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PREFACE 

This volume records in part the technical material 
presented at the 1965 Fall Joint Computer Confer
ence. Contained in this publication are the formal 
papers selected from a record number of contri
butions submitted to the Technical Program Com
mittee. No attempt has been made to incorporate 
the material presented at panels and tutorial sessions 
of the Conference, nor have the invited papers 
presented on the final day of the Conference been 
included. The Conference Committee hopes that a 
subsequent volume will emerge to catch the living 
spirit of such deliberations. 

Still, the size of this volume is large, just as the 
scope of the Conference is broad. This is, in part, 
deliberate, since the Conference attempted to provide 
the opportunity for professional communication on 
every level. Recognizing the increasing degree of 
specialization in the hardware and software fields, 
the Technical Program Committee added a third 
information channel to the Conference to focus 
attention on management and applications. These 
sessions dealt with questions of marketing and eco
nomics as well as applications in the scientific and 

humanistic fields. Thus to the orientation in hardware 
and software was added the direction of applications 
and management in the disciplines that are concerned 
with information processing. 

The most distinctive feature of this Conference, 
however, must be the five "discuss-only" sessions 
for which preprints were available before the Con
ference. Hopefully, new dimensions were added to 
the papers through a searching examination of the 
material on the floor of the Conference. We regret 
that we cannot record the results and evaluate the 
technique. 

The real and permanent contribution of the 1965 
Fall Joint Computer Conference is still the technical 
material presented in this volume. The credit goes 
to the authors with greatful appreciation of the role 
of the Technical Program Committee and Session 
Chairmen who engineered the structure. Behind 
them are the contributions of many others who, as 
members of the various committees, made the Con
ference possible. 

ROBERT W. RECTOR, General Chairman 
1965 Fall Joint Computer Conference 
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UNIVERSAL PROGRAMMING LANGUAGES AND PROCESSORS: 
A BRIEF SURVEY AND NEW CONCEPTS 

Walter H. Burkhardt 
Computer Control Company, Inc. 

Framingham, Massachusetts 

INTRODUCTION 

Progress in any field depends on the materializa
tion of new ideas. But before this is possible, these 
ideas have to be found, investigated, developed and 
adapted to the changing world. 

In computing, i.e., the use of computers for the 
solution of problems, new ideas are available every
where, although the implications behind them and 
the influence on the state-of-the-art are generally 
not very well understood. Therefore it is often diffi
cult to separate the wheat from the chaff. 

But even valuable ideas are not always useful and 
welcome. That is especially the case when the basis 
for them is not adquately prepared. To know which 
ideas are useful at present, it is necessary to evalu
ate the state-of-the-art to determine how develop
ments in the field will proceed. There are other rea
sons. One might be to give the nonspecialist a fast 
orientation; another is to readjust the basis in a fast 
growing and changing field. 

The last decade brought a tremendous gain in 
overall computer power and for a unit outlay as 
well. Therefore, it is not too surprising if many old 
values have to be changed and new ones appear. 

The advent of computers gave a very useful tool 
for the solution of many tasks for which the stat-

1 

ment of the problem was given in a fixed mathema
tical form. This is due to the special nature of com
puters, with the memories, the circuit logic, and 
electronic switching elements having easy adapta
tion to mathematical problems and to a tremendous 
bulk of knowledge in the form of mathematical for
malism. 

There are now on the one side machines with 
more or less special features for the solution of par
ticular problems, and on the other the problems, 
given sometimes in a self-contained formulation, 
sometimes in only a vague and inexact form, and 
ranging over the whole spectrum of life, science, 
and society. The medium to combine both is known 
as programming. This function consists of mapping 
a solution given to the problems on the machine, 
but now better defined as dividing the problems 
into elementary task-components and translating 
them into terms of the machine. 

In this paper, the interface between the problems 
and the machines will be discussed with emphasis 
on the tools for the solutions-the programming 
languages and processors. 

Statement of Problem 

The application of computers for solving prob
lems in technical, scientific, and commercial fields 
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has been very successful. But progress is hampered 
by the fact that the machines accept primarily only 
their own special language, on digital computers 
composed of number sequences. These sequences 
are mostly long chains of zeros and ones-which is 
rather unintelligible to humans and quite different 
from the languages in which the tasks are and can 
be easily described. 

Possible Solutions 

There are two possibilities for solving the diffi
culties made by the gap between the languages of 
machines and the languages of problems. One solu
tion would be to adapt the languages of the ma
chines by developing machine languages more gen
eral and closer to the problems encountered, the 
high-level language computers, the other one would 
be to adapt the problems to the machines. This is 
done presently with intermediate languages, be
tween machines and problems, which are easier for 
people to use than contemporary absolute machine 
languages. 

High-Level Language Computers. This would mean 
to develop a machine which could communicate in 
a higher language. Suggested rather early, and at
tempted to implement·· to some extent (for example, 
in the SEAC machine, 1 this idea could give an ele
gant solution to the problem. Therefore perhaps it 
is revived in newer designs,2,3 and it is even sug
gested to use a language of the ALGOL-type4 as 
machine language. * In addition to the drawbacks 
due to the insufficiencies of contemporary program
ming languages (and these are the only candidates 
at present for high-level machine languages) there 
are several factors opposed to such a development. 

The arguments of high cost for circuitry and re
strictions to the applications area are mainly based 
on the 'economic feasibility of such designs. But 
with an advent of very cheap components and as
sembly methods, these restrictions could change in 
the future. 

The arguments of altering. bases must be taken 
more seriously. The development is neither fixed on 
the problem side nor on the machine side. 

Development on the Problem Side. To illustrate 
this point a simple example might be taken. In ap-

* A similar step in this direction is sometimes attempted 
in microprogrammed machines with some higher-level lan
guage implemented in memory in a semifixed manner. 

plications to commercial problems a basic function 
is certainly sorting, which is used over and over 
again. So it would seem natural to include a ma
chine operation for sorting in the repertoire of such 
high-level commercial machines. But what tech
nique of sorting5 should be implemented? The 
best technique to be selected depends on the data 
formats and on the machine configurations so that 
selecting only one technique is not very feasible. 
But inclusion of several different techniques is 
highly unlikely. This example will show the diffi
culties for only one task function. The overall re
quirements complicate the situation so much that 
no reasonable solution is in sight. 

Development on Machine Side. Many opinions 
state the view that the development on the machine 
side is now fixed. 6 But this belief seems prejudiced 
and premature. For example, in the near future 
memory hierarchies (let's say a memory of 128-
word diode storage with 50 nanoseconds and 2048 
words thin film or thin wire with 200 nanoseconds 
and back-up storage of 32,768 words at 600 nano
second cycle time. Behind these might be bulk core 
storage, drums, disks and tapes) could give a user 
more computer power (according to the principle of 
limited resources) than the more conventional re
cent design; or mastery of parallel execution fea
tures, etc. Although this argument affects mainly 
the internal design of a possible high-level language 
machine, it complicates the picture and eliminates 
many suggestions for solutions. The potentialities 
for a standard machine ( or assembly) language 
are impeded too by this aspect. 

Solutions by Intermediate Languages. The solution 
by intermediate steps between problem and machine 
languages via programming was at least in the past 
the most successful one. It can easily be seen that 
the closer to the problem the steps are taken, the 
more powerful and quickened the solution will be. 
So the region between problems and machines con
tains software levels of differing machine and prob
lem independence. 

Efficiency of Machine Use. Whenever a pro
gramming language is different from actual low-lev
el machine language, questions concerning the effi
cient use of the hardware are apt to arise. These 
seem to be of greatest importance on slow and ex
pensive machines. Linearly extrapolated, the em
phasis on these questions is decreased to 2 percent 
when relating a machine with O.5-miscrosecond cy-
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cle time in 1965 to one with 25-miscrosecond cycle 
time in 1951 at the same price. Interestingly, the 
highest requirements for run-time optimization 
with compilers are imposed on hardware which is 
inadquate for the intended problem solutions (e.g., 
optimization in FORTRAN II on the 704 and in 
ALPHA on the M208 for the solution of difficult 
partial differential equations). With the need for 
faster computers9 and a decline in prices for hard
ware, as in the past decade, these efficiency ques
tions are bound to diminish and perhaps to dis
appear altogether. 

Hierarchy of Programming Languages. Different 
hierarchies of programming languages are already 
proposed,IO where the criterion is the machine con
figuration concerned. Of course, many other charac
teristics could be chosen for classification of pro
gramming languages, but the one here presented in 
respect to machine independence seems to be most 
interesting. A good measure for the level is the de
gee of declarative freedom for the user. Therefore 
on the lowest level would be the absolute machine 
languages and with more declarative possibilities 
gradually increasing up to the problem level of 
declarative languages as follows: 

Absolute machine lan- No declarative freedom 
guages (machine level) 

Assembly languages No specification of names 
and locations necessary 

Procedural languages 

Problem oriented 
languages 

Specification languages, 
augmented by seman
tics 

Declarative languages 
(problem level) 

N a detailed machine 
commands necessary 

Language elements from 
problem but command 
structure procedural 

Description of relations 
in the prOblem, freedom 
of procedure 

Description of the prob
lem, freedom of proce
dure and solution 

The levels from absolute machine language to 
procedural languages are very well known from the 
literature of rec~nt years. (Sometimes in the past, 
procedural languages like FORTRAN, ALGOL and 
JOVIAL were incorrectly denoted as problem
oriented languages.) Examples for problem-oriented 
languages are found inAPT, eOGO, Simscript, etc. ll 

The block-notation languages12 for analog-hybrid 

simulation on digital computers are examples of aug
mented specification languages. Semantic content is 
there defined by the fixed meaning of the block 
names (in MIDAS1

3 they are the operations and the 
operands by means of the successor specification). 
Recently an example for another use of a specifica
tion language in an applications program was pub
lished14 where Backus-Naur-Form specification was 
adopted. As can be expected, the experience reported 
stresses the improved facilities . (compared with con
ventional programming languages) in programming, 
check-out, and incorporating changes into the pro
gram over conventional programming languages. 
Perhaps the first example in declarative languages, 
although not on the level designed by the term today, 
was the dynamic analysis language DY ANA. 15 Some 
other approaches are described in a recent paper .16 

Translation among Programming Languages. All 
programming languages above the actual machine 
language impose the necessity for translation to that 
language. This task is done by a translator, compiler 
or assembler, hereafter called a processor. 

Two different aspects have to be distinguished 
concerning the translation of programs: 

1. Translations horizontally on one level 
2. Translations vertically to other levels 

Obviously, all translations can be regarded as com
posed of these two possibilities to various degrees. 
The requirements for the practicability of translation 
are: 

• The rules for the connections of elements in 
the languages (the grammars or syntaxes). 

• The elements of the languages ( the dic
tionaries) . 

• Their respective relations in both languages 
as well. 

1. Translations. Horizontally. Horizontal transla
tions of programs among different programming 
languages of the same level are in general not possi
ble. The reason is, that the results of one operation 
(in extended sense) in a program in source lan
guage (the language of the input) may determine 
the kind of operation to be used next in the pro
gram, and that often the target equivalent of a 
source language item is not available. The criterion 
for translatability is that all operations in the 
source language can be translated separately into 
the target language (the language of the output) in 
respect to power and extend. Translatability from 
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one source language A to a target language B gives, 
however, no indications for translatability from B 
to A. Whenever some operations are not translat
able, they may be simulated, e.g., interpreted at run 
time. Because. of the huge number of redundant op
eration parts involved, interpreted programs run 
normally orders of magnitudes slower than compar
able translated ones on the same machine. 

2. Translation Vertically. Vertical translation of 
programs is divided in (a) upward and (b) down
ward translation. 

(a) Upward translations impose generally the 
same requirements as those detailed for horizontal 
translations. A special case governs the upward 
translation or previously downward translated pro
grams. Contrary to some opinion,17 no relevant in
formation for the execution of a program is lost in 
the translation process, only the redundant. There
fore, if the translation algorithm is given, all neces
sary information can be retrieved from programs, 
that had been translated before, to build a fully 
equivalent program on the former level. 

(b) Downward translations are normally not dif
ficult' because the languages on the higher levels are 
so designed as to give a specific and determined 
target equivalent on the lower level for each source 
language element. 

Now, by the mechanical transformation of the 
program (a description of a problem or its solution) 
into representations of other levels with or without 
intermediate levels (e.g., DYANA ~ FORTRAN II, 
FORTRAN II ~ SAP704, SAP704 ~ 70'4) not 
more solutions of a problem are obtained, but only 
different representations of the program. Therefore, 
with regard to problem considerations, all different 
representations of one program (e.g., diagrams aug
mented by text, DYANA, FORTRAN II, SAP and 
704), and all programs giving the same results for 
the same sets of data, are said to l?e equivalent. A 
similar relation is given among specification lan
guages or notations. 18 Continuing this thought, most 
efficiency questions, grammar and syntax peculiari
ties and details, though interesting and necessary for 
the development of the transformation processors, 
are definitely unimportant and sometimes even unde
sirable for the solution of a task in applications 
programming. 

Experience with High-Level Programming Lan
guages. The aspects of the historical development of 
high-level programming languages (with regard to 

machine independence) are described in detail 
elsewhere.11 It might be stressed that FORTRAN 
was not the first high-level language of algebraic 
type but had forerunners in Rutishauser's algebraic 
language on the Ermeth in Zurich and in Lanig and 
Zirler's language on Whirlwind in MIT. Even 
MATH-MATIC for the Univac I, a commercially 
available machine, was earlier. But the small VI (a 
decimal and alphanumeric machine with only 45 
instructions) did not really necessitate and justify a 
high-level algebraic language; this was later re
quired with the more complex machines bf von 
Neumann-type, like the 704. 

The advantages of high-level programming lan
guages are more apparent the more the considered 
languages are independent from the machines. 
These advantages are: 

1. Easier learning and use than lower-level lan
guages, because they are less complicated, 

2. Time savings in programming of solutions 
for problems, 

3. Time savings in debugging and correcting 
possibilities for slightly different prol;>lems, 

5. Higher machine independence for transi
tion to other computers, and otherwise for 
compatibility with hardware, 

6. Better documentation (compatibility 
among programs and different program
mers, 

7. More powerful structuring in terms of 
problem. 

Points (1), (2), and (3) were stressed in the 
past and found most important.19 Nowadays (4) 
and (5) receive more attention and in the future 
(5), (6), and (7) may become the dominant ones. 

It is interesting to note that points (1) through 
( 4) have been similarly known to engineers for 
decades for the solution of problems in formal in
stead of numerical notation. 

Most astonishing is the large number of programs 
still written in a low-level language.2o This can only 
be explained by a steep information gradient be
tween the knowledge in the field and the applica
tion programmers, or better, their managers. 

Development of New High-Level Programming 
Languages 

Introduction. The development of new high-level 
programming languages, at least in the past, has 
been more evolutionary than revolutionary. So the 
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step from FORTRAN to ALGOL brought with it 
these advantages in order of their estimated impor
tance: 

• Chained logical decision sequences 
• Block structure of program parts 
• Free notation format 
• Lifting of various machine restrictions 

(i.e., number of subscripts in variables, 
modes of expressions, etc.) 

Unfortunately, due perhaps to the ambiguities 
embedded in ALGOL and its definition, the gain 
from switching over to ALGOL programming from 
FOR TRAN is considered marginal. Despite all the 
efforts in the past, less than 10 percent of all pro
grams for scientific and engineering applications 
are coded in ALGOL20 - which is not a striking 
triumph for a successor to FORTRAN.21 Similar
ly, less than 5 percent of the programs in the same 
area are coded in FORTRAN IV -what can be 
cautiously described as failure of the new facilities 
incorporated in FORTRAN IV over FORTRAN 
II. The use of a programming language by applica
tions programmers has to be the measure for its 
success. If one is not sufficiently used, a program
ming language is certainly as dead and obsolete as 
Mayan or Babylonian and perhaps of just academic 
interest. 

Requirements for a New High-Level Programming 
Language. Several important design criteria - often 
violated even in recent designs - have to be 
stressed: 

Close Relationship to the Problems in the De
sired Area. This allows the user a concise and pow
erful description of the processes and concepts. 

Uniqueness. Each item in a correct program has 
to have one unique and defined meaning. This is 
required by all compatibility reasons. 

Simplicity and Clearness of Notation. The lan
guage has to be developed and designed with a pro
gramming notation for ease of learning, use and 
handling of the language in the intended problem 
area. (Of course, that does not exclude a formal 
and rigid definition of the language. But such a de
finition should hardly ever be imposed upon a 
user.) Requirements for readability and intelligibil
ity are included here. This point of convenience has 
to be the main criterion for the standardization of 
programming languages. Admittedly, generally one 
proposed standard is better than another, if it is 

more convenient for the user. 
Completeness. A good programming language 

should be able to handle all occurring tasks within 
its designed scope, without need for using means 
from outside. Good counter-examples are the miss
ing string-handling facilities in FORTRAN and the 
input/output part in ALGOL 60. 

Segmentation. For the practical application of 
programming languages to large problems, efficient 
segmentation features are desirable so that parts of 
problems can be handled independently. 

Compatibility with Existing Programming Lan
guages. In addition to compatibility in other res
pects, one is important in regard to the already ac
cumulated knowledge of problem ~olutions (the 
program libraries). These libraries consist of two 
parts-one created by the present user working with 
the language and the other developed elsewhere or 
earlier with other languages. The first part requires 
elements in the language to build up and use older 
programs and program parts in new connotations; 
the second demands some means for translation or 
interpretation of old libraries. 

Development Possibilities. There are three ways of 
developing a new programming language: 

• Cleaning up and refining existing lan
guages; 

• Elaboration and combination of known 
useful· features; 

• Development from the basic require
ments of a problem area. 

All three methods were used in the past either sepa
rately or combined. 

Proliferation and Solutions. The application of 
computers with high-level languages to different 
problem areas causes a proliferation of program
ming languages according to the vernaculars in the 
application fields. There are two different possibili
ties: 

1. If single programming languages are to 
be developed close to the vernaculars, then 
some incompatibility will exist between 
these. 

2. On the other hand, if an intermediate lan
guage somewhere in the middle between 
problems and machines will be accepted as 
the programming standard, then much 
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more effort has to be spent on defining the 
problems to the computers. 

The historical development of progress in the 
computer field favors the first alternative, while 
computer manufacturers and operations managers of 
computer installations try to hold to the second one. 
Possible solutions to the dilemma might be found 
in: 

( a ) Inclusion of language elements of neigh
boring problem areas into programming 
languages presently in use or being devel
oped, or opening the borders to that area; 
for an intermediate language with the 
scope of an UNCOL22 but on a higher 
level or as a subset of a universal pro
gramming language. 

(b) Development of universal programming 
languages. 

( c) Development of universal processors. 

Universality in this respect is meant to comprise 
at least the elements of two really different problem 
areas (not vertical combinations or notations) .22 

Several proposals for the first of these solutions 
(inclusion of language elements) are already re
ported. Of these, BEEF24 and ALGOL-Genius25 are 
both designed to combine a programming language 
for algorithmic with one for commercial procedures. 
More ambitious in this respect is the NPL
SHARE26,27 language to combine in addition the ele
ments of real-time and command languages. 

It is most noticeable that software systems (lan
guages and processors) developed upwards from the 
machines by combinatinn of existing elements do 
not tend to please many users. Despite the desirabi
lity of larger extended systems, there are always us
ers who do not need the new scope and are unwill
ing to pay for the clumsiness and complication due 
to inadequate design. 

Other development possibilities going from a 
fixed base are found in the features of open-ended 
systems. To some extent at present, the combining 
of languages of two areas results in at least a partial 
universal programming language. 

UNIVERSAL PROGRAMMING LANGUAGES 

Definition 

A universal programming language can be de
fined as a complete set of elements to describe the 

problems and solutions in all problem areas. If such 
a language can be developed, the design require
ments will be the same as for a single high-level 
programming language (see the requirements listed 
above), but much more valid. 

Mathematical Definition and Development. 

It is easy to define mathematically the design and 
development of a universal programming language 
in general. 

The complete set Si of all equivalent programs* 
Pik1 for the solution of problem k in one area is 
given by 

Si = UiPik1 
Then the operation 8 selects from this set a program, 
maximal in respect to power of problem description 

Dk = 8 UiPik1 
N ow all maximal programs of one problem area form 
a new complete set Sk: 

Sk = Uk 8 UiPik1 
From this new set, operation '}' extracts the language 
elements and operations for the given area to form 
the language for the problem area Gj: 

Gj = '}' Uk 8 UiPik1 
For the generalized and universal programming lan
guage Au, the complete set Sl, generated by U1, of 
all languages G1 has to be considered, combined and 
integrated by the operation A to give 

Au = A U1'}' Uk 8 UiPik1 
As may be recognized, the operations, 8, ,}" and 

A are very complex and difficult, but the most seri
ous drawback seems to be the large extent of the 
various sets required. But this is the only way for 
development, be it by methods of evolution via 
open-ended languages or by revolution via problem 
analysis and then language determination (as given 
by an example in reference 28. 

Old Proposals 

The problem of proliferation of programming 
languages was recognized rather early especially in 
respect to the effects on processor production.22,29 
So UNCaL, a universal computer-oriented language 
was proposed as an interface between high-level 
programming languages and computers. Due to the 
open-endedness on both sides of problems and ma
chines, such a scheme cannot easily be designed on 
the basis of a fixed language. On the other hand, 30 
examples for this scheme are known as notations, 

*See "Translation among Programming Languages" above. 
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e.g., the prefix notation.30 But this design level 
seems to be inadequate for a satisfactory solution to 
the problem. 

A similar restriction is imposed on the well
known flow-chart notation to be used as a universal 
programming language, or even as a programming 
language. (Recent rumors suggest flow charts to be 
used on oscilloscope terminals for on-line program
ming.) 

Design Possibilities 

As mentioned in the section on Solutions, there 
are two possibilities for the design of universal lan
guages. One is a conventional approach with open
ended languages and processors so that the users 
will develop gradually the required high-level pro
gramming languages in the interesting problem 
areas. Then from time to time the now achieved 
status of a system should be re-evaluated and re
shaped to avoid and eliminate inefficiencies and ob
solescence. So gradually the best language for a 
problem area will mature. As soon as there are 
enough languages developed for different problem 
areas, then the design of a universal one can be en
visaged. 

The more direct method suggested by the mathe
matical definition is to investigate the nature of the 
problems, depict the elements for description and 
solution, and combine these into a high-level pro
gramming language. This method was used to de
velop the new programming language BEST for 
commercial applications.28 The reported five years 
of labor seem relatively high, but the rewards justify 
the effort to eliminate all the inadequacies and 
inconsistencies which arrive at the fire-line with 
programming languages, designed by mutual con
consent at conference tables. 

UNIVERSAL PROCESSORS 

General Requirements and Notation 

Definition and Feasibility. A universal processor 
can be defined as a program for transformation· of 
all programs from all required problem areas into 
all required target languages. The extent of such a 
processor is dependent on the definition of the re
quirements of the problems and of the machines. 

Processors which accept programs in a number of 
different programming languages are well known.31 

But no successful experience (aside from the proj
ects outlined below could be found for easy com-

bining of different target languages. This is cer
tainly no accident, as will be stressed later. The target 
language area poses heavier and more stringent re
quirements on processors than the source language 
area where it is possible to easily combine several 
compilers for different languages (but for the same 
machine) into one system and to invoke' the one 
momentarily required by control cards (e.g., in 
IBSYS.31 The difficulties for the target language 
arise mainly because of a third language parameter 
in a processor, its own language, i.e., the one in 
which the processor is written or the language of 
the machine on which the processor has to run. 

Design and Implementation. At the source language 
side of a processor, besides the simple IBSYS con
cept, a higher degree of integration could be ob
tained by (1) accepting mixtures of statements of 
different languages, perhaps with indicators > as to 
which languages they belong; and (2) accepting the 
elements of different languages intermixed. This 
requires that incompatibilities among the languages 
are removed. (For example, the definitions of iden
tifiers in FORTRAN and COBOL are incompati
ble, with blanks having no meaning in FORTRAN, 
but used as separators in COBOL.) So it is proven 
that a fairly universal programming language cannot 
be developed by simply combining useful features 
from different other languages. 

If only a restricted universal processor can be 
developed, then by feeding a copy of it to itself a 
desired less-restricted one could be produced auto
matically. 

General Notation. A processor can be defined as a 
function (I) for transformation of a program given 
in one language into that of another. The parameters 
of this function f are then: 

ex) Source language of programs to the processor; 
f3) Target language of programs from the processor; 
y) Own language of the processor; 
8) Variables for measuring the efficiencies; 
E) A variable for the method used in the processor; 

etc. 
So the processor can be designated by f(a,/3,y,8,E, 

... ). 

Transformation of Programs by Processors. A source 
program is, for example, a given set V 1i of (i) state
ments (Si) in source language A for the solution of 
problem 1 and similarly a target program can be 
defined: 
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P1 = Vlisi(A) 
P'l = VlkSk(B) 

as source program 
as target program in language B 

The application of the transformation function gives 
the relations: 

V lkSk (B) = jV liSi (A) for languages separate 
translatable only on 
the program level 

= Vl~Si(A) requires a different 
transformation al
gorithm 

= VljjVjmsm(A) for languages separate 
translatable on 
block level; (a block 
is defined as the set 
VmSm(A) 

= VlijSi(A) for languages separate 
translatable on the 
statement level 

= VliSi(fA) for languages separate 
translatable on the 
language level 

Simplified Notation. The most interesting and im
portant questions with processors are concerned 
with the function of changing the· language repre
sentation of programs, ( especially by translating 
them to actual machine language) .. Therefore, if no 
regard is given to other than the language param
eters, the function is reduced to 

j = f(A,B,C). 

Of course, the other parameters cannot be com
pletely ignored, but they depend on other variables. 
(Measured efficiency of a processor depends on the 
methods used, while efficiency requirements are 
functions of hardware speeds and costs again, etc., 
so other parameters are omitted here.) 

Now a new symbol for a processor is introduced: 

It designates a processor translating from source 
Language A into target language B and is itself 
written in (its own) language C. Sometimes a label 
as a name for a processor will be used and inserted 
into the empty space at the left side of the symbol. 
Where one language parameter in the following is 

not specified or pertinent, the space for it is left 
empty. 

Examples oj the New Symbol 

V saP 

/sA~ 

'1AB. 704 

04 

~709 
A 

is a FORTRAN compiler writ
ten in SAP, translating from 
FORTRAN to SAP 

is a SAP assembler given in 704 
machine language and translat
ing from SAP to 704 machine 
language 

is a NELIAC compiler translat
ing from NELIAC to 1401 SPS 
and running on the 709 

is a precompiler translating into 
the source language (e.g., for 
error checking in programs) and 
running on machine with lan
guage L3. 

Mode oj Processor Use. Basically two different 
modes of processor use can be distinguished: tran
slative and interpretive. 

1. Interpretive Mode. The interpretive mode of 
processor use is characterized by the handling of 
data and source statements at the same time, ac
cording to the diagram: 

2. Translative Mode. The translative mode is 
characterized by the processing of source program 
and data at different times, at compile time and at 
run time, respectively: 

at compile time 

! I i 

~>~i __ ,-_~ at run time 
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It must be understood that the execution of the 
target program at run time is itself considered again 
as interpretation. 

SOURCE 
PROGRAM 1" ~ 

SOURCE 
~ 

PROGRAM 2 
--

~ 

, 

In real-time concurrent processing, the schemes 
would look like 

3. For Real-Time Interpretive: 

DATA 1 

DATA 2 ---

· · · 
DATA N 
---~-

-'" RESULTS 1 , 
.~-----

~ PROGESSOR .. 
· 
· _ ... RESULTS 2 

· · 
SOURCE · 

~ · PROGRAM N 

... RESULTS N 

4. For Real-Time Translative: 

I DATA 1 I , 
SOURCE 

PROCESSOR .... OBJECT 
RESULTS 1 ----

PROGRAM 1 
, , - PROGRAM 1 

1 DATA 21 
SOURCE ----. .... y 

PROGRAM 2 OBJECT ..... 
PROGRAM 2 

RESULTS 2 

· 
· · 
· · 
· 

SOURCE 
PROGRAM N r-+ l DATA N I 

• ..... OBJECT RESULTS N 
PROGRAM N 
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General Use 0/ Processors. The general use of proc
essors is given by feeding (designated by the simple 
arrow ~) a program into the processor to receive 
(designated by the double arrow .) the program 
in another representation: 

is the translation process of a program from source 
language Ll to target language L2 by a processor 
running on a machine with language La. 

A more interesting case is that the program fed 
to the processor can itself be a processor. When it 
is written in its own-source language it is according 
to: 

Here it is explained that a processor written in its 
source language can be translated to any other lan
guage for which a processor exists. From this pros
pect was derived the old requirement that each pro
cessor should be written in its source language. On 
the same process is based nowadays the production 
of assemblers for new machines. Details on that 
method will be explained later. 

When the processor is written in its own-target 
language, this gives: 

This is the ancient method of processor construc
tion by writing it in its target language. So it is 
possible to build up on already available processors. 
An example of this is the old FORTRAN compiler 
written in SAP and translating to SAP, which is 
then translated by the SAP assembler into 704 ma
chine language, but it needed the SAP assembler in 
the translating process from FORTRAN to 704 
code. 
Restrictions on the Parameters. The variables in 
the transformation function / (A,B,C) of a pro
cessor are certainly not independent even among 
themselves. The following functional relations 
among the language parameters are interesting. Pre
vious mention has been made of the relation be
tween the target and the own language of a proces
sor. Another, but not a very stringent one, governs 
the relation between source language elements and 
their target language equivalents. 

It will now be assumed that the relations can be 
defined and the variables separated. Several cases 
are then distinguished: 

1. The source language parameter A is 
independent of the other ones, so that 
no functional relation is given there: 

A =1= h1(B); A =1= h2 (C). 
2. The target language variable B de

pends not on the source or on the own 
language: 

B =1= ha (A ) ; B =1= h4 ( C) . 
3. Both source and target language are 

not related to the own language (but 
might depend on each other) : 

A =1= h2 (C); B =1= ~(C). 
4. All language parameters are independ

ent among themselves. 

The design of universal processors will now be 
investigated according to these restrictions. 

Universal Processors. Universal Processors can 
be designed under the restrictions of the previous 
paragraph and will be treated in the same order. 

1. A scheme for a universal processor limited by 
restriction (1) could be derived as follows. If the 
processor is not dependent with the source language 
either on target or on the own language, then the 
source language part could be made exchangeable. 
As soon as one processor with this characteristic 
would be available, processors for all different 
source languages could be constructed running and 
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translating for the same machines. By transforming 
another processor with the same characteristic ac
cording to: 

processors could be written in all languages for 
which exchangeable definitions exist, and then tran
slated to the designated machines. The task of writ
ing 2m X n processors for n languages and m ma
chines (there are only m X n processors if the pos
sibility of translation of programs on one machine 
for running on another machine is excluded) is now 
reduced to the writing of 2m processors or m, re
spectively) for the m machines and of n language 
descriptions for the n source languages. 

2. The case where the target language is consid
ered independent of source and own language is 
even more interesting. Then target language des
criptions for the machine could be developed and 
inserted into the processor to give a scheme for 
processors to translate for all machines. 

Applying the same principle to the translation of 
processors could give a universal processor with any 
desired target and own language requirements: 

The requirements for a universal processor system 
would now be to write n processors for n source 
languages and m target language definitions for m 
machines. These n processors would be written pre
ferably in a high-level language (N3) for which a 
processor with the same characteristics for exchange
able target equivalents has been given already. 

3. The case that source and target language ale 
independent from the own processor language (al-

though they may depend on each other, case 1) 
would give a very powerful and general system. By 
the application of the scheme to itself, any desired 
own language and so a rather general universal pro
cessor scheme could be obtained: 

The implementation requirements would now be 
to develop: one processor with removable source 
and target language equivalent parts in two copies, 
and the definitions for each pair of source-target 
languages, giving m x n definitions if they are de
pendent on each other (case 1) or m + n defini
tions if they are independent (case 2). 

4. When all language parameters are independ
ent, then we have the most general universal proces
sor scheme. Of course, this brings not more solu
tions than could already be obtained in case 2. The 
requirements here would be to have one processor 
with the desired characteristics and m + n descrip
tions of source, target, and own languages. 
Discussion. The schemes for universal proces
sors described in the preceding section are outlined 
on the assumption that the language parameters of 
processors are independent of other variables and 
among themselves, at least to a certain degree. 
Some relationships among source, target and own 
language are known. But up to now it was never 
proved or disproved that perhaps they could be sep
arated, and if so, under what conditions. It can be 
seen, for example, that between source and target 
language only a simple connective relationship ex
ists, but the requirements then imposed on the own 
language were not yet evaluated. 

The area of source languages is now fairly well 
understood, although the techniques are still not in 
the best conceivable state; much work is left to be 
done; some is going on and progressing satisfactori
ly. But knowledge of the others is very insufficient 
and incomplete. 

Many investigations in the past· were dedicated to 
the theory of automata. However, most results from 
these investigations are too general or of too low a 
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level to be of great value to present-day computers 
with their variety of special hardware features. Only 
in the recent past some work was performed on 
models of more contemporary machines.29 

As long as actual computers are not well under
stood there will not be much hope for very success
ful development of useful universal processors. 

eral scheme. There is always input I, consisting of a 
processor or its description, or the description of 
the source language. Input II is sometimes missing 
(in some cases of a processor description for I), or 
consists of specifications of the target language, and 
of a source program in interpretive cases in addi
tion to that. 

The following section describes the various re
ported projects for automated processor production 
and compares these to the described scheme of uni
versal processors. 

Projects for Universal Processors 

INPUT II 

~ SUPER 
PROCESSOR 

~~ 

INPUT I 

General Scheme and Survey. All literature un
covered in recent years regarding projects for pro
posals on universal processors fit into the same gen-

The different elements for input and the obtained 
output are summarized in Table 1. 

Project 

High-level and spe
ciallanguage use. 

UNCOL 

CLIP-JOVIAL 

NELIAC 

XTRAN 

SLANG 

TOOL 

Syntax method 

TGS 

Meta A 

Meta B 

Applicative 
Expressions 

Input I 

Processor written in high
level or special processor 
writing language 

Processor in UNCaL to 
translate to UNCOL 

Processor in high-level 
language 

Processor in high-level 
language 

Processor in high-level 
language (with connec
tors?) 

Processor in SLANG
paLMI 

Processor in TOOL 

Language specification in 
terms of M 

1. Language specification 
L 

Table 1. 

Input II 

Target machine 
macros 

Target language de
scription to generate 
the equivalents 

Library of macros 

Source program in L 

1. Macros for M 

Resulting Processor 

Processor in low
level language 

Processor for UN
COL on designed 
machine 

Special Features 

High-level languages ap
plied to processor COD'

struction 

Reduction in number of 
processors required 

Processor in low- "Boot-strapping" 
level for original 
language 

Same as above Same as above 

Processor in low
level for designated 
language 

Same as above 

Same as above 

Target program in 
M 

Same as above 

Exchangeability of target 
language equivalent 

Generation of target 
equivalents from a de
scription 

Translation for new ma
chines 

Interpretive processor ac
cepting language L speci
fication 

Interpretive processor 
with extensive descrip
tions and specifications 

2. Generation statement 2. Source program 
tables for selection 

Processor in M 

Description of language 
L in terms of M 

Description of language 
L with connectors 

Description of L in Ap
plicative Expressions 

List of target equiv- Same as above 
alents (macros) 

Machine definition Same as above 
in Applicative· Ex-
pressions 

System written in specifi
cation languages 

System in specification 
language separable for 
given source and target 
languages 

Same as above with Ap
plicative Expressions as 
specification language 
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Two different approaches can be distinguished, 
one starting with a processor or the description of a 
translation process and the other starting with defi
nitions for the source language. The processor
based projects are generally the older ones, thus re
flecting the progress in the field. 

Processor Based Projects 

1. High-Level or Special High-Level Language 
Use. To gain the advantages of programming using 
high-level languages (see Introduction "Experience 
with High-Level Programming Languages") in the 
construction of processors, projects based on this 
were tried rather early and often abandoned im
mediately. The main reasons were the inadequacies 
of high-level languages of those days (mainly FOR-

TRAN and ALGOL) for processor descriptions, 
and unfamiliarity with the new technique. To al
leviate the difficulties special high-level languages 
were developed.33,34 The scheme here is working 
like: 

However, the gains by these projects for the con
struction of universal processors can be considered 
marginal, because the original number of processors 
required is not reduced and, in addition to that, one 
processor for the high-level description language is 
required for each machine. This scheme is reported 
only for the sake of completeness and because it is 
used heavily in other projects. 

2. UNCaL. In this project the first suggestion 
for a system of some sort of a universal processor 
was given.22,29 It calls for an intermediate language 
(see "Old Proposals" above) together with the 
appropriate processors. The requirements are here 
reduced to m + n processors for n languages and 
m machines, instead of m X n (without translation 
of programs to run on other machines). For each 
source language a processor has to be written in 
UNCaL translating into UNCaL and then for each 
machine one translating into machine language. 

In the production process the processor (written 
in UNCaL) for the source language is translated 
by a processor from UNCaL to machine language: 

All programs then written in source language N 1 

are translated by this new processor, running on 
machine with language L 2, into programs in UNCaL. 
These programs are then finally translated to ma
chine language L2 by the translator from UNCOL 
to machine language L2 (already required above): 

3. CLIP-JOVIAL. Very similar to both the UN
CaL and high-level language project is basically the 
CLIP-JOVIAL approach. Several different versions 
are reported, one without intermediate language and 
another, more advanced, with it.35 The diagram for 
the simpler version looks like: 

Practically, the high-level language scheme where 
the source language is used for description with: 

N 1 the CLIP language (a dialect of AL
GOL 58 with additional features for 
table packing, string handling, storage 
overlapping, and local and global 
declarations) 

N 2 assembly language 

L2 709 machine language 
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The more advanced version uses an interesting 
"bootstrapping" method for adapting the processors 

The parameters are given according to the table: 

N, N2 N3 L, 

to different machines: 

L2 L3 L4 M, M2 

JOVIAL INTERMEDIATE CLIP 709-A 2000-A ANFSQ-A MILITARY-A 709 2000 

ANFSQ 

with the indication of -A after a computer name 
standing for assembly ianguage for that machine, 
and the computer name alone standing for its ma
chine language. The parameters (Li) enclosed in 
parentheses indicate the insertion of the appropriate 
target language equivalents for the intermediate lan
guage N 2 and the patching up for it. 

MILITARY 

A processor is written in CLIP to translate from 
source to intermediate language and is itself tran
slated by the CLIP processor into intermediate lan
guage. For each machine, a processor is now writ
ten for translation from intermediate t9· assembly 
language of that machine. With these processors, 
the former processor is translated into assembly lan-
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guage, and the target equivalent in intermediate 
language is exchanged for the one in assembly lan
guage. At last, the resulting processors are translat
ed by the assemblers to the appropriate machines. 

A universal processor scheme requires: 

• One processor for each source language 
written in CLIP and translating to the inter
mediate language; 

• One processor for each machine to translate 
from intermediate language to assembly lan
guage, the target equivalents for the inter
mediate language for patching up in the 
insertion; 

• One CLIP processor for the intermediate 
language (and the assemblers for the differ
ent machines). 

The main difficulty here is to design an intermedi
ate language in a fixed form for many source lan
guages (e.g., the UNCOL concept, see Section IIC). 

4. NELIAC. In NELIAC likewise the high-level 
language is used for the programming of the proc
essors.36 The most interesting feature here is the 
bootstrapping scheme to obtain the processors for 
different machines.37 In the original version on the 
U460 (Countess), about 20 percent of the processor 
was handwritten and in machine language inserted 
into the processor (indicated by N C /460), after com
pletion of writing the processor in its source 
language. 

In the notation, symbols for the original names 
retained as follows: 

are 

Nc 
NELIAC for the Countess 

N 709 

NELIAC for the 709 

The NELIAC-Countess processor was produced 
with the patched-up processor: 

This version was used in the production of the pro
cessors for the B200, the CDC 1604, IBM 704 and 
the 709 machines according to the diagram for the 
709: 

For each machine, two different versions of the 
processors have to be written, one in the NELIAC 
language for the Countess and the other in the 
NELIAC language for the desired machine. 

The procedure is to write a processor for a 
source language to a target language in a high-level 
language for which there is a compiler running on a 
machine. This processor is first translated to run on 
that machine. Then the processor is written in its 
source language and translated to its proper ma
chine by the one already obtained. This process is 
the direct equivalent of the old assembler produc
tion method, which has been writing the assembler 
for a new machine first in an assembly language of 
a running machine and then translating it to run on 
this machine. The assembler was then again writ
ten, but in its source language and translated by the 
already obtained assembler to run on and translate 
for its proper machine. 

5. XTRAN. To adapt the processors for differ
ent source languages, the XTRAN system21 accepts 
those written in a simplified version of ALGOL '58 
with string handling facilities (XTRAN language) 
and the set of the macros for the particular ma
chine. Two different sets of macros are used, one is 
machine-independent of the three-address type (as 
an intermediate language) and the other consists of 
the macros of an actual machine in assembly or ma
chine language. The XTRAN system translates the 
processor for a source language into the machine
independent macros, accepts the definition of these 
macros in terms of the machine-dependent ones, 
and then replaces the former with the latter: 
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The requirements for a scheme of universal proc
essors are: 

• One processor for each source language 
written in XTRAN (LI) 

• One set of machine-dependent macros 
for each machine 

• The XTRAN system 

B 

Of course, the building up of the target equivalents 
from a machine description is usually a very diffi
cult task, if in general possible at all. And the POL
MI language might not be definable in a fixed set. 
Therefore, it is not surprising that no further expe
rience with this system is yet reported in the litera
ture. 

The requirements for a universal processor 
scheme using this system are: 

• One processor written in SLANG-

In this case, the universal processor scheme would 
require: 

• One processor written in TOOL for 
each source language. 

• One library of target equivalents for 
each machine (presumably with appro
priate connectors). 

As can be seen, this scheme is very similar to the 

{ P{L) I S{L,M) } 

Unfortunately no experience is published yet for 
this system. This might be due to unsatisfactory 
performance for the macro setup. 38 

6. SLANG. The SLANG system39 is very simi
lar to XTRAN, but is more ambitious to generate 
by itself the macros from a definition of the target 
machine. The SLANG compiler accepts in addition 
to that a description of the processor in SLANG
POLMI, designated by S : 

POLMI for each source language. 
• One description for each target machine. 

7. TOOL. A peculiar system was reported in 
TOOL.40 It translates processors written in the 
TOOL language for other machines. The target 
equivalents for a new machine are extracted from a 
library file. So the automated translation of proc
essors given in TOOL designated by T, to different 
machines is handled. Generally, processor notation 

method from SLANG. Without further details this 
scheme was reported to be working satisfactorily 
and to be running on the H800 and H400. 

Description Based Projects 

The Syntax-Directed Method. The reported proj
ects use a syntactic description of the source 
language41,42 and are compiling interpretively: 

P, S 

--+-- p{M) 
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The reason for the requirement of interpretive 
mode here lies in the fact that the different lan
guage parameters of a processor are interwoven, but 
already to a much lower degree than in straightfor
ward processors. 

The requirements for a universal processor 
scheme here are that the syntax description be sep
arable from the super-processor and that one des
cription be developed for each source-target lan
guage pair. 

TGS - The Translator-Generator-System. An 
ensuing development to the syntax-directed method 
is given by the translator-generator-system TGS,43,44 
using macro concepts like the XTRAN project (see 
paragraph on XTRAN above). 

This scheme accepts as input besides the program 
to be translated: 

1. A sort of Backus-Naur-Form definition of 
the source language. 

2. A table for macro description and code se
lection for the target language. 

3. The generation strategy tables for the des
cription of the linkage between source and 
target definitions. 

The super compiler consists of five parts working 
subsequently on the source program. Most interest
ing among them are: 

1. A syntactic analyzer for the source pro
gram to convert some piece of input string 
into an internal representation (a tree form 
is used); 

A universal processor scheme based on this proj
ect would require: 

• One BNF definition for each source 
language 

• One table for macro description and 
code selection for each target language 

• One generation strategy table for each 
source-target language pair 

Metalanguage Compiler Direct. Likewise derived 
from the syntax directed method46 this project uses 
a metalanguage description of a source language in 
terms of the semantic target equivalents as basic 

2. A generator phase translating the internal 
representation into an n-address instruc
tion form, depending on syntactic context; 

3. An optimizer phase for source and target 
program optimization, eliminating invari
ant computations out of loops and common 
subexpressions (thus being source-lan
guage-dependent to a certain degree) and 
assigning special registers (thus being ma
chine-dependent to a certain degree) . 

4. A code-selector phase driven by the code
selector table to produce symbolic machine 
code. 

The translation process looks like this: 

{p(l), sell, G(L, M), B(M)I} - 11<' - p(M)1 

Most important is the endeavor to achieve an ob
ject code optimized to a rather high degree at the 
cost of great difficulty in the description of the 
code selection. In addition to that, the algorithms 
seem to be source- and target-language-dependent 
(in respect to algorithmic languages containing 
expressions and loops, and to machines possessing 
special registers, both in a given form) . 

For the production of the system, a bootstrap 
technique is used, starting from the algebraic lan
guage Lo (the language of the CL-I system45 in 
which the system was originally written: 

{D(Lo- 1604-A)} {D(Lo)} {D(CXA - 1604)} 

~~ _~ro _ ~~)-\t 
~ ~ ~ ~ 

-A -A -A 

elements of the language on the problem side.47 This 
description is then compiled by the metalanguage 
compiler into a processor written in the target equiva
lents of the metalanguage compiler: 
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The metalanguage compiler was originally written 
in its augmented specification language and com
piled by itself: 

Since no machine was available to accept the meta
language specification, this translation was done 
initially by hand. The target equivalent for M 1 and 
M2 are normally rather far different from operations 
and elements found on actual computers. Therefore, 
they have to be interpreted in terms of those for 
execution. 

{ S (L K), R (K, M I) 

A universal processor scheme requires here: 

• One description for each source lan
guage 

• One set of target equivalents for each 
machine plus the target equivalents of 
new basic semantic elements in a new 
source language 

• The metalanguage compiler 

One special aspect of this method has to be 
stressed. By the design process of a source language 
in terms of the basic semantic elements, these ele
ments can be separated in a form in which they are 

{ S (L, K), R (K, M) } E 

Requirements for a universal processor scheme 
are here: 

• One metalinguistic description for each 
source language 

• One set of target equivalents for each 
machine and set of basic semantic ele
ments of each source language 

• The metalanguage compiler 

Metalanguage Compiler Indirect. Based on the 
previous project a method more machine-independ
ent can be proposed, using the macro principle. 
Here the basic semantic elements of the source lan
guage would be separated from the source language 
description and referred to by connectors. These are 
then inserted or executed to obtain translative or 
interpretive mode. The production of a processor 
would be accomplished according to: 

required for the development of a universal pro
gramming language (see "Mathematical Definition 
and Development" and "Design Possibilities" 
above). 

Applicative Expressions. Another proposal for a 
universal processor project could use Applicative 
Expressions48 and would be very similar to the 
method described above. Both source and target 
language would be described in Applicative Expres
sions with connectors used for the correct interplay. 
Although this scheme might be more general, it 
seems to introduce many redundancies and to com
plicate the description, as the examples in reference 
48 prove. The process would be: 
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The requirements for universal processors in this 
instance are similar to those in the preceding para
graph. 

Discussion 

All reported projects try to gain some power for 
the construction of processors in the direction of 
universal processors. There are basically three dif
ferent starting points: 

1. The own language for the processor 
2. The source language of the processor 
3. The target language of the processor 

The first point is stressed by all methods to al
leviate the specifications of the processor to various 
degrees from the use of a high-level language for 
explicit writing the processor to the syntax table 
specification in TGS. 

The complete definition of a source language can 
specify at the same time a recognizer for programs 
written in that language. This characteristic is used 
in the description-based projects. 

Techniques for the target language specification 
to use a processor on different computers were at
tempted rather early as they were important to the 
development of software in the variety of different 
computer designs. But, as far as can be seen, the 
obtained results are still very far from a satisfactory 
solution to the problem-if it is possible to find 
even a fairly general solution. Unfortunately no de
tailed experience with the XTRAN and TOOL 
projects is reported. 

Several interesting methods are used for boot
strapping, i.e., the adaption of a processor to a spe
cial computer mechanically. They range from the 
old assembler construction method used in NELI
AC to rather elaborate and sophisticated ones, as in 
TGS. Of course, the whole subject needs much 
more effort to develop the techniques for a fairly 
general universal processor scheme or to prove that 
the plan is not possible and to state the conditions 
and new insights into the problems will certainly 
bring much more progress than was achieved in the 
past. This paper is intended to serve as a basis for 
such a development. 

A 

Appendix 

Explanation of Symbols 

for designation of the source lan
guage of a processor 

B 

C 

B(M) 
D(L) 
E 

f(a,/3;y,o,€, ... ) 
f(A,B,C) 

G(L,M) 
K 
Li 

M 
Ni 
peL) 
R 
S(L,M) 

u 
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DIGITAL SIMULATION LANGUAGES: A CRITIQUE AND A GUIDE 

John J. Clancy and Mark S. Fineberg 
McDonnell Aircraft Corporation 

St. Louis, Missouri 

FOREWORD 

The field of digital simulation language, although 
barely ten years old, has shown a remarkable 
growth and vigor. The very number and diversity of 
languages suggests that the field suffers from a lack 
of perspective and direction. 

While claiming no expertise in the writing of so
phisticated compilers, the authors believe a relative 
unconcern with implementation details permits a 
wider objectivity in matters of format and structure. 
Competence to speak on these aspects is claimed on 
the basis of extensive analog, hybrid and simulation 
language experience. 

In Locke's words, "everyone must not hope to be 
... the incomparable Mr. Newton ... , it is ambi
tion enough to be employed as an under-laborer in 
clearing the ground a little, and removing some of 
the rubbish that lies in the way to knowledge."1 

INTRODUCTION 

The appellation "digital simulation language" 
unfortunately has been appropriated by two quite 
distinct fields: simulation of discrete, serial proc
esses, as typified by the GPSS and SIMSCRIPT 
languages; and simulation of parallel, more or less 
continuous systems, as typified by the MIDAS or 
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DYSAC languages. The scope of this paper is limit
ed to the latter. 

This field of what might be called parallel lan
guages has enjoyed a vigorous growth since its in
ception ten years ago. New languages are appearing 
at frequent intervals, but it appears the effort is 
scattered, and perhaps needs to be channelized. The 
authors have applied themselves to providing a 
measure of needed direction and perspective. 

BRIEF SURVEY OF THE FIELD 

History 

Since Selfridge's article appeared in 1955,2 the 
field of analog like simulation languages for digital 
computers has grown at a rapid rate. Brennan and 
Linebarger3•4 have provided an excellent review and 
analysis of the history of the field; their surveys are 
summarized and somewhat augmented below. 

Lesh,5 apparently inspired by Selfridge's work, 
produced DEPI (Differential Equation Psuedo 
Code Interpreter) in 1958. Hurley6 modified this 
language for the IBM 704 (DEPI 4), and then in 
conjunction with Skiles7 wrote DYSAC (Digitally 
Simulated Analog Computer). This line of develop
ment has continued at the Universities of Wiscon
sin and Colorado under Professors Skiles and Ride-
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out, resulting in the BLOC languages (MADBLOC, 
HYBLOC, FORBLOC and COBLOC) .8,9 

Stein and Rose, in addition to generating 
ASTRAL,lO (Analog Schematic Translator to Alge
braic Language) in 1958, have provided the theoret
ical and practical background needed to write a 
sorting routine, i.e., an algorithm to deduce the 
proper order of problem statement processing.ll 

This feature, although overlooked by many authors, 
is one of the keys to a useful language. This point 
is detailed below. 

In 1963, Gaskill et al,12 wrote an excellent simu
lation language, DAS (Digital Analog Simulator). 
The program unfortunately suffered from a rudi
mentary integration algorithm and the lack of sort
ing. * MIDAS13 (Modified Integration DAS), writ
ten by Sansom et al at Wright-Patterson Air 
Force Base, supplied the necessary improvements 
and met with unprecedented success. (Approxi
mately 100 copies of the program have been dis
tributed.) The success of MIDAS is explainable by 
two facts: the integration routine and sorting fea
ture make it extremely easy to use and MIDAS was 
written for the widely used IBM 7090-7094. The 
authors of MIDAS have now offered another entry, 
MIMIC,14 which is implemented by a compiler pro
gram and provides symbolic labelling, logical con
trolcapability, and freedom from the block-oriented 
programming. MIMIC is not without faults, particu
larly in the areas of data entry, but seems destined 
for the same general acceptance as MIDAS-and 
deservedly so. 

One of the most significant developments has 
been computer manufacturer interest in simulation 
languages. Scientific Data Systems has led the field 
in this respect, having proposed DES-1 (Differen
tial Equation Solver) in 1962.15 DES-l has been 
modified extensively in the succeeding years, and 
now offers one of the best formats and one of the 
most variegated operator lists ;16 SDS has always 
promoted the language as part of a total computer 
system which provides analog type I/O and pro
gramming for a digital computer. 

In late 1964, IBM entered the field in a small 
way with PACTOLOS, byR. D. Brennan.17 Appar
ently, PACTOLUS was intended to have only mod
est computational capabilities and to contribute 
primarily as an experiment in man-machine com
munication. In this respect, the objectives of P AC-

*It should be noted that Gaskill considers neither point of 
particular significance. 

TOLUS are similar to those of DES-I, although 
the latter also attempts to be as powerful a compu
tational tool as possible. 

PACTOLUS was written for the IBM 1620, and 
brought simulation to a previously untapped au
dience of small installations. The popUlarity of 
PACTOLUS is rivaled only by that of MIDAS, if 
indeed it has a rival. 

More recently, R. N. Linebarger of IBM has an
nounced DSL/90 (Digital Simulation Language for 
the 7094 class computer) .18 This language is a sig
nificant advance over P ACTOLUS as a computa
tional tool and offers many format improvements. 

The above are only a few of the languages; many 
others have appeared. Table 1 shows a list of simu
lation languages, along with some important charac
teristics of each. This table is the result of a rather 
diligent search, but certainly is not comprehensive. 
Much of the material has been taken from a survey 
given by Clymer. 19 

Trends 

The present trend in the field is towards exten
sion of the power and utility of the programs. More 
efficient execution has been recognized as a goal, 
and the compiler approach to implementation has 
gained increased acceptance. The provision of more 
complex operators and more advanced algebraic 
capability represents an effort to increase the utility 
of the programs for less analog-oriented applica
tions. These trends are in the right direction, but 
efforts have been scattered, and perhaps need to be 
channelized. 

Another major step has been recognition of the 
importance of the man-machine interaction. As 
was mentioned, this has been the primary message 
carried by the P ACTOLUS program, and has long 
been the concern of the DES-l designers. The 
SCADS20 program has been used on-line at Carne
gie Institute of Technology and the Aerospace Cor
poration is using EASL21 through a terminal to an 
IBM 7094. The authors agree wholeheartedly with 
this stress on man-machine interaction, and are 
aware of the real import this communication has 
for the future of digital simulation. 

Areas of Use 

Simulation languages have been written for two 
more or less diverse reasons: to provide analog 



Table 1. History of digital simulation languages. 

Author's Integration 
Name Source of Name Date Author(s) Affiliation Computer Routines Ancestor Sorting Remarks 

1955 R. G. Selfridge USNOTS IBM 701 Simpson's -- No The Adam of this genealogy 
Inkoyern Rule 

DEPI Diff. Eq. Psuedo 1957 F. Lesh Jet Burroughs 4th Order Selfridge No Expanded and improved Selfridge's work 
Code Interpreter Propulsion 204 Runge-

Lab Kutta 
t:::I 

DIgital Differential 1957 G. R. Slayton Lockheed-
§ 

DIDAS IBM 704 Euler Simulates a DDA ~ 

Analyzer Simulator Georgia > 
t'"4 
(I) 
~ 

ASTRAL Analog Schematic 1958 Stein, Rose Convair IBM 704 Runge- -- Yes Isaiah, the voice that crieth in the wilderness. ~ 
c:: TRanslator to and Parker Astronautics Kutta A precursor of the modern languages. Sorting t'"4 

Algebraic Language and compiler implementation were original with > 
~ ASTRAL, and remained advanced features until 0 very recently. Z 
t'"4 

DEPI-4 DEPI for the 1959 J. R. Hurley AlIis- IBM 704 4th order DEPI No First language to use float point hardware, and > 
Z 

IBM 704 Chalmers Runge- thus eliminate scaling problems. 0 
Kutta ~ 

0 
t:r.I 

DYANA DYnamics ANAlyzer 1959 T. J. General IBM 704 Euler Mechanical system dynamic analyzer 
(I) 

Theodoroff Motors > 
Research (") 

Lab ~ 
~ 

~ 
~ 
I:) 

BLODI BLOck DIagrammed 1961 Kelly, Ben Labs IBM 704 None -- No Block simulator for signal processing devices c:: 
Compiler Lochbaum, and 7090 t:r.I 

> and Z 
Vyssotsky t;1 

> 
DYSAC Digitally Simulated 1961 J. J. Skiles Univ. of CDC 1604 4th order DEPI-4 No The prophet with honor only in his own coun- § 

Analog Computer and J. R. Wisconsin Runge- try. Significant improvement of DEPI-4, partic- S Hurley Kutta ularly in format. The program was specific for t:r.I 
a relatively little used computer, which prob-
ably caused its undeserved lack of wide ac-
ceptance and use outside the University of 
Wisconsin. 

DYNASAR DYNAmic Systems 1962 Lucke, General IBM 704 Adams- -- Yes Useful innovation was variable step size inte-
AnalyzeR Robertson Electric- and 7090 Moulton gratioll algorithm. 

and Jones Evendale 4 point , 
predictor-
corrector 
Variable 
integr. tv step-size VI 



tv 
PARTNER Proof of Ana]og 1962 R. F. Stover Honeywell IBM 650 Trapezoidal No but Used extensively at Honeywell. Parallel nature 0'1 

Results Through Aeorn. Div. and or Euler retains retained by predicting variables around a feed-
Numerically H-800/1800 paral- back loop, rather than sorting. 
Equivalent Routine lelism 

DAS Digital Analog 1963 R. A. Gaskill Martin- IBM 7090 IBM 7090 DYSAC No Major contributions to the format of block-
Simulator Orlando oriented languages. Widely used in the Martin 

Company. 

JANIS ? 1963 R. G. Byrne Bell Labs IBM 7090 Euler No FORTRAN flavor 
I"tj 
:;c 

DES-l Differential 1963 M.L. Scientific SDS 9300 Choice of No Excellent language. Part of a computer system 0 
Equation Solver Pavlevsky Data five that includes a special, analog type console. (") 

tt1 
and L. Levine Systems tt1 

t; 
>-4 

Z 
DIAN DIgital ANalog 1963 Farris and Iowa State IBM 7074 Euler -- No Chemical Engineering Simulations 0 

VJ 
Simulator Buckhart Univ. I 

"rj 

WIZ ? 1963 J. E. Buchanan U.S. Naval ? 4th order ASTRALYes ASTRAL's only known direct descendant. > 
t"4 

Avionics, Runge- t"4 
Indianapolis Kutta-Gill ~ 

0 
>-4 

COBLOC COdap Language 1964 Janoski and Univ. of CDC 1604 Choice of DYSAC Yes Logical building blocks (gates, flip-flops), etc. Z 
~ 

BLock Oriented Skiles Wisconsin three (Option- provided. (") 
Compiler ally No) 0 

~ 
I"tj 

FORBLOC PORTRANcompiled 1964 W. O. Vebber Univ. of Any ma- Trapezoidal DYSAC No Easily modified since FORTRAN used. This ap- e 
BLOck Oriented Wisconsin chine FOR- proach could lead to machine independence. ~ 

tt1 
Simulation Language TRAN :;c 

compiler (") 
0 
Z 

HYBLOC HYbrid computer 1964 J. R. Hurley Allis- IBM 709, 4th order DYSAC No Simulates hybrid computer. "rj 
tt1 

BLOck Oriented Chalmers 7090, 7094 Runge- :;c 
Compiler and Univ. Kutta tt1 

Z 
of Wisconsin (') 

~ 

MADBLOC MAD Language 1964 L. Tavernini Univ. of IBM 7090 Trapezoidal DYSAC No MAD (Michigan Algorithmic Decoder) state- ~ 

BLOCk Oriented Colorado ments. \.0 
0'1 

Compiler VI 

MIDAS Modified Integration 1964 Harnett, Wright- IBM 7090- 5th order DAS Yes The Moses of the story, that led digital simula-
DAS Sansom and Patterson 7094 variable tion to the verge of the Promised Land. Very 

Warshawsky AFB step predic- widely distributed, modified and discussed. 
tor corrector 

SIMTRAN 1964 W. J. Henry Weapons IBM 7090 DAS Yes Though not used on-line, the program's struc-
Research tured for such use in the future. 
Establish-
ment-
Australia 



PACTOLUS River in which 1964 R. D. Brennan IBM IBM 1620 2nd order MIDAS Yes Mainly an experiment in man-machine commu-
King Midas washed Research Runge- nication. Widely used as a simulation tool. 
off the golden Lab Kutta 
touch. 

ENLARGED 1964 G. E. Blechman NAA- IBM 7090 Same as MIDAS Yes Enlarged component set of MIDAS and added 
MIDAS S&ID MIDAS plotting routines. 

PLIANT Procedural Language 1964 R.L. IBM IBM 7090 Trapezoid'al JANIS No Build own FORTRAN blocks. 
Implementing Linebarger Develop. 
Analog Techniques Lab. 

t;j 
MIMIC No meaning, Ex 1965 F. J. Sansom Wright- IBM 7090- 4th order MIDAS Yes Improvements over MIDAS include: compiler S 

post facto, Sansom Patterson 7094 Runge- implementation, logical elements, improved al- :::i 
claims, MIMIC is AFB Kutta. gebraic capability, and logical control. > 
MIDAS InCognito Variable t""I 

step size CIl 
~ 

~ e 
UNITRAC UNIversal 1965 W. C. Outten Martin- IBM 7094 ? FOR- Yes Stylized differential equation input format. Free t""I 

> 
TRAjector Compiler Baltimore TRAN format. ~ 

~ 

0 
Z 

DSL/90 Digital Simulation 1965 Syn and IBM IBM 7090- Choice of PLIANTYes Powerful, flexible simulation tool. Advanced t""I 
Langu,age for the Wyman Develop. eight (Option- format ideas include free format capability. > 

Z IBM 7090 class Lab. ally No) 0 
computers ~ 

t!1 
SCADS Simulation of 1964 J. C. Strauss Carnegie CDC G-20 An algo- PART- No Uses the same scheme for parallel operation CIl 

Combined Analog and W. L. Tech rithm uniqueNER as PARTNER, i.e., an extrapolation method. > 
Digital Systems Gilbert to SCADS. SCADS was used on-line at Carnegie Tech. C":l 

A four :::c 
point meth- ~ 

~ 

od similar ~ 

to Runge- 'a 
Kutta. tt:I 

> 
Z 

Engineering Analysis 1965 L. Sashkin Aerospace IBM 7094 4th order MIDAS No Used on-line through a terminal. FORTRAN 
t:::;j 

EASL > and Simulation and Corp. Runge- statements are permitted in line. 
0 Language S. Schlesinger Kutta. e 

Variable 6 
step size. tt:I 

SAD SAC Seiler Algol Digitally 1965 J. E. Funk U.S. Air Burroughs 5th order MIDAS Yes Essentially MIDAS, but written in ALGOL. 
Simulated Analog Force B-5000 and variable step Significant feature is handling of discontinuities 
Computer Academy B-5500 predictor- by interrupting integration routines when switch-

corrector ing occurs. 

SLASH Seiler Laboratory 1965 J. E. Funk U.S. Air Burroughs 5th order SAD- Yes Gives an ALGOL program control of SAD-
Algol Simulated Force B-5000 and variable step SACK SACK for parametric studies, plotting optimiza-
Hybrid Academy B-5500 predictor- tion, etc. 

corrector 

tv 
....,J 
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check cases, and to solve differential equations (in 
other words, replace an analog computer). MIDAS, 
ASTRAL and PAR TNER22 were written primarily 
for the first reason; DAS, the DEPI family, DES-
1, and P ACTOLUS, apparently for the second. 
Another, perhaps more important, use has not been 
stressed by any of the authors, i.e., providing the 
best digital computer language for a hybrid prob
lem. Since an analog computer is a parallel device, 
and no amount of mental calisthenics can make it 
appear serial, it is clear that a parallel digital lan
guage is the only solution to the parallel-serial di
chotomy in hybrid programming. 

FUNDAMENTAL NATURE OF SIMULATION 
LANGUAGES 

Views Proposed 

As noted above, simulation languages have prolif
erated at an amazing rate in the last few years. 
Each new language comes equipped with its own 
format and structural idiosyncrasies, which general
ly reflect the creator's reading of the essence of sim
ulation languages. These analyses . might be classed 
as: analog computer simulator, block diagrammed 
system simulator, and differential equation solver. 
When the concepts are considered in detail, it is 
evident that all these views miss the point to some 
extent. 

Analog Computer Simulator: Some simulation 
languages, as noted previously, were written specifi
cally to simulate an analog computer. The purpose 
was to provide an independent check of the analog 
setup. Most of the authors state, however, that the 
resultant programs were used profitably for problem 
solving-in other words, the analog was bypassed. 

Simulating the analog computer generally results 
in an operator (or statement) repertoire which re
flects the fundamental physical limitations of analog 
computer elements. Examples of this phenomenon 
abound; one might mention the limitation on the 
number of summer inputs, different elements for 
variable and constant multiplication, and the lack 
of memory. 

In short, the logical culmination 'Of this concept 
is a system neither fish nor fowl, with many dis
advantages of both analog and digital programming. 

Block Diagrammed System Simulator: The over
whelming majority of authors state that their lan
guage (or program) was designed to simulate sys-

tems that can be represented by block diagrams. 
(Of course, an analog computer is such a system, so 
the opinion outlined in the previous subsection can 
be seen to be a sub:"set of this view). By and large 
this opinion i~ justified, since many problems of 
interest are easily expressible in block form. How
ever, if the problem is given simply as a set of ordi
nary differential equations, reducing the equations 
to a block diagram is a tedious, error-prone proc
ess. Even if a block-diagrammed system is con
sidered, more often than not some of the blocks 
contain differential equations; an example is the 
airframe equations in a control loop. 

Differential Equation Solver: An opinion some
times expressed is that simulation languages should 
be designed to solve ordinary differential equations. 
From what has been said, this view has some merit. 
Unfortunately, two problems arise. First, in control 
system simulation, transfer functions and non
linearities are not conveniently expressable in equa
tion form. There is also a certain loss of familiarity 
with the system when blocks are completely elimi
nated. Second, the concept overlooks other impor
tant problem areas, e.g., sampled data systems, 
where the problem is stated in difference equation 
form. 

A More Correct Approach 

It is seen, then, that all these views regarding the 
fundamental nature of simulation languages are too 
narrow and confining. Is there an "essence" (in the 
metaphysical sense) which is common to aU, yet 
not so comprehensive as to be meaningless? Paral
lelism, the apparent parallel operation of a serial 
digital computer, may be an all-inclusive, rational 
statement of the essential nature. 

All languages extant have taken their format and 
structural cues from analog programming and ana
log operators. Assuming the action was rational, and 
not an empty exercise in dialectical synthesis, this 
fact provides a clue to a valuable overall view of 
simulation languages. The analog computer is, of 
course, a parallel device. 

As it happens, this is the way most of the world 
is structured. Representing physical phenomena 
with a serial digital computer is an artifice; useful, 
but nevertheless an artifice. The analog computer 
has achieved such success and generated such at
tachment largely because of the close analogy exist
ing between the computer and the physical world. 
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Obviously, then, if physical systems must be rep
resented with a serial digital computer, the machine 
should be made to appear parallel. This is in fact 
what has been done in simulation languages, and, of 
course, the success is manifest. Difficulties have 
arisen, though, because "pseudo-parallel" devices 
in the past been modeled too closely on the analog 
computer. If the notion of parallelism is correct, 
the best parallel device must be sought. 

The importance of this concept cannot be over
stated. It is not merely a convenient catch-all to 
include all previous efforts, but has real conse
quences for the future of simulation languages. A 
programmer if he is to "think parallel" must be 
freed from the chore of ordering problem state
ments. Such freedom is available if a sorting algo
rithm, . as first proposed by Stein and Rose, is used. 
Alternatively, an extrapolation scheme, as used in 
PAR TNER and SCADS, achieves the desired paral
lelism, but at a cost in storage and execution effi
ciency. The languages incorporating sorting or ex
trapolation are true parallel languages and provide 
the designer with a parallel device to represent his 
parallel physical system. It is always treacherous to 
be dogmatic, but on this point it seems clear that a 
language without sorting (or its equivalent) is sim
ply another, perhaps slightly superior, method of 
programming a digital computer, and is in no way a 
parallel system simulator. 

FORMAT 

Present Format Inadequacies 

Perhaps the most important consideration in de
signing a simulation language is the utility of the 
input format. A good, flexible, natural appearing 
format would encourage wide usage, facilitate train
ing, and reduce errors. All existing formats are 
much too arbitrary and generally reflect both the ar
tificialities of digital computer modes of thought, 
and the physically determined inadequacies of ana
log elements. 

Under digitally derived restrictions, one might 
mentation the exaggerated importance given to col
umn position in a statement, the need for commas 
and decimal points where unnecessary for clarity, 
and the requirement for a specific, arbitrary order 
of arguments within a statement. 

Analog inadequacies have been mentioned; they 
appear as restrictions on the number of inputs to an 

element, poor logical and memory features, and ru
dimentary labelling capability. (This latter is a cu
rious anachronism, since even the most primitive 
digital computer assemblers permit symbolic labell
ing). Some formats, notably ASTRAL, were based 
directly on a specific analog computer and may be 
expected to have certain deficiencies. In others, e.g., 
MIDAS and P ACTOLUS, no real attempt was 
made to simulate an analog computer yet the im
plied hardware limitations are nonetheless present. 

As a consequence of the poor format, operational 
difficulties are found to stem from trivial clerical 
errors, such as dropping commas or decimal points, 
or having input statements in the wrong order. 
These difficulties are increased by the" multiplicity 
of primitive operators, and the consequent need for 
large complex networks to represent algebraic state
ments. The artificialities also tend to make the lan
guage more difficult to learn, or having been 
learned, to retain all the esoteric details. (The re
tention of these details might seem a small matter 
to the "professional" programmer, but is a real con
cern to the occasional user.) Modern computers 
with character handling ability and high execution 
speed can free the programmer from this sort of de
tail, with very little penalty in increased compila
tion time. 

General Format Rules 

There is now a large fund. of experience in the 
design and utilization of parallel languages, and 
some general, somewhat dogmatic, statements can 
now be made about format. On a very general level, 
these could be reduced to two rules: The format 
s;hould be both "natural" and "non-arbitrary." 
These rules require some amplification. 

"Naturalness:" The input problem statement 
should be as close as possible to the normal, ac
cepted method of problem statement. The question 
in the designer'S mind should be: if I were prepar
ing a problem for my own future reference and ex
planation to others, how would I state it? The an
swer to such a query would naturally vary with the 
type of problem. 

If a parallel control system is to be analyzed, the 
problem would most naturally be stated in a block 
diagram, wherein each block represented a more or 
less complex operator such as gain, limit, hysteresis, 
transfer function, etc. 

If, however, a set of differential equations is to 
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be studied, it is a great deal of wasted effort to for
mulate the problem in block form. The process is 
conducive to error and really adds nothing to the 
understanding of the problem. 

It is imperative that the input statement, the 
cards presented to the digital computer, should 
match as closely as possible the normal, natural 
statement of the problem. Of course, there are fun
damental limitations, notably the fact that super
scripts and subscripts are normally used while the 
card punch must work on one line. However, much 
can be done, and actually has been done to "natu
ralize" format, especially in the APACHE * and 
UNITRAC23 programs. 

To reiterate, the input statement should be flexi
ble enough to match the natural form of diverse 
problems; block diagram and differential equation 
types have been mentioned. Many problems arise 
that are really combinations of these classes, e.g., 
an airframe in an autopilot loop. The format should 
natually be capable of stating each problem area in 
its normal form. 

Non-Arbitrariness: Arbitrary formats,more than 
anything, have limited the utility of parallel lan
guages. One commonly finds early enthusiasm for 
the idea of parallel languages, and then disenchant
ment when the "format gap" between the idea and 
its implementation is fully appreciated. In many 
facilities, where digital computer turn-around is 
measured in days, the trivial errors caused by the 
complex, arbitrary format extend a problem's 
check-out time to unacceptable periods. 

However, this is not a fundamental problem; 
surely parallel languages· can be written to eliminate 
most of these difficulties. It seems that few authors 
have given much thought to minimizing arbitrari
ness in their concern for other aspects of the lan
guage. This is seen clearly in the early work of Sel
fridge and Lesh, where the root idea of parallel lan
guages was the main subject of study. Unfortunate
ly, examples are still apparent: Many outstanding 
contributors, in their understandable enthusiasm for 
man-machine interaction and efficient implemen
tation, have been satisfied with adopting earlier 
format ideas and have neglected the ramifications 
of a good, clear, non-arbitrary input statement. 

*The AP ACHE24 program is not really of the genre under 
consideration here. The program takes differential equations 
and generates an analog wiring diagram and static check. 
However, the format considerations are nearly identical to 
equation solving languages, and the APACHE authors have 
produced an input format worthy of study. 

A few obvious requirements are discussed below: 

(a) A "free format" statement capability, i.e., 
statements can appear anywhere on the 
card. This is available in the UNITRAC 
and DSL/90 programs, and should elimi
nate much of the frustration produced by 
coding or key punch slips. 

(b) The ability to enter numerical data in any 
convenient form, e.g., 200.0 might be 
written 200, 200.0, 200., 2E2, 2.0E02, etc. 

( c ) The ability to use either literals in a state
ment (Y = 4X) or the option to symbol
ically label constants (Y = KX). In the 
latter case, the constant would be specified 
in the normal fashion. (K = 4 or K = 
4., etc.) 

(d) The ability to label quantities in a sensible, 
problem related fashion, and use this label 
to specify the variable without reference to 
an arbitrary block number. The latter label
ing method could be retained for meaning
less intermediate quantities. It should be 
noted that the need for problem related 
labeling was one of the first lessons learned 
by software designers and is now available 
with virtually all assemblers. 

Complexity of Format 

An open question at this time is the allowable 
degree of complexity in the input format statement. 
The trend in new languages appears to be away 
from the simple, analog type blocks to statements 
reminiscent of FORTRAN. 

Table 2 shows an "algebraic capability" scale, 
with some of the languages distributed along it. At 
the lower end, one finds a very primitive capabili
ty, which can represent any algebraic statement, 
albeit in an extremely awkward form. Fortunately, 
no one has been inspired to implement this sort of 
language. (This is not to say such codes are useless; 
a primitive language is generally the intermediate 
representation in a compiler program.) Moving up 
the table, the next stage is basic mathematical oper
ators modeled by and large on analog computer 
components. DAS and MIDAS are good examples 
of this class. Here, there is some advance from a 
"minimum vocabulary" and a great deal of flexibil
ity is available, particularly for block oriented sys-
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Table 2. Algebraic Capability Scale. 
(listed in order of decreasing capability) 

Description 
Statements in any form 
understandable by the engineer 
Nested sum of products and 
any functions or operators 

Examples 

MIMIC 

~pica1 Statement 
dy / dt = y sin w t + x2 

Yo = 5, Yo = 0, W = 2II 
Z = (XY + K1SIN WT) *ERF 
(L*N) - INT ((A + B) *C) K2 

Nested sum of products and operators 
Nested sum of products and certain 
functions (a la FORTRAN) 

DSL/90, UNITRAC 
Y: ADD (X,MPY (B,Z,SIN)(U») 
Y = X * Y * (SIN(A + B) )+K*M 

Nested sum of products DES-1 Y = X *(C1 + C2 - C3*(C4-C5» 
Single level sum of products 
Coefficients on inputs to block operators ASTRAL, DEPI, 

DYSAC 

Y = K1 *X*X + K2*Z + K3*K4 - K5 
N04 = P01*N01 + P02*N02 

Basic mathematical operator (a la analog) 

Primitive operators, the minimum 
necessary, with the minimum inputs 

DAS 
MIDAS 

tem representation. However, programming is awk
ward for algebraic type problems. 

The next stage provides coefficient setting on all 
inputs to blocks of the type discussed above. * As 
on an analog computer, only constants can be mul
tiplied by the input variable. 

A natural extension of coefficient setting is, of 
course, variable multiplication at element inputs, 
the next step up the table. (Division is also as
sumed permissible here.) This stage has not been 
implemented, probably because the transition to the 
next stage is so evident. 

In this stage, exemplified by DES-I, nesting of 
sums of products (and quotients) is allowed, i.e., 
any level of parentheses is permissible. A flexible 
statement is provided, although no functional rela
tionship (sin, exp) can be imbedded in the sum of 
products. 

This lack is provided at the next stage, now 
available in the DSL/90 and UNITRAC languages. 
Here, an input statement very similar to FOR
TRAN is available; a limited number of functions 
may be used in the statement. 

It might seem odd that a MIMIC type language, 
which allows only operators in the statement, should 
be set above UNITRAC or DSL/90 which permit 
functions. However, since function generators can 
be considered as operators, this format is extenda
ble downward, and further allows operations like 
integration and limiting to be imbedded in the in
put statement. 

Moving now to the top, the next stage provides a 

*It is seen here that the evolutionary movement up the 
table is not in strict chronological order. ASTRAL and 
DEPI preceded DAS and MIDAS. 

MI: S1,12 
Sl: K1, 12, M3, K5 
M1: S1,12 
S1: K1,12 
S2: S1, K3 
12: K1 

synthesis of the two below, allowing both operators 
and functions to appear in the nested sum of prod
ucts. The allowable function list would be open 
ended and at the user's discretion. No published 
work provides this capability. At the very top, and 
really hardly in sight, is the capacity to accept any 
reasonable problem statement understandable to the 
engineer. 

There certainly are objections to considering up
ward movement on the table as c.volutionary, with 
the implied value judgment concomitant to that 
view. The authors would agree that a powerful alge
braic capability, although very useful for some 
tasks, must at the present state of the art carry with 
it increased complexity and arbitrariness. The tool 
may prove too powerful for many users and lead to 
confusion and errors. Further, many users prefer the 
block approach and with excellent reasons. 

However, all fears can be allayed, since regard
less of the available complexity, lower level state
ments are possible by simply limiting the size and 
complexity of the more powerful statement. A close 
examination of Table 2 will show that any of the 
formats are easily derived by restricting the extent 
of those above. 

Diagnostics 

In general, program error diagnostics should be 
extensive and specific. Each card containing the 
error, and only that card, should be printed, along 
with a specific comment on the trouble. Alterna
tively, diagnostics could be printed immediately ad
jacent to the erroneous statement, as the source lan
guage is being printed. Closed algebraic loops 
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should naturally be printed separately from format 
errors. 

It is expected that improved format will reduce 
this sort of error, but some are sure to appear and 
rapid checkout requires good diagnostics. 

Diagnostics and corrections to the program must 
be permitted in the source language to free the pro
grammer from the details of debugging at the ma
chine code level. For hybrid work it is essential 
that such source level debugging and modification 
be permitted on-line through a console typewriter 
or similar unit. Extremely rapid compilation is of 
course necessary to make this economical. 

On-line debugging and modification has been 
explored more fully in an earlier article by the 
authors.25 The particular framework in point was a 
huge multiprogrammed digital computer with ana
log type terminals (one might say a large scale 
multiprogrammed P ACTOLUS, or a time shared 
DES-I). With such a system and a parallel lan
guage, the advantages of analog computers (paral
lelism, intimate man-machine communication) 
and digital computers (accuracy, repeatibility) are 
both apparent. The language employed with this 
system must permit clear diagnostics and simple 
modification at the source level to retain the analog 
virtues of simple communication and rapid modifi
cation. 

STRUCTURE 

Integration with Software System 

As is well known, all modern software systems 
contain many languages; one might mention FOR
TRAN, assembly language, ALGOL and COBOL. 
These languages are generally under the control of a 
monitor or executive program, which calls programs 
to compile (or assemble) various source programs 
into machine code. Usually subprograms can be 
written in any of the source languages, and a com
plete program linked at load time. 

The parallel language should come under this or
ganization, and be available along with FORTRAN 
and the rest, as the optimum source code for a par
ticular class of problems. In this way, and using the 
subprogram feature, each problem area could be 
written in the best language for a particular task; 
say, parallel language for the differential equations, 
FORTRAN for the arithmetic, and machine lan
guage for chores such as masking, character han
dling, and Boolean operations. 

Extension Capability 

In order to remain useful in the face of continu
ously expanding user requirements, any language 
must be able to grow with needs. When a parallel 
language is examined with the intent of increasing 
capability without organizational disruption, it is 
seen that expansion should take the route of adding 
operators or functions. Expansion must, of course, 
fit neatly into the total software system, i.e., the 
other languages and the executive program, as out
lined above. Since a common subroutine format is 
already available with the other languages, any sub
routine, written in any source code, could be used 
by the parallel language programmer and be called 
simply by using the subroutine name as an opera
tor. 

Augmenting the operator set must be made very 
simple and obvious so the average user, unfamiliar 
with normal digital techniques, can exploit the ex
tension feature without recourse to a systems or 
maintenance programmer. 

User-Oriented Organization 

The language should be designed to easily match 
the capabilities of diverse programmer levels. Basic 
subsets, such as primitive operators, algebraic state
ments, etc. should be made available to the less so
phisticated programmers. These subsets should be 
capable of integration and mixed use by the more 
highly skilled user. Also, elements of a more com
plex nature (e.g., serial operators) should be 
available to the expert, but not a matter of concern 
for the novice. Thus, a structure is required that 
will permit the novice to learn a mimimum subset 
and then advance, if he wishes, to the use of an ex
tremely complex and powerful simulation language. 
(Or looking at. it yet another way, there should be 
open and closed shop versions; the various open 
versions upwardly compatible with the closed shop 
version.) 

In sum, there seems to be no need to restrict the 
language's use to a particular programmer level, if 
the initial design is done in a systematic manner. 

IMPLEMENTATION 

Regardless of format and structure, the language's 
effectiveness will depend entirely on the quality of 
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the implementation. This aspect has recently been, a 
major interest area, and the concepts are becoming 
rather well developed. 

In general, a program that produces machine 
code is a necessity for efficient execution. MIMIC 
and SCADS, compilers, dire"ctly achieve this, while 
DSL/90 and ASTRAL generate a FORTRAN deck 
which can then be compiled into an object program. 
This latter approach, (if a good FORTRAN com
piler is used), can produce efficient code by ex
ploiting the considerable efforts expended by FOR
TRAN designers. There are certain applications, 
particularly those with small machines, where an 
interpreter program makes more sense, but general
ly a compiler seems the best route. This is detailed 
more fully below. First, an examination of the 
trade-offs involved in writing a compiler program 
for a parallel language. 

Compiler for Different Applications 

As was mentioned, there are three major usage 
areas for parallel languages: analog check cases, dif
ferential equation solving, and the digital protion of 
a hybrid problem. The relative weights given to 
compiling and execution times vary with the partic
ular application. 

Analog Check Cases: This usage is generally on 
a single job basis, i.e., the program is compiled and 
run once and then discarded. Since the object pro
gram is never used again, only the sum total of 
compiling and execution time for one run need be 
minimized. In fact, this minimization is hardly a 
point to stress, since analog check cases would 
probably represent a small total of a digital facili
ty's work load. 

A II Digital Simulation: If the language is to be 
used for this application on a "load-and-go" ba
sis, minimization of the total time is of prime im
portance. On the other hand, if production pro
grams are the expected rule, execution time is the 
quantity to be minimized. 

Hybrid: Here, the requirement for an efficient 
object program is a vital consideration, and real 
sacrifices can and must be made in compiling effi
ciency. 

As a general rule, compiling time should never 
be minimized at the expense of input format, and 
only as a last resort should format be sacrificed for 
decreased execution time. This latter seems a re
mote possibility, but it is easy to see compiling 

time increased in the interests of simpler program
ming. 

Different Computers 

If this language is to achieve the general usage 
typical of FORTRAN, some thought must be given 
to implementation for diverse computers. It is point
less to design a system workable only for a CDC 
6600-6800 or the top of the IBM 360 line. Similarly, 
it is a waste of effort to aim at implementation solely 
for a PDP-8, DDP 116 or SDS 92. The large ma
chines obviously should have the full language, i.e., 
all subsets, and be provided compiled versions. For 
the smaller machines, two appro~ches are possible. 
The basic subsets could be compiler versions, thus 
providing efficient programs although only for small 
problems and at a modest language level. Alterna
tively, the complete system could be run in an inter
preter mode, sacrificing time, but permitting the 
use ofa very powerful tool on a small machine. 

REQUIRED FEATURES 

Along with implementation, the operational fea
tures of the language (the programmer's bag of 
tricks) have been a major concern of language de
signers. This section does not aim to be all-inclu
sive; probably some of the "required" features have 
not been invented yet. The requirements can be 
subdivided into two classes: structural or logical 
features, and the types of elements or operators. 
Sorting is not discussed, since it is assumed that all 
modern parallel languages will be so equipped. 

Structural Features 

1. Logical Control: Logical. control over 
program structure and execution is of para
mount importance. DES-I, being sequen
tial, easily incorporates this feature by the 
use of "IF" statements similar to FOR
TRAN. MIMIC, a true parallel language, 
still provides decision capability with the 
"logical control variable." 

In substance, statements or operators are 
serviced or bypassed as a function of prob
lem variables. So long as the by-passing 
is done in the true digital sense (non-ex
ecution), and not the analog sense (execu
tion, but no use made of the outputs), a 
substantial time savings is realized. 



34 PROCEEDINGS - FALL JOINT COMPUTER CONFERENCE, 1965 

Logical control is quite important. With
out it a parallel language yields no more 
than a hyper-accurate and hyper-repeatable 
analog computer; some of the best features 
of the digital computer, decision capability 
and memory, are unused. 

2. Multiple Rates: This important provision, 
available in DES-I, minimizes execution 
time by servicing slowly changing variables 
only as required. Generally speaking, mul
tiple rates increase the effective bandwidth 
of the simulation program. This has real 
import for hybrid work. 

The multiple rate option is clearly a part 
of logical control capability. In this case, 
sections of the program are not executed at 
every pass, but unlike full logical control, 
the bypassing is not under control of a pro
gram variable. 

3. Macro Capability: The macro capabilities 
of modern assemblers should be availa
ble to the parallel language programmer. 
Using this feature, prototypes of often used 
problem sections could be coded with un
specified parameters, and then subsequent
ly used as integrated units. Macros would 
obviate repetitious coding of identical 
loops or problem areas, e.g., parallel sec
tions of control systems that are identical 
in structure. 

4. Subprograms in Other Source Code: In a 
normal digital computer operation, there is 
always a large library of routines available 
to the programmer. These programs should 
be easily incorporated within the parallel 
language. If expansion is implemented as 
suggested (see Extension Capability), not 
only would the entire library be available, 
but the programmer with digital training 
could use whatever language desired for 
particular problem areas. For example, log
ical or Boolean operations would be most 
easily handled in machine language. 

5. Repetitive Operation and Memory: It 
should be possible to repeat runs, as on a 
repetitive analog computer, with new par
ameters calculated from previous runs. 
This implies two further requirements: 
function storage, and algebraic calculations 
between runs. 

Elements 

In this section, the normally found operators, e.g. 
summers, multipliers, etc., are taken for granted. 
No attempt has been made to be comprehensive; 
however, those discussed are considered important 
and/or relatively rare in present languages. 

1. Integrator: An accurate, efficient integra
tion method is the sine qua non of digital 
simulation languages. Apparently no firm 
conclusions have been reached as to the 
best algorithm; the number of schemes 
tried is almost as large as the number of 
languages (See Table I). As an example of 
the dynamics of this situation, note that 
Sansom, having used an excellent method 
(4 point variable step predictor-corrector) 
in MIDAS, changed to another (modified 
Runge-Kutta) in MIMIC. 

DES-I, DSL/90 and COBLOC permit a 
number of integration options, ranging 
from simple Euler integration to complex 
Runge-Kutta and Adams-Bashford al
gorithms. This variety does allow the user 
to select a. scheme which is adequate for 
the required execution time, but presup
poses considerable knowledge of numerical 
techniques on the part of the programmer. 
This presupposition defeats in large part 
the basic idea, i.e., the simplicity and ease 
of use, even for relatively untrained people. 

In sum, it appears at this time that the 
debate is hot on integration methods, and 
more experience is still required. Parenthet
ically, it might be said that an objective, 
thorough comparison of the various op
tions would be a real service to the field of 
digital simulation. 

2. One Frame Delay: This element delays 
its input by one integration interval. It 
should be available for the sophisticated 
user to selectively "desort" the program 
list. COBLOC and DSL/90 presently have 
the option of sort/no sort, but if the no 
sort option is required in only one small 
area, much care must be taken in the other 
sections to insure proper operation. The 
one frame delay is also quite useful for 
representing sampled data systems or mem
ory functions. 
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3. Hysteresis or Backlash: This element is 
not easily constructed from standard analog 
type elements, but represents a trivial task 
for the digital computer. 

4. Limited Integrator: Again, no easy chore 
from the standard elements, and no real 
effort for the digital computer. MIMIC 
presently has a limited integrator element 
which is used in conjunction with a stand
ard integrator. 

s. Transfer Functions: These operators are 
used extensively in control system design 
and the like, and are simply constructed 
from analog type elements. However, the 
very frequency of their use suggests they be 
made available as integrated general-pur
pose units. 

In addition to the programming time sav
ings, execution time can be saved, since 
the integration algorithm required for a 
closed loop transfer function is much sim
pler than a comparably accurate routine for 
open loop integration. 

Far greater savings are possible by using a 
difference equation algorithm. This. meth
od requires only one computational step of 
the same size and complexity of a single 
integration. Compare this with the n inte
grations required for a transfer function 
with nth order denominator, when pro
grammed by normal analog methods. 

6. Print Operators: Very often, in checkout 
and operation, it would be helpful to force 
a print (number or words) at an arbitrary 
point in the program. The operator would 
be similar to a "snapshot" print, but would 
be under the control of problem variables. 
As a trivial example, consider the printing 
of "OVERLOAD" when an analog check 
case variable exceeds 100. 

7. Parallel Logic: The operators of interest 
here are the normal digital units found on 
most modern analog computers. (AND 
gates, flip-flops, counters, shift registers, 
etc.) These elements are presently availa
ble in the MADBLOC, COBLOC, and 
MIMIC languages. Their inclusion is es
sential to provide a digital check for a 
modern analog computer problem. When 
solving differential equations, such units 
are also useful for simple logic and storage. 

For the higher level logic of the type nor
mally associated with general-purpose 
digital computers, machine language sub
programs, as discussed above, are more 
useful. 

8. Linkage Elements: For hybrid program
ming, elements or labels for analog to digi
tal converter (ADC) and digital to analog 
converter (DAC) components must be 
provided. ADC's could be handled simply 
as another parameter input to the problem. 
These could be realistically labeled and 
then identified somewhere in the program 
listing, e.g., ALPHA = ADCl. DAC's 
could also be easily handled; for the digital 
program they are merely elements with one 
input and no output. Sorting these ele
ments presents no difficulties: ADC's would 
be treated exactly like constants; DAC's 
would be sorted like any other element 
which has an input. 

9. Hybrid Integrators: Since variables trans
ferred to the analog computer are usually 
held for an entire frame, an effective half 
interval time lag results. Thus, integrators 
generating quantities destined for the ana
log must account for this lag phenomenon. 
Those integrators in a purely digital loop 
must, of course, neglect this extrapolation. 
Therefore, different integrator types, easily 
distinguishable and easily specified, must 
be provided for the two requirements. It is 
entirely possible that the sorting routine 
could automatically make the necessary 
distinctions by tracing back from a DAC 
to integrators not isolated by another inte
grator. An alternate procedure is the addi
tion of an extrapolation calculation to each 
DAC element. However, this approach 
costs both storage and execution time. 

CONCLUSIONS 

Digital simulation languages have made a real, 
and probably permanent, impact on the fields of 
both simulation and computer programming. As has 
been pointed out, there are more or less serious 
faults in all existing languages. The success of the 
approach is, however, evidenced by the undeniable 
acceptance, utilization and enthusiasm for simula
tion languages, regardless of the difficulties at the 
present phase of development. 
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It is the authors' hope that the conclusions and 
recommendations proposed herein will add signifi
cantly to the utility of simulation languages, and 
the field will enjoy even further growth and accept
ance. 
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Cambridge, Massachusetts 

INTRODUCTION 

Simplification is a central and basic operation in 
the manipulation of mathematical expressions. In
deed, much of the tedious algebra that' plagues 
scientists and engineers involves the time-consum
ing application of simplifying transformations to 
unwieldly mathematical expressions. It seems ob
vious, conceptually, that some simplifying transfor
mations can be applied "automatically" to arbitrary 
expressions. However, there are transformations 
that require special handling; they simplify some 
expressions and complicate others.· 

FORMAC, an acronym for FORmula MAnipula
tion Compiler, is an experimental programming 
system currently available as a Type II program 
from IBM. It is a tool for programming the IBM 
7090/94 to perform tedious mathematical analysis 
on complicated mathematical expressions. The 
FORMAC language contains, as a subset, FOR
TRAN IV; hence, FORMAC provides the capacity 
for performing both nonnumeric and numeric calcu
lations in the same program. The FORMAC lan
guage is described thoroughly in increasing amounts 
of detail in references 1, 2, and 3. The details of 
FORMAC implementation are presented in ref
erence 4. 
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The remainder of this paper is divided into four 
sections: Historical Background, The Role of Sim
plification in the FORMAC System, Simplification 
Transformations, and The FORMAC Simplification 
Algorithm. 

HISTORICAL BACKGROUND 

A "SIMPLIFY" routine was written as early as 
1959 as part of the Dartmouth Mathematics Proj
ect. It is the most complex routine reported in ref
erence 5. During the same academic year, Edwards6 

and Goldberg7 explored the possibilities of automat
ic simplification in the context of electrical circuit 
analysis. A LISP coded simplification package was 
central to Goldberg's work. Within the next two 
years Maling8 discovered that simplification was 
essential to the LISP differentiation effort and 
Hart9 developed "SIMPLIFY," a LISP function for 
simplification. In 1963 Wooidridge10 completed 
another LISP simplify program, which was written 
to be used on-line in a time-sharing environment. 
In April of 1964 the experimental FORMAC sys
tem completed systems test and became operational. 
It included a comprehensive simplification capabili
ty. In November 1964 the FORMAC system was 
released as a Type III program. 
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The FORMAC AUTomatic SIMplification rou
tine (AUTSIM) presents several contrasts to pre
vious efforts: 

1. None of these efforts is part of a compre
hensive mathematical-expression manipula
tion system, nor are they as ambitious as 
AUTSIM. 

2. The LISP coded efforts are recursive. 
AUTSIM is essentially nonrecursive; al
though the basic scan is controlled by a 
push-down store, the simplification trans
formations do not employ recursion. 

3. With respect to his own effort, Wooldridge 
(reference 10, page 31) observes, "There 
is no doubt that a large proportion of the 
time spent simplifying is devoted to re
peating simplifications already done." 
AUTSIM is designed to avoid redundant 
simplifications. This is a fundamental as
pect of the AUTSIM scan and the entire 
FORMAC object time system. 

THE ROLE OF SIMPLIFICATION 
IN THE FORMAC SYSTEM 

The FORMAC programming system consists of 
three parts-a programming language, a preproces
sor, and a set of object time routines. In this sec
tion we discuss the relationship of automatic sim
plification to the FORMAC programming system. 

The FORMAC programming language is a prop
er extension of FORTRAN IV and contains 4 de
clarative statements and 15 executable statements in 
addition to the full FORTRAN .IV language. FOR
MAC also introduces additional symbolic mathema
tical operators from which symbolic expressions can 
be composed. The language statements are summar
ized in Table 1, and the list of operators that may 
be used to compose symbolic expressions is dis
played in Table 2. These additions to the FOR
TRAN IV language permit the user to . construct 
and manipulate symbolic mathematical expressions 
at object time. The statements listed under 2b in 
Table 1 provide an interface with the FORTRAN 
program logic and with FORTRAN numeric capa
bilities. The form of generated symbolic expressions 
can control the logic of program execution. Symbol
ic expressions can be evaluated and the numeric re
sults used in FORTRAN-coded, numeric calcula
tions. 

The FORMAC preprocessor scans through a 
FORMAC source program and converts the FOR
MAC language elements into FORTRAN IV state
ments. Among these are many calls to FORMAC 
object time routines. In addition, the preprocessor 
creates a prototype for each symbolic expression 
that occurs explicitly in a FORMAC command. 
This prototype is used by the object time routines 

Table 1. Summary of FORMAC Language Exten
sions to FORTRAN IV. 

1. Four Declarative Statements 

ATOMIC declare basic variables, which name 
themselves. 

DEPEND declare implicit dependence rela
tions. 

P ARAM declare parametric pairs for SUBST 
and EVAL. 

SYMARG declare subroutine arguments as 
FORMAC variables; flag program 
beginning. 

2. Fifteen Executable Statements 

( a) statements yielding FORMAC variables 
LET * construct specified expressions. 
SUBST* replace variables with expressions. 
EXP AND * remove parentheses. 
COEFF* obtain coefficient of variable or of 

PART 

ORDER * 

a variable raised to a power. 
partition expressions into terms, fac
tors, exponents. 
specify sequencing of variables with-
in expressions. 

(b) statements yielding FORTRAN variables 
EV AL * evaluate expression. 
MATCH * compare two expressions for equiva

FIND * 
CENSUS 

lence or identity. 
determine dependence relations. 
count words, terms, or factors 

( c) miscellaneous statements 
BCDCON convert to BCD form from internal 

form (prepare symbolic expres
sions for output with FORTRAN 
"WRITE" statement). 

ALGCON* convert to internal form from BCD 
form (facilitates input of symbol
ic expressions with FORTRAN 
"READ" statement). 

*These commands called AUTSTM. 



AUTOMATIC SIMPLIFICATION IN FORMAC 39 

+ 

* 
/ 
** 

A UTSIM control arithmetic done during auto
matic simplification. 

ERASE eliminate expressions no longer 
needed. 

FMCDMP symbolic dump 

Table 2. FORMAC Operator Set. 

EXP 
(unary LOG (natural 
internally) logarithm) 

SIN 
(external only) COS 
(power, t ) ATAN ( arctangent) 

FAC (factorial) TANH 
(double 

DFAC factorial) ] ( delimiter) 
COMB (combinatorial) DIF ( differentiation) 

to generate the required expression when the corre
sponding FORMAC command is executed. Consid
er the segment of a sample FORMAC program rep
resented by statements 1 and 2, below. 

1. LET U = (1 + Z)**N 
2. LET X = (1 + Z)**M-U + Z**5 

These two statements cause the prototype expres
sions 1 p and 2p to be constructed by the preproces
sor. 

1p. (1 + Z)**N 
2p. (1 + Z)**M - U + Z**5 

When the call statement, generated by statement 1 
during preprocessing, is executed at object time, the 
symbolic variable U is defined as the name of the 
newly generated expression (1 + Z**N. This is ac
complished by scanning the prototype expression 
which the preprocessor constructed for (1 + Z) * *N 
and replacing the variables Z and N by their current 
values. Let us suppose that Z is a symbolic variable, 
i.e., it is either the name of a symbolic expression 
or it may be an ATOMIC variable. In either case 
its value is symbolic. N, on the other hand, is a 
FORTRAN variable. Its value is numeric. Then the 
generated expression for 1 p will be like 1 p, only Z 
and N will have been replaced by their current val
ues. If the value for Z is W-1 and for N is 2, then U 
names the generated "expression 1 g. Similarly, if the 
value for M is 3, then-after execution of statement 
2-X names the expression 2g. 

19. (1 + W - 1) * *2 
2g. (1 -I- W - 1) **3 - (1 + W - 1) **2 

+ (W - 1)**5 

Note that both these expressions require simplifica
tion. The extent to which they may be simplified is 
unknown at compile time. Moreover, the degree to 
which the FORMAC user understands (when writ
ing the program) just which simplifications will be 
applicable to these expressions depends on the com
plexity of the logic of the program in which they 
are embedded. For example, 

(1+Z)**M-U 

will cancel if the current values of M and N are 
equal; however, the values of M and N may be de
termined by quite complex program logic. We see 
that in a mathematical formula manipulation sys
tem, organized as FORMAC is, an object time sim
plification capability is essential. (The expressions 
being manipUlated may be far more complex than 
in the above example!) Moreover, that capability 
must be, to as great an extent as possible, automat
ic. 

The FORMAC object time system is composed 
of many subroutines. The command level routines 
which correspond to the FORMAC executable 
statements are the basic object time routines. These 
in turn call a number of service routines. The auto
matic simplification routine, AUTSIM, is the most 
important service routine. Each command which is 
starred in Table 1 calls AUTSIM at least once. 

The role played by AUTSIM in the FORMAC 
object time system is not unlike that envisaged by 
the Dartmouth Mathematics Project. 5 Their SIM
PLIFY routine was designed to serve a threefold 
purpose: 

( 1) The answers produced by other programs may appear 
in a far more complicated form than necessary, and then it 
is desirable to simplify them. 
(2) It may be desirable to simplify a given formula before 
applying one of the other routines. 
(3) It is a program that attempts to reduce formulas· to a 
canonical form. Such a form is particularly useful, for 
example, when we try to find out whether two formulas 
represent the same function or not. 

Purpose (1) is relevant to FORMAC; the result 
of an EXPAND (see Table 1) may require the col
lection of like terms in a sum. There is an addition
al aspect which is worth noting. The design of the 
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algorithms for the basic FORMAC commands was 
simplified by the assumption that AUTSIM would 
clean up expressions after manipulations had been 
performed. It was not necessary to rule out a fast, 
simple algorithm for a particular manipulation sim
ply because it produced a more complicated expres
sion than necessary. Moreover, the inclusion of 
code in the algorithm to eliminate redundant expres
sion elements and to clean up expressions, would 
have lead to a proliferation of redundant code 
throughout the FORMAC object time system. 

Several FORMAC command algorithms are 
greatly simplified by the assumption that the 
expression they receive is already simplified and in 
p-canonical form ( to be defined later) . This is 
close to the intent of purposes (2) and (3) above. 
Note, however, that in purpose (2) the Dartmouth 
investigators were also concerned about the success 
of their algorithms on a given expression if it were 
unnecessarily complicated. The concern was not as 
significant in the design of FORMAC algorithms, 
but then the FORMAC design goals did not include 
symbolic mathematical manipulations for which 
complete algorithms do not exist. 

The AUTSIM algorithm itself makes use of the 
applicability of purpose (3) . Collection of like 
terms in a sum of like factors in a product is depen
dent upon the assumption that such terms or factors 
will be in a nearly identical form. 

Since AUTSIM is at the iterative heart of the 
FORMAC object time system, it is important to 
consider just how fast the algorithm is. 

An example is provided in reference 11. The 
FORMAC system was used to generate expressions 
of interest to the astronomer. The computer (IBM 
7094) required 18.67 minutes to generate the first 
27 iterates. It is estimated that to do this work with 
any reliability would require 60 years by hand. 
AUTSIM is called 2,975 times during execution of 
this program. Note, this does not mean that every 
time AUTSIM was called it changed the input 
expression. If the expression was already simplified 
no simplification was performed. This also holds 
for subexpressions which have been simplified pre
viously (see Fig. 1). No doubt, many of the calls in 
the above example resulted in very little actual sim
plification. But this is a mark of a well-designed 
simplification algorithm; it must not perform re
dundant simplifications. 

We have seen that an automatic simplification 
algorithm is essential to the successful operation of 

the FORMAC system. Moreover, once the decision 
has been made to include an automatic simplifica
tion algorithm in a formula manipulating system, 
the design of the other object time algorithms is 
simplified in two ways: one can make definite as.,. 
sumptions concerning the form of expressions 
which are to be manipulated; and, the form of the 
manipulated result need only be mathematically 
correct (it may contain redundant or unnecessary 
subexpressions which the automatic simplification 
routines will remove). 

SIMPLIFICATION TRANSFORMATIONS 

As intuitively obvious as the need for it may be, 
simplification is a difficult class of expression 
transformations to define. Even to a human en
gaged in the manipUlation of complicated or 
lengthy expressions, it is frequently not obvious 
which transformations constitute actual simplifica
tions of an expression. The confusion is compound
ed by differences of opinion. W 00idridge10 acknowl
edges this aspect of the problem by referring to his 
program as one "which performs 'obvious' (non
controversial) simplifying transformations." Confu
sion may also arise from the failure to make a dis
tinction between "simplified" form and "intelligi
ble" form. Frequently, these are not equivalent. 
Consider the expression 

I 2A 
C \) DE (2DF + C) 

It is in some sense simplified, yet for the engineer 
it may be more intelligible in the form: 

D I A I A 
c'\} E (F + C/2D) = cp '\} E (F + cp/2) 

with cp C/D. An engineer may spend weeks 
or months massaging a simplified mathematical 
expression. His goal is to arrange the expression so 
that the relationship between the crucial variables 
becomes transparent or intelligible to the human 
observer. The adequacy of the result is highly de
pendent upon human perception of mathematical 
relationships. Yet the expression is already simpli
fied. Like terms and factors have been collected in 
sums and products; evaluation of strictly numerical 
elements has been performed; various redundant or 
extraneous elements have been removed. Although 
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INITIALIZE 
POINTERS TO 
EXPRESSION 

UPDATE POINTERS 

SO AS TO 
SIMPLIFY 

THIS WFF 

UPDATE POI NTERS 

SO AS TO 

SKIP 

THIS WFF 

PERFORM 

TRANSFORMATION 
(CALL LEXICO 

IF NECESSARY) 
UPDATE POINTERS 

SET AABITS 

Figure 1. Flow diagram for AUTSIM subroutine. 

we have no better definition to offer of intelligible 
form and simplified form, we maintain that the dis
tinction is significant. It is well to note that even 
though the FORMAC simplification algorithm is 
central to the operation of the FORMAC system, 
code (written in the FORMAC language) designed 

to reduce expressions to a particular intelligible 
form is imbedded in many FORMAC user pro
grams. 

If the mathematical context within which simpli
fication is to be performed is suitably uncomplicated, 
there exists a canonical form for all permissible 
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expressions. For example, there is a canonical form 
for polynomials in n variables. The existence of 
such a form can greatly simplify the design of a 
simplification algorithm.5 In polynomial manipulation 
systems,12,13 simplification is simply the reduction of 
polynomials to canonical form. The problem of 
designing a simplification algorithm becomes that of 
reducing expressions to the canonIcal form .. How
ever, in FORMAC it is possible to generate expres
sions which when simplified are equivalent but not 
identical. The fact that, in FORMAC, expansion of 
expressions is performed only under user option 
indicates one way in which this can occur. FORMAC 
will not expand the expression (a + b) 2 to yield 
a2 + 2ab + b2

, unless such expansion is specifically 
requested by the programmer. A second example of 
equivalent expressions is provided by the equation 

eX _ e-X 

tanh (x) = x' - X • e ., e 

The automatic application of expansion to all 
expressions or the automatic replacement of tanh 
(x) by its equivalent would make possible the re
duction to a canonical form in these two cases. 
However, the intelligibility of the expressions being 
manipulated would be greatly impaired. Indeed, the 
automatic expansion of expressions would frequent
ly produce the opposite result from that desired by 
the user. As a result, the FORMAC simplification 
transformations establish at best a pseudocanonical 
(p-canonical) form. As will become evident, this p
canonical form makes additional simplifications 
possible. It also establishes a structural context 
which can be assumed for all automatically simpli
fied ("autsimmed") expressions; thus it reduces the 
complexity of the other FORMAC expression ma
nipulation algorithms. 

Expression transformations that are candidates 
for inclusion in a simplification algorithm can be 
categorized in many ways. There are transforma
tions that contribute directly to the establishment of 
a p-canonical form. Several transformations embody 
basic mathematical laws such as the associative, 
commutative, and distributive laws. There are 
transformations which are "naturals" and transfor
mations which should be placed under programmer 
option. Still others, employ basic arithmetic or 
functional identities. AUTSIM performs transfor
mations that fall into each of these categories. It 
should be noted, however, that no attempt was 

made to incorporate trigonometric identities in the 
FORMAC simplification process. Since the catego
ries indicated above are not mutually exclusive, 
there is no need to discuss them all. Our discussion 
of simplification transformations is partitioned as 
follows: natural transformations, transformations 
which apply the distributive law, transformations 
which embody associativity and commutativity, and 
mathematically undefinable expressions. 

In the paragraphs which follow the mathematical 
transformations are defined in the FORTRAN no
tation. Letters from the beginning of the alphabet 
represent arbitrary mathematical expressions. As 
such, they are often referred to as "well-formed 
(sub) formulas," or "wffs." The transformations 
which AUTSIM performs are labelled with letters 
of the alphabet. 

Natural Transformations 

Consider the following transformations: 

(a) O**A~O A~O 

(b) 1 **A ~ 1 
(c) A * *0 ~ 1 A = 0 
(d) A**1 ~ A 

(e ) (-A) * *N~{ -A * *~ if ~ is an odd .integer 
A * *N If N IS an even mteger 

(f) -(-A) ~ A 
(g) EXP(LOG(A» ~ A. 
(h) LOG(EXP(A» ~ A 
(i) -(3* A *(-B)*C*(-D» ~ (-3)* A *B*C*D 

n 
(j) l Aj ~ l 

n 
Aj 

j = 1 

m 
II 

1 

m 
(k) II 

j = 1 

j = 1 
j~k 

m 
Bj~1I 

j = 1 
j ~k 

Bj~O 

Where Ak = 0 

Bj 
where Bk = 1 

where k exists 
such that Bk = 0 

These are "naturals." They are transformations 
which one usually performs automatically when ma
nipulating a mathematical expression. FORMAC 
also performs these transformations automatically. 

A less clear-cut but natural type of transforma
tion is the evaluation of non arithmetic operators 
with constant arguments. For example, 

X + SIN (1.4) ~ X + 0.98545 
or 

y IFAC (5) ~ y 1120 
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However, in some applications it is desirable to re
place such expression elements with the proper 
numeric value; in others, it is not. The FORMAC 
solution to this quandry is to give the programmer 
control over the automatic evaluation of these 
expression elements. He has four options from 
which to choose: (1) all functions are automatical
ly evaluated, (2) only the integer-valued functions 
(FAC, DFC, and COMB) are evaluated, (3) only 
the transcendental functions (* *, EXP, LOG, SIN, 
COS, ATAN, TANH) are evaluated, or (4) no 
functions are evaluated. The first option is the de
fault option. 

Transformations that Apply the Distributive Law 

Two types of "simplification" utilize the distri
butive law; these are expansion of a product of 
sums and primitive factoring. Some examples fol
low: 

1. A*(B + C) ~A*B + A*C 

2. A*(B + C)*(B - C) + A*C**2 ~ 
A*B**2-A*B*C + A*B*C-A*C**2 
+ A*C**2 ~ A*B**2 

3. (B + C) **3 ~ B**3 + 3*B**2*C + 
3*B*C**2 + C**3 

4. A*X + B*X + C*E*X + D*E ~ 
(A + B + C*E)*X + D*E 

( 1) is a simple example of expansion. (2) is an 
expression which requires expansion as an inter
mediate step toward complete simplification. (3) 
illustrates multinominal expansion. (4) is an exam
ple of primitive factoring (the coefficient of a sin
gle variable, X, has been "factored" out of part of 
the expression). 

Neither expansion or factoring should be applied 
automatically by a programming system. As in ex
ample (2), expansion may, for a given expression, 
provide the key for further simplification. However, 
there are expressions for which it inhibits simplifi
cation. Consider 

(A + B + SIN (X) ) * (A - B) 
'= A2 - B2 + A*SIN(X) - B*SIN(X). 

H this expression is divided by A + B + SIN (X) , 
only in the expanded form will cancellation occur 
automatically, since FORMAC cancels explicit fac
tors but does not perform factorization to uncover 

them. Since only the global context of the expression 
manipulation will in general indicate if expansion or 
coefficient gathering will lead to desirable results, 
these transformations are not included among the 
transformations performed by AUTSIM .. The FOR
MAC commands, EXPAND and COEFF, provide 
these transformations under programmer option. 

Transfonnations that Embody Associativity and 
Commutativity 

The associative and commutative laws for + and * 
contribute in a fundamental way to the behavior of 
mathematical expressions. A basic design goal for 
any simplification algorithm (for a mathematical 
structure for which these laws hold) must be to in
corporate these laws as naturally as possible. As 
shall be obvious in a moment, these laws have im
plications for the internal representation of FOR
MAC expressions, the FORMAC mathematical op
erator set, and the p-canonical form for expressions 
-not to mention the simplification transforma
tions. 

The associative and commutative laws are as
sumed to hold for any expression which is generat
ed or manipulated in FORMAC. There are three 
transformations included in the FORMAC system 
that establish associativity and prepare the way for 
the sorting of operands. Such sorting implements 
the FORMAC assumption that all expressions are 
commutative. These three transformations which 
affect the structure of the internal FORMAC p-ca
nonical form, are listed below under (1) and (2) 
and in the next paragraph under (script 1). (Note: 
(1) and (2) are not performed by AUTSIM.) 

1. A- B ~A + (-B). 
2. AlB ~ A*B**(-l). 

Transformations (1) and (2) are analogous and 
accomplish analogous results. The binary inverse 
operators - and/ are replaced in one instance by a 
unary - and in the other by a binary* *. Under trans
formation (1), the expression A + B - C + D - E 
becomes A + B + (-C) + D + (-E); under (2), 
A*B/C*D/E becomes A*B*C**(-1)*D*E**(-l). 
The net effect of both transformations is the same, 
however. The scope of the main operator (+ or *) 
is made explicit in the expressions and, hence, so is 
the assumption of associativity. This is an important 
characteristic of the FORMAC p-canonical form. 
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Moreover, commutativity of either operator can 
now be relaized simply by rearranging the well
formed formulas (operands) of the operator. These 
two transformations are performed in FORMAC by 
the expression translator, which takes expressions 
written in FORTRAN infix form and translates them 
to the internal FORMAC form. 

(I) 

where 
S 

q 
e Bj 

k = 1 

Ai = e em, 
m=1 

q = p + s - 1, BI = AI, ... , Bi-l = AI-I, 
Bi = CI, ... , Bi+S - 1 = Cs, Bi+s = Ai+l, 
... , Bq = Ap , and e is either I or II. 

The transformation (I) must be included in the 
automatic simplification algorithm. It is not sufficient 
to include it only in the expression translator. The 
FORMAC substitution capability may substitute a 
sum for a single operand of a sum. Since both 
expressions are already in internal form, the trans
formation (I) must be applied by AUTSIM in order 
to maintain the p-canonical form. 

An important consequence of associativity and 
commutativity is the fact that like terms in a sum 
and like factors in a product may be combined. 
This is accomplished in FORMAC by imposing a 
specific linear order on the operands of these com
mutative operators. 

The linear order is designed so that operands 
which can combine are equal. Hence, collection of 
like operands is accomplished by a twofold process: 
the operands are lexicographically ordered and 
those operands which will cancel are combined as 
they are sorted together. 

That portion of AUTSIM which orders and com
bines operands is called LEXICO. (lexicographic 
ordering). This routine is distinct from Autsim 
proper, because the scan required for sorting is no
ticeably different from that needed to perform the 
operator-operator transformations that make up the 
bulk of the AUTSIM routine. Lexicographic sorting 
accomplishes two things. In addition to the collec
tion of like factors in a product and like terms in a 
sum, it contributes to the establishment and mainte
nance of the p-canonical form. 

Examples of the type of combining which one 
might like to perform follow: 

A-A~O 

5 * A + (-5) * A ~ 0 
5 * A + (-2) * A ~ 3 * A 
(A + B) * C + (-A + B) * C ~ 2 * B * C 

Notice that all of these involve "factoring," the in
verse of expansion. In general, they can be repre
sented by Al *B + A2 *B + ... + An *B ~ (AI 
+ ... + An) *B. While it would seem optional to 
apply such a "factoring" operation in all cases, the 
following difficulties arise if no restrictions are 
placed on the Ai: 

1. In general, factoring of an arbitrary sum (AI 
+ ... + An) would require recursive use of AUT
SIM and LEXICO, since it would create a new sum 
of arbitrary characteristics which would have to be 
simplified and sorted. This is not a major difficulty, 
but we hoped to avoid such recursion. 

2. Finding B might be difficult if both B and Ai 
are products. Consider how to factor something like: 

AI*BI*B2*~ + BI*A2*B2*A4 + BI*A2*A3*B2 
~ (AI * A4 + A2* A4 + A2* A3) *BI *B2. 

The coefficient of a term like BI * A2*B2* A4 is quite 
ambiguous when it stands alone. For example, does 
it represent BI occurrences of A2*B2* A4, or BI * A2 
* A4 occurrences of H2? If one is told that the Ai are 
parameters and the Bi are variables, then one can 
say that the term represents A2 * A4 occurrences of 
BI*B2. However, LEXICO does not have such infor
mation. It would have to determine what the sym
bolic coefficient of a term is by considering all the 
terms in the sum. This could be done by obtaining 
the greatest common divisor of all the terms. The 
symbolic coefficient of a term would then be taken 
to be the result obtained by dividing the term by the 
greatest common divisor. Thus, LEXICO could per
form the transportation illustrated above. However, 
the resulting expression would often not be in the 
form desired by the FORMAC user. 

3. Consider the expression 
(A + B)*C + D) + (A-B)*(C + D) 

+ (A + B)*(C-D), 

in which combining of like terms could produce 
either 2*A*(C + D) + (A + B) * (C - D) or 
(A + B) *2*C + (A - B) * (C + D). 

Clearly, the major difficulty of cancellation in 
sums is the determination of which expressions are 
"coefficients." The difficulties which can arise in 
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the case when "coefficient" is a partially ambiguous 
concept are pointed out in (2), while (3) is an ex
ample of a case in which it is completely ambigu
ous as to which expressions are coefficients and 
which are not. In order to eliminate such ambigui
ties while still retaining a useful capability, cancel
lation was limited to combining numeric coeffi
cients of like symbolic expressions. 

In the case of cancellation in products, we wish 
to combine exponents. Notation removes nearly all 
of the ambiguity corresponding to the coefficient 
difficulty in sums, since base and exponent are 
readily distinguishable in most cases. However, 
problems can still arise; for example, 

(A **B) **C*A**D*A **(B*E) *(A **C) **B 
= (A**B)**C*A**(D + B*E)*(A**C)**B 
= (A**B)**(C + E)*A**D*(A**C)**B 
= (A**B)**(2*C + E) * A**D 

This ambiguity is resolved by the presence of a trans
formation in AUTSIM which establishes the p
canonical form for nested exponents so that 

(. . . « Al * * A2) * * Aa) ... * * An) ~ 
Al * * (A2 * Aa * . . . An). 
(m) (A**B)**C~A**(B*C). 

Because transformation (m) is performed, LEXI
CO can combine all factors with identical bases, 
giving a powerful cancellation ability. The expres
sion above is reduced through a sequence of trans
formations to 

A ** (2*B*C + B*E + D). 

While performing cancellation in products by com
bining exponents, LEXICO may create sums which 
had not previously existed, and which must be 
simplified. This could have required recursive use 
of AUSTIM and LEXICO. If the transformation 
(LOGA1 + LOGA2 + ... + LOGAn ~ LOGA1* 
. . . * An) were also performed by LEXICO, 
these two transformations could lead to an arbitrary 
depth of recursion. Hence, to avoid recursion, that 
LOG transformation was omitted from AUTSIM 
and steps were taken to make possible the simplifi
cation of the exponent sums by a simple, one-level 
use of LEXICO and no use of AUTSIM. Some of 
these steps will be described in the discussion of 
general flow and techniques of LEXICO. As is often 
the case, however, hindsight is much clearer than 
foresight. It appears that a recursive LEXICO would 
have resulted in both a faster and a more compact 

simplification package than the tricks used to avoid 
recursion in the experimental IBM 7090/94 FOR
MAC system. 

In addition to transformation (m), there are sev
eral transformations included in the FORMAC sim
plification procedure for one reason: they contri
bute to the reduction of expressions to a p-canoni
cal form which extends the simplification possible 
via combination. 

There are three transformations that contribute 
to the cancellation of like terms in a sum. 

(n) -(A + B + C) ~-A-B-C 
(0) A + LOG(B1* ... *Bs) + C ~ A + LOG(B1) 

+ .... + LOG(Bs) + C 
(p) LOG(A**B) ~ B*LOG(A) 

The last two transformations, (0) and (p), prepare 
for the collection of logarithmic terms in a sum. For 
example, 

LOG(A) + LOG(B*A**(-2» 
LOG(A) + LOG(B) + LOG(A**(-2» 
LOG(A) + LOG(B) + (-2)*LOG(A) 

Lexicographic ordering, accompanied by collapsing 
of like terms can then produce the simplified result, 
- LOG (A) + LOG (B). The transformation (n) 
is a trivial application of the distributive law. It 
makes possible the reduction A + D - (A + B) ~ 
(A + D - A - B ~ (A - A) - B + D ~ - B + D. 
Two transformations perpare the way for the collec
tion of like factors in a product, transformations (m) 
and (q). 

(q) (Al* ... *An)**C ~ A1**C* ... *An**C. 

The FORMAC p-canonical form is further reflected 
by these transformations. Factors of a product are 
maintained as distinct bases raised to powers; they 
are not gathered together as products (of those bases 
which have equal exponents) raised to that power . 
The form (A1*A2)**B1 * (A2*Aa*A4)**B2 * (Al* 
A4) ** (- Bd becomes Al**Bl * A2**Bl * A2**B2 
* Aa**B2 * A4**B2 * Al**(- B1) * A4**(- Bl). 
Then LEXICO can sort and collect like factors 
producing 

A2**(Bl + B2) * Aa**B2 * A4**(-Bl + B2). 

Mathematically Undefined Expressions 

There are three mathematically undefined expres:
sions which may be introduced into FORMAC ex
pressions. These are 
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1. O**(-a) (a is a positive number), 
2. LOG(O), and 
3. 0**0. 

In FORMAC, the first two expressions are evaluat
ed as they would be by FORTRAN; i.e., each is 
replaced by 0 and a suitable message written on the 
output listing. The third expression is left intact so 
that the programmer may substitute a variable or 
expression of his own choice for it. These are 
neither consistent nor aesthetically pleasing solu
tions. Alternative approaches to this problem will 
be discussed in a later paper. It is the intent of the 
authors to publish a subsequent paper that will con
tain flow diagrams with sufficient detail to simulate 
the AUTSIM algorithm. In such a context, it will 
be possible to consider adequately the ramifications 
of various additions and changes to the AUTSIM 
algorithm. 

THE FORMAC SIMPLIFICATION 
ALGORITHM 

This section is an introductory description of the 
FORMAC automatic simplification algorithm. 
There are three subsections: FORMAC Internal 
Expression Representatation, Details of the AUT
SIMScan, and The Organization of LEXICO. 

Details of Expression Representation 

Any mathematical expression manipulation sys
tem must operate on expressions interpretively, 
since the form of an expression may change con
stantly as it is manipulated. An efficient internal 
coding for mathematical expressions is essential. 
There are two well-known notations for mathemati
cal expressions: commonly used infix, and classical 
Polish notation. The unwieldiness of infix notation 
and the difficulties and inefficiencies it presents for 
algorithm design are well known. The use of prefix 
Polish notation overcomes many of these problems, 
and "Cambridge" Polish, introduced in reference 14, 
provides space and algorithm economies not pro
vided by classical binary Polish. 

"Delimiter Polish" is the form used to encode 
mathematical expressions in FORMAC. This can 
be thought of as classical Prefix notation, permit
ting unary, binary, and variary operators. Of the 
arithmetic operators, only "+" and "*" are variary. 
The scope of range of a variary operator is defined 

by a delimiter, "]". Hence, the Polish string + A B 
CD] represents the expression A + B + C + D; 
the Polish string 

+ A * Be] D 5] 

represents the expression A + B * C + C + 5; 
and the P,olish string 

+ A * BCD5]] 

represents the expression A + B * C * D * 5. 
The introduction of the variary operators makes 

meaningful the application of transformation I to a 
Polish string; hence, the implementation of both 
associativity and commutativity is simplified by 
this notation. Moreover, fewer symbols are required 
to represent a sum of product; less space is required 
for the internal representation of expressions. 

The entire FORMAC operator set is displayed in 
Table 2. The differentiation operator requires a fur
ther word of explanation; it is also variary. In de
limiter Polish, 

df 
DIF f x 1] represents ~ 

()6 
and DIF f x 2 Y 1 z 3 ] represents ()2 x () Y ()3 Z (f). 

Note that, for the sake of clarity, the power operator 
* * will be represented by the symbol "1''' in de
limited Polish expressions. 

Details of the A UTSIM Scan 

Governing Operators. The key to the basic scan of 
the AUTSIM routine is the decision process that 
determines whether a "simplifying" transformation 
is applicable to that part of the expression currently 
being scanned. This decision process is based on 
the concept of governing operators. Every operator 
acts upon or governs its operands, and each opera
tor (with the exception of the outermost) is gov
erned by a higher level operator. In the example 

* A + BC] D] 

the outermost operator is the * which governs the + 
operator. Or in other words the + operator is gov
erned by the *. The applicability of most simplifi
cation transformations can be determined from a 
simple transfer table based upon the juxtaposition 
of governing and governed operators. 

Contextual Checking. For some of the transforma
tions it is necessary to do extra contextual checking 
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to eliminate unnecessary or unwanted applications 
of the transformation. There are essentially three 
types of context which may be checked before 
applying a transformation: 

1. The first type of checking tests for a speci
fic pattern of operands or operators. For 
example, the simplification of t -BK is 
only done if k is an integer, but the po ssi
ble applicability of the transformation is 
recognized by the combination of the 
and the - sign. 

2. A second type of context checking tests to 
see if the governed subexpression has al
ready been simplified. 

3. The final type of checking tests the system 
switches to determine if the transformation 
should be performed. The evaluation of 
non arithmetic operators with constant ar
guments is an example of this type of 
checking, since it is done only if the prop
er switches are set. In some cases the con
textual information is discovered before it 
is needed. This contextual information is 
associated with certain operators such as t, 
COMB, and * through flags which indicate 
the status of their operands. 

Certain transformations are not applied when first 
recognized by the transfer table. These transforma
tions are delayed until the governed subexpressions 
are simplified. This is done for two reasons.' First the 
transformation may disappear when the subexpres
sion is simplified. For example, the transformation 
(EXP(A) )**B ~ EXP(A*B) is delayed because A 
might be the expression LOG C in which case (EXP 
(LOG C)) * *B ~ C* *B. This reduction could not 
occur if the transformation were not delayed. The 
second reason is that an unnecessary intermediate 
growth in expression size results if certain size-in
creasing transformations are not delayed. An exam
ple of this type of transformation is the transforma
tion (Al* ... *An)**C ~ Al**C ... An**C. It 
is easy to see that the size of the right-hand expres
sion is greater than that of the left-hand one since the 
exponent occurs n times. If the product is simplified 
before applying the transformation, then the number 
of replications of C is less than or equal to the num
ber required for the transformation acting on an un
simplified product. 
The AA Bit. The fact that an operator and its oper
ands have been simplified is indicated by the AA 

bit (Already AUTSIMed bit). In the delimiter Pol
ish notation the AA bit is indicated by a dot over 
the operator. However, constants and delimiters do 
not have an AA bit. For example, in the expression 

+ A *:8C5] l' A-I] 

the subexpression *:8C5] is simplified as indicated 
by the dot over the *. There are AA bits on Band 
C, the operands of the *, since in some instances 
the lead * can be removed by a transformation but 
the operands are still simplified. If the expression was 

LOG *BC5] 

then this can be transformed to 
. . 

+ LOG B LOG CLOG 5] 

and Band C would remain simplified and require 
no further simplification. 

The AA bit has an addition function. It indicates 
that a subexpression has already been scanned for 
transformations, so only transformations which in
volved the lead operator of the expression are still 
applicable. The AA bit prevents the scan for trans
formations from oscillating indefinitely. 

The FORMAC command subroutines do not re
set the AA bit on expressions they manipulate, un
less they actually alter the expression so that it is 
no longer simplified. Then, the AA bit is reset on 
the expression but not on those wffs of the expres
sion which have not been changed. In this manner, 
the entire FORMAC object-time system operates to 
minimize redundant simplification. 

The Scan Pointers. As the expression is scanned, 
the location of the governing and governed opera
tors constantly changes. The current governing and 
governed operators are determined by the two scan 
pointers P and C. The pointer C points to the sym
bol which is currently being scanned. The pointer P 
points to the operator which governs the current 
symbol. Consider an example. Suppose that the scan 
is currently looking at the following expression 
fragment. 

PC 
t t 

... + *Xy] * t Z2W] 5] ... 

The current symbol is the first * operator. The 
AUTSIM transfer table shows that no transforma
tion is done for + * so the scan pointer must be 
moved. The AA bit on the first * indicates that no 
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transformations remain in that operand so that the 
scan moves to the next operand. The C pointer is 
updated to point to the second operand under the 
operator, 

P C 

t t 
. . . + *Xy] * t Z2W] 5] ... 

Now the current symbol is the second * operator. 
As before, no transformation can be applied so the 
scan pointer is moved. However, in this case the 
product is not simplified so it must be scanned for 
possible transformations. Therefore, the scan pointer 
moves to the next symbol, the t operator. But the t 
is governed by the * operator so the pointer P must 
be moved to the new governing operator. After the 
scan pointer is moved the expression looks like this: 

PC 
t t 

. . . + *Xy] * t Z2W] 5] . ; . 

The scan pointers continue to move in this fashion. 
After a transformation is performed the pointers 
must be updated so that they will be· properly posi
tioned to continue the scan. At each step in the 
scan the current operand of the current governing 
operator is simplified before the next operand is 
scanned. This method of scanning means that the 
current symbol pointer, C, oscillates back and forth 
along the delimiter Polish string as the expression 
is simplified. 

The Push-Down List. In the example above, the 
pointer P was moved from the . + to the second * 
when the second product was being simplified. Af
ter that simplification is completed, the C pointer 
will have returned to the * and the AA bits will 
have been set. 

C 

t 
. . . *Xy] * i Z2W] 5] 

But the P pointer must be reset to the operator 
which governs the *, namely the + operator. There
fore, whenever the scan pointer is moved to scan an 
operand, it is necessary to save a pointer to the old 
governing operator and any flags associated with it. 
This information can then be used to reset P to the 
+ operator. Since each operand is in itself a well
formed expression, a natural method for saving the 
current status of an operator is to make the AUT-

SIM routine recursive. However, for reasons of effi
ciency, the A UTSIM algorithm uses a push-down 
list (PDL) to save the simplification and scan sta
tus. The top entry on the PDL always indicates the 
current governing operator so that the P pointer is 
just another name for this entry. 

LEXICO and Expand. Two major departures are 
made from the AUTSIM scan in order to perform 
large transformations. The first of these, LEXICO, 
is described in detail in the next section. The sec
ond major departure is under control of the 
EXPFLAG. If it is set on either a * or t operator, 
then the expand algorithm is invoked to remove 
parentheses. 

We have seen that the AUTSIM scan is essential
ly oscillatory in nature under the control of a push
down store, a current symbol pointer, and AA bits. 
A systems level flow diagram for AUTSIM is pro
vided in Fig. 1. 

The Organization of LEXICO 

The general flow of the LEXICO subroutine is 
displayed in Fig. 2. There are three major blocks in 
LEXICO: the COMPARE routine, the COMBINE 
routine, and the CLEANUJ> section. Although con
siderations of efficiency led to an intermixing of 
the code, the routines are most easily understood as 
separate entities. The remainder of this section will 
treat each of these blocks. The requirements placed 
on each unit, the motivation for imposing these re
quirements, and the manner in which these require
ments are met are discussed. 

The COMPARE Routine. Because the internal 
FORMAC representation is not designed specifical
ly for sorting, a special sorting list (BWFF) is con
structed from the input sum or product which is 
being sorted. Each subexpression under the + or * 
is handled separately and the sorting list is built up 
as each of the sub-wff's is sorted against the sub
wff's already on the sorting list (see Fig. 2). The 
heart of the sort is the routine which compares the 
sub-wff being sorted (AWFF) with the ith sub-wff 
on the sort list CBWFF(I)). We shall discuss the 
criteria for a sorting order and sketch the actual 
sorting order employed by LEXICO. 

(a) Criteria for a Sorting Order. The descrip
tion of the comparison routine would be difficult to 
understand without a description of the sorting or-
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Figure 2. LEXICa flow diagram. 
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der which it is supposed to implement. The particu
lar sorting order used in LEXICa was chosen to 
meet ·a wide range of requirements. 

The first requirement of a method of sorting is 
that the sorted result be· unique. That is, the result 
of the sort does not depend on the original order of 
the subexpressions it sorts. In this case, the sort 

yields a linear or total ordering. If the comparison 
of any two expressions gives a definite ordering for 
these two expressions and if this ordering is transi
tive, then the ordering is total. If this were the only 
requirement, expressions which are represented by 
linear strings of symbols, could be sorted by the 
left-to-right comparison used in dictionaries. All 



50 PROCEEDINGS- FALL JOINT COMPUTER CONFERENCE, 1965 

that is needed for this technique is a linear ordering 
of the possible symbols, similar to that given to the 
letters of the alphabet ("alphabetical ordering"). 

However, LEXICa must "combine" similar 
expressions; e.e., it must perform cancellation. This 
imposes the requirement that expressions which can 
be combined by cancellation should have almost 
identical ordering properties, so that, during the 
sort, the routine will compare them with one another' 
and realize that cancellation is possible. 

Specifically, the following classes of expressions 
must have nearly dinetical sorting characteristics: 

1. explicit products that differ only by a constant 
(numeric coefficient, e.g., * ABC K1] and 
* ABC K2 are numbers; 

2. a nonproduct expression and a constant mul
tiple of that expression, e.g., SI X and * SIN 
XKd; 

3. a negative expression and the product of that 
expression and -1, e.g., -SIN X and * SIN X 
-1] or * ABC -1] .and - * ABC]; 

4. exponentiated expressions that differ only in 
their exponents, e.g., t X Y and t X + W Z] 
or t + A B COS Y] 2 and t + A B COS Y] 
Q or EXP + X Y - D] and EXP ATAN Q; 

5. an expression and that expression raised to a 
power, e.g., SIN + X Y] and t SIN + X Y] 
* ABC]. 

Note that since we have no unary operator denoting 
the multiplicative inverse, we avoid the problem 
analogous to (3) for exponents. 

Combining depends upon recognizing these spe
cial cases. They involve differences in top-level 
structure; the only information required concerning 
the lower-l~vel structures is whether or not they are 
identical. It would have been possible to design a 
routine that checked for these special cases on the 
top level, and used a simple dictionary ordering to 
compare subexpressions of the terms or factors it 
was sorting. For example, if the minus sign (-) 
came ,after all variables in the linear ordering of 
symbols, it would be possible to design a routine in 
which A and -A sorted almost identically as terms 
in a S}lm ( and hence could be canceled) but in 
which EXP(A) and EXP(B) sorted closer together 
than EXP(A) and EXP(-A). However, it was de
cided that the sorting order would be based on lev
els and would be consistent on all levels. That is, 
identical functions (sums, products, and exponenti
ated wffs are considered functions in this sense) 

would be compared on the basis of their arguments, 
and the arguments would be compared in exactly 
the same way as arbitrary terms in a sum or factors 
in a product. Thus, to compare (COS (A) and COS 
(B), the routine would note that the functions were 
the same and then compare the arguments A and B 
exactly as it would have if they were terms or fac
tors to be sorted. 

The above sorting specifications are clear cut. In 
addition to these, however, there were two less 
well-defined requirements placed on the sorting or
der. Since automatic simplification is performed on 
all expressions in the system, and in particular on 
all expressions that are to be written out, a criterion 
of intelligibility was imposed. That is, within the 
limits of the other requirements we felt that the or
dering induced by LEXICa should produce output 
that is in some sense"understandable" to the pro
grammer. It should produce expressions which are 
similar in appearance to ones which the program 
user might write-given the limitations of the char
acter set and printing techniques available. To 
achieve this goal without sacrificing the require
ments of the internal p-canonical form, a double 
approach was taken. The sorting order itself was 
designed to be as "understandable" as possible, and 
a way of modifying it prior to output (the ORDER 
command) was included in the system. 

The final requirement was that the ordering 
sould be as "simple" as possible. This served the 
double purpose of making it understandable to the 
user and as easy to implement as possible. AUT
SIM is the most active major subroutine in the 
FORMAC system. Every expression created is sent 
through AUTSIM at least once, and often several 
times. AUTSIM may call LEXICa many times in 
the process of simplifying a single expression. Thus 
efficiency is a prime consideration in the design of 
LEXICa. Any increase in the speed of LEXICa 
produces a noticeable increase in the system's per
formance. In this context, the suggestions made by 
Martin5 may prove quite significant. 

.(b) The Sorting Order. With these requirements 
in mind, we now consider the sorting order. Sym
bols other than +, *, t, and - are linearly ordered in 
the following manner. Atomic variables come be
fore all other symbols, and are ordered among 
themselves by the numerical value of the core loca
tion of their symbol-table word. Since the symbol 
table for each routine is placed in core with the 
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variables in alphabetic order and with arrays in 
standard FOR TRAN order, this results in varia
bles defined in the same routine being sorted in 
straightforward alphabetical order by name, with 
array elements in their normal order. However, 
variables defined in different routines sort accord
ing to the placement of their defining routines in 
core, which means the actual order in which varia
bles are sorted is dependent on the order in which 
subroutines are loaded. 

Immediately following the atomic variables in 
the linear ordering of symbols are the operators in 
the order SIN, COS, ATAN, TANH, EXP, LOG, 
FAC, DFAC, COMB, DIF. This ordering is arbi
trary and is determined by the bit patterns assigned 
to each operator in the internal expression coding. 
Following the operators are the constants. Constans 
are ordered among themselves by their numerical 
value. The algebraically smaller of two constants 
preceeds the larger one. Since all constants in 
expressions have been coverted to the same mode 
(rational or floating point) by AUTSIM, there is 
no possibility of comparing constants of differing 
mode. 

As may be noted, the symbols +, *, t, and -
are not compared with other symbols. Instead they 
cause the scan routine to compare subexpressions of 
the expressions A WFF and BWFF (I) and use that 
result as the final comparison. Only if all indicated 
comparisons result in identical matches, does the 
fact that a +, *, t, or - appeared directly influence 
the result of the sort. This is done in order to meet 
the constraint that items, which can combine with 
one another, sort together. 

Once the sorting order has been specified and 
understood, the structure of the comparison routine 
becomes quite clear. The routine represented by the 
COMPARE diamond in Fig. 2 is basically two 
leveled. The lower level is a routine that performs a 
straightforward comparison of the two expressions 
it receives as arguments. As output, it indicates the 
relative ordering of the two expressions. The upper
level routine sends parts of expressions to the lower 
level, and uses the finromation returned to deter
mine if expressions can be canceled or combined. It 
then passes control as indicated in the flow chart. 

The COMBINE Routine. The COMBINE routine 
consists of a basic cancellation routine and an arith
metic routine. Cancellation is accomplished by sev-

eral small routines that perform the various tasks 
needed for cancellation in sums and products. Under 
sums the routine adds the coefficients of the two 
terms and produces a new term with the sum as 
coefficient. This is made somewhat more complex by 
the problem of determining the true coefficients. The 
routine must act as if explicit coefficients of 1 and-1 
occurred instead of implicit occurrences; e.g., as if 
* ABC] were *ABC1], -A were *A -1] and - * 
ABC] were *ABC -1]. 

Other difficulties can arise in finding the constant 
coefficients of an expression. The· numerical coeffi
cients of products appear as the final constant before 
the delimiter (since all products under sums have 
been put into canonical form). But, because the 
expressions are in Polish notation, it is possible that 
a constant appearing in that position may be the 
argument of a preceding function. This is difficult to 
check in the case of rational constants which may 
appear in the form ... Kl K2 -1 ... under a 
product. In this case, given a product ending in the 
string . . . Kl K2 -1], it is possible that either Kl 
or both Kl and t K2 -1 are arguments of preceding 
functions and not coefficients. 

If the constants to be combined are rational
mode constants, arithmetic must be performed by 
special routines which add fractions and produce a 
reduced fraction. Finally, if the result is either 0, 1, 
or -1, LEXICa must duplicate the AUTSIM trans
formations involving such coefficients (e.g., delet
ing the entire produce in the case of 0, or deleting 
the constant and prefixing the expression with a mi
nus sign in the case of -1). This was done in LEX-
1co for efficiency as LEXICa could easily check 
for such results at the time of the addition, while 
UTSIM would have to make an entire rescan. This 
does, however, result in duplication of code in the 
two routines as they are currently written. This is 
an example of the old problem of space efficiency 
versus time efficiency. 

Combination in products requires the addition of 
exponents. Since exponents may be arbitrary 
expressions, the reSUlting sums must in turn be sort
ed and simplified. This is done by permitting the 
product cancellation routine to use the rest of LEX-
1co in a pseudorecursive fashion. Whenever it is 
necessary to cancel exponents, the expressions in
volved are modified so that the first expression (the 
one on the product sorting list) is no longer a well
formed formula in internal form. Instead, its expo-
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nent is transformed into a sorting list of the type 
used for sorting sums. The comparison and sum 
cancellation routines are then used to sort the terms 
of the second exponent onto the sorting list, per
forming cancellations where possible. If the expo
nent is not a sum, then only a single use of the sort 
and combine routines is needed. However, if the 
exponent is a sum, then the sort and combine sec-:
tion is used once for each wff under the plus, and 
the plus is discarded because the sort list is already 
a sum. Of course, since one section of the routine is 
being called by another section, care must be taken 
to preserve and restore the status of all internal 
switches and registers that are modified. When all 
factors in a product have been sorted and all. expo
nent cancellations have been completed, it is up to 
the cleanup section to take the modified expressions 
and restore them to normal form. This may involve 
further simplification, as the exponent which finally 
remains may be either 0 or 1. 

The arithmetic routines are called upon to do 
almost all the arithmetic required in LEXICO. These 
include the routines that are needed for computing 
the constant term in a sum and the constant coeffi
cient in a product and the routines for cancellation. 
Basically, these routines perform addition and multi
plication of floating-point and rational-mode con
stants. The floating-point package is straightforward, 
with standard checks for overflow and underflow. 
The decision to implement rational mode was made 
after the system design had been frozen. In particu
lar, it was impossible to add any new operators since 
many routines had been coded making explicit use 
of the originally defined operator set. Thus, it was 
necessary to represent fractions in the form *Kl t 
K2 -1 rather than by a binary rational constant oper
ator, RC Kl K2• This introduced several complica
tions for the LEXICO scan. 

The rational-mode arithmetic package is more 
complicated than the floating-point package. Multi
plication requires two integer multiplications, and 
addition requires three multiplications and one ad
dition. The major difficulty arises in controlling 
overflow. In the experimental 7090/94 FORMAC, 
both the numerator and denominator are limited to 
integers less than or equal in magnitude to 236 -1. 
Thus, with a moderately large denominator, it is 
very easy to have a numerator overflow. 

In particular, it is possible to create intermediate 
results that require double-precision arithmetic, al-

though the final results are small enough to be rep
resented by single-precision fractions. Therefore, 
the rational arithmetic routine contains a double
precision, fixed-point add routine, in addition to a 
routine that employs the Euclidean algorithm, for 
reducing fractions to lowest terms. 

The CLEANUP Routine. The cleanup action of 
LEXICO converts the sort list form of the expres
sion (BWFF) back to normal FORMAC internal 
form. Several transformations are performed in the 
process of reconstructing the expression. The order 
of the items on the BWFF list is inverted and a 
simplified sum or product is created. If the result is 
a product, the parity bit is tested to determine if 
the product has a negative sign. If parity is nega
tive, the minus sign is included in the constant if it 
exists. The minus operator is inserted preceding the 
product, if there is no constant factor. If the sort 
list is empty and there is no constant, then a sum is 
replaced by 0 and a produce is replaced by + 1, or -
1. If the product or sum has only one argument, 
then the operator (* and +) and its delimiter are 
not appended and the single wff is returned. 

SUMMARY 

The central role of simplification in the FORMAC 
programming system and the general approach 
pursued in implementing the FORMAC automatic 
simplification algorithm have been described. It 
has been shown how the universal application 
of associativity, commutativity, and properties 
of the additive and multiplicative identity elements 
(0 and 1) in conjunction with the establishment 
of a p-canonical form can produce "simplified" 
expressions. In addition, the need for placing 
application of the distributive law under program
mer option has been indicated. The basic principles 
employed in the organization of the simplification 
algorithms (AUTSIM) have been presented in de
tail. In, particular, the role of governing relation
ships between operators, the need for additional 
contextual information, the movement of scan 
pointers and the organization of the sorting routine 
(LEXICO) has been indicated. The importance of 
an already simplified flag is completely eliminating 
redundant simplification has been stressed. 

This paper has introduced the FORMAC ap
proach to the automatic simplification of mathema
tical expressions. A subsequent paper is planned in 
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which the simplification algorithm will be pre
sented in complete detail. 
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THE NEW BLOCK DIAGRAM COMPILER FOR SIMULATION 
OF SAMPLED-DATA SYSTEMS 

B. J. Karafin 
Bell Telephone Laboratories, Incorporated 

Murray, Hill, New Jersey 

INTRODUCTION 

The block diagram compiler known as BL0DI 
was put into use at Bell Laboratories in 1959 and 
reported in the Bell System Technical Journal in 
1961.1 The compiler has been completely rewritten 
to provide substantially increased flexibility. The 
new program is called BL0DIB. 

BL0DI 

BL0DI was written to aid in the simulation of 
sampled-data systems. It accepts as input a descrip
tion of a sampled-data system block diagram writ
ten in the BL0DI language. It produces, as output, 
a machine language program which will simulate 
the described system. The major asset of BL0DI is 
that the language corresponds very closely to an en
gineer's block diagram. It is easily learned and used 
even by people with the most superficial knowledge 
of computing techniques. 

The systems with which the compiler can deal 
are combinations of sampled-data circuits, i.e., of 
blocks that accept pulses as input and yield pulses 
as output. These pulses vary in height, but they all 
occur at mUltiples of a fixed clock time. Thus the 
systems the compiler accepts are digital in the stric-

55 

test sense of the word. The blocks comprising the 
system perform the only functions a digital comput
er can perform, namely, accept a number as an in
put, operate on it, and produce a number as an out
put. 

Continuous systems that are sufficiently band
limited may also be simulated. However, a sam
pled-data system must be designed whose output 
pulses would correspond to the sample values of the 
desired system. This is easily done if there is a 
highest system frequency, and if it is practical to 
have a sampling rate higher than twice this highest 
frequency. For systems that do not meet these re
quirements, approximations must be made if the 
system is to be simulated using BL0DI. Techniques 
and computer programs2,3 are available at Bell Lab
oratories which produce efficient sampled-data ap
proximations to a wide class of continuous transfer 
functions. These programs are even capable of pro
ducing punched cards suitable for BL0DI input. 
The important point here is that BL0DI makes no 
pretense of being a continuous system simulator. 
The transformations and possibly approximations 
necessary in simulating a continuous system with a 
discrete system are left to the engineer. 

It should be clear that BL0DI is not a digital 
imitation of an analog computer. In its most normal 
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mode of operation, it permits the user to go directly 
from a block diagram of a sampled-data system in
volving transfer functions, etc., to the object simu
lation program without explicitly considering the 
underlying differential equations. A myriad of pro
grams exist that do try to make the digital comput
er behave like an analog computer.4,5 These block 
diagram compilers are built around an integrator 
block; the diagrams they accept are not so much 
system block diagrams as they are block representa
tions of analog computer programs. BL0DI is sys
tem oriented. In a paper describing BL0DIB 
applications,6 simulation of a vocoder is discussed. 
In that problem the interest is in system perform
ance and optimization. The system is so large and 
so complicated that asking for the differential 
equiations is an unrealistic question. The system is 
simulated using digitized speech as input data. The 
output is also digitized speech which is listened to 
and subjectively judged. 

The BL0DI language is used to describe the sys
tem block diagram. Each block of the block dia
gram is represented by one list, i.e., by one 
punched card. (If the description of the block is 
lengthy, it may spill over onto more than one card.) 
The coder chooses block types from a dictionary of 
about 40 types. This dictionary includes such 
blocks as delay lines, amplifiers, transversal filters, 
rectifiers, cosine generators, function generators, 
etc. Table 1 shows the type dictionary. The list for 
each block specifies its type, a name assigned by 
the coder, parameters associated with it, and the 
names of the blocks to which the signal from the 
present block is connected. An example of a block
specifying list is 

RAISE AMP 13.7, QUANT, SUM/3 

The block named. RAISE is an amplifier with a 
gain of 13.7. It feeds a block called QUANT and 
the third terminal of a multi-input-terminal block 
called SUM. (The various inputs to multi-input-ter
minal blocks are specified by a slash followed by 
the terminal number.) It should be noted that the 
user need specify only one half the connection ma
triX, namely the outputs. The compiler internally 
fills out the matrix and reports unusual circum
stances by way of diagnostics. 

One of the most pleasant features of the language 
is the fact that the order of appearance of the var
ious lists in a circuit description is immaterial. The 
blocks may be described in any order; the compiler 

analyzes the connection matrix and internally orders 
the blocks for processing. 

Figure 1 is a skeleton form of a PCM television 
transmission scheme 7 involving quantization with 
error feedback. Consider the BL0DI description of 
this system which is given below. 

PREDISTORTION 
FIL TER 

ANALYSIS 
TAPE 

r-0 
I 
I 
+ 
I 
I 

RECONSTRUCTION 
FIL TER 

y 

I 
I 
I 
I 

QUANTIZER I 
NOISE + 

I 
I 
I 
I 
I 
I 
I 

I -B- I L____ DELAY ____ -y ___ J 

ERROR 

Figure 1. Transmission scheme involving quantization with 
error feedback. 

INPUT 
HI 
SUMM 
QUANT 

N0ISE 
FBDEL 
F 

H2 
0UTPT 

INP 
FLT 
ADR 
QNT 

SUB 
DEL 
AMP 

5"501,1,,,12,H1 
2,1,-0.502,1.0, SUMM/1 
QUANT, N0ISE/2 
8,120,200',280', (etc.), 
H2, N0ISE/1 
FBDEL 
1, F 
-0'. 96"SUMM/2 

ACC 
0UT 
END 

O.502,,0UTPT 
5"501,1,,,12 

Each line of the above represents one block of the 
system diagram of Fig. 1. For each block the left 
hand column contains the name assigned the block, 
the center column specifies the type of the block, 
and the right column specifies the parameters and 
output connections. Strictly speaking, INP and 
OUT are not functional blocks. They specify points 
in the system were samples are read from and 
written onto designated tape units respectively. 
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END is also not a type; it specifies the end of a cir
cuit description. 

In the example we again point out that the proc
ess is one of a system simulation. Both the input 
and output are tapes of digital television picture 
data. 

BL0DIB 

Using the BL0DI language as a foundation, a 
new compiler, BL0DIB, has been written. The new 
compiler provides a language that is more flexible 
and a programming system that is more complete. 
Whereas the old compiler offered a fixed source 
language and produced object programs of one rigid 
structure (main programs all of whose arguments 
were explicitly numeric), BL0DIB offers the engi
neer some of the generalities available to users of 
general purpose programming systems. 

With the new compiler, simulation programs (the 
result of BL0DIB compilations) are more like the 
programs produced by other more general compil
ers. For example, the user may now choose to have 
the simulation run in either the integer or floating 
point mode. (The old program ran only in the in
teger mode. ) Furthermore, simulation programs 
may now have symbolic parameters, the values of 
which can be supplied at run time and varied to fa
cilitate optimization routines and collections of 
families of data. Most important too is that simula
tion routines may now communicate with other 
programs in the computational environment. These 
features open the way for many new applications, 
some of which are discussed below. 

The source language also has new flexibility and 
offers new potentialitis. The changes impart roughly 
the same flexibility to BL0DI as MACR0 FAP 
does to F AP. Along the providing features to make 
the coding of simulation problems more convenient 
and less tedious, the new program gives the user 
the ability to write higher-level, specialized, simu
lation languages using BL0DI statements as atomic 
blocks. 

The compiler itself has a new structure. BL0DIB 
is actually a preprocessor coupled with a library of 
high-level macro definitions. This structure pro
vides general flexibility, lends itself more readily to 
changes and additions, and is somewhat less depen
dent on particular monitor systems and machines. 

For purposes of discussion, BL0DIB can be 

thought of as providing the capabilities for system 
simulation coding that is 

• evolutionary, 
• compatible, and 
• modular. 

Each of these categories will be discussed separately. 

Evolutionary Programming ( SUPERs) 

It may happen that several interconnected BL0DI 
blocks are required to realize a single functional 
block that will be used many times, perhaps with 
several different values for some group of parame
ters. What is called the SUPER facility of BL0DIB 
essentially permits the programmer to draw a line 
around such a group of blocks, to name it, and to 
use it thereafter as if it were a basic block. Figure 2 
shows the block diagram of what can be thought of 
as a rectangular integrator. To define a SUPER to 
realize this function, coding of the following form 
is given to the compiler as part of the source de
scription. 
INT 
INPUT 
INTRV 
SL0W 
VALUE 
DELAY 
SUB 
SUMM 
RECT 
0UTPT 

MACR0 
MIP 
AMP 
DEL 
BAT 
DEL 
SUB 
ADR 
ACC 
M0T 
END 

INC0N 
1,INTRV 
1.0 E-5"SL0W 
1,SUMM/1 
INC0N, DELAY, SUB/1 
1, SUB/2 
SUMM/2 
RECT 
1.0,,0UTPT 

After defining INT in this way, it can be used as if 
it were a basic block type with one parameter (the 
initial value). (In the example the integration in
terval, which corresponds to the sampling period, is 
10-5• ) 

We digress to point out that although BL0DIB is 
not primarily an analog computer simulator, the, 
preceding definition of a rectangular integrator 
shows that the compiler has at least as much power 
to tackle analog computer problems as some com
pilers that are so oriented. An example of such a 
compiler is DAS-4, which uses rectangular integra
tion and a fixed time base. 

Since a SUPER may be used as a basic block af
ter it has been defined, it can be used in the de
scription of a more complicated SUPER. A trival 
example is shown where the previously defined INT 
block is used in the definition of a new super that 
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BATTERY 
-INITIAL 

CONDITION 

UNIT 
DELAY 

UNIT 
DELAY 

UNIT 
DELAY 

OUTPUT 

Figure 2. A BL0DIB rectangular integrator. 

rectangularly integrates the weighted sum of four 
inputs. 

SIN 
IN1 
IN2 
IN3 
IN4 
WGHTI 
WGHT2 
WGHT3 
WGHT4 
SUM 
INTEG 
0UT 

MACR0 
MIP 
MIP 
MIP 
MIP 
AMP 
AMP 
AMP 
AMP 
ADR 
INT 
M0T 
END 

WI, W2, W3, W4, INC0N 
1, WGHTI 
2, WGHT2 
3, WGHT3 
4, WGHT4 
Wl"SUM/l 
W2"SUM/2 
W3"SUM/3 
W4"SUM/4 
INTEG 
I,INC0N,0UT 

In BL0DIB, SUPERs may be nested to an al
most arbitrary number of levels. Since each SUPER 
is very nearly an independent circuit description, a 
BL0DIB program can be thought of as an ordered 
sequence of circuit descriptions. Each circuit possi
bly contains one or more of the previously defined 
circuits one or more times. The last circuit is of 
course the one to be simulated. Coding can thus be 
thought of as an evolutionary process. The pro
grammer builds up a "super-BL0DI" language fea
turing blocks that are commonly used in his appli
cation. 

Compatible Programming (Subroutines) 

BL0DIB offers the user the facility to write sim
ulation programs that can coexist, communicate, 
and interact with other programs in the computa
tional environment. The user is provided with a 

staement that closely resembles the F0R TRAN 
SUBROUTINE statement. With this facility the 
programmer has the ability to write a BL0DI pro
gram, i.e., a circuit description, with some parame
ters, such as amplifier gains or quantizer decision 
levels expressed as variables, specifying them as 
symbolic names rather than as numbers. At the be
ginning of the program, the programmer tells the 
compiler that what follows is to be a subroutine 
with the name he specifies and that the variables in 
the list he writes must be supplied when the subrou
tine is called. A typical opening statement of a 
BL0DIB subroutine source program might appear as 

TEST SUBR (GAINI ,GAIN2,SHIFT), 

where test is to be the name of the subroutine and 
GAINl, GAIN2, and SHIFT are variables whose 
values shall be specified by the calling program, and 
which are used somewhere in the circuit description 
or standard BL0DI program that follows. State
ments involving the variables might appear as 

AMP22 
COUNT 

AMP 
ACC 

GAINl ,SHIFT ,0UTP3 
GAIN2,2,0UTP4 

The program that is produced is a subroutine struc
turally identical to subroutines produced by other 
compilers such as F0R TRAN. Its parameters may 
be varied. It can be loaded along with other pro
grams. It can receive parameter values, and it can 
transmit and receive data. 

Futhermore, the ability to use floating point arith
metic is simulation programs enhances the com
patibility of those programs with numerical analysis 
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routines, almost all of which are written in the 
floating point mode. (It hardly seems necessary to 
state that the use of floating point arithmetic almost 
completely eliminates the scaling difficulties inher
ent in many simulation techniques.) 

The simplest application of the subroutine fea
ture is the case in which one wants to simulate a 
system repeatedly for a range of values of a param
eter(s). For this case one codes the simulation pro
gram as a subroutine with a variable parameter(s). 
The subroutine is then used in conjunction with a 
main program, written in some general purpose lan
guage, that calls the simulation subroutine with var
ious values for the parameter (s ) of interest. The 
main program can obtain the parameter values from 
some internal array, by reading cards, or perhaps 
receiving them from a remote console at which the 
engineer is stationed. 

Iterative system design schemes can be imple
mented using the subroutine facility. Situations arise 
where one has to optimize a group of parameters 
associated with a complicated system. The solution 
of such a problem might involve the following steps: 

1. Make an initial guess of values of the vari
ables. 

2. Simulate the system using those values. 
3. Use the results of the simulation to calcu

late new values for the variables. 
4. Return to step (2) unless the new values 

are within a given neighborhood of the last 
values. 

To implement such a procedure one writes a sim
ulation subroutine and loads it along with the nec
essary analysis and design programs. A main pro
gram will probably also be necessary to handle con
trol. 

Unfortunately, many problems of parameter op
timization require human intervention commonly 
known as eyeballing and knob-twiddling. This 
points up another reason why it is so important for 
the simulation program to have the ability to com
municate with other routines. The era is almost 
upon us in which men at remote stations will have 
the capability to interact with the computer. Simu
lation seems supremely suited for man-machine in
teraction. 

Another use of the subroutine feature is to allow 
simulation programs to function as analysis pro
grams. At Bell Telephone Laboratories, a program 
used to design sampled-data filters presents, as 

part of its output, a plot of the impulse response of 
the designed filter. Instead of using residue calcula
tions based on the continuous analog of the filter, 
the response was obtained from a BL0DIB-produced 
subroutine which simulates the actual sampled-data 
filter. The circuit is excited by a single pulse and the 
resultes of the simulation are plotted and presented 
as part of the output. 

To sum up this discussion, simulation programs 
can now be written to be compatible with other 
kinds of programs, opening the way for a great 
many diverse functions. 

Modular Programming 

This feature allows the user to write simulation 
subroutines in the BL0DI language that structurally 
resemble simulation blocks. This facility allows 
what can be thought of as modular programming. A 
basic simulation program can be thought of as a 
piece of hardware with sockets. Various subsystems 
are coded, and the main system is run with a select
ed group of subsystems plugged into the sockets. 

Among other things, modular programming al
lows the user to effect structural changes. Suppose 
there is a very complicated system to be simulated, 
and suppose there is a block whose function one 
would like to change for each of three simulations. 
Perhaps one would have this block a transversal fil
ter for. one simulation, a quantizer for a second, and 
perhaps nothing, a wire, for a third. In the main 
circuit description the block in question might have 
a type called M0D. Three modules would then be 
coded, each of type M0D, one a filter, one a quan
tizer and one a wire. One then runs three different 
simulations, loading a different module each time. 

An important point here is that the main system 
need be compiled only once. This main piece of 
software is never changed. New elements are merely 
plugged into the sockets to test various design 
schemes. 

Modular programming makes it possible for one 
to build a library of simulation modules . in much 
the same way as a library of numerical functions sub
routines is built. The feature aids in producing 
complete simulation systems for major projects such 
as, for example, vocoder research. . 

CONCLUSIONS 

BL0DI has proven to be an efficient and easy to 
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use tool for the simulation of a class of systems 
that: 

1. involve a relatively smooth flow of data 
(signal) into and out of the system, i.e., 
the system does not process samples in a 
complicated order; 

2. can be represented in terms of the pulse 
circuitry that has been described; 

3. and that, once depicted as digital system 
block diagrams, contain blocks that usually 
change state at each sampling instant. 

For this class of problems the compiler produces 
machine language programs that are as efficient as 
those produced by professional programmers. (For 
example, in the course of the algorithm for ordering 
the blocks for processing, the compiler searches the 
connection matrix, attempting to save store and 
fetch operations.) 

A new program, BL0DIB, has been written and 
described, which is based on the BL0DI language. 
BL0DIB is coded for the IBM 7094 II under the 
control of the Bell System VII monitor and 1/0 
system. To use the system under another monitor 
would involve only changes in the 1/0 and interac
tion with the macro assembler. Changes in the 1/0 
are identical to those that were necessary for the 
original BL0DI, which were carried out successful
ly at many computer (7090) installations. This new 
program offers -many new features but suffers no 
degradation in object program efficiency or ease of 
usage. The new features change the nature of the 
compiler from a language translator to a full pro
gramming system. The new program is particularly 
suited for 

1. building higher-level BL0DI languages by 
defining block types from combinations of 
blocks, 

2. interative simulation procedures, 
3. coding of large, flexible, modular, simula

tion systems, and 
4. the use of simulation programs as subrou

tines for more complex procedures. 
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Table 1. BL0DIB Type Dictionary. 

Block 
Type Function Output 

DEL Fixed Delay Yk = Xk-l 
VLD Variable Delay Yk = Xlk-x2 
ACC Accumulation Yk = Xk + P1Yk-l 

( pl-2) 
FLT Transversal Filter Yk = !,pPl-lxk-lp2 

1=0 
AMP Amplifier Y = Plx 

4 
ADR Adder y = !'Xi 

i=1 
SUB Subtractor y = Xl _ X2 

4 
MAX Maximum y = max Xi 

i=1 
4 

MIN Minimum y = min Xi 
i=1 

MPR Multiplier y = X1X2 

DIV Divider y = Xl/X2 
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CLP 

CLN 

SCL 

FWR 

BAT 

COS 

GEN 

WNG 

QNT 

Positive Clipper 

Negative Clipper 

Symmetric Clipper 

Full Wave 
Rectifier 
Battery y = x + Pl 

Cosine Generator Yk = pscos(2'1T'k + P2) 
Pl 

Function Generator y= Pi; i = 2, ... ,Pl 

Noise Generator 

Quantizer 

the sequence of par
ameters repeated 
cyclically from sec
ond to last. 

Pseudo-vondon noise 
from Gaussian dis
tribution with 
standard, deviation 
Pl. 

Pl in the number of 
representative lev
els. The representa
tive levels are P2,P4, 

••• , p2Pl. The decision levels are 
... ,PS,P5, ... , 
p2Pl-l. 

LQT Linear Quantizer y= (; )rounded up. Pl. 

SQT Square Root 

SMP Sampler 

HLD Sample and Hold 

CNT Counter 

y= yx 
= {x one sample out of P2 

y P3 otherwise 
Pl specifies an in
itial phase. 

Yk = Xll where Xl2 was 
the last control 
sample to exceed 
the threshold, Pl. 

Output is active level 
every.nth time input 
exceeds a threshold 
and a passive level 
the remainder of 
the time. 

. {Xl; x3 > Pl 
DTS Double Throw SWItchy= r; oth-;;-rwise. 

FLF Flip-flop Output has a low 
state output until 

PLS 

PRT 

INP 

OUT 

BOF 

PIP 

P0P 

MIC 

MIP 
MOT 

Pulser 

Printer 

Input 

Output 

Output Buffer 

Integer to float
ing point conver-
sion 

Floating point to 
kuteger conversion 

the input exceeds an 
upper threshold. An 
upper state output 
is then maintained 
until the input is 
below a lower 
threshold, etc. 

If the input exceeds 
trigger level, the 
output is the pulse 
level for the next 
d samples, where d 
is a parameter for 
pulse length. The 
output is a quies
cent level if none of 
the last (d-J) sam
ples exceeded the 
trigger level. 

Lists up to three input 
signal under control 
of a fourth signal 
and a threshold. 

Reads data from tape 
for input. 

Writes data on tape 
for output. 

Writes output samples 
into a buffer area in 
the computer mem
ory. 

Microfilm plotter Plots up to three 
signals on a linear 
plot under control 
of a fourth input 
and a threshold. 

Input to SUPER 
Output from SUPER 

In the above Yk = Y (kT) where T is sampling period 
Xik = xi(kT) where xi(t) is the ith input 

to the block 

The superscript is missing for blocks with only one 
input, while the subscripts are neglected for blocks 
with no dependence on the past. pj is the jth para
meter of the block. 





TWO'-DIMENSIONAl PROGRAMMING* 

Melvin KIerer and Jack May 
Columbia University 
Hudson Laboratories 

Dobbs Ferry, New York 

A new user-oriented programming system for 
the purpose of facilitating the programming and· 
analysis of well-formulated problems has

lt 
been de

signed and implemented at Columbia University, 
Hudson Laboratories. This system consists of a 
standard Flexowriter modified to construct two
dimensional mathematical expressions and a new 
programming language. 

The typing and language rules are quite flexible, 
unrestrictive, and easy to learn. Typing errors are 
easily corr~cted by backspacing and overtyping or 
by pressing a special "erase" key. Subscripted and 
superscripted arithmetic expressions can be typed 
conveniently. Arbitrary-sized summation, product, 
integral symbols, and other mathematical symbols 
can be constructed from elementary strokes or 
formed automatically by selecting the desired sym
bol from an accessory console keyboard. 

We attempted to meet the following criteria: 

1. There should be less human effort: by this 
we mean fewer instructions (therefore fewer 
errors), less total time spent in coding, less 
debugging, and less high-level thinking 
necessary to solve the problem; 

*This work was supported by the Office of Naval Re
search and the Advanced Research Projects Agency. 

63 

2. The system should be easy to learn (and 
therefore subject to universal use); 

3. It should be adaptable to a wide range of 
problems and applications; and 

4. It should produce a final product that is 
better than the "old-fashioned" product. 
In other words, not only should the object 
program be cheaper to produce but it 
should run faster than programs obtained 
using present compilers. 

Figure 1 is an example of what one research 
scientist brought to us for computation and illus
trates what we mean by a well-formulated prob
lem. A is a function of all the other variables and, 
except for x and y, all are input parameters. When 
this is coded-regardless of whether we use FOR
TRAN, ALGOL, or any other system-the program
mer must be careful that the argument of the square 
root does not become negative, and that the denom
inator of the function to be integrated does not be
come so small as to cause overflow.t 

Figure 2 shows the corresponding source lan
guage statement as typed on our input device in our 
language. 

t A system which will automatically make such analyses 
and take appropriate actions is under development by the 
authors. 
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A= 

Figure 1. 

'0/ J 
1 1 

Figure 2. 

Our Flexowriter has been modified so that the 
platen may be revolved by keyboard control. One 
presses the subscript key for the subscript position 
and the paper moves up half a line; similarly, the 
paper moves down half a line by pressing the super
script key. A typewriter device with this particular 
facility is not particularly new. As indicated in the 
references, announcement of the intention to con
struct such a machine was made as far back as July 
1958 by two independent groups, one working at 
Los Alamos,l1 the other at Lincoln Laboratories,14 
and pioneer work in this field has been done by Mark 
Wells at Los Alamos. 12,13 

Our system permits the construction of symbols 
of arbitrary size besides allowing the use of other 
conventional mathematical forms such as implied 
multiplication, subscripting without the use of arti
ficial conventions, subscript notation to denote a 
logarithmic base, and superscripting as in cos -1 x 
and cos 2X. Arbitrary-sized integrals, summation sym
bols, or parentheses may be typed by combining basic 
strokes-horizontal and vertical bars, diagonals in 
both directions, and upper and lower semicircles as 
shown in Fig. 19. These basic strokes have been 
designed to interlock with each other. Symbols need 
not be symmetric nor well composed. Figure 3 
illustrates some of the poorly formed symbols that 
are recognized correctly by our system. The strokes 
may be typed in any order. For instance, one may 
type part of a summation sign, then type part of the 
argument and go back to type more of the sum or 
part of the limits. Restrictions are of a minor nature; 
for instance, there must be enough room above and 

dx dYe 

below the summation symbol to type the upper and 
lower limits. 

Figure 4 is a photograph of a page from Hilde
brand's book7 on numerical analysis, illustrating his 
prescription for solving linear equations. We chose 
this as a good example of a well-formulated problem 
for comPlltation. We would not call this an algorithm 
because it contains an inherent ambiguity. Note that 
the last equation has to be computed for i taking on 
the value of n first and then n - 1,n - 2, etc., down to 
i = 1. When j = 1 in the first equation, the sum 
becomes the null set. 

Figure 5 is the corresponding program for the 
solution of a set of n linear equations in n un
knowns as written in our programming language. 
The maximum value of n has been arbitrarily set at 
20. It can be noted that the body of the typescript 
is a fairly reasonable transcription of the text indi
cating double subscripts, etc. In the last formula our 
loop is programmed backwards, but we did not 
have to worry about the fact that the summation's 
upper limit can be less than the lower limit-the sys
tem automatically takes care of this consideration. 

Figure 6 shows a truncated continued fraction as 
typed for computer input. 

One question usually asked after we demonstrate 
our system to a visitor is: The system seems fine 
for the novice but will it be a useful tool for the ex
perienced senior programmer? Our answer is yes. 
The language allows the expert to write long com
plex statements that are not possible with most 
presently operational compilers. Figure 7 illustrates 
a program written by one of our senior program-
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Figure 3. 

NlTMEltICAL SOLUTION OF EQUATIONS 431 

tical with c~. Each succeeding element above it is obtained as the result 
of subtracting from thc ('orre:,;ponding element of the c' column the inner 
product of its row in A' and the x column, with all uncalculated elements 
of t.he x column imagincd to be zcros. 

The preceding inst.nlct.ions are summarized by the equations 

(i ~ j), (10.4.4) 

(i < j), (10.4.5) 

(10 .... 6) 

and - I ~ I x, - c. - L., aikx.t, (10.4.7) 
k-i+l 

where i and j range from 1 to n when not otherwisc ~tricted. t It;A 
seen that '~e proec8.'1 dr' i hy (lOA "\ is iden·· 'h the II' 

solution' t,he Ga" 'on, wl ' 1terr 

(10.3 • 
T 

Figure 4. 
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mers. Except for the initialization, it is a one-state
ment algorithm for computing prime numbers. 
Note that two variabtes are stepped; one variable is 
incremented by 2 with no explicit upper limit while 
the· other variable is stepped by 1 (an increment of 

1 is assumed if a BY clause is absent) until a 
terminating condition is satisfied. In this case the 
condition involves the use of the incremented varia
ble, but, in general, the condition does not have to 
depend upon the incremented variable and may be a 
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MAX I MUM n=20. 

READ n. 

READ A1j FROM j=1 TO nAND 1=1 TO n. 

READ C1 FROM 1=1 TO n. 

~ 
FROM j=1 TO nAND 1=1 TO n IF 1~j THEN a1j=: A1j-L a1k~j OTHERWISE a1j= 

1-1 

C1-L a1k'Vk 

FROM 1=1 TO n COMPUTE 'V1= _....::k::;;;;= ..... 1 ___ _ 

aU 

n 

k=1 

FROM ,= BY -1 UNTIL '(1 <"""UTE X,= " - L "'kX. • 

k=1+1 

PRINT i {2} , Xi FOR 1=1, 2, ••• , n. FINISH. 

Figure 5. 

READ z. 

x = 1 + _______ --!:.z ________ _ 

1 _______ --=z=--______ _ 

PRINT z, x. 

2 + ______ .:;:.z ______ _ 

3 ______ ..::z:-____ _ 

2 + ____ .:;:.z ____ _ 

FINISH. 

Figure 6. 

5 ___ __"z ____ _ 

2 + ____ z __ _ 

7 __ ..;;;;Z __ 

2 + _z_ 
9 

function of parameters unknown at compile time. 
Another feature of our "implied loop" is that the 
index i is tampered with inside the loop. Also, 
FROM clauses may be located anywhere in a state
ment as long as they make sense. The first FROM 
clause is performed most often; only when its UN
TIL condition is satisfied does the next FROM 
variable become incremented. Apart from computer 
memory size there is no restriction to the number 

of FROM or FOR clauses allowed. 
The use of IF conditional clauses and PRINT 

FORMAT statements is shown in Fig. 8. This 
program computes moving averages of every 10 data 
points and prints out a cumulative average every 
20 points. We may see that multiple replacement 
operators can be used within a statement. The UNTIL 
condition on the FROM loop is satisfied by the read
ing of a particular data point from a punched card. 



TWO-DIMENSIONAL PROGRAMMING 67 

DIMENSION P=1000. j=l. PRINT j, Pj=3. 

FROM 1=1 UNTIL FRACTIONAL PART ~ =0 IF P1
2)P THEN 1=j, j=j+1 AND PRINT j, Pj=P FROM P=5 BY 2 TO INFINITY. 

1 

FINISH. 

Figure 7. 

A=8=1=J=k=0. 

FROM 1'=1 UNT.IL X=99999 READ X, C()Io1PUTE A=A+X, 8o=8+X, 1 .. 1+1, j .. j+1, 

(IF k=0 PRINT 'Y { 3 } , x { 4.2} AND k=1 OTHERWISE }oo.O AND PRINT 'Y { 3 } , , x { 4.2 } ), 

A 
IF 1=10 PRINT FORMAT 1, 'Y, B/10 AND C()Io1PUTE 1 ... 80=0, IF j=2O PRINT FORMAT 2, :y AND C()Io1PUTE j .. O. 

FORMAT 1 AFTER A TOTAL OF xxx POINTS THE MEAN OF THE LAST TEN POINTS IS xxxx.xx. 

FORMAT 2 AND THE AVERAGE OF THE WHOLE SET IS xxxx.xx. FINISH. 

Figure 8. 

Punched input card format is free field with blanks 
separating each datum. As many data points as de
sired are allowed on each card and the number may 
vary from card to card without the need for any 
defining information. The range of IF statements 
may be delimited by parentheses. OTHERWISE or 
ELSE clauses may be absent. Additional IF clauses 
may be nested within other IF clauses and may be 
put after THEN or ELSE clauses. The parentheses 
around the IF k = O ... clause cause the program to 
go to the IF i = 10 ... clause in either case; if the 
parentheses were not present then the program would 
test IF i = 10 only if k =1= O. 

There are several ways to print answers on the 
highspeed printer. A standard PRINT A statement 
will cause the value of A to be printed in floating 
point style. A may be an expression and may con
tain a replacement operator. The PRINT 'Y {3}, 
X {4.2} will cause 'Y to be printed as a 3-digit integer 
and X to be printed with 4 places to the left of the 
decimal point and 2 places to the right. Finally, one 
may mix numerical results with literal messages by 
using a PRINT FORMAT statement and a FOR
MAT image. The PRINT FORMAT statement lists 
the expressions whose values are to be printed, while 
the FORMAT image contains the text with the posi
tion and size of the results denoted by groups of 
lower case x's. When the magnitude of a number is 
unknown. one lower case y will cause the result to 

be printed in floating point style. Figure 9 shows the 
output of this program. 

Whenever it is easily possible to determine the 
size of an array by inspecting a program there 
should be no need to specify its dimension explicit
ly. Inspection of Fig. 10 indicates that the X array 
will require 500 locations and so the program auto
matically assigns 500 locations to X at compile time. 
Currently there is no analysis of space requirements 
at run time, so these decisions are made by the 
compiler. Figure 10 illustrates a program to com
pute the mean and standard deviation of a group of 
numbers. This also shows how comments are insert
ed-by putting them between braces. 

Figure 11 shows semiautomatic dimensioning. In 
this correlation program, the number of points will 
be decided at run time but it is known that there 
will never be more than 500. It is certainly easier 
to specify a "maximum value" for one variable and 
let the system do the clerical work than to specify 
the same dimension for a number of arrays (X, Y, 
and A). Finally, one may also dimension arrays 
directly using a DIMENSION statement as shown 
in Fig. 12. Here the size of the arrays is not ob
vious so a DIMENSION statement is needed. 

For systems of this type there is always the inher
ent possibility of ambiguity. For example, since we 
allow both double subscripts and implied multiplica
tion, A ij in Fig. 13 may mean either A as a function 
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1 2145,32 
2 9012.45 
3 128,73 
4 2373.38 
5 630e,75 
6 9523.54 
'7 '520,75 
8 4510.83 
9 6280,40 

10 6419.01 
AFTER ,4 TOTAL OF' 10 POINTS THE MEAN OF THE LAST TEN POINTS IS 54 28,32 

11 706:5,57 
12 6312.4' 
13 245,12 
14 186 0 .23 
15 6105,85 
16 3015 4 .12 
11 1,54,95 
18 85,8.44 
19 3328,49 
20 665 0 .17 

AFTER A TOTAL OF 20 POINTS THE MEAN OF THE LAST TEN POINTS [S 4495,34 
AND THE AVERAGE or THE WHOLE SET IS 49'61. 83 

21 2130,11 
22 8365.7' 
23 2238,01 
24 1543.25 
25 3658,91 
26 375.15 
27 92,14 
28 9825.16 
29 5241.36 
30 6327.01 

AFTER A TOTAL or 30 POINTS THE MEAN OF THE LAST TEN POINTS IS 4580,35 
31 2238,47 
32 9510 •• 2 
33 5514,03 
34 25e 4 .45 
35 3275.28 
36 3514.?5 
37 258,14 
38 6325.02 
39 3514,75 
40 258.14 

AFTER A TOTAL OF 40 POINTS THE MEAN OF THE LAST TEN POINTS IS 3699,34 
A~D THE AVERAGE OF' THE WHOLE SET IS 4550.84 

41 63 25,02 
42 68~·.14 
43 267.14 
44 4814.14 
45 9235,41 
46 6732.14 
47 5602.14 
48 2418.46 
49 3579,96 
50 9520,'1 

AFTER A TOTAL OF' 50 POINTS THE MEAN OF' THE LAST TEN POINTS IS 5546,90 
51 8762.28 
52 357,19 
53 6854,42 ,4 2398.75 

Figure 9. 

of two independent indices, i and j, or A as a func
tion of one index, the expression, i times j. Also, since 
the argument of a function does not have to be delim
ited by parentheses, the interpretation of "SIN A COS 
B" is ambiguous. Is the argumen tof the "SIN" "A 
COS B" or just "A"1 If the expression is interpreted 

as (SIN A) X (COS B)-which seems reasonable
does this mean that if no parentheses are present to 
delimit an argument, then the appearance of another 
function name will delimit the argument? If so, 
then "SEC TAN-l (A/2B)" would be "SEC of 
nothing times TAN-l (AI2B)." 
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READ S { IDENTI F ICATION ~ • 

READ Xi FROM 1=1 TO 500. 

y = 

500 

PRINT FORMAT 1, S, Y, cr. 

FORMAT 1 THE MEAN OF GROUP xx IS xxxx.xx WITH A STANDARD DEVIATION OF y. 

FINISH. 

Figure 10. 

MAXIMUM n=500. 

READ n. 

n-T 
AT= ~ X1Y1+T FOR T=O, 1, ••• , n-l. 

1=1 

WRITE TAPE A, 2, 2, n. 

FINISH. 

Figure 11. 

DIMENSION A=100, 8=100. 

READ K, €. 

FROM 1=1 TO LOG2K COMPUTE A1=B1K AND PRINT 1, A1 , B1-
€ 

FINISH. 

Figure 12. 

69 
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Y=SIN A COS B. 

Z=SEC TAN-1 ~B. 

-1 A=CSCH A - L. 

C=A/2B. 

4 2 7r E=LOG2k+1 P + 2 Q 

Figure 13. 

For the next statement we might ask whether the 
argument of CSCH-l is A or A - L. For the following 
statement we would want to know whether or not 
M is within the summation. The system's interpre
tation of the last three statements is also of inter
est. (1T and e are interpreted as 3.14159. . . and 
2.71828 ... ) Immediately after the source program 
is read, the system's interpretation is listed on the 
high-speed printer in a linear, FORTRAN-like, inter
mediate language. The output resulting from Fig. 13 
is shown in Fig. 14. This shows that Aij is interpret
ed as a two-dimensional array but another context 
may yield a more appropriate interpretation. Y is in
terpreted as the product of SIN A and COS B. The 
argument of the secant is interpreted as TAN-l 
(A/2B). The variables Land M are interpreted to 
be outside the argument of the CSCH-l and the sum, 
respectively. The next statement is interpreted in the 
FORTRAN manner and is not (A/2B) but(A/2)B. 
The argument of the TAN-l in statement 3 is inter-

preted as A / (2B), because it was originally typed 
using displayed division rather than a slash. Statement 
7 shows that the exponent, 3n - 2 has been moved 
from its location adjacent to the COS to its proper 
place for computation. Statement 8 shows how the 
base of a log is treated. After the "LOG to the base 
10" of the argument is taken, that quantity is divided 
by the "LOG to the base 1 0" of the base. We empha
size that each particular interpretation is a function 
of the local context in which it is actually used. In 
our opinion, an immediate response to the· user re
turning the system interpretation is of great utility in 
resolving many ambiguous forms. 

The single variables on our keyboard include the 
entire uppercase alphabet, 12 lowercase letters and 
16 Greek letters for a total of 54 variables. This may 
be doubled because a letter typed in red is considered 
different from the same letter typed in black. If 108 
variables are not enough one may define other var-
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THIS IS THE WAY WE INTERPRET YOUR STATEMENTS. IF ANY ARE INCORRECT PLEASE RETYPE THE STATEMENT CORRECTLY, 

AOOOOl X-A SUB II,Jl 

A00002 

A00003 Z.SEC[ARCTANr [IAJ/r2*B]] J) 

A00004 A.ARCCSCH(AJ-L 

A00005 B=SUM WITHIN (100,1.1] or (A SUB [I).B SUB IIJ)+M 

A00006 

A00007 

A00008 E.LOG[4*P RAISED TO r2]J/LOG[2*K+1J+r[PI]/(2)J 

Figure 14. 

iables by a SPECIAL VARIABLES statement as 
shown in Fig. 15. However, if it is desired, extra 
variables may be constructed without the need for 
predefinition by appending a red superscript to a 
variable, as in AMAx. This figure also illustrates the 

trick used to show functional relationship while sav
ing memory space. Comment braces are put around 
the SUbscript of F so that the sums are not stored 
in an array. The system's interpretation is shown in 
Fig. 16. 

SPECIAL VARIABLES TEMPERATURE, PRESSURE. 

READ AMAX, TEMPERATURE, PRESSURE. 

v= (c x TEMPERATURE + K x PRESSURE) A MAX. 

V=C + TXEXMxPxEXRXAxTXUxRxE - K + AMAX. 

10 

F {!.f = L X1J FOR 1=1, 2, 3, ••• , 50. 

J=1 

PRINT F. 

Figure 15. 

Another example of the use of comments is indi
cated in Fig. 17. This is a segment of an actual pro-

duction program to calculate the power spectrum of 
a filtered signal. The part shown in the figure com-
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THIS IS THE WAY WE INTERPRET YOUR STATEMENTS, Ir ANY ARE INCORRECT PLEASE RETYPE THE STATEMENT CORRECTLY, 

AOD001 DIMENSION TEMPERATURE, PRESSURE 

AOD002 READ AMAX,TEMPERATURE,PRESSURE 

AOD003 

AOD004 

AOD005 

A00006 PRINT r 

rINISH. 

Figure 16. 

FROM 1=0 TO M COMPUTE C1=C1+XX1 • FROM 1=0 TO M-l COMPUTE ~=Xl+l. 

READ TAPE XM,2,2,1 AND COMPUTE XMFXM-S. STATEMENT 2. ~ROM J=N-M TO N LOOP TO STATEMENT 3. 

FROM 1=0 TO M COMPUTE C1=C1+XX1 • FROM 1=0 TO M-l COMPUTE X1=Xi +l • M=M-l. 

G2 
STATEMENT 3. FROM 1=0 TO M COMPUTE Ci - N-l Ci. 

l fiNITE COSINE SERIES TRANSFORMATION OF C1 FOR 1=0 TO M V1=6t rCo + 2 t Cj COS ~ + CM COS 1T ] I 
L J=l 

k=2M. D =COS ~ FROM p=0 TO M. D =Dk FROM p=M+l TO k. LOOP TO STATEMENT 4. FROM 1'=0 TO M. p=W=0. 
P '" P -p 

~ SMOOTH I NG THE SPECTRUM OPT ION A HANN I NG OR OPT ION B HAMM I NG } 

~ OPTION A} IF OPTIONAB=O THEN E=.5 AND F=.25 OTHERWISE {OPTION B} E=.54 AND F=.23. 

Uo=E(VO+Vl }. FROM 1=1 TO M-l COMPUTE Ui=EVi+F(Vi_l+Vl+l}. UMiE(VM_l+VM}. 

Figure 17. 

putes a correlation function and its cosine transforma
tion. For clarity the actual "book" formula is printed 
in red (the color is immaterial) and put between the 
comment braces. An experienced programmer would 
realize it would be highly inefficient to compute COS 
ij7rM a total of M2 times. Since M, i and j are integers 
and cosine is a periodic function, the same numbers 
would constantly repeat themselves. Thus, the pro
gram, which is listed below the comment, gives the 
correct answers, but the computation is done in a 

much more efficient manner, and the comment serves 
as documentation. 

With regard to machine code efficiency, it is 
always difficult to pick unbiased examples. Howev
er, our experience has ted us to believe that in gen
eral our object programs are very efficient. Our 
symbol recognizer, translator and compiler make for 
a complex software system and there is no escaping 
the fact that it would be a substantial task to code 
our system for another machine. Because we were 
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interested in machine-efficient object programs 
we made no attempt to make our coding techniques 
machine-independent. However, it is possible to 
simplify the task of recoding for another system. 
One may just recode the symbol recognizer and 
translator parts, i.e., up to the point where the 
FORTRAN-like intermediate language is produced. 
Thus these parts can be considered to be a pre
processor for an existing FORTRAN-like compiler. 

We have become convinced that the voluminous 
programming instruction and operating manuals 
usually encountered are rarely necessary. Thus we 
are trying to explore how concise one can make a 
system reference manual without impairing its prac
tical utility. Presently we are using a manual con
sisting of one sheet of stiff 81h x II-inch paper 
printed on both sides, as shown in Figs. 18 and 19. 
As yet, we do not have enough experience with it to 
know whether we want to increase the size of this 
one-sheet manual'; yet it is hard to envisage its 
ever growing to a size larger than two or three dou
ble-faced sheets. 
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REFERENCE MANUAL 

Vocabulary List 

ABS CARD ELSE LN READ TAN 
ABSOLUTE CARDS END LOG RETURN TANGENT 
AND COMPUTE EOF LOOP REWIND TANH 
ARCCOS CONTINUE EQUALS MAXIMUM ROUND TAPE 
ARCCOSH COS EXP MESSAGE SEC THE 
ARC COT COSECANT FILE MINUS SECANT THEN 
ARCCOTH COSH FINISH OF SECH TIMES 
ARCCSC COSINE FOR OR SIN TO 
ARCCSCH COT FORMULA OTHERWISE SINE TOP 
ARCSEC COTANGENT FROM PAUSE SINH TRUNCATE 
ARCSECH COTH GO PERFORM SLEW TYPE 
ARCSIN CSC HEADING PLOT SPECIAL UNTIL 
ARCS INH CSCH IF PLUS SQRT UPPER 
ARCTAN CYCLE INFINITY PRINT STATEMENT VARIABLE 
ARCTANH DIMENSION LABEL PROCEt>URE STOP VARIABLES 
BY DIVIDED LINE PROGRAM SUBROUTINE WITHIN 
CALL 00 LINES PUNCH SWITCH WRITE 

A period denotes the end of a statement or the end of an 
implied loop. 

Corrections can be made by overtyping or by pressing the 
control key ERASE when positioned over the eI'ror. 

The initial value of all variables (including subscripts 
is assumed to be 0 unless defined. 

Each program must be terminated by the statement END OF 
PROGRAM. or FINISH. 

More than one statement per typing line is acceptable. 
To continue a statement beyond the maximum typing length 

for one line, press the TAB button and at least one 
carriage return. 

Names of variables with more than one character should be 
defined by a SPECIAL VARIABLES statement before use. 

A comma or the word AND may be used to separate computable 
statements. 

FROM i=1 TO 10 COMPUTE Ai=Bi+Ci+l' Ci=Ai+lX AND 0 =SIN 6i • 

Examples of Acceptable Forms 

The letters E, F, G denote an arithmetic expression, e.g., 
E may denote the expression A + 2B + i, otherwise a single 
variable is meant. Braces { } denote a choice of forms. 
Square Brackets. [ ) denote those forms that are optional. 

t 
i,j=E 

DIMENSIONA=(N. M). 

Note: The horizontal extension 
of the lower limit equation and 
upper limit expression should 
not exceed the corresponding 
arms of the sum symbol. The 
operand of the sum should be 
outside the symbol. 

lr E 
1,j=E 

This indicates that A is an (N+l) by (M+l) array 
DIMENSION B=40. Z=30. Q=(10. 50). 

SPECIAL VARIABLE[S]=DIMENSION 
SPECIAL VARIABLES TEMPERATURE~ HUMIDITY. PRESSURE. COUNT. 
LBJ=(14. 200). ay=(10. 15). 

UPPER is used in the same manner as DIMENSION AND SPECIAL 
VARIABLES except that the indicated variables are stored 
in upper memory. 

UPPER C. WEIGHT=56. K=(20. 30). 

Subscripted variables need not be dimensioned when used in 
forms such as: 

(1) Aij=BiQi,j FOR j=O(2)20 AND i=1 TO 5 
or 

or 

(2) MAXIMUM n=10. K=15 

Aij=BiQi,j FROM j=4.5 ••••• K 

UNTIL n. 

(3) A= ~B' i=1 ~, 
P= 

WITHIN i=O BY 3 

FROM i-E [BY F) {UNt~L} [j: ) G 
etc. 

FROM i=E TO G (Unit steps assumed) 
FROM i=N BY 2.34 UNTIL A+B 
FROM A=B+5 BY 2 UNTIL Q>20 
FROM i=E TO INFINITY 

FOR i=l. 2 ••••• 5 
FOR j=5Cl0)55 
FOR i=0 •• 5 ••••• 7.5 

Note: Any number of dots per
missable but no extra spaces 
before terminating comma. The 
difference between the first 
two numbers specifies the in
cremerrt in the first FOR form. 

FROM or FOR forms can be used either to begin or end a 
statement. 

Ai=iBi FROM i=1 TO 10. 

FROM i=1 TO 10 COMPUTE Ai=iBi • 

00 [UN~~L] = LOOP [ ] = CYCLE [ ] 
00 STATEMENT 5 FROM J=l TO 10. 

This indicates that all statements up to but not including 
5 will be executed. (No two LOOP statements should term
inate at the same statement number. Otherwise, any number 
of LOOP procedures within or external to other LOOP 
procedures is permitted.) 

FROM=WITHIN=AND 
FOR +=0,5, ••• ,90 WITHIN r=l TO 10 AND 0=1 TO 5 LOOP TO 
FORMULA 6. 

The loop to be performed most often is the first one; the 
least often is the last. 

READ = READ CARD = READ CARDS 
READ Ai FROM i= 1 TO Aj?15. 

Card Format is free field; number of data points may vary 
from card to card and may be in either fixed or floating 
point form. 

READ X. (only one card is read, one datum per card) 
READ Ai' Bi +1 FROM i=E UNTIL Ai=93.643. (Only one set Ai' 

Bi+l per card.) 

READ Ai FOR i=0(1)105. (Any number of Ai's per card.) 
Data may be punched into cards in the following forms: 

2 -2 1.596 +3.213 -4.60 2.78T2[=2.78xlO~] 
2.78T-2[=2.78x10~2] 2.78E-3(=2.78x10- l ] 

Each datum should be separated by at least one blank space 
and the value should be within tlO"7& and not exceed nine 
significant digits. 

Three Alternate Formulations Of The Same Problem 

C--1. 0-15. E~3. F-li. G-2. 

FROM n-1 UNT I L 4 COI<PUTE Bn-5-n. 

PERFORM Hr-r FOR r-1 l.tlTl L r-5. 

Moo1. MAX I MUM n-20. 

READ n. 

DIMENSION x-20. y_20. 

a=O, READ w. 

MAX I MUM w-20. 

READ W. p.o. 

PRINT A. 

FINISH. 

o 
C+---

E ++ 

READ A1• 61 FROM 1~0 TO n. 

PRINT X. FINISH. 

Figure 18. 

FORMULA 1. READ x"' y,,_ 
,,=,,+1. IF ,,:00: GO TO FORMULA 1. 

5·,,·0. STATEMENT 1. fl-Cl. Pm1. 

STATEMENT 2. P-Px~y~. ~~1. 

I F ~:>w THEN GO TO STATEMENT 2. 

S-S+Px" AND a-a+l. 

IF w)" GO TO STATEMENT 1. 

PR INT S. END OF PROGRAM. 

FROM X_O TO W READ ux• vx• 

00 FORMULA 3 FROM X-O TO W. 

FROM V-X TO W COMPUTE a-auyvy• 

p-p""X·· 

FORMULA 3. PRINT p. 

END OF PROGRAM. 
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~RINT X,Y,Z. PRINT Yi FOR i=I,2, ••• ,N. 
FROM i=1 TO N PRINT Ai' 
PRINT Yi (A. B). 

A and B are integers!;)etween a and S. Yi will be printed 
in fixed point output, A significant figures to left of 
decimal point, B significant figures to ~iiht of decimal 
point. PRINT Yi(3.2), Yi(~)' Vi(~')' ViCO.2) 

PRINT Yi (A.B.C). 
(Printed as above except that the number is first divided 
by laC to change its range.) 

PRINT A, B(4.2), C(O.l.l), D. (Maximum of 8 var1ables) 
PRINT LABEL = LABEL = HEADING = PRINT HEADING 

Only symbols available on the printer are to be used, 
maximum of 15 characters per label, maximum of 8 labels 
separated by commas. 

LABEL A, COUN~, 3X, ZlA, , SIGMA(X), TEMP •• 

Messages on the printer or typewriter are printed using 
the following forms: 

PRINT MESSAGE ••• or TYPE NEGATIVE SqUARE /tOOT. 
SLEW N (Printer paper spaced N lines) 
SLEW [TO] TOP (Paper will advance to top of page) 

IF F G THEN GO TO STATEMENT 1. 
IF F G GO TO STATEMENT 1. 
IF F G THEN B = C + E. 
IFF G THEN READ ... 

E 
IF F G THEN ••• {OT~~:~ISE} { GO TO 

COMPUTE ••• 
E 

IF F G THEN [CONTINUE] {OTHERWISE} { GO TO } 
COMPUTE ••• 

Examples of 
COMPUTE ••• 
READ a 

IF T=5 OR 

mUltiple condition" ~ 

G<H OR SIN 6i >a 2 THEN C=D OTHERWISE 
GO TO FORMULA 
CONTINUE 

IF P=G AND H>£/2 AND 
IF U=O OR (G=r SIN AND H!CIIl) ... 
GO = GO TO 
GO TO STATEMENT 20 

Comments (non-computable statements) are entered between 
{ } symbols. 

FROM i=l TO 10 READ X· {READ VALUES}. 
Y{i,j}=i+12j. ~ 

Use of the next forms eliminates the necessity of using 
"DO" or "LOOP" statements. Complitable sub-statements 
within an implied loop are separated by a comma or AND. 

FOR i=1(1)50 AND j=O BY 2 UNTIL Y>2'000 READ X .. 
l.J, 

COMPUTE Y=2Xi ,j AND PRINT Y. 
FROM i=l TO INFINITY READ Xi' IF xito COMPUTE Y=Y+Xi' 
n=n+2 OTHERWISE GO TO STATEMENT 1. 

Superscripts that are red are used to form new characters 
rather than being interpreted as exponents. The fOllowing 
is a short program to determine the maximum absolute value 
of a set of positive numbers Xi' The memory cell used by 
XMAX_is set to 0 if not previously defined. 

F~~M i=l TO 100 IF IXil>XMAX""THEN xMAX~IXil~red) 
In the following tape commands L is the number of, elements 
in the array V, T is the tape number and P is the controiler 
(plug) number. 

READ TAPE V, T, P, L. The first L elements of the tape 
record is read into locations Vo to VL_I • 

WR~!~eJAPE V2' T, P, 5. (Locations VZ-V6 are written on 

REWIND T, p. RWD T, p. 
WRITE END OF FILE T, p. EOF T, P. 
IF END OF FILE P THEN ••• IF EOF P GO TO ••• 

In the following example Y is the varl.dble to be plotted, 
x is the "independent index" (Le. Y=f(X), A=the minimum 
value of X and B=the maximum value of X. 

PLOT Y, X, A, B. PLOT Zi' i, 0, FROM i=l TO 565w. 

Figure 19. 

Ai 
READ Ai' COMPUTE Y=~ AND PLOT Y, i, -1, 1 

FROM i=1 UNTIL Y>l. 

IF a>k COMPUTE x=~(a-X)6, Y=BijX+COT 
AND PRINT Y; a, T, k OTHERWISE COMPUTE x=2ak, 
V=Bijx+COT6 AND PRINT Y, a, T, k FROM a=l TO n 
WITHIN T=2 BY .01 UNTIL 3 AND FOR k=0(5)90. 

FROM i=l TO 10 AND j=l TO 10 READ Aij , 

COMPUTE Bij=Aij+Xi+Yj AND PRINT Aij' Bij' Xi' Yj , i, j. 

FOR r=l, 2, ... , 1,0 AND FOR 9=-w(.01)w 

=~ ./ r cos-Ie, A=T r L TAN('hfe), 
41=1 

IF (X!Y AND y<O) OR 142-y/cl > (X_Y)2 THEN 
COMPUTE TXy=y(c=~)2 AND W=(YTXY)YC AND PRINT W, T

XV
' X, Y 

FROM y=2k+3 BY .01T UNTIL W>5800 AND FROM X=l TO 100 
OTHERWISE GO TO STATEMENT 2 

To define a procedure within a program: 

• {~~S~g~J~~E} (Name). 

•••••••••••••••••••••• RETURN ••••••••••••••••••••••••••••• 

• ••••••••••••••••••••••••••••••••• RETURN •••••••••••• , ••••• 

............. • [END[(Name)] ~~g~g~J~~EJ ]. 

The name of a subroutine can be an alphanumeric string of 
any length but must begin with an alphabetic character and 
cannot be identical to any item in the vocabulary list. 
As many RETURN's as desired may be inserted to branch out 
of the subroutine back to the main p~ogram. The END state
ment is optional. It is preferable that all procedures be 
typed at the end of the program. If this is done precede 
the subroutine by the statement: STOP. However, if it is 
desired to define a procedure inside the main program then 
in some manner the program should "jump over" the procedure. 

To call a procedure: 

... CALL (Name) [~~S~~~J~~E] ... 

Relative Positions of Special Characters 

0 \ 
r--.., [--1 • I I I 

I I ' I I 

I I I I I 
__ J L __ I.---l __.J 

r - -, 
~ :--1 F-~ I I I I 

~ 
I I 

L __ -l L __ 
__..J 





MICROPROGRAM CONTROL FOR THE EXPERIMENTAL SCIENCES 

w. C. McGee and H. E. Petersen 
IBM Systems Research and Development Center 

Palo Alto, California 

INTRODUCTION 

In many areas of the experimental sciences, in
creasing use is being made of general-purpose com
puters to control experimental apparatus and to rec
ord data from experiments. In most such applica
tions the problem exists of connecting the apparatus 
to the computer so that data and control informa
tion may flow between the two. The problem is 
usually solved by placing a controller between the 
computer and the external equipment (Fig. 1). In 
this position the controller serves two functions: 

(a) It provides a suitable electrical and logical 
interface between the computer and the 
external equipment; and 

(b) It provides detailed control of the external 
equipment, thus leaving the computer free 
for other work. 

The design of a controller for a particular set of 
external equipment and a particular computer pres
ents no serious obstacles. Traditionally, controllers 
are implemented from flip-flop registers, logic ele
ments (AND, OR, NOT, etc.), and occasionally 
small memories for data buffering. Timing di
agrams are drawn showing the levels and pulses re
quired at the controller's terminals, and the logic 

77 

External 1'-------11 L I 
I 

Controller r--j Computer 
Equipment I I 

~ ____ ~~-~ _ i-----~~ ______ ~ 

Figure 1. General control system. 

elements are then interconnected to give the con
troller its proper terminal characteristics. The de
sign process is essentially no different from that 
conventionally used in designing computers, except 
of course that a controller is usually not as compli
cated as a computer. 

Although the conventional design process is 
straightforward, it has the inherent disadvantage 
that it must be repeated for each new configuration 
of computer and external equipment. In the experi
mental sciences, the number of such configurations 
is increasing rapidly, and it is quite possible that 
progress in this area will be limited by the time and 
cost to develop the requisite controllers by tradi
tional methods. The situation would be materially 
improved if there were a single design schema 
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which was sufficiently general to accommodate a 
wide variety of computers and external equipment, 
and which could be quickly and easily particular
ized to meet the requirements for specific controll
ers. One design schema which appears to approach 
this goal is microprogram control. 

In microprogram control, the functions of the 
controller are vested in a microprogram which is 
stored in a control memory. The microprogram is 
made up of microinstructions which are fetched in 
sequence from the memory and executed. The mi
croinstructions control a very general type of hard
ware configuration, so that merely by changing the 
microprogram, the functions available in the con
troller can be made to range between wide limits. 
In addition, instead of the multiple, parallel logic 
elements found in conventional controllers, the mi
croprogrammed controller requires only a single, 
central element to perform all logic and arithmetic. 
The microprogrammed controller thus has a poten
tial cost advantage over the conventional controller. 

The microprogrammed controller concept has 
been used to implement the IBM 2841 Storage 
Control Unit, by means of which random access 
storage devices may be connected to a System/360 
central processor. Because of its microprogram im
plementation, the 2841 can accommodate an unusu
ally wide variety of devices, including two kinds of 
disk storage drive, a data cell drive, and a drum. 
The 2841 thus provides an instance of the effective
ness of the microprogrammed controller concept in 
minimizing the effort that must go into controller 
design. 

In this paper we will attempt to extend and gen
eralize the microprogrammed controller concept, as 
embodied in the 2841 Storage Control Unit, to 
yield a more general controller design schema which 
would be suitable for use in die experimental 
sciences. We will first describe the basic concepts 
of the microprogrammed. controller, and then de
scribe how such a controller might be applied to a 
control problem typical of the experimental sciences, 
namely, the control of a CRT for scanning bubble 
chamber firm. 

THE MICROPROGRAMMED CONTROLLER 
CONCEPT 

The functions of a microprogrammed controller 
are expressed in a microprogram which is stored in 

a control memory. The microprogram is com
posed of microinstructions which are read out of 
the control memory, one at a time, decoded, and 
executed. The microprogrammed controller is thus 
primarily a sequential device, in contrast to the 
c01,1ventional controller in which different opera
tions usually proceed in parallel. 

The microinstructions of a microprogrammed 
controller control a simple yet general hardware 
configuration. This hardware must be capable of 
storing small amounts of data, performing simple 
arithmetic and logic operations on these data, and 
accepting and transmitting data and control signals 
to the attached equipment. The general structure of 
one possible configuration meeting these require
ments is shown in Fig. 2. The controller is organ-

D-~--

B ~-+----~~-----~I------~-r------~ 
A __ ~ ______ J-______ L-______ ~ __ 

Figure 2. General structure of microprogrammed controller. 

ized around a set of three data buses, A, B, and D; 
an arithmetic and logic unit (ALU); and a set of 
registers, Rl, R2, ... ,Rn. Two of the data buses 
(A and B) provide input data to the ALU, and the 
third (D) receives the output of the ALU. The 
ALU is capable of performing simple arithmetic 
and logic operations on the input data, such as add, 
subtract, AND, OR, etc. The registers provide the 
sources of data to be operated on and also serve as 
destinations for the results. In general, any two reg
isters specified by the microinstruction may provide 
the input data, one of them being connected to the 
A bus and the other to the B bus. The result of the 
ALU operation may then be returned, via the D 

~ bus, to any specified register (including one of the 
source registers, if desired). The registers, buses, 
and ALU are all the same width, which may be 
chosen to match the requirements of the control ap
plication. For example, a bus width of 8 bits (+ 

parity) appears to be a good choice for a wide 
class of applications. 

Microinstructions are divided into fields, each of 
which has a specific function. To control the data 
flow in the configuration of Fig. 2, four fields 
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would be required: CA, CB, COP, and CD. Field 
CA determines which register will be connected to 
the A bus; field CB determines which register will 
be connected to the B bus; field COP determines 
what operation the ALU will perform on the A-bus 
and B-bus data; and field CD determines which reg
ister the ALU results will be sent to. Each of these 
fields can be made large enough to handle the maxi
mum number of variations required. For example, 
by using 4 bits for the CA field, one can specify up 
to 16 different sources for the A bus. 

R1 R2 ADD R3 ~ 
CA CB COP CD 

To illustrate, suppose it were desired to add the 
quantity in register R1 to the quantity in R2 and 
place the sum in register R3. This could be accom
plished with the following microinstruction: * 

The structure of Fig. 2 provides for the manipu
lation of data already in the system, but provides no 
way of introducing data into the system. In general 
there are two ways of accomplishing this. One is by 
providing external connections to some of the regis
ters, as will be described below; the other is by pro
viding input directly from the microinstruction it
self. In particular, one of the B-bus sources can be 
defined to be the "constant" field CK of the mi
croinstruction. Whenever this source is specified in 
the CB field, the contents of the CK field in the 
same microinstruction will be gated onto the B bus. 
This technique is especially useful for introducing 
increments to counts (e.g., + 1) or certain bit pat
terns to mask off portions of data bytes. For exam
ple, to increment the quantity in register R1 by 4, 
the following microinstruction could be used: 

R1 CK ADD R1 4 ~ 
CA CB COP CD CK 

The registers of a microprogram controller fall 
naturally into three groups: a control group, in in-

*The fields of the microinstruction are shown symboli
cally; in prac~ce they would contain equivalent binary codes. 

put group, and an output group. To illustrate this 
grouping, a slightly more detailed schematic of a 
microprogrammed controller is shown in Figure 3. 

The control registers are those registers required 
for general controller operation, i.e., without regard 
to the particular device or devices being controlled. 
For example, registers must' in general be provided 
to hold intermediate results of ALU processing. 
These registers are designated TMP in Fig. 3. 
Another set of registers (CHI and CHO in Fig. 3) 
is provided for data to be transmitted to and from a 
general-purpose computer. These registers could, 
strictly speaking, be placed in the input and output 
register groups, so that the computer would assume 
the same status as any other device connected to the 
controller. Communication with a general-purpose 
computer is sufficiently stereotyped, however, that 
the registers required to effect this communication 
can be properly viewed as part of the control group. 

A third type of register in the control group is 
the status register, designated ST in Fig. 3. Each 
bit of a status register indicates the (binary) status 
of some portion of the controller or device being 
controlled. A status bit may in general be set or re
set from an external source (e.g., the computer 
channel, to signify that the CHI register is ready to 
be sampled); or from the microprogram itself. For 
the latter purpose, a CS field is provided in the mi
croinstruction whose decoded value designates a 
particular status register bit and the value to which 
the bit is to be set. This provides the controller 
with the ability to "staticize" certain conditions ex
isting at one time so they may be used to condition 
operations at a later time. An important example is 
the condition "D=O," i.e., whether or not the out
put of the ALU is zero. A certain value in the CS 
field will cause a 1 or a 0 to be set into a certain 
status register bit, according as D = 0 or D=¥=:O on 
that microinstruction step. In addition to condition
ing later operations of the controller itself, the sta
tus registers may of course be used to condition the 
operation of external equipment, and as such pro
vide one of the sources for external equipment con
trol. 

To illustrate the function of the CS field, suppose 
register R 1 contains a count of the data bytes re
ceived from the external equipment. Each time a 
byte is received, the count is to . be decreased by one 
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Figure 3. Basic microprogrammed controller. 

and the resulting value tested for zero. When the 
value goes to zero, bit 1 of the status register is to 
be set to 1. This can all be accomplished with the 
following microinstruction: 

Rl CK I SUB 1 RIll I)) I(D=O)~STII ) 
CA CB COP CD CK CS 

The second group of controller registers, the in
put group, provides a place to hold data coming 
from the equipment being controlled. In many cases 
these data will take the form of binary voltage lev
els which will be held by the external equipment 
until .sampled by the controller and perhaps later 
caused to change. In such cases the registers need 
not be flip-flop registers but simply terminals which 
can be connected to the A or B bus. In other cases, 
it may be necessary, because of timing or other 
considerations, to buffer the input into flip-flop 

registers. In these cases, gating control must gener
ally be provided by the controller and/or external 
equipment. 

The third and final group, the output group, con
sists of flip-flop registers where the controller may 
deposit data to be used by the external equipment. 
The output of these resigters may be taken directly 
to the external equipment as binary levels, or may 
be transferred, through suitable gating, to external 
registers. Normally, the output registers need be 
connected only to the D bus. Under certain condi
tions, however, it may be convenient to bring the 
output register data back into the system, and so A
bus connections are in general provided for the out
put registers. 

The setting of status register bits under micro
program control provides the basic mode of con
trolling the external equipment. In some cases it is 
convenient to augment this facility with control bits 
taken directly from the microinstruction. This is 
the principal purpose of the CX field. When a mi-
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croinstruction is read out of control memory, the 
bits of the CX field are not decoded as are the 
other fields, but are instead used directly in the ex
ternal equipment. For example, the microinstruc
tion might, by virtue of the 1 in the CX field, cause 
the gating of a quantity into an input register. 

CA CB COP CD CK CS CX 

The CX field may also be used to extend the fa
cility provided by the CK field for introducing ar
bitrary constants into the external equipment. Un
like constants from the CK field, any constants in 
the CX field would not enter the bus structure, but 
instead would go directly to the external equipment. 

Since the microprogrammed controller is a se
quential device, a key characteristic is the method 
used to get from one microinstruction to the next. 
One could, for example, have a conventional "pro
gram counter" which contains the memory address 
of the instruction currently being executed, and 
which is either incremented by one or is respecified 
to an arbitrary value (in case of a branch) to ob
tain the address of the next instruction. For micro
programs, a more efficient procedure is to specify 
the address of the next instruction in every instruc-
tion, whether branching may occur or not. By this 
means, branching does not take a separate step, but 
may be performed on the same step as some other 
operation. Further, successive instructions may be 
located anywhere in control memory relative to one 
another, providing greater flexibility in the sharing 
of common sequences of microinstructions among 
different control functions. 

In the microprogram controller we are de
scribing, the address of the next instruction is nor
mally determined by the CN and CL fields. The CN 
field contains the high-order n-l bits of the n-bit 
address of the next microinstruction; and the CL 
field determines which of a number of sources will 
be used to supply the low-order bit of the address. 
Two such sources, of course, are simply a "zero" 
and a "one," so that the location of .the next mi
croinstruction may be arbitrarily specified. Thus, 
the microinstruction 

CA CB COP CD CK CJ CN CL CS ex 

specifies that the next microinstruction is to come 
from location 179 X 2 + ° = 358. Other sources 
which can be specified in the CL field include single 
bits of the status register. The microinstruction speci
fies that the next microinstruction is to come from 
location 179 X 2 + ° = 358 if STI = 0, or from 
location 179 X 2 + 1 = 359 if STI = 1, thus effect
ing a two-way branch on the value of bit 1 of the 
status register. 

CA CB COP CD CK CJ CX CN CL CS 

By providing additional fields in the microin
struction to designate sources for other bits of the 
next-instruction-address, a capability of performing 
four-way~ eight-way, etc., branching may be ob
tained. For simplicity, only two-way branching is 
assumed. However, we do provide a more general 
facility for using any input or calculated quantity as 
the address of the next instruction. Specifically, if 
the CJ field of the microinstruction is 1, the next 
address will not be obtained from the CN and CL 
fields as described in the preceding paragraph, but 
instead will be taken from the A bus. Thus, whatev
er register is gated onto the A bus by the coding in 
the CA field, that register's contents will be taken 
as the address of the next instruction. This facility 
provides a versatile many-way branch which is use
ful in command decoding and function generation. 
For example, suppose a code has been operated on 
arithmetically, and the result, which represents the 
starting address of the microprogram corresponding 
to this code, has been left in register Rl. The cod
ing will perform the desired branching. 

IRI I I I I 11 I-I I I I 
CA CB COP CD CK CJ CN CL CS CX 
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In the examples considered above, the microin
structions are shown performing only a single func
tion. In actual use, a single microinstruction will in 
general perform a number of functions, within the 
constraints imposed by the microinstruction format. 
Thus, a single microinstruction will in general per
form an arithmetic or logic operation (fields CA, 
CB, COP, CD, and possibly CK); set a status regis
ter bit (CS field); set external lines (CX field); 
and select its successor (CN and CL fields). 

The performance of the system described above 
is obviously very dependent on the speed of the 
control memory in providing microinstruction se
quences, as well as the speed of the circuits being 
used. In general we can assume that the circuits are 
fast enough that the memory will be the limiting 
factor. Thus, for high performance, a very high
speed memory is required. However, it is not neces
sary that the control memory be an ordinary 
read/write memory. What is desired is that the 
memory be capable of being read very rapidly but 
that writing may take place fairly slowly. 

In many applications even manually changing the 
contents of the memory might be suitable, since it 
is possible to rapidly change from one element of a 
program to another by branching without shifting 
in large blocks of a new program. This means, then, 
than any fast-read, slow-write memory that is eco
nomical might be used. For several years, the litera
ture in computer technologyl-5 has described many 
such memories in which data can be changed in a 
period of minutes or at most hours, whereas the 
data reading times may be as short as a few tenths 
of a microsecond. In general, such "read-only" 
memories have shown savings in cost over their 
read/write counterparts in the same performance 
range. Should this cost picture change, read/write 
memory can be used though adequate consideration 
must be given to the system and operational advan
tages that apply to each. 

By using the control memory as described, we 
very much limit the data storage capability of the 
system as described t~us far. At least two simple 
alternatives are 'available to provide such a capabil
ity. One is to attach a conventional random-access 
memory directly to the controller bus structure, us
ing one or more of the controller's registers as the 
"memory address register" (Le., to hold the address 
of the location to be read or written); and one or 
more of the controller's registers as the "memory 

data register" (Le., to hold the words read from or 
written to memory). Reading and writing opera
tions would then be effected by appropriate micro
program sequences, much as any other external de
vice is controlled. 

The second alternative to providing storage capa
bility is simply to use the memory of a general-pur
pose computer attached to the controller through 
the computer interface which is provided in the 
controller design. This method is especially appeal
ing if the computer has input-output "channels" 
which can operate independently of the main pro
cessor, since in this case the controller can com
municate with computer memory without interfer
ing with the main computer program. Given such a 
facility, the controller we have described can per
form many functions normally considered to be in 
the computer's domain, such as limit testing, func
tion generation, data assembly, etc. 

APPLICATION TO PEPR 

To illustrate the basic concepts of microprogram
ming, we would like in this section to describe 
briefly a typical control application and the manner 
in which a microprogrammed controller might be 
configured and programmed to handle the job. The 
application we have chosen for this purpose is the 
PEPR 6 film scanning application. PEPR is a com
puter-controlled CRT scanner used to automatically 
measure bubble chamber tracks which have been 
recorded on film. The PEPR cathode ray tube defo
cuses the electron beam into a short lnie segment 
whose angular orientation and location can be inde
pendently controlled by the system. Thus, a short 
line of light is controlled in angle and position on 
the face of the CRT and swept for a short distance 
under system control. When this .line of light falls 
on one of the film tracks, a photomultiplier tube 
responds and the position of the beam is recorded 
as the time of arrival of the photomultiplier re
sponse. This is accomplished by starting a counter 
at the same time the line starts to move and remem
bering the count value when response occurs. These 
count values and the associated angle are sent to 
memory where subsequent processing will occur. 
The angle of the line is changed and scan repeated 
until the entire range of angles specified has been 
examined. A similar scan in another small area of 
the film is then initiated until, after approximately 
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500 such cells have been examined, the entire pic
ture has been scanned. 

In controlling this scan, the system must specify 
the coordinates of the cell center, the range of angles 
to be covered, and a few other factors such as sweep 
speed, line length, etc. The generation of the line by 
the CRT requires a special focusing system and cur
rents that are non-linear functions of the angle <I> 
of the line. These nonlinear focusing currents func
tions M ( <I> ) and N ( <I> ) must also be supplied by 
the system. 

A possible configuration for the PEPR system 
is illustrated in Fig. 4. The principal elements in 
this configuration are: 

r -.--------.- ---- , 

!M-N r-~}----1~--, 
'I x r:~--,:->----~ 

y'ri::1- .-------i..--,I 
1 6!1 CRT! ! \ \ 
I I : I i 

! c> :. L LrOutput'Co' ~--------l 
i ~' n k'---- C - I 

o--oFILM' : ,-,::}- tr I omputer J' 
~ ~j I Iloput ~I L ____ _ 

~~--
i L. __ . _____ . ___ . __ . ___ : 

Figure 4. PEPR system schematic. 

(a) Scan Table. The scan table contains the 
cathode ray tube and associated beam 
control circuits; the film transport equip
ment; the optics equipment, including the 
photomultiplier tube. and circuits; and the 
data acquisition registers. 

(b) Computer. The computer provides overall 
direction for the scanning, and performs 
the logic and arithmetic necessary to cor
relate isolated "hits" from the scanner into 
"tracks." Although not shown, the com
puter configuration would include certain 
standard peripheral items, including a mag
netic tape unit for recording system. output. 

(c) Controller. The controller provides de
tailed control of the scan table, in response 
to commands from the computer. 

Under program control, the computer may issue a 
command to the controller to initiate a scan of a 

designated cell on a bubble chamber photograph. 
The controller responds by issuing the proper sig
nals to the scan table, receiving signals from the 
scan table, converting these signals into meaningful 
data, and relaying these data back to the computer. 
Command parameters which are available to the 
computer include 

(a) The coordinates of the scan cell center. 

(b) The length of the flying line. 

(c) The effective excursion of the flying line 
on a single sweep. 

( d) The range of angles to which the flying 
line will be oriented on successive sweeps. 

Data returned to the computer includes 

(a) The angle at which one or more hits were 
detected. 

(b) The interpolation count representing the 
location of each hit. 

(c) The identification of which track element 
detector (TED) detected the hits. 

For the sake of illustration, we will assume that 

the controller responds to three different commands 
from the computer, as follows: 

1. Accept Parameters. When the computer 
issues this command, it follows the com
mand immediately with a single set of scan 
cell parameters, i.e., coordinates of scan 
cell center, line length, etc. For simplicity, 
we assume that the entire set is transmitted 
each time the command is given, and al
ways in a fixed order. These parameters 
will then be in effect until the next set is 
transmitted. 

2. Start Sweep. Using the parameters pre
viously supplied, the controller initiates a 
sequence of sweeps, each sweep being 
made at an angle one degree greater than 
the previous sweep. This continues until 
the final angle is reached, or until a hit is 
detected at some angle;- In either case, the 
controller then sends an appropriate inter
rupt signal back to the computer. 
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Figure 5. Microprogrammed controller for PEPR scanner. 

3. Send Data. This command causes the con
troller to transmit to the computer the re
sults of the last-detected hit, i.e., the hit 
angle, interpolation counts, etc. Again for 
simplicity, we assume the entire set of data 
is transmitted each time the command is 
given and always in the same order. 

The computer uses these commands to control 
the scanning operation. When data is received from 
the controller via the "send data" command, the 
computer must make any ncecssary coordinate con
version, consolidate redundant data and correlate 
track data from different cells. The result of this 
processing and control are track coordinates which 
are then recorded on magnetic tape. This data tape 
is later processed by a general-purpose computer to 
do the physics calculations. 

A microprogrammed controller to perform the 
above-described functions is shown in Fig. 5. Since 

the majority of parameters and data values are . . . 
bits or less, we assume a register-ALU-bus width of 
. . . bits. The functions performed by the ALU in
clude addition, subtraction and "no-operation," the 
latter being used when it is desired to just move a 
data byte from one register to another. 

The control registers include a single "tempo
rary" register; two channel registers for communi
cation with the computer; and a single status regis
ter with bit assignments as follows: 

STO Not used 

ST 1 End of sweep; set by scan table 

ST2 Hits obtained on sweep; set by scan table 

ST3 Controller request; set by controller 

ST4 Channel request; set by computer 

ST5 Final angle reached; set by controller 

ST6 Channel acknowledge; set by computer 

ST7 Controller acknowledge; set by controller 
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Bits ST 2 and ST5 are also used directly to initiate 
interrupts in the computer. 

The input group consists of 8 sets of input termi
nals of 8 bits each. Six of these (B 1 through B6) 
are connected to interpolation counters, while the 
remaining two (Tl and T2) are connected to the 
TED indicator logic. The input terminals are con
nected through control gates to the A bus. 

The output group contains 10 registers of 8 bits 
each. Eight of these registers hold parameters for a 
given scan cell and are directly connected to the ap
propriate external device: 

Register Parameter 

XYl, XY2, XY3 Cell center coordinates X, Y (12 
bits each) 

F 

CO 

CC 

S 

L 

Focus correction 

Interpolation Counter Open Gate 

Interpolation Counter Close Gate 

Sweep Speed (Amplitude) 

Line Length 

The remaining two registers, <I> I and <I> F, hold the 
initial and final angle, respectively. These registers 
are not connected to external equipment, but are 
included in the output group for convenience. All 
registers in the output group may be connected 
through control gates to the A bus, the B bus where 
specified, and to the D bus. 

The control memory for this application requires 
a capacity of at least 256 words and a word length 
of at least 54 bits. The format of the microinstruc
tion word, together with the various values which 
may be assumed by its fields, is shown in Fig. 6. 
Except for the CX field, the meaning of the various 
fields is exactly as described in the preceding sec
tion. For the present application, the CX field 
would be divided into four subfields: 

(a) CXl provides a one-bit signal to the scan 
table to start a sweep. 

(b) CX2 provides a one-bit signal to gate the 
CXM and CXN fields (see below) of this 
microinstruction into a pair of external 

registers, which in turn drive DAC's in 
the scan table. 

(c) CXM and CXN are each 9 bit fields, con
taining the values of M and N, respectively, 
corresponding to a given angle. 

The intent of placing M and N into the CX field is 
to provide a very rapid means of supplying new M 
and N values on each sweep repetition, as descirbed 
next. 

The operation of the controller is depicted in the 
flow charts of Fig. 7. The corresponding coding is 
given in Fig. 8. In its quiescent state, the controller 
sits in an endless loop waiting for the computer to 
issue a command. The controller expects one of 
three commands, as follows: 

Command 

Accept Parameters 

Start Sweep 

Send Data 

Code 

00000001 

00000010 

00000011 

When the presence of a command is detected, the 
controller adds a constant to the command to obtain 
the address of the next microinstruction. This mi
croinstruction in turn branches the controller to the 
sequence corresponding to a given command. 

In the "accept parameters" sequence, the con
troller simply waits for the computer channel to 
transmit successive 8-bit bytes. As each byte is 
transmitted, the controller deposits it in the ap
propriate register in the output group. 

The "send data" sequence is similar, execept that 
the controller places the contents of successive in
put-group registers on the channel and each time 
waits for the computer channel to acknowledge. 

In the "start sweep" sequence, the controller exe
cute a microprogram loop, with each traversal of 
the loop corresponding to a different sweep angle. 
On each traversal the controller performs the fol-

lowing steps: 

( a) Places the current angle ( <I> I) on the A 
bus and branches to the corresponding 
location. In locations 0 through 179 are 
stored 180 microinstructions which are 
identical except for the values in the CXM 
and CXN fields. These values correspond 
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MICROINSTRUCTION CODING FOR PEPR CONTROLLER 

CB COP CD CK CJ CN <::l CS CXl 
(2) (2) (4) (8) (1) (7) (3) (2) (1 ) 

0 NOP 0 0 UseN 0 0 NOP 

¢F ADD XYl 1 UseA 1 ST1 1~ST3 

TMP SUB XY2 2 2 ST2 (D=O)-+ST5 

CK - XY3 3 3 - 1-+ST7 

F 4 4 ST4 

CO 5 5 ST5 

CC 6 6 ST6 

S 7 7 ~ 
l · · 
¢I · · 
¢F · · 
TMP (to (to 

- 225) 127) 

CHO 

-
-

FIgure 6. MICrOInstruction codmg for PEPF controller. 
( 1) Indicates' not defined 

CX2 CXM CXN 
(1) (9) (9) 

DIRECT 

OUTPUT 

TO 

INTERFACE 
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. Channel, 

Branch to 
Idle loop 

Figure 7. Flow chart of microprogram for PEPR controller. 

to the associated angle, e.g., location 80 
contains M(80) and N(80). 

(b) Transmits the appropriate M and N to 
external registers; subtracts <I>F from <I>I 
and sets ST5 to 1 if the result is zero, 
i.e., if <I>I = <I>F. 

( c ) Increments the current . angle by one de
gree; tests ST5 and branches accordingly. 

(d) Assuming ST5 = 0 (i.e., <I>I = <I>F), trans
mits a start sweep pulse to the scan table. 

(e) "Waits" for end of sweep. 

(f) Tests for hits on the sweep and branches 
accordingly. 

Assuming no hits were detected, step (f) would 
branch back to step (a), and the loop would be re
peated. If hits were detected, the controller would 
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MICROPROGRAM FOR PEPR CONTROLLER 
Location CA CB COP CD CK CJ CN CL CS CX1 CX2 CXM CXN Remarks 

(2) 
IDLE LOOP 

200 _(1) - - 0 - 0 200 ST4 0 0 0 - -
201 CHI CK ADD TMP 202 0 202 0 0 0 0 - -
202 TMP - - 0 - 1 - - 0 0 0 - -
203 " - - - 0 - 0 208 0 0 0 0 - - Branch t o 

II Accept' 
204 - - - 0 - 0 230 0 0 0 0 - - Branch t o 

"Start" 
205 - - - 0 - 0 238 1 0 0 0 - - Branch t o 

"Se~d" 

ACCEPT PARAMETERS 

208 - - - 0 - 0 208 ST4 0 0 0 - -
209 CHI 0 NOP XY1 - 0 210 0 1 .... ST7 0 0 - -
210 - - - 0 - 0 210 ST4 0 0 0 - -
211 CHI 0 NOP XY2 - 0 212 0 1~ST7 0 0 - -
212 - - - 0 - 0 212 ST4 0 0 0 - -
213 CHI 0 NOP XY3 - 0 214 0 1-ST7 0 0 - -
214 - - - 0 - 0 214 ST4 0 0 0 - -
215 CHI 0 NOP F - 0 216 0 1-ST7 0 0 - -
216 - - - 0 - 0 216 ST4 0 0 0 - -
217 CHI 0 NOP CO - 0 218 0 1 .... ST7 0 0 - -
218 - - 0 - 0 218 ST4 0 0 0 - -
219 CHI 0 NOP CC - 0 220 0 1~ST7 0 0 - -
220 - - - 0 - 0 220 ST4 0 0 0 - -
221 CHI 0 NOP S - 0 222 0 1""'ST7 0 0 - -
222 - - - 0 - 0 222 ST4 0 0 0 - -
223 CHI 0 NOP L - 0 224 0 1~ST7 0 0 - -
224 - - - 0 - 0 224 ST4 0 0 0 - -
225 CHI 0 NOP 4>1: - 0 226 0 1~ST7 0 0 - -
226 - - - 0 - 0 226 ST4 0 0 0 - -
227 CHI 0 NOP <pF - 0 200 0 1-.ST7 0 0 - -

(1) Means field value is immaterial. 
(2) Value shown is 2 times actual value, so that next address may be obtained by adding CN and CL. 

Figure 8. Microprogram for PEPR controller. 

simply branch back to the idle loop. The fact that 
ST2 was set to 1 would indicate to the computer 
that hits weJ:'e present. Note that the current angle is 
one greater than the angle at which hits were de
tected, and to compensate for this the angle is de
cremented by one as it is transmitted back to the 
computer in response to a "Send data" command. 

If, on step (c), ST5 indicated that the final angle 

had been reached, the controller would transmit a 
start sweep pulse to the scan table (to cause the fi
nal angle to be swept) and then return to the idle 
loop. The condition of ST5 would indicate to the 
computer that the final angle had been reached, 
while that of ST2 would indicate the presence or 
absence of hits at the final angle. 

Once hits have been detected or the final angle 
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(continued) 

Location CA C8 COP CD CK CJ CN CL CS CXl CX2 CXM CXN Remarks 

START SWEEP 

230 $1 - - 0 - 1 

231 - - - 0 - 0 
232 $1 CK ADD cpr 1 0 
233 (not used) 
234 - - - 0 - 0 
235 - - - 0 - 0 
236 - - - 0 - 0 
237 - - - 0 - 0 

. 
SEND DATA 

239 81 0 NOP CHO 0 
240 - - - 0 - 0 
241 82 0 NOP CHO - 0 
242 - - - 0 - 0 
243 83 0 NOP CHO - 0 
244 - - - 0 - 0 
245 84 0 NOP CHO - 0 
246 - - - 0 - 0 
247 85 0 NOP CHO - 0 
248 - - - 0 - 0 
249 86 0 NOP CHO - 0 
250 - - - 0 - 0 
251 T1 0 NOP CHO - 0 
252 - - - 0 - 0 
253 T2 0 NOP CHO - 0 
254 - - - 0 - 0 
255 <1>1 CK SU8 CHO 1 0 

MN TABLE 

o <PI <PF SUB 0 -

1 
1 

1 1 ! 1 1 · · · 79 

2 

has been reached, the controller returns to its quies
cent state to await further commands. The comput
er may at this point request data; or it may trans
mit new parameters; or, it may cause scanning to 
resume at the angle one greater than that at which 
hits were last obtained, simply by issuing a "start 
sweep" command. 

- - 0 0 

200 0 0 0 
234 ST5 0 0 

236 0 0 1 
200 0 0 1 
236 STl 0 0 
230 ST2 0 0 

240 0 1-,.ST3 0 
240 ST6 0 0 
242 0 1~ST3 0 
242 ST6 0 0 
244 0 1...,.ST3 0 
244 ST6 0 0 
246 0 1~ST3 0 
246 ST6 0 0 
248 0 1~ST3 0 
248 ST6 0 0 
250 0 1..."ST3 0 
250 ST6 0 0 
252 0 1-+ST3 0 
252 ST6 0 0 
254 0 1~ST3 0 
254 ST6 0 0 
200 0 1~ST3 0 

232 0 (D=O~ 0 ~ST 

1 1 1 1 

0 

0 
0 

0 
0 
0 
0 

0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

1 

t 

- -
- -- -
- -
- -- -- -

- -
- -
- -
- -- -- -
- -
- -
- -- -- -- -- -- -- -
- -
- -

M(O) N(O 
M(I) N(1) 
M(2) N(2) 

t t 

. 

8ranch t o 
e MN Tabl 

Hits 

cpr I tF 
<pI = F 

M(179) N(179) 

In the PEPR application, the cycle time of the 
control memory would ideally be selected so that 
the loop time of the controller exactly matched the 
sweep time of the scan table, i.e., so that neither 
device waited for the other. According to Fig. 7, 
the controller executes six steps in the loop. Thus, a 
sweep time of 10 microseconds would require a con-
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trol memory cycle of no greater than 10/6 = 1.67 
microseconds. Such cycle times are readily available 
with current technology. 

REMARKS 

In this paper we have described a different ap
proach to controller design, whose salient aspect is 
the use of microprogram sequence in place of con
ventional wired logic. The implications of micro
programmed control can perhaps be better under
stood by considering briefly the similarities and 
differences between two kinds of controllers for the 
PEPR application: the microprogrammed controller 
we have just described, and a controller implement
ed in the conventional manner. 

From the standpoint of the hardware (registers, 
gates, etc.) required to hold the data coming from 
the scanner and computer, the two kinds of con
troller appear to be roughly equivalent. For exam
pI, the conventional controller would have to have 
two registers for holding the current and final an
gles, a counter for incrementing the current angle, 
and a comparator for comparing the current angle 
against the final angle. In the microprogrammed 
controller, the corresponding hardware is to be 
found in two registers for holding the current and 
final angle; and an ALU for decrementing and test
ing the angle. The specific manner in which this 
"common" hardware is controlled, of course, is 
much different in the two kinds of controllers. 

Another significant difference is in the manner 
in which the M and N functions are generated. In a 
conventional controller this would be accomplished 
with a nonlinear function generator, whereas in the 
microprogrammed controller, the function is stored 
directly in control memory. The latter is obviously 
an advantage if it is ever necessary to modify the 
function. 

Another difference is found in the generality of 
the ALU in the microprogrammed controller. A 
conventional controller would not be built with 
more arithmetic capability than absolutely required 
by the application, whereas the microprogrammed 
controller, through its very simple ALU and data 

flow characteristics, has theoretically unlimited ari
thmetic capability. The possibility therefore exists 
of extending the controller's functions (e.g., adding 
or subtracting constants to data as they are trans
ferred to or from the computer) without loss of 
time or additional cost. 

We have provided a detailed discussion of one 
application, but several others are immediately ap
parent. Control of any CRT scanner would be simi
lar to the PEPR scanner. In other data collection 
systems, counters, pulse height analyzers, telemetry 
converters, etc., may all serve as sources of input 
data. The controller output registers may be used 
for a variety of external control purposes as well as 
data sources for display and printing devices. A 
wide and dynamic range of control can be provided 
by a single hardware complex by means of the "per
sonality" provided by the control program. The 
simultaneous control of different experiments, for 
example, would be possible simply by incorporating 
separate programs within the control memory. 
While communication line switching and exchange 
and multiple data channel control are potential ap
plications, preliminary analysis has indicated that 
expansion of some of the baisc concepts presented 
may be desirable. 

The microprogrammed controller appears to offer 
significant advantages in design simplicity and flex
ibility, with respect to both the functions performed 
(as determined by the microprogram) and the par
ticular equipment to be controlled (as determined 
by the input/output register configuration). For 
this reason, we feel that the approach is well suited 
to the laboratory environment, where changing re
quirements must be accommodated with a mini
mum of confusion and cost. 
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PICOPROGRAMMING: A NEW APPROACH TO INTERNAL COMPUTER CONTROL 

B. E. Briley 
Automatic Electric Research Laboratories 

Northlake, Illinois 

INTRODUCTION 

The central processors of conventional computers 
may be roughly divided into two sections, an arith
metic section, which performs operations analogous 
to arithmetic upon representations of numbers, and 
a control section, which produces essentially a se
quential group of gating pulses to accomplish the 
desired manipulation in the arithmetic section. 

The arithmetic section lends itself admirably to 
modularization because of its repetitive structure. It 
is relatively easy to design and diagnose. The con
trol section, however, has stoutly resisted similar 
treatment because it conventionally consists of an 
ensemble of special logic arrangements which dif
fer, and, therefore, do not lend themselves to modu
larization on a logic level. This section is more dif
ficult to design, and if the control malfunctions, an 
attempt at self-diagnosis by a typical machine 
may be roughly compared with asking an insane 
psychiatrist to analyze himself. 

Described herein is a new approach to the design 
and realization of a control section which is modu
lar by nature, simple to design and diagnose, and 
flexible to a unique degree. 

CONVENTIONAL CONTROL SECTIONS 

Wired In 

A conventional control section decodes an in
struction to ascertain which of a prewired set of 
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control pulses must be dispatched to the arithmetic 
unit. In addition, it performs certain housekeeping 
duties, such as incrementing the instruction location 
counter. 

Most of the housekeeping is performed for all 
instructions, and the housekeeping hardware is 
shared by them for economic reasons. Similarly, 
like portions of different instructions are often real
ized with the· same piece of equipment. This design 
technique is very desirable from the point of view 
of economics, but it makes the machine more prone 
to total failure if a single element malfunctions. 

The conventional control is totally wired in, ren
dering it quite inflexible. Any afterthought altera
tion of the instruction set requires a "soldering 
iron" approach. 

Microprogrammed 

The microprogramming approach is a definite 
step forward in increasing the flexibility of a ma
chine. A microprogrammed control section utilizes 
a macroinstruction to address the first word of a 
series of microinstructions contained in an internal, 
comparatively fast, control memory. These microin
structions are then decoded much as normal instruc
tions are in wired-in control machines, to initiate 
production of (in general) a sequential series of 
pulses to control the arithmetic section.1 

The microinstructions are generally relatively 
weak, but the macroinstructions, calling upon sub-
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routines of microinstructions, can be quite power
ful. 

Since these subroutines are alterable, the nature 
of macroinstructions is very flexible, limited only 
by the microinstruction capabilities which are, 
however, fixed by wiring. 

Unfortunately, the portion of the control which 
handles the microinstructions suffers the same lack 
of modularizability as the totally wired-in system. 

PICOPROGRAMMED 

Philosophy 

Consider the control wires passing between the 
control section and the arithmetic section; these 
might number 100 in a machine of moderate size. 
If the signals which appear on these lines are exam
ined during the execution of a typical instruction, it 
will be found that relatively few are activated. Fur
ther, for most instructions, the number of pulses 
which are produced on anyone line is quite small 
(there is, of course, a small class of cyclic instruc
tions typified by SHIFT N, which require long 
trains of pulses; these will be discussed separately). 

Understanding the pieoprogramming technique 
requires the recognition of a correspondence be
tween the pulse-programming requirements of a 
control section and the capabilities of a memory 
element known as MYRA.2 A MYRA memory ele
ment is a MYRiAperture ferrite disk which, when 
accessed, produces sequential trains of logic-level 
pulses upon 64 or more otherwise isolated wires. 
The relative width and timing positions of the 
pulses on the various wires are trivially adjustable, 
not only with respect to other pulses on the same 
wire, but with respect to pulses on the other wires 
associated with the same disk. 

Thus, each memory element is capable of directly 
providing the gating pulses necessary to execute an 
instruction. A picoprogrammed system, then, con
sists essentially of an arithmetic section and a mod
ified MYRA memory. A macroinstruction merely 
addresses an element in the MYRA memory; whea 
the element is accessed, it produces the gating sig
nals which cause the arithmetic unit to perform the 
desired functions. In addition, it provides gating 
pulses which fetch the operand (if needed), incre
ment the control counter, and fetch the next instruc
tion. Thus, the housekeeping is distributed upon the 
disks, so that each instruction is essentially inde
pendent of the others. 

No clock is needed because each disk, as it com
pletes its switching, causes the next instruction to 
be obeyed (i.e., the next (or the same) element to 
be addressed). Thus, the machine is not synchro
nous. On the other hand, it does not have the gener
ally accepted earmarks of an asynchronous machine. 
Therefore, a new term has been coined to categor
ize this species of system: Autochronous (or self
timed). 

As a consequence of autochronous operation, if 
the driving mechanism for a particular disk should 
fail, the machine will halt upon attempting to obey 
the corresponding instruction, rather than continu
ing to perform incorrect calculations as might a 
clocked machine when an instruction malfunctions. 

It wi)l be seen that the picoprogramming scheme 
may be viewed as a logical extension of a micropro
grammed system, but on a more basic level. The 
required instantaneous levels on all the gate leads 
may be considered as bit values of a picoinstruction 
which has a word length equal to the number of 
gate leads. Picoinstructions are stored at constant 
radii upon a MYRA disk, in the proper order to 
perform the desired task. The advantages of the 
MYRA element are that the picoinstructions are 
automatically accessed in sequence (without the ne
cessity of a picoinstruction counter), and successive 
one's or zero's in the same bit position are automat
ically "slurred" together, so that, for example, two 
successive one's produce a pulse of duration twice 
that of. a single one preceded and succeeded by 
zero's. Thus, race conditions and static hazard diffi
culties are easily avoided. 

Advantages 

The advantages of a picoprogrammed system are 
as follows: 

1. Tailorability: Since the instructions are 
in effect memory elements they can be 
plugged in anywhere, and only their ad
dress (order code) changes; a wide range 
of instructions (greater than the number 
which the system can accommodate) can 
therefore be offered. Thus, for example, a 
customer could choose any 64 of perhaps 
200 available instructions. This produces 
about 1.6 x 1053 combinations (in practice, 
since some software, e.g., an assembler, is 
usually desired, a standard nucleus of in
structions might be provided, and the free-
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dom of choice would be somewhat re
duced; even so, it should be possible to of
fer a range of machines extending from 
highly bit-manipulative to highly compu
tational with the same mainframe) . 

2. Post-Alterability: As a corollary to item 1, 
a machine in the field can be altered easily 
if the customer decides later that his original 
choice of instruction set is no longer opti
mum. 

3. Graceful Failure: Because each instruc
tion is independent, the failure of one will 
not affect others. Thus, catastrophic (noth
ing works) failure should become a rarity. 

4. Diagnosable: Because of item 3, it should 
nearly always be possible to successfully use 
some diagnostic routine. In addition, the 
unique modularity of the control section 
makes localization of a control failure easy. 

5. Easily Designed: Disk wiring follows di
rectly from the required timing diagram. 

6. Housekeeping Processes: May take place 
anytime during the instruction execution, 
allowing optimum sequencing. 

THE MYRA ELEMENT 

General 

A brief description of the operation of the 
MYRA element is in order. Already applied as a 
semiconventional memory element,2 where its natu
ral propensity to produce sequential trains of 
pulses is, to some degree, circumvented, this ability 
is instead capitalized upon in the picoprogramming 
approach. 

When a step of voltage is applied across a drive 
winding passing through the central aperture of a 
square loop apertured ferrite disk in the proper re
manent flux state, a current ramp will result, and a 
propagating flux change wave will nucleate at the 
central aperture, and propagate outward at a uni
form velocity. As this wave traverses a portion of 
material singly looped by a conductor, it produces 
across the conductor an emf which, in a properly 
proportioned and constituted disk, is large enough 
to drive logic circuits directly. This voltage pulse is 
proportional in temporal length to the physical 
length of the looped portions of the disk. Its posi
tion in time relative to other looped portions of the 
disk is likewise related directly to the relative phys-

ical positions of the looped portions as shown in 
Fig. 1.2 

THICKNESS: 0.060" 

WIRED CODE: 0 II 00100 (ith bit of 8 picoinstructions) 
DRIVE LINE 

IlJL 

o 
o 

o 
o 0 

PROPAGATING 
FLUX CHANGE 
WAVE t=to. 

o 0 

o O.OIS" 

O~ ------, 
o 

MYRA DISK SHOWING ONE 
PICOPROGRAMMED WINDING 

to 
OUTPUT 

Figure 1. MYRA disk showing one picoprogrammed wind
ing. 

When the disk is reset by a drive and current 
in the opposite sense, a flux change wave in the op
posite sense nucleates at the center (as before) and 
propagates outward, producing an emf in the oppo
site sense at the outputs of each looping conductor. 
If, as is usually the case, the logic elements driven 
are sensitive to only one polarity of input voltage, 
they will react only to the train of pulses produced 
during say, set, and not to their mirror image about 
ground produced during reset. However, other 
windings can produce the proper polarity during 
reset and be ignored during set. Thus, the reset time 
is not wasted, for useful pulses differing from (or 
identical with) those during set can be produced. 
This is somewhat analogous to playing both sides of 
a phonograph record. 

Pulse widths as brief as 250 ns can be produced 
directly, and 125 ns pulses are obtainable from a 
disk with phased radii. The output impedance of 
the disks is less than 10 ohms, so that many gates 
may be driven without buffering, and even coaxial 
cable can be driven directly. 
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System .Considerations 

Many instructions require a waiting period in the 
midst of their execution (e.g., for an operand fetch 
from memory). It is easily possible to accommo
date such delays between the set and reset of a disk. 

Instructions also differ in their total time of exe
cution. While it is possible to force all instructions 
to occupy the same time (dictated by the length
iest) , it is more efficient to allow differing execu
tion times. T~is is effected by making use of disks 
which either physically or operationally differ in 
dimensions; the operationally small disks are of the 
same physical dimensions, but are only partially 
switched. 

WORKING PROTOTYPE 

General Description 

A feasibility model prototype dubbed PUPP 
(Prototype Utilizing Picoprogramming) was con
structed. Its instruction repertoire includes: 

1. ADD 

2. STR 

3. SFT 
(a) Right 

(b) Left 

4. SKP 

5. PCH 

6. NOP 

7. HLT 

add contents of addressed mem
ory location to contents of accu
mulator. 

store contents of accumulator in 
addressed memory location 

shift contents of accumulator 
one binary place to the right 

shift contents of accumulator 
one binary place to the left 

skip next instruction on non-zero 
accumulator 

punch (on paper tape) contents 
of accumulator 

perform no operation, proceed to 
next instruction 

cease activity 

Only a four instruction repertoire can be accom
modated at once, one of them necessarily HLT. 
Each instruction is implemented in a single plugga
ble circuit card as shown in Fig. 2 and the instruc
tion cards are completely interchangeable; the same 

Figure 2. ADD instruction card. 

instruction in a different location performs in ex
actly the same fashion, the only difference being 
that its order code (i.e., its address) changes. 

HL T is a special case: the address corresponding 
to its order code is an empty location. When an at
tempt is made to access .an empty location, all ac
tivity ceases, and the machine halts. The cessation 
of activity is quite literal because of the absence of 
a clock. 

All flip-flops in the system are of the set-reset 
variety. Thus, the double rank instruction location 
counter requires four timed pulses for address in
crementation; similarly, the accumulator is double 
rank. Thus, the system would be considered four
phase if a clock were used. 

Memory is provided by flip-flop registers. The 
word length is a modest four bits, but the control 
signals are essentially identical with those necessary 
for a -full size machine. 

Instruction Implementation 

The implementation of a typical instruction, 
ADD, will be discussed. 

The pulses which this and all instructions must 
provide are those necessary for housekeeping, that 
is, incrementing the instruction location counter, 
fetching the next instruction, and providing a pulse 
which causes the next instruction to be obeyed (ad
dressed). (See Fig. 3.) 
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Figure 3. Pulse trains produced by one picoprogrammed MYRA disk to execute ADD (250 ns/division). 

In addition to the above, there are some house
keeping pulses which are unique to the picopro
grammed implementation; among these are the sus
tainers, which are logically combined with a test 
pulse to assure the health of the driving circuits in
dependent of the remanent state of the accessed 
disk. Normally, an accessed disk will always be in 
the proper remanent state to provide a relatively 
high impedance to the driving circuit. If, however, 
a malfunction (e.g., a power failure) should upset 
this arrangement, a driving circuit might attempt to 
switch an already-switched disk, and endanger it
self; to prevent this, a narrow test pulse is first ap
plied, then, if the device is in the proper state, the 
sustainer pulse sustains the drive; otherwise the 
drive ceases with no damage done. A SET COM
PLETED and RESET COMPLETED pulse is also 
provided to inform the circuitry that the disk has 
finished setting or resetting, respectively. 

Each instruction disk must, of course, provide 
pulses (in addition to housekeeping) which are 
unique to it; these are shown in Fig. 3 for ADD. 

This timing diagram, which in a conventional 
sequential circuit control design would mark the 
beginning of the design problem, marks instead the 
completion of the picoprogramming design prob
lem .. T4is is true because the timing diagram is es
sentially identical to a cross-section of a wired 
disk, with a correspondence between time and radi-

al position, and voltage and axial position of the 
wire. 

It is, of course, understood that a control wire 
which performs some function such as Clear A~cu
mulator will loop some portion (or portions) of all 
those disks which require clearing of the accumula
tor. Since only one disk can ever be in the act of 
switching, oring is performed by this common wire; 
this wire plays the same role as a sense wire in a 
conventional core memory, except that it fails to 
loop all memory locations (in general). 

In Fig. 2, the windings for the ADD instruction 
can be seen. The two multiple turn windings are the 
drive windings, one used for setting, the other for 
resetting. These are the only multiple turn windings 
necessary. Note how few of the radial sets of aper
tures are populated with wires. 

The instruction card is constructed with the 
heavy current drivers upon it to minimize the areas 
of high-current loops. This has the added advan
tage of making each instruction autonomous with 
respect to failure because any component on the 
card can fail without disturbing the remainder of 
the machine. 

The disks could be driven on a matrix basis 
(though, of course, not by coincident current), but 
the economic saving would not be significant, the 
noise problem could become severe, and the locali
zation of failure advantage would be lost. 
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Results 

PUPP has logged over 3,000 hours of successful 
operation running a Markov Chain program at 
speeds not less than 200,000 instructions per sec
ond, and up to 300,000 instructions per second. 

Complete interchangeability of instructions is 
demonstrably realized and electrically as well as 
physically smaller disks are successfully employed. 

Self-induced noise is a non-existent problem; 
instruction cards reside comfortably beside logic 
cards. 

Forced air cooling is used in the instruction card 
area. 

A later instruction card design is shown in Fig. 4. 

Figure 4. Improved instruction card. 

Cyclic Instructions 

There is a relatively small class of instructions 
such as Multiply, Divide, Shift N, etc., which are 
cyclic in the sense that the same sets of pulses must 
be made available repetitively. These instructions 
can be handled most easily by a set of three disks 
per instruction. The first (Set Up) disk performs 
the set-up functions, indexing, fetching the oper
and, placing it in the proper register, and setting 
certain count flip-flops; it then addresses the sec-

ond disk. The second disk performs one cycle of the 
operation, decrements an operation counter and 
tests for completion of the operation; this is the 
Cycler Disk This disk readdresses itself if the test 
indicates that the operation is incomplete; when the 
disk has cycled a sufficient number of times to 
complete the operation, it addresses the third disk 
The third, or Clean Up, disk performs the remain
ing housekeeping operations: fetching the next in
struction, etc. In addition, it performs any opera
tions necessary for, and unique to, the completion 
of the instruction. 

One disk could suffice for realization of a cyclic 
instruction, but it would require extensive inhibi
tion logic to prevent the start-up and clean-up 
pulses from occurring during the cyclic portion of 
the operation, etc. 

FUTURES 

Picoprogramming should be applicable to a wide 
range of computer sizes because of its mix of ad
vantages. It should make a stored program approach 
feasible for very small systems because of its eco
nomic advantages; it should substantially tilt the 
rule-of -thumb balance between the costs of a 
processing unit and its control in such systems. Its 
flexibility and diagnostic advantages should make it 
attractive in rather large systems as well, particular
ly in multiprocessor arrangements. 
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INTRODUCTION 

The SCM COGITO-240 is an electronic desk 
calculator which makes use of one sonic (magneto
restrictive) delay line as its primary memory element. 
Some 480 bits of information are held in the delay 
line circulation pattern. These are represented in a 
Pulse-No Pulse code; the insertion of a pul'se into, 
or its emergence from, the delay line at a particular 
moment indicates the value one for the correspond
ing information bit. The absence of that pulse rep
resents the value zero. For a memory unit of this 
type it is convenient to recirculate information at a 
rate which is of the order of 10!i bits per second. 
Thus a convenient value for the delay time of the 
line, and for the time of one complete recirculation 
of the stored information, is about one-half milli
second. 

In the development of the COGITO design it 
proved preferable to make use of a rate of handling 
of information, as for example in the performance 
of an arithmetic operation, which is substantially 
smaller than the 10' bits per second recirculation 
rate. One reason for this preference is as follows: 

99 

The circulated information bits compose 120 "char
acters" of 4 bits each. (Most of these are deci
mal digits.) These form three "visible" registers 
called K (for "keyboard"), Q ("quotient"), and P 
(the double-length "product") register. Associated 
with each of these is a storage register of equal 
capacity, which is not displayed. Many of the oper
ations of the calculator involve the transfer of the 
content of one register to another; from one visible 
register to another or from a visible to a storage 
register or conversely. These operations are facili
tated by increasing the time of handling of each bit, 
hence the time in which it is conveniently available 
for such exchange processes, to cover the period in 
which all possible exchange partners pass through 
the delay line circuitry. The use of precession in the 
COGITO memory was, in part, motivated by this 
facilitation of the transfer operations. 

It proved possible to provide the COGITO mem
ory with a precession pattern which divorces the 
rate of information handling in arithmetic processes 
from the bit transmission rate of the delay line, and 
thereby to permit choosing each of these rates to fit 
the convenience of its associated circuitry. It is the 
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purpose of this report to describe that precession 
pattern and also several simpler patterns which pro
vide some, but not all, of the desired properties. 
Many details of the system chosen were motivated 
by unusual aspects of the COGITO design and are 
not likely to be of widespread interest. They are not 
discussed here. 

TIMING CHAIN SYNCHRONIZATION 

A series of flip-flops, the timing chain, serves to 
count the successive one-micro second-long time 
intervals in which successive information bits are 
delivered to and received from the delay line. The 
timing chain is driven by a free-running oscil'la
tor, the "clock." 

If the delay line were to be used merely to recir
culate without change the 480 bits of stored infor
mation, then the task of the timing chain would be 
merely that of subdividing one "memory cycle"; 
that is, the period of time required for one recircu
lation of the stored information. That is, in fact, 
the task of an early part of the timing chain which 
serves to distinguish one from another of approxi
mately 480 "clock periods" into which a memory 
cycle is divided. By reason of the precession system 
a longer period of time, called a "machine cycle," 
becomes significant. The later part of the COGITO 
timing chain serves to count the 60 memory cycles 
in each COGITO machine cycle. 

In a delay line memory of this kind there arises a 
problem of synchronization; that is, of ensuring that 
information-bearing pulses emerge from the delay 
line in an accurately controlled phase relationship 
with the clock oscillation. A straightforward way of 
ensuring synchronization is to impose rigid control 
on the frequency of the oscillator and on the delay 
time of the line, and to adjust one or the other of 
these parameters so as to bring about the desired 
phase relationship. As a measure of the necessary 
rigidity of control it may be noted that in a ma
chine like COG ITO a long-term drift in either 
parameter of 0.1 percent would be intolerable. 

HindalP has described a method of synchroniza
tion which obviates the need for rigid long-term 
stability of these parameters. He uses a delay time, 
and therefore also a memory cycle length, which is 
substantially longer than the time required for the 
insertion of the entire body of stored information 
into the delay line. In each memory cycle a "marker 
pulse" which is distinguishable (for example, by 

greater magnitude) from the information pulses is 
set into the line before the insertion of the stored 
information. After the entire block of stored infor
mation has been received from, and reinserted into, 
the delay line there occurs a "silent period" in 
which no further information is received from the 
line. During the silent period the clock oscillator is 
disabled; that is, its oscillation is suppressed. The 
emergence of the marker pulse from the delay line, 
somewhat later, marks the end of the silent period 
and brings about the release from inhibition of the 
clock oscillator. The timing of the succeeding activ
ities is controlled by the now-enabled clock. 
These succeeding activities are: the insertion into 
the line of a new marker pulse, the receipt from and 
the reinsertion into the line of the pulses represent
ing stored information, the disabling of the oscillator 
for the following silent period, etc. 

COGITO makes use of a method of synchroniza
tion which is distinguished from that of Hindall in 
that. the marker pulse does not differ from the in
formation pulses in magnitude or the like. Rather it 
is recognized as the marker pulse by reason of its 
emergence from the delay line during a silent peri
od. That is, the first pulse to emerge after the clock 
has been disabled is accepted as the marker pulse 
and terminates the period of inhibition of the clock 
oscillator. 

The silent period provides a convenient reference 
point for the description of the memory cycle. In 
the following the term "memory cycle" will be used 
to refer to a period of time which begins in one, 
and ends in the next succeeding, silent period. 

With either the Hindall or the COGITO method 
of synchronization the oscillator frequency and the 
delay time of the line may, without harm, drift 
gradually; the duration of the silent period will 
change continuously to accommodate these drifts. (It 
must not, of course, be all'owed to shrink to zero.) 
The possibility of continuous change in the length 
of the silent period, consistent with the desired syn
chronization, arises from the suppression of oscilla
tion of the clock. During the silent period all phase 
relations from the previous memory cycle, in which 
a marker pulse and the block of information pulses 
were inserted into the line, are forgotten. After the 
silent period the phase of oscill'ation of the clock is 
determined by the time of emergence of the marker 
pulse and is thus consonant with the times of emer
gence of the information pulses. Although these two 
methods of synchronization provide tolerance of 
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gradual changes in the two parameters discussed, a 
sudden change in either, that is, a substantial 
change occurring within one memory cycle, would 
still lead to malfunction. Fortunately, such sudden 
changes are much more easily prevented than are 
long-term drifts. 

PRECESSION PATTERNS 

In a simple recirculating memory using the CO
GITO synchronization the duration of the memory 
cycle is equal to the delay time of the line, together 
with its associated circuitry, since each pulse is 

CLOCK 
OSCILLATOR 

PULSES 
EMERGING 

reinserted into the line simultaneously with its emer
gence. The word "simultaneously" must not be 
interpreted very literally, since the time of traversal 
of the associated circuitry is substantial. More pre
cisely: the recognition of an emerging pulse permits 
the introduction into the line of a pulse which is of 
well-standardized magnitude, duration, and phase 
with respect to the clock oscillator. Figure 1 shows 
the simple recirculation without precession of a 
marker pulse and a group of information pulses, 
with the emergence and reinsertion shown as 
"simultaneous" in this conventionalized sense. 

SILENT --__.o� 

MARKER 
BITS- 51 V I 52 V2 S 23sa V23sa 5340 V240 51 VI 

PULSES 
REINSERTED 

MARKER 

Figure 1. Recirculation without precession. 

One-half of the 480 bits of memory held in CO
GITO, called "V-bits," represent the numbers 
held in the 3 visible registers while the remaining 
240 bits, cal'led "S-bits," form the storage regis
ters. One S-bit and the corresponding V-bit 
form a "bit-pair." It proves convenient to handle 
the two bits of a pair together, for the most part, 
and to make them available for manipulation over 
periods of time considerably longer than a few mi
croseconds. A simple way in which that can be 
done is illustrated in Fig. 2. The information bits 
which emerge from the delay line in the first mem
ory cycle are named 

sl,vl,s2,v2, ... ,s239, v239,s240,v240 

in the order of their appearance following the 
marker pulse. The first two bits, sl and vI, form 
one bit-pair; the following two another pair, etc. 
As the first two bits emerge they are captured in 
two flip-flops, S and V respectively, and are not 
simultaneously reinserted into the delay line. The 
following 478 bits are reinserted immediately upon 
emergence. Following the insertion of bit v240, the 
bit (s 1) held in S is inserted, and after it the bit 

(vI) is inserted into the line from flip-flop V. Only 
then is the clock oscillator inhibited in order to be
gin a sHent period. The marker pulse which 
emerged immediately before s 1 was not reinserted 
immediately but was inserted only at the time of 
emergence of the second information bit, v 1. In 
that way the introduction of a gap between the 
marker pulse and the first information bit is avoid
ed. In the second memory cycle the information bits 
emerge in the sequence 

s2, v2, s3, ... , v239, s240, v240, sl, vI 

and the first two bits, s2 and v2, are captured in S 
and V and are held for later reinsertion in the same 
way as the first pair was earlier, etc. It will be seen 
that in each memory cycle the sequence of 240 
bit-pairs is cyclically permuted and that after 240 
memory cycles the original sequence has been re
stored. 

Figure 2 has been drawn so as to emphasize 
another feature of this simple precession pattern: 
the duration of the memory cycle is greater by two 
clock periods than that shown in Fig. 1. It is also to 
be noted that the "early part" of the timing chain 
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FIRST MEMORY CYCLE 
CLOCK 
OSCILLATOR 5IL£NT--

PULSES 

V3~'- n EMERGING 

EMERGING SI VI S2 V2 53 V240 
INFO.< 
BITS INSERT ED 52 V2 S3 V240 51 VI 

PULSES INSERTED ~ n 
SECOND MEMORY CYCLE 

CLOCK 
OSCILLATOR 

SILENT 

PULSES 
EMERGING 

EMERGING 
IN FO.< 
BITS INSERTED 53 V231 S240 V240 51 VI S2 V2 

PULSES INSERTED ~ 

Figure 2. A one-group precession pattern. 

must now distinguish 482 rather than only 480 
clock periods following the appearance of the mark~ 
er pulse. Atypical activities occur in the first two 
and in the last two of these. 

In the system of Fig. 2 each V-bit is held in 
flip-flop V throughout one memory cycle (perhaps 
excepting the silent period) and is available there 
for leisurely manipUlation, and one S-bit is simi
farly held in S. After one machine cycle, consisting 
of 240 memory cycles, all information bits have 
thus been held and the original bit-configuration 
has been restored. It did not prove convenient to 
use in COGITO a machine cycle quite so long as 
240 memory cycles ( about one-eighth of a sec
ond) and therefore a slightly more complex preces
sion pattern was considered. 

A further classification of the information-bits 
held in the COGITO memory must now be de
scribed. Most of these bits represent the decimal 
digits which constitute numbers held in the various 
registers. Each decimal digit is represented by four 
bits, called tl, t2, t3, t4 in order of increasing sig
nificance. (A simple 1,2,4,8, BCD representation is 
used.) It therefore proves convenient to organize all 
other information held-decimal point·positions, plus 
or minus signs, etc.-in similar 4-bit characters. 
Thus the entire body of stored information may be 
divided into 4 equal parts; a group of 120 bits (60 

bit-pairs) which are tl-bits, 120. t2-bits, etc. The 
transfers of numbers from one register to another 
respects this separation into four groups; in such 
a transfer a t1-bit always remains a t1-hit, etc. 
Thus it proves convenient to separate the body of 
stored information into four parts, and to intro
duce a precession within each part separately. Such 
a precession pattern is shown in Fig. 3. 

To reflect the separation into four groups the 480 
bits held in memory are renamed as follows. The 
120 tl-bits are called 

s11, vlI, s12, v12, ... ,s160, v160. 

Similarly the group of t2-bits carries the superscript 
2, etc. In the first memory cycle (of a machine cycle) 
these 480 bits emerge from the delay line in the order 
named: the 120 tl-bits follow immediately after the 
marker pulse, then the t2-bits, etc. The first informa
tion bit, s11, is copied into flip-flop S and is not im
mediately reinserted. Then the second bit, v11, is 
copied into flip-flop V and a marker pulse is inserted 
into the line at this time. (It is the first pulse inserted 
since the silent period.) In the following 118 clock 
periods the remaining bits of the tl-group are rein
serted immediately upon emergence. Then, however, 
when the first bit of the second group, namely s21, 
emerges from the line it is exchanged with the content 
of flip-flop S. That is, the emerging bit is set into 
flip-flop S while the prior content of S is returned to 
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FIRST MEMORY CYCLE 

CLOCK 
OSCILLATOR SILENT--

PULSES ~ 
EMERGING. 

S460 v4so~---------

PULSES INSERTED 

CLOCK 
OSCILLATOR 
---SILENT--~ 

PULSES 
EMERGING 

INFO. < EMERGING 

BITS INSERTtD 

PULSES INSERTED 

Figure 3. A four-group precession pattern. 

the delay line. In the next clock period the content 
of flip-flop V, namely v11, is set into the line and the 
bit v21 is placed in flip-flop V. The remaining bits of 
the second group are then reinserted as they emerge. 
Similarly, the first two bits of the third group are 
exchanged with the contents of flip-flops S and V 
and the rest reinserted, and similarly during the emer
gence of the fourth group. After the emergence and 
reinsertion of the last bit of the fourth group (060), 
the contents of flip-flop S and V are inserted into the 
delay line in two further clock periods in .the same 
way as has been described for the simpler precession 
pattern of Fig. 2. The bits thus returned to the line 
are s41 and 01 respectively. 

As can be seen in Fig. 3, the operations just de
scribed result in a cyclic permutation of the 60 
bit-pairs of each group separately-together with a 
rightward displacement of the entire pattern in the 
same way as in Fig. 2. After one machine cycle, 
consisting of 60 memory cycles, the original config
uration has been restored. During that machine cy
cle each V-bit has been held in flip-flop V, and 
each S-bit in S, for one-fourth of one memory 
cycle (with the neglect of the silent period) . 

In the discussion above attention has been direct
ed to the circulation and precession of the bits of 
information held in storage in a delay line. The 
possibility that the value of an information-bit 

may have changed by reason of an inter-:register, 
or an arithmetic operation, etc., has not been men
tioned. Each of the symbols used, such as v11, 
should, however, be understood to represent merely 
the name of a variable which may change its value 
from time to time by reason of activities not de
scribed. 

The precession pattern illustrated by Fig. 3 fails 
to provide one essential feature of COGITO. Each 
V-bit (that is, each bit of a "working register") 
upon being picked up into flip-flop V must be 
provided with opportunity for leisurely interaction 
with the fourth bit to precede or succeed it in occu
pancy of flip-flop V (that is, the corresponding 
bit in another register, with which it may be in
volved in arithmetic manipulation.) For this reason 
a bit which has been held in V for a quarter of a 
memory cycle (called a "bit period" ) is not, in 
fact, returned to the precession pattern as has just 
been described. Instead, it is set into a 4-flip
flop shift register in which it remains easily accessi
ble for 4 additional bit periods, that is, for an addi
tional one memory cycle. A bit which is held in 
storage in flip-flops in this way may be changed 
in value in anyone of these 5 bit periods. After 
this holding period the (possibly modified ) V-bit 
is returned to circulation as illustrated in Fig. 4. By 
reason of the general precession the time for rein-
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CLOCK 
OSCILLATOR 

gap 

Figure 4. COGITO precession pattern (shown for third mem
ory cycle of a machine cycle). The information bits are 
shown as ambiguous, pulse present or absent. 

sertion of the bit which has been held out of circu
lation for an additional memory cycle is immedi
ately before, rather than after, the, clock period in 
which the bit held in S is reinserted. In the clock 
period following the reinsertion of the S-bit no 
pulse is set into the line, thus the bit pattern shown 
in Fig. 4 has one-clock-period-long gaps there. 
The "bit value" shown with these gaps is zero. The 
omission of four bits from the pattern shown in 
Fig. 4, which is otherwise like that shown in Fig. 3, 
can be understood as arising from the fact that at 
each moment four bits are held out of circulation in 
the flip-flop shift register. 

CONCLUSION 

These examples illustrate the considerable flexi
bility of delay line storage systems provided with 
simple precession patterns. It seems likely that sim
ilar techniques will prove helpful in many situations 
in which the desired rate of handling of data is 
smaller than that convenient for a delay line memo
ry. 
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AN ASSOCIATIVE PARALLEL PROCESSOR 
WITH APPLICATION TO PICTURE PROCESSING* 
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INTRODUCTION 

In recent years, a number of hardware associative 
memories had been designed and experimentally 
verified. 1,2 These memories allow simultaneous 
comparison of all stored data to external data. Data 
may be read from, or written into, comparing 
words. These memories, acting as peripheral de
vices to conventional computers, have been studied 
for ?pplication to various tasks described in ref
erences 1 and 2. The concept of "associative proc
essing," i.e., simultaneous transformation of many 
stored data by associative means, has been de
scribed previously.3,4,5 This processing mode showed 
promise in a variety of tasks, but was not efficient 
when peripherally controlled by a conventional 
machine. Novel machine organizations were re
quired to fully exploit the potential of these tech
niques for solving poorly structured nonnumeric 
problems, at which present-day machines are not 
efficient. 

This paper describes a novel Associative Parallel 
Processor (APP), having an associative memory as 

*The work repored here was supported by AF Rome Air 
Development Center, Griffiss Air Force Base, N.Y., under 
Contract AF 33 (602)-3371. 

an integral part of the machine. Arithmetic algo
rithms are described which allow it to perform adap
tive pattern recognition by evaluating threshold 
logic functions. Novel algorithms allow simultaneous 
processing of m~my operands in bit-parallel fashion. 
The processor is a stored program device with a 
powerful command set, and thus has general utility 
in problems which allow a single set of commands 
to be executed independently, and thus simultane
ously over many data sets. These conditions fre
quently arise in nonnumeric data processing tasks 
such as pattern recognition. 

Parallel processing is accomplished within the 
associative array of APP by the powerful technique 
of "sequential-state-transformation," previously de
scribed by one of the authors.3 The parallel search 
function of associative memories requires that com
parison logic be provided at each memory word 
cell. The APP, by moderate additions to this logic, 
allows the contents of many cells, selected on the 
basis of their initial content, to be modified 
simultaneously through a "multiwrite" operation. 
Content search and multiwrite are the primitive oper
ations necessary to parallel processing by sequential
state-transformation. 

105 
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To illustrate the concept of sequential-state-trans
formation, consider an associative memory which 
stores two operands, Ai and Bi, in each word of mem
ory. We desire to add operand Ai to operand Bi 
simultaneously in some subset of these words. Proc
essing is serial by bit, and parallel' by word, starting 
at the least significant bit of each field. Each word 
has an auxiliary storage bit, Ci stored within the mem
ory array. Bits within operand field Ai are designated 
Aij (j= 1,2, ... , N), where N is the field length. Bits 
in field Bi are similarly designated. The truth table 
defining the addition is as follows: 

State Number Present State Next State 
Au Bij Ci Bij Ci 

1 0 0 0 0 0 
2 0 0 1 1 0 
3 0 1 0 1 0 
4 0 1 1 0 1 
5 1 0 0 1 0 
6 1 0 1 0 1 
7 1 1 0 0 1 
8 1 1 1 1 1 

Note that variables Bij and Ci differ in their present 
and next states only in states numbered 2, 4, 5, 7. 
The search and multiwrite operations may be used 
to perform the addition of all number pairs, starting 
at the l'east significant bit, as follows: 

1. Search words having Aij = 1, Bij = 1 and 
Ci = O. 
For these words multiwrite Bij = 0, Ci = 1. 

2. Search words having Au = 0, Bij = 0 and 
Ci = 1. 
For these words multiwrite Bij = 1 and Ci 
= O. 

3. Search words having Au = 0, Bij = 1 and 
Ci = 1. 

4. Search words have Aij = 1, Bij = 0 and 
Ci = O. 
For these words multiwrite Bij = 1. 

Steps (1) through (4) are repeated at each bit of 
the operands. Within each bit time, processing is 
sequential by state over present states which differ 
from the next. state in one or more variables. All 
words in a given present state are transformed 
simultaneously to the desired next state. 

Sequential-state-transformations used to perform 
the above word-parallel, bit-serial addition, is evi
dently a very general mode of associative proc
essing. It allows transformation of memory con-

tents according to any Boolean function of stored 
and external variables. It makes full use of compari
son logic, implemented at the bit level within an 
associative array, and thereby simplifies logic re
quired at the word level. It compares favorably with 
other associative processing methods in both speed 
and processor complexity. 

In the next section we describe the organization 
and command set for a processor using the sequen
tial-state-transformation mode of associative proc
essing. In the following section command routines 
are given for word-parallel, bit-serial processing de
scribed above; and also for a novel mode of word
paraUel, bit-parallel processing which yields signifi
cant speed improvement over bit-serial mobes. The 
pattern-processing applications is discussed last. 

ORGANIZATION AND COMMAND SET 

The addition operation presented in the preced
ing section is a typical example of the associative 
processing technique. From it, several conclusions 
concerning the desired structure for an associative 
processor can be formulated. 

1. The single primitive step in associative 
processing is identification of all words 
storing some configuration of binary state 
variables, followed by binary complemen
tation of some state variables within iden
tified words. This primitive makes the 
basis of an associative "micro instruction" 
which, repeatedly executed with varying 
parameters, can transform memory con
tents according to any Boolean function of 
stored and external' binary variables. 

2. Since processing is simultaneous over all 
stored data, no explicit word address is 
provided within an associative instruction. 
Many words may be transformed in re
sponse to a given instruction. These words 
are identified by search criteria contained 
within the instruction. 

3. Data is processed column-serially to mini
mize the number of state variables and 
thus memory states which must be identi
fied and transformed sequentially. Associa
tive micro instructions thus address a small 
number of bit columns in memory. Since 
many consecutive bit columns are sequen-
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tially transformed, efficient means for col
umn indexing are required. 

4. Several temporary storage or "tag" bits 
within each word are useful to identify 
words as members of various sets currently 
undergoing transformation. The carry stor
age bit, defined for the addition task of the 
previous subsection, is a tag bit. The loca
tion of tag columns are unchanged as suc
cessive data columns are processed. 

5. Each word cell must have electronics, exter
nal to the memory array, which temporar
ily store the match status of the word, rela
tive to the most recent search criteria, and 
allow writing of selected bits in matching 
words to either the one or zero state. Writ
ing is simultaneous over all matching 
words. 

6. For generality, stored program control of 
the associative processor is desired. In
structions are accessed sequentially from 
control memory, with possible branching 
as in conventional machines. Since no bene
fit derives from storing these instructions 
in associative memory, the control memory 
is a less costly location-addressed random
access memory. Having separate instruc
tion and data memories, the access times 
for each may be overlapped. 

Elements of the Librascope processor are shown 
in Fig. 1 This realization contains an associative 
array, partitioned into data and tag columns 
(fields), together with requisite word and digit 
electronics. Instructions are read from a random
a<?cess control memory, and are interpreted by 
control logic to sequence operations within the proc
essor. The associative array may be loaded word
serially through the data register and unloaded 
column-serially through word electronics. The data 
register also stores search keys. The random-access 
memory is written or read through the data register. 
Contents of word flip-flops (i.e., match status of 
words) may be transferred to the data register for 
subsequent use as a search key or to be outputed. 
Column indexing, over two distinct fields (A and 
B), is provided by the A and B counters. A and 
B limit registers store either the upper or the lower 
limit column for their respective fields. 

The electronics repeated at each word cell (Fig. 
2) contains a match storage flip-flop and a word 

driver capable of writing ones or zeros into selected 
bits of matching words. The state of each match 
flip-Hop is fed to a "match status gate" whose out
put denotes the presence or absence of matching 
words. The group of match flip-flops, termed a de
tector plane (DP), may be set collectively to one or 
zero by signals Esl or Eso common to all match flip
flops. Prior to writing into lower neighbors, con
tents of all match flip-flops are shifted down one 
word position. 

Operation of the processor required the following 
steps: 

1. Load instructions to control memory. 
2. Load data to associative array. 
3. Process data according to state transform

ing instructions read from the control 
memory. 

4. Output results. 

Instructions are fed to the data register then writ
ten into the control memory by action of the central 
control. Data are likewise fed to the data register 
then written into the associative array by data and 
word drivers. The associative array is content-ad
dressed rather than location-addressed. Prior to 
writing word zero, the match flip-flop for this word 
is set to one. The first data element is written into 
this "matching" word. Subsequent words are writ
ten after shifting this one into consecutive match 
flip-flops. 

Data within the associative array are processed 
by use of the associative command described below. 
Following associative processing the output data 
may be a single quantity (e.g., a picture "name") 
or may be the entire transformed contents of the 
associative array (e.g., field potentials at all nodes 
in a discretized solution space. Either class of data 
mav be efficiently outputed through the match flip
flops. The contents of a column within the associa
tive array are read to match flip-flops by a search on 
that column then transferred to the data register for 
output. The alternative of reading words sequen
tially from the associative array requires the availa
bility of bit sense amplifiers and word-read drivers 
together with means for addressing word-read drivers. 
The latter readout scheme would be more costly in 
hardware with no gain in efficiency. 

The format for associative commands is shown in 
Fig. 3. Each associative command effects a primi
tive transformation of state variables as discussed 
in the preceding section. The left-most bit identifies 
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DATA DATA 
IN OUT 

DATA REGISTER 

>---
I 
I 

I 
I 

CENTRAL 
-CONTROL 

A LIMIT 

A COUNT 

___ ...J 

B LIMIT 

B COUNT 

~-..,..-- -..,.--- --J.--------
I I I I 
I L... I I 
I I 
I I 
I t---- I--...,.-

~ 
I 
I 

RANDOM ACCESS 
CONTROL MEMORY 

CONTROL PATH - - - -

DATA PATH -----

DATA FIELDS TAG FIELD 

14-----'--WORD ----~ 
I 

ASSOCIATIVE ARRAY 

WORD 
CONTROL 

MATCH 
INDICATOR 

WORD 
ELECTRONICS 

Figure 1. Structure of the associative parallel processors. 

the command as associative. The two adjacent bits 
define the initial state of match flip-flops in word 
logic units (Le., the detector plane). Other bits de
fine search and rewrite criteria for the A field, the 
B field, and for each of four tag bits. The right
most bit controls rewrite into matching words or 
their next lower neighbors. Functions of these bits 
are described in Fig. 3. 

To illustrate the utility of this command, con
sider the task of searching the associative memory 

for words matching the data register over a field hav
ing it upper limit stored in the A limit register and 
its lower limit stored in the A counter. Matching 
words are to be tagged in tag bit 1. 

The following command accomplishes the desired 
tasks: 

1Esi SLDWIS--W-SOW 
~~---------
. A Control B Control Tag 1 

The following routine 19ads data into each word 
in the associative array. The word field to be writ-
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NEXT 
HIGHEST 
NEIGHBOR 

FROM 
WORD IN 

MEMORY ARRAY 

NEXT 
LOWEST 
NEIGHBOR 

WRITE NEIGHBOR CONTROL 

SELECTION 
TRANSFER 
DP TO DR 

'1...-___ .... 

TO 
WORD IN 

MEMORY ARRAY 

] 

COMMON FOR 
ALL WORDS 

MAlCH STATUS GATE 
1------... TO CONTROL UNIT 

Figure 2. Word electronics. 

ten is again defined by contents of the A counter 
and the A limit register: 

1. Set the match flip flop for word 0 to "1." 
2. 1 N S L D W S - - - - S - W N 
3. 1 N S L D W S - - - - S - W L 

A Control B Control Tag 1 
4. If not match, exit: otherwise go to (3). 

Instruction (2) writes into word 0; instruction 
(3) writes sequentialiy into each remaining asso
ciative word. 

Nonassociative commands are provided to load 
the A and B counters and limit registers, to branch 
from linear instruction sequencing either uncondi
tionally or when specified conditions are met, and 
to input or output data. Nonassociative commands 
are specifically defined in the illustrative programs 
presented in the next section. 

ARITHMETIC ALGORITHMS 

In previous parallel processors4,5,6 arithmetic al
gorithms were typically executed over many oper
ands simultaneously, but in bit-serial fashion. All 

bits of an operand are stored within a single word 
cell as shown in Fig. 4. For operations requiring 
two operands, operands may be paired by storing 
them in the same cell or by restricted communica
tion between word cells (e.g., communication be-

. tween "nearest neighbors" only). This word-per-cell 
( W / C) organization is efficient when all or 
most operands in memory are processed by each 
associative command. 

