN-I:),-Jusoav - 04991aC-1.27723

Figure 5—Auto assignment models

PEAK CBD

RATING

RATING
» [
[
e
<

~38563A1-.226734C -.78135
OFF-PEAK CBD

RATING
U
A

\‘.
N
J \ \
'-5\\ N

E 0 [L) 25 15
AC (CENTS) At (MINUTES)
Ree —-3239041-.091354C -.27458

10

Figure 6—Bus assignment models

are calculated for each facility within each origin-
destination pair for each mode. Thus, for the auto-
mobile allocation model, where five auto crossings are
considered, each origin-destination pair can theo-
retically contribute five data points. In this study, each
origin-destination pair contributed fewer since only
those facilities that were within twenty minutes of the
fastest were deemed worth considering. Needless to
say, few if any trips were found in that excluded
category.

When using the model to forecast facility usage, it is
not necessary to find the most heavily used facility.
The rating for each facility, being the dependent
variable, is determined by the time, cost, and transfer
differences. The share of the total traffic for each facility
is the ratio of its rating to the sum of all the ratings.
Graphs of the models are shown in Figures 5, 6 and 7.

Modal split models

Having studied many approaches to modal split as
well as having tried a few ourselves, it was decided to

68 Spring Joint Computer Conference, 1971

PEAK CBD (AF=0)

.50 Y

RATING

* Y- 3
2

~33947AT-.08083AC~1399AF -.02984
PEAK CBD [&D

AC:‘:i
2 %20

Co

ACa2

5 78
=.02964
t (MINUTES)
g A
z
: ,Jv\
«
o gs %

[
At (MINUTES]
Ree 25570141 - 2.8214

Figure 7—Rail assignment models

attempt to develop the modal split models in two
stages—first, would be a split between the two forms
of public transport, bus and rail; then a split between
public transport and auto. The reason this approach was
taken was that the motivations for using auto or public
transport seemed to us entirely different from a choice
between two different means of public transport. The
regression runs at least partially proved us correct.

The bus versus rail model was derived by regressions
using travel time, travel costs and number of transfers.
Early attempts at deriving meaningful models indicated
that- we were not explaining nearly enough of the
variation with just those variables. It was then decided
to investigate some sort of service index. Considering
the problems of forecasting an exact service index we
chose instead to classify areas according to a frequency
of service ratio. In that way, we could be reasonably
sure we could approximate this classification for fore-
casting purposes. The bus vs. rail models were subse-
quently grouped into four groups and modeled sepa-
rately. These groups were bus predominant, competi-

tive, rail predominant and PATH areas. Each zone was
classified into one of these groups based on the ratio of
service frequency of bus and rail. The latter group was
separated out because PATH was a rail service that
had a frequency of service more like a bus service, and
did not fit within the definition of the classification
index.

Trial runs of the early bus vs. rail models indicated
that certain zones on the trip destination end, particu-
larly The Manhattan CBD, were being systematically
over or under estimated. A search for reasons indicated
that the Lower Manhattan area—the focus of most of
the NJ rail service—exhibited entirely different char-
acteristies than the remainder of the CBD. When we
separated this area and ran separate models, the ex-
planation of the variation was much higher and con-
versely the reactions to the remaining variables were
much lower.

The following were the equations finally derived for
the bus versus rail modal split:

MODAL SPLIT MODELS
Bus vs. Rail

Bus zones—
B/B+R=.80+.00373 (ir —tb)+.337 (Cr—Cb)
(R=.55)
Competitive zones—
B/B+R=.231+4.0064 (tr —tb)+.522 (Cr—Cb)
(R=.41)

B/B+R=.436+.0139 (&r—tb)+.65 (Cr—Cb)

downtown

other CBD (R=.73)
Rail zones—
B/B+R=.261+.1705 (tr/tb)+.1868 (Cr/Cb)
downtown ' (R=.36)

B/B+R=.928+.745 (tr/tb)+.4829 (Cr/Cb)+.038
(Fr—Fb) (R=.65)

PATH zones—
B/B-+R=.220+.0055 (tr —tb)-+1.01 (Cr —Cb)+.097
(Fr—Fb) (R=.94)

B/B--R=ratio of bus trips to total transit trips

tr=rail travel time (minutes)
tb=bus travel time
Cr=rail travel cost (dollars)
Cb=Dus travel cost
Fr=number of rail transfers
Fb=number of bus transfers
R =multiple correlation coeflicient

Computer Aided Traffic Forecasting Technique 69

The second stage of the modal split process was the
auto versus public transit split. In the earliest attempts
at deriving this set of models, we had assumed that
since the percentage auto usage to the CBD was much
lower than to the remaining areas east of the river,
we would try to derive a separate model for the CBD.
The variables included in the trials were employment
density east of the river, population density west of
the river, travel time difference or ratios, travel cost
differences or ratios and parking costs.

The resultant regression equations explained very
little of the variation in the percent auto, however, the
analysis of the results compared to existing trip patterns
showed that where bus was the predominant public
transit mode, there was a larger percentage of auto
trips than where rail was the predominant transit mode.
This finding indieated that while the choice between
bus and rail might be a different one from the choice

B/B+R

bus time -rail time

Figure 8—Bus vs rail modal split CBD destinations

between auto and public transit, there also appears to
be a difference in the choice of auto versus bus and
auto versus rail. Rather than establish three sets of
equations (auto vs. bus, auto vs. rail and bus vs. rail),
which would have to be normalized to sum to 100 per-
cent, it was decided to try the percent bus of total
public transit as a variable in the auto vs. public transit
modal and still depict the difference in choice between
auto and the two public transit modes. When the per-
cent bus was entered as a variable, the regression
equation proved to be dominated by this variable, but
still did not explain enough of the variation in percent
auto in the CBD. Similar trials with non-CBD traffic
only had even less explanation.

Observation of the range of values of the inde-
pendent variables led us to discover that while the
range of values of many of the variables did not ex-
plain the large difference between percent auto to
CBD and to the non-CBD, two of the variables, em-
ployment density and parking cost, did seem to be
highly correlated with the percent auto if the CBD
and non-CBD trips were combined. A regression run
using all the observations showed a relatively high
degree of explanation. It did not seem to go far enough
towards explaining differences between percent auto
within the CBD and those within the non-CBD. In
order to correct this, the finding that the percent bus
variable was highly explanatory, in the CBD, was com-
bined with the general equation derived for both CBD
and non-CBD observations, and the model proved
reasonably successful in depicting the general pattern
of auto as a percent of total traffic.

The model as finally established was:

A/A+B+R=.65—.0911n (Ej/Aj) —.033 In (Pi/Aq)
—.0068 In (PC)+.1279 In (tp/ta)+.175 (B/B+R)
Multiple correlation coefficient =.76
Where Ej/Aj=Employment density of east of
Hudson zones
Pi/Ai=Population density of west of
Hudson zones
PC =Parking cost
tp/ta=ratio of transit travel time to auto
travel time
B/B+R=ratio of bus trips to total transit
trips.
In =natural log

A graph of the model is shown in Figure 9. It was
developed using the (Ej/Aj) variable as the basic
variable and shows the effect of the other variables as
they extend to their maximum value range. For ex-
ample, if a zone interchange were between a zone with

70 Spring Joint Computer Conference, 1971

CBD range of Ej /Aj

e
N
I
—t %
i
H ~
i ~—
L4, \J\~
o, N —
'../g'yé- .,
o247,
Py A0
\4'44- i
20 NSy <t htd
\\v Ling o [S ..
’\% 2! Y S (ks (S S
{ \lh.
Q‘, S —t— —
F—Qro,v e e -
PENSITY (5, - —
~ligni)
—
— -—‘s_‘“*
-:L
° 50 100 150 200 250 0 350 0

€i/Ai employment density (1000/3q. mi)

Figure 9—Auto vs public transit modal split

(Ej/Aj7) of 300,000 jobs per square mile and one of
the highest (Pi/A%) zones it would have 13—11=2
percent auto. Including the remaining variables would
drop it below 0 percent if it had the highest parking
cost, raise it back up by 4 percent if it had a high
(tp/ta) ratio and raise it an additional 17.5 percent if
all the transit trips were by bus. That zonal interchange
would then be predicted to have about 20 percent of
its trips by auto.

Also shown on the graph is the range of values for
(Ej/Aj). 1t can be seen why that variable explains so
well the percent auto since the CBD employment
density is so much higher than that of the other areas.

Trip interchange models

In this model we were attempting to develop relation-
ships that describe total trips between a zone on one
side of the river and a zone on the other side. Previous
studies in this subject have concentrated more on a
concept of trip generation and trip attraction where
the trips from the sending zones are estimated sepa-
rately from the trips to the receiving zones and then a
balancing of trip interchanges is made. This process

lends itself to a gravity concept that postulates that
trips are generated by population, attracted by em-
ployment and vary by some function of the distance
between zones. The function is usually a decay function
and short trips predominate in the model desecription
of trip patterns—which is quite true to life.

The trans-Hudson trip market is only a very small
portion of all trips taken in the region and it is a portion
that includes mostly longer trips, Therefore for our
approach we tried to go directly to trip interchange
and we developed a method that is based on segregation
of geographic areas on each side of the river that, by
earlier study, exhibited different trip patterns.

The general theory behind this approach to trip
interchange is that communities change as they age,
and there are several directions of change that they
can take. This can best be explained by discussing the
types of areas we used for our classification systems.
There were 5 separate area types west of the Hudson;
(2) urban core: old densely developed areas near the
river, (4) urban self-sufficient: also older areas but
further from the river with more or less their own eco-
nomic base, (6) stable suburban: old areas originally
developed as bedroom communities with little economic
base of their own, (5) mid-suburban: newer areas fast-
growing in the recent years with a mixed orientation,
(1) emerging suburban: sparcely settled areas now with
growth expected in the future. Further, there were 3
separate area types east of the Hudson: (3) Manhattan
CBD, (7) urban areas—includes most other New York
City zones, (8) suburban areas—New York suburban
counties.

From our past studies it has been shown that each
of these interchange groups exhibited different char-
acteristics as to trips interchanged with zones on the
other side of the river as well as different socio-economic
and demographic characteristics.

Further analysis of the characteristics of these areas
indicated that they could be classified into separate
groups by study of economic and demographic data
relating to each of the zones. The classification of these
areas is presently done with a non-rigorous method of
observation, but we have just begun using the statistical
technique of descriminant analysis for a more precise
classification system and it seems to be working well.
It has proved our original classification to be accurate
in most cases and has given us further insight to trouble-
some zones.