An alternate data organization stores bits of an 
operand in separate contiguous word cells as shown 
in Fig. 5. A similar organization, independently 
derived, was recently . described. The bit-per-ce.1l 
(B/C) organization allows many operands to be 
processed simultaneously in bit-parallel fashion. 
Command execution is thus appreciably faster than 
for the W / C organization, but each command is 
typically executed over fewer operand pairs. Any 
operands stored in the same set of contiguous word 
cells may be simply paired. The B / C organiza
tion is thus efficient for problems which do not al
low simultaneous processing of all operands by a 
single command, and for problems in which each 
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E10 - CLEAR DP TO ZERO 

EI. - CLEAR DP TO ONE 

N - NO CHANGE IN DP 

o -ASSOCIATIVE COMMAND 

~~~~~~~ WRITE 

0- SEARCH FOR ZEROS 

I -SEARCH FOR ONES 

1----S- SEARCH 

~-- S - DON'T SEARCH 

1- INCREMENT COUNTER 

N - NO CHANGE IN COUNTER 

W-WRITE 

W- DON'T WRITE 

1-'---- 0 - SEARCH FOR ZEROS 

1----- I - SEARCH FOR ONES 

1-----0 - SEARCH COMPLEMENT OF D. R. 

'----- D- SEARCH EQUAL TO D. R. 

I-------S-SINGLE COUNTER INCREMENT 

~----- L- INCREMENT COUNTER THROUGH LIMIT 

1-------- S -SEARCH 
L...-. ______ S- DON'T SEARCH 

I -NON-ASSOCIATIVE COMMAND 

NORMAL- N 

WRITE LOWER NEIGHBOR - L 

Figure 3. Format for associative command. 

_________________________________________ -J
1 

ASSOCIATIVE 
ARRAY 

Figure 4. Word per cell data organization. 

WORD 
ELECTRONICS 

operand must be paired with many others at various 
computational steps. 

Consider first an algorithm for the W IC data 
organization (Fig. 4), which adds contents of all A 

fields to contents of respective R fields, leaving the 

resulting sum in the R fields. Tag 1 is used for car

ry storage and is assumed initially cleared. The rou

tine is as follows: 

The processor organization and command set 
described in the preceding section is equally applica
ble to W IC and RIC data organizations. Arithmetic 
algorithms, approprite to each data organization, are 
presented below. 
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Figure 5. Bit per cell data organization. 

A Field 
S S 1 W N 
S SOW N 
S SOW N 
S S 1 W I 
If A Count> 
jump to (0). 

Contents 
B Field Tag 1 

SSIWNSOW 
SSOWNSIW 
SSIWNSIW 
SSO W I SO W 

A Limit, continue; otherwise 
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The routine first addresses least significant bits 
of A and B fields and tag 1. Of eight possible states 
for these variables, four must be transformed to new 
states (see Introduction). Commands 0-3 accom
plish the four required state transformations. Com
mand 3 increments A and B column addresses. The 

routine is repeated at each column in the A (and 

thus B ) field. 

Instruc
tionNo. 

o 1 ESl 

1 1 ESl 

2 1 N 
3 1 Esl 

4 1 Esl 

SIN 
6 0 N 

A routine which performs the equivalent opera

tion for operands stored in the B I C organization 

(Fig. 5) is shown as follows: 

A Field B Field Tag 1 
S-1 WNS-O WN--
S-1 WNS-l WN--
S--W-S--W-SOW 
S--W-S-OWNSIW 
S--W-S-l WNSI W 
S--W-S--W-SOW 
If DP =1= 0 jump to (3). 

Lowest 
Neighbor 
Control 

N 
N 
L 
N 
N 
L 
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Instructions 0, 1, and 2 form the partial sum. 
Instructions 3, 4, and 5 ripple all carries to comple.; 
tion, as is detected by instruction 6. For a worst
case carry, N -1 iterations of steps 3, 4, and 5 are 
required. 

However, even when the number of parallel data 
words is very large, the longest expected carry 
string is significantly less than N -1 bits. Typically, 
the foregoing algorithm is two to three times faster 
than for the algorithm presented for the W Ie con
figuration. 

ASSOCIATIVE PATTERN PROCESSING 

A number of linear threshold-pattern-recogni
tion devices have been built using analog tech
niques.8,9,10,11 Such devices are relatively fast and 
inexpensive when applied to simple pattern rec
ognition tasks. They are limited in the allowed 
number of input variables and in the dynamic range 
of weights assigned to these variables. Wiring com
plexity increases rapidly with the number of thres
hold units used. Modification of the weights as
signed input variables or of thresholds is expensive 
and time-consuming. Higher-order restructuring is 
even more difficult. Analog units are thus not suit
ed for classification of complex problems for which 
many properties are measured, and where suitable 
properties may not be known a priori. 

The parallel processing capability of an associa
tive processor is well suited to the tasks of abstract
ing pattern properties and of pattern classification 

LOGIC 
UNITS 

by linear threshold techniques. Threshold pattern 
recognition devices execute a given operation inde
pendently over many data sets, and thus allow the 
paralleiism necessary for efficient associative proc
essing. Associative processing affords the accuracy 
of digital number representation, and is thus unlim
ited in fan-in and dynamic range of weights. 
Weights are simply altered by changing memory 
contents. Wiring and components are regular and 
are thus amenable to low-cost, batch-fabrication 
techniques. The set of measured pattern properties 
is changeaable by changing memory contents, rather 
than by rewiring as for analog units. Adaptation is 
thus possible in measured properties as well as in 
classification. 

The Pattern-Processing Model 

In this subsection, the pattern-processing model 
will be briefly described. Figure 6 represents the 
model of the pattern recognition system. "N" binary 
valued sensor units are summed, with weights -t- 1, 
into some or all of "K" thresholding logic units. A 
threshold level, tk, is established for each logic unit. 
If the sum of weighted inputs exceeds the threshold, 
the unit becomes active and the output, bk , is one; 
otherwise the output is zero. Each logic unit has a 
weighted connection to some or all of N r response 
units. Weights of active logic units are summed and 
thresholded at each response unit. A pattern is 
classified according to the set of activated response 
units. 

DECODED 
RESPONSE 

UNITS 
PROVIDE THE 

CLASSIFICATION 

Figure 6. Analog model of pattern recognition system. 
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Associative Realizations 

The associative memory is organized into three 
sections containing, respectively, the connectivity 
'vectors Ck, 1 :::; k :::; K; the system of weights Wkn, 
1 :::; k :::; K, 1:::; n :::; N r; and the target vectors 
T m, 1 :::; m :::; M. The general organization of the 
associative memory is shown in Fig. 7, which is 
interpreted as follows: In Phase ( 1 ), the set of 
logic units activated by the ith pattern is determined, 
using the input vector Ai and the stored connectivity 

INPUT 
AI FROM DATA 

SENSOR REGISTER 
UNITS 

CONNECTII(ITY 
Qk 

WEIGHTS 
Wkn 

TARGET VECTOR 
1 m 

ASSOCIATIVE 
MEMORY ARRAY 

0 

0 

0 

vectors Ck. Logic unit outputs which yield the prop
erty vector Bi are formed in the detector plane. In 
Phase (2), the inputs to the response units are cal
culated, using the vector Bi and the weights stored 
in the appropriate portion of the associative mem
ory. This yields the response vector Ri in the detector 
plane. In Phase (3) , the response vector Ri is 
compared with the target vectors T m stored in the 
associative memory, and the classification of the 
pattern associated with A i is determined. The three 
processing phases are further described as follows: 

DETECTOR 
PLANE 

Figure 7. Associative paranel processor realization of pat
tern recognition system. 

Phase (1). The set of sensor-logic unit connections 
with weights 1 and - 1 may be represented by a 
matrix [C] which is stored in the connectivity sector 
of an associative memory in the format of Fig. 8. 
The matrix [C] may be written 

where [C+<-)] is a matrix with binary values whose 
entries represent those connections which are positive 

'I. c~ --- ctJ --- c~ 

'. C:' - -- ct. - - - C:. 
I I I I I I 

I I I , 
I I I I --I I I I I 

t, ct. c:) C~I 

I 
I 
I 

~ 
J 

I 
I 

I 

(negative). That is, the element c+ jk is + 1 if there 
is a positive connection between sensor j and logic 
unit k, and is 0 otherwise. Similarly c- jk is 1 if there 
is a negative connection between sensor j and logic 
unit k. Thus, all connections from sensors to the 
kth logic unit are represented by the row vector 
Ck = C+k + C-k. Matrix rows C+ k and C-k are 
stored in adjacent fields of as associative memory 
word. 

ciN -- - Cjj - -- ciT Sj 

Co - - - Czl - - - c;' SI 

I I ; I I 
I I I i 
I I I i 
I I I I 

I I I I 

l ! I j 

e;. eKj CKj Sa 

-WORD-

Figure 8. Connectivity sector of associative parallel proc
essor. 
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The input vector A i is used as a. key to interro
gate matrix [C] in the associative memory in order 
to determine the set of logic units activated by the 
input vector Ai. Bit positions having aij = 1 are 
interrogated for c+ jk or c- jk = 1. A binary count 
of the number of bits in C- k which satisfy this con
dition is made in the accumulation fields Sc respec
tively of each word in Fig. 8. The procedure is again 
repeated for C + k. Thresholds tk are prestored in 
fields as indicated. After counting, the contents of 
the T fields are subtracted from those of fields Sc. 
Elements of Sc remaining positive under these oper
ations correspond to activated logic units. 

FoUowing these Phase ( 1 ) operations, a single 
search for positive counts Sc sets the detector plane 
to the match state at each word corresponding to 
an activated logic unit. Contents of this segment of 
the detector plane are transferred to the data regis
ter for use as search criteria in Phase (2). 

Phase (2). This phase generates the output vector 
ri, ... , riNr corresponding to the ith (input) pat
tern. The components 

are to be generated within the associative processor, 
using bi

k as an input from Phase (1) and the weights 
Wkn stored in the weight section of the associative 
memory, Fig. 7. Arithmetic operations, similar to 
those discussed in the second section of this paper, 
are then used to yield the response vector (ril, 
... , riNr ). 

Phase (3). The target vectors stored in the asso
ciative memory (Fig. 7) are vectors with binary 
valued components (ril, . . . , riN r) = 'Tm , where 
'T

m represents the known classification of the ith 
pattern. It is assumed that the K X N r matrix of 
weight [W] stored in the associative memory have 
been predetermined such that each of the M patterns 
of interest is correctly classified, i.e., the output of 
Phase (2) matches the appropriate target vector, 
component for component. 

Components (r\ . . . riN r) of target vectors 'Tm 

are stored in a portion of the associative array at 
locations derived from. "names" dm(i::S; m ::s; M) 
of patterns associated with the target vectors (Fig. 
7). A response vector generated during Phase (2) 
is used as a search key to interrogate the target vec
tor portion of the associative array. The location of 

any responding word denotes the name of the pat
tern, as in the following table, showing the target 
vector portion of associative memory. 

Target Vector Name Word Address 
1 1 

d l f(dl ) r- r-1 N 

2 2 
d2 f(d2) r- r-

1 N 
r 

M M 
dM f(dM) r- r-

1 N 

Processing Times 

A program was written for the described pattern
recognition model using the instruction set presen~
ed in the second section of this paper. 

The pattern recognition program has an adaptive 
or learning mode, requiring 120 instructions, in 
which weights are adjusted to properly classify a set 
of input patterns. The program for each mode is 
invarient to pattern parameters used for classifica
tion. Since 82 instructions are common to the two 
modes, only 131 instructions need be stored in pro
gram memory. 

100,000 
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T- TOTAL SOLUTION TIME FOR A SINGLE PATTERN -
IN SECONDS OR MILLI-SECONDS AS INDICATED 

Figure 9. Time for associative classification of a single pat
tern as a function of the number of patterns and sensors 
for the W Ie data organization. 

*This cycle time is based on a magnetic film realization 
of the associative array described in reference 12. 
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Based on the aforementioned recognition pro
gram, a word-per-cell data organization, and an as
sociative command cycle of 0.8 microseconds, the 
graph of timing efficiency shown in Fig. 9 was con
structed. Note that "N" represents the number of 
sensor units at the input and "M" the number of pat
terns distinguishable by the processor. The "MARK 
I Perceptron" used 400 sensors in a 20 X 20 array 
and 512 logic units. 

It can be seen that the APP could solve this 
problem in approximately 3 milliseconds using some 
2000 words of associative storage. The APP reali
zation offers significantly greater ease of alteration 
and somewhat lower cost at a moderate increase" in 
processing speed relative to the Mark 1. 

CONCLUSION 

The associative parallel processor, described in 
this paper, achieves considerable generality with 
simple word and bit logic through the use of the 
sequential-state-transformation mode of associative 
processing. Its range of applicability is increased by 
novel arithmetic algorithms allowing simultaneous 
processing of many operands in bit parallel fashion. 
These algorithms allow efficient use of the proces
sor for problems in which only a fraction of the 
stored operands are processed by a given command. 
Earlier processors4,5,6 were efficient only when nearly 
nearly all operands were processed by each com
mand. 

An important feature of the parallel processor, 
when used as a pattern recognition device, is the 
ability to modify its functional structure, through 
alteration of memory contents, without change in 
its periodic physical structure. This adaptive feature 
has importance in applications where patterns change 
with time, or where the processor is used as a proto
type of subsequent machines having fixed recogni
tion capabilities. Further research is required to 
fully exploit this adaptive capability. 

Linear threshold pattern classifiers of the type 
here presented are beginning to find many applica
tions. To date, these types of pattern dassifiers 
have been studied and/or implemented for charac
ter recognition, photointerpretation, weather fore
casting by cloud pattern recognition, speech recog
nition, adaptive control systems and more recently, 
for medical diagnosis from cardiographic data. 
Other possible applications include terminal guid-

ance for missiues and space vehicles and bomb 
damage assessment. 

Currently the processor is being studied for 
application to the tasks of job shop scheduling, 
optimum commodity routing and processing electro
magnetic intelligence (ELINT) data. In each 
instance signfiicant speed gains have been shown 
possible over conventional sequential digital com
puters. It is interesting to note that the processor 
described in the second section of this paper may be 
applied to this variety of tasks without significant 
changes in organization or command structure. 
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COMPUTER ORGANIZATIO'N FOR ARRAY PROCESSING* 

D. N. Senzig and R. V. Smith 

IBM Watson Research Center 
Yorktown Heights, New York 

INTRODUCTION 

In spite of recent advances in computer speeds, 
there are still problems which make even greater 
demands on computer capabilities. One such prob
lem is that of global weather prediction. Here a 
three-dimensional grid covering the entire world 
must be stepped along through relatively short peri
ods of simulated time to produce a forecast in a 
reasonable amount of real time. This type of prob
lem with its demand for increased speed in proc
essing large arrays of data illustrates the applica
bility of a computer designed specifically for array 
processing. 

When arrays of data are being handled, it is usu
al to have to do the same calculations on each piece 
of data. This kind of problem is suited to a ma
chine with multiple arithmetic units (AU's) since 
each can be carrying on the same task on different 
parts of the array. We are fast approaching the 
physical limit in speed for computer AU's. On the 
other hand, a number of AU's can operate simulta
neously to increase the amount of work done per 
unit time. The speed and number of these units can 
be selected to suit the economics of the case and 

*This work was supported by the Advanced Research 
Projects Agency of the Office of the Secretary of Defense 
(SD-146). 
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the logical characteristics of the problem. When 
mUltiple AU's are all doing the same task, a single 
control unit suffices. For example, one load instruc
tion can cause all AU's to load their separate accu
mulators each from a different part of the array. 
Facility must be provided to inhibit some of the 
AU's when exceptional conditions are being han
dled by the others, or when the number of pieces of 
data to be processed is smaller than the total num
ber of AU's available. A suitable paralleling of sep
arate memory units must also be provided to yield 
data at the rate required by the AU's. 

The cost and speed of an array processing com
puter depends on the speed of the memories and the 
circuitry used, and also on the number of AU's pro
vided. Speed can be characterized by the maximum 
rate at which bits can be brought from the memo
ries and processed. Studies to date have indicated 
that higher bit rates at proportionately lower costs 
are possible with given types of hardware by using 
the array processing approach rather than the con
ventional types of organization. 

VAMP ORGANIZATIONAL CONCEPTS 

The VAMP (Vector Arithmetic Multi-Proces
sor) computer will be described independent of 
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technology in order to stress organizational con
cepts apart from arithmetic execution times. How
ever, the ideas described below were tested in a 
simulator where details such as instruction format, 
word length and number of AU's are fixed. 

The VAMP computer consists of three major 
units: the Mill, the Memory and the Control. 

I VECTOR ACC. I! 

2 
TOI FROM 

0 
MEMORY 

z 0 
W <t 
W ...J 3 a: 
0 <t 
(/) ~ 

C) 
0 
...J 

n 

.! .!!. n AU's 

Figure 1. Vamp mill. 

The Mill 

As shown in Fig. 1, functionally the Mill 'consists 
of a linear array of n arithmetic units (AU's) and 
the registers w, u, and s. (A typical value for n is 
16, but this could vary to suit requirements.) 

Within each AU, processing is done in parallel on all 
bits in the registers. The number of bits per word, k, is 
immaterial to this discussion, but a typical number is 
36. The registers of the ith AU are illustrated by the Xi 
and Zi registers in Fig. 2. (We will use the symbol 

Xi to represent the ith register of the register array 
X. Xij will represent the ith bit position of the regis
ter Xi.) The ith accumulator, Xi, 2k-bits long, re
ceives the result of most arithmetic operations. The 
k-bit storage register, Zi, is not program addressable 
and serves mainly as a buffer between memory and 
Xi. The Zl register also serves as a buffer between 
the u, s, and w registers and memory. An instruction 
for loading X normally fetches n words simultane
ously from the memory into the Z registers. The 
words are then transferred into the X register array. 

In arithmetic instructions using operands from 
memory, the instruction results in n operands being 
simultaneously fetched into Z. For the floating point 
add instruction, the n numbers in Z and X are then 
added and the n double length sums are placed in X. 
For multiply, the numbers placed in Z are the multi
plicands, the n multipliers are in the most significant 
half of X as a result of a previous operation. Double 
length products are placed in X. 

The vector instructions (those in which multiple 
operations are specified) include the conventional 
Boolean, fixed point, and floating point operations 
performed n at a time. 

In addition to the vector instructions, the conven
tional register-register and memory-register Boolean, 
fixed point, and floating point instructions that one 
would find in a conventional multiregister computer 
are included in VAMP. 

The registers s (screen) and u (logical accumu
lator) contain n bits each. Looking again at the reg
i~rs Xi and Zi of AUi, one bit of s and one bit 
of u correspond to each AU. In particular, Si and Ui 
go with Xi and Zi. 

The screen bit Si serves to inhibit the operation of 
its corresponding AU. The Mill is designed to, and 
generally will, simultaneously execute a common 
instruction in all AU's. However, the screen control 
is provided to give each AU the capability of not exe
cuting a given instruction. For example, if the given 
instruction specifies addition, those AU's whose 
screen bit is one perform the addition; those whose 
scbreen bit is zero do not. 

The logical accumulator, u, serves to hold the 
results of logical operations and acts as the control 
vector in certain vector operations on X. Tests on 
the relationship (=, =1=, <, ~, >, ~) of members 
of X to zero set their logical result into u where 
individual elements can be set or tested. An inter
change of the contents of sand u allows such results 
to become the screen. 
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The effective use of structured operands (vectors 
and matrices), depends upon the ability to extract 
and reinsert certain elements or groups of elements. 
This restructuring depends on selection of elements, 
which is a binary operation (i.e., to select or not 
select), and is conveniently specified by the bit vector 
u. Two operations for restructuring data arrays are 
included-compress and expand. The following dis
cussion of the operands is based on I versons's de
scription. I 

The compress operation defined on an arbitrary 
vector a and a compatible (of equal dimension) bit 
vector u is denoted by c ~ ul a and is defined as 
follows: the vector c is obtained from a by suppress
ing from a each component ai for which Ui = 0. 
Clearly, the dimension of c is equal to the sum of 
the ones in u. For example, if u = (1, 0, 0, 0, 1, 1,) 
and a = (1,2,3,4,5,6), then ula = (1,5,6). For 
the VAMP instruction, the elements of a are the 
numbers stored in the array X. Hence the dimen
sions of the operand vectors is assumed to be n. The 
result vector, c, is stored in X. Denoting the sum of 
components (ones) in u by i, then the first i, registers 
in X contain the vector c, the remaining n - i are set 
to zero. 

The expand operation is expressed as c ~ ul a. 
The vectors c and u are of a common dimension. 
The expand operation is equivalent to choosing suc
cessive components of Cij from ai or ° according as 
the successive components Ui are 1 or 0. For example, 
if u = (1, 0, 0, 1, 1,) and X contains the numbers 
(1, 2, 3, 4, 5, 6), then the result is X containing the 
numbers (1, 0, 0, 0, 2, 3). Denoting the sum of com
ponents of u by i, the first i elements originally in X 
will be preserved, and n-i· elements of the result are 
necessarily zero. 

The use of compress and expand can be illustrat
ed in a weather problem. The radiation calculation 
depends principally on the type of cloud and 
amount of cloud cover. For efficient handling, sepa
rate arrays for each of the various cloud character
istics should be created by compression. Then all 
arithmetic units can be put to work on one such ar
ray after the other, all doing the same operation at 
anyone time. The separate arrays can then be reas
sembled into one by the expand and load under 
screen control operations for use in the next proce
dure. Essentially these instructions partially recover 
the advantage of making use of the average that a 
conventional computer enjoys. 

The vector accumulator w is a 2k-bit register. All 

members of X (subject to s) can be added or multi
plied together and the sum or product placed in w 
(w ~ w + I j Xi; W ~ W X 1Ti Xi). Search instruc
tions to find the maximum (or minimum) value in 
wand the registers of X place this maximum (mini
mum) value into w. 

Memory 

The design of VAMP requires simultaneous ac
cess to n words in memory-one word for each AU 
(Fig. 3. Several memory organizations are possi
ble and these are based on the physical arrange
ments chosen. The result will be a functional ar
rangement, that is, an arrangement as seen by the 
program. 

One type of organization results when one physi
cal word is used to feed more than one AU. One 
reason for doing this is that the physical word 
brought out at each memory access is large enough 
to hold several functional words and therefore it is 
more efficient to use all of them. If one physical 
word does not hold enough functional words to sup
ply all AU's, then several boxes can be accessed 
simultaneously. The simplest approach is to group 
boxes together and bring out the same physical 
word from each in the group to feed all AU's. The 
SOLOMON2 case is functionally similar to the one 
above but, being serial, one bit of each physical 
word in the group is sent to each AU and a succes
sion of groups supply the succession of bits which 
make up the functional word. In this case, the data 
received by the AU's have a fixed spatial relation
ship to each other. Functionally it is as if each SOL
OMON AU had its own memory and accessed the 
same word from it at anyone time as all the others 
did from theirs. To ease this restriction, provision 
may be made for units to access words in their 
neighbor's memories, proceeding in step as before. 
This results in the concept of a matrix of processing 
elements (arithmetic units, each with a memory) as 
in SOLOMON. 

For an n arithmetic unit VAMP, 2j separate mem
ory boxes are required (2i ~ n). Assuming a total of 
2m words of memory, the addressing is set up so that 
the least significant j bits of the m bit address select 
the memory box. The most significant m - j bits of 
the address then specify the particular word in the 
box. 

V AMP addresses memory in two modes. In the 
vector direct mode, the instruction specifies an initial 
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address ao and an increment d. The n addresses ao, 

ao + d, ao + 2d, ... ,ao + (n - 1) d are generated. 
Since the number of memory boxes is a power of 
2 and at least as great as n, an odd value of d will 
result in all addresses being in different boxes. The 
most usual cases arise from proceeding along a vec
tor or a column of matrix so that d = 1, or along a 
row of matrix so that d equals the length of a column. 
If the columns are of even length, an additional dum
my members can be added to achieve an odd num
ber. Should the program require the use of an even 
value of d, it will still be accepted, but with conse
quent loss of time. A test is made to determine if 
d = O. If so, the same word is transferred to all AU's 
without attempting to access the memory more than 
once. 

Addressing in the vector indirect mode uses a set 
of n addresses in memory. These addresses are 
fetched into Z, but they are then fed to the memory 
address registers to bring out n words. Any set of 
addresses may be used so that any desired set of 
words, possibly including repeats, will be fetched 
or stored. The vector indirect mode will generally 
lead to multiple requests from the same memory 
box. This will result in less than maximum speed; 
however, it will be faster statistically than executing 
n separate instructions, one for each word to be 
fetched or stored. 

The SOLOMON scheme has certain physical ad
vantages. It does not require as many memory box
es to avoid memory access conflicts (but to obtain 
a suitable memory size, it may need just as many). 
The number of bits to access the AU memory is 
less than it would be if the entire physical memory 
were adressable. 

The V AMP scheme requires hardware and time 
to produce the address vector. Functionally, the bus 
between memory and AU's is an electronic cross 
bar switch to gate the n addresses to the memory 
units, and an electronic cross bar switch to gate the 
n data words between the memories and the n 
AU's. 

Simulation showed that the memory bus hard
ware for VAMP can be significantly reduced by 
time-sharing a small number of transfer lines (typi
cally 2 or 4) in combination with a simple antici
patory control. This would allow decoding and 
address generation to be overlapped with the execu
tion of the previous instruction. Thus, when consid
ering the entire hardware inventory of a machine of 
this type, the increase due to the incorporation of 

the flexible memory of VAMP should be small. 
Also, this is a one-time cost which will be offset by 
savings in programming which is continuing activity. 

The VAMP memory organization results in a 
common functional memory with no relation be
tween a given AU and a section of memory. The 
SOLOMON organization yields individual func
tional memories and fixed addressing. The former 
has greater functional advantage than the latter 
since AU's have access to all of memory, not just to 
the part of it which is their own and their neigh
bors'. 

The flexibility of its common functional memory 
means that VAMP will adapt easily to automatic 
programming. Computation can proceed in essen
tially the same way as has been conventionally 
done, but n items will be handled at a time. With 
SOLOMON-type addressing there will be severe 
problems brought about by segmentation of the 
memory into individual AU memories of limited 
size and the consequent segmentation of the prob
lem data. Boundary problems between the segments 
and storage allocation, particularly dynamic storage 
allocation, will be prominent difficulties. 

Table look-up (where each AU may require a 
different value from the table) is rather easily done 
with VAMP through use of the vector indirect 
mode. No scheme for doing this seems to be availa
ble with SOLOMON-type addressing and indeed, 
indirect addressing appears to be incompatible with 
this addressing scheme. At Livermore a problem 
known as Coronet IV uses approximately 50 per
cent of the total running time of their STRETCH 
computer, and 36 percent of the Coronet IV time is 
used for table look-up and interpolation of table 
values. 

Control Unit 

The control unit in VAMP includes the instruc
tion fetch controls, instruction decoding index unit 
and address unit. As in conventional computers, in
structions are stored in the same memory as (and 
are indistinguishable from) data. Instruction decod
ing and execution differs from the 7090, for exam
ple, only in that for the vector instructions, micro 
operations are issued to n AU's rather than to 1, 
and on a vector memory access an index register is 
specified as containing an increment from which 
the address unit has to generate n addresses. 
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FURTHER DISCUSSION OF THE V AMP AU's 

One of the reasons for building faster computers 
is to solve bigger problems. Bigger problems usually 
mean longer chains of computation and, for a given 
word length, more round-off error and scaling diffi
culties. The uncertainty of magnitudes in long cal
culations has led to the almost universal use of 

Xi OUTPUT TO 

ii-! AND~'+I 

floating point arithmetic in modern large-scale ma
chines designed for scientific problems. The classi
cal arguments for floating point in a conventional 
machine would seem to hold equally in array proc
essors. 

If the Mill were designed as it functionally ap
pears, that is, as a collection of "classical" AU's of 
the type shown in Fig. 2, we would have a require-
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Figure 2. Vamp arithmetic unit functional data flow. 

ment that does not exist in conventional computers. 
Namely, all arithmetic operations should run in step 
and the time required should be data independent. 
It is permissible, for example, for the execution of a 
floating point add on the IBM type 7044 to vary 
between 4 and 23 cycles with an average execution 
time of 5.5 cycles. In VAMP this is not suitable. 
Statistically, with many AU's the execution time for 
all the reach completion will be close to the maxi
mum and a data dependent execution time would 
require extensive local control on each AU that we 
prefer to do away with. Floating addition (and 
floating subtraction), multiplication, and division 
are the operations that normally have data depen
dent execution times. 

In the case of multiplication and division, algo
rithms that give a data independent execution time 

are well known. Multiplication by two bits per iter
ation and division by the nonrestoring algorithm 
reduce the local control for multiply and divide to 
merely picking the correct multiple (-1, 0,1,2) of 
the multiplicand or divisor. The other control hard
ware, shift counter, etc., is common to all units. 

In the case of floating point addition, a fast al
gorithm with execution time independent of data 
can be developed by providing multiple shifts in the 
alignment and normalization phases. In particular, 
digit shifts of powers of two (1, 2, 4, 8 digits, etc., 
are provided. For alignment, assume the exponent 
difference has· been obtained and is represented in 
binary positional notation, the bits having weight 
1, 2, 4, 8, etc. Then by having central control is
sue the micro operation "shift," the local control 
need merely be sufficiently sophisticated to gate the 
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fraction through the shifter or to bypass it, depend
ing on whether the corresponding bit of the exponent 
difference is one or zero. 

ciently sophisticated to execute or ignore the com
mon shift micro operation, based on the value of 
the most significant bit. 

For normalization,. each AU must be provided 
with control logic to determine if a one would be 
shifted out of the most significant end of the accu
mulator by the shift micro operation about to be 
given. Again the local control need only be suffi-

Unfortunately, the schemes for floating point add 
get to be very expensive when applied to each of n 
AU's. Some compromise between multiple shift 
gates and completion controls would undoubtedly 
be made. For instance, the central control could re-
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peatedly issue micro operations for a single shift, 
stopping when all AU's signal completion. Another 
reasonable alternative is to use a larger radix. Qua
ternary, octal or hexidecimal systems are obvious 
candidates. 

Assuming the engineering problems are solved 
one is still left with the situation where a scalar 
(one pair of operands) operation requires as much 
time as a vector operation ( n pairs of operands). 

!!(n,n 
! (n,l) 

__ !:.I ___ . 
~(n,k) 

REGISTER 
ARRAY 

~(n,2k) 
REGISTER 

ARRAY 

~( 1,2k) 

MILL 

---

Thus when a problem is heavily dominated by sca
lar operations there is little gaJn in speed. 

Rather than attempt to work with multiple AU's, 
a register array and a much smaller number of very 
high-speed Execution Units may be used. The basic 
procedure is to load the register array and stream 
operands and results to and from high-speed Execu
tion Units. Figure 4 shows the resultant organiza
tion of the Mill. 

TO/FROM MEMORY 

VERY HIGH SPEED 
EXECUTION UNITS 

(~nIl6) 

Figure 4. Vamp mill (n = number of functional AU's;k = number of bits per word). 

The algorithms we use to obtain high-speed arith
metic operation are almost completely combinatoral 
circuits. Floating add (and its variants) use the 
alignment and normalization combinatorial shifter 
described above. 

The multiplier is based on the well-kno~n carry 
save multiplier as recently extended by Wallace3 to 
process all partial products simultaneously. Wal
lace's proposal is to interpret the contents of the 
multiplier register as radix 4 digits and recode these 
digits into the digits - 2, - 1, 0, 1, 2. The now easy 
to generate partial products are grouped by threes 
and gated into a tree of carry save adders. The out
puts of each level of carry save adders are again 
grouped by threes and gated into the next level. 
Each level of carry save adders reduces the number 
of summands by about a factor of 1.5. The two out
puts of the tree are added to produce the double 
length product. 

The divide algorithm is an iterative method 
based on that used in the Harvard Marck IV and 
discussed by Richards.4 The technique essentially 
involves generating the divisor inverse by a series 
of truncated multiplications. 

During a vector. floating point multiply we could 
have four sets of operands in motion at once. One 
set is being accessed from the register array. One 
set is being multiplied. A product is being normal
ized. A normalized product is being stored in the 
register array. 

In an effort to keep all operations times in the 
stream to about the same duration the multiply tree 
can be split such that some fraction of the multiplier 
bits are processed simultaneously in each section. 
While this may slightly increase the time to com
plete a single multiply, the cost will be· slightly de
creased and overall speed will be significantly 
increased. 

As with multiply, a snapshot of Vector Floating 
Add would reveal many sets of operands in motion 
at once. Here we have the following possibilities: 
Fetch operands from registers, determine the ex
ponent difference, alignment shift, addition or sub
traction, normalization shift, and store result in reg
ister. 

To a good first approximation, for floating point 
fraction lengths of about 32 bits these techniques 
give approximately 16 times the speed and cost 16 
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times as much as the classical "parallel" algorithms 
that use a parallel adder but do serial shifting and 
process multiplier and quotient digits serially. 
Hence, for given speed and cost to implement the 
vector operations we obtain improved speed for op
erations involving less than n operands at a time. 
The discussion of n arithmetic units will continue 
but it should be kept in mind that we propose to 
use n registers and a much smaller number of Exe
cution Units. The exact number and form of the 
Execution Units would be determined by word 
length and the particular circuit characteristics. 

VAMP COMPUTER 

This section describes V AMP with word length, 
number of arithmetic units, number of memory 
units, and instruction set fixed. A simulator to in
vestigate the organizational concepts described 
above was written to run on the 7094 for the par
ticular organization described in this section. Since 
our study was to investigate concepts, not circuit 
and memory speeds, we will not supply such things 
as multiply times and, hence, performance improve
ment factors over convenient targets. 

The simulator was not complete in the sense that 
interrupts were not programmed and I/O must be 
done outside the simulator program. The simulator 
will accept a program written in V AMP symbolic 
assembly language, assemble, and execute the pro
gram. 

The simulated VAMP assumes 16 functional arith
metic units and - 16 memory boxes. of 16,384 
words each. The word length is 36 bits.' The float
ing poit number representation is the same as the 
IBM 7094: the floating point fraction is binary, 
sign and magnitude, the exponent is excess 128. 
(-1.0, 0, 1.0 are represented in octal by 
601 400 000 000, 000 000 000 000, and 
201 400 000 000 respectively). The data and in
struction formats are given below. 
Data Format: 

0, 1 
8, 9 

S 
G 
N 
S 
G 
N 

35 

Instruction Formats: 

0P 

0P 

0P 
0P 13 
0-3 4-7 

11 

X2 Xl 
12 11 
X2 F 11 
12 
12 F 11 
12 F 11 

Scalar Register
Register 

Scalar Register
Memory 

Vector 
TRANSFER 

Control Words: 
o 

15, 16 -17, 18 
-35 

S 
G 
N 

1 

1 
1 

Exponent 
Fraction 

8 
9 

16 

Floating Point Word 
Double Length Index 
Single Length 
Index/ Address 
Logical Acc./Screen 

0-7 
8-11 
14-17 
18 
31 32-35 

ADDRESS 

ADDRESS 
ADDRESS 

Interrupt 
Conditions 
Condition Mask 

C 
C 

Instr. Cntr. 
Interrupt 
Branch Adr. 

XO' 
10 

Program Status Word 
Program Status Word Mask 

(C C - condition code) 



COMPUTER ORGANIZATION FOR ARRAY PROCESSING* 125 

VAMP has 15 index registers. The 10, 11, 12 and 
13 fields of instruction formats refer to one of these 
registers or, if the field is 0000, to an implicit reg
ister that contains an unmodifiable zero. 

To keep all address calculations out of the Mill 
the index units contains a complete set of arith
metic (add, subtract, multiply, and divide) and 
Boolean (AND, OR, equivalence) operations. The 
number representation in the index unit is 2's com
plement. The word length is normally 18 bits with 
multiply producing a double length product and di
vide producing an 18 bit quotient and 18 bit re
mainder. 

Memory Addresses are calculated from informa
tion specified in the F, 11, and Address fields. The 
bit combination in the field 11 selects the index 
register to be used in modifying the Address field. 
The instruction is then executed as if its address 
field contained the stated address plus the contents 
of the index register. 

Address modification is extended to include base 
address indirect addressing. Base address indirect is 
specified by a one in bit 13 of the instruction 
(right right-most bit of the flag, F, field). An ad
dress is computed by adding the contents of the in
dex register specified by lIto the address part of 
the instruction to form a memory address. Bits 
13-35 at this base indirect address replace bits 
13-35 of the instruction register. The process then 
repeats-a new memory address is computed for 11 
and the address field. Bit 13 is examined for anoth
er level of base indirect addressing. The address 
that comes out at the end of the chain of indirect 
addresses is called the effective base address. 

Vector instructions, i.e., those that do 16 opera
tions simultaneously, use the effective base address 
as the address of the first operand. The address of 
the second operand is determined by adding the con
tents of the index registers specified. by field 12 to 
the effective base address. Letting ao represent the 
effective base address and i2 the contents of the index 
register addressed by 12, the address vector, a, is of 
dimension 16 and the components are (ao, ao + i2, 
. . . ,ao + 15 i2). All values a ::;; i3 < 218 are valid. 

There is another form of indirect addressing 
known as vector indirect addressing. In this mode 
the address vector is used, not to address the oper
ands directly, but to address an address vector. This 
mode is indicated by a 1 in bit 12 of the vector in
struction format. Vector indirect addressing does 

not proceed beyond 1 level; i.e., the address vector 
fetched from memory is used as the operand address 
vector without further modification. (When modifi
cation of the address vector is required it can be 
fetched into the accumulator X and treated as 
data.) 

In scalar floating point or scalar boolean opera
tions the 4-bit fields XO, Xl, and X2 refer to one 
of the 16 double length accumulators. The contents 
of the registers XO and Xl serves as operands and 
X2 specified the regi,ster to receive the result. For 
scalar register-memory instructions the contents of 
the memory location specified by the effective base 
address and the contents of the X register specified 
by the X2 field serve as operands. The result is 
placed in the X2 register. 

To facilitate programming of loops, where one is 
processing 16 elements at a time, three loop closing 
instructions, VTILE (vector transfer on index low 
or equal), VTIH (vector transfer on index high), 
and VCTR (vector transfer on counter) are pro
vided. These instructions combine stapping an index, 
testing the index, and conditional branching. They 
are made more powerful by having them set to the 
"do not execute" state the screen bit of arithmetic 
units which will not participate on the last iteration 
when there are less than 16 items to process. 

Looking at the instruction VTILE in detail, the 
first step is to add 16 times the contents of index 
12 to index 13 and put the sum in index 13. (The 
mUltiply and add is done by simply shifting index 12 
four bits left and adding Mod 218.) Then, the new 
value of index 13 is compared against the contents 
of index (13 + 1) Mod 16. 

If the contents of index (13 + 1) Mod 16 are 
greater than the contents of 13 a branch is not taken 
-the instruction counter is to be advanced by 1. 
If the content of index 13 + 1 is less than or equal 
ot the content of index 13 the branch is taken, that 
is, the effective address is placed in the instruction 
counter. The results of the test (> or ::;;) are also 
noted for use in the following part of the VTILE 
instruction . 

The contents of index 12 are now added to 13 and 
the sum Mod 218 is compared against the contents 
of index (13 + 1) Mod 16. If the result of the com
parison is the same as that on which the branch de
cision was made (i.e., both greater than or both less 
than or equal) the screen bit 2 is not modified. If 
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the results of. the two comparisons are different, the 
screen bit 2 is set to zero (do not execute state). 

The contents of index 12 are now added to the 
above sum.)If this sum Mod 218 bears the same re
lation to index (13 + 1) Mod 16 as did the addition 
on which the branch decision was made, screen bit 
3 is not modified. If the relation changes the screen 
bit is set to zero. This process repeats until 15 addi
tions have been done. 

Note that screen bit 1 is never modified, screen 
bit 2 may be modified at the end of the first addi
tion, screen bit 15 may be modified at the end of 
the 15th addition. 

The VTIH instruction differs from VTILE only 
in that the branch decision is reversed. If, after the 
first add shift operation, the contents of index (13 + 
1) Mod 16 are greater than index 13 we branch, 
i.e., put the effective address in the instruction 
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counter; if the contents of index (13 + 1) Mod 16 
are less than or equal to index 13 the instruction 
counter is advanced by 1. All other operations are 
the same in VTILE and VTIH. The instruction 
VTCR uses an implicit -1 as the increment and the 
contents of the register 12 as the initial value. The 
comparison is against an implicit zero. Other than 
this the instruction is identical to VTIH. 

The 15 additions required by VTILE, VTIH and 
VTCR are performed by the same unit and in the 
same way as addresses for a vector instruction are 
generated. 

The instruction set for VAMP has been designed 
for the processing of vectors in memory, including 
rows and columns of matrices. These will normally 
have considerably more components than the num
ber of AU's. Many operations such as compress, 
search for largest, and sum and product reduction 
(sum or product of all compnents) must operate 

CONTROL 

Figure 5. The simulated vamp CPU. 

over the entire vector even though only 16 are han
dled at anyone time. The instruction set is de
signed around this concept. 

The simulated CPU is shown in Fig. 5. The w, s, 
u, X and Z arrays perform the functions described 
in the second section of this paper. The address 
unit A contains three 18-bit registers and two 18-
bit adders. Like Z, A is not seen by the program
mer. It is used by the control for index and address 
arithmetic. 

The right-most 18 bits of the program status 
word, PSW, contain the instruction counter. Bits 16 
and 17 of the PSW word contain the condition 
code. The results of all index operations as well as 
scaler operations in the Mill are used to set the con
dition code to indicate whether the result of the last 
operation was zero, less than zero, greater than 
zero, or overflowed. An instruction to test the con
dition code and branch accordingly is provided. 

Bits 0-15 of the PSW and PSWM were not de-
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fined in the simulation. They are reserved for inter
rupt indicators, interrupt masks, and the interrupt 
branch address (the location where a new PSW and 
PSWM are to be picked up from and where the cur
rent ones are to be placed). 

The registers I-BUF and IRB in Fig. 5 are used 
by a relatively simple anticipatory control. Instruc
tions are executed in three levels. At level 1 the in
structor is fetched from memory and placed in reg
ister I-BUF (instruction buffer). In level 2 the in
struction op code is scanned to determine if it is a 
vector arithmetic insturction or one of the vector 
transfer instructions: VTILE, VTIH or VTCR. If it 
is one of the vector instructions the necessary ad
dresses are generated. If it is not a vector instruc
tion, no operation is performed. In step 3 the in
struction is executed. For most instructions steps 1 
and 2 can easily be overlapped with the execution 
of the previous instruction. Note however that in no 
case are the contents of registers visible to the pro
grammer modified until the previous instruction 
has been completed. Thus if an interrupt occurs at 
the end of the current instruction some unnecessary 
work has been done but no procedure for recovery 
of previous register contents need be included. 

PROGRAMMING EXAMPLE 

The following small FORTRAN problem is coded 
in the VAMP symbolic assembly language: 

DO 1 I = 2,59 
L = A2(1) 

1 Al(1) = C*A2(1) + A2(1-1) + A2(1 + 1) 
+ B(L) 

Al and A2 are one-dimensional arrays of 60 ele
ments. B is a one dimensional array of 40 elements 
which enter by indirect addressing. C is a constant. 

The following instructions are used ( definitions 
given above). 

LDA A, 11, F, 12 Load Address 
Places the effective address into the index 

register addressed by the field 12. 
GPS A, 11, F, 12 Generate Prefix in s. 

Set the first a bits of the screen to one where 
a is the effective address. 

VLDX A, 11, F, 12 Vector Load X 
Load the contents of the memory locations 

specified by the address vector into the most 
significant half of X (subject to s) 

VAND A, 11, F, 12 Vector AND 
AND each bit of X with the corresponding 

bit in the memory locations specified by the 
address vector (subject to s). 

VLXI Vector Load X Indirect 
Replace the most significant half of X by 

the contents of the memory location specified 
by bits 18-35 of X. Note that in this version of 
indirect addressing the address vector is as
summed to be in X as the result of a previous 
operation. 

VSTX A, 11, F, 12 Vector Store X 
Store the contents of the 16 accumulators 

(subject to s) in the memory locations speci
fied by the address vector. 

VF AD A, 11, F, 12 Vector Floating Add 
Algebraically add the floating point numbers 

specified by the address vector to the floating 
point numbers contained in X (subject to s). 
The sums are normalized. 

VUFA A, 11, F, 12 Vector Unnormalized 
Floating Add 

Same as VFAD except the sums are not nor
malized. 

VFMP A, 11, F, 12 Vector Floating Mul-
tiply 

Multiply the floating point numbers at the 
memory locations specified by the address vec
tor by the floating point numbers stored in the 
most significant half of X register (subject to s). 
The double length product appears in X. 

VTILE A, 11, F, 12, 13 Vector on Index 
or Low or Equal 

See description in section VAMP Computer. 
BSS A Block Started by Symbol 

BSS is a psuedo-operation that reserves a 
block of A consecutive storage locations. 

OCT Octal Data 
OCT is a psuedo-operation that introduces 

binary data expressed in octal form into the 
program. 

The VAMP assembly language program is shown 
in Fig. 6. 

CONCLUSION 

The concept of an array processing computer is 
due to SOLOMON. By taking advantage of the fea
tures inherent in interleaved memories, very high
speed arithmetic units, mUltiple register CPU's and 
by adding a number of special instructions one ob-
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tains a machine that has the functional capabilities 
of SOLOMON but which fits within the framework 

of a more conventional computer organization. Fur
ther, the ideas presented here should result in a ma

chine which is applicable to a much wider range of 
problems than SOLOMON. 

There certainly exists a large class of problems 

for which neither VAMP nor SOLOMON would 
show any appreciable advantage over a more con
ventional organization. Compiling is probably the 
best example of these. 
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LOCATION OP ADDRESS, 11, F, 12, 13 

LDA 1" , 1 SET IR 1 = 
LDA 1, " 2 SET IR 2 = 1 
LDA 58, , , 3 SET IR 3 = 58 

GPS 16 SET SCREEN TO 
BEGIN VLDX A2, 2,,1 LOAD A2(I), A2(I+. 

VUFA FXZR PLACE BINARY P 
VAND MASK REMOVE EXPONEI\ 

* A2 CONVERTE D TO T UNCATEDINTEGER 

VUFA LOCB ADD LOC OF B(l) TO 
VLXI LOAD B(A2(I), B(A2{Ii 
VFAD A2+li 2,,1 ADD A2(I+l), A2(I+2), ••• 
VFAD A2-1 2,,1 ADD A2 (1-1). A2(I), ••• ,. 
VSTX TEMP",1 STORE TEMP. RESULT 
VLDX A2, 2,,1 LOAD A2(I), A2(I+l), ••• ,A 
VFMP C MPY BY C 
VFAD TEMP",1 ADD TEMP. VECTOR 
VSTX AI, 2,,1 STORE Al{I), ••• ,Al(I+15) 
V TILE BEGIN, , ,1,2 STEP INDEX CNTR 16 

* END TEST PR GRAM 

* DATA STORAG 
C BSS 1 
Al BSS 60 
A2 BSS 60 
B BSS 40 
TEMP BSS 16 
LOCB VFMP B 
FXZR OCT 233000000000 
MASK OCT 400777777777 

END 

Figure 6. A . VAMP assembly language program. 
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At this session it seems to me that you might be 
interested in several of the more-or-Iess techni
cal facets of the direction of a large aerospace com
puter installation. Consequently I will avoid com
peting with our environment by discussing the ubi
quitous problems of recruiting, of personnel moti
vation, of obtaining cooperation among the mem
bers of the various computing groups, or even the 
basic problems inherent in convincing our computer 
folks that the whole computer center does not exist 
for them at all, but rather as a service for the other 
parts of our company. 

Instead, I want to tell you today about a few of 
the figures we have on the actual costs of 
"Change"; then go into a few aspects of the 
"Turn-Around-Problem" from the management 
point of view; and finish with a few remarks on 
what a computer center such as ours may reasona
bly expect in the future. 

While there are many fields in which constant 
change is the order of the day, the operation of vir
tually any modern computer center is faced with 
adjustment to changing computers, changing com
puter languages, and changing software systems 
with a frequency which is quite notable. In a recent 
attempt to analyze the economic effects of such 
changes, several interesting relationships have been 
noted. 
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In the past, the speed with which a newly in
stalled computer has been "loaded" has often been 
of interest, but few figures have appeared which 
treat as a dynamic quantity the relationship be
tween the program checkout load and the produc
tion load. Such relationships must be known, how
ever, before one can evaluate the effects of change, 
since the purely static "before and after" pictures 
tend to conceal many of the significant points. 

In analyzing the dynamics of the situation, some 
simple relationships have been postulated, and their 
predictions compared with those historical data 
which were obtainable at the LMSC computation 
center. 

First, it was assumed that the loading on a com
puter could be divided between check-out and 
production, and that the ratio of these two would 
vary with time from installation. Since the propor
tion of computer programs which run for produc
tion without previous check-out is vanishingly 
small, it would seem reasonable that the load on a 
newly installed computer initially must consist sole
ly of program development work. From such a 
starting point it follows that the ratio of production 
to development will show a continuous increase un
til it either levels off with time, or the pattern be
comes confused by changes in language, operating 
system, or type of work processed by the center. 
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Both the ratio of production to development at 
steady state and the rate at which this ratio ap
proaches steady state must be determined in order 
to understand and to evaluate the economics in
volved. 

Historical data obtained subsequent to the instal
lation of two types of computers, the IBM 709's 
which replaced Univac 1103's and the IBM 1410's 
which were installed to handle administrative sys
tems, shows the patterns given in Figs. 1 and 2 re
spectively. 

It can be seen that the data in both cases have a 
basic similarity, and that the experience in general 
seems to follow the same type of curve. The 
smoothed curves themselves were obtained by as
suming that the development load would be reduced 

half-way to the steady state load during each four 
month period. 

Data on the introduction of new computer lan
guages have been somewhat more difficult to ob
tain, and tend to be less definitive. Hardware 
changes are necessarily abrupt. Software changes 
need not be. However, records have been found 
which show the ratio of production to development 
following a fairly general shift from Fortran I to 
Fortran II on the IBM 7090's which started in June 
of 1963. Since the scatter of these data is consider
ably greater than it was for the introduction of a 
computer itself, and since figures are not available 
for rework as a separate item, smooth curves were 
not derived from the data. Instead, the curves from 
Fig. 1, the introduction of the 709's, were plotted 
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Figure 1. Load components versus time from installation of 709. 
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Figure 2. Load components versus time from installation of 1410. 

directly in Fig. 3. It would seem that the data at 
least do not disagree with this pattern. 

During the ten-year period from mid-1955 to 
July 1965 LMSC has employed six distinctly differ
ent computers to handle important parts of its 
work (IBM 650, 709/7090/7094, 1410; Univac 
1103, 1107/1108; and RCA 301), and six addi
tional computers either as peripheral units or to 
serve special purposes (IBM 1401, RPC 4000, 
CDC 160A, 924,3200 and GE 415). 

During the same ten-year span, in addition to 
the machine languages of these twelve computers, 
more than twelve distinct versions of compiler lan
guages or general operating systems have been put 
into operation. 

Each innovation brought improvement. It also 
brought a new set of problems. With each improve-

ment some portion of the total number of computer 
users at LMSC has been required to familiarize it
self with either a new computer, new computer lan
guage, or new system some 24 times in these 10 
years. 

Since some of these changes affected more than 
two-thirds of the work load, while others touched 
only a few percent, it would appear reasonable to 
assume that on the average each change affected 
one-sixth of the work load. From this figure it 
follows, again on an average basis, that there must 
have been the equivalent of a complete change some 
four times in ten years. That is not to say that large 
disruptions can be noted at that frequency, but only 
that they are actually present in the average figures 
to that extent. The fact that truly disruptive changes 
do not show in the records results from several fac-
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tors. First, in an operation as large as the one being 
studied, there are usually several large computers of 
the same type, which can be phased into or out of 
the operation over a long enough period of time to 
give a nearly smooth operation in the aggregate. 
Second, the introduction of a new language can also 
be phased in rather smoothly by involving only a 
few programs at a time. As you all probably realize, 

phasing a language out is an even more gradual 
process than introducing it. It may not be complete
ly impossible, but it is almost impossibly difficult. 

Nevertheless, the net effect of changes must have 
the same cumulative effect as would a complete 
change every two and one-half years. The follow
ing analysis is based upon that frequency. 

Figures 1, 2, and 3, together with the mean 
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Figure 3. Load components versus time from introduction of Fortran II. 

change rate of 0.4 changes per year, provide the 
data required to calculate the average annual cost of 
change. 

Subtracting the asymptotic values of the curves 
on these figures gives a value of (98 - 30) = 68 per
cent for the steady state, which must be contrasted 
with the integrated value for production, which has 
an average value of 59.7 percent. Since the produc
tion time on a computer is the only time which is of 

actual value to the user, we may compare these fig
ures directly with the result showing that the steady 
state condition would provide (68 - 56.7)/56.7 or 
20 percent more useful time than that obtained with 
the change frequency prevailing. 

In addition to the information on machine time 
which these curves give, they also show us some
thing about the way in which our programming 
manhours are spent. Specifically, they show that the 
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amount of development which must be directly at
tributed to this change frequency is the difference 
between the integrated mean value, 38.8 percent, 
and the asymptotic value, 30 percent. These data 
provide the estimate that the gross programming 
cost of the change frequency is (38."8 - 30) /30 or 
29.3 percent of the total programming costs. 

At this point, then, we can state that a proposed 
change must promise a gross cost reduction equall-

DISPATCH SET-UP 

ing the total of 20 percent of current machine cost 
plus 30 percent of current programming costs in or
der to break even. 

Now let us take a moment to look at the 
"Turn-Around-Time." 

Some of you will remember the queues that formed 
and the average times that prevailed when a simple 
diagram was used to show the path of an individual 
job. It was something like the following: 

TTC 
JOB~ Q QCTTQCPUQ & Q 

DISPATCH 

DESK 

0.05 

TTP 

HOURS 

DESK 

0.05 

TABLE 

1.00 0.10 1.00 0.10 1.00 0.10 1.00 0.10 1.00 

This diagram purports to show that while CPU 
time for the average job may be 6 minutes, and the 
peripheral equipment time another 12 minutes, the 
five queues which form may add 5 hours. In the 
past, we have occasionally been guilty of jumping to 
the conclusion that by combining operations and 
eliminating 4 of the 5 queues, we could cut 
the queue length from 5 hours to one. As many of 
you realize, in practice it only works that way as 
long as there is an excess of machine capacity over 
work load. As in most shops, the various. items of 
equipment are already fairly well-balanced to each 
other before the figures above could be obtained, 
rather like a series of five synchronized traffic sig
nals. 

Actually, of course, the basic problem lies not in 
balancing the equipment (even though that must be· 
done) nor in eliminating all but one queuing point 
(the one remaining could be nearly as long as the 
sum of those replaced), but in balancing the equip
ment to the job load. 

Fortunately, or perhaps unfortunately, I'm not 
sure, we have one rather automatic balancer inher
ent in our. system, to the effect that whenever the 
turn-around-time goes up, the rate at which we 
receive jobs goes down. The mechanism behind this 
effect is obvious when one considers that a pro
grammer can't remove a bug and resubmit a devel
oping program if he never gets it back. 

The balancing of equipment work load is thus 
the real problem, which management must solve on 
the basis of the most economical operation in the 
broadest sense. 

While no one has yet come up with an accurate 
estimate of the cost of delay in turn-around, we 

can start with a highly over-simplified picture, 
making use of Erlang's basic queuing equations: 

LP 
D--

(e-a) 

and P = (e - 1) 1 (e - a) 

[

a a2 aC ]-1 
1 + 11 + 21 + .. (e-1)1 (e-a) 

to obtain the average delay D as a function of mean 
job length L, the mean number of jobs received a in 
the time interval L, and the number of computers c. 

From this equation, and assuming that computer 
time costs $35,000 per week and that the cost of an 
hour's delay is 4 percent of the cost of an hour's 
chine time, Fig. 4 can be obtained. 

There are several features worth noting in this 
chart. If one looks at the cost of doing a job when 
only one computer is involved, it is apparent that 
the cost of turn-around delay is not very signifi
cant with respect to the economic advantage to be 
gained by loading the single machine as heavily as 
is feasible. Even when we allow a large economic 
factor for the hourly cost of delay, as we have here, 
examination of the first cycle of Fig. 4 shows why 
the programmer is seldom satisfied with the turn
around-time in an efficiently operated one ma
chine shop. 

On the other hand, when the job load has gone 
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Figure 4. Cost versus loading versus number of computers. 

up to the point where four or five machines are re
quired, the relative importance has considerably 
shifted. 

Examining the fourth or fifth cycles, we note that 
the generalizations based on the first cycle no long
er apply. In fact, the greatest danger 'of excessive 
cost at this point lies in hitting an over-load con
dition, rather than an under-load. Further, the dif
ference between the cost per job with optimum 
loading of four machines, and with the lowest load
ing of five machines, is less than 7 percent. 

While Fig. 4 illustrates the point I wish to make, 
the simplifications involved are much too gross for 
efficient operation, so that we have found that a 
rather elaborate computer program is really re
quired. Such a program, called LOMUSS (Lock
heed Multiprocessor Simulation System) has been 
developed, and will be reported upon separately. 

Now I would like to take a few minutes more to 
make some observations on the evolutionary course 
that we might expect the next few years to follow. 

A few minutes ago we noted that over the last 

decade there had been a large number of changes in 
our computers, our computer languages, and our 
operating systems. One's first reaction might be 
that this is inherently bad (and of course it is) and 
that to avoid a continuous repetition we should 
standardize upon a single hardware configuration 
supported by a single language and operating sys
tem. However, if we plot the pertinent data from 
Dr. Knight's intensive study of the first 225 digital 
computers,2 we obtain Fig. 5, from which it is ob
vious that the computer field has not yet reached 
the point at which we can afford to standardize on 
hardware. 

On the software side the situation does not ap
pear to be as obvious as Fig. 5 showed it to be for 
hardware. I assume that you will all agree that, de
spite the advances made, from machine language 
through assemblers, Macro-assemblers, proce
dure-oriented compilers and problem-oriented 
languages, the economic advances which have been 
made are still unimpressive when compared with 
hardware improvements shown in Fig. 5. 
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Figure 5. "Computer Operations" per dollar versus time. 

Consequently, Ihave the feeling, just as many of 
you have, that despite the advances yet to be real
ized in hardware, it is in the software area that the 
greater improvements should be sought. 

Rather than expecting revolutionary advances, 
such as software which merely accepts a few sets of 
test data and automatically generates the algorithm 
required, it would seem more reasonable to expect 
that progress in software will be evolutionary. 

If we look at the way that man communicates we 
see that, while he uses a native language as his bas
ic tool, most of his working time is spent using 
some special jargon imbedded in the basic lan

guage. This is true whether he is a physician, a 

chemist or a truck driver. In order to explain some

thing to another physician, chemist or truck driver, 

he uses the jargon of his trade in order to save the 
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large amounts of time and effort which would be 
required to communicate in the basic language. 

This point is easily illustrated by the story of the 
gangsters who had taken over a legitimate theater. 
They didn't realize that when a stagehand yelled 
"Take the silks off the broads," he meant to remove 
the light diffusers from a certain type of stage light. 

While this idea of a jargon imbedded in a basic 
language is neither revolutionary nor glamorous, it 

does seem to be the way that software might pro
gress. Individual jargons could gradually be devel
oped, in the form of special-purpose libraries of 
functions, subroutines, procedures or what you will, 
to serve each of the definable areas of need. At 
LMSC we might expect a dozen or so, in areas such 
as thermodynamics, trajectory work, real-time 
control, accounting, medical support, etc. 

Before we can develop these various jargons, 
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Figure 6. Past and potential percent production versus time. 
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however, we must have a basic language in which 
to imbed them; for remember, these jargons are not 
to be distinct languages, each requiring a new com
piler and operating system. 

Further, such a basic language must itself have 
certain characteristics, such as ease of use, efficien
cy, open-endedness, complete machine indepen
dence, perhaps even manufacturer independence, 
and ease of implementation for new computers. 

Given such a basic language, and the develop
ment of the needed jargons, then we might expect 
that the composite of Fig. 1, 2, and 3 would more 
nearly approach Fig. 6, where the economy in hard
ware costs shown by the increased ratio of produc-

tion to development load is also a reflection of in
creased programming efficiency. Further, since 
there would be no reprogramming, all of the pro
gramming time would be devoted to new programs. 

REFERENCES 

1. R. H. Bowman and R. B. Fetter, Analyses of 
Industrial Relations, Richard D. Irwin Inc., Home
wood, Illinois, 1959, pp. 300, 301. 

2. K. E. Knight, "A Study of Technological In
novation-The Evolution of Digital Computers," Ph.
D. Thesis, Carnegie Tech. (1963). 





THE MULTIDISCIPLINE APPROACH: A MARKETING APPLICATION 

Burton G. Mendelson and Ralph V. Monaghan 
Motorola Instrumentation & Control Inc. 

No approach is more widely heralded, yet more 
effectively ignored in actual practice, than the mul
tidiscipline technique in systems design. 

It has been long apparent that for effective sys
tems design practitioners must: 

1. understand the dynamics of the specific 
business, 

2. know the difference between essential and 
nonessential business activities, 

3. be aware of-and understand-existing 
technology and emerging developments, 

4. appreciate the economics of developing 
specialized equipment versus using stand
ard equipment, and 

5. be sensitive to the external environment in 
which the company must operate. 

These criteria are difficult to meet; the American 
business scene is littered with systems which aptly 
demonstrate insensitivity to the real systems needs 
of businesses. 

Once management makes a decision for a tradi
tional capital investment they proceed to allocate 
the neessary ingredients to make that capital asset 
a reality. If it's a new factory, they provide funds, 
time and the necessary personnel to complete the 
project. No ingredient is left out, for that elimina
tion could jeopardize the project. Assistance is se
cured from lawyers, bankers, real estate men, engi-
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neers-everyone that is required. The latest techno
logy is used; the most efficient layout is deter
mined. The life of a plant is long and initial mis
takes can prove crucial, even fatal, to that life. 

SYSTEMS DESIGN 

But take the same management and give them the 
problem of providing an internal system which may 
be critical to corporate health and watch out! The 
finely wrought sense of proportion disappears. The 
problem is considered to require a departmental so
lution for, after all, the company is organized to 
provide departmental-type solutions on a daily ba
sis. The personnel involved generally include those 
who have an accounting background plus the usual 
array of programmers. It is no coincidence that the 
first computer business applications for most com
panies encompass the financial areas. 

Somehow the early history of bookkeeping ma-
o chines and accounting machines lingers in the back
ground as the proper ancestors for the "new sys
tem." The boundaries are departmental, personality 
and supplier. The lingo is new, the technology is 
exciting, but the application is archaic. 

The application of the multidisciplinary ap
proach has been, when used, in defense activities or 
in civilian manufacturing projects. Rarely has it 
been tried in the area which is the stepchild of the 
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data processing revolution-marketing. And yet, 
the potential benefits here are staggering. The sheer 
size of the field, the cash flow involved, the multi
tude of problems all add up to the need for inten
sive, structured problem-solving. 

RETAIL GASOLINE MARKETING 

In this area, one of the most complex marketing 
operations today is the retail gasoline business. Ev
eryone is an expert in the gasoline market! The 
sheer size, the pricing, the distribution, the vast 
amounts of capital involved make this a prime can
didate for automation consideration. And this in
credible complexity makes it a primary candidate 
for the multidisciplinary approach. Not only is the 
traditional systems experience and the obvious elec
tronics design talent needed, but a measure of legal, 
marketing, and accounting background is required. 

Much work has been done in the automation of 
distribution facilities in the petroleum business. 
Today a driver using a credit card can secure access 
to a bulk terminal and draw the products he is au
thorized, while the system records who he is, where 
he is taking the product, what the product is, its 
temperature, the time, product totals, and tank levels. 
This data is then often transmitted to remote cen
tral processing locations, usually by teletype. In
voices or bills of lading are prepared in many cases 
and returned to the driver before he leaves· on his 
delivery. 

Fine, that solves one part of the marketing sys
tem. But why not use the same general idea and ap
ply it to the over 220,000 service stations in the 
United States? The techniques are known, the idea 
is here, so all we need is a black box! 

Unfortunately, such simplification rarely pro
duces valuable results. 

Since Motorola has had considerable experience 
in the petroleum field it was decided to take the 
multidiscipline approach to this problem. A group 
was formed embodying the disciplines which were 
considered essential': electronic design, communica
tions, internal systems, marketing. 

The actual key to the ultimate solution was in 
defining the basic data need of the operation. In 
this case information content was in each gallon of 
gasoline as it was pumped into the motorist's auto
mobile. The resulting statistical structure depends 
upon that one element. (Actually petroleum mar
keting data has been based historically upon the 

quantity of gasoline delivered to a station. Actual 
sales to the motorist have not been avaHable on a 
practical basis.) Capture that data at the source. 
Simple. But do it rapidly, accurately, periodically 
and on-call, and, above all, inexpensively. There 
was the design problem. 

EQUIPMENT AND PROCEDURES 

The resulting hardware and procedures was an 
outgrowth of automated terminal techniques mar
ried to Bell System DATA-PHONE techniques. 
The system, as designed, applies not only to service 
stations, but to any outlet where a discrete amount 
can be measured. It does not matter whether the 
measure is in gallons, barrels, pounds or tons. The 
increment is recorded and transmitted on request to 
the central location in machine-acceptable 'form. 

The remote station equipment consists of im
pulse transmitters installed on each product pump 
or point of flow. One pulse for each· gallon of 
throughput is stored in magnetic memory. The to
tals of all like products are added together and held 
in storage for interrogation by the central. The re
mote also contains a 3-digit station identification 
code along with the necessary equipment for tying 
into the Bell System DATA-PHONE instal'lation. 

The central equipment consists of a Motorola 
console for inquiry of the remotes and for recording 
the captured data. Included are a typewriter, paper
tape punches, a manual entry unit for adding local 
information, together with automatic telephone 
dialing equipment of the Bell System and the re
ceiving DATA-PHONE equipment. 

Dialing from the central is accomplished automa
tically at set times by feeding paper tape containing 
the telephone numbers. into the dialer, by using the 
different types of card and magnetic tape dialers, or 
by manually dialing the remote number. 

The data returned from the remote station in
cludes throughput figures for each product, the 
identification of the station, and status codes per
taining to the condition of the pumps. 

The need for a one-way DATA-PHONE was 
solved when the Bell System developed their low
cost 401-H for this application. The call is made 
always from the central to the remote, consequently, 
the normal two-way dataset was not required. 

An even newer dataset permits the central control 
station to turn off and on the remote product dis
pensers. 
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BENEFITS TO MANAGEMENT 

The benefits to management from having sucn 
source sales information immediately available on 
demand are difficult to calculate. The data can be 
useless or it can be invaluable. The critical feed
back is now within reach of all levels of manage
ment. How does one calculate the pay-out of indi
vidual marketing decisions except in the overall 
health of the marketing effort? 

For petrol'eum marketing management, this sys
tem, for example, provides immediate response by 
station to the sales campaigns, new marketing con
cepts, special events, credit card promotions, coop
erative advertising, radio and television programs 
so important to a successful marketing effort. It 
provides rapid response to the sales effect of weath
er conditions, traffic flow, road impediments and 
other local occurrences on a specific tIme basis
information unique to highway-type locations. Fur
ther, it elimInates statistical distortion of "sale by 
delivery," and above all, provides the basic data for 
market studies in depth. 

No one point in, the petroleum distribution pic
ture is more critical today than the economic health 
of the service station dealer. With an annual opera
tor turnover in the neighborhood of 25 percent, this 
group has been caught in a spiraling profit squeeze. 
The objective was to achieve the following effects: 

1. Eliminate the basis for dealer complaints 
and fears associated with the effect of 
price changes on inventories. 

2. Eliminate manipulation of inventory dur
ing periods of price fluctuations. 

3. Eliminate paper work. 
4. Reduce possibilities of product substitu-

tion. 
5. Allow tighter inventory control. 
6. Eliminate danger of "running dry." 
7. Eliminate any necessity for trucks to deliv

er only during open hours. 

Happily, the resulting system design met these 
qualifications. 

It is now possible to suggest a model financial 
management system to a dealer having a substantial 
chance of being successful. By eliminating the peri
odic large withdrawals from the working capital of 
a dealer for delivery payments, a systematic pay
ment schedule to the supplier can be established. 
This, together with the elimination of the large gas-

oline inventory investment usually required, pro
vides much of the groundwork for a financially sta
ble dealership. With an operation that survives on 
the slimmest of margins, the potential saving is 
substantial. 

The invoicing of service station deliveries has 
long been a cumbersome error-filled procedure. 
Even with computers available for the processing of 
sales data, the reliability of the high-speed output is 
still tied to the accuracy of the ofttimes manually 
prepared input data. 

An extensive system of paper work has been de
veloped over the years to provide the driver with 
pricing and tax information to prepare invoices at 
the time of delivery. To back up the driver, clerical 
staffs have been formed at various levels to correct 
his mathematical and coding errors. 

By installing this data acquisition system, drivers 
are allowed to do what they do best: drive. The 
dual functions of pricing and billing are transferred 
to computers where they can be most economically 
handled. The tape output from the central control is 
fed directly into the data processing flow. Individ
ual invoices are prepared or, more economically, 
statement-type invoicing is instituted. Under the 
latter method, the dealer receives a combination 
statement/invoice which records product used at 
whatever prices existed during the specific periods, 
together with remittances received by the company. 

The severe competition of major commercial ac
counts has put a premium on services which can be 
offered profitably to these important customers. 
The theory of the supplier carrying the financial 
burden of a large product inventory applies as well 
to this type of account as it does to a service sta
tion. By installing the system at the location of a 
large consumer account, the customer can be con
verted from a "charged as delivered" to a "charged 
as used'" basis. Whether the customer operates a 
truck fleet, a manufacturing facility, a marina, or 
an airport installation, is of little importance. This 
elimination of his investment in stored bulk prod
uct is a tangible dollars-and-cents advantage to him. 

An important by-product of the Motorola data 
acquisition system is the new tool for credit admin
istration that it generates. By checking product us
age with remittances received on a basis suited to 
the particular customer, credit management as
sumes a new aspect. 

Rather than waiting the many days it usually 
takes for a credit man to find out that a delivery 
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was made, the office charged with credit control 
knows, on· can, the product actually used by the cus
tomer. This information, correlated with remit
tances received, gives an accurate up-to-the-minute 
picture of the credit standing of the customer. 

Cumbersome credit control through the dispatch
er, the plant cashier and the driver disappears and 
the techniques of credit management are allowed 
free play. Instead of adapting credit terms to the 
peculiarities of the distribution pattern, terms can 
be tailored to the requirements of the individual 
customer. 

Nowhere is the effect of the system more drama
tic than in the operation of the bulk plant/terminal. 
By using the full advantages of the system, the ter
minal becomes strictly a physical installation for 
the storage and dispensing of product rather than 
the major derical organization it has been. 

By removing the now extraneous activities from 
the bulk terminal, the real economics of product 
distribution can be investigated. No longer are deal
ers' hours of operation and credit positions a re
striction on the use of the truck fleet. No longer 
must dispatching be done by the "seat of the 
pants." 

Managerial abilities become free to determine 
the size of truck fleets, to schedule personnel hours, 
and to plan distribution patterns without outside 
restraints. By removing much of the terminal cleri
cal overhead costs and reducing delivery expenses, 
the economics of distribution undergo a major im
provement. 

Having automatic equipment guarantees no com
petitive advantage to a company. However, the im
aginative application of that same equipment can 
bestow a substantial competitive advantage. The 
very nature of this automated system-capturing 
data at the sources-allows many of its advantages to 
accrue in existing internal operations. However, the 
full application of the system changes much of the 
marketing distribution, accounting, and data pro
cessing structure as it is operated today. Obviously, 
the major payout rests in full integration. These 
changes are compatible with the "total systems" 
trend so evident now: 

1. One-time automatic collection of data at 
the source, 

2. transmitted automatically, 
3. to high-speed processing computers 

4. for distribution to all levels required, when 
required, and in the form required. 

The automated terminal equipment used in con
junction with the data acquisition system completes 
the automation picture for bulk product movement. 

THE CYCLE IS COMPLETE 

What previously was considered a desirable but 
strictly "blue sky" operation is today a practical, 
existing situation. Let's describe it: 

Each evening the console operator in the area 
office brings in throughput· figures for all sta
tions, large commercial accounts, fuel oil job
bers, and leased storage in a major geographi
cal area on the flat-fee W A TS telephone line, 
which has been used during the day for normal 
service. The output punched tape is fed to a 
small computer which prepares a dispatch 
schedule for the bulk terminals delivering in 
this area. The schedule is transmitted by tele
type to each terminal during the night. 

A by-product of this process is a listing of 
station sales on a salesman and district break,;. 
down basis. This information is transmitted by 
teletype to each district sales office during the 
evening. Another by-product is the updating of 
accounts receivable, gallonage rents, and trend 
sales statistics for area and higher manage
ment. A II information is available at the open
ing of the new busines,' day. 

During the early evening at each terminal, the 
by-product tape from the loading of all trucks 
and the measurement of the tank levels is 
transmitted to the area office. This informa
tion supplies the raw data for the bulk stock 
position. No calculations are made at the bulk 
terminal; rather, the facilities of the area com
puter are used. Should complete results of the 
stock picture show discrepancies, the informa
tion is transmitted by teletype to the bulk 
plant or terminal manager in time for correc
tive action. 

Variations of the above, based on organizational 
structure and geographic dispersion, are infinite. 
But the principles of rapid collection of data in ma
chine-sensible form plus immediate distribution of 
the refined data to management are inherent in the 
system in any pattern. 
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Data processing, distribution, and management 
information are integrated into a single economic 
flow. By eliminating-not changing, but elimina
ting-many of the steps in distribution and ac
counting, the tangible payout is substantial. The 
intangible benefit can be incalculable: a strong 
competitive position. 

A VALID APPROACH 

What I have outlined is an integrated system for 
a particular industry. It presumes an integrated en
vironment for maximum operational benefits, an 
environmental situation which does not exist today. 
The development of this system is a result of the 
multidiscipline approach to problem-solving. I 
think it has been particularly successful in its rela
tionship to the dynamics of petroleum marketing. 

Will the results of the multidisciplinary approach 
ever. really be satisfactory in today's corporate cli
mate? Can departmental judgments ever be brought 
to bear adequately on the results of such multidis
cipline solutions? The approach is valid, the tech
niques are proven. But now the real challenge: can 
system integration be effective in a nonintegrated 
enviroment? 

The ripple effect of the multidiscipline approach 
is so widespread, the adaptability of the modern 
corporation so enormous, the economic pressures 
for profitability so great, the obvious trend must be 
toward an environmental change. 

What we are really reviewing is the process of 
dynamic change with a glance at the near future, a 
future shaped by the creative combination of talent 
and technology. 
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The computer has been so widely accepted as a 
tool of management that there is no longer any de
bate about its ability to serve the needs of manage
ment. But, unfortunately, the introduction of a 
computer does not in itself guarantee increased ef
fectiveness' efficiencies or profits for the firm. 
Rather, the computer must be viewed as still anoth
er management resource from which certain bene
fits can be extracted but these advantages do not 
automatically result from installation of the device. 
Even in view of this fact, the number of computers 
being used in business continues to increase at a 
rapid rate, how rapid being dependent upon which 
set of projections one chooses to believe. Today, 
the question is not should a computer be used, but 
rather how management can best use the computer 
to serve its needs. 

In its survey McKinsey and Companyl found that 
while some companies were able to make profitable 
use of computers others were not (profitable being 
used here in the sense of both direct and indirect 
benefits). Their survey indicated that the realiza
tion of the computer's potential has its basis in rec-
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ognition of managerial rather than technical re
quirements. The companies showing the greatest 
profits were typically those which recognized the 
potential of the computer for problem solution 
throughout the organization. On the other hand, the 
less successful users were using computers for rou
tine unimaginative activities. Perhaps the most im
portant conclusion of the report is 

In the successful companies, top management 
demonstrated a balanced point of view on com
puters' potentials and demands. In the average com
pany, by contrast, corporate executives typically 
underrate their potential or else overrate the im
portance of the technical requirements.2 

In another study made by the National Industrial 
Conference Board, the failure of managerial person
nel to involve themselves with the computer's po
tential was indicated by the conclusion, 

For the purpose of this study, 

Most managements want to know the reasons 
(supported by facts) why their companies should 
approve the use of electronic computers. But they 
are seldom concerned with the mechanics or oper
ating details, execept as they affect the policies or 
general organization structure of the company.3 
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This paper deals with certain aspects of the need 
for a balanced point of view by management rather 
than the indifference so frequently encountered. In
tensive studies of eight computer centers suggest 
that management philosophy toward the computer's 
potential and the role of the computer center in the 
organization is one of the crucial variables in 
achieving profitable utilization. 

For the purposes of this study, 

A computer center consists centrally of a computer, 
of the stored program type, surrounded by the sup
porting personnel and equipment to use it. Jobs or 
demands for services of the center originate both 
within the center and from organizational units 
outside of it. 

The computer center is unique in that it focuses 
upon a machine and will therefore be an organiza
tional entity regardless of where it may be assigned 
within the firm. The attitudes and perceptions of 
the managerial personnel of the firm will dictate the 
legitimate activities the center may undertake and 
will thereby influence the orientation of the person
nel assigned to the computer center. Central to this 
discussion is the concept of classification of the 
center since it is in this way that management tends 
to bound its perception of the computer's capabili
ties. Therefore, we will first consider classifications 
of centers and then the relationship of such classifi
cations to personnel practices and performance. 

CLASSIFICATION OF COMPUTER 
CENTERS 

Traditionally, computer centers have been de
fined as either business or scientific. "Business" 
generally meant that the center processed essentially 
accounting information such as payrolls, inventory 
transactions, cost data, etc. "Scientific" implied 
that the center was engaged in solution of unstruc
tured and often loosely defined problems. In the 
early days of the application of computers to busi
ness these classifications may have been useful. For 
the business center a good accountant could be 
trained to translate manual or unit record proce
dures to a program for a "business" type computer. 
On the other hand, engineers, scientists and mathe
maticians were required to provide comparable 
skills for the more expensive and more complex 
"scientific" computer. Whatever usefulness the two 
categories may have had has disappeared and in 
most cases their retention tends to so limit manage-

ment's perception as to inhibit the development of 
effective computer operations. 

Rather than labeling the computer center in 
terms which tend to describe the nature of its pre
dominant activity, we suggest management's per
ception of the center and its role in the firm should 
be in terms of the degree of structuring of the cen
ter's tasks, a concept originally advanced at the 
1963 meeting of the Computer Personnel Research 
Group.4 By degree of structuring is meant the 
amount of independence the computer center has in 
dealing with an assigned task. For example, a pay
roll would usually be a highly structured task. Simi
larly, processing of checks in a bank would be high
ly rigid. In both examples the design of the compu
tational procedure is dictated by the data require
ments of the firm. Further, these structured tasks 
tend to become rigid due to volume and legal as
pects inherent to the nature of such processes. At 
the other extreme would be the development of a 
computer-based simulation of the firm where exper
imentation and analysis of alternative policies are 
the objectives. This would be classified as an un
structured task. Thus in the general category of busi
ness applications we find both structured and un
structured jobs are among the jobs which may be 
presented to the computer center. In similar fash
ion, scientific applications may possess the same 
range of structuring. The routine reduction of orbi
tal data is, for example, highly structured, while the 
development of new computer techniques to analyze 
such data is conversely less structured. It is in terms 
of a continuum with these two end points that a 
classification scheme should be developed for a 
computer center rather than in the descriptive de
signations of business or scientific. 

The center whose mission is unstructured will 
receive assignments from various organizational 
units and will be required to use a great deal of in
genuity and flexibility in defining and solving the 
problems presented; a structured problem is one 
which would require the computer center to rou
tinely process a set of data in a prescribed manner. 
In discussing the design of scientific computing fa
cilities, Wagner and Granholm5 have used a some
what similar conceptual framework for classifying 
scientific type computational requirements. 

Seldom will one find a computer center which is 
solely devoted to unstructured type of activities, but 
it is relatively simple to identify many which oper-



ORGANIZA TIONAL PHILOSOPHY AND THE COMPUTER CENTER 147 

ate only on highly structured jobs. Compu,ter centers 
are required to adapt to the needs of the organiza
tion they serve and to process jobs which are both 
structured and unstructured. Typically a center 
within a business organization will be processing 
routine payrolls and other accounting information 
and will also be engaged in solving management 
science problems which may involve computer sim
ulation, linear or non-linear programming, queueing 
theory or other such methods. Non-management 
science tasks frequently are presented by engineer
ing or research groups. Among these tasks might 
be, for example, the solution of a problem requiring 
the inversion of a matrix, generally a highly struc
tured job. On the other hand, the engineer may ask 
the computer center to develop methods for ap
praising and analyzing potential new methods of 
dealing with old problems, an unstructured task. 

Subsequent to the original research on which the 
paper is based another element which must be taken 
into consideration is that of the ·changes in availa
ble equipment. In particular is the availability of 
equipment which will permit the simultaneous pro
cessing of both structured and unstructured prob
lems, regardless of their organizational origin. Also 
to be considered is the availability of time-sharing 
systems with remote consoles which make the com
puter available to all users without regard to the 
nature of their problem. In this regard, Fernbach 
recently pointed out that, "Ten years ago, one waS 
careful not to discuss business and scientific com
puters in the same tone of voice. Today one thinks 
of systems that will do everything."6 

Faced with the problem of simultaneously under
taking tasks occupying different points on the struc
tured-unstructured continuum the computer center 
must adjust itself to satisfactorily meet both types 
of demand. Our research has indicated that in this 
condition two parallel organizations tend to develop 
within the computer center-one to handle struc
tured problems and another to handle unstructured 
tasks. It does not appear efficient, or effective, to 
have a single group handling both types and, as will 
be discussed later, in some cases it may be undesi
rable to place differing demands on a single group 
of employees. 

This partitioning of the organization is illustrat
ed by the experience of a large manufacturing firm 
which makes extensive use of computers. Within its 
computing center is one group called the Data Proc-

essing Department which handles all routine proc
essing of data regardless of the origin of the work, 
i.e., commercial, scientific, engineering, research, 
etc. There is also a group referred to as the Scienti
fic Programming Department which deals with non
structured tasks eminating from the same work 
sources. Each group has its own director who re
ports to the head of the computer center. This for
malized duality of organization represent manage
ment's recognition of an informal system which em
bodied the same concepts but tended to prohibit 
economical use of available computers. The ineffi
ciencies resulted from identification of specific ma
chines with the two groups and thus restricted the 
use of a specific computer to either the scientific or 
data processing group. Thus the newest machine 
became known as the "scientific computer" even 
though it was identical to many others being used 
for highly structured tasks. This did not mean that 
the machine was idle most of the time; in fact, it 
was operated three shifts per day. The loss in effec
tiveness resulted from the fact that many of the 
scientific-type problems possessed considerably 
lower priorities than those assigned to many highly 
structured, routine jobs. Formalization of the dual 
organizational structure permitted central sched
uling for all computers and in this way manage
ment's philosophy adjusted to a solution which, al
though contrary to traditional concepts, permitted 
more effective operation. 

MANAGEMENT PHILOSOPHY 

The relationship of management philosophy to 
the continuum between structured and unstructured 
tasks is demonstrated in the ability 6f the computer 
center to respond to the needs of the organization. 
The essential factor is that management face up to 
two questions: 

• Why does it have a computer center? 
• What does it need from the center? 

In answering these questions management must 
not only reconsider the initial planning for develop
ment of its computer center but must also review 
the results of their plans. Further, if management 
expects to obtain anything near optimum use of 
their computer they must be prepared to devote to 
this activity an amount of time proportional to its 
cost and potential. 
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In too many firms we found these questions are 
answered by default. The computer is brought in as 
a highly structured, task-oriented machine. Later, 
when other demands are placed on the center it typ
ically is not able to perform the service. This results 
from a failure to recognize the need to prepare for 
such change. This may, in part, account for the ex
pansion and proliferation of firms specializing in 
consulting services to computer users. But more im
portant than the added cost of this failure to pre
pare for changing demands are the organizational 
pressures and waste which can easily result. A typi
cal and unfortunately too frequent example of such 
waste is the case of the Linear Company* which we 
studied in depth. This firm history clearly demon-:
strates the disadvantages which result from narrow 
and unrealistic definitions of the role of the com
puter center within the firm. 

The Linear Company installed a large computing 
system to perform a highly structured task. Relative 
to this task the computer center was doing an excel
lent job; in fact, management had nothing but 
praise for the success of the computer application. 
However, management's perception of the role of 
the computer center was "to process orders and ef
fectively maintain inventory." The director of the 
computer center understood he had under his con
trol a large machine with substantial idle time and 
a staff which was capable of dealing with other 
problems. The research department of Linear Com
pany had been assigned the task of developing a 
computer simulation of the firm which would be 
used to test management decisions and changes. 
The director of research and his staff laid out the 
general nature of the project, engaged a consulting 
firm to have the simulator programmed, and then 
contracted with a service bureau for the required 
computations. Whenever management sought advice 
on a question which was applicable to the simulator 
they merely had the service bureau enter the current 
information and make a run. Then the research de
partment would analyze the output. Naturally the 
service bureau charged a high, but reasonable, rate 
for their services. But .with idle time in the compa
ny's computer center, we might question the neces
sity of the research department utilizing facilities of 
other organizations. 

We find the answer to this question in analysis of 
the attitudes of the personnel involved and their 

*Fictitious. 

preconceptions of the role of the firm's computer 
center. Management's view was, "the computer cen
ter's job is to maintain inventory and associated 
records." The director of the computer center felt, 
"we are a computer center and are capable of satis
fying all of the company's computational needs." 
The director of research obviously "heard" manage
ment's view and felt, "the computer center can not 
handle our type of problem." Since their project 
differed from the accepted mission of the computer 
center, they sought outside computer services. The 
consequence was delays in obtaining results and or
ganization frictions and frustrations. The director 
of the computer center was unable to understand 
why, "the director of research was so unfriendly." 
On the other hand, management saw nothing wrong 
with the arrangement. Management's perception of 
the role and mission of its computer indicated to 
the Director of Research what his proper behavior 
should be. This is an unfbrtunate example of misuse 
of available resources. 

THE INTERACTION OF THE 
CLASSIFICATION SYSTEM AND PERSONNEL 

Not only will management's philosophy deter
mine the legitimate scope of activities of the com
puter center but it will also influence the way in 
which the center is staffed. This influence will dem
onstrate itself in that staffing will be in such a man
ner that it can most effectively respond to manage
ment's demands and management's perception of 
the proper role of the center. 

People who are able to successfully communicate 
and relate with computers may be broken into at 
least two major groupings, those with predominate
ly professional orientations and those primarily or
ganizationally oriented. By professional orientation 
we mean people who relate to the profession of 
computation rather than to a specific firm or to a 
specific goal of the firm. Typically such an individ
ual will be a member of at least one professional 
computer group. He is more likely to have been at
tracted to his present employer from the general 
computer labor market and will tend to look back 
there in addition to his present employer for oppor
tunities for advancement. He is the person most 
likely to be attracted by the professional recruiter 
at a computer conference or by an advertisement 
in a computer journal. He thus tends to pos
sess a potential for relatively high mobility, and 
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recognizing this potential he tends to try to increase 
his abilities so as to develop professionally thereby 
opening new opportunities for himself not only with 
his present employer but also in the general labor 
market. This person will tend to be extremely com
petent and will usuaUy be best suited for dealing 
with relatively unstructured assignments. Structured 
assignments will fail to present a challenge to him 
with resulting lowered performance and morale. 
Continued structured assignments may cause him to 
seek a new employer where assignments are com
mensurate with his abilities and interests. 

The counterpart of the professionally oriented 
individual is one whose major loyalties and goals 
are to the firm. He is typicaUy selected for his com
puter position from some other organizational unit 
within the firm and then trained for his present po
sition. This person does not usually view the com
puter field as his profession but rather as another 
assignment in his progress through the hierarchy of 
the company. Thus he tends to force the computer 
into the mold of his area of major interest rather 
than restating his personal values in terms of the 
computer. Self-development is likely to be limited 
to those aspects of computer technology which di
rectly relate to his next position within the organ
ization and to his specific functional profession, if 
he possesses one. His objectives will tend to empha
size proficiency and greater understanding of his 
employer's objectives, and on this basis he win tend 
to be most compatable in dealing with the more 
highly structured tasks within his field or primary 
interest. Typical of such individuals are accountants 
who are assigned to a computer center to implement 
data processing applications in the accounting area 
or engineers who are assigned to provide the tech
nical ability required to systematize and program a 
technical application. Both look to their primary 
interest fields for advancement and usually do not 
consider the computer labor market when they de
cide to change jobs. 

The importance of recruiting computer personnel 
whose personal orientation is compatable with the 
role assigned the computer center within the organ
ization is further emphasized in a study by Deutsch 
& Shea, Inc.7 In this study of 549 programmers it 
was found that 21.1 percent of the respondents in
dicated that internal climate, management politics, 
and working conditions were a factor in causing 
them to leave their previous job. In addition, 18.4 

percent replied they changed jobs because of lack of 
job interest. 8 This is especially interesting because 
the study states, "we feel that the sample involved 
is not representative of the total population in the 
sense that it is skewed, by virtue of its source, to
wards programmers with experience in the scienti
fic aspects of programming."9 The source of the 
sample was the membership file of the Association 
for Computing Machinery. 

It is possible to distinguish between those pro
grammers with different orientations. In a recent 
RAND studylO a number of tests were given to pro
grammers which were then correlated with supervi
sory ratings. It was found that: 

Correlation with supervisor's rankings for 
the Programming Aptitude Test and the Test 
of Sequential Instructions were higher for the 
scientific sample than for the business sample. 
For the scientific sample there is good predic
tive information available from high and low 
group scores. For the business sample the 
study shows that the best predictive value is in 
the second highest test score group and in the 
lowest group.u 

In an examination of the interests of both groups, 
the RAND study reported: 

Overall, both samples expressed an over
whelming preference for mathematics subjects. 
This would certainly be expected of the scien
tific sample which was composed largely of 
people with math backgrounds (63 % ), but it 
included the business programmers, of whom 
only 18 percent had backgrounds in math.12 

Thus if management has defined its needs it is 
possible to staff the center with the type of person
nel who can make the greatest contribution. If the 
center's activities are restricted primarily to a set of 
highly structured tasks, carefully selected intelligent 
individuals from within the organization can be 
trained to adequately perform such tasks. If new 
personnel are needed they might be hired from 
other businesses with similar activities. If, on the 
other hand, management is required to go to the 
general labor market to acquire its computational 
skills, it could easily and inadvertently disrupt a 
highly structured center. 

CONCLUSIONS 

Management's philosophy as demonstrated in the 
staffing of the center· tends to establish parameters 
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on the profit potential of the computer center. It 
appears that in the short run highly structured cen
ters are most efficient. That is, they implement de
sired procedures and complete assignments in the 
shortest possible time and at relatively low cost. 
But this apparent efficiency is short lived, for in 
the long run the lack of questioning attitudes, the 
failure of the center to formulate alternative solu
tions to policy problems if not to completely fail to 
comprehend the total problem rather than the speci
fic segment under consideration, and the lack of ex
perimentation will lead to higher costs in terms of 
both production and lost opportunities. Possibly 
even more serious is the inability of such center to 
deal with new challenges without outside assistance. 
This condition is well displayed in the dependence 
of such organizations on consultants or the techni
cal staffs of computer manufacturers. 

Optimizing on short-run considerations is ob
viously not the best way of introducing the comput
er into a firm, but this philosophy win probably not 
change for some time. It has been suggested that the 
optimal return from the computer results from ap
plications somewhere between the highly structured 
and highly unstructured endpoints. This hypothesis 
is in accordance with the findings of the McKinsey 
study which indicated that those companies which 
had used computers for only routine, unimaginative 
classes of ac!ivities such as payroll, billing, invento
ry, etc. faile<lto show a profit. Those indicating op
timal usage were the firm which resorted to what 
we might call higher ordered applications of com
puters to problems, problems which emanated from 
relatively unstructured tasks. But if the center has 
been staffed solely for fully structured tasks, it will 
be unable to cope with a change in management's 
need. 

IMPLICATIONS 

From our intensive study of eight computer cen
ters it can be concluded that, while computers may 
be installed to meet a specific need, a broader 
frame of reference is required in management's ap
proach to the assignment of tasks and the staffing 
of the department. A department established to 
meet rigidly defined or implied managerial needs 
may never have the imagination or perspection 
needed to break out of this tight mould and engage 
in new and more profitable uses of the computer. 

On the other hand, the computer center cannot 

be allowed to run rampant, acting as an end unto 
itself. As an organizational unit it must show a 
profit and assume its place as a responsible member 
of the organization. The NICB study pointed out 
that "In organizing an electronic data-processing 
activity, the authority of the manager and the inter
nal and external relationships of the various work 
units require careful consideration to ensure effi
cient and harmonious operation. "13 This view is 
reinforced and expanded by Brabb and Hutchins 
who state "The primary administrative responsibili
ty of the manager of data processing can be defined 
as the organization of the EDP department to more 
effectively contribute to the over-all objectives of 
the company."14 

In no way does this portend a new order of 
things in which management tends to be subservient 
to the computer center. Rather, attaining the profit 
potential of the computer requires clear understand
ing of its capabilities and the adjustment of manage
rial philosophy over a period of time. Unl*e most 
of its other equipment investments, management 
should not perceive the computer as a static, single 
purpose machine facility or as merely another 
means of increasing productivity; instead the need 
is for a viable attitude and a constant quest for new 
applications and uses for the computer. 
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INTRODUCTION 

The systems and programming staffs which have 
grown up within many large organizations may be 
described with considerable appropriateness as pro
gramming "factories." This designation could be 
used to characterize the programming groups em
ployed by the computer manufacturers and those of 
the large companies engaged in producing proprie
tary programs. It is especially descriptive of the 
technical staff of a large commercial bank. 

The idea of regarding the systems and program
ming resources of a bank as instruments of produc
tion has become especially appropriate within the 
recent past as the emphasis in banking automation 
has shifted from development of internal systems to 
systems designed to aid the bank's customers. 

This change-and it is a fundamental one-is 
partly the result of the remarkable progress made to 
date in automating the voluminous internal ac
counting and data handling functions of the bank. 
In commercial banking the "Big Three" applica
tions are demand deposit. accounting, savings ac
counting, and installment loan accounting. In the 
course of computerizing these applications a great 
deal of data processing expertism has been devel
oped within the banks, and tremendous equipment 
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capability acquired to perform the work. The banks 
are now finding themselves in a position to focus 
their attention away from their own data processing 
needs and outward to those of their customers. 

But this phenomenon has arisen not alone be
cause of the availability of programming and equip
ment resources to do external tasks. Perhaps of 
equal importance, it is the result of customer pres
sure and demand. For, after all, the bank's pro
gramming staff could be reduced (though this 
would be virtually unparalleled in the annals of 
modern business) once the internal automation job 
is largely accomplished. This has not happened 
though, because the bank's customers, having be
come aware of the bank's technical facilities and of 
its CruChll role in practically all financial transac
tions, have pressed for development of computer
based services to be made available either on a fee 
basis or in return for compensating balances. 

COMPUTER-BASED CUSTOMER SERVICES 

Among the computer based customer services 
that the banks now offer may be found: 

• Account Reconcilement 
• Billing 
• Classroom Scheduling 
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• Credit Union Accounting 
• Golf Handicapping 
• Insurance Agency Accounting 
• Linear Programming 
• Payroll 

And this rather heterogeneous listing of systems is 
by no means complete. 

These systems are of the "retail" type, i.e., or
iented towards businesses rather than individual de
positors. There are other services which may be de
scribed as consumer-oriented. An example of this is 
a system for automatic bill payment, widely prac
ticed by banks in Europe and elsewhere outside the 
United States and now beginning to receive atten
tion here. In this service, an individual may accu
mulate all of his bills to be forwarded to the bank 
along with a single check, upon receipt of which the 
bank makes the distribution to the various payees. 
Alternatively, the bank might receive the bills di
rectly from the merchants, utilities, etc., and auto
matically pay them by debiting the consumer's ac
count. Thus it may be seen that when one thinks of 
banking services as being products of a program
ming factory, they may be further regarded as anal
agous to both industrial products and consumer 
goods. 

This transformation of the bank's systems and 
data processing ability from internal to external ap
plications has created a classical business planning 
situation, one in which there are more opportuni
ties available than there are resources to exploit 
them. In this instance there are more potential ser
vices for which demand exists than there are techni
cal personnel available to develop them. 

There is also a highly. competitive environment 
in which the share of market for the bank's more 
traditional services is affected by the bank's ability 
to produce and market these new and complex 
products. The strategic importance of computer
based services raises the fundamental question: 
How much business will a bank lose or gain by de
veloping or not developing one set of services in 
preference to another? If a bank elects to offer a 
payroll service before developing a billing service, 
it is vulnerable to its competitor who possesses the 
billing system. And, strategically, this can mean 
more than merely forfeiting the profit from this ser
vice; it may mean the loss of valuable customer re
lationships which presently exist. For example, a 
company desirous of having a bank handle its bill-

ing may give to the competitive bank not only the 
profit from doing the billing work, but may also 
transfer its demand balances and load relationships, 
its corporate trust work and other business. It is 
evident that the staks are high and that the conse
quence of misjudgment in determining which prod
ucts to fabricate and sell are at least as catastrophic 
here as in the more conventional manufacturing 
operations. 

SYSTEM PLANNING AND PRODUCTION 

Let us now consider the major functions involved 
in product development in any manufacturing com
pany: 

• Product planning 
• Engineering 
• Manufacturing 
• Marketing 

It should prove instructive to examine the nature of 
these functions when the product to be manufac
tured is a system, once again taking the services de
velopment work of a large bank as an illustration. 

In this context, product planning is concerned 
with identifying what is potentially both realizable 
and profitable. It involves, first of all, application 
analysis to determine the feasibility of producing 
and operating a generalized system, say one which 
will perform credit union accounting for a large 
number of potential customers among the credit un
ions in the bank's service area. Here there are many 
alternatives. Perhaps it would be better to design. a 
system around the needs of one or a few potential 
customers rather than to attempt a somewhat 
theoretical generalization. By taking this more spe
cific, and more limited approach, the service might 
be proven in, with the resultant experience later ap
plied to produce a more generally applicable pack
age. To do this would be roughly comparable to 
producing a pilot or prototype model of any manu
factured product. 

Product planning for systems is also concerned 
with the available technology. What tools are need
ed to produce the service? Should programs be writ
ten for an IBM 1410, for example, or should the 
bank plan to upgrade its equipment by acquiring a 
newer computer? What will be the impact of data 
communications on possible services? 

Finally, product planning for computer based ser
vices must be concerned with the market, and here 
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the efforts of a professionally trained market re
search staff may be required. Market research plays 
a more important role in consumer type services 
than in the business oriented systems, primarily be
cause the acceptability of a product to the business 
segment affected can usually be more readily deter
mined. One bank, for example, felt the need to con
duct extensive market research before introducing a 
new revolving credit service in which transfers of 
funds were made automatically from the loan ac
count to the checking account whenever the check
ing account became overdrawn. This research ex
tensively probed consumer attitudes toward over
drafts and the use of credit. Other banks have per
formed market research in conjunction with plans 
for an automatic bill payment service. 

Product planning for new banking services, sup
ported by market research, should result in the es
tablishment of target costs, target prices, and a 
break-even point based upon a target market. To do 
this kind of planning, a great deal or rather astute 
estimating is necessary, supported when appropriate 
by market research. First of all, the cost of develop
ing the system must be estimated and amortized 
over the estimated useful life of the product, an ex
tremely difficult task in the volatile field of com
puter technology. Costs of marketing the system, 
converting customers to the system,and operating 
the system must also be detailed. Here the concept 
of product line profitability accounting .can be use
fully applied, with estimates pertaining to a given 
product accumulated and, as the product is devel
oped and marketed, actual costs and revenues accu
mulated and compared with the estimates. 

If there is to be a realistic cost estimating and 
accounting approach, there will have to be standard 
costs for machine usage, keypunch operators, mes
sengers, and all other clerical and control personnel 
involved in operating the service. Preferably, there 
should be standard rates which are capable of being 
translated into cost per item processed. For exam
ple, it may be necessary to determine the cost per 
check issued when considering various kinds of 
payroll services. 

One facet of the planning problem and indeed of 
the entire product development cycle should be not
ed. System production is the kind of business in 
which the lead time between product planning and 
product use is considerable. Even though there is a 
continuing buildup in technical skills and experi-

ence, it still frequently requires months and some
times years to produce a complex generalized pack
age like an accounts receivable system. This means 
that a high quality of technical ability combined 
with business judgment is necessary to do an effec
tive job of product planning in this new industry. It 
means also that the level of confidence placed upon 
the product planning estimates cannot be too high. 
There are too many technological and competitive 
variables present during the developmental period 
which militate against firm estimates. 

The engineering function, in the sense in which 
it is used here, can be seen to be systems engineer
ing. Assuming that a computer based service has 
left the planning stage, the detailed specifications 
for the service must now be produced. The end re
sult of the engineering activity should be a pro
grammable specification. But before the engineer
ing process is begun, some sort of formal approval 
for allocation of resources t~ the project must be 
obtained. In the organizational environment of a 
bank, this authorization frequently comes from a 
committee of senior management. In any case, the 
funding of a project should usually be viewed as the 
start of the engineering function. 

The engineering function lends itself well to proj
ect organization, as in the case with most product 
engineering. As in most manufacturing businesses, 
products may be extensively modified while in the 
engineering state. It has been mentioned that there 
may be a pilot or prototype model which will yield 
experience applicable to the design and engineering 
of the production models. And, of course, some 
products may have to be abandoned during the en
gineering phase, although the rejection of systems 
ideas should more typically occur earlier, as an im
mediate result of product planning. 

The manufacturing function in services develop
ment is, basically, programming. In a well run pro
gramming factory, there should not be extensive 
modification of the product once the specifications 
prepared by systems engineering have been frozen. 
One difficult. question in organizing for production 
is whether to carry forward the project organization 
used to accomplish the- engineering work or to keep 
engineering and manufacturing organizationally 
separate. What is really involved here is the deci
sion confronting any large user of computers: 
whether he will combine the tasks of systems design 
and programming within a single group or whether 
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he will compartmentalize the work between separate 
groups specializing in system design and in pro
gramming. In either case, there must be a manufac
turing function which emphasizes program produc
tion. This implies the need for tight labor standards 
and launches the organization into the troubled wa
ters of programmer productivity. Labor standards 
for software manufacturing are much more nebulous 
and less controllable than in other kinds of manu
facturing operations. Although programming may 
not be an art, as some assert, it certainly is not at 
the present time a well disciplined profession. This 
characteristic has implications for the product plan
ning as well as the manufacturing function, of course, 
since the ability to produce a marketable product 
depends ultimately upon the / ability of manufactur
ing to adhere to initial estimates and projections. 

The marketing function encompasses a variety of 
responsibilities, including the firm pricing of the 
new product, advertising and sales promotion, the .. 
selling job itself, and finally the installation of the 
product, that is, the conversion of the customer to 
the banks computer processing. 

AN ORGANIZATIONAL VIEW 

Let us now take an organizational perspective of 
the functions just described. Fig. 1 identifies the 
services activity as well as the internal systems ac
tivity of a bank. The systems planning section per
forms the product planning function as well as the 
related tasks of analyzing future equipment needs 
and planning for the internal systems to be used 
within the bank. The systems development section 
shown here reflects a functional split between sys
tems engineering and programming, rather than the 
alternative division which could be made along 
project lines. The marketing section includes not 
only sales but market research as well. It may be 
noted that the marketing section becomes involved 
in services development at two different stages: at 
the beginning when the service is still in the plan
ning section and market research is required, and 
again at the end of the cycle after the system has 
been programmed and is ready to be marketed. The 
operations section differs fn;m other computer op
erations groups in that there must be much more 
emphasis in terms of organization and personnel on 
source document control. After all, if the bank un
dertakes the responsibility of calculating the cus
tomer's payroll, there must be every assurance that 

the documents submitted to the bank by the compa
ny are complete, accurate, and amenable to correct 
machine processing. 

A CONCEPTUAL APPROACH 

A third way of looking at systems planning and 
development is somewhat more conceptual in na
ture, in that it seeks to identify the major phases of 
planning and development. In Fig. 2, the planning 
and development of a service is shown in three 
phases, each demarcated by a vertical line. 

1. Preliminary review. This initial study seeks 
to determine whether, from either a policy, 
marketing, or operational standpoint, the 
bank wished to invest further effort in 
investigating a proposed system. This phase 
is characterized by very brief analyses of 
many system proposals. Each arrow shown 
in the diagram represents one proposed 
system. At the end of this phase, some 
proposals are aborted and others are car
ried forward into the next phase. 

2. Detailed investigation. For those proposed 
systems which appear to have good market 
potential, further investigation is per
formed. This results in a final go/no go 
decision. 

3. Implementation. The few systems approved 
for complete development pass through this 
final, more protracted phase, the end result 
of which is an operational system. Unlike 
phases 1 and 2, phase 3 is typified by 
many complex subphases and the invest
ment of substantial developmental re
sources. 

The spacing of the vertical lines in the diagram 
suggests roughly the proportion of calendar time 
and dollar investment usually involved in the var
ious phases of system planning and development. 
Actually, the vertical lines should not be straight 
and parallel as shown in Fig. 2, as the investment 
of resources may vary considerably in the prelim
inary review, detailed investigation, or implementa
tion of anyone system. Figure 3 suggests a more 
realistic way of looking at the process. Here the du
ration of a given systems project varies markedly, 
especially in the detailed analysis and implementa
tion phases. In terms of organizational responsibili
ty, the services planning section would be responsi-
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ble for preliminary review and much of the detailed 
analysis with the other appropriate organizational 
components accomplishing the implementation. 

CRITICAL PATH SCHEDULING 

Figure 3 also shows that the two projects which 
finally pass through the implementation phase have 
been planned and controlled by critical path sched
uling. Since critical path techniques have been gain
ing in acceptability for more conventional program
ming projects, the question of their appropriateness 
in services planning and development should be 
considered. If a network could be developed for 
each potential service during the preliminary review 
phase, the information produced by such an effort 
could aid the product planners materially in arriv
ing at better informed go/no go decisions because 
all facets of the proposed project could be identi
fied and costed. But other factors such as policy 
and competitive considerations may exercise a more 
decisive influence on developmental priorities and 
the allocation of resources than will the detailed 

projections resulting from critical path scheduling. 
Furthermore, any expected benefits must be 
weighed against a number of serious objections to 
performing critical path analysis at an early stage. 

Perhaps the most serious of these has to do with 
the amount of effort required to apply critical path 
methods early in a project's history. As Fig. 2 and 
3 show, out of 12 projects selected for study in 
phase 1, only two eventually come to fruition. 
Therefore, if a critical path analysis has been per
formed for each project at the beginning, only about 
16 percent of the effort required to perform this 
analysis would turn out to be ultimately useful. 
Similarly, only 40 percent of the critical path analy
sis . would prove useful if it were undertaken for 
projects which had progressed to phase 2 . 

A second objection centers around the feasibility 
of performing a critical path appraisal prior to the 
completion of the detailed investigation phase. 
Generally speaking, one frequently cannot antici
pate the scope of the implementation phase until 
the detailed investigation phase has been accom
plished. Consider, for example, the needs of a cus
tomer who wishes to have the bank maintain his 
accounts receivable. Investigation of this customer's 
requirements may reveal that (a) an existing bill
ing system can, with only a little expansion, suffice, 
or ( b) an entirely new system will have to be de
vised. The implementation steps for course of ac
tion (a) would be trivial but for ( b ) would be 
tremendous. The point is that the scope of the im
plementation effort often cannot be analyzed or 
charted until the detailed investigation phase is 
completed. If thus appears that the logical place
indeed the only justifiable place-for the efficient 
exploitation of critical path techniques is during the 
implementation phase. 

This mention of critical path techniques is in
tended merely to suggest that the tools for project 
management and control may, for the manufacture 
of these externally marketed systems, differ from 
those used previously to control the development of 
internal systems. Typically, in the latter case, there 
are considerably fewer choices of projects to under
take, and the characteristics of the systems to be 
devised are better known at the outset. Thus it is 
more realistic to draw up a critical path network 
for an internal system· at the beginning because one 
can be reasonably confident that the effort required 
to analyze and diagram the project will be effort 
well spent and that the project will not be aborted. 
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CONCLUSION 

Although these comments about the design and 
manufacturing of a system have been presented in 
terms of customer services being developed by com
mercial banks, they have applicability to any organ
iation which has a variety of programming projects 
for which the assignment of priorities is of vital 
importance. One such activity would certainly be 
the development of programs by a computer manu
facturer where there must be planning, scheduling, 

and control not only of the production of compilers, 
sorts, operating systems, and the like, but also of 
application oriented programs for customer use. 
Should the New Programming Language, COBOL, 
and FORTRAN compilers all be supported by the 
manufacturer? Or can the customers be served and 
satisfied with only one or two of these programs? 
Accurate answers to such questions as these may, 
for any company engaged in producing computer 
based systems for its customers, spell the difference 
between expnsion or decline in share of market. 
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INTRODUCTION 

In March 1965, the Lockheed Missiles & Space 
Company's Computation Center installed a UNI
VAC 1107 with two FH880 drums and three UNI
V AC 1004 print, card punch and read systems, two 
of which are remote. This configuration is illustrat
ed in Fig. 1. The Central Processing Unit was 
scheduled to be upgraded to an 1108 in October 
1965. The UNIVAC EXEC II monitor was used 
for the operating control of this equipment. Under 
this monitor, the typical job enters the system 
through a 1004 card reader, queues at a section of 
one drum designated the Input/Output buffer, is 
processed by the main frame using the drums for 
scratch storage and systems routines, occupies I/O 
drum buffer area for storage of output, and is print
ed on the originating 1004 system. The monitor 
"steals" cycles from the main frame to control the 
flow of data between the 1004's and the drum I/O 
buffer. The insert in Fig. 1 shows the original stor
age allocation of the two FH880 drums which allo
cated 262,000 36-bit words to the I/O buffer. 

If the I/O buffer is full when the program resid
ing in the CPU wishes to place output in the buffer, 
the main frame waits for the monitor to relieve the 
condition by sending output to the 1004's. During 
this period, the fast, expensive CPU logs "green 
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lite" time while waiting for the peripheral data 
transmission, which takes place at a relatively slow 
rate. On the other hand, if an adequate input queue 
is not maintained on the I/O buffer the CPU must 
wait in a similar manner for a 1004 which is read
ing cards. The determination of the proper I/O buf
fer size and peripheral capacity immediately be
came a major concern to the systems group. Other 
1107 users were contacted in an attempt to utilize 
their experience in actual usage or in the method of 
solution. The information gathered in this manner 
was useful in respect to preventing or solving many 
operating problems, but was not directly applicable 
to the buffer size/peripheral capacity decisions be
cause of the difference in workload characteristics. 
The configuration illustrated in Fig. 1 was chosen 
as an interim one on the basis of the known re
quirements, estimated requirements, and a forecast 
of the total workload. 

More accurate information on the workload 
characteristics and requirements became available 
after the initial system was installed and a more 
specific plan for the conversion of programs from 
other computers was laid out. At this point, the sys
tem designers turned to simulation as the tool to 
aid in the decisions for the 1108 system configura
tion scheduled for October 1965. Coupled with 
more accurate workload information was the recent 
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Figure 1. UNIVAC 1107 system configuration. 

development of a generalized data processing model 
developed by Lockheed called the Lockheed Multi
processor Simulation System (LOMUSS I). This 
system provided the vehicle for conducting dynamic 
simulations of proposed 1108 configurations. 

In addition, it was felt that conducting simula-
l ~ tions of the existing 1107 system would be useful 

for validation purposes, determining the system ca
pacity, aiding in evaluating different data transmis
sion systems for the remote stations, and scheduling 
second and third shift operations. 

STUDY OBJECTIVES 

The primary. objectives of the study were to de
termine which combination of I/O drum buffer size 
and peripheral devices and their locations would 
provide good service at a reasonable cost. The trade
off between good service and system capacity is a 
management judgment, but simulations would indi
cate the relative changes in system performance 
measures (turnaround time, maximum queues, sys
tem cost, etc. ) as a result of experimenting with 
different configurations. This problem was compli-

cated by an increasing workload as programs were 
generated for and converted to the 1107. At the 
start of this simulation study, the 1107 was running 
less than 16 hours per day and, as of the middle of 
May, the 1107 was on a 24-hour-per-day schedule. 

The possibility of the main frame having to wait 
because of I/O buffer storage saturation could be 
reduced to any desired level by the addition of suf
ficient equipment, i.e., increased drum capacity, 
additional peripherals (1004's), or a faster data 
transmission capability. Thus, the basic problem 
was to balance the expected costs of the main frame 
waiting for space on the I/O drum buffer against 
the costs of additional drums and/or peripheral ca
pacity. The large number of variables, their com
plex relationships, and the changing characteristics 
of the workload made simulation a logical choice 
for problem analysis. 

DATA COLLECTION 

The data collection phase of the study was under
taken with the study objectives as guidelines. Two 
catagories of data were collected, the data necessary 
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for the construction of the model of the 1107 confi
guration, and data to be used in establishing the 
validity of the model. 

The 1107 monitor provided a major source of 
data as it summarized for each job processed the 
input volumes, main frame time, cards output, and 
the pages printed. The arrival patterns of the jobs 
into the system, together with the originating 
source was obtained from the log-in desk records. 
The routings that the jobs followed as they moved 
from processing step to processing step were identi
fied and the equipment requirements at each step 
were determined. A typical routing is given below. 

Frequently, the time at the various processing 
functions is collected and used as the basis for de
termining simulated processing times. The Lock
heed Multiprocessor Simulation System (LOMUSS 
I) uses the volume of work to be processed and the 
processing rate of the specific equipment involved 
as the basis for processing time calculations during 
a simulation. Thus, if available, the number of cards 
input and the number of lines and cards output can 
be used rather than the time required to perform 
the function. 

Summary data were collected for establishing the 
validity of the model on such system statistics as 
main frame utilization, average turnaround time (as 
a function of workload), average run time of jobs, 
system operating time, and daily beginning backlog 
of jobs. The use of these summary statistics in es
tablishing the validity of the model will be dis
cussed in a later section. 

MODEL FORMULATION 

The Lockheed Multiprocessor Simulation System 
(LOMUS I) was used in developing the 1107 mod
el. LOMUSS I is a 7,500 SIMSCRIPT instruction, 
dynamic, generalized simutation system developed 
for the evaluation of data processing systems. It 
views a data processing system as an augmented job 
shop. Jobs are described by the functions to be per
formed and the volume of work to be done. The job 
routings may vary from a linear list to a complex 
PERT-like network of functions. A variable set of 
requirements may be associated with each function 
of each routing and the requirements may each be 
described with a variable level of detail. All of the 
above information is described for LOMUSS I 
through data cards. Thus the construction of the 
1107 model was actually the translation of the in-

formation gathered in the data collection into LO
MUSS I input formats. 

The remaining information that was required for 
the 1107 model was the specification of the model 
output reports. LOMUSS I provides the analyst, at 
his option, with a wide variety of reports on such 
items as "snapshots" of queue lengths and machine 
status, job processing reports, critical paths of each 
job, turnaround time reports and machine utiliza
tion reports. Snapshot reports are provided at an 
increment set by the analyst. Summary reports are 
available at any time interval specified by the ana
lyst. With this reporting power available, care must 
be exercised that ( 1) one is not inundated with 
reports and (2) that the essential information is 
provided. In the 1107 model, interest centered on 
the utilization of the main frame and the I/O buf
fer area, so report options were exercised to provide 
this information. 

The development effort required was one man for 
approximately one month to achieve a working LO
MUSS model of the basic 1107 system. Simulation 
of one day's operation of the 1107 system required 
about 10 minutes on an IBM 7094 computer. 

MODEL VALIDATION 

The following tests were applied to establish the 
validity of the model: a detailed trace of jobs 
through the system, a stability analysis, a compari
son of summary statistics from the model with the 
same variables as collected in the data study and, 
finally, a test of the ability of the model to predict. 

Initially, a small number of jobs were submitted 
to the model in order that a complete trace of their 
progress through the system could be printed out 
for detailed analysis. The following consistency 
checks were made (l) the job's path through the 
system with its routing, (2) the elapsed time at 
each function with the volume-rate specified time, 
(3) assignment of functions to equipment, (4) job 
processing order when queues developed, and ( 5 ) 
the matching of equipment capabilities with the 
function requirements. 

When the above validity checks were completed, 
the 1107 model was loaded with the number of jobs 
( 160) that the actual system was running as estab
lished by the data collection. The model indicated 
that this level load could be handled on a 2-shift 
(16-hour) basis, which corresponded with the ac
tual operation. The load was then increased in 
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steps, observing the effects on the system at'J each 
step. The plots in Fig. 2 were generated at this 
time. Illustrated in Fig. 2 is the arrival rate pattern 
of jobs into the system and number of jobs in the 
I/O drums queue plotted as a function of (1) the 
time of day and (2) the aggregate workload rate. A 

detailed analysis of the simulation output provided 
information on the "mix" (input, waiting to be 
punched or printed) of the I/O queue which was 
manually translated to "words of drum storage re
quired." The model predicted that the quarter mil
lion words of I/O drum storage would be saturated 

r 200 
1 
1- 190 

Note: For This Experiment, the Jobs in the I/O Queue Consisted Primarily (2! 80%) 
of Those Waiting for the Central Processing Unit. 

1 

;; }- 180 

~ ~ 170 

.S ~ 160 
;; 1 
Q I- 150 

S L- 140 
.2:l I 

~ i 13Q 

gp i ~ 120 
0i: r ~ 
.2:l I (§ 110 

~ 20 r- Q. 100 J b 

"go 18 ~:s 90 rr~ival 
Pattern 

=B 16 ~.2 80 

~ 141-- g 70 r i 
Cil 12 ~ 60 I I 
b I 1 I 
Eo< lOr 50 I 
~ 8~ 40 I 

~ 6:- 30 r-I 

~ 4~ 20 I 
1 1 

2 r 10 _J 

55 

I 
O~ O~~~~~~~~~~~~~~~~~~~L-~~~~ 

7 8 9 10 11 12 1 2 3 4 5 6 7 8 9 10 11 12 1 2 3 4 5 6 7 

~AM--. +----1--PM-----+-pl-f---AM-i 
Figure 2. Analysis of UNIVAC 1107 workload rates and drum input/output queues. 

in the late morning and late afternoon when the 
workload rate exceeded 200 jobs per day. This 
created surprise among some systems and opera
tions personnel who had felt that the I/O buffer 
was adequate for the 1107 configuration but con
firmed the intuitive judgment of others. During the 
month of April the workload gradually built up un
til April 8th when a record 215 jobs were pro
cessed. On that day, the I/O drum buffer reached a 
saturation point for the first time. From a scientific 
point of view, this was only one of many factors in 
the validation procedure; but from a practical point 
of view this accurate drum saturation prediction 
proved to be very significant for purposes of imple
menting model results in the actual system, which 
was the responsibility of operations and systems 
personnel. More system status data (words being 
utilized on the I/O drum queue, jobs queued at 
card readers, etc.) were sampled frequently during 
the following two weeks. This information further 

validated the model and lent credence to results ob
tained with higher workloads rates fed into the 
model through parameter variation. 

During the initial model runs with the actual 
1107 workload, the 1107 utilization reported by the 
model was 54 percent. The actual operating data 
collected showed 56 percent utilization. The aver
age turnaround time of jobs in the model as a func
tion of workload level was compared with turn
around times obtained from the actual operating 
system. These data are illustrated in Fig. 3. The 
differences between the actual and model turnaround 
times are relatively constant and represent the 
manual handling times exterior to the hardware of 
the actual system and the domain of the model. The 
time between clocking in a job and actually insert
ing it into the card reader could have been account
ed for in the model, but the actual times were found 
to be about constant and not significant to the 
problems for which the model was being utilized. 
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SYSTEMS ANALYSIS 

The simulations were conducted primarily for 
determining an 1108 system configuration for Oc
tober 1965, but information obtained from the 
1107 simulations in April was useful to the then 
operating system. 

With the workload characteristics remaining ap
proximately constant, the model showed that a 3-
shift operation would be required when the work
load rate reached approximately 250 jobs per day. 
This can be seen in Fig. 2 when a linear interpola
tion is made between the I/O queue plots of 200 
and 300 jobs per day. That is, a queue of jobs will 
still be on the drum after midnight, which is the 
end of the second shift, if the workload rate exceeds 
250 jobs per day. 

There were some manual procedures that were 
immediately implemented to minimize the drum 
saturation problem, namely, when the operator de
tected a saturation condition he could stop the in
put flow by stopping one or more card readers 
and/ or he could dump some of the drum output 
queue onto tape for later processing during a low 
workload period (which would increase the turn
around time). The model made a contribution by 
pointing up the importance of the console operator 
to system efficiency and by so doing, helped accel
erate work on improved manual procedures and au
tomatic system status indicators (for example, mod
ification of the executive routine to give an on
line console printer message when the I/O drum 
buffer became saturated) . 

Another pertinent piece of information was the 
350-job-per-day 1107 system capacity predicted by 
the model as illustrated in Fig. 2. This provided a 
useful guideline to establishing system programmer 
support levels and program conversion (from other 
systems to the UNIVAC system) schedules prior to 
installation of the faster 1108 CPU system. 

The next step in designing and conducting the 
simulation experiments was to incorporate some ten
tative system hardware plans into the model. These 
plans are summarized as follows: 

• Installation of a high-speed data link between 
the central system and a high-use remote 
station. 

• Installation of an additional on-site UNIVAC 
1004 print, card read and punch system. 

• Replacing the 1107 CPU with an 1108 CPU. 

Three experiments were conducted which recog
nized the above system changes combined with a 
forecasted change in the characteristics and level of 
the 1108 workload. The output from these experi
ments was the primary information used for deter
mining the 1108 system configuration for October 
1965. 

Some output from experiment A is illustrated in 
Fig. 4, where the original 1107 model configuration 
was run with (1) a 350-job-per-day input which 
was the maximum forecasted level of work through 
1965 and (2) the faster 1108 CPU in place of the 
1107. Three system performance measures were 
significantly affected in experiment A: 

• The average job turnaround time for 350 jobs 
dropped from over 4 hours to about 1 hour. 
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Figure 4. Experiment A-present 1107 system with 1108 
CPU and a 350-job-per-day workload. 

• System throughput increased substantially as 
the 350\jobs were processed in only 2 shifts 
instead of 3. 

• The mix of the I/O queue changed from pri
marily input to primarily output and the peak 
I/O drum buffer requirement rose to almost 
2 million words. 

Similar output from experiment B is illustrated 
in Fig. 5 where experiment A was repeated except 
that a faster data transmission facility for a high-
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Figure 5 .. Experiment B - 1108 CPU with building-153 
COAX and additional 1004 system in building 102. 

use remote station was added to the model along 
with an additional on-line, on-site UNIVAC 1004 
Read, Punch, and Print System. 
Two system performance measures were significant
ly affected in experiment B: 

• The average job turnaround time dropped 
from 1 hour to 0.36 hour. 

• The peak I/O drum buffer requirement 
dropped from almost 2 million to about 
900,000 words. 

The output from experiment C is illustrated in 
Fig. 6 where experiment B was repeated except that 
the mean run time of the jobs was raised to 6 min-
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Notes: 

1. Average Turnaround Time; 0.45 Hours (Manual Handling Times Exterior to 
Hardware System Excluded. ) 

2. Maximum Requirement for I/O Drum Buffer Storage Occurs at 10:30 AM and 
Equals 354,000 Words . 

Figure 6. Experiment C - same as Experiment B but with 
an average CPU time of 6 minutes instead of 2.54 minutes 
(as measured <?n 1107). 

utes to more than account for an expected increase 
in the average run time characteristic of the work
load. 
The significant result .from experiment C was: 

• The peak I/O drum buffer requirement was 
reduced from 900,000 to 354,000 words . 

CONCLUSION 

The quantitative information provided by experi
ments A, B, and C was used to revise the tentative 
1108 system hardware plan. The significant differ
ence between the old and new plan for the· 1108 
configuration was the change from all rapid access, 
expensive UNIVAC 432 drums to a reduced 432 
9J"um capacity and an increased (from 1A to% 
million words) I/O drum buffer area using the 
slower and less expensive 880 drums. The simula
tions showed that the forecasted 1108 workload 
would initially be primarily constrained by peri
pheral data transfer rates and therefore the faster 
432 drums would not alleviate this problem. In ad
dition, the peak I/O queues indicated that a larger 
I/O drum buffer area would provide improved sys
tem performance (e.g., reduced turnaround time) 
and minimize manual' intervention . 

The LOMUSS model of' the Lockheed UNIVAC 
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on-line, time-sharing, remote terminal system simu
lated two critical periods (spring and fall of 1965) 
and provided information upon which the design 
of the 108 system configuration was based. An 
effort is continuing which will monitor the level 
and characteristics of the workload, equipment util
ization, turnaround time, etc., for further model 
validation. The information derived from this con
tinuing effort, coupled with up to date workload 
forecasts, will determine whether further model ex-

perimentation will be conducted for future system 
decisions. 

Lockheed has been constructing general and spe
cific models of computer systems for five years us
ing a variety of simulation languages. As illustrated 
by the implementation of the above simulation 
study, the development of LOMUSS has significant
ly assisted in establishing simulation as a design 
and analysis tool of the Lockheed Missiles & Space 
Company. 





BASIC CONCEPTS FOR PLANNING AN ELECTRONIC 
DATA PRO'CESSING SYSTEM 

A. F. Moravec 
General Dynamics 
Fort Worth, Texas 

INTRODUCTION 

The achievement of a reliable management infor
mation feedback system is dependent upon mean
ingful and well-defined electronic data processing 
objectives and basic concepts. The purpose of this 
paper is to attempt to define those basic concepts 
which can be used as a foundation for planning ad
vanced electronic data processing (EDP) systems. 

Developments in digital transmission, the availa
bility of faster bulk storage devices and the use of 
man/machine interface devices, such as displays 
and interrogation consoles, have stimulated a new 
kind of data processing. In this processing, infor
mation is entered into the system as it is generated. 
Outputs are requested as they are required. These 
inputs and outputs are occasioned by external stim
uli-man or machine-to which the computer re
sponds. 

For the future then a basic data processing phi
losophy is required to match these recent develop
ments. 

Two basic divergent data processing concepts for 
the future are being disc~ssed in much of the elec
tronic data processing literature today. The remain
der of this paper presents each concept. 

169 

TOTAL SYSTEMS APPROACH VS SINGLE 
INFORMATION FLOW PHILOSOPHY 

The total Systems Approach and the Single Infor
mation Flow Philosophy are the two fundamental 
concepts which analysts have been alluding to in 
many of their discussions, but to date have not de
fined these concepts in a manner which should and 
can facilitate the designing of an advanced electron
ic data processing system. 

Figure 1 asks the first basic question, "Which is 
the driving gear?" That is, is the system to be de
signed based upon the total systems concept or the 
single information flow concept. And Fig. 1 also 
asks the question, are we user-oriented or fundam
ental information-oriented as we visualize our EDP 
systems? 

Before we attempt to answer these questions, let's 
first define the two concepts. 

Definitions 

The Total Systems Approach. This approach 
represents the final goal of computer installations of 
many companies today. It encompasses present data 
processing operations and thinking, ana its most 
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sophisticated ultimate development represents a fu
ture attainment of the complete "total systems con
cept." 

The Total Systems approach has evolved from 
techniques such as "Batch Systems" and "Integrated 
Systems." 

In this approach, major functions (operations), 
e.g., inventory control, procurement, payroll, re
ports, etc., are usually considered separate subsys
tems. This total systems approach recommends 
treating these subsystems on an integrated (compa
tible) basis-for example, providing the ability of 

,the payroll subsystem to run with the labor distrib
ution subsystem or perhaps the inventory control 
subsystem running with the purchase order subsys
tem. 

Ideally, through evolutionary reprogramming and 
redesigning, where required, there evolves a single 
executive control subsystem which monitors subsys
tem integration, produces desired reports, controls 
run sequence and operations and, to some degree, 
will automatically change programs as required. 

Figure 2 (the upper portion) reflects this kind of 
subsystems monitor. 

Information processing requires that these sub
systems be processed in an ordered sequence re
gardless of actvity and that information be retrieved 
after each subsystem is run. This is indicated in 
Fig. 3 (upper portion) . 

Single Information Flow Philosophy. 1 The new 
computer data processing of the future will be con
cerned with this philosophy. 

In this approach it is recognized that all "essen
tial" information is completely interdependent. The 
attempt in this concept is to enter only once in its 
history, a single piece of information to be pro
cessed, and from that time on it is available to 
serve all data processing requirements until its use
fullness has been exhausted. 

This approach has sometimes been called the 
"single transaction processing" or complete "single 
record" concept and in some literature it is known 
as "Total Information System." Regardless of name, 
the key to making this concept workable is under-



BASIC CONCEPTS FOR PLANNING AN ELECTRONIC DATA PROCESSING SYSTEM 171 

a-RtVl710N8 

TOTAL SYSTEM APPROACH: 

SINGLE INFORMATION FLOW: 

POINT OF 
ORIGIN 

FUNDAMENTAL 
INFORMATION 

SYSTEM 

SUBSYSTEMS .. 

• SINGLE TRANSACTION 

• COMPLETE FLOW OF ESS ENTIAL 
DATA 

• COMPLETE PROCESSING 

• SINGLE STORAGE 

• SINGLE COMPLETE RECORD 

Figure 2 rw/6S/374/019-224 

standing the following rules: ( a) "Information 
must be essential to the conduct of business," and 
(b) "It must be part of a single flow of information 
essential to the operation of the business." 

Statement (b) implies that much . information 
being processed in present-day computer operations 
is not "essential." These nonessential types of in
formation include "protective" type reports (e.g., 
auditable fax-cards, special audit runs), multitudi
nous repetitions and overlapping of the same basic 
data records (e.g., identical requirements data 
being held on the requirements file, then on the In
ventory Status file, and also on the Purchase Order 
Status file, etc.), which are maintained on an unre
lated basis to meet needs long lost through the evo
lution of time, and special requests the need of 
which has long ago disappeared. 

This concept is likened to the efficient one-man 
storekeeper who came quite close to ultimate real
time random information handling. The cans on the 
shelf and a few pencil marks gave him both inven
tory and purchasing information; the book next to 

the cash drawer provided accounts receivable, credit 
and customer information; the bank book plus cash 
drawer gave him his cash ba~ance; while accounts 
payable were visible on the nail on which he spin
dl~d the bills. In the drive for seeming efficiency, 
computer organizations began to specialize and to 
batch-process information, which, of course, runs 
counter to this one-man type operation. 

Figure 2 (lower portion) outlines the basic in
gredients and the fundamental information system. 

Ideally, under the Single Information Flow Phi
losophy, a piece of information is retained in only 
one place and is available for at! necessary uses. For 
example, at the time Engineering releases a part 
with the needed material requirements, inventory 
status and "on order" conditions (including pro
curement) are immediately updated through a com
plete information flow and processing of transac
tions resulting in the proper action (e.g., buy, issue, 
manufacture, etc.) taking place as needed. All nec
essary status reports both units and dollars are then 
taken from this single and common source data. It 
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is like taking a picture of a condition without dou
ble exposure or varying time. The lower portion of 
Fig. 3 indicates the single transaction and complete 
processing technique. 

Organizationally, the systems design technique 
varies according to the basic approach used. As 
Fig. 4 indicates, there is normally a specific. sys
tems engineer and programmer assigned to design 
and maintain each subsystem in the Total Systems 
Approach whereas the Single Information Flow 
concept provides for preparing the basic specfica
tions of all categories of "essential" information 
before the system is designed. It is after this point 
that the specific systems engineer, programmer and 
communication specialist get together and start de
signing the system. 

BASIC ENVIRONMENT 

The two approaches differ in their basic environ
ments. The total systems concept is output-oriented.2 

Files and data processing procedures are established 
to provide end products that meet specific user re
quirements. Information orientation is by particular 
functions or departments. Applications are speci
alized to meet particular needs. (See Fig. 5 upper 
portion. ) Processing is predominantly of the batch 
type. Data are collected over a period of time for 
processing during a particular machine run. The 
same information is read and reread into the com
puter following various sorts and merges with other 
data. Files are run sequentially regardless of the 
amount of activity. 

Information is oriented differently between the 
two approaches. In the upper section of Fig. 6 it 
can be seen that subsystems are but individual files 
of a total file and retrieval of information takes 
place on an individual file basis. 

As the number of subsystems going "on-the-air" 
increases (Fig. 7), it will generate additional need 
for large computers and attendent peripheral equip
ments. Because much of the data processing opera
tion is conducted off-line, there is high use of peri-
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pheral equipment. Control and audit of data also 
take place off-line; manual calculations and various 
audit comparisons may be involved. 

The future trend of the total systems approach 
may well be toward multicomputer operations. It 
may, indeed, foster a decentralized data processing 
environment, in which the user processes his own 
data on less sophisticated peripheral computing 
equipment while complex data processing remains 
with the centralized main frame computer. (See 
Fig. 8.). As the number of computers and the num
ber of users demanding to !?rocess their own data 
increase, there will be pressure from the users for 
current data under their own control. 

The single information flow concept, on the 
other hand, is input-oriented.2 The system is organ
ized so that essential data are inserted into a com
mon reservoir through point-of-origin input/output 
devices. User requirements are then satisfied from 
this reservoir of fundamental data about transac
tions. 

Thus, the single information flow concept is 

characterized by random entry of data, direct access 
to data in the system, and complete real-time pro
cessing. (As soon as a transaction occurs, all the 
necessary and related records are updated and post
ed. ) This method of single-transaction processing 
provides fast response, ·a high degree of reliability, 
and an easily ex,pansible system. 

Information orientation, instead of being toward 
individual users, fits overall company requirements. 
It is likely to cut across departmental and function
allines. 

Planning objectives or operational targets are 
associated with "fundamental" record information. 
Exceptions are noted at the time of processing. 

This approach will easily facilitate the use of 
"time-sharing" by a number of users and the use of 
"implicit programming" techniques (direct decision 
making). (The term "time-sharing" means that user 
groups can share time in common on the company's 
centralized business computer.) In addition to in
tradivisional user-group time-sharing on the central 
computer, interdivisional time-sharing operations 
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can be established on the same basis. (See Fig. 8.) 
Time-sharing operations wilt probably result in a 

trend toward centralized computing facilities and 
decentralized input/output equipment for insertion 
and retrieval of information. This will permit de
velopment of man/machine simulation techniques, 
which will enhance managers' systems understand
ing, broaden· their training, and eventually facilitate 
direct decision making. 

The two basic data processing concepts also in
volve widely differing equipment concepts. The 
choice between them will have a major impact on 
the choice of equipment throughout the data pro
cessing system. 

EQUIPMENT CONCEPT 

Adoption of the total systems concept imposes a 
need for high speed of operation to compensate for 
redundance of data and for lo·ng subsystem comput-

er runs. A large amount of high-speed storage will 
be required. Sophisticated peripheral equipment
almost with the capability of small computers-will 
be needed to reduce the load on the central main 
frame computers and solve the "input/output con
straint" problem. 

Each individual user's file will have to be stored 
separately-on disks or drum-and accessed by 
name only through a file director. If time-sharing 
techniques are to be used under this concept, great 
care must be taken to protect the user programs 
from one another in order to preserve their integri
ty and independence. "Crosstalk" between users will 
be tightly restricted. (See Fig. 9.) 

Equipment for use· under the single information 
flow concept, on the other hand, will need to pos
sess on-line real-time capabilities. Storage will also 
have to be of large capacity, but it need not .be 
high-speed. Much of the equipment emphasis will 
be on communication systems to connect users with 
the central processor. Instead of satellite computers, 
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users will want ,point-of-origin input/output 
devices.3 

With the use of communication equipment ap
propriate for time-sharing, communication among 
users will be encouraged. Crosstalk will be the rule 
rather than the exception. 

Individual user files will not be maintained. In
stead, there will be a single record file accessible to 
all users. Nonessential data and data not needed to 
update records will be processed directly through 
crosstalk between user point-of-origin devices. Such 
data could be documented if need be through an 
off-line printer. 

Appropriate software techniques will have to be 
designed for information insertion and retrieval. 
Implicit (man/machine response) programming will 
be developed. 

ADVANTAGES 

Each of these concepts, of course, has both ad
vantages and disadvantages. The chief advantage of 

the total systems concept is that it offers a relative
ly simple transition from existing systems. Mechan
ization can be accomplished piecemeal. Subsystems 
can be developed independently as they are required 
or as systems workloads and resources permit. In
terdependence among subsystems is limited almost 
entirely to the need for agreeing upon and coordi
nating standard interface formats. 

Thus, the total systems concept permits step-by
step phased achievement of automation. As each 
subsystem is mechanized, valuable experience is 
gained that can be applied to the next one (see Fig. 
10.) 

The total systems concept has the additional ad
vantage of lending itself to "productionization," 
meaning that set times can be set aside for and as
signed to each subsystem. (See Fig. 11.) Much pro
cessing of data can be accomplished off-line or on 
peripheral equipment, thereby leaving the main 
frame computer free for other uses. 

The single information flow concept; however, 
offers a number of control advantages. Engineering, 
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manufacturing, accounting, purchasing, material, and less likely to require a complete overhaul from 
and other departments all use the same data rather time to time. 
than different iterations of the same data. Since 
data are transported only once, they need only a 
single edit. Thus, it becomes economical for em
ployees to exercise greater care in entering informa
tion into the system. 

Real-time processing permits current compari
sons with planned objectives and exception report
ing of out-of-tolerance situations. The centraliza
tion of operation characteristics of the single infor
mation flow concept makes control easier-and also 
make it easier to determine data processing costs. 
Systems and programming revisions can be handled 
more rapidly by substitution of a computer program 
at a central location than at multiple locations with 
the inherent transmission distortions. 

The single information flow concept also has the 
advantage of facilitating adaptive systems design. A 
system designed to make internally generated ad

- justments from source input is likely to be more 
responsive to additional requirements placed on it 

DISADVANTAGES 

The total information systems concept presents 
problems of equipment efficiency and timeliness of 
data. Data handling by separate groups, often han
dling like data, fosters redundant data processing. 
Duplicate data storage causes inefficiencies. As 
subsystems feed data to each other, long computer 
runs result. Data are only as current as the frequen
cy and length of running cycles permit. (See Fig. 
12.) 

Not only is there duplication of data, but it is 
difficult to reconcile records since files are altered, 
updated, and organized at different times in differ
ent subsystems. Since the same kind of data is 
stored in several subsystems, management reports 
will reflect the status of the data in the subsystem 
from which it was taken. Because data and transac
tions are intertwined "among various subsystems, 
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costs of data handling and processing are 
to track down. 

difficult concept, on the other hand, lie more in the demands 

The total systems approach may fail to allow 
adequately for systems and data interdependency 
and the ripple effect of data. For example, the in
ventory control subsystem needs to have the on-or
der status data from the purchase order subsystem. 
The purchase order status subsystem needs to have 
total requirements data from the inventory control 
subsystem, which in turn should have current total 
requirements from the requirement subsystem. 

Since the subsystems are, for the most part, de
signed separately by different individuals, different 
methods and principles are applied. This problem is 
aggravated, of course, by different user require
ment of the same data. 

As the number of systems increases, efficient 
scheduling of computer and supporting tabulating 
equipment become difficult. In some cases a second 
or a larger computer may be ordered in order to 
avoid redesigning the system. 

The disadvantages of the single information flow 

it makes upon systems and data prQcessing person
nel than in its inherent deficiencies. Both systems 
designers and programmers will require training to 
assimilate new concepts. Systems designers will 
need communications knowledge and experience in 
addition to EDP knowledge. Programmers will need 
training in the technical applications of random and 
direct access operations. 

Reorientation of operations will require complex 
advance planning. User needs, equipment require
ments, and programming needs will have to be ana
lyzed. A fundamental information system for the 
entire company will have to be designed before this 
concept can be installed. Each step of the conver
sion will have to be planned and scheduled. 

IMPACT 

If the total systems concept is adopted as the cor
nerstone of planning, the following action is neces
sary: 
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1. Although this concept represents the ulti
mate sophistication of present-day data 
processing methods rather than a totally 
new approach, there remains the problem 
of integrating the various subsystems into 
a total information system. This requires 
proper data definition so that the system 
will be· responsible to the needs of various 
levels of management. (See Fig. 13. ) 

2. The shortcomings of present operations 
must be analyzed in the light of the total 
systems objective. 

3. An estimate of the total anticipated scope 
of operations must be made in order to es
tablish realistic boundaries for resource 
planning. 

Figure 9 

1. The conversion from the old to the new 
information system must be planned .. A 
step-by-step time-phased action schedute 
should be prepare. 

2. If the transition is to be smooth, reorienta
tion and training programs must be given 
for management, user groups, system de
signers, and programmers. 

,3. Both management and operating personnel 
will have to make extra efforts to make 
sure they understand the communication 
aspects of the new concept. 

SYSTEMS ENGINEERING 

If, instead, the single information flow concept is 
selected as the basic information systems concept, 
each of the following steps will be necessary: 

As is probably obvious from the foregoing, I fa
vor the single information flow concept. It seems to 
me that this is. the best approach if a company real
ly wants an information system that will enable 
management realistically to weigh the effects of all 
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business parameters on current and future opera
tions and thus to optimize decisions. (See Fig. 14.) 
With such a system not only can corporate activi
ties be analyzed and synthesized ,for management's 
review and tactical appraisal today, but ultimately 
simulation techniques can be used as predicators of 
the effects of long-range planning. This will allow 
management to determine the tacticaL decisions that 
should be made now to accomplish the strategic 
planning so necessary for success tomorrow. 

The scientific concept by which the fundamental 
information system is best designed and implement
ed is known as business systems engineering. Busi
ness systems engineering may be defined as a for
mal awareness of the interactions among the var
ious parts of a business complex. Until recently 
much of management. education and practice dealt 
only with functional components of business-ac
counting, production, marketing, finance, engineer
ing, and the like-that were taught and practiced as 
if they were unrelated subjects. 

Now attitudes have changed, and· there is grow
ing awareness that interactions and interdependen.;. 
cies among components of the system are more im~ 
portant than the components themselves. This 
awareness is the keystone of fundamental informa
tion systems design and of the single information 
flow concept of data processing. 

LIMITATIONS OF PRESENT CONCEPT 

The present concept of business systems engi
neering has evolved over a number of years. In the 
early years of computer technology the components 
(subsystem) approach prevailed. At that time an 
integrated business information system was thought 
to exist if a business transaction element was intro
duced into the system and perpetuated in the system 
with a minimum of manual intervention~ The as
sumption was that mechanizing data and providing 
it to operating groups· would, per se, result in benefit 
to the company. 
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An alternative approach envisioned good busi
ness systems design as the mechanization of data 
for specific random jobs as dictated by the needs of 
operating groups, with reliance on the assumed 
economies involved in mechanized data production. 
Both these alternatives, of course, represent piece
meal static systems because they inherently lack the 
flexibility of systems design necessary to coordinate 
the overall business process. 

CHANGE IN APPROACH NEEDED 

The need for a change in approach· has become 
obvious. The interdependence approach owes some 
of its impetus to the growing emphasis on long
range planning. In the development of multidimen
sional master plans there has been a tendency to ig
nore traditional departmental lines in favor of 
broad company functions and processes, analyzed in 
terms of problems and informational content. Long
range planning has also evoked interest in con
structing organization models and examining them 

through simutation in an effort to predict the ef
fects· of proposed changes. 

In terms of systems planning, the result has been 
a demand for analyzing company processes in a way 
that will permit mechanization of data elements at 
their source. The reason has been not only a desire 
to perpetuate the data in their original form but 
also the need for integrating the overall process and 
developing a truly realistic fundamental information 
system. 

SYSTEMS DESIGN 

Whichever data processing system philosophy is 
selected-whether the total systems approach or the 
single information flow concept-management must 
make the choice and then stick to it. Once the 
choice is made, then each of the foliowing steps can 
be taken: 

1. Management can begin to define its cor
porate objectives precisely. 
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2. All systems plans can become oriented to 
these objectives. 

3. Each resource can be analy~ed to deter
mine its contribution to the objectives and 
its interdependency with other resources. 

4. Standard information flow procedures can 
be adopted and software developed. 

5. Management's information needs can be 
converted into specific output formats. 

6. Input formats and controls can be de
signed. 

7. Editing and processing subroutines can be 
written. 

8. The files can be converted and the system 
installed. 

Systems design must be oriented toward corpor
ate management's responsibility for directing the 
various activities of the enterprise. Management's 
success depends upon its ability to establish well
defined and measurable events within its area of 

responsibility. Competently designed information 
sytems will reduce the efforts managers must exert 
in making routine decisions, enabling them to ob
tain short-run results with minimum difficulty, and 
thus allow them to devote their energies to the ma
jor decisions of business strategy and long-range 
planning. To achieve this goal, decisions must be 
harnessed under policy and controlled through inte
grated data processing systems. 

A basic plan for designing the information sys
tem in a typical company might be outlined as fol
lows: 

1. Determine management's needs to monitor 
the enterprise as a whole. 

2. Design the fundamental information flow, 
indicating the interretationships of the ma
jor functions and data, such as engineering, 
manufacturing, marketing, and finance. 

3. Develop in detail the "essential" informa
tion that each function requires to operate 
efficiently. 
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4. Determine each function's data and action the current needs of management, much less its 
requirements and their dependence upon need for longer-range planning. The problem is 
other functions' actions and/ or informa- complicated by the need for interpreting the data 
tion. and perpetuating the information involved in the 

After these steps have been completed, decision decision making processes. Furthermore, the infor-
criteria responsive to management's needs can be mation has to be manipulated rapidly to make it 
formulated. In addition, measurable critical "infor- meaningful now-for judgments to be made and 
mation points" can be selected and a control net- decisions to be arrived at in time to arrest potential 
work developed for economically retrieving and problems. 
consolidating the information. Thus, management The answer to these problems, in my opinion, 
can be made aware of potential problems and their lies in ( 1 ) high-speed data processing and com-
impact far enough in advance to take corrective ac- munication equipment, (2) adoption of the single 
tion. information flow data processing approach, and (3) 

IMPLEMENTATION NEEDS 

After a satisfactory data processing approach and 
plan have been developed, they still have to be put 
into effect. The volume and everchanging complexi
ty of business data make it difficult to satisfy even 

a competent business systems engineering staff (see 
Fig. 15) capable of translating these fundamental 
requirements into the necessary data collection, 
processing, control, and selective information re
trieval programs necessary to maintain a current 
picture of business activity within the company for 
all levels of management. 
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INTRODUCTION AND OVERVIEW OF THE MULTICS SYSTEM 

F. J. Corbat6 
Massachusetts Institute oj Technology 

Cambridge, Massachusetts 
and 
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Murray Hill, New Jersey 

Multics (Multiplexed Information and Comput
ing Service) is a comprehensive, general-purpose 
programming system which is being developed as 
a research project. The initial Multics system will 
be implemented on the GE 645 computer. One 
of the overall design goals is to create a com
puting system which is capable of nieeting almost 
all of the present and near-future requirements of 
a large computer utility. Such systems must run 
continuously and reliably 7 days a week, 24 hours a 
day in a way similar to telephone or power systems, 
and must be capable of meeting wide service de
mands: from multiple man-machine interaction to 
the sequential processing of absentee-user jobs; 
from the use of the system with dedicated languages 
and subsystems to the programming of the system 
itself; and from centralized bulk card, tape, and 
printer facilities to remotely located terminals. Such 
information processing and communication systems 

*Work reported herein was supported (in part) by Project 
MAC, an M.LT. research program sponsored by the Ad
vanced Research Projects Agency, Department of Defense, 
under Office of Naval Research Contract Number Nonr-
4102(01 ). 
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are believed to be essential for the future growth of 
computer use in business, in industry, in govern
ment and in scientific laboratories as well as stimu
lating applications which would be otherwise un
done. 

Because the system must ultimately be compre
hensive and able to adapt to unknown future re
quirements, its framework must be general, and ca
pable of evolving with time. As brought out in the 
compapion papers,1-5 this need for an evolutionary 
framework influences and contributes to much of 
the system "design and is a major reason why most 
of the programming of the system will be done in 
the PL/I language.6 Because the PL/I language is 
largely machine-independent. (e.g. data descrip
tions refer to logical items, not physical words), the 
system should also be. Specifically, it is hoped that 
future hardware improvements will not make sys
tem and user programs obsolete and that implemen
tation of the entire system on other suitable com
puters will require only a moderate amount of addi
tional programming. 

The present paper attempts to give a detailed dis-
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cussion of the design objectives as they relate to the 
major areas of the system. Some of the highlights of 
the subsequent papers are: a virtual memory system 
for each' user involving two-dimensional address
ing with segmentation and paging; the dynamic 
linking of program segment cross-references at 
execution time to minimize system overhead; the 
routine use' of sharable, recursive, pure procedure 
programming within the system as the normal mode 
of operation; the pooled use of multipte processors, 
memory modules, and input-output controllers; 
and multiprogramming of all resources and of mul
tiple users. Automatic management of the complex 
of secondary storage media along with backup, re
trieval, and maintenance procedures for the stored 
information will be' provided by a file system .. Fur
ther, it is expected that most of the software of the 
system will be almost identical in form to user pro
grams. The system will incorporate automatic 
page-turning for both user and system programs 
alike. 

INTRODUCTION 

As computers have matured during the last two 
decades from curiosities to calculating machines to 
information processors, access to them by users has 
not improved and in the case of most large ma
chines has retrogressed. Principally for economic 
reasons, batch processing of computer jobs has been 
developed and is currently practiced by most large 
computer installations, and the concomitant isola
tion of the user from elementary cause-and-ef
fect retationships has been either reluctantly en
dured or rationalized. For several years a solution 
has been proposed to the access problem.7

-9 This 
solution, usually called time-sharing, is basically 
the rapid time-division mUltiplexing of a central 
processor unit among the jobs of several users, each 
of which is on-line at a typewriter-like console. 
The rapid switching of the processor unit among 
user programs is, of course, nothing but a particutar 
form of multiprogramming. 

It is now abundantly clear that it is possible to 
create a general-purpose time-shared multiaccess sys
tem on many contemporary computers ( especially 
after minor but basic modifications are made). Al
ready two major and extensive systems have been 
created, one on the IBM 709410,11 and one on the 
0-32 computer.12 In addition, there have been nu
merous smaller scale systems, the most notable being 

on the DEC PDP-I, 13,14 the IBM 7094/5 the OE-
235/6 the DEC PDP_6,17 and the SDS 930,18 as well 
as somewhat more limited versions of time-sharing on 
the RW-400,19,20 and the CDC 021,21 the Johnniac,22 
and the IBM 7040.23 As time goes on, surveys of 
implemented systems are being made23,24 and "score 
cards" are being kept. 25 

The impetus for time-sharing first arose from 
professional programmers because of their con
stant frustration in debugging programs at batch 
processing installations. Thus, the original goal was 
to time-share computers to allow simultaneous 
access by several persons while giving to each of 
them the illusion of having the whole machine at 
his disposal. However, at Project MAC it has 
turned out that simultaneous access to the machine, 
while obviously necessary to the objective, has not 
been the major ensuing benefit. 26 Rather, it is the 
avail'ability at one's fingertips of facilities for edit
ing, compiling, debugging, and running in one con
tinuous interactive session that has had the greatest 
effect on programming. Professional programmers 
are encouraged to be more imaginative in their 
work and to investigate new programming tech
niques and new problem approaches because of the 
much smaller penalty for failure. But, the most sig
nificant effect that the MAC system has had on the 
MIT community is seen in the achievements of per
sons for whom computers are tools for other objec
tives. The availability of the MAC system has not 
only changed the way problems are attacked, but 
also important research has been done that would 
not have been undertaken otherwise. As a conse
quence the objective of the current and future de
velopment of time-sharing should extend way be
yond the improvement of computational facilities 
with respect to traditionat computer applications. 
Rather, it is the on-line use of computers for new 
purposes and in new fields which should provide 
the challenge and the motivation to the system de
signer. In other words, the major goal is to provide 
suitable tools for what is currently being called ma
chine-aided cognition. 

More specifically, the importance of a multiple
access system operated as a computer utility is that 
it allows a vast enlargement of the scope of comput
er-based activities, which should in turn stimulate 
a corresponding enrichment of many areas of our 
society. Over two years of experience indicates that 
continuous operation in a utility-like manner, 
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with flexible remote access, encourages users to 
view the system as a thinking tool in their daily in
tellectual work. Mechanistically, the qualitative 
change from the past results from the drastic im
provement in access time and convenience. Subjec
tively, the change lies in the user's ability to control 
and affect interactively the course of a process 
whether it involves numerical computation or ma
nipulation of symbols. Thus, parameter studies are 
more intelligently guided; new problem-oriented 
languages and subsystems are developed to exploit 
the interactive capability; many complex analytical 
problems, as in magnetohydrodynamics, which have 
been too cumbersome to be tackted in the past are 
now being successfully pursued; even more, new, 
imaginative approaches to basic research have been 
developed as in the decoding of protein structures. 
These are examples taken from an academic envi
ronment; the effect of a multIple-access system on 
business and industrial organizations can be expect
ed to be equally dramatic but experience in this 
area is still very limited. It is with such new appli
cations in mind that the Multics system has been 
developed. Not that the traditional uses of comput
ers are being disregarded. Rather, these needs are 
viewed as a subset of the broader more demanding 
requirements of the former. 

To meet the above objectives, issues such as re
sponse time, convenience of manipulating data and 
program files, ease of controUing processes during 
execution and above all, protection of private files 
and isolation of independent processes become of 
critical importance. These issues demand departures 
from traditional computer systems. While these de
partures are deemed to be desirable with respect to 
traditional computer applications, they are essential 
for rapid man-machine interaction. 

SYSTEM REQUIREMENTS 

In the early days of computer design, there was 
the concept of a single program on which a single 
processor computed for long periods of time with 
almost no interaction with the outside world. Today 
such a view is considered incomptete; for the effec
tive boundaries of an information processing system 
extend beyond the processor, beyond the card read
er and printer and even beyond the typing of input 
and the reading of output. In fact they encompass 
as well what several hundred persons are trying to 
accomplish. To better understand the effect of this 

broadened design scope, it is helpful to examine 
several phenomena characteristic of large service
oriented computer installations. 

First, there are incentives for any organization to 
have the biggest possible computer system that it 
can afford. It is usually only on the biggest comput
ers that there are the elaborate programming sys
tems, compilers and features which make a comput
er "powerful." This comes about partly because it is 
more difficult to prepare system programs for 
smaller computers when limited by speed or memo
ry size and partly because the larger systems involve 
more persons as manufacturers, managers, and users 
and hence permit more attention to be given to the 
system programs. Moreover, by combining re
sources in a single computer system, rather than in 
several, bulk economies and therefore lower com
puting costs can be achieved. Finally, as a practical 
matter, considerations of floor space, management 
efficiency and operating personnel provide a strong 
incentive for centralizing computer facilities in a 
single targe installation. 

Second, the capacity of a contemporary computer 
installation, regardless of the sector of applications 
it serves, must be capable of growing to meet a con
tinuously increasing demand. A doubling of de
mand every two years fs not uncommon.27 Multi
ple-access computers promise to accelerate this 
growth further since they allow a man-machine 
interaction rate which is faster by at least two or
ders of magnitude. Present indications are that mul
tiple-access systems for only a few hundred simul
taneous users can generate a demand for computa
tion exceeding the capacity of the fastest existing 
singte-processor system. Since the speed of light, 
the physical sizes of computer components, and the 
speeds of memories are intrinsic limitations on the 
speed of any single processor, it is clear that sys
tems with mUltiple processors and mUltiple memory 
units are needed to provide greater capacity. This is 
not to say that fast processor units are undesirable, 
but that extreme system complexity to enhance this 
single parameter among many appears neither wise 
nor economic. 

Third, computers are no longer a luxury used 
when and if available, but primary working tools in 
business, government, and research laboratories. 
The more reliable computers become, the more 
their availability is depended upon. A system struc
ture including pools of functionally identical units _ 
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(processors, memory modules, input/output con
trollers, etc.) can provide continuous service with
out significant interruption for equipment mainte
nance, as well as provide growth capability through 
the addition of appropriate units. 

Fourth, user programs, especially in a time
sharing system, interact frequently with secondary 
storage devices and terminals. This communication 
traffic produces a need for multiprogramming to 
avoid wasting main processor time while an in
put/ output request is being completed. It is impor
tant to note that an individual user is ordinarily in
capable of doing an adequate job of multiprogram
ming since his program lacks proper balance, and 
he probably lacks the necessary dynamic informa
tion, ingenuity or patience. 

Finally, as noted earlier, the value of a time
sharing system lies not only in providing, in effect, 
a private computer to a number of people simulta
neously, but, above all, in the services that the sys
tem places at the fingertips of the users. Moreover, 
the effectiveness of a system increases as user-de
veloped facilities are shared by other users. This 
increased effectiveness because of sharing is due not 
only to the reduced demands for core and secondary 
memory but also to the cross-fertilization of user 
ideas. Thus a major goal of the present effort is to 
provide multiple access to a growing and potentially 
vast structure of shared data and shared program 
procedures. In fact, the achievement of multiple ac
cess to the computer processors should be viewed as 
but a necessary subgoal of this broader objective. 
Thus the primary and secondary memories where 
programs reside play a central role in the hardware 
organization and the presence of independent com
munication paths between memories, processors and 
terminals is of critical importance. 

From the above it can be seen that the system 
requirements of a computer installation are not for 
a single program' on a single computer, but rather 
for a large system of many components serving a 
community of users. Moreover, each user of the sys
tem asynchronously initiates jobs of arbitrary and 
indeterminate duration which subdivide into se
quences of processor and input/output tasks. It is 
out of this seemingly chaotic, random environment 
that one arrives at a utility-like view. For instead 
of chaos, one can average over the different user 
requests to achieve high utilization of all resources. 
The task of multiprogramming required to do this 

need only be organized once in a central supervisor 
program. Each user thus enjoys the benefit of effi
ciency without having to average the demands of his 
own particular program. 

With the above view of computer use, where 
tasks start and stop every few milliseconds and 
where the memory requirements of tasks grow and 
shrink, it is apparent that one of the major jobs of 
the supervisor program (i.e., "monitor," "execu
tive," etc.) is the allocation and scheduling of com
puter resources. The general strategy is clear. Each 
user's job is subdivided into tasks, usually as the 
job proceeds, each of which is placed in an appro
priate queue (i.e., for a processor or an input/output 
controller). Processors or input/ output controllers 
are in turn assigned new tasks as they either com
plete or are removed from old tasks. All processors 
are treated equivalently in an anonymous pool and 
are assigned to tasks as needed; in particular, the 
supervisor does not have a special processor. Fur
ther, processors can be added or deleted without 
significant change in either the user or system pro
grams. Similarly, input/output controllers are di
rected from queues independently of any particular 
processor. Again, as with the processors, one can 
add or delete input! output capacity according to 
system load without significant reprogramming 
required. 

THE MULTICS SYSTEM 

The overall design goal of the Multics system is 
to create a computing system which is capable of 
comprehensively meeting almost all of the present 
and near-future requirements of a large computer 
service installation. It is not expected that the ini
tial system, although useful, will reach the objec
tive; rather the system will evolve with time in a 
general framework which permits continual growth 
to meet unknown future requirements. The use of 
the PL/I language will allow major system software 
changes to be developed on a schedule separate 
from that of hardware changes. Since most organi
zations can no longer afford to overlap old and new 
equipment during changes, and since software de
velopment is at best difficult to schedule, this rela
tive machine-independence should be a major as
set. 

It . is expected that the Multics system will be 
published when it is operating substantially and will 
therefore be available for implementation on any 
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equipment with suitable characteristics. Such publi
cation is desirable for two reasons: First, the sys
tem should withstand public scrutiny and criticism 
volunteered by interested readers; second, in an age 
of increasing complexity, it is an obligation to pres
ent and future system designers to make the inner 
operating system as lucid as possible so as to reveal 
the basic system issues. 

The accompanying papers describe in some detail 
how the Multics system will meet its objectives. 
However, it is useful, in establishing an overview, to 
touch on the highlights and especially on the design 
motivation. 

DESIGN FEATURES OF THE HARDWARE 

The Multics system objectives required equip
ment features that were not present in any existing 
computer. Consequently it was necessary to develop 
for the Multics system the GE 645 computer. The 
GE 635 computer was selected for modification to 
the GE 645 inasmuch as it already satisfied many 
of the crucial requirements. In particular, it was de
signed to have multiprocessors, multiple memory 
modules, and multiple input/ output controllers. 
Thus, the requirements of modular construction for 
reliability and for ease of growth were amply met. 
The communication pattern is particularly straight
forward since there are no physical paths between 
the processors and the input/ output equipment; 
rather all communication is done by means of 
"mailboxes" in the memory modules and by corre
sponding interrupts. Furthermore, major modules of 
the system communicate on an asynchronous basis; 
thus, any single module can be upgraded without 
any changes to the other modules. This latter prop
erty is useful in that one of the ways in which sys
tem capacity (and cost) may be regulated is by 
changing either the speed or number of memory 
modules. Of course further adjustment of system 
capacity is possible by varying the number of proc
essor units or the configuration of drum and disk 
equipment. In any case, one obtains the important 
simplification that a single supervisor program can 
operate without substantial change on any config
uration of equipment. 

Figure 1 illustrates the equipment configuration 
of a typical Multics system. All central processors 
(CPU) and Generalized Input/Output ControUers 
(GIOC) have communication paths with each of 
the memory modules. When necessary for mainte-
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Figure 1. Example of Multics system configuration. 

nance or test purposes, the system can be parti
tioned into two independent systems (although each 
of the drum, disk and tapes must belong to one of 
the two systems) . The remote terminals can dial 
either of the two GIOC through the private branch 
exchange, which is not shown in the figure. 

The most novel feature in the GE 645 is in the 
instruction addressing. A two-dimensional addressing 
system has been incorporated which allows each user 
to write programs as though there is a virtual memory 
system of large size. This system is organized into 
program segments (i.e., regions) each of which con
tains an ordered sequence of words· with a conven
tionallinear address. These segments, which can vary 
in length during execution, are paged at the discre
tion of the supervisor p'rogram with either 64- or 
1,024-word pages. This dual page size allows the 
supervisor program to use more effective strategies 
in the handling of multiple users. Paging, first intro
duced on the Atlas computer,28 allows flexible dy
namic memory allocation techniques as well as the 
sensible implementation of a one-level store system. 
To the user in the Multics system, page addressing 
is invisible; rather, it is the segments which are ex
plicitly known to him and to which he is able to refer 
symbolically in his programs. These notions were 
first suggested by Holt,29 further developed by Den-
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nis,3o,31 Dennis and Glaser,32 Forgie,33 and oth
ers.34,35 The value of segmentation and paging has 
since been widely discussed during the past year and 
has gained broader acceptance.36-39 The explicit hard
ware implementation details of segmentation and pag
ing for the Multics system are discussed in the com
panion paper by Glaser, Couleur and Oliver.l 

Because two-dimensional addressing is rather 
new, it is useful to clarify the reasons for it. 

The major reasons for segments are: 

1. The user is able to program in a two-di
mensional virtual memory system. Thus, 
any single segment can grow (or shrink) 
during execution (e.g., in the GE 645, 
each user may have up to a quarter million 
segments, each including up to a quarter 
million words). 

2. The user can, by merely specifying a start
ing point in a segment, operate a program 
implicitly without prior planning of the 
segments needed or of the storage require
ments. For example, if an error diagnostic 
segment is unexpectedly called for, it is 
brought in automatically by the supervisor; 
it is never brought in unless needed. Simi
larly, elaborate computations which branch 
into many different segments in a data
dependent way use segments only as needed. 

3. The largest amount of code which must be 
bound together as a solid block is a single 
segment. Since binding pieces of code to
gether (sometimes called "loading" ) is a 
process similar to assembling or compiling, 
the advantage of being able to prepare an 
arbitrarily large program as a series of lim
ited-overhead segment bindings is signif
icant. The saving in overhead is compara
ble to that in FORTRAN when one uses 
multiple subprograms instead of a single 
large combined block of statements. If the 
combined block is used, not only does the 
compilation process become particularly 
cumbersome but the eradicati'on of pro
gramming errors in all the different sec
tions requires more compilations. 

4. Program segments appear to be the only 
reasonable way to permit pure procedures 
and data bases to be shared among several 
users simultaneously. Pure procedure pro
grams, by definition, do not modify them-

selves. Therefore a supervisor program can 
minimize the core memory requirements of 
a collection of user programs by supplying 
only one copy of a jointly used pure proce
dure. Nearly all of the Multics system as 
well as most of the user programs will be 
written in this form. One consequence is 
that there will be no clearcut demarcation 
between user programs and system pro
grams; instead the demarcation will depend . 
largely on the responsibility for mainte
nance. 

Pages are a separate feature from segments and 
have further and distinct advantages. 

1. The use of paged memory allows flexible 
techniques for dynamic storage manage
ment without the overhead of moving pro
grams back and forth in the primary mem
ory. This reduced overhead is important in 
responsive time-shared sys.tems where there 
is heavy traffic between primary and sec
ondary memories. 

2. The mechanism of paging, when properly 
implemented, al'lows the operation of in
completely loaded programs; the supervisor 
need only retain in main memory the more 
active pages, thus making more effective 
use of high-speed storage. Whenever a 
reference to a missing page occurs, the su
pervisor must interrupt the program, fetch 
the missing page, and reinitiate the pro
gram without loss of information. 

A critical feature in the segment and paging 
hardware is the descriptor bit mechanism which 
controls the access of processors to the memory. 
These bits essentially allow hardware "fire-walls" 
to be established within the programming system 
which assist the isolation of hardware or software 
difficulties. Besides controlling the usual properties 
such as read-only, data-only, etc., one descriptor 
bit allows a segment to be declared "execute
only." The presence of this bit allows procedures. to 
be transferred to and executed blJt never read by 
user programs. This feature will be of interest to 
commercial service bureaus, and in application 
areas where privacy of program procedure is essen
tial (e.g., a class-room grading program). Anoth
er property of the descriptors is that they allow 
most of the supervisor modules to be written with 
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the same descriptors as user programs; most system 
programs thereby do not have access to privil'eged 
instructions, the inadvertent use of which can cause 
drastic machine misbehavior. This feature is espe
cially pertinent when it is recognized that time
sharing systems are real-time systems with beha
vior which it is difficult to duplicate or repeat. 
Consequently, all possible compartments and pro
tection mechanisms that one can have are of value. 

For effective operation of the Multics system, a 
drum with a high transfer rate is needed. The drum 
provided with the GE 645 meets the requirement 
and allows convenient and efficient management of 
a high rate of input/output requests. In particular, 
requests are organized by the supervisor program 
into queues in core memory and are fetched from 
these queues by the drum controller asynchronously 
of the processors. Because of the queues and be
cause drum record sizes are commensurate with 
core memory page sizes, it is straightforward to 
program for continuous input/ output transmission 
without latency delays. 

Disk input/ output requests are also organized 
into queues and are fetched from core memory by 
the generalized input/output controller. This con
troller is discussed in more detail in the paper by 
Ossanna et al. 4 Again, because the supervisor is 
contending with a statistical mix of user and super
visor requests for information to and from disk, it 
is expected that latency delays between requests will 
be negligible. Because the transmission capacity to 
the disk is large, system performance is expected to 
be unhampered by input/output bottlenecks. 

Since the Multics system will be used as an infor
mation processor in a wide range of applications, it 
is important that a readable character set be used. 
The standard character set will be the recently pro
posed ASCII code which has 128 codes and in
cludes upper and· lower case letters. 40 This set, 
which contains 95 printing graphics, can be reason
ably represented on contemporary input/ output 
consoles. Line printers capable of printing the 95 
graphics will be standard equipment. 

DESIGN FEATURES OF THE SOFTWARE 

An important aspect of the software is the sub
routine and linkage conventions which are associat
ed with the use of the segment and paging hard
ware. The following features are incorporated. 

1. Any segment has to know another segment 
only by symbolic name. intersegment bind
ing occurs dynamically as needed during 
program execution. Intersegment binding is 
automatic (i.e., not explicitly programmed 
by the user) and the mechanism operates 
at high efficiency after the first binding 
occurs. 

2. Similarly, a segment is able to reference 
symbolically a location within another seg
ment. This reference binds dynamically and 
automatically; after binding occurs the first 
time, program execution is at full speed. 

3. It is straightforward for procedures to be 
pure procedures, capable of being shared 
by several users. 

4. Similarly, it is straightforward to write re
cursive procedures (i.e., subroutines capable 
of calling on themselves either directly or 
indirectly by a circular chain of calls) . 

5. The general conventions are such that the 
call, save, and return macros used to link 
one independently compiled procedure to 
another do not depend on whether or not 
the two procedures are in the same seg
ment. 

6. Each user is provided with a private soft
ware "stack" for temporary storage within 
each subroutine. Of course, any user can 
choose to ignore this storage mechanism, 
but it is available and does. not have to be 
added as an afterthought by a subsystem 
qesigner. 

In addition, there is basically only one kind of 
calling sequence, thus avoiding much confusion. 
System programming is done with the same facili
ties, tools, etc., available to the ordinary user, and 
system programs do not have to be written with 
special forethought. It is anticipated that the system 
will be open-ended and will be largely created by 
the users themselves; many of the useful languages 
and subsystems will undoubtedly be contributed 
without solicitation. For this reason supervisor and 
user programs are constructed with similar form, 
and processes such as paging do not distinguish be
tween user and supervisor programs. (Of course, a 
few key pieces of the supervisor are locked in core 
memory.) Thus there is no intrinsic limit on the 
size of the supervisor program nor on the complexi
ty or the features which it may have. The avoidance 
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of a size limitation will be of major value as the 
system services grow. 

It is important to recognize that the average user 
of the system will see no part of the segmentation 
and paging complexity described in the paper by 
Glaser et al. Instead he win see a virtual machine 
with many system characteristics which are conven
ient to him for writing either single programs or 
whole subsystems. As a subsystem writer he must 
be able to make the computer appear to have any 
particular form ranging from an airline reservations 
system, to an inventory control system, from a man
agement gaming machine, to even a "FORTRAN 
machine" if so desired. There are· no particular re
strictions on the kinds of new systems or languages 
which can be imbedded. 

Further features which should ultimately appear 
in the system are: 

1. the ability to have one process spawn other 
processes which run asynchronously on 
several processors (thus improving the 
real-time response of the overall process); 

2. the ability for data bases to be shared 
among simultaneously operating programs. 

In addition the system will include all the major 
features of the present Project MAC system such 
as interconsole messages and macro-commands. 
The latter allow users to concatenate sequences of 
console-issued commands as short programs there
by forming more elaborate commands which can be 
used with a single name and parameter call. 

Another feature of the system is that it will include 
batch processing facilities· as a subset. In particular, 
users will start. processes which may have n terminals 
attached, with n = 1 for individual man-machine inter
action, and n = 0 for running an absentee-user pro
gram, the latter case corresponding to batch process
ing. A user will be able to transform conveniently 
a process back and forth between the zero and one 
terminal states. In addition, for the purposes of teach
ing machines and gaming experiments, it will be pos
sible to attach to a process an arbitrary number of 
additional terminals. 

The supervisor will, of course, do scheduling and 
charging for the use of resources. Scheduling poli
cies will be similar but more general than those cur
rently in the MAC system; for batch processing, 
jobs should be scheduled so that a user will be able 
to obtain a quotation of maximum completion time. 

The time accounting done by the system will be ac
curate to a few microseconds. In particular, the sys
tem will "fight back" by charging for exactly what 
equipment is used (or others are prevented from 
using). In this way, orderly system expansion will 
be possible since the particular equipment charges 
which are collected will always allow further acqui
sition of equipment. In addition the system will in
corporate hierarchal control of resource allocations 
and accounting authorizations. A project manager 
will be able to give computing budgets to group 
leaders who in turn will be able to delegate flexibly 
and straightforwardly sub-budgets to team leaders, 
etc. An important aspect of this resource allocation 
and budgeting is the ability of any member of the 
hierarchy to reallocate flexibly those resources over 
which he has control. With control of the resource 
allocation and administrative accounting decentral
ized, the operation of systems which serve hundreds 
of persons becomes manageable. 

In a similar way, system programming is decen
tralized. For example, the maintenance of the sys
tem might not be entirely under the control of a 
single group; instead particular translators might be 
delegated to independent subgroups of system pro
grammers. This isolation and distribution of 
responsibility is considered mandatory for the 
growth of large, effective systems. Hierarchal and 
decentralized accounting and system programming 
is made possible by a highly organized file system 
which controls the access rights to the secondary 
memory of the system and thus to the file copies of 
the vital procedures and data of the system. 

DESIGN CONSIDERATIONS IN THE 
FILE SYSTEM 

The file system is a key part of a time-sharing or 
multiplexed. system. It is a memory system which 
gives the users and the supervisor alike the illusion 
of maintaining a private set of segments or files of 
information for an indefinite period of time. This 
retention is handled by automatic mechanisms op
erated by the supervisor and is independent of the 
complex of secondary storage devices of different 
capacity and access. A scheme, such as is described 
in the paper by Daley and Neumann, 3 where all files 
of information are referred to by symbolic name 
and not by address, allows changes in the secondary 
storage complex for reasons either of reliability or 
capacity. In particular, the user is never responsible 
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for having to organize the movement of information 
within the secondary storage complex. Instead the 
file system has a strategy for arranging for high
speed access to recently used material. 

Of considerable concern is the issue of privacy. 
Experience has shown that privacy and security are 
sensitive issues in a multi-user system where termi
nals are anonymously remote. For this reason, each 
user's fil'es can be arranged to be completely private 
to him. In addition, a user may arrange to allow 
others to access his files selectively on a linking ba
sis. The linking mechanism permits control over the 
degree of access one allows (e.g., a user may wish a 
file to be read but not written). The file system al
lows files to be simultaneously read but automati
cally interlocks file writing. 

The file system is designed with the presumption 
that there will be mishaps, so that an automatic file 
backup mechanism is provided. The backup proce
dures must be prepared for contingencies ranging 
from a dropped bit on a magnetic tape to a fire in 
the computer room. 

Specifically, the following contingencies are pro
vided for: 

1. A user may discover that he has acciden
tally deleted a recent file and may wish to 
recover it. 

2. Ther~ may be a specific system mishap 
which causes a particular file to be no 
longer readable for some "inexplicable" 
reason. 

3. There may be a total mishap. For example, 
the disk-memory read heads may irrever
sibly score the magnetic surfaces so that all 
disk-stored information is destroyed. 

The general backup mechanism is provided by 
the system rather than the individual user, for the 
more reliable the system becomes, the more the user 
is unable to justify the overhead (or bother) of 
trying to arrange for the unlikely contingency of a 
mishap. Thus an individual user needs insurance, 
and, in fact, this is what is provided. 

DESIGN CONSIDERATIONS IN THE 
COMMUNICATION AND INPUT/OUTPUT 
EQUIPMENT 

A design feature of the system is that users can 
view most input/output devices uniformly. Thus a 
program can read from either a terminal or a disk 

file, or output can be sent either to a file or to a 
punch, a typewriter, or a printer. In particular, the 
user of the system does not have to rewrite his pro
gram to change these assignments from day to day 
or from use to use. The. symmetric use of equip
ment is, of course, highly desirable and makes for 
greater simplicity and flexibility. 

A typical configuration of the Multics system 
will contain batch processing input/output devices 
such as card readers, punches and printers and these 
normally will be centrally located at the main com
puting installation. For remote users there will be 
terminals such as the Model 37 Teletype which uses 
the revised ASCII code with upper and lower case 
letters. The Model 37 Teletype also can operate on 
the TWX network of the Bell System. It will there
fore be possible for many of the 60,000 TWX sub
scribers to be, if authorized, users of a Multics in
stallation. An additional standard terminal for the 
Multics system will be a modified version of the 
IBM 1052 console. This unit (and all other termi
nal devices which do not have the ASCII character 
set) will have software escape conventions, defined 
to allow unambiguous input or output of the com
plete ASCII character set. The escape conventions 
are general and allow even primitive devices (in a 
graphic sense) to communicate with the system. 
The IBM 1052 terminals, which basically use the 
Selectric typewriter mechanism, are operated with a 
special typeball, prepared for Project MAC as a 
compromise subset of the ASCII graphics. 

For those users who wish to have remotely locat
ed satellite substations capable of punching and 
reading cards and line printing, there are a variety 
of options available. Because the design of the Gen
eral Input/Output Controller is relatively flexible, it 
is possible to use the GE 115, the Univac 1004, or 
virtually any other similar subcomputer as a termi
nal, provided one is prepared to implement the 
necessary interface program modules within a Mul
tics system. At present none of these terminals are 
completely satisfactory since the full 128-code re
vised ASCII character set is not standard and exces
sive use of the software escape mechanism is re
quired for printing. 

In general, the area of remote terminal equip
ment is considered to be in an early state of devel
opment. Equipment innovations are expected, as it 
becomes evident that systems are capable of sup
porting their use. Terminals with graphical in-



194 PROCEEDINGS - FALL JOINT COMPUTER CONFERENCE, 1965 

put/ output are highly desirable although at present 
costly. The initial approach of the Multics system 
will be such that there will be no standard graphical 
input/ output terminal although several special proj
ects are being attempted. The system viewpoint ini
tial'ly will be that all graphical input/output will be 
with small, dedicated computers capable of han
dling the immediate interrupts. These small com
puters may multiplex a few terminals and in turn 
appear to be not too demanding to the main system. 
Thus the main system interrupt load will not be
come excessive. In a similar way the need for 
real-time instrumentation such as in monitoring 
experimental apparatus is expected to be handled 
initially on a nonstandard basis. The philosophy is 
the same as with graphical input/output, namely, to 
employ small, dedicated computers for handling the 
real-time interrupts so as to draw upon the main 
system for major processing of information in a 
more leisurely way. 

GENERAL CONSIDERATIONS 

It is expected that the ultimate limitation on the 
exploitation of the Multics system will be the 
knowledge which the user has of it. As a conse
quence, documentation of what the system contains 
is considered to be one of the most important as
pects of the system. For this purpose a technique 
has been developed wherein the main system ref
erence manual is to be maintained on-line in a 
fashion similar to what is currently being done at 
Project MAC. This allows any user of the system to 
obtain a current table of contents with changes list
ed in reverse chronological order. Thereby he can 
keep abreast of all system changes. Because the 
manual text is on-line, one is able to obtain im
mediate access to the latest changes at any hour or 
at any terminal. The on-line storage of the text 
also lets the system documentation group, by using 
appropriate editing programs, make global revisions 
whenever necessary. Of course, the distribution of 
manual revisions will still be handled in the ordi
nary way in that revised manual sections will be 
available at document rooms. Furthermore, it 
should be clear that there is no substitute for a good 
editor maintaining discipline over the documenta
tion and for intelligent selectivity in the reference 
material. A documentation technique such as the 
one given here is believed to be an absolute necessi
ty when users of the system no longer visit a com-

putation center in the course of their daily activi
ties. The user who is 200 miles away from the com
puter installation should have nearly the saine 
knowledge about the system as the one who is 20 
feet away. 

Another area of consideration is that of compati
bility with batch processing. In the Multics system 
for the GE 645, it will be possible to use simulta
neously, but independently, the GECOS batch
processing system; user jobs operating under GE
COS should behave exactly as they do on the GE 
625 or GE 635 computers. Effort will be made to 
allow the GECOS user tq change conven.iently to 
the Multics frame of operation but there will be no 
particular attempt made for compatibility between 
the two systems of basically different design. A user 
of the GECOS system may continue to use the GE
COS system until he is prepared to make a change 
to the Multics system at his own place, time, and 
choosing. This, of course, relieves a manager in
stalling a Multics system of the transient effect of 
several hundred persons changing their computing 
habits in one day and thus allows distribution of 
the normal dissatisfaction that arises under such 
circumstances. 

One of the inevitable questions asked of a multi
ple-access system is what capacity it will have for 
simultaneous on-line users. The answer, of course, 
is highly dependent upon what the users are doing. 
Clearly, if they are requesting virtually nothing, one 
can have a nearly infinite number of terminals. 
Conversely, if one person wishes, for a single prob
lem, system resources which equal the entire com
puting system, it is conceivable, if the scheduling 
policy allows it, that there can be only one terminal 
attached to the system. If one assumes that the ser
vice requirements are similar to those which have 
been experienced at Project MAC, then on the basis 
of simple scaling of processor and memory speed it 
is expected that the system will be able to serve 
simultaneously a few hundred users. But it is hazard
ous to predict any firm numbers; rather the per
tinent parameters in a system of this type will al
ways be the cost-performance figures. Perform
ance, of course, is somewhat subjective, but the is
sues are not those of memory speed, processor 
speed or input/ output speed. Instead the user 
should judge a system by the quality and variety of 
services, the response times, the reliability, the 
overall ease of understanding the system, and the 
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performance with respect to the interface of the sys
tem which he uses. For example, pertinent ques
tions for a PL/I user to ask are how costly, on the 
average, the translator is per statement, how easy it 
is to debug the language, and how efficiently the 
object code produced by the translator runs. Here, 
the object code referred to is that for an entire prob
lem and not just for isolated "kernels"; the efficiency 
refers to the total resource drain required to execute 
the problem and thereby includes the input/output 
demands as well. 

CONCLUSIONS 

The present plans for the Multics system are not 
unattainable. However, it is presumptuous to think 
that the initial system can successfully meet all the 
requirements that have been set. The system will 
evolve under the influence of the users and their 
activities for a long time and in directions which 
are hard to predict at this time. Experience indi
cates that the availability of on-line terminals 
drastically changes user habits and these changes in 
turn suggest changes and additions to the system 
itself. 

It is expected that most of the system additions 
will come from the users themselves and the system 
will eventually become the repository of the proce
dure and data knowledge of the community. The 
Multics system win undoubtedly also open up large 
classes of new uses not only in science and engi
neering but also in other areas such as business and 
education. Just as introduction of higher-level 
programming languages, such as FORTRAN, in
creased by an order of magnitude the number of 
persons using computers, multiple-access systems 
operated as a utility will substantially extend the 
exploitation of information processing systems to 
the point of having significant social consequences. 
Such social issues are explored in a companion pa
per by David and Fano.5 
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INTRODUCTION 

In the late spring and early summer of 1964 it 
became obvious that greater facility in the comput
ing system was required if time-sharing techniques 
were to move from the state of an interesting pilot 
experiment into that of a useful prototype for. re
mote access computer systems. Investigation proved 
computers that were immediately available could 
not be adapted readily to meet the difficult set 
of requirements time-sharing places on any ma
chine. However, there was one system that appeared 
to be extendible into what was desired. This ma
chine was the General Electric 635. The 635 is a 
single address stored program computer with a 
word length of 36 bits. It possessed many of the 
characteristics that were deemed necessary for the 
application of a computer to time-sharing. The 
three most important characteristics are: 

*Work reported herein was supported (in part) by Proj
ect MAC, an M.I.T. research program sponsored by the Ad
vanced Research Projects Agency, Department of Defense, 
under Office of Naval Research Contract Number Nonr-
4102(01) . 
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1. A clean and comprehensive order code, 

2. a multiprocessor capability, and 

3. nonsynchronous design. 

The first of these requirements stems from the 
quantity of software to be written for the machine. 
The size of·· the operating system demands it be 
written in some higher level language. An orderly 
instruction set is essential to permit the use of good 
code selection algorithms in the compiler. The multi
processor characteristic was desired to permit a 
feasible fail-soft characteristic in the system and to 
allow system growth without major increments 
equivalent to entire system duplication. The third 
characteristic, non-synchronous communication be
tween major components, was deemed desirable be
cause of the flexibility afforded in the significant 
modification needed to achieve the time-sharing 
system that we had in mind. The nonsynchronous 
characteristic allows a system to become large with
out suffering measurable degradation. These modi
fications in a fully synchronous system could result 
in degradation of performance. (Degradation of 
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course will take place in any system if the delay 
time of a signal through a cable is a significant part 
of a basic operating time. However the nonsynchro
nous approach permits this time to be minimized.) 

THE SCOPE OF EXTENSION 

The design of the extensions to the 635 began in 
early May 1964 and the end result is what is now 
known as the GE 645. The changes are in several 
areas. First, a totally new I/O control unit has been 
designed to integrate the control of standard periph
eral devices and various types of communications 
lines. The latter are necessary in the time-sharing 
environment. A large movable head disc, the DS 
25, was available as a standard 635 peripheral. This 
unit appeared suited for the type of use we envi
sioned. A high-speed drum (DS 300) was also 
available, but its performance was not sufficient for 
the purposes of the highest speed secondary store in 
the projected time-sharing system. Therefore, a 
new high-speed drum system was designed for this 
function (MS 32). The introduction of a new form 
of addressing logic incorporating segments and 
pages is a significant change to the system. This, 
with its concomitant changes in interrupt logic and 
related portions of the machine affected by it, was 
by far the major change to the system. 

THE SEGMENTS AND PAGES 

The concept of the paged memory has appeared 
in the literature for the past several years and has 
been implemented on at least one machineu . The 
purpose of paging is to make the allocation of phys
ical memory easier. One can think of paging as the 
intermediate ground between a fully associative 
memory, having each word addressed by means of 
some part of its contents, and a normal memory, 
having each memory location addressed by a spe
cific integer forever fixed to that physical location. In 
paging, blocks of memory are assigned differing 
base addresses. Addressing within a block is rela
tive to the beginning of the block. Thus if associa
tion and relative addressing are handled with a 
break occuring within a normal break of the word 
(viz. in a binary machine block size is a power of 
2) , then a number of noncontiguous blocks of 
memory can be made to look contiguous through 
proper association. The association between a block 
and a specific base address can be dynamically 

changed by program during the execution of ap
propriate parts of the executive routine. 

Segments on the other hand are used not for the 
allocation of physical memory, but for the alloca
tion of address space. The concept of segments has 
received little attention in the literature until 
recently.3.4

,5,6 A segment defines some object such 
as a data . area, a procedure (program) or the 
like. In a sense, each segment corresponds to a vir
tual memory whose size is whatever size, up to a 
maximum limit, that is required. In theory, as many 
such segments can be available to ~ programmer as 
necessary. In the case of the 645, the practical limit 
is 218 segments, each one of which can obtain up to 
218 words. Observe that although segments and 
pages are two distinctly different entities, they work 
together to facilitate the allocation of physical 
memory and virtual memory. Although a large 
number of. segments may be defined, each one hav
ing a large number of words, only the currently ref
erenced pages of pertinent segments need to be in 
memory at any time. A very limited concept of seg
ments has been used in computers previously.7 Re
cently other system designs have employed a similar 
segment and paging technique. 8 

DESCRIPTORS 

A descriptor is a word· that is used to define and 
locate in physical memory either a page or a seg
ment. Hence there are two kinds of descriptors: 
page descriptors and segment descriptors. The dif
ference between them is the table in which they are 
found. Each has slightly different functions as will 
become obvious. 

A segment descriptor contains among other 
things the location of either the segment itself or, if 
the segment is paged, the location of the table in 
which its pages are defined. Each page descriptor 
corresponds to one of the pages of the segment. A 
page descriptor contains the location of the base of 
the block of memory in which this page is to be 
found. All of the page descriptors for a given seg
ment must lie in contiguous locations of the page 
table for that segment. 

Both segment and page descriptors also contain 
certain access control information known as the 
descriptor control field. These fields define the na
ture of access permitted to a particular piece of in
formation. An example of such a control might be 
the Write Permit Bit. This bit determines whether 
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this segment or this particular page of a segment 
can be written into or only read. Alternatively, we 
may think of the segment descriptor as defining a 
certain set of restrictions on accessing the entire 
segment. Specific page descriptors may add addi
tional restrictions; however, they may not. take any 
away. For example, the segment is defined as being 
a data segment with writing permitted. The result is 
that control can not be transferred to this segment, 
but the words of the segment can be used as data 
with either reading or writing possible. If for some 
reason there is one specific page of data that we 
wish to protect, that page can be marked as "Read 
Only" (the write permit bit is set to zero). As a 
consequence, this page is defined not only as data 
but it is now "Read Only" data. The page descrip-

'~tor has applied an additional constraint above and 
beyond those constraints contained in the segment 
descriptor. In addition to the control and address 
information the segment descriptor contains a 
bounds field. This bounds field defines the number 
of pages that the segment contains. In the case of 
unpaged segments this bounds field defines the total 
number of words in the segment. 

THE DESCRIPTOR SEGMENT AND BASE 
REGISTERS 

The segment descriptors associated with a given 
process are all contained in a single segment known 
as the descriptor segment. The descriptor segment 
has a distinguished role in the operation of the sys
tem in that the processor uses this segment as the 
sole means of relating program references to memo
ry location. The descriptor segment may be paged 
in the same manner as any other segment. Its loca
tion in memory is defined by a special processor 
register known as the descriptor base register. This 
register defines either the base of an unpaged de
scriptor segment or the base of the· segment page ta
ble of a paged descriptor segment. This register can 
only be loaded or stored by privileged instructions 
not available to slave mode programs. Note that all 
user programs and most of the executive system are 
written in slave mode. 

A segment can now be identified by an ordinal 
number which locates its descriptor relative to the 
base of the descriptor segment. This number is 
known as the segment number. The address of a lo
cation in memory is specified in terms of a segment 
number and a location within that segment. In the 

645 both quantities are expressed as 18 bit numbers. 
During all addressing in the 645 both parts are nec
essary except under very unusual circumstances. 
Both parts are usually supplied explicitly. In some 
cases they are implied by certain conditions of the 
machine. 

There are several provisions for forming these 
two-part addresses. The first is by means of the in
struction word. An address may refer to a location 
within the current procedure segment or alternative
ly to some other segment. A control field in the in
struction specifies the choice. If the reference is 
within the current procedure segment the segment 
number is found in the procedure base register. 
This is an internal processor register and not direct
ly accessible to the user. If a reference is to some 
other segment the segment number is located in one 
of eight address base registers. The three most sig
nificant bits of the instruction address field are 
used to specify this selection. 

A set of commands is available to load, store and 
modify the contents of the address base registers. 
Additional flexibility is provided by allowing these 
base registers to operate as index registers (internal 
bases). When employed in this manner the indexing 
base register is coupled with a base register that 
holds a segment number. This base pair in effect 
defines a base location internal to the segment. The 
association of bases, together with marking bases as 
internal, and "locking" certain bases so that they 
cannot be changed except in a privileged "master" 
mode, are all contained in' a control register for the 
bases. 

For high-speed storing and reestablishing of sta
tus, it is possible to store or load the eight base reg
isters with a single command. Any bases which are 
locked, on a load bases command are passed over 
and remain unchanged. The use of these various 
forms of addressing would be difficult to discuss at 
this time and the reader is referred to one of the 
subsequent papers in this session describing the 
software for the new Multics system.9 

A second form of segment addressing is made 
available by means of the indirection facilities in 
the 645. Two variants are proveded. The first of 
these is known as INDIRECT TO SEGMENT 
(ITS). This form of modifier requires two words, 
the first of which gives the segment number to
gether with the tag that indicates it is an ITS word. 
The second word appears as a normal indirect word 
in either the 635 or 645. It contains an address to-
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gether with an address tag indicating whether fur
ther indirection is to take place and if so what type, 
and additionally if indexing is to take place before 
using this address. The second variant is by means 
of the indirect word pair which is called ITB, that 
is, INDIRECT THROUGH BASE. This form of 
indirection is identical to the ITS form with the ex
ception that the first word of the pair contains the 
ITB modifier and a number from 0 through 7 
which indicates which of the 8 address base regis
ters contains the segment number of this address. 
When either form is encountered during indirec
tion, the segment name then in effect is canceled 
and replaced with that given by the pair. The indi
rection will continue as prescribed by the pair. 

THE THREE MODES OF PROCEDURE 
EXECUTION 

In the 635 there were two modes for program 
execution: namely, master and slave. In slave mode 
only a restricted set of processor instructions are 
executable. Certain instructions such as I/O connect, 
those instructions dealing with the loading of the 
elapsed-time register and instructions affecting the 
relocation register were trapped. In master mode 
these privileged instructions could be executed and 
the relocation feature disabled. 

In the 645 three distinct modes of execution are 
defined. These are absolute, master and slave. Slave 
mode is considered to be the normal mode of in
struction execution. In this mode no privileged in
structions may be executed. Further the· relocation 
logic for segments and pages is fully operative. 
Master mode uses the segment and paging hardware 
identically to slave mode with the exception that 
privileged instructions may be executed and certain 
constraints on the access to segments are removed. 
Absolute mode is superior to the other two modes of 
operation. In the absolute mode, the segmentation 
and paging hardware is disabled and all instructions 
in the machine may be executed. Additionally, none 
of the segment access restrictions apply. Absolute 
mode is entered only by the occurrence of an inter
rupt. The machine enters temporarily into absolute 
mode to record system status but can be caused to" 
remain in this mode if desired. The segmentation 
hardware can be temporarily enabled on any instruc
tion merely by the use of the instruction word control 
bit used to indicate base register selection. Further, 
encountering either an ITS or ITB modifier will 

cause the segmentation hardware to be turned on 
for this instruction execution. When in absolute, the 
mode of the program can be turned back to either 
master or slave by the execution of an appropriate 
instruction. This instruction is a branch instruction 
that defines a segment number which indicates what 
form of procedure shall be executed, that is, master 
or slave. 

Because it was felt desirable to make it possible 
to branch easily between various programs includ
ing between slave and master programs, a certain 
degree of insurance has to be built into the hard
ware to guarantee that spurious branches would not 
take place into the middle of master mode programs 
from slave programs. As a consequence, a master 
mode procedure when viewed from a slave mode 
procedure appears to be a segment which can neith
er be written nor read. Further, the only method of 
addressing this segment that is permitted is a 
branch to the oth location. Any attempt to get at 
other locations by branch, execute, return or any 
other instructions will result in an improper proce
dure fault causing an appropriate interrupt. A spe
cial form of procedure called EXECUTE ONLY 
has also been defined which is similar to MASTER 
PROCEDURE in terms of entry restrictions im
posed on slave mode. Once entered, this procedure 
has aU of the execution characteristics of slave 
mode. 

THE ASSOCIATIVE MEMORY 

The addressing system as now defined would be 
very unsatisfactory if employed for each instruction 
or operand reference. If both the descriptor segment 
and the data segment are paged and if the proce
dure being executed is paged, a large number of 
memory cycles might be required to develop a 
memory address. To overcome this an associative 
memory is incorporated in the processor. This 
memory "captures" a compounded descriptor, de
rived from the segment and page descriptors. The 
resultant working descriptor represents a particular 
page of a particular segment. This can be either a 
data segment or the procedure segment. As a conse
quence, if a particular page of a segment is being 
used quite heavily, its descriptor will always be in 
this associative memory and no additional ref
erences to main memory are required to develop the 
memory address. The associative memorv is "invis
ible" to the user. Its only effect is to greatly speed 
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up the execution of the programs. Whenever a new 
working descriptor is created, it is placed in the as
sociative memory. If the associative memory is al
ready fun, a wired algorithm selects a memory posi
tion to be used for the new descriptor and causes an 
older descriptor to be discarded. A set of commands 
permit storing selected words from the associative 
memory and clearing the associative memory. All 
of these instructions are privileged. 

ADDITIONAL AIDS TO MEMORY 
ALLOCATION· 

The environment in which this system is to work 
places a high premium on efficient management of 
memory resources. Paging of itself simplifies the 
allocation process. A further gain is possible if one 
appreciates the effect of frequency and duration of 
usage. Two distinct mechanisms are employed to 
supply this information. The first of these involves 
the page descriptors. A record is made in the de
scriptor if the page is accessed for any reason. Once 
this bit has been set to a one, it is unaffected by 
subsequent page references. A supervisor program 
will periodically reset these "use bits" to zero and 
at the same time determine which pages have been 
accessed since the last entry into this procedure.· A 
second bit in each of the page descriptors is set to 
one if the contents of the page is altered in any 
way. 

The second mechanism involves the associative 
memory. The privileged instructions that store the 
contents of the entire associative memory or store 
the contents of the cell whose contents are "the old
est" descriptor provide the supervisory program 
with a measure of the extent and frequency of page 
usage. 

INTERRUPT CONSIDERATIONS 

In the 645 interrupts are generated by external 
stimuli while faults are generated by processor con
ditions. The occurence of either an interrupt or 
fault causes the execution of two commands located 
at specific "wired" addresses. On most computers, 
interrupt can only take place between command ex
ecutions. In the case of the 645, certain aspects of 
segmentation made desirable the interruption of the 
computer at many points during execution of a spe
cific command. After the interrupt is serviced, exe
cution is resumed. Resumption at the precise point 

of interruption, rather than restart, is mandatory 
because of the nature of the indirection in the 645. 

The features of the segmentation system which 
first made it mandatory to add this more general
ized interrupt capability were associated with the 
various control checks implied by the descriptors. 
Examples of these control checks are the bounds 
check, attempting to write in a Read Only segment, 
etc. It is advantageous in a segmented environment 
to cause an interrupt as a result of accessing an ap
propriately coded segment or page descriptor. This 
type of interrupt or fault is called a Directed Fault. 
Its name is derived from the fact that this descrip
tor directs control to a specific function based on 
which one of 8-bit configurations is found in the 
segment or page descriptor. The encoding and 
placement of this type of descriptor is done by the 
supervisor. The use of these descriptors for marking 
missing pages or missing segments will be discussed 
in a subsequent paper. 

The 645 interrupt handling mechanism has been 
called the "snapshot" register. This is a set of flip
flops which, although used by other functions of the 
machine, are primarily available for storing the ma
chine state. A trap, be it either an interrupt or a 
fault, causes the state of the machine to be stored in 
this snapshot register. The contents of essential' reg
isters and a history of control states comprise the 
snapshot. The first instruction in the interrupt han
dling routine normally will be a store control unit 
instruction. This privileged instruction stores the 
contents of the snapshot register into six memory 
locations. The subsequent execution of a restore 
control unit instruction takes the contents of the six 
words and reestablishes the control unit. 

CONFIGURATION CONTROLS 

Because of the highly on-line nature of this system 
it is necessary to reconfigure the system relatively 
easily. As a consequence, those switches required for 
reconfiguration control are remotely located from the 
units they control to allow rapid setting from a cen
tral point. At first glance it might seem desirable to 
make program configuration possible; however, if 
the system is malfunctioning it would be necessary 
in any event for the program to notify and probably 
obtain permission from the floor supervisor. As a 
consequence, it was decided initially to make recon
figuration controllable by manual switches and to 
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allow the computer to instruct the operator during 
reconfiguration. 

Reconfiguration is used for two prime purposes: 
to remove a unit from the system for service or be
cause of malfunction, or to reconfigure the system 
either because of the malfunction of one of the 
units or to "partition" the system so as to have two 
or more independent systems. In this last case, par
titioning would be used either to debug a new sys
tem supervisor or perhaps to aid in the diagnostic 
analysis of a hardware malfunction where more 
than a single system component were needed. 

The effectiveness of rapid reconfiguration is dif
ficult to determine in a paper simulation and effi
ciency of the system chosen will only be proved or 
disproved after a number of months of practical use 
in the one-line environment. 

CONCLUSIONS 

We have attempted in this paper to describe 
some of the considerations that led to the unique 
design of the GE 645 as a processor for a multi
access, remote user, information processing system. 
We have already learned much in the process of de
signing this machine and feel that within the next 
two to three years much more will be learned. It is 
difficult at this time to make any statements about 
what the future of such processors should be beyond 
a few tentative conclusions. 

First, additional speed both in arithmetic capabil
ity and in the memory hierarchy is desirable still; 
but even more, increased channel capacity of the 
main store of the machine is required. At present it 
appears that the' principal limitation and expansion 
of the system will be the channel capacity of core 
memory. Obviously, this will be alleviated to a 
great extent by the advent of higher speed central 
memories for computers. However, this is but one 
answer. We feel that superior facilities can be 
gained by closer attention to the system functions 
that we have emphasized with the 645; namely effi
cient interrupt handling capability, and comprehen
sive addressing logic to improve the allocation and 
protection of physical and logical memory. 

. Finally, it is felt that the designer of future time-

sharing systems must remember that a main part of 
the system is not in the computing center. Rather it 
is composed of the communications lines, the ter
minals and the various users, be they human beings, 
experiments or the like at these terminals. There
fore, the designer must keep in mind that he is en
gaged in a communications activity as well as an 
information processing activity and that proper at
tention must be paid to both aspects. We have done 
this to the best of our ability in the present system, 
although we are sure that some several years from 
now we will be able to return with the description 
of a machine that will be as great a step over the 
645 as the 645 is over previous designs when ap
plied to this new emerging field of time-shared 
computation. 
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INTRODUCTION 

This paper is a preliminary report on a system 
which has not yet been implemented. Of necessity, 
it therefore reports on status and objectives rather 
than on performance. We are impelled to produce 
such a prospectus by two considerations. First, 
time-sharing and multiprogramming are currently of 
great interest to many groups in the computing fra
ternity; a number of time-sharing systems are now 
beinE; developed. Discussion of the issues and pres
entation of goals and techniques is valuable only if 
it is timely, and the appropriate time is now. Sec
ond, every large project undergoes a subtle altera
tion of goals as it proceeds, extending its aims in 
some areas, retracting them in others. We believe it 
wiN prove valuable to us and others to have on rec
ord our intentions of 1965, so that in 1966 and 
1967 an unambiguous evaluation of our successes 
and failures can be made. 

The scope of this paper is an operating system in 
the strict sense. It is only slightly concerned with 
the hardware of the GE 645, for which the system 
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is now being implemented. It is equally little con
cerned with the translators and utility programs 
which make the system useful for computing. Fur
thermore, this paper pays little attention to the file 
system, which is the largest single component of the 
operating system, including well over half of the 
total code. A separate paper is devoted to the file 
system. 

Much of the content of this paper is statements 
of mechanisms or techniques for achieving particu
lar goals. In very few cases do we discuss proposed 
alternative methods, or our reasons for choosing 
particular methods. Such discussion would require 
an extended treatise; such a treatise might be use
ful, but it does not exist, and is not likely to. We 
hope to produce fragments of it in the future. In 
every case, our choice of method is based on one or 
more of four criteria. First, some of the mecha
nisms were adopted from previous systems because 
they proved satisfactory there. Second, alternative 
solutions to some of the problems were tried on 
previous systems and found unsatisfactory. Third, 
in some cases the merits and defects of alternative 
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methods have been vigorously debated and sub
jected to gedanken experiments; the chosen method 
was that which appeared most satisfactory (or least 
unsatisfactory). Finally, many approaches were cho
sen because they are evidently workable and are 
well aligned with the overall approach advocated by 
our firmly opinionated planning group. The strongest 
opinion of our planning group is that consistency is 
a virtue, and that general solutions are better than 
particular ones. 

VIEWPOINTS AND OBJECTIVES 

We view an operating system as an evolving en
tity. Every operating system with which we have 
been associated has been greatly modified during its 
useful life. Therefore, we view the initial version of 
MuItics not as a finished product to be cast in con
crete, but as a prototype to be extended in the fu
ture. In two ways this is an unhappy conclusion. 
Users (except those users who benefit substantially 
from a particular change) tend to resent bitterly 
any fluidity in the tools with which they must work. 
System programmers become satiated with rework
ing programs which they would like to forget. How
ever, the one thing which most users resent more 
than a fluid system is a frozen system inadequate to 
the users' expanding needs. So the system must 
evolve. 

Therefore, one of the primary objectives of Mul
tics is that it shall include any features that we can 
clearly discern to be useful in allowing future 
changes or extensions to be made with minimum 
effort and minimum disruption of existing applica
tions. The initial cost of including such features is 
suJstantial. We believe from past experience that 
the initial cost will be more than repaid in reduced 
future cost of reworking both the operating system 
and the application programs that use the system. 

We view the operating system as having an ill
defined boundary. The software field is replete with 
examples of user installations or individual applica
tion programmers using a cutting torch and jack 
hammer to break into a neatly defined software 
package. The effort involved in many such cases is 
so large as to constitute prima facie evidence that 
the job was not done for frivolous reasons. 

Therefore, Multics is designed to be a single-level 
system. Most modules of the operating system 
itself are indistinguishable from user programs, ex
cept that they are guarded against unintended or ill
advised changes by protective locks administered by 

the user installation. Changes to the operating sys
tem can therefore be made by the same techniques 
as are used to change user programs. A programmer 
who wishes to change a module of the operating 
system must be authorized to do so. He does not, 
however, need a large "system edit" program, since 
the format and conventions of operating system mod
ules are the same as those of user programs. 

We view a large open-shop computer facility as a 
utility like a power company or water company. 
This view is independent of the existence or non
existence of remote consoles. The implications of 
such a view are several. A utility must be dependa
ble, more dependable than existing hardware of 
commercial general-purpose computers. A utility, by 
its nature, must provide service on demand, without 
advance notice in most cases. A utility must pro
vide small amounts of service to small users, large 
amounts to large users, within very wide limits. A 
utility must not meddle in its customers' business, 
except by their request. A utility charges for its ser
vices on some basis closely related to amount of 
service rendered. A utility must provide its product 
to customers more cheaply or more conveniently 
than they could supply it for themselves. Most im
portant of all, a utility must provide service to 
customers who neither know nor wish to know the 
detailed technology employed by the utility in pro
viding the service. 

All of these considerations save played a role in 
the design of Multics. The file system contains 
elaborate automatic backup and restart facilities to 
make the dependability of information storage 
within the system greater than the dependability of 
the media on which the information is recorded. 
The operating system is designed to be dynamically 
adjustable to compensate for temporary loss of one 
or more hardware modules. Multics is designed to 
provide service without batching or prescheduling, 
although prescheduling facilities will be provided 
for runs whose size and urgency dictates such treat
ment. Multics employs allocation and scheduling 
algorithms intended to allow small and large jobs to 
flow through the machine together, without dif
ferentiation' with any special priorities supplied by 
human beings on the basis of urgency of jobs (or 
categories of jobs), rather than built-in priorities 
based on size or type of job. An explicit criterion 
of MuItics is that computation center personnel 
shall not be required to take cognizance of, or per
form any action whatsoever for, a routine job which 
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does not demand unusual facilities. Multics is in
tended to accommodate within it standard (but re
placable) charging and accounting routines. Multics 
will accommodate a variety of input-output termi
nats, ranging from Teletypes to line printers to lab
oratory measuring equipment for the convenience of 
its users. The scheduling and allocation algorithms 
are intended to run the installation with low house
keeping overhead, especially when the load is 
heavy. 

The most important consideration is the one 
which Multics seems least likely to meet to the sat
isfaction of its designers. Most of the ultimate users 
of a large-scale computer have no interest what
soever in computers or computer programming, let 
alone the details of particutar machines, program
ming language and operating systems. They have 
problems to which they wish answers, or data they 
wish transformed or summarized in some particular 
way. No computer shop can be considered to func
tion satisfactorily as a utility unless the users can 
get results without having to formulate the prob
lems in an alien notation. In other words, the 
system should be sympathetic to its users. Multics 
provides no direct assistance toward this goal, and 
little indirect assistance. Neither can any amount of 
evolution of algebraic languages offer much assist
ance, since they are still programming languages 
closely reflecting the structure of a digital com
puter, and most users are not interested in program
ming computers in the first place. Progress in this 
area will require extensive effort in analysis of par
ticular application fields, and development of spe
cialized program packages relevant to the specialized 
needs of the application fields. The only assistance 
Multics provides is a framework within which a 
user can conveniently interact with such a spe
cialized package if it exists, and a measure of isola
tion from detailed hardware eccentricities which 
should very substantially ease the life of program
mers developing such packages. 

We consider privacy of user information to be 
vitally important. In many applications it is essen
tial that all authorized personnel, and no unauthor
ized personnel, should have easy access to programs 
and data. Multics provides, in its hierarchial file 
structure and its protection mechanisms, very sub
stantial aids to privacy. These aids, when intelli
gently used, should provide virtual certainty that 
unintentional privacy violations will not occur, and 
should provide excellent protection against inten-

tional, ill-advised, but unmalicious attempts to ac
cess or modify private information without permis
sion. Multics does not safeguard against sustained 
and intelligently conceived espionage, and it is not 
intended to. 

ADMISSIBLE HARDWARE CONFIGURATIONS 

The minimum hardware configuration with which 
645 Multics can run is one 645 CPU, 64K of 
core memory, one high-speed drum or one disc 
unit, four tape units, and eight typewriter consoles. 
However, Multics will not run efficiently on this 
minimum configuration, and would normally be op
erated thus only when a substantial part of a larger 
configuration was unavailable for" some reason. 

A small but useful hardware complements woutd 
be 2 CPU units, 128K of core, 4 million words of 
high speed drum, 16 million words of disc, 8 tapes, 
2 card readers, 2 line printers, 1 card punch and 30 
consoles. 

The initial implementation of 645 Multics soft
ware is designed to support a maximum configura
tion of up to 8 CPU's, up to 16 million words of 
core, up to 2 high speed drums, up to 300 million 
words of disc and disc-like devices, up to 32 tapes, 
up to 8 card readers, 8 punches, 16 printers, and up 
to 1000 or more typewriter consoles. It wilt not, of 
course operate efficiently (or in some cases at all) 
with an arbitrary and unbalanced mixture of these. 
For instance, 645 Multics would not run well with 
6 CPU's and 128K words of core. 

TECHNICAL POLICY FOR WRITING 
SOFTWARE 

As stated earlier, Multics is intended to be a sin
gle level system, and an evolving system. In spite of 
evolutionary tendencies, 645 Multics must be a use
ful product and it is to be in operational use in 
1966. These factors combine to motivate a smal'l 
but crucial body of technical policy for system pro
gramming. This technical policy differs from stand
ards of good practice in that technical policy is 
mandatory and enforced upon system programmers 
working on 645 Multics, and requests for excep
tions are skeptically reviewed by project supervi
sion. 

Absolute mode (execution without relocation of 
addresses) is used only 
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a) for the first two instructions of each trap
answering routine 

b) for startup of a cold machine 
c) for the initial stages of catastrophe recovery 

( e. g., recovery from a trouble fault), and 
d) for appropriate product service routines 

(hardware test and diagnostic routines). 

Master mode (execution with unrestricted access 
to privileged hardware features) is used only 

a) for absolute mode execution 
b) to exercise privileged hardware features 
c) where temporary disabling of all interrupts 

is required, and 
d) for appropriate product service routines. 

Code which is written in master mode be
cause its purpose is to exercise privileged 
hardware features will be written as stand
ard subroutines. Each such subroutine may 
perform only one function (e.g., issue an 
I/O select). Each such subroutine will check 
the validity of the call. 

All operating system data layouts for the initial 
implementation of 645 Multics wilt be compatible 
with data layouts used by PL/I, except where hard
ware constraints dictate otherwise. All modules of 
the initial implementation of the operating system 
will be written in PL/I, except where hardware 
constraints make it impossible to express the func
tion of the module in the PL/I language. 

All procedures and data will be usable paged to 
64 words, paged to 1024 words, or unpaged, except 
for vectors and. data blocks which are inherently un
paged because of direct hardware access to them. 

Since the PL/I translator which will be used un
til mid-1966 generates inefficient object code, it is 
clear that 645 Multics in its first few months of 
existence will be inefficient. This penalty is being 
paid deliberately. After mid-1966, two courses of 
action will be available: upgrade the compiler to 
compile more efficient code, or recode selected mod
ules by hand in machine language. We expect that 
both strategies will be employed, but we expect to 
place preponderant emphasis on upgrading the PL/I 
compiler; indeed, one subsequent version of PL/I is 
already being implemented, and a second is being 
designed. 

PROCESSES 

In Multics the activities of the system are di
vided into processes. The noJion of process is intui
tive, and therefore slightly ifuprecise. To convey the 
notion we shall talk around it a bit, and then give a 
reasonably exact definition. 

When a signal from the external world (e.g., a 
timer runout signal) arrives, and a CPU interrupt 
occurs, what is being interrupted? Presumably a 
"run." Observe that if a program is defined in the 
usual way as a procedure plus data, there is no 
meaning to the phrase "interrupt a program," if it 
is taken literally. What is interrupted is the execu
tion of a program. In a time-sharing system this 
distinction becomes so important, and ignoring the 
distinction is so pernicious, that we shall use the 
word "process" to denote the execution of a pro
gram, and reserve the word "program" to denote 
the pattern of bits (or characters) which the hard
ware decodes. 

In most cases a process corresponds to a job, or 
run; it is a sequence of actions. Consider for exam
ple the sequence of action: build a source program, 
compile it, execute it and the programs it requires, 
produce output files including postmortem informa
tion and accounting data. This sequence of actions 
would typically be a single process in Multics. 

If the notion of process is to be useful, it must be 
possible, given some action, to determine to which 
process it pertains; that is, it must be possible to 
distinguish unambiguously between processes. In 
645 Multics we base our distinction on descriptor 
segments. At any given moment a 645 CPU is using 
one and only one segment as the descriptor seg
ment. At different times the CPU may use various 
different descriptor segments. We define a process 
to be all those actions performed by a CPU with 
some given segment as descriptor segment, from the 
first time that segment becomes the descriptor seg
ment until the last time the segment ceases to be 
the descriptor segment. Thus a process has a very 
definite beginning; if it ends, it has an equally defi
nite end. 

For each process there is in addition to the de
scriptor segment a stack segment, for the user's pro
grams and most supervisory routines, and a con
cealed stack segment, used by some supervisory 
routines to hold information such as charging data, 
which must be safeguarded against garden variety 
user program errors. There are also any other seg-
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ments (including supervisory segments) which are 
required by the process. For each process there will 
typically be many segments, containing the user and 
supervisor programs and data, but most of the seg
ments will be attached to the process only as they 
are dynamical'ly required. 

Since we have already observed that almost no 
procedures will run in absolute mode, and since the 
operational definition of process places all master 
mode and slave mode execution firmly in some proc
ess, it follows that almost all CPU activity occurs 
as part of some process. Most processes will be ini
tiated by customers and charged to customers. Some 
processes will be initiated by the installation apd 
charged to overhead. An example is a process which 
purges a disc unit. 

STATUS OF A PROCESS 

Any process that exists in 645 Multics is either 
running, ready, or blocked. A process is running if 
its descriptor segment is currently being used as the 
descriptor segment for some CPU. A process is 
ready if it is not running but is not held up await
ing any event in the external world or in another 
process. A process is blocked if it is awaiting an 
event in the external world or in another process 
(e.g., arrival of input data, or completion of output, 
or 3 PM, or retrieval of a page frQm drum, or re
lease of a data file by another process). 

SEGMENTATION, PAGING AND 
ADDRESSABLE STORAGE 

A general principle in Multics is that programs 
are written to reference locations in addressable 
storage, rather than locations in core. An address 
consists of a segment number and word number. 
The address of an item is clearly important to the 
program, and possibly to the programmer. There
fore, in Multics the division of programs and data 
into segments, and the sizes, names and types of the 
segments, are controlled (explicitly or implicitly) 
by customers and customer processes. 

Paging, on the other hand, is considered in Mul
tics to be the responsibility of the operating system. 
The view of the designers of Multics is that pro
vided the customer gets his answers when he wants at 
the price he expects to pay and agrees to pay, it is 
none of his business where in core his programs 
and data resided-nor, indeed, whether they were 

in core at all. The 645 hardware was designed with 
this philosophy, and the software is built to imple
ment this approach. 

However, in some real-time applications it is 
demonstrable that the application cannot be cor
rectly implemented unless certain programs and data 
are in core when external signals arrive. In some 
other applications reasonable efficiency may be at
tainable only if the user program can specify expli
citly what should be in core at which stages of exe
cution. Therefore, calls to the paging routines are 
provided for specifying: 

a) that certain procedures and data must be 
"bolted to core" in order for the applica
tion to run, 

b) that certain material is going to be accessed 
soon, and should be brought into core if 
possible, 

c) that certain material will not be accessed 
again, and may be removed from core. 

It is expected that few application programs will 
need to make use of such calls. 

The paging routines will normally operate with 
only three sources of input information. 

The pager will know when a page must be 
brought into core by the fact that a page-not-in-core 
fault occurs. It will know which pages are candi
dates to be removed from core by a usage measure 
it derives from the "used" bit of each page table 
entry, and by a specification in the core map of 
whether the page is accessed other than through a 
page table (e.g., a page which is itself a page table, 
and therefore is referenced directly by CPU hard
ware). The· pager will also know from specifica
tions in the core map which pages may not be re
moved from core at all (e.g., because they are cur
rently attached to peripheral devices). 

A program such as the linker will deal with ad
dressable storage, and will not consider the place of 
physical residence of any procedure or data block in 
establishing a linkage. If the linker happens to ac
cess information which is not in core, the pager will 
be invoked by a page-not-in-core fault, the process 
in which the linker was working will be blocked un
til the page arrives, and will then be ready to re
sume. 

SEGMENTS AND FILES 

In 645 Multics, every segment is a file, and every 
file is a segment. A reference to one of these ob-
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jects, however, may be made in two distinct ways: 
by segment referencing and by file referencing. Seg
ment referencing is, by definition, referencing by 
means of a 2-component numerical address, each 
component consisting of 18 bits, of which the first 
component specifies a word number in the descrip
tor segment and the second specifies a word number 
in the referenced segment. File referencing is any
thing else. Every file is a segment to some proce
dure in some process at some time. Any file ref
erence which results in retrieval or modification of 
any part of the contents of a file (except retrieval, 
replacement or deletion of the entire file) is a call 
to a procedure which references the file by segment 
referencing. Thus, the question of whether a data 
object is a segment or a file is a question about the 
viewpoint from which some particular procedure 
sees the file. 

Segments (files) come in two varieties: bounded 
segments and unbounded segments. A bounded seg
ment is a segment which is guaranteed to consist of 
218 words or less. An unbounded segment may have 
any number of words (e.g., 27), but is notguaran
teed to have no more than 218• You have to look at 
it to find out. Segment referencing using the ap
pending hardware can only be done directly for 
bounded segments. To each unbounded segment 
there may be associated a bounded segment called a 
"window"; the origin of the window segment may 
be set, by a supervisor call, to any 1024 word bound
ary in the unbounded segment. More than one 
window segment may be attached to a single un
bounded segment, if desired, and the windows may 
be adjusted independently. In principle, the size of 
an unbounded segment could be arbitrarily large. 
However, the software of 645 Multics will limit the 
size of unbounded segments to 228 words, and in 
some installations storage limitations will hold the 
maximum segment size even below 228 words. 

PERIPHERAL DEVICES AND FILES 

In 645 Multics, one of the kinds of file given 
special recognition will be the serial file. In 645 
Multics, unit record equipment and typewriter-like 
consoles will be treated as serial files of restricted 
capabilities. User programs will be able to know 
that such hardware units are not serial fites, but it 
will not normally be advantageous to make use of 
that fact, and to use such knowledge may severely 
restrict the applicability of a program. If a program 

handling a peripheral device as a serial file attempts 
1\ to perform an illegal primitive (e.g., rewind a card 
. reader), then either 

a) the effect on all ensuing processing will be 
as if the primitive had been performed suc
cessfully (e.g., the input file copied from the 
card reader will be rewound) or 

b) a diagnostic wil occur (e.g., skip to the end 
of file on typewriter input). 

The effect of treating peripheral devices as serial 
files is to make it possible for many programs to 
run either with a typewriter console as a peripheral 
device or with the console replaced by files on sec
ondary storage. 

SCHEDULING 

In Multics the system is regarded as having a 
pool of anonymous CPU's; scheduling and dispatch
ing procedures are executed by each CPU when it 
must determine what to do next. The only result 
with any operational meaning that can ensue from 
scheduling and dispatching in Multics is that CPU 
number n resumes process p at time t . Further
more that process must have been in ready status. 

We shall state here some fundamental assump
tions concerning scheduling which appear evident 
to us, but some of which are not universally accept
ed. The goal of scheduling in an open-shop general 
purpose computer system is to give good service to 
customes at reasonable cost. When the offered load 
is greater than system capacity, it is impossible to 
give good service to all those who desire it. There
fore, on an overloaded system, scheduling should be 
done so as to minimize overhead and to complete 
the most urgent work first. Two basic techniques 
for minimizing overhead are to employ service 
denial rather than service degradation, and to mini
mize the number of times control is switched from 
one process to another. That is, it is more efficient 
to serve a few users at a time and do it well than it 
is to serve all users poorly at once. A job is urgent, 
in the last analysis, because it is costing someone 
time and/or money not to have the results. The ur
gency of a job is only slightly correlated, if at all, 
with the extent of its demands on such system re
sources as CPU time, core storage, secondary stor
age, and peripheral facilities. Hence, urgency of 
work must be determined by human beings, not by 
the computer. 
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If offered load is less than system capacity, it is 
possible in principle to give good service to all who 
desire it. It may not be possible, however, to 
achieve satisfactory service for all and still keep the 
percentage of overhead low. A moderate increase in 
overhead on a lightly loaded system is acceptable if 
the increase permits improved service. 

Switching between processes is mandatory when 
a given process becomes blocked. Switching is done 
at other times to meet explicit or implied service 
guarantees. For example, placing a typewriter in a 
customer's office implies a guarantee that response 
times to simple requests will usually be short. 
Therefore, frequent switching between processes 
makes excellent sense when offered load is light, 
although not when offered load is heavy. 

Offered load will rarely be well-matched to sys
tem capacity. Any general-purpose open shop com
puting installation where offered load is at the same 
approximate level at .3 a.m. Sunday and 3 p.m. 
Wednesday is either employing load flattening 
measures outside the computing shop (e.g., by hu
man prescheduling) or is so heavily overloaded that 
offered load is almost always above system capaci
ty, and service denial is the rule of the shop. 

We believe that a general-purpose open-shop 
computing facility which is never (or almost never) 
overloaded is spending too much money for com
puting hardware. It is cheaper to accept occasional 
overloads. Further, we believe that any scheduling 
technique for a time-shared multiprogrammed com
puter system which behaves satisfactorily during 
overload will require at most a very slight modifi
cation to behave well under light load. 

Hence, we contemplate an environment in which 
offered load is almost always either substantially 
above or substantially below system capacity. We 
believe that scheduling algorithms should be de
signed with good performance during overload as 
the primary objective, and good performance when 
load is light as a criterion to be met within the frame
work imposed by the overload design. The scheduler 
should get information concerning urgency of jobs 
from human beings, and should not have any built-in 
assumptions that console jobs are either more or 
less urgent than absentee jobs, or that short runs 
are either more or less urgent than long runs. 

Unfortunately, in a multiprogrammed time-shar
ing system with dynamic storage allocation neither 
the machine nor human beings can determine di
rectly how large the offered load is. How, for exam-

pIe, could one tell how many people at typewriter 
consoles woulO type messages if you unlocked their 
keyboards? Similarly, it is not possible in most 
cases to predict with any accuracy what demands a 
given process will make upon system resources dur
ing its next few seconds of running. Therefore, the 
scheduling algorithm must base its action on 
measurable quantities related to the unmeasurable 
offered load. 

Several such measurable quantities are conven
iently available. The most important of these ap
pears to be a running measure of the rate of prog
ress toward completion of processes, compared with 
a "satisfactory" rate of progress determined by in
formation supplied by human beings about types of 
procsses or individual processes. For example, if 
there are exactly six processes to be considered each 
requiring 20 seconds of CPU time and no I/O, all 
with desired completion time 3 minutes away, and 
if in one second each process has received 100 milli
seconds of CPU time, then each process at its cur
rent rate will require 3 minutes 20 seconds to com
plete. Presumably the system is overloaded, and one 
or more of the processes should be postponed. This 
is a fairly typical example; overloads in a system 
with dynamic storage allocation tend to become 
manifest by excessive overhead rather than by ex
cessive visible demand. The scheduling algorithms 
for Multics will rely heavily on this fact. 

The choice of which processes to postpone de
pends on several factors. If some processes have 
higher priority than others, the lower priority proc
esses will be postponed. If, in the lowest priority 
class which will continue to run, some processes 
have been prescheduled for given completion times 
or computing rates, the prescheduled processes will 
be given preference. Finally, to make. a choice 
among processes otherwise equal, the scheduler will 
prefer a process currently using expensive facilities 
(e.g., core) over one occupying inexpensive facili
ties (e.g., drum); the former is in some sense using 
more system resources than the latter, so it is desir
able to move it toward completion. 

DYNAMIC LINKING 

In Multics linking of one procedure segment to 
another, or of a data segment to procedures, is by 
and large done dynamically. That is, if a translator 
compiles symbolic intersegment references, these 
will not normally be replaced by numerical interseg-
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ment references until the first time the reference 
actually occurs during execution of the compiled 
program. 

The standard form of programs in Multics will be 
common shared procedure. Code run as common 
shared procedure may not be modified for execu
tion of anyone process. Hence, for each compiled 
segment of code there will be an accompanying link
age section, which will be maintained on a per
process basis, and an modifications required to link 
two segments together will be made in the linkage 
sections rather than in procedure segments. A link
age section contains, among other things: 

( a) the symbolic (character string) name of 
each externally known symbol within the 
segment to which the linkage section be
longs. 

(b) for each symbolic reference from this seg
ment to some other segment, the symbolic 
name of the foreign segment and the sym
bolic name of the referent within tp.e for
eign segment, plus an indirect word which 
is compiled with a tag that will cause a trap 
to occur when an indirection through it is 
attempted. 

When a procedure is attached ot a process, the 
linkage segment of the procedure is copied into a 
data segment of the process. If the procedure during 
execution attempts to access a foreign segment by 
indirection through the linkage section, a trap 
("linkage fault") will occur. At this time the linker 
will substitute the correct numerical value into the 
indirect word. The reference will then be complet
ed; subsequent references, of course, will be com
pleted wi~hout occurrence of a trap. 

The original symbolic information is retained in 
the linkage section even after linking. Hence, it is 
possible to break such a link after it has been estab
lished, and detach a segment from a process. This 
will be done only upon explicit call to the unlinker, 
and is expected to be infrequent. 

TRAP HANDLING 

The hardware traps on the 645 can be divided 
into two categories. In one category are process 
traps (e.g., overflow) which normally occur as a 
consequence of action in the running process. Han
dling of these tralJs will be done as part of the run-

ning process, by supervisory routines attached to 
the process. In the other category are system traps, 
some of which are relevant to some process but 
probably not one which is running (e.g., I/O termi
nation), and others of which indicate hardware or 
software error (e.g., parity error in core) . 

Some of the process traps, such as the illegal pro
cedure fault, will cause the process to be removed 
from running state after a bit of initial flailing 
around. The division between traps and system 
traps is not based on whether the running process 
will continue to run, but on whether the running 
process is known to be responsible for the trap. 

What happens when a trap occurs? It varies 
somewhat, but generally speaking the status of the 
running process is stored in its concealed stack seg
ment. Then, for system traps only, control switches 
to a special trap process. Then the concealed stack 
of the process (trap process for system traps, proc
ess which is still running for process traps) is 
pushed one level, and the appropriate trap-handling 
procedure is called. The supervisory routines have a 
standard trap-handling procedure for each trap, 
which discovers what caused the trap and takes ap
propriate action. However, for every trap there is at 
least one point in the trap-handling procedure 
where control will pass to some other routine in the 
process if the process is administratively entitled to 
provide alternative treatment for the trap. The ex
tent to which customer processes can provide non
standard trap handling is, of course, controlled by 
the installation, but it will by and large vary from 
complete freedom (for handling overflow) to very 
strict control (for handling page-not-in-core faults 
from the appending hardware). 

Many traps will have several intercept points, 
corresponding to different causes of the trap. It 
should thus be possible for authorized processes to 
selectively modify the handling of every process 
trap. Only a restricted group of people will normal
ly be able to modify handling of system traps, since 
these affect operation of the entire system. The 
technique for making the modifications, however, is 
the same as for process traps. 

The work of the system trap process is to discov
er which processes are responsible for system traps. 
It must, for example, decode words in the status 
storage channels of the general I/O controller to 
find out what device caused an I/O interrupt, and 
then check status tables to discover which process 
issued the select that resulted in the interrupt. The 
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trap process can then bring the process responsible 
for the trap into ready status for further treatment 
of the particular interrupt; the trap process is then 
finished with that particular interrupt. 

The process responsible for the interrupt may be 
a customer process; if not, it is a housekeeping proc
ess that behaves like a customer process. This proc
ess, when it enters running state,. will resume in an 
interrupt routine exactly analogous to a process trap 
routine, complete with intercept points. 

To a very high degree of approximation, all I/O 
for a process is handled within the process. This 
does not imply that I/O for each process is handled 
independently of I/O for other processes. The pro
grams and tables involved in input and output are 
for .the most part common to all processes requiring 
a given type of I/O activity, such as input from 
magnetic tape. These programs and tables, however, 
are attached to each of the processes which requires 
them, so that they can be called by normal subrou
tine calls. 

This makes it possible to insert special I/O rou
tines (e.g., for controlling a data line to a special
purpose device) in a particular customer process by 
taking only two actions: get administrative authori
zation to call relevant master mode routines and to 
intercept interrupts in: the process, and then link to 
the I/O routines by calling with a standard call. 
However, this technique places stringent restrictions 
on timing-dependent I/O, and virtually eliminates 
the possibility of certain data-dependent I/O tech
niques. These restrictions appear to be reasonable 
in a system like Multics; we see no way to permit 
complete control of I/O by one user program with
out danger to other user programs. 

CREATION, BLOCKING AND 
TERMINATION OF PROCESSES 

Every process begins by being spawned from 
some other process. In particular, certain system 
processes exist for no end except to recognize cus
tomers' identification and spawn new processes for 
the customers. However, any process may spawn 
others by an appropriate call to the operating sys
tem. The call specifies what segments the new proc
ess is to share with its parent, what segments it 
should receive copies of, what segments the new 
process should not know, and at what point the new 
process should resume. 

A process may go into blocked state for many 

reasons, such as waiting for 3 p.m., or waiting for a 
page to arrive in core, or waiting for another proc
ess to release a file. In all of these cases, the proc
ess will indicate a particular flag w1;lich must be 
reset before the process can resume, and the pre
sumption is that some other process (alarm clock 
routine in the scheduler, or system trap process, or 
process holding the file) will be cooperative enough 
to reset the flag. There is, however, no guarantee 
whatsoever that the flag will ever be reset. 

It would be poor strategy to allow the blocked 
process to remain in limbo forever. Therefore, each 
process wilt have attached to it a maximum time 
for which it may remain continuously blocked. 
Multics will provide a default value of this time, 
but a customer may specify a value other than the 
default value for any particular process. A proce
dure in the scheduling process will occasionally 
s~an the task list for processes which have been 
blocked for more than the allowable time. If one is 
found, a diagnostic message will be generated and 
shipped off to the error message file for the blocked 
process, if that can be found, and also to a standard 
system file. The blocked process will then be com
pletely removed from the task . list and, although its 
procedures and data are still intact, it will not re
sume if~ the condition on which it was waiting be
comes satisfied. Human intervention is now re
quired to retrieve it, either to attempt to resume it 
or to obtain diagnostic information. If such human 
intervention does not occur, the data segments of 
the process win eventually be purged from the sys
tem. 

This is also the chain of events which occurs 
when a process violates some restriction. If, for ex
ample, a process attempts to execute a privileged 
instruction in slave mode, the standard trap proce
dure will generate a diagnostic message and then 
call a standard program to force out any relevant 
output. The process will then go into blocked state 
to allow a human attempt for further diagnostics or 
a fixup. If the attempt is not made, the process will 
then be removed from the task list, and eventually 
purged. 

Termination of a process may occur in two ways. 
It may call a procedure in the operating system and 
say "I am through," or some other process may 
point at it and say "Get rid of him." The second 
method is used by the scheduler in disposing of 
processes which have been blocked for too long a 
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time. This second method may also be used by cus
tomer processes, subject to some restrictions. 

Both methods may be employed with two degrees 
of severity. The process may merely be removed 
from the task list, or it may be marked as complete
ly dead and subject to immediate purging from the 
system. In general, modules of the operating system 
will only remove a process from the task list if 
troubles occur, so that the customer may have a 
reasonabte chance to come and rummage around in 
the procedures and data of the process to find out 
what happened. 

PROTECTION AGAINST MACHINE ERRORS 

Like all other systems, 645 Multics will suffer 
from hardware and software failures. The goal of 
dependable operation can be achieved only if the 
effect of these failures can be limited. A companion 
paper discusses methods for safeguarding of data in 
the file system. Equally important and equally diffi
cult is the problem of keeping the system on the air, 
or getting it back in a hurry, when a hardware fail
ure occurs. This breaks down into two parts: how 
to run the system on a crippled machine, and how 
to share the machine with product service routines. 
We have no solutions to either problem, but some 
fragments of solutions are developing. 

First, the policy of running the CPU's symmetri
cally is expressly intended to allow any CPU to be 
pulled at any time without stopping the system (al
though pulling a CPU at an arbitrary moment will 
undoubtedly wreck a particular process and some 
data files) . 

Second, the policy of minimizing absolute mode 
operation is designed to anow the system to resume 
execution with core banks missing with somewhat 
less agony than would otherwise be the case, and to 
allow the system to abandon a core bank with very 
little effort. I/O calls and fabrication of I/O data 
control words will be concentrated in a few proce
dures, with the explicit intent of allowing easy 
abandonment of a general I/O controller. For in
stallations which can afford the luxury of using tess 
than full core interlace, 645 Multics will provide 

the ability to pick up the pieces more or less auto
matically after loss of anyone core bank, but this 
feature will probably not be included in the first 
version of 645 Multics. 

We do not know in general how to make the soft
ware cope with a berserk CPU, drum controner or 
general I/O controller. In 645 Multics such a trou
ble will undoubtedly require a restart, the magni
tude of which will vary greatly depending on exact
ly what the sick hardware unit did before it was 
caught. 

The problem of coexisting with product service 
routines will be partly solved by subordinating 
some product service routines· to Multics, and partly 
by the fact that Multics can easily abandon half the 
hardware of a large enough system on request, so 
that product service routines can test the other half. 
It appears likely, however, that integration of prod
uct service routines into Multics will be the most 
difficult aspect of the project, and the last to be sa
tisfactorily completed. 

We have no very useful techniques for protecting 
the system from software bugs. We are reduced to 
the old-fashioned method of trying to keep the bugs 
from getting into the software in the first place. 
This is a primary reason for programming the sys
tem in PL/I, and for insisting that modules of the 
operating system should conform to conventions for 
user programs. The 645 lends itself exceptionally 
well to being driven with repeatable sequences of 
events, and this will help to find timing-dependent 
software bugs. But some software bugs will survive; 
they always do. 
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1. INTRODUCTION 

The need for a versatile on-line secondary stor
age complex in a multiprogramming environment is 
immense. During on-line interaction, user
owned off-line detachable storage media such as 
cards and tape become highly undesirable. On the 
other hand, if all users are to be able to retain as 
much information as they wish in machine-acces
sible secondary storage, various needs become cru
cial: Little-used information must percolate to 
devices with longer access times, to allow ample 
space on faster devices for more frequently used 
files. Furthermore, information must be easy to ac
cess when required, it must be safe from accidents 
and maliciousness, and it should be accessible to 
other users on an easily controllable basis when de
sired. Finally, any consideration which is not ,basic 
to a user's ability to manipulate this information 

*Work reported herein was supported (in part) by Proj
ect MAC, an M.I.T. research program sponsored by the 
Advanced Research Projects Agency, Department of De
fense, under Office of Naval Research Contract Number 
Nonr-4102(Ol). 

should be invisible to him unless he specifies other
wise. 

The basic formulation of a file system designed 
to meet these needs is presented here. This formula
tion provides the user with a simple means of ad
dressing an essentially infinite amount of secondary 
storage in a machine-independent and device
independent fashion. The basic structure of the file 
system is independent of machine considerations. 
Within a hierarchy of files, the user is aware only 
of symbolic addresses. All physical addressing of a 
multilevel complex of secondary storage, devices is 
done by the file system, and is not seen by the user. 

Section 2 of the paper presents the hierarchical 
structure of files, which permits flexible use of the 
('''stem. This structure contains sufficient capabili
ties to assure versatility. A set of representative 
control features is presented. Typical commands to 
the file system are also indicated, but are not elabo
rated upon; although the existence of these com
mands is crucial, the actual details of their specific 

. implementations may vary without affecting the de
sign of the basic file structure and of the access 
control. 
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Section 3 discusses the file backup system, which 
makes secondary storage appear to the user as a 
single essentially infinite storage medium. The back
up system also provides for salvage and catas
trophe reload procedures in the event of machine or 
system failure. Finally, Section 4 presents a sum
mary of the file system program modules and their 
interrelationship with one another. The modularity 
of design enables modules affecting secondary stor
age device usage to be altered without changing 
other modules. Similarly, the files are formatless at 
the level of the file system, so that any changes in 
format do not affect the basic structure of the file 
system. Machine independence is attempted wher
ever it is meaningful. 

Sections 2 and 3 are essentially self-contained, 
and may be read independently of the companion 
papers (see references 1-5). Section 4 requires a 
knowledge of the first three papers. 

2. THE FILE STRUCTURE AND ACCESS 
CONTROL 

In this section of the paper, the logical organiza
tion of the file structure is presented. The file struc
ture consists of a basic tree hierarchy of files, 
across which links may be added to facilitate simple 
access to files elsewhere in the hierarchy. Each file 
has an independent means for controlling the way 
in which it may be used. 

If files are to be shared among various users in 
a way which can be flexibly controlled, various forms 
of safeguards are desirable. These include: 

S 1. Safety from someone masquerading as 
someone else; 

S2. Safety from accidents or maliciousness by 
someone specifically permitted controlled access; 

S3. Safety from accidents or maliciousness by 
someone specifically denied access; 

S4. Safety from accidents self-inflicted; 

S5. Total privacy, if needed, with access only 
by one user or a set of users; 

S6. Safety from hardware or system software 
failures; 

S7. Security of system safeguards themselves 
from tampering by non authorized users; 

S8. Safeguard against overzealous application 
of other safeguards. 

These safeguards recur in the subsequent discussion. 
The various features of the file system presented 
below are summarized in Section 2.4, along with 
the way in which these features help to provide the 
above safeguards. 

2.1 Basic Concepts 

In the context of this paper, the word "user" re
fers to a person, or to a process, or possibly to a 
class of persons and/or processes. The concept of 
the user is rigorously defined in terms of a fixed 
number of components, such as an accounting num
ber, a project number, and a name. (Classes of us
ers may be defined by leaving certain components 
unspecified.) For present purposes, the only users 
considered are those who employ the file system by 
means of its normal calls. 

A file is simply an ordered sequence of elements, 
where an element could be a machine word, a char
acter, or a bit, depending upon the implementation. 
A user may create, modify or delete files only 
through the use of the file system. At the level of 
the file system, a file is formatless. All formatting 
is done by higher-level modules or by user-sup
plied programs, if desired. As far as a particular 
user is concerned, a file has one name, and that 
name is symbolic. (Symbolic names may be arbi
trarily long, and may have syntax of their own. For 
example, they may consist of several parts, some of 
which are relevant to the nature of the file, e.g., 
ALPHA FAP DEBUG.) The user may reference 
an element in the file by specifying the symbolic 
file name and the linear index of the element within 
th file. By using higher-level modules, a user may 
also be able to reference suitably defined sequences 
of elements directly by context. 

A directory is a special file which is maintained 
by the file system, and which contains a list of en
tries. To a user, an entry appears to be a file and is 
accessed in terms of its symbolic entry name, which 
is the user's file name. An entry name need be 
unique only within the directory in which it occurs. 
In reality, each entry is a pointer of one of two 
kinds. The entry may point directly to a file (which 
may itself be a directory) which is stored in sec
ondary storage, or else it may point to another en
try in the same or another directory. An entry 
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which points directly to a file is called a branch, 
while an entry which points to another directory 
entry is called a link. Except for a pathological case 
mentioned below, a link always eventually points to 
a branch (although possibly via a chain of links to 
the branch), and thence to a file. Thus the link and 
the branch both effectively point to the file. (In 
general, a user will usually not need to· know wheth
er a given entry is a branch or a link, but he easily 
may find out.) 

Each branch contains a description of the way in 
which it may be used and of the way in which it is 
being used. This description includes information 
such as the actual physical address of the file, the 
time this file was created or last modified, the time 
the file was last referred to, and access control in
formation for the branch (see below). The descrip
tion also includes the current state of the file (open 
for reading by N users, open for reading and writ
ing by .one user, open for data sharing by N users, 
or inactive), discussed in Section 4. Some of this 
infdrmation is unavailable to the user. 

The only information associated with a link is 
the pointer to the entry to which it links. This 
pointer is specified in terms of a symbolic name 
which uniquely identifies the linked entry within 
the hierarchy. A link derives its access control in
formation from the branch to which it ultimately 
points. 

2.2 The Hierarchy of the File Structure 

The hierarchical file structure is discussed here. 
The discussion of access control features for select
ed privacy and controlled sharing are deferred until 
Section 2.3. For ease of understanding, the file 
structure may be thought of as a tree of files, some 
of which are directories. That is, with one excep
tion, each file (e.g., each directory) finds itself di
rectly pointed to by exactly one branch in exactly 
one directory. The exception is the root directory, 
or root, at the root of the tree. Although it is not 
explicitly pointed to from any directory, the root is 
implicitly pointed to by a fictitious branch which is 
known to the file system. 

A file directly pointed to in some directory is 
immediately inferior t6 that directory (and the di
rectory is immediately superior to the file). A file 
which is immediately inferior to a directory which 
is itself immediately inferior to a second directory 
is inferior to the second directory ( and similarly 

the second directory is superior to the file). The 
root has level zero, and files immediately inferior to 
it have level one. By extension, inferiority (or su
periority) is defined for any number of levels of 
separation via a chain of immediately inferior (su
perior) files. (The reader who is disturbed by the 
level numbers increasing with inferiority may pre
tend that level numbers have negative signs.) Links 
are then considered to be superimposed upon, but 
independent of, the tree structure. Note that the no
tions of inferiority and superiority are not con
cerned with links, but only with branches. 

In a tree hierarchy of this kind, it seems desira
ble that a user be able to work in one or a few di
rectories, rather than having to move about con
tinually. It is thus natural for the hierarchy to be so 
arranged that users with similar interests can share 
common files and yet have private files when de
sired. At anyone time, a user is considered to be 
operating in some one directory, called his working 
directory. He may access a file effectively pointed 
to by an entry in his working directory simply by 
specifying the entry name. More than one user may 
have the same working directory at one time. 

An example of a simple tree hierarchy without 
links is shown in Fig. 1. Nonterminal nodes, which 
are shown as circles, indicate files which are direc
tories, while the lines downward from each such 
node indicate the entries (i.e., branches) in the di
rectory corresponding to that node. The terminal 
nodes, which are shown as squares, indicate files 
other than directories. Letters indicate entry names, 
while numbers are used for descriptive purposes 
only, to identify directories in the figure. For ex
ample, the letter "J" is the entry name of various 
entries in different directories in the figure, while 
the number "0" refers to the root. 

An entry name is meaningful only with respect to 
the directory in which it occurs, and mayor may 
not be unique outside of that directory. For various 
reasons, it is desirable to have a symbolic name 
which does uniquely define an entry in the hier
archy as a whole. Such a name is obtained relative to 
the root, and is called the tree name. It consists of 
the chain of entry names required to reach the entry 
via a chain of branches from the root. For example, 
the tree name of the directory corresponding to the 
node marked 1 in Fig. 1 is A: B : C, where a colon is 
used to separate entry names. (The two files with 
entry names D and E shown in this directory have 
tree names A:B:C:D and A:B:C:E, respectively.) 
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Figure 1. An example of a hierarchy without links. 

In most cases, the user will not need to know the 
tree name of an entry. 

Unless specifically stated otherwise, the tree 
name of a file is defined relative to the root. How
ever, a file may also be named uniquely relative to 
an arbitrary directory, as follows. If a file X is in
ferior to a directory Y, the tree name of X relative 
to Y is the chain of entry names required to reach 
X from Y. If X is superior to Y, the tree name of 
X relative to Y consists of a chain of asterisks, one 
for each level of immediate superiority. (Note that 
since only the tree structure is being considered, 
each file other than the root has exactly one im
mediately superior file.) If the file is neither infe
rior nor superior to the directory, first find the di
rectory Z with the maximum level which is superior 
to both X and Y. Then the tree name of X relative 
to Y consists of the tree name of Z relative to X (a 
chain of asterisks) followed by the tree name of Y 
relative to Z (a chain of entry names). For the ex
ample of Fig. 1, consider the two directories 
marked 1 and 2. The tree name of 1 relative to 2 is 
: * : B: C, while the tree name of 2 relative to 1 is 
: * : * : F. An initial colon is used to indicate a name 
which is relative to the working directory. 

A link with an arbitrary name (LINKNAME) 
may be established to an entry in another directory 
by means of a command 

LINK LINKNAME, PATHNAME. 

(A command is merely a subroutine call. ) The 
name of the entry to be linked to (PATHNAME) 
may be specified as a tree name relative to the 
working directory or to the root, or more generally 
as a path name (defined below). Note that a file 

may thus have different names to different users, 
depending on how it is accessed. A link serves as a 
shortcut to a branch somewhere else in the hierarchy, 
and gives the user the illusion that the link is 
actually a branch pointing directly to the desired 
file. Although the links add no basic capabilities to 
those already present within the tree structure of 
branches, they greatly facilitate the ease with which 
the file system may be used. Links also help to 
eliminate the need for duplicate copies of sharable 
files. The superimposing of links upon the tree 
structure of Fig. 1 is illustrated in Fig. 2. The 
dashed lines downward from a node show entries 
which are links to other entries. When the links are 
added to the tree structure, the result is a directed 
graph. (The direction is of course downward from 
each node.) 

In the example of Fig. 2, the entry named G in 
directory 2 is a link to the branch named C in di
rectory 3. The entry named C in directory 4 (recall 
that entry names need not be unique except within 
a directory) is a link to the entry G in directory 2, 
and thus acts as a link to C in directory 3. Both of 
these links effectively point to the directory 1. 

It is desirable to have a name analogous to the 
tree name which includes links. Such a name is the 
path name, and is assumed to be relative to the root 
unless specifically stated otherwise. The path name 
of a file (relative to the root) is the chain of entry 
names used to name the file, relative to the root. 
(For example, the directory 1 in Fig. 2 may have 
path name A:B:C, A:F:G or H:C, depending on 
its usage.) The working. directory is always estab
lished in terms of a path name. A user may change 
his working directory by means of a command such 
as 
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Figure 2. The example of Fig. 1 with links added. 

CHANGEDIRECTORY PATHNAME, 

where the path name may be relative to the (old) 
working directory or to the root. The definition of 
a path name relative to a directory other than the 
root is similar to the definition of a tree name, with 
the following exceptions: the concept of a file im
mediately inferior to a directory is replaced by the 
concept of a file effectively pointed to by the entry. 
The concept of a directory immediately superior to 
a file is replaced by a concept which is well defined 
only as the inverse of the above effective pointer, 
that is, dependent on what entry in which directo
ry was previously used to reach the file. 

In general, any file may be specified by a path 
name (which may in fact be a tree name, or an en
try name) relative to the current working directory. 
A file may also be specified by a path name relative 
to the root. In the former case, the path name be
gins with a colon, in the latter case it does not. 

To illustrate these somewhat elusive concepts, 
consider the example of Fig. 2. Suppose that the 
working directory has the path name H (i.e., direc
tory 4). The command 

CHANGEDIRECTORY:C 

results in the working directory with path name 
H: C (i.e., directory 1). Subsequent reference to a 
file with path name : *: I (relative to the working 
directory with path name H: C) refers to the file 5 
in the figure. The command 

CHANGEDIRECTORY:* 

results in restoring the original working directory 
with path name H. (With this interpretation of * 

the user believes he is working in a tree. Note that 
the design could be modified so that a path other 
than the one used on the way down could be used 
on the way back up toward the root, but not with
out adding considerable complexity to the design.) 

The pathological case referred to above with re
spect to a link effectively pointing to a file arises as 
follows. Consider again Fig. 2. Suppose that the 
branch C in directory 3 is deleted from this directo
ry; suppose also that in the same directory a link 
with name C is then established to the entry C in 
directory 4, e.g., by means of the command 

LINK C,H:C. 

Access to entry C in directory 3 (or to entry G in 
2, or C in 4, for that matter) then results in a loop 
in which no branch is ever found. This and similar 
loops in which no branch is found may be broken 
in various ways, for example, by observing whether 
an entry is used twice on the same access. Note that 
much more devious loops may arise, as for example 
that resulting from the establishment of a link 
(named K) from directory 1 to entry H in the root. 
Then the path name : C: K relative to directory 4 
refers to directory 4 itself. This and similar loops 
which involve chains of directories are inherent in 
the use of links, and may in fact be used construc
tively. 

2.3 Access Control 

An initial . sign-on procedure is normally desira
ble in order to establish the identity of the user for 
accounting purposes. It may also be necessary to 
control the way in which the user may use the sys-
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tern. There are two basic approaches to using the 
hierarchy of files described here. First, the file 
structure may be essentially open, with initial ac
cess unrestricted and with subsequent access per
mitted to all other directories unless specifically de
nied. On the other hand, the file structure may be 
essentially closed, with initial access restricted for 
any user to a particular initial directory ( assuming 
his ability to give a password, for example) and 
with subsequent access to other directories denied 
unless specifically permitted. There are in fact argu
ments for each extreme. The essentially open 
scheme implies that locks need be placed only 
where they are essential .( and most effective). The 
essentially closed scheme provides well-defined 
working areas, frees the user from worrying about 
other users, and helps prevent the user's files from 
being accidentally altered. It may be observed that 
the scope of capabilities of the file structure de
scribed here does not depend on whether the struc
ture is essentially open or closed. In practice, a po
sition somewhere in between the two extremes is 
likely to result. 

In attempting to access a file, a user mayor may 
not be successful, depending upon what he is trying 
to do. The basic framework within which permis
sions are granted is now considered. This frame
work is independent of the file structure described 
above. Although the exact set of permissions may 
therefore vary from system to system, a flexible set 
adequate for normal usage is given here as an illus
tration. All permissions are logically on the branches 
which point to files. (In actual implementation, how
ever, there may in some cases be permissions 
associated with a directory rather than repeated for 
each entry in that directory.) 

The set of permissions with which a given user 
may access a particular branch is called the mode of 
the branch for that user. Associated with each 
branch is an access control list, which contains the 
list of users (or sets of users) along with the corre
sponding mode associated with each user. The per
missions for any users on the list may be overridden 
(assuming permission to do so-see below) by add
ing subsequent users and modes to the list. The list 
is scanned in order of recency, and thus the addi
tion acts as an override. (Each time the access con
trol list is changed, a garbage collection is per
formed in order to keep the list nonredundant.) All 
access control information required for the use of a 

given file is contained in the list on the branch 
pointing to that file, and is thus independent of the 
way in which the file was accessed. 

The mode consists of five attributes, named 
TRAP, READ, EXECUTE, WRITE and AP
PEND, each of which is either ON or OFF. In per
forming access control, the TRAP attribute is ex
amined first. It is by itself powerful enough to ac
complish the roles of the other four attributes, 
which are called usage attributes. However, the four 
usage attributes are included here for ease of de
scription, as well as for ease of use of the system. 
The four usage attributes indicate permission to 
perform the given activity on the branch by the par
ticular user only if the corresponding attribute is 
ON. The function of each attribute is now defined. 

TRAP. When a branch has the TRAP attribute ON 
for a given user, a trap occurs on any reference by 
that user which affects the contents of the file to 
which that branch points. In this case, the access 
control module calls a procedure whose name is 
given as the first entry of a trap list. A trap list may 
be associated with each user in the access control 
list. Additional parameters may be defined in the 
trap list, and are passed as constants to the called 
procedure. Furthermore, all pertinent information 
regarding the branch as well as the calling sequence 
which caused the trap are passed to the called pro
cedure. The traps are processed in the order speci
fied by the trap list. The return to the access con
trol module specifies the effective values of the four 
usage attributes which are to govern the access. The 
returned value may override the initial values of 
these attributes. 

The user of a branch may inhibit the trap proc
ess. In this case, all references to an entry with the 
TRAP attribute ON cause an error return to the 
calling procedure. The TRAP attribute is extremely 
useful for monitoring of file usage, for placing ad
ditional restrictions on access (e.g., user-applied 
locks), for obtaining subroutines only if and when 
they are actually referenced, etc. A pair of com
mands such as LOCK and UNLOCK provide the 
user with a standard way of applying locks on an 
entry. 

LOCK FILENAME,KEY 
UNLOCK FILENAME 

(FILENAME is the name of a branch given as a 
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path name.) The command LOCK inserts a trap 
which on each attempted access may request the 
user to supply the designated key, and permit access 
only if the key is correctly supplied. UNLOCK re
moves the lock. (A timelock command might also 
be desirable, for example, to make a given branch 
available to a particular user only between certain 
times on certain days.) These commands are avail
able to a user only if the branch pointing to the di
rectory which contains the entry FILENAME has 
the WRITE attribute ON for that user (see below). 

The Usage Attributes. The READ, EXECUTE, 
WRITE and APPEND attributes govern permission 
to perform operations upon files with certain in
tents, with an intent corresponding to each attri
bute. Every operation on a given branch implies 
one of the four intents, namely read, execute, write 
or append. The interpretation of the intent depends 
upon whether the accessed branch points to a direc
tory (a direc~ory branch) or to a nondirectory ( a 
nondirectory branch), as seen below. 

If a branch is a nondirectory branch, the meaning 
of each intent is quite simple. The read intent is the 
desire to read the contents of the file. The execute 
intent is the desire to execute the contents of the 
file as a procedure. The write intent is the desire to 
alter the contents of the file without adding to the 
end of it. The append intent is the desire to add to 
the end of the file without altering its original con
tents. The attribute on a non directory branch which 
corresponds to the particular intent of an operation 
on that branch indicates permission to carry out that 
operation only if that attribute is ON. 

If a branch is a directory branch, the meaning of 
each intent is different. The read intent is the de
sire to read those contents of the directory which 
may be· available to the user, i.e., to obtain an item
ization of the directory entries. The execute intent 
is the desire to search the directory. The write in
tent is the desire to alter existing entries in the di
rectory without adding new ones. This includes re
naming entries, deleting entries, and changing the 
access control list for branches in that directory. 
The last of these includes adding traps to the trap 
list and changing the usage attributes. The append 
intent is the desire to add new entries without alter
ing the original entries. The attribute on a directory 
branch which corresponds to the particular intent of 
an operation on that branch indicates permission to 

carry out that operation only if that attribute is 
ON. 

Several additional examples of system commands 
are now given. Assuming the necessary WRITE at
tributes are ON for the appropriate directory 
branches, a user may by use of suitable commands 
change the access control list of entries or delete 
entries in various ways. For example, he may 
change (wherever permitted by the WRITE attri
bute of an inferior branch) the list for all inferior 
directory branches, or for all inferior nondirectory 
branches, or for all inferior nondirectory branches 
whose names include the parts FAP DEBUG, or for 
all directory branches not more than some number 
of levels inferior. Similarly, an elaborate delete 
command may be constructed. (The possibility of 
no one having the WRITE attribute ON for a given 
directory branch can be combatted in various ways. 
One way is not to permit a change in the list to oc
cur which brings about this circumstance, another 
way is to make this condition imply no restriction.) 

Assuming that the necessary READ attributes 
are ON for the appropriate directory branches, a 
user may obtain an itemization of desired portions 
of desired inferior directories, possibly obtaining a 
graphical picture of the hierarchy. 

2.4 Summary oj File System Features 

At this point, it is desirable to summarize the 
various features of the file system, and to state 
which of these contribute to which of the safe
guards S 1 through S8 mentioned above. The basic 
features of the file system may be stated as follows: 

Fl. The inherent hierarchical structure of the 
file system itself; 

F2. The access control which may be associ
ated with a directory branch; 

F3. The backup procedures (discussed in the 
next section). 

In addition, certain aspects of the hardware and 
of the central software also contribute to providing 
these safeguards: 

F4. The hardware, and central software sys
tem.2,3 

The ways in which the safeguards S 1-S8 interact with 
the features F1-F4 are summarized in Table 1. 
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Table 1. The Features of the File System and Which 
Safeguards They Assist in Providing. 

Safe-
guards MASQ PERM DENY SELF PRIV BUGS TAMP ZEAL 

Features Sl S2 S3 S4 S5 S6 
Flo Hier- Y Y Y Y Y 

archy 
F2. Attri- Y Y Y Y Y Y 

butes 
F3. Back- Y Y Y Y 

up 
F4. System Y Y Y 

Note: Y = YES, the feature does assist. 
Blank = NO, it does not. 

3. SECONDARY STORAGE BACKUP 
AND RETRIEVAL 

S7 S8 

Y Y 

Y 

One important aspect of the file system is that 
the user is given the illusion that the capacity of 
file storage is infinite. This concept is felt to be ex
tremely important, as it gives all responsibility for 
remembering files to the system rather than to the 
individual user. Many computer installations al
ready find themselves in the business of providing 
tape and card-file storage for their users. It is in
tended that most of this need will be replaced by 
the file system in a more general and orderly man
ner. 

That portion of the file system storage complex 
~hic~ is immediately accessible to the file system, 
I.e. dIsks and drums, is called the on-line storage 
system. Devices which are removable from the stor
age complex, such as tapes, data cells and disk 
packs which are used by the file system as an exten
sion of the on-line facilities, are called the file 
backup storage system. To the user, all files appear 
to be on line, although access to some files may be 
somewhat delayed. For the purpose of discussion, a 
back.up system consisting only of magnetic tape is 
consIdered. However, the system presented here is 
readily adaptable to other devices. 

Incremental Dumping of New Files 

Whenever a user signs off, additional copies of 
all files created or modified by that user are made 
in duplicate on a pair of magnetic tapes. At the end 
of every N hour period, any newly created or modi
fied files which have not previously been dumped 
are also copied to these tapes. When this is done, 
the tapes are removed from the machine and re
placed by a fresh set of tapes for the next N hour 

period. Typically N would be a period of between 2 
and 4 hours. This procedure has the advantage that 
the effects of the most catastrophic machine or sys
tem failure can be confined to the N hour dumping 
period. 

Weekly Dumping of Frequently Used Files 

In the event of a catastrophe, the on-line stor
age system could be reloaded from these incremen
tal dump tapes. However, since many valuable files, 
including system programs, may not have been 
modified for a year or over, this method of reload
ing is far too impractical. In order to minimize the 
time necessary to recover after a catastrophe, a 
weekly dump is prepared of all files which have 
been used within the last M weeks. This dump is 
also made on duplicate tapes for reliability. 

Actually this weekly dump is taken in two parts. 
The first part consists of all files which must be 
present in order to start and run the basic system. 
The second part consists of all other files which 
have been used within the last M week period. Typ
ically M would be a period of about three to five 
weeks. The weekly dump tapes may be released for 
other use after a period of about two or three 
months. The incremental dump tapes must be kept 
indefinitely. However, it may be advantageous to 
consolidate these tapes periodically by deleting ob
solete files. 

Catastrophe Reload Procedure 

Should a catastrophe occur in which the entire 
contents of the on-line storage system is lost, the 
following reload procedure can be used. First reload 
a copy of the system files from the most recent 
weekly dump tapes. When this has been done the 
system may be started, with the rest of the reload
ing process continuing under the control of the sys
tem. Note that this does not necessarily represent 
the most recent copy of the system. If an important 
system change has been made since the weekly 
dump was taken, it may be necessary to reload the 
incremental tapes before starting the system. 

After the system files are reloaded, the incremen
tal dump tapes are reloaded in reverse chronological 
order, starting with the most recent set of incremen
tal tapes. This process is continued until. the time of 
the last weekly dump is reached. At this time, the 
second part of the weekly dump tapes is reloaded. 



A GENERAL-PURPOSE FILE SYSTEM FOR SECONDARY STORAGE 221 

During this process all redundant or obsolete files 
are ignored. The date and time a file is created or 
last modified is used to insure that only the most 
recent copy of a file remains in the on-line storage 
system. Since directories are dumped and reloaded 
in the same manner as ordinary files, the contents 
of the on-line storage system can be accurately 
restored. 

It is possible to continue to load the older weekly 
tapes until the on-line system is totally reloaded. 
However, the amount of new information picked up 
from these tapes becomes increasingly small as one 
goes further back in time. In view of this, files 
which do not appear on the most recent set of 
weekly dump tapes, due to inactivity, are notre
loaded at this time. Instead, a trap is added to the 
appropriate directory branch so that a retrieval pro
cedure is called when the file is first referenced. 
This allows these files to be reloaded as needed by 
the retrieval mechanism which is discussed later in 
this paper. 

On-Line Storage Salvage Procedure 

Although the catastrophe reload procedure can 
accurately reconstruct the contents of the on-line 
storage system, it is normally used only as a back
stop against the most catastrophic of machine or 
system failures. When the milder and more common 
failures occur, it is often possible to salvage the 
contents of secondary storage without having to re
sort to the reload procedure. If this can be done, 
many files which have been created or modified 
since the end of the last incremental dump period 
can be saved. In addition, much of the time neces
sary to run the reload procedure can also be saved. 

The usual result of a machine or system failure is 
that the contents of secondary storage is left in a 
state which is inconsistent. For example, two com
pletely unrelated directory entries may end up 
pointing to the same physical location in secondary 
storage, while the storage assignment tables indicate 
that this area of storage is unused. If the system 
were restarted at this time, the situation might nev
er be resolved. The usual effect is that any infor
mation subsequently assigned to that area of sec
ondary storage is likely to be overwritten. 

This situation arises when the system goes down 
before the file system has updated its assignment 
tables and directories on secondary storage. What 
has probably happened is that some user has deleted 

a file and another user created a new file which was 
assigned to the area of storage just vacated by the 
previous file. When the system goes down, the 
changes have not been recorded in secondary stor
age. This is only one example of the type of trouble 
which occurs when the system fails unexpectedly. 

The salvage procedure is designed to read 
through all the directories in the hierarchy and cor
rect inconsistent information wherever possible. 
The remaining erroneous files and directory entries 
are deleted or truncated at the point at which the 
error was found. Storage assignment tables are cor
rected so that only one branch points to the same 
area of secondary storage. Since it is necessary to 
read only the directories and the storage assignment 
tables, the salvage procedure can be run in a small 
percentage of the time necessary to run a complete 
reload procedure. 

The salvage procedure also serves as a useful di
agnostic tool, since it provides a printout of every 
error found and the action taken. This program can 
also be run in a mode in which it only detects er
rors but does not try to correct them. 

Retrieval of Files from Backup Storage 

Unless a file has been explicitly deleted by a 
user, the directory entry for that file remains in the 
file system indefinitely. If, for some reason, the file 
associated with this entry does not currently reside 
on an on-line storage device, the corresponding 
branch for that file contains a trap to a file retrieval 
procedure. When a user references a file which is in 
this condition, his process traps to the retrieval pro
cedure. At this time the user may elect to wait until 
the file is retrieved from the backup system, to re
quest that the file be retrieved while he works on 
something else, to abort the process that requested 
the file, or to delete the directory entry. 

If the user elects to retrieve the file, the date and 
time the file was created or last modified (which 
are available from the directory entry) are used to 
select the correct set of incremental dump tapes. 
The retrieval procedure requests the tape operator 
to find and mount these tapes. These tapes are then 
searched until the precise copy of the requested file 
is found and reloaded. At this time the original ac
cess control list of the branch is restored, and the 
file is now ready to be used by the user. 

If a user deletes a file, both the file and the cor
responding directory entry are deleted. However, if 
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a copy of this file appears on a set of incremental 
dump tapes, this copy is not deleted at this time. 
This file can still be retrieved if the user specifies 
the approximate date and time when the file was 
created or last modified. To help the user in this 
situation, the incremental dump procedure provides 
a listing for the operations staff of the contents of 
each set of incremental tapes. These listings are 
kept in a log book which may be consulted by the 
operators in situations such as the above. Selected 
portions of this listing may be made available to 
the user. 

The user is able to declare that he wishes a cer
tain file to be removed from the on-line storage 
system without deleting the corresponding directory 
entry. This may be accomplished by using a system 
procedure which places the file in a state where it 
can be retrieved by the normal retrieval procedure. 

General Reliability 

Since the file system is designed to provide the 
principal information storage facility for all users of 
the system, the full responsibility for all considera
tions of reliability rests with the file system. For this 
reason all dumping, retrieval and reloading proce
dures use duplicate sets of tapes. These tapes are 
formatted in such a manner as to minimize the pos
sibility of unrecoverable error conditions. When 
reading from these tapes during a reload or retrieval 
process, multiple errors on both sets of tapes can be 
corrected as long as the errors do not occur in the 
same physical record of both tapes. If an error oc
curs which cannot be corrected, only the informa
tion which was in error is lost. If the error is a sim
ple parity error, the information is accepted as if no 
error occurred. When a user first attempts to use a 
file in which a parity or other error was found, he 
is notified of this condition through a system pro
cedure using the trap mechanism. 

Secondary Storage Allotments 

The file system assigns all secondary storage dy
namically as needed. In general, no areas of the 
on-line storage system are permanently assigned 
to a user. A user may keep an essentially infinite 
amount of information within the file system. How
ever, it is necessary to control the amount of infor
mation which can be kept in the on-line storage 
system at a time. 

When a user first signs on, the file system is giv
en an account name or number. All files subse
quently created by this user are labelled with his 
account name. When the user wishes to increase his 
usage of secondary storage, the file system calls 
upon a secondary storage accounting procedure giv
ing the user's account name and the amount and 
class of storage requested. 

The accounting procedure maintains records of 
all secondary storage usage and allotments. A stor
age allotment is defined as the amount of informa
tion which a particular account is allowed to keep 
in the on-line storage system at one time. Normal
ly the accounting procedure allows a process to ex
ceed the allotment after informing the file system 
that the account is overdrawn. However, the ac
counting procedure may decide to interrupt the 
user's process if the amount of on-line storage al
ready used seems unreasonable. 

Multilevel Nature of Secondary Storage 

In most cases a user does not need to know how 
or where a file is stored by the file system. A user's 
primary concern is that the file be readily available 
to him when he needs it. In general, only the file 
system knows on which device a file resides. 

The file system is designed to accommodate any 
configuration of secondary storage devices. These 
devices may cover a wide range of speeds and ca
pacities. All considerations of speed and efficiency 
of storage devices are left to the file system. Thus 
all user programs and all other system programs are 
independent of the particular configuration of sec
ondary storage. 

All permanent secondary storage devices are as
signed a level number according to the relative 
speed of the device. The devices which have the 
highest transmission and access rates are assigned 
the highest level numbers. As files become active, 
they are automatically moved to the highest-level 
storage device available. This process is tempered 
by considerations such as the size of the file and the 
frequency of use. 

As more space is needed on a particular storage 
device, the least active files are moved to a lower
level storage device. Files which belong to over
drawn accounts are moved first. Files continue to 
be moved to lower-level storage until the desired 
amount of higher-level storage is freed. If a file 
must be moved from the lowest-level on-line 
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storage device, theiile is removed and the branch 
for this file is seftoArap' to the retrieval procedure. 

4. FILE SYSTEM PROGRAM STRUCTURE 

This section describes the basic program struc
ture of the file system presented in the preceding 
sections, as implemented in the Multics system.1 (It 
is assumed here that the reader is' familiar with the 
papers referred to in references 1, 2 and 3.) 

A user may reference data elements in a file ex
?licitly through read and write statements, or implic
Itly by means of segment addressing. It should be 
noted here that the word "file" is not being used in 
the traditional sense (i.e., to specify any input or 
output device). In the Multics system a file is a lin
ear array of data which is referenced by means of 
a symbolic name or segment number and a linear 
index. In general, a user will not know how or on 
what device a file is stored. 

A MuItics file is a segment, and all segments are 
files.1,3 Although a file may sometimes be ref
erenced as an input or an output device, only a file 
can be referenced through segment addressing. For 
example, a tape or a teletype cannot be referenced 
as a segment, and therefore cannot be regarded as a 
file by this definition. 

Input or output requests which are directed to 
I/O devices other than files (i.e. tapes, teletypes, 
printers, card readers, etc.) will be processed di
rectly by a Device Interface Module (see reference 
4) which is designed to handle I/O requests for 
that device. However, I/O requests which are direct
ed to a file will be processed by a special procedure 
known as the File System Interface Module (see 
reference 4). This module acts as a device interface 
module for files within the file system. Unlike other 
device interface modules, this procedure does not 
explicitly issue I/O requests. Instead, the file sys
tem interface module accomplishes its I/O implicit
ly by m.eans of segment addressing and by issuing 
declaratIve calls to the basic file system indicating 
how certain areas of a segment are to be overlayed. 

4.1 The Basic File System 

Whether a user refers to a file through the use of 
read and write statements or by means of segment 
addressing, ultimately a segment must be made 
available to his process. The basic file system may 
now be defined as that part of the central software 

which manages segments. In general this package 
performs the following basic functions. 

1. Maintain directories of existing segments 
(files) . 

2. Make segments available to a process upon 
request. 

3. Create new segments. 

4. Delete existing segments. 

Figure 3 is a rough block diagram of the modules 
which make up the basic file system. This diagram 
is by no means complete but is used here to give 
the reader an overall view of the basic flow. The 
directional lines indicate the flow of control 
through the use of formal calling sequences, with 
formal return implied. Lines with double arrow
heads are used to indicate possible flow of control 
in either direction. The circles in the diagram indi
cate some of the data bases which are common to 
the modules indicated. The modules and data bases 
dr~wn ~elow the dotted line must at least partially 
resl~e In core memory at all times since they will 
be Invoked during a missing-page fault (see ref
erence 3). 

Segment Management Module 

The segment management module maintains rec
ords of all segments which are known to the current 
process. A segment is known to a process once a 
segment number has been assigned to that segment 
for this process. A segment which is known to a 
process is active if the page table for that segment 
is currently in core. If the page table is not current
ly in core, that segment is inactive. 

If a segment is known to a process, an entry will 
exist for that segment in the Segment Name Table 
(SNT). This entry contains the call name, the tree 
name and the segment number of the segment (file) 
along with other information pertinent to the seg
ment as used by this process. The call name is a 
symbolic name used by the user to reference a seg
~ent. This name normally corresponds to an entry 
In the user's directory hierarchy which ultimately 
points to the desired file. It should be noted that a 
different copy of the segment name table exists for 
each individual pro(:ess. 

If a segment is active, an entry for that segment 
exists in the Segment Status Table (SST). This ta-
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ble is common to all processes and contains an en
try for all active segments. If a segment is inactive 
(no page table is in core), no entry exists for that 
segment in this table. Each entry in the segment 
status table contains information such as the num
ber of processes to which this segment is known 
and a pointer which may be used to reference the 
file or files which are to receive all I/O resulting 
from paging this segment in and out of core.3 

When a user references a segment for the first 
time, a directed fault will occur. At this time con
trol is passed to a procedure known as the linker. 3 

This procedure picks up the symbolic segment call 
name from a pointer contained in the machine word 
causing the fault. The linker must now establish a 
segment number from this symbolic name. An entry 
to the segment management module is provided for 
precisely this purpose. 

When a call is made to the segment management 
module to establish a segment number from a call 
name, the segment name table is searched for that 
call name. If the call name is found in the segment 
name table, the segment number from this table is 
returned immediately to the calling procedure. 
However, if this is not the case, the segment man
agement module must take the following steps. 

1. Locate the segment (file) in the user's di
rectory hierarchy via a call to the search 
module. 

2. Assign a segment number for this segment. 

3. Update the segment name table indicating 
that this segment is now known to this 
process. 

4. Open the file or files which are to receive 
I/O resulting from paging. 

5. Create or update the appropriate entry in 
the segment status table. 

6. Establish a page table and segment de
scriptor for this segment if the segment was 
not already active for some other process. 

7. Return the segment number to the calling 
procedure. 

If a segment is known to a process but is not cur
rently active, the descriptor for that segment will indi
cate a fault condition. If and when this fault occurs, 
the segment can be reactivated by locating the appro
priate entry in the segment name table and repeating 

steps 4 through 7. Note thaCthesegment does not 
have to be located again in·. the.directory . hierarchy 
since the tree name is retained in the segment name 
table. 

If a segment is to be modified during its use in a 
process, the user may elect to modify a copy of that 
segment rather than the original. When this is the 
case, the copying of this segment is done dynam
ically as a by-product of paging. However, if the 
copying is not complete at the time the segment be
comes inactive, the copying must be completed at 
this time. 

If a segment is to be copied, there are actually 
two open files involved, the original file and the 
copy or execution file. When a page table is initial
ly constructed by the segment management module, 
each entry in that page table will contain a fault in
dication and a flag indicating what action should be 
taken if and when that fault occurs. This flag may 
indicate one of the following actions: 

1. Assign a blank page. 

2. Retrieve the missing page from the origi
nal file. 

3. Retrieve the missing page from the execu
tion file. 

Once a page has been paged out (written) into the 
execution file, it must be retrieved from that file. 

An entry to the segment management· module is 
provided by which a user may declare a synonym or 
list of synonyms for a segment name. For example, 
a user may have a certain procedure which ref
erences a segment called "Gamma" and another 
procedure which references a segment called "Al
pha." If the user wishes to operate both procedures 
as part of the same process using a segment called 
"Data" he may do so by declaring Alpha and Gam
ma to be synonyms for Data. This association is 
kept by the segment management module in a Syno
nym Table (SYNT). Whenever the segment man
agement module is presented with a call name 
which has been defined as a synonym, the appropri
ate name is substituted before any further processing 
takes place. 

In addition to the functions described above, the 
segment management module provides entries 
through which the user may ask questions or make 
declarations involving the use of segments known to 
his process. Some of these functions are listed be
low. 
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1. Declare that a segment or some specific 
locations within a segment are no longer 
needed at this time. 

2. Declare that a segment or some specific 
locations within a segment are to be reas
signed rather than paged in as needed. 
(The user is about to overwrite these loca
tions). 

3. Ask if a segment or some specific locations 
within a segment are currently in core. 

4. Declare that a certain segment is to be 
created when first referenced. 

5. Terminate a segment, indicating that this 
segment is no longer to be considered as 
known to this process. 

Search Module 

The search module is called by the segment man
agement module to find a particular segment (file) 
in the user's directory hierarchy. The search module 
searches individual directories in the user's hier
archy in a predetermined pattern until the requested 
branch is found or the algorithm is exhausted. This 
module calls the file coordinator to search particu
lar directories and to move to other directories in 
the hierarchy. The user is able to override this 
search procedure by providing his own search pro
cedure at the initiation or during the execution of 
his process. 

The File Coordinator 

The file coordinator provides all the basic tools 
for manipulating entries within the user's current 
working directory. The functions provided by this 
module perform only the most primitive operations 
and are usually augmented by more elaborate system 
library procedures. The following is a list of some of 
these operations. 

1. Create a new directory entry. 

2. ,Delete an existing entry. 

3. Rename an entry. 

4. Return status information concerning a 
particular entry. 

5. Change the access control list for a partic
ular branch. 

6. Change working directory. 

Whenever a user wishes to perform any operation 
through the use of the file coordinator, the access 
control module is consulted to determine if the op
eration is to be permitted. 

Since most calls to the file coordinator refer to 
entries contained in the user's working directory, 
the file coordinator must maintain a pointer to this 
directory. This is done by keeping the tree name of 
the working directory in a Working Directory Table 
(WDT) for this process. 

Directory Management Module 

When the file coordinator wishes to search the 
user's working directory, the actual search is ac
complished by use of the directory management 
module. This module searches a single directory 
specified by a tree name for a particular entry or 
group of entries. The actual directory search is con
fined to this module to isolate the recursion process 
which may be required to search a given directory. 

The directory management module issues calls to 
the segment management module to obtain a seg
ment number for the directory for which it has only 
a tree name. When the directory management mod
ule obtains this segment number and references the 
directory by means of segment addressing, a de
scriptor fault may occur indicating that this segment 
is no longer active. If this happens, the segment 
management module will try to reactivate this seg
ment by attempting to find this directory in the 
next superior directory by means of the tree name 
in the segment name table. To do this the segment 
management module issues a direct call to the di
rectory management module to search the next su
perior directory for the missing directory. After ob
taining a segment number for the superior directo
ry, the directory management module may cause 
another descriptor fault to occur when attempting 
to search this directory. This process may continue 
until a directory is found to be an active segment or 
until the root of the directory hierarchy is reached. 
Since the root is always known to the directory 
management module, the depth of recursion is finite. 

File Control Module 

The file control module is provided to open and 
close files for the segment management module. A 
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file is said to be open, or active, if it has a corre
sponding entry in the Active File Table (AFT). if 
a file is active, the corresponding entry in the ac
tive file table provides sufficient information to 
control subsequent I/O requests for that file. 

If the file is inactive, the open procedure needs 
only to open the file to the requested state and 
make the corresponding entry in the active file ta
ble. If the file is active, it may have N users read
ing, or 1 user reading and writing, or N users data 
sharing (using file as a common data base). If the 
requested state is incompatible with the current 
state of the file, the current process must be 
blocked.3 For example, if the current user wishes to 
read a stable copy of the file and there is currently 
a user writing into that file, the requested state 
(reading) and the current state (reading and writ
ing) are said to be incompatible. 

If the requested state and the current state of the 
file are found to be compatible, the number of users 
using the file in that state is increased by one. 
When a file has been successfully opened by the file 
control module (with the permission of the access 
control module), the pointer to the corresponding 
entry in the active file table is returned to the call
ing procedure. This pointer is used to direct re
quests for subsequent input or output to the correct 
file. 

Access Control Module 

The access control module is called to evaluate 
the access control information for a particular 
branch, as defined in Section 2. This module is giv
en a pointer to the directory entry for the branch in 
question and a code indicating the type of opera
tion which is being attempted. The access control 
module returns a single effective mode to the call
ing procedure. The effective mode is the mode 
which governs the use of a file with respect to the 
current user or process. The calling procedure uses 
this mode to determine if the requested operation is 
to be permitted~ 

If the access control information indicates that a 
trap is to be effected, the procedure to which the 
trap is directed is passed the entry for the branch in 
question and the operation code. The procedure 
which processes the trap must return to the access 
control module, specifying the effective mode to be 
returned by the access control module to its calling 
procedure. The procedure which processes the trap 

may choose to strengthen, weaken or leave un
changed the usage attributes which define the effec
tive mode for the branch. 

Page Marker Module 

The page marker periodically interrupts the cur
rent process and takes note of page usage, and re
sets the page use bits2 of all pages involved in the 
current process. Pages which fall below a dynam
ically set activity threshold are listed in the Page 
Out Table (POT) as likely candidates for removal 
when space becomes needed. 

Page Management Module 

Control passes to the page management module 
by means of a missing-page fault in a page table 
in use by the current process. This fault may indi
cate that a new page should be assigned from free 
storage or that an existing page should be retrieved 
from an active file. In either case a free page must 
be assigned before anything else can happen. If no 
pages are currently available, the first page listed in 
the page out table is paged out. If no pages are list
ed in the page out table, a random page of ap
propriate size is removed. 

If a new page is to be read in, the page table en
try for the missing page contains a pointer to the 
appropriate entry in the segment status table and a 
flag indicating whether this page is to be read from 
the original file or the execution file. In either case 
a pointer to the appropriate active file may be ob
tained from the segment status table. This pointer 
is passed as a parameter to the I/O queue manage
ment module with a read request to restore the cor
rect page to core memory. 

I/O Queue Management Module 

The I/O queue management module processes 
input and output requests for a particular active 
file. The calling procedure specifies a read or a 
write request and a pointer to an entry in the active 
file tabl'e which corresponds to the desired file. This 
request is placed on the appropriate queue for the 
particular device interface module which will proc
ess the request. The queue management module 
then calls that device interface module indicating 
that a new request has been placed on its queue. 
When this is done, the queue management module 
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returns to the calling procedure which must decide 
whether or not to block itself until the I/O request 
or requests are completed. 

Device Interface Modules 

For each type of secondary storage device used 
by the basic file system, a device interface module 
will be provided. A device interface module has the 
sole responsibility for the strategy to be used in 
dealing with the particular device for which it was 
written. Any special considerations pertaining to a 
particular storage device are invisible to all mod
ules except the interface module for that device. 

A device interface module is also responsibl'e for 
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INTERRUPT 

PAGE 
FAULT 

CALLS 
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PROCEDURES 

assigning physical storage areas, as needed, on the 
device for which it was written. To accomplish this 
function, the interface module must maintain rec
ords of all storage already assigned on that device. 
These records are kept in storage assignment tables 
which reside on the device to which they refer. 

4.2 Other File System Modules 

The modules described below are not considered 
part of the basic file system and are not indicated 
in Fig. 3. However, these modules are considered to 
be a necessary and integral part of the file system as 
a whole. 
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Figure 3. The basic file system. 

Multilevel Storage Management Module 

The multilevel storage management module oper
ates as an independent process within the Multics 
system. This module collects information concern
ing the frequency of use of files currently active in 
the system. In addition, this module collects infor
mation concerning overdrawn accounts from the 

secondary storage accounting module. 
The storage management module insures that an 

adequate amount of secondary storage is available 
to the basic file system at all times. This is accom
plished by moving infrequently used files downward 
in the multilevel storage complex. This module also 
moves the most frequently used files to the high
est-level secondary storage device available. 
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Storage Backup System Modules 

The storage backup system consists of five mod
ules which operate as independent processes. 
These modules perform the functions described in 
Section 3. 

1. Incremental Dump Module-The sole 
responsibility of this module is to prepare 
incremental dump tapes of all new or re
cently modified fil'es. 

2. Weekly Dump Module-This module is run 
once a week to prepare the weekly dump 
tapes. 

3. Retrieval Module-This module retrieves 
files which have been removed from the 
on-line storage system. 

4. Salvage Module-This module is run after a 
machine or system failure to correct any 
inconsistencies which may have resulted in 
the on-line storage system. Since the 
Multics system cannot safely be run until 
these inconsistencies are corrected, the sal
vage module must be capable of running 
on a raw machine. 

S. Catastrophe Reload Module-This module 
is used to reload the contents of the on
line storage system from the incremental 
and weekly dump tapes after a machine or 
system failure. Normally, this module is 
run only when aU attempts to salvage the 
contents of the on-line storage system 
have failed. This m~dule must be capable 
of running on a raw machine or under the 
control of the Multics system. 

Utility and Service Modules 

A large library of utility modules is provided as 
part of the file system. These modules provide all 
the necessary functions for manipulating links, and 
branches using the more primitive functions provid
ed by the file coordinator. 

A special group of utility modules is provided to 
copy information currently stored as a file to other 
input or output media, and vice versa. The fol
lowing functions are provided as a bare minimum: 

1.' File to printer 

2. File to cards 

3. Cards to file 

4. Tape to file 

5. File to tape 

Actually these modules merely place the user's re
quest on a queue for subsequent processing by the 
appropriate service module. The service module ex
ecutes the requests in its queue as an independent 
process. As soon as the user's request has been 
placed on an appropriate queue, control is returned 
to the calling procedure although the request has 
not yet been executed. 

5. CONCLUSIONS 

In this paper, a versatile secondary storage file 
system is presented. Various goals which such a 
system should attain have been set, and the system 
designed in such a way as to achieve these goals. 
Such a system is felt to be an essential part of an 
effective on-line interactive computing system. 
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INTRODUCTION 

This paper discusses the general communications 
and input/ output switching problems in a large
scale multiplexed computing system. A basic goal 
of such a computing system is to serve simultane
ously and continuously a wide range and large num
ber of users. By rapidly time-multiplexing the use 
of computer system facilities on behalf of these users, 
the system attempts to satisfy the completion time 
and response time desires of both the on-line interac
tive user and the absentee user. 

Problems arise in such systems because of the 
large number and variety of on-line input/output 
devices, the dynamically changing hardware and 
software environment, and the need to efficiently 
use devices such as line printers. 

In this paper a new general purpose input/output 
controller is described which is capable of simulta
neously operating a large number of devices of al-
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most arbitrary variety and speed. An input/output 
software system philosophy is presented which is 
tailored to the environment of a multiplex computer 
system. It includes a message coordinator which 
connects a user program's input and output streams 
to various input/output devices and to the secon
dary storage file system. Execution-time redirection 
and multiple-direction of these connections is a soft
ware system feature. 

This paper represents the philosophy and direction 
of the development of the communications and input/ 
output portions of the Multics system (Multiplexed 
Information and Computing System) .1-5 

GENERAL PROBLEMS 

The on-line input/output devices in a computer 
system may be classified as local or remote. The 
local peripherals such as drums, discs, tapes, line 
printers, card readers and punches are typically con-
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nected to the computer by short, many-conductor 
cables. The computer system usually has considera
ble status information available about local devices 
and has operators to assist in their care and feeding. 

By comparison, remote devices such as typewrit
ers, line printers, card readers and punches are typi
cally connected to the computer system via private 
or switched telephone company transmission facili
ties. The computer system can directly obtain only 
some status of the transmission facilities. The re
mote operator, if any, is likely to be reachable only 
via his remote terminal. The number of remote ter
minals will generally be large compared to the num
ber of local peripherals,. and will vary dynamically 
with the number of remote users. 

The actual and potential variety of input/output 
devices is a challenge to a large-scale multiplex 
computer system. Likely additions to the devices 
mentioned above are removable discs, some form of 
inexpensive mass storage such as the data cell, a 
variety of both local and remote graphical display 
terminals, a microfilm processor, remote data col
lectors and various dependent peripheral analog and 
digital computers. Further, devices like remote 
typewriters and line printers will typically abound 
in several models. In some cases the computer itself 
will need to originate calls to remote terminals. 

Certain remote terminals can impose stringent 
real-time response obligations on a multiplex 
computer system. Examples are remote process con
trol or experiment control and certain types of dis
continuous remote high-speed data collection. 

Supervisory program modules which attend to 
bulk input/output devices such as line printers and 
card readers must be scheduled for execution fre
quently enough to guarantee the efficient use of 
these devices. Because the supervisor is multipro
gramming (processing in parallel) the programs of 
perhaps hundreds of users, the problem of allocating 
such facilities as tapes and removable discs to these 
user programs is nontrivial. 

INPUT/OUTPUT HARDWARE SYSTEM 
PHILOSOPHY 

A basic goal of the Multics system is continu
ous service. The principal method in achieving this 
goal is to include more than one copy of each hard
ware module and to configure the connecting paths 
between modules such that no single module is es
sential for continued system operation. 

LINES TO 
REMOTE 

TERMINALS 

TO 
A&B 

CENTRAL 
PROCESSOR 

CENTRAL 
PROCESSOR 

Figure 1. Skeletal hardware system configuration. 

FigUre 1 is a skeletal system configuration, and 
shows just enough modules to illustrate this princi
ple. In this example, there are two central proces
sors (CPU), two memory modules, two general in
put/output controllers (GIOC), two disc controllers, 
and two disc units. In each case the number two 
is illustrative and can be higher. Each CPU and 
GIOe can access every memory module. The disc 
controller is twin-tailed and accessible by either 
GIOe; each disc is reachable from either disc 
controller. Thus there are multiple paths for data 
flow between disc and main memory. 

Single-tailed input/output devices ( connectible 
to only one controller at a· time), illustrated by the 
line printer in Fig. 1, must be manually switched 
when necessary by the local computer operator. 

Remote terminals such as typewriters may access 
the system. via some switching system such as a reg
ular telephone central office or private branch ex
change .. A number of lines cOI,lnect each GIOe to 
the switching system providing multiple-path 
availability. GIOC ports intended for different 
types of remote terminals operating at different 
transmission rates can be assigned different tele
phone numbers. The switching of. remote terminals 
is discussed below (Connecting and Switching 
Remote Terminals). 
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A OENERALINPUT/OUTPUT CONTROLLER 

The need to handle simultaneously input/output 
devices having a wide range of speeds, and the 
need to impose automatically priorities dictated not 
only by this speed range but also by real-time require
ments and by the actual relative importance of differ
ent terminals, have motivated the design of a gen
eralized input/output controller (OIOC). The OIOC, 
conceived for the real-time environment, achieves 
several functions not highly developed in current 
large-scale computer input/output subsystems. 

A tradeoff between hardware complexity and 
memory usage is available for all speed ranges of 
terminal devices, whether they be 10-character
per-second teletypewriters or 400,OOO-character-per 
second mass storage peripherals. A modular organi
zation allows functional building blocks to be 
assembled and tailored specifically for the terminal 
complement of any rational system. 

The input/output capacity of the system is in
creased over present computer systems by a hard
ware priority scheme which considers individually 
the allowable latency of every event requiring the 
use of main memory. No event requiring the use of 
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main memory is given any higher priority than it 
requires for error-free operation. 

Corresponding to the hardware priority scheme 
for memory usage is a hierarchy of program inter
rupt priorities that can ensure rapid response times 
for real-time events at the expense of slower re
sponse times for nonreal-time events. 

To facilitate real-time responses to terminal 
devices, channel commands may· be executed with
out program intervention. By placing commands in 
a list of channel control words, the commands can 
be conditionally or unconditionally triggered by the 
data stream. 

All input/output operations are under the direct 
control of an input/output software system, and 
hardware memory protection for input/ output is 
not required. Uniform programming is facilitated 
by the implementation of identical formats and pro
cedures for the control of all terminal devices. 

Functional Division 
The functional division of the OIOC hardware is 

illustrated in Fig. 2. The modular functional build
ing blocks are the common control, adapter control, 
and adapter channels. 

COMMUNICATION 
LINE 

I 
I 

.1-

Figure 2. Functional organization of the input/output controller. 

Two general types of adapters are used-direct and 
indirect. Direct adapters, for which the active con
trol word for data transfer resides in the adapter 
hardware rather than in main memory, are em
ployed with high-data-rate devices. Data are 
transferred directly to or from the designated loca
tions in main memory using the control word resi
dent in the adapter hardware. By transferring up to 

12 characters in a single main memory cycle, direct 
adapters efficiently utilize memory cycles at the ex
pense of adapter complexity. 

Indirect adapters, which contain minimum con
trol within themselves, are employed with low- and 
medium-data-rate devices. Control words reside in 
main memory and must be accessed and updated 
every time a data transfer occurs. Up to 12 charac-
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ters of data can be transferred in three main memory 
cycles. 

Adapter channels supply the proper termination 
to lines connecting the terminal devices to the 
GIOC. Adapter channels may contain data buffer
ing or simply supply the line interface. 

The common control section does not contain 
any data buffering, but serves mainly to order and 
control all data transfers. For direct adapters, the 
common control provides the functions of: 

1. Adapter priority ordering and allocation. 
2. Communicating program command infor-

mation. 
3. Interfacing to the adapters. 
4. Sequencing and subsystem control. 
5. Diagnostics and error control. 

In addition to the above, for indirect adapters the 
common control also provides the functions of: 

6. Word assembly and disassembly. 
7. Parity checking and generation. 
8. Control word updating. 
9. Dynamic control function detection. 

10. Temporary adapter status buffering. 

For control of data transfers, the mailbox tech
nique is used. Each adapter channel has a dedicated 
area, or mailbox, in protected main memory for the 
residence of control words. Data transfer control 
words are independent for every adapter channel 
but command, diagnostic, and status control words 
are shared by all adapter channels. 

Each adapter channel mailbox contains two types 
of control words: Data Control Words (DCWs) 
and List Pointer Words (LPWs). DCWs control the 
data transfer between main memory and adapter 
channels. Each adapter channel has associated with 
it an LPW which is a pointer for locating the next 
DCW to be used for data transfer. 

Except for command initiation and termination 
of unit record peripherals, all information necessary 
to carry out an input/output operation is uniquely 
contained within the control words of each adapter 
channel. In this manner, no adapter channel is de
pendent upon any other adapter channel in the 
GIOe for control. 

Hardware Priority Scheme 

A hardware priority scheme minimizes the ef
fects of low"'-data-rate devices upon the latency 
of high-data-rate devices by the establishment of 

priority for all events which require the use of main 
memory. Six general classes of events exist: 

1. Status (communication from the hardware 
to the program) . 

2. Commands (communication from the pro-
gram to the hardware) . 

3. Direct adapter data services. 
4. Indirect adapter data services. 
5. List pointer services. 
6. Diagnostic functions. 

Each class of events itself contains several levels 
of hardware priority. The priority levels for one 
class of events can be intermixed with those of 
another. For example, seven levels of normal status 
priority are allowed. These seven levels may be inter
mixed with the priority levels of the other classes. 

Commands are treated in the same way as all 
other events which require the use of main memory. 
They must wait until the common control grants 
priority for their issuance. 

Two levels of hardware priority for commands 
are allowed. To issue commands, the program loads 
one of the two allocated mailboxes with a pointer 
to the command list. The program then issues an 
interrupt to the common control. One command is 
executed each time this event receives priority, un
til no further commands remain in the command 
list. 

Indirect data service events are those required to 
transfer data between main memory and indirect 
adapter channels. Each data transfer takes three 
main memory cycles. 

Direct data service events are those required to 
transfer data between main memory and direct 
adapter channels. Each data transfer takes one main 
memory cycle. 

Whenever a DCW exhausts, a list pointer service 
is required to obtain another DeW and place the 
new Dew in the proper mailbox. An LPW contains 
the address of the next DCW to be used in scat
ter-gather operations. 

Instead of accessing the LPW immediately upon 
a DeW exhaust, the list pointer service event is 
given a priority just higher than the data service 
priority for that adapter. channel. To initiate the list 
pointer service, priority must first be granted for 
that list pointer service event. In this way, the new 
DCW is guaranteed to be in the proper mailbox 
before the next data service for that adapter channel 
occurs. However, the list pointer service time does 
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not add to the latency of higher priority events. 
This feature allows low-speed terminal devices to 
operate using sophisticated scatter-gather and control 
techniques without adding additional latency to 
higher priority events. 

All work to be done on the GIOC is partitioned 
into events in such a way that no single event re
quires more than four accesses to main memory. 
With the exception of direct adapter data services, 
priority is allocated to a new event at the comple
tion of every current event. 

To further reduce latency for high-transfer
rate terminal devices, any direct adapter data serv
ice can temporarily preempt the priority of any 
lower priority event and thus gain access for the 
next main memory cycle. Thus, high priority direct 
adapter data services do not wait for other events 
using multiple memory cycles (such as indirect 
adapter data service) to complete their sequence 
before gaining access to main memory. 

Each adapter uses one or more levels of hardware 
priority. All adapter channels within a single adap
ter are assigned subpriorities among themselves by 
the adapter control. 

A complete look at all levels of hardware priority 
is taken after the completion of every event, and the 
event which will receive the next memory access is 
then determined. This priority determination occurs 
concurrently with other common control functions. 
In effect, after every event the priorities of all 
events requiring further memory accesses are recon
sidered, and the allocating of the next event to re
ceive a memory access is granted. 

Except for direct channel data services, which 
can temporarily preempt the priority of other 
events, any event which requires the services of 
main memory is guaranteed to be recognized in its 
allocated hardware priority sequence within four 
main-memory access times used by the common 
control. 

Program Interrupt Priorities 

Program interrupt priorities can be dynamically 
assigned by the supervisor on a per-channel basis. 
Program interrupts result from status being stored 
in main memory after an event occurs which re
quires program action. 

In addition to the seven priority levels for memo
ry access provided by the hardware, status has seven 
levels of program interrupt priority. For any given 

event, when a level of hardware status priority is 
changed by the software, its corresponding level of 
program interrupt priority is also automatically 
changed, guaranteeing the associated change in 
real-time response for that event. 

Four subclasses of status events exist: 

l. Exhaust 
2. Terminate 
3. External signal 
4. Internal signal 

Exhaust status indicates the current active con
trol word for an adapter channel cannot be used for 
further control. This event implies that a new con
trol word must be obtained to continue data trans
fer. 

Terminate status indicates that the current active 
control word for an adapter channel cannot be used 
for further control and that, in addition, no further 
data transfer for that adapter channel is allowed. 

The external signal status is the vehicle by which 
events outside the GIOC can gain recognition by 
the program. Such events as operator actions on 
peripherals fall into this subclass. 

The internal signal status is the vehicle by which 
special control events within the GIOC can gain 
recognition by the program. Such events as the dy
namic detection of incoming communication con
trol characters fall into this subclass. 

Each adapter channel, through its control words, 
can independently activate anyone of the status 
levels when one of the four subclasses of status 
events occurs. For any given adapter channel, the 
status levels associated with the subclasses of events 
may be the same or different. At any given time, 
each adapter channel thus has access to four levels 
of status response corresponding to the four sub
classes of status events. 

Under program control, the same status event oc
curring on different adapter channels can be assigned 
different levels of hardware priority and corre
spondingly different levels of program interrupt 
priority. This allows optimization of the real-time 
effect of any event upon any other queued events. 

Channel Commands 

Channel commands can be accepted by anadap
ter channel at any time, but not all allowable com
mands have rational meaning when executed with
out program intervention. Command execution 
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without program intervention can occur only as a 
result of a data transfer. 

Commands such as "change from transmit to re
ceive mode" can be preplanned in the data sequence 
and executed without the need for program cogni
zance at the time of execution. Other commands, 
such as "change from the inactive to active mode" 
only have meaning when initiated by the program. 

INPUT/OUTPUT SOFTWARE PHILOSOPHY 

The input/output software philosophy must sim
plify wherever possible the design of a large-scale 

STREAM USER 

multiplex computer system and must adequately 
cope with the general communication and in
put/output problems discussed earlier. 

Modularity 

In order to accommodate a dynamically changing 
device environment and to permit the introduction 
of new input/output devices without major effort, 
the input/output software should be highly modu
lar. The device-dependent software for each de
vice should be isolated in a separate, replaceable 
module. Figure 3 shows a general overall block· di
agram of the input/output software and its relation-

USER 
PROGRAM FORMAT I------i INTERFACE 

INTERPRETER MODULE 

FILE SYSTEM FILE SYSTEM 
(INC. PAGE AND r-----i INTERFACE r----~ 

SEGMENT MANAGEMENT) MODULE 
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INTERFACE 
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CONTROLLER 
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INTERFACE 
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TO GIOC 

LOW SPEED 
ADAPTER 

INTERFACE 
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Figure 3. Block diagram of input/output software system. 

ship to other software. The message coordinator 
(MC) and other blocks are discussed below. The MC 
essentially switches a user's input/output streams to 
various device. interface modules (DIM). A stand
ard DIM will exist for each type of device; for ex
ample, there will be a DIM to operate all currently 
attached Teletype Model 35 typewriters using a 

standard strategy. This DIMas well as others must 
be replaceable during system operation. In addition, 
it must be possible to add a second DIM to operate 
one or more Model 35's with some special strategy, 
and to easily associate it with the proper user's 
streams and the proper communication lines (Le., 
the proper Model 35's). This indicates the necessity 
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for a well-defined, standard software interface for 
DIMs. The same standard interface must apply to 
the user interface modules (DIM) and the file sys
tem interface module (FSIM). 

Because the GIOC is a device, all software which 
knows about standard GIOC behavior is isolated in 
the controller interface module (CIM) for the 
GIOC (the GIOC CIM is hereafter called the 
GIM). Inasmuch as the GIOC can accommodate 
various adapter control modules, any special behav
ior inherent in one kind of adapter. control should 
also be isolated. The typewriter adapter control and 
adapter channels, for example, may have an echo
plex feature (retransmit what is being received), 
which has no connection with the basic GIOC phi
losophy or with any particular typewriter. Thus a 
need exists for adapter interface modules (AIM). 

Flexible Input/Output Direction 

It should not be necessary for a user to decide at 
the time he writes a program what actual sources 
and destinations are to be associated with his pro
gram input/output streams. The term "stream" is 
used here to include all input/output transactions, 
whether they be sequential access or random access 
in nature. For example, the "title" of a "file" in a 
PL/I program is the "stream" name to the in
put/ output system. 

Prior to execution, a declaration to the DIM es
tablishes a stream-device connection. The absence 
of such a declaration implies a default connection; 
a program invoked from a remote typewriter would 
have that typewriter connected to all input/output 
streams in the default case. It must be possible to 
alter this connection during execution by a call to 
the DIM. Further, it must be possible to multiple
connect streams and devices. During debugging, a 
particular program might direct both bulk-produc
tion printout and commentary printout to a remote 
typewriter. Later the bulk printed output might be 
directed to a computation center high-speed line 
printer or a file in the secondary storage file sys
tem. At another time, some printout may need to 
be directed simultaneously to two line printers in 
two different locations and to a tape file. 

It should be understood that the "user program" 
may be some supervisory system module. Printer
destined streams are normally diverted to a file in 
the file system for later scheduled printing, unless 
the user really meant to attach a printer to his pro-

gram. Such diversion is also useful for output on 
tape, removable disc, etc., to facilitate allocation of 
such devices. 

Description 

A user program initiates input/output by calling 
a standard or special DIM. The call arguments in
clude the stream name. The redirection and multi
ple-direction of streams and devices require a mod
ule which acts as a switchboard; the message coor
dinator (MC) in Fig. 3 has this purpose. The DIM 
uses the MC to implement the stream-device con
nections for a call. If a stream is associated with a 
file in the File System (FS), a connection is made 
to the FSIM. 

The File System contains (or knows how to re
trieve) all retained files; it is described in detail in 
a companion paper.4 Files in the File System are 
essentially formatless. The FSIM can impose a 
standard file format. The FSIM makes only declara
tive calls to the File System; it accomplishes the 
input/ output of files implicitly by means of seg
ment addressing.3,4 

Figure 3 shows a few representative DIMs. The 
DIMs basically invoke the strategy for handling 
particular devices. For example, they may convert 
between the system's standard character set and the 
device's particular character set. This conversion 
includes handling of escape conventions necessary 
to represent characters absent on the device. The 
Model 35 DIM knows what messages are needed to 
operate various terminal features. Two standard 
tape DIMs are shown, because of the need for two 
distinct tape strategies. One tape DIM handles tapes 
in standard system format. The second tape DIM 
permits handling of nonstandard tape formats in a 
standard way. Both of these tape DIMs call a sub~ 
sidiary tape DIM which handles common tape 
problems. 

A single level of format interpretation is availa
ble from the DIMs and the FSIM. File System files 
and device data can be interpreted as being format
less or as having arbitrarily long logical records. In 
the latter case the files and data must contain for
mat information. Any additional format interpreta
tion such as that required by PL/I can be done by 
the user or by some standard stream format· inter
preter (see Fig. 3). 

Certain DIMs, such as the disk DIM used exclu
sively by the File System,_ do not use the Message 
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Coordinator. Some may not funnel through the 
GIM; this is illustrated by the drum DIM and sepa
rate drum controller CIM in Fig. 3. The File Sys
tem may also directly call certain DIMs that are 
normally reached via the message coordinator. For 
example, disc pacs can be used for extending the 
File System storage. 

An input/output software interface language which 
is independent of the computer, of the input/output 
controllers, and of the input/output devices them
selves should be used for communicating between 
software modules. The ease of adding, substituting, 
and replacing modules implies the need for every 
module to check the validity of each call to it. For 
example, the GIM must determine whether a re
quest for service from a DIM or AIM is valid-per
haps whether or not the requester has the right to 
initiate activity on the referenced channel. The in
terface language must facilitate this validity check
ing. All address references in the language are rela
tive. An inner module in the GIM will translate to 
absolute addresses when actual DCWs are formed. 

Interrupt Handling. All basic trap or interrupt han
dling is begun in a supervisor module outside the in
put/ output system.3 This module determines which 
module of which process is to be informed about 
the interrupt. Interrupts originating from the GIOC, 
for example, are passed for handling to the GIM 
which knows how to disentangle the associated sta
tus information from the GIOC. In turn the GIM 
passes back to the Tape DIM interrupt and status 
information relevant to tape handling. Certain in
terrupts might ultimately be reflected back to a user 
process. 

Random and sequential input/output calls are per
mitted to be mixed and used for all of a user's in
put/ output streams. Sequential calls include calls 
for the next record, message, character, etc., and 
calls for spacing and backspacing. A call for "rec
ord fourteen" is a random call. All DIMs and the 
FSIM shall take some action for every type of call. 
A call to backspace the card reader may result in an 
error return or no-operation depending on circum
stances. Backspacing a typewriter with reverse tine 
feed might be valid. Random calls to a tape file are 
permitted, because of the inclusion of logical record 
numbers within the logical record on the tape file. 

There is no intended direct correlation between 
the type of call and efficient device utilization. The 
user of files in the file system will not usually know 

on what physical device the file exists. Even if the 
user did, the file may be scattered on the device in 
an unknown way. The multiplex character of the 
monitor system will overlap rewinds, seeks, etc. 

Synchronous and asynchronous input/output are the 
two basic operating modes for any particular in
put/ output stream. In the asynchronous mode, the 
physical input! output transactions are not necessar
ily synchronized or interlocked with the execution 
of a program's input/output statements. For exam
ple, a user at a typewriter would be allowed to type 
messages into the system prior to the execution of 
the read statement which would use them; every ex
ecution of a read statement merely plucks the next 
waiting message out of an input buffer. This exam
ple of asynchronous input is analogous to buffered 
read-ahead schemes which have been used with 
discs, tapes, etc. An example of asynchronous out
put is the collecting of output in a core buffer until 
some physical record size is reached. 

In the synchronous mode, the physical transac
tion associated with a program's input/output state
ment is carried out during the statement's execu
tion; i.e., control is not returned to the program un
til the actual transaction is completed. For example, 
a typewriter user would not be allowed to type (the 
keyboard might be locked) until the read statement 
was encountered. 

For a particular stream, the input and output 
modes are independent; for example, the input 
might be interlocked and the output not. The modes 
are declarable both prior to and during execution 
by calls to the UIM. Appropriate interpretation of 
these modes appears possible for multiple-con
nected streams and devices. Establishment of a 
mode amounts to determining which system module 
in the chain initiates the return to the user pro
gram. 

Under most circumstances asynchronous in
put/ output is the most efficient. The synchronous 
or interlocked input/output is useful when operator 
or user attention is required, and most important 
when a user is interacting with an undebugged, 
strange, or many-branched program. The synchro
nous mode should be imposed on a remote terminal 
whenever a stream is not associated with the termi
nal, i.e., when there is no program to which to give 
messages. 

Statistics. Sufficient statistical collecting ability 
must be included in the input/output software de-
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sign to accommodate almost any conceivable charg
ing and facilities-allocation schemes. Modes of 
operation for taking extensive data relevant to sys
tem performance should be possible. 

REMOTE TERMINAL CHARACTERISTICS 

Remote terminals may be classified as indepen
dent or controlled, insofar as the computer system is 
concerned. A remote small computer which inter
rupts occasionally for a fast calculation is largely 
independent. A typical remote typewriter is com
pletely controlled when ((onnected to the system. 
The following discussion pertains to controlled ter
minals generally and is illustrated by reference to 
remote typewriters. The discussion is not intended 
to provide a list of all of the desirable remote type
writer characteristics. 

Status 

It is important that the system always have as 
complete a knowledge of terminal status as possible. 
Therefore, all pertinent terminal functions must be 
accompanied by transmission to the system of ap
propriate information. For example, line feed, car
riage return, ribbon color shift, etc., on a typewriter 
all must transmit characters to the system. Of 
course, these same functions must be performable 
by the system by transmission of suitable codes to 
the terminal. The Proposed Revised ASCII charac
ter set provides 32 control characters. 

Terminal Lock 

To implement the synchronous input mode, the 
terminal must be lockable by the system. When a 
read statement is executed, the typewriter keyboard 
can be unlocked by the system. Even in the asyn
chronous input mode the keyboard should not be 
unlocked until the input/output software and hard
ware are ready to buffer a message. The inability to 
lock a terminal is an invitation to unexpected 
and/ or unwanted input. The terminal is typically 
locked during computer output. Of course, a ·print
ed, audible, or preferably visual proceed indication 
is needed to alert the user that input is possible. 

An alternative to a terminal lock on terminals 
producing their own local copy of the input is to 
operate them full-duplex and to have the computer 
system echo or retransmit the input back for dis-

play. The lack of local copy becomes an indication 
that input is not wanted. This scheme is workable 
provided the proceed indication is available. Long 
transmission delays due to long distances or due to 
intervening store-and-forward systems would 
however render this approach awkward or unusable. 

The error-detecting possibilities of the echo-back 
scheme suggest its use even when terminal lock is 
used. Provision to switch to half-duplex in cases of 
excessive echo delay is then necessary. 

Interrupt 

An absolutely essential feature of remote termi
nal operation is the "interrupt" ability. There must 
be a key or button whose depression causes instant 
detachment of the terminal from the current pro
gram stream. This interrupt must work even when 
the terminal is locked. The resulting status of the 
previously attached program is not discussed here. 
Normally the terminal is attached to some supervi
sor command module and is readied for command 
level input. 

Reasons for needing interrupt ability include: 
( 1) the need to stop the attached program which 
may for example be looping or producing meaning
less printout; (2) the desire to attach the typewriter 
to another stream, possibly belonging to some other 
program. 

Implementation of this interrupt feature requires 
either full-duplex operation of both terminal and 
computer, or half-duplex operation with some 
sort of an auxiliary, possibly narrowband indepen
dent channel. The latter is effectively provided by 
the teletype line-break technique of putting a 
"space" on the line whose duration is long enough 
for unique interpretation. The terminal lock must 
not lock the interrupt button. 

Identification 

All terminals must be able to identify themselves 
uniquely to the system. The teletype automatic an
swer-back scheme is a good example of this abili
ty, because the answer-back message can be long 
enough not only to provide unique identification 
but also to independently indicate possible special 
teminal features. 

Although user identification rather than terminal 
identification should normally be used to control 
access to the computer and to files in the File 
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System,4 positive terminal identification permits 
default user identification and can indicate that the 
terminal is in fact a type known to the system. 

CONNECTING AND SWITCHING REMOTE 
TERMINALS 

As suggested in Fig. 1, remote terminals can ac
cess a computer system via a telephone central of
fice or private branch exchange (PBX). The basic 
reasons why such automatic switching is advisable 
in a large-scale multiplex computer system in
volve its general flexibility and lower cost. This is 
especially true if continuous system availability is 
important. The removal from service for repair or 
preventative maintenance of one of a system's 
GIOCs, for instance, requires expensive duplication 
of computer ports to guarantee access to private 
lines. 

Complete automatic switching provides: 

1. User-controlled access to more than one 
computer. The Bell Telephone Laborato
ries, for instance, will have four geograph
ically separated, large multiplex computer 
systems by 1967. 

2. User-controlled or switching-system-con
trolled avoidance of unusable computer 
ports. 

3. Static and dynamic load sharing of remote 
users with multiple computers. 

4. Greater flexibility in planning. 
5. Concentration of low-usage terminals. 
6. Automatic Direct Distance Dialing access 

and possible use of existing tie lines be
tween PBXs. 

7. Easier terminal maintenance, because of 
the availability of test centers via the 
switched network. 

8. Terminal-to-terminal communication. 
9. Ability to speedily assign, connect, move, 

reassign,etc., terminals. 

An interesting problem can arise while switching 
remote computer terminals through a telephone 
switching system. Existing telephone switching 
plant is engineered to handle the traffic of talkers. 
A crucial parameter of talker traffic statistics is the 
product of the average circuit holding time and the 
average· calling rate during the "busy" hour; this 
quantity is typically in the range of 3-6 call
minutes. Thus an adequate number of talking paths 

through the switching system may be from 5-10 
percent of the number of subscribers. A study made 
of the holding times of Project MAC users revealed 
an average holding time of about 1 hour; 20 percent 
held less than 5 minutes, 50 percent less than 30 
minutes, and 80 percent less than 100 minutes. 

It may therefore be difficult to add any sizable 
number of remote typewriters to an existing 
switching system without impairing telephone serv
ice, unless the terminals are to be used for only 
short holding time inquiries. It is possible to modi
fy existing switching facilities or engineer new fa
cilities at reasonable cost. This, however, can be 
time-consuming, and planners of remote comput
ing systems should alert telephone companies as 
soon as possible. 

Transmission Status 

Each communication-oriented adapter channel 
on the GIOC can, in addition to receiving and 
transmitting data, sense a number of local external 
conditions. These sense lines will be used typically 
to read status information from standard telephone 
data sets. The system can then be fully aware of 
when the ringing signal is present, when data set 
carrier is present, when data can be sent, etc. These 
adapter channels also provide control outputs which 
can operate data set functions, such as causing a 
hangup. 

CONCLUSION 

The communication and input/ output problems 
inherent in a large-scale multiplex computer sys
tem have been discussed. Hardware and software 
philosophies and a description of a general in
put/ output controller intended to cope with these 
problems have been presented. 

It is felt that the modular and dynamic structure 
of the input! output software and its flexible stream 
switching ability are essential to the success of a 
multiplex computer system. Similarly, the hardware 
flexibility and· the uniform software approach per
mitted by the new controller greatly simplify the 
design of such computer systems. 
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SOME THOUGHTS ABOUT THE SOCIAL IMPLICATIONS OF ACCESSIBLE COMPUTING* 
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Prominent among the products of technology that 
have shaped our society are automobiles, electric 
power, and telephones. They provide us with per
sonal transportation, with aids in our physical la
bor, and with convenient communication. They 
have radically altered the pattern of our business 
and private lives. Nobody will deny that these prod
ucts of technology have substantially increased our 
mobility, have eliminated a great deal of tedious 
physical labor, and have contributed vital threads to 
the fabric of society and commerce. 

Yet, they have also brought to our society il'ls, 
frustrations, and problems, few of which seem on 
the wane. The flight to suburbia in search of more 
elbow room and greenery has left a disproportionate 
fraction of economically and culturally underprivi
leged families in the cities. The same technology 
which has given us new dimensions in communica
tion has been used to implement eavesdropping 
equipment. The same power tools and machines 
that are at the foundation of our industrial society 

*Work reported herein was supported by Project MAC, 
an M.I.T. research program sponsored by the Advanced 
Research Projects Agency, Department of Defense, under 
Office of Naval Research Contract Nonr-4102(Ol). 
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caused great grief to people whose obsolete skills 
were their only source of livelihood and pride as 
working members of society. Finally, automobiles 
and power tools are causing us to lose our physical 
stamina, thereby making us easier prey for disease. 

The full influence of these products of technology 
was felt only some years after the underlying tech
nical advances had come to pass; namely, at about 
the time each of them became accessible to a large 
segment of the population. We are now at that stage 
with computers. Technical means are now available 
for bringing computing and information service 
within easy reach of every individual in a commu
nity. What will be the effect on our society? 

Such service will provide to the individual 
"thinking tools," somewhat analogous to power 
tools, to aid him in his daily intellectual labor. 
These thinking tools will increase the power, skill, 
and precision of his mind, just as power tools today 
increase the power, precision, and skill of his mus
cles. As a matter of fact, there is some question 
whether our increasingly complex society can sur
vive much longer without falling apart from. its own 
weight, unless individual thinking aids become 
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available. At the same time, the benefits they may 
bring to society will unquestionably be mixed with 
a dose of new problems and frustrations. 

The following remarks cannot help being superfi
cial because of the great complexity of the issues 
involved. Not one but several papers would be re
quired to analyze these issues to any depth. Thus, 
this paper is being presented primarily to stimulate 
discussion and further thought. 

A HANDLE ON COMPLEXITY 

The increasing sphere of influence of an events 
and human decisions is a characteristic of our so
ciety. Any change or perturbation in the status quo 
has reverberations which reach often into unexpect
ed quarters. The increasing complexity of provi,.. 
sions embodied in our laws, regulations, and busi
ness operating procedures means that the individual 
has to contend more and more often with situations 
that he cannot personally master. Frustration and 
loss of time are among the least painful results. 

The tax laws are a good example, as well as one 
of considerable importance to all of us. As a matter 
of fact, the tax situation of anyone particular indi
vidual or business is usually rather straightforward. 
The difficulty lies in reducing general laws and reg
ulations to one's own specific case. The laws and 
regulations must apply to a great variety of situa
tions and their complexity is probably· unavoidable. 
Examples, which are intended to illustrate applica
tion to common situations, are setdom useful, be
cause they differ in some minor detail, not obvious
ly unimportant, from. the case of interest. The crux 
of the matter is that the number of special situa
tions differing in some· material details is so great, 
it would· be impossible to explain for each of them 
the Implications of the applicable laws and regula
tions. Even if it were possible to do so, the individ
ual would still have the problem of finding the one 
applicable to his case among all possible special sit
uations. 

On the other hand, it would be perfectly feasible 
to write a computer program that would ask per
tinent questions, in sequence, and provide necessary 
instructions and warnings on the basis of the an
swers supplied by the individual. In its simplest 
form, such a program would operate as a mecha
nized income tax form, with the important difference 
that it would not ask questions clearly inappropri
ate in view of preceding answers. Of course, com-

putations would be made automatically on the basis 
of the data supplied, but this would be the least im
portant and least helpful aspect of the program. 
Such a program would not have to store a dictiona
ry of specific situations, but could work out the log
ical consequences of the laws and regulations in 
each particular instance. Where choices were avail
able, an individual could investigate their implica
tions in his own special ~ase and follow the course 
of action most advantageous to him. One can con
ceive also of having the program approved by the 
Internal Revenue Service so that no question would 
exist about its correct interpretation of the law. 
Even further, we can envision the income tax laws 
and regulations being originally prepared in the 
form of computer programs so that legislators and 
Internal Revenue officials could explore more accu
rately and efficiently their consequences. Speculat
ing about such matters is merely an amusing exer
cise, and at this time we are bound to invent merely 
the equivalent of a horseless carriage, rather than 
the modern automobile. 

One can think of many other instances in our so
ciety where accessible computing service, with the 
appropriate software, could help individuals to con
tend more successfully and with less frustration 
with· the complexities of the modern world: from 
paying bills and balancing one's bank· account to 
planning a· will; from budgeting the family income 
to selecting. investments and making plans for re
tirement. It may seem strange at this time to envi
sion the average man . and housewife using a com
puter~ Yet, to some people years ago it must have 
seemed equally inconceivable and perhaps sacrile
gious to allow the average housewife to turn on 
powerful motors and operate such 'complex ma
chines as today's automatic washing machines and 
driers. Not many years ago we woutd have winced 
at the thought of allowing teen-agers to spend 
hours monopolizing such a priceless· creation of hu
man· inventiveness and technology as· the telephone. 

A HANDLE ON INFORMATION 

Information is alarmingly plentiful these days. 
We are dutybound to acquire, record, search, and 
use it. While. a great deal of effort is being spent in 
acquiring and· recording information, our effective
ness in searching and using it still leaves much to 
be desired. Information has the unfortunate habit of 
most often being outdated, hard to locate, and re-
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corded in a form poorly suited to one's needs. One 
reason information is often outdated is that it takes 
so long to coliect and process it. Perhaps nothing 
short of a widespread information and computing 
service could provide an effective handle on infor
mation. 

If such a service were in widespread use, infor
mation could be acquired and digested in near 
real-time and automatically recorded in the mass 
memory of the computer system. Thereby invento
ries, abstracts, bank .balances, and on and on could 
then be available on a topical. basis. The cost of 
storing information in the mass memory of a com
puter is still high, but not inordinately so. A page 
of single-spaced text stored in the disk file of the 
current MAC computer system costs approximately 
10 cents per month. We see no reason why re
cording in the mass memory of a computer system 
shoutd not become competitive with other recording 
media. With all significant actions being taken with 
the aid of ,a computer system, the contents of the 
system's mass memory would provide a complete, 
up-to-date representation of the state of the 
community that it serves. Technical means are not 
lacking for protecting private information from 
unauthorized access, while at the same time mak
ing it available for statistical surveys and other le
gitimate purposes. 

Once the necessary raw data are automatically 
available in a computer system, we envision the de
velopment of programs to answer any well-defined 
queries; even those not specifically envisioned by 
the developers of the programs. We do not intend to 
imply that we or anybody else knows how to pre
pare such programs yet, but we do not see any ma
jor roadblock to progress in this direction. We are 
optimistic about technological progress, and can 
envision computer systems that permit communica
tion (voice and other) interspersed with data ,proc
essing. On a "conference telephone call," the third 
party would be a computer. Such a system would 
enhance,. by orders of magnitude, the ability of peo
ple to interact and cooperate with one another in a 
manner both convenient and meaningful to each of 
the individuals concerned. 

THE THREAT TO PRIVACY 

The very power of advanced computer systems 
makes them a serious threat to the privacy of the 
individual. If every significant action is recorded in 

the mass memory of a community computer system, 
and programs are available for analyzing them, the 
daily activities of each individual could become 
open to scrutiny. 

While the technical means may be available for 
preventing illegal searches, where will society draw 
the line between legal and iUegal? Will the custodi
ans of the system be able to resist pressure from 
government agencies, special-interest groups, and 
powerful individuals? And what about the custodi
ans themselves? Can society trust them with so 
much power? 

These are very difficult questions indeed. For 
many purposes, information can be depersonalized 
before it is put into the central file. We can devise 
means for providing the equivalent of safe deposit 
boxes for private information. A hierarchical file 
system, personal and modular on the tower levels, 
and impersonal and merged on the upper levels, is 
another possibility. Processing and access by other 
than the owner could be restricted to the upper lev
els. In any case, privacy can be preserved if the 
lower levels are left decentralized. 

THE CULT OF IMPERSONALITY 

The use of identification numbers and the issuing 
of authoritative and authoritarian instructions and 
answers are associated in the public mind with 
computers. Of course, these associations are the re
sults of attempts, for the sake of efficiency, to fit 
people to the capabilities and idiosyncrasies of 
computers. The attempt to bring computers within 
easy reach of individuats is in the opposite direc
tion. Proper names and other means of identifying 
individuals and locations are just as understandable 
to computers as identification numbers, and are 
much more pleasant to people. Computer programs 
can ask and answer questions in a very polite man
ner, and can even be made to chitchat realistically 
enough to fool a person for a little while. Computer 
programs don't have to be authoritarian and can be 
made to act unpretentiously. They can make sugges
tions that leave room for choice, simply warn the 
person that his course of action may be ill-ad
vised, and stil'l allow him to proceed. 

There is nothing we can see· inherent in the use 
of computers that will impersonalize, institutional
ize, or automate our behavior. The danger lies in 
ourselves. Through mental laziness, or fear of ac
cepting responsibility, or just plain neglect we may 
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delegate to computers prerogatives that should re
main ours. Computers are literal-minded, as the 
late Norbert Wiener was never tired of pointing 
out. They will not take into account any premise, 
any limitation, or any fact that has not been made 
available to them. We should never delegate to 
them either the formulation of our problems, or de
cisions as to the adequacy of the solutions they pro
duce. 

Our institutions are continuously changing, and 
some of these changes may appear impersonal simply 
because they are in conflict with the customs in
grained in us from our youth. The widespread 
availability of a computing and information service 
will encourage institutions to change in new direc
tions which may well· be inconsistent with our pres
ent customs. These changes wilt not be required by 
the use of computers, but by the needs of institu
tions themselves. An example we can foresee con
cerns financial transactions. 

Years ago, money consisted of gold and silver 
coins whose intrinsic value was identical with the 
nominal value marked on them. With the increasing 
number of financial transactions, gold coins proved 
to be too heavy and inconvenient and were relegat
ed to the vaults of banks and to the strongboxes of 
individuals. Paper currency came into being, and 
with it a clear separation between the. evidence of 
wealth and wealth itself. The value of paper curren
cy was both· guaranteed and enforced by govern
ment. Eventually, it became inadequate to the needs 
.of private individuals and businesses, and personal 
checks came into use. Checks are twice removed 
from wealth itself, but one can still touch them and 
carry them in his own pocket. They are still a tan
gible evidence of wealth. 

We are now at the threshold of a further step 
away from tangible wealth, in our financial transac
tions. With the same computer system serving 
banks, stores, business organizations, and private 
individuals, we will have available a more conven
ient form of implementing financial transactions. It 
will no longer be necessary to mail. bills and return 
cbecks. Yet; each individual will always be able to 
have a current accounting of his financial affairs and 
to authorize payments by simply pressing a key. 
However, will people be willing to accept the reply 
of a computer system as evidence of their wealth? 
We think so; given time. But we are also mindful of 
the fact that many people around the world are still 
unwilling to accept personal or even travelers' 

checks, some don't trust banks and hide currency in 
their homes, and some refuse to accept anything but 
gold and silver coins. 

UNEMPLOYMENT 

Much has been written about unemployment that 
computer automation has caused, and may cause in 
the future. An answer often given is that computer 
automation wilt create more jobs than it will elimi
nate. It has been said too that a good man will al
ways find a job, and in any case our affluent society 
will surely provide a more than adequate livelihood 
for the jobless. We think such statements miss the 
mark. The economic aspects of unemployment are 
only part of the problem. Work is not only a way of 
making . a living, it is also the channel through 
which one contributes to his family and to society 
as a whole. Without a job one loses his self respect 
and the respect of those around him. This is partic
ularly true when the job has been lost to a machine. 
In our present society, not only must one work to 
be happy, but one must also feel that he is contribut
ing through some special skill of his own. Compet
ing with a machine is difficult and frustrating, and 
so is the acquisition of new skills. The most dis
tressing aspect of unemployment is common to the 
forced retirement of the man who is still physically 
and mentally fit. Peeling useless in an active society 
is a sad lot indeed. 

Perhaps we can devise better ways of educating 
people to meet the demands of a changing world 
and enable them to learn new skills as older ones 
become obsolete. Perhaps our job-centered society 
must change many of its present attitudes. In any 
case, neither of these alternatives seems likely to 
provide the whole answer. Women have long been 
faced with "early retirement" to the household, 
which holds few satisfactions for many. Some wo
men compete with men for jobs effectively; many 
more spend much of their creative effort in service, 
social and community or government. Many take up 
art or music or sports. When all routine and per
haps some nonroutine data collection and proc
essing tasks are performed by computers, many 
men may have to make similar adjustments. Al
ready our economy is service-oriented. The U.S. 
Office of Business Economics estimates that today 
55 percent of U.S. jobholders are in service indus
tries. The decline in manufacturing jobs began in 
1953, but has not produced the expected unemploy-
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ment because of an explosive increase in service 
jobs. Certainly, this is a hopeful sign, but an effort 
is needed to make a wider range of service jobs so
cially acceptable. 

It has been said that many, perhaps a majority, of 
people in our society are incapable of anything ex
cept routine work. We are unwilling to accept this 
as a basic premise. Experience shows that people 
have vast resources, both intellectual and otherwise, 
which can be brought to the surface by appropriate 
means. We share the enthusiasm of Dr. George Gal
lup in the vast potential' of people, as yet 
undeveloped. 1 The limitations we see today in the 
crystallized part of our population are probably 
more a result of their past experience than of their 
basic abilities. One particularly impressive piece of 
evidence comes from the several high school curric
ulum revisions undertaken since the middle 1950's. 
Children are now being taught in high school what 
their parents or older brothers and sisters were 
taught as sophomores in college. Typically, it has 
been found that children can be taught almost any
thing; the limitations lie in teachers who have diffi
culty in overcoming their past. The rem.arkable 
progress in high school education came from mas
sive efforts in both subject matter and pedagogy. 

Similar efforts are underway in continuing educa
tion and retraining programs. These are vital to 
solving the problems of people and machines. 

CONCLUSION 

We do not pretend to have answers to the many 
questions raised here. While we have opinions 
which tend toward the optimistic, we take for 
granted that the new resources, among them com
puters, will be abused as well as used. We believe, 
however, that abuses (namely those uses which rob 
us of opportunity and individuality) will be recog
nized as such, for computers can affect our ethics, 
creeds, or standards only slowly compared to tech
nological change. Preservation of these will, as al
ways, depend upon the thoughtful and conscientious 
action of individuals and institutions. In the end, 
exploitation of computers for the benefit of society 
hinges upon two pivots: education, and responsible 
considered action by those of the technical commu
nity able to exert some influence. 
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STRUCTURE AND DYNAMICS OF MILITARY SIMULATIONS 
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The widespread use of military simulations as a 
tool for predicting and evaluating systems opera
tions has led investigators to ferret· out the generic 
structure underlying the construct of such simula
tions. Although a good deal of success has been en
countered in this effort, it is evident that only a 
start in this direction has been achieved thus far. In 
this discussion, we will indicate where the state-of
the-art rests today and attempt to point out,further 
areas of investigation where new inroads may exist. 

Many of the concepts presented herein, emerged 
during the development of the MILITRAN pro
gramming system. The codification of these con
cepts within the MILITRAN system provides a 
facile means for developing and implementing mil
itary simulation programs by utilization of the 
MILITRAN programming language. 

A military simulation will be viewed in sequel 
as a war game oriented towards digital implemen
tation in which the rules of play are set forth 
in advance. Inasmuch as the rules of play may pro
vide for a random device for determining the out
come of each individual move in the game, the 
result of play is generally not deterministic. 

In the development of military simulation pro
grams, one can discern many structural and dy
namic features which are generic. We will highlight 
these features and illustrate means of organization 
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which provide for the representation of military 
situations. 

To begin, a simulation program is composed of 
many phases. Of prime importance is what we call 
the Simulative Phase and it is that program phase 
concerned with the implementation of the system 
dynamics. The function of the Simulative Phase is 
to determine and record the state transitions which 
a system undergoes with the passage of time. 

A critical entity in the Simulative Phase is the 
notion of an event. An event is that entity which 
triggers an interruption in the current state of a sys
tem and causes a state transition. There are many 
facets to the notion of an event, and in what fol
lows, we shall examine a number of these. 

First, an event within a digital simulation pro
gram is represented by a vector whose components 
shall be termed variants. One such variant is the 
event time and it is that time (in the system) at 
which the event will be evaluated to determine its 
effect upon the system (if any). From this latter 
remark, it is implicit that in referring to an event, 
we are referring to a "future" event or of an entity 
that only has the potential to interrupt the system. 

Another variant which is germane to an event is 
the event type. The essence of this variant is to in
dicate the manner in which the system is altered 
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when a state transition occurs. The remaining vari
ants are generally modifiers of the event type. 

The Simulative Phase of a simulation program 
may then be viewed as a stochastic process which 
examines each potential event in a time sequential 
order and alters the system state as dictated by the 
event type variant (and its associated modifiers) . 

In order to view this stochastic process more 
closely, we must divert the discussion momentarily 
and remark about the representation of a system. 
The parameters used to represent a system may be 
categorized into two relatively distinct kinds of 
quantities. First, there are parameters of one kind 
aggregated into data arrays which provide the 
essential characteristics of the objects within the 
system. Then there are the potential interruptions 
(or events) to which the system can give rise ( as 
provided by the event variants). 

As the stochastic or simulative process is carried 
out, in other words, as each event is examined in 
time sequence, one of two things may happen with 
each event. Namely, either the examination results 
in an actual interruption of the system or, . on the 
other hand, the potentiality of the event is not real
ized, that is, no interruption- of the current system 
state occurs. 

Random selection is usually an essential feature 
in determining whether event realization does or 
does not occur. Of the various means available for 
the sampling process, it seems that the utilization of 
the "pseudo" random number device is most preva
lent and effective. Inasmuch as knowledge relating 
to such devices is so well disseminated, we shall not 
dwell upon the sampling process itself. 

To' reflect a change upon a current system state 
when an event is realized, there is of course a mo
dification of the system representation. This modi
fication of system status may either be within the 
data arrays, or, of more significance, within the po
tential . events which could result from the current 
system state. In other words, the realization of the 
current event may either rule out the potential of 
existing "future'" events, or may create new events 
which have the potential to be realized. 

Again, essential to the representation of a system 
is the aggregation of potential events. The organiza
tion of this aggregate is achieved by means of se
quencing the event vectors into an event list. Ac
tually, in practice, this organization is usually 
achieved by utilizing more than one event list. For 

example, it is quite common to provide one event 
list for each event type and the advantages achieved 
by this subdivision are quite numerous. One im
mediate advantage is that the event type variant is 
no longer necessary, that is, the event type is impli
citly determined by the list in which the event 
vector is located. A second advantage is in the 
simplification of determining the next event in time 
sequence to be examined. A third advantage is that 
events of the same type generally have the same 
number of variants. Thus, the separate event lists 
are homogeneous within themselves which allows for 
more convenient organization. 

The choice for subdividing the events into sepa
rate lists as illustrated above is far from arbitrary. 
There is actually another advantage achieved by 
this particular separation which penetrates much 
more deeply into the theory underlying the con
structof simulation programs. Namely, as hinted at 
earlier, events of the same type alter the system 
state in somewhat the same manner. The state tran
sitions which thus result from events of the same 
type are determined by a common program entity 
which is termed a Submodel of the Simulative 
Phase. We then have for each event list (or, equiv
alently, for each event type) an associated Submo
del. Each Submodel is a procedure and the collection 
of Submodels together comprise the system dynamics. 

Depending upon the nature of the system which· 
is being simulated, the interdependencies between 
the Submodels can be and usually are quite com
plex. The variety and complexity of these depen
dencies have thus far prevented investigators from 
abstracting and exhibiting a global theory of the 
dynamics underlying the simulative process. This 
problem area is one of current concern in behalf of 
advancing the present state-of -the-art. In restricting 
the simulation problem to military situations a cer
tain amount of· progress has been achieved in this 
direction. 

In the development of military simulations with
in the framework just outlined, generic features 
emerge in a special manner. For example, the ob
jects within the system may be organized into cate
gories such as: 

• Sensing devices 
• Weapons 
• Launches 
• Targets 
• Sources of tactical control 
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• Platforms (which are the centers of associa
tion for sensors, weapons, launchers, etc.). 

These object categories are in turn related to cer
tain generic event types such as detection events 
identification and/or classification events, launch 
events, and damage assessment events, to name a 
few. Not only is each object category related to a 
generic event type variant, but even further, the sys
tem dynamics related to these events may be ferret
ed out in a systematic manner. 

Enumerating the "Generic Submodels" would be 
too extensive for the context of this discussion. 
Ho,,:ever, as an illustration of generic system dy
namICS, one would have the realization of a detec
tion event perform: 

( a) the removal of the current detection event 
from the event lists since its potentiality no 
longer exists; 

(b) the creation of a potential identification 
and/or classification event· 

( c) the creation of a potentiall~st target event. 

Such a generic modification would then provide the 
state transition resulting from detection realization. 

Up to this point, we have only singled out the 
Simulative Phase of the simulation structure. Actu
ally, one may view the total simulation structure in 
five phases; namely, 

1. the Input Phase which transfers input para
meters to the simulation, 

2. a preprocessing phase which precomputes 
data required by each pass through the 
Simulative Phase, 

3. an Initialization Phase which generates the 
initial system state, 

4. the Simulative Phase as described above 
and finally, ' 

5. the Output Phase which generates or dis
plays the outcome of simulation. 

Inasmuch as the outcome of the Simulative Phase 

is dependent upon random phenomena, one could 
usually desire many passes in order to provide bet
ter quantitative estimates of the expected outcome. 
Obtaining as many passes as desired is automati
cally achieved by alternately implementing the Initial
ization and Simulative Phases. 

In this discussion, we are only able to touch upon 
those features of significance which comprise the 
structure of military simulation. We may sum up by 
noting that from the consideration of many specific 
military simulations, one can distill those common 
features of significance. The study and codification 
of these significant features should provide the 
proper guidelines for the programming organization 
and language of military simulation. 
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INTRODUCTION 

The data processing application to be described 
here might be regarded as a somewhat elementary 
one by those facliliar with computer technology, 
i.e., most of those present. However, it is presented 
as an example of an application of data processing 
technology to a field in which most of the data 
gatherers are unfamiliar with the heights to which 
the computing art has been raised in its short life
time. 

It is very difficult for the physician scientist to 
learn how he can use modern computing technolo
gy, because he is, due to his medical education, 
(typically) lacking in mathematical knowledge or 
engineering knowl~dge. Another factor militating 
against his use of computer technology is the lan
guage barrier, more bluntly, the jargon. The physi
cian has his own jargon, indeed, the process of 
medical education is primarily the learning of the 
medical language. Probably a smaller proportion of 
the effort in the computer field is directed toward 
semantics, yet, an individual armed only with a 
good understanding of the jargon could, with the 
assistance of an engineer, make significant advances 
in the application of data processing technology to 
medical research. 

The following study is accordingly presented, not 
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as an earth-shaking advance in computer technolo
gy, but rather as an effort to improve communica
tion between the two disciplines of medicine and 
computer science. 

First we present a discussion of the symbols, de
finitions, and lung model employed in the work. 

o 

V (t) = flow rate of gas at mouth. 
o 

V (t) also equals the rate of change of lung 
volume 

o 

V (t) > 0 represents inhalation. 
o 

V (t) < 0 represents exhalation. 

F (t) represents the CO2 concentration in the 
gas at the mouth. 

o 

for V (t) > 0 F(t) ~ FI (t) i.e., inhaled con
centration. 

o 

V (t) < 0 F(t) ~ FE (t) i.e., exhaled con
centration. 

FA (t) represents the alveolar concentration of 
CO2• 

We use a two compartment model of the lung. 
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Compartment 1, The Dead Space. 
This is purely a region of gas transport. 
There is no exchange. Its volume = V D. 

Compartment 2, The Alveolar Compartment. 
This is a region only of gas exchange. 
There is no transport. 

This compartment is assumed to have no concen
tration gradients. When gas is exhaled, there is 
some mixing of gas from the two regions, but the 
first portion of the exhalate represents dead space 
gas, the last portion represents alveolar gas. Thus 
we have the following curve of concentration versus 
time for carbon dioxide in the exhaled gas: 

Alveolar C02 
Concentration ~ c 

o 
n 
c 
e 
n 
t 
r 
a 
t 

o 
n 

Dead Space CO2 ~ 
Concentration time 

End of exhalation 

Thus sup [FE(t)]=FA(t) 
and in! [FE(t)]=FI(t), since the dead space gas 

is simply the gas inhaled on the last breath, and left 
unchanged. (The inhaled gas is usually considered 
to be of constant composition during any given inhal
ation.) 

VE C02(n) =volume of C02 exhaled on nth 
breath. 

VI C02(n) =volume of CO2 inhaled on nth 
breath. 

Obviously, V E C02 (n) = 

nth breath 

VI CO2 (n) = 

nth breath 

I Vet) FE(t) dt 

I V (t) F I (t) dt 

The minute volume, the average rate of gas move
ment out of the lung, can be mathematically defined 
as 

MV= I t 0 ° IV(t) I dt 
T 

The tidal volume V T is the volume of gas moved out 
of the lung on a given breath. 
The alveolar volume V A is the volume of gas moved 
out of the alveolar compartment on a given breath. 
Obviously, 

Similarly, we can define the alveolar ventilation rate, 

T 
I VA 

AV=O 
T 

Since the C02 concentration in the dead space is 
F I and its volume is V D, the volume of C02 exhaled 
from the dead space = V D X Fl. 

And, volume of C02 exhaled from the alveolar com
partment = V A X FA. 

V EC02 = V A • FA + V D • Fl. 

If FI = 0, a common case, then 

VA= V~~02. 

If FI # 0, then 

VEC02 = VA • FA + (VT - VA) • Fl. 

But V T • FI = VIC02. 

VA= VEC02- Vr C02 
FA - Fr 

These two formulae for V A are known as the Boh 
formulae. We will now discuss the processing of the 
above data. 

This paper discusses an improved version of two 
systems previously reported. An attempt has been 
made here to perform the· various operations in the 
appropriate (analog or digital) section of the equip
ment instead of doing them all in the "analog" sec
tion. 

EQUIPMENT 

The system used consists of two transducers, spe
cial purpose analog computing equipment with 
digital read out and digital computing facilities. 

The transducers are (a) a pneumotachograph 
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(Fleisch), strain gage (Statham PM 15) and ampli
fier (Statham CA 9-10), and (b) an infra-red car
bon dioxide analyser (Godart). 

The computing equipment consists of 25 . opera
tional amplifiers, some with chopper stabilization 
(G.A. Philbrick Researches, K2PA and K2W) and 

Computation (Fig. 1) 

From the pneumotachograph, strain gage and 
amplifier system a signal arises representing the in
stantaneous flow rate of the patient's exhalation or 
inhalation. A small sample (approximately two li
ters per minute) is taken from this stream and 
passed through the sampling head of the carbon 
dioxide analyzer from which is obtained a signal 
proportional to the carbon dioxide concentration in 
the gas stream (which is lagged approximately 300 
ms). To synchronize the two signals, the "flow" 
voltage is delayed by an equal amount. This is per
formed using a (Fig. 2) modification of the Pade 
approximation devised by Dr.P. D. Hansen. The 

+X 

Delay· T : capacitor';;P 

ISO MS time delay (suggested by P.O. Hansen) 

flow signal is rectified and integrated thereby giv
ing the volume exhaled for that breath. The flow 
signal and the carbon dioxide signal are multiplied 
and integrated and this integrand for each breath 
represents the volume of carbon dioxide exhaled per 
breath. The peak exhaled or end-tidal carbon diox-

a multiplier (GAP jR, K5M). Plug-in units for the 
amplifiers were fabricated by the author from mod
ules (K3). Control circuitry was synthesized from 
digital modules by Tech-Serv (B.R.S.). Read-out 
equipment is by Hewlett Packard, and· the digital 
computer is a Control Data Corp. 160 A. 

READ-OUT 

Arterial carbon dioxide tension 

Alveolar carbon dioxide concentration 

Inhaledcarbondioxiqeconcenlration 

Volume of carbon dioxide exhaled 

Tidal volume 
Per breath ' 

Alveolarventilationfanatomicl 

Alveolar ventilation (physiologic) 

Anatomic dead space 

Physiologic dead space 

Alveolar dead space Idifferenceol D5(AJ.nd D5(Physl 

Minute volume 

Rate of carbon dioxide excretion 
Per minute 

Anatomic alveolar ventilation rate 

Physiologic alveolar ventilation rate 

Alveolar-arterial difference of C02 concentration 

ide tension is obtained using a peak follower tech
nique and the inhaled carbon dioxide from the in
verted curve in the same way. These peak followers 
are reset after being read out on each breath. A 
constant voltage is integrated for the period of the 
breath to give a measure of the time taken for that 
breath. All five quantities are placed on memory 
circuits· at the end of each breath. The integrators 
are reset and computation recommences. 

FIG.3: CONTROL CIRUITRY 

Contact Closure --- -(From Analog Unit) 

Control Circuits (Fig. 3) 

These consist of a series of digital modules by 
Tech Serv (B.R.S.). The input pulse to this system 
is obtained from a voltage crossing detector and re
lay on the analog unit. This then initiates a pulse 
train in the digital system which proceeds through a 
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series of one-shots of variable delay time, each one 
of which is triggered by the trailing edge of the 
pulse from the preceding one shot. The time detays 
are adjusted to the appropriate values. The first one 
shot operates the relay which connects the integra
tors to the memory circuits. (A) The second one 
shot is a delay to allow for closure of this relay, a 
small dead time, and then operation of the second 
(shorting) (B) relay which is operated from a 
third one shot. Another one shot is used to provide 
a suitable delay between readout of the first chan
nel (FA CO2 ) and reset of this unit. (Relay C). 

Calibration 

Calibration of this equipment is rather complex 
due to the large number of functions performed and 
every attempt is made to cross-check during cali
bration. The carbon dioxide analyzer is calibrated 
with gases of known chemical composition. Its re
sponse to these is linear to within plus or minus 
Ilmm pC02 at 760 mm barometric pressure. The 
pneumotachograph, strain gage and amplifier sys
tem is calibrated by passing oxygen through a flow
meter which delivers a known amount of gas for 
any particular position of the rotameter. Stability 
and linearity of this system are excellent, the only 
aspect requiring frequent adjustments being the zero 
level which is sensitive to positional changes of the 
transducer. The ability of the system to record ac
curately the volume passing through the pneumota
chograph is tested by comparing the computer out
put with a volumeter and spirometer. Agreement 
here is excellent. ± 3 percent. Stability and accuracy 
of the integrators is tested with a sine wave of 
known dimensions and again here reproducibility 
and accuracy are better than 2 percent. 

Finally the system is tested by the simulation of 
a dead. space. Calculation of dead space is the most 
revealing calibration statistic of the machine be
cause the dead space represents the differences be
tween two fairly large values, namely the tidal vol
ume, and alveolar ventilation, which only differ by 
about 20 percent. Consequently errors in these 
quantities are reflected in an extreme fashion in the 
dead space calculations. Therefore a homogeneous 
carbon dioxide mixture is flushed through the pneu
motachograph to simulate a zero dead space. Re
sults of this typically indicate an average mean dead 
space determination of the order of 5 cc for a total 

volume of 500 cc passed through the pneumotacho
graph. Artificial dead spaces of 40 and 95 cc have 
been constructed. Average of the mean of 10 deter
minations for the 40 cc dead space was 41.6 cc in 
one instance and in another 45 . Average of the 
mean of 10 determinations for the 95 cc dead space 
was 97 in one instance and 92 cc in another. These 
results lead us to have some confidence in the abili
ty of the equipment. On the other hand, this confi
dence can only be maintained if calibration is con
scientiously and frequently performed. 

Readout 

A multiplexing device connects the five memory 
circuits to a digital voltmeter sequentially. The di
gitized values are then printed or punched out. The 
first system, the printing system, is a slow speed 
unit consisting of a multiplexing device (Dymec C 
2900 A) a digital voltmeter (Hewlett-Packard 405 
CR) and printer (Hewlett-Packard 561 B). This 
system can read out five parameter in approximate
ly 2.5 seconds. This speed is adequate as long as we 
do not have to have an observation on every breath. 
(If the readout sequence is not completed the inte
grators are merely reset and computation recom
mences. The integrators are not connected to the 
memory units in this situation). 

The other system is faster and consists of a simi
lar stepping switch type of multiplexing device 
(Dymec C 2901 A) which connects the memory 
circuits through a 5-space digital voltmeter with a 
10 ms sampling time, (Dymec 2401). The output 
of this is put on a punched paper tape by a teletype 
unit (BRPE-ll). This latter system is of course 
much faster and will read out 5 parameters within 
approximately 7 /10 of a second. This latter format 
is also much more convenient as it can be read di
rectly into the digital computer (CDC 160 A). 
With the printing system data must be transferred 
onto cards, which is rather tedious. 

Programming 

Several programs are then available to us. The 
first program simply removes the scale factors used 
in the analog equipment and punches in the conven
tional units. Several types of manipulation are per
formed upon the scaled data of which a few exam
ples are as follows. 
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We might desire a plot of alveolar ventilation 
rate against end-tidal carbon dioxide tension. This 
type of plot is useful in studies of the sensitivity of 
the respiratory center and the effect of drugs upon 
it. It is usually necessary to smooth this plot. The 
technique employed is to average the ventilatory 
rates over five breaths. Similarly the end-tidal car
bon dioxide tension is averaged over five breaths 
(each tension is weighted by the time of the breath 
to obtain a meaningful average). This type of plot 
has been used by us extensively in assessment of the 
depressant effects of narcotics. 

Another typical problem is determination of the 
relationship between tidal volume and alveolar ven
tilation. The latter is determined by the use of the 
Bohr formula a~ove. This is a fairly elementary 
program and a plotting routine is incorporated here 
also to avoid the tediousness of plotting the large 
amount of data. 

Using the formula for the case when the inhaled 
concentration of C02 is not zero, we must compute 
the net output of C02 for each breath, as the denomi
nator for the previously derived formula: 

VA= VEC02 - V IC02 

FAC02 - F IC02 

For this case the analog equipment is adjusted to 
compute the product of the concentration signal and 
all the flow signal, rather than the rectified signal. 

By an obvious adaptation of the above program 
we can plot the net rate of CO2 production against 
time for any time interval of interest. Such a plot is 
of interest because this parameter indicates the over
all rate at which blood is returning from tissues in a 
normal metabolic state. A sharp drop in CO2 output 
would indicate that the rate of return blood to the 

heart was reduced or that there had been a severe 
metabolic disturbance. Such information could be 
useful for an anesthesiologist during a difficult pro
cedure. 

Comparisons between the partial pressure of CO2 
in the arterial blood and in the lung gases are of 
interest inasmuch as any great differences reflect 
inefficiencies in the lung as an exchange device. True 
comparison is not usually made directly, but rather 
the 'physiological alveolar ventilation" is determined. 
This somewhat empiric parameter is the result of 
replacing the FA in the Bohr formula by Fa, i.e., the 
fractional concentration corresponding to the partial 
pressure of C02 in arterial blood. Comparing the 
volume so obtained with the "alveolar ventilation vol
ume" V A, defined in the introduction, allows us to 
express the inefficiency in terms of a volume of the 
lung (referred to as the alveolar dead space = V A 

(phys.) - V.4.) which receives an adequate blood sup
ply but an inadequate gas supply. 

It would be easy to extend the above techniques 
to obtain many other parameters of respiration, of 
interest to the respiratory psychologist and the clin
ician, such as the timed vital capacity, one second 
expiration, etc. 

CONCLUSION 

Techniques are outlined for rapid data processing 
of respiratory parameters. It is suggested that these 
techniques are much more efficient than the classi
cal techniques of chemical analysis, etc. Much more 
data is obtained and the maximum number of par
ameters can be calculated from an indivdual experi
ment. It is suggested that we can have a fruitful un
ion of medicine and data-processing technology. 
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Although computers are currently being used pri
marily for rapid processing of data, there is little 
doubt that computer-processed information will 
be a requirement in providing management with 
timely and accurate data for evaluation, analysis, 
and as an aid in decision making. At the top man
agement level, decisions are concerned with direct
ing the organization and providing means of assur
ing its survival. To achieve maximum effectiveness 
at the operating level, plans and policies must be ap
plied to the available resources, subject to specified 
constraints and risks. However, there is generally 
insufficient information for these decisions, and 
they often cannot be structured as a set of proce
dures. But, most important, policy decisions are 
based on a blend of intuition, experience and emo
tion. 

Looking more specifically at the management 
control process, measurement, reporting, evaluation, 
decision rules, and feedback are susceptible to com
puter processing. However, the decision criteria, 
plans and objectives are still subject to human judg
ment. At the operating level, where the physical 
processes in a system are applied, there is the high
est opportunity for computer application. Numerous 
examples exist of automated data processing, essen
tially in production and inventory control and ac-
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counting. Examples of decision rules applied to 
physical processes can be found in the Journal of 
Operations Research, Management Science, and 
Journal of Industrial Engineering. The interesting 
fact, however, is that in all of these instances of au
tomated data processing, supervisors are still . re
quired to deal with the workmen who actually oper
ate the processes. Specific data processing activities 
can and have been automated, yet management still 
performs the basic decision functions. 

THE USE OF COMPUTER SIMULATION 

In view of the intricately complex nature of large 
business systems, it is difficult to evaluate new 
management concept or system designs. Direct ex
perimentation poses almost insurmountable prob
lems due to disruptions, uncontrolled results, length 
of time required, and possibility of costly mistakes. 
Computer simulation, on the other hand, has been 
shown to provide a suitable methodology to study 
business system behavior under a variety of condi
tions, and provide a means for analysis ofsimulta
neous interaction of the many system· variables to 
yield valuable insights. In view of its capability of 
rapid interrogation of system performance, simula-
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tion is becoming an integral part of "real time sys
tems."1 

Computer simulation can be considered as an at
tempt to model the behavior of a system in order to 
study its reaction to specific changes. The simula
tion model is seldom an exact analogue of an actual 
system. Rather, it is an approximation of continu
ous time dependent activity. If the properties and 
elements of the system are properly defined, then 
the tracing through by the computer of the simulta
neous interaction of a large number of variables 
provides the basis for studying system behavior. A 
model of the system indicates relationships which 
are often otherwise not obvious and has the capa
bility of predicting system behavior which results 
from changes in system design or use of alternate 
decision rules. 

For many years engineers have used scaled mod
els to simulate system response. The armed forces 
have used exact duplicates of operating systems for 
training. There have been laboratory studies which 
can be considered similitude or an attempt to dupli
cate reality in a laboratory environment. This has 
been extended to the use of management games 
where people interact with· the output of a computer 
and make decisions on information received. Com
puter simulation has been directed toward the use 
of models of the behavior of a system so that the 
results correspond to the problem being studied. 
Abstract mathematical models, on the other hand, 
are used for problems which correspond with reality 
to a sufficient degree to produce useful solutions. 

Not only has simulation increased in use as a 
means for studying and understanding new problem 
areas, but it has a number of distinct advantages. 
Once a simulation model is completed, the time for 
experimentation is considerably reduced. The cost 
of simulation models is now being reduced to the 
point where for larger problems it is an extremely 
economical tool. The fact that all the work is done 
in a computer rather than a laboratory or actual op
erating environment provides better experimental 
design and control. The ability to explain the simu
lation model in terms of a real problem is a far 
more useful tool than some of the analytic tech
niques which cannot be described to management 
or the potential user. 

PROBLEMS IN SIMULATION 

Although simulation has many advantages, one 

should not overlook the difficulty involved in devel
oping a model, programming it on a computer, and 
utilizing the results. Although computer simulation 
has been used for a number of years, there are still 
many pitfalls that must be avoided. One of the 
greatest difficulties is that of developing a suitable 
model. Another is the use of computers in the sim
ulation process which poses a number of problems, 
including computer programming, search tech
niques, data storage and retrieval, function genera
tors, etc. The computer programming problem has 
in many instances proven to be a major stumbling 
block. 

In recent years there have been a number of ap
proaches taken to minimize the programming prob
lem. One is the development of models to study a 
specific area, such as Job Shop Simulation.2 Using 
this type model, the user is required to provide ap
propriate data and a description of the facility to be 
studied, and the computer program needs little modi
fication. A similar approach has been taken in the 
Gorden General Purpose Simulator. 3 A somewhat 
more general approach to this problem has been 
tackled by the use of the DYNAMO Compiler,4 in 
which a set of equations is submitted to the com
puter, which in turn compiles these and generates a 
computer program. Therefore, once the model is 
completed, no further programming is required. As an 
alternative to writing directly in machine language, 
a simulation language has been developed called 
Simscript. 5 Once the model is written, no further pro
gramming is required. The Simscript language has all 
the flexibility of computing language but much of 
the simplicity of a special purpose approach. Quick
script6 and programming by questionnaire7 are ex
tensions of this approach to developing useful simula
tion languages. Thus, depending on the type of prob
lem being undertaken, it is possible to use a variety 
of approaches to obtain a computer program. Sev
eral of the computer manufacturers have developed 
standard programs which are readily available and 
require no further computer programming effort.8 

A second problem is in the area of experimental 
design. Considerable effort is often expended in an 
attempt to obtain information and is often done in 
an inefficient manner based upon poor input data. 
It is therefore necessary to consider computer simu
lation as an equivalent to a laboratory experiment. 
Before any simulation is undertaken, areas of pay
off or urgency should be established and the feasibil
ity of completion of the project with estimates and 
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budgets should be provided. When defining the 
problem, there should be careful observations and 
correct statements concerning what is being studied 
and discussions held with experienced personnel. 
Preliminary approaches or brainstorming should be 
undertaken in order to attempt to define solutions 
to the problems being studied. Organization of the 
data, the use of sample vs. exhaustive representa
tion, and the use of statistically designed experi
ments should all be incorporated. This becomes 
particularly important when trying to state on a rig
orous basis the comparison of one system design to 
another. Simply because a problem is run on a com
puter does not mean it is either valid or statistically 
significant. 

A number of fairly significant techniques have 
been developed for analysis and evaluation of data. 9 

Some of these are referred to as Monte Carlo sam
pling or importance sampling. In these techniques 
the data are handled in such a way as to minimize 
the amount of data required and to maximize the 
information that can be derived from the manipula
tion of the data. In many applications the use of 
analysis of variance or regression analysis is very 
important. It is necessary in evaluating the results 
of a simulation to have the appropriate criteria and 
measures of system performance. These, of course, 
do not depend on the simulation but rather on the 
user. 

The problem of modeling is important since the 
results of simulation are no better than the model 
used. A model provides a formal statement of sys
tem behavior, in symbolic or mathematical form. 
The model should be constructed so that the param
eters, variables, and forcing functions correspond to 
the actual system. The parameters should include 
properties which are sufficient to define the behav
ior of the system; whereas the variables are the 
quantities which describe the behavior for a given 
set of parameters. The forcing function provides the 
stimulus, external to the system, which causes the 
system to react. For example, job orders which en..;. 
ter a production system cause men to work, ma
chines to run, queues to form, etc. In this way, job 
orders become the forcing function for the system. 
Whatever particular form is used, a model provides 
the frame of reference within which the problem is 
considered. 

A model need not duplicate actual conditions to 
be useful. The model should be designed to predict 
actual behavior resulting from changes in system 

design or application of new decision rules. Predic
tion implies an understanding of the manner in 
which the system reacts; that is, being able to speci
fy the outputs for a given set of inputs. 

Models are merely the basis for testing new ideas 
and should not become ends in themselves. The 
simpler the model, the more effective for simulation 
purposes. Tests should be made prior to model 
building to determine the sensitivity of the charac
teristics which are incorporated. Typically, certain 
key characteristics contribute the majority of the 
information to be derived from simulation. Other 
characteristics, although more numerous, do not 
contribute much to the final system design. In this 
sense, simulation can ,be considered as. sampling the 
reaction of a system to a new design. It is impera
tive, therefore, that a representative sample be tak
en, rather than an exhaustive sample. Thus, the 
number and type of characteristics to be included 
should be carefully selected.10 

The major task of simulation is reached at this 
point. A logical model, which is merely descriptive, 
is not suitable for computer simulation. The model 
must be modified to suit the particular computer on 
which it will be programmed. Factors such as kind 
of memory, speed of computation, and errors due to 
rounding must all be taken into account. Simplifica
tion is often necessary due to speed of computation 
or limitation of the computer memory. The method 
of filing information and representing time are also 
significant problems. Which data to accumulate, and 
at what point in time, often are difficult to decide 
beforehand. Thus, the program must be flexible and 
easy to change. 

As computer programming proceeds, there is 
generally feedback which provides the basis for fur
ther modification of the model. At the outset,the 
decision must be made whether to make the pro
gram general or special purpose. The type of pro
gramming changes radically, depending upon the 
end use of simulation. Modular programming which 
treats each section independently provides flexibili
ty at a small cost in computation time and storage. 
In view of the many logical relations which exist in 
systems, computer programming represents an im
portant aspect of the problem. 

SUCCESSFUL APPLICATIONS OF 
SIMULATION IN MANAGEMENT PROBLEMS 

A considerable body of literature exists covering 
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the use of simulation in various applications.ll,12,13 As 
shown in Fig. 1, simulation should be thought of as 
a continuum, starting with exact models or replica
tion of reality at one extreme, with completely ab
stract mathematical models at the other. When viewed 
in this manner, the breadth of simulation can be 
appreciated. 

EXACTNESS CONTINUUM OF SIMULATION ABSTRACTION 

Figure 1. 

The wide variety of simulation applications is 
somewhat astounding. Not only has simulation been 
extremely successful for purposes of studying physi
cal systems but it has been used for such diverse 
applications as the study of personality,14 election 
results, gross economic behavior, etc. In order to 
evaluate where simulation is most effective, it is 
probably best to categorize problems as involving 
physical and non-physical systems with high and 
low risk decision alternatives. 
As shown in Fig. 2, the area for greatest success is 
physical problems having very low risks. The poor
est applications are nonphysical problems having 
high risk or little data. This situation may change 
as the simulation technique is applied to a broader 
class of problems. 

A review of the literature indicates many successful 
applications of simulation in business.15,16,17,18,19 A 

High Risk 
Poor Data 

Low Risk 
Good Data 

Physical 
Systems 

Fa i r Resul ts Excellent Results 

Non-phys i co I 
Systems 

Bad Results Poor Results 

PROBALE SUCCESS OF SIMULATION APPLICATION 

Figure 2. Probable success of simulation application. 

publication20 "Simulation-Management's Labora
tory," based on a fairly extensive survey of simula
tion applications, shows the applicability to a wide 
variety of management problems. Some of the appli
cations include: 

Company 

1. Large Paper 
Company 

2. U. S. Army Signal 

Management Decision 
Area Simulated 

Complete order analysis 

Supply Inventory decisions 

3. Sugar Company Production, inventory, 
distribution 

4. British Iron and 
Steel Steelworks melting operation 

5. General Electric Job shop scheduling 

6. Standard Oil of 
California Complete refinery operation 

7. Thompson 
Products Inventory decisions 

8. Eli Lilly & Co. Production and inventory 
decisions 

9. E. I. DuPont Distribution and warehouse 

10. Bank of America Delinquent loans 

In another survey by Malcolm,21 the following ap
plications are described: 

Company Problem Simulated 
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1. Eastman Kodak Equipment redesign, 
operating crews 

2. General Electric Production scheduling, 
inventory control 

3. Imperial Oil Distribution, inventory 

4. United Airlines Customer service, 
maintenance 

5. Port of New York Bus terminal design 

6. Humble Oil Tanker scheduling 

7. U. S. Steel 

8. I.B.M. 

9. S.D.C. 

10. Matson 

Steel flow problems 

Marketing, inventory, 
scheduling 

SAGE Air Defense 

r~Hgo transportation 

These lists are not meant to be all-inclusive, but 
rather indicate the variety and type of problems that 
have been solved by simulation. 

THE USE OF SIMULATION FOR 
SCHEDULING JOB SHOPS 

Scheduling of job shops has long been considered 
a critical problem. Extensive work using analytic 
techniques to find a suitable solution were tried. 
However, in view of the large-scale combinatorial 
nature of this problem, no solution was found ex
cept for extremely small cases. Extensive models 
have been developed over a period of years and 
have evolved into what today is known as the Job 
Shop ~imulator. Although the computer program 
cost a large sum of money and took almost two 
years to develop, the Job Shop Simulator has been 
used successfully in a large number of companies. 
Notably, it has become an integral part of the 
manufacturing function at General Electric and has 
been used extensively in many other companies, in
cluding the Hughes Aircraft Company. 22 

The kind of decisions that can be aided by the 
use of this type of simulation are the following: 

1. Establishing required capacity in terms of 
equipment, facilities, and manpower in or
der to meet unpredictable customer de
mand. 

2. Examination of alternative types of de
mands and the capability of the system to 
respond. 

3. Examination of the inventory problem re
lating equipment utilization to cash re
quirements and customer demand. (It is 
possible to meet customer demand by 
maintaining large inventories.) 

4. Development of appropriate scheduling de
cision rules to maintain a minimum inven
tory and meet specified delivery require
ments. 

5. Study the operation of a physical facility 
through the appropriate use of forecasting 
techniques, load level techniques, sched
uling decision rules, and priority decision 
rules. 

In addition to specific decision areas, there is the 
information generated from the simulation which 
provides the basis for feedback on performance so 
that management can make decisions on the number 
of shifts to run, need for additional equipment or 
capacity, or amount of cash to maintain for ade
quate inventory. The use of this particular program 
has been extended to an operational system at the 
Hughes Aircraft Company for real time manufac
turing control. The Job Shop Simulator was first 
used to examine alternative scheduling decision 
rules. These rules, in turn, provided the basis for 
developing a supplemental computer program which 
is used to generate the factory job order status on a 
daily basis. This computer program, by application 
of priority decision rules, is used to generate new 
priority lists each day, taking into account all oc
currences for the given day. Thus, the system oper
ates on essentially a daily cycle with all information 
current and correct as of that point in time. This 
type of real time application appears to offer con
siderable opportunity for the use of simulation in 
industry.23,24 

STUDYING BUSINESS SYSTEM BEHAVIOR 

Considerable effort has been extended to develop 
models of. the total business system. Several efforts 
along these lines have been undertaken at SDC,25 
Stanford Research Institute,26 IBM Corporation,27 
and M.I.T.28 A notable example of work being un
dertaken in this area is by the Industrial Dynamics 
Group at M.I.T. which is concerned with studying 
total system behavior. The basic premise of this lat
ter simulation is that the dynamic interaction of 
system variables and information feedback leads to 
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amplification, oscillation and delays in system per
formance. The behavior of a system, then, is the 
result of desired objectives and the decision rules 
employed to carry out these objectives. Thus, where 
there is an attempt to make corrections and adjust
ments in flow rates, there is the possibility of de
lays or amplification or there may be conflicts be
tween short and long-term objectives. Forrester in 
his book on Industrial Dynamics describes a num
ber of studies that have been undertaken and de
scribes future studies of total management systems. 

In providing the means for experimenting with a 
total business system, a quantitative formulation of 
the various behavioral characteristics, component 
interdependencies, system flows and stochastic 
functions is required. The formulation is used to de
velop a simulation program which can trace the ac
tivities of the system as they change in time. In this 
way, a large number of variables can be examined 
simultaneously, without explicit knowledge of their 
interdependencies. 

A model of a business system is concerned with a 
"decision network" rather than an explicit charac
terization of the decision maker per se. The differ
ence stems from studying the information flow and 
decision rules in the system, as contrasted with 
studying the behavior of the individual. To the ex
tent that a model faithfully characterizes the behav
ior of a given business and that suitable decision 
criteria can be established, a computer model can 
generate information useful in the study of business 
problems. Further, the computer is capable of pro
viding ·summaries of the information generated dur
ing the simulation to permit evaluation of experi
mental designs or to permit useful insights on sys
tem behavior. 

The characteristic behavior of decision makers in 
response to information provides the basis for 
studies concerned with organizational aspects of in
formation flow. The density of communication link
ages among decision makers provides data which 
could be used to establish critical decision points in 
a system. Further, a communication network link
ing the managers with the operations provides the 
means for establishing feedback control loops. In a 
sense, management is linked with the resources of 
the business via information flowing through a 
communications network. Characteristics of the in
formation flow among managers and between the 
managers and the operators provides one of the bas-

ic measures of system behavior. In an actual busi
ness, much of the information generated is not per
tinent to the direct operation of the business, and 
often ipformal communication channels provide 
useful information. In a sense, the decision maker 
has surveillance over a given number of· decision 
points, which, when linked to other decision points, 
defines the underlying operational structure of the 
business. 

MODELING THE ACTIVITIES AND 
FUNCTIONS OF A BUSINESS SYSTEM 

A schematic representation of the information 
flows among various functions and activities in a 
typical manufacturing (resource transforming) bus
iness system is shown in Fig. 3. 

Central to the system is the decision-communi
cation network, which is normally thought of as the 
mariagement function. The decision network is 
linked to the resource transformation or operations 
subsystem through the various organizational levels. 
In a computer program, the simulated information 
generated would be used to execute the decisions in 
a synthetic manner. Inputs to the decision network 
include the system contraints or policies, system 
functions and environmental factors. These too can 
be represented by flows of· information via the com
munication network. 

Inputs to the operations subsystems include envi
ronmental factors, customer orders, capital re
sources, material, etc. In addition, transients or per
turbations in the operations subsystem could be 
used to introduce variability in performance. Out
puts of the system enter distribution systems, ware
houses or finished goods storage. Although there is 
considerable detail associated with the operations 
subsystem, a computer model need merely treat the 
information aspects as they interact with the deci
sion network.29 

The study of the behavior of a total system re
quires an explicit description of the time dependen
cies among the components. The primary concern 
in the model discussed here is the conversion of re
sources into goods and services. By determining ap
propriate strategies in relation to risks, it is possi
ble to control rates of change of production, work 
force stabilization, growth rate, cost-pricing, re
sponse to demand, and the relation of income to 
investment. 
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Figure 3. Activities and functions of a business system. 

Since computer simulation is used to trace the 
change in the variables across a time domain, deci
sion rules can be made functions of the state of the 
variable rather than using expected values. In this 
respect, simulation differs from dynamic program
ming or gaming strategies which depend on statisti
cal estimates as the basis for optimization. Forcing 
functions, which trigger the decision rules, must 
also be specified and are related to information 
flow in the system. 

Since system optimization involves many varia
bles, it is ·necessary to consider the many combina
torial effects. Simulation is a means for examining 
a large number of variables simultaneously. Howev
er, the solution is not unique, but provides an esti
mate of the distribution of expected system per
formance. Thus, although all the combinations 
could not possibly be enumerated, sampling results 
tend to form relatively stable· and determinable dis
tributions. 

DEFINING SYSTEM FLOWS 

Flows within the system can be separated into 
information flow (paperwork, reports, etc), materi
al flow, resource· flow, and manpower flow. Each 
has its own characteristics and is therefore modeled 
differently. 

Starting with information flow, the channels or 
network determines the destination of the informa
tion, and the transmission media determine the 
speed and message type. Information content is a 
function of the data, format, and timeliness. Trans
formation, distortion, and errors should be includ
ed, as well as the queueing effects at the decision 
points in the system. 

Material flow has received the most attention in 
simulation and operations research studies. Thus, a 
considerable body of literature exists which could 
provide the basis for modeling. Reorder rules, safe
ty stocks, value analysis, collation studies, sched
uling rules, and stocking policies have been well doc-
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umented. There are a number of additional consid
erations which might also be of interest, such as 
surge effects, queueing effects, interdependence of 
component parts, work-in-process flow rates, and 
resource utilization. 

Resource and manpower flow are more difficult 
to solve since factors external to a simulation model 
may have the major influence. Nonetheless, there 
are aspects of these factors -which can be profitably 
studied. For example, what are the cash flow re
quirements in a marginally capitalized business? 
What is the relation between demand variation and 
capacity? How does capacity and capital require
ments change with different products, number of 
shifts, skill and mobility of manpower? These and 
similar questions are readily susceptible to study 
via computer simulation. 

The internal system, in' addition to the basic 
flows, has a number of other characteristics. In par
ticular, it is necessary to structure certain behav
ioral patterns such as: 

• demand and shipping patterns 

• value distribution among products 

• variability in man-machine performance 

• learning-curve effects 

• various lead-time distributions 

Rather than attempt an exhaustive description of 
the physical characteristics of the internal system, 
the considerations discussed are intended to provide 
some measure of the complexity and difficulty in 
modeling the business system. 

There are a number of environmental considera
tions, as well as system inputs and outputs, which 
should also be taken into account in the modeling. 
The number and type of competitors, customer de
mands, vendor characteristics and legal- or civic fac-

·tors all should be specified in developing a comput
ermodel of a business. Furthermore, forecasting of 
demand, gaming strategies, competitive pricing, and 
advertising policies are, in effect, the control of sys
tem response to variable demand. Thus, for exam
ple, maintaining standby capacity in anticipation of 
orders, having a complete product line, or carrying 
large safety stock in inventory, are all means of re
sponse which are really control of the system. 

From a total system viewpoint, the availability of 
cash affects the above considerations; that is, carry-

ing large inventories may determine the plant ca
pacity required or the advertising budget. In this 
sense, cash flow permeates all aspects of system be
havior and thus affects control. Similar considera
tions enter into the make or buy question, material 
and tooling purchases, employment stabilization, 
etc. It is an explicit treatment of the many interde
pendencies which provides the basis for total sys
tem control. 

The modeling of a total business system which 
incorporates the many considerations discussed 
would undoubtedly involve numerous details. Thus, 
where possible, transfer functions or aggregations 
should be used rather than the precise flows or sys
tem characteristics. Not only does aggregation pro
vide considerable savings in modeling, but, often 
more significantly, it helps reduce the size and 
complexity of a computer program. The modeling 
is, after all, designed to answer given questions or 
explore new areas and, therefore, should be gov
erned by these considerations. 

CONCLUSION 

It is apparent from the many successful applica
tions that simulation will continue to grow in ~ im
portance and become a truly operational tool for 
management decisions. There is still a vast number 
of problems that can be tackled, ranging from the 
study of specific economic problems to total com
pany system problems.30 Because of its many advan
tages and because of the need for improved tech
niques in management, simulation appears as one of 
the most useful tools that has come on the horizon. 
There is still much required in the way of improved 
modeling, reduced cost of programming, improved 
outputs, etc. However, none of these problems is 
unsurmountable and the evidence is quite clear that 
there are continued improvements on all fronts. 
Thus, we can expect to see the use of simulation as 
a normal part of business operations in the not too 
distant future. 
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Within the past dozen years or so, the computer 
has made itself felt in every aspect of our society. 
One hundred years ago, it was the Industrial Revo
lution which wrought profound changes in the eco
nomic and social fabric of the western world. To
day there is an upheaval of comparable force and 
significance in the so-called Computer Revolution. 
Indeed, Isaac Auerbach has characterized the inven
tion of the computer as being comparable to that of 
the steam engine in its effects upon mankind. He 
predicted that the computer and its application to 
information processing "will have a far greater con
structive impact on mankind during the remainder 
of the 20th Century than any other technological 
development of the past two decades."1 

To cite but one example, the so-called informa
tion' explosion has affected all areas of knowledge, ' 
scientific and humanistic alike, making analyses 
both increasingly complex and time-consuming. 
During much of the century, knowledge is estimated 
to have doubled every ten years, and journals are 
proliferating at the astounding rate of over three 
per day. An overriding problem, or challenge, if 
you will, is the integration of this new knowledge 
into the existing world of scholarship as well as the 
dissemination of these new ideas and concepts 
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within the intellectual community. at large. Here 
again, one turns inevitably to the computer. In fact, 
we have now reached the point where even an an
thropologist speaks about the heritage of a culture 
being stored in physical objects such as books and 
computer tapes! More important, however, is the 
existence of data processing and information retrie
val as a new and useful tool of tremendous poten
tial; a fact that must be recognized and accepted by 
the nonscientific community of scholars. 

Let us consider for a moment the principal ad
vantages of the computer to humanistic scholarship 
in general. Its incredible speed allows the scholar to 
accomplish in a short time what would otherwise 
take him a whole lifetime of drudgery to accom
plish. Its storage or memory constitutes an infinite
ly more reliable repository than the mind of' the 
proverbial absentminded professor. Its great accura
cy is completely dependable even when untold 
mountains of statistical data require handling. And 
final'ly, its automatic operation is not subject to the 
vagaries of human fatigue, periods of interruption, 
or even of mood. To the humanist, I would suggest 
the most important . of these advantages is the im
mense saving of time gained by the use of comput
ers. It is useful to remind ourselves that the Oxford 
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English Dictionary took some 80 years to complete 
with several generations of editors. Jakob and Wil
helm Grimm's monumental Deutsches W orterbuch 
began to appear in 1854 and wasn't completed until 
1960. Similarly, the manual indexing of the com
plete works of Thomas Aquinas (approximately 13 
million words) would take 50 scholars 40 years to 
accomplish, but thanks to the computer, the total 
time required by a few scholars working mainly in 
Italy was less than one year.2 A concordance to the 
Revised Standard Version of the Bible was pro
duced on a high-speed computer within a period of 
several months as compared to the King James 
Concordance of the last century which took 54 
scholars 10 years to accomplish.3 The deciphering 
of the Mayan hieroglyphic script by Russian mathe
maticians, we are told, took only 40 hours of com
puter time for which a human being would have 
needed thousands of years to accomplish.4 All this 
leads to the inevitable conclusion that there are a 
number of scholarly tasks-call them the more tedi
ous clerical chores, if you will-that in this age de
mand the use of the computer. Certainly, one can 
no longer think of concordances, dictionaries, or 
projects involving masses of statistical data and 
numerous cross-correlations without bringing into 
play the tools of data processing. Thus, the comput
er's power can be harnessed to relieve scholars in 
the humanities of some of their most burdensome 
activity while at the same· time providing their re
search with the benefits of greater speed and accu
racy. More important by far, however, are the more 
creative uses of data processing as an aid in such 
areas as stylistic analysis. More of this in a mo
ment. 

Unfortunately there is a great deal of suspicion, 
fear, and ignorance on the part of the humanist 
concerning the computer and its legitimate role in 
scholarship. Some see the machine as eventually 
making decisions that man himself should make. 
Others find sinister implications in every technolo
gical advance, maintaining the attitude that the hu
manities and technology don't mix. Finally there 
are those who, ignorant of mathematics, fear they 
are totally and forever incapable of comprehending 
the computer and therefore dismiss it. Although no 
one would suggest burning .at the stake the maker of 
a computerized concordance, as was almost the fate 
of the first person to make a complete concordance 
of the English Bible in 1544, the computer-oriented 
humanist does face some formidable oppositions. 

Ironically, while the impact of the computer, 
as stated at the beginning of this paper, may be 
compared to the influence of the Industrial Revolu
tion one hundred years ago, there is also an analo
'gous reaction among many highly placed scholars to 
so-called computer-oriented humanistic research. 
Not that any misguided intellectual will physically 
attack "the dark Satanic mills," as did their Luddite 
ancestors, but we do have their counterparts today 
who, kowing little of the computer's advantages and 
limitations, damn the machine as not only useless 
but dangerous to the world of scholarship. To some 
of the older, more conservative scholars, putting 
lines of verse into a computer seems profane, like 
putting neckties into a Waring Blender, as one pro
fessor remarked. More seriously, there are academi
cians who place no value on the scholar's time, like 
the professor who, when told that data processing 
would vastly speed up the production of an English
Old Iranian dictionary, went so far as to say that 
what is not needed is a computer but rather enough 
money for someone to be completely free for sev
eral years so he could sit down and do the necessary 
work. A Scottish minister and mathematician sent 
an article on the u~e of the computer in biblical 
scholarship to a publisher. It was returned promptly 
with a notation, "I do not understand this, but I am 
quite sure that if I did understand it it would be of 
no value." One scholar said a few years ago that, 
"If you have to use a computer to answer a ques
tion, it is not a question which I would care to 
put." Fortunately for the humanities, things are 
changing rapidly. 

Let us reveal the negative position for what it is 
as we now examine some representative prgjects 
within various humanistic disciplines which have 
made extensive use of the computer as both \an im
portant and productive tool of scholarship. 

In the field of archeology, for example, the com
puter is of use in studies of shards or· fragments of 
artifacts found in the diggings of ruins. In this con
nection, Jesse D. Jennings of the University of Utah 
suggests constructing a matrix of coefficie~ts of 
similarity of one artifact to another, and thus. to all 
others within a given corpus of objects. The two 
basic problems are classifying shards as to their cul
tural provenance and reconstructing whole artifacts 
from broken fragments. Jennings has a body of 
some 2,600 shards, each of which has 50 attributes. 
Obviously, this represents an astronomical number 
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of comparisons to make by hand, and yet for a 
computer it is a relatively . simple task.5 

Mr. Dee F. Green, a research associate at the 
University of Arkansas Museum, is using codes and 
statistical techniques in correlation studies of burial 
lots from Eastern and Southwestern Arkansas, and 
in detailed analyses of ceramic, decorative, and 
technical complexes and traditions exhibited in cer
tain areas of the state. Following the maxim that 
pottery is "the essential alphabet of archeology," a 
code was. developed for reducing the individual at
tributes of some 4000-odd pottery vessels to a num
erical system for computer handling. Once the ma
teriat is classified, the various attributes. will be 
sorted into discrete categories and then statistical 
techniques applied to lump the attributes into sta
tistically meaningful groups, or ceramic types. 

Dr. Paul S. Martin and his associates at the Chi
cago Natural History . Museum have been using the 
IBM 7094 computer at. the University of Chicago 
to process archeological data from the southwestern 
United States.6 By this means they have discovered 
spatial clusters of both pottery types and pottery 
design elements within a pueblo site. It was found 
that the clusters themselves tended to be localized 
in certain well-defined areas of the site. In addition 
it was found that certain room-types contained spe
cific clUsters of artifact types. In each case, the 
computer was given frequencies or percentages of 
different artifact or shard types by provenance. The 
variables were then correlated and submitted to fac
tor analysis. This allowed comparison of room
floors with one another to find out which rooms 
were similar and which different. This information 
was then interpreted in terms of. room function, so
cial groups, chronology, and so forth. 

As can readily be seen, such projects as these in
volving many thousands of artifacts, each with 
numerous attributes, as well as the dozens of corre
lations between them, really demand the use of 
computers to handle the sheer mass of information 
and to derive really meaningful results therefrom. 

Historians have faced a new impetus for the ap
plication of social science research techniques to 
the analysis of historical political data. The Inter
University Consortium for Political Research at 
Ann Arbor is amassing a vast amount of raw data 
transferred to tape storage on American political 
history. In addition to the formation of a data repo
sitory committee, with close ties to the American 
Historical Association, is the development of an 

automated data retrieval system to make available 
to historians and politicat scientists alike large bod
ies of information. The American Historical Asso
ciation has set up an Ad Hoc Committee on the 
Collection of Basic Quantitative Data of American 
Political History under the chairmanship of Profes
sor Lee Benson. Election statistics on presidential 
campaigns from all counties in the United States 
from 1824 to the present, roll-call votes during each 
congressional session since 1789, data on federal 
court cases, and census and ecological information 
are all being computerized. Further materiat await
ing such attention exists in the fields of agriculture, 
business statistics, industry, religion, economic, so
cial, and cultural data, foreign trade, employment, 
tax data, and housing. The amount of such unpub
lished information available is staggering. For but 
one year in American history, the U.S. Census Bu
reau Catalog includes over 5000 computer tape 
reels of data in the above-mentioned fields. 

The Inter-University Consortium held a training 
program during the past three summers consisting 
variously of elementary courses such as "Introduc
tion to Survey Methods," and "Cases in Survey Re
search," an eight-week Graduate Pro-Seminar in 
Behavioral Research Methods and Quantitative Po
litical Analysis, and advanced seminars conducted 
by both the Department of Political Science and the 
Survey Research Center of the University of Michi
gan. To the best of my knowledge, this is the first 
and only attempt within a given field of humanistic 
endeavor to provide computer training for its con
stituents. 

One of the earliest historical studies involving 
the use of data processing was the study of Massa
chusetts shipping during the early Colonial period 
made by Professor Bernard Bailyn of Harvard 
University.7 Faced with the problem of sketching a 
realistic picture of the subject, he came upon a per
fectly preserved shipping record for an I8-year pe
riod containing information not only about the ves
sels registered but about the owners as well; in 
other words, material of early American social and 
economic history. Bailyn not only summarized and 
tabulated this data in comprehensive fashion but 
used the opportunity to assess realistically thepos
sibilities of applying machine techniques to histori
cal material and to explore the problems of proce
dure. 

The shipping register in question consisted of 
1696 entries, each giving information about a ves-
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sel and the people who held shares in it. A total' of 
4725 punched cards were produced which contained 
all the information available in the register on the 
ships and their owners. Codes were developed not 
only for the purely quantitative data but for such 
qualitative information as names of people and 
places, vessel types, occupations, building sites, etc. 
Although numerous problems were encountered 
along the way, it is significant that Bailyn's book 
closes with the statement that only with these tools 
and techniques was the analysis of the register pos
sible at all. 

Two other computer-oriented historical research 
projects involve content analysis. Professor Richard 
Merritt of Yale University is studying the develop
ing symbols of the American sense of community or 
identity as reflected in five colonial newspapers. 
Professors Robert North and Ole Holsti of Stanford 
University are analyzing the origins of World War I 
by means of computer techniques for scanning and 
reporting the appearance of themes and relation
ships in a large body of historical' material pertain
ing to decision-making during the 1914 crisis. 8 

"Communication is at the heart of civilization," but 
since students of international relations are consid
erably more restricted in access to data than most 
social scientists-direct access to foreign policy 
leaders is severely restricted-one method is to as
sess their attitudes, values, and assessments by 
means of a computer content analysis of political 
documents at times of crisis. North and Holsti con
structed a dictionary of words, such· as abolish, ac
cept, or armaments. They are sought out in histori
cal documents and changes in style are noted as the 
historical crisis grows in severity in terms of verbal 
effectiveness, strength or weakness, and activity or 
passivity. By this means one can explore for exam
antagonism and the degree of cohesion between the 
pl'e the relationship between the level of East-West 
Soviet Union and China. 

Professor William Aydelotte of the University of 
Iowa has used the techniques of data processing to 
aid in the study of the voting patterns in the British 
House of Commons in the 1840's.9 During Sir Rob
ert Peel's ministry, Commons debated and voted on 
a number of substantial political issues. There were 
divisions as well on various aspects of religious 
questions, the army and fiscal reform. There exists 
an unexploited source in the so-called . division lists 
giving information on all the men in Parliament so 
far as they voted on the issues in question. The 

complexity of this material, the richness thereof, 
the fact that most members of Parliament did not 
vote consistently "liberal" or "conservative" on all 
issues made this entire decade of Parliamentary his
tory ripe for computer analysis; a project which re
sulted in a total of 6441 four-fold tables each of 
which was punched on a separate IBM card. 

Certainly the most well-known use of computers 
in the field of literature is the construction of ver
bal indices. Briefly, there are two forms: first, a 
simple alphabetical' list of text showing the frequen
cy or location of the words or both; and second, a 
textual concordance showing all the words of a giv
en literary work not only alphabetically but in con
text as well. In this form, each word appears as 
many times as there are words within the parameter 
arbitrarily chosen for it along with the relevant pas
sages of which it is apart. Such a concordance is 
not only of immense value to a literary scholar from 
the point of view of time saved, but is useful' also to 
those in other disciplines employing literature as 
source material. For example, concordances to the 
poetry of American authors have been issued since 
1959 by the Cornell University Press. In the case of 
the works of Matthew Arnold, the lines of verse 
were punched on IBM cards, one line per card, to 
which was added the line number and page number 
from the standard edition and variance from other 
collations. A separate title card was punched and· 
inserted before each poem. The entire deck of some 
17,000 cards was printed out and transferred to 
magnetic tape. A computer-generated concordance 
program was then made and ultimately a tape pre
pared with all the significant words of Arnold's 
texts arranged in alphabetical' order along with their 
locations. A final print-out formed the basis for the 
published index.10 

In similar fashion, Professors Alan Markman and 
Barnet Kottler of Pittsburgh and Purdue respective
ly have prepared a computer concordance to five 
Middle English poems, ·perhaps the best known of 
which is Sir Gawain and the Green Knight. ll Dr. 
John Wells of Tufts University is making a compu
terized word-index to the Old High German glosses 
cribbed between some 140,000 lines of medieval 
Latin text. 

Professor Alice Pollin, working with the Com
puter Center at New York University, produced a 
guide, or cr~tical index, to the 43 volumes of the 
Revista de Fi/ologia Espanola from 1914 to 1960, 
cross-indexed by authors, subject matter, and book 
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reviews. A total of nearly 900 pages was the result, 
the product of approximately 60,000 punched cards. 
The printout sheets were reproduced photographi
cally and issued as a bound volume.12 In this way a 
methodology for the machine-indexing of periodi
cals was established. 

However, it is in the area of textual analysis that 
computer-oriented research in literature shows ex
ceptional and exciting promise for the future. The 
massive comparison of text where there are several 
or even dozens of sources presents an almost insur
mountable problem for the scholar. To compare in 
complete detail as few as 40 manuscripts might take 
the better part of a lifetime. It is this type of activi
ty that cries for the use of data processing tech
niques. 

Perhaps the first such effort was the study 
by Professors Mosteller and Wallace at Harvard 
University, and actually continuing over a period of 
years, to solve the authorship question of 12 disput
ed Federalist Papers. 13 Briefly, literary styles of 
Madison and Hamilton were identified, then 
matched with the style of each of the disputed pa
pers. Having found such factors as sentence length, 
vocabulary and spelling to be of no help (the two 
authors were remarkably alike), it turned out that 
differences in the use of so-called key function 
words-particularly those of high frequency such as 
from, to, by, upon, also, and because - served to 
pin down authorship of the papers in question. 
From a number of computations, Mosteller and 
Wallace found that most of the disputed documents 
were written by James Madison. But consider for a 
moment the problem of Dr. John W. Ellison,.a bib
lical scholar from Massachusetts who, for his doc
toral dissertation, studied 309 manuscripts of the 
Greek New Testament, then went on to prepare a 
complete concordance of the revised Standard Ver
sion of the Bible. Fortunately, he used a computer 
to assist him in these gigantic tasks. However, there 
are over 4600 known manuscripts of the whole or 
part of the New Testament, with cross-fertilization 
in the copying process that has been going on for a 
thousand years or more. Here the use of the com
puter to determine the interrelationships of the 
manuscripts of the text is mandatory. 

Scholars at other universities, while not faced 
with such vast problems of correlation, are .actively 
engaged in similar work. For example, a definitive 
edition of the works of John Dryden is being pre
pared under Professor Vinton Dearing at U.C.L.A. 

with textual coUation aided by the use of the 
computer.14 This grew out of an existing corpus of 
240,000 manually indexed cards. Variant texts of 
the final section of Henry James's novel Daisy Mill
er are· being collated by computer in a pilot project 
at New York University under Dr. William Gibson. 
This, too, is d~signed to aid the· editor faced with a 
number of varying manuscripts or printed editions 
in making up an Urtext or variorum edition by 
supplying him with a printout indicating the identi
fies between the versions, sentence by sentence. 

Dr. James T. McDonough of St.Joseph's College 
has demonstrated with the help of a computer that 
Homer's Iliad indeed exhibits the consistency of 
one poet.15 His study was in part a response to the 
persistent question of whether one poet wrote the 
epic or if it consists of separate, short ballad-type 
songs by separate authors from various times and 
places aU strung together. McDonough prepared in 
systematic fashion a metrical index of the Iliad, not 
by spellings but by the rhythmic function of all 112,-
000 words in their 157 metrical varieties. Once the 
rhythm of each of the 15,693 lines was coded and 
punched, an IBM 650 machine was able to isolate 
the individual words, sort, count, and print out the 
resulting wordlists in a matter of hours. 

Mrs. Sally Sedelow of Saint Louis University has 
described the use of the computer for a rigorous 
description and analysis of pattern attributes of 
text. 16 She mak~s the observation that while . col
teagues in linguistics have been making major con
tributions to such fields as machine translation and 
information retrieval-and in return, gaining im
portant insights into the structure of language
those in literature have offered very little and 
gained very little. The aim of such studies is to dis
cover the differences between writers' styles and to 
shed light on the changes of an individual author's 
style over a period of time. Known as "computa
tional stylistics," these techniques deal with the 
parameters of literary style in terms of its consti
tuent elements: rhythm, texture, and form. 

Turning now to the field of musicology, Profes
sor Harry B. Lincoln of Harpur College is using the 
techniques of information retrieval to compile a ca
talog of musical incipits (that is, brief melodic 
quotations of the first six to eight notes of a com
position), of the entire body of 16th century Italian 
frottole, a known body of some 600 polyphonic 
compositions. Since the possible permutations and 
combinations of the beginning notes of such pieces 
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are almost infinite, both as to pitch and rhythm, 
such brief quotations represent unique identifica
tions of the compositions from which they are tak
en. First the incipit is translated into alphanumeri
cal form by means of a code which can activate a 
photon printer. This is a device with a high-speed 
rotating disk containing about 1400 characters (in 
this case, musical), a light source, lens, and photo
graphic film. This code consists of even numbers 
for the spaces, odd numbers for the lines of the mu
sical stave, an H for a half note, a W for a quarter 
note, and so forth. One punched aperture card with 
a 35mm photograph of the particular score set in 
the right-hand side holds information such as the 
composer, title, voice part; accession or serial num
ber. The second card contains the proper sequence 
of note representing the incipit coded for the pho
ton device. When computerized, this code causes 
the printer to raise or lower its focus to the proper 
line or space and, when the correct note or other 
symbol is in place, shoot a beam of light through 
the proper aperture in the disk exposing the film at 
that time with the desired musical symbol. At the 
same time, a computer program extracts from this 
coded information the intervalic order or melodic 
profile of the particular incipit. This, then, can be 
compared to other musical sources for instances of 
borrowings by one composer from another, or from 
other works of the composer himself. 

A second major area is the use of data processing 
as an aid in the analysis of the structure of music. 
For example, Professor Bertram H. Bronson at Ber
keley has used computer techniques in the study of 
folk-songsY By means of punched cards, he coded 
the important elements of folk tunes including 
range, modal characteristics, prevailing time signa
ture, number of phrases, the nature or pattern of 
refrains, final cadences, and so forth. In this way, 
an entire corpus of folk song material can be rec
orded both fully and accurately. The v~rious ele
ments can then be analyzed for statistical patterns, 
comparisons, or indeed subjected to any other query 
consistent with the data. 

A computer can also serve to test hypotheses 
through simulation and model's. Dr. Allen Forte of 
Yale University is applying machine analysis to 
help provide insights regarding the structure of the 
atonal music of Arnold Schonberg. The structure of 
so-called pre-twelve-tone (or nontonal) music is 
still somewhat of a mystery. Mr. Forte has found 
the traditional nonmachine forms of analyses lack-

ing and has stated that a structural description of 
this music would be virtually impossibl'e without 
the aid of a computer. If I understand the outline of 
his program, he is formulating a basic working 
theoretical hypothesis based upon linguistic and 
mathematical models for musical structure, develop
ing an analytical method to explore his ideas by 
means of the computer; he then will test the result. 

In quite another application of computer tech
niques in the analysis of musical styl'e, a program 
can be written to search for meaningful patterns 
and relationships which; because of the number and 
quality of variables, might remain obscured and un
discovered if left to the human brain. From these 
very patterns, the researcher can then develop new 
and significant hypotheses. An interesting example 
of this is the proposal of Professor Jan La Rue of 
New York University to evolve machine language 
to describe stylistic phenomena in 18th century 
symphonies, thereby permitting complex correla
tions and comparisons far beyond the reach of the 
hand tabulation. Just as the literary scholar has 
quantified style in terms of form, rhythm, and te~
ture, the musicologist has devel'oped a set of guide
lines for the purpose of stylistic analysis, breaking 
down the various musical elements into sound, 
form, harmony, rhythm, and melody. This tech
nique is admirably suited to computer procedures 
when one would wish, for example, to determine 
whether or not a symphony attributed to one com
poser was actually written by him. By this tech
nique, the stylistic attributes of a questionable or 
anonymous symphony could be compared for cor
respondences with the stylistic quantification of a 
given composer's known symphonies stored within 
the computer memory. 

Finally, I must mention the Musical Information 
Retrieval project at Princeton University being car
ried out under the direction of Professor Lewis 
Lockwood. This involves a programming language 
for an IBM 7094 computer by means of which mu
sical data· is stored in the computer for interroga
tion and manipulation.18 Information representative 
of each note in its complete context and relation
ship within the score is coded manually and then 
stored in anticipation of the questions to be asked. 
The pilot project at Princeton involves a stylistic 
investigation of the 22 masses and mass movements 
of the Renaissance composer J osquin des Pres. In 
its broader aspects this type of program enables the 
scholar to search for and locate reliably all elements 
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within a given category, such as accidentals, or all 
examples of a particular intervalic progression. In 
addition the computer program can serve as a check 
on discrepancies between the original manuscript 
and later editions or transcriptions. 

The projects I have just described to you repre
sent but a few highlight from the growing roster of 
scholars using the computer in humanistic research. 
A list of such activities published last spring by the 
American Council of Learned Societies reveals well 
over a hundred individuals involved with the tools 
of data processing.19 When compared to the state of 
the sciences versus the computer some 10 years ago, 
the prognosis for the future is good indeed. 

In a lecture at M.LT., entitled, "The Computer 
in the University," the prediction was made that in 
a few years the computer may have settled immuta
bly into our thought as an absolutely essential part 
of any university program in the physical, psycholo
gical, and economic sciences. On the basis of what 
I have said, I think the time has come to amend 
that statement to include the humanities. Further
more, within a short time, I believe a knowledge of 
data processing will become part of the "common 
baggage" of research tools and techniques required 
of every graduate student in the liberal arts. I am 
even tempted to go a step further and state that 
with the increasing number of courses in program
ming being offered at our universities the time may_ 
come when some students in the humanities may be 
as fluent in programming as in writing English 
composition. Certainly, the computer is fast becom
ing an important and indispensable research tool 
for faculty and students alike. 

The value of such an acquaintanceship can be 
seen in the case of a professor of art history and 
archeology at an eastern college. Describing himself 
as probably the man on campus "least likely to ben
efit from a computer," he took a short summer 
course at the college computer center. Later, in re
porting on the instruction, he said, "The course pro
foundly affected the thinking of all of us. This is 
the important thing-much more important than 
the machine itself. Of course we know that it is the 
brains behind the machine that make these miracles 
possible. Nonetheless, it is a weapon of such power 
that all intelligent men and women everywhere 
should know the kind of things it can do. Once we 
know that, we can devise ways to make use of it." 
In this connection it is useful to bear in mind 
Alfred North Whitehead's remarks 40 years ago 

that "the reason why we are on a higher imagina
tive level than the 19th century is not because we 
have finer imagination, but because we have better 
instruments-which have put thought on to a new 
level." 

Let us, therefore, see the computer as a means of 
liberation, freeing the humanist scholar from the 
time-consuming operations of the past; a tool pro
viding him in rapid fashion with a proliferating ser
ies of sources in the form of statistics, collations, 
printouts, cross-references, frequency counts and 
hypothetical models upon which he may build a re
search of new dimensions and complexity. Viewed 
in this light, it is a device the potentialities and ap
plications of which we cannot afford to ignore. 
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THE STRUCTURE AND CHARACTER OF USEFUL 
INFORMATION-PROCESSING SIMULATIONS 

Louis Fein 
Synnoetic Systems 

Palo Alto, California 

INTRODUCTION 

I am curious about how the brain and nervous 
system work. So I became interested in the proper
ties of useful models-especially of useful informa
tion-processing models of psychological and physio
logical processes. 

In my professional pursuits as a sometimes con
sultant, writer, lecturer, teacher, and designer in the 
computer field, I have attentively and respectfully 
listened, observed, read, and conversed about mod
els that were inspired by the desire of the modelers 
themselves to know how the brain works. I dogged
ly sought for a particular bit of knowledge of how 
the brain works that was gained by a researcher pri
marily because he used a putative model of the 
brain-as opposed to knowledge about the brain 
gained by direct observation and measurement not 
predicted or suggested by a model. For years, I 
have been singularly unsuccessful in finding any 
neural net models or digital computer program 
models (i.e., the information-processing models I 
am familiar with) whose use led to a particular ex
perimentally verifiable piece of knowledge of how 
the brain works. I have found l'Ots of information 
about the models themselves; but not about the 
brain. 

277 

I am neither a biologist nor a psychologist. I am 
merely an interested observer who has paid diligent, 
respectful, yet disciplined attention to this matter. 
For a while, I blamed my own ignorance and lack 
of understanding of psychological and physiological 
processes and of the terminology used to describe 
them, for my inability to find what professed brain 
modelers were learning about the brain itself. But I 
began to doubt that it was I who was at fault, as I 
became startlingly aware of the various defensive 
postures taken by professed modelers of psychologi
cal and physiological processes whom I pressed in 
correspondence and in conversation to tell me what 
they now knew, that they didn't know before, about 
a particular psychological or physiological process, 
now that they had a working model; or even what 
kind of knowledge they expected to gain with the 
use of a model that was not yet developed. The re
sponses were largely evasive, irrelevent, defensive, 
offensive, insulting to my person and my ancestry; I 
was accused of wanting to deprive honest research
ers of their livelihoods; I was ignored, or referred 
to the vast literature on the subject; I was admon
ished to be tolerant and to give this young disci
pline a chance to develop. Some didn't want to dis
cuss it at all; others sent me reprints. My Freudian 
analysis of such responses was orthodox; when a 
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simple question to a patient elicits a noisy and 
boisterous defense, then there is something wrong 
with the patient, not the questioner. My conclusion 
was that a great deal of psychological and physio
logical modeling was both aimless and fruitless. I 
started to wonder why neural net models and digital 
computer models were not as fruitful for gaining 
verifiable knowledge about psychological and phys
iological phenomena, especially of the brain and 
nervous system, as mathematical, computational, 
and physical models have been for learning about 
physical phenomena such as wave motion, aircraft 
behavior, and circuit operation. Indeed, it is rare to 
find an article or talk on psychological or physio
logical modeling without the author's observing that 
since models have helped the engineer and physicist 
to gain knowledge in his subjeCt then models should 
be expected to help the author to gain knowledge in 
his. 

So I wondered in what ways the fruitful models 
are different from the fruitless ones. I assumed that 
the reason modeM'rs in psychology and physiology 
were having little luck was that their models didn't 
have whatever characteristics models should have to 
suit the modelers' purposes. I tentatively formulated 
the question: what are the characteristics of an in
formation-processing model that would suit it to the 
purposes of a psychologist or physiologist interested 
in some aspect of the brain and nervous system. I 
reasoned that once I knew the character of useful 
models, I would find that unsuccessful modelers 
were using models that did not have certain of these 
required characteristics. I want, therefore, to pres
ent what I think the structure and character of the 
total modeling process must be in order for it to be 
potentially useful in psychology and physiology. 

Let me give a summary of my viewpoint before 
systematically presenting it for your consideration. 

Recall that we are focusing attention both on 
what physiological or psychological knowledge, if 
any, a model can lead to, and of what value such 
knowledge is to a particular practitioner-a sur
geon, psychiatrist, public health specialist, internist. 
The utility of a model depends on how helpful it is 
in gaining new knowledge; the value of new knowl
edge obtained with the help of a model depends on 
how much more effective, efficient, and economical 
it makes a practitioner in doing his job. In this 
context, "A is a model of B" would be an incom
plete statement. One must at least say that A is a 

potentially useful model of B, if the use of A can 
help the simulator predict or suggest new knowledge 
in B (expressed in a suitable form and language) 
that could be of some value to some practitioner. 
But even these three elements (1) the model A, 
(2) the modeled system of interest, B, and (3) the 
new knowledge hypothesized by the simulator about 
B, are not enough. Another element is necessary in 
the modeling process if one is to measure its utility, 
i.e., how helpful it is in gaining new knowledge. In 
order to test these hypotheses-which are predic
tions or suggestions of answers to particular ques
tions of the simulator, or solutions of his problems, 
or resolutions of issues-the simulator must design 
and carry out valid and feasible experiments on the 
system of interest, B, with the use of appropriate 
instruments and apparatus together with procedures 
for interpreting the results of the experiment. With
out such experiments the hypothesized new knowl
edge remains conjecture; the simulator cannot give 
the practitioner confirmed answers to his questions, 
problems, or issues; hence he can't say anything 
about the utility of the modeling process. 

The crucial issue of whether or not an experi
ment can be both designed and carried .out to test 
the hypotheses suggested by the model A about the 
system of interest, B, usually depends on whether 
the controllabl'e parameters and variables in the 
model A have correspondences in what is modeled, 
B; whether the corresponding parameters and vari
ables in B are accessible to the investigator so he 
can control and vary their values; and whether the 
investigator has instruments suitable for observa
tion and measurement of B. 

Without being able to show correspondences be
tween controllable parameters and variables in the 
model and in what is modeled, the model is not 
even potentially useful as an aid to gaining new 
knowledge; without instrumentation, even if one 
showed the correspondences, an experiment could 
perhaps be designed but not carried out to realize 
the potential utility of a model. 

The experiments may be gedanken experiments, 
i.e., experiments that the simulator would design 
and carry out if he knew the correspondences and if 
he had the instruments. Thus, a potentially useful 
and valuable modeling process has four necessary 
elements: ( 1) the model, (2) the modeled system 
of interest B, ( 3 ) hypothesized new knowledge 
about B, (4) the experiment. 
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THE STRUCTURE AND CHARACTER OF 
A SIMULATION 

I have used the word "model" to introduce these 
notions because it is a familiar term. In other 
fields, practitioners use terms such as: mapping, 
analog, similitude, isomorph, homomorphism, and 
emulation, often as synonyms of model. But as with 
the term, model, it is often unclear what these terms 
mean. Because the word model is so ambiguous, its 
use will be limited in what follows. To avoid ambi
guity and misunderstanding, I start with a statement 
of what I am not here talking about; then a statement 
of what I am interested in; then some definitions. 

I am not here interested in the process whereby 
an investigator is motivated to design, construct, 
and use a system that behaves or is otherwise simi
lar to another system-an investigator who, after 
acknowledging his debt to it for its inspiration, has 
no further interest in the other system. This species 
of "model" is not what concerns us. I emphasize 
this distinction because I find that it is often not 
made and, if made, misunderstood. If I ask a man 
who has announced that he is simulating, say, the 
cognitive process, what he has learned thereby 
about the cognitive process, and he responds with 
what to me is a non sequitur, by telling me what a 
wonderful new computer language he has invented 
or what clever things his program can do, then this 
is an instance of the kind of misunderstanding I am 
trying to avoid by making clear and careful defini
tions of important and distinguishable notions and 
objectives. 

Nor am I here interested in models that serve as 
pedagogic vehicles for educating an investigator and 
presenting to him knowledge already in hand. 

I am here interested in the process whereby an 
investigator designs, constructs, and uses a certain 
kind of instrument (heretofore variously called 
model, or mapping, or analog ... ) with the aid of 
which he forms hypotheses about knowledge of par
ticular objects, phenomena, properties, functions, 
events, or thoughts of interest in his field, and who 
has designed feasible and valid experiments to test 
these hypotheses (verify or find them false). 

The process must have all four interdependent 
constituents: (1) the investigator, who (or which) 
I will call the simulator; (2) the instrument which 
(or whom) I will call the simulate; (3) the object 
or phenomenon, or properties, or events or thoughts 

of interest to the simulator, which I will call the 
simuland, and (4) the design of the feasible exper
iments, or the gedanken experiment, which I will 
call the experiment. The process itself, I will call 
the simulation or the simulation process. 

Note that as knowledge is accumulated in devel
oping fields, such as physiology or psychology, or 
even information processing, the simuland is rarely 
a complex system such as the ear, or the brain, or a 
computer, or the eye. It is more often a part of the 
ear, or of the brain, or of the computer, or of the 
eye. One usually constructs a simulate in order to 
use it as an aid in gaining new information, insight, 
knowledge, or understanding, about a single proper
ty, or a single function, or a single part of a subsys
tem. Only occasionally, as is the case with "laws" 
of physics, will a single simulate serve to answer 
questions about many properties, many functions, a 
complex of many parts. Thus, we speak of a simu-, 
late, useful for finding or calculating or predicting 
such things as signal' transmission modes in nerve 
fibers; or the logic design of the addressing system 
of the core memory in a computer. The simuland is 
here meant to be only that part of the simulator's 
system of interest about which he seeks knowledge 
with the aid of a particular simulate. I emphasize 
this point because I believe that speaking of "brain 
modeling," to pick only one instance, often con
fuses both the investigator and those interested in 
his work. If an investigator specifies an ambiguous 
objective for himself by saying that he is simulating 
the brain when he means he is simulating a proper
ty of a part of the brain, then his colleagues may 
misconstrue him, and they may expect results from 
him that the investigator never intended to obtain. 

To make these ideas explicit, I ask the reader to 
imagine that we have the problem of writing a 
manual on a simulation process as herein defined, 
for the preparation of a college laboratory report; or 
a proposal to a government agency; or the final re
port to a government agency; or a paper for a 
professional journal; or a graduate dissertation. The 
organization and format of such a document will 
reflect what I consider to be the necessary structure 
and character of potentially useful and valuable 
simulation processes. It will at the same time sys
tematically disclose to the reader the value, utility, 
and progress of the simulation process reported on, 
and the goals and intentions of the simulator. The 
following is an abstract of such a manual. 
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THE PREPARATION OF A PAPER 
ON THE SIMULATION PROCESS 

This manual is intended to assist authors in the 
preparation of reports, proposals, papers, articles, 
and dissertations on simulation. 

It should be understood that the specific organ
ization and format suggested herein are arbitrary. 
However, the literature on simulation is read by 
many people with different orientations and varying 
degrees of familiarity with the subject matter. For 
these people to get the most out of documents on 
simulation, they should expect the material in them 
to be presented in a consistent organization, style, 
and format. Not only does the reader benefit by the 
application of these rules, the author benefits too; 
they serve as a goad to logical, critical, explicit, and 
disciplined thinking and writing. 

A paper on a simulation process should always 
mention the hypothesized knowledge that was or is 
to be tested; to what purpose the knowledge ob
tained is being put or might be put; a description of 
the simulate, a description of the simuland, and a 
report of the design of the experiments. The empha
sis each topic receives will, of course, depend on 
the pattern of emphasis in the work itself. The 
question arises: in what order should these topics 
be covered in a paper, and what specific items 
should be covered under each topic. The following 
organization and format is suggested: 

Outline of a Report on the Simulation Process 

I. SIMULAND 

A. Statement (in the language of the simulator's 
field) of what knowledge is already verified 
or to be assumed about the structure, func
tions, properties, and theorems of the system 
of interest to the simulator - the simuland. 

B. Statement (in the accepted language of the 
simulator's field) of a specific question the 
simulator wants an answer to; or problem 
he wants solved; or an issue he wants re
solved, with the aid of the simulate and 
the experiment. This is the hypotheses to 
be tested. 

C. Acceptable form and language of the answer, 
solution, or resolution. 

II. SIMULATOR 

A. Statement of the purpose and use to which 
the new knowledge gained in the simulation 
process is or might be put - the effect, 
significance, and value of having such knowl
edge. 

III. SIMULA TE 

IV. 

A. Description in the language of the field of 
the simulate, of the structure, functions, 
properties, and theorems of the simulate. 

B. Identification of corresponding controllable 
and measurable or observable variables and 
parameters in the simulate and the simuland. 

C. The form of addressing the simulate with the 
simulator's questions, problems, or issues, 
in the language of the simulate. 

D. The procedure for deriving from the simu
late the answers, solutions, or resolutions. 

E. The correspondence rules by which question/ 
answer or problem/solution, or issue/reso
lution in appropriate form and language of 
the· simulate are transformed into what the 
simulator wants, i.e., the corresponding 
question/answer or problem/solution, or 
issue/resolution in acceptable form and 
language of the simuland. 

EXPERIMENT 

A. The design of valid and feasible experiments 
(which may be gedanken experiments) 
whose sole object it is to test the hypotheses 
of the simulate, i.e., to verify the hypothe
sized answers, solutions, or resolutions given 
by the simulate, or to prove them false. 

The form of the write-up of these experi
ments is typical of the form of the write-up 
of laboratory experiments· performed in 
school. 
(1) Object of experiment: to test the hypo-

thetical answers given in the simulate 
(2) Procedures 
( 3) Apparatus and instruments 
(4) Results 
( 5) Conclusions 

( a) Verified hypotheses 
(b) Unverified hypotheses 

(6) Unexpected results - fall-out 
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(7) Suggestions for other 
(a) Experiments 
(b) Questions, problems, issues 
( c ) Instruments 
(d) Theory 

THE UTILITY OF A SIMULATION 

The utility of a simulation will clearly depend on 
the extent to which the simulator learned what he 
wanted to learn through the use of his simulate. 

It may be noted that in any simulation, in order 
for the simulator to learn what he wants to learn, 
the simulate must bear a certain relation to its 
simuland. Suppose a simulation system consists of, 
say, a differential equation simulate from which the 
simulator can learn about properties of sta~ding 
acoustic wave patterns in an enclosed cylinder 
(simuland) and that he can perform experiments in 
which he can observe or measure correspondences 
between properties of standing waves in his simu
late and simuland. The utility of this simulation can 
be high. But if the investigator, actually interested 
in, say, properties of standing acoustic wave pat
terns in an enclosed cylinder (simuland), first hy
pothesizes a simulate of this simuland, and then 
builds a simulate of the hypothesi~ed-simulate-of
this-simuland, then he might thereby gain knowl
edge about the hypothesized but untested simulate, 
but he cannot thereby learn anything about the 
simuland. For instance, to use a digit-al computer to 
solve a differential equation presumed to simulate 
wave motion gives information about the differen
tial equation but not about wave motion. Or to 
write a digital computer program to simulate a hy
pothesized neural net model of a part of the eye will 
tell you something about the hypothesized neural 
network, not about the eye. (On the other hand, if 
the differential equation has already been well es
tablished as a simulate of wave motion, the digital 
computer can be said to give information about 
wave motion.) 

We will call a simulate of a simuland (or of a 
well-established simulate-of-the-simuland) a first 
order simulate; and the simulation process that 
includes it, a first order simulation process. We will 
call a simulate of a hypothesized-simulate-of-a-simu
land, a second order simulate; and the simulation 
process that includes it, a second order simulation 
process, and we will say that only a first order 
simulation process can have a nonzero utility. 

We can now enumerate the major characteristics 
that a simulation process must have in order for it 
to have utility: 

1. The simulate of the process must be a first 
order simulate of the simuland. To use the 
vernacular: you might learn something 
about the ear from a model of the ear; but 
you can't learn anything about the ear from 
a study of a model of a hypothesized-mod
el-of -the-ear. 

2. There must be one-to-one correspondences 
between the accessible, controllable, and 
measurable or. observable variables and 
parameters of the simulate and simuland. 

3. There must be a well-designed experiment 
for testing the hypotheses. 

I mentioned earlier that I sought the characterist
ics of an information processing model that would 
suit it to the purposes of a physiologist and psy
chologist and that once I knew the character of the 
useful models, I would find that unsuccessful mod
elers were using models that did not have certain 
of these characteristics. I have run some gedanken 
experiments of recasting into the above framework, 
papers that purport to simulate-by digital comput
er programs or by neural networks-physiological 
and psychological processes such as memory, per
ception, neurosis, and cognition. In papers using 
both of these types of information-processing simu
lations, simulators do not show one-to-one corres
pondences between accessible controllable and 
measurable or observable parameters and variables 
in the digital computer program or network and the 
organism's brain, nervous system, or other organs of 
interest. Nor do they have the instrumentation ei
ther to gain access to or to aid in controlling, vary
ing, measuring and observing these variables and 
parameters in the organisms themselves. Thus, 
without the correspondences and without experi
ments, such simulations are fruitless. 

In other instances, digital computer solutions are 
reported for sets of equations representing a net
work that was inspired by an organic process, and 
presumed to be a simulant of it. Obviously such 
third order simulations have no potential utility for 
learning anything directly about that organic pro
cess. 

Finally, I read some papers, presumed to be 
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about simutation, in which I could not locate a 
statement of what hypothesis was to be tested, nor a 
statement about what specific questions or problems 
the simulator hoped to answer, if his simulation 
was successful. These were aimless simulations. 

I would suggest to laboratory instructors, disser
tation advisers, sponsors of research who prepare 

requests for proposals and who evaluate contractor's 
or grantee's work, journal editors, teachers, and in
vestigators interested in simulation as herein de
fined, that they would find it valuable in their 
professional roles to insist that authors prepare 
their written material in an organization and format 
similar to the one presented in this paper. 



THE CATALOG: A FLEXIBLE DATA STRUCTURE FOR MAGNETIC TAPE 

Martin Kay and Theodore Ziehe 
The RAND Corporation 
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The files of data used in linguistic research differ 
from those found in other research applications in 
at least three important ways: (1) they are larger, 
(2) they have more structure, and (3) they have 
more different kinds of information. These are, of 
course, all simplifications but not gross ones. It is 
true that the files that must be maintained by a 
large insurance company or by the patent office are 
so large as to pose very special problems, but the 
uses to which the files are to be put are fairly well 
understood and their format and organization is not 
usually subject to drastic and unexpected change. It 
is also true that the data from a bubble chamber is 
interesting only if collected in vast quantities, but 
this is not the only respect in which a bubble cham
ber is a special kind of tool. A typical linguistic job 
will bring together a number of files, each very 
large by the standards of everyday computing: a 
body of text, a dictionary and a grammar for exam
ple. The grammar, if it is anything but a very sim
ple one, will contain a large number of elementary 
items of information of different kinds, each related 
to others in a number of different ways. This is 
what it means to say that the file has a lot of struc
ture. The dictionary may also contain grammatical 
codes which may consist of characters from one of 
the languages represented in the dictionary or may 
be something altogether different. If the dictionary 
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contains alternatives to which probabilities are as
signed, then these will presumably be in the form of 
floating-point numbers. This is what it is like for a 
file to contain different kinds of information. 

The notion of a catalog* was developed princi
pally with the needs of linguistic computing in 
mind. It is oriented more to the storage of informa
tion on a long-term medium, such as magnetic tape, 
than to its representation in the high-speed store of 
a computer. The elementary items of information in 
a catalog are called data. The structure imposed on 
the data making up a catalog is that of a tree-a 
hierarchy of sets of information. Let us consider as 
an example how a bibliography or the acquisitions 
list of a library-catalogs in the conventional sense 
-might be organized within this system. Each doc
ument or book has an entry in the file containing 
various items of information about it. One of these 
can be chosen as the key under which the others are 
filed. For example, the acquisition number of an 
item can serve as the key fer all information related 
to the item. Under it there will be sections for au
thor, title, journal if relevant, publisher, and date. 
In an actual application, there would doubtless be 

*The catalog system has been developed through the 
joint efforts of the Centre d'Etudes pour la Traduction 
Automatique of the Centre National de la Recherche Scien
tifique at the University of Grenoble, France, and the 
Linguistics Research Project of The RAND Corporation. 
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other sections but these will serve for the example. 
The author section must be capable of handling 
cases of multiple authorship without confusion and 
we may assume that there is provision for giving 
the institution to which each author belongs. The 
journal section will also have subsections for vol
ume and issue number. 

A pair of entries might appear as in the diagram 
at Fig. 1. The acquisition numbers of these two doc
uments are 1746 and 1747 respectively. The first 
has one author belonging to a single institution; the 

R.C.A. 
Laboratories 

S impl ification of 
Computer Programs 

8 

second has two, each belonging to a pair of institu
tions. Furthermore, the two authors of the second 
paper belong to one institution in common, but 
since a catalog must, by definition, have the form 
of a tree and not of an arbitrary graph, the institu
tion must be mentioned separately for each author. 
The first document is a journal article and there are 
therefore two nodes below the one representing the 
name of the journal; the first gives the volume and 
the second the number. The second entry is for a 
book and therefore these two nodes do not appear. 

Carnegie 
Corp Institute of 

Technology 

--

Processing: 
Similarity & 
Familiarity in 

----

Verbal Learning 

Corp 

Level 

---- 2 

1963 3 

4 

Figure 1. A portion of an acquisitions list. 

In this example, the kind of information at each 
node can be unambiguously determined from the 
structure of the tree. The nodes on level 2 all repre
sent acquisition numbers. The last three nodes under 
a given acquisition number represent title, publica
tion information, and date respectively. Any nodes 
preceding these represent authors. Any nodes below 
those for authors are for institutions. A journal ar
ticle is distinguishable by the volume and number 
nodes which are absent in the case of a book. How
ever, it is not difficult to imagine cases where rules 
of this kind would' not work. Suppose, for example, 
that the date of each edition of a book were put in, 
or that when the date was unknown, we wished 
simply to omit it. To cope with these situations, it 

would be necessary either to redesign the catalog 
structure or to label each datum explicitly to show 
the kind of information it contains. The structural 
redesign might be as follows. The names of authors 
are dropped to level 4 and their institutions to level 
5. A new kind of datum is introduced on level 3 
dominating the author names. This node has no in
formation of its own; it serves only to show where 

• the authors are to be found. A similar node could 
be inserted above the date, except that in this case 
the node would have information of its own to pro
vide for the case where the date is missing. 

The catalog system in fact requires that each da
tum be tagged with the name of the data class of 
the information it contains. This is useful for other 
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reasons than the one we have suggested. Each data 
class is, for example, associated with a particular 
set of encoding conventions. Some contain textual 
material, some floating point numbers, some inte
gers and so on. So, by looking at the class of a da
tum, we can tell not only what its status is in the 
catalog as a whole but also how to decode it. 

It is convenient to be able to describe the overall 
structure of a catalog, to the computer as well as to 
other people, in terms of data classes and the rela
tions among them. This we do by means of a map, 
which, like the catalog itself, is a tree, but in which 
the data are replaced by the names of the data 
classes. The map of our hypothetical acquisitions 
list is shown in Fig. 2. The name of each data class 
appears exactly once in the map, a fact which is 

bound up with an important restriction on the way 
catalog structures may be designed. The members of 
a given data class always appear on the same level 
of the catalog-the level on which the name of the 
class appears in the map-and they always come 
immediately below members of the same other class 
-the one whose name appears above theirs in the 
map. If two classes are shown directly beneath the 
same other class in the map, then their members 
must appear in that order in the catalog itself. 
Thus, in the example, a title may never come to the 
left of the corresponding author. Cases can arise 
where these restrictions may seem unduly severe, 
but, as we shall shortly see, powerful means are 
available for dealing with them. 

Level 

Acquisitions List 

2 

Date 3 

4 

Figure 2. Map of an acquisitions list. 

A variant has been proposed for the catalog de
sign we are using as an example in which new 
nodes would be introduced to represent sets of au
thors and sets of dates. Since we have data-class 
names, we do not need to adopt this variant. How
ever, classes of this kind, whose members never 
contain substantive information, are frequently use
ful. In other cases, no substantive information is 
available for a particular datum, but only for the 
nodes it dominates. In these cases, we speak of null 
data. The catalog system has been implemented in 
such a way that null data occupy no space whatever 
on the tape. They can therefore be used freely to 
lend perspicuity to the structure of a catalog and 
without regard to economy. In order to see how this 
is achieved, we must consider the format used for 
writing catalogs on tape. 

A catalog is reduced to linear order in the most 
obvious way. The datum at each node is written on 
tape before the data at the nodes beneath, and all 
these before nodes to its right. Thus the node at the 
root of the tree goes first, followed by those on its 
leftmost branch. The first node on a branch is the 
first to be written, followed by the nodes on its left
most branch. When a branch is finished, the one 
immediately to the right is taken next. This is the 
order arrived at by regarding the nodes as operators 
whose arguments are the nodes immediately be
neath them, and writing the expression out in Pol
ish parenthesis-free notation. 

A set of programs is being written for moving 
catalog data between high-speed core and tape. A 
blocking scheme is used for the data on tape; the 
block size is set by the user. Each datum is treated 
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as a single logical record whose size is not re
stricted to that of the physical block. Each logical 
record is preceded and followed by a link word 
which gives the lengths of the records on either side 
of it. The length of the preceding as well as the fol
lowing record is given in order to make it as easy 
as possible to backspace. Link words also contain 
certain other information of importance to the 
housekeeping of the reading and writing programs, 
but nothing of the essential structure of the catalog. 
This being the case, it is possible for a program us
ing the catalog input/ output system to make use 
only of its blocking facilities for certain purposes, 
calling on the whole system only when required. 
This plan of building the system as a sequence of 
layers, each using the facilities provided by the one 
beneath, has been followed wherever possible in the 
design. The first two words of each block are an 
lOBS control word and a FORTRAN control word. 
These are used nowhere in the current system but 
are included for reasons of compatibility. 

The first word of a logical record which contains 
a catalog datum is a datum control word. This gives 
the data class of the datum and its preceding implic
it level number (PIL). It is the PIL that enables 
the system to identify the place of null data which, 
as we have said, are not explicitly represented by a 
logical record. The PIL is defined as follows: 

1. For all data on levell, it is O. 
2. The PIL of the first datum dominated by a 

null datum is the PIL of that dominating 
null datum. 

3. The PIL of every other datum is the level 
number of the datum that dominates it, i.e. 
one less than its own level number. 

Informally, we can say that tp.e PIL gives the 
highest point in the tree encountered on the path 
from the previous non-null datum to the current 
one. Consider two adjacent data on level i of some 
catalog and suppose that the PIL of the second is j, 
where j ~ i = 1. i - j - 1 null data are to be as
sumed between these two levels j + 1, . . . , i - 1. 
Given the class of the current non-null datum, the 
classes of these null· data are uniquely determinable 
from the map. 

It is desirable to be able to write general pro
grams for performing standard operations on cata
logs without requiring that the user supply complete 
information on the structure of the catalog to be 
treated. For this reason, the map of a catalog is 

written on tape in the logical record immediately 
preceding the first datum. The map is represented 
as a simple list of data-class names paired with lev
el numbers and taken in the order we have de
scribed for the catalog itself. Thus, a class whose 
level is given as i is dominated by the class with 
level i -1 most recently preceding it in the list. With 
the name of each data class is also given a code 
showing what encoding conventions are used for the 
data of that class. 

We have noted that the restrictions imposed on 
the design of catalogs could become onerous in 
some situations if means were not introduced for 
overcoming them. We have been considering how a 
library acquisitions list might be represented as a 
catalog. But, of all the lists produced by a library, 
surely this is the least interesting. Suppose instead 
that we were to undertake to accommodate the sub
ject catalog. Most subject classifications have the 
structure of a tree to begin with, so that the job 
should be easy. One possible strategy would be to 
examine this tree to determine the length of its 
longest branch, that is, how many categories domi
nate the most deeply nested one. We may then con
struct a map with this number of levels plus 5, 
which is the number used for the acquisitions list. 
This will make it possible to put a complete entry 
of the kind considered in the simpler example be
neath the node for the most deeply nested category 
in the classification scheme. In general, the node 
for a subject heading will have two kinds of nodes 
directly beneath it, one kind for more particular 
categories under that heading and one for docu
ments which cover the whole field named by the 
current heading. The structure already set up for the 
acquisitions list is repeated once for each document 
node in the map, but with different data-class names. 

This scheme will indeed work, but it is clearly 
unsatisfactory in a number of ways. For one thing, 
subject headings will be in different data classes ac
cording to their level in the classification as a 
whole. For another, the map is unduly large and 
monotonous and liable to change when some minor 
part of the classification changes. An alternative 
strategy rests heavily on the claim made for catalogs 
that any kind of data whatsoever can be accommo
dated in a datum. If this is so, then an entire cata
log can be included as a single datum within another 
one. From here, it is a short step to the notion of 
catalogs with recursive structures. Consider the ex-
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ample in Fig. 3. The main catalog has two data 
classes of which the lower one has data that are 
other catalogs. To emphasize this, we have shown 
this node with a square rather than a circle. This 
simple two-class map is written at the beginning of 
the tape. When a subheading datum is encountered, 
the first thing it is found to contain is the map of a 
subsidiary catalog. In order that the data of this cat-

1 
Subject Catalog 

Subheadings 

(a) Mai n Catalog 

alog should be correctly processed, the tape format 
must make special provision for them. In fact, sub
sidiary catalogs are represented not as single logical 
records, but as sequences of logical records bounded 
by special markers. However, the user of the system 
need not concern himself with these details. As far 
as he is concerned, the included and the including 
catalogs can be treated in exactly the same manner. 

Date 

(b) Subsidiary Catalogs 

Figure 3. Structure of a library subject catalog. 

The subsidiary catalog in Fig. 3 is similar to the 
main catalog for the acquisitions list except for the 
addition of a single new class to accommodate a 
further level of subheadings. This again is a class of 
catalogs and their structure is exactly the same as 
that of the subsidiary catalog of which they are 
members. Fig. 4 shows an excerpt from a catalog 
built on this plan. 

Any scheme devised to fill the role for which cat
alogs were devised must be measured against three 
main requirements. 

1. It must be easy to update. 
2. It must provide for retrieval of information 

in response to a wide variety of requests. 
3. It must allow files to be organized on new 

principles as research proceeds. 

Now, the catalog system is not intended as a full
fledged information-retrieval system, but it does 
contain something of what any such system would 
have to provide. In particular, it provides powerful 

and flexible facilities for addressing data and sets of 
data. Furthermore, this addressing capability is pre
cisely what is required for an updating algorithm 
where the principal work consists in identifying the 
items of information to be treated. 

There is no obvious limit to the refinements that 
could be introduced into a catalog addressing 
scheme, and our ideas on the subject can be guaran
teed to far outpace our ability to implement them. 
Here, we must content ourselves with a survey of 
some of the simpler notions. 

It will be convenient to distinguish between the 
location of a datum and its address. Each datum in 
a catalog has a unique location which may be 
thought of as its serial number on the tape, or as 
anything else which preserves its uniqueness. But a 
datum may have an indefinite number of addresses, 
only some of which refer to it uniquely. The loca
tion of a datum will not normally be known to the 
user of a large catalog, but this is of no conse
quence provided that there is a clear method of 
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M.I.T. Birkbeck 
College 

TranslatJon 
of Languages 

Figure 4. A portion of a library subject catalog. 

specifying unique addresses. The notion of location 
is useful only for understanding how the addressing 
scheme works. 

Some parameters which are useful in identifying 
a datum are its data class, its class ordinal, its level, 
its level ordinal and its value. Data class and level 
have already been explained. The ith datum of a 
given class dominated by a single datum on the next 
higher level has class ordinal i. The ith datum of 
any class dominated by a single datum on the next 
higher level has level ordinal i. We can now de
scribe the form of an elementary address. This is a 
triple consisting either of a level, a level ordinal, 
and a value or a data class, a class ordinal, and a 
value. In either case, any member of the triple may 
be left unspecified. The following are some exam
ples: 

( 1, ,a) - The data on level 1 with value a. 
(, ,a) - All data· with value a. 
(A ) - All data of data class A. 

Informally, we are using the convention that, if the 
first member of a triple is an integre, it is a level 
number; if it contains alphabetic characters, it is a 
data-class name. 

An elementary address, like any other address, 
can be regarded as a function whose value, if de
fined, is a location or list of locations. Two other 
useful functions, descendant and ancestor, have lo
cation lists both as arguments and values. These 
are: 

Des [L] - All data dominated by the datum or 
data at L.· 
Anc [L] - All data dominating the datum or 
data at L. 

A concatenation of addresses is itself an address 
whose value is the intersection of the location lists 
referred to by each of them. This machinery is al
ready sufficient to call for data in a number of in
teresting ways. The following examples refer to the 
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catalog, part of which is shown in Fig. 1 and whose 
map is given in Fig. 2. 

Des [( 2" 1 747)] (3,2) 
The datum or data on level 3 which are sec

ond sons of data on level 2 with value 1747 
-the value in this case is H. A. Simon. 

Des [(2,1747)] (Author) 

Here, "1747" is a level ordinal rather than 
a value, but we may assume that there is 
just one entry for each acquisition number. 
This therefore refers to the authors of the 
1747th document in the file-E. A. Feigen-
baum and H. A. Simon. 

Des [(2,1747)] (Author,2) 
-This is the same as the previous example 

except that it selects the second author
H. A. Simon. 

Anc [(lnstitution"R.C.A. Laboratories)] 
-(Author. 

All authors from R.C.A. Laboratories. As 
far as we know from Fig. 1, this means only 
J. Nievergelt. 

Des[Anc[(Journal"JACM)] (2)] (Author) 
Everyone who has published in JACM. 
Anc[Date" 1964 )] (Acquisition number) 
Acquisition numbers of everything published 

in 1964. 

It is clear that other functions could be added to 
these two without difficulty. 

Addressing catalogs, some of whose data contain 
catalogs poses special problems requiring some new 
machinary for their solution. At least three new 

A 

S/r"D 
I I 
E F 

(a) Map 1 

functions, member, recursion, and catalog, are re
quired: 

Mem[L,M]-where L is an address or location 
--US-t and M is an address. The value is defined 

only if some of the data referred to by L 
contain catalogs. To these internal catalogs, 
the address M is applied to yield the final 
value of the function. 

Rec [L,M]-where L is an address or location 
list and M is an address. This permits data to 

be located in general recursive catalogs. Its 
value is a list of locations arrived at by (1) 
applying M to the top level catalog and (2) 
applying the whole function to the catalogs 
identified by L. 

Cat [L]-where L is an address. The address 
L is applied within all catalogs contained in 

data of the current catalog. The location in 
the current catalog of any catalog in which 
a datum is found meeting that address be
comes a member of the list which is the 
value of the function. 

It will be easiest to see how these work by reference 
to a specially constructed example. Fig. 5 shows 
three maps which are used in the structure· of some 
recursive catalog. Map 1 gives the structure of the 
main catalog. In this, data of classes Band C con
tain catalogs with maps 1 and 2 respectively. The 
catalogs with map 2 have one class containing ca
talogs, namely Q; class U, of catalogs with map 3, 
also contains catalogs. 

/p" /s'" 
Q R T U 

I 
V 

(b) Map 2 (c) Map 3 

Classes of data contcining catalogs 

s - Map 1 

C - Map 2 

Q - Map 3 

U - Map 2 

Figure 5. A recursive catalog structure. 
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Mem [(B),(D"x)] 
Data of class D and value x in catalogs in 

data of class B in the main catalog. 
Rec [(B), (D"x)] 
Data of class D and value x anywhere in the 

recursive system. 
Cat [( Q"x)] Des [(P"y)] 
Data in the main catalog, necessarily of class 

C, containing a catalog in which there is at 
least one datum of class P with value y domi
nating at least one datum of class Q with 
value x. 

Mem [(C),Rec [Mem [(Q),(U)],(R)]] 
-nata of class R anywhere in the recursive 

system. 
Des [Cat [(D"y)]] (E"x) 
~embers of class E with value x dominated 

by a datum (which, in this case, can only 
be of class B) which contains a catalog which 
has a datum of class D and value y. 

Rec [(B),Des [Cat [(D"y)]](E"y)] 
Same as above, but in the whole recursive 
system. 

Let us return briefly to the example of library 
catalogs. Suppose that, given an acquisitions list of 
the kind we have described, we wish to obtain an 
author index. With a conventional file on, say, 
punched cards, this would be a simple matter of 
sorting. With a catalog, two operations are in
volved. First, a new map must be designed for the 
index in which "author" occupies the level-one po
sition, and the file must be rewritten with the new 
structure. Second, it must be sorted, duplicate au
thor entries removed and their dependent nodes 
thrown together under a single author node. This is 
one of many processes known collectively as trans
formations. In general, a transformation· is any pro
cess which produces a catalog with a certain struc
ture from one or more other catalogs with different 
structures. The variety of transformations which 
could be applied to a sufficiently complicated cata
log is almost endless and the search for algorithms 
capable of carrying out anyone, provided only that 
it is specified in a terse but perspicuous notation, 
leads to theoretical and practical problems which 
would, and probably will, fill several more papers. 

There is good reason to suppose that any trans
formation can be broken down into a series of 
elementary transformations of which there will be 
only three or four types. One of these will have the 

function of decomposing a catalog into simple ca
talogs. A simple catalog is one which has exactly 
one data class on each level. If two simple catalogs 
have the same classes on the first k levels, then they 
can be merged to form a new catalog with one data 
class on each of the first k levels, and two on the 
levels below. In the same way, it is clearly possible 
to merge a pair of catalogs of whatever structures 
provided only that they have a comnion class on 
level one. If they have common classes on levels 2, 
3, etc., then the blend will be the more complete. 
Of course, before the merge can take place, it may 
be necessary to perform a sort. Now, any catalog in 
which there are n data classes which have no subor
dinate classes can be regarded as a compound of n 
simple catalogs. Many transformations can be ef
fected by decomposing the given catalog either par
tially or completely, changing the relative levels of 
the data in some of the simple catalogs, and merg
ing them together again in the same or a differ~nt 
order. 

Sorting and merging are common components of 
transformations as well as other catalog procedures 
and the overall system must clearly give them an 
important place. Since it is part of the essence of 
catalogs that they contain a rich variety of data 
types encoded according to diverse conventions, 
more flexibility is required than most sorting proce
dures provide. In particular, the encoding of the in
formation in a given data class will, in general, not 
be such that an algebraic sort on the resulting bi
nary number will give the required results. Further
more, there may be some classes in any catalog in 
which the order of the. data cannot be algorithmi
cally determined; their order may be essentially ar
bitrary, each under its own dominating element on 
the level above, or the requirement for the sort may 
be that the order of the data in the class be pre
served from the original input. To provide for con
tingencies of these kinds, the catalog merge and sort 
routines allow the user to supply a comparison rou
tine for each data class in any catalog to be treated. 
This routine takes a pair of data of the specified 
class and declares which of them should precede the 
other in the output. The routine also knows what 
the input order was and may use this in arriving at 
a result. 

Since the objects to be merged and sorted are 
trees rather than files of independent records, the 
algorithms must clearly be unconventional in other 
ways as well. However, the differences are less than 



THE CATALOG: A FLEXIBLE DATA STRUCTURE 291 

might at first appear. If each node in a catalog were 
duplicated once for each lowest-level datum it dom
inated, the catalog would take on the aspect of a 
great number of chains with a lowest-level datum at 
the foot of each. Each of these chains could then be 
treated as a single record to be sorted in a conven
tional way. Whilst it is never necessary to actually 
expand a catalog into this cumbersome form, the 
computer can arrange to retain a datum in memory 
until all its decendants are passed so that its instan
taneous view of the catalog at any moment is as of 
a chain. 

The catalog system could develop in many differ
ent ways and it is our intention that it should. For 
something so pedestrian as a filing system, it is re
markable how it has captivated the stargazer and 
the theoretician as well as the bookkeeper and the 
librarian in everyone who has worked on it. And 
these have been many. However, it is important for 
the welfare of computational linguistics that catalog 
systems or something designed to fill the same need 
should be made available soon. We have therefore 
resolved to be done with theorizing, for the present 
at least. What catalogs need is action. 





INFORMATION SEARCH OPTIMIZATIO'N AND INTERACTIVE RETRIEVAL TECHNIQUES* 

J. J. Rocchio and G. Salton 
Computation Laboratory 

Harvard University 
Cambridge, Massachusetts 

INTRODUCTION 

Automatic information retrieval systems must be 
designed to serve a multiplicity of users, each of 
whom may have different needs and may conse
quently require different kinds of service. Under 
these circumstances, it appears reasonable that the 
system should reflect this diversity of requirements 
by providing a role for the user in determining the 
search strategy. This is particularly important in 
automatic systems, where presently used one-shot 
(keyword) search procedures normally produce 
poor results. 

In an automatic retrieval environment in which 
the user may be given access to the system-for ex
ample, by means of speciat input/output consoles
this can be achieved by two principal methods: 

1. By providing automatic aids to the user in 
his attempt to formulate effective search 
requests. 

2. By using the results of previous searches to 
determine strategies likely to prove effec
tive during a subsequent pass. 

*This study was supported in part by the National Science 
Foundation under research grant GN-360. 
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In either case, the user can be made to control the 
retrieval process by asking him to furnish to the 
system information which subsequently determines, 
at least in part, the mode of operation for a later 
search. 

Several methods may be employed to aide the 
user in formulating effective search requests. 'One of 
the simplest methods consists in providing some 
kind of automated dictionary which may be used to 
display certain pertinent parts of the stored infor
mation. Thus, the frequency of use in the coUection 
of certain terms in the vocabulary can be displayed 
to allow the user to make a choice between the use 
of frequently occurring terms, if "broad" retrieval is 
desired,. and that of rarer terms if "narrow" retrie
val is wanted. Alternatively, terms related in var
ious ways to those originally included in a search 
request may be exhibited, and the user may be 
asked to choose from among these related terms in 
reformulating his request. The automated dictionary 
is then used as an aid in a manual reformutation of 
the request. 

The iterative search process can also be mechan
ized more completely by leaving the search request 
largely unchanged, but altering instead the informa
tion analysis process. In that case, the user fur
nishes to the system information concerning the 
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adquacy of a preceding search operation, which is 
then used automatically to adjust the retrieval proc
ess for the next iteration. 

In the present study, several alternative search 
optimization procedures are examined. In each 
case, the automatic SMART document retrieval 
process, presently operating on the IBM 7094 com
puter in a batch-processing mode, is used to simu
late the real-time iterative search process.1,2,3 The 
automatic evaluation procedures incorporated into 
SMART are utilized to measure the effectiveness of 
each process, and data are obtained which reflect 
the relative improvement of the iterative, user-con
trolled, process over and above the usual single-pass 
search procedure. 

THE AUTOMATIC DICTIONARY PROCESS 

In a conventional, batch-processing retrieval en
vironment, the user normally relies on his intuition 
and experience-possibly aided by published ref
erences-in formulating an initial search request. 
Once the general context has been established, the 
request must be normalized to a form suitable for 
use by the retrieval system. In a conventional coor
dinate indexing system, for example, this normali
zation would consist in a manual transformation of 
the original search request into an appropriate set 
of keywords. In certain automatic keyword search 
systems, a machine indexing process would generate 
the keywords, and stored synonym dictionaries 
might be used for normalization. After the analysis 
process, the normalized identifiers which specify 
the search request are matched with the identifiers 
attached to the documents, and correlation coeffi
cients are obtained to measure the similarity be
tween documents and search requests. 

In the present section, a system is considered in 
which a communications link enables the user to 
influence the normalization process by making it 
possible for him to choose certain terms to be add
ed and/or deleted from an original search formula
tion. Four main procedures appear to be of interest 
for this purpose: 

1. A stored synonym dictionary, or thesaurus, 
may be used, given a set of thesaurus en
tries, to display all related entries appear
ing under the same concept category. 

2. A hierarchical arrangement of terms or 
concept classes may be available which, 

given a set of initial terms, can provide 
more general concepts by going "up" in the 
hierarchy, or more specific ones by going 
"down. "1,2,3 

3. A statistical term-term association matrix 
may be computed which can be used, given 
a set of terms, to find aU those related 
terms which exhibit a tendency to co-occur 
in many documents of the collection with 
the terms originally specified.4 

4. Assuming the availability of a set of docu
ments retrieved by an initial search opera
tion, one may add to the terms originally 
specified in a search request, all those 
terms which occur in several of the re
trieved documents but do not occur in the 
initial request.5 

While it is potentially very useful to provide the 
user with a set of terms which may have been over
looked in formulating the original search request, it 
is probably even more important to furnish an indi
cation of the usefulness in the retrieval process of 
each of the query terms. The most obvious indica
tor of potential usefulness is the density (or abso
lute number) of doc:uments identified by each of 
the given index terms. The assumption to be made 
in this connection is that the usefulness of a term 
varies inversely with the frequency with which it is 
assigned to the documents of a collection. 

Thus, in a coordinate indexing system, in which 
the retrieval process is controlled by the number of 
matches between terms assigned to documents and 
terms assigned to the search requests, the indexing 
density provides a straightforward estimate of the 
number of documents likely to be retrieved in each 
particular operation. If a correlation function is 
used to compare keyword sets attached to docu
ments and queries, the relation between number of 
retrieved documents and the indexing density of 
query keywords is less obvious. However, the gen
eral assumption that a query term with high index
ing density will produce "broad" retrieval, whereas 
one with low indexing density produces "narrow" 
retrieval is still valid. 

It seems reasonable under the circumstances, to 
require that each dictionary display provided to the 
user consist not only of the corresponding terms or 
concepts, but also of the frequency with which the 
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various terms are assigned to the documents of the 
coltection. The user can then utilize this informa
tion to refine the search request by promoting 
terms deemed important and demoting others 
which may be ambiguous or otherwise useless in 
the retrieval process. 

As an example of the use of the indexing density 
of query terms, consider the retrieval process illus-

trated in Fig. 1. The original text of a request titled 
"Morse Code" is shown in Fig. 1a. When this text 
is looked-up in a typical synonym dictionary, * eight 
distinct concept codes are obtained. The codes, to
gether with the frequency of occurrence in the col
lection of the corresponding concept classes are 
shown in Fig. 1 b; the full thesaurus entries are sim
ilarly included in Fig. 1 c. 

"Can hand-sent Morse code be transcribed 
automatically into English? What pro
grams exist to read 110rse c·ode? II 

Term Used 
Frequency of 
Concept 

in Request Concept Number (405 documents) 

hand-sent 113 12 
Morse 35 9 (Lm'l) 
code 281 37 
transcribed 570 25 
automatically 119 70 (HIGH) 
English 35 9 
programs 608 104 (HIGH) 
exist 234 ,5 
read 569 25 

Figure 1. Processing of request "Morse Code." 
a) Original query for "Morse Code." 
b) Terms included in original request. 

The user who examines the output of Fig. 1 b 
may notice that concepts 119 (obtained from "au
tomatically") and 608 (from "programs") appear 
with excessively high frequency in the document 
collection under study; furthermore, these concepts 
do not appear to be essential to express the intent 
of the query of Fig. 1 a. These concepts might then 
usefully be removed from the query statement.· The 
user may note further, from the display of Fig. 1c, 
that "transcribe" can be replaced by "translate" 
(concept 570), and "read" by "recognize" (concept 
569) in order to render more appropriately the pur
pose of the request. Finally, the crucial concept 35 
(Morse) may be reinforced by increasing its 
weight. The two reformulations of Fig. 1d reflect 

the corresponding additions, deletions, and substi
tutions. 

The success of the request alterations may be 
evaluated by examining the ranks of the two rele
vant documents (numbers 305 and 394) as shown 
in Fig. 1 e. It may be seen that retrieval results are 
improved for both modifications 1 and 2 over the 
original, but that the better result is obtained for 
the first modification where the relevant documents 
are ranked fourth and eighth, respectively. The cor
relation coefficients between the two relevant docu
ments and the search requests are also seen to be 

*The dictionary used in the example is the "Harris III" 
thesaurus available with the SMART retrieval system.1,2,3 
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Concept Number 

113 

35 

281 

570 

119 

608 

234 

569 

Corresponding Thesaurus Entries 

hand-drawn, hand-keyed, hand-sent, 
hand, handsent, manual, non-automatic 

English, French, Horse, Roman, Russian 

code, pseudo-code 

record, reproduce, translate, transcribe, 
transcript 

artificial, automate, machine-made, 
mechan, semi-automatic 

program 

behavior, case, chance, event, exist, 
fall, instance, occur 

read, recognize, sense 

Modification 1: "Can hand-sent Morse code 
be translated into English? 
Recognition of manual Morse 
code. 1I 

Modification 2: U~e original query and add 
!!Horse, Morse, Morsell • 

Ranks of Type of Q.!ery Document Relevant Correlation Number Documents 

Original r.;p.ery 7 
"Morse Code" 30 

Modification 1 4 
8 

Modification 2 4 
16 

c) Thesaurus entries for' terms in original request. 
d) Modified queries by deletion of common, high

frequency concepts and addition of important low
frequency concepts. 

394 
305 

394 
305 

394 
305 

0.29 
0.13 

0.33 
0.26 

0.30 
0.13 

e) Comparison of search results using original and 
modified queries. 

much higher for the modified formulations than for 
the original. 

query are given in Fig. 2c. 
Under the assumption that the user examines the 

list of retrieved documents, and finds that the 5th 
and 6th documents (numbers 79 and 80) are useful 
to him, it is now possible to request that concepts 
attached to these documents, but not included in the 
originat search request, be displayed. This is done 
in Fig. Id for concepts jointly included in the rele
vant documents no. 79 and 80. 

A second example, and a different dictionary 
fee,dback process is illustrated in Fig. 2 for the re
quest labeled "IR Indexing." In this case it is as
sumed that an initial retrieval operation has taken 
place, and that the user would like to use informa
tion obtained from the retrieved documents in order 
to reformulate his . search request before· a second 
attempt is made. The original query text is shown 
in Fig. 2a, and the corresponding concept classes 
and concept frequencies appear in Fig. 2b. The re
trieval results obtained by processing the initial 

lt now becomes possible for the user to pick new 
terms, from the list of Fig. 2d-for example, terms 
like "coordinate," "lookup," and "abstract"-and 
to' use them to rephrase the search request as shown 
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"Automatic Information Retrieval and Machine 
Indexing" 

Figure 2. Processing of request "IR indexing." 
a) Original query text for "IR indexing." 

Original Term 
Used Frequency of Concept 

(405 documents) in Request Concept Number 

automatic 119 70 

information 350 45 

retrieval 

machine 

indexing 

Document 
Rank 

1 

2 

3 

4 

5 

6 

26 6 

600 77 

101 11 

b) Terms included in original request. 

Document Correlation 
Number Coefficient 

167 0.1-1-1 
} 

166 0.38 

129 0.33 

314 0.33 

79 0.33 

80 0.30 

c) Retrieval results for original query (using version 
III of Harris Theraurus). 

Relevant 

no 

no 

no 

no 

yes 

yes 

297 

in Fig. 2e. The reformulated request also excludes 
concepts 119 (automatic) and 600 (machine) 

which are found to occur with excessive frequency 
in the document collection. The ranks of the rele-
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Concepts from 
Documents 
79 and 80 Corresponding Thesaurus Entries 

49 co-ordinate, I coordinate t, 
intercept, ordinate, pole, 
rec tangular-to-polar 

108 consult, look-up, 

" 

look, I lookup 
scan, seek, search 

114 I aostract I , article, auto-abstracting, 
bibliography, cataloE:, copy, etc. 

170 noun, verb, sentence 

497 science 

"Information Retrieval. Document Retrieval. 
Coordinate Indexing. Dictionary Look-up 
for Language Processing. Indexing and 
Abstracting of Texts." 

Retrieval Results Using 
Original Query 

Ranks of 
Relevant Document Correla-
Documents Nuni>er tion 

5 79 0.33 
6 80 0.30 

9 221 0.29 
II l26 0.28 

l2 48 0.21 

69 3 0.10 

d) Concepts common to relevant documents Nos. 79 
and 80 and not included in original request. 

e) Modified query using terms from relevant docu
ments. 

vant documents obtained for both original and 
modified queries are given in Fig. 2f. It may be 
seen that the relevant documents have much lower 
rank, and correspondingly higher correlation coeffi
cients for the modified search request than for the 
original. The lowest relevant document, in fact, 
places only 18th out of a total of 405 documents 
when the modified query is used, whereas it origi
nally ranks 69th. 

Corresponding improvements can be obtained by 
the judicious use and display of hierarchical subject 
arrangements and statistical term associations. 

REQUEST OPTIMIZATION USING 
RELEVANCE FEEDBACK 

The vocabulary feedback process illustrated in 
the preceding section appears to be both easy to im
plement and effective in improving search results. It 
does, however, put considerable demands upon. the 

Retrieval Results Using 
~Query 

Ranks of 
Relevant Document CorreIa" 
Documents Number tion 

1 80 0.51 

4 19 0.41 
6 48 0 • .36 
9 l26 0.23 

II 221 0.23 
18 3 0.19 

f) Comparison of search results using original and 
modified queries. 

user who controls not only what is displayed by the 
system, but also what is returned in the way of 
modified information. A variety of search optimi
zation methods should, therefore, be considered 
which place a much larger burden on the system 
and a correspondingly smaller one on the user. One 
such procedure is the relevance feedback method. 

In essence, the process consists in effecting an 
initial search, and in presenting to the user a cer
tain amount of retrieved information. The user then 
examines some of the retrieved documents and 
identifies each as being either relevant (R) or not 
relevant (N) to his purpose. These relevance judg
ments are then returned to the system, and are used 
automatically to adjust the initial search request in 
such a way that query terms or concepts present in 
the relevant documents are promoted (by increasing 
their weight), whereas terms occurring in the docu
ments designated as nonrelevant are similarly de
moted. 
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The amount of improvement to be obtained from 
the feedback process depends critically on the man
ner in which the search request is altered as a func
tion of the user's relevance judgment. The following 
process which has been used experimentally with 
the SMART system appears to be optimal in this 
connection. Consider a retrieval system in which 
the matching function between queries and docu
ments (or between query and document identifiers) 
induces a metric, or a monotonic function of a me
tric, on the space of query and document images 
( e. g., on the space of keyword vectors). 6 In such a 
case, it is possible to produce an ordering of the 
documents with respect to the input query in such a 
way that increasing distance between document and 
query images reflects increasing dissimilarity be
tween them. 

Let DR be the nonempty subset of relevant docu
ments from the source collection D, relevance being 
defined subjectively and outside the context of the 
system. An optimal query can now be defined as 
that query which maximizes the difference between 
average distances from the query to the relevant doc
ument set, and from the query to the nonrelevant 
set. In other words, the optimal query is the one which 
provides the maximum discrimination of the subset 
DR from the rest of the collection (D'-DR). More 
formally, let 8(q, d) be the distance function used in 
the matching process between query q and document 
d. The optimal query" qo may then be defined as that 
query which maximizes the function 

C = 8 (q, d) - 8 (q, d) (1) 
deDR deDR 

where ,8 is the average distance function, and decreas
ing distance implies stronger query-document associa
tion. 

Clearly, Eq. (1) is of no practical use, even under 
the assumption that the optimal query qo can be deter
mined as a function of D and DR, since knowledge 
of the set DR (the relevant document subset) obviates 
the need for retrieval. However, if instead of produc
ing the optimal query qo, thr:- relation (1) is used 
to produce a sequence of approximations to qo, start
ing with some initial query which identifies a part of 
the set DR, then a method for automatically generat
ing useful query modifications becomes available. The 
system can, in fact, produce the optimal query to 
differentiate the partial set of relevant documents, 

identified by the user, from the remaining documents; 
using this optimal query to modify the original search 
request the resultant query can then be resubmitted, 
and the process may be iterated, as more complete 
sets of relevant documents become available through 
subsequent retrieval operations. One may hope that 
only a few iterations will suffice for the average user; 
in any case, the rate of convergence will be reflected 
in the stability of the retrieved set. 

In the SMART automatic document retrieval sys
tem, the query-document matching function normal
ly used is the cosine correlation of the query vector 
with the set of document vectors, defined as 

- - _ q d _ 
p (q, d) - ----==--=- - cos () --

Iqlldl q,d 
(2) 

where q and d are the vector images of query q and 
document d, respectively. Since the vector images 
are limited to nonnegative components, the range for 
the correlation is 0 ~ p ~ 1, corresponding to an 
angular separation of 90 ~ () ~ O. Under these con
ditions, the correlation coefficient is a monotonic 
function of the angular distance metric. Furthermore, 
since the· correlation decreases with increasing dis
tance, relation (1) may be rewritten as 

C·= p (q, d) -"- p (q, d) 
deDRdeDR 

(3) 

where p is the average cosine function p, It can be 
shown,7 that in this case C is maximized for 

qo = ~o 1: I~I - N~no 1: I~I (4) 
dieDR dieDR 

where no = n(DR ), the number of elements in the 
set DR, and N = neD), the number of elements in 
the collection. 

The query modification algorithl1l employed may 
now be written in the form 

(5) 

where qi is the ith query of a sequence, and R = 

{rl,r2, . . . ,rnt} is the set of relevant document vectors 
retrieved in response to query qi, and S = {Sl,S2, 
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... ,Sn2} is the set of nonrelevant vectors retrieved in 
response to qi (the specification of sets Rand S con
stitute the feedback from the user after the ith itera-
\ tion of the process). 

A simple graphical illustration of the application of 
Eq. (5) for two-dimensional document and query 
vectors is given in Fig. 3. Figure 3a shows the orig
inal query vector (Qo), and the four document vec
tors Al and A2 (relevant), and BI and B2 (nonrele
vant). Figure 3b illustrates the formation of the 
optimal vector used to differentiate between A I and 

AlfAY /\ 
~B2 

a) Initial Query (Qo), Relevant Docs. 
(A1,A2) and Nonrelevant Docs. 
(BpB2) 

At !A2 

/ Qo 
/ 

(A-B)N / ....... ~Bl 
/ ........... 

____ ~:.:::_: ____ B2. 

c) Resultant of Qo +Normalized 
Sum of Relevant - Sum of 
Nonrelevant 

Figure 3. Geometrical representation of relevance feedback. 
a) Initial query (Qo), relevant docs. (AI' A 2 ) and non

relevant docs. (Bv B2 ). 

b) Sum of relevant - sum of nonrelevant doc. vectors. 

The query modification process of Fig. 3 was 
tested by performing two iterations for a set of 24 
search requests, previously used in connection with 
the SMART system. Figure 4 shows the results for 
a request on "Pattern Recognition." The original 
retrieval results, using version 2 of the "Harris" 
thesaurus (synonym dictionary), are given in Fig. 
4a. The user identifies documents 351, 353, and 
350 as relevant, and 208, 225, and 335 as nonrelev
ant. The query is then automatically modified, in 

A2 on the one hand, and BI and B2 on the othe:c. The 
resulting, normalized query (QI) is shown in Fig. 3c. 
It may be noticed that whereas the original query is 
approximately equidistant from sets Rand S, the 
modified query is much closer' to R (indeed, it coin
cides with A I) than to S. This is reflected in the cor
relation coefficients for both original and modified 
queries Qo and QI with the four document vectors, 
as shown in Fig. 3d. It is evident that the modified 
query will be much more effective in providing re
trieval of the relevant document set than the original. 

b) Sum of Relevant - Sum of Nonrelevant 
Doc. Vectors 

Doc. 00 Ot 

AI 0.71 1.00 

A2 0.92 0.92 

B t 0.92 0.38 

B2 0.71 0.0 

d) Correlation of Ouery Vectors 
0 0 and 0 1 With Doc. Vectors 

c) Resultant of Qo + normalized sum of relevant
sum of nonrelevant. 

d) Correlation of query vectors Qo and QI with doc. 
vectors. 

accordance with the expression of· Eq. (5), and 
retrieval performance is compared in Fig. 4b. It 
may be seen that drastic improvements are obtained 
both in the ranks of the revelant documents and in 
the magnitude of the correlation coefficients. The 
"recall" and "precision" measures, shown in Fig. 
4b, are the normalized evaluation measures incor
porated into the SMART system,8,9 which express 
the ability of the system to retrieve relevant material 
and to reject irrelevant matter. 
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Document Document 
Rank Number 

I 351 
2 353 
3 350 
4 163 
5 82 
6 I 
7 208 
8 225 
9 54 

10 335 

Retrievlli Results Using 
Original Query 

Ranks of 
Document Correia-Relevant 

Documents Number tion 

I 351 .65 
2 353 .42 
3 

1

350 .41 
4 163 .36 
6 1 .32 
9 54 .24 

26 205 .17 
27 224 .17 
33 314 .16 

~ 39 .12 

Recall .972 
Precision .864 

Figure 4. Query processing using relevance feedback. 
a) Retrieval results using original query for "pattern 

recognition" (version 2 of Harris thesaurus). 

Figure 5 is a typical recall-precision plot giving 
recall and precision figures averaged over 24 re
search requests for the original query formulations 
as well as for two iterations using relevance 
feedback. * It may be noted again that for a given 
recall value large improvements are gained in the 
average precision by using the retevance feedback 
process. Additional improvements are obtained by 
identifying further documents as either relevant or 
nonrelevant during a second iteration. 

AUTOMATIC MODIFICATION OF THE 
ANALYSIS PROCESS 

The last search optimization process to be de
scribed depends, like its predecessor, on feedback 
provided by the user, and results in selective 
changes in the document and request analysis pro
cess. However, instead of furnishing relevance judg
ments based on the output of a previous retrieval 
operation, the user makes a qualitative assessment 

*The method of construction of such recall-precision plots 
has previously been described in detai1.9,10 

of the effectiveness of an initial search operation. 

Correlation User Feedback 

I 

.65 Relevant 

.42 Relevant 

.41 Relevant 

.36 -

.35 -

.32 -

.27 Not Relevant 

.25 Not Relevant 

.24 -

.21 Not Relevant 

Results Using Query 
Modified by User Feedback 

Ranks of Document Correla-Relevant 
Documents Number tion 

I 
2 
3 
5 
6 
7 

II 
16 
17 
30 

'351 .66 
350 .60 
353 .55 
163 .37 

I .32 
54 .29 

314 .23 
205 .19 

39 .19 
224 .16 

Recall .989 
Precision .923 

b) Comparison of search results using original and 
modified queries, 

For example, he may find that the documents ob
tained from the system show that his request was 
interpreted too narrowly (since all retrieved docu
ments belong to some small subfield of the larger 
area which he expected to cover), or too broadly, 
or too literally, or too freely. 

Depending on the type of interpretation fur
nished by the user, the system now proceeds to ini
tiate a new search operation under altered analysis 
procedures. If the user's verdict was "too narrow," 
a hierarchical subject arrangement similar to the 
one mentioned in the second section of this paper 
might be consulted, and each original query term 
could be replaced by a broader one; if, on the other 
hand, the initial search was "too broad," more spe
cific terms might be obtained from the hierarchy. If 
the interpretation was too literal, the use of a syno
nym dictionary might provide more reasonabte re
suIts; and so on. 

Automatic retrieval systems are particularly at
tractive in such a situation, because these systems 
make it possible to provide at relatively little extra 
cost, a variety of indexing procedures which may be 
called upon as needed. The SMART system, in par-
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1.0 
2 nd ITERATION 

.9 RELEVANCE 
FEEDBACK 

.8 

.7 INITIAL 
QUERIES 

.6 

z .5 1st ITERATION 
Q RELEVANCE FEEDBACK 
C/) 

(3 .4 w 
a:: 

.0... 
.3 

.2 

.1 

.3 .4 .5 .6 .7 .8 .9 1.0 
RECALL 

Figure 5. Precision versus recall for initial queries and quer
ies modified by relevance feedback (averaged over 
24 search requests). 

ticular, provides a large variety of indexing meth
ods including the following: 

6. A variety of so-called merged methods,9 in 
which the system proceeds iteratively 
through two or three simple processes and 
combines the output. 1. A null thesaurus procedure which uses the 

word stems originally included in docu
ments and search requests· for content iden
tification. 

2. A synonym dictionary ("Harris" thesau
rus) which replaces original word stems by 
synonym classes or concept numbers. 

3. A hierarchical arrangement of concept 
numbers which can be used, given a set of 
concepts to obtain more general ones ("hi
erarchy up"), or more specific ones ("hi
erarchy down"). 

4. A statistical phrase procedure which is 
used to replace pairs or triples of co-occur
ing (related) concepts by a single "phrase" 
concept (e.g., the concepts "program" and 
"language" might be combined into "pro
gramming language") . 

5. A syntactic phrase process which generates 
phrases only if the components in fact ex
hibit an appropriate grammatic at relation
ship. 

Obviously, the ability to generate a multiplicity 
of distinct index images for each document does 
not necessarily imply that each modification in the 
anlysis process results in large-scale improvements 
in the search effectiveness. Experiments conducted 
with the SMART system have, however, shown that 
in many cases a considerable increase in retrieval 
effectiveness is obtainable when changes in the 
analysis are adapted to the aims of each particular 
user. 

Consider, in this connection, the evaluation out
put for a variety of analysis methods produced by 
the SMART system, reproduced in Fig. 6 and 7. 
Figure 6 contains output for the search request ti
tled "Automata Phrases," with nine relevant docu
ments. Six simple analysis methods are shown: null 
thesaurus, "Harris Two" (version 2 of the regular 
synonym dictionary) , statistical phrases, syntax 
phrases, hierarchy up, and hierarchy down. Thirteen 
"merged" methods, each including two simple com
ponents, are also included in Fig. 6, as well as nine 
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HIE.ARCMY UP ~ULL T~fS 
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~Ull THES 
SYNTAX PH" 
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4 

HU_I S TWC _IS Twe 
NUll THES MIL THES 
HI ERUCHY UP HI fA OWN 

"ARR 15 TWO 
STAT PHRASE 
HIEURCHY UP 

TOP 15 RElEVANT TOP 15 "LEVANT TCP 15 RELEVANT TOP 15 RELEUNT TCP 15 RElE"hT TCP 15 'ElEVA" TOP 15 REL ANT TOP 15 .ElEVANT 
I 264 I 264 I 129 I 129 I 129 I 12~ I ~u I 3H I 316 I 316 I 316 I 316 I 316 I 6 I 316 I 316 
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3 129 3 129 3 316 3 316 3 316 3 31t 3 371 3 311 3 311 3 311 3 264 3 264 3 313 3 313 3 264 3 264 
4 In 5 313 4 167 5 372 4 372 4 372 4 313 4 313 4 372 4 372 4 313 4 313 4 167 5 176 129 4 129 
5 313 8 176 5 372 9 313 5 167 9 H! 5 167 t 312 5 313 5 313 5 167 7 176 5 176 12 371 313 5 313 
6 218 12 311 6 173 12 241 6 212 II 17t t 312 7 Ilt 6 167 8 176 6 173 13 371 6 173 15 241 6 72 6 372 
7 238 56 31' 7 002 13 176 7 173 12.41 1)76 14 241 7 212 13 241 7 176 19 241 7 238 19 312 7 I 8 176 
e 176 68 372 8 166 25 264 e 166 22 U4 e 173 31' 2t4 8 176 28 264 8 218 24 172 8 166 27 264 8 17 15 241 
9 127 75 241 9 313 67 315 9 313 tI 315 ~ ee2 73 315 9 173 67 315 9 166 8, 315 9 249 61 315 9 002 74 315 

10 385 10 213 10 213 Ie Itt IC 166 10 249 10 213 10 218 
11 361 II 139 11 176 II 24~ II 249 11 213 11 385 II 167 
12 371 12 241 12 241 12 213 12 213 12 127 12371 12 249 
13 263 13 176 13 263 13 139 13 241 13 371 13 263 13 139 
14 249 14 263 14 24~ .. 241 14 385 14 361 14 045 14 127 
15 177 15 089 15 249 )! 315 15 263 15 263 15 241 15 241 
RNIC REe- 0.1951 ANI( fIEC- 0.3285 ANI( REC- 0.~6(1C RN" REC- (1.1191 RNI( REe- 0.3435 RhK AEe_ 0.2841 RNI( Rfe- 0.3103 RNK REC- 0.3811, 
lCG P.E- 0.6236 LCG PRE- 0.7084 let P"E- 0.7332 LOG PRE- C.74C9 LOG PRE- 0.7544 LCG PRE- 0.7013 LCG PRE- 0.6757 LO~ PRE- C.8169 
HCR REC- 0.9481 fIICR IIEC- 0.9742 NCfI Rfe- O.~116 NOR REC- (.'91:31 NOft REt- C.9159 NOR AEC- 0.9683 NOli REe- 0.9719 NOR REC- 0.979' 
M:;R Pfle- 0.8121 NOR PRE- 0.8718 NOli PRE- c.eeel NOR PRE- C.8911 NOR PRE- 0.1987 NOR PRE- O.8614t "CR Pile- 0.8506 NOR PRE- 0.'9302 
OVERALL- 0.8193 aVERILL- 1.0369 OVERALL- 1.0932 OVERALL- 1.0f:OO O~ERALL- 1.0'97«1 OVERALL- 0.9861 CV!R'Ll- 0.9861 OVERALl:- 1.1983 
.. OR ()\lR- 1.5526 Nelli (VA- 1.71,28 Ntll OVII- 1.171,!5 NOR OVfh 1.7'f:4 NOR OVR- 1.118(1 fl:CR CVR- 1.7089 ttOR OVR,. 1.7103 NOR OVR- 1.8278 
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Figure 6. Evaluation output for request "automata phrases" (28 different analysis methods). 

triple merges. * For each method, the output is pre
sented in two parts: the . left part includes the docu
ment numbers of the first 15 documents retrieved 
by that method, whereas the right-hand side con-

*The ranked document output for the "merged" methods 
is produced by taking the ranked lists for the individual com
ponent methods and merging these lists in such a way that 
all documents with rank 1 precede all documents with rank 
2, which in turn precede documents with rank 3, and so on. 
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AV~RAGE"S .AN~ aUA.SI-ClEVe:RDO~ r.RAPH~ 

HARR15 TWO ~ULL THFS SlAT PHRAt;E 
SVNT AX PHR 

HARRI S TWO 
NULL THf5 

0.1 0.9150 
(\.2 0.8 799 
0.3 0.8295 
('1.4 ('1.7878 
0.1) C.71:.q2 
0.6 0.6665 
n.7 0.5995 
0.8 0.5503 
0.9 C.4~q3 
1.t) 0 3411 

HARRIS T~O 
~T.T PHR'«;E 

0.1 O.91}92 
0.2 O.A709 
0.3 a.Fl070 
0.4 0.7697 
0.5 0.7473 
0.6 0.1111 
0.7 n.6P05 
O.R 0.6311 
0.9 O.~292 
].0 ('I 4272 

HARRIS TWO 

STAT PHRASE 

0.1 O.9~P.4 
0.2 O.890C 
0.3 0.8345 
0.4 0.7981 
0.5 0.7692 
0.6 0.7417 
0.10.706'" 
o.e 0.6519 
0.9 0.5457 
1.0 0 4412 

SYNT AX PHR 

n.l 0.9384 
('1.2 0.8379 
o. '3 0.7765 
n.4 0.1666 
0.5 0.7352 
1".6 0.6190 
o. 7 O.62~3 
0.8 0.5645 
0.9 0.4667 
1.0 0.3853 

HARRI S TWO 
HtFq rmWN 

HIFQ:,AQ(HY UP HIFQ DOWr..j 

0.1 0.8124 
0.2 O.7S42 
O. '3 0.11 ~ 1 
0.4 C.61~5 
0.15 0.65'8 
0.6 0.~B68 
0.7 0.5178 
o.e O.44~1 
0.9 O.3r;)7 

0.1 0.94"1 0.1 0.94;\1 0.1 0.9230 0.1 0.9399 0.1 0.9299 
0.2 0.8961 0.2 0.8989 0.2 0.8863 0.2 0.8882 0.2 0.8803 
0.3 0.8665 ~.3 0.8678 0.3 0.8429 0.3 0.8161 0.3 0.8:'40 
0.40.842S 0.4 0.8227 0.4 0.8186 0".4 0.7530 0.4 0.7928 
o.t; C.793~ o.~ 0.7Q44 0.5 0.1715 0.5 0.72"i7 o.~ 0.762') 
('1.6 ('I.740~ r.6 0.1515 0.6 0.6889 0.6 0.6762 0.6 0.7444 
0.70.653] 0.7 0.7134 ('1.1 0.60"37 0.7 0.6320 0.7 0.6987 
0.8 0.5429 0.8 0.6235 O.B 0.5457 O.B 0.5920 0.8 0.6318 
0.9 0.4853 0.9 0.528e 0.9 0.4626 0.9 0.5338 .9 0.5531 
1.0 0.4191 1.0 0.4466 1.0 n.4]ft 1.0 0.385('1 1.0 n.3R46 1.0 0.4434 1 0 0.4544 

RNK REC- "0.5318 RNK ~EC- 0.5732 RNK qec- o. 25 !lNIC qEe- 0.4909 11,,1C REC- 0.5140 RNIC REC~ 0.5529 RNI( R '" 0.5824 
lOG PRE- 0.7521 lOG PQF'" ".7809 L("I(j PPE- n 572 lOG PPF~ 0.7244 LOG PRE_ 0.7403 LOG PRE" 1".762] LOG PRE- 0.7~05 
NOR REe- 0.9693 NOP REC'" ('I.q7~1 PIOR RFC= .97] 1"" "lOR REe., 0.q6~B NOP RFC_ 0.9694 NOR REC- 0.9726 NOR REC: 0.9140 
NOR PRE: 0.8786 NOR PRE- 0.8983 NOR PRE- .8842 NOR PRE- 0.8608 NOR PRE- 0.8740 NOR PRE= 0.8838 NOR PRE= 0.8931 

SYNTAX P,..R SYNTAX PiotR HIERARCHY UP NUll TH£S 
HIEJlARCHY UP HIER DOWN H!£R nOWN STAT PHRASf 

HARR IS TWO 
NULL THES 
STAT PHRASE 

HARRIS TWO 
NULL THES 
SYNTAX PHR 

0.1 0.9456 0.1 0.9174 0.1 0.e764 0.1 0.9812 0.1 0.9583 0.1 0.9583 
0.2 C.8642 0.2 0.8556 1).2 0.1926 0.2 0.9333 0.2 0.9250 0.2 0.9162 
0.3 0.7l0!! 0.3 0.1951 0.' 0.7671 0.30.9073 0.3 0.8879 0.3 0.8688 
0.4 0.7"3~1 ~.4 0.7779 ('1.40.711)00 0.40.A502 0.4 0.85S? 0.4 0.f!:305 
C.5 C".111"1 I".t; C.1629 ('\." n.7179 0.'5 0.79('17 0.5 0.8202 0.15 0.8014 
0.60.6698 0.6 0.1~04 0.6 0.6665 0.6 O.73~8 0.6 0.7784 0.6 0.1769 
0.70.6201 0.7 0.6875 (,.7 0.5945 0.1 0.6696 0.1 0.7037 0.1 0.6940 
0.8 0.5595 0.8 0.6117 0.8 0.4873 0.8 0.6123 0.8 0.6033 0.8 0.5984 
C.9 C.49~1 r.9 0.5291 C.9 0.'3868 0.9 0.54e1 0.9 0.5312 0.9 0.5167 
1.00 39('0 1.0 0 41~9 1.0" 2994 1.00 46q6 1.0 0.4346 ].0 0.4567 1.0 0.4316 

PHI( QFCc O.~141 RNI( rlEC'" 0.'5471 RNIC qfC- n.4"323 QNI( QEC= 0.'5A18 0NK t'E(= O. 1 FlNK REC= 0.S784 RNI( RE"C= 0.5545 
LOG PRE- 0.7413 LOG PRE= 0.1641 lOG PRE,.. 0.6699 LOG PRF= 0.7871 LOG PRF,.. 0."1613 LOG PRE= 0.1832 LOG PRE= 0.7699 
NOR REC- 0.9683 NOR REe= 0.9113 NOR RE"C:.: 0.~658 NOR REC= 0.9735 NOR REC- 0.9708 NOR REC= 0.9143 NOR REC= 0.9714 
NOR PRE:.: 0.8687 NOR PRE- 0.8806 NOR PRE= 0.8448 NOR PREll: 0.9009 NOR PREll: 0.8891 NOR PRE= 0.9004 NOR PRE= 0.8911 

HARRIS TWO 
NULL THES 
HIERARCHY UP 

HAR~I S TWO 
NULL THES 
HJER DOwN 

HARRIS TWO 
STAT PHRASE 
HIERARCHY UP 

HARP I 5 TWO 
STAT PHRASF. 
HlfR DOWN 

HARRIS TwO 
SYNTAX PHR 
HrER~RCHY UP 

HARR IS TWO 
SYNTAX PHR 
Hl£R DOWN 

HARP I S TWO 
HIERARCHY UP 
HIER DOWN 

0.1 0.9458 0.1 '0.9583 0.1 0.9431 0.1 0.9343 0.1 0.9608 0.1 0.9529 0.1 0.9152 
0.2 0.8938 0.2 0.9108 0.2 0.8917 0.2 0.8816 n.2 0.8826 0.2 0.8616 0.2 0.8713 
c.~ C.83S0 C.3 C.8590 0.3 (\.A~48 0.3 0.e444 0.3 0.8020 0.3 0.8094 0.3 0.7957 
0.4 C.8131 ('.4 ('.8"2;"30 r.40.7767 0.4 0.8016 n.4 0.7614 0.4 0.7858 0.4 0.7117 
C.50.1901 0.50.7876 0.50.76'='1 0.50.7776 C.50.7456 0.50.7145 0.50.7496 
0.60.1274 0.60.7"i18 0.6 0.7237 0.60.7466 0.60.7166 0.60.7380 0.60.6811 
0.10.6215 e.7 C.6491 e.70.6639 0.70.7088 0.7 0.6548 0.7 0.69]5 0.70.5982 
0.8 0.5111 0.8 0.5499 0.8 0.6C16 0.8 0.6]61 (l.8 0.5763 0.8 0.5991 O.A 0.5156 
o.q 0.4698 0.9 0.48'31 0.90.5176 0.9 0.53('13 0.9 0.4907 ('\.9 0.5048 0.9 0.4344 
1.n 0 4060 1.00 4}52 1.004364 1.00 431:!1 1.0 (,\.4074 1.00.4051 1.00.3142 

RNI( flEe= (;.5173 QNI( PEC= 0.5323 RNK RE"C= 0.5568 QNK QEC= O.t;696 R~I( qEC= 0.5J86 RNK REC= 0.5339 RNK REC= 0.4941 
LOG PRE= 0.7460 LOG PQE= 0.7545 LOG PREz: 0.7683 LOG PRE"= 0.7759 LOG PRE_ 0.7463 LOG PRE= 0.7550 LOG P~EII: 0.1256 
NOR REC= C.9668 NOR REC= 0.9705 NOR REC: 0.9736 NOR PEC= 0.9739 NOR REe= 1).9695 NOR REC= 0.9712 NOR REC- 0.9679 
NOR PRE= 0.8112 ~OR PRE= (".8815 NOR PRE= O.fl.897 NOR PRF= 0.~931 N~R PRE_ 0.8758 NOR PRE= {'I.8813 NOR PRF"= 0.fl637 

Figure 7. Precision vs. recall plots for 28 analysis methods 
(averages shown over 17 search requests). 

sists of only the relevant document numbers and 
their ranks in decreasing correlation order with the 
request. Below the lists of document numbers, a va-

riety of recall and precision measures are provided 
for each analysis procedure, to reflect the effective
ness of the corresponding process. 
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An examination of Fig. 6 reveals, for example, 
that for the request on "Automata Phrases," im
proved retrieval is obtained by switching from the 
word stem procedure to the synonym recognition 
process using the regular thesaurus (labeled 1 in 
Fig. 6). This is reflected both by the magnitude of 
the evaluation coefficients, and by the ranks of the 
last relevant document (1 04th out of 405 for the 
word stem process (null thesaurus), and 74th for 
"Harris Two"). An improvement is also obtained 
by switching from "Harris" thesaurus to the phrase 
procedures, and from statistical phrases to syxtax 
phrases (labeled 2). The third example from Fig. 6 
shows that the merged procedure which combines 
the statistical phrases with the hierarchy results in 
an increase in performance over and above each of 
the component methods. A further improvement is 
obtained by adding the regular "Harris 2" thesaurus 
process to the previously merged pair ( example 
four of Fig. 6). 

Figure 7 shows evaluation output obtained for 
the same 28 analysis methods previously shown in 
Fig. 6, but averaged over 17 different search re
quests. The output of Fig. 7 is presented in the 
form of precision vs. recall graphs, similar to that 
shown in Fig. 5 (the actual graphs are not drawn 
but tables are presented instead). The five examples 
specifically indicated in Fig. 7 again confirm the 
earlier results that improvements are obtainable 
from method to method. 

Each of the three search optimization procedures 
described in this study appears to be useful as a 
means for improving the retrieval effectiveness of 
real-time, user-controlled search systems. Addition
al experimentation with larger document collections 
and with an actual user population may be indicat
ed before incorporating these procedures in an op
erational environment. Iterative, user-controlled 
search procedures appear, however, to present an 
interesting possibility, and a major hope, for the 
eventual usefulness of large-scale automatic infor
mation retrieval systems. 
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AN ECONOMICAL PROGRAM FOR LIMITED PARSING OF ENGLISH 

D. C. Clarke and R. E. Wall* 
IBM San Jose Research Laboratory 

San Jose, California 

Automatic syntactic analysis has often been pro
posed as a component of mechanized indexing 
systems.1,2 However, up to this time, frequency 
counting and statistical association techniques have 
been more favored, since these involve operations 
which can be performed with great speed on present 
day computers. Syntactic analysis programs,3 espe
cially the few which have relatively complete gram
mars, have suffered from the disadvantage of slow 
and expensive operation and consequently have sel
dum been applied beyond the field of mechanical 
translation. In this paper, we report the design and 
testing of a limited syntactic recognition program 
for English which shows promise of becoming accu
rate enough to aid in mechanized indexing, yet suf
ficiently inexpensive to make large-scale use prac
ticable. 

We originally developed this system as an exten
sion of Baxendale's Title Analyzer Program,4 which 
used a smaH number of syntactic clues and a dis
card list to select "significant" words and phrases 
from titles of technical articles for use as index 
terms. However, the shallowness of an index pro
duced only from titles seriously limited the applica
bility of the Baxendale program, so it seemed natu
ral to apply similar techniques to abstracts of tech-

*Present address (R. E. Wall): Department of Linguistics, 
Indiana University, Bloomington, Ind. 
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nicat articles as well. Abstracts, like titles, are in
tended to be concise statements of the information 
in a document, but by virtue of their greater length 
should provide more potential index terms. 

The syntactic recognition problem with abstracts, 
however, is much more difficult than with titles. 
The latter often consist only of noun and preposi
tional phrases and rarely post-modifying partici
ples or relative clauses. Abstracts, on the other 
hand, potentially exhibit the full range of syntactic 
constructions of formal written English, except for 
interrogative and exclamatory sentences, which are 
excluded by precepts of style. For this reason, the 
fairly simple procedures of the Title Analyzer Pro
gram were inadequate for dealing with abstracts 
with any reasonable degree of accuracy. While our 
initial efforts were directed (as in the Title Analyz
er) toward the identification of nouns and their 
modifiers, the result has been a program written in 
COMIT5 yielding a nearly complete parsing of the 
"surface" syntactic structure of each ,sentence. The 
overall sequence of operations in the program is 
shown in Fig. 1. 

In the description of the program which follows 
we will emphasize those features of the design im
posed by the necessity for economical performance 
in a projected mechanized indexing system. 

The program accepts cards in a format which is 
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Tentatively bracket 
and label phrase 
boundaries 

Pushdown store 

Revise phrase and 
clause markings to 
correct any ill-formedness 

Figure 1. Sequence of syntactic analysis program. 

N-type GaAs doped with Te to 3 X 10 17 crn- 3 and 9.6 X 10 17 crn- 3 

have absorption coefficients of 20 crn- l and 10 crn- l , respectively, 

at 10 475 eV and 77 0 K. 

Printed input text 

*N-TYPE *GA*AS DOPED WITH *TE TO *(*( **F *) AND *(*( **F *) 

HAVE ABSORPTION COEFFICIENTS OF *(*( **F *) AND *(*( **F *) 

RESPECTIVELY, AT 1.475 E*V AND 77 DEGREES *K • 

Keypunched input text 

Figure 2. Sample input sentence. 

essentially a character-for-character transcrip
tiC .. l (Fig. 2). We have accepted the present neces
sity of keypunching and have therefore concentrated 
on' making the input format convenient for our syn
tactic analysis program. Nonetheless, we feel that 
this format will be reasonably compatible with au
tomatically transcribed text whenever such becomes 
generally available. 

DICTIONARY 

The function of a dictionary in a syntactic recog
nition program is to assign each word * of the input 
text to one or more word classes (traditionally such 

*In this discussion of the dictionary we are referring to 
words as tokens or separate occurrences, not as types or the 
total of different forms. 
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categories as noun, verb, adjective, etc.). The usual 
approach is to use a "complete" dictionary, which 
contains (ideally) every word form in the language. 
Our program uses a "computational" dictionary of 
the type described by Klein and Simmons6 which 
makes word-class assignments on the basis of 
orthographic features. The current dictionary con
sists of three lists which contain about 1,000 entries 
in all: 

1. Common function words-prepositions, arti
cles, conjunctions, etc. 

2. Word endingst - -ing, -tion, -ed, -OUS, etc. 
3. Exceptions to the word ending rules

thing, feed, mention, etc. 

One requirement, of the program was that it 
should be suitable for use in a mechanized indexing 
system. A complete dictionary operating on techni
cal text would require an addition each time a new 
word was encountered.' Such additions are not com
patible with economic automatic processing. We 
thus chose to use a computational dictionary de
signed to encode correctly the relatively few types 
which account for the large proportion of tokens in 
running text. 

Words which are not classified by the computa
tional dictionary are arbitrarily assigned to the 
noun/verb category. This choice is again influenced 
by potential use of the program in a mechanized 
indexing system. The hypothesis is that the impor
tance of nominal constructions in selection of index 
unit candidates places emphasis on the bracketing 
of all noun phrases. The grammatical algorithm is 
designed to deal with the noun/verb ambiguity. 

One advantage of our computational dictionary 
is that it is small enough to be contained in the core 
storage of an IBM 7094 along with the grammar 
rules and program instructions. This allows for a 
binary search through the dictionary lists for every 
word as it occurs in text ·order. A full diction~ry, on 
the other hand, would have to be stored on magnet
ic tape (in which case the input text would have to 
be run in batches, alphabetized, looked up, and 
re-sorted into text order) or else stored on drums 
or disks, thereby sacrificing the advantage of a bi
nary search. A further consequence .. of . the small 
computational dictionary contained in core storage 
is that the processing of sentences can be open-

t A reverse-alphabetized word list7 was most helpful in 
discovering word endings and exceptions. 

ended. Since there is no need to handle the text in 
batches, any number of sentences can be run with
out interruption once the program has been loaded. 

These conveniences, however, are paid for in two 
ways. One is the obvious limitation that many 
words will receive the arbitrary noun/verb classifi
cation because they were not found in the dictiona
ry, and any misclassification may lead to erroneous 
phrase bracketings. The other disadvantage is in the 
lack of refinement possible in certain word classes. 
For example, although the suffix -tion nearly al
ways serves to identify words as noun forms, they 
cannot be further subclassified by this clue as ani
mate-inanimate, abstract-concrete, or counta
ble-uncountable. Thus, a computational dictionary 
introduces error in syntactic recognition not only by 
incorrect word-class assignments, but also by lim
iting the discrimination which can be made in the 
grammar. 

GRAMMAR 

The grammar gives rules for the allowed combi
nation of word classes into phrases and clauses. 
Nine types of phrases-nominal, pronominal, adjecti
val, past participial, present participial, preposi
tional, verbal, infinitive, and adverbial-and eight 
kinds of subordinate and relative clauses are recog
nized. The kind of clause is dependent on the clause 
introducer and on the alternative structural patterns 
predicted by that introducer. For example, if a 
clause is introduced by which, the grammar expects 
that a verb will be found but that a subject is op
tional. If a . verb is not found, the algorithm will 
search for a re-bracketing to fulfill the require
ment for a verb. The output is a labeled bracketing 
of these phrases and clauses together with the syn
tactic word class for each word. An example of the 
output is shown in Fig. 3. 

Each phrase is enclosed in parentheses and is 
followed immediately by an identjfying label (NOUP 
= noun phrase, PREP = prepositional phrase, etc.). 
A hyphen separates the phrase label from a list of 
the word classes assigned to each word in the phrase. 
These classes are based on those of Kuno and Oet
tingerS with many modifications. Although a com
plete list of the word classes and their defining char
acteristics would be too long to include here, it would 
perhaps be helpful to give a few of those appearing 
in Fig. 3. 
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THIS PAPER PRESENTS A GENERAL SYSTEM CONFIGURATION FOR AN ARITHMETIC UNIT 
OF A COMPUTER WHICH IS USED TO SOLVE POLYNOMIAL PROBLEMS EFFICIENTLY 

(THIS PAPER) NOUP-ATES NOUS 

(PRESENTS ) VERB-VZZS 

(A GENERAL SYSTEM CONFIGURATION ) NOUP-ATBS NOVS NOUS NOUS 

(FOR AN ARITHMETIC UNIT) PREP-PRE ATBS NOVS NOUS 

(OF A COMPUTER ) PREP-PRE ATBS NOUS 

***8C 1 

WHICH-RL3 

(IS USED) VERB-VBIS pZl 

(TO SOLVE ) I NFP-TO I S VZZP 

(POLYNOMIAL PROBLEMS ) NOUP-NOVS NOUP 

(EFFICIENTLY) ADVP-AVI 

***EC 1 

Figure 3. Sample of output from syntactic analysis program. 

NOUS 
PRE 
VZZS 

NOVS 
ATBS 

PZI 

noun, singular number 
preposition 
finite form verb, third person, 
singular number, transitivity 
unknown 
noun/adjective 
article modifying singular nom
inals 
past participle homographic 
with past tense form 

A VI regular adverb 

The beginning and end of the relative clause are 
marked by the symbols * * *BC 1 and * * *EC 1. 

Such an analysis falls short of a "complete" phrase
structure parsing in two ways. First, the labelings of 
fine structures within phrases are suppressed. For 
example, in the sentence shown in Fig. 3, the noun 
phrase an arithmetic unit is not overtly labeled as 
such but is included in the prepositional phrase. Like
wise, the finer structure of this noun phrase itself 
(arithmetic unit = NP, etc.) is not given explicitly. 

Using phrase-structure tree diagrams we might 
illustrate the difference as in Fig. 4. The tree di
agram at the . left represents the phrase marker as it 
might appear for this 4-word prepositional phrase 
in a phrase-structure parsing; the tree at the right 
shows the same phrase as it would be analyzed by 
our grammar. 

The second difference is the failure to mark de
pendencies between phrases and clauses. For exam
ple, in the output in Fig. 3, the point of attachment 
of the prepositional phrase for an arithmetic unit is 
not specified. The clues for joining such modifiers 
to the proper head seem in many cases to be purely 
semantic ones, and the problem is always troub
lesome in any parsing scheme. Jane Robinson cites 
the example9 I saw the man with the telescope in 
the park, which can have several different readings, 
depending on the words which the prepositional 
phrases are understood to modify. We do not yet 
know whether the simple expedient of joining 
post-modifiers to the nearest allowable preceding 
structure can be improved upon with the aid of syn
tactic information alone, nor do we know how 
much of this interphrase structure will be necessary 
in order to do the job of indexing. In any case, de
limiting the phrase boundaries as we have done is a 
prerequisite to any attempt to specify these depen
dencies algorithmically. 

The current implementation of our program does 
not incorporate an explicit, separable grammar. 
However, a formal description of the grammar in a 
context sensitive phrase-structure notation has-
been written to provide documentation. "-~ 
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/ ~ 
PRE ATB NP 

/~ 
ADJP NP 

NOV NOU 

I 
for an arithmetic unit for an arithmetic unit 

Figure 4. Comparison of phrase-structure tree diagrams. 

ALGORITHM 

The algorithm is a set of procedures for assigning 
an allowable syntactic structure to an input sentence 
according to the rules set forth in the grammar. A 
serious problem in implementing parsing algorithms 
has always been that the processing time tends to 
increase exponentially with the number of words in 
the sentence being analyzed (because as sentence 
length increases, so in general does the number of 
combinatoriat alternatives which must be consid
ered). Consequently, the practical upper limit on 
sentence length for the best existing programs has 
been about 40 words, and for most programs it has 
been much below that. Longer sentences are not at 
all rare, however, particularly in technical writing, 
and any parsing system which is intended to be' a 
practical component of an indexing system should 
be able to handle them. We therefore attempted to 
design this parsing algorithm so that the total proc
essing time would be directly proportional to sen
tence length. 

The general sequence of operations is as follows. 
Mter dictionary lookup is complete, all phrase 
boundaries are tentatively identified in one left
to-right pass through the sentence. On a second 
left-to-right pass, clause boundaries are estab-

lished, and tests for wetl-formedness in each 
clause are performed. Nested clauses are handled by 
a pushdown storage mechanism.10 Whenever an ill
formed condition is recognized, the algorithm ini
tiates an ordered search for alternatives pertinent to 
that condition (different word classes or different 
phrase boundaries) and will choose the first alter
native which resolves that condition. This strategy, 
together with the restriction that no set of alterna
tives can be tried more than once during the analy
sis of a sentence, avoids the repetitive tracing of 
substructures which have already been recognized as 
well-formed. Thus, even worst-case analysis 
times will vary linearly (or nearly so) with sentence 
length. A final series of passes through the sentence 
serves to link phrases joined by coordinating con
junctions and performs a few minor revisions be
fore output. 

We ,can illustrate one of the parts of the algo
rithm, the clause well-formedness testing, by using 
the example of the sentence in Fig. 3. During dic
tionary lookup, both paper and presents have re
ceived the arbitrary noun/verb coding, but the tat
ter word, because of its -s suffix, has been coded 
as plural noun and third-person singular verb. 

After the first pass, the phrases have been bracketed 
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as they appear in the output (Fig. 3), except for the 
first three words. 

ATES 
[

ThiS paper presents] 
NOUS NOUP 
VZZP VZZS 

NOUP 

The noun homograph of presents has been tried 
first and has led to the incorrect bracketing shown. 
On the second pass the lack of a verb for the inde
pendent clause is noted (the relative clause is 
well-formed), and the algorithm then examines 
the first noun phrase, beginning at the right-most 
word, for a verb homograph. Presents is found to 
have such a homograph, so the subject is redefined 
as the remaining noun phrase, This paper, and the 
test for number agreement between subject and verb 
is made. Since this alternative produces a well
formed clause, the final bracketing is: 

[
This paper] [presents] [~ 
ATES NOUS VZZS ATBS 

NOUP VERB 

Had this alternative not been allowable, the other 
words in the phrase would have been examined for 
verb homographs. If none was found, the phrase 
would have been restored to its original bracketing 
and the next noun or prepositional ph:ase to the 
right in the same clause would have been broken 
apart and examined similarly. This procedure would 
have continued until either a verb and subject had 
been established or else all the relevant possibilities 
had been exhausted. However, when all the clauses 
of a sentence have been made well-formed, no 
more alternatives are tried. Thus, the algorithm ar
rives at only one syntactic structure for each sen
tence, in contrast with the multiple parsings gener
ated by a program such as the Harvard Syntactic 
Analyzer. 8 

While multiple analyses are clearly useful in 
linguistic research for exposing syntactic ambigui
ties, in a practical application such as mechanized 
indexing they are an embarrassment of riches. Hav
ing all structural descriptions for each sentence 
would be of little use since at the present time there 
is no method for deciding which analyses are also 
semantically acceptable and, further, which is the 
one "correct" reading intended by the author. Per
haps one could hope to select instead the "syntacti-

cally most probably" parsingll,12 if adequate statis
tics of English grammatical structures were availa
ble. Since they are not, we have ordered the search 
for alternatives according to what seem to us, intui
tively, to be the most frequently occurring struc
tures. 

A useful by-product of the algorithm arises 
from the fact that all the phrases of a sentence are 
tentatively recognized in the first pass. Should the 
analysis of any sentence be terminated because of 
excessive time, or if no grammatically acceptable 
parsing for some clause can be found, many sub
strings of the sentence will still be correctly identified. 
Thus, in cases of noncJ.tastrophic failure, we are 
able to get partial results and go on to the next sen
tence. 

Provision is also made for handling parenthetic 
expressions (the clause well-formedness tests are 
omitted) and clauses separated by semicolons 
(treated as separate sentences). Sentences up to 100 
words in length can be analyzed. However, some 
very long sentences, depending on the particular 
structures they contain, will occasionally require 
more COMIT "workspace" than is currently availa
ble. In such cases, the program writes out the re
sults of the dictionary lookup routine on a tape 
which can later be used as input to the syntactic 
analysis portion. 

PROGRAM TESTING 

The program was coded in COMIT5 because of 
the ease it provides in the design and updating of 
experimental models. Initial debugging and testing 
were carried out on a sample of 70 consecutive sen
tences taken from abstracts in the IBM Journal of 
Research and Development. This text, which we 
will refer to as IBM #1, was chosen because it 
c~ntained a fairly wide range of technical subject 
matter. The results were used to make further re
finements to the grammar, and then the program 
was tested on 5 more texts,each containing 70 sen
tences, from randomly selected abstracts. One text 
was taken from another issue of the IBM Journal 
(IBM #2) and the others from the fields of chem
istry, physics, acoustics, and, for comparison with 
the technical material, literary criticism. The accu
racy with which phrases were identified * is indicat-

*The method of counting phrases is in accord with our 
earlier remarks about "complete" parsing. Thus, the object 
in a prepositional phrase does not count as an additional 
nominal or pronominal phrase. 
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Table 1. Accuracy of Identifying Phrases. 

No. of Per-
Text Words NP PP Pn P Inf P VP PMA PMR PMP Av P Totals cent 

IBM #1 1593 154/170 209/222 6/6 10/11 89/95 10/15 10/11 17/17 11/15 516/562 92 
IBM #2 1867 170/182 248/267 11/12 12/13 100/110 12/19 6/7 20120 18/19 597/649 92 
Physics 1805 153/163 240/264 11/11 14/14 112/118 21/27 11/13 11/11 19/20 592/641 92 
Chemistry 1716 160/174 214/241 12/12 16/16 106/114 18/20 14/15 16/17 14/15 570/624 91 
Acoustics 1705 174/187 2331249 5/5 18/21 117/123 10/11 8/11 22/23 14/15 601/645 93 
Literary criticism 2192 1931216 249/283 54/54 27/27 133/161 24/35 4/6 10/14 37/44 731/840 87 
Total 10878 1004/1092 1393/1526 99/100 97/102 657/721 95/127 53/63 96/102 113/128 3607/3961 

92% 91% 99% 95% 91% 75% 84% 94% 88% 91% 

Technical 8686 811/876 1144/1243 45/46 70/75 524/560 71/92 49/57 86/88 76/84 2876/3121 
material only 93% 92% 98% 93% 94% 77% 86% 98% 90% 92% 

NP-noun phrase Inf P-infinitive phrase PMR-post-modifying present participle 
PP-prepositional phrase VP-verb phrase PMP-post-modifying past participle 
Pn P-pronoun phrase PMA-post-modifying adjective Av P-adverbial phrase 

'Total number of words includes tbose contained in 
parenthetic expressions. This accounts for the discrepancies 
between the total and tbat given for the acoustics text in 
Table 1. 

ed in Table 1. A further test using 1,000 sentences 
taken from Nuclear Science Abstracts gave similar 
results. 

It was of interest to compare the performance of 
our program with that of one of the most complete 
parsing programs available, the Harvard Syntactic 
Analyzer (HSA).8 We obtained this program from 
SHARE, modified it to produce only one analysis 
(i.e., the first found) for each sentence, and tested 
it on our first text, IBM # 1. After homograph 

codes were supplied for words not found in the 
HSA dictionary, the program produced an analysis 
for 59 of the 70 sentences. Seven were rejected as 
ungrammatical, and four had not been analyzed af
ter at least 5 minutes of running time on each by 
the SYNTAX subroutine. One sentence was al'lowed 
to run for 17 minutes without success. Table 2 
shows the comparison of our program with the 
modified HSA in identifying phrases in the 59 sen
tences which were analyzed by both. 

Table 2. Comparison with Modified Harvard Syntactic Analyzer 
(59 Sentences from IBM #1; 1244 Total Words). 

NP 
Our program 115/126 

91% 

HSA 104/126 
83%' 

PROCESSING TIME 

PP 
157/169 
93% 

147/169 
87% 

Pn P 
3/3 
100% 

3/3 
100% 

Inf P 
9/10 
90% 

9/10 
90% 

The core clock was used to measure the time of 
each phase of our program for every sentence ana
lyzed. A program kindly supplied by Mr. K. L. 
Deckert of the IBM Systems Development Labora
tory, San Jose, plotted the times against sentence 
length on a CALCOMP plotter and calculated the 
slopes of the resulting lines by the method of least 
squares. The summarized results appear in Table 3. 

Ali the data appeared to be well represented by 
straight lines except for the second pass (testing for 
clause well-formedness and trying alternatives), 
which as expected displayed considerable scattering. 
The times for sentences containing parenthetic 

VP 
73/79 
92% 

73/79 
92% 

PMA 
7/9 
78% 

9/9 
100% 

PMR 
7/8 
88% 

5/8 
63% 

PMP 
12/12 
100% 

5/12 
42% 

AvP 
7/9 
78% 

6/9 
67% 

Totals 
390/425 
92% 

361/425 
85% 

Table 3 . Average Processing Times for Each Phase 
of Program. 

Phase 
1. Input and dictionary lookup . 

2. Bracketing of phrases . 

3. Testing clause well-formedness 
and trying alternatives . 

sec Time/word 
0.072 

0.047 

· 0.019 

4. Rebracketing coordinated structures 
and other minor corrections . .0.024 

5. Output · 0.017 

TOTAL · 0.179 
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expressions, because they are treated in a special 
way, were also found to deviate markedly from the 
line. Nonetheless, we found no clear indication that 
the total time might be increasing exponentially 
with length for sentences {)f the order of 50 to 75 
words. 

The total time for our program to analyze the 59 
sentences of IBM # 1 (Table 2) was about 4.5 
minutes plus 4.2 minutes for compilation (run on 
the IBM 7094 but adjusted to the IBM 7090 time). 
The time for the modified Harvard Syntactic Ana
lyzer was about 30 minutes (not measured precise
ly), which does not include the time for dictionary 
lookup and updating. We have recently been in
formed by Dr. Kuno that the running time for the 
Harvard program has now been reduced substan
tially.13 However, this version is not yet available to 
us for testing. 

DICTIONARY CODING 

Since the computational dictionary is a funda
mental part of our program, we were concerned with 
its ability to assign words to word classes compared 
to the assignments made by a complete dictionary. 
Klein and Simmons reported that their computa
tional dictionary could correctly assign unique 
word-class codes to about 90 percent of the words 
in their sample texts. However, this figure measures 
the results of two operations: first, assigning each 
-word all its possible word-class codes and, second, 
eliminating ambiguous codes by means of the con
text. Our dictionary performs only the first of these 
functions, while word-class ambiguities are re
solved in the syntactic recognition routine. There
fore, we counted as "correct" those words which 
were identified by the computational dictionary or 
which were not found and were indeed noun/verb 
ambiguities. Table 4 gives the results for the acous
tics text. Words coded arbitrarily received only the 
noun/verb classification; the fraction of these 
marked "incorrect" should have been assigned to 
either noun only or verb only, or else should have 
had additional codes attached as well. Similar data 
were collected for all six experimental texts with an 
earlier version of the dictionary. The percentage of 
correct coding was somewhat lower (86 percent), 
but it was nearly the same for each of the texts. 

In order to determine the extent to which parsing 
errors arose from inadequacies in the computational 

Table 4. Accuracy of Dictionary Coding 
for Acoustics Text. 

Words Percent 
Found among common function 

words and exceptions to 
ending list . 1001 58 

Found in ending list 
Correct _ 440 25 
Incorrect. 13 1 

Coded arbitrarily (noun/verb) 
Correct 137 8 
Incorrect. 143 8 

Total coded correctly* . . 1578 91 

Total coded incorrectly 156 9 

dictionary, we reran two of the texts with correc
tions to dictionary coding supplied by hand. The 
overall accuracy in identifying phrases increased 
from 91 to 93 percent for the chemistry text and 
from 87 to 90 percent for literary criticism. Thus, 
using a perfect dictionary with the present grammar 
and algorithm seems to improve the accuracy by 
about 2 to 3 percent. 

DISCUSSION 

The principal result of our work thus far has 
been to show that the approach to parsing, which 
we adopted for purely practical reasons, nonetheless 
succeeds as well in identifying phrases as at least 
one other more sophisticated routine. We were 
frankly surprised at this result. Because our pro
gram was to operate with many handicaps-a mini
mal dictionary, simple grammar, and severe time 
and space constraints on the whole program-we did 
not suppose that it would be able to perform so 
well. 

We must emphasize that the comparison with the 
HSA (1963 version) should be accepted with reser
vations. The HSA, as previously noted, provides a 
more complete syntactic description of each sen
tence than does our program, and therefore the run
ning times are not directly comparable. Also, the 
sample for comparison, only 59 sentences, is rather 
small. One migIit also argue that selecting only the 
HSA's first analysis from each sentence may have 
produced a bias, but there seems -to be no reasona-
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ble alternative to this choice, and in fact there is 
some reason to believe that the first analysis (rather 
than the second, the last, etc.) has a greater proba
bility of being the "correct" syntactic analysis than 
does any other. 11 

We believe that two factors are chiefly responsi
ble for the degree of success which our program has 
so far achieved. First, we have made some fortunate 
guesses about the probability of occurrence of syn
tactic constructions, at least for the kind of techni
cal writing we have investigated. (Note that the ac
curacy for the literary criticism text was somewhat 
lower than for the others despite the fact that the 
dictionary coded about the same percentage of 
words correctly in this text.) The second factor is 
the strategy of searching out alternatives only to 
remedy a particular syntactic ill-formation. This 
technique aHows most of the previously made 
"probable" choices to be left intact whenever an 
error is corrected. ~ 

Three kinds of errors were frequently made by our 
program: ( 1) incorrect bracketing of coordinated 
structures around and or or; (2) unresolved noun/ 
verb ambiguity; and (3) incorrect assignment of 
words with suffix -ing, which may be adjectival (pre
and post-modifying), verbal, or gerundive. It is inter
esting to note that the pattern of errors made by 
the HSA differs considerably. A frequent mistake 
was also the noun/verb confusion, but it usually 
arose from erroneously finding relative clauses be
ginning with an elliptical which or -that. For example, 
a sentence beginning [The maximum signal] [has] 
... was analyzed as if it has been [The maximum] 
(which) [signal] [has] ... , with a plural noun occur
ring later in the sentence being called the predicate 
verb for the subject maximum. 

The current version of our program occupies 
about 29,000 registers of an IBM 7094, thus allow
ing about 4,000 registers for COMIT "workspace" 
during analysis. Therefore, no substantial additions 
to the dictionary, grammar, or algorithm are possi
ble while maintaining the program's present design 
on the IBM 7094. Some slight improvements in 
performance can undoubtedly be made at the ex
pense of much more investigation into grammatical 
refinements. This. would undoubtedly lead to an in
crease in running time and storage space required. 
We do not know what the limits of accuracy are for 
our approach, but we estimate that less than half 
the errors are in theory correctable (by an expanded 
grammar); the remaining are genuine syntactic am-

biguities which presumably can only be resolved by 
extrasyntactic information. If this estimate holds, it 
means that an accuracy of about 94 percent in 
identifying phrases is theoretically attainable. 

The point of balance between cost and accuracy 
will depend on the particular application envisioned 
for the program. Despite the encouraging results 
thus far, we cannot claim that our program will 
guarantee the feasibility of a mechanized indexing 
system. It is clear that more will be required for au
tomatic indexing than an identification of phrases 
and clauses. For example, it may be necessary to 
specify some interphrase dependencies, and a means 
for the deletion of items deemed nonsignificant will 
almost certainly be necessary. Also, some syntactic 
transformations to convert the material into a for
mat suitable for searching (whether by machine or 
human) will probably be essential. Nonetheless, the 
prospects for using at le~s.t a limited syntactic anal
ysis program in automatic indexing on a large scale 
now seem much more hopeful. 
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INTRODUCTION 

A solution to the analysis problem for a class of 
grammars appropriate to the description of natural 
languages is essential to any system which involves 
the automatic processing of natural language inputs 
for purposes of man-machine communication, trans
lation, information retrieval, or data processing. The 
analysis procedure for transformational· grammars 
described in this paper was developed to explore the 
feasibility of using ordinary English as a computer 
control language. 

*The research reported in this paper was sponsored by the 
Electronic Systems Division, Air Force Systems Command, 
under Contract AF19 (628) 2390. The work was begun in 
the summer of 1964 by a group consisting of J. Bruce Fra
ser, Michael L.Geis, Hall, Stephen Isard, Jacqueline W. 
Mintz, P. Stanley Peters, Jr., and Zwicky. The work has 
been continued by Friedman, Hall, and Zwicky, with com
puter implementations by Friedman and Edward C. Haines. 
Walker has directed the project throughout. The grammar 
and procedure are described in full detail in reference 1. This 
paper is also available as ESD-TR-65-127. 

tPresent addresses of Zwicky, Friedman and Hall are, re
spectively: Department of Linguistics, University of Illinois, 
Urbana; Computer Science Department, Stanford University, 
Stanford, Calif.; Department of Linguistics, University of 
California, Los Angeles. 
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The Problem of Syntactic Analysis 

Given a grammar* G which generates a language 
L( G), we can define the recognition problem for G 
as the problem of determining for an arbitrary string 
x of symbols, whether or not x E L (G). The more 
difficult problem of syntactic analysis is to find, given 
any string x, all the structures of x with respect to G. 

The syntactic analysis problem varies with the class 
of grammars considered, since both the formal prop
erties of the languages generated and the definition of 
structure depend on the form of the grammar. 

A context-free (CF) phrase-structure grammar is 
a rewriting system in which all rules are of the form 
A ~ cp, where cp is a non-null string and A is a single 
symbol; in context-sensitive (CS) phrase-structure 
grammars all rules are of the form tilt A 0/2 ~ 0/1 cp 0/2, 
where A and cp are as before and 0/1 and 0/2 are strings 
(possibly null) of terminal and/or nonterminal sym
bols. A derivation in a phrase-structure grammar is 
represented by a tree in which the terminal elements 
constitute the derived string. In a transformational 
grammar there is, in addition to a phrase-structure 

*The linguistic concepts on which this work is based are 
due to Noam Chomsky; see, for example, references 2-6. 
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component, a set of transformational rules which op
erates upon trees from the phrase-structure compo
nent to produce trees representing sentences in their 
final form. 

For both types of phrase-structure grammars the 
syntactic analysis problem is known to be solvable. 
In the case of CF grammars, a number of general 
recognition and syntactic analysis procedures have 
been developed and programmed. Several syntactic 
analysis algorithms for CS grammars given by Grif
fiths (1964).8 

The case of transformational grammars is com
plicated by the fact that they do not correspond ex
actly to any well-studied class of automata. In 
fact, a number of decisions crucial to their formali
zation have yet to be made. This situation makes it 
impossible to describe a general recognition proce
dure for transformational grammars without explicit 
conventions about the form and operation of trans
formational rules. Since there is no widespread 
agreement as to the most desirable conventions, it 
is likely that different people working on the analy
sis problem for transformational grammars are ac
tually working on quite different problems. A solu
tion to the problem with one set of conventions will 
not necessarily be a solution to the problem with a 
different set of conventions. Furthermore, the solu
tion in one case would not necessarily imply the 
existence of a solution in another. 

The area of formal properties of transformational 
grammars needs more study; the results of this at
tempt to solve the syntactic analysis problem for a 
particular one may help in determining the further 
restrictions needed on the form of transformational 
rules. 

THE MITRE GRAMMAR 

In order to develop an analysis procedure it was 
necessary to fix on a particular set of conventions 
for transformational grammar. Many of these con
ventions agree essentially with the more or less 
standard conventions in the literature; points on 
which general agreement has not been reached will 
be noted. 

The grammar contains two principal compo
nents: a CS phrase-structure component and a 
transformational component. * The rules in the 

*There is a third component, the lexicon, which will not 
be discussed in detail here. 

phrase-structure component serve to generate a set 
of basic trees that are then operated upon by the 
rules of the transformational component to produce 
a set of surface trees. 

Phrase-structure Component 

A CS phrase-structure rule t/Jl A t/J2 ~ t/Jl cp t/J2 is 
written in the form A ~ CP/t/h - t/12. t/Jl or t/J2 or both 
may be null. The rules are ordered; consecutive rules 
expanding the same symbol in the same context are 
considered to be subrules of a single rule. A rule in 
this sense is thus an instruction to choose anyone 
of the specified expansions. 

The initial symbol of the grammar is SS, and the 
first phrase-structure rule is SS ~ # S #. t Further in
stances of SS and S are introduced by later rules. 
These instances are expanded during a succeeding 
pass through the phrase-structure rules during which 
new instances may be introduced, etc. The result is 
a tree that may contain sentence-within-sentence 
structures of arbitrary depth. This version of the 
phrase-structure component differs somewhat from 
the more usual versions, but is similar to the version 
presented in Chomsky.3 

We shall use the following tree terminology: x is 
a daughter of y, x (not necessarily immediately) dom
inates y, x is the (immediate) right (left) sister of y, 
x is terminal, and the sequence Xl, X2, • • • , Xn is a 
(proper) analysis of x. We shall also refer to the 
(sub) tree headed by x. These terms are all either 
standard of self-explanatory. 

Transformational Component 

Form of the Rules. A transformational rule speci
fies a modification of a tree headed by the node SS 
or S. Every such rule has two main parts, a descrip
tion statement and an operation statement. 

The description statement sets forth general con
ditions that must be satisfied by a given tree. If 
these conditions are not met, then the rule cannot 
be applied to the tree. The conditions embodied in 
a description statement are conditions on analyses of 

tThe first phrase-structure rule in the MITRE grammar 
differs from this rule by allowing for the conjunction of any 
number of sentences. SS may then dominate a sequence of 
conjoined sentences. S, on the other hand, never immediately 
dominates such a sequence. 
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sentences (trees headed by SS, # S #, or S*); a de
scription statement is to be interpreted as requiring 
that the given tree have at least one analysis out of a 
set of analyses specified by the description statement. 

If a tree satisfies the conditions embodied in a 
description statement, then the operations apply to 
the subtrees headed by the nodes in the analysis. The 
operation statement lists the changes to be made
the deletions, substitutions, and movements (adjunc
tions) of subtrees. 

In addition to a description statement and an op
eration statement, a transformational rule may in
volve a number of restrictions. A restriction is an 
extra condition on the subtrees. The extra condition 
is either one of equality (one subtree must be iden
tical to another) or of dominance (the subtree must 
contain a certain node, or must have a certain anal
ysis, or must be a terminal node). Boolean combi
nations of restrictions are permitted. 

The form of a transformational rule can be illus
trated by the following example: 

TWH2 
(#) (Q) ($NIL NG) (AUXA) ($SKIP NP AP $RES 19) 

1 2 3 4 5 
(5) ADLES 4 $RES 19: dom WH 
ERASE 5 

The description statement of this rule (TWH2) 
consists of five numbered and parenthesized des
cription segments. Each segment specifies one part 
of an analysis. When several grammatical symbols 
(symbols not beginning with $) are mentioned in a 
segment, the interpretation of the segment is that 
the corresponding part of the analysis must be a 
subtree headed by one of these symbols. When 
$NIL is mentioned in a segment, the interpretation 
is that the corresponding part of the analysis is op
tional-that is, the corresponding part may be a null 
subtree; if, however, some analysis can be found in 
which the correspcnding part is not null, that analy
sis must be chosen. The occurrence of $SKIP in a 
segment is equivalent to a variable between that 
segment and the preceding one. * $RES must be fol
lowec! by the number of the restriction to which it 
refers. There is an implicit variable at the end (but 
not at the beginning) of every description state
ment. 

In a more informal and traditional notation, the 

*This distinction is not important for our discussion here. 
See the discussion in reference 1. 

*$SKIP and $NIL may not both be used in a single seg
ment. 

description statement of TWH2 would be written as 

# + Q + (NO) 
~ ~~~-----

1 

{ANp
P I -AUXA-X- ~ 

234 

y+# 
~ 

5 

In our system there is no way of referring to a se
quence of subtrees as a single part of an analysis, 
althiugh there is in the more informal notation. 

In outline, the routiJ?e that searches through a 
tree for an analysis that conforms to a given de
scription statement searches from left to right 
through the tree, attempting (in the case of a seg
ment containing $NIL) to find a real node before 
assuming thqt a segment is null, attempting always 
(in the case of a segment containing $SKIP) to 
"skip" the smallest possible number of nodes, and 
checking (in the case of a segment containing 
$RES n) to see if a restriction is satisfied as soon 
as a node to which the restriction applies is found. 
In case one part of the search fails, either because 
the required nodes cannot be found or because a 
restriction is not satisfied, the routine backs up to 
the most recent point at which there remains an al
ternative (e.g., the alternative of searching for NP 
or for AP in the fifth segment of TWH2). As each 
part of the analysis is found, the appropriate sub
trees are marked with numbers corresponding to the 
numbers on the description segments. The tree then 
undergoes the modifications specified in the· opera
tion statement. 

The operation statement of TWH2 consists of an 
(ordered) list of two instructions. There are three 
types of instructions: the adjunction instructions, the 
substitution instruction, and the erasure instruction. 
The adjunction instructions are of the form (cp) AD 
n, where cp is a sequence containing numerals (re
ferring to the marked subtrees) or particular gram
matical symbols or both, where AD is one of the four 
adjunction operations - ADLES (add as left sis
ter), ADRIS (add as right sister), ADFID (add as 
first daughter), or ADLAD (add as last daughter) 
- and where n is a numeral referring to a marked 
subtree. The instruction (5) ADLES 4 specifies the 
adjunction of a copy of the subtree marked 5 as the 
left sister of the node heading the subtree marked 4. 
Substitution instructions are of the form (cp) SUB n, 
where cp and n are as before. When such an instruc
tion is applied, copies of the elements of cp replace the 
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subtree marked n, and this subtree is automatically 
erased. * 

Erasure instructions are of the form ERASE n 
(erase the subtree marked n and any chain of non
branching nodes immediately above this subtree) or 
ERASE 0 (erase the entire tree). The ERASE 0 
instruction permits us to use the transformational 
component as a "filter" that rejects structures from 
which no acceptable sentence can be derived. 

Derivations. The transformational rules are distin
guished as being obligatory or optional, cyclical or 
noncyclical, and singularly or embedding. The oblig
atory / optional distinction requires no special com
ment here. 

A rule is cyclical if it can be applied more than 
once before the next rule is applied. A rule may be 
marked as cyclical either (a) because it can be ap
plicable in more than one position in a given sen
tence (say, in both the subject and object noun 
phrases), or (b) because it can apply once to yield 
an output structure and then apply again to this 
output. Otherwise, the rule is marked as noncycli
cal. In the present grammar case (b) does not oc
cur. 

Singulary rules are distinguished from embedding 
rules on the basis of the conditions placed upon the 
tree search. In the case of a singulary rule the 
search cannot continue "into a nested sentence"
that is, beneath an instance of SS or S within the 
sentence being examined; the search may, of course, 
pass over a nested sentence. In the case of an 
embedding rule the search can continue into a nest
ed sentence, but not into a sentence nested in a 
nested sentence. Singulary rules operate "on one lev
el," embedding rules "between one level and the 
next level below." 

The transformational rules of our grammar are 
grouped into three sets-a set of initial singularies, a 
set of embeddings with related singularies, and a set 
of final singularies. t The rules are linearly ordered 
within each set. 

The initial singularies operate on the output of 
the phrase structure component; they can be consid
ered as applying, in order, to all subtrees simultane-

*If $NIL is chosen in th,e nth description segment, then 
~ cp) AD. n or (cp) ~UB n IS vacuous. Null terms in cp are 
Ignored; If all of cp IS null the instruction is vacuous. 

tThere is also a fourth set, conjunction rules. Because of 
the tre~!F~nt of conjunc!ion in. the "En¥1ish Preprocessor 
Ma~lUal IS cu~rently bemg reVIsed, conjunction has been 
omItted from thIS presentation. 

ously, since these rules do nothing to disturb the 
sentence-within-sentence nesting in a tree. There 
are numerous ways to order the application of these 
rules with respect to the nesting structure of a tree, 
and they are all equivalent in output. 

The embeddings and related singularies operate 
on the output of the initial singularies. These rules 
require a rather elaborate ordering. Let us define a 
lowest sentence as an instance of # S # in which S 
does not dominate # and a next-to-lowest-sentence 
as an instance of # S # in which S dominates at least 
one lowest sentence and no instance of # S # that are 
not lowest sentences. At the beginning of the first 
pass through the embeddings and related singularies, 
all lowest sentences are marked. The rules will be 
applied, in order, to the marked subtrees. At the be
ginning of each subsequent pass, all next-to-Iowest 
sentences will be marked, and the rules will again be 
applied, in order, to all marked subtrees. Character
istically, the embedding rules, when applied during 
these later passes, erase boundary symbols and thus 
create new next-to-Iowest sentences for the following 
pass. However, only those subtrees marked at the 
beginning of a pass can be operated upon during 
the pass. The process continues until some pass 
(after the first) in which no embedding rules have 
been applied. 

The final singularies operate on the output of the 
embeddings and related singularies. They can be 
considered as applying, in order, to all subtrees 
simultaneously. 

A tree that results from the application of all ap
plicable transformational rules is a surface tree. 
Each surface tree is associated with one of the sen
tences generated by the grammar. 

Dimensions 

The MITRE Grammar generates sentences with a 
wide variety of constructions-among them, passives, 
negatives, comparatives, there-sentences, relative 
clauses, yes-no question, and WH-questions. The 
dimensions of the grammar (excluding all rules con
cerned with conjunction) are as follows: 

Phrase Structure Component: 

Transformational Component: 

75 rules 
approximately 275 subrules 

13 initial singularies 
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26 embeddings and related 
singularies, including 9 embeddings 

15 final singularies 

54 rules 

THE MITRE ANALYSIS PROCEDURE 

The MITRE analysis procedure takes as input an 
English sentence and yields as output the set of all 
basic trees underlying that sentence in the MITRE 
grammar. If the procedure yields no basic tree, the 
input sentence is not one generated by the grammar. 
If the procedure yields more than one basic tree, 
the input sentence is structurally ambiguous with 
respect to the grammar. . 

There are five parts to the procedure: leXIcal 
look-up, recognition by the surface grammar, re
versal of transformational rules, checking of presum
able basic trees, and checking by synthesis. These 
parts are described in detail in the following sec
tions. 

Lexical Look-up 

The first step of the process is the mapping of 
the input ·string into a set of pre-trees, which are 
strings of subtrees containing both lexical and 
grammatical items. The pre-trees are obtained 
from· the input string by the substitution of lexical 
entries for each word. 

A lexical entry for a word may be identical to the 
word (in the case of grammatical items like A and 
THE). More often, a lexical entry for a word indi
cates a representation of the word in terms of more 
abstract elements (NEG ANY for NONE), a 

ADJ 
category assignment for the word ( I for 

GREEN 
GREEN), or a combination of abstract representa

PRES SG VTR 
tion and category assignment ( I for 

OPEN 
OPENS). A word may have several lexical entries. 

The number of pre-trees associated with an input 
string is then the product of the numbers of lexical 
entries for the words in the string. Thus, the string 
# CAN THE AIRPLANE FLY # has 15 associated 
pre-trees, which can be schematically represented as: 

# 

PRES SO M 
I 

CAN 

PRES PL M VINT 
I I 

CAN FLY 

NCT SO THE NCT SO PRES PL VINT 
I I I 

CAN AIRPLANE FLY 

VTR 
I 

CAN 
NCT SO 

PRES PL VTR I I FLY 
CAN 

Of these 15 pre-trees, only 

# PRES SG M THE NeT SG VINT 
I 

FLY 
I 

CAN 
I 

AIRPLANE 

:J:I: 

# 

is a correct assignment of lexical entries to the words 
in the input string. * 
Recognition by the Surface Grammar 

The surface grammar is an ordered CF phrase
structure grammar containing every expansion 
which can occur in a surface tree. Unavoidably, the 
surface grammar generates some trees which are not 
correct surface trees, even though the corresponding 
terminal string may be a sentence obtainable by the 
grammar with some other structure. 

In the second step of the analysis procedure the 
surface grammar is used to construct from each 
pre-tree a set of presumable surface trees associa
ted with the input string. Since the surface grammar 
is context-free, and context-free parsing algorithms 
are known to exist, no details will be given here for 
this step of the analysis. 

In the course of recognition by the surface gram
mar, some pre-trees may be rejected. For example, 
9 of the 15 pre-trees in the previous section are 
rejected in this way. From other pre-trees one or 
more presumable surface trees will be constructed. 

The remaining steps of the analysis procedure are 
designed to determine, for each presumable surface 
tree, whether or not the tree is in fact a surface tree 
for the input sentence. 

*Since the MITRE grammar generates neither imperatives 
nor noun-noun compounds, the interpretation of CAN THE 
AIRPLANE FLY as analogous to CORRAL THE SADDLE 
HORSE is excluded. 
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Reversal of Transformational Rules 

The next step in the analysis procedure reverses 
the effect of all transformational rules that might 
have been applied in the generation of the given 
presumable surface tree. 

The "undoing" of the forward rules is achieved 
by rules that are very much like the forward rules in 
their form and interpretation. The discussion under 
Form of the Rules, above, applies to reversal rules 
as well as to forward rules, with the following addi
tions: 

(a) There is a new adjunction instruction, ADRIA 
(add as right aunt - that is, add as right sister 
of the parent). 

(b) Adjunction and substitution instructions have 
-been generalized to permit instructions like: 

B 
I 
1 

(A) ADRIS n 

C 

2D 

(1 B C) SUB n 
I 

231 

Such instructions are used to restore entire sub
trees deleted by forward rules. 

( c ) In the reversal of optional forward rules, a 
marker OPTN is added as a daughter of a speci
fied node, which in every case is either terminal 
or else has only a lexical expansion. Some such 
device is required if the result of the final syn
thesis step is to correspond to the original input 
string. The constraint on the placement of 
OPTN insures that the marker will not interfere 
with the operation of other reversal rules. 

As with forward rules, reversal rules are either 
cyclical or noncyclical, and either singulary or 
embedding. All reversal rules are obligatory. * 

The reversal rules are grouped together in the 
same way as the forward rules, and the order of 
their application within each group is essentially 
the opposite of the order of the corresponding for
ward rules. In many cases, one reversal rule undoes 
one forward rule. There are three types of excep
tions, however: (a) several reversal rules may be 
required to attain the effect of undoing a single for
ward rule; (b) for some rules, notably the rules 
with ERASE 0 instructions, no reversal is needed; 

*Optional reversal rules are required when two distinct 
basic trees are mapped into identical surface trees by the 
application of forward rules. No such example occurs in the 
present MITRE grammar. 

( c) in some cases the reversing of several forward 
rules can be combined in whole or in part into a 
single reversal rule. 

Reversed final singularies are first applied to all 
subtrees. Then reversed embeddings and related sin
gularies are applied in several passes. The first pass 
deals with the highest sentences in the tree. Later 
passes move downward through the tree, one level 
at a time. New lower sentences are created when 
boundary symbols are inserted during the reversal 
of embedding transformations; in general, a sen
tence created on one pass is dealt with on the next. 
Finally, reversed initial singularies are applied ev
erywhere. 

The effect of transformational reversal is to map 
each presumable surface tree into a presumable basic 
tree. t 

Checking of Presumable Basic Trees 

In the next step of the analysis procedure, each 
presumable basic tree is checked against the 
phrase-structure component of the (forward) 
grammar. The check determines whether or not the 
presumable basic tree can in fact be generated by 
the phrase-structure component; if it cannot, it is 
discarded. 

Checking by Synthesis. It is possible that trans
formational reversal and phrase-structure checking 
could map a presumable surface tree T 1 into a basic 
tree T2 that is not the basic tree underlying T1• For 
example, the reversal rules map at least one presum
able surface tree associated with THOSE PIG IS 
HUGE into a basic tree underlying THAT PIG IS 
HUGE. Even under the assumption that input sen
tences are grammatical, the possibility remains. For 
example, the reversal rules map at least one presum
able surface tree associated with THE TRUCK HAS 
A SURFACE THAT WATER RUSTS into a basic 
tree underlying mE TRUCK HAS A SURFACE 
THAT RUSTS. Similarly, they map at least one pre
sumable surface tree associated with THEY CAN 
FISH into a basic tree underlying THEY CAN A 
FISH. 

Revision of the present reversal rules and the 
introduction of rejection rules into the transforma
tional reversal step might make a synthesis step 

tDistinct presumable surface trees may be mapped into 
identical presumable basic trees; the resultants of distinct 
presumable surface trees will continue to be processed sep
arately, however. 
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unnecessary. However, the above examples demon
strate that with the present rules this step is essential. 

In the synthesis step, the full set of forward trans
formational rules is applied to each basic tree that 
survives the previous checking step. Each optional 
rule becomes obligatory, with the presence of the 
marker OPTN (in the appropriate position) as an 
added condition on its applicability. 

The synthesis step maps a basic tree T 2, derived 
from a presumable surface tree T 1, into a surface tree 
T 3. If T 1 and T 3 are not identical, then T 2 is dis
carded as a possible source for the input string. If T 1 

and T 3 are identical, then T 2 is a basic tree underly
ing T 1 (and hence, underlying the input string). 

Dimensions 

The dimensions of the additional components of 
the analysis procedure are as follows: 

Surface Grammar: 49 rules 
approximately 550 
subrules 

Reversal Rules: 30 final singularies 
92 embeddings and 

related singularies 
12 initial singularies 

134 rules 

AREAS FOR FURTHER INVESTIGATION 

We are investigating a number of problems both 
in the grammar and in the analysis procedure, with 
the objectives of making the grammar more ade
quate and the procedure more efficient. 

Among the grammatical problems are the use of 
syntactic features (see Chomsky3) and the addition 
of further rejection rules in the transformational 
component. The treatment of conjunction is being 
revised. Other topics requiring investigation include 
adverbial clauses, superlatives, verbal complements, 
imperatives, and nominalizations. 

We are examining a number of ways to improve 
the efficiency of the analysis procedure. If the input 
vocabulary is to be of an appreciable size, an effi
cient and sophisticated lexical look-up routine 
will be required. We are using computer experi
ments to determine the extent to which the use of a 
CS surface grammar, either as the basis of a CS 
parsing routine or as a check on the results of CF 

parsing would improve the procedure by elimina
ting some incorrect surface trees at an early stage. 

Some increase in the efficiency of the reversal 
step might be achieved by making use of a prepro
grammed path through the reversal rules, or by us
ing information that certain surface grammar rules 
signal the applicability or inapplicability of certain 
reversal rules. Similarly, the efficiency of the final 
synthesis step might be improved by making use of 
a preprogrammed path through the forward trans
formational rules, or by using information that cer
tain reversal rules have been applied. 
A nalysis by Synthesis 

The first analysis procedure proposed for trans
formational grammars was the "analysis by synthe
sis" model of Matthews.9 Basically this procedure 
involves generating sentences until one is found 
which matches the input sentence; the steps used in 
the generation provide the structural description. 
No attempt to program the analysis-by-synthesis 
procedure for transformational grammars has been 
reported in the literature. In its raw form this pro
cedure would take an astronomically long time. One 
way to refine the procedure would be to use a "pre
liminary analysis" of some sort, which would have 
to be extensive to make any appreciable change in 
efficiency. As a result, there may be no sharp bound
ary between refined analysis-by-synthesis and 
direct analysis with a final checking-by-synthe
sis step. In the case of the MITRE procedure the 
final synthesis step plays a relatively minor role in 
the total procedure. 

Petrick's Procedure 

S. R. Petrick10 has proposed and programmed a 
general solution to the analysis problem which is 
similar in many respects to the MITRE procedure. 
One of the main differences between his approach 
and ours is that he alternates the use of reversal 
rules and phrase-structure rules, while we use first 
the phrase-structure rules of the surface grammar 
and then the reversal rules. Furthermore, while Pe
trick's reversal rules are all optional, ours are all 
obligatory. It follows that although we may have a 
larger number of structures to consider at the begin
ning of reversal step, this number does nbt increase 
as it does at every step in Petrick's procedure. 

At the present time the procedures differ in gen-
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erality, for Petrick has shown that there are algo
rithms for the construction of his surface grammar 
and reversal rules. In the case of the MITRE proce
dure, the question of the existence of comparable 
algorithms has not yet been resolved. 

Kuno's Procedure 

Another approach to the analysis problem has 
been proposed in Kuno. 11 Kuno attempts to find 
basic trees, without using reversal rules, by con
structing a context-free surface grammar and asso
ciating with each of its rules information about the 
form of the basic tree. 

Kuno reported that an experimental program for 
this system had been written and was being tested 
on a small grammar. At that time it was not known 
whether an algorithm for constructing the required 
phrase-structure grammar existed. 

COMPUTER TESTS 

To test the grammar and the procedure a set of 
FORTRAN subroutines (called SYNN) , designed 
to be combined in several different programs, has 
been written. In one order, the subroutines carry 
out the procedure from the stage at which presuma
ble surface trees have been obtained, through" the 
base tree, to the final step of comparison of the de
rived surface tree with the given presumable surface 
tree. In other orders they can, for example, convert 
base trees to surface trees and back, or check sur
face trees against context-sensitive grammars. 

We describe first the su1:'-routines, in groups cor
responding to the major components of the MITRE 
procedures, then some of the programs and the re
sults of running the programs on a subset of the 
grammar. 

Subroutines 

Because the primary operations are operations on 
trees, the main subroutines of the SYNN package 
analyze and manipulate trees. Three of the subrou
tines treat trees without reference to the grammar: 
CONTRE reads in a tree and converts it to the in
ternal format, TRCPY stores a copy of a tree for 
later comparison, and TREQ compares two trees to 
see if they are identical. 

In the SYNN package there are four subroutines 
that deal with phrase-structure grammars. CONCSG 

and CONCFG read in context-sensitive and context
free grammars, respectively, and convert them to 
internal format. CHQCS and CHQCF check the 
current tree against the indicated grammar by a 
regeneration procedure. 

Most of the subroutines of SYNN are concerned 
with the transformational components. Separate sub
routines read in the transformational rules, control 
the application cycle, mark levels of embedded sub
trees, search for an analysis, check restrictions, and 
perform the operations. 

The application of the forward rules is controlled 
by the subroutine APPFX, and the application of 
the reversal rules by APPBX. The application cy
cles are as described in the section Reversal of 
Transformational Rules, above, except that each 
transformational rule has a keyword which is used 
to bypass the search if the transformational key
word does not occur in the tree. 

There is also a generation subroutine GENSR 
which is best described as a "constrained-ran
dom" generator. Within constraints specified by the 
user the subroutine generates a pseudo-random 
base tree to which other subroutines of SYNN can 
be applied. 

Programs 

In initial tests of the grammar and procedure the 
most useful combination of subroutines was in the 
program SYN1, which goes from basic tree to sur
face tree and back to basic tree, checking at every 
step. This first program is an iteration of the sub
routines CONTRE, TRCPY, CHQCS, APPFX, 
CHQCF, APPBX, CHQCS, TREQ. When all parts 
are correct, the final result is the same as the input, 
and this is indicated by the final comment of the 
TREQ subroutine. 

The program SYN2 carries out the steps of the 
MITRE procedure without the first two steps, lexi
cal look-up and context-free parsing. Its basic 
cycle is CONTRE, TRCPY, APPBX, CHQCS, 
APPFX, CHQCF, TREQ. After each of the sub
routines an indicator is checked to see if the tree 
should be rejected. 

The program SYN3, which uses the generation 
subroutine, is like SYN2 except that GENSR re
places CONTRE in the basic cycle. Inputs for 
GENSR are easier to prepare than those of 
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CONTRE, so that SYN3 is being used extensively 
in debugging the grammar. 

The lexical lock-up and context-free parsing 
steps of the procedure have not been programmed. 
Because algorithms for these steps are known to ex
ist, it was decided that their programming could be 
postponed and an existing program used. 

Test Grammar 

A subset of the grammar, familiarly known as the 
JUNIOR grammar, was selected for initial tests of 
the procedure. Its dimensions are: 

(Forward) 
Grammar 

Phrase-Structure 
Component: 
Transformational 
Component: 

Surface Grammar 

Reversal Rules 

61 rules 
105 subrules 

11 initial singularies 
6 embeddings and re

lated singularies, in
cluding two embed
dings 

3 final singularies 
20 rules 
32 rules 

306 subrules 
6 final singularies 

15 embed dings and re
lated singularies 

11 initial singularies 
32 rules 

Twenty-six sentences (plus some variants) con
stitute a basic test sample for the JUNIOR gram
mar. This sample, which includes at least one test 
for each transformational rule, contains ( among 
others) the sentences: 

1. The airplane has landed. 
2. Amphibious airplanes can land in water. 
3.0 Did the truck deliver fifty doughnuts at 

nine hundred hours? 
4. Were seven linguists trained by a young 

programmer for three months? 
5. The general that Johnson met in Wash

ington had traveled eight thousand miles. 
6. Are there unicorns? 
7. John met the man that married Susan in 

Vienna. 
8. There were seven young linguists at 

MITRE for three months. 
9. Can all of the ambiguous sentences be an

alyzed by the program? 
10. The linguist the ambiguous grammar was 

written by is young. 

SYNI has been run on the full set of sample sen
tences. The total time for a run with 28 sentences 
was 5.11 minutes on the 7030 computer. 

SYN3 has likewise been run with the JUNIOR 
grammar. As an example of running time, a typical 
run generating 20 trees carried all of them through 
the transformations and reversal rules in a total of 5 
minutes. All but one of these trees contained 
embedded sentences; half of them contained two 
embeddings. 

In another experiment, a CF parser was used 
with SYN2 to simulate the full procedure. The re
sults for sentences (1), (2), and (6) are: 

Sentence 
(1) (2) (6) 

Pre-trees 12 90 1 
Presumable surface trees 8 15 1 
Presumable base trees 3 4 1 
Correct base trees 1 2 1 

In the worst case encountered, sentence ( 5) , 
there are 48 presumable surface trees. 

It is clear from even these few numbers that if 
the procedure is to be practical, it will be necessary 
to incorporate a highly efficient routine for obtain
ing surface trees and to work on the rapid elimina
t:on of spurious ones. 
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COBWEB CELLULAR ARRA YS* 
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Stanford Research Institute 

Menlo Park, California 

INTRODUCTION 

The cobweb cellular arrays are embellishments of 
the cutpointl

-3 cellular array that are made by com
plicating the cell-interconnection structure. This 
new class of arrays will allow for more economical 
and efficient logical designs than are possible in 
cutpoint arrays. As a background to the new arrays, 
the properties of the cutpoint array2 will be re
viewed. 

CUTPOINT ARRAY 

The cutpoint cellular array is a two-dimensional 
rectangular arrangement of cells. As shown in Fig. 
1 b, each cell has binary inputs from neighboring 
cells on the top and the left, and binary outputs to 
neighboring cells on the bottom and right. In addi
tion to being used in the . cell, the input to the left 
of each cell is bussed to the right output. The bot
tom output of each cell is set as one of six combi
national switching functions of the two cell inputs, 
or as an R-S flip-flop-in either case by the use of 
four specification bits, or cutpoints, in each cell. By 
specifying these cutpoints independently for every 

*The research reported in this paper was sponsored by 
the Air Force Cambridge Research Laboratories, Office 
of Aerospace Research, Under Contract AF 19(628)-4233. 
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cell of a cutpoint cellular array, the array is thereby 
particularized to a required logical property. The 
table in Fig. 1 a includes the logical functions that 
can be produced at the bottom output of each cell, 
depending on the particular specification of its cut
points. The symbol F in the index column indicates 
an R-S flip-flop. 

A 3 X 4 array of cutpoint cells is shown in Fig. 
1 b; the specification bits are indicated as dots. A 
realization for one cutpoint cell in terms of diode
transistor circuits is shown in Fig. 2. The four cut
points in this realization are depicted as switches; 
however, they could be photoresistors, flip-flops, or 
breaks or bridges in conductors. The DTL realiza
tion in Fig. 2 is one of many circuit possibilities 
for a cutpoint cell. 

PROBLEMS WITH CUTPOINT ARRAYS 

It has been shown in the previously cited refer
ences that arbitrary logical functions can be realized 
using appropriately specialized cutpoint arrays. How
ever, certain of these realizations tend to be ineffi
cient in terms of the number of required cells. For 
instance, the best-known realization for a three-bit 
parallel adder using no more than two cutpoint arrays 
is shown as Fig. 3. In this figure the two three-bit 
words (a3, a2, ad and (bs, b2, bI) are added to form 
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INDEX a b c d z 

0 0 0 0 0 1 
1 0 0 0 1 y' 
2 0 0 1 o x' + y' 
3 0 0 1 1 x'y' 
4 0 1 0 0 x+y 
5 0 1 0 1 xy' 
6 0 1 1 0 xiBy 
7 0 1 1 1 0 
F 1 1 o 1 x=S, y=R 

(a) 

( b) 
RA-64'54'-82 

Figure 1. Cutpoint Array. 

the sum word (S3, S2, sI). The input carry to the 
low-order column is co, while C3 is the overflow bit. 
An n-bit parallel adder can be formed in a similar 
manner to the one in Fig. 3; a total of (2n + 1) 2 

cells are required in two adjoining arrays for such a 
realization. 

Reference back to Fig. la shows that cells with 
an index 1 form the complement of the top input. 
This one-variable function is convenient to use when 
transmittal of information vertically in an array is 
desired. Hence, vertical cascades of Index 1 cells in 
a cutpoint array indicate that in effect, no logic is 
being performed, perhaps with the exception of one 
cell in each such cascade. With this in mind, it is 
now observed that in the upper 3 X 7 array of Fig. 
3 only six cells, roughly along the diagonal from the 
upper-right to lower-left corners, are used logically. 
Similarly, in the lower 4 X 7 array in Fig. 3, only 

cells in the upper-right triangular area are used lo
gically. 

A wastage of cells similar to that encountered in 
Fig. 3 had been observed in several cutpoint-array 
logical designs, particularly in designs which in
volve parallel operations. This inefficient use of cells 
occurs in most of these situations because every 
bit of one operand word must interact with every 
bit of a second operand word. In a cutpoint array 
the only convenient way this interaction can occur 
is to introduce the bits of one word on the side 
of the array and the bits of the other word along the 
top. This orthogonal introduction of the two oper
and words into a cutpoint array seems necessary 
because no facility is provided within the array to 
change the direction of information flow from ver
tical to horizontal. 

It it were possible to redirect the information 
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Figure 2. Circuit for one Cutpoint CelL 
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Figure 3. Cutpoint realization for a three-bit parallel adder. 
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flow inside a cellular array, two n-bit operand 
words might be applied to the side of the array, (or 
both to the top), and possibly a significant reduc
tion would result in the number of cells that are re
quired. Instead of requiring 0(n2 ) cells, the result
ing array might require O(n) cells. Thus this lack 
of control on the direction of information flow con
stitutes an important problem in the use of cutpoint 
arrays. 

Another problem encountered in practical logical 
designs using cutpoint arrays is the excessive re
quirement for jumper connections from edge-output 
points to edge-input points of the same array. One 
example of this problem is shown in Fig. 4, which 
is a five-bit shift register driven by a four-phase 
clock. For this example four such jumpers are used. 
Jumpers of this type will be termed edge jumpers. 
A second example is shown in Fig. 5. In this fig-

Figure 4. Cutpoint realization for a five-bit shift register. 

ure, the following three combinational functions of 
the three variables, X3, X2, Xl, are realized in one 
cutpoint array: 

o 

E66 = I(1, 6) 
E43 = I(O, 1, 3, 5) 
E 129 = I(O, 7). 

Figure 5. Cutpoint realization for three functions of threevariables. 

(1) 
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A requirement for edge-jumper connections in a 
cutpoint array often carries with it a wastage of 
cells. In the bottom half of the array in Fig. 5, for 
example, only three cells are used other than for 
transmitting signals. 

A third problem often encountered when practi
cal logical designs are made in terms of cutpoint 
arrays is an insufficient number of edge connections 
to the array. A final problem is the desirability to 
have the cells isolated from one another during the 
early part of the production so that it is possible to 
identify faulty cells by step-and-repeat testing. 

The cobweb array is proposed as a means of 
meeting all of these problems of inefficiency for 
parallel operations, excessive edge-jumping, insuffi
cient edge connections, and lack of cell isolation. 

COBWEB ARRAY 

A 4 X 4 cobwed array is shown in Fig. 6. It is 
seen that within the array each cell has five possible 
inputs: two from a horizontal and vertical buss and 
three from nearby cells. Connections from edge cells 
to the package terminals are shown on Fig. 6 by 
peripheral dots. For terminal connections, each cell 
on the left and bottom edges of the array has one 
non-bus output connected to terminals, each cell on 
the right and top edges of the array has one non-bus 

input connected to terminals, and each horizontal 
and vertical bus is connected to a terminal. For an 
M X N-cell cobweb array it is easily seen that 
3 (M + N) - 2 package terminals are needed. This 
compares with M + 2N terminals for the cutpoint 
array of the same size; for square arrays approxi
mately twice the number of terminals are provided 
by the cobweb array, while in general the number 
of terminals in the cobweb array varies from one 
and one-half to three times the number in cutpoint 
arrays of the same dimensions. 

In Fig. 7 a one internal cell of this cobweb array 
is shown with its five inputs labelled as u, v, w, x, 
and y Fig. 7 b shows how this cobweb cell can be 
fabricated from the previous cutpoint cell and four
teen additional cutpoints. Of course, as mentioned 
previously, technologies other than the diode-tran
sistor method shown in Fig. 7 b can be used. The 
added cutpoints are labelled e, f, ... , r. In order to 
have all single-throw cutpoints, the double-throw 
cutpoint a in Fig. 2 is replaced in Fig. 7 b by two 
cutpoints, g and e, where a = g' e and a' = ge'. 

It is anticipated that cobweb cellular arrays will 
be made by one of the modern batch-fabrication 
technologies, such as that of integrated circuits. In 
making these arrays with integrated circuits, the 
number of deposition steps is of related economic 
interest. Returning to Fig. 6, and using the nomen-

TA-741581-1 

Figure 6. Structure of the cobweb array. 
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Figure 7. Diode-transistor realization of cobwell cell. 

c1ature of Fig. 7 a , it is seen that if the w busses 
are moved to the right of the center in each cell, all 
w, v and y interconnections may be deposited 
simultaneously. After depositing an appropriate in
sulating layer, the u and x interconnections together 
with connections for power and ground may be 
formed as a second deposition layer. Hence the in
terconnection structure of the cobweb array in Fig. 
6 is two-layered. Similar reasoning applied to Fig. 
1 b shows that the interconnection structure of the 
cutpoint array is single layered. 

In summary, the cobweb array consists of cells 
that have the same amount of electronics as cut
point cells. Each cell in the new array has about 
four times the number of cutpoints as the cutpoint 
cell, one and one-half to three times the number of 
package terminals as a cut1,,",lnt array of the same 
size, and a two-layered rather than a one-layered 
interconnection structure. It will now be shown that 

the use of this more complicated cellular array at 
least partially alleviates the previously-discussed 
problems of cutpoint cellular arrays. 

LOGICAL DESIGN WITH COBWEB CELLU
LARARRAYS 

In cutpoint arrays, switching functions are pro
duced by forming one or more vertical cascades of 
cells. In the cobweb cellular arrays, these cascades 
of cells no longer are required to be vertical. In
deed, a cascade in a cobweb array may be any chain 
of cells that follows the arrowheads in Fig. 6. This 
property of cobweb arrays gives the logical designer 
a considerable degree of flexibility in forming his 
design. The need for an increased ratio of edge con
nections to cells is met in cobweb arrays. By intro
ducing other assumptions on edge connections it is 
possible further to increase this ratio if additional 
logical design experience shows this to be desirable. 
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In the cobweb array it is possible to use some of 
the cutpoints in a cell in lieu of edge jumpers. For 
instance, if cutpoints hand k (Fig. 7 b ) are 
closed, this causes the x bus and input u to that cell 
to be connected together. Similarly, by closing cut
points j and f, and by opening cutpoint r, the cell 
output can be jumpered to the w input bus; for this 
connection, the logical function produced by the 
cell is immaterial. * It is also possible to jumper as 
many as all five inputs and the output of a cell to
gether. Indeed, for those cases where sneak paths 
are not introduced, it is possible to form one jum
per path among the cutpoints f, h, i, j, k, I and a 
second nne among m, n, 0, p, q. Cells that are 
specialized in this way are called jumper cells. The 
jumper connections are designated by circling the 
inputs (and output) that are jumpered together and 
by inserting the symbol J inside the cell. If two iso
lated jumpers are used, triangles will designate the 
inputs (and output) on the second jumper. 

It should be observed that J cells in the cobweb 
array are logically inactive. That is, jumper cells are 
used only to make local connections in the array, 
and not to perform logical operations. It should also 
be noted that jumper-cell connections can be made 
in such a way as to allow information flow in viola
tion of the arrowheads in Fig. 6. 

It also is possible to use the cutpoints h, i, ... , 
q to obtain an OR of two or more of the five inputs 
to a cell. For instance if cutpoints k, 1, m, nand 0 

are closed, then the horizontal input to the cell is 
x + y, while the vertical input is u + v + w. Care 
must be taken when using this property to avoid the 
introduction of sneak paths. 

Two decomposition methods will now be shown 
in order to illustrate the elimination or reduction in 
the use of edge jumpers by the jumper-cell special
ization. It is supposed that a switching function E = 
E(Xl, X2, ... , Xn) is not producible in one cascade 
of cells. This function can always be decomposed 
on one of its variables, Xi, in several ways, including 
a form due to Shannon, 

E = GXi + Hx/ (2) 

and a form due to Reed, 

E = AXi () B (3 ) 

*In principle, cutpoint r in Fig. 7b could be eliminated 
by setting cutpoints b, c, and d so that the output tran
sistor is nonconducting. However, cutpoint r is necessary 
for the correction algorithms to be described. 

where () is the EXCLUSIVE-OR operator, and each 
of G, H, A and B is a switching function of no more 
than n-l variables, and is indep~ndent of Xi. 

If it is assumed that G', H', A', and B are each 
producible in one cascade of cells, the cobweb arrays 
of Figs. 8a and 8b correspond to the two decomposi
tions of Eqs. (2) and (3), respectively. If one or 
more of the four (n - 1 )-variable functions are not 
producible in a single cascade, either of the above 
decompositions may be repeatedly applied until all 
subsidiary functions are realizable in one cascade. 

The J cell in Fig. 8a with the y input and the z 
output circled means that the switches f and 1 (see 
Fig. 7) are closed and that switch r is open. This 
connects the y input to the cell output without the 
use of an external jumper. For cobweb cells that 
produce one of the functions listed in Fig. 1 a, a 
function index is placed inside the cell and the par
ticular inputs (if any) that are connected through 
the cutpoints h, i, ... , 1, (Fig. 7), are designated 
by circles, while the particular inputs (if any) that 
are conected through the cutpoints m, n, ... , q are 
designated by triangles. For instance, the cell with 
index 5 in Fig. 8a means (b, c, d) = (1, 0, 1), and 
since a circle is on the x buss and a triangle is on 
the y input, then (h, i, j, k, 1) = (0, 0, 0, 1, 0), and 
(m, n, 0, p, q) = (0, 0, 0, 0, 1), and finally (e, f, 
g, r) = (0,0, 1, 1). 

As shown in Fig. 8, no jumpers are needed in the 
cobweb-array realization of either decomposition. 
Furthermore, it is noted that only one row of cells 
is needed for each application of the Reed decom
position. 

With none of the cutpoints h, i, ... , q closed, all 
cells are isolated in the cobweb arrays. Therefore, 
step-and-repeat testing is possible for cobweb arrays 
that are fabricated as monolithic integrated circuits, 
while it is not possible for the originally proposed 
cutpoint arrays. 

The particular interconnection structure of the 
cobweb array was chosen for several reasons. As the 
number of potential inputs to each cell is increased, 
the number of interconnection possibilities also in
creases. But this increase is obtairied at the cost of 
additional cutpoints in each cell. Hence, it is desir
able to introduce only as much interconnection ver
satility as the typical logical designer would use. 

*In order to simplify the artwork, the terminal con
ventions adopted in connection with the discussion of 
Fig. 6 will not be explicitly shown on this and on following 
cobweb-array designs. 
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x· I 

X· I 

(0) SHANNON 

E=AXjG>B 

(b) REED 

Figure 8. Shannon and reed decompositions using cob-web arrays. 
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Figure 9. Cobweb realization for a three-bit parallel adder. 
I 

a 
Figure 10. Cobweb realization for a five-bit shift register. 

Referring back to Fig. 7 a, the x and y inputs are 
carried over directly from the previous cutpoint ar
ray. The u input allows the designer to build up a 
carry propagation chain within a horizontal row of 
register cells. The vertical bus allows one to jumper 
a bottom-cell output of an array to a top-cell input. 
Finally, the v input is a knight's move away so that 
it is possible to build up a cutpoint cascade that 
crosses other such cascades. The desirability of hav
ing crossings in cellular arrays has been observed 
before. * 

A number of obvious variations of the cobweb 
array is possible. For instance input v, or both in
puts v and w in Fig. 7 a may be omitted in each 

cell,with a corresponding saving in cutpoints. In 
the latter variation, a single-layered interconnection 
structur results. Similarly, it is possible to invent 
more complicated variations of the cobweb array. 

Illustrations of logical designs using cobweb ar
rays are given as Figs. 9, 10 and 11. These figures 
should be compared directly with Figs. 3, 4, and 5, 
respectively. First comparing Figs. 3 and 9, it is 
seen that an n-bit parallel adder can be synthesized 
using 9n + 3 cobweb cells in a single array, while 
(2n + 1)2 cells in two adjoining arrays are required 
if cutpoint cellular logic is used. Thus, for example, 
a 50-bit parallel adder requires 453 cells in a cob-

"'By Marvin E. Brooking, private communication. 
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web array and 10,201 cells in two cutpoint arrays. 
A comparison of Figs. 4 and 10 shows that all 

edge jumpers are eliminated in the cobweb realiza
tion of a shift register at the cost of one extra row 
of cells. Finally, comparing Figs. 5 and 11, it is 
seen that the three edge jumpers as well as half the 
total number of cells are eliminated when a cobweb 
array is substituted for a cutpoint array. 

FAULT AVOIDANCE METHODS 

In regard to the cutpoint cellular array, methods 
have been demonstrated for replacing faulty cells 
with spare cells.2 These methods no longer are fea
sible with the cobweb arrays; therefore, it is neces
sary now to develop an alternative faculty cell avoi
dance algorithm. It will be assumed that the faults 
are "electronic;" that is, a transistor has a low beta, 
or it has an emitter-collector short, or a diode is 
open-circuited, etc. All conductors and cutpoints 
will be considered perfect, and furthermore, the cir
cuit design is assumed to be such that no failure 

condition will cause the shorting or opening of a 
conductor or the shorting of a power supply. It ap
pears from a consideration of the integrated circuit 
technology that these assumptions are realistic. 

Two' clusters of cells called supercells are defined 
by Fig. 12. The shaded cell in each 2 X 2 cobweb 
array has five inputs (marked with the symbol I) 
that are geometrically equivalent to the cobweb cell 
of Fig. 7. The jumpers between points p and in Fig. 
12 are used for transmitting the knight's move in
terconnections. The supercells of Fig. 12 are ar
ranged in such a way that one may first perform a 
logical design in terms of a conventional cobweb 
array, and then replace each cell in the first and all 
odd-numbered rows with a type ex supercell. The 
cells in the second and all even-numbered rows are 
replaced with a type f3 supercell. 

The effect so far has been to increase the number 
of cells in the cobweb array by a factor of four. In 
this supercell array it is possible under most condi
tions to make focal perturbations of the logical de-

Figure 11. Cobweb realization for three functions of threevariables. 

II 

o 

o q 

(a) TYPE a (b) TYPE f3 

Figure 12. Cobweb supercells. 
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Figure 13. Exhaustive listing of the cobweb array fault-avoidance algorithm. 
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sign in order to avoid faulty cells. Assuming that 
only one or two of the five inputs to a given cell are 
connected by means of cutpoints h, i, ... , q in Fig. 
7, it is necessary to demonstrate a fault-avoidance 
algorithm for C~ = 10 cases (the two-input cases 
cover the one-input cases). However, the logical 
cells in a supercell array appear in two geometrical
ly different environments that correspond to the 
types a and f3 supercells; therefore, a total of 20 
cases must be investigated. Proceeding by exhaus
tion, a fault-avoidance algorithm for each of these 
20 cases is shown as Fig. 13. On this figure, a sin
gle shading indicates a faulty cell; arrowheads are 
attached to the two active inputs for that cell. A 
cell with cross-shading is assumed to be a good cell, 

Rf 

Sri 

Rrj 

Sq 

Rq 

f rno ho q 

~ 
Rf = po/Ttl 

Rpj = (,8xit 2 

Rrj = (yrno)'t2 

Rmj = (ro + a,8po>'t2 

Rq = frnoT'hot2 

Rhj = (sy + loa,8')t3 

Rli = (loY + Thoy)'t3 

s,;~ 
RPi 

ro Sm;~ 
Rmj 

Shj 

Rhj 

Slj 

Rlj 

and it replaces the faulty cell. If the faulty cell has 
no symbolism other than the arrowheads and the 
shading, it is assumed to have been disconnected by 
having all of cutpoints f, h, i, ... , r open; if it has 
a J symbol, it is used as a jumper cell with no con
nections made at the arrowheads. Cells with a dot
ted single shading are neighboring good logical 
cells. Cases where the faulty cell in Fig. 13 occurs 
on or near the top row correspond to faults in a su
percells, while cases where the faulty cell in Fig. 13 
occurs on or near the bottom row correspond to 
faults in f3 supercells. 

From this deveiopment it should be clear that if 
a logical cell in a supercell array is bad, it can be 
logically replaced provided that another cell is good 

MP REGISTER ~P' 12 BITS 

MC REGISTER ~m, 12 BITS 

HO PRODUCT REGISTER 
ho 

12 BITS 

LO PRODUCT REGISTER 10 
12 BITS 

Smj= tl 

Sq = [(fmo + T'ho)' + a',8]t2 

TB-5087-7 

Figure 14. Block diagram for a twelve-bit serial multiplier. 



COBWEB CELLULAR ARRAYS 339 

MP BIT 
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• /l y 

HO PRODUCT REGISTER CO PRODUCT REGISTER 

Figure 15. Realization of the mUltiplier in terms of fivecutpoint arrays. 

at a distance one or two cells from it, according to 
Fig. 13. 

Thus a fault-avoidance algorithm for cobweb ar
rays has been demonstrated. Many· variations in the 
process are possible. For instance, if multiple faults 
prevent complete. avoidance of faulty cells using the 
2 X 2 supercells, one can replace some or perhaps all 
cells in the supercell array again with supercells until 
enough redundancy has been obtained that all faults 
can be avoided. Similarly, it may be possible to 
compress a supercell array if, for instance, no cor
rections are necessary in a particular row or co
lumn. Similar fault-avoidance algorithms can be de
duced for the simplified cobweb arrays mentioned 
before. 

LOGICAL DESIGN OF A MULTIPLIER 

As a final illustration, a logical design is given 
for a 12-bit serial multiplier in terms of a single 
cobweb cellular array. For comparison purposes, the 
same system has been chosen as was previously 
reported.3 The block diagram for this four-register, 

five-command multiplier is given as Fig. 14, while 
a previously-reported design in terms of five inter
connected cutpoint arrays is shown in Fig. 15. 

In Fig. 16, this same system is realized in terms 
of a single 27 X 16-cell cobweb array. 

The statistics on these two realizations for the 
multiplier are as follows: 

Cutpoint Realization 

There are 352 cells in five cellular arrays, and 
100 connections at the edges of the five arrays. 
28 % of the cells are "1" cells used only for 

transmitting information, 
71 % of the cells are used logically, and 

1 % of the cells are not used. 

Cobweb Realization 

There are 432 cells in one cellular array, and 
10 connections at the edges of the one array. 
26 % of the cells are jumper cells, 
55 % of the cells are used logically, and 
19 % of the cells are not used. 
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It is seen from the above data that while 26 percent 
more cells are required for the multiplier in the 
cobweb realization than in the cutpoint realization, 
only one cobweb array is used versus five cutpoint 
arrays; furthermore, the backplane wiring in the 
cobweb realization is reduced by an order of mag
nitude. 

CONCLUSIONS 

The essential difference between the previously 
reported cutpoint cellular array and the cobweb ar
ray is the more complicated and flexible intercon
nection structure of the latter array. This flexibility 
allows the logical designer much more geometric 
freedom in the embedding of cascade logical reali
zations. For certain types of digital operations, and 
in particular for parallel operations, the use of cob-

web arrays results in a significant reduction in the 
required number of cells. Also it is possible to eli
minate jumper connections from one edge cell on 
an array to another edge cell on the same array 

_ when cobweb arrays are employed. 
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TWO-DIMENSIONAL ITERATIVE LOGIC* 

Rudd H. Canaday 
Bell Telephone Laboratories, Incorporated 

Whippany, New Jersey 

INTRODUCTION 

It is well known that given a suitable Boolean 
function, a large number of "gates" or "elements," 
each producing this function, can be interconnected 
in a regular structure, or "array," to realize any giv
en Boolean function. Furthermore, the structure of 
the array can be invariant to the function being 
realized. 

One of the simplest such structures is the two-di
mensional array of three-input one-output elements 
shown in Fig. 1. In this paper two methods are 
presented for using this structure in the synthesis of 
arbitrary Boolean functions. The following assump
tions will be adhered to throughout this paper: 

1. All elements in the array are identical. 

2. The interconnections between elements in 
the array are fixed. They cannot be broken 
or changed in any way. 

*The material presented in this report is based on a thesis 
submitted in partial fulfillment of the requirements for the 
Doctor of Philosophy Degree in Electrical Engineering at 
the Massachusetts Institute of Technology, September 1964. 

The research reported was made possible through the 
support extended to the M.I.T. Electronic Systems Labora
tory by the U.S. Air Force Avionics Laboratory, Naviga
tion and Guidance Division, under Contract AF-33(657)-
11311 and, in the earlier phases of this research,under 
Contract AF-33(657)-8932. 
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3. The array will be used as a single output 
circuit. Only the output of the lower right 
element of the array is accessible to the 
outside world. 

4. Every element in the array realizes the 
"majority" function 

f(A,B,C) = AB + AC + BC 
of its three inputs. * 

As a consequence of assumptions (1), (2), and 
( 4 ), an array can be described completely in terms 
of its width wand height h. Such an array will be 
called a "MAjority Array" or "MAJA." 

In the remainder of this paper it will be shown, 
first, how to synthesize an arbitrary "self-dual" 
function in a MAJ A. Then this result will be ex
tended to arbitrary functions . and some examples 
will be given. This is "intersection synthesis;" Next 
a second synthesis technique, "factorization synthe
sis," will be described, first in a canonic form, 
through examples, and then in a more general form. 

*It is easy to prove! that all of the results given here 
extend directly to arrays of "minority" elements: 

f(A,B,C) =_-AB + AC + BC 

This paper is based on the author's Ph.D. thesis.! In the 
present paper space limitations preclude statements of all 
theorems and proofs on which the synthesis methods are 
based. These do appear, together with extensions of the 
results presented here, in reference 1. 
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Figure 1. A 4 X 6 array of 3-input elements. 

Both synthesis techniques lead to arrays of reason
able size, and embody new synthesis techniques 
which may prove to be applicable in other forms of 
synthesis also. 

PRELIMINARY DISCUSSION 

Before discussing array synthesis, it is necessary 
to define some terminology for arrays .. 

Each element in an array has three inputs, which 
will be denoted "top," "center," and "left" inputs 
(signal flow in an array is always left-to-right and 
top-to-bottom) . 

The w inputs (for an array of width w ) consist
ing of the top input to each element in the top row 
of the array form the "top boundary" inputs to the 
array. 

Similarly, the h inputs (for an array of height h), 
consisting of the left input to each element in the 
leftmost column of the array, form the "left boun
dary" inputs to the array. 

One particular type of array proves to be of par
ticular interest. This array has, in effect, all top 
boundary inputs wired together, and all left boun
dary inputs similarly wired together. 

Definition : An " XY Standard Boundary Condi
tion majority array" ( XY SBC MAJA) is a 
MAJA all of whose top boundary inputs carry 
the signal Y where Y can be a variable or a 
constant, and all of whose left boundary inputs 
carry the signal X, where X can be a variable 
or a constant. 

Fig. 2 is an example of an XY SBC MAJ A. The 
two synthesis methods to be presented both apply to 
the SBC MAJ A. 

Intersection synthesis is given first for self-dual 
functions, as defined below. 

Definition: Given a Boolean function f(xl, ... , Xn), 
then the dual fd(Xl, ... , Xn) of the function f is 
defined as: 

fd( Xl, ••• , Xn) = j( Xl, X2, ... ,Xn) 

By applying deMorgan's theorem one can e~sily see 
that if f is expressed using only the operations + 
(OR), • (AND) and - (NOT), then fd is obtained 
by interchanging + and • throughout the expression 
for f. 

Definition: A Boolean function j(Xl, ... , Xn) is self
dual if and only if 

fd(Xl, ... , Xn) = f(Xl, ... , Xn) 

Note that by this definition of dual and self-dual, a 
function which is a constant is not self-dual since, 
if f ==- 1 then fd = f ==- o. 

Any n-variable Boolean function f( Xl, .•• , Xn) can 
be factored as 

j(Xl, ... , Xn) = Xfo + Yft (1) 
with X and Y chosen from {Xl, Xl, ••• ,Xn, Xn}. 

If f is a self-dual function, then the existence of 
the factorization (1) implies that f can be factored 
as 

f = Xfo + Yfod + XY (2) 

where X, Y, and fo are the same as in Eq. (1). 
Equation (2) is basic to the synthesis algorithm, 

which is presented in the following two definitions 
and Theorem 1 below. 
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y y y y 
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x 

x 

Figure 2. An XY SBC MAJA. 

INTERSECTION SYNTHESIS 

Definition: Given two Boolean functions fa and fb, 
and given a sum of products expression for 
each: I a = rl + r2 + . . . + rk; 

fb = tl + t2 + 
. . . + tm, then an intersection matrix of fax Ib 
is a matrix with k rows and m columns, in which 
each entry eij is the intersection of the literals in 
Ti with the literals in tj (i.e., eij contains a literal 
y if and only if y is in both ri and tj). 

Note that the intersection matrix for a given fa and 
fb is not unique. It is unique for given sum-of
-products expressions (including the ordering of their 
terms) for both fa and lb. Now it is possible to define 
an SBC MAJ A to realize any given self-dual function. 

Definition: Given a self-dual function fSd = XY + 
Xfo + Xfod, and given a k X m intersection mat
rix fo X fod, with rows corresponding to terms of 
fo, then an XY intersection MAlA for jSd is a 
k X m XY SBC MAJA with the center inpuCto 
the ilh element chosen to be anyone of the 
literals in entry eij of the intersection matrix, for 
all i, j: 1 :::; i :::; k, 1 :::; j :::; m. 

Again note that one function Isd may have many inter
section MAJAs for each factorization (each choice 
of X and Y). 

Theorem 1: Given any XY intersection MAJ A for a 
self-dual function lSd, then the output of the 
MAJ A realizes the function Isd • 

Prool:* By construction the MAJA has no con
stant inputs. Therefore it is sufficient to prove 

that the MAJ A produces all the ones of fSd, 
since a MAJA without constant inputs must 
realize a self -dual function. 1 It is easy to prove 
that if the term XY is one the array output is 
one. Now let a term XrI in Xfo be one. Then 
every literal in the term is one. Then every left 
boundary input, and the center input to every 

element in the ith row, is one. It is not difficult 
to prove that this condition suffices to insure 
that the array output is one. Thus the array 
output is one for every term in Xfo. Similarly 
if a term Yti in Yfod is one then every center 
input to the ith column, as well as every top 
boundary input, is one. Again this suffices to 
insure that the array output is one. Thus every 
one of jSd = XY + X/o + Ylod is realized at the 
output of an intersection MAJ A for fSd and so 
the MAJ A realizes fSd. 

The synthesis algorithm just presented allows one 
to synthesize any self-dual Boolean function. To 
extend the result to any arbitrary Boolean function, 
the "self-dual expression" for a function is defined. 

Definition: Given any n-variable Boolean function 
I(XI, .•. , xn}, and a variable U independent of 
(Xl, ... , Xn), the Self-Dual Expression jSd for f 
is defined as the (n +""'-1) -variable function: t 

fSd(U,XI, . .. , Xn} = Uj(Xl, ... , Xn} + Uld(Xl, ... , Xn). 

*The proof given here is very sketchy. The detailed proof, 
which depends on a number of theorems not given here, is 
in reference 1. 

tThis is a reformulation of work done by S. B. Akers.2 
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It is trivial to prove that the self~dual expression 
for any function is a self-dual function. Also, if j is 
a selfdual function, then 

jsd(U,Xl, ... , Xn) = f(Xl, ... , Xn). 
Clearly this is true if and only if j is self-dual. 

To synthesize an arbitrary n-variable function, 
proceed as follows: 

1. Find the (n + 1 )-variable self-dual expres

sion, jsd, for the function j. 

2. Synthesize jsd(U,Xl, ... , Xn). 
3. Replace every input U to the array by the 

constant input 1 (one) and every input fj 
by the constant 0 (zero). 

The resulting array realizes j(Xl, ... , Xn) since jsd(1, 
Xl ... , Xn) = f( Xl, ... , Xn) by construction. 

The examples to follow show arrays with the in
puts U and fl. Thus these arrays, as shown, realize 
the self-dual expression of the given function. 
Wherever the inputs U and fj occur, they can be 
replaced by 1 and 0 as discussed above to obtain 
the array for the given function. 

Note that the array for a self-dual function con
tains, by construction, no constant inputs. It can be 
shown that in any MAJ A constant inputs are re
quired if and only if the function being synthesized 
is non-self -dual. 

In an intersection MAJ A for a function, every 
term in the factored expression for the function cor
responds to a single row or column in the MAJ A. It 
can be shown l that terms in the output function of 
an SBC MAJA can correspond not only to single 
rows and columns, but also to inputs (or elements) 
which do not form a single row or column. Thus it 
seems that the intersection matrix construction does 
not make maximum use of the MAJ A. In other 
words, by realizing some terms in the function us
ing a set of elements not from a single row or co
lumn, it is possible to realize many functions in an 
SBC MAJ A considerably smaller than an intersec
tion MAJ A for the function. By extensions to this 
work, reduced non-SBC arrays can be derived also, 
but the methods become much messier and less al
gorithmic. 

It is not possible in the space available here to 
discuss reduction techniques. However, the follow
ing examples show some arrays in reduced form, as 
well as the original intersection arrays. 

While it is possible to construct an intersection 

array from any factorization of the form 

f Sd = XY + Xfo + YfOd 

with fo and fod each expressed as a sum of product 
terms, it is obvious that the smallest array results 
from choosing X and Y and the expressions for fo 
and fOd to minimize the number of terms in fo and in 
fOd. This is done in the following examples. 

SYNTHESIS EXAMPLES 

Before giving examples of synthesis by Theorem 
1, it is useful to define a notation which will be 
used in examples throughout the rest of this work. 

In the many examples to follow in this and suc
ceeding sections it is necessary to show arrays with 
variables assigned to the inputs. Since the interele
ment connections in an array are fixed, an array 
with inputs can be completely specified by giving 
each boundary input and the center input to each 
element of the array. These inputs are presented as 
a matrix, with a line separating top and left boun
dary variables from the center input variables. Thus 
the array of Fig. 3 is represented by 

B B B B B 
B u C C D A 
jj D C C U A 
B C A A D C 
B C A A fj C 
B C D fJ D c 

Clearly this representation is completely general; 
it is not restricted to SBC arrays. 

Example 1: f(A,B,C,D)=I0,1,4,6,7,8,11,12,13,14.* 

A minimum Sum of Products (MSP) form of the 
Self-Dual Expression for this function is: 

fsd=BCDU + ABCDU + ABCD + ABCD + ABC 
+ ABCU + ABCU + ABCDU + BDU + CDU 

This function can be factored on BB or CC without 
increasing the number of product terms (10) in the 
expression, since the term BDU can be written BCDU 
or CDU can be writtenpCDU, without changing rd. 
Arbitrarily choose the BB factorization. 

*This notation, defined in Caldwell,3 defined the rows of 
the truth table for which the function is one. 
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B B B B B 

f(A,B,C,O) 

Figure 3. SBC MAJA for Example 1. 

The intersection matrix is 

B 
(CDU) (ACD) (ACV) (DU) (AC) 

(ACDU) (V) (CD) (C) (D) (A) 
(4(12U) (2) (~L (~V) (Q) (d'> 
(A~D) (~) (4D ) (4) (D) (~) 
(d~V) (~) (4) (AU) (Q) (~) 
(CDV) (C) (D) (U) (DU) (C) 

One intersection MAJ A is 
B B B B 

B U C C D A 
fl D C C U A 
ll. C A A 15 C 
ll. C A A U C 
B C D u D C 

By reduction techniquest described elsewhere, l a 
2 X 3 non-SBC array can be found to realize this 
function: 

D 
A 

C 
U 
A 

A 
C 

15 
V 
B 

A 2 X 3 array is known to be the smallest array 
capable of realizing this function since no smaller ar
ray has enough terminals. The 2 X 3 array shown 
here has one element which performs no logical 
function because it has two identical (A) inputs. 
The 5-element network resulting from removal of 
element 21 has the adsolute minimum number of 

tThese techniquees are heuristic, and results obtained 
depend to some extent on the experience of the person 
doing the reduction. 

3-input elements for any network capable of realizing 
this function. 

Example 2: f(A,B,C,D) = I1,4,5,6,7,9,11,12,13,15 

MSP r d = BD+ ACD + ABC + ABU 
+ ADU can be written as 

jSd = BD + B(AC+AU) + D(AC+AU) 
The SBC MAJA is 

B 
B 

D 
A 
U 

D 
C 
A 

This is the smallest SBC MAJA which can possibly 
realize this function, since six different literals must 
appear as inputs, and no smaller SBC array has six 
inputs. 
Example 3: f(A,B,C,D) = I1,2,5,7,11 

MSP r d = ACD + ABD + ABCD + 
ABCD + ABC15D + jjDU + CDD 

+ ABU + ACU 

Factor on DD for the minimum number of product 
terms in the factored expression 

r d = b(~jC+ABCV+AjjU+ACV) 
+ D(AC+AB+ABC+BU+CU) 

A corresponding SBC intersection MAJA is: 

D D D D D 
!2 ;1 A C B .(2 
D C B A U U 
15 A A B U U 
15 A A C U [j 
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By reshuffling rows and colums, it becomes pos
sible to remove the row corresponding to term ACiJiJ 
and the column corresponding to term CDU 

D D D 
D :If "C A 
D A B A 
D C A B 
D B fj TJ 

The 'term CDU is realized by the center inputs to 
elements 31, 42, and 43, and the left boundary. The 
term A dB V is realized by the center inputs to ele
ments 11, 21, 31, 42, and the top boundary. This 
is the smallest known SBC array for this function. 
However, there exists a 2 X 3 non-SBC majority ar
ray for the function: 

II 
u 

C 
A 
B 

C 
D 
B 

D 
C 
A 

Arrays of size 2 X 3 or 3 X 3 appear to be typical 
for non-self -dual functions of four variables.1 

THE CANONIC ARRAY 

The two major disadvantages of the synthesis 
method presented above are: 

1. The lack of reasonable bounds on the size 
of array needed to realize an arbitrary 
function. 

2. The inability to apply reduction proce
dures to functions of more than five or six 
variables. * 

The development of a canonic form for arrays for 
arbitrary functions of n variables as is done below 
obviates these disadvantages. This canonic form has 
the following properties: 

1. The canonic array for n variables, for a 
given n, is an array of fixed size, with 
some inputs fixed and the rest of the in
puts chosen for the specific function (typi
cally, well over half of the inputs are 
fixed). This array will realize any given 
functton of n variables if the nonfixed in-

*Note, however, that the basic synthesis algorithm (Theo
rem 1) can be applied to arbitrarily large functions, though 
the resulting arrays generally are unreasonably large. 

puts are properly chosen. An algorithm for 
determining the inputs needed to realize 
any given function exists. 

2. An algorithm exists for generating the ca
nonic array for any given n. 

3. The canonic array for n variables is the 
smallest known array to realize the checker
board (worst-case) function of n varia
bles, for n even. 

4. For most given functions the canonic array 
is reducible (by methods given in reference 
1) . 

5. The canonic array embodies a technique 
for embedding arrays within larger arrays, 
which shows great promise for future work 
in multiple output arrays and in nonmajor
ity (nonminority) arrays. 

The disadvantage of the canonic array is that the 
array required for a given function usually is larger 
than the array produced by intersection synthesis 
and reduction, assuming that the function is small 
enough to make that synthesis-reduction technique 
feasible.t 

The size of the canonic array is shown in Table 1 
as a function of n , the number of variables in the 
function to be synthesized. In addition a "connec
tion count" is shown for each n. This is the num
ber of connections to the array which are not in
variant over all" functions of n variables, plus one 
connection for each variable whose input connec
tions are invariant. One can envision building the 
array with all invariant connections wired together 
at the time of manufacture. Then the "connection 
count" is just the number of input terminals to the 
array to allow it to realize any function of n varia
bles. 

Table 1. 
n Size Connections 
3 3X3 10 
4 4X6 16 
5 7X8 26 
6 9x14 44 
7 15X18 78 
8 19X30 144 
9 31X38 274 

tReduction is feasible on most functions of five variables 
and some functions of six variables.1 
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CONSTRUCTION OF CANONIC ARRAYS 

In this section the canonic array for n variables 
is presented through examples. In the next section 
the process of embedding sub arrays in an array is 
considered more generally. 

Consider the MAJA 

U 
U 

U U 

A 
go Array 1 

in which go and gl are input literals chosen from the 
set {B,B,U,U}. This array, as straightforward analy
sis will show, realizes the self-dual function 

which can be any self-dual function of the three 
variables (A,B,U). If U = 1, Eq. (3) becomes 

f = Ago + Agi ( 4 ) 
which, if go and gl are chosen from {B,B,O,l}, can 
be any function of the two variables (A ,B). Thus 
Array 1 is the canonic factorization array for n = 2 
variables. It is called a "factorization" array because 
Eq. (4) is a factorization of the function. It is called 
"canonic" because it is in a standard form, as will 
become clear later. 

Now consider the MAJA 

U U U 
fj A gu B 
V goo B glO 
U Ii gOI A Array 2 

If U = 1, this array realizes the function 

(5) 

If goo, gOI, glO, and gu are chosen from {C,C,O,l}, 
then Eq. (5) can be any function of the three vari
ables (A,B,C). Array 2 is called the canonic factori
zation array for n = 3 variables even though its 
form differs slightly from the canonic construction 
to be defined. 

It would be possible to continue thus to define 
arrays to realize any function of .n variables for 
n = 4,5,6, and so on. However, if one wishes to 
define a canonic factorization array for an arbitrary 

number of variables, it is necessary to define a con
struction method which will result in the canonic 
array for any given n. Here the approach taken is 
inductive. Given the canonic factorization array for 
(n - 1) variables, it will be shown how to construct 
the array for· n variables. This will be done by em
bedding two arrays for (n - 1 variables in the factori
zation array for n variables. Consider first the case 
of n = 4. The array for (n - 1) = 3 variables is 
known (Array 2). Take two of them: 

u u u 
U B gou C 
U gooo C gOIO 
U C gOOI B Array 3 

Array 3, with U = 1, realizes 

go = YiCgooo + BCgOOI + Begolo + BCgou (6) 

U U U 

U B gUI C 
U glOO C guo 
U C giOI B Array 4 

Array 4, with U = 1, realizes 

Combine Array 3 and Array 4 in the canonic fac
torization array for n = 4 

U 
U 
U 
U 

U U U U U U 

.. 4 ...... 4. _ . __ 4 ____ B gUI B 
Ii go 11 C : glOO C guo 
gooo C gOIO: C glOi B 
C gOOI B :-A --- - . A -- - - "A- .. 

Array 5 

where dotted lines have been shown only to clarify 
the construction of the array. It should be empha-
sized that Array 5 is a 4 X 6 U U SBC MAJ A, with 
no modification of its structure. The array contains 
subarrays only in the sense that the input pattern to 
portions of the array can be identified with the input 
patterns to Array 3 and Array 4. 

Array 5, with U = 1, realizes the function 

(8) 
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where go and gl are the arbitrary 3-variable func
tions realized by Array 3 and Array 4. To see this, 
let U = 1 (and U = 0, of course). Then if A = 1, 
the sub array corresponding to Array 4 ( elements 
14,15,16,24,25,26,34,35, and 36) has one on its 
top boundary (elements 14,15,16), and zero on its 
left boundary (elements 14,24,34). It is not difficult 
to see that with A = 1, Array 5 has the same output 
as Array 4. Similarly, if A = 0, then the subarray 
corresponding to Array 3 has zero on its left bound
ary (elements 21,31,41) and one on its top bound
ary (elements 21,22,23) and it can be shown that 
Array 5 has the same output as Array 3. Thus 
Eq. (8) is vertified. 

By substitution of Eqs. (6) and (7) into Eq. (8), 
one obtains 

f = ABCgooo + ABCgOOl + 
+ ABCg110 + ABCg11l (9) 

If gOOD through gU1 are chosen from {D,D,O,I}, then 
equation (9) can be any function of the four vari
ables (A,B,C,D). 

By interchanging rows and columns in Array 5 

and then interchanging U and fJ and changing the 
subscripts on the g inputs appropriately, one obtains 
the MAJA, 

U U U U 

U A IB gUl C 
I 

U A IglOO C g110 
U _ -1. ___ ~ C ___ ~Ol. ., _B_ _ _ _ _ _ _ 
U B go 11 C I A 
U ~oo C gOlO I A 
V C gOOl B I A Array 6 

which realizes the same function, Eq. (9), as does 
Array 5. This is the flipped canonic factorization 
array for four variables, "flipped" because it corre
sponds to Array 5 flipped about its main diagonal 

(and with V, U interchanged and the g's renum
bered). 

To construct the canonic factorization array for 
five variables one embeds two 4-variable subarrays 
in a factorization array in exactly the same manner 
in which Array 5 was constructed. If one uses as 
subarrays two copies of Array 5, the resulting 5-
variable array is 5 X 12, with 60 elements. If, 
however, one uses the flipped array, Array 6, the 
resulting 5-variable array is 7 X 8 with 56 elements: 

U V V V V V V V 

V --1- -1-- _4 -:d- IB ,- C gl111 D 
V B C gOll1 D IB gUOl D gl1lO 
V B ~lOO D gOllO: B D g110l C 
V B D gOlOl C IC glOl1 D B -
V C goo 11 D B I glOOO D glOl0 B 
V goooo D gOOlO B 

I-
,D glOOl e B 

V D gOOOl C B ~-A-- -A"-- A -- A 

Array 7 

Again, the dotted lines are included to clarify the 
construction. Array 7 realizes the function 

f = ABCDgoooo + ABCDgoOOl 7 . . . + ABCDg1111 

It is interesting to note that the canonic factoriza
tion array is the smallest array known which realizes 
the "checkerboard" function f (A,B,C,D) = A + B 
+ C + D. * The canonic factorization array for this 
function is 

V V V V V V 

V A A A B D C 
V B D C D C D 
V D C D C D B 
V C D B A A A 

However, for five variables no function is known 
which cannot be realized in a reduced intersection 
MAJ A smaller than Array 7. It is true in general 
that no function is known to be "worst case" for 
n odd, although the "checkerboard" function is 
always "worst case" for n even. 

The construction of canonic factorization arrays 
for higher values of n is carried out by successive 
embedding of (n - 1) -variable flipped arrays, as was 
just illustrated for n = 5. Let Hn denote the height 
of the canonic factorization array for n variables, and 
let its width be W n. Then, by the construction of the 
canonic factorization array 

H3 = 3, W3 = 3 

and 

Hn = Wn-l+ 1, Wn = 2Hn- l for n > 3 

These array sizes are tabulated in Table 1. Note that 
in the canonic factorization array for n variables 
{Xl,X2, ••• ,xn }, 2n - l of the inputs, the g inputs, 

*This function is termed "checkerboard" because its Kar
naugh Map representation resembles a· checkerboard. 
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depend on the function being realized, while all other 
inputs are fixed, independent of the particular func
tion being realized and equal to one of the 2n 
literals {X1,X1,X2,X2, ... , X(n-l),U,U} (U, U) being 
in fact constants, of course), so that if all identical 
fixed inputs are wired together at the time of manu
facture, only 2n + 2n - 1 external connections to the 

U u U u U U U 

U 
U 
U 
U 
U 
V 
V 
V 
V 

A A A A A A A 
B : C C C D g E 
-
~:D g E ~ E g 
Big E g E g D 

__ ~ -.:, __ E ____ g ___ 12 ___ c __ _ C _ __ ~ _ 

C C CD g E'B -- , 
D g E g E g IB 
~ E g E g D:B 
E g DC C C,B 

where the 32 nonfixed inputs gooooo through gl1111 are 
all denoted simply g. 

The factorization array, unless it has prewired 
fixed inputs, can often be reduced for a given func
tion. The factorization array factors a function into 
subfunctions, each of which is in turn factored until 
eventually each sub-subfunction consists of a single 
literal. Each subfunction is realized in a UU SBC 

sub array. Many of the subfunctions may have DU 
SBC MAJ A realizations smaller than the one used 
in the factorization array. These can be substituted 
for the standard sub array with a corresponding de
crease in array size. 

EMBEDDED SUBARRA YS 

In this section the process of embedding sub
arrays will be considered in general. If one has two 

UU SBC MAJA's realizing two self-dual functions 

and 

then these two arrays can be embedded in a WV 
SBC MAJ A to realize the self-dual function 

tsd = VXgo + VY g1 + WXg1d + WY god + 
VW+ WXY 

array need be provided. This "connection count" is 
also tabulated in Table 1. 

As a final illustration, the canonic factorization 
array for n = 6, f(A,B,C,D,E,F), is shown below, 
with solid lines indicating the two 5-variable sub
arrays and dotted lines indicating the four 4-variable 
sub-subarrays. 

u u u u u u u 
- j -- - - - -
B I C C C D g E I 

B I 

I 
D g E K. E g 

B I g E g E g D 
_ li_ ~ _ 11 __ -2 ___ 1) - C C C 

C C C D -----=-,---
gE, B 

D g E ~ E g I B 
I 

[. E g E g D I B 
E' D C C C I B g 

I 

A A A A A A A 

where X and Yare any single literals. If the array 
for gosd is denoted 

u 
u 

u 

U U ... U 

8 ... 8 
8 

8 ... 8 

where 8 denotes the various inputs of the array for 
gosd, and if the array for g1Sd is denoted, similarly, 

U U ... U 

U 
U 

U 

E 

E 

E 

then the array for rd is 

V V ... 
W X X X 
W 8 8 8 

8 8 

W 8 ... 8 

E ••• E 

E 

E ... E 

E 

E 

... V 
E € 

E 

€ E ... E 

y Y ... Y 
Array 8 
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In this illustration the arrays for goSd and glsd 

have been assumed to be of equal height. This need 
not be true in general. 

The formal definition of this construction follows. 
Given a self-dual function jsd(Xl,X2, ... ,xn ), ex

press it in a VW factorization as jsd = V g + W gd + 
VW where the function g mayor may not be self
dual. This is ,always possible, if V and Ware prop
erly chosen from {Xl,Xl,X2, ... , Xn}. Then factor g 
as g = Xgo + Y gl. Again, this is always possible. 

Then 

and 

jsd = VXgo + VYg1 + WXg1d + WYgod 
+ VW + WXY 

with V,W,X, and Y chosen from {Xl,Xl,X2, ... , Xn}. 
Now construct an SBC UU MAJA to realize 

goSd = Vgo + Vgod. Call this array Ao. Let its size 
be ho X woo Similarly construct the SBC UU MAJA 
Al of size hl X Wl to realize glSd = Ugl + Ugld. 
Note that there is no restriction on how Ao and Al 
are constructed, or on their size. It will now be 
shown that the two arrays A 0 and A 1 can be em-
bedded in an SBC WV MAJ A, A, of size h X 

(wo + Wl) which realizes jSd, where h equals the 
larger of ho + 1 and hl + 1. 

Let the center input to element ij of Ao be called 
aOij, defined for all i, j: 1 ~ i ~ ho, 1 ~ j ~ WOo 
Similarly, let the center input to element ij of Al 
be called a\j, defined for all i, j: 1 ~ i ~ hl' 
1 ~ j ~ Wl. Then the inputs to the h X W array A 
are assigned as follows, where h = the largest of 
ho + 1 and hl + 1 and W = Wo + Wl and aij denotes 
the center input to element ij of A: 

For 1 ~ i ~ h - ho and 1 ~ j ~ Wo 
aij = X 

For h - ho < i ~ hand 1 ~ j ~ Wo 
aij = aOkj with k = i - (h - ho ) 

For 1 ~ i ~ hl and Wo < j ~ W 
aij = a\(j- WO) 

For hl < i ~ hand Wo < j ~ W 
aij = Y 

This specifies every input to A in terms of X and Y 
and the inputs to Ao and A 1• Array 8 is an example. 
It can be proved1 that the array just defined has 
as output the function fsd(xl, ... , Xn). 

It is very important to observe that the only re
strictions on the arrays A 0 and A 1 are 

1. That they are SBC arrays with U and U as 
boundary variables. 

sd d sd 
2. That they realize go = U go + V go and gl = 

d 

U gl + U gl respectively. 

Condition (2) is not equivalent to the condition (2') : 
That when U = 1 and U = 0, Ao and Al realize go 
and gl respectively. 

Since the subarrays Ao and Al can be any VU SBC 
sd sd 

MAJA's realizing the functions go and gl r~spectively, 
it is possible to construct one or both of Ao and Al 
themselves as factored arrays. In fact, the canonical 
factorization array for n variables is just a factored 
array with each subarray factored and each sub-sub
array factored and so on until each sub-sub . . . sub
array is a 3 X 3 canonical array which realizes a func
tion of only three variables. 

To illustrate the use of factored sub arrays in a 
sd sd 

factored array in the general case, express go and gl 
as 

sd d d 
go= URogoo+ USog01 + UR ogo 1 + USogoo + URoSo 

and 
sd d d 

gl = URlglO+ USlgll + URlgll + USlglO+ UR1S1 

and realize each of them in factored UU arrays, 
which are used as subarrays in the array for jSd. 
Figure 4 shows the construction of the resulting ar
ray. In this array the function fsd has been factored as 

fsd= VXRogoo+ VXSOg01 + VYR1g10 
+ VSY1gll + VYR1Sl + WXR 1g 
+ WYRogOl + WYSogoo + W XY + VW 

(For the sake of illustration it has been assumed 
in Fig. 4 that gooSd can be realized in a 2 X 2 SBC VU 
MAJA, while gOl'~d, glOsd, and gllsd, each require a 
3X3 SBC UU MAJA.) 

A study has been made of two-dimensional arrays 
of three-input one-output gates, or elements, each 
element realizing the majority function of its three 
inputs (f(A,B,C) = AB+AC+BC). These arrays 
are functionally equivalent to arrays of minority ele
ments (f(A,B,C) = AB+AC+BC). 



TWO-DIMENSIONAL ITERATIVE LOGIC 353 
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w 

w 

w 

w 

w 

w 

Figure 4. Four sub arrays embedded in an SBC factorization MAlA. 

SUMMARY 

Two methods are developed for synthesizing any 
given Boolean function in an array. The first method 
results in an array whose size depends on the par
ticular function being realized. The second method 
results in an array whose size depends only on the 
number of variables in the function being realized. 
Any 4-variable function, for example, can be realized 
in an array of 24 elements or less. 

The principle result of this work is a simple al
gorithmic synthesis procedure with the following 
properties: 

1. It is based on building blocks ( arrays) 
which are characterized solely by their 
width and height, and which contain only 
simple three-input, one-output elements of 
one type, with a maximum output load of 
two elements each. 

2. It results in arrays obeying a known upper 
bound on size that seems reasonably small. 

3. It permits the synthesis of any Boolean 
function of n-variables by specifying no 
more than 2 Cn

-!) inputs to the array. 
4. It permits the logical decomposition of the 

array into subarrays, corresponding to a 

decomposition of the function into sub
functions, with no physical modification of 
the array. 

5. It results in circuits (arrays) with a longer 
delay, and hence lower speed, than conven
tionallogic circuits. 

6. It often requires more elements to realize a 
given function than do methods less con
strained in element type and interconnec
tion. 
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TWO-RAIL CELLULAR CASCADES* 

Robert A. Short 
Stanford Research Institute 

Menlo Park, California 

INTRODUCTION 

The increasing importance of integrated circuit 
technologies has motivated research into the devel
opment of systematic and efficient procedures for 
the design of cellular arrays-that is, arrays of logi
cal assemblies, or cells, that are interconnected in a 
regular fashion. A useful and analytically attractive 
approach to the design of two-dimensional, edge
fe~ ce.llular arr.ays f~r the realization of arbitrary 
sWItchmg functIOns IS based upon the decomposi 
tion of the arbitrary function into a set of subfunc 
tions, each of which is independently produced by 
one of the columns of the array. In this approach, 
each column of the array might realize, for exam
ple, an individual member of a minimum covering 
set of prime implicants; these subfunctions are then 
composed by "collecting" the column outputs in a 
special row of the array whose final output is a 
realization of the desired function, or alternatively 
by using edge jumpers in the same array to accom
plish the collecting function; 

The total number of cells in such arrays typically 
grows as Cn2n

, where the exponential factor re
flects the growth of the width of the array, and 
where C is a constant determined by the particular 

*T~e research rep~rted in this paper was sponsored by 
the AIr Force CambrIdge Research Laboratories, Office of 
Aerospace Research, under contract AF 19(628)-4233. 
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design algorithm and the logical capabilities of the 
individual columns. For example, in a minterm 
composition C may approach the value of ~. The 
successful reduction of the constant C has been 
achieved by enlarging the class of functions that can 
be realized by a single column. In particular, for the 
simplest possible interconnection structure with 
which a column, or cascade, can be constructed
one using two-input single-output cells-more so
phisticated design techniques have been developed 
that show that C need not exceed the order of Vs 
for large n. 

In this paper an augmentation of this simplest 
interconnection structure will be examined; in par
ticular, provision will be made for two connections 
between each of the cells of a column in an attempt 
to increase significantly the number of functions 
that are realizable within a single column. This 
simple structural augmentation that provides one 
more interconnecting lead between cells proves to 
be significant, for it results in a structure that is 
functionally complete-that is, any function of an 
arbitrary number of variables can be combination
ally realized within the extent of a single column. 

Before summarizing these results, as well as 
others directed toward reducing the number of cells 
required for such cascades, a brief review is given 
below of pertinent prior results. 
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x· In 

y 

(c) 

I 

+ 
Figure 1. Array composition for simplest cell. 

SINGLE-RAIL CASCADES 

The simplest logic cell from which a single column, 
or cascade, can be constructed is the familiar two
input cell indicated in Fig. 1 a. It is assumed that 
the cell is sufficiently complex that any of the two
variable functions of x and y can be specified for it, 
as noted by the index j on the cell itself. Thus, for 
the single cell output, j = ji(X,Y), where j can range 
over any of the 16 possible 2-variable functions. 

The cascade that results from the interconnection 
of such cells is indicated in Fig. 1 b. The independent 
variables enter the cells directly, e.g., X f2 provides an 
input to the second cell; for convenience, the top
most free input, y, will be taken as an binary con-

stant. The output of the cascade is formed on the 
single free output at the bottom and is some function 
of the in variables, in particular 

j=h [Xi,ji (Xi , ... )] 
n n n-! n-! 

One, way of utilizing such cascades in two-dimen
sional edge-fed rectangular arrays is indicated in 
Fig. lc, where the second output for each cell is 
formed by reproducing the horizontal input. This 
scheme has been utilized in the cutpoint arrays devel
oped by Minnick.! In these arrays, where the hori
zontal cell inputs are functions of the independent 
variables and are not functions of neighboring col
umns, the basic functional building block remains the 
column itself. The functional capabilities of cascades 
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of the type shown in Fig. 1 b have been extensively 
investigated. 

The case where the external independent variables 
Xl , ••• , Xm correspond one-for-one with the cell 
inputs Xi, • • • , Xi has been studied by Maitra,2 

1 n 
Sklansky,3 and Levy, Winder and Mott.4 Design 
algorithms for producing the limited class of func
tions are available. Obviously the same cascade will 
suffice for the realization of any function in the class 
of functions obtained by permuting the independent 
variables; the total number of such realizable equiva
lence classes has been determined by Stone.5 The 
point of present interest, however, is that the num
ber of such functions comprises an increasingly 
insignificant proportion of the totality of possible 
functions with increasing m. There are even some 
three-variable functions that cannot be produced in 
such elemental cascades, e.g., the majority function. 

A refinement which increases the number of func
tions producible by this single-rail cascade ("single
rail" referring to the single connection between cells 
of the cascade) was demonstrated by Minnick,6 who 
showed that a one-to-many correspondence between 
the independent variables and the horizontal cell 
inputs results in a larger class of realizable functions. 
These cascades have been called redundant cas
cades, i.e., m :::; n, and result in the use of certain 
of the independent variables to form more than a 
single cell input. Design algorithms have also been 
developed for these redundant cascades,7 but again 
the pertinent point here is that the class of functions, 
while larger than the irredundant case for all m ~ 3, 
still forms a vanishing proportion of all functions 
for sufficiently large m. Indeed the redundant cas
cades still do not quite suffice for the three-variable 
case. 

There is no other way in which the elemental bi
nary two-input single-output cell can be generalized 
to augment further the number of producible func
tions. Although arbitrary functional complexity is 
permitted within the cells, * the interconnection 
complexity is simply not sufficient for complete 
functional capability in a single column. 

With this fundamental question disposed of, the 
next-rank question becomes of interest: namely, 
how does the functional capability of cascades grow 
with increasing liberality in the allowable intercon
nection structure? Does any linear cascade exist that 
does achieve complete functional capabilities? 

There would appear to be only two ways in 
which the interconnection structure of cascades can 

be liberalized within the basic cascade structure, 
which requires that a given cell receive inputs 
(other than external) only from its immediate pred
ecessor, and supplies outputs only to its immediate 
successor. In one of these ways the number of exter
nal inputs to a cell can be augmented, in the other 
alternative the number of connections between cells 
can be increased. (A distinction should be made 
between this latter alternative and the rather intri
cate interconnection patterns exemplified by the 
"cobweb" arrays that have been proposed by 
Minnick. 8 In the cobweb array, each cell has as 
available inputs not only horizontal and vertical 
buses, but also inputs from the cell above, the cell 
to the right, and one of the cells located a knight's 
move above. Each cell also has an augmented 
switching network-e.g., cutpoints-by which it 
selects any two of the five inputs to which it re
sponds, and the particular output that it will acti
vate. The resulting designs achieve a much more 
efficient utilization of the cells of the array, but the 
essential function-composition capabilities are still 
those that characterize the single-rail cascade.) 

The first of these alternatives has been investi
gated by Lendaris and Stanley, 9 and on the basis of 
their results can be quickly dismissed. The basic 
cascade with m external inputs per cell is indicated 
in Fig. 2, and it is assumed that each cell can pro
duce any of the (m + 1 )-variable functions on its 
output. In summary, although the class of functions 
realizable in such a cascade is increased-obviously 
all (m + 1 )-variable functions are realizable, for 
example-it is still deficient* and becomes increas
ingly so, as noted in the previously mentioned cas
cades, as the number of variables increases. 

The second alternative, an increase in the num
ber of interconnections between cells, is indicated 
in Fig. 3 for the case of two such cell interconnec
tions, i.e., the "two-rail" generalization of the ele
mental single-rail cascade previously discussed. 10 

Again it will be assumed that the cells are individ
ually as complex as need be and, in this case, that 

* Although arbitrary functional complexity in each cell 
has been assumed, it is interesting to note that such com
plexity is not necessary. In fact, Minnick1 has demonstrated 
that anyone of 64 different sets of 6 functions each is 
sufficient for these purposes. This result serves only to 
reduce the individual cell complexity (i.e., to reduce the 
range on j in Fig. la), but not to reduce the number of 
cells required in a cascade. 

*It should be noted that these cascades have not been 
examined in the redundant situation; there is no reason to 
expect any basic difference in the results, however. 
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any three-variable function of the cell inputs can be 
formed (again specified by the j-index). If neces
sary, variable redundancy will also be permitted, 
and as before the topmost y-inputs will be taken as 
binary constants. However, no greater generaliza-

X ml 

Xm2 

tion than the two-rail cascade will be considered; 
for as will be shown below, the set of functions 
realizable is not only greatly augmented, but indeed 
includes the entire class of possible functions. That 
is, the two-rail cascade is complete. 

Figure 2. Basic multiple-external-input cascade. 

TWO-RAIL CASCADES 

Logical Completeness 

The isolated basic two-rail cell is shown in Fig. 
4. The cell has three inputs (one is externally sup
plied) and two outputs. The index j indicate swhich 
of the three-variable functions of the cell inputs are 
produced independently by the cell outputs. 

The greater flexibility offered by such a cell 
(which of course must be measured against the 
greater cell complexity) is suggested by the cascade 
of Fig. 5 which will realize any four-variable 
switching function depending upon the specializa
tion of the cells. In particular if the index notation 

j : it (x, YI, Y2), !2(X, YI, Y2) 
is used to· specify the functional outputs of a given 
cell, then the assignments of 

it: x, 0 
jz : YI, x 
h : gl(X, YI, Y2), go(x, YI, Y2) 
j4 : arbitrary, XYI + X'Y2 = !(XI, X2, X3, X4) 

in the cascade of Fig. 4 will realize any 
!(XI, X2, X3, X4) = X4g1 + xl go 

on the second output of the terminal cell. (It may 
further be noted that this realization follows the 
previous forms in that only one independent variable 
is accommodated per cell. If this requirement is 
relaxed the top two cells are seen to be redundant 
and only the remaining two cells are necessary.) 
It further· follows that edge-fed rectangular arrays 
can be constructed utilizing such cells (again simply 
bussing the x-input through to provide the intercol
umn connections, and utilizing a Shannon-type com
position on the last n - 4 variables) that would 
exhibit a growth rate of Cn2n , where C is no greater 
than 1/16. Thus an improved growth rate compared 
with the two-input cell is readily exhibited, but it 
must be remembered that the individual cells are 
more complex. * 

*It also immediately follows that array growth rates 
characterized by any arbitrarily small value of C can be 
constructed simply by augmenting the number of vertical 
rails to the required number. It also follows that in general 
the individual cell complexity would rapidly increase. 
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Figure 3. Basic two-rail cascade. 

X---iII-.( 

Figure 4. The two-rail cell. 

However, the cascade of Fig. 5 exhibits another 
property of two-rail cells that can be utilized to 
enhance even further the number of functions realiz-:
able in a single column. In particular, the last cell 
of the cascade has two independent functions of 
the preceding variables presented on its vertical 
inputs. Thus the action of the last cell can be selec
tively applied to portions of the previously generated 
results; in the example shown the last variable can 
act selectively on the functions g1 and go to obtain 
X4g1 and xl go before composing these in turn for the 
final result. This capability suggests a different view 

of the possible tasks of the two rails of a two-rail 
cellular cascade. Specifically, it is possible that one 
of the rails could be designated as an "accumu
lator" to which partially derived results can be added 
(logically) after they are computed in the functional 
line of the other rail. 

For example, it is well known that arbitrary func
tions can be composed by simply adding the compo
nent minterms. In the two-rail cell it is possible to 
do this directly. Thus, again let /1 and /2 refer to 
the two cell outputs and x, Yl and Y2 to the inputs, 
and assume that It can be specified as anyone of 
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Figure 5. Realization of arbitrary four-variable function. 

the set of functions (XY1, X'Yl, 1) and that /2 can 
be specified as anyone of the set (Y2, XYl + Y2, 
.x'Yl + Y2). Then any arbitrary minterm (or prime 
implicant) can be formed on the it leads and, when 
completed, it can be added to the sum being accumu
lated on the 12 leads. At the same point, a new 
min term can be commenced on the it leads. It is 
apparent that the resulting cascades will be redun
dant in the sense that the variables are required at 
more than one cell; it also follows immediately that 
any function is realizable in a single cascade of such 
cells. 

If it is assumed, then, that a complete minterm 
expansion for a function of n variables is utilized in 
a single two-rail column, the total number of cells, 
N, required is 

In terms of the number of cells required, this 
growth rate is no improvement on the most elemen-

tal rectangular array that also utilizes a minterm 
expansion. It does, however, achieve this rate with
in the desired single-column restriction. 

Alternative realizations to the basic two-rail cell 
described above are possible and can be utilized to 
reduce the cell count somewhat for the functionally 
complete column. 

In the first place, if the functions producible on 
the second rail are augmented to include the com
plements of those prescribed above, then the min
term expansion can be utilized to realize either 1 or 
I, whichever is simplest. If a final complementa
tion is necessary to produce the specified function, 
it can be. accomplished in the final cell of the col
umn. Since the number of minterms in 1 and 1 is 
just 2n , it follows that 

N :::;; ! n2n = n2n- 1 

for such a cascade. The same end can be achieved 
by augmenting the cell functions so that a product-
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of-sums can accumulate in the second rail. 
The same growth rate can also be achieved by a 

two-rail cell based upon the exclusive-OR expan
sion 

f(Xl, ••• , Xn) = Co + C1Xl + C2X2 + ... + CnXn 

+ Cn+ lX1X2 + ... 

In this case, if the cell oputs can be selected from 
(again referring to Fig. 4): 

It : (x, XY1, 1) 
12 : (Y2, Y2 + xyt) 

then, as in the minterm case, each product term 
can be formed in the first rail, to be added or not 
to the accumulating subfunction in the second rail, 
depending on the value of the particular binary 
constant Ci. Since the constant Co can be accom
modated by one of the initial boundary constants at 
the top of the column, only one cell is required for 
each variable occurrence. Hence the total number of 
cells can be enumerated as 

N = I i (~) = n2n - 1
• 

i=l l 

Clearly other two-rail cascades can also be devel
oped based on other expansions. For the realization 
of particular functions the use of prime implicants 
instead of minterms will suffice, as will various 
multilevel combinations (that is, greater than the 
usual two-level AND-OR configuration) that re
duce the number of variable occurrences for the 
particular function to be realized. Since these reali
zations will result in nonstandard variable orderings 
and hence are not appropriate for the composition 
of horizontal-bus rectangular arrays, they will not 
be further discussed here. 

Elf!cient Two-Rail Compositions 

Since the two-rail cascade is functionally com
plete, i.e., any function can be realized within the 
extent of a single cascade, two minimization ques
tions next become of significant interest. The first 
seeks an algorithm for the minimum length realiza
tion of any given function; the second seeks a mini
mum form of cascade that will be appropriate for a 

large class of functions, e.g., canonical cascades 
which, when the cells are appropriately specialized, 
will realize any member of the entire class of func
tions. The latter question will be briefly examined 
here in terms of efficient cascade realizations for 
arbitrary n-variable functions, where efficiency is 
measured in terms of cascade length. The develop
ment of fixed-variable-order cascades suitable for 
the class of all functions of n variables is particular
ly appropriate to the design of rectangular, horizon
tal-bus arrays, where all the input variables are ap
plied to the columns of the array in the same order, 
even though redundantly. In such arrays, designs 
that have been minimized for each function realized 
in the individual columns generally will need to be 
augmented in order that each column can be driven 
within the common variable ordering that feeds the 
entire array. 

Since the minimization criterion of interest is the 
length of the cascade (i.e., the total cell count), it 
follows that the complexity of the individual com
binational cells is not at issue and is subject only to 
the logical constraints implied by the two-rail struc
ture. That is, each cell will initially be assumed ca
pable of developing, independently on both of its 
outputs, any of the three-variable functions of its 
inputs. This point of view is entirely consistent 
with the original assumptions made regarding the 
single-rail cascades; steps directed toward reducing 
this implied individual cell complexity will be dis
cussed in the following section. 

Since each cell is assumed to possess complete 
three-variable capabilities, the determination of the 
minimum-length three-variable cascade is trivial, 
and is, of course, one. Almost as obviously, the mini
mum length four-variable cascade is two, al
though it is of special interest because it represents 
the last instance in which the value is known to be 
minimum. A particular instance of such a four-vari
able cascade is indicated in, Fig. 6 and is based 
upon the general exclusive-OR expansion men
tioned previously, that is 

where gl, g2 are arbitrary functions of three-variables 
and are realized on the outputs of the first cell in 
the cascade. This particular expansion is selected 
with an inductive construction in mind, for it suggests 
a means for introducing a new variable to the scope 
of a problem with the expenditure of only one cell 
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for that particular variable. Indeed any arbitrary 
function of n variables can be expanded as 

t(Xl, ... ,xn) = gl(Xl, ... ,xn-t} + 
Xng2(Xl, ... , xn-d 

where gl and g2 are arbitrary functions of their argu
ments, suggesting the general form of realization of 
an n-variable cascade as indicated in Fig. 7. In this 
figure, the cascade A represents an efficient ( and 
presumed known) realization of the (n - 1 )-vari
able function g2. (The symbol 1> on an output indi
cates that the particular function realized thereon 
may be arbitrarily specified since it does not con
tribute logically to the result.) The pertinent output 
of cascade A provides one input for the cell which 
introduces the new variable, X n , which in turn pro
vides an "accumulated" input for cascade B. The 
function of cascade B, finally, is to develop the 
function gl as efficiently as possible, and to accumu
late it on the second rail in order to form the com
plete n-variable function. An economical realization 
of the B cascade can also be obtained by utilizing 
the exclusive-OR expansion, this time on only n - 3 
of the variables; thus using n = 5 as an example, 

gl(Xl, X2, X3, X4) = hO(Xl, X2) + x3h1(Xl, X2) 
+ x4h2(Xl, X2) 
+ X3x4h3(Xl, X2). 

A realization of this B cascade corresponding to 
n = 5 is shown in Fig. 8. Since two cells are utilized 
for each hi function, plus one more for each variable 
occurrence of the expanded variables, it follows that 

in general such a B cascade requires 

NB = 2 • 2n- 3 + ni
3 (n ~ 3 ) = (n + 1 )2n- 4 

i=l 1 

cells together. The number of cells. in the complete 
n-variable cascade then is certainly bounded by the 
recursion relation. 

Nn ::;; NA + NB + 1 = N n-l + (n + 1 )2n- 4 + l. 
It follows immediately that the number of cells 

required for a canonical five-variable cascade, for 
example, need not exceed fifteen cells. Further sim
plifications can be made, however, for all cases. Since 
it is immaterial which of the n - 3 variables is used 
in the expansion of gl, it can always be arranged 
that the last variable used at the bottom of cascade 
A can provide one input to the top of cascade B, 
saving one cell. Furthermore, since the particular 
function ho(xi, Xj) is not multiplied (logically) by 
any of the others, it follows that ho and anyone of 
the other two-variable functions can be realized in 
the same two cells of the cascade, thus saving two 
more cells. (This simplification is indicated in Fig. 9 
which can be substituted directly for the bottom five 
cells in the B cascade of Fig. 8.) Thus for all n, the 
upper bound on the number of additional cells 
required can be reduced to 

N n ::;; Nn-l + (n + 1)2n- 4 -2. 

This represents the best bound that has proved valid 
for all n. Examination of Fig. 8, however, reveals 

Figure 6. Arbitrary four-variable cascade. 
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8 

Figure 7. Construction of n-variable function. 

other cp outputs that suggest even further savings. 
For example, the cp output of the fourth cell in the 
cascade could be specified as X4 if that variable 
could be used logically by the fifth cell in the cas
cade possibly resulting in the elimination of another 
cell. It turns out that such savings can be easily 
shown for n = 5, and result from a nonuniform 
expansion of the function gl, that is, an expansion 
such that the different l4's may be functions of dif
ferent pairs of variables. For example, an alternative 
expansion for gl for n = 5 is 

gl(Xl, X2, X3, X4) = hO(Xl, X2) + x 3h1(Xl, X2) 

(2) (3) 
+ x 4h2(X2, X3) + Xlx4h3(X2, X3) 

(4) (1) 

and if this expansion is realized in the B cascade in 

the order indicated by the numbering of the terms 
above, then in each instance a cell can be saved in 
the transition from one term to the next in the cas
cade. In Fig. 10 a five-variable cascade is specified 
that utilizes this B cascade for a total of 10 cells for 
the entire cascade, and achieves the minimum 
known length possible for such a general cascade. 

Whether such savings, which accrue from ap
propriate nonuniform expansions, can be achieved 
for all n is not known. For all values of n through n 
= 8 the existence of such expansions has been 
shown, however, and if this result can be extended 
to all n,. then the upper bound can be reduced as 
indicated by the recursion 

N n ~ Nn-l + (n-l)2n- 4 

On the basis of these results it is conjectured that 
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NOTE: The 'no-totion "0 H'~ on on 

output arrow indicates thot 

at that output 'he function 

H is added to the previously 

accumulated function on 

fhe second ro i I. 

Figure 8. A realization of the B cascade. The notation "9h" 
on an output arrow indicates that at that output 
the function h is added to the previously accumu
lated function on the second rail. 

the above bounds holds for all n. parison, the direct miriterm expansion values are 
also shown. As a summary, the best known values of N n 

are shown in Table 1 for low values of n. For com- Table 1. Upper-Bounds for Two-Rail Cascades. 
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Figure 9. Simultaenous realization of ho and hl. 

Minterm Bound 
n n2n - 1 Nn - 1 + (n-l)2n - 4 

3 12 1 
4 32 2 
5 80 10 
6 192 30 
7 448 78 
8 1024 190 
9 2304 446 

10 5120 1022 

Reduced-Cell Compositions 

Although to this point the only cost criterion has 
been the length of the two-rail cascade, it is appar
ent that the individual cell complexity is also of 
great practical importance. Certainly the general 
two-output, three-variable cell will be significantly 
more complex and costly than has previously been 
described for the single-rail case.1 

In Fig. 11, however, a summary is found of the 
six cell types that have been utilized in the efficient 
two-rail canonical realizations of the previous sec
tion. Of these six only the first type, in part (a) of 

the figure, requires the complete generality assumed 
for the two-rail cell. This type is only used in the 
first cell of any such cascade, however, and the re
maining types of cells are required to realize only 
very simple three variable outputs. For present pur
poses it will suffice, then, to demonstrate the avoid
dance of cells of the type in part (a), in particular 
by realizing the necessary functions in terms of the 
remaining five cell types, which can then be thought 
of as a sufficient, reduced cell set. 

Although the general cell is used only as the first 
cell of every cascade, it is convenient to replace the 
first two cells in every cascade (as indicated by part 
(a) of Fig. 12 which represents the first two cells 
of the cascade of Fig. 10) with the five-cell cascade 
of par (b) of Fig. 12. It can be verified that these 
two cascades are functionally identical according to 
the expansion 

g2(Xl, X2, X3, X4) = hO(Xl, X3) + x 2h1(Xl, X3) 
+ x4(h2(Xl, X2) + 
x3h3(Xl, X2) ), 

and for the price of three additional cells in part 
(b) of the figure, only reduced-cell types are utilized. 
ized. 
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A 

B 

Figure 10. The best-known five-variable cascade. 

Thus upper bounds on the number of reduced 
type cells required for canonical two-rail cascades 
can be obtained simply by adding three cells total 
to the more general results previously obtained. 

BOUNDS FOR RECTANGULAR ARRAYS 

Since the single-column for. two-rail cells has 
been shown sufficient for the composition of arbi
trary functions, it is of interest to ask whether the 
growth rate of rectangular arrays composed of such 
columns is thereby enhanced. As one way of struc
turing such an array, let us consider the convention
al Shannon type decomposition 

t(Xl, ... ,xn) = I gi(Xl, ... , Xm) (Xm+l ... Xn)i 
i 

where an arbitrary function of n variables is ex
pressed canonically in minterms of n - m of the 
variables, each with a coefficient that is an arbitrary 
function of the remaining m variables. If the m
variable functions are realized in a single column 
in a minterm two-rail realization, then the number 
of cells in a column, including one for a collector 
row, will not exceed 

m2m + n-m. 

Since there are no more than 2n - m such columns 
necessary, the total number of cells in the entire 
array, as suggested in Fig. 13, will not exceed the 
product, that is 
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Figure 11. Two-rail cell types. 
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Figure 12. Reduced-cell version of cascade A. 
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r-- 2n- m COLUMNS--1 
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X m+1 
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Figure 13. Construction of rectangular array. 

If n is chosen so that m = log n then this growth 
rate varies asymptotically as (log n) 2n which is a 
functional improvement over the rate for previously 
constructed arrays of the edge-fed, horizontal-bus 
type. 

It should also be noted that the selection of m 
can also be motivated by the aspect ratio of the 
resulting rectangular array; in particular the situa
tion where the height varies linearly with n, while the 
width varies exponentially can be avoided by the 
proper selection of m. 

Similarly, the more efficient two-rail cells can be 
utilized directly to obtain reduced cell counts for 
canonical rectangular arrays of various desired aspect 
ratios. For example, for n = 11 a canonical array 
could be composed so that m = 5, as in the above. 
Since the five-variable columns require only 10 cells, 
the array height (counting one row as' a collector 
row) need not exceed 17 cells; and the width would 
not be greater than 26, corresponding to the Shannon 
expansion on the remaining 6 variables. Hence the 
total cell count in the array would be 1088 cells in 
a 17 X 64 array. On the other hand, a nearly square 
array measuring 36 X 32 cells or 1152 cells alto
gether, results from selecting m = 6 in the 11-
variable case. 

CONCLUSIONS 

It has been demonstrated that the two-rail cellu
lar cascades not only greatly increase the number of 
functions realizable in a cascade of cells, but that 
they are indeed functionally complete. No greater 
interconnection complexity is needed to insure that 
the columns of horizontal bus cellular arrays can be 
made to realize as broad a class of functions as may 
be desired for the solution to the particular logical 
design problem. 

Furthermore, fairly efficient realizations can be 
specified in canonical form utilizing only a fairly 
simple class of three-variable functions that need be 
specified on the outputs of the individual two-rail 
cells. The resulting columns can be composed into 
rectangular arrays that exhibit considerable flexibil
ity in the specification of aspect ratio. 

Sevral . lines for further inquiry are suggested by 
these results, not the least of which is the remaining 
question of whether the derived bounds on column 
length are firm, and whether further reductions can 
be made. It is quite probable that further reduc
tions, if possible, will require considerably more 
cell complexity than the designs suggested herein. 

Also, the development of minimal realizations 
for specific functions is of interest, and may ulti
mately result in rectangular arrays with fewer total 
cells required. 

Further, the two-rail cell, taken as a starting 
point, suggests other interconnection possibilities 
besides the individual columnar type of composi
tion. For example, each cell, rather than communi
cating only with the cell below it in an array (even 
though with two leads), might instead provide an 
output for the cell below and one to the right, or 
any of a variety of other ways. Such interconnection 
structures provide the possibility for tree-like com
positions within the rectangular arrays, and may sig
nificantly increase the efficiency of utilization of 
the basically two-dimensional structures. Finally, 
the generalization of the two-rail cell to three or 
more rails is an obvious next step. Although the cell 
complexity in the completely general interpretation 
would increase phenomenally, experience indicates 
that. selected subsets of the possible functional spe
cifications can be very useful. 
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THE ASSOCIATIVE MEMORY STRUCTURE 

B. T. McKeever 
General Electric Computer Laboratory 

Sunnyvale, California 

INTRODUCTION 

The development of the Associative Structure 
Computer (ASC) was partly motivated by the oppor
tunities and problems of designing, manufacturing, 
interconnecting and using batch fabricated devices, 
particularly cryotrons. Some of these points are dis
cussed in the third paper of this series, "The Asso
ciative Structure Computer," which describes the 
machine organization. ASC is constructed with only 
two types of modules. One module is described in 
the second paper of this series, "The Associative 
Switching Structure." This paper, the first of the 
series, discusses the other module, the Associative 
Memory Structure. 

The following section sketches the general organ
ization and background in which the Associative 
Memory Structure operates. The succeeding section 
describes the Associative Memory Structure and the 
primitive information manipulation operations that 
are built into the hardware. It first describes the 
primitives individually in two classes, bit manipula
tion operations and word select operations; then 
describes the primitives in combinations as modes 
of accessing information in the Associative Memo
ry Structure. The next section presents six fairly de
tailed examples of the use of sequences of combina
tions of primitives. J~ is hoped that these examples 
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will clarify the description of the Associative Mem
ory Structure and its primitive operations, show 
from several approaches how the primitives work 
together and illustrate a less familiar technique, 
parallel sequential logic, for composing computer 
functions. The examples also illustrate that the 
small set of primitives is logically powerful and that 
the Associative Memory Structure has broader ap
plications th"n just serving as a search memory. 

GENERAL ORGANIZATION 

To try to match the general characteristics of 
batch fabrication technologies, compromises were 
made in the logic design and machine organization 
of ASC and so its design does not follow a purely 
cellular approach-a uniform array of identical cells. 
The design approach 0f ASC was partly influenced 
by an existing and successful cellular system which 
has about a half billion cells, performs about a 
quarter million operations per second and handles 
around a hundred thousand problems simultaneous
ly. It is neither a micro array of gates nor a macro 
array of computers. It is an array of arrays, not aU 
of which are the same. Even within arrays there are 
inhomogeneities. Basically the arrays and subarrays 
consist of some number of signal collecting, buffer
ing and distributing sub arrays or cells closely asso-
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ciated with some number of information manipula
tion, transformation and storage sub arrays or cell's 
which can operate in parallel, independently of each 
other. This system is the telephone network. 

The design of the Associative Structure Comput
er tries to take advantage of the concept of hierar
chy both in the cellular structure at each level and 
in the communication/interconnection scheme. 
ASC is a macro cellular array using two modules 
rather than just one. Both modules are based on as
sociative logic and both are capable of logic and 
storage, but one (Associative Memory Structure) is 
slanted toward storage and the other (Associative 
Switching Structure) toward logic. Each of the 
modules is in turn a micro cellular array with two 
kinds of cells rather than just one. One kind is the 
Associative cell which has the ability to perform 
storage and logic actions in parallel with and inde
pendently of other cel'ls. The other kind is the Logic 
Accumulator cell which can collect and combine 
signals and then distribute the results to an associ
ated group of cells. The two levels of cellular ap
proach are apparent, but it has proven valuable in 
both levels to avoid a purely cellular approach of a 
uniform array of a single type of cell and instead 
borrow from the functional block approach by em
ploying two kinds of working units at each level. 
This is as much for communication purposes as it 
is for efficient division of labor by specialization. 

Instead of first designing circuits and then trying 
to find an effective interconnection pattern, the ap
proach can be reversed. First a cellular approach is 
used to establish a general interconnection of all 
cells and arrays. Then the logic design problem be
comes one of selectively introducing local discon
nections. Neighborhood or point-to-point wiring 
is avoided as much as possible and the interconnec
tion scheme is predominantly bussing which shares 
the cost of interconnections and associated 
drive / sense circuitry over many sources and· receiv
ers. The resulting array pattern lies between a 
one- and two-dimensional structure. Cells are 
connected to form a string of functional blocks. The 
terminals of these strings are bussed into a higher 
order string whose terminals are connected into a 
still higher order string, the chain, which is a major 
subsystem. The chains are in turn connected at their 
terminals to form the basic system. Appropriate use 
of the Associative Switching Structure in the inter
face of the chain allows such things as peripherals, 

remote terminals or even existing computer systems 
to be disguised as chains with nonstandard proper
ties and to be connected to ASC at the highest 
string level. 

Associative logic is used as a basic form for 
building functions. ASC works with a logic form 
which compares a single input with a stored con
stant and produces an output for either equality or 
inequality. Several of these logic forms operate in
dependently and in parallel. Then results for a 
group enter a logical accumulator of some kind and 
an overall group result is calculated. This gives an 
inherent mixture of logic and storage at a low level _ 
in the machine organization. The string of strings 
hierarchy in the communication/interconnection 
scheme is used to extend associative logic to the 
entire machine. 

Logical flexibility is emphasized. Only a small 
set of primitive information manipulating opera
tions are implemented in hardware. Stored logic is 
used to build up macro functions. The usual limit
ing of system speed by the read rate of the control 
memory is circumvented by distributing the stored 
logic. Rather than storing a single clock gating ac
tion in each control word, each word stores instead 
a cycle code that is interpreted by Associative 
Switching Structures to generate a sequence of gat
ing actions which is long enough to allow the con
trol memory ample time to read the next word. 

The dominant function pattern is parallel sequen
tial logic in two forms. In one form, the function is 
broken up into pieces representing possible logical 
cases which are passed against all members of a 
stored data set-sequential by case, parallel by 
item. This reduces removals, external modifications 
and reinsertions in memory. The other form com
pletes the symmetry by passing individual items of 
data against a set of functions-sequential by item, 
parallel by case. The functions are broken up into 
logical' cases and expressed in the form of stored 
logic tables which imitate an easily modifiable 
diode matrix. This reduces dedicated hardware sub
ject to faults and reduces reentering data for differ
ent functions. 

DESCRIPTION OF THE ASSOCIATIVE 
MEMORY STRUCTURE 

The Associative Memory Structure has two kinds 
of cells-the associative cells making up the storage 
section of a word and the logical accumulators 
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making up the word control. There are two kinds 
of built-in primitive operations-bit manipulations 

WORD 

DRIVE/SENSE 

0 ----
-----

0 ·-----
-----

11---
LJ----

STORAGE 

and word selects. Figure 1 shows a group of words, 
each made up of a number of associative cells, each 

·PRIMITIVES 

HIT ENABLE 
ff ff 

WORD 
CO~TROL 

Figure 1. Block diagram of associative memory structure. 

a bit in the word. The drive/sense lines of corre- SEARCH 
sponding bit positions are wired together to form DRIVE 
an input/output bus. The detect/enable lines of 
successive bits within a word are wired together to 
form a bus linking the storage section with the cor-
responding word control. 

Bit Manipulations 

Search. One of the bit manipulations is the 
Search operation. The drive/sense bus is controlled 
by a Contents register and a Mask register. In each 
bit position where the Mask is one, the value of the 
Contents register, one or zero, is placed on the 
drive line. Where the Mask is zero, the drive line is 
neutral. The associative cell may store one of three 
values: one, zero, and no comment. Figure 2 shows 
the truth table of an associative cell responding to a 
Search. Note that only for the cases of a driven one 
and stored zero or for a driven zero and stored one 
is a disagreement signal generated. Combinations of 
a driven one and stored one or a driven zero and 
stored zero produce agreement. When either the 
drive line is neutral or the associative cell stores no 
comment, agreement is produced. 

1 0 n 

S 1 a d a 
r-
0 0 d -a a 
R 
E X a a a 

Figure 2. Truth table for search. 

During the search, each associative cell performs 
its computation of agreement or disagreement in 
parallel with and independently of all other associa
tive cells. If any associative cell disagrees, the de
tector bus assumes the zero state. If all cells agree, 
the detector is one. 

The final phase of the Search operation consists 
of transferring the value of the detectors to the Hit 
flip-flops (Hit ff) in the corresponding word con
trols. There are two control lines, transfer one and 
transfer zero. If both are turned on, the value of 
each detector is copied into the corresponding Hit 
ff. If only transfer one is turned on, then the Hit ff 
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is set to the one state if the detector is one, and the 
Hit ff retains its initial state if the detector is zero. 
If only transfer zero is turned on, then the Hit ff is 
reset to the zero state if the detector is zero and the 
Hit ff retains its initial state if the detector is one. 
If the Hit ff were initially zero and a sequence of 
searches using only transfer one were applied, then 
at the end of the sequence, the Hit ff would be zero 
if all the searches failed, one if any succeeded; the 
searches would be ORed. If the Hit ff were initially 
one and a sequence of searches using only transfer 
zero were applied, then at the end of the sequence, 
the Hit ff would be one if all the searches succeed
ed, . zero if any failed; the searches would be AND
ed. Combinations of these sequences could be ap
plied. In addition to association between bits with
in a word, we have the capability of association be
tween searches in a sequence. 

The other two bit manipulations, Read and 
Write, differ from the Search in one important re
spect. During a Search, every word participates. 
During a Read or Write, only words with the ena
ble bus in the one state participate. Words which 
are not enabled do not affect and are not affected 
by the drive/sense bus. 

Write. The Write operation is relatively straight
forward. A valuable feature is individual bit write. 
If the drive line is in the one or zero state, the asso
ciative cell takes on the driven state in any and all 
enabled words. If the drive line is neutral (or if the 
word is not enabled), the associative cell retains its 
initial state. Any bit, therefore, can be used as a tag 
ff to store the result of a search or sequence of 
searches. Since these tags are bits just like others in 
the word, their values can be specified when desired 
in subsequent searches. This allows formation of 
quite general associations between searches whether 
or not they are in sequence and whether or not the 
value of a search result or its complement is of in
terest. 

The associative cell is discussed· as if its circuitry 
allows three physical states to represent one, zero, 
and no comment. Equally valid circuit approaches 
may be based on circuitry which couples adjacent 
bits within a word to represent the three states or 
on circuitry which couples adjacent bits between 
two consecutive words (and their word controls) to 
allow the lower bit to act as a mask or bypass for 
the upper bit. Depending on which circuit approach 
is taken, a variation of the normal write cycle will 

be used to sort the third state. For ease of explana
tion, it will be assumed that in a block of words 
and bits having all three states, a separate clear
write operation stored no comments everywhere 
within the block and then the normal write cycles 
were used to superimpose patterns of one and zero. 

Read. The Read operation is really a logical 
comparison like the Search except that only enabled 
words participate instead of all words, that th~ re
sults are collected by the sense line along bit posi
tions instead of along the word and that agreements 
are of interest instead of disagreements. Figure 3 
shows the truth table for the Read operation. Note 

READ DRIVE 

1 0 n 

S 1 1 0 0 
T 
r 0 0 1 0 
R 
E X 0 0 0 

Figure 3. Truth table for read. 

that only for the case of a driven one and stored 
one or a driven zero . and a stored zero is there a 
positive output on the sense line. For a driven one 
and stored zero or a driven zero and stored one, there 
is zero output. For a neutral drive or a stored no com
ment, .there is zero output. If more than one word is 
enabled, then along each bit position, the sense line 
will OR one outputs of the associative cells during 
a read. 

If exactly one word is enabled, then by reading 
for ones (placing one on all drive lines) the result 
is a normal read. Reading for zeros (placing zero 
on all drive lines) produces a complemented read. 
Placing the bit values of a word on the drive lines 
produces the bitwise comparison of the external 
word and the enabled internal word (noted as 
A:B, reading A with B, identity function of A and 
B, complement of the exclusive or). 

If for some reason it was intended to enable sev
eral words, then reading for ones will produce the 
bitwise OR and reading for zeros will produce the 
bitwise NAND which can be complemented exter
nally to produce the AND. Also, all bit positions but 
one can be held in the neutral state by placing zeros 
in the mask register and that one bit position can 
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be read first for ones, then for zeros. The two reads 
will indicate whether a given bit position contains 
only ones, only zeros or both ones and zeros for use 
in a Lewin type algorithm. It is also possible that 
neither ones nor zeros are present, which will indi
cate that in that bit position of all enabled words, 
the no comment is stored. If for Some reason it is 
desired to completely read a word which can have 
stored no comments, then two reads, a read for ones 
and a read for zeros, must be performed and bit po
sitions which gave no output for either case hold no 
comments. More often, multiple read will be used 
when several words are enabled at the end of a logic 
sequence where each word is the computed result 
for one subfield of the desired output and in each 
word, the bits of subfields of the output which be
long to other words are filled with no comments. In 
this case, the transparency of no comment to the 
read operation is a distinct advantage. 

From the viewpoint of the overall connection 
scheme, this third state, the no comment, gives the 
ability to locally introduce disconnections. This in 
turn allows breaking up functions into parts which 
can be treated independently and exercised in paral
lel without interference between the parts. When 
blocks of the associative memory are used for logic 
purposes, the three state storage allows imitation of 
diode logic networks with stored ones and zeros 
acting as a connection of variables or their comple
ments and stored no comments acting to disconnect 
variables from a given term. 

Notation for Bit Manipulation. It might be useful 
to introduce some notation for search, read. and 

I write. A search employing both transfer one and 
transfer zero is written as Seal A, l/Data). The 
( a) refers to a value placed· in the contents register. 
The . (A) refers to a value placed in the mask regis
ter in bit positions associated with ( a). Sometimes 
("a") is used,. meaning the name of (a) as distin
guished from the value (a) itself. As many terms of 
specification as desired may be used, separating 
each by commas and using the slash to separate 
contents and mask values. The mask is sometimes 
specified by the name of a defined field such as 
(Data) rather than directly with a bit pattern. The 
use of a single bit value (a constant or the output 
of an expression) over a multibit field implies that 
value is placed in all bit positions. S 1 ( a/A) de
notes a search only using transfer one. SO(aI A) de
notes a search only using transfer zero. Weal A) 

denotes write (a) into field A of all selected words. 
WX (l/field 2, Offield 2) denotes the clear-write, 
storing no comments in field 2 of all selected 
words. R ( a/A) reads field (A) with the value (a). 

Word Selection 

The approach taken in ASC emphasizes logical 
flexibility. In the word control, the function of 
keeping track of the response of a word to searches 
is separated from the function of selecting a word 
to be enabled for manipulation in read/write· opera
tions. The Hit ff, already discussed, records the his
tory of search responses. There is an Enable ff 
whose value is transferred to the enable bus in all 
words whenever a read or write occurs. Setting the 
enable bus in a word resets the Hit ff. If the Enable 
ff is zero, a read or write will be ignored by the 
word and the Hit ff will be unchanged. In all cases, 
the state of the Enable ff is not changed by read, 
write or search operations and so, any number of 
reads and writes can be performed without losing 
the word. There are a variety of word select opera
tions which transfer information between the Hit 
and Enable ffs. 

There are five word select operations-Select First 
Hit (SFH) , Partition (PRT) , Select Next Word 
(SNW) , Select Previous Word (SPW) and Select 
All Hits (SAH). Select First Hit and Partition em
ploy the same circuit but use different initial condi
tions. In most hardware implementations, this cir
cuit is expected to be very slow compared to the 
other word select operations and is used sparingly
when there is no reasonable alternative or when 
there is a clear advantage in speed. 

Select First Hit. Select First Hit (SFH) assumes 
the Enable ffs are initially zero and that there are a 
number of words with a one in the Hit ff. Geome
try and the direction of certain control signals im
pose a physical order on the words-top to bottom, 
first to last, previous to next. Action of the opera
tion can best be described as imagining a pointer 
which quickly scans the Hit ffs, top to bottom. As 
long as the pointer encounters a zero, it goes on to 
the next word. As soon as the pointer encounters 
one in a Hit ff, it sets the associated Enable ff to 
one and stops the scan. The Hit ff is unchanged. If, 
for some reason, not all the Enable ffs were initially 
zero, then we have two cases. As the pointer 
scans for the first Hit, it resets Enable ffs to zero 
in all words until the first Hit. Once the first Hit has 
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been found, the scan stops and therefore the state of 
Enable ffs below the first Hit will be unchanged. 

When we have reason to expect multiple matches 
and must treat them one word at a time, then SFH 
allows resolution of the multiple matches. With the 
proper initial conditions (0 in all E ffs), assume a 
search results in multiple matches. Applying SFH, 
the . first hit is selected, but the Hit ffs are un
changed. Then applying R or W, the first word is 
enabled for participation while the other hits re
main unenabled. After R or W, SFH is applied 
again. Since the Hit ff of the first match word was 
reset to zero by the RjW, the second match word is 
now the first hit. The Enable ff of the first match 
word will be reset to zero and the Enable fi of the 
second match word, which is now the first hit, will 
be set to one. This procedure continues until all the 
match words have been processed. 

There are two test signals available. Hit Test in
dictates if any Hit ff is one. Read Test indicates if 
any bit position produced a positive output (stored 
one and driven one or stored zero and driven zero) 
during a read. 

Partition. Partition (PRT) assumes the Enable 
fis are initially one and that there is exactly one hit. 
All the Enable ffs above the hit will be reset to 
zero. The Enable ff associated with the hit and all 
the Enable ffs below will be set at one. The memo
ry will be partitioned into two blocks on the basis 
of the hit. If there is no hit, an of the words will be 
in the upper block. If there is more than one hit, 
division will take place on the basis of the first one 
and the other hits will be ignored. If not all the 
Enable fis are one, then Enable fis in the zero state 
below the first hit will remain zero. The Enable fi 
of the first hit will be forced to one in any case and 
aU the Enable ffs above the first hit will be reset to 
zero. 

Figure 4 shows a typical short sequence using 
PRT. Searching for Header-5 gives a hit at the 
top of the block. Partition selects all of the words 

Data M HE 

Header-S 0 
Element Al 0 S(Header-S/-),PRT,W(l/M) 
Element A2 0 S(Trailer-S/-) ,PRX ,W (O/M) 
Element A3 0 
Element A4 0 
Trailer-S 0 

Figure 4. Example of association between words. 

from the header down. Write places ones in all the 
marker bits (M) from the header down. Searching 
for Trailer-5 gives a hit at the bottom of the 
block. The second PR T selects all of the words 
from the trailer down. The second Write restores all 
the marker bits from the trailer down to zero. This 
leaves ones in the marker bits of only the words 
bounded. by the header and trailer. This allows a 
very general association between words as well as 
association between bits within a words and associ
ation between searches. This kind of sequence can 
be concatenated using additional marker bits to ac