While the models we have developed so far still have
many shortcomings, they appear to verify the general
theory and the variables used are logical ones. It can
be seen from the list of equations that are now being
used that the effect of the predominant trip-producing
variable (population) varies considerably between area

Computer Aided Traffic Forecasting Technique 71

type groupings. Further the gravity theory of trips
varying with distance between zones (represented by
travel time) is maintained with the inclusion of the
time variable. The CBD models are shown in a graph
form in Figure 10. The scales of the graphs should be
noted since the lines plotted indicate the range of the
population and trips within each of the area types. The
slope of the lines indicates the effect of population on
-trips and the brackets at the end of each line indicate
the range of the effect of employment on trips. It can
be seen that Area Type 4 zones produce a small amount
of trips per capita and do not react very much to em-
ployment attractions on the east side of the river.
These are the “self contained areas.” Area Type 6
zones, on the other hand, have higher trips per capita

Table I—Trip Interchange Models

CBD Zones
Area Types
2-3 Tij=—12542.36 Pi+3.16 Ej— .487 tij (R=.65)
4-3 Tij=+54.307 Pi+.514 Ej—.059 tij R=.71)
5-3 Tij=—159+44.3 In Pi4.596 Ej—.059 tij—~25 (R=.71)
(Ei/Pi)
6-3 Tij=—60+.197 Pi-+1.509 Ej —.131 tij (R=.75)
1-3 Tij=—3+.682 Pi-}.338 Ej —.037 tij (R=.69)
Non CBD Zones
2-7 Tij=-10.4+.124 Pi+.108 Ej+1.12 (R=.66)
(Ej/Aj)

4-7 Tij=5.0+.118 Pi+.076 Ej+.48 (Ej/Aj) (R=.74)
— 028 Atij

1-7 Tij=19146.66 In Pi+3.60 Ln Ej—0.50 R=.74)

In (Ej/Aj)—33.57 In Atij
5-7 Tij=167+8.79 In Pi+7.93 In (Ej/Aj)—3.59 (R=.69)
In (Ei/Ai)—32.9 In Atij

6-7 Tij=250+13.24 In Pi+8.17 In (Ej/Aj) (R=.76)
—48.2 In Atij

2-8 Tij=33+4.22 In Pi—6.5 In tij (R=.46)

4-8 Tij=15-+3.82 In Pi+1.25 In Ej+1.87 (R=.58)
In (Ej/Aj) —4.74 In tij

1-8 Tij=13+1.9 In Pi+.4 In Ej—2.66 In tij (R=.44)

58 Tij=67—6.11 In (Ei/Ai)+7.53 In (Ej/Pj) (R =.60)
—82 In tij

6-8 Tij=2.3+16.2 In Pi+11.2 In (Pi/Ai)+30.7 (R=.63)

In (Ej/Pj)—6.4 In tij

Tij =total trips between i zone and j zone
Pi=population (000) in i zone
Ei=employment (000) in i zone
Ai=area (square miles) of i zone
Pj =population (000) in j zone
Ej =employment (000) in j zone
Aj=Area (square miles) of j zone
tij =weighted average travel time from i to j

Atij =weighted average auto time from i to j
In =natural logarithm
R =multiple correlation coefficient

. : \ Max Ej
TRIP INTERCHANGE MODELS
AREA TYPES 1,5,6 TO CBD

- e

2 /’y 55—
100 a’—"ﬁ;ﬂs—‘— g’} Min Ef

20

trips i~j

Avg Ej

40 60
population i (,000's)

TRIP INTERCHANGE MODES
AREA TYPES 2,4TO CBD

e
)

:& 00 —
= 0
205
7
/ “MinEj

‘ ~ory / .

4/ AREATYPE4 }

.

° 50 00 50 %0 250 300 0

Ppopulation i (.000's)

Figure 10-—Trip interchange models

and much higher attraction to employment. These are
the stable suburban, or bedroom communities. The
highest trip producers are the Area Type 2 zones which
are closest to the river. The trip values for the graphs
were calculated using the average travel time for each
area type.

Improvements in the models are currently being
sought through investigations of additional explanatory
variables such as competitive employment opportuni-
ties on the same side of the river and employment
classification. Further investigations are also being
made with different forms of the dependent variable.

With models being developed for the purpose of
forecasting, some method must be utilized to judge
their foreeasting quality. One method is to carefully
inspect the way that the models perform in reproducing
the basic traffic patterns from which they were de-
veloped. The process we developed for this is best
described by discussing the master program.

72 Spring Joint Computer Conference, 1971

@,

CALCULATE
RATINGS FOR
EACH FACILITY | (ASSIGNMENT MODELS)Y
CALCULATE
% RATINGS

®
& - CALCUIATE C (MODAL SPLIT MODELS) G)
CALCULATE
AVERAGE TIME
FA(;I:SI‘L? Ys v:;.sl.:qgs A, B, R CALCULATE | CALCULATE CALCULATE
USING EXISTING AVERAGE COST % BUS AVERAGE % Ago
MODE VOLUMES A, B, R % RAIL TIME, COST, TSF % B
EAST & WEST AVERAGE TRANSFER PUBLIC TRANS. % RAIL
B, R

PRINT
BY FACILITY

USING EXISTING
TOTAL VOLUMES
EAST, WEST

CALCULATE ®
TOTAL VOLUMES § (TRIP INTERCHANGE MODELS)
EAST, WEST
PRINT
BY MODE
CALCULATE

MODE VOLUMES

EAST, WEST
USING CALCULATED
TOTAL VOLUMES

EAST, WEST

CALCULATE SUMS
AND AVERAGES
TIME, COST, TRANSFERS
BY FACILITY & MODE

*glow
PUT TRIPS BY
Trans MODE EAST,
E cal WEST INTO
Relationships DATA BANK
Having
Origins

Destinations

Figure 11—Trans-Hudson model—Motherhood Program

MASTER DATA PROGRAM—“MOTHERHOOD”’

A system designed for forecasting must have some
method of utilizing the developed models to produce a
listing of the forecasted trips in the desired detail. The
design of the forecasting program was, of course, con-
trolled by the concept of the entire system.

The program developed has been named “Mother-
hood.” This is an acronym representing ‘“Model of
of Trans-Hudson Emperical Relationships Having
Origins or Destinations.” It was dreamed up for us by
one of those fellows who has nothing better to do with
his spare time other than dream up acronyms. It has
done well by us since who, in the long run, can criticize
Motherhood. It has also created some interesting dia-
logue with the programmers who run the system, since
many of them are young girls.

Figure 11 is a block diagram of the information flow
in the ‘“Motherhood” program. It is indexed by the
numbers in circles for easy reference.

The program is designed to accommodate each of
the several model stages (assignment, modal split and
trip interchange) separately or combined. The thread
of continuity in the combined operation is the network
data. The program takes the basic facility network data
from the data banks, uses it for the assignment model
and then reduces the facility data to mode and total
travel data for the modal split and trip interchange
models in much the same fashion as was done to build
Data Bank II for development of the models.

Starting with the input in the data bank where travel
times and costs are referenced to a specific facility the
program calculates (box 2) the percent of each mode’s
total traffic that will be assigned to each facility within
that mode. A separate equation (model) is used to
calculate the percentages within each mode. The pro-
gram ‘then uses these percentages to calculate (box 5)
the weighted average time and cost of each mode. It is
these mode averages that are then considered as input
to the modal split models. The modal split models (box
6) operate in two stages. First, the percent split be-
tween bus and rail is calculated from a model (or set of
models) then the weighted average time and cost of
public transport is calculated and a percent split is
calculated between publie transport and auto. The last
step is then to calculate a single weighted average time
and cost (box 9) so that it can be used as input to the
trip interchange model (box 10). It can be seen that
the eleven times and costs in the data bank (one for
each of the facilities) are now transferred to a single
time and cost (representing a weighted average of all
facilities) by flow through the program. The trip inter-
change model using this averaged value of time or cost
then calculates total trips between zones. The program,
having previously calculated and saved the percent
split value on modes and facilities, simply uses these

.....

PROGRA® Al6es019

“wzmm
zowoe

..
A)
v 1
1 [
" 1
3 [}

s

:
FraaRve H
'
H H
wzomarzmsan § :
..

SUSROUTINES USER
WAIN PRINT BRINTL BOXZ AMXE BOXLO THIS -4 BUM IS A COMPLETE REPORT WITH FAC AND W8 PRINT OUTS.
COMP MBAS CFAS BSR2 1 RSMS 2 ASAT 2 RESULTS ARE BASFO ON 6 AUTD, 2 BUS AND 3 RAIL FACILETIES.

A5 PEAK RASE TO (PRR o 1WIN) YSAPTI2, #386T14, ASALOTL] VAP WO.5332 9/11/70

Figure 12—Print out example

Computer Aided Traffic Forecasting Technique 73

JOB Al164 JO19 FACILITY VOLUMES F +« W FOR OPTION 1 85 comp 8582 1 8586 2 8S8T 2
85 PEAK BASE T9 (PRR + IMIN) 8582T12, B85R6T14, 85810711 TAPE NO.5332 9/11/70
1 J ALl MDOFS AUTO 8usS - - RAIL
GR. TOT TvOT GwWB LT HT Ste T2 NEW 10T GWBS PABT Tov PRR HTR PUPR
a1 1 174 62 60 [} o 0 0 2 29 27 2 0 83 [a2 [0o]
81 2 ane 113 110] 1} o L] 3 50 46 3 o 143 [} 139 3 [} [}
a1 3 32 17 16 1] 0 0 0 1 9 8 1 0 6 0 L] 2 0]
a1 4 22 13 11 n (] [J [J 2 5 4 1 o 4 0 3 1 [0
LAl s 34 19 18] o [} 0 1 8 7 1 o 7]] 7 0]
A1 6 27 7 13] L] 0 0 4 6 5 [} [} 4 (] o L3] [}
A1 7 76 45 “2 1 L] 0 0 1 16 13 1 0 17 0 [} 17 0 [}
Al [57 37 28 o L] [} o 8 10 9 2 4] 10 o [10]]
LA} 9 89 45 41 1 L] 0 0 1 20 17 3 0 24 1] o 24 0 2
LA] 60 34 26 (] o 0 [} 7 13 11 2 [12 [} o 12 () L]
a1 1y /0 42 3e 3 o [[J 1 23 21 2 Q 15 4]] 15 [} [
ar 12 5 35 26 1 n 0 0 7 22 18 4 0 19 0 0 19 (4] 0
/1 13 64 31 26 3 n 0 0 1 21 15 6 [12 o] 12 [[
N 16 63 33 24 1 [\ [0 7 18 15 3 o 12 [} 0 12 [}]
A1 15 118 61 55 3 n [[2 58 46 12 /] 0o 0 [} 1] 0 [}
a1 16 106 5S4 %2 1 o [n 12 4«9 39 10 o 4 o 0 2 o 0
a“ 17 122 ™ 67 n 0 [0 2 52 47 S 0 0o o] 0] [}
118 142 69 52 1 o c o 15 68 58 10 o H 0 1 L 0o o
:: ;: :;; :; ': 4] L} o 0 3 70 58 1 o 0] o (] 0 L]
L /] 0 [J [J
A ToTAL 15 57 52 5 n 3 o 4 3 [} 0
2n 1924 %5 832 17 0 o] 0 %6 600 526 T4]

a1 2y s 16 74 n 0 [n 2 39 39 [J] 0 3718) g 23: l‘; g g
Rl 22 9% 65 S5t n L] 0 0 14 29 29 o 0 o] 4]] o [}
RY 23 11 78 5 a2 n L 0 L) 33 33 0 0 0 () 0 [} 0 0
21 24 1ne al 67 [n [[14 27 27 L]] 0 (] [0] [}
/1 25 120 a2 89 o n o o 3 27 27 [} o [J /] o [} 0 o
/1 26 oo 79 5% 0 4] 0 0 21 20 20 [} (] [} 0]] o []
Rt 27 1mnr 913 T4 L] n ° o 19 25 25 1] V] 0 0 [} 0 o 0
"1 28 ae r3 30 o n 1]] 53 13 13 0 o o [} L] 0] 0
a1 29 111 e9 2 bl n [} 0 97 12 12 [} [o] o 0 0 [} o]
A1 In 100 a3 o n 0 [0 93 7 7 0 o [} o o [} (] o
LIS | 87 53 20 n o 0 [35 2 2 [} 0 0 0 0 4] o]
a1 32 569 569] L n 0 0 569 0 0 [[} 0 0o o 0 1] o
A1 33 1003 1nn3 o 0 [J (] 403 600 0 [} 0] L] o (] 1] [} 0o
AU 34 383 ELE) 1] n] 0 . &8 335 n 0 [o o o 0 (] o [}
a1 35 13 L] 0 n n 0 [131 L] 0] o 0o () 0 [} o 0
21 36 136 136 o n n o n 136 o [L] o 0 -0 o o L]]
Al 37 341 341 L] n n © 0 341 0 0 (1] [4] 0 0 0 0o 0 o
81 3n L] & 4 a [o 0 2 2 2 0 o] 0 (4]]] [4] o
°1 139 ? 1 1 n n 0 0 1 1 1 o 4] 0] [+] 1]] o
Rl &40 16 12 ° 9 n [} n 3 3 3 [J o 1 0 [} [} (] 0
LR BY | 4 3 2 n [} (U 0 1 1 1 [} 0o 0 0 0 0 o 0
Pl 42 1 1 L n n] o [} 1 1 [} [} 0 [}]] 0 1]
1 43 17 13 9 n L o L] & 3 3 0 o 1 [1 [}] 0
fl &4 12 9 2 n n ¢ 0 7 2 2 o L] 1 0 1 0 [} [
Rl 45 16 12 3 LN o 0 0 10 3 2 o 0o 1 [} o 1] o 1]
21 46 32 2¢ 15 2 n ¢ 0 5 9 9 0 o 3 0 3 [} o [
/1 &7 26 19 14 L] 0 ¢ 0o] 7 7 [J 0 1 0 o [} [} 0o
at 48 33 24 17 n 1] [] 7 9 8 1 0 1 0 0 1 9 [
81 40 21 18 13 (1] 0 4]] 5 4 “ 0 0 0 o] [} [} [
Rl 50 22 19 1 0 o o [J 18 3 3 0 0 0 0 0 V]]]
L 1 | 16 15 (4] 9 o 0 0 14 1 1 0 0 0 o 1] o [} [

Figure 13—Print out example

percentages to distribute the total trip volume into
trip volumes by mode and facility.

You can note also on the diagram that there are
optional routes through the program. These are for
model testing purposes so that each of the models can
be tested and calibrated separately. A test of the assign-
ment model ean be made by running the program with
option 1 on (box 3) where we can take the given number
of trips on each mode and simply assign them to facili-
ties. In order to test the modal split model, the program
must have both the assignment model and the modal
split models in so that the weighted averages of the
times and costs can be made to input data in the modal
split models. And lastly, a test of the trip interchange
model must be made with all three models (box 2, box
6 and box 10) in the program, so that the average times

and costs can be calculated by the two previous models
as input to the trip interchange model.

There are several print options in the program. The
major option is a facility print or mode print where
residence east trips and residence west trips are sepa-
rated (see Figures 12, 13 and 14). These options are
used so that the analyst may review the forecast in
the manner most appropriate to his investigation. The
residence split being most important in the trip inter-
change review and the facility print most important in
the assignment and in the review of performance of the
overall system.

Additional print options are available that collapse
and sum the trip forecasts. The basic print isin an ¢ —j
format, i.e., each cell is printed. One summation is by
county groups, another sum is by rail corridor groups

74 Spring Joint Computer Conference, 1971
JOR AL64 J019 MODE VOLUMES EAST AND WEST FOR OPTION 2 85 camp 8582 1 8586 2 8587 2
85 PEAK BASE T9 (PRR + IMIN) B5827T12, 8586714, 85810T11 TFAPE NO.5332 9/11/70
1 3 AUTD BUS RAIL
6P, TOT mny. F TNT. W TOTAL EAST WEST TOTAL EAST WEST TOTAL EAST WEST
Rl 1 174 ? 172 62 1 61 .29 1 28 a3 (4] 83
a1 2 306 2 304 113 1 113 50 1 49 143 (1] 143
L3 1 3 32 ? 30 17 1 16 9 1 8] 0 6
A L3 22 2 2" 13 1 13 5 1 4 4 [} 4
L3 5 a4 2 32 19 1 18 8 1 7 7 o 7
1 6 27 2 25 17 1 16 6 1 5 4 0 4
f1 7 76 2 T4 45 1 44 14 1 13 17 0 17
81 R 57 2 56 37 1 36 10 1 10 10 [\] 10
a1 9 r9 2 a7 45 1 44 20 1 19 24 (] 24
L3 S L &0 ? 58 34 1 33 13 1 12 12 1] 12
Rl 11 fn 2 78 42 1 41 23 1 22 15 0 15
Y 12 75 .2 73 35 1 34 22 1 21 19 1] 19
/1 13 64 2 62 31 1 30 21 1 20 12 1] 12
R, 14 &3 2 61 33 1 32 18 1 17 12 0 12
QW 15 118 2 11s 61 1 60 58 1 57)] 0 (4]
ar 16 106 2 104 54 1 53 49 1 48 2 [J] 2
Y17 122 ? 120 70 1 69 52 1 51 (4] 0 o
21 18 142 2 140 69 1 68 68 1 67 S [V] 5
RY 19 155 2 153 R6 1 85 10 1 68 0 (1] 3
Ay 20 123 2 121 63 1 62 57 1 56 3 0 3
S TOTAL
2n 1024 a8 1885 945 18 927 600 20 580 3718 0 3718
81 21 115 4 111 16 2 T4 39 2 37 1] [+]]
Rl 22 % 3 a 65 1 63 29 2 27 o (] [+]
a1 23 mi 4 107 78 2 16 33 2 31 o o 4]
Al 24 108 3 1ns eL t LD} 27 2 25 0 o [+]
R 25 12n 4 116 92 2 90 27 2 26 (] o 0
ar 2?6 qa 2 %6 79 1 78 20 1 18 (] [\] 0
| 27 117 4 113 93 2 91 25 2 23] [} [
8t 2e ak 3 9% a3 1 82 13 1 12 1] o o
]1 29 1 ? 108 99 1 98 12 1 10 o]]]
A1 2an 100 2 98 93 1 92 7 1 3 [[} [+]
Rl 31 57 ? 55 55 1 54 2 1 1 4] 0 [+]
81 32 569 1 568 569 1 568 0 0 0 0 V] 4]
ay 33 1003 1 1002 1003 1 1002 [} (V] (/] 0 0 4]
2] 34 381 1 382 3e3 1 382 V]] (4]] 0 0
"y 35 131 2 129 131 2 129 o 14 /]] o ()
R1 136 136 2 134 136 2 134 (4] [+] [\]] 1] (4]
RY 137 361 1 340 341 1 349 0 0 1] [+] 4] V]
81 3r R 2 6 6 1 5 2 1 1] 0 [}
Y 139 ? 1 1 1 1 1 1 1 [1]] (4] V]
LASEE 1] 16 2 14 12 1 11 3 1 2 1 [} 1
Al &1 4 2 2 3 1 2 1 1 [\] (1]]]
L2 B ¥4 1 1 0 1 t 0 1 1 [\] 0 [+] o
At 43 17 2 15 13 1 12 3 1 2 1 1] 1
R 44 12 2 10 9 1 B 2 1 1 1] 1
/Y 45 16 3 13 12 1 11 3 1 1 1] 1
Rl 46 32 1 31 2n 1 20 9 1 8 3 1] 3
R1 47 26 3 23 19 2 17 7 2 5 1 o 1
81 48 33 3 31 24 1 22 9 1 7 1 o 1
RY 49 21 2 19 18 1 17 4 1 3 o] [+]
81 S0 22 ? 19 19 1 18 3 1 2 o] 1]
a1 51 16 2 14 15 1 14 1 1 0 L] [\] [+]

Figure 14—Print out example

and the last sum is by area type groups. An additional
feature is built into the program that converts auto
passenger trips to auto trips so that analysis can be
made on a vehicular basis.

Another feature of the master program is that it can
be used to read and print out the data within any of
the data banks. This is a necessary procedure when one
considers the massive amount of data in the banks and
the necessity of maintaining accuracy when changes
are made.