cess structured information such as a condensed file 
or file index with a hierarchy of headers, sub
headers, sub-sub-headers, etc. This avoids the 
necessity of storing the header values for each level 
of the hierarchy in the same word along with the 
item label and data which could lead to difficult 
requirements such as thousand-bit words. 

Select All Hits. Select All Hits is the workhorse 
of the word selects. It is also the simplest and, for 
most hardware implementations, is expected to be 
the fastest· select operation. The state of all Hit fis 
is copied into all corresponding Enable ffs. The Hit 
fi retains its state. 

Whenever the nature of the program indicates 
that exactly one hit (or none) exists and it is de
sired to process an individual word, SAH provides 
a much faster word selection than SFH. Whenever 
the nature of the program allows manipulation of a 
set of hits in exactly the same way independently of 
how many there are, SAH provides a means for se
lecting those words in parallel and performing the 
manipulation once for every hit simultaneously. 

Select N ext Word and Select Previous Word. Se
lect Next Word and Select Previous Word are essen
tially the same function except that the direction of 
control information movement is reversed. SNW 
and SPW are fairly simple and reasonably fast. 
When Select Next Word is turned on, the states of 
all Enable fis are transferred to the Hit ffs of the 
words immediately below (if a word is faulty, re
wiring at the edges can remove power from the 
word and make the two adjoining words act as if 
they were directly connected). The state of the last 
Enable ff leaves from the bottom and is lost. The 
normal state input to the first Hit ff from the top is 
zero. Where noted as an exception, it may be a one. 
When the Select Previous Word is turned on, the 
states of all Enable ffs are transferred to the Hit fis 
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of the words immediately above. The state of the 
first Enable ff leaves the top. The normal state in
put to the last Hit ff from the bottom is zero. When 
noted as an exception it may be a one. 

Access Modes 

Another way of looking at the word select opera
tions, in conjunction with each other and with the 
bit manipulations, is to consider access modes. ASC 
has four modes: Direct Access, Indirect or Condi
tional Access, Inverted Access and Parallel Access. 

Direct Access. Direct Access has two cases-ran
dom and sequential' access. SFH can be used to pro
vide random access when it is not known how many 
hits there are. SAH provides random access when it 
is known that there is one hit or none. After the 
starting point of a list or sublist of consecutive en
tries has been found in a random access mode, oth
er entries can be found in a sequential access mode. 
Pairing SAH & SNW or SAH & SPW will cause the 
Hit and Enable ffs to act as a two-phase shift reg
ister, moving an access pointer from an Enable ff to 
the Hit ff of the word above or below with the SPW 
or SNW and then from the Hit ff to the Enable ff of 
the same word with the SAH. A common use of se
quential access is reading lists such as instruction in 
a subroutine where the individual instructions are 
not labeled but access is started at a header word 
which contains the name of the subroutine. 

Indirect or Conditional Access. Another mode is 
Indirect or Conditional Access. In the discussion of 
Partition used in conjunction with individual bit 
write for parallel tagging, access to a block of con
tinguous words conditional on the values stored in 
boundary words was illustrated. This form of condi
tional access can be concatenated using additional 
tag bits and searching on the original tag as well as 
second level boundary words and allows very gener
al association between as well as within words. It 
also offers the possibility of accessing information 
using structural information about a data hierarchy 
to supplement incomplete knowledge of contents. 

Another form of Indirect or Conditional Access is 
based on extending sequential access. This gives a 
less general but much faster association between 
adjacent words. This form can be based either on a 
SAH & SNW sequence or a SAH & SPW sequence. 
Figure 5 illustrates a SAH & SNW sequence. The 
initial search with double sided transfer finds all 
headers and establishes the starting points of an 

H 

H 

H 

Al 
BI 
C4 
D6 

A2 
B2 
C3 
D6 

Al 
B2 
C5 
D2 

S(H/-), SAH, SNW 

<SO(AI/-), SAH,SNW 

SO(B2/-), SAH, SNW 

W(C3/-) 

Figure 5. Example of conditional access. 

strings. The SAH & SNW makes the first word and 
only the first word of every string a hit and thus a 
candidate. Since the words above the headers did 
not satisfy the initial search, their Enable ffs are 
zero and therefore after the SNW, the Hit ffs of the 
header words are zero even though the Enable ffs of 
the headers are still one. The search for A 1 in the 
first word is satisfied by the first and third string 
and therefore the single sided transfer leaves their 
Hit ffs still one. The first word of the second string 
does not satisfy the search and therefore the second 
string goes out as a candidate. The subsequent SAH 
sets the Enable ff of the first word of the first and 
third string, leaves the enable ff of the first word of 
the second string zero and resets the Enable ffs of the 
headers since their Hit ffs were zero. The SNW makes 
the second word of all strings still active (first and 
third) candidates. The search for B2 in the second 
word of all strings is satisfied by the second and 
third strings but not the first. So the third stays on 
and the first goes out. Even though the second word 
of the second string satisfies the search, the single 
sided search does not set the Hit ff and therefore 
the string does not get turned on again. Once a 
string goes out, it stays out. Therefore if the third 
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word of any string is still on, it is because the first 
word satisfied the search A 1 AND the second 
word satisfied the search for B2. So now it is possi
ble to combine association within words, associa
tion between words and association between search
es to get a rather powerful Indirect or Conditional 
Access mode. 

A useful application of Indirect or Conditional 
Access is the Vertical Character String Memory. 
Six (or eight) bits plus a few markers are set aside 
from all words in the memory. The unit of storage 
is the character. As information enters the system it 
is stored vertically serial by character using the nat
ural punctuation as delimiters, perhaps supplement
ed by machine generated symbols not in the normal 
character set. This forms a simple associative mem
ory which can be searched, read and written but 
serially by character. However, it can be parallel by 
string or sub-string using punctuation as headers and 
sub-headers. Furthermore, there are no such things 
as word boundaries. For highly formatted, regular 
nearly fixed length data, this approach is not very 
impressive. For irregular, variable length data, the 
Vertical Character String Memory can be quite use
ful. Other bit fields of the words can be used as addi
tional string memories or as normal word-organ
ized units with a reduced number of bits per word. 
The two forms can share the memory and exist 
simultaneously. 

Inverted Access. Inverted access simply implies 
an inversion of the normal application of a single 
search criterion and its mask against all data units 
in the associative memory, that is, the storage of a 
number of search criteria with their masks and the 
application of a single data unit against them. With 
the required· internal masking, the selection and tag
ging of an search criteria satisfied by the applied 
data unit can be done simultaneously. This mode 
can be applied to periodically running a file too 
large to contain in the memory against batched re
quests, particularly if there is sufficient multipro
gramming capability so that between arrivals of in
formation from a slower speed mass store, other 
useful work can be performed. The ability to store a 
mask along with a search criterion avoids the ne
cessity of storing not only the basic search criterion 
but also a version for each of the combinations al
lowed by the don't care bits which is otherwise nec
essary since it must be assumed the different 
batched search criteria will be masked in arbitrary 

fields and therefore the data cannot be masked 
when it is passed through the memory. 

Inverted access also has application to less grand 
scale problems than information retrieval from bulk 
store. Input conversion or format transformations 
can be performed in modes combining Inverted and 
Paranel access. Where the data unit breaks up into 
subfields on which independent operations can be 
performed, each operation is expressed as a set of 
masked searches examining only the subfields of 
interest, each set of masked searches operating in 
parallel. Associated with each logical case as repre
sented by a stored search and mask is a response 
which may be stored in a field not common to any 
of the data subfields or in an adjoining word which 
is accessed indirectly using SNW· or SPW and SAH. 

There is a programming technique, using branch 
tables discussed in a later paper, which makes use 
of an N-way branch. This N-way branch is easily 
implemented by the inverted access mode. A stored 
search and mask represents a logical classification 
of the test, status and control information leading 
to one of the branch terminals. Inverted access 
avoids the necessity of storing all possible combina
tions and allows storing only those system condi
tions, along with don't cares represented as no com
ments, that actually lead to a branch terminal. 

A quite exciting combination of Inverted and 
Parallel access can be used to build up group 
characteristic profiles of a data set by passing each 
data unit against a number of stored searches and 
masks representing characteristics of interest and 
"counting" the hits in parallel. An example of on
line process control will be discussed later. 

Parallel Access. The Parallel Access mode is the 
workhorse often used in conjunction with other 
modes. The properties of individual bit write and 
SAH give the ability to tag in parallel. This avoids 
removing each hit, changing bits in an external reg
ister, reinserting the word and repeating for the 
next hit. Tagging can be generalized from manipu
lating a special field of marker bits to any modifi
cation of a subset of words that is identical for all 
members of the subset. Being able to search on the 
tags allows modifications to be built up from sever
al related taggings. 

EXAMPLES 

It might be beneficial to go through some exam
ples to try to clarify the details of the primitives 
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and structural properties and develop insight about 
some of the vaguely defined concepts such as asso
ciative logic, parallel sequential forms, modes of 
access, etc. 

The first three examples show the use of the As
sociative Memory Structure to perform convention
al addition on a pair of numbers. Their main im
portance is an illustration of the logical power that 
is available and a demonstration of the speedl storage 
tradeoff that is available to the designer. The next 
example is a serial-by-bit addition that may be per
formed on many pairs of numbers simultaneously. 
It illustrates one of the parallel sequential logic 
forms. The fifth example is a formatting operation. 
It illustrates some of the logic power available for 
nonnumeric functions and the other form of parallel 
sequential logic. The sixth· example illustrates sev
eral functions and several capabilities of the Associ
ative Memory Structure tied together by a significant 
piece of a useful problem from the context of proc
ess control of a cryotron manufacturing operation. 
It shows the application in parallel to many data 
groups of a sequential process, each step of which 
consists of parallel bit manipulations and suggests 
that parallelism may be extended upward through 
the language hierarchy to the user. 

A Simple Carry Register Addition 

Figure 6 shows the truth tables and memory set
up of the stored logic table for an addition algo
rithm shown in Fig. 7. This is a simple straightfor-

STORED CARRY LOGIC 

G H S C MlM2 Ml' M2' 

0 0 o 0 0 0 0 0 no change 

0 I I 0 0 I I 0 exchange Ml & M2 

1 0 I 0 1 0 I 0 no change 

1 I o I 1 I 0 1 reset M1 

LOGIC TABLE 

Access 
Code Label OV BN-BI MlM2 

5 Add 3 X XXXXI 

5 Add 3 X XXXIX 

5 Add 3 X xxlXX 

5 Add 3 X X I XXX 

5 Add 3 X l~ 
5 Add 3 1 XXXXX 

Figure 6. Simple carry register add-logic. 

1. S(2/aeeess code, "G"/label), SAH,R(l/data) 

2. S(S/aeeess code, Add 3/label, O/ov, G/Bl-N), SAH, W(l/Ml) 

3. S(2/ae, "H"/lbl), SAH, R(l/data) 

4. S(S/ae, Add 3/lbl, O/ov, H/Bl-N), SAH, W(1/M2) 

5. S(S/ae, Add 3/lbl, O/Ml, 1/M2), SAH, W(l/Ml, O/M2) 

6. S(S/ae, Add 3/lbl, l/Ml, 1/M2), SAH, W(O/Ml, O/M2), SNW 

7. SAH, W(l/M2), TEST 
Hit: loop to 5. No Hit,: continue 

8. S(S/ae, Add 3/lbl, l/Ml), SAH, W(O/Ml), R(l/ov, l/Bl-N) 

9. S(2/ae, "F"/lbl), SAH, W(F/data) 

Figure 7. Simple carry register add-algorithm. 

ward algorithm imitating the action of a conven
tional adder based on the old von Neumann carry 
register technique. A pair of numbers are fetched 
from memory and inserted into the registers (Ml & 
M2) of a stored logic table adder. A computation 
loop (steps 5,6,7) produces the partial sum in one 
register and the carries in the other. The carries are 
shifted and the loop repeated until there are no 
more carries. The final sum is read out and put 
away. 

The first truth table displays the correct Sum (S) 
and Carry (C) for individual bits of the pair of 
numbers (G & H). The second truth table shows 
the same logic assuming G & H are placed in M 1 & 
M2 (initially zero) and the Sum and Carry are de
veloped in Ml & M2, respectively. Only two cases 
require action. 

Step 1 fetches G. Step 2 enters G into Ml. The 
search includes a requirement for access code 5 and 
Add 3 in the label field. This ensures that nothing 
which might have the same bit configuration of 
Add 3, but which is not a machine defined stored 
logic table (designated by access code 5) will be 
selected and that none of the stored logic tables ex~ 
cept Add 3 will be selected. The search for (Olov) 
ensures that the overflow word will not be selected 
during loading. The second word of the logic table 
has stored no comments in every bit position of the 
data field except the second. Therefore, the· value of 
the search requirement in the data field (G) for 
bits land 3 through N will have no effect on the 
selection of the second word. There is a one in the 
second bit so the second word will hit or miss ac
cording to the value of the second bit of G. 

In general, the Kth word of the logic table fol-
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lows the Kth bit of the data field. The diagonal of 
ones embedded in the block of no comments acts as 
a "logical mirror or deflector" to swing a data field 
from a horizontal to a vertical format. 

Step 5 searches for all instances of a logical _case, 
01 in Ml, M2. However many there are, they are 
selected in parallel and the write exchanges M 1 and 
M2. If there were no hits, no words would be se
lected. The write would take place but no words in 
the logic table are affected. 

Step 6 searches for 11 in M 1, M2 and resets M 1, 
completing the process for the unit step of the carry 
register adder. This illustrates in a simple way the 
pattern of logic called paranel sequential. The func
tion is broken up into four cases. Two need no fur
ther processing. The remaining two cases are treat
ed sequentially but all instances of each case are 
treated in parallel. 

Since the carry must be propagated, step 6 also 
performs part of the propagation operation, first 
clearing M2 and then shifting the carry to the Hit ff 
of the next register position. Step 7 writes any 
shifted carries into M2 and also tests for their oc
currence. A partial sum and carry is indistinguisha
ble from a new G & H in M 1 and M2, so if there 
are any carries, they can be handled by looping 
back to step 5. 

Step 8 selects words corresponding to register po
sitions for which the sum is one and reads the data 
field ORing the outputs along bit positions. The 
Kth word has stored no comments in every bit posi
tion except the Kth so its readout can only in
fluence the Kth bit of the data field. The Kth bit 
position has stored no comments in every word ex
cept the Kth so a one output is possible only if the 
Kth sum is one. The multiple read collects the re
sults for each sum bit computation into a single re
sult word. 

For a N bit data field, plus overflow bit the stor
age requirement of the stored logic table is N + 1 
words. The worst case time in normalized units is 
6 + 3N. The average is 6· + 3 [lOg2 N] (next integer 
greater than the binary logarithm of N). 

A Partitioned' Carry Register Addition 

Figures 8 & 9 show the stored logic table and al
gorithm for an improvement of the carry register 
add. The carry register is partitioned into K blocks 
of M bits each (KM is greater than N, the number 
of bits in the data field). At the expense of a larger 

Label OV BN-BI M1 M2 M3 M4 
Add X XX XXX XXI 1 0 
Add X XX XXX XIX 1 1 
Add X XXXXXIXX 1 1 
Add X XX XX1 XXX 1 0 
Add X XX X1X XXX I 1 
Add X XX 1XX XXX 1 l' 
Add X Xl XXX XXX 1 0 
Add X 1X XXX XXX 1 1 
Add I XX XXX XXX 1 1 

Add X XX XXX XX1 0 0 1 
Add X XX XXX 11X 0 0 0 0 
Add X XX XX1 XXX 0 0 0 0 

Add X XX XXX X1X 0 0 1 
Add X XX XXX 1XX 0 0 0 0 
Add X XX XX1 XXX 0 0 0 0 

Add X XX XXX 1XX 0 0 1 
Add X XX XXX XXX 0 0 0 0 
Add X XX XX1 XXX 0 0 0 {) 

Add X XX XX1 XXX 0 0 1 
Add X XX 11X XXX 0 0 0 0 
Add X Xl XXX XXX 0 0 0 0 

Add X XX X1X XXX 0 0 1 
Add X XX 1XX XXX 0 0 0 0 
Add X Xl XXX XXX 0 0 0 0 

Add X XX 1XX XXX 0 0 1 
Add X XX XXX XXX 0 0 0 0 
Add X Xl XXX XXX 0 0 0 0 

Add X XX XXX 1XX 0 0 1 
Add X XX 111 XXX 0 0 0 0 
Add X Xl XXX XXX 0 0 0 0 

Add X XX XXX X1X 0 0 1 
Add X XX 111 1XX 0 0 0 0 
Add X Xl XXX XXX 0 0 0 0 

Add X XX XXX XX1 0 0 1 
Add X XX 111 11X 0 0 0 0 
Add X Xl XXX XXX 0 0 0 0 

Figure 8. Partitioned carry register add-logic. 

1. S(IG"/label), SAH, R(l/data) 

2. S(Add/label, o/ov, G/Bl-N, 11M3), SAH, W(l/Ml) 

3. S(IH",/lbl), SAH, R(l/data) 

4. S(Add/lbl, o/ov, H/Bl-N, 11M3), SAH, W(1/M2) 

5. S(Add/lbl, 11M3, O/Ml, 11M2), SAH, W(l/Ml,O/M2) 

6. S(Add/lbl, 11M3, l/Ml, 11M2), SAH, W(O/Ml,O/M2), R(l/Bl-N), 
SNW, SAH, W(1/M2) 

7. S(Add/lbl, ° 1M3 , lIMA, Icarries"/Bl-N), SAH, W(l/M2) 

8. S(Add/lbl, 11M3, l/Ml), SAH, R(l/Bl-N) 

9. S(Add/lbl, ° 1M3 , lIMA, 11M2), SAH, W(O/M2), SNW 

10. SO(Add/lbl, Ipropagates"/Bl-N), SAH, SNW, SAH, R(l/Bl-N) 

11. S(Add/lbl, 11M3, "interblock carries"/Bl-N), SAH,W(l/M2) 

12. S(Add/lbl, i/M3, O/Ml, 11M2), SAH, W(l/Ml, O/M2) 

13. S(Add/lbl, 11M3, l/Ml, 11M2), SAH, W(O/Ml, O/M2), SNW 

14. SO(1/M3, lIMA), SAH, W(l/M2), TEST 
Hit: Loop to 12. No Hit: Continue 

15. S(Add/lbl, 11M3, l/Ml), SAH, W(O/Ml), R(l/ov, l/Bl-N) 

16. S("F"/lbl), SAH, W(F/data) 

Figure 9. Partitioned carry register add-algorithm. 
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logic table, the time to perform the addition de
pends on M instead of N. As before, a logic table 
(1 in M3) imitates a set of carry register adders. 
There is an additional logic table (0 in M3) that 
examines the sum and carry results after the first 
cycle, produces all the carries that will cross block 
boundaries and inserts them immediately into the 
beginning of each block. The simple carry register 
add then resumes, operating in parallel on the bits 
of each block and in parallel on all blocks. 

The first four steps fetch the two operands and 
insert them into the registers, M 1 & M2. Steps 5 
and 6 perform the first cycle of addition. 

The interblock carries are determined by a sec
ond logic table consisting of triplets. The first word 
of each triplet responds to a particular carry case. 
The second word responds to the required bit config
uration of the partial sum bits to propagate that 
carry across the block boundary. The third word 
represents the output carry value to be inserted at 
the beginning of each block (1 in M3, 0 in M4). 

The first triplet is activated by a carry from the 
first bit of the first block. The second word of the 
first triplet checks if the sum bits are one from the 
second to last bit of the first block. If so, the third 
word outputs a carry to the second block. Note that 
at the same time, the ninth triplet checks for a carry 
from the first bit of the first block but looks for a J 

sum pattern that takes the carry through the second 
block into the third. 

The fourth triplet performs the same logic as the 
first except for the control of a carry from the sec
ond to third block. Note the stored no comments in 
the· second subfield of the first triplet and the first 
subfield of the fourth triplet. The no comment is 
used as a logical disconnection so that the first and 
fourth triplets may perform their computation in 
parallel and independently of each other without 
any possibility of interference. 

Step 7 takes the carries while they are at hand 
and stores them temporarily in M2 of the entry 
word of each triplet. Step 8 goes back to retrieve 
the partial sum and holds it for subsequent driving. 
Steps 9, 10, 11 use the Conditional Access mode to 
select the correct triplets and insert the interblock 
carries. Steps 12, 13, 14 are the simple carry regis
ter loop. Step 14 is modified to also require a 1 in 
M4 so that the last carry of a block does not cross 
over into the next block, duplicating the insertion 
of interblock carries. 

The worst-case time in normalized units is 13 + 
3(M - 1). The average is 13 + 3( [lOg2 M]-I). 
The storage requirement is N + 1 + (3/2)K(K-l)M. 

A Simultaneous Carry Generation Addition 

Figures 10 and 11 show the truth table and 
stored logic table for a third addition algorithm. 
This is a logical descendant of the partitioned carry 
register approach for a block size of one bit. All the 
carries that will occur are calculated and absorbed 
into the sum together. Considerable shortcutting is 
achieved by employing the result word as a scratch
pad for an intermediate result and by making use of 
the logic power inherent in the read operation. 

The truth table displays the possible cases for 
each bit position of G and H, the carry coming in 
(ignoring how it got there) and the correct sum F. 
The next column displays the result of reading H 
with G. The last column shows the result of reading 
G: H with the carries. This equals the sum. 

Step 1 fetches the first operand. Step 2 selects the 
second operand and reads it with the first. Step 3 
stores the result temporarily in the result word. G is 
transferred to the Contents register and G: H to the 
Mask register in the data field. Step 4 searches in 
the logic table for the entry word (1 in M4) of 

G H C L G:H ~G: Hl: C 

0 0 0 0 1 0 
0 0 1 1 1 1 

0 1 0 1 0 1 

0 1 1 0 0 0 
1 0 0 1 0 1 
1 0 1 0 0 0 
1 1 0 0 1 0 
1 1 1 1 1 1 

1. S(lfG"/label). SAH, R(l/data) 

2. S(flH"/label), SAH, R(G/data) 

3. S(flF"/label), SAH, W(l/ov, G:H/data) 

4. S(Add/lbl, 1/M!, G/G:H in BI-N), SAH, SNW 

5. SO(G:H/G:H in BI-N) , SAH, R(O/BI-N) 

6. S(nF"/lbl), SAH,R(carries/data), W(G:H:C/data) 

Figure 10. Simultaneous carry generation add-algorithm. 
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Label OV BN-B1 Ml 

Add X xxx 1 1 
Add X XX01 0 

Add X XX11 1 
Add X X001 0 

Add X X111 1 
Add X 0001 0 

Add X 1111 1 
Add 0 0001 0 

Add X XX1X 1 
Add X X01X 0 

Add X X11X 1 
Add X 001X 0 

Add X 111X 1 
Add 0 001X 0 

Add X X1XX 1 
Add X 01XX 0 

Add X llXX 1 
Add 0 01XX 0 

Add X 1 XXX 1 
Add 0 1 XXX 0 

Figure 11. Simultaneous carry generation add-logic. 

each doublet with the masked data field. Only 
where the Mask is one will the bits be driven. This 
coincides with bits where G and H are equal and 
their value is given by G in the Contents register. 
The search drives bits where carries are generated 
or can be absorbed. 

Step 4 concludes by making the output words of 
doublets whose entries satisfied the first search 
candidates for conditional access. Step 5 searches 
only the candidates with zero in those bit positions 
which only propagate carries and concludes with a 
read complement. 

The entry of the first doublet will be selected if 
the first bit is a carry generate or propagate. The 
output word will remain selected in step 5 if the 
first bit is a generate. If. the second bit is another 
generate or a carry absorb, it will not be driven in 
step 5. If it is a propagate, it will be driven with a 
zero. If the first bit is a propagate, then the output 
word will fail the search and a false carry into the 
second bit will be avoided. There is similar beha
vior in doublets 5, 8, 10. 

The entry word of the second doublet will be se
lected as long as neither the first nor second bits are 

carry obsorbs. If both bits or the first bit only is a 
carry propagate, the output word will fail the search 
in step 5, avoiding false carries. If both bits are 
generates, the output word win pass the search, as 
will the first and fifth doublets. If the first bit is a 
generate and the second a propagate, the output 
word will provide not only a carry into the second 
bit, duplicating the first doublet, but also a carry 
into the third bit. If the third bit were a carry ab
sorb, no other doublet would provide this necessary 
output. 

If a carry is generated in the first bit, propagated 
through several bits and then absorbed, the first 
group of doublets will be selected untit the leading 
one of an entry word coincides with the driven car
ryabsorb. 

Step 6 selects the result word which is temporarily 
holding G: H and reads it with the carries from the 
logic table. The result is written back into the sum 
word. 

The logic table storage requirement is N (N + 1) 
words for an N bit data field. The time in normalized 
units is a constant, six. 

Speed/Storage Tradeoff in Addition 

These three examples of addition are not too im
portant in their own right. They are examples of 
conventional addition algorithms, operating on one 
pair of numbers at a time, which can be performed 
by the Associative Memory Structure if desired. 
Furthermore, artithmetic capability is not the criti
cal problem in computers now. However, these ex
amples may bring home the considerable logic pow
er inherent in the primitive information manipula
tions and help to clarify the earlier discussion of 
the primitives and features of the Memory Struc
ture. These examples do illustrate an important 
characteristic of ASC. There is a fairly broad trade
off of storage requirements and performance of 
functions available to the designer. This can be 
used not only to optimize the machine initially, but 
since' the logic is stored rather than wired in, the 
machine can be optimized over its operating life as 
its problem environment changes by reading in new, 
more appropriate algorithms. 

Serial By Bit, Parallel By Word Pair Addition 

Figure 12 shows the truth table and algorithm for 
a serial by bit addition which uses no logic table 
and uses the data words as scratch pad registers. 
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M1 M2 dj M1' dj' 

0 0 0 0 0 

0 0 1 0 1 
1 1 0 1 0 

1 1 1 1 1 
1 0 0 0 1 
0 1 0 0 1 
1 0 1 1 0 

0 1 1 1 0 

O. Start with j = 1 

1. S("A"/lb1, l/dj), SAR, SNW, SAR, W(1/M2) 

2. S("B"/lb1, O/M1, 1/M2), SAR, W(1/M1, O/M2) 

3. S("B"/lb1, 1/M1, O/dj, O/M2) , SAR, W(O/M1, l/dj) 

4. S("B"/lb1, 1/M1, l/dj, O/M2) , SAR, W(O/dj) 

5. S("B"/lbl', 1/M2), SAR, W(O/M2) 

6. increment j, test j > N: no-loop to 1, yes-done 

Figure 12. Bit serial, word parallel add. 

There are two contiguous words A and B, A above 
B, and the sum is formed in B. There are two 
marker bits. M1 holds the carry in B. M2 in B re
ceives the bit to be added from A. The jth digit po
sition is designated by dj, j referring to an implicit
ly defined counter in the Mask register running 
from the least to most significant bit. 

The truth table disptays the cases of M1, M2, dj 
and the new values of M1, dj. The first four cases 
require no change in M1 or dj. The sixth case has 
the same result as the fifth and can be converted by 
exchanging M1 & M2. The eighth case has the same 
result as the seventh and can also be converted by 
exchanging Ml & M2. Note that the seventh case 
ends in the same state of M1 and dj that begins the 
fifth case, so the fifth case must be handled before 
the seventh. 

This algorithm is a simple illustration of one 
form of parallel sequential logic. The function is 

. broken up into cases which are passed against the 
data. As an individual digit of A and B is exam
ined, not all cases will select and so some opera
tions will be dummies. However, all possible cases 
are covered. Suppose there were several pairs of 

numbers with a portion of their label field identi
cal. Then in executing the algorithm, for each digit 
position, the numerical values alone would deter
mine at each step whether none, one or several of 
the pairs would be selected. Every digit position 
would fall into some case. All pairs in the same 
case would be processed simultaneously. When the 
last bit had been processed, all word pairs would 
have been added. The serial by bit algorithm is par-
allel by word. The paranel sequential logic treats 
the individual cases of the function sequentially but 
handles all instances of each case in parallel. 

A Format Transformation 

Figure 13 shows the logic tables and algorithm 
for another example of paranel sequential logic but 
for the second form-sequential by item of data, 
parallel by function. This time the example is non
numeric, format transformation. The input is an N 
character packed number, calculated by some proc
ess, to be printed out on a check. The rightmost 
two characters specify cents, delimited by a period. 
The remaining characters are grouped right to left 
in fields of up to three characters, each field sepa
rated by commas. A dollar sign is placed to the left 
of the most significant character and the spaces to 
the teft of the dollar sign are filled with asterisks. 
There is an exception. Any amount less than one 
dollar is printed as dollar sign, zero dollars, point, 
and the appropriate cents. 

In a conventional machine, this would probably 
be programmed as a set of subroutines to perform 
the justifying, deletion, shifting, superposition, in
sertion, testing for most significant digit, asterisk 
fill and check for special case. In this example, the 
operation will be viewed as two functions, FOR
MAT SPREAD 2 and FORMAT FILL 3, which 
operate in paranel on the data. The two functions 
have a common label so that different SPREAD or 
FILL functions can be called when appropriate. 
The use of no comments in the second and third 
label fields allows independent calling. 

Both logic tables consist of doublets. There is a 
bit of shorthand used in displaying the logic table. 
There is an enlargement of the third doublet of the 
first logic table to the side. The positions refer to 
the characters, not individual bits. In the third 
doubtet, the entry word (actually six words, one for 
each bit of the character) copies the third charac
ter. The associated output word (actually six 
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CHARACTERS Ml 

FORMAT-SPREAD2-X XXX XXX XXI 1 

" " " XXX XXX XXI 0 
It 11 " XXX XXX XIX 1 XXXXXX XXXXXI ••• XXI 

" n " XXX XXX XIX 0 XXXXXi XXXXXX ••• xxo 

" II It 

" " " 
XXX XXX IXX ~ XXXXXX XXXXIX ••• XXI 
XXX XXI XXX o - • • • XXXXIX XXXXXX ••• xxo 

" tt " XXX XXI XXX 1 o • 0 XXXXXX XXX1XX ••• XX1 

" " II XXX XIX XXX 0 .... XXX1XX XXXXXX ••• XXo 

" " II XXX XIX XXX 1 • •• XXXXXX XXIXXX • •• XX1 
" II " XXX 1XX XXX 0 o • • XX1XXX XXXXXX • •• xxo 
" " " XXX 1XX XXX 1 

" " " XIX XXX XXX 0 

FORMAT-X-FILL3 XXX ZXX XXX 1 •• XXX 000000 001XXX XX •• oXl 
n " n $X, XXX .XX 0 • .011 XXXXXX XXXXXX XX •• oXO 

" " " 
" " IV 

XXX ZZX XXX 

hl-
•• XXX 000000 OOXIXX XX ••• X1 

**$ XXX .XX • .011 XXXXXX XXXXXX XX 0 • oXO 

" " " XXX ZZZ XXX 1 ' •• XXX 000000 OOXX1X XX 0 •• XI 

" " VI *** $XX .XX 0 o .011 XXXXXX XXXXXX XX ••• XO 
Ii It " XXX ZZZ ZXX 1 •• XXX 000000 OOXXXI XX ••• X1 
VI " II *** *$X .XX 0 • .011 XXXXXX XXXXXX XX o •• XO 

" Vi II XXX ZZZ ZXX 1 

" It IV *** *$Z .XX 0 
Figure 13. Example of format transformation. 

words) reproduces the third input character but in 
the fourth character position. As the enlargement 
indicates, the entry words for each bit of the char
acter are interleaved with the output words. The 
readout spreads the packed number out as required 
by the format transformation assuming all charac
ters are significant. 

The second logic table also uses some shorthand 
in display. The first four doublets find the most sig
nificant character. The fifth doublet checks for the 
exception case. In the second doublet, the sixth 
character position is the code for the number zero 
which is all zeros as shown in the enlargement. The 
fifth character position represents the logical condi
tion of some code for a number other than zero. 
This breaks up into four subcases (zone bits are 
zero for numerics). If the fifth character is not 
zero, then at least one of the four low order bits is 
one and at least one of the correct output words 
will be selected, giving the correct fill. 

The structure of the logic tables and the algo-

rithm have been chosen so that both logic tables re
spond in parallel to the data and format function 
call. The time in normalized units is one and the 
required storage is 24N-22 words, where N is the 
number of 6-bit packed numeric characters. 

A Process Control Problem 

Figures 14, 15, 16 and 17 illustrate an example 
of operations that might be appropriate to a process 
control problem. It is assumed that there is a manu
facturing process which fabricates cryotron plates of 
a repetitive structure. The direct cost of fabrication 
is quite low, but· the cost of testing plates could be 
quite large, especially if plates which are ultimately 
rejected are fully tested since their test cost must be 
amortized over the plates that are finally accepted. 
The test process is divided into two parts: a final 
cold test which determines whether or not the plate 
is used in a system and a room temperature test 
which foHows the fabrication and precedes the cold 
test. The room temperature test is designed to reject 
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at low cost a large percentage of the plates that 
would ultimately be rejected. It is automated and 
steps a set of contacts across the repeated cells of 
the plate, performs some tests on parameters, com
putes the pass/fail components of a unit cell test 
vector and transmits this vector to a computer. 
There is a set of logic-storage modules, one for 
each parameter of the test, which keep track of the 
number of cells tested on the plate, the number of 
failures and calculate for each parameter whether 
the number of failures for the given number of tests 
falls above a reject limit or below an accept limit of 
a sequential test chart as shown in Fig. 14. If a pa
rameter leads to rejection, plate is rejected and a 

R R 

T' 
4 

Figure 14. Example of process control limit charts. 

new one started in test. If all parameters lead to an 
acceptance, the plate is passed on for cold test. If 
no parameter has led to rejection, but not all pa
rameters have reached a decision yet, the automatic 
tester steps over to the next set of contacts and 
performs a new test of the same plate. If an individ
ual parameter rejects or accepts, its count is frozen 
while the others go on. 

The format of the logic-storage module for a 
parameter is shown in Fig. 15. It consists of four 
contiguous words. The modules may be separated 
arbitrary distances but the components of the mod
ules must be together. Each word has a common 
label, AUTO TEST, and a 1 in MO, signifying 
parameter test. M1 and M2 distinguish the individ
ual words. 

The second word accumulates the number of fail-

ures in its count field and compares this to its limit 
field to see if the parameter indicates rejection. The 
first word accumulates the total number of tests in 
its count field and compares this to its limit field to 
determine when to trigger both itself and the second 
word to add the increment fields to the respective 
limit fields. The fourth word compares failures to 
an accept limit. The third word checks number of 
tests to determine when to adjust the limits of itself 
and the fourth word. 

The key field identifies the parameter being ex
amined by the module. A failure of a parameter is 
communicated by driving a one in the key field. A 
zero is driven if the parameter passes. The second 
and fourth words will respond only to failures. The 
first and third words will respond to any test. The 
flag field is used in readout to identify whether the 
rejection (0) limit or the acceptance (1) limit was 
crossed. 

The initialize algorithm clears markers 3-8 and 
the limit field in an modules and then serially 
transfers the initial value field to the limit field. 

The count algorithm drives the vector of param
eter pass/fail values into the key field and marks 
responses with a 1 in M6, the trigger. M5, the 
freeze bit, must be zero which ensures that modules 
measuring parameters which have crossed a limit 
will not do any further counting. The second and 
third steps count up by one serially by bit but par
aliel by word. 

The compare algorithm uses M3 & M4 to indi
cate in each module whether a count was greater 
than (lOin M3,M4), equalto (00 in M3,M4) or less 
than (01 in M3,M4) its associated limit. This al
gorithm proceeds from least to most significant 
bits. At any stage where the count and limit bits are 
equal, M3 & M4 are unchanged. So at the end of 
the cycle the value of M3 & M 4 corresponds to the 
inequality value of the highest order unequal bits of 
the count and limit. 

The check-limits algorithm uses the results of 
the compare to determine if any failure limits have 
been crossed and if so, freezes those modules. 

The adjust limits algorithm examines total test 
count of unfrozen modules to see if these limits 
have been crossed. If so, both the total test count 
word and its associated failure count word are trig
gered to add the increment to the limit. Figure 16 
shows the truth table of this addition in stages cor
responding to steps 2, 3, and 4. 
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Figure 

Incre- Initial 
Flag Key Count Limit ment Value MO M1 M2 M3 M4 MS M6 M7 M8 Label 

XXX XXX t TU dTU TUO 1 0 0 AUTOTEST 
XOX XIX k KU dKU KUO 1 0 1 AUTOTEST 
XXX XXX t TL dTL TLO 1 1 0 AUTOTEST 
XIX XIX k KL dKL KLO 1 1 1 AUTOTEST 

I-NITIALIZE 

1. S(l/MO), SAR, W(O/Limit, O/MJ--MS) 
2. S(l/MO, 1/Initia1 Value bit j), SAR, W(l/Limit bit j)-repeat 

till field exhausted. 

COUNT 

1. S(l/MO, O/MS, test vector/Key), SAR, W(1/M6) 
2. S(l/MO, O/MS, 1/M6, O/Count bit j), SAR, W(O/M6, l/Count bit j) 
3. S(l/MO, O/MS, 1/M6) , SAR, W(O/Count bit j) 

Repeat 2 & 3 for all Count bits. 

COMPARE 

1. S(l/MO, O/MS, l/Count bit j, O/Limit bit j), SAR, W(l/M3, 0/M4) 
2. S(l/MO, O/MS, O/Count bit j, l/Limit bit j), SAR, W(O/M3, 1/M4) 

Repeat 1 & 2 for all bits of Limit field, least to most significant. 

CHECK LIMITS 

1. S(l/MO, O/M1, 1/M2, O/MS, 10/M3M4), Sl(l/MO, 1/M1, 1/M2, O/MS, 01/M3M4), 
SAR, ~(11/M3M4, l/MS) 

2. SPW, SAR, W(l/MS) 
~ 

W(l/MS), SAR, W(l/MS) 3. S(O/Ml, l/MS), SAR, SNW, SAR, SNW, 
4. S(l/Ml, l/MS) , SAR, SPW, SAR, W(l/MS), SPW, SAR, W(l/MS) 

ADJUST LIMITS 

1. 

2. 

3. 
4. 

S. 

17 

a 

0 
0 
0 
0 
1 
1 
1 
1 

S(l/MO, O/MS, O/M2, 10/M3M4), SAR, W(l/M6), SNW, SAR, W(l/M6) 
S(l/MO, 1/M6, l/Increment hit j~ 0/M7), Sl(l/MO, 1/M6, O/Increment 
bit j, 1/M7), SAR, W(l/M8, 0/M7) 
S(l/MO, 1/M6, 1/M8, l/Limit bit j), SAR, W(0/M8, O/Limit bit j, 1/M7) 
S(l/MO, 1/M6, 1/M8) , SAR, W(O/M8, l/Limit bit j) 
Repeat 2, 3 & 4 for each bit of Increment Field 
S(l/MO, 1/M6), SAR, W(0/M6) 

Figure 15. Response to parameter test vector. 

b c SC a'c'MS' a"c"MS" a"'c"'MS'" 

0 0 00 000 000 0 0 0 S=a,C-c no change 
0 1 10 001 001 1 0 ° S=a,C=c 
1 0 10 001 001 1 0 0 S=a,C=c 
1 1 01 010 010 0 1 0 S=a,C=c no change 
0 0 10 1 00 100 1 0 0 S=a,C=c no change 
0 1 01 101 010 0 1 0 S=a,C=c 
1 0 01 101 010 0 1 0 S-a,C-c 
1 1 11 110 110 1 1 0 S-a,C-c no change 

Figure 16. Logic of simultaneous limit increment addition. 

shows the stored logic table (one frozen because a limit was crossed. Initially, M7 is 
word) and algorithm to check the sample. Step 1 zero and M8 is one. Step 2 will select the logic ta-
reads the key and flag of· all reject/accept words ble if and only if all parameters have crossed the 
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Label 

Sample Test 

CHECK SAMPLE 

&s. 
111 

~ 

111 

1. S(l/MO, 11M2, l/MS,11/M3M4) ,SAR, R(l/Key, l/Flag) 

2. s(Sample Test/Label, Key readout/Key, Flag readout/Flag), 

SAR, W(l/M7) 

3. s(sample Test/Label, O/M7., Flag readout/Key readout in 

Key Mask), SAR, W(O/M8) 

4. S(Sample Test/Labe1h SAR, R(1/M7,M8),W(O/M7,1/M8) 

Figure 17. Accept/reject sample evaluation. 

accept limit. Step 3, searching over the key field 
with the flag readout in the Contents register and 
the key readout in the Mask and for 0 in M7, will 
select if and only if not all parameters have crossed 
a limit and that none that have crossed were rejec
tions. The last step selects the logic table, reads M7 
& M8 and initializes them. The automatic tester in
terprets the readout of 1 in M8 as a signal to step 
the test and go on to the next plate; 0 in M8 as a 
continue signal. The plate is passed for 1 in M7, 
rejected for 0 in M7 if the test is stopped. 

The logic of the example can be concatenated by 
providing another set of modules with 0 in MO to 
indicate process test. Each time a plate test is 
stopped and the plate passed or failed, the final cu
mulative vector used in the check sample algorithm 
can be driven into the process test modules to mon
itor the overall fabrication process to check if it is 
doing well, so-so, or about to go out of control. 
The key/flag criteria can involve combinations of 
parameters as well as individual parameters them
selves for more sophisticated measures of the per
formance of the fabrication process. The lim
it/increment logic of either the parameter or proc
ess test modules can be made more complex with 
additional fields and/ or additional words in the 
module (to adjust the increments of the limit fields 
for example) and additional steps to allow more 
complex sequential testing limit curves which might 
be defined by second, third, etc., order difference 
equations. 

CONCLUSIONS 

The Asspciative Memory Structure is a versatile 
storage and processing building block for computers 

and is not limited to the role of a search memory. 
While a cellular approach inay be taken to alleviate 
interconnection problems of batch fabricated de
vices, there is some advantage to departing from a 
purely cellular system of identical elements in a un
iform array. Hierarchy in communication and dis
tributed control allow selective parallelism. Some 
cells will respond to control information by deter
mining whether or not a group of associated cells 
will respond to a subsequent control sequence. 

The small set of primitive information manipula
tion operations is quite powerful and much more 
flexible than built in macro commands. Computer 
functions can be composed with the primitives us
ing the parallel sequential logic approach. The 
batch fabrication technology is not required to be 
able to implement very complex macro commands 
and fewer plate or chip types need to be designed 
and stocked. 
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COMPUTER EDITING, TYPESETTING AND IMAGE GENERATION 

M. V. Mathews and Joan E. Miller 
Bell Telephone Laboratories~ Incorporated 

Murray Hill~ New Jersey 

INTRODUCTION 

The programs which we will describe were devel
oped to provide a practical system for editing and 
publishing text with a digital computer. The system 
consists of an electric typewriter, a computer, a ca
thode ray tube output unit, and a camera. Text and 
editorial instructions may be entered into the com
puter from the typewriter. The computer executes 
the instructions and prepares a corrected, justified 
text. The text may be written on the cathode ray 
tube, photographed by the camera, and published by 
standard photo-offset printing. Alternatively, it may 
be written on the typewriter by the computer, or 
printed on the computer printer. 

There has been much recent interest in computer 
editing programs. Among others, extensive work 
has been done by M. P. Barnett at M.LT., by P. F. 
Santarelli at the IBM Systems Development Labora
tory in Poughkeepsie and at Project MAC at 
M.I.T., by R. P. Rich at the Johns Hopkins Ap
plied Physics Laboratory, and by C. R. T. Bacon at 
the University of Pittsburgh. In addition, some ma
chines are being developed to present graphic arts 
quality images on cathode ray tubes such as the 
Merganthaler-CBS Laboratories Linotron machine. 
Oscilloscopes of lower quality are available as out
put devices for numerous computers. 

389 

Human engineering of both the programs and the 
equipment was a prime design consideration and 
led to objectives of: 

1. Providing a typewriter as good and as sim
ple as an ordinary secretary's machine. The 
typewriter can be located in the office of 
the user. 

2. Providing a good upper and lower case type 
font with flexibility for adding letters and 
figures. 

3. Allowing the intermixing of text and edito
rial instructions. Thus corrections may ap
ply to a text while it is being written. 

4. Providing a comfortable vocabulary of edit
ing instructions. 

When the editing program was written, facilities 
at Bell Telephone Laboratories did not provide ins
tantaneous real-time interaction between a type
writer and the computer on which editing was done. 
Consequently, the program was written so as not to 
require interaction. This decision strongly affected 
the way in which lines in the text are located for 
correction purposes. When interaction is available, 
parts of the program may be modified. 

The following section of this paper describes the 
editing program, and the succeeding section the 
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typesetting and genration of images on the cathode 
ray tube. 

THE EDITING PROGRAM 

Description 

The purpose of this program is twofold: ( 1) to 
allow for input and correction of typewritten ma
terial; and (2) to store material for future editing 
and/ or processing. 

The significance of such a system lies primarily 
in point (2) for although typists and proofreaders 
can· prepare manuscripts and typesetters can pro
duce aesthetically pleasing copy, no one relishes the 
problem of altering previously prepared material. 
Consequently, the ability to store text in a form 
that can be easily updated represents a great con
venience. And if the material is stored in a comput
er then it is amenable to other helpful forms of , 
processing such as alphabetizing or sorting. 

Therefore, the aim of this project has been to de
velop a system of editing in which the user can pro
vide input to the computer by a device which is fa
miliar and easy to use (i.e., a typewriter), can easi
ly correct the errors he makes while inputting, and 
can easily modify in the future material he has pro
duced in the past. Furthermore, the design of the 
system is such that corrections to currently typed 
material can be made interchangeably with correc
tions to preexisting material. The corrections them
selves constitute current input and do not require a 
second pass operation for their execution. It is felt 
that this particular feature adds great flexibility and 
power to the technique of computer editing. 

Structure of System 

The editing program is diagrammed in Fig. 1. 
The manuscript is typed at an IBM Selectric corres
pondence typewriter and transmitted to the IBM 
7094 computer. The data is in the form of 6-bit 
characters, one for each. of the 44 typewriter keys 
and one for each of several operations such as car
riage. return, backspace, upper case shift, lower case 
shift, etc. This input data consisting of both text 
and instructions is pre-processed by the pre-edit 
pass of the program. Case shift characters are re
moved from the data stream and case information is 
added to each character. Read requests for material 
stored on the permanent disk file of the 7094 are 

Figure 1. Block diagram of editing program. 

executed. All data is stored on scratch disk 
(ITEMS) for examination by main edit pass. 

The sequencing of characters is indicated by a 
list of pointers which specifies for each character 
the location of the character which follows. The in
structions which call for modifications to the text 
are therefore executed by resetting the appropriate 
pointers. Pass 2 executes all such instructions. 

The post edit pass is logically equivalent to the 
main edit but is included as a separate pass to pro
vide space for routines of the users' own design. In 
pass 4 the characters are sequenced in their proper 
order by following the pointers. The corrected text 
is written on scratch disk CTEXT and transmitted 
to its appropriate place in the users' permanent disk 
file. 

The fifth pass deals with the printing of the text. 
A galley proof is prepared on microfilm, unless 
otherwise specified, in order that the user may 
know the state of the material which has been gen
erated and stored in his permanent disk file. Final 
copy may be requested by instruction and the for
mat is dictated by instnlctions still present in the 
body of the text. 

Organization of Material 

All typewritten material is subdivided into units 
called items. This organization is determined by the 
user with the restriction that an item be no larger 
than 1,800 typewriter characters, which corresponds 
approximately to one page of typing. Items are 
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identified by user-assigned decimal number,s of up 
to six integral places and at most two decimal 
places. These numbers are typed at the beginning of 
the item. 

The next larger organizational unit of material is 
the standard text. There can be at most 2,000 items 
in one standard text. A standard text is identified 
by a (at most) 24-typewriter-character name of the 
user's choice. 

Standard texts (an arbitrary number of them) 
constitute standard files, which are identified by an 
up to 6-BCD-character name. These files corre
spond to files of disk storage in the computer. An 
author preparing an opus of volumes might use a 
file for a volume, a standard text for a chapter, and 
each item for a paragraph. Most applications, how
ever, will probably involve one file of one standard 
text only. 

General Conventions 

A single run of the editing program produces 
one standard text. The first line of typing indicates 
the name and destination (file) of the standard text 
being generated. If this standard text is not to be 
stored on permanent disk, as may be the case when 
only a printed copy is desired, then the file should 
be specified as O. 

Editing instructions must be distinguished from 
text. The presence of every instruction or control is 
announced to the program by means of the left 
square bracket. The typewriter provides this charac
ter in both lower and upper case and thus simplifies 
the typing of instructions by eliminating extra case 
shifts. Each instruction has its own code of some 
single character and this code character must im
mediately follow the left square bracket. Instruc
tions are terminated in general by a slash. 

The text begins with the assignment of an item 
number of up to six integral places and at most two 
decimal places. Integers need not have decimal 
points. The assignment of this number requires the 
code of lower case i and therefore [ill labels the 
characters that follow as item number one. 

The privilege of backspacing has been preempted 
by this system in order to provide an effective 
means of making erasures. A sequence of back
spaces will eliminate the sequence of previously 
typed characters of equal length. The usual customs 
on underlining and overtyping must be abandoned 
inasmuch as any backspacing will destroy the input. 

Provisions for underlining are made by an instruc
tion but, at present, overtyping is not allowed. 

As will be seen in the discussion of the instruc
tions which follows there are special break charac
ters such as the left square bracket and the slash 
which have been preempted by the system. In order 
to exempt these characters from their usual role 
should they be desired in some other context, they 
may be effectively placed in quotation marks or 
"super quoted." An example will be discussed in the 
illustration which follows. 

Instructions 

Those instructions which are used to edit the text 
or control options in the program are referred to as 
Class I instructions. They are identified by a code 
which is an upper case character and are distin
guished from Class II instructions, which specify 
the output format. A list of instructions presently 
available is given in Fig. 2. In the general form of 
the instructions as shown in this list, www and xxx 
are used to denote item numbers and yyy and zzz 
are used to denote line numbers. These parameters 
are considered to be right adjusted in fields marked 
by commas or the slash. The character # or 0 may 
be typed in most contexts to denote current item or 
line. Furthermore, line numbers may be back-ref
erenced by using minus signs if and only if the in
struction refers to the item in which it is contained. 

Example of Editing 

Figure 3 is an unrealistic though illustrative ex
ample of an original text prepared at the typewriter 
to demonstrate Class I instructions. The requisite 
format of the first line is shown. 

The first item is numbered 10. It is desired that 
the content of this item be printed in a fixed format 
and, hence, the first instruction is [F. The word 
Objectives is underlined by using the instruction 
[U #, # / carriage return ... underlining .. ./ carriage 
return typed on the same line. Note that the second 
slash appears first but was, in fact, typed after the 
underlining was complete. The normal mode of for
mat is resumed after the instruction [J. It is intended 
that the second line of item lObe shortened to "II. 
Description" by use of the instruction [0 .... How
ever, the line number is erroneously stated as 1. 
(This difficulty will be remedied later.) 

Item 12 contains several errors. A C-type in
struction is used to eliminate the extra occurrence 
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CLASS I 

[E xxx/ Erase item xxx. 

[E xxx,yyy,zzz/ Erase line yyy of item xxx. 

[E xxx,yyy,zzz/ Erase lines yyy through zzz of item xxx. 

[I xxx,yyy/ .•• insertion ... / Insert the text between the slashes 
after line yyy of itemxxx. 

[0 xxx,yyy/ •.. substitution .•. / Overwrite line yyy of item xxx with 
the text between the slashes. 

[S xxx,yyy/ expression A (substitution) expression B/ 

[S xxx/ expression A (insertion)/ 

[C xxx,yyy/carriage return ••. /carriage return Correct line yyy of item 
xxx on a character by character basis. 

[U xxx,yyy/carriage return .•. /carriage return Underline specified 

[R FILE, Text, N,www,xxx/ 

[G FILE, Text,www,xxx/ 

[T FILE, Text,www,xxx/ 

[F 

[J 

[P 

[X www,xxx/ 

[M www.xxx.n/ 

[v n/ 

[h n/ 

[m a, b/ 
[p 

[1 n/ 
[e (x,n) ••. (y,m)/ 

characters in line yyy of item xxx. 

Read request. 

Galley proof request. 

Type final copy. 

Fixed format. 

Normal mode (justify). 

Paragraph (used in normal mode). 

Randomize the order of items www through 
xxx. 

Multiproces8 items www through xxx using 
routine PROC n. 

CLASS II 

Space vertically n times 

S~ace horizontally n times. 

Margins: a spaces on left, b spaces on right 

Go to new page. 

Type on every nth line 

Equate character x to symbol number n, etc. 
(to extend character set) 

Figure 2. Instructions for the editing program. 

of the characters "t ype" and to change x to c. two 
lines back from the instruction. The importance of 
this type of instruction is that the modifications can 
be made at the location of the error. Mter the first 
slash and carriage return, the platen is rolled back 
two lines, and the space bar used to find the proper 
position. Then the erroneous characters are deleted 
by typing minus signs~ are ignored by spacing, or 
modified by overtyping. The second slash and car
riage return terminates this instruction and typing 

resumes. The instructions [S# / and p (r) / at the 
end of the item inserts the missing r in the word 
"poofreaders". Note that a line number is not man
datory in the S instruction, and when it is missing, 
the search for the first occurrence of expression A 
begins with the first line of the specified item. 

Item 14 gets off to a false start and is erased by 
[E# /. The erasing in this case goes only as far as 
the slash of this instruction and does not wipe out 
the material which follows in this item. 
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(MEMO) (DESCRIPTION) 

[i lO/[F 

II. Description of System 

Objectivesl [U#,#/ 

The purpose of this system is three-fold: 

(1) to allow for input and correction of typewritten text; 

(2) store material for fu:hure editing and/or processing; 

(3) to provide high quality typographical output. 

[0#,1/11. Description/ 

[il2/[JThe significance of such a system lies primarily in point 

two for although typists and poofreaders can prepare manuscripts 

and t-YJ:le-typesetters xan produce aesthetically pleasing copy, 

no one relishes the task of aleering previously prepared material. 

[C 12, -2/ / 
Consequently, the ability to store text in a form that can 

be easily updated represents a great convenience. Therefore, 

the aim of this project has been to develop a system of 

edi ting in which the user can prov~de input to a computer 

by a device which is familiar and easy to use. [S#/and p(r)/ 

[i 14/Furthermore, the [E#/The corrections themselves 

constitute input. [S12,2/point (@"(2)" )for/ 

[i9.5 EIO,8/[010,2/II. Description/ 

ri 11.5 [S12,8/venience.([P ) There/ 

[i 20 [R MEMO, DESCRIPTION, -1, 6,8 
[i 25 [RMEMO, DESCRIPTION, 100, 28.5/ 
[i 30 [R MEMO,MANUAL,<),O,O/ 

Figure 3. Example of input text for editing. 

The next instruction, which begins [S12,2/, gives 
an example of super quoting. It is intended that 
there be a substitution of (2) in place of the word 
two in the second line of item 12. However, this 
substitution involves parentheses which will interfere 
with the interpretation of the instruction. Therefore, 
the three characters (, 2, and) need to be super 
quoted. For this purpose a character other than 
(, 2, or), for example, the " is chosen to surround 
the phrase and the surrounded phrase is preceded by 
@. The @ and the two occurrences of " in the result
ing string @ " (2)" will not appear in the text, but 
they will cause the PRE EDIT program to flag the 
super quoted characters with an extra bit thus pre
venting the MAIN EDIT from making its usual 
interpretation. The printing programs, however, will 
ignore the extra bit and will treat these characters 
properly. 

It has been pointed out that an important aspect 
of this editing system is that the material is stored 
on the disk of the computer for future modification 
and processing. The provision for requesting preex
isting material, which is to be updated or quoted, is 
made by means of a read instruction. These read 
statements must be made as items in themselves. 

They specify the file name, the text name of the de
sired items, and up to three parameters, which spec
ify how and what items are to be read. The first 
parameter indicates how the desired items are to be 
numbered. A negative value indicates that the num
bering should start with number of the item in 
which this read statement occurs, a value of zero 
indicates that the item should be given the number 
it already possesses, and a positive value indicates 
that the new item should be given a number equal 
to its original number incremented by the value of 
this first parameter. This last technique of number
ing is useful when merging items from several texts 
into a new one. The second and third parameters 
indicate which items are to be read. If, however, 
the third one is omitted, only one item will be re
covered, and if both of these parameters are zero, 
all items in the text will be recovered. In the exam
ple of Fig. 3, item 20 calls for the items from text 
DESCRIPTI0N whose numbers range through val
ues 6 to 8. They will be numbered sequentially 20, 
21, . . . under the assumption that it is known that 
there are no more than five items since the next 
read request is in item 25. 

Corrections to Instructions 

Corrections to instructions are handled in several 
ways. First of all, the backspace-retype method, 
which is effective for all errors, is the one and only 
means for correcting errors in the first line or read 
statements. This restriction is due to the fact that 
these statements are interpreted in the PRE EDIT 
and do not enjoy the benefits of the editing facili
ties. Several instances of apparent overtyping may 
be noted in Fig. 3. They are, in fact, cases of era
sure and retyping. Errors can and will be made in 
the typing of other instructions, and these mistakes 
may not be discovered until some time later after 
which the backspace-retype means of correction is 
no longer practical. Corrections to Class I instruc
tions (those designated by an upper case code) 
must be made ahead of the erroneous instruction. 
Facility for allowing instruction A to be executed 
in advance of instruction B is provided by placing 
instruction A in an item whose number is· less than 
that of the item containing instruction B. The data 
is scanned in order of increasing item number, and 
therefore, the instructions will be encountered in 
their proper order. The decimal numbering system 
of the items allows for the prenumbering of items. 
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In this way corrections are effectively made on the 
future as well as on the past. 

The mistake made in the overwrite instruction of 
item 10 (Fig. 3) is corrected by item 9.5. Here the 
old instruction is erased and the proper form given. 

Paragraphing 

Paragraphing must be handled by instruction 
when typing in the normal mode since the program 
is concerned about the associated blanks indicating 
indentation. A desired paragraph is indicated by 
the in&truction [P which mayor may not be fol
lowed by a carriage return. In either case the blanks 
which follow will be regarded as the indentation. 
Should the user decide upon a paragraph as an aft
erthought, he may "wire in" the instruction. For 
example, item 11.5 of Fig. 3 shows [P and five 
blanks being inserted after the word convenience in 
item 12. 

Changes which control format of output, i.e., 
corrections to Class II instructions, offer no prob
lems as to when they are inserted relative to their 
proper position since their execution occurs in the 

print pass after the editing has been completed. 
Hence, these instructions can be "wired in or out" 
at any time in the editing program by use of the 
correction instructions. The S type is particularly 
useful for this purpose. 

Figure 4 shows the galley of the edited text of 
Fig. 3, and Fig. 5 is the final copy as produced by 
the output program. 

OSCILLOSCOPE WITH DIGITAL CONTROL 
FOR TYPESETTING AND GRAPHIC ARTS 

General Description 

This section describes a system for the digital 
control of a high-quality oscilloscope for the pur
pose of generating graphic arts quality images such 
as are needed for printing text and line drawings. In 
general the images will be photographed and the 
resulting pictures reproduced by the standard meth
ods of offset printing. The input information which 
specifies the image will come from a digital magnet
ic tape or a computer. On the input, the image is 
described entirely in numerical form in the manner 

FILE- MEMO STANDARD TEXT • DESCRIPTION····_··_··· 07/12/65 21:».12 

10.00 [F 

IL Desetiption 

Objectivel 

The purpoae of thil Iyltem iI three-fold: 

(1) to allow for input and conection of typewritten text: 
••••••••• 1 ••••••••••••••••••••••••••••••••• " ••••••••••••• 

(!) Itore material for futul'e editing anel/or Pfoeeainc: 

(S) to provide high quality typost"aphica1 output. 
••••••••••••••••••• t ••••••••••••••••••••••••••••• 

12.00 [JThe lignificance of luch a Iyltem lia primarily in point (2) for 
'" ................................................................. . 
although typiltl an~ proofl'eaden can prepare manuxriptl and typaetten can pl'ociuce ....................................................................................... 
aesthetically p1ealing copy. no one l'elilha the tuk of altering p1'evioUl1y p1'epl1'eci ....................................................................................... 
material Conaequently. the ability to 1t01'e text in a form that can be ealily updated 
••• 4 •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 

representl a great convenience.[P 
, ................................ . 

Therefore. the aim of thil p1'Oject hu been to develop a l)'Item of editing in which .......................................................................................... 
the UIef can p1'ovide input to a computer by a device which iI familiar and euy to uae. 

14.00 The C01Tectionl themlelva conltitute input. 

Figure 4. Galley proof. 
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IL Description 
Objectives 
The purpose of thissyatem is three-fold: 
(1) to allow for input and correction of typewritten text: 
(2) store material f('r future editing and/or proceaing: 
(S) to provide high quality typographical output. 

The significance of such a syatem lies primarily in point (2) for although typiatl and proofreaden 
can prepare manuacriptl and typesetters can produce aesthetically pleating copy, no one relishel the 
talk of altering previously prepared material Consequently, the ability to ItOre text in a form that 
can be easily updated reprelentl a great convenience. 

Therefore. the aim of this project has been to develop a system of editin, in which the UIet 
can provide input to a computer by a device which is familiar and easy to \lie. The COffectiOIlI 
themaelvel conltitute input. 

Figure 5. Justified text. 

to be discussed below. The motion of the beam of 
the scope is completely determined by the numeri
cal data. The intensity and off-on times of the beam 
are similarly controlled. 

A block diagram of the system is shown in Fig. 
6. The general mode of operation is as follows: 
Data, in numerical form, which specifies the next 

DIGITAL 
MAGNETIC 
TAPE OR 

COMPUTER 

DIGITAL 
CONTROL 

EQUIPMENT 

DIGITAL-TO
ANALOGUE 

CONVERSION 
EQUIPMENT 

SCOPE AND 
ANALOGUE 

DEFLECTION 
EQUIPMENT 

~ 

Figure 6. Block diagram of image-generating equipment. 

letter or diagram to be generated is read from the 
digital magnetic tape or computer. The digital con
trol equipment then determines the sequence of 
movements of the scope beam to produce the im
age. Typically, many (10 to several hundred) beam 
movements will be needed to produce a single char
acter. Digital signals from the digital control unit 
are passed through digital-to-analog converters to 
obtain the voltages to be applied to the x and y 
scope deflections and to the beam brightness and 
off-on controls. The digital control also advances 
the film in the camera at appropriate times. The 
camera film is stationary and the shutter is left 
open until a full scope face of material is exposed. 
This amount will usually Gorrespond to a page of 

printed text. The film is then advanced to provide a 
fresh film for the next page. 

Preliminary Experiments 

A set of preliminary experiments has been car
ried out using a Stromberg-Carlson 4020 Microfilm 
Printer and an IBM 7094 computer. The SC 4020 
contains a scope and camera of sufficient quality to 
test the feasibility of producing printing and draw
ings. A sample alphabet produced on microfilm on 
the SC 4020 and reproduced photographically is 
shown in Fig. 7. Here each of the letters in the bot
tom 6 lines was produced by a number of short vec-

File: FONT Stancla,. Reco,cl: BASKERVILLE III GALLEY 

Oaaractet. in the font 

A BCDEFG HIJIT LM NOPQRSTU V W X Ylo 
abc4ef.hijkl .. nopqr.tuywx,a __ 
1r.'.Ii.~I() .. ::···()~/I. 
11154117 •• 01··+-_ 

Cij = ar + ltij 
A q;.:'l brown fox ..... oyer the 111, clOS. 
Fill In, box witII ten ...... jup 

Figure 7. Example of type font. 

tors, an average of about 16 vectors being required 
for each letter. In this way a highly readable output 
is obtained with both upper and lower case letters. 
Furthermore, an unlimited number of new fonts can 
be introduced simply by reading a new set of vec
tors which describe the letters into the IBM 7094. 
Also graphs and line drawings can be treated just as 
any other character. 
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The quality of the letters produced with vectors 
is not as good as the usual printing. Readability 
probably compares with an ordinary typewriter. 
However, the SC 4020 scope is far from the best 
available, and better equipment should greatly im~ 
prove the quality. 

Estimates of Resolution Requirements 

The SC 4020 can plot points, dots (slightly larg
er than points), or draw vectors. The points and 
dots can be placed at any position on a 1024 x 
1024 raster. The vectors can start at any raster 
point and extend up to 64 grid spaces in either or 
both x and y directions. Measurements on the im
age of the SC 4020 indicate resolutions of 
Point .... 2.6 grid spaces diameter in 1024 raster 
Dot ..... 2.8 grid spaces diameter in 1024 raster 
Vector ... 2.3 grid spaces width in 1024 raster 

The letters shown in Fig. 7 were produced on a ma
trix 16 raster points high and an average of 10 ras
ter points wide. Consequently the letter resolution 
can be defined as 4.3 vector widths wide and 7 vec
tor widths high. This resolution is sufficient· for a 
quality whose readability is probably comparable to 
typewriting (although we have made no tests of this 
point) . However, the quality is substantially less 
than that of good printing. We estimate that first
rate printing could be achieved by tripling the SC 
4020 resolution and producing the letters on a 21 X 
13 resolution unit grid. On the SC 4020 this would 
correspond to a 49 X 30 raster point grid using the 
vector mode or a 59 X 36 grid if the dot were used. 

In addition to resolution compared to letter size 
another factor is very important. This is quantizing 
or the comparison of raster space to dot diameter. 
In the vector mode the ratio is 

1 Raster Space 
--..,~--~- = 0.43 

1 Vector Width 

This ratio is too large for some purposes. In partic
ular, it would be nice to be able to change the size 
of a letter simply by multiplying the lengths of all 
involved vectors. Failure of attempts to change size 
indicate that a quantizing ratio of 0.43 is much too 
large to allow this scaling, and hence a smaller ratio 
is desirable. The exact ratio needed may also de
pend on· the resolution raster used for the letter. We 
estimate that the ratio should be no larger than 
0.25. 

A High-Quality Scope 

The SC 4020 scope has a basic resolution of at 
best 2.3 parts in 1,024. The scope has a built-in 
character mask and was not designed for ultimate 
resolution. Better scopes are now available. The 
best specifications quoted by scope manufacturers 
indicate beam widths of 0.0005" to 0.001" are 
available in 5" to 10" diameter scopes. Assuming 
that a 5" usable deflection can be obtained with a 
beam width of 0.001", then a basic resolution of 
1 part in 5,000 can be achieved. This is 11 times 
better than the SC 4020 and should produce excel
lent graphics if it is properly used. 

Proposed Raster and Resolution for 
Quality Printing 

As a result of the preliminary experiments de
scribed above, and the specifications of currently 
available scopes, specifications for a high-quality 
graphics system can be set down. Scheme #1 con
sists of a raster of 32,768 points across a tube with 
a resolution of 1 part in 5,000, and the letters being 
generated on a 140 X 85 matrix of raster points. 
This would give a 21 X 13 matrix of resolution cir
cles for each letter. The quantizing ratio would be 
5,000/32,768 = 0.15, which should be adequate for 
smooth size multiplication. 

A simulation was carried out on the SC 4020 in 
which letters were generated from points on a 
64 X 38 raster giving a 25 X 15 matrix of resolu
tion circles. The results shown on Fig. 8 indicate 
quite acceptable printing quality. 

An electronic system drew, 
th~n set in words, sentences, and 
justified columns the letters you 
are now reading. 

Figure 8. Example of better quality type. 

Image Formation From PATCH's 

In the work previously described, which has 
moderate resolution, images were formed from the 
sum of short vectors or from the sum of dots. The 
vector width or dot diameter is the resolution of the 
scope. With high resolution scopes, the beain is so 
small that it is no longer practical to use a single 
beam image as the basic area unit. Instead, special 
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deflection equipment must be added to the scope to 
cause the beam to sweep over a basic area unit or 
PATCH (Parameterized Area To Construct Holo
graph). All images are constructed as the sum of a 
number of PATCH's. In this way the number of di
gits required to describe the image is reduced to a 
reasonable number, and the speed with which the 
image is generated is increased. 

PATCH's must meet certain requirements. They 
must: 

1. Fit together without leaving interior spaces. 
Circles would be unsuitable by this cri
teria. 

2. Provide a good approximation to an image 
with a small number of areas. 

3. Be describable with a reasonable number of 
numerical parameters. 

4. Be generatable with reasonably simple ana
log equipment. 

5. Be enlargeable or reducible to allow changes 
in font size. 

An area which meets these requirements is shown 
in Fig. 9a. The area is bounded by straight lines at 
its top and bottom and second order curves at its 
left and right edges. Adjacent PATCH's can be 
stacked on their straight sides. Simple circuitry has 
been designed to generate the PATCH. If desirable 
the PATCH can be rotated 90° to provide vertical 
straight sides. Rectangles and trapezoids are special 
cases of this area. Eight parameters are required to 
describe a PATCH; width-a, height-h, curvature 
and slope at left and right bounds-Cl, Sl, Cl, Sl, 
and the coordinates of one comer-Xo, Yo. 

A sketch of a generation for the lower case letter 
"r" is shown in Fig. 9b. Nine PATCH's are re
quired. Some PATCH's have been rotated 90° as 
shown. 

Preliminary experiments indicate an average of 
10 PATCH's is required for each good quality let
ter. Thus a font of 100 leters would require 8,000 
numbers for its description. This number is sub
stantial, but not too large for currently available 
computer memories. 

The letters on Fig. 8 were produced with 
PATCH's. 

Use of Sub-Areas 

In order to reduce computer memory require
ments, it may be possible to take advantage of iden-

tical sub-areas possessed by several letters. Thus the 
loops on the "b," "p," "d," and "g" may be identi
cal (after suitable rotations) i.n some fonts. If so, 
then these areas need be described only once in 
terms of PATCH's, and suitable equipment devised 
to repeatedly call for these standard areas. The con
cept is similar to the use of subroutines in comput
er programs. 

CONCLUSIONS 

The general philosophy behind the development 
of the editing program has been to provide a hu
man-engineered facility for producing text in ma
chine readable form so that a computer can be used 
for editing, sorting, and printing. It is hoped that 
timesaving in composing will be effected by elimi
nating much proofreading time inherent in a system 
involving human copying. The ability to modify 
and republish existing material is probably the most 
valuable feature in the system. 

It is planned to first use the program for texts 
which must be issued in many slightly different edi
tions or which must be frequently modified. Certain 
instructional programs and literature describing 
computers are prime examples. 

The image generation programs have not yet 
been tested with the best available scopes. However, 
the experiments with the SC 4020, the specifica
tions of the best scopes, and the currently available 
digital equipment make it appear possible to build 
a high-quality, high-speed, graphic arts display de
vice. The unit can produce on a single scope face 
high quality printing with as much' as 200 lines of 
350 letters each. Such a scope face would contain 
more than an entire page of newsprint. Letters 
could be produced at speeds of 500 to 5000 let
ters/second. These speeds are 10 to 1,000 times 
faster than existing photographic or hot metal type
setting equipment. Furthermore, since the image is 
described in complete generality digitally, line 
drawings, mathematical equations, musical scores, 
and an unlimited number of type fonts can be pro
duced by the same, completely standard, means. 

Gutenberg invented printing with movable type 
in the 15th century, thus superseding handdrawn 
letters. We are now ready to replace movable type 
with drawn letters. The pen is in the hand of a 
computer. Altogether, we .believe the computer is 
now ready to provide great assistance to human 
written communication. 
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S" c, 
h 

(a) PATCH 

ZIG-ZAG SWEEP 
TO FILL IN AREA 

(b) FORMATION OF LOWER CASE II r II 

BY PATCHS 

Figure 9. Generation of images from PATCH's. 
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To paint a broad though much simplified picture, 
let us suppose at the outset that scholarship begins 
with the collection of facts. These facts are of two 
distinct kinds. The first are observations and they 
consist, for example, of the results of controlled ex
periments or observations for field work in the case 
of science or, perhaps, they are derived from the 
study of historical documents in the case of history, 
and so on. The second kind of facts are the reported 
observations, descriptions of phenomena or events, 
or the theories provided by contemporary scholars. 
In aggregate, let us refer to the first kind of facts as 
"data" and the second as "information." From the 
confluence of these two kinds of facts in the mind 
of the scholar, new descriptions and theories are 
born. When he makes these public, then new infor
mation is generated. 

Scholarship, strictly conceived, is this activity in 
the mind of the scholar. On its right hand are 
sources: data and information. On its left are publi-
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cations: the products of this activity made public. 
But these two sides of scholarship are closely relat
ed. What to one scholar is a publication, to another 
is information. Every scholar stands both to the right 
and to the left of every other one. 

In our text processing work at the University of 
Pittsburgh, we look upon our computers and our 
developing system of programs as a tool designed to 
extend the abilities of the scholar, on the one hand 
to collect, sort, and understand information, and on 
the· other to disseminate to others the information 
that he generates. In other projects and for most of 
the users at our Center, our computers and systems 
of programs are seen as a tool to extend the ability 
to process and analyze data. These systems are, of 
course, well developed. In analyzing data, one's 
concern is to reduce, to simplify, and to summarize, 
preserving only the most significant aspects of the 
data. While in processing information, we wish to 
preserve every jot and tittle, allowing no character-
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istic of any significance to go unrecorded or un
transmitted. Finally, in the research we ourselves do 
that utilizes natural language text, we come full cir
cle and again use our systems as data processors 
and analyzers, treating the information we have col
lected as data. 

Figure 1 shows schematically the overall design 
of our text processing system. Four kinds of input 

Printer's 
Tapes toMag
netic Tapes 

Cards to 
Magnetic 
Tape 

Conversion to 
I-----~ Standard Mag

netic Tape 

Paper Tape 
to Magnetic 
Tape 

1---------- --
1 
I 
1 
I 
I 
I 
1 
I 
I 

In-House 
Analysis 

IR Research 
Auto-Abstracting 
Content Analysis 
etc. 

Figure 1. Block diagram of the general text processing 
system. 

are shown. The text on magnetic tape in any arbi
trary format may be material obtained from other 
centers or from any source that produces text on 
tape. One day this source may include material read 
by optical character recognition equipment. The 
printer's control tapes are paper tapes obtained 
from printers and publishers which were originally 
used to control some kind of typesetting equipment. 
We have locally constructed a paper tape reader that 
will accept 5,6,8, 15, and 31-channel paper tape 
and, through an IBM 1401 computer, write magnet
ic tape. This work was completed under a Depart-

ment of Defense Advanced Research Projects Agen
cy grant and has been reported elsewhere.1,2 The 
text punched on cards or on Flexowriter-type paper 
tape would normally represent material prepared at 
our Center. 

The block labeled "conversion to standard mag
netic tape" represents the encoding of all forms of 
natural language text into a particular format ac
cording to a schema devised by Martin Kay and 
Ted Ziehe of the Rand Linguistics Research Group. 
A relatively complete, but still preliminary descrip
tion of this format has been published as a Rand 
Memo.3 The use of magnetic tape for storage of text 
and the use of this standard format are prominent 
in our system and more will be said about this in a 
moment. 

Some source text in exceptionally good condition 
may, after encoding in this standard form, be ready 
for distribution to other centers requesting it or for 
use in our own research. Characteristically, how
ever, some additional processing will be required 
and this is represented in the block labeled "utili
ty." At the bottom of this figure, our use of text as 
data is represented. Under "in-house analysis" we 
have listed information retrieval research, auto-ab
stracting, and content analysis as examples of this 
kind of work. 

The series of blocks down the right side of Fig. 1 
show the normal sequence of operations for photo
composition. Material to be photocomposed will, in 
most cases, be specifically keyboarded for that pur
pose. This material will be under good control from 
the beginning and can go directly into the typeset
ting system unless it will be used for other purposes 
as well. Sorting, editing, and other processing will 
generally not be required so that the conversion to 
standard format can be bypassed. Both kinds of in
put to the typesetting system are allowed. An ex
panded block diagram of the typesetting system it
self will be shown in a later figure. 

Our system depends to a large extent on the effi
cient processing of large amounts of natural lan
guage text on magnetic tape and this aspect of our 
system will be described in somewhat greater detail. 
Magnetic tape is, of course, an economic storage 
medium and is easily shipped between geographi
cally separated centers. Encoding all text in one 
standard format becomes important when many dif
ferent kinds of text from many different sources 
must be processed and shared. When standardized 
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input can be expected, a smaller number of general 
programs can be written and a useful library can 
begin to be accumulated. The standard adopted 
must be flexible enough to handle any material one 
may encounter. The Rand format seems to fill all of 
our current and anticipated requirements and we 
have adopted it for our system. 

On seven-channel magnetic tape, the minimum 
unit is a six-bit pattern plus a parity bit. In a one
to-one character representation, only 64 unique 
characters can be defined. In order to extend the 
number of different characters that can be repre
sented on tape, either more than one six-bit pattern 
can be assigned to each character to be represented 
or else, as in the Rand standard format, some of the 
available 64 patterns can be used to change the 
meaning of the patterns that follow them on tape. 
These mode change patterns or characters are of 
two kinds: "flags" and "shifts." The flags change 
the interpret9tion of succeeding patterns to a new 
alphabet, while the shifts retain the same alphabet, 
but mediate changes to, for example, upper case, 
italics, larger type size, and so on. 

Fifteen of the available 64 patterns are perma
nently assigned as alphabet flags in the Rand sys
tem. These 15 patterns along with the blank (octal 
60) and a filler character (octal 77) are not a part 
of any alphabet and their interpretation never 
changes. There are, then, 47 patterns which can be 
assigned meanings in each of the 15 alphabets. In 
each of the 15 alphabets, some of the available 47 
patterns will be assigned mode change functions as 
shift characters. In the Roman alphabet, for exam
ple, nine patterns are used in this way. The remain
ing 38 patterns can accommodate the 26 letters, 10 
diacritic marks, and the apostrophe with one pat
tern left unassigned. Notice that separate alphabets 
must be used for punctuation, the numerals, and 
other symbols occurring frequently in the English 
text. 

This encoding system gives a flexible representa
tion of the micro-characteristics of text. Larger 
units of text, however, have a hierarchical organiza
tion which also requires representation. This is ac
complished in the Rand system by the "catalog" 
format. The fundamental unit in this system is the 
datum, which can be thought of as a manipulable 
unit of information. A datum may be a text entry 
consisting of one physical line of text if from a pre
viously printed source, or one sentence, or one word 

if that is convenient, or it may be a title or a cap
tion from an illustration, or an annotation or de
scription of another datum added at a later time. 
Each datum belongs to a particular class and at the 
beginning of each reel of tape following a label rec
ord, a map of the corpus is given describing the var
ious classes of material contained in" the file. Each 
datum is coordinated with this map and its proper 
identification assured by a system of control and 
label words accompanying every datum. A represen
tation of the Rand encoding system will be shown 
later in our second typesetting example. 

We in Pittsburgh became interested in automatic 
photocomposition when, in October of 1964, we 
acquired a Photon S-560 photocomposition machine 
from the National Institutes of Health. This ma
chine had previously been used by Michael Barnett 
at the Massachusetts Institute of Technology under 
an NIH grant. The Photon is an electromechanical 
device driven by punched paper tape. It consists es
sentially of a movable glass disk with 1400 charac
ters etched on it and a lens system for projecting 
these characters onto roll film. The disk can accom
modate 16 different type fonts arranged in eight 
concentric circles or levels around the disk. The pa
per tape is punched with double character codes, the 
first giving the character position within disk level 
and the second giving the escapement for that char
acter. There are additional codes for advancing the 
film, positioning the film carriage horizontally, af
fecting lens shifts for size control, and effecting 
shifts to new disk levels for font changes. 

When we received the Photon, we also acquired 
the PC6 system of automatic photocomposition 
programs developed under the direction of Barnett 
while he was at M.I.T.4-s The PC6 system is typi
fied by the TYPRINT program which requires text 
containing fixed typesetting control codes as input. 
These codes are set off from the text by square 
brackets, which are reserved, and have fixed mean
ings as shown in the following examples: 

[NP ] New Paragraph 
[DL6] Shift to Disk Level 6 (Highland type face) 
[VL2] Leave 2 Blank Lines 

In using this system, we soon found that the inser
tion of fixed codes can be laborious, that changes in 
format require changes throughout the text, and 
that many desirable formats are impossible to 
achieve. We felt that a more flexible and more gen-
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erally useful system of programs could be written. 
We still believe, however, that the PC system was 
a successful first step toward automatic photocom
position and, in general, the typesetting system we 
have developed is an outgrowth of our experiences 
with it. 

The input to our system is either magnetic tape 
in an arbitrary format produced from paper tape 
punched specifically for typesetting or else magnetic 
tape in the Rand standard format. The output is 
again paper tape that will drive the Photon. A sche
matic diagram of this system is shown in Fig. 2. In 
this figure, the two forms of magnetic tape iJ).put 

Magnetic 
Tape to 
Photon Code 

Recycle 

Page 
Formatting 
Program 

Magnetic 
Tape to 
Paper Tape 

Optional 
Editing 
by Scope 

Indexing 
Program 

Figure 2. Block diagram of the typesetting system. 

are shown at the top. The typesetting program is 
shown as two separable functions. The first· part, 
which translates text into the double character Pho
ton code, is relatively independent of the second 
part, but is quite dependent on the particular photo
composition device being used, that is, on the Pho
ton. This part would be largely rewritten if a new 
piece of equipment were obtained. It is, however, a 
rather simple and straightforward program. The 
second part, labeled the "page formatting program," 

represents a real departure from the PC6 system 
and other typesetting. systems we have seen. In· this 
program, a full page of text is set before outputting 
is begun. 

The page formatting program shows two forms of 
output. The first is a magnetic tape which contains 
Photon input that will be converted to paper tape. 
The other form of output labeled the "history tape," 
is a magnetic tape containing the original text char
acters with their associated Photon codes, all of the 
material added by the page formatting program, 
page and line numbers, and sufficient parametric 
information to reset the material exactly as it was 
originally done. This tape can be recycled through 
the page formatting program with corrections or 
additions to the text or simply with changed param
eters if the format is to be changed. Since page 
numbers, tables, captions for figures, titles and sub
titles, and so on are all in their proper place on this 
tape, it can be used as input to a program that pro
duces indices and tables of contents. Finally as 
shown, this tape might simply be stored for a peri
od of time and then recycled when a new edition is 
to be set. 

This history tape is an important by-product of 
computerized typesetting and may well be a critical 
factor in making the adoption of an automatic sys
tem economically feasible. This tape is essentially 
an exact copy of the printed material, less illustra
tions which cannot be handled in our system, and is 
a compact, machine-readable counterpart of the 
standing . type that occupies space in some print 
shops and warehouses. Any material in this file can 
be simply addressed by page and line number from 
the corresponding printed document and changes 
made. If a change is made that affects the remain
der of the file, for example an insertion that affects 
the pagination, all of the file will automatically be 
corrected. 

In designing this system, we came to the conclu
sion that typesetting control codes in the text to be 
set are necessary if any format flexibility is to be 
obtained. They, therefore, appear minimally in our 
system. We have tried at the same time to ease the 
burden of keyboarding these codes and of changing 
their meaning in pre-prepared text by making them 
entirely arbitrary. The text-dependent codes can be 
though of simply as markers. The actions to be 
taken when particular codes are encountered are 
separately specified as parameters to the system. 
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These parameters can be inserted anywhere in the 
text ahead of the markers to which they refer, or 
they can be punched on parameter cards. If they are 
keyboarded with the text, they are normally marked 
off by dollar signs or some other specified reserved 
symbol. The form of the printd output can be com
pletely changed by changing these parameters with 
no re-editing of the text itself. 

In our system, we wished to include the ability to 
control as much as possible the layout and final 
form of the pages in the manuscript. We felt that 
the deficiencies of other systems in this respect 
stemmed from their line-by-line typesetting. The 
attempt to visualize a page by as yet undefined 
lines is difficult and usually leads to a number of 
unnecessary trial runs. To ease this difficulty on the 
programming level, we set full pages. On the con
ceptual level, we conceive of a page as a collection 
of subpages or "boxes." A box is a string of fixed 
text delimited by two markers. The material within 
a box can be set independently of other material as 
though it were itself a page and then the box of 
fixed material placed in its proper position on the 
page. The box system is recursive so that boxes 
may be defined within boxes and for most func
tions, overlapping is allowed. 

The parameters used to control the system are of 
three types: (1) general parameters, (2) text boun
dary parameters, and (3) box parameters. A list of 
the general parameters is shown in Fig. 3. 

Most of these parameters control the general ap
pearance of the printed output. They include the 
specification of page size, number of columns on 
the page, type face, point size, and so on. The pa
rameters specifying running page headers include a 
provision for incorporating page numbers that are 
automatically incremented. The last two parameters 
are provided to make the keyboarding somewhat 
simpler. The DLIM code allows the specification of 
any character to mark off parameters when these 
are included in the text in place of the preset dollar 
sign. The DEL code allows any character to be 
specified as a deletion code. It causes a character 
over which it is typed to disappear from the input 
string. Only those parameters that are to be differ
ent from their preset values need be specified. 

The following list of general parameters: 
$ PSIZ(8. 5, 11), TFAC(SCOTCH) , TSIZ(10), 

HEAD(Page /1/), COL(3.5, 1.5, 3.5) $ 
would specify 8 Y2 by 11 inch pages to be set in 

SYr180L MEANING 

PSIZ(x,x) Page SIZe 

COL(x,x,x ••• ) COLumns 

JUSV( s) JUSt ifica t ion-Vert ical 

JUSH(s) JUStification-Horizontal 

TFAC(n,i,b,B) Type FACe 

FONT (f) FONI' 

TSIZ(p) Type SIZe 

BGND(P) Back GrouND size 

TAB(x,x,x •.• ) TAB 

M'wS(p,p) Minimum Word Spacing 

XHS(p,p) maXimum Word Spacing 

HEAD(t) HEADer 

LHEAD (t ) Le ft HEADer 

RHEAD (t) Right HEADer 

DLIM( c) DeLIMiter 

DEL(c) D~Letion character 

x is a dimension expressed in inches. 

P is a dimension expressed in points. 

NOTES 

Page size is width 
by height. 
Column widths and 
margins alternate. 
Reserved words such 
as center,spread,etc. 
are used to indicate 
action desired. 
n, i, b,B are names 
of type fonts. 
Used to indicate 
italic or bold type. 
Type size is given 
in points. 
Background size is 
also in poi:->ts. 
Tab, setting measured 
from left margin. 
Minimum distance 
between words. 
Ill3.ximum distance 
between words. 
Headers may be any 
string of text, it 
will be set on both 
page s. LHEAD and 
RHEAD are set on re
spective pages only. 
Used to surround in
structions in text. 
Remove s unwanted c har
acters when backspacing. 

t is any string of text and may include any boundary or box 
markers. 

c is any keyboardable character and should be one which is 
not norr.,ally used in the text. 

n, i, b,3 are the names of type faces available. They determine 
which type face \<Till be used for normal, i tal ic, bold - race and 
bold-face-italic letters. 

s may be one of the following reserved character strings 
CNT(CeNTer), LFT(LeFT), RGT(RiGhT), SPR(SPRead), BTr~(30TtOM), 
TOP. 

f r.,ay be one of the following NOR (NORmal), ITAL ( ITAL IC ), BOLD, 
or BOLD- ITAL • 

Figure 3. List of general parameters. 

10 point Scotch with two 3 Y2 inch wide columns 
separated by 1 Y2 inches. The running heads "Page 
1," "Page 2," and so on would print at the top of 
successive pages. Since the background size and the 
minimum and maximum word spacing were not 
specified, reasonable values for these would be com
puted by the program based on the type size and 
line length. Hyphenation would occur if the lines 
could not be justified within these computed limits. 

The general form of the text boundary parame
ters and the box parameters are shown in Figure 4. 
The text boundary parameters specify a particular 
arbitrary text marker and a list of actions that are 
to occur when that marker is encountered in the 
text. The box parameters specify two particular ar
bitrary text markers which will delimit fixed strings 
of text to be treated as a box and· a list of actions 
describing the way material in the box is to be set 
and the placement of the box on the page. The lists 
of actions in each of these two parameters can in
clude any of the general' parameters or any of the 
additional actions listed in this figure. 
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="0::;[,,1 a':' the TEXT B~m8ARY PARA~ETSR: 

$ AT k)CS(; P,P,P, ••• ,? $ 

?JRN 0:' the BOX PA:l.AH2:TSR: 

$ FROr'! k)CS(y ta k)CS(;: P,P,P, ••• ,P .$ 

CS is an:! arbitrar~' character string. 

;.: is the letter 0 i~ the string between the closed and 
open parentheses specifing the text marker is in octal 
representation, otherl·Tise. it is blank. 

:' is blank if the marker is not also part of the text, it 
is S(Save) or SIN(Save IN box) if it is a part o~ the text. 

P may be an;;' general parameter or an~' of the follOl./ing. 

S'.'[·SOL 

TAn(w) 

SKIP(z) 

MAR(X,x) 

BSrz(x,x) 

BTA3(w) 

BSKIP(q) 

UNIT 

Jl'EANING 

TAB 

SKIP 

riJARgin 

Box SIZe 

Box TAB 

Box SKIP 

UNIT 

NCTSS 

Allows indenting to 
a predefined tab. 
Allows Vertical 
spacing. 
Allows margins to 
be reset. 
Specifies dimension 
o~ box. 
Determines horizontal 
position of box. 
Determines vertical 
position of' box. 
Forces box to be put 
on one page, i.e., not 
split. 

z may be one of the f'ollow'ing reserved symbols NL(New Line), 
nL(number of Lines), NC(New Column), nC(number o~ Columns), 
NP(Ne;·/ Page), nP(number of Pages), nI(number 0" inches), 
nPT(number of PoinTs). 

q Tray be the same as z plus TOP BTM(BoTto;,1j or CNT(CeNTer) 
which lTr-;:,ans the box should be placed at top, oottom or center 
of the column or page. 

'II ma"' b() a number referrinO' to the nth tab de:'ined plus (for 
BTAB) ~:''l'(LeFT), RGT(RiGhT) or CNT(Cel'.'Ter) which means bOx 
shquld h·, even "'lith the left, center, or right side 0;' current 
column or page. 

x may o'J a number (inches) or T (depends on text). 

Figure 4. Form of the text boundary and box parameters. 

The text markers are defined in these two kinds 
of parameters as the binary coded decimal equiv
alent of the character string appearing between the 
close paren on the left and the open paren on the 
right. The octal equivalent of the six-bit binary 
character may also be placed between the paren
theses, in which case the letter "0" preceeds the 
marker specification. A marker may be any string 
of characters that will not be confounded with text 
material. They may themselves be a part of the text 
to be set. If this option is desired, the letter S or 
SIN (for Save or Save IN) is appended to the 
marker specification. If S is used, the characters 
making up the marker are considered to come be
fore the marker or outside the box. If SIN is used, 
they are considered to come after the marker or in
side the box. These conventions give some format 
control over material that has no keyboarded codes 
at all. 

As a first example of the operation of this system 
for a straightforward problem, we have taken a part 
of the "Recent Publications on Computational 

Linguistics" section of The Finite String for June 
1965. This monthly newsletter is a publication of 
the Association for Machine Translation and Com
putational Linguistics and the short bibliography 
section has been photocomposed at our Center since 
April of this year. The procedure we actually use 
with this material differs somewhat from this de
scription because the text is keyboarded on a Dura 
Machine 10 at the Rand Corporation rather than at 
our Center. The differences, however, are minor. In 
Fig. 5, the Flexowriter hard copy is shown with the 
parameters appearing at the top of the page. Only 

$ PSIZ(6.75,lO), TFAC(HIGH,HIGH ITAL,CENT BOLD), TSIZ(8), 
:X:WS(lOO,lOO) $ 

I FROM 1**( TO )**( TSIZ(9), BSKlP(3L), FONT (BOLD) $ 
FROM *ENT( TO )*ENT( SKlP(2L), UNIT $ 
FROM [( TO )]( FONT(BOLD) $ 
FROM /( TO )/( FONT(ITAL) $ 

**Computational linguistics: Glossaries** 

*ENT [Nozaki, A.] "On the Dictionary Preparation," 
manuscript, presented at the U.S.-Japan Seminar on Mechanical 
Translation, New York, May 1965. *ENT 

*EN!' [Lehmann, W.P., and Pendergraft, E.D.] 
/Quarterly Progress Report,/ 
1 November 1964 - 31 January 1965, LRC 65 NSF-23, 
LinguisticS Research Center, The University of Texas, 
Austin, Texas, January 1965. *EN!' 

*ENT [Nagao, Makoto] "Japanese-English Translation Regarded as 
Sentence Generation," manuscript, presented at the 
U.S.-Japan Seminar on Mechanical Translation, New York, !4;ly 1965. *EN!' 

*ENT [Otkupshchikova, M.l.] "II simpozium po mashirinomu perevodu" 
("2nd Symposium on Machine Translation"), /Nauchno-Tekhnicheskaya 
lnformatsiya,! No. 12 (December 1964), pp. 34-36. !OENT 

*ENT [Pfafflin, Sheila M.] "Evaluation of Machine Translations 
by Reading Comprehension Tests and Subjective Judgments," 
/Mechanical Translation,! Vol. 8, No.2(February 1965),pp.2-8. *ENT 

*ENT [Reitz, Gerhard (ed.)] /lmproved Syntactic Flowcharts - Research 
Output Format,/ Progress Report No.9, The Bunker-Ramo Corporation, 
Canoga Park, California, 31 March 1965. *ENT 

*ENT [Sakai, Toshiyuk1] "Procedure for the Analysis of Japanese 
Texts," manuscript, presented at the U.S.-Japan Seminar on 
Mechanical Translation, New York, May 1965. *ENT 

*ENT [Satterthwait, Arnold C.] "Sentence-for-Sentence 
Translation: An Example," !Mechanical Translation,! 
Vol. 8, No.2 (February 1965), pp. 14-38. *ENT 

*ENT (Tosh, L.W.] "Development of Automatic Grammars," 
/Linguistics,/ No. 12 (March 1965), pp. 49-60. *ENT 

Figure 5. Parameters and text for the Finite String example. 

general and box parameters are required. The gen
eral parameters set the page size to 6% by 10 
inches, the normal type face to Highland, the italic 
type face to Highland Italic, the gold type face to 
Century Bold, the type size to 8 points, and the 
maximum word spacing to 100 points (to preclude 
hyphenation). Since the background size and mini
mum word spacing are not specified, computed val
ues will be used. Four boxes are defined. The first 
encloses subtitles which are spaced three lines be
low preceeding material and printed in bold face 
and somewhat larger type size. The second encloses 
whole bibliographic entries. The associated actions 
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cause each entry to be treated as a unit, not to be 
slit between pages, and a line space is left between 
them. The third encloses the author's name which is 
to be set in bold face and the last encloses the title 

Computational linguistics: Glossaries 

of the publication which is to be set in italics. The 
photocomposed result is shown in Fig. 6. 

This first example was shown to illustrate the 
simplicity of the system when limited format con-

Nozaki, A. "On the Dictionary Preparation," manuscript, presented at the U.S.-Japan Seminar on Mechanical Translation, New York, May 
1965. 

Lehmann, W. P., and Pendergraft, E. D. Quarterly Progress Report, 1 November 1964 - !l1 January 1965, LRC 65 NSF-23, Linguistics 
Research Center; The University of Texas, Austin, Texas, January 1965. 

Nagao, Makoto "Japanese-English Translation Regarded as Sentence Generation," manuscript, presented at the U.S.-Japan Seminar 
on Mechanical Translation, New York, May 1965. 

Otkupshchikova, M. I. "II simpozium po mashinnomuperevodu" ("2nd Symposium on Machine Translation"), Nauchno-Tekhnicheskaya 
lnformatsiya, No. 12 (December 1964), pp. 34-36. 

Pfamin, Sheila M. "Evaluation of Machine Translations by Reading Comprehension Tests and Subjective Judgments," Mechanical Translation, 
Vol. 8, No.2 (February 1965), pp. 2-8. 

Reitz, Gerhard (ed.) Improved Syntactic. Flowcharts - Research Output Format, Progress Report No.9, The Bunker-Ramo Corporation, 
Canoga Park, California, 31 March 1965. 

Sakai, Toshiyuki "Procedure for the Analysis of Japanese Texts," manuscript, presented at the U.S.-Japan Seminar on Mechanical Translation, 
New York, May 1965. 

Satterthwait, Arnold C. "Sentence-for-Sentence Translation: An Example," Mechanical Translation, Vol. 8, No.2 (February 1965), pp. 14-38. 

Tosh, L. W. "Development of Automatic Grammars," Linguistics, No. 12 (March 1965), pp. 49-60. 

Figure 6. The Finite String bibliography. 

trol is required. Our second example is intended to 
show a wider range of the possibilities inherent in 
the system and in particular, the degree of format 
control that can be obtained. This example consists 
of the first three pages of an eight-page booklet on 
postpartum care prepared for the University-affili
ated Magee-W omens Hospital in Pittsburgh. After 
the first two pages, the booklet has a two-column 
format with captioned illustrations and the author 
had an exact picture in mind of the way in which 
each page was to appear. It therefore formed a good 
test of the formatting capability of our system. 

The illustration was prepared in the following 
steps: ( 1) the straight text was keyboarded on a 
Flexowriter without parameters, codes, or markers 
of any kind; (2) appropriate text boundary and box 
markers were added using a display scope editing 
program to be described. in a moment; (3) the text 
with markers was then converted to the Rand stand
ard . format; and (4) the typesetting programs were 
run using this as input. The text editing program 
used in step (2) is implied by the blocks labeled 
"optional editing by scope" in both Figs. 1 and 2. 
The text editor is a general editing program, not 
specific to the typesetting system, but we have 
found it very useful in preparing material for pho
tocomposition. We shall give only a brief account 

of this program here, since a complete description 
can be found in Bacon.9 

The text editor program is written for a small 
Digital Equipment Corporation PDP-4 computer 
with 4K words of core storage, a cathode ray tube 
and light pen, a paper tape reader and punch, and a 
teletype keyboard. This small computer is inter
faced into our IBM 7090 giving it access to the 
tape units, disk file, and core storage of the larger 
computer. The interface was constructed locally by 
Russell Ranshaw of our staff. Input to the text edi
tor can be keyboarded directly or read from paper 
tape or magnetic tape via the interface. Output can 
be typed, punched on paper tape, or written on 
magnetic tape. 

The text editor continuously displays selected 
sections of text on the cathode ray tube and editing 
functions can be performed on the displayed text 
using the light pen and keyboard. The display is in 
two parts as shown in Fig. 7. Along the bottom of 
the screen, stationary symb9ls are shown which 
function as push buttons when touched by the light 
pen. The remainder of the screen is used to display 
the text being edited. The size and intensity of the 
characters in the display as well as the vertical and 
horizontal dimensions of the display itself can be 
varied. All of the text held in the computer at one 
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Figure 7. Text editor display. 

time can be caused to move down the face of the 
scope or in the reverse direction with a speed con
trolled in increments over a wide range of values. 
This movement of text, its direction, and speed are 
controlled by the light pen and "push buttons," as 
are all input and output functions. A complete list 
of the push-button symbols and their functions is 
given in the Appendix. 

The light pen can be used to place anyone of 
three markers under particular characters in the dis
play. One of these, the cursor, is used to mark a 
particular point in the text, while the other two, the 
left and right delimiters, are used to mark off sec
tions of text for deletion or movement. The move
ment of delimited material to the point marked by 
the cursor or the insertion of material from the key
board is· controlled by the light pen and push-button 
symbols. In our illustration, all of the text boundary 
and box markers were inserted using this program. 
Figure 8 shows this being in our office by a secre
tary who has had some experience prepareing ma
terial for photocomposition. The text of the illus
tration as prepared on a Flexowriter is shown at 
the top of Fig. 9. and then with the required text 
boundary and box markers inserted at the bottom of 
this figure. 

The next step in the processing of this example 

was to convert the text with its markers to the 
Rand standard format. We may suppose that this 
was done in order to make it available for distribu
tion or to use it for some purpose other than type
setting. A representation of the text in this stand
ard format is shown in Fig. 10. A proper represen
tation would consist simply of a long string of 
paired octal digits, but that would not illustrate the 
encoding scheme very well. Here the encoded ma
terial is shown on two levels. The upper line shows 
that shifts and flags while the lower contains the 
text proper. To the left of each dattum, a text label 
is shown. This six-character label has the text type 
indicator as its first character, while the remaining 
five characters are specific to the entry. This label 
uniquely identifies the datum. In this figure, the 
types indicated are T for title, H for heading, A for 
author, B for body, and C for caption. This infor
mation could be used in the typesetting system to 
control the course of the typesetting process, but in 
this case, the information is redundant. The flags 
shown are represented as B for Boundary alphabet, 
R for Roman alphabet, and P for punctuation al
phabet. There are no accepted graphics for the al
phabet flags, since they are non-Hollerith (non
printing) six-bit patterns. In the Roman alphabet, 
shifts are assigned the numerals 1 through 9. The 
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Figure 8. Editing text with scope and light pen. 

Arter J·our baby has arrived ••• 

l'13.gee Vlomens Hospital 
Pittsburgh, Pennsylvania 

Pre pared b~' 
Barbara Roudabush, R.N. 
Illustrated by 
Ann Retaichak 

Your body retl.lrns to normal ••• 

Through a natural process called involution, organs altered by 
pregnancy return to normal. 

The extra tissues of the uterus and breasts that have built up 
during pregnancy are absorbed by the body. 

The doctor will measure the progress of this by pressing 
lightly on your abdomen and saying how ma.n~· "f'lnger" widths 
the top of the uterus is above or below the navel. 

Positions of the uterus after delivery. 

tAfter J t your Jl baby J [has J [arrived ... J *NP 

BOXl Magee Womens Hospital / 
Pittsburgh, .Pennsylvania BOXl 

*2 Prepared by / 
Barbara Roudabush, R.N. *pt 
Illustrated by / 
Ann Retaichak *2*NP// 

B4Your bod:.' returns to norrr,al ••• 34 

*5 Through a natural process called involution, organs altered b;y 
pregnancy return to normal. *5 

*5 The extra tissues of the uterus and breasts that have built up 
during pregnancy are absorbed b~' the body. *S 

*5 The doctor will measure the progress of this by pressing 
lightl~' on your abdomen and saying hO~1 many "ringer" widths 
the top of the uterus is above or belol'1 the navel. *5*NC 

*B6 Positions of the uterus after delivery. *B6 

Figure 9. Text before and after editing for the booklet example. 

407 
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BRI 9 B R B R B R B R P B 
TOOOOI: I A fter2 lyour2 Ibabj'2 Ihas2 larrived ••• 2N 

BRI 9 I 9 I 9 BRI 9 P 
HOOOOI: 3 Magee W oroons Hospital 4 Pittsburgh, 

RI 9 B 
P ennsyl vania 3 

BRI 9 BRI 9 I 9 PRI 9PRI 9P B 
A00001: 5 Prepared by 4 Barbara Roudabush, R. N. 6 

RI 9 BRI 9 I 9 B 
Illustrated by 4 A nn R etaichak 5NA 

BRI 9 P B 
B00001: 7 Your body returns to normal ••• 7 

BRI 9 P R 
BOOeJ02: 8 Through a natural process called involution, organs 

PB 
altered by pregnancy return to normal.8 

BRI 9 
B00003: 8 T he extra tissues of the uterus and breast.s that 

have built up during pregnancy are absorbed by the 

PB 
body.8 

BRI 9 
B00004: 8 T he doctor will measure the progress of 

this by pressing lightly on your abdomen and saying how 

PR PR 
many "finger" widths the top of the uterus is above or 

PB 
below the navel.8c 

SRI 9 PB 
C00001: 9 Positions of the uterus after delivery.9 

Figure 10. Representation of the text of the booklet example 
in standard format. 

numeral 1 represents a shift to upper case and the 
numeral 9 is a shift terminator. The text boundary 
and box markers appear in the boundary alphabet 
where the character assignments are arbitrary ex
cept for two characters used to delimit sentences 
and paragraphs. If the parameters had been key
boarded within the text, they would appear either 
in the Hollerith alphabet or else as text descrip
tions. 

In Fig. 11, the parameters for typesetting this 
material are shown. The first parameter, $RFORM$, 
tells the program that the input is in standard for
mat. The general parameters see the page size to 
8 X 5 inches; the type faces used will be Century 
Italic, Century Bold, and Century Bold Italic; the 
type size is set to 12 points, and tab positions 
are set at 1, 2, 3, 4, and 5 inches from the left 
edge of the page. When the standard format is 
being used, all text boundary and box markers are 
assumed to be single characters in the boundary al
phabet unless otherwise indicated. In this case, an 
occurrence in the boundary alphabet of an N causes 

$ RFORM, PSrz(8,5), TFAC(CEm',CEm' ITAL,CENT BOLD,CEN!' BOLD ITAL), 
TSIZ(12), TAB(I,2,3,4,5) $ 

I AT IN! SKIPINP~! AT 4 SKIP NL 
AT C SKIP NC 
AT 6 SKIP 10PT $ 
AT A COL(3.75, .5,3.75) $ 

$ FROM )l( TO )2( FON!'(BOLD ITAL), TSIZ(24), BSKIP(.75), 
BTAB(CN!') $ 

$ FROM )3( TO )3( TSrz(8), BSKIP(CN!'), BTAB(CN!') $ 

$ FROM )5( TO )s( TSIZ(8), BSKIP(BTM), BTAB(RGT) $ 

$ FROM )7( TO )7( FON!'(BOLD ITAL) $ 

$ FROM )8( TO )8( UNIT $ 

$ FROM )9( TO )9( Ts.rz(8), BSKIP(BTM), BTAB(CN!') $ 

Figure 11. Parameters for the booklet example. 

a skip to a new page, a 4 causes a skip to a new 
line, a 6 causes a skip down of 10 points, an A 
causes a two-column format to be initiated (this 
occurs after the second page), and a C causes a skip 
to a new column. Each word on the title page is put 
in a separ~te box of the same kind. These are set in 
24 point bold italics and successive boxes are 
skipped down % inch and moved to the next tab 
position. On the second page, the name and address 
of the hospital are put in a block and centered on 
the page. The names of the author and illustrator 
are put in a box and placed in the lower right cor
ner of the page. On page three, the subtitle and 
each of the three paragraphs are treated as boxes 
and equally spaced in the left hand column. In the 
right hand column, space is left for an illustration 
with the caption centered beneath it. Figure 12 
shows these three pages in their final printed form. 

With this illustration, the description of our cur
rent typesetting system is complete. The typesetting 
system itself, however, is not now complete, nor 
will it be until it is abandoned to a dusty completed 
projects file to rest unused. Some improvements and 
extensions are planned for the coming months, 
while others that seem promising will wait for im
proved hardware. One improvement, for example, 
will be in the ability of the system to handle tabular 
material, not only tables of numbers or of words, 
but also tables of contents and indices. Then again, 
there is no provision in our system for setting com
plex mathematical expressions. We have, in fact, no 
way to represent such forms in a linear string which 
would allow their efficient reconstruction in two 
dimensions on paper. This problem, however, is not 
of great· importance to us, since the equipment we 
have could handle only the simplest formulas. 

As our last example has shown, this system has 
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Afto 

your 

Your body munu to /IOnnaL 

Through a natural process called invo
lution, organs altered by pJegll8DCy re
tum to ..,rma1. 

'The enra tiMues of the uterus and breast 
that have built up during pregnancy are 
absorbed by the body. 

'The doctor will measure the progreoo of 
this by p......mg lightly on your abdomen 
and aaying how many 'finger' widths the 
top of tbe uterus is ahove or below the 
navel. 

has 

arrit'?d ... 

pnpoNd by 
_-'R.N. 
-by 
ADa RoWcbok 

~
,. ...... ..u_ 

.... VII.. . ~ . , 
: 'I s-s V ,-~ 

Figure 12. The first three pages of the postpartum care 
booklet. 

some facility in controlling page format in detail. 
This facility is not as complete nor as easy to use as 
we would like it to be. We can expect some im
provements in the language we use to specify for
mats and typesetting operations, but significant im
provements will wait for new equipment. For type
setting the kind of material exemplified by our 
booklet illustration, no system will be entirely satis
factory that does not include a manipulable visual 
display. In such a system, material to be formatted 
would be punched simply as straight text along with 
the general parameters and a few text boundary par
ameters and associated markers, perhaps only mark
ing page boundaries. The system would read the 

text and display one page at a time on a scope. The 
author or editor would then move this material 
about on the face of the scope, changing type size 
and font at will, until the exact format he wants is 
obtained. Then, with a push of a button, the page 
would be written out along with the appropriate 
codes to set it in that form. The display in such a 
system would not have to have high graphic arts 
quality, but the resolution would have to be great 
enough to provide exact point size and letter spacing 
representation for the fonts being used. 

In the beginning of our discllssion, we asserted 
that the purpose of our text processing system was 
to extend the abilities of the scholar in performing 
his work. Whatever else a scholar may do, it seems 
essential that he be able to: (1) make accurate ob
servations, (2) collect, sort out, and understand the 
information in his field, (3) integrate his observa
tions with current knowledge to produce new infor
mation, and finally (4) make this new information 
pUblic. We have been concerned with the last of 
these describing in some detail one particular sys
tem intended to aid in the publication of informa
tion. The characteristics of this system are derived 
from our straightforward attempts to use modern 
computing eqEipment and programming techniques 
to duplicate as well as possible the work that is 
done by printers and publishers. If we are success
ful, the printed material we produce will be nearly 
as good as that we are trying to duplicate, but done 
much faster. If this is the extent of our own schol
arly work, then surely we have been unimaginative. 

Imagine a system of publication that has the fol
lowing characteristics. First, a scholar publishes in 
this system by making his work available on mag
netic tape. His pUblication is then "seen" by other 
scholars only when a computer has made the deci
sion that his work is both pertinent to and impor
tant for some request for information. We assume 
that the computer's decisions in these matters is less 
fall able than the scholar's own. Suppose that there 
are many more subscribers to this system than to 
any current journal and that the coverage available 
is just as broad or as narrow as the interests of any 
individual scholar. Finally suppose that publication 
in this system is nearly immediate. If this system 
were in existence, then there would be no further 
need of scholarly publications in printed form, ex
cept perhaps for vanity. 

Can the computer do all of this? There are those 
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of us who think it cannot. But what of the scholar? 
Can he continue to function for long when the in
formation he must collect and sort out and under
stand expands exponentially? We may be certain 
that the scholar will continue to function on some 
level; that he will continue to generate information. 
The computer can aid in processing this· informa
tion. That we already know. The computer alone 
may not be able to evaluate the importance of a doc
ument to some line of investigation, but a compu
ter can hold statistics and the interactions between 
men and computers may easily generate evaluations. 
In our research, we are interested not so much in 
what the computer can do, but rather what the com
puter and scholar together can do better than either 
can do alone. 
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Appendix 

THE TEXT EDITOR PUSH-BUTTON SYMBOLS 

RUN 
FWD 

REV 

FAS 

SLO 

HLT 

Causes the text to be set into motion. 
Causes the motion of the text to be from 
bottom to top. 
Causes the motion of the text to be from 
top to bottom. 
Accelerates the motion of the text as long 
as the light pen is held on this symbol. 
Decelerates the motion of the text as long 
as the light pen is held on this symbol. 
Halts the motion of the text. 

MAN Causes the text to move when the light pen 
is held on it, if it is otherwise halted, and 
vice versa. 

_C~ Cursor. 
_L_ Left delimiter. 
_R_ Right delimiter. 

The above three symbols control the ability of the 
light pen to move one or another of the underlines. 
The symbols themselves vary, with the middle let
ters C, L, and R remaining constant. An initial letter 
D shows which of the three underlines may be moved 
by the light pen, and a final letter D or N tells 
whether or not the given underline is defined. The 
cursor is always defined, and hence its symbol always 
appears as CD or DCD. 

TYP Starts typing on the Teletype the block be
tween the left and right delimiters. 

TYH Causes typing to stop immediately. 
DEL Causes the block between the left and right 

delimiters to be deleted, operates only if the 
left and right delimiters are properly defined. 

MOV Causes the delimited block to be moved to 
the point immediately to the right of the 
cursor. 

CLR Causes the text area to be cleared. 
SPG This function, the symbol pattern generator, 

gives rise to a different display. The entire 
alphabet is displayed and each symbol may 
be selected for change with the light pen 
or the Teletype. An enlarged replica of the 
five-by-seven dot pattern is altered by the 
light pen to create a new pattern. A light 
patch in the upper right corner returns the 
program to the normal text display. 
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? 

IN 

This is the interlock symbol and it has no 
function of its own, but serves to activate 
whatever other function has caused this sym
bol to be changed. When an interlocked 
function's symbol is sensed, it is made to 
appear in place of the question mark. When 
this new symbol meets the light pen, the 
function is initiated, and the question mark 
returns. The CLR function and all input/ 
output functions are interlocked in this way. 
Reads paper tape and. appends the informa
tion to the end of the text until the text 
storage area is almost full, a stop code, or 
two successive carriage returns have been 
read. 

OUT Causes text to be punched, in Flexowriter 
format, starting at the beginning of the text 
and continuing until the character above the 
cursor has been punched. 

DMP Functions the same as the OUT symbol but 
deletes the text punched. 

BIG Causes the letter patterns themselves to be 
punched and may be used to produce read
able titles. 

RMT Causes a single 120-character record to be 
read through the 7090' interface. 

WMT Causes a single 120--character record to be 
written through the 7090 interface. 

DMT Causes the entire text area to be written, 
then cleared, by repetition of the WMT 

. function. 
WTM Causes a tape mark to be written, on the 

output tape. 
RWD Rewinds the input and output tape, 70'90 

logical tapes 2 and 3. 
SBC Causes input and output tapes to be logi

cally interchanged. The "SBC" symbol then 
becomes the "SCB" symbol. 

DMR Causes the cursor to be moved to the end 
of the text, executes the DMP function, and 
then the IN function. 
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INTRODUCTION 

The purpose of MATHLAB 
A mathematical scientist experiments. Today, his 

test tube and his breadboard are blackboard and pa
per. He may, it is true, have available a computer, 
but its role is numerical and its results are delivered 
not today, not tomorrow, but the day after the final 
programming bug is corrected. The computer is not 
present during the most creative phases of the 
scientist's labor. The purpose of MATHLAB is to 
provide the scientist with computational aid of a 
much more intimate and liberating nature. 

What sort of aid? The basic goal is to provide fa
cilities for those operations which are mechanical. 
Among the most common of these are the addition 
of expressions and equations, the substitution of 
sub-expressions within a larger expression,differen
tiation, . integration, Laplace transforms, multiplica
tion of matrices, and the solution of simple equa
tions. While the greater part of a scientist's time is 
spent on these mechanical pursuits (in fact, an ap
preciable portion is probably spent in simply check
ing answers and in the eternal bookkeeping problems 
of getting minus signs and 27T'S right), we must keep 
in mind that most of the tedious computations as
sociated with the creative aspects of his work are of 
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a symbolic, rather than a numerical, nature. If we 
are to free the scientist from his routine mathemati
cal chores and conserve his energies for the more 
properly human activities of interpretation, analysis, 
planning and conjecture, then we must mechanize 
the passage from r2/r to r in addition to that from 
1 + 1 to 2. 

Requisites for a Mathematical Laboratory 

I should like to outline here the properties I feel 
are required of a mathematical laboratory, not in 
terms of the range of mathematical operations 
available, but rather in terms of its spirit and feel. 

1. It should be capable of ordinary numerical 
computation. This implies the ability to 
perform' arithmetic, to compute functions 
or to look up their values in tables, and to 
draw graphs. 

2. It should be capable of a wide spectrum of 
symbolic computations. 

3. The user commands should be simple. 
MATHLAB is intended for a physicist, 
not a programmer. The commands should 
be no more- complicated than the user's 
thoughts. If he wishes to enter an equation 
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into the computer, he should need only to 
type the equation in a notation like that of 
ordinary mathematics. If he should then 
wish to differentiate that equation with 
respect to x, he should have to give a com
mand no more complicated than "differen
tiate (x)." 

4. It must be expandable by the expert. The 
language, functions, and subroutines of the 
laboratory must be such that it will grow 
as an organism. If today we write pro
grams for symbolic differentiation, we 
should expect, tomorrow, to employ them 
in programs for power series expansions. 
The opportunity to expand the programs 
should be open to anyone who masters a 
well-defined and common computer lan
guage. 

5. It should be extensible by the user. While 
the ability of the physicist to augment the 
existing programs will no doubt be severely 
limited compared to that of the program
ming expert, he should be provided tools 
for doing certain simple things for himself, 
such as changing notational conventions or 
teaching the machine the derivatives of his 
favorite functions. 

6. The computer, as viewed by the user, must 
be intimate and immediate. The user 
should have next to his desk a console con
sisting of a typewriter or, preferably, a 
typewriter and a scope. Economy might, in 
some cases, dictate the substitution of a 
plotter for the scope. These are connected 
to a large, fast, on-line, time-shared di
gital computer. He communicates with that 
computer by typing messages on his type
writer or by means of a light pen on the 
scope. The computer replies by means of 
the same machines. It types both messages 
and equations. On the scope it displays 
both equation and graphs. Above all, the 
response time to the user's requests must 
be short. 

Quick Summary of Existing Programs for Symbolic 
Mathematics 

The first program we should mention was written 
for Whirlwind I by J. H. Laning and N. Zierler1 

and was not really a program for symbolic compu-

tation at all. But, even though it was capable only 
of numerical computation, it could accept programs 
written as simple symbolic mathematical expres
sions and perform them for a user with no machine 
language experience. 

A later program that could accept instructions in 
the form of symbolic expressions, but also limited 
to numerical computations, was, of course, FOR
TRAN.2 

Probably the most fundamental development, to 
date, for the adaptation of computers to symbolic 
computation is the design by J. McCarthy, for just 
such purposes, of a language called LISP (for LISt 
Processor) .3,4 Almost all of the symbolic computa
tion programs extant are written in this language. 

The foremost problem of content facing the con
stuction of a mathematical laboratory today is 
probably the writing of a satisfactory program for 
the simplification of mathematical expressions. 
Simplification is the unconscious of mathematics. 
We all simplify expressions every day, making 
choices appropriate to the occasion but of which we 
are almost totally unaware. For this reason, it is 
much simpler to program a more "advanced" for
mal computation, such as differentiation, which has 
exact rules of which we are conscious, than it is to 
have the machine simplify the answer after it com
pletes the differentiation. We cannot afford to enter 
into a detailed discussion of the current attempts to 
solve this problem, but we would like to mention, 
in chronological order, the authors of three LISP 
programs for the simplification of mathematical 
expressions: T. Hart,5 D. Wooldridge, Jr.,6 and W. 
A. Martin. 7 

A LISP program for symbolic differentiation was 
written by K. Maling.8 While it suffered from some 
weakness of simplification and from its in
put/ output being restricted to well-formed LISP 
expressions (which are not nearly as legible as 
those written in ordinary mathematical notation), 
it was certainly a dramatic early demonstration of 
the ability of LISP to handle formal mathematical 
computation. 

In my opinion, the most impressive example of 
symbolic mathematics yet performed by machine is 
the formal (or indefinite) integration program of J. 
Slagle written as a doctoral thesis under M. Minsky 
at MIT.9 Perhaps the most interesting aspect of this 
program is that it was heuristic rather than algor
ithmic. It possessed a small table of integrals and 
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tried to reduce the problem to one or several found 
in that table by the same bag of tricks possessed by 
a good college freshman. 

The remaining programs we shall discuss do not, 
like those above, represent attempts to perform par
ticular symbolic processes (simplification, differen
tiation, integration) on a computer. They are, rath
er, attacks on the whole problem of building a sys
tem of symbolic computations. 

The first such program we should like to mention 
is the mathematical laboratory project of W. A. 
Martin, a work-in-progress as a doctoral thesis 
at MIT under Professor M. Minsky. This work is 
by far the closest known relative to our MATH
LAB. At present it appears that the main difference 
of emphasis will be that Martin's work will stress 
very broad. input/output capabilities. He is, for ex
ample, working on input from scopes achieved by 
signifying with a light pen an interesting sub
expression of a previously "printed" expression, as 
well as anticipating using the scopes for handwrit
ten input. The emphasis in our program is more in 
the direction of continually increasing mathematical 
powers. Since both programs are written in LISP, a 
good deal of exchange should be possible. 

Another approach to the mathematical laboratory 
problem is a project, under the direction of L. C. 
Clapp (while at Bolt), Beranek, and Newman.1o 

The programs are not written in LISP but in a 
much simpler and weaker list-processing language 
of their own invention, called SIMPLIST. While 
this language and program might serve well for rap
id performance of simple computations, e. g., add
ing two symbolic equations or evaluating a function 
entered symbolically, it seems unlikely that they 
will be capable of difficult symbolic procedures such 
as a powerful simplification program or symbolic 
integrations. These limitations stem primarily from 
the fact that their work is married to the PDP-I, a 
small computer. 

The final system we should like to discuss before 
going on to our own MATHLAB is the IBM 
FORMAC system. This is an extension of FOR
TRAN which provides it with the ability to per
form a certain amount of symbolic computation. It 
is under development in Cambridge under a group 
headed by J. E. Sammet.ll It is quite capable, pos
sessing such abilities as simplification, substitution, 
expansion of products of sums, factoring out power 
of a given variable, and differentiation. For a num-

ber of reasons, however, it does not seem well suit
ed to a mathematical laboratory. It is program or
iented. One does not give a simple command such 
as "differentiate" but rather one writes a program. 
True, the language, like FORTRAN, is easy for a 
nonprogrammer to learn, but it will not have the 
universal accessibility of, say, the simple commands 
of our MATHLAB. The programs can, of course, 
be run on-line. But they cannot be run, so to 
speak, line by line. It is necessary to write an entire 
program, for the program has to be compiled as an 
entity just like a FORTRAN program (in fact, it 
employs the FORTRAN IV compiler). It seems 
like a useful tool for symbolic computation when 
you know at the outset what you want to do, but 
quite inconvenient for experimentation. 

MATHLAB-ONTHESURFACE 

Mathlab is our current attempt at realizing a ma
thematical laboratory of the sort we have been dis
cussing. The program, which has been developed on 
the time-shared system of PROJECT MAC at 
MIT and on the IBM 7030 at the MITRE Cor
poration, is continually growing, and the following 
description is accurate as of April 30, 1965. We do 
not feel that MATHLAB has, as yet, sufficient ma
thematical powers to be of aid to a general user, 
except with respect to special and occasional prob
lems. It does, however, possess most of the qualities 
postulated in the previous section as requisities for 
a mathematical laboratory: 

1. Numerical computations. It is very weak 
in this department because we decided at 
first to study symbolic computation as it 
represented the crux of our problem. It 
cannot draw graphs or evaluate common 
transcendental functions. We can evaluate 
algebraic expressions with numerical argu
ments in a variety of ways. 

2. Symbolic computations. Here we can per
form many common tasks. We can simpli
fy, substitute, add equations, differentiate, 
integrate a little, solve equations, etc. 

3. The user commands are simple. If the user 
has stored an equation called eland wish
es to. differentiate both sides of it with res
pect to x and call the resulting equation 
e2, he need only type: 
differentiate (el x e2). 
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4. The program can be expanded by any LISP 
programmer. In fact, we are doing this all 
the time. 

S. MATHLAB can be extended a little by the 
user. He can teach the machine the deriva
tives of functions and change the names of 
system commar..ds. 

6. It is intimate. The user types in some ini
tial equations; the computer thanks him; 
the user requests certain symbolic manipu
lations; the computer performs them and 
types back the answer; the user types in 
some expressions or numbers and requests 
the computer to substitute these for certain 
variables in a previous equation; the com
puter types back the answer; etc. 

Mathematical Notation 

In this section and the next we wish to describe 
MATHLAB as it appears to the user. There are 
some minor differences between MATHLAB as it 
exists at PROJECT MAC and on the STRETCH at 
MITRE. Where such differences occur, we shall de
scribe the situation at MITRE. First, what sort of 
expressions may a user type to denote mathematical 
quantities? The answer is: those expressions, com
posed in the ordinary way, of the following enti
ties: 

1. Numbers: 1, 5/2, 2.5 
2. Words, representing symbolic variables, 

composed of strings of letters and digits, the 
first of which is not a digit: x, distance, xl, 
x1sub2. 

3. Operation symbols: 
+ ( addition) 

(subtraction or minus) 
* (multiplication) 
/ ( division) 
t (exponentiation) 

4. Parentheses: .. {" ana ")". These have two 
functions. The first is to ensure the desired 
interpretation of certain expressions, e.g., 
to distinguish 5*(x+y) from 5*x+y. The 
second use of parentheses is for functional 
notation, e.g., sin (x) . 

All blanks are ignored. The rules of precedence 
of the operational symbols are conventional (FORT
RAN) except that, in the absence of parentheses, 
et xt2 denotes et (xt2) not 
(et x)t2 = et(2*x). 

For example, if the user wishes to enter the math
ematical expression (in conventional notation): 
sin(5x + y2), he need only type (in MATHLAB's 
notation): sin(5*x + yt2). 

The System Commands 

The program as we have developed it accepts two 
types of symbolic quantities, called variables 
and "equations," stored in the computer and which 
can be referred to and manipulated by "name." A 
variable is a mathematical expression together with 
its (one word) name. An equation is really two 
mathematical quantities, one for the left and the 
other for the right side of the equation, together 
with a (one word) name. The initial variable and 
equations in an experiment are entered into the 
computer by a function called "denote." For exam
ple, one might type: 

denote nil 
d = 1/2*a*tt2, 
e 1 = = rt2 = xt2 + yt2, 

The first two commas signify the end of individual 
definitions and the third comma tells the computer 
that this is all the information we choose to give it 
for the time being. The effect of this input is to store 
in the computer a variable whose name is d and 
whose value is 1/2*a*tt2 and an equation whose 
name is el, whose left side is rt2, and whose right 
side is xt2 + yt2. From this point on the user never 
again has to type in rt2 = xt2 + yt2 but can simply 
refer to e1. Incidentally, the response to the above 
instruction (we shall, from now on, use the conven
tion that we speak in lower case and the computer 
in capitals) is: 

THANKS FOR THE VARIABLE D AND THE 
EQUATION E1. 

In terms of these basic constructs of "variable" 
and "equation," we shall describe the various sys
tem commands: 

repeat(x) 
This repeats x to the user. x may be the name 

of either a variable or an equation. The format 
for a variable is similar to that of denote. For an 
equation, if x were e 1 above, then "repeat" would 
print: 
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(EI) Rt2 = Xt2+ yt2 

This same format is used when any of the suc
ceeding commands are called upon to print an 
equation. 

please simplify (X y) 
Simplifies x and names it y. In this, as in the 

following commands, the name "y" may be the 
same as the name "x." In this case, the old x is 
lost. If x is name of an equation, both sides are 
simplified independently. 

forget(x) 

does. 

substitute«vl v2 ... vn) x y). 
The first argument "(vI ... vn)" must be a 

list of names of variables., The value of each vari
able is substituted in x at each occurrence of its 
name. The new equation or variable (depending 
on x) is named y. 

At this point we should like to state more pre
cisely the meaning of the denote and substitute 
instructions. Should we give the command: 

denote nil 
z = x+y, 

x and z would be quantities of quite different na
tures. We shall refer to "x" as a "formal symbol"; 
it is without meaning. "z," on the other hand, is 
the name of an official "variable"; its meaning, 
which we normally refer to as its "value," is the 
expression "x + y" constructed of the formal sym
bols "x" and "y." If we now type the instruction: 

denotes nil 
x = 5*t, 

a variable whose name is "x" and whose value is 
5 * t would be created but this would in no way affect 
the status of x in the value x + y of the variable 
whose name is z. That x remains a formal symbol. 
The fundamental connection that can be established 
between these two occurrences (of different types) 
of the character "x" is through the instruction "sub
stitute." If we now type: 

substitute ( (x) z w) 
the program will look for a variable whose name is 

x, find that its value is 5 *t, look for a variable whose 
name is z, discover that its value is x + y, substitute 
the expression 5*t (containing the formal symbol t) 
for all occasions of the formal symbol x in x + y 
(obtaining the expression 5 *t + y), simplify this to 
5 *t + y, and create a new variable whose name is 
wand whose value is 5*t + y. 

Substitutions take pl~lCe only upon command, 
never automatically. This is as it should be. The user 
may have previously informed the computer that 
x = r*cos(t), but he might like to type x without 
having it automatically changed to r*cos (t). Auto
matic substitution schemes are not only undesirable, 
but prone to interminable loops. 

This description may seem too detailed but an 
understanding of the distinction between a variable 
and a formal symbol as well as the function of the 
substitute instruction is fundamental to an under
standing of MATHLAB. We shall presume the exten
sion of these concepts to equations and to other 
commands (e.g., differentiate) are apparent. 

add«ql q2 ... qn)name) 

The q's can be equations, variables, or num
bers in any order. If there is at least one equation 
among them, name is an equation; otherwise, it is 
a variable. Equations are added by adding left 
sides and adding right sides independently. Vari
ables or numbers are added to an equation by 
adding them to both sides of the equation. 

multiply « q 1 . . . qn name) . . . 
Similar to above. 

subtract(x y name) ... 
Similar to above, but only two equations, vari

ables, or numbers are subtracted instead of an 
indefinite number as in add and mUltiply. 

division (x y name) . . 
Similar to above. 

raise(x y name) ... 
Similar to above. "name = xy

" 

negative (x y) ... 
"y = -x" 

invert(x y) ... 
"y = l/x" 
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flip(x y) 
x must be the name of an equation. y becomes 

the name of that equation with the left and right 
sides interchanged. This is useful if we wish, say, 
to add the left side of one equation to the right 
side of another. 

makeequation(x y) 
x must be the name of a variable. An equation 

is formed whose name is y, whose left side is the 
name "x," and whose right side is the value of x. 
For example, using the variable "d" of "denote" 
above, if the instruction makeequation (d e2 ) 
were given, the computer would respond: 

(E2) D = 1/2*A*Tt 2 

makevariable ( e) . . . 
e must be an equation whose left side is a single 

word. Then a variable is formed whose name is 
the left side of e and whose value is the right side 
of e. For example, "makevariable ( e2 ) " would 
now produce: 

D = 1/2*A*Tt2 
which is where we started. 

expand( (xl x2 ... xn» ... 
This produces no immediate result but affects 

all succeeding simplifications. Whenever one of 
the x's (which are formal symbols) occurs in a 
product of sums, that product is multiplied out. 
The following dialogue will clarify this. 

denote nil 
e3 = = yt 3 + y*y = (x + z) * (u + y), 

THANKS FOR THE EQUATIONS E3 
please simplify ( e3 e4) 
(E4) yt3+yt2 = (X+Z)*(U+V) 
expand ( (x u» 
YES 
pleasesimplify (e3 e5) 
(E5) yt3 + Y1'2 = X*U+X*V+Z*U+Z*V 

The "expand" command affects not only the com
mand "please simplify" but other commands such 
as "substitute" or "add," which always simplify 
their answers. 

factor ( (x y ... » 
Like "expand," this produces no immediate re

sult but affects all future simplifications. It causes 
the collection of all terms containing, as a factor, 

a power of x and similarly for y. The order of for
mal symbols in the list "(x y ... )" implies prece
dence. In this case, the term "x*y" will count as 
y occurrences of x rather than x occurrences of y. 

We give an example: 

denote 
mitre = a*x+2*x+x*y+y 

+ b*y+4*x1'2+c*xt 2, 

THANKS FOR THE VARIABLE MITRE. 
please simplify (mitre bedford) 
BEDFORD = A*X+2*X+X*Y+Y 

+ B*Y +4*X1'2+C*Xt2 
factor ((x y» 
YES 
pleasesimplify (mitre bedford) 
BEDFORD = (2+A+Y)*X+ 

(4+C) *X1'2 + (1 + B) *y 

By calling the functions expand and factor at dif
ferent times with different arguments, the user can 
maintain control over the form of his answers. 

differentiate(y x yprime) ... 
Differentiates y with respect to x and calls the 

resulting variable or equation (depending on y) 
yprime. At present, all differentiation is explicit. 

learn derivative . . . 
Allows the· user to teach the computer the de

rivative of a new function. The format of this com
mand is best explained by an example: 

leamderivative nil 
arctan, 
x, 
1/(1 +xt 2), 

The need for this function has, to some extent, 
been obviated by an improvement in the differ
entiation program. If the computer is asked to 
differentiate arctan (x) t2, it will decide that the 
answer is twice arctan (x) times the derivative of 
arctan (x). If it should then discover that it does 
not know the derivative of arctan, it will try to 
obtain it from the typewriter. If it succeeds, it will 
complete the differentiation and remember the de
rivative of arctan for future use. 

integrate (v x w) . . . 
v must be a variable which is a rational func

tion of x with (rational) numerical coefficients. 
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w is its indefinite integral. For a more precise 
discussion, see the following section. We give an 
example. If 

v = (x + 1 ) / ( (xt2 + 1 ) * (xt2 + 
x+1)t3), 

then the command 
"integrate (v x w)" 

yields the result: 
W = (2/3*Xt3+1/2*Xt 2+1/3*X-1/2) 

I (Xt4+ 2*Xt 3 + 2 *Xt2 
+2*X+l) + 1/2*LOG 
(Xt2+1) -ARCTAN(X)-
1/2*LOG(Xt 2+ X + 1) +7/(3*SQRT(3» 
* ARCTAN ( (2*X + 1 )/SQRT(3» 

solve(e x) ... 
e must be an equation which is equivalent to a 

rational function (with symbolic coefficients) of 
x. At present it can handle only those equations 
which are really (although not necessarily ex
plicitly) quadratic or linear in x. The reply to this 
command, excepting those cases which the pro
gram cannot solve, takes one of three forms de
pending on whether the computer analyzes the 
equation to be linear, quadratic with distinct roots, 
or quadratic with a double root. The following 
three examples illustrate these different responses. 

(1) If e is the equation: y = a*x+b, then 
"solve (e x)" yields: 

THIS EQUATION HAS A SINGLE ROOT. 
X = (Y -B)/A 

(2) If e is the equation: a*xt2+b*x+c 0, 
then "solve (e x)" yields: 

THIS EQUATION HAS TWO ROOTS, 
NAMED FIRSTROOT AND \ SECOND 
ROOT. 

FIRSTROOT = 1/2*( - B+SQRT(Bt 2-
4*A*C) )/A 

SECONDROOT = 1/2*( -B-SQRTCBt2 
-4*A*C»/A 

PLEASE RENAME THOSE WHOSE PRES
ERVATION YOU WISH TO ENSURE. 

(3) Ife is the equation: xt2-2*b*x+bt2 = 
0, then "solve (e x)" yields: 

THIS EQUATION HAS A DOUBLE ROOT. 
X=B 

We give a fourth example which, though simple, 
exhibits more of the meat of the program: 

(4) If e is the equation: 1/(xt2 - 1) = II 
(x - 1), then "solve (e x)" yields: 

THIS EQUATION HAS A SINGLE ROOT. 

X = ° 
There are two points here. First, the equation does 
not appear, at first glance, to be linear but the pro
gram analyzes it as such. Second, a naive attempt 
at solving the equation, e.g., inverting both sides, 
could yield what we feel is an extraneous root at 
x = 1. For an explanation of how the program 
avoids this trap, see the next section. 

rename(x y) ... 
The variable or equation that had the old name 

x obtains the new name y. 

newname(A B) ... 
This command differs from all previous com

mands in that it affects, not the data, but the sys
tem commands themselves. It creates a new sys
tem command B whose effect is identical to A and 
which exists in addition to A. For example, if the 
user tires of typing "differentiate," he can give the 
command 

"newname (differentiate d)" 
after which the command 

"d(y x yprime)" 
will have exactly the same effect as 

"differentiate(y x yprime)." 

Before digging beneath the surface of MATH
LAB, it might help clarify some of the preceding 
if we give a very short sample session possible to
'day. 

denote nil 
el = rt2 = s*t, 
s = xt2 * y, 
t = log(w) lx, 

THANK YOU FOR THE VARIABLES S T 
AND THE EQUATION E1. 

substitute ( (s t) el e2) 
(E2) Rt2 = X*Y*LOG(W) 
denote nil 
w = sin(xt 2+yt 2), 
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THANK YOU FOR THE VARIABLEW. 

substitute (( w) e2 e3) 
(E3) R1'2 = X*Y*LOG(SIN(Xt2+ Yt 2» 
differentiate ( e3 x e3prime) 
(E3PRIME) 0 = Y*LOG(SIN(Xt2+ Yt2» 

+ 2*Xt 2*Y*COS(Xt 2 + Yt2)/SIN(Xt2 
+ Y t 2) 

denote nil 

THANKS FOR NOTHING 

This last crack on the computer's part is indica
tive of a fact that we have not mentioned hereto
fore. Most of the commands have very heavy error 
protection. If the user makes a mistake in con
structing a variable or an equation or tries to give a 
variable a name already assigned to an equation, 
etc., he will receive an instructive error return. 
MATHLAB - BELOW THE SURFACE 
LISP 

The entire program is written in LISP.4 The sys
tem commands are all addressed to the LISP eval
quote operator, e.g., the command "differentiate(h t 
dh)" presents the evalquote operator with a couple 
consisting of the function "differentiate" and the list 
of arguments (h t dh)." 

Numbers 

The LISP system, written by R. Silver and P. 
HeckeP2 for the IBM 7030 (STRETCH) at MITRE, 
contains only one type of number, namely, rational 
numbers, i.e., ordered pairs of integers. If any of 
the numbers 12/5, 24/10; or 2.4 is typed in, it is con
verted to the rational 12/5. 

Internal Representation of Mathematical Expressions 

The internal representation of any mathematical 
expression is a well-formed LISP S-Expression in a 
prefix notation. If the user types: 

denote nil 
v = tt2+sin(pi*t), 

then there is stored on the property list of the atom 
"v" the property "variable" followed by the S-Ex
pression: 

(PLUS (EXPT T 2) (SIN(TIMES PI T»). 
Should the user then type: 

differentiate (v t dv) 

then there is stored, upon completion of the differ
entiation and simplification, on the property list of 
the atom "dv" a pointer to the S-Expression: 

(PLUS(TIMES 2 T) (TIMES PI (COS(TIMES 
PI T»». 

This is translated back into the original infix nota
tion and the typewriter prints: 

DV = 2*T + PI*COS(PI*T) 
Equations are stored similarly to variables, except 
there are two pointers, one to the S-Expression rep
resenting the left side of the equation and one to the 
right. 

Besides the obvious need for well-formed LISP 
expressions, there are two reasons for our choice of 
this internal representation of mathematical expres
sions. First, this representation has become fairly 
standard and this allows us to exchange programs 
with other workers. Second, the prefix notation turns 
out to be well suited to our applications. Consider 
the differentiation we have just discussed. About the 
easiest and fastest thing for LISP to tell us about 
any list is what is the first item on it, in this case: 
"PLUS." But this is precisely the first thing our dif
ferentiation program would want to know so as to 
invoke the rule that the derivative of a sum is the 
sum of the derivatives. Both the input (infix ~pre
fix) and the output (prefix~infix) translation pro
grams are written in LISP, the former employing the 
character reading functions. 

Other internal representations of expressions also 
occur, e.g., polynomials as lists of coefficients and 
rational functions as dotted pairs of lists of coeffi
cients. All such alternative representations have trans
lation programs connecting them in both directions 
with the standard prefix representation. 

Simplification and Differentiation 

The internal programs for simplification and dif
ferentiation have been borrowed from the Stanford 
Simplify Program. 6 They have been modified in two 
ways. 

Simplify has been enlarged to handle a family 
of simplifications typified by the transformation: 
(EXPT (MINUS X) 4/3)~(EXPT X 4/3), i.e., 
( -x) 4/3~X4/3. This simplification was impossible 
in the original Stanford system because 4/3 could 
only be represented by an approximating decimal 
such as 1.3333333 and nothing can be done with 
(-x) 1.3333333. 
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Differentiation has been modified so as to look to 
the typewriter for the derivatives of new functions. 

Integration 

The program for the integration of rational func
tions with numerical coefficients was written by M. 
Manove at MITRE in the summer of 1964.13 It is 
based on a theorem· of Hardy14 that states that the 
integral of such a function is of the form R1 + fR2 
where R1 and R2 are rational and R2 has only simple 
poles. The program always finds R1 and does the 
best it can with fR2, that best depep.ding on its ability 
to factor the denominator of R2. It is good enough to 
have found several errors in published tables of in
tegrals. 

Solve 

Solve first brings the equation it has to solve over 
on one side. It then combines the various terms into 
a single rational expression with one numerator and 
one denominator, employing greatest common divisor 
routines to eliminate common factors from numera
tors and denominators. The roots of the original 
equation are then the roots of the numerator of the 
constructed rational function. If that numerator is 
quadratic, its roots are found by the quadratic for
mula. 
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Computers should provide the mechanism that 
enables engineers to do better engineering. By per
mitting faster and more accurate and complete 
problem analysis to be performed, computers assist 
the engineer in his computational and decision 
making roles. The engineer today is faced with 
problems of increasing magnitude and complexity 
where the effects and interrelationships of all rele
vant information must be considered. The computer 
provides the coordinating and integrating mechan
ism for the problem information needed by the en
gineer in the decision making process. Computers 
enable engineers to perform total problem solutions 
where all pertinent information is properly consid
ered. 

This role of the computer in engineering is 
achieved only when the computer is adequately in
tegrated in the problem-solving environment. This 
integration· must be both external and internal. The 
computer must be integrated externally with the en
gineer using it and the programmer developing it, 
and internally through the proper coupling of hard
ware and software. 

The engineer must do more than use the comput
er. He must actively participate in the computer so
lution. To do this he needs a language to communi-
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cate with the computer, physical accessibility to the 
computer, and a mechanism for obtaining engineer
ing-oriented results from the computer. The com
munication language must be oriented to the prob
lem rather than the machine, and must allow the 
engineer to easily specify his problem-solving re
quirements. Accessibility, provided through some 
type of remote computing facility such as time
sharing, permits the engineer to interact with the 
computer during the problem solution. Mean
ingful results are obtained using scopes, plotters 
and other output devices. 

Integration of the programmer and the computer 
is provided through a powerful programming lan
guage and the necessary system programming capa
bilities to support the language. The programming 
language must be dynamic with respect to both 
proglem solution and computer memory require
ments. It must allow total problem solutions where 
the type and amount of data can vary. To satisfy 
these requirements the system must have dynamic 
memory allocation, alternate forms of data struc
ture, and a data management and transfer mechan
ism so that the same data can be used in all aspects 
of the problem solution. 
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A modular, machine-independent system design 
provides the integrating mechanism for hardware 
and software. The system can then be implemented 
on any machine configuration to take full advantage 
of the available hardware. 

ICES (Integrated Civil Engineering System) sat
isfies the above requirements. It is a modular com
puter system, designed to enable the engineer to eas
ily communicate and interact with the computer. 
The programmer user the ICETRAN (lCES-FOR
TRAN) programming language to develop and mod
ify the necessary components of the system. Dynam
ic memory allocation, alternate data structures and 
data transfer and management facilities are available 
to the programmer. These features combine to make 
ICES an integrated computer system for total civil 
engineering problem solving. ICES is currently being 
developed at a cost in excess of 2 million dollars by 
a group of over 50 people from the Civil Engineer
ing Systems Laboratory at M. I. T. It will provide 
the necessary mechanism to permit civil engineers 
to efficiently solve engineering problems. 

What are the characteristics of these problems 
and how do they affect the design of an integrated 
computer system? Each engineering problem has 
certain unique characteristics that differentiate it 
from other similar problems. The solution to all 
problems however is obtained using a series of bas
ic mathematical and engineering operations, where 
the order in which they are performed varies with 
the specific problem. These fundamental operations 
can be considered basic computational building 
blocks. A problem solution represents a certain 
combination of these building blocks. An integrated 
computer system must therefore include a set of sub
routines for these building blocks and some mech
anism for specifying the sequence of operations 
for a given problem (i.e., a mechanism for putting 
the blocks together). 

There are three different ways this sequence spec
ification can be made, namely: 

1. It can be included in the program. 
2. It can be specified by the engineer as part 

of his data. 
3. A combination of the above two methods 

can be used where the engineer can specify 
some sequencing and the computer will 
perform the remainder. 

The mode of operation used is a function of the 
complexity of the problem being solved and the 

ability of the engineer. It is highly unlikely that 
method 1 will be used exclusively since it requires a 
considerable amount of programming to insure that 
all possible cases that could arise in the problem 
solution are accounted for. 

Methods 2 and 3 require the engineer to 
commnicate the sequence of operations to the ma
chine. A language is therefore needed to allow the 
engineer to communicate with the computer. This 
language should be oriented toward the engineer 
and not toward the machine'. The engineer should 
be able to communicate with the machine in much 
the same way he communicates with another engi
neer. He must instruct the computer rather than fol
low instructions that have been imposed by the ma
chine. Man and machine must form a working part
nership to effectively arrive at a problem solution. 

A communication language satisfying the above 
requirements may be classified as a problem
oriented language. The vocabulary of a problem or
iented language consists of a series of commands, 
where each command represents an operation or 
group of operations the computer is to perform. A 
command consists of a command name and data 
relating to the requested operation. The command 
name is a technical term that has meaning to the 
engineer. The data is free format so the engineer 
need not be concerned with cumbersome card col
umn restrictions. Examples of simple commands are: 

DISTANCE 2 3 

which is used to find the distance between points 
2 and 3 and, 

LOCATE/AZIMUTH 1 2 500.26 50 23 10 

which is used to locate point 2 at ·a given distance 
(500.26) and azimuth (50 degrees, 23 minutes, 10 
seconds) from a kn~wn point (1) (see Fig. 1). 

2 

~\ 

Figure 1. The COGO LOCATE/AZIMUTH command. 

The two example commands are part of the COGO 
(CO ordinate GeOmetry) problem oriented language 
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used for the solution of geometric problems and 
developed by Professor C. L. Miller of the Depart
ment of Civil Engineering at M.I.T. 

The important characteristics of the COGO lan
guage are: 

1. Programs can be written by the engineer in 
a matter of minutes. No computer pro
gramming knowledge is required. 

2. A complete problem can be solved by writ
ing a single CO GO program. Because of 
the small investment of time and money 
involved in writing a program, a new pro
gram is written for each problem and then 
discarded when the problem is solved. 

3. The engineer must choose the necessary 
commands to obtain the problem solution. 
The quality and efficiency of a COGO 
program is dependent on the engineering 
ability of the user. 
Two engineers may write completely dif
ferent COGO programs to obtain the solu
tion to the same problem. 

It is interesting to note the impact of CO GO on 
the civil engineering profession since its introduc
tion in 1960. It is used by many of the State High
way Departments and private consulting firms. One 
State Highway Department uses COGO for over 50 
percent of its computer runs. The one COGO sys
tem supercedes several hundred special purpose ge
ometric programs. 

COGO allows the engineer to actively participate 
in the computer solution. It has introduced many 
engineers to the computer because it is something 
they can understand. 

The acceptance and use of COGO and a compan
ion problem-oriented language STRESS (STRuc
tural Engineering System Solver), also developed by 
the Department of Civil Engineering at M.LT., are 
proven examples of the power of problem-oriented 
languages. They have suggested how a proper bal
ance between engineer and computer can be 
achieved. 

A problem-oriented language is necessary be
cause it is impractical to completely pre-program 
an engineering problem. Part of the programming 
must be performed at execution time by the engi
neer. A problem-oriented language enables the en
gineer to program the machine without actually 
realizing he is programming. He can specify the 
characteristics of the problem, the desired method 

of solution, the requested sequence of operations, 
and the desired output (what he wants, where he 
wants it received, and how he wants it displayed) 
by using the commands of the problem-oriented 
language. Although the commands appear as a pro
gram to the computer, they appear to the engineer 
as a logical problem statement in engineering termi
nology. 

FORTRAN and other compiler languages have 
sometimes been referred to as problem-oriented 
languages. However, FORTRAN contains consider
able computer terminology (COMMON, GO TO, 
DIMENSION, etc.) and is more procedure
oriented than problem-oriented. It, therefore, ap
pears more realistic to reserv~ the term problem
oriented language to a language with the following 
attributes: 

1. It is oriented to the user rather than the 
programmer. 

2. No computer programming knowledge is 
required to effectively use the language. 

3. The language is command structured where 
the commands are composed of technical 
terms. 

In certain cases the engineer can use a problem
oriented language to write all the commands for a 
problem solution, and then submit his run for pro
cessing. It is not always possible or desirable, how
ever, for the engineer to function in this manner. 
Quite often he will formulate part of the solution 
and then base the remaining portion on the results 
o~ the first part. This mode of operation is incom
patible with typical batch processing operations. 
Instead, the engineer must be able to communicate 
with the computer in an interactive environment 
where he can: 

1. Request an operation. 
2. Examine his results. 
3. Determine the next operation to be per

formed based on the previous results. 

This suggests that a problem-oriented language 
functions best in a time-sharing environment. 
With time-sharing the engineer can try many al
ternate designs and compress into one session the 
same work that would require many individual ses
sions over a long period of time in a batch pro
cessing mode. 

Engineering is typically performed under severe 
time restraints. The turn-around time problem in-
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herent in batch processing can totally negate the 
otherwise beneficial results of computers. The engi
neer needs immediate access to the computer. 
Time-sharing or some other form of remote com
puting offers him this access. The combination of 
the accessibility of remote computing and the com
munication capability of problem-oriented lan
guages provides the enginp,er with the necessary 
tools for effective man-computer communication 
and interaction. 

COGO and STRESS represent a significant step 
forward in effective computer utilization. However, 
both of these systems are limited to problems or 
portions of problems of a particular discipline. Civ
il engineering problems generally involve the con
sideration of many disciplines. 

Even in a relatively small problem such as the 
design of a highway interchange, the engineer must 
consider the highway location and design (highway 
engineering), settlement, stability and foundation 
conditions (soil engineering), highway bridges 
(structural engineering), drainage (hydraulic engi
neering) and traffic flow (transportation engineer
ing). As engineers we recognize each of these 
separate disciplines and the necessary interactions 
that must exist for effective problem solving. In an 
integrated computer system each of these disci
plines must be present as a subsystem and the sub
systems must be able to interact with one another. 
The engineer must be able to procede in his prob
lem solution by using the necessary subsystems at 
the proper time. At any point in his problem solu
tion, he can leave one subsystem, enter another to 
perform calculations, and then reenter the original 
subsystem using the results just obtained. 

In the past the complexity of engineering 
problems and the large amount of data often forced 
the engineer to unnaturally decompose his problem 
into non-interactive tasks. Many of the feedback 
aspects of the problem had to be overlooked. The 
computer now offers the mechanism to permit total 
problem solutions where all relevant factors and in
teractions are considered. 

One data file residing on secondary storage can 
be associated with the total problem solution. Cer
tain portions of that file can be used by each of the 
subsystems. A data management facility must su
pervise the organization of the entire data file and a 
data transfer mechanism must transfer appropriate 
data between the sybsystems. 

What about this data associated with the subsys
tems? It is difficult to classify engineering data 
since it is of many types and varieties. In some 
cases only the numeric value of the data is impor
tant, where in other cases, hierarchical and structur
al relationships between the data are also impor
tant. Data with different external characteristics re
quires different internal computer representation. 
So~e engineering data is best stored as arrays, oth
er as lists, and other as combinations of lists and ar
rays. In the past, computer systems have generally 
been limited to one predominant form of storage 
( either list or array). An integrated engineering 
system must have alternate forms of data structure; 
namely, arrays, lists and array~lists. The program
mer will then choose the proper internal structure 
for his data based on considerations such as space 
requirements, access time, information content, ma
nipulation ability and system overhead. The alter
nate forms of data structure will allow new repre
sentations of engineering problems to be achieved 
on the computer. 

Most engineering data is best represented in the 
computer in array form. To achieve optimum capa
bility and remove the restrictions presently associa
ted with normal FORTRAN DIMENSIONed array 
storage, arrays should be dynamically allocated. Dy
namic allocation of data achieves the following: 

1. Arrays are allocated space at execution 
time rather than at compilation time. They 
are only allocated the amount of space 
needed for the problem being solved. The 
size of the array (i.e., the amount of space 
used) may be changed at any time during 
program execution. If an array is not used 
during the execution of a particular prob
lem, then no space will be allocated. 

2. Arrays are automatically shifted between 
primary and secondary storage to optimize 
the use of primary memory. 

Dynamic memory allocation is a necessary re
quirement for an engineering computer system ca
pable of solving different problems with different 
data size requirements. A dynamic command struc
tured language requires a dynamic internal data 
structure. The result of dynamic memory allocation 
is that the size of a problem that can be solved is 
virtually unlimited since secondary storage becomes 
a logical extension of primary storage~ 
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Dynamic memory allocation would extend to 
programs as well as data. Programs can then be 
brought into primary memory only when they are 
needed. The allocation of programs and data must 
be properly balanced so that the use of primary 
memory is optimized. 

The memory allocation problem has been consid
erably simplified as a result of newly announced 
third generation computer hardware, in particular 
new random access storage devices. The new ma
chines are faster, more powerful, larger and cheaper 
than their second generation counterparts. The large 
primary and secondary storage available at reduced 
prices should increase the size of problems that can 

. be solved' on the computer and decrease the cost of 
the problem solution. 

Briefly summarizing, then, an integrated engi
neering computer system should have the following 
computer oriented characteristics: 

1. A flexible powerful problem-oriented lan
guage for the engineer, to communicate with 
the computer. 

2. Remote computing to make the computer 
accessible to the engineer. 

3. An orientation toward total problem solv
ing, not just computation. 

4. An interaction between discipline areas~r 
subsystems-for solving a problem which 
encompasses more than one engineering 
discipline. 

5. A data management scheme to organize 
the data and a data transfer mechanism to 
pass the data between subsystems. 

6. A modular internal building-block struc
ture. 

7. An efficient internal data structure where 
alternate forms of data can be represented. 

8. Dynamic allocation of data and programs 
based on the problem being solved. 

9. Computer hardware to accommodate the 
necessary software. 

All these features have been incorporated into a 
computer system for civil engineering called ICES 
(Integrated Civil Engineering System). The engi
neer uses ICES to obtain solutions to the problems 
he faces. The internal capabilities of ICES provide 
the mechanism for efficient and powerful problem 
solutions. 

To function correctly, these internal computer 
capabilities must be properly linked together. ICES, 

therefore, includes a programming language ICE
TRAN to create the engineering subsystems, and an 
operating system to coordinate and supervise ICES 
computer runs, both of which incorporate the neces
sary internal computer capabilities. 

ICETRAN and the ICES operating system pro
grams are unique because they are developed by 
people who are expert in both the information 
sciences and civil engineering. In the past a schism 
has existed between the computer language develop
ers and application users. The language developers 
could not completely appreciate the needs of the 
users, and their languages therefore were not well 
suited for the intended users. ICES, however, is de
veloped for civil engineers by engineers . 

Every computer system needs a basic program
ming language. With respect to engineering, the 
FORTRAN language contains many desirable fea
tures, and could serve as the basis for the ICES pro
gramming language. However, additional capabili
ties are needed. For this reason, FORTRAN 
has been extended into a language called ICETRAN 
which will be used to program the ICES subsystems. 
ICETRAN contains all of the FORTRAN state
ments plus additional capabilities to facilitate the 
problem-solving features of ICES. These additional 
capabilities are imbedded in the normal FORTRAN 
structure. No new programming restrictions are im
posed on the programmer. 

One of the additional capabilities contained in 
ICETRAN is dynamic memory allocation. A typi
cal ICETRAN program illustrating the use of dy
namic memory allocation is shown below: 

SUBROUTINE ADD (I) 
COMMON A, B, C, .... 
DYNAMIC ARRAYS A, B, C 
DEFINE C, I, HIGH .. 
DO I L=I, I 

1 C (L) =A(L) + B(L) 
DESTROY A 
RELEASE B 
RETURN 
END 

This subroutine adds two one-dimensional dy-
. namic arrays (A and B) together to form a new dy

namic array (C). To understand the ICETRAN dy
namic memory allocation statements it is first nec
essary to briefly summarize the ICES dynamic 
memory allocation scheme. 



428 PROCEEDINGS - FALL JOINT COMPUTER CONFERENCE, 1965 

Associated with each dynamic· array is one 
COMMON location known as a codeword-point
er. This location contains the following information 
about the dynamic array: 

1. The size of the array. 
2. The residence of the array (primary stor

age, secondary storage or space not yet al
located). 

3. A pointer to the beginning location of the 
array in the data pool. All dynamic arrays 
are allocated space in a data pool, which 
consists of the unused primary memory 
space at program execution time. 

4. The status and the priority of the array, to 
be used for memory reorganization. Dy
namic memory allocation implies that the 
array space requirements are constantly 
changing. If the data pool becomes full and 
more space is needed, then a memory reor
ganization must be performed. This reor
ganization is based on the status (active, 
released, or destroyed) and the assigned 
priority (high or low) of the array. A suf
ficient number of arrays are transferred to 
secondary storage to make room for new 
active arrays. If an array on secondary 
storage is later referenced and therefore 
needed it will automatically be brought 
back into primary memory. 

Returning now to our sample program, the DY
NAMIC ARRAY statement is used to specify all 
dynamic arrays. The statement does not cause any 
instructions to be generated by the compiler. The 
DEFINE statement is used by the programmer to 
specify information about a dynamic array that will 
be stored in the codeword-pointer. The DEFINE 
statement in the above example causes the size (I) 
and priority (HIGH) of dynamic array C to be in
serted in the codeword-pointer of array C. Dy
namic arrays A and B have already been DEFINED 
in the subprogram that called subroutine ADD. 

The DEFINE statement does not cause allocation 
of space for the array. The allocation of space is 
delayed until the first reference to an array element 
is made (statement 1 in the above example). The 
first time statement 1 is referenced "I + 1" contigu
ous unused locations in the data pool will be locat
ed. If they are unavailable a memory reorganization 
will occur. The pointer of the codeword will then 
be set to a point to the first of the I + 1 locations, 

which will contain a backpointer to the codeword. 
The remaining I locations will be used to store the 
array. If the array is shifted in the data pool during 
memory reorganization the pointer of the codeword 
is appropriately adjusted. 

After the DOP loop is completed, array A is de
stroyed (DESTROY A) and array B is temporarily 
released (RELEASE B). An array should be de
stroyed if it is no longer needed and released if it is 
not presently needed. Intelligent use by the pro
grammer of the DESTROY and RELEASE state
ments decreases the likelihood of memory reorgani
zation and increases the efficiency of one when it 
does occur. 

The dynamic memory allocation scheme is quite 
powerful and can handle arrays of any number of 
dimensions. An n dimensional array is treated in
ternally as a partitioned set of subarrays. This of
fers extreme flexibility since 

1. Only the subarray the engineer is working on 
need be in core. 

2. The size of each sub array can differ. Figure 
2 shows a two dimensional array where the 
size of each subarray (column) varies (2, 4 
and 3). 

Figure 2. Array size variation. 

3. The structure of the subarray can vary so that 
tree structures can be represented using array 
notation. A tree structure with the associated 
subscript notation is shown in Fig. 3. 

T A (1) 
I ,,\_, 

.Figure 3. Array structure variations. 

The programmer can easily set up desired struc
tures using the DEFINE command and then operate 
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on the structure using normal FORTRAN array no
tation. 

Dynamic memory allocation capability is merely 
one of many features available with ICETRAN. 
Others include list processing, data management, 
subsystem data transfer, and matrix manipulation. 

A completed ICETRAN program must first be 
processed by the ICES precompiler, which will 
translate the ICETRAN statements into legitimate 
FORTRAN statements. Although the generated 
FORTRAN statements might appear somewhat 
confusing to a FORTRAN programmer, they will 
accomplish the requested operations. 

The resulting FORTRAN program is then pro
cessed by the conventorial FORTRAN compiler. 
The use of the precompiler eliminates the necessity 
of modifying the FORTRAN compiler or develop
ing a totally new programming language. 

The ICES precompiler is but one of the system 
programs comprising the ICES operating system. 
Other are described separately below. 

ICES Executive 
The principal form of input that engineers will 

use with ICES is problem-oriented language com
mands. Each ICES subsystem will have a command 
vocabulary associated with it. The ICES executive 
processes the problem-oriented language com
mands that the engineer issues by performing the 
following operations. 

• Read and encode command. 
• Analyze, convert and store data. 
• Perform consistency checks. 
• Transfer control to routine for command 

execution. 
The running of a submitted program therefore 

essentially consists of two phases; the analysis of 
the command by the ICES executive, and the execu
tion of the command by the appropriate processing 
subprograms. A command is completely processed 
before the next command is read. In this regard the 
system operates somewhat as an interpreter, except 
that the commands do not cause computer instruc
tions to be generated. Instead programs that have 
previously been translated to machine . language in
structions are used. 

The executive has been designed to allow many 
powerful features to be included in the ICES prob
lem-oriented command input language that were 
not incorporated in the previously discussed COGO 
problem-oriented language. It may be recalled that 

with COGO only numeric data given in a specified 
order was permitted. The new expanded problem
oriented language capabilities and executive fea
tures of ICES include: 

1. The data associated with a command may 
be identified by labels and specified in any 
order. If the engineer prefers, he may omit 
the labels and enter the data in a standard 
order (as in CO GO ). An example of a com
mand with labeled data items is 

STORE POINT 10 X 50 Y 750 . 63 
which cause the X and Y coordinates of a 
point to be stored. 

2. The engineer may omit a command data 
item and a standard value will automatically 
be used by the executive. This value may 
be either: 

( a) permanently present by the program
mer when the command is initially set 
up; 

(b) temporarily present for a problem by 
the engineer at' the beginning of the 
problem; or 

( c) may be the value of the data item 
presently stored in the computer. The 
programmer who initially sets up the 
command indicates which of these op
tions should be followed. If a stand
ard value is not associated with the 
data item, the executive will indicate 
an error condition whenever the data 
item is omitted by the engineer. The 
use of standard values reduces the 
amount of unnecessary data an engi
neer must include with a command, 
since input entries are made only when 
a nonstandard value is encountered. 

3. Data values may be alphanumeric as well as 
numeric. For example, in a geometric prob
lem the quadrant of an angle may be identi~ 
fied as NE, SE, SW, or NW. The executive 
will automatically set a switch based on the 
alphanumeric value given by the user. This 
switch can then be interrogated by the com
mand processing routines. 

4. Incremental as well as total processing of 
the input command is permitted. If so in
structed, the executive will process part of 
the data, transfer control to execute that 
portion of the data, and then return to repeat 



430 PROCEEDINGS ~ FALL JOINT COMPUTER CONFERENCE, 1965 

the cycle, continuing until the data is ex
hausted. Incremental processing minimizes 
storage requirements when the data field 
contains a variable number of data items. 

5. The executive can initialize variables and 
incremental counters that are specified by 
the programmer at command definition time. 
These variables and counters can then be 
used by the command processing routines. 

6. The command data field can contain com
mand name modifiers which permit compli
cated tree structured commands to be set up 
by the programmer. 

To illustrate command name modifiers consider 
the three versions of the INTERSECT command 
shown below. The command data consists of the 
POINT number assigned to the intersection point 
and the two geometric objects (ARC, LINE) being 
intersected. In the last two commands a known 
point NEAR the desired intersection point must be 
specified since a line and an arc or two arcs can in
tersect at two different points: 

INTERSECT POINT 5 LINE 10 LINE 20 
INTERSECT POINT 5 LINE 10 ARC 20 NEAR 3 
INTERSECT POINT 5 ARC 10 ARC 20 NEAR 3 

The engineer thinks of these as the same com
mand (INTERSECT) but the programmer must 
think in terms of three different commands, since 
each has a different type and amount of data associ
ated with it and each requires different subroutines 
for execution. The programmer views the command 
as the tree structure shown in Fig. 4, where the la
bels ARC and LINE serve as command name modi-

Figure 4. The use of command name modifiers. 

Command name modifiers minimize the number 
of necessary commands and increase the capabili
ties of the commands. 

With ICES the structure of the problem oriented 
language input has been generalized so that the same 

executive can be used for all ICES subsystems. The 
command vocabulary of each subsystem differs but 
the command structure is identical. Each subsystem 
has associated with it a set of internally stored ta
bles which define the commands to the executive. 
When the executive processes the engineer's com
mands, it uses the appropriate set of command ta
bles for the sybsystem the engineer is working with. 

A programmer uses a command definition lan
guage to set up the subsystem commands and gener
ate these command tables. This command definition 
language is a problem-oriented language designed 
for the subsystem developer. ICES therefore in
cludes a problem-oriented language to generate 
problem-oriented languages. In addition to gener
ating new problem-oriented languages, the com
mand definition language can be used to easily add, 
modify or delete commands from a subsystem that 
already exists. This ability to easily modify a sub
system is a necessary requirement in engineering 
organizations where both the problems and the or
ganization itself can change. 

The simple example below illustrates some of the 
features of the ICES executive and the command 
definition language. The STORE command used to 
define the X and Y coordinates of a known point 
will be added to the COG0 subsystem of ICES. A 
typical STORE command as entered by the engi
neer could appear: 

STORE POINT 10 X 1000.53 Y 960 
The command definition program below adds the 

new command to the COGO vocabulary. The un
derlined words are the vocabulary of the command 
definition language and the information in quotes is 
the input data that the programmer supplies. 

SYSTEM 'COGO' 
ADD 'STORE' 
ID 'P' INTEGER 'N POINT' REQUIRED 
ID 'X' REAL 'XCOORD' STANDARD 0 
ID 'V' REAL 'YCOORD' STANDARD 0 
EXECUTE'STORE' 
FILE 

SYSTEM specifies the ICES subsystem (COGO) 
being modified, and ADD specifies the type of mod
ification (addition of a command) and the name 
of the command (STORE). ID gives the character
istics of the data items associated with the com
mand. One ID entry is required for each of the 
three data items of the STORE command. The in
formation included as part of the ID entry includes: 



AN INTEGRATED COMPUTER SYSTEM 431 

1. The identifier for the data item. The iden
tifier defines permissable labels that the 
engineer can use to label the data items. A 
permissible label is one that begins with 
the specified identifier. For example the 
identifier of P permits the engineer to use 
P, PT, POINT etc. as labels for the point 
number. The identifiers for the X and Y 
coordinates given in the second and third 
ID commands are X and Y. 

2. The internal machine representation of the 
data item (REAL or INTEGER) . 

3. The computer location where the data item 
will be stored (NPOINT, XCOORD, 
YCOORD in the above example). 

4. The action to be followed if the data item 
is omitted by the engineer. A REQUIRED 
data item must be entered by the engineer 
or an error will be indicated by the execu
tive. The STANDARD entry is used to 
specify a preset data value that will be 
used by the executive if the data item is 
omitted by the engineer. Since the coordi
nates of a point are quite often (0, 0), 
they have been preset to these values in the 
above example. If the action field of the 
ID command is left blank (this does not 
occur in the above example), then the data 
item will retain its current value if omitted 
from the command by the engineer. 

EXECUTE specifies the subroutine to be entered 
(STORE) to execute the command, and FILE con~ 
eludes the command definition. If no errors have 
been detected by the command definition program, 
the necessary tables for the newly defined command 
will be generated and the command will be added to 
the COGO subsystem of ICES. The above system 
modification can be run as a normal ICES job. 

This example is for a trivial command and does 
not demonstrate many of the capabilities of the ex~ 
ecutive and the command definition language. Un
fortunately, space does not permit more interesting 
commands to be discussed. The reader is referred to 
reference 13 which contains a complete description 
of the executive capabilities and the command defi
nition language. Many examples of different types 
of command structures are included in that paper. 

Dynamic Memory Allocation 

A series of programs has been developed to facil
itate the dynamic allocation of data and programs. 
With regard to data, these programs define, allo
cate, destroy and release arrays by operating on the 
codeword-pointers and data pool. They retrieve and 
store referenced array elements, transfer arrays be
tween primary and secondary storage and reorgan
ize the data pool whenever necessary. 

Dynamic allocation of programs is accomplished 
by system programs which generate program seg
ment modules from compiled subprograms, and then 
load and relocate these modules as they are needed 
during command execution. 

Data Management 

Data management system programs control the 
organization of the data files which reside on sec
ondary storage and are associated with the engi
neer's problem solution. The data management pro
grams allow the same data file to be used by all the 
subsystems of ICES, and each subsystem to use dif
ferent names to refer to the same data. Variable and 
array names in one subsystem are mapped into dif
ferent variable and array names in the other subsys
tems. Whenever an engineer switches from one sub
system to a different subsystem, data transfer pro
grams use the mapping function to automatically 
rearrange the data to reflect the new subsystem. 

Data management also allows the engineer to ea
sily operate on data files. He can print, modify or 
delete any of his files. The data files can serve as 
permanent documents of completed problems. Space 
considerations will of course influence how much in
formation the engineer should keep on secondary 
storage and for how long this information can be 
retained. 

The data management facility will permit public 
files to be created so that several engineers can have 
access to the data to work on the same problem. 
Suitable protection features will be provided to en
sure that unauthorized users may not examine an
other person's files. 

System Generation and Modification 

Necessary utility programs have been developed 
to set up the ICES system on a computer configura
tion and then make modifications to the system. 
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The modifications are performed as normal jobs un
der ICES so that the system is self-modifying. 
ICES is modular so that each organization can 
adapt the system to their problem solving require
ments and hardware capabilities. 

ICES has been designed to be manufacturer- and 
machine-independent. The original system has been 
developed for the IBM System 360. Minimum 
hardware requirements for ICES include: 

65 k bytes core storage (any model of the Sys
tem 360 may be used) ; 

two 2311 disk drives (three drives will result in 
a superior system); 

card input/output facilities. 

The usefulness of ICES is substantially improved 
when on-line plotting devices, graphical in
put/ output devices and remote computing are avail
able. The ICES system being implemented on the 
model 40 System 360 of the Civil Engineering Sys
tems Laboratory at M.l. T. features all of these 
capabilities. A substantial portion of the civil engi
neering community, however, cannot afford these 
added capabilities, and others who can afford them 
do not feel they are economically justified. As a re
sult none of these capabilities are required in a mi
nimum ICES system. The inclusion of any or all of 
the features will result in a far superior ICES 
system. 

ICES Supervisor 

The ICES supervisor coordinates all of the ICES 
system programs' and supervises the use of the com
puter. It calls on the proper system program or user 
program based on the requested operations. 

Some people will no doubt express concern over 
the time overhead of the above system programming 
capabilities. A system objective should be the min
imization of time required for problem solution. 
However, this must not be done at the expense of 
finding the optimal or best solution to a problem. 
Quite often an increase of several microseconds is 
completely justified by the benefits obtained from 
the operations performed. For example, dynamic 
memory allocation does involve additional machine 
cycles, but it also eliminates many bookkeeping 
requirements and the packing of information that are 
necessary without its Use. It also allows increased 
problem-solving capabilities. 

One principle of ICES is that no system program
ming capabilities are forced upon the programmer. 
He is, for example, given the choice between normal 
dimensioned arrays and dynamic arrays, between the 
input capability of the executive or normal FOR
TRAN READ statements. The programmer must 
consider the problem being solved and the tradeoffs 
associated with each of the available alternatives, and 
then make his choice. 

Let us now reexamine the ICES system in total. 
One approach is shown in Fig. 5. Each of the verti
cal boxes represents a subsystem of ICES. These sub
systems utilize the basic engineering building-block 
routines represented by the horizontal box at the bot
tom, and the system programming capabilities of 
the ICES operating system (top horizontal box). 
This framework enables subsystem programmers 
with no system programming capabilities to easily 
develop high-performance subsystems using the ICE
TRAN language. 

ICES SYSTEM PROGRAMS 

Sub- Sub- Sub-
--
System System ~-----------. System 

A B N 

BASIC ENGINEERING BUILDING BLOCKS 

Figure 5. The ICES system. 

The Civil Engineering Systems Laboratory at 
M.1. T. is currently developing a comprehensive ser
ies of ICES subsystems. (See, for example, ref
erences 4 and 5 and 8 for a description of subsys
tems being implemented for ICES). ICES subsystem 
development should not, however, be restricted to 
M.LT. Instead, ICES should be considered as a 
framework for civil engineering computer \vork, 
where all members of the profession make contribu
tions. It is the integrating mechanism for the pro
grams that have been developed 'in the past and the 
work that will be performed in the future. 

User groups such as SHARE have demonstrated 
how needless duplication of programming effort can 
be reduced. The ICES concept is a natural exten
sion of this idea. The user organizations provided a 
framework for rational development and distribution 
of the necessary component programs. ICES provides 
a framework for uniting these components in ':1n -inte-
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grated system. We can now, therefore, think of sys
tem coordination as well as program coordination. 

What then is ICES? ICES is many partnerships. A 
partnership between the third generation hardware 
and the ICES programming software, a partnership 
between ICETRAN and programmers, a partner
ship between the problem-oriented language com
mand structure and the engineer, and a partnership 
between the integrated computer system and the engi
neering organization. It is an integrated system for 
civil engineering where each of the necessary com
ponents (hardware, software, engineer, manager, 
and programmer), properly contribute and interact. 
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AESOP: A PROTOTYPE FOR O'N-LiNE USER CONTROL OF ORGANIZATIO'NAL DATA 
STORAGE, RETRIEVAL AND PROCESSING 
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OVERVIEW 

AESOP is an experimental on-line information 
control system realized in the Systems Design Lab
oratory of The MITRE Corporation. It serves as a 
prototype for a class of management or command 
information systems capabJe of giving the members 
of the using organization as much on-line control 
over system performance as possible. It is a CRT 
display-oriented system in that the user experi
ences the information system primarily through his 
CRT displays and exercises his control through his 
light pencil. This control is not limited to that level 
of the organization responsible for programming the 
system, but applies upward to the highest level of 
executive personnel interested in obtaining direct 
access to the system. 

The current version of the AESOP prototype op
erates on an IBM 7030 (Stretch) computer (65K 
memory with 64-bit words) with a 353 disk storage 
unit holding two million words.1 Each of the four 
user stations consists of an on-line Data-Dis-

*Software characteristics appear in the Appendix. The pro
gram is configured to permit continuous modification of sys
tem performance, both on-line and off-line, with minimum 
recoding requirements. As a result, the models of the system 
change regularly and the model operating at the time of the 
FJCC meeting may contain capabilities other than those 
realized and operating at the time this report was prepared. 
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play-13 display console with a photoelectric light 
pencil, an on-line typewriter, and a Stromberg
Carlson 3070 medium-speed printer. 

The AESOP system is designed to take advan
tage of the range of capabilities implied by this 
central processor and the user station equipment. 
However, the design philosophy is tailored to the 
general characteristics of management and com
mand users rather than to specific characteristics of 
either the equipment or a specific organizational 
job. 

The following description of the prototype, and 
of the conceptual foundations underlying the design, 
deals mainly with those aspects of the system which 
emphasize the user's on-line control capability. 
The description is divided into two sections, the 
first dealing with the long-range conceptual objec
tives which influence the design of the AESOP pro
totype and the second dealing· with the system 
characteristics as they are experienced by the user 
of the currently operational All Model. 

CONCEPTUAL OBJECTIVES 

The flexibility of an on-line information proc
essing system often determines not only its ability 
to respond to new and changing demands upon it, 
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but may, in fact, also determine how extensively the 
system will be used outside of the limited fraternity 
of professional scientists and engineers involved in 
its development and management. System flexibility 
is particularly critical when the on-line capability 
in question is intended to be more than a multi
access, - remote station computer sharing facility. 
When operating in an organizational context, the 
users of an on-line system need to do more than 
develop, store and execute their own job-oriented 
programs. They must also share the common data 
base, common data retrieval and updating routines, 
and the various on-line processing procedures de
signed to use this common data base for various 
organizational purposes. 

Further, in the case of an organizational system, 
flexibility involves not only the system's ability to 
be changed off-line to meet changing on-line re
quirements, but also its ability to be changed on
line to meet the constantly changing needs and time 
constraints of its various users. In addition, an or
ganization-wide system must interface with users 
of widely varying background, experience, needs, 
and position. A system tailored only to the needs of 
junior users is no better than one tailored only to the 
needs of the executive suite. 

The fixed information-processing procedures usu
ally employed at the lower levels of an organization, 
for financial accounting, billing, payroll, and so 
forth, may leave little room for creativity or imag
ination on the part of on-line users of the system. 
In most cases, in fact, there is little need for such 
creativity. On the other' hand, the hardest task mas
ters, with the greatest demand for on-line control, 
are the military or industrial planners, ranging in 
organizational level and function, but working col
lectively on the same total data base. Especially at 
the higher levels of an organization, where the or
ganization'S data base is used for global planning 
and decision, there i~ a need for creative approach
es to information processing. The senior executive 
wqo might use an on-line information system for 
situation monitoring, resource allocation planning, 
or for insight into the timing of executive deci
sions, benefits from as much freedom to mold and 
configure the performance of his information sys
tem as is possible within the limits of his job. 

The concept of on-line information control im
plies the ability of such users of the system to 
change the performance of the system to meet their 
own changing needs or wishes. With adequate con-

trol, they can experiment with the display of alter
native data formats or configurations, with alterna
tive sequences of data retrieval, with alternative 
formulae for summarizing, processing, or analyzing 
data. 

The on-line user needs to be able to express his 
desires by communicating with the system is an eas
ily usable language. The language itself must have 
a syntax and vocabulary tailored to increase the ex
ecutive user's interest in the system, his creativity 
in using it, and his flexibility and facility in accom
plishing any changes he wishes to make. This im
plies that the language should have a syntax and vo
cabulary complex enough to permit a flexible range 
of alternatives. However, the system should make 
the on-line use of that language little more than a 
matter of the on-line user sensing, choosing and 
pointing out his communication desires. Keeping 
track of well-formed syntax and vocabulary con
straints and implications need not be the on-line 
user's problem. 

An advantage of on-line control for informa
tion storage is in the generation and editing of 
personal files. Such personal files, from the user's 
point of view, are not files as they exist in fact 
within the machine structure. The user's concept of 
his file is more likely conditioned by his past expe
rience with manual or mechanical files; and his 
impression of the files )Vi thin a computer system 
can be, therefore, mainly a matter of how he expe
riences these files at his own input-output station, 
how he generates or edits his file, and how he re
trieves data from such files. For an on-line user, 
this experience can be influenced by the way in 
which data are reported to him by the system, 
through his own display device, in his own work 
environment. He can come to "understand" a file as 
simply the set of possible reports derived from the 
file, the lists, tables, and matrices, as they appear 
before him. 

This implies that, no matter what logic is applied 
to the management of the data base inside the ma
chine, the surface appearance of the data base must 
be under the user's on-line control. He should be 
able to set up the file display, the object and prop
erty names, the formats of these files, including se
quence and arrangement of data, as he desires. He 
should be able to generate, store and revise the 
structure of his displays, on-line, in much the 
same fashion as he generates, revises and stores any 
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other portion of his personal data base, and using 
the same general on-line control language. 

In addition to the user's need for on-line con
trol over the generation, retrieval, and display 
characteristics of his data base, he needs control 
over the generation, revision, naming and execution 
of his job-oriented processing routines, as well as 
the storage and retrieval of such processing routines 
as part of his data base. He needs to be able to ma
nipulate logical and arithmetic operators, planning 
factors and parameters, models and projections of 
relevant job-oriented operations. The system exec
utive program must carry the burden. of making his 
job-oriented generation of algorithms little more 
than a matter of looking at his display, choosing 
among acceptable alternatives and pointing to ex
press his desires. 

The need for on-line control is not necessarily 

limited to any level of organization. On the other 
hand, senior executives should not have to use this 
control to create data of low aggregation or detailed 
procedures normally the responsibility of system 
analysts. However, if an executive so desires, he 
should be able to use his control to access the sys
tem at the lower organizational levels when he 
wants to. 

THE AESOP (MODEL A/I) PROTOTYPE 

The AESOP A/I prototype in the form de
scribed following has been operational since August 
1965. From a conceptual standpoint. the system 
contains two major features. The first is an infor
mation retrieval capability which can be operated 
entirely by means of a CRT display and a light pen
cil as shown in Fig. 1. The second is a facility to 

Figure 1. The Data-Display-13 Console with light pencil 
on the right and notebook display on the CRT. 
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construct and operate on-line logical and mathe
matical procedures, again using only a CRT display 
and a light pencil. 

Since an understanding of the user's view of this 
data base is essential to an understanding of many 
of the other system capabilities to be described, it 
will be presented first. It will be followed by a de
scription of the communication tree which the user 
uses to "talk to" the system. The final capability 
described will be the on-line procedure generation 
capability. 
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THE USERS' NOTEBOOK 

The users of the system experience the total data 
base through tabular displays on their DD-13 cath
ode ray tubes. Any tabular display can be repro
duced in hard copy, on call, on the S-C 3070 
medium-speed printer (see Fig. 2). The hard copy 
is always a precise reproduction of the CRT tabular 
display. 

Each display is a section of a page of a file in 
the user's notebook. Each display consists of 30 

Figure 2. Stromberg-Carlson 3070 print copy (a) of CRT 
display (b). 

lines numbered consecutively 1-30, 31-60, and 
so forth. There are as many· pages in a file as there 
are such sets of 30 lines. Each display is 64 charac
ters wide. These 64 characters. are divided into col
umns. The number of columns depends upon how 
many characters constitute a column and how much 
space is desired between columns. A set of columns 
is< referred to as a section of a file. There are as 
many sections as there are sets of columns. The 
user's selection of a specific page and section of a 
file specifies a subset of lines and columns. Custom
arily, but not necessarily, lines identify objects, 
columns identify properties. 

The user's notebook contains as many files as are 
required to hold the organization's data base. It also 
contains an arbitrary number of files with com
pletely blank pages (see Fig. 3). These blank pages 

serve as the environment within the notebook in 
which the individual user builds his private data 
base and personal report formats. In such cases, the 
resulting personal files and reports, developed either 
on-line or off, are retained in the large computer
based notebook. 

In AESOP, the distinction between a public file 
and a private one, a temporary file and a permanent 
file, a file and a report, becomes somewhat artifi
cial. Procedural rules establish that a public file 
should not be revised ty unauthorized members of 
the . organization. Working files . are simply. private 
files that the user intends to erase at some later 
time, but which need not be destroyed if he changes 
his . mind. Private files are generated, either on
line or off, from outside the existing data base or 
by "copy" operations from other files, public or 
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Figure 3-~ CRT Display of an empty notebook page/sec
tion. Light pencil commands appear at the upper 
and lower right. 

private. Both files and reports, from the user's 
viewpoint, are simply CRT tabular notebook dis
plays or their hard-copy reproductions. 

The user of the system can browse through a file 
by firing his light pencil on either a page;,.turning, 
a section-turning, or a line-display command in 
the lower right~hand corner of the tabular display. 
He can turn pages and sections both forward and 
backward to scan all of the objects and properties 
of the file. He can also light pencil a specific line 
number or name, after having light· penciled a re
quest for the display of a line, and have all of the 
columns of data and the column headings displayed 
for him (see Fig. 4). 

The format of each page and section of each file, 
which in effect is the format of a specific tabular 
CRT display, is under theon-line control of the 
system users. Among the parameters of the display 

open to on-line control are the following: 

( a) whether or not the line (object) names are 
to be displayed; 

(b) the number of columns (properties) to be 
displayed in each section of the file; 

(c) the specific columns (properties) that are 
to be displayed and their sequence; 

( d) the location and the size of the column in 
which each property is to be displayed; 

(e) the choice of right, left or decimal justifi
cation of the data for any property. 

Format is determined by data contained in one 
of the standard notebook files in exactly the same 
fashion as any other portion of the data base. In 
this "display adaptation" the names of all of the other 
files of the system are recorded as lines or objects. 
The columns contain all of the format parameters 
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Figure 4. CRT Display of all column names and values for 
a specific line (name JASK) of a file (name 
AIRFIELDS) selected by use of the display line 
command (DISP LINE). 

open to on-line control. Values of those parame
ters are interpreted by the system to determine the 
specific formats displayed to the user. Thus, when 
this "display adaptation" file is changed or updated 
on-line, in the same fashion as any other file in 
the system, there is an immediate resulting altera
tion of the display formats. (Compare Fig. 5 with 
Fig. I). 

The on-line ability to reformat the notebook 
display provides a report generation capability. 
When a particular report is desired, one or more 
notebook pages are formatted to reflect the desired 
report structure. Data can then be copied or gener
ated into that portion of the notebook and a hard 
copy can be made of the resulting display. As a fi
nal step, the display can be returned to its original 
form. 

COMMUNICATION TREE 

Communication with the system for the purpose 
of data retrieval, browsing through the notebook, 
data generation or format control is mainly accom
plished by means of the light pencil and the display 
of the communication tree (see Fig. 6). The com
munication tree not only handles all of the problems 
of syntax and vocabulary necessary to access the 
data base, but it also shows the user all of the 
linguistic implications down each of the branches of 
the tree. In addition, at the top of the display as a 
message is being constructed, it shows him all of 
his previously selected options to serve as a short
term memory aid. 

The branching points heading down the tree in
dicate legitimate options. The user indicates his de-
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. On-line reformatted display of page 1, 1 
of the AIRFIELDS file, originally formatted as 
in Figure 2. Columns have been rearranged, new 
columns added, spacing altered and right-hand 
justification of the COUNTRY column has been 
substituted. 

sires by pointing the light pencil at the desired op
tion currently displayed at the top of the tree. Each 
light pencil action (1) generates a display :record of 
the part of the message constructed to date, and (2) 
moves the tree upward to indicate the next legiti
mate choice to be made or (3) displays a list of 
possible options to be taken at that particular point 
in the construction of his communication. Using 
the tree, the user need have no prior knowledge of 
either the current system index, vocabulary, or syn
tax, and he need not keep a record of the communi
cation he is in the process of constructing. 

For example, as in Figs. 7 and 8, to construct a 
call on the file, the user first requests the communica
tion tree by light penciling the word TREE in the 
upper right~hand portion of his display. He then light 
pencils "GET" at the top of the tree. This action 
writes GET at the top of the display and moves 
FILENAME to the top of the tree (Fig. 7a). Light 
penciling FILENAME then shifts the display to sup
ply a list of all the names of the files currently in the 
system (Fig. 7b). He points his light pencil at the 
file he wants, such as AIRFIELDS, which (1) puts 
GET AIRFIELDS at the top of the display, and (2) 
returns the communication tree display with the next 
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Figure 6. The basic communication tree with all well
formed control statements indicated by down
ward branches. 

valid option displayed at the top of the tree (Fig. 7c). 
If he chooses OBJECTNAME, all of the current ob
ject names in the AIRFIELDS file are displayed, 
enabling him to choose the desired object by light 
penciling it (Fig. 7d). The object name, for example 
KARMAN, is then transferred to the top of the dis-
~1""<1 ...... ...1 -tho r>n..",..",., .... ;" ... +.;n .... +roo C'hnu7C' +1,0 .... oV+ ,,, ... 11rl 
P~uJ u~'"" \..1...1.'-" ,""VJ..1..l..J..I..I.U.l..I..I..","".l.V.I...l. \..J.. ..... '" ..:J.I..I.V l'Y LJ "'.I..I.V ..L.&.V~:lr." 'Y L4-..L"'~ 

options (Fig. 7e). 
To generate a string of characters for inclusion in 

the notebook, a matrix of alphanumeric characters 
and an accumulator are displayed simultaneously. 
The user selects characters by pointing the light pen
cil at them in sequence. His choices are recorded in 
the accumulator and errors can be canceled by a 
suitable light pencil command. When the appropriate 
character string has been generated, the command 
PROCESS moves the display to the next option 
(Figs. 7f and 8a). 

By the alternate selection of appropriate column 
names and the use of the alphanumeric matrix and 
accumulator, the user can modify his data base 
on-line (see Figs. 8b, c, d, and e). The result ap
pears as in line 10 of Fig. 8f (see line 10 of Fig. 2 
for prior file appearance) . 

played, and' executed by the user who need know 
nothing more about the communication language 
than is necessary to point out his desires. By using 
the tree to review the catalog of currently available 
file names, object names within files, and property 
names within files, the user is able to browse 
through the data structure as well as to familiarize 
himself with the range of options and implications 
available to him. 

The sophisticated user is not restricted to this 
mode of communication if his knowledge of the 
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a b c 

f 

Figure 7. Steps in the on-line construction of a file modi
fication command as described in detail in the 
text. 

system exceeds that implied by the look, choose, 
and point philosophy. Users who know the syntax 
and vocabulary of the system may directly compose 
on the on-line typewriter any message that can be 
generated by means. of the light pencil and com
munication tree. In fact, at any time in the evolu
tion of the AESOP prototype, the typewriter user 
has a more extensive language, portions of which, in 
sequence, are transferred to the tree as this proves 
useful. Currently, requests to print hard-copy, to 
erase or to transfer portions of the notebook into 

other portions are accomplished only by means of the 
typewriter. System error messages are primarily 
provided on the typewriter. 

PROCEDURE GENERATION 

The user can also process the data of the system, 
either by executing or modifying established rou
tines or by constructing new routines using his light 
pencil and CRT display. In order to do this, he 
calls up an on-line algorithm construction display 



444 PROCEEDINGS - FALL JOINT COMPUTER CONFERENCE, 1965 

a b c 

d e f 

Figure 8. Figure 7 continued. 

called OAK-TREET. The display appears as a 
tree with one branch displaying commands which 
can be light penciled to build and execute a pro
gram. A second branch displays some basic classes 
of operators and operands or previously established 
functions to be used as parts of this program. A 
workspace within which to build a tree representa
tion of the desired procedure exists as another 
branch (Fig. 9a). 

Each time a user light pencils a command, it ap
pears in the upper right-hand corner of the display 

(Fig. 9b). When he light pencils a class of opera
tors, the specific operators within that class are dis
played on a separate branch of the tree (Fig. 9c). 
When he light pencils one of these specific opera
tors, it also appears in the upper right-hand corner 
of the display (Fig. 9d). Once a command and an 
operator are so displayed, he can then light pencil 
any portion of a tree in the workspace and the com
mand will be executed, using the operator in ques
tion, at that specific location in the workspace 
(Fig. ge). In this general fashion, the user builds, 
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Steps in the on-line construction of a primitive 
procedure to mUltiply 4 by 5. 
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stores, retrieves, modifies, links, and in other ways 
develops a catalog of logical and mathematical 
expressions for use with his data base. 

Numbers are generated by means of a special dis
play of a tree of numerical characters which can be 
added in an accumulator by light pencil selection. 
These numerical strings are then transferred to the 
upper right-hand accumulator in the OAK
TREET display for further use. 

The OAK-TREET capability operates in two 
modes C. The/first displays the commands, operators 
and workspace simultaneously. This mode may 
crowd the workspace but the display logic drops 
portions of the workspace tree off the display face, 
leaving branch markers to indicate what parts are 
gone whenever the workspace density exceeds a crit
ical value. The second mode is used for inspection. 
It turns the entire display face over to the work
space tree. In this mode, any point on the construc
tion can be brought to the top of the display by 
means of the light pencil in order to expose more of 
the details of the tree below that point. 

As an example of the use of the OAK-TREET 
feature consider Figs. 10, 11· and 12. A user inter
ested in . a gross estimate of fuel consumption as a 
function of distance for a high performance aircraft 
in level flight might build the following planning pro
cedure. Using the command REPLACE and a pre
viously stored subroutine with the name JT1, he puts 
this routine into the workspace by pointing the/ light 
pencil at the node immediately below the/ word 
WORKSPACE (Fig. lOa). The previously defined 

routine JT1 is then displayed at that point in the ., 
workspace. In this example, the routine is a gross 
ca1culation of fuel consumption and is called POL
LBS. It involves multiplying the fuel consumption 
rate by the ratio of the distance flown over the aver
age speed of the aircraft. The user may substitute 
parameters into this procedure (see Fig. lOb) and 
then call for it to be executed by pointing the light 
pencil at the command EVALUATE. The result of 
the calculation will be printed by the on-line type
writer. 

Figure 10. On-line retrieval of aprestored routine and in
sertion of parameters. 

To set up a more complex expression for evalua
tion, the user· now changes the distance flown to the 
variable C multiplied by 100. He does this by re
placing 800 with the arithmetic operator X (multi
ply), then setting the branches to C and the number 
100. Both are done with the command REPLACE 
(see Fig. 11 a). The user now temporarily stores this 
modified routine under the arbitrary name GUS. He 
then uses the workspace to establish a new variable D 

set to the value of the routine stored under the name 
GUS. He does this by putting the logical operator = 
immediately under the word WORKSPACE (thereby 
erasing everything else) and then adding under it the 
variable D and the expression stored under the name 
GUS (see Fig. lIb). 

This new expression is now stored temporarily 
under the name JOE. A conditional expression is then 
built in the workspace by putting the logical operator 
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a b 
Figure 11. On-line modification of a procedure, storage and 

use as a subprocedure. 

IF-THEN-ELSE immediately_ below the word 
WORKSPACE. The user then introduces the logical 
operator TYPE on both terminal branches of the 
conditional to indicate that both results of the condi
tional test should be typedby the on-line typewriter. 
He then adds the variable D to the true branch, and 
the same'plus a marker of four dots to the false 
branch (see Fig. 12a). 

The conditional test is set as a comparison to be 
made by the operator LEQ meaning less than or equal 
to. The comparison is to be made between the value 
of D and the number 400 (see Fig. 12b). This por
tion of the routine is now stored under an· arbitrary 
name ED and a next routine is constructed in order 
to execute the previously defined routines. 

This next routine involves the use of the operator 
DO. It is used to first find the value of D and then 
perform the conditional test. This is accomplished 
by putting the routine previously stored under the 
name JOE as a first branch for DO and then using 
the command REPLACE, inserting the routine pre
viously stored under name ED (see Fig. 12c). This 
DO procedure is now stored under the name SAM 
and a next. higher order routine is built. 

This next routine involves the operator FOR which 
is used to run through a sequence of values for a 
given variable. The variable in this case is the C 
which was previously used as the variable for distance 
in the fuel calculation. C will be set to values from 1 
to 10. The previously defined DO expression, stored 
under the name SAM, is then added to be evaluated 
for these values of the variable C (see Fig. 12d). 

The system can be shifted to the second or in
spection mode and the complete routine can be ex
panded for viewing of any part of the tree (see· Fig. 
12e). The light pencil is used to bring any portion 
of the tree to the top center (see Fig. 12f). 

When the command.EVALUATE.is executed, the 
typewriter prints the results of the fuel calculation 
from 100 to 1000 miles in increments of 100 miles 
followed by the indication of four dots when the fuel 
requirement exceeds 400. 

The total routine can now be stored as a perma
nent p::trt of the data base and later used in its en
tirety. The routine can also be returned to the 
workspace for modification or to detach subrou
tines for other purposes. As long as the total rou
tine remains filed in the data base, it is '. available 
for inspection and application on-line. 

As complex or extensive routines are constructed, 
it beco:nes increasingly undesirable to display the 
total structure to the operational user of the rou
tine. In such ca,ses only the name of the routine and 
the names of the insertable parameters need be dis
played in the OAK~TREET workspace. The ap
propriate values for these parameters can then be 
inserted by the user and the named routine evaluat
ed on call. (See Figure 13 for example.) 

In this example a routine called STATUS requires 
the insertion of a destination code (AREA), the 
type of aircraft(AC-TYPE), and number of aircraft 
(NO-AC) to be flown to that destination, and the 
number of originating airfields to be checked for the 
availability of these aircraft (NO-AF). The routine 
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Figure 12. Steps in the on-line construction of a complex 
procedure using previously on-line defi~ed and 
stored subprocedures. Expansion for inspection 
in (e) and (f). See text for a detailed description 
nf th .. nrnf' .. i!nr .. 
- .............. - t"' ... -----... -. 

then locates up to this number of originating airfields 
with sufficient aircraft available, in order of increas
ing distance from the destination. It lists the airfields, 
the number of aircraft available, the organizational 
designation of the aircraft, the distance and time re
quired to reach the destination. 

The detailed structure of user routines such as 
STA TUS is examined and debugged in another dis
play environment called DEBUG. (See Fig. 14.) In 
the DEBUG function, the structure of the routine is 

displayed as the second leftmost limb of a tree along 
with a set of commands which permit the program
mer to examine any selected portion of the routine 
in question and then modify and redefine it. 

A routine is brought to the top of the second 
leftmost limb of the DEBUG tree by an on-line 
typewriter command DEBUG (name). Any subtree 
of that routine is then moved to the top of that 
limb by pointing the light pencil at the node on top 
of the substructure in question. The structure can 
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Figure 13. The use of OAK-TREET for parameter insertion 
in fixed procedures. 

also be displayed, in whole or in part, by itself, in 
either a multinode or single node state. 

By light pencil, using the command·OAK, the sub
structure displayed on the second leftmost branch of 
the DEBUG tree is moved into the workspace of 
OAK-TREET. In this position· it can be modified 
using the standard OAK-TREET capabilities. The 
modified structure is then moved back to the second 
leftmost limb of the DEBUG environment by light 
penciling the OAK-TREET command KEYBOARD. 
The modified structure replaces the previous struc
ture in the system by light penciling the redefinition 
command DEFTR. The revised and redefined func
tion can then be evaluated using the command TEST. 

This procedure for on-line program development 
and revision applies to all of the user and system 
functions constructed in and interpreted by the 
AESOP list processor, TREET (see the Appendix 
for details). For example, it is possible to DEBUG 
(FACTORIAL) as in Fig. 14(a), (b), (c) and (d) 
or DEBUG (STATUS) as in (e) and (f). It is also 
possible, for example, to DEBUG (OAK) or DE
BUG (DEBUG). 

In previous examples, data used in the execution 

of a user's routine were inserted by means of the 
user's light pencil. The results of executing the rou
tine were printed by the on-line typewriter. How
ever, it is also possible to have the routine call for 
data directly out of the computer-based notebook 
and then place the results of its execution in the 
notebook. In effect, the TREET processor can be 
considered one of the on-line users of the note
book-based file. The TREET processor retrieves 
data from the notebook using any of the system re
trieval capabilities available to the other on-line 
users of the notebook. It stores data in the note
book using· the same range of storage capabilities 
available to human users of the system. It uses the 
same communication language. 

For example, in Fig. 15, the file BLANK is or
ganized as a scratchpad for keeping track of the in
put and output data derived from the evaluation of 
the STATUS 1 routine. The routine STATUS 1 dif
fers from STATUS (see Fig. 13) mainly in its use 
of the notebook for its data base. Working headings 
are established in BLANK for COLI through 
COL4 to fix the column locations for input to 
STATUS 1. Column headings are established in 
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Figure 14. Steps in the generation or modification of an in

terpreted system or user procedure. See text for 
details. 
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Figure 15. Steps in the use of the notebook for data input 

to and data output from user procedures. See 
text for details. 
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COL6 through COL10 for recording outputs from 
STATUS 1. STATUS 1 is constructed to include a 
data call on the file BLANK in order to list input 
data from COLI through COL4, as shown in Fig. 
15 ( a). It also includes a data change order to insert 
output data in COL6 through COL10 as in Fig. 
15 (b) . Source and destination line numbers are 
supplied by the on-line user in OAK-TREET, as 
in Fig. 15 ( c ). Input data qre then either generated 
on-line or transferred from other portions of the 
notebook into BLANK, as in Fig. 15 ( d); the ap
propriate line numbers are inserted into STATUS 1 , 
as in Fig. 15 (e); and the execution of the STA
TUS 1 routine updates the notebook as in Fig. 
15 (f). 

Using this type of on-line capability, in con
junction with capabilities for moving data from one 
location in the notebook to another, the human user 
of AESOP can execute routines, store resulting data 
in temporary notebook files, review these results, and 

TREET 
I-- LIST 

DISPLAY PROCESSOR 

CONSOLES 
I/O I----- LP 

I-- EXECUTIVE INPUT 
PROGRAM ~ EXECUTIVE 

PUSHBUTTON 

INPUTS 

~ 

-

r-ei 

then select those for transfer into permanent organiza
tion files and/or reports. 

APPENDIX 

Aesop Software Structure 

The Aesop prototype is an evolutionary experi
mental system. As such it is incremental in growth. 
To facilitate this growth an attempt has been made 
to make the system modular as much as seemed 
practical. There are certain elementary system func
tions such as data retrieval, data updating and data 
display. At another level there are additional func
tions that are preprocessors or switching routines for 
the elementary functions. As an example there is a 
COpy action that will copy data from one system 
file into another. It does this by using the data re
trieval and then the data updating routines in 
succession. Fig. 16 outlines the functional organiza
tion of the system. 

~ TYPEWRITER 
OUTPUTS 

TREE 
I-L....e 

TREE 

PROCESSING DISPLAY 

FILE AND 
re OBJECT 

DISPLAYS 

TYPEWRITER -

INPUTS 
~ LIST 

I ~ CHANGE ...... RETRIEVAL 

RENAME PROGRAM 
COPY 
SWAP ~ 

ETC 

Figure 16. Simplified schematic of the AESOP A/I software 
interrelations. 

The total system occupies about 35,000 computer 
words. The remainder of the computer core memo
ry is used as free storage space for list structures. 
The two prime considerations in the construction of 
the system were: 

1. Ease of extension to permit the system to 
grow as new capabilities are added to it. 

2. Speed of operation to give the operator 
fast response to all of his inputs. 

Economy of storage has not been a prime consid
eration. All of the system data base is stored in the 
disk unit. 

TREET is a general-purpose list processing 
system* written for the IBM 7030 computer at the 
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MITRE Corporation. All programs in TREET are 
coded as functions. A function normally has a 
unique value (which may be an arbitrarily complex 
list structure), a unique name, and operates with 
zero or more arguments. A function may or may 
not have an effect on the system. Some functions 
are used for their effect, some for their value, and 
some for both. The OAK-TREET function as it 
appears to the operator has commands, data classes 
and data which can be used for procedure construc
tion. 

What follows is a simplified explanation of the 
principal nodes of the limbs of the OAK-TREET 
tree. OAK-TREET is constructed in TREET and 
OAK-TREET expressions are evaluated by the 
interpretive list processor. 

OAK-TREET 

COMMANDS 

REPLACE - The effect of this command is to 
place in the workspace, at the point indicated 
by the light pencil, the expression, symbol, or 
structure indicated by its argument. 
EVALUATE - When this command is sig
nalled by the light pencil the expression in the 
workspace is evaluated. 
KEYBOARD - When this command is sig
nalled by the light pencil, the system will expect 
the next command to come from the on-line 
typewriter. 
STORE - A copy of the expression which" is 
indicated by the light pencil is maintained in 
the system under the name of the· argument. 
ADD-R T - The expression indicated by the 
first argu~ent of this command will be added to 
the workspace with the same parent as the node 
indicated by the light pencil. 

*See E. C." Haines, "The TREET List Processing Lan
guage." SR-133, The MITRE Corporation (April 1965). 

ERASE - Removes the node (and all nodes 
dependent upon it) indicated by the light pencil 
from the workspace. 

DATA 

ARITH2 - Arithmetic Operators. 
+ - Computes the sum of its arguments. 
- - Computes the difference of its argu

ments. 

x - Computes the product of its arguments. 
DIV - Computes the quotient of its argu

ments. 
SUMMATION - Sums an expression while 

a variable goes from some number to an
other in increments of one. 

FACTORIAL - Computes the factorial of 
its argument. 

EXPONENT - Raises its first argument to 
the power indicated by its second argu
ment. 

EQUALS - A predicate which checks for 
equality of its two arguments. 

LEQ - A predicate which is true if its first 
argument is less than or equal to its sec
ond argument. 

L T - A predicate which is true if its first 
argument is less than its second argument. 

LOGIC2 - Logical Operators. 
TYPE - Types out the value of its argu

ments on the typewriter. 
DO - A convenient way of grouping several 

expressions under one node. 
EV AL - Evaluates its argument which must 

be an expression in Cambridge Polish 
notation. 

CONS - Computes the list of its second 
argument augmented by its first argument. 

MEM 1 - Computes the first member of its 
argument which must be a list. 

REM 1 - Computes the list of its argument 
with its first member removed. 

AND - Logical Intersection. Value is TRUE 
if both arguments are not NIL. 

OR - Logical union. Value is TRUE if 
either (or both) argument is not NIL; 
NIL otherwise. 

NOT - Logical negation. Value is TRUE if 
its argument is NIL. 

A TOM - A predicate which asks whether 
its argument is atomic. 

EQUALS - A predicate which checks for 
equality of its two arguments. 

PROG2 - Has as its value its second argu
ment. It is useful for attaching a different 
value to a computation. 

WHILE - Evaluates its second argument 
while its first argument is (evaluates to) 
true. 
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IF-THEN - IF (al THEN a2) The value 
of this expression is the value of a2 if a1 
evaluates to true; NIL otherwise. 

IF-TH-ELSE - IF (a1 THEN a2 ELSE a3) 
The value of this expression is the value 
of a2 or a3 depending on whether a1 is 
true or false. 

FOR - Provides a convenient way to exe
cute an expression (its fourth argument) 
for a numerical range (between the values 
of its second and third arguments) of a 
variable (its first argument). 

= - This is the assignment operator. It sets 
its first argument (which must be a vari
able) to the value of its second argument. 

Q - Quotes its argument. 
ADL - The second argument of ADL must 

be a variable which evaluates to a list. 
ADL sets that variable to CONS (EV AL
( argl) arg2) thus effectively adding some
thing to a list. 

CHOP - The single argument of CHOP 
must be a variable which evaluates to a 
list. The value of CHOP is the first mem
ber of that list. The variable is set to the 
remainder of the list. 

FNA - The value of FNA is the value of 
its argument considered as a function ap
plied to no arguments. Its only purpose 
is to represent a function of no arguments 
in tree structure. 

NAME - The value of NAME is the value 
of its first argument. The second argument 
is ignored. Name is used to label an 
expression. 

NAMES 
This is a set of undefined symbols which may 

be used as the name under which a routine is 
stored for later use. 
NUMBERS 

This calls up a function which nerrnits any 
integer to be constructed by pointing the light 
pencil to its digits in sequence. 
VARIABLES 

This is a set of variables which can be used 
in an expression in the workspace. 

DEBUG 

DEBUG is a function which allows other func
tions to be displayed and changed on-line. It 
works with any interpreted function but cannot dis-

play a machine language coded function. Most of 
the work of debugging a function is done within 
DEBUG using the light penciL In the DEBUG dis
play are five branches -from left to right, (1) COM
MANDS, (2) name of the function to be examined, 
(3) type of. function, (4) ARGS, and (5) PVARS. 

VIEW ACTIONS 

If any node other than one in COMMANDS limb 
is light penciled, then the multiple rooted subtree 
headed by that node replaces the tree structure in 
the second leftmost branch to the right of the 
COMMANDS branch. This feature allows one to 
view all of a function that is otherwise too large to 
fit on the display, to concentrate attention on a par
ticular substructure of a function, or to select which 
part of the tree will be taken into OAK-TREET 
for modification. 

COMMANDS 

RESTOR B - This restores the display to its 
original· position thereby cancelling all previous 
view actions. 
BACKUP - This command cancels the last 
previous view action (if any have been per
formed since the last RESTORE). 
OAK - The tree on the second leftmost branch 
of DEBUG, to the right of the COMMANDS 
branch, is placed in the workspace of OAK
TREET and the OAK-TREET function is en
tered. Changes to the tree may be made as 
desired. DEBUG is then reentered with this 
modified structure by light penciling the com
mand KEYBOARD in OAK-TREET. 
KEYBOARD - This command returns con
trol to the on-line typewriter keyboard. If the 
control has been returned to the on-line type
writer, the DEBUG function may be reentered 
without starting over again by typing R ( ) . 
Changes may also be made using keyboard tree 
changing functions. 
DEFTR - DEFTR redefines the function ac
cording to the present (modified) configuration 
of the tree. (Changes made to the displayed 
version are not reflected in the function itself 
until this is done.) 
TEST - This command initiates the processing 
for execution of the function displayed. The 
value of the function is printed by the on-line 
typewriter. 
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BRANCH TWO 

On the second leftmost branch appears the name 
of the function being examined, and under it a list 
of statements and location symbols. Location sym
bols are represented by a node containing that 
symbol. Statements are represented by trees in the 
same fashion as in OAK. 

TYPE 

The function type is normally regular type R. 
Type F indicates that the arguments of the function 
should not be evaluated prior to evaluating the 
function itself. Type U functions allow an arbitrary 
number of arguments to be specified; the arguments 

are collected in a single list and given to the function 
as one argument. A type FU function is the com
bination of types F and U. 

ARGS 

The list of arguments specifies which symbols 
will be set as the values of the arguments of the 
function when it is called. The old values (if any) 
of the symbols are automatically saved and restored. 

PVARS 

The value of an argument in the program variables 
list is automatically saved and restored by the 
function. 
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INTRODUCTION 

The modern art of computation has developed 
from plugboard programming through the stored 
machine instruction programs controlled by the 
users on the consoles, then to problem-oriented sym
bolic programs computed in the batch mode, to
wards the on-line computing during which the 
users have a large amount of control over their pro
grams. The lower cost per computation and flexibili
ties of a large capacity high-speed computer nat
urally lead us to consider the provision of on-line 
computing service to several users on a single 
high-performance machine in a time-sharing 
mode, rather than several smaller machines, one for 
each individual. To maximize the efficiency of a 
man-machine team working in an on-line com
puting mode, it is desirable to let the man choose 
the language-say English-for communication and 
to let the machine do the translation. This idealistic 
goal is not impossible, but is currently impractical. 
A good compromise is to select as the user language 
a formal language such as ALGOL, FORTRAN or 
LISP which has a set of explicit syntactical rules 
and a small set of basic vocabulary. The user then 

*The study is partly supported by National Science Foun
dation Grant GP4264. 
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may extend the vocabulary by declarative state
ments and communicate with the machine in the 
extended vocabulary. Due to frequent message ex
changes between the man and the machine during 
on-line computing, the machine representation of 
users' programs must be easy to modify at the 
source language level. The technological trend to
wards large random access memory suggests the re
tention of several users' programs in core simulta
neously, hence mutual memory protection must be 
ensured. 

This paper describes a scheme of structuring the 
users' ALGOL programs in accordance with the syn
tactical unit of a statement. The scheme enables the 

. user to make modifications to his source language 
program at the statement level without recompiling 
the complete program. The same structure is used 
to provide the logic sequence of executing state
ments and to ensure memory protection among us
ers. The next section describes the operating envi
ronment of on-line computing which justifies the 
scheme presented in this paper. The following sec
tion reviews the recursive definition of a statement in 
ALGOL as a syntactical unit which is used as the 
unit of communication from the user to the ma
chine as well as the building block of the program 
structure in the machine. The next to the last section 
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describes the statement-oriented program struc
ture, and the final section shows the role played by 
the program structure for multiprogram time
shared on-line computations. 

THE ENVIRONMENT IN ON-LINE COMPU
TATIONS 

There are two modes in on-line computation: 
constructing the program, and executing the pro
gram. Since the programmer is constructing the 
program on-line piece by piece, it is desirable to 
specify a minimum number of rules-either things 
the programmer is not allowed to do, or actions the 
programmer may take. In either case the program
mer will not be ,burdened with remembering many 
rules. When executing the program on-line, the 
user must be able to exercise controls to start and 
stop the computation at will. The construction of a 
machine code program on an operator's console im
poses a very simple rule on program modification, 
namely that any single instruction may be inde
pendently changed. The execution of a program on 
an operator's console provides complete. control at 
the machine instruction level, namely that the pro
gram may be started or' stopped at any specific in
struction, or that the program may be stepped 
through. However, the direct use of an operator's 
console for on-line computing was discarded on 
account of the weakness in using a machine code 
language for program construction and the wasteful
ness of computer time due to human intervention. 
The introduction of high-level programming lan

e guages and batch operation eliminated the above 
shortcomings and at the same time ruled out the fea
tures of on-line computation. 

From the above analysis, we can say that an ac
ceptable on-line computing system must offer each· 
user an input/output device. From this device, he 
may construct his program piece by piece in a 
high-level programming language, in which a 
statement is the building block. When executing the 
program, he may control the . sequence by starting, 
stopping or stepping through his program at the 
statement level. For economy, the system must be 
time-shared among several users to minimize sys
tem idle time. From a user's point of view, he en
joys the advantages of an operator's console and a 
high-level . programming language. In this environ
ment, the following are taken as the design specifi
cations: 

1. The programming language must be easy to 
learn and powerful in expressing algorithms. The 
syntax of the language must allow easy extension to 
cope with applications such as symbol manipula
tions. I ALGOL 602 is considered as a promising 
language. 

2. The source language program should not be 
completely compiled into a single machine code 
program such that local changes in source program 
only require local modifications to its machine rep
resentation. An incremental compiler is required. 

3. The communication between the user and the 
machine should be machine independent. For exam
ple, the user may ask for the values of variables by 
specifying their symbolic names, rather than the ac
tuallocations in memory. 

4. Several users on-line should time share the 
processor, and all users' programs and data should 
be retained in core whenever possible, to minimize 
swapping. 

5. A statement is taken as the basic unit of pro
cessing such that the user may start or stop his pro
gram at specified statements or may execute his 
program one statement at a time in. a "step" mode. 

A STATEMENT IN ALGOL 

Since the publication of the "Revised Report on 
the Algorithmic Language ALGOL 60,"2 suggestions3 

have been made to generalize it. The following gen
eralization of the definition of a statement is intro
duced here to give a simpler syntax and render it 
more suitable for on-line computations. 

<program> :: = <statement> 
<statement>:: = <unlabeled statement>· I <la

bel> : < statement> 
<unlabeled statement> :: = <block> I <declar

,ative statement> I < assignment statement> I 
<conditional statement> I <for statement> I 
<go to statement> I empty I <line number> 

< block> :: = begin < list of statements> end 
<:list of statements> :: = <statement> l<1ist 

of statements>; <list of statements> I «lower 
limit>, <upper limit» 

< declarative statement> :: = < declaration> 
<conditional statement> :: = if <boolean ex

pression> then <statement> else <statement> 

The inclusion of <line number> as unlabeled 
statement and «lower limit>, <upper limit» as 
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a list of statements is to facilitate on-line program 
manipulation. < line number> denotes a statement 
already compiled and assigned a unique line number 
for identification by the compiler. «lower limit>, 
<upper limit» denotes the list of already compiled 
statements bounded by the two limits which are iden
tification line numbers. The section on Incremental 
Statement Compilation gives some examples of using 
line numbers to modify and reshuffle statements in a 
program. 

All other undefined metalinguistic variables in the 
above have the same definitions as those given in the 
official report. 2 

The important differences between the above de
finition of a statement and that in reference 2 are 
the following: (1) No distinction is made between 
a compound statement and a block. (2) All dec
larations are treated as declarative statements and 
are allowed to appear anywhere in the block, not 
necessarily at the beginning. It is conceivable that 
in on-line computing, the user will benefit from 
such freedom in making declaration in the middle 
of a block. (3) Only one type of conditional state
ment is used: the (if then) is a redundant form of 
the (if then else) in which the statement that fol
lows else is empty. The statement that follows then 
is no longer restricted to unconditional statement.--

The above definition of a statement will be used 
as the smallest building block during the construc
tion of a program on-line. The user may insert, 
add, delete or reshuffle any number of statements at 
a time, and the program structure is designed so 
that only local modifications are invoked. 

THE STATEMENT-ORIENTED PROGRAM 
STRUCTURE 

By using a statement as the building block of a 
program, we can structure the ALGOL program in
ternally in the computer memory as a collection of 
mUltiply linked elements, one for each statement. 
An element has a set of structure parameters in the 
form of pointers that link the element to other ele
ments so that the program-imposed ordering 
among statements is preserved. If the element repre
sents a· statement which can be decomposed into 
other statements such as a block, a conditional 
statement, a for-statement or a procedure declara
tion, the structure representing its component
statements are linked to the element by pointers in 

it. Hence the number of pointers in an element de
pends on the type of the statement it represents. 

An element in the program structure is composed 
from the following quantities: 

1. A type indicator to specify the type of 
statement it represents. 

2. A set of structure pointers to connect it 
into the program structure. 

3. The compiled machine code for the state
ment: All references from one statement to 
others are made through the system inter
pretation on the program structure. 

4. The source statement image: The statement 
image is retained to provide positive docu
mentary features. 

5. An identification for referencing: This sys
tem edited identification takes the form of 
a line number such that the user may refer 
to any specific statement in making a pro
gram change or in initiating execution. 

6. Internal editing numbers: All quantities in 
an element are packed into a contiguous 
block of words. The size of the block de
pends on the statement. Two integers are 
used to specify the size of the block and 
the field that contains the statement image. 

All quantities in an element are completely relo
catable except the set of structure pointers. The 
blocks of words, one block for each element, are 
dynamically allocated in the memory. Words are 
taken from an available storage block of unused 
words to form new elements. The available storage 
block is shared by all users. It can be reclaimed 
when exhausted by a scheme similar to that of the 
garbage collector in LISP. 4 In reclaiming the 
available storage block, all blocks of words being 
linked in the program structure are relocated with 
appropriate changes of structure pointers in the ele
ment so that a single available block of consecutive 
words can be reclaimed. 

A simple example is given in Fig. 1 to illustrate 
the use of structure pointers as shown in Fig. 2. 

In Figs. 1 and 2 we use S to denote a nondeclara
tive statement, B to denote a block, D to denote a 
declaration, BEX to denote a Boolean expression 
and FCL to denote a for-clause. The complete pro
gram can be treated as a single statement in the form 
of a block B enclosed by the statement brackets: 
begin in line .1 .. and end in line 1. *. This block con
sists of a list of 4 statements S1, D2, Bg , S4 where Ba 
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is a block between line 4. and 4. *, and D2 is a dec
laration. 

The element representing the block B has the fol
lowing set of structure pointers (Fig. 2): 

1. besin 

2. SI ; 

3. D
2

; 

4. besin 

5. S31 ; 

6. if BEX321 ] 7. then for FCL
3221 l B3 B 

8. do 8 3222 
8

322 S32 

--.J 
9. else 8 323 J 

10. D33 

11. 8
34 

4. ~:~ end; 

12. S4 

1 ):' . end 

Figure 1. A simple program in which the following abbrevi
ations are used: (1) B, S, D, BEX, and FCL represent 
respectively the syntactical units of block, statement, dec
laration, boolean expression, and for-clause; (2) Xijk is 
a component in the syntactical unit Yij. 

d points to the list of declarative statements in B; 
t points to the list of nondeclarative statements 

that are referred to in the original ALGOL 
report2 as the tail; 

h points to the element representing the block 
head of which. B is a subblock - for this 
example h is empty; 

f points to the element representing the state
ment that logically follows B in the same 
block. 

The element representing the statement S1 has 
pointers f1, h1. 

The element representing the conditional statement 
S32 between line 6. and 9. has pointers f32, h32, tS32, 
fS32 where tS32 points to the element representing the 
statement to be executed if BEX321 is true. fS32 points 

to the element representing the statement to be exe
cuted if BEX321 is false. 

The element representing the for-statement S322 
has pointers f322, h322 and dS322 where dS322 points to 
the element representing the statement that follows do. 

The f pointer of the last statement in a block iSa 
block return BR. The f pointer in the statement within 
a conditional statement points to if-return JR. The 
f pointer in the statement that follows do in a for
statement is a for-statement return, FR. The f pointer 
in the last element of a list of declarative statements 
is a declaration return, DR. The f pointer in the ele
ment representing a procedure body is a procedure 
body return, PBR. Using the above set of pointers, 
the structure of the program in Fig. 1 can be con-

structed as shown in Fig. 2. 
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Figure 2. The structure of the program in Fig. 1. 

B3 

t 
Ih3~DR 

D33 I 

5 = < statement> 

B = < block> 

D = < declaration> 

BEX = < boolean expression> 

FCL = < for-clause> 

fJ) 

~ 
~ 
c:: 
(') 
~ 
c:: 
~ 

Z 
o 
~ 
~ 

8 
~ 
)-

~ 
'fJ) 

~ 
o 
~ 

~ 
c:: 
t""' 
::l 
I 
~ 
:::0 
o 
o 
~ 
)-

~ 
~ 

i: 
t'r1 
I 

rJl 
:I: 
)-
~ z o 

.J::>. 
0\ ..... 



462 PROCEEDINGS - FALL JOINT COMPUTER CONFERENCE, 1965 

Figure 3 shows an element in the program struc
ture. It is a block of '}' words. The various quantities 
in an element are listed as follows: 

TYPE 13 " f h 

PI Pz 

line num.ber 

~ PM code 
.,..-;:1.0 

~ 
'l 

statem.ent v 
~ lmage f 

11....------:---:---::-------:-, 
Figure 3. An element in the program structure. 

TYPE 

f3 

'}' 

f 

h 

TYPE 
block 

declaration 
procedure 
if-statement 

for-statement 

others 

line 
number 

a type indicator from block, declara
tion, procedure, if-statement, for
statement, others. 
an integer specifying the location of 
the first word in statement image field 
relative to the first word in the ele
ment. 
an integer that specifies the number 
of words in the element. 
a pointer to the element representing 
the next statement. 
a pointer to the element representing 
the block in which the given element 
is a statement. 
pointers depending on the TYPE ac
cording to the following table: 

PI points to P2 points to 
list of list of 
declaration statements 
not used not used 
not used procedure body 
statement statement 
after then after else 
not used statement 

after do 
not used not used 

a unique number for each element 
used for reference by the user. 

PM code : Pseudo-machine code for the com
piled statement. The PM code differs 
from the absolute machine code in the 
following ways: 

statement 

( 1) All references to identifiers are 
indirectly addressed through non-relo
catable entries in the user's symbol 
table. 
(2) The last instruction in a PM code 
block always returns control to the 
execution monitor in the system which 
selects the next element in the pro
gram structure for execution. 

image: The source statement image is re
tained in its symbolic form. 

THE ROLE OF PROGRAM STRUCTURE 
IN MULTIPROGRAM TIME-SHARED 
ON-LINE COMPUTATIONS 

In this section, we will describe how the state
ment-oriented program structure in the last sec
tion can be used in multiprogram, time-shared 
on-line computations. The first part of this section 
describes the list-structure-like operations on the 
program structure during the program statement. in
put and modifications. The second part shows the 
use of program structure during execution in keep
ing track of the next statement to be executed. In 
the final part the dynamic nature of the program 
structure is demonstrated to be extremely desirable 
in applications that involve frequent. man-machine 
interactions and dynamic data structure. 

Incremental Statement Compilation 
and the Statement-Oriented Program Structure 

Conventional compilers translate the source lan
guage programs into relocatable codes, and the 
loader -converts them into absolute code. This 
scheme usually produces an efficient object code; 
however, the complete process has to be repeated if 
any changes, however small, are made in the source 
language program. An incremental compiler is char
acterized by its ability to compile each statement 
independently, so that any local change in a state
ment calls only for recompilation of the statement, 
not the complete program. When the compiled pro
gram is structured as in the preceding section, state
ment insertions, deletions or modifications are han-
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dIed by adding, removing or replacing some ele
ments in the program structure with appropriate 
changes in structure pointers. The dependencies be
tween any two statements lie only in the common 
set of identifiers that appear in them and their rela
tive location within a program. The latter is en
coded into the set of structure pointers in the program 
structure.· The identifier dependency among state
ments is made indirect through reference entries in 
the symbol table. Only one reference entry is used 
for each distinct identifier such that all statements 
can be independently compiled into PM codes. The 
contents in the reference entries are set dynamically 
during execution according to the declaration on 
the identifiers. Figure 4 shows the indirect depen
dence among statements through the symbol table 
and the program structure. 

statement 

Symbol 

table 

program 
structure 
pointers 

statement 

Figure 4. Indirect dependence among statements through 
symbol table and program structure. 

When the program is incrementally constructed 
on-line, some building code must be specified. 
With our statement-oriented program structure 
and the definition of a statement given earlier, the 
rule becomes very simple: 

Any integral number of statements in the pro
gram. structure, called "out-statements," can 
be replaced by any integral number of newly 
specified statements, called "in-statements." 

Figure 5 shows several examples that represent 
integral number of statements and also some exam
ples that do not represent integral number of state
ments. 

Replacing no out-statements amounts to inserting 
in-statements. Specifying no in-statements amounts 

to deleting the out-statements. Some method of speci
fying the out-statements in the program for replace
ment must be provided. One way is probably to 
display the source program on a CRT and let the 
user mark, by light pen, the limits that enclose the 
out-statements. Another method is to associate each 
element in the program structure with an identifica
tion line when the statement for that element is 
compiled and connected into the structure. The user 
may subsequently refer to any element in the struc
ture by its line number. The out-statements can be 
specified by a pair of line numbers (i1, 12 ) which rep
resent the first and the last of the out-statements, or 
an insertion point in the program structure when out
statements are empty. For ease of cross referencing, 
successive statements are assigned line numbers in an 
increasing order. All statements inserted between the 
statements numbered n. and n + 1. are numbered into 
sub-levels n. 1., n. 2., etc. Syntactically the out-state
ments can be defined as follows: 

<out-statements> :: = <insertion point> 
«lower limit>, <upper limit» 

<insertion point> :: = <line number> + 
<line number> -

<lower limit> :: = < upper limit> :: = <line 
number> 

<line number> :: = <unsigned integer>. 
<line number> <line number> 

Examples: 

Semantics: 

(1., 2.4.) 
1.2. + 
2.3.4. -

( <lower limit>, <upper limit» denotes the set 
of statements enclosed by <lower limit> and 
<upper limit> inclusively, e.g., (2., 3.) in Fig. 6. 

< line number> + specifies the point in pro
gram structure that follows the f pointer in the 
element identified by <line number>, e.g., 2. + 
and 3. + in Fig. 6. 

<line number> - specifies the point in the pro
gram structure that precedes the element identified 
by <line number>, e.g., 3. -, 4. - and 5. - in 
Fig. 6. 

The in-statements that replace the out-state
ments can be syntactically defined as follows: 

<in-statement> :: = <statement> I <line number> 
( <lower limit>, <upper limit» I 
<in-statement>; <in-statement> 
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[ 

l 

if BEX then 

end; 

begin 

end; 

for FLT do 

] 
] 

encloses integral number of statements 

] 

does not enclose integral number of statements 

Figure 5. Examples of specifying integral number of state
ments. 

defined above (A Statement in ALGOL). 

A: = B + C; (1.,5.); begin C: = 0 end; 7. 1. <line number> denotes the statement already 
in the program structure identified by < line num
ber>. Semantics 

<statement> can be any ALGOL statement as «lower limit>, <upper limit» denotes the 
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program. structure 2. + or 3. - 3. + or 5. -

f t----..L-~.-..--I f 

/ 4. - 5 31 
4. 

( 2. I 3. ) 
Figure 6. Illustration of insertion point and (lower limit 
upper limit) in specifying an integral number of out-state~ 
ments during program modifications. 

list of statements in the program structure that are 
inclusively enclosed by <lower limit> and <up
per limit>. 

When line numbers are used in forming an in
statement, they represent the statements already in 
the program structure. Copies of these elements are 
incorporated into new locations in the program struc
ture; they are not automatically deleted from their old 
locations. 

A compile command that alters, builds, or manipu
lates the program structure takes the form: 

<compile command>:: = compile <out-statement> , 
<in-statement> E0M 

E0M is an action on the input device that will 
interrupt the machine and cause the monitor in the 
system to respond to the message. 

Example: 
Let Fig. 7 a be some program structure, then the 

compile command 

compile (1., 3.), A: =B; B: =0 E0M 

changes the program structure into the form in Fig. 
7b. 

compile (1., 2.), begin (1., 2.) end E0M 

changes it into the form in Fig. 7 c which can be 
transformed to Fig. 7d by 

compile 1. +, if BEX then 6. else c: = 0 E0M 

By using independent statement compilations and 
the program structure described in the preceding 
section, the user may manipulate his program quite 
freely provided that a statement is taken to be the 
smallest unit for manipulation. Since the user has to 
be familiar with the definition of a statement in 
ALGOL before he can express the problem algori
thms in the language, the program manipulation 
rules based on the concept of a statement should 
become very natural and easy to apply for the user. 
This is analogous to a user manipulating his ma
chine code program on a console, in which case the 
smallest unit he may change in his program is a 
single machine code instruction. 

On-Line Control over Program Execution 

After the source language program is converted 
into the statement oriented program structure, in
teractions among statements are made indirectly 
through the reference entries for identifiers in the 
symbol table and the set of structure pointers in the 
program structure. The last instruction in the pseudo
machine code for a statement always returns con-
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trol to the execution monitor which, from the 
pointer to the element for the statement just execut
ed, selects the next statement for execution. Due to 
the recursiveness of a statement in ALGOL, a push 
down list called ESL for execution status list is 
maintained for each user. The top element in ESL 
points to the current statement being executed, the 
element next below in ESL points to the statement 
of which the current statement is a component. For 
example, in Fig. 7d, when the statement A : = B 
is being executed, the top element in ESL points to 
the element numbered 2. and the element next be
low in ESL points to the element numbered 1. . De
pending on the type of the element, the last instruc
tion in the pseudomachine code returns control to 
different points in the execution monitor which 
takes action depending on the user's operation 
mode. 

The user's operation mode is set by an execution 
command. 

Syntax: 
< execution command> :: = < start> I 

<step> I <stop> 
<start> :: = execute <execution bounds> 

E0M 
< execution bounds> :: = empty I « starting 

point>, <stopping point» 
<step> :: = step < starting point> E0M 
<stop> :: = E0M --
< starting point> :: = < stopping point> :: = 

empty I <line number> 

Examples: 

Semantics: 

execute E0M 
execute(1T., 3. 5.) E0M 

execute (3. 1.,) E0~ 
execute ( , 4. 5. 6.) E0M 
-- step E0M --

step 5. 6. E0M 
- E0M--

A user's program can be either in "execute mode" 
or "step mode." A <start> will set the user into the 
execute mode. If a nonempty <execution bound> 
is specified, the program will start from the < starting 
point> and stop at the <stopping point>. An empty 
<starting point> implies the top element in ESL, 
and an empty < stopping point> implies an infinite 

line number. A <stop> sets the user's program into 
step mode. If the < execution bounds> is empty, the 
program will continue from the statement currently 
being pointed by the top element in ESL and will 
come to a halt only if < stop> is initiated from the 
input device or it comes to the previously specified 
<stopping point> or a program stop. In step mode, 
execution is halted after each statement. A < step> 
instructs one statement to be executed. If the <start
ing point> in <step> is empty, the element in the 
program structure pointed by the top element in ESL 
is executed. Otherwise, <starting point> is set to 
be the top element in ESL with appropriate pop ups 
and push downs in ESL to maintain the proper block 
level being referenced, then the element pointed to 
in ESL is executed. In step mode, the execution of 
each statement provides the user certain trace infor
mation on the on-line output device such as the value 
of an expression. At this point we can again see the 
analogy to the control a programmer can exercise 
on his machine code program in the computer from 
an operator's console. The <start>, <step> and 
<stop> commands are analogous to the start-, step
and stop-push buttons. The <execution limit> is 
analogous to setting the instruction counter which 
is, in our system, generalized into a push down list 
ESL. The control unit in a computer that maintains 
the correct execution order from one machine instruc
tion to the next is conceptually extended in our sys
tem into the "execution monitor." However there is 
the difference that in our system the user communi
cates in a problem-oriented language. 

The execution monitor's operation is described 
below by using a set of ALGOL-like statements. The 
following terminology is employed: 

ESL [1]: the top element in the push down list 
ESL. 

t(ESL [1]): the t-pointer in the element repre
senting a block pointed by ESL [1]. t points to 
the structure that represents all the nondeclara
tive statements in the block. 

f(ESL [1]): the f-pointer in the element repre
senting a statement pointed by ESL [1]. f points 
to the next statement, namely the statement that 
follows the statement separator. 

ts(ESL [1]): the ts-pointer in the element repre
senting a conditional statement pointed by ESL 
[ 1 ] . ts points to the statement that follows then. 

fs(ESL [1]): the fs-pointer in the element repre
senting a conditional statement pointed by ESL 
[1]. fs points to the statement that follows else. 
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ds(ESL [1]): the ds-pointer in the element rep
resenting a for-statement pointed by ESL [1]. 
ds points to the statement that follows do. 

push down A into B: all elements in the push down 
list B are pushed down one level and the quantity 
A becomes the top element in B, i.e., B [i]: =B 
[i-1] for i>2 and B [1]: =A. 

pop up B: all elements in the push down list Bare 
popped up one level, i.e. B [i]: = B [i +] for 
i>l. 
The original top element in B is lost. 

return control to the user: the user's program is 
halted and the system is ready to receive a mes
sage from the input device. 

return control to PM(ESL [1] ): go to execute the 
pseudomachine code compiled for the statement 
which is represented in the program structure as 
an element pointed by ESL [1]. 

output trace information: when in the step mode, 
the execution of each statement provides infor
mation on the execution result such as the value 
of an evaluated expression, and displays the 
next statement to be executed upon receiving 
step E0M. 

initiate block et;ltry procedure: save all current 
machine addresses for the identifiers declared 
in this block and load their new local machine 
addresses into their reference entries. If the 
block is entered recursively, savings are imple
mented into push down lists. 

initiate block exit procedure: restore the machine 
addresses for the identifiers declared in this 
block to their values in the outer block which for 
recursively entered blocks were the top elements 
in their push down lists. 

set up ESL in accordance with the designational 
expression: transfer out of a block is allowed 
in which case all the top elements in ESL will 
be popped up until the pointer to the block in 
which the desiQnated statement is a comnonent 

fo.)' -- - - -- - - ---r - -- - ---

appears as the top element in ESL, then the 
designated statement is pushed in ESL. Each 
time a pointer to the block is popped up from 
ESL, the block exit procedure is initiated. 

set up actual parameters: save all current machine 
addresses for the identifiers used as formal para
meters in the procedure, into push down lists 
when it is recursively called, and load the 
machine addresses of words containing the ac
tual parameters into the reference entries of 
these formal parameters. 

initiate procedure exit: restore the machine addres
ses for the identifiers used as formal parameters 
in this procedure to their values in the block 
that initiated this procedure call. 

The following ALGOL-like statements describe the 
execution which offers the user extensive controls 
over his program execution on line. 

return from go-to statement: 
if in step mode 
then output trace information 
else; 
set up ESL in accordance with the designational 

expression; 
go to execute next statement; 

return from block: 
if in step mode 
then output trace information 
else; 
initiate block entry procedure; 
push down t(ESL [1]) into ESL; 
go to execute next statement; 

return from if-statement: 
if in step mode 
then output trace information 
else; 
if the Bool~an expression is true 
then push down ts (ESL [1]) into ESL 
else push down fs(ESL [1] into ESL; 
go to execute next statement; 

return from for-statement: 
if in step mode 
then output trace information 
else; 
if all elements in the for list are serviced 
then ESL [1]: =f(ESL [1]) 
else push down ds(ESL [1]) into ESL; 
go to execute next statement; 

return from procedure call: 
if in step mode 
then output trace information 
else; 
set up the actual parameters; 
push down pointer to the procedure body into 

ESL; 
go to execute next statement; 

return from all other statements: 
if in step mode 
then output trace information 
else; 
ESL [1] : =f(ESL [1]); 
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go to execute next statement; 
execute next statement: 

if in execution mode and ESL [1] not equal to 
to < stopping point> 

then go to continue 
else begin enter step mode; 

return control to the user 
end; 

continue: 
if ESL [1] is a program return PR 

then begin enter step mode; return control to 
the user 

end 
else 

if ESL [1] is a block return BR 
then begin initiate block exit procedure; 

popup ESL; 
ESL [1]: =f(ESL [1]); 
go to execute next statement 

end 
else 

if. ESL [1] is an if return IR 
then begin pop up ESL; 

end 
else 

ESL [1]: =f(ESL [1]); 
go to exceute next statement 

if ESL [1] is a for return FR 
then begin pop up ESL; 

return control to PM(ESL [1]) 
end 

else 
if ESL [1] is a procedure body return PBR 

then begin initiate procedure exit; 
pop up ESL; 
return control to PM(ESL [1]) 

end 
else 

ESL [1] is a pointer to an element in the pro
gram structure: 

return control to PM (ESL [1]) 

The Statement-Oriented Program Structure Used 
in Time-Shared Multiprogramming and Its Com
patibility with Dynamic Data Structures 

The dynamic nature of on-line computing calls 
for a dynamic data structure as well as dynamic 
program structure. Nonnumerical applications such 
as analytical expression manipulations on comput
ers5 will increase in efficiency and effectiveness if 

they can be performed on-line. ALGOL can be 
easily extended to manipulate list-structure-like 
data. 1 The use of a dynamic· program structure is 
completely compatible with dynamic data structure. 
The same dynamic memory allocator will service all 
users' programs and data structure:::. 

Figure 8 shows the configuration for the multi
program time-shared system. Each user's activity 
in the system is represented by an I/O device, its 
program structure, symbol table, data structure and 
operation status, all properly linked under the user's 
pointer. Since storage allocations for program and 
data structures and the execution of their programs 
are all under the control of the mUltiprogram 
time-shared system, memory protection against 
each other is assured. The system consists of an in
cremental compiler, an execution monitor, an avail
able storage block manager and a system monitor 
that coordinates various phases of operations. Fig. 
9 shows the organization that incorporates the 
self-optimization technique of adapting a set of 
monitor system parameters in accordance with the 
operation environment. Such system parameters 
may, for instance, cause the monitor to operate in 
one of several possible modes. In mUltiprogram 
time-shared on-line computations, there is al
ways the question of whether all users' programs 
and data should be retained in core, or should only 
one be in core with swap between users. Our solu
tion is to let the operation environment dictate the 
mode: if all users' programs and data can be com
fortably accommodated in core, they will all remain 
in core; otherwise they will be divided into groups 
and swap among groups. The actual rules used for 
adapting the monitor parameters are still subject to 
experimentation. Since the muItiprogram time
shared system should be in core all the time, it 
should be constructed so that read-only memory 
can be used to store them. 

CONCLUSION 

A multi program time-shared system based on 
the concept presented in this report has been under 
implementation as an experimental project at the 
California Institute of Technology. Invariably many 
of its details have been modified to suit the particu
lar hardware which consists of an IBM 7040 com
puter, a 7288 multiplexor and several Institute
developed typewriter consoles. 
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In conclusion, we believe that the use of incre
mental compilation, system-controlled execution, 
dynamically structured programs and data can offer 
the users the power of programming in a high-Iev-

el algorithmic language and the advantage of inter
acting with the machine by means of an on-line 
console. The time-sharing mode further makes 
such operation economically acceptable. 
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Figure 9. Organization of an adaptive system monitor for 
multiprogram time-shared on-line computations. 

The differences of this system from other similar 
systems6 are the following: 

1. Statements in our system are compiled in
crementally into directly executable codes. 
System interpretation is called for only be
tween statements. 

2. Several users may be accommodated simul
taneously in core memory. 

3. Easily extendable to cope with applications 
that call for dynamic data structure such as 
algebraic expression manipulation. 

The study reported in this paper also reflects 
study of the computer organization for on-line 
time-sharing applications. Some applications are 
given below.: 

1. The incremental compilation achieved by 
indirectly addressing all operands through 
their reference entries suggests a small 

very-high-speed memory, functioning much 
like the index registers, to be used by all 
identifiers' reference entries. 

2. The dynamic nature of multiprogram on
line computation should have a strong in
fluence on memory organization. The al
gorithms trying to maximize the utilization 
of computer memory without sacrificing 
computing speed and programming flexi
bility should be investigated for possible 
direct incorporation into hardware config
urations. For the same reason that arith
metic unit is used to perform arithmetics 
and data channels for input and output, 
special processors should be designed to 
allocate and relocate users' areas in memo
ries possibly in parallel with the main 
computation. 

3. The central control unit in a computer 
used for multiprogramming should be re-
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sponsible for scheduling various programs 
to various processors. The organization of 
the central control unit must also reflect 
the nature of man-machine interactions 
and the types of control statements in the 
programming language. 

4. The encoding of information, numeric or 
symbolic, into computer words should in
clude type indication such that, for exam
ple, arithmetic oRerations performed on 
nonnumeric quantities can be detected as 
errors. This redundancy in information 
representation can be used to provide some 
error check during execution as well as to 
provide a simpler machine instruction set. 
For example, the same arithmetic instruc
tion can be used for both floating point 
and fixed point numbers if the number 
representation suggests its type and whose 
indication is decoded accordingly in the 
arithmetic unit. 
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INTERACTIVE MACHINE LANGUAGE PROGRAMMING 

Butler W. Lampson 
University of California 

Berkeley, California 

INTRODUCTION 

The problems of machine language programming, 
in the broad sense of coding in which it is possible 
to write each instruction out explicitly, have been 
curiously neglected in the literature.1,2 Granted that 
less than half of the binary instructions generated in 
the past year had their origin in assembly language, 
it remains likely that much more than half the in
structions executed originated in this way. There 
are still many problems which must be coded in the 
hardware language of the computer on which they 
are to run, either because of stringent time and 
space requirements or because no suitable higher 
level language is available. 

It is a sad fact, however, that a large number of 
these problems never run at all because of the inor
dinate amount of effort required to write and debug 
machine language programs. On those that are un
dertaken in spite of this· obstacle, a great deal of 
time is wasted in struggles between programmer 
and computer which might be avoided if the proper 
systems were available. Some of the necessary com
ponents of these systems, both hardware and soft
ware, have been developed and intensively used at a 

*The work described in this paper was supported by the 
Advanced Research Projects Agency of the Department of 
Defense under contract SD-18S. 
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few installations. To most programmers, however, 
they remain as unfamiliar as other tools, which are 
presented for the first time below. 

In the former category fall the most important 
features of a good assembler; macro instructions 
implemented by character substitution, conditional 
assembly instructions, and reasonably free linking 
of independently assembled programs. The basic 
components of a debugging system are also known 
but are relatively unfamiliar.3 For these the essen
tial prerequisite is an interactive environment, in 
which the power of the computer is available at a 
console for long periods of time. The batch pro
cessing mode in which large systems are operated 
today of course precludes interaction, but programs 
for small machines are normally debugged in this 
way, and as time-sharing becomes more wide
spread the . interactive environment will become 
common. 

It is clear that interactive debugging systems 
must have abilities very different from those of 
off-line systems. Large volumes of output are in
tolerable, so that dumps and traces are to be avoid
ed at all costs. To take the place of dumps, selective 
examination and alteration of memory locations is 
provided. Traces give way to breakpoints, which 
cause control to return to the system at selected in
structions. It is also essential to escape from the 
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switches-and-lights console debugging common 
on small machines without adequate software. To 
this end, type-in and type-out of . information 
must be symbolic rather than octal where this is 
convenient. The goal, which can be very nearly 
achieved, is to make the symbolic representation of 
an instruction produced by the system identical to 
the original symbolic written by the user. The em
phasis is on convenience to the user and rapidity of 
communication. 

The combination of an assembler and a debugger 
of this kind is a powerful one, which can reduce by a 
factor of perhaps five the time required to write 
and debug a machine language program. A full sys
tem for interactive machine language programming 
(IMP), however, can do much more and, if proper
ly designed, need not be more difficult to imple
ment. The basic ideas behind this system are these: 

1. Complete integration of the assembler and 
the debugging system, so that all input 
goes through the same processor. Much re
dundant coding is thus eliminated, together 
with one of two different languages serving 
the same purpose: to specify instructions 
in symbolic form; This concept requires 
that code be assembled directly into core 
(or into a core image on secondary stor
age) . Relocatable output and relocatable 
loaders are thereby done away with. 

A remark on terminology: It will be con
venient in the sequel to speak of the 
"assembler" and the "debugger" in the 
IMP system. These terms should be under
stood in the light of the foregoing: different 
parts of the same language are being re
ferred to, rather than distinct languages. 

2. Commands for editing the symbolic source 
program. The edit commands simultane
ously modify the binary program in core 
and the symbolic OIl secondary storage. 
Corrections made during debugging are 
thus automatically incorporated into the 
symbolic, and the labor of keeping the lat
ter current is almost eliminated. 

3. A powerful string-handling capability in 
the assembler which makes it quite easy to 
write macros for compiling algebraic 
expressions, to take popular example which 
can be handled in a few other systems, but 
rather clumsily. The point is not that one 

wants to write such macros, but that in 
particular applications one may want ma
cros of a similar degree of complexity. 

These matters are discussed in more detail in the 
following. We consider the assembler first and then 
the debugger, since the command language of the 
latter makes heavy use of the assembler's features. 

Before beginning the discussion, it may be well 
to describe briefly the machine on which this sys
tem is implemented. It is a Scientific Data Systems 
930, a 2-microsecond, single-address computer 
with indirect addressing and one index register. Our 
system includes a drum which is large enough to 
hold for each user all the symbolic for a program 
being debugged, together with the system, a core 
image of the program and some tables. Backup stor
age of at least this size is essential for the editing 
features of the IMP system. The rest of the system 
could be implemented after a fashion with tapes. 

THE ASSEMBLER 

The input format of the IMP assembler isa rath
er unusual one. Originated on the TX -0. at MIT, it 
has been adopted by DEC for most of its machines, 
but is unknown or unpopular elsewhere in the in
dustry. Although it looks strange at first, it has sub
stantial advantages in terms of simplicity, both for 
the user and for the system. The latter is a non
negligible consideration, often equally ignored and 
overemphasized. 

The basic idea is that the assembler processes 
each line of input as an expression (unless it is a 
directive or macro call). The expression is evaluated 
and put into core at the word addressed by the loca
tion counter, and the location counter is advanced by 
1. Expressions are made up of operands (which may 
be symbols, constants - numeric or alphanumeric 
- and parenthesized subexpressions) and operators. 
Available operators are: + ,-, X ,/,A,V,r-' with their 
usual meaning and. precedence; =, <, and >, which 
are binary operators with precedence less than +, 
and which yield ° or 1 depending on whether the 
indicated relation holds between the operands; and 
::/=, a unary operator with lowest precedence which 
causes its operand to be taken as a literal- i.e., it 
is assigned a storage location, which is the same as 
the location assigned to other literals with the same 
value, and the address of this location is the value 
of the literal. Blanks have the following significance: 



INTERACTIVE MACHINE LANGUAGE PROGRAMING 475 

any string of blanks not at the beginning or end of 
an expression is taken as a single plus sign. 

It is not immediately clear how instructions are 
conveniently written as expressions, and in fact the 
scheme used depends on the fact that the object 
machine is a single-:address, word-oriented computer 
with a reasonable number of modifiers in a sin
gle instruction. It would work on the PDP-6, but 
not on Stretch. 

The idea is simple: all operation code mnemon
ics are predefined symbols with values equal to the 
octal encodings of the instructions. On the SDS 
930, for instance, LDA (load A) is defined as 
7600000 (all numbers are in octal). The expression 
LDA + 200 then evaluates to 7600200. When the 
convention about spaces is invoked, the expression 

LDA 200 
evaluates to the same thing, which is just the in
struction we expect from this symbolic line in a 
conventional assembler. 

Modifiers are handled in the same spirit. In the 
24-bit word of the 930 there is an index bit, 
which is the second from the left, and an indirect 
bit, which is the tenth. With the predefined symbols 

I = 40000 
X = 20000000 

the expression LDA I 200 X evaluates to 
27640200. In more conventional form it would 
look like this: 

LDA * 200,2 
There is little to choose between them for brevity 
or clarity. Note that the order of the terms in the 
expression is arbitrary. 

The greatest advantages of the uniform use of 
expressions accrue to the assembler, but the pro
grammer gains a good deal of flexibility. Examples 
will readily occur to the reader. 

Using this convention the implementation of the 
basic assembler is very simple. Essentially all that 
is required is an expression analyzer and evaluator, 
which will not run to more than three or four 
hundred instructions on any machine. Because all 
assembly is into core, there is no such thing as relo
catability. 

Two rather conventional methods are provided 
for defining symbols. A symbol appearing at the 
left edge of a line is defined as the current value of 
the location counter. Such a symbol may not be re
defined. In addition, a line such as 

SYM~4600 

defines SYM. Any earlier definition is simply over-

ridden. The right side may of course be any expres
sion which can be evaluated. 

The special symbol • refers to the location 
counter. It may appear on the left of a ~ sign. Thus, 
the line 

A 
is equivalent to 

A 

.~. 40 

BSS 40 
in a conventional assembler. 

There remains one point about the basic assem
bler which is crucially important to the implemen
tation: the treatment of undefined symbols. When 
an expression is encountered during assembly, there 
is no guarantee that it can be evaluated, since all 
the symbols in it may not be defined. This is the 
reason why most assemblers are two pass; the first 
pass serves to define the symbols. Becaue the IMP 
assembler must accept typewriter input, it cannot be 
two pass and must therefore keep track of unde.:. 
fined expressions explicitly. 

There is a general way of doing this, in which 
the undefined expression, translated for convenience 
into reverse Polish, is added to a list of such 
expressions, together with the address of the word it 
is to occupy. At suitable intervals this list is 
scanned and all the newly defined expressions are 
evaluated and inserted in the proper locations. For 
complex expressions there is no avoiding some such 
mechanism, and it has the advantage of simplicity. 
It is, however, wasteful of storage and also of time, 
since an expression may be examined many times 
while it is' on the list before it can be evaluated. 
One important special case can be treated much 
more efficiently, and this is the case of an instruc
tion with an undefined address, which includes at 
least 90 percent of the occurrences of undefined 
expressions. 

For example, when the assembler sees this code: 
X BRU A branch unconditional 

LDA B 
A STA C 

the instruction at X has an undefined address which 
becomes defined when the label A is encountered. 
This situation can be kept track of by putting in the 
symbol table entry for A the location of the first 
word containing A as an address. In the address of 
this word we put the location of the second such 
word, and so build a list through all the words con
taining the undefined symbol· A as an address. The 
list is terminated by filling the address field with 
ones. When the symbol is defined we simply run 
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down the chain and fill in the proper value. This 
scheme will work as long as the address field con
tains only A, since there is then no other informa
tion which must be preserved. Note that no storage 
is wasted and that when A is defined the correct 
address can be filled in very quickly. 

The description of the basic assembler is now 
complete, except for a few nonessential details, and 
we turn to the macro facility. Macros are handle~ 
in a standard manner, which the following example 
should sufficiently illustrate: 
STORE MACRO ARGl,ARG2 

IRP TEMP=ARG2 indefinite repeat 
ST'ARGI TEMP 
ENDR 
ENDM STORE 

called with 
STORE A,(SI,S2,S3) 

becomes after argument substitution 
IRP TEMP=SI,S2,S3 
STA TEMP 
ENDR 

That is, this string of characters is seen by the as
sembler as though it were in the symbolic input. 

A macro may be defined with more arguments 
that it is called with, in which case the extra argu
ments are made either null strings or generated 
symbols. No more arguments are collected than are 
called for by the definition. An argument is normal
ly collected literally, character by character, but a 
colon appearing before a macro name will cause it 
to be expanded. To provide additional flexibility, 
two directives called STACK and UNSTACK are 
provided which respectively suspend the analysis of 
the current expression and resume it. 

Some unusual things may be done with this much 
machinery. Consider the macro 

LIT MACRO ARG,GEN 
STACK 
TEMP~. 

.~LITERALS 

GEN ARG 

Called with 

LITERALS~LITERALS 1 
.~TEMP 

UNSTACK 
GEN 
ENDM LIT 

LDA LIT 20 
it will assign a storage location, say LITERALS + 10, 
put 20 in it, and assemble 

LDA LITERALS + 10 
There are many other ways of writing this macro 
using the list features discussed below. 

The IRP operation used above is not new, but it 
is not well known. It causes the lines in its range, 
which is delimited by a matching ENDR, to be 
processed repeatedly by the assembler. Each time 
around the argument, TEMP in this case, is re
placed by one of the subarguments, which are the 
character strings following the = sign and separated 
by commas. The entire process is rather similar to a 
macro call, and sub arguments are processed accord
ing to the rules for macro arguments, except that 
parentheses are not removed. Thus the IRP generat
ed by the expansion of the macro discussed above 
in turn expands into 

ST A S 1 TEMP replaced by S 1 
ST A S2 TEMP replaced by S2 
ST A S3 TEMP replaced by S3 

Two extensions of this device: 
IRP A,B=Al,Bl,A2,B2,A3,B3 $ C=Cl,C2 
A,B,C 
ENDR 

expands into 
Al,Bl,Cl, 
A2,B2,C2 
A3,B3,C2 

We illustrate with another macro definition: 
MOVE MACRO ARG 

Called by 

IRP TEMPA,TEMPB=ARG 
IRP TEMPC= :TEMPA $ TEMPD 

=:TEMPB 
LDATEMPC 
STORE TEMPD 
ENDR 
ENDR 
ENDM 

MOVE (Al,(Bl,Cl ),A2,B2) 
this expands into 

LDA Al 
STA Bl 
STA B2 
LDA A2 
STA B2 

Suppose that we have some two-word data struc
tures which we wish to manipulate. We can define 
each of them as a macro, using another macro to 
do the definition and reserve storage: 

TW MACRO ARG,GENA,GENB 
GENA 0 
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GENB 
ARG 

o 
MACRO 
GENA,GENB 
ENDM ARG 
ENDM TW 

Now, if we call TW: 
TW A 
TW B 

we can then use the newly defined macros A and B 
in the move macro. In fact 

MOVE (A,B) 
after character substitution both in the macro body 
and in the first IRP body is 

IRP TEMP A, TEMPB = A,B 
IRP TEMPC=.GOOOI, .G0002 $ TEMPD 

= .G0003, .G0004 

which expands to 
LDA .GOOOI 
STA .G0003 
LDA .GO002 
STA .G0004 

There are two other repeat directives, 
RPT expression 

ENDR 
which repeats its scope the number of times specified 
by the expression, and 

CRPT expression 

ENDR 
which repeats its scope, reevaluating the expression 
each time until it is ~ O. 

Finally, there is a conditional directive: 
IF expression 

ELSF expression 

ENDF 
which causes the lines between· the first IF or ELSF 
whose argument is > 0 to be assembled and every
thing else to be ignored. 

The implementation of all this is quite straight
forward, and very similar for macros and repeats. 
The body of the macro definition or repeat is col
lected as a character string, with markers replacing 
the arguments, and saved away. Each time it is 
called, the routine which delivers characters to the 
assembler, which we will call CHAR, is switched 
from the input medium to the saved string. Argu
ments for a macro call or IRP are likewise saved as 

strings. The characters coming from a definition are 
monitored for the argument marker, and if it is 
found CHAR is switched again, to the argument 
string. Whenever any of these strings ends, CHAR 
is switched back to the string it was working on be
fore. 

All this machinery is of course recursive. The 
only restriction is that maCro definitions and re
peats must be properly nested. Note that because of 
the implementation technique just described a mac
ro definition may contain anything, including oth
er definitions. The other definitions of course are 
not made until the macro is called. 

The most novel feature of this assembler is the 
string or list-manipulating features available to the 
programmer, which allow him to define macros 
to perform functions normally regarded as the pre
rogative of a compiler. A list may be assigned to a 
symbol as its value by 

SYM ~ [any string not containing an 
unbalanced right bracket] 

The string is saved literally as the value of SYM, 
with one exception: the character : causes the fol
lowing symbol to be expanded if it is a macro or 
list name, just as it does in macro arguments. The 
structure : [string] is equivalent to the string alone. 

Once SYM has been equated to a list, any use of 
it is exactly equivalent to writing the contents of 
the string, including the brackets. Exception: If 
SYM appears within brackets or as a macro argu
ment and is not preceded by : it is transmitted lit
erally. In most contexts a string enclosed in brack
ets has the same effect as one not so enclosed. 

Thus the sequence 
SYMA~[A] 

SYMB~[B] 

SYMC~[:SYMA:SYMB',CD] 

will leave SYMC with the value [AB,CD]. The ' 
has the same function as it does in a macro definition. 

A symbol equated to a list (or, as always, the 
explicit list itself) may be subscripted in two ways. 
In the above example, SYMC [2] is equivalent to 
B (i.e., a subscript in bracket selects a single char
acter). More generally, SYMC [2,5] is equivalent to 
B,CD. 

The other form of subscripting selects a segment 
of a list delimited by commas: SYMC( I) is the 
same as AB. 

To illustrate the use of these features we con
sider the following macro to compile an expression 
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with the operators + and -, single character vari
ables and parenthesization: 

ARITH EXPR 

ARITHI 

ARG~EXPR 

SB~O 

L~LENGTH(ARG) 

ARITHI 
ENDM ARITij: 
MACRO OPA,OPB,OP 
OP~O 

OPA~O 

CRPT SB < L 1 V OP=-1 
SB~SB 1 
C~" :ARG [SB]" 
IFOP=O 
IF C="(" 

ARITHI 
OPA~1 

ELSF C="-" 
OP~2 

ELSF C="+" 
OP~1 

ELSF C=")" 
OP~-1 

ELSF 1, 

this branch if operator 
not yet found 

OP~-2 

OPB~[:ARG[SB]] 

ENDF 
ESLF C = "( " this branch if operator 

found 
IF OPA= 1 this branch if second 

operand is () 
TIDX~TIDX 1 
STA T'NUM (TIDX) 
OPB~ [:T'NUM(TIDX)] 
ARITHI 
TIDX~TIDX-l 

ELSF 1 
ARITHI 
ENDF 
IF OP=2 
CNA complement A register 
ENDF 
ADD OPB 
ELSF 1 
IF OPA=2 
LDAOPB 
ENDF 
IF OP=l 
ADD ARG[SB] 

ELSF OP=2 
SUB ARG[SB] 
ENDF 
OPA~1 

OP~O 

ENDF 
ENDR 
ENDM ARITH" 

NOTES 

LENGTH is a function which gives the length of 
the list which is its argument. 

NUM evaluates its argument and replaces itself 
with the decimal encoding of the value. It is useful 
for constructing a series of symbols over which one 
wants considerable controI. 

Double quotes enclosing a string turn it into an 
alphanumeric constant. 

This macro, called by 
ARITH [(A+B)-(C-D)] 

would generate 
LDA A 
ADD B 
STA Tl 
LDA C 
SUB D 
CNA 
ADD Tl 

Note that there are only six lines in the definition 
which actually generate code. 

With this example we conclude our discussion of 
the assembler. The implementation of lists is quite 
straightforward, though a certain amount of care 
must be taken about the treatment of colons calling 
for expansion. A few minor points have been 
glossed over. 

THE DEBUGGING SYSTEM 

A good interactive debugging system must be 
diffcult for the beginner to master. Its emphasis 
must be on completeness, convenience and concise
ness, not on simplicity. The basic capabilities re
quired are quite simple in the main, but the form is 
all important because each command will be given 
so many times. 

One essential, completely symbolic input and 
output, is half taken care of by the assembler. The 
other half is . easier than it might seem: given a 
word to be printed in symbolic form, the symbol 
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table is scanned for an exact match on the opcode 
bits. If no match is found, the word is printed as a 
number. Otherwise the opcode mnemonic is print
ed, indirect and index bits are checked and the 
proper symbols printed, and the table is scanned for 
the largest symbol not greater than the remainder of 
the word. This symbol is printed out, followed if 
necessary by a + and a constant. 

The most fundamental commands are single char
acters, possibly preceded by modifiers. Thus to ex
amine a register the user types 

/xl-3; LDA I NUTS+2 
where the system's response is printed in capitals. 
This command may be preceded by any combination 
of modifiers: 

C for printout in constant form 
S for printout in symbolic form 
o for octal radix 
D for decimal radix 
R for relative (symbolic) address 
A for absolute address 
H for printout as ASCII characters 
I for printout as signed integer 

The modifiers hold until the user types a carriage 
return. 

For examining a sequence of registers, the com
mands t and {.- are available. The former examines 
the preceding register, the latter the following regis
ter. In the absence· of a carriage return the modifiers 
of the last examination hold. The ~ command 
examines the register addressed by the one last 
examined. 

The contents of a register may be modified after 
examination simply by typing the desired new con
tents. Note that the assembler is always part of the 
command processor, and that debugging commands 
are differentiated by their format from words to be 
assembled. (This is not difficult, because the only 
thing which may occur at the beginning of a line of 
assembler code is a label.) Furthermore, debugging 
commands may occur in macros, so that very elabo
rate operations can be constructed and then called 
on with the two or three characters of a macro 
name. 

To increase the flexibility of debugging macros, 
the unary operator is defined. The value of SYM 3 
is the contents of location SYM 3. With this opera
tor macros may be defined to type out words de
pending on very complicated conditions. A simple 
example is 

TO MACRO A, B 

/TEMP; 

called with 

TEMP~A 

STOP~1 

CRPT STOP 
IF TEMP>B 
STOP~O 

ELSF 1 
TEMP~TEMP 1 
ENDF 

ENDM TO 

TO 100,20 
it will type out the first location after 100 with con
tents greater than 20. 

Another important command causes an expres
sion to be typed in a specified format. Thus if SYM 
has the value 1253 then 

=sym; 1253 
would be the result of giving the = command. All 
the modifiers are available but the norm,a,! mode of 
type-out is constant rather than symbolic. If no 
expression is given, the one most recently typed 
is taken. Thus, after the above command, the user 
might try 

s=; SYM 
For convenience, ~ abbreviates S = . 

It is often necessary to search storage for occur
rences of a particular word. This may be done with 
a macro, as indicated above, but long searches 
would be quite slow. A faster search can be made 
with 

$expression; 
which causes all the locations matching the speci
fied expression to be typed out. The match may be 
masked, and the bounds of the search are adjusta
ble. This command takes all the type-out modifi-
ers as well as 

E 
which searches for a specified effective address (in
cluding indexing and indirect addressing) and 

N 
which searches for all words which do not match. 
For additional flexibility the user may specify a 
macro which will be executed each time a matching 
word is found. 

In addition to being able to examine and modify 
his program, the user also needs to be able to run 
it. To this end he may start it at a specified loca
tion with 

;0 location 
If he wishes to monitor its progress, he may insert 
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breakpoints at certain locations with the command 
;B location 

This causes execution of the program to be inter
rupted at the specified location. Contr.ol returns to 
the system, which types some useful information 
and awaits further commands. An alternate form of 
this command is 

;B location, macro name 
which causes the specified macro to be executed at 
each break, instead of returning control directly to 
the typewriter. Very powerful conditional tracing 
may be done in this way. 

After a break has occurred, execution of the pro
gram may be resumed with the ;P command. The 
breakpoint is not affected. To prevent another 
break until the breakpoint has been passed n times 
the form n;P may be used. 

To trace execution instruction by instruction the 
command ;N may be used instead of ;P. It allows 
.one instruction to be executed and then breaks 
again. n;N allows n instructions to be executed be
fore breaking. A fully automatic trace has been de
liberately omitted, but presents no difficulties in 
principle. 

There remains one feature of great importance in 
the IMP system, the symbolic editor. The debugger 
provides facilities, which have already been de
scribed, for modifying the contents of core. These 
modifications, however, are not recorded in the 
symbolic version of the program. To permit this to 
be done, so that reloading will result in a c.orrectly 
updated binary program, several commands are 
available which act both on the assembler binary 
and on the symbolic. 

This operation is not as straightforward as it 
might appear, since there is one-to-one cor
respondence between lines of symbolic and words of 
binary. Addresses given to the debugger .of course 
refer to core locations, but for editing it is more 
convenient to address lines of symbolic. '1'0 permit 
proper correlation of these line references with the 
binary program, a copy of the symbolic file is made 
during loading with the address of the first and last 
assembled words explicitly appended to each line. 
Since the program is not moved around during edit
ing, these numbers do not change except locally. 
When a debugging sessi.on is complete, the edited 
symbolic is rewritten without this information. 

We illustrate this with an example. C.onsider the 
symbolic and resulting binary 

Sl MOVEA,B (200,20'1 ) SI LDAA 200 
STA B 201 

ADDC (202,202) ADDC 202 
STORE D, E (203,204) STA D 203 

STA E 204 
S2 BRU SI (205,20'5) S2 BRU SI 205 
and the editing command 

;1 S2-1 insert before line S2-1 
SUBF 

which gives rise to the following: 
SI MOVE A, B (200,201) SI LDA A 200 

ADD C (202,202) 
SUB F (1513,1513) 
STORE D, E (1514,204) 

STA B 201 
BRU .END 202 
BRU .END 1 203 
STA E 204 

S2 BRU SI (205,205) S2 BRU SI 205 

ENDADD C 1512 
SUB F 1513 
STA D 1514 
BRU SI 4 1515 
BRU SI 5 1516 

All the BRU (branch unc.onditional) instructions 
are inserted to guarantee that the right thing hap
pens if any of the instructions causes a skip. Multi
ple skips, or subroutine calls which pick up argu
ments from subsequent locati.ons, are n.ot handled 
c.orrectly. The alternative to this rather simple
minded scheme appears to be complete reassembly, 
which has been rejected as too sl.ow. The arrange
ment outlined will deal correctly with patches made 
over other patches; although the binary may come 
to look rather peculiar, the symbolic will always be 
readable. 

To give the user access t.o the readable symbolic 
the command 

;S symbolic line address [,symbolic address] 
(where the contents of the brackets is optionally 
included) causes the specified block of lines to be 
printed. Two other edit commands are available: 
;D symbolic line address [,symbolic line address] 
which deletes the specified block of lines, and 

;C same arguments 
which deletes and then inserts the text which fol
lows. Deleting SI 1 would result in binary as fol
lows 

SI LDA A 
BRU .END 
BRU .END 1 
STAD 
STA E 
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S2 

.END 

BRU Sl 

BRU Sl 3 
BRU Sl 4 

The implementation of these commands is quite 
straightforward. One entire edit command is col
lected and the new text, if any, is assembled. Then 
the changed core addresses are computed and the 
appropriate record of the symbolic file rewritten. 

The scheme has two drawbacks: it does not work 
properly for skips of more than one· instruction or 
for subroutine calls which pick up arguments from 
following locations, and it leaves core in a rather 
confusing state, especially after several patches have 
been made at the same location. The first difficulty 
can be avoided by changing large enough segments 
of the symbolic. The second can be alleviated by 
reassembly whenever things get too unreadable. 

The only other published approach to the prob
lem of patching binary programs automatically is 
that of Evans,4 who keeps relocation information 
and relocates the entire program after each change. 
This procedure is not very fast, and in any event is 
not practical for a system with no relocation. 

EFFICIENCY 

The IMP system depends for its viability on fast 
assembly. The implementation techniques discussed 
in this paper have permifted the first version of the 
assembler to attain the unremarkable but satisfacto
ry speed of 200 lines per second. Simple character
handling hardware will be installed shortly on our 
930; it is expected to double assembly speed on 
simple assemblies and to produce even greater im
provement on programs with many macros and re
peats. 

Using the latter figures, we deduce that a pro .. 
gram of 10,000 instructions, a large one by most 
standards, will load in 25 seconds. This number in
dicates that the cost of the IMP approach is not at 
all unreasonable-far more computer time, including 
overhead, is likely to be spent in the debugging op
erations which follow this load. When omy minor 
changes are made, it is, of course, possible to save 
the binary core image and thus avoid reloading. 

In spite of the speed of the assembler, it is possi
ble that a relocatable loader might be a desirable ad
junct to the system. There are no basic reasons why 
it should not be included. 

As to the size of the system, the assembler is 
about 2,500 instructions, the debugger and editor 
about 2,000. 
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SIGNIFICANCE 

Of the many thousands of businesses in the Unit
ed States today, it is probable that no two use iden
tical office and accounting procedures. Yet in gen
eral it would be safe to say that in any business in
coming nata are processed, with reference to a file, 
using established procedures, to yield six broad 
types of results: 

1. Updated file records. 
2. Operational documents, such as invoices, 

purchase orders, pay checks, and the like. 
3. Exception notices, status reports, and re

sponses to inquiries regarding the standing 
of such items as accounts receivable, in
ventory or personnel records. 

4. Historical documentation required by cus
tom, law, auditors, tax officials or boards 
of directors, whether in the form of printed 
reports, microfilm or magnetic tape. 

5. Reports required by management in addi
tion to, or preferably in place of, the his
torical documentation mentioned above, 
consisting primarily of a listing of situa
tions which vary substantially from estab
lished norms ( that is, exception reports 
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intended for executive policy-making as 
opposed to those needed by operating per
sonnel). 

6. Analytical results, such as sales forecasts 
and answers (obtained through simula
tion) to the question "What would happen 
if .,. 1" so frequently asked by manage
ment and important to effective policy de
cisions. 

Each of these types of results involves different 
volumes of information and requirements of fre
quency and currency. Yet all ensue from the pro
cessing of data according to established procedures, 
and all require access to essentially the same file of 
information on the history, status, and organiza
tional objectives of the company with which they 
are concerned. 

The purpose of this paper is to discuss the signi
ficance of responsive time-shared use of electronic 
data processing equipment for processing business 
data to produce the results mentioned above. As 
used here, responsive time-sharing refers to a 
multiprogrammed system intended to provide com
mercial services to many tens or hundreds of re
motely located users. In this system information is 
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introduced through keyboards or other manually 
operated media. The input data are received and 
collected into "messages" either by satellite com
puters or other message buffering devices, or by the 
central processor or processors. The input is pro
cessed promptly upon receipt and the results appear 
at the remote console quickly enough to influence 
the subsequent actions of the operator. No paper 
tape or punched cards are involved. 

Such systems tend to entail two added expenses 
when compared with more conventional, nonres
ponsive time-sharing on a minute-by-minute 
or hour-by-hour basis: manual data entry over a 
telephone line makes inefficient use of that line, 
and a certain amount of "overhead" is inherent in 
time-shared processing on a moment-by-mo
ment basis. Both of these costs can be and are being 
reduced, the first by data compression and traffic 
concentration, and the second by improvements in 
the design of hardware and software. But even with 
existing techniques, responsive time-sharing can 
demonstrably increase the operating effectiveness of 
many types of businesses through improved curren
cy, cost reduction, and control in the p!ocessing of 
their data. Each of these is discussed below. 

Currency 

The urgent need for current or timely infor
mation was of course the spur which led to the 
development of the early responsive systems for 
airline reservation handling, stock market transac
tion processing,. and the like. Currency on a daily, 
weekly or monthly basis is also essential to top-level 
management, but it is usually obtainable (though 
not always obtained) by any data processing sys
tem, whether responsive, conventional, or even 
manual. On the other hand, inventory management, 
credit checking, production control, cost control 
and the like are problems encountered to some de
gree by virtually every business. In these a respon
sive system usually has a substantial advantage even 
when the requirement is not urgent eIlough in its 
own right to warrant much added expense. 

Cost Reduction 

The potential for cost reduction from the use of 
responsive computing stems from a variety of 
sources. An obvious one is the fact that electronic 
data processing, whether conventional or respon-

sive, offers to the larger organization inherent econ
omies that have not been fully realized by smaller 
companies because computers are, by their very 
nature, mass-production devices, and despite signifi
cant strides in this direction they have not been 
available in sizes small enough to meet the needs of 
many businesses. While the smaller business has 
had the alternative of time-sharing a larger com
puter system through conventional service bureaus, 
the practical or psychological disadvantages of tak
ing business documents ( or cards punched from 
them) to the local service bureau have prevented 
widespread use of this medium. 

Responsive time-sharing can give even the 
quite small user the effect of having a full-fledged 
computer of his own through a terminal device lo
cated on his premises and connected by a phone 
line to a responsive data processing system. This 
advantage of bringing to the user (and charging 
him for) only the computing capacity he needs, 
when and where he needs it, is just as basic in engi
neering and scientific computation as in business 
data processing. 

Another area in which responsive data processing 
offers recognized economy and convenience to the 
scientist or engineer is ease of learning, ease of use, 
and ease of making corrections. What is not always 
appreciated is that these same advantages, albeit on 
a somewhat smaller scale, accrue to the business 
user as well. Training is greatly facilitated by a 
responsive system, not only because procedures are 
reduced to minimal simplicity (partly due to freedom 
from the constraints of the 80-column card) but 
also because a properly designed system can func
tion as a teaching machine, indicating mistakes or 
misunderstandings as they occur. This benefits both 
the experienced operator, by guiding her through 
extraordinary or unusual procedures, and the neo
phyte, by allowing her to learn by doing, at her own 
rate and without the cost or embarrassment of a 
teacher standing by. Corrections are similarly sim
plified because mistakes are discovered when they 
arise and while the source document is still in front 
of the operator. 

An. incidental economy, often of more impor
tance than might be thought, is the reduction in 
space required since few computers are as small as 
the terminal device of a responsive time-shared 
system. 

In many businesses operational documents such 
as invoices must be prepared almost as soon as the 
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information is available. Without a responsive sys
tem it is necessary either to use relatively clumsy 
by-product card or tape punching during the ini
tial handling of the data, or later to re-key part or 
all of it a second time. Hence, while the repeated 
handling of data can be eliminated in other ways, a 
responsive system achieves it almost effortlessly. 

A final area of manpower economy is the reduc
tion in cost of managing the data processing func
tion, a by-product of the centralized systematiza
tion and control implicit in a time-shared service 
as discussed later. 

Time-sharing, moreover, lowers the effective 
cost of data processing equipment itself through 
more effective utilization of it. The user, as pre
viously stated, is charged only for actual usage and 
not for idle time. Economy of scale-getting more 
computing per dollar the more one spends for a ma
chine-is a basic factor for the very small user (al
though not as significant as previously for the larger 
user since Grosch's Law* no longer applies to com
puters which rent for more than a few thousand dol
lars per month). A factor related to economy of 
scale, and far more important to today's technology, 
is the potential for effective use of storage hierar
chies, keeping in high-priced core storage only the 
data needed at the moment, with other data, pro
grams and files kept in storage devices lower in 
both cost and accessibility. 

In addition to these, there are two other hard
ware economies worth considering. First, a properly 
designed procedure-oriented language for de
scribing the procedures to be followed for one com
pany will permit many others to use the same basic 
programs even though there will generally be differ
ences in the details of file record layout, output for
mats, exception handling, and other elements of 
processing. This permits savings not only in the 
preparation of procedures but also in the storage of 
them, a factor of particular significance for fre
quently used procedures which tend to become resi
dent in core memory. Second, techniques for ran
domly addressing a disc or magnetic card file are 
usually more efficient for large than for small files. 

*Named after Dr. H. R. J. Grosch, who was the first either 
to quantify the relationship or at least to state it forcefully 
enough to clothe it with the mantle of law. It states that, 
empirically, the ratio of the computing capacities of any two 
electronic digital computers equals approximately the square 
of the ratio of their costs. Thus a $10,000 a month computer 
could in an earlier day have been expected to produce results 
one hundred times as fast as another renting for $1,000 per 
month. 

By combining many files in one file-handling sys
tem, a substantial amount of statistical smoothing is 
obtained and double lookup and/or excess capacity 
requirements thereby reduced. 

Control 

Perhaps the greatest advantage of a responsive 
data processing system to the small or medium
sized business is improved control, systematization 
and management of the data processing function. 
Conventional service bureaus offer the same advan
tage, of course, but to a lesser degree. It is also 
standard policy for suppliers of bookkeeping ma
chines to aid their customers in establishing well
controlled procedures. But one of the biggest sources 
of difficulty in the business use of larger-scale elec
tronic data processing equipment has been the 
abdication by the suppliers of their responsibility for 
providing customers with business systems rather 
than business· equipment alone. The supplier of 
responsive data processing services, however, can 
most readily and thoroughly aid the same business 
manager by providing and maintaining an efficient 
and well-controlled system. 

While it would be possible to allow or even ex
pect the business user to design and program his 
own system, just as the engineering user of time
shared equipment currently does, the information 
utilities will best serve their purpose by furnishing 
to the user not merely a data processing capability 
but a data processing system service. The cost of 
systems design, programming, and data processing 
management is and will remain high. It therefore 
seems sensible to share these costs among many us
ers just as the equipment is shared by many. And 
certainly the time-shared responsive system not 
only facilitates but virtually cries out for such shar
ing of the cost of system development. 

Central time-shared facilities permit close and 
continuous monitoring of the data processing oper
ations of all its subscribers. There is no excuse, 
then, for not offering the subscriber a well-de
signed system and a guarantee that it will continue 
to be used as planned; This would differ from many 
systems provided by conventional suppliers or con
sultants which would work well if used correctly 
but, once left to the users' own devices, would tend 
to degenerate through changes made by those per
forming the job to suit their own tastes without a 
full understanding of the implications. 
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This is not to say that a packaged service can or 
should be developed with the intention of having 
any substantial number of businesses using it with
out modification. It is essential that the general sys
tem design and its implementation permit "cutting 
and pasting" of user programs to meet the require
ments and desires of the individual subscriber. But 
the responsive system supplier has a very real 
responsibility to provide his subscribers not only 
with what they want-and no more-but with what 
they need as well. There is, for example, no aspect 
of the responsive data processing services offered 
by KEYDATA Corporation that appeals more to 
prospective subscribers than the fact that they can 
have the data when they want it and, in addition, 
can rely on KEYDA TA to see that nothing is over
looked with regard to the efficiency and control of 
their data processing activities. 

Finally, for effective management contr?l the 
convenience of having both computing capacity and 
the corporate files accessible, essentially at one's 
finger tips, for study, analysis and forecasting is of 
tremendous significance. It means that managers 
will be encouraged to consider facts and analyze 
trends in a way which few if any of them, aside 
perhaps from the planning staffs of very large cor
porations, can or will do today. 

IMPLICATIONS 

The responsive business data processing service 
which, within the next few years, seems so certain 
to blossom into a computer utility with almost uni
versal appeal to the business world has many impli
cations for the hardware and software required to 
provide it. Increasingly effective equipment and 
programming techniques must be found to improve 
terminal devices, to lower communication costs, 
and make highly efficient use of storage hierarchies. 
The integrity of the user's file data must be unequiv
ocally ensured; that is, he must be confident that 
data will not be accidentally or maliciously lost, al
tered, or revealed to his competitors. He must also 
be guaranteed continuity of service without the ex
pense of duplicate equipment; thus it is essential 
that the system be operational a very high percent
age of the time, that interruptions of service be short 
in duration, and that recovery from equipment mal
function be relatively painless and essentially fool
proof. It is therefore clear that the system itself 
must be truly "clobber proof"; that is, no user may 

be capable of changing anyone else's program or 
tying up the system in any way that would disrupt 
normal service to other users. For maximum effi
ciency the programming techniques used to supply 
commercial users should capitalize on every degree 
each user may want to do things a little differently 
of standardization that can be encouraged between 
and among different users. At the same time, since 
than any other user, adaptability of the system is 
equally important. 

A thorough discussion of all these elements 
would, of course, be more appropriate in a book 
than in a short technical paper. But like anyone 
else who provides or plans to provide responsive 
time-shared service on a commerical basis, the 
group the author represents has had to find worka
ble solutions to all the problems implicit in the list
ing above. Some of these solutions are far from ele
gant; many will improve rapidly as more and more 
hardware and software designers direct increasing 
attention to the problems. Therefore, without at
tempting even to discuss let alone resolve all of 
these problems, a few remarks about some of the 
more interesting design decisions represented in the 
KEYDATA system may be in order. 

Terminal Devices 

Certainly the design of the user's terminal is im
portant; but far too much emphasis seems to be 
placed on high style and novelties to the detriment 
of dependability and economy. A Model 28 Tele
typewriter may seem ancient and unattractive; it 
may have fewer keys than a new model typewriter, 
lack lower-case letters, have only a few symbols, 
and be comparatively slow and somewhat noisy. 
But until something comes along that is as depend
able and inexpensive, * has a higher speed, richer 
character set and preferably a bit more style, the 
Model 28 serves the purpose quite well. "Full-duplex 

operation, t permitting easy correction of mistakes 
and the use of a third level, a I control shift, on 
the keyboards in the KEYDATA system, has 
proved especially satisfactory. 

*The total cost includes, of course, modulating-demodu
lating equipment if needed, as it is not in the case of Model 
28 Teletypes leased from New England Telephone & Tele
graph Company. 

tThe keyboard is connected to the computer and the com
puter to the printer; but there is no direct connection between 
the keyboard and the printer. 
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Scheduling 

In the matter of response time, the KEYDATA 
system permits three different approaches: (1) nor
mal full-duplex semiresponsive message pro
cessing, in which the user needs the output generat
ed from the input as rapidly as possible, but the 
only conversational effect is for verification; (2) 
truly responsive conversational operation, in which 
the user must wait for a response to one input be
fore he can determine what the next input should 
be; and (3) job-queued quick-turnaround opera
tion, in which the objective is to give relatively 
rapid service on jobs in which the amount of pro
cessing is so great that the user cannot realistically 
expect to wait for it without going on to another 
task in the meantime. 

The emphasis of most present time-shared sys
tems is on the conversational mode, which is per
haps the most important and at the same time the 
most difficult to handle effectively. Since the 
amount of computing required to generate a re
sponse in any conversational situation can some
times be substantial and is often unpredictable, the 
crux of the matter is a scheduling procedure that 
will give each user a "fair shake." The most ob
vious method, an equal time slot for each user, 
seems eminently fair but tends to achieve equality 
by making every user's reponse equally bad. (Sup
pose, for example, 10 users request a 5-::second job 
at the same instant. Most "fair" systems would give 
all these users a response after 50 seconds. Serving 
each in turn to completion, however, would reduce 
the average response time from 50 to 27.5 seconds 
without penalizing anyone, though perhaps at the 
expense of making user number 10 resentful of the 
better service given the other 9.) 

The scheduling method used in the KEYDA TA 
system has many of these defects but it does over
come one serious problem. It allows conversational 
users to reserve a level of service for minutes or 
hours at a time and guarantees that they will re
ceive at least the agreed level of services on a min
ute-by-minute basis. In keeping with the doc
trine adopted by Vyssotsky at Bell Telephone Labo
ratories, KEy-DATA prefers to deny service rather 
than degrade it. 

Job queuing on a minute-by-minute and 
hour-by-hour basis is a desirable adjunct to any 
time-shared system. It means that a user can set 
up data and procedures, and try them out if neces-

sary, using responsive or semiresponsive services. 
Then he may, through the same console, request ex
ecution of the processing task he has set up, get an 
estimate of when the job will be finished, keep 
track of where he is in the queue (if this matters to 
him), be told when his job is finished (or forego 
this if he expects to be using his console for some 
other purpose), examine the results of the complet
ed run (in whole or in part) and, when substantial 
output is involved, have it printed or recorded on 
tape at the central computer facility for later deliv
ery to him. 

Semiresponsive full-duplex operation is particu
larly appropriate in commercial applications. Con
sider, for example, the preparation of invoices using 
the KEYDATA system. The operator enters a cus
tomer number and the computer responds with a 
full heading for the invoice, including the name and 
address of the customer, invoice number, date, and 
other pertinent information. The operator then en
ters the stock item number and quantity, and the 
system responds with a full line containing not only 
the stock number and quantity but also a descrip
tion of the item, unit price, extension and possibly 
discount or other information. 

This kind of operation differs from the conversa
tional requirement of the engineering user in three 
important ways: the processing of each message 
usually involves random access to a large user file 
but seldom requires much actual computation; out
put volume (as in job-queued engineering use) is 
several times that of input and must be attractive in 
format and free of visible corrections or typeovers; 
and the operator usually wishes to enter data as 
rapidly as she can strike the proper keys and need 
not see the output resulting from one input in order 
to go on to the next. It is nonetheless desirable that 
the output be produced soon after the input so that 
a finished invoice is immediately ready to permit 
the shipment of an order; inconsistencies in input 
are called to the operator's attention by the system 
the moment they occur so that the data can be cor
rected or verified while the source material is at 
hand, and basic files are constantly kept up to the 
minute in currency. 

In the KEYDATA system, input data are pro
cessed within a very short time (usually a fraction 
of a second) after being entered, but the output is 
adequately buffered so that the operator need not 
wait for the printer before proceeding with the next 
entry. Since the amount of processing required by 
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each input message is small and relatively predicta
ble, scheduling in such a system can ordinarily be 
handled by the simplest possible method: first 
come, first served. 

Procedure Language 

User programs (that is, the description of the 
procedures to be followed in processing data for 
any application by any user) are written for the 
KEYDATA system in a more or less problem
oriented language, called KOP-3 (for KEYDATA 
On-Line Processor number three, the first two 
having been used in a smaller KEYDATA facility 
which went into operation in July 1963). KOP
language programs can be stored compactly and 
dealt with interpretively, thus saving storage and 
facilitating adaptability and integrity. Because they 
are written by KEYDATA's own staff, these proce
dures can be expected to make efficient use of the 
language and equipment. (Many a sound design has 
grounded on the rocks of inadequately informed or 
incompetent use!) They can also be cut into quite 
small segments by the programmer who, in the final 
analysis, is much better prepared than any 1965-
vintage executive routine to determine the natural 
segments of his program. 

KOP-Ianguage programs are, of course, pure 
procedures: that is, the instructions cannot modify 
themselves in storage and all variable status infor
mation is kept in small areas uniquely assigned to 
each subscriber. Procedure segments (pages of 48 
words) are kept on magnetic drum and called into 
core as needed. Automatic core allocation and 
scheduled drum accesses ( omitting a drum read 
whenever the desired segment is already in core) 
result in balanced utilization of core and drum and 
a high level of central processor utilization. 

CONCLUSION 

Responsive time-sharing to serve the business 
as well as the technical user is here to stay. It re
quires much more systems work to define and solve 
the problems of applying it in new areas. It also 
needs more collaboration between software and 
hardware designers than has been evinced thus far. 
Considerably greater attention should be focused on 
questions of economy in deciding on the tradeoff 
between hardware and software, in using storage 
hierarchies, and in determining the kind of service 
which the time-sharing user should be offered. 
The next few years will indeed be fascinating ones. 



CIRCUIT IMPLEMENTATION OF HIGH-SPEED PIPELINE SYSTEMS 

Leonard W. Cotten 
Fort George G. Meade, Maryland 

INTRODUCTION 

The implementation of high-speed pipeline sys
tems as described in this paper arose as a direct 
consequence of a large scale Department of Defense 
developmental effort initiated in 1962. The objec
tive of the effort was to develop and make available 
a complete capability for producing individual spe
cial-purpose systems on a fast reaction basis. From 
1962 to the present time attention was focused on 
all aspects of circuit and packaging technology, au
tomated or computerized design aids, feasibility ve
hicling, systems design studies, and advanced mem
ory development. As a result of strong industry im
petus in these directions it now appears that 1 to 2 
nanosecond hybrid integrated or full integrated log
ic circuits, practical fabrication of transmission 
line interconnections, packaging densities of 5000 
logic gates per cubic foot in the. machine environ
ment, 100 to 150 nanosecond cycle time DRO thin 
film main memories, and 23 to 40 nanosecond inte
grated scratchpad memories will be made available 
for systems being constructed over the next one to 
three year period. 

Considering the high potential systems perform
ance promised by these developments and the com
plexity of nanosecond logic realization it would 
seem that the systems designer-builder or technolo-
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gy user is faced with a bilateral challenge. First, 
and perhaps foremost, the user must exploit to a 
high degree each favorable performance characteris
tic made available by technology developers. Em
phasis will be placed on the traditional engineering 
compromises; however, increased sophistication and 
complexity will be necessary. For example, the pro
pagation of a 1 to 2 nanosecond rise time in a logic 
net requires far more attention to detail and fun
damental understanding than say a 10 to 20 nano
second rise time. Because of the large number of 
special situations that arise in design, it is impor
tant that efficient generalities or ground rules be 
used. Many considerations suggest that it would be 
wise for the user to develop straightforward but ef
ficient approaches to recurrent systems problems. 
As more systems are built, well-known approaches 
might be augmented such that the designer is able 
to minimize redundant design effort by not having 
to start from the beginning· with each new logic de
sign. This notion is particularly amenable to a fast 
reaction capability for one-of-a-kind machines if it 
is more desirable to expend effort on the problem at 
hand rather than on details of logic implementation. 
The second challenge facing the user is that of 
tightening feedback loops with technology produ
cers and other users. The time is not too distant 
when a sizable number of interconnections will be 
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made at the integrated subsystems level. This has 
occurred at the circuits level and the trend will con
tinue. 

In light of the above factors it will be the pur
pose of this paper to address those areas relating to 
the implementation of high-speed pipeline systems 
at the circuits level. The ideas presented are consid
ered to be valid in systems containing up to 50,000 
basic gates. Since the circuit packaging and other 
details have been described in the literaturel -

4 only 
those circuit characteristics relating to pipeline im
plementation will be discussed. While the concept 
of pipelining, or possibly streaming, has existed for 
years * and has been applied in earlier systems, the 
term appears not to have been broadly established. 
For this reason examples will be given to permit a 
better understanding. Main attention will focus on 
exploiting advanced technology in the pipeline sys,.. 
tems environment. Emphasis is given salient fea
tures of implementation that will ultimately relate 
to the pipeline system timing and control structure. 
The specific logic for a pipeline process may be 
quite general and is left to the designer of individ
ual systems. For the benefit of· advanced technology 
users it should be noted that many of the concepts 
presented herein relate to systems implementation 
in general and may be of interest in applications 
somewhat removed from pipeline systems. 

THE RATIONALE FOR PIPELINE 
OPERATION 

With the present state-of-the:...art in systems or
ganization and technology it appears that pipelining 
is a powerful approach to a particular variety· of 
large data / processing pr~blem~, The implementa
tions of systems to process such problems usually 
display one or more of the following characteristics. 

1, Thruput or Byt~ flow l'3,te is important, 
The total time required to flow inform a,. 
tion through a stream of processing logic is 
less critical than the rate of flow. Since 
pipeline fill-up time is small compared to 
total processing time the productivity de
pends largely on rate. The Byte acceptance 
andlor output rate is optimized and conse
quently is allowed to constrain the system. 

2. Input/output (I/O) speed is a critical fac
tor even though care is taken to minimize 
I/O and· to keep data buildup and reduc-

tion internal to the processor logic. This 
consideration is normally resolved by de
veloping a memory hierarchy which fre
quently calls for advancing the memory art 
significantly. 6-8 The most critical rate ex
ists at the pipeline I/O interface. In many 
cases this may be described by the follow
ing relationship. 

Memory cycle time ::; 
Memory word size 

(Pipeline byte size) (pipeline byte input rate) 

3. High system productivity is achieved by a 
high degree of parallelism. Bookeeping for 
example may be performed in a pipeline 
parallel to the main data processing 
stream. Serial control is often used to se
quence and interleave pipelines. Concur
rence is evidenced by the fact that almost 
all of a system is actively processing data 
at any given time. 

4. Timing is usually performed in the syn
chronous mode. While the relative merits 
of asynchronous timing are well known9 

the advantages of synchronous operation 
normally outweigh the. drawbacks in the 
systems under discussion. This may be at
tributed to several considerations. First, 
numerous internal process interactions 
must be predicted and controlled ef~icient
ly. An example is time and spatial injec
tion of new information into a running 
pipeline process. Secondly, evidence exists 
to suggest that recent technology is rela
tively more predictable. In one published 
report the variance of raw circuit propaga
tion delay was less than 0.5 nanoseconds 
while typical logic net ( circuit, line and 
loading) delay was approximately 5 nano
seconds. The components of delay associ
ated with transmission line propagation 
time and load driving are predictable, and 
typically may account for over half the de
lay in a net in advanced systems. Also, 
well-known theorems in statistics10 may be 
employed in strings of gates to avoid antic
ipation of so called worst-case delays. Fi-

*The term pipeline has been used for over 5 years by 
by designers to describe maximal rate processing of the form 
discussed. However, the author has so far been unsuccessful 
in determining the origin of the term as used in this con
text. See reference 5. 
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nally, the maximum rate objectives of par
allel processors usually rule out lengthy 
ripple structures of the type where asychro
nism might be profitably employed. In
stead, lookahead gating is incorporated 
into structures for example. 

The concept of pipeline operation may be illus
trated by using an adder as a vehicle for discussion. 
First, total time for performing addition could be 
minimized by using parallel structures and carry 
lookahead logic. Add time for 12-bit numbers 
might be 4T. Secondly, the same adder could be 
constructed with fewer gates by using a ripple carry 
structure. Add time would be approximately 12T. 
Thirdly, if the ripple carry structure of the second 
adder is clocked, and if each successively higher or
der bit pair from the input numbers is delayed in 
time by 1 T, then the adder is capable of producing 
a sum. for each period T. The skewing of the input 
numbers and the deskewing of the output sums 
could be accomplished by delay lines, clocked regis
ters, or by specially ordered memory storage pat
terns. The third adder is of course a form of pipe
line operation, and might be advantageous if many 
pairs of numbers are to be added at a maximal rate. 

A pipeline system would probably result if a spe
cial machine was designed to correlate long columns 
of numbers, Ai and Bi, as rapidly as possible. From 
the relationship shown it is apparent that many prod
ucts must be formed and accumulated at the same 
rate. If points (Ai, B i ) where: 

n-k 
Pl2 = I Ai Bi + k 

i = 1 

were sampled in time it is seen that the process 
would be repeated for many values of k, or time 
lags. Finally it is observed that a careful balance of 
memory capability, parallel logic, and system or
ganization would be necessary to achieve the maxi
mum practical rate. 

BASIC PIPELINE OPERATION 

A basic pipeline structure is illustrated in Fig. 1. 
The pipeline is characterized by a succession of reg
ister and gate sections. The first section, (A), con
tains a register which is made up of elements All, 
A 2 1, .• . Arl and a gating structure composed of an 
(r) by (k-1 ) element array. Limits have not been 
have not been placed on rand k as this is a some-

I I j I I I J"L 1... 
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A" ~ ~ ••• [Y ~, ~ ~ ••. ~ c" ~~ ••• & ~, 
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REGISTER A GATING A REGISTER B GATING B REGISTER C GATING C 

Figure 1. Basic register and gating structure. 

what generalized structure. In practice definite lim
its are established by logic and timing considera
tions, and not all elemental positions are necessarily 
populated. The elements which form registers are 
considered to be basic register cell structures. The 
elements which occupy positions in the gate, arrays 
are basic circuits that perform logic and consume 
time in the process. Information flows through 
strings of these circuits in an unclocked fashion. 
For this reason gate strings between registers are 
kept within specified lengths. Special attention is 
given the gate-register and register-gate interfaces, 
especially as timing constraints become critical. 
The control delay (CD) elements are structured 
from standard logic circuits and are used to form 
timing chains, which sequence the pipelines. Tim
ing chains usually account for 10 percent or more 
of the gates. in typical pipeline systems. 

An examination of data flow and the timing
control interaction of a basic pipeline will help to 
explain the operation. Figure 2 illustrates the basic 
timing for one input BYTE that is subsequently 

CLOCK CYCLE ---t ~ 

~ 
--==D ______________ __ 

~~-------------
----~~~~------------______ ~n~ __________ __ 

--------~~~--------
__ --------~n~--------
------------~~~-----
___ ,--~,------~n~------

'1'1+0 ',. ... 1 ~ ... 2 '1'1+1 tn+m 'n+m+1 

Figure 2. Timing for one input BYTE. 

processed through the pipeline. At time tn + 1 the 
BYTE is clocked in parallel into the first register A. 
The information appears at the register A output 
and moves unclocked through logic gating A to the 
input of the next register B. At some time after time 
t n + 1 and before time t n + 2 pulse moves from the first 
control delay CD A to set the second control delay 
CDR such that a clock pulse from the time base is 
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gated through to register B at time tn +2. The timing 
process is repeated through the remainder of the 
registers. Information arrives at the output end of 
the pipeline and is available to be clocked into the 
last register or output device at time tn +m . A total of 
m registrations or clock cycles is required to tran
verse the m section pipeline. Four points might be 
emphasized. First, after introduction of the BYTE 
into the pipeline the timing chain automatically se
quences the information through at the basic clock 
rate. Second, Figure 2 suggests that the pulse paths 
between adjacent control delays are noncritical over 
time periods approaching the clock period. Third, 
Fig. 3 shows the timing sequence for a burst of six 
input BYTES. During a burst it is possible that all m 

REGISTER 0 _____ --' 

, 
' .. , Inti ',..., ',..m tn.m.1 tft+lrW.Z 

Figure 3. Timing for six input BYTES. 

registers may be clocked simultaneously; moreover, 
this is the desired situation in normal processing. 
One obtains maximum productivity by minimizing 
time gaps between bursts. Lastly it is observed that 
for p BYTES and m pipeline registers a total of 
m + p - 1 clock periods is needed to clock out all 
information. Now that concepts fundamental to pipe
line operation have been set forth, it is meaningful 
to consider implementation with newly developed 
logic circuitry. 

CIRCUITS AND LOGIC GATING 

Basic Circuits 
The circuits being used for implementation pur

poses are of the well-known current mode switching 
or emitter coupled logic (ECL) variety. The circuits 
and detail characteristics· have been described in the 
literature,11-13 therefore only those properties needed 
to explain logic implementation will be examined. 
Figure 4 shows the basic circuit, logic, and an elec
trical behavior chart. The circuits perform standard 
NOR-OA( +) or NAND-AND(-) logic depending 
upon the logic polarity significance. The parenthetical 
symbmols (+) and (-) are used to indicate which 

*The IEEE logic symbol standard is the "American Stand
ard Graphic Symbols for Logic Diagrams," approved by the 
American Standards Association on Sept. 26, 1962. See 
Computer Design, May 1965, pp. 6-7. 
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Figure 4. Circuit logic and electrical behavior. 

signal excursion is to be identified as a logical ONE. 
For logic polarity symbols* the open right triangle 
will be used to indicate negative logic - significance 
and a straight line will indicate positive significance. 

Since for purposes of this discussion the reference 
voltage is zero volts or ground, it is seen that the 
high swing is a positive voltage and the lower swing 
is a negative voltage, nominally + 0.4 and - 0.4 
volts. Because of the low leakage current associated 
with the silicon transistors, unused inputs need not 
be connected. A floating base effectively takes the 
respective transistor out of the circuit. One other 
point should be mentioned. The emitter followers 
are not tied to resistors at the circuit level; however, 
each logic net in the system will contain a current 
source resistor and a transmission line terminator in 
an R (resistor) pac. These provisions make possible 
the very useful wired OR or DOT OR (+), pro
vided one is able to sacrifice the identity of the 
individual variables that are shorted together elec
trically. This connection also forms a DOT AND 
( -) which proves quite useful. From a logical design 
standpoint the connection permits two levels of logic 
in the time slot normally required for one decision. 
Additional constraints such as placement must be 
considered, but many useful functions may be real
ized. For example, the EXCLUSIVE OR, f = AB 
+ AB, or the carry equation, Cn = An Bn + An 
Cn- 1 + Bn Cn- 1 may be realized in one gate delay 
for either positive or negative significance if both 
polarity input variables are provided. 

Circuit Response in the Systems Environment 

Industry progress in improving circuit response 
has been quite encouraging; however, the user still 
must consider numerous design alternatives brought 
on by bandwidth limitations and line propagation 
velocity. This is illustrated by the fact that 1 to 2 
nanosecond circuit propagation delays have to be 
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added to 2 to 4 nanoseconds of average intercon
nection and loading delay in typical cases. Since 
loading by its very nature produces both lumped 
and distributive effects, reasonably accurate calcula
tions are less than straightforward. Placement of 
circuit modules and interconnection paths further 
complicate the logic design in highly synchronous 
systems that are optimized for speed. In order to 
deal with these problems . efficiently the designer 
must be supplied with valid rules of thumb and 
ground rules. Experience has taught that this is in
deed possible, but that the user must be sold on the 
increased complexity above that encountered in 
slower speed logic. 

The total delay of logic net, consisting of the cir
cuit, interconnection lines and loading, is deter
minel by a number of contributing effects.1 For a 
first order estimate it is necessary to consider only 
four components. It should be mentioned that these 
quantitative results are based on (a) effective base 
input capacities in the 5 to 10 picofarad range, (b) 
terminated transmission lines that are capacitively 
loaded so as to present a load of approximately 50 
ohms to the driving circuit, (c) logic nets of several 
inches, and (d) a specific set of circuit design com
promises. 

1. The first component of interest is raw cir
cuit delay. For the circuits being discussed 
propagation delay is 1 to 2 nanoseconds. 
Voltage transition times are defined as be
tween -0.2 volts and 0.2 volts, and the pro
pagation delay is measured from the start 
of the input transition to the start of the 
output transition. Since input transition 
time is a parameter with respect to this 
measurement, approximately 1 nanosecond 
is . assumed (best case). This is approxi
mately the circuit output transition pres
ented to a 50 ohm resistive load. 

2. Second, a transmission line propagation 
delay of 0.18 nanoseconds per inch must 
be considered. This is established by the 
glass epoxy dielectric used in the laminated 
interconnection cards which accept the cir
cuit modules and the interconnection 
boards which accept the cards. 

3. The third component of net delay arises 
from attaching base loads to the transmis
sion line and appears in the form of an in
crease in line propagation delay. This ef-

fect and the one below (4) has been gra
phically described by Flynn. 1 In practice 
the addition of a base to a moderately 
loaded line of a few inches in length may 
add as much as 0.25 nanoseconds of delay. 

4. The last delay component to be cQnsidered 
is an increase in circuit propagation delay 
attributed to input transition times being 
greater than the original one nanosecond in 
the best case. Circuit propagation delay 
increases roughly by one-half the increase 
in the input transition time from the origi
nal one nanosecond. The actual input tran
sition time is determined by base loading 
on the driving net. In practical situations 
the addition of one base onto the driving 
net may cause the propagation delay of cir
cuits being driven to increase 0.15 nano
seconds. 

It should be noted that base loading caused delay in 
two separate ways. T1;lese response considerations 
give some insight into decisions that must be made 
by a designer using high speed logic of this type. 
Considerable freedom exists as to possible choices 
for a given logic implementation, but appreciable 
time may be spent in arriving at the best set of de
cisions. For these reasons it would seem desirable 
to have some standard approaches to recurrent situ
ations in pipeline systems particularly. At the pres
ent time it seems reasonable to strive to get total 
delay per net down to approximately 4 nanoseconds 
in pipeline applications. 

Register Cell Implementation 

Historically, the NOR implementation of a gated 
set-clear flip-flop has been widely used. The NOR 
implementation may be seen in Fig. 5 along with 
two more recent developments in the evolution of 
basic register cells. The NOR flip-flop is well 
known; therefore, a review of operational character
istics will suffice. Input consists of a negative gat-

GATED SET-CLEAR 
FLIP-FLOP 

GATED SET-CLEAR 

6~~:6~O~E:'6~~CK 

Figure 5. Register cell structures. 
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ing pulse (-G) and normal (X) and comple
mented (X) data input levels. If the symbol T is 
used to represent a nominal circuit propagation de
lay, it is seen the 2T best case and 3T worst case 
is required to obtain valid outputs from the time 
that the gating pulse is initiated. 

A useful modification of the NOR flip-flop is 
the DOT OR feedback. It is seen in Fig. 5 that 
feedback lines 1 and· 2 are wired to lines entering 
circuits Eand I such that additional base inputs are 
not required. Propagation delay through this flip
flop differs from the first example in a basic res
pect. Since one of the output lines initially rises 
with the SET or CLEAR pulse the outputs are 
available earlier. In general, output information is 
available in 1 T best case and 2T worst case. 

The register cells just mentioned have disadvan
tages in high-speed pipelines and the latch cell, Fig. 
5, has much to offer both in terms of speed and log
ic implementation. The latch as a functional logic 
array has been realized as a high-speed module and 
was mentioned by Flynn.l It is the redundant feed
back path through circuit I that· contributes to 
many outstanding cell characteristics. 

1. Redundant data input information is not 
required. This frequently saves time and 
simplifies logic. 

2. The +G and -G gating pulses may be 
skewed . either way with respect to each 
other without impairing latchup. In prac
tice + G and -G should coincide as closely 
as possible for maximum pipeline speed. 

3. A close examination of the latch will reveal 
that the data outputs (X2 +, X2 -), lines 
2 and 3, will always occur in 2T. The com
plemented output (Xl - ), line 1 is clearly 
available always in 1 T because it is the only 
line seen to enter circuit M. 

A curious and useful DON'T CARE function is 
displayed by the latch under certain conditions. To 
realize this condition the -G pulse is put into the 
data input and the -G pulse input is permitted to 
float. 

( a ) If the -G pulse arrives later than or with 
the + G pulse the normal data outputs 
assume the logical ONE state. 

(b) If the -G pulse fails to appear then the 
+ G will cause the normal data outputs to 
assume the logical ZERO state. 

( c) If the + G pulse fails to arrive then the 
-G pulse will cause the normal data out
puts to assume the logical ONE state. 

The apparent indifference as to the arrival of a + G 
pulse when the logical one state is to be assumed 
and the lack of· dependence on the arrival of a -G 
pulse when the logical zero state is to be assumed 
are both useful in implementing the control delay 
function that will be considered later. 

Register trigger or gating pulse requirements 
must be established prior to the design of the syn
chronization for high-speed pipelines. Of interest is 
the determination of the minimum width gating 
pulse that must be supplied to registers to insure 
correct information storage. Each of the flip-flops 
or register cells previously considered has an almost 
identical closure path. An examination of all clo
sure paths has resulted in some interesting observa
tions; however, it might be more practical here to 
consider a worst-case path for each register cell. 

1. Consider the first NOR flip-flop in Fig. 5 
with a ONE stored and a ZERO about to 
be gated in and stored. The -G pulse causes 
the C output on line 7 to rise. The D out
put on line 1 falls causing the A output on 
line 2 to rise. Line 7 is then permitted to 
fall. To simplify calculations the effects of 
loading and line propagation delay are in
cluded in maximum and minimum circuit 
delay. If symbols G, C, D and A are used 
to represent times associated with pulse 
width and circuit propagation delay then 
an expression for the minimum gating pulse 
width, G, requirement may be stated as: 

G=C-C+D+A (2) 

2. Consider next the DOT OR flip-flop with 
the same initial conditions as above. The 
closure pat4 HIEI is analogues to CDAD 
even though the outputs of Hand E are 
wired together. 

G=H-H+I+E (3) 

3. The latch has a redundant feedback path; 
therefore, one path is temporarily negated. 
Consider the latch as containing a ZERO 
initially with a ONE on the input data line 

4. The +G pulse negates the feedback 
path LML. The closure path is KMIM. 
One may suspect from this example that 
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something in the latch is wasted, but a 
consideration of all binary possibilities 
proves otherwise. The minimum width re
quirement placed on the -G pulse is: 

G=K-K+M+! (4) 

From these example cases it is seen that the mi
nimum gating pulse width is determined by pulse 
width reduction through one circuit and the maxi
mum delay through two other circuits. Care must be 
taken in measuring the possible pulse width shrink
age through a circuit because pulse width is a pa
rameter in the limiting case. The interesting phe
nomenon is question is due to a finite recovery 
time inherent in all high-speed switches. There may 
even be an external recovery due to line reflections. 
In effect a circuit may turn on slowly only to turn 
off quite rapidly because the internal currents did 
not complete a full swing to the d-c rest point. If T 
and T are maximum and minimum circuit propaga
tion delays in our domain of interest then for regis
ters of the type discussed the maximum pulse width 
requirement will be: 

G = 3T-T (5) 

As T is made to approach T, G will approach G, 
and G may be approximated by saying: 

G= 2T (6) 

An analogy may be drawn between (a) the time a 
circuit output is seen to switch and the time the cir
cuit is internally stabilized and (b) the time infor
mation' appears on the output of a register and the 
time the register is fully latched. 

Logic Gating In Pipelines 

Logic gating in pipelines is usually considered to 
be gating between registers. For this reason the 
constraints on maximum and minimum numbers of 
gates in the critical path are determined respective
ly by maximum clock rate considerations and data 
race conditions. Between these two limits the num
ber of gates is usually noncritical. If T is used again 
to represent a nominal unit of circuit, line propaga
tion, and loading delay, then in 50 megacycle pipe
lines 4T. = 18 nanoseconds has been established as a 
reasonable design objective in most cases. This sug
gests that if each gate was treated separately, then 
4.5 nanoseconds would be the maximum T ; how
ever, in practice the 18 nanoseconds may be applied 

to the total string of gates, lines, and loading for 
the maximum case. While 4 circuits are normally 
used, it should be' said that 3 circuits under heavy 
average loading and long paths or 5 circuits in short 
and lightly loaded paths are not excluded. From the 
previous analysis of registers it is seen that out of 
the 4T delay almost half the ·time may be spent in 
a register. For this reason special attention must be 
given to (a) optimal methods of gating in and out 
of registers and (b) ways to obtain as .many logical 
decisions as time permits between registers. 

Examples of special register input and output 
gating may be seen in Fig. 6. The DOT OR flip
flop provides for a level of input gating with circui-

«« 
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Figure 6. Gating between registers. 

try, or two levels of decision gating are possible if 
the DOT OR is used judiciously. The time for this 
gating is included in the 2T worst-case register 
propagation time. In practice, to realize this gating, 
one of three things must usually be done: (1) Com
pletely separate SET and CLEAR equations may be 
factored. (2) The register may be automatically 
cleared with a simpler logic expression. (3) If 
neither of the first two approaches is feasible then 
it is usually possible to insert a redundant feedback 
path of the form used in the latch. Gating our of a 
register in the shortest possible time. may be done 
by using the NOT output (Xd which is available 
from the latch in IT. In Fig. 6 the output of Gate 
N actually is available as soon as X2 appears on the 
latch output. The power of this latch~N gate usage 
is best demonstrated in the selection table example 
which follows. 

Suppose 'One wishes to store a 4 bit address in a 
register and use this information to select one out 
of 16 possible lines in the shortest possible time 
slot. Assume further that special circuit packaging 
is a consideration and a geometrical constraint ex
ists on the maximum separation of the outputs in 
the DOT OR ( + ) which is also the DOT AND (-). 
Such a set of considerations is typical, and a solu-
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tion is seen in Fig. 7. The DOT AND (-) was 
used; therefore, the selected line and only this line 
will go to a negative voltage level for the input con
ditions shown in the table. Since we are in a nega
tive (-) logic system the low level voltage is inter
preted as a logical ONE (-). A careful examination 
will show that each line is wired to four individual 
circuit outputs, and when compared to other im
plementations for this speed range the approach 
seems reasonably efficient. The relative merits of 
this solution can best be evaluated with respect to 
( 1) timing, (2) packaging and (3) further logic 
considerations. 

1. The shortest time possible to clock infor
mation through the latch and use it to se
lect a line is found to be 2T. Depending 
upon the spacing between the registers and 
the matrix, 2 to 3 nanosecond time must 
be budgeted to drive 8 external loads from 
the register. The time for the DOT decision 
is neglected. 

2. It is observed that a module ( module is a 
0.5-inch square multiple circuit package 
with 16 pins on 0.125-inch centers) made 
up of 4 I-input circuits could be most effi
ciently utilized. This is not essential, how
ever, because a separate line goes to each 
input. Using either approach the geometri
cal constraint on wired (DOT AND ED) 
emitter spacing is noncritical here. The 
maximum distance between the two dots on 
the line to be selected is well within an inch, 
which in turn is well under the maximum 
permitted. If advantageous the entire ma
trix could be partitioned vertically, as shown 
by the segmented line, and each half could 
be placed manually or by an automatic 
placement routine. The module count for 
this example, including 4 latches, could be 
as low as 12 modules. 

3. From a logic standpoint other facts should 
be mentioned. In order to get correct out
puts from the latches in a 1 T time delay, 
complements were fed in. These comple
ments could just as well have been normals. 
If this were the case, as may be seen from 
the Fig. 7 table, line 1 would become 16, 
line 2 would become 15 and so forth. An
other alternative would be simply to inter
change the normal and inverted outputs 
from the basic circuits. These considerations 
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Figure 7. Implementation of selection table. 

are somewhat trivial, but are cited to show 
that negative ( -) or positive- (+) input 
logic presents no proble min this case. For 
larger address decode problems it is sug
gested that one explore the possibility of 
using more than one input on the last level 
of circuits, granted this is not the only con
sideration. In passing it should be clear that 
if the 16 lines are each to be ANDED 
with a variable of interest by driving another 
circuit input, then the negative (-) logic 
significance is needed, and this is found to 
be true in most cases. 

Now that some optimal methods of gating in and 
out of registers are known it is desirable to determine 
the maximum number of consecutive decisions that 
might be made between registers when a maximum 
of two circuits may be inserted into the average crit
ical path. Figure 6 shows a maximum critical path 

of Gn ~ NOPGn + 1 where Gn + 1 is the next pulse in 

time (20 nanoseconds later, neglecting skew, for a 
50 megacycle clock rate), which gates the resultant 
of all the path decisions into the DOT OR flip-flop. 
A count of the Fig. 6 listing shows that storage plus 
eight serial logic decisions are possible. The seventh 
and eighth may be weakened by possible SET or 
CLEAR requirements. If the last two are essential 
decisions it might be necessary to incorporate re
dundant feedback into the last register to ease SET
CLEAR requirements. With the DOT OR (+) or 
DOT AND (-) one does sacrifice identity of com
ponent variables, but if this can be tolerated then 
the result is a decision in approximately zero addi
tional time. Lastly, it is known that levels of NAND 
( -) NAND (-) are equivalent to OR (+) AND 
(+) or AND (-) OR (-), as could be shown by 
successive applications of DeMorgan's theorem. 
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PIPE~INE TIMING CONSIDERATIONS 

Timing analysis indicates that the maximum rate 
single phase pipeline operation is possible only after 
( a) register pulse requirements have been met and 
(b) the race paths have been eliminated. It will be 
shown that condition (b) is analogous to saying 
4T - We - Se ;;::: 0 where T is the minimum circuit
line-load delay, We is the original clock pulse width, 
and Se is the maximum possible clock skew. Actual 
skew is contained within the interval 0 S skew ~ 
Se. Further considerations suggest that in order to 
meet the basic conditions one might find it advan
tageous to alter T and T in specialized cases such 
as in registers, and to carefully consider detailed 
factors associated with each system. 

Data Race and Latching
Theoretical Considerations 

The insight provided by a theoretical treatment 
of the data race problem aids eventually in the appli
cation of a practical solution. Since two adjacent 
registers in a single phase pipeline may be thought 
of as receiving the same clock pulse the hazard exists 
that data clocked into register I (point a in Fig. 8) 
may race ahead through a short, fast path and appear 

REGISTER I GATE GATE REGISTER 2 

Figure 8. Timing model. 

at the input of register 2 (point b) before the original 
clock pulse disappears. This is hazardous in two 
respects. First, the clock may correctly gate in both 
the original data and also the unwanted data from 
the malfunctioning critical race path. Second, the 
input data must remain a -level for the duration of 
the clock pulse to insure correct gating and original 
storage in the register. The undesirable consequence 
of data races may be avoided by designing enough 
delay into the shortest path to insure data arrival at 
the next register after the clock pulse has dis
appeared. In order to determine an adequate amount 
of additional delay one must first determine the 
latest possible time after both registers have been 

clocked that the clock may still be present. If for a 
pulse of width We the total effects of differences in 
path lengths, loading and distribution circuits are 
included in the skew term Se then the latest· possible 
pulse disappearance time is We + Sc, from the ear
liest appearance at either reference point a or b in 
Fig. 8. If the fastest logic circuit path is 4T then 
an inequality to insure race free operation may be 
stated. 

We + Se S 4 T or We S 4 T - Se (7) 

From Eq. (5) it is seen that to insure correct data 
input clocking a pulse of 3 T - T nsec of width is 
required. If the term Se is a random variable con
trolled only within limits it follows that the minimum 
pulse input to a register is We - Se; therefore, an 
inequality to insure correct register pulsing may be 
stated. 

3T-T S W e-Se or3T-T + Se S We (8) 

Considering race hazard elimination and minimum 
pulse requirements it is possible to combine Eqs. 
(7) and (8) to establish an interval for We. 

3T - T + Se S We S 4T - Se (9) 

A solution for We in Eq. (9) exists if TIT;;::: 1 for 
actual values of T and Se. For 50 megacycle pipeline 
systems using the technology under discussion a 
maximum system clock skew of Se = 2 nanoseconds 
has been established as feasible. The maximum 4 T 
delay is then 20-2 or 18 nsec and T = 4.5 nsec. 
Based on \this information Eq. (9) may be solved 
for T, a maximum value of the ratio TIT, and pulse 
width We. 

T = 3 T ~ 2Se = 3 (4.5 ; 2 (2 ) = 3.5 nsec ( 10) 

Therefore: T/T = 4.5/3.5 = 1.28 ;;::: 1 and is theo
retically acceptable. And : We = 12 nsec by substi
tution. 

Data Race and Latching - Applied Considerations 

While the theoretical treatment in the preceding 
section produced a solution it is not too surprising 
that in practice the considerations of T and Weare 
not straightforward. This follows from the fact that 
usually an objective of an advanced circuit develop
mental effort is to produce the fastest possible stable 
circuits. The actual value of T is based on popula
tion sampling and more detailed considerations. For 
the circuits being discussed T may be considered as 
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considerations as there are designers. One consid-
2 nsec when at least one base load is present along 
with a finite interconnection line and an average 
input transition time. The determination of We could 
probably be based on as many or more individual 
eration that has some merit is that presented below. 

Clock period = III = 2 (We + Se) (11) 

Relationship (11) has implications with respect to 
clock systems implementation and systems usage. 
For one thing it permits a two phase clock with zero 
overlap at the maximum frequency· of interest, and 
thus would permit shifting betwen adjacent registers 
with no intermediate serial gating. * From Eq. (11) 
it is seen that We = 8 nsec for I = 50 mc and Se = 
2 nsec. Some additional consideration should be 
given to establishing a reasonable maximum effective 
clock pulse shrinkage in the system. That We - Se 
is a reasonable minimum pulse width may be coun
tered as follows. 

(a) From Fig. 9 it is seen that if the pulse 
starts at time t = 0 then the minimum 
width pulse has to be We nominal or 8 
nsec. 

(b) If the pulse starts at time t = 0 + Se/2 or 
midway in the skew interval it is seen that 
the minimum width pulse is We - Se/2 
or 7 nsec. 

(c) For a hypothetical pulse width of We - Se 
the start surely has to occur at time t = 0 
+ Se. For a pulse to have been delayed 
originally by this amount the maximum. 
excess line and load delay would have 
been encountered. Since line and load delay 
tends to slow both the leading and trail
ing edge of a pulse it is suggested that any 
resulting pulse from t = 0 + Se is greater 
than We - Se by an appreciable amount. 

Statements (a), (b), and (c) do not of course con
stitute a rigorous proof of the hypothtesis that a pulse 
of width We - Se cannot occur. It is considered that 
sufficient grounds were established to invoke a min
imum pulse restriction on the clock system of W = 
We - Se/2 without appreciably affecting clock sys
tem implementation. 

Practical race and latch constraints may now be 
stated for a realizable pipeline system with many 

*This point was brought out in a private discussion with 
J. Alton and F. Miller of Remington Rand Univac Corp., 
St. Paul, Minn., April 27, 1965. 

factors considered. To eliminate the race hazard, 
relationship (7) is modified into the Eq. (12) race 
constraint. 

(T 1 + T 2 + T 3 + T 4) ~ We + Sc ( 12 ) 

for a string of 4 gates in a race path. Equation (12) 
differs from (7) in that the minimum of the sum 
of 4 delays is used rather than a sum (4T) of 4 
minimum delays. For We = 8 nsec and Se = ') nsec, 
it follows that the effective T average, for 4 gates in 
a race path, must be equal to or greater than 2.5 
nsec. Considering that T = 2.0 nsec and taking into 
account of the effects of line and load delay, the min
imum average delay of 2.5 nsec is reasonable. 

To insure correct register closure or data latching, 
relationship (8) is restated in Eq. (13), the data 
latching constraint. 

(Tl + T2 + T3) - T::;;; We-Scl2 (13) 

for a closure path. It follows that the maximum a'!er
age delay for 3 circuits in a register closure path i8 
3.0 nsec, be sed on previous assumptions. This aver
age is easily achieved with a functional module. 

If one is justified in assuming that the first circuit, 
the -G input gate, in the latch has negligible T - T 
for itself and immediate loading then Eq. (6) can 
be modified to (14). 

(T2 + T3) ::;;; We - Se/2 (14) 

fot a register closure path with negligible T - T for 
the input gate. 

Under Eq. (14) conditions the maximum average 
delay for the remaining two gates in the closure path 
is 3;5 nsee. This figure suggests the possibility of 
placing heavy logic loads close to the register. Also, 
the possibility of paralleling a latch with a load driv
ing circuit tied to the wired node should be consid
ered for load driving that in any way threatens reli
able closure. 

Pipeline Clock Rate Equations* 

Pipeline clock rate equations may be developed 
directly from the timing diagram seen in Fig. 9. For 
analytical purposes three regions exist. The region 
widths Wl, W2 and W3 are stated as follows. 

1
-----·T-----~!7QZZZZUZQZZZZ~~1 
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Figure 9. Timing diagram. 
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Region I: 

WI = We + Se 

Region II: This region is established as: 

W2 = 4T - WI = 4T - We - Se 

(15) 

(16) 

Region III: This is the data arrival interval. That the 
width is not affected by inserted fixed delay may be 
seen if a dummy variable Z is used. The earliest pos
sible data arrives at register 2, Fig. 8 after a delay 
of 4T + Z. The longest arrival delay is Se + 4T + Z. 

W3 = (Se + 4T + Z) - (4T + Z) 
= 4 (T - T) + Se (17) 

To simplify matters the term Se in W 3 will be added 
to W 4 for frequency calculation purposes in: 

f = l/(WI + W2 + W3) (18) 
1 

- (We + 2Se ) + (4T-We-Se) + 4(T-T) 

A determination of operating frequency is of inter
est for t~ree special cases. 

Case 1. When 4T - We -'- Se > 0 the terms in the 
denominator of Eq. (18) may be added directly. 
It is tacitly assumed that register closure require
ments have been met by We and Se. From Eq. (18): 

f = 1/(Se + 4T) (19) 

Case 2. When 4T - We - Se = 0, it is seen that 
Eq. (18) becomes: 

1 
f = (We + 2Se) + 4 (T- T) (20) 

At first glace Eq. (20) appears to be significantly 
different from (19). If 4T - We - Se = 0 then T = 
(We + Se)/4. If this T is substituted back into Eq. 
(20) : 

f = ___ 1 ____ ----,----
(We+2Se) +4T-4 (We+Se)/4 

1 
(Se + 4T) 

It is seen that T here was a restatement of the data 
race consideration in Eq. (12). 

Case 3. When 4T - We - Se < 0 a race hazard exists 
and may be eliminated by adding delay of-some'value 
k such that: 

k ~ We + Se - 4T (21) 

*The author acknowledges many fruitful discussions with 
other investigators who were concerned with details of sim
ilar calculations. Notable among these were personnel at 
RCA, Camden, N.J., and at IBM, Poughkeepsie, N.Y., and 
Dr. H. H. Loomis of the University of California, Davis, 
Calif. 

It is recognized that adding a delay k increases W 2 

in Eq. (16). Since W 2 = 4 T + k - WI = 4 T + k -
We - Se, as a result, the frequency becomes f = II 
(Se + 4T + k). In order to recoup speed T might 
be reduced by an amount k/4. 

If T=4.5, T=2.5, We=8, and Se=2 nanoseconds 
in Eq. (19)-and (20)-then f = 50 megacycles. 

It -is emphasized that the clock rate calculations 
herein presented are based exclusively on single phase 
operation. In reality the period 4 T + Se is valid for 
single phase clocking and We + 2Se + 4 (T - T) is 
theoretically realizable with some multiphase clock 
scheme. With the numbers given for 50 megacycle 
operation both yield the same frequency. If one could 
add sufficient delays to all fast nets such that the T 
specification could be increased and if the required 
phasing could be supplied then Eq. (20) will pre
dict the theoretical performance. At first glance mul
tiphase operation from a speed standpoint appears 
to have merit; however, investigators* have ventured 
opinions that in the systems under discussion it may 
not be worth pursuing. Such opinions exist because: 
(1) precise minimum circuit delay above some nat
ural set of limitations can be difficult to predict with 
confidence, (2) phase control requirements in the 
clock system may complicate the organization, and 
( 3) design constraints become more restrictive in 
the inherently complicated nanosecond system. These 
points will not be explored further, but the interested 
reader is encouraged to pursue the matter. 

TIMING CHAIN IMPLEMENTATION 

The role of timing chains in pipeline systems was 
established in the discussion on pipeline operation. 
Figures 1, 2, and 3 further establish the dependence 
of pipeline operation upon timing chains in more 
or less conventional systems. The following discus
sion will consider (a) the control delay cell im
plementation using current mode switches without 
delay lines, (b) detailed aspects of time base im
plementation' for highly synchronous systems, and 
(c) some standard applications of control delays to 
illustrate interesting capabilities. 

The Control Delay Cell 

For purposes of this discussion the control delay* 
may be thought of as having three main functions: 

*Private correspondence from Dr. H. H. Loomis of the 
University of California, Davis, Calif. 
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( 1) It receives a set pulse and at a predictable time 
later produces output pulses of both polarities and 
with fixed width and skew characteristics. (2) The 
control delay cell furnishes fan-out to clock regis
ters and also furnishes certain control outputs to 
drive slaves for even greater fan-outs. (3) Finally, 
the control delay performs all functions in such a 
way that it may be gated by logic commands. 

To enhance systems realizations it is advantageous 
to construct a basic control delay cell (Fig. 10) 
from standard logic circuits without the benefit of 

Figure 10. Three control delays in a timing chain. 

fixed delay lines. Control delays may be better un
derstood by making reference to the timing in Fig. 11. 
Operation consists of feeding the V circut with pulses 
on line 1 from the time base. If line 2 is floating 

\ \ATCH OUTPUT "'N~' _ ~ 
~.2V f...-8N5£C.----o1 / ~ 

ANO OUTPUT LINE 3 

-.2V ____ -'---' r--8NSEC.~ 

Figure 11. Control delay timing. 

(unused) and line 3 is at a low voltage level then 
positive and negative output pulses appear on lines 
7 and 10. For output pulses to have occurred the 
latch output, X2, had to be a logical ONE. The line 
7 positive output is used to furnish a + G latch reset 
such that no more output pulses are produced unless 
a -G latch set pulse is received from a previous con
trol delay. Note that no conflict need exist for simul
taneous -G and + G pulses due to the DON'T CARE 

*The term control delay in this context is believed to 
have been originated by Remington Rand Univac engineers, 
some time prior to 1960. See also refere~ce 14. 

property discussed in the section on registers. Since 
the + G path is made short, the -G path is always 
longer, and it takes precedence over a possible +G. 
Circuit U, the AND (-) gate, performs two func
tions: (1) It serves as a buffer delay such that a + G 
cannot race around and literally reduce its own 
output width by prematurely causing the V circuit 
to be inhibit~d during the negative portion of the 
time base. Also, the delay is provided such that a 
-G input cannot race ahead and gate out an earlier 
portion of the time base than is desired. Note that 
the line 3 waveform shows that both of these condi
tions were met; moreover, the output of U could 
have been delayed 8 nanoseconds and yet have met 
these conditions. This brings us to the second func
tion of the U gate. (2) The input line 4 may- be held 
high to inhibit the control delay output indefinitely. 
Some examples of this usage will be described below. 
Also due to the 8 nanosecond possible delay of line 
3, or the U gate output, up to approximately 40 
inches of line could exist between adjacent control 
delays with no serious consequences. Since the control 
delay effectively gates out a known portion of the 
time base, the negative pulse portion, the skew 
throughout a system remains under control. Total 
skew consists of that prevalent in the time base and 
the V gate with the output line and load differences. 
If the output loads per V circuit or slave are held 
within 1 to 4 registers with no more than 4 inches 
of effective line difference between any 2 then total 
skew appears to be approximately 2 nanoseconds 
when referenced at register inputs throughout a 
large system. This was calculated for a wide range 
of load placement conditions and is shown in Fig. 11, 
lines 7 and 10 waveforms. It should be mentioned 
that this representation of pulses should not be in
terpreted as suggesting very narrow possible output 
pulses. Rather, what is shown are the pulse extremes 
for the shortest lightest loaded path and the longest 
heavily loaded path. Pulse shrinkage or stretching 
would be held to no more than 1 nanosecond. 

A wide range of useful functions are possible when 
slaves are attached to control delays. By way of 
explanation a slave in considered to be another V 
circuit tied to line 3 and the time base. For one thing, 
more slaves can be added for load driving without 
affecting skew. Another interesting possibility arises 
if one desires to inhibit the -G command otherwise 
proceeding from a previous control delay. Simply 
DOT-ANDING (-) to line 6 could interfere with 
the load driving of the previous control delay. If a 
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slave drove line 6 then no such problem need exist. 
Lastly, since a slave may itself be gated it is possi
ble to inhibit control-delay slave outputs and yet fur
nish a + G to clear the control delay, without driving 
registers in the process. 

Time Base And Pulse Forming 

In order to provide a basis for discussion the 
conceptual time base distribution scheme of Fig. 12 
will be considered. Two problems in time base dis-
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Figure 12. Time base distribution. 

tribution are holding skew within acceptable limits 
and providing sufficient drive capability at many 
remote points in space. One solution is to drive a 
number of cables of uniform electrical length from 
a common active or passive, frequency insensitive, 
power divider or power divider-multiplier. In one 
case that was implemented it was possible to use a 
commercial power amplifier, a resistive divider, 
and tunnel diode clippers to furnish square waves 
with less than 1 nanosecond rise-fall times into ap
proximately 100 50-ohm cables with approximately 
0.2 nanoseconds total skew. In the 50,000 gate sys
tem layout of Fig. 12 the cables would terminate in 
amplifiers that would shape pulses and provide 
drive over some local sector within acceptable skew 
limits. If skew in each local sector was within lim
its of 0 and S nanoseconds then it can be seen that 
any two points over the total 68" X 51" area would 
differ by no more than S nanoseconds of time skew, 
provided cables are of equal length and divider 
skew is negligible. 

Figure 13 shows two methods of producing fixed 
width time-base pulses by use of delay lines. In 
method (1) the time-base square wave is brought 
into an amplifier that furnishes normal and inverted 
outputs as shown. By delaying one path for d nano
seconds, the V circuit can be made to produce d 
nanosecond pulses as shown in the waveforms, pin 
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Figure 13. Pulse forming techniques. 

10. The V circuit is actually part of the previously 
discussed control delay cell and the delay d is a 
fixed delay placed in the system. Method (2) effec
tively doubles the number of time-base input lines, 
but permits delay d to become differences in these 
incoming lines and thus requires no fixed delays in 
the logic portion of the system. Both methods have 
the desirable characteristic of independence be
tween pulse width and frequency up to some maxi
mum frequency and maximum pulse width. Below 
these maximums changing one would not apprecia
bly affect the other. A third method is to design 
special pulse circuits and drivers which would prob