Perhaps the most important feature of the master
program is that the model sections (boxes 2, 6 and 10)
are completely flexible. They are branches within the
master program and ean be changed simply by re-
writing the FORTRAN statements within each branch.
This allows the user to change the entire model or

parts of it. It allows us to use the master program for
the peak and off-peak models with equal ease simply by
replacing the model sections of the program. Of great
importance is the fact that this master program can be
used to test models developed at a later time based on
some new data and new research.

CURRENT USE OF THE SYSTEM

The peak period models have already been developed
to a point where we think they can be used for fore-
casting. The basic models were derived from 1964 data
and they were tested by running them through the
“Motherhood” program. Because a multiple regression
program does not provide one with a perfect fit of the

Computer Aided Traffic Forecasting Technique 75

data, the test runs provide for analysis of the output.
These analyses point to areas where additional vari-
ables could be used, where network errors might have
been made, and where certain phenomenon simply can-
not be explained adequately. Correcting for these items
is called calibration.

The 1964 models were calibrated in several stages.
First, the assignment models were run and calibrated.
Then the assignment models were used along with trial
modal split models and the two stage runs were cali-
brated. Finally, the calibrated assignment and modal
split models were run with the trip interchange models
in the full three stage run. This way, the entire set of
models could be considered calibrated to reproduce the
1964 data in the same procss that the 1985 forecast
runs would be made.

Many data summaries were made to make sure that
traflic patterns derived from the models were reasonably
in line with those found in the original trip data. Areas
that were checked were those where specific transporta-
tion improvements were to be made or where alternate
systems were to be tested. The following table shows
some of the calibrated data summaries made on the 1964
trial runs.

For the forecast year 1985 an initial transportation
network had to be constructed. The network data was
derived by an analysis of the plans and programs of all
the transportation agencies in the region. The time, cost
and transfer effect of new or improved facilities that
would be in place and operating by 1985 were coded
into the networks to depict a base network. These in-

TABLE IT—1964 Peak Period Trans-Hudson Model Calibration

Facility Comparisons
Assignment
Assignment Modal Split
and Modal and Trip
Assignment Split Interchange
Actual Model Only Models Models
Grand Total 159 438 159 398 159 394 158 659
Auto 45 909 45 909 46 199 46 230
GWB 23 560 23 675 22 847 23 091
LT 11 159 11 677 12 618 12 466
HT 3 214 3 269 3 474 3 586
SIB 2 770 2 540 2 534 2 672
TZ 5 205 4 749 4 726 4 416
Bus 58 845 58 833 58 142 57 195
GWB 11 268 10 270 10 860 10 765
PABT 47 577 48 563 47 282 46 430
Rail 54 684 54 658 55 056 55 235
PS 7 593 7 449 7 543 7 504
HT 26 060 25 652 25 282 25 199
PUP 13 153 12 885 13 521 13 954

CNJ 7 878 8 671 8 712 8 578

cluded new highways, improved rail service and some
improved bus service resulting from new highways.

Additional data necessary to run a 1985 trial forecast
was the forecasted independent variable data—popula-
tion, employment, area types for the trip interchange
model, and service classification for the rail vs. bus part
of the modal split model.

Trial forecasts for a basic assumed transportation
system have been run and are being analyzed. Several
alternate systems have also been coded into the network
and run and we are analyzing the reaction to the changes
caused by the various alternates. Further work in this
area includes reassessing the 1985 population and em-
ployment forecasts based on later census data.

The off-peak models based on 1964 data are still
under development. Because off-peak traffic exhibits a
great amount of variation, it is difficult to “‘zero in” on
what causes the variation. First, the market is split,
being part work oriented travel and part non-work.
Another problem is that 21 hours of traffic are included
in the data some hours of which may differ from others.
Still another is that public transport usage is extremely
variegated in this off-peak market perhaps being in-
fluenced by income in some areas or by entertainment
centers in other areas, ete. Unfortunately, few of these
types of influences can be aceurately forecast.

While we are working on the off peak models, we con-
tinue to search for more usable explanatory variables
for the peak models. In this assignment model, we had
difficulty duplicating representative patterns for users
of the two bus terminals and we are working on a
variable that will attempt to define more clearly the
difference in access to the different bus routes on the
New Jersey side. This same variable and one like it for
access to the rail service might help explain more of
the variation in the bus vs. rail Modal Split models.
We are also experimenting with variables that might
better describe the differences in distribution on the
New York side, particularly in the CBD. We are now
using travel time, cost and number of transfers involved
in the entire trip, and it seems as though these variables
do not focus strongly enough on the attractiveness of a
trip that requires no additional mode for distribution
from the terminal to the final destination.

In the trip interchange model we are currently using
total trips as the dependent variable but we are trying
other forms such as trips per capita. We are also intro-
ducing new variables such as competing employment
opportunities within 20 minutes of the origin zone and
managerial and professional employment. We must be
careful with the latter since it may be difficult to
forecast.

Earlier in the paper it was stated that one of the aims
of the system was to allow for updating and using new

76 Spring Joint Computer Conference, 1971

data. In meeting this requirement, we are now building
a new data bank to represent the base year 1968.

The trip data for that year is available from numerous
O and D surveys. Auto data comes from the continuous
O and D sample and O and D surveys were taken that
year at the two bus terminals, on the Penn Central
Railroad and on the PATH system. Only minor adjust-
ments to the original trip data programs are necessary
to format these data for use in the model systems.

Population data for 1968 will be estimated from the
1970 census of population and employment data will be
extracted from continuous sources of employment data
available from New York and New Jersey State
agencies.

The travel time, costs, transfers and other network

variables will be updated from sources of permanent
records available such as service schedules, fare tariffs
and sample travel time runs. With the utility available
from the battery of programs that have been written
and from the design of the systems we now have a
capability long sought after in urban transportation
studies. We can update on a short time cycle so that
we can integrate time series analysis with the new fore-
casting system. We can now derive new models with a
1968 base and compare them with those derived from
the 1964 base. We can attempt to forecast 1968 from
the 1964 models and analyze the differences from actual
performance. With this technique we hope to have
greater insight to the causes of traffic pattern changes
both for short run analysis and long range forecasting.

Computer graphics for transportation problems*

by DAN COHEN and JOHN M. McQUILLAN

Harvard University
Cambridge, Massachusetts

INTRODUCTION

The central problem in designing transportation systems
and networks is determining the optimal control tech-
niques for given transportation facilities. For example,
it is essential to find the best strategy for handling the
traffic in a given airspace, in a given highway system,
or in a network of city streets. The other side of the
problem is to determine for given or predicted traffic
conditions, the optimal transportation facilities. Urban
planners must solve these problems when designing new
developments; similarly it is important to determine
how many airways and airports will be required to
handle the air traffic in the 80’s. From the answers to
such questions one can decide how to allocate funds,
for example, to improve the radar systems to allow
smaller separation or to put more navigation aids in
order to increase the number of airways.

- It is not just a mere coincidence that in many lan-
guages the word “see’” and “understand” are synonyms.
In many cases to see is to understand, and this is what
computer graphics is all about.

Computer graphics is used mainly as an interface
between the man and the machine. Problems which
inherently require display of output or have graphically
“oriented input are the clearest beneficiaries of computer
graphics. Graphical output gives the ability to display
arbitrary shapes quickly. Graphical input provides the
ability to define shapes and the ability to identify
things naturally by pointing to them. Transportation
systems are often best represented graphically. For
these reasons we have found that the application of
computer graphics techniques to the solution of trans-
portation problems is most fruitful.

In this paper we discuss the philosophy behind our
approach, and illustrate it with examples taken from

*This research was supported in part by ARPA Contract
F19628-68-C-0379.

77

specific programs. A ten minute film will be shown to
demonstrate the application of interactive computer
graphies for urban traffic problems.

COMPUTER APPROACHES FOR
TRANSPORTATION SYSTEMS

It is often the case that practical problems deal with
system behavior, rather than behavior of a single
particle or a single element. Describing and dealing
with systems is manyfold more complex than working
with a single element. Often one can describe very
precisely the exact mathematics which govern the be-
havior of a single element. However, it is very seldom
that one can find equations which describe a system
completely, and still be consistent with the behavior of
each of its elements.

Simulation of urban traffic, or air traffic, are examples
of this difficulty. One can describe very precisely the
motion of a single car or of a single airplane. If the
motion of the car is unrestricted, then its behavior is
simple to explain. When more than one element is
introduced into the system, the interaction between
them adds a new dimension to the problem. The com-
plexity of the interactions might grow as.the square of
the number of objects in the interaction. In general,
one can solve situations where few vehicles are involved.
However, any practical problem involves too many
objects for a human being to solve without a computer.

In many transportation problems, there is a system
of many particles moving concurrently in the same
space, obeying some interaction restrictions. These re-
strictions are usually in the form of separation criteria
(for ears, airplanes, ships, etc.), staying in some cor-
ridors (like highways, airways, ete.) sharing some navi-
gation facilities and so on. Such system problems lend
themselves very well to computer use. In order to solve
these transportation systems on a computer, one can

78 Spring Joint Computer Conference, 1971

use simulation techniques, rather than integrating equa-
tions into system-behavior. A computer can perform
the tedious job of simulation particle by particle and
make local decisions about each of the particles. In
some systems these decisions are based only on local
information, as observed by each particle. In other
systems these decisions may depend on global infor-
mation about the state of the system.

If the behavior of each individual particle is non-
deterministic and some distribution and probabilities
are involved in the description of each particle, then
the behavior of the entire system is non-deterministie;
in order to simulate it properly one has to simulate the
distributions. These non-deterministic simulations have
to be repeated many times in order to average the
behavior and the distribution to get meaningful results.
Clearly, it is appropriate to use a computer for such
simulations.

Computer graphies lends itself very well to this kind
of simulation. After every updating cycle, one can
display the state of the system. For example, if one
simulates the air traffic in a given space based on some
known rules, one would like to observe the dynamics of
the system changes. The visual display of this infor-
mation, at a rate meaningful for the viewer, might
introduce new understanding of the behavior of the
system. In the case of traffic simulation, whether it is
urban traffic or air traffic, one can learn a great deal
by viewing the intermediate steps through which the
system is going.