ably operate at the sector level. In general a capabi
lity for adjustments in the suggested areas is neces
sitated by anticipated improvements in circuit per
formance, unpredictable factors in final circuit 
loading and placement, and design policies that 
could prove to be either overly optimistic or con
servative. 

Special Capabilities Realizable With Control Delays 

Several useful capabilities in systems are made pos
sible by the feedback and gating capabilities offered 
by control delay cells. In the simple case a control 
delay output (Fig. 10, line 10) could feedback into 
the input (-G or line 6). Once such a control delay 
is set it will run at the clock rate and furnish output 
pulses until the feedback is interrupted. The last con
trol delay output may be delayed indefinitely by 
holding line 4 positive, or by clearing the latch, a 
subsequent output could be prevented. By appropri
ately selecting feedback points from successively far
ther down a control delay timing chain it is possible 
to produce pulse trains with apparent frequencies 
of 1, 1h, 1;3, ~, ... lin times the basic clock rate. 
A wide range of phase relations are possible by se
lecting desired outputs. A more practical control 
delay capability is seen in Fig. 14. The application of 
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Figure 14. Control delay feedback and gating. 

a logical ONE (-), or negative voltage level, to 
either line ·11, 12, or 13 and a subsequent pulse 
from a single-shot pulser (see Fig. 15) will cause 
the chain to operate respectively at 1, lh, or Y3 the 
clock rate. The waveforms at the top of Fig. 14 
would result from using input 13. The gating used 
in this example is AND-OR, and operation can best 
be explained by use of the timing diagram of Fig. 11. 
Assume that operation is in prograss and one wishes 
to examine the means by which CDl is enabled to 
pulse simultaneously with CD4. Assume from Fig. 11 
that CDs is furnishing output pulses from time base 
pulse n. The CDs negative pulse serves as the -G 
to CD4. Line 5, the latch output of CD4, assumes the 
negative level at the time shown. This negative level 
ANDS ( -) with line 13 and propagates through to 
establish a ONE( -) on line 4 of CD1. Figure 10 
shows that line 4 and the latch output (X2 ) of CD l 

is ANDED ( -) such that gate V will pass the next 
negative pulse furnished by the time base. This is 
pulse n + 1 and outputs from CD l and CD4 result 
in time sync. From Fig. 11 the AND(-), line 3, out
put could have been delayed up to 8 nanoseconds 
from points m and p. It is assumed that the gating 
delay was within this interval. Had more than 8 nano
seconds been required then the line 8 output (Xl) 
which occurs 1 T earlier would have been used, as 
is illustrated in the next example. 

Frequently it is neccessary to design a large, syn
chronous, and parallel system such that in the proc
ess of high-speed operation it is possible to stop 

Figure 15. Single shot implementation. 

the system and to operate in a manual step mode. 
Figure 16 shows one method of incorporating the 
step mode into a large system. The single-shot output 
sets a series of control delays that are in turn fanned-

TLM1NGCHA1N-
DATAFLOW -

Figure 16. Step mode implementation. 

out to other control delays throughout the system. 
The last level of control delays functions normally 
unless the line 4 inputs are held in the ZERO ( - ) 
state (positive voltage). The control delays receiving 
set or -G signals from the single-shot furnish 
ONES ( -) at the line 4 inputs for one pulse interval. 
Since the control delays in the timing chains con
tain storage the system is enabled to remain dormant 
for many time cycles and still function correctly 
for one cycle on a single-shot command. 

The three levels of fan-out circuits in Fig. 16 may 
consume up to approximately 12 nanoseconds. Since 
the line 4 input to a control delay may be delayed 
8 nanoseconds from the time the latch output (Xz ) 

occurs and since the complemented latch output (Xl) 

occurs IT earlier, a total of approximately 12 nano
seconds of delay is possible if two provisions are 
made. First, the Xl must go through a chain contain
ing an odd number of inverters to obtain the logical 
ONE( -) needed at the line 4 input, and second the 
-G signal must not have been appreciably delayed 
in arriving from the single-shot. If still more time 
is necessary, because of heavy loading or line length, 
then it would probably be necessary to gate the con
trol-delay V circuit. 

A better appreciation of step mode operation is 
possible by considering the events of Fig. 3. If the 
pipeline had been stopped after time tn+m then a 
step command from the single-shot would cause the 
events associated with time period tn + m + 1 to occur, 
but at a much later time. After running for one time 
cycle the pipeline would again be stopped. 
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PIPELINES IN SYSTEMS 

Pipelines in systems are tailored to the particular 
data processing jobs at hand. Both system organiza
tion and subsequent implementation are oriented 
toward doing useful processing at an optimal rate. 
As information is sequenced through a pipeline 
process, the register widths, or numbers of parallel 
registers, may be increased or decreased according 
to requirements. Information may be extracted from 
and injected into the process at points along the 
way. If an arithmetic operation requires more time 
than g~ting between registers permits then an at
tempt might be made to partition that operation 
over more than one pipeline section. Also, section 
averaging, where one section expands in time at the 
expense of its neighbors, is not ruled out when ap
propriate delays are available to adjust the timing. 
Pulse widths are altered by standard techniques as 
needs arise. Many forms of feedback may be incor
porated into the structure, but attempts will usually 
be made to eliminate or minimize any slowdown in 
the output rate. Lastly, the physical layout for high 
speed (50 mc) systems will be done so as to obtain 
as many packaging advantages as possible with 
structures of the pipeline variety. 

CONCLUSION 

Pipeline systems, operation, and specialized im
plementation areas have been described. Several ex
ample solutions to special areas of implementation 
were presented along with some design considera
tions to permit an understanding. It is hoped that 
solutions to common problems may be considered 
as design tools so that designers do not have to 
reinvent the wheel, so to speak, for each new sys
tem. A majority of the ideas contained herein are 
quite well established; however, new technology and 
the compressed time frame has required special 
treatment. It was no mere coincidence that delay 
lines were bypassed in favor of circuit solutions in 
many instances. Integrated circuits are approaching 
the speed requirements and integrated subsystems 
are a distinct possibility. Numerical solutions to 
design considerations were orientated towards the 
50 mc systems that will be realized over the next 1 
to 3 year time period. As time and technology ad
vance and more complex structures of economical, 
densely packaged logic are realizable then the possi
bility may exist that long strings of interacting 

pipeline logic structures have something to offer in 
more sophisticated systems of the future. 
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APPENDIX: GLOSSARY OF SYMBOLS 

BYTE: N-bit word used for processing. 

CD: Control delay. 

DOT: A wired-gate decision. 

f: Logic sense-function 
Timing· sense-frequency. 

-G: Negative gating pulse. 

+ G: Positive gating pulse. 

k-l: Number of circuits between registers. 

(-), (+): Negative voltage = ONE, 
Positive voltage = ONE. 

nsec: Nanosecond, 10 - 9 sec. 

picofarad: pf, 10-12 farad. 

r: Number of bits in a register. 

Right triangle (small symbol in logic drawings) : Neg-
ative voltage = ONE. 

P12: Measure of correlation. 

SS: Single shot, or one shot. 

Sc: Clock skew measured at register inputs. 

Slave: See "The Control Relay Cell" above. 

t: Time. 

T: Nominal circuit, line, and loading delay. 

T: Maximum circuit, line and loading delay, unless 
otherwise specified. 

T: Minimum circuit, line and loading delay, unless 
otherwise specified. 

We: Original clock pulse width. Also, nominal final 
clock pulse width. 

X: Logic sense-complement of the logic variable X. 
Timing sense-maximum value of the time var
able X. 

X: Minimum value of the time variable X. 

Xl: Latch output available in 1 T. 

X2: Latch output available in 2T. 
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HIGH-SPEED LOGIC CIRCUIT CONSIDERATIONS 

w. H. Howe 
General Electric Computer Department 

Phoenix, Arizona 

INTRODUCTION 

This discussion is confined to circuits operating 
at switching speeds sufficiently fast to require the 
use of terminated transmission lines for all logic 
interconnections other than to an adjacent device. 
The discussion is further confined to significant 
factors affecting circuit decisions in a high volume 
commercial/industrial environment. Laboratory cu
riosities operating at absolute maximum speeds are 
not considered in view of the extremely distorted 
economics associated with experimental technolo
gies. The factors under discussion are technology 
considerations, economic considerations, logic ar
rays, power dissipation, and packaging media con
straints. The discussion is not intended to be a 
gross prediction of future practice, but rather a 
snapshot of today's design considerations imposed 
by present technology and Mother Nature's rather 
rigid philosophy concerning the speed of light. 
Since the transmission time through the intercon
necting media is significant when compared to pro
pagation delay time of the logic device, the physical 
size of the system has some bearing on the defini
tion of high speed. This discussion is concerned 
with relatively large organizations such that a pro
pagation delay time of 2 to 5 nanoseconds may be 
considered high speed. More dramatic speed im-

505 

provements may com~ with machine organizations 
which consume large amounts of circuits. These or
ganizations are now becoming feasible due to in
creased reliability and the availability of low cost 
devices through the semiconductor industry. 

TECHNOLOGY 

The selection of a technology for circuit fabrica
tion is heavily dependent upon timing, anticipated 
volume, cost and required performance. The follow
ing -sequence of events usually occur in the develop
ment of a circuit family. 

Device Availability. Either as a result of a specific 
development contract or in the normal course of 
funded research and development programs, an im
provement in mask technology, process sequencing, 
etc., permits a higher speed device to be fabricated 
on an experimental basis. Historically, the device 
has been first implemented as a transistor. 

Circuit Design. The new device is exploited by the 
user, as well as the manufacturer, to produce a de
sirable logic circuit. These circuits are generally 
different since the user is not aware of all the pro
cess constraints nor the economic tradeoffs required 
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for eventual success in the market place as a micro
circuit. 

User Selects Technology. If the user must exploit 
his faster circuit as soon as possible, he may choose 
immediate circuit implementation through the use 
of one of the hybrid circuit technologies. The pen
alty for quick turn-around is higher cost in volume. 
Meanwhile, the semiconductor manufacturer has 
begun development of a silicon integrated circuit. 

Manufacturer Announces Silicon Integrated Circuit. 
The silicon circuit version may prove to be as fast, 
or faster than the hybrid equivalent since he retains 
control of all process optimization. The circuit de
velopment path is somewhat longer, but is being 
reduced by the growing tendency on the part of 
manufacturers not to disclose advanced technologies 
until the silicon integrated circuit is well on its way 
to market. 

Let us, therefore, discuss technology in the light 
of silicon integrated circuits. Silicon integrated cir
cuit technology has been frequently described as a 
cure-all for cost. Once, the circuits are in use, vol
ume increases, causing costs to go down, increasing 
the volume, etc., until the cost extrapolation goes 
through zero. Some of these effects may be observed 
in today's market where circuit costs are near one 
dollar even at modest volumes. At one of the recent 
conferences, several authors lamented the fact that 
the longed-for impact of integrated circuits on the 
computer business simply hadn't happened. A more 
meaningful statement may well be that the impact of 
the impact of the computer business on integrated cir
cuits has not yet happened. The economic success of 
these devices is highly volume-dependent; so much so, 
in fact, that, to date, commercial computers are the 
only logical market place for the latent high volume 
all manufacturers may readily achieve. This rela
tionship has caused a heavy emphasis on logic cir
cuit and logic array development to reduce cost to 
the fullest extent. Extensive research efforts have 
been initiated to search for logic arrays which are 
highly efficient, low in cost, and high in speed to 
satisfy the needs of the computer industry. How
ever, the tradeoffs in speed, cost, logic complexity, 
and technology are inherent to the design of sys
tems and are not separable in spite of the good in
tentions of the semiconductor manufacturers or the 
abstract logicians. We would like to point out brief-
1y some of the tradeoffs available. One of the most 

interesting and significant paradoxes of the new 
technology is the apparent reconciliation of a desire 
to achieve high speed and low cost. The parameters 
which yield high speed, i.e., low parasitics, small 
device geometry, also yield lowest ultimate produc
tion cost in silicon integrated circuits. Past circuit 
design practice has equated high speed with high 
.cost. The first step in the assessment of circuit con
straints is a careful analysis of the technology used 
to make circuits and the latent cost significance of 
the variables. 

The following example has been normalized to pre
vent easy identification of a given semiconductor 
device. The analysis technique was developed by 
Mr. W. D. Turner! of General Electric and will be 
explored in more detail in a forthcoming paper. 
Two characteristic fabrication processes were ana
lyzed and they may be generally described as diode 
isolation and oxide isolation. Mask technology has 
a critical effect on cost as will be demonstrated. 

Table 1. Circuit Economics. 

A B C D 
Isolation Oxide Diode Diode Diode 
Tpd. 4ns 3 ns 2 ns 5 ns 
Circuit/ chip 1 1 2 2 
Critical area ratio* 0.296 0.460 0.256 0040 
Relative yield 3.38 2.17 3.90 2.50 
Normalized yield 0.87 0.56 1.00 0.64 
Circuits per wafer 160 218 766 316 
X normalized yield 139 122 766 202 
Wafer cost 1.00 1.00 1.00 1.00 
Oxide isolation 

premium 0.25 
Relative chip cost 

X 10-3 9 8.2 1.3 5.0 

Assuming reasonable cost levels for the cost of a 
wafer and also assuming a reasonable value for ab
solute yield, one may compute the cost of a chip: 

Wafer cost ~ $50 
Yield ~ 0.5 

Chip cost = Wafer cost X relative chip cost 

* Critical area ratio is the result of obtaining the chip 
area of a given circuit and dividing by the area which is 
critical to yield. Areas which are critical are those where 
an oxide fault or misregistration may result in a circuit 
failure. 
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A 
$.90 

B 
$0.82 

Yield 
C 

$0.13 
D 

$0.50 

Assembly, test and package costs must be estimated 
to complete the comparison, but for the purpose of 
this paper, assume a constant $.30 for the sum total 
of these factors. 

A 
$1.20 

B 
$1.12 

C 
$0.43 

D 
$0.80 

Cost per circuit (C&D contain 2 circuits per chip) 

$1.20 $1.12 $0.22 $0.40 
These basic costs are marked up in accordance 

with the profit motive to produce quoted selling 
price. It is possible, of course, that a comparison of 
selling price may result in an inversion or distortion 
of the rank of the products. It is equally possible 
that a distortion of the basic economics of the pro
cess as a result of the battle in the market place 
may cause slipped schedules, price renegotiations 
and poor quality parts. Selling price alone is not an 
adequate parameter. 

As a final comment, the smallest device, which 
was also the fastest, had the least latent cost. 

Now it must be recognized that a study of this na
ture has certain inaccuracies, but it is important 
that these studies be made to ascertain the inherent 
speed/cost relationship which may be entirely dif
ferent from the quoted costs received from semicon
ductor marketing organizations. 

LOGIC ARRAYS 

One factor of growing significance, as circuit size 
is reduced, is the increasing amount of surface area 
consumed by areas devoted to interconnections and 
pads for interconnections. There have been margin
al improvements over the past few years, but no 
startling improvements have been made in compari
son to reductions in the basic device geometry. As 
has been pointed out in many recent papers, the 
consumption of real estate may be reduced by inter
connecting the logic circuits with the narrow lines 
allowed by the masking technology, thus reducing 
to a minimum the area requirements for external 
lead pads. At this point, the semiconductor manu
facturer relaxes and says in effect to the computer 
designer: Reduce your logic to a few standard con-

figurations, and I will reduce costs by a large fac
tor. Hence, we have a search for magic standard 
logic functions. Other approaches such as varying 
the final step of the masking process to provide 
special logic connections over a matrix of logic cir
cuits has been proposed. This has resulted in diffi
cult layout requirements and a challenging problem 
of computing optimum ratios for connecting leads, 
logic parting problems, and so forth. Other methods 
are variations on providing a circuit/logic matrix 
where bad elements are disrupted and the logic re
structed through adjoining elements usually at the 
expense of speed. All of these approaches seem to 
neglect the basic overriding economic significance 
of device geometry. 

Figure 1 illustrates the normalized economy of 
chip size vs array complexity. As can be seen, the 
smaller the chip, the larger the array which may 
economically be placed on the chip. With a given 
mask technology, most economy is achieved by hav
ing a high number of chips per wafer which will set 
definite limits on logic complexity per chip. Most 
manufacturers are concerned with having a given 
chip, good or bad, rather than going through com
plex "rescue" operations involving additional pro
cessing even though the metallic interconnection 
step is relatively inexpensive. The point here is that 
small size permits high speed with lower costs and 
that logic arrays are apt to be most effective when 
they are small, thus producing chip sizes amenable 
to the economics of a given mask technology. The 
largest stumbling block then is the logic configura
tion itself. 

Unfortunately, we haven't achieved either a mag
ic logic function or a magic insight into the solu
tion of the problem of finding a relatively small set 
of standard functions. However, we have carefully 
analyzed a number of products and have classified 
the logic groupings obtained in Table 2. 

Table 2. Gate Efficiency. 
Gates per Effi-

Group package ciency Loss 

1 (non-functional) 1-3 100% 
2 (functional) 4-8 96 4% 
3 (functional) 46-71 87 13 
4 (functional) 106 84 16 

Comparing these efficiency figures with cost 
economy ratios exhibited in Fig. 1 reveals that ar
ray technology is economically attractive and war-
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rants extensive development effort. This is even POWER CONSTRAINTS 
more significant for high-speed circuit applications, 
since the array permits extremely short runs, unter
minated, for a large portion of the logic. It is also 
interesting to note that these efficiencies were 
achieved with a relatively small number of different 
logic configurations. The number of different arrays 
were, in fact, less than the number of different cir
cuits available in most microelectronic logic sets. 

The latent difficulty in power dissipation is the 
prime importance junction temperature rise has on 
reliability. The logic array is very likely to com
pound what is already a difficult situation in a nor
mally isolated and mounted single or double circuit 
chip. Array size is very influential in making a bad 
situation worse. For example, in a four gate struc .... 
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rore with no internal interconnections, the external 
leads provide a reasonable path to whatever heat 
sink is provided. However, many eight and more 
gate structures contain buried elements which must 
dissipate through the silicon chip body or through 
the small area metallic surface connections. The sit
uation is compounded if oxide isolation is used, 
since the oxide is such an excellent thermal barrier. 

Since the array is to be embedded in a transmis
sion line environment, termination resistors must 
be provided for inputs and literally line drivers pro
vided for outputs. What is generally overlooked is 
the absence of these requirements for circuits oper
ating in the highly localized environment inside the 
array. The loads and distances are well known, the 
geometry is well controlled, crosstalk can be de
signed to a relatively low value and noise can be 
locally reduced. In fact, the interior portions should 
be quite different from the exterior portions from 
the design standpoint. Power dissipation is directly 
proportional to the transport energy required; 
hence, internal voltage swings and noise immunity 
should be reduced to the lowest possible level. 

The lead technology will eventually prove to be 
the most constraining factor for conventional 
mounting techniques such as the flip chip or bond
ed wire methods. At present, we do not normally 
consider making surface connections to reduce the 
problems associated with power dissipation; but it 
is apparent that this approach is not too far off. 

Consequently, the circuit selected must be capa
ble of operating as a driver of internal logic ele
ments as well as being driven by a very small swing 
on its inputs. There are a few circuits capable of 
this type of operation; most level detector designs 
will function in this fashion and, of course, the 
popular current mode logic can be designed to pro
duce these desirable characteristics. Since the cir
cuit must operate from, and drive, transmission 
lines, the swin/power relationships imposed by the 
transmission line media are of more than a passing 
interest during the circuit design. 

MEDIA CONSTRAINTS 

A common approach to the design problem is to 
assume the highest possible transmission line impe
dance to minimize circuit power and reduce heat 
dissipation. Of the general spectrum of transmission 
line media available, the most frequently used is the 
multilayer stripline and in view of its high popular-

ity, the discussion is confined to this type of inter
connection scheme. The multilayer structure has a 
very significant set of economics which must be 
satisfied to produce acceptable manufacturing costs. 
Table 3 represents the type of analysis which must 
be performed to relate transmission line characteris
tics to the manufacturing capability and to the re
quired run density. Obviously, the transmission 
media must connect logic; therefore, the economic 
achievement of density is a prime requisite. As may 
be imagined, the density and number of layers re
quired to achieve a given logic organization are key 
factors for attaining reliability, low lamination 
costs and high overall media yield. 

Table 3. Transmission Line Characteristics. 

Mech. 
Tolerance Mech. Dim. Cross- Line 

Impedance ~w ~t wn tn talk Density 
ohms mils mils percent runs/in 

100 ± 10% ±I ±I 6 12 10 40 
100 ± 5% ±I ±I II 22 10 20 
100 ± 10% ±2 ±2 14 24 10 20 
50 ± 10% ±1 :±:1 16.6 9 7.5 30 
50 ± 10% ±.5 :±: .6 9.3 5 9.2 60 
50 ± 10% ±2 ±2 30.5 16.5 13 20 

The most important variable in the determina
tion of cost is the mechanical tolerances which must 
be held in the fabrication of both the signal carry
ing conductors and the insulating dielectric. With a 
high quality, tight tolerance process, line density 
may be significantly increased causing the number 
of layers to drop rapidly for a given level of cross
talk. A low tolerance process may cause an in
crease in crosstalk and an increase in the number of 
layers required to do a given job. In addition to the 
importance of crosstalk, the absolute impedance 
variation affects cost since the impedance mis
matches in the system cause reflections, which in 
turn may affect the required noise immunity of the 
circuits. 

Assuming that manufacturing cost is entered into 
a similar table as a function of tolerance and pro
cess variables, a selection that is economic may be 
made. The cost picture is not yet complete without 
some provision for logic changes -even after the nor
mal debug and prototype cycle. Variable logic must 
be allowed and it may not be possible to have trans
mission line impedances which are identical to line 
impedances used in the multilayer boards. Two pro-
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cesses are assumed: transmission lines and perhaps 
terminated short-run open wires. The circuit select
ed must be capable then of operating with two dif
ferent impedances. The overall cost balance 
achieved is very much a function of the machine 
size and organization, since maximum flexibility in 
hardware will almost certainly result in higher 
costs. 

The packaging technique utilized is constrained 
by the need for allowing full interconnection with 
stripline, a small but finite number of variable con
nections, efficient low reflection connectors and 
some timing problems which will be briefly men
tioned. If the machine is a large one, the timing 
problems are compounded by the fact that the inter
connecting line lengths are not the same. In some 
areas, this may be lumped as a clock skew problem 
and be adequately solved by control of the clock 
widths necessary to handle timing/length delays. 
This is not always efficient and the clock system 
itself may suffer from the same problem. The pack
aging system must therefore be designed to accom
modate slack to control run length differences. At 
present, the use of slack to provide a variable de
gree of delay appears quite feasible in the design 
and control of some segments of the machine. 

SUMMARY 

The variables briefly discussed here are signifi
cant in the selection of a logic circuit to be used for 
a high speed commercial/industrial application. 
The underriding implication is clearly the achieve
ment of high circuit volume, as is typical in most 
computer applications, and low cost. The tradeoffs 
in technology selection have frankly been preoccu
pied with silicon integrated circuits since in a high 
volume environment this basic technology has dem
onstrated definite cost advantages. In an absolute 
maximum speed environment, constrained by a de
sire to deliver at the earliest possible time, other 
hybrid technologies have a slight performance edge. 
This performance-time gap is rapidly closing, al
though it will not, in all likelihood, become zero. It 
is of prime importance that a technology be selected 
which has a maximum opportunity of achieving low 
cost. This normally points to excellence in masking 
tolerances, large production wafers and the absence 
of process sequences which prohibit the subsequent 
diffusion of logic arrays. In today's market place, 
we must plan for a maximum possibility of cost re
duction over the life of the product. 

Logic arrays are significant in making technolog
ical cost reductions possible. If an organization is 
structured in array fashion, then arrays may be sub
stituted in place as they become available from the 
suppliers of the technology. This capability may not 
be quite so effective in a high-speed machine since 
the operating speed itself causes the arrays to be
come somewhat different to reduce the effects of 
power dissipation. The circuit must be capable then 
of operating over a wide range of drive conditions 
with power dissipation considered a variable. 

The connection media is a strong function of the 
manufacturing capability to produce precision lines 
at low cost with commensurate high skill in the art 
of quality lamination techniques. These manufac
turing cost and reliability variables will affect the 
final nominal impedance choice drastically. To a 
lesser extent, the variation of impedances will also 
partially determine noise immunity requirements of 
the circuits, which in turn affect power dissipation, 
etc. Impedance reflections do cause a significant 
noise problem. 

While discussing circuit considerations, we have 
yet to discuss circuit design; and I think it proper 
to avoid this subject. Of all the factors influencing 
the selection of a circuit, the design variable is for 
all practical purposes one and the same with the 
technology. After all, the design which has the least 
number of components and the highest component 
tolerance immunity, coupled with speeds high as 
compared to basic device Ft, has always been a 
good choice. The difference today is that the good 
choice now has become the economic choice as a 
result of the continuing advances of the semicon
ductor industry. 
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INTRODUCTION 

Present state-of-the-art computer circuits have 
signal transition time and propogation delays on the 
same order of magnitude as the interconnection de
lay between them. At these speeds it is mandatory 
that the transmission line properties of the inter
connection media be considered. This permits the 
designer of high-speed digital equipment to include 
the effects of signal reflection on his system. 

Until recently crosstalk in digital systems was 
primarily a problem encountered in bundled wires 
between racks or between distant equipments. With 
the dramatic increase in circuit speeds, combined 
with denser packaging, crosstalk problems have 
spread to the backplane wiring, circuit boards and 
circuit modules themselves. The availability of 
high-speed integrated circuits aggravates these 
problems. 

In this paper crosstalk and reflections are dis
cussed from the digital designer's point of view. A 
qualitative description of the nature of the crosstalk 
signals on pulse-driven interconnecting lines is 
presented. This is followed by the general expres
sion for the transient crosstalk signal voltage be
tween lines having a nonhomogeneous medium. The 
detailed derivation is included in the Appendix. 

511 

Reflections are also discussed from the digital point 
of view. A criterion is suggested for rapidly deter
mining whether a given interconnection network 
should be treated as a distributed or lumped circuit. 
The relationship between reflections and the signal 
waveform characteristics, the line lengths, the line 
impedance, the number of loads and the spacing of 
the loads is discussed. Expressions permitting quick 
quantitative estimations of the maximum reflec
tions are presented and illustrated. 

CROSSTALK 

Qualitative Description 

Consider a pulse propagating on one of two paral~ 
leI transmission lines as shown in Fig. 1. First only 
the incremental effects at point x will be examined. 
The capacitance and inductive mutual coupling be
tween the two lines are represented by Cm and Lm 
respectively. The arrival of the pulse at point x on 
the driver line causes a capacitance current, ie, to 
flow in the sense line. This current divides into two 
equal and opposite currents which propagate toward 
each end of the line. Simultaneously, by Lenz's law, 
an inductive current h will be induced in the sense 
line. Both hand ie are proportional to the derivative 
of the driving function. 
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Figure 1. Polarities of instantaneous induced currents. 

Several immediate observations can now be made. 
The currents hand ic at terminal b of the sense line 
are additive and produce a terminal voltage which 
is of the same polarity as the driving function Vin(t). 
In addition, since terminal b continues to receive 
current in a time-sequential fashion as the driving 
function propagates along the driver line, the voltage 
pulse formed at b, Vb, will be a time integral of the 
incremental currents received at b. This will be iden
tified as the backward crosstalk voltage. 

At terminal j the capacitance and inductive cur
rents are in opposition. For a homogeneous medium 
the resultant voltage produced at terminal j of the 
sense line will be zero. 1 This is the· case generally 
discussed in the literature in connection with the 
theory of transmission line directional couplers. 2,3 

For the case of interest here, transmission lines of 
nonhomogeneous mediums such as printed trans
mission lines, the opposing currents will not produce 
total cancellation at terminal j. This resultant voltage 
at j, Vj, will be identified as the forward crosstalk 
voltage. 

Further insight into the nature of Vb and Vj and 
their relationship to the characteristics of the driving 
signal and to the length of the lines can be obtained 
by referrering to Fig. 2. The expression, "length of 
the lines," refers to the region of interaction between 
the two lines. 

A pulse is applied at g as shown. The pulse propa
gates at some velocity vp toward the receiving end 
of the line, r. T d is the time required for the signal 
to propagate the full length of the line. It is assumed 
that both lines are lossless and terminated in their 
characteristic impedance, and that the coupling is 
loose enough that there is negligIble degradation of 
the driving signal as it propagates the full length of 
the line. These assumptions generally hold in prac-

tical applications if the line lengths are not exces
sively long. 

Let us consider that instant of time when the input 
pulse is at Xl. Two rectangular pulses, proportional 
to the derivative of Yin (t) on the driver line, will 
be induced on the sense line at Xl. One of these 
pulse, Vb l , is a function of the sum of hand ic and 
will propagate toward terminal b of the sense line. 
The other pulse, Vf1, is the result of the difference 
of hand ic and will propagate toward j, the receiv
ing end of the sense line. For this illustration it is 
assumed that h > ic resulting in Vf1 being negative. 
At a time T later, Yin has moved to' X2, inducing 
corresponding pulses V b2 and V j2. Simultaneously, 
Vf1 has also propagated to X2. Therefore, Vf1 and 
Vj2 exist at X2 at the same instant of time and add 
directly. This is a continuing process (at a incre
mental level) until Yin arrives and is absorbed at 
terminal r. Therefore, the induced voltage seen at 
terminal j will be a direct function of the length of 
the line. Hence, Vj is not only proportional to the 
derivative of the driving function Yin, it is also pro
portional to the length of line over which the inter
action exists. 

Now the incremental backcross pulse will be 
examined. Referring again to Fig. 2, note that during 
the time interval T, when Yin moved from Xl to X2 

in the direction of r, Vbl traversed an identical dis
tance toward b. At any instant of time V bl and V b2 

are 2T seconds apart. Consequently a continuing 
series of pulses, each one delayed by a differential 
time, will arrive at b. The last pulse will arrive 2Td 
seconds after the time of initial application of Yin. 
Therefore, the resultant backward pulse at b will 
start to decay at 2Td seconds. This then defines the 
width of the backward pulse. Produced by a positive 
going wavefrO'nt it is 2T d seconds wide, or twice the 
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Figure 2. Forward and backward traveling waves. 

propagation time of the coupled section of the lines. 
The resultant amplitude of Vb will be independent 
of time provided 2T d is greater than the rise time of 
V in, T 1. The backward pulse is an attenuated replica 
of Vin for t less than 2T d. This can be demonstrated, 
for the driving signal of Fig. 2, by summing several 
rectangular pulses T 1 seconds wide that are incre
mentally displaced along the time axis. 

It should be emphasized that the amplitude of Vb 
is independent of the slope of the input signal (for 
T1 < 2Td) and the length of the line, while Vf is 
a direct function of these parameters. Thus, for· the 
case that T 1 < 2T d the forward and backward in
duced pulses on the sense line have decidedly dif
ferent characteristics and sensitivities. By altering 
the geometrical cross section and permittivity of the 
dielectric (i.e., its nonhomogeneous characteristics) 
it is possible to make Vf positive or negative. As was 
pointed out, in the homogeneous case, Vf will be 
zero. However Vb will always be of the same polarity 
as Vin. Again, this assumes the lines are terminated 
in their characteristic impedance. 

Crosstalk Equations 

The general expression for the instantaneous volt
age induced anywhere on a line which is coupled to 
another line driven by a signal Vin (t) is given by 
Eq. (1): 

V(x, t) = Kf x :t [ Vin ( t - T~ X) I + Kb 

[Vin(t- T~X)-Vin(t-2Td+ T~X)1 (1) 

where Kf = forward crosstalk constant = - 1/2 

(~; -Cm Zo ), 

1 
kb = back crosstalk constant = 4 T d 

(~: + Cm zo), 
£ = physical length of the coupled region, 

and 

Td = time for signal to propogate a distance £. 

The complete derivation of Eq. 1 is given in the 
Appendix. As indicated in Fig. 3, V( o,t) is the back 
crosstalk voltage while V(l,t) is the forward cross
talk voltage. The two crosstalk constants are func
tions of the geometry and materials of the coupled 
lines. Each of these constants can be determined by 
a single measurement. With tb~ determination of 
these constants the crosstalk voltage at any point Oll 

the coupled sense line can be evaluated by Eq. (1) 
for any line length and for any amplitude pulse with 
a linear rise time. The forward and back crQsstalk 
will now be more closely examined. 

Back Crosstalk 

At x = 0, the beginning of the coupled line, the 
back crosstalk voltage is 

V(O, t) = Kb [Vo(t) - Vo(t-2Td)] (2) 

To better understand the relationship of the back 
crosstalk pulse waveshape to the driving signal wave
form let V 0( t) be the function shown in Fig. 4, that 
is, 
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Substituti~g Eq. (3) into Eq. (2), the back cross
talk voltage is 
V(o, t)=Kb[/o(t)-/o(t-T1)-/o(t-2Td)+/o(t-Tl-2Td)] 

(4) 
Long Line Case. Assume initially that the rise time 

T 1 is less than twice the propagation time of the 
region of interaction. This situation defines a long 
line. For this case the plus waveform described in 
Eq. (4) is as indicated in Fig. 5. Note that the back 
crosstalk voltage is directly proportional to the input 
driving voltage V o( t}. In addition, the maximum 
amplitude, KbVk, is independent of the coupled 
length. As discussed in the qualitative analysis, the 
backcross pulse width is equal to twice the propa
gation delay of the line. 

Short Line Case. If the rise time of the input 
driving function is greater than twice the propagation 
time of the coupled lines, the situation is defined as 
the "short line." For this case the back crosstalk 
pulse, still described by Eq. (4), is graphically shown 
in Fig. 6. The maximum amplitude occurs at t = 
2Td and from Eq. (4), the maximum back crosstalk 
voltage is 

fo(t-T. - 2Td) / 
/ 

/ 

/ 
/ 

/ 

/ 

/ 
/ 

TI < 2Td 
LONG LINE 

t -----

Figure 5. Back crosstalk pulse in long line case Tt < 2T d. 

v (0) = 2Kb V K T d d ( » (5 ) ,t max Tl = 2Kb Td(jj(VO t 

Here, as opposed to the long line, the back crosstalk 
voltage is proportional to the slope of the driving 
function and the electrical length of the coupled 
line. Note that the maximum amplitude is decreased 
from that of the long line by the factor 2Td/Tl. The 
duration of the backward pulse for the short line is 
Tl as indicated by Fig. 6. 

Forward Crostalk 

Now consider the crosstalk at the other end of 
the coupled line, X = £ in Fig. 1. This forward 
crosstalk, in response to the input driving function, 
Vo(t}, of Fig. 4, is 

V(f, t) = Kff[ ;t fo (t- Td) - ~ fo{t- Td- Tl) 1 
(6) 
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Figure 6. Back crosstalk pulse in short line case Tl > 2T d. 

= 0 for 0 < t < T d 

Kf Vkl 
= T 1 for T d < t < T d + T 1 

= 0 for t > T d + T 1 

Equation (6) yields a rectangular waveform. The 
amplitude of the forward crosspulse, V(£, t), is pro
portional to the slope (V kIT d of the driving signal 
and the length of the coupled line. The pulse width 
is equal to the rise of the driving signal. 

The polarity of the forward crosstalk signal de
pends on the sign of the forward crosstalk constant 
Kf. If Lm > em Zo2 the forward crosstalk pulse will 
have a polarity opposite to that of the driving signal. 
If Lm < Cm Z02 it will have the same polarity. Only 
in the case of a homogeneous medium of propaga
tion does Lm = Cm Z02. 

Experimental Waveforms. An example of crosstalk 
in a nonhomogeneous medium can be demonstrated 
with printed microstrip transmission lines. Measure
ments were made on two sets of lines with the cross
sectional geometry shown in Fig. 7. The setup is 
as shown in Fig. 3, with the line length, f, equal to 

rO.008 " 

Note: Lines and ground plane are approximately o. 003-inch thick. 

Figure 7. Cross section of microstrip transmission line. Lines 
and ground plate are approximately 0.003-inch 
thick. 

16 inches. The waveforms are shown in Fig. 8 for 
the ines spaced 0.120 inches apart and in Fig. 9 for 
a O.OlS-inch spacing. 

On both Fig. 8 and Fig. 9 the forward crosstalk 
pulse is of the opposite polarity to the driving signal. 
This occurs because the ratio of self to mutual 
capacitance is greater than in the comparable 
homogeneous case. As previously described, if the 
dielectric medium was homogeneous, the forward 
crosspulse would be zero. 

TIME. INS/OIV 

(50 MV/OIV) 

(50MV/OIV) 

Kb=·014 

K.f=-·029ns/ft 

Figure 8. Crosstalk waveforms of Fig. 7: S =0.12 inch, 
I = 16 inch. 

From the waveforms of Figs. 8 and 9 the cross
talk constants Kb and K f can be determined by use 
of Eq. (1). In determining these constants it is better 
to use the output voltage rather than the input volt
age of the driven line. This is true because the output 
of the drive line and the crosspulses are subject to 
line losses and distortion. Thus, to obtain Kb, take 
the ratio of V 0 to Vb; to obtain Kf take the ratio of 
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the maximum value of Vt to the maximum slope of 
Vout for a given line length. For the loose spacing of 
Fig. 8 the backcross talk constant, K b , is 0.014, while 
the forward crosstalk constant, K t , is 0.029 nano
seconds per foot. With the tightly spaced lines of 
Fig. 9 Kb is 0.16 and Kt is 0.09 nanoseconds per 
foot. These constants can now be used to predict 
the crosstalk waveforms for an arbitrary length of 
coupled line (of the given crossectional geometry) 
and any driving signal waveform. 

TIME, INS/DIV 

Figure 9. Crosstalk waveforms of Fig. 7: S 
I = 16 inch. 

REFLECTIONS 

Definition-Long and Short Lines 

(lV/DIVl 

0.2V/DIVl 

Kb=O.IG 

Kf = -0.09 hs/ft 

0.015 inch, 

When a pulse propagates along a transmission 
line that is not terminated in its characteristic im
pedance, a signal of amplitude no greater' than the 
original will be reflected toward the point of origi
nal incidence. Of special interest in high-speed 
digital processors is the question of when is it nec
essary to treat an interconnection path as a trans
mission line or simply as a lumped element. Al
though the exact criterion is an exact function of 
various parameters, a useful criterion can be 
evolved using the following development. 

In the discussions to follow, the high-speed logic 
gate loads are represented by lumped capacity. 
Many of the very high-speed logic circuits have in
put transistors which are operated in the linear 
mode resulting in input characteristics which are 
essentially capacitive. In Fig. lOa, Td is the time 
required for the signal to propagate the length of 
line. If 1\, the rise time of the input signal Ein, is 
less that 2 Td, the waveform at the sending end of 
the line will be as shown in Fig. lOb. The reflection 

signal, due to the capacitor termination, will arrive 
at the sending end after the input signal has com
pleted its transition. Those signal interconnecting 
lines that exhibit this property will be defined as 
"long lines" and will be treated as transmission 
lines. 

Figure 10. a. Transmission line terminated with capacitor 
and resistor. h. Signal at point A for a long line 
(Tl < 2Td). c. Signal at point A for a short 
line (Tl > 2Td). 

Conversely, if Tl is greater than 2 Td the effect 
of the reflection is to degrade the rise time of the 
input signal as demonstrated in Fig. 10c. Signal 
lines that demonstrate this property are defined as 
short lines. Such lines can be treated as lumped 
capacitances. 

As will be demonstrated shortly, a given trans
mission line, loaded with randomly spaced logic 
gates, can exhibit the properties of both long and 
short lines. In these ca.ses, the short and long line 
theories can be separately applied to ascertain the 
overall effect. 
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REFLECTION FORMULA 

Although there are rigorous methods using com
puter programs for analyzing the waveforms on a 
transmission line loaded with capacitors, these 
problems can be analyzed by the novel application 
of distributed line theory. This technique is an ap
proximate method which yields accurate results for 
the heavily loaded line, which for the most part, 
represents the limiting criteria insofar as reflections 
are concerned. Requiring only a few minutes of the 
designer's time, this method provides him with fur
ther insight and understanding into the nature of 
the reflection phenomena. 

This method of analysis is best illustrated by an 
example. Consider Fig. 11, where a line having a 
characteristic impedance of 74 ohms to two 100-
ohm lines. Assume that each 100-ohm line pair has 
a propagation time T d and the 74-ohm line pair 
has a propagation time T2• If a pulse with rise time 
T 1 is applied as ...shown in Fig. 11 the waveform at 
A will be as shown in Fig. 12. Thus, using the 
standard definition for the reflection coefficient r 
yields 

ZO'IOOn 

Hl E 
VIN .E/2 

'----1~----J 

~ TI 

RO'IOO'o; 

Figure 11. 74-ohm line driven and terminated by 100-ohm 
line. 

r= ZL-ZO =-015 
Z+ Zo . 

Consequently the mismatch between the 100-ohm 
and the 74-ohm transmission lines produces a 15 
percent reflection. Note that the reflection at point 
B is negative while that produced at point C is 
positive. 

0.143V 0.0205V 

r 

4 " : I 

",j,,:J 
v 

I 

Figure 12. Waveform seen at point A in Fig. 11. 

Now consider the 100-ohm line alone. Assume 
that ~he signal propagation velocity is 0.5 feet per 
nanosecond, which is approximately the case for a 
microstrip line. The distributed inductance and ca
pacitance per unit length of line can be derived from 
the well known expressions 

and 

1 
v ----

p - (LoCo)V2 

Zo= --( 
L. 0.) Vz 
Co 

(7) 

(8) 

where 
Vp = velocity of signal propagation, 
Lo = distributed inductance per unit length, 
Co = distributed capacity per unit length, and 
Zo = characteristic impedance. 

Substituting in Eq. (7) and (8), the distributed 
parameters for this particular 100-ohm line are 

Co = 20.3 picofarads per foot 

and 

Lo = 0.203 microhenrys per foot 

Now assume that 17.5 pF is uniformly added to 
line segment B-C as indicated in Fig. 13. The dis
tributed inductance remains the same. However the 
distributed capacitance is increased from 20.3 pico
farads per foot to 37.8 picofarads per foot. Then 
from Eqs. (7) and (8) the impedance of this sec
tion is reduced to 75 ohms, and the propagation 
time is increased from 2 to 2.72 nanoseconds. The 
waveform seen at A in Fig. 13 would be that of 
Fig. 12. The amplitude of the reflection would be 
0.15 and the width of the reflected signal would be 
twice propagation delay of the line section B-C or 
5.44 nanoseconds. 

Now, a discrete number of capacitors placed on 
this line segment can be approximated by a distrib-

Figure 13. Simulated distributed line. 

uted line whose characteristic impedance is to be a 
function of the spacing between the capacitors. The 
closer the spacing, the lower the characteristic im
pedance. 
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The reflection on the loaded line segment in Fig. 
13 can be determined as follows: 

Let Zo = characteristic impedance of unloaded 
line 

Co = capacitance per unit length of un
loaded line 

Lo = inductance per unit length of unloaded 
line 

Vo = velocity of light - in free space 
Vp = K Vo = velocity of signal in unloaded 

line 
C L = capacitance per unit load 
n = number of unit loads per unit length 
D = physical spacing between loads 
CT = Co + CL = total capacity of loaded 

line per unit length 
E ref =. maximum amplitude of reflected signal 
E in = incident voltage 
fp = Eref 

Ein 

fp is used to define the ratio of the peak ampli
tude of the reflected signal to the incident voltage 
when the loads on the transmission line have capaci
tive components. When the loads are purely resistive 
fp = f. 

The impedance of the loaded line segment is: 

Zl- --_ (LO ) lh 

CT (9) 

The percent voltage reflected from point B back 
toward the generator end· of the line A is 

f = Zl-ZO 
Zl+ZO 

(10) 

Substituting Eqs. (7), (8), and (9) into Eq. (10), 
we get 

f (11) 

Equation ( 11 ) gives the reflection coefficient in 
terms of the distributed capacity of the unloaded line 
and the added capacity (per unit -length) due to 
shunt loads. Note in Eq. (11) that the total added 
capacity per unit length appears as the product of 
TJ and CL . Thus, the number of loads and the capaci
tance of the unit load C L can be inversely altered 
without changing the magnitude of the reflected volt
age. 

Since, in general, the capacitance of the load is 
fixed by the logic circuit input characteristics, the 
number of loads per unit length TJ will determine the 

reflected signal for a given Co, or more generally 
a given Zoo A more useful form of Eq. 11 is 

f 

1 _ (1 +~~) V2 
DCo 

(12) 

where D is the physical spacing between loads. 
For a given transmission line, Eq. 12 reflects the 

reflected signal to . the load capacitance and the 
spacing between the loads. Conversely for a speci
fied load and a predetermined maximum tolerable 
reflection the spacing between equally spaced loads 
can be determined. It is important to remember that 
Eq. 12 is most accurate for a large number of 
loads. The predicted reflections are pessimistic 
when only a few loads are considered. However, the 
system must be able to perform properly in the 
presence of the maximum reflections; thus, it is for 
many loads that accuracy is required. 

Some indication of the relationship between. sig
nal reflections and loads spacing can be seen in Fig. 
14 where f is plotted as a function D for Co equal 
to CL. 

z 
o 
~ 
I,,) 

50 

40 

~ 30 
"-
11.1 
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11.1 
I,,) 
a: 
11.1 

~ 10 

t.. 

o 0.5 1.0 2.0 3.0 4.0 
0- SPACING IN INCHES 

Figure 14. Percent reflection vs spacing for Co = CL. 

As an illustration of the usefulness of these con
cepts assume a 100-ohm line with a velocity propa
gation factor of liz is loaded with circuits whose 
input characteristics can be represented by a 5-pico
farad capacitor. If the reflection is not to exceed 15 
percent the closest allowable spacing can be deter
mined by solving Eq. (12) for D . That is, 

- 0.15 
( 5) V2 

1 - 1 + D20.3 

( 5) V2 
1. + 1 + D20.3 

where Co = 20.3 pf/ft from Eqs. (8) and (9). On 
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solving the above equation, D is found to be 3.56 
inches. 

Short Line 

In the discussion following Fig. lOa line was 
defined as short when the driving signal transition 
time is greater than twice the propagation delay of 
the line (T 1 ~ 2T d). This definition applies to the 
idealized trapezodial waveform. In most applications, 
however, the input waveform will not have a linear 
rise time but an exponential one. Thus the end of 
the transition period is difficult to define. Experi
mentally, it has been found that if T1 is taken as the 
time required for the source voltage to rise to about 
85 percent of its ultimate value, the relation T 1 > 
2T d can stil be used to define the short line. 

For those interconnecting lines to which the 
"short line" criterion applies, the rise times, delays 
and waveforms are calculated directly by conven
tional lumped component techniques. In this Cgse 
the transmission line is represented by an equiv
alent lumped capacitance as determined by Eqs. 
(7) and (8). This equivalent capacitance is added 
to the capacitance presented by the loads to deter
mine the total capacitance. 

Single Loads or Widely Spaced Loads 

For those cases where the line is loaded with a 
single load or with widely spaced loads, the reflec
tion amplitude and the time delay can be calculated 
by the application of the thevinin theorem. Consider 
Fig. 15. If an input signal Ein = 2E is connected as 

shown, a signal· of amplitude E volts will propagate 
along the line. T d is the time required for the signal 
to propagate the length of the line. If SW 1 is open, 
thus open-circuiting the line, the amplitude of the 
incident signal will jump to 2E which can be con
sidered the equivalent thevinin open circuit voltage. 
The thevinin impedance is obtained by short-circuit
ing the input voltage and determining the impedance 
looking into the B terminal towards the generator. 
This impedance is the characteristic impedance (ex
cept for low frequencies). Thus, the equivalent cir
cuits of Fig. 15b will give a complete and accurate 
description of the reflection along the line as well 
as the waveform at the load. If Rg =1= Zo, then mul
tiple reflections will exist. In this case the equivalent 
circuits shown in Fig. 15b apply only in the interval 
equal to 2T d seconds; A new thevinin voltage is 
determined for succeeding 2T d interval based upon 
the reflected voltage from the generator end of the 
line. This reflected voltage is determined by the same 
method, i.e., apply thevinin theorem to the generator 
end of the line. For short lines (T1 > 2T d) the 
equivalent circuits of· Fig 15b still apply provided 
that the capacity of the line is added to C L. 

U sing the above approach, the reflection voltage 
is given by 

-EZOCL ( - 2t ) 
EREF (t) = 2T1 1 - e ZOCL 0 < t < T1 

(13) 

EREF (t) EZOCL e ~( 1 _ e _2_~) 
2T1 ZoC ZOCL 

Tl < t < 00 (14) 

14------- Td ------111 B 

! 
Zo 

a. Transmission Line 

r------, : rmo : I Ein. I 1 RL 
I I CL 

I . 1 
I = I = -= 
L ______ -l 

:- -i7> RL- - ~ 
1 Zo+RL 1 

1 
I . RL 

EIn RL +zo 1 
I 
1= 
1 1 L _____ ..J 

b. Thevenin Equivalents 

r-------, 
1 Zo/2 I IMl 1 Ein 1 =: -2-=E : r L 

1= 1-= 
I I L _____ ...1 

FOR Zo" RL 

Figure 15. Thevenin equivalent circuits of transmission lines. 
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The maximum percent reflection is given by: 

r - - Zo C L ( 1 2 T 1 ) p- -e---
2 T1 ZoC 

The time delay from A to B as measured at the 50 
percent points is 

Td + (ZoCL /2). 

Reflections Due to Shunt Resistive Components 

Because some logic circuits such as DTL's have 
nonlinear input characteristics and signficant d-c 
input components, it is extremely difficult to define 
the input impedance in terms suitable for use in the 
reflection formula. Defining Rin of the gate as the 
ratio of the voltage change to the current change is 
inaccurate since the total current variation usually 
occurs in some interval of the voltage swing. This 
assumes that the voltage swing reflects noise im
munity properties which is generally the case. How
ever, since the reflection on a line is proportional 
to the shunt load current, it is possible to define the 
percent reflection directly in terms of the input cur
rent level change which can be easily measured. 

Consider Fig. 16 which shows a section of trans
mission line in which an incident current I in is ap
plied. The line is loaded at point P1 by ZL through 
which a current h flows. 

Iin = ~ 
Zo _l_lLTRANS.'SS'ON LINE -Z. 

I REF 1 ' 
XL ZL 

Figure 16. Current distribution at tapped node. 

Summing up the currents at node P1 and using the 

d f · .. f EREF b' e mltIon p = -E . we 0 tam 
in 

h fp = - 1/2 -.-
1m 

(16) 

Thus we have the reflection expressed in terms of 
the load current and the incident current, both readily 
determined parameters for DTL type of loads. Al
though Eq. (16) was derived for resistive loads its 
application can be extended to capacitive loads by 

( 
dv ) max representing h by C (it . 

Experimental Results 

Table 1 shows the comparison between. the pre
dicted percent reflections and the measured percent 
reflections for vari'ous" 'capacitance loads and spac
ings. The table is incomplete simply because all 
combinations were not measured. As indicated ear
lier the accuracy between the predicted and ob
served reflections for the higher numbered loads is 
within a few percent. As the number of loads de
crease (for the closely spaced loads) the predicted 
value exceeds the observed value. For slower rise 
times the accuracy of Eq. (12) will maintain itself 
for the higher numbered loads whereas the differ
ence between the predicted and observed reflections 
will increase with the fewer numbered loads. This 
follows from the fact that a lumped line more close
ly approximates a distributed line as the number of 
sections are increased. 

DESIGN CONSIDERATIONS 

In general the designer will initially endeavor to 
first specify the characteristics of the transmission 
line. This happens because the signal transmission 
system, being an integral part of the packaging, has 
many physical, mechanical and cost considerations 
in addition to its electrical properties. Certain types 
of lines, like coaxial lines, will be eliminated from 
general use because of their cost and poor package 
density. Once a line has been chosen consistent 
with cost and packaging considerations, the natural 
tendency will be to select as high an impedance as 
is practical in order to reduce the current require
ment of the driver circuitry. However, unless the 
dynamic and static input current requirements of 
the logic circuitry is exceedly low, the reflections 
will be excessive. Excessive reflections in this case 
means reflection voltages in excess of the predeter
mined noise immunity of the circuitry. Even if the 
designer takes corrective steps by lowering the line 
impedance or increasing the noise immunity of the 
circuit (which generally incr,eases the delay) it 
must still satisfy the requirements of the logic de
signer whose fan out and fan in requirements di
rectly affect the reflections. Then still to be consid
ered is the inherent conflict of increased package 
density versus higher reflections since squeezing a 
fixed number of loads close together increases the 
reflections as indicated in Fig. 14. Increased pack.;. 
age density usually results in closer spacing between 
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Table 1. Comparison of Measured and Calculated Values of r p. 

Capacitance 
per Load 

(pf) 
Spacing 

Measured fp for n Loads (percent) Calculated 
r 

(in~hes) . n=2 n=3 
1.5 16.0. 

5 3.0. 15.0. 
4.5 12.0. 
6.0. 10..5 

1.5 29.0. 
10. 3.0. 22.0. 

4.5 16.6 
6.0. 17.5 

1.5 38.5 
15 3.0. 27.5 

4.5 25.8 
6.0. 21.5 

Note: Rise time = 1 nanosecond. 

the signal transmission line increasing crosstalk be
tween the signal lines. This affects the noise im
munity. Thus, the packing denseness required, the 
electrical and mechanical properties of the signal 
transmission system, the noise immunity, the cur
rent-speed capability and input impedance of the 
logic circuitry, the logical fan in and fan out re
quired and the spacing of the loads all effect and 
are affected by the reflections (and other noise pro
ducing sources). Therefore, these various system 
parameters should be evolved concurrently with the 
various disciplines cooperating. 

CONCLUSIONS 

The interaction of two coupled lines, when one is 
driven by a transient signal, will generally result in 
induced signals at either end of the undriven line, 
even when the lines are properly terminated. For 
the special case where the dielectric medium is ho
mogeneous, the induced signal at the receiving end 
of undriven line will be zero when the lines are 
properly terminated. 

When the driving pulse having a linear rise time 
is applied to one of two coupled lines having a non
homogeneous medium, a crosstalk pulse will be 
induced at each end of the coupled sense of pickup 
line. The forward crosstalk at the receiving end of 
the sense line will be proportional to the slope of 
the driving pulse and to the length of the coupled 
region. The back crosstalk pulse at the sending end 
of the sense line has a waveform that is related to 

n=4 n=6 n=11 n=12 (percent) 
19.0. 26.0. 26.8 
17.5 18.5 17.3 

12.4 13.4 12.9 
10..5 10.5 10..1 

33.0. 37.5 38.0. 
26.0. 26.0. 26.8 

18.4 20..3 20..8 
17.5 17.5 17.3 

41.5 43.5 45.0. 
32.0. 32.0. 33.2 

27.0. 29.0. 26.8 
22.5 22.5 22.6 

the relationship between the rise time of the driving 
pulse T 1 and twice the propagation time T d of the 
coupled region. For T 1 < 2T d the amplitUde of the 
back crosstalk pulse is independent of rise time and 
the length of coupled region. The width of the pulse 
is approximately 2Td. For Tl > 2Td the maximum 
amplitude of the back crosstalk pulse is proportional 
to the time derivative of the driving pulse and to the 
electrical length of the coupled region. 

The equations presented for the back and for
ward crosstalk apply to lines having either homo
geneous or nonhomogeneous mediums. Following 
the determination of two constants by direct meas
rement, these equations can be used to predict· the 
forward and backward crosstalk voltage for variable 
driving pulse rise times, driving pulse amplitude 
and length of the coupled region. 

In any given system the magnitude of the reflec
tion can be a function of the signal transistion time, 
the length and characteristic impedance of the 
transmission line, the input conductance and capac
itance of the circuit loads, and the spacing and 
number of the loads. 

A transmission line uniformly loaded with logic 
circuits whose loading characteristics can be repre
sented by capacitors can be represented by a dis
tributed line with a . reduced characteristic imped
ance. This approximation is most accurate as the 
number of loads increase and/or faster signal rise 
time. The maximum reflections seen on these types 
of lines can be determined by the relationship 
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( 
CL ) 112 

1- l+ DCo 

1 + ( 1 + D~O)1I2 
f 

where CL = effective capacity of load, 
Co = capacity per length of transmission line, 

and 
D = spacing of loads on line. 

For those lines which are loaded with logic cir
cuits whose loading characteristics are essentially 
resistive (including those which are nonlinear) the 
maximum reflections can be calculated by the rela
tionship 

h f=-Yz--.-
1m 

where h = current level change of logic circuit, and 
lin = incident current on line. 

The effect of the various system design parame
ters on each other is pointed out. The need for coop
eration and compromise between the requirements 
of the packaging, signal transmission system, noise 
immunity, ·current-speed·capability and input imped
ance, logical gain of the logic circuits, and the 
spatial distribution of the loads is discussed. The 
importance of unified design philosophy grows as 
machines become faster and grow smaller. 
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Appendix 

MATHEMATICAL ANALYSIS OF TRANSIENT 
SIGNALS ON COUPLED TRANSMISSION 
LINES 

Transmission Line in a Zero Field 

The equations. describing V (x) and I (x) for the 
transmission line shown in Fig. 17 can be found in 
any standard text on transmission line theory such 
as reference 6. With V and I positive and x measured 
from the receiving end as shown, V (x) and I (x) are 
given by 

V(x) = Aei'X + Be-i'X 

A B = -- ei'X _ --e-YX 

Zo Zo 
I(x) 

where Zo = J Z = I R + jwL. 
'\j y '\j G + jWC 

(1) 

(2) 

A and B are constants determined by boundary con
ditions and R, L, G and C are defined on a per unit 
length basis. 

-I -!(X) 

Vg iv 
V{)C) 

I ~.--------x------~.I 
X=O 

Figure 17. Transmission line. 

The instantaneous voltage and current equations 
can be obtained from Eqs. (1) and (2) by multi
plying them by ejwt, which gives 

v(x,t) = Aejwt+i'X + Be jwt-YX (3) 

and 

A . + Bot i(x,t) = - e3wt yx __ e3W -yx 

Zo Zo 
(4) 

Those terms containing expressions of the form 
f 1 (wt - yx) indicate a wave traveling in the + x 
direction while those terms containing the form /1 
(wt+ yx) indicate waves traveling in the -x direc
tion. Note that the + x direction is from the receiving 
end of the line back toward the generator end. 

Evaluating the constants from the boundary con
ditions at x=O, V(O) =VR and lo=VR/Zz=/(R), 
Eqs. (1) and (2) become in hyperbolic form 

Zo . h ) (5) V(x) = VR (cosh yx + Z2 SIn '}'X 

and 

h Z2. ) I (x) = IR (cos '}'x + Zo smr '}'X (6) 
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For convenience, the substitution is made that 

VR 
Q2 = Zo ; P2 = IR 

This gives 
Vex) = Zo (Q2 cosh '}'X + P2 sinh '}'x) (7) 

and 
I(x) = P2 cosh '}'X + Q2 sinh '}'X (8) 

The above equations describe the voltage and cur
rent distribution when an exial electric force is ap
plied to a transmission line in a zero field environ
ment. Consider now the effects of placing the trans
mission line in a nonzero field environment. 

Transmission Line in a Nonzero Field 

The voltage and current distribution along a trans
mission line will be derived by applying the principle 
of superposition. First, an induced voltage is intro
duced into the line and the resulting voltage and 
current distributions are calculated. Then an induced 
current is introduced into the line and similar cal
culations are made. The two results are summed, 
producing the total distribution. The derivation that 
follows is based on the approach taken in reference 
4. It is assumed that the degree of coupling between 
the two lines is low enough so that there is negligible 
degradation of the driving waveform as it propa
gates along the line. 

Voltage and Current Distribution from an Induced 
Voltage. Figure 18 shows a transmission line in which 

"'-
there is an induced voltage, V, at a point x = g. It is 
assumed that the internal impedance of the voltage 

"'- "'-
generator V is zero. The polarity of V is as shown in 
the figure. Also shown in Fig. 18 are the directions 
of the conductive and displacement currents. 

I' "I 

Figure 18. Transmission 1ine with an induced voltage at 
x'= g. 

Let Vex, g) and I(x, g) be the voltage and current 
at x when a voltage V is impressed at x = g. Since 
there are no impressed voltages in the region O<x<g 

and g<x<f, Eqs. (7) and (8) may be applied to 
each of these regions. The following equations take 
note that x is measured with respect to the new ref
erence. 

VI (x, g) = ZO [Q2 cosh'}' (£-x) + P2 sinh'}' (f-x)]; 
x>f---- (9) 

II (x, g) = P2 cosh'}' (£-x) + Q2 sinh '}' (f-x); 
x>g (10) 

VI (x, g) = -Zo [QI cosh '}'X + PI sinh ,},x]; 
x<g 

II (x, g) = PI cosh '}'X + QI sinh '}'x; x<g 
(11) 
(12) 

Four boundary conditions are now required to deter
mine the constants PI, QI, P2 and Q2. Two of these 
conditions are derived from the terminal conditions 
of the line, namely, V(O,g)/I(O,g) = -ZI and 
V(£,g)II(£,g) = Z2. The other two conditions result 
from an evaluation of the voltage discontinuity at 
x=g. 

From Eqs. (11) and (12) 

V(O,g) _ Z _ -Zo QI 
I (0 ,g) - - 1 - PI 

since sinh (0) = 0 and cosh (0) = 1, 

PI = PZo 

where P is introduced to simplify manipulation. 
From Eqs. (9) and (10) 

V(f,g) = Z2 = Zo Q2 
l(f,g) P2 

P2 = Q Zo 

Q2 = Q Z2 

(13) 

(14) 

(15) 

(16) 

where Q also is introduced to simplify manipulation. 
From the voltage discontinuity at x = g the re

maining two boundary conditions are obtained. 

Ir (~+o,g) - 11 (g-o,g) = 0 (17) 

VI (~+o,g) - VI (g-O,g) = V (18) 

Substituting Eqs. (13) and (14) into Eqs. (11) and 
(12) and Eqs. (15) and (16) into Eqs. (9) and 
(10), respectively, produces 

It (x, g) = P [Zo cosh '}'X + ZI sinh ,},x]; 
x<g (19) 

VI (x, g) = -Zo P [ZI cosh '}'X + Zo sinh '}'x; 
x<g (20) 

It (x,g) = Q [Zocosh'}' (f-x) + Z2sinh,}, (f-x)]; 
x>g (21) 
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VI (X, g) = Zo Q [Z2 cosh I' (£-x) + Zo 
sinhI' (£-x)]; x>g (22) 

Substituting in Eqs. (17) and (18), gives 

_ P [Zo cosh I' g + ZI sinh I' g] 
Q - [Zo cosh I' (£-g) + Z2 sinh I' (£-g)] 

(23) 
A Zo P [Zl cosh I' g + Zo sinh I'g] 
V = [Zo cosh I' (£-g) + Z2 sinh I' (£g)] 

Zo cosh I' (I-g) + Z2 sinh I' (i-g) 
(24) 

With aid of hyperbolic identities, Eq. (24) is reduced 
to 

A 

P = V [Zo cosh I' {£-g + Z2 sinh I' (£-g)] 
Zo [(Z02 + Z 1Z2) sinh I' £ + 

(Zo Z2 + Zo Z1) cosh I' £] 

From Eq. (23) Q can be determined 

Q= V [Zo cosh I' g + Z1 sinh I' g] 
Zo [Zo2 + Z1 Z2) sinh I' £ + 
(Zo Z2 + Zo Z1) cosh I' £] 

(25) 

(26) 
Substituting P and Q in Eqs. (19) through (22) 

-v V1(x, g) =-i-{[Zo cosh I' (£-g) + Z2 sinh I' (£-g)] 

[Z1 cosh I'X + Zo sinh I'x]}; x < g (27) 

A 

V 
11(x, g) = ZoD. 

{[Zo cosh I' (£-g) + Z2 sinh I' (£-g)] 
[Zo cosh I'X + Zl sinh I'x]} ; x<g (28) 

A 

V 1 (x, g) = ~ ([Zo cosh I'g + Z1 sinh I'g] 

[Z2 cosh I' (£-x) + Zo sinh I' {£-x)]}; x>g (29) 

J,(x, g) = 1,/1 {[Zo cosh yg + Zl sinh yg] 

[Zo cosh I' (i-x) + Z2 sinh I' {£-x)]}; x>g (30) 

D. = [(Z02 + Z1 Z2) sinh 1'£ + 
(Zo Z2 + Zo Z1) cosh 1'£] 

Eqs. (27) to (30) give the voltage and current 
distribution on the line in response to a zero imped
ance voltage source induced at Z = g. 
Voltage and Current Distribution from an Induced 
Current. Fig. 3 shows a transmission line of charac
teristic impedance Zo, terminated with Z1 and Z2, in 

which an infinite impedance current source 1 is in
duced at x = g. The direction of the. induced current 

f is as shown in the figure. The currents in the line 

will flow in opposite directions as shown by the two 
opposing arrows. 

r I 

Figure 19. Transmission line with an induced current at 
x=f 

A procedure, identical to the one previously used 
for an induced voltage, yields the voltage and current 

distribution in response to a current, f, induced at 
x = g. The four boundary conditions required for 
the solution of the simultaneous equations are 

V 2 (0, g) = -z . x = 0 
12 (0, g) 1, 

(31) 

V2 (£, g) = -Z2' X = £ 
12 (£, g) , (32) 

A 

h(g-o, g) - 12(g+0, g) = I; x = g (34) 

As before, the current in the direction of x is a 
positive current. Therefore 12 (g-o, g) is a positive 
current while 12 (g+o, g) is a negative one. The boun
dary conditions at x = 0 and x = £ both generate 
negative impedance values because the currents and 
voltages are in opposite directions. This is done to 
allow compatibility with the previously discussed 
problem with an induced voltage. 

Thus, starting with Eqs. (9) through (12) and 
using Eqs. (31) through (34) in the same manner as 
before, we arrive at the votage and current distribu
tion at x due to an induced current 1 at x = g. 

The solutions are 

-1 Zo 
V2(x, g) = -X- ([Zo sinh I'X + Z1 cosh I'x] 

[Zo sinh I' (£-g) + Z2 cosh I' (£-g]}; x<g 
(35) 

hex, g) = + ([Zo cosh I'X + Z1 sinh I'x] 

[Zo sinh I' (£-g) + Z2 cosh I' {£-g]}; x<g 
(36) 

-1 Zo 
V2(x, g) = -X- ([Zosinh I'g + Z1 cosh yg] 

[Zo sinh I'{£-x) + Z2 cosh I' (£-x)]; x>g 
(37) 
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-1 
hex, t) = ~ ([Zo sinh yt -+ Z1 cosh yt] 

[Zo cosh y (e-x) + Z2 sinh y (f-x)]); x>t 
(38) 

The voltage and current distribution at any point 
x on the line due to an induced voltage and current 
at x = t can now be obtained via superposition. 
Also, because the main interest here is in the induced 
signals, let the line be matched, that is let Z1 = Z2 
Zoo 

Substituting Zo = Z1 = Z2 and combining Eqs. 
(25) to (29) and (35) to (38) while using the 
relationships cosh x = (ex + e- X

) 12 and cosh x = 
(eX - e-X)/2 and cosh x + sinh x = eX, the equa
tions reduce to 

lex, t) 

A 

lex, t) = +( ~ -I )e-YCX - O ; x>t (42) 

Equations (39) to (42) define the voltage and 
current distribution at any point x on a transmission 
line as a result of an induced differential voltage and 
current at x = t. The sign factors in these equations 
should be interpreted in terms of the assumed posi
tive direction in Figs. 18 and 19. For example, the 
minus sign in Eq. (39) indicates that the direction 
for the positive voltage at x = 0 is opposite to that 
assumed. Again, this was expected from the qualita
tive analysis. The expressions that hold for x<g 
quantitatively describe the back crosstalk which was 
qualitatively discussed. earlier. In Eqs. (39) and 
(40) the two terms reinforce each other while for 
x>t, the forward crosstalk, the terms are of oppo
site polarity. These were the results expected in 
light of the qualitative analysis. If the relationship 
A A 

Vil = Zo is true, the forward crosstalk voltage 
reduces to zero. In this case, for crosstalk considera
tions, the sense line may be terminated in any impe
dance at the receiving end. 

The total induced voltage and current resulting 
from a driving pulse propagating along the driver 
line are obtained by adding the differential voltages 
and currents expressed in Eqs. (39) to (42) over the 
region of interaction. Here we follow the method 

outlined in reference 5. If an applied current signal 
loon the drive line is propagating from left to right, 
the current and voltage at any point g on the drive 
line may be written as 

la = 10 e-yg 

Va = Zo/a 

(43) 

(44) 

Defining Cm and Lm as the mutual capacitive and 
inductive coupling between the driving lines and the 

A A 

sense line, I and V can be expresszed as 
A 

I(t) = sCm Va (45) 

(46) 
where s is the argument of the Laplace transform. 

Substituting Eqs. (43) to (46) in Eqs. (39) and 
( 40) and integrating over the region of interaction 
we get 

10 x 
V(x,s) = - T / 

[s L.m e- yg - s Cm Z02 e- yg] e-Y(X-odg 

~ 
+~f 

2 x 

[s Lm e- yg + sCm Z02 e- yg] e-YCg-x)dt 
(47) 

_ I [(Lm-CmZ02 -yx +(Lm + CmZ02
) 

- - 0 2 sx e 4y 

s( e- yC2!-x) - e-- YX ) . (48) 

For a lossless line the propagation constant y = 
y'LC = s T d/£ where Td is the time required to 
propagate the length of the coupled line £. Substitut
ing in Eq. (48) and taking the inverse transform, 
we get 

V(x,t)=Kjx :t [Vo(t- ~dX)] 

[ ( TdX) TdX] * -KIJ Vo t- -e- - Vo (t-2T<l + -e-

where 
Vo = 10Zo 
K j = forward crosstalk constant 

= - (112 (LmiZo - Cm Zo) 
Kb = back crosstalk constant 

= (£/4Td ) (LmiZo + Cm Zo) 

(49) 

*All time functions delayed by a constant Tk are modified 
by the unit step function u(t - Tk) such that 

u(t - Tk) = f 0 for 0 < t < Tk 
II for Tk < t 
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IMPLICATIONS OF THE COMPUTER FOR 
THE BEHAVIORAL SCIENTIST 

All of us would agree, I believe, that the mathe
matician should be interested in computers, for 
computation and mathematics go together. Similar
ly, it is obvious that the engineer must use comput
ers in his work to perform the calculations involved 
in designing bridges, in predicting the location of 
orbiting satellites, or in other engineering tasks. 
But why should the behavioral scientist, who by de
finition, is interested in human and animal beha
vior, be concerned with computers? The answer to 
this question is that the computer is a very versatile 
and powerful tool that, when properly used, en
hances one's ability to do creative work. The com
puter provides the behavioral scientist with the 
capability of studying problems considered impossi
ble as recently as two decades ago. 

In the course of this paper I will describe some 
of this new research and illustrate a few novel uses 
of computers as well as some of the social .implica
tions of this usage. Let me begin by presenting an 
overview of the effect the computer is having on 
research design and on the role of the behavioral 
scientist. As a tool, the computer can contribute to 
the research task by aiding in the statistical analysis 
of experimental data, land by modeling, or simulat-
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ing, experimental variables to find new relation
ships and test hypotheses. 

Research involves the accumulation of data and 
their eventual analysis and reduction. As our re
search capabilities expand, more and more data are 
accumulated and analysis becomes increasingly 
complex and time-consuming. The statistical tech
niques are themselves becoming more· sophisticated. 
If behavioral science remains chained to the desk cal
culator, it will stagnate. 

High-speed electronic data processing provides a 
means for rigorously analyzing masses of data. In 
addition, special computer programs can search for 
patterns and relationships that, because of the num
ber and distribution of variables, might remain ob
scured and undiscovered. From these patterns, as 
exemplified in the study of electroencephalographs 
and electrocardiographs, the researcher is seeking to 
formulate new and significant hypotheses. 

Testing of hypotheses can also be facilitated by 
using the computer to simulate and study human 
behavior. But why go to all that trouble? Why not 
study human behavior directly rather than simulat
ing the behavior on a computer and then studying 
the model? The physiological psychologist will im
mediately recognize the similarity of this question 
to the older, more common query: "Why do you 
study rats if you are primarily interested in human 
behavior?" And the answer is very much the same. 
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By simulating behavior on a computer and studying 
its operation in detail, we can, by analogy, make 
inferences about the more complex human activities 
and then test and validate these inferences. 

The analogy of the organization of the computer 
itself to that of the human nervous system is a fas
cinating model for the behavioral scientist to inves
tigate. It has been suggested that experience leaves 
a permanent mark on the brain-possibly by chang
ing the configuration of protein molecules in the 
brain cells. The resulting memory trace permits re
call of the experience. Computer memory is some
what similar. Information is recorded by magnetiz
ing a certain small area of core memory. The com
puter is then able to recall this information by de
termining whether the part is, or is not, magne
tized. Whether this analogy will lead to a formal 
theory of memory and thought remains to be seen. 
But one thing is certain: without the computer it 
would be impossible to perform the many calcula
tions necessary to develop the theory and to verify 
it under various operating conditions. 

The computer, in addition to providing the beha
vioral scientist with a new tool for statistical analy
sis and modeling procedures, is influencing research 
by changing the very environment in which humans 
live and behave. One of the areas that the social 
scientist must study is the effect of computerization 
in the factory and office. Are workers being re
placed by the machine faster. than new jobs are 
being created? What new skills are required by auto
mation, and can a firm's present employees be re
trained to qualify for the technically more demand
ing jobs in the automated plant? Are new training 
techniques needed and can they be developed? In 
seeking answers to these questions, management is 
turning to the behavioral scientist for help; 

Thus, we see that the computer is affecting the 
research efforts of the behavioral scientist in . three 
ways: ( 1) by providing a more powerful tool for 
the statistical analysis of his data, (2) by providing 
a means of simulating a system of complex interact
ing variables, and (3) by requiring new data on the 
effects of automation in the changing economic en
vironment. 

Let us now examine each of these areas in detail. 

THE COMPUTER AS A DATA PROCESSOR 

The study of human behavior is an extremely 
complex task. One complication, for example, is 

that there are no "standard subjects" in the sense 
that there are pure reagents in chemistry. Instead of 
dealing with typical subjects, the experimenter is 
forced to work with a sample of a larger popula
tion. This raises the question of what is an ade
quate sample. Providing an answer involves esti
mating popUlation parameters and calculating tests 
of significance. The concern over individual differ
ences has led the experimental psychologist to de
velop sophisticated statistical techniques and com
plex experimental designs. 

Although the uniqueness of behavioral variables 
was recognized from the very beginning, early ex
perimental work modeled itself after the physical 
sciences. The behaviorist school of psychology at
tempted to account for complicated patterns of be
havior in terms of elementary unitary sensations. 
The analogy to the chemist building structures from 
basic elem~nts is obvious. Early experimentation 
consisted of accumulating observations of a single 
variable under varying conditions. 

Soon this mode of observation gave way to the 
"before and after" study, but still the emphasis was 
on the single variable. These experiments began 
with the specification of a set of initial conditions 
in which the dependent and independent variables 
were neatly separated and identified. The independ
ent variable was then changed in a predetermined 
manner while all other variables were held constant, 
and the results, before and after, were measured and 
compared. This is the classic univariate design. It 
was used by Pavlov to condition his dogs to salivate 
at the sound of a bell, and it is used today by teach
ers who give or withhold rewards to motivate learn
ing under the assumption that, all other things 
being equal, a child will work harder to earn an A 
in school than he will for a B. 

In the attempt to understand complex behavior 
under conditions when all other things are not 
equal, the univariate design gave way to multivari
ate statistics, analysis of variance, multiple regres
sion, and factor analysis. 

These methods were known and in use prior to 
the . advent of computers. However, their use re
quires a great many calculations. When computers 
became available to handle the· repetitious and 
time-consuming tasks of calculation, more . experi
menters began using multivariate statistics. Even 
so, in most experiments, and recent ones at that, all 
regressions are assumed to be linear, and all varia
bles are assumed to be normally distributed. These 
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assumptions are made in spite of the fact that the 
real world does not behave this way. Linearity is 
assumed because it is required by most available 
statistical models; thus, more realistic/realistic 
models are needed and are being developed. These 
are complex models and require the computational 
capabilities of computers. 

Another effect of having a computer available is 
that the experimenter is able to interact more inti
mately with his data and to steer the analysis. He 
can ask the "What if ... ?" question-what would 
happen if I added another variable, or if I arranged 
the data differently, or if I used a nonparametric 
model, etc. With the computer standing by to do 
the dirty work, the experimenter is willing to ask 
more questions and do more analyses. 

The computer can also be used as an aid in 
theoretical research on statistical techniques, and 
thus can help solve some of the problems that com
puter technology brought into prominence. Some of 
this research in methodology involves the use of 
random number generators for studying specialized 
non-normally distributed samples, new techniques 
of matrix multiplication, and many other mathema
tical and statistical problems. 

One thing is clear. The computer has had a sig
nificant effect on experimental design and data re
duction techniques. It is, therefore, especially im
portant for today's scientists to learn to use the 
computer so that they can bring more powerful re
search methods to bear in solving the significant 
problems of our times. 

THE COMPUTER AS A SIMULATION DEVICE 

As important as the computer is in data pro
cessing, it makes an even greater contribution as a 
tool for simulation and modeling. 

Newell and Simon! have pioneered in the use of 
the computer as a device for simulating the process
es of human thinking. In one of their experiments, 
they presented the subject with a problem requiring 
the transformation of one set of symbols into anoth
er set by following certain transformation rules. 
They asked the subject to talk out loud as he ap
plied these rules. This verbalization provided the 
experimenters with a record of the subject's thought 
processes as he worked toward the solution of the 
problem. 

The research task that Newell and Simon set for 
themselves was to construct a theory that would 

identify and integrate the various processes that in
fluence the subject's behavior as he attempts to 
solve problems. Having constructed the theory, it 
becomes necessary to test its adequacy by compar
ing the behavior predicted by the theory with the 
actual behavior of the subject. This much, I believe, 
is clear. The point that is unclear, perhaps, is, 
where does the computer fit in? How can the com
puter help either in constructing or in testing a 
theory of human problem-solving behavior? 

It will be recalled that the task given the subject 
involved symbol manipulation-transforming one 
symbolic expression into another. Obviously hu
mans can solve symbolic problems, but computers 
are also symbol manipulators. 

This· similarity suggests that the behavior of both 
the human and the machine can, at some level of 
abstraction, be described in the same terms. It is 
postulated that the human subject's. behavior in a 
problem-solving situation is governed by a program 
organized from a set of elementary information pro
cesses. It is further postulated that a program can 
be written that will cause the digital computer to 
execute a procedure corresponding to the human's 
information-processing or symbol-manipulation be
havior. In other words, the computer program will 
cause the computer to behave in the same way that 
the subject behaves. Both man and machine will 
emit substantially the same set of symbols when 
both are controlled by the same program. Under 
these circumstances, as Newell and Simon point 
out, the computer program can then be regarded as 
a theory of behavior. 

This is a most ingenious formulation, requiring 
no assumptions beyond the easily acceptable notion 
that men and computers <are both general-purpose 
symbol-manipulating devices, and that· the computer 
can be programmed to manipulate symbols so that 
the output behavior resembles human information 
processing. Thus, the use of computer simulation 
for studying human thinking becomes clear. What 
Newell and Simon have suggested, and have, in 
fact, done with their GPS or General Problem-Sol
ver program, was to describe human problem-solv
ing behavior as a set of subroutines that could be 
written as a computer program. The theory and the 
program are one and the same. Computer simula
tion forces the theorist to be complete and precise 
in his formulations. In addition, the computer pro
gram provides a test of the theory by comparing the 
simulated behavior with the original. 
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Computer simulation can involve a single indi
vidual or a large complex social system. Ithiel de 
Sola Pool2 has been interested in studying the so
called "human intangibles" in social systems engi
neering. He asks, "Can we begin to build into sys
tems planning such factors as the moods of voters, 
the fads of consumers, the desires of city dwellers 
or-in the case of attempts to export technology to 
developing nations-the superstitions of peasants?" 
And he answers, "To a considerable degree the so
cial sciences can do all of these things." The tech
nique that makes this possible is computer simula
tion. 

Pool is particularly noted for his work in simu
lating voting behavior and predicting the 1960 
presidential election. The source data for this simu
lation was derived from public opinion polls, 
which had been conducted between 1952 and 1958. 
The data were used to construct 480 voter types; 
one type, for example, was described as "lower in
come, Protestant, midwestern, urban, white, Repub
lican, female." Along with each type, there was 
stored in computer memory the number of people 
of that. type in each state and how voters of that 
type had replied to public opinion poll questions on 
some 50 topics. 

The simulation program utilized this initial in
formation and operated on it by a number of rou
tines expressing social science propositions, espe
cially the cross-pressure theory. In essence, this is a 
theory that explains and predicts the behavior of a 
voter when some pressures are pushing him toward 
one candidate and some toward another. Under 
these circumstances it is theorized the voter tends 
to become less interested in politics, makes up his 
mind later in the campaign, is inclined not to vote 
at all, but, in the end, tends to vote in accordance 
with his initial partisanship. For each issue, or 
cross-pressure, the simulation program looks up the 
record of the 480 voter types, how each had divided 
on that issue in the past, how he had voted in the 
past, how inclined he was to nonvoting, and how 
steady his·· voting record was. Each of these values 
is entered into an equation that, when solved, pre
dicts how that voter type would divide in the 1960 
election. 

This procedure resulted in a particularly success
ful simulation of a very complex set of variables 
and a validation of the cross-pressure theory. As 
Pool reports, "In August 1960, our operation gave a 
state-by-state relationship, when we simulated a 

campaign stressing this issue (i.e., the religious is
sue), which correlated 0.82 (out of a possible 1.0) 
with the actual results in November-although no 
data entered in our simulation were collected any 
later than 1958!" The record speaks for itself, and 
provides evidence that simulation is a most impor
tant tool for social science research. 

In addition to studies of problem-solving beha
vior and of voting behavior, simulation has been 
used as a method of studying the cognitive process
es, military systems, business organizations, inter
national relations and diplomacy and many other 
problem areas.3,4 

COMPUTER APPLICATIONS IN 
LANGUAGE AND COMMUNICATION 

In the preceding applications, the computer has 
been used, for the most part, to process numerically 
coded data, and although the research has been in
genious, the computer has been used in its tradi
tional role. However, the modern digital computer 
is, as was pointed out, more of a symbol manipula
tor than a lightning calculator. The computer can be 
used to process natural language and to aid in hu
man communication. Work in this area has includ
ed research on (1) machine translation, (2) the 
development of question-answering machines, and 
(3) the retrieval of information in the form of do
cuments or text. 

Since machine translation and question-answer
ing machines are being discussed in other sessions 
of this conference, I will concentrate my few re
marks on the application of computers to the libra
ry problems of indexing, classifying, storing and 
retrieving documents. There are a relatively large 
number of researchers working on these problems as 
well as an extensive literature. These researchers 
envision a library of the future in which documents 
either arrive in machine-readable form or are con
verted to code by optical scanning equipment. The 
resulting magnetic tapes are then processed to pre
pare lists of key terms. These lists, and the docu
ments from which they are generated, are reviewed 
and used for selecting index terms. At present the 
final selection can be made more efficiently by 
skilled humans than by computer programs. The 
index terms constitute the basis for automatically 
classifying the documents into subject categories. 
Although automated classification is consistent, li
brarians may not always agree that the computer 
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puts the document into the most reasonable catego
ry. This is a problem, and for now one can only re
spond that since the retrieval will be done by ma
chine, it is more important that the classification 
seem logical to the computer than to the librarian. 
This is another way of saying that classification is 
not an end in itself but serves only to improve the 
efficiency of retrieval procedures. 

Classification has two meanings. The first one, 
which we have discussed, consists of classifying doc
uments by placing them into existing categories of 
information. A second meaning of classification is 
the organization of a collection of items into a rea
sonable number of subject categories-to derive the 
categories into which the collection could be logi
cally arranged. 

A number of mathematical techniques have been 
suggested for deriving classification categories; 
these include clump theory, factor analysis, and 
multiple regression analysis. In the library of the 
future, both aspects of classification will be auto
mated; classification categories will be derived by 
computer programs and documents will be classified 
into their proper categories by other programs. Au
tomatic classification has the additional advantage 
that, when new categories are added or existing 
ones deleted, the entire document collection could 
be reclassified without additional human effort 
since the document is left untouched; only the file 
reference to the document, the computer equivalent 
of the card catal'og, is changed. 

A request for material is processed in the same 
manner as if the request itself were a document. 
The request is· converted to machine code and auto
matically indexed and classified; It is this request 
classification category and the index terms that will 
be used in the document search. The librarian re
views the machine analysis of the request and adds, 
deletes, or otherwise modifies the terms to improve 
the system response. The search for appropriate do
cuments is made by the computer, which selects all 
documents containing the required combination of 
index terms. If remote inquiry stations and a suita
ble computer program are available, a user can in
put a request for documents on a teletypewriter in 
Los Angeles and receive a reply from information 
centers in Chicago or Washington. Information re
trieval' systems of the type described are now being 
designed,5.6 and it is reasonable to expect that some 
operational systems will be available within the 
next decade. 

IMPLICATIONS OF THE COMPUTER 
REVOLUTION ON THE HUMAN VALUES 

It is obvious from the foregoing discussion that 
computer technology and automation have many 
applications beyond numerical analysis and engi
neering. The computer is beginning to play an im
portant role in our economy and in our lives. The 
consequences are not always desirable. A significant 
percentage of Americans have been displaced from 
their jobs because of automation and computers are 
now commonplace in business offices and in facto
ries. The changes that are taking place as a result of 
computer applications can only be described as rev
olutionary. The effect is comparable to the revolu
tion that took place in our economy and in our 
lives, when the automobile came into general usage, 
except that these earlier innovations created new 
jobs while the cybernetic revolution is capable of 
producing more goods with fewer people. 

Technological unemployment is real· and the re
sulting problems are also real. We are very familiar 
with one of these problems, namely poverty. I do 
not wish to dwell on this, except to echo the belief 
expressed by President Johnson that poverty can be 
eliminated. We already pay farmers not to plant 
crops, and I see no reason why we cannot pay a 
harness maker not to make harnesses or a coal min
er not to mine coal. Poverty can be eliminated, but 
even if everyone had a guaranteed annual wage, 
there would still be problems resulting from auto
mation. These are psychological problems that have 
their roots in the conflicting conditions inherent in 
the changing contemporary American scene. These 
are conflicts between the desire to work and the 
lack of jobs and between our reverence for man and 
the apparently superior capabilities of the machine. 

Our society praises work and considers idleness 
evil. "The devil finds work for idle hands," is an 
old folk saying. This aspect of our value· system was 
commented on by the economist, Max Weber, who 
called it the "Protestant ethic." The point is that 
the Protestant ethic and the values this phrase con
notes are in conflict with the realities of a world in 
which there is not enough work to go around. If it 
is good to work, and we are not working, then we 
are not good. This thought is expressed beautifully 
by Robert Davis in his article "The Computer Rev
olution and the Spirit of Man."7 He states, "To 
question my work is to threaten my value as an in
dividual, to deprive me of work is to take from me 
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the opportunity to give meaning to my life-the 
opportunity to achieve and to be recognized by my 
fellow human beings."8 In a highly automated socie
ty, many jobs that are now being done by man will 
be done by machine. The machines will, in fact, de
prive man of an opportunity to work and to 
achieve, even though he may still receive an in
come. 

When computers replace man on a job, he cannot 
help but get a feeling of inferiority. We are told 
that machines are faster, that they are more accu
rate, and that they are more dependable than men 
and, accordingly, we rent large computers at 5 or 6 
hundred dollars .an hour and pay skilled human la
bor one one-hundreth of that price. 

To quote Dr. Davis again, "It makes very little 
difference, for the purpose of this discussion, 
whether the machine is or is not superior to man. 
In many ways the issue is academic. What really 
matters is the extent to which the average person is 
convinced that the machine will replace him be
cause it is better than he is. With the enormous 
prestige of science standing behind us, I submit that 
we have unwittingly convinced the average man 
(who may not in any case hold himself in very high 
esteem) that he is, in fact, not really worth very 
much. This, I fear, is a most serious mistake
first, because of the impact it win ultimately have 
on our culture, and second, because it is not true."9 

These are some of the problems arising from au
tomation that the behavioral scientist must study 
and resolve. Poverty is being attacked and will be 
eliminated. But how does one resolve the conflict 
between the Protestant ethic, which demands that 
an individual contribute to society by working and 
the economic fact that jobs are not available? And 
how do we make man feel worthy and superior 
when he is put out of work because the computer 
can do his job better than he can? Unless these con
flicts can be resolved, the men and women who are 
caught between these inconsistencies will fight their 
frustrations by adopting some form of antisocial
either aggressive or regressive-behavior to the de
triment of our society. 

Clearly, solutions are needed, and the social and 
behavioral scientist must be encouraged to study 
these aspects of automation. How can we use our 
resources, both material and human, to build a bet
ter life? It is not enough to free man from drud
gery; one must free him for something. But how, 

and for what? How can old values be changed, and 
even more important, what shall the new values be? 
We began this talk by examining the effect that 
computers are having on the research conducted by 
the behavioral scientist and how the computer was 
used to simulate relationships and analyze experi
mental data. We explored the applications of the 
computer to such diverse disciplines as research, 
education, and communication. Then, as we exam
ined the effects of automation, we saw how the 
computer was creating a need for more research and 
for a better understanding of our social system and 
its value structure. The computer has provided us 
not only with more powerful investigating tools but 
also with more significant problems .. It is the task 
of the behavioral scientist to look beyond the statis
tics and abstractions of his data and to achieve a 
sympathetic understanding for the individual, to 
study the problems of today, and to mold the condi
tions that will lead to the Great Society of tomor
row. 

REFERENCES 

1. A. Newell and H. A. Simon, "Computer Simu
lation of Human Thinking," RAND Corporation, 
April 20, 1961, p. 2276. 

2. Ithiel de Sola Pool, "Simulating Social Sys
tems," International Science and Technology, Mar. 
1964, pp. 62-70. 

3. H. Borko, Computer Applications In the Be
havioral Sciences, Prentice-Hall, Englewood Cliffs, 
N.J., 1962. 

4. H. Guetzkow, ed., Simulation in Social Science: 
Reading, Prentice-Hall, Englewood Cliff, N. J., 
1962. 

5. H. Borko and H. P. Burnaugh, "BOLD: Bib
liographic Organization for Library Display," SDC 
TM-530j008jOO, Research and Technology Divi
sion Report for 1964, pp. 62-3 (Jan. 1965). 

6. G. Salton, "A Document Retrieval System for 
Man-Machine Interaction," 1964 Proceedings of 
the Association for Computing Machinery, New 
York, pp. 12.3-1-20. 

7. R. H. Davis, "The Computer Revolution and 
the Spirit of Man," AFIPS Conference Proceedings, 
vol. 25, 1964 Spring Joint Computer Conference, 
Spartan Books, Washington, D.C., pp. 161-167. 

8. Ibid., p. 162 

9. Ibid., p. 163 



DATA ANALYSIS IN THE SOCIAL SCIENCES: 
WHAT ABOUT THE DETAilS? 

Geoffrey H. Ball 
Stanford Research Institute 

Menlo Park, California 

INTRODUCTION 

Historically, statistics seems to have been the 
primary mode of data analysis in the social 
sciences. It would appear at this time that we are 
still, to a large extent, using statistical methods de
veloped prior to the advent of the digital computer 
and that these are now just transposed bodily onto a 
digital computer to perform the calculations. In this 
paper we attempt to . demonstrate that there exists a 
class of techniques more suitably oriented toward 
the capabilities of the digital computer than are 
conventional analytic statistical techniques. We 
maintain that these techniques are capable of con
sidering details in social sciences data, that is, re
lating the individuals described in the data. 

The use of some statistical techniques depends on 
statistical quantities estimated from the data. We 
show that this extraction from the data can lead to 
erroneous conclusions because it does not take into 
account variations in the data that cannot be detect
ed from the quantities estimated. We therefore first 
show some limitation, of some present statistical 
techniques. We then outline a body of computer-or
iented techniques called "cluster-seeking" tech
niques and summarize the work that has been done 
so far on these techniques. 

We present an improved version of the ISODA
T A cluster-seeking technique that incorporates as
pects of other techniques in ways that appear to 
overcome certain difficulties that arise in each of 
the techniques that have been suggested thus far. 
Finally, we speculate on the ramifications of a 
widespread use of these cluster-seeking techniques. 

STATISTICAL ANALYSIS OF 
SOCIAL SCIENCE DATA 

In statistical data analysis, much use is made of 
the covariance and the correlation matrix. For ex
ample, the correlation matrix is used in a central 
way in principal components analysis, in factor 
analysis, and in canonical correlation analysis. 

In Fig. 1 we show three sets of data that, when 
plotted, appear to be very different. (The second 
data set consists of samples drawn from a normal 
distribution. No truncation of the data set should be 
inferred from the figure.) The interesting fact is 
that all three of these data sets give rise to the same 
covariance matrix and hence to the same correla
tion matrix. If the data points were specified by a 
different coordinate system, the covariance matrix 
would be modified. in the same way for all the data 
sets. Hence we see that these data sets are indistin-
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Figure 1. Three distributions of data having the same covar
iance matrix. 

guishable if only the first and second moments and 
cross-moments are used to describe the data. The 
fact that these very different data sets lead to the 
same covariance matrix is rather unnerving when, 
for example, with the principal components analy
sis, it is realized that frequently no use is made of 
the original data except to abstract the means and 
the covariance matrix. It therefore seems reasonable 
to ask how the detailed structure of the data might 
be taken more accurately into account. 

Before examining this question in some more de
tail, let us examine two other aspects of utilizing 
only the covariance matrix and the mean. Four fac
tors seem particularly significant here: 

1. The effect of erroneous data points, 
caused, for example, by card punching 
rors, can be rather considerable in a par
ticular covariance matrix. Unless these 

2. 

3. 

erroneous points can be determined and re
moved from the data set, the statistics 
based on the entire data set will' be consid
erably affected. 

A second effect arises from the need to es
timate the covariance matrix using a set of 
sample points. Dr. David Allais3 has 
shown recently that the number of samples 
should roughly equal 10 times the number 
of dimensions in order to estimate ade
quately the covariance matrix. 

More than one modal point in the data 
also causes the covariance matrix to be an 
inadequate description of the data. Thus, if 
the data is described as being the sum of 
two Gaussian distributions and a single 
overall covariance matrix is computed for 
the entire data set without taking the bi
modality of the probability distribution 
into account, then this covariance matrix 
depends critically on the distance between 
the means of these two modes. Intuitively 
this is rather unsatisfying as a description 
of the data. 

4. Predominant subsets in the data can over
whelm subsets that occur less frequently, 
i.e., the significant but rare event, may not 
be singled out. 

This is not to say that a principal components 
analysis or factor analysis does not have its place. 
The point seems rather to be that if these tech
niques are to be used, then the data ought to have 
characteristics that in some way satisfy assumptions 
of Gaussian distributions; that is, the covariance 
matrix should be a good description of the charac
teristics of the data. 

A useful description of all of the data can be 
plotted using the axes found by factor analysis or 
principal components analysis. Even this may not 
be as meaningful as desired as can be seen by ex
amining Figs. 2a and 2b where we see that two quite 
different probability distributions give rise to margi
nal distribution that are uniform in the two primary 
directions. We can see that this lack of uniqueness 
can be resolved by using more axes to describe the 
data. The problem here becomes that of relating 
events on the different axes, particularly when the 
data are high-dimensional. The primary concern, 
then, is that data that is in fact rather dissimilar ap-
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Figure 2a. A nonuniform two-dimensional distribution of 
points having uniform marginal distributions. 

pear to be quite similar when viewed by data analysis 
techniques implicitly oriented toward Gaussian dis
tributions. 

It therefore appears to us that there is a need to 
treat local regions in the data space rather than 
projecting down on to a line or a plane from over 
the whole space. That is, there is a need to be con
cerned about the details. We feel that a set of tech
niques that have been developed primarily over the 
last five years provides a satisfactory direction for 
finding an answer to this need to examine the de
tails. Much work remains to be done on these tech
niques, but it does appear that the particular point 
of view that they offer can be very helpful. 

CLUSTER-SEEKING TECHNIQUES 

The essential characteristics of the techniques 
that we will be describing is the sorting of the set 
of data patterns into subsets, such that each subset 
contains data points that are as much "alike" as pis
sible. The methods for arriving at the subsets differ 
in a variety of ways. We will, in the following para
graphs, attempt to describe the known existing 

p(X,)'l I 
~.-------------~ 

POINTS ARE UNIFO 
OISTRIBUTED WITH 
LARGE SQUARE 

Figure 2b. A uniform two-dimensional distribution of points 
having uniform marginal distributions. 

techniques and to point out ways in which they are 
significantly different. We finally attempt to con
struct a technique that is a composite of the best 
features of some of these techniques and ISODA
TA. 

Historical Background 

In Table 1 we have arranged the papers by type 
(e.g., probabilistic, signal detection, etc.) and by 
date. We have made no attempt to determine how 
much the development of one technique depended 
on another. They are arranged in chronological or
der in a way that appears reasonable to us at this 
time, without attempting to accurately establish 
priorities. As far as we have been able to deter
mine, nearly all the techniques with the exception 
of the factor analytic techniques and some lumping 
techniques originated after 1960. Since most of 
these techniques require a considerable amount of 
computation, it seems probable that only the advent 
of inexpensive digital computation has allowed 
these techniques to be developed. 
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Table 1. Cluster-Seeking Techniques. 

Class of 
Technique Year First Reported 

Probabi
listic 

Signal 
Detection 

Clustering 

Clumping 

Eigenvalue I 
Eigenvalue II 

Minimal 
Mode
Seeking 

Miscella
neous 

Definitions 

Before 
1960' 

Michener 
& Sokol 
(1957) 

1960 1961 

lakowatz Brennan 
et al Glaser 

Rogers & Needham 
Tanimoto Parker-

Sawrey, Rhodes 
Keller, Abraham 
& Conger 

In order that certain terms to be used over and 
over again in this paper should not be confused, it 
seems important to define them: 

1. Measurement - By measurement we mean 
a component of the pattern vector; that is, 
it is one of several numerical values (relat
ed to a property of the pattern) used to 
define a pattern-for example, one out of 
several answers on a questionnaire. 

2. Pattern - By pattern we mean the collec
tion of measurements considered to be a 
single entity in the clustering program for 
example, the answers toa set of questions 
on a questionnaire. 

3. Parameter - By parameter we will not 
mean measurement in this paper. Rather, 
we will mean a number used to control the 
operation of one of the cluster-seeking 
techniques-for example, the threshold 

1962 1963 1964 1965 
Daly Fralick 

Hinnich Spilker Turner 
Smith 

Okajima Ball & 
et al Hall 

Sebestyen 
Hyvarinen 

Bonner 
Fortier & 

Solomon 

Nunnally 
Cooper Mattson & 

Damman 
Firschein 

& Fisch-
ler 

Steinbuch 
& Piske 

Block, Bledsoe 
Knight & 
Rosen-
blatt 

used to control lumping in the BaU-Hall 
technique4 is a parameter. 

4. Cluster - A cluster of patterns is, in our 
mind, a set of patterns contained in a high
dimensional space where the density of 
patterns is large compared to the density in 
the surrounding volumes. It is not yet a 
rigorously defined concept but rather one 
that depends on the nature of the data. At
tempts are being made to define this more 
exactly. 

5. Mode - A mode is a cluster of patterns 
that belong to a single class of patterns. 
(This definition varies from the more pre
cise statistical definition of a mode as the 
most frequently observed value of a ran
dom variable.) 

COMPARE AND RELATE CLUSTER-SEEKING 
METHODS 

In the following paragraphs we describe and dis-
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The memory required by a given technique may 
be so great that the technique is uneconomical. 
High-speed random access is costly (although disk 
files make fairly high-speed random access compara
ble in cost to tape) and it is primarly for this mem
ory requirement that the various iterative techniques 
should be examined. 

The sample size requirement relates to any quan
tities that must be estimated (in a statistical sense) 
from the set of sample patterns. Allais3 showed that 
this requirement cannot be taken lightly. He indi
cates that estimating a D X D covariance matrix 
with less than "lOX D samples will usually lead to 
an increase in probability of error if predictions are 
made based on that covariance matrix. When only 
small sample sizes are available this seems to re
quire another approach, one in which simpler quan
ties are estimated-such as the means of clusters, or 
only the largest eigenvector of the covariance ma
trix. 

The nature of the data is not easily specified. If 
the data is time-varying it will frequently be more 
effective (and possibly necessary) to use a different 
technique from one suitable for stationary patterns. 
The degree to which the data exists in isolated clus
ters as opposed to being in "amoebic smears" (i.e., 

all in one contiguous mass of data) is also impor
tant. One of the important research tasks yet to be 
done is the establishment of better means of classi
fying data into broad types that suggest the tech
nique that could be most successfully used to fur
ther analyze them. 

Where categorization information is available 
and reliable, use of it to constrain the clustering 
seems advised. 

Measures of Similarity Used by the Techniques 

In relating techniques, consideration should be 
given to the measure of similarity that was or could 
be used. Correlation usually requires normalization 
of the pattern vectors with respect to magnitude. 
Euclidean distance does not. Euclidean distance is 
considerably affected by the scale factor associated 
with each pattern dimension-particularly when 
these dimensions are not commensurate in units of 
measurement (e.g., feet vs inches or, worse yet, 
feet vs seconds). 

The measures of similarity used in the papers re
ported on are given in Table 2. Additional meas
ures of similarity are given on pp. 129-130 of Sokal 
and Sneath.40 

Table 2. Comparison of Measures of Similarity. 

Dot Product 

Similarity 
ratio 

Weighted 
Euclidean 
distance 

Unweighted 
Euclidean 
distance 

Measures of Similarity 

D 
P • W = I PiWi = IPI I WI cos 

i=1 
(P,W) 

where 
Rij = Pi • Pj 

S .. = Rij 
t} Rii + Rjj - Rij 

when Pkl = 0,1. 
uses d ij = -log Sij as "distance." 

D 
D a{3 = I ki(Xia - Xi(3) 2 

i=1 

D 
Da{3 = I (Xia - Xi(3)2 

i = 1 

Block et al (1962) 
Steinbuch (1963) 
Mattson & Damman (1965) 
Michener & Sokal (1957) 
J akowatz et al (1960) 
Spilker et al (1963) 
Glaser (1961) 
Smith (1964) 

Rogers & Tanimoto (1960) 

Bonner (1962) 

Sebestyen (1962) 

Ball & Hall (1964) 
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Table 2. (Continued) Comparison of Measures 
of Similarity. Measures of Similarity 

Measure for 
binary vari
ables taking 
into account 
pairwise 
correlation 

Boolean "and" 

Weighted 
Boolean "and" 

Normalized 
correlation 

The fol'lowing 
six measures of 
similarity are 
from Kochen 
(1963) p. 15, 
and refer pri
marily to 
information 
retrieval. 

D D 
Sa{3 = I I rij [1- /Xai-X{3i/] 

i= 1 j= 1 
• [1- IXaj-X{3jl] 
• [1-2 Xai-Xaj ] 

rij is correlation coefficient 
between measurements i and j 

D 
Sij = I Pi n Pjk 

i = 1 
where n denotes Boolean "and" 

D ~ rj, Xkj = Xlj =I=- 0 
SkI = II, Xkj Xu = 0 

j = 1 0 , otherwise 
rj is number of levels of jth 
measurement (finite for his data) 

~ (Pi· Pi}(Pj • Pj ) 

D 
where Pi • Pj = I Pi! Pjl 

i = 1 

Bonner (1963) 

Needham (1961) 

Hyvarinen (1962) 

Okajima et al (1963) 
Nunnally (1962) 

'!.. )2 Stiles (1961) 
s. = log lON(/N· nij-nmil 2 

t) ninj(N-ni) (N-nj) 

nij 
Sij =N 

where N is the total number of 
measurements and ni is the num
ber of ones in (binary) pattern 
Nij is the number of measure
ments in which pattern i and 
pattern j are alike. 

Luhn (1959) 

Baxendale (1961) 

(King-) Tanimoto (1960) 

Kochen & Wong (1962) 

Abraham (1962) 

539 
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Criteria for Adequacy of Clustering Used by the 
Techniques 

In iterative techniques this dependence is re
duced by allowing the algorithm several iterations 
in which to associate patterns into clusters. Hence 
changes can be made based on information ob
tained in the initial clusterings. 

Some techniques depend critically on the criteria 
of clustering used. The clumping techniques de
scribed below are particularly sensitive to this, 
since only one iteration is performed and each deci
sion as to the cluster with which a pattern is associ
ated tends to be final. 

Table 3 gives a list of criteria for clustering used 
by various authors. In this table N c represents the 
number of clusters. 

Entropy 

Average distance 
from nearest 
cluster center 

Square (used for 
deviation from 
single signal) 

Value for a 
cluster 

Coefficient of 
belongingness 

Table 3. Criteria for Clustering. 

r 
H = - k f(xj)log f(Xj) 

i=1 
where f(Xj) is discrete frequency distribution function. 

1 Nc 
-N k Ni AVEDSTi 

i=1 

where Ni is the number of patterns in the ith cluster, 
AVEDSTi is the average distance of patterns in the 
ith cluster from the cluster mean, N c is the number of 
clusters and N the total number of patterns. 

D 
k (Pj - /5j)2 
i=1 

1 Nc 
Ixx - -N k Ixy where 

Ry=1 

1 a=Nx f3-Ny 
Ixj = ---k k SOl{3 

N~Ny a= 1 f3= 1 

where N x is the number of members in cluster y, 
SOI{3 is 1 if member a of cluster x is similar to member 
f3 of cluster y; or 0 if they are not similar. Ixy is the 
percentage of possible similarity "links" which are 
actually present between the members of cluster x 
and the members of cluster y. 

Nc 
k 
k=1 
Nc 

Pii{ correll. 
k coeff. 
i,j eCk cluster Ck 

k k PH 
k= 1 i,jeCK 

Hyvarinen (1962) 

Sebestyen (1964) 

Ball & Hall (1965) 

Brennan (1961) 

Bonner (1964) 

Fortier & 
Solomon (1965) 
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Table 3. (Continued) Criteria for Clustering. 

Total entropy 

where 

, 

En[ (dij )] 

- 1 :s • 
2 ij 

Rogers & 
Tanimoto (1960) 

where :s means summation only of the finite terms 
after repeated rows and columns of the distance 
matrix have been removed and dij == - 10~ij where 
Sij is the similarity ratio given by Tanimoto in 
Table 2. 

Probability of 
error (when 
defined) 

:s correct Firschein & 
Fischler (1963) 1- ---

:s total 

Lumping of Clusters 

The convergence of cluster seeking techniques is 
related to the way in which clusters are allowed to 
form. In particular, if clusters can be created, then 
some mechanism must be provided for either (1) 
tightly controlling the formation of new clusters, or 
(2) "lumping" them together. Without these mech
anisms the number of clusters could grow until 
each pattern was in its own cluster, which would 
obviously not be very useful clustering. Therefore it 
is important to examine for each of the clustering 
techniques the way that the number of clusters is 
changed. (Note that clusters can be "thrown away" 
if they become too small, and that this is one addi
tional way of controlling the number of clusters.) 

The Nature of "Convergence" of Cluster-Seeking 
Techniques 

Considerable experimental evidence exists for the 
convergence of these techniques. Some analytic 
work has been done, notably in the probabilistic 
and signal detection classes of techniques. Nev
ertheless, we feel it fair to characterize the under
standing of "convergence" for cluster-seeking tech
niques as minimal-particularly with respect to 
real, non-Gaussian data. 

In a general way, it appears that if the data is 
indeed clustered then the final clusterings will tend 
to be unique. If, however, the data is "smeared" 
and "amoebic" then a greater variety of clusterings 
can exist. Finally, if the data is uniformly placed in 

data space then no real stable clusters are found
which is to us intuitively satisfying since no clusters 
really exist in the data. 

Shortcomings of Cluster-Seeking Techniques 

In examining the shortcomings of various clus
tering techniques, it seems important to ask what 
affects the way the data is clustered. In Fig. 4 we 
show that for clustering techniques, the scaling of 
the various dimensions will undoubtedly affect the 
way that the patterns are clustered together. 

It is, however, possible to normalize the various 
scales in a way that will lend to a uniqueness of 
scale with respect to a particular set of patterns. A 
straightforward way of doing this is to divide each 
of the measurements by the standard deviation. of 
the marginal distribution for that particular dimen
sion calculated for a given sample of data. Linear 
transformations of the data, that is, rotations and 
translations, have different marginal distributions 
than the same data not transformed. Therefore the 
scaling on these modified dimensions will be diff
erent. It seems probable that in some cases this 
difference will affect the way that a clustering oc
curs. Again, most of these statements are qualita
tive in the sense that if well-defined .distinct clus
ters exist in the data, moderate scaling, rbtation and 
translation probably will not affect the clustering 
greatly. If, however, as is frequently the case, the 
data is not tightly clustered but has clusters blended 
into each other, then these effects become more 
pronounced. 
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Figure 4. The effect of scaling of measurements on clus
tering. 

Qustering techniques that depend on a correla
tion measure of distance can be greatly affected by 
the translation of the data. For example, consider a 
set of data lying on a hypersphere, surrounding a 
central point. If the origin is moved outside of the 
hypersphere then data lying along a given angle 
from the origin will not consist of a unique part of 
a hypersphere, but rather of two parts of the hyper
sphere, and in fact, rather remote portions of the 
data will be clustered together, if only direction 
from the origin is used to determine pattern simi
larity (as is the case with correlation). 

The distance measure used to determine similari.:. 
ty or closeness has a considerable effect on the way 
data is clustered together. For example, if Eucli
dean distance is modified by having constant multi
pliers times the various components, where the con
stant multipliers differ from cluster to cluster, it is 
then possible to have rather peculiarly shaped vol-

urnes assigned to the same cluster. In Fig. 5 we see 
that it is possible to have a large dispersed cluster 
surrounding a small, rather compact cluster. The 
"distance" in Fig. 5 is determined by the value of a 
Gaussian probability density. If the purpose of clus
tering is classification, then this peculiar shape of 
cluster may be acceptable. If, however, the purpose 
is to describe the data, then it seems that convex 
clusters would be most useful. 

,Y 

di~E 
CLUSTER '2 PATTERNS IN 

THIS REGION 
ARE ASSIGNED 
TO CLUSTER 1 
(ALTHOUGH 
CLOSER TO I..-------------:o:x:-"_ CLUSTER 2) 

I 

L\lLls 
I x-

MARGINAL DISTRIBUTION 

Figure 5. The decision boundaries that result when the 
same measurement is differently scaled for different clusters. 

MAJOR CLASSIFICATIONS OF 
CLUSTER-SEEKING TECHNIQUES 

The various cluster-seeking techniques have been 
broken down into seven categ6ries: 

1. Probabilistic 
2. Signal detection 
3. Clustering 
4. Clumping 
5. Eigenvalue 
6. Minimal mode seeking 
7. Miscellaneous 

The salient characteristics of each of these classes is 
described in the following paragraphs and summar
ized in Table 4. 
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Table 4. Techniques for Finding "Similar" Subsets in Data. 

Type 

Probabilistic 

Signal detection 

Clustering 

Clumping 

~Eigenvalue I 

Eigenvalue II 

Minimal mode
Seeking 

Miscellaneous 

Proponents 

Daly 1962) 
Fralick (1964) 

J akowatz, Shuey & White (1960) 
Glaser (1961) 
Spilker, Luby & Lawhorn (1963) 
Smith (1964) 

Okajima et al (1962) 
Sebestyen (1962) 
Hyvarinen (1962) 
Ball & Hall (1964) 

Michener (1957) 
Sokal (1957) 
Rogers & Tanimoto (1960) 
Needham (1962) 
Sawrey, Keller & Conger (1962) 
Bonner (1964) 

Cooper (1964) 
Mattson (1965) 

Nunnally (1962) 

Firschein & Fischler (1963) 
Steinbuch (1963) 

1) Block, Knight & Rosenblatt 
(1962) 

2) Bledsoe 

Probabilistic Techniques 

Probabilistic cluster-seeking techniques are pri
marily analytic studies in the sense that the main 
results are couched in analytic terms and were de
rived from decision theoretic considerations. Both 
papers describe experimental results obtained by 

Salient Characteristics 

Estimation of probability of occurrence of a pattern 
using decision theory and then using weighted com
binations of patterns to estimate probability distri
butions. 

Detection of presence of signal using energy detec
tion, then estimation of parameters of matched filter 
( correia tor ) . 

Finding of minimum distance (or maximum corre
lation) between pattern and one "cluster center" 
out of a set of cluster centers. Iterative improvement 
of the position of these centers. 

Use of closest pair of patterns to form nucleus for a 
clump of patterns. "Growing" of clump around this 
nucleus. 

Finding clusters by finding maximum eigenvalue of 
covariance matrix and splitting patterns on basis of 
correlation with corresponding eigenvector. 

Finding clusters by finding eigenvalues of distance 
matrix and then examining patterns with respect to 
this new basis, i.e., by seeking eigenvectors with 
which many patterns are highly correlated. 

Use of category information to provide impetus to 
formation of new modes for a category, i.e., incor
rect categorization implies needs for new mode. 

Uses high probabilities of contiguous patterns (in a 
time sequence) being in the same class to provide 
a (som,ewhat noisy) classification of the patterns. 

Seeks to find the set of hyperplanes passing through 
"corridors" in the data that have maximal average 
distance from the patterns. 

implementing the algorithm implied by the decision 
theoretic mathematics. 

Quite possibly this analytical work will provide 
considerable insight to other techniques in terms of 
convergence characteristics and imply ways that 
they might be modified. It also seems probable that 
the clustering techniques will suggest new formula-
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tions of the mathematics in terms of relaxing re
strictions or simplifying calculations through the 
use of approximations. 

Signal Detection 

Signal detection cluster-seeking techniques grew 
out of a desire to detect unknown signals in noise. 
The final decision is based on correlation detection. 
The techniques all suffer from the necessity of mak
ing an initial detection on the basis of the energy of 
the signal and then determining the direction of the 
signal in signal space. For the most part, these tech
niques consist of the detection· of a single signal of 
unknown epoch in a noisy environment when the 
time of occurrence of this unknown signal is un
known. 

Clustering Techniques 

Clustering techniques can be characterized by the 
sorting of patterns by use of multiple cluster points. 
Tentative assignments of patterns are made to clus
ters and these assignments are improved until the 
means of the clusters "adequately" describe the 
data. The particular method chosen for modifying 
the description of this data is the primary distinc
tion between these techniques. 

Clumping Techniques 

In these techniques a single pair of patterns usu
ally the closest pair, is selected as a nucleus for a 
clump of patterns. Other patterns are assigned to 
this clump on the basis of their closeness to the pair 
of patterns, or to the mean of the pair of patterns. 
Generally speaking, these techniques require the 
calculation of all pairwise distances between all 
pairs of points and some of these distances must be 
recalculated after each new combination. In some of 
them, these distances must be stored in random ac
cess memories. The large amount of calculation 
caused by the calculation of aU pairwise distances, 
even between pairs that are quite remote, makes 
these techniques less useful than they might other
wise be. 

One application for which such techniques seem 
particularly valuable, however, is that of developing 
taxonomies. In these cases, one usually has a limit
ed number of samples (with the possible exception 
of bacterial species) and the problem is tracing 

them back along an evolutionary tree, combining 
branches as clumps become close together. It ap
pears that the same information can be obtained by 
clustering techniques as is obtained by clumping 
techniques. 

Eigenvalue Techniques 

Eigenvalue techniques are the only techniques we 
have characterized as non-iterative. Eigenvalue 
techniques usually depend on the estimation of the 
covariance matrix. For this reason these techniques 
tend to require a relatively large number of samples, 
particularly as the number of dimensions grows 
large. Large amount of core storage may be re
quired to store the matrix analyzed. The factor ana
lytic techniques of this sort content themselves with 
one calculation using all of the patterns and a di
agonalization of the distance matrix. The later tech
niques of Mattson and Damman27 and Cooper and 
Cooper12 use a calculation of only the largest eigen
value and the corresponding eigenvector, and then 
subdivide the pattern set in order to proceed fur
ther, with a more detailed examination of each of 
the subsets. 

Minimal Mode Seeking 

These techniques require categorization informa
tion to work. A new mode is created only when 
patterns in one class are nearer to a mode of a dif
ferent class. Pattern density in space, as such, is not 
used in cluster seeking. 

Miscellaneous Techniques 

Two techniques do not fit neatly into any of the 
above categories: 

1. The technique of Block et aF utilizes a 
high probability of contiguous runs of pat
terns in a time sequence being from the 
same class to adjust the machine to a par
ticular mode. This high probability of runs 
provides marginal teacher information in a 
probabilistic sense. 

2. Bledsoe6 seeks corridors in the data. 

INDIVIDUAL TECHNIQUES 

In the following portion of the paper we describe 
briefly the known cluster-seeking techniques. We 
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WIll use the following symbols in describing the dif
ficulty of computation or the amount of storage 
needed. 

N 
D 
NROWS 

c 

ITER 

NT 

The number of patterns. 
The number of dimensions. 
The number of clusters the process 
finds .. 
The number of interval blocks the 
pattern space is broken up into. 
The number of iterations required 
for the technique to describe the 
data satisfactorily. 
The total number of patterns used 
when the patterns are repeatedly 
drawn from the same probability 
distributions. 

Probabilistic Techniques 

DALY: 15 Estimates probability of occurrence of 
all possible binary sequences. Updates estimates after 
each pattern sample. Computational complexity 
grows as eN X D. Convergence has been shown 
experimentally by computer simulation. Assumption 
is made that we are looking in a noisy environment, 
for a single signal that occurs only occasionally. 
System definitely limited by the exponential growth 
of the memory of the system as the number of sam
ples increases. 

FRALICK: 18 Recursively computes a posteriori 
probability density of distributional parameters by 
using a sequence of learning samples. Computation 
goes as N X D X NROWS X C X ITER. Converg
ence shown analyticatly for the case of detection of 
an unknown signal in noise. Appears to assume that 
the number of pattern classes is known, and appears 
willing to develop multimodal distributions in order 
to handle unexpected classes of patterns. Method 
limited by the need of storing its latest estimate of 
probability distribution of the samples, that is, the 
description of the probability density in terms of 
the frequency of "cells" in high dimensions or by 
assuming a particular form of distribution. In multi
variate problems the storage of these distributions 
becomes quite serious and quite difficult. The amount 
of computation required to update all of the dis
tributional parameters can be considerable unless 
simplifying assumptions are made regarding the 
nature of the underlying distribution. 

Comments on Probabilistic Technique. In our 
opinion these techniques are more useful as guides 
to the development of practical techniques than as 
actual formulations of practical techniques them
selves. Either the large amount of storage or the 
large amount of computation seems to imply that 
the techniques are outside of practical limits for 
high-dimensional multivariate data. 

Fralick18 points out (P. 13) that in the case 
where the class a priori probabilities are all the 
same, the initial selection of the probability distrib
utions for the various classes must be different, or 
"all computer branches will 'learn' the same thing, 
and the system as a whole will learn nothing." 

A third paper related to this work is that by Pat
rick and Hancock.33 This paper presents no new 
techniques that this author considers as mode-seek
ing, or learning-without-a-teacher techniques. It 
does closely examine the efficacy of various estima
tors that might be used under conditions of partial 
knowledge concerning probability distributions. 
The assumptions made in the paper seem to be so 
strong as to make the paper of relatively little prac
tical significance. Many of the techniques discussed 
in this paper are for a single-dimensional problem. 
It does not appear that they generalize usefully to 
multivariate situations. 

A pertinent quote from this paper33 is as follows: 
"It is seen from the above discussion that the per
formance of different learning systems should be 
compared on the basis of what a priori information 
is required for their operation." 

A second quote18 relating to the same subject is: 
"we still require some a priori knowledge in order 
to be able to obtain the very first decision rule." 

It does appear that the question of how much a 
priori knowledge is necessary to provide what 
might be called "learning" is one that should be 
looked at quite carefully. 

We feel that the examination of this work moti
vated by decision theory may be very useful if re
lated to the more ad hoc methods of clustering and 
finding the structure in data that will be discussed 
below. For example, in the ISODATA procedure if 
a pattern falls roughly equidistant from two cluster 
centers it is only added into the closest cluster cen
ter. Fralick's work seems to suggest that in this case 
it might be well to add portions of this pattern into 
both clusters. 
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Signal Detection Techniques 

JAKOWATZ, SHUEY AND WHITE: 21 A sample of 
the input waveform is stored in the memory of a 
correlation detection device. When the dot product 
of the incoming waveform and the stored waveform 
in the correlator exceeds a threshold the waveform 
stored in memory is modified by adding in a certain 
fraction of the waveform as it exists at the time the 
dot product is maximally greater than the threshold 
The threshold grows with successful detection and 
decays with failure to detect. Parameters controlling 
the algorithm include the threshold level, the mem
ory weighting factor, the threshold setting factor, 
the threshold decay factor, the filter length, and the 
bandwidth of the filter. It uses only one correlator. 
Computation goes as NT X D. Convergence shown 
analytically and experimentally. 

This technique and those in this section of signal 
detection techniques are primarily used for signal 
detection, and as they are presently conceived, their 
utility outside of this area seems limited (with the 
possible exception of the proposals by Smith) . 

GLASER: 19 The incoming waveform is detected on 
the basis of its energy. When a signal has been 
detected because of its energy, it is set into the 
correlation detector. Future decisions are based on 
a mixed weighting of detection by the energy detector 
and by the correlation detector. Detection threshold, 
memory weighing factor, and incoherent vs coherent 
detection factor are the parameters provided in the 
program. Computation goes as NT X 2D. Converg
ence shown analytically. 

SPILKER, LUBY AND LAWHORN: 41 The incoming 
signal is quantized into three levels. Initially, if the 
waveform has energy greater than a threshold, then 
the correlation detector is modified. Future detec
tions then depend on a mixed weighting of the energy 
detector and the correlation detector. Parameters 
provided are the detection threshold, the memory 
weighting factor, and the incoherent vs coherent 
detection factor. Uses only a single correlator. Com
putation goes as NT X 2D. Convergence shown ana
lytically and experimentally. 

SMITH: 38 Detects the waveform using energy de
tection. Energy detection causes the waveform to be 
stored in the correlator. Gradually correlation detec
tion takes over. If multiple signals are to be detected, 
then one correlation is trained first and then a sec
ond correia tor is trained after the first one is trained. 
Detection threshold, memory weighting factor, inco
herent vs coherent detection factor are the param-

eters provided. A second cluster is formed if the 
first correlator does not detect a signal when the 
energy level threshold is exceeded. No mechanism is 
given for destroying clusters. The computation goes 
as NT X 2D X NROWS. The computations required 
by Smith's method are more complicated than 
Glaser's or Spilker's. It is not apparent that a great 
deal is gained by adding the complexity. The method 
of adding new clusters does not appear to be very 
effective in problems having a large number of 
clusters and it might be damagingly ineffective. 

Comments on Signal Detection Technique. By using 
more memory to store possible patterns it might be 
possible for these techniques to avoid the difficul
ties caused by using energy detection to start the 
process going. That energy detection is hindering 
can be seen in the foregoing simple example, taken 
from Spilker et al. Spilker41 (p. iii) mentions a de
finite thresholding effect on the performance of the 
filter at a -13 db. Calculations show that the margi
nal distributions for each component overlap to a 
very considerable extent (about 45 percent proba
bility of error for decision made on the basis of any 
one component by itself). It can be shown, how
ever, that if one is able to use a signal with a thou
sand components in it, then the probability of error 
when the problem is taken as a multivariate normal 
decision problem is only 0.0002, which is very 
small. When energy detection must be performed, 
the probability of error is considerably increased 
above this small number. By storing a number of 
signals a guess as to possible cluster locations can 
be made without using energy detection. 

One point that Glaser19 (p. 93) raises seems im
portant enough to quote: 

For weak signals the component estimates will tend 
to be large and induce erratic behavior in the adapt
or system. It appears that there may be a minimum 
signal strength which the signal system can adapt 
to, and this also may be a function of signal wave
form. Signals above this minimum will be success
fully adapted to at a rate which decreases as signal 
strength increases. No calculations on this minimal 
adaptable signal have been made. 

This hypothesis seems worth further investiga
tion. It appears to this author that techniques that 
avoid the necessity of making threshold decisions 
based on total signal energy may significantly im
prove performance. 

Brennan9 (p. 70) quotes three factors as deter
mining convergence for the system of J akowatz, 
Shuey and White: 
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1. False alarm rate less than signal rate. 
2. Probability of finding second signal greater 

than ~. 
3. Best estimate of certain coefficients. These 

coefficients depend entirely on the memory 
factor ''Y. . . . . 
The final optimum which the filter can 
reach. . .is dictated entirely by the memory 
factor. 

He further (p. 72) comments that it is desirable for 
the filter to be not quite twice as long as the signal, 
and that the reduction in signal-to-noise level due 
to increasing W (W equals filter bandwidth) might 
then be well compensated by rapid convergence, or 
even making convergence possible (p. 73). He goes 
on to point out the importance of keeping the mem
ory weighting factor low when the nature of the sig
nal is not well known so that erroneous signals can 
be easily erased (p. 75). 

Smith38 uses the squared dot product between the 
filter and the incoming figure, as well as the dot 
product unsquared. It is difficult to see what effect 
this has on performance (except to make calcula
tions more complicated). He does show an interest
ing example (on p. 21): "It can be seen that the 
lack of timing information makes it necessary to 
examine the paths of the signals throughout the 
space to be sure that there is no ambiguity in the 
decision regions." 

Here he is pointing out that long signals entering 
into the correlator may appear to be a different 
short signal due to the limited number of sample 
points in the filter. Therefore it is necessary to ex
amine translations, of a signal to see if this type of 
ambiguity exists. 

Smith has an interesting approach to detecting 
distinct multiple signals. He suggest, first, detection 
of one signal until an adequate representation of 
that signal has been obtained, and then the use of 
that representation to distiguish the first signal 
from a second signal. Clustering techniques indicate 
that this can be avoided by having more than one 
cluster point, or cluster vector, to adjust at a time. 

It would appear that all the techniques are trou
bles by the epoch (or translation of the time ori
gin) problem. Perhaps this also could be overcome 
by a greater use of storage (sufficient to store every 
shift of the signal during the time when the signal 
occupies a central position within the correlator). 
This suggests the idea of a double correlator, a cor-

relator within a correlator, to determine when the 
signal is centrally located in the larger filter. 

A paper making some interesting philosophical 
points, though following J akowatz' technique, is 
that by Turner.44 

Clustering Techniques 

OKAJIMA, STARK, WHIPPLE AND YASUI: 31 Patterns 
are selected in random order, weighted, and com
pared with a set of "typical" patterns, using a nor
malized correlation measure of similarity. The typical 
pattern correlation that is maximum is compared 
with a threshold. If the threshold is exceeded, then 
the pattern is added into that filter. If the threshold 
is not exceeded, then a new filter is created. A 
smoothness of convergence parameter as well as a 
similarity threshold is used to control the program. 
Clusters are not destroyed in the process. Cluster 
points are the average of all of the patterns asso
ciated with that cluster point. Computation goes as 
D X N X NROWD X ITER. The clustering is 
dependent on the order in which the individual pat
terns are presented to the program. This appears to 
be quite an excellent technique. 

SEBESTYEN36 and SEBESTYEN AND EDIE: 37 A pat
tern is selected and compared with the existing cluster 
centers. The measure of similarity is a weighted 
Euclidean distance with a weighting by factors that 
depend on both the particular component and on 
the particular cluster. The minimum distance of the 
pattern from a cluster point is compared with two 
thresholds, one smaller than the other. If the smaller 
threshold is not exceeded, then the pattern is added 
into that particular cluster and a new mean com
puted. If the smaller is exceeded but the larger is 
not, then the pattern is rejected for the present time, 
to be used at a later stage in the process. If the 
pattern distance exceeds the second threshold, a new 
cluster is created. Parameters controlling the proc
essing include the two thresholds, and a parameter 
that controls when rejected patterns are forced into 
the various clusters. Computation goes as D X N X 
NROWS X ITER. 

This technique is specifically pointed toward pro
viding as an output a probability distribution based 
on the sample data and the technique's complexity 
is increased by this goal. 

HYVARINEN: 20 By using a typicality measure, a 
single pattern is selected as a starting point. Other 
patterns that are within a certain distance of this 
pattern are clustered with this pattern. All patterns 
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that are clustered together are then removed from 
the total set of patterns. This reduced set of patterns 
is then examined for another most typical pattern on 
which to start another cluster. The threshold con
trolling similarity is a process parameter. Cluster 
centers are never modified after the initial selection 
of a typical pattern. Computation goes as D X 
NROWS X N. Computation of typicality of patterns 
may prove expensive for large pattern sets. It would 
appear that this technique requires data that is more 
structured than other clustering techniques of this 
type. The measure of typicality critically determines 
the effectiveness of this procedure. 

BALL AND HALL: 4 Several patterns are selected as 
trial cluster points. Al'l patterns are then clustered 
around these trial cluster points and an evaluation 
of the clustering is made. If the maximum marginal 
standard deviation for any cluster is too large, and 
if certain other conditions are satisfied, then the 
cluster is broken into two clusters by creating a 
second cluster point out of the first one. A second 
part of the process combines cluster points that have 
come closer together than a given threshold. The 
parameters that control a program are the minimum 
allowable size of a cluster, the al'lowable maximum 
standard deviation in the cluster, and the minimum 
distance between two cluster points. Clusters are 
formed by splitting existing clusters. They are 
destroyed when two cluster points are lumped to
gether or when a cluster gets too small. Trial cluster 
points are modified only after all patterns in the set 
have been clustered. The computation goes as D X 
N X NROWS X ITER. It can be generalized to 
include clustering about line segments and planar 
sections. Block diagrams of optical implementation 
have been developed. 

Comments on Clustering Techniques. Hyvarinen's 
technique appears to have one major drawback: it 
is not iterative. If the measure of typicality used is 
thrown off by some peculiar structure of the data, 
then it appears possible that clusters could be ob
tained that would be quite lopsided and not as in
tuitively pleasing as ones obtained iteratively. 

The techniques of Okajima et al and Sebestyen 
seem very similar in that in both of them distance 
from a nearest cluster point is compared with a 
threshold. If this threshold is exceeded, then a new 
cluster is formed. If it is not (with the exception of 
the guard ring in Sebestyen) , then the pattern is 

added into that closest cluster. The similarity was 
stronger in the early forms of Adaptive Sample Set 
Construction (see Sebestyen36 ), than as modified in 
Sebestyen and Edie.37 The later technique has many 
fine features that now allow it more truly to repre
sent the data as an empirically derived probability 
distribution. 

Sebestyen's technique differs from the other tech
niques in his use of a metric that is sensitive both 
to the individual cluster and to the dimension in 
which a measurement is being made. This should 
provide greater flexibility in its description of the 
data. If, however, one of the purposes of the tech
nique is to provide a description of the data, then 
this may not be an advantage in that it may be 
more difficult for an individual attempting to visu
alize the structure of the data to bring into play 
these factors than it is for him to accept additional 
custer points. (See discussion under "Shortcomings 
of Cluster-Seeking Techniques" above.) 

The technique of Ball and Hall differs from the 
other clustering techniques in several ways. First no 
absolute threshold is used in the measure of simi
larity criterion of the technique. A pattern is as
signed to the closest cluster point regardless of dis
tance. (This has disadvantages in terms of wild 
shots that lie a great distance from any cluster cen
ter. However these rapidly become cluster centers 
by themselves and then no longer bother the proc
ess.) The criteria used to evaluate the "goodness" 
of the various clusters and in the splitting of the 
cluster appear to be conceptually different. The 
lumping in the Ball-Hall technique produces a simi
lar result to that obtained by Sebestyen when he 
combines sample sets that are not contributing sig
nificantly to classification accuracy by their being 
distinct. In some sense the goals of the two tech
niques are different, in that Sebesyen's technique is 
to develop a probability density that can be used in 
making classifications, whereas the Ball-Hall tech
nique is pointed toward an adequate representation 
of the data, initially, at least, without regard for the 
classification to be performed. A further distinction 
between these techniques is the sorting of all of the 
patterns by the Ball-Hall technique prior to the modi
fication of any of the sorting criteria. This makes 
the technique independent of the sequence in which 
the patterns are presented. 

One note of warning should be added regarding 
the use of metrics weighted with respect to cluster 
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as well as component. For example, if distance were 
measured as in ISODATA without using a thres
hold, one would find that the decision boundaries 
no longer had the simplicity and intuitive appeal of 
the perpendicular bisecting plane. Now it would be 
possible for a small dense cluster to be located in 
the interior of a larger cluster that was not so 
dense. Possibly this would be an advantage but it 
would make interpretation more difficult when the 
technique is used for data analysis. 

Okajima et al provide a contribution in the use 
of their smoothness of convergence criteria. This is 
used to make it more and more difficult for a pat
tern to be added to a cluster as the cluster grows 
larger. 

It is felt by the author that the Ball-Hall tech
nique is so structured that it is better suited to gen
eralizing to new types of clusterings, for example, 
clustering about line segments or planar sections. 

One of the present weaknesses of the Ball-Hall 
technique is the weakness of the existing criteria 
for determining the adequacy of clustering. Hyvar
inen's suggestion of using an information theoretic 
measure to determine the most typical pattern in 
order to choose a best starting place for a clustering 
is an interesting one. 

Stark makes an important point (see Okajima, 
Stark et al,31 p. 108) when he discusses how a modi
fication of the metric of the classification space 
will cause a different grouping of data vectors to oc
cur. This is one of the most vexing and apparently 
unsolved problems in clustering techniques having 
no externally supplied guidelines as to the relative 
importance of the various measurements. It appears 

-- possible that some rationale for the selection of 
scales could be developed by examining the changes 
in clustering obtained as a result of changing the 
scales of the various patterns. 

Stark (p. 109) points out that modifications in 
the clustering caused by changes in order of the pat
tern presentation may provide some indication as to 
the structure of the data itself. 

It is the opinion of the author that the clustering 
type of cluster-seeking techniques may well be the 
most profitable direction in which to extend our 
efforts. Much more analysis of these techniques has 
to be done.Possibly we will then discover that 
these techniques are controlled by a form of feed
back supplied by the structure of the data itself. 

Clumping Techniques 

MICHENER AND SOKAL: 28 The nucleus of a cluster 
is established using those two patterns having the 
highest pairwise coefficient of correlation. Then pat
terns are added to this nucleus one at a time, always 
adding first the pattern with the highest average 
correlation with the members of the group. The limit 
of the groups could be found by decreases in the 
level of the average correlation. A "significant" drop 
was empirically determined. Corre~ations between 
small clusters were used to group these small clusters 
into larger clusters. Computations go as D X 
(N(N - 1 )/2). 

This technique and the two next techniques require 
a number of comparisons to be made and additional 
computations to be performed. The extent of these 
computations is difficult to determine without exam
ining specific data sets. The calculation of all pair-

- wise distances between all patterns is considered to 
be a relatively inefficient way to obtain the structure 
of the data. This technique is best suited to taxo
nomic applications. 

ROGERS AND TANIMOTO: 34 A function related to 
information theoretic entropy is computed and mini
mized. This selects the point pattern nearest the 
centroid of the system of patterns. This most typical 
pattern is designated "a prime mode" and a clump 
of cases very similar to it are clustered around it. 
Patterns are added to this clump until the inhomoge
neity measure suddenly takes a large jump in value, 
indicating that the last pattern added was not truly 
a member of this clump. Computations go as D X 
N (N - 1 )/2. Random access memory required is 
N(N - 1 )/2. Patterns considered are binary in value. 

NEEDHAM;29 PARKER-RHODES;32' ABRAHAM: 1,2 The 
distance between all pairs of patterns is computed 
for the pattern set. A threshold related to the aver
age distance between the patterns is computed and 
the similarity matrix (i.e., the matrix computing all 
pairwise distances between patterns) is thresholded 
at some level, reducing the matrix to a matrix of 
zeros and ones. The ith row thus contains a list of 
all objects to which the ith object is closer than the 
threshold. It is possible, working with these lists of 
objects, to obtain clusters of interrelated objects. 
One method of doing this is to take a list of patterns 
related to one pattern, to take the next pattern on 
the list, and to take the intersection between the two 
lists of these two patterns, etc., until the number of 
patterns at the intersection is satisfactory. In this 
way fundamental clumps can be constructed, which 
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can then be used to build up other clumps around 
them; that is, these clumps can serve as nucleus 
clumps. One parameter of the program is the thres
hold above which patterns are declared related, and 
below which, not related. Computations go as D X 
N(N - 1 )/2. Random access memory required is 
approximately N(N - 1)/2. This technique seems 
primarily useful for taxonomic problems. The tech
niques proposed are suggested both intuitively and 
by the use of graph theory. 

BONNER: 8 Two methods are proposed. The first 
computes a similarity matrix, giving the distance be
tween all pairs of patterns, and then manipulates this 
similarity matrix. The second, which is the one we 
shall describe, as it appears to be more satisfactory, 
takes a "random" center pattern and builds a cluster 
around this by developing an arbitrary threshold. All 
members more similar to this center pattern than the 
threshold are considered to be in the crude cluster. 
The members of this crude cluster are then examined 
by more refined criteria to determine whether or not 
they should be considered as part of this cluster. 
The yardstick of cluster goodness used is a measure 
of the rarity of the cluster. The computation goes 
roughly as D X N. Additional computations are re
quired that depend on the character of the data. 
Program requires random access to an the set of 
patterns in order to improve the clusters obtained 
efficiently. Patterns used were binary. The use of 
a threshold around an arbitrary pattern seems like a 
useful way to restrict the number of measurements of 
distance that must be made between pairs of pat
terns, if the distance between pairs of patterns is 
to be measured. 

FORTIER AND SOLOMON: 17 Computes the correla
tions between all pairs of patterns. The absolute 
value of the difference between this correlation 
squared and an arbitrary constant is stored in a 
"distance" matrix. The constant used should be 
related to the loss expected if two items are clustered 
that are not strongly related. The matrix is then 
summed over all clusters of pairs. That is, compute a 
number that is the sum of the "distance" between an 
pairs of patterns in a given cluster. Sum this num
ber over all clusters. The attempt would then be 
made to maximize this final double summed num
ber. Computation goes as D X N(N - 1) /2 plus 
computations necessary to maximize the sum of the 
differences between these various correlation coeffi
cients and the threshold for each of the clusters 
formed. The techniques discussed in this paper seem 

particularly to bear out the combinatorial problems 
in clustering. They emphasize the necessity for mak
ing approximations and for iteratively computing the 
desired quantities rather than trying to compute it 
using all the possible information. These techniques 
seem quite limited with respect to the problems they 
can attack because of the restrictions on the number 
of clusters the techniques proposed can consider. 

SAWREY, KELLER, AND CONGER: 35 The procedure 
selects small subsets of nearly identical patterns 
using the Euclidean distance between patterns. Based 
initially on a small number of basic profiles, highly 
homogeneous groups which are also dissimilar to 
each other are formed. To these homogeneous 
groups, the remaining profiles in the sample are 
then compared. As a result of these comparisons, 
additions are made to one or another of the groups 
by successively relaxing the criteria of group homoge
neity. Profile groups are formed in which the group 
members are similar to each other but at the same 
time dissimilar from the members of all other groups. 
The paper gives quite a thorough analysis of the 
application of these clustering techniques to psy
chological data. The computations involved will de
pend quite definitely on the nature of the data though 
all pairwise distances must be computed. 
Comments on Clumping Techniques. The tech
niques. The techniques of Michener and SokaJ28 
were developed for the specific purpose of obtain
ing a numerical taxonomy of a collection of animals, 
in this case, bees. The technique itself is highly 
oriented toward attaining this taxonomy, and as a 
result seems less useful for the more general prob
lems of clustering than some of the other techniques. 
The comments found in a later book by Sokal and 
Sneath, Principles of Numerical Taxonomy,40 are 
worth reading, however, and for those interested in 
approaching the formation of subsets by providing 
a nucleus pattern or patterns and clumping around 
them, this book is an excellent source of references. 
One quote from Michener and Sokal follows: 

By using a large number of characters and species 
(i.e., measurements and patterns) however, we feel 
that weighting becomes unnecessary because the 
magnitude of correlation coefficients calculated be
tween species (distances between patterns) would 
be little affected by extreme weighting. 

This seems to indicate they feel that in some 
sense the most valid general clustering one can 
obtain is by using a large number of descriptors of 
the pattern. (With limited sample sizes increasing 
the number of measurements may, however, lead 
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to a decrease in "clusterability.") However, in the 
case of clusterings toward a particular end - for 
example, clustering weather measurements to obtain 
indications of high ceiling and low ceiling heights -
the weighting of one or another measurement is 
then tied to the particular task for which the system 
is intended. For this reason, this particular com
ment seems most valid only when trying to develop 
a general taxonomical relationship between the 
various patterns. 

The paper by Rogers and Tanimoto was one of 
the earliest papers in which a computer was a nec
essary and integral part of the process used. The 
program developed seems particularly significant in 
its attempt to allow the operator to introduce new 
cases or attributes whenever these are found to be 
irrelevant to the clustering to be performed. A sec
ond interesting aspect of this paper is the use of 
information theoretic measures to determine the 
quality of the clustering obtained. If these measures 
from the clumping techniques were combined with 
a more efficient method of associating patterns to
gether, such as is found in the clustering techniques, 
it appears that the resulting algorithms would be 
particularly powerful for sorting patterns into sub
sets. 

The papers by Parker-Rhodes,32 Needham,29 
Abraham1, 2 and Kochen24 are all concerned pri
marily with the use of what might be called graph 
theory for the determination of clusters in a set of 
data. A common characteristic of these papers is 
the use of a similarity matrix as a sufficient descrip
tion of the universe of patterns. As defined in these 
papers: "Broadly, members of a clump must be 
more like each other and less like non-members than 
elements of the universe picked at random" (Parker
Rhodes,32 p. 9). 

Much of the work in these papers is set-theoretic 
and attempts to determine some rather general con
cepts concerning what can be considered a clump 
and what is not a clump. The major problem of 
these techniques is that they all increase in compu
tation at least as the square of the number of pat
terns which is a considerable limitation on large 
problems. 

The paper by Bonners contains a large number 
of insights into the clumping approach to obtaining 
subsets. Many of these comments are useful regard
less of the technique class that is being used. Three 
algorithms are described in this paper. We have 
described only the third in any detail. Additional 

measures are provided in this paper for measuring 
the strength of internal clustering vs the strength or 
external interactions. Bonner suggests the following 
criteria for clustering: 

The clustering problem . . . becomes the problem 
of finding sets of objects where the attributes are 
estimated to be independent within a set . . . The 
philosophy of the clustering procedure to be fol
lowed involves finding sets of objects which do not 
come from this population. If none can be found, 
the original object set is judged to be one cluster. 
If any is found, it is removed from this set as a 
cluster. 

Bonner then describes a statistic that can be used 
to determine the probability that the objects clus
tered together, if picked at random from a hypo
thetical population, are statistically significant. 

His major conclusion regarding clustering tech
niques and factor analysis is an interesting one. 

The major point to be made is that clustering meth
ods . . . can be used for problems now done by 
factor analysis. It is not implied that such a cluster 
analysis should replace factor analysis, but that 
both methods applied to the same data should yield 
a deeper understanding than either method alone. 

The paper by Fortier and Solomon17 is notable 
in its spelling out of the difficulties involved in han
dling a clustering of a large number of patterns in 
high dimensions by direct methods. As they say 
(pp. 3-4): 

Theoretically speaking, we have a finite problem 
at hand for which there exists a solution: i) pre
pare a list of all possible partitions of a set of N 
points. ii) for each partition (set of clusters) calcu
late the B function, iii) choose the clustering con
figuration which corresponds to the optimal (large) 
B value. However, matters get out of hand rather 
quickly, for the amount of computation becomes 
inordinately large, even when N is moderate in 
size. 

The paper contains many tables showing just how 
out of hand things can get if this point of view is 
taken, and some approximations are not made. 

Two other papers worthy of mention are Cattell10 

and Kaskey.22 These two papers deal primarily with 
the analysis related to clustering measurements as 
opposed to clustering patterns, and for this reason 
have not been included in detail. The paper by 
Cattell outlines some of the methods that were used 
prior to the advent of the electronic computer. The 
paper by Kaskey makes considerable use of the 
electornic computer and develops a significance test 
to be used on the correlations between various meas
urements. One of the limitations of both of these 
approaches seems to be the implicit assumption that 
the set of patterns being analyzed is in some sense 
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homogeneous. This need not be true; the correla
tions attained between measurements may well be 
that the result of two measurements is high, while 
in another of the groups it may be small. This cer
tainly seems quite probable in cases in which a rela
tively large number of patterns is being used and 
in which a priori knowledge is not really adequate 
to divide these patterns into homogeneous subsets. 
It is therefore recommended that these procedures 
be amended to, first, cluster patterns into relatively 
homogeneous subsets, and secondly, to perform the 
clustering of the measurements. While the interpre
tation of the results of such an analysis would prob
ably require new attitudes towards the information 
contained in the data, it does seem that the results 
obtained would be much more directly related to 
the physical phonomena underlying the data. 

Cattell also notes in his article that Holzinger's B 
coefficient techniques might be used to relate the 
density within a cluster to the density of patterns 
immediately surrounding a cluster. Both Rogers and 
Tanimoto, and Michener and Sokol use the concept 
of adding patterns one at a time, until an inhomo
geneity measure increases sharply over previous 
increases. This seems related to the same concept 
of learning how isolated a cluster is from the other 
patterns. In analyzing some real data, we have found 
that while isolated clusters do occur, an interesting 
and useful description of the data can be obtained 
by clustering (in the sense of relating together a 
group of similar patterns) even though each of these 
"clusters" is not really isolated from the surrounding 
patterns. 

The general comment regarding clumping tech
niques is that they are in general non-iterative in the 
sense that there is a specific procedure that deter
mines when a pattern is added to a clump. The use 
of a once-through, non-iterative procedure requires 
the selection of a stricter criteria of what constitutes 
a cluster than would be required if an iterative tech
nique were used. As suggested above, it does appear 
that the combination of a good criteria of what con
stitutes a cluster with an iterative technique should 
provide an extremely powerful synthesis of clustering 
and clumping techniques. 

Comments on Eigenvalue-Type Techniques 

Nunnally30 is in some sense intermediate between 
the clumping technique and the eigenvalue tech
niques. His technique is similar to the clumping 

techniques in that he uses the distance matrix, giv
ing the pairwise distances between all of the pat
terns, and is similar to the eigenvalue techniques in 
that he uses the principal directions in the distance 
space to define the clusters, i.e., he uses the eigen
vectors of the distance matrix. 

This technique is particularly interesting in that 
it ties together the more classical approach of sta
tistics, e.g., factor analysis, and the principal com
ponents analysis, to the techniques of clustering and 
clumping. Nunnally has several useful comments on 
the importance of considering what he calls level 
(signal amplitude), shape (which corresponds to 
direction in our pattern space) and dispersion 
(which is related to the variance of the pattern 
around its mean level); these comments are more 
directly related to psychology than to other types of 
patterns. Nunnally's work is in some ways reminis
cent of the work of Bonner. 

One quote from Nunnally seems particularly rele
vant: 

The decision to use profile (cluster) analysis is 
determined in part by preferences for methodolo
gies, which are, in essence, wagers about the likely 
research payoff in the long run, from choosing 
one method of investigation rather than another. 
The reader can judge for himself whether the stud
ies using comparisons of profiles (e.g., measures 
of "assumed similarity" in interpersonal percep
tion) have borne the expected fruit. 

With the availability of computers increasing and 
the cost decreasing, it seems very worthwhile to use 
both the more classical factor analytic or eigenvector 
methods and the methods of profile or clustering 
analysis on any given set of data. We feel that the 
two view points are sufficiently different that they 
can each supply important information regarding 
the data. 

The paper by Cooper and Cooper13 appears to 
depend rather heavily on a numb~ of assumptions 
regarding the nature of the data. While these as
sumptions are necessary for their analytic examina
tion, and while they have suggested ways of getting 
around some of the assumptions that they have 
made, we feel that much work remains to be done 
before this technique will be of value when applied 
to problems in which little is known about the data. 
At this point it is worth noting the relationship be
tween the technique of Mattson27 and that of Cooper 
and Cooper. In some sense it appears that Matt
son has taken the underlying philosophy of the 
Cooper and Cooper technique and extended it to 
problems where little is known about the structure 
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of the data. This relaxation of assumptions make 
the Mattson technique particularly useful. The most 
prevalent assumption in the Cooper and Cooper pa
per is the one of the data beging formed from two 
Gaussian distributions. In this respect it is reminis
cent of the approach of Patrick and Hancock. 33 

An interesting quote from Cooper and Cooper13 

(p. 419) is the following: 

As is to be expected, non-supervised adaption 
cannot be uniquely achieved for abitrary distribu
tions. But where there is adequate probability struc
ture of the problem, the partition can be unique. 
There are many cases for which this is possible. 
Of special importance is the two-category case 
where the distributions are translates of one an
other, but have general functional form, and fur
ther interest centers on the cases where the dis
tributions are finitely parameterized. 

While it is true that some of the clustering tech
niques that have been discussed do not arrive neces
sarily at a unique solution in a mathematically rig
orous sense, it is nonetheless intuitively clear that 
in well-structured data the partitions achieved will 
be what might be called "epsilon-unique," that is, 
the partitions achieved will vary only slightly (for 
the same parameter settings of the clustering pro
gram). The most pertinent variable in determining 
the size of epsilon in this case is the inherent struc
ture of the data. If the data exists in clusters that 
are compact and well isolated from each other, then 
the partitioning will be unique. If the data, on the 
other hand was drawn from a uniform distribution 
of random numbers, then in all probability the clus
tering will vary with every attempt at clustering. It 
has been our experience that most data lies some
where between these two extremes. Perhaps one of 
the most useful aspects of the clustering techniques 
is their ability to indicate which extreme a particu
lar set of data lies nearest. 

The paper by Mattson and Damman27 is in the 
author's opinion an exceHent example of combina
tion of analytical and intuitive approaches. While 
the technique follows well-defined lines in terms of 
what is computed, nevertheless the concatination of 
these various well defined mathematical functions 
arrives at a technique that is considerably more 
useful than anyone of these techniques applied sep
arately. It is worth noting that this technique aims 
toward synthesizing efficient threshold networks. 
The technique is, however, useful for much more 
than that, in that it makes possible an examination 
by the researcher of the nature of his data in a rela
tively limited region of the space. Perhaps the most 

important aspect of thie technique is its use of di
rection in data, with the breaking up of the data 
into smaller subsets preventing heterogeneous sub
sets of the data from confusing the analysis. 

Both Mattson and Damman27 and Cooper and 
Cooper13 are in effect searching for valleys between 
high density regions in the data. A technique which 
will be described below (Bledsoe6 ), is a third tech
nique that has at its core the projection of data 
onto a line and the searching for low density spots 
in the distribution of the patterns along this line. 

Minimal Mode-Seeking Techniques 

FIRSCHEIN AND FISCHLERS16 Computes dot prod
uct of patterns with cluster centers (classes are parti
tioned into subclasses so that each member of a par
ticular class is closer, in the sense of high correlation 
score, to the centroid of its one subclass than to the 
centroid of any other subclass; to classify an unknown 
vector, we determine the closest subclass centroid to 
the vector and assign the unknown vector to that 
class. Patterns are divided into three classes: 

1. Patterns having highest dot product with 
centroid of its own subclass 

2. - with a centroid of another subclass which 
is in the same overall class as the pattern 

3. - with the centroid of another subclass 
which is in another class than the one given. 

New subclasses are formed by having that pattern 
having the lowest dot product with its own subclass 
centroid chosen to form a new subclass centroid. The 
procedure is iterated until allowable error rates are 
reached or some arbitrarily chosen number of sys
tem iterations has been made. Computation goes as 
N X NROWS X D X ITER. This technique and the 
following technique depend on the use of classifica
tion information in determining the subclasses. The 
technique may run into difficulty in cases where the 
pattern classes are overlapping unless some method 
is found for recognizing patterns that lie in the over
lapping areas. 

STEINBUCH AND PISKE: 42 Subclasses are formed if 
the distance between a pattern and a mode of its par
ticular class is greater than a fixed threshold amount. 
The procedure is iterated until adequate separation is 
achieved, or other constraints are satisfied. Compu
tation goes as D X N X NROWS X ITER. 
Comments on Minimal Mode Seeking. Firschein 
and Fischler's technique16 appears to be quite useful 
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in cases in which pattern subclasses are linearly 
separable. However, from our experience at SRI it 
appears that modifications of the technique will be 
necessary when pattern classes are badly overlapped 
and intermixed in one another. That is, some method 
of storing patterns that are consistently causing diffi
culty should be used so that new subclasses would 
not be created for these patterns, if, for example, 
they lie right in the central part of another class. 

A significant quote from this paper16 (p. 138) is: 

Unlike previous procedures for subclass formation, 
this method does not require the specification of 
an arbitrary fixed distance as a criterion of mem
bership in a subclass. Another advantage of the 
present technique is that it is not necessary to spe
cify the required number of subclasses beforehand. 

We consider these both to be significant aspects 
of this technique. 

The paper by Steinbuch and Piske42 we found 
difficult to read insofar as the recognition and clus
tering characteristics of the learning matrix are con
cerned. The article appears to be primarily a descrip
tion of the learning matrix itself, rather than a 
description of the ways in which it operates, and its 
limitations. From our other experience it does ap
pear that this technique would be useful, though 
some of the methods of normalization reduce its 
general applicability. It seems important to note 
that category information is required for this and 
for the Firschein and Fischler technique. 

M isce llaneous Technique 

BLOCK, KNIGHT AND ROSENBLATT: 7 The compu
tational unit consists of two layers of summing net
works followed by thresholds. The summing units on 
the first layer are in one-to-one correspondence with 
the summing units of the second layer and have a 
threshold of O. The weightings on the connections 
between the first and second layer are incremented 
if, when the threshold of the first layer unit is ex
ceeded at time T, and the threshold of the second 
layer unit is exceeding at time T + 1. All connec
tions are decremented each unit of time. The size 
of this decrement in the thresholds is a control para
meter of the program. The computation goes as 
D X N X NROW X ITER. Classification informa
tion is inferred from the sequence in which patterns 
are shown the machine. It is assumed that there is 
a high probability of continuous runs of patterns 
coming from the same class occur in contiguous runs. 

BLEDSOE: 6 An arbitrary plane passing through 
the patterns is selected. Distances from this plane are 
computed for all of the patterns. The average dis
tance of the pattern from this plane is maximized by 
a series of iterative adjustments of the plane. This 
procedure is tried for several different initial starting 
points. The plane having the maximum average start
ing distance is selected as the best plane. All pat
terns are projected onto this plane and a second plane 
in D-1 dimensions that maximizes distance from all 
the patterns is sought. (The procedure is constrained 
to pass the plane in such a way that all the subsets 
formed by the plane are of approximately equal size.) 
Computations go approximately as N X D X ITER. 
The results given in this paper were not really ade
quate to determine the effectiveness of the technique. 

Comments on Miscellaneous Techniques. The 
method of Block, Knight and Rosenblatt is an inge
nious method of taking advantage of high probability 
of runs. It is commented in that paper that the tech
nique also has generalizing properties with regard 
to particular types of transformations. The paper 
referenced has a detailed analysis of the technique 
and its performance. The technique appears limited 
by the contiguous-run requirement. It is stated in 
the article that patterns need not necessarily look 
alike if they are continguous in sequence for them 
to be classified together. In other words, this is in 
some sense not a clustering technique, but it is a 
self-organizing technique that does not require an 
explicit external teacher. 

The procedure Bledsoe follows in his paper is es
sentially one of trying to learn the "best" corridor 
(in the sense of a hyper-plane) to the learning set. A 
method appears adequate to do this but it is diffi
cult from the description to tell how generally use
ful this technique would be. It might provide useful 
preprocessing, for, say, alphnumeric character rec
ognition, in that it would in some sense "optimally" 
divide up the pattern set. 

It seems worthwhile to note that a new calcula
tion is required each time the dividing plane is ad
justed into a new position. This new calculation de
termines whether the plane is appropriately adjusted 
or not. It is not apparent from the paper that a hill
climbing technique is being employed except in a 
probabilistic way. 
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COMPOSITE CLUSTER-SEEKING 
ALGORITHM 

The composite technique presented in this sec
tion is an attempt to improve the ISODATA 
algorithm by including the good points of other 
cluster-seeking techniques described. Though it 
seems unlikely that this one technique will be suit
able for all types of data, we feel that it contains 
no obvious shortcomings. 

Composite Technique (1965) 

Compute the average of patterns and the average 
distances of all patterns from this average. Set a 
threshold (}D = k x (average distance of all patterns 
from this overall average) where 0 ~ k ~ 1. All 
dimensions would be scaled at this time to cause each 
dimension to have a standard deviation of 1 for all 
patterns taken together. Until 3rd iteration minimum 
allowable cluster size is 1. 

START: Compute dimensions of all patterns from 
all existing cluster points. If minimum distance 
(measured using Euclidean distance) from a pattern 
to any existing cluster point exceeds (}D, then create 
a new cluster point at the location of that pattern. 
(This should rapidly locate small isolated clusters.) 
Evaluate the goodness of the cluster, perhaps using 
a criterion similar to that used in the clumping tech
niques. 

SPLIT: If clustering is not satisfactory, then 
"SPLIT" either those clusters having unsatisfactory 
cluster properties or those clusters having maximum 
standard deviations greater than a threshold (if the 
cluster also is of sufficient size and has sufficiently 
large average pattern distance from the cluster cen
ter). Return to (START) and repeat process of 
computing pattern distances from the new cluster 
centers. 

LUMP: Combine (LUMP) cluster points that 
are closer than a given threshold. Return to 
(START) and repeat process using (SPLIT). At 
the end of this iteration all cluster points having 
fewer than a given number of patterns associated 
with them would be removed from the list of pat
terns (this should remove all wild shots). These 
patterns would be printed out. 

Recompute new "standard deviations" for each 
dimension for reduced pattern set and rescale all 
patterns so that the normalized standard deviation 

in each dimension equals 1. These standard devia
tions could be the average using all patterns and 
computed about an overall minimum, or they could 
be the average standard deviation of patterns in 
each cluster about its own cluster center. This 
standard deviation might be further modified by 
taking into account the pairwise distances between 
cluster centers at each distance. 

Lump and split until a criterion of adequacy of 
clustering is satisfied. The relative increase in 
measure of clustering from iteration to iteration 
could be used to determine when lumping and split
ting should stop. 

Computational difficulty is proportional to D X 
NROWS X N X ITER. Note: If all multiplications 
with elements in each cluster center can be done in 
parallel (optically) then this reduces to N X ITER. 

Parameters that control the program are related 
to: 

1. minimum allowable number of patterns in 
a cluster, 

2. the allowable maximum standard deviation 
(or spread) of a cluster, 

3. the minimum distances between two clus
ter points, 

4. the fraction of the standard deviation used 
in the first iteration to control the initial 
creation of clusters and the discarding of 
wild shots, 

5. the iteration-to-iteration difference required 
to imply convergence of clustering. 

This technique could be generalized and probably 
implemented optically. 

Comments on Composite Technique. It seems un
likely that anyone algorithm will be ideal for all 
types of data and for all situations. It does seem 
possible, however" to describe types of data, and to 
determine the type of cluster-seeking algorithm that 
seems most useful for handling each type of data. A 
need exists for a preliminary, exploratory technique 
to tell which of the more specialized types of tech
niques to apply. We need to be able to broadly cat
egorize types of data so as to decide how to proc
ess them further in more detail. 

This suggested technique is an attempt to include 
in ISODA the best (noncontradictory) aspects of 
other techniques. The following are improvements 
over the original ISODATA program: 
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1. The modification relating to the initial 
cluster-creating procedure should cause 
more rapid convergence. 

2. Discarding and identification of wild shots 
from pattern sets should improve efficiency 
considerably. 

3. The use of good clustering criteria would 
allow realistic termination of the iterative 
procedure. 

4. Scaling of dimensions so that some (yet to 
be determined) criterion is satisfied would 
remove from clustering some of the arbi
trariness arising from the choice of the 
unit of measurement used in the various 
dimensions. 

CONCLUSIONS 

The main point we wish to make is that cluster
seeking techniques exist that can be used to organ
ize data from the social sciences and other disci
plines in a way that allows examination of the 
details, i.e., the individuals, in the data. Using these 
techniques a single data point can be related to an 
adequate description of the rest of the data. Cluster
seeking techniques can be effectively utilized by 
persons having relatively little formal mathematical 
and staistical training. These techniques have the 
further advantage that the effect of changing scale 
or measurements can be directly and easily related 
to its effect on the data. In other words, the relative 
arbitrariness of calling certain patterns "similar" 
becomes more apparent. 

An important consideration in determining the 
value of the clustering obtained is the use to which 
the clustering is to be put. That is, is the clustering 
obtained from the data to be used to determine the 
significance of the data in a statistical sense, or is 
it to be used primarily as a descriptive organizing 
of the data for the researcher? Ii is important in 
criticizing or commenting on clustering techniques 
to keep this distinction clear. Some clustering cri
teria are not adequate to determine significance of 
the data; nevertheless, the clustering may provide a 
completely adequate description of the data that 
is very suggestive of new experiments to be per
formed or new interpretations of the data that then 
can be tested by more rigorous methods. 

With respect to the specific cluster-seeking tech
niques, we regard the "clustering" techniques as 
providing the most efficient and easily interpreted 

clustering, except in taxonomic problems where 
clumping techniques (modified to be more effi
cient) appear best. The addition of more adequate 
cluster criteria to the "clustering" techniques seems 
a natural next step. 

Much more work needs to be done on conver
gence of these techniques and on methods for inter
preting and examining the resulting clusters. 

It appears important to us not to rely entirely on 
some function of the data such as the covariance 
matrix. Rather it seems that for data analyses, par
ticularly where the data base is small, working di
rectly with the patterns themselves is required. Nat
urally the patterns must be organized into some 
comprehensible form. Clustering the data is one 
way to organize them. 

Finatly, the distinction to us, between classical 
statistics and clustering with regard to data analysis 
is the distinction between the point of view (statis
tical) that immediately generalizes from the speci
fic (the patterns) to the general (the estimated dis
tribution), and the point of view (clustering) that 
remains at the specific (the patterns) and has the 
capability of analyzing the individual patterns for 
local as well as global relationships. 

Speculation Regarding the Effect on the World 
Around Us 

We feel that computer-oriented techniques that 
can quickly organize data in a way that allows rapid 
analysis of the data will profoundly affect experi
mental science. Starting with existing clustering 
techniques and using proposed peripheral computer 
programs, it will be possible for the experimental 
scientist to see on a display the data he is gathering 
as he gathers it. The potential value in such rapid 
feedback seems enormous when we think how ra
pidly we f~rget all of the details of an experimental 
situation. We at SRI consider ourselves to be work
ing toward this eventuality which may have consid
erable effect on the world around us. 

ACKNOWLEDGMENTS 

I would like to acknowledge the support of Rome 
Air Development Center under Contract No. AF 
30 (602) -3448 and the continuing encouragement 
and guidance of Dean F. Babcock, my laboratory 

. manager. I would like to express my considerable 
gratitude to David J. Hall of SRI. Conversations 



DATA ANALYSIS IN THE SOCIAL SCIENCES 557 

with him have greatly aided in the formulations in 
this paper. My thanks also go to Wanda Fedurek 
and Jane Bond for their speed and accuracy in typ
ing this report. 

ADDENDUM 

Since this paper was written, additional references 
have come to our attention. These papers are listed 
in the Supplementary Bibliography. 

The author would greatly appreciate receiving 
copies of past and future papers or references to 
past papers dealing with cluster-seeking methods 
and their use that are not included in the References 
or the Supplementary Bibliography. 
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sum of a known number of elementary distrib
utions of known form can be used to find the 
parameters of the elementary distributions. 
Though not directly providing a clustering 
method, it may provide some analytical insight 
into the analysis of clustering methods. 

R. C. Tryon, Psychometrika, vol. 22, no. 3, pp. 
241-260 (Sept. 1957). 

Uses clustering to indicate factor analytic com
munalities. Gives references to Tyron's earlier 
work on clustering. 

-, "Domain Sampling Formulation of Cluster 
and Factor Analysis," Psychometrika, vol. 24, no. 
2, pp. 113-135 (June 1959). 

Eigenvalue I-Discusses "Domain Sampling" as 
a viewpoint underlying his custer analysis and 
factor analysis. Tends to look at cluster analy
sis as related to correlations between the meas
urements found over the entire data base. 

J. H. Ward., Jr., "Hierarchical Grouping to Optim
ize an Objective Function," Journal of American 
Statistical Association, vol. 58, no. 301 (Mar. 
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65-15, U. S. Naval Personnel Research Activitiy, 
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MATHEMATICAL MODELS IN BIOLOGY 

Biological processes can be considered in the ab
stract as a response to a set of input quantities 
where input and output are measured in analogy 
with the real numbers. 

Many processes are not really understood unless 
they can be described with numbers. Basically, a 
mathematical-biological model is an isomorphism 
between a biological process and the real number 
system. That is, a model is a function f defined on 
a set of (possibly) independent real variables x and 
having values corresponding to what is expected to 
be the value of the process. Nature, however, has 
her own function Y, which perhaps cannot be 
known, and whose domain hopefully corresponds to 
x, so that we may write: 

Y(x) = j(x) + e(x) 

where e (x) is error term consisting of observational 
error and/or failure of "isomorphism." 

Mathematical models are in a sense a fiction and 
we do expect the error due to a failure of the iso
morphism to be small in comparison to the observa
tion as well as the error of observation. 

The mathematical model is a formalized quanti
tative working hypothesis. The conventional opera
tion of scientific method requires four steps. 

561 

1. The formulation of the working hypothesis 
from experimental data. 

2. The experiment to test the hypothesis. 
3. Numerical fitting of the data. 
4. Examination and possible reformulation of 

the hypothesis to fit observations. 

The purpose of model building is twofold: to gain 
insight into a phenomenon and to be able to predict 
a response to a given set of input. These notions 
can be extended and idealized into a procedure as 
in Fig. 1, from which it can be seen that the con
struction of mathematical models is a synthesis of 
several disciplines. 

As the frontier of knowledge of biology is ad
vanced, demands are made for the construction and 
solution of more critical and complex models. The 
success is dependent upon the ability to correctly 
select one model from several a priori acceptable 
ones, none of which are equivalent. 

There are three problems inherent in nature that 
affect mathematical models. First, nature in general 
is nonlinear. Second, biological systems cannot be 
measured without frequently large error. Third, 
biological phenomena generally have a stochastic 
character. All affect the formulation, fitting, and 
verification of the model in different ways. At 
times, the effect is cumulative and may give rise to 
hidden but gross errors, wherein a seemingly good 
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YES 

MODEL 
CONSTRUCfED 

Figure 1. Morphology of model building. 

fit may be an artifact of the number of parameters 
alone. 

Once a mathematical model is constructed, it is 
often taken for granted that there is no information 
loss in the fitting procedure or any other computa
tional aspect of the process. Unfortunately numeri
cal problems present a difficulty for every aspect of 
the procedure and should be considered by the 
biologist even in the choice of the experimental' de
sign. 

The problem from the point of view of informa
tion processing is to identify sources of numerical 
difficulty throughout the process and in particular 
to numerically fit the data to the model as faithfully 
as possible with the finite digit capacity of a com
puter. The central problem from our viewpoint is 

how reliably we can identify the numerical solution 
to the model fitting problem. 

DEFINIT~ON OF NONLINEAR PROBLEM 

Let F be a function defined on real vector spaces 
A and X and having values in R. Then F is linear 
in A provided that 

F (Aa,x) = AF (a,x) 
F (a+b,x) = F (a,x) + F (b,x) 

where a, b € A (parameter), 
A € R (real numbers), and 
x € X (independent variable). 

A similar definition applies to linearity in X. 
We can consider a mathematical model as being 

a path (x, F(a,x)):x~R2 in R X R where the fitting 
procedure is a technique of finding the point a € A 
that satisfies some criterion of best fit such as mini-
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mum sums of square deviation of the model from 
the data. 

The model function F can be linear or nonlinear 
in either or both of A and X. The discussion con
cerns itself with the problem of fitting a model to a 
set of data when the function is not necessarily li
near in the parameters. 

However highly nonlinear F may be in X, if F is 
linear in A, then the computational aspects of the 
fitting procedure are relatively simple and are usu
ally done in one step. However when F is nonlinear 
in A, then. the computational problem is more com
plicated. 

METHOD OF FITTING NONLINEAR MODELS 

For simple nonlinear models, there frequently 
exists a choice of two basic methods of solution of 
the fitting problem. 

1. Linearization by transformation. 
2. Successive approximation function S (gradi

ent and nongradient) of the form aV + 1 = 
S(aV

) for which we seek a fixed point 
a = S(a). 

Linearization has the decided advantage of not 
requiring starting values of the parameters although 
it usually requires estimation of a weighting func
tion to correct for changes in the error structure in
duced by the transformation. Iterative methods re
quire starting values and are in fact a function of 
the starting values. 

The methods will be compared by numerical ex
periment. The Gauss-Newton method will now be 
discussed to illustrate certain of the computational 
difficulties it presents. 

The numerical problem in nonlinear regression is 
simply to obtain the correct parameter values. Un
fortunately, there exists factors that cause failure of 
this, which include: 

1. Large errors in data or errors not having a 
uniform random deviation from the model. 

2. Insufficiently good starting values for the 
iterative technique. 

3. Overparametrized model. 

4. Structure of the numerical technique which 
is used to obtain the fit 

( a) parameterization, 
(b) choice of experimental range of data, 

( c) numerical behavior in the various 
computational phases of the regres
sion procedure. 

Each Gauss-Newton iteration is a least squares 
fit of the function G = Y -F as a function of the 
differential 

(;:1 ' ::2"'" :~) 
whose solution is a vector 

T = (6a1, 6a2, ... , 6an ) 

The nonlinear fitting problem is reduced to a se
quence of linear fittings in n variables. We list the 
following structural problems that disturb the pro
cess numerically: 

1. The differential of F may be highly nonli
near in some of the components. Hence the 
differential represents the function for a 
small neighborhood at each x and the dif
ferential may vary in its ability to approxi
mate G to a considerable extent as a func
tion of x. 

2. The intra.:.variable variation of the differen
tial as a function of x as well as a may be 
too great for the digit capacity of the ma
chine and may therefore bias the fit. 

3. The inter-variable variation of the compo
nents of the differential as a function of x 
may also be too large. 

4. The components of the differential may be 
numerically dependent over the range of x. 

Various methods can be applied to reduce the 
effect of each of these difficulties when using the 
Gauss-Newton method: 

1. Modify the magnitude of the Gauss-Newton 
vector by some sort of search pattern to 
minimize residual sum of squares. 

2. Use weighted regression. 

3. Reparameterize the function or rescale the 
independent variable. 

4. Apply stepwise regression techniques (al
though, the information used by the step
wise procedure is again based on lineariza
tion and the wrong components may be left 
out of the regression because of this) . 
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MICHAELIS-MENTEN KINETICS 

The following is a pair of chemical equations for 
the formation of a produce P from a substrate S via 
an enzyme-substrate intermediary complex ES: 

kl 
E+S~ES 

k2 

ks 
ES~E + P 

where k i are rate constants. Using brackets to indi
cate concentrations for the reactants, and letting the 
initial concentration of the enzyme be denoted as 
[EJ 0, the following differential equations describe 
the reaction kinetics: 

d[ES] -cit= kl ([E]o - [ES]) [S] - (k2 + k3) [ES] 

d[S] -;u= - kl [E] [S] + k2 [ES] 

The reaction has a steady state when [S]o is large 
and [ES] maintains a maximum value [ES]m for an 
extended period of time. For [ES] = [ES]m we have 

d [ES] I = ° 
dt [ES]m 

Of particular interest is the rate V of reformation of 
the product P 

- d [S] 
V = dt = k 1 [E] [S] - k2 [ES] 

In brief we have a system of differential equations 
of the form 

dY 
(j( = (as + b) Y + ex 

dx 
-;[t = (ax + d) Y - ex 

where a, b, d, e are constants. 

An enzyme is said to satisfy the Michaelis-Menten 
kinetics when steady state approximation to the 
system is satisfied: 

dY = 0 
dt 

V=-dx = VmX 
dt K + x 

where K = (k2 + ks)/kl is the Michaelis constant. 

It is often important to know if an enzyme obeys 
th Michaelis-Menten kinetics or whether a more 

complex reaction is occurring. The model can be 
extended to more complex ones where such things 
as enzyme inhibition occur which give rise to models 
that are rational in bilinear forms: 

V = I ai Xi 

I bJ YJ 

The usual method employed by researchers to fit 
the above model is: 

1. Linearize the function by transformation. 
2. Plot the transformed data. 
3. Approximate the parameters from the 

graph. 

Graphical solutions are not statistical statements, 
since they are obtained qualitatively, are frequently 
biased and they do not provide estimates of vari
ances of the parameters. Moreover, recent studies 
have been made which point out the pitfalls attend
ing choosing a graphical method such as Lineweaver
Burke plot. 

The model equation: 

V :. ~ Xx + e = f( x) + e 

where x ~ 0, and 
e e N(j(x), U X

2 ) , 

will be fitted by the following four methods: 

I. Linearization by transformation 

~ = :m . + + :m - ~ ( 1-7- + ... ) 
Weighted linear regression is used (a) once (b) 
iteratively 

II. Successive approximation 

V = V m + K ( - ~X) ) + e 

III. Linearization, iteration of weighting function 

Vm 1 )+(KK+X)e V=Kx+K(-Vx 

IV. Gauss-Newton iteration 

V--f(x; VmO,KO) = (Vm - VmO) (KO ~ x) 

( 
-VmoX ) 

+ (K - KO) (KO + x) 2 

The Michaelis-Menten model wilt be studied here 
from the computational point of view since it is the 
simplest of a whole class of nonlinear regression 
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problems, and it has the advantage of the fact that 
there are these four methods of obtaining the solu
tion which can be compared readily. From this, one 
should be able to gain insight as to the reliability of 
the various methods for more complex problems. 

Naturally, such considerations as starting values 
for iterative methods present a problem. There are 
not very many models that can be so conveniently 
linearized as in I. Method III seems quite tempting 
since it is applicable to rational functions and does 
not require starting values. In the Gauss-Newton 
method convergence is guaranteed provided that we 
are in a sufficiently close neighborhood of the solu
tion and we do not have the numerical difficulties 
mentioned before. 

These methods will be compared using the fol
lowing criteria: 

1. Ability to predict the parameters. 
2. Predictive power for the estimates of the 

variances of the parameters. 
3. Stability of iteration. 
4. Effect of range of independent variable on 

results. 
5. Effect of magnitude of error on results. 
6. Minimize the sums of squares. 

Note that the solutions for K and V are equivalent 
for methods II and IV, theoretically. It remains to 
be seen if they are equally robust computationally. 

SIMULATION OF EXPERIMENTS 

Three overlapping ranges of independent varia
bles were used. 

R1 = {x 0.2 . 10-a :::;; x:::;; 2.0 . 10-a } 
R2 = {x 0.08· 10-a :::;; x:::;; 0.8· 10-a } 
Ra = {x 1.5 . 10-a :::;; x :::;; 15.0· 10-a } 

Four error levels are used for each range R j of x 

Ei:U = pi/(x) x € RJ 

Pi = 0.0'5, 0.1, 0.15, 0.2 

Note that for each experiment the variance is 
uniform and that there are 12 different experiments. 

For each range, 100 sets of data were generated 
with random normal deviates at each of 4 error 
levels. Each of the fitting procedures attempted to 
determine the parameters that generated the data, 
which in all cases were K = 0.003, V m = 1. For 
each method, the following information was col
lected: 

(V m, UV , K, lTK, 2( V - /)2) 

After 100 "experiments," the following statistics 
were computed for each of the methods: 

(Vm, Uv ,K, UK, 2(V - /)2) 
m 

(SV, SoY, SK, SuK, ~) 

For the Gauss-Newton methods, two choices of 
starting values were made and compared, the one 
being the results of weighted linear regression, the 
other being the true values of the parameters. 

CONCLUSIONS 

Preliminary studies seem to indicate the following: 

1. Methods II and III were least reliable. In the 
first place they always required many more itera
tions than method IV. Secondly, when method II 
converged, (R4) the estimates of the standard devi
ation were off by a factor of two. Method II gives 
consistently better results than III. Method II be
havedat its best for Ra, yielding estimates practically 
identical with IV but only after many iterations. 
For R1 and R2 the iterations were either prohibi
tively slow or diverged. There is no compelling 
reason to believe that the situation would improve 
for higher dimensionality. Moreover, the sums of 
squares look reasonable when the estimates are far 
off and the iteration is not moving. 

2. Methods I and IV have the most consistent 
agreement between sampling variance of estimates 
and estimated variance of parameters for error levels 
E 1, E2 on all three ranges of x and for Ea on Ra. 

3. When the weights are iterated in an attempt to 
improve the results, the residual sum of squares 
(unweighted) is reduced considerably, but the esti
mates of the variances of the parameters are unrea
sonable except for low error range. Also, the 
computed estimates of the parameters themselves are 
very poor except for the error level E 1• The situation 
is again slightly improved when the range Ra of x 
is used. The addition of another term on the weight
ing function slightly improves the situation numeri
cally. 

4. The Gauss-Newton iteration definitely improves 
the situation using starting values from I with a few 
unsettling execeptions. Method I tends to underes
timate the parameters slightly while IV seems to 
overestimate the parameters although the residual 
sums of squares are less (see Table 1). For Rl the 
Gauss-Newton iteration continually decreases the sum 
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of square deviation while diverging even for small 
errors. This is possibly the result of a few outliers 
since using a search technique to modify the Gauss
Newton iteration and starting values equal to the 
expected value of the parameters does not seem to 
prevent divergence. Note that method IV diverges 

at those points where the correspondence between 
Sk and £Xk in method I deteriorates. Finally, the diver
gence on the average noted in Table 1 is due to a 
relatively few experiments which have outliers. The 
detection of such outliers and their removal is outside 
the scope of this present paper. 

Table 1. Comparison of Methods I and IV for Estim ating K. 

Method I 

x 10-1 

K Sk Uk Sa RMS 

Rl El .289 .131 .114 .18 .0056 
E2 .253 .286 .283 .82 .0012 
Es .229 1.22 2.4 10. .018 

R2 E1 .281 .059 .054 .02 .011 
E2 .253 .102 .088 .05 .024 
E3 .268 .351 .190 .6 .038 
E4 .186 .353 .244 .7 .052 

R3 El .293 .043 .041 .01 .030 
E2 .301 .086 .081 .03 .062 
E3 .254 .121 .105 .06 .098 
E4 .263 .243 .146 .14 .14 

One would conclude that the Gauss-Newton meth
od when it converges is the most faithful in recover
ing the information in the system hidden by noise; 
and that a high price is paid for the inability to obtain 
sufficiently good estimates to initiate the iteration. 
It might be hoped that method III would yield suf
ficiently good starting values for the G-N method 
in the case of a rational polynomial of higher degree 
when this information is not known. 
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INTRODUCTION 

The contribution of large general-purpose digi
tal computers to the bio-medical discipline has 
been considerable. However, as great as the contri
bution has been, the full potential has yet to be 
realized. 

Increasingly less is the bio-medical investigator 
confined to spend large segments of his efforts re
ducing raw data manually. Increased instrumenta
tion capabilities and the utilization of both analog 
and digital computers are being profitably em
ployed to semiautomatically or automatically reduce 
large portions of raw data. 

These procedures have their Pandora's boxes, 
however. Not infrequently, the large amount of raw 
data confronting an experimenter has been replaced 
by an equally large, or larger, amount of reduced 
data; leaving the experimenter with the dilemma 
that he knows less about a good deal more. 

In evolving a digital computer program1,2 to rec
ognize intracellular neuronal responses in a time 
scale of approximately six man-months to one 
machine":hour, the Applied Physics Laboratory, 

*This work was supported by the Bureau of Naval 
Weapons, Department of the Navy, under Contract NOw 
62-0604-c. 
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The lohns Hopkins University was instrumental in 
replacing the first stack of data with the second for 
investigators of neuronal responses. Having accom
plished this replacement, the problem arose of sub
stituting a third amount of data for the second; the 
third being an informative reduction, through var
ious forms of analyses, of the second. 

This paper is a description of a digital computer 
program which will receive the data (of the second 
form) from the neuronal response recognition pro
gram, analyze the data in terms of various statisti
cal procedures, and present the results in a con
densed, and hopefully profitable, form. 

The questions asked by the analysis program are 
simple and basic. Whether the answers will be ade
quate remains for the future to determine. If they 
are not, other perhaps more complex questions and 
techniques will have to be evolved. The questions 
asked by this program are: (a) What are the time 
interval histograms of the recognized excitatory post
synaptic potentials (EPSP's), the recognized inhibi
tory postsynaptic potentials (IPSP's ) , the action 
potentials (spikes),? (b) What is the likelihood that 
given one particular type of event response out of 
the previous three, that a second particular type of 
event response will occur within a given delay-
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time class interval, independent of whether the 
event responses are contiguous, as with the histo
grams?, (c) What are the amplitude histograms of 
the recognized EPSP's and the IPSP's? and (d) 
What is the probability that given a particular type 
of event response of a given amplitude class, a par
ticular type of event response of the same, or differ
ent, amplitude class will occur within a given de
lay-time class interval? 

EVENT RECOGNITION 

In order to appreciate better the results of the 
computer program to be discussed, some back
ground in the preceding collection and preliminary 
processing of the neuronal data is necessary. Figure 
1 illustrates in block diagram form the data han
dling from initial collection through the event rec
ognition program, and finally, analysis. 

NEURONAL 
MONITORING 

7I.UI'07l. proM, t. 
pl'ob. amplifi.1' 

FM MAGNETIC 
TAPE RECORDER 

2 data cfla7l7l.ls 
p.1' n.ul'on 

+ tim. 

- I 
I 
I 
I 
I 

r----------------------~ 
I 
I 
I 
I 
I 
~ ;'~E ~~~~~gK 

2 data cllann.1s 
+ tim. 

. DIGITIZE DATA f-

~ conv.rt.r 
ultipl.xin9 

I 
I 
I 
I 

I----------------------J 

I 
I 
I 
I TABULAR PRINTOUT 

I 
I DIGITAL 

COMPUTER HISTOGRAMS 

.v.nt r.cognition 
program 

MAGNETIC TAPE 

r-----------------------
I 
I 
I 
I 
L DI61TAL 

COMPUTER 

f1istogram 
corr.lation 

? 

TABULAR PRINTOUT 

Figure 1. Block diagram of neuronal data flow. 

EXPERIMENTAL 

PRE-REDUCTION 
PROCESSING 

DATA 
REDUCTION 

ANALYSIS 

The experimenter monitors the transmembrane 
electrical response of a neuron via his probe. The 
electrical signal is amplified and bifur9ated into 
high and low gain channels. The high gain channel 

is devoted to subthreshold responses comprised of 
excitatory and inhibitory postsynaptic potentials 
(EPSP's and IPSP's respectively). Suprathreshold 
activity (spikes) are clipped in this channel. The 
low gain channel, however, contains the entire sig
nal. Both channels of information are placed on 
magnetic tape in the form of an FM signal. This 
separation of the signal is important for signal
to-noise reasons, as well as ease and economy of 
automatic reduction. 

In the second area, the preprocessing data reduc
tion is in the form of a conversion of the analog 
FM signal to digital form. The two channels, high 
and low gain, are retained in the digitizing process 
through a multiplexing or interlacing process. The 
digital form of the neuronal response is in turn 
placed on magnetic tape. In addition, a time code is 
placed on the digital magnetic tape in order to as
certain the time of occurrence of recognized re
sponses. 

The third step in the process is the insertion of 
the digital information into the digital computer 
under control of the program for recognizing the 
neuronal events viz., the EPSP's, IPSP's and spikes. 
Figure 2 represents a segment of typical neuronal 
data which has been processed through the first 
three techniques outlined in Fig. 1. In this illustra
tion, the symbol E on the graphical portion denotes 
the initiation of an EPSP. The * in the rise time 
(DELTA T) column signifies an event which was 
interrupted in its rising phase by a second event, in 
this case, another EPSP. The event recognition· pro
gram is able to recognize these responses with an 
accuracy of approximately 95 percent. One form of 
output from this program is a tabular listing-as 
shown in Fig. 2-listing the type of event, the time 
of its initiation, the rise time and its amplitude ex
cursion. If the recognized event was a' spike, not 
shown in this illustration, the tabular printout list
ing also includes its duration. 

To date, the minimum event amplitude which 
may be reliably detected is 250 microvolts. The dy
namic range of measurable activity between sub
and suprathreshold events may be in excess of 100 
millivolts. To operate over so large a dynamic range 
in a recognition mode is one basis for the previous
ly mentioned split of the data into two channels. 

One additional output from the event recognition 
program is recorded on digital magnetic tape. This is 
the same data contained in the tabular printout. 
The purpose of this output is to enable statistical 
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SUB'i'HREsHOID (* FOR INCOO'IETED EVENT) 
SUBTHRESHOID ( 0 FOR EVENT BErm AMP.) 

TYPE 

EPSP 
EPSP 
EPSP 
EPSP 
EPSP 
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DELTA T DEIIrA AMP. 
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Figure 2. Sample of neural-electric data (bottom) and the 
results of the event recognition program. E±. . . denotes the 
multiplying power of ten's exponent. Time is in seconds, 
amplitude in millivolts. 

analyses to be performed on the digital computer, 
rather than manually. 

HISTOGRAM GENERATION 

A common form of preliminary statistical analy
sis, associated with intracellular neuronal response 
data, is to count the number of times a given varia
tion occurs within a sample. These discrete proba
bility distributions, or histograms, are divided into 
class increments of the variation. For neuronal 
data, two types of variation are of interest. In one 
type, the variable is amplitude, thereby generating 
an amplitude histogram. For variations with time, 
there is the second type, a time interval histogram. 

The production of either or both of these two 
main types of histograms may be performed during 
the event recognition program, or from the reduced 
data contained on magnetic tape. 

Amplitude Histogram 

In examining the neuronal data, only two types 
of events are considered for inclusion- in the ampli
tude histogram category. They are the EPSP's and 
the IPSP's. Spikes are not included in this form of 

histogram. In addition, only those events which 
have definitely attained their response peak prior to 
initiation of another event are included. The events 
which are interrupted-those marked with an * in 
Fig. 2-by the onset of another event are not includ
ed since no accurate determination of their peak 
value may be made. 

The procedure governing assignment of an event 
to a particular amplitude class interval, or ampli
tude 'box,' is depicted in a very simplified flow 
chart shown in Fig. 3. There are separate amplitude 
histograms for the EPSP's and the IPSP's. 

In Fig. 3, the symbol.dA represents the basic amp
litude class interval. To avoid truncation errors, 
which may be quite misleading, .dA (an input vari
able to the program in millivolts) must be an intger 
multiple of the digitizing amplitude resolution. N is 
an integer representing the assigned class interval 
and ranges from 1 to 200. 

Time Interval Histogram 

There are three separate time interval histo
grams: one each for the EPSP's, the IPSP's and the 
spikes. The requirement on the EPSP's and IPSP's 
that they display a discernible peak (i.e., be unin-
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AMPL=* ? 
i ..... ..",05 tft .. .. v .. nt 
int .. rrupt .. d on t" .. 
risinq p"as.. ? 

ADD COUNT TO THE 
Nt" ARRAY ELEMENT 
IN AMPL. HISTOGRAM 

ADD COUNT TO THE 
MtfI ARRAY ELEMENT 
IN TIME INTERVAL 

HISTOGRAM 

Figure 3. Simplified flow diagram for time interval and 
amplitude histogram generation. 

terrupted on the rising phase), as in the case for the 
amplitude histograms, is absent. All that is required 
in the form of an amplitude criterion is that their 
amplitude be at least as large as the minimum ac
ceptable at the time of the peak, or of their inter
ruption by a supervening event. 

The class interval for these histograms is D. T 
seconds, an input variable to the program. The 
measured times between contiguous like events is 
taken as the time difference between initiation of 
one event and initiation of the next like event. The 
first is termed the reference event, while the second 
is the crossreference event. Their times are labeled 
as T 1 and T2 respectively. Similar to the amplitude 
class width N, M is an integer denoting the assigned 
time class interval or 'box,' and its value ranges from 
a present minimum value MMIN to MMIN + 200. 
Since the time intervals between adjacent like events 

may exceed 200D. T, counts indicating that two events 
separated by . 200D. T or more are all placed in the 
200th box. 

Histogram Readout 

As was mentioned previously, the histogram may 
be formed concurrently with the operation of the 
event recognition program, or in subsequent opera
tions involving the reduced data on magnetic tape. 
In either case, selection of particular histograms is 
an input variable. That is, a choice may be made, 
prior to program operation, of which histograms are 
to be printed out. Another program input variable 
is the periodicity of histogram printout. This option 
will supply the investigator with a time history of the 
histogram formation if he so desires every D. T J sec
onds. The time history is supplied in two forms: (a) 
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the total of the d T Jth time of printout and (b) the 
difference between the histograms at the times asso
ciated withdTJ and dTJ- 1• 

Printout of all histograms may be in either of 
two forms, tabular or graphical, or both. Collateral 
with the tabular printout is the total number of 

counts entered into each particular histogram at the 
time of printout. Figures 4 and 5 are representative 
samples of the graphical plots of an EPSP ampli
tude histogram and time interval histogram respec
tively. The original data was obtained from a moto
neuron in the spinal cord of a cat. * 

Figure 4. Amplitude histogram for excitatory postsynaptic 
potentials (EPSP's) obtained from a motoneuron in a cat 
spinal cord. Only EPSP's which were uninterrupted dur
ing the rising phase are included. Minimum acceptance 
amplitude was 250 microvolts. 

TIME CORRELATION OF EVENTS 

The program described here is employed primari
ly with the data reduced by the event recognition 
program and stored on magnetic tape. However, it 
may be used on other data in card form in the cor
rect format. Due to storage limitations of the digi-

tal computer, it cannot be performed concurrently 
with the event recognition program. 

In essence, the time correlation of neuronal 
events is an extension of the frequency distribution 

*Obtained from experimental data supplied by Dr. T. G. 
Smith, Spinal Cord Section, Laboratory of Neurophysiology, 
NINDB, National Institutes of Health, Bethesda, Md. 
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Figure 5. Time interval histogram for the same data as in 
Fig. 4. Here, however, all recognized EPSP's are included as 
long as their measured amplitude difference from initiation
to-peak or initiation-to-interruption was at least 250 micro
volts. 

analysis just described. Whereas the time interval 
histograms were involved with contiguous and like 
events, this form of analysis is not so limited. This 
program, referred to as the correlation program, 
measures the probability (or correlates) that, given 
a particular type of event (EPSP, IPSP or spike), 
there will be another event of a particular type 
within a given delay time class interval. The two 
events, reference and cross-reference, need not be 
adjacent; nor need they be of the same type.3 

This type of analysis is felt to be much more 
meaningful than the normal frequency distribution, 
or histogram, form. The observed EPSP's and 
IPSP's are usually each from multiple input path
ways to the single neuron being monitored. Because 
the various signals on the mUltiple pathways may be 
asynchronous, indications of underlying signal proc
essing or event. relationships in time by histogram 
may be undiscernible. 

There are two main types of time interval corre
lations performed. One type, designated type-A, is 
independent of the amplitude of either the reference 
or the cross-reference event. All events included 
in the time interval histograms are included in this 
type. The second type of correlation, designated 
type-B, is performed with a condition of ampli
tude imposed. Only subthreshold events (EPSP's 
and IPSP's) which meet the requirements for inclu
sion in the amplitude histograms are eligible for 
this type of correlation. All spikes may be included 
in either type. 

Type-A Correlation 

The type-A time interval correlations are in 
turn divided into six categories as a function of the 
reference and cross-reference event types. These 
six categories, are referred to as the IPAIR's. Figure 
6 lists the various A-types and their collateral ref-
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TYPE-A CORRELATIONS 

IPAIR REF. EVENT CROssREF: EVENT 

I EPSP EPSP 

2 IPSP IPSP 
3 SPIkE SPIKE 
~ IPSP EPSP 
5 EPSP XPSP 
6 EPSP SPIKE 

TYPE -8 CORRELATIONS 

AMPL. CONDn-IONS 
TYPE 

B(MD,I.L) 

s(Mcl~#Ll 

REF. CROssREF. 
MAx. No. DELAY 

CLASS INTERVALS 

(/SLS/6)A4 

(/SLs/6)~A 

MD=200 

Me-SO 

Figure 6. Classification of time interval correlation types. 
Type-A includes all events meeting the minimum amplitude 
criterion. Type-B performed for a particular type-A, and in 
addition, has conditions of peak amplitude imposed. 

erence and cross-reference event types, as well as 
the conditions of amplitude included in the various 
type-B correlations. 

Associated with each type-A correlation are M 
class intervals of time. The minimum (MMIN) and 
maximum (MMAX) values of the class intervals are 
input parameters to the program. The maximum 
difference allowed between MMAX and MMIN for 
any single processing run is 200. The values of M 
must be positive and consecutive integers. The width, 
AT in milliseconds, associated with each delay time 
class interval is also an input parameter to the pro
gram. 

Figure 7 is a simplified program flow chart for the 
correlation program for the type-A. Data from the 
magnetic tape is read into a buffer storage. Con
tained in the storage is data designating the type of 
event, its initiation time and its amplitude between 
initiation and peak; or if the event was interrupted, 
an equivalent of the * (Fig. 2 ) indicating an inter
ruption in place of amplitude. 

The data is examined until an event initiation time 
is found which corresponds to an input start time. 

The time of the event is set equal to tj. This time is 
checked against the input stop time and the print time 
criterion. If tj is equal to, or greater than, either of 
these, the PRINT .routine is entered. This will be 
discussed later. 

The type of event (I) is determined (i.e., EPSP, 
IPSP or spike) and a count is entered in the appro
priate reference event counter {KE(I)} for that type 
of event. Next, the amplitude is checked to see if it 
was a completed event or not. If the event was com
pleted (no *), its type is checked against the type 
of reference event to be used for the type-B correla
tion; that is, an ICLASS input corresponding to one 
of the IP AIRS. Assume that the reference event is 
the type to be used for the type-B correlations. 

The event amplitude class interval is determined, 
LT. The value of L T is checked against 16 input 
amplitude classes. If the event's value of LT corre
sponds to one of these classes, a count is entered into 
the appropriate type-B reference event counter 
{KEB(L)}. 

After such preliminary processing of the reference 
event, the computer advances to the next event in 
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TYPE-A 

Figure 7. Simplified program flow chart for the type-A 
correlation mode. 

storage. This event is the first cross-reference event. 
A check is made (compute the M-class interval) to 
ascertain if the difference in the initiation times of 
the reference and cross-reference events lies between 
(MMAX) X (aT) and (MMIN) X (aT). If the 
time difference is in excess of (MMAX) X (aT) 
and the reference event was interrupted in amplitude, 
a new reference event is chosen. A time difference 
less than (MMIN) X (aT) calls for a new cross
reference event. Assume that neither of these con
ditions was encountered. 

At this point, a determination of the cross-refer
ence event type is made (IP AIR determined), and 
a count in the appropriate M-class . interval for the 

corresponding type-A con-elation is made. The ref
erence event is checked again at this point to see if 
it is a completed or interrupted event. If it is an 
interrupted event, no entry is made into the type-B 
correlation routine, and the program then examines 
the next data point as a cross-reference event, and 
makes the previously mentioned time checks, etc. 
If, in this portion of the loop, the determined class 
interval falls outside of either the minimum or maxi
mum values of class interval, entry into the type-B 
correlation is made if the reference event is uninter
rupted' and is the proper amplitude class for a type-B 
reference event (L =1= 0). 
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Type-B Correlations 

Collaterally with the six type-A correlations, time 
analysis on conditions of amplitude may be per
formed to a . limited extent. Due to storage limita
tions in the digital computer, only a limited number 
of combinatorial conditions of event type, condi
tional amplitude class interval and delay time class 
intervals may be imposed. For anyone processing 
run, the type-B correlations may correspond to 
only one particular type-A IPAIR; e.g., EPSP's 
correlated with EPSP's, where both the reference 
and cross-reference events have an amplitude con
dition imposed. The type chosen is an input param
eter labeled ICLASS, where the ICLASS equals one 
of the six allowed IPAIRS. Referring to Fig. 8, the 
processing procedure for the type-B is given in 
the· following (it will be assumed here that the ref-

erence event had a measurable amplitude so that 
entry into this portion of the program was made) . 

The first check in this portion of the routine is 
to determine if the combination of reference
cross-reference events is the chosen ICLASS. 

Following this, a check is made upon the amplitude 
of the cross-reference event to determine if it is an 
uninterrupted event or not. Assume for discussion 
purposes that the ICLASS = IPAIR and that the 
cross-reference event had a measurable amplitude. 
The amplitude class corresponding to the cross-ref
erence event (NT) is then determined. This class 
is adjusted to the class interval of the reference event 
by forming N = NT - LT. 

The allowable class intervals for the cross-refer
ence events are designated by the symbol N, which 
is also an input to the program. N may vary positively 
or negatively, and is an integer. The maximum num-

TYPE-B CORRELATION 

~nt~r count in MDt" 
array ~I~m~nt for 
TYP£-B(MD,I,L) t"is 

L!.!.~.!..'!:' ICLASS 

---------

~nt~r count in MCt" 
array ~I~m~nt for 
TYP£-S(MC,N,L) Mis 
IPAIR:.ICLASS 

Figure 8. Simplified program flow chart for the type-B 
correlation mode. 
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ber of values for N for a particular processing is ten. 
For each value· of L, a conditional correlation is pos
sible for each value of N. The function of N is to 
adjust LdA for the cross-reference events. For posi
tive values of N, the maximum allowed cross-refer
ence amplitude class for each value of L is L (ilA)
(N-l )dA. For negative values of N, the minimum 
allowed class is L(ilA)-INldA. 

The actual allowed cross-reference amplitude 
classes are determined by imposing the condition 
that the determined value of N must equal one of 
the L values. This condition is imposed in order to 
obtain conveniently the number of cross-reference 
events employed in any amplitude-conditional 
correlation. The L inputs may number 16, and the 
N inputs 10. 

Assume that the value of N corresponds to one 
of the input values, and that this value was N = 1. 
A check is made (K = O?) to determine if the time 
difference already made is equal to an allowable MD 
class interval. If it is, a count is made into the appro
priate array element for type-B (MD, 1, L), where 
this array has the same 200 delay class intervals as 
the type-A arrays. 

The next step is to determine if the time difference 
is one of the 50 class intervals of the type-B array, 
where these 50 class intervals do not necessarily have 
to correspond to any of the 200 class intervals of 
the type-A's or the B(MD, 1, L),s. The new class 
interval is determined using the input delay class 
width il T2, and a check is made to determine if this 
class interval, MC, is allowed. If it is, a count is 
made in the appropriate array element for the type-B 
(MC, N, L). Following this, either a new reference 
·event or cross-reference event is obtained, and the 
processing continued until a reference event's time 
is found which equals or exceeds the input stop time. 

Printout 

The results of the correlation processing may be 
printed as often as desired. A il T k input to the pro
gram determines the frequency of print in real (exper
imental) time, not machine time. The time of each 
reference event is examined. If its time is > to the 
start time plus dTk (k = 1,2,3, .... ), the results 
of the correlation as of the time of that event are 
printed, contingent upon meeting certain print cri
teria. 

Since the processing is slowed every time the dig
ital computer has to print results, it is economical 

to print only when it is felt the results may have 
meaning. Hence, there are print criteria included in 
the program. At present, there are three print op
tions from which one may choose. Fig. 9 lists these 
in the form of a simplified flow chart. 

Upon entry into the print routine, certain values 
are computed for each array. These values are the 
number of counts, or correlations, expected if one 
assumes that the events are Poisson-distributed in 
time. The expected number of correlation counts 
per class interval is found by forming the product 
of the number of reference events for the particular 
array being examined (N 1) and the number of cross
reference events possible for that array (N2; N2 may 
equal N 1 for certain array types as shown in Fig. 9). 
This product in turn is multiplied by the individual 
delay class interval width of the array being ex
amined. This product is divided by the time differ
ence between the time of the first reference event 
employed in the correlation and the time of the last 
reference event corresponding to the print time. The 
value so determined, X, is the average number of 
correlation counts expected if the process being ex
amined has a Poisson distribution of event times. One 
standard deviation is determined by calculating the 
square root of X. 

In the first option, in order to determine if a par
ticular correlation array is to be printed, the counts 
in all of the class intervals of that array are 
summed. The sum is divided by the square root of 
the product of the number of reference events and 
the number of cross-reference events. This quo
tient, Pc, is compared to an input criteria number. 
If it is larger, the array is printed out. 

The second option employs the previously com
puted value of X. X is multiplied by the number 
of delay class intervals to form a value Y. Y is the 
expected average number of counts for the entire 
array, and \/Y the standard deviation. If the sum 
of the correlation counts in the array exceeds Pc = 
Y ± zyY, where z is an input parameter, then the 
array is printed out. 

The third option consecutively examines each ele
ment in the array. As soon as an array element 
(where the count =I=- 0) is found which exceeds X ± 
zyX, the array is printed. Again,z is an input para
meter. 

In all options, if the print criteria is not met, the 
array type, the value of X and yX for that array, 
and the value of N1 (the number of reference events 
for that array) are printed. In addition: for options 
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for TYPE-s(MD,I,L) and 
for TYPE-A, IPAIR-I,2,3: 
comput. X= NI-N16T/"9 

and fi N/=N2 

for TYPE -A, IPAIR =4,5, 6: 

comput. X=NI'N26T/!J 
and Vx N/~N2 

for TYPE-8(MC,N,L): 
comput. X=NI'N26T2/!J 

and Vx 

comput. Pc= r.INt for N1=N2 
comput. Pc=r./vNI·N2 for 

NlJiN2 

option 3 

as 50 on as a r.. 
is found 3ucli tliat r..=- '1:max or Mat 
r..;60,c'1:min 

NI= numb.r of r.,.r.nc • • v.nts 
N2=numb.r of cross-r.f. .v.nts 

Figure 9. Simplified program flow chart for the Correla
tion Program's print routine. 

1 and 2, the sum of the array counts and the value 
of Pc are printed; for the third option, the peak count 
of an array element is printed. When the print cri- . 
teria is met, the following is printed: array type, 
array, X, yX and N1. Following the type-A's, the 
time of the last reference event is given. 

Printout to date is in tabular form only. To ob
tain a graphical plot, an auxiliary program is em
ployed where the count values (to a scale normal
ized to 1000 maximum) are consecutively entered 
onto cards as a function of the delay class interval. 

RESULTS 

In addition to control test runs, experimental 
data from several motoneurons in the spinal cord of 
cats has been processed through the entire set of 
programs herein described. The results have been 
quite fruitful. * Complete histograms and type-A 
and B correlations have been obtained for a total of 
over 55,000 events. Computation time for event 

recognition, histogram generation and the various 
correlations (e.g., type-A's from a to 2000 ms in 
1 ms delay class intervals) totaled less than 20 
hours. The reduction in time compared to proc
essing the same data by hand is fairly obvious. 

Fig. 10 illustrates one particular result obtained 
from the just mentioned processing. The plot is cor
relation counts on the ordinate and delay class in
tervals along the abscissa. The reference and 
cross-reference events were both EPSP's. The plot 
indicates that there is a preference for EPSP's to 
occur fairly close together. This was borne out by 
recalling the EPSP time interval histogram pre
viously seen (Fig. 5). The remaining portion of the 
correlogram would indicate that the activity is more 
or less a Poisson process. The next illustration 
(Fig. 11) is a time interval histogram from the 
same experiment but at a later time. The· input ac-

*These results will be detailed and the possible anatomi
cal and physiological mechanisms underlying them will be 
discussed in a subsequent paper. 
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Figure 10. Time interval correlation (auto-) results for the 
EPSP's used for the generation of Fig. 5. The time listed in 
the legend is the duration of the experimental data analyzed. 
X is the expected average number of correlation counts 
assuming a Poisson distribution. 

tivity to the monitored neuron had increased con
siderably. This time interval histogram shows the 
same preference of EPSP's to occur close together. 
In addition, there is a suggestion of a preferred 
spacing in the vicinity of 40 to 50 ms, which might 
be overlooked. 

The next figure (Fig. 12) is a correlation plot 
similar to that in Fig. 10. It encompasses the same 
data as the immediately preceding histogram. The 
preference of EPSP's to occur at spacings of 50 ms 
is not obscured in this plot as it was in the histo
gram. In the histogram, the peak occurs around 40 
ms; whereas in the correlogram, the peak is at 50 
ms. The difference between these two peaks is ac
counted for by the high preference of closely spaced 
EPSP's pairs obscuring the real peak in the histo
gram, but not in the correlogram. Furthermore, 
examination of the next illustration, Fig. 13, shows 

. a relationship between the EPSP's and IPSP's, which 
occurred between the times encompassed by Fig. 10 
and Fig. 12, and which would not be discernible 
from examination of histograms. 

The correlograms processed to date have uncov
ered activity relationships between neuronal re
sponses which were not anticipated by monitoring 
during the original experiment or by histograms. 
They were not anticipated for two main reasons. 
First, standard histograms are not overly sensitive 
to relationships of responses due to numerous 
sources mixed together, and prior to this, the ma
jority of analyses of the time relationships between 
neuronal events has been in the form of time inter
val histograms. Secondly, detailed analysis of sever
al thousand events obtained in a single experiment 
has been a long time-consuming process which few 
experimenters have been willing or able to under
take. 
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Figure 11. Time interval histogram of data from the same 
experiment as the previous figures. However, this histogram 
is for a longer duration. Note the suggestion of a periodicity 
at 40 ms. 
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Figure 12. Time interval correlation (auto-) results for the 
EPSP's in the same experiment. The data was for a slightly 
longer duration than that of Figure 11. Note the pronounced 
periodicities, and at a different period than indicated by the 
histogram in Fig. 11. 
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Figure 13. Time interval correlation (cross-) results for the 
EPSP's and the IPSP's occurring during the same experi
mental time encompassed by Fig. 12. Separation of the cor
relation peaks is nominally 50 ms, with the first peak occur
ring at 45 ms, compared to the 50 ms peak in Fig. 12. 
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INFO'RMATION PROCESSING OF CANCER CHEMOTHERAPY DATA 

Alice R. Holmes and Robert K. Ausman 
Health Research, Incorporated 

Roswell Park Memorial Institute 
Buffalo, New York 

INTRODUCTION 

Roswell Park Memoriat Institute, one of the larg
est cancer research and treatment hospitals in the 
world, conducts an extensive program of cancer 
chemotheraphy, the use of chemical agents in the 
treatment of cancer. Roswell Park, acting as the sta
tistical center for participating hospitals throughout 
the United States, is responsible for implementa
tion, control, and follow-up of several chemother
apy studies. To facilitate the handling of the di
verse and extensive amount of data made available 
by the participants, the architects of these chemo
therapy studies found it desirable and necessary to 
automate as many facets as was feasible. This paper 
describes the procedures employed in a system 
which extensively treats medical data. 

GENERAL PRINCIPLES 

For each study the participating hospitals 
throughout the United States follow the same proce
dures, thus insuring essentially identical treatment 
of all patients. This procedure guarantees uniformi
ty which facilitates statistical analyses. Prior to the 
initiation of any given study, guidelines are deter
mined and a protocol to be followed is established, 
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stipulating qualifications a patient must meet prior 
to entry in the study such as age, medical history, 
blood picture, and previous therapy. Also specified 
is the conduct of the study, the method of drug ad
ministration, dosage regimen, frequency of blood 
counts, and follow-up policies. Investigators are 
expected to conform as closely as possible to the 
protocol. 

In conjunction with the writing of the protocol is 
the design of the forms that enables the physician 
to collect the information requested. The proper de
sign of these forms is extremely important, for it 
determines the quantity and order of the material to 
be stored in the computer for later use in several 
types of statistical analyses. To facilitate the han
dling of the data collected, most questions are 
worded for an objective answer. An important as
pect of the system is the return of these forms to 
the statistical unit as soon as the pertinent patient 
information is available to the physician. In this 
manner there is continuing assurance that the pro
tocol is being followed correctly. In addition, the 
immediate response allows for current reports on 
the progress of the study. 

A patient is entered in the study by a referring 
physician who telephones the statistical unit. At 
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this point, he receives information as to the specific 
drug, dosage, and frequency of administration. Sub
sequently, the physician receives written confirma
tion of the entry and procedures of therapy. 

During the exchange of information between Ros
well Park and the participants there are several 
checks on the completeness and accuracy of the pro
tocol procedures. If the forms are received as in
complete, inaccurate, or if they contain discrepan
cies, physicians from the statistical center staff note 
these errors. The corrections are indicated in me
mos which are prepared by a separate semiautomat
ed system and recorded on the IBM Magnetic Tape 
Selectric Typewriter and sent to the participants. If 
corrections have not been received at the close of a 
30-day period, names of delinquents are run 
through the Magnetic Tape Selectric Typewriter, 
which prepares a reminder form. 

Results of the 3-month follow-up examina
tions, perhaps the most important phase of the 
studies, are submitted to determine the effect, if 
any, of the chemotherapy. In this manner it is pos
sible to tell· if there has been a recurrence of cancer, 
the time lapse between therapy and recurrence, or 
most significantly, if there has been no recurrence 
at all. 

The methods of handling the data received, pre
vious to automation, were time-consuming, clum
sy, and inaccurate. The information on each patient 
chart was transferred manually onto three separate 
code cards. Because of the limited available space 
on the cards, only a summary of the data could be 
coded. For example, the total amount of drug given 
was recorded, but the individual doses and dates of 
administration were eliminated. In addition, only 
the lowest blood count was punched in the card, 
eliminating the daily record. This system made it 
impossible to analyze the effectiveness of the drugs 
accurately and completely. 

As the number of studies grew, the staff became 
aware of the absolute necessity for a method which 
would allow more intricate and sophisticated rec
ording and analysis of patient information. A 
means was devised by which a greater amount of 
data could be recorded with less manual labor. With 
the introduction of an automated system, initiated 
in 1963 and utilizing an IBM 1401, the chemother
apy studies have produced more reliable informa
tion, stricter adherence to the protocol, and less mis
interpretation of data. 

METHODS AND PROCEDURES 

The individual patient charts were chosen as the 
initial input documents since they afforded the 
most logical and practical method of handling raw 
data. Because of the format of the charts, it was de
termined that most of the data could be punched 
directly from the charts with an absolute minimum 
amount of coding. 

The first stage of automation included the design 
of the punched card layout. Since the cards are 
punched directly from the patient forms, the card 
layout follows these forms as closely as possible. 
The number of columns to be allowed for an item 
provides for the highest possible value of the par
ticular data. Two major controls incorporated on 
each punched card are the card type number and 
patient study number. The card type number indi
cates a particular card format and the information 
recorded on that card. As an example, the patient's 
former medical history may be recorded on one 
card, while daily observations may be found on 
another. The unique number assigned~ to each card 
reveals at a glance which category of information is 
contained on the card. 

The patient study number, different for each pa
tient, is punched on all cards for that patient. In the 
event that one card is separated from the others be
longing to a patient, the information is not incorpo
rated incorrectly with the data recorded for another 
patient. 

The assigning of codes to that data which have 
not been written previously in numerical form must 
be established in conjunction with the design of the 
card layout. Examples are the indication of sex, to 
be coded with a 1 or 2, or any type of yes or no 
question which can be coded with a 1 for yes and 2 
for no. This translation can be accomplished easily 
by keypunchers. 

Magnetic tape is employed as the storage device 
for the records. The tape format can be designed in 
several different ways. Each tape record may be 
made identical to the initial input card, resulting in 
a card image on magnetic tape. In this case, card 
type and study number are retained on each tape 
record, insuring proper identity. The second method 
of formatting the tape is to combine several input 
cards into one tape record. Utilizing this approach, 
type and study number appear only one time. A 
third way is to combine all cards for a patient into 
one record; unless there is a fixed number of rec-
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ords for every patient, this method is not advisable. 
The present application creates a tape record for 

every input card. The number of records per patient 
may vary from 5 to as many as 100, depending on 
the number of daily observations recorded for a pa
tient. If there were one record per patient, the rec
ord size would range from 400 characters to 8000 
which would be cumbersome to program and ana
lyze. 

SYSTEM ORGANIZATION 

The first program in the system writes the data 
cards on tape. A standard card-to-tape routine is 
used providing there are no changes or modifica
tions in the data at the time it is written on tape. 

When the tape is not formatted in the same man
ner as the cards, it is converted to the proper lay
out. This conversion may include combining two 
card records into one tape record, or possibly rear
ranging the data so that it can be manipulated more 
effectively. What may be efficient for keypunching 
may not be efficient when working with the mas
sive file of patient records on tape. 

Once the tape has been created and sorted, a 
complete edit is performed by the computer in or
der to check all the data for accuracy, completeness, 
and logic or validity. If the individual who re
viewed the patient form overlooked a discrepancy, 
or the data was keypunched erroneously, the pro
gram detects and prints the error. 

There are several different types of checks. Most 
data are screened for validity. For example, months 
must be numbered 1-12, days 1-31'. Some data can 
be coded only with certain codes (male = 1, female = 
2). A code of 3 for sex would indicate an error. 

A portion of the data is recorded on several dif
ferent records as they occur; the dates are cross
checked in each location to insure compatibility. A 
case in point is the date of surgery which appears 
on three types of records. These dates must agree 
since there is only one possible date of surgery in 
the study. Calculating the patient's age from date of 
birth and comparing it to the given age is another 
important check. For these studies age is a princi
pal factor in determining the type of therapy the 
patient is to receive because an error may exclude 
the patient from the study. 

In some instances the given information deter
mines the nature of other information that should 
be present. If the patient died during the course of 

the study, there must be a date of death, or in the 
event that a patient had a disease recurrence, the 
site and system of the recurrence must be recorded. 

The amount of drug given is reviewed to insure 
that the dosage was in accord with the protocol. 
Extremely low or high blood counts are listed and 
checked later. Checks on all dates that must be later 
than the date of the surgery are made to detect any 
errors. All parameters specified in the protocol are 
examined to insure that the patient has met the 
qualifications for the study. 

When the tape has been edited, the list of errors 
is sent back to the statistical unit for correction. 
This function may involve writing a letter to the 
investigator for clarification, or it may represent 
re-coding and repunching. After editing, the tape 
is merged with the master tape, thus creating a new 
master. 

The update program demands a variety of rou
tines. First, it allows for the inclusion of new pa
tkmts on the master tape in the proper sequence. 
Second, it permits the insertion of additional records 
for a patient and also the deletion of extraneous 
records. Third, this program has the flexibility nec
essary if data on a particular record demand altera
tion. 

After the master tape has been updated, it is 
ready for statistical analysis. A duplicate of the 
master tape, denoted as a "frozen tape," is created 
for the statistical work. This tape is not updated as 
frequently hecause statisticians run correlations, 
frequency distributions, and analyses which do not 
anow for the daily change of the data. On the other 
hand, administrators require up-to-date informa
tion to prepare reports, or to provide the investiga
tors with current data relative to their patients. Re
quests for information concerning certain facets of 
the study are made at frequent and irregular inter
vals. 

As soon as a patient is entered in the study, the 
initial entry form is sent to be keypunched. This 
information consists of the patient's study number, 
name, type of therapy, and date of surgery. The 
card is written on tape. The master tape is updated 
and contains at least one record for every patient 
entered to date. Reports must be prepared monthly, 
giving a distribution of the number of patients en
tered in each different drug category by hospital. 
Having an automated record of each patient entered 
allows for the production of reports that are cur
rent. Prompt fransit of the forms to the statistical 
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unit is of utmost importance. If forms are overdue, 
a letter is sent to each investigator. As a form is 
received, it is recorded and the patient's tape record 
is updated daily. Each month a delinquency pro
gram is run against the master tape to determine 
which patients have outstanding forms. A personal 
letter with a list of the missing forms is written to 
the investigator on the computer printer. These let
ters have been extremely effective in reminding the 
study participants that they must send information 
promptly. They continue to receive a letter each 
month until all deliquent forms for a patient have 
come into the office. 

Another control is the determination of which 
patients are overdue on the follow-up section of 
the study. Since the patients must be examined ev
ery three months, forms summarizing the results of 
the examination are submitted. A list of overdue 
patients by hospital,as well as those patients who 
must be seen during the current month, is prepared 
by the computer. This list gives the patient's study 
number, name and date that the patient should have 
been seen. 

These two systems are the most effective way of 
reminding the study participants. They have provid
ed more effective control and obtain requested in
formation with more accuracy and tess time. 

Specific and individual patient or drug informa
tion which may be of extreme importance to a 
particular physician is easily available. He can re
ceive a printout for each patient which might in
clude daily drug dose, any toxicity, and other data. 
In another case, a doctor may phone to inquire 
about response and/or toxicity of a particular drug 
to determine if he wishes to administer this drug to 
a patient. If results show that patients having a tu
mor and receiving a certain drug experience ex
treme toxic reactions, a doctor may not wish to ad
minister the agent or may wish to give a smaller 
dose. 

Frequently, requests are made to submit reports 

or punched cards to the National Institutes or 
Health, coordinators for these chemotherapy stud
ies. Because all conceivable patient information is 
on tape, it is possible to provide any requested data 
in whatever format is desired. With the former 
method or present methods at statistical centers 
other than Roswell Park, much of this data would 
have to be obtained from the patients' charts and 
either coded, if punched cards were requested, or 
typed, if a report were requested. This process is 
long and tedious, especially if each patient must be 
recorded separately. 

The ability to punch certain information from 
the master tape and make graphs with a plotter that 
is connected to the IBM1620 is important, as it 
eliminates the expenditure of many man hours. 
Graphs are plotted for individual patients to com
pare the response of their tumors (e.g., did one tu
mor decrease, while another increased during study, 
or did the tumors decrease while the patient was 
receiving drug, and then increase with suspension 
of the drug). Applications of this kind are extreme
ly usefut when developing reports or presentations 
concerning a particular study. 

SUMMARY 

As a result of this system, more patient informa
tion is recorded with less summarizing and coding 
of the data prior to punching and writing on tape. 
The data, which always is current, facilitates the 
control of delinquent forms and produces reliable 
and representative reports. 

The ability to perform more intricate and sophis
ticated statistical analyses has been enhanced by the 
system because of the improved condition and in
creased amount of data recorded. 

The accurate and close scrutiny on the progress 
of these chemotherapy studies offers physicians in
formation which previously was available to them 
only through the "trial and error" method. 
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CHEMOTHERAPY STUDIES 
SYSTEM FLOW CHART 

Figure 1. Chemotherapy studies - system flow chart. 
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A FACILITY FOR EXPERIMENTATION IN MAN-MACHINE INTERACTION* 

w. W. Lichtenberger 
Computer Center and Department of 

Electrical Engineering 
University of California, Berkeley 

INTRODUCTION 

The broad objective of the project of which the 
work reported below is a part is to explore and de
velop techniques in man-machine interaction. The 
situation involving a person interacting with a ma
chine in the performance of a task generally re
quires that the person be on-line with the ma
chine. The amount of machine time wasted while 
the person is carrying out his part of a task may 
require, even in an experimental situation, a time
sharing system. 

The Role of Time-Sharing in the Project 

The time-sharing facility described below was 
constructed 

( a) to develop and test some ideas in time
sharing a digital computer and 

(b) to develop a useful facility for a variety 
of experimenters in man-machine inter
active areas. 

It should be emphasized that the time-sharing 
system, although general in nature, is an experimen
tal system intended to give great flexibility and fast 
response to a limited number of users. (In particu-

*The work reported in this paper was supported by. the 
Advanced Research Projects Agency, Department of De
fense, under Contract SD-185. 

and 
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lar, it is not designed to serve a large number of 
users over a broad spectrum of problems as a utility 
approach 1,2 to time-sharing.) 

Design Philosophy of the Time-Sharing System 

Because of the variety of tasks to be performed 
by the users of the system it was felt that each user 
should be given, in effect, a machine of his own 
with all the flexibility, but onerousness, inherent in 
a "bare" machine. It was also felt that additional 
features should be provided to enable the user to 
reduce the onerousness, perhaps at the cost of flexi
bility, to the extent desired. Thus each user is given 
a "copy" of a slightly modified SDS 930 with 16K 
of fast memory. This "copy" differs from the nor
mal Scientific Data Systems (SDS) 930 only in (1) 
the obvious impairment of certain real-time capa
bilities which result from the neces~ity of running 
programs for short, nonregular intervals, (2) the 
substitution of a set of instructions which initiate 
system-controlled input/ output for . the standard 
I/O instructions, and (3) the addition of many new 
(software-interpreted) instructions along with 
various system routines and a number of large
scale subsystems. 

In order to cut down response time it was felt 
desirable to have more than one program present in 
memory and to swap with auxiliary memory only 
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when nec{"ssary. In practice, swapping occurs rela
tively frequently. 

For further economy of both active and auxiliary 
storage, it was felt desirable to provide for common 
programs - single copies of programs shared by 
more than one user. Common programs are pure 
procedures with a unique copy of temporary storage 
assigned to each user. Many system routines are writ
ten as common programs, as are some large-scale 
systems. 

The major part of the system executive, for ex
ample, is a common program. Since this part of the 
executive was written as it were dealing with one 
user it was simpler to write and to debug. Further
more, the same part of the executive would require 
no changes if more central processors were added to 
the system. Simplicity, small size, and flexibility 
were among the goals of the system executive, and 
all of these goals have been to some degree 
achieved. 

The project objectives made it desirable to base 
all input/ output around the remote consoles as 
much as possible and to minimize the role of more 
standard I/O equipment (cards, line printers, mag
netic tapes, etc.). The user is given mass storage in 
the form of either word-addressable or sequential 
files and a generalized file-handling capability. 
Files are independent of any peripheral I/O device 
or storage medium and are addressed homogeneous
ly regardless of their current position in the storage 
hierarchy. The file-handling facilities augmented 
by comprehensive editing programs provide the us
ers at remote consoles the ability to manipulate in
formation conveniently within the system. 

SYSTEM DESCRIPTION 

Local Units 

As shown in Fig. 1, the system is built around a 
modified SDS 930 central processor3 and a main 
memory consisting of two 16K modules of core 
storage. The main memory is augmented by a large 
capacity drum which is in turn augmented (it is an
ticipated) by a mass storage unit. Filling out the 
list of local components are the teletype, multiplex
or, the I/O processor, a 45KC magnetic tape unit, 
and a 200-cpm card reader. 

A cursory description of the SDS 930 central 
processor and its modifications for time-sharing is 
the subject of several of the following sections of 

this paper; therefore, the various memory devices will 
be given first attention. 

The main memory consists of two modules of 16,-
384 words. The words are 25 bits in length (includ
ing a parity bit), and the memory cycle time is ap
proximately 1.9 microseconds. Each of the modules 
is connected to three memory buses. These buses 
have fixed priorities, with the drum I/O processor, 
the general I/O processor, and the CPU connected 
to buses having progressively lower priority. To ac
commodate the high data transfer rate of the drum 
(525 x 103 words per second), the timing for the 
main m~mory units and for the CPU are derived 
from a timing track on the drum, and the memory 
addresses are interleaved between the two modules. 
By having the drum I/O processor reference the 
modules alternately, the CPU can operate at ap
proximatly 65 percent capacity during drum trans
fer operations. This assures that interrupt pro
cessing capability is preserved and that a significant 
amount of processing accompany the data transfer 
operations. 

The next level of storage is in the form of a 
magnetic drum* having a capacity of 1,376,256 
words and a data transfer rate of approximately 525 
x 103 words per second. The drum is word-address
able to facilitate handling files and has a storage 
format commensurate with its function of swapping 
programs, or parts thereof, between the drum and 
the main store. This format provides 84 bands of 
16K words, with each band divided into 8 segments 
of 2K. Each of the segments is separated by a gap 
of sufficient length to allow the drum I/O processor 
to accept an instruction between segments. This 
feature facilitates the scatter reading and writing 
necessitated by the memory page technique em
ployed (d. Memory Relabeling and Protection, be
low). 

The next level of storage will be in the form of a 
mass storage unit having a capacity in excess of 
108 words and an access time not greater than 0.5 
second. This unit will have some type of inter
changeable cartridge, thus providing yet another level 
of storage having a still greater capacity and access 
time. 

The teletype multiplexor consists of 16 input and 
16 output buffers along with control logic to notify 
the computer of buffer conditions requiring service. 
The general I/O processor is another device having 

*The drum is being produced to local specifications4 by 
Vermont Research, North Springfield, Vermont. 
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very little complexity. It is made up of a central 
control channel and several independent subchan
nels. The subchannels operate concurrently and may 
retain their requisite information (word count and 
current address) internally or in· main memory. 

The final two local units, the 45KC magnetic 
tape unit and the 200-cpm card reader are used by 
the occasional user who desires to transmit data be
tween this and some other system via one of the 
media processed by these units. In addition, magnet
ic tape is being used temporarily as a secondary 
storage medium. This function, of course, will be 
assumed by the mass store upon its acquisition. 

Remote Units 

The remote units include 10 model 33 and model 
35 teletypes, 2 different types of CRT display
keyboard units, and a PDP-5 with a CRT display 
and Rand Tablet. 

The teletypes are operated in the full-duplex 
mode with each character being individually pro
cessed by the CPU. That is, the teletype keyboard 
and printer are treated as independent units by the 
system I/O programs, and, for further flexibility, 
the input characters to the CPU are processed on a 
character-by-character basis rather than on a 
message basis. This procedure consumes processor 
time (approximately 300 microseconds to input and 
echo a character, and 200 microseconds to output a 
character), but experience indicates that the capa
bilities thus obtained justify the processing expen
diture. * 

In fact, the full-duplex, character-by-charac
ter I/O philosophy will probably be carried over to 
the alphanumeric CRT display-keyboard stations. 
These stations will consist of CRT display units 
driven by a central buffer and control unit located 
in the vicinity of the stations and keyboards which 
will communicate with the CPU via the central con
trol unit. 

The second type of CRT display-keyboard sta
tions will be similar to the Culler-Fried console.5 

These consoles employ a storage tube display with a 
script generator, i.e., a generator which produces 
short vectors of length and angle specified by the 
input character. 

For research efforts requiring a more capable 

*It is calculated that 16 teletypes executing independent 
input and output simultaneously at full speed consume 8 
percent of processor time. 

CR T display system, a remote unit is provided 
which consists of (1) a PDP-5 processor with 4K 
words of memory, (2) a CRT-display unit6 with 
character, vector, and script generators, * and (3) a 
RAND tablet. 7 These three major components are 
integrated into a unit which provides the researcher 
with a large amount of flexibility with regard to 
both the use of the present system and the addition 
of supplemental equipment to provide still greater 
capabilities. 

In the present system, the PDP-5 functions as a 
buffer and controller for the CRT display and the 
RAND Tablet and performs some elementary oper
ations such as smoothing the data input from the 
Tablet. All computations are performed in the cen
tral computer. 

FEATURES OF THE MODIFIED 930 
USED FOR MULTIPROGRAMMING 

Modes 

The role of the system monitor is unique among 
programs residing in the machine. Reflecting this 
fact, the 930 has been modified to operate either in 
monitor or in user mode. Monitor mode permits the 
monitor the use of privileged instructions and un
restricted memory. The function of user mode is the 
subject of the following sections. 

Protection of the System from User Action 

It is necessary to protect the system and all other 
users from certain actions of any user. Such actions 
include the execution of instructions which: (a) 
affect peripheral equipment, (b) halt computation, 
(c) interfere with rapid response to interrupt re
quests, or (d) access unassigned memory locations. 

User actions of type (a) and (b) are handled 
merely by trapping the offending instruction ( the 
term trap means an interrupt of highest priority). 
Instructions which fall into this category are called 
privileged instructions. When the 930 is in user 
mode an attempt by a user to execute a privileged 
instruction will result in the execution of a no-op 
followed by a transition to monitor mode and a 
transfer of control to a memory location unique to 
the illegal instruction trap. 

*The display is being produced to local specifications by 
the Burroughs Corporation, Ann Arbor Laboratory, Ann 
Arbor, Mich. 
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Type (c) actions are treated by permitting inter
rupt requests to preempt execute and indirect ad
dress operations. If either of these operations are in 
process when an interrupt request occurs, the opera
tion is aborted and the interrupt request acknowl
edged. Upon return to the interrupted program the 
aborted intruction is begun anew. In this way, infi
nite indirect address and execute loops in a user's 
program cannot halt the system. 

The -solution to user actions of type (d) is relat
ed to memory relabeling and is discussed in the fol
lowing section. 

Memory Relabeling and Protection 

The memory relabeling or paging technique8 

adopted provides both for dynamic program reloca
tion and memory protection with no increase in 
memory access time. The technique was adopted 
initially because it eliminates the need to move in
formation around within the fast memory in order 
to provide space for incoming programs and be
cause it easily provides memory protection. Other 
important uses (discussed later) became apparent 
as the system progressed. The implementation con
sists of 8 relabeling registers of 6 bits each laid out 
in 2 registers as shown in Fig. 2. 

r6 Bits1 

) I RO I Rl R2 R3 

R4 R5 R6 R7 I I 
I~ 24 Bits J 

Figure 2. Physical arrangement of relabeling registers. 

For purposes of relabeling, the memory is divid
ed into 16 pages or blocks. Calls are addressed by 
block number and location within a block as speci
fied by subfields of the address. 

The block or page size is fixed at 2K by the 11 
bits of the least significant part of the address 
(which may be thought of as an address within a 
page or a page address). Because the address field 
of the 930 contains 14 bits, only 16K or 8 pages 
are permitted each user. The upper 3 bits of the ad
dress constitute the page number. Relabeling hard
ware replaces the user's page number i with an ac-

tual page number Ri which may be different from 
time to time as the program is moved in memory 
(cf. Fig. 3). Because of the spatial relationship of 
the page number and page address, the user is not 
conscious of page structure. Note that relabeling 
permits user's storage to be located in noncontigu
ous blocks while appearing to the user and to the 
machine to be connected. 

Of the 6 bits in a relabeling register, the lower 5 
are used for the actual page numbers. Addresses af
ter relabeling are therefore of length 16 bits, per
mitting as much as 64K of fast memory in the sys
tem. The sixth bit in a relabeling register designates 
a read-only block. The facility to have read-only 
storage enables users to share subsystems directly 
without interference and without the necessity of 
calling the monitor constantly to change relabeling. 

Absolute memory protection (i.e., protection 
against any reference) is accomplished by using 
Ri = 0 to mean that no memory is assigned to the 
page i. Any reference to a cell whose relabeling reg
ister contains zero is trapped. 

Figure 4 shows a 6K memory allotment distributed 
in 2K blocks at 24000, 64000, and 14000. The block 
at 14000 is read-only. It may be seen that references 
to any location greater than 13777 will point to one 
of the relabeling registers 3 through 7, causing an 
out-of-bounds trap. The choice of the combination 
Ri = 0 prevents absolute memory locations 00000 
through 03777 from being used for user programs, 
but this is of no consequence since that area is part 
of the monitor. Note that the user may transfer con
trol, for example, to his locations 10000 through 
13777, but an attempt to store information there will 
cause a trap. 

Relabeling is always performed in user mode. It 
is also possible to invoke relabeling for individual 
instructions in monitor mode. In accessing memory 
to obtain the effective address of an instruction, 
any word encountered with Bit 0 set causes relabel
ing to apply immediately and for the duration of the 
instruction. Thus an instruction with Bit 0 set causes 
relabeling of its address, while an instruction with 
a chain of indirect addresses produces relabeling 
at the first instance of Bit 0 set. In the latter case sub
sequent references come from relabeling memory. 

Mode Transitions 

During the design of the modifications to the 930 
it was felt desirable to make the transitions between 
modes- as simple and as natural as possible. In par-
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User 's Page Number i page address User's Address 
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R7 

j, l' 
al Pag~ Number G. page address 

1 Actu Memory Address Register 

8 12 13 23 

\. __ ---_ _----..J 
V 

Actual Memory Location 

Figure 3. Action of relabeling. 

ticular, it was felt that there should be provided 
sufficient hardware capability to insure that the in
terrupt routines could be independent of the mode 
of the machine at the time of the interrupt and that 
the system routines explicitly called by the various 
programs should not require software interpretation 
of 

• the source of the calling program (monitor 
or user), 

• the location of the call, 
• the location of the arguments, and 
• the specific action requested. 

Readers who have some experience in implement
ing high-speed interrupt or I/O routines will per
haps appreciate the spirit of the above objectives. 

Transitions from user to monitor mode occur 
only upon (1) an interrupt or trap, or (2) execu
tion of a system programmed operator (cf. the fol
lowing section). The. user has no interest or direct 
concern over category (1) and does not think expli
citly of the instructions in category (2) as changes 
of mode. 

The system initiates the transition from monitor 
to user mode by transferring control to a user pro
gram. Specifically, a control transfer calling for re
labeling causes a transition to user mode. 

In order to provide closure in the above scheme, 
the previous mode of the machine is stored as a 
single bit in the subroutine link of both interrupt 
and system programmed operator routines. The bit 
used is the same as that used to designate relabel-
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RANGE OF USER'S 
PHYSICAL ADDRESSES 
PAGE NUMBER 

~ 

~ 
(0) (I) (2) 

(3) IOOO~} 
13777 

~ 
000101 

001101 

(4) 
(5) 00000 (6) (7) 

100011 
03777 

100000 
(8) (9) (10) un 

100000 

100000 (12) (13)04000 (14) US) 

100000 07777 

100000 
PHYSICAL MEMORY 

Figure 4. Example of a 6K memory allocation. 

ing. Thus at the end of the routine, when the return 
instruction is executed, the mode will automatically 
revert. If arguments are accessed through the link 
(cf. the following section), relabeling is or is not 
applied, depending on the mode storage bit. 

Table 1 summarizes the primary functions of the 
modes. 

System Programmed Operators 

Input/output instructions are among the privi
leged instructions not allowed in the user's ma
chine. The system must do all I/O for the user, and 
he must therefore be able to call the system for such 
services. Also the system executive requires many 
complex services, some of which are potentially 

useful to a user. Such services should be provided 
by system calls. The system programmed operator 
(SYSPOP) is the device by which such calls are 
accomplished. 

The SYSPOP is an extension of a normal 930 
feature-the programmed operator (POP). POP's 
are invoked by setting a bit in the instruction word, 
and they function as a special kind of subroutine 
call. In-the execution of a POP the op code bits are 
not decoded in the usual way. Instead, they are tak
en to be the relative address in a transfer vector be
ginning at 01008 to which control is transferred. At 
the same time the contents of the program counter 
and status of the overflow indicator are stored as a 
subroutine link in location 00000. The indirect ad
dress bit of this link is set as well. Single arguments 
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Table 1. Summary of 930 Modes and Their Effects. 
Monitor Mode 

All 930 instructions may be 
executed. 

Normal addressing applies to 
references without Bit O. 
References with Bit 0 set call 
for relabeling. 

Transition to user mode occurs 
upon executing a transfer whose 
effective address is relabeled 
(i.e., Bit 0 is set). 

or the location of a list of arguments can thus be 
transmitted to the body of the POP indirectly 
through the link in 00000. The format of a POP is 
the same as that of a normal routine instruction, 
hence the POP is a convenient way of simulating 
nonexistent machine instructions. 

The 930 was modified so that a POP executed in 
user mode with Bit 0 set causes transition to moni
tor mode. The user thus has the facility to jump to 
a standard transfer vector in the system. Note that 
the user may still implement his own POP's. The 
SYSPOP's, however, give the user 64 new "machine 
instructions" which do not require his memory allo
cation or other attention. 

The reader should note that by having the mode 
stored in the relabeling bit of the link, all four ob
jectives for system routines listed in the preceding 
section are accomplished; modes are completely in
visible to interrupt and system programmed opera
tor routines. Most importantly, interrupt routines 
take no more time and in fact are no different from 
similar routines in a non-time-sharing system. 
Furthermore, the overhead associated with calls to 
the system (SYSPOP's) is only 4 memory cycles. 

GENERAL DISCUSSION OF 
SYSTEM FEATURES 

The features of the system described above 
came into being through a compromise between 
that which is desirable and that which is feasible, to 
implement time-sharing on a machine basically 
not designed for time-sharing. Some of the fea-

User Mode 
All 930 instructions except 
privileged instructions (1/0, 
halts, etc.) may be executed. 

Relabeling applies to all 
memory references. 

Transition to routine mode 
occurs on all interrupts or 
executions of SYSPOP's. Bit 0 
is set at the formation of the 
first subsequent subroutine link 
so that memory access to data 
will be relabeled and so that 
control will revert to user mode. 

tures have been shown to be surprisingly compact 
and effective, however. For example, the SYSPOP 
provides a simple but versatile system call. Also, 
relabeling is not only useful for dynamic storage 
allocation but provides the basic means by which 
common programs can be constructed. 

Method of Writing Common (Re-Entrant) Rou
tines 

By its very nature, a common routine consists of 
( 1) a pure procedure-a body of code which is not 
self-modifying and in which there is no temporary 
storage-and (2) one or more copies of all tempo
rary storage associated with the routine. To imple
ment a common routine, one allocates all temporary 
storage-the data block-to a unique block or blocks 
of memory different from those blocks of the proce
dure body. Because the procedure is pure the state 
of a computation at any time is determined by the 
contents of the data block and the active registers. 
Thus to interrupt computation for one user and 
continue computation for another is merely a mat
ter of saving' and restoring active registers and 
changing relabeling for the data bloc~. 

The only programming conventions which must 
be followed in writing the procedure body are those 
of avoiding self-modification. Avoiding direct 
self-modification is especially easy in a machine 
like the 930 which permits combinations of index
ing and indirect addressing and which has an exec
utive instruction. The programmer simply avoids 
storing information within the program. Assemblers 
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can check programs for such storage automatically. 
In addition to the constraints mentioned above, 

the programmer must avoid the use of the normal 
SDS 930 subroutine transfer (BRM) since it stores 
the subroutine link at the head of the subroutine 
and thus within the procedure body. At the mo
ment, a SYSPOP is provided to steer the link stor
age indirectly one level into the data block. This is 
done by placing the address of the subroutine link 
at the head of the subroutine, where the link itself 
would normally reside. Thus the SYSPOP SBRM y 
at location p first looks in y to find a link address 
z. The value p is then stored in z, which is outside 
of the pure procedure. Control is transferred to y 

+ 1. Return is accomplished with the normal sub
routine return instruction using indirect addressing 
(BRR ~ y) . The indirect address sequence causes 
the machine to look first in y to find z and then in 
z to find p. Control goes to p + 1. It is anticipated 
that SBRM will be incorporated as a new 930 in
struction. 

In cases of the occurrence of POP's within a pro
gram, it is usually desirable to have the data block 
at least start within the user's block O. The use of a 
POP places a return link in the user's location 0, 
and this, of course, must be in the data block. 

It should be noted that the utility of relabeling in 
implementing common routines was not fully real
ized at the outset. It should also be observed that 
using relabeling for such purposes restricts the com
mon routines virtually to subsystems (compilers, 
debuggers, interpreters, etc.) since an entire page is 
reserved for temporary storage. Routines of this 
magnitude, however, do have the most need to be 
single-copy. 

In our system many functions which might other
wise force users to have copies of the same little 
routines in their programs are taken over by SYS
POP's. Finally, for those routines that lie halfway 
between (e.g., packages of mathematical subrou
tines-SIN, COS, etc.) the read-only facility allows 
users to share procedure storage. The only abridg
ment of the users' freedom here is that such rou
tines must be located absolutely in user memory so 
that they. may address themselves properly without 
asking the system to change relabeling upon entry 
and exit. 

The Structure of SYSPOP's 

The SYSPOP mechanism is basic to the overall 
system and is used extensively by programs at all 

levels. SYSPOP routines run in monitor modes. If 
called by a user the execution of a SYSPOP is part 
of his program, and this is the only instance of a 
user-controlled program running in monitor mode. 
The absence of normal protections during such in
tervals imposes constraints on the program structure 
of SYSPOP's as follows: 

1. SYSPOP's must be written so as not to 
cause disaster if erroneously called. This 
feature calls for a certain amount of soft
ware interpretation, but it is on a. different 
level from the interpretation spoken of in 
the section on Mode Transitions. 

2. SYSPOP's are normally small and of short 
duration. Because they share the same link 
it is difficult to make SYSPOP's re-en
trant without time-consuming maneuvers. 
The SYSPOP's are therefore not re-en
trant and contain their own temporary 
storage. 

3. Since SYSPOP's are not re-entrant and 
since they are shared by all users and by 
most parts of the system itself, program 
interruption is handled by allowing a SYS
POP in process to go to completion. This 
is done by having all SYSPOP's return 
control through a common ( I-instruc
tion) routine. 

The reader should note the merit of the mode
changing scheme discussed in the section on Mode 
Transitions, as reflected in resulting simplicities in 
SYSPOP's. Recall that the mode of the calling pro
gram is stored in Bit 0 of the link, and that the SYS
POP accesses the calling parameters indirectly 
through the link. If a user calls a SYSPOP, relabel
ing will be applied to accesses of calling parame
ters, otherwise not. When returning control the SYS
POP executes a return instruction. If Bit 0 of the 
link is set, relabeling is applied and the mode is set 
back to users'. Thus modes are completely invisible 
to SYSPOP's. 

SUMMARY 

The project goals discussed at the beginning of 
this paper have been set. The time-sharing system 
involving memory relabeling, common routines, and 
duplex . teletype operation has been in operation 
since April, 1965. The system is highly flexible and 
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can provide, for users who require it, a response 
time of less than one second. 

It should be noted that memory relabeling* is 
accomplished with no increase in access time. The 
number of processor modes is small (two) , and 
mode transitions are done in su~h a way as to en
able interrupt and user-called system routines to be 
independent of mode. 

The user machine is clean and well defined. In
put/output is simpler, more foolproof, and device
independent. The user is given a variety of other 
services ranging from generalized file-handling 
capability to string processing to assemblers, com
pilers, debuggers, and editors. 
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A TIME- AND MEMORY-SHARING EXECUTIVE PROGRAM 
FOR QUICK-RESPONSE ON-LINE APPLICATIONS 

James W. Forgie 
Lincoln Laboratory* 

Massachusetts Institute of Technology 
Lexington, Massachusetts 

INTRODUCTION 

APEX is an experimental operation-oriented 
on-line data analysis system being developed for 
the TX-2 Computer at MIT Lincoln Laboratory. 
This paper describes the executive program which 
has been designed to satisfy the needs of that system 
as well as the other activities currently soaking up 
the computational energies of TX-2. These needs 
are developed into a set of requirements for a 
fast-response time-sharin~ system. The require
ments, in turn, lead to a· series of design decisions 
which involve both the hardware and software parts 
of the system. A memory and program-sharing 
system, with the hardware to make such a system 
efficient, takes the form of a complex of apparent 
computers, one for each console, which share some 
common hardware (TX-2). 'The salient character
istics of these computers are described as well as 

-theexecutiV'~ program structure which gives them 
apparent reality.-

BACKGROUND 

The TX-2 Computer, an experimental facility 
at MIT Lincoln Laboratory has been in operation 

*Operated with support from the U. S. Air Force. 
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since 1960. Never a service facility, the computer 
has been used principally in a number of long
term research projects which have taken advantage 
of the special input! output capabilities and direct 
accessibility of the machine. These projects have 
included such areas as graphics, waveform pro
cessing, and pattern recognition. Most of the work 
on the computer has involved reai-time inputs, 
interaction with output displays, or both. The com
puter has always been used as an on-line facility 
with the bulk of the computer time being used in 
sessions of several hours duration. Programming 
has been carried out in machine ,language augment
ed in the past by a number of personal macro lan
guages and recently by a more general macro lan
uage for list processing (CORAL). An on-line 
macro assembler, MK 4, has been used both as an 
assembly program and an on-line operating system 
by most users. In the fall of 1963 it was decided to 
realize on TX-2 on experimental operation-ori
ented on-line system in order to study man-ma
chine interaction in problem solving. This system 
(APEX) is designed to allow the scientist or engi
neer to make use of the computer throughout his 
work on a data analysis problem without having to 
be concerned with many of the details ordinarily 
involved in programming a computer. The system is 
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based on a library of computational and display 
routines which may be called directly by the user in 
an appropriate problem-oriented language. For a 
problem area in which library routines exist, it is 
expected that individual library routines or short 
combinations of routines will suffice for a high per
centage of the total operations needed. In order to 
handle the few remaining cases, it is desirable to 
have within the system special and/or general com
pilers which the user can utilize to create the occa
sional pieces of program which he may need to 
complete the solution to his problem. It is likely 
that a person using a system of this sort will proba
bly spend much more time looking at his displays 
and thinking about what to do next, than he will 
spend actually doing computations. Economics then 
dictate that mUltiple consoles should be provided 
for the computer, and the computer facilities shared 
among these consoles. An executive program which 
will handle such sharing of the computer facilities 
and related problems of storage allocation and com
munication becomes desirable to complete the sys
tem. 

In January of 1964 a firm commitment was made 
to undertake the realization of such an operation
oriented on-line system on TX-2. Since experi
mentation with the new system would put pressure 
on the already full schedule of TX-2, a further re
quirement was placed on the design of the new sys
tem, namely, that its executive program should al
low for the use of TX-2 in something approaching 
its accustomed style at the same time that the sys
tem was running. Thus the advantages of time
sharing could be made available to the existing us
ers of the machine. This paper discusses the design 
of the executive system which has grown out of 
those decisions. 

SYSTEM REQUIREMENTS 

The design requirements for the APEX executive 
system may be briefly stated as follows: 

1. Time-Sharing. The system should provide 
for time-sharing essential computing facilities 
among a small number of consoles (perhaps half a 
dozen), most of which would have oscilloscope dis
plays as well as the usual keyboard and typewriter. 

2. Fast Response. The on-going activities in 
graphics, waveform processing, and pattern recogni
tion all involved the use of interactive displays. It 

appeared that response times in excess of one sec
ond would noticeably degrade the performance of 
already existing programs in these areas. In addi
tion, the proposed experiments with the opera
tion-oriented on-line system called for the abili
ty to degrade response time in order to measure its 
effect on the user. Thus, all proposed applications 
of the system called for fast response under most 
circumstances. 

3. Retention of Results. The executive should 
assume responsibility for the implicit retention of 
all program and data files whose destruction was 
not specifically ordered by the user or his program. 

4. Subroutine Autonomy. The executive should 
allow any program, written as a closed subroutine 
and following certain conventions, to be run as an 
independent pro gam making full use of core stor
age addresses and index registers. Routines to be 
run in this fashion should be precompiled and 
stored in absolute binary form. They should be 
completely independent of the routines which call 
them and may thus be called recursively. The exec
utive should provide isolation and protection for 
such routines and facilitate the passing of parame
ters to them. This requirement for subroutine auton
omy was intended to allow both fast operation of 
library routines by eliminating compilation or relo
cation time and relative simplicity of programming 
by minimizing the number of conventions such rou
tines must follow. 

5. Flexible Input/Output Services. The execu
tive should handle the details of all input/output 
operations. It should provide continuity for displays 
and keyboard-typewriter conversation. It should 
provide for sharing of common I/O devices such as 
printers and magnetic tape. Insofar as possible, it 
should leave formats and the interpretation of data 
to user programs. 

DESIGN DECISIONS 

Early in the design phase of the executive pro
gram a number of policy decisions were made 
which had considerable effect on the character of 
the final program. Among these were the following: 

1. Memory-Sharing. It appeared from the out
set that if the requirements for fast response were to 
be met, it would be necessary to keep some part of 
each user's program in core at all times. The size of 
the TX-2 memory (97K) made this feasible for a 
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small number of users. In order to facilitate memo
ry-sharing it was decided to add relocation and 
bounding hardware to the computer and to provide 
some executive services which would make it easier 
for programmers to break large program structures 
into pieces of manageable size. 

2. Program-Sharing. If memory sharing was to 
operate efficiently, it was obvious that large public 
routines such as compilers should be written in re
entrant form, so that they could be shared by all 
current users. The TX-2 order code allows this 
kind of program to be written without any special 
difficulty. It was decided to add certain features to 
the executive to facilitate the operation of re-en
trant programs and to add the necessary hardware 
to protect them. 

3. The executive should simulate an apparent 
computer for each console. The requirements of the 
operation-oriented on-line system could have 
been met by a highly specialized executive program, 
but such a design would not have satisfied the needs 
of the on-going research projects already using 
TX-2. Their needs would, perhaps, have best been 
served by a time-sharing system which provided 
the entire facilities of the computer for each user in 
turn. The multiple sequence design of the TX-2 
input/ output system made the realization of the lat
ter design appear unreasonably complex. The reali
zation of a simulated computer similar, but not 
identical, to TX-2 seemed a reasonable compro
mise between these two requirements. 

4. There should be no direct communication 
between the user and the executive. All user com
mands should be passed through the executive to 
programs operating within the simulated computer 
for that console. Communications involving the ex
ecutive are then passed back from such a program 
to the executive. It appeared both unnecessary and 
undesirable to tie the system to any language con
ventions by building these into the executive. 

5. Insofar as possible, software features would 
be realized in programs operating in the simulated 
computers. This decision allowed the executive to 
be as simple as possible and permitted expansion of 
the overall software structure without having to 
modify the executive program. 

6. Compatibility between former TX-2 pro
grams and programs which would operate within 
the simulated computer was not to be a require
ment. The design of the simulated computer should 
be made to correspond to TX-2 whenever possible 

and reasonable. But it was expected that some 
change would have to be made in all programs to 
accommodate the different input/output character
istics of the executive and to take advantage of the 
storage allocation facilities provided by the executive. 

7. Hardware changes to the TX-2 system were 
to be considered as legitimate variables in the de
sign work. The computer engineering group was 
prepared to make reasonable and compatible modi
fications to the computer when such changes ap
peared to be the desirable and economical solution 
to the design problem. Throughout the development 
period of the executive program there was consider
able interaction between hardware and software de
signs and designers, and major changes have been 
made in the TX-2 computer to facilitate the 
APEX executive system. These include the addition 
of a file memory (a UNIV AC Fastrand Drum), 
hardware to trap the attempted execution of privi
leged instructions, and four memory-snatch chan
nels to increase the efficiency of high speed I/O 
operations. The most significant change was the ad
dition of a hardware system called SPAT (an acro
nym for Symbolic Page Address Transformation). 
SPAT, which has been in operation since January 
1964, utilizes a 1024-word thin film memory and 
high-speed transistor circuitry to realize a 3-lev
el address transformation within a single TX-2 
clock pulse time (0.4 microseconds). This transfor
mation makes available to the executive the advan
tages of paging, segmentation, and complete memo
ry protection. It greatly reduces the overhead in
volved in memory- and program-sharing. 

CHARACTERISTICS OF THE APPARENT 
COMPUTER 

The APEX Executive Program simulates an ap
parent computer for each console. These apparent 
computers may be viewed as being somewhat re
stricted replicas of TX-2 augmented by features 
provided through the executive pI!ogram. The core 
storage for each apparent computer is bounded and 
segmented and limited in total extent to approxi
mately two-thirds of the TX-2 core capacity. 
The order code for the apparent computer is that 
obtained by eliminating input/output and multiple 
sequencing instructions from the TX-2 order 
code, and then adding some executive calls to han
dle input/output, file maintenance, and storage al
location in the apparent computer. The number of 
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index registers is reduced to 15, and some restric
tions are placed on the choice of machine config
urations available. The apparent computer is a sin
gle-sequence (program counter) computer in the 
current version of the system, but the hardware al
lows for future expansion to three sequences. In 
general, programs written for TX-2 will not oper
ate in the apparent computer, and vice versa. How
ever, programs which do not involve I/O opera
tions may often be transferred with little or no 
change. 

The storage structure of the apparent computer 
takes advantage of the SPAT address transforma
tion hardware in TX-2. The SPAT hardware 
breaks up core storage into pages of 256 registers. 
These are organized into books (segments) of up to 
32 pages (8,192 registers). The 17-bit addressing 
capability of TX-2 allows 16 such books to be se
lected by the 4 highest order address bits. Since the 
apparent addressing capability of the machine ex
ceeds the real core (currently 97K), some of the 
books must always be incomplete or empty. In the 
apparent console computers realized by the APEX 
executive program, the user's programs and data are 
organized into files. A file is a contiguous group of 
registers which must be some integral number of 
pages in length. A file always has a name which is 
known to the APEX file directory. Files may ex
ceed one book in length, but they must begin at the 
start of the book, and no more than one file, may 
occupy anyone book. Executive calls in the user's 
program control which files are to appear in core at 
anyone time. A file may be set up in a book speci
fied by the directory, as is usually the case for pro
gram files, or it may be set up in an arbitrary book 
according to the requirements of a program which 
is to process it. All files begin as working storage 
files with ephemeral names. When a program has 
placed information in such a file, an executive call 
may be given to assign a permanent name to the 
file. The naming call may also specify that the file 
is to be a read-only file in future appearances in 
core, that it may be operated as a program file, and 
that it must be set up in a particular book when 
called as a program. After the file has been given a 
permanent name, it will remain in the file memory 
until it has been discarded by a call from the user's 
program. Thus, all data files which the user has had 
occasion to name will be retained from one session 
to the next. We refer to the complex of files set up 

in the user's apparent memory at anyone time as a 
MAP. A, MAP may be thought of pictorially as we 
see in Fig. 1 for a typical setup of matrix routines. 
However, a MAP may be equally well described as 
simply a list of names of files together with the 
book numbers in which each is to appear in the 
MAP. In Fig. 1, the dashed lines indicate the po-
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Figure 1. An APEX core MAP for the matrix operation 
AxB-C. 

tential capacity of each book, while the solid lines 
indicate the actual core occupied by the file named 
within the block. More will be said about the con
tents of this MAP after a short discussion of the 
way the APEX system handles library routines. 

One of the principal design requirements for the 
APEX system was to provide a means whereby li
brary routines (or arbitrary user subroutines) could 
be called into core and operated without any con
flict between the core addressing requirements of 
the routine and the program which called it. This 

," 

requirement is met by providing a fresh MAP\ior 
the called routine. When a program wishes to call a 
library routine to be operated in a new MAP, it 
does so by issuing a GO UP call to the executive, 
passing along the name of the library routine as a 
parameter of the call. This process is called "going 
up" because the new MAP is thought of as being 
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placed on top of the MAP which contained the 
calling program. Since normal operation of the 
APEX system involves multiple MAPS, the typical 
situation at some instant of time will be a stack of 
MAPS such as illustrated in Fig. 2. This figure 

LIBRARY ROUTINE MAP 3 

~SLATOR MAP 2 7 
~ MAP I 7 
Figure 2. Typical MAP stack for a simple library routine 
operation. 

shows the stack which will result in the simple case 
of a user having logged-in and used a translator to 
call a library routine. At the instant of time repre
sented by Fig. 2, the library routine is presumed to 
be in operation. When it finishes, the stack. will re
turn to two MAPS in depth as control returns to the 
translator. 

Let us look in a little more detail at the opera
tion of going up to a new MAP. The GO UP call 
will cause the executive to produce an entirely new 
MAP containing the library routine, which it sets 
up according to the directory specifications for the 
routine. In addition to the library routine, the 
new MAP will contain two other standard files. 
One, called the CONNECTOR file, is common to 
all MAPS and is used to pass parameter informa
tion and to, provide small amounts of working stor
age for the library routines. The first register of the 
CONNECTOR file is used to indicate the first free 
register in' the file. The contents of this register 'are 
noted by the executive on going up and are restored 
on "peeling back," as the operation of returning to 
a lower MAP is called. The other standard file, 
called the SERVICE file, contains a number of of-

ten needed small routines such as those for float
ing-point arithmetic and the manipulation of calling 
parameters. As shown in Fig. I, these two stand
ard files are located in the two highest numbered 
books in the MAP. If, as is usually the case, para
meters are to be passed to the library routine, 
they are placed in the CONNECTOR file in a 
standard format by the calling program. The loca
tion of these parameters is passed to the executive 
as a second parameter on the GO UP call. The ex
ecutive then writes a PEEL BACK call into the 
CONNECTOR file at the proper location and pass
es control to the library routine as if it had been 
entered by a standard subroutine call instruction. 
The library routine then finds its parameters in a 
standard calling-sequence relationship to the in
dex register contents which specify its return point. 
It inspects the parameters and calls such other files 
as it may need to carry out its mission. Upon com
pletion of its operations, it makes a standard sub
routine exit, which transfers control to the PEEL 
BACK call which the executive had placed in the 
CONNECTOR file. The PEEL BACK call causes 
the executive to discard the MAP containing the 
library routine and return control to the calling pro
gram. This procedure assumes that the output pro
duced by the library routine has either been placed 
in a file whose name was supplied in its calling par
ameters, or that its output was placed in the con
nector file at a location which was supplied in the 
calling parameters. 

The way in which the APEX system handles lib
rary routines has a number of advantages. First, the 
library routine is written as an ordinary dosed sub
routine and is not in itself concerned with going 
up or peeling back, unless it needs to call another 
routine in the course of its operation. It may there
fore be operated either by going up to a new MAP 
or by being brought into core as a part of the MAP 
containing the calling program and called as a sub
routine. The latter mode of operation has speed 
advantages but is limited to situations where core 
assignments and index register usage are compati
ble. Checking for compatibility is left to the pro
grammer in this case. A second advantage comes 
about because the MAP changing facility is not 
limited to library routines but is available to arbi
trary user programs. The MAP stack then aids the 
programmer in putting together large complicated 
program structures which may exceed both the real 
core and the core addressing capacities of the ma-
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chine. However, he must keep in mind that chang
ing MAPS involves a bookkeeping overhead for the 
executive and may involve file memory swapping 
(at disc speeds) if real core capacity is exceeded. 

The APEX system also uses MAPS to handle in
terrupts. The user's program may define special 
MAPS called GHOST MAPS· which may be indi
vidually associated with all sources of interrupts. 
When an interrupt occurs, the associated GHOST 
MAP is placed on top of the MAP stack, and con
trol is passed to the program there. For alarming 
situations such as illegal instructions, boundary vio
lations, and I/O troubles, a special HELP GHOST 
MAP is provided, which automatically takes the 
user to a fixed public routine which straightens out 
his I/O problems of the moment, if any, and then 
sets up a basic translator which allows him to call 
debugging or other routines to his aid. Note that in 
this situation, the HELP GHOST MAP has sus
pended the operation of his program and has given 
him the full use of his apparent computer to work 
on his trouble. In addition, the MAP stack has pre
served all that was known about his program struc
ture at the time this interrupt occurred. He may be 
able to fix the trouble and continue, discarding only 
the HELP structure at the top of his stack, or he 
may elect to start again at the bottom, forgetting 
everything about his old structure. GHOST MAPS 
may be defined which will intercept all interrupts 
according to arbitrary priorities, but the HELP 
GHOST MAP may not be overridden and is always 
there should some other GHOST MAP get into 
trouble itself. 

STORAGE AND RETRIEVAL FACILITIES 
FOR THE APPARENT COMPUTER 

One of the major tasks of the executive system is 
to remember the user's data and program files as 
well as other quantities which he may find useful in 
maintaining his continuity of operation from one 
session to another. A portion of the executive called 
the Librarian maintains a private directory for each 
user as well as a public directory which is shared by 
all users. A number of calls are available to the 
simulated console computer to allow a user's pro
gram to insert items into his private directory and 
to inquire about these items and others in the pub
lic directory. Items remembered through a directory 
are identified by names. A name is a string of up to 

50 characters. The characters which may be used 
are restricted to Roman capital letters, Arabic num
erals, and period. The directory itself is a list struc
ture arranged in the form of a tree to give a logar
ithmic search· for names. Once a name has been en
tered into the directory, a unique name block is 
created within the list structure, and the pointer to 
that name block is used as a compact and more ef
ficient substitute for the original string of charac
ters. Remembering an item in the directory involves 
two calls. The first call asks the Librarian to accept 
a string of characters and to return the related name 
pointer. The second call uses that name pointer to
gether with the necessary defining information to 
request the Librarian to establish an association be
tween the name and the item to be remembered. 
The director can keep track of the following kinds 
of items, either directly or by way of the file mem
ory. 

1. Files. A file is any contiguous group of mem
ory registers. As discussed above in connection 
with the storage structure of the apparent computer, 
the directory contains information concerning the 
protection status and origin (if any) for each file, 
and knows whether or not the file contains program 
or data. In the case of a data file the type and kind 
of data which the file contains is known only by the 
internal format of the file and not by information 
in the directory. 

2. Scalars. A scalar is a single-register quanti
ty remembered directly within the directory. The 
directory scalar is useful for allowing the user to re
member, from one session to another, quantities 
which are not part of some fixed program. It is 'also 
useful in allowing re-entrant public routines to 
remember certain parameters from one usage to the 
next. 

3. Entrances. An entrance is a number associa
ted with a file. A program file may contain a num
ber of related routines which perfor'm different 
functions. Entrances can then be used to call these 
different routines by entering the program file at 
different locations. If a GO UP to a new MAP call 
is given to the executive and the parameter on that 
call specifies an entrance, the specified file will be 
set up (if it is a program file), and control will be 
transferred to the location specified by the entrance. 
Entrances may also be used in connection with data 
files. For example, an entrance may identify the 
start of a particular ring in a list structure. 
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4. References to Public Names. A reference to a 
public name is a device for allowing a user to use a 
name of his own choosing for a public name which 
is unsatisfactory to him. 

5. File Groups. The file group, as the name im
plies, is merely a related collection of files. Its exist
ence in the directory allows a related group of files 
set up in memory by means of a single call. For ex
ample, consider the case of using a general transla
tor to translate a particular problem-oriented lan
guage. In addition to the file containing the transla
tor itself, a file of definitions for the particular lan
guage and a suitable working storage file must be 
set up before any translating can begin. Treating 
them as a file group allows the executive to get 
them all into core and set up before any attempt is 
made to run the program. 

The directory not only maintains relationships 
between names and things but it also maintains re
lationships between names. A synonym call is avail
able which allows the user program to indicate that 
a particular item in the user's directory is to have 
a second synonymous name. A name may have any 
number of synonyms. These are added one at a 
time by the SYNONYM call and may be removed 
one at a time by the UNDEFINE call. If all of the 
names have been removed by the UNDEFINE call, 
the original named entity will be forgotten by the di
rectory and destroyed. A DROP call is available 
which will cause all the names to be undefined and 
the entity destroyed with a single call. Synonyms are 
useful for abbreviation and parameter substitution. 
They are handled by the executive rather than left 
to particular translators because they are felt to be 
language-independent relationships which should be 
closely tied to the items remembered via the 
directory. 

INPUT/OUTPUT FACILITIES IN THE APPAR
ENT COMPUTER 

The input/output devices available to the console 
computers may be split into two categories. The 
first contains those which must be shared among 
the consoles because there are not as many devices 
as consoles, and the second is made up of those de
vices located at each console. The first class of de
vices may be more important in this time-sharing 
system than in many others because the majority of 
the consoles will be located in the computer room, 

and the users at those consoles will have easy access 
to the common shared devices. The shared devices 
may be again split into two classes. The first of 
these includes those devices which are assigned to 
the individual consoles on a first-come first-served 
basis. If the user on one console wishes to use such 
a device and finds that it is assigned to another 
console, he must go and negotiate with the user at 
the other console for its release. Devices in this 
class include magnetic tape, the photoelectric paper 
tape reader and the analog-to-digital input. The 
second class of shared device includes the xero
graphic high-speed printer and the paper tape punch. 
For these devices the executive maintains a pseudo 
input/ output device which accepts user calls to build 
files of characters to be printed or punched at some 
opportune time. These buffer files are saved in the 
file mem\>ry until they can be processed. These de
vices appear to be always available to the console 
co:nputers even though the actual physical output 
may appear at some later time. These shared in
put/ output devices can produce a considerable load 
on the executive program and their presence in the 
system posed a number of detailed problems to the 
designers of the executive, but the solutions to· these 
problems are too specialized to the nature of TX-2 
to warrant further discussion of them here. 

The input/output devices available at the .indi
vidual consoles were of particular interest in this 
system because they are the means by which the 
user interacts with the system. There are, of course, 
differences in the makeup of individual console 
equipment. But the basic console is made up of a 
keyboard, a typewriter, an oscilloscope display with 
light pen, and a few push-button switches. A 
RAND tablet will be available on one console and 
some of the consoles will have a connector with 36 
output and 36 input wires to which a user can con
nect special equipment of his own. The keyboard 
and typewriter are basically the same equipment 
that has been used for TX-2 on-line communi
cation and paper tape preparation in the past. The 
color-coded keyboard has a double set of keys, 
eliminating the need for case shifting. The type
writer has a platen rotator which allows super and 
subscripting. The keyboard has the full Roman al
phabet only in capitals, thus allowing more than the 
usual number of special symbols. The character set 
allows for the very nice typing of mathematical 
expressions, but English text is singularly poor be
cause of the lack of a full set of lower case Roman 
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letters. The keyboard has seven so-called "func
tion keys" for which there is no direct typewriter 
key. These keys are available for particular inter
pretation by programs operating within the console 
computer. The keyboard sends its output signals 
only to the computer, and the computer must send 
signals to the typewriter to type back what the user 
has keyed in. The executive handles this typing di
rectly. When a key is struck, the executive places 
the character code for that key directly into key
board buffer file for the appropriate console com
puter. At the same time the executive examines 
each character to see if it is one of a set of termi
nating characters specified by the user's program. If 
the character is a terminator, and if the user's pro
gram has gone into an inactive state waiting for 
further typing to· be complete, then the executive 
will put the user's console program into an active 
state. In order for the user's program to gain access 
to the keyboard input, the keyboard buffer file must 
be set up as a part of the user's MAP. Both the 
user's program and the executive may write in this 
file, and it is the responsibility of the user's pro
gram to write empty marks in those registers from 
which information has been e:xtracted. If a key is 
struck and the executive finds that the next location 
in the buffer file is not empty, it will interrupt the 
user's progiam and switch to the HELP GHOST 
MAP structure. This method of handling keyboard 
inputs is well suited to the ordinary translator form 
of user program which completes an operation be
fore returning to look at the input for the next com
mand. In the case where it is desired to use the key
board to interrupt an on-going program, a 
GHOST MAP type of interruption mode is availa
ble for the keyboard. In this situation, the occur
rence of a terminator character will cause the pre
specified keyboard Ghost Map to be put into opera
tion. 

The typewriter has three functions in this system. 
It normally types back the keys struck by the user. 
This mode may be disabled in situations where the 
keyboard is to be used as an input to the oscillos
cope. The typewriter will also type messages from 
the user program as well as messages from the exec
utive itself. The latter have the highest priority, with 
messages from the user's program second, and typ
ing back of the user's input as the lowest priority 
task of the typewriter. In the case where the typing 
back of input has been interrupted because of a sys
tem message or a user program message, the user's 

keyboard is locked until the messages are complete. 
If, in this locked keyboard situation, he wishes to 
interrupt a message from his program, he may push 
the HELP REQUEST button on the console and go 
to the HELP GHOST MAP for corrective action. 
He may not under any circumstance interrupt a 
message from the executive. 

Cathode ray tube displays and associated soft
ware techniques are areas in which much work has 
been done on TX-2 in the past. It is expected that 
there will be considerable future development in 
these areas. As a consequence, the organization of 
the display portions of the executive program have 
received considerable attention. The present design 
of this part of the system appears to be a reasonable 
compromise between the various requirements 
placed upon it, but it may well have to be changed 
in the not too distant future as new requirements and 
techniques develop. The displays themselves are 
slave-type units. Some have Charactron tubes, 
and some have ordinary cathode ray tubes. They are 
driven from a shared vector· and curve generator 
which gets its inputs directly from the computer 
memory. Analog integrators are used to generate 
lines, circles and parabolas from digital information 
obtained from the computer. The analog deflection 
signals are sent to all scopes, but only the scope for 
which the display information is intended receives 
an intensification signal. The display information is 
stored in a ring-type list structure, which reflects 
not only the order in which parts of the display are 
to be produced, but also the associations which may 
exist between parts of the picture. A display routine 
within the executive threads its way through this 
ring structure transmitting the data it finds in the 
structure to the display generator. Characters are 
stored in the display file in the form of packed key
board character codes. If the particular console for 
which the display is intended has a Charactron 
tube, the display routine will recode the character 
code appropriately and transmit that information to 
the display scope itself. If the console does not have 
a Charactron tube, the display routine will generate 
from a stored . list the appropriate vector and curve . 
segments necessary to make up the character. A sin
gle pass around the ring representing the display for 
an individual console defines a frame for that display. 
The display generator is time-shared on a frame
by-frame basis. Control bits in the list structure 
allow selected portions of a display to be darkened, 
either until further command from the user pro-
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gram, or on an alternate-frame basis so that a 
flashing effect can be obtained. The display list 
structure is built in CORAL language format by 
executive calls given in the user's program. The 
CORAL language builds a block-format list struc
ture. Thus an entire drawing may appear as a single 
block in the structure if the user so chooses. The 
structure also allows for associations in a hierarchi
cal sense between the blocks in the structure. Thus 
the display file is not just a sequential list of lines, 
points, curves and characters which make up the 
picture which appears on the display, but it can also 
represent some of the relationships which parts of 
this picture may have to each other. The display rou
tines maintain the display on the user's console 
even though his program is inactive either because 
of time-sharing or because it is waiting for an input. 
A "push-to-see" button is used by some types of 
display programs to keep down the load which dis
play maintenance places on the system. 

The light pen is the principal graphical input 
device available in the APEX system. The light pen 
may be used in two modes-pointing and tracking. 
In both modes the executive maintains a complete 
record of all light pen returns in a buffer within the 
display file. A light pen return while in the pointing 
mode causes the executive to lplace information in 
the buffer from which the user's program can calcu
late both the pen position and the picture element 
seen by the pen. In many light pen applications it is 
necessary to associate the pushing of a button or the 
striking of a key with the pointing operation. This 
association is handled by the executive, and the Asso
ciated character code is placed in the light pen buf
fer. In the tracking mode, the executive displays a 
tracking cross every 10 milliseconds. If the light 
pen sees any part of the cross, the tracking routine 
moves the cross to center it in the field of the light 
pen. The location of the center of the cross is 
placed in the buffer. Smoothing and extrapolation 
are done in the tracking program to achieve good 
"writing" characteristics for the pen. The pro
cessing of light pen signals is a high priority task 
for the executive since response time is a critical 
parameter in graphical input operations. 

ORGANIZATION OF THE EXECUTIVE PRO
GRAM 

The SPAT address transformation is a three-level 
transformation. The first level is unique to TX-2 and 

comes about because TX-2 is a multiple-sequence 
computer. TX-2 has 33 program counters. Most of 
these are associated with I/O devices and must be 
used to operate these devices. Some are used to han
dle interrupts, one is used to start programs from con
sole controls, and the remainder are used for com
putational purposes. Most ordinary programs in 
TX-2 use but a small subset of the available pro
gram counters at anyone time. A priority relation
ship between these program counters determines 
at any instant which of them will provide the ad
dress for the next machine instruction cycle. Fig
ure 3 shows how the first level of the SPA T trans
formation treats this multiple sequence structure. 
The SP A T hardware provides for a total of 64 
books or segments. These are divided into 4 shelves 
of 16 books each. Three of the shelves are tied to 
single program counters. One of these is used for 
user programs in the current system. The other two 
are treated as user shelves by the hardware (i.e., 
privileged instructions are prohibited) but are 
treated as unused spare shelves by the current exec
utive program. The fourth shelf is shared by all the 
other program counters except a special one which 
is used for starting the computer and is not subject 
to the SP AT transformation. This fourth or execu
tive shelf contains all of the executive program. The 
executive is thus itself transformed by the hardware 
it controls. The application of SPAT to the execu
tive makes the advantages of segmentation available 
to the executive program as well as to the user pro
grams. SPAT allows all private directories to ap
pear in the same block of addresses in the executive 
MAP. Switching from one to another requires only 
two instructions. Similarly, I/O buffers can be 
quickly switched, and drum and tape transfers can 
be carried out while a file is being relocated. The 
registers which control the SPAT transformation 
appear as part of addressable memory and are 
themselves transformed by SPAT. They may thus 
be easily protected from user program interference 
by allowing them to appear only in the executive 
shelf. The problem of allowing the executive to ex
amine or change a register in the user's shelf is 
solved by setting up the appropriate file in a spare 
book of the executive shelf. Switching between us
ers' core MAPS is handled by changing the 16 
SP AT registers which control the user shelf. 

The five major parts of the executive are as fol
lows: 
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1. The Maestro is the part of the executive that 
determines which user, interrupt, or alarm is to be 
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handled next. It implements the time sharing sched
uling algorithm, which is a simple round-robin of 
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Figure 3. First level of the SPAT transformation in TX-2. 

all active users. The requirement for fast response 
eliminates most other potentially more efficient 
schemes. Fortunately, the small number of users in 
the system complements the fast-response require
ment. 

2. The Csar (Core Storage Allocation Routine) 
handles the bookkeeping required to maintain the 
users' MAP structures. The SPAT hardware with its 
limited page address memory (corresponding to 
twice the limit of addressable core) reduces but 
does not eliminate the storage allocation problem. 

Paging removes the need to move registers in core, 
and segmentation reduces the number of consecu
tive registers that must be found in the page address 
memory (PAM), but it is still occasionally neces
sary to move files in PAM. The Csar handles the 
allocation of PAM space, maintains a supply of free 
core pages, and calls for files to be transferred to 
and from file memory or discarded. It is by far the 
largest of the five parts of the executive. 

3. The Librarian builds and maintains the pub
lic and private directories. It provides a source of 
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ephemeral names for temporary quantities and su
pervises their destruction when requested. 

4. The Mover transfers information to and from 
the file memory (a Univac FAST RAND drum). It 
keeps track of free drum space and maintains 
bounds on each user's share of drum space. Actual 
transfers are made on a page-by-page basis, but 
bookkeeping is done on a file basis. The pages 
within a file are tied together on the drum by a 
list structure. Free drum space is not tied together 
on the drum but is found from a bit table in core. 
Files are stored at random on the drum and users 
are limited by a quota rather than a fixed drum area. 

5. The Secretary handles all input/output com
munications and interrupts. It is made up of a cen
tral program and a number of routines which are 
specific to individual I/O devices. These device 
routines are optional parts of the executive and do 
not require core space if the devices are not in use. 

COMMENTS AND A LOOK TO THE FUTURE 

The APEX executive program was designed for 
fast response. Its reponse, as must always be the 
case, is not as fast as some users would desire 
There are three major areas in which work is being 
done to improve the response characteristics. One is 

the area of bookkeeping overhead. The present pro
gram uses list structures built in CORAL language 
format for all bookkeeping. CORAL was chosen to 
simplify the programming of the system, but its use 
exacts a price in storage and time which could be 
reduced by the use of a more specialized list struc
ture. However, the major reprogramming of an ex
perimental system sucy as this is unlikely. The only 
noticeable improvement in bookkeeping overhead 
will probably come from the addition of a list-pro
cessing instruction to TX-2. A second area in 
which changes can improve response time is I/O. 
The contemplated addition of an I/O memory bus 
would make a substantial increase in the number of 
memory cycles available to the CPU during periods 
of high I/O load. The third area involves the auxil
iary memory facilities on TX-2. The access time 
and transfer rate of the present drum system are 
such as to cause a serious degradation in response 
when memory allocation exceeds available core. 
With a faster auxiliary memory, this degradation 
could be substantially reduced. If such a memory 
existed on TX-2, the SPAT hardware would be very 
useful in implementing a page-turning scheme 
which would allow an individual user to address 
390K of virtual core without excessive overhead 
costs. 
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INTRODUCTION 

The B8500 system is designed to deal with the 
following situation. A large number of active pro
grams requiring various services are present in the 
system and their current status and required service 
are recorded. When some component of the system 
becomes available, e.g., processor, memory space, 
peripheral device, it is assigned to the active job of 
highest priority that requires this service. The im
portant concept is that no component of the system 
belongs to any program but rather provides a ser
vice and then goes on to service another program. 
The main function of the executive scheduling pro
gram is to keep track of the services required by 
programs and to schedule the services when equip-:
ment becomeSJ'available. 

This mode of operation requires that the system 
have the following properties: 

1. The equipment should consist of independ
ent modules that can function concurrently; 
e.g., processors, memories, I/O, etc. 

2. A bulk memory system that is a logical ex
tension of main memory. 
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3. Segmentation of data and programs to 
make more effective use of memory and 
permit a large number of active programs 
to be present in the system. 

4. Dynamic allocation of memory. 

5. Memory Protection to prevent interference 
between programs. 

6. An Executive Scheduling Program (ESP) 
that controls and schedules the entire sys
tem. 

The Burroughs B8500 is a modular processing 

system designed for a multiprocessing and multi

programming mode of operation. In addition to 

the concept of multiple central processors, the 

B8500 also functions with multiple input/output 
processors which operate nearly independently of 

the central processors. A high-speed fast-access disk 

storage unit is provided as an extension to the main 

memory and is used concurrently by the in

put/ output modules for storing input from external 

communications and retrieving required programs 

and data for the central processor. 
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STRUCTURE OF PROGRAMS 

Program segmentation is a basic requirement of a 
multiple user system to provide effective use of 
memory by permitting a large number of active 
programs to be present in the system. A B8500 pro
gram may be considered as the output of one com
pilation consisting of program segments, data seg
ments, an operand stack segment, a working storage 
segment, and a program reference table (PRT). 
The minimum structure that a program must retain 
in main memory to remain active is one program 
segment, an operand stack, a working storage seg
ment, and a program reference table. A large pro
gram may also require additional program and data 
segments at various periods of program execution. 
The allocation of required segments is provided at 
the time the segments are referenced through des
criptors in the program reference table. The des
criptors define the segments as they appear on disk 
storage and when the segments are allocated in 
main memory the descriptors provide communica
tion between the separately allocated segments of 
the program. 

Tag Bits 

A memory word contains 52 bits, 48 data bits 
and 4 tag bits that may only be modified in a pro
tected control mode. In addition to a parity bit, 
three tag bits are provided to construct and control 
memory words used as descriptors. One of these tag 
bits is a presence bit that is used by ESP to define 
the presence in main memory of the segment that is 
represented by the descriptor. A reference through a 
descriptor to a segment not yet allocated in main 
memory causes a presence bit interrupt and invokes 
ESP control of allocation of the required segment. 
The two remaining tag bits are encoded as program 
descriptor, data descriptor and indirect memory ref
erence. A typical program is shown in Fig. 1. 

Program Segments 

Program Segments contain instructions and con
stants and may have a maximum length of 4096 
words. Programs are location-independent and all 
internal addressing of constants and jump instruc
tions is relative to the Base Program Register 
(BPR) which contains the absolute address of the 

segment base. Jump instructions may reference any 
syllable within a word. Syllables are six bits long 
and instructions contain from one to four syllables. 
The Program Counter Register (PCR) is a 15-bit 
register relative to the BPR: 12 bits are required to 
address the relative word in the segment and 3 bits 
to address one of the 7 syllables contained in the 
word. The PCR was designed to enhance dynamic 
memory reallocation and allows the ESP to move a 
program segment which has been partially executed, 
simply by changing BPR to the new base location 
of the segment. 

Program segments can only be read and are pro
tected from accidental modification since they are 
allocated outside the area bounded by the memory 
bounds registers. Since program segments are ref
erenced by program descriptors which have the ap
propriate tag bit configuration, they may never be 
accidentally read as data segments. Program seg
ments may contain internal subroutines which are 
referenced via a program descriptor in the PRT. 
While individual program segments are restricted to 
the 4096-word limit, a large program may contain 
many program segments. Transfers between seg
ments are directed by program descriptors in the 
PRT. 

Program Reference Table 

The program reference table is a read-only seg
ment and contains descriptors for program com
munication with data segments and other program 
segments. Descriptors are addressed relative to the 
PR T base register and addressing beyond the limits 
of the table is prohibited. A program is filed on the 
disk with its PR T and program and data segments. 

The filed PR T contains the information required 
by ESP to construct the descriptors which must be 
present in the PR T when the program is placed in 
active status. For each descriptor, this information 
includes the name of the object to which it refers, 
the type of object (procedure, simple subroutine, 
data, etc.), the mode of use (global, own, read
only, etc.) and the descriptor required for its input 
from the disk. When the PR T is input to memory, 
ESP decodes this information and sets the necessary 
tag bit configuration required for processor recogni
tion. One tag bit configuration is set for descriptors 
which refer to program segments, procedures, and 
subroutines and another configuration is set for 
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those descriptors which reference data sets or mem
oryspace. 

Words zero and one relative to the PRT base 
register are reserved for special use on a procedure 
call. A procedure is a program which requires its 
own PR T, and is provided to permit calls on pro
grams which have been compiled separately from 
the calling program. A procedure call is executed by 
a reference to a program descriptor in the caller's 
PRT. This program descriptor contains the address 
of the procedure's PRT instead of the program seg
ment of the procedure. Word zero relative to the 
new PRT is used to save the contents of the caller's 
PR T base register such that it may be restored to 
its correct value when the procedure returns to the 
caller. Word one relative to the new PRT contains 
the BPR value of the procedure's initial program 
segment. 

Data Segments 

Data segments are addressed relative to data des
criptors which contain the absolute addresses of the 
segments. The tag bits of the descriptor determine 
the memory bounds. The next instruction which ex
ecutes a memory fetch or store is compared with 
these memory bounds, providing both read and 
write memory protection. Any reference to a data 
descriptor relative to the PR T base register causes 
that descriptor to be placed in the processor's local 
high-speed memory such that subsequent references 
to that descriptor will not require a main memory 
fetch if it is among the last 16 descriptors referred 
to. 

Working Memory Segment 

The working memory area comprises two logical 
segments, common, and the subroutine control 
stack, allocated in a contiguous memory block and 
bounded by the processor memory bounds registers. 
The common, or global data area, is addressed rela
tive to the Base Data Register (BDR). It should be 
noted that we have not provided any direct method 
of setting or saving the BDR on subroutine jumps 
or procedure calls because of its intended use for 
common data. 

The subroutine control stack provides dynamical
ly allocated space for subroutines and procedures 
and is used to contain local variables and index 
words and for passing parameters between proce-

dures and subroutines. Addressing in the control 
stack area is relative to the Base Index Register 
(BXR). When a subroutine or procedure is called, 
the BXR is incremented beyond the calling pro
gram's control stack area; parameters and return 
information are stored relative to the new BXR 
value; and the called program addresses relative to 
the new BXR. Word zero relative to BXR is used 
to save the relative BPR, peR, BXR increment, and 
jump control bits of the calling program. The sub
routine return instruction refers to this location for 
its information. This structure provides an automatic 
mechanism for subroutine nesting and recursion. Any 
of the 4096 directly addressable words relative to 
BXR may be used as index words; the most recent
ly used are kept in the processor's local high speed 
memory. 

Operand Stack Segment 

The operand stack segment is used by the proces
sor to hold operands and results for the . arithmetic 
and logical instructions. Programs for expression 
evaluation are Polish strings which are directly exe
cuted by the arithmetic unit using a push down 
stack implemented in the processors hardware. The 
stack segment discussed here is in main memory 
and is a logical extension of the processor's stack. 

Memory Protection 

Memory space is allocated by the ESP and given 
to the user program by setting bounds registers in 
the processor and descriptors in the PR T. These 
registers and descriptors can only be set by ESP (in 
the control mode) which prohibits the user from 
having any control over the assignment of memory. 

The working segment and operand stack segment 
are read-write areas and each are defined by memo
ry bounds registers. The program segments are 
read-only objects and are not contained within the 
limits of bounds registers. The PRT, which is a di
rectory of all program and data segments used by a 
program is a read-only object and is contained 
within the limits of bounds registers which prevent 
using any descriptors that are not in this PRT. If a 
user tries to change his PRT he will be interrupted 
and ESP given control. Data segments are referred 
to by data descriptors in the PRT. Each time such a 
data reference is made the descriptor sets up bounds 
around the data segment being referenced for the 
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duration of the data reference. Any attempt by the 
user to read or write any other areas of memory 
will cause an interrupt and entry to ESP. 

It is possible to branch outside of a program seg
ment without detection but the program is still re
stricted to its own data and working storage seg
ments so it can't effect another user by accidentally 
branching to his program. I/O operations are con
trolled by the ESP to prevent a user from interfer
ing with another's space. This combination of ESP 
and hardware conventions allows any number of 
user programs to be executed together in a multi
processing-multiprogramming mode without the dan
ger of accidental interference. 

THE EXECUTIVE SCHEDULING PROGRAM 

The Executive Scheduling Program (ESP) sched
ules both hardware and software services for all 
programming tasks or jobs that are present in the 
system. Many of the services of the ESP are them
selves programs that are structured as normal user 
programs and therefore may also be scheduled in 
the normal manner. The intent is an organization of 
the ESP consisting of many subprograms which are 
separately constructed and therefore may be execut
ed concurrently. Each of these subprograms is ex
tended system privileges according to the functions 
it is to perform, e.g., initiate I/O, manipulate tag 
bits, etc. The ultimate requirement of the ESP is to 
efficiently schedule all services, both hardware and 
software, to effectively establish maximum through
put of the system. 

Scheduling 

Jobs may be introduced to the system from var
ious sources. Prestored production tasks are entered 
by the ESP without any external request; requests 
may be. entered from external remote stations; input 
streams from peripheral devices are interpreted for 
batched requests; or a program or job may request 
the execution of another job during execution. All 
jobs presented to the system are retained on bulk 
storage and descriptions of these candidates for 
scheduling are kept in a Cold Job Table which is 
also kept on bulk storage. A Cold Job entry remains 
in the system from the time it is introduced for exe
cution until its final outputs are delivered. Each 
Cold Job entry contains information required by 

the scheduling program to efficiently introduce 
tasks to the system. Information required in each 
Cold Job entry includes class and priority of the 
task, estimated processor time, memory require
ments, input files required, dependence upon other 
jobs and accounting information. 

Prior to a job's introduction to the scheduling 
program, the availability of program and data files 
must be established. This fundamental requirement 
is established to insure that once a program is en
tered for execution, its completion will not be det
erred by the unavailability of a program or data file 
when required. Therefore, prior to successful sched
uling, a collection program is invoked to accumu
late the job's external files on bulk storage and 
present to the system the required information con
cerning those files. 

When a job is acceptable for execution, the 
scheduling program generates a Hot Job Table entry 
in main memory and requests the allocation and 
readying of the program's initial requirements. Ini
tial requirements for all programs are the program 
reference table, the working storage area, the oper
and stack, and at least one initial program segment. 
Other required program and data segments are allo
cated and readied when they are first referenced 
through the descriptor which describes them. These 
Hot Job Table entries establish a path of control 
which the processor is to execute, and contain the 
processor state information (hardware register val
ues) recorded at the program's last suspension of 
execution. The entries also contain the program sta
tus and are linked in priority order. The program 
status may be ready to execute, awaiting I/O, 
awaiting memory, being executed, awaiting time, or 
being terminated, and is used by the internal sched
uling program for determining the next useful task 
to assign to the processor. 

Classes and Priorities 

Class is defined as a mode of operation; e.g., real 
time, batch, conversational, etc. Priority is defined 
as relative importance within a class. Classes pos
sess a relative priority to each other. It is a desira
ble feature that the system be self-regulating to 
prevent a group of users in one mode from mono
polizing the system's resources. The philosophy em
ployed is to get done what must be done in a timely 
fashion, but always to maintain a lower limit of re-
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sources below which the sum of users in a class 
cannot fall. A good example is the conversational 
mode in which remote terminal users may experi
ence a decrease in system response time but will not 
experience a complete blackout due to higher prior
ity requirements. 

Memory Allocation 

Memory allocation is controlled entirely by ESP 
since no hardware directed technique is attempted. 
The memory allocation program is responsible for 
the maintenance of all main memory. Its basic 
functions include obtaining a block of available 
space to satisfy a request and to assume responsibil
ity for space being relinquished by its prior owner. 
Allocation performs its function through the me
chanism of linked tables which include all blocks of 
memory. All blocks of memory, whether available 
or assigned, are linked by address in a memory 
map. 

All blocks of memory which are available are 
linked by size in available space map. An attempt 
to allocate space for a caller is governed by the 
priority and class of the caller and the amount of 
space which has previously been committed to call
ers of that class. 

The allocation routine will first try to allocate by 
scanning the available space map to find the smaller 
block which is large enough. If a block of sufficient 
size cannot be found, the overlay program is called. 

The function of the overlay program is to find a 
currently committed block of memory which can be 
reassigned to the caller of allocation. Using the 
priority and class of the requestor, the overlay pro
gram will scan the Memory Map for a block of 
memory to be reassigned. The considerations to be 
applied at each block will be: 

1. Does the block belong to a running pro-
gram? 

2. Is I/O going on in the block? 
3. Size of block and surrounding blocks. 
4. Is the block program or data? 
5. Priority and class of block. 
6. The number of disk operations required. 
7. Number of users. 
8. Size required. 

If a program segment is overlaid, the appropri
ate program reference tables are updated to cause 

interrupt on access by the callers of the segment. If 
a data segment is overlaid, the data segment is 
saved in bulk storage before the space is reassigned. 
User PRT segments and stored register values are 
updated appropriately. 

In the event that a request for space cannot be 
granted by these means, a deferred space request 
will be put into an unallocated request chain. This 
chain will be scanned periodically to allocate the 
deferred request. 

In the event that the system finds itself bound by 
having too many things to do, and not enough space 
to do it in, it will (based on priority, class and per
cent completion) choose a job which has been in
troduced into the system and terminate processing 
on that job. The Cold Job Table will be restored to 
a previous state so that the job can be rescheduled 
at a later time. 

The PR T contains the descriptors through which 
programs address separately allocated segments 
without knowledge or regard to the absolute memo
ry allocation. Location independent addressing al
lows ESP to dynamically change the contents of 
memory by releasing segments not currently in use 
and replacing them with other required segments. 
The presence bit of a descriptor is used to indicate 
the presence of a segment in main memory and a 
reference to a descriptor representing an absent seg
ment causes a processor interrupt invoking ESP. 
ESP must then ready the required segment ref
erenced by that descriptor. The descriptor is inter
preted for type and when a global type is required, 
the memory map is scanned to attempt to locate the 
desired segment in active memory. 

If the segment is not in memory or a local copy 
had been requested, the memory requirements and 
disk address for the segment are available from the 
PR T, and ESP places the requesting program in a 
suspended status, initiates an input request for the 
segment, and assigns the processor to some other 
useful task. When the requested input is completed, 
the descriptor(s) which addresses it are marked 
present and those programs may then be scheduled 
for the processor. 
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INTRODUCTION 

After a long period of study and experimentation 
with various forms of user/terminal/system interac
tion, IBM is developing a general purpose time
sharing system. This is the recently announced Sys
tem/360 Model 67 and the associated programming 
support package. 

The basic technical objective of such a system is 
to provide a user at a console with what appears to 
him to be immediate response; i.e., when he asks 
for something relatively simple to be done, it 
should be done within 1 to 2 seconds. When he asks 
for difficult and complicated things to be done, 
there should not be an unreasonable amount of de
lay before they are in fact done. (This response 
time concept is very closely related to the current 
concern in batch processing systems over turn
around time.) Superimposed upon the response 
time requirement is the necessity to provide a 
broad scope of selectable procedures which allow a 
user at a console to simply and conveniently create, 
debug and execute his programs. More properly, he 
needs the necessary facilities at his fingertips to 
solve his problems. 

However, from a marketing point of view, this is 
not· sufficient. For those customers who have a re
quirement for a major facility of that type, the sys-
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tem must be able to support large numbers of such 
users simultaneously without an unreasonable 
amount of system overhead. Indeed, there are some 
computing installations in the country today who 
are prepared to take just such a step. On the other 
hand, there are also a good number of installations 
-in fact, probably the majority as of today-which 
have a requirement for some immediate access of 
this type, but not at the expense of crippling their 
normal batch processing operation. Consequently, 
the system design objective has to be to provide a 
flexible system which can provide either type of 
service (immediate access or standard batch) as the 
demand fluctuates. 

One other point, which has been made increas
ingly clear in most of the pioneering time-sharing 
systems across the country, is that in the "hands
on" type of system operation being discussed here, 
long and arbitrary periods of system down time are 
simply unacceptable. As a result, the system design 
must include procedures for automatically handling 
as many hardware error situations as possible and 
avoiding a total system shutdown as long as possi
ble. 

Now, it is not the intent of this paper to describe 
in detail the Model 67 hardware, the programming 
system problems and solutions, or the specific user 
interface. Rather, some of the basic system charac-



620 A DESIGN FOR A MULTIPLE USER MULTIPROCESSING SYSTEM 

teristics will be discussed, particTIlarly as they relate 
to the objectives pointed out above. Then the major 
hardware and software characteristics will be de
scribed. In this way, the reader should be able to 
get a feel for the overall system operation without 
getting bogged down in a myriad of details. 
Throughout the software discussions, the emphasis 
will be on the control program area rather than the 
language area, since it is the control program and 
its associated routines which determine how the 
system will operate. 

It should also be noted that the system design has 
been influenced in a multitude of ways by various 
previous internal IBM efforts, including in particu
lar the following: 

TSMl 
QUIKTRAN2, 3 

IBM's recently announced Administrative 
Terminal System 

Studies of One Level Store 
Studies of Polymorphic Multiprocessing 

It has been aided by a number of discussions with 
various individuals from General Motors Corpora
tion, Lincoln Laboratories, and particularly the 
University of Michigan. 

SYSTEM CHARACTERISTICS 

There are several basic characteristics of system 
operation which dictate how the hardware operates 
and what the design approach to the programming 
system must be. 

The basic mode of operation is multiprogram
ming, wherein a multiplicity of tasks (represented 
by programs) reside in core at the same time and 
have access to common devices. However, the nor
mal multiprogramming technique has been to run 
one task until it had to wait for some reason, such 
as for completion of some I/O. At that point, the 
CPU could be switched over to another task, to re
turn to the first one later when its I/O was com
plete. Time-sharing goes a step beyond that, in that 
it is known that a certain (dynamic) number of 
tasks must be serviced within a reasonable period 
of time; namely, the response time mentioned in 
the Introduction. To this end, an algorithm is used 
to determine dynamically how much of the system's 
resources a task ought to be allowed to consume. If 
this threshold level is exceeded, the task is forced to 

stop and wait while other tasks have a chance; in 
other words, forced multiprogramming of sorts. * 
(This has been generally termed as time-slicing.) 
In this way, a multiplicity of tasks-and therefore a 
multiplicity of users at consoles-can be accommo
dated. 

The system is designed to operate with multiple 
CPU's and with multiple CPU-independent selec
tion paths for I/O devices. This is necessary to pro
vide the desired increase in system availability (as 
distinguished from reliability). It is also necessary 
in order to maintain orderly growth, particularly as 
it will probably not be possible to specify optimal 
system configurations until after the system has 
been in operation for a while. In addition, this al
lows for partitioning within the system, to provide 
smaller but independent subsystems, if desired. 
(The same system will, of course, operate with only 
one CPU.) 

Dynamic relocation is implemented (as described 
in the next section) and applied. This allows a task 
to operate as if it had a full addressable memory 
(called a virtual memory) of 224 ( or, in the larger 
CPU, 232 ) bytes, almost independent of the amount 
of real core provided in the system. Dynamic relo
cation can be used to simplify the traditional relo
cation techniques. This is particularly important in 
time-sharing, where it often becomes necessary to 
throw a task out of real core before it is finished 
and bring it back later (the forced multiprogram
ming indicated above). Dynamic relocation com
pletely eliminates the problem of having to return 
the task to the identical area of core it occupied 
during its previous period of residency. 

There are two characteristics of program execu
tion which have heretofore been unexploitable. The 
first is that in general a program must claim an 
amount of core large enough for its worst case oper
ation, even though in many cases, either during de
bugging or based upon parameter values or program 
structure, the actual core requirement for a given 
execution is significantly Jess than that maximal 
amount. The second is that in many cases program 
activity is localized for significant periods of time, 
i.e., during its execution, a certain set of routines will 
run for a while, and then another set, while the first 

*In many places in this paper, for purposes of avoiding 
unwarranted complexities, general statements are made. 
Many of them, if interpreted literally and assumed applicable 
in all cases, would be clearly objectionable. It must be 
emphasized that such generalities are for expository pur
poses only, but do represent the basic system action. 
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are not used. To capitalize on these situations, the 
paging concept is used, wherein through the dynamic 
relocation facility the control program can recog
nize on a dynamic basis which parts of a program 
or its data are now required, and which are no 
longer required. Virtual memory is then broken up 
into blocks called pages, and only those pages ac
tually referenced by the task will be brought into 
real core. This will provide a better utilization of 
real core storage, as well as allowing an equivalent 
level of mUltiprogramming operation (when com
pared with always moving a complete package of a 
program and its data) but within a significantly 
smaller amount of real core. 

In the past, it has generally been necessary to de
clare at least by load time all subroutines which 
might possibly be needed during execution, and to 
load them all into memory before execution can be
gin. Dynamic linkage (or, more properly, dynamic 
loading) is a facility whereby a routine need not be 
declared or loaded until, at execution time, it is ac
tually called. (At call time, virtual memory can be 
allocated for the called routine and external symbol 
definitions resolved. Actual relocation modification 
of addresses-or, in System/360 terms, address 
constants-need not occur until paging time.) This 
is particularly important for a user at a console, for 
he may elect in the middle of an execution to 
change his mind about what subroutine he wants 
the program to call-and he ought not to be re
quired to stop and reassemble or reload. This also 
contributes to more effective utilization of real 
core. 

A general purpose terminal oriented system 
would not be complete without a "warehouse" of 
previously stored programs and data sets, main
tained and cataloged by the system, and callable by 
the user or his program. 

The scope of user facilities is defined by the set 
of languages at his command. The basic Model 67 
program package will include a Command Lan
guage (with a set of Program Checkout tech
niques), a FORTRAN compiler, and a macro as
sembler. Later extensions will include COBOL and 
PL/l. 

HARDWARE CHARACTERISTICS 

Several extensions and modifications have been 
made to System/360 hardware in order to facilitate 

the system characteristics summarized in the Sys
tems Characteristics section. The most important of 
these will be discussed briefly here. (It is assumed 
that the reader is familiar with the basic 
System/360.4) In those situations where the CPU is 
altered, there is generally a switch of some sort 
(physical or programmable) which will disable the 
feature, thus assuring that Model 67 will still run 
programs prepared for any other model of Sys
tem/360. 

Standard System/360 has a 32-bit word, and 24-
bit addressability; i.e., 224_1 is the largest memory 
address recognizable by the hardware. On the Mod
el 67, an option is provided for full 32-bit address
ing. Associated with this facility is a new instruc
tion, Branch And Store, which is essentially a 32-
bit version of the Branch And Link instruction. 

In System/360, an effective address is formed in 
the general case by forming the sum of the contents 
of a base register, the contents of an index register 
and the contents of the displacement field· specified 
in the instruction. The Model 67 is provided with a 
program-controlled relocation mode, which imposes 
a translation function between the time the logical 
(effective) address is generated and the time the' 
address is sent to the appropriate memory box. The 
total addressing space (virtual memory) is broken 
up into pages of 4096 bytes apiece. Thus a logical 
address can be considered to be a 12-bit page num
ber (optionally 20-bits with 32-bit addressability) 
concatenated with a 12-bit byte address within the 
page. The basic mechanism is to provide a reloca
tion table for a direct look-up of the logical page 
number, and to fetch a new physical page number 
from the table. Because of its potential size, this 
relocation table is kept in main core storage rather 
than in its own hardware implementation. However, 
since the translation must occur on the fetch of ev
ery instruction and operand from core storage, a set 
of associative registers are provided to reduce the 
number of additional memory references to an ac
ceptable level. 

Figure 1 shows a simplified data flow for the re
location hardware. It will be noted that tre page 
number translation is a two-step process. That is, 
pages are divided into groups of 256, called seg
ments. The logical segment number is looked up in 
a segment table, and determines the location of a 
page table, which is then used to translate the logi
cal page number into a physical page number. 
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Figure 1. Simplified data flow of dynamic relocation. 

Availability bits are provided at both levels, and 
are used to cause CPU interrupts when references 
are made during execution to selected segments or 
pages. (This is how the paging technique is imple
mented.) This two-level relocation technique pro
vides the following: 

1. A convenient way to allocate a data area 
of unknown length, by allocating it at the 
beginning of a segment, and allowing it to 
fill the segment. 

2. A way of compressing page tables, since 
actual table entries are not required for un
used pages at the end of a segment. 

3. A way of reducing the amount of real core 
required to contain page tables at execu
tion time, since segments can be marked 
unavailable, and the associated referencing 
interrupt used as a signal to bring that par
ticular page table into core. 

4. A very convenient way of sharing pro
grams or data sets among tasks, since a 
one-page table could be pointed to by seg
ment table entries for several different 
tasks. 

5. An effective mechanism for read/write 
protection of areas of virtual memory. The 
reason for a segment being marked unavai
lable is open to interpretation by the con
trol program. 

6. A simple and efficient overlay mechanism, 
through substitution of segment table en
tries. 

Associated with the relocation feature is a new 
privileged instruction, Load Real Address, which 
allows the control program to find the translated 
form of any virtual memory (logical) address. 

In System/360, basic CPU control is contained 
with a Program Status Word (PSW). In Model 67, 
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this PSW control has been extended by a set of con
trol registers, whose contents include the table regis
ter (which defines where the active segment table 
is), extended masking facilities, and program-read
able status indicators for various system switches. 
Associated with this capability is a pair of new in
structions, Load Multiple Control and Store Multi
ple Control, which allow for manipUlation of the 
control register contents. 

In order to allow for multiple-CPU operation, 
multiple memory bus connections are provided. 
Two-channel switches and channel controllers serve 
to provide CPU-independent selection and control 
of I/O. Extended Direct Control provides for inter
CPU communication. The instruction Test And Set 
allows guaranteed interlocking where required. 

Partitioning switches are included at critical 
communication points within the hardware to allow 
for dynamic manipulation of the hardware system 
configuration. New devices can be added, others 
removed for testing, or a full subsystem partitioned 
out for independent operation. This facility must be 
carefully controlled in actual operation to prevent 

NON-PRIVILEGED ROUTINES 

unintentional system operator slips from disrupting 
the system. On the other hand, ultimate authority 
must rest with a human being, to safeguard against 
un debugged or recalcitrant programs. 

SOFTWARE CHARACTERISTICS 

The basic unit of control in the system is a task. 
For a user at a console, one task is defined to pro
vide services for his complete session at the termi
nal (i.e., from logging on to logging off). For a 
non-conversational (batch) job, a task controls the 
reading and interpretation of the job control cards 
and requested services. 

Each task operates within its own Virtual memo
ry; i.e., there is a set of relocation tables for each 
task. When multiprogramming among tasks, simply 
changing the table register causes a new set of relo
cation tables to be brought into use. 

When looked at from the point of view of one 
task, the software can be thought of as having three 
levels as pictured in Fig. 2. There is a basic system 
Supervisor, which has the following characteristics: 

Figure 2. The software world, as seen by one· task. 

Permanently resident in real core 
Runs non-relocated 
Not addressable in Virtual Memory 
Runs in Supervisor State 
Not time-sliced or paged 

This is the Supervisor program which is common 
to all tasks and all CPU's. It handles all the details 
associated with interrupts, I/O, paging and sched
uling. Figure 3 shows the major pieces of the Su
pervisor, as it is now defined. Without discussing 

each one, a few comments will clarify the opera
tio;}: 

1. The Supervisor is basically an interrupt 
handler. System 360. hardware automatically 
sorts out five types of interrupts (called 
I/O, Program, SVC, External and Machine 
Check). The Supervisor must sort each of 
these types into finer categories and cause 
the appropriate actions. As a general rule 
of operation, interrupts are stacked by the 
Supervisor; i.e., if the Supervisor is pro-
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Figure 3. Supervisor block diagram. 

cessing one interrupt when a second one 
occurs, the second one will be put on a 
queue until processing of the first is com
plete. All such pending interrupts will be 
processed (if possible) before returning to 
one of the tasts in Virtual Memory. 

2. Unfortunately, there are many situations 
within the Supervisor where requests are 
made for services or facilities which are 
busy on other things. Whenever this situa
tion occurs, it is necessary to form a queue 
of some sort. In order to handle queued 
requests in a reasonably uniform way, all 
such queues are controlled at a central 
point. There is a queue provided for each 

" type of hardware interrupt (which is how 
interrupts are stacked), as well as a queue 
for each facility (such as real core storage, 
drum space, and I/O device use) which 
might be busy when a request is made. A 
generalized queue scanner is then provided 

to see to it that whenever any CPU is in the 
Supervisor, it will handle all outstanding 
serviceable queued items. 

3. The major portion of what is generally 
called the scheduling algorithm is built 
into the Dispatcher. Since everyone seems 
to have his own idea about what is a good 
scheduling algorithm, its most important 
characteristic in this system is to make it 
as modular as possible so as to be easily 
changeable, or even replaceable. Rather 
than outline a specific technique, it will 
suffice here to list the conflicting objec
tives which such an algorithm must at
tempt to satisfy. 

(a) Provide "reasonable" response at a ter
minal to a request for a "reasonable" 
amount of work 

(b) Provide good throughput on batch-type, 
non-conversational tasks. 
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( c ) Provide some degree of balance between 
(a) and (b), based upon relative loads. 

( d) Utilize the paging concept as efficiently 
as possible. 

(e) Implement multiprogramming of time
shared tasks, as required by (d). 

(f) Provide dynamic variation of (d) and (e) 
to match CPU speed with drum and disk 
rates. 

(g) Provide some correlation with a user
oriented priority scheme. 

(h) Be simple and fast. 
4. When a CPU recognizes a hardware error 

(i.e., a Machine Check Interrupt occurs), 
that CPU goes into Wait State, and anoth
er CPU is alerted (via Malfunction Alert 
Interrupt through Direct Control). The al
erted CPU then invokes a recovery proce
dure. 

5. Because the system is designed to operate 
by paging, such paging I/O functions are 
handled separately, to make them as effi
cient as possible. 

6. Pathfinding is the general control mechan
ism for I/O selection and utilization. 

Within a task's Virtual Memory are a set of Ser
vice Routines, which are a part of the programming 
support, and which provide in effect a one-task su
pervisor to control the services and communications 
for the user with whom this task is associated. 
These routines will in general be reentrant, and 
shared among all tasks. Some of these service rou
tines are defined to operate with a privileged action 
capability (which is not the same as the Supervisor 
State recognized by the System/360 hardware). 
Such routines are allowed to request special actions 
by the Supervisor (such as changing relocation ta
bles) , and are protected from the rest of the pro
grams (including those of the user) within Virtual 
Memory. Such privileged service routines include 
the following: 

1. The program which interprets terminal 
commands. 

2. Some of the subprograms which carry out 
terminal commands. 

3. All services relative to the catalog (search-
ing, interrogating, changing, etc.) 

4. Virtual Memory allocation. 
5. Private device allocation. 
6. Allocation of external (catalogable) space. 

7. Access methods, which provide the task 
with GET /PUT capability to terminals, 
sequential, and direct access devices. 

8. Dynamic loader, and associated tables. 
9. Mechanism for handling task interrupts (as 

distinguished from hardware interrupts) . 

The nonprivileged area of Virtual Memory 
(which is by far the bulk of it) is available for the 
language processors (FORTRAN, PL/1, etc.) and 
user-generated routines. 

The basis behind the three levels depicted in Fig. 
2 is protection. The Supervisor is protected from 
accidental random damage by virtue of the fact that 
it is not addressable in anyone's Virtual Memory. 
(What is addressable in a task's Virtual Memory is 
determined by what the Supervisor puts into the 
page table for the task. Note that this also provides 
complete protection between different tasks.) Com
munication with the Supervisor is limited to a spe
cific set of SVC's (Supervisor Calls, a System/360 
interrupt mechanism for that specific purpose) . 
However, the majority of such possible requests are 
of a very sensitive nature, i.e., if misused, they 
could seriously affect the operation of the whole 
system, and this is highly undesirable. To help con
trol this problem, the set of privileged service rou
tines was defined, and execution of the sensitive 
requests is limited to such service routines. In turn, 
access to these privileged service routines is limited 
to legitimate entry points, and they are protected 
(via System/360 protection keys) from access by 
non-privileged routines. In this way, it is hoped to 
eliminate the possibility that an undebugged or ir
responsible task could hurt anyone but itself. 

SUMMARY 

This report attempts to give an over-all picture 
of the System/360 Model 67 Time Sharing System, 
its system design, and major hardware and control 
program characteristics. The unique combination of 
hardware and software objectives makes a very 
complex problem, for which a simple and efficient 
solution is desired-a difficult task at best. It is 
further complicated by the fact that there is no rec
ognized consistent way to measure such a system, 
either in how it performs or how well specific tech
nical problems have been solved. 
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It is the author's opinion that one very signifi
cant concept made available in this system is the 
large addressable Virtual Memory. It should force a 
complete reevaluation of how programs should be 
written, and has the potentiality of making obsolete 
the traditional I/O techniques. However, it will re
quire a good deal of experience and experimenta
tion to know how best to exploit this new facility. 
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INTRODUCTION 

About two years ago a tunnel diode memory sys
tem was described which employed substantially 
different techniques than those previously used.1 

Although earlier systems had tended towards array 
arrangements that had the storage cells connected in 
parallel on one or more axes, the new system em
ployed series connections along two axes. This new 
arrangement has several design and performance 
advantages compared to previous systems. The orig
inal paper described the basic approach and some 
of the earlier work which included the design of ar
ray cross sections and the associated driving and 
sensing circuits. Since that time one version of the 
system has been operational in two IBM 7030 
systems,2 and a 16-word, fully-populated, higher
speed . laboratory model was built and reported.3 The 
present paper describes the engineering considera
tions used in the design of a larger and faster memory 
employing the basic techniques. 

The new memory system contains 64 words of 48 
bits each, and test results from a partially-populat
ed cross-sectional model indicate a complete 
READ/RESTORE or a CLEAR/WRITE cycle time 
of less then 25 nanoseconds. A fully-populated com-
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plete memory system is in the final stages of con
struction and assembly. 

CELL OPERATION 

The basic storage cell is simple, as shown in the 
dashed-line box in Fig. 1. It consists of a tunnel 
diode shunted by a series-connected load resistor 
and the secondary winding of a transformer. A 
biasing current is introduced to the tunnel diode 

LJ LJ I 
I 

WORD o----t-----1OO"-----t-__ -+::=-=-~iIJ' _-::==~_J 

LJ LJ 

BIT 

Figure 1. Array configuration. 
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storage cell along the bit axis. During the writing 
portion of a memory cycle, the biasing current can 
be increased by the addition of a bit current. The 
word driver introduces voltage excursions within 
the storage cell loop by means of the transformer. 
The normal bias current through the tunnel diode 
cell is such that the tunnel diode can be either in a 
high-voltage region or in a low-voltage region. 

The cells are series-connected along two axes 
(Fig. 1) in order to form the basic memory array 
configuration. Figure 2 shows the load-line diagram 
for the basic storage cell. The current bias and the 
load resistor are such that the cell normally has two 
stable states. During the READ operation, if the 
cell has been storing a ONE, the voltage induced 
into the secondary winding of the cell transformer 

BIAS 
CURRENT 

"---VONE--~ 

WRITE 
VOLTAGE 
(WITHOUT 
BIT DRIVE) 

WRITE 
VOLTAGE 

(WITH 
BIT DRIVE) 

Figure 2. Tunnel diode load-line diagram. 

V 

shifts the load-line and clears the cell from the 
high-voltage state to the low-voltage state. The 
net voltage drop when the cell changes its operating 
point from the high-voltage to the low-voltage 
state is transmitted through the series connection of 
the diodes on the bit line to the end of the bit line, 
where it can be detected. 

On the other hand, if the cell was storing a ZERO, 
it initially would be in the low-voltage state. The 
shifting of the load line in this case by the READ 
voltage, V r, produces only a very small voltage as 
the ZERO response. At the conclusion of the 
READ cycle, all the cells associated with the par
ticular word will have had their information read 
out and will be left in the low-voltage state. 

ARRAY DESIGN CONSIDERATIONS 

One of the key items in the design of the system 
is the cell transformer. The objectives are to 
achieve a low impedance when looking into the 
primary loops, and to have reasonable inductive 
coupling but a minimum of capacitive coupling 
from primary to the secondary loop. In the earliest 
work, etched circuit construction was tried but the 
state-of-the-art of fine-line etching and the 
difficulty of making good minature connections 
made the approach impractical at that time. The 
succeeding systems employed transformers with sec
ondary windings made of wire. When the work on 
this new system was started, it was decided to again 
attempt to solve the various problems of the etched 
circuit transformer for the inherent advantages of 
reproducibility it offered. 

The first step in the design process was to study 
electric field patterns of likely configurations using 
resistance paper analog techniques. From this work, 
reasonably accurate predictions of the transformer 
parameters such as mutual coupling and secondary 
self-inductance were made. This procedure per
mitted a quick review and optimization of different 
transformer patterns. A typical field plot used is 
shown in Fig. 3. As a result of this work, prelim
inary decisions were made as to the desired shape 
and dimensions of the transformer. 

At this time different constructional methods and 
arrangements of the storage cell into arrays were 
considered from both a mechanical and electrical 
viewpoint. It was finally decided that an approach 
which had several cells on a module would simplify 
manufacturing problems and improve serviceability. 
Although it offered certain mechanical constraints, 
the SLT (Solid Logic Technology) type of module 
employed by IBM was chosen as a starting point for 
the design. 

An alumina ceramic wafer about one-half-inch 
square serves as the main mechanical structure for 
the module. The ceremic wafer has 16 swaged pins 
on O.125-inch centers for external connections 
plus 6 pins in the opposite direction to serve as 
mounting points for welding the tunnel diodes. One 
surface of the ceramic has 4 screened resistors and 
a solder-coated circuit pattern. A view of this sub
assembly is shown in Fig. 4. The transformers are 
contained in a separate multilayer etched copper 
wafer assembly that is slipped over the 16 pins and 
dip-soldered. The final assembly operation con-
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Figure 3. Magnetic field pattern around primary conductor. 

sists of applying a ferrite powder coating in an or
ganic binder on the primary side of the transformer 
wafer to increase the mutual coupling from primary 
to secondary. The assembled modules are shown in 
Fig. 5. 

Early in the project, it was recognized that a 
large, accurately scaled mockup of the module as
sembly was needed for making electrical measure
ments. These measurements were needed to assist in 
the transformer design, and were also vital to the 
determination of the overall array parameters. The 
normal-size modules were so small that it was vir
tually impossible to make electrical measurements 
with any degree of accuracy of precision. Because 
both capacitance and inductance scale are directly 
proportional to linear dimensions, it was decided to 
make a module assembly 20 times normal size. One 
problem was to find a suitable dielectric material 
substitute for the ceramic substrate. because large 
ceramic pieces were not available. The solution was 
found by loading an epxy resin mixture with tita
nium dioxide powder in a ratio of approximately 
1 : 1 by weight to. achieve a dielectric constant of 
9.4. Analog field plots showed that thick copper 
wiring patterns could be simulated by using two 
thinner patterns appropriately spaced and connected 
in parallel. Figure 6 shows photographs of the large 
module and some of the transformer patterns. 

The final transformer patterns are shown in Fig. 
7. The solid squares are lands used for connecting 

points. To cancel capacitive coupling effects from 
the primary to the secondary wiring, each trans
former uses two primary wires which are driven 
push-pull with respect to ground. The primary 
wires are routed in a manner to maximize the mu
tual coupling to the secondary wires, and the sec
ondary wires are arranged in a mirror image config
uration to match the land pattern to obtain uniform 
characteristics. Capacitance stub "fingers" are in
cluded to balance the capacitances between the pri
mary lands and the secondary windings. 

A cross section of a transformer wafer is shown in 
Fig. 8. To minimize the capacitance, the primary 
and the secondary wires are separated by Teflon® 
(registered trademark of E. I. Du Pont de Nemours 
and Co.). The outer layers are used as supports for 
a land pattern for soldering to the pins, and also to 
protect the transformer pattern. Through-hole 
plating techniques are used to connect the inner 
land patterns with the outer lands. 

BIT-LINE CHARACTERISTICS 

The bit line used in the tunnel diode memory 
consists essentially of a number of tunnel diodes 
connected in series. The inductance of the inter
connections is the series inductance of the line, 
whereas the transformer and module capacitance 
is the major component of the shunt capacitance. 
However, the tunnel diodes add a nonlinear series 
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Figure 4. Array modules: (a) module with resistors and pins; 
(b) top and bottom views of array modules. 

Figure S. Assembled memory array modules. 

Figure 6. (a) Transformer wafer sheets, 20 times normal 
size; (b) memory module, 20 times normal size. 

resistance component that predominantly affects the 
response of the line. An equivalent circuit for the 
line is shown in Fig. 9 where each section represents 
one bit of the line. Ls is the series inductance; Cd 
is the diode junction capacitance; Rd is the nonlinear 
diode resistance; and Cs is the total shunt capaci
tance. Because each of these parameters is very 
small and the current rise times desired are very fast, 
accurate measurements necessary to optimize the 
line design could not be made. 

A program was written to calculate the response 
of the bit line that utilized this equivalent circuit and 
took the nonIinearities of the tunnel diode character
istics into account. By using this program, the 



DESIGN CONSIDERATIONS -:- 25 NSEC TUNNEL DIODE MEMORY 631 

tJ 
II 

U 
dI 

II I n 
II 

U 
I 

II I n 
~, 

" 
Ie 

1 ~ r 1 >\ 2 2 
FOUR SECONDARIES PRIMARIES 

Figure 7. Transformer pattern. 
SECONDARY ADHESIVE 

TEFLON 

EPOXY 

TEFLON 

r-----------r7~~r7~,-------------------~~----EPOXY 

EPOXY GLASS 

Figure 8. Transformer wafer cross section. 

Rd 

I : I ----------lR
O 

Cd Cs I . ~ 

Figure 9. Bit-line equivalent circuit. 

parameters of the line were varied to find their 
effect on the response and to find an optimum ter
mination. The range of parameters used was deter
Inined by measurements of the 20-times module 
model. The results of the investigation led to the 
following conclusions: 

• Increasing the series inductance of the line 
does not improve the response of the line; 

that is, in spite of the fact that the line 
becomes less lossy as the series inductance 
is increased, the sum of the rise time plus 
the delay time increases with increasing 
inductance. 

• The parameters that most strongly affect the 
response of the line are the diode resistance, 
the shunt capacitance, and the termination 
resistance, in this order. 
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• The optimum termination resistance, chosen 
with the criterion of minimum rise time with 
negligible overshoot, is considerably below 
the V L/ C for the line. Reflections due to 
this lower terminating resistance tend to 
increase the bit drive current at the far end 
of the array and thereby compensate for the 
attenuation. 

• Because of the nonlinearity of the diode 
resistance, the fastest response times are 
obtained when the bit drive is toward in
creased current in the diode. 

Actual measurements verified these predictions but 
could not provide the ~ccurate resolution obtained 
in calculations. 

Two types of crosstalk were investigated. One 
was the inducement of a false sense signal on a bit 
line because of a switching tunnel diode on an adja
cent bit line. The other type was accidental writing 
into a tunnel diode receiving full word current by 
way of mutual inductive coupling between trans
former secondaries. The primary source of a false 
sense signal is the capacitance between cells on adja
cent bit lines; these transformers are only 50 mils 
apart. The value of the capacitance predicted by the 
20-times module (0.31 picofarad) is slightly high 
because no ground plane was used in the measure
ment. In order to find the worst case, it was assumed 
that the capacitance of eight cells are all lumped to
gether at a point and that the voltage rises in one 
L/R time constant. Under these conditions, it is pre
dicted that a maximum of 96 millivolts would be pro
duced from the two adjacent bit lines. However, the 
actual noise should be much smaller and the detector 
rejection level is safely above 96 millivolts. 

Calculations were made of the worst-case noise 
current induced by mutual inductive coupling be
tween adjacent transformer coils. They showed that 
the peak induced current would be less than 2.5 
percent of the diode peak current. This value is 
small enough to have a negligible effect on operat
ing tolerances. 

WORD LINE STUDY 

The ferrite material on the primary winding of 
the transformer increases the characteristic impe
dance and delay of the line compared to a similar 
line without the ferrite. In addition, the ferrite in
creases the high-frequency losses and results in 

rise-time deterioration as the word pulse travels 
down the line. To maintain a reasonable variation 
in rise time, the word lines are split into 24-bit 
segments, with 2 segments being driven by the 2 
output stages of a word-driver circuit. 

A number of methods of maintaining indepen
dence of the secondary output current from primary 
current rise-time variations were investigated. 
These involved shorting the word line or inserting a 
rise-time pad in the output of the word-driver 
circuit. An investigation of the response of the 
transformer itself showed th~t secondary inductance 
and load resistance caused it to act as a reasonable 
rise-time pad to a fast word-drive pulse. Fig. 10 
shows the method of drive presently employed. 
The line is terminated in its characteristic impe
dance, and the pulse is clamped at the driver to 
control the pulse amplitude. The transformer sec
ondary circuit is used as a rise-time pad, with the 
result that a 20 percent change in the primary cur
rent rise time result in only a 10 percent change in 
the secondary output voltage amplitude. 

Vc +v 

WORD 
DRIVER 

WORD LINE 

(YYY1Ls 
~TRANSFORMER 

RS 

Figure 10. Word drive system. 

ARRAY CHARACTERISTICS 

The array is formed by mounting the memory 
cell modules on a pluggable card which contains the 
interconnection pattern. The card has etched wiring 