For example, one might observe that due to some
latency in traffic lights, some cars happen to jam an
intersection, which in turn might cause a total break-
down of the traffic flow. If the conditions of cause and
effect are not known in advance, global measures are
not enough to explain this kind of behavior. The only
way to understand the system is by viewing it, and
recognizing its behavior patterns. These patterns, which
are not known before they are observed, rely very
highly on the intelligence of the human being and his
ability to recognize patterns. If the behavior patterns
are already known, one might assign the computer to
look for them, measure them, and report them. This
can be done off-line (batch processing, for example)
and interactive graphics is not needed for it. However,
in many cases the internal behavior patterns are not
known and one has no idea what to look for, and
cannot assign the computer to search for and measure
them. The dynamic graphic simulation allows one to
see and recognize behavior patterns which he never
expected to find, and wateh them develop. This recog-
nition leads to an improved understanding of the
system.

INTERACTIVE COMPUTER GRAPHICS FOR
SIMULATION PROBLEMS

Under many circumstances, the best use of a com-
puter simulation is an interactive one. There may be
s0 many variables that the only way to understand
their interdependence is to study the problem in real-
time simulation, seeing how it is affected by various
changes. There may be such uncertainty in the model
itself that the parameters should be altered as the
simulation proceeds. Using this approach, one can
quickly gain a good understanding of the model’s
strengths and weaknesses, its suitability to certain situ-
ations, and its sensitivity to incremental changes of
many kinds. Such an intuitive appraisal of a model is
frequently more valuable than extensive numerical
evaluations. The conditions of a smoothly flowing
dialogue are decidedly more conducive to thought than
the use of a computer merely as a calculating machine.

We felt that an interactive system would be desirable
in view of the nature of problems in traffic flow. They
are infinite in variety, yet they can be formulated
intuitively. We have daily experience with many of
these problems, and we know how traffic behaves
under many conditions. Since these perceptions are
often difficult to include in a precise model, it is to our
advantage to exercise a model in an interactive way,
and supply it with our reactions as the simulation takes
place. We are then employing the computer where it
is most useful in the problem-solving process.

Interaction with a computer simulation becomes
much easier for a man, as well as a more valuable
technique, when results are supplied quickly and clearly
in picture form. Pictures carry immediate meaning;
details and patterns can be recognized easily, and
factors of cause and effect are evident. When he changes
the conditions of the problem, he gets meaningful re-
sults right away and is therefore in an excellent position
for further interaction. He may continuously change
the parameters and see the sensitivity of the system to
these incremental differences. This kind of continuous
dialogue, uninterrupted by technical details, is a power-
ful and valuable method of investigation. A man is
thus able, with computer assistance for computation
and communication, to solve many problems beyond
the scope of a man alone or an off-line computer
program.

Just as graphical output is the natural form for the
machine-to-man communication, graphical input is the
natural form for the man-to-machine communication.
Many transportation problems require a specification
of a map and associated parameters. This can be done
initially in a digital form; however, it is much more

Computer Graphies for Transportation Problems 79

convenient and natural to input this information graphi-
cally, by using stylus-like devices. Furthermore, during
run-time the need often arises to identify particular
objects, which may be in motion. It is most natural
and efficient for a man to do so simply by pointing at
them with his stylus.

It is most important to provide the transportation-
engineer with natural means for communicating with
the computer. He should be able to concentrate solely
on solving the specific transportation problem, rather
than concerning himself with the details of computer
operations.

AN EXAMPLE OF URBAN TRAFFIC

Mr. John M. MecQuillan, then a senior at Harvard
College, constructed a program to simulate urban
traffic, based on the principles of interactive graphics
discussed above. The user of the program begins by
specifying the street map to be considered. This is
accomplished by means of a stylus and a tablet. The
user specifies the position of the streets, their direction
and number of lanes, and the program draws in the
streets and the intersections for him. He defines whether
an intersection is controlled by a traffic signal, a stop
sign, a yield sign, and so on. These symbols are drawn
for him automatically. This definition process is inter-
active, allowing the user to edit the map at any time.
He may reposition portions of the map, delete and add
sections as he wishes. After the street map is drawn,
the user can specify automatic settings for the traffic
signals. He does this by drawing a bar graph of the
times during a fixed-length cycle when the light is to
be green and when it is to be red. He also has the
facility of assigning the same setting to other signals,
or the same setting with a fixed delay time. He may
also specify that certain signals are to be given the
same settings and then perform the above operations
on groups of signals rather than single ones. In this
way, it is relatively easy to construet a strategy of
traffic signal settings for a complex network of inter-
sections.

Next, the user direets the program to enter the
simulation phase. In this stage, one CRT shows the
street map, with cars travelling through it, obeying the
traffic laws and signal settings. Each car moves through
the streets, turns, pauses, switches lanes, ete., according
to information based on the surroundings. This is illus-
trated in Figure 1. Meanwhile, another CRT shows
the automatic signal settings in a form of bar graphs.
A cursor moves along these bar graphs, indicating the
signal changes as they happen. This is illustrated in
Figure 2. At the same time, a third CRT shows a

START . MAP AUTO
——lc ..'.DQ# l—
] ()
N l
. a a3 @ a
) s 3 [
[- "o ® Y
o (Pca D P - "Sp D
[+
(s
sRR 5 - -
[4 s D []
a . R
.5 ‘f s
o
[
——Jo R k,
— o? o
D O
v} [+
PANIC R G =0

Figure 1—Urban traffic simulation—Cars move in all directions

through a user-specified street map. Traffic lights at the inter-

sections are represented by the letters R and G. Words at the
edges of the picture are control functions

control panel with bar graphs which govern several
parameters. These parameters include traffic density in
each direction and some other characteristics. As the
simulation proceeds the user may change any param-
eter merely by pointing to the bar graph with his
stylus. This control panel is illustrated in Figure 3.
In addition, this third CRT displays instantaneous and
cumulative statistics, such as number of cars inside the
map, average speed and so on.

The program is designed so that it is natural to use
interactively. After specifying one map, the user can
try different signal settings under different traffic con-
ditions to find appropriate means of control. He sees
the effects of these changes in real time, as traffic flows
through the network. He may return to draw in a new
map and alter his strategies further, all in an inter-
active manner. We have found this approach to be a
very valuable one in formulating and solving problems
in urban traffie.

AN EXAMPLE OF AIR TRAFFIC

The air traffic control problem is a unique problem
in the sense that it involves a very eomplex system of
many airplanes sharing the same air space concurrently.
In order to describe the system of the air traffic, one
needs a dynamie tool which enables him to describe in

80 Spring Joint Computer Conference, 1971

- W 2 2’ = 32

I Ber sssess AT e

T 3er eavess I T
N eovee meeend M S esesse ase 3 T seses
() 2 seese cevane £ 2 eseses eae 3 emees
N B e n e

L See esenen ¢

B 2 ecees P oeveres L S ecneee

B F eeens }oeesese O Peveee wee B emees
b 3 sesss 3 sesens | - PP

D 8 esees o eesecs O 8 emeske

W s eesss 3 eseens M S eesess wes & wemes
11 & esess & eseees W o eavese ese = eeees
r] 3 eesee

I S esees b, S esses sesese

T2 eewes T 5 eeese eeesem

T e P35 JPOTORE

H s eesse P 5 eeses eeened

B3 eeeee emed -3 RS ——

L 3 eeees sesese L5 eeses cesees
[& 5 eesas ssenen

O 5 esese evesee Q gee seesse

17 ¢ esses ewsene .

(5 3 eerea esseee §s 3 enese sesacs

E I R 3 8 eeses ecccens

Figure 2—Signal settings for traffic simulation—This is a display
of the time settings of the traffic signals (letters on the graphs
identify individual signals). For each traffic light, a bar graph
represents those times that the light is green and the absence of
a bar indicates when it is red, during a 100-second cycle. The
vertical bar is a cursor which moves across the graphs in real time

real-time the current positions of many airplanes which
move in different directions at the same time. There is
no way but graphically to describe the state of the
system at any time. In real life the way the air traffic
system is described is by graphical means, the radar
which is used by the controllers. The control information
which is issued is in the form of instructions to the air-
planes telling them positioning and timing information,
issuing ‘‘vectors,” instructions for turning, and so on.
Because of the nature of the problem, it is desirable to
have facilities that enable one to communicate with
the system graphically for input control information
and to receive the state of the system at any point.
For example, a controller should be able to define a
route for an airplane merely by drawing the route on
the face of a scope rather than verbally describing it.
Collision hazards should be represented to the controller
by showing him two airplanes whose routes tend to
merge, and perhaps flashing some warning lights to
attract his attention to this fact. The interaction be-
tween the controllers and the real airplanes should
benefit from the use of the graphics as well. The con-
troller should be able to point to an airplane rather than
calling it verbally. This assumes, of course, that the
system behind the graphics is aware of which airplane
is where, and can automatically issue some communi-

cation to this airplane upon graphical request of the
operator. In order to demonstrate these ideas and to
provide a training environment, a computer program
was developed in our laboratory.

In the first phase of the program, which was written
by Mr. Geoffrey A. Modest, then a junior at Harvard
College, one can define the map of the area in which
he wants to operate, and assign it any arbitrary shape.
One can define the shape and the position of the air-
ports to be included in this area. One can define the
“Victor” and the “Jet’”’ airways intersecting this area,
and can define standard holding patterns. Navigation
aids can be introduced into the map in the shape of
triangles and squares. This definition state is, of course,
interactive. One can change his mind during the defi-
nition stage or later by editing the map, changing it,
deleting obsolete objects, and adding new features to it.

After the definition phase, the operation phase be-
gins. This section was written by Mr. W. B. Barker,
a graduate student at Harvard University. This oper-
ation phase requires two people to operate it. One
simulates the air traffic controller and the other one
simulates concurrently all the pilots of all the airplanes
in the area. The “pilot” can issue routing instructions

START MAP AUTO
A — 259
CARS-MIN S -
A 3 § 2 E ——— &3
H 4174
SPEED — 39
SHITCH -— 4
CROSS m—-————q -
{47 CARS 377 MOUING 52 AU TINE

F G N

PANIC

Figure 3—Control panel for traffic simulation—This display

provides graphical output and input of traffic density, speed,

and driver characteristics. Not only do the graphs show the

current value of each parameter, but they may be changed,

merely by pointing to an endpoint and moving it to a new

position. Statistics describing traffic flow are displayed dynami-
cally at the bottom of the picture

Computer Graphics for Transportation Problems 81

to each airplane in graphical form. The routing in-
struction may have the form of “climb and maintain
flight level 200,” and ‘“follow victor 20, turn to victor
16 at station x,”” ete. The “‘controller’” can see on his
scope the position of each airplane and can interrogate
these airplanes graphically, requiring information about
altitude, speed, identification, and so on. Ideally, the
controller should be able to express instructions to the
airplanes graphically. However, in order to simulate
closely today’s systems, the program does not auto-
matically carry the graphical instructions of the “‘con-
troller” to the airplanes, but the “controller” has to
issue them verbally, as if he were talking on radio to
the pilot. The “pilot”’ then can apply these instructions
to the airplanes, exactly according to the “controller’s”
instructions, or he may deviate from them. This way
the ‘“pilot” can simulate misunderstandings between
the air traffic control and the pilot in the air. The
only way that the ‘“‘controller” can find about these
misunderstandings is by noticing, on his ‘“radar,” that
some airplanes do not follow the instructions that he
had issued before. All communication with the airplanes
either by the “pilot’’ or the “controller” is very natural.
In order to specify an airplane all they have to do is to
“touch” the airplane on the scope with a stylus. All
control information is requested graphically, and the
flight paths of the aircraft on the radar sereen provide
the necessary feedback.

FUTURE APPLICATIONS OF COMPUTER
GRAPHICS IN TRANSPORTATION

We hope that the programs we have developed will
be prototypes for future practical systems. Many
different aspects of transportation problems could bene-
fit from the introduction of computer graphics tools.
Initially, we have been concerned with the design
problems that city planners and others face, and the
resource allocation and management questions that
arise in the creation or expansion of transportation
facilities. It is a tremendous saving in time and money
for the design engineer to be able to experiment with
alternate approaches by computer simulation rather
than by actual experiment.

Just as major costs can be avoided by graphics
simulation in the planning of a new airport or highway,
minor modifications to existing facilities can be ac-
complished with far greater ease. Here too, the ad-
vantages of different approaches can be evaluated care-
fully ahead of time. The manager can get a clear picture
of the effectiveness of various proposals from the simu-
lation, and weigh this against other factors of cost and
feasibility. Indeed, he need not wait until he is forced
to expand or alter the available facilities before he
turns to a computer graphics simulation. He could keep
an up-to-date model of his facilities for computer use,
and periodically test this model under varying con-
ditions. In this way, problem areas may be diagnosed
before they become dangerous or expensive, or both.
Computer simulation is obviously superior to actual
measurements and experiments in examining future
loads on a transportation system. The air traffic control
program can simulate anything from private planes to
SSTs not yet developed. Of course, the manager could
also concentrate on getting the best performance out of
the existing facilities. Using the computer graphics
method, he can satisfy himself that a certain system
of routing and control is optimal before he tries it out.
It should be noted that the practical experiences of
the people using the graphies system can be continu-
ously applied in a feedback loop to improve the quality
of the computer simulation.

Another aspect of a highly interactive graphics sys-
tem is its suitability for educational use. Traffic engi-
neers can receive a great depth of training from a
realistic simulator. Air traffic controllers can learn about
many emergency situations and alternate strategies to
employ. Watching a dynamic model of a transportation
system is an excellent way to learn about its behavior
and how to control it effectively. Not only is it a good
introduction to a particular situation, but it provides
a means of studying subtle problems that may other-
wise be impossible to observe. This power comes from
the man’s ability to control the scale and foeus and
speed of the simulation interactively, as it proceeds,
ignoring routine patterns, and closely examining critical
deecision areas.

For educational use, design analysis, and practical
decision-making, the interactive graphical simulation
promises to be a useful tool in the field of transportation.

Real time considerations for an airline

by JOHN LOO, B. T. O'DONALD and I. R. WHITEMAN

Eastern Airlines, Inc.
Miami, Florida

INTRODUCTION

In the 60’s the airlines developed and became the recog-
nized leaders of real time applications of the computer.
These applications have been primarily commercial in
nature and characterized by small amounts of pro-
cessing on large amounts of data. In the 70’s the direc-
tion and effort will be expanded to include large scale
sophisticated mathematical models within the
processing.

In no industry are the problems of scheduling as
omnipresent as within transportation and particularly
within the airlines. In particular the crew scheduling
problem has been solved many times using many
varied techniques. It has never, however, been com-
pletely solved to the satisfaction of all airlines, and
certainly not to the degree of rigor that the term solu-
tion would imply to a mathematician. The solutions
as they exist.today represent a varied collection of
heuristic approaches to large problems and rigorous
approaches to restricted problems.

The problem is a commercial one and constitutes a
real time application yet today the solutions remain
cumbersome and slow. The real time response to these
large computational problems awaits the development
of more suitable heuristics and computers with larger
capacities and higher speeds. Large scale combinatorial
problems depend upon a step by step analysis and
nano second speeds are just too slow for the number of
steps involved.

REAL TIME APPLICATIONS

The prime impetus to the real time system has been
the passenger reservations system. Today there is no
commereial airline that does not live off of this system.
It is a random request system accessible from a large
number of users located at any of a large number of
stations. The response time of the system is measured

83

in terms of an unbroken conversation between the
prospective customer and the ticket agent.

Development of the communication peripherals
have opened the doors to a number of computer systems
which possess obvious import to the airlines. Some of
the more important at Eastern Airlines include:

Baggage Tracing—This system is so successful that
Eastern Airlines handles this function for some 34
other carriers. This also includes a claims central file
geared to detect repetitive and possibly fraudulent
claims.

Flight Wateh—This system collects and displays to
dispatchers the position and movement of every flight.

Crew Management—This system collects and dis-
plays the activities and events in-the hjstories of crew
members. Of particular interest at any time is their
eligibility to fly.

In general the characteristics of these information
systems are relatively straightforward. In most cases
the information deals with inventory. Is some in-
ventory available? Where is the inventory located?
The software is not complicated because of the opera-
tions performed upon the raw data, but because of the
communications and the security aspects of the data.
The consequences associated with loss of files and with
not being able to access those files in a fast moving
environment are obvious.

Of those real time systems which have come into
being some possess structured mathematical models
One such is Computer Flight Planning. In producing
flight plans, the system takes into consideration the
following: (1) altitudes, (2) equipment types, (3) fuel
flows, (4) gross weights, (5) Mach numbers, (6) sched-
uled flight times, and (7) weather data. The vagaries
of the weather necessitate real time. Any flight plan
which does not meet the performance specifications of
the equipment manufacturer is rejected by the com-
puter. In addition, plans which do not allow the flight
to arrive on time are rejected unless no plans meet the
scheduled time. Under those circumstances those plans

84 Spring Joint Computer Conference, 1971

FEDERAL AIR REGULATIONS

* No duty during any rest period

* Do not exceed 30 flying hours in any 7 days

* No more than 8 scheduled hours in any 24 hours
without at least 16 hours rest after flying 8 hours

¢ Deadheading is not considered a rest

¢ Minimum of 24 hours of consecutive rest during
any 7 days

ADDITIONAL FACTORS

» Elapsed time

¢ Absolute time

¢ The airport—Rest facilities

¢ The proximity of airports

* Geography—Customs and clearances
* Connections

PAIRING PAYMENT

* f—Flying time

e d—Duty time

¢ ¢e—FElapsed time

e (—Tour guarantee

¢ h—Deadheading

Pairing Payment =p(f, d, ¢, t, k)

Figure 1—The factors of scheduling

which come closest to meeting the scheduled arrival
time are selected.

Yet awaiting introduction to the real time system is
the crew scheduling problem. The problem is repre-
sentative of a class of combinatorial problems in which
elements of a set are to be ordered or grouped according
to some criterion. It is characterized by a large number
of possible solutions and is marked by factorial growth
in the amount of computation required to carry out
that enumeration as problem size increases. The ap-
proach taken by most airlines is that of integer pro-
gramming with 0-1 variables. In contrast, the approach
taken by Eastern, the CREATION program is heu-
ristic. The problem is commercially important. The
costs associated with flying the flight schedule are
difficult to assess. It is necessary to take into account
the flight schedule in its entirety. At first thought it
would appear that the cost of manning the flights
would be a linear combination of the number of flight
hours and the unit costs of flying the various types of
aircraft. But there is more to it than just that! There
are credits which are applicable to the pairings formed
and these cannot be determined without completion of
the allocation in its entirety. These non-productive

costs are appreciable and constitute a major cost of
manning the flights.

The flight schedule is constantly changing and at
any time there are many flight schedules under in-
vestigation. Formulation of the allocation involves
specification of the flight schedule and continual liaison
between the participating operational groups. The
needs and the time responses of each of these partici-
pating groups vary at each stage of development and
present a formidable real time application.

THE CREW SCHEDULING PROBLEM

The crew schedule is the assemblage of all pairings
which satisfy the flight schedule. The pairings are the
trips flown by the crews from the time they depart
their home base until the time they return home.
These pairs must be formulated such that they satisfy
governmental regulations and contractual require-
ments. Collectively the allocation should be executed
at least cost to the airline.

There are many factors which must be taken into
account in the formation of the pairings as set forth in
Figure 1. These are worthy of mention, not because
they present an insurmountable challenge, but because
together they are indicative of the detail which must
be written into the program.

The schedule and time are synonymous. The hours
governing the actions of the crew are completely pre-
scribed by the Federal Air Regulations. The principles
of safety dictate that the crew not be scheduled for
excessively long periods of duty and flying and that the
periods of rest are adequate and sufficient. No pairing,
no assignment of flying, is acceptable if it does not
satisfy these requirements.

Additional requirements are set forth in the contract.
The schedule is predicated upon elapsed time, but it is
also affected by absolute time. The amounts of permis-
sible duty depend upon the time of day with fewer
hours allowable over the evening hours. When periods
of rest are prescribed there must be adequate rest
facilities available. Some airports possess suitable
rooms, some do not. If facilities are not adequate,
sufficient additional time must be allotted to travel to
proper quarters.

The proximity of some airports, from the viewpoint
of scheduling, means they may be treated as one, as
co-terminals. It is possible to fly into one airport and
depart the other. If the pairing includes such an arrival
and departure, sufficient time must be provided to allow
for transportation between the airports. -

Scheduling depends upon the geography flown.
Flights which return from outside of the continental
United States must return through customs and an

Real Time Considerations for an Airline 85

additional time must be provided to permit this clear-
ance. In the case of connecting flights there must be
sufficient time provided to make the connection. And
so it goes. Each station, each condition, each special
facility, each time zone must be uniquely identified
within the program in order to assemble a pairing
which satisfies all requirements, a legal pairing,.