on the two outer surfaces and a ground plane inside 
the laminate In addition to the memory cell mod
ules, the array card also contains all the word
driver circuits, word line termination networks, bit 
line termination networks, and miscellaneous power 
supply decoupling networks associated with the mod
ules. Each card contains 8 words, 48 bits per 
word, of storage. An assembled array card is shown 
in Fig. 1I. 

One of the advantages of the series-type array 
is that the driving requirements are readily met 
with high-speed transistors. The array described 
utilizes a unidirectional current pulse of 88 mil
liamps into the word line and presents a load of 
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WORD TERMINATIONS 

MODULES 
BIT TERMINATIONS 

Figure 11. Array card layout. 

136 ohms to the word driver. As previously ex
plained, each word line is split into 24-bit seg
ments, with a pair of segments driven by one 
word-driver circuit. The propagation delay from 
the word line input terminals _ to the far end of each 
line is about 3 nanoseconds. In contrast to the 

+10 

BIT LINE 

270. 

+1.24 

7250. 

word line, the bit line is much more like a distribu
ted RC-line than a conventional low-loss trans
mission line and, therefore, exhibits high phase and 
frequency distortion. To minimize delay, the bit 
line is broken into 8-bit segments, with a pair of 
segments handled by each information control (re
generation) circuit. The bit drive required is· only 
8.27 milliamps and is also a unidirectional pulse 
into a load impedance of about 50 ohms. Output 
signals for sensing are in the range of 300 to 400 
millivolts, although the detector sensing level is 
usually set lower to save cycle time. The maximum 
quiescent power dissipated in a memory cell is 4.5 
milliwatts which leads to an overall maximum 
standby power dissipation in the 64 by 48 array 
(exclusive of associated circuits) of about 14 watts. 

CIRCUIT DESIGN 

Information Control Circuit 

Figure 12 shows the information control circuit 
diagram. The sense amplifier, detector, information 
control logic, bit-line bias current, and bit driver 
were included in this single circuit to shorten re
generation time and to simplify the circuitry. 

+1.24 

-6 
Figure 12. Information control circuit. 

The operation of the circuit is as follows: The 
first transistor, Ql, connected as an emitter follower, 

receives a sense signal at its base and drives a trans
mission line that is open-circuited at the far end. 
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This passes a pulse of a width of approximately 
3 nanoseconds. If. the strobe input· is positive. at this 
time, the- tunnel diode switches on the first 200 milli
volts of the signal. The detector diode remains in the 
high state as long as the strobe pulse is present. 
This drives the current switch (Q3 + Q4) that sup
plies the bit current pulse to the bit line. The bit 
drive may also be actuated by pulsing the logic input 
terminal negatively (Q6). The bit-driver collector 
current increase of the output transistor rises in 2 
nanoseconds or less, and the entire line assumes 
the full drive amplitude within 7 nanoseconds of bit
driver tum-on. No overshoot has been observed. In 
addition to furnishing the bit pulse, the output tran
sistor also supplies the DC biasing current for the 
bit line. Throughput time. of the ICC (Information 
Control Circuit) from sense-amplifier input to bit-

+17V 

driver turn-on is 2 to 3 nanoseconds. The total time 
elapsed from the resetting of the tunnel diode to its 
zero state until the restoration of that diode to its 
ONE state is 10 to 11 nanoseconds. During the write 
noise, the first transistor cuts off, thereby preventing 
the write noise from influencing the state of the 
tunnel diode detector. 

WORD DRIVER 

The word driver circuit is shown in Fig~ 13. The 
operation of the circuit is as follows: The current 
switch formed by Ql, Q2, and Q3 performs the logi
cal AND function and provides regenerative feed
back through C 1 to improve the rise time of the input 
pulse; Q4 provides the necessary current gain to drive 

+17V 

200pf 

.~ 

Figure 13. Word driver circuit. 

the output stages. In this circuit, both outputs from 
the current switch are utilized to drive the word line 
in two segments. The output stage consists of the 
current switch formed by Q5 and Q6, which drives 
two 2N2369A (Q7 + Qs) transistors for increased 
voltage gain. The output levels are clamped by the 
diodes Dl and D2 to provide a well-controlled output 
level. The two wires of each word line segment are 
driven push-pull with respect to ground by a balun 
transformer. Because of the relatively light drive 

power requirements, high-speed current switch tech
niques can be used. It should be noted that half the 
drive is left ON all the time because only the changes 
in drive line current can activate the tunnel diode 
cells through the transformers. 

The word driver produces an output pulse of 88 
milliamps into a 136-ohm load. The current ampli
tude stays within a tolerance of -+-10 percent under 
worst-case conditions. The rise and fall times of the 
pulse are nominally 3 nanoseconds, 10 to 90 percent. 
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The worst-case tolerance on the write transition is 
within ± 15 percent of nominal value and the read 

l 

I \ I I 

I I I I I I 
I \ I I ; 
I • I.... I 

a. I n phase output. 

transition is at least as fast. The waveforms of the 
two outputs of the word driver are shown in Fig. 14. 

b. Out of phase output. 

(Horizontal = 5 ns/div and vertical = 2v/div. Rl = 136 ohms.) 

Figure 14. Final word driver output waveforms. 

OVERALL SYSTEM DESCRIPTION 

In addition to the memory array and the associa
ted driving and sensing circuits, the complete sys
tem includes a binary address register with decod
ing circuits, data input gating circuits, a data out
put register, and a clock with timing pulse distribu
tion circuits. An address counter, comparing cir
cuits, and manual data input switches permit exer
cising the memory system without using any exter
nal connections. Either the internal clock, or an ex
ternal source of clock pulses may be used. The logic 
circuits are constructed of an advanced form of 
IBM solid logic technology, referred to as ACPX in 
papers presented previously. 4.5 

The system interwiring and voltage distribution 
is contained in 2 multiple-layer boards, each 
about 10 by 14 inches, mounted side by side. These 
boards have male pins protruding from them which 
serve as connecting points for external wiring and 
also receive the sockets mounted on the bottom of 
each circuit card. The memory array cards are 

about 18 inches long and plug into both board as
semblies, bridging across the gap between them. 
Except for one narrower card, all the other circuit 
cards are about 3 inches wide and 5 inches high. 
About two-thirds of the volume is used by the 
memory array and the information control circuits; 
the remainder is used by the various logic circuits. 
A sketch of the ,layout is shown in Fig. 15. The 
card and board assemblies, blower system, power 
supplies, control panel, and I/O connection panel 
are contained in a cabinet. 

Tests on a cross-sectional model containing 2 
populated word lines and 4 populated bit lines indi
cated good operating margins with a cycle time in 
the range of 22 to 24 nanoseconds. Assembled array 
cards, shown in Fig. 11, have also been tested, with 
excellent operating margins verifying the validity of 
the cross-section test data. Fig. 16 shows the 
actual voltage waveforms from the cross-section 
model. At the time this is being written, the com
plete system is under construction; a photograph of 
the partially completed system is shown in Fig. 17. 
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MOOULE SIDE 

Figure 15. System layout sketch. 

Figure 16. Cross-sectional model memory circuit timing 
waveforms (lOns/cm). The traces from top to bottom are 
as follows: (1) Input to word driver. (2) Driven end of 
word line. (3) Transformer output of the cell at the far end 
of the word line. (4) ICC output. 

This represents the first complete memory system 
using any type of technology reported in this size 
and speed range. 

Figure 17. Partially assembled memory system. 
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A SILlCO'N MONOLITHIC MEMORY UTILIZING A NEW STORAGE ELEMENT 

Richard Shively 
Litton Industries 

Woodland Hills, California 

INTRODUCTION 

The advances that have been made recently in 
monolithic chip semiconductor logic circuits have 
significantly contributed toward the development of 
high-speed, low-power computers. These ad
vances also emphasize the need for marked improve
ments in storage techniques if the operating speeds, 
the weight, and the electrical power of future com
puters, especially airborne or spaceborne computers, 
are not to be adversely affected by the computer 
memory. 

A machine organization that utilizes several small 
"scratchpad" memories can be used to advantage in 
providing the required random access storage. This 
technique combines a number of small-capacity, 
high-speed memories with ~ large-capacity, 
slow-speed working store. A significant increase 
in overall machine speed can be realized by the 
proper application of this combined memory tech
nique. 

If the high-speed memory is to operate at a cy
cle time in the 100-nanosecond region, the class 
of storage elements that can be used is somewhat 
limited. Storage elements capable of switching 
speeds compatible with 100-nanosecond cycle 
times include (a) thin magnetic films of several 
types, (b) some forms of laminated ferrites, (c) tun-
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nel diodes, and (d) semiconductor flip-flop type 
devices. 

Most forms of thin film and laminated ferrite 
storage devices exhib:.t adequately fast switching 
times, but the drive current requirements are large 
and the readout signals small.- The current ampli
tudes and driver power levels usually preclude the 
use of integrated circuit drivers for the thin film 
and laminated ferrite memory systems. Recent de
velopment work indicates that integrated circuit 
sense amplifiers suitable for sensing low-level sig
nals at high speed will soon be available. However, 
it is felt that the cost of these amplifiers may ad
versely effect the cost per bit of a small memory 
system for some time to come. 

Tunnel diode memory elements are capable of 
fast switching speeds, and the drive and sense cir
cuit requirements are amenable to mechanization 
via the use of integrated circuit techniques. The 
main stumbling block in fabricating a small, low
power tunnel diode memory is found in the tunnel 
diode itself. Although the tunnel diode is a semicon
ductor device, the unique characteristics of the ele
ment have made it quite difficult to fabricate in mon
olithic form. Therefore, the prospects of a low-cost, 
physically small tunnel diode memory are not good. 

The proper application of integrated circuit tech
niques to the fabrication of a bistable multivibrator 
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or flip-flop appears to be, at this time, the most 
practical method for building a high-speed, low
power, physically small and potentially low-cost 
scratchpad memory. Most standard integrated cir
cuit flip-flops can be used as random access mem
ory devices; however, the power per bit is high, 
being in the order of 40 milliwatts and up, and the 
number of bits per chip that can be obtained by us
ing commercially available flip-flops even with 
new metalization masks is felt to be no larger than 
3 bits per chip. 

Efforts have been made to tailor the flip-flop 
topology to the needs of a random access memory 
device. By incorporating this philosophy, improve
ments in power/bit and packing density have been 
reported. A device power of 30 milliwatts per bit 
and 8 bits per 14-lead flat package has been 
reported. 1 

The storage device that is presented in this paper 
represents a combination of advanced semiconductor 
technology and a unique flip-flop type of topology 
that has been optimized for random access memory 
usage. Because of the fact that the storage device is 
constructed using monolithic integrated circuit tech
nology, the name Semiconductor Memory Integrated 
Device, or SMID, has been used. It is felt that the 
SMID represents a significant addition to existing 
storage devices. The basic element can be used at 
read cycle times of less than 100 nanoseconds over 
the temperature range of -55°C to + 125°C, and 
the power/bit is less than 0.55 milliwatt. 

Nine bits of SMID storage has been fabricated on 
a monolithic chip. Figure 1 shows a 9-bit memory 
array. When the fact that the 9-bit array and all of 
the memory drive electronics are batch fabricated is 
coupled with other element characteristics, there is 
the indication that the SMID will provide a vehicle 
for the construction of fast, low-power and low
cost scratchpad memories. 

THE BASIC STORAGE ELEMENT 

A fundamental requirement of any binary memo
ry element is that the element exhibit two distinct 
stable states. It is possible to form a bistable ele
ment by interconnecting a PNP and NPN transistor 
in the proper manner. By utilizing this fact, the 
semiconductor industry has been manufacturing, for 
a number. of years, bistable elements that are known 
by various names.2,3 In addition, several families 
of monolithic integrated circuits, usually linear cir-

cuits by design, have exhibited, much to the dismay 
of the manufacturer and the user, a four layer 
(PNPN) latching mode of operation. However, the 
proper utilization of this four-layer latching mode 
of operation has afforded a vehicle for the construc
tion of the SMID element. 

The basic SMID element is shown in Figure 2 (a) . 
The conductance or nonconductance of the transistor 
latching pair Ql and Q2 constitutes the fundamental 
storage mechanism. When the latching pair is in the 
conducting state the SMID element is said to be 
storing a "one." 

The method by which the storage of data is accom
plished can best be understood by considering the 
static operation of transistors Ql and Q2. Transistors 
Ql and Q2 are interconnected to form a positive 
feedback loop. The gain of this positive feedback 
loop is approximately f3Ql X f3Q2' the product of the 
current gains of the two transistors. The stable states 
of the transistor latching pair are represented in 
Fig. 3 as point A, the "zero" state, point C the "one" 
state, and point B. Point B is a stable state that will 
exist only during a read "one" or write "one" oper
ation. If a "one" is to be written into a storage 
element, base current must flow into transistor Q3. 
Q3 will conduct into saturation causing the latching 
transistor pair to be switched to point B. The load 
line shown in Fig. 3 is determined by resistor R2. 
Once a SMID element has been switched to point B, 
the external drive can be removed. The voltage across 
the SMID element will now be + V H and the tran
sistor latching pair will be operating at point C of 
Fig. 3 due to the self-regenerative action in the 
transistor latching pair. 

If the current that conducts into the latching pair 
is equal to or greater than the value given by Eq. 
( 1 ), the memory element will remain in the low 
impedance or "one" state. The maximum hold-on 
current as a function of temperature has been 
plotted in Fig. 4 from empirical data and agrees with 
the hold-on current as calculated from Eq. (1): 

I - f32 min (1 + f31 min) 
e~- X 

f32 min f31 min - 1 

V BEQ2 max + V CE sat WORD DRIVER - (-V max) 
------=-==----~-~--~~~ (1) 

Rl min 

where 
f32 min = the minimum beta of transistor Q2, 
f31 min = the minimum beta of transistor Ql, 
V BEQ2 max = the maximum base to emitter drop 

of transistor Q2, 
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Figure 1. Nine-bit memory array_ 
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Figure 2. Basic SMID element and typical timing waveforms. 

V CE sat WORD DRIVER = the collector-to-emitter sat
uration voltage of the word driver output 
transistor, 

The SMID element will remain in the "one" state 
until the current flowing in the latching pair is 
reduced to a value that is less than that given by 
Eq. (1). -V max = the maximum negative value of -V volts 

(2.86 volts), and 
RI min = the minimum resistance of resistor RI. The following discussion is included so as to indi-
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DURING A READ OR WRITE OPERATION 

© = "ONE" STATE 

VOLTAGE 

Figure 3. Characteristics of the transistor latching pair. 

cate the manner in which the SMID is used in a ran
dom access memory configuration. It will be assumed, 
for example'S sake, that the SMID element of Fig. 2a 
is initially in the high impedance or "zero" state. 
A "one" is written into the element by the simul
taneous switching of point 4 from ground to -2.6 
volts and point 3 from -2.6 volts to ground. This 
corresponds to time t1 of Fig. 2b. The simultaneous 
switching of points 3 and 4 will cause base current 
to flow into transistor Q3 thereby causing current 
to flow into the transistor latching pair. The minimum 
values of -Vas a function of temperature that will 
guarantee that transistor Q3 will be switched into 
saturation during a write "one" operation are shown 
in Fig. 5. 

Once the latching transistor pair has latched on, 
point 3 of Fig. 2b is returned to -2.6 volts and 
point 4 is returned to ground. Hold-on current will 

now flow from + 2.4 volts through R2 and the tran
sistor latching pair into ground. The output of a word 
driver will always be at ground except when data 
are being written into, read out of, or cleared from 
the particular word of memory associated with that 
word driver. A more detailed discussion of the oper
ation of the word driver is included in the section 
on Memory Electronics. 

Reading out the data that are stored in an element 
is accomplished by switching point 4 to -2.6 volts. 
This corresponds to time t2 of Fig. 2b. If the element 
is storing a "zero," the voltage level at point 2 of 
Fig. 2b will not change. If the element is storing a 
"one," and is therefore in the low-impedance state, 
the voltage level at point 2 will tend to follow point 
4. This means that the voltage level at point 2 will 
drop from ground to approximately -2 volts. When 
the input to the sense switch is switched to a negative 
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-55 -25 o +25 +50 +75 

TEMPERATURE IN °C ~ 

Figure 4. Maximum hold-on current versus temperature. 
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WRITE IN 

+100 +125 

O~------+---~~----~----+-----~----~-------+--
-55 -25 o +25 +50 +75 +100 +125 

TEMPERATURE IN °C 

Figure 5. Maximum and minimum values of -Vasa function of temperature. 
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potential the output of the sense switch will go from 
ground to + 5 volts. A more. detailed discussion of 
the operation of the sense switch is included in the 
next section. 

If the SMID element is storing a "one," hold-on 
current will continue to flow through the element 
after a read operation has been completed and the 
word driver output is switched back to ground. If 
the SMID element is storing a "zero," the read 
operation will not affect the state of the transistor 
latching pair in any way. Therefore, the read opera
tion is nondestructive in nature. 

The amount of time required to read out a "one," 
or access time, is effectively determined by the..~ter
nal electronics and not the SMID. This is because 
the transistor latching pair is already in conduction 
when storing a "one," and the time that is required 
to switch on diode Dl of Fig. 2b is in the order of a 
few nanoseconds. The cycle time of a read operation 
may also be limited by external electronics and not 
the SMID. This is especially true if the number of 
bits on a given sense line is large. This can be seen 
if one considers the fact that the anode of diode Dl 
is at a negative potential at the end of a read opera
tion; the capacitance of this point must be charged 
to a potential that is equal to the threshold of the 
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sense switch. Once the threshold of the sense switch 
has been reached, the output of the sense switch will 
go to ground, and a new read operation can begin. 
As the size of memory increases, or the cycle time 
requirements of the memory system decrease, the 
number of bits that can be sensed by a common 
sense switch must be decreased. This means that 
several sense switches must then be ORed together 
to form a total sense line output. 

When data are to be cleared out of a given word 
of memory, the output of the word driver is caused 
to switch from ground to + 5 volts. The clear opera
tion corresponds to time 13 of Fig. 2b. Since + 5 
volts is greater than + V H, the flow ~f holding cur
rent is stopped and the base to emitter junctions of 
transistors Ql and Q2 will be back biased. The 
SMID element will be switched to point A of Fig. 3. 
Resistor Rl of Fig. 2a has been sized so that the 
base of Q2 will recover to -V volts approximately 
50 nanoseconds after a clear operation has ended. 
Figure 6 shows the time that is required to clear 
data out of a SMID as a function of temperature. 
As can be seen from Fig. 6, a faster clear operation 
is obtained if + V H is compensated as a function of 
temperature. 

The last waveform of Figure 2b indicates a write 

o = NO COMPENSATION TO +VH 

Ii. = COMPENSATED +VH 

O~~------~------~-----+------~----~~----~----~ -55 -25 o +25 +50 +75 +100 +125 

TEMPERATURE IN °C 

Figure 6. Clear time versus temperature. 
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"zero" operation. The output of the word driver is 
switched from ground to -2.6 volts, but since the 
datum to be written into the SMID element is a 
"zero," the output of the digital driver remains at 
-2.6 volts. The base to emitter junction of transistor 
Qs of Fig. 2a will be back biased by a· collector-to
emitter saturation voltage; therefore, base current 
cannot flow into transistor Qs. The transistor latch
ing pair will remain in the high impedance or "zero" 
state. 

Writing a "zero" into a SMID is a straightforward 
operation; however, the latching transistor pair is 
susceptible to a rate effect type of turn on.4 The 
rate effect type of turn on in a SMID element can 
best be understood by considering the capacitive 
voltage divider that is formed by. the parallel com
bination of the base-to-collector capacities of Ql 
and Q2. When the voltage swing at point 4 of Fig. 2a 
is large enough, the base to emitter junction Ql will 
become forward biased (due to ~~pacitive coupling 
of the voltage pulse) and the transistor latching pair 
will begin to conduct. Figure 5 shows the maximum 
value that -V volts can have as a function of tem
perature in order to guarantee that a write pulse alone 
(i.e., no digital pulse in coincidence with write) will 
not cause the latching transistor pair to conduct. 
From Fig. 5 it can be seen that -V volts (-2.6) can 
be varied in excess of ±13 percent from -55°C to 
+ 125°C. 

Although Fig. 2a represents the basic SMID to
pology, it should be noted that it is possible to vary 
this topology slightly and yet obtain the same basic 
type of operation. Transistor Qs can be eliminated 
and replaced by a diode. The cathode of this diode 
would be connected to the base of transistor Q2, 
and resistor Rs would be in series with point 3 and 
the anode of this new diode. The diode would be 
used to isolate the transistor latching pairs that are 
common to a digit line. Nine-bit SMID arrays have 
been fabricated by the utilization of both topologies. 
Each type of SMID array operates satisfactorily. 

MEMORY ELECTRONICS 

The low-power levels of a SMID memory are 
quite compatible with the power handling capability 
of monolithic integrated circuits. Two special inte
grated circuit drivers have been designed and fabri
cated, and a commercially available T2 L gate has 
been remetalized. These three special integrated 
circuits in conjunction with standard T2L gates have 

been used to construct a completely integrated cir
cuit memory system. 

The drive electronics that are used to write, read, 
hold, or clear data in a given word of memory are 
shown in Fig. 7. Pins 1 and 2 are used as the second 
level of memory address decoding. The first level 
of address decoding is performed in an X Y type of 

+5V 

CLEAR 
~----~------GV~3CLOCK 

t--____ --oREAO/WRITE 
@CLOCK 

Figure 7. Word driver. 

matrix consisting of T2L logic gates. Pins 3 and 4 
are clock inputs. The input terms to a SMID word 
driver are normaHy false (i.e., at ground). When 
pin 1 or 2 or 3 is at ground level, the output tran
sistor, transistor Ql of Fig. 7, will receive base drive 
and therefore be driven into saturation. This will 
allow hold-on current to flow from the SMID ele
ments of a given word and into ground. If pins 1, 
2, and 3 are all true (i.e., + 2.5 volts or greater) 
at the same time, the base drive to transistor Ql 
will be zero. This will cause the voltage level at 
pin 5 to be + 5 volts. This is the state of a word 
driver during a clear operation. If pins 1, 2, and 3 
are true at the same time, transistor Q2 as well as Ql 
will conduct into saturation. The voltage level at pin 
5 will be approximately -2.6 volts. This is the state 
of a word driver during a read or write operation. 

Four word driver circuits are included on a single 
chip and are packaged in a standard 14-lead flat 
package. With one flat package of word electronics 
it is then possible to perform all necessary word 
functions on four different words of memory. The 
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word-drive electronics has been designated so that 
word lengths up to 40 bits can be accommodated. 

The driver that is used for switching a SMID mem
ory system's information line from -2.6 volts to 
approximately ground during the writing of a "one" 
into a given bit is shown in Fig. 8. The input terms 
to the digit driver are normally false. Under these 
conditions transistor Q2, of Fig. 8, will receive base 
drive and the output of the driver will be at approxi
mately -2.6 volts. When both the clock and data 

CLOCK 
DATA 

+V 
+v 

-v 

-v 

Figure 8. Digit driver. 

input terms are true the base drive to transistor Q2 
is "zero" and transistor Ql will receive base drive. 
The junction capacity of diodes Dl and D2 delay the 
turn on of Ql thereby guaranteeing that Q2 will be 
turned off before Ql is turned on. The voltage level 
on the output terminal will rise from -2.6 volts 
toward + 5 volts. Once the voltage level of the 
output terminal reaches ground, Q3 will conduct and 
thereby take base current away from Ql. 

There are four circuits of the type shown in Fig. 8 
on each digit driver chip. Each chip is packaged in 
a 14-lead flat package. Each digit driver flat package 
can therefore drive four SMID information lines. 

The push-pull output of the digit driver makes it 
possible to drive long digit lines at high speeds with 
low standby power requirements. 

The sense switch is shown in Fig. 9. A standard 
T2L logic gate was remetalized so that the isolation 
region could be tied to -V volts rather than to 
ground. This guarantees that the isolation regions 
of the sense chip will not become forward biased 
during a read or write operation. 

r------------------~ +5V 

OUTPUT 
INPUT 

1 
-V(lSOLATION} I = I 

L __________________ ~ 

Figure 9. Sense switch. 

The output of a sense switch is normally at ground. 
If the input to the sense switch should go to ground 
or lower (as is the case during a write ~'one" or 
read "one" operation), the voltage level at the output 
of the sense switch will rise towards + 5 volts. There 
are 4 sense switches in a 14-lead flat package. 

Figure 10 shows the manner in which the SMID 
elements and the drive electronics are interconnected, 
and a block diagram of the complete 64-word-by-
21-bit system is included. 

RESULTS AND PROJECTIONS 

A SMID memory system of 64 words, 21 bits per 
word, has been constructed and is now undergoing 
tests. All of the selection and drive electronics are 
monolithic integrated circuits. 

The total memory system, including all peripher
al electronics, requires 194 14-lead flat packages. 
The capability of operating at 100-nanosecond 
read-only cycle times with access times of less 
than 80 nanoseconds has been demonstrated. The 
total system power has been measured to be less 
than 3.0 watts. Pertinent waveforms of a sequential 
clear/write operation are shown in Fig. lla. Wave
forms of the read-only operating mode are shown 
in Fig. lIb. 
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Figure 10. Interconnections between SMID array and driver electronics. 

The cost of' a small scratchpad memory system in 
which the SMID and its associated drive electronics 
are utilized has beec. projected to be under $2.00 
per bit in 1966. It has also been projected that 100 
64-word-by-21-bit SMID memories, including all 
the necessary electronics, assembly, and checkout 
charges, will cost less than $1.00 per bit in late 
1967. A 16-bit SMID chip packaged in a standard 

14-lead flat pack is now being investigated. A chip 
such as this should reduce the price per bit and cer
tainly will improve the memory system packing 
density. 

Several types of flip-chip interconnection 
schemes are now being investigated. The proper 
chip interconnect technique, in conjunction with a 
package that has many more leads than 14, should 
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MASTER CLOCK (5V/cm) 
ONE BIT OF ADDRESS REGISTER (5V/cm) 
OUTPUT OF DIGIT DRIVER ALTERNATE 1/0 PATTERN (5 V/cm) 
OUTPUT OF WORD DRIVER (I0V/cm) 

OUTPUT OF SENSE SWITCH--------(5V/cm) 

100ns/DIV~ 
(a) 

MASTER CLOCK------------(5V/cm) 
ONE BIT OF ADDRESS REGISTER (5V/cm) 
OUTPUT OF WORD DRIVER. READ ONLY (5V/cm) 

OUTPUT OF SENSE SWITCH (5V/cm) 
OUTPUT OF DATA REGISTER (5V/cm) 

50ns/cm~ 
(b) 

Figure 11. SMID memory operating waveforms. 

make it possible to package the 64-word-by-
21-bit memory on a circuit board area of less than 
3 square inches. 

CONCLUSION 

A transistor latching switch that has been optim
ized for random access memory usage has been fab
ricated as 9 bits of memory on a single integrated 
circuit chip. 

When compared to other semiconductor memory 
devices, the element described in this document 
represents at least an order nl! magnitude reduction 
in power without significantly sacrificing switching 
speed. The low-power requirements of the storage 
element have made it possible to build a completely 
integrated circuit memvry system. 
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AN EXPERIMENTAL 65-NANOSECOND THIN FILM SCRATCHPAD MEMORY SYSTEM 

G. J. Ammon and Carl Neitzert 
Radio Corporation of America 

Computer Advanced Product Research 
Camden, New Jersey 

INTRODUCTION 

As computers become larger and more complex, 
the need for a high-speed scratchpad type memory 
becomes greater. Furthermore, the size and speed 
requirements increase. An early memory, suitable 
for use as a scratchpad, was described by H. Amem
iya, R. L. Pryor, and T. R. Mayhew.1 This memory 
used two ferrite cores per bit and had a read/regen
erate cycle time of 200 nanoseconds. More recently, 
a 64-word by 20-bit thin magnetic film memory was 
described by G. J. Ammon and C. Neitzert.2 This 
memory had a read/regenerate cycle time of 125 
nanoseconds and its speed was limited primarily by 
the electronic circuitry. A number of other memories 
and memory designs, suitable for use as scratchpads, 
have been reported in the literature.3,4,5 Future need 
for a 256 to 1,024 word memory having a cycle 
time of 50 nanoseconds has been indicated. A project 
was therefore initiated to study the feasibility of 
such a system. 

At their present state of development, ferrite cores 
do not appear capable of such speeds. Thin magnetic 
film memories, on the other hand, are believed to be 
capable of this speed using transistor circuitry, pro
vided the best circuit and packaging techniques are 
used. The goal for the project was therefore set as 
a 256-word by 25-bit thin film memory having a 
read/write cycle time of 50 nanoseconds. 

649 

MEMORY ARRAY 

The memory array consists of two polished alumi
num plates coated on one side with a 1000-angstrom 
continuous film of 80-17-3 NiFe Co. These are 
mounted back to back. A set of 128 word lines, 
etched from ~-oz copper backed with Mylar is 
placed over each film surface. The word lines are 
10 mils wide and are on 20-mil centers and are 
grounded to a gold-plated portion of the film plate 
at the far end by means of a pressure contact. They 
have a characteristic impedance of 24 ohms and a 
delay of approximately 1.5 nanoseconds per line. 

A set of digit and sense lines, also etched from 
~-oz copper backed with Mylar, is placed over and 
orthogonal to the word lines. They extend com
pletely around the two film plates and are spaced 
from the word lines by a sheet of 1h -mil Mylar. 
The digit and sense lines use an interdigitated 
arrangement in which the digit line consists of two 
parallel conductors 6.5 mils wide and 11.5 mils 
apart. The digit lines are driven at their center, from 
a IS-ohm line, and are terminated at their free ends 
with 27 -ohm resistors. The resistors are trimmed 
to give a specified differential digit noise of not 
more than 2.5 millivolts, at the sense amplifier input, 
when the digit rise and fall times are 5 nanoseconds. 
The sense lines have a characteristic impedance of 
54 ohms and are connected to their respective sense 
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amplifiers by a pair of 50-ohm terminated coaxial 
cables. The ratio of signal to noise at read time is 
specified to be greater than 5 to 1. 

SYSTEM ORGANIZATION AND PACKAGING 

A block diagram of the system organization is 
shown in Fig. 1. The address is decoded in two 
steps. The second step consists of a word driver ma
trix with a driver for each word line and a 2-input 
AND gate at the input to each driver. The first step 
of decoding is provided by AND gates at the inputs 
of the matrix drivers. 

CJ) 
CJ) 

w~ 
G:::C::( 
00 
o 
<t 

WORD- DRIVER 
MATRIX 

a.: 
:E 
<t 

t----+-+-IW 

Figure 1. System block diagram. 

CJ) 

Z 
W 
CJ) 

A regeneration loop consists of a 4-stage sense 
ampIlfer, a gated flip-flop memory register and a 
bipolar digit driver. The polarity of the digit cur
rent is controlled by the information to be written 
and the location of the word being written. A tim
ing circuit generates all timing pulses required for 
the system operation when initiated by a start 
pulse. Details of all circuits are given later. 

All electronic circuits are packaged on small 
plug-in modules. Figure 2 s~ows a two-view 
photograph of a half digit driver. 

It was decided that the feasibility of the system 
could be demonstrated if a minimum of 8 words 
and 6 bits could be operated at one time. Therefore, 
6 regeneration loops and the associated portion of 
the timing circuit were constructed on one mother 
board. Top and bottom views of this board are 
shown in Figs. 3 and 4. 

The complete system was mounted in an alumi
num angle frame shown in Figs. 5 and 6. The bit 
board appears in the upper portion and the memory 
array in the lower portion of Fig. 5. Any 6 of the 
25 digit and sense lines can be connected to the 
board by means of coaxial cables and connectors. 
The electronic circuits required for 8 words are 
mounted on a movable word board shown in the 
upper left hand portion of Fig. 6. All 256 word 
lines are brought out to connectors, visible in this 
figure, by means of miniature 15-ohm solid-wall 
coaxial cable, and any .8 lines can be connected to 
the word drivers by means of short pieces of 24-
ohm flexible cable. 

ELECTRONIC CIRCUITS 

Except for the sense amplifiers and drivers, the 
electronics is based on a logic circuit shown in Fig. 
7a. This circuit is very fast and can be adapted to 
perform a large number of functions in a very sim
ple manner. This circuit performs the logical opera
tions shown in Fig. 7b, but it can be varied to pro
vide other numbers of AND-gate and OR-gate 
inputs. It can also provide the functions shown in 
Fig. 7 c. By returning the direct output to one of the 
inputs, a set/reset flip-flop is obtained and its use 
as a one-shot multivibrator is explained later. 

When driving a 70-ohm terminated line the 
output rise time is 3 nanoseconds and the circuit 
delay, at the 50 percent points, is 3 nanoseconds. 
Its speed can be increased slightly by the use of 
more recent transistors. The input impedance is 
roughly approximated by a resistance of 7,500 ohms 
in parallel with a capacitance of 5 picofarads. The 
output impedance appears to be 5.5 ohms but this 
value can be effectively decreased for large fanouts 
by splitting the load and using 2 or more output 
emitter followers. By employing 3 emitter follower 
outputs, a fanout of 24 has been obtained. In this 
case the rise and fall times were .g nanoseconds and 
the circuit delay was 5 nanoseconds. 

For the circuit shown in Fig. 7, the normal logic 
levels are +0.2 and + 1.0 volts at both the input 
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Figure 2. Front and back views of a plug-in module. 
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Figure 3. Top view of the bit board. 

and output. It is shown later how these can be 
changed at the output when special loads must be 
driven. 

Timing Circuit 

A logic diagram of the timing circuits is shown 
in Fig. 8. These circuits are made from delay lines 
and variations of the basic logic circuit shown in 
Fig. 7. The timing unit receives a high level on the 
read/write input during a read cycle and a low level 
during a write cycle. The start and inverted start 
pulses are received simultaneously. The inverted 
start pulse is used to reset the· memory register. The 
start pulse sets the word TP flip-flop at the top of 
the figure. This starts the word pulse and latches 
the address register. The start pulse is then inverted 
and delayed to end the word pulse and unlatch the 
address register. A small delay is inserted in one of 
the latch lines to prevent a race condition in the 
address register. 

The start pulse is also delayed and split into its 
direct and inverted forms. These are combined with 

the read/write level to give either a set pulse or a 
strobe pulse. During a write cycle the inverted start 
pulse is ANDed with the low read/write level to 
give a set pulse while during a read cycle the direct 
start pulse is ANDed with the high read/write level 
to trigger a one-shot multivibrator which in turn 
generates the strobe pulse. The one shot consists of 
a flip-flop in which the inverted output is delayed 
and returned to an input to reset the flip-flop and 
terminate the pulse. 

The direct start pulse is further delayed and used 
to trigger another one-shot multivibrator which 
generates the digit timing pulse. 

Address Register 

The logic diagram of one bit of the address regis
ter is shown in Fig. 9. Circuit details and parameter 
values are shown in Fig. 7. When input a is high 
and input b is low the register is latched, and 
changes in the level of input c do not change the 
state of the flip-flop. This is the case for the dura
tion of the word current timing pulse. When the 



SIXTY FIVE NANOSECOND SCRA TCHP AD MEMORY SYSTEM 653 
• 

Figure 4. Bottom view of the bit board. 

word pulse ends the address is no longer needed and 
input a goes low and input b goes high. The state of 
the flip-flop is then under the direct control of in
put c. If c is high the flip-flop is set, and if c 
is low it is reset. Thus, an address is held in the 
register only as long as it is needed after which the 
register is free to accept a new address if it be
"omes available before the end of the cycle. 

Matrix Drivers 

The elements of the word matrix, which are indi
vidual word-line drivers, require input levels of 
+ 0.2 and + 2.5 volts in order to give fast turn-on 
and tum-off. In order to supply these levels, a slight 
modification of the basic logic circuit, as shown in 
the schematic circuit diagram of Fig. 10, is required. 

Word-Line Drivers 

In order to attain a mllllmum sense voltage of 
1.5 millivolts, it was predicted that a word current 

0.5 ampere with a rise time of 6 nanoseconds would 
be required. The total delay of a word line and its 
connecting cable is 3.2 nanoseconds so that with a 
rise time of 6 nanoseconds the condition for the line 
to act like an inductance (tr > 2td) is poorly satis
fied. However, this condition was assumed in the 
driver design and the resulting schematic circuit 
diagram is shown in Fig. 11. Two drivers are pack
aged in one module. 

The inductance of the word line and its connect
ing cable is approximately 65 nanohenrys and the 
supply voltage is limited to about 15 volts by the 
transistor breakdown voltage. If the transistor is an 
ideal switch and capacitor C is selected to give cri
tical damping on the word current turn-on, the 
time required to rise 0.45 ampere is 3.6 nano
seconds. However, the turn-on time of the transis
tor increases this to more than 6 nanoseconds. As a 
result the capacitance must be increased beyond the 
critical value and the circuit becomes oscillatory. 
The computed value of C for critical damping is 18 
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Figure 5. Bit side of complete memory system less timing and connecting cables. 

picofarads. The value used was determined experi
mentally. 

The fall time of the current is determined by the 
line inductance and resistor R. If the diode has a 
zero threshold voltage and zero resistance, the com
puted tirr..e for the current to fall to 0.05 ampere is 
6.7 nanoseconds. This fall time has an effect upon 
domain wall creep in the magnetic film and will be 
discussed later. 

The first two transistors of Fig. 11 serve as an 
AND gate and the third drives the transformer. The 
150-picofarad speed-up capacitor, in the emitter 
circuit of the third transistor, gives a large initial 
transformer voltage to turn the output transistor on 
fast. The· field discharge of the transformer gives a 
large reverse base voltage to turn it off. The trans
former also provides a d-c level shift making it 
convenient to ground the far end of. the word line. 
The RC circuit between the power supply and the 
collector of the output transistor is made common 

to all 8 drivers. This reduces the space required for 
resistors and is permissible since only one driver is 
used at a time. 

Sense Amplifiers 

Figure 12 shows the schematic circuit diagram of 
a sense amplifier. Capacitance coupling is required 
between stages to eliminate drift in the d-c levels 
due to temperature changes. Each amplifier is pack
aged in two modules with the coupling capacitors 
connected between modules. One side of the output 
drives the sense input to the information register 
and the other side provides an inverted output for 
test purposes. 

This amplifier gives a single-ended output of 1 
volt for a differential input of 2.4 millivolt. With a 
very fast rising input, the delay through the ampli
fier is 5.6 nanoseconds, and the output rises in 4 
nanoseconds. When a common mode pulse-having 
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Figure 6. Word side of complete memory system. 

an amplitude of 250 millivolts, rise and fall times 
of 4 nanoseconds, and a base width of 10 nano
seconds-is applied to the input the common mode 
output is not measurable. However, the unbalance in 
the amplifier produces a sil1gle-ended output of up 
to 1.9 volts, and the time required for amplifier re
covery is about 25 nanoseconds. Waveforms under 
operating conditions are given later. 

Memory Register 

Each bit of the information register consists of a 
flip-flop made from one logic module as shown in 
Fig. 13. The schematic circuit diagram is the same 
as that shown in Fig. 7 a except that a third AND 
gate is used and a feedback connection is provided 
to form a flip-flop. Strobing of the sense signal is 
unusual in that it is performed at the register input 
rather than in the sense amplifier. 

Digit Drivers 

A hybrid diagram of a complete digit driver is 
shown in Fig. 14. It consists of a positive and a 
negative driver in separate modules with their out
puts paralleled at the digit-cable inputs. The logic 
on the input is necessary because a ONE is written 
with a positive digit current on the top plate and a 
negative current on the bottom ·plate. A ZERO, of 
course, requires the opposite polarities. Transformer 
coupling to the output transistors permits the use of 
the same type high-speed transistor for each cur
rent polarity. In order to properly drive the trans
formers, the logic circuits supply a high voltage 
output similar to that shown in Fig. 10. 

This driver deliver -' a 200-milliampere current 
pulse to the digit line cable with a rise time of 6 
and a fall time of 4 nanoseconds. The delay be-
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-4.7V (0) 
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Figure 7. Basic logic circuit: (a) Schematic circuit diagram; 
(b) logic function performed by Fig. 7 a; (c) other logic 
functions obtainable. 

tween the leading edges of the input timing pulse 
and the output current pulse is 8 nanoseconds when 
measured between the 50 percent points. 

EXPERIMENTAL RESULTS 

Temperature Effects 

The input and output of a sense amplifier were 
monitored while the ambient temperature was varied 
from -45°C to + 60°C. The variation in delay 
through the amplifier was less than 0.5 nanosecond 
and the variation in gain was less than 5 percent. 

In another test t~o inverters, a flip-flop connected 
as a one-shot, and a matrix driver were connected 
in a cascade to drive all four inputs of two word 
drivers simultaneously. The word driver outputs 
were connected to short-circuited cables to simulate 
word lines and their input voltage and output currents 
were monitored while the ambient temperature was 
varied from -45°C to +80°C. In the range from 
O°C to 55°C the input pulse to the word driver 
increased in width by 2.5 nanoseconds and the output 
pulse width increased by 5.5 nanoseconds. No 
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INVERTED+-I--_________ ....... REG. RESET 
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Figure 8. Logic diagram of the timing circuits. 
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Figure 9. One bit of the address register. 
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Figure 10. Schematic circuit diagram of a matrix driver. 
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Figure 11. Schematic circuit diagram of a word driver. 

Figure 12. Schematic circuit diagram of a sense amplifier. 
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Figure 13. Logic diagram of an information-register bit. 

change in delay of the leading edg~ through the word 
driver could be detected for the full temperature 
range. 

Cycle Time 

Figure 15 shows selected waveforms. taken while 
reading and regenerating a ONE at a repetition rate 
of 10 megacycles. In curve (d), the sense voltage 
is too small to observe and the noise shown is 
substantially all common mode. In curve (e), the 
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Figure 14. Digit driver diagram. 
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sense voltage is the first negative pulse and the re
mainder is digit noise plus the rewrite sense volt
age. Curves (a) and (c) show 60 nanoseconds 
from the beginning of the start pulse to the end of 
the digit current. Curve ( e) shows that the ampli
fier recovers from the digit noise 65 nanoseconds 
after the beginning of the sense voltage. Finally, 
curves (a) and (f) show an access time of 30 
nanoseconds. Fig. 16 shows the amplifier output 
with a higher repetition rate. In this case the circuit 
is arranged to write a ONE after reading a ZERO 
and to write a ZERO after reading a ONE. Two 
sense ONE signals appear as negative pulses at 2 
and 8 divisions from the left and a sense ZERO ap
pears as a positive pulse midway between the 
ONEs. 

Increased Number of Words 

Although the memory plane has a total of 256 
words, electronics was built for only 8. However, 
physical path lengths and loading, for a full set of 
electronics, were closely approximated except for 
the loads on the matrix drivers. In order to show 
the effect of a 16-by-16 word-driver matrix, a 
matrix bus was loaded with an additional capaci
tance of 200 picofarads in parallel with 300 ohms. 
There was no appreciable change in either the lead
ing edge of the word current, or the amplitude or 
timing of the amplified sense voltage. However, 
there was an appreciable increase in the fall time of 
the word current. As will be shown later, this is not 
objectionable. 
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Figure 15. Selected waveforms during regeneration of a ONE. 

Creep Tests 

Adjacent-word disturb tests were made in all 
four comers of both plates and in the central por
tion of the top plate. The test consisted of writing 
alternate ONEs and ZEROs once in a word after 
having predisturbed the word by writing the oppo
site information 10 times. The word was then dis
turbed by writing the opposite information 25 mil
lion times in each adjacent word. Finally, the origi
nal word was read out £.nd checked. 

Initially, when every word was used with a 
word-current fall time of 4 nanoseconds, informa
tion was lost in a large number of bits. Improve
ments were made by using only odd numbered 
words and short circuiting unused word lines and 
by increasing the word-current fall time to the 
value shown in Fig. 15 (b) . Under these condi
tions a few bits failed in one .comer of each plate. 
A total of 9 bits, distributed among 3 words, 
failed. * In every case the information lost was a 
ZERO. Apparently, loss of information was due to 

easy-axis skew in the magnetic film. The presence 
of skew is indicated by the difference in the ampli
tude of the ZERO and ONE signal inFig. 16. 

Figure 16. Amplifier output while reading ZEROs and ONEs 
alternately with a 60-nanosecond cycle time. 

*It later developed that a partial short between two 
word lines caused part of the failures. 
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CONCLUSIONS 

These experiments show the feasibility of a 
256-word scratchpad memory with an access time 
of 30 nanoseconds. By using faster transistors, now 
available, this value should be reducible to 25 nano
seconds. The read/write cycle time, however, will 
still be limited by the amplifier recovery so that 
with the best transistors available it appears that 60 
nanoseconds are required. 
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IMPACT OF SCRATCHPADS IN DESIGN: 
MULTIFUNCTIONAL SCRATCHPAD MEMORIES 

IN THE BURROUGHS B8500 

Simon E. Gluck 
Burroughs Corporation 

Great Valley Laboratory 
Paoli, Pennsylvania 

The B8500 Modular Data Processing system is 
the latest design in the rapidly growing family of 
Burroughs Modular Computers. As in previous mod
ular systems,1,2 the Burroughs Corporation has 
found it expedient and efficient to utilize scratchpad 
memories to enhance the performance 6f the com
puter and other modules. This paper will describe 
in detail the application of multifunctional scratch
pad memories in the computer module of the 
B8500 system. 

The overall system design of the Burroughs 
B8500 is described in a separate paper presented at 
this conference.3 It will suffice to review only the 
basic characteristics of the system as background 
for this paper. 

The B8500 is an advanced design, high-per
formance modular data processing system. Three 
modules comprise the. major building blocks of the 
system: the computer module, the input! output mod
ule, and the memory module. 

COMPUTER MODULE 

52-bit words: 48 data, 3 control and 1 pari
ty bit 

661 

Push-down (Polish) stack of operands to 
help implement arithmetic operations 

Absolute, indirect and five forms of relative 
addressing: 

Base Index Register 
Base Data Register 
Base Program Register 
Self Relative 
Program Reference Table 

Unlimited Index Registers 
Binary arithmetic: 200-nanosecond addition 

(single precision integer) 
Multiple multifunctional scratchpad thin film 

memories 
Associative memory 
Full repertoire of arithmetic, logical and char

acter handling function 
Memory protection registers 

INPUT/OUTPUT MODULE 

512 independent simplex channels 
Multiple 52-bit words of thin film buffering 

per channel 
One 104-bit descriptor word per channel 
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Linked descriptors provide I/O processing 
with minimum computer intervention 

Parallel byte transfers-variable from 1 bit to 
51 bits 

Maximum throughput of 590,000 bytes per 
second 

Data transfer cycle time per byte (any size less 
than full word), 1.7 microseconds 

On-demand servicing of input and output de
vices 

MEMORY MODULE 

Thin film, destructive readout 
4096.words of 208 bits: each memory word 

contains 452-bit computer words. 
Cycle time 500 nanoseconds: access time 300 

nanoseconds for 208-bit word 
16 module system capability: 

65,536 - 208-bit words 
262,144 - 52-bit words 

Capability of executing lengthy memory-oriented 
descriptors independently of, and concurrent
ly with, computer module processing 

Computer and I/O modules may total 16: at 
least one of each type must be included. 
Memory modules may be added up to 16 
modules: (262,144 - 52-bit words) 

The remainder of this paper will be confined to a 
discussion of the scratchpad memories that are part 
of the B8500 computer modules. The buffer memo
ry of the I/O module could also be considered 
scratchpad, but due to the limitations of time and 
space, it will not be discussed. 

INFLUENCE OF MEMORY MODULE DESIGN 
UPON SYSTEM 

The B8500 memory module concept, with its ef
ficient "four-fetch" organization, provides the ra
tionale for much of the scratchpad utilization in the 
computer module. One memory address descriptor, 
transmitted to all memory modules along a common 
communications bus, will select the addressed mod
ule, and within that module will select one of 
4096 208-bit words. This composite memory 
word, containing 4 computer words, data or in
structions, is available for transmission to the com
puter module 300 nanoseconds after the arrival of 
the address. Stored in the read-write register, the 

4 52-bit words are sequentially transferred 
(four-fetched) to the requesting module at the 
rate of one full parallel 52-bit word every 100 na
noseconds. Including transmission time of the ad
dress descriptors and the returning information, 4 
52-bit words can be requested from a memory 
module and received at a computer module in a to
tal of 1.0 microsecond, or an average of 250 nano
seconds per word. Similar speeds are available for 
writing; "four-store" is also possible in the B8500 
memory modules. 

This four-fetch, four-store capability influences 
to a great extent the use, size and organization of 
scratchpad memories for the B8500. In a gross 
sense, it may be stated that one of the uses of 
scratchpad is to buffer the four-fetches until they 
are needed, or, in the case of four-store, to buffer 
words of data until they are assembled into four
word blocks for transmission to a memory module 
for storage. 

SCRATCHPAD CONCEPTS 

At the risk of being pedantic, let us discuss for a 
moment the definition of scratchpad memories. 
Universally accepted definitions are difficult to 
find, but the following statement will represent the 
scratchpad concept to the" majority of system de
signers: 

Scratchpads are small uniform access memo
ries, with access and cycle times matched to 
the clock of the logic, and which are closely 
coupled to the source and/or sink of the data. 

This definition studiously avoids the inclusion of 
the functions to which the scratchpads are applied. 
It also does not mention the form of implementa
tion. These variables are left to the ingenuity of the 
system and circuit designers. In the latter case, im
plementations may vary from discrete component 
flip-flop registe~s to thin film uniform access mem
ories. 

Historically, core m~mories were used as scratch
pads in computers where the bulk memories were 
magnetic drums. IN the case of the Burroughs D825 
system, the scratchpad is thin film; the bulk memo
ry is core. Implementation may eventually travel a 
full circle; with the advent of inexpensive integrated 
circuit flip-flop registers, the cost per bit of this 
implementation may become comparable with high
speed thin film memories. 
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SCRATCHPAD APPLICATIONS 

Functionally, scratchpads have been used for a 
variety of purposes. A major application is the buf
fering of information flow among the main memory 
of computers, computational elements, and in
put/ output elements. This use also provides a speed 
conversion between data source and sink. Look
ahead designs, in which block transfers of instruc
tions and data minimize memory accesses and 
transfers, have used scratchpad memories. 

A major utilization has been the storage of inter
mediate arithmetic or logical results from a compu
tational unit, minimizing the time and program 
steps required to transfer information to main 
memory and retrieve it when later needed. An out
standing example of this application is the use of a 
thin film scratchpad for the "last-in, first-out" 
stack in the Burroughs D825. 

Finally, in many cases, economy dictates the use 
of scratchpad memories. Many registers, formerly 
implemented with flip-flops, are now stored as 
words in scratchpad memories. Typically, such reg
isters are utilized for index words, base registers, 
real-time clocks and similar relatively infrequent 
usages. While it is true that these registers could be 
stored in main memory, the lower access time of 
the scratchpad makes the information available 
more quickly and doesn't tie up main memory ad
dress logic and communications lines. 

USE OF SCRATCHPAD MEMORIES IN THE 
B8500 

Now to specifics: the use of scratchpad memories 
in the Burroughs B8500 computer module. Figure 1 
represents a block diagram of the computer module. 
The major elements of the computer module ate 
self-evident from the drawing but special attention 
should be given two blocks: the Local Thin Film 
Memories #1 and #2. These are two scratchpad 
memories; multifunCtional in application, identical 
in physical construction and speed, different in 
word size and word length. Tied in with scratchpad 
#2 is a small 28-word associative memory (19 
bits per word) whose use enhances the utilization 
of the scratchpad memory by providing content ad
dressing as well as the conventional binary coded 
word addressing capability. 

It must be emphasized that each of the two 
scratchpad memories contains its own independent 

addressing logic, sense amplifiers, and read/write 
registers. Each of the memories is available to the 
two processing elments of the computer module: 
the Arithmetic and Logic Unit, and the Address 
Arithmetic Unit. 

The rationale behind the inclusion of local 
scratchpad memories in the B8500 computer mod
ule encompasses many of the reasons previously 
stated. Foremost among them, however, is the need 
for buffering of four-fetches of instructions and 
data in advance of their use, i.e., look-ahead. Also 
important are its uses as storage for intermediate 
results, as an economical implementation for regis
ters and counters, and for the extension of the 
push-down stack. 

The use of two scratchpad memories, rather than 
one common unit, is necessitated by the concurren
cy of operations in the computer module. Areas of 
each memory are assigned in a manner which per
mits simultaneous operations of the most frequently 
used functions. Ideally, it would be desirable to 
have a multiplicity of scratchpad memories; one for 
each function. Cost, space and power considerations 
prohibit such extravagance now. Future adapta
tions, to be discussed in later papers, may offer 
some hope in this direction. 

SCRATCHPAD PERFORMANCE 
CHARACTERISTICS 

The B8500 scratchpads are implemented by mag
netic thin film techniques developed and organized 
into linear-select memory arrays at the Burroughs 
Defense and Space Group at Paoli. To realize the 
high-speed access requirement of 45 nanoseconds, 
the reading function is nondestructive, eliminating 
the need for a restoring write cycle when data are to 
be retained unchanged. 

Insertion of new data into the local memories 
(writing) can be accomplished within the 100-na
nosecond clock period of the computer module. For 
both read and write, the memory cycle time is 100 
nanoseconds, permitting synchronous operation 
with the logic of the computer module operating at 
10 megacycles per second clock rate. 

Addressing of all words of each of the two mem
ories is performed through explicit binary coded 
addresses, which may be generated by the subcom
mand control hardware or included in a field of 
data or instruction word. Twenty-eight of the 44 
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TO MEMORY MODULES 
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(21 BIT) 

INTRAMODULE DATA BUSSES 

Figure 1. B8500 computer module block diagram. 

words in scratchpad #2 can also be addressed by 
discrete output lines from the associative memory. 

SCRATCHPAD CONFIGURATIONS 

Scratchpad #1 

Local Scratchpad Memory #1 contains 64 words 
of 52 bits each. This memory is utilized for four 
major functions: 

1. Locally Used Registers and Counters 
2. Temporary Data Storage 
3. Stack Extension 
4. Local Data Buffer 

Registers and Counters. -In this 24-word por
tion of #1 memory are stored a multiplicity of reg
isters and counters that do not require frequent ac
cess by either the program or the hardware, yet 
which must be readily available within a clock cycle 
when addressed. Economy is the rationale in this 
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case; cost, power and space savings over flip-flop 
implementation are evident. Typical among the 
words stored in this memory area are: Interrupt 
Return Register, Base Interrupt Address Register, 
and Interval Timer. 

Temporary Storage. This area is used to store 
literals and portions of multi syllable instructions. 
The latter usage stores syllables for the period of 
time from their detection and preliminary proc
essing at the Advanced Station (ADVAST) until 
they are required at the Final Station (FINST). 
Eight 52-bit words are reserved for this function. 

Stack Extension. Sixteen words in #1 scratchpad 
memory provide additional depth for the Polish 
stack above that available from the two hard stack 
registers associated with the arithmetic unit. Addi
tional stack depth is automatically accomplished by 
automatic storing and fetching from the stack ex
tension in #1 to an area in the memory modules; 
the depth of the stack is limited only by the total 
capacity of the memory and the permissible area 
assigned to it by the Executive and Scheduling Pro
gram (ESP). Four-fetch and four-store are used 
in stack transfers to minimize the traffic on the in
ter-module communication buses. 

Local Data Buffer. This 16-word section of #1 is 
unspecialized scratchpad. The area is not reserved 
for a specific category of information but can be 
utilized under program control for storage of any 
data word or field. It is, however, the only scratch
pad area that is capable of buffering four-fetch 
and four-store of data. Specific instructions are 
included in the machine repertoire to permit ma
nipulation of data to and from the Local Data Buf
fer. 

Scratchpad #2 

Local thin fiIm memory #2 possesses the same 
performance characteristics as #1 but contains 44 
words of 72 bits each (Fig. 2). The additional 
word length is required so that it can be utilized 

I- nB~ ·1 
I 52 BITS 18 BITS IB~S I 

COMPUTER WORD~ _ _ 1/ 
ABSOLUTE ADDRESS OF . 
COMPUTER WORD 

CONTROL BITS ------------' 

Figure 2. Scratchpad #2 word format. 

with the associative memory; 52 bits hold a normal 
computer word, while the remaining 20 bits contain 
an absolute memory address to which it may even
tually be sent for storage (two bits are control 
bits) . 

Three functional areas are contained withiR this 
memory: 

1. Instruction Look-Ahead 
2. Program Reference Table and Index Words 
3. Storage Queue 

Instruction Look-Ahead. Sixteen words of #2 
scratchpad are used to store four-fetches of in
struction words transmitted from the memory mod
ule in advance of their use in the instruction proc
essing section of the computer module. This area, 
called Instruction Look-Ahead (ILA) , can hold 
up to four such four-fetches of "packed" instruc
tions. (Instruction words of 52 bits in the B8500 
contain 1, 2, or 4 I2-bit syllables.) Only 52 bits 
of the 72-bit words available are utilized in ILA. 

Program Reference Table and Index Words. The 
24 words in #2 scratchpad devoted to the storage of 
Program Reference Table (PRT) lines and index 
words utilize all 72 bits; 52 for the normal word 
and an additional 20 bits for the absolute memory 
address and 2 control bits. A word stored in this 
area can be addressed in either of two ways; by ex
plicit addressing or by selection by an output of the 
associative memory. The PR T entries ( copies of 
PR T lines in main memory) and index words are 
stored interchangeably within this 24-word area. 

Index words provide an increment to an address 
accumulator to point to a specific memory location. 
Index words stored in #2 contain an index value, an 
increment and a limit field withing the first 48 bits. 
The PR T word may contain, within' its first 48 bits, 
the starting address and an upper limit for a data 
area main memory. 

The PR T word may also point to the starting ad
dress or the entry point of a procedure. (These are 
called Data Descriptors and Program Descriptors, 
respectively, in the B5500 nomenclature.) Append
ed to each type of word is an I8-bit field repre
senting the absolute address in a memory module 
where it has been or will be stored. 

When a word is inserted into this 24-word area 
a copy of its absolute address is placed in the 20-
bit word field described above, and also into. one of 
the I9-bit words of associative memory. As in
struction steps are decoded in the instruction proc-
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essor, those instructions calling for an index word 
or a PR T reference send the calculated fetch ad
dress (absolute address) both to the communica
tions unit and to the comparison register of the as
sociative memory. If the associative memory con
tains . the identical address, a word drive line from 
the associative memory will read out the proper 
word in the related 24-word portion of #2 memo
ry. The selected word ( and its 18-bit address) 
will be read out nondestructively, and the request to 
the communications unit is canceled. Such a se
quence takes only 100 nanoseconds compared with 
the 600 nanoseconds (minimum) required if the 
words were to be fetched from a memory module, 
or an even longer time if the 24 words were 
searched and compared sequentially. 

The 18-bit address field of the 72-bit #2 memo
ry is required when the words referenced by the as
sociative memory must be returned to a memory 
module. The associative memory used in the B8500 
cannot have its contents read out like a convention
al memory. When the logic requires storing of an 
Index or a PRT word in main memory following its 
access from #2, the 18-bit field is used to provide 
the communications unit an absolute address for the 
store function. 

Storage Queue. The 4-word portion of the #2 
designated for use by the storage queue is similar to 
the Index and PR T area. In both cases 72 bits are 
used and reference is achieved either by explicit ad
dressing or by . selection via the associative memory. 
The storage queue contains words destined for stor
age and their absolute address. Since the storage 
function has the lowest priority in the communica
tions unit, words are retained in this area until serv
ice time is available. In a manner identical to that 
described for the Index and PR T area, data being 
fetched are checked against the contents of the stor
age queue by the use of the associative memory. 

This use is not included primarily to save time ( al
though it does) but, more importantly, to ensure 
that the "newest" data are fetched to the computer. 
Fetching of data from a main memory location 
about to be updated by a word awaiting service in 
the storage queue would provide incorrect informa
tion to the program. 

SUMMARY 

This paper has presented an example of the ap
plication of scratchpads to the computer module of 
a large processing system. The utilization of multi
functional scratchpad memories in the Burroughs 
B8500 system has enhanced the performance of the 
system and has resulted in significant savings of 
space, power and hardware. 
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SCRATCHPAD-ORIENTED DESIGNS IN THE RCA SPECTRA 70 

A. T. Ling 
Radio Corporation of America 

Camden, New Jersey 

INTRODUCTION 

As data processing applications become more so
phisticated, so do the computers that carry them 
out. Real-time, time-:sharing, data communica
tions, mass random access, multiprocessing, and 
other advanced computer concepts depend largely 
on a new level of program and data control within 
the processor. 

One of the primary design objectives of the RCA 
Spectra 70 family was to provide the many capabil
ities needed to handle these complex new applica
tions while also simplifying the user programs 
needed to keep track of data and the condition and 
state of programs in the machine. The family con
cept itself added to processor complexity. To 
achieve program compatibility within a family, a 
total system specification-complete and complex in 
its functional requirements-must be adopted. 

To accomplish these objectives, the capabilities 
of Spectra 70 processors and their software systems 
were greatly expanded over second generation RCA 
computers, especially in the areas of data, program, 
and input/ output control. The ultimate effect of 
this increased complexity was that the total system 
threatened to become a greater burden than could 
be handled at current logic speeds. 

During the system concept and basic design 
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phases of the Spectra 70 program, advanced tech
nology provided solutions to many or the problems 
encountered. Research and development efforts and 
new manufacturing techniques greatly improved 
magnetic memory cost, speed, packaging and relia
bility. These factors made it possible to use small, 
extremely fast, scratchpad memories as integral 
parts of computer organization. 

General-purpose commercial processors with 
scratchpad memories did not appear on the comput
er market until 1959. The reasons for this were 
both technological and conceptual. Technologically, 
the small, fast memories needed for effective 
scratchpad applications were too costly and not relia
ble enough. Conceptually, the computer was not 
complex enough to justify the large number of ma
chine registers required. Memories used in comput
ers, in addition to the main memories, were small 
magnetic core stacks. The purpose of these auxili
ary memories was to buffer data between peripheral 
devices and the central processors to accomplish 
speed, compatibility and to translate code or format. 
These moderate-speed, small-capacity memories were 
equal to or slower than *e central process'or's main 
memory. 

System designers, however, proposed or imple
mented systems, on an experimental basis, using 
small fast memory as auxiliary storage. The PILOT 
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system of the National Bureau of Standards! used a 
diode-capacitance memory as a secondary storage. 
An early development using the list processing tech
nique had beeh proposed2

, using a small memory 
for list address scanning. The speed of such a mem
ory device was to be 10 to 20 times faster than the 
main memory. 

Since 1959, a number of general-purpose com
mercial computers have been offered, featuring 
small fast auxiliary memories. Honeywell 800, UNI
VAC 1107, Burroughs D825, and RCA 3301 are 
typical examples. Generally, the auxiliary memories 
in these machines have been used for address regis
ters, operand stack, index registers, index incre
ments, and program interrupt storage. Although this 

I I 
I 
I 
I 

did extend machine capabilities, it had not fully ex
ploited the· scratchpad potential. Computer instruc
tions normally do not operate directly on the 
scratchpad registers without transferring the con
tents to the execution unit. Further, program ma
nipulations of scratchpad contents require transfers 
into the main memory through special move in
structions. 

GENERAL PROCESSOR ORGANIZATION 

The general organization of the Spectra 70/45 
and 70/55 processors (Fig. 1) is divided into three 
major functional units-memory, input/output, and 
central processing unit. The central processing unit 
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Figure 1. General processor organization. 

can be connected to a maximum of four main mem
ory banks. Each memory bank is a complete unit, 
capable of operating independently. The in
put/ output unit consists of a multiplexor channel 
that can control up to 256 simultaneous in
put/ output operations and a variable number of se
lector channels, each controlling one input/output 

operation. These input/output channels-multiplexor 
and selectors-interface the peripheral devices 
through a standard input/ output interface. This 
standard input/output interface allows interchange
able connectivity of any peripheral device with the 
input/output channels of all models within the 
Spectra 70 family. 
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SCRATCHPAD-ORIENTED DESIGN 

The design of the RCA Spectra 70/45 and 70/55 
processing unit is based on a unique concept that 
makes the scratchpad an integral part of the com
puter organization, not an adju~ct. In essence, the 
scratchpad design is a was of arranging the machine 
registers with the logic structure built around it. As 
shown in Fig. 2a, all the machine registers are ar
ranged into arrays which interact with the rest of 
the processor logic through an input and output bus. 
The assembly is implemented by a small magnetic 
core scratchpad memory as shown in Fig. 2b. 

INPUT DATA BUS 

OUTPUT DATA BUS 

(ol FLIPFLOP IMPLEMENTED REGISTER SCRATCHPAD 

FROM ADDRESS GENERATOR 

MAGNETIC CORE REGS. 

PROGRAM 

INSTRUCTION 
STATUS 

I N PUT/OUTPUT 

INPUT DATA BUS 

OUTPUT DATA BUS 

(bl MAGNETIC CORE IMPLEMENTED SCRATCHPAD 

Figure 2. Block diagrams showing various scratchpad 
implementations. 

By adding a processing matrix to the scratchpad 
memory (Fig. 3), data from registers in the memo
ry are circulated through the processing matrix be
fore it is regenerated back into the registers. Logic 
functions such as data incrementing, extraction, 
movement, table look-up, and status recognition 
can be executed with this circulation path. In fact, 
these single-operand logic functions are sufficient 

for processing interrupt servIcmg of a multiplicity 
of simultaneous input/output operations. This cir
culation path is passive and self-sufficient and 
therefore does not disturb any other register content 
in the machine. 

The normal compute mode pro~essing, however, 
requires the complete repertoire of single-operand 
and double-operand logical and arithmetic func
tions. These are achieved by adding two registers to 
the data structure. The Utility Register (UR) 
serves as a buffer for the second operand input to 
the processing matrix, while the Intermediate Reg
ister (lR) acts as an output intermediate storage. 
These two registers, in effect, supply a second and 
parallel circulation path through the data bus in the 
course of instruction execution. Of course, besides 
the basic data structure, there are a number of mis
cellaneous control registers and counters necessary 
to maintain an adequate performance level. 

In the single-operand mode of operation, the 
scratchpad memory operates typically in a 
read/wait/regenerate cycle. The scratchpad memory 
register location is addressed by the address regis
ter. The scratchpad cycle waits while the content of 
the addressed register is read out onto the data reg
ister. The output of the data register is modified by 
the processing matrix, independent of the contents 
of the Utility Register. The processing matrix out
put passes through the regeneration matrix into the 
regeneration input of the scratchpad memory to 
start the regenerate cycle. The wait between the 
scratchpad readout and regenerate cycle varies from 
zero to some finite time, depending on the logic 
function to be performed in the processing matrix. 
For example, the wait time will be zero, if the data 
register output is transferred to the output data bus 
only. 

In the case of double-operand operations, the 
second operand is either previously set into the 
Utility Register by a prior scratchpad memory reg
ister transfer cycle, or concurrently set into the 
Utility Register from the input data bus, with the 
data source from the main memory unit, the Inter
mediate Register, or other processor logic, while 
the first operand is being read out from the scratch
pad. 

SCRATCHPAD MEMORY FUNCTIONS 

Machine registers can be classified into four 
groups according to their functional assignments. A 
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Figure 3. Scratchpad-oriented processor data structure. 

machine register is a 32-data-bit register used 
either as an address register or data register, de
pending on the specific assignment. 

2. Instruction Registers are used in the exe
cution algorithm of an instruction as de
fined by an operation register. They are 
not held over or used by a. subsequent in
struction, but are treated as utility registers 
without permanently assigned functions 
and are used in various ways as needed in 
the course of algorithm execution. 

1. Program Registers hold information re
garding the complete and current status of 
a program they are assigned. These regis
ters are required for execution of a pro
gram, from instruction to instruction. One 
setaf program registers in the Spectra 70 
family is called a program state. A full
program state consists of 16 General Reg
isters, 3 program control registers-namely, 
the Program Counter (PC), Interrupt Sta
tus (IS), and Interrupt Mask (IM)-and 4 
double-length Floating Point General Regis
ters. The General Registers are for assign
ment, within the current user program, as 
indexes, base addresses, data accumulators, 
or intermediate storage registers. 

3. Status Registers hold the current status of 
the processing unit. They are used by the 
control structure to indicate the program 
interrupt status and the current program 
connection of the processing unit. 

4. Input/Output Registers are used for the 
simultaneous operation of peripheral de
vices. In the Spectra 70 system, each oper
ation requires a subchannel consisting of a 
set of three registers. A fourth register is 
used for final standard interface status, re
porting at the termination of an operation. 
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SPECTRA 70 SCRA TCHP AD In addition, utility registers facilitate data 
assembly and chaining operation execu
tion. These registers are preset at the ini
tiation of an input/output operation in the 
normal processing mode and are sufficient 
to execute a sequence of input/output op
erations with branching and chaining abili
ty according to a control word list in the 
main memory. 

These four classes of machine registers are ar
ranged into a scratchpad memory array as shown in 
Fig. 4. The scratchpad memory is large enough to 
provide one set of input/output registers for the 
multiplexor and up to six selector channels. In addi
tion, a significant feature is that there are four pro
gram states, namely four sets of program registers, 
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Figure 4. Spectra 70/45 and 70/55 processor general scratchpad layout. 

provided in the scratchpad. The four program states 
-two executive program states and two problem pro
gram states-are not full program states as defined 
earlier but are tailored to the software system as
signment described below. 

Register to be operated on by the processing ma
trix. The addressing of the program. registers by the 
processing control logic is automatically modified 
by the Program State Register at the scratchpad ad
dress generation to select the proper register ac
cording to the rule of the scratchpad layout. In this 
way, the normal instruction execution algorithms 

One set of the four program states is selected at a 
time according to the setting of a Program State 
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are concerned with only one program state, namely 
the one determined by the setting of the Program 
State Register. By switching the setting of the Pro
gram State Register between instructions, the pro
cessing logic automatically operates on a different 
program state, and consequently a different pro
gram. However, the status of the previous program 
state is preserved. Since normal instruction execu
tion is .confined to registers within a program state, 
each program state is protected from others in the 
computer. However, two privileged instructions, 
called "Load Scratchpad" and "Store Scratchpad," 
are provided for priviliged program access to any or 
all of the registers in the scratchpad memory. These 
instructions can only be executed when the program 
is assigned a privileged operation status, as in the 
case of the executive program. 

The spectra 70 software system assigns the four 
program states for the following program functions: 

Program I-Processing State 
Program 2-Interrupt Response State 
Program 3-Interrupt Control State 

Program 4-Machine Condition State 

Essentially program states 1 and 2 are alternate 
object programming states for multiplexed program 
mingo Program state 2 is for interrupt processing or 
input/output programs and does not have a separate 
set of Floating Point General Registers. When a 
floating point instruction is issued in program state 
2, it is executed with the Floating Point General 
Registers of program state 1. In fact, floating point 
instructions in either stat~ operate with the same 
set of Floating Point· General Registers. This is also 
true for program states 3 and 4. 

Program states 3 and 4 are privileged executive 
program states. Because of their functions, either 
program state requires less than 16 General Regis
ters. On the other hand, program state 3 must have 
the ability to manipulate the three Program Control 
Registers that are not normally directly addressable. 
The scratchpad arrangement takes advantage of the 
extra general register designation capability in the 
instruction format to allow program state 3 to ad
dress the Program Control Registers of states 1 and 
2 as if they were General Registers. This allows 
the executive program to use the full power of 
the instruction complement in manipulating these 
registers. 

Similarly, program state 4 can address the first 
six instruction registers used for instruction execu-

tion algorithms and the two operand address regis
ters directly. Thus, the program register capacities 
of the four program states are: 

Program State 
1 2 3 4 

General Register 16 16 6 5 
Program Count Register 1 1 1 1 
Interrupt Status Register 1 1 1 1 
Interrupt Mask Register 1 1 1 1 
Floating Point General Register 8 

27 19 9 8 
TOTAL CAPACITY: 63 registers 

Standard input/ output operation control in the 
Spectra 70/45 and 70/55 processors requires a set 
of four registers-a Control Address Register, two 
Channel Control Word Registers, and a Data/Status 
Register. In the case of the multiplexor channel, the 
first three registers for each of up to 256 subchannels 
are stored in a hidden portion of the first main mem
ory bank. A specific set is transferred into the multi
plexor channel set of four input/output registers in 
the scratchpad for servicing. These registers are 
restored before servicing the next subchannel. In 
addition, a duplicate set of four input/output registers 
is used for termination reporting to the software 
system. In the case of the selector channel, two ad
ditional registers are used for pre fetching of chain 
controls or other utility functions. The In
put/Output Register capacities are: 

Channel Number 
0 1 2 3 4 5 6 

Basic Set 4 4 4 4 4 4 4 
Termination Set 4 
Utility Set 2 2 2 2 2 2 

8 6 6 6 6 6 6 
TOT AL: 44 I/O Channel Registers 

The balance of the scratchpad registers are used 
for instruction and status registers. Since the result 
of every instruction is stored in program registers, 
the instruction registers normally convey no addi
tional information needed for subsequent instruc
tions. The instruction registers are truly utility reg
isters. Both the 70/45 and 70/55 processors are 
free to use these registers for instruction algorithms 
in the most efficient way. 

Because of their performance requirements, most 
status registers are in flip-flop registers outside 
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the scratchpad memory. But pertinent information 
from these registers is also stored in the Interrupt 
Status Registers in the program states. The Inter
rupt Flag Register, however, is in the scratch pad, 
addressable by program state 3 as a General 
Register. 

PROGRAM STATE SWITCHING AND 
THE INTERRUPT SYSTEM 

The above-described processor design strives to 
minimize the necessity of storing connective pro
gram information outside the scratchpad at the 
completion of each instruction. The program state 
can be switched by merely changing the Program 
State Register setting. Program state switching can be 
caused by an occurrence of one of the 32 program 
interrupt requests, by a privileged instruction called 
"Program Control," Qr as a result of an operation 
on the Interrupt Mask Register (IM) or the Inter
rupt Flag Register (IF). 

The interrupt system is connected to program 
states 3 and 4. When one or more of the program 
state switching reasons occur in the system, the pro
cessor normal mode automatically switches into the 
program interrupt processing procedure at the ter
mination of the current instruction. This procedure 
involves the following hardware steps: 

1. Program interrupt requests, if any, are en
tered into the Interrupt Flag Register (IF) 
in the scratchpad memory for permanent 
recording until they are individually pro
cessed. 

2. The current program state's Interrupt Mask 
Register (IM) determines the allowability 
of the outstanding interrupt requests in the 
Interrupt Flag Register (IF). This permits 
complete programming control of the inter
rupt request processing. It is possible that 
none of these requests will be allowed by 
the current program state. When this hap
pens, no program interrupt occurs but the 
interrupt requests remain outstanding in 
the Interrupt Flag Register. 

3. The allowable interrupt requests are pro
cessed by priority positions. Then a priori
ty weight is generated and stored in an as
signed general register in program state 3 
or program state 4, according to- the inter
rupt request. 

4. The corresponding interrupt request bit in 
the Interrupt Flag Register (IF) is then 
reset. Only one interrupt request, the high
est priority of the allowed requests, is pro
cessed at one time. 

5. According to the interrupt request, certain 
additional preparatory functions are per
formed and the interrupt state registers of 
the outgoing and the incoming program 
states are updated. 

6. The setting of the program state register is 
changed to- program state 4 for system er
ror interrupt request or to program state 3 
for all others. Instruction execution pro
ceeds next with the new program state reg
ister setting. 

THE SCRATCHPAD MEMORY UNIT 

To implement the Spectra 70 scratchpad oriented 
design, a single 128-word magnetic core memory 
unit was selected for both the 70/45 and 70/55 
processors. The memory unit uses magnetic cores of 
30 mils outside diameter and 10 mils inside di
ameter, wired in a 2-core-per-bit fashion. A three
wire core threading format is used-two for access 
currents and one for a common sense/digit signal. 
The word oriented linear selection system is accom
plished by a transistor-diode cross-bar matrix. 

Each memory cycle accesses 32 bits in parallel 
plus 2 parity bits. The access time is 120 nano
seconds with a complete read-regenerate cycle 
time of 300 nanoseconds. The scratchpad memory 
unit can operate in one of two modes-straight 
read/regenerate mode or read/wait/regenerate 
mode. The "wait" in the latter case is for the pro
cessing matrix operation completion. 

Figure 5 is a simplified block diagram showing 
the addressing, the sense, and the regenerate sys
tems. The addressing system uses two drivers per 
word, each driving into a voltage switch circuit. A 
discharge circuit helps to speed up the discharging 
of the voltage switch line at the end of the regener
ate cycle. The sense system consists of 34 difference 
amplifiers, with strobing. Regeneration information 
does not come automatically from the data register 
but is supplied, at the regenerate inputs with two 
digit drivers per bit, by a regenerate matrix in the 
processor logic as shown in Fig. 3. The data regis
ter is under processing unit control, independent of 
the memory cycle timing. The data register is used 
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Figure 5. Spectra 70/45 and 70/55 scratchpad memory block diagram. 

for logic operations without regard to the scratch
pad memory operation. 

The actual scratchpad memory unit is packaged 
in a standard Spectra 70 printed circuit logic platter 
(Fig. 6) . The unit itself occupies approximately 
two-thirds of the 18 x 18-inch platter; the rest 
of the platter contains processor logic. 

DESIGN CONSIDERATIONS 

The design considerations in selecting the meth
od of scratchpad implementation are cost, packag
ing and size, accessibility, speed of operation, and 

reliability. The choice of implementation consists 
of an integrated semiconductor flip-flop register 
array or a magnetic core device. Integrated semi
conductor register banks are not available for de
sign consideration at this time. 

Cost 

A simplified cost comparison between flip-flop 
implemented scratchpad and magnetic core imple
mented scratchpad is illustrated in Fig. 7a. The cost 
ordinate is in normalized cost unit for comparison 
purpose. The number ordinate is in number of 32-
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Figure 6. Scratchpad memory in the 70/45 processor. 

data-bit registers. Each of the two curves is really 
a family of curves as a function of operation speed. 
The exact relative positions would vary accordingly. 
III this illustration, the magnetic core device has an 
access time of 120 nanoseconds and. a cycle time of 
300 nanoseconds. The flip-flop scratchpad is the 
Spectra 70 integrated circuit packages with 3~pair 

access, 41;2 -pair cycle. Here the crossover point is 
in the range of 8 to 16 registers. Thus, when a 
computer cost and performance specification re
quires 16 or more registers, as in the case of Spec
tra 70, a magnetic core device becomes increasingly 
advantageous. The minimum number of registers 
for a single program state and 3 input/output chan
nels for the 70/45 processor is greater than 40. By 
using a magnetic core scratchpad, it is possible to 

provide 128 registers for a small cost increase. The 
extra capacity makes it economically possible to 
provide four program states and a multiplicity of 
simultaneous input/output controls. Furthermore, 
extra utility registers with almost . logic circuit speed 
ac.cess, overlapping With the comparatively slower 
main memory, have permitted use of algorithms to 
achieve higher instruction execution speed than 
otherwise would be possible. 

Speed 

The scratchpad memory access and cycle speed 
must be economically achievable by current state
of-the-art standards, that is, in the 100-nanosecond 
access speed range. For the logic circuit speed of 25 
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Figure 7. Flip-flop scratchpad vs magnetic core scratchpad. 

nanosecond worst-case pair delay, the flip-flop 
scratchpad has an access speed advantage by a 
factor of 2 and, more importantly, by a factor 
of more than 3 for cycle time. The practical number 
of flip-flop scratchpad registers is limited, howev
er, due to packaging size and interconnection deg
radation. The choice of scratchpad speed for a cost 
range and the required system performance level is 
effected by the proper balance of the main memory 
unit, the control logic structure, and the scratchpad 
register speeds. 

Accessibility 

Accessibility considered here is the number of 
registers that can be accessed simultaneously. The 

magnetic core scratchpad has an access limitation 
of one register per cycle. The flip-flop scratchpad 
can allow multiple access via additional data paths 
of more than one register at a time, thus, faster exe
cution possibilities by paranel operations. This ac
cessibility, however, is accompanied by packaging 
and loading complications due to irregularity of the 
register array and extra interconnection paths that 
ultimately reflect on a higher packaging cost. The 
processor designs of the 70/45 and 70/55 have 
achieved the performance· requirement, even with 
the accessibility limitation of the magnetic core 
scratchpad. Cost and an orderly structure to mini
mize interconnection problems are more important 
considerations for these two processors. 

Packaging and Size 

Since the scratchpad is packaged in standard size 
logic plug-in modules on a fixed depth printed 
circuit platter, size comparison is the same whether 
in terms of volume or platter area. The relative 
physical size comparison is shown in Fig. 7b. It is 
important to remember that the size comparison is 
a function of the system packaging design. For the 
Spectra 70 platters and integrated circuit packages 
(14-pin dual 4-input gate flat packs), the mag-
neticcofe scratchpad has significant size advantage 
for these two processors, despite the fact that the 
special memory circuits are not integrated packages. 
The data structure is thus kept physically smaller. 
The interconnection degradation and platter layout 
problems of such large numbers of registers are les
sened. The regularity of the logic structure is con
ceptually suitable for a higher degree of integrated 
hardware and batch fabrication techniques .. 

Reliability· 

The orderly array of magnetic cores, replacing a 
large number of individual logic gates that imple
ment the flip-flop scratchpad, offers advantages in 
reliability and maintainability by way of intercon
nection efficiencies. Like a main memory unit, the 
magnetic core scratehpad is a nonvolatile storage. 
Power failure or power turn-off has little effect on 
the information contents in the scratchpad. 

SUMMATION 

The magnetic core scratchpad provides an abun
dance of machine registers. These registers are or-
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Figure 8. Batch fabrication influence on flip-flop scratchpad 
vs memory device scratchpad. 

ganized in a scratchpad-oriented design to pro
vide the cost and performance level requirements of 
the Spectra 70/45 and 70/55 processors. The mul
tiplicity of registers and the unique feature of four 
program states offer design advantages in both 
hardware and software. 

For the hardware design, the many instruction 
registers allow the implementation of fast but more 
complex execution algorithms than otherwise would 
be possible. The seven sets of input/output registers 
provide controls for a high degree of input/output 
simultaneity. The orderly data structure eases the 
high-speed packaging requirement. 

For the software design, the four program states 
make possible new programming horizons, particu
larly in executive software and in multiprogram
ming. The multiple sets of general registers more 
effectively yield usable registers for the individual 
program for minimizing register reassignment. 

For computer emulation, the four program states 
make possible effective and efficient cooperation 
between hardware and software. It allows one pro
gram state to operate in an emulator mode while 
the other states can operate in the more efficient 
Spectra 70 mode or any special mode advantageous 
to the specific emulator. The abundance of high
speed registers provides emulator algorithm speed. 
For instance, frequently used translation table and 
controls can be held in the scratchpad, instead of in 
the comparatively slower main memory. 

A LOOK AHEAD 

The magnetic core scratchpad is not a design pan
acea and is not necessarily applicable to all per-

formance ranges. In low-performance processors, 
the scratchpad can be implemented more economi
cally as part of the main memory while still provid
ing adequate execution speed. In higher perform
ance processors, the designer needs to investigate 
the tradeoffs in the scratchpad arrangement, partic
ularly the speed consideration. The scratchpad is 
likely to be arranged into small modular units with 
faster access and cycle times. The multiprogram 
state concept may be further expanded for multipro
gramming, having one object program state per ac
tive program in the machine. Hierarchical memory 
control and addressing and program stacks might be 
added to the scratchpad functions. 

Integrated monolithic circuits are here now, but 
the computer manufacturing field is at the threshold 
of the batch fabrication3 technological breakthrough 
which will affect machine design significantly in 
years to come. On the horizon are low-cost, minia
ture, high-speed semiconductor circuits which provide 
hundreds4 and even thousands5 of circuit elements 
integrated and interconnected within a single chip. 
A similar batch fabrication breakthrough is likewise 
expected on magnetic devices. 6 Choices for future 
scratch pad implementation may include more than 
the two mentioned in this paper. 
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SCRATCHPAD MEMORIES AT HONEYWELL: PAST, PRESENT, AND FUTURE 
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Wellesley Hills, Massachusetts 

INTRODUCTION 

The computer industry, during its short life of 
approximately 20 years, has seen many innovations, 
evolutionary trends and developments, and has even 
accommodated several major revolutionary tech
nological breakthroughs. One of these revolu
tionary-evolutionary developments has been the 
increasing use of small memories as scratchpads. 

A working definition of scratchpad memories is 
given in this paper. From that definition three spe
cific, nonoverlapping applications are derived. One 
of these, the use of scratchpad memories for control 
purposes, has been developed and employed at 
Honeywell for some time. Other manufacturers have 
also employed scratchpad memories-for example, 
Burroughs in their D825, UNIVAC in their 1107, 
and RCA in the larger members of their SPECTRA 
70 systems. Discussions of this particular aspect of 
scratchpad, or control, memory forms the major 
portion of this paper. In separate sections, the spe
cific uses of control memory in the Series 800, the 
Series 200 and the Honeywell 8200 are described. 

In the succeeding section some prognostications 
concerning the state-of-the-art in control mem
ories, based upon the results of extrapolations to 
1970, are presented. A simplified tradeoff analysis 
is also developed· and discussed. 

679 

DEFINITION -AN EXPANDED OR 
EXTENDED VIEW 

Scratchpad memories have been with us for a 
long time. Let us first define the term scratchpad 
memory. A scratchpad memory is that fast access 
portion of a data processor or a computer in which 
modifiable information is temporarily stored. The 
key words to be noted in this definition are "modi
fiable information," and "temporarily stored." 

In particular, the general functions performed by 
scratchpad memories can be categorized as: 

1. Manipulative storage for "overhead" pro
cesses. 

2. Faster access to a limited (although not 
necessarily a contiguous) portion of main 
memory. 

3. Extended storage facilities in the pro
cessing element itself for minimizing the 
restoring of temporary or intermediate re
sults. 

This paper will discuss in some depth the use of 
this form of memory for "overhead" processes-con
trol memory. This rarticular use of scratchpad 
memories has been extensively used in the Honey
well 800, the Series 200 family, and in the Honey
well 8200. 
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THE HONEYWELL SERIES 800 FAMILY OF 
DATA PROCESSING SYSTEMSl 

The Honeywell 800 was announced in early 
1958. At the grossest level, the system appears to 
be a very conventional system 01 that time period. 
However, this is misleading. It was a dynamic and 
revolutionary jump beyond the then current state
of -the-art in computer system organization. A 
few of the H-800's contemporaries and competi
tors are characterized in Table 1. 

The Honeywell 800 differs from machines of its 
own era, and indeed from most currently available 
systems which have been designed and built during 
the interim. Figure 1 presents a diagram of the 

Table 1. H-800 Competitor Analysis. 

Monthly 
Rental 

First thou-
Instal- sands Number Add Word 
lation of MCT of Ad- Time Size 

Machine Date dollars f.Lsec dresses f.Lsec B 
IBM 7070 6/60 11-31 6 1 72 50 
H-800 12/60 19-35 6 3 24 48 
GE 225 1/61 2.5-25 18 1 36 20 
RCA 301 2/61 3.5-25 7 2 210 6 
G-20 4/61 14-22 6 1 27 32 

Honeywell 800 system organization. In most respects 
it resembles a "conventional" computer. The differ
ence is in the crosshatched area in the control unit 
which is referred to as the "multiprogram control." 

PERIPHERAL DEVICES .1 

-----------~ ~ 
I/O TRAFFJC INTERFACE 

CONTROL UNIT I--------i 

Figure 1. H-8QO system organization. 

The multiprogram control permits the total system 
to operate the I/O devices with a maximum effi
ciency as well as to time-share the arithmetic cir
cuits among a maximum of eight separate and dis
tinct programs.2 

The physical implementation of the multiprogram 
control uses a 256-word scratchpad core mem
ory.3,4 This memory-a control memory-was de
signed with a .memory cycle time equal in duration 
to the memory cycle time of the main high-speed 
core memory. However, to facilitate the interleav
ing of register accesses and to minimize dead time, 

the. control memory timing was designed to be 180 
degrees out of phase with the main memory. 

Within this context let us consider the functions 
of the control memory. Table 2 presents a list of 
functions, each associated with a unique register or 
location, for a total of 32 locations. This set is re
ferred to as a control group. Each control group of 
32 registers operates and controls the entire pro
cessing system for a single program. Each control 
group provides the programmer with the powers and 
facilities of a conventional computer. Since there are 
eight such groups, the Honeywell 800 is eight com-
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Table 2. List of Registers Contained in a Single H-800 
Control Group. 

Function 
Sequence registers 
Sequence history registers 
Index registers 
Unprogrammed transfer registers 
Mask index register 
Arithmetic control counters 
General-purpose registers 
Read/write address counters 

TOTAL 

Number of 
Registers 

2 
2 
8 
1 
1 
2 

12 
4 

32 

puters in one-certainly a unique design when it was 
introduced in 1958. 

Each control group contains two sequence coun
ters which permits the program to select and/or re
turn to alternate. sequences or paths of processing 
on an instruction-by-instruction basis. For each 
sequence counter in the system, there is a corre
sponding history register. These registers are used 
to store the contents of a sequence counter whenev
er a branch is taken by an instruction. This permits 
a first level of return from a subroutine and also 
assists in program debugging. 

Most of the registers listed in Table 2 are self
explanatory; however, two items merit some further 
comment. The general-purpose registers, like the 
index registers, are used primarily for address modi-. 
fication. Their use differs from that of index reg
isters in several important respects. For example, 
the contents of these registers can be incremented 
or decremented (to an upper limit of 31) following 
their use. These registers are employed primarily to 
address an operand or a result location in any bank 
of memory, but they may also be used as pro
grammed counters, as temporary storage for the 
contents of other special registers, and for any other 
purpose the programmer may devise. 

The other set of locations in the control memory 
which require additional comment are the 
read/write address counters. To understand their 
use we must first examine the input/output inter
face and the traffic control system. 

The traffic control directs the time-sharing of 
memory by the peripheral units and the central pro
cessor. Its main object is the efficient use of the en
tire system according to a set of priorities which 
are derived directly from the nature of the peripher
al equipment and are independent of the program. 

The creation of a demand signal by any device is 
represented in Fig. 2 by the closing of the switch 
shown in the corresponding control stage. When any 
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Figure 2. H-800 traffic control. 
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program has been turned on in the central proces
sor, the switch corresponding to the central proces
sor stage is continuously closed. Traffic control be
gins each scan at the left end of the band. It pro
ceeds to the right, ignoring all stages which show 
no demand signal, until a demand stage is reached. 
This stage is allowed access to the main memory 
for one memory cycle only. Traffic control then re
turns to the left end of the band to begin the next 
scan. Since the control search is anticipatory, no 
system time is consumed in bypassing stages in 
which no demand exists. 

Execution of a peripheral instruction automati
cally loads the data address into the proper read or 
write counter and initiates activity on the addressed 
peripheral device. The central processor is then free 
to continue instruction execution. Whenever the de
vice is ready to transmit a word the stage switch is 
closed causing traffic control to allocate a memory 
cycle. The data word is transmitted using the ad
dress in the read/write counter and the counter is 
incremented by one, thus requiring no program ref
erence beyond the original peripheral instruction. 

If no peripheral device requires a memory cycle, 
it is given to the multiprogram control. The mul
tiprogram control, in turn, allocates the memory 
cycle to the appropriate control group. 

If only one control group (one program) is ac
tive, all cycles allowed the central processor are 
used in executing instructions from the active pro
gram. Since traffic control allows the central pro
cessor all available cycles except those needed to 
honor the intermittent demands of peripheral de
vices, this case represents that of the conventional 
single-program computing machine with the abili
ty to implement input/output operations simultane
ously with computing. 

When more than one control group is active, cen
tral processor cycles' must be shared among the sev-
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eral programs. For example, if three programs are 
active, then one instruction is performed in turn 
from each. With the initiation of an instruction, all 
succeeding cycles must be devoted to the execution 
of this instruction until it is completed. 

The true power of multiprogram control appears 
when an active program attempts to execute an in
struction which cannot be implemented because of 
the unavailability of a system component. Sensing 
that the instruction cannot be executed immediate
ly, multiprogram control places the control group in 
a "stall" condition." This condition indicates to 
multiprogram control that (a) this program, al
though still active, shall not be allowed any central 
processor cycles as long as the stall indication re
mains, and ( b) when the channel and/or the de
vice involved completes its present task, the stall 
condition shall be automatically removed and the 
program restored to its full active status. 

Thus, when an instruction cannot proceed be
cause of input/output conflicts with either the same 
or another program, the central processor cycles 
which it would have used are made available to the 
other active programs, enabling processing to pro
ceed faster. The result of the operation of multipro
gram control is that there is never an idle memory 

cycle as long as there is any active program in 
which an instruction can be executed. 

In this respect the 800 automatically subdivides 
itself into as many computers as there are active 
programs. 

THE HONEYWELL SERIES 2005,6,7 

The Series 200 has been designed primarily for 
business applications and for the mixed environ
ment of business data, communication and scientific 
processing. In this environment the key perform
ance dimension is throughput. High throughput, in 
turn, requires that the proper cons"ideration or 
weights be given to three operations: 

1. Inputting of data 
2. Data manipulation 
3. Outputting of data 

The Honeywell Series 200 line of data processors is 
composed of five members; at the lower end of the 
spectrum is the H-120; this is successively fol
lowed by the H-200, the H-1200, the H-2200, 
and the H-4200, each more powerful in turn. Key 
attributes of each processor are shown in Table 3. 

Table 3. Series 200 Members - Key Attributes. 

Number 
Main Memory of I/O 

Memory Speed Capacity Operations 
Cycle Time (thousands Number of Simultaneous Advanced Financial Multiply Scientific Memory 

Processor per of Input/Output with Programming Edit and Divide Processing Protect 
Model character) characters) Trunks Computing Instructions Instruction Instructions Instructions Facility 

4 controls 

120 3 f.lsec 2-32 
in processor; 

2-3 Op Op NA NA NA 4 I/O trunks 
available 

200 2 f.lsec 4-65 8-16 3-4 Op Op S NA NA 

1200 1.5 f.lsec 8-131 16 4 S S S Op Op 

2200 1 f.lsec 16-262 16-32 4.:...8 S S S Op Op 

4200 188 nanosec 32-524 32-64 8-16 S S S S Op 

S = Standard Op = Option NA = Not applicable 

In the Series 200 the scratchpad memory, or con- Physically, the control memory has a maximum 
trol memory, is organized in a different manner of 64 locations, the number found in anyone ma-
than it is in the H-800. This is due, in part, to chine depending upon the model, options and fea-
the fact that the Series 200 members are charac- tures. The number of bits per position depends 
ter-oriented rather than word-organized processors. upon the size of the main core memory. Unlike the 
Further, the Series 200 processors do not pos- scratchpad memory in the 11-800, the control 
sess capability for parallel processing-Le., the con- memory in the various members of the Series 200 
trol memory is organized as a single control group operates at a faster rate than the main core memo-
(in H-800 terminology). ry. This permits multiple scratchpad memory ac-
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cesses during a main memory cycle. The speed ratio 
for each member of the series is shown in Table 4. 

Table 4. Relative Speed Ratio of Control Memory to Main 
Memory for the Members of the Series 200. 

Processor Main Memory. Cycle Time 
Control Memory Cycle Time 

H-120 
H-200 
H-1200 
H-2200 
H-4200 

6 
4 
3 
2 
3 

As noted above, the Series 200 processors are 
character-oriented. This fact had a direct in
fluence in the specification--of the functions and 
number of registers per function which were de
signed into the scratchpad memory. These functions 
are listed in Table 5. / 

Table 5. Control Memory Function in the Series 200 
Processor. 

Descriptive Functions 

A & B address registers 
Sequence register 
Change sequence register 
R/W channel current location counter 
R/W channel starting location counter 
Work registers 
External interrupt registers 
Internal· interrupt register 
Floating point accumulation 

Number of 
Locations 

2 
1 
1 

3-16 
3-16 

3 
1 
1 

12 

The Series 200 processors are not only charac
ter-oriented machines but they operate with in
struction formats which may contain zero, one, or 
two addresses-thus the requirement for two address 
registers. Further, the input/output interface has 
been designed to work in conjunction with the con
trol memory. The read/write channels (RWC's) are 
not scanned as the traffic control was scanned in 
the H-800, but in a fixed cyclic manner. The first 
memory cycle is offered to RWC 1. If this RWC 
cannot use the cycle it is utilized by the central pro
cessor. The next memory cycle is offered to RWC 
2, etc. The I/O access is accomplished via two reg
isters in the control memory which are directly as
sociated with each RWC. 

The remaining counters and registers listed in 
Table 5 are self-explanatory with the possible ex
ception of the floating point accumulators. These 
registers are provided in the larger members of the 
Series 200 where the Scientific Option is available. 
The availability of four floating point accumulators 

permits the temporary storage of intermediate re
sults which, if stored in and recalled from main 
core memory on a character-by-character basis, 
would be cumbersome and time-consuming. With 
the results in scratchpad, they are available for ma
nipulation on a register-to-register basis. 

The use of the scratchpad memory has allowed 
the designer to economically implement by hard
ware many conventional software functions with 
significant improvements in machine performance. 
We believe that the proper balance has been struck 
between cost and capability at a reasonable and 
marketable price. 

THE HONEYWELL 82008 

The recently announced H-8200 represents the 
intelligent integration of the Series 800 and the Ser
ies 200 into one system. It has carried the concept 
of -a control memory to its next logical level of util
ization-the delegation to a structured hardware ele
ment of those systems-control functions which can 
best be performed by hardware for the greatest 
speed increase per dollar of cost. 

The H-8200 main memory has a cycle time of 
750 nanoseconds and a scratchpad which will pro
vide a speed ratio of control memory to main 
memory of from 4 to 6: 1. 

The H-8200 system's processor (see Fig. 3) 
contains 10 programming groups. Nine of these 
groups control active running programs, while· the 
tenth is a master control group. 

Figure 3. H-8200 system organization. 
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The function of the master control group is to 
provide intercommunication among the active pro
gramming groups-and thus, in fact, to monitor the 
entire system. Of the nine remaining groups, eight 
handle data and instructions in the H-800 fixed
word mode while the ninth group operates in the 
H-200 variable-length character mode. 

A further function of the master control group is 
to manage the input/output facility as well. In par
ticular: 

1. It maintains identification information re
garding memory partitioning. 

2. It diagnoses program, peripheral and mem
ory usage violations. 

3. It responds to privileged operating system 
instructions. 

The 10 program groups are physically realized in 3 
distinct scratchpad memories. This distribution per
mits overlapping and concurrent operation. Two 
other scratchpad memories have been employed, 
one in the memory multiplexor and the other in the 
input/output multiplexor. 

The scratchpad memory in the input/output mul
tiplexor provides the following functions: 

1. Read/write channel capability for both the 
character and word processors. 

2. Reservation facilities on a read/write 
channel basis. 

3. Peripheral barricading. 

By utilizing scratchpad memories to a greater ex
tent than ever before, the H-8200 design has 
minimized the memory storage requirement for 
overhead functions and at the same time produced a 
faster reacting system. This provides greater 
throughput, which in turn provides greater economy 
to the user. 

CONTROL MEMORY IMPLEMENTATION 
TRADEOFF ANALYSIS 

The utilization of scratchpad memories at Honey
well has developed over an extended period of time. 
Their continued use has been reviewed and evaluat
ed for each new product in which they have, or 
could have, been employed. 

The decision has turned, and must always turn, 
upon one key point: Does the use of a scratchpad 
memory produce a quantitative increase in the 

overall performance of the system for the dollars 
involved? The correct decision involves the answers 
to many questions. For example, what set of func
tions will the scratchpad memory perform? Is the 
set of functions to be performed optimal? What ef
fect will the inclusion of a scratchpad memory 
(with a given set of functions) have upon the soft
ware design? Does the cost of the scratchpad actual
ly reduce the cost of the overall system, or does it 
increase it? 

The approach followed by any group in answer
ing these questions will depend upon backgrounds, 
personalities, availability of funds, etc. 

Let us assume that the decision to employ a 
scratchpad memory for control purposes has been 
made and that the decision was based upon a pre
liminary systems analysis which delineated the 
functions which the unit would be required to per
form. As a result of the specification, the size of 
the memory (and therefore its capacity in bits) was 
established. 

The next step is to determine the speed of the 
unit, and the implementation technology. 

Recall from Table 4 that the speed ratio be
tween the control memory and the main memory 
for several members of the Series 200 ranged from 
2 to 6. It is probable that this ratio in the future 
will tend toward the high end of the range, and pos
sibly even extend beyond it. For discussion pur
poses, let us assume 4 as a minimum and 8 as a 
maximum. We now need a speed estimate for future 
main memory systems. 

Several studies have been performed recently9,lO 

which provide a reasonable engineering estimate of 
the speed of future main memory systems. One of 
these studies was performed by Honeywell's Elec
tronic Data Processing Division under the sponsor
ship of the U.S. Army Electronics Command and 
produced a set of extrapolated computer character
istics. For one of these extrapolations, concerning 
the memory cycle time of future data processing 
systems, the data file has been expanded and updat
ed, and a current extrapolation has been produced. 
It is shown in Fig. 4. 

The data base for Fig. 4. represents 208 distinct 
machines introduced over a period of nearly 20 
years. The machines contained in the data base rep
resent, as far as memory technology is concerned, 
the full gamut of main memory implementation 
techniques from mercury delay lines to magnetic 
thin films. 
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Figure 4. Memory cycle time extrapolation based on an expanded MILDATA data base. 

The upper curve in Fig. 4 represents the least 
squares fit to the total data base. Once plotted, all 
points above that curve were eliminated from the 
data base and a second curve fitted; finally the 
points above the second curve were dropped and a 
third curve was generated. The three curves thus 
represent: 

1. The average for the total data base. 
2. The average of the leading or, in this case, 

the lower half of the data base. 
3. The average of the leading quarter of the 

data base. 

If a specific datum is selected and the three extra
polations of Fig. 4 are plotted for this data, as in 
Fig. 5, a trend indicating the leading edge of the 

technology for the particular time period should 
emerge. 

This hoped-for trend in memory cycle time 
does not appear to be emerging. This implies, if the 
extrapolation technique is valid, that a saturation or 
slowing down of technological developments in this 
area is occurring. 

This type of extrapolation has been made by the 
writer three times' during the past six years. Figure 
11 summarizes the three results for the extrapolated 
memory cycle time obtained for the year 1970. The 
number of machines considered in each extrapola
tion is listed in the second column of Table 6. 

Returning to the detailed specification of the 
control memory, we can estimate a main memory 
cycle time of approximately 300 nanoseconds for 
1970. Based upon this figure and the speed ratio 
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Figure 5. Extrapolated memory cycle time for machines introduced in 1970 (based upon an expanded MILDATA 
data base). 

Table 6. Comparison of Three Extrapolations Concerning 
Memory Speed in 1970. 

Date 

1959 
1963 
1965 

Data Base 
(number 0/ machines) 

30 
154 
208 

Average 
Memory 

Cycle Time 
1970 
flsec 

0.25-0.50 
0.30 

0.330 

developed above (control memory cycle time should 
be 4 to 8 times as fast as the main memory cycle 
time), the memory cycle for a control memory in 
1970 should range from approximately 40 to 75 
nanoseconds. 

The capacity and the speed of the unit has been 
established. The final question to be considered in 
this paper-the selection of the control memory im
plementation technology-can now be examined. 
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The control memory could be implemented via 
one of several different physical implementations
for example, semiconductive flip-flop elements or 
magnetic thin films. 

The general cost (in dollars) to produce (on a 
production basis) a control memory of a given 
capacity and speed can be defined as: 

C=I+D·B (1) 

where 

C = total product cost in dollars, 
I = initial "investment" cost per machine for the 

particular technological approach (the sum of 
the costs for the drivers, sense amplifiers, 
address and data registers, etc.) in dollars, 

D = cost per bit of storage (in dollars), and 
B = number of bits. 

For two distinctly different methods of imple
mentation the crossover point occurs when the total 
costs of the control memory, in production for both, 
are equal. 

Therefore: 

(2) 

Solving for B, we obtain: 

(3) 

AI and IlD represent the differential in "investment" 
and cost per bit respectively. 

Figure 6 presents Eq. (3) in a convenient form. 
A single example will suffice to explain its use. 
Assume we are comparing a magnetic thin film 
memory with a set of flip-flop registers for the con
trol memory in a machine. Here I A will represent 
the peripheral cost to support a film memory for this 
purpose. In practical terms, I A is the sum of the 
costs for the memory drivers, sense amplifiers, 
address and data registers, etc. Hypothetically I B 

could be considered to be equal to zero. DA and DB 
would be the cost per bit for each approach. Sum
marizing: 

Therefore: 

III = 103 

IA = $103 

IB = 0 
DA = $0.50 
DB = $2.50 

and IlD = 2.00 (4) 

Using Fig. 6, we see for this example that the 
break-even point is at 500 bits. For larger capaci
ties a core memory is more economical; for less ca
pacity the active flip-flop implementation is more 
economical. 

SUMMARY AND CONCLUSIONS 

Historically, Honeywell was the first to develop 
and utilize the concept of scratchpad memories for 
control purposes within its data processing systems. 
The H-800 and the Series 200 systems each em
ployed different embodiments of the basic concept. 
Increasing utilization of the fundamental concepts 
both by other computer manufacturers and Honey
well (for example the expanded and extended con
trol memory system of the H-8200) substantiates 
the growing recognition by systems designers of the 
usefulness of such devices. 

Extrapolations of current trends with an eye to
ward future developments in scratchpad memories 
leads one to the definite conclusion that scratchpad 
memories will be a significant factor in the design 
of future systems. In substantiation, three facts can 
be noted: ( 1) the rapid and significant decrease in 
the cost of small high-speed memories; (2) the 
definite trend toward the design and development 
of more sophisticated and complex systems; and 
(3) the increasing desire of the systems designer to 
emancipate the programmer from the individual 
machine characteristics to the greatest extent possi
ble. 
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A BOUNDED CARRY INSPECTION ADDER FOR FAST PARALLEL ARITHMETIC 
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West Long Branch, New Jersey 

INTRODUCTION 

This paper suggests a new mechanism for paral
lel, high-speed arithmetic for digital computers. It 
is based on a bounded carry inspection adder 
(BCIA) that operates on ternary coded data words. 
The recoding circuitry is of the type currently in 
use in computers that perform high-speed multipli
cation by the modified short cut (MSC) technique 
of shifting over ones and zeros.!' 2 The uniqueness of 
the BCIA lies in the application of this recording to 
addition, and to an even greater speed-up of the 
mUltiplication technique that fostered it. In the proc
ess of multiplication, repeated additions/subtractions 
are required. The BCIA speeds up the process by 
providing an addition technique that yields the sum 
in parallel in one step through the elimination 
(bounding) of carry propagation. 

Previous attempts at multiplication speed-up re
quired separate adders for addition and mUltiplica
tion arithmetic,2,3 or employed adders that were not 
truly parallel in the one-step sense,4,5 or retained 
difficulties in sign and overflow detection.6, 7 In the 
method described, the same adder is used for addi
tion and multiplication arithmetic. Further, the na
ture of the recoding technique provides for one-step 
summation: since there are never adjacent digits in 
the recoded summands, there can never be any carry 
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propagation. Any question of sign or overflow is 
resolved by providing an N + 2 bit register for sum
mation, where N is the conventional signed word 
length. 

RECODED-BINARY ARITHMETIC 

The increased prominence of scientific computa
tion has focussed attention on the need for in
creased arithmetic speed since, in general, scientific 
problems require a higher ratio of arithmetic-to
housekeeping operations. The search for increased 
speed has centered on faster circuitry and faster al
gorithms. The latter approach has led to recoded
binary arithmetic. 

High Speed Multiplication 

The method most currently used for binary 
mUltiplication is based on the decimal short-cut 
mUltiplication method used on desk calculators. The 
technique centers on the ability to replace a string of 

m 

ones between positions a and m by I 2i = 2m + 1 _2a. 
a 

For example, the binary number 00111110 == 
+25 +24 +23 +22 +21can be recoded as: + 26 - 21. 
Thus, in multiplying, five additions and four shifts 



690 PROCEEDINGS - FALL JOINT COMPUTER CONFERENCE, 1965 

can be replaced by one subtraction, a single shift 
of five, and one addition. LehmanI extended this 
basic recoding technique and demonstrated that 
isolated ones and zeros could be treated as part of 
a longer string of digits. An isolated one calls for an 
addition of the multiplicand, while an isolated zero 
calls for a subtraction. For example, 0011 nIl 0, 
which would ordinarily be treated as two sequences, 
can be recoded as +26 _23 _21. The justification for 
this treatment of isolated units stems from the two 
self-obvious identities +2N _2N- I = +2N- I and 
_2N +2N- I = _2N-I. The result is that there are 
never two sequential addition/subtractions. 

The preceding techniques may be given a more 
formal representation by considering a ternary coding 
of binary numbers such that: 

m m+1 
2-n I B t2t==2-n I (-1) StCt 2t 

o o 

where B t , St, and C t are binary variables and t is 
the positional indicator (t = 0, ... , m). An opera
tion is performed in any tth position in which 
C t = 1, with the sign of the operation controlled by 
St. In the above, St = 0 commands an addition. The 
entire recoding logic consists of an implementation 
such that: 

Ct = (B t =1= Bt-d (Ct-t) 

St = (CtB t - l ) + (Ct St-t) 

(1) 

(2) 

Note, from Eq. (1), that CtCt-1 = 1, and thus 
operations can never be required in two successive 
cycles. 

Ternary Coded Addition for BCIA 

The Bounded Carry Inspection Adder operates 
by using the code commands directly as the repre
sentation of the summands, the only additional re
quirement being that both data words are recoded. 
Addition takes place in parallel in exact one clock 
pulse, hence the use of the "I" in BCIA to indicate 
addition by mere inspection of the summands. The 
rules for addition are stated in the following equa
tions,using the notation above and with the sub
scripts a and b representing terms in the first and 
second summands, respectively: 

(StCt)a(StCth = St+l Ct+lCt (3) 

(StCt)a(StCth = StCt (4) 

(StCt)a(dCth = StCt (5) 

(StCt ) a (StCt)b = St+l Ct+lCt (6) 

(StCt}a(dCth = StCt (7) 

In the preceding equations, the d's represent "don't 
cares" and the a and b subscripts may be inter
changed since the commutative laws must obviously 
apply. 

Since the mathematical representation may tend 
to obscure rather than explain, a simple example is 
shown in Fig. 1. 
Exponent of 2t 

Augend 

Addend 

Augend in BCIA 
notation 

Addend in BCIA 
notation 

t = 7 654 3 2 1 0 
+ + 

A = 0 0 1 1 1 0 1 0 = 58 
+ 

B :::: 0' 0 1 1 0 1 1 0 = 54 

A=01000010 

B=01000000 

112 

Note: 0 is a non-value space zero. (See Appen
dix A.) 

Figure 1. Addition example. 

In the figure the plus-minus notations above the 
conventional-binary summands indicate that an oper
ation is to be performed (Ct = 1), and give the 
sign of that operation, (+ == St = 1). The example 
illustrates the modified Boolean operations to be 
performed. The complete rules for addition (posi
tive numbers) are summarized in Table 1. 

Summands 
A B 
1 1 
1 0 
o 0' 
o 0 
1 0 

Position Entry 
t + 1 t 

1 0' 
o 0 
o 0 
o 0' 
o 1 

Table 1. Addition Table for the BelA. 

The rules for addition with both of the sum
mands negative are identical. It is necessary only 
to keep track of the sign, as in conventional sign 
and magnitUde addition. Addition of oppositely 
signed numbers is readily implemented. The num
bers would be recoded normally, independent of 
sign. Then the complementary output of the register 
containing the recoded-negative summand would be 
used for the addition. The sign of the sum would be 
obtained from the sign decoder, as before. 

Overflow detection is readily obtained in the 
BCIA. Conventional notation for an N -bit computer 
usually implies an N - 1 number and a sign bit in the 
Nth position. For addition, an N + 1 sum register 



A BOUNDED CARRY INSPECTION ADDER FOR FAST PARALLEL ARITHMETIC 691 

is used to provide for overflow. In BelA addition, 
an N + 2 addition register is employed. The sign 
is in position N + 2, while position N is used for a 
"non-overflow overflow," and position N + 1 used 
for actual overflow. The "non-overflow" must be 
provided for since the recoding of an N - 1 bit 
word can produce a 1 in the Nth position. This 
would normally be reabsorbed into the standard 
word length when the sum is formed. If both sum
mands have a 1 in this position, a conventional 
overflow is formed in position N + 1, and is treated 
in a normal manner. 

Subtraction is performed in the manner previous
ly indicated for opposite-sign addition. The com
plementary output of the recoded subtrahend regis
ter is always used in the process. The choice of the 
true or complementary output of the recoded minu
end depends on its sign, with the complement cho
sen for negative sign. Addition then proceeds as be
fore. Note that there is no need to sense the over
flow bit, as in conventional subtraction, to deter
mine whether subtraction has proceeded in the right 
direction (i.e. has a larger number been subtracted 
from a smaller number, necessitating a correction 
cycle?). This stems from the fact that the represen
tation of the most significant bit iIi the answer is 
the sign of the answer, while the magnitude of the 
answer is already correct. In this sense, as well as in 
the fact that borrow propagation is elimited, the 
BelA produces faster subtraction than previous 
techniques. 

Fast Multiplication 

McSorley,2 in his description of Stretch arith
metic, pointed to the speed advantage in using spe
cial purpose carry-save adders in the multiplication 
process, while using carry-look-ahead for ordinary 
high-speed addition. With BelA arithmetic, the 
same adder is used for both multiplication and ad
dition. Further, multiplication speed is considerably 
increased. 

In the carry-save technique, all intermediate ad
ditions can be effectively performed without carry 
propagation, while the final addition required con
ventional carry ripple. With BelA representation, 
one-step addition/subtraction is used for all inter
mediate operations, and for the final one as well. In 
multiplication, both multiplier and multiplicand are 
used in recoded form. It should be noted that the 
full multiplication operation code is contained in 

the format of the multiplier word. Thus: Multiplier 
54 = 1 0 0 0 0 0 0 (BelA ternary coding) calls 
for a shift, subtraction of the multiplicand, another 
shift and subtraction, then a double shift and an ad
dition of the multiplicand. It seems apparent, there
fore, that a further savings in overall hardware is 
obtained with BelA arithmetic, since the 
multiplication decoder can be considerably simpli
fied. It is also seen that a further speed-up can be 
obtained, since multiplication sequence decoding, 
which normally proceeds serially by groups, is al
ready "stored" in the multiplier word. And finally, 
it should be noted that the elimination of carry due 
to the BelA permits formation of the most signifi
cant bits first, for both serial and parallel machines. 
This is obtained by merely using left shifts instead 
of right shifts and initiating the multiplication from 
the left. The first significant answer bit becomes 
available in one step, and the ith bit becomes 
available in the ith step. It thus becomes possible 
to implement a rounded-multiply operation which 
terminates after the minimum commanded number 
of digits has been formed. Such an operation would 
find use in variable byte arithmetic as well as in 
significant-digit analysis of floating point calcula
tions.8 

Division 

An analysis of a ternary division algorithm using 
BelA notation is lengthy and will not be treated at 
this time. It may be briefly stated, however, that 
the method employs a shifting over space zeros. 
That is similar to the method of shifting over ones 
and zeros presently employed for high-speed divi
sion.2,12,13 The justification is similar since, in both 
cases, the digits shifted over are merely position 
indicators and not value digits. Preliminary analysis 
of the shift average, a figure of merit proposed by 
Robertson, provides a figure greater than three. 
This is obtained without the need for generating and 
storing multiples of the divisor, typically %, 1, and 
3/2.14 Penalty is paid, however, in going to a two
step addition process, since intermediate partial 
remainders will now sometimes have adjacent digits. 
This will result in a transfer digit, 5 which is absorbed 
in the second step. 

IMPLEMENTATION 

The full description of implementation of the 
concepts suggested by this paper can only be con-



692 PROCEEDINGS -- FALL JOINT COMPUTER CONFERENCE, 1965 

sidered by a lengthy treatise on the design of a digi
tal computer in which the use of BCIA arithmetic 
is extended to the entire machine. If Robertson's 
definition of redundancy9 is extended ·to include the 
BCIA form of ternary coding, then such a computer 
is fully possible. There is a hierarchy of approaches 
which could be implemented. Briefly stated, these 
are: 

1. Total. In this approach, at a cost of pro
gram assembly time, but with a saving in 
output decoding, the entire machine, in
cluding instructions, data and addresses, is 
structured for BCIA ternary representation. 

2. Arithmetic only. Here, only data words 
are . converted, as inputted. Address modifi
cation would require local recoding. 

3. Arithmetic, as needed. In this approach, 
all words are in conventional binary form 
and are converted as required. 

Certainly the Total approach would be the most 
desirable. The problem of a ternary representation 
can be solved on a multiregister basis or can be im
plemented with three-state devices, such as the tun
nel diode, or appropriately wound magnetic cores. 
Thus, for example, the ability to implement 0, the 
non-value space zero, presently exists. The multireg
ister technique represents a brute-force approach 
that would provide two N-bit registers to distin
guish among the three states. The way in which the 
registers are filled and the use in BCIA addition are 
shown in Appendix A. These are but two approaches: 
other, more elegant, schemes can be developed. 

The recoding of a binary word into ternary form 
has been treated elsewhere.2,12 For completeness, 
Appendix B shows a possible logical implementa
tion for a four-bit word. Extension to longer word 
lengths is treated in the references. Essentially, 
these reduce down to logic diagram descriptions of 
the equations presented earlier in this paper. 

CONCLUSION 

An extension of ternary coding to permit the 
elimination of carry propagation in addition and 
subtraction has been presented, and a new parallel 
Bounded Carry Inspection Adder has been pro
posed. The speed-up of fast mUltiplication by virtue 
of adder speed-up and the ability to use the same 
adder for both multiplication and addition has also 
been indicated. The technique described provides 

for simple over-flow detection and for round-off 
techniques that suggest significant-digit-arithmetic 
capability. 

While the discussion has centered on a ternary 
representation, and electronic means for such a rep
resentation have been· mentioned, it is noted that 
normal binary hardware could be used for an equiv
alent representation. The possibility of redundant 
representation in an entire computer has been 
opened through the use of redundancy for both 
summands in the adder, thus extending such repre
sentation to the entire arithmetic unit. It is felt this 
can provide the means for faster parallel execution 
in a digital computer. 

APPENDIX A 

In handling BCIA operations, a means of repre
sentation of the non-value space zero, 0, must be 
provided. As is seen in Appendix B, the determina
tion of the space-zeros and their location in the 
recoded word is determined from the type of recod
ing used for multipliers. The ones of the BCIA 
word represent the addition commands of the multi
plier, the zeros represent the subtractions, and the 
shift commands represent space-zeros. The length 
of shift represents the number of sequentially reg
istered O's. In this manner, the decimal number 54 
is recoded as: "Shift one (0), subtract (0), shift one 
(0), subtract (0), shift two (00), and add (1). 
If an eight-bit word is considered, an additional 
shift (0) must be entered. Written in BCIA form, 
this becomes 

54 = 0 1 0 0 0 0 0 0 

To represent this using the brute force approach 
of two N-bit registers, the procedure would be as 
follows: 

1. Load register A with ones in the positions 
where an add command had occurred. The 
remainder of the register is filled with zeros. 

2. Load register 0 with zeros in the position 
where a subtract command had occurred. 
The remainder of the register is filled with 
ones. 

For the decimal number 54, the register would 
appear as below: 

A Register 0 1 0 0 0 0 0 0 -----------------------o Register 1 1 ,1 1 0 1 0 1 
-----------------------

The columns in which the same digit notation oc
curs represent the existence of that digit in the 
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BelA number. The columns containing differing 
entries in the two registers represent the space
zeros, O. This can be seen when it is remembered 
that a 1 represents an add command and a 0 rep
resents a subtract command. A space-zero then is 
a simultaneous command to add and subtract, i.e. 
a no-op statement, in effect. 

Addition of two numbers in this format is given 
in the example below for 54 + 57 = 111 

54 Aa 0 1 0 0 0 0 0 0 
57 Ab 0 1 0 0 0 0 0 1 
54 Oa 1 1 1 1 0 1 0 1 
57 Ob 1 1 1 1 0 1 1 1 

SUM As 1 0 0 0 0 0 0 1 
Os 1 1 1 0 1 1 0 1 

J, J, J, J, 
+27 _24 _21 +20 

The entries in the sum registers are seen to be 
determined as follows: 

Terms in Summands 

,As I 0 
Os 1 1 = Aa Ab Oa Ob 
As 0 0 
Os 0 1 = Aa Ab Oa Ob 
As OLt+1 0 
Os I Lt+l 0 = (Oa Ob + Oa Ob) AaAb == K t 

As OKt+1 1 
Os I Kt+l 1 = (Aa Ab + Aa Ab) Oa Ob == L t 

t + 1 

A magnetic core logic implementation using 
"leaster" and "moster" symmetric circuits can be 
employed to provide the sum. 

The example given serves to demonstrate an ad
ditional requirement of a system employing BelA 
arithmetic: while the addition of two BelA coded 
words will always take place without carry (since 
there can be no adjacencies), the sum may not al
ways be generated in the proper recoded form. This 
can, on occasion, hold for the results of other arith
metic operations as well. An approach in resolving 
this is to recode before the next operation, using 
look-ahead recoding equations of the form of Eqs. 
( 1 ) and (2) . Since the equations contain terms 
subscripted with t - 1, they are expandable to t - n, 
thus suggesting a one-step recoding that can be ac-

complished during the fetch portion of the next in
struction. 

APPENDIX B 

Fast Multiply. Shifting Over Ones and Zeros, 
Modified. 

Determination of Length of Shift. 

A maximum shift length of 4 is analyzed. 
H = Previous history, 1 = Add, 0 = Sub

tract. 
R = 1 = Perform an operation, then shift. 

R = 0 = No ops. 
yzAB = 4 least bits of multiplier presently 

being examined. 
Dash (-) represents a "don't care." 

y z A B H R No. of Shifts 
1 0 1 1 I 
o 1 0 I 1 

- 1 
- 0 
- 1 
- 1 
- 0 
- 0 

o 1 I 0 
I 0 0 0 
o 0 0 0 
o 0 I 1 
1 1 1 0 
1 1 0 0 

1 0 0 I 1 0 
o 1 1 0 0 0 
1 0 0 0 0 0 
I 0 0 0 I 1 
o 1 1 1 I 0 
o 1 1 1 0 1 
o 0 0 1 I 0 
1 1 1 1 0 0 
o 0 0 0 0 0 
o 0 0 0 I 1 
I 1 1 1 I 0 

2 

3 

4 

Remarks 
Shift I when 
R = land 
A=#B 

Shift 2 when 
z =# A and 
shift of I is 
not called for 

Shift 3 when z 
=# A and y =# 
z and a shift 
of I is not 
called for 

Shift 4 when 
Z = y = z 
and a shift of 
I is not called 
for 

From the remarks, the shift equations follow: 
(Sh = Shift) 

Sh 1 = R (AB + AB) 
Sh 2 = (Az + Az) Sh I 
Sh 3 = (yzA + yzA) Sh I 
Sh 4 = (yzA + yzA) Sh I 

From the section below, it is seen that the term 
for R is generated in the process of determining the 
operation (add/subtract) to be performed. In the 
Kamaugh maps and logic equations that follow, H 
is a history flip-flop that indicates whether the last 
operation was addition (I) or subtraction (0). B is 
the L. S. B. of a pair, Ais the next digit, S means 
add, D means subtract, and R means shift right 
(with respect to B ). 
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A B H S D 
0 0 0 1 0 
0 0 1 0 0 
0 1 0 0 0 
0 1 1 1 0 
1 0 0 0 1 
1 .0 1 0 0 
1 1 0 0 0 
1 1 1 0 1 

S=ABH+ ABH 
D = A[BH + BllJ 
R = (S + D) = SD 

R 
0 
1 
1 
0 
0 
1 
1 
0 

S 
ADD MAP 

A 
o 0 B 
10 

HOO 
10 

(BH + BH) = (B + H) (B + A) 
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INTRODUCITON 

The higher speeds obtainable with present day 
logic circuits of various integrated circuit types in
crease the need for faster adders .. The speed of. ad
dition can be increased primarily in two ways: ( 1 ) 
by more efficient logic organization, (2) by using 
faster logical elements. 

Among the different binary full adders the best 
known perhaps is the iterated type or . ripple carry 
adder .1,2 In this adder, the carry is propagated be
tween adjacent ordered stages through relatively fast 
carry circuits, and the sum is generated after the 
carry propagation has been completed. It is recog
nized that in this type of adder the major portion of 
the required addition time is due to carry propaga
tion time. There are several ways of speeding up 
carry propagation. Two of the most frequently used 
methods are the lookahead and the carry skip 
techniques.3•4•5 In each of these techniques· the sum 
generation is subsequent to the speeded up carry 
propagation. 

In the conditional sum adder, the generation of 
the sum is simultaneous with that of the carries. 
The conditional sum formation was first described 
by Sklansky in 19606 . and later used by Bedrij in a 
parallel adder utilizing a parallel pyramidal type of 
logical organization.1 In the conditional sum adder 

695 

described here the carry signal is propagated seri
ally in two logically different paths .. One of these 
paths is for the generation of the two possible car
ries of each binary stage and the other is to perform 
the carry bypass and selection logic. Because of the 
serial propagation of signals, fast circuitry .. is re
quired. 

The fastest available digital circuits today still 
use tunnel diodes and are fabricated by hybrid inte
grated circuit methods. Speeds of about an order of 
magnitude higher can be obtained with circuits in
corporating tunnel diodes than with those using 
transistors only. The controversy about the future of 
the tunnel diode in digital computers stems from 
the fact that they do not lend themselves to the 
most promising type cf integrated circuit technol'O
gy, i.e., fabrication using monolithic techniques. In 
hybrid integrated circuits, however, the speed ad
vantage of the tunnel diode can be efficiently ex
ploited due to the decreased stray reactances of 
packaging and construction. Therefore, in this writ
er's opinion the future use of the tunnel diodes in 
digital computers will depend to a large extent on 
the acceptance of some sort of hybrid construction 
technology . 

In the design of the adder, an approach useful for 
functional units appears to be the most suitable one 
and is the approach followed here.8 This design phil-
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osophy makes use of the fact that optimization for the 
maximum performance per cost ratio is an easier 
task if the logic circuits have to perform only a pre
determined, limited number of logic functions. In this 
case a better coordination between logic and circuit 
design is also possible. 

The logic organization presented here observes 
the capabilities and limitations of practical circuit
ry and topology. The circuit design conforms to 
the characteristics of the logic functions and takes 
into account the potential advantages of the mi
crominiaturization techniques. 

Group (i) 

C AOI So, Ni-l CYi - 1 

COi-l 
SUM 

SN Sy 

COi-l 

COi 

LOGICAL ORGANIZATION OF ADDER 

The principle of the conditional sum adder is 
based on the computation of conditional sums and 
carries that result from all possible distribution of 
carries.6 Since for a binary full adder stage the carry 
can be either a one or a zero, only two conditional 
carries, and consequently two conditional sums, 
need be generated. 

The illustration of the principle is shown in Fig. 
1. Let us assume that two operands of N bits each 
are to be added. Both operands, and therefore the 

Group (i +1) 

COi+l 

Figure 1. Principle of the conditional sum-carry bypass adder. 

adder, are divided into k groups of n bits each (n 
does not necessarily have to be the same for every 
group). In each group the carry and a portion of 
the sum circuits are duplicated in order to generate 
the two carries and two sums corresponding to a 
possible one and zero carry input to the group. 
Having two sums available, a decision is then made 
as to which sum is the correct one and this in tum 
becomes the sum output. 

The carry-bypass decision logic circuit deter-

mines the correct carries using the carry signals of 
the last stage of the group and the output of the pre
vious bypass circuit. The decision logic is then prop
agated to higher order groups. The total worst-case 
carry propagation time for two operands of N bits is 

tp = nlte + ktg (1) 

where tp is the total carry propagation time, tc is the 
propagation time of the carry circuit within the group, 
nl is the number of carry stages in the first group, k is 
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the number of groups, and tg is the intergroup propa
gation time. This relationship assumes that the out
put signal of the last stage of a group is available by 
the time the decision signal reaches the corresponding 
decision stage. 

The derivation of the decision logic either by the 
method of Karnaugh map or total induction is 
straightforward, thus only the end results are given 
here. The bypass decision function (C Di) of the ith 
group of an n bit grouping is as follows: 

Cm = CD(i-l)CYin + CNin (2) 

where Cy and Cn are the carry output as shown in 
Fig. 1. 

Unfortunately, the logical expression of Eq. (2) 
cannot be readily realized with one tunnel diode 
unit-delay. Also the AND circuit would require 
tighter component tolerances than required by an 
OR Circuit, thus contradicting the design goals. For 
these reasons, a different logic function whose gen
eration is practical with a tunnel diode transistor 
circuit using the tunnel diode in the propagation path 
was needed. This circuit should have operation mar
gins at least as good as a "one out of three" analog 

threshold circuit. By employing logic which is not 
of the minimal form, a convenient function was 
found, which is given in Eq. (3). 

This logic statement can be realized by an emit
ter coupled transistor-tunnel diode bypass circuit 
having the properties described above. More will be 
said about this circuit in the following section. 

The sum is produced by two cascaded logical 
equivalence functions (A\lB = AB + AB) for both 
Sy and Sn. The two sums are given in Eq. (4). 

Sy = (A \l B) \l Cy 
Sn = (A \l B) \l C N (4) 

From this we can see that the first subsum can be 
combined for Sy and Sn and the circuit producing 
A \l B does not have to be duplicated. Therefore, the 
expression for the sum of group i stage j, including 
selection, is given in Eq. (5). 

Sij = (Aij\lBij)\l[Cyi<;-l)· CD<i-U 
+ CNi<;-l) • CD<i-u] (5) 

1 st Group 2nd. Group 8 tho Group 

0 CN 

1 
Cv 

eV8 

Coo 

Coo 

Coo 

CN8 0 CN 

Cv 

to 
group 3 

Q.. 

l 

C07 

CD 

-

Figure 2. Block diagram of adder, eight groups - eight bits each. 
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Cv 
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In order to eliminate the relatively slow logical 
equivalence circuits. from the sum selection path the 
following logically identical expression was imple
mented in the actual adder. 

Sij = [(Aij \l Bij) \l Cl'i(j-n] . CD<i-n + 
[(Aij \l Bij) V CNiU-I)]· CD(i-l) (6) 

The complete logical organization of the adder is 
given by the block diagram of Fig. 2. For reasons 
of speed and circuit simplicity, the input signals to 
the individual adder stages are the complements of 
the operand bits. Consequently, the complement of 
the carry rather than the carry is propagated. This 
way only the complements of the input signals are 
needed as inputs; greatly reducing packaging and in
terconnection problems. Each square on the diagram 
represents n adder stages in accordance with logical 
grouping and packaging. The en and. Cy functions 
are generated by the carry circuits according to Eq. 
(8). Box P designates the decision logic circuit (CDi) 

and Q stands for the amplifier of the decision func
tion for the selection of the proper sums. These are 
either Sl'i/S or SNi/s of Eq. (4). The iterative logical 

organization is clearly seen from the block diagram. 
If we assume that each group contains the same 

number of stages (this is a practical assumption for 
reasons of modularity and ,cost considerations, but 
does not give the highest obtainable speed) , and 
that tg = a· tc, then Eq. (1) becomes 

tp = ntc + aN . tc 
n 

where N is the number of operand bits. 

(7) 

If this expression is minimized as a function of n, 
we obtain for the optimal number of stages within a 
group: 

n = VaN 
By taking a = 1 (i.e., the intergroup stage delay 

is equal to the intragroup stage delay) we obtain: 

n = VN. For N = 64 this yields n = 8 and k = 

N/m = 8. 

The timing diagram for a 64-bit adder is given in 
Fig. 3. The times shown represent worst-case design 
values with packaging and interconnection param
eters taken into consideration. 

o 10 20 30 
2 nsec /div. I I I I I I I I I I I I I I I I I I I I I I I 

Reset pulse 

Carry out (last stage ofa group)~_-,----, 

Decision out ( 1 st group) 

Decision out (Iastgroup) 

Decision amp. out 

A V Bout 

A V B V C out 

AND/OR out 

SUM out 

I 
I 
I 
I 
I 
14 

32 nsec 

Figure 3. Timing diagram of 64-bit adder. A complete cycle is. shown. 

~I 
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CIRCUITS 

The circuitry used in the conditional sum adder 
is designed to satisfy the constraint that the logic be 
built using not more than three different modular 
microcircuits. These circuits must be flexible 
( __ ough to meet different requirements-either logical 
or gain-for the various applications. Each of these 
microcircuits is built on a separate ceramic sub
strate using hybrid microminiaturization tech
niques. Two of these circuits do not lend them
selves to any other technique (unless the tunnel 
diodes are attached separately to monolithic cir
cuits). The third circuit could be built with mono
lithic construction, however, at the time of the de
sign the required speeds were not obtainable using 
the commercially available monolithic circuits. A 
snap-off diode pulse generator circuit was used for 
the generation of the clock pulses. This was built by 
miniature discrete components to be amenable to 
future modifications. However, in the construction 
of this circuit hybrid techniques could be used as 
well. 

R2 

7~n---t 

x 

THE CARRY CIRCUIT 

In order to obtain the required speed and simplic
ity in the adder logic, the complement of the carry 
signal rather than the carry is generated by the car
ry tunnel diode (Fig. 4). However, for the sake of 
easy reference, the circuit will be referred to as the 
carry circuit. 

The Boolean equation for the complement of the 
carry function of the adder of jth binary order is given 
below: 

where Aj and Bj are the two nperands of the jth stage; 
Cj-l is the carry function of the stage of the next 
lower binary order; C j is the carry function of the jth 
stage. The barred symbols represent the comple
ments of the logic variables defined above. 

In the circuits of Fig. 4, the Aj and B j signals are 
applied to terminals 7 and 8 respectively. Cj-l is 
applied to terminal 5. X and Y terminals are for the 
power supply voltages (X = + 6v -+- 1 %, Y = + 3v 

10 

5~-K~~.A/\~----~--~--~9 

Figure 4. Circuit diagram of the carry circuit. 

± 5 % ). The tunnel diode, T D, performs "2 out of 
2" analog threshold logic, i.e., the output of the tunnel 
diode is a one, if two or more of the inputs are ones; 
otherwise, it is zero.. D-c bias is applied to the tunnel 
diode through the R 1 resistor, and conditional bias 
through the series resistor network of R2 and R 3. 

The tunnel diode is operated in the bistable mode 
using unconditional reset, with the reset pulse applied 
to terminal 6. Unilaterization between tunnel diodes 
is performed by a low peak current tunnel diode, B. 
The carry function Cj appears at output terminal 10 
and Cj appears at output terminal 9. 
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Decoupling Network 

Figure 5. Decision-carry bypass circuit. 

THE BYPASS-DECISION CIRCUIT 

The decision circuit, Fig. 5, is used for two func
tions: ( 1 ) to perform the carry bypass-decision 
logic and (2) to provide high-speed amplifica
tion. The circuit consists of two parts: (a) an emit-

I 

ter coupled transistor circuit and (b) a tunnel diode 
regenerative pulse amplifier or logical circuit. 

When the circuit is used for the generation of the 
decision logic, the following logic function is per
formed: CDk = Cy (CN + CDk-l). In this applica
tion terminal 5 is connected to terminal 6. Terminal 

--------

v 
1 Q, OFF 

Figure 6. Characteristic curve and load lines of the tunnel diode. 
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9 is connected to 8, and to 13 through a tunnel diode
resistor decoupling network shown in Fig. 5. The 
power supply voltages are X = + 6v ± 1 %; Y = 
+3v ± 5%; Z = -6v ± 5%. Cy is applied to termi
nal 7; C Nand C Dk -1 are applied to terminal 10 and 
11 respectively. The output is obtained at terminal 
13. The tunnel diode characteristic with its load line is 
shown in Fig. 6. When Cy is low (40 millivolts), the 
transistor on the righthand side conducts, and the tun
nel diode is biased to point 1. There is not sufficient 
current to switch the tunnel diode even when C Nand 
CD k-1 are both present. However, when Cy is high 
(500 millivolts), the transistor on the righthand side 

x z 

is cut off and the tunnel diode is biased to point 2. 
Now, either of the two signals, CN or CDk-1, is ca
pable of setting the tunnel diode to the high voltage 
state. The above logic function is thus generated. The 
tunnel diode is reset by an unconditional reset pulse 
through terminal 12. 

In the second application, the tunnel diode is 
used as a buffer amplifier and the transistor circuit 
as a complementary current switching amplifier. 
Then terminal 8 is connected to terminal 9 and 
terminal 7 to 13. The input is applied to terminal 
13 and the complementary outputs are obtained at 
terminals 6 and 8. 

x 

--....... --13 

Figure 7. Circuit diagram of gated logical equivalence circuit. 

SUM CIRCUIT 

As described previously the sum function is gen
erated by logical equivalence circuits. The sum sub
strate contains a NOR, a NAND, and an inverter 
circuit (Fig. 7). These circuits can be readily inter
connected to provide the desired functions. In the 
first level of sum logic the inputs A and B are applied 
to terminals 5 and 6. Terminal 7 is connected to ter
minal 8. X = +6v; Y = +3v; and Z = -6v. The 
output F = AB + AB is obtained at terminal 9. The 
operation of the circuit is straightforward, therefore 

only a short explanation is given here. When A and 
B are both low, neither Tl nor T2 conducts, there
fore the output is high. When A is low but B is high, 
or vice versa, T2 is cut off but Tl conducts. Conse
quently, the output is low. When A and B are both 
high, T2 conducts making Tl cut off. As a result the 
output is high. 

In the second level of sum logic, terminal 7 is con
nected to 8 and terminals 9, 10 and 12 are connected 
together. The input signals AB and CD are applied to 
terminals 5,6, and 13, respectively. X and Yare both 
connected to +6v and Z to -6v. The output func-
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tion F = (AB + AB) CD appears at terminalll. The 
operation of the circuit is the same as described for 
the first level circuit. In addition, the transistor am
plifier circuit which is connected to terminal 9 mani
fests itself as an inverted AND output at terminals 
9 and 10. The resistor diode network between termi
nals 12 and Z is part of a logical OR network re
quired to obtain the sum output on a single terminal. 

CONSTRUCTION AND PACKAGING 

The circuit modules are fabricated on a 0.5 X 
0.75-inch alumina substrate. The photograph of the 
assembled substrate without the cover is shown in 
Fig. 8. The resistors and conductive paths are print
ed by silk-screening process. The transistors and rec
tifier diodes are of chip form and are mounted onto 

Figure 8. Photograph of the assembled substrate. 

the substrate by high-compression bonding and solder 
flow techniques. The germanium tunnel diodes are 
encapsulated units in_micro-epoxy packages. They are 
attached to the substrate by soldering. Fourteen pins 
of 20 mils in diameter are perpendicular to the sub
strate with center spacing of 125 mils. In the fea
sibility model, 4 adder stages are packaged on a 4 X 
4-inch mother board. A mother board contains 22 
hybrid integrated circuits and a reset pulse generator, 
which generates a negative pulse of 5 nanoseconds 
duration and of -4.5 volts amplitude. The board itself 
is a 5-layer board of 3/32-inch thickness using two 
layers of signal interconnections and a power supply 
plane between 2 ground planes as inner layers. The 
reset pulse is distributed via tapped, terminated trans
mission lines. The power distribution is accomplished 
by low-impedance transmission lines. 

CONCLUSION 

A complete adder motherboard was assembled and 
tested. Average stage delays of 0.3 nanoseconds and 
voltage margins better than ± 8 % were obtained 

using tunnel diodes of lp = 4.7 rna ± 3% and mini
mum lp/ c ratio of 2.5 ma/pf. The high speed and 
good operating voltage margins are due to the isola
tion of the transistor capacitances from the tunnel 
diodes, the low stray capacitance construction and 
packaging techniques, and the large overdrive avail
able for the tunnel diodes. From the experimental 
data obtained, the estimated add time of two 64-bit 
operands is 26 nanoseconds. This is approximately 
20 percent faster than the maximal time of 32 nano
seconds. Due to its iterated logic organization, the 
adder is readily expansible. The add time of a 100-bit 
adder consisting of lO modules of 10 stages is esti
mated to be approximately 30 nanoseconds. 

With the exception of the tunnel diode, all other 
circuit elements can be fabricated by monolithic 
technology. However, since in both circuits the tun
nel diodes are connected to input or output termi
nals, they can be attached separately to the mono
lithic circuits as part of the packaging procedure. 
With this approach, the speed of monolithic logic 
could be improved considerably where fast serial 
signal propagation is needed. 
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A CHECKING ARITHMETIC UNIT 

Richard A. Davis 
Mesa Scientific Corporation 

Subsidiary of Planning Research Corporation 
Santa A na, California 

INTRODUCTION 

In conjunction with studies of mechanizations for 
a 3D-bit digital computer arithmetic· unit, an . inves
tigation of techniques for· checking arithmetic unit 
operations was conducted. The objectives were to 
provide maximum protection against undetected 
errors, while holding the cost of checking to a mini
mum. In addition, no loss of arithmetic unit speed 
should result. Finally, the checking process should 
give protection against memory-unit-induced errors. 

In view of the constraints established, incorpora
tion of checking through extension of existing arith
metic, control and memory unit hardware, rather 
than through extensive modifications, was decided 
upon. The feasibility of incorporating a Checking 
Arithmetic Unit (CAU) was selected as a major 
target for study. 

In considering the problem, a number of basic 
questions are immediately apparent: 

1. Are all errors of equal significance? 
2. Are multiple-bit errors more significant 

than single-bit errors? 
3. Is the computer used in an application 

where larger (magnitude) errors are ob
vious, due either to the nature of the prob-
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lem or to the feasibility of programmed 
checks? 

4. Is the computer used in an application 
where small errors are inl;:ignificant? Or 
conversely, do they tend to become accu
mulative? 

A review of the requirements of the intended ap
plications (primarily real-time data acquisition, 
telemetry decommutation, and test control) suggest
ed the following set of ground rules to cover the de
sign required: 

(a) Single-bit errors are far more likely than 
double-bit errors with conventional logic 
elements. 

(b) Additional protection against errors of 
large magnitude, even though highly im
probable, is usually justified. 

( c ) Undetected errors in algebraic signs, or 
indications of singularities (overflow, un
derflow, division by zero, etc.) are cat
astrophic. 

( d) Control el'ement errors or failures are us
ually worse than others, and potentially 
less susceptible to programming checks. 

( e ) The detection equipment should be at 
least as reliable as the units being checked. 
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Provision of separable checking controls 
to allow independent trouble-shooting is 
a necessity. 

OPERAND RECODING VS. AUGMENTATION 

A major consideration is the desirability of re
coding operands. The utilization of checking codes 
such as the An + B code proposed by Brown1 re
quires provisions for encoding and decoding in the 
input! output units, as well as provisions for com
patibility with other arithmetic and logical instruc
tions. Such provisions are far from straightforward. 
Consider, for example, the problems of masking or 
extraction from an operand in (37n + 13842) code. 

Further, such codes require extensive modifica
tions to the basic arithmetic elements, rather than 
the (desired) addition of a relatively independent 
CAU. Interpretation of recoded displays or binary 
memory dumps would be extremely difficult, seri
ously hampering program and hardware debugging. 
Considering all these factors, it was decided to lim
it consideration to what might be termed "out
board" codes; i.e., error detecting codes which are 
appended as additional digits beyond the normal 
data word bits. 

ADDER CHECKING BY RESIDUES 

Peterson has shown2 that all adder checking sys
tems utilizing an independent checking element are 
fundamentally the same as some residue-class check. 
In the limit, as the magnitude of the residue ap
proaches the magnitude of the numbers being add
ed, the checker becomes a duplicate adder. (See 
Fig. 1 and reference 3.) 

~ 

ADDER CODER 
-~ n} + nz 

e(n} + 

ADDER 
e(n}) + e{n

Z
) 

COMPARATOR 

Figure 1. Parallel checking of adder operations. 

An example of a contemporary machine which 
employs residue checking is the Univac III comput
er. This machine uses residues modulo three, calcu
lating them by a process which is essentially identi
cal to Brown's Theorem 4.1 (Note that the Univac 
III ,checks only addition, subtraction, storage, and 
data transfer operations. Note also that the residue 
of the data word is calculated, and the added code 
bits are generated so as to round out the residue to 
zero--a sort of residue-three, even-parity system.) 
Residues modulo three have the properties of de
tecting all single errors and 50 percent of all double 
errors. 

An additional property of residue checking, also 
pointed out by Peterson,2 is the relative ease of 
handling overflow and other singularities. Possibly 
the only major disadvantage of residue checking is 
that it is fundamentally a "distribution-free" check; 
i.e., indication of error at a validity check gives no 
indication of the magnitude of the error, or even 
which group of bits is at fault (odd or even in the 
case of mod three checking). Further, undetected 
double errors (which are less probable as larger 
check moduli are employed) are uniformly distribut
ed over the data word. Hence, undetected errors 
may be as easily large in magnitude as small. These 
are, however, minor shortcomings, far outweighed 
by the advantages of checking adder operation by 
residues. . 

Next consider the problem of checking and stor
age registers. The simple addition of extensions to 
each register to hold check (residue) codes, coupled 
with a post transfer validity check, will check regis
ters and transfers adequately. However, two other 
operations involving registers must be considered: 
shifting and complementation. 

RESIDUE CHECKING SHIFT OPERATIONS 

Basically, shifting may be considered in two dif
ferent ways: as a mechanical relocation of data bits· , 
as a scaling operation, accompanied by truncation 
or roundoff of the scaled operand as bits are shifted 
off. Due to the cyclic properties of residue codes, 
cyclic shifting of the code corresponds exactly to 
cyclic shifting of the corresponding data word. 
Thus, no correction for cyclic shifts (often called 
rotation operations) is required. 

Arithmetic (or so-called "end-off") data shifts 
are not quite so simple to handle. However, the re
quired corrections are relatively easy to implement. 
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The required correction rules may be summarized 
in terms of the four possible cases for dropping a 
bit off the end of the data or check code registers. 

1. Neither drop a bit; i.e., the bit shifted off 
is a zero: no correction is required. 

2. Both drop a one: no correction required. 
3. Data bit dropped is a zero, but code bit 

dropped is a one: cycle (or add) a one 
into the other end position of the (shifted) 
check code. 

4. Data bit dropped is a one, but code bit 
dropped is a zero: borrow one from the 
other end position of the shifted check 
code. Since this position will contain a 
zero, this operation is essentially a subtrac
tion operation from the entire check code. 
It may be implemented simply as follows 
(assuming that a residue adder is availa
ble): 

(a.) Left shift: assuming that an n-bit 
check code is carried, add the quanti
ty 2n-2 to the shifted (but uncorrect
ed) check code. This constant may be 
generated readily by gating. It is es
sentially n-l one with a zero in the 
next-to-Ieast significant position. 

(b.) Right shift: add the quantity (2n-l_l) 

to the shifted check code. This con
stant may also be generated readily. 
It comprises a zero in the most sig
nificant bit and ones in all other posi
tions. 

Examples, illustrating single-place left shifts and 
residue check codes, for the four cases above: 

1.) 
2.) 
3.) 
4.) 

Before Shift 
Data Check 

o 1 0 1 1 0 0 1 
10100 1 1 0 
o 1 0 1 0 0 1 0 
100 1 0 0 0 0 

After Shift 
Data Check 

101 100 10 
o 1 001 0 0 0 
1 0 1 000 0 1 
001 000 1 0 

Double-register shifts, both cyclic and arithmetic, 
require further corrections. For cyclic shifts, the 
code registers must be linked to provide both sin
gle-register and double-register cycling. The correc
tions required are (in terms of each of the code 
registers) : 

1. Bit cycled from both data and code regis
ters is a zero: no correction required. 

2. Bit cycled from both data and code regis-

ters is a one: cycling is performed on nor
mal double-register basis; i.e., no correc
tion is required. 

3. Data bit cycled is a one and code bit is a 
zero: add the data bit to the other data 
register and add one to the code register in 
the corresponding position; borrow one 
from the vacated position in the code reg
ister. (Note that the one cycled into the 
other code register must be added, since 
the corresponding position in the other 
code register may contain a one which was 
cycled in due to the characteristics of its 
own data word.) 

4. Data bit cycled is a zero and code bit is a 
one: inhibit cycling of the one into the 
other code register; cycle the one end
around into the vacated position in its own 
code register. 

These corrections are quite simple to implement, 
thus making residue checking of arithmetic opera
tions including shifting (such as multiply and di
vide) quite feasible. 

OTHER CONSIDERATIONS IN RESIDUE 
CHECKING 

Sign correction of residue check codes is quite 
simple. The check code (which is assumed to pe 
carried with its sign in complement form) is com
plemented accordingly. Since the residue system 
employs addition modulo 2n-l, it is inherently like 
the conventional "ones" or digitwise complement 
system. (For example, zero is represented by either 
all zeroes or all ones-the equivalent of plus and 
minus zero in ones complement notation.) Thus 
digitwise complementation of a residue code gives a 
res~t which corresponds to the residue of the nega
tion of the corresponding data quantity which is in 
twos complement form. 

The choice of the residue modulus is of consider
able importance. The primary considerations are 
checking efficacy, ease of implementation, and 
economy of added check bits. The checking capa
bilities of a residue code are directly related to the 
size of the residue employed. The larger the resi
due, relative to the largest data magnitude, the low
er the probability of undetected double errors. Use 
of residues having simple cyclic properties (such as 
the mod three residues calculated, in the Univac III, 
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by shifting and counting) facilitates implementa
tion. 

Finally, the residue should be encoded efficient
ly, i.e., with the largest modulus consistent with the 
number of check bits carried. Obviously, the largest 
residue which can be encoded with n bits is 2n. 
However, effective error detection requires that the 
modulus be relatively prime to the number base or 
integral powers thereof.1,4 Hence 2n is not a suitable 
modulus. The next largest possible modulus is 2n-1. 
This choice, which is always prime to a binary base 
system, has no disadvantages (in fact, as noted pre
viously it offers advantages when complementation 
is required). Hence, consideration should be given 
to residue moduli such as 3, 7, 15,31,63, etc. 

CHECKING USING BINARY LOGARITHMS 

A unique checking system may be constructed 
using binary logarithms. While not affording the 
exact bit-error checks afforded by residue checking, 
logarithmic checks offer several complementary ad
vantages including: 

1. Very good indication of the magnitude of 
the error; this is an area where residue 
checking was found to be lacking. 

2. Ease of mechanization independently from 
the arithmetic unit controls; this facilitates 
checking macro-operations and the arith
metic controls-one of the original objec
tives. 

Logarithms are particularly effective in checking 
multiply, divide, and square root operations. Since 
these involve long sequences of micro-operations 
and are hence most susceptible to both arithmetic 
and control errors, logarithmic checking appears 
most attractive. So far as the writer is aware, this is 
the first proposal for such a system. The idea is 
based on an article by Mitchell of NCR on multi
plication and division using approximate binary 
logarithms.4 

Mitchell generates the characteristic of the log by 
shifting the number left until the leading one is 
shifted off; the shift count is the characteristic. 
(This is an exact process. However, it is not suita
ble for use directly with numbers in complement 
form.) The mantissa was generated by using the 
remaining low order bits (after shifting off the 
leading one). As discussed in reference 4, this cor-

responds to linear interpolation (Fig. 2) and pro
vides for exceedingly simple implementation. 
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Figure 2. Binary logarithmic curve vs. straight-line approxi
mations. 

The price for the simple mechanization of binary 
log generation is accuracy. Table 1 compares exact 
vs. approximate binary logarithms. The error analy
sis in reference 4 shows that multiplication errors 
range from zero up to -11.1 percent below the 
correct product. Division results in quotients rang
ing up to + 12.5 percent high. Considering the low 

Table 1. Errors in Approximate Binary Logarithms. 

N N (binary) Approx. 19 N 19 N Error 
1 00001 0,000 0,000 0 
2 00010 1,000 1,000 0 
3 00011 1,500 1,585 0.085 
4 00100 2,000 2,000 0 
5 00101 2,250 2,322 0.072 
6 00110 2,500 2,585 0.085 
7 00111 2,750 2,807 0.057 
8 01000 3,000 3,000 O. 
9 01001 3,125 3,170 0.045 

10 01010 3,250' 3,322 0'.072 
11 01011 3,375 3,459 0.084 
12 01100 3,500 3,585 0.085 
13 01101 3,625 3,700 0.075 
14 01110 3,750 3,807 0.057 
15 01111 3,875 3,907 0.032 
16 10000 4,000 4,000 0 
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cost of mechanization, the accuracies are quite cred
itable. However, they are somewhat excessive for 
the supplementary checking operations desired. 

Among the possible ways for improving accura
cy, the most obvious one is generation of more ac
curate mantissas using a stored table. A small table 
-say 64 values--could be stored in a read-only 
memory at a modest cost. If desired, these values 
could be subjected to linear interpolation for great
er resolution using Mitchell's original scheme ap
plied to the lower bits. This method should produce 
products and quotients accurate within 2 or 3 per
cent. 

Consideration of the interpolation procedure 
used by Mitchell indicates that the error is almost a 
direct function of the distance of the argument from 
the integral (i.e., zero-mantissa) points. A prelim
inary estimate might be made using Mitchell's basic 
system and stored temporarily. The remainder of 
the data word (now shifted until the leading bit is 
off) is once again shifted left until the next "one" 
shifts off, counting the shifts. The resulting shift 
count is used as the argument to enter a small table 
of correction constants (say 28 values for a 30-bit 
data word). The correction constant is then added 
to the estimated log to generate a more accurate es
timate. This process could be repeated a second 
time, at the expense of time and a larger table of 
correction constants. No accurate error analysis of 
this method has been made. However, even the sin
gle correction system should produce results good to 
1 percent or better, and at a very modest cost. 

DETECTION CAPABILITIES 

In calculating the expected error incidence and 
corresponding detection probabilities, the question 
arises: "Should the computer word be treated as 30 
bits, or as 29 magnitude bits with the sign treated 
separately?" Since sign errors are of such signifi
cance, signed residues should be employed to pro
duce independent sign bit checking. Hence, the 
analysis which follows will consider only the 29 
magnitude bits. 

Using the usual notation (see for example ref
erence 5, page 50), the number of possible m-bit 
errors in an n-bit word is: 

c~ = n! 
m (n-m) ! m! 

Thus the number of double errors possible in the 
29-bit word is: 

C29 = 29! =~= 29 X 28 = 406 
(29-2) ! 2! 27! 2! 2 

Algebraic or combinatorial formulas for calcu
lating the error-detecting capabilities of residue codes 
may be formulated; however, the process is quite 
involved. A simple, heuristic analysis can be accom
plished more rapidly (at least for the word lengths 
and residue magnitudes considered for this prob
lem). Further, this gives some insight into the error 
distribution-something which is lost when the 
more formal methods are used. For example, con
sider residues modulo three (which detect all single 
errors). Brown has given a simple theorem! for cal
culating residues for this case. 

Given: the digital number 

x = xn2n + xn_ 12n- 1 + ... + x12 + Xo 

Then: the residue mod 3 of X, designated R)X(3 
is given by: 

R)X(3 = Rn (Weven - Wodd) 

where W even and Wodd are the number of ones in the 
even- and odd-numbered digit positions respectively, 
and Rn(Y) signifies the least nonnegative remainder 
resulting ~rom dividing Y by n. 

Consider first double errors in either the even or 
odd digit positions alone. The error pair may in
volve unlike digits (i.e., a zero and a one), in 
which case it is undetected. It may involve like dig
its, in which case it is detected. Thus 50 percent 
of the double errors occurring in like-numbered 
(even or odd) digit positions alone are detected. 

Next consider double errors split between even 
and odd digits. For the error to be undetected, it 
must give a resulting residue error which is an inte
gral multiple of three-the residue base. Consider 
the possible bit combinations before and after the 
occurrence of the double error, given in Table 2. 

Table 2. 

Original Erroneous 
Odd Even Odd Even Error Residue 

0 0 1 1 +3 
0 1 1 0 +1 
1 0 0 1 -1 
1 1 0 0 -3 
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Obviously, 50 percent of the errors are undetect
ed, since they result in error residues of plus or mi
nus 3. Now an error pair may occur in like- or un
like-numbered ( even or odd) digit positions with 
equal probability. Hence, the overall probability of 
detecting a double error using residue checking mod
ulo 3 is 50 percent. 

The extension of this analysis to other residue 
moduli is straightforward and will not be treated 
here. The double-error detection properties of resi
due codes of the form 2n-1, up to a modulus of 255, 
are tabulated in Table 3. (Note that the table is 
based on the problem assigned: checking 29-bit 
magnitudes.) Also tabulated is a figure of merit 
which indexes the rel'ative efficiency of each modu
Ius; this is derived as: 

P · f . Detection probability 19ure 0 ment = -=--=----,.:---~'--:--------:---!!
RelatIve redundancy 

= Detection probability 
Check bits/Data bits 

Por example, the figure of merit for the residue mod
ulus 31 is: 

0.91 0.91 X 29 
= 5.22 5/29 - 5 

Table 3. Double-Error Detection Properties 
of Residue-Class Checking Codes. 

Residue Code Errors Detection Pigure 
Modulus Bits Detected * Probability of Merit 

3 2 203 .50 7.14 
7 3 343 .84 8.10 

15 4 360 .89 6.37 
31 5 371 .91 5.22 
63 6 378 .93 4.49 

127 7 383 .94 3.89 
255 8 386 .95 3.45 

*Out of 406 possible in a 29-bit word. 

Por a typical constraint-detecting at least 90 
percent of all double errors-the residue modulus 
must be at least 31. Note that the highest figure of 
merit (for the 29-bit case) is exhibited by residues 
modulo 7. The modulus 3 is quite simply mecha
nized (as in the Univac III). A dual-residue system, 
comprising checks modulo 3 and 7, would have a 
detection probability of 0.92-slightly greater than 
that for mod 31 checking. However, the increased 

check code bit and logic costs of the dual system 
are strong deterrents to serious consideration over a 
single residue check system. 

RESIDUE CAU MECHANIZATION 

To provide a basis for a trial' mechanization of a 
Residue CAU, a basic arithmetic unit design was 
selected. (See Pig. 3.) The design is based on the 
H-3330 Digital Computer developed by the Hughes 
Aircraft Corporation.6 The characteristics of the H-
3330 may be summarized briefly as: 

• Parallel, synchronous, single-address 
• 30-bit words, sign and binary magnitude 
• Add time: 1.8 microseconds; mUltiply: 13.5 
• Logic: diode-transistor-inverter; 2.2 mega

cycle clock 

The properties of the arithmetic unit registers are: 

A - Accumulator; double-rank; right- or left
shifting; can be added to B or Q; can be 
transferred to B or Q or Memory; holds 
most significant half of product after mul
tiply; holds most significant half of divi
dend before division, and remainder after
wards. 

B - Double-rank; complement gating; can be 
added to A ; can be transferred to Q; holds 
operands read from memory (addend. 
subtrahend~ multiplicand, divisor). 

Q - Double-rank; right- or left-shifting, alone 
or linked with A; can be added to A; can 
be transferred to A or Memory; holds 
multiplier before multiply, and least sig
nificant half of product afterwards; holds 
least significant half of dividend before 
division, and quotient afterwards. 

J - Single-rank; holds overflow, divide check. 
etc. 

The preliminary CAU design is based on using 
residues modulo 31. The check codes are stored in 
memory as six-bit, sign and magnitude numbers, 
together with a parity bit on the check code. Thus. 
the memory word length must be extended by seven 
bits. In the arithmetic section, the six-bit residue 
code is carried in two's complement form. (The 
arithmetic operands are converted to complement 
form in the B register upon reading from Memory.) 
While this increases the number of microsteps re
quired, it simplifies the micro-operation control 
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Figure 3. Basic arithmetic unit - block diagram. 

since both operands and check codes are subjected 
to the same sequences of operations, including com
plementation. 

To DATA ~ __________ ~ 

MEMORY 

Q----( 

B----~ 

A-----( 

The organization of the Checking Arithmetic 
Unit is shown in block diagram form in Fig. 4. It 
may be noted that the general organization is simi-

Error 

CONTROL .. _~_ Control Sequence 
From A. U. C. E3. 

UNIT 
L~:':':'::':"" __ ~-"'v-- "J" Re giste r 

Contents 

Figure 4. Residue checking arithmetic unit - block diagram. 

lar to that of the basic arithmetic unit. The regis
ters are designated according to the corresponding 
data register; i.e., C(A) holds the check code for 
the data in the Accumulator. The starred (*) regis-

ters are so-caned "slave" registers, used for tempo
rary storage during transfers and shifting. The 
characteristics of the registers (together with the 
gating logic) are: 



712 PROCEEDINGS - FALL JOINT COMPUTER CONFERENCE, 1965 

C (A) can be an input to the adder or com
parator; can be transferred to C (B) , 
C (Q), or Memory; can shift right or 
left. 

C(B) can be an input to the adder; gating for 
digitwise comptement; receives check 
codes from Memory; can be trans
ferred to C(A) and C(Q). 

C(Q) can be an input to the adder or com
parator; can be transferred to C (A ) , 
C(R), or MEMORY. 

C(R) temporary storage register for residue 
results during generation of new resi
due code by scanning data word reg
isters. 

The Residue Adder accepts two six-bit inputs 
plus control signals (end-around carry inhibit and 
initial carry preset) and performs addition Modulo 
31. Inputs and results are in two's complement 
form, and singularities are signaled to the Check
ing Control Unit in the usual manner. The Residue 
Adder is a completely parallel type, based on a net
work of togic gates connected in a "brute-force" 
configuration. 

The functions of the other units are relatively ob
vious. The Register Scanner sequentially gates the 
sign + five-bit increments of a data register (usually 
one containing the results of an arithmetic opera
tion) into the Residue Adder to generate the mod 
31 residue check code. This is compared with the 
residue calculated during the sequence of arithmetic 
operations (and temporarily stored in C(R)) in 
the Comparator. In case of error, the Checking 
Control Unit is signaled. 

The Checking Control Unit performs two main 
functions. During the data arithmetic cycle, it ac
cepts the micro-operation control sequence from the 
Arithmetic Unit Control Sequencer and generates 
appropriate gating signals to accomplish the corre
sponding residue arithmetic operations. Upon com
pletion of the residue arithmetic cycle, the Control 
Unit then initiates the checking cycle, as described 
in the preceding paragraph. In case an error is de
tected, a flag may be set into the J Register (which 
indicates arithmetic singularities) and a program 
interrupt requested. The Checking Control Unit 
also initiates residue corrections for data singulari
ties ( overflow, illegal division, etc.) based on sig
nals from the J Register. 

LOGARITHMIC CHECKING UNIT 

Time did not permit a detailed mechanization of 
the Logarithmic Checking Unit (LCU). However, 
several pertinent comments may be made. The inde
pendence of such a unit from the data arithmetic 
controls (and even the instruction decoder if de
sired) offers much greater protection than the Resi
due CAU. The sensitivity of the LCU to errors of 
relatively significant magnitude (greater than 1 per
cent) may facilitate· making decisions when the 
CAU has atso detected an error. Note that the resi
due checking system gives no indication of the 
magnitude of the error. If the LCU indicates the 
error is small, it may be possible to continue opera
tion under some conditions. 

The operation of the LCU in checking multipli
cation, division, shifting, and square root are rela
tively obvious and straightforward. The application 
to add and subtract is not so simple, since loga
rithms give only order-of-magnitude checks on addi
tion or subtraction. This may be accomplished by 
comparing the characteristics of the two operands 
to give an indication (generally within one or two 
bit positions) of the magnitude of the result, in 
terms of the position of the most significant bit. 
While only a very rough check, it may still be of 
value in detecting controt unit errors. 

The LCU also provides for gross checks on many 
of the decisions (i.e., conditional transfer) opera
tions. The checking of branch on zero, nonzero, 
plus, or minus is obvious. Branching on magnitude 
comparison can only be checked for reasonableness 
if the binary logs differ. If the logs are equal, the 
magnitudes are equal within a 2: 1 or 1: 2 range. 

RESIDUES VS. HAMMING CODES 

It is illuminating to compare the capabilities of 
the residue checker with other schemes, such as 
Hamming codes. Hamming defines the bound B(n,d) 
of the maximum number of unique code points in a 
unit cube of dimension n, With minimum distance d 
between them.7 For the given problem, we need a 
bound of at least 229 points (for the 29-bit magnitude 
portion of the computer word) and a d equal to three 
(i.e., double-error detection). Hamming's bound for 
this case is: 

2n 

B(n,3) = 2m ~ 
n + 1 
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For the residue 31 code considered, n is 34, giving 
a bound of: 

B(34 3) <234 = 17,179,869,184 
, - 35 35 

= 1.83 X 228 

Thus the use of a 34-bit Hamming code (i.e., one 
having t1)e same number of redundant bits as the 
residue 31 code) would fail to give perfect double
error detection for the 29-bit words used. It should 
also be pointed out that the lower bound defined by 
Hamming is only valid for so-called close-packed 
codes (i.e., codes where the factor 2n 

/ (n + 1) is an 
integer). Since the nearest larger close-packed code 
(Hamming) requires an n of 63, even less double
error detection efficiency can be expected from the 
34-bit Hamming code. This comparison with Ham
ming codes on an efficiency basis, coupled with the 
ease of implementing residue codes, makes residues 
the prime choice for checking arithmetic operations. 

CONCLUSIONS 

It seems appropriate here to consider the eco
nomics of the proposed checking system. A typical 
H-3330 configuration (central processor and mem
ory only) sells in the one-million dollar price re
gion. Preliminary estimates for the Residue CAU 
indicated a cost of $50,000. The cost of the LCU 
was estimated at $30,000. A reasonable price for 
the dual checking facility ( assuming 25 percent 
gross profit) might be $100,000. Thus, for an addi
tional 10 percent, one can have a system which en
joys extensive protection from undetected errors, 
both bit and magnitude, as well as provisions for 
implementing sophisticated operations depending 
upon the type and magnitude of errors detected. 

The proposed checking system includes a propo-

sal for a Logarithmic Checking Unit. This unit of
fers significant advantages at a low cost. It is be
lieved to be a significant and unique innovation. 
The discussion of the checking of shift operations 
using residues is also believed to be new. 
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SERIAL ARITHMETIC TECHNIQUES 

M. Lehman, D. Senzig and J. Lee 
IBM Watson Research Center 
Yorktown Heights, New York 

SERIAL MODE MULTIPROCESSING 

It has recently been suggested l that the associa
tion of serial-mode functional (arithmetic) units 
with multi-instruction counter, mUltiprocessing 
computing systems may result in highly efficient 
processing complexes. This follows from the fact of 
life that in going from parallel to serial realizations 
of various algorithms the hardware requirements 
fall much more rapidly than does the speed. Fur
thermore the speeds of the stower, serial, arithmetic 
units may be more closely matched to those of 
memory and to other parts of the system. Thus the 
need for extra control circuitry, for high-speed reg
isters, queueing circuits and look-ahead control, for 
example, is reduced and the system's overall 
cost/performance ratio improved. For appropriate 
serial configurations then, performance may be im
proved relative to a parallel system when system 
costs are to be held constant. Reconfiguration of a 
fast parallel circuit, for example, can yield a number 
of slower seriat devices which, when kept busy, will 
increase throughput of the system. 

The crux of the problem of optimizing through
put lies, of course, in the extent to which the large 
fast unit on the one hand and the several associated, 
slower, smaller units on the other can be kept busy; 
that is, their relative efficiency within an operating 
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computing environment. As previously demonstrated, 1 

this consideration leads quite naturally to the multi
processing configuration. 

Recognizing that serial-mode operation may once 
again assume significance in the field of high-speed 
processing, we now wish to outline some appropri
ate algorithms. Thereby we hope to draw attention 
to techniques other than those currently considered 
during architectural, system and logical design ac
tivities. We shall not, however, in general, include 
detailed assessment of performance (speed and/or 
hardware) nor engage here in comparisons of serial 
and parallel devices. Such general comparative 
studies are meaningless when divorced from technol
ogies and actual designs. Extrapolations from them 
to actual physical design situations are in general 
not valid and their usefulness is restricted to help
ing towards a deeper understanding of the various 
circuits and techniques discussed and compared. 

BASIC CONCEPTS 

Serial Operation 

Traditionally a serial machine has been one oper
ating on words,numbers, in a bit-by-bit fashion. We 
now intend to use the term to include bit-parallel, 
byte-serial, operation. Thus with a k-bit byte we may 
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conveniently regard the machine as operating radix 
2k. We expect that the cost/performance ratio for 
the multiprocessing system considered, win be opti
mized for such serio-parallel operation. For the pres
ent discussion we consider 1 ~ k ~ 5. This range 
arises from timing and speed considerations which 
suggest, for example, that the basic radix 2k adder 
should be able to add two bytes in one bit-time as 
defined in the next section. Optimum k will then be 
determined mainly by the fan-in and fan-out of the 
logical elements being used. 

Time 

In conventional high-speed machines the absolute 
measure of speed is generally established in terms 
of the average, effective time delay t (nowadays in 
nanoseconds) experienced by a sign at or signal pat
tern in passing through a logical element or level. 
Naturally t will depend on the particular technology 
being used, that is, on the logical complexity of the 
element and on its fan-in and fan-out characteristics. 
Further, for a given product line t will spread over 
a range of values and the in-place de1'ay of a circuit 
will depend on its loading. However, we may use t 
symbolically to indicate speed, giving the duration of 
a specified operation to a first order of accuracy in 
terms of the number of logical levels its implementa
tion requires. 

In designing synchronous serial circuits it is not 
necessary or indeed desirable to synchronize signals 
at each logical level. Thus there emerges a new con
cept, the bit-time, tb, which represents the time inter-

val between clock signals.!.!!. then represents the max-
t 

imum number of logical circuits or levels between 
points at which clock signals are applied. A lower 
limit for tb arises from the maximum operating rate 
of a flip-flop (latch) assembled from, or at least 
equivalent to, two or more logical elements. In gen
eral, tb will exceed 2t and a practical operating range 
will be 2t ~ tb ~ 4t. Thus typically we may con
sider elements with a logical structure of complexity 
comparable to that of an AND/OR complex, with 
fan-in and fan-out in the range 5 to 10, an average 
delay of order Ins, and operating at a rate of order 
3 X 108 bits per second, that is a bit time of order 
3ns. 

When discussing serial techniques we also make 
frequent use of the term "word-time" which in an 
n-bit binary machine generally refers to n bit-times. 

In an ~ -byte, radix 2k system, processing the k-bit 

bytes in parallel, the word-time witl be ~ bit-times. 

Registers 

The serial shift-register is a component whose 
ready availability is fundamental to the concept of 
serial operation. In the past these registers have 
usually taken a distributed, dynamic, transient 
form; delay lines (ultrasonic, magnetostrictive, 
electric) and magnetic drum circulating tracks all 
having been used. Discrete, static, permanent regis
ters using tubes or transistors have, however, proved 
economicat, serving as both storage registers and 
shifting devices. With the second type of device it 
is simple to arrange for fully parallel input or out
put so that the register may also serve as a serial! 
parallel converter. This function is of importance 
in the general type of system where information is 
processed serially, in parallel, or in some more gen
eral mode, performance being optimized at each 
point in the system according to appropriate param
eters of the· algorithm being implemented. Typically 
we might wish to read from memory in parallel but 
perform arithmetic on the extracted number byte
serially. 

The discrete, static shift-register appears to be 
the ideal candidate for realization in integrated or 
monolithic form when configurations larger than 
simple gates or adders are considered. Thus exten
sive use of its properties in systems design should 
prove rewarding. Its expected ready availability in 
the technologies of the future will in fact strongly 
reinforce the trend to increased use of bit-by-bit 
processing techniques. 

SHIFTING 

Shifting is a basic operation in its own right and is 
also an essential part of the synthesis of various other 
functions. In particular it may be required for align
ment and fast normalization in floating-point opera
tions and as an integral part of mUltiplication and 
division algorithms. Information stored in a shift
register may be immediately shifted any number of 
places at a rate or order tb n's per bit or byte, a rate 
comparable to that of the parallel, cyclic shifter. In 
the most general circuit this shifting can occur in 
either direction. For more economical devices shift-
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ing, say, to the right only, a left p-place shift will re

quire (~ - p ) ~ight shifts with end-around feed. For 

long shifts, the simple circuit is slower than a full 
pyramid-shifting circuit but by using radix 2k shift-

KEY I I I IlJ 

ing registers with mUltiple path interconnections, as 
in Fig. 1, the maximum serial shift time for any num
ber of ptaces shifted can be kept below some 2k-bit 
times. This arrangement permits shifts of any size 
to be obtained. However if shifting can be restricted 

BACKWARD k - BIT SHIFT REGISTER 

Figure 1. A bidirectional shift register. 

to be by byte, that is, radix 2k , it becomes practical 
to consider a very simple register structure as in 
Fig. 2. 

Figure 2. Byte-shifting register. 

The requirement for shifts in floating-point opera
tion is well known. The particular techniques appro
priate to serial-mode operation are perhaps not so 
familiar. In· addition, for example, it is normally 
necessary to obtain a relative shift between two num
bers and the shift register then has properties like 
those of the serial matrix store.2 That is, the contents 
of one register are "shifted" relative to those of 

another simply by delaying the application of shift
control pulses to one or other of the two registers. 
An alternative technique, faster but requiring more 
hardware, would use shifting registers with several 
output points (a tapped "delay-line"). Relative shifts 
are then obtained by choosing the appropriate out
put point. 

When dynamic storage devices are being used, 
tapped delay lines with elements of delay tb, 2tb, 4tb, 
etc., have also been used3 to permit the simple control 
of from one to n place shifts directly from a shift 
control register. 

ADDITION 

Techniques for serial, fixed point addition in a full 
adder, with dynamic or flip-flop storage of the carry, 
are well known. For radix-2k operation, the byte sum 
should be available in one bit time and this can be 
done in a k-bit parallel adder using a direct imple
mentation of the radix sum-logic or binary full-adders 
with a carry speed-up network.4 It is largely the 
practical implementation of this one bit-time parallel 
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adder that ·determines an upper bound for k. The 

f· d· . ddi . . ·11 b n b·· nt tb Ixe pomt a tIon tIme WI· e k It tImes or k . t 

where~is the bit time to logic-level-delay ratio. This 
t 

time must be compared with the time (1 + log2n)· 
t, a lower bound on the speed of any adder which fol
lows from the result of Winograd.5 That is, the ratio 
of serial to parallel addition time will be less than 

k(1 +~og2n)· t; . For example, if n, k and tb equal 

50, 4 and 3 respectively, the serial by byte adder wili 
be less than 6.6 times as slow as the best possible 
parallel adder. The serial adder unit will require rel
atively less carry speed-up hardware (if any) than 
a single stage of the parallel unit so that the hard
ware ratio between paranel and serial devices will 

be in excess of ~. Thus the cost/performance ratio of 

the serial unit is considerably better than· that of the 
parallel device, an improvement which is maintained 
or even increased when floating-point adders, multi
pliers and dividers are considered. 

Floating-point addition algorithms require the 
addition to be preceded by an exponent comparison 
and, where the exponents are unequal, a shift. Typi
cal ranges for the exponents will require them to be 
represented by some eight bits or from one Jo three 
bytes. It may prove advantageous to process the ex
ponents in a small parallel unit though the time 
penalty for processing serially will be small, only 
some two bit times, in the case of three byte expo
nents. The alignment shift will be obtained using 
one of the techniques described in the previous sec
tion. As shown there, no physical shifting of the 
operands need be performed and the size of the 
alignment will not significantly affect operation 
time. 

Normalization of the sum obtained from a float
ing-point adder appears to be standard program
ming practice and in many machines normalized 
addition only is provided. This additional (micro) 
operation is time-consuming and appears to serve 
no useful purpose whatsoever. The present discus
sion will not pursue this point. 6 The authors could 
not, however, have reviewed techniques for serial 
normalization in connection with the addition oper
ation without at least questioning its utility. 

The most common technique for normalization 
shifts· the sum argument one bit or byte at a time 
until an indication is obtained that standard form 

has been achieved. This cyclic procedure, widely 
used in both serial and parallel arithmetic units, is 
economical but slow and makes "the duration of ad
ditions operand dependent. Its use is, howeve,r, diffi
cult to avoid in parallel units except through the 
provision of a large amount of extra hardware 
which may double the cost of the adder complex 
and also slow it down significantly. In serial units, 
however, a simple algorithm, used already in the 
Manchester Mark I computer,7 permits determina
tion of the normalizing shift and hence the expo
nent increment during the actual adqition process. 
A counter is required which is reset initially and 
every time two neighboring sum bits are found to 
be unequal. Otherwise it is incremented by one dur
ing each bit time of the addition process, yielding 
immediately on its completion the shift number/ 
exp0:Ient increment. Use of the fast shifter then per
mits rapid completion of the floating-point addition. 

An alternative, faster technique requires the pro
vision of an additional register. As the sum output 
appears from the adder it is received in the conven
tional fashion by the sum register. A second regis
ter is connected by a parallel transfer mechanism to 
the sum register and receives its contents whenever 
the exponent increment counter is reset to zero, that 
is, whenever two succeeding sum bits are unequal. 
Thus on completion of the addition the normalized 
sum will appear in the second register and no fur
ther shifting is required. 

MULTIPLICATION 

Exponent arithmetic has been adequately covered 
in the preceding section and we may, in our discus
sion of multiplication, restrict ourselves to the fixed 
point variety, considering first the purely bit-serial 
device. The basic cyclic multiplier, requiring of order 
n2 bit times, that is n2• tb, is well known. By using 
a number, a, of adders the multiplication time may 

n2 

be reduced to be of order-· tb. Thus in the Man-
a 

chester Mark I machine 20 adders were used (with 
a 40-bit word) to yield a two basic-cycle multiplier.7 

In the limit by using n adders (or fewer than n adders 
with a recoding scheme), as in Fig. 3, a two word 
time multiplier is obtained. The least significant half 
of the double length product is here available after 
one word time as is the most significant half, but the 
latter is in redundant (pseudo-sum and carry) form. 
Thus serial multiplication may be further speeded 
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MULTIPLICAND. (n bits) 

--0-
ONE BIT-TIME 
DELAY ELEMENT 

MULTIPLIER 

y 

n FULL-ADDERS 

L...r"---'I'\..-.- DOUBLE

J 

LENGTH 
PRODUCT 

Figure 3. The two word-time shift multiplier. 

up by attaching a parallel carry-assimilation circuit 
as in Fig. 4 to yield a multiplication time of order 
(n + lo~n) tb. It is· interesting to note that the scheme 
that now results is almost identical to the parallel 
stored-carry multiplier scheme first advocated by 
Burkes, Goldstine and von Neuman8 and imptement
ed in the llliac 11.9 

The circuit may be further improved by recoding 
the multiplier bits in k2-bit groups, using the output 
of the recoder to control the selection of appropriate 
multiples of the multiplicand in the selector circuits. 

Also we may revert to k1-bit byte operations to ob
tain, as in Fig. 5, a multiplier array still containing 
only n futI-adders. The development of the circuit 
may also be taken one stage further as in Fig. 6 by 

providing q such arrays each processing, say, 

portions of the multiplicand. 

!!-bit 
q 

In all these arrangements we clearly recognize the 
inadequacies of the classical terms serial and parallel 
for classification purposes, nor is it terribly impor
tant to attach such a name to the circuit. What is 

MULTIPLIER 

MULTIPLICAND. (n bits) 

--0-
ONE BIT-TIME 
DELAY ELEMENT 

~.-~---.~---------

n/ 
FULL-ADDERS 

~------~y~------~ 

MOST SIGNIFICANT 
HALF OF PRODUCT 

Figure 4. The one word-time shift multiplier. 
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Figure 5. Partially parallel shift multiplier. 
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Figure 6. Multiarray shift mUltiplier. 
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important is that by starting with a serial approach 
to multiplier design and by making use of the prop
erties of synchronous, sequential operation in and 
with a shifting register, there has emerged a circuit 
whose. performance may, at much lower cost, ap
proach that of the fully parallel inverted-pyramid 
multipliers.10,11,12 In the Appendix we quote some 
preliminary results for a multiplier design corre
sponding to the configuration of Fig. 5. These are 
compared with an iterative parallel multiplier de
signed to be of the same speed. These and other re.:. 
suIts substantiate a more general assessment that the 
cost/performance of the new configurations exceeds 
that of the parallel structures by a factor of between 
two and three. 

DIVISION 

The basic restoring and nonrestoring division tech
niques are inherently slow since they require a min
imum of order n subtraction and/or addition cycles. 
They maybe supplemented by one or more of a 
number of speed-up techniques,13,14,15 but Freiman's 
analysis16 indicates that in practice these alone can
not yield a speed-up factor greater than about four. 

We restrict ourselves therefore to a brief discussion 
of a technique previously17 outlined for decimal di
viders. The technique is illustrative of a class of 
division methods which integrate readily with fast 
multiplier circuits to form efficient arithmetic units. 

Consider a required remainderless division: 

a Q=
b 1 >Ibl ~ ~ 

Suppose a factor m could be determined such that 
mb = 1, then Q = ma. The algorithm to be described 
defines an iterative procedure for determining a se
quencemi such that 

bi 1T mi ~ 1 

hence 

both quadratically. Let 

bo = b, 
= 2 + b, 

We may write 

-t -t 

bo = 1 + 0 . 2 0 + E 2 0 
-t 

b>O 
b<O 

1 > I 0 I ~ 2 0 or 0 . 1 > E ~ O. 

Define 

Consider 

-t 

mo = 1 - 0 . 2 0 
-t 2t 

= 2 - 2 0 [bo • 2 0] 

b1 = mo bo 
-2t -3t 

= 1 - (02 - E) 2 0 - 0 E 2 0 

b1 deviates from one at least quadratically less than 
boo Generalizing we may thus define an iterative, 
convergent procedure 

bi+l = mi bi 

ti+l = 2ti 
-t t 

mi+1 = 2 - 2 iTi [bi . 2 i+I] 

to = 1 

mo = 3/2 

= 1/2 

b>O 
b<O 

This yields bi ~ 1, lli ~ Q to the accuracy of a, b in 
some 2 + [lOg2n] iterations. 

Convergence can be speeded up by determining an 
initial value for rno (that is, some mi) from a wired
in table look-up procedure - as a function of the 
leading bits of b. A 16-entry table based on four bits 
of b, as in Table 1, is practical and would save two 
iteration cycles, producing a 32-bit quotient in 4 
cycles or 33 to 64 bits in 5 cycles. 

Table 1. A Typical mo Coding Table. 

Five Most Significant Bits of 
Normalized Positive Divisor 

0.10000 
0.10001 
0.10010 
0.10011 
0.10100 
0.10101 
0.10110 
0.10111 
0.11000 
0.11001 
0.11010 
0.11011 
0.11100 
0.11101 
0.11110 
0.11111 

mo 

1.1110 
1.1110 
1.1100 
1.1010 
1.1000 
1.1000 
1.0110 
1.0110 
1.0100 
1.0100 
1.0100 
1.0010 
1.0010 
1.0010 
1.0001 
1.0001 



722 PROCEEDINGS - FALL JOINT COMPUTER CONFERENCE, 1965 

The algorithm leads to a divider faster than the 
shortcut technique only if a fast multiplier is avail
able. Figure 7, drawn for simplicity for bit-by-bit 
operation, indicates that a circuit realization inte
grates well with the fast multiplier discussed in the 

+1 

3x i +1 

previous section. For k-bit byte operation a total 

division time of order !f [lo~n] bit times should be 

attainable. This speed can be obtained. using a single, 
split, multiplier circuit; since the length of the mul-

Mj (n/2 + I bits) 

EXCEPT LAST CYCLE 

SUM 

CARRY 

ASSIMILATOR 

Figure 7. Integrated multiplier-divider. 

tiplier mi can always be held less than ~ bits except 

in the last iteration cycle. In that cycle, however, only 
one product Q.;J'r4 has to be determined. 

A first estimate of hardware requirements for the 
integrated multiplier-divider and its control has been 
made. The results are presented in the Appendix. 

CONCLUSION 

The paper has presented a review of some tech
niques for the realization of the common arithmetic 
function. It is considered that generalized perform
ance figures for the various circuits are not of di
rect interest if based on a particular technology or 
system design. Care has therefore been taken to 
avoid . repeated comparisons or claims. The results 

presented in the Appendix enable initial evaluation 
of the multiplier techniques discussed and their 
comparison, in terms of speed, cost and cost/per
formance ratio, with more conventional units. They 
are included so as to indicate that some of the intui
tive notions presented can be substantiated in fact. 

Despite the title of this paper, the discussion has 
not been limited to techniques of a purely bit-by-bit 
or byte-by-byte nature. The aim has rather been to 
indicate that with serial processing as a starting 
point, algorithms and circuits can be developed that 
will bear comparison with the classical high-speed 
configurations. In general they will yield speeds 
slower than the latter. However there exists an ulti
mate barrier to ever higher processing speeds using 
parallel structures due to the saturation effects of 
circuit speeds, cost and system complexity. Thus 
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the use of techniques such as those described in a 
multiprocessing, multi-instruction counter config
uration is believed capable of yielding performance 
and throughput superior to that of presently envis
aged conventional systems. 

In the past designers have, on the whole, pursued 
an· evolutionary path. With the very rapid develop
ment that has taken place in computer applications, 
in systems concepts and in technology it is, however, 
necessary from time to time to reexamine some of 
the more fundamental notions of machine structure. 
How, for example, should the fact that the cost of a 
monolithic, serial shift-register is likely to approach 
that of an individual flip-flop, with its input and 
output stages, affect systems structure? Decisions 
which were valid in 1947 are not necessarily valid 
in 1965 and concepts should not be rejected merely 
because they are unconventional or because they 

MULTIPLICAND 

have been rejected or abandoned in the past. In es
sence therefore this paper suggests and illustrates, 
with one example, what may be gained by funda
mental rethinking in approaching the problellls of 
system and logical design. 

APPENDIX 

A circuit design for the serio-parallel multiplier 
has been completed. The implementation is 
straightforward and represents only the first round 
of the normal iterative, optimizing design proce
dure. Hence it is expected that the hardware re
quirements summarized below could be somewhat 
reduced. A matching design for a more convention
al, iterative, pyramid multiplier as in Fig. 8 was 
undertaken so as to enable an objective comparison 
of the two approaches. Since the designer who un-

(n bits) 
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---- ----------1 
I 
I 
I 

L...-____ -r-______ ..,.----s 2nd_ 13thLOOP I 
~--~------------~ I 
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I _______________ J 

Figure 8. Conventional iterative pyramid multiplier. 

dertook both designs (J. Lee) had had previous ex
perience on the design of conventional multipliers, 
it is expected that any bias in the degree of optimi
zation of the two designs would operate in favor of 
the latter. 

All designs were undertaken for 24, 48 and 56 
bit operands with a 3-bit byte. They included all 
logic, registers and powering elements required to 
produce a double-length product. Circuits used were 
of two basic types. The first: a current-switching 
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NOR/OR circuit with a fan-in of up to 4, a fan-out 
of lOon each of the 2 outputs and a direct connec
tion (dotting) capability of 4 for either an addi
tional AND or OR function. The second circuit, 
termed a spread-gate, yields functions, each of 3 out 

of 6 input variables, on 4 outputs. Fan-out and dot
ting capabilities remain at 10 and 4 respectively. 

The comparative results of the designs are given 
in Table 2. 

It should be noted that (in this age of integrated 

Table 2. Multiplier Circuits. 

Word-Length Serio-Parallel Parallel, Iterative Pyramid 

Logic Logic 
Bits Circuits Transistors Levels Circuits Transistors Levels 

24 1,085 5,412 
48 2,165 8,355 
56 2,419 9,869 

and monolithic circuits) numbers of circuits rather 
than transistor counts are the really significant cost 
characteristic. The latter has, however, been recorded 
to provide a standard of comparison with earlier 
designs and also reliability may ultimately be related 
to that figure. 

This investigation was based on the serio-parallel 
design. That is, having obtained the results for that 
circuit, iterative multipliers were designed to re
quire an approximately equal number of logic lev
els, that is, they were designed to be of approxi
mately the same speed. An alternative would have 
required determination of the speed (logic-levels) 
of parallel multipliers using a like number of cir
cuits. This approach proved impractical since the 

46 
78 
88 

2,403 8,605 45 
4,429 17,435 78 
5,633 20,157 85 

number of circuits permitted would have been too 
small to make a true iterative pyramid multiplier, 
with carry assimilator, possible. 

The conclusions from the results of the table are 
clear. 

The serio-parallel circuit is more than twice as 
"efficient" as the parallel scheme. This result is 
substantiated by a comparison with still another de
sign for which estimates were available. This design 
was for a 48 bit multiplier yielding a single length 
product in some 31 levels and required about 10,-
000 circuits or 33,000 transistors. 

A circuit estimate for a 24-bit integrated, bit-by
bit multiplier divider as in Fig. 7 has also been un
dertaken. Results are quoted in Table 3. 

Table 3. Multiplier-Divider 

ma Length Circuits Transistors Logic Levels 

Bits 

Multiplier 951 
Multiplier- 3 1,331 

divider 6 1,581 

The table indicates that the cost of a multiplier
divider is some 50 percent greater than that of the 
mUltiplier alone. Moreover, division time is some 
three or four times as great as multiplication time. 
Enlarging the mo table from 3 to 6 bits costs some 
250 circuits and yields a 25 percent increase in 
speed and would normally be well worthwhile. Fi
nally, comparing Tables 2 and 3, we see the effect of 
ch'inging from bit serial to byte serial operation. In 

Multiplication Division 

3,893 102 
5,196 102 406 
6,696 102 310 

the examples given the change to the 3-bit byte has 
resulted in more than doubling the speed for an 
additional hardware investment of only some 14 
percent. 
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SIMULATION MODELS FOR PSYCHOMETRIC THEORIES* 

Carl E. Helm 
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Princeton, New Jersey 

INTRODUCTION 

My topic concerns another instance of a new 
methodology for the behavioral sciences made feasi
ble by. the availability of large fast computers. The 
strategy which characterizes this methodology is the 
attempt to simulate by means of computer pro
grams, the paradigms which constrain and direct 
the behavior of an experienced behavioral scientist 
as he attempts to deal with the problems and data 
of interest to him. The significance for psychology 
of this computer-based methodology is similar to 
that of psychometric methodology to the extent that 
it provides formal systems for the explication and 
publication of the intuitions of the experienced psy
chologist. 

By way of background for those of you who may 
not be psychometricians, let me briefly review the 
problem area. The formal measurement of individ
ual differences, both psychological and physical, is 
a significant feature of almost all processes associat
ed with an individual's movement across the bound
aries which separate structures and organizations 
in our society. We can characterize research in the 

*This work made use of computer facilities supported in 
part by National Science Foundation Grant NSF-GP579. 
These studies were aided by contract Nonr-1858(43), be
tween the Office of Naval Research, Department of the 
Navy, and Princeton University. 
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measurement of individual differences as directed 
to providing simple, reliable, operationally useful 
tests which are designed to compare the behavior of 
two or more persons. 

The procedures for developing scoring rules for 
such tests are usually based on both clinical and ac
tuarial considerations. For example, the items 
which make up- a personality test may be selected 
on the basis of clinical judgment by psychiatrists 
and psychologists. Such a test will then be given on 
an experimental basis to groups of normal subjects 
and to groups of subjects with a variety of mental 
disorders. The scoring procedures finally developed 
for such a test will be based on the differences in 
the patterns of responding of the different groups. 
Thus items which fail to discriminate the two 
groups will usually be discarded. In the case of es
say examinations designed to measure writing abili
ty, scores are typically determined on the basis of 
clinical judgments. It is of particular interest that 
there are significant differences between the pattern 
of scoring of essays by college English teachers and 
the pattern of scoring of the same essays by news
paper editors. 1 

Given some standard method for scoring a test, it 
is necessary to develop procedures to optimize the 
effective use of the test. With only one test and a 
single measure of the criterion, the problem is most 
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accurately solved by a straightforward regression 
analysis. However, in actual practice the recognition 
of the complexity of the sources of human behavior 
leads the users of mental tests to obtain a complex 
pattern of scores covering a broad spectrum of hu
man performance measures. Again, a number of in
vestigations have been carried out which demon
strate that decisions based on purely statistical pro
cedures are more accurate on the average than clini
cally based decisions (for example, reference 2). 
However, in those cases where considerable weight 
is placed on accurate placement and selection of in
dividuals, it is typical to make the final judgment 
clinically using the expert opinion of people famil
iar with the requirements of the organization and 
also with the properties of measuring instruments. 
Perhaps the most common instance of this is the 
college admissions selection process. 

BACKGROUND 

The present project is directed to the exploration 
of the procedures used by psychologists in evaluat
ing a person's performance on a battery of psy
chological tests. A central strategy in the research is 
to develop computer programs, based on interviews 
with psychologists, which will produce written 
evaluations of test profiles comparable to those pro
duced by psychologists for the same profiles. It is 
reasonable to have the computer produce written 
text as output if it is assumed that the empirical 
referent of the psychological processes being inves
tigated is the verbal productions of a psychologist 
who .is interpreting a profile. Let me stress that the 
intention is to simulate the behavior of the clinical 
psychologist by incorporating his theoretical ideas 
and his practical experiences, in so far as he is able 
to express them,. into a computer program. It is not 
the intention to simulate the behavior of the per
sons taking the tests. 

The source of data for the analysis was the per
sonnel files of a large organization whose needs in
clude people with a wide variety of skills at a high
ly professional level. In view of these needs, an ex
tensive testing and selection program is conducted 
to screen incoming applicants. Data collected from 
the applicants include a comprehensive biographi
cal inventory, several aptitude and ability measures, 
a personality test providing seven different temper
ament scales, a work attitudes inventory which pro
vides 14 different personality and attitude measures, 

an interest inventory and a written essay examination. 
This material is reviewed by one of the staff psy
chologists who produces a summary paragraph 
which is the basis for further action on each appli
cant. 

Data which included 77 scores as well as the 
summary paragraphs based on these scores were ob
tained from the files for approximately 200 appli
cants. This material together with information ob
tained in interviews with the psychologists provided 
the basic data for the analysis. It should be noted 
that no attempt was made to process the written es
say or the biographical material. 

In the first stage of the analysis, we attempted to 
classify the content of the paragraphs. This was 
done by first coding the paragraph content into 
numerical form and subsequently converting the 
numerical form back into written text by means of 
a simple computer program. The discrepancies be
tween the input and output verbal texts provided an 
effective source of information for improving the 
coding. Ultimately 65 classes of sentences were 
evolved which covered about 90 percent of the in
formation in these paragraphs. Two general types of 
sentence classes were observed. Simple sentences, 
which reflected a simple translation of a person's 
score on one or more tests, predominated. For ex
ample, "He has above average general ability" or 
"He has very poor general verbal ability" were two 
instances of a class of simple sentences. Compound 
sentences were observed as well, although less fre
quently, and these in general reflected a contrast be
tween two or more sets of scores on a profile. An 
example of this type was "His performance on a 
test of verbal fluency is very good although he has 
very poor general verbal ability." 

Having developed a reasonable classification 
scheme for the information content of these sum
mary paragraphs, we were then able to effectively 
discuss with a psychologist who had written a para
graph precisely what rules he felt he had been using 
when he had produced the paragraph. The sorts of 
rules cited were of the following. In the profile of 
scores we are given a score on a reading compre
hension test and a score on a vocabulary test, each 
with values in the range of zero to nine. If the aver
age of the vocabulary score and the comprehension 
score is two or less or six or more, then produce the 
sentence "He had 'X' general verbal ability", where 
'X' takes a value from 'very poor' to 'very superior' 
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depending on the value of the average score. This is 
one member of a broad class of decision rules, lead
ing in general to simple sentences based on weight
ed linear combinations of scores. It was convenient 
to subject the value thus derived to one of a small 
number of arbitrary transformations to produce a 
final value, in order to handle the rather common 
occurrence in which a sentence was not to be pro
duced if a subject had a score in the middle range 
of values. A second class of decision rules was 
based on "Boolean" combinations of scores. For 
example, if a score in the range of six to nine on a 
measure of social responsibility was obtained, and 
a score in the range of five to seven on a measure 
of interest in supervisory tasks was obtained, then 
the sentence "He appears to be willing to assume 
supervisory responsibility" was produced. It is im
portant to note that the psychologists considered 
averaging and "Boolean" combination as different, 
in their treatment of the data. 

It was observed that compound sentences were 
typically produced by decision rules which operated 
on values derived for the production of simple sen
tences. For example, given a score on a test which 
is assumed to be a measure of verbal fluency, and 
another score which is the average of the scores on 
the verbal comprehension and vocabulary tests, one 
or both of the simple sentences· based on these tests 
might be produced. However, if a difference of 
three or more between the score on the fluency test 
and the average of the scores on the comprehension 
and vocabulary tests was obtained, the separate sen
tences were not produced and the following com
pound sentence was produced: "His performance on 
a test of verbal fluency is 'X', although he has 'Y' 
general verbal ability." 'X' and 'Y' take values from 
'very poor' to 'very superior' depending on the val
ues computed separately for the component simple 
sentence. 

In the next stage of the analysis we proceeded to 
develop a set of programs representing these "deci
sion rules" and these routines were then incorporat
ed into the earlier program which had repr()duced 
the paragraphs. We then processed profiles for the 
subjects whose paragraphs had previously been en
coded and reproduced by the first system, but in 
this phase we had the computer produce paragraphs 
directly from subjects' profiles, using "the rules 
which were evolved on the basis of interviews with 
the psychologists. Again we looked at the discrep-

ancies. Again, a reasonably good correspondence 
between the computer-produced output and the 
psychologist-produced output was observed and 
indeed in a number of cases discrepancies were re
solved in favor of computer-produced output. Some 
examples of output "at this stage may be seen in 
Figs. 7 c, 8c and 9c. 

At this point an interesting fact began to emerge. 
Statements made "by psychologists, which appeared 
to be the most sigsificant for diagnostic purposes, 
typically tended to be based upon rather complex 
sets of decision rules. These more complex decision 
rules could usually be represented as combinations 
of many different simple rules, although they were 
customarily not perceived this way by the psycholo
gists. In some cases it was possible to resolve the 
complex decision process into a tree-like network 
of decisions which were made sequentially. In other 
cases it seemed more appropriate to consider the 
complex decision rule as consisting of a hierarchy 
of subroutines nested within one another. An addi
tional complication also became apparent in that it 
seemed more and more important to be able to gen
erate more complex linguistic structures, i.e. such 
things as the conditional inclusion of phrases in 
compound sentences. 

THE LANGUAGE SYSTEM 

I ntroductiori 

After considering the additional sentence gener
ating operations needed, along with changes in the 
program logic required to make the system easier to 
use, it was decided to start from scratch and devel
op an entirely new system to facilitate this explora
tion of the processes used by the clinical psycholo
gist in interpreting mental test data. This system, des
ignated Protran II (for profile translater) is pro
grammed in Fortran II for the 7094 and consists of 
some 58 routines, about 1000 lines of Fortran in 
all. A users' manual is available and in the follow
ing exposition we will present only enough detail to 
indicate how we can use the system to facilitate our 
research. 

From the users' point of view the key element of 
this system is the "sentence generating operator." 
These operators serve as the fundamental units out 
of which a system of interpretation is built up by 
the user, and as such they have been designed to 
coincide as nearly as possible both in format and in 



730 PROCEEDINGS - FALL JOINT COMPUTER CONFERENCE, 1965 

function with the conceptual elements that charac
teristically turn up in our interviews with psycholo
gists. Externally a sentence generating operator has 
four main sections: a name; the name of a "combi
nation rule"; a sentence section; and an argument 
section. Figure 1 gives an example of an operator 
in exactly the form in which it is punched into 
cards by theuser for input to the system. 

NVRA BAND HIS /REASONING ABILITY WITH 
MATERIAL INVOLVING NON-VERBAL /OPER NVRA 
1 ELEMENTS /IS /VAR(9/NVSK/5)*NVSK/6/9/CON 
/0/2* 

The name of the operator is 'NVRA'. Cols. 1-5 of all oper
ator cards contain names. 

The combination rule name is 'BAND' (Boolean and). Cols. 
7-11 of first card only. 

The sentence section is 'HIS /REASONING ABILITY 
WITH MATERIAL INVOLVING NON-VERBAL /ELE
MENTS /IS /VAR (9/NVSK/5)'. Starts after col. 12 and 
extends to first asterisk. 

The arguments of the combination rule BAND are 'NVSK/ 
6/9/CON/O/2'. Starts after the first asterisk and extends 
to the second asterisk. 

Segments are delimited by slashes. 

Continuation numbers are located in col. 6. 

Operator cards are identified by 'OPER' in cols. 73-76. 

The segment 'VAR(9/NVSK/5)' is used by the system to 
find an appropriate adverbial phrase such as 'very superior'. 

Figure 1. The first two lines show the contents of the 
cards required for a typical sentence generating operator. 

Let me make some general comments about the 
form and function of sentence generating. operators. 
The system builds up a dictionary of phrases out of 
the sentence section of the operators as they are in
put to the system. A phrase is delimited by slashes 
and any phrase which has previously occurred in 
some previous operator will not be stored in this 
phrase dictionary a second time. A segment is con
sidered to begin with the first nonblank character 
following the slash, comma or asterisk. Up to ten 
cards may be used for anyone operator. Several of 
the combination rules allow an indefinite number of 
arguments (within space limitations) . The total 
number of tests and operators may not exceed 1,-
000. Either test names or the names of operators 
may occur as arguments within any operator. Asso
ciated with each operator will be a score which, un
less otherwise specified, will be the average of the 
scores of tests and operators named as arguments 
for the given operator. A point to be emphasized is 
that, since operators can be named as arguments of 

other operators, it is possible to build up complex 
hierarchies of decision rules. 

A basic principle of operation of the system is 
that if the conditions required by the combination 
rule of an operator are met, then the operator is 
said to be 'satisfied', and in this event one or more 
of the following will occur. 

1. The sentence will be printed as it stands; 

2. The sentence will be printed as a phrase in 
the sentence of some other operator; 

3. The value computed for the operator will 
be used as the value of an argument of some 
other operator. 

Combination Rules 

The subroutines which represent the combination 
rules have been developed more or less as the need 
has arisen and some overlap in function will be ap
parent in the twelve routines so far developed. For 
example, the combination rule named NBOOL is 
identical in function to the combination rule named 
BOOR (Boolean or), if K, the criterion, is set 
equal to one. NBOOL is identical in function to 
BAND (Boolean and) if K is set equal to the num
ber of arguments. However, the simpler rules have 
been maintained because of their mnemonic value 
and simpler format. 

Figure 2 lists the available combination rules, 
giving the name and a brief description of the func
tion of each. 

1. Logical Rules 
(a) BAND Boolean and 
(b) BOOR Boolean or 
(c) NBOOL n or more 'ands' 

2. Arithmetic Rules 
(a) EQWT equal weights 
(b) ARWT arbitrary weights 
(c) AGTRB a greater than b 
(d) KDIFR difference of k or more 

3. Matching Rules 
(a) LTAG 1 or more tags 
(b) BSIGN Boolean signs 

4. Miscellaneous Rules 
( a) SUPP suppress 
(b) NOOP no op 

Figure 2. Combination rules presently available in PRO
TRAN II. 

Sentence Generation 

Let me next discuss some of the characteristics of 
the sentence generation process. There are three 
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categories of segments allowed in the sentence sec
tion. 

1. Literal verbal phrases such as "HIS/". These 
literal phrases are entered in a phrase dictionary 
if they have not been entered by a previous 
operator. There is some merit to segmenting 
phrases so as to minimize storage, but this must 
be weighted against convenience in terms ·of the 
verbal habits of the user. 

1. (NO ARGUMENT FOUND) / 

2. VERY POOR/ 

3. POOR/ 

4. BELOW AVERAGE/ 

5. AVERAGE/ 

6. GOOD/ 

7. VERY GOOD / 

8. EXCELLENT / 

9. LIKES/ 

10. DISLIKES / 

Figure 3. The variable dictionary VAR is a (200, 12) 
array. It is necessary to store an error message in the first 
row of all variable dictionaries. The first set of phrases is 
in rows 2-8. 

2. References to variable dictionaries such as 
"V AR (9 /NVSK/ 5)". There are four compo
nents. In this example the first, V AR, is the 
name of the appropriate variable dictionary. 
The second component, 9, specifies which row 
of V AR contains the first phrase of the desired 
set. The third component, NVSK, gives the name 
of the test or operator whose score is to be used 
as the entry to the first scale vector in order to 
determine which element of the desired set of 
phrases is to be printed. The fourth component, 
5, specifies which scaling vector is to be used to 
transform the score used as the entry to the first 
scale vector. (In this example the score for oper
ator NVSK will be transformed by the fifth 
scaling vector and the resulting value will be 

added to 9 to get the row of V AR containing 
the desired phrase). 

1. 00 01 02 03 04 05 06 07 08 09 

2. 01 01 01 00 00 00 00 02 02 02 

3. 01 01 02 03 04 04 05 06 07 07 

Figure 4. The first row shows the first scaling vector which 
is used to define the input score scale. If a score of 4.3 was 
converted by scaling vector 2, the output value would be 
zero. Up to 20 such scaling vectors may be used. Scale is a 
(20, 20) array. 

3. Indirect references to other operators such 
as '$PVF/' or '-PVF'. When the processes 
which compose an output sentence for an oper
ator encounter such a reference, they executed 
(pseudo) recursively on the named operator. * 
This makes it possible to develop compound 
sentences of considerable complexity. A simple 
example of this may be shown using the fol
lowing set of four operators. The sentence pro
duced by the operator ANCON would consist 
of the component sentences joined by 'al
though', for example, HIS ARITHMETIC 

ARA EQWT HIS! ARITHMETIC REASONING 
ABILITY /IS/VAR (2/AP/2)*2/AP* OPER 

NUDE EQWT HE/HAS!VAR(15/NO/6)SKILL 
IN HANDLING NUMERICAL DETAIL* OPER 

NUDE 1 6!NO* OPER 

ANCON KDIFR $ARA/ ALTHOUGH/$NUDE* 
5/ AP !NO* OPER 

SUPNV SUPP *ANCON/ARA/NUDE* OPER 

The sentence produced by the operator ANCON would con
sist of the two component sentence joined by 'although'. 
For example-HIS ARITHMETIC REASONING ABILITY 
IS WELL ABOVE AVERAGE ALTHOUGH HE HAS 
LITTLE SKILL IN HANDLING NUMERICAL DETAIL 
-would be produced if a subject had a high score on AP 
and a score 5 points lower on NO. It may be noted that 
the operator SUPNV would suppress the printing of sen
tences from ARA and NUDE if ANCON were printed. 

Figure 5. A set of four operators which show the use of 
'$' to indicate indirect referencing. 

REASONING ABILITY IS WELL ABOVE 
AVERAGE ALTHOUGH HE HAS LITTLE 
SKILL IN HANDLING NUMERICAL DE-

*In Fortran "recursions" are conveniently done with a 
reproducer. In the present case the "recursion" terminates 
with a diagnostic after two levels. 
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TAIL, would be produced if a subject had a 
high score on AP and a score five points lower 
on No. It may be noted that the operator 
SUPNV would suppress the printing of sen
tences from ARA and NUDE if ANCON were 
printed. 

We note that '$' and '-' are used to iridic ate that 
an operator is being indirectly referenced. These 
marks have the following meaning. A '$' forces the 
inclusion conditional upon whether or not the named 
operator has been 'satisfied'. In the following discus
sion a number of examples are given of the way con
ditional inclusion may be used. It may be kept in 
mind that the format of the argument section of an 
operator depends on the combination rule of the 
operator, and this format is different for different 
combination rules. 

The system, in analyzing the data for a subject 
vis-a-vis a particular operator, associates a "tag" 
with the operator by executing the combination rule 
on the arguments of the operator. If the subject's 
scores (i.e. the current values of the arguments) are 
such as to 's~atisfy' the combination rule of the oper
ator, the operator is satisfied. It is convenient to 
amplify this idea at this point. Consider the set of 
operators in Fig. 6a. 

SCORES ON RESULTING SENTENCE 

QUICK TPHYS 

PACE BOOR A RATHER/VAR(39/PACE/14) PACED 
PERSON* QUICK/0/2/QUICK/7 /9* 

VIGOR BOOR VAR( 41 /VIGOR/ 14) /VIGOROUS PHYSI
CAL ACTIVITY* TPHYS/0/2/TPHYS/7 /9* 

VIPAC LTAG HE DESCRIBES HIMSELF AS /-PACE/ 
AND / -VIGOR * 1 /PACE/VIGOR * 

SUPPV SUPP*VIPAC/PACE/VIGOR * 

Figure 6a. A set of four operators which show the use of 
'-' to indicate conditional indirect referencing. 

The operator named PACE has the combination 
rule BOOR (Boolean or). The arguments of the 
operator are QUICK/O/2/QUICKj7 /9. This com
bination rule will be satisfied if a subject has a 
score of 0 to 2 on the item named QUICK or a 
score of 7 to 9 on the item named QUICK. If this 
occurs the operator named PACE will be satisfied. 
Otherwise it will be tagged with a -1. VIGOR is 
executed in a similar fashion. Finally VIP AC will 
be satisfied, resulting in a sentence being printed if 
its combination rule, LTAG, finds that one or more 
of its arguments PACE and VIGOR have been sat
isfied. 

The various sentences that can be printed by VI
PAC, depending on a subject's scores, are tabled in 
Fig. 6b (remembering that the adverbs such as 
QUICK, SLOW, ENJOYING, and DISLIKING are 

0-2 3-6 HE DESCRIBES HIMSELF AS A RATHER SLOW PACED PERSON. 

3-6 0-2 

7-9 3-6 

3-6 7-9 

0-2 0-2 

0-2 7-9 

3-6 3-6 

HE DESCRIBES HIMSELF AS DISLIKING VIGOROUS PHYSICAL ACTIVITY. 

HE DESCRIBES HIMSELF AS A RATHER FAST PACED PERSON. 

HE DESCRIBES HIMSELF AS ENJOYING VIGOROUS PHYSICAL ACTIVITY. 

HE DESCRIBES HIMSELF AS A RATHER SLOW PACED PERSON AND 
DISLIKING VIGOROUS PHYSICAL ACTIVITY. 

HE DESCRIBES HIMSELF AS A RATHER SLOW PACED PERSON AND 
ENJOYING VIGOROUS PHYSICAL ACTIVITY. 

(No sentence will be printed) 

Figure 6b. Various sentences produced by VIP AC. 

taken from the array named V AR under control of 
the segments VAR (39/QUICK/14) and VAR 
(41/TPHYS/14) ). 

lowing AND). In the last example no sentence is 
printed since LTAG, the combination rule for VI
PAC, did not find one or more of VIGOR and 
PACE satisfied. Also it may be noted that SUPPV 
suppressed the printing of the component operators 
PACE and VIGOR (of course they occur in VI
PAC). 

In the first example VIGOR is not satisfied since 
a score in the range 3-6 is encountered for 
TPHYS. Therefore, the phrase produced by 
-PACE in VIPAC is suppressed (along with the fol-
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Conditional Branching 

The operator name 'JUMP +' is reserved for a 
special function, that of branching conditionally. 
There is an array in the system which contains the 
names of all the tests followed by the names of all 
the operators. The system, in evaluating the opera
tors vis-a-vis a particular subject's scores, proc
esses the operators in sequence from first to last. 
However, if JUMP+ is encountered, and the com
bination rule is satisfied, the system will transfer to a 
specified operator and continue in sequence from 
that point. For example, the operator will cause the 
system to transfer to the 

JUMP+ BAND LOSER* FM*/9/9/RV/l/ 
liRe/III * 

operator named 'LOSER' if the subject has a score 
of 9 on FM, and a score of 1 on both RV and Re. 
Otherwise it will continue in normal sequence. 

The convention is that the segment to the left of 
the first '*' must contain the name of the operator 
to which control is to be transferred. 

It must be emphasized that any operators which 
are named as arguments of other operators must 
have been executed themselves before being util
ized. Therefore, a certain amount of caution must 
be exercised in designing conditionally executed 
sequences. 

DISCUSSION 

Given this system, it was possible to build up 
within a few days a set of approximately 100 oper
ators which constituted a very comprehensive sys
tem of analysis of the battery of tests with which 
we had started. The system is being used by psy
chologists with no direct experience with computer 
programming or the use of computers and has prov
en to be a highly flexible research tool. Figures 7, 
8 and 9 show examples of paragraphs produced by 
this system, together' with psychologist-produced 
paragraphs for the same data. 

In the first case the correspondence is very good. In 
the second case the correspondence is poor. How
ever, the psychologists agreed that the computer pro
duced output was useful and accurate. 

About two seconds of machine time are required 

His performance on various ability measures ranged from 
poor to high average. His abstract reasoning ability is only 
average, his arithmetic reasoning ability is high average, 
and his skill in the rapid handling of numerical computa
tions is average. His vocabulary level is poor, his compre
hension of narrative material is fair, arid a 30-minute essay 
was fair in quality. He demonstrates poor ability in making 
interpretations from data presented in chart and graph 
form. He has poor knowledge of contemporary world af
fairs. His interests appear strongest in areas which involve 
attention to details, face-to-face persuasion, and a variety 
of essentially 'business management' activities. He is a physi
cally active person who appears eager in his willingness to 
adapt to a wide variety of job situations. 

Figure 7a. Psychologist generated interpretation for sub
ject A. 

TEST RUN 3/29/65 

COMPUTER GENERATED INTERPRETATION FOR 
SUBJECT A. 

HE HAS RATHER POOR GENERAL VERBAL ABILITY. 

HIS ARITHMETIC REASONING ABILITY IS A VER
AGE AS IS HIS SKILL IN HANDLING NUMERICAL 
DETAIL. 

HIS ABILITY TO INTERPRET GRAPHS IS MUCH 
WORSE THAN USUAL. 

HE DISPLAYS LITTLE KNOWLEDGE OF CURRENT 
WORLD EVENTS. 

HE HAS MEASURED INTERESTS LIKE THOSE OF 
PERSONS IN POSITIONS OF WELL DEFINED AU
THORITY OR STATUS. 

HE HAS MEASURED INTERESTS LIKE THOSE OF 
PERSONS IN JOBS INVOLVING CLOSE ATTENTION 
TO DETAIL. 

HE HAS MEASURED INTERESTS LIKE THOSE OF 
PERSONS IN POSITIONS INVOLVING FACE TO FACE 
PERSUASION AT THE VERBAL LEVEL. 

HE APPEARS TO BE WILLING TO ASSUME SUPER
VISORY RESPONSIBILITY. 

HE EXPRESSES AN INTEREST IN A JOB WITH CON
SIDERABLE VARIETY. 

HE HAS MEASURED INTERESTS LIKE THOSE OF 
PERSONS IN MANAGERIAL AND ADMINISTRATIVE 
POSITIONS. 

HE DESCRIBES HIMSELF AS ENJOYING AND PAR
TICIPATING IN VIGOROUS PHYSICAL ACTIVITY. 

AN UNUSUALLY LARGE NUMBER OF LOW SCORES 
ON THE WORK ATTITUDES INVENTORY SUGGESTS 
THE OPERATION OF A RESPONSE SET, MAKING 
INTERPRETATION DIFFICULT. 

HE APPEARS TO HAVE AN UNUSUAL LACK OF 
NEED FOR RECOGNITION OR REWARD. 

Figure 7b. Computer generated output. 

CODED DESCRIPTION OF SUBJECT A. 

HE HAS A RELATIVELY POOR COMPREHENSION 
OF WRITTEN MATERIAL. 

HE HAS A RELATIVELY POOR ABILITY TO WRITE 
AN ESSAY. 

HE HAS AN AVERAGE ABSTRACT REASONING 
ABILITY. 
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HE HAS AN AVERAGE ARITHMETIC REASONING 
ABILITY. 

HE HAS AN AVERAGE COMPUTATIONAL ABILITY. 

HE HAS A POOR ABILITY TO INTERPRET GRAPHS. 

HE HAS A POOR KNOWLEDGE OF CURRENT WORLD 
EVENTS. 

HE HAS A POOR COMMAND OF VOCABULARY. 

HE HAS A HIGH DEGREE OF INTEREST IN DETAIL 
WORK. 

HE HAS A HIGH DEGREE OF INTEREST IN PERSUA
SION OF OTHERS. 

HE HAS A HIGH DEGREE OF INTEREST IN PUBLIC, 
SOCIAL, AND OTHER SERVICES. 

HE HAS A HIGH DEGREE OF INTEREST IN BUSI
NESS. 

HE WOULD ADAPT VERY WELL TO A VARIETY 
OF POSITIONS. 

HE IS PHYSICALLY ACTIVE. 

Figure 7c. An early version of computer generated output. 

His level of intellectual ability would indicate that he would 
have a fair amount of difficulty competing with other col
lege graduates. This is especially so if comprehension of 
complex ideas and precise analysis of graphs and charts 
is required. He appears to be more in need of purpose, 
resourcefulness, and self-confidence than the average em
ployee his age. While he would be more satisfied than most 
with a routine, procedural type of activity he does need 
an opportunity to move about and a situation where people 
talk to him; such as in a library or a mail room. 

Figure 8a. Psychologist generated interpretation for sub
ject B. 

TEST RUN 3/29/65 

COMPUTER GENERATED INTERPRETATION FOR 
SUBJECT B. 

HE HAS RATHER POOR GENERAL VERBAL ABILITY. 
HIS ARITHMETIC REASONING ABILITY IS BELOW 
AVERAGE ALTHOUGH HE HAS A HIGH DEGREE 
OF SKILL IN HANDLING NUMERICAL DETAIL. 

HIS ABILITY TO INTERPRET GRAPHS IS MUCH 
WORSE THAN USUAL. 

HE DISPLAYS LITTLE KNOWLEDGE OF CURRENT 
WORLD EVENTS. 

HTS SCORES ON TESTS OF ABILITY AND INTELLI
GENCE TENDED TO VARY WIDELY. 

HE APPEARS TO BE UNWILLING TO ASSUME SU
PERVISORY RESPONSIBILITY. 

HE DESCRIBES HIMSELF AS ENJOYING AND PAR
TICIPATING IN VIGOROUS PHYSICAL ACTIVITY. 

HE DESCRIBES HIMSELF AS SOCIALLY RETIRING. 

HIGH SCORES ON THE WAI SUGGEST THAT HE IS 
DEFINITELY NOT EAGER TO ACCEPT SUPERVIS
ORY ASSIGNMENT, OR TO TOLERATE INEFFICIENT 
OR UNDESIRABLE WORK COMPANIONS, OR TO AC
CEPT ASSIGNMENT REQUIRING INITIATIVE OR 
ADAPTABILITY. 

LOW SCORES ON THE WAI SUGGEST THAT HE IS 
EXCEPTIONALLY EAGER TO ACCEPT ASSIGNMENT 
REQUIRING PHYSICAL STRENGTH, AND TO WORK 
UNDER SUPERVISION. 

Figure 8b. Computer generated output. 

CODED DESCRIPTION OF SUBJECT B. 

HE HAS A RELATIVELY POOR LEVEL OF GENERAL 
ABILITY. 

HE HAS A RELATIVELY POOR COMPREHENSION OF 
WRITTEN MATERIAL. 

HE HAS A RELATIVELY POOR ABILITY TO INTER
PRET GRAPHS. 

HE HAS A STRONG NEED FOR A WELL STRUC
TURED JOB. 

HE HAS A STRONG NEED FOR CONTACT WITH 
PEOPLE ON JOB. 

HE HAS LITTLE ORIGINALITY, RESOURCEFUL
NESS, AND CREATIVITY. 

HE IS SELF ASSURED. 

Figure 8c. An early version of computer generated output. 

His comprehension of narrative material is excellent, his 
vocabulary level is average, and a 30-minute essay was 
fairly long and moderately well written. His abstract reason
ing ability is excellent, his arithmetic reasoning ability is, 
superior, and his skill in basic computations is average. He 
demonstrates above average ability in the interpretation of 
data presented in graph and chart form. He has a high 
average knowledge of contemporary world events. His mea
sured interests are focused in technical and scientific areas. 
He prefers a job where there will be evidence of apprecia
tion for his efforts. He likes a job which requires the use 
of mechanical skills and equipment. 

Figure 9a. Psychologist generated output for subject C. 

TEST RUN 3/29/65 

COMPUTER GENERATED INTERPRETATION FOR 
SUBJECT C. 

HE HAS ABOVE AVERAGE GENERAL VERBAL ABIL
ITY. 

HIS ARITHMETIC REASONING ABILITY IS WELL 
ABOVE AVERAGE. 

HIS PERFORMANCE ON A TEST OF VERBAL FLU
ENCY IS ABOVE AVERAGE. 

HIS ABSTRACT REASONING ABILITY IS SUPERIOR. 

HE HAS MEASURED INTERESTS LIKE THOSE OF 
PERSONS IN JOBS INVOLVING TECHNICAL AND ME
CHANICAL TASKS. 

HE HAS MEASURED INTERESTS LIKE THOSE OF 
PERSONS IN APPLIED SCIENCE. 

HE DESCRIBES HIMSELF AS A RATHER SLOW 
PACED PERSON AND DISLIKING VIGOROUS PHYSI
CAL ACTIVITY. 

HIGH SCORES ON THE WAI SUGGEST THAT HE 
IS DEFINITELY NOT EAGER TO ACCEPT A JOB 
INVOLVING SECURITY RESTRICTIONS. 

LOW SCORES ON THE WAI SUGGEST THAT HE IS 
EXCEPTIONALLY EAGER TO ACCEPT HAZARDOUS 
ASSIGNMENTS, AND TO ACCEPT ASSIGNMENTS 
INVOLVING MECHANICS. 

HE APPEARS TO HAVE AN UNUSUALLY STRONG 
NEED FOR RECOGNITION AND REWARD. 

Figure 9b. Computer generated output. 
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CODED DESCRIPTION OF SUBJECT C. 

HE HAS A VERY SUPERIOR COMPREHENSION OF 
WRITTEN MATERIAL. 

HE HAS AN ABOVE AVERAGE ABILITY TO WRITE 
AN ESSAY. 

HE HAS AN EXCELLENT GENERAL VERBAL ABIL
ITY. 

HE HAS A VERY SUPERIOR ABSTRACT REASONING 
ABILITY. 

HE HAS AN EXCELLENT ARITHMETIC REASONING 
ABILITY. 

HE HAS AN AVERAGE COMPUTATIONAL ABILITY. 

HE HAS AN ABOVE AVERAGE ABILITY TO INTER
PRET GRAPHS. 

HE HAS AN AVERAGE KNOWLEDGE OF CURRENT 
WORLD EVENTS. 

HE HAS AN AVERAGE COMMAND OF VOCABU
LARY. 

HE HAS A HIGH DEGREE OF INTEREST IN TECHNI
CAL AND MECHANICAL TASKS. 

HE HAS A HIGH DEGREE OF INTEREST IN THE 
SCIENCES. 
HE HAS A STRONG DESIRE FOR APPRECIATION ON 

THEIOB. 

Figure 9c. An early version of computer generated output. 

to process each profile and develop a paragraph 
based on 100 operators. 

Detailed analyses of the application of the system 
to a variety of situations will be presented in a pa
per now in preparation.3 There are, however, some 
points of possible confusion regarding the problem 
of the validity of the productions resulting from 
such applications, which should be addressed in this 
paper. It was stated earlier that the fundamental 
strategy is to simulate the implicit theory underly
ing the behavior of the experienced clinical psy
chologist. I share Roger Shepard's position4 that 
"each of us may already be carrying within us a kind 
of implicit theory that is capable of at least qualita
tive predictions of a far greater range of human be
havior than any of the theories that so far have 
been formulated explicitly." While it is true that 
most people must be able to predict a range of hu
man behavior in order to survive in society, we 
have found it a particularly useful heuristic to work 
with experts in the domain. The computer system 
which has been devised makes it possible for the 
clinician to easily develop representations of his 
theory in a form which has rather direct empirical 
consequences. The paragraphs produced by the se
quence of operators put into the system by a clini
cal psychologist are quantitative only in the general 

sense of the term. However, they represent explicit
ly the implications of his theory in a form which is 
as useful as a quantitative form, for investigating 
problems of validity. In this context, then, the com
puter system is relevant to the issue of validity only 
to the extent that its availability encourages the clin
ical psychologist to carry out more detailed and 
complex scientific analyses of his problem domain. 

We have, therefore, the observation that the 
structure of the computer system has nothing direct
ly to do with the validity of theories which happen 
to be representable using the system. On the other 
hand, the system evolved out of considerable expe
rience with clinical psychologists and detailed ob
servation of the consequences of their thinking as 
they analyzed profiles of test scores. Certain "struc
tural" characteristics of the system were designed to 
conform with "structural" characteristics of the 
thought processes which were deduced from obser
vations. The fact that operators can occur as argu
ments within other operators makes it possible to 
build up complex sets of decision rules in a natural 
way. Moreover, the fact that operators can be indi
rectly referenced in the sentence sections of other 
operators makes it possible to build up commonly 
occurring linguistic structures readily. The~e charac
teristics are consistent with the psychologist's incli
nation to first consider the simple translation of 
quantitative data into verbal form. These simple 
sentences then become the conceptual elements out 
of which he builds up more complex interpretation 
schemes and linguistic structures. 

We may, if we choose, direct our attention to the 
validity of these "structural" aspects of the system 
as representations of the thought processes of the 
experts who use the program, but this is an entirely 
different matter from the validity of the paragraphs 
produced by the system. I will not address this 
problem now, although I am convinced that the at
tempt to simulate the thinking of experts working 
with problems in their domain of specialization 
will provide valuable insights into the mechanisms 
of human thought. 

The relationship of the current project to other 
projects directed to the automation of the interpre
tation of mental test data is a matter of some inter
est. (See, for example, references 5, 6 and 7.) The 
system of interpretation which was developed for 
the original battery of tests using PROTRAN II is 
certainly an example of the same kind of research 
as that cited. However, the development of a special 
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language system to facilitate this kind of research 
appears to be somewhat novel. It appears that, in 
most cases, the systems of interpretation such as 
those reported in the references could be represent
ed in PROTRAN II with no difficulty. It is appar
ent of course that PROTRAN II provides a fixed 
system of interpretation with no provision for 
self-modification within the system. Such features, 
if and when they are incorporated into the system, 
will necessarily be based on much more detailed 
knowledge of human thought processes. 
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HUMAN DECISION MAKING UNDER UNCERTAINTY AND RISK: COMPUTER-BASED 
EXPERIMENTS AND A HEURISTIC SIMULATION PROGRAM* 

Nicholas V. Findler 
University of Kentucky 

INTRODUCTION 

Every organism of higher order has to make de
cisions of varying importance regularly and fre
quently in order to survive and t0' survive efficient
ly. While the outcome of decision making has been 
studied extensively by a wide range of different dis
ciplines, the decision making processes themselves 
have been neglected in comparison. Emphasis has 
been placed on the normative aspects of human be
havior, i.e., how a rationalt person or a group of 

*This terminology is not quite uniform. Most authors in 
statistical decision theory and economics have adopted the 
convention that in a situation of uncertainty there is no 
a priori information about the system at hand, consequently 
probability distributions of various alternative outcomes 
cannot be objectively specified. In cases involving risk, 
however, it is assumed that, relying on prior events of 
identical character, these frequency distributions are avail
able. In the present work we have not distinguished between 
these two cases and described the psychological state of the 
subjects as that under uncertainty. The element of risk is 
represented by the subjects' financial involvement in the 
outcome of the experiments. The adopted terminology and 
the distinction made here may be rather useful with experi
ments which aim at discovering correlation between subjects' 
behavior and varying payoff matrices while the stochastic 
components of the environment stay stationary. 

The work reported here was done at Carnegie Institute 
of Technology and was supported by the Advanced Research 
Projects Agency of the Office of the Secretary of Defense: 
Contract SD-146. 

tA "rational" person is (a) completely informed, (b) 
infinitely sensitive, and (c) can formulate his problem in 
an optimum manner. 
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rational persons ought to behave, as distinct from 
descriptive theories which are to explain and pre
dict actual human behavior. An overwhelming ma
jority of techniques and methods of attack in opera
tions research, management science, industrial 
mathematics, etc. could be given the label: Norma
tive Decision Theory. The students of mathematical 
psychology, on the other hand, beginning probably 
with Lady Lovelace, Bern0'ulli and Laplace, have 
been concerned with the behavioral aspects of deci
sion making, i.e., what is being done in certain sit
uations, and why.1 

In recent years another approach to understand
ing human behavior has emerged through the pi
oneering work of Newell, Simon and their 
followers.:!: The Complex Information Processing 
method (CIP) dissects, for example, problem solv
ing activity into elementary building blocks, such as 
different phases of planning, building of subgoals, 
utilization of certain heuristics, etc. These informa
tion processes and an executive routine are pro
grammed for a digital computer. Comparing the 
trace of the program with the verbal reports and 
protocols elicited from subjects may indicate the 
level of completeness of the theory. 

:j:The basic philosophy of this approach has been described 
in detail, e.g., in reference 2. 
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Simon and Newell3 make the following three 
underlying propositions in this regard: 

( 1) A science of information processing can 
be constructed that is substantially inde
pendent of the specific properties of par
ticular information-processing mechanisms 
[meaning, for example, which particular 
language is used on which particular ma
chine-N.V.F.]. 

(2) Human thinking can be explained in in
formation-processing terms without wait
ing for a theory of the underlying neuro
logical mechanisms. 

(3) Information-processing theories of human 
thinking can be formulated in computer 
programming languages, and can be tested 
by simulating the predicted behavior with 
computers. 

Special problem-oriented list-processing languages, 
such as IPL-V, LISP, COMIT, etc., have been 
developed to enhance the symbol-manipulating capa
bility of computers. Projects ranging from game
playing4 through theorem-proving5-7 and concept 
learningS to verbal leaming9 have proved that it is 
possible to find a sufficient theory, embedded in a 
computer program, that gives satisfactory explana
tion for different cognitive activities. Perhaps the 
most significant, but as yet incomplete, achievement 
is the discovery of universal features in human prob
lem solving, that are independent of the particular 
task at hand.10 Continuing this line of reasoning, it 
remains to be seen how a successful chess playing 
program can make use of its skill in learning, e.g., 
bridge, or how a Russian-into-English mechanical 
translator would be in a superior position in adapting 
itself to, say, French-into-English translating, as 
compared with a linguistically naive machine. 

Information processing models exist for certain 
decision making tasks, such as Feldman's program,l1 
which simulates human behavior in the binary choice 
situation and Clarkson's program12 which makes 
trust fund investments. 

The present work aims at a particular type of de
cision making. The project has two phases. First, a 
series of computer based experiments were designed 
and carried out. In these, human subjects were 
placed in quantitative task environments and their 
verbal behavior was observed and recorded after 
they had been asked to think aloud. The first part 
of the paper lists the research objectives, outlines 

the task environment and discusses the "design 
principles" resulting in the particular organization 
of the experiments. 

The other phase of the project, dealt with in the 
second half of the paper, describes the subjects' be
havior and attempts to establish a theory for the 
above behavior. Following the lines of the CIP ap
proach, we formalized in terms of flow charts the 
subjects' internal representation of the environment, 
and the rules and methods they have employed in 
their organized, problem-oriented activity. The 
theory was then tested. The particular mechanisms, 
the elementary information processes, specified by 
the flow charts can be either hand simulated or, in 
view of their highly complex nature, programmed 
for a digital computer and the subjects' behavior 
compared with the computer performance. It has 
been found that the theory under discussion not 
only is a satisfactory explanation of average human 
behavior, which achievement is the usual goal of 
most endeavors in psychology, 13 but can also de
scribe certain characteristic features of individual 
behavior. In order to be able to do so we have de
parted to some extent from the totally deterministic 
viewpoint of the logic theorist or the general prob
lem solver and have incorporated certain stochastic 
components of limited importance in the framework 
of this theory to bridge over the gap of our igno
rance about intraperson inconsistencies and inter
person differences. This fact and the manner in 
which an individual is initially characterized for the 
program (cf. executive program) render the theory 
solely phenomenological. This, however, has been 
the contention of researchers at this level of expl'a
nation. 14 

THE RESEARCH OBJECTIVES 

The project has three basic research objectives of 
methodological and theoretical implications: 

1. To develop techniques for organizing com
plex decision making areas in terms of 
their internal structure so as to make sub
jects exhibit specific aspects of behavior. 

2. To test the applicability to control tasks of 
the CIP method and to see the limits of 
respective theories embodied in the form 
of computer programs. 

3. To further our understanding on human 
decision making under uncertainty and 
risk. 
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The following research objectives of secondary 
importance also seem to be appropriate: 

4. To assess the capability of man confronted 
with a complex quantitative problem situa
tion; 

5. To describe the cognitive and affective be
havior of humans trying to gain under
standing of partially confounded causal re
lationships; 

6. To explore the effects on search behavior 
of task environments of different internal 
structure; 

7. To investigate the extent and, possibly, the 
motivational background of individual dif
ferences in decision making behavior; 

8. To study the efficacy of different subjec
tive representational lan..guages in problem 
solving; 

9. To identify patterns of response to 'regular' 
and 'unexpected' changes in the environ
ment; and so on. 

THE ORGANIZATION OF THE 
EXPERIMENTS 

The psychological study of decision making is 
often handicapped either by the restricted task envi
ronment or by the significant but irrelevant factors 
possibly affecting the outcome of the experiments 
which are carried out under "nonlaboratory", i.e., 
not fully controtled, conditions. These difficulties 
are hoped to have been at least partially overcome 
by the simulated realism of computer-based experi
mentation. 

Computer-based experiments· may aid at man
machine relationships per se or use different modes 
of interaction as flexible tools to study the behavior 
of humans in a variety of well-determined environ
ments. The present work was intended to cover 
both areas with a definite emphasis on the latter. 

The experimental setup was as follows: 
The subject was situated in front of a computer 

console which represented his input/output medium 
to a complex continuous technological process. The 
nature of and the laws regulating the process were 
not known to the subject. At his disposal there was 
a set of control variables, {x} = Xl, X2, • • • Xm; 

further he could observe a set of state variables, 
{y} = YI, Y2, . . .. Yn. Each of these state variables 
was associated with a cost variable through a cost 

function, Ci = !i(Yi), in a simple and well-defined 
way. (This relationship was, however, not given 
explicitly to the subject.) The task of the subject 
was to run the system at minimum overall cost, 
I Ci ~ Min!, over some period of time. (See Fig. 1) 
(i) 

llE1'-t:&2iD-Cill : . Process: ~ :. [ Lc-Mm! 
• ••• (II I 

~"' Yft~c:. 
Figure 1. Block diagram of the organization of the 
experiments. 

After this had been explained to the subject, he 
sat down to the computer console together with the 
experimenter, who typed in the loading instructions 
(to transfer the program from a magnetic tape to 
the magnetic core memory), a number specifying a 
task environment, and another number that deter
mines the initial frequency of outputs. Then the 
subject named a set of {x} values. Following this 
first input, at regular intervals, regardless of whether 
he changed the above values or not, he received an 
output consisting of the {y} and { c} values, and 
also C = I Ci. Due to the fact that the {y}= +({x}) 

(i) 

relationship is a combination of a set of mathe-
matical functions and different kinds of noise, of 
which we shall speak shortly, the output values 
varied even if there was no change in the input 
values. 

It was thought that interference between the sub
ject's verbal behavior and decision making process
es could be best avoided if there was no time pres
sure imposed on the subject. He was, therefore, 
aUowed to increase or decrease the output frequen
cy within reasonable limits. (For instance, the same 
subject asked for an output every 5 seconds when 
he was concerned with the noise components, and 
every 60 seconds when he wanted to concentrate on 
"structural information.") The median time inter
val between two subsequent outputs was 20 seconds. 

Initially, there was a "free" period of search dur
ing which the subject was not concerned financially 
with the outcome. Five minutes' learning of the 
task proved ample with all our subjects. Subsequent 
to this the concept of risk was introduced. At this 
time a certain amount of money, that was consid
ered to have been initially given to the subject, was 
involved. (The subjects were, however, told that 
they would not lose their own money.) During this 
tatter period, which usually lasted 90-120 minutes, 
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the subjects were asked to think aloud. Their verbal 
behavior was tape-recorded and the transcripts of 
these protocols, together with the computer in
put/ output, constitute the experimental data. 

From a·· utilitarian pDint of view the advantages 
of this setup are manifold: the experimenter can 
vary the internal structure of the. "black box" pro
cess and the cost functions at will to suit his partic
ular needs; information-processing errors are vir
tually excluded; the quantitative nature of the envi
ronment renders the stimuli and the responses di
rect and unambiguous; experimental replications 
are easy and inexpensive to perform. Further, a 
whole gamut of experiments can be conducted, and 
are in fact planned for future studies, on game 
learning, game ptaying, coalition formation if cer
tain subsets of control variables are assigned to dif
ferent players. Experience can also be gained on 
how human operators adapt themselves to different 
real-life control tasks, etc. 

PRINCIPLES OF THE PROCESS DESIGN 

The experimenter in psychology naturally would 
like his subjects to exhibit as wide a spectrum of 
relevant behavior as the physical and conceptual 
limitations of the experiment allow. He atso wants 
to see what correlations there are between certain 
changes in the task enrivonment and the subject's 
behavior so that his previous goal can be achieved. 

Unfortunately there is nothing like the well-for
mulated statistical theory of experimental design to 
be applied to meet these problems. The designer has 
to resort to "analog computations," i.e.,. he either 
imagines himself into the subjects' role or tries out 
different tentative tasks with subjects to see wheth
er their gross behavior in fact tends to be of the 
type he had anticipated. As we have mentioned be
fore, the process is represented by a set of mathe
matical relations with some noise superimposed 
upon it. Unless we want the subject to come to a 
high degree of confusion, the average noise tevel 
should apparently be adjusted to be about 1/1 O~ 
1/20 of the average state variable level. The per
iodicity of noise should also be low enough not to 
be noticed. Instead of pseudo-random numbers we 
have used algebraic type noise generators, examples 
of which are as follows: 

1. Ai (mod B), where A and B are relative 
primes and their magnitude is roughly deter
mined by the required level and tolerated 

periodicity of noise, respectively; i is the 
number of times the subject has given input 
values. 

2. C sin k ; , where C and D are constants 

the values of which are determined again 
by the required level and tolerated periodic
ity of noise, respectively; k is the number 
of times the subject has received outputs. 

3. E ak , OCmod F), where E and F are constants 
the values of which are determined again 
by the required level and tolerated periodic
ity of noise, and () is Kronecker's delta 
function. This type of noise is represented 
by a sudden peak of size E every time k is 
a multiple of F. 

4. Some simple functions of I~Xt(i)I = IXtCi )

XtCi-l)I, i.e., of the absolute value of the 
change in the lth control variable between 
the (i-I) th and ith input (step size). 

5. Some simple functions of Ix/i)-XtWI, i.e., 
of the absolute value of the difference be
tween two control variables input concur
rently, and different variations and combina
tions of all the above types. 

Types (1) and (2) provide "background noise," 
with otherwise no specific role. Type (3) can be 
used in studying response patterns to sudden "unex
pected" changes as distinct from "regular" fluctua
tions. The last two types of noise can be used for 
penalizing or rewarding the subject if he is making 
too big or too small steps or if he deviates from 
certain regions in the control variabte space. Type 
( 4) is equivalent to a short term memory in the 
system, while type (5) represents a reasonably sim
ple interaction between two control variables. 

We can provide the subject with state variables 
of high variability in the low-cost region or with 
variables of low variability in the high-cost region. 
(He can achieve subgoals in comprehension at a 
certain cost or remain partially in the dark inexpen
sively. ) This could induce the subject to make a 
distinction between short-term and long-term objec
tives, which tendency may be important if the pay
off is effected according to time-average achieve
ments. Sophisticated persons sometimes would like 
to suboptimize detached parts of the system even at 
a certain cost. This can be realized with carefully 
thought out interaction terms. Other task environ
ments can help us find out the upper limit of the 
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number of state variables the sum of which is ap
proximately constant, regardless of the control vari
able levels, and the subject can still detect this fact 
within some reasonable time. Or, ascertain how 
long it takes a subject to find out that certain state 
variables are purely noise functions, which control 
variables interact, what the most reasonable search 
behavior is in terms of step size, etc. 

In the course of setting up the experiment we found 
a few golden rules of thumb, following which a fairly 
systematic approach developed and assumed much 
of the role of a fool-proof theory of "experimental de
sign." These are: it· is good to have a few but not 
too many local minima; the absolute minimum should 
not be either in the middle or at the limits of the 
control variable ranges; interaction between control 
variables should be noticeable but not predominant. 
In general, it is advantageous to limit the range of 
all control variables identically. This range should be 
big enough to allow sufficient exploration but not too 
big so that subjects can examine and possibly even 
memorize important features of the whole range. In 
this study 0 ~ x ~ 50 and 0 < y < 1000 for all 
x's and y's. 

In order to avoid the possibility of the subject's 
drawing sketches of two or three-dimensional re
sponse patterns on the one hand, and overcompli
cated multidimensional searches on the other, task 
environments with three control and three state 
variables were uniformly selected. 

For the sake of simplicity, in this series of experi
ments linear cost fUnctions of the type Ci = (Xi + {3iYi 

were used. . 
Four exemplary task environments are described in 

Appendix I. 

THE SUBJECTS' BEHAVIOR 

In view of the relative complexity of the task en
vironment one would not expect every subject to 
behave identically, nor even the same person to 
take identical courses of action in the same situa
tion at different times. The crucial question that 
has to be answered by students in behavioral 
sciences is whether there are significant characteris
tics of demonstrable generality that are common 
either for everybody or, at least, for sizable groups 
of human beings. If we are able to discover such 
characteristics of all the major facets of human be
havior then a causal psychological theory of great 
explicatory and predictive power is, figuratively 

speaking, just "around the corner." As has been 
mentioned before, the solving of fairly well-defined 
problems by humans is a type of activity that does 
reveal certain general characteristics and the Gener
al Problem Solver, which simulates human problem 
solving on a computer, is a successful vehicle for its 
theory. 

A theory of decision making can claim a higher 
degree of validity if it incorporates, besides cogni
tive processes, also some phenomena of affective 
behavior, such as aspiration, interest, curiosity, 
etc.15 Many, although far from all, subjects can be 
induced to express in words their motiyes, even the 
ones they, themselves, regard as childish or non
sensical. * As a result of our continuous effort, sub
jects did stay fairly communicative. Consequently, a 
detailed analysis of the verbal reports, the extrac
tion of essential elements and the systematic order
ing and classification of the motivated actions were 
not negligibly small tasks. 

So far 16 subjects' behavior has been studied. 
Some characteristics of the findings are summarized 
in Appendix II. Appendix III contains fairly de
tailed excerpts from a specimen protocol. Although 
a sample of this size would not allow us to draw 
minute conclusions of high statistical significance, a 
great amount of information was collected on a cer
tain kind of human behavior. It is believed that the 
following, nonquantitative discussion, relying on 
experimental evidence, represents facts of reason
able generality. 

The Initial Search 

The initial search behavior of subjects can be di
vided into two broad categories. Some of them tend 
to explore the task domain, i.e., the range of control 
variables, in an allegedly 'random' fashion. They try 
to generate as many different combinations of num
erical values as possible. However, these attempts 
obviously reveal some sort of basic pattern, which 
the subjects, behaps unconsciously, use as a guide 
in the search. The fundamental human discomfort 
in experiencing or producing irregularity can be ea
sily detected in these cases. The net result of this 
type of search is not much different from that of the 
other category of subjects who take pride in being 

*As one subject (of what sex?) said: "I can see small 
particles swirling around in a big blue room, hitting each 
other and the walls. The faster they fly the higher values 
these C's take." 
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"systematic." The search for structure, so inherent 
in human behavior, is modulated by preformulated 
ideas, such as 

"Let me first see all the corners," or 
"I'll explore the center thoroughly," or 
"I want to go along this line at first," or 
"Everything is somewhat symmetric," etc. 

Subjects of varying backgound and apparent 
capabilities have shown such Einstellung effects. As 
Luchins16 in a different context has noticed, persons 
of superior intelligence and education develop habi
tuation effects to as great as or even greater degree 
than do persons of low educational level and 10. As 
possible motives he lists for example the educated 
man's desire to generalize and also his contempt of 
childish or ostensibly repetitive tasks. In contrast 
with Luchins' findings, our subjects did not exhibit 
a mechanistic blind attitude toward the problem for 
any significant length of time, particularly not so 
after the initial search just described. The informa
tion feedback from the outcome of individual trials 
seemed to have an effective influence on the search 
behavior. 

The initial search goes on with both types of 
subjects until they form the first hypothesis about 
the organization of the task. This event can happen 
quite suddenly, "out of the blue," or may be 
preceded by a long and thoughtful meditation. The 
subject "cannot help but discover it" or else he may 
force himself to visualize some sort of model for his 
problem. As one would expect, not only the type 
but also the length of the initial search varies from 
subject to subject within certain limits. 

The Hypotheses on, or the Internal Representation 
of, the Task Environment. 

The subjects' approach to the task varied consid
erably. Each of them understood the probtem ap
parently equally well but interpreted it rather differ
ently. The differences in personality, educational 
background and, maybe, temporary disposition re
sulted in somewhat different sets of "intellectual 
tools." We shall call this set of tools a subject's lan
guage of representation and the model built with its 
help the mental image of the task environment. 

Before we discuss our findings in this regard, let 
us digress briefly and investigate the basis and im
plications of the above-mentioned concepts. 

Man's information-handling capability is, in gen-

eral, enhanced by thinking in terms of symbolized 
concepts whether these be elements of a spoken lan
guage, pictographs, logical constructs or mathemati
cal relationships. In meeting man's changing needs 
in problem solving and decision making, sophisti
cated and powerful methods of attack can coexist 
with hunches, "intuitions," "insight," deja vu pro
cesses. An important part of the learning process 
consists of improving and replacing conceptual hy
potheses, which are formed after processing the re
ceived and self-generated information complex. 
These hypotheses are mentally combined and repre
sent the image of the outside world (Weltanschau
ung). The combination of hypotheses is based on 
elementary conscious processes, mentioned before, 
such as remembering, comparing, recognizing, ab
stracting, logically interpolating and extrapolating, 
etc. 

Man's problem-solving methodology starts from 
and depends on the language of representation he 
has formed to comprehend the environment. Pattern 
perception, verbal learning and concept formation 
are examples of the interaction between the lan
guage or representation and the resulting cognitive 
behavior. 

In trying to perceive the relations of the stimulus 
environment, humans also try to relate their own 
behavior to the variations in it.17 This fundamental 
tendency connects the so-called internal and the ex
ternal structures, and renders the environment 
"meaningful." If these two structures are fairly ho
momorphic with a particular language of represen
tation and with a particular task environment, the 
building of a mental image will be comparatively 
easy and successful. Similarly, with a problem-or
iented computer language the data representations 
and the information processing instructions are 
such that we can solve with it a family of problems 
efficiently. A good problem solver finds good lan
guages of representation, just like a good (multi
lingual) programmer is able to select the best com
puter language for his task. 

The origins of the hypotheses about the environ
ment can only be partly explained by the Gestaltist 
argument that the behavior is an inevitable result of 
some stimulus configuration and that the stimulus 
forces a specific response. It is also true that res
ponsive behavior relies on the individual's interpre
tation of the environment. Any new situation to a 
subject is not a confused, meaningless conglomera-
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tion of sensory impressions to which he makes con
fused, meaningless, uncoordinated and unrelated 
responses. He brings to the new situation a whole 
history of experience which he is ready to apply. 
Each response of the subject we observe is not a 
ding an sich but a meaningful part of his total be
havior, which has casual roots both outside and in
side. 

Consequently, the decision making behavior ( a) 
is systematic and . purposive ( displaying an "if
then" character), (b) involves some degree of ab
straction, and (c) does not depend entirely upon 
the external environment for its initiation and per
formance. 

Let us now see the essential elements of the ma
jor types of representation the subjects have re
vealed. 

The "Mathematical" Language of Representation. 
This is the most frequently occurring type (NB: 
this was also the "true" language of representa
tion), which fact is probably due to the biased na
ture of our sample. Not every college student sub
ject of ours has, however, had mathematical training 
at tertiary level. Some were undergraduates in psy
chology and in fine arts (cf Appendix II) . 

The state and control variables are thought to be 
connected by a set of mathematical relations, which 
are somehow perturbed by extraneous noise. The 
search behavior can be divided into two, rather dis
tinct stages. First, the subject is only concerned with 
the overall cost, ICi = C, and its relation to different 

co 
levels of control variables. In specifying new points 
in the {x} space he follows certain rules, which 
will be described in detail in the next section dealing 
with the simulation of the behavior. The subject dis
covers the presence of noise fairly soon and tries to 
overcome its disturbing effect by averaging opera
tions. Intermediate successes and failures raise and 
lower his aspiration levels, respectively, and eventu
ally cause him to enter the second stage. 

The second stage is a more sophisticated continu
ation of the first one. The subject tries to discover 
relations between individual state and control vari
ables. How he does this depends largely on the extent 
of his mathematical training. We were able to dis
cover more or less distinct versions of hill-climbing, 
univariate, factorial and random methods. The most 
frequent approach followed a pattern similar to the 
one described as direct search by Hooke and JeevesI8 

and employed by, e.g., Flood.19 This fact is quite 
reasonable, there being no universal analytical tech
nique or computational scheme that will always work 
in case of highly irregular functions with ridges, tem
porary plateaus, saddle points, etc. ; Hooke and 
J eeves themselves incorporated in their method heur
istic procedures that "do not guarantee ... a correct 
solution . . ." 

These optimizing procedures were seasoned with 
occasional jumps of 'sudden insight' at times when 
a new idea has occurred to the subject or when a 
response pattern started to resemble one already 
known to him. (This could be a deja vu pattern in 
the first few minutes.) 

The techniques associated with the mathematical 
language of representation were the most successful 
ones and the language itself was usually maintained 
throughout the session unless a sufficiently high 
level of frustration removed the subject from it into 
the "patternless" representation to be described later. 

Finally, we wish to point out that all these hu
man "on-line" optimization methods are inferior in 
accuracy and efficiency to the above-referenced 
techniques, which the subjects were in fact trying to 
simulate. Man's gross computational and data pro
cessing ability cannot match well-planned and well
performed calculations in these instances. On the 
other hand, due to the remarkable human flexibili
ty, man excels in adapting himself to a novel prob
lem by changing an old method or finding a new 
one, which feature is almost never incorporated in a 
ready-made computer library routine. A statistical 
justification of the above statements is beyond the 
scope of the present work. 

The "Analog" Language of Representation. The 
subject in this case conceives of the process as 
being a real analog of some physical or chemical 
plant, and the control and state variables represent 
actual physical or chemical quantities. * While the 
broad behavior of the subjects with this hypothesis 
was found to be similar to the behavior of those 
who adopt the mathematical language of representa
tion, the search behavior was more cautious,· small
er steps were made and every sudden change in. the 
process output was liable to impose a more conserv
ative attitude orr the subject. This fact may be relat
ed to the subjects' experience that in real life one 
often does not have control over all relevant factors 
and even if he does, the control may be only partial, 
indirect or inefficient. Some subjects believed that if 
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there had been a larger number of control variables 
the noise level could have been significantly re
duced. Unexpected, i.e., larger than usually experi
enced, changes in the response pattern often led to 
revisions of plans and "let's start again around 
here" statements, as if some mechanical breakdown 
could be avoided by a more careful approach. 

This hypothesis results in a more detailed and, 
on the average, less efficient search behavior than 
the mathematical language of representation does. 
Experimentalists, people interested in technological 
areas are the best specimens of this class, as distinct 
from the theoretically inclined representatives of 
the previous hypothesis. (See Appendix II.) 

The "Counteracting" Language of Representation. 
The subject is convinced that the experimenter, di
rectly or indirectly, is involved in the system, and 
the responses he gets as outputs are somehow relat
ed to his own behavior. This underlying assumption 
may prove to hinder the searching activity and re
sult in a statement: 

"Well, whatever I do you can counteract it," or 
"Now you have upset my plans again." 
The way in which counteracting takes place was 

thought to be from either outside, on the console 
(although subjects could well see that only input 
data, requests for changes in the output frequency 
and certain initial loading instructions were typed 
in) or from inside, through prearranged tables. 

None of our subjects started out with this atti
tude and neither did they sustain it for long periods 
of time. Some, particularly the one who had not 
seen a computer before, were more likely to adopt 
this viewpoint than others, after a sudden dose of 
frustration. Every time the "counteracting" idea 
struck a subject, his aspiration level dropped, he 
lost his drive and became uninterested. These facts 
reveated themselves through the subsequent forcedly 
random search, which completely disregarded all 
the previous results, and also there were visible 
signs of the subject's losing interest. 

We cannot of course speak in this instance about 
the efficiency of the language of representation, it 
is an episode-type event which contributes negative 
aspects of insecurity and uninterestedness to the 
search behavior. 

*One subject, disregarding the fact that there were three 
independent variables instead of two, considered the en
vironment as some terrain and the C values representing 
the height of mountains, hills, and valleys. His "hill
climbing" was a tourist's excursion. 

The "Causal Network" Language of Representation. 
The subject may build up the image of a casual net
work of some sort. The control and state variables 
are in direct interaction with each other and the 
upper limit of complexity of the causal connections 
is only determined by the subject's cognitive capa
bilities. The plans and strategies can become very 
complicated. The difficulties may discourage the 
subject and lower his level of aspiration. Intermedi
ate successes would change this situation again. The 
net result of the search behavior is similar to the 
univariate method mentioned under the mathemati
cal language of representation. The time-depen
dence of the background noise is considered to be 
due to some mechanical vibrations, and sudden 
peaks due to resonance effects. 

In general, it can be said that a rather inefficient 
and unstable behavior originated from this hypothe
sis. It occurred rather rarely and could be deduced 
from recent educational experience. (See Appendix 
II. ) 

The "Personifying" Language of Representation. A 
language of representation, in some respects akin to 
the above mechanistic causal networks, can develop 
in the subject's trying to personify individual varia
btes. He describes the "behavior" of the variables 
in anthropomorphic terms, such as: 

"Well, Y2 seems to run away from Yl," or 
"Now Y3 tends to approach Y2," or 

"You see, Yl, is not concerned with Xl, it has 
a mind of its own", or 

"Perhaps Yl is the leader, maybe because it 
comes up first and then Y2 has to take some 
number because Yl took one particular kind and 
then Y3 comes along and he doesn't have to . . . 
he can choose anyone that he wants," etc. 

This attitude, however naive it appears, can be 
quite common among people with specific educa
tion backgrounds, such as drama students, or among 
people who spend much time in Nature. (These in
ferences, too, are based on small samples and their 
statistical val~dation is not possible.) 

The search is rather haphazard and nonsystematic. 
The subject picks some issue of no apparent import
ance ("I wonder what happens if Xl jumps from 0 to 
50 and back, all the time") and sticks to it quite 
some time. The experiment seems to him a purpose
less but enjoyable game void of risk and responsi
bility. 
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The "Patternless" Language of Representation. Fi
nally, there can be subjects who are unable to con
struct any model of the process and believe that the 
output values, independently of their selecting the 
levels of the control variables, are "completely ran
dom" and do not represent any patternlike phenom
enon. This mode of behavior often resolves itself 
into one of the above languages of representation 
and also it may happen that, after sufficient disillu
sionment about one, the subject "gives up" and re
sorts to this nihilistic viewpoint. 

This language of representation, like the "coun
teracting'; type, is only an episode with most sub
jects. It reduces their drive and interest to an extent 
that may depend on the individual, his expecta
tions, and the length of time spent with this hypo
thesis. 

The above-listed representations have occurred 
with varying frequency. The subjects occasionally 
replace one with another, sometimes without trying 
to explicitly justify the changeover, sometimes after 
obvious dissatisfaction over its failure. These hypo
theses serve as frameworks for the subjects who 
want to find relevance and meaning in the structure 
being explored. * There was an interaction not only 
between the representation and the search behavior 
but also between certain features of the task envi
ronment and the adopted hypotheses. We have pur
posely selected task. environments that might induce 
the subjects to exhibit particular types of associa
tions. For example if the process functions were 
fairly simple, smooth and not highly periodic, the 
mathematical language of representation was to be 
expected. The "analog" representation required also 
some discontinuities, a small number of steep rises 
and falls, and moderate interactions between control 
variables. The "counteracting" hypothesis is more 
likely to occur if the sum of two or all the three 
cost functions remains approximately constant, re
gardless of the changing control variable values. 
(The subject observes no effect of his attempts.) 
The "casual network" representation was selected 
when the state variables were some functions of 
type (5) noise. (The interaction between control 
variables is rather obvious.) Similar relations 
should lead to the "personifying" language of repre
sentation. Finally, the "patternless' hypothesis is 

*Compare the "strategies of decision making" as described 
in reference 20, or the TOTE units described in reference 
21. 

more often encountered if significant or exclusive 
noise terms appear in the cost functions. 

THE SIMULATION PROGRAM 

The aim of the simulation program is, in making 
use of the characteristic features of the verbal rec
ords of the subjects' rules of action, methods, proce
dures and strategies, to make the computer behave 
in a way that is essentially similar to the human be
havior. This classical Turing's test demands that 
not only the desicions be the right ones but also the 
reasons that lead to the decisions be the right ones. 
With a successful simulation program we can inves
tigateall the possible implications of the theory 
inexpensively and effortlessly by running many 
computer experiments in different task environ
ments and with "different" subjects. 

Flow charts have been constructed and hand-sim
ulated for every language of representation with the 
exception of the "personifying" type. The executive 
routine, the initial search and the mathematical rep
resentation have reached the running program stage. 

In the following we discuss some aspects of the 
program only. A more detailed discussion would 
exceed the scope of this paper. 

As mentioned in the Introduction, the program is 
not a completely deterministic model, it also incor
porates stochastic elements. The introduction of. the 
concept of probability into the description of hu
man cognition is considered here a quantitative 
means of getting around our quasi-ignorance about 
many minute causal effects. It is, for example, not 
essential to know which subject selected 8 and 
which selected 12 trial points during their initial 
search in the same task environment. It is sufficient 
to make certain that this number is not correlated 
in any obvious way with the subject's personality, if 
we may use such a broad term for the totality of 
known character descriptives, and that neither does 
it depend apparently on the outcome of the individ
ual initial trials. We determine the range of this 
quantity (in this case between 6 and 15) and gen
erate a random number within it for the extent of 
the simulated initial search. 

In general, certain parameters are provided as 
input for the executive routine. These describe pro
bability distribution functions of which samples are 
taken to serve as program switches (e.g. type of ini
tial search) or event counters (e.g., extent of initial 
search) . 
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In a similar fashion, the initial aspiration level 
and another reasonable-looking parameter, the level 
of cautiousness are determined. The respective low
er bounds are specified for the executive routine, 
which then adds small random numbers to these to 
obtain the actual values. 

The adjustment and testing of the aspiration level 
take place in the following way. The current aspira
tion level, at first equal to the initial aspiration lev
el, is increased by one every time the program finds 
a new point with a better "total cost," i.e., with a 
value lower than the highest one in the group of 
best points so far. * Also, the current aspiration level 
is decreased by 1 after a cycle of 3-7 failures of 
finding a better point. (Compare this with the read
iness of humans to strive for higher goals, as con
trasted with the reluctance in regard to lowing am
bitions.) 

Whenever the absolute value of the difference be
tween the initial and the current aspiration levels 
exceeds a certain constant, the program quits the 
first stage of the mathematical language of repre
sentation, in which the subject is only concerned 
with the total cost, and enters the second stage. In 
this, . he tries to establish relations between individ
ual control and state variables. This changeover 
may, therefore, be due either to having reached a 
certain level of success ("let's see what more could 
be done") or to some feeling of frustration ("I 
ought to try some more sophisticated approach 
now") . 

An "abstracting subroutine" makes the program 
disregard some process outputs between two subse
quent input operations at certain times. On other 
occasions it calculates rough averages of process out
puts over small localities of the {x} space. 

The executive routine provides a "public memo
ry," which the different languages of representation 
can make use of. It also has monitoring and inter
rupting power at certain decision junctures. It may 
happen at one of these interruptions that the pro
gram of another representation takes over the con
trol of the hierarchy of elementary information pro
cesses. 

DIRECTIONS OF FURTHER STUDIES 

Firstly, there are several possible refinements 
within the present framework of the project. For 

*One must not become confused by the directions of 
change: the aspiration level increases if a better, i.e., [ower, 
C value has been found, and vice versa. 

example consideration is being given to providing 
the simulation program with a sort of "learn to 
learn" feature. In this a record of the relative suc
cesses of different representations could influence 
the hypothesis-selecting mechanism. A much more 
significant achievement would be if the character of 
individual task environments could be evaluated 
and used by the hypothesis-selecting mechanism to 
find the most efficient representation for the prob
lem at hand. Also, with more experimental data, the 
probability distributions of the employed paramet
ers would become less tentative. 

A possible extension of the present work, which 
has employed linear and highly regular cost func
tions, would be to introduce discontinuous, saturat
ed or hysteresis-type cost functions and compare 
search behaviors in systems with different cost 
structures while the process itself remains the same. 

Another interesting comparison could be made 
between the decision making processes of two groups 
of engineering students. The same task environment 
would be used but one group of students would be 
told explicitly that the variables . of the experiment 
represent actual, highly critical physical quantities, 
say Xl is temperature, X2 is pressure, etc. 

A different area of research could be pursued on 
game playing, game learning, coalition formation, 
etc. with similar experimental apparatus if certain 
subsets of control variables are assigned to different 
players. The participants can be situated in separate 
rooms, in front of remote consoles. 

CONCLUSIONS 

Computers have been found flexible and efficient 
tools for providing task environments in psycholog
ical experiments. With the development of multi
console time-sharing systems, this endeavor is be
coming economically quite feasible on large ma
chines as well. The subjects' total behavior can be 
reasonably faithfully observed by combining the 
computer's data processing abilities, for the overt 
patterns of behavior, with tape-recording the ver
balized thinking processes. 

The CIP approach has proved to be able to give 
a causal description of an interesting and rather im
portant facet of human behavior, decision making 
under uncertainty and risk. It is realized that the 
particular task environments employed may have 
had significant effects on the details of the behavior 
under study, but it is contended that the general as-
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sumptions and consequences of the theory are inde
pendent of the characteristics of different task envi
ronments. On the other hand, to force every aspect 
of a certain type of human behavior into the Pro
crustean bed of a running program is obviously far
fetched. It is the intention of the present author to 
generalize this work to cover other phenomena of 
decision making while remaining as parsimonious 
as possible. 
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APPENDIX I 

MATHEMATICAL DESCRIPTION OF THE 
TASK ENVIRONMENTS USED 

In the following, four task environments. are speci
fied. The meaning of some symbols is given first. 

i = the number of times the subject has 
named input values; 

k = the number of times the subject has re
ceived output values; 

{
O. a¥=b . 

8d ,b = 1 If a = b : Kronecker's delta functIOn; 

a=b(mod m): a is said to be congruent to b modu
lo m, if a-b=km, where a, b, k, and m are integers. 
We used the shorthand notation b(mod m), repre
senting the remainder of the division blm; 

dXI = Xl(i) - Xl(i-ll: is the difference between 
the values of control variable Xl specified currently 
and on the previous occasion. In all other instances 
only the current values of variables are considered. 

Task Environment 1 

YI = 80 sin 1~~ 7{' - 60 sin3 1~30 7{' 

+ 10 + 5X2 + 8i (mod 21) 
Y2 = 0.008 Xl3 - 0.6 Xl2 + 10 Xl + 60 

+ 8 sin k 

'iT 
-4- + 10. 8k , 0 (mod 7), 

Y3 = 0.1 X22 - 1.8 X2 + 30 + 10 Xl + 5 (IAxII 
+ Idx21 + IAx3\). 

Task Environment 2 

YI = 60 sin ~~ 7{' + 0.04 Xl2 - 1.2 Xl + 70 + 

20 

i 
Y2 = 250 - 200 ax 9 + 20 cOS-

5 21 

'iT + 3 k (mod 16), 
\ 

'Ya = 200 - 2 (ixi - xzl + IX2 - xal + Ixa -xII)· 

Task Environment 3 

15 . i + 3 . k 60 YI = sm T7{' sm T'iT + , 

Yz = 300 + 4x 
X3 + 2 3, 

300 
Y3 = 258 - - 4xa. 

X3 + 2 

Task Environment 4 

. Xl Z 
YI = 150 sm 1O'iT - 0.05XI + 6XI + 100 + 

1 
100 IX2 - 81 . IX2 -271 . IX2 - 361, 

1 
Y2 = 300 IXI - 131 . Ixz -411 . IXa -241, 

ya = 430 - YI- Y2 + 71 i (mod 52). 

APPENDIX II 

Summary of Experimental Results 

The following table contains the summarized results 
of experiments with 16 subjects. Although this num
ber may appear rather small, the amount of informa
tion collected was considerable. The transcript of 
tape-recorded protocols exceeds 100 typewritten 
pages. 

The Educational Background column of the table 
refers to the major subject of the person. The last 
column indicates a score (poor, far, good or excel
lent) that roughly reflects the quality of the subjects' 
search and the level of the minimum he was able to 
achieve by the end of the experiment. 
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Table 1. Summarized Results of the Experiments. 

Subject Sex Educational Task Env. Adopted Language(s) Total Number of Score No. Background No. of Representation Trials/Task Env. 

M Grad. stud. 2 and 3 Analog 48 + 33 Good in Eng. 

2 M Grad. stud. 1 and 2 Mathematical 59 + 47 Exc. in math. 

3 F Undergrad. 1 and 3 Mathematical and 38 + 36 Fair in psych. counteracting 

4 M Undergrad. 4 Patternless 39 Poor in drama 

5 F Undergrad. Mathematical and 87 Filir in psych. patternless 
"-

6 F Undergrad. 2 Personifying and 48 Poor in design patternless 

7 F Undergo in 3 and 4 Analog 41 + 54 Poor bus.&social 

8 M Undergrad. 2 Causal network 45 Good in physics 

9 M Undergrad. 2 and 4 Analog and 35 + 31 Fair in chern. patternless 

10 F Undergrad. 3 Personifying 33 Poor in drama 

11 M Grad. stud. 1 and 4 Mathematical and 52 + 49 Fair in math. patternless 

12 F Undergrad. 2 Analog and 40 Fair in nat. sc. patternless 

13 M Undergrad. Mathematical 56 Fair in psych. 

14 F Undergrad. 3 Causal network 68 Poor in nat. sc. and counteracting 

15 F Undergrad. 4 Patternless 37 Poor in psych. 

16 M Undergrad. 4 Mathematical 64 Exc. in math. 

Appendix III 

COMPARISON BETWEEN EXCERPTS FROM A REPRESENTATIVE PROTOCOL AND COMPUTER 
PERFORMANCE 

In both instances, in the experiment and in its computer simulation, Task Environment 1 was used with the 
simplest cost function, in which Ci == Yi. Editorial remarks are put in square brackets. 

The subject's initial search here could be classified E: Can we start now? 
as systematic with slight random components. He S: O.K., let's try around zero, say, 2, 3, and 4. 
adopted the Mathematical Language of Representa- [i.e., Xl =2, x2=3, and x3=4; the first output fol-
tion without any hesitation. In Stage (A) he followed lowed: cl=42, c2=77, c3=90, Ic=209.] Well, let us 
a scheme fairly thoroughly but was not satisfied with try another type ... [interrupted by a new output: 
the rate of improvement and entered Stage (B). In Cl =42, c2=83, ca=90, Ic=215] ... hmm, it's in-
this, he employed the so-called univariate method creased ... O.K., let them be 45, 5, 4. [i.e., Xl =45, 
which consists of changing only one control variable x2=5, x3=4; output cl=60, c2=31, c3=698, Ie 
at a time. The optimization takes place in terms of =789.] 
single control variables and at the end an attempt is In describing the computer's actions, instead of ar-
made to specify a global optimum. ticulated English sentences, we can only refer to brief 

* * * statements, such as EXTRAPOLATION, INTER-
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POLATION, ASPIRATION LEVEL NOW:, 
COUNTER NOW:, NEW POINT:, etc. These had 
been planted in the program to indicate at appro
priate times what action the machine is taking. The 
following excerpts from the trace of the program [P] 
are approximately equivalent to the segments of 
human behavior at the left, almost paragraph by 
paragraph. 

* * * 
INITIAL SEARCH TYPE 1. 
NEW POINT: XI= 3,X2=47,X3= 49. 
OUTPUT: C1=273,C2=84,C3=196, 

SUM=553. 
OUTPUT: C1=273,C2=90,C3=196, 

SUM=559. 
[The noise appears here.] 

NEW POINT: X1= 4,X2= 2,X3= O. 
OUTPUT: C1= 36,C2= 98,C3=541, 

SUM=675. 
NEW POINT: X1= 5,X2= 48,X3= 3. 
OUTPUT: C1 =260, C2= 102, C3 =474, 

SUM=836. 
Whoops, it's up ... [interrupted by a new output: 

CI =60, c2=29, ca=698, Ic=787]. Now, let them be 
4, 48, 48. [Output: cI=273, c2=90, ca=754, Ic= 
1117]. 

Oh, that's bad. 0, 50, O. [Output: CI =271, c2=52, 
ca=460, Ic=783.] 

Still no good, let's mix them further . . . [inter
rupted by output: CI =271, c2=50, ca=460, Ic=781] 
... Well, Xl =45, x2=48, xa=4. [Output: cI=278, 
c2=27, ca=879, Ic= 1184.] This is the worst so far. 

Now how about the center? Say, 20, 25 and 30. 
[Output: cI=173, c2=83, ca=617, Ic=873.] 

E: How did you pick these values? Can you explain 
it now? 

S: Well, I thought I would first try all these cor
ners . . . a sort of local search at the two ends of 
every X range, and also in its middle. This might give 
me some idea of how that sum behaves. . . It could, 
of course, go up and down in between . . . but that 
may not be important. I hope these functions [the 
hypothesis is formed!] do not oscillate too much ... 

OUTPUT: C1 =260, C2=104, C3=474, 
SUM=838. 

NEW POINT: Xl = 24, X2= 27, X3= 22. 

OUTPUT: C1 = 191, C2= 64, C3=589, 
SUM = 844. 

[P names nine points with. coordinates either at the 
two ends of the ranges, 0 :::;'x :::; 5 and 45 :::; x :::; 50, 
or in the middle, 20 :::; x :::; 30.] 

THE MATHEMATICAL LANGUAGE OF 
REPRESENTATION IS ACCEPTED. 
INITIAL ASPIRATION LEVEL: 8. 

S: Now I have ... how many ... four, five reason
able points. The sums here are no worse than say, 
800. Let us be careful now ... I want to give you a 
good Xl ..• It's better if I don't care about these con
tinuous outputs now ... Well, when Xl was around 
zero, the sum was about 210; when it was 28, we 
had almost 600. So, how about ... how about, say, 
if Xl equals 10 ... that might hit the minimum ... 
This kind of thing can give us, shall we say, 15 for 
X2, and . . . well . . . I'm doing the same for Xa . . . 
O.K., let it be 20. [Output: cI=134, c2=108, Ca= 
736, Ic=778.] It didn't do much good ... O.K., let 
us include this point as well . . . 

SELECTED SUBSET OF POINTS: 
Xl = 3, X2=47, X3=49, SUM=553; 
Xl= 4, X2= .2, X3=0, SUM=675; 
X1= 4, X2= 3, X3=50, SUM =680; 
Xl =46, X2= 4, X3= 1, SUM=779. 
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[P selects four points out of the nine "non-noisy" 
ones, with the lowest total cost values.] 

INTERPOLATION: Xl=21; 
[=3+(46-3).553/(553+779)] 

INTERPOLATION: X2=22; 
[=2+(47-2).675/(675+553)] 

INTERPOLATION: X3=25. 
[=0+ (50.-0.). 675/(675 +680.)] 

NEW POINT Xl= 21, X2= 22, X3= 25. 
OUTPUT: Cl=13o., C2= 97, C3=563, 

SUM=78o.. 
OUTPUT: Cl=13o., C2=lo.3, C3=563, 

SUM=786. 
COUNTER NOW: 1. 
[P fails to hit upon a sum better than at least 779, 

by interpolation. It is counting the number of fail
ures.] 

SELECTED SUBSET OF POINTS: 
Xl= 3, X2=47, X3=49, SUM=553; 
Xl= 4, X2= 2, X3= 0., SUM=675; 
Xl= 4, X2= 3, X3=5o., SUM = 680; 
Xl=46, X2= 4, X3= 1, SUM=779; 
Xl=21, X2=22, X3=25, SUM=780; 
Xl= 5, X2=48, X3= 5, SUM = 80.4. 
[P selects 6 points out of the 10. "non-noisy" ones 

so far, with the lowest total cost values.] 

s: I just can't get a better point ... This is silly. 
Why don't I move off? Suppose, we just try 35, 40., 
45 for a change. 

s: [After hitting a point with Ic=581]. Here we 
are, that's reasonable ... I see it now ... This thing 
seems to move downwards, toward the smaller X2'S. 

Let us choose ... well, Xl was all right, let it stay at 
8, ... X2 has to be down ... down ... say, 15 and 
X3 stays in the middle, 25. 

E: What is wrong? 
S: I just don't get that sum any better. I somehow 

feel, I have to do something about c's . . . I mean, 
about Cl, C2 and C3 separately. Maybe I should mini
mize Cl only, at first. Let C2 and C3 be whatever they 
are, and then come back to them ... Yes, that's what 

I am going to do. Minimize them, one by one, and 
then get them together again. Where was Cl the best? 

COUNTER NOW: 5. 
RANDOM BREAK-OUT. 
ASPIRATION LEVEL NOW: 7. 
NEW POINT: Xl=17, X2=38, X3=9. 
[After five failures the aspiration level drops and 

the next point is specified at random.] 

EXTRAPOLATION: Xl=o.; 
EXTRAPOLATION: X2=48; 
INTERPOLATION: X3=23. 
NEW POINT: Xl=o., X2=48, X3=23. 

ASPIRATION LEVEL NOW: 4. 
ENTER STAGE (B). 
POINTS WITH BES Cl: 
Xl= 4, X2= 2, X3= 0., Cl= 36; 
Xl=45, X2= 4, X3=46, Cl= 59; 
Xl=32, X2=11, X3=17, Cl=lo.6; 
Xl=21, X2=22, X3=25, Cl=130. 
[The difference between the initial and current as

piration levels is four, which fact makes P quit Stage 
(A) and enter Stage (B). P selects four points with 
the lowest Cl values so far.] 

S:. Well, Cl depends on X2 and X3, and a little bit, 
maybe a little bit, on Xl. And it also varies with time 
. . . Yes, low values of X2 are all right . . . 

S: You see, this was easy, to minimize C2 ••• I 
now know what it is like . . . 

S: That C3 is tough, I can't see much reason behind 
it. Somehow, when I don't move with the x's, it's 
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smaller, and when I change them a little, it jumps 
up . . . It is a funny variable . . . 

POINTS WITH BEST C1 : 
X1= 4, X2=2, X3=O, C1=36; 
X1=18, X2=5, X3=2, Cl=52; 
X1=28, X2=4, X=6, C1=57. 
[A further search produces these three best points 

with regard to Cl] 

POINTS WITH BEST C2: 
Xl =35, X2= 11, X3=47, C2=39; 
X1=45, X2=38, X3= 3, C2=47; 

X1=41, X2= 2, X3=13, C2=51; 
Xl =36, X2=43, X3=30, C2=53. 
[The four best points with regard to C2.] 

POINTS WITH BEST C3 : 
X1= 3, X2=47, X3=49, C3=196; 
X1=27, X2=13, X3= 5, C3=343; 
X1= 6, X2= 7, X3=21, C3=352; 
X1=11, X2=15, X3=34, C3=355; 
Xl= 3, X2= 4, X3=18, C3=374. 
S: If I take, say, 36 for Xl, 5 for X2 and ... and a 

small value, say, 2 for Xa, I should get just about the 
minimum . . . I don't think I can do any better . . . 
not when this noise is on all the time. I Output: Cl = 
48, c2=21, ca=408, Ic=477. End. I 

* * * 
THE BEST POINT SO FAR: 
Xl =28, X2=2, X3=47, SUM=463. 
[P was cut off here.] 

* * * 
The following points may be worth mentioning with regard to the comparison between the above two 

records: 
The simulation of both the results of and the reasoning behind the subject's decision making is fairly faith

ful, although the trial points are, of course, not identical. The only serious shortcoming of the model can be seen 
at Stage (B), when it does not notice the effect of large step sizes. Consequently, the program's best points with 
regard to Ca just, so to speak, happen to be the best. The first point on the list (xl=3, x2=47, xa=49, ca=196) 
is "too good" and its weight causes the final selection mechanism to choose a "global optimum" with a much too 
large Xa. (The xa=47 value of the first point on the best-c2-list was also guilty in this decision.) 

The quality of the computer search for minimum was also very similar to the human one. The machine 
obtained a minimum of 463 after 68 trials, as contrasted with the subject's minimum of 477 after 59 trials. 
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INTRODUCTION 

Motor learning can be defined as the information 
processing adaptations necessary for a system to 
achieve advantageous control over its relationship 
to its physical environment. For convenience, such 
learning is divided into two major processes: (1) 
perfection of the subsystem organization necessary 
to convert highly coded command sequences into 
the multitudinous signals necessary to the efficient 
utilization of musculature or other effectors, etc., 
and (2) the development of the control capabilities 
necessary for the timely generation of effective cod
ed command sequences. This paper considers only 
the latter process as it might possibly be achieved 
in so-called "artificially intelligent" systems such 
as those using electronic data processing system 
control, -as exemplified by a program described in 
detail in reference 1. Because of time and space 
limitations, this program will only be briefly sum
marized here to the extent necessary to explain the 
significance of the results obtained with various 
simple systematic creative means of response gener
ation or synthesis. 

*The research covered by this paper was sponsored by 
the Air Force Office of Scientific Research of the Air Force 
Office of Aerospace Research, under contracts AF 49(638)-
1203 and AF 49(638)-1476. 
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Approaches to Artificial Intelligence 

Different efforts on the problem of achieving arti
ficial intelligence owe the variety of their approaches 
to many valid practical and abstract considerations. 
Minsky has described a number of such approaches 
in his useful summary,2 but no one seems to have 
dealt similarly with the rationales involved. Ulti
mately, of course, the goal is at least simply to extend 
the capabilities of machines so that they are capable 
of doing human work generally regarded as requiring 
significant intelligence, and most workers in the field 
choose an approach loosely characterizable by the 
fact that it requires the development through human 
analysis of a mechanizable scheme for accomplish
ing some particular intellectual task. USing such an 
approach, the contributory role of the machine is 
limited to parameter adjustment and other optimiza
tions for procedures which are basically given and 
remain essentially unchangeable except by further 
human programming. The main attractiveness of 
such an approach is that it tends to produce /effec
tive results sooner and at lower cost. Samuel,3 Doyle,4 

Lindsay,5 Slagle,6 Gelernter,7 and Newell, Shaw, and 
SimonS have all produced programs of this kind. 

However useful and efficient such effort may be, 
the devising of specialized procedures for playing 
checkers or recognizing patterns is more concerned 
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with devising task theories than it is with devising 
machines having artificial intelligence. To whatever 
extent such machines exhibit intelligence of the hu
man beings who devised the procedures incorporat
ed in the machine. This interpretation does not of 
course render the intellectual work done by such 
machines any less impressive or less welcome, but 
the fact still remains that operation of this type 
leaves much to be desired with respect to the full 
attainment of artificial intelligence. 

Obviously, for every task which a machine can 
skillfully perform, it must have a perfected proce
dure whether this be one developed by human task 
analysis or by a machine. Devising such procedures 
and writing programs to perform them is intellec
tual work of a most demanding type, and naturally 
it constitutes another task we would like to see me
chanized. For a machine to be truly intelligent, 
then, it must not only. be able to optimize and effi
ciently perform skills perfected for it by human 
beings, it must be able to devise and perfect such 
skills completely on its own. 

If one analyzes, say, how a naive subject learns 
checkers, given only the rules and the opportunity 
to play, it seems obvious that he does not learn by 
using processes which are specific to checker play
ing. Rather, what he uses must be transferable from 
other learning, and thus must have general useful
ess in learning. Such capabilities seem mandatory 
for any intelligent system, artificial or not, if it is 
to cope with unexpected tasks. Useful or effective 
though they may be, artificially intelligent systems 
which are initially prepared for specific tasks, or 
researches following such an approach, avoid the 
ultimate question of intelligence-namely, how an 
intelligent system can acquire new capabilities for 
which it was not specifically prepared. 

A few researchers have attempted a machine
creative approach, mostly on pattern recognition 
problems, with limited success. Friedberg9 originat
ed a program writing program, while Uhr and 
Vossler1o have devised a pattern recognition pro
gram which creates and adjusts its own operators. 
These, and indeed virtually aU known operational 
programs or systems of this type, appear to have no 
better method of generating "operators," "trials," or 
other possibly adaptive constructs, than a random 
one - either as a randomly generated construct or as 
a selection or strengthening of randomly given con
nections or logic. 

The approach adopted here was directed along 
similar lines, but random method was subordinated 
to systematic procedures of various kinds. No effort 
was made to analyze task requirements and provide 
the machine with prepared skills or subskills suita
ble for handling them· effectively. Instead, tasks in 
general and the basic creative processes for devising 
effective procedures for them were analyzed to find 
effective methods of creating such procedures, given 
only the means for obtaining pertinent information 
and for testing results. This effort is only in its ear
ly stages, so that only a few very rudimentary crea
tive . methods suitable for motor (or ~fferent) use 
have been investigated, but these methods involve 
rather general principles and techniques, even 
though such a severe constraint limited immediate 
results. 

Motor Capabilities 

For automata, the nonhomeostatic motor activi
ties of major concern are (1) accommodation, (2) 
locomotion, (3) manipulation, and ( 4) speech. 
"Accommodation" as used here refers to those mo
tor processes necessary to maintaining balance, ad
justing vision, and so forth. The literature on artifi
cial intelligence emphasizing purely motor learning, 
as exemplified by the papers of Emstll and 
Scott12 is exceedingly sparse-undoubtedly due to 
priority interest in cognitive processes. 

In the computer program to be discussed herein, 
only rudimentary capabilities were provided for ac
commodation and very limited capabilities were 
provided for locomotion and manipulation. No 
speech capabilities at all were provided, thus. re
stricting linguistic experiments to coded or written 
modalities. Since the object of the research was to 
study the generation of effective coded command 
sequences, no effort was made to conceive practical 
muscle substitutes; rather, these were simulated by 
convenional programming which translates the 
coded command sequences into hypothetical physi
cal effects according to a predetermined and invari
able scheme, with these effects then being used in 
the simulation of inputs to the learning program. 

PROGRAM DESCRIPTION 

Functional Organization 

The practical object of the research was to devel
op an effective motor learning program based on 
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general principles, both as a test of such principles 
and to provide an experimental system for further 
tests. To reduce machine costs, the experimental 
system consisted of two major program sections, the 
learning program, called PUPIL, and a simulation 
program called TUTOR which interacts with PU
PIL as the latter's environment and as a proxy for 
the researcher. In addition to providing inputs to 
PUPIL in response to PUPIL outputs, TUTOR also 
computes and compiles evaluative data for use in 
analyzing performance and interpreting results. 

TUTOR, it might be noted, contains a number of 
subprograms which are examples of the task-or
iented type of approach to artificial intelligence. 
These subprograms replace a human being in the 
reinforcement feedback loop by scoring perform
ance and providing task elements. If it were de
sired, say, to try PUPIL on learning the task of 
checker playing, then a program such as Samuel's 
would be a necessary subprogram for TUTOR if 
one wished to continue to avoid the involvement of 
a human being in the feedback loop. Herein lies 
one great importance of specialized programs, for 
the development of general programs cannot pro
ceed apace unless there is available an adequate li
brary of specialized programs for testing purposes. 

The interaction between TUTOR and PUPIL is 
in the form of alternating responses. PUPIL emits a 
response code consisting of 15 bits, 9 of which are 
interpreted by TUTOR as motor control signals. 
What this 9-bit word does depends on the por
tions of TUTOR selected for the experiment, but in 
general the word is translated by computation or 
table lookup into a TUTOR respons.e to PUPIL 
consisting of reinforcements and circumstantial data 
which a simulated sensing process . in PUPIL con
verts to (1) a 6-bit "payoff" measure serving as a 
reinforcer, (2) 9 bits representing coded data per
taining to circumstances, and (3) 2 bits denoting 
food and shock reinforcement components. Thus, 
PUPIL and TUTOR alternately exchange responses, 
the one giving rise to the other, in a continuous 
manner. 

The coded exchanges between PUPIL and TU
TOR can signify any interaction whatever that can 
be represented by such codes. Depending on the 
particular TUTOR subroutines, they may presently 
represent the following tests: 

1. Orientation Learning (an operant condi
tioning test) 

2. Food Tray and Latch and Tray (an oper
ant conditioning test) 

3. Compensatory Tracking ( a stimulus-re
sponse test) 

4. Figure Drawing (a stimulus-response 
test) 

The following tests are also planned: 

1. Figure Tracing 
2. Assembly Work 
3. Maze Running 
4. Weight Judging 
5. Pursuit Rotor 
6. English Discourse 

Reinforcement 

Reinforcement has two distinct aspects, the envi
ronmental aspect simulated by TUTOR, which pro
vides positive, zero, or negative stimuli to PUPIL's 
several reinforcement inputs, and the learning sys
tem aspect, which evaluates the various inputs and 
consolidates them where necessary. Ultimately, the 
process of reinforcement in PUPIL will be a com
plex one involving not only a capability of learning 
reinforcement consolidation but its selective alloca
tion to different processes as well. Presently, how
ever, all reinforcement inputs are consolidated into 
one single payoff measure, using fixed initialized 
weighting factors, and the resultant figure is used 
directly in a fixed scheme to reinforce various pro
cesses involved. The payoff measure used has two 
kinds of components, objective ones due to TU
TOR and subjective ones self-determined by PU
PIL. The objective components from TUTOR range 
from negative to positive values according to the 
particular reward-punishment computation scheme 
being followed. In addition, program controls allow 
these reinforcements to be applied intermittently 
according to random or fixed ratio schedules. 

Typical objective components, with their ranges 
expressed in TUTOR units, are: 

1. FOOD 
2. SHOCK 

3. COACH 

4. SCORE 

a "food" reward, range 0 to + 1. 
a negative reward, or punishm.ent, 
range 0 to -1. 
a "hotter-colder" reinforcer, 
range-1 to + 1. 
a performance evaluator, range 
o to 1. 
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The subjective components of payoff are experi
mental ones incorporated to provide guidance when 
objective reinforcement is not· immediately availa
ble. These components are provided as basic drives, 
not directly subject to self-modification, and pres
ently consist of the following: 

1. NOVELTY 

2. ORGANIZATION 
IMPROVEMENT 

3. PAYOFF DELTA 

A measure based on in
put and output variety. 
Ranges generally from 
minus to plus, its limits 
and range being deter
mined by program initial
ization controls. 
A measure based on the 
change in potential pay
off, as indicated by the 
summed payoff expecta
tions for all learning. 
Ranges from minus to 
plus. 
A component based on 
the changes in other pay
off components. Ranges 
from negative to positive 
values. 

The relative weighting factors presently used by 
PUPIL which· are initially set by program controls 
are the following: 

1. Objective Components 
(a) FOOD 0.30 
(b) SHOCK 0.26 
(c) COACH 0.30 
(d) SCORE 0.12 

2. Subjective Components 
(a) NOVELTY 
(b) ORGANIZATION 

0.10 
0.00 (Suppressed) 

Obviously, the specified proportions of these weights 
will have a considerable influence on ultimate behav
ior. Such weighting, together with an arbitrary scale 
factor, results in a +1 food reward from TUTOR 
giving rise to a + 19.53 component of payoff in PU
PIL, while a -1 shock from TUTOR gives rise to 
a -16.42 payoff component, etc. 

The incorporation of self-reinforcement possi
bilities in a learning system obviously has its pit
falls, for the danger exists that the system may be 
more preoccupied with its subjective self than with 

its real-world tasks. On the other hand, as indicat
ed before, a need was felt for learning guidance in 
the absence of immediate objective reinforcement. 

Regarding novelty, the postulation was that-other 
things being equal-it is generally desirable for an 
artificially intelligent system to function so as to 
attain considerable input variety as well as output 
variety. A system with such a drive should prove to 
be an active, curious one not susceptible to vicious 
circles of behavior which might trap it. On the oth
er hand, it could become so obsessed with novelty 
that objective performance is seriously degraded. A 
possible solution here is to put the pertinent thres
holds and weights involved under adaptive control, 
with the goal of setting them so that objective pay
off is maximized, but this has not yet been under
taken. 

The organization component is a rather complex 
one. In brief, it is based· on the postulate that any 
response which increases the system's capability to 
perform by improving its organization deserves a 
proportional payoff. The problem, of course, is to 
gauge the degree to which organization is . changed 
due to a response or response sequence. In the case 
of PUPIL, organization is presently measured by 
summing the utilities of all the response concepts, 
herein caned classifiers, held by the system. The 
utility of such classifiers is computed as follows: 

Define the effectiveness, E, of a classifier as the 
average payoff associated with its employment in 
making a response. Define the relevance, R, of a 
classifier as the ratio of the times it was used to the 
times it could have been used. Define its applicabil
ity, A, as the ratio of the response bits the classifier 
determines to the total number, 15. Then utility is 
arbitrarily defined as 

U = ERA. 

Other measures are of course possible-one based on 
summing rather than producting being one interest
ing alternative. 

A classifier in the system is a Boolean expression 
specifying response bits as functions of the input 
bits. Initially, these functions are nonexistent, so 
that they must be constructed by the system as it 
learns. Any such classifier is of course of no use 
whatsoever if it has a zero or negative effectiveness, 
is never relevant, or has zero applicability, while it 
is very useful if it is highly effective, is often rele
vant, and determines a maximum number of re
sponse bits. 
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In summary, then, organization is improved 
whenever a new classifier having positive utility is 
acquired, whenever the utility of a classifier in
creases, whenever a better classifier replaces a poor
er one, whenever a superior classifier is formed by 
combining two inferior ones, etc. 

The classifiers concerned, pertaining as they do 
to motor control, differ markedly from classifiers 
derived from receptor-based systems. Contrast 
"red" with "push" or "round" with "turn." PUPIL, 
of course, does not develop classifiers in precisely 
this form, but nevertheless there are-and indeed 
must be-classifiers signifying such things by virtue 
of the fact that their coded representations are tran
slated by. the simulated musculature in TUTOR to 
the appropriate simulated physical effects. 

The delta component of payoff is an experimen
tal one based on changes in non-delta components 
and can be specified for a test when desired. When 
used, the cessation of a positive payoff is interpret
ed in a preorganized, nonmodifiable way as bad, 
while the cessation of a negative payoff is interpret
ed as good, etc. The reasoning behind such a second 
order payoff scheme was the intuition that a sensi
tivity to such changes is essential to proper learning 
performance. The central issue here lies in the role 
of drives to learning. My own belief is that basic 
drives are-and indeed must be-inherent in a sys
tem of the sort under discussion. A positive stimulus, 
or a positively increasing stimulUS, must be inher
ently perceived as positive, while the converse is true 
for a negative or negatively-going stimulus. In actual 
fact, however, the immediate realization of an ef
fective drive component based on differencing fol
lowing simple schemes has so far been discouraging 
because the system inevitably found ways of achiev
ing satisfactory net payoffs based on more or less 
complex response sequences where the nondiffer
encing or objective components were in fact quite 
low. 

Owing to space limitations, the drive problem 
cannot be adequately discussed here. A separate pa
per on the topic is in preparation for early publica
tion. 

Response Generation 

For any particular test situation, the problem for 
the PUPIL is one of generating responses which 
wil'l yield satisfactory payoffs on the average, while 

the problem for the experimenter is proper evalua
tion of the response generation means being used. 
Of particular interest at this stage were means suit
able for more or less "instinctive" and reflexive 
purposes. These are. characterized by simplicity, 
utility, and immediacy such that they are consist
ently effective in improvising. the many adaptations 
necessary to provide successful performance under 
continually different-although often nondistinctive 
-circumstances. 

The difference between an adaptive and a non
adaptive system is that the one can modify its rela
tionship with-and thus its average payoff from-its 
environment, while the other cannot. For reasons 
involving anti-chance presently to be pointed out, 
it is necessary for completeness to consider nega
tively adaptive-that is, systems which significantly 
degrade rather than improve their payoffs-as well as 
positively adaptive systems. 

In what follows, special significance is given to 
the concept of random behavior which, for a system 
like PUPIL, would result from generating its suc
cessive IS-bit responses completely at random, as 
if no information pertinent to effective behavior 
were available. Now, for a given system in a given 
environment, such random behavior would yield a 
certain average payoff, termed the random payoff 
rate, which is defined as that associated with zero 
effective relative intelligence. Also, there exists a 
maximum payoff rate limit and a minimum payoff 
rate limit, the one being that rate theoretically atta
inable by a system having maximum effective rela
tive intelligence and the other-purely for logical 
completeness-being that attainable by a system hav
ing maximum negative effective relative intelli
gence. Now, the payoff continuum defined by the 
range from maximum to random and random to 
minimum constitutes a scale useful for gauging the 
performance of a particular system operating sys
tematically-that is, making effective use of available 
information. Thus, the effective relative intelligence 
(hereafter called simply "intelligence") is arbitrari
ly defined as 

+ler = 
Actual Payoff Rate - Random Payoff Rate 

Minimum Payoff Rate - Random Payoff Rate 
which ranges in value from zero to one for Actual 
Payoff Rate ~ Random Payoff Rate. Similarly, 

-Ier = 
Actual Payoff Rate - Random Payoff Rate 

Minimum Payoff Rate - Random Payoff Rate 
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defines negative intelligence for Actual Payoff Rate ~ 
Random Payoff Rate. 

PUPIL cannot compute the I measure precisely, 
because only a privileged observer can know the 
maximum or minimum possible payoff rates, but it 
can achieve a practical approximation by using the 
maximum and minimum observed payoff instead, 
or-probably better-an average of the m best and n 
worst payoffs. 

Associated with any particular observed intelli
gence, whether positive or negative, is an empirical 
probability and thus a level of significance, such 
that an observed actual payoff rate differing sub
stantially from the random payoff rate is extremely 
unlikely to be due to chance alone. Viewed in this 
way, intelligence then is that capability which pro
duces behavior having a payoff rate significantly 
different from the chance or random payoff rate. If 
intelligence is sufficiently negative, it will neverthe
less still be significant-that is, anti-chance-and 
presumably can be made positive by reversing the 
logic involved. Thus, in explanation of a previous 
remark, behavior which proves negatively adaptive 
is negatively intelligent, and the system manifesting 
it could in principle either be readily modified by 
the designer so as to achieve commensurate positive 
intelligence or else could so modify its own beha
vior. 

Response Generation Means 

The PUPIL system must generate responses in a 
continuous, unending sequence so long as it is in 

operation. These responses, of course, can be and 
often are null responses that cause little or no 
change in the PUPIL internally or between the PU
PIL and its environment. There are 215 or 32,768 
distinct individual response codes that PUPIL can 
generate and these can be arranged in an extremely 
large number of different behavior sequences. Such 
generation involves the usual search problem-name
ly, that of efficiently retrieving or synthesizing 
"good" responses when there are so many possibili
ties. PUPIL was designed in part as an experimen
tal system for the testing and evaluation of various 
means for response generation. 

The most powerful means of response generation 
is believed to be one which functions so that all 
pertinent factors and past experience actively com
bine to suggest or elicit, through associations, ei
ther fruitful response possibilities or additional fac
tors (such as applicable new classifications, discov
ered relationships, etc.) which will' help in retriev
ing or synthesizing such fruitful responses. But this 
is an advanced approach requiring an extensive as
sociative memory, and although it has been blocked 
out it has not yet been attempted with PUPIL. 
Rather, simple response generation means which 
were believed to have general motor utility have 
been evaluated, with the intent of perfecting evalua
tion techniques as well as the means themselves, 
either as complete generation techniques or as con
stituents in more elaborate schemes. Table 1 gives 
the means evaluated so far. 

Table 1. Response Generation Means Used. 

Means No. Descriptive Name Type Principle 
Random Generation 
Classification 

1 
2 
3 
4 
5 
6 
7 
8 

Covert Response Repeating 

Creative 
Learned 
Creative 

Random 
Proven Utility 
Heuristic 

Overt Response Repeating 
Negative Analogy with Experience 
Positive Analogy with Experience 
Covert Response Copying 

" 
" 
" 
" 

Overt Response Copying 

Before discussing these means, it should be re
called that the response word of PUPIL has two 
portions, an overt one of nine bits representing in
structions to the simulated musculature, and a cov
ert one of six bits which, in effect, serves as in
structions from PUPIL to itself in a language of its 
own devising. This covert capability was provided 

to facilitate the making of identical overt responses 
in different response sequences and thus, in effect, 
represents context information. 

The random means is one employing a standard 
pseudorandom number generator subroutine, used 
to fill' in any part of either the covert or overt re
sponse not systematically determined. 
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Classification is the primary means provided for 
generating responses. It operates by learning con
sistent correlations between situation classes and 
response classes. These correlations are expressed in 
the form of Boolean classifiers which give output 
code elements in terms of logical functions of input 
code elements. Each such classifier is derived from 
experience and has recorded in association with it 
certain accumulated statistics permitting a compu
tation of utility which, if greater than some arbi
trary threshold, ensures that the classifier will be 
retained and used whenever applicable. In practice, 
classifiers are stored on a list according to utility 
rank as coded Boolean functions plus statistics on 
the number of times tried, the number of times 
used, the number of response bits coded, the total 
associated payoff accumulated, etc. Roughly speak
ing, a classifier as used by the program, is similar 
to several large multi-input, multi-output neu
rons having considerable internal logic. These clas
sifiers are expressions giving output code elements 
as explicit functions of input code elements, with 
no provision yet for finding probably good implicit 
relationships through associative processes-earlier 
mentioned as believed to be the most powerful 
means for generating responses when explicit 
knowledge is not available. 

The remaining response generation means other 
than the random means are ones that try to derive 
good responses using previous experience, operating 
whenever classification cannot provide a complete 
response. These means make use of short-term 
memory, either the last good response held in a spe
cial register or responses stored in a limited memo
ry, called the Stream of Experience Memory (or 
SEM) where the last n memorable responses and 
their antecedent situations are stored. For a re
sponse to be memorable it must be surprising in 
that its payoff differs from the expected payoff by 
some margin equal to or exceeding a threshold 
called MNEWS, presently set at 2.0 payoff units. 
The purpose of such selection is to reduce the stor
age and search burden while maintaining a relative
ly high quality of material for fill-in purposes. 

EVALUATION OF THE RESPONSE 
GENERATION MEANS USED 

Experimental Conditions 

The data used in the following analysis were ob
tained from Run 1 of PUPIL on January 25, 1965. 

This particular PUPIL, the program of which was 
compiled on that date, was "primed" with 365 clas
sifiers, a full Stream of Experience Memory, and 
other data obtained as a result of running PUPIL 
on January 24, 1965. The changes which justified 
the recompilation were minor ones. The test chosen 
for the run was an operant conditioning test in 
which the PUPIL was confined in an invisible pen 
measuring 16 by 16 units within which, on the first 
test made, a food tray was located at coordinates 8,-
8. The PUPIL was initially positioned at these 
same coordinates and made 948 responses which 
resulted in its exploring the pen rather thoroughly, 
making moves which terminated in 87 percent of 
the 256 locations within the pen and contacting 95 
percent of the pen boundary locations. The food 
tray was discovered and eaten from one time. Rein
forcement arrangements were such that the delta 
and organization components of payoff were sup
pressed. Under these conditions the maximum aver
age possible payoff was probably 19.53 for eating 
from the food tray while producing varied covert 
responses and changing position to avoid boredom. 

Figure 1 of the Appendix shows the 9th Experi
ence Performance Summary page for this 19-page 
run. The listing gives in order the response cycle 
number, the means generation methods used, the 
number of classifiers used, the number of associated 
payoffs used, the address of the best matching anal
ogous situation in the Stream of Experience Memo
ry, the payoff expectation for the response, the 
composite octal word containing PUPIL's response 
(last five digits) and the conversion of the environ
mental response from TUTOR (first seven digits), 
the resultant X, Y coordinates, the distance outside 
of the invisible pen attempted by the response, the 
SHOCK, COACH, FOOD and NOVELTY compo
nents of payoff, and the payoff less delta compo
nents (which is equal here to a measure called 
PAY), the energy reserve, the number of classifiers 
built on the response cycle, and the number of clas
sifiers in the classifier table. The EVAL measures 
at the bottom of the page are the cumulative objec
tive records for the means used as computed on a 
privileged information basis by TUTOR. These are 
not discussed here but full information is available 
from reference 1, which incidentally should be con
sulted for information on any item not adequately 
covered herein. The times-used figures shown in
clude not only those for this run but from the 1451 
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responses of the priming run. The YIELD figures 
shown are simplified ones obtained by a rough 
moving average, and should not be confused with 
the payoff yield figures to be presented in the sub
sequent analysis. 

The purpose of this test was to evaluate the 
available means of response generation and to test a 
newly introduced means-allocation control which 
could control usage for the various nonrandom 
means available to PUPIL but could not eliminate 
any of them altogether. The minimum relative fre
quency for any means was arbitrarily set at 10 per
cent, with reductions in such availability being 
made in accordance with the performance of the 
particular means as compared to the random means. 

Means Used 

Analogy. The two means using analogy are based 
on finding a situation recorded in the Stream of 
Experience Memory which corresponds most closely 
bit-for-bit with the existing situation. This is 
considered a very weak sort of analogy. (A more 
elaborate scheme effecting associative summing was 
abandoned earlier because of economic considera
tions.) Having found the most analogous situation, 
PUPIL examines the payoff associated with the re
sponse made, copying needed bits if the payoff was 
good (means 5) and logically complementing need
ed bits if the payoff was bad (means 6.). 

Response Copying and Repeating. These four 
means involving response iteration are based on the 
heuristics (1) that an action which is working out 
well should be continued (response repeating), (2) 
and that a good action that was discontinued, with 
unfortunate results, is worth trying again (response 
copying). A compilation here is that PUPIL makes 
both an overt and a covert response, so that the 
payoff possibilities in particular cases may be more 
determined by one than the other. For example, at 
some particular juncture in a task the proper covert 
response may be that the part being worked with 
still isn't turned the right way while the proper 
overt response would be to try a new orientation. 
On the other hand,· a proper overt response might 
be to repeat a move toward a desired object, while 
the proper covert response might be one that signi
fies full speed is now appropriate-a former hazard 
situation no longer prevailing. Brief descriptions of 
these means follow. 

1. Covert Response Repeating. (Means 3 ) 
Repetition of a good covert response just 
made. 

2. Overt Response Repeating. (Means 4) Re
petition of a good overt response just 
made. 

3. Covert Response Copying. (Means 7) The 
covert part of the last good response is 
copied. 

4. Overt Response Copying. (Means 8) The 
overt part of the last good response is cop
ied. 

Recall that the above six means are all systematic 
fill-in or creative means-that is, means used to fill 
in part or all of a response after the classification 
means has been exhausted. 

Means Evaluations 

General. Means analysis based on payoffs (called 
YIELD) was a recent introduction in the PUPIL 
program, its purpose being to provide PUPIL with 
a criterion for allocating means, as previously de
scribed. The TUTOR program already had an 
evaluative subroutine, based on perfect information, 
which provided the objective EV AL measures of 
the effectiveness of various means, the results of 
which are not available to PUPIL. The YIELD 
computations as originally set up to minimize com
putational and memory requirements lacked the 
breadth and depth desirable for a comprehensive 
analysis. For this reason, a manual analysis has been 
made of the subject run, the data for which are tab
ulated in Appendix I. For those who would like to 
reproduce the data, the complete run tabulation it
self is available from the author, as is the program 
which produced the run; this same program is also 
published in reference 1. 

The subsequent analysis was made along lines, 
some aspects of which will probably be incorporat
ed into PUPIL for control or into TUTOR for ana
lytic purposes. Basically, the techniques offered 
have nonrigorous utility for evaluating the worth of 
various response generation means,both for the 
PUPIL program and for the researcher, and to pro
vide information for program diagnostic purposes, 
since the analyses not only show the utility of the 
various means, but often disclose abnormalities due 
to design or program errors as well. 

As responses were generated by PUPIL, various 
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means were used and recorded along with other ed in the Appendix. Table 2 summarizes the most 
data in the Experiment Performance Summary, mak- important aspects associated with the various means 
ing it possible to tabulate payoffs by means as list- used during the run. These means or their combina-

Table 2. Means Combinations Data Ranked by Performance 

No. of Avg. Min. 
Rank Means Cases Payoff Payoff 

1 4,5 12 +2.51 - 5.56 
2 2,3 5 +1.25 - 0.06 
3 3,4 49 +0.37 -11.48 
4 1,4 17 +0.30 - 9.43 
5 2,4,5 1 0.00 0.00 
6 3 78 -0.19 - 0.64 
7 2,3,4 4 -0.41 - 1.41 
8 4,6 29 -0.45 - 9.60 
9 7 54 -0.51 - 3.10 

10 1,8 17 -0.52 -11.22 
11 2 43 -1.75 - 7.23 
12 7,8 33 -2.12 -11.58 
13 1* 39 -2.80 -13.18 
14 5 26 -3.19 -15.10 
15 5,8 17 -4.16 -11.95 
16 1 324 -4.36 -16.42 
17 6,8 10 -4.83 -14.03 
18 6 228 -5.13 -16.42 
19 2,4,6 1 -5.29 - 5.29 
20 1,2,4 1 -5.29 - 5.29 

tions are listed in rank order according to their av
erage payoff. The table gives the rank, the combi
nation of means used, the number of times the com
bination was used during the run, minimum and 
maximum payoff occurring, the payoff range, an 
effective relative intelligence measure based on the 
average of all completely random responses, and an 
effective relative intelligence measure based on ran
dom responses which were made under favorable 
conditions-namely, in the central region of the pen 
near the food tray (denoted as means 1 * in Table 5 
in the Appendix). These results are discussed in 
what follows. 

Means 4,5. This combination is one in which the 
overt portion of the response was filled in by repe
tition from a response just made and the covert part 
by positive analogy from a similar situation recorded 
in the Stream of Experience Memory. The average 
payoff of +2.51 was greatly enriched by a singular 
success in finding the food tray and eating from it, 
which provided a total payoff of +23.23. This means 
combination was used only 12 times, which is not 

ler based ler based 
Max. Payoff on on 

Payoff Range Means 1 Means 1 * 
+23.23 28.79 +.288 +.238 
+ 6.30 6.36 +.235 +.181 
+ 7.03 18.51 +.198 +.142 
+ 6.30 15.73 +.195 +.139 

0.00 0.00 +.183 +.125 
0.00 0.64 +.175 +.117 
0.00 1.41 +.165 +.107 

--l-- 7.09 16.69 +.164 +.105 
0.00 3.10 +.161 +.103 

+ 4.72 15.94 +.161 +.102 
+ 7.09 14.32 +.109 +.047 
+ 4.38 15.96 +.094 +.030 
+ 7.09 20.27 +.065 .000 
+ 5.40 20.50 +.049 -.029 
+ 3.78 14.73 +.008 -.100 
+ 8.10 24.52 .000 -.115 
+ 1.45 15.48 -.036 -.149 
+ 9.45 25.87 -.064 -.171 
- 5.29 0.00 -.077 -.183 
- 5.29 0.00 -.077 -.183 

fully satisfactory for statistical analysis purposes, but 
if we accept it as indicative, then we can make an 
estimate of the anti-chance significance of such an 
average by assuming it to be a sample average from 
a population of random averages. Table 3 summar
izes the averages of the randomly derived payoffs 
for each of the 19 response blocks. From these values, 
the standard deviation obtained was 1.33 payoff 
units and the mean was -4.36. With these values 
as criteria, the significance of the 4, 5 combination 
is that associated with a deviation ratio of 5.170"R, 
as shown by Table 4. A measure such as this, non
rigorous as it is, may yet have utility in learning pro
grams as one permitting a rational ranking of response 
generation means. 

At any rate, the success of this means combina
tion was due to the fact that the repetition of a suc
cessful overt response (means 4, a spatial move) 
also tended to be successful. The covert portion 
filled in by means 5 cannot be considered signifi
cant at this stage of PUPIL development, since the 
self-formed language comprised by covert re-
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Table 3. Means 1, Random Response Averages, by 
Blocks. 

i, Xi, Abs. 
Block Times Block Deviation 
No. Used Average !Xi-XR! !Xi-XR!2 

1 15 -4.29 0..0.7 .0.0.49 
2 20. -6.05 1.69 2.8561 
3 8 -5.45 1.0.9 1.1881 
4 15 -5.74 1.38 1.90.44 
5 11 -3.51 0..85 .7225 
6 20. -3.83 0..53 .280.9 
7 13 -2.78 1.58 2.4964 
8 20. -3.97 0..39 .1521 
9 13 -3.02 1.34 1.7956 

10. 15 -4.56 0.20. .0.40.0. 
11 24 -5.26 0.90. .810.0 
12 15 -1.94 2.42 5.8564 
13 18 -1.25 3.11 9.6721 
14 24 -4.94 0..58 .3364 
15 17 -4.25 0..11 .0.121 
16 24 -4.08 0.28 .0784 
17 13 -4.96 0..60. .360.0. 
18 15 -4.49 0..13 .0.169 
19 24 -6.63 2.27 5.1529 

19 I 33.7312 
Average, X R = -4.36 

Sample Variance, O"R2 = 1.7753 
Std. Deviation, O"R = V1.7753 = 1.3324 ~ 1.33 

sponses is in an extremely rudimentary or provi
sional stage of self-development. 

Means 2,3. Here, classifiers built on successful 
overt responses provided that portion of the response, 
while means 3 filled in the covert portion from a 
good response just made. Only five cases occurred, 
hence the significance of the payoff average of + 1.25 
(which was largely due to the maximum payoff of 
+ 6.30.) cannot be considered conclusive. 

Means 3,4. The 49 cases, with an average payoff 
of + O. 37 and and a vigorous range, indicate rather 
conclusively that this is a useful means, mostly at 
this stage due to the overt component furnished by 
means 4 (which incidentally cannot occur alone). 

Means 1,4. Here the covert component was filled 
in at random with results quite similar to those 
(or 3,4. 

Means 2,4,5. An isolated inconclusive case. 
Means 3. Since this means provides a response 

containing only a covert portion, nothing is done by 
PUPIL to change its relationship with its environ
ment. Under many test circumstances, such immo-

Table 4. Average Payoffs of Means Combinations 
Compared to Means 1 (Random) Averages. 

Abs. De- Critical 
Xi, viation, Ratio 

Rank, Means No. of Avg. = = 
i Comb. Cases Payoff !Xi-XR! !Xi-XR!/o-R 
1 4,5 12 +2.51 6.87 5.17R 
2 2,3 5 +1.25 5.61 4.22R' 
3 3,4 49 +0..37 4.73 3.56R 
4 1,4 17 +0..30. 4.66 3.5DR 
5 2,4,5 1 0..0.0. 4.36 3.28R 
6 3 78 -0..19 4.17 3.14R 
7 2,3,4 4 -0..41 3.95 2.97R 
8 4,6 29 -0..45 3.91 2.94R 
9 7 54 -0..51 3.85 2.89R 

10. 1,8 17 -0..52 3.84 2.89R 
11 2 43 -1.79 2.57 1.93R 
12 7,8 33 -2.12 2.24 1.68R 
13 1* 38 -2.80. 1.56 1.17R 
14 5 26 . -3.19 1.17 D.88R 
15 5,8 17 -4.16 0.20. o..15R 
16 1 325 -4.36 0..0.0 D.DDR 
17 6,8 10. -4.83 0..47 D.35R 
18 6 228 -5.13 0..77 o..58R 
19 2,4,6 1 -5.29 0..93 o..7DR 
20. 1,2,4 1 -5,29 0..93 D.7DR 

bilization could yield large positive or negative 
payoffs, but on the occasions when it occurred here 
only a slight negative component due to boredom 
was usually present. Thus the significance of the 
average payoff attained was that, in this particular 
negative environment on the occasions used, it was 
a rather sure way to avoid a possibly substantial 
negative payoff. The ultimate purpose of such a he
sitant means is to provide for mental accommoda
tions which may be necessary in forming successful 
action chains. In other words, it provides in elemen
tary form for reasoning processes using classifier 
chains which could lead to a correct response. At 
this stage of development, however, this type of 
chaining was not to be expected. If it were to occur, 
the means fonowing would involve means 2, and for 
the means 3 usage to be effective, the subsequent 
means 2 payoffs would have to be significantly bet
ter than the random average under similar condi
tions. 

Theoretically, there being no program facility yet 
for ordering means according to their utility, the 
allocation of means 3 should have been more nearly 
equal to that for means combination 3-4, while 
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means 4-5 and 4-6 should have occurred more 
often. This discrepancy led to the discovery of a 
minor program error. 

Other Means. The remaining means deserve lit
tle additional comment, their results largely being 

.~ .. tvide'l1t by inspecting Tables A and C. However, it 
,Jsw€)rth pointing O'ut that means 8 and combina
, tions involving means 8 were noted often to have 

repeated an overt response which had already been 
. tried, unsuccessfully by means 4. This led to the 
'~overy of a program error which occasionally 
'permitted this undesired event to occur. 

. Note in general that means involving overt ele
ments obtained by 2, 3, .and 4 were fairly satisfac
tory, but that means involving overt elements ob
taied from 6 were worse than random but not sig
nificantly so. Note also that means 6 was used 228 
times, or for 24 percent of the" responses. A pro
gramming fault is surely involved here, for 5 and 6, 
at present, without means sequencing, are means of 
last resort. The use of means 6 was expected to ex
ceed the use of means 5 in about the proportion 
shown, since there were many more negative expe
riences than positive ones. Means 6, it should be 
recalled, makes use of "negative analogy" in that 
the response previously made in an analogous situa
tion-which had associated with it a negative payoff 
-was logically complemented to provide a trial re
sponse. 

The fact that the average payoff for means 6 is 
less than the average payoff at random, while not 
scientifically significant, is practically significant in 
that. it has led to the discO'very of program faults 

'whtch have not yet been fully investigated. Briefly, 
0iJestmatches were being m~de that were far from 
being the best available and there is a persistent 
and probably abnormal sequential trend with time 
in the best match addresses. 

Evaluation 

The results obtained indicate that most of these 
means were effective under. the operant condition
ing test conditions in use. Means 6, the worst 
means, was in fact used less often as the run prog
ressed, but this failed to improve performance ma
terially because its performance was not significant
ly worse than random anyway and the random 
means usually had to be used in its place. Later, 
when a planned "internal perception" is introduced, 
PUPIL will have an opportunity to develop and 

learn criteria for means selection not based on per
formance records alone. The current introduction of 
means or means combination sequencing according 
to payoff yield figures of the type presented herein, 
the correction of various program faults, and the 
planned introduction of additional primitive means 
and an adaptive subprogram for generating new 
means, should an contribute material to PUPIL's 
performance. 

ENTROPY CONSIDERATIONS 

An appropriate place to measure the so-called 
entropy associated with a system like PUPIL is be
lieved ' to be with respect to its coded output re
sponses. Such a measure was approximated by 
applying the usual entropy formula for information 
theory to each 50 responses. The result was then 
normalized by dividing it by the maximum possible 
50 response entropy to achieve an entropy index, 

50 
- ~ Pi • log2 Pi 

i= 1 
HBLoeK = --------

. 50 1 • log2 1 
-~ - -

i=l SO 50 

1 50 
- - 5 .64 ~ Pi • log Pi 

i=l 

where the Pi are the observed relative frequencies 
of the different responses within the block of 50 
responses. This index was high, beginning at about 
0.8 and rising steadily (and unexpectedly) to a lev
el over 0.9 at the end of the run). Most of this in
crease is attributed to an increase in use of the ran
dom means (from 36 times in the first 100 re
sponses to 45 times in the last 100 responses) re
sulting from reduced use allocation for means 6. 
However, a part of the increase probably meant that 
the PUPIL was growing more resourceful in its at
tempt to solve the test problem. But had it learned 
to find the food tray and eat from it as continuously 
as its novelty drive would permit, its entropy index 
would surely have decreased drastically to low lev
els. 

While not yet used in such a manner, it is be
lieved that the entropy index is a useful measure of 
the general intellectual health of learning systems
both for the system itself and for its designer. Sure
ly a vigorous system should exhibit a high entropy 
index while striving to solve a problem, but this 
should also be accompanied by significant I meas
ures for its response means. Earlier PUPILs with a 
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low entropy index have invariably also exhibited 
mediocre I measures-graphs of which present a cu
riously "squeezed" appearance suggesting a vital 
intellectual deficiency. Besides indicating inade
quate variety of behavior, a low entropy index may 
also mean that the system has developed inefficient 
coding. 

SUMMARY 

A coded-input/coded-output general learning 
program, PUPIL, interacting with a program, TU
TOR, ,simulating its environment, was tested in op
erant conditioning experiments involving elementa
ry spatial orientation, locomotion, accommodation, 
and manipulation. The responses generated by PU
PIL consist of a covert part, representing context 
information, transmitted to itself for use in generat
ing the next response, and an overt part transmitted 
to TUTOR for conversion into an input word to 
PUPIL, one part of which represents physical cir
cumstances and the other part of which is a reinfor
cer having positive or negative value. 

PUPIL's main means of response generation uses 
self-constructed classifiers (representing concepts) 
which specify output elements in terms of external 
and internal input elements. This means was not 
fully discussed, for its development is not satisfac
torily complete due to inadequate length of comput
er runs, but brief runs on various tests indicate it to 
have promising utility in machine applications re
quiring intelligent control. 

The main results reported concern an objective, 
measure of performance, arbitrarily termed the ef
fective relative intelligence, which was used to 
evaluate six elementary creative means of response 
generation under conditions when insufficient in
formation was available for complete classification. 
This evaluation indicated that eleven combinations 
largely involving four of these were significantly 
intelligent under the experimental circumstances 
(means 3, 4, 5, 7) with one other (means 8) show
ing promise, and another (means 6) being no better 
than random, evidently due to program errors. 

CONCLUSION 

It is believed that the TUTOR program is an ef
fective one for the efficient objective testing of 
learning programs such as PUPIL under controlled 
conditions, and that the PUPIL program constitutes 

an adequate basic system for the testing of response 
generation means or other learning system features 
or techniques by incorporation and subsequent test
ing with TUTOR, which incidentally analyzes and 
evaluates performance and prints out results in a 
convenient form for assimilation. Both programs 
are available in punched card form from Grafix, 
Inc., for card reproduction costs only. The program
ming language is FORTRAN IV. 

It is also believed that the I er measure or the syste
matic/random deviation ratio are simple objective 
ones which make it possible, in relatively short com
puter runs, to determine the effectiveness of response 
generation means or other various techniques or pro
cedures involved in system performance, so that the 
system can improve its performance or be improved 
by its designer without incurring undue expenses. 
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APPENDIX 
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Figure 1. Data sample page. 
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Table 5. Payoff Data by Means Combinations from PUPIL 25016500; 

Means 1 Means 1, Conttd. Means 1, Cant'd. 

PG. BLOCK PG. BLOCK PG. BLOCK 
NO. RCNO PAYOFF AVG. NO. RCNO PAYOFF AVG. NO. RCNO PAYOFF AVG. 

1 1454 -4.05 4 1601 -13.75 6 1745 +2.36 
1 1457 -16.42 4 1604 +4.05 6 1748 -4.05 
1 1460 -11.33 4 1607 -5.72 6 1750 +1.35 -3.83 
1 1462 -3.94 4 1609 -16.42 7 1755 -12.88 
1. 1465 -4.03 4 1611 -3.94 7 1760 -6.72 
1 1468 -2.68 4 1613 -2.68 7 1768 -1.41 
1 1470 -2.68 4 1615 -3.94 7 1779 0.00 
1 1472 +1.35 4 1621 -3.94 7 1783 0.00 
1 1485 -2.68 4 1622 -13.75 7 1785 0.00 
1 1490 -8.08 4 1624 -16.42 7 1786 +3.15 
1 1491 -7.17 4 1626 -9.13 7 1789 0.00 
1 1493 -2.68 4 1629 -7.17 7 1790 +2.70 
1 1496 -1.33 4 1630 +4.05 7 1796 -0.38 
1 1498 -2.68 4 1634 0.00 7 1797 -6.75 
1 1499 +4.05 -4.29 4 1636 +2.7'() -5.74 7 1798 -6.64 
2 1503 -3.06 5 1654 -9.13 7 1800 -7.17 -2.78 
2 1504 -11.33 5 1656 -7.17 8 1801 +2.70 
2 1505 -3.94 5 1661 +1.35 8 1805 -7.17 
2 1506 -9.13 5 1670 +2.70 8 1806 -7.17 
2 1507 -16.42 5 1675 -10.78 8 1807 -2.68 
2 1510 -9.13 5 1678 -7.17 8 1810 +5.40 
2 1512 -2.74 5 1680 -13.75 8 1813 -1.35 
2 1515 -2.68 5 1689 +6.75 8 1814 +2.36 
2 1524 -6.79 5 1693 -5.44 8 1817 -4.05 
2 1525 -7.17 5 1694 +8.10 8 1819 -2.68 
2 1526 +4.05 5 1697 -4.05 -3.51 8 1820 -16.42 
2 1529 0.00 6 1702 0.00 8 1821 -5.44 
2 1530 -12.57 6 1704 -9.87 8 1825 -5.47 
2 1532 -3.94 6 1705 -13.75 8 1826 +2.70 
2 1538 -11.83 6 1706 -7.17 8 1829 0.00 
2 1539 -2.68 6 1708 -11.33 8 1831 +1.35 
2 1540 -5.44 6 1709 -2.68 8 1834 0.00 
2 1541 -5.44 6 1714 -5.29 8 1835 -10.48 
2 1546 0.00 6 1721 +1.57 8 1836 -16.42 
2 1547 -10.84 -6.05 6 1724 -1.43 8 1846 -1.35 
3 1557 +7.09 6 1729 -2.70 8 1847 -13.18 -3.97 
3 1567 -13.75 6 1730 +2.70 9 1852 0.00 
3 1569 -5.29 6 17.33 -14.15 9 1853 0.00 
3 1585 +2.70 '6 1734 -2.68 9 1854 -8.52 
3 1588 -11.33 6 1736 -2.68 9 1855 -3.94 
3 1590 -3.94 6 1739 -3.94 9 1865 -6.94 
3 1597 -16.42 6 1743 -0.18 9 1873 -0.38 
3 1599 -2.68 -5.45 6 1744 -2.70 9 1875 +4.72 



COMPUTER EXPERIMENTS IN MOTOR LEARNING 767 

Means 1 Cont'd. Means 1 Cont'd. Means 1 Contld. 

PG. BLOCK PG. BLOCK PG. BLOCK 
NO. RCNO PAYOFF AVG. NO. RCNO PAYOFF AVG. NO. ReNO PAYOFF AVG. 

9 1878 +3.15 12 2005 -3.94 14 2115 -7.17 
9 1882 -2.70 12 2007 -2.68 14 2117 -5.44 
9 1883 -9.34 12 2008 -16.42 14 2123 0.00 
9 1886 +1.35 12 2013 -7.17 14 2126 -7.17 
9 1897 -9.49 12 2015 -2.68 14 2130 +1.81 
9 1898 -7.17 -3.02 12 2017 -2.68 14 2133 -2.68 

10 1910 -1.33 12 2018 -5.44 14 2137 -7.02 
10 1911 -2.68 12 2020 -2.68 14 2139 -11.33 
10 1912 0.00 12 2022 -3.94 14 2140 -13.75 
10 1914 -11.33 12 2030 -2.68 14 2144 -2.68 
10 1915 -13.75 12 2031 +4.05 14 2145 -2.68 
10 1916 -1.33 12 2034 +5.67 14 2149 -2.68 -4.94 
10 1927 -12.13 12 2039 +2.70 15 2151 -16.42 
10 1935 +4.36 12 2043 +4.72 15 2152 -5.44 
10 1938 0.00 12 2046 +4.05 -1.94 15 2161 -3.26 
10 1939 +6.30 13 2051 -7.17 15 2166 -0.08 
10 1942 -8.52 13 2053 -2.68 15 2167 +2.36 
10 1943 -2.68 13 2054 -2.74 15 2176 -2.68 
10 1946 -11.33 13 2056 +5.40 15 2177 +4.05 
10 1948 -2.68 13 2059 0.00 15 2182 -6.64 
10 1949 -11.33 -4.56 13 2061 -16.42 15 2184 -3.94 
11 1953 -5.40 13 2063 +1.35 15 2186 -5.44 
11 1954 0.00 13 2074 0.00 15 2187 -2.68 
11 1955 -6.64 13 2075 0.00 15 2189 -7.17 
11 1956 -2.68 13 2076 0.00 15 2191 -11.33 
11 1957 -8.52 13 2078 -4.05 15 2194 -5.44 
11 1961 -5.44 13 2079 +3.78 15 2195 +4.05 
11 1965 +1.89 13 2083 -4.05 15 2198 -9.49 
11 1972 -1.35 13 2087 +2.70 15 2199 -2.68 -4.25 
11 1974 0.00 13 2091 -2.70 16 2204 +7.38 
11 1975 0.00 13 2096 +5.40 16 2207 0.00 
11 1977 +2.70 13 2099 -1.35 16 2208 -2.70 
11 1980 -14.03 13 2100 0.00 -1.25 16 2209 -2.70 
11 1981 -16.42 14 2101 -2.70 16 2210 -12.68 
11 1983 -2.68 14 2102 -5'.29 16 2211 -2.68 @; 

11 1986 -2.68 14 2103 -5.60 16 2213 -7.17 
11 1989 -9.13 14 2104 -2.68 16 2217 -7.17 
11 1990 -5.29 14 2105 -2.74 16 2222 0.00 
11 1991 -2.68 14 2106 -2.70 16 2224 -9.13 
11 1993 -7.17 14 2107 -2.68 16 2225 +4.05 
11 1994 -2.68 14 1108 -5.44 16 2228 0.00 
11 1995 -3.94 14 2109 -11.33 16 2229 0.00 
11 1996 -11.33 14 2110 -5.82 16 2230 -10.48 
11 1999 -9.13 14 2112 -5.29 16 2232 0.00 
11 2000 -13. 75 -5.26 14 2113 -5.60 16 2233 0.00 



768 PROCEEDINGS - FALL JOINT COMPUTER CONFERENCE, 1965 

Means 1 Cont'd. Means 1 Cont'd. Means 1 * Cont I d. 

PG. BLOCK PG. BLOCK PG. BLOCK 
NO. RCNO PAYOFF AVG. NO. RCNO PAYOFF AVG. NO. RCNO PAYOFF AVG. 

16 2234 0.00 19 2371 +1.35 10 1927 -12.13 
16 2235 -9.13 19 2375 +2.70 11 1972 -1.35 
16 2236 -6.79 19 2380 0.00 11 1974 0.00 
16 2237 -16.42 19 2381 -9.43 11 1975 0.00 
16 2243 -8.52 19 2382 -2.68 12 2043 +4.72 
16 2246 -3.94 19 2383 -2.68 13 2074 0.00 
16 2248 -8.52 19 2384 -11.33 13 2075 0.00 
16 2250 -1.33 -4.08 19 2385 -13. 75 13 2076 0.00 
17 2255 -11.33 19 2386 -13. 75 13 2078 -4.05 
17 2257 -11.33 19 2387 -16.42 13 2091 -2.70 
17 2261 -3.94 19 2388 -11.33 16 2207 0.00 
17 2263 -5.44 19 2389 -9.13 16 2208 -2.70 
17 2267 -14.03 19 2391 +6.75 17 2277 -4.35 
17 2268 +2.70 19 2394 -1.53 17 2281 -10.78 
17 2271 -11.45 19 2396 -16.42 -6.63 19 2380 0.00 
17 2277 -4.35 19 2381 -9.43 -2.80 
17 2281 -10.78 324 cases, -4.36 avg. 
17 2286 -2.68 39 cases, -2.80 avg. 
17 2287 +1.35 Means 1* 
17 2289 +1.35 *Se1ected cases in Means 2 
17 2300 +5.40 -4.96 pen center area. 
18 2304 -5.44 ·3 1592 -7.17 -7.17 
18 2305 +2.70 1 1454 -4.05 5 1651 -7.17 
18 2309 -13. 75 2 1529 0.00 5 1658 -7.23 
18 2314 -2.68 2 1530 -12.57 5 1660 -7.23 
18 2323 -2.68 2 1546 0.00 5 1662 +1.51 
18 2325 -13.75 2 1547 -10.84 5 1669 -4.39 
18 2333 -8.36 3 1557 +7.09 5 1682 -7.23 
18 2334 -2.68 4 1634 0.00 5 1683 +1.35 
18 2335 -2.68 5 1675 -10.78 5 1684 +1.51 -3.61 
18 2339 -2.68 5 1697 -4.05 6 1725 -4.37 
18 2341 -2.68 6 1702 0.00 6 1726 +2.70 
18 2342 -2.68 ·6 1743 -0.18 6 1749 -6.85 -2.84 
18 2343 +4.05 6 1744 -2.70 7 1769 +1.35 
18 2347 -11.33 6 1745 +2.36 7 1770 +1.57 
18 2348 -2.68 -4.49 6 1748 -4.05 7 1774 +1.77 +1.56 
19 2352 -6.79 7 1783 0.00 8 1848 +4.05 +4.05 
19 2357 -11.22 7 1796 -0.38 9 1856 -2.68 
19 2359 -2.68 7 1797 -6.75 9 1867 +2.70 
19 2360 -16.42 8 1813 -1.35 9 1899 +2.70 +0.91 
19 2361 -2.68 8 1817 -4.05 10 1909 -7.17 
19 2362 -2.68 8 1846 -1.35 10 1929 +1.35 
19 2365 -2.68 8 1847 -13.18 10 1944 -4.03 
19 2367 -2.68 9 1878 +3.15 10 1947 -7.17 -4.26 
19 2368 -13.75 9 1882 -2. 70 11 1962 +4.05 



COMPUTER EXPERIMENTS IN MOTOR LEARNING 769 

Means 2 Cont'd. Means 3 Cont'd. Means 3 Cont'd. 

PG. BLOCK PG. BLOCK PG. BLOCK 
NO. RCNO PAYOFF AVG. NO. RCNO PAYOFF AVG. NO. RCNO PAYOFF AVG. 

11 1987 -7.17 6 1727 -0.16 15 2159 -0.64 
11 1988 0.00 -1.04 6 1731 0.00 15 2164 -0.06 
12 2011 -7.17 -7.17 6 1741 -0.06 -0.07 15 2168 -0.16 
14 2118 +4.05 7 1752 -0.42 15 2179 -0.06 -0.22 
14 2148 -6.79 -1.37 7 1758 -0.06 16 2202 -0.16 
15 2153 -7.17 7 1763 -0.16 16 2205 -0.06 -0.11 
15 2171 -1.61 7 1765 -0.38 17 2265 -0.06 
15 2178 +7.09 7 1781 -0.06 17 2275 -0.58 
15 2181 -4.41 -1.53 7 1791 -0.16 17 2280 -0.06 
16 2218 +4.05 7 1794 -0.16 -0.20 17 2288 -0.06 
16 2240 -7.17 8 1803 -0.06 17 2298 -0.06 -0.16 
16 2245 -7.17 8 1811 -0.16 18 2329 -0.52 
16 2247 -1.33 -2.91 8 1815 -0.16 18 2331 -0.16 
17 2252 +1.35 +1.35 8 1823 -0.16 18 2334 -0.06 -0.25 
18 2310 +4.05 8 1827 -0.06 19 2372 0.00 
18 2326 +1.35 8 1832 -0.06 19 2392 -0.06 -0.03 
18 2349 -3.94 8 1841 -0.32 
18 2350 -1.33 +0.13 8 1844 -0.22 -0.15 78 cases, -0.19 avg. 
19 2397 +4.05 +4.05 9 1871 -0.06 

9 1876 -0.06 Means 5 
43 cases, -1. 75 avg. 9 1880 -0.16 

9 1887 -0.16 -0.11 1 1483 -1.53 -1.53 
Means 3 10 1921 -0.64 2 1523 -0.40 -0.40 

10 1923 -0.16 5 1667 0.00 
1 1473 -0.16 10 1930 -0.16 5 1668 -1.35 
1 1476 -0.34 10 1932 -0.48 5 1692 -15.10 -5.48 
1 1479 -0.62 10 1936 -0.06 -0.30 6 1713 -0.12 
1 1488 -0.16 -0.32 11 1951 0.00 6 1720 -0.14 -0.13 
2 1517 '~O .16 11 1963 -0.06 7 1754 -1.14 
2 1519 -0.16 11 1968 -0.48 7 1767 -1.10 
2 1527 -0.06 11 1978 -0.16 -0.18 7 1777 -2.70 
2 1534 -0.16 12 2024 -0.16 7 1778 0.00 -1.24 
2 1536 -0.38 12 2027 -0.54 -0.35 8 1808 -13.75 -13.75 
2 1544 -0.42 13 2057 -0.06 9 1851 -0.12 
2 1549 -0.16 -0.21 13 2065 -0.42 9 1874 -0.34 
3 1553 -0.50 13 2067 -0.34 9 1884 -2.68 -1.05 
3 1574 -0.32 13 2093 -0.06 10 1934 -1.20 -1.20 
3 1576 -0.16 13 2097 -0.16 -0.21 12 2037 -9.51 
3 1578 -0.16 14 2119 -0.06 12 2050 -7.17 - 8.34 
3 1586 -0.06 -0.24 14 2121 -0.06 13 2077 -1.35 
4 1640 0.00 0.00 14 2128 -0.16 13 2092 +4.72 +1.69 
5 1695 -0.06 14 2135 -0.16 -0.11 16 2221 -4.05 
5 1700 -0.16 -0.11 15 2156 -0.16 16 2223 -6.79 -5.42 



770 PROCEEDINGS - FALL JOINT COMPUTER CONFERENCE, 1965 

Means 5 Cont'd. Means 6 Cont'd. Means 6 Cont'd. 

PG. BLOCK PG. BLOCK PG. BLOCK 
NO. ReNO PAYOFF AVG. NO. ReNO PAYOFF AVG. NO. ReNO PAYOFF AVG. 

17 2296 -2.11 -2.11 3 1580 -1.35 6 1707 -2.68 
18 2308 -13.75 3 1581 -1.35 6 1710 +1.35 
18 2313 -6.73 3 1582 0.00 6 1715 -2.68 
18 2315 +5.40 -5.03 3 1583 -7.99 6 1716 +2.70 3 1584 -2.68 6 1735 -2.68 3 1589 -9.13 

26 cases, -3.19 avg. 3 1591 -2.68 6 1737 -2.68 
3 1593 +2.70 6 1738 -5.44 

Means 6 3 1596 -2.68 6 1740 +6.75 -0.90 
3 1598 -2.68 7 1756 -16.42 

1 1453 -2.70 3 1600 -2.68 -3.23 7 1757 +1.35 
1 1455, 0.00 4 1602 -3.94 7 1761 -13.75 
1 1456 -5.38 4 1603 -16.42 7 1762 +1.35 
1 1458 -2.68 4 1608 -9.13 7 1780 +4.72 
1 1459 -5.44 4 1610 -13.75 7 1784 -4.05 
1 1461 -16.42 4 1612 -2.68 7 1799 -5.44 -4.61 
1 1463 -11.33 4 1614 -2.68 8 1809 -9.13 
1 1464 -5.44 4 1616 +2.70 8 1818 -12.68 
1 1466 -2.68 4 1619 -15.10 8 1822 +1.35 
1 1467 -11.33 4 1620 -3.94 8 1830 -11.83 
1 1469 -5.44 4 1623 '-13.75 8 1837 -2.68 
1 1471 -11.33 4 1625 -2.68 8 1838 -2.68 
1 1484 -12.57 4 1627 -2.68 8 1839 +1.35 -5.19 
1 1486 +2. 70 4 1628 -9.13 9 1857 +8.10 
1 1492 -3.94 4 1635 -6.64 9 1860 +1.35 
1 1494 -16.42 4 1639 +4.72 9 1866 -3.94 
l 1495 -7.17 4 1642 -2.68 9 1870 +1.35 
1 1497 -16.42 -7.44 4 1643 +4.05 9 1885 -7.17 
2 1508 -5.44 4 1647 -5.40 9 1896 -2. 70 -0.50 
2 1509 -2.68 4 1648 -8.68 10 1902 -2.68 
2 1511 -16.42 4 1649 -9.13 10 1903 -5.44 
2 1513 -2.68 4 1650 -7.17 -5.91 10 1904 ":5.44 
2 1514 -2. 74 5 1652 -9.13 10 1905 -11.33 
2 1516 +1.35 5 1653 -7.17 10 1906 -2.68 
2 1531 -2.68 5 1655 -9.13 10 1907 -3.94 
2 1533 +1.35 5 1657 -2.68 10 1908 -7.17 
2 1542 +2. 70 5 1659 -2.80 10 1913 -8.52 
2 1548 +1.35 -2.59 5 1676 -9.13 10 1917 +1.35 
3 1560 +3.78 5 1677 -7.17 10 1928 -2.68 
3 1563 -2.6"8 5 1679 -9.13 10 1945 -16.42 
3 1564 -9.13 5 1681 -2.68 10 1950 +9.45 -4.63 
3 1565 -9.19 5 1687 -4.03 11 1958 -7.17 
3 1566 -2.68 5 1688 -9.13 11 1959 -16.42 
3 1568 -9.13 5 1698 +1.89 -5.86 11 1960 -2.68 
3 1570 +1.35 6 1703 -2.70 11 1973 0.00 



COMPUTER EXPERIMENTS IN MOTOR LEARNING 771 

Means 6 Cont'd. Means 6 Cont'd. Means 6 Cont' d. 

PG. BLOCK PG. BLOCK PG. BLOCK 
NO. RCNO PAYOFF AVG. NO. RCNO PAYOFF AVG. NO. RCNO PAYOFF AVG. 

11 1976 -12.19 15 2154 +1.35 18 2322 -5.44 
11 1982 -2.68 15 2162 -0.12 18 2324 -11.33 
11 1984 -16.42 15 2163 +3.15 18 2336 -13.75 
11 1985 -16.42 15 2173 -2.70 18 2337 -16.42 
11 1992 -2.68 15 2174 -8.52 18 2338 -2.68 
11 1997 -7.17 15 2175 -9.13 18 2340 -16.42 
11 1998 -11.33 -8.65 15 2183 -1.33 18 2346 -5.29 -7.75 
12 2001 -16.42 15 2185 -9.13 19 2351 -2.68 
12 2002 -2.68 15 2188 -9.13 19 2353 +2.70 
12 2003 -3.94 15 2190 -16.42 19 2358 -16.42 
12 2004 -5.44 15 2192 -5.44 19 2363 -2.68 
12 2006 -2.68 15 2193 -2.68 19 2364 -16.42 
12 2009 -2.68 15 2200 +5.40 -4.21 19 2366 -16.42 
12 2010 -11.33 16 2206 -1.35 19 2369 -11.33 
12 2012 -16.42 16 2212 -2.68 19 2370 -2.68 
12 2014 -2.68 16 2214 -16.42 19 2374 -11.33 
12 2016 -2.68 16 2215 -2.68 19 2379 -0.08 
12 2019 -5.44 16 2216 -16.42 19 2390 -2.68 
12 2021 -2.68 16 2231 -2.68 19 2395 -8.12 -7.35 
12 2023 +1.35 16 2238 -9.13 
12 2029 -11.22 16 2239 -7.17 227 cases, -5.13 avg. 
12 2038 -7.17 -6.14 16 2241 -1.33 
13 2052 -3.94 16 2242 -9.13 Means 7 
13 2055 -7.17 16 2244 -7.17 
13 2060 -8.08 16 2249 -9.13 -7.11 1 1482 -0.12 
13 2062 -5.44 17 2251 -7.17 1 1489 -0.52 -0.32 
13 2084 +4.72 17 2254 -3.96 2 1537 -0.74 
13 2095 -11.33 -5.21 17 2256 -1.33 2 1545 -0.78 -0.76 
14 2111 0.00 17 2258 0.00 4 1618 0.00 
14 2114 -5.44 17 2259 -4.03 4 1638 -0.52 
14 2116 -2.68 17 2260 -9.13 4 1646 -0.16 -0.23 
14 2124 -8.14 17 2262 -9.13 5 1674 -0.26 
14 2125 -2.68 17 2264 +4.05 5 1691 0.00 
14 2127 +4.05 .17 2272 +2.70 5 1696 -0.42 -0.23 
14 2134 +1.35 17 2278 +5.67 6 1701 -0.52 
14 2138 -5.78 17 2282 +4.05 6 1712 -0.06 
14 2141 -2.68 17 2285 -11.49 6 1723 -0.32 
14 2142 -7.17 17 2297 +7.56 -1.71 6 1728 -0.52 
14 2143 -5.44 18 2303 -7.17 6 1732 -0.36 
14 2146 -16.42 18 2317 +1.35 6 1742 -0.42 -0.37 
14 2147 -9.98 18 2320 -5.44 7 1753 -0.78 
14 2150 -2.68 -4.55 18 2321 -2.68 7 1759 -0.42 



772 PROCEEDINGS - FALL JOINT COMPUTER CONFERENCE, 1965 

Means 7 Cont'd. Means 1,4 Cont'd. Means 2,3 Cont'd. 

PG. BLOCK PG. BLOCK PG. BLOCK 
NO. RCNO PAYOFF AVG. NO. RCNO PAYOFF AVG. NO. RCNO PAYOFF AVG. 

7 1766 -0.74 7 1793 +6.30 +6.30 8 1-802 +6.30 
7 1776 0.00 12 2041 0.00 8 1849 0.00 +3.15 
7 1782 -0.42 12 2047 +4.72 +2.36 
7 1788 -0.42 13 2069 +2.36 5 cases, +1.25 avg. 
7 1795 -0.52 -0.47 13 2070 +3.15 
8 1812 -0.52 13 2081 0.00 Means 3,4 
8 1816 -0.52 13 2085 .t9.43 
8 1824 -0.52 13 2089 0.00 -0.78 1 1475 +1.39 
8 1833 -0.42 -0.50 15 2170 -1.35 1 1478 +1.90 +1.65 
9 1872 -0.42 15 2196 -0.06 -0.71 2 1543 +2.89 +2.89 
9 1877 -0.42 17 2294 -1.99 -1.99 3 1551 +1.19 
9 1881 -0.52 -0.45 18 2311 -1.35 -1.35 3 1552 +1.55 

10 1926 -0.26 19 2354 +3.15 3 1573 +1.73 +1.49 
10 1933 -0.84 19 2355 0.00 +1.58 4 1605 -0'.26 
10 1941 -0.52 -0.54 4 1631 +5.61 
11 1952 -0.36 17 cases J +0.30 avg. 4 1637 -1.61 
11 1964 -0.42 4 1644 +7.03 
11 1971 -0.26 Means 1,8 4 1645 -1.35 +1.88 
11 1979 -0.52 -0.39 5 1671 +3.62 +3.62 
12 2028 -0.90 3 1554 +1.80 6 1717 +1.53 +1.53 
12 2033 -0.42 -0.66 3 1556 -1.97 -0.09 7 1751 +1.09 
13 2098 -0.52 -0.52 8 1828 0.00 7 1787 -4.31 -1.61 
14 2129 -0.52 8 1842 +1.89 8 1840 +1.41 
14 2132 -2.68 8 1845 0.00 +0.63 8 1843 +2.30 +1.86 
14 2136 -0.52 -1.24 10 1924 +4.72 +4.72 9 1858 -2.70 
15 2165 -0.42 12 2042 -0.06 -0.06 9 1861 +1.21 
15 2172 -0.12 -0.27 13 2058 -0.02 9 1890 +1.92 
16 2220 0.00 13 2066 +1.39 9 1891 +2.45 
16 2227 -0.42 -0.21 

" 
13 2068 +1.89 9 1892 +3.86 

17 2266 -0.42 13 2073 -0.08 9 1894 -1.35 
17 2276 -0.94 13 2090 0.00 +0.64 9 1900 -6.99 -0.23 
17 2284 -3.10 -1.49 14 2122 -4.17 -4.17 10 1919 +1.47 
18 2312 0.00 15 2169 +3.03 +3.03 10 1920 +1.88 
18 2332 -0.52 -0.26 17 2299 -8.10 -8.10 10 1925 0.00 
19 2356 0.00 18 2330 +2.08 10 1940 -5.66 -0.58 
19 2393 -0.42 -0.21 18 2345 -11.22 -4.57 11 1966 +2.30 

11 1967 +2.83 
54 cases, -0.51 avg. 17 cases, -0.52 avg. 11 1970 0.00 +1.71 

12 2026 +1.19 
Means 1,4 Means 2,3 12 2032 -0.26 +0.47 

13 2064 +1.09 
2 1521 -0.18 -0.18 6 1722 -0.06 -0.06 13 2071 +4.56 
3 1555 -0.26 -0.26 7 1771 0.00 13 2072 -0.02 +1.88 
6 1746 0.00 0.00 7 1775 0.00 0.00 15 2158 +1.41 +1.41 



COMPUTER EXPERIMENTS IN MOTOR LEARNING 773 

Means 3,4 Cant'd. Means 4,6 Cant'd. Means 6,8 

PG. BLOCK PG. BLOCK PG. BLOCK 
NO. RCNO PAYOFF AVG. NO. RCNO PAYOFF AVG. NO. RCNO PAYOFF AVG. 

16 2226 -1.61 -1.61 4 1617 -2.76 -2. 76 2 1518 +1.35 +1.35 
17 2253 -6.90 5 1672 +6.30 3 1562 -9.13 
17 2273 -2.89 5 1690 -6.75 3 1595 -5.54 -7.34 
17 2292 +2.04 5 1699 +2.36 +0.64 4 1606 -10.39 -10.39 
17 2293 +2.47 +0.13 9 1862 +1.47 5 1686 -1.43 -1.43 
18 2316 -11.48 9 1863 -1.63 -0:08 9 1869 -2.68 -2.68 
18 2318 -10. 74 10 1918 +1.41 +1.41 15 2157 +1.45 +1.45 
18 2328 +1.53 -6.90 12 2035 -5.46 16 2203 -5.82 -5.82 
19 2377 +4.56 12 2040 +1.89 17 2295 -2.05 -2.05 
19 2378 -0.02 12 2044 -4.11 -2.56 19 2373 -14.03 -14.03 
19 2398 +4.66 13 2080 +6.30 +6.30 
19 2399 -4.37 +1.21 14 2131 -6.73 -6.73 10 cases, -4.83 avg. 

15 2155 +1.35 +1.35 
49 cases, +0.37 avg. 16 2201 +7.09 Means 7,8 

16 2219 0.00 +3.55 1 1474 +1.33 
Means 4,5 17 2269 -7.99 1 1477 +1.49 

17 2279 +4.72 1 1480 +2.37 +1.73 
4 1632 -0.02 -0.02 17 2283 -9.60 2 1528 -0.22 
5 1673 0.00 17 2290 +1.57 -2.83 2 1535 +1.13 
5 1685 -0.32 -0.16 19 2376 +3.15 +3.15 2 1550 +1.13 +0.68 
9 1879 +4.72 3 1559 -4.11 
9 1889 +1.51 29 cases, -0.45 avg. 3 1575 +2.18 
9 1893 +23.23 +9.82 3 1577 +2.93 

12 2048 -4.05 -4.05 Means 5,8 3 1579 -0.02 
13 2088 +3.15 +3.15 3 1587 -10.09 -1.82 
17 2274 +4.30 2 1502 -7.35 4 1633 -4.43 
17 2291 +1.63 +2.97 2 1520 +1.25 4 1641 -9.40 -6.92 
18 2301 -5.56 2 1522 -1.49 -2.53 5 1664 +1.89 +1.89 
18 2327 +1.57 -2.00 5 1666 -1.41 -1.41 6 1719 -2.88 

7 1764 +1.13 6 1747 -1.35 -2.12 
12 cases, +2.51 avg. 7 1772 +1.89 -1.51 7 1792 +3.76 +3.76 

8 1804 -10.91 -10.91 8 1850 -4.11 -4.11 
Means 4,6 9 1864 -1.99 -1.99 9 1859 -11.58 

10 1901 -7. 79 9 1888 +1.45 
1 1481 -1.41 10 1922 +2.55 -2.62 9 1895 -1.71 -3.95 
1 1487 +3.15 12 2045 -7.06 -7.06 10 1931 +1.03 
1 1500 +4.72 +2.15 13 2086 -11.69 -11.69 10 1937 -4.27 -1.62 
2 1501 -4.31 -4.31 14 2120 +3.78 +3.78 11 1969 +4.38 +4.38 
3 1558 -1.35 15 2180 -2.70 -2.70 12 2025 +1.13 
3 1561 -8.08 17 2270 -9.49 -9.49 12 2036 -8.74 
3 1571 +1.35 18 2319 -11.95 -11.95 12 2049 -6.73 -4.78 
3 1572 +1.57 19 2400 -7.41 -7.41 13 2082 -2.70 
3 1594 -1.35 -1.57 13 2094 -9.65 -6.18 

17 cases, -4.16 avg. 
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Means 7,8 Cont rd. 

PG. BLOCK 
NO. ReNO PAYOFF AVG. 

15 2160 -0.90 
15 2197 -1.57 -1.24 
18 2302 -8.94 
18 2307 -2.68 -5.81 

33 cases, -2.12 avg. 

Means 1,2,4 

18 2306 -5.29 -5.29 

1 case, -5.29 avg. 

Means 2,3,4 

5 1663 0.00 0.00 
6 1711 0.00 
6 1718 -0.22 -0.11 
7 1773 -1.41 -1.41 

4 cases, -0.41 avg. 

Means 2,4,5 

5 1665 0.00 0.00 

1 case, 0.00 avg. 

Means 2,4,6 

9 1868 -5.29 -5.29 

1 case, -5.29 avg. 
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INTRODUCTION 

Consider the problem of the design of a combi
national circuit with A inputs and B outputs, where 
each of the output variables is given as a Boolean 
function of the input variables. Such a circuit might 
be part of the control unit of a digital computer, 
where the A inputs are the operation code of an in
struction, and the B outputs are the signals which 
directly control the opening and closing of gates 
throughout the machine to effect an execution of 
that instruction. The circuit might be a code con
verter, where the A inputs are an input code (for 
example, the machine-code of an alphanumeric 
character); and the B outputs are an output code 
(for example, the pattern of signals required for a 
display of that character). The circuit might be a 
table look-up device, where, for example, the input 
variables are a code for the numeric value of a giv
en argument, and the output variables are a code 
for the value of some function of that argument. Fi
nally, the circuit might be considered as a memory, 
with fixed information stored, where the A input 
bits are an address, and the B output bits are the 
word stored at that address. It is called a "read
only" or "fixed" memory if the information stored 
is not alterable at electronic speeds. 

775 

For applications such as those given above, typi
cal values for A and B are sufficiently large and the 
given Boolean functions are sufficiently compli
cated that the circuit is normally. constructed in two 
parts as shown in Fig. 1. Thus, most read-only 
memories are word-organized or linear-select stores. 

DECODER 

A INPUTS 
(ADDRESS) 

I 
I 

2A DECODER 
OUTPUTS 

ENCODER 

B OUTPUTS 
(WORD STORED) 

Figure 1. Usual read-only memory structure. 

The input address causes only one of the 2A decoder 
outputs to be energized, and the function of the en
coder is to selectively couple this signal to the B 
output lines in accordance with the stored informa
tion pattern. The information-bearing portion of 
the memory, then, can be viewed as a selective sig
nal-coupling device. 

Since the design of decoders is well known,1,2 this 
paper deals primarily with the structure of the var
ious encoders which have been proposed. One must 
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bear in mind, however, that the decoding system 
accounts for an appreciable part of the cost of a 
typical read-only store. The body of this paper con
tains qualitative descriptions of a number of memo
ries. Some are early experimental attempts. Others 
are in developmental stages. Sill others are already 
in use in operating digital systems. For the conven
ience of the reader, this kind of information, along 
with additional data, where applicable, is contained 
in the annotated references. 

LINEAR ARRA YS 

Resistive and capacitive arrays generally have the 
matrix form shown in Fig. 2. Rows are word lines 
and columns are bit lines. A given word line signal 

BIT LINES 

~.n 
::> ---.-+-----+----
0-
I
::> 
o I 

I 

z 

!tt-~~t 
1 1 l 

WORD 
LINES 

SENSE 
AMPLIFIERS 

Figure 2. Resistive or capacitive matrix (Z = R or Z = C). 

is coupled to a particular column wire if a coupling 
element is present at the appropriate intersection. 
Since a signal developed on a column may be cou
pled to unselected rows, columns are usually termi
nated in low input-impedance sense amplifiers. The 
array then acts as a severe attenuater and, for a 
reasonable capacity, the required word line signals 
are 30 to 100 volts, while sense signals are in the 
millivolt range. 

Resistive Arrays 

Resistive matrices were used as early as 1943 for 
storage of function tables3 and were also used in the 
Eniac machine.4 Until recently, little attention was 
paid to such memories. However, with the develop
ment of new techniques for the deposition of resis
tor arrays, interest in these stores has been 

renewed.5,6 One approach5 involves a memory con
sisting of a stack of paper or plastic cards (with 
conventional punched card di~ensions ) , each of 
which contains, on one surface, an interconnected 
array of silk-screened resistors as shown in Fig. 3. 
Holes punched in each card by a conventional key
punch have one of two purposes. Some insert infor-