Rules and regulations set forth the requirements
governing the formulation of the pairing. There are
other contractual specifications which set forth how
the crew is to be paid. The costs associated with the
allocation of flying depend upon the actual amount of
flying and the non-productive time associated with
trips flown. At the end of the pairing the pilot has ac-
cumulated an amount of flying time and credits of
different forms. In a sense, from the time the pilot
starts a trip until the time the trip is completed, a
number of clocks are kept in terms of these respective
credits. These assure him of some minimum amount of
flying for the pairing, a credit for the time he is away
from home, and if he is required in the course of his
duty to fly as a passenger, a credit for deadheading.
Pay for the pairing is a complex formulation which
involves all of these factors.

These are some of the considerations which must be
taken into account in the formation and evaluation of
the single pairing. There are yet others which come into
play in the formation of the allocation. For the pairings
to be manned there must be a sufficient number of
trained personnel to fly the scheduled pairings at each
of the designated domiciles. In the Eastern system there
are currently 6 domiciles. These are the only locations
from which crews can be scheduled to fly and these are
the 6 cluster areas in which crews live. Each of these
domiciles service some number of different types of air-
craft, but not necessarily all of them. In general each
type of aireraft is serviced by 2 to 5 domiciles. An allo-
cation to be acceptable must have the assignment of
flying in consonance with the domicile apportionment.

These then are the considerations which must be
taken into account in the formation of an allocation.
As arduous and as complex as the associated book-
keeping may be the heart of the problem is to secure
that allocation. which can be executed at least cost,
with a minimum of nonproductive time to the airline.

The size and scope of the crew allocation problem
can be seen in the detailed considerations which go into
the formulation of the single pairing, in the many ways
in which a pairing can be formed, in the balance of
manpower requirements among the domiciles, and in
the many, many alternative solutions to the final alloca-
tion. The number of possible ways of formulation is
indeed so large that it is simply not possible to investi-
gate the entire space of solutions.

THE CREATION PROGRAM

The CREATION program is heuristic and assembles
allocations through use of controlled Monte Carlo
selections. Within the computer emphasis is upon the
allocation in its entirety. At computer speeds thousands
of allocations are generated and studied to arrive at
the least cost solution.

Input specifications

“All data required for the CREATION program are
specified in the input. No data are included in the
program. A typical data set is shown in Figures 2, 3
and 4. The largest portion of the input consists of the
flight segments; there must be an entry for every
flight flown.

A review of the input shows the detail previously
described concerning the formation of the pairings.
Information must be provided concerning the equip-

‘ment, the allocation of manpower between the con-

tributing domiciles, description concerning the co-
terminals and the stations. The controls governing the
computer run must be specified as well as all of the
parameters as specified in the contract. The types of
output can be elected.

The program

The CREATION program is shown in Figure 5.
The program is heuristic and follows the pattern pur-
sued by the equipment specialist who forms the alloca-
tion manually. The procedure is a sequential one.
Starting with some flight, additional segments are
attempted. If the flight departs the previous arrival
site and if it is legal it is added to the sequence. If not
another is attempted. This process is continued until
the trip finally returns home and can then be con-
sidered a complete pairing.

Early in the processing of an allocation there are
many degrees of freedom available in the formation of a
pairing. As the allocation builds up the degrees of
freedom decrease until at the end there may be only
one way, if any at all, of putting the last pairing to-
gether. In the process of putting the allocation together
it is necessary to honor the domicile apportionment and
to observe all of the legality checks.

The equipment specialist attempting a solution may
pursue several courses. Upon completion of an alloea-
tion and noting its quality, he may break up some of
the pairings and then reassemble in an effort to im-
prove upon the allocation. He may feel that it is worth-
while to preserve some and to recombine others in a

86 Spring Joint Computer Conference, 1971
KUK DESCRIPT 10N
RECORD
CoDE
%0 CREATION L UYNAMIC TEST PHASE : TEST NUMBER 1209
EQUIPMENT DATA
RECORD PRIME EQUIPMENT CNE FQUIPMENT TwO EQUIPMENT THREE
CODE EQUIPMENT ' TYPE COULE TYPE cGut TYPE CODE
10 oce oCs 08
ALLOCATION DATA
RECORD EQUIPMENT CITY/STA ALLUC CITY/STA ALLOC CITY/STA ALLOC CITY/STA ALLOC CIFY/STA ALLOC CITY/STA ALLOC
oot TYPE NAME % NAME % NAME x NANE % NAWE T NAME 3
20 ocs NYC 040 FLa 060.
CO-TERMINAL DATA
RECORD CITY CO-TERMINALS ATC B A TO C 8 fo C
€CODE NAME STA A STA B STA C ouTY D/H TRAN DuUTY om TRAN DUTY orm TRAN
30 CHI ORD MDw 0L:45 Qo0:18 02:00
39 FLA nia FLL U1:00 90:19 0130
30 NYC JFK EWR LGA 9i:30 00:l6 02330 00345 00:12 01:30 01:15 00:1%¢ 02:00
30 wAS OCA BAL 1AD 01:15 0220 02:30 01:00 00:20 01330 0L:45 00:40 G3:30
STATION DATA
RECORD STATION CONVERS TUN EXTENSIUN TO INTL PRE-CLFARANCE CUSTONS
Cane NAME FACTUR FUP GMT BREAK TIME COLE TIME TIME
&0 ABE + U500 UL Vo V0 00 00 00
40 apy + 05:00 0 00 00 00 00 00
40 ACA + Q6300 0G ve 3 Q0 15 0o 15
4«0 AGS + V5300 v 3¢ o 0o 00 090
“«0 ATL + 05300 00 o0 00 00 00 0o
40 AVP + 05300 DIV 00 9% 06 09
2 BAL + L3300 wu Lo vo 06U ou N9
4«0 80A * De2u vJ GO i 00 00 00 S

Figure 2—Input audit listing

more favorable fashion. The effects can not be deter-
mined without trial. He can pursue this action time
and time again. After some succession of such attempts
the equipment specialist may feel that the overall com-
bination has been exhausted. He may elect to start the
allocation from seratch if he feels that there is little to
be gained through minor perturbations of the origi-
nating allocation.

The equivalences of all of these actions can be seen
in the flow chart. Prepass indicates the formation of
an allocation from scratch. Postpass indicates the
reduction of the previous allocation in accordance with
prescribed selection criteria: All pairing is based upon
random selection from the remaining unassigned
flights.

As each allocation is generated, its Figure Of Merit
is compared with those of the allocations previously
generated. If it is not considered to be a good candidate,
it is discarded. If it is considered to be a good candidate,
it is saved and the worst of those previously saved is
discarded. Throughout the processing some fixed
number of allocations is preserved representing the
best of the allocations generated. Final selection of the
best allocation is made from that reservoir.

The outpuls

There are a number of different outputs available
from the CREATION program. The basic output is,

Real Time Considerations for an Airline 87
RUN ZunTEOLS
RECORD NBR. JF NBRe OF 2RE Lxup RANDOM
C] NBR. 2RE & CUMICILE MAX,
CuDE PREPASSES POSTPASHES THRAESHLULD SLEN ‘U- ANS. F:LXJH i:;: U"T‘l :("IT Dl'l,l :GL:'
50 JGILd (714} XV IV) Jula V842063341 VG2 123904 ul:07 Ul:3s
CUNTKRACT DATA
kggg:D AWAY RIL OUTY CREDIT #IG JEAUHEAD TJUR
DAY NIGHT
) uTY
PAY FOK PaAY FURk PaY FUR Pay FOP MINIMUM
60 0l:u0 03:00¢ vl1:J¢ Jl:45 vl:00 01330 00330 01:00 06:30
RECORD BRIEF CEBRIEF NCRMAL COTERM STAPT S1
E ART MIN BRK MIN MA
CUDE TIME TIMLC DB YIME 0B TImL NIGHT LAY EXAT 0,0, TURN LI:I;L' P:::O;Lv
61‘ 01:90 00:15 Ub:s50 11:00 22:00 05:59 04:02 01:00 U3:20 264:00
RECORD FIRST DUTY PERIUD SeCuUNL DUTY PERICY
R ERICO TR, DUTY PERIID
CUDE ?:’:ZT ‘_405 wiin START NO wlTH START NU il Sf’gzit" J:I)Y PtRlUC]
£ BKEAK BREAK TIvE BREAK BREAK TiMe BREAK 3REAK TiME SREAKR ;::A'K
62 05:90 3300 13300 i3:01 42:30 13:00 18301 11:30 42:30 23:01 iJ330 11:30
OQUTPUT CONTROLS
RECGRD PRINT CONTROL PuUsTPASS STAT R
CON CPORT MAXIMUM ([t
CO0E FOR FISURE PRINT ALLOC PRINT FuUR 'gfl)‘l,{‘:::t vALuE
1L 2 3 &« 5 CONTROL CUNTRUL 3 o - S
80 i1 1 11 3v 10 =25 2u0 15
RECORD EFFECTIVE DAY EFFELTIVE paTe
C g) €0 3 DISCONTING 3
CODE OF THE WEEK Mu DAY YR MG :)AY”:YKATt
31 £k v Gl 710 v 31 79
NUMbER OF INVALIO RECORDS = [V

Figure 3—Input audit listing

of course, the best allocation. The other outputs are
optional and relate to the characteristics of all alloca-
tions generated within the run. And, of course, there
are numbers of various sorts for the convenience of the
concerned operating groups. B
In Figure 6 is shown a sample printout of a portion
of an allocation. All pairings are represented in this
common format. Basically the information consists of
an identification, a listing of all segments which make
up the pairing, departure and arrival data, and a break-
out of the respective times and credits. The total pay
time and the specific credit, if there is one, are shown.
A typieal pairing is ALLNO=1 PR NO=12. This
pairing departs JFK and is completed in the co-terminal
EWR. This pairing extends over two days with a duty
break in MIA. The amount of flying is 13:32. Note

that the time away is 42:00. There is an away eredit
of 1 hour of flying for 3 hours away. This indicates a
payment of 14:00, and hence the credit of 28 minutes.
In Figure 7 is shown a summary sheet of the pertinent
statistics governing the best allocations.