~~~~~~~~t-~SILVER PAINT 
~ WORD LINE 

PAPER OR PLASTIC 
SUBSTRATE 

PUNCHED 
HOLES 

CONDUCTIVE 
GASKETS 

Figure 3. Part of a resistor punched card. 

mation by breaking appropriate printed connections 
(holes A and B in Fig. 3). Others (holes C through 
F), surrounded by conductive "gaskets", are used to 
interconnect all cards in a deck. When the cards are 
stacked, the open channels formed by these holes 
are filled with a low-temperature molten alloy 
which later solidifies. This results in the intercon
nection of all gaskets in any given position. Thus, 
the common conductors on the cards are the word 
lines and the alloy columns through the stack are 
the bit lines. While information is readily inserted 
into each card, the information stored in a finished 
stack is not easily changed. 

Resistive arrays have an important advantage in 
that they are direct-coupled systems. On the other 
hand, for sufficiently large storage capacities and 
wide resistor tolerances, an appreciable amount of 
power can be dissipated in a memory stack at full
speed operation. 

Capacitive Arrays 

Capacitor read-only memories which have been 
discussed may be divided into two classes-those in 
which stored information can only be changed by a 
partial disassembly of the memory stack (involving 
the breaking and making of a relatively large num
ber of contracts) and those which are designed to 
allow information change via insert able , low-cost 
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cards or strips (involving very little, if any, break
ing and making of contacts) . 

In the first case,7,8 arrays of parallel-plate capaci
tors may be constructed by appropriate conductive 
patterns on either side of a thin insulating sheet. 
Holes are punched, as explained above, to remove 
certain capacitors from the network, and sheets are 
interconnected in a stack either by using conven
tional connectors8 or by allowing metallized eyelets 
on the sheets (similar to the gaskets discussed 
above) to be connected to each other under pres
sure applied to the stack.7 The capacitor array can 
also be constructed using vacuum evaporation tech
niques to permit thinner insulating layers and, con
sequently, larger capacities per unit area. The eva
poration masks may be designed to already include 
the required information pattern. 

In the second case,9-12 the capacitor pattern is 
modified oy the presence of a removable card or 
strip. One approach9-11 involves the use of two 
plates facing each other, one containing word lines, 
the other bit lines as shown in simplified form in 
Fig. 4. With the plates in close proximity to each 
other, coupling capacities exist at all intersections. 
If a thin card, containing an insulated ground foil, 
is inserted between the plates, all coupling capaci
ties are reduced appreciably by the presence of the 
shield. If the shield card has a pattern of holes in it, 
those word and bit lines associated with intersec
tions at which a hole is present will be capacitively 
coupled. The shield card may be of conventional 

BIT LINE 
PLATE 

-=--=--=--=---=--=------------------..: =.=..:: ==..=-
PUNCHED HOLE 

Figure 4. Shielded capacitor memory structure (layers 
separated) . 

punched card dimensions, punched by an ordinary 
keypunch,9 or it may contain a very thin metal layer 
with holes formed by a spark discharge. ll In another 
approach,12 the prospective capacitor plates do not 
face each other. They are etched in the same sur
face, as shown in Fig. 5. With this structure, very 
little coupling capacity exists. If a card or strip, 
containing a pattern of insulated metallized areas, 
is placed directly over the capacitor plate pattern, 
coupling capacity will exist only in those positions 
at which a metal area is present. The coupling 
capacitor is then composed of the series combina
tion of two equal capacities. No connections need 
be made to the information-bearing strip. Through
connections (indicated in Fig. 5) are required if 
word lines and bit lines are placed on opposite 
sides of the same matrix sheet. 

CODED METALLIC 
AREAS COUPLING STRIP 

(INSULATED) 

Figure 5. Part of a' capacitive array using coded coupling 
strips (layers separated). 

Balanced capacitor arrays have also received at
tention recently13 since they permit reflectionless 
signal propagation in the encoder, when it is oper
ated at very high speed. 

In all of the capacitive systems thus far proposed 
(with the exception of the thin-film, vacuum-evap
orated array), practical limits on the effective dis
tance between 'capacitor plates (particularly in the 
card-changeable cases) and on the plate areas (if a 
good packing density is to be achieved) restrict 
coupling capacity values below 5 picofarads. The 
memory stacks must be carefully designed to insure 
that stray coupling capacity is small compared to 
this. 

Incudtive Arrays 

In all linear inductive read-only memories, a 
drive current pulse is passed through one of the 
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word lines, and this signal is inductively coupled to 
the sense lines as a function of the stored informa
tion pattern. At the outset, these memories have the 
important advantage of decoder simplicity, since a 
word line. is normally selected by the closing of two 
"switches," one on either end. Thus, two decoders, 
each with 2A/2 outputs, are required in place of one 
with 2A outputs. This represents a significant reduc
tion in the cost of the selection circuits. 

Inductive fixed stores may be divided into three 
classes-those involving only air coupling, those 
with open magnetic flux paths, and those with 
closed magnetic flux paths. 

Air Coupling. Aircoupled inductive arrays which 
have been discussed are either relatively fixed (in 
the sense that stored information is changed only by 
the use of many-contact connectors or "card-change
able" with no contacts required to the removable 
card). 

An example of the first type14 is illustrated in 
Fig. 6. Word lines and sense loops are formed on 
either side of a thin insulator sheet. At each inter
section, the word current originally has two alter
nate paths. Information is inserted by the breaking 
of one of these (using an appropriate cutting de
vice, for example). The polarity of the induced sig
nal in the sense loop depends on which current path 
is taken. 

SENSE 
LOOPS 

Figure 6. Alternate current path inductive store. 

Card-changeable systems have been proposed us
ing cards which act as shields, preventing inductive 
coupling, and using cards in which induced eddy 
currents enhance inductive coupling. The first type15 

is the inducti",e counterpart of the shielded-capaci
tor card-changeable approach, discussed earlier. 
Word loops and sense loops are formed on. two sep-, 

arate sheets, facing each other, as shown in Fig. 7. 
An insulated metal shield card containing a pattern 
of holes is inserted between them. Whenever a hole 
exists at an intersection, the mutual inductance be
tween word and bit lines is relatively high. Without 
a hole it is low. 

SENSE 
.,{LOOP SECTION OF 

SHIELD CARD 

Figure 7. Shielded inductive memory principle. 

Eddy-current memories of two kinds have been 
discussed. In one case,16 insulated drive loops and 
sense loops are constructed orthogonal to each other 
as shown in Fig. 8. Inductive coupling is virtually 
zero until a small, insulated coupling loop is added 
at each intersection. When a current is passed 
thrgouh the word loop, an eddy current induced 
around the coupling loop will induce a signal in the 
sense loop. Insertable cards are constructed to in
clude an array of small coupling loops for all inter
sections. To destroy coupling at a given intersec
tion, the coupling loop is broken with a punched 
hole, preventing eddy current flow. A modification 
of this approach17 uses an insertable card on which 
each coupling "loop" has one of two geometries 
(depending on whether the stored bit is to be one 
or zero. For a given word current pulse, a sensed 
output pulse may be positive or negative, depending 
on the geometry of the eddy-current coupling "loop" 
at the corresponding intersection. 