Timaing considerations

The CREATION program runs on an IBM 360/65.
The amount of time required to generate an allocation
depends upon the size and characteristics of the fleet.
It can be noted that the number of pairings in an alloca-
tion may be in the hundreds and the number of alloca-
tions attempted in an effort to secure a feasible least
cost solution may be in the thousands. A thorough
study can involve hours of machine time.

88 Spring Joint Computer Conference, 1971

CARD EQUIPMENT JEPAKTING ARK [V ING FLIGHT NUMBER FLIGHT TURNS T LOT AL
* UMBER TYPE STATIUN TIMZ STATIUN TIut NUMEER IF STuPs TINE FLIGHT DEP-MIN
1a ocs ATL 600 LT 646 88] 46 83 360
27 oce ATL 1425 EwR 2128 82 1 26 917 ilos
63 INVERMEDIATE STUPS 1sz8 1-k3U 2015
38 DCd ATL 1060 LAX 1lle s d3 G @16 84 600
34 ocs ATL 1845 LAX 2001 sl 11 4i6 8 1125
29 DC3 ATL 2055 LAX 2211 8y V] 4lé 82 1255
36 oca ATL 2055 MCO 2211 Be (1] 1ié 699 1255
19 oce ATL 105 MCo 1520 125 D] 115 87 645
32 ocse ATL 2uSS MIA 2233 265 1] 438 i2 1255
2 0Ce ATL 2655 MIA 232 1245 G 138 3843 1259
50 ocs B0A 1420 JFK 152G 8l Y 290 27 8e0
26 ocs BOL 2320 JFK & ® 527 [v] 44 33 140
57 OCo suL 900 SJu t504 947 1 “25 924 540
66 INTERMEDIATE STOPS 40Ul 1-BAL 1040
37 ncs cLr 800 ATL 90i 83 [€ 101 83 438V
58 oce DTw 1100 MiA 1341 953 C 241 953 660
S4 ocs DTW 1100 mMIA 1361 1953 7 241 1953 660
28 bCce [318 1630 ATL 1358 89 1 238 89 93¢0
64 INTERMEDIATE STOPS 1750 a=RUU 1949
3 0cs EwWR 830 MiA 1055 7 o 225 6 510
46 Dce EmR 2330 SJu 403 917 9 353 3.6 1410
00 ncs € nR 1215 SJu 1651 967 o 33 940 735
S1 Dca JFK 100C bLA 1256 807 9 156 L3 660
1 oLs JFK - 120 BoL 890 528 0 .40 997 440
12 ocs JFK 1400 Mla 1035 24 (] <35 28 840
16 oca JFK + 700 Mla £33 27 G 235 4iv a020
24 DCcs8 JFK 110v MIa 1335 33 o] 235 24 660
10 DCe JFK 100 M1 A 2335 402 o 235 44 1260
“4 . oCs JFK 730 SJu 1156 923 G 326 922 450
“l ocs JFK 138335 SJu 2399 927 Q 335 923 1110
.82 208 JFK 1uv30 SJu P 9d5 0 338 ' 952 630
22 ncea JFK ¢G5 Yut 21¢® 924 G 123 945 1205
i5 ocs LAX 1020 ATL 171e 2 s 356 82 620
35 ncs LAX 1300 ATL 1956 B [¥] 356 34 760
v o LAX 2200 ATL 50U 43 J 400 83 1320
33 o) MCD lo2s ATL 1745 87 0 117 37 488
20 ocs MCU 2252 MlpA 2334 699 v 44 v1ls 37
31 ucs “ia ilab ATL 1259 246 (7] il 838t 708
40 s MIA 4355 UTw 2137 9% a 262 353 1135
53 vcs MlA 1855 vin 2137 165¢ 0 242 1955 1135
17 nCca MiA 1230 Ewr 1450 | 3 J 22¢C 89 759
1L oCy MIA 1009 JHK 225 e [225 ¢l vud
21 (s 14 14502 JFK la25 r4s C 225 4ul 900

Figure 4—A listing of accepted segment records

THE CONTRIBUTIONS AND TIME RESPONSES
OF THE CREATION SYSTEM

There are a number of distinet types of requests
that must be satisfied by the CREATION program
from the time a flight schedule is initiated until the
time that the flight schedule is finally implemented.
The detail of information and accuracy of information,
and the time response in which the response must be
made, continually change over the course of the de-
velopment of the flight schedule. These changes are
dictated by the degree of interaction between the par-
ticipating groups concerned with formulation of the
flight schedule.

During the course of development there are four
primary groups concerned with production of the ulti-
mate schedule. Fundamental responsibility falls within
the Flight Schedule group; theirs is the need of formu-

lating the best schedule from the viewpoint of the
traveling public and the operations of the airlines.
And for the flights to be flown there must be an airplane
available for every scheduled flight; these considera- Figure 5—Creation flow chart

Real Time Considerations for an Airline 89

NYC EFF 05/4i/7C THRU 057317170
LCLaL SUHED ontlLy SLHED AdAY ouTY
R TIME S SEG Auvd FoT. Lay UnN DUTY FRUM AWAY TOUR € ROUTE
FREQ EQUIP FLT ML FQ TO DEP A4RR T F.T. NITE SEQ TuUT Cwik DUTY CREDIT sASt CREDIT CREDIT R QUAL
SEQ NP ALLNU = 1 PR NU = 11
08Ul 0027 D JFK MIA 470v 1935 0 ¢ 35 2 5 JFK MIA
D8Ul 1410 MIA PHL 200 wUiS U 2 15 SG .3 (Y 8 30 5 ve6 MIA PHL
D801 1043 PHL MI 4 182U 203% 0 2 15 1 25
D801 0400 MIA JFK 220v 0G25 0 2 25 1 22 “0 7 20 4 40
32 40
LINES 123 30 9 4o 10 53 vO7
FLUAT DATES 12.7¢ 1 23 CR
SEQ NR ALLNU = 1L PR Nu = 12
D821 0528 JFK BDL 0720 0800 © ay s 00 JFK BDL
0801 0947 L BOL SJU 090v 1504 . ¢ 25 s 36 BuL SJU
DHOl 0952 SJU MIA 164C 1805 0 2 25 30 20 30 12 09 T 30 SJU MIA
0801 0953 D MIA SJU 145§ 21817 0 2 22 1 58
0801 0960 O SJU EWK 1955 2235 ¢ 3 &0 28 22 16 25 6 1u SJU EWR
COTERMINAL 1 30
LY}
LINES 26 3¢ 13 40 14 00 7OV
FLUAT DATES 3.3% 29 CR
SEQ NR ALLNO = 1 Pk NU = 13
LBLL U927 DS JFK SJU 1830 2309 v 3 33 i 21 JFK SJu
0801 0928 SJU JFK 0030 0301 0 3 31 10 G &b 710
9 46
LINES w0 TOT7 710
FLUAT DATES k4
SEQ NR ALLNO = 1 PRNO = 14
U801 0535 L JFK SJU 1030 1508 0 3 38 1 22 JFK SJU
D601 VSze © SJU JFK 1630 4913 0 3 43 i 9 53 T 21
9 58
LINES 2y Tur 1721
FLUAT DATES Y
SEQ NR ALLNO = 1 PR NU = 15 o
0801 V007 8 EWR MIA U830 1US5 0 2 25 125 EWR MIA
D801 Q0G06 L MIA EwR 1230 i450 0 2 20 45 7 35 4 45
7 35
LINES 45 Tuv 4 &5
FLOAT DATES %

Figure 6—Bid information sheet

tions are treated by the non-manpower groups. On the
manpower side, there is the allocations group conecerned
with the development of the most efficient allocation.
And there is the manpower group with the respon-
sibility of assuring that there is sufficient trained man-
power available to fly the flights.

There is a great deal of interaction among these
participating groups. Each would be pleased if the
schedule could be altered to accommodate his own
specific needs. Each interact with each other through
the flight schedule, and through additional interactions
as in the case of manpower requirements defined in the
domicile apportionment.

The total cost of manpower depends upon training
and transfers of erews at the respective domiciles and
the costs of credits. Both of these steady state and
transient costs are related to domicile apportionment.
Each change to the flight schedule can produce far

reaching consequences to the participating groups and
may require a complete analysis of the allocation
process.

The allocation can be sensitive to the alteration of
but one minute in one flight. Of course, it is possible
that a flight ecan be advanced or delayed a number of
minutes and that no change at all will result. But it is
also possible that the change may result in the breaking
of a pair which will result in the breaking of another
until every pair is affected and altered.

The closeness of the relationship of the quality of the
flight schedule to the allocation, to the non-manpower
requirements, and to the manpower requirements
means that each step along the way in the formulation
of a new schedule different requirements for informa-
tion are created which must be satisfied within some
permissible time response.

Figure 8 shows a simplified flow chart of the stages

90 Spring Joint Computer Conference, 1971

% D/H CREDIT

BASE C«UlLP ualLy SeN M. I Tut ai T rel SAT
MIA V8oL ils 1y 114 15 113 iS5 115 215 iln 1% 11ad 15 1id 1> 1.8 1>
Jay?2 T 24 97 4 97 :e 9l ¢~ 9l 4 97 - I 2« I 24
0403 33 35 oY 35 8o 35 &3 35 b3 1% t2 35 43 35 34 3-
Oaludiy AV ER AL S L F FLIGHT H L URYS
BASE gQul?P UALLY SU* MUN Tut wtl Trid kR SaT
NYC D3Vl %3 19 83 19 8d 19 bs 19 84 19 €S 1y 83 19 42 19
0802 154 52 10Us 5S¢ e 5o Tus 52 ale 52 ice %2 104 52 104 52
Deo3 117 o7 117 07 117 07 117 o1 al? J7 117 o7 La? 07 117 o7
CREDILTY SUMMARY
TYPE HJURS F ow outly TOUEK AniY
BA Sc twuir MONTH LKEGTT CREDIT CREVIT
Ml A D8 U4 SUHEDULE 2,7¢1 35
o/H 56 39
CRELIT 053 32 e I5 393 47 254 09
TCTAL 3,665 45
T LREDIT - 3).9 1.5 11.9 16.4
e D/H CLREDIT 1.8
D82 SCHENULE 2,448 29
0/H <5 14
LRELIT 565 16 5 <1 31y 41 224 1+
TCTAL 3,0l¢ 24
¢ CREOIT 22.3 2 12.9 9e1
€ D/H CREDIT 1.0
D833 SCHcDULE 29119 22
D/H
CREDIT 526 «3 417 438 176 11 33<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>