Another eddy-current memory18 uses nonortho
gonal word and sense lines with solid metallic rec-
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/SENSE LOOPS 

~~~ ~~~ 

DRIVE 

Figure 8. Eddy-current memory principle. 

tangles (in which eddy currents are induced) on the 
insertable cards. Holes punched in these cards par
tially or completely remove these rectangles. With 
no punched hole, the inductive coupling is high. 
Where a hole is punched, it is low. 

Open Magnetic Paths. Two linear read-only systems 
using open magnetic coupling paths will be dis
cussed here. The first,19 used in the Atlas I comput
er, consists of a woven mesh of insulated word and 
bit wires as shown in Fig. 9a. At each bit intersec
tion, a small ferrite rod (to increase coupling) is 
inserted if the stored bit is to be a one. Around 
each bit intersection, a number of identical ferrite 
rods ("keepers") are placed, unconditionally, to 
localize the field and prevent it from returning 
through other "information rods." To allow for 
easier change of stored information, the informa
tion rods are enclosed in nylon tubes, each twice 
the length of a ferrite rod, in a balanced winding 
system shown in Fig. 9b. Each rod has two possible 
positions in its tube, thus enhancing inductive coup
ling either in the upper layer or the lower one. 

The second open magnetic linear system20,21 also 
uses ferrite rods (relatively long ones) as shown in 
Fig. lOa. Word lines, on cards placed in a stack 
over the rods, may pass any given rod on one of 
two sides, as a function of the required stored in
foration. When a word line is pulsed, the polarity of 
the signal induced in the rod sense winding tlepends 
on whether the word line passed above or below the 
rod. The word line path may be'determined by a set 
of punched holes as shown in Fig. lOb. 

DRIVE 
LOOP 

SENSE 
LOOP 
(a) 

FERRITE 
KEEPER 

RODS 

'-----FERRITE ROD 
(b) 

Figure 9. Ferrite rod inductive store. 
FERRITE 

RODS 
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CARD 
SURFACE 

Figure 10. Ferrite rod, stacked card store. 

Closed Magnetic Paths. Transformer read-only 
stores of various types22-27 have been described in the 
literature. Most operate in the following manner: 
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Consider a set of B large magnetic cores (B is 
the number of bits per word), each with a sense 
winding as indicated in Fig. 11. A given word line 
threads only those cores in positions corresponding 
to ones in its word. When a given word line is 
pulsed, only those sense windings corresponding to 
store ones develop output signals. A balanced 
system28 using two-aperture cores, with a sense 
winding on the center leg between the apertures, 
permits positive or negative sense signals to be in
duced. The word line threads one aperture (stored 
one) or the other (stored zero) . 

all 
101 

010 

Figure 11. Transformer read-only memory structure. 

The closed magnetic path system allows for the 
development of large output signals (typically 0.5 
to 1.0 volt), often eliminating the need for sense 
amplifiers. It has the disadvantage of not being eas
ily changeable. Usually, one changes a word b~' 

disconnecting the old word line (leaving it physi
cally in place) and threading and connecting a new 
word line. Information may be more easily inserted 
through the use of thin, word line punched cards or 
strips, similar to those discussed above for the fer
rite rod system. However, the number of word lines 
which will fit into a given size core aperture is re
duced considerably. 

Other. Many variations on the systems discussed 
above are possible. In particular, shielded L-C 
arrays can be used to improve sense signal 1/0 
ratios over those achievable with simple shielded L 
or sielded C approaches. 

NON-LINEAR ARRAYS 

Having discussed linear R, L, and C read-only 
stores, we can proceed to nonlinear systems of the 

same types. These have the important advantage of 
eliminating many of the sneak signal paths present 
arrays29-30 can be used to improve sense signal 1/0 
ratios and word drive requirements. Nonlinear resis
tive memories which have been proposed are pri
marily of the diode matrix type. Nonlinear inductive 
approaches all involve the switching of square-loop 
magnetic material. 

Diode Arrays 

Semiconductor diode matrices were discussed in 
the literature as early as 1949.31 While diode decod
ing networks are well known,1,2 diode matrices as 
encoding networks were not considered economical, 
compared to other realizations, until recently. 
Again, with the advent of batch fabricati.on tech
niques, a few diode read-only stores have received 
attention. 

One approach32 uses the vacuum deposition of 
organic semiconductor material to form diode ar
rays on thin, punchable printed circuit cards. 
Punched holes break appropriate connections, and 
an encoding matrix as shown in Fig. 12 results. 
Each bit column is the output terminal of a k -input 
diode OR gate, where k is the number of words 
which have a one in its position. Since diodes may 
also be used in the decoder, it is possible to con
struct the entire memory ( encoder and decoder) 
using the same fabrication technology, thereby dras
tically reducing the number of required intercon
nections. With this approach, however, the informa
tion stored is fixed and cannot easily be changed 
unless a system of connectors is used. 

Diode matrices using conventional semiconductor 
fabrication techniques have received attention 
recently33,34 and can be expected to receive more 
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Figure 12. Diode encoding matrix. 
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attention in the future. Again, although stored in
formation change is not easy, encoders and decod
ers can be constructed on the same substrate. As 
tchniques for the encapsulation of these arrays are 
imporved, semiconductor diode matrices (because 
of their ideal nonlinear properties) will compete 
much more favorably in the read-only memory field 
-particularly for applications where stored infor
mation need not be changed. 

Magnetic Switching 

Square-loop magnetic core arrays, permanent 
magnet-twistor35 systems and magnetic film arrange
ments are treated here. 

Magnetic Cores. The read-only store of the Edsac 
U36 utilizes a conventional core selection array, with 
one core per word and x, y and bias windings. 
Using coincident-current techniques, only the se
lected' core is switched during a memory cycle. 
There are B sense windings (B is the number of 
bits per word), each threading only those cores cor
responding to words requiring stored ones in its po
sition. Bypassing a core is equivalent to a stored 
zero. When the selected core switches, only those 
bit lines threading it develop induced signals. Mul
tiple turns are used to reduce drive current require
ments and increase sense signal magnitudes (to 9 
volts) . 

A serial read-only memory technique, utilizing 
multi aperture ferrite disks, was recently described.37 

One use of the system is illustrated in Fig. 13. A 
ramp selection current, applied through the center 
aperture, causes flux switching around the center 
hole to proceed radially outward as a linear func
tion of time. At a given distance from the center, 
when switching occurs, if a sense line threads the 
associated aperture, a signal is induced in it. Thus, 
information is stored in the threading of the small 
radial. apertures. A number of these can be distribu
ted around the center hole as indicated in Fig. 13. 
Also, a number of sense wires can thread along the 
same radius. 

Permanent Magnet-Twistor Arrays. An important 
class of read-only memories may be placed under 
this general heading. The operation of the first ver
sions of such memories38,39 is explained with ref
erence to Fig. 14. Initially, all twistor segments 
along the lengths of the sense wires are in a ref-
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Figure 13. Ferrite multiaperture disk serial storage. 

erence state. When a given word is selected (by a 
core selection switch), current induced in the word 
strip or word "solenoid" is in such a direction as to 
acuse all twistor segments immediately inside it to 
switch. If, however, a small bar permanent magnet 
(appropriately poled) is in the immediate vicinity 
of a twistor segment, its switching is prevented. If a 
twistor segment does switch, a signal is induced in 
its sense wire. The small permanent magnets are 
contained on a thin, insertable card so that infor
mation can easily be changed. 

RETURN 
WIRE 

Figure 14. Permanent magnet-twistor store (original 
structure) . 

Many modifications and improvements in this 
arrangement have since been discussed.40-48 The 
twistor wires and their return wires need not be in
side the word solenoid, but may be outside it, thereby 
reducing the distance between the permanent mag
net and the twistor segment. 40 In this system, 
eddy currents, induced in the conducting card 
which holds the permanent magnets, enhance the 
field produced by the word solenoid to cause twis
tor switching. Another variation involves making 
the return wire another twistor wire, either· reverse-
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wrapped to increase the sense signal41 or in a two
magnet-per-bit arrangement to achieve bipolar out
put signals. The insertable cards normally contain 
magnets in very bit position, some magnetized, 
some not-depending on the desired information 
pattern. The pattern on a card may then be easily 
changed by passing the card under an appropriate 
set of magnetizing and demagnetizing heads. An
other modification44,45 changes the information in
sertion method by eliminating the permanent magnets 
from the changeable card. Instead, holes are 
punched in the card, in positions where it is de
sired to prevent local eddy currents from enhancing 
the switching field. Still another recent approach46 

reverses the roles of the twistor wire and word sole
noid, making the twistor wire the word line and the 
solenoid the sense line. Finally, a recent paper47 de
scribed a system using electroplated continuous 
magnetic film wire rather than twistor wire. 

Many of the detailed varitions between all of 
thses approaches are beyond the scope of this paper. 
The reader is referred to the references cited for 
detailed discussions. It is clear that the activity gen
erated around the original permanent magnet-twis
tor technique has been great. What is probably the 
largest capacity, all-electronic, read-only operating 
store has been constructed using this approach.48 
Magnetic Flat Film Arrays. Systems using perma
nent magnets and flat magnetic films have also been 
described.49,50 In one arrangement, each circular film 
(electroplated and uniaxially anisotropic), because 
of its geometry, is normally demagnetized. When a 
word current is passed through a drive line over the 
film, it switches, by rotation, into the hard direc
tion, inducing a signal in a sense line. When the 
drive current disappears, the film is again demagnet
ized. If, however, a permanent magnet is in its vi
cinity, the film remains satuarated in the' hard di
rection and switching is prevented. Continuous 
magnetic films may also be used. 

Another flat magnetic film approach51 replaces 
the biasing permanent magnet with another (high 
coercivity) film, which is part of a companion 
memory array in which information can be written 
electrically, although relatively slowly. The state of 
the bias film either prevents or allows switching of 
the readout film. This type of memory may be con
sidered as not in the read-only class, because infor
mation can be written electrically. It is mentioned 
here because the access time to read the store is 

much shorter than the write time, to change the in
formation stored. 

OPTICAL SYSTEMS 

The basic property of an optical read-only mem
ory is that, information is stored as a pattern of 
opaque or transparent areas on a normally flat sur
face, such as a card, plate or disk. Storage of infor
mation in photographic form52 permits bit packing 
densities approach only by the finest magnetic 
surface recording systems now in use. 

Early optical fixed stores53,54 utilized mechani
cally selected punched cards, read by sensing holes 
with a light beam and a photoelectric cell. Systems 
involving the semiconductor phenomena of electro
luminescence55 and photoconductivity have also been 
proposed. A matrix, having a series combination of 
a phototransistor and a diode at each intersection, 
has also been discussd.56 The phototransistors act as 
switches, actuated by a light pattern. The circuit 
which results is a diode encoding matrix, where 
connections (stored information) can be changed 
simply by changing the light pattern. Recent interest 
in optical read-only stores, however, has been pri
marily directed at photographic storage systems, 
because of the high storage densities which may be 
achieved. 

Flying-Spot-Stores 

An additional major advantage of some optical 
systems is the simplification in the selection device 
(decoder) afforded by using a cathode ray tube. A 
given word can be selected simply by moving the 
output light spot to a given position on the tube 
face. The spot can be moved vary quickly in going 
from cycle to cycle-hence the term "flying-spot" 
store. 

A number of such approaches have been de
scribed in the literature.57,58,69 One system58 which has 
received much attention is outlined in Fig. 15. The 
CRT face is imaged, by a lens array, as a set of B 
such areas on a photographic plate, where B is the 
number of bits per word. Light emitted from a spot 
on the CRT screen is thus focused into B corre
sponding sports on the photographic plate. As the 
CRT spot moves over its allowable area (defined as 
a square on the CRT face), the B spots on the pho
tographic surface move correspondingly over their 
allowable areas. Behind each of these areas is a 
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condensing lens to collect transmitted light through 
that area and focus it onto a photomultiplier detec
tor tube. Thus, the system consists of one CRT, B 
imaging lenses, a photographic information plate, B 
condensing lenses and B photomultiplier tubes. A 
word is selected by appropriately positioning the 
CRT spot. In parallel, B spots on the photographic 
plate are selected. This plate contains information 
in the form of opaque and transparent dots, so that, 
within each of the B areas, the light mayor may 
not pass on to the photomultiplier. Thus, a word is 
read out in parallel. Each of the B areas on the 
photographic sheet contains W bits, where W is the 
number of words. It contains the same bit position 
from each word. The information stored can be 
changed by changing the photographic plate, being 
very careful, of course, about plate registration. 
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Figure 15. Flying spot store. 

An optical system has recently been proposed60 

which replaces the imaging and condensing lens ar
rays with fiber-optic systems. The light spot is thus 
distributed to the areas on the photographic infor
mation sheet and then collected from the various 
spots on a given area and transmitted to the photo
detector by "light pipes." One may also replace the 
CRT light source by an x-y selected array of light
emitting diodes. 

Photographic Disk Sotre 

Another important development in the field of 
photographic read-o:o.ly storage has been the devei
opment of a glass disk store,61 outlined in Fig. 16, 
for use as a natural language translation dictionary. 

The disk contains a number of tracks of photo
graphic information in an outer annular ring: A spot 
from the CRT face is focused as a finer spot on the 
disk surface by a lens, as shown, with the pho
tomultiplier acting as a detector. Access to the sys
tem is similar to that for a conventional magnetic 
disk store in the sense that, first, a track is selected, 
and second, information is read serially from it. 

RING OF PHOTOGR~HIC 
INFORMATION 

/ 
PHOTOMULTlPLlER~ 

TUBE ~ 

CRT 

LENS 

OUTPUT 

SPINNING GLASS 
DISC 

Figure 16. Spinning-disk photographic store. 

COMPARISON CRITERIA 

Read-only memories are generally compared by 
using the conventional memory figures of merit 
(e.g., storage capacity, cost per bit, speed) and by 
evaluating the ease with which stored information 
can be changed. 

Storage Capacity 

The largest capacity read-only stores constructed 
to date have been the photographic systems. One 
can expect that, in the future, these systems will 
continue to be used for fixed, bulk storage. Of the 
non optical systems, the largest capacity store pres
ently in operation is the permanent magnet-twistor 
system. 

Cost Pet Bit 

While data on costs of various _ system approaches 
are difficult to obtain, one can make some qualita
tive observations. In considering the cost of a fixed 
store, the effect of the selection system and the sen
sing system (i.e., the system exclusive of the infor
mation encoder) is always of major importance. 
For example, random-access optical systems, while 
offering very high storage densities, are normally 
burdened by complicated and expensive selection 
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and sensing optical networds. Linear Rand C ar
rays, while simple in construction, normally require 
large drive signals from a giant decoder and deliver 
very small sense signals, each requiring a number of 
amplification stages. This is especially true as the 
impedance tolerances widen. Magnetic systems, on 
the other hand, normally require much less decod
ing complexity. In particular, the transformer store, 
because it involves closed magnetic paths, delivers 
in addition large sense signals needing little, if any, 
amplification. At present it appears to be one of the 
best present systems, from the cost point of view. It 
is conceivable that, with the advent of low-cost in
tegrated sense amplifiers, other linear systems will 
compete more favorably on a cost basis. 

Speed 

It is difficult, at present, to single out anyone of 
the approaches discussed as being the fastest. To 
date, the highest speed systems have been the linear 
arrays (excluding the transformer store) and some 
of the thin magnetic film arrays. 

The Question of Changeability. 

As the discussions in this paper point out, read
only memory systems vary from those in which in
formation stored is more or less absolutely fixed 
(or at least changed with great difficulty) to those 
in which information can be changed at slow elec
tronic speeds. An important class of these stores 
consists of the card-changeable memories. Associ
ated with the question of changeability, but not nec
essarily included in it, is the question of ease of in
formation insertion. A number of encoder arrays 
can be set up easily to begin with (using some 
punching device, for example) but cannot be easily 
changed subsequently. It has generally been true 
that, as one adds more flexibility to the system, 
such as by making it card-~hangeable, the cost of 
the system goes up-particularly if high bit packing 
densities (which require accurate card registration) 
are involved. In some cases, the cost of the "card 
holder" becomes comparable to that of a conven
tional magnetic core memory plane. 

The requirements for information changeability 
vary widely with the application. Fixed, well-de
fined tables, code conversions are debugged sub
routin, for example, may be stored in nonchange
able memories. However, it is probably safe to 

say that, for most present applications, the stored 
information pattern is not completely permanent, 
but will have to be changed after memory construc
tion. If the amount of change is small (for example, 
as certain program errors are found), a more per
manent system which accepts a small number of 
changes may still be usable. Clearly, however, for 
many applications the degree of updating required 
will be such that only card-changeable types will be 
satisfactory. 
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INTRODUCTION 

The woven, plated-wire memory concept! has 
been shown to provide an economical fabrication 
technique for the construction of high-speed DRO 
and NDRO memory arrays. The economies of the 
woven memory arise from two factors: first, the 
memory element consists of permalloy-plated, al
loy copper wire which is made by an inexpensive, 
readily controllable, continuous plating process; and 
second, the weaving technique constitutes a highly 
automated method for providing the array wiring. 

Recently, the woven concept has been extended. 
to the fabrication of very inexpensive, high-speed, 
read-only memories. This paper describes·· the fab
rication techniques for the preparation of a woven 
permanent memory matrix and the electrical prop
erties of some of the possible organizations. 

Other implementations of read-only memory 
include the core rope memory2 and various capaci
tively or inductively coupled word-organized mem
ories} The woven permanent memory is more simi
lar to the word-organized capacitive or inductive 
read-only memories than to the rope memory. It 
appears to have an appreciable speed advantage over 
other word-organized, read-only memories because 
of high sense signal output and very small sense line 
delays due to high packing density. 

789 
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The applications of read-only memories have been 
described in other papers 2,3 and will not be reviewed 
here. 

THE MEMORY ARRA Y 

The memory element in the woven array consists 
of a resilient copper alloy wire, 8 mils in diameter, 
upon which a uniaxially anisotropic, permalloy thin 
film is plated with a circumferentially directed easy 
magnetic axis. The magnetic coating is 81Ni19Fe 
permalloy plated from an aqueous solution contain
ing mainly NiS04• 7H20, NiCb· 6H20, FeS04 • 
7H20 and HsB03. 

The memory matrix is fabricated by weaving the 
permalloy-plated wires as the woof, and 3-mil 
diameter, insulated, conducting wires as the warp, 
in the configuration shown in Fig. 1. Selected warp 
wires are joined together at the ends to provide 
drive coils of the appropriate number of turns and 
spacing. The joining of the warp wires can be auto
mated so that this step does not affect the economy 
or reliability of the fabrication process. 

A schematic of the parts of a loom, important to 
the description of a woven read-only memory, is 
presented in Fig. 2. In a conventional loom, the 
warp lines are controlled by the heddles. The hed-
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Figure 1. Structure of TOKO memory plane. 

dIes are connected to bars called harnesses, and 
upon raising one or more of these harnesses, a 
group of warp lines are lifted to permit insertion of 
the woof. A Jacquard loom is a modification which 
permits individual control of each heddle so that 
any pattern of warp lines may be selected. The rais
ing of the heddles in a Jacquard loom is activated 
by punched card input. As a matter of historical 
interest, this type of loom, which was developed at 
the start of the 19th century, was the first machine 
controlled by punched card input. 

The weave pattern for a conventional DRO or 
NDRO woven memory is similar to that shown in 
Fig. 1. This pattern can be formed by controlling 
the heddles with only two harnesses, since the 
weave is constructed by alternately lifting adjacent 
warp wires and inserting the magnetic woof wire. 
Several warp wires are then connected in series to 
form a multi turn word line drive. 

One type of read-only memory weave is shown 

in Fig. 3. This weave, which can only be conven
iently formed by using the Jacquard loom, employs 
the usual woven coil where a "one" is to be read, 

. and bypasses the permalloy-plated wire at a 
"zero" position by having all the warp wires either 
above or below the plated wire. 

The simplicity of the production method is a key 
factor in making this variation of the read-only 
memory economically attractive. Other types of 
batch-fabricated, word-organized read-only memo
ries utilize some form of punched metallic conductor 
or printed circuit board to provide a cheap capacitive 
or inductive-coupling· mechanism to store the infor
mation patterns. The loom-woven memory array, 
constructed by using punched cards generated by a 
computer, can be fabricated at costs only slightly 
higher than the capacitive or inductive type. In addi
tion, this type of array has a relatively high signal 
output, high packing density, low sense line delay 
per bit and other faetures necessary for the con-



A HIGH-_SPEED, WOVEN READ-ONLY MEMORY 791 

WARP DIRECTION ---......... 

HARNESS 

HEDDLES 
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struction of a memory with a cycle time in the 
O.OI-nanosecond range. 

PRINCIPLES OF OPERATION 

When used in a normal DRO or NDRO memory 
array, the permalloy-plated wire, is the digit sense 
line, and the insulated copper wires form the word 
drive coils. The permalloy-plated wire has a cir-

cumferentially directed magnetic easy axis so that 
the remanent magnetization lies in a closed path 
around the wire. 

The information is written by applying an axially 
directed field with the word line and an easy direc
tion field down the digit line. The word line field 
must be removed prior to the digit field. In order 
to read, a field is applied along the wove~ word 
line and the information is sensed on the plated wire. 
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Figure 3. Weave pattern for the read-only memory. 

The read output voltage as a function of word write 
current Iw, and digit write current In, of a typical 
undisturbed memory bit is shown in Fig. 4. 

The read-only memory could be operated in 
precisely the same manner as the DRO memory us
ing a unipolar digit pulse. In most cases, the pref
erable mode of operation employs a DC bias to re
set the bits . using a circuit configuration such as 
shown in Fig. 5. The DC bias mode has the advan
tage of permitting very high-speed memory opera
tion since (with the elimination of digit write cur-

20 ~--------~----------~----------~--------~ 

o r---------~-----------+----------~~------~ 

~IO 

-20 ~--------~----------~--------~~--------~ 
-100 -50 o 50 100 

10 (mAl 

Figure 4. Output vo~tage vs digit write current for an undisturbed bit in a DRC> memory. 

rent delay and the serious noise problem which ac
companies the digit write operation) the major fac
tors affecting speed are only the element switching 
time, sense line delay and recovery, and amplifier 
delay. Moreover, information is not re-written se
lectively, so the addressing of the next word can be 
a least partially accomplished during the time re
quired for the element switching transient to decay. 
A quantitative discussion of memory speed is con
tained in the section on memory cycle time. 

The price paid for the DC bias organization is 
power, but fortunately the losses due tQ DC bias 
are only on the order of 10-5 watts per bit. In mem
ories operated with submicrosecond access times, 
no power saving would be accomplished by using a 
pulsed digit current, in fact the DC bias has a power 
advantage. However, in slow memories operated with 
bit transfer rates on the order of 105 bits per second, 
an appreciable power saving can be obtained by 
using a pulsed digit current to reset the bits. 
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Figure 5. Circuit configuration for a dc-biased, read-only 
memory. 
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MEMORY ELEMENT CHARACTERISTICS 

The economical construction and reliable opera
tion of the woven read-only memory depend on the 
sensitivity of the plated wire to changes in DC bias 
level, to temperature, and to bending and twisting 
strains. Another important characteristic is the peak
ing and switching time of the memory element. These 
characteristics have been measured and the test 
results are described below. 

The memory element output as a function of drive 
fields has been measured using the test configuration 
shown in Fig. 6. The output signal voltage was 
measured as a function of the DC bias current IDe, 
the word current Iw, and the magnetic plating thick
ness. The effect of the variation of the DC bias level 
is shown in Fig. 7. The 0.7-micron-thick permalloy 

READ OUTPUT 
VOLTAGE 

100.n. 

Figure 6. Read-only memory test circuit. 

thick plate is seen to peak in output as a bias of about 
60 milliamps and then drop. The initial increase in 
peak voltage with bias current is due to incomplete 
resetting of the magnetic film at low DC bias levels. 
The drop in voltage at higher levels of bias occurs 
because the word drive field no longer completely 
rotates the magnetization into the hard direction. The 
2-micron-thick film shows a much greater output 
and a lower DC bias requirement than the 0.7 mic
ron. A 5-micron-thick plate has also been tested but 
in this case the output was no greater than that ob
tained with the 2-micron film because of the slower 
switching speed of the thick film. 

The read output voltage has been determined as 
a function of temperature over the range -60°C to 
+ 175°C. At a constant word read current of 500 
milliamps and a reset current of 50 milliamps, the 

temperature coefficient of signal output was only 60 
microvolts per degree Centigrade. This is sufficiently 
small so that word drive temperature compensation 
is not necessary. 

The change in coercive force from -60°C to 
+ 175°C has also been measured. The temperature 
coefficient of coercive force is -0.0027 oersteds per 
degree Centigrade. This magnitude of the tempera
ture coefficient would not require any change of 
DC bias level with temperature. 

An important factor in the packing density and 
reliability of a woven plane is the susceptibility of 
the plated wire to strains introduced by bending. 
Special looms have been designed to minimize and 
control the local bending stresses normally encoun
tered in the weaving process. However, in order to 
minimize cost by maximizing yield in the read-
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Figure 7. Output voltage as a function of dc-bias current and word drive current. 

only memory planes, a relatively high tolerance to 
strains introduced by the weaving process is desira
ble. The effect of bending on memory operation 
was determined using the apparatus shown in Fig. 
8. The results of the test are shown in Fig. 9. With-

FORCE 

Figure 8. Apparatus for determining the effect of bending 
on the output voltage. 

in the range of expected bending angles, no serious 
change of signal level is evident. 

The effect of twist was also determined using the 
test fixture shown in Fig. 10. A very great tolerance 
to twist was obtained as shown by the data pres
ented in Fig. 11. 

The peaking time of the memory element is 
equal to or less than the rise time of the word read 
pulse at least down to rise, times of 40-nano
seconds. The peaking time in the read-only mem
ory is more important than the switching time be
cause the bit is completely reset in every case by 
the DC bias current during the fall of the word cur
rent. 

MEMORY PLANE CHARACTERISTICS 

The important characteristics of a memory plane 
include packing density, sense line delay and at
tenuation, sense line characteristic impedance, word 
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Figure 9. Effect of bending strains on the output voltage 
in a read-only memory. 

line inductance and capacitance and finally signal
to-noise ratio. 

Packing Density. A read-only memory array 
has been assembled with a packing density of 800 
bits per square inch. A photograph of this array is 
shown in Fig. 12. This packing density was chosen 
because of compatibility with existing production 
equipment for DRO memories. It represents a den
sity of 20 bits per inch along the word line and 40 
bits per inch along the sense line. 

The packing density along the sense ··line in a 
DRO plated-wire memory is limited by adjacent 
bit interactions. There is no such limitation in the 
permanent memory; the bits can be spaced as tight
ly as the spacing of the warp lines allows. In the 
case of a 2-turn drive coil with 3-mil diameter 
warp line wires, this spacing is 80 bits per inch. 

In a DRO or NDRO plated-wire memory, the 
signal output is also directly related to the bit den
sity along the sense line. This is not true in the 
read-only memory for the following reasons. If a 
single turn coil is considered for illustration, it is 
found that the rotation of the magnetization is 
spread over an appreciable distance from the coil 

Figure 10. Apparatus for measuring the effect of bending 
strains. 

because of the slow drop-off of the magnetic field 
due to the demagnetizing fields in the film. In a 
read-only memory, there is no need to place both 
turns of a two-turn drive coil on adjacent warp 
wires, even if every warp wire is used in the word 
drive lines. The word drive coils can be interleaved 
as shown in Fig. 13 to share magnetic material be
tween adjacent bits, and thereby, provide a much 
higher output signal than would be obtained with 
adjacent coils. 

Electrical Characteristics of· the Sense Line. The 
delay per bit of the plane shown in Fig. 12 is quite 
long, 50 picoseconds per bit, because of the large 
spacing along the sense line and because a 5-mi
cron-thick plating of permalloy was employed. 

If every warp wire is used in forming the word so 
that no warp wires are left for spacing as in the 
memory plane shown, and if a 2-micron-thick, 
plating of permalloy is employed, the delay per bit 
along the sense line would be 8 picoseconds per bit. 

The woven memory plane has a ground plane be
neath the woven mat. The capacitance to ground, 
and consequently the characteristic impedance of 
the line, depends upon the position chosen for the 
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Figure 11. Effect of twist on the output voltage. 

ground plane. This can be varied at will but a typi
cal value is about 100 ohms. 

Word Line Characteristics. The word line can 
best be considered as an inductance and not as a 
transmission line. The value of the inductance will 
vary with the configuration chosen for the word 
coil but a typical value for a two-turn coil and a 2 
micron thick plate is on the order of 10 to 20 nano
henries per bit. 

Signal-to-N oise Ratio. Figure 14 presents the 
sense signal output of the experimental read-only 

memory array shown in Fig. ]2. The measured 1-
to-O ratio. over the plane was better than 5 to 1. 
The peaking time for this plane was relatively large 
because a 5-micron-thick permalloy plate was 
used. 

TWO-INTERSECTION-PER-BIT ARRAY 

An alternative organization for the woven 
read-only memory plane is shown in Fig. 15. This 
organization employs two intersections per bit and 
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Figure 12. Photograph of the test read-only memory plane. 
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Figure 13. Interleaving configuration for the word drive 
lines. 

yields a bipolar sense output for a "one" and a 
"zero." It is attractive from the point of view of 
presenting a constant word . line inductance to ,the 
driver. It also provides improved discrimination 
between a "one" and a "zero." In the one-inter
section-per-bit organization, a word line could 
contain all "zeros" and another all "ones." The dif-

I 
I 

.1 

WORD I 

7111 11111 s.~ 

ference in the back emf of these two lines using a 
500 milliamp drive and a 50-nanosecond rise time 
would be as high as 10 volts for a 64-bit word. 

MEMORY CYCLE TIME 

The read-only memory, employing a DC bias, 
represents a rather simple memory design problem 
as compared with an electrically alterable memory. 
The digit write operation, which is one of the prin
cipal sources of noise and delay in a memory sys
tem, is eliminated. A block diagram of a read
only memory system is shown in Fig. 16. 

The factors limiting speed in this system are the 
delays associated with address decoding, the delay 
in generating the 500-milliamp word line drive, 
the transmission delays in the word access circuits 
and word lines, the peaking time of the element, the 
transmission delay in the sense line and the delay in 
the sense amplifier. 

The address decoding can be accomplished with 
a small delay, on the order of 10 to 20 nano
seconds. The setting up of new addresses iil the reg
isters can be taking place during the latter part of 
the reading cycle. 

The delay in generating the 500 rna pulse is a 
problem in view of the word-to-digit line capac
itance. This capacitance must be charged in all the 
paralleled word lines in front of the line diodes. 
The problem is compounded by the fact that the 
common mode signal generated by this charging oc
curs during read time and, unless compensated by 
careful balancing, will generate an intolerable noise 
pulse. 

There are several ways to handle this problem in 
a small memory; one is to open the "B" switches 

WORD 2 

Figure 14. Bipolar, two-intersection-per-bit memory array. 
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Figure 15. Output signal from a "one" and a "zero" in the test read-only memory plane. 

(See Fig. 16) first and provide the required charg
ing current. In a large memory, the problem can be 
eliminated by providing transformer coupling to the 
word line. The transformer coupling reduces the 
charging current and can eliminate common mode 
noise if proper balancing is employed. 

The delay in the word access circuits for the 
word lines is generally small. However, the word 
line delay for a 2-turn weave with a 40-mil 
spacing between bits on the word line is about 50 
picoseconds per bit. If unusually long words are 
employed, this could be a significant delay. 

The peaking time of the element is significant in 
this memory rather than the switching time, since 
the element will always be reset by the DC bias 

when the word current is removed. For a SOO-mil
liamp word current at a 50-nanosecond rise time, 
a nominal value of the peaking time for a 2-mi
cron-thick permalloy plate is 30 nanoseconds. 

An outstanding feature of the memory is the 
small value of the sense line delay. With a 2-turn 
word drive coil, the sense line delay is only 8 pico
seconds per bit. The delay, of course, increases li
nearly with the number of turns on the word drive 
coil. 

The remaining delay is that of the sense ampli
fier. A suitable sense amplifier would require a 
gain of about 200. With presently available transis
tors, the delay in such an amplifier would be ap
proximately 10 nanoseconds. 





A THIN MAGNETIC FILM COMPUTER MEMO'RY USING A RESO'NANT 
ABSO'RPTION NONDESTRUCTIVE READOUT TECHNIQUE 

M. May, W. W. Powell, and J. L. Armstrong 
Hughes Aircraft Company 

Culver City, California 

INTRODUCTION 

H. D. Toombs and T. E. Hasty have described a 
technique utilizing ferromagnetic resonance to obtain 
nondestructive readout in thin permalloy film mem
ories. 1 A study has been made by the authors to 
determine how this technique could best be utilized 
in medium and large sized computer memories. The 
study culminated in the construction of a 32-word, 
24-bit film plane tester utilizing absorption resonance 
readout which served to provide data on the reso
nant behavior of various films and to lend practical 
experience in the design of a resonance memory. 

Resonance absorption may be demonstrated by 
subjecting a ferromagnetic material sample to a 
steady magnetic field which (viewed classically) sets 
up an axis of precession for the electron spins respon
sible for the materials magnetic moment. If a R.F. 
field is now applied perpendicular to this axis with 
a frequency near the natural precession frequency 

given by the Larmor relation OJ = 2
geH 

(gaussian 
me 

units), the spins will begin to precess in sympathy, 
absorbing energy from the R.F. source. In the present 
application the steady field is provided by the inter
nal anisotropy field H K of the material. Due to the 
shape anisotropy of a thin film, the precession is 
distorted so that the magnetization vector M remains 

801 

very nearly in the plane of the film. This fact modi
fies the Larmor expression so that the resonant 

frequency is given by Wo = 2
ge 

( 41T M H K) 1f2 where 
me 

the subscript on w implies that no external field other 
than the rf field is applied. If an external field Hap 
is superimposed parallel to the external anisotropy 
field this expression becomes 

ge ~ ~ 

w = -2 - (41TM I HK + Hap I ) 1f2 
me 

Thus the resonant frequency shifts above or below 
Wo depending upon whether the magnetization vec
tor M is parallel or antiparallel to Hap. It is this 
phenomena that is used to nondestructively deter
mine the magnetic state of film cell. 

Figure 1 shows schematically the configuration of 
a resonance memory. Power from a uhf oscillator is 
equally distributed by means of a power splitter over 
the digit lines. Film cells lie under the digit lines such 
that their anisotropy axis is perpendicular to the uhf 
fit; ld direction. A small fraction of the power is 
therefore absorbed by each cell, the remainder pro
ceeding to the end of the line to bias a demodulator 
detector. The operating frequency is set somewhat 
below the resonant frequency of the film cells as 
shown in Fig. 2. Interrogation of the memory is 
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Figure 1. Configuration of resonance absorption memory. 
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Figure 2. Resonant absorption-frequency characteristics. 

accomplished by pulsing a word line thereby reduc
ing or augmenting the absorption depending on the 
cell's magnetization. This change in absorption is 
demodulated at the detector so that an output pulse 
is produced which is a replica of the interrogate pulse 
with a polarity dependent on film state. 

Writing is done by the technique conventional for 
film memories. Note however that the film axis 
direction dictates that the role of the word and digit 
lines be exchanged for the writing operation. This 
necessitates transposing the data to be stored. Other 
writing schemes involving separate write conductors 
to circumvent this difficulty were considered but 
these were not developed in this study. 

DESIGN CONSIDERATIONS 

Selection of an Operating Frequency 

From the design viewpoint a. low absorption fre
quency is. preferred because this favors oscillator 
efficiency, detector efficiency, and ease of matching. 
It was found by experiment that obtaining good 
control of resonant absorption with an external field 
requires the use of film with an H K of 5 oersteds 

or greater, and a frequency of 550 megacycles or 
greater. The frequency of 550 mc was satisfactory for 
the design of a solid state oscillator using a 2N3375 
transistor having an efficiency above 40 percent, 
and also for the design of a transistor detector. A 
higher frequency and H K can be used but no advan
tage was recognized. Operation below film resonance 
was much preferred to operation above resonance 
both because of greater signal output and because 
circuit design problems significantly increased at the 
higher frequencies near 1,000 megacycles. 

Thin film absorption characteristics in terms of 
signal output versus frequency are shown in Fig. 3. 
Figures 3a, 3b, and 3c show the need for selection 
of film having relatively low dispersion (under 2 0

) 
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Figure 3a. Resonant absorption readout of 1000A-thick 
permalloy, 25 x 50 mil size. Applied field to readout is in 
direction of stored 1. 

and a moderately high H K of 5 oersteds or greater. 
The R.F. line was 5.5 mil wide and of 50 ohms 
impedance. 

Figure 3a shows the effect of HK = 3.5 oersteds 
and dispersion of (a90) of 100

• The signal output 
versus frequency for a stored 1 is shown. Too much 
creep occurred on this film to show a stored ° when 
the applied read field was opposite to the magnetized 
state of the cell. 

Figure 3b shows some improvement for HK = 3.8 
oersteds and dispersion of 4 0

• A signal was obtained 
for a stored 1 and stored 0. 

Figure 3c shows the 1 and 0 output versus fre
quency for films havingHK = 5.3. In this film a90 
was less than 20. The externally applied field was 
generated by passing 300 milliamps through. a 60-
mil-wide conductor adjacent to the cell in all cases. 
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Figure 3b. Resonant absorption readout of 1000A-thick 
permalloy, 30 x 60 mil size. Applied field to generate signal 
is in direction of stored 1. 
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Figure 3c. Resonant absorption readout of 10OOA-thick 
permalloy, 30 x 60 mil ~ize. Applied field to generate signal 
is in direction of stored 1. 

The reason for the inflections in signal amplitude 
with increasing frequency for films with low H K 

and high a90 is not understood by the authors. The 
line and detector for these measurements had an 

SWR of less than 1.1 over the frequency range 
shown. A diode detector was used for these 
measurements. 

CALCULATING THE SIGNAL MAGNITUDE 

Neglecting copper and dielectric losses the power 
attenuation down a digit line is given by dP / dn = 

-kP or P = Poe-kn where Po is the input power, n 
is the cell number, and k is the fraction of the power 
reaching a cell that is absorbed by that cell. If one 
of the cells is interrogated, its power absorption is 
changed by akP where a is the fraction of the absorp
tion that can 'be controlled by the word pulse. 
Considering the attenuation due to the remaining 
cells as given above, the power signal at the output 
is AP = akP oe-kN• This signal is maximized with 
respect to k when kN = 1. Thus to obtain the best 
power signal the cell size must be adjusted to pro
duce an attenuation down the line (less copper and 
dielectric losses) of 1/ e or 4.3 db. 

Under this condition the signal power at the last 
cell where the R.F. lines connect to the detector 

is ± ~o (~) where N is the total number of cells 

along the digit line. 
The fraction a was measured for a number of 

cells on a 50-ohm strip line. A power meter monitored 
the output and input. A large cube coil placed over 
the line applied a field of 0, + 1.4 or -1.4 oersteds. 
This was the largest field that together with the 
R.F. would not permanently change the stored 
magnetization of the memory cells. R.F. level was 
10 milliwatts. With the data adjusted for 1/ e total 
attenuation, the power ratios measured were: 

Variation in 
Line Loss with 

Frequency Line Loss Applied Field 

450 mc 4.3 db -0.81 db 
+0.38 

550 4.3 -1.17 
+0.58 

640 4.3 -1.53 
+0.76 

It was found that 10 milliwatts peak power at 550 
megacycles was near a . practical maximum for the 
5.5-mil-wide 50-ohm R.F. line used. Above this 
value the stored information might be lost due to 
creep on readout. This power provided a peak cal
culated R.F. field of close to 1 oersted. The limit 



804 PROCEEDINGS - FALL JOINT COMPUTER CONFERENCE, 1965 

on power is influenced by the R.F. line dimensions 
and the properties of the thin film. 

The power at the output with 10-milliwatt input 
would be 

0.010 h . I -- watts ± t e sIgna power 
e 

If all the memory cells .at 550 mc could provide 
a -1.17 db change, then each cell would provide 
-1.17/ n db change of the output power. 

For 32 cells used in the memory film substrate 
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transistor was used in place of a diode for detection 
tester described later, a -1.17/32 or 0.0365 db 
change could be expected, assuming the cells were 
adjusted so that 32 cells provided 4.3 db attenuation. 
In practice 30 X 60 mil cells 1,000 A thick with 
HK = 5.3 will closely achieve this. The R.F. level 
change in a 50-ohm line using 10 milliwatts into 
the input would be 0.43 volts + 1.55 millivolts. This 
modulation was confirmed using a General Radio 
detector on the above-mentioned film tester. 

Figure 4 is a circuit diagram of the detector and 
signal amplifier used on the film tester. A 2N918 
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Figure 4. 

since it was possible to obtain a signal voltage gain 
of 32 as compared to a diode. This gain avoided 
noise problems in the following amplifier and re
sulted in a better signal-to-noise ratio being ob
tained as compared to a diode. 

Detector noise as observed on an oscilloscope 

was below 0.1 volt peak at the amplifier output. 
Referred to the input at the emitter there is a volt- . 
age gain of 8,000, thus noise peaks at 12.5 micro
volts for this particular detector. Turning the oscil
lator o.n and off makes almost no difference to the 
observed noise so that· the solid state oscillator 



A THIN MAGNETIC FILM COMPUTER MEMORY 805 

driving 10 milliwatts into the R.F. lines does not 
appear to be a principal source of noise. It is be
lieved that a better noise figure could be obtained 
with an improved detector design. 

The observed signal-to-noise ratio was 120 to 
1 for a stored 1 and 70 to 1 for a stored O. If the 
number of cells on the R.F. line were increased (by 
8) to 256, the signal noise would be 15 to 1 and 
8.7 to 1. This assumes that attenuation and signal 
from each memory cell was reduced by 8 to 1 to 
maintain optimum line attenuation. Adjustment of 
cell width, thickness, and HK could achieve this. 
Since a considerable allowance must be made for 
variations in detectors, standing waves, and varia
tions in memory cell performance, this represents a 
practical limit for the setup as tested. However, a 
better detector might be designed and. better film 
might be made so that extension of the number of 
memory cells per R.F. line is quite possible. 

R.F. LINE IMPEDANCE 

The initial choice of a 50-ohm R.F. line was 
dictated by the convenience of using existing fit
tings, cables, and R.F. measuring equipment. How-

ever, given a required memory cell center to center 
spacing (80 mils was initially selected), the lower 
the line impedance the wider the strip line must be, 
assuming spacing to ground is fixed by glass sub
strate thickness. Thus R.F. line-to-line coupling 
will be increased as the spacing between lines is re
duced. There is therefore a lower limit of impe
dance which is reached for a given layout when 
R.F. line-to-line coupling becomes excessive. 
The worst-case coupling that must be considered 
is all of the lines to one other line. If all the bits 
being read out are O's (or 1 's) except one bit, then 
R.F. coupling will provide a competing signal of 
polarity which will reduce the required signal. 

It was determined experimentally that the ab
sorption (and therefore signal output) from a given 
memory cell increases almost linearly until the cell 
is three times the width of the R.F. line. This is 
probably true only for the narrow (5.5 mil) R.F. 
lines used where fringing fields are excessive. Spac
ing to ground was 6 mils. It was also found that 
writing into a memory cell by rotation of its mag
netization required approximately the same word 
current whether the word line was 1/6 of the cell 
width or equal to the cell width. This was due in 

Figure 5. 
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part to fringing fields, in part to the fact that 
demagnetizing fields prevent alignment of the edge 
of a thin film cell in the hard direction and in part 
to substantial magnetic coupling from region to re
gion within the thin film cell. 

The disadvantage of a narrow line to obtain 50 
ohms did not appear very substantial. The advan
tage of wider R.F. lines might be the use of greater 
R.F. power without causing magnetic creep during 
reading. The line current [2 = Power/Z. Approxi
mately, 

Z spacing to ground X K = . constant 1 
conductor WIdth 

but space to ground is determined by glass substrate 
thickness so 

Z = ~ d [2 = Power X Width = Pi Wi 
Width an Kl Kl 

The R.F. magnetic field on the surface of the flat 

t · 1·· . 1 . b [ X K2 s np me IS approXImate y gIVen y H RF = Width 

= (~) lh Kg, so that if peak R.F. magnetic field 

is the main cause of creep during reading it can be 
reduced as the inverse root of the R.F. line width, 
although in most practical layouts R.F. coupling 
will make lines of less than 50 ohms impractical apart 
from the problem of making special fittings cables 
and measuring equipment. 

The principal source of coupling between the 
R.F. lines was capacity coupling between the R.F. 
lines and the digit write lines (see Fig. 5) . The 
layout in Fig. 5 has 768 small capacity coupling 
points at the matrix crossover points. When 23 R.F. 
lines are driven with equal R.F., the worst-case 
coupling on the 24th line was measured as 16 db 
down on the driven lines. The 24th line is matched 
at its input with 50 ohms for this measurement. 
Removing the digit write lines reduced the R.F. 
coupling for this test to 35 db below the driven lines. 
It would not therefore be practical to extend this 
layout much beyond 32 memory cells per R.F. line. 
However if a I-mil metal sheet is placed over the 
R.F. lines, and it is suitably grounded at intervals, 
then almost no R.F. will be found outside the thin 
metal top plate. If the digit write lines are insulated 
and placed over this sheet they no longer form a 
coupling network. However at a readout rate of the 
order of 1 megacycle the field from these lines will 

penetrate the thin metal shield and permit readout 
of words from the memory, and also permit informa
tion to be written in the memory. 

THE MATRIX TESTER 

A memory thin film tester was designed and con
structed both for testing film for use in an R.F. ab
sorption type memory and to determine the magni
tude of the problems in reaching a practical design 
for a useful memory. Figure 6 shows the completed 
tester. Thin film substrates could be inserted under 
a grid of R.F. lines (24) and digit lines (32) as 
shown in Fig. 5. To obtain information on writing 
in the memory, and reading the memory, it was ar
ranged that the 768 switches shown would provide 
unlimited variation of the pattern to be written, and 
a check of the contents on a subsequent read cycle. 

A complete read write cycle is repeated at a 30 
cycle rate so that a flicker-free display could be 
obtained (on the CRT shown) of the memory con
tents or error pattern or switch pattern. Word cur
rent, digit 1 and digit 0 current, and read current 
were continuously variable by adjusting the power 
supplies shown so that the effect of any variable 
could be seen on an error pattern. To determine 
creep and stability, the tester can be switched to 
read only and the error pattern observed. The low 
clock frequency of 25 kilocycles made possible a 
relatively simple layout using pulse rise times of 
about 0.5 microseconds and allowed recovery time 
for drive transformers when writing. Even so some 
shielding of the 1.5-amp maximum word currents 
was necessary. 

Both 1 and 0 signal outputs when reading were 
checked for signal level by voltage comparators 
whose trigger point was continuously variable from 
2 to 7 volts. This enabled a memory cell to be iden
tified rapidly if its readout signal was below the set 
margin. Display lights and stop on error provided 
the address of a memory cell that had a weak out
put. Identification of a memory cell on the CRT 
display was quite easy and this feature was normal
ly used. The setup as shown allowed easy connection 
of a signal generator to any R.F. line so that a faulty 
memory cell could be tested over a range of R.F. 
frequencies to determine whether its resonance 
characteristics caused a read error. It was as a result 
of such tests that 550 megacycles was selected to 
make most of the film planes operate correctly. 

Word currents were variable from zero to 1.5 
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Figure 6. 

amp through a 5.5-mil wide R.F. strip line: Digit 
currents were variable 0-300 milliamps through a 
60-mil wide strip line. 

Figure 5 shows the R.F. lines which are placed 
next to the thin film. The substrates are loaded un
der the matrix with the magnetic film on the top 
side of 6-mil glass. Four grounding screws must 
be removed to change the glass substrate. 

The digit lines were divided into 3 12-mil lines 
spaced 12 mils apart to reduce capacity loading on 
the R.F. lines. This precaution was just sufficient 
to make the 32-word layout usable from the R.F. 
coupling viewpoint. As mentioned earlier, the R.F. 
coupling problem can be reduced by an order of 
magnitude if a "Tri-plate" layout is used with a 
thin ground plane separating the digit lines from 

the R.F. lines. It appeared that this could be a solu
tion to the R.F. coupling problem in larger memo
ries. 

The R.F. source was a series-tuned oscillator 
using a 2N3375 transistor. This oscillator drove a 
strip line power splitter etched on a 10-mil glass 
epoxy copper laminate. A transformation from 50 
to 2 ohms was made with a tapered line and 25 
lines connected to the 2-ohm point through 50-
ohm resistors to 25 coax lines. The resistors were 
required to absorb the reflected waves which had a 
strong effect on the signal amplitude. 

The use of 50-ohm cables and connectors was 
almost essential in the R.F. system to allow meas
urements of power loss, SWR, and coupling. These 
problems must be well understood before making a 
memory layout comprising etched card strip line 
configurations which would not necessarily provide 
accessibility for making measurements. 

In testing thin film planes a rather severe "creep" 
test is made when writing information because of a 
peak R.F. field below resonance of near 1 oersted 
acting in the hard direction for the film. Both R.F. 
and d-c were passed down the R.F. lines when 
writing. However, it did not 'prove necessary to tum 
off the R.F. when writing since the same digit cur
rent was used for reading and writing, and creep 
would occur on the read cycle if it affected writing. 
Nickel iron cobalt films were used with an overlay 
of copper diffused into the film. This appreciably 

,,helped the creep problem. A number of copper dif
fused substrates were tested and found to have rea
sonable write current margins. In addition they did 
not lose information on continuous read. 

The use of a 5.5-mil word line for writing into 
a 30-mil wide memory cell did not appear to af
fect the digit current margins appreciably as com
pared with the use of a wider word line. However 
in testing 20-mil wide word lines (which required 
a strip line transformer for impedance matching at 
both ends) there was so much R.F. coupling be
cause of the increased capacity coupling to the digit 
write lines that this test was not continued. 

The R.F. absorption memory has a peculiarity 
that the word lines (R,F. lines) when writing be
come the digit lines when reading. Thus the memo
ry must be loaded with one digit of every word at a 
time requiring that the information be prepared in 
this form before loading a memory. If it were re
quired that one digit of each word be read out at a 
time (perhaps in searching for information) then 
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rotating the information format through 90'0 would 
be an advantage. 

DESCRIPTION OF A HYPOTHETICAL 
4K WORD MEMORY 

Figure 7 shows how an NDRO memory using 
resonant absorption phenomena for reading might 

4 BITS 
ADDRESS 

Figure 7. 

REQUIRED 

16 OSC I LLATORS 

32 WORD LINE SWITCHES 

I WORD CURRENT GENERATOR 

16 MEMORY PLANES 
768 "DETECTORS 

48 SENSE AMPLIFIERS 

be laid out to take advantage of the fact that R.F. 
is only required in the small block of the memory 
being interrogated. The block diagram shows a lay
out using 16 blocks with 16 separate oscillators and 
the present predicted limit of 256 memory cells per 
R.F. line. There is a transient settling time of 3-4 
microseconds for the detector shown on Fig. 4 (ex
cept that C2 was reduced to 20'0' picofarads) after 
switching the oscillators. No detectable noise or 
output was observed at the detectors (that resulted 
from the read current) when an R.F. oscillator was 
turned off because the detectors include a 1/4. -wave 
55O'-megacycle grounded stub which would pro
vide a short circuit for transients of lower frequen
cy. It should therefore be possible to parallel the 
detectors to a common sense amplifier as far as 
read noise is concerned. Switching the detectors on 
and off simultaneously with the oscillators is not 
costly in terms of components if this should prove 
necessary. 

SUMMARY 

Possible Advantages of Resonant 
A bsorption Readout 

1. The use of R.F. oscillators provides an extra 
switching dimension which might provide econo
mies over word selection usually used to read out 
thin film memories. This is more likely to be rele
vant if the memory is very large than for the size of 
memory considered. 

2. In large memories it might be 'economical to 
use relatively long pulse rise times to read out thin 
film. The resonant absorption readout technique 
makes this possible without reducing signal ampli
tude since' the output signal is not proportional to 
the rate of change of the read current, but only de
pendent on the R.F. frequency and absorption 
characteristics. 

3. In large memories the operating power could 
be quite low compared to other "thin film types be
cause very little power is required by a block of 
memory not being used. 

4. Current margins for readout can be quite 
wide. Temperature compensation should not be re
quired. 

5. In some applications, turning the information 
format thru 90'0 could be an advantage, particularly 
when it is required to address bits within words 
rather than complete words. 

Disadvantages 

1. The present limit of 256 cells per R.F. line 
and detector may not prove sufficiently attractive 
economically. However it may be possible to make 
considerable improvements with better magnetic 
film and a better detector. 

2. Turning the information format through 90'0 is 
likely to be a disadvantage for many applications. 
The use of an extra set of write conductors to cor
rect this (in zigzag form) is a possible though not a 
proven practical solution. 
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INTRODUCTION 

Electronic memories in data processing equip
ment can be divided into two categories. In the first 
category are easily alterable memories such as fer
rite core matrices, ultrasonic delay lines and thin 
films. These are used for temporary storage of in
formation, for example, the program of instructions 
for a particular calculation, initial data and inter
mediate results. In the second category are fixed or 
"read-only" memories used to store information 
that is seldom, if ever, changed. Writing the infor
mation into these memories is part of the manufac
turing process, and in order to change it one has 
either to replace a part of the memory or to alter its 
construction in some way. 

The main advantages of a read-only memory 
over erasible read/write memory are: 

Nondestructive read 
No rewrite electronic and power 
Faster cycle time 
High reliability 
Low cost 
N onvolatility 

809 

Many types of read-only memories have been 
devised. The information in matrix memories is 
stored by forming a matrix of word and data lines 
and placing a coupling element at each intersection 
whenever a "1" is stored. The main disadvantages 
are the low output signal, and low signal-to
noise ratio in large matrices. 

A memory using inductive coupling but not built 
in the form of a matrix is the transformer memory 
or Diamond Ring Translator. 1 There is one address 
for each word stored and one transformer core for 
each binary digit in the output word. Each address 
wire threads through or bypasses a particular core, 
depending on whether the corresponding digit in 
that word is respectively "I" or "0." To read a giv
en word a current pulse is passed through the corre
sponding address wire. This induces a pulse, repre
senting 1, in the sense windings of the transformers 
through which it is threaded. No output appears 
from the transformers which are bypassed. 

From the point of view of speed, storage medi
um, and cost of components, the Diamond Ring 
Memory is the most suitable of all the memories 
described by Taub.2 However, in large memories, 
because of coupling between the word lines, sig-
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nal-to-noise ratio suffers and the sense amplifier 
design becomes elaborate. 

The problem of sensing can be solved by the use 
of an E-core in the place of a regular transformer 
core, making the polarity of 1 opposite to the po
larity of 0. Two E-cores put together form two 
windows, as shown in Fig. 1. When a current is 
passed through window 1, it induces flux in one di
rection through the central leg; and if a current is 
passed through window 0, the flux is induced in the 
opposite direction. Since the sense winding can 
have many turns, the output signal may be large. 
Additionally, no change of state is involved as in 
ferrite cores, therefore lower drive energy is re
quired and the output is not delayed. 

.--WORD LINES" 

SENSE WINDING 
Figure 1. E-cores. 

MEMORY DESIGN 

A memory of 1,024 words of 24 bits each was 
designed and built. For purposes to be described 
below, information was stored in two sets of E
core pairs. In each set 256 wires were passed 
through 48 pairs of E-cores. Thus, each of the 
512 wires stored 2 words of information. Two 
groups of 256 wires each were used in order to cut 
down the capacitive coupling between the word 
lines and to reduce the drive current requirement. 
The electronics were designed to read one word at a 
time out of the memory. The electronics consisted 
of: 

• An address register comprising 10, flip-flops 
which held the 100bit address representing 
the addressed line or word. 

• An address decoder compnsmg 6 I-by-4 
decoders, to decode the address and to select 
a particular line driver. 

• Sixteen voltage drivers and 32 current driv
ers to drive a current through the selected 
word line. 

• Information register consisting of 24 flip
flops representing one full word length of 
information for parallel transfer. 

• Forty-eight sense amplifiers to amplify the 
signal output of the E-core when a word was 
read. 

• Timing control pulses to generate the 
required signals for the memory operation. 

The logical design of the memory (Fig. 2) is 
considerably simpler than a regular read/write type 

INFORMATION 
OUTPUT 

STORAGE 

MAGNETICS 

ADDRESS INPUT 

INFORMATION 
AVAILABLE 

CONTRQL 

REQUEST 
INFORMATION 

Figure 2. Block diagram of memory. 

of memory because only the read cycle is performed 
and, secondly, the read is nondestructive-that is, 
regeneration of the information is not required. The 
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read cycle operation can be broken down into the 
following operations: 

1. On receiving the "Request Information" 
command the address register is strobed to 
transfer the new address information. 

2. The address is decoded to select a word 
line in which the read current will flow. 

3. When the current is established in the 
word line, the sense amplifiers are strobed 
to sense the output signal of the E-core. 
This signal sets the information register. 

4. As soon as the Information Register is set, 
the "Information Available" signal is sent 
to the computer. 

The memory timing is represented by the timing 
diagram in Fig. 3. 

TO 

REQUEST ~ 
INFORMATION lLLLLJ 

I 
I 

ADDRESS r I I I I' 
I 
I 

ADDRESS STROBE l fZZJ 
ADD RESS CLEAR I ,r-:Z"'Z"'Z"""'Z-lZ"'Z"'Z"""'Z-lZ"'Z"'Z"" 

I 
READ CURRENT , 

I 
I 

flllllllla 

SENSE AMP STROBE I 
INFORMATION L-.-,....,.. 

CLEAR JLLLLI 
INFORMATION 'I 

AVAILABLE 

I 
I 

TEND 

INFORMATION I IIZIIIIZZ 
I 
1 ___ _ 

TIME ., 

Figure 3. Timing diagram. 

MAGNETICS 

The magnetics of the memory was constructed on 
a wooden board. Two rows of 48 E-cores were 
placed in line on the board as shown in Fig. 4. Two 
wooden panels were mounted along the cores to 
hold them in position. One-half inch distance be
tween the cores was allowed to permit 256 wires to 
pass from the 1 window to the 0 window of the 

next or vice versa. Forty-gauge enameled wire was 
used to wire the word lines through the cores. The 
ends of the word line were terminated in a printed 
circuit board mounted on the ends of the wooden 
board. Each line passed through the 1 or 0 window 
of the cores depending on the information word 
stored. It is proposed that after wiring the word 
lines through the E-cores, the magnetics be re
moved from the wooden board and mounted on the 
end cards as shown in Fig. ,5. The two car4s can 
then be secured to each other to form a plug-in 
module. 

The minimum size of the E-core is determined 
basically by the number of words to be stored. 

The sense winding was wound in a spiral and 
placed around the central leg of the E-core. Sever
al tests were made to determine an optimum num
ber of turns. The result (Table 1) shows that the 

Table 1. 
No. 
of Word Sense Termination 

Turns Drive Res: 
ma 4,700 3,300 2,200 1,500 1,000 680 330 

Output in volts 
10 20 +0.9 0.8 0.65 0.55 0.45 0.4 0.3 

40 +1.8 1.7 1.4 1.2 1.0 0.8 0.6 
20 40 +2.1 1.8 1.5 1.3 1.1 0.8 0.6 

20 +1.0 0.3 0.75 0.60 0 . .5 0.35 0.25 
5 20 +0.6 0.5 0.4 0.3 0.25 0.2 0.1 

40 +1.0 0.3 0.8 0.7 0.55 0.4 0.2 

optimum number of sense turns should be 8 for a 
drive of 50 milliamps in the word line. 

The magnetics was diode-decoded as shown in 
Fig. 6. Thirty-two current switches were decoded 
in two groups of 16 each. Address bits 0 through 3 
decoded lout of 16 voltage switches; bits 4 
through 7 decoded 2 current switches out of 32 (1 
in each group); but 8 selected 1 current switch out 
of the 2 sets by gating bits 6 and 7. Bit 9 gated the 
sense amplifier strobe, selecting 1 group out of the 
2 sense outputs. 

DRIVE SYSTEM 

The drive system was designed as a single block 
and consisted of input circuits, address flip-flops, 
decoders and drive switches. The circuit diagrams 
are given in Figs. 7 and 8. The drive system opera
tion is briefly described below. 

Referring to Fig. 7, normally strobe 2 is negative 
which keeps both sides of the address flip-flops in 
the false state and thus all the decoder transistors 
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Figure 5. Magnetics packaging. 

Figure 4. Magnetics assembly. 
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Figure 6. Magnetics decoding. 
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Figure 7. Drive system. 

are reverse-biased, or all eight outputs are false. 
All the drive switches, positive and negative, are 
off. Both of the transistors of the input circuit are 
reverse-biased· by the positive level of the address 
strobe. 

the address information. Referring to Fig. 8, 1-
out-of-16 drive switches is selected by the coin
cidence of 2 true l-out-of-4 decoder outputs. 

When a "Request Information" pulse is received 
at the control, the address strobe goes negative. One 
of the decode outputs goes positive depending on 

Approximately 40 nanoseconds after the address 
strobe, strobe 2 goes positive (Fig. 7), which sets 
the address flip-flop. Near the end of the cycle, 
strobe 2 goes negative and both the transistors of 
the address flip-flop are reverse-biased which in 
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OUT OUT 
TYP. CURRENT TYP. VOLTAGE SWITCH 

1/4 IN. --+---t~11 ,..-........ I----I~ 1/4 IN. 

1/4 IN. +v 1/4 IN. 

1/4 DECODER INPUT 

\ 
V 

I 

1/4 DECODER INPUT 

Figure 8. Drive switches. 

turn reverse-biases all the decoder transistors and 
the drive switches. 

TIMING 

The timing circuit controls the operation of the 
memory through the following timing signals: 

1. Address strobe 
2. Strobe 2 
3. Sense strobe 
4. Data clear ' 

These signals were generated on receiving the "Re
quest Information" command, as shown in Fig. 9, 
by tapping a delay line. 

BIT SYSTEM 

The bit system consists of the sense amplifier, 
Information Register and transmitter circuits. The 
sense amplifier circuit was designed to amplify pos
itive going signals and reject negative going signals. 
The circuit was strobed because of signal kickback. 
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-15V 

+15 

RI 

R3 

-l5V -15V 

Figure 9. Schematic timing. 

A negative going 0 signal was followed by a positive 
going overshoot which could falsely set the flip
flop. The output of the sense amplifier was connect
ed to the true side of the information flip-flop, 
and also transmitted to the computer through the 
transmitter circuit (Fig. 10). 

+4V 

DATA 
CLEAR 

+15V +15V 

REF 2 

SENSE STROBE 0--....... --4 

+4V 

REF I. 

-15V 

Figure 10. Schematic - bit system. 

+4V 

SET 
2 

Operation 

The memory operated at a cycle time of 250 na
noseconds with the information available at 150 na
noseconds. The decoder and drive switch were select
ed in 50 nanoseconds and the current was estab
lished through the word line in 100 nanoseconds. 
The transmission delay through the word line was 
15 nanoseconds for a drive current of 50 milliamps. 
The drive current was set at 50 milliamps to get the 
maximum sense output voltage and fastest recovery 
100 nanoseconds. E-cores of 4A material of Fer
roxculie were used for this model. 

The optimum termination of the sense winding 
was 2,700 ohms (see Table I). The pattern of in
formation or of addressing the memory had no ef
fect on the recovery and output voltage of the sense 
winding. Diagrams of Figs. 11 and 12 show the 
sense line output and cycle times of the memory 
with two addresses selected. 

Figure 11. Sense line output. Horizontal scale = 40 nano
seconds/division; vertical scale = 1.0 volt/division. 

{'-" L't.. -. r i'-
j I -\ / 
/ \ 

I \ - " ~ -
Figure 12. "I" Output with respect to "Request Informa
tion." Horizontal scale = 40 nanoseconds/division; vertical 
scale = 2.0 volts/division. 

Multiple Selection 

The memory is orgC!nized in a linear select mode. 
That is, a single line is selected in order to read in
formation. This type of selection technique is costly 
because the number of lines wired is directly pro-
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portional to the number of words stored and a high 
level of decoding is required. 

To overcome the problem of cost and size limita
tions of the memory in a single wire per word 
scheme, the multiple select (coincident) technique 
was investigated. In this technique two wires in
stead of a single wire are selected at a time to read 
one word of information (Fig. 13). The output sig
nals are then combined as given in Table 2. 

Figure 13. Multiple selection organization of E-core Memory. 

Table 2. 

Word Logical 
Sense 
Line Logic 

Lines Comb i- Output Output Comments 
Selected nation volts 
A1+B1 +1 -1 0 0 Positive flux cancels 

negative flux. 
A1+C1 +1 +0 +1 1 Positive signal is 1. 
A1+A2 +1 +1 +2 1 Positive signal is 1. 
B1+C1 -1 +0 -1 0 Negative signal is O. 
B1+B2 -1 -1 -2 0 Negative signal is o. 
C1+C2 0+0 0 0 No flux coupling 

into the E-core. 

It is assumed that the current flowing through 
one word line induces 1 volt in the sense line. The 
logical representation of sense line output is arbi
trarily taken as positive flux for 1, no or negative 
flux for 0; it can be changed to suit the type of in
formation to be stored. Six different combinations 
help to reduce the number of lines required to store 
the information. 

The information stored at line 1 or line 2 does not 
represent the word of information, but it is the 
logical combination of these two lines which gives 
the word of information. In order to store N words 
of information, N combinations need to be stored. 
As a minimum, only 2x N different words (lines) 
have to be wired in order to store N words. This 
technique of multiple selection can be extended from 
double to triple and quadruple selection, which fur
ther reduces the number of different states. In triple 
selection, only 3x3 N and in quadruple selection 
4X4N different states are needed for N words of 
storage. Table 3 shows a comparative organization 
of the memory under various selection techniques. 
The cost of a diode is taken as 1 unit and the 
remainder of the entries are calculated based on 
this unit. Fixed cost is estimated at 1,500 units 
(without power supplies) which includes receiver, 
flip-flop, timing and transmitter circuits, assembly, 
packaging and testing. A 1 to 0 ratio is considered 
(1) high when the sense output polarities are oppo
site, (2) good when the ratio is 5 to 1 or greater, 
and (3) poor when the ratio is less than 2 to 1. 

Table 3 shows that series parallel gives the opti-

Table 3. Comparison of Cost and Speed of E-Core Memory for Different Selection Techniques. 

Word Cores and 
Drive 

Mode Line Sense Sense Switch 
Amplifier and 

Cost Winding Decoder 

l.a) Linear 2048 48 144 470 
select 

b) Series 1024 192 288 375 
parallel 

c) 4-Series 576 192 576 280 
2. Double select 128 48 144 150 
3. Triple select 64 48 288 150 

mum configuration for straight linear select mode. 
Double select technique is the most attractive from a 
cost point of view. Out of 1033 logarithmic and 
exponential constants (3), 256 words were selected 
to give 16 + 16 = 32 different states for storage 
by double selection. The model operated at a speed 
of 250 nanosecond cycle time and access time of 150 
nanoseconds. The sense line output is shown in 

Addi-
Signal-

tional 
Access Cycle to-

Comments Time Time Noise 
Units Ratio 

nanoseconds 
2710 150 250 High Costly 

1879 150 250 High Optimum 

1624 200 300 High Long drive line 
470 200 300 Good 
550 200 300 Poor 

Fig. 14. An effort was made to program the infor
mation in attempt to yield 2xN states. However, 
this optimum lower limit was never· achieved. The 
addressing logic for mUltiple selection becomes com
plex and the memory cost increases beyond that of 
a linear select. This approach was therefore aban
doned. Further work in programming the information 
is suggested. 
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OVERSHOOT 

Figure 14. Sense line output for a double select technique. 
Horizontal scale = nanoseconds/division; vertical scale = 
2 volts/division. 

AUTOMATIC WIRING 

A computer program can generate the word line 
pattern for storage. The lines are printed on a dou
ble sided strip. The strip is punched in the middle 
to pass the central leg of the E-core. The cross
over from one bit position to next is accomplished 
by passing 1 to 0 word lines on one layer and 0 to 
1 on the other. The number of words on each strip 
is determined by the number of lines which can be 
printed in one half of the strip. The computer pro
gram guides a photopointer to produce a photoprint 
of these lines. After making, these strips, each of 
which may contain up to 64 words, are placed in 
the E-cores. 

INTEGRATED CIRCUITRY 

Integrated circuits can be used for almost all the 
circuits in this memory. The flip-flops are two 
cross-coupled DTL gates. The decoders and drive 
switches can be combined into one circuit like the 
Fairchild 932 or 946 gate. For sense amplifier and 
receiver circuit, Motorola MIC logic can be used. 
The use of integrated circuits cuts down the compo
nent count, thus cutting down the cost considerably, 
and makes the memory more reliable. 

The operation of the memory demonstrated the 
following: 

1. The speed of the memory depends upon: 
( a) the recovery of the sense line; 
(b) the time required to decode the address 

and to select a voltage and a current 
switch. 

2. The access time depends upon: 
The time required t6 decode the 
address and to select a voltage and 

a current switch, together with the 
time required to amplify the sig
nal to set the data flip-flop and 
the transmitter. 

3. For the E-core used, 50 milliamps of word
drive current gives the optimum signal of 
+ 1.2 volts. The number of sense turns for 
this output is eight. 

4. Because of the high output voltage, the sense 
needs only one stage of amplification to set 
the data flip-flop. 

The model clearly demonstrated that it is possi
ble to use E-core as a storage element. The speed 
obtained with the prototype was 250 nanoseconds. 
The recovery of the sense line depends upon the 
material of E-core. Ferrite material, with response 
up to 100 megacyles per second is available, as 
compared to the 10 megacyles per second material 
used in this model E-core. The faster the material, 
the faster the core recovery; hence the present re
covery time of 150 nanoseconds can be substantial
ly reduced simply by changing the core material. 
For computer storage, cycle time of 250 nano
seconds and access time of 150 nanoseconds are 
considered very high speed compared with the pres
ent state of the art. The 0 sign~l is of opposite po
larity to 1, thus any problem of discrimination be
tween 1 and 0 signal is avoided. The E-core wir
ing can be automated very easily since the wires 
can be prebent or printed according to the informa
tion and then just dropped into the open windows 
of the E-core. Also, the number of E-cores used 
in the memory is small compared to any other type 
of memory. The reduced number of cores and the 
automatic wiring reduces the cost of the magnetIcs 
of the memory profitably. 

The automatic wiring eliminates wiring errors to 
which the human hand is susceptible; the clear dis
crimination between 1 and 0 signals also contrib
utes to a highly reliable operation. 

To summarize-an E-core memory is feasible 
and seems to possess the following unique advan
tages: 

1. High speed - 250 nanoseconds. 
2. High reliability: 

( a) Opposite polarity of 1 and 0 signals. 
(b) Automatic word wiring. 

3. Low cost - at least one half that of any 
other memory. 

4. No limitations on the size of the memory. 
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MAGIC-A MACHINE FOR AUTOMATIC GRAPHICS INTERFACE TO A COMPUTER 

D. E. Rippy and D. E. Humphries 
National Bureau of Standards 

Washington, D. C. 

INTRODUCTION 

The Computer Technology Section of the National 
Bureau of Standards is currently engaged in an 
extensive program to develop advanced techniques 
for improving user communication with large ADP 
systems. This program is an outgrowth of a number 
of projects in which the Section has been called 
upon to assist other agencies in the solution of a 
variety of data processing applications. 

These projects have provided contact with many 
kinds of data processing problems which generally 
involve such functions as command and control, 
design and mapping, updating and utilization of ac
tive files, editing, and information retrieval. Devel
opment of data processing hardware for use as tools 
to aid the investigation of such functions is usually 
required. 

This report describes a machine which has been 
developed within the Computer Technology Section 
as a research tool for the investigation of man
machine communication techniques involving CRT 
displays. This machine has been designated MAGIC 
(Machine for Automatic Graphics Interface to a 
Computer). This machine combines large-diameter 
cathode-ray displays with a specially designed pro
grammable digital computer. It is designed as a re-
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mote display station and is intended to be connected 
to a large ADP system via voice quality commu
nication lines. Extensive design effort has been 
devoted to removing from the ADP system the 
time-consuming and repetitive tasks of display re
generation and manipulation, and to minimize the 
limitations introduced by the communication lines. 
Particular emphasis has been placed on establishing 
the proper balance between hardware and software 
functions. 

MAGIC was originated in August 1964 and 
completed in February 1965. It is currently being 
used to conduct experiments and perform demon
strations in order to better define the optimum 
characteristics for equipment of this type. 

SYSTEM DESCRIPTION 

Design specifications of MAGIC evolved from a 
number of basic considerations such as memory 
type and organization, display type and control, 
word formats for the machine instruction and dis
play data, operator controls, and system economics. 
Underlying the over-all display data organization 
within MAGIC and the digital manipulation of these 
data is the realization that most CRT displays func
tion in a point-to-point manner, implying that 
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the digital data required to drive the display device 
must exist in a serial list form with respect to time. 
Therefore, it would seem logical to generate, ma
nipulate and store display data with a processor 
having list processing abilities. Also, as will be 
shown in detail later, this list processor organiza
tion results in a significant savings in the software 
required for display operation. This concept has 
provided the basis for the hardware design of the 
MAGIC system. 

System Hardware Organization 

There are two major hardware sections of the 
MAGIC system as seen in Fig. 1. These are the dis
play unit and the processor unit. The display· unit 
consists of a primary and a secondary CRT display. 

, 

PROCESSOR UNIT 

CONTROL PROCESSOR 

w x 

SECONDARY 
DISPLAY 

Y z 

OPERATOR 
CONTROLS 

y 

DISPLAY UNIT 

SUBORDINATE 
LIST 

PROCESSORS 

Figure 1. Machine for automatic graphics interface to a 
computer. 

The operator uses the primary display and its asso
ciated controls to perform the majority of his com
munications with MAGIC. The secondary display 
is used as a passive display device only. 

The processor unit is subdivided into one control 
processor and four identical subordinate list proces
sors designated W, X, Y and Z. Subordinate list 
processors X, Y and Z operate directly on the por
tion of memory used by the primary display. Subor
dinate list processor W is considered part of the 
control processor and allows the control processor 
to perform list manipulations without disturbing the 
primary display. 

Drum Memory 

The magnetic drum memory within MAGIC is 
similarly subdivided. The control processor com
municates with the portion of memory termed gen
eral memory. The portion of memory designated as 
display memory is used by the subordinate list proc
essors (including W) and the primary display. The 
secondary display, however, receives its display 
data from three channels of the general memory. 

A rotation speed of 1800 rpm was chosen for the 
drum since it provides a display refresh rate of 30 
frames/sec, which is generally recognized as the 
lower limit for flicker-free presentation of sta
tionary information. When the limitations of oper
ating speed of the display consoles and the available 
logic hardware were taken into account, it was 
found that 128 12-bit words per drum memory 
channel could be accommodated; this results in a 
system clock rate of slightly less than 54 kHz. Gen
eral memory capacity is 90 channels. 

Word Formats 

The processor unit functions as a serial, single 
address processor. The single operand address and 
the various operation codes are organized in a dou
ble length instruction word format as shown in Fig. 
2. Bits designated W, X, Y and Z in the instruc
tion format address the respective subordinate list 
processors. Note that any combination of W, X, Y 

WORD n WORO·n+1 
~ ____ ~A~ ___ ~~ ___ ~A~ ______ ~ 
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CHANNEL ADDRESS 

(000 - 700)e 

OPERATION CODE 

(00 - 77fe 

SECTOR ADDRESS 

(000 -177)e 

Figure 2. Instruction word format (double length). 

or Z may be specified simultaneously in anyone 
instruction, allowing additional flexibility in ma
nipulating display data. 

Display data within MAGIC may be considered 
to consist of three fields: the X coordinate field, 
the Y coordinate field and the Z field. These fields 
are the X, Y and Z lists in display memory and are 
operated on by subordinate list processors, X, Y 
and Z respectively. The Z field in the list specifies 
the display characteristics for the associated X and 
Y coordinate words. The X and Y coordinate data 
consist of 10 bits centered in the 12-bit standard 



MAGIC - A MACHINE FOR AUTOMATIC GRAPHICS INTERFACE 821 

data word. This allows an increase or decrease in 
display size by a factor of two without loss of coor
dinate data bits by utilizing shifting techniques. 

Graphic presentation on both displays represents 
the first quadrant of the cartesian coordinate X-Y 
plane. The 10-bit coordinate fields provide a reso
lution of 1024x1024 discrete positions. Since all 
numbers within the first quadrant are positive, aU 
numerical data in MAGIC are assumed positive and 
are therefore unsigned. Also, since MAGIC is dis
play-oriented and therefore not primarily intended 
for general purpose processing, arithmetic operations 
in MAGIC are of the simplest form, consisting pri
marily of straightforward binary addition. Further, 
there is no parity bit associated with MAGIC data. 

The Z word format is shown in Fig. 3. The de
sired Z parameters may be processor-generated or 

ALPHA-NUMERIC CHARACTER CODE' 
FROM KEYBOARD 

FROM Z CONTROLS ON 
DISPLAY CONTROL PANEL 

~ NORMAL / ALPHA-NUMERIC CHARACTER 

~ CHARACTER GAIN: HIGH/LOW 

[ill INTENSITY: OFF/LOW/ MED./ HIGH 

fi@ PLOT MODE: POINT / LINE (SHORT. MED •• LONG) 

Figure 3. Z word fonnat. 

may be specified manually via the Z switch register 
on the operator's control panel. 

The instruction repertoire of MAGIC may be di
vided into two categories: list instructions and 
non-list instructions, as tabulated in Fig. 4. List 

LIST 

I. BLOCK TRANSFER 

2. ADD 

3. INSERT 

4. DELETE 

S. SCAN (MASKED) 

6. SHIFT 

NON-LIST 
I. JUMP 

2. REGISTER FILL 

3. REGISTER EMPTY 

4. CONTROL FUNCTIONS 
A. INTERRUPT 

B. DISPLAY DATA TRANSFER 

C. CONTROL PROCESSOR REGISTER MANIPULATIONS 

D. HALT / BREAKPOINT/ SENSE LIGHT SET 

Figure 4. Control processor instructions. 

instructions are considered as those affecting data 
in the four display memory channels. They may be 
performed on a single sector within display memory 
or on a list of specified length in display memory. 
Non-list instructions pertain primarily to the con
trol processor. Since the execution of the instruc
tions categorized in Fig. 4 is intimately tied to the 
hardware which performs them, no attempt will be 
made to discuss them as a separate subject. Rather, 
it would be better to discuss them as they individ
ually become pertinent to the detailed discussion of 
the hardware of MAGIC which follows. 

CONTROL PROCESSOR 

As stated earlier, the processing unit is divided 
physically and logically into a control processor and 
four subordinate list processors (W, X, y. and Z), 
each communicating with its assigned portion of 
the drum memory. Figure 5 is a block diagram of 
the control processor. Also shown are blocks repre
senting both displays and the four subordinate list 
processors. The control processor contains all regis
ters necessary for executing programs within the 
control processor and for controlling the subordi
nate list processors. These registers are the instruc-

W CHANNEL X CHANNEL Y CHANNEL Z CHANNEL 
Bw REGISTER Bx REGISTER By REGISTER Bz REGISTER 
Cw REGISTER Cx REGISTER Cy REGISTER Cz REGISTER 

COMPARATOR COMPARATOR COMPARATOR COMPARATOR 
ADDER ADDER ADDER ADDER 

ZERO· DET. ZERO DET. ZERO DET. ZERO DET. 

W X 
PROCESSOR PROCESSOR 

Figure 5. MAGIC block diagram. 
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tion register, instruction address counter, memory 
address register, alternate address register, mask 
register, interrupt address register, loop counter, 
and I/O register. All registers listed above with the 
exceptiqn of the instruction register, instruction ad
dress counter, and memory address register may 
corrimunicate both ways with general memory as a 
result of the execution of a register fill or a register 
empty instruction. An additional exception to the 
above is the loop counter which may be filled only. 

All instructions are decoded for execution from 
the instruction register contents. The instruction 
fetch phase of control processor operation loads this 
register. The contents of the instruction address 
counter determine the memory address for obtain
ing the next instruction from memory. Normally, 
this register advances by two following an instruc
tion execution. However, the contents of this regis
ter may be forced to non-sequential addresses by 
jump or interrupt operations. 

All memory addressing is performed via the 
memdry address register. The channel address se
lects the proper general memory read/write head 
and the sector address is compared with the memory 
word counter (which is not shown in Fig. 5) to 
provide sector selection and timing for general 
memory or display memory, whichever is specified 
by the instruction. 

The alternate address register is provided for 
alternate addressing. When so specified in the in
struction, the sector contents of the instruction ad
dress counter may be replaced by the contents of 
the alternate address register before execution of 
the instruction. The alternate address register may 
be loaded via a register fill instruction, a scan oper
ation or as a consequence of addressing a displayed 
object with the light pen. The alternate address reg
ister may also be incremented by the execution of 
an instruction for this purpose. Also, if the contents 
of this register correspond to sector 1278 (the last 
sector of any drum channel), the execution of an 
alternate address register sense and jump instruction 
will cause the program to jump to the address speci
fied in the instruction. If the contents are not 1278, 
no action is taken. 

Masking data for scan operations are supplied by 
the contents of the mask register, which is shared 
with all subordinate list processors for masking pur
poses. Associated with the mask register is an in
struction which allows the mask register contents to 
be shifted right by one bit each time the instruction 

is executed. This was implemented as a program
ming aid for code conv.ersion subroutines. 

The interrupt address register acts as an inter
mediate buffer for the interrupt sector address dur
ing the execution of an interrupt instruction. The 
interrupt mode of operation of MAGIC is further 
.described in the section headed System Operation. 

Four general-purpose sense flip-flops (desig
nated W, X, Y and Z) are available as program
ming aids. Control of these flip-flops is provided 
by a set instruction and a sense and jump instruc
tion. If such a jump is performed, the involved 
sense flip-flops are reset. 

Another programming aid is provided by the 
loop counter. When filled with the desired constant, 
it permits reiterative program loops to be per
formed without additional software tallying which 
would normally be part of the loop. Execution of 
the sense and jump instruction for the loop counter 
interrogates the loop counter for the following con
ditions: if the loop counter is not zero, it is decre
mented and the program jumps to the operand 
address specified in the instruction (beginning of 
the loop). If the loop counter is zero, no action 
results and the instructions are taken in normal 
sequence, allowing the program to break out of the 
loop. 

Local input/output may be performed via the 
single length I/O register. This register is addition
ally linked to a special general memory I/O channel 
with dual read/write capabilities. With this register 
and its associated dual controls and sector address
ing, it is possible to communicate between the I/O 
channel and _ a peripheral device without interrupt
ing operation of the control processor. This I/O 
channel is also utilized by the hardware used to in
terface MAGIC to the central ADP system. This 
will be detailed later in the paper. 

SUBORDINATE LIST PROCESSORS 

Digital data presented to the primary display are 
manipulated by the three subordinate list processors 
designated X, Y and Z. These processors (as well 
as processor W) are identical in design. Figure 6 
shows the logical arrangement of one of them. The 
read head and write head shown in this figure are 
separated by exactly one word (or sector) as related 
to drum circumference, allowing the A register and 
the associated drum channel to form a nonprecess
ing recirculating loop. Since it is not possible to 
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A. DELETE 

l
B. SHIFT RIGHT 
C. SHIFT LEFT 

! 
D. NORMAL WRITE SOURCE 
E. ADD 
F. INSERT 
G. BLOCK TRANSFER 

WRITE CONTROL 

~----~------------_---oA 
r-------OB 

r----------<:>C 

OUTPUT TO 
PRIMARY DISPLAY 

C REGISTER 

MASK 
REGISTER 

d!---<. FROM GENERAL MEMORY 
OF 
E 

D 

ADDER 

CARRY 

INPUT FROM PRIMARY 
DISPLAY 

"NO HIT" 
DETECTOR 

Figure 6. W, X, Y or Z subordinate list processor. 

place heads this close together on the same channel 
(one sector occupies approximately VB" of drum 
circumference), a pair of channels are used, with 
the write head on one and the read head on the other. 
A restoring pair of read/write heads are placed 
a convenient integral number of sectors around the 
circumference of the drum from the pair associated 
with the A register to close the loop. Consequently, 
the memory "channel" shown in Fig. 6 represents 
the two actual memory channels as described. How
ever, this arrangement will continue to be consid
ered as a single memory channel since this is its logi-
cal function. ' 

Normally, when the subordinate list processor is 
inactive, data flow from the memory channel, via 
the read head, through the A register and the write 
control switch (which, when inactive, is in position 

D), and back onto the memory channel via the 
write head. During the time period for any speci
fied sector, the data contents of this sector are 
being written from the A register onto the drum. 
To perform list manipulations on these data, the con
trol processor switches the write control to the 
proper switch position for the appropriate length of 
time. At the end of the specified list manipulation, 
the write control is returned to position D. This 
concept· of a recirculating loop with write control 
makes it possible to perform true list manipulations 
within the subordinate list processors. Reiterating, 
these list manipulations are: insert, delete, block 
transfer, shift (right or left), add and scan. The fol
lowing describes these manipulations in detail. 

Data are inserted into a display channel via the 
associated B register as shown in Fig. 6. The B reg-
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ister may be filled by the control processor with 
data from general memory or from the locator coor
dinate buffers and the Z parameter switches on the 
operator's control panel. The word location or sec
tor into which an insertion is to take place may be 
defined by the zero detector, or the sector may be 
defined in the instruction. Thus, the following types 
of insertion may be accomplished: (a) at the be
ginning of a list, (b) within a list, and (c) at the 
end of a list if the last word of the list is followed 
by a word containing all zeros. 

At the time coincident with the beginning of the 
desired sector, the write control is changed to Posi
tion F. where it remains until the end of the chan
nel. This places the B register in the recirculating 
memory loop, creating a total delay of two words. 
Consequently, the contents of the B register are 
written into the desired location in the list and the 
previous contents of that sector and all following 
sector contents are automatically moved down one 
sector to accommodate the inserted word. This repre
sents a true insertion within a list of data, with data 
properly relocated by the completion of the opera
tion. 

The following table illustrates the insert opera
tion. Here, it is assumed that the data word 7777 
(octal) is to be inserted into sector 0'56 of a dis
play memory channel. 

Table 1. Illustration of an Insert Operation. 

Data List Data List 
Before Insertion After Insertion 

Sector Contents Sector Contents 
0'54 0123 0'54 0123 
0'55 4567 0'55 4567 
0'56 7654 0'56 7777 
0'57 3210' 057 7654 
0'60' 0'123 0'60' 3210' 

Deletion is accomplished by switching the 
write control to position A at the beginning of the 
desired sector where it remains until the end of the 
channel. The sector is defined in the same manner 
as in insertion operations. This operation removes 
the A register and the one word delay it represents 
from the recirculating loop. Consequently, the con
tents of the specified sector are bypassed and the 
data in the remainder of the channel are moved up 
one sector position to· fill the gap. As in the insert 
operation, this represents a true list delete. The 

types of deletion possible are the same as for inser
tion. 

Table 2 illustrates the delete operation. Here it is 
assumed that the contents of sector 0' 1 0' (octal) are 
to be deleted. 

Table 2. Illustration of a Delete Operation. 

Data List Data List 
After Insertion After Delete 

Sector 
0'0'7' 
DID 
0'11 
0'12 

Contents 
1111 
2222 
3333 
4444 

Sector 
0'0'7 
DID 
011 
0'12 

Contents 
1111 
3333 
4444 
5555 

Memory to memory "block" transfers of data be
tween display memory and the control processor 
general memory can occur in both directions. Block 
transferring from the display memory to general 
memory requires no action by the subordinate list 
processor and is under direct control of the control 
processor via the system's memory bus (heavy line 
shown in Fig. 5). Block transferring from general 
memory through the memory bus to display mem
ory requires the write control (Fig. 6) to be 
switched to position G during the performance of 
this operation. A block transfer may be specified 
for a particular sector or from a sector to the end of 
the channel. This block. transfer capability is gener
ally used for storage in or retrieval from general 
memory of pictures or sub-pictures for presenta
tiqn on the primary display. 

Increasing or decreasing the size of the display 
by factors of two may be accomplished by shifting 
the data in the display channels left or right respec
tively. By switching the write control to position C, 
data from the A register are written one bit late, ef
fectively shifting left or increasing the binary 
weight of each data bit by a factor of two. By 
switching the write control to position B, data bits 
are written one bit early, effectively shifting right. 
In either of the above cases, there is no overflow 
from word to wor,d, and each execution of the oper
ation constitutes a shift of one bit position only. 
Shift operations may be performed on a single spec
ified sector or from a specified sector to the end of 
the channel. 

An add operation within the subordinate list proc
essor utilizes the serial full adder as shown in Fig. 
6. During the execution of an add operation, the 
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contents of the control processor addressable C reg
ister are serially added to the A register. Also during 
the add operation, the write control is switched to 
position E and the adder sum is written on the 
drum as it is generated. If an overflow condition 
exists after any single word has been added, the 
overflow detector is set. A subsequent sense and 
jump instruction may be used to test for an over
flow condition. The overflow detector is reset only 
at the beginning of any add operation. As implied 
in Fig. 6, variations in the add instruction permit 
Modulo 2 add or complementing of the C register 
before addition. Addition may be performed on a 
single sector or from a specified sector to the end of 
the channel. 

Addition of a constant to X or Y coordinate data 
has the effect of moving the picture presented on 
the primary display; e.g., adding a constant to the 
X coordinate data list moves the picture to the 
right or subtracting the constant moves the picture 
left. Repetitive addition creates continuous move
ment of the picture. The speed of movement is de
termined by the size, of the constant. 
Scan operations perform table look-ups on data in 
display memory. During the scan operation the con
tents of the A register are serially compared with the 
contents of the C register by the comparator shown 
in Fig. 6. This operation requires no switching of 
the electronic write control. Scanned data are always 
masked by the contents of the mask register. The 
data in a specified display memory may be scanned 
for A = C, A> C, A < C, or A =I=- C. A scan opera
tion is initiated at the sector specified by the instruc
tion and continues until terminated by one of the fol
lowing methods. If the scan operation is successful, 
the comparator output terminates the operation at the 
end of the sector for which the scan was successful. 
At this time the contents of this sector are placed in 
the B register and the sector address is placed in the 
alternate address register. If the scan operation is 
not successful, the operation is terminated at the end 
of the channel and the "no hit" detector is set. The 
no hit detector may be tested by a sense and jump 
instruction which will cause a jump to occur if the 
no hit detector is set. The no hit detector is not reset 
at this time but is reset at the beginning of any scan 
operation. 

The salient feature of the list manipulations just 
discussed is that each requires a single control proc
essor instruction which requires one drum revolu
tion or less for execution. Since, as previously de-

scribed, one bit in the control processor instruction 
format is reserved uniquely to each of the four sub
ordinate list processors, a specified list manipula
tion may be performed simultaneously in any de
sired combination of these processors. 

PRIMARY DISPLAY 

Dual magnetic deflection is employed by both 
display consoles. Object position on the CRT 
screen is provided by the main deflection system. 
The secondary deflection system provides the rela
tively fast, limited deflection characteristics re
quired for alpha-numeric character and locator 
(primary display only) presentation. Figure 7 de
picts the primary display and its associated control 
logic. 

FROM AZ 
REG. 

Figure 7. Primary display. 

Digital display data are parallel transferred from 
the A registers of subordinate list processors X, Y 
and Z to the primary display buffers (X, Y and Z). 
The X and Y coordinate buffers drive digital to an
alog converters to provide object position. The con
tents of the Z buffer (see Fig. 3) are decoded to pro
vide control information for use as indicated in 
Fig. 7. 

Included in the main deflection system is a pair 
of preamplifiers which act as gated integrators for 
vector generation and which are controlled by de
coded plot mode information from the Zbuffer. 
When in vector mode (solid or dashed vector) , 
these preamplifiers act as integrators. When in any 
other mode, they act as unity gain amplifiers. 

As recalled from Fig. 3, six bits of the' Z word 
are used by the alpha-numeric character generator. 
This character generator is commercially available 



826 PROCEEDINGS - FALL JOINT COMPUTER CONFERENCE, 1965 

and utilizes a formatted stroke method of character 
generation. To obtain two character sizes, the char
acter gain bit of the Z buffer controls the gain of a 
pair of preamplifiers in the secondary deflection 
system. 

The digital intensity modulator receives informa
tion from the locator generator, character generator 
and Z buffer for generating the necessary control, 
timing, and intensity level information required by 
the various objects being displayed. 

Light Pen and Locator 

The light pen in the MAGIC system is used in 
conjunction with an electronically generated cross
hair locator pattern for manually generating display 
data. The locator may be turned on or off by a 
manual switch on the control panel and appears on 
the primary display. The locator control circuit al
lows the locator to be generated once each revolu
tion of the drum during the time period allocated to 
the last sector (sector 1278) of memory channel 
timing. Consequently, this last sector cannot be 
used for display data storage. Generation of each 
segment of the locator is synchronized with the lo
cator coordinate up/down counters in a manner 
which allows the locator to servo to the light pen. 
The speed at which the locator servos to the light 
pen is proportional to the distance of the light pen 
from the center of the locator. The locator position 
is updated by transferring the contents of the loca
tor up-down counters to the main deflection X 
and Y buffers immediately after each locator gen
eration. 

Once the locator has been positioned and the ob
ject at that position has been described by the Z 
parameter switch register on the control panel, it is 
necessary for the data to be transferred to the B 
registers of the X, Y and Z display processors for 
subsequent insertion. This may be accomplished 
manually by the depression of any keyboard key or 
by the execution of the display data transfer in
struction by the control processor. 

Another use of the light pen is for the identifica
tion of data being displayed on the primary CRT. 
Depression of a manual switch permits the sector 
address synchronous with the light pen output pulse 
to be transferred to the alternate address register. 
Subsequent processing using alternate addressing 
techniques permits the desired manipulation to be 
performed on any object pointed to with the light 
pen. 

SYSTEM OPERATION 

Manual Controls 

The physical appearance of the MAGIC system 
is shown in Fig. 8. The primary display is on the 
right and the secondary display is on the left. To 
the upper left of the primary CRT is the light pen. 

Figure 8. MAGIC - a machine for automatic graphics in
terface to a computer. 

Panels from top to bottom of the center rack are: 
(1) control processor monitoring indicators, (2) 
control processor manual controls, and (3) display 
control panel containing the Z switch register, loca
tor and light pen controls, and keyboard interrupt 
control. The keyboard, used primarily for alpha
numeric data entry, is below this panel. The vertical 
rows of buttons on the right side of the display con
trol panel and the two vertical rows of illuminated 
pushbuttons at top center of this panel are interrupt 
pushbuttons, Additional interrupt pushbuttons are 
on the small chassis shown at the lower right of the 
primary CRT. 

Interrupt Feature 

Operation of MAGIC generally consists of using 
the light pen and the interrupt pushbuttons to either 
generate display data or manipulate data already 
being displayed. Also, for most purposes, MAGIC 
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executes subroutines on an interrupt basis. This in
terrupt feature functions as follows. The receipt of 
an interrupt instruction by the instruction register 
causes the control processor to "hang up" in the in
struction execution phase. This condition will re
main until one of the 63 interrupt pushbuttons 
available to the user is depressed; at which time, 
the sector address assigned to this pushbutton is 
tran'sferred to the interrupt address register. This 
sector address is then transferred to the instruction 
address counter and the operation is simultaneously 
terminated. The next instruction is taken from this 
new sector address and normally consists of an un
conditional jump instruction which is one of a list 
of links to display manipulation subroutines; each 
link corresponding to an interrupt button. Thus the 
interrupt pushbuttons are programmable and their 
meaning may be changed by modifying the list of 
uncondition:al jump instructions associated with the 
interrupt jump instruction. 

It follows that any particular interrupt pushbut
ton may mean different display manipulations for 
different users. Therefore, annotated overlays are 
used for describing the functions of the pushbut
tons. About half of the interrupt buttons are de
signed to operate continuously, i.e., the subroutine 
accessed by one of these interrupt buttons is repeated 
as long as the button is depressed. 

Subroutine Examples 

The following examples of simple display manip
ulations are accessible by interrupt as previously 
described. Each subroutine, therefore, is linked 
back to the interrupt instruction by an uncondition
al jump instruction. Also, the following examples 
are representative only; a complete discussion of 
MAGIC software would be beyond the scope of this 
paper. However, detailed programming and operat
ing procedures for MAGIC are described in National 
Aeronautics and Space Administration document 
number N65-25010: "MAGIC-A Machin'e for 
Automatic Graphics Interface toa Computer" (ref
erence manual) by D. E. Rippy (29 Dec. 1964). 

A typical insert subroutine generally consists of 
two machine instructions: an insert instruction, and 
a jump instruction for return to the interrupt. An 
insert may be performed at the beginning of a dis
play list by specifying the beginning sector of that 
list in the insert instruction. 

Insertion within the display list utilizes alternate 

addressing and is generally executed in the follow
ing manner. The user points with the light pen at 
the displayed feature (line, point, etc.) within the 
picture where it is desired that new graphic data be 
inserted. Depression of the light pen address switch 
loads the alternate address register with the sector 
address coincident with that feature. The Z switch 
register contents (assumed previously set for the 
desired parameters), keyboard buffer contents, and 
the locator coordinates (from the locator up-down 
counters shown in Fig. 7), are then transferred to 
the Bx, By and Bz registers. This is accomplished 
either by depressing any keyboard key or by the 
execution of a display data transfer instruction which 
would be included in the subroutine. The choice is, 
of course, dictated by user preference. 

The interrupt button assigned to this subroutine 
is then depressed. In this case, the insert instruction 
will include the alternate addressing code, allowing 
the alternate address register contents to govern the 
sector location within the display list where inser
tion is to take place. 

The A register zero detector (Fig. 6) is utilized 
for insertion at the end of a display list. The end of 
a display list is defined as the first sector of a dis
play memory channel in which no data exist. In 
this case, the execution of the insert instruction 
monitors the zero detector as the display list flows 
through the A register. If the display list in ques
tion is followed by at least one sector containing no 
data, a signal from the zero detector initiates the 
insert process at that sector. 

A typical delete subroutine also consists of two 
or three machine instructions, depending on whether 
or not a display data transfer instruction is in
cluded. Deletion at the beginning of, within, or at 
the end of a display list is performed as described 
for the insertion subroutines described above. 

A subroutine to move a picture or subpicture 
across the CRT face requires three machine instruc-

. tions. The first instruction fills the Cx or Cy register 
with the desired con'stant to be added to the X or Y 
coordinate data. The add instruction is performed 
next. This may be a complement-before-add in
struction (as previously described) for such pur
poses as creating movement left or down. Finally, 
an unconditional jump instruction returns program 
control to the interrupt in'struction. 

Movement at any angle may be accomplished by 
the addition of "another fill instruction which would 
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allow the Cx and Cy registers to be filled with dif
ferent constants. Simultaneous add instruction exe
cution may then be performed by the X and Y sub
ordinate list processors if both X and Yare speci
fied in the add instruction (see Fig. 2). 

To tie the last point (or line) in a display list to 
any preceding point (or line) in that list with, gen
erally, a line, requires three machine instructions. 
The user identifies the feature he wishes to tie to 
with the light pen and depresses the interrupt but
ton used for this "Tie" subroutine. The X and Y 
coordinate values in the sector location just identi
fied are transferred to the Bx and By registers, re
spectively, by the first instruction, utilizing alter
nate addressing. An end-of-list insert instruction 
is performed next, resulting in a new line being 
drawn to the identified location. The remaining in
struction is the usual unconditional jump to the in
terrupt instruction. 

Calling up whole pictures or subpictures after 
they have been generated, stored in general mem
ory, and identified by interrupt buttons and associat
ed linkage software requires a subroutine of four 
machine instructions. These are three blocks trans
fer instructions (one each for the X, Y and Z lists) 
and the usual unconditional jump back to the inter
rupt. 

On a somewhat larger scale, a "visual assembler" 
program has been devised, requiring (irrespective 
of look-up tables and picture storage) 103 ma
chine instructions. Upon entry into this program, a 
picture is displayed on the primary display consist
ing of alpha-numeric mnemonics representing all 
of the machine instruction and the four subordinate 
list processors, a number table for composing chan
nel and sector addresses, and mnemonics used for 
control purpo&es. The processor then goes to a light 
pen interrupt mode. The user then points to a dis
played mnemonic with the light pen and depresses 
the light pen address switch. By alternate address
ing, the program is then directed to the proper sub
routine for assembly if the binary equivalent of 
the mnemonic pointed to. This process is contin
ued; assembling the operation and address fields in 
their proper locations to result in a machine in
struction or, as desired, a numeric data word. Var
ious control mnemonics allow such operations as 
assembly of machine instructions or data words, er
ror correction and transfer of the assembled infor
mation to its permanent general memory location. 

More sophisticated programs of this nature will be 
generated in the near future for compiling programs 
for MAGIC and for the central computer. 

MAGIC-CENTRAL PROCESSOR 
COMMUNICATION 

By November 1965 MAGIC will be interfaced to 
a large ADP system which is particularly oriented 
toward time-sharing communication with a large 
number of peripheral devices. These devices will be 
of varying complexity, ranging from simple tele
types to more complex devices such as MAGIC or 
satellite computers. Such an arrangement will allow 
further investigation of time sharing, interfacing 
and on-line processing techniques. Where MAGIC 
is particularly concerned, various experiments will 
be performed involving applications of a display 
device which require the large data base and the 
faster, more sophisticated computing abilities pro
vided by a large ADP system. 

The central processing system to be used for this 
purpose is a MOBIDIC B twin computer and the 
NBS PILOT mUlticomputer, each computer having 
the ability to communicate with the other. Four 
magnetic tape units and two disc files provide a 
large data base for program and data storage. Minor 
modifications to the I/O Converters associated 
with each processor and to the I/O interrupt logic 
have greatly increased the time-sharing capabili
ties of the system. 

The interface associated with MAGIC utilizes a 
voice quality, half-duplex line. The data rate has 
been set at 2.4 kHz. Although the data rate could 
be considerably higher, the use of voice quality 
lines is generally a necessity for many remote sta
tion applications as dictated by availability and 
economic considerations. 

Two forms of intercommunication between 
MAGIC and MOBIDIC are used: one for commu
nication of graphic data to and from display channels 
X, Y and Z, and one for communication of pro
grams and related data or control information to 
and from the I/O channel in the control processor. 
When used on line with MOBIDIC, MAGIC is as
sumed to be in the receive mode except when ac
tually transmitting. In MAGIC, reception of data is 
concurrent with control processor operation. MO
BIDIC is similarly assumed to be always in the re
ceive mode. However, unlike MAGIC, MOBIDIC 
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utilizes an interrupt for recognizing data receipt 
when operating in the time sharing mode. 

Transmission of blocks of data from either 
MAGIC or MOBIDIC is program initiated. In 
MAGIC, two machine instructions are used for ini
tiating transmission: one for display data and one 
for control information or programs as related 
above. Once initiated, the transmission process will 
continue until self-terminated without further in
terruption to MAGIC. 

MAGIC-MOBIDIC interactive display data 
processing will generally adhere to the following 
philosophy. MAGIC will provide local storage and 
basic manipulation of display data under direct user 
control. MOBIDIC will provide a large data base 
for storage of graphic data and graphic data proc
essing routines for both MAGIC and MOBIDIC. 
MOBIDIC graphic data processing will be relegated 
mainly to relatively complex functions; i.e., curve 
fitting, geometric calculations, generation of graph
ic solutions to mathematical equations, etc. De
tailed descriptions of the programming required for 
this interactive graphic data processing, the inter
facing hardware required and the over-all system 
configuration are beyond the scope of this paper, but 
will be presented in forthcoming papers by various 
members of the section. 

CONCLUSIONS 

MAGIC is an operating display system. The 
preceding paragraphs have described the salient 
hardware, software and operational features as of 
May 1965. The remaining questions are: What has 
been learned from the present system, and what of 
the future? 

First of all, it can be said that the concepts of list 
processing have proven to be desirable in the ma
nipulation of display data. Second, the hardware 
and software design of MAGIC as described pro
vides sufficient local processing abilities to signifi
cantly remove the burden of display data processing 
from the C.P.V. to which it is to be interfaced. 
Software has proven to be quite efficient, and oper
ation of MAGIC using the programmed interrupts, 
keyboard and light pen has proven to be straightfor
ward and very easy to learn. 

Flexibility of original design has provided con
siderable latitude in experimentation with the hard
ware and software of MAGIC. As was expected and 
desired, this has brought to light a number of ex-

cesses and deficiencies in the hardware and soft
ware areas. 

Three major excesses in hardware design have 
been determined. It has been found that there is no 
great need for a secondary display unit except in 
special cases such as when MAGIC may be used as 
a teaching machine. The serial adders in the subor
dinate list processors, elementary as they are, may 
be further simplified by eliminating the comple
ment-and-add feature. The use of this operation 
has proven to be negligible. Subordinate list proces
sor W may be essentially eliminated except for 
block transfers, since it has proven to .be of little 
use in display data manipulation. Many of the fea
tures in processor W could be directly implemented 
within the control processor. 

Hardware deficiencies have been minor except in 
the analog area. More work is required on the vec
tor generators and consideration is being given to 
the implementation of a circle generator. The major 
problem in the analog area concerns boundary con
ditions involving portions of vectors which extend 
beyond the display boundaries. Such a problem 
arises in magnifying to full screen size small portions 
of a displayed picture. Preliminary investigation 
indicates that a combination of digital and analog 
techniques will provide the necessary intensity 
blanking and vector segmentation for objects ex
tending beyond the visible boundaries automatically, 
with little or no required software. 

In the software area, certain basic deficiencies 
have arisen. The instruction format, as it stands, 
does not fully describe a list; it only specifies the 
initial address of a list and the list is assumed to 
terminate at the end of the channel. For the list ma
nipulations (block transfers excepted) a minor ad
dition to the hardware of the control processor will 
eliminate this difficulty. However, the list manipu
lations as they stand have proven to be quite effi
cient in manipulating display data and the difficulty 
described above does not detract from the concepts 
of list processing incorporated in MAGIC. 

As for the subordinate list processors, it has been 
found that additional register-to-register trans
fers would be helpful in decreasing the software re
quired to directly enter and retrieve data from the 
display channels. It has also been found that the im
plementation of hardware and software for direct 
addition of general memory data to data in the dis
play channels would be of considerable help in re-
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ducing software required for magnification or divi
sion of display picture size, subpicture assembly 
and manipulation, and the like. However, even 
when these minor software deficiencies are taken 
into account, the machine language programming of 
MAGIC is straightforward and has proven to be 
surprisingly minimal. 

Future additions to MAGIC in respect to the 
hardware and software deficiencies described above 
will be performed on an experimental or "spare 
time" basis. This is dictated by the following con
siderations. First, as it may be inferred from Fig. 8, 
the actual hardware used in the construction of 
MAGIC consists of surplus equipment which, by 
today's standards, considerably lags the present 
state-of-the-art. Consequently it has been de
cided that there is little value in attempting to in
crease the performance of this Model I MAGIC 
which is already operating at maximum capability. 
However, this has in no way affected the implemen
tation of the concepts of display equipment design 
as discussed in this paper. 

Second, -preliminary design work on a Model II 
MAGIC is in progress and final design and con
struction will begin in the fall of 1965. Model II 
will incorporate state of the art hardware compo
nents and will be designed to eliminate the pre
viously described hardware deficiencies of Model I. 
This will result in greatly improved operating 
speed, display quantity and quality, and list manip
ulating capabilities. It will also be interfaced to 
same central computer as Model I. The final design 
of the interface hardware for Model II will, of 
course, be dictated from what is learned from the 
implementation of the interface for Model L 
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INTRODUCTION 

Recent work on systems to facilitate the input of 
graphical information to a computer has resulted in 
the development of the light penl and the Rand 
tablet. 2 Both of these devices allow a user to 
"write" on a flat surface with a special, hand-held 
electronic pen. Periodically, the pen position is de.:. 
tected and converted into a machine-readable ad
dress. In this way, the pattern which is traced out 
by the pen is directly converted into binary code 
and stored in the machine. Devices such as these 
promote the easy input of graphical data such as 
curves, maps, diagrams, and other drawings. They 
should also be of interest to many researchers con
cerned with character and pattern recognition. 

The light pen is normally used in conjunction 
with a cathode-ray tube as the writing surface. A 
light-sensitive element in the pen generates a sig
nal when the flying spot on the tube face reaches 
the pen tip. The timing of this signal, relative to 
the timing of the scanning pattern, establishes the 
. pen position. Appropriate digital and analog periph
eral circuits are necessary to convert this signal 
into an equivalent binary address for storage. Clear
ly, the speed of movement of the pen is limited by 
the scanning frame rate of the CRT. Also, one can-
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not insert between the CRT face and the pen any 
material (such as a sheet of paper) which will pre
vent light transmission. 

The Rand tablet consists of a thin Mylar sheet 
containing on one side, an array of etched copper 
lines in the X direction and, on the other side, a 
similar array of fine lines in the Y direction. By 
means of capacitor encoding networks, also etched 
on the same sheet, a unique voltage pulse train is 
applied to each X and Y line from a common pulse 
pattern generator. The pen in this case is merely a 
metallic electrostatic pickup connected to a high 
input-impedance amplifier. The pulse train picked 
up by the pen depends on the X and Y lines nearest 
to its tip. This serial pulse pattern (in Gray code to 
eliminate errors) is converted into a parallel binary 
address with appropriate peripheral logic, which 
includes a shift register and a code converter. The 
system is entirely digital and the tablet is relatively 
inexpensive. In addition, thin paper sheets can be 
inserted between the tablet surface and the pen for 
tracing maps and curves . 

Both of the approaches described above utilize 
the pen as the signal pickup device and the writing 
surface as the signal generator. While the Rand tab
let system materially simplifies the writing surface 
used and reduces the complexity of the peripheral 
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electronics required for a given pen position resolu-
tion, the amount of circuitry needed, for the gener-
ation of the appropriate pulse sequences and for the 
conversion of detected pulse sequences into parallel 
binary addresses, is not negligible. * 

The work on which this paper is based was ini
tiated to develop a graphic input device which 
would require a minimum of associated circuits 
while maintaining simplicity in the construction of 
the writing surface. The system to be described util
izes the pen as the signal generator and the writing 
surface as the address detector. The pen contains in 
its tip a small magnetic head which periodically 
generates a localized magnetic field pulse. (Since 
the coupling is magnetic, it is not shielded by most 
materials placed between the pen and the tablet.) 
The writing surface contains a number of thin wind
ing layers in a laminated structure. Each winding 
layer consists of a single, continuous wire pattern 
designed to detect one of the pen address bits. 
Thus, there are as many layers as there are address 
bits, each developing a positive or negative induced 
voltage as a function of the pen position. All layers 
generate output pulses in parallel and these signals 
are of sufficient magnitude to set a register directly. 

WRITING SURFACE WINDING PATTERN 

The magnetic head in the pen tip consists of a 
small, linear ferrite core with an air gap and wind
ing as indicated in Fig. 1. The coil is periodically 
driven with a voltage pulse as shown. Any wire, 
brought in the vicinity of the air gap and oriented 
so as not to be perpendicular to the air slot, will 
link some of the magnetic flux generated and will 
thus develop an induced voltage pulse whose shape 
is similar to that of the drive signal. The polarity of 
the induced voltage is determined by the familiar 
right-hand rule. Its magnitude is greatest when the 
wire is parallel to the slot. 
face is divided into two sets of areas or sectors 
which may be labeled "even" and "odd." When th~ 
pen tip is positioned over anyone of the even sec
tors, a positive voltage pulse (binary "one") is in
duced across the two winding terminals. When the 
pen is over any of the odd sectors, a negative out-

Consider a wire winding pattern in a plane sur
face over which the pen is "writing." The pen tip is 

*T.he authors state that the system "contains some 400 
tranSIstors and about 220 diodes; however, little attempt 
has been made to minimize the number of components." 
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Figure 1. Magnetic head in pen tip. 

in close proximity to the winding layer. It is de
sired to arrange the winding pattern so that the sur
put signal (binary "zero") is obtained. A winding 
configuration which will satisfy these requirements 
is shown in Figs. 2 and 3. 

Assume the plane surface is divided into m sectors 
(m an even number), half even and half odd. The 
odd and even sectors alternate and can be labeled 1 
2, . . . m as shown in Fig. 2. Each sector consist~ 
of n winding "stripes" or wires, each of which is a 
segment of the total length of wire used in the wind
ing. Let the stripe ij be the jth stripe of the ith sector, 
where 1 ~i~m and 1 ~j~n. 

The procedure for laying out the winding pattern 
is shown in Fig. 3. In making a given winding 
"pass" over the surface, from left to right, one 
winds the wire vertically up in a specified stripe 
position, then continues the winding horizontally to 
the right to the next designated stripe position, then 
winds the wire vertically down, then horizontally to 
the right, then vertically up, ... etc., until the right 
end of the . plane is reached. The wire is then re
turned horizontally from right to left and another 
pass is started from left to right. The procedure in
dicated in Fig. 3 is summarized in Table 1. As a 
simple example, the pattern for four sectors, each 
containing four stripes, is given in Fig. 4. An ex
amination of this winding configuration reveals that 

j 
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Figure 2. Partitioning of a winding plane. 

r-;:- ~ 

r-

WINDING 
PLANE 

WINDING 
TERMINALS 

r-;::-

833 

- ~- - -- --- 1--- -- --~-

"ACTIVE 
PLANE 
WIDTH 

II 

SEC TOR: 

_.-

---
~, 

I 

1---.-

START 
TERMIN 

0--- ) 

AL /v 
UE .-/ CONTIN 

THIS 
PATTERN 

--- --- --

, 

2 3 4 -- -m-3 m-2 m-I m 

1--- f--.- 1--------- ~- f..--- -- -

'--

.-
r ·-FINISH TE:"RMI NAL ~ 

_ n-I"R-L"RETURN PATHS ~ -
... 

Figure 3. Winding layer pattern. 



834 PROCEEDINGS - FALL JOINT COMPUTER CONFERENCE, 1965 

"ACTIVE' 
PLANE 
WIDTH 

, 

- t-

STAR T , 

r+-
t- l-

t--t--t-- 1--

r+-
f-- ~- f-- f--f- f- f- f-

f-- f-- f--- f-- f-- 1--1-

~ 

FINISH :> 

Figure 4. Configuration for m = 4, n = 4. 
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all stripes in the odd sectors have the same sense, 
opposite to that of the stripes in the even sectors. 

Figure 5 shows a side view of two adjacent sec
tors, with three possible head positions indicated. 
The field pattern for position A causes a given po
larity signal to be developed across the winding ter
minals. For position C, because the sense of the 
windings is reversed, the opposite polarity signal 
will be induced. If the pen tip is in the immediate 
vicinity of the boundary between the sectors (posi
tion B), very little signal will be generated since 
positive and negative components will cancel. Thus, 
the output pulse polarity determines whether the 
pen is over an odd or an even sector. The number 
of stripes (n ) required in a sector depends on the 
desired output pulse magnitude. As n increases, for 
a given sector width, the induced signal increases. 

The winding pattern shown in Fig. 3 is interest
ing because it contains no wire crossovers. It can 
therefore be photo etched on a thin, conductor-clad 
insulator sheet, such as copper-clad Mylar, or oth
erwise deposited via screening or evaporation tech
niques on a thin insulator substrate. Two patterns 
can be placed on either side of a given sheet. 

B C 

FIELD PATTERN\ IJ 

WINDING----'-- ® ® ®:~~~~® 
STRIPES ~ 

SECTOR ----.,.....-SECTOR i + 1---"-1 

Figure 5. Side view of winding stripes with three possible 
head positions. 

MULTILAYER TABLET 

The writing surface is constructed by stacking or 
laminating as many thin winding layers as there are 
pen address bits. Thus, for a tablet to resolv~ any 
one of 1024 X 1024 locations, ten-double-sided 
sheets are required. Half of the winding layers are 
oriented in the X direction, half in the Y direction. 

The total thickness of the system can be kept small 
by using sheets only a few mils thick. Each X layer 
has an identical companion Y layer oriented orthog
onal to it. 

The layout of a winding pattern to detect a given 
address bit is, of course, a function of the posi
tion-to-address coding scheme used. By using a 
closed, cyclic code, such as Gray code, one is as-
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sured that no more than one address bit in a given 
coordinate direction can be undecided. That is, for 
any pen position, the head can be located over, at 
most, one boundary between sectors. For these rea
sons, it would appear that a conventional binary 
coding scheme should not be used because the pen 
point may be positioned over more than one indeci
sion boundary. However, the addition of a small 
amount of external logic, no more complicated than 
that requ.ired for a parallel Gray-to-binary con
version, may allow a conventional binary code to be 

: 
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I 
I 
I 
I 
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X2 OUTPUT 

II 

used. (The indecision correction algorithm involved 
is described in the next section.) Assuming such a 
code, winding patterns can be laid out as illustrated 
by the simple 8 X 8 example shown in Fig. 6. The 
"most significant" X or Y layer has only two sec
tors, the next four, then eight, etc. The total num
ber of X or Y winding layers (address bits) de
pends on the resolution required in the location of 
the pen tip. The "least significant" layer (the one 
with the largest number of sectors) may have only 
one stripe per sector (i.e., n = 1). 

X I OUTPUT xoOUTPUT 

X2: TWO SECTORS XI: FOUR SECTORS Xo : EIGHT SECTORS 

----------

b b Y OUTPUT YI OUTPUT Yo OUTPUT 
Y2:TWO SECTORS 2 YI: FOUR SECTORS Yo: EIGHT SECTORS 

Figure 6. Six winding layers for a 64 (8 X 8) position array 
using conventional binary coding. 

All of the winding layers must be close to the 
pen point to allow the generation of sufficiently 
large output signals. The output voltage induced in 
a more significant layer (one with many stripes per 
sector), when the pen is over a given sector, is the 
sum of the voltages induced in all the stripes of that 
sector (refer to Fig. 5). This integrating effect al
lows one to locate a more significant layer at a dis
tance from the pen tip which is larger than that for 
a less significant layer. Thus, the tablet is laminated 
with the most significant winding layers at the bot
tom and the least significant layers nearest to the 
surface. 

Note that, in order to detect approximately equal 
magnitUde signals at the outputs of the X and Y 
layers, the air gap in the magnetic head must be or-

iented at 45 0 to the X or Y orthogonal stripes. 
Thus, the pen must be marked or shaped appropri
ately to insure that it is held roughly in the correct 
orientation. Small variations from 45 0 will not 
change the induced signals appreciably. 

Other more sophisticated head designs, which 
allow the system to operate indep~ndently of pen 
orientation, are possible. For example, one can use 
more than one air gap in the pen tip. Using two or
thogonal gaps (pulsed at different times) * as the 
pen orientation changes, the magnitude of the in
duced signal from one gap increases while that from 
the other decreases. Orthogonal gaps can also be 
used to generate a rotating magnetic field. Another 
methodt involves using two or more air gaps to 

*Suggested by J. A. Rajchman. 
tDue to J. Avins. 
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generate a number of discrete field orientations 
(say, three), one of which will always be acceptable 
for any pen orientation. Periodically, these orienta
tions are sequentially tested and the acceptable one 
is chosen. This testing may involve the use of an 
additional test winding layer whose stripes are all 
oriented at 45 0 to the X and Y stripes. Each of 
these arrangements, however, increases the com
plexity not only of the magnetic head but also of 
the peripheral electronics. At this stage, the require
ment of proper pen orientation, which allows the 
system to be very simple, does not appear to be a 
very severe user restriction. If necessary, some sim
ple mechanical approach, such as housing the head 
at the end of a flexible shaft (similar to that used 
in speedometer cable), would permit the sleeve of 
the pen to rotate while the head orientation stays 
relatively fixed. 

INDECISION CORRECTION ALGORITHM 

For a system such as the one described above, 
there are actually three possible output signals (call 

OUTPUT 

A ... , 

A i + 10 _-~. ___ ---J1 

A i + 2 _O---------J p. 
I 

A k .... 0--------' 

k+1 = NUMBER OF ADDRESS 
BITS IN ONE CO
ORDI NATE DIRECTION 

them one, X and zero) available from each layer. 
One and zero are acceptable signals (positive and 
negative pulses). X represents almost no output 
pulse-an undecided bit. An examination of the 
one, zero transitions, when counting in conventional 
binary code, will show that if one follows the fol
lowing simple rules, errors at multiple-transition 
boundaries can be resolved and the conventional 
binary pattern can be used: 

Detect the most significant bit which is unde
cided (i.e., the most significant X output). Ar
bitrarily decide this bit to be one or zero. 
Force all less significant bits to be the comple
ment of the bit chosen above. * 

The addition of a very small amount of external 
logic will allow this procedure to be used. For ex
ample, in the circuit shown in Fig. 7, an undecided 
output is arbitrarily decided as a zero and all less 
significant outputs are forced to be one. 

*This method will work provided that the winding pat
terns are designed such that, for any two adjacent address 
bits having a transition boundary in the same position, the 
"zone of indecision" for the more significant bit overlaps 
that of the less significant bit. 

LA. (TO LESS SIGNIFICANT 
OJ r-l) - I POSIT IONS) 

,..---'----'---, 

o ~ j ~ k POSITIVE NEGATIVE Pj=IIF POSITIVE PULSE IS DETECTED 
PULSE 

DETECTOR 
PULSE Qj=1 IF NEGATIVE PULSE IS DETECTED 

DETECTOR Aj=1 IF NO PULSE IS DETECTED 
~ 

TABLET LAYER j 
OUTPUT PU LSE 

Figure 7. Mechanization of indecision correction algorithm 
for conventional binary address coding. 
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EXPERIMENTAL MODEL 

An initial experimental model consisting of a 32 
X 32 array, using ten winding layers (five X and 
five Y) to resolve anyone of 1024 pen positions, 
has been constructed and is operating as described 
above. A photograph of the pen and tablet is shown 
in Fig. 8. The winding layers for this model were 
wound by hand using conventional No. 33 insulated 
coil wire. Each of the layers follows the configura-

tion given in Fig. 3. A conventional binary code was 
used. The windings were potted with an epoxy resin 
to allow the tablet to present a flat surface to the 
pen. The stripes are lJ8" apart, and the total thick
ness of the ten-layer system is approximately 0.1". 
Clearly, a much higher stripe density is achievable 
using present photo etching techniques. Also, one can 
easily laminate a ten double-sided sheet system, 
required for a 1024 X 10.24 array, and· obtain a 
total thickness less than 0.1". 

Figure 8. Experimental 32 X 32 tablet with pen. 

The pen tip contains a linear ferrite core, 3/16" 
O.D. and lJ8" J.D., wound with 30 turns, and driven 
from a conventional General Radio pulse generator. 
Approximately 1 00 volts is developed across the 
head winding during the pulse peak. The core has a 
15 mil air gap. Little attempt was made to optimize 
the core drive circuit so as to obtain optimum out
put signals. Each of the winding layers is termi
nated in 1 00 ohms. This value was chosen to criti-

cally damp output ringing. A photograph of a typical 
output impulse is shown in Fig. 9. The reverse polar
ity signal has the same shape. The waveform is clean 

and has sufficient amplitude to set a flip-flop. It can 

no doubt be made larger with appropriate pen drive 

circuit design. The timing indicated shows that one 
need not be concerned with the speed of movement 
of the pen. The pen is marked to permit proper 
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Figure 9. Typical winding output pulse across 100 ohms. Ver
tical scale: 0.1 volt/div. Horizontal scale: 0.2 
,usec/div. 

orientation of the air gap with respect to the wind
ing stripes. 

A set of ten peripheral circuits, which includes 
the logic given in Fig. 7 and which also contains 
digital-to-analog converters, is used to demon
strate the operation of the tablet by permitting the 
position of the pen to be displayed as a spot on a 
CRT face. 

CONCLUSIONS 

By constructing the writing surface as the super-

position of a number of patterns, each of which is 
designed to detect one of the pen address bits di
rectly, the amount of associated circuitry is minim
ized. Although the initial artwork involves the lay
ing out of as many patterns as there are address bits 
in one coordinate direction, subsequent fabrication 
of a number of tablets should be simple and inex
pensive. 
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GRAPHIC 1 -A REMOTE GRAPHICAL D'ISPLAY CONSOLE SYSTEM 

William H. Ninke 
Bell Tel~phone Laboratories, Inc. 

Murray Hill, New Jersey 

INTRODUCTION 

Graphical information exchange using direct
view display consoles is a rapidly growing means of 
communicating between a human and a computer. 
One reason for this growth is that results presented 
to a human in graphical form are concise and readi
ly understandable. Another reason is that. through 
alternate viewing of graphical output displays and 
entering of new inputs, either graphically or by oth
er means, based on these output displays, a user can 
monitor and guide a computer during the course of 
a complex problem solution.' Such interaction gener
ally produces more rapid and often better problem 
solutions. In many cases, interaction allows a prob
lem to be solved which would not even be attempt
ed using other techniques.1 

Most work to date on providing man-computer 
graphical communication facilities has been based 
on consoles which require full-time occupancy of, 
or, in the least, immediate access to a large digital 
computer.2,3,4 Display maintenance has been provid
ed by the large computer or by a data channel off 
the large computer. The high transfer rates needed 
for such an organization have dictated that the con-

*Such work is going on at Bell Laboratories, M.I.T., G.B., 
Dartmouth, Carnegie Tech, V.C.L.A., I.B.M., S.D.C., 
RAND, and other places. 
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soles be very close, if not physically adjacent, to the 
supporting computer or channel. 

Significant rese,arch work is now concentrating 
on providing computing power to a large user com
munity through a sharing of the facilities of a cen
tral computer. * The user community is distributed 
over a wide geographical area and communicates 
with the central facility using remote consoles. The 
pace of such work definitely seems to be accelerat
ing, the reason being that early experience .~as 
shown that a time-shared central computer facIlIty 
can serve many people very well. 

The console facilities used to date to communi
cate with time-shared computer centers have been 
teletype or other typewriters. With such low-speed 
character oriented devices, slow access to the cen
tral computer (a few hundred milliseconds) is not 
readily apparent to a user. The real limiting factor 
in the use of such devices is the transmission delay, 
the time required to transmit messages between the 
computer and a user. For long messages with 10 
character/second rates, this delay becomes both 
long and annoying, and strongly affects what can be 
done. 

For a high-speed remote graphical display, the 
transmission rate can be increased so that the delay 
problem is reduced. Access time then becomes a 
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major problem. A few hundred milliseconds is cer
tainly suitable access for certain aspects of a prob
lem. To allow a user, however, to do real-time 
composing, editing, or other manipulation of graph
ical information with a lig~t pen . or other graphi
cal input device, the sum of access time and trans
mission delay must be. only a few milliseconds. For 
a truly remote console in a time-shared center, 
such timing will generally not be available. There
fore, to allow such light pen operations, a remote 
graphical console facility in a time-shared central 
computer environment should have local computing 
power. 

Also if such high speed consoles are to be used 
remotely, local display maintenance is essential. 
Thus,a picture need be transmitted only once, 

maybe over low-cost low-speed lines. The cen
tral facility is then relieved of any further immedi
ate responsibility. The console itself provides the 
broad band capabilities to maintain a picture at a 
flicker-free rate. Local computing power and dis
play maintenance not only reduce the requirements 
on the central computer, but also should allow many 
interesting things to be done without even disturb
ing the central facility. 

The GRAPHIC 1 console has been designed for 
use in exploring the problems associated with local 
computing power and display maintenance for a re
mote graphical console which eventually will be op
erating in a time-shared central computer environ
ment. A photograph of the console is· shown in Fig. 
1. 

Figure 1. The GRAPHIC 1 console (photo no. B65-3727- MH). 

GRAPHIC 1 SYSTEM ORGANIZATION 

The console system can be divided into two ma
jor units. The first unit consists of a control com
puter, which provides the local console computing 
power, and the console input devices. The second 
unit contains a display scope and an associated core 
buffer memory for storing display material. These 
last two elements and their connecting interface 
make possible a locally maintained output display. 
The two console units are connected by an interface 

which allows control signals and other information 
to be passed between them. 

This interface also allows communication be
tween the control computer and/or the display 
memory and the central computer facility, an IBM 
7094 in the Murray Hill Computation Center. A 
block diagram of the described organization is 
shown in Fig. 2. 

The console system is currently connected to the 
7094 by a parallel transfer data connector. How
ever, a request for service by the console system can 
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GRAPHIC 1 CONSOLE SYSTEM 

0 
I 

DISPLAY SCOPE 
DEC TYPE 340 

CONTROL 3x12 i 18 bl ts 
COMPUTER bit s 36 bits 

DEC PDP-? t----IBUFFER REGISTER~ 

4K 1<' bl t word, .36 bl ts I 
f DISPLAY 

MEMORY 

INPUT DEVICES Ampex RVQ 

4K 36 bit words 

CENTRAL COMPUTING 
FACILITY 

CENTRAL 
COMPUTER 

IBM 7094 

32K 36 bit word, 

Figure 2. Organization of the GRAPHIC 1 console. 

only be recognized at interjob points, i.e., between 
jobs on the normal input batch tape to the 7094. 
Response time is governed by the length of jobs on 
the batch tape, an average of from two to six min
utes during daytime working hours. 

This access is far from ideal and certainly will be 
improved when the Laboratories converts to a mul
tiprogrammed central computer facility. The pres
ent waiting time does, however, simulate to some 
extent the access time and transmission delay that 
would take place if the console were connected to 
the central facility over a serial voice-band trans
mission line. It has strongly reenforced the necessi
ty of having local computing power at the console. 

The control computer in the console, a Digital 
Equipment Corporation PDP-5, is a small fixed
point core-memory digital machine.5 The 6 micro
second cycle time memory contains 4096 12-bit 
words. The instruction set allows addition, subtrac
tion, indexing, direct and subroutine branching, ac
cumulator manipulation, and accumulator testing to 
be done internally. A microprogrammed input
output instruction allows extensive external manip
ulation and control operations to be performed. 
This instruction set can be used to compose, edit, 
translate, group, or otherwise manipulate graphical 
information in real time. However, the limited 
word size and the absence of hardware multiply
divide instructions prohibit computations in the 
PDP-5 itself involving a wide range of numbers or 
computations for rotations. 

The display scope, a modified DEC Type 340 Pre
cision Incremental Display, allows the rapid conver
sion of digital data to graphical form through point 
plotting on a 1024 X 1024 raster. 6 This plotting area 
occupies about a 9¥s inch square on the scope face. 
Plotting is accomplished through use of six standard 
modes of operation. One of these is a control mode 

which allows the entering of parameter information 
such as scale factor, intensity, scope image reflection, 
and light pen enabling. The other five are display 
modes which allow the plotting of points, curves, vec
tors, axes, and characters. Internal vector and charac
ter generators produce the points needed to form 
lines and characters from the coded input words. 
A seventh non-standard mode for use in display link
age has been added. This will be described shortly. 
Of the display modes, only one, the point plot mode, 
is absolute. By absolute is meant that fixed X and Y 
absolute coordinates are assigned to a point. The re
maining display modes (vectors, curve, axis, and 
character) are incremental in nature. Thus they es
sentially contain only differential or aX and a Y 
movement information. 

The plotting rate in one of the incremental 
modes is 11;2 microseconds per point. For the X
Y or point plot mode, 35 microseconds are required 
per point. Since the characters average 20 points, 
average character plotting time is 30 microseconds. 
Considering these timing values and the scope grid 
size, about 20 scope diameters or 200 inches of line 
can be maintained on the scope at a flicker-free 
rate (30 frames/sec). This is equivalent to about 
1000 characters. 

The display material memory is an Ampex RVQ 
core unit with 4096 36-bit words and a 5 micro
second cycle time. This storage capacity represents 
about eight large pictures, i.e., those which take 
about 1/30-th of a second to display. 

As was previously stated, the console system is 
divided into two major units: the control computer 
and input devices, and the scope and display mem
ory. The former is the supervisory and input unit; 
the latter, the output unit. 

The function of the output unit is the conversion 
of words in the display /memory to an output pic
ture on the display scope. These words can be a 
mixture of those composed in the 7094 and trans
ferred to the console and those composed at the 
console using the input devices and the control com
puter. Successive words are supplied to the scope 
from the memory through operation of a rather com
plex interface. Since the scope accepts 18-bit words 
the interface accomplishes the gating necessary to 
load first the left half and then the right half of each 
36-bit word from the memory into the scope. The 
interface also operates in conjunction with the scope 
and the display memory to execute display linkage 
instructions. These instructions, a direct transfer or 
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jump and a subroutine jump, operate essentially as 
will be described. There are slight additional com
plications which result from the left-right usage 
by the scope of the halves of a word from the dis
play memory. 

For the direct jump instruction, the next word is 
taken from the location specified by the jump in
struction address. The first word of a subroutine is 
used to store return information. Therefore, for a 
subroutine jump, the next word is taken from the 
location one beyond that specified by the jump ad
dress. Before control actually passes on to that loca
tion, however, the location where control is to re
turn upon completion of the subroutine is planted 
in the location specified by the subroutine jump. 
Exit from the subroutine is then accomplished us
ing the planted return information. This method of 
display subroutine linkage allows multilevel display 
part subroutining. However, it does not allow re
entrant subroutines. 

Since the interface can provide successive words 
to the scope and the linkage words themselves can 
cause control to flow throughout the display memo
ry, di'splay maintenance is independent of control 
computer intervention. Thus, once started by the 
control computer, the display continually refreshes 
itself with a direct jump word at the end of the dis
play picture providing the link back to the start. 
The only exception to this independence is that the 
control computer must restart the scope after dis
play stoppages produced by edge overflows. 

While the output unit is displaying a picture, the 
control computer can do other operations. Generally 
these are only looking for flags or interrupts indicat
ing that an input device requires attention or that 
the central computer requests information. Once a 
flag or interrupt is found, the control computer can 
stop the output unit. The status of the scope can be 
saved. During the stoppage, the desired display 
composing, editing, or manipulation can then be 
done or information in the display memory can be 
read or written by the central computer. If desired, 
the display status can then be restored and the dis
play cycling resumed or a new display can be start
ed. 

Cooperative communication programs in the con
trol and central computers supervise any inter
changes between the console and the central facility. 
The central computer can interrupt the console at 
any time. However, as was mentioned, the console 

can only be recognized between jobs on the central 
computer batch input tape. 

In addition to the display linkage features, other 
additions made to the standard 340 Display involve 
the inclusion of reflection properties which can be 
enabled using the parameter setting mode, and ad
dition of flagging bits to the parameter setting 
mode, jump modes, and point plot mode. The re
flection properties allow display material to be re
flected about a horizontal axis, or a vertical axis, or 
both. By changing the reflection setting before call
ing for a graphical subroutine, one block of data 
can be used to produce a figure in different orienta
tions. There are no hardware rotation matrix fea
tures. 

The flagging bits have been added to allow pro
grammable display stoppage and computer signal
ling when certain conditions are found. This has 
been done since the material in the display memory 
is a mixture of actual display words plus list and 
buffer areas and aid is needed in tracing such ma
terial to make changes or additions. Use of pro
grammable trapping means that interpretive pro
grams do not have to operate upon the display 
memory to find desired locations or conditions. The 
scope itself does the tracing. These features are par
ticularly valuable for use in conjunction with the 
light pen. 

Additions have also been made to the single in
terrupt line of the PDP-5. This permits six differ
ent signals to be passed on to the interrupt line with 
the allowable interrupt signals at any time being 
controlled by a programmable masking register. 

INPUT DEVICES 

The GRAPHIC 1 console is experimental as are 
the problems attempted using the system. Therefore, 
a wide variety 6f input devices has been included 
both to allow a user to pick which seems best for a 
particular function and to provide programming 
and human factors experience in the use of different 
devices. 

The main input device for the console system is a 
DEC Type 370 Light Pen. The pen, which is a 
light sensing device, consists of a hand piece with 
mechanical shutter at one end of a fiber optics bun
dle. The other end of the bundle provides input to a 
photomultiplier system. The combined optic photo
multiplier system is tuned to pick up the blue 
flash from the P7 phosphor of the scope face that is 
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Figure 3. Package placement using GRAPHIC 1 (photo no. B65-4838-MH). 

produced when a point is initially intensified. The 
pen is not sensitive to the yellow persistence. The 
field of view of the light pen is such that the tip 
can be held right on the scope face or up to three 
inches away without affecting proper operation. 
The photomultiplier sets a flag and stops the scope. 
Programmed operations in the control computer can 
then read the coordinate or address information 
needed for tracking or pointing before restarting the 
scope again. 

A Teletype Model 33 ASR provides standard 
keyboard input-output functions. A Teletype 
Model 33 Self-Contained Keyboard has been add
ed mainly for use in entering text where the display 
scope is used for feedback. The keyboard can be 
placed immediately in front of the scope for such 
occasions. For other occasions where the physical 
presence of the keyboard on the front counter inter
feres with light pen manipulations, it can be moved 
off to the side to the position shown in Fig. 1. Pro
grams which use the self -contained keyboard echo 
any typed characters on the regular Teletype ma
chine so that, in addition to the character image on 
the scope, a hard copy record is also available. 

A track ball has been included for use in two
dimensional positioning problems: It consists of a 4 
inch diameter nylon ball which drives two pickoff 
wheels, one for vertical travel and one for horizon
tal. No pickoff has been provided for rotation. The 

pickoff wheels turn potentiometers. Outputs from 
the potentiometers go through a multiplexor into an 
analog-to-digital converter in the PDP-5. 

To reduce the directional polarization usually as
sociated with track balls, the ball itself is not sup
ported by the pickoff wheels. Instead, the ball rests 
on three ball end casters, the pickoff wheels being 
held· against the track ball by spring tension. Me
chanical lockouts are provided so that a pickoff 
wheel can be moved away from the ball if it is de
sired to leave one coordinate unchanged while the 
other is moved or to protect a setting from changes 
due to accidental bumping. 

In addition to the two from the track ball, outputs 
from six potentiometers have been connected 
through multiplexor gating to the analog-to-digi
tal converter in the PDP-5. Included are two 
ten-turn, two three-tum and two one-tum po
tentiometers. Through appropriate programming, an 
operator can use the knobs attached to the poten
tiometers to enter or change parameters in his prob
lem. 

Four switches have also been provided. Two are 
alternate-action and two are momentary. The al
ternate-action switches and one momentary are 
mounted on the corner panel for hand manipula
tion. The remaining momentary switch is located in 
a foot pedal. Testing instructions in the PDP-5 
can determine the status of these switches. 
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A function keyboard consisting of 32 buttons 
connected by a mechanical lock and interlock is 
also located on the comer panel. The keyboard is 
wired so that the· binary number of the currently 
depressed button can be read by the PDP-5. There 
is an additional EXECUTE bar located below the 
other keys. 

The function keyboard can be usep for vectoring 
into various special routines in the PDP-5. This is 
done as a two st~p process. First, the button corre
sponding to a desired function is depressed. When a 
user desires the function represented by the de
pressed button to be executed, the EXECUTE bar 
is pressed. This two step method of operation was 
chosen for accuracy in operation and for ease in 
repeating functions. To allow the vectoring opera
tion to be accomplished, the output flag from the 
EXECUTE bar is connected to the interrupt facili
ty of the PDP-5. The trap handler program can 
read in the depressed button number and enter a 
transfer vector table which causes a jump to the 
proper routine. 

Since different users might desire different rou
tines to be performed using the function keyboard, 
the changing of the functioning of a particular but
ton can easily be accomplished by changing the 
transfer vector linkage and adding the routine to be 
linked. Changing of a label on a button can be ac
complished by changing a labeling mask which fits 
over the keys. Despite this flexibility, the function 
keyboard has had little use. The reasons will be de
scribed in the next section. 

A DEC Type 451A card reader allows the enter
ing of information from cards into the console sys
tem. Reading speed is 200 cards/minute. A connec
tor position for use in attaching any special or ex
perimental devices has also been provided. 

EXPERIENCE WITH THE LIGHT PEN 

There seems to be considerable debate over what 
is the best graphical input device - RAND tablet,7 

graphic pencil4 or light pen. There are advantages 
and disadvantages associated with each device. 

A RAND tablet is a stylus-tablet device which 
generates 10-bit x and 10-bit Y coordinate infor
mation representing the stylus position on the tablet. 
Thus two-dimensional information can be ob
tained on a surface not coincident with the display 
device. A graphic pencil is a voltage-pickup posi
tion pencil. It operates in conjunction with an im-

pressed voltage on a transparent conductive coating 
over the display screen to give position informa
tion.The advantage of these devices is that coordi
nate information can be entered at any time or 
place including on a blank area of a display or 
when a display is not even present. The disadvan
tage is that a positive reference between the stylus 
or pencil position and an object on the display 
scope does not exist. Thus a fairly complicated 
coordinate trace must be performed for demonstra
tive or pointing uses of these devices. 

As was pointed out previously in the description 
of the console input devices, the light pen is only a 
sensing device. It must sense or see light from a 
display on the scope before it can function, i.e., set 
a flag and stop the display. Thus a disadvantage is 
that a display must be present before it can be used. 
Once the display is stopped and before it is restart
ed, however, considerable information can be ex
tracted by the control computer. In addition to 
coordinate information, a positive reference to what 
is being plotted when the scope was stopped is 
available. Thus a coordinate trace does not have to 
be performed for demonstrative uses. 

The light pen allows good feedback in pointing 
since programming can brighten what unit is being 
seen or display only the total unit being seen. The 
importance of such feedback cannot be appreciated 
until one works with a graphical system. Because of 
its particular value in pointing operations, a light 
pen has been chosen as the graphical input device 
for GRAPHIC 1. 

To make the light pen as effective in drawing ap
plications as the other devices, a good tracking pro.,. 
gram must support it. For the GRAPHIC 1, the 
tracking program uses a conventional four arm 
cross.s Tracking is on a 60 cps interrupt basis. Thus 
tracking performance is constant despite variations 
in the amount of display material. First order pre
diction is incorporated. Special testing allows the 
center of the cross to be moved right up to the edge 
of the display area on the scope with the corre
sponding arm shortening. Backed by this program
ming support, the light pen is equally suitable for 
both pointing and drawing. 

In fact, the ease of use of the light pen for point
ing operations has almost eliminated the originally 
envisioned extensive use of the function keyboard 
for entering various control routines. Instead, con
trols have almost exclusively been placed on "light 
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buttons" which are displayed on the scope face. A 
light button is a word or figure on the scope face 
which has a transfer vector associated with it. 
When the light button is touched by the light pen, 
the transfer vector is used to pass control to the ap
propriate routine. 

Placing control functions on the scope face has 
two advantages. First, only those controls which 
should be present at a particular stage of a problem 
are displayed. If a light button labeled "MOVE" is 
one of those present, a user knows that he can move 
picture parts around. Similarly, if only light buttons 
in the form of PNP and NPN transistor symbols are 
displayed, a user knows he must select a particular 
type of transistor at that time. Thus, in effect, a 
user is steered through a problem. Second, during 
most operations there is only one center of atten
tion, the scope face, on which a user need concen
trate. This allows faster and smoother work on a 
problem. 

Any shape, no matter how complicated, can be a 
light button since the shape has no effect on detec
tion by a light pen. This is extremely important 
since the shapes can be problem oriented. The com
plicated zone bounding necessary when performing 
a similar function using a RAND tablet or graphic 
pencil need not be done. Light buttons can easily be 
moved around on the scope face. Also, the transfer 
vector for one light button can easily be transferred 
to another shape. This mobility and flexibility com
bine with the previously mentioned advantages to 
make light pen detected light buttons very powerful 
control elements. . 

BASIC PROGRAMMING SUPPORT 

Software support for the GRAPHIC 1 console 
system consists of three basic units. First there is 
an assembler. and assembly postprocessor which 
generates, merges, and links relocatable programs 
for the PDP-5. This assembler has been written 
using MACRO-FAP and runs on the 7094. 
Therefore, all the features of MACRO-FAP are 
available for use when assembling programs. This is 
particularly useful when generating higher level lan
guages. The combined assembler-postprocessor 
aids considerably in dealing with the page boundary 
problems of the PDP-5. The second basic unit is a 
display material assembler and postprocessor. This 
also is written in MACRO-FAP and runs on the 

7094. Symbolic linkage between PDP-5 code and 
display code can be accomplished. The third major 
software unit consists of communications routines 
to allow the easy passing of information between 
the 7094 and the GRAPHIC 1 console. 

Using these three basic units, several higher level 
graphical languages are being developed. Furthest 
along of these is the GRIN (GRaphical INput) lan
guage. GRIN is particularly suitable for use in 
problems requiring the extensive real-time manip
ulation of graphical information at the console. It 
takes full advantage of the incremental display 
structure of the scope. (Recall that there is only one 
absolute plotting mode. The remainder are incre
mental.) Thus, if a display part is composed only of 
a sequence of incremental words, its position on the 
display scope can easily be changed by changing 
only the initial absolute entry point. Also if a part 
is represented only incrementally, it can be called 
up using the display part subroutine linkage at 
many places on the scope face. The part has to exist 
in storage only once, however. 

No hard copy facility is available directly in the 
console system. A SC 4020 microfilm recorder is 
attached to the 7094. So, hard copy of the current 
display picture is achieved by transferring an image 
of the display buffer contents to the 7094 where 
translation programs map the scope code into com
parable SC 4020 code to produce a microfilm print. 
Turnaround time to receive a print is from two to 
four hours. 

USAGE 

The major use of the console system so far has 
been for problems requiring at some stage "dynamic 
scratchpad" capabilities. Included in such problems 
have been printed circuit component and wiring 
placement, schematic circuit design, block or flow 
diagram design, text composing and editing, and 
placement of cards on a chassis to achieve mini
mum connecting wire length. Initial input or con
figurations to be manipulated can be provided by 
programs in the IBM 7094. For example, a card 
placement programs to minimize connecting wiring 
length gives a good initial placement. However, 
such placements are subject to local minima and 
frequently neglect maintenance considerations. An 
operator ,at the console, when provided with ap
propriate displays, can break out of local minima 
for reruns in the 7094 and can make placements for 
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easy maintenance. The photograph in Fig. 3 shows 
a user working on such a placement problem. 

The result of any console manipulations can serve 
as input to a 7094 program also. As an example, text 
in the form of a computer program which has been 
composed at the console can be entered, assembled, 
and run. A system block diagram composed at the 
console can be used as input to a special compiler, 
the compiled program can be run, and the results 
viewed at the console. As a further example, a 
schematic circuit composed at the console can be 
used as input to a circuit analysis program and the 
results of the program returned to the console. The 
number of interesting uses of the console continues 
to grow as the existence of the console becomes 
known to people in varied fields of work. 

SUMMARY 

GRAPHIC 1 provides very flexible man-com
puter graphical communication facilities in a 
time-shared central computer environment. Local 
computing power and display maintenance capabili
ties make possible extensive real-time graphical 
manipulations at the console. Interaction between 
the console and the central computer permits at
tacks on large complex problems. 
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THE BEAM PEN: A NOVEL HIGH-SPEED, INPUT/OUTPUT DEVICE 
FOR CATHODE-RAY-TUBE DISPLAY SYSTEMS* 

Donald R. Haring 
Electronic Systems Laboratory 

Massachusetts Institute of Technology 
Cambridge, Massachusetts 

INTRODUCTION 

In recent years there has been considerable inter
est in providing rapid communications between a 
man and a computer. A most useful communication 
system in this regard is a cathode ray tube (CRT) 
computer display and a hand-held "light pen"! to 
report to the computer whenever a lighted spot on 
the CRT display falls within its small field of view. 
The pen may be used to identify or select a particu
lar displayed item which the man wishes to call to 
the attention of the computer. Also, a feedback loop 
may be programmed to keep a displayed pattern of 
spots centered in the pen's field of view. With such 
a loop the displayed pattern follows the moving 
pen, and the system becomes a very versatile graphi
cal input device. This process is known as "pen 
tracking. " 

A typical application of the light pen and CRT 
as a graphical input/output system has been dis
cussed by Ward and ROSS2 for "Computer-Aided 
Design" in general, and by Sutherland3 for his 
"Sketchpad" system which is used to communicate 
between man and computer by sketches. In the 
Sketchpad system, the user sketches such things as 
machined parts and electronic circuit diagrams on a 
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computer CRT display with the light pen. Specifi
cally, the light pen is used to draw displayed lines 
on the CRT by using pen tracking, to position 
predefined parts of the sketch on the display and to 
point to such parts in order to change them. A set 
of push buttons operate in conjunction with the pen 
to indicate changes such as erasing or moving. Be
cause of this hardware-software package, no typed. 
statements are necessary to the computer ( except 
for le"gends), hence greatly increasing the speed of 
man-machine communication. For additional dis
cussions of light-pen applications see references 1-5. 

Light pens detect the light produced on the CRT 
screen by a pulse of electron-beam current. The 
electron beam is under computer control. The light
pen output for a given pulse is determined by the 
combined time responses of the light-producing 
mechanism in the phosphor, the light-detecting mech
anism in the light pen, and the pen amplifier. 
Each of these responses is characterized by a delay 
in buildup and a delay in decay, with the result that 

*This work was made possible through the sponsorship 
extended the M.I.T. Electronic Systems Laboratory by Proj
ect MAC, an M.I.T. research program sponsored by the 
Advanced Research Projects Agency, Department of 
Defense, under Office of Naval Research Contract Number 
NOnr-4102(Ol ). 
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the pen output corresponding to a single narrow 
square pulse of beam current is a delayed and much 
broadened pulse with a long tail. The net pen out
put for a given intensification pulse is the sum of 
the response for that pulse and any residual tails 
from previous pulses. Thus, there is an integrating 
effect and it is necessary that sufficient time be al
lowed between pulses for almost complete decay if a 
reliable solution among points is to be main
tained. In other words, the system has a limited 
bandwidth. 

In the past, typical CRT display systems used 
with light pens plotted points at intervals of about 
20-30 microseconds, and the combined decay time 
of the pen response was such that these points could 
be resolved in time. However, because of the desire 
to display more complicated pictures flicker-free 
with modern computer display systems, it is not 
unusual to display points every 1-2 microseconds, 
and it is found that it is impossible to distinguish 
among points displayed this closely in time, even 
with the fastest available light detectors-photo
multiplier tubes. The present limit appears to be 
about 8 microseconds. 

The major limiting factor in further improvement 
in light-pen speed is in the phosphor screen itself, 
which must be of a persistent type in order to re
duce display flicker. Fortunately, all persistent 
phosphors are of the two-layer type, with a relative
ly fast phosphor layer which responds directly to 
the electron beam, and a slow phosphor layer which 
does not respond to the electron beam but is excited 
by the light from the fast layer. The widely used P7 
phosphor, for example, has decay times of 40 mi
croseconds and 100 milliseconds for the fast and 
slow phosphors, respectively. Since the light output 

,....-----, DEFLECTION SIGNALS 

of the fast layer is much greater than that of the 
slow layer, the fast layer essentially determines the 
pen response. 

The development of a new phosphor with a suffi
ciently fast exciting (fast) phosphor to improve the 
light-pen response speed would entail considerable 
cost and does not appear to be the best long-term 
solution. Instead, we have taken a new approach to 
the problem. We have developed a system to detect 
the electron beam causing the screen light rather 
than the light itself. This system is called the beam
pen system. This new approach to increasing the 
speed of the CRT display system for man-machine 
communication is described in this paper. 

BEAM-PEN SYSTEMS: BASIC THEORY 

Reference to Fig. 1 provides a qualitative under
standing of the operation of a beam-pen system. 
The CR T cj.rcuitry selects the area of the CRT 
screen to be illuminated and, in the typical comput
er display, turns the electron beam on for a pre
scribed period of time after the desired screen area 
has been reached, i.e., the selected deflection signals 
have stabilized. The beam pen is a conducting 
probe that is hand-held in front of and very near 
the CRT screen. The conducting probe· is connected 
to a high-input-impedance "pen amplifier." When 
the pen is placed in front of the CRT screen, the 
probe is capacitively coupled to the beam such that 
as the distance (defined in Fig. 1) is decreased, the 
beam-to-probe capacitance, and thus the signal de
tected by the probe, increases. One can use either 
the analog distance-varying output of the pen am
plifier or add a threshold element to produce a digi-

BEAM PEN 

T JL 
-- x 

'-----;:':::::0==:::::;;;;;:;;;::;,;'- - - - - - - - _ 1 'BEAM -TO- PEN 
- DISTANCE 

DIGITAL OUTPUT ANALOG OUTPUT 

n n 
Figure 1. Simplified beam-pen system. 
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tal "seen-not-seen" output. We see then, that the 
beam-pen system is similar to a radar system. 

Let us now take a closer look at the system to 
obtain a quantitative understanding of its opera
tion. Figure 2 shows a simplified circuit model of 
the beam-to-pen coupling. The CRT screen can be 
represented by a parallel RC circuit. In non-alumi
nized tubes this time constant is in the order of 0'.1 

seconds.6 Hence, since we are concerned with beam 
pulses in the order of microseconds, the screen acts 

as an integrator. Similarly, the pen amplifier input 

can be represented as a parallel RC circuit. This 

impedance is a parameter of the design. Finally, the 

coupling between the beam and pen is clearly pri
marily capacitive. 

ELECTRON-BEAM 
CURRENT = 

BEAM-TO-PEN CAPACITANCE 

CRT SCREEN 
IMPEDANCE 

c~ 

r ep= PEN VOLTAGE 

PEN AMPLIFIER 
INPUT IMPEDANCE 

Figure 2. Simplified circuit model of beam-to-pen coupling. 

The geometry of the CRT screen controlling the 
beam-to-pen capacitance is illustrated in Fig. 3. 
Here the electron beam is represented by a stream 
of electrons impinging upon the CRT phosphor. 
Upon striking the phosphor, the incident electrons 
create some secondary electrons which leave the 
struck area Df the phosphor, but since the phosphor 
is operated at secondary emission ratios of less than 
one, the net charge on the screen at the struck area 

CRT FACE PLATE 

INCIDENT 
ELECTRON 
BEAM 

ELECTRONS 
DEPOSITED ON 
SCREEN AND 
POSITIVE 
CHARGES 
CAUSED BY 
SECONDARY 
ELECTRONS 

is negative. The beam is represented by a con
ducting probe surrounded by a shield and is shown 
displaced a distance x along the safety plastic from 
the center of the electron beam. Typically, the di
ameter of the electron beam (d) is in the order of 
5 to 10 mils, the distance (ro) from where the beam 
strikes the phosphor to' the surface Df the safety 
plastic is in the order of lh inch, and the probes 
used are approximately 1/10 inch in diameter. From 

CONDUCTING 
PROBE 

Figure 3. Cathode ray tube screen details. 
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these values it is clear that even the maximum value 
of the beam-to-pen coupling capacitance C is ex
tremely small. For example, using a parallel-plate 
capacitor model shows that this capacitance is less 
than 1/10 of a picofarad. Hence, the input impe
dance of the pen amplifier must be high to obtain a 
reasonable signal from the beam. 

From the circuit model in Fig. 2 and the above 
observations, the pen voltage ep is approximately 
equal to C(j w Zs ZP)ib. Furthermore since Zs has 
such a large time constant, i.e., Zs ~ 1/j w, to a 
close approximation, ep ~ kC Zp ib, where k is a 
constant. Hence as we observed previously, the pen 
voltage is directly proportional to the coupling capac
itance and the pen amplifier input impedance. 

Because the distance r in Fig. 3 is so much larger 
than the areas of the beam and pen, a parallel-plate 
capacitor model for the beam-to-pen capacity is 
poor. Unfortunately, a more exact capacitor model 
results in very difficult field equations. Hence, we 
have used experimental data to derive the following 
polynomial approximation to the variation of capac
itance with pen displacement along the safety plastic 
when x ~ 4 ro, where x and ro are defined in Fig. 3: 

[ 
1.6 1 0.46 0.14] 

C = Cmax V 1 + a 2 - 1 + a 2 - 1 + a 4 

(1) 

where a =~. We are not interested in distances 
ro 

x > 4 roo Clearly, the pen voltage is the same func-
tion of x. As a matter of fact, the data used to derive 
( 1) was obtained by measuring the pen voltage in 
a system with the following properties: 

BEAM CENTER 

CRT = 16ADP7 (non-aluminized) 
Beam diameter = 0.005 inch 
ro = 0.5 inch 
Probe diameter = 0.085 inch 
Shield diameter = 0.5 inch 

Variations in these parameters influence the coeffi
cients in (1). For a discussion of these effects see 
reference 7. 

Figure 4 is a normalized plot of (1). The shape 
of this response curve is of interest in resolution 
considerations. In other words, one important prop
erty of a man-machine communication system is to 
designate specific items in a CRT disptay using a 
digital seen-not-seen signal. The higher the resolu
tion (i.e., the smaller the field of view) of the 
beam pen, the smaller the distance between two dif
ferent items that can be independently designated. 
The digital signal from a beam pen is derived from 
a threshold detector attached to the analog output. 
Because a threshold detector has a finite "dead 
band" for which its decision is not predictable, to 
insure a stable resolution the pen anatog output 
should change as rapidly as possible with a change 
in displacement, and be as noise-free as possible at 
the value of the output to which the threshold de
tector is adjusted. 

Since ro has a marked effect on the shape of the 
beam pen response as shown in Fig. 4, it is important 
to operate the pen as close to the CRT screen as 
possible. The minimum value of ro is determined by 
geometry that, for the most part, is not under con
trol of the designer. Hence, this distance is a major 
limitation of the beam-pen system. 

RESPONSE 

x 

Figure 4. Normalized plot of Eq. (1 )-ro = Y2 inch. 
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There are several noise sources in the beam-pen 
system. The primary sources are: the electron beam, 
the CRT phosphor, the CRT high voltage supply, 
the computer, the display system, the pen amplifier. 
Since signals in the order of tens of microvolts have 
been measured at the screen, the noise contributions 
of a well-designed pen amplifier are small compared 
to this signal. Because the noise in the CRT high 
voltage supply, the computer and the display system 
are principally centered about d.c., the contribu
tions from these noise sources can be greatly reduced 
by modulating the unblanking pulse with a high
frequency signal and using an appropriate high
frequency band-pass pen amplifier followed by a 
detector. That is, in Fig. 5 we show the usual 
computer-generated unblanking pulse. This pulse is 
modulated by a high-frequency sine wave, also 
shown in Fig. 5 as the resulting beam charge. Figure 
5 also shows the corresponding phosphor charge, 
viz, approximately the integral of the beam charge. 

COMPUTER-GENERATED 
UNBLANKING PULSE 

- BEAM CHARGE 

-PHOSPHOR CHARGE 

Figure 5. Charge variations. 

Using a modulation system, the remaining pri
mary noise sources are the electron beam and the 
CRT phosphor. There is reason to believe that both 
of these sources produce both wanted signal and 
noise. Hence both can be viewed as noise in a com-

munication or radar channel. Thus, methods used in 
communications and radar can be used to increase 
the signal to noise ratio. As yet, little has been 
done in this direction. One approach presently 
being studied experimentally is to use a synchro
nous detector rather than an envelope detector. 

The beam pen operates because of local charge 
variations on the CRT phosphor. Any modification 
to the phosphor that eliminates or modifies these 
charge variations will render the beam pen inopera
tive. Hence, a beam pen will not operate with an 
aluminized-screen CRT because the aluminization 
greatly reduces the resistivity of the phosphor, thus 
essentially eliminating local charge variations. 
When a CRT screen is not aluminized, placing for
eign objects at the outside surface of the screen can 
modify the charge distribution. A way to eliminate 
this effect is to cover the outside of the CRT or the 
safety plastic with a static reducing agent, such as 
Statnul, manufactured by Daystrom, Inc. 

THE ESL BEAM-PEN SYSTEM 

This section decribes the beam-pen system built 
at the Massachusetts Institute of Technology, Elec
tronic Systems Laboratory (ESL) for use with a 
display console on the M.I.T. multi-access computer 
(Project MAC). This display is an incremental 
type in which output pictures are composed of dis
crete dots displayed in the following manner: The 
CRT beam is turned on for a duration of 0.5 mi
croseconds to display a point, turned off, relocated, 
and turned on for the next point. The beam never 
moves while turned on. The 0.5 microsecond dura
tion that the beam is turned on is hereafter referred 
to as the display time of the unit. Points are dis
played at a maximum rate of one every 1.5 micro
seconds. The display is manufactured by Digital 
Equipment Corporation (DEC) and is similar to 
their Type 330. A Type 16ADP7 non-aluminized 
CRT is used. 

A block diagram of the ESL beam-pen system is 
shown in Fig. 6. A frequency of 10 megacycles was 
chosen as the modulation frequency for this unit 
because of the availability of a commercal amplifier 
at this frequency. The lower frequency limit for 
such a system is imposed by the system bandwidth 

requirement which in turn is dictated by the display 
time. The upper frequency limit for such a system 
is imposed by stray capacitances and radiation. 
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NUVISTOR 
BEAM PEN 

Figure 6. The ESL beam-pen system. 

As seen in Fig. 6, the ESL beam-pen system con
sists of the fol'lowing units: 

1. A pulse modulator to intensity modulate 
(approximately 100 percent) the CRT beam 
with a 10-megacycle signal. 

2. The beam pen itself, a hand-held, high
input-impedance pickup consisting of a 
shielded conductive probe and a preampli
fier to pick up the electron-beam signal. 

3. A broad band-pass 10-megacycle amplifier 
to amplify the beam-pen output. 

4. An envelope detector to remove the 10-
megacycle carrier. 

5. A pulse amplifier to drive the threshold 
detector and produce signals compatible 
with DEC signals. 

6. A threshold detector to produce a digital 
output. 

Each unit is now briefly described. First the 
pulse modulator. In the present system, this modu
lator is simply a high-Q parallel resonant circuit 
having a normally turned-on switching transistor 
connected in series with a d.c. power source. When 
the computer generates an. unblanking pulse, this 
switching transistor is turned off, rapidly changing 
the current through the high-Q circuit and resulting 
in a 10-megacycle "ringing" for the duration of the 
unblanking pulse. This signal is coupled to the CRT 
first grid through an emitter follower and the am
plitude is adjusted to cause about 100 percent modu
lation. (For the 16ADP7 this is approximately 15 
volts peak to peak.) Hence there is a 10-megacycle 
signal present only when the beam is turned on. 

A photograph of the present beam pen is shown 
in Fig. 7. To produce a stable high input impedance 
a Nuvistor cathode follower is used. The probe 
characteristics are those specified in the previous 
section to derive Eq. (1). Other pertinent charac
teristics are: input capacitance = 7.25 picofarads, 
input resistance = 2.0 megohms, and voltage gain 
with 50-ohm load = 0.25. 

The band-pass amplifier is a Type BV 1002 manu
factured by RHG Electronic Laboratory, Inc. Perti
nent characteristics are: center frequency = 10 
megacycles, 3 db bandwidth = 2.1 megacycles, noise 
figure = 2.1 db, maximum power gain = 97 db, 
maximum voltage gain = 106 db, and maximum 
voltage output = 40 volts. The amplifier contains 
an envelope detector and a linear pulse amplifier. 
The latter drives a simple external pulse amplifier 
to make the signal levels compatible with DEC signal 
levels and to provide a threshold adjustment. The 
RHG amplifier also has a manual gain control for 
the 10-megacycle section and an AGC for this sec
tion. The manual gain control is adjusted to prevent 
overload at any time, and the AGC is disabled to 
prevent integrating effects in the AGC circuit. 

The threshold detector is simply a DEC Schmitt 
trigger and it drives a flip-flop in the display sys
tem. This flip-flop is under program control. For 
additional details of this system see reference 7. 

PERFORMANCE OF A BEAM-PEN SYSTEM 

Figure 8 shows the analog response of a DEC 
Type 370 fiber-optic, photomultiplier-tube light
pen system to a sequence of displayed points occur-
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Figure 7. The beam pen. 

Figure 8. Light-pen response. 

Response 

Unblonking Pulses 
Width = 005 Mic:rosec:. 
Period= 3.5 Mic:rosec:o 

ring at a display rate of 1 point every 3.5 micro
seconds. This light pen is presently the fastest com
merciallight pen available. The first point displayed 
is on the left-hand. side of the picture. As can be 
seen, the pen response to this first point is greater 
than that to the second point, which is in turn 
greater than that to the third point, etc. Although 

not shown in this figure, after a sufficient number 
of points essentially no response is obtained. This 
figure clearly demonstrates the deficiency of a light
pen system for high-speed operation-the inability 
to discriminate between points occurring at high 
display rates. For reference, the Type 370 light pen 
can operate reliably, by proper signal processing, at 
a display rate of one point every 8 microsecoonds or 
more. 

Figure 9 shows the analog response of the ESL 
beam-pen system described in the previous section. 
The display rate is identical for this photograph as 
for the one in Fig. 8. The superior performance of 
the beam-pen system as regards the speed of re
sponse is clearly evident. For reference, this beam
pen system has been tested at a display rate of 1 
point every 1.5 microseconds and it still was not 
speed-limited. Of course, it operated equally well at 
slower display rates. 

On the other hand, the light pen has a better res
olution than the beam pen. The particular ESL 
beam-pen system described in the previous section 
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Figure 9. Beam-pen response. 

Re.sponse 

Unblanking Pulses 
Width = 0.5 Microseco 
Period = 3.5 Microsec. 

has a reliable field of view of 1.5 inches in diam
eter. This is approximately a factor of 10 larger 
than that of the DEC 370 pen. The primary cause 
of the relatively poorer resolution of the beam pen 
is that the phenomenon by which it works is a 
slower varying function of distance from the dis
played point than is the light by which the light pen 
works. This is evident from the plot of (1) in Fig. 
4 and the realization that optical signal processing 
can be used on the light pen. A secondary cause of 
this poorer resolution is that the noise level in the 
present system is higher than it should be. This lat
ter factor is presently being studied. 

The poorer resolution of the beam pen does not 
markedly affect its performance in respect to the 
light pen when "pen tracking" is being used. The 
poorer resolution does show up of course when one 
desires to point to one of several objects that are 
close together. 

Another factor to consider in the beam-pen sys
tem is the delay between the occurrence of the elec
tron beam and the output of the system. This is 
caused by the band-pass pen amplifier. From Fig. 9 
we see that. the delay is in the order of 1 micro
second. For many applications (e.g., the ESL Dis
play <:;onsole) this delay is no problem. If the delay 
cannot be tolerated, then a wider band-pass amplifier 
would reduce this delay with some loss in signal-to
noise ratio. 

For more detail's of the performance of the ESL 
Beam-Pen System and other considerations, see ref
erence 7. 

CONCLUSIONS 

From experimental evidence we conclude that it 
is possible to make a system to detect when and 

where the electron beam of a CRT strikes the 
screen, thus essentially eliminating the bandwidth
limiting effects of the CRT phosphor and making a 
high-speed man-machine communications system 
possible. The system that is described here is pres
ently being used in an operating environment. It is 
superior to the light-pen system as regards to speed, 
and is relatively simple, inexpensive, and insensi
tive to the background light of the operating room. 
There are also several possible extensions of the 
system. For example, by modulating the electron 
beam with several differential selectable frequen
cies, one could "color" or "classify" various dis
played points on the CRT screen. The present dis
advantage of poorer resolution than the light pen 
does not appear to be insurmountable and is pres
ently being studied. 
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VOICE OUTPUT FROM IBM. SYSTEM/360 

A. B. Urquhart 
Systems Development Division 

International Business Machines Corporation 
Kingston, New Yark 

INTRODUCTION 

The IBM 777(} and 7772 and elements of the 
New York Stock Exchange Market Data System 
form a family of IBM devices providing voice out
put facilities. The devices function 'similarly in that 
each gives a computer-generated voice response to a 
dialed inquiry. The audio generation principle in
corporated in the 7770 is a derivative of the origi
nal Voice Answer Back principle-that of adjusting 
word length to fit machine time-slots. Then by ac
cess to these words from many input lines, sen
tences are formed into a voice response. The 7772, 
on the other hand, generates audio on the "voco
der" principle-that of energizing tone filters and 
combining the output result first to form words and 
then sentences in a manner similar to that of the 
7770. 

Input to the New York Stock Exchange Market 
Data System was accomplished through the use of 
the IBM 7750 program transmission control. In 
contrast, the 7770 and 7772 are self-contained in
put/ output devices designed for widely diversified 
applications requiring various types and lengths of 
inquiries and responses in such industries as bank
ing, insurance, manufacturing, and retailing. 

They are, therefore, modular in increments of 
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numbers of "lines" and "words." A "line" is 
defined as a half-duplex communication channel to 
which more than one telephone may be connected, 
but where only one transaction takes place at one 
time. In the case of the 7770 and 7772, a line is 
used for transmission of digital information in the 
input direction and voice in the output direction. A 
"word" is a unit of vocabulary which, for speech
processing purposes, may be either in analog or 
digital form. 

There are differences in the number of lines and 
words available on each device and in the method 
of generating voice output. There are three models 
of the 7770 and one of the 7772. The difference 
among the three models of the 7770 is in methods 
of attachment to host processors. Table 1 shows 
how many lines and words are available on each 
and the type of processors to which each device can 
be attached. ' 

Both units are available in languages other than 
English, but because of the many variations in vo
cabulary and methods of attachment to communica
tion equipment on a worldwide basis, this discus
sion is limited to that of the 7770 Model 3 and 
7772 as attachable to IBM System/360 within the 
continental United States. The external appearance 
of the two machines is similar because the same 
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Table 1. 

No. of Lines No. of Words 

7770-1 4 to 48 32 to 126 
(in increments of 4 ) (in increments of 16) 

7770-2 4 to 48 32 to 127 
(in increments of 4) i (in increments of 16) 

7770-3 4 to 48 32 to 128 
(in increments of 4) (in increments of 16) 

7772 2 to 8 Any amount from 
(in increments of 2 ) available vocabulary 

list. Limited by 
available storage. 

frame with similar means of connection to com
munication facilities and host processors is used for 
both. (See Fig. 1.) In function, the 7770 and 7772 
are the same; the difference between the two is in 
the method of generating the voice output as will be 
described later in this article. 

There are three basic sections to each device
input, output, and control. The input and output 
sections connect to the common-carrier communica
tions network. The control section connects the in
put and output sections to the host processor. A 
transaction takes place in the following way. 

Using the telephone, an inquirer first dials the 
telephone number allotteed to a 7770 or 7772. When 
the ringing stops, a tone will be heard, indicating 
that the call has been answered. The inquirer now 
dials his input message. The 7770 or 7772 forwards 
this message, a character at a time, to the attached 
computer which processes the input data and re
turns a digital output message. The message is con
verted to audio and heard by the inquirer. 

METHODS OF ATTACHING 
COMMUNICATIONS EQUIPMENT 

The design of the communications interface re
quired consideration of the various uses. of a tele
phone in a machine environment. The telephone, in 
this case, was the prime input and output device 
involving dialed digits as input and audio as out
put. 

Processor 

IBM 1401, 1140, 
1460 

IBM 1410, 7010 

IBM System/360 
Mod. 30., 40, or 50 

IBM System/360 
Mod. 30, 40, or 50 

Some of the first design problems affecting the 
telephone as an inquiry terminal involved consider
ation of the human element. How does the inquirer 
react to a telephone that he knows is connected to a 
machine? If the inquirer receives no reply, does he 
hang up? If so, right away? In 20 seconds? In 2 Figure 1. An audio response unit in background. 
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minutes? It seeemed that most human-factor prob
lems fell in the category of "normal telephone prac
tice" and that the real problem was not what the 
inquirer would do but how the 7770 or 7772 would 
react to questions like these: 

• What does it do if the inquirer misdials? 
• How will it recognize end-of-inquiry? 
• What codes will be presented to it? 

• How much error-checking can reasonably be 
done? 

• Should it accept d-c dial pulses or tones? 
• Should it accept serial and/or parallel data? 

In adition, there were questions concerning Audio 
Output over the communications interface. 

• Could any data sets be modified to traninit 
audio? 

• Could this be done on balanced lines? On 
unbalanced lines? 

• What should be the level at which audio is 
transmitted? 

• What happens if an inquirer dials-in while 
audio is being transmitted? 

The answer to most of these questions lay in de
signing the 7770/7772 "front end" to fit a parallel 
communications data set interface; namely, that of 
the AT&T 400 series data sets or their equivalent. 
These data sets are serial-by-character, parallel-by
bit data transmitters and receivers which are capa
ble of handling numeric and/or alphanumeric data. 
In addition, one receiver type has since been 
modified to allow audio transmission in the output 
direction. One data set receiver (equivalent to the 
Western Electric 403A or 40113) must be used per 
7770 or 7772 line as shown in Figs. 2 and 3 re
spectively. 

Common to all of the connections in Fig. 2 is the 
use of pushbuttons for inquiry. Entering digits in 
this manner is faster, more reliable and is gaining 
in popularity, but there still are two basic types of 
telephones that can be used-the rotary dial tele
phone and the pushbutton telephone. If a rotary 
dial telephone is used, a pushbutton attachment is 
usually added. An inquirer ~ould first dial the sys
tem number with the rotary dial telephone and en
ter the inquiry with the pushbutton attachment. If 
the inquirer uses a pushbutton telephone as shown 
at Fig. 2D, he dials the number and enters the in
quiry using the same telephone. 

~ PUSHBUTTON 
\:y ATTACHMENT 

PUSHBUTTON 
AUTOMATIC 

® DIALER (CARD 
B OR"RAPIDIA~) 

I . 

I COMMON 
CARRIER 

,~Ij~ __ --I NETWORK 

@ 

ROTARY DIAL 
CARD DIALER 
OR"RAPIDIAL!' 

PUSHBUTTON 
ATTACHMENT 

~ 
@ PUSHBUTTON ~A:: DIALER I 

~ 
® PUSHBUTTON AUTOMATIC DIALER II 

(CARD OR"RAPIDIA':) . 

PUSHBUTTON INQUIRY 

lmomn 

I __ ~_-
INTERFACE 

~~';A' 

I 
I 
I 

* OR EQUIVALENT 

Figure 2. Telephone equipment appropriate for inquiry. 

Other inquiry terminals shown in Fig. 2 are vari
ations of either the basic rotary dial or the pushbut
ton type of telephone. These are the card or RAPI
DIAL* type of telephones. In the card-dial tele
phone, a number that is frequently used can be 
punched in a card which is then used to enter the 
inquiry. 

Since inquiry from a telephone is restricted to 
ten digits, there are some applications where it is 
desirable to have alphabetic as well as numeric in
quiry. In those cases, a terminal, such as the IBM 
1001 shown in Fig. 3, canbe used. Numeric and/or 
alphabetic data can be entered from the 1001 using 
a punched card. When an IBM 1001 inquiry termi
nal is used, a data set transmitter (40 1E3) per line 
is required in addition to the data set receiver per 
line for inquiry. In a method similar to the direct 
telephone attachment shown in Fig. 2, the initial 
number is dialed using either a card or a RAPIDI
AL * telephone. 
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® 

® 

© 

ROTARY CARD 
DIALER 

"RAPIDIAL\\ 

COMMON 
CARRIER 
NETWORK 

IBM 1001 TYPE INQUIRY 

Figure 3. IBM lool-type inquiry or equivalent. 

AUDIO OUTPUT 

On the 7770, vocabularv i.l stored on a drum 
similar in form to storage of' words on a tape record
er. Words are stored around the circumference of 
the drum surface on tracks. The drum has 128 
tracks; it is 4 inches in diameter, 1 0 ~nches long, 
and rotates at 120 revolutions per minute. Each 
drum track has an associated read head and am
plifier for retrieving the recorded word impulses. 
The rotational speed of the drum dictates that the 
information per track must fall within a SOO-milli
second time period. A process has been developed 
in IBM to compress words or segments of speech 
into SOO-millisecond time-slots. Words having a 
time duration greater than 500 milliseconds are 
placed in 2, or more time-slots or tracks. 

The vocabulary is first generated in the following 
way. An elocutionist speaks the vocabulary words 
onto a tape recorder. This tape is then digitized 
through an analog to digital encoder, the output of 
which is edited and processed by a computer pro
gram to fit the words into SOO-millisecond time-

*Registered trademark of McGraw-Edison Co. 

slots; these digital time-sloted words are stored on 
tape. At such times as a specific vocabulary is re
quired, words are converted to analog form and 
placed on the drum at the specific track locations 
required by the application. This is normally done 
once for each application. Vocabulary modification 
is accomplished "by removal of the recorded drum 
cylinder and its replacement with another cylinder 
having a different vocabulary. 

The way the vocabulary is accessed is depicted in 
Fig. 4, which shows a functional diagram of the 
drum and the associated analog circuits. For each 
application, the processor has a table of addresses 
corresponding to vocabulary words. Upon analyzing 
an input message, the processor formulates the re
quired output message which is transmitted to the 
7770. This digital output message consists of a ser
ies of drum track addresses preceded by a line ad
dress. Each track address conditions a specific word 
analog gate allowing a word to be gated onto the 
Pulse Amplitude Modulation Bus (P AM BUS) . 
From this bus, the word is gated through any mes
sage analog gate conditioned by a specific line ad
dress. This allows each word to be transmitted to 
any line and simply represents time-division-multi
plexing of the analog word signaL Since this leaves 
the audio in a rather chopped-up state, the signal 
passes through a reconstruction filter before being 
transmitted to the output line. As long as a relative
ly high sample frequency (e.g., 12KC) is main
tained, no appreciable degradation in audio quality 
is noticed. It must be remembered that the audio 
output is in the 200 to 4000 cycle per second range. 

For the 7772, the method of recording vocabu
lary is similar to that for the 7770; however, the 
processing phase is different. The speech on tape is 
converted to digital data through an analog-to-digi
tal encoder. The processing of vocabulary is then 
accomplished by band-compressing each word, there
by limiting the numbers of digits per word. This 
results in providing a stream of digital data which 
is stored on cards or tape for later transfer to a disk 
file or similar random-access storage device within 
the system. This digital data, called Digitally Coded 
Voice (DCV), consists of sequential aggregate and 
excitation functions. An aggregate function is 45 
bits in length and represents a portion of the analog 
signal. The excitation function is 8 bits in length 
and acts as a counter determining the length of time 
an aggregate function should be used for a specific 
segment of analog signal'. The sequential combina-
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SA~ AMPLr~~ 
PU~:E\E~o-----~~-----

WORD ANALOG 
GATE 

PAM BUS ~----.... 

MESSAGE ANALOG 
GATE 

RECONSTRUCTION 
FILTER 

~ 
TO 

COMMUNICATIONS 
LINES 

FILTERED 
AUDIO 

Figure 4. PAM bus and related gating in IBM 7770. 

tion of these aggregate and excitation functions 
makes the DCV representation of a particular word 
of vocabulary. 

Approximately 300 bytes of data (DCV) are re
quired per second of audio. The word "balance," 
for example, would be stored on a disk file as ap
proximately 75 bytes of digital data (600 bits). 

Vocabulary in the 7772 is not stored on a drum 
in analog form but is stored within the system in 
bit form on a disk file. The CPU reads the required 
vocabulary words into its own core storage from the 
file. The information from the file is transferred 
through the multiplexer channel to the 7772 control 
unit which, in tum, transmits the data to a Voice 
Code Translator (VCT); the VCT then converts the 
data from digital to analog form. One Voice Code 
Translator is shared by every two input lines. 

The Voice Code Translator consists basically of 
a set of 15 filters, each with suitable energizers and 
covering the voice frequency range of approximate
ly 200 to 3,700 cycles per second. Each filter covers 
a specific portion of the voice band. For example, 
filter No.1 covers the 200 to 300 cps range, where
as filter No. 15 covers the 3,150 to 3,700 cps 
range. An audio output is obtained when a combi
nation of these filters is, in effect, energized by a 
pattern of input data. 

A functional diagram of the VCT is shown in 
Fig. 5. An aggregate function representing a partic-

EXCITATION r-------, 
FUNCTION 
REGISTER L..----=-.,..=-_--' 
(8 BITS) 

VOICE CODE 
TRANSLATOR 

AUDIO 

ENERGIZER 

ANALOG 
GATES 

BAND 
FILTERS 

Figure 5. Voice code translator in the IBM 7772 audio re
sponse unit. 

ular portion of a word is placed in the aggregate 
function register with its corresponding excitation 
function in the excitation function register. The DCV 
data ( aggregate function) is converted to analog 
form and gated into the band filters, thereby ener
gizing each band filter to a level and frequency 
determined by the format of the aggregate function. 
The output from the band filters is integrated, recon
structed, amplified, and transmitted to a telephone 
line as audio. The length of time that each aggregate 
function is used is determined by the excitation 
function which in turn is dependent on the dynamic 
range of the analog signel. For example, a constant 
tone would be signified by using an aggregate func
tion having a corresponding excitation function with 
a large count. 

Vocabulary 

Since the 7770 vocabulary is stored within the 
device on a drum, the number of words per applica
tion is limited to the number of tracks on the drum. 
(See Table 1.) The words are chosen from an avail
able vocabulary list. Special words, proper· names, 
and dialects, etc., can be obtained on a charge ba
sis. A user may change his vocabulary by requesting 
the drum rotor in the machine to be rerecorded 
with new words of his choice. 
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There is no storage of vocabulary within the 
7772 unit; instead, the words are stored. on availa
ble random-access devices within the system to 
which the 7772 is attached. Because the words are 
in digital form, they require about 240.0. bits of 
storage for each second of speech. If an average 
speaking rate of 180. words per minute is consid
ered, this means approximately three words per 
240.0. bits of storage. There is, therefore, only the 
system limitation of available storage restricting the 
size of vocabulary per application for the 7772. 
Changing the vocabulary is simple since it requires 
only the reading of new words from cards or tape 
into storage. A list of words is also available for the 
7772 with special words or dialects again offered on 
a charge basis. 

DATA FLOW 

Both the 7770. Model 3 and the 7772 connect to 
the common-carrier data set receivers on one side 
and, on the other, to the multiplexer channel' of an 
IBM System/36o. Processor. Input information is 
entered via a telephone or similar terminal through 
a common-carrier data set to the 7770. or 7772 in
put section. It is then converted to data interpreta
ble by the processor and is forwarded, a character 

TELCO : +-----NETWORK--------' 

PBX 

at a time, to the processor. The multiplexer channel 
has the capability of interleaving operations from 
many low-speed input/output devices and thus pro
vides a high degree of I/O efficiency and adaptability. 

The multiplexer channel operates asynchronous
ly with the central processing unit and contains sev
eral subchannels. One sub channel is used per I/O 
line. Data is transmitted to and from the subchan
nel and the line in parallel 8-bit-byte form. Data 
operations between the 7770. and the multiplexer 
channel are controlled by a sequence of commands 
which, in turn, are controlled by the Operating Sys
tem/36o. control program. The functional block di
agrams of a basic 4-line 7770. Model 3 and a 2-line 
7772 are shown in Fig. 6 and 7, respectively. 

To understand the operation in more detail it is 
first necessary to define some basic commands used 
in IBM System/36o. for communication devices. 

ENABLE - is used to condition a line for 
accepting or maintaining a call. 

DISABLE - is used to condition a line for ter
minating a call. 

READ - is used when information is being 

WRITE 

transmitted from the 770. to CPU 
storage. 

- is used when information is being 
transmitted from CPU storage to 
the 7770.. 

IBM 
SYSTEM/360 

CPU 

MPX 
CHANNEL 

CONTROL 
UNIT 

Figure 6. Functional block diagram of a 4-line IBM 7770-3 
audio response system. 
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Figure 7. Functional block diagram of a 2-line· IBM 7772 
audio response system. 

All of the above commands are under the control of 
the IBM System/360 Operating System Control 
Program. The flow chart (Fig. 8) describes the op
eration. 

A transaction is initiated by removing the tele
phone receiver and dialing the machine number. If 
the number is not busy and the line has been pre
viously ENABLED, an inquirer hears a tone that is 
2 to 5 seconds in length, indicating that the call has 
been answered. The inquirer then dials an inquiry 
character and the 7770 or 7772 requests service from 
the multiplexer channel. If the caller does not hang 
up and the character is accepted, it is transferred to 
processor core storage. This operation continues 
until the caller stops entering characters (as is indi
cated by a time-out of 5 seconds or by the caller's 
depression of an "end of message" key). If this 
time-out occurs, the device indicates "end of mes
sage" to the multiplexer channel which interrupts 
the processor. The processor will analyze the com
pleted inquiry and formulate the response message 
in the form of a sequence of drum addresses 
(7770) or "DCV" (7772). This sequence of drum 
addresses or DCV is preceded by the address of the 
line requiring the response. The multiplexer channel 
uses this address to identify the line requiring the 
response. Each time the multiplexer channel sends 
an output message to the 7770 or 7772, an audio 

word or portion thereof is gated onto the respective 
line requiring it. 

This is repeated until the channel control word 
(CCW) count is zero indicating the last word. If 
conversation mode is not indicated, the line. is then 
disconnected by issuance of a DISABLE command 
and then re-ENABLED for a new inquiry. If con
versation mode is indicated, it will either be a 
READ command indicating more information from 
input, or a WRITE command indicating additional 
response will be transmitted by the processor. Con
versation mode is a means by which a caller can 
effectively conduct a conversation with the comput
er under control of the operating program. 

APPLICATIONS 

The choice of either a 7770 or 7772 Audio Re
sponse Unit depends entirely on the application. 
The number of calls per day, the length of the out
put message, and the size and variations in vocabu
lary are all factors that must be considered. The 
7770 has greater throughput offering service to 
more lines than the 7772 but has the limitation of 
approximately 128 vocabulary words per applica
tion. The 7772, on the other hand, is limited in vo
cabulary only by available storage. The 7772, has a 
lesser number of input/output lines and has less 
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Figure 8. Flow chart of inquiry and response. 

throughput imposed by the higher data transfer rate 
across the device/processor interface during voca
bulary transfer from the processor. 

Both Audio Response Units are suitable for use 

by any business having a centralized file system in 
which the telephone is useful as an inquiry termi
nal. Responsible individuals within an organization 
can dial the computer directly for any information 
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about an account and receive a voice answer within 
seconds. Only a small number of words in the voca
bulary list take more than 1;2 second; hence, a 20-
word message generally takes less than 10 seconds. 

Because audio response is a recent addition to 
data processing, the application of these devices is 
left largely to the imagination of the system appli
cation engineer. A number of applications have 
been defined but are too lengthy to describe within 
the scope of this article. A brief description of a 
banking application follows: 

Banking 

Account, loan, credit or mortgage type inquiries 
can easily and quickly be handled by voice re
sponse. When a teller needs to determine the ac
count status of a customer who desires to cash a 
check, he simply picks up this telephone receiver 
and dials the account number, and follows with 
some predetermined code; for example, dial 6 for 
account status information. The voice response re
ceived confirms the account number by repeeating the 
number the teller dialed, and then supplies the ac
count balan~e and any other information the teller 

requested. After the customer cashes his check on 
the tener's approval, the teller, still holding the line, 
dials the code to inform the processor to update the 
customer's account by debiting the amount of the 
check. In most cases, the transaction from initial 
inquiry to final response will take the teller less 
than one minute; there is no paper-work involved 
and the teller is using a terminal he is already fa
miliar with-the telephone. 

Other applications are: 
Finance .. - stock quotations 

- margin account balance 

Insurance. - policy status 
- premium information 

Retail ... - credit inquiry 
- inventory inquiry 

Manufacturing . - inventory inquiry 
- job status 
- parts cost inquiry 

The addition of Audio Response to the family of 
IBM System/360 input! output devices now provides 
a closer link between man and the equipment that 
stores and processes the data with which he is con
cerned. 





CORRUGATOR PLANT OPERATING SYSTEM 
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INTRODUCTION 

The corrugated container industry currently com
prises approximately 850 plants, centered mostly in 
larger industrial areas. The average container plant 
employs 88 people and has an annual sales revenue 
of two million dollars.1 In a working day, the plant 
will produce upwards of 100,000 containers to 
meet the shipping requirements of neighboring in
dustry. 

The process of converting rolls of kraft paper 
into these containers begins with the production of 
corrugated paper board. The corrugator joins outer 
sections of the board to the inner section, which has 
been corrugated for strength, and cuts the board 
into rectangular blanks representing specific con
tainer orders. The blanks are then processed by a 
variety of machines, such as printer-slotters and 
folder-gluers, to produce the finished containers. 

This manufacturing process is becoming steadily 
more complex because of the tremendous variety of 
containers required. by American industry, and also 
because of the trend in the container industry to 
provide more specialized and marketable coptainer 
designs and services. This results in a continual 
search for' more efficient container production tech
niques. One technique which has been recently in-
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vestigated, and is now being implemented, . is the 
extensive use of the' digital computer for production 
planning and monitoring in the container plant. 

The most significant result of these recent studies 
into using a digital computer profitably in· corruga
tor plant operation has been the conclusion that top 
plant operating efficiency can best be obtained 
through a computer-oriented Plant Operating Sys
tem. Such a system, with its computational, analyti
cal, and data collection capabilities, would supply 
pla~t management with the timely, pertinent opera
tional information needed for most effective operat
ing decisions. Applying these capabilities to all as
pects of. plant operation would provide the neces
sary integration of these interrelated requirements: 

• Efficient order scheduling and processing 
• Maintaining the lowest reasonable plant in

ventory 
• Providing the best customer service possible 

SYSTEMS FUNCTIONS 

A group of container orders is scheduled on the 
corrugator using a series of patterns which contain 
orders combined with each other. Combining these 
orders to produce more efficient corrugator sched-
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ules is a natural area to begin using the computa
tional capabilities of the system. It has been shown 
that significant savings can result in this area of 
plant operation alone. However, to realize as much 
of these potential ·savings as posible, the computer 
must have complete, accurate files showing the sta
tus of orders and plant inventory. Entrusting the 
maintenance of these files to the system, with its 
inherent advantages in accuracy, becomes a natural 
consequence of corrugator scheduling on the com
puter. 

The maintenance of complete inventory files 
leads to the application of scientific inventory man
agement techniques which permit plant management 
to exercise more effective inventory control. These 
techniques, many of which are being used success
fully today, will be used to maintain the lowest pos
sible number of stock widths for each of the various 
paper grades, as well as the smallest number of rolls 
of each width. 

In addition to the files showing raw material in
ventory, files will be kept on orders being pro
cessed. The progress of these orders can then be 
shown for management review and action. Timeli
ness and accuracy of these files will be obtained by 
maintaining them automatically, using input from 
data collection stations in the work centers on the 
plant floor. 

EXTERNAL SYSTEM FEATURES 

The true effectiveness of the Plant Operating 
System depends on how well it performs in the cor
rugator plant environment. The system should re
quire as little manual data preparation and manipu
lation as possible. On the other hand, it should have 
features which make it easy for plant management 
to obtain the operating information which resides 
in the system. The inherent flexibility of digital 
computer logic and the variety of computer in
put/ output· devices, make these system communica
tion features readily available. 

INTERNAL SYSTEM FEATURES 

In addition to these required external features, 
there are two basic internal features which are re
quired: 

• Large random access memory 
• Comprehensive computer monitor program 

A large random access memory auxiliary to the 
main computer memory is essential to store the 
many data files and computer programs which will 
be incorporated in the completed system. A com
puter monitor program is one which controls and 
supervises the execution of the various operating 
procedures. This control is needed to allow plant 
personnel to quickly and easily specify the proce
dures they wish performed. 

CORRUGATOR PLANT OPERATING 
SYSTEM DEMONSTRATION 

This demonstration was prepared to show the ad
vantages of the Plant Operating System concept by 
putting a significant portion into operation. Pro
cessing box orders was chosen to highlight the value 
of integrating operating requirements so that they 
can be monitored on one computer system. The 
demonstration performs the routine processing of 
order information as well as optimum scheduling of 
the orders on the corrugator and the costing and 
operational analysis of the corrugator schedules. 
Plant operating personnel need only enter orders 
into the system as they are received at the plant. 
The system then provides all information needed 
for the operating decisions which result in com
plete, effective processing of these orders. The dem
onstration is designed to run on an IBM 1620, 
equipped with an IBM 1311 Disk Storage Drive 
and running under control of the 1620 Monitor. 
These corrugator plant applications are included: 

• Corrugated Container Cost Estimation 
• Corrugator Order Entry 
• Order Request 
• Stock Width Request 
• Corrugator Scheduling 
• Corrugator Schedule Costing and Operational 

Analysis 
• Order File Maintenance 

These procedures are performed by simply enter
ing the monitor control card specifying the execu
tion of a particular procedure, together with the re
quired data cards. All data cards, other than the 
initial order cards, are supplied by the system. 

The order processing cycle in a plant begins 
when order cards are entered into the system by ex
ecuting the Corrugator Order Entry Procedure. 
These new orders are merged with the existing open 



CORRUGATOR PLANT OPERATING SYSTEM 869 

order file on the disk and the updated order file is 
printed on the option of the planner. 

Scheduling activity begins by executing the Order 
Request Procedure which scans the open order file 
on the disk, selects those orders which are for spec
ified grade-flute codes and which fall within speci
fied due dates. These orders, which are grouped by 
grade-flute codes, are printed as well as punched, 
allowing the production planner to select only those 
cards for orders he desires to schedule. 

Selected cards from the Order Request Procedure 
are then fed into the Stock Widths Request Proce
dure .. The stock widths available for each grade
flute group are punched as well as typed for the 
planner's information. Other information required 
for scheduling is also punched, such as material 
costs and operating costs. Schedule information 
which the planner might wish to vary frequently, 
such as minimum corrugator run and maximum 
number of slitter knives, may be entered through 
the typewriter and punched. The punched output 
from this· procedure represents a complete input 
deck for the order scheduling procedure for the or
ders for each grade-flute group. 

Input decks for each grade-flute group are fed 
into the Order Scheduling Procedure to be sched
uled on the corrugator. This procedure uses a spe
cial linear programming technique developed by the 
IBM Research Laboratory, Yorktown Heights, N.Y., 
to determine optimum schedules for the grade
flute order group.2,3 In addition to printing the 
schedules, this procedure punches them, making 
schedule information available as input to the cost
ing and order file maintenance procedures. Since 
the schedule is in punched cards, the production 
planner has the ability to change schedule informa
tion as he wishes before proceeding to these suc
ceeding procedures. 

Schedule cards from the scheduling procedure 
make up the input to the Corrugator Schedule Cost
ing Procedure which determines material, trim, se
tup and operating costs for each corrugator run as 
well as a schedule summary showing costs and oper
ating statistics for the entire schedule. This proce
dure can ~e run for a projected corrugator schedule 
or for a schedule that has already been run, giving 
projected or actual operating costs. 

Schedule cards from the Scheduling Procedure 
also make up the input to the Order File r.1ainte
nance Procedure. After a schedule has been run on 

the corrugator, this procedure updates the order file 
by analyzing the amounts run for those orders 
scheduled. Orders which have been completed are 
deleted from the order file. Orders which have been 
partially completed are reduced by amount run. 

Using the Corrugated Container Cost Estimation 
Procedure occurs somewhat independently of the 
other procedures, although it would frequently pre
cede the order entry procedure. This procedure 
checks box orders for validity and determines the 
corrugator blank size to be run from the dimensions 
of the box order. Various material and production 
costs are combined to determine the sales price for 
the order. Finally, the shipping weight of the order 
is determined. 

Since this family of procedures can be executed 
in a variety of sequences, the planner has the ability 
to do different phases several times, varying such 
things as order grouping, tolerances, and stock 
width availability. In this way, he uses his experi.., 
enced judgment in applying the procedures most 
effectively. For example, having reviewed a particu
lar schedule, he may decide to remove an order 
from that group and try to obtain a new schedule 
with a higher corrugator utilization. On the other 
hand, he may decide to go back to the Order Re
quest Procedure with different due dates, obtain 
more orders to add to the original group, and then 
obtain a more efficient schedule with the new larger 
group. 

CONCLUSIONS 

The Plant Operating System Demonstration high
lights the desirability of implementing a complete 
Plant Operating System. The basic principles of in
tegrating related plant applications to operate in a 
computer monitored environment can be extended 
to include plant production scheduling, inventory 
management, production analysis and production 
control through on-line production monitoring. The 
Plant Operating System Demonstration represents 
the beginning of the systems design for such a truly 
comprehensive system. 
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REAL-TIME PROGRAMMING AND ATHENA SUPPORT AT WHITE SANDS MISSILE RANGE 

William G. Davidson 
Computer Directorate 

White Sands Missile Range, New Mexico 

THE ATHENA SYSTEM AND GROUND 
COMPUTER ASSIGNMENTS 

The Athena is a four-stage missile launched 
from Green River, Utah toward White Sands Mis
sile Range, New Mexico, covering a ground range 
of 450 miles. It is designed to deliver a payload 
into White Sands with prescribed atmospheric re
entry velocities and angles, so that re-entry pheno
mena may be studied, and radar performance 
against re-entry bodies may be evaluated. 

A ground computer (presently an IBM 7044) 
<>perates in real time during an Athena flight, with 
seven assigned tasks: 

1. Providing instantaneous impact prediction 
data during first and second stage burning, 
for range safety use. This function is espe
cially important since the Athena is flying 
over populated areas and, in case of mis
sile malfunction, must be destroyed by 
safety personnel so as to land only along 
non-populated sections of its flight path. 

2. Computing and transmitting midcourse 
(between second stage bum-out and third 
stage ignition) guidance correction com-
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mands to bring the missile into the proper 
re-entry orientation. 

3. Evaluating telemetered data from the mis
sile following the transmission of the guid
ance commands, to determine if all system 
functions are operating within prescribed 
limits. 

4. Transmitting the third stage ignition com
mand to the missile at the proper time, 
once it has been established that the third 
stage can be safely fired. 

5. Transmitting precise pointing data to sev
eral tracking and measurement sites 
throughout the flight, to assist them in ac
quiring and following the missile. 

6. Providing ground support personnel with 
data displays and flight status information 
throughout the mission. 

7. Logging all computer inputs and outputs in 
real time for postflight analysis. 

The following sections, while relating to real 
time philosophy in general, will at the same time 
show the development of the above tasks as a multi
processing job under the real time constraints of 
input and output data demands. 
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MONITOR PHILOSOPHY 

All real time programs within the Computer Di
rectorate at White Sands operate under the control 
of an Executive Control Monitor which directs Lhe 
flow of activity among various functional modules 
to assure that all program functions are carried out 
at the proper times and in the necessary contingen
cy to related activities. The Monitor was originally 
adapted for Athena use from the Mercury project 
monitor, but has been revised to make it more ap
plicable to specific support problems encountered at 
White Sands. 

A multi-processing job is a programming task 
that can be subdivided into functional modules or 
processors, each of which executes a specific func
tion in the overall program, and can be in various 
stages of completion throughout execution of the 
entire job. Each functional processor should have 
well defined inputs and outputs in relation to other 
processors in the system, and in relation to the out
side (non-computer) world. The Monitor might 
well be referred to as a mUlti-processing monitor, 
since in controlling the relative flow of activity be
tween functional processors, it monitors the state of 
completion and the dynamic requirements of each 
processor in the job throughout execution of that 
job. 

A multi-processing job becomes a real time job 
when execution of various program functions be
comes dependent on some regular or random time 
constraint, such as input or output data requests 
from a device operating dynamically during pro
gram execution. Thus, for a real time job an addi
tional, or perhaps we should say a master, processor 
must be added to the other functional processors in 
order to service the real time demands and pass any 
pertinent control information on to the Monitor. 
For the Athena system this. processor is known as 
the trap or interrupt processor, to which control is 
given immediately whenever a data input or output 
demand is recognized, interrupting whatever func
tional processor may be in process at that time. The 
trap processor examines the real time request, reads 
in or transmits the required data, and provides the 
Monitor with information regarding the input or 
output action just completed so that either execu
tion of pertinent program functions may be initiat
ed, or control will be returned to the interrupted 
functional processor. 

Each real time processor can be classified in one 
of three time-oriented categories, and relative ex
ecution priorities can be assigned on this basis. 
First are those activities that must be executed im
mediately upon recognition of some event or time 
in the program. Examples in the Athena program 
are the transmission of the third stage ignition 
command within a critical time interval, or the 
plotting of range safety display data without undue 
delay after they have been computed. The second 
category consists of functions that must be executed 
within a given time interval after they are request
ed, such as the ed~ting and processing of direct data 
messages before the next sample arrives at a remote 
terminal, or the calculation of regularly transmitted 
computer outputs within a time dictated computa
tion-transmission cycle for those data. The third 
group of processors involves program functions 
whose execution can be deferred until some later 
point in the mission, when higher priority functions 
have been completed and computing time is availa
ble. Included in this category would be such func
tions as selecting a radar for later use on the basis 
of current data from several radars, or the calcula
tion of guidance commands to be transmitted at 
some later point along the trajectory. The first class 
of functions described must, of course, have highest 
priority, since initiation of these actions usually 
cannot be delayed for any other purpose. Other pro
cessors will be assigned lower priorities as the im
portance of their roles and the judgment of the pro
gram organizer dictate. The trap, processor, as men
tioned before, will usually assume control whenever 
a data demand appears at a remote terminal, but 
even trap processing can be temporarily inhibited if 
an extremely critical function is in process at the 
time the demand occurs. 

Figure 1 shows the relationship between func
tional processors, a trap processor, and the Execu
tive Control Monitor. A simplified version of the 
Monitor is shown since this paper intends only to 
outline its control functions, omitting many of the 
details and system tools available. When an input or 
output data demand interrupts a functional proces
sor, the contents of all machine registers are saved 
as control is given to the trap processor. When con
trol is eventually returned to the processor at the 
point where it was interrupted, these machine regis
ters can be restored and processing can resume. 
Numerous control tables and indicators link the 
functional processors to the Monitor. Some of these 
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Figure 1. Monitor-trap processor - functional processor 
linkage. 

are set initially to define, among other things, the 
entry points and job priorities assigned each proces
sor, while others are maintained dynamically for 
use in monitoring the status of each processor. 

Among the indicators that change during job ex
ecution are three basic ones described here. First is 
a "request" indicator for each processor, turned on 
whenever execution of that processor is requested 
by another segment of the program. For example, 
the program might contain a processor which edits 
or evaluates radar data, in which case this function 
would probably be requested by the trap processor 
each time a new set of radar data enters the com
puter. When control is returned to the Monitor by 
the trap processor following the data interrupt, the 
Monitor would see the request indicator on for the 
radar processor, and would transfer control there as 
soon as any higher priority activities had been com
pleted. The second indicator is a "suppression" flag 
for each processor, causing the Monitor temporarily 
to suppress execution of that processor even though 
its request indicator might be on. Any processor 
can be suppressed by any other processor, and can 
likewise be released by turning off the suppression 
indicator. The third indicator is the "in process" 
indicator, turned on whenever execution of the 
functional processor associated with it has begun 
but has not been completed, and turned off upon 
normal exit from that processor. 

PROCESSOR QUEUEING AND 
ROUTING SHARING 

Real time processes often encounter times of 
peak activity where processor execution requests 
occur more frequently than control can be given to 
the processor. In order to avoid losing any of these 
requests, a queueing facility is provided by the 
Monitor, which allows the stacking of requests until 
computing time is available for servicing them. A 
basic assumption, of course, is that overall program 
timing has been so established as to assure the exe
cution of queued functions within some limiting 
time frame and before the queue tables for that pro
cessor have been filled. 

Another problem occurs when two or more seg
ments of a mUlti-processing job share the same 
subprocessor, resulting in a possible loss of indica
tors and temporary storage within that subproces
sor. At least four·· solutions may be applied to this 
problem, all of which have been used at the White 
Sands facility with varying degrees of success. First, 
and perhaps most obvious, is to avoid the problem 
by loading duplicate subprocessors, though this is a 
space consuming procedure. Second is a modified 
queueing philosophy applied to subprocessors. This 
is ideal in some instances, but may tend to subvert 
the priority assignment given to processors unless 
handled carefully at the subprocessor level. Third is 
the disabling of data traps during execution of a 
subprocessor, thus forcing the completion of that 
subprocessor prior to its call by another processor. 
This should be done only for short subprocessors, 
and even then there is some danger of losing vital 
segments of data while in the disabled mode. 
Fourth is the saving of temporary cells and indica
tors for the subprocessor at the time a data inter
rupt occurs. This method respects the initial prior
ity establishment, but is often wasteful of computer 
storage and execution time. 

INPUT-OUTPUT AND INTER-COMPUTER 
COMMUNICATIONS 

Inputs to the Athena real time program are radar 
tracking data (polar coordinates, site identification 
and tracking mode) from five radars; 15 channels 
of telemetry data from the missile in both a data 
and a calibrate mode format; signals such as lift off, 
stage ignition and burn out; and timing from four 
sources-a millisecond clock attached to a multiplex-
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er control unit to provide timing pulses for radar 
interrupts, an astrodata clock measuring range tim
ing in millisecond increments, a range timing word 
attached to each sample of telemetry data, and an 
internal computer core clock with a 16213 millisec
ond resolution, to be used if other timing sources 
fail. Computer outputs include acquisition data 
(polar or rectangular coordinates and site identifi
cation) to eleven tracking sites; commands to the 
missile via a command transmitter station, includ
ing stage firing commands and midcourse pitch and 
yaw maneuver instructions; impact prediction, pres
ent posit~ons and other information sent to seven 
plotter display boards; and numerous . binary and 
decimal displays showing the present trajectory sta
tus, the results of dynamically changing computer 
decisions, and various data and error messages ap
pearing on an on-line printer throughout the mis
sion. Input! output formats and data rates may vary 
throughout a mission. 

Since 7044 core storage and computer speed pre
vent loading or executing the ideal large scale real 
time program from core, any data handling or for
matting that can be done outside the computer 
simultaneous with computer processing is always 
welcome. For this reason the personnel of the Real 
Time Data Center at White Sands have designed a 
Direct Data Buffering System to handle many of the 
computer inputs and outputs without tying up valu
able computer storage and time. 

Radar data are transmitted from the radar sites 
to the Real Time Data Center over telephone lines 
via kineplexes, one sample requiring 15 8-bit 
bytes. These bytes come from the kineplex receivers 
every 3 V3 milliseconds, so that one complete frame 
of radar information is transmitted every 50 milli
seconds with the data multiplexed for the five in
put radars, adding a time word from a master clock. 
Telemetry data and calibration words are transmit
ted over 14 pairs of telephone lines, formatted and 
buffered by the Direct Data Buffering System, and 
similarly sent to the 7044 on an interrupt basis 
about 11 times per second. The Direct Data Buffer
ing System includes an output buffer to format and 
transmit acquisition data to the tracking sites via the 
kineplexes, and to transmit computer generated 
missile commands and display data to the proper 
device. Output data demands interrupt the computer 
every 50 milliseconds. The System displays the com
puter-buffer inputs and outputs dynamically, and 
records all real time inputs serially on analog tape as 

they enter the Real Time Data Center. Communica
tion between the direct data buffer and the 7044 
main computer is of the demand-response type 
through the direct data connection on Channel B of 
the 7044. Communication from the 7044 to the 
analog computer and plotting boards through the 
digital-to-analog converter is via the direct data 
connection on Channel C of the 7044. 

A Direct Couple System (7044-7094) has re
cently been installed in the Computer Directorate, 
and the present Athena program is being rewritten 
for the new configuration. The new program will 
rely largely on the 7044 side of the system to edit 
and format data to and from input-output 7288 
sub channels , replacing in large part the· function of 
the present Direct Data Buffering System. 

DEVELOPMENT OF THE ATHENA 
PROCESSORS 

Figure 2 outlines the organizational structure of 
the Athena real time program. The solid lines indi
cate a direct transfer of control from a processor to 
a subprocessor, in the manner of standard deferred 
time subroutines. The dashed lines represent a re
quest for the execution of a processor by another 
processor. The function of each program in the sys
tem is described below. 

Figure 2. Athena program organization. 

1. Priority Processor #1: transmits, at the 
proper time, . a command to ignite the third 
stage of the missile. 
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2. Priority Processor #2: transmits data to dis
play plutters via digital-to-analog converter 
and an analog computer. 

3. Priority Processor #3: logs computer inputs, 
outputs, and other pertinent data on tape 
during a mission for post flight analysis. 

4. Priority Processor #4: processes raw tele
metry calibration messages. 

5. Priority Processor #5: edits and processes 
raw telemetry data messages, and transmits 
midcourse guidance commands to the 
missile. 

6. Priority Processor #6: edits and processes 
input radar data, monitors the tracking sta
tus of the radars, and transmits acquisition 
and display data. 

7. Priority Processor #7: formats acquisition 
and display data, and controls the linkage 
and synchronization between the processors 
generating acquisition data, range safety 
plots, and various digital displays. 

8. Priority Processor #8: evaluates telemetry 
data from the missile after midcourse guid
ance commands have been transmitted to 
decide whether all parameters are within 
prescribed limits. 

9. Priority Processor #9: evaluates radar data 
after second stage burn-out, and chooses a 
radar from which input data for the guid
ance equations can best be obtained. 

A. Subprocess or RADCOR: a subroutine of 
Processors 7 and 9, RADCOR performs 
coordinate transformations and generates 
acquisition data. 

B. Subprocessor PRED: a subroutine of Proc
essor 7, PRED generates Kepler extrapo
lated impact prediction and other plotting 
board data. 

C. Subprocessor DIRSIT: a subroutine of Proc
essors 7 and 9, and of PRED, DIRSIT gen
erates smooth positions, velocities and ac
celerations from raw radar position data. 

D. Subprocessor SUB86: a subroutine of Proc
essor 8, SUB86 computes predicted payload 
impact points. 

E. Subprocessor EXTRAP: a subroutine of 
Processor 9, EXTRAP performs trajectory 
extrapolations for guidance equations in
puts. 

F. Subprocess or MATRIX: a subroutine of 
Processor 9, MATRIX solves the guidance 

equations, computes missile attitude com
mands for midcourse guidance, and deter
mintes third stage ignition time. 

G. Subprocess or DFXWRS: a subroutine of 
PRED, DRXWRS selects a radar for instan
taneous impact prediction plots on the basis 
of digitally filtered position and velocity 
data from all input radars. 

H. Subprocessor PLOT: a subroutine of PRED, 
PLOT scales and formats plotting board 
data for transmission to the digital-to-ana
log converter. 

I. Subprocessor CHECK: a subroutine of 
PRED, CHECK is a limiting subroutine for 
output data. 

Note the high priority given to routines to trans
mit third stage ignition command and plotting 
board data for range safety use. This indicates that 
these functions must be executed within critical 
time frames. The data editing and processing rou
tines are generally given next highest priorities 
since they must be completed before the next data 
samples reach the remote terminals. Functions that 
may span longer time intervals for completion, and 
which may, to some extent, be completed as avail
able time permits, are given lowest priority. 

REAL TIME STORAGE LIMITAT~ONS 

Most real time programs currently in use are of 
the medium to large scale variety, as is the Athena 
program at White Sands. An immediate problem 
arises when the entire executable program is too 
large to be accommodated by the immediately ac
cessible core at one time. Three techniques are used 
by the Athena program to alleviate this problem, 
and may be worthy of mention here. 

First, all data input and initialization programs 
are loaded into core and executed, and are then 
chained over or overlaid by the real time processors 
and subprocessors, the two program links sharing 
only the data and control storage common to each. 
The same procedure is followed after execution of 
the real time phase of the job, with post flight rou
tines overlaying the real time processors, retaining 
only those data and control words common to both. 

Second, all data which are generated during the 
real time mission but are intended only for post
flight use, are moved out of the computer immedi
ately via a direct data connection or onto logging 
tapes, to preserve storage within the main cores. 
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The 7044 currently in use at the Real Time Data 
Center does not have a disc or drum storage unit, 
hence cannot use these facilities for conservation of 
core. 

Third, much preprogramming, formatting, filter
ing, buffering, and functions of this nature are han
dled externally by the input-output Direct Data 
Buffering· System and by the analog-to-digital 
link between the 7044 and the plotting boards. This 
eliminates large blocks of digital programming as 
well as conserving computer time. Future real time 
work at White Sands will probably move more into 
this field of hybrid operation as systems become 
larger and more complex. 

CHECK-OUT PROCEDURES 

Check-out of real time programs requires meth
ods not usually necessary in deferred time program
ming. First of all, of course, each module or func
tional processor must be checked out individually, 
as far as possible. If a multiprocessing job has been 
properly formulated, with each processor assigned 
well defined functions and communications with 
other program parts, this check-out at the proces
sor level will be greatly simplified. 

Repeatability of input data is necessary in order 
to reproduce the results of computation processes 
during check-out phase. Unfortunately, real time 
processes dependent upon external timing and data 
demands cannot usually be reproduced with any 
degree of precision. However, the ability to record 
actual input data during a real time process, in such 
a manner that it can be played back into the pro
gram exactly as it was recorded, assists the pro
grammer in his check-out diagnostics. A related 
process is the establishment of a data simulator 
which will provide the real time program with re
peatable data demands at prescribed time intervals. 
Both procedures have been used extensively in 
checkout at White Sands. 

The complexity of interprocessor and monitor 
interactions is frequently exceeded by a maze of in
tercomputer and data communications pro~lems. 

Errors in data formatting and transmission are dif
ficult to trace during or following the completion of 
a real time process, pointing up a need for thorough 
diagnostic check programs for all external devices 
and intercomputer links prior to the execution of a 
real time job. Even with thorough premission 

check-out, the possibility always exists that some 
linkage device or external module may fail during a 
real time mission. Such possibilities demand the use 
of a limited amount of equipment monitoring by 
the program during a real time process. Upon occa
sion facilities can be provided for the switching of 
modules during the run in case errors are detected, 
thus endowing real time jobs with an additional 
feature not usually found elsewhere, that of dynamic 
check-out. 

DOCUMENTATION 

The preparation for and writing of a real time 
program requires the close cooperation of a number 
of persons, among them the program administra
tors, coders, equipment specialists, and those estab
lishing the functional requirements and job specifi
cations. This, together with the extreme complexity 
of most existing real time systems, compels a for
malization and documentation of requirements and 
procedures not usually needed for a standard pro
gramming job. 

Once the functional requirements for a job have 
been set down, the program management group 
should incorporate the system functions into an ar
rangement of processors and subprocessors which 
will form the backbone of the programming assign
ments. This initial work must be done with great 
care and imagination, since the establishment of 
time dependent linkages and relative priorities 
among processors is basic and can be altered only 
with great difficulty once the programming work 
has begun. 

Aft€r the overall system documentation and flow 
charting has been completed (ideally before any 
other work has begun), program specifications and 
detailed flow charts can be drawn up for each func
tional processor. Specifications must be controlled 
b j someone familiar with all parts of the program 
so that logical program linkages may be defined. 
Detailed flow charts should be primarily the respon
sibility of the individual programmer, and just as in 
deferred time programs, can be compiled before, 
during, or after the program has been written. 

Standards for program management and docu
mentation need to be set down early in the game, 
and followed rigidly even when the pressures of 
time begin to close in on the programming team. 
Not only will these standards aid the program nian-
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ager and his real time staff during the program 
writing stage, but also will establish a basis for fu
ture changes and program module rewriting when 
that becomes necessary. The competent real time 
programmer will be called upon to use all the in
genuity and creativity he possesses to solve the 
problems he faces, and poor standardization and 
documentation will make his task more difficult 
and lead to a substandard quality of work. 

Most of the difficulties encountered in the Athena 
and other White Sands real time systems have been 
due to breakdowns in communication and docu
mentation. The establishment, check-out and 
maintenance of a sound real time system is suffi
cient in itself to tax the patience of the most eru
dite team, and the use of such a conceptually simple 

yet basic tool as documentation cannot be over
emphasized. 
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QUALITY EVALUATION OF TEST OPERATIONS VIA ELECTRONIC DATA PROCESSING 

A. A. Daush 
Hughes Aircraft Company 

Space Systems Division 
El Segundo, California 

INTRODUCTION 

The test operations and data analysis engineers 
have taken giant steps in utilizing computers and 
data processing methodology in the various scien
tific fields. This is especially true in electronic wea
pons systems and space vehicle and related systems 
being developed and proposed. Procedures, com
mand sequences, and data collection and reduction 
have reached high density and are being treated via 
EDP. However, to what extent have related disci
plines such as quality engineering utilized this same 
app,-:oach? How have they integrated or been inte
grated into this complex? What steps appear to be 
in the offing to insure that the attention of the elec
tronic data processing community is focused upon 
this problem and can present a case suitable to 
secure management backing where capital expendi
tures, personnel, and space are considerations? More 
questions may be raised than answers given. How
ever if some actions are stimulated the basic objective 
will be fulfilled. 

TEST OPERATIONS USAGE OF EDP 

The testing of complex electronic and related sys
tems has had a series of requirements placed upon 
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the operations team and has created a real man
computer methodology that can be the slave or mas
ter of the program. The design of the testing system 
normally follows a very hybrid and interwoven se
quence involving many decision paths and manage
ment constraints. Some of the rationale might in
clude: 

Technician operation vs automatic command 

Quantity of command and control elements per 
timing sequence 

Real or near real time status displays and deci
sion capability 

Types and quantities of data secured 

1. Analog 

2. Digital 

3. Tape, paper or magnetic 

4. Visual vs recorded and confirmed 

Near real time analysis and decisions on valid
ity of results 

Fluidity and control of change of test proce
dures and system test requirements 
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Quantity of peripherals to support the pro
gram., i.e., card sorts, printouts, key punch, 
etc. 

Program change control to assure machine 
match with equipment being tested 

Level of data verification and trouble shooting 
routines, i.e., self-test and failure isolation 

Machine costs-capital vs project 

Reliability 

We have seen in the test field numerous. inter
faces with instrumentation, controls, high-speed an
alog and digital inputs, outputs, and computations 
involving test operators, all or many of which may 
be external to the actual computer complex. 

For a fully automatic test or checkout system the 
programmer must understand the above and have 
researched the procedures and must understand the 
requirements. He must. understand the equipment 
being evaluated almost as well as the design and 
system engineer. He must then define the complete 
test program to accomplish the task. Obviously this 
must all be accomplished (l) to a schedule, (2) 
within cost, (3) to meet performance, and (4) it 
must be reliable. How can such a demanding set of 
diverging requirements accommodate yet another 
delay like Q.C. evaluation overlays and require
ments? If the checkout system requires that the 
computing complex control and execute a series of 

Other 
Peripherals 

Crossbar 
Switching 

~~ 

Input/ 
Output 
Buffers 

~ , 

complex test sequences and during these monitor 
and analyze a detailed number of variables for in
correct performance, how does the requirement for 
quality approval and for acceptance of this opera
tion become specified, funded, and certified as true 
by the in-house Quality Control and the customer? 

THE QUALITY DILEMMA 

Consider the major segments of a typical com
puter-controlled test operation including automatic 
real time performance evaluation and test certifica
tion. They are shown in Fig. 1. 

How are the quality requirements integrated into 
this total data acquisition picture? They for the 
most part are not! Several organizations are noted 
exceptions. The normal procedure is for Engineer
ing ( a) to define the parameters to be measured, 
(b) define the allowable limits and then, (c) pro
ceed to design the testing such that the test/test 
complex rationale leaves no unexplainable discrep
ancies. A data review then occurs as a later date 
with only some "quick look" information to verify 
moving on to the next phase. What, therefore, are 
the "Quality EDP" challenges? 

The number of Q.A. and Q.C. managers and 
engineers available that can plan in depth in 
terms of ED P for quality acceptance are lim
ited in number. 

Upper management understanding and backing 
can be lacking in furthering Quality's role. 
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Figure 1. Major segments of a typical computer-controlled 
test operation. 
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The ability of Q.A./Q.C. to understand and to 
make significant technical contributions to the 
data mix. Too often this is only a paper mill 
increase at best and does not improve prod
uct, insure test results, or customer satisfac
tion. 

This lack of understanding results in lack of 
trust in the data evaluation and long laborious 
manual data reviews are required to accom
plish that which a computer can accomplish 
is several seconds. 

What must Q.A. managers do to become capable 
in these fields? 

They must develop competency in planning, 
analyzing, understanding, and contributing to 
test requirements, procedures, plans, and cus
tomer reviews. 

They must move out to provide systems test 
planning with inputs to insure that Q.A. will 
be an accomplished factor in EDP evaluation 
programs, both analytically and factually. 

They must provide a complete technical ser
vice to systems test, not just a paper service, 
or rubber stamp on results not understood. 

Q.A. must become machine conscious in terms 
of EDP utilization for data summaries, qual
ity control history records, calibration re
quests, customer mandatory product control, 
and customer acceptance review. This implies 
that machine techniques, instrumentation, 
error analysis, circuit design, workmanship, 
calibration, and checkout procedures have 
all been reviewed in depth and approved and 
Q.A. has only to review the results of a com
puter status report to make a "buy" decision 
and obtain customer concurrence. 

Here is where the technical and management de
cision lies. Do the Quality organizations existing 
today in most hardware producing establishments 
have the opportunity and management backing to 
gear up technically to meet and utilize the EDP that 
computer engineering is refining. Can they then 
adapt these to quality systems and detail hardware 
evaluation? We must each answer this based upon 
our own experiences and known organization. I sus
pect that the answer will be "NO" more often than 
not, however, there are certain exceptions that are 
pointing the way. 

POTENTIAL SOLUTIONS 

The following represent some thoughts that lead 
to an increase in communications and technical un
derstanding of the changing evaluation methodolo
gy, i.e., real time computer data analysis and quali
ty acceptance of product. 

The buy-off criteria for most electronic sys
tems performance and configuration must be 
designed from inception to accommodate in 
real time electronic data processing, analysis, 
and acceptance. 

In-house quality organizations should have a 
strong but technically sound initial input into 
final system sell-off criteria. This requires a 
broad-based systems-oriented engineering ca
pability with strong test and EDP background 
plus strong management backing. 

Customer buy-off criteria must be adaptable to 
EDP and must be completely knowledgeable 
and must accept such output as evidence of 
satisfactory performance. In some fields 
where enormous quantities of data are pro
duced and analyzed this is mandatory to 
economical operation. 

Public acceptance of such techniques will also 
need to be cultivated, particularly where 
safety or welfare are concerned. Many. agen
cies are already engaged in EDP techniques, 
such as banks, ticket information, billing, 
automatic machine tool operation, etc., and 
extending this to other disciplines is only a 
matter of time and ~conomics which can be 
hastened through extensive missionary activ
ity which is shaped to provide increased ser
vice, lower cost and decrease schedule span 
for Q.A.· operations. 

CONCLUSIONS 

If the above potential solutions are to be consid
ered seriously, these actions should be actively pur
sued to insure a continued growth and increased 
Quality Assurance role in the utilization of EDP. 

This can be done if you: 

l. Learn EDP. 
Think EDP. 

2. Talk EDP. 

3. Teach EDP. 
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4. Encourage engineering and manufacturing 
counterparts to do likewise. 

5. Include EDP as part of your quotes and 
budgets but be really ready to technically 
and economically defend them by convinc
ing yourself that the application is correct. 
Wrongly applied, your case can be pulled 
down around your ears. 

6. Update your management as required. This 
must be skillfully done; such a seed needs 
careful planting, tender loving care, and 
much hard work in upward communica
tions. Here, among others, films, items 
about potential competition usage vie re
lated fields, i.e., case histories, visiting ex
perts, and participation in EDP meetings, 
are in order. 

7. Consort with the enemy. Find out what 
engineering, design, manufacturing, the cus
tomer is doing and planning in EDP. Take 
the initiative and assist and help design bet
ter techniques and applications that will, 
then, be completely acceptable to you
"quality." 

8. Call upon the services of EDP organiza
tions to assist with (a) meetings, (b) ar
ranging speakers for programs, and (c) as 

a source for technically qualified assistance. 
Services are available for defining, review
ing, and planning implementation for ex
tending the use of Electronic Data Process
ing disciplines deeper into the acceptance 
of product sphere for which Quality has 
final authority. 

Since I have been operating in the role of the en
emy for a number of years, i.e., electronic systems 
test operations and evaluation, the above is offered 
in the hope that this will provide incentive in many 
organizations to investigate and accept the tremen
dous technological advantage that the proper appli
cation and utilization of Electronic Data Processing 
will make in almost any major industrial effort in
volving equivalent systems sell-off and involving 
many parameters and technical judgements. The re
turn in 

• Performance 
• Cost savings 
• Schedules 
• Reliability 
• Technical satisfaction 

will be your reward as well as your management's 
and will provide an important contribution to ad
vancing and cross pollinating the Quality and EDP 
mixture to the betterment of each. 



THE INTRODUCTION OF MAN-COMPUTER GRAPHICS 
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Marietta, Georgia 

INTRODUCTION 

With the exponential growth of computer facili
ties, a geat deal of attention has been given to the 
analytical description of man's decision-making 
processes. Yet little has been accomplished of gen
eral value to automation. We can think of many ex
amples where the human mind can assimilate infor
mation and quickly reach a decision where we 
would be hard pressed to computerize the thought 
process. Since it will be many years before man's 
general decision making powers can be channeled 
into· computers, he must be given an optimum re
medial problem-solving capability. This means 
that he must be given the facility to communicate 
or interact directly with the computer and he must 
be given adequate tools to accomplish this interac
tion. In an idealized man-computer system, facili
ties will exist to yield a homogenous mix of man's 
decisions with routine computation. With the addi
tion of fast response, it will be possible to shorten 
span time and to increase the learning and the re
tention of significant results. To this end the con
cept of real-time on-line computer graphics will 
playa major role. 

An optimum real-time capability is one in 
which the man receives a response to an inquiry to 
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the computer or a requested action by the computer 
as fast as the requested response or action can be 
assimilated. Our present space program, for exam
ple, would not exist, as we know it, without this 
real-time capability. The closer we get to a true 
and general real-time environment, the closer we 
will be to maximum problem solving capability. 
Only with the most recent advances in computer 
speed and scope performance has. a real-time on
line computer graphics· system become practicable. 
With a visual display and the ability to interact 
with the computer through the geometric represen
tations, it is· possible to perceive and absorb signifi
cant information such as shape, area, proximity, 
density, and intersection to a degree that may ob
viate the requirements for special-purpose, com
plex, and cumbersome computations. 

The graphic medium of communication is but 
one of many media by which man is attempting to 
maximize computer utilization. It is, however, a 
very important medium to which considerable re
search and development is being applied with the 
promise of rewarding results. The contribution of 
graphics in the real-time on-line system is mani
fested in all problems where a visual display and 
the facility to work with the display is desired. 

This can be perceived in a broad spectrum of ap-



884 PROCEEDINGS - FALL JOINT COMPUTER CONFERENCE, 1965 

plications. For example, the designer wishes to 
create a small part or perhaps a large section of an 
aircraft. In either case, the ability to view, to evalu
ate, and to change the design while maintaining the 
mathematical definition on the computer will be an 
invaluable contribution. Then there is the program 
manager who would like to have an up-to-date 
review of his program and who would like to con
sider the effects of his proposed changes. The dis
play of a PERT network and the facility to make 
direct alterations to observe the effect on the criti
cal path will accomplish this function. 

Thus the graphical capability augmented to the 
real-time on-line system will significantly in
crease the efficiency of solutions of many problems 
and will open the horizons to solutions of a new 
class of problems which have not been tractable in 
the past. 

Research in the area of computer graphics 
reached a significant milestone when Ivan Suther
land completed his initial "Sketchpad" system in 
1961. Using a cathode ray display interfaced to the 
Lincoln Laboratory TX2 computer, Sutherland 
showed the feasibility of supplying graphical or ge
ometric information to the computer via the dis
play. Cathode ray output has been around for a long 
time in the computer age, but two-way geomettic 
communication was a revolutionary concept. Cer
tainly, Sutherland is not the only one to have con
sidered the significance of graphical, on-line I/O. 
General Motors has had a program in computer 
graphics which was initiated in 1959 and was, for 
competitive reasons, veiled in secrecy until the Fall 
Joint Computer Conference in October 1964. 
Another program which has considerable bearing 
on computer graphics is Project MAC (Machine 
Aided Cognition) under the direction of Professor 
R. M. Fano at ,M.I.T. Project MAC is a broad
based program delving into all . aspects of man
computer systems. Significant achievements are also 
being realized under programs directed by Douglas 
T. Ross and Steven Coons at M.L T. Mr. Ross is 
developing Automated Engineering Design (AED) 
compilers which will aid the user of man-comput
er systems in formulating and solving his problem 
with increased facility and versatility. Professor 
Coons is responsible for the development of pro
grams associated with computer-graphic applica
tions. His work is well known as Computer Aided 
Design. 

The dramatic innovation of man-computer gra
phics adds a new dimension to computer technolo
gy. It is a new link in the chain which leads toward 
more complete automatton, as information com
municated by pictures or displays is often many 
times more effective than the written word. 

LOCKHEED-GEORGIA'S COMPUTER GRA
PHICS 

In its belief in the strong future role of man
computer graphics, Lockheed-Georgia was a pi
oneer in the aerospace industry when it acquired a 
system with emphasis on two-way graphic com
munication as defined above. In December 1964 
the UNIVAC 418 Computer connected to the Digi
tal Equipment Corporation's 340 Scope became op
erational in our Research Laboratory. The system 
whose graphical section is exhibited in Fig. 1 is 
dedicated to a research program in the application 
of man-computer graphic. Our research team 
consists of experienced personnel in a variety of 

Figure 1. Design of an aft fuselage in 3-D. 

disciplines including systems programming, mathe
matical analysis, electronics, information retrieval, 
design, numerical control and engineering loft. Un
der the Man-Computer Systems Program of Sys-
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tems Sciences, there are about 20 team members in 
all. In addition, regular consultation is carried on in 
other specialty areas. 

Since the UNIVAC 418 had never before been 
used for graphical operations, development of the 
systems programming was undertaken by our spe
cialists. The development of "software" is quite in
volved for computer graphics. Many technical prob
lems are associated with the creation of a drawing 
or sketch on a cathode ray tube by input from a 
light sensitive pen or from other sources. In order 
to perform analyses on or make changes to a dis
play on a scope, it is necessary to program the com
puter such that the displayed configuration is, at all 
times, stored in mathematical form in computer 
memory. Provisions must be made for efficient 
storage and retrieval of displayed data and the pro
tection of computer memory against careless des
truction of vital data. In addition to the light pen 
input, data such as coordinates may be ~transferred 
to the display from input on a standard computer 
keyboard. Also, certain subroutine functions such 
as deriving the area, drawing a line, rotating, 
changing scale, and deleting an entity must be ac
complished. These special subroutines are "called 
up" by the button box, a panel of· 28 buttons de
signed by our engineers. and integrated with the 
computer system. These buttons are under program 
control; that is, they may have different meanings 
for different applications programs. 

Through the combination of the various input 
media and the general-purpose software system, it 
will be possible to develop special-purpose pro
grams to solve particular problems. There is no in
tent that the presently developing software and gen
eral programs are to be the final system. Only those 
functions of obvious general utility are being incor
porated. Then, as specific solutions are sought 
through the computer-graphic system, need for 
further extensions to the general package will be
come apparent. A feedback relationship between 
solutions to specific problems and extensions to the 
general program package seems the most reasonable 
doctrine in a research environment. 

The capabilities that exist at the end of August 
1965 on the graphic system include the following 
basic features: 

Three-Dimensional Capability 

• Four views: three principal projections and a 
perspective. Drawings are created by working 

in any combination of the three principal 
views 

• Conversion to single view and return to four 
views upon request 

• Isometric: drawing is created by locating X 
and Y first, then Z (available as a separate 
experimental program) 

• Definition of points 
• Definition of lines 
• Definition of circular arcs (elliptic arcs in 

projection) 
• Change of scale 
• Rotation about any designated axis perpen-

dicular to any view 
• Translation 
• Deletion of any element 
• Multiple figures can be displayed simultane

ously. Proper definition of figures permits al
teration of parts of the complete drawing 
while other parts are held fixed 

• Multiple rotation axes: this permits the study 
of relative motion. Axes may be parallel or 
orthogonal to each other. Angular rotation 
rates may differ 

Two-Dimensional Capability 

The two-dimensional capability includes the 
definition of points, lines, circular arcs and stand
ard manipulation features using both keyboard and 
light pen inputs. In addition, a host of special fea
tures are planned, or exist, for the numerical con
trol milling application which is explained later. 
Examples are: 

• Construct a circle tangent to a displayed circle 
and a displayed line with its radius input by 
keyboard 

• Construct a circle tangent to two circles. The 
radius of the required circle is input by key
board 

• Construct a circle through three displayed 
points 

• Move a point while maintaining connectivity 

Features in Other Programs 

• Shape or mold a stored geometric shape to 
fit a preconceived concept or specification 

• Freehand sketching 
• Alphanumeric display 
• Alphanumeric printout of designated text 
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• Translation of displayed data to hard copy 
output on an X-Y plotter 

A small tracking cross is used as the medium of 
communication between scope and computer. Its 
position as directed by the "light pen," shown in 
Fig. 1, and the activation of appropriate subrou
tines by the use of the button panel direct the crea
tion or functioning of the indicated graphical fea
tures. 

Some of the above features are illustrated in the 
following figures: 

• Figure 1 shows the 4-view representation of 
the design of an aft fuselage 

• Figure 2 illustrates drawing in isometric 
• Figure 3 is a series of photographs to illus

trate multiple axes of rotation 
• Figure 4 shows the cross section of a wheel 

pod. It has been shaped from a starting circle 
• Figure 5 shows how connectivity may be 

maintained when points are moved 

Figure 2. Design in isometric. 

Figure 3. Multi-axis rotation. 

pmLOSOPHY OF COMPUTER GRAPHICS 
RESEARCH 

Before discussing our applications activity, I 
would like to discuss some aspects of the general 
national interest in man-computer graphics. 
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Figure 3. Multi-axis rotation. io •••••• 
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At the present time, various degrees of activity 
are springing up around the country. Some comput
er manufacturers, in recognition of the future role 
of computer graphics, have strong programs of their 
own. They hope to offer a complete system that will 
give newcomers to the use of computer graphics an 

Figure 4. Wheel pod - shaped on the scope starting with a 
circle. 

up-to-date capability. Actually, it is unlikely 
that the manufacturers will be able to anticipate all 
of the problems and demands that will be forthcom
ing from this new area. Users of the packaged sys
tems may find that their special applications will 
require additional computer programs that will be 
difficult to acquire. Though Lockheed-Georgia 
may use some of the manufacturer's software fea
tures when they become available, we believe that 
the creation of our own program system for our 
own applications offers the greatest flexibility and, 
therefore, the greatest success in long term opera
tions. 

Because of the tender age of the man-computer 
graphic concept, we believe that a modest initial 
effort with freedom to grow with experience is the 
most feasible course. There are many problems 
both of a technological and of a human engineering 
nature which must be dealt with in due time, and 
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Figure 5. Connectivity may be maintained when end points are moved. 

which will influence the growth pattern. Consider
able experience and strong familiarization with the 
MCG concept and its ramifications will be necessary 
to make accurate judgments to distinguish the pri
mary problems of concern from the secondary prob
lems. ~n that regard there are many problems that 
require classification according to priority because 
any team of modest size can cope with only so many 
problems in a short time span. Because of this, we 
tend to prefer that the manufacturer deal with com
plex hardware problems while we furnish specifica
tions that must be met to allow the system to func
tion properly and to grow. Such problems as time 
sharing and remoting scopes from the C.P.V. must 
be given priority attention while the optimum tilt of 
the drawing surface, the nature of the drawing sur
faces, and the number of buttons on the· button panel 
are the type problems that can await attention with
out jeopardizing the main purposes and payoff of 
the man-computer graphic system. 

APPLICATIONS 

Many long-range applications are contemplated 
for computer graphics, with current emphasis being 
placed on the design process. Structural analysis, 
management systems, information processing, elec
trical circuit layout, process control, and command 
and control are other areas that are receiving or will 
receive early attention. The first applications will 
be fairly specific and of limited technical complexi
ty. In this connection, a "Near-Term" Group has 
been formed to seek technical contributions to 
Lockheed-Georgia which can be completed in 

1965. This is in addition to the more long-range 
goals of the computer-graphics team. The 
"Near-Term" Group is investigating two areas: 
complete mathematical definition of all surfaces of 
an aircraft envelope and two-dimensional* numer
ical control milling procedures with completion 
dates of September and December 1965 respective
ly. The problems of mathematical definition of sur
faces and of 2-D numerical control are described 
below. 

Mathematical Definition of Surfaces 

In regard to the mathematical definition of sur
faces, it should be noted that a large percentage of 
present designs are defined in mathematical terms. 
However, on some aircraft, there are regions where 
mathematical definition has not been practical. For 
example, on the C-141 the wing and fuselage sur
faces are mathematically defined but the fillets be
tween these surfaces were created more or less em
pirically. When complete mathematical definition is 
attained, the need for "master models" will be 
greatly reduced. Furthermore, the various activities 
that must utilize the shape will find that a central 
source of data in mathematical form will expedite 
their analyses and will eliminate cumulative errors 
which accrue when data is used, converted, and 
passed on to other activities in a serial fashion. Al
though this "Near-Term" task is not likely to util
ize computer graphics per se, follow-on work will 
see surfaces displayed on the scope to study esthet-

*In the subsequent discussion on 2-D NjC, it should be 
borne in mind that we are actually working in a 3-D environ
ment, but the 2-D nature of the basic problem should be 
clear from the context. 
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ics of design, to permit design alterations, and to 
perform functional evaluations. Various methods of 
surface definition have been investigated in depth 
in preparation for the follow-on work. 

By defining surfaces on the display, it will be 
possible to vary unconstrained parameters and as
certain both the geometric and the analytical effects 
on the created surfaces. Computations such as sur
face area and volume will be performed. Parameters 
may be varied within allowable degrees of freedom 
to achieve "optimum" results with respect to design 
specifications. 

Two-Dimensional Numerical Control 

In our manufacturing process, many items are 
milled automatically by numerical tape-controlled 
milling machines. The creation of this tape is a la
borious task. To produce the numerical control tape 
for a part or tool, an accurate drawing of the item 
must first be produced. Then a part programmer 
must painstakingly go through the drawing and de
fine the points, each distinct line, curve~ and other 
significant features. A series of computer instruc
tions is then written to represent the path that the 
cutting tool must follow to mill the item according 
to the design specifications. The language and com
puter program for writing, for compiling, and for 
interpreting the instructions is called APT (Auto
matically Programmed Tools). The resultant output 
is a magnetic tape. With additional. post processing, 
a paper tape for directing a particular milling ma
chine is created. The APT system has been devel-

oping for many years, and the task of producing it 
has been a formidable one. 

Still, the various steps leading to the production 
of a numerical control tape require many man 
hours. It was recognized that the application of new 
techniques in automation could significantly reduce 
the manual effort. It is estimated that about 80 per
cent of the items produced by means of numerical 
control at Lockheed-Georgia are of a two-di
mensional line and circle geometry. Therefore, the 
desirability of using the early computer-graphic 
capability to assist the 2-D NjC problem became 
apparent. First the item would be defined directly 
on the scope using the various input media-light 
pen, buttons, keyboard, etc. The geometry of the 
item would be stored in comput~r memory on a 
permanent file. This geometry, which would be rep
resented mathematically in the computer, would 
serve as the basis for the description of the cutter 
path. 

Figure 6 shows a typical part that has been crea
ted on the scope. The two views show the circular 
top of the cutting tool at the beginning and near the 
finish of its path around the. periphery of the part. 
Each line or circular arc of the figure is a surface 
since the part is viewed from the top. 

To create the part, the part programmer must de
scribe a path, composed of linear elements, for the 
cutting tool. In general, there is no way to deter
mine the optimum path. The part programmer only 
knows that he must consider each of the detailed 
elements and their dimensions. The computer-gra
phics program to assist him is called PATH, and its 
operation is summarized in the sequel. 

Figure 6. Top view of a typical part with cutter path de- scription. 
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When the part of concern has been displayed as 
in Fig. 6, the mathematical description will exist in 
the computer. Then the process of defining the cut
ter path can begin. 

The initial position of the cutter is, in general, 
not on the part. The starting position in the X-Y 
plane is input as is the depth coordinate Z. The cut
ting tool will cut to the indicated depth and the Z 
value will be automatically associated with each (X, 
Y) of the succeeding path until a change in Z is 
requested and keyed in. The cutter radius must also 
be input at the beginning of a sequence of steps to 
enable the computer to automatically create ap
propriate offsets. Now, a point on a line (surface) 
of the part is designated as the first (X,Y) to 
which the cutting tool will move. Before the move
ment, however, it must be ascertained to which side 
of the line the cutting tool will be tangent or if the 
center of the cutter is to be positioned directly on 
the line. This is accomplished by moving the track
ing cross to one of three approximate positions 
with respect to the line. That is, the cross is moved 
by the . "light pen" distinctly to one side, "near" to, 
or distinctly on the other side of the line of interest. 
When the appropriate button is pushed, the circle 
representing the diameter of the cutter will be auto
matically positioned on the display and the center 
coordinates will be automatically recorded. The 
next step in the process of cutting out a part profile 
is to indicate the second surface of interest. Tan
gency or direct centering must be established as be
fore. The cutter center will then move on the dis
play and in the computer to the (X,Y) location of 
the intersection of the two surfaces. Where tangency 
is sought, appropriate offsets will be automatically 
allowed. Cutter path definition for succeeding sur
faces is derived similiarly. 

In many cases, an automatic mode for defining 
many steps of the cutter path may be employed. 
With respect to the geometry, the path will be con
tinuously defined in this mode until the operator 
sees an error and stops the process or until the cut
ter arrives at a position where the next move is in
sufficiently defined. In the former case, the console 
operator may delete the erroneous portion of the 
path and correct it by stepping through the ques
tionable region as previously described. In the latter 
case, the operator may resolve the ambiguity which 
the computer had indicated and restart the automat
ic process or continue step by step. In all cases the 

cutter path for several preceding steps is displayed 
for the perusal of the console operator. 

When the outer profile has been described, the 
operator may choose to change Z and move to 
another section of the part for profiling or for swa
thing a flat top. When the cutting tool is placed 
tangent to a circle and when it is necessary to cir
cumnavigate the circle, it is required that the oper
ator key in the allowable error tolerance. The suc
cessive coordinates are then defined automatically 
by the computer such that the cutter may move 
linearly from point to point around the circle without 
exceeding the indicated tolerances. 

When the path has been derived, it can be redis
played step by step or continuously for operator ap
proval. From an operator's point of view, the sys
tem is reasonably simple because there are relative
ly few operations of buttons, keyboard, and tracking 
cross which need to be learned. 

With successive coordinates thus described, an 
output tape can be generated that describes the nec
essary cutter motion and completely bypasses the 
APT system requirement. 

It is estimated that the average part programming 
time for approximately 1500 parts amenable to this 
graphic representation was 60 hours per part for the 
C-141. The estimate for the same requirement us
ing the computer-graphic PATH program is 10 
hours. Considerable savings will also be manifested 
in tooling· and template manufacture. In addition to 
the great reduction in manhours, the decrease in 
span time will be even greater because the graphical 
system should inherently reduce program errors and 
because batch processing is replaced by real-time 
operation. 

As of this writing, an evaluation of competitive 
bids for a three-scope system is being completed. 
The system will be dedicated to the single but im
portant numerical control application. Delivery is 
expected early in 1966. The system will be separate 
from the continuing computer-graphic Research 
facility. 

MAN-COMPUTER GRAPHICS 
IMPLICATIONS 

The specific areas of application which have 
been alluded to are relatively simple in many res
pects. Until computer graphics reaches a somewhat 
more advanced level of sophistication, even the 
seemingly simple problems offer a considerable 
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challenge. It is one thing to solve specific problems 
but quite another thing to solve large classes of 
problems and to integrate newly developed problem 
solutions into systems of somewhat greater breadth. 
An optimum solution to a particular problem may 
not be optimum when a solution to a more all-en
compassing problem is sought. Thus the successful 
introduction of computer graphics into our tech
nological "bag of tricks" will necessitate our inves
tigation of new methods and techniques for com
puter graphics. For example, current design prac
tices require a sequence of relatively autonomous 
operations. The layout is created. Drawings are dis
tributed to the various specialty areas. Information 
is extracted and forwarded to the central computer 
facility for the analyses that characterize each spe
cialty area. Results. of the computer runs are inter
preted and, perhaps, design changes are requested. 
Among the many conflicting design requirements, 
compromises must be made and the cycle from de
signer to specialists to computer and back again is 
repeated. 

With computer-aided design, the team concept 
may be altered considerably. Specialists may actually 
take part in the early design process. Some of their 
evaluations might be accomplished directly as the 
design develops and this may cause almost immedi
ate modific(j.tions before extensive time is lost by 
the creation of unacceptable designs. As another 
approach, the various specialty areas may have their 
own display systems which are linked to a common 
central computer. Design specifications and altera
tions may be perceived at each station when infor
mation is called up. This capability will compress 
the time expended for the entire design process. 

The types of future computer-display systems 
that will best suit Lockheed-Georgia or any other 
company will depend on many factors, including the 
number of departments which will utilize the sys
tem, the interdependence of the encompassed activ
ities and, of considerable importance, the direction 
of growth in computer facilities which will be made 
available by computer manufacturers. 

SELECTION OF AN "OPTIMUM" SYSTEM 

The evaluation of equipment for our follow-on 
man-computer research facility is now in process. 
This evaluation involves many subjective decisions 
which are characteristic of the selection of any ma
jor computer system. Timing is most important be-

cause a good system for today may lack flexibility 
to grow into tomorrow's requirements. Once we are 
committed to a computer system and the develop
ment of the associated software, it takes considera
ble time to justify and implement a change. It is 
therefore incumbent upon us to plan for the solu
tion of tomorrow's problems though they are not 
totally defined today. 

The computer-graphics research facility at 
Lockheed-Georgia has provided a rare opportuni
ty for gaining insight and experience in the vast 
area of man-computer systems. Familiarization 
with the problems and the general capability of 
computer-graphics will equip our personnel with 
the background and training to adjust quickly to 
new and uncharted areas. Indeed, analogous to the 
portion of an iceberg that lies beneath the water's 
surface, there are many more as yet undiscerned ap
plications which lie just beneath the surface of cur
rent comprehension. 
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HYBRID COMPUTING FOR LUNAR EXCURSION MODULE STUDIES 
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INTRODUCTION 

Hybrid computation plays an important role in 
our man-in-space effort. Large scale combined ana
log-digital studies in support of NASA's Project 
Apollo are now being performed. The computers 
utilized are an IBM 7094-II digital computer and 
three consoles of Reeves 500 analog computing 
equipment. These are linked by an Adage 770 
Computer Link that provides an analog-to-digital 
and digital-to-analog capacity of 48 and 55 chan
nels, respectively. 

The effort described herein concerns one of the 
latest applications of a computing technique that 
has become a "semicontroversial" topic in recent 
years. Reluctance to use both computing systems 
concurrently in the solution of one problem has 
stemmed from their inherent incompatibility-the 
continuous versus the discrete domain. As a result, 
most analog and digital computer installations have 
been physically and philosophically isolated from 
one another. Professional computer organizations 
also have been slanted toward one or the other type 
of machine. 

The arrival of the space age has changed this pic
ture considerably. Recently, as evidenced by the 
large number of hybrid facilities being developed 

893 

around the country, there appears to be an awaken
ing to the fact that modern day problems require 
the advantages of both computers. Efforts have 
been made to organize computing teams for hybrid 
projects. It is apparent that a softening of the old 
barriers has occurred. In addition, an important by
product has been produced in the form of "cross 
education" between the analog and digital program
mers. By necessity, each is beginning to appreciate 
the advantages and disadvantages of both machines. 

At Grumman Aircraft Engineering Corporation, 
preliminary investigations into the field of com
bined analog-digital computation began late in 
1957. The results of these studies led to the acqui
sition of a small, flexible linkage system to inter
connect an IBM 704 digital computer with a large 
analog computer installation. The initial applica
tion of this system was a verification of the theoret
ical studies that had revealed that, for certain types 
of problems, a hybrid technique had distinct advan
tages over all-analog and all-digital simulations. 1 

When the IBM 704 was replaced by the IBM 7090, 
the linkage system was modified accordingly in or
der to be compatible with and to utilize the best 
features of this new digital computer. 

The next few years (through 1963) saw no major 
changes in the linkage system as the IBM 7090 
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evolved into the IBM 7094-II. During this period, 
relatively small-scale problems were solved using 
the hybrid technique. These included some simula
tion work on the stabilization and control system of 
the Orbiting Astronomical Observatory,2 a system 
identification study,3 and a missile homing dy
namics problem.4 

Active work on the development of the LEM 
(Lunar Excursion Module) commenced at Grum
man in January 1963. Although the initial comput
er studies were of the all-analog and all-digital vari
ety, it was immediately clear that for some of the 
more complicated programs, then in the planning 
stage, an elaborate hybrid computing complex 
would be required. Accordingly, a decision was 
made to expand the existing linkage equipment to 
accommodate these large problems. This expansion 
ultimately proved unfeasible and a completely new, 
large scale system was ordered and delivered early 
in 1964. 

This system is now being used in the LEM hy
brid studies. The following discussion describes the 
reasons for the hybrid approach, the equipment 
utilized, the problem that is solved, and the im
plementation of the hybrid computing technique. 

DISCUSSION 

Why the Hybrid Approach? 

The choice of the type of computer complex to 
be used in simulation studies is becoming increas
ingly difficult. This is due largely to: 

• The continually increasing scope and com
plexity of simulation programs, 

• The rising popularity of digital, real-time 
simulation techniques, and 

• The reluctance of many engineers to depart 
from conventional all-analog and ·all-digital 
methods. 

As part of the LEM project some computer 
studies are planned that combine many subsystems 
into an integrated simulation. The result will be a 
considerably detailed representation of the LEM 
vehicle. Add to this already ambitious undertaking 
the facility for including a pilot, external visual dis
plays, and actual flight hardware, and the result is 
a problem that exceeds the state of the art of all
analog and all-digital techniques. 

Even the high speed digital computers in use to
day are not fast enough for an all-digital real time 
solution. Sampled data studies indicate a maximum 
allowable computation interval that, when exceeded, 
proC;uces instability and prohibitive inaccuracies. 
For the large scale studies, the interval required by 
an IBM 7094-II to solve the appropriate equations 
exceeds this limit. The only alternative for an all
digital solution is thus a relaxing of the complexity 
of the mathematical models. This can be a painful 
process. Rather than compromise the aims of the 
program, a more desirable solution is to abandon 
the all-digital idea and investigate other computing 
approaches. 

The problems involved in an all-analog solution 
are of staggering proportions. Equipment require
ments quickly exceed a feasible amount. Resolution 
requirements on some trajectory parameters are on 
the order of 0.001 percent. This is impossible to 
obtain without resorting to multiple amplitude scal
i~g techniques. For real-time operation, these scale 
changes would have to be made automatically, re
sulting in an even larger equipment load. Finally, a 
huge amount of logic and memory is necessitated 
(particularly by the various guidance laws). It is 
generally well known that these operations are very 
unwieldy on the analog computer. 

Having eliminated these approaches, the logical 
choice is to "go hybrid." Although the utilization 
of the hybrid technique does present some unique 
problems, these are mostly of a logistical nature 
( computer scheduling, coordination, etc. ) . The 
present state of the art of computer linkage hard
ware is such that analog and digital equipment may 
be confidently interconnected. The resulting com
puting system is one that, unlike the. all-digital and 
all-analog techniques, can result in a large scale 
simulation study that meets the required objectives. 

The LEM Mission 

The Lunar Excursion Module is the vehicle in 
which, as part of Project Apollo, two astronauts 
will land on the moon. The mission starts with the 
LEM detaching from the orbiting Command Ser
vice Module (CSM) and inserting itself into a 
coasting elliptical orbit (Fig. 1 a). At a point in the 
vicinity of the pericynthion, the powered descent 
portion begins. This is accomplished by firing the 
throttle able descent engine. Execution of the proper 
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attitude profile by the LEM causes sufficient decel
eration for the landing maneuver. 

After an exploration period, and with the CSM 
in the proper orbit position, the ascent engine is 
ignited, using the descent stage as a launching pad. 
The LEM is launched from the lunar surface and 
then performs the rendezvous and docking maneu
vers with the CSM (Fig. 1 b). 

At any time during the descent the mission may 
be aborted (Fig. lc) and the LEM will perform an 
"early rendezvous" with the CSM. 

A reaction jet control system, including jet select 
logic and pulse ratio modulators, is used for rota
tional and translational control. Additional attitude 
control is provided during powered descent by des
cent engine gimballing. Guidance is implemented 
via on-board computer, manual inputs, or combina
tions thereof. 

Simulation Facilities 

The simulation complex shown in Fig. 2 can be 

thought of as organized into three general catego
ries: 

1. The hardware necessary to insert a man in 
the loop including an instrumented LEM 
cockpit, external visual displays that pres
ent appropriate visual cues to the pilot, 
and control consoles for monitoring the 
runs, failure insertions, etc. 

2. The computer facility consisting of an 
IBM 7094-II digital computer, a Reeves 
500 analog computer, and special purpose 
computing hardware, and 

3. An Adage 770 analog-digital computer lin
kage system. 

Although the features of general-purpose an(llog 
and digital computers are well known, computer 
linkage systems are still fairly unique. The Adage 
7705-7 is composed of two ADC's (analog-to-digital 
converters), two 24-channel multiplexers, 35 sam
ple and hold amplifiers, and 55 DAC's (digital-to
analog converters). Three channels of fixed discrete 
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data information (switch positions), each consist
ing of a 14-bit digital word, may also be transmit
ted to the digital computer. 

Utilization of the mode control feature enables 
the digital computer to control the OPERATE, 
REST, BALANCE CHECK, and HOLD modes 
of the analog computer. However, the analog con
soles, recorders, control console, and the digital 
computer are "mode slaved" in such a way that the 
lowest commanded mode always dominates. Re
gardless of what mode it has commanded, the 
digital computer can sense the actual mode of the 
analog. 

Because the digital computer can write initial 
conditions into the analog integrators and then 
throw them into HOLD, it may now use the same 
DAC for any other problem input during the OP
ERATE portion of the run. Thus, the output of a 
"time-shared" DAC may be patched to the initial 
condition input of an integrator as well as any other 
input (except another integrator initial condition). 

Digital input/ output sequences are initiated by 
appropriate READ and WRITE commands from 
the IBM 7094-II. The A-to-D, D-to-A, and discrete 
data channels may be selected at random. 

The outputs of four flip-flops whose states are 
controlled by the digital computer are made availa
ble at the analog patch panel. These are called 
Function Outputs and can be used to drive relays 
on the analog computer. 

A prominent feature of the Adage 770 is the 
control panel shown in Fig. 3. This unit contains 
the switches and indicators necessary to operate and 
test the linkage equipment. In the manual mode, 
with the aid of the control panel, all instructions to 
the Link may be entered and all data and control 
registers examined. This enables a major portion of 
checkout and trouble-shooting procedures to be ac
complished without using the digital computer. 

Assignment of Computer Tasks 

Allocating portions of the problem between the 
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Figure lc. LEM mission (typical abort). 

analog and digital computer should not consist 
merely of having the analog relieve the digital of 
some of its computational burden. The primary 
consideration, rather, should be the utilization of 
the best features of each. Efficient computer usage 
is also an important factor. With as powerful (and 
expensive) a machine as the IBM 7094-II being 
utilized, it is imperative for computer efficiency 
that its computation interval be as close as possible 
to (but less than) the maximum allowable for real 
time. Once. this is achieved, the requirement for a 
minimum amount of analog equipment should natu
rally follow. 

The usual starting point is to assign the high fre
quency dynamic equations to the analog computer 
and those involving large dynamic ranges and con
siderable logic to the digital. For example, the 
LEM reaction control system modulators provide 
rapid pulses of thrust to the vehicle, resulting in rel
atively high-frequency attitude accelerations. Thus 

the control system, calculation of the body forces 
and moments, and resulting rotational dynamics are 
placd on the analog. In addition, descent engine 
gimballing, and reaction control system fuel compu
tations are also placed on this computer. Transla
tional and trajectory equations, calculation of varia
ble mass and inertias, descent and ascent engine 
thrusts, and all axis transformations are placed on 
the IBM 7094-11. Appropriately, the on-board guid
ance computer is also simulated on this dital com
puter. 

Reaction control system modulators, jet select 
logic, thruster shaping circuits, and gimballed en
gine logic are taken care of by special purpose com
puting hardware. 

The resultant computer configuration is shown in 
Fig. 4. 

Operation of Problem 

Real Time: A typical automatic mISSIon run 
begins with the analog computer in BALANCE 
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Figure 2. Simulation facilities. 

CHECK (all amplifier inputs grounded). The digi
tal computer then writes initial conditions into the 
appropriate DAC's and sends the analog into RE
SET. The analog integrators now have the ap
propriate initial condition output voltages. The an
alog computer is then sent into HOLD. If time 
sharing of DAC's between initial condition and 
variable quantities is used, the values of the .latter 
at time = 0 are then transferred to the particular 
DAC's involved. The digital computer then causes 
the analog to go into OPERATE. The precision 
interval clock is simultaneously turned on, and the 
basic computation interval has started. 

Body attitude rates generated on the analog are 
sampled by the digital and integrated to produce 
vehicle attitude. By applying the appropriate guid-

ance law, attitude errors are generated. These are 
sent back via DAC's to the control system that pro
duces corrective moments to the LEM. The guid
ance laws also determine when translational com
mands are required. These are also transmitted to 
the analog where the translational forces are gener
ated. Because these forces contain high frequencies 
and cannot be sampled fast enough, they are inte
grated first and then sampled. The digital computer 
then takes the derivative using successive values. 
From the calculated average force, the resultant 
translational motion is calculated. 

Descent or ascent engine thrust is calculated and 
sent to the analog for computing moments due to 
engine misalignments and center of gravity offsets. 
Updated values of moments of inertia and center of 
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Manual Controls 

POWER ON/OFF - Power to 770. 
REMOTE MANUAL - Permits either manual or digital 
computer control of read/write operations in the 770. 
READ SCAN UPPER LIMIT - Sets upper limit of 
sequential read scan. 
WRITE SCAN UPPER LIMIT - Sets upper limit of 
sequential write scan. 
REFERENCE VOLTAGE INTERNAL/EXTERNAL -

gravity positions from consumed values of reaction 
control system and engine fuels are transmitted to 
the analog at each computation interval. Altitude 
above the lunar surface is also sent to the analog for 
general monitoring purposes. 

During the course of· a run, the digital computer 
also selects control system deadband values and 
feedback gains. This is accomplished by the 7094-11 
setting the proper Function Output flip-flops. Func
tion relays on the analog computer are thus energized 
and the appropriate analog circuitry switched in. 

Fast Time: Although the studies are primarily 
run in real time, certain coasting phases of the mis
sion may be accomplished in fast time. For this 
mode the analog computer is sent into RESET. The 
LEM is then assumed to remain at a constant atti-

I 
I t ! I 

Special Purpose 
Computing Hardware 

Jet Select Logic 

Gimbal Logic 

Pulse Ratio Modulators 

Jet Thrust Shaping 

Selects either internal or analog computer reference 
voltage. 
MANUAL INPUT REGISTER - For entering manual 
data and instructions into the interface write buffer. 
MANUAL WRITE - Enters the contents of the manual 
input register into the 770. 
MANUAL INTERRUPT COMMAND - Generates a 
manual interrupt signal. 
MANUAL READ - Manually duplicates a read request 
signal from the digital computer. 

Indicators 
READ ADDRESS - Displays the read channel address. 

tude, and the digital computer goes through its 
computations as fast as it can using larger iteration 
intervals. The problem is returned to real time by 
new initial conditions being written by the digital 
computer and the analog sent once more into OP
ERATE. 

Future Studies 

At the time of this writing, the LEM hybrid 
study has been made assuming fully automatic guid
ance. The capability for both manual and automatic 
control should be available soon. The simulation 
will then contain, in addition to the hybrid comput
er complex, a fixed base, instrumented LEM cock
pit, a contrQl and monitor console, and external 
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Figure 4. Allocation of computer tasks. 

visual displays. The displays will present a view of 

the lunar surface, CSM, and stars as would be ob
served by the crew members during a major portion 

of the mission. 
With the introduction of this additional simula

tion hardware, computer interface requirements be
come much more severe. Not only are more DAC's 

and ADC's required but some digital-to-digital type 
converters as well. These are necessary since the 

digital computer must now read both analog (throt
tle and controller) signals and digital (switch posi
tions) information as well as drive both analog and 
digital displays in the cockpit. 

CONCLUSIONS 

The preceding has described an application of a 
hybrid computing technique that is now making 
contributions to the Apollo project. It has been 
shown that, for the large scale LEM computer 
studies, this is the only feasible method to use. The 
stringent speed and resolution requirements, and the 
complexity of the problem eliminate the all-analog 
and all-digital approaches. 

The combined analog-digital system, on the other 
hand, provides the engineer with a computer com-
plex that: ", 

• contains a considerable amount of logic and 
memory, 
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• provides high resolution where needed, and 
• is capable of real-time and fast-time opera

tion. 
Discussions of combined analog-digital tech

niques usually end with a debate. on the probability 
of the digital computer replacing the analog. Many 
believe that hybrid computation is only a part of a 
transitional period and that due to the rapidly in
creasing speed and input/output flexibility of digital 
machines, a decade from now they will be perform
ing most if not all simulation-type problems. 

To those companies that in the past few years 
have expanded their analog and digital facilities 
and find both being used to full capacity, these pro
phecies are only of academic interest at present. 
This also is true for the personnel involved in land
ing men on the moon in the beginning of the next 
decade. They know that many times before 1970, 
with the aid of computers, they must simulate this 
feat. They are concerned with the 1965, not 1975, 
state of the art. 

The hybrid technique described here is being 
used today and similar techniques will be used in 
the next several years. For large scale simulation 
studies such as are being made for the LEM-for 
problems of such high order of complexity-the hy
brid approach is the only computing method by 
which the required objectives may be attained. 
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INTRODUCTION + u(u- )(u-2)(u-3) A4 (1) 
4! L.l. Xo ••• 

In digital differential analyzers and digital com
puters, simulation is carried out by some form of 
numerical integration or of replacing a difference 
differential equation by a difference equation. This 
paper is concerned with the development of opti
mum numerical integration and digital simulation 
techniques and a discussion of the accuracy of these 
methods when compared with ideal integration. 

CLASSICAL APPROACH TO DEVELOPING 
INTEGRATION RULES 

A given function may be approximated by some 
polynomial over a short interval, t, and then the 
polynomial integrated rather than the original func
tion. Newton's formula for representation of the 
function from to ~ t ~ to + nT is the polynomiap,8 

u(u-1) 
P(t) = Xo + u~xo + 2! 

A2 +u(u-1)(u-2)A3 
L.l. Xo 3! L.l. Xo 

903 

Where x (t) is the function, P (t) the polynomial, T 

is the sampling rate, and 

t-to 
u=T 

t = to + Tu 

~ Xo = Xl - Xo 

~2XO = aXl - ~xo = X2 - 2Xl + Xo 

and where xo, Xl, X2, ••• Xn are the values of x(t) 
at to, to + T, to + 2T, ... to + nT. The value of 
the integral 

to + nT 
yet) = f -------- x(t) dt (2) 

to 

is then approximately 

to + nT to + nT 
f x(T) dt ~ f P(t)dt (3) 
to to 
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If Eq. (1) is substituted and integrated term by 

term the result is 

4 A3 

+(~_3+2)~] 4 n n 3! . (4) 

Various classical integration rules are obtained from 
Eq. (4). The trapezoidal rule results when n = 1 
and Simpson's rule is obtained when n = 2. 

As n is increased in Eq. (4), the approximation 
to the true value of the integral usually becomes bet
ter. The error involved in this approximation is 
known as truncation error and will be the only type 
of error considered in detail in this paper. Another 
source of error in digital integrators is known as 
round-off or quantization error which has an approx
imate root mean square value of q/y'12 where q 
is the quantization level. 

A complete discussion of DDA theory, operations, 
mechanization, and programming is the presentation 
by Gschwind.3 Truncation errors are discussed in 
references 3-6 while round-off errors are discussed 
in references 2, 3, 5, and 6. The material to be pre
sented here applies equally to digital differential 
analyzers of the serial or parallel type as well as con
ventional digital computers. 

DEVELOPMENT OF OPTIMUM NUMERICAL 
INTEGRATION AND SIMULATION RULES 

The theoretical design problem for optimum nu
merical integration and transfer function simulation 
rules may be visualized by referring to Fig. 1. 

r(t) e(nT) 

Figure 1. System for optimization problem. 

In Fig. 1, ret) is the input, J(s) is the ideal opera
tion, H (z) is the desired transfer function, andF (z) 
is the fixed portion of the system. The error sequence 
of the system is 

e(nT) = ci(nT) - ca(nT) 

where ci(nT) is the ideal output after sampling, and 

Ca(nT) is the actual sampled output. After substitu
tion the error sequence in z transform notation is 

E(z) = [R(s)J(s)]* - R(z)F(z)H{z) .. (5) 

where [R(s)J(s)]* is the z transform of R(s)J(s). 
The sum of error squared may be written 

00 1 
I e(nT)2 =-r f E(z)E(z-l)Z-ldz 

n=O 'TTJ r (6) 

where the contour of integration is the unit circle. l 

Substitution of Eq. (5) into this expression yields 

00 1 
I e(nT)2 = r f [A(z)-R(z)F(z)H(z)] 
n=O 'TTJ r 

[A(Z-l)-R(z-l)F(z-l)H(z-l)] z-ldz 

(7) 

where A(z) = [R(s)J(s)]*. 

H (z) is to be determined to reduce the sum of 
error squared given by Eq. (7) to a minimum. This 
problem may be solved by applying the calculus of 
variations,7,9 which yields the result 

{ 
R (Z-l )F(Z-l)A (z) } 

Ho(z) = [R(z)R(z-l )F(z)F(z-l)] - P.R. (8) 
[R (z)R (Z-l )F(z)F(z-l)] + 

where the symbol { } P.R. refers to the physically 
realizable portion of the term within { }, and the + 
and - subsubscripts refer to the conventional spec
trum factorization operator denoting extraction of 
the multiplicative term containing poles and zeros 
inside (+) or outside (-) the unit circle. 

DISCUSSION OF THE FIXED PORTION 
OF THE SYSTEM 

If a solution of the equation 

dy =g [x(t) _y] 
dt 

(9) 

is attempted by a numerical integration process such 
as the standard trapezoidal rule. 

T 
y(nT) =y(n-l )T+2 [y' (n-l )T+y' (nT)] 

(10) 

it is seen that the simulation of the system described 
by Eq. (9) and illustrated in block diagram form in 
Fig. 2a is unrealizable since y' (nT) cannot be ob
tained until y(nT) is known. In order to implement 
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x( t) + 
g( e) 

-1 
+ z 
- z-1 

a) UNREALIZABLE SIMULATION 

y(t) x(t) + 
g( e) T 

2 

-1 
z 

b) REALIZABLE SIMULATION 

-1 
+ z 
- z-I 

y(t) 

Figure 2. Digital simulation of dy / dt = g(x - y). 

the simulation a delay may be introduced1o,11 as 
shown in Fig. 2b. In open loop problems this delay 
is not necessary. However, for closed loop problems 
such as those occurring in the digital simulation of 
control systems, the introduction of the delay may 
cause major errors as compared with using optimal 
realizable discrete transfer function. If the integral 
is estimated by using only previous values of the 
dependent variable the need for the delay is elimi
nated. It will be seen that if 

F(z) = e-snT = z-n n = 1, 2, . . . (11) 

the need for the delay is eliminated. In letting F(z) 
= Z-l the discrete transfer functions developed are 
forced to give the least sum of error squared when 
the present value of the dependent variable is not 
available. Discrete transfer functions with delay will 
be referred to as open loop realizable and those with
out delay as closed loop realizable. In any single loop 
only one closed loop realizable descrete transfer 
function would be required. It will be shown that the 
block diagram of Fig. 3, which uses an optimum 
realizable integrator, will give less error for a given 
sample period than the simulation of Fig. 2b. 

T 4_3z- 1 +z-2 

'2 1 - z-I 
Y I (t) -1 y( t} 

z 

Figure 3. Optimum digital simulation of dyjdt = g(x - y). 

INTEGRATORS DETERMINED FOR STEP, 
RAMP AND PARABOLA INPUTS 

Substitution into Eq. (8) with J(s) = l/s fez) 
z-n and given R(s) results in Table 1. An example 

of the procedure is the solution for R(s) = 1/s2 and 
n = 1. When it is noted that 

T T R(z)R (Z-l )F(z)F(z-l) 
( 1-z -1 ) 2 ( 1-z) 2 

Eq. (8) becomes 

{ 

T2 z-l(1 + Z-l) (z) (TZ)} 
Ho(z) = 2 (1-z-1)3 (1-z)2 P.R. 

T/(1-z)2 
T 

(1-z-1 )2 

{
T2 . z(l + Z-l)} 
2 (1-z-1)3 P.R. (12) 

TI( 1-z-1)2 

The physically realizable portion of the term within 
the brackets must now be found. Expansion of this 
term yields 

z + 1 
1-3z-1 + 3z-2 - Z-3 

If z is subtracted from this it becomes 

4 - 3z- 1 + Z-2 
(l-z-1 )3 

(13) 

(14) 

which is physically realizable. The optimum inte
grator transfer function is therefore 

-lH ( ) _ T (Z-l) (4-3z-1 + Z-2 
z 0 z -2" (1-z-1) (15) 

SINE LOOP ERROR ANALYSIS 

Probably the most demanding function required 
of digital integrators is the generation of sine waves 
(far less demanding would be, for instance, a de
caying exponential generator). Thus it is desirable 
to develop. means by which truncation errors in
volved in sine wave generation may be compared. 

Figures 4a and 4b show the sine loop for the 
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C(z) 

(a) 

l-----l-L-------.J'IS H 'IS 

(b) 

Figure 4. Sine loops for the digital and ideal integrators. 

digital and ideal integrators. If impulses are as
sumed for inputs, the outputs are 

[z-nHo (z)]2 
C(z) = 1 + [z-nHo(z)]2 

and 

(16) 

(17) 

Now, if the expressions for z-nHo(z) from Table 1 
are substituted into Eq. (16), results are obtained 
which are listed in Table 2. The expressions for C(z) 
in Table 2 may be divided out for any desired value 
of T in order to determine the output sequences. This 
has been accomplished for each of the integrators 

Table 1. 

Expressions for Optimum Digital Integrators. 

R(s) n z-nHo(z) 

lIs 0 
Tz 1 

Rectangular Rule a 1-z-1 

b lIs 1 
Tz 1 

Rectangular Rule 1-z-1 

c 1/s2 0 
I (l+z-1 ) 

Trapezodial Rule 
2 (l-z-1 ) 

d 1/s2 1 
T (z 1) (4-3z-1 + Z-2) 

Three Point Extrapolation 2 (l-z-1 ) 

1/s3 0 
T 1 +4z- 1+ Z-2 

Simpson's Rule e 
3 1-z-2 

f 1/s3 1 
T (Z-l) (8-5z- 1+4z-2-z-3 ) 

Four Point Rule 
3 

with T = 7T8, and results (except for the four-point 
rule) are shown in Figs. 5 through 10. 

From Eq. (16), it is seen that the characteristic 
equation of the sine loop is 

(18) 

After substitution from Table 2, solution of this 
equation for several values of T gives corresponding 
pole locations on the root locus. Figs. 11 through 
17 show root locus plots for the sine loops for vari
ous integrators considered. 

Although root loci may be found in the s-plane 

from s = ~ In z, the different modes of transient 

or steady-state behavior are characterized by the 
root loci in the z plane. Complex conjugate poles 
inside the unit circle correspond to a damped oscilla-

( 1-z-2) 

tory output sequence while complex conjugates out
side the unit circle indicate an exponentially rising or 
unstable output sequence. An ideal sine wave output 
sequence is indicated by complex conjugate poles on 
the unit circle. If poles fall near the origin so that 
their magnitude is much less than one, they may 
be neglected in favor of complex conjugate pairs 
near the unit circle. Poles near the origin represent 
fast decaying transients. 

In all but one of the root locus plots, it is seen 
that for small values of T one complex conjugate 
pair lies near the unit circle while the remainder of 
the poles are near the origin. Thus, in these cases, 
it is a very good approximation to deal only with 
what may be called the control poles near the unit 
circle, especially after the first few samples. 

From Figs. 5 and 10, it appears that the rectan-
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Table 2. Sine Loop Output Expressions. 

a 

Double Integrator 
Approximation 

c [-2T (1 +Z-1)]2 
(l-z-l) 

d 
T l+z-1 T I+Z-1Z-1 

2 l-z-1 2 l-z-1 

e [! z-1(4-3Z-1+Z-2)]2 
2 (l-Z-l) 

T 1 +Z-l 
f 2 l-z-l 

T Z-l( 4-3z-1+ Z-2) 

10 
C(nT) 

8 

6 

4 

2 

0 

-2 

-4 

-6 

-8 

-10 

2 l-z-1 

(1 +4Z-1+Z2)] 
(l-z- 2 ) 

.... . -
. . .. -

. -. 
-
• 

• 

Figure 5. Output sequence for rectangular rule (Table 2b). 

C(z) 

Z-l sin T 
1-2z-1 cos T+Z-2 

T2 1 +2 z l+Z 2 

(T2+4) 1 +2(T2_4 )Z-1+Z-2 
(T2+4) 

T2 (16z 2-24z 3+17z-4-6z-5+z-6) 

4 1-2z-1+z-2+ T2~16z-2-24z-3+17z-4-6z-5+z-6) 
4 

T2 
4 (4+z- 1-2z-2+z-3)Z-1 

.4 . . C(nT) .. .. . - . . .. .. 

. 3 -. 
• 2 

0 . 
.1 . 

rr 2rr ~ 4rr 5rr trr 7rr 8~ 9rr 10rr II_rr 12rr 

-. I . . 
- .2 

-.3 
0 
. . . 

-: ". 
. .. . .. " ·0 0 .0 

-.4 

Figure 6. Output sequence for two unrealizable trapezoidal 
rule integrators (Table 2c). 
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C (nT) 10 

........ 
e. 

•••• ~1[ 

-2 

-4 

-6 

-8 

-10 

....... 
3n o. 4n 

o . . 
•• 0 

.. 
o 

• 0 

Figure 7. Output sequence for realizable trapezoidal rule 
(Table 2d). 

.6 
C(nT) 

.5 

.4 

.3 • 

• 2 

.1 

-. I 

-.2 

-.3 

-.4 

-.5 

-.6 -

. 
n 

.0. 

. . 
... 

. . 
..0 

. . .. ... 
o • 
o • ..,. 

Figure 8. Output sequence for two three-point rule 
integrators (Table 2e). 

C(nT) 

.4 . . . . 

. 3 

.2 

.1 

-. I 

-.2 

-.3 

-.4 

2n 

·0· 

. 
• 0 

3n 

.. . 

4n 

... 

.. . 

Figure 9. Output sequence for three-point rule-trapezoidal 
rule combination (Table 2f). 

C(nT) .5 '0 

.4 .' .. , o. 0 

• 3 
0 

.. 
0 0 . . 0 o· 0 

.2 

0 . 
.1 

'I! 21! gn 91! IOn lin 121! 131! t 

-. I 
0 0 

o 0 

-.2 

0
0 

0 . 0 0 -.3 o' 0 . 0 

-.4 .. 
-.5 

Figure 10. Output sequence for two Simpson's 1/3 rule 
unrealizable integrators (Table 2g). 

Imaginary 

1.0 

.8 

.6 

.4 

.2 

o .2 .4 

T=I.0 

Figure 11. Root locus for rectangular rule since loop 
(Table 2b). 

2 Zeros 

Imag i nary i! 
1.0 

.8 

.6 

.4 

.2 

.2 Real i! 

Figure 12. Root locus for unrealizable trapezoidal rule sine 
loop (Table ~ 
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Unit CirCI~ .8 

.6 

.4 

.2 

I po I 

Figure 13. Root locus for realizable trapezoidal rule sine 
loop. 

Imaginary e 
1.0 

Figure 14. Root locus for two three-point rule integrators 
(Table 2e) 

gular rule, although very simple, compares unfavo
rably with the trapezoidal and three-point rules. 
Therefore, it will not be discussed throughout the 
remainder of this paper. Simpson's :y§ rule has two 
pairs of complex conjugate poles on the unit circle. 
The effect of the extra pair may be seen as a high 
frequency oscillation of the sample points in Fig. 4. 
A similar but worse effect may be seen with the 
four-point rule. Simpson's :y§ rule and the four
point rule are thus unsatisfactory when sine wave 
generation is used as a criterion and so are also not 
discussed further. 

Imaginary l 

.8 

UnitCirc~ 
.. 6 

zero 

.~ 
o 

.2 ( 

Figure 15. Root locus for trapezoidal integrator three-point 
rule integrator (Table 2f). 

In general, it may be seen that as the integration 
rule becomes more complicated more poles are add
ed to the discrete transfer function with a corre
sponding increase in chances of instability and spu
rious modes of response. The three-point rule adds 
four extra poles. Simpson's :y§ rule adds only two 
extra, but these are very damaging. The four-point 
rule, which is the closed loop counterpart of Simp
son's rule, has six extra poles of which two are very 
damaging. 

The best choice is now seen to be the combina
tion of the open loop trapezoidal rule and the 
closed loop counterpart of the open loop trapezoidal 
rule, the three point rule. Almost as desirable is the 
cascade combination of two closed loop three point 
rules. The cascade combination is somewhat more 
desirable in terms of systematization of computer 
programming. 

AMPLITUDE AND FREQUENCY ERRORS 

From the locations of the control poles it is pos
sible to find "a" and "b" in the expression 

c(nT) = e- anT cos bnT (19) 

since the z transform of this expression is 

e-aT sin bTz-l 
C( ) - . 

z - 1-2e-aT cos dTz-l + e-2aTz-2 (20) 

Assuming that all but the control poles may be 
neglected, Eq. (20) may be used to find the values 
for "a" and "b" in relation (19). The results are 
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2 zer 

Imaginary Z 
1.0 

Figure 16. Root locus for Simpson's 1/3 rule sine loop 
(Table 2g). 

presented in Figs. 18 and 19 for the unrealizable 
trapezoidal integrators, realizable three-point inte
grators, and combination trapezoidal and three
point rule. As might be expected the unrealizable 
trapezoidal rule has no amplitude error. However, 
both the realizable three-point integrators and com
bination three-point integrator trapezoidal integra
tor give less frequency (or time) error than the 
(unrealizable) trapezoidal integrators. 

OTHER APPLICATIONS OF THE METHOD 

The authors have had considerable success in 
applying this method of discrete simulation of con
trol systems to a number of examples. Systematic 

Imaginary i! 

.8 

.6 

.4 

.2 

Figure 17. Ideal pole locations (Table 2a). 

application of the technique is obtained by a phase 
variable description of the system and repeated ap
plication of the three-point formula for realizable 
closed loop integration. It is not necessary that this 
be done. It is convenient with respect to computer 
programming, however. 

The following example illustrates an alternate 
method of applying this optimum discrete simula
tion technique. A similar example. was first treated 
by Hurt10 in his discussion of the IBM simulation 
method. 

Consider the nonlinear system represented in block 
diagram form by Fig. 20. The three-point integration 
rule could be used to simulate the 5/ s + 2 term. An 
alternate approach is to find an optimum discrete 

0.1 

.09 

.08 

.07 

0.1 

Figure 18 Plots of "a" Versus T 

Figure 18. Plots of "a" vs T. 
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1.02 3-Po i nt + Trapezo i da I 

Figure 19 Plots of "b" Versus T 

Figure 19. Plots of "b" vs T. 

y ~ 
5 

s + 2 r---

approximation of the entire transfer function 5/s+2 
for a suitable input such as a ramp. The approxima
tion need only be open loop realizable. From Eq. (8), 
the discrete transfer function under the stated condi
tions becomes 

5 (2T -1 +e-2T ) + Z-l( l_e-2T_2Te-2T ) 

4T (1-e- 2Tz- 1 ) 

By using the closed loop realizable three-point rule 
for integration the block diagram for the discrete 

;{<+.:~< 
Y2a 

1 roo-
s 

Figure 20. Feedback system with limiter. 

Y --K>-
( -2T) -I ( -2T -2T) ~J Y20 -I -I -2) YID 2..R 2T-1 e +z I-e -2Te III z (4-~z +z • - 2 -I 4T (l_e~2Tz-l) I-z 

Figure 21. Discrete simulation of Fig. 20. 

simulation becomes that shown in Fig. 21. (Pl = 
P2 =1). 

Figure 22 shows the unit step response of the sys
tem for three sample periods T=O.l, 0.2, and 0.5 
seconds. While the step response for T=0.5 is not as 
accurate as the IBM method for T=O.5, it is consid
erably better than Tustin's method of simulation.1o 

Since this method does not require a detailed root 
locus redesign of the loop gains or computation of 
the "input transfer function" as does the IBM method 
and since it provides considerable reduction in error 
over the Tustin and other approaches,l1 it is felt that 
its use in discrete system simulation is warranted. 

If the system is decidedly nonlinear, a more useful 
result is obtained if the nonlinear characterics are 
taken into account. For the exainple treated here, 

as the amplitude of the input step is increased, the 
approximation error for a given sampling period 
increases. This is due to the fact that the "optimum" 
discrete approximation has been derived on a linear 
basis and the system is highly nonlinear for large 
inputs. The approximation error may be reduced by 
decreasing the sampling period or by making use 
of the fact that the system is acually nonlinear in 
determining the "optimum" discrete approximation. 
The IBM method10 essentially consists of adjusting 
gain P 1 or P2 such that the closed loop eigenvalues 
for the discrete approximation are the same as for 
a linearized version of the continuous system. Here 
a somewhat different method is proposed which takes 
into account the actual nonlinear charactertistic of 
the system. It is desired that the digital system output, 
Xd(t) approach the analog output Xa(t) , where Xa(t) 
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y( t) 

1.2 

1. 

.8 

.6 

.4 

Continuous System 
.2 

x T = • 1 seconds 

() T = .2 seconds 

~ T = .5 seconds 

4 

o~ ____ ~ ____ -+ ______ ~ ____ ~ ____ ~ ______ +-____ ~ ____________________ --. 
5 2 3 

Figure 22. Step response of the system of Fig. 20. 

and y d (t) are m vectors describing the system output 
state-for a given input. It is assumed that the analog 
state vector output Ya(t) is completely known, as is 
the input to the system. The form of the digital sys
tem has been determined by the previously presented 
method and is known except for a certain number 
of constant parameters P, which are to be determined. 
P will be interpreted as a p vector and will be adjusted 
to minimize the cost function 

N 2 
] = ~ I II Ya(kT) - Yrz(kT) II (21) 

k=O - - R 

subject to the constraint that 

yd (n + 1 T) = f[Xd (nT), ~] 
- I.d (0) =Xa(O) 

(22) 

R (n + 1 T) = ~ (nT) (23) 

Application of standard variational calculus pro
cedures demonstrates that the optimum parameter 
vector P is determined by solution of difference Eqs. 
(22) and (23) together with adjoint vector differ
ence equations 

~Y (nT) = - \/1f [Yd (nT),'p] ~Y 
(n + 1 T) + R [Ya (n T) - Y d (nT)] (24 ) 

Ap (n + 1 T) = - Llp~ [Yd- (nT), E] ! 
Ap(nT) = -\/ pf [Yd (nT), P] Ap (n+1 T) (25) 
Ay (NT) = Ap (NT) = Ap (0) = 0 (26) 

where Ll represents the gradient operator. Equations 
(22) through (26) represent a two-point nonlinear 
boundary value problem which may be solved by 
the method of quasilinearization,12 a technique due 
to Bellman.13 A new 2 (m + p) vector 

x'(nT) = [v'd(nT), P', A'y(nT), A'p(nT)] 
- . L - - (27) 

will be defined such that Eqs. (22) through (26) 
may be described by the difference equation 

~ (n + 1 T) = 9. [x (nT)] (28) 

with the boundary conditions 

j=O,N 
i=1, 2, ... (m+p) 

(29) 

where C and x are 2(m+p)-dimensionalvectors <, 
> denotes the inner product. If xO(nT) is the initial 
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guess to the solution of Eq. (28), the (q + 1 ) th ap
proximation is obtained from the qth by 

X q+1 (n+1 T) = q [!q (nT)] 
+ J{9.[~q (nT)]}{xq+1 (nT) - ~q(nT)} 

(30) 

where ] is the Jacobian matrix whose ijth element is 
the partial derivative agilaxj. If <I>q+l(nT) is the fun
damental matrix of 

<I>q+l (n+ 1 T) = ] { q [!.q (nT)]} <I>q+l(nT) 
<I>q+l(O) = I = identity matrix (31) 

and !1q+l (nT) is the particular vector solution of 

!1q + 1 (n + 1 T) = q [!.q(nT)] 
+ ] {q [!q(iiT)]} {!1q+1(nT) - ~q(nT)} 

= (32) 

The solution of Eq. (30) is 

!q+l(nT) = <I>q+1(nT) yq+1 + !1P +1(nT) 
- (33) 

where vq + 1 is a constant vector which is determined 
by solving 

<gi(jT) , <I>q+l(jT) yq+l + Qq+l(nT» = bi(jT) 
j = 0, N (34) 
i=1,2,3, ... (m+p) 

Application of this technique to the specific prob
lem of Fig. 21 with T = 0.1, P2 = 1, N = 100, 

100 
] = I [Ya(kT) - Yd(kT)]2 yields a parameter Pl 

k=O 
which decreases with increasing input step size as 
illustrated in Fig. 23. Without the change in Pl as 

1.2 

3 4 7 8 9 10 

Amp I i tude of 
Input Step 

Figure 23. Optimum gain parameter setting for nonlinear 
system. 

indicated by this figure, the discrete simulation be
comes unstable for a given sampling period as the 
step size increases. The use of the optimization tech
nique allows determination of P1 as a function of the 
input such that very large (compared to conventional 
methods) sampling periods can be used. The price 

paid for this "tailoring" is of course an increase in 
the time required to determine the discrete system 
parameters. However, the quasilinearization method 
is readily programmed on a digital or hybrid com
puter and computation time is short if rapid con
vergence is assured by a good initial guess to XO (nT) , 
as is easily the case here. 

CONCLUSIONS 

A new method for the discrete simulation of sys
tems has been presented. The technique consists of 
determining best least squares approximations for 
the linear elements of a continuous system and ad
justing loop gains via the quasilinearization ap
proach such that an accurate approximation to any 
decidedly nonlinear elements is obtained. In many 
cases tailoring of the complete closed loop system is 
not necessaryy. If tailoring is necessary, actual treat
ment of the nonlinearities involved via quasilineari
zation allows resolution of any stability problems 
concerned with the discrete approximation. 
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SEQUENTIAL ANALOG-DIGITAL COMPUTER 

Hermann Schmid 
General Electric Company 

Light Military Electronics Department 
Johnson City, New York 

INTRODUCTION 

The applications of digital computers to analog 
control systems, where the inputs to the computer 
are the outputs from analog sensors and the outputs 
from the computer must drive analog controls, in
crease steadily, even in cases where analog comput
er accuracy (1 percent) would be sufficient. 
The reasons for this are: 

• Digital computers, built with integrated cir
cuits, are small, reliable, use little power and 
are insensitive to changes in environment. 

• Conventional analog computers1,2 in compari
son are large, unreliable, vary considerably 
with change in environment, require precision 
components, stable power supplies and many 
adjustments. In addition, conventional analog 
computers do not lend themselves easily to 
sequential operation. 

Although the statements above are correct, a 
comparison of this type is worthless and often mis
leading because the interface equipment required 
with the digital computer is not included. In control 
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applications with ~any signals but few computa
tions, the size, weight and cost of the interface cir
cuits may equal, or even exceed, those of the com
puter. Besides, the analog-to-digital and digi
tal-to-analog conversion circuits are subject to 
the same shortcomings and limitations as the analog 
computer circuits. 

This paper describes a Sequential Analog-Di
gital Computer (SADC) which overcomes many of 
the limitations of the conventional techniques de
scribed above, by combining an analog arithmetic 
unit with a digital memory and a digital control 
unit. Tht; computer, thus, exploits the advantages of 
the analog technique (no interface circuits required, 
ease of summing and scaling, high resolution) with 
the advantages of the digital technique (drift-free 
storage, logic decisions, ease in signal switching). 
Except for a few precision components, SADC can 
be built entirely with integrated circuits. 

There are only a few sequential analog computers 
described in literature3,4 and only one known tech
nique which is similar to SADC.5 E. V. Bohn de
scribes a pulsetime computer which uses vacuum 
tube integrators, vacuum tube current switches and 
a magnetic drum for storage. 
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COMPUTER ORGANIZATION 

As shown in Fig. 1, the organization of SADC is 
very similar to that of a sequential digital comput
er. 6,7 SADC combines an analog arithmetic unit with 
a digital memory and a digital control unit in a 
unique way. The inputs to SADC may be a-c or 
d-c voltage or pulse-time signals, whereas the 
outputs are either in pulse-time or d-c voltage 
form. 

ANALOG 
INPUTS 

DIGITAL 
MEMORY 

DIGITAL CONTROL UNIT 
(WITH ANALOG SWITCHES) 

ANALOG L-___________ -A OUTPUTS 

Figure 1. Basic building blocks of SADC. 

Analog computing elements in the arithmetic 
unit are connected in various ways to perform dif
ferent arithmetic operations under control of the 
program. The control unit connects signals to and 
from the arithmetic unit in appropriate time inter
vals according to the stored program. 

The arithmetic unit performs each arithmetic op
eration without the use of the memory in one basic 
timing interval, no matter how complex. Often, the 
results of one arithmetic operation are used as the 
initial conditions for the next operation, thus elimi
nating the need for storage and associated transfers. 

Pulse-time signals are used for transferring in
formation from the arithmetic unit to the memory, 
and vice versa. The outputs of SADC are not pro
vided continuously (sampled-data) , and one buf
fer element is required for each output signal, just 
as in a sequential digital computer. 

ARITHMETIC UNIT 

The arithmetic unit in Fig. 2 consists of integra
tors, inverters and comparators which may be used 
separately or combined. One integrator and one 
comparator perform; e. g., multiplication or divi
sion. 

The design of the analog integrator is conven
tional,1,2 with resistor R in input and capacitor C 
in the feedback path of a high-gain operational 
amplifier, the output of which is 

The quality of this integrator depends on the pre
cision and the stability of R, C, and on the zero 
offsets of the amplifier. 

The design of the analog summer-inverter is also 
conventional,1,2 with resistors R31 to R 3n in the input 
and R4 in the feedback path of a high-gain opera
tional amplifier, the output of which is 

Vo = -[~ + ~ + ... + ~J R4 
RSl RS2 Rsn 

The quality of the inverter depends on the preci
sion of R 3, R4, and on the zero offsets of the ampli
fier. 

The comparator uses a differential amplifier and 
logic circuits to indicate on two wires the result of the 
comparison V o-V c. When ( V 0-V c) is larger than 
+2mv, the amplifier output Vp is + VB, and when 
(Vo-Vc) is smaller than -2mv, V p is zero. The trans
ition from + VB to zero requires 50 nanoseconds. 
V P, which indicates the polarity of (Vo-V c), is stored 
in a flip flop. NOR-gating provides the pulse-time 
outputs Pt1 if (Vo-Vc) > 0, and Pt1 if (Vo-Vc) < O. 

The number of integrators, comparators and in
verters used in an arithmetic unit is a function of 
the problem complexity and the required computa
tion speed. The larger the number of computing ele
ments, the more arithmetic operations can be per
formed in parallel. 

All amplifiers, resistors and capacitors are sus
ceptible to changes in environment. The arithmetic 
unit and the power supply regulators, therefore, are 
put into a small oven, operating at 70 ± 2°C to 
minimize computation errors due to changes in 
temperature. 

MEMORY 

In the sequential analog computer, relatively few 
variable signals need be stored because: 

• Arithmetic unit does not require storage when 
executing an arithmetic operation. 
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R ~ I INTEGRATOR I VOl 

VII ~~.l<---~---------------;,r 

I COMPARATOR 1 

T. 
I C2 

R I ~ INTEGRATOR 2 V02 

V'2 ~ I D-0 ...... ------,-----------------~,. 

COMPARATOR 2 I Pt2 .. 

j 

Figure 2. Typical arithmetic unit. 

• Inputs are continuously available. 
• Arithmetic unit has itself limited storage 

capability. 
• Often, outputs of one operation remain as 

inputs for the next operation. 

Therefore, the requirements on the memory ele
ments for the SADC are entirely different from 
those of conventional digital computer memory ele
ments. For a pulse-time memory element, it is im
portant that the circuitry can be packaged into inte
grated-circuit packages and that it can be driven 

from and read by integrated circuits. The method of 
storing pulse-time -signals with continuously oper
ating counters8 fulfills these conditions. 

In the pulse-time memory as shown in Fig. 3 
the output square-waves from the most significant 
stage of the master and the slave counter, both driven 
by the same frequency fe, are gated to detect the 
phase shift between them. This phase shift, which is 
proportional to the difference in count between these 
two counters, produces the pulse-width output 
signal tx. 

The value of tx varies when the number of pulses 
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Ie ~---.-------l lO-BIT MASTER COUNTER 1----.--------.;- TO RING COUNTERS 

MASTER 1'---_---' 

TIMING GENERATOR 
---- ---

lO-BIT SLAVE COUNTER 

INPUT 

RESET TO ZERO 

RESET -----1-----+--1 
MEMORY ELEMENT -J-. -----------

I , 

~ 
OUTPUT~ 

-i Ix ~ 

CLOCK SYNC MASTER 

-----------.. -- .v--------j 

TO OTHER MEMORY ELEMENTS 

Figure 3. 

reaching the slave counter is different from the num
ber of pulses reaching the master counter. When 
pulses are added to the clock pulses fe, tx increases; 
when pulses are subtracted, tx decreases. When no 
pulses are added or subtracted, tx stays constant. 

The memory can be read out nondestructively. 
To read in new information, the slave counter must 
be reset when the master counter is zero. 

Only unidirectional counters are necessary. These 
may be available shortly in a single integrated
circuit package. One master counter, with appropri
ate buffers at output, can supply many slave coun
ters with the reference square-wave signal. 

CONTROL UNIT 

The control unit in Fig. 4, which consists of the 
timing generator, the program generator and the 
input/output switches, regulates the flow of infor
mation to and from the arithmetic unit and the 
memory by energizing voltage switches and digital 
logic circuits. 

The timing generator shown produces, in se
quence, 24 timing signals of equal length by gating 
the outputs of a 4-bit high-speed ring counter 
with outputs of a 6-bit low-speed ring counter in 
24 buffer NOR circuits. 

Variable program storage, as in general-purpose 
machines,6,7 provides flexibility but requires write
read memories (cores, drum, etc.) . Special-pur
pose machines, using fixed or wired program stor
age, require simple read-only memories (rope cores, 
diode matrices, etc.). 

Memory element. 

In the fixed-storage program generator of SADC, 
the program memory and the digital switching are 
comprised in one logic network which combines tim
ing control signals with pulse-time input signals and 
generates n analog switch control lines and m pulse
time output signals. The logic circuitry of the pro
gram generator can be defined precisely for any 
particular application with a specific set of Boolean 
equations. 

The switching of analog voltages is still a problem 
at present when size and cost must be considered, 
since low-impedance integrated metallic oxide semi
conductor (MOS) switches9 are not yet available, 
integrated photo-electric switches10 are too expen
sive ( $100) , and transformer-coupled transistor 
switchesll are too bulky. The best compromise is 
the direct-coupled transistor switch in Fig. 4, capable 
of switching signals with ± 5V excursions but which 
require a base drive from - 6V to + 12V, a low 
source and high load impedance. The voltage across 
the saturated transistor VeE is dependent on the 
signal voltage, the base current and the load current. 
In the proposed circuit, VeE is maintained within 
± 2mv. Special driver amplifiers, presently built with 
one transistor, are required to provide the large
swing base drive signal. Zener diodes are used to 
shift the level from zero to - 6V. 

ARITHMETIC OPERATIONS 

A change in the interconnection of the comput
ing elements permits the execution of various arith
metic operations. The program specifies in each op
eration interval Ti what arithmetic operations are to 
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F 9 

~~>l-I ---------------------.------ ; ~f~ 
ANALOG 
INPUT 
SIGNALS 

PROGRAM GENERATOR 
LOGIC 

./'----'\,IV\r- + 12 V 

TO 
ARITHMETIC 
UNIT 

PULSE TIME 
SIGNALS 
FROM 
ARITHMETIC 
UNIT + 
MEMORY 

(PROGRAM MEMORY + DIGITAL SWITCHING) 

PULSE 
TIME 
SIGNALS 
TO 
MEMORY 
+ ARITHMETIC 
UNIT 

24 OPERATION TIMING SIGNALS 

Figure 4. A control unit for 24 sequential operations. 

be performed and how the various computing ele
ments must be interconnected by energizing the ap
propriate analog and digital switches. The arith
metic unit in Fig. 2 can perform -two multiplica
tions, two divisions, two additions, two SET or two 
READ operations simultaneously. 

In all arithmetic operations, a voltage or voltage
time function is integrated for a controlled period 
of time. The integrator output voltage V o, at the end 
of the integration period, or the time required to 
make Vo equal to some specific potential, are the 
results desired. 

The SET operation establishes the initial condi
tions prior to some arithmetic operations by inte
grating a certain analog voltage during Ti or by 
integrating a reference voltage V R during a certain 
pulse time. 

The READ operation converts the output voltage 
Vo into a pulse time after certain arithmetic opera
tions by integrating a reference voltage with appro
priate sign until Vo is zero. 

Often, however, the voltage outputs of one arith
metic operation are the inputs or the initial condi
tions for the next operation. Most SET and READ 
operations are thus eliminated. 

Information is transferred from one computing 
element to another by having pulse-time signals, 
generated by a READ operation on the transmitting 
element, control a SET operation on the receiving 
element. When the TRANSFER operation is ap
plied twice between two elements, errors due to 
variations in the time constants and the reference 
voltage cancel. 

Each arithmetic or auxiliary operation is com
pleted in one operation interval Ti • All intervals are 
of equal length and only one occurs at anyone time. 

Conversion of Signals 

The arithmetic unit may be used to convert ana
log signals from one form into another form. Any 
conversion can be performed before or in between 
the arithmetic operations of a computer program. 

The conversion from pulse time to d-c voltage 
requires only a SET operation. 

The conversion from d-c voltage to pulse time, 
which is usually referred to as pulse-width modu
lation,12 requires a SET operation to be followed by 
a READ operation. 
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The conversion from a-c voltage to d-c volt
age is performed by integrating one-half cycle of 
an a-c signal. The integrator output voltage at the 
end of a half-cycle is proportional to the ampli
tude of the a-c voltage. 

The conversion from a-c voltage to pulse time is 
performed similarly to a d-c to pulse-time conversion. 

The conversion from three-wire synchro signals 
to pulse time13 is accomplished by converting into 
two-wire signals with a Scott T transformer and 
by performing a-c to d-c conversion on each of 
these two signals. At the end of the integration in
terval, the integrator voltages are: 

VOl =.kEo sinA V02 = kEo cosA 

and present the components of a vector R. A co
ordinate transformation operation is performed in 

R 

the next half-cycle by rotating R until V02 is zero. 
The time required for this rotation is proportional 
to the angle presented by the synchro signals, but 
independent of the reference voltage amplitude Eo 
and the synchro transformation ratio k. 

Conversions with a-c voltage inputs require that 
the computer timing is synchronized to the a-c signal. 

Addition -Subtraction 

Any addition can be performed serially or paral
lel; subtraction is performed by negative addition. 

Parallel addition, as shown in Fig. Sa, is carried 
out by summing currents,1,2 proportional to the varia
bles in the sum, at the input of the integrator or the 
inverter. Since this requires additional precision 
resistors, parallel addition is used only when se
quential addition is too time consumIng. 

R 

~:=+ 1: t G;l~ .. Vo 

I I~ 
Vn~~ VO =Vl+V2 +---+Vn 

IT. 
I 

Figure 5a. Parallel addition with inverter or integrator. 

Sequential addition, as shown in Fig. 5b, is car
ried out by integrating each of the voltages repre
senting a variable for one operation interval, sepa
rately and sequentially in time, and without reset
ting the integrator. Sequential addition can be per
formed also with a memory element. 

V1~ 

Integration 

Integration, as illustrated in Fig. 6, is approxi
mated by sequential addition in a modified memory 
element. The pulse-time memory element has a 
capability of summing and storing information and, 

V2~~-----f 
I I ...__---'\.J'V'R ..r--<"""-'; D -C V 0 

I I I ] T] T2 Tn 
V n _. -~--crf o-J fi· f f ~ I V 0 = RC V 1 dt + V 2dt + •••• + V n dtJ IT T1 T2 n -0 T1 Tn-1 

:C [V]+V2+ •••• + Vn] 
Figure 5b. Sequential addition with integrator. 
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thus, has a capability of approximating integration. 
Rectangular or trapezoidal integration7 is per

formed by summing properly scaled fractions or 
multiples of the integrand in the memory element 
once or several times during each computing inter
val. 

To provide adequate input and output resolution, 
a 10-bit delta counter must be added to the memory 
element, to which Ie is connected when tx (represent
ing an integrand X) is present. The delta counter 
fills up and overflows at a rate Rx which is propor-

f 
c 

ADD/ U 
SUBT. I : 

L ___ _ 

tional to tx• Each time the delta counter overflows 
a fixed number of pulses NT is added to the clock 
pulses for the slave counter. The time constant of 
the integrator is inversely proportional to NT. 

The computing elements in the arithmetic unit 
perform the required scaling or mUltiplying and the 
conversion of the integrand into a pulse-time sig
nal. 

Integrations in the SADC are subjected to all 
limitations of numerical integration, but have no 
other intrinsic limitations. 

20-BIT SLAVE COUN~ 
I 

MEMORY ELEMENT 

tc..---.olo--- lO-BITDELTACOUNTER r- R~x"'tx 
FROM MASTER 
COUNTER I 

t x 

Figure 6. Digital pulse-time integrator. 

Multiplication One variable must be a d-c voltage, the other a 

MUltiplication, as shown in Fig. 7, is performed 
by integrating a voltage V x for a time t y • The voltage 
across the integrator at the end of ty is proportional 
to the product XV, when V x is constant during ty , 

since 

Vo = 
1 

RC 

pulse-time signal. If both are d-c voltages, one must 
be converted into pulse-time form; if both are pulse
time signals, one must be converted into a d-c 
voltage. 

The pulse-time signal ty operates the switch which 
connects the voltage Vx to the integrator. Both sig
nals may be bipolar. 
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PULSE WIDTH ... j::-=--=--=--t-
y 
=--=-T--l-;---.... ·t------T -------:;· .... 1 

INPUTt -I 
y ~ I ~ __ ~~ 

.A-------.- Vo ,.., X • Y 

INTEGRATOR 
OUTPUT Vo 

~TIME""'Y 

Figure 7. Multiplication waveforms. 

Division 

Division, as illustrated in Fig. 8, is performed by 
integrating V u until the output of the integrator re
duces from V w to zero.14 

The voltage V u represents the divisor; V w repre
sents the dividend which must be set into the 
integrator before the division operation starts. The 
integrator output voltage decreases with a constant 
slope as: 

Vo(t) = Vw 
1 

RC 

when Vo (t) is zero, tQ = V w/kVu 

INTEGRATOR 
OUTPUT Vo 

V u is connected to the integrator by an analog 
switch which is controlled by the pulse-time signal 
tQ, which starts at the beginning of the operation 
interval and ends when the integrator output voltage 
reaches zero. V w can be either a positive or a nega
tive potential. V u must have the opposite polarity 
of Vw • 

Arbitrary Function Generation 

In SADC arbitrary functions are approximated 
with linear segments.15 A staircase waveform ap
proximating f' (x), which is the derivative of the 
desired function, is generated by connecting the 
reference voltage sequentially to the set of scaled 

TIME,.., W/V 

;'~I5------T -----~ 
PULSE WIDTH ... ~.-___ tQ __ --il"'~1 
OUTPUTt~ I 

Figure 8. Division waveforms. 
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resistors at the input of the inverter. This is illus
trated in Fig. 9. 

tion is determined by the pulse-time signal t%. At the 
end of tx, the integrator output voltage is: 

1 
Vo= -

RC 
1 

RC f (tx) - f (0) 

The number of segments n required depends on 
the accuracy desired and on how fast f (x) is chang
ing. The length of the segment ti is Til n. Preferably, 
ti should be made a binary fraction of Ti , for ease 
of generating these timing intervals. The segment 
timing intervals ti are generated like the operation 
intervals in Fig. 4 with ring counters and gates. 

The staircase waveform is integrated to produce 
the linear segment curve f( t). The time of integra-

One set of precision resistors and one inverter 
are needed for each function to be generated. The 
accuracy of the function generator depends on the 
number of segments used, the function to be gener
ated, and the precision of the components. 

ANALOG SWITCHES ~ -- -- -- -- --

~ ~R31 R4 ARITHMETIC UNIT Cl 

I R32 
~ ___ ---J 

I D-C 

_! R3n I V 031 : I 
+----.!.---~I~ ___ ~ : L __ 

tn 

f(x) == VOl (tx) 

t4 

~_+---+---~Ti~---+---+--~ 

Figure 9. Linear-segment function generator and waveforms. 

I 
I 
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The generation of inverse function can be accom
plished by setting the integrator to VI: and then 
integrating a voltage function g' (t) until VOl is zero. 
The time required to reduce VOl from V x to zero is 
the desired inverse function, since: 

(x 
Vx - 0) g'(t)dt = Vx - g(tx) + g(o) 

or, if g(o) = 0 

VOl = C I COS w t 

.5 

.866 

-.5 (9 

Coordinate Rotations/Transformations and Trigo
nometric Function Generation 

The electronic analog resolver13 rotates and trans
forms coordinates and generates trigonometric 
equations by controlling the initial conditions and 
the operating time of an harmonic oscillator (Fig. 
10). 

Two integrators and one inverter are connected 
into a loop as an harmonic oscillator to solve the dif
ferential equations X = -kX. The outputs of the in
tegrators, Volt) and V02(t) , are the solutions to the 
differential equations and represent the components 

V02 = C SIN w t 

-.5 

~ 
1-

V02 

.866 

R4 

+1.0 

® 

VECTOR IS ROTATED FROM -300 TO +600 ANGLE VECTOR IS FOUND TO BE 135
0 

Figure 10. The controlled harmonic oscillator and wave·forms. 
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of the imaginary vector R. 
The vector R "rotates" with constant velocity when 

the harmonic oscillator loop is closed and the inte
grator outputs change in a sinusoidal fashion. The 
time during which the loop is closed is directly pro
portional to the angle through which R is rotated, 
since A = kwt. 

Coordinate rotation can be performed by rotating 
R from its initial components V x, V y for a time tA, 
which is proportional to the desired angle of rota
tion. The integrator voltages at the end of tA repre
sent desired outputs, since 

Tl T2 T3 

0 0 
DD 

-DE 

DN 

AJ1.. 

Coordinate transformation can be performed by 
rotating R from its initial components V x, V y until 
Vodt) becomes zero. The time required for Vodt) to 
decrease from V y to zero is: 

The value of V 02 at the time t = tA' is: 

The initial components V x, V y are SET into the 
integrator prior to the rotation or transformation 
operation. 

Modification of the basic rotation and the trans
formation equations permits the generation of sine, 

Ta T9 

0 0 
DX .. 
Dy 

---
Dz -

9 -1"1- ,.0.rL 

Figure 11 a. Flow diagram with arithmetic unit in figure 2. 

FLOW DIAGRAM LEGEND: 

o 
o 

= INTEGRATOR & 
COMPARATOR 

= MEMORY ELEMENT 

--DX 

_Dy 

_Dy 

Figure lIb. Flow diagram with arithmetic unit having three 
integrator-comparator combinations. 
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cosine, arcsine, arccosine, and other trigonometric 
functions. Similarly, the solutions to the differential 
equations X = + kX and X = -kX can be exploited 
to generate exponential, logarithmic and hyperbolic 
equations. 

APPLICATION 

The application of the SADC to the coordinate 
conversion problem demonstrates the elegance of 
this method of computation and emphasizes most of 
the advantages. 

Conversion from earth coordinates to ship coor
dinates, as frequently used in navigation, ground 
control of missiles, fire control, etc., is defined by 
the matrix equation: 

[
DX] [1 0 0] [coso 0 -Sin(/)] Dy = 0 cosfj} sin(/) 0 1 0 
Dz O-sinfj} cos(/) sinO 0 cosO 

which can also be written as: 

Dx = (DN cosA + DE sinA) cosO - DD sinO 

Dy = (DE cosA - DN sinA) cos(/) + 
[(DN cosA + DE sinA) sinO + DD cosO] sin(/) 

Dz = (DN sinA - DE cosA) sin(/) + 
[(DN cosA + DE sinA) sinO + DD cosO] cos0 

where Dx, Dy, Dz are ship coordinates; DN, DE, DD 
are earth coordinates; and A, 0, (/) are azimuth, pitch 
and roll angle, respectively. 

The programming of the SADC is best illustrated 
with the flow diagrams in Fig. 11, in which each col
umn of squares represents the arithmetic unit and the 
required memory elements in one operation interval. 
Inputs to and outputs from a computing element and 
its function are explicitly indicated: S = SET initial 
condition, 0 = READ OUT, R = ROTATION, 
H = HOLD. A resolver operation is depicted by 
interconnecting two squares. 

With the coordinate inputs DN, DE and DD in a-c 
or d-c voltage form and the angles A, 0 and (/) in 
pulse-time form, the coordinate conversion problem 
can be solved in two ways. 

Solution 1: With the arithmetic unit in Fig. 1 
and one memory element, the problem can 
be solved in nine operation intervals Ti. 

Solution 2: With an arithmetic unit consisting 
of three integrator-comparator combinations, 
the problem can be solved in five operation 
intervals Ti, and without the use of any mem
ory element. 

Coordinate Converter Circuit 

A SADC solving the coordinate conversion 
problem according to Solution 2 consists, as shown 
in Fig. 12, of the arithmetic unit with three inte
grator-comparator combinations, the 15 analog 
voltage switches, the timing generator, and the con
trollogic. 

It is assumed that the coordinate inputs DN, DE 
and DD are d-c voltages and the angle inputs are in 
pulse-time form. The output signals D x, Dy and Dz 
appear in pulse-time form. 

The required number of analog voltage switches 
and digital logic circuits can be derived most easily 
from a list of input signals which must be connect
ed to the integrators and inverter in the arithmetic 
unit during each of the five time periods Ti • 

Timing Integrator Integrator Integrator Inverter 
Periods I II III 

Tl DN DE DD 
Tz V04 VOl V 02 

T3 V04 VOl V03 

T4 V04 V02 V03 

T5 VR VR VR 

The circuit in Fig. 12 can be built with approxi
mately 25 digital integrated circuits (flip-flops 
and NORs) and 25 linear integrated circuits (am
plifiers and analog voltage switches). It would re
quire less than ten watts of power, less than 100 
cubic inches in volume, and weigh less than five 
pounds. 

To perform the same problem with a convention
al analog or a conventional digital computer would 
require a circuit complexity at least one order high
er. 

PERFORMANCE 

The performance of any analog computing ele
ment is always a function of the quality of the com-
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Figure 12. Earth-to-ship coordinate converter. 
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ponents used and a compromise between static ac
curacy and speed of operation. 

memory counters and the length of the operation 
interval. 

Accuracy and speed of the SADC is solely deter
mined by the quality of the analog computing ele
ments, whereas resolution and dynamic range are 
largely functions of the number of stages in the 

Accuracy is also dependent on the variations in 
temperature and power supplies. With higher quali
ty components, these effects can be made smaller. 
However, for the few, small components involved, 
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it is cheaper to control the environment of the arith
metic unit. 

The performance data given below refer to an 
arithmetic unit with the following components, tim
ing and environment: 

Amplifiers: 

Analog Switches: 
Resistors: 
Capacitors: 

Fairchild /LA 702 adjusted 
for zero offset 
Direct-coupled 2N2432 
±0.05% of nominal value 
Trimmed to ±0.05% of 
nominal value 

Temperature: 25°C ± 2°C 
Operation Interval: 1 ms 
Power Supplies: -6V ± 0.1 %, +5V ± 

10%, +12V ± 1% 
Static accuracy for addition, multiplication, divi

sion, * integration, SET, READ and transfer opera
tions is ±0.1 % of full-scale and ±0.2% for coordi
nate rotation, coordinate transformation, * sine-cosine 
generation, etc. 

With a I-ms operation interval, 1,000 sequential 
operations can be performed in 1 second. 

CONCLUSION 

The ability of computing analog and storing digi
tal provides the SADC with the unique capability 
of operating as a sequential computer which accepts 
analog signals as inputs and provides analog signals 
as outputs, and operates with analog computer ac
curacy and sequential digital computer speed. 

Time-sharing the simple arithmetic unit and 
requiring no interface circuits make the SADC the 
most economical method of computation in its 
speed-accuracy domain. 

Due to the small number of components used and 
due to the fact that almost all of these components 
are integrated circuits, SADC has an inherently 
high reliability. In addition, redundancy techniques 
can be applied to SADC just as to a digital comput
er. 

The performance figures given have been ob
tained with relatively low-performance integrated 
analog circuits. With better components, such as 
chopper-stabilized amplifiers, higher precision will 
be possible. However, in achieving and maintaining 
this ~igher accuracy, there may be a problem in 
finding accurate and stable capacitors. 

To date, only parts of the SADC have been built 

*Only when inputs are larger than 50 percent of full-scale. 

and tested, and considerably more work is needed
both at the circuit and system levels. 

With its inherently high reliability, minute size, 
low power consumption and minimum cost, the 
SADC should be well suited· for all those military 
and industrial control applications where the com
puter inputs and outputs must be in analog form. 
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DESIGN O'F A HIGH SPEED DDA 
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INTRODUCTION 

The objective of the company-funded task which 
supported this work was to develop techniques for 
high-speed solutions to differential equations, par
ticularly those which are common in aerospace 
problems. For example, the solution requirements 
for reentry guidance are very time-limit~d and must 
be processed at the highest priority level. To solve 
this type of problem, depending on the accuracy re
quired, the number of iterations can get unreasona
bly large and require an inordinate amount of com
puter "power." Therefore, the solution time re
quirements led us to investigate means other than 
the general purpose computer to solve these time
critical differential equations. The nature of the 
problem and the aerospace requirements of long 
term drift stability and accuracy led us to choose 
the digital differential analyzer (DDA) as one of 
the candidates for investigation. This paper, then, 
is concerned with the new techniques in DDA de
sign which were developed in order to meet the 
solution time objectives. 

Our work on DDA's centered about the Chapman 
predictive reentry guidance equation. This equation 
was chosen as a vehicle for study, first, because it is 
representative of a class of aerospace second order 
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nonlinear differential equations and secondly, be
cause the solution time of predictive reentry equa
tions, particularly near impact, are very critical. 
One of our earlier DDA designs required approxi
mately 200 seconds to solve the entire Chapman 
equation from entry to terminal; the new design can 
solve the same problem in 0.56 seconds-using less 
hardware and at the same accuracy. These new 
techniques are: 

1. Shared integrators. A method of combin
ing several ( 5 in one case) integrators 
which contain the same variable, and shar
ing the Y register and adder network with 
a multiple bank of R registers. 

2. Automatic rescaling. Instead of scaling the 
DDA to handle the worst case range of 
variables, it is scaled to handle a nominal 
range. When a variable exceeds the range, 
certain critical integrators are rescaled to 
modify the increment size of the variable. 
Since the iteration time of a DDA is de
pendent on the variable size, this technique 
also allows the DDA to run at the opti
mum speed at each region of its solution. 

3. Asynchronous timing. No fixed clock is 
used in the design; rather, as each iteration 
is completed the next one is started. For 
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example in the Chapman design, the long
est critical string of integrators is nine, but 
on the average only four will overflow in 
anyone iteration cycle. In the asynchro
nous mode the next iteration cycle is start
ed when the longest critical path has been 
completed. 

In addition, advanced logic techniques are used 
throughout. For example, carry look-ahead adders 
-each iteration cycle time is dependent on how 
many integrators overflow, which in turn is depen
dent on the time that it takes the integrator adder 
to detect this overflow and complete the addition. 
The carry look -ahead adder can add two operands 
in as little as five gate delays and is completely in
dependent of carry. The gate delays for the mi
croelectronics we are using result in an add time of 
50 to 90 nsec. 

In order to demonstrate the feasibility of the new 
features it was not necessary to build the complete 
DDA to solve the Chapman equation. To do so 
would have risked hiding the principles of the new 
features in the complexity of the Chapman equa
tion. Instead, each of the new features is amply 
demonstrated in a DDA designed to solve the sim
ples equation, xy" + ~y' + Y = O. This simpler 
equation also has the advantage of having a closed 
form solution for ease of demonstration. This com
puter is capable of approximately two million itera
tions per second. 

Therefore, the design goal of the project was to 
study the systems and logical organization of 
DDA's and to develop a machine with a significant 
speed increase over contemporary designs. Since 
speed was the target, economics of the design was 
deemphasized. That is, where cost and speed were 
in conflict, the faster but costlier technique won. In 
some cases, the speed return may not have been 
worth the added cost, but until a specific applica
tion is to be designed, no yardstick is available to 
measure the economic worth of one design against 
another. When weight and size become important, 
as they often do in aerospace equipment, then the 
yardstick is available to tailor down the design to 
meet the constraints. 

NEW TECHNIQUES 

During the system's study, several improvements 
were made over contemporary DDA's. Two of 
these, shared integrators and automatic rescaling, 

are an extension to the theory, while the third, asyn
chronous timing, is an improvement in the con
struction. 

Shared Integrators 

When two or more integrators store the same 
variable, they can be combined into one integrator 
with a corresponding saving in hardware. An exam
ple of the shared technique is shown in the following 
sketches. Sketch (a) shows the conventional DDA 

1 
hookup to obtain reciprocals, in this case -

u 

Both integrators store the variable _1_ (in the Y 
u 

register). Combining the two integrators, sketch (b) 

provides the shared integrator which also yields 1 . 
u 

The equivalents between sketches (a) and (b) are il-
lustrated by the flow of pulses through each figure. A 
du pulse travels along path A. The du pulse gener-

ates a~ output pulse which travels along path B. 
u 

In turn,. the ~u pulse generates a d ( + ) output 

pulse which travels along path C. 

du 
A 

du 
u 

c 

(a 

(b) 
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A more detailed comparison is illustrated below 
by a block diagram of each integrator. The Y reg
isters in Integrators 1 and 2 contain the same num
bers, but not the R registers. Therefore, the shared 
integrator in sketch (b) has two R registers. Register 
Rl is identical with the R register in Integrator 1 
and R2 identical with the R register in Integrator 2. 

du 

Integrator 1 

du .!!!! 
u 

The shared integrator above requires 1 adder, 1 Y 
register and 2 R registers where the conventional 
DDA hookup requires 2 adders, 2 Y registers and 
2 R registers. 

Automatic Rescaling 

A major disadvantage of a conventional DDA is 
that it uses fixed point arithmetic. This is exempli
fied by the fact that the scaling is based upon the 
maximum value that each variable can assume. If 
some of the variables very over a large range, then 
an extremely small independent increment may be 
necessary to maintain accuracy. As the size of the 
independent increment decreases, the number of 
iterations increases. A GP computer could solve the 
same problem with the· same accuracy using a larger 
independent increment if it employs floating point 
arithmetic. If the GP computer were restricted to 
fixed point arithmetic, then it would have funda
mentally the same scaling problems encountered by 
the DDA. To overcome the scaling problems of 

fixed point arithmetic, we have developed several 
techniques. 

The first technique, referred to as multiple scales, 
is a compromise between fixed point and floating 
point arithmetic. The procedure is to divide the 
complete range of the variables and scale each sub
division separately. The individual scales are com
bined into one computer. The DDA computes with 
the scale corresponding to the subdivision which 
the variable size happens to be in at the moment. 
When the variable size changes to a different sub
division, the DDA automatically switches to the 
corresponding scale. Each scale uses fixed point 
arithmetic, but the switching from scale to scale as 
the variable size changes simulates a floating point 
method. 

The following is a decimal example demon
strating how the DDA switches from one scale to 
another. The problem is to compute the reciprocal 
of u where the desired range of u is 

0.02 ~ u ~. 1.000. 

Therefore, the complete range of _1_ is 
u 

0.001 < _1_ ~ 50. 
- u 

Consider dividing the range of _1_ into two parts: 
u 

0.001 ~ 
1 
u 

< 1 

1 < _1_ < 50. 
- u -

1 
When is in the range from 0.001 to 1 we use 

u 

Scale A. When _1_ is in the range from 1 to 50 
u 

we use Scale B. Suppose we decide that we want 
to carry 5 decimal places, then from DDA scaling 

theory, in Scale A each du, ~u and d ( + ) pulse 

equals 10-5 as shown below. 

du 
u 
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Then from the normal DDA scaling techniques3 

both Y registers are 5 digits and 100 inside each 
triangle means the decimal points are at the extreme 
left as shown below. 

100 10-1 10-2 10-3 10-4 10-5 

[~~~l I I 
y: register 

For Scale B, since we wish to maintain the same 
number of decimal places as before, each du pulse 

du 1 
must equal 10-7

, - becomes 10-5, and d-
u u 

becomes 10-3 as shown below. 

As in scale A both Y registers are 5 digits long. The 
102 inside each triangle means the decimal points 
are two digits to the right as shown below. 

10
1 10° 10-1 10-2 10-3 

I I I 
,Y Register 

Incidentally, the values of the scaling constants of 
Scale B are those that would be used for the com
plete range in a convential DDA. 

An example will show how the DDA automatically 
switches from one sale to the other. 

If _1_= 50 at the start of the computation, then 
u 

Scale B is used and the Y register reads 

10
1 

10
0 10-1 10-2 10-3 

5 0 

1 
0 

I 
0 

I 
0 

I 

As the computation proceeds the number in the 
Y registers decreases. The number will eventually 
reach the value 

o 9 9 

At this point I . ~ I < 1 and hence in Scale A. The 

change to Scale A is sensed by detecting the zeros 
in the two leftmost positions. The scale switching is 
accomplished· by shifting the number two places to 
the left (and the imaginary decimal point also) so 
it reads 

and the R register is reset at 0.5 (its median value) 
and the DDA is started again. 

If the computer happens to be in Scale A and 
the number in the Y register is increasing, then the 
Y register will eventually read 

9 9 9 

The next increase (by 1 x 10-5 ) will cause the Y 
register to overflow. The new value of Y would be 
1 which is in Scale B. The overflow triggers the 
scale switch from A to B which sets Y register at 

10/11.0100 

and resets the R register at 0.5. The number of 
iterations required to compute the. reciprocal of u 
from u = 0.02 to u = 1000 using Scale A for the 
complete range is 

107 (1000-0.02)::::::::: 1.0 x 1010• 



DESIGN OF A HIGH SPEED DDA 933 

Using multiple Scales A and B, the same accuracy 
is obtained and the number of iterations is 

107 (1- 0.02) + 105 (1000 -1) ~ 1.1 x 108• 

Another technique being considered is to actually 
use floating point arithmetic. We are presently ex
ploring several methods for mechanizing a DDA to 
operate with floating point numbers. Some of the 
ideas are as follows. The decimal (or binary) point 
of the Y register is no longer predetermined, and 
special registers are needed to specify the position 
of the decimal point. Special control logic will solve 
the scaling equations for each iteration and perform 
the scaling as the DDA is computing. This tech
nique shows a great amount of promise. 

Asynchronous Timing 

Asynchronous timing is a method of decreasing 
the iteration time. In conventional DDA's the itera
tion time is constant because a fixed clock is used 
(synchronous timing). In contrast, asynchronous 
timing means the next iteration is started as soon as 
the last one is finished. The DDA hookup for ob
taining the reciprocal of u will again be used to ex
plain the principle. Suppose the time required to 
process any input pulse is T. At the start of each 
iteration a du pulse triggers Integrator 1 (see fol
lowing sketch). If the R register does not overflow, 
then no output pulse occurs and the iteration is fin
ished in time T. If an output pulse does happen to 
occur then Integrator 2 is triggered. If the R regis
ter of Integrator 2 does not overflow, then no out
put pulse from it occurs and the iteration is fin
ished in 2T. If an output pulse from Integrator 2 
does occur, then the lower inputs to both integra
tors are triggered, and the iteration requires 3 T. 

du du Integrator 2 

Integrator 1 

A summary of the three possibilities and the time 
necessary to perform the calculations in each case is 
tabulated here. 

Integrator I Integrator 2 
Occurrence of an Occurrence of an 

Output Pulse Output Pulse 
No 
Yes 
Yes 

No 
No 
Yes 

Iteration Time 
Required 

IT 
2T 
3T 

For a fixed clock system the iteration time is set for 
the longest pulse path which in this case is 3T. With 
the asynchronous timing technique each integrator 
has a control section which indicates whether the 
integrator is calculating. The master control examines 
each integrator, and it will generate the next du pulse 
each time both integrators become inaCtive. In this 
way the iteration time will be 1, 2 or 3T depending 
on whether none, one, or both R registers over
flowed. A good estimate as to the probability a 
particular R register will overflow is V:2. Based on 
this estimate, the probability of no overflows is V:2, 
of one overflow is 14, and of two overflows is 14. 
Therefore the average iteration time using asynchro
nous timing would be Ih x IT + 14 x 2T + 14 x 3T 
= (1 %) T which is an improvement over the 3T 

required for synchronous timing. 

DDA DESIGN FOR CHAPMAN'S EQUATION 

In the Introduction we stated our objective was 
to design a DDA as part of a guidance computer 
for a lifting re-entry vehicle. This work was based 
on references 1, 2 and a Martin report, "An Auto
matic Predictive Guidance Method for Unmanned 
Lifting Vehicles Re-entering with Circular Veloci
ty" by V. Blaes. The report discusses the equations 
to be solved by the guidance computer. The compu
tations divide into two parts: subroutine FUTURE 
and subroutine PREDICT. Figure 1 shows the en
tire control system which includes a block diagram 
of both subroutines and their interconnection with 
the vehicle dynamics. The advantages were in favor 
of a GP (General Purpose) computer to solve su
broutine FUTURE and a DDA to solve subroutine 
PREDICT. Subroutine PREDICT requires an accu
rate, high speed solution of a differential equation 
which is best suited for a DDA. 

The purpose of subroutine PREDICT is to cal
culate the footprint size based on the spacecraft 
position. By varying the lift-drag ratio LID and bank 



934 PROCEEDINGS - FALL JOINT COMPUTER CONFERENCE, 1965 

angle cp of the spacecraft, the landing spot can be 
controlled. The footprint specifies the region of the 
earth where the spacecraft could possibly land. The 
idea is to control the spacecraft so the target is in 
the middle of the footprint. The footprint size is 
defined by three ranges: (Rx)max, (Rx) min, and 
(Ry)max which are calculated from Eqs. (1-4). 
Equation (1) is Chapman's equation - a second 
order, nonlinear differential equation. 

Z" Z' Z 1 - u
2 

"' / R L ~ U = ---+----vtJr--cos~ 
U uZ D 

(1) 

Ui 

r (sin 'I' 
R y = 30 ) -Z-du, ft 

Uf 

Ui 

r (coZS'l' du 
Rx = 30 ) 

Uf 

d 'I' = __ 1_(~) sin cp 
du u D 

(2) 

(3) 

(4) 

Equations (2), (3), and (4) are used to calculate 
the X and Y components of the range 

While the spacecraft is entering the atmosphere, 
subroutine FUTURE calculates the input conditions 
Zi, Z'i, Ui from the vehicle dynamics. It should be 

Vehicle 
dynamics 

r------------, 
: Initial O'c, <PC I 
I I L_____ _ _____ .1 

Compute vehicle trajectory 
3-D, point-mass simulation 

.-----1 Fourth order Runge-Kutta integration method 
2-sec fixed interval integration 

r--------- --------, 
I Vehicl~ lat, long. 
I V,V, ~.Y I 

r-------- --------, 
I I 

Input! O'C' <PC I L-________ _ _______ ~ L________ _ ________ ~ 

Subroutine ~----..,.----'" 
Zi<0.002 

FUTURE 
Z. > 0.002 

1 - ,.-----------j 
....... ------... !vehicle lat, long., 1----.. L ___________ ..1 

r----------- ., 
I Target lat, long. • ...... ---I" 

Compute: 
RX ,R 

tarL Y targ 
X, Y, x/IVI 

~-----------~ ~------~-------... _____________ ~--- __________________ ~u! ______________________ ~ _____ _ 

Subroutine 
PREDICT 

r-------- -------, 
I , I 
I Z., Z. u. pnput 
I 1 1, 1 I L _______________ -"' 

Integrate Chapman's equation 3 times 

(1) With (L/D)max' <I> = 0 

(2) With (L/D)min' <P = 0 

(3) With (L/D)max' <I> = 45° 

.---------- ---------, 
I Footprint size: I 

Output: RX ' R .' Ry I 
I max y mIn max I L _________ ~ _________ .1 

Figure 1. Digital computer simulation - automatic predictor guidance method. 



DESIGN OF A HIGH SPEED DDA 935 

emphasized that ZiJ Z'iJ Ui are the values of ZJ Z'J U 

corresponding to the spacecraft's position during the 
prediction. Suppose the spacecraft's L/ D and cp are 
known for the entire reentry. If LID and cp are sub
stituted into Chapman's equation and ZiJ Z'iJ Ui 

are the initial conditions, then the solution of the 
range equations, together with Chapman's equation, 
predicts where the spacecraft should land .. The mixi
mum downrange (Rx)max is the value of Rx that 
would be achieved if the spacecraft would maintain 
LID = (LID)max and cp = 0 during reentry. Sim
ilarly, the minimum downrange (Rx)min is the value 
of Rx for LID = (LID)min and cp = o. The maxi
mum crossrange (Ry) max is the value of R y for LID 
= (LID)max and cp = 45°. As often as possible 
during the reentry a new prediction is made of the 
footprint size. Each prediction requires that Chap
man's equation and range equations be solved three 
times in order to obtain (Rx) max, (Rx) min, and 
(Ry)max. 

The DDA design used to solve Chapman's equa
tion and the range equations (subroutine PRE
DICT) is given in Fig. 2. The square boxes with du 
inside represent the independent variable increment 

which starts each iteration cycle. The triangles rep
resent the integrators where the inputs, outputs, and 
the variables stored in the Y registers are labeled. 
The arrows indicate the flow of pulses. The penta
gons and divided circles are used to represent mul
tiplexed inputs to the shared integrators. Triangles 
1, 6, 9 and 10 are shared integrators. The function 
performed by shared Integrator 1 would normally 
require four integrators-one for each pentagon. 
Similarly, shared, Integrator 6 is equivalent to four 
integrators, and Integrators 9 and 10 are equivalent 
to two integrators each. Consequently, by using 
shar~d integrators we have reduced the total number 
of integrators from 20 to 12. 

Integrators 1 through 6 are used to solve Chap
man's equation. The outputs from Integrators 2, 3, 
4, and 6 are summed together; the resulting sum is 

Factoring out du results in the right side of Chap
man's equation, Eq. (1). Therefore, the sum of the 

u. 

Ry.:S~ ¥ du 
Uf 

Figure 2. DDA for Chapman equation. 
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outputs composing input 3 of Integrator 1 is equal 
to u Z" du: 

Z"d ( z' Z 1 - u
2 

L ) u u = - -+---- yf3r-cos cP du u uZ D . 

The change in the heading angle d'l! is derived by 
Integrators 3, 1, and 8 in that order according to 
Eq. (4). The y component of the range is obtained 
by Integrators 6, 7, 9, and 11 where the solution R y 

is in Integrator 11. The x component of the range 
is obtained by Integrators 6, 7, 10, and 12 where 
the solution Rx is in Integrator 12. 

The DDA for solving Chapman's equation could 
not be scaled to achieve the accuracy and solution 
time requirements without introducing the technique 
of automatic rescaling. For a skipping trajectory the 
value of Z may vary from 0.0001 to 10. In turn, the 
value of lIZ in Integrator 6 will vary from 0.1 to 
10,000. Because the DDA uses fixed point arithme
tic, the large range of 1Z requires an extremely small 
independent increment ~u. To obtain an accuracy 
of three decimal places, an_ increment size of 10-8 

was necessary. Since u varies from 0 to 1, ~u = 10-8 

is equivalent to 108 iterations. The number of itera
tions is directly proportional to the solution time. 

The desired accuracy and solution time were ob.;. 
tained by applying the technique of automatic re
scaling. Instead of using one scale for the complete 
range of liZ, we divided it into four scales: A, B, C, 
and D. The table below shows the range of liZ, 
value of ~u, and number of iterations for each scale. 
The accuracy for each scale is approximately the 
same. The following sketch shows a typical plot of Z 
versus u for a skipping trajectory. From the sketch, 
Scales A and B are used during most of the integra
tion, and Scales C and D are used less than 10 per
cent of the time. Therefore, the average ~u is about 
10-6 • The use of multiple scales has reduced the 
number of iterations, and consequently the solution 
time, by a factor of 100. 

Scale Range of 1 I Z 

A 0.1 ~ liZ < 10 
B 10 ~ liZ < 100 
C 100 ~ lIZ < 1000 
D 1000 ~ liZ < 10,000 

~u 

10-5 

10-6 

10-7 

10-8 

Number of 
Iterations 

1 
z 

u: ----

A test of the accuracy for different ~u sizes was made 
using a simulation program. Figure 3 shows the re
sults of solving Chapman's equation with the same 
initial conditions but with different sizes of ~u. The 
three solid curves are the solutions for ~u = 10-4, 
~u = 10-5, and ~u = 10-6 • A computer program 
at the Martin Company, for solving differential equa
tions, entitled Unitrac was used to compute an ac
curate solution represented by the dotted curve for 
means of comparison. The curve for ~u = 10-6 

more closely follows the dotted curve than the curve 
for ~u = 10-5, demonstrating that an increase in 
accuracy results as the independent increment size 
decreases. 

DDA DESIGN FOR DEMONSTRATION 

PROBLEM, xy" + 2..-y' + Y = 0 
2 

To demonstrate the principles of the new tech
niques we have designed and built a special purpose 

d2y 1 dy 
DDA to solve x dx2 + 2 dx + Y = O. Con-

sequentlY' we did the detailed logic design needed 
to incorporate automatic rescaling, asynchronous 
timing and shared integrators into a DDA. 

d2 1 d 
The general solution to x d ~ + -~ + Y = 0 is 

x 2 dx 

y = A cos (2yx) + B sin (2yx) 

where A and B are arbitrary constants. If the initial 
conditions are 

y = 100 and ~~ = a at x = a 
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then the particular solution is 

y = 100 cos (2yx) 

for which a graph is shown in Fig. 4. We confined 
our interest to computing the solution y = 100 cos 

91T 
(2yx) from x = 0 to x = 4 ,although other 

solutions could be computed by changing the initial 
conditions. 

d2y 1 dy 
The DDA hookup used to solve x dx2 + 2 dx 

+ Y = 0 is shown in Fig. 5. The box with dx inside 
generates the independent increment which starts 
each iteration. The figures labeled IT, 2T, and 3T 
are counters for the purpose of scaling and will be 
explained later. The triangles labeled 11, 21, and 31 

are the integrators storing _1_, dd
y 

and y, respec-
x x 

tively. The lower input is the differential of the 
variable being stored. The output is the product of 
the upper input and the variable being stored. 

Integrator 11 is a shared integrator having one Y 
register and three R registers labeled R 1, R2, and 
Ra. Input 1 to Integrator 11, dx, causes Y to be 
accumulated in register R 1. The overflow from Rl, 

dx ,becomes input 2. Input 2 causes Y to be accu-
x 

1 

Chapman's equation 

---Exact solution 

-DDAsolution 

~L.l--------~--------~-------'~--
U_ 

Fig. 3. Increase in Accura.ey as the Size of the Independent Variable Increment 
1s Decreased (or as the Number of Iterations 1s Increased) for a DDA 
Solving Chnpnan's Equation 

Figure 3. Increase in accuracy as the size of the independent 
variable increment is decreased (or as the num
ber of iterations is increased) for a DDA solving 
chapman) equation. 

mulated in Register R2. The sign of the overflow 

from R2 is switched; the result - d! is equal to 
x 

d 
1 
x 

and hence becomes the lower input to 11. 

Input 3 which comes from Counter 2T is equal to 

__ 1_ dy • dx and input 4 which comes from 
2 dx ' 

Integrator 31 is equal to - y dx. Both inputs 3 and 
4 result in Y being accumulated in Register Ra. So 
it is possible for Y to be added to Ra twice in the 
same iteration if both 31 and 2T overflow. Multi-

plying the equation x ~~ + ; ~~ + Y = 0 by dx, 

it is clear that the sum of inputs 3 and 4 is equal to 

d2y 
X dx2 • dx. Therefore the overflow from Ra is 

1;; · dx which equals d (7x) by identity. 

The next phase is the scaling which determines 
the increment size corresponding to each input and 
output pulse and the number of bits in each register. 
To demonstrate the technique of automatic rescaling, 
we used two scales. Scale A is for the range from 
x = 0 to x = 16, and scale B is for the remaining 

Figure 4. Solution of XY" + -} y' + y = 0 
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dx 

Scale 
B A 

2 0 
IT 

dx 

dx 

dx 

-y dx 

Scale 
B A 

o 1 
3T 

dx 

dy = (~) dx 

Scale 
B A 

3 1 
2T 

1 
"2 dy 

. d2y 1 dy 
FIgure 5. DDA to solve x dx2 + 2 dx + y = 0 

range from x = 16 to x = ( 9
4
11" ) 2 • The absolute 

maximums of ~, :: ' and y plus the scaling 

coefficients for scale A and scale B are given in 
Fig. 6. For example, a 5 on a line would indicate 
that the weight of the variable increment at that 

point equals is or it takes 2s pulses to equal one 

unit of the variable. The position of the binary point 
in any register can be determined by the number 
inside the triangle. The following sketch shows the 
sign convention. The scaling coefficients were pur
posely chosen so that th length of· each register was 7 
bits for Scale A and Scale B. The counters, IT, 2T, 

and 3 T, in Scales A and B are used to decrease the 

scaling coefficients so that they satisfy the scaling 

equations. 

+ 
• • .. 

We also employed asynchronous timing in the 

computer. No further explanation of asynchronous 

timing is needed here. 

Another problem not mentioned so far is sequenc
ing, which is related to the timing. While Integrator 

1 I is processing input 2, it is possible for inputs 3 

~ and 4 to arrive. The integrator must process each 

input one at a time in series. To solve this problem, 
the integrator has been designed to store any input 

pulse which arrives while the integrator is integrat-



2 

( JL) < x < 24 
4 - -

2 
24 < x «91T) 

- - 4 
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dx 
Scale A 

3T 

2T 

dx Scale B 

IT 

3 5 5 

5 

2T 

o -2 

I ~I = 1-100 /x sin (2{X) I < 2
5 

Figure 6. Scale A and B for demonstration DDA. 
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ing. When the integrator is finished, it will act upon 
the stored input pulse. 

The sequencing problem is best illustrated by 
examining the pulse paths. Referring to the Sequenc
ing Chart (Fig. 7) there are three basic time zones 
after a AX generator starts the iteration cycle. In 
zone A, Integrators 11, 21 and 31 do a AX cycle 
(triangles labeled 1, 4 and 8) and there is no pos
sibility of an integrator time conflict. In zone B, how-

ever, there are three pulse paths where Integrator 11 
can be actuated in a AX cycle; they are pulse path 1 
(triangle 2), pulse path 2 (triangle 5) and pulse 
path 4 (triangle 9). In the worst case, if all inte
grators in time zone A overflow, then all three re
quests for 11 in time zone B must be honored. This 
is done by sequencing the 1 I AX requests on a first 
come, first served basis. There is also a time conflict 
in time zone C with Integrator 21, pulse path 2 (tri-

Pulse path 
1 

Pulse path 
2 

Pulse path 
3 

Pulse path 
4 

i I 
I : 
I 1 !---Time zone_--l-_Time zone_~_Time zone---J 

: ABC : 

1 
Start of 
iteration 
cycle 

Figure 7. AX generator sequencing chart. 

angle 6) and pulse path 4 (triangle 10). The worst 
possible series path of integrators is shown below: 

The worst path is four AX cycles and one A Y cycle. 
They are Integrators 1, 2, 5, 9 and 3. The other 
integrators, Nos. 4, 7, 6, 10 and 8, are processed 
in parallel and take no added time. For example, 
while Integrator 1 is processing, Integrators 4 and 8 
are also processing. In this description of the pulse 
paths and parallel processing we have ignored the 

1 

4 

8 

.9---. 3 

.6 .10 
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influence of the IT, 2T and 3T counters. The most 
they can do, however, is decrease the occurrence 
of the worst case series path. At the completion of 
all the pulse paths, the ~X generator starts the next 
cycle. Since the longest path is five integrators 
(which occurs infrequently) and the shortest is one 
(which occurs frequently), this technique of asyn
chronous timing results on the average in a great 
time saving. 

Test data obtained from the demonstration com
puter indicates the number of iterations per second 
to be in excess of 2 million. 

LOGIC DETAILS OF DEMONSTRATION DDA 

The logic of the demonstration DDA to solve 

1 
xy" + - + Y = 0 can be divided into three sec-

2 

tions: Integrators, Counters and Master Timing 
Control. 

Integrators 

There are two types of integrators, shared (11) 
and normal (21 and 31) both of which use the nor
mal rectangular integrator technique. To ease the 
description, we will describe the less complicated 
normal integrator and note the differences of the 
shared integrator where appropriate. 

The integrators are divided into two sections: (a) 
Register and Adder, and (b) Timing and Control. 

Carry 

I I 
Q 

Adder 

y R 

Figure 8. Registers and adder interconnection. 
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Registers and adder. The functions of the Y and 
R registers are as normally used in a DDA (see 
reference 7 for full description of DDA integrators). 
There is also a 0 register which is used as a tem
porary storage from the adder. The block diagram 
of the registers and adder is shown in Fig. 8. 

The possible register-to-adder transfers are 

(In the case of a shared integrator, 0 transfers 
to R 1, R2, or Rs depending on which AX is in 
operation. ) 

Both the Rand 0 are 7 bit unsigned registers and 
the Y register is 7 bits plus sign. Subtraction is per
formed by a modified 1 's complement addition plus 
some sign control and zero detection. The Y and Q 
registers can transfer out their true value (Y T or OT) 
or their 1 'scomplement value (Y c or Oc). 

The total algorithm for theY, Rand 0 registers 
to the adder is given in Table 1. The symbols used 
in the table are: 

Y M == Y register magnitude 
Y s == Y register sign 
Y T == Y register true value 
y c == Y register 1 's complement value 
C == overflow carry-out of adder 
C == no overflow carry-out of adder 
~ == transfers to 

DN == do nothing 
== yields 

Let's look at an example (line 4): Suppose the 
integrator is in the condition Y M =I=- 0 (the contents 
of Y register are not equal to zero), Y M =I=- MAX 
(the contents of Y register are not equal to all ones 
or the maximum value) and Y s = - (the sign of Y 
register is negative). If the input to the integrator is 
a AX + cycle (column 1), then from the table it 
can be seen that: the 1's complement value of Y is 
added to the value of R and the result stored in 0 
(Y c + R ~ 0). Then the true value of 0 is trans
ferred back to R (QT ~ R). If an overflow carry 
from adder position 7 did not exist, then the inte
grator signals a minus (~X -) output (C -OUT
PUT) to the next integrator. 

In addition to the normal functions of the registers 

and adder, they are also used to accomplish the 
rescale function. The rescale is really only a shift left 
of the contents of the Y register. Rather than put in 
the shift hardware and set up a special timing se
quence it was found to be cheaper and faster to use 
the adder. This is done by adding a 0 to the contents 
of Y (which is only a trick to get the output of the 
adder to contain Y) and transferring the adder out
put to the shifted rather than the normal position of 
Q. For example, in Integrator 21, the output of So 
(the zero stage of the adder) is sent to 04, Sl to 05 
and S2 to 06. All lower stages of Q, that is 00, 01, 
02 and Os are filled with O's. This results in a shift 
left 4 of the Y register. 

The adder network is a fully parallel 6 delay car
ry look-ahead adder. (For more details on adders, 
see references 4, 5 and 6.) In brief this adder is 
made ripple free because each stage "looks ahead" 
to the input of all previous stages to determine 
whether a carry-in will exist. This technique, al
though extravagant in hardware, is the fastest meth
od for binary addition. In passing, it should be noted 
that this adder could have been made 1 delay 
faster (from 6 delays maximum to 5 delays maxi
mum), but the amount of hardware would have 
been approximately doubled. The gate delays in the 
microelectronics we are using result in an add time 
of 50 to 90 nanoseconds. 

Timing and Control 

Each integrator is required to perform two types 
of operations: a ~X cycle, where Y is accumulated 
to R and a A Y cycle, where Y is incremented or 
decremented by 1. Control flip-flops in each inte
grator store the present status of the integrator as 
well as the input commands (AX or AY). Another 
series of control flip-flops store the action to be 
taken by the integrator, based on the decoding of 
the input comm~nds and the present status. 

See Table 1 for the combinations of input com
mands, present condition of integrator and decoded 
commands. The input commands are also used to 
initiate the timing chain. No clocks exist in the 
timing chain, or anywhere in the machine. Rather, 
the timing and control is designed so that each inte
grator only operates on command and will process 
commands according to a priority sequence as 
shown in the following tabulation. 
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TABLE 1 

Algorithm for Registers and Adder 

Input to Integrator 

Condition of 
Integrator 

ax 
+ 

ax aY aY 
+ 

YM = 0; Ys = + DN DN 

YM = 0; Ys =- DN DN 

Y M =F,O; Y s = + 
YM=FMAX 

YT + R~Q Yc + R~Q Y c + 1 ~ Q 
Qc~Y QT~R QT~R 

C + OUTPUT C -OUTPUT 
YM=FO;YS =

YM=FMAX 
Yc + R~Q YT + R~Q Y c + 1 ~ Q 

Qc~Y QT~R QT~R 

C -OUTPUT C + OUTPUT 

Y s = + 
YM = MAX 

YT + R~Q Yc + R~Q 1 OVERFLOW Yc + 1 ~ Q 
Qc~Y QT~R QT~R 

C + OUTPUT C -OUTPUT 
Ys =

Y M = MAX 
Yc + R~Q YT + R~Q Y c + 1 ~ Q 

Qc~Y 

OVERFLOW 
QT~ R QT~R 

C -OUTPUT C + OUTPUT 

1. If a IJ.X command occurs, and a Y is not 
active, process aX. 

2. If a IJ.X command occurs and IJ. Y is active, 
then store aX command. 

3. If a IJ.X command is in storage and A Y 
goes inactive, then process AX and reset 
IJ.X storage. 

4. If a aX and A Y command occur at the 
same time, process AX and store A Y. 

5. If a A Y command is in storage and aX goes 
inactive, then process A Y and reset A Y 
storage. 

Notice that in line 4, preference is given to AX com
mands since only they can cause an output from the 
integrator. In this way, if there is to be an output, 
the next integrator is started processing sooner than 
if the A Y (which never has an output) were proc
essed first. 

Each of the aX and A Y command and storage 
flip-flops from each integrator is also decoded in 
the Master Timing and Control Section. When all 
flip-flops are zero, which indicates that no integrator 
is processing or has anything to be processed, the 

next AX generator or next iteration cycle is started 
- which is asynchronous timing. 

Counters 

The DDA contains three counters, IT, 2T and 
3T. Counters IT and 3T are simple decoding coun
ters of 2 bits and 1 bit, respectively, and 2T is a 4-
bit double-rank forward and reverse shift counter. 
In e~ch of the counters, since we cannot afford to 
wait for ripple time, a simple expediency is used. 
When a counter is one count below its output value 
the next count command will trigger the output 
even though the counter never really increments (or 
decrements). For example, suppose the counter was 
designed to overflow or output at a value of 16, 
when it reaches 15 the next count command triggers 
the output and resets the counter. In this way, the 
computer does not have to wait for the counter to 
increment but only for the time it takes the simple 
counter control to trigger. 

It might appear that, since the counter ripple 
time has been bypassed as a problem, we could 
have used the simplest ripple counter, but this does 
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not work out. It is true that. the counter time is im
portant only in as much as it finishes its counting 
before the next count command is received. Under 
certain conditions in the DDA, the count com
mands could be very close together so the faster 
shift counter was required. 

In order to avoid the annoying typical counter 
problems of two types of zero (plus and minus) 
and sign control, a simple expediency was used of 
making the counter one stage too big and resetting 
to the middle value. For example, if we want to 
count from 0 to + 7 and 0 to - 7, we make the 
counter 4 bits (instead of 3) and count from 8 up 
to 15 and 8 down to 1. The hardware difference 
between the two techniques is so small as to be 
unimportant. 

Master Timing and Control (MT&C) 

The Master Timing and Control is made up of a 
series of housekeeping and control functions which 
belong to the whole DDA rather than anyone inte
grator. They are: (1) AX Generator, (2) Fault 
detection, (3) Rescale, and (4) Push button starter. 
~ Generator (~ Gen). This flip-flop receives 

the output and status of all integrators to sense when 
they have completed their last operation and are 
waiting for another cycle. When this "nothing else 
to do" condition exists, the AX Generator initiates 
the start of the next iteration cycle. This scheme 
takes the place of a clock which would run the DDA 
at fixed clock periods and would have to be timed 
for the worst case pulse path or slowest possible 
cycle. By the very nature of a DDA not every itera
tion cycle will, and in fact many will not, have over
flows from some integrators. 

Fault detection. Certain conditions of the Y decode 
logic of each integrator are considered as a fault. 
These conditions, when they occur, are stored in 
flip-flops in the MT&C and the machine will stop or 
ignore these faults depending on a switch setting on 
the operator's console. 

The fault conditions are: 

• 11 Y register = o. 
• 21 Y register> 27 - 1 = overflow. 
• 3 I Y register > 27 - 1 = overflow. 

Rescale. Two flip-flops are used to store the re
scale conditions of 11 and 2I. When both conditions 
occur, the next AX Generator cycle is replaced by a 
rescale cycle which resets the initial conditions into 

the integrators and counters, and at the same time 
shifts left or right the contents of Y register in 11 
and 2I. This shifting is done by using the adder net
work. At the completion of the rescale cycle, the 
next AX Generator cycle is initiated and the DDA 
starts its normal operation. 

Push button starter. This is simply a means of 
filtering out the "Single-Cycle" push button noise 
when the DDA is operated in the "Step" mode. In 
the "Step" mode, the push button intiates the AX 
Gen cycles so that the machine iterates on command. 

HARDWARE DESCRIPTION OF 
DEMONSTRATION DDA 

In the development phase of the DOA program it 
was unnecessary, and in fact burdensome, to pack
age the computer for an aerospace environment. On 
the other hand, a "breadboard" package often turns 
out to mean "slapped together." Neither of these 
extremes was desirable and the result of this pro
gram is what we call a laboratory model. 

For the logic hardware, it was advantageous to 
use aerospace approved circuits. In this way, the 
laboratry model would have speed and noise 
characteristics approximating those of a final pack
aged version. The logic chosen was the Fairchild 
commercial integrated circuits. 

The front and back views of the resultant labora
tory model are shown in Figs. 9 and 10. The chassis 
measures 23" X 20" X 5" (exclusive of the opera
tor's console) and can accommodate 100 logic cards 
of the type shown in Fig. 11. The connectors are 
86 pin AMP tab-wired and require no soldering. 
Tbe recessed tabs preclude wire shorting and also 
allow easy removal. Connector power (+ 4 v and 
groun~) is tapped-off the bus bar with all grounds 
isolated from the chassis and brought back to a 
central point. 

The logic cards measure 41;2" X 2" and each 
contains twelve 8-pin, TO-5 header microelectronic 
logic elements. The only interconnections made on 
the printed circuit cards are the power bussing. The 
remaining logic interconnections ~re made on the 
wiring backpan (this is often referred to as "back
pan logic"). This technique allows greater flexibility 
and ease of modification, and the logic partitioning 
is much easier since it can be done at a much later 
date in the design. There is also a significant cost 
saving in only requiring one printed circuit design. 

The photographs in Figs. 9 and 10 were taken 
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Figure 9. Front view of DDA. 

Figure 10. Back view of DDA. 
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Figure 11 
during the computer checkout which accounts for aerospace applications over the pure general pur-
the chassis sitting vertically with the operator's con- pose (GP) approach. In brief, two very attractive 
sole temporarily mounted on top. . applications for the high speed DDA are evident, 

In Fig. 11, the lower card is a normal 12-element (a) as part of a GP-DDA hybrid which would al-
logic card. The upper card is also a logic card but leviate the loading of the GP computer for aero-
with the addition of capacitors and trimpots for space applications and ( b ) as the real time com-
single shots. The middle card shows the reverse side puter for a strap down inertial guidance system. A 
of all cards. further detailed comparisn is necessary to justify 

The demonstration DDA to solve xy" + {- y' 

+ Y = 0, contains 94 cards, each with 12 ele
ments, for a total of 1200 TO-5 cans (approximately 
1900 logic elements). Redesigned for aerospace, and 
using the conservative estimate of 17,000 flat-packs 
per cubic foot, the machine could be packaged in a 
volume of 0.07 ft3 and weigh approximately 3.6 
pounds. 

CONCLUDING REMARKS 

The use of digital differential analyzers (DDA) , 
because of their great speed in solving differential 
equations, appears to offer a promising future in 

the merits and economics of this approach, but we 
do feel that the vastly disproportionate design time 
given to the GP machines requires at least some 
attempt at equal design time for the DDA before 
the· final comparison can be made. Potentially, the 
DDA can iterate a differential equation faster since 
the GP wastes some time doing housekeeping and 
memory transfer instructions, e.g., transfers to and 
from memory, and indexing. In contemporary 
DDA's this potential has generally not been realized 
for two reasons; ( a ) most of the DDA's built have 
been serial machines, and ( b ) the DDA uses a 
fixed independent variable increment while most of 
the more sophisticated GP programs for solving dif
ferential equations use a variable increment. 
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ENGINEERING MATHEMATICS VIA COMPUTERS 

John Staudhammer 
Arizona State University 

Tempe, Arizona 

THE NEED 

In the last two decades the use of mathematics 
in engineering has increased considerably. Today, 
mathematical models make up the heart of many 
engineering disciplines. The rapid increase in scien
tific knowledge has brought about a staggering pro
liferation of technological applications. In order to 
equip students for this exploding technical environ
ment, engineering colleges have turned to empha
sizing fundamentals. It is physically impossible to 
include even a representative sampling-in-depth of 
today's techn910gical developments. without further 
crowding the already overburdened curricula. This 
crowding is due not so much to the new ideas the 
newer scientific applications require, but rather to 
the inordinate number of details and refinements 
they engender. 

It is hardly a radical idea to suggest that today's 
curricula, developed in a more static scientific 
world, are not keeping pace with the accelerating 
pulse of the mainstream of scientific thought. But 
more importantly, the vast majority of curricula fail 
to prepare students in the philosophy and processes 
of engineering; rather, they stress a wide variety of 
special tricks and special procedures. Often the only 
explanation is that these tricks "solve problems." 
This is especially true of the construction of simple 
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mathematical models, where the extent of abstrac
tion may be dictated solely by the availability of 
simple solutions, as for instance, solutions of con
stant coefficient differential equations. 

To ease some of the more routine calculations, 
computer~ are being used in some courses in var
ious colleges. However, extensive use of modern 
computers by all instructors of engineering and en
gineering mathematics can eliminate many time
consuming rote calculations from the class presenta
tions. Such an extensive use of computers requires a 
careful reevaluation of the structure of engineering 
education. Many new and unique computer programs 
need to be developed for each segment of the re
structured engineering curriculum. The faculty and 
students need to understand how to use computers 
and what to use them for, and they need to be able 
to access the computer programs during normal 
classroom study. Computer use during classroom 
discussion can allow for the exploration of a larger 
number of problems of a greater degree of sophisti
cation than is possible otherwise.! 

A broader l>ase of applied problems will afford 
an opportunity for students to gain a deeper under
standing of the scope of modern engineering. Many 
more significant problems become vivid demonstra
tions of principles discussed; ramificatIons of changes 
in problem formulation become easily demonstrable, 
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and a wider variety of solutions can be supplied to 
the student upon which heuristic arguments may be 
based. It is even possible to explore intuitive ap
proaches to the solution of given problems. 

THE APPROACH 

One of the most subtle changes of the last decade 
and a half has been in the meaning of the word "so
lution." It is widely recognized that a m~thematical 
closed form, while unquestionably pleasing aestheti
cally, may not necess~rily be interpreted easily. 
Curves and graphs may constitute a more desirable 
solution format, but most often a solution merely 
consists of a procedure whereby an answer can be 
obtained. Categorically, today's good solution is 
one that can be calculated without undue difficul
ties. We do not shrink from solving 50 or 100 cou
pled simultaneous linear equations, or that many 
differential equations. Every major computer center 
has, or should have, an extensive subroutine library, 
often stored on an on-line library tape, for effecting 
extensive numerical calculation and/or simulation. 

For statistical work, UCLA's BMD programs 
have become widely accepted industry standards; 
programs like RAND's ROCKET are used exten
sively in work in astrodynamics. Yet very few engi
neering instructors have been exposed to these pow
erful tools; fewer yet have introduced their students 
to the concepts, the frame of mind necessary for the 

effective use of these procedures. Many engineering 
educators are still preoccupied with methods for the 
solution of specific problems; they neither empha
size nor demand a mathematical environment that 
stresses concepts of problem formulation and prob
lem evaluation. In such an environment, effort 
would be concentrated on stating the problem cor
rectly and ad~quately and estimating the expected 
answer. The mechanics of obtaining an answer 
would be left to a computer (or a computer center), 
the computer then in effect would become an edu
cated answer-generating device. Such a device may 
still be fallible: when an unexpected answer ap
pears, the user of the device must know enough 
about the problem to be able to account for the dis
crepancy. Often it lies in the method used in arriv
ing at the estimate, but sometimes it may be due to 
bad input data, or (rarely) to a true machine error. 

AN EXAMPLE: MATRIX APPLICATIONS 

The main purpose of this paper is to discuss the 
articulation necessary for a set of computer pro
grams, none of which is very interesting by itself, to 
be used for the teaching of a senior-graduate engi
neering course in the application of matrices. This 
course is conceived as a model for other engineer
ing study areas, which must begin to employ more 
computer assistance. * 

* For . an outline of this course, see Fig. 1. 

Matrix Methods in Electrical Engineering 

1. Introduction: Examples of Matrix Formulations 
2. Determinants and the Matrix Inverse 
3. Linear Equations 
4. Direct Numerical Procedures 

4.1 Computational Error Considerations 
4.2 Evaluation. of Determinants 
4.3 Simultaneous Equations 
4.4 Inversion 
4.5 Programs for Very Large Matrices (Partitioning) 
4.6 Library Routines (Dimension - independent) 
4.7 Partial Double Precision 

5. Iterative Numerical Procedures 
5.1 Simultaneous Equations 
5.2 Inversion 

6. Non~Numeric Matrices (FORMAC) 
7. Characteristic Value Problems 

7.1 Eigenvalue Calculation 
7.2 Eigenvector Calculation 
7.3 Repeated Eigenvalues 

8. Diagonalization 
8.1 Non-repeated Eigenvalues 
8.2 Jordan Normal Forms 

9. Functions of Matrices 
10. Linear Differential Equations 
11. Network Topology 
12. Four Terminal Networks 
l3. Small Vibrations Problems 
14. Continuous Systems 
15. Operations Research Examples 

Figure 1. Outline of course on matrix applications. 
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Overall Criteria 

A set of computer programs was written con
forming to the following criteria: 

1. There is a variety of programs for each 
task to be performed. 

2. The programs constitute a sequence of 
interrelated programs. 

3. Successive programs are increasingly more 
economical, and/or powerful, and/or have 
a wider applicability. 

4. Final programs are favorably comparable 
with good computer programs. 

5. Selective querying is possible. 
6. Uniformity of input formats. 
7. Relatively uniform output formats. 
8. Limited restart feature. 
9. Machine independence. 

10. Compatibility· with current program sys
tems. 

In . the design of the computer programs each of 
the above criteria must be considered concurrently. 
Thus the programming language used is FOR
TRAN II, with a FORTRAN IV version also de
veloped. It should be pointed out that the matrix 
routines generated constitute a limited version of 
matrix interpretive systems, such as the ones in use 
at the Aerospace Corporation or in Lockheed's 
FAMAS system. 

Programs for Basic Operations 

After a relatively conventional introduction of 
matrix notation and of linearity, determinant theory 
is discussed. This is the first instance of computer 
work in the course. 

The applications aspects of determinant theory 
are covered in approximately five hours, including 
the method of Gauss for the evaluation of numeri
cal determinants. This method is then programmed, 
a main routine written for it, and an acceptable in
put data format is agreed upon. This format must 
conform to standard fixed format input of eight ten
digit numbers per card (8E10.0) preceded by two 
cards, the first specifying a title, the second the or
der of the determinant that is to be evaluated. Serial 
numbers and comments can also be placed on these 
cards. The input data is in row order. 

By means of examples the program is shown to 
be faulty in some cases. The addition of a set of 
PRINT statements allows monitoring of this pro-

gram, thus resulting in the second determinant 
evaluator. It is shown by the examples that it is the 
main-diagonal zero divisors that lead to the break
down of the original routine. 

At this point a cursory discussion of chopping 
errors is undertaken and the need for the pivot pro
cedure demonstrated.2 Implementing this pivot ex
change leads to a fully acceptable routine, efficient 
and relatively accurate as demonstrated by a variety 
of numerical examples. The internal operation of 
this routine is checked by means of selective print
ing of intermediate results accomplished by setting 
control switches on the computer console. 

For inclusion in the permanent library of the in
stallation the last program is made dimension
independent for compilations in FORTRAN II; a 
version for complex matrices is also prepared. Exten
sive testing of these programs completes the discus
sion of numerical determinants. 

Next the discussion of simultaneous equations is 
undertaken. The basic theory underlying linear vec~ 
tor spaces is covered in about three hours, culmi
nating in the derivation of the Gauss method of 
elimination. Programming this method along the 
lines of the first determinant evaluator gives the 
first equation-solving routine. Although this pro
gram will also fail when zero main-diagonal ele
ments are generated, the introduction of pivoting is 
delayed until after a discussion of the Gauss-Jordan 
method. 

Pivoting used with the Gauss-Jordan method is 
then made dimension-independent for inclusion in 
the system library tape. Extensive numerical exam
ples are used throughout. 

The next topic handled is matrix inversion. Five 
different programs are discussed, paralleling the pro
grams for the solution of simultaneous equations, and 
culminating in an efficient in-place inversion routine 
(using pivoting and dimension-independence) for 
use in FORTAN II and IV systems. 

The derivation of this row-and-column-shuffling 
procedure is rather interesting. Instead of deriving 
the various algorithms needed for compacting the 
Gauss-Jordan inversion procedure,3 the original ma
trix is reduced and its augmented unit matrix print
ed for several test cases until it becomes obvious 
how to eliminate the augmented part (thereby saving 
50 per cent storage space.) Similarly the algorithms 
necessary for unscrambling the pivot-condensed, 
row-and-column-shuffled matrix are first obtained 
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heuristically from a series of examples; only then 
are they derived mathematically. This procedure 
gives life to otherwise dry and seemingly uninterest
ing derivations. 

The discussion of the solution of linear opera
tions is concluded with programs suitable for com
plex matrices and procedures used with partitioned 
matrices. A few tape-shuffling routines are demon
strated for solving a set of simultaneous equations 
too large to fit into the machine at one time. 

The discussion of round-off errors and direct 
numerical procedures is "naturally" extended to itera.:. 
tive techniques such as the Gauss-Seidel procedure. 

Throughout the discussions, a set of examples is 
used that demonstrates the limitations as well as the 
uses of the various methods. Without computer as
sistance most students would not be able to gain 
any insight into the why's and wherefore's of these 
various procedures. 

Eigenvalue Problems 

The next major topic discussed is the general 
eigenvalue problem. After conventional derivation 
of the Cayley-Hamilton theorem, the theorem is used 
to derive a computer-adaptable procedure for find
ing the characteristic equation. This process uses 
subprograms developed in earlier discussions; hence 
a pyramiding of subroutines starts at this point. 

The solution of the characteristic equation is ac
complished by a standard library routine, which is 
simply taken as given. 

Properties of eigenvalues of special matrices are 
discussed with the aid of the above computer pro
grams. The program is extended to complex ma
trices and properties of these matrices are studied. 
Applications to network analysis and vibration 
problems seem natural at this point.4 

Application of the simultaneous equation rou
tines discussed earlier leads to eigenvector prob
lems; difficulties with repeated eigenvalues are easi
ly demonstrated, and the idea of a minimum poly
nomial becomes obvious. Orthogonality of eigen
vectors is demonstrated and their use in vibration 
problems illustrated by means of carefully contrived 
examples. 

The complete eigenvalue problem constitutes the 
last problem discussed under this topic. Construc
tion of the Jordan normal form leads directly to 
procedures (all programmed) for obtaining general
ized eigenvectors. 5 Numerical examples showing 
these methods complete this part of the class 
presentation. 

Matrix Functions 

During the class discussion, the Cayley-Hamilton 
theorem is applied (repeatedly) to the construction 
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Figure 2. Calculation of eM. 
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of matrix functions. Trigonometric and exponential 
functions having square matrices for arguments oc
cur naturally enough in the solution of certain sets 
of linear differential equations. Several subprograms 
are constructed to carry out several methods for cal
culation of these matrices. 

Various shortcuts in the above procedures lead to 
the surprising conclusion that the most time
consuming part of matrix function calculations is the 
raising of the original matrix to successively higher 
powers up to N-l, where N is the order of the ma
trix. A search for shorter procedures leads to the 
use of Jordan normal forms. Even though the logic 
is consciderably more complex, the resultant pro
gram is approximately N times faster. 

Once the programs are discussed they are 
checked out on short problems, suitably chosen to 
give easily checked results. (See Fig. 2.) 

The ideas presented so far are then extended to 
the solution of simultaneous differential equations. 
Physical problems are formulated; the complexity of 
the mathematical model may be essentially un
restricted by considerations of computational involve
ment. 

General Linear Equations Package 

The program developed in the above section is 
one of two more extensive omnibus programs devel
oped in the course. The other is a long routine for 
the solution of M linear equations in N unknowns. 
A check is made of the consistency of the set; con
sistent sets are further examined for unique solu
tions and parametric solutions. The program uses 
the Gauss method without pivoting to obtain a first 
approximation to the solution; by appropriate 
switch action the above process may be repeated 
using pivotal condensation. Next, unique solutions 
may be iterated using either the Gauss or the 
Gauss-Seidel iteration technique. After each com
plete pass the program may be restarted for a possi
bly different intermediate printing. Input data and 
intermediate results are stored on tape, thus en
abling the handling of 80 by 80 coefficient matrices 
on a 16,000-word machine. 

Applications of Matrix Programs 

The reason for developing these computer pro
grams is their wide applicability to various engi-

The interconnection matrix is: 
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Figure 3. Example for finding independent currents. 
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neering fields. Since this course is taught within the 
electrical engineering curriculum, the lion's share of 
the examples are drawn from network topology, 
network analysis, and control systems. The pro
grams typically facilitate analysis of various engi
neering problems rather than provide synthesis pro
cedures. 

Electrical network equations are now input in 
completely general form into the linear equations 
package; the computer results indicate the inde
pendent node voltages and the independent currents. 
Supplying separate element values to the programs 
gives the canonical equations for the network, 
which are then solved as a matrix differential equa
tion. Throughout, many intermediate results may be 
printed, for class demonstration as well as possible 
checking, by appropriate console switch actions. 
(See Figs. 3 and 4.) 

Four-terminal networks are treated in an analo
gous way; routines for the handling of various in
terconnections are prepared, and the mathematical 
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network model is constructed on the computer, 
which then generates numerical answers to transfer 
function analysis. Several shortcut procedures are 
also illustrated. 6 

The matrix function routines are also used exten
sively in the state vector calculations of control sys
tem analysis. Particularly eigenvalues and Jordan 
normal. forms are found very applicable in this 
work. Matrices of an order up to 80 by 80 are rou
tinely handled in the course. 

Not all applications are drawn from electrical en
gineering; rather, a good number of examples are 
taken from the subjects to be described next. 

OTHER EXAMPLES 

The field of optimization techniques benefits 
greatly from expanded computer applications. 
Among the classical techniques of this field are li
near progrmming and game theory. Most digital 
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Figure 4. Partial results for problem in Fig. 3. 
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computers have a standard linear programming 
package that requires little user concern for possible 
computational difficulties. The time gained may be 
spent more profitably on examining the philosophy 
of the procedures used and the significance of the 
answers provided. Solutions of game theory prob
lems are also relieved of computational considera
tions. The way is cleared for setting up complicated 
pay-off matrices and obtaining ans.wers with relative 
ease.7 

The most recent general optimization technique is 
dynamic programming. The use of dynamic pro
gramming in control theory has penetrated to ad
vanced undergraduate training. In its various specific 
applications the theory is a numeric process requir
ing the storage of a vast number of intermediate 
results ("decision tables"). Because of this voracious 
appetite for storage space, most of the present appli
cations involve systems with but a few variables: 
however, with the widespread use of the new large
memory machines, we can expect more significant 
applications of this theory. 

A few of the widespread uses of computers in the 
solution of essentially computational problems in 
engineering education will now be mentioned. 

In the more conventional electrical engineering 
curricula there are several areas in which computers 
may be directly applied, notably network analysis 
and synthesis. In straightforward analysis it is pos
sible to devise computer programs that take into 
account the network topology (with specific ele
ment values supplied separately) and compute the 
steady state as well as the transient response. Such a 
routine can be used early in the network theory 
courses to do cut-and-try designing to some specifi
cations. While the results are not as graphic as a 
laboratory experiment, complicated networks may 
be analyzed rapidly, the effects of small parameter 
variations can be studied, and various parametric 
studies can be done in advanced training. In the 
synthesis of networks, the computer has proven it
self invaluable in industry and should prove its 
worth in teaching as well; by preprogramming var
ious synthesis procedures, the results of those pro
cedures can be displayed rapidly after a discussion 
of the method rather than the mechanics. The addi
tional bonus that these results are essentially error
free provides increased class time, which can be 
most effectively used for an examination of the 
underlying design philosophy, thereby strengthening 

the understanding of fundamentals of network 
theory. 

In graduate courses where network analysis and 
synthesis are used as part of a larger subject area 
(such as control system courses), a computer can 
be of great help in automatically realizing compen
sator transfer functions. Such a program· first has to 
determine physical realizability and the kind of net
work realizable; it then must carry out one or more 
alternate realizations, possibly deciding on an 
"optimum" network. One can build such a network 
synthesizer by programming each of the constituent 
subprograms separately in a course in network syn
thesis; also, many of these subprograms already 
exist in various computer facilities. 

In aero- and hydrodynamics, a computer can 
mechanize the formulas of the Schwarz-Christoffel 
transformation, whose solutions in most nonartifi
cial problems are numerically too complicated for 
hand computation. This particular mechanization 
allows the calculation of laminar incompressible 
flow streamlines, a subject occupying most of the 
first semester in an advanced hydrodynamics 
course. However, having obtained a powerful com
putational tool for such calculations, much time can 
be saved; this time can then be profitably spent on 
real fluids and methods of calculating their stream
ing behavior. The microscopic differential equa
tions of fluid motion can be directly solved numeri
cally (with some difficulty, to be sure) for given 
boundary conditions. This in turn leads to a deeper 
understanding of every phase of aero- and hydrody
namics, an understanding that presently is lost un
der a veritable avalanche of special methods for 
special problems and insurmountable numerical 
work. 

Advanced dynamics also benefits from the com
puter revolution. Complex structural dynamics no 
longer needs to restrict itself to three-story coupled 
bents; one can discuss general methods powerful 
enough to describe multiple-loop coupled structures 
undergoing combined vibrations. Such procedures 
as the transfer matrix method, using 12 and 18-ele
ment state vectors can be discussed without the fear 
that they will not be usable in a given situation. As 
a matter of fact, the subject of elastomechanics has 
undergone a more marked metamorphosis than any 
comparable subject, as a direct result of digital com
putation. This is one of the areas in which matrix 
methods find their widest application. 
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Many of the methods of nonlinear analysis are 
essentially numerical procedures. A study of non
linear phenomena is usually limited by the vast num
ber of iterative calculations normally required even 
in a simple problem. Here also the removal of much 
numerical work, by the use of appropriately pro
grammed computers, will allow concentration on 
method rather than procedure. In nonlinear control 
synthesis, the use of iterated matrices in significant 
problems becomes a perfectly acceptable procedure 
in a computer-assisted graduate course. 

Finally, a short reflection on the newly emerged 
field of systems engineering in the computer revolu
tion. Because of the extremely complex nature of 
the various problems that make up the basis of this 
discipline, no realistic systems engineering exercises 
can be demonstrated without a computer. It is in 
systems engineering that traditional industrial and 
electrical engineering overlap. The methods of the 
discipline are taken largely from applied mathemat
ics and statistics. Since most students interested in 
the field have incomplete backgrounds in each of 
the areas from which the methods stem, thorough 
systems engineering education is hampered. With a 
computer, enough time can be saved so that criteria 
and their effects, and not merely the procedures of 
the techniques, can be critically examined in a sys
tems engineering course. 

RESULTS 

The course discussed in the section on Matrix 
Application was taught during the Spring 1965 se
mester at Arizona State University. Earlier, less 
computerized versions were taught over a period of 
four years at the University of California at Los 
Angeles and Arizona State University. The impact 
of computers on this course lies in the mechaniza
tion of routine numerical work enhanced by the in
troduction of the principles of more advanced nu
merical methods. Some of these methods were not 
discussed in class (e.g. the solution of polynomial 
equations) but their results supply numerical, non
trivial examples illustrating engineering thinking, 
not engineering drudgery. Concentration on prob
lem formulation rather than solution unifies many 
facts of engineeing. 

The use of the computer provides both faculty 
and students with valuable time, which may be used 

to develop intuition about the problems by exposing 
the student to a large number of allied numerical 
results. The tinie can be spent in exploring ramifi
cations of second order effects, which so often can 
make the correlation of theoretical prediction and 
experimental results very inaccurate. A broader 
base and a larger number of examples can be used 
to explore a greater variety of applications of mathe
matical tools 'than is possible without computer 
aid. In the course already developed, approximately 
twice as much material and about five times as 
many examples are now covered without any signif
icant degradation in the students' comprehension of 
the material. 

More complex and elaborate problems were made 
feasible for classroom use. As the breadth of the 
problems handled adequately has been increased, a 
concomitant deeper understanding of the engineer
ing method has been fostered. Newer and more ad
vanced topics have been included in the under
graduate curriculum. 

And finally, a facet of the curriculum has been 
changed to introduce the young engineer to methods 
used daily in modern engineering work. 
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The concept of a library of statistical computer 
programs based on a single statistics text can signif
icantly reshape current teaching of statistical meth
ods and can increase the use of statistical methods 
in research-especially if the library is quite easy 
to use. Such a library has changed the way we teach 
and use statistics at our university. 

The library was developed in its present form be
cause three years experience with existent program 
libraries convinces us that the old, but ever-present, 
communications problem was blocking extensive 
use of the computer in statistics courses and in 
quantitative empirical research. 

We have in large measure removed that block by 
putting most of the Snedecor text1 algorithms "in" 
the computer (i.e., on the 1410 systems tapes); and 
by making all the computer programs accessible 
through use of standard prepunched monitor system 
cards and a single, variable, control card. This con
trol card "tells" the computer the number of co
lumns of data in the two-dimensional data matrix 
and the number of items in each column. 

This control card, along with a completely free 
form title card and data cards punched one item per 
card (while reading the data table columnwise), 
allows the student and researcher to process data 
with a minimum of instruction. 
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DISSATISFACTIONS WITH EXISTENT 
COMPUTER PROGRAM LIBRARIES 

The main difficulties associated with extensive 
classroom use of programs available through such 
organizations as SHARE, the IBM KWIC INDEX, 
the listings in Technometrics, etc., arise from the 
fact that the programs have been written by so 
many different people-people with rather diverse 
backgrounds and training and with, of course, dif
ferences in style. The three main problems that 
evolve are: 

1. It is often difficult to know exactly what 
computations and analyses are being used 
in any given program without actually 
sending for the program and its associated 
documentation. 

2. One must learn a rather large variety of, at 
times, quite complex data input and con
trol card arrangements. 

3. The symbolism and terminology used in the 
computer output is usually somewhat dif
ferent from that used in the statistics 
course being given, or in the reference text 
usually used by the research worker. At 
times a major problem of the user is the 
determination of exactly what the program 
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writer meant by certain terms used in la
beling or describing the output. 

The principal difficulties then revolve around the 
large amount of effort needed to get programs to 
run, to get "into" the computer, and the effort 
needed to understand fully what has come out. 

We believe that the library to be described goes a 
long way toward solving that problem. It solves the 
communication problem by building a program lib
rary around a standard statistics text-in this case 
the Snedecor, used in our course in Design and 
Analysis of Experiments. 

THE SNEDECOR SERIES - A PROGRAM 
LIBRARY 

The prospective user of computer library pro
grams typically asks the following questions: 

1. What are the calculations performed by any 
particular available program? 

2. What answers will be provided? 
3. In what form will the answers appear; that 

is, what analysis technique will be used to 
portray the relationship existant in the 
data? 

4. How do I use the program; that is, how do 
I prepare control cards and data cards? 

All programs in the library are given a name in
cluding the appropriate Snedecor page listing; for 
example, SNEDECOR 122-126, Linear Regression. 
Therefore questions (l), (2), and (3) can be, and 
usually are, answered by simply referring the pros
pective user to the appropriate discussion in the 
Snedecor text. 

When a student or researcher asks whether there 
is a program in the library that will do some partic
ular statistical computation we ask whether such 
computation is described in the Snedecor text and 
where. Should he say, on page 160, we simply 
check the library listing. If there is a SNEDECOR 
160 program listed, we can answer his query with a 
simple affirmative. When he asks for a description 
of the computation and output we simply state that 
all the answers shown on page 160 will be provided 
and each answer will be labeled with the actual 
wording used by Snedecor. Additionally, it is point
ed out that the use and significance of each answer 
provided is discussed in Snedecor. Further discus
sion can be provided in the classroom and in the 
office. 

Through these procedures the amount of time 
taken up by program writer-user, or library admin
istrater-user, discussion and questioning is held to a 
minimum, encouraging, thereby ,mutual confidence 
in the system. 

The fourth question takes a little longer to an
swer. Input data decks contain one Title card, one 
Control card, and Data cards containing one data 
item per card. 

The Title card can contain any identification in
formation desired in any or all of its 80 columns. 
This information will print on each new page of 
output. 

Example: 

MEAN SYSTOLIC BLOOD PRESSURE OF 
58 WOMEN IN 10-YEAR AGE CLASSES 

The Control card contains a packed sequence 
of three-digit numbers which tell the computer: (1) 
how many columns of data there are in the data ta
ble, and (2) how many items there are in each 
column of the data table. 

That is, the first three-digit number on the Con
trol card specifies the number of columns of data 
there are in the data set used. Then, if all columns 
have the same number of items, the second three
digit number on the Control card specifies that 
equal columns length. 

Example: 

002005 
These numbers punched in the first 6 columns of 
the Control card indicate that there are 2 columns 
of data with 5 items in each column. 

Should each column in the data set have a differ
ent number of items, the second three-digit number 
of the Control card specifies the number of items in 
the first column of the variable length columnar 
data table, the third three-digit number on the Con
trol card shows how many items there are in the 
second column of data, and so on, until all column 
lengths are specified. 

Example: 

006030124090134070009 
These numbers punched in the first 21 columns of 
the Control card indicate that there are 6 columns 
of data with 30 items in the first column of data, 
124 items in the second data column, 90 items in 
the third column, 134 in the fourth, 70 in the fifth, 
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and 9 in the sixth column of data in the two-dimen
sional data table. 

In the Data cards the data items are· punched one 
item per card, with a decimal point included, any
where in the first 10 columns of each card. The 
data is punched and input to the computer column
wise. That is, the first column of the data table (as 
set up in the examples in the Snedecor text) is 
punched and input from top to bottom first, then 
the second column of data is punched and input 
from top to bottom next, and so on, until all data 
columns are so fed into the computer. 

Any constants and, parameters required are then 
added to the data input deck on separate trailing 
cards similarly punched, i.e., one item per card, 
with included decimal point, anywhere in the first 
1 0 columns of the card. 

This type of data input deck format-Title card, 
Control card, and one-item-per-card Data cards-is 
the only one used by beginners and casual users. 
"(An across-the-card-punching-of-data, with row
wise reading, option is offered. There is no need, 
incidentally, to "tell" the computer that the data is 
coming in row-wise-the computer senses this by 
itself.) 

This one package provides input to every pro
gram in the library. Consequently, once the student 
or researcher has successfully prepared one input 
deck he knows how to gain access to all of the other 
programs in the library. 

With the input simplification and standardization 
problem solved, attention was next given to produc
tion of clear, easily understood, and specifically ref
erenced output. 

The first item printed out by the computer is the 
descriptive information the user punched in the Ti
tle card. All of it is presented. (See Item A in the 
example of computer output shown in Fig. 1.) 

Next, the title of the library program, including 
the Snedecor page reference, is printed. (See Item B 
in Fig. 1.) 

Thirdly, a paragraph listing of the items put out 
is provided. This information is especially useful 
when the reference text isn't handy. (See Item C in 
the figure.) 

The paragraph listing is followed by a labeled 
multi column table of the actual data input. This ta
ble is used by the student or researcher to check his 
data deck punching. He knows exactly what data 

MEAN SYSTOLIC BLOOD PRESSURE OF 58 WOMEN IN 10-YEAR AGE CLASSES 

SNEDECOR 122-126 LINEAR REGRESSION ANALYSIS 

THIS PROGRAM COMPUTES THE MEAN OF THE X VALUES, 
THE MEAN OF THE Y VALUES, THE A TERM, THE B TERM, 
THE SAMPLE STANDARD DEVIATION FROM REGRESSION, 
THE SAMPLE STD. DEV. OF HiE REGRESSION COEFFICIENT, 
THE T VALUE, THE ESTIMATED Y-S, AND THE DIFFERENCES 
BETWEEN THE ESTIMATED Y-S AND THE OBSERVED V-So 

, THE DATA USED IN THIS PROGRAM IS AS FOLLOWS 

X VALUES 

35.000 
45.000 
55.000 
65.000 
75.000 

Y VALUES 

114.000 
124.000 
143.000 
158.000 
166.000 

REGRESSION ANALYSIS 

THE MEAN ,OF THE X VALUES IS 

THE MEAN OF THE Y VALUES IS 

THE VALUE OF THE A TERM IS 

THE VALUE OF THE B TERM IS 

THE SAMPLE ST8. DEV. FROM REGRESSION IS 

THE SAMPLE STD. DEV. OF THE REGR. COEFF. IS 

THE T VALUE IS 

55.000 

141.000 

65.000 

1.380 

3.245 

.102 

13.446 

x y ESTIMATED Y DEVIATION 

35.000 114.000 113.400 .600 
45.000 124.000 127.200 -3.200 
55.000 143.000 141.000 2.000 
65.000 158.000 154.800 3.200 
75.000 166.000 168.600 -2.600 

Figure 1. An example of computer output. 

(A) 

(8) 

(C) 

(0) 

(E) 

(F) 

was used in the calculations performed. (See Item 
D in the figure.) 

Then, single number output of calculated statis
tics, along with sentence-like identification of each 
type of statistic, is provided. Here care is taken to 
use only those words used in the reference text, the 
Snedecor. (See Item E in Fig. 1.) 

Lastly, tabular output, if pertinent, is presented. 
Again, the arrangements in the Snedecor text exam
ples are followed as closely as it is possible to do so 
on a computer printer. (See Item F in the figure.) 

EXPERIENCE AT THE UNIVERSITY OF 
RHODE ISLAND 

In the two years that we have been using this 
computer-programs library significant progress has 
been made towards reshaping our teaching and re
search consulting activities. 

We can now offer a statistics course, taken by 
upper division and graduate students from many 
disciplines, in which the student moves much more 
quickly than he has in the past to quantitative em
pirical research in some field of his own interest, or 
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to the analysis of data gathered by others in such 
research. 

And when outside researchers come for analysis 
suggestions or advice, we can suggest analytic ap
proaches which will be implemented because calcu
lations can so readily be accomplished at the com
puter lab. 

We have reduced to a minimum the classroom 
time spent on those routine calculations exercises 
that often deaden the interest of beginning statistics 
students. (These are learned by doing simple home
work problems.) 

In the classroom there is more time, now, for ex
tensive discussion of research in general, and of 
quantitative empirical research in particular. There 
is much more time to exemplify these by illustrative 
discussion of the proposals submitted by the stu
dents and by analysis of the finished projects sub
mitted. 

Still more importantly, we make it possible for 
the student to look at more problems more ways. It 
has been our experience that once students begin to 
use the program library they will run, say, a half 
dozen regressions at the same time, trying out dif
ferent sets of independent variables, trying perhaps 
different types of equations, and even, at times, at
tacking the same questions and research projects 
with several different statistical techniques. 

There are peripheral, but nonetheless important, 
benefits: 

1. Students get started on their research proj
ects much more quickly. There is no long 
period of hesitation while awaiting confi
dence in computational skills. 

2. Research results can be analyzed with the 
confidence that the arithmetic is correct. 

3. The student gets away from the lack of 
realism inherent in small, round numbered, 
statistically "clean" problems. He gets deep
ly involved in most of the real-life prob
lems of empirical research. 

4. It is possible to introduce statistical tech
niques not usually presented in introducto
ry courses. It is possible to illustrate and 
use curvilinear regression, multiple regres
sion, covariance analysis, two and three 
way analysis of variance and partial corre
lation. And data can be more often 
checked to see whether it meets the as
sumptions underlying the techniques used. 

Not the least benefit of the availability of a com
puter and an associated library of statistical pro
grams is the avoidance of the classic stance of the 
donkey between the two bales of hay. When the stu
dent asks which of two ways he should attack some 
statistical problem or research project we suggest 
that he do it both ways and see what happens. All 
that is required is that the data deck be submitted 
twice to the computer; or that the data deck be ma
chine-duplicated and submitted to as many pro
grams as the student wishes to try. When the ques
tion of whether apparently extraneous or unusual 
values should or should not be used is raised, we 
suggest that decks be submitted both ways, with and 
without the extreme values. The effect of extreme 
values can thereby be specified, presented openly, 
and clearly discussed for the consumer of the study. 

In summary, then, bringing the computer into the 
statistics course increases the likelihood of height
ening students' interest in the course, and, most 
importantly increases the probability of shifting the 
emphasis from historically distasteful "calculation" 
courses to the more exciting, more useful, and often 
more glamorous subject of empirical research. 

Such objectives are not terribly new. The pros
pects discussed above have been articulated before. 
What is new here is the method of implementation 
-a computer-program library that is quite easy to 
use-a library that makes it easy to "talk" to the 
computer. 

The library programs were, and are being, writ
ten by this author, assisted by one full-time gradu
ate assistant programmer using some specially de
signed program production techniques. 

We have also used "learning" and "full" program 
combinations in a start at having the computer act 
as a tutor. The covariance "learning" program, for 
example, provides only gross computations such as 
sums of squares and cross products (exemplified at 
the top of page 395 in Snedecor). The student is 
then asked to use the output from this program to 
carry out those computations leading to the final 
covariance analysis-computations he can carry out 
most readily if he knows and understands the con
cepts of covariance analysis. He then obtains a 
feedback check on his computations by resubmit
ting his original data deck to the "full" program. 

Eventually we hope to provide error analysis in 
"tutorial" programs which will check hand-comput
ed homework problem answers submitted on 
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punched cards. When this is done, the computer 
will act so like a tutor as to obviate the need of 
apostrophication of the word "learning" when de
scribing the programs. 

In any case we have, as one student recently re
marked, "opened a whole new world" to the student 
-computerized empirical quantitative research. 

Fully as importantly, though, we now have more 
adequate instruments for attacking and remedying a 
fundamental weakness in our students' backgrounds 

-their inability to frame and attempt to answer 
questions, especially those questions whose answer
ing can lead to greater objective achievement in 
many areas. 
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TRAINING FOR THE NO. 1 ESS 

Matthew Raspanti 
Bell Telephone Laboratories, Inc. 

Holmdel, New Jersey 

INTRODUCTION 

The first installation of the No. 1 Electronic 
Switching System! (No. 1 ESS), a stored-program 
electronic telephone switching system developed by 
Bell Telephone Laboratories, started commercial 
operation in Succasunna, New Jersey, on May 30, 
1965. In the No.1 ESS, call processing and mainte
nance functions are performend under the control of 
a program of some 100,000 words stored in a read
only type of memory. The 44-bit instructions are 
executed by a central processor operating on a basic 
cycle time of 5.5 microseconds. A read-write type 
of memory with 24-bit word locations is used for 
the storage of transient information such as the dig
its dialed by a subscriber. 

The introduction of the No. 1 ESS has made it 
necessary to train Bell System personnel in an en
tirely new technology. To meet this need, the au
thor was charged with the responsibilty of organ
izing an 8-month school on the No.1 ESS to train 
a first group of 64 Bell System employees who 
would be involved in the installation or mainte
nance of the earlier central offices or in the training 
of personnel for subsequent installations. The 
school prerequisites were a highschool education 
and a knowledge of basic electricity and electronics 
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( typically provided by operating companies in a 
4-week course). 

In the early stages of planning for the school, 
considering the complexity of the No. 1 ESS and 
the electromechanical background of the class, it 
was recognized· that significant difficulties would be 
experienced by the trainees in understanding the 
basic concepts of program control and in visualiz
ing the overall operation of the system, particularly, 
its information-processing aspects. Also,. since the 
school and the debugging of the system would be 
conducted concurrently, the 64 trainees could be 
expected to have only limited access to the No. 1 
ESS for training purposes. In any case, it was felt 
that, because of its size, speed and complexity, the 
system itself would not be a suitable aid in the ini
tial stages of training. The design of WOSP a 
Word-Organized Stored-Program training aid, was 
then undertaken to achieve the following objec
tives: 

1. To develop a machine whose organization 
would conceptually parallel that of No. 1 
ESS. 

2. To provide full display of internal opera
tion so that the information being proc
essed, the operations being performed and 
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the flow of information would be directly 
apparent to the trainees. 

wasp is a miniature information-processing ma
chine capable of completely automatic operation 
under the control of a program stored in punched 
cards such as the one shown in Fig. 1. Up to 4 
cards can be used to provide 44 word locations of 

CDor)CDOCDOCDOCDO 
0.0000000000 
00000000U0® 
00000000000 
00000008000 
00000000000 
000~0000000 
O®®O®O®O®®O 
®O®®OOO®O®® 
@@OO@@).@@OOU 
@00@@@@0~U@ 
O@O@OOO®®®O 
C@@OOO@O@@O 
O@O@@@O@OO@ 
@O@O@@@O@@U 
OOOOO@OOOO@ 
O@O@OOO@@O@ 
ABC 0 E F G H K L 

Figure 1. Program card. 

17 bits each. Physically, wasp consist of two 
units connected by a cable: aT-cart (Fig. 2) and 
a display panel (Fig. 3). The T -cart contains all 
the memory and logic circuitry which consists mainly 
of 4 card readers, about 170 wire spring re
lays, 48 reed relays and about 1,000 diodes. The 
four card readers and all the manual controls are 
mounted on the top of the T-cart. Relays and other 
electromechanical devices have been used because 
of their low cost and their readily understandable 
nature. 

Five wasp machines have been built so far, one 
by Bell Telephone Laboratories and four by West
ern Electric Company. These machines have been 

used very successfully to introduce program control 
to several hundred trainees. Because of the opportu
nity it offers for truly "hands on" training, wasp 
could be a valuable aid for programming training of 
a more general-purpose nature. 

ORGANIZATION OF THE NO.1 ESS SCHOOL 

The No. 1 ESS school was set up as a special 
school to meet Bell System needs associated with 
the introduction of the No. 1 ESS. It was not in
tended to be a prototype for later schools to be con
ducted by the various telephone companies. 

The 35-week trainnig, which started in January 
1964, was conducted by a staff of 14 men, most of 
whom were also responsible for the preparation of 
maintenace manuals. Of the 14 men, 7 were Labo
ratories employees, 7 were on loan from Western 
Electric Company and 4 telephone companies. The 
64 trainees came from 10 Bell System companies. 
The average age was 32, the average length of ser
vice was 10 years. 

A typical day at the school included a 3-hour lec
ture delivered to all 64 trainees. During the remain
der of the day, the trainees were divided into four 
groups, each permanently assigned to a study room 
under the supervision of a member of the staff. On 
the average, two hours were devoted to studying, 
one hour to class discussions and one hour to prac
tice sessions in the school laboratory. 

The general outline of the 35-week course is de
scribed below. 

I-Fundamentals of Logic and Switching, 6 
days 

(Boolean notation, solid state logic, bi
nary arithmetic, functional blocks such as 
registers, counters, scanners, selectors, 
etc., memory systems, stored logic) 

II-Functional Description of No. 1 ESS, 4 
weeks 

(Principles of operation of the various 
system units, overall organization of the 
system program, handling of various types 
of telephone· calls, maintenance facilities) 
This part was paralleled by a series of 
sessions using wasP, as described later. 

III-Circuit Fundamentals, 2 weeks 
(Transistor circuits, pulse techniques, use 
of oscilloscopes, symbols and conventions 
of circuit drawings) 
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Figure 2. T-cart. 

IV-No. ) ESS Programming, 6 days 
(Detailed description of No. 1 ESS in
structions and their use in typical pro
gramming situations) 

V-Detailed Description of No.1 ESS Circuits, 
15~ weeks 

At the completion of each type of system 
unit, the associated installation test pro
gram was described at a functional level. 
A total of 6· days was devoted to these 
programs. 

VI-Function Description of Executive and 
Call Processing Programs, 5 Weeks 

VII-Functional Description of Maintenance Pro
grams-Administrative and Maintenance 
Procedures, 4 Weeks 

During the last months, in teams of 4 men, the 
trainees spent about 120 hours each in circuit labo
ratory sessions. In addition to four oscilloscopes, 
the equipment used in these sessions included sev
eral laboratory setups that had been excerpted di
rectly from various major system units to provide 
the trainees with a representative cross section of 
devices and printed-wiring boards. In addition, to
ward the end of the school, the trainees were given 
a 2-week field assignment at a number of No. 1 
ESS installation sites. 

Starting in October 1964, a second school for 69 
trainees was conducted for 32 weeks. The format 
followed was essentially similar to the one de
scribed for the first school. 
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Figure 3. Display panel (side supports on casters not shown). 

Classroom Use of wasp 

Two basically different approaches were adopted 
in the No. 1 ESS school with regard to hardware 
and software. The hardware was described in con
siderable detail to provide the necessary background 
for trouble-shooting. The software, on the other 
hand, was described mostly at a functional level ex
cept for a number of typical situations which were 
covered in complete detail. It was deemed neces
sary, however, to provide a good knowledge of pro
gram instructions and their use in order to develop, 
not a proficiency in programming, but a sound un
derstanding of system operation and an ability to 
delve into program details as circumstances might 
require. 

The most basic concepts of program control were 
introduced at the very end of Part I (Fundamentals 
of Logic and Switching). This was done with analo-

gies and with a simple paper machine having only 
four basic instructions. Use was then made of 
wasp in a series of 14 one-hour class discussion 
sessions, which were repeated for each of two 
groups of 32 trainees. A carefully selected sequence 
of sample instructions and programs of increasing 
complexity was presented on the machine in a 
step-by-step fashion, repeating backtracking as nec
essary. Each trainee had a copy of the programs on 
which he could readily follow the operation of the 
machine since the address of the instruction under 
execution is displayed in octal form. In this fash
ion, many concepts, features, and terms basic to 
No. 1 ESS were gradually presented in a manner 
that had immediate signifiance to the class. At the 
end of the demonstration sessions, the trainees were 
given an opportunity to write some programs and to 
debug them on the machine. Practically all trainees 
individually wrote and debugged two of the three 



TRAINING FOR THE NO. 1 ESS 969 

programs that were suggested for this purpose. Sev
eral successfully undertook the writing of the third 
program which entailed storing in memory eight 
numbers and then rearranging them in ascending 
order. 

During the wasp sessions and later during part 
IV (No. 1 ESS Programming), a symbolic notation 
of the type described in the appendix was exten
sively used to describe the execution of program 
instructions. This approach proved very successful, 
particularly in the second school, even though the 
trainees did not h:-:ve an extensive mathematical 
background. Most trainees found symbolic expres
sions more convenient than the often lengthy 
and awkward verbal descriptions of the convention
al programmer's manuals, which were also made 
available to them. 

wasp has been used so far in the two sessions of 
the No. 1 ESS school and in several sessions of a 
course organized by Western Electric Company for 
its installation people. The experience gained defi
nitely indicates that, with the aid of wasp, train
ees with no prior background can acquire in less 
time a more meaningful understanding of program
ming than with conventional methods. 

wasp HARDWARE 

Functionally, wasp consists of five major parts: 

1. the Program Store-a random-access read
only memory for storing the program, 

2. the Call Store-a random-access read-write 
memory for storing, updating, and retriev
ing data or control information, 

3. the Processor which executes, one at a 
time, the instructions in the Program 
Store, 

4. the input facilities, 
5. the output facilities. 

Program Store 

The Program Store consists of 4 motor-driven 
Hickok Cardmatic card readers combined with a 
44 X 17 diode matrix to provide random access to 
anyone of 44 word locations of 17 bits each. Each 
card reader contains an 11 X 17 array of switches, 
one for each hole position on a card of the type 
shown in Fig. 1. When a card is inserted into a 
card reader, it causes the switches to remain open 

where holes have been punched and to be closed 
where no holes have been punched. 

The program memory described, beside being 
conceptually analgous to the program memory of 
the No. 1 ESS, offers the advantage of being easily 
and cheaply alterable in the classroom. 

Call Store 

The Call Store consists of an 8 X 6 array of reed 
relays with controls to provide random access to 8 
memory lo~ations of 6 bits each for either reading 
or writing. 

Processor 

The Processor, whose internal block diagram is 
fully depicted on the display panel (Fig. 3), con
tains: 

( a) facilities for communicating with the pro
gram store and the call store, 

(b) facilities for decoding and executing indi
vidual program instructions, and for deter
mining the next program address, 

( c) a number of 6-bit registers for detecting 
inputs, for controlling outputs or for 
general-purpose storage of information, 

(d) facilities for performing arithmetic addi
tions and logical operations (logical prod
uct, logical union, exclusive aR, comple
mentation, and circular shift). The 6-bit 
words to be operated on may be stored 
in registers or in call store locations. 

Regardless of type, the execution of an instruc
tion requires a single machine cycle consisting of 
four clock phases. Five different modes of opera
tion are available: 

(a) Instructions are executed at the rate of 
two per second. 

(b) Instructions are executed at the rate of 
one per second. 

( c) Each instruction is . executed during a 1-
second interval. Upon completing the exe
cution, the machine stops and waits for a 
command from the operator to proceed. 
When given this command through a cord 
switch, wasp proceeds to execute the 
next instruction, upon completion of which 
it stops as before. 
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( d) Instructions are executed with the clock 
under the control of the cord switch. Thus, 
the duration of each of the four clock 
phases is under the direct control of 
the instructor or trainee operating the 
machine. 

( e) In this mode, 17 toggle switches on the 
T -cart top panel are used for the manual 
setting of the instruction to be executed. 
The control of the clock is as in (d) above. 

At any time during the execution of a program, 
the machine can be stopped at the completion of 
the instruction in progress; if desired, ,a different 
mode of operation may be selected before operation 
is resumed. Thus, for tutorial or testing purposes, 
the operation of the machine may be followed at 
different levels of detail. 

Output Facilities 

The OUTPUT section in the upper right corner 
of the display panel is a 6 X 2 array of windows and 
lamps. Through a slot, a transparent sheet with ap
propriate legends can be placed in front of the win
dows so that, when the lamp behind a particular 
window is lighted, a message is presented by 
WOSP. By means of appropriate display instruc
tions, the programmer can request that certain 
OUTPUT windows be placed under the control of 
register X, Y or Z. The 6 windows on the left can 
be controlled by the 6 bits of register X; of the 6 
windows on the right, 3 are controlled by the right 
half of register Y, 3 by the left half of register Z. 

In the upper center portion of the display panel, 
the two units designated LLN (Line Link Net
work) and TLN (Trunk Link Network) make up 
the network display. This display is used as an out
put for programs processing simulated telephone 
calls through an elementary switching network. As 
a "call" progresses, approximate paths are displayed 
through the line link network and trunk link network. 
By means of appropriate network instructions, the 
programmer can request that certain network paths 
be illuminated under the control of register X, Y, or 
Z. Figure 4 shows the association between the net
work paths and the bits of registers X, Y and Z. 

I nput Facilities 

In one mode of operation, WOSP has 12 inputs 
or scan points that can be independently controlled 

by means of 12 keys on the top panel of the T -cart. 
These keys are labeled SCOO through SC05 and 
SCI0 through SCI5. All inputs are detected inter
nally through two' 6-bit scanner registers, SCO and 
SCI. The bits of registers SCO and SCI can be dis
played by lamps in the 12 windows of the INPUT 
unit in the upper left of the display panel. A trans
parent sheet can be placed in front of the windows 
to indicate by means of appropriate legends the sig
nificance of the inputs for the particular program 
that is controlling the machine. 

In another mode of operation, WOSP has only 
six scan points that can be independently controlled 
by means of the six keys SCOO through SC05. Of 
these, keys SCOO through SC03 control the state of 
the four telephone "lines" A, B, C, and D connect
ed to the network (Fig. 3). There are six more scan 
points that are controlled by keys SCOO through 
SC03 via paths established through the network. 
The six scan points are associated with the six net
work terminals to the circuits labeled JCTR (Junc
tor Circuit), AUD (Audible Tone Circuit), OPR 
(Operator Trunk), CDPR (Customer Dial Pulse 
Receiver) and RNG (Ringing Circuit). For exam
ple, at the scan point associated with the CDPR, it 
is possible to detect the state of whichever of the 
four lines A, B, C, or D is connected to the CDPR 
via the network. Figure 4 shows the association be
tween the bits of registers SCQ and SCI and the 
scan points provided for the network terminals. 

The Program Store, the Call Store, the Processor, 
the Line Link Network and the Trunk Link Net
work have direct conceptual counterparts in the No. 
1 ESS. Although speed, capacity and logical com
plexity are vastly different, WOSP is fairly repre
sentative of the overall organization and operation 
of No. 1 ESS, particularly within the Processor. 

BASIC TYPES OF INSTRUCTIONS 

The 17 bits that make up an instruction can be 
divided as follows: 

( a) The 11 most significant bits specify the 
operation to be performed, including cer
tain variations that can be optionally 
requested by the programmer. 

(b) The remaining 6 bits, referred to as the 
data-address (DA) part of the instruction, 
usually specify data to be operated on, or 
the address of an instruction or of a data 
word. 
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Figure 4. Intput/ output assignments. 

An instruction in which the programmer has 
m,ade use of the indexing option is executed using 
an effective DA field obtained by adding the con
tents of the DA field and those of a specified index 
register. 

Let W represent the effective DA field. Also, let 
M represent the memory (call store) location speci
fied by W. The types of instructions available in 
wasp can then be broadly described as follows: 

1. W-to-Register-Move W into a specified 
register. 

*2. W-to-Memory-Move W into a specified 
call store location. 

3. Register-to-Memory-Move the contents 
of a specified register into M. 

5. Add (Subtract)-
( a) Add (subtract) W to (from) the 

contents of accumulator register K 
and store· the result in K. 

(b) Same as 5 (a) using the contents 
of M instead of W. 

6. Logical Operations-
( a) Determine the logical product 
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(AND) of Wand the contents of 
register K and store the result in 
K. 

(b) Same as 6 ( a) using the contents of 
M instead of W. 

(c) Same as 6(a) and 6(b) for the 
operations of logical union (OR) 
and exclusive OR. 

7. Shift-
( a) Shift the contents of register K to 

the left (or right) by 1 or 2 posi
tions. 

(b) Rotate the contents of register K 
to the left (or right) by 1 or 2 
positions. 

*8. Output Control-Control the network dis
play or the OUTPUT display. 

9. Unconditional Transfer-Transfer to pro
gram address W. If specified, remove part 
or all of a network or OUTPUT display. 

10. Conditional Transfers-
( * a) Transfer to program address W if 

a specified bit of register K is o. 
(b) Transfer to program address W if, 

for the result of some previously 
performed operation, some speci
fied condition is satisfied by the 
sign S (= 1 if the result is nega
tive ) and/or the homogeneity H 
( = 1 if the bits of the result are all 
equal to 0 or all equal to 1). 

Examples of transfer conditions in terms of S 
and/or Hare: 

P Plus S=O 
M Minus S = 1 
AZ Arithmetic zero H = 1 

(All zeros or all 
ones) 

AU Arithmetic "unzero" H=O 
LZ Logical zero S = 0 and H = 1 

(all zeros) 
LU Logical "unzero" S = 1 or H= 0 
LE Less than or equal to S = 1 or H = 1 

arithmetic zero 
GE Greater than or s=o or H=l 

equal to arithmetic 
zero 

The instructions described above have direct 
counterparts in the instruction list of No. 1 ESS ex
cept for the items marked by an asterisk. (There 

are several other types of instructions in No. lESS 
of a general purpose nature or to control input, out
put, maintenance and other specialized functions.) 

In addition to indexing, the programmer can 
avail himself of one or more of the following op
tions. 

C Option (Complementing). When this option 
is used, a data word is complemented before under
going some arithmetic or logical operation. 

PL Option (Product Masking). When this op
tion is used, a data word is ANDed with the con
tents of register L. Some unwanted bits can thus be 
masked out before some logical or arithmetic oper
ation is performed. 

EL Option (Insertion). At times, it is necessary 
to insert information in some bit positions of a call 
store location without affecting in any way the re
maining bit positions. For this reason, instructions 
for writing into the Call Store include as an option 
the insertion of a word A into a location B through 
a mask m. In each bit position where m has a I, the 
bit of A replaces the bit initially in B. In each bit 
position where m has a 0, the bit initially in B re
mains unchanged. The mask m is provided by regis
ter L. 

] Option. Whenever a transfer to some address 
X is specified at some address P, the programmer 
has the option of requesting that address P + 1 be 
saved in the J register. Thus, if the transfer is made 
to a subroutine, the use of the J option makes it 
possible to request at the end of the subroutine that 
the program return (jump back) to P + 1. 

A complete description of the program instruc
tions and their options is given in the Appendix in 
symbolic form. 

ILLUSTRATIVE PROGRAMS 

Call Processing Program 

A 44-word program has been written to process 
"telephone calls" originated by anyone of the four 
lines A, B, C or D (Fig. 4). Line A or B may call 
C or D and vice versa. The "directory numbers" of 
lines A, B, C and D are I, 2, 3 and 4 respectively. 
Line changes associated with originations, dial 
pulses and disconnects are generated by manipu
lating keys SCOO through SC03 for lines A, B, C 
and D respectively. For instance, to simulate B call
ing D, key SCOI first is turned on to originate the 
call, then is turned off and on four times to "dial" 
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D's directory number and finally is turned off to 
disconnect. Only one call can be connected at any 
time. 

The program performs the following functions: 

1. By scanning periodically the four lines, 
identify which line, if any, has originated a 
call. 

2. Connect the calling line through LLN and 
TLN to the customer dial pulse receiver 
(CDPR). 

3. By scanning periodically the CDPR, detect 
and count the dial pulses generated by the 
calling line. 

4. Recognize the completion of the single di
git dialed. 

5. Through the LLN and TLN, connect the 
calling line and the called line to A UD and 
RNG respectively. (In a real situation, 
AUD would return an audible tone to the 
calling line, RNG would apply ringing to 
the called line.) 

6. By scanning RNG and AUD, detect an an
swer by the. called line or an abandon by 
the calling line. 

7. If the calling line abandons, release the 
network connections and start scanning 
again for an origination. 

8. If the called line answers, release the net
work connections previously set up. 
Through the LLN establish a talking con
nection between the calling and called lines 
via the junctor. 

9. By scanning both sides of the junctor, de
tect when either of the two lines discon
nects. Release the network connections and 
start scanning again for an origination. 

Two words in call store are used to process a 
call, see Fig. 4. Bit 0 of word 0 is used as a last 
look (LL) bit to r~cord the previously observed 
state of the scan point for CDPR. Bits 1, 2 and 3 
are used as a timing counter which is recycled 
whenever a dial change is detected at CDPR and is 
incremented whenever no dial change is detected at 
CDPR. Only after the completion of dialing will 
the counter be incremented until bit 3 becomes 1. 

Call store word 1 is used as a pulse counter. Ini
tially, bit 0 is made a 1. Whenever a dial change 
from 0 to 1 is detected, the contents of the pulse 
counter are rotated to the right by one position. At 
the completion of dialing, the pulse counter will 

have a 1 in bit position 5, 4, 3, or 2 depending on 
whether the dialed digit was 1, 2, 3 or 4 respective-

Figure 5 shows that part of the program that con
trols the detection of dial changes, the counting of 
dial pulses and the timing to detect dialing comple
tion. The program reaches octal address 14 after an 
originating line has been identified and. connected 
to the CDPR through the LLN and the TLN. 

For each instruction in Fig. 5, the first line 
shows the octal address and the instruction itself in 
symbolic form. The second line describes symboli
cally the processing actions caused by the instruc
tion. The following notation has been used here: 

COMP(X) 
AND(X,Y) 
OR(X,Y) 
EXCL.OR(X,Y) 

X~Y 

M1 
KO 

= Complement of X 
= Logical product of X and Y 
= Logical union of X and Y 
= Exclusive OR combination 

of X and Y 
= X is moved into Y 
= Call store location # 1 
= Bit 0 of register K 

The intent of each instruction is explained after its 
symbolic description. 

Call Store Test Program 

This program (Fig. 6) is representative of some 
of the techniques used in testing the No. 1 ESS. Its 
purpose is to test the ability to read and write prop
erly at each of the eight memory locations of the 
call store. The operator can set up any two 6-bit 
words SCO and SCIon the 12 input keys of the T
cart. Test words SCO and SCI are alternately copied 
into the call store so that SCO is written into loca
tions 0, 2, 4, and 6 and SCI is written into loca
tions 1, 3, 5 and 7. Upon completion of this load
ing stage, the test proper starts. The contents of the 
call store locations are read out one at a time and 
compared with the appropriate test words. When
ever a discrepancy is found between the word from 
the call store and the associated test word, the ma
chine stops and gives an OUTPUT display to indi
cate that a failure has been detected. Note that the 
bites) at fault can be precisely pinpointed since 
both the word read out and its address are shown 
on the display panel. The operator instructs the ma
chine to resume the testing by pressing the cord 
switch. When the last call store location has been 
tested, the machine stops and gives an OUTPUT 
display to indicate that the test has been completed. 
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(14) 

(15) 

(16) 

(17) 

(20) 

(21) 

(22) 

(23) 

WMI 000 001 
000 OOl-Ml 

Initialize pulse counter in 
Ml (Pulses will be counted 
by rotating the 1 bit to the 
right by one position for 
every pulse dialed) 

WMO 000 001 
000 001_ MO 

Reset the timer and write 1 
in Last Look (LL) bit in MO 

WK O,SCI 
(0 + SCI) - K 

Read scan point CDPR in SCI 
and store in K 

XMK 0 
EXCL. OR(MO,K)-K 

Excl. OR combination of Last 
Look bit in MO and scan pt. 
CDPR makes KO equal to 1 
whenever there is a dial change 

TKBO 31 
Tra. to 31 if KO=O 

Tra. occurs if no dial change 
has occurred 

WMO 0 
0--+ MO 

Reset the timer in MO since a 
dial change was detected. 
Reset the Last Look bit for 
a possible down change. 

WJ 0, SCI 
(O+SCl) -+ J 

Read scan pt. CDPR in SCI and 
store in J 

PWK O,J 
AND (O+J ,K) ..... K 

AND combination of scan pt. 
CDPR and change bit in KO 
makes KO equal to 1 if dial 
change was upMard 

(24) 

(25) 

(26) 

(27) 

(31) 

(32) 

(34) 

TKBO 16 
Tra. to 16 if KO=O 

Tra. occurs if dial change 
was down (Last Look bit was 
changed to 0 at step 21) 

MK 1 
MI-K 

Read'Ml into K to increment 
the pulse counter 

QC 
Rotate K to the right by 
one position 

KM 1 
K-+Ml 

Store incremented pulse 
count back in Ml 

T 15 
Tra. to 15 

MK 0 
MO-+K 

Since no dial change has 
occurred, read MO into K 
to increment the dialing 
completion timer 

AWK 2 
(2+K)_K 

The timer is incremented by 
adding 2 so as not to affect 
the Last Look bit 

KM 0 
K .... MO 

The incremented time count 
is stored in MO 

TKB~ 16 
Tra. to 16 if K3=0 

T~a. occurs as long as the 
time count is less than 4 

Figure 5. Telephone call processing program. 
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APPENDIX 

A SYMBOLIC DESCRIPTION OF WOSP 
ORDERS 

The general format of WOSP orders is similar to 
that of No.1 ESS orders. It consists of an operation 

. field, which specifies the type of processing action 
to be performed, and a variable field, which is di
vided into three subfields: DA, R, and LCJ. The 
DA subfield specifies a number to be interpreted as 
data or as an address. The R subfield specifies the 
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(00) START WX 111 000 Initialize index register X to -7 for loading. 
(01) UWDYS 000 011 Stop and display the message "TEST COMPLETED-SET 

KEYS." 
(02) TUDOI0 LOAD Remove the display and transfer to address (03). 
(03) LOAD SCOM 7,X Move test word from SCO to call store. 
(04) WX 1,X Increment index register X. 
(05) SC1M 7,X Move test word from SCI to call store. 
(06) WX 1,X Increment index register X. 
(07) TCM LOAD Check for completion of loading. Transfer to (03) if X is 

still negative. 
(10) WX 111 000 Initialize index register X to - 7 for testing. 
(11) TEST WK 0, SCO Move test word from SCO to K. 
(12) CMK 7,X Compare test word with memory readout. 
(13) TCAU ERROR, ,J Check for failure. Transfer to (23) if memory readout =F 

test word. Because of the J option, return address (14) 
is stored in register J. 

(14) WX I,X Increment index register X. 
(15) WK O,SCI Move test word from SCI to K. 
(16) CMK 7,X Compare test word and memory readout. 
(17) TCAU ERROR, ,J Check for failure. Transfer to (23) if memory readout =F 

test word. Because of the J option, return address (20) 
is· saved in register J. 

(20) WX I,X Increment index register X. 
(21) TCM TEST Check for completion of test. Transfer to (11) if X is still 

negative. 
(22) T START Return to START. 
(23) ERROR UWDYS 000 100 Stop. Display the message "FAILURE." 
(24) TUDOI0 O,J Remove the message display and resume testing at either 

(14) or (20). 

Figure 6. Call store test program. 

register to be us eo when indexing is called for. The 
LCJ subfield is used to specify program options 
other than indexing: product masking (PL), inser
tion (EL), complement (C), and save return ad
dress (J). 

A complete symbolic description of all WOSP 
orders is given in Fig. 7. Particularly for complex 
machine languages such as that of No. 1 ESS, the 
type of symbolic notation used in Fig. 7 is very 
convenient for a description of instruction execu
tion that is at the same time very precise and con
cise. 

Definitions 

D Contents of D A subfield 
R Contents of register specified by the 

R sub field 
W Effective DA subfield (= D+ R) 
M Contents of call store memory loca

tion identified by W 

X 
X' 

X+Y 
X-V 
X-Y 
X..LY 
XXV 
X/N 

X/,N 

X N 

X N 

X~Y 

Contents of register X 
Complement of binary word X 
Arithmetic sum of X and Y 
Arithmetic difference of X and Y 
Logical product of X and Y 
Logical union of X and Y 
Exclusive OR of X and Y 
Contents of register X shifted to the 
left of N bit positions. 
Contents of register X shifted to the 
right of N bit positions. 
Contents of register X rotated to the 
left of N bit positions. 
Contents of X rotated to the right 
by N bit positions. 
Word X replaces the .contents of 
location Y. If X represents the con
tents of some register or memory 
location, it remains unchanged in its 
initial location. 
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INSTRUCTION FORMATS WITH OPTIONI EXECUTION D£ICRIPTION 

N PWDX D, Rz E 
T 
W PWDXS D, Rz 0 
R 
K PWNX D, Rz 
a 
~ UWDX D, Rz 
S r UWDXS D, Rz 
A 
Y UWNX D, Rz 
1 H 
~ 0 D 
F H2 

/ 02 D 
~ HC 
T QC D 
~ H2C 
E Q2C D 

(V, Z I SAME AS PWDX. ALSO, STOP 

(V, ZI IFi=I:D'~+X,CF\GIVE NET-
IFi=O: D+X CF JWORKDlSPlAY 

(Y, Z) IFi=I:D.LRz+X,CF\GIVE OUT-
IFi=O: D+X,CFJPUTDISPLAV 

(V,Z) 

(Y, Z) 

SAME AS UWDX, ALSO STOP 

IF i=I:DJ.~+X,CFl.GIVE NET
IF i=O: D -+X.CF J WORK DISPLAY 
K"I)~K CF 
K~ll'D -+ K CF 
K~2) -+ K CF 
[0.2J·0~K,CF 
KlIl) ~ K CF 
U'Il'D~K CF 
K1I2 )~K. CF 
K~ 2 ) . D -+ K CF 

rTM,LZ,LU,AZ, IF CF = P :...ft'W 
T TCP D, R, J AU.LE,GE) IF(CF=pHi=I):PAR+I~J 
R~=-~~---+~~~~IF~K~57=~O:~J+~W~~~~~ 
A TKB5 D, R,J (0,1,2,3,4) IF(K5=OHi=I):PAR+i~J 

NS TUNa,b,c D,R,J flW'IFj=I:PAR+I~J 
REMOVE NETWORK DISPLAY. NOTE I 
J+ W' IF j = 1= PAR + I ~ J 

F TUDa,b,c D, R, J REMM OUTPUT DISPLAY. NOTE I 
E~~~~~-4------~~~~~~==~~ 
R T D, R, J ..,. Wi IF j = I: PAR + I -+ J 

NOTE I. IF a = I REMOVE DISPLAY CONTROLLED BY X 
IF b = I REMOVE DISPLAY CONTROLLED BY Y 
IF c = I REMOVE DISPLAY CONTROLLED BV Z 

INSTRUCTION FORMATS WITH OPTIONS EXECUTION DESCRIPTION 

WX D, Ru PLC (J, K, L,Y, Z) [W'LP]C~ X, CF 
M 

(0,1,2,3, 
WM! 0 45._61 W-+ B, M7, CF 

0 

XM D, R. ~tg (SCO, SCI, lFe=O :J~'L~J,c-+ B, M, CF 
JKLYZ) IF e= l:xc·LJ,.B·~~B M,xc-+CF v 

MX D, R, PLC (J,K,L,Y,Z) M+B; [M'L"]c-+ X, CF 
E 

MC D, R, PLC M .... Bj[M·L"]C~ CF 

A ::~ D,R,PL K ± [W'LP] ~ K, CF D 
D ::~ D,R,PL M .... Bj K± [M·L,P] ~ K, CF 
~ 

C 
CWK D, R, PL K-[W'L"]-+ CF i 
CMK 0, R, PL K-[M'L"] ~ CF R 

E 

L PWK D, R, PLC K.[w,cT~ K, CF 

0 UWK D, R, PLC K.L [W· L"]"~ K, CF 

G 
XWK 0, R, PLC K8 [W'L"]C~K, CF 

I 

C PMK D, R, PLC M-+Bj K·[M·L"r~ K, CF 

A UMK 0, R, PLC M-+Bj K..L[M·l.!'r~K, CF 

L XMK 0, R, PLC M-+B; K8 [M'L"]C~ K, CF 

EE NO OPERATION 

R = SCO, x, J, K R1=SCO, SCI, X, Y, Z, J,K,L Rz = X, Y, Z, K 

Figure 7. Symbolic description of wasp orders. 

X~CF 

W 

IF a = I:B 

p,e,c,j 

The sign and homogeneity of word 
X determine the states of control 
( C) flip-flops Sand H respectively. 
Transfer to program store address 
W. 
If Boolean variable a is 1, then 
expression B applies. 
Boolean variable equal to 1 if the 
indexing option is used, that is, if 
a register is specified in the R sub
field. 
Boolean variables which are equal 
to 1 when options PL, EL, C, and 
J respectively are used. 
If p = 1, R· LP = R· L 
If p = 0, R· LP = R 
If c = 1, Xc = X' 
If c = 0, Xc = X 

CF = LZ The states of the control flip-flops S 
and H indicate a logical zero (LZ) 
condition (S = 0, H = 1). Simi
larly "CF = P" means that a plus 
(P) condition exists (S = 0). 

As an example, in Fig. 7 the entry 

WX D, Rl, PLC (1, K, L, Y, Z) 

serves to describe the set of similar orders WX, WJ, 
WK, WL, WY, and WZ. The execution description 
is given only for WX and is interpreted as follows: 

The result of indexing, W, possibly masked and 
possibly complemented is used to set the X register 
and the Sand H flip-flops. 

The LCJ subfield of an entry in· Fig. 7 names the 
available options (other than indexing) for the 
class of orders described by that entry. For exam
ple, PLC in the LCJ subfield indicates that only the 
options of product masking (PL) and complement
ing (C) are available. 

The orders grouped under the category Network 
and Display are the orders that selectively place the 
network display (LLN and TLN) or the OUTPUT 
display under the control of the X, Y, and regis
ters, after perforrrjng an optional AND or OR op
eration as described in the execution description. 
ANDing makes it possible to remove part of a dis
play previously established; 0 Ring makes it possible 
to add to a display previously established. 

As an example, consider 

PWNX 010010,K. 

Since the R subfield is not blank, i = 1. Following 
the execution description of Fig. 7, the logical prod
uct 01001 O;K = OK400K10 replaces the contents of 
the X register and sets the C flip-flops. Since X 
appears in the operation field, network paths 1, 3, 
6, 8, 13 and 17 (see Fig. 4) come under the control 
of bits 5, 4, 3, 2, 1 and 0 respectively of the X 
register. In this example, network paths 1, 6, 8, and 
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17 will not be· illuminated, network paths 3 and 13 
will be if bits X4 and Xl respectively are equal to 1. 

Once an area of the network display or the OUT
PUT display is placed under the control of the X, 
Y, or Z register, it remains under that control until 

removed therefrom by an order of the TUN or 
TUD type. An area of the network or OUTPUT 
display, when not under the control of its associated 
register, is all dark regardless of the state of the 
register. 





CASE: A PROGRAM FOR SIMULATION OF CONCEPT LEARNING 

Frank B. Baker 
Research and Development Center for Learning and Re-Education 

University of Wisconsin 
Madison, Wisconsin 

The Learning Research and Development Center 
of the University of Wisconsin is engaged in a long
term multifacet study of concept learning, supported 
by the U.S. Office of Education. The Concept At
tainment Simulation Experiment (CASE) is the 
facet of this overall effort which utilizes the technol
ogy of computer simultation as a vehicle for obtain
ing a better understanding of the psychological proc
esses involved in the learning of concepts. The 
long-range goal is the utilization of the insights 
thus obtained to improve classroom learning. The 
study of concept learnip.g has a long history within 
psychology and has received considerable attention 
in recent years due in part to the book by Bruner, 
Goodnow, and Austin, which delineated strategies 
for learning concepts. The experimental materials 
used by Bruner consisted of a finite universe of ob
jects each of which possessed n dimensions; and 
each dimension could assume k different values. A 
classification rule (a concept), consisting of a par
ticular combination of dimension values, parti
tioned the universe into two mutually exclusive 
sets. In a typical experiment a subject was shown an 
object which was an exemplar of the set defined by 
the concept and told his task was to ascertain the 
classification rule. In order to attain the concept 
the subject chose objects from the universe and the 
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experimenter indicated the set membership of the 
object chosen. The object selection-designation pro
cedure continued until the subject· could verbalize 
the correct classification rule and hence the concept 
had been attained. The experimental situation, the 
problem to be solved, and learning procedure in
volved appear reasonably simple and a number of 
persons have written programs to simulate this type 
learning experiment-Hunt and Hovland,2,3 Hunt,4 
Allen,5 Wickelgren,6 and Baker. The book by Hunt 
provides an excellent review of much of the psy
chological literature relevant to concept learning as 
well as a discussion of his own simulation program. 
Unfortunately the existing programs leave one with 
the disquieting feeling that although they attain 
concepts, little has been added to our understanding 
of the psychological processes involved in concept 
learning. Most of these programs are at best wa
tered-down algorithms and involve very little of 
psychological importance. Because of the shortcom
ings of the existing simulation programs a project 
was initiated to develop a program which hopefully 
will eventuate in something of psychological signif
icance. 

The basic approach was to use Bruner's notions 
about learning strategies, coupled with concepts re
garding the structure of behavior from the book by 
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Miller, Galanter, and Pribam9 to write a computer 
program which would attain concepts. This initial 
program based on semitheoretical grounds would 
then serve as a stepping-off point for a learning 
process on the part of the present author. 

A system for collecting data was established 
which consisted of a closed feedback loop, with the 
simulation program at one end and protocol gather
ing during experiments involving human learning at 
the other end. Within the computer program, cer
tain routines may be based upon a priori grounds or 
represent areas not clearly understood. In order to 
get better insights into such areas, questions are 
used during the protocol gathering which will elicit 
verbalizations relevant to those points. . Thus, the 
computer program guides the production of infor
mation within the protocol which is subsequently 
used to modify the program itself. By making an 
extremely close connection between the computer 
program development and the learning experiments 
with human subjects the hope is to obtain a better 
understanding of the psychological processes in
volved. Having set the broad context within which 
the project operates, let us next turn our attention 
to the actual computer program involved. , 

THE CASE PROGRAM 

Memory Structure 

During the early phases in the evolution of the 
CASE program it became obvious that one of the 
keys to the problem was an adequate representation 
of the structure of human memory. The psychologi
cal literature contains a considerable body of ma
terial related to memory and much of this was 
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studied to ascertain an appropriate structural form 
of memory. The result of this search was to design 
a memory consisting of three levels: Working mem
ory (WM), short-term memory (STM), and long
term memory (LTM). The working memory is a 
unit which serves two functions. First, it holds all 
information received from the external environment 
until it can be analyzed and re-coded for transmis
sion to a more permanent level of memory. Second, 
it serves as a buffer memory for holding informa
tion which is created within the subject and must 
be passed from one information-processing routine 
to another. In this buffer mode it provides certain 
higher-level routines with contextual information 
which is used to guide program flow. The short
term memory is semipermanent and retains informa
tion relevant to the current state in the learning of a 
particular concept. Short-term memory can receive 
inputs only from routines which re-code and trans
mit the contents of working memory or long-term 
memory. Long-term memory will contain informa
tion re-coded from short-term memory concerning 
concepts learned and how they were learned but at 
the present time only working memory and short
term memory have been programmed. Figure 1 il
lustrates the communication paths within the mem
ory structure. The only means of communication 
from STM and L TM to the external world is via 
the output channel. For example, the subject tells 
the experimenter which object he has selected via 
this channel but the experimenters designation of 
the set membership of the object is received by the 
subject via working memory. 

The internal structure of short-term memory con
sists of lists having a somewhat unusual IPL-V 
structure which has proven extremely useful. The 
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Figure 1. Communication paths within CASE memory structure. 
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structure employs two levels of attributes; the class 
attributes which represent a rather broad descrip
tion such as the permanent characteristics of an 
object; and specific attributes such as an object's 
serial position in the external environment, thus 
providing a detailed description within the class 
attribute. Table 1 illustrates a typical list within 
STM. The description list 9-0 describes M13, des-

Table 1. Typical memory listin short-term memory. 

M10 9-0 
EO 
E1 
E2 0 

9-0 0 EO 
Al 
VI 0 

9-1 

9-1 
Xl 
X2 0 

0 
A2 
V2 

V2 

9-2 

9-2 
Y2 
Y1 0 

0 
A3 Y2 9-3 0 
V3 o 9-3 0 

A4 
V4 
A5 
V5 0 

cription list 9-1 describes the symbol EO on M13. 
The description list 9-1 contains class attributes, 
such as A2, and its attribute value list V2, which is 
merely a storage device for symbols whose function 
is to hold a description list containing the specific 
attributes and their values (A4, V4: A5, V5). The 
value list of the class attribute is a push-down list 
whose top symbol always represents current infor
mation. 

Notice in Table 1 that the list structure is syme
trical in form to the upper left and lower right of 
the dotted line. The symmetry enables one to write 
simple routines which function for a module of 
memory regardless of the level at which the module 
occurs within the structure. There are four such 
basic memory routines which do all of the STM in
put and output: 

1. Remember a name. 
2. Remember something about that which has 

been named. 
3. Recall a name. 
4. Recall something about that which has 

been named. 

At the present time we have not attempted to in
clude LTM or to introduce forgetting or interfer
ence; however, we anticipate at some point building 
such mechanisms into the memory structure. 

Program Structure 

The CASE computer program has been designed 
with an expandable hierarchial structure whose 
depth depends upon the level of sophistication ob
tained in understanding the learning process. At the 
present time there are four levels, with each level 
being tested within the next higher level as an IPL
V list structure. The list structure representing the 
learning process is presented as input to a special 
interpreter,9 which executes the symbols in the 
structure and performs a number of housekeeping 
functions. The upper level (S) specifies what Brun
er et aF refer to asa strategy, and is a list of sym
bols which represent major procedures within a 
strategy. The next lower level is the procedure level 
(Z-D) which is a list of symbols representing the 
processes combined to accomplish a given proce
dure, such as searching the external environment for 
an object having certain characteristics. The next 
lower level (P-Q) consists of information-proc
essing routines written in IPL-V and is the lowest 
level that the program can manipulate at run time. 
The fourth level (R) consists of basic information 
processing modules coded in IPL-V which a pro
grammer can use to manually write new P-Q level 
routines. The R's are subroutines which do such 
things as compare, test for the presence or absence 
of information, etc. Within each level it is neces
sary to maintain a sharp distinction between rou
tines which perform operations (Z's and P's) and 
those which provide decision-making information 
(D's and Q's). It has also been found necessary to 
defer decision making upward to the next higher 
level for action. It should be noted, that all levels 
above the P-Q and R levels merely consist of sym
bols, hence one writes IPL-V only at the lowest lev
el-a fact which has many implications for how 
one studies the learning process. 
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In that the P-Q level routines are basic informa
tion-processing routines, they can be used in a wide 
variety of situations within the program where the 
processing is identical but the information, its 
source, and its disposition differ. Because of this 
characteristic of the P-Q level routines, one is faced 
with the problem. of how to use the same routine in 
a number of different contexts without developing a 
significant amount of situationally dependent IPL
V coding. The solution devised uses a pseudo code 
whose description list contains the inputs, outputs, 
and characteristics of the routine. The inputs to a 
routine are determined by a higher-level routine 
called a contexter which in the case of the P-Q level 
routines uses the contents of working memory to 
determine what the inputs to the processing routine 
should be for a given situation. Currently the out
puts are normally placed in working memory al
though other options are possible. Although we 
have not done so yet it appears feasible to put on 
the description list of the routine a specification of 
the kind of information processing the routine is 
capable of performing. Table 2 shows a P level rou
tine before and after the context program has func-

Table 2. Pseudo Code System. 

Before Context Program After Context Program 
P31 9-0 Pseudo 

routine P31 9-0 
P30 0 Executable 

routine P30 0 

9-0 0 9-0 0 
A7 Inputs A7 
V7 0 0 V7 MIl 
A8 Outputs M12 
V7 M10 A6 0 

A8 
V7 M1 0 

tioned. Once the inputs have been determined from 
the context, the routine is returned to the interpret
er for execution. Although it has not been done, the 
concept of context routines which operate at all lev
els within the program structure appears feasible 
and the· context routine at the highest level would 
be a plan to create plans such as suggested by Mill
er, Galanter and Pribam.8 

Case A1ark 3 A10d 1 

The preceding discussion indicates the develop
ment of what might be loosely described as a pro
gramminr; system rather than a unique computer 
program such as LT, EPAM, or the previous con
cept attainment programs. The inherent flexibility 
in the system makes it difficult to discuss the CASE 
program per se. Because of this difficulty, periodi
cally a particular configuration is set aside, given a 
mark and mod number, and documented. At the 
time this paper was written CASE Mark 3 Mod 1 
was the operational program which implemented 
what Bruner et aP called the conservative focusing 
strategy. The implementation of this strategy re
quired 9 routines at the Z-D level and 13 at the P
Q level. Table 3 lists some representative routines 
at these two program levels. 

Table 3. Representative Routines Currently 
Implemented. 

Procedure Level 
Zl Form criteria for choosing an object 
Z2 Find object in external environment meeting 

criteria 
D 1 Determine if concept should be offered 
Z4 React to class membership of object 

Process Level 
P3 Vary value of a dimension 
P6 Remember something about object named 
Q 1 Test for specific value of a given item of 

information 
P 12 Collect items having common attribute 

Fundamentally the program is still an algorithm 
as it very efficiently learns every concept attempted 
in a minimum number of object choices. Although 
it currently shares this fault with its published pred
ecessors, we feel its internal structure is more psy
chologically oriented and the potential for nonal
gorithmic behavior exists. 

SOME RETROSPECTS 

Program Characteristics 

When one reviews the history of the CASE pro
gram it becomes quite clear that a subtle process is 
in effect. Namely, as one's understanding of the 
learning process increases, the computer simulation 
program changes from routines which perform a 



CASE: A PROGRAM FOR SIMULATION OF CONCEPT LEARNING 983 

large block of the concept attainment process to a 
number of short routines which can be widely em
ployed. In the CASE program such a change has 
been dramatic at the P-Q level from Mark 1 Mod 
zero to Mark 3 Mod 1. The cynic will counter that 
we are merely learning how to code IPL-V but I do 
not believe this is the only basis, as the change has 
been effected primarily on psychological grounds 
rather than coding considerations. In fact, separate 
symbols· are used to designate routines which are 
the result of IPL-V rather than psychological con
siderations and the former routines are quite rare. 
The character of the subroutines in the CASE pro
gram have also changed from being highly specific 
to the Bruner type experimental situation to being 
reasonably independent of the experimental situa
tion. They are, however, dependent upon the basic 
memory structures defined earlier. The situationally 
dependent tasks still get performed but the comput
er program is problem specific at a higher level 
than was previously true. 

Outcomes of the Case Program 

There have been a number of outcomes of the 
CASE effort which are as follows: 

1. The hierarchial structure of the processing 
routines and what appears to be a parallel 
structure in context routines has led us into 
a continual search for logical units within 
the learning process. Behaviors which once 
seemed quite dissimilar have been decom
posed and found to share a number of bas
ic information processing. modules. As a 
result we are slowly acquiring a better un
derstanding of the psychological processes 
involved in concept learning. 

2. The development of the CASE program 
has generated ideas for classical psycholog
ical experiments in a number of areas as a 
result of problems arising during the devel
opment of certain subroutines. Topics such 
as the role of dominant dimensions in a 
subject's learning behavior and the lack of 
independence among dimensions in the 
Bruner experimental materials. have been 
elicited. It appears as though an important 
outcome of computer simulation is the 
generation of ideas which can be re
searched in the usual psychological experi
mental setting. 

3. A completely unexpected outcome has been 
that we rarely make a production run on 
the computer, a fact which seems anom
alous in a computer simulation project. 
What has happened is that enormous num
bers of man hours have been devoted to 
gathering and studying protocols, to the 
development of programming techniques in 
order to implement the next level of so
phistication within the system, and to 
analysis of the computer program itself. 
These activities plus the lack of variability 
in the learning behavior of the CASE pro
gram at this point in time have resulted in 
a relatively few production runs. 

CONCLUSIONS 

The CASE project has not been conceived as an 
effort which will produce immediate spectacular 
results, rather we view it as a slow developmental 
process. The memory structure, the program struc
ture, the interpreter, and the contexter are basic 
concepts which we feel will enable us to continu
ously improve the sophistication of the program as 
our understanding of the concept learning process 
improves. Although it is difficult to single out spe
cific accomplishments of great psychological impor
tance, a certain modicum of progress has been made 
along these lines. At the current time the computer 
program is primarily a medium for expressing and 
storing the insights and understandings of the con
cept learning process which we have acquired. Uhr10 

has previously indicated that psychological theories 
might be expressed in the form of computer pro
grams and our experience to date tends to substan
tiate this point of view. 
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INTRODUCTION 

It has been postulated that ferrite and thin film 
memories should have approximately the same ulti
mate speed limits.! For this to be true in the case of 
conventional toroids, it is clear that the storage ele
ment must be made smaller and the storage array 
made more compact with~ut increasing noise. 

In the past, techniques such as partial switching 
and two cores per bit2,3 have gone a long way to
ward reducing the time and energy associated with 
the switching of storage cores, and these combined 
with a word-organized storage array have enabled 
the technology to reach 0.5-microsecond cycles 
with core sizes of 0.020 inches inside diameter. At 
this point,.however, a number of problems were en
countered which became limiting factors when 
higher speeds were attempted. 

Ferrite . materials' development has resulted in 
very little progress in reducing the switching coeffi
cient of ferrite and there is little hope of reducing 
it, say by an o;der of magnitude, to make it com
parable with thin films. Therefore, the alternative is 
to increase the coercivity of the material to obtain 
faster coincident-current switching. With 20-mil 
cores this increases power dissipation in the drive 
system beyond anything achievable with economical 
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semiconductors. In addition, core heating reaches a 
point where reasonable temperature stability is dif
ficult to maintain. 

With bit densities of about 1000 bits per square 
inch, which is a typical density for 20-mil cores, 
the read, write, and digit wires can become exces
sively long for high-speed operation. Transmis
sion time then becomes a factor which is significant 
in the cycle. It also becomes necessary to terminate 
drive lines which increase the power and voltage 
requirements. Digit and sense wires are restricted to 
as few as 1000 bits in order to avoid excessive 
transient recovery times and noise pickup at faster 
speeds. In addition, the open wire, stacked plane 
structure, which is an outgrowth of low-bit densi
ties, presents cooling problems. It also has a form 
factor which maximizes the amount of cabling re
quired to the drive and sense circuits. 

The memory described in this paper incorporates 
a small, high:-coercivity core in a new array geom
etry which circumvents many of the problems 
which previously limited memo~y speeds. Repeti
tion rates of 2.66 megacycles have been achieved in 
a memory unit with a capacity of 8192 words of 72 
bits each. 

The access time with conventional SL T logic cir
cuits is 200 nanoseconds. This is achieved by using 
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a two-dimensional organization. To optimize 
word. drive and bit-sense circuit count, the memo
ry was organized as 2,048 words of 288 bits each. 
Consequently on each readout, 4 72-bit words are 
set into the data register, one of which is selected 
and routed to the memory bus. 

This paper discusses core operation and charac
teristics and the array, drive and sense systems; fi
nally it comments on the design necessary to in
crease the repitition rate to 4 megacycles. 

CORE CHARACTERISTICS 

The storage device used is a ferrite toroid, size 
7.5 X 12.3 X 2.5 mils. This core has typical coin
cident current squareness and is operated in a 

55 - 4 - 1090 NO.2 
I READ = I AMP 
'd READ = 500 nsec 

'r = 20 nsec 
'd SET = 90% - 90% 

TEMP = 40°C 

one-core-per-bit mode. The total magnetic time was 
designed to be 250 nanoseconds, including rise 
and fall transitions of the drive currents. With the 
core fired for a d~cthreshold of 250 milliamps, 
nearly full' switching is achieved over the range of 
drive currents used. 

The write operation is a "permit" type of selec
tion. A one is stored by a summation of write and 
bit currents and a zero is stored by applying only a 
write current. Figure 1 shows a d-c S curve and 
two narrow pulse S curves for a typical core, which 
illustrates this operation. The pulse width notations 
of 100 and 50 nanoseconds on the narrow pulse 
curves denote the pulse duration at the 90 percent 
points and, therefore, do not include the rise and 
fall times. Since 25-nanosecond transitions were 

0.2 ,-_-,-__ ,---_---, __ ---,-_-+,--_O_F,W_RIT_E_+_B-,IT_C_UR_RE_NT-.S.-_--.-_----. 
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~ 
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Figure 1. Flux versus set current. 

designed for the memory, these translate into 
widths of 150 nanoseconds and 100 nanoseconds, 
respectively, at the 10 percent points. The d-c S 
curve determines the maximum bit current ampli
tude. The bit current is limited to a maximum of 
about 250 milliamps because many bit pulses must 
not disturb the core. The 100-nanosecond S curve 
determines the maximum amplitude of the write 
word current. The write current must be kept below 
the threshold of the 100-nanosecond curve but it 
can exceed the d-c threshold4 because in a 2-di
mensional memory a core can be disturbed by only 
one write pulse before it is reset. The maximum is 
about 280 milliamps. 

The minimum readout current must be sufficient 
to completely reset the oore from a maximum flux 
state achievable in writing. With a 100-nano
second (at 10 percent points) readout pulse a 600-
milliamp pulse is required. 

The write current duration is made longer than 
the read current duration in order to incease out
puts by maximizing the amount of flux switched in 
the core. One to zero ratios greater than 4 to 1 were 
achieved under the "worst-case" sequence of 
pulses. Figure 2 shows typical output signals over a 
range of operating currents. The gray zone desig
nates the operating range of the memory for write 
and bit currents. 
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Figure 2. Constant voltage curves. 

ARRAY ORGANIZATION 

The array is best described by referring to Fig. 3. 
Each core is threaded by two wires, a word wire 
and a bit-sense wire, and assembled on IS-mil 
centers. To facilitate assembly, 9,216 cotes are as-

sembled at one time to form a matrix 128 X 72. 
Four matrices are mounted on a partitioned core 
plane (Fig. 4). The partitions have printed lands to 
permit the matrices to be interconnected to form a 
continuous plane which is 256 X 144. Eight core 
planes are mounted, side by side, in a 2 X 4 ma
trix, on each side of a single aluminum ground 
plane and interconnected to form a continuous pla
nar structure with is 1024 X 288. 

The ground plane contains milled grooves, which 
permits the core plane frames to be countersunk 
sufficiently to allow the cores to rest on the surface 
of the ground plane. The depth is then finely ad
justed so that the inner wire (bit-sense) is about 
3 mil from the surface of the ground plane . 

The core areas are coated with an epoxy resin 
with a· plasticizer added to prevent hardening. This 
provides a thermal bond to the ground plane, in
creases the effective dielectric constant to about 
1.7, and damps magnetostrictive ringing. To estab
lish a constant array temperature, a temperature
controlled liquid is circulated through a tube 
imbedded in the ground plane. The control appara
tus is remotely located and the liquid is fed to the 
ground plane through flexible tubes. Fully assem
bled, the array has a bit density of 4000 bits per 
cubic inch. Typical electrical characteristics are as 
follows: 

Length ..... . 
Resistance (20°C) 

Bit 
Wires 

.21 inches 

.3.8 ohms 

Word 
Wires 

9 inches 
1.8 ohms 

Figure 3. 8K Array assembly. 



988 PROCEEDINGS - FALL JOINT COMPUTER CONFERENCE, 1965 

Characteristic 
impedance 

Inductance 

.. 94.5-102 ohms 

.510-595 nh 

Transmission delay ..5.4-5.8 nsec 

Figure 4. Plane frame. 

117 ohms 

166 nh 

1.4 nsec 

Mutual inductance 
to adj. wire . .60 nh 25 nh 

Impedance, inductance and delay are a function 
of the flux state of the cores on a specific line. The 
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low values shown in the above table for the bit 
wires are for a condition of all zeros. The high val
ues are for a condition of all ones. An additional 
variation in these characteristics can be expected 
due to geometrically caused variations in wire ca
pacitance and inductance of the lines. In the case of 
impedance this was found to be about 2 ohms. 

The cross-wire capacitance is on the order of 
0.025 picofarads. Capacitive coupled noise which is 
due primarily to the time rate of change of read 
current has been determined to be 3 millivolts and 
is negligibly small. For slow time-rate of changes 
in word line voltage, such as that due to the cores 
switching, the amplitude of the capacitively coupled 
noise is not only lower but is mostly canceled as 
common-mode at the input to. the sense amplifier 
because of the relatively short transmission delay on 
the bit-sense line. 

The bit-to-bit coupling is limited to about 10 
percent of the self inductance because of the close 
spacing of the bit-sense wires to the ground plane. 
This results in from 1.5 to 2 millivolts of induced 
noise on the sense line at read time when a core is 
switched on an adjacent line. Bit current on an ad
jacent line induces )current pulses of about 5 mil
liamps on the line. 

WORD DRIVE SYSTEM 

There are 2048 word lines (1024 on each side of 
the ground plane) in the array, o.ne of which must 
be selected and driven with a bipolar current pulse 
during each cycle. Each line contains 288 cores and 
is electrically short enough to. permit the line to be 
grounded at one end and driven as an inductive 
load. In order to achieve high performance and still 
maintain some degree of economy with a matrix 
selection system, the lines are divided into 8 groups 
of 256 lines each. Each group is driven by 256 
linear transformers. A transformer is used for each 
word line primarily to permit common gating for 
read and write· drives. Ano.ther advantage is that it 
reduces some of the noise voltages coupled into the 
memory array from the word drive system. 

The primaries of the 256 transformers are con
nected in a diope matrix and driven by 16 gates, 16 
read drivers, and 16 write drivers as shown in Fig. 
5. The packaging is arranged such that the circuit 
boards butt up against the array ground plane (see 
Fig. 10) , and the interconnections between the 
transformer outputs and the word lines are made 

with a short printed-wire strap. The ground plane 
in the circuit board is connected to the array 
ground plane in a similar manner. 

In the quiescent state, the gate buses are main
tained at a potential of +45 volts with the read 
and write buses at a slightly negative potential, so 
that the diodes are back-biased and nonconduct
ing. When a word is selected, the appropriate gate 
bus is switched to ground potential leaving the 
diodes in a slightly reverse-biased condition. When 
a pair of read and write buses are selected 
and successively driven positive, the diodes of the 
transformer located at the intersection of the active 
word drive and gate buses will be forward-biased 
and conduct current. The amplitude and regulation 
of the word currents is controlled by a biased non
linear transformer located in each drive circuit which 
assumes a high-impedance state when the current 
pulse reaches the proper amplitude. The back
to-back diodes, inserted in series with the second
ary, reduces to a negligible level the d-c shift that 
would result from the difference between the read 
and write currents. The waveform in the top trace 
of Fig. 6 is an oscilloscope display of the read and 
write currents as they appear in the secondary of 
the transformer. The read current, which is about 
50 percent loaded, is beginning to. show the effect 
of core back voltage. 

BIT-SENSE SYSTEM 

A common bit-sense system is used in the 
memory to minimize the number of windings of the 
core plane. Figure 7 illustrates one bit position of 
this system. Corresponding bit wires on either side 
of the ground plane are connected together at one 
end and driven as a pair. This results in a require
ment for 288-bit drivers for an 8K system. Each 
bit driver must supply a maximum of 500 mil
liamps. The bit lines are short enough to be driven 
unterminated at the far end and still achieve the de
sired transition times. The sense signal· is detected 
across the pair at the far end. Diodes shunt the bit 
currents past the sense amplifier during a write op
eration, but are essentially out of the circuit during 
sensing. A balancing transformer in series with the 
diodes forces a balance of the currents in the two 
lines. The terminating network at the output of tHe 
bit driver terminates the positive common mode 
signal generated by the bit driver turnoff. The sense 
amplifier input impedance terminates low-level 
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Figure 5. Word drive schematic. 

common- and difference-mode noise on the sense 
line following the recovery of the shunt diodes and 
helps recover the line for sense time. The recovery 
time of the line under worst-case unbalance is 
about 90 nanoseconds. 

The waveform in the bottom trace of Fig. 6 is an 
oscilloscope display of the bit current prior to split
ting in the bit line pair. The step in the leading and 
trailing edge shows the reflection that occurs in the 
unterminated line. 

The waveforms photograph (Fig. 8) shows the 
sense signal as observed at the input terminals to 
the sense amplifier. Ones and zeros are superim ... 
posed in this picture in order to depict an average 
signal-to-noise ratio. 

The bit drivers and sense amplifiers are each 
connected to the array through a length of twisted 
pair and a "transition" board. The transition 
boards, which are butted to the array at either end, 
carry printed lines and provide a means for fanning 
out the bit-sense lines to socket pins into which 
the twisted pair is plugged (see Fig. 10). Twisted 
pair connects the transition board to the bit and 
sense circuits. The transition board lines and the 
array wires are interconnected through a short 
printed-write strap. The circuit-to-array wiring 
increases the length of the sense loop by 44 inches 
and the bit line by 28 inches. An attempt was made 
to match the characteristic impedances between ar
ray and circuits. Some mismatches were introduced 
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but they are electrically so short they have negligi
ble effect. 

MEMORY ORGANIZATION 

The 8K memory unit is self contained in that it 
has its own clock, . address registers, decoding, data 
register, data-in and data-out controls, and byte 

SELECT 

DECODE 

GATE DRIVER 
OUTPUT 

WORD 
CURRENT 

SENSE AMP. 
OUTPUT 

DATA REG. 

BIT 
CURRENT 

DATA ON 
BUS 

o 100 200 

control. These are well known and will not be de
scribed. The computer need only provide address 
information and a select memory pulse to initiate a 
cycle. The internal timing of the memory can be 
traced from the timing chart in Fig. 9. With SLT 
circuits, an access time of 200 nanoseconds was 
achieved. In order to achieve a 375-nanosecond in
terval between accesses, an overlap technique is 

300 400 500 

Figure 9. Ferrite memory timing cycle - 375 nanoseconds. 

used. Because of preread delays, it is possible to 
begin a new cycle before the preceding one is com
pleted. However, it is not possible to take full ad
vantage of overlap in this memory because it is lim
ited by the sense line recovery. 

Figure 10 shows a gate which contains an 8K 
memory unit. Two such gates can be housed in a 
frame to make a 16K memory unit. One array tem
perature control unit is shared by two arrays and is 
also housed in the frame. All power supplies are 
external. 

CONCLUSION 

The construction and operation of this memory 
demonstrated the feasibility of fabricating 7.5-mil 
cores and assembling them into a compact array. 
The array assembly eliminated . many of the prob
lems which previously limited ferrite speed. Most of 
the speed-limiting problems now seem to lie with 
the storage core,the circuits, and packaging exter
nal to the array. 

It is clear at this time that several changes can be 
made which will significantly improve the memory 
performance. Separate tests conducted on the core 

showed that if the write pulse is shortened by 60 
nanoseconds and the read pulse by 20 nanoseconds, 
the one signal under worst-case pulse sequence 
dropped to about 35 millivolts and the percent flux 
switched to about 40 percent. This is approaching 
the minimum acceptable limit for the sense ampli
fiers, but still appears acceptable. If this were done, 
it would reduce the memory cycle by 80 nano
seconds. To go beyond this would require some 
zero cancellation scheme such as 2 core per bit or a 
better core.5 Faster logic circuits are now available, 
which were not available when the memory was de
signed. If these were used, the memory decode time 
could be reduced by 30 nanoseconds. The gate drive 
circuit now accounts for 60 nanoseconds in the ac
cess and 105 nanoseconds in cycle time due to 
turn-on delay and transition time. A new version 
of the circuit reduced the 105 nanoseconds by 55. 
The. transition board and twisted pair cable in
creased the length of the bit-sense line considera
bly. If these were repackaged, the sense loop could 
be reduced by 16 inches and the bit line by 9 inch
es. It is estimated this would reduce sense line re
covery by 30 nanoseconds. If all of these improve
ments were made it would reduce the access time to 
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Figure 10. Memory unit - 8K words. 

135 nanoseconds and the interval 1>etween accesses 
to 250 nanoseconds. 
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MONOLITHIC FERRITE MEMORIES 

I. Abeyta, M. M. Kaufman, and P. Lawrence 
Radio Corporation of America 

Camden, New Jersey 

INTRODUCTION 

Monolithic arrays of ferrite memory elements are 
being used to produce low-cost, high-speed 
memory stacks. These elements are made by the 
simple batch fabrication technique of laminating 
ferrite sheets with embedded conductors. This pro
cess, evolved at the RCA Research Center, Prince
ton, New Jersey, was selected for material develop .. 
ment by the Electronic Components and Devices 
Division and for system development by DEP Ap
plied Research. 

This paper describes the construction, character
istics and system tests for a. basic monolithic mem
ory stack. The system operates in the word select 

mode and employs. several types of selection ma
trices. Storage diodes and conventional diode sys
tems will be described together -with the employ
ment of integrated circuits for a large number of 
system components. 

FABRICATION OF THE MEMORY STACK 

Ferrite Wafer 

Construction. The ferrite wafer is constructed by 
sandwiching two groups of conductors between very 
thin sheets of ferrite to form closed-flux-path 
storage elements. The wafer is just over 1 inch 
square and less than 6 mils thick. Each group of 
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conductors consists of 64 straight parallel lines in a 
planar array, with center-to-center separations of 
15 mils, as shown in Fig. 1. The conductors of one 
group are placed at right angles to those of the other. 
Their vertical separation is less than one mil. 

The ferrite sheets are prepared by a technique 
known as "doctor-blading." In this process, a 
mixture of ferrite powder (an Fe-Mg-Mn-Zn com
position) , vinyl plastic and plasticizer dispersed 
in methyl-ethyl-ketone (MEK) is prepared in a 
ball mill. This slurry is poured onto a glass sub
strate and drawn to the appropriate thickness by 
passing a metal blade, called a "doctor blade," over 
the mixture. When the MEK evaporates, a sheet re:
mains in which the ferrite particles are suspended 
and bound. The density of the sheet is related to the 
extent of dispersion of the ferrite powder in the 
slurry, and the binder system plays a vt!Jry important 
role in stabilizing the dispersions. The doctor
blading technique enables us to form ferrite sheets 
of approximately 50 percent of the maximum densi
ty, with thicknesses ranging from 0.1 mil to 20 
mils. 

The laminated ferrite plate is made using three 
ferrite sheets. Two of the ferrite sheets have a pat
tern of 64 lines of metallic powder on one surface. 

/wORD WINDING 

Palladium, the metallic conductor, is squeegeed (in 
paste form) through a metal mask onto a glass sub
strate. The metal mask is removed and the ferrite is 
then doctor-bladed over the line patterns. The 
conductor lines obtained are 6 to 7 mils wide, 1 mil 
thick and 1.2 inches long. 

On the green doctor-bladed sheet, the resistance 
of this line is 225 ohms ± 10 percent. This meas
urement is used as a quality control check on the 
metallic paste batches. 

The three ferrite sheets form a wafer 1.2 inches 
square in the unfired state. The sheets are laminated 
at an elevated temper~ture and a pressure of about 
10,000 pounds per square inch to form a monolith
ic body. The firing of these ferrite bodies is divided 
into two cycles: (1) a binder burnoff stage and (2) 
a sinter or densification stage. The binder bumoff 
cycle is extremely important, since it is here that 
such mechanical problems as cracking and warpage 
occur. The heating rate must be very slow and the 
proper atmosphere must be maintained to facilitate 
binder removal. After completion of this cycle, the 
laminates can be brought directly to sintering tem
perature and fired to yield the desired magnetic 
properties. The proper atmosphere must be main
tained during sintering, not only for magnetic con-

READ 
4 

,,(OTAL WRITE 

~"",-DIGIT 
WORD WRITE 

�e__- BIT WINDING 

Figure 2. Memory operation. 
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WORD WINDINGS 
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Figure 3. Laminate winding arrangement. 

siderations, but also to keep the electrical resistivity 
of the ferrite high so that the ferrite layer between 
the palladium conductors can function effectively as 
an insulator. 

Mter sintering, the ends of the palladium con
ductors are exposed for electrical connection. This 
is accomplished by using an airbrasive unit to erode 
away the ferrite above the conductors. The electri
cal resistance of the embedded palladium conductors 
is now 2.5 ohms. 

Operation. Integrated ferrite wafers have been de
veloped for linear select operation. Each wafer has 
64 word windings and 64 bit windings. Each bit is 
composed of the crossover between the word wind
ing and two adjacent digit windings, so that a wafer 
has 32 bits per word. By connecting bit lines of 
several wafers in series, a memory with some multi
ple of 64 words is formed. Similarly word lengths 
in multiples of 32 bits are made by adding wafers 
on the other axis. 

Figure 2 illustrates the nature of magnetic flux 
switching at one crossover point with the applica
tion of word and digit pulses. As long as pulses are 
applied to the word winding only, there is no flux 

.change around the bit windings, so no signal is cou-

pled magnetically from the word to .the bit windings. 
The vector diagram in Fig. 2 shows the addition of 
word write and digit driving fields. The respective 
components are drawn parallel to the driving cur
rents, thus normal to the planes of their respective 
driving fields. With coincidence of word and digit 
currents, flux is switched to the plane to which the 
vector sum is normal. Upon application of a word 
read pulse, which is opposite in polarity to the word 
write pulse, all of the flux is switched to the planes 
normal to the word winding, with a direction con
sistent with the vector marked READ. Elimination 
of the component of flux which had linked the bit 
winding causes a magnetically coupled signal to ap
pear on the bit winding. Analysis will show that the 
polarity of this signal depends only upon the polarity 
of the digit current. For the situation shown, the 
upper end of the bit winding has a positive voltage 
with respect to the lower end at read time. 

Figure 3 shows the 2-crossover-per-bit storage 
technique. Each pair of bit windings has its own 
set of digit drivers and a sense amplifier. For 
those bits of the addressed word which are to store 
ones, a positive digit current is applied to winding 
"A" and a negative current to winding "B." At the 
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addressed word, flux switches in a fashion conform
ing to the explanation of Fig. 2. For those bits 
which are to store zeros, a positive digit current is 
applied to winding "B" and a negative current to 
winding "A." When that same word is next ad
dressed with a word read pulse (opposite in polari
ty to a word write pulse), the explanation for Fi~. 2 
shows that the "A" lines of bits storing ones and 
the "B" lines of bits storing zeros have negative 

output voltages; conversely, the "B" lines of bits 
storing ones and "A" lines of bits storing zeros 
have positive output voltages. Hence, if the differ
ence sense amplifiers yield A-B, one output sig
nals from the sense amplifiers are negative and zero 
outputs are positive. Note that the total signal out
put of the sense amplifier is proportional to the 
sum of the absolute values of signals magnetically 
coupled at the contributing crossover points. 

WORD 
WINDING 

BIT 
WINDING 

7 

PRE- DISTURBED \~I~~~RBED \ ~F:rDURBED 
ZEROS ONE ZERO 

~ 
I I j I I I II I I I I I I I I I 
11111111 ~I 'i 

WRITE "ONE
II J 7 I \ ONES WRITE ZERO 

IIA" I , '" 11111111 I III ill III I tpOST DISTURBS t DISTURB 

11811 I 1111111'1 I i II i i II i i 
Figure 4. Disturb test pattern. 

Testing. Extensive testing of ferrite wafers has 
been conducted under worst-case disturb condi
tions. The test pulse pattern applied to the ferrite 
wafers is shown in Fig. 4. Seven pre-disturb 
pulses and 8 post-disturb pulses are applied to the 

wafer. Tests made with a greater number of disturb 
pulses indicate that 7 pre-disturbs and 8 post
disturbs produce approximately the maximum dis
turb condition. From this test, a set of curves were 
plotted (Figs. 5 and 6) showing differential sensed 
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Figure 6. Signal output vs digit current (read current 
=550 milliamps). 

creasing the magnitudes of the 60-nanosecond 
peak output voltage as a function of digit current. 
A desirable range of operating current values have 
been chosen on the basis of these curves. Disturbed 
signal output versus digit current, with write cur
rent magnitude as a parameter and read current 
magnitude fixed at 400 milliamps, is shown in Fig. 
5. The same curves are plotted in Fig. 6, except the 
"read" current magnitude is fixed at 550 milliamps. 
The typical disturbed output of the ferrite wafer is 
45 microvolts. Figures 5 and 6 indicate that in-

wide read and write current pulses above 400 mil
liamps for read and 100 for write will not increase 
the disturbed output signals. 

The digit current indicated in Figs. 5 and 6 has 
an optimum amplitude of between 30 and 40 mil
liamps. It is apparent that the optimum word write 
and read pulse amplitudes are a function of the 
pulse widths chosen. A number of operating pulse 
values are shown in Table 1. The bit back-voltage 
is also a function of the pulse values and is listed in 
the table. 

Table 1. Operating Pulse Values. 

Read Current Write Current Digits Typical BBV* 
Td(50% ) TrTf I Td(50% ) Td(50% ) Outputs rnv 

rna nsec nsec rna nsec rna nsec mv 

400 110 45 100 120 30 200 45 250 
400 60 30 150 30 30 100 25 320 

*Bit back-voltage, or the word read voltage divided by the number of bits in the word. 

As an indication of the spread of signal values on 
a ferrite wafer, a map of dh;;turbed and undisturbed 
signal values across the wafer is given in Fig. 7. All 
locations of the wafer have been checked and the 

map in Fig. 7 indicates w?rst-case extremes. 
Extensive testing of the transmission line proper

ties of the wafers using nanosecond pulse tech
niques has been conducted also. A summary of the 
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DISTURBED/UNDISTURBED SIGNAL OUT AT DIGIT PAIRS (mv) 

Word Pair Pair Pair Pair Pair Pair Pair Pair Pair Pair Pair Pair Pair Pair Pair 
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

Note: Read current = 400 rna, 70 nsec; write current = 120 rna, 70 nsec; digits = 30 rna, 80 nsec. 

Figure 7. Map of signals for a typical wafer. (This map 
shows typical and extreme signals.) 

data obtained is shown in Table 2. The characteris
tic impedance of the transmission line is a function 
of frequency and coupling to the ground plane; 
however, the best terminating impedance is given. 
The attenuation shown in the table for pulses wider 
than the rise time is essential d-c attenuation, and 
is associated with the 2.5-ohm line resistance 
through each wafer. 

Table 2. Digit Transmission Line Properties. 

Character
istic 

Impedance 
Best ter
mination 

150 ohms 

Pulse 
Delay 

Midpoint to 
midpoint 
for 1,024 

words 

35 nsec 

Stack Construction 

Pulse 
Rise 
Time 
256 

words 

15 nsec 

Attenuation 
For pulses 
wider than 
rise time, 

512 
words 

1.1 dB 

Monolithic ferrite stacks are assemblies of modu
lar building blocks. The basic modules are assem-

blies of two ferrite wafers with diodes and bussing 
for word selection. There are two kinds of selection 
diodes available: conventional high-speed, and 
storage types. The module using conventional 
diodes requires two diodes per word, while the mod
ule using storage diodes requires one diode per 
word. The fabrication of a 1024-word 64-bit 
stack using 16 modules with conventional diodes 
will be described. A 256-word 64-bit stack was 
also assembled using 4 modules with storage diodes. 
Operation and testing of both stacks will also be 
described. 

Figure 8 is an illustration of an integrated ferrite 
module with conventional diodes and Fig. 9 is a 
schematic of this module. For convenience, a 16-
word array is shown. The modules actually have 64. 
One end of each word winding is connected to the 
anode of one diode and the cathode of another. The 
cathodes of the diodes whose anodes are connected 
to word windings are common in eight groups of 
eight diodes each. The anodes of the diodes whose 
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Figure 8. Construction of the basic integrated ferrite 
module. 
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Figure 9. Schematic of the basic integrated ferrite module. 

cathodes are connected to word windings . are 
grouped identically. 

The diode chips have 2 rows of 4 diodes, each on 
30-mil centers. Notice that the number of connec-

tions required on the diode end of the words has 
been reduced from 64 to 16. The ends of the word 
windings remote fromtne diodes are connecteQ. di
rectly together in eight groups of eight ~ords each. 
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Each group has one word from each of the diode 
groups. The riumber of connections to this end of 
the module is reduced from 64 to 8. 

Expansion of the diode selection matrix to arrays 
of more· than 64 words merely requires expanding 
the sizes and numbers of the groups by connecting 
corresponding points of different modules together. 
For example, a 1024-word matrix would have 32 
groups of 32 words each, as viewed from either 
end. 

Line connections on the modules are "fingers" of 
etched combs leading to the winding ends on the 
four sides of a wafer. This assembly is soldered to a 
printed circuit pattern on the module board. After 
connection, the solid edge of the comb is sheared 
off. Tabs are left !it the edges of the module for 
connection to the bit windings of another module. 

The diode array is assembled as a separate unit 
and cemented onto the module tabs of previously 
mounted combs. Connection to the switch buses 
(see lower end of Fig. 8) is accomplished with 
combs appropriately etched from one-ounce beryl
lium copper. They are raised above the module sur
faces as they cross lines which they must not con
tact. The wafer interconnection combs are etched 
from one-ounce copper sheets, subsequently plated 
with an electroless tin coating to facilitate solder
ing. The module substrate is constructed from 
1/16-inch G-I0 laminated glass epoxy board. 
The diode assembly comprises a baseboard with a 
printed circuit pattern and a spacer board of G-I0 
material with the common connections etched. 
Word drive connections are made with printed cir
cuit plugs having contacts on 50-mil centers. 

Figure 10. Typical arrangement of monolithic memory 
stack. 

The conventional diode stack consisting of 1024 
words of 64 bits is formed from 2 planes, each con
taining 512 words (Fig. 10). Overall dimensions 
for the unit, including the sense digit connector 
boards with terminating resistors, are 14 x 4.5 
inches with 0.5-inch spacing between the planes. 
The sense digit connections are fanned out from the 
IS-mil centers to suitable plug connections on 
50-mil centers. Module boards are cemented onto 
a backboard and interconnections between the mo
dules are made by soldering. Bussing between 
planes is accomplished by soldering #30 wire be~ 
tween corresponding bit windings of the two planes. 

MEMORY SYSTEM USING 
CONVENTIONAL DIODES 

Selection Matrix and Digit Drive 

This section describes the system design and. op
erational details of the 1024-word, 64-bit mem
ory. The word driving scheme is illustrated by the 
4x4 diode matrix of Fig. 11. The physical dimen
sions and geometry of the matrix diodes have al
ready been given. 

These diodes have the following typical charac
teristics: 
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Co (function capacity at zero bias) = 4 picofarads 
V (at 1=400 rna) 2 volts 
VB (at 10/ta) =60 volts 
Tv (reverse recovery time) = 15 nanoseconds 

Under quiescent conditions, the matrix diodes 
are back-biased by a positive voltage applied at 
the write driver, a negative voltage at the read driv
er, and ground at the read/write switch. The 
read/write selection sequence is executed in the fol-
lowing manner: . 

1. A read command pulse turns on the select
ed read switch, driving the 32 words se
lected by the switch to a positive voltage, 
thus removing the back bias from 32 read 
diodes. 

2. Sometime later, the read driver is turned 
on, forward-biasing one read diode on 
the selected word, while the drive line 
moves toward ground potential from a cur
rent source to complete the read operation. 

3. Similarly, during the write part of the cycle 
a write command pulse turns on the write 
switch, driving the selected set of words 
negative. 

4. The write driver is then turned on, driving 
the write diode on the selected word to-
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ward ground from a current source and 
thus enabling write current to flow. 

All the drivers and switches of the word system are 
compatible at their inputs with the logic levels of 
the current steering integrated logic gates used 
throughout the system. 

The parallel capacitance of the 32 word lines 
connected to each switch is about 1600 picofarads. 
The read chanp.el of the switch supplies 1 ampere of 
current so that it can charge this capacitance to 
+ 25 volts in about 40 nanoseconds. The write 
channel of the switch supplies about 500 milliamps 
to complete the transition from + 25 volts for read 
to -10 volts for write in about 100 nanoseconds. 

As seen in Fig. 11, there are two clamp diodes at 
the output of each switch, one to + 25 volts and the 
other to -10 volts. Physically located at the stack, 
their purpose is to provide a sink for the switch 
current and thus to maintain a low impedance at 
the memory stack during the read and write pulses 
despite the cables needed to interconnect the switch 
lines in the stack with the circuit boards. This ac
tion helps to clean up waveforms and to reduce 
noise. 

The digit drivers are bipolar. They store a one by 
delivering a positive pulse into one line of a digit 
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* 4~ 
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, 'It" 
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Figure 11. Schematic of the driving and matrix scheme for 
the two-diode-per-word laminated ferrite memory. 
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pair and a negative pulse into the other. A zero is 
stored by reversing these two pulse polarities. The 
digit driver outputs are voltage sources during the 
digit pulse, the amplitude of the digit current being 
controlled by the voltage and the termination resis
tors. The driver inputs have logic gates which are 
primed by the information register and activated by 
the digit timing pulse. 

The sense amplifiers are constructed by cascading 
two current-steering logic gates and A-C cou
pling at the output of the second gate to the memo
ry register. Strobing is accomplished at the input to 
the second gate. Power supply levels for the gates 
are raised to prevent gate saturation during the dig
it pulse. A positive pulse can appear at the sense 
output only during the strobe, and only if a one is 
sensed. 

Operation 
The test vehicle used to check the performance of 

the conventional diode memory consists of: 

1. The timing and control generator 
2. A word system 
3. A digit system 

The timing and control generator supplies all tim
ing and control pulses. The word system supplies 
the proper switch voltages and read-write currents 
at the command of the timing generator. The digit 
sense system performs the dual function of sensing 
stored information and writing back into the mem
ory. 

The test vehicle has four different types of logic 
components, providing address scan, disturb pat
terns and error checks. These are: 

1. Integrated current-steering gates of the 
emitter-coupled current-steered logic 
(ECCSL) type 

2. Integrated. current-steering flip-flops 
3. One-shots with variable delay, made by 

adding a few external components to inte
grated current-steering gates 

4. A free running multivibrator with variable 
frequency, also made from an integrated 
current-steering gate 

These four devices have proven to be very stable 
and reliable, and have made the test unit highly 
flexible, coupled with high packing density. 

The test system can be set to pre-disturb a word 
up to 35 times when running at 2 megacycles per 

second. The pre-disturbs end when the timing 
generator causes the digit drivers to change write 
information for one write time. The timing genera
tion then causes up to 70 digit disturbs to be gener
ated. At the end of the digit disturb period, the last 
written information is read out. Then this entire 
pattern is complemented. Finally, the address is 
changed to a new word. The disturb pattern is then 
repeated at the· new word, etc. Information from 
one bit to the next along a word can be comple
mented by a mechanical switch in the information 
register. The timing diagram for the test vehicle is 
shown in Fig. 12. 

CLOCK 

MEMORY REG. RESET 

READ SWITCH 

WRITE SWITCH 

READ DRIVER 

WRITE DRIVER CURRENT 

DIGIT CURRENT (2 DRIVERS) 

SIGNAL (ONE OR ZERO) 

ERROR CHECK PULSE 

1--510NS--l 

J'-. 
--1L.. 
--f 1--100 NS 

~ 
1-340-1" 

1----t-~15-0 --

~ 
120+-1 

: ...u--L 
::0 ---i-I~I ~--

---v-
JL 

Figure 12. Timing diagram for conventional diode test 
vehicle. 

The read switch is turned on approximately 150 
nanoseconds ahead of the read driver to allow the 
noise transient coupled into the digit lines to decay 
to a level much less than the signal. 

The noise is coupled into the stack through all of 
the words common to the selected switch. The mag
nitude of this noise depends on the number of 
words in the stack. For a switch driving 32 lines, 
the common-made noise injected into the digit lines 
is approximately 1 volt. However, as has already been 
pointed out, sensing is performed differentially; 
therefore, large common-mode noise will not be a 
problem provided the digit pair balance in the stack 
is sufficient. This balance minimizes conversion of 
common-mode noise to difference mode. The con
version to difference mode for this stack was approxi
mately 1.5 percent, or 15 microvolts. With ideally 
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terminated digit lines, a read operation could im
mediately follow the end of the digit pulse. However, 
it has been found that a waiting period 6 to 9 times 
the delay on the dig line is required. 

In addition to the switch and digit noise, which 
are not time-coincident with the signal,. there are 
sources of noise which are coincident with the sig
nal. One of these sources is associated with the fact 
that the impedance between the stack and the ma
trix switch ground cannot be made negligibly small. 
The problem is minimized by adding clamps at 
each switch line. Reference to Fig. 11 shows the 
location of these diodes on the stack. The second 
source of time-coincident noise is associated with 
the removal of back bias on the matrix diodes con
nected to the selected driver. Other things being 
equal, this noise can only be eliminated by the in
herent common-mode rejection of the stack. 

Test Results 

Waveforms of the tests on this 1024-word 64-
bit stack operating at a SOO-nanosecond cycle 
time are shown in Figs. 13 and 14. 

Figure 13 (top) shows fully disturbed stack 
output signals with digit transients. Each of the 
three traces represents the outputs of a bit from 64 

HORIZONTAL : 100 NS/DIV. 
VERTICAL: I VOLT /DIV. 

r"." 

Figure 13. Comparison of the signal and total noise present 
at read time. Top: 64 Signals superimposed at each of 3 
digit locations. Bottom: Same as above, except that write 
drivers are disconnected to show the noise present at read 
time. 

words superimposed. The first transient at the left 
is caused by read switch turn on which lasts 150 
nanoseconds. Following this are signal outputs. The 
positive signals are ones and the negative signals are 
zeros. These last for about 70 nanoseconds. The 
remaining time in the cycle is occupied by the digit 
transient. 

Figure 13 ( bottom) shows the stack output 
with the drive conditions the same as those above 
except for removal of word write current. The low 
noise level at signal time indicates good sense pair 
balance. 

In Fig. 14 (top), typical read and write cur
rents are shown at a point between the diode matrix 
and the drivers. In addition, typical signals are 
shown in coincidence with the read current. Again, 
these are disturbed signals. In Fig. 14 (bottom) , 
read. and write currents as well as switch voltages 
are shown. 

VERT =200 mA/div (BOTH READ AND WRITE) 
VERT = I VOLT / div (SIGNAL) 
HORIZ=IOO ns/div 

VERT = 200 mA/div (BOTH READ AND WRITE) 

+- READ AND WRITE 
CURRENT 

VERT = 20 VOLTS/div SW WAVEFORM (BOTH READ AND WRITE) 
HORIZ = 100 ns / div ALL WAVEFORMS 

NOTE CURRENT PULSES 
POLARITIES REVERSED 
TO CLARIFY PICTURE 

Figure 14. Typical tim~ relationships. Top: Time relation
ships between read/write current and signal. Bottom: Time 
relationships between read!write driver circuits and read! 
write switch voltages. 

MEMORY SYSTEM USING STORAGE DIODE 

Selection Matrix 

The storage-diode selection matrix uses one 
diode per word. The storage diode, because of its 
resistivity profile, has long-term minority carrier 
storage and with one diode allows construction of a 
selection switch that delivers bipolar currents. Stor
age diodes also exhibit the desirable property that 
in the absence of minority carrier storage, a high
resistance (megohms) , low-capacitance ( a few 
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picofarads) characteristic is maintained in the re
verse direction. This ensures that below the half
select matrix voltage, the properties of a storage 
diode will be identical to those of a high-speed 
diode. 

A schematic diagram of a 4-word portion of 
the 256-word matrix that was built and tested is 
shown in Fig. 15. Half-select operation of the ma
trix is identical to the half-select operation of a 
conventional diode matrix, all diodes appearing as 
approximately 2-picofarad capacitors. Activation 
of a driver alone or a switch alone does not for
ward-bias any diode in the matrix. 

Activation of a switch followed by a driver 
drives the selected diode sufficiently beyond its volt
age gap to permit the flow of the required read 
current. The storage diodes in the matrix have mi
nority carrier lifetimes of approximately 170 nano
seconds. Storage-diode lifetime is the parameter 
that defines the diode's stored-charge recombina
tion rate2 and, therefore, is directly proportional to 
the maximum charge the diode can store. The 
170-nanosecond lifetime allows the diode to re-

-IOV +35V 

-IOV 

DRIVER 

INSIOO 

68 

68 

turn 20 percent of the charge flowing into it during 
the read pulse as a write pulse. The write pulse is 
generated when the read channel of both the switch 
and the driver are deactivated and the write channel 
is activated. The write channel of the switch is acti
vated during the fall time of the read clock pulse. 
The previously selected storage diode is then forced 
by the voltage that eventually reverse-biases the 
diode to give up its stored minority carriers as 
write current. The write current terminates when 
the charge in the diode is depleted and the fall time 
of the write current is approximately equal to the 
snap-off time of the diode. 

The diodes used in this matrix are fabricated in 
integrated strips of eight diodes each. They have 
the following typical characteristics: 

Co 2 picofarads 
V + (at 1t-400 rna) 1.2 volts 
IR (at V= 100 v) 1 micro amps 
Bv (breakdown IR= lOp-a) = 150 volts 
Transition time (snap-off time) = 4 nanoseconds 
Lifetime = 170 nanoseconds 

s 

Figure 15. Storage-diode selection matrix. 

The read/write current and the word back volt
age generated in the matrix for the 170-nano
second lifetime diode are shown in Fig. 16. The 
read current peak magnitude is 600 milliamps with 
a 300-nanosecond base width; write current peak 
magnitUde is 200 milliamps with a 100-nano-

second base width. The word current has a front 
porch caused . by the voltage associated with 
switching the ferrite. Comparison of the back volt
age waveform across the word when all the ferrite 
is switched with the back voltage under the above 
condition indicates that 80 percent of the ferrite is 
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.-VOLTAGE (IOV /div) 

.- CURRENT (200 mA/div) 

!OO nS/div 

Figure 16. Read/write current and word back-voltage gen
erated for 170-nanosecond lifetime diode. 

switching. The percentage of the ferrite that switch
es is a function of the write current pulse, width as 
well as amplitude; therefore the duration of the read 
current front porch is also a function of the write 
current pulse width. The front porch limits the 
amount of read charge going into the diode and re
duces the percentage change of write current pulse 
width as a function of storage diode lifetime. A 30 
percent change in storage diode lifetime produces 
only a 20 percent change in write current pulse 
width. 

16 16 
SELECTION -- DRIVERS ~ 

GATES 

1 
SEQUENCE 

GENERATOR 

1 
16 16 

SELECTION ~ SWITCHES 
GATES 

Operation 

A block diagram of the 256-word 64-bit test 
vehicle is shown in Fig. 17. The memory was ad
dressed by scanning the 256 words sequentially. 
There were 16 switches and 16 drivers in the sys
tem and all 256 words were addressed. However, 
there were only 4 sense amplifiers and 4 digit driv
ers in the system, operating only 4 out of 64 digit 
locations at one time. The circuits were built on 
plug-ins and placed in a rack, as indicated in Fig. 

256 
SELECTION~ 

DIODES 

MEMORY 
STACK 

256 WQ.RDS 
X 

64 BITS 

4 
SENSE 

AMPLIFIERS 

4 
DIGIT 

DRIVERS 

4 STAGE 
. MEMORY I---
REGISTER 

Figure 17. Block diagram of test vehicle for storage-diode 
matrix. 
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Figure 18. Construction of test vehicle for storage-diode 
matrix. 

18, a photo of the test system. 
A timing diagram is shown in Fig. 19. The 

switch is initiated 100 nanoseconds before the driv
er to isolate the switch noise coupled into the ma
trix when the half-selected word lines are driven 
to 25 volts. The switch rise time is 50 nanoseconds 
for driving the 256-word stack. When driving a 
stack of 4096 words (2000~picofarad line capaci
tance) the rise time is 100 nanoseconds. The word 

driver rise time is only 25 nanoseconds. The maxi
mum selection line capacitance it drives, consider
ing a 4096-word stack, is 128 picofarads. The dig
it current is initiated at the end of the read current 
and has a 30-milliamp peak magnitude. It is 200 
nanoseconds wide at the base. The digit lines are 
driven in a push-pull mode, as s1!pwn in Fig. 20. 
The lines are terminated in their characteristic im
pedances of approximately 120 ohms. 
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Figure 19. Timing diagram for storage-diode test vehicle. 

Test Results 

The common-mode noise on the digit sense 
lines, generated during the switch rise time, is pri
marily electrostatic coupling from the half-select
ed word lines, and is approximately 150 millivolts. 
Approximately 1.5 percent of the common-mode 
signal is converted to a difference mode yielding'" 2 
millivolts. The common-mode signal generated 
during the rise time of the word driver is approxi
mately 20 millivolts, and the signal converted to 
difference mode cannot be detected. 

A group of one and zero outputs out of the stack, 
as amplified by a linear difference amplifier, is 
shown in Fig. 21. The lowest disturb output ob
served is 5 microvolts. The lack of symmetry in the 
one and zero outputs is due primarily to the noise 
generated by the strobe circuit in the sense ampli
fier plug-in. 

CONCLUSIONS 

Monolithic ferrite elements have now been suffi
ciently developed to be competitive with other bas
ic memory elements. They offer the following ad
vantages: 

1. These elements can be combined to make 
basic blocks for high speed memories. 

2. The ferrites can be combined with inte
grated circuits and diodes to make an eco
nomical and compact package. 

3. Transients in the stack are readily con
trolled and noise levels are well below sig
nallevels during read time. 

4. The use of special storage diodes reduces 
the number of decoding diodes required, 
and simplifies the electronics to permit the 
use of single polarity drivers for all word 
selection functions. 

5. The use of storage diodes and integrated 
circuits make the linear select monolithic 
ferrite system cost competitive with coinci
dent current core systems, while offering 
considerably higher speed capability. 

120 - 30mAU n+30mA 

120 

-= -= 120 +30mAn U-30mA 

120 -= -= 

t t 
"1" "0" 

DRIVE DRIVE 

Figure 20. Digit-sense system for storage-diode memory. 
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r SENSE SIGNALS 

100 nS/div 

SENSE AMP OUTPUT 
7 mV /div AT INPUT 

WORD CURRENT 
400 mA/div 

Figure 21. A group of one and zero signals from the 
storage-diode selected stack. 
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HIGH SPEED FERRITE 2V2D MEMO'RY 

Thomas J. Gilligan, Perry B. Persons 
Electronic Memories Incorporated 

Hawthorne, California 

INTRODUCTION 

Main core storage in digital computers has been 
getting both larger and faster with each generation. 
In view of this a design was undertaken which 
would be inherently faster, and inherently less ex
pensive in the large sizes. Other significant inputs 
to the design approach chosen was that electronics, 
that is semiconductors, were becoming less expen
sive; also, to operate at the higher speeds small
er cores must be used. Since it is progressively more 
difficult to put additional wires through these 
smaller cores, system approaches using fewer wires 
through the core were studied. 

The system chosen has basically a two-dimen
sional magnetics array similar to linear select; how
ever, it has the advantage that it has a level of de
coding in the array. Therefore a significant saving 
in electronics over the liner select may be affected, 
while maintaining the inexpensive magnetics array. 
Shown in Fig. 1 is how the relatively inefficient as
pect ratio of linear select arrays may be improved 
by dividtug the word dimension by some number 
and, while multiplying the bit dimension by the 
same riumber, get a squarer array. 

The chosen system has a coincident current read 
cycle, and a linear select write cycle, that is, the di
git current is additive rather than subtractive. Since 

1011 

BITS-

i~ 
a) LINEAR SELECT 

t BITSxN-

IzD 
WO:DS ~BITSxN 

b) 2h 0 

Figure 1. Comparison of linear select and 2 ~ D planar 
arrays. 

this system is not as efficient in decoding as a cubic 
three-dimensional coincident current system, but 
far more efficient than a planar two-dimensional 
linear select system, it became known as a 
21h-dimensional system. The inherent power in 
the 21hD system organization may be appr~ciated 
by noting that the system reported here is capable 
of a 900-nanosecond cycle time using a 30-mil 
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core. In order to achieve a comparable cycle time, a 
standard coincident current organization must use a 
20-mil core. 

MEMORY ORGANIZATION 

In the "pure" memory organizations, coincident 
current and linear select, the dimensions of the sys
tem may be clearly identified as ~eing either ad-

dress or data dimensions. In the 2~D organiza
tion, one dimension serves a dual function as a data 
and address dimension. This requires that data be 
inserted on the address lines in one dimension dur
ing the write cycle, requiring an independent drive 
system in one dimension for every bit. We will call 
this the bit dimension and the other will be the 
word dimension. 

In Fig. 2, a functional diagram of a 2~D, 16K 
by 3 bit system is shown. It should be noted that a 

ADDRESS--~----~~----~~----~ 
SELECTION 

16 
VOLTAGE 
SWITCHES 

16 
CURRENT 
SWITCHES 

4096 BIT 
SENSE MAT 

DATA IN~ BIT I BIT 2 BIT 3 

Figure 2. 2~D memory organization -16,384 words, 3 bits. 

complete 32-way diode decode matrix is used for 
every bit. To select one core of 16,384, one bit line 
of 32 is selected and one word line of 256 is,-also 
selected. In addition the phasing of the word cur
rent is chosen to be either positive or negative, and 
therefore affect coincidence in one of two cores on 
a common intersection, and anticoincidence in 
the other. Using the phase of the word current as 
part of the selection allows the word electronics to 
be effectively divided by two. It should also be not
ed in Fig. 2 that there is great redundancy in the 
bit selection circuitry. That is, the same relative 
voltage switch, and the same relative current switch, 
is selected in each bit position. The only difference 
between bits is that the data will gate current to the 
matrix or not, depending on whether it is desired to 
write a one into that bit. Cost will be minimized as 
the aspect ratio of the system approaches a square. 

This forces the aspect ratio of a particular bit to be 
quite "unsquare." The aspect ratio per bit is 512 in 
the word dimension times 32 in the bit dimension. 
The aspect ratio of the 4096 sense mat is 256 by 
16. A word is read out of the memory by selecting 
one line in each bit matrix, and then turning on 
current in the appropriate word line. 

A block diagram of the 2~D system is shown in 
Fig. 3. Included in each block is the number of 
components in terms of memory capacity C, and the 
number of bits per word B. Also included is a 
weighting factor, Kn, which when multiplied by 
the number of elements in that box, and then 
summed over all boxes will give the total cost of the 
system as a function of memory capacity and num
ber of bits per word. From this equation it can be 
determined that the cost per bit is strongly a de
creasing function of the number of words. 
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Figure 3. Three-wire 2~D cost breakdown. 

SYSTEM CONSIDERATIONS 

As pointed out previously, the 2~D system has 
many advantages of the 3D and the 2D systems, as 
well as many advantages in its own right. The most 
important of these advantages is that there is no 
inhibit recovery problem, since there is no inhibit 
current. As a matter of fact in a typical 16K word 
system, the maximum drive-sense intersection is 
256 cores. The typical drive-sense intersection in 
a coincident current system is 2048 cores. The ef
feet of this is that there is no recovery problem 
from the previous memory cycle. Another big ad
vantage of the 2 ~ D system is that no drive line is 
longer than 900 cores, and therefore all system re
sonances will be significantly higher than the fre
quency spectrum of a core switching, and· thereby 
simplify the sensing problem. The short drive lines 
also allow fast rise times on the current pulses, with 
relatively low drive voltages. This in turn will allow 
the use of less expensive semiconductors. Since 
digit current adds to write current to write a one, no 
time has to be allowed between read and write cur
rents to insure overlap of the write current by the 
digit current. 

The bit drive system accounts for the largest part 
of the power used in a memory system. 

The power required to establish and then hold 

1 
current in a line may be expressed as: P = T C 

(2L12 + IRTS), where the assumed driver is a satu
rated switch, T c is cycle time, L is line inductance, 
R is line resistance and Ts is the switching time of 
the core. 

The 2~D will have a lower minimum power 
required since the bit line is shorter by a factor of 
four or eight than a linear select or a coincident 
current memory. It must be remembered that cur
rent must be driven in the bit line twice during a 
2 ~ D cycle and therefore the gain isn't as great as 
expected. 

In practice, the power used in a commercial 
2~D system will be about the same as in a co
incident current system; however, the lower voltage 
required will allow the drive currents to be derived 
from logic voltages, i.e., +12 volts. 

The core chosen for this system has the following 
characteristics: 30 mil O.D., 22 mil I.D., switching 
time 330 nanoseconds, half select current 380 mils. 
Since almost the full cycle time in this system is 
occupied by core switching time, the most desirable 
·core for a faster system of this type would be a high 
drive (500 milliamps half select current), low flux 
22-mil O.D. core. The high drive core may be 
used effectively since the increased drive require
ments will not slow cycle time significantly as the 
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rise and fall times are but a small percentage of the 
cycle time. 

TWO DIODE PER LINE DIODE DECODE MA
TRIX 

A two diode per line decoding scheme was cho
sen for the 2 Y2 D system since it is the least expen
sive of any high speed access system. The important 
points of this two diode per line system are shown 
in Fig. 4. This decode system has not been too pop
ular in high-speed systems since when a voltage 
switch is selected, the selected group of lines tend 

LI-Parasitic Inductance of Voltage Switch Circuit 
RS- Series Resistance of Voltage Switch Circuit 
RSH- Shunt Damping and D.C. Restoring Resistor 
Z-Impedance Looking Into Magnetics Array 
)I.-Electrical Length of Drive Line 
L2-Drive Line Inductance 
C - Drive Line Capacitance 
i!o-Drive Line Characteristic Impedance 

f r Critical Damping 
LI 

, , 
-~J L, 

LARGE 21") LICN SCN RSH - 2 N C 

LJ 
, i!o 

RS = t- i!o SMALL 21CyfL2C ~ 

Figure 4. General two diode per line decoding; voltage 
switch resonance. 

to resonate, either as a quarter wavelength line with 
zero impedance at the voltage switch end, and open 
circuited at the far end, or as a capacitor with the 
parasitic inductance in series with the voltage 
switch. In the 2 Y2 D system being described, both 
these effects were minimized by mounting the vol
tage switches in close proximity with magnetics ar
ray. Since the drive lines are so short, the frequency 
of resonance is high, and therefore the lines do not 
have to be critically damped. Note that the basic 
philosophy here is different than previously 
reported! since no attempt was made to minimize 
the voltage switch to sense line coupling, but in
stead the resonant frequency and damping were 
controlled. 

WORD DRIVE SYSTEM 

The schematic of the word drive system is shown 
in Fig. 5, and the photographs of its operation are 
shown in Fig. 6. It is a simple 256-way diode de
code, having the following characteristics: sink 
capacitance 700 picofarads, drive line inductance 
1.3 micro henrys , propogate time 9 nanoseconds. 
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Figure 5. Word drive circuitry. 

: 
: 
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Floating switches are used and the current is deter
mined by a fixed resistor providing an L/R time 
constant of 30 nanoseconds. The phasing informa
tion is present in the logic input to the decode ma
trix. 

BIT DRIVE SYSTEM 

Each bit in this system has an electrically inde
pendent drive system. Because of the redundancy 
the same relative switch in each matrix is selected 
at one time. This is accomplished by placing all the 
transformer primaries in series. The 32-way out
put is obtained from 8 bipolar voltage switches and 
4 bipolar current switches. The read current is al
ways present when the appropriate read switches 
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Figure 6. Word drive system waveforms, 200 nsec/ cm. 
Top: Voltage switch 5v/cm. Center: Voltage across drive 
line 5v/cm. Bottom: Drive current 100 ma/cm. 

are selected. The 'write current, on the other hand, 
is conditional and· will only be present when a one 
is to be written into memory. The schematic of the 
bit drive system is shown in Fig. 7. Photo
graphs of the bit drive .system operating are shown 
in Fig. 8. Pertinent characteristics are sink capaci
tance 125 picofarad, bit line inductance .. 70 micro
henry, propogate time 5 nanoseconds. 

SENSING SYSTEM 

The 16,384 cores per bit are broken up into four 
4096 sense lines. The aspect ratio of the sense line 
was chosen to be 256 X 16 for ease of fabrication. 
The penalty paid was that twice the delta noise2, 3 

must be handled. Fortunately the system resonances 
are high, and a wide-band sense amplifier may be 
large output from the core and the absence of large 

BIT I BIT 2 BIT N 
a) BIT 'SWITCH SELECTION 

C~ 
R=£" 

I 
b) DIODE -v 

DECODE 
DATA IN 

Figure 7. Bit drive circuitry. 

used effectively to achieve time discrimination. The 
inhibit noise (see Fig. 10) allow a less expensive 
sense amplifier to be designed. The 30-mil cores 
may be strung on 25-mil centers since a parallel 
core pattern is used. The sense winding is 
rectangular,4 and therefore the cores are on 25-mil 
centers on the sense winding. This compares to a 
core spacing of 42 mils on the normal diagonal 
sense winding with a box pattern. Since the cores 
are on such close centers on the sense line the im
pedance of the sense line is somewhat higher. It is 
approximately 170. The wiring pattern of the sense 
matrix is shown in Fig. 9. Worst-case outputs 
from the array are shown in Fig. 10. 

CONSTRUCTION 

The magnetics module is constructed by mount
ing two magnetics arrays back to back and inter
connecting them. Each array is 256 X 448 cores. 
Around the periphery are mounted the drive diodes. 
This complete assembly is then sandwiched between 
the bit drive and the bit sink circuitry. The drive 
and sink circuitry are connected to the magnetics 
module with flexible wiring. This allows the boards 
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Figure 8. Bit drive system waveforms, 200 nsec/cm. Top: 
Voltage switch 5v/cm. Center: Voltage across drive line 
5v/cm. Bottom: Drive current 100 ma/cm. 

to be swung open for repair. The drive boards are 
hard' wired to the array to eliminate a large number 
of connectors. 

The sense amplifiers are of cordwood construc
tion to get a high component density. This is done 
since it allows the sense amplifiers to be mounted 
with the drive and sink circuitry near the magnetics 
array. The package as described to this point is ef
fectively a complete 14-bit memory system, hav
ing logic inputs and logic outputs. A system having 
a larger number of bits may be constructed by join
ing any number of up to 5 of these smaller 14-bit 
arrays in parallel. Photographs of this system are 
shown in Figs. 12, 13, and 14. 

OPERATING MARGINS 

In Fig. 15 a 3-dimensional Schmoo diagram is 
shown similar to those reported by Womack.5 The 

RXo-. 
4-RX 256 RXI---+ 

4-RX258 

RX 
4--RX511 

SENSE 
OUTPUT 

Figure 9. Sense matrix wiring. 

Figure 10. Sensing waveforms, 200 nsec/cm, 40 mv/cm. 
Top: Ones and zeros. Bottom: Worst pattern. 
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Figure 11. EMI "Nanomemory" -16,384 words, 56 bits. 

operating margins may be compromised somewhat 
by increasing the write current. This in tum will 

commonly encountered Schmoo diagrams are shown 
as planes in this 3-dimensional representation. It 
must be appreciated that in the 2;.2D system, since 
it is a planar array the Schmoo diagram will, of ne
cessity, be a 2-dimensional figure. In the 2;.2 D 
system being reported, all the currents were derived 
from plus and minus 12 volts. This makes it diffi
cult, in the 2;.2 -dimensional approach, to vary 
read and write currents independently. As an alter
native, another method is suggested. It is a relative
ly simple matter to drive the word and bit drivers 
from separate plus and minus 12 volt power sup
plies, and to vary these independently to check sys
tem margins. That this is a meaningful check on 
system margins can be understood in that the word 
and the bit currents are orthogonal, that is, one of 
these currents may be increased without significant
ly increasing the knee of the core and therefore 
check the knee. It is readily apparent from the 3-
dimensional Schmoo diagram shown in Fig. 15 
that the 2;.2D I read versus I write Schmoo is the 
largest plane there. This says that the 2;.2D system 
has inherently broader operating margins. These 
cause a faster cycle time since the core may be 
switched faster, and we may be operating on a more 
favorable portion of the loop. 

Figure 12. Memory drawer; voltage switch side. 
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Figure 13. Memory drawer, current switch side. 

The operating margins of the system are shown 
in Fig. 16. We would expect it to be symmetrical in 
word and bit currents; however, it is seen that we 
are far more sensitive to the bit currents. 

The reason for this is the nons quare aspect ratio 

of the sense line, having far more cores on the se
lected bit line. 

Since the Schmoo is elliptical, the operating mar
gins of the system may be measured by varying the 
word and bit currents together. This would give a 

Figure 14. Magnetics array, decode diodes on periphery. 
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Figure 15. Coincident current three-dimensional Schmoo. 
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Figure 16. Operating margins, I word versus I bit with worst pattern. 

one-dimensional Schmoo, which would quite ade
quately define system tolerance. 

All drive currents are derived from + 12 volt 
supplies which also is used throughout the system. 
In margining the logic voltage, therefore, the drive 
current would also be margined by the same per
centage (+ 5 percent). 

REFERENCES 

1. H. Amemiya, T. R. Mayhew and R. L. Pryor, 
"A lOS Bit High Speed Ferrite Memory System-De
sign and Operation," Proceedings, Fall Joint Com
puter Conference, Spartan Books, Washington, 
D.C., 1964 pp. 123-145. 



HIGH SPEED FERRITE 2~ D MEMORY SYSTEM 1021 

2. Meyerhoff, Digital Applications of Magnetic 
Devices, John Wiley & Sons, New York, 1960. 

3. J. R. Freeman, "Pulse Responses of Ferrite 
Memory Cores," IRE Wescon Convention Record, 
1954, pp. 50-61. 

4. P. Cooke and D. C. Dillistone, "The Measure-

ment and Reduction of Noise in Coincident Current 
Core Memories," Institute of Electrical Engineers, 
Sept. 1962. pp. 383-389. 

5. C. P. Womack, "Schmoo Plot Analysis of 
Coincident Current Memory Systems," IEEE 
Transactions on Electronic Computers, Feb. 1965, 
pp.36-44. 





DESIGN AND FABRICATION OF A MAGNETIC, THIN FILM, 
INTEGRATED CIRCUIT MEMORY* 

T. J. Matcovich and W. Flannery 
Sperry Rand Corporation 

UNIVAC Division 
Blue Bell, Pennsylvania 

INTRODUCTION 

Techniques have recently been developed for us
ing uncased integrated circuits in electronic sys
tems. The use of uncased integrated circuits in 
computers will lead to the development of more 
reliable, more economical, and physically smaller 
computers than can be fabricated from discrete 
components or packaged integrated circuits. Before 
these advantages can be realized, practical tech
niques must be developed in the following areas: 

1. Memory design 
2. Logic design 
3. Chip testing 
4. Chip bonding 
5. Chip passivation 

All these areas are under study, and the initial 
results are· promising. UNIVAC has been concen
trating on developing techniques for achieving prac
tical memory design, logic design, chip testing, and 
chip bonding. Several integrated circuit manufactur
ers are studying techniques . for chip passivation, 

*Supported in part by Air Force Material Laboratory, 
Research and Technology Division, Air ForceSystems Com
mand, United States Air Force. 
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and economical processes should be developed 
within a few years. The design and fabrication of 
an integrated circuit, thin magnetic film memory 
system is described in this paper. 

In addition to using uncased integrated circuits, 
the memory to be described also makes use of eva
porated wiring and insulating layers. When fast rise 
times are required, the usual requirement of 
hundreds of milliamperes of drive current for oper
ating magnetic memory elements is difficult to 
achieve with integrated circuits. The current re
quirements can be reduced by decreasing wire size 
to obtain a larger magnetic field per ampere or by 
using a storage element which operates with smaller 
magnetic fields. Both of these approaches are used 
in the memory to be described. The wire size is re
duced to the point where evaporatd conductors and 
insulators must be used to obtain tight coupling be
tween storage element and wires. The use of evapo
rated wiring has other advantages which include 
compatibility with uncased integrated circuits and 
excellent reproducibility. 

The memory system design is described in the 
next section. Emphasis is placed on the electrical 
characteristics of the system. The advanced fabrica
tion techniques are described in the following sec-
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tion. Production vacuum evaporation equipment and 
the chip testing and bonding process are also de
scribed. The physical layout of the memory and 
fabrication steps are given in the next to the last 
section, and the results are discussed and conclu
sions presented in the final section. 

MEMORY SYSTEM DESIGN 

The memory element configuration is shown in 
Fig. 1. The element is a thin film of electroplated 
magnetic material and is wired in a conventional 

SENSE 
LINE 

Figure 1. Memory element configuration. 

manner with bit, dummy bit, and sense and cancel
lation lines. The word lines are O.OOS inch wide 
and are located less than O.OOOS inch from the mag
netic element; drive fields of about 100 oersteds per 
empere are produced by the word drive currents. 
The memory operates with word drive fields of 
about S oersteds, and, consequently, requires only 
SO milliamperes of word current. Bit and sense 
lines are 0.004 inch wide, and the memory requires 
only 20 milliamperes of bit current. The magnetic 
film is 800 angstroms thick and has an anisotropy 
field (Hk) of I.S oersteds and coercivity (He) of 
2.0 oersteds. 

The memory system consists of a 64-word, 
24-bit-per-word rectangular array of storage 
elements, octal decoders, apdress registers, a selec
tion matrix, word drivers, sense amplifiers, data 
registers, and bit drivers. All of these units are 
mounted on a common substrate. The circuits are 
all integrated and mounted (unpackaged) face
down onto the evaporated aluminum wiring on the 
substrate. 

The memory operates in a linear-select, de
structive-readout mode with a complete read
write cycle time of 2S0 nanoseconds. The memory 
element output is about 1 millivolt in amplitude 
and S nanoseconds in width at the base. Output 
from the data register is at standard logic levels, 
and power dissipation is about 4 watts. 

The memory system circuitry is contained on 
178 integrated circuit chips. There are 10 different 
chip types of which 2 are of standard and 8 of cus
tom design. 

The word address and driver circuitry is shown 
in Fig. 2. The address register consists of 6 Moto
rola Me 302 flip-flops, and octal decoder A con
sists of 8 Motorola Me 306 3-input gates. The 
remaining circuitry is custom designed and is di
vided into the three chip types illustrated in Fig. 3. 
All of the PNP devices are grouped on a single chip 
so that the best characteristics of both NPN and 
PNP devices can be realized. Octal decoder B con
sists of 8 of the PNP chips, and the 64 matrix tran
sistors are contained on 16-word switch chips. 
Word current pulses with a SO-milliampere ampli
tude and a rise time of less than 3 nanoseconds are 
generated by this circuitry. The amplitude of sneak 
currents in unselected lines is less than one milliam
pere. 

A block diagram of the recirculation loop is 
shown in Fig. 4. The differential amplifier is de
signed for low noise and low power operation. The 
amplifier pulse gain is 12, its rise time is 3 nano
seconds and its common mode rejection ratio is 320. 
The amplifier stages are capacitor-coupled, and the 
coupling capacitors are included on the single
ended amplifier chips. The design shown in Fig. 4 
makes it possible to use identical chips for the two 
single-ended stages. The pulse gain of the 2 cas
caded single-ended stages is adjustable from 100 
to 200, and the rise time is 3.S nanoseconds. A 
strobe circuit which is used to gate the amplifier off 
except during the read cycle is on a separate chip. 
The data register is a standard Motorola Me 302 
flip-flop. The bit driver circuitry requires both 
NPN and PNP devices. The integrated bit driver is 
fabricated on two chips, one containing all NPN 
devices and the other all PNP devices. The chips 
are designed so that one NPN chip and one PNP 
chip connected together form two bit drivers. 

A typical chip is shown in Fig. S. This is the 
single-ended amplifier chip, and the coupling 
capacitors can be clearly seen. All chips are 
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Figure 4. Recirculation loop. 

0.050-by-0.050-by-0.006 inch in size and are 
glass passivated for enviromental protection. Criti
cal circuits contain custom designed transistors. Use 
is made of evaporated nichrome for close tolerance 
resistors. 

ADVANCED MANUFACTURING 
TECHNIQUES 

The most serious problem resulting from the 
elimination of the integrated circuit package is 
that of providing environmental protection for the 
chip. The commonly employed passivation tech
nique is to grow a silicon dioxide layer on the sur
face; this passivation coating has proved inadequate 
in environmental and life tests. Other techniques, 
which include the use of thin layers of low-tem
perature glass, thick layers of high-temperature 
glass, epoxy encapsulation, and silicone rubber en
capsulation, have been tried with encouraging de
grees of success. A satisfactory passivation tech
nique will probably become available within a few 
years. 

Other problems encountered with uncased chips 
are handling, testing, and bonding. A number of 
micromanipulators with vacuum pick-up devices 
are commercially available and provide adequate 
handling facilities. The problem of testing the chips 
is under study at UNIVAC. Chips are usually tested 

before wafers are diced or after they are packaged. 
Since the uncased chips are never packaged, only 
the wafer probing techniques are applicable to 
chips. Wafers are usually probed with long, nee
dle-point, metal probes attached to small manipu
lators. These probes damage the probed area and 
are awkward to manipulate. More seriously, the size 
and shape of the probe make high-frequency test
ing of the chips impossible due to the inductance of 
the probe leads. 

A high-frequency chip testing device has been 
developed at UNIVAC. A schematic drawing of 
this test equipment is shown in Fig. 6. The chip to 
be tested is held by a vacum pick-up. and posi
tioned on a test card. The test card has a set of 
pedestals which correspond to the pad locations on 
the chip. The test circuitry is located adjacent to 
the pedestals on the test card, and no long, high
inductance leads are required. Consequently, high
frequency testing of the chip as well as low-fre
quency testing, is possible. A photograph of the 
chip test equipment is shown in Fig. 7. 

The problem of bonding the chips to the circuit 
assembly has been solved by the development of an 
ultrasonic bonding technique. Pedestals are evapo
rated on the substrate at locations corresponding to 
the pad locations on the chip. Interconnect wires
are evaporated onto the substrate to interconnect 
pedestals, memory elements, and external connec-
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Figure 5. Single-ended amplifier chip layout. 

tion pads. The chip is located over the pedestals, 
and ultrasonic energy is applied. As many as 14 
bonds are made simultaneously on a single chip. 
The apparatus used for performing the bonding op
eration is shown in Fig. 8, and a photograph of a 
bonded chip (viewed through the bottom of the 
transparent substrate) is shown in Fig. 9. 

The problem of wiring substrates by evaporation 
appears formidable; however, practical production 
equipment has been developed. A typical 64-by-
24 wired array of elements is shown in Fig. 10. 
This array has 3 layers of conductors and 3 layers 
of insulators and contains over 5,000 conductor 
crossovers. Units of this type have been produced in 
conventional vacuum system bell jars during a sin
gle pump down. Materials are evaporated through 
masks; masks, sources, and substrates are manipu-

lated externally while the system is pumped down. 
Registration between masks is held to 0.0002 inch 
over a 1-by-2-inch substrate area. Although only a 
single pumpdown is required for completing the 
wiring of a memory system, production is limited to 
one or two per 8-hour day. 

A production vacuum system has been developed 
for evaporating the conductors and insulators. An 
artist's sketch of the system is shown in Fig. 11, 
and a photograph of the prototype system is shown 
in Fig. 12. The input and output boxes contain sub
strate holders, each of which has a 13-unit capaci
ty; these boxes are shown in Fig. 13. A trolley car
ries a substrate from the input chamber to the main 
chamber where all of the wiring is deposited in a 
sequence of evaporations through appropriate 
masks. The -mask changer and operating mechanism 
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Figure 6. Schematic diagram of chip test equipment. 

are shown in Fig. 14. When the evaporations are 
completed, the trolley carries the substrate to the 
output box and delivers a new substrate from the 
input chamber to the main chamber. When the sub
strate supply is exhausted, the input and output 
boxes are isolated from the system, new substrates 
are added, and completed substrates are removed. 
These boxes can be pumped down to operating pres
sure in 10 minutes. Consequently, the evaporation 
processes are not delayed for lack of substrates. The 
prototype system shown contains a single main 

chamber. This system can be easily expanded to in
clude several main chambers. The following are 
some of the advantages multichamber systems pro
vide: 

1. Increased production by parallel operation. 
2. Continuous production by sequentially iso

lating single chambers from the system for 
routine maintenance. 

3. Provisions for performing low-vacuum and 
high-vacuum deposition techniques in dif
ferent chambers. 
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Figure 7. Photograph of chip test equipment. 

Figure 8. Ultrasonic face-down-bonding equipment. 

Figure 9. Photograph of face-down-bonded chip. 

Figure 10. Photograph of 62-by-24 matrix. 

The system shown can be used to produce 3 fully 
wired 6-by-3-inch memory planes per hour. 

MEMORY SYSTEM FABRICATION 

A plane view of the memory system is shown in 
Fig. 15. Word lines are on 0.020-inch centers, 
and bit and sense line pairs are on 0.060-inch 
centers. All lines are made of evaporated aluminum 
20,000 angstroms thick; word lines are 0.005 inch 
wide, and bit lines are 0.004 inch wide. A cross 
section view through the plane is shown in Fig. 16. 

The recirculation loops are equally divided on 
the left and right sides of the memory matrix. The 
entire word address circuitry and the word drivers 
are located at the top of the matrix. Two spring
type connectors provide all voltage and signal leads 
for the plane. 

The fabrication steps for manufacturing the 
memory system are shown in Fig. 17. A glass sub
strate is covered with a copper ground plane formed 
by a combination of evaporation and electroplating 
steps. The copper serves as the conductor for elec
troplating the film of magnetic alloy, which is ap
plied next. Following this step, the 64-by-24 ar
ray of storage elements is photoetched, and the 
magnetic memory properties of the resulting ele
ments are measured in a test setup which simulates 
memory operation. Planes with defective bits are 
rejected. After testing, the plane is installed in the 
production vacuum system where all the pedestals, 
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Figure 12. Production line vacuum system. Figure 13. Substrate holder. 
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Figure 14. Mask changer and operating mechanism. 

wires, and insulating layers are sequentially depos
ited through appropriate masks. All wiring is com
pleted in a single cycle through the vacuum system, 
and no etching steps are required. The wiring on 
the planes is next tested for continuity, shorts, and 
resistance. The pretested integrated chips are at
tached to complete the system. The memory is then 
given an operational test, encapsulated, and finally 
retested. 

DISCUSSION AND CONCLUSIONS 

The memory described does not represent the 
best that can be produced by the new techniques 
developed, but it does establish the applicability of 
the techniques to the fabrication of thin film mem
ory systems. 

The system could be made denser. The bit spac
ing and chip spacing were set by energy dissipation 
considerations. The bit spacing in the array shown 
in Fig. 10 was 0.030 inch; the 0.060-inch spacing 

was used in the final model so that the recirculation 
loop circuit chips could be spread over a larger area 
without fanning out. If the . chips are spaced as 
shown in Fig. 15, temperature rise during operation 
is limited to a practical value. When the energy dis
sipation problem is solved, the chips can be placed 
as close as 0.010 inch apart by using the fabrication 
techniques already developed. 

The system capacity is adequate only for scratch
pad applications. Larger systems can be made, but 
there is a limit to the length of line that can be 
vacuum evaporated. through masks. A practical up
per limit is presently considered to be 6by 6 inch
es. When the energy dissipation problem is solved, 
138,000 bits, including circuitry, could be placed 
on the substrate. This is still not adequate for large 
systems; however, larger systems could be fabricat
ed by stacking planes. 

The cost per bit of the memory system could be 
reduced by making higher-capacity planes. How
ever, the most substantial decrease in cost will re-
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suIt from reduced integrated circuit prices. The cost 
of integrated circuits has decreased substantially in 
the last year, and further reductions are anticipated. 
The use of uncased integrated chips should result in 
additional substantial reductions in the cost per cir
cuit. The cost should reach such a low level that 
minimizing circuitry will not be a significant sys
tem design criterion. A parallel situation existed 
when integrated circuits were introduced with the 
result that transistors became less expensive than 

EVAPORATE ELECTROPLATE 

GLASS 4000 ANGSTROMS .0005 INCH 

SUBSTRATES - f-e OF COPPER ON COPPER GROUND 
GLASS SUBSTRATE PLANE 

1 

resistors. The estimated cost of 4,096-word mem
ories of the type described is $0.02 per bit based 
on a $2.00-per-chip price. Since chip prices 
eventually fall below $1.00 per chip, memory sys
tems costing less than $0.01 per bit are anticipated. 

The reduced chip price and the fabrication tech
niques described may lead to a new concept in 
memories. Memories are presently formed by inter
connecting components, such as storage arrays, 
word drivers and sense amplifiers. Rugged, com
pact, and inexpensive memory modules containing 
all the system circuitry may be made available in 
standard sizes for use as computer system compo
nents. This advance, whiCh is potentially as signifi
cant as was the introduction of integrated circuits, 
which changed. the component unit from the resis
tor, capacitor, and transistor to the entire circuit, 
could substantially alter the present concept of com
puter design. 
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Considering all sources of delay, a memory cycle 
of 100 to 150 nanoseconds is easily obtainable in a 
memory consisting of a few thousand 32-bit 
words. 

CONCLUSIONS 

The experimental results have shown that the 
woven read-only memory array has the required 
properties for achieving very short memory cycle 
times. Another attractive feature of the memory is 
the high packing density which can be achieved; the 
results quoted on area packing density indicate that 
over 50,000 bits per cubic inch are obtainable. 

The description of the fabrication method for the 
memory has shown that stacks can be assembled at 
very low cost per bit due to the highly automated 
nature of the memory production process. If the 
costs become as low as anticipated, it may even be 
possible to consider the woven memory array as a 
very high-speed semipermanent memory by using 
"throw-away" planes. 

Finally, the results show that the memory ele-

ment is insensitive to mechanical stresses and tem
perature changes. The woven array will therefore be 
applicable in those areas where highly reliable oper
ation is required under extreme environmental con
ditions. 
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BATCH FABRICATED MATRIX MEMORIES* 
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INTRODUCTION 

Present-day matrix memory fabrication tech
niques are relatively expensive since discrete binary 
memory elements are individually made and then 
assembled into a matrix array by means of manual 
or semimanual wiring. The assembly of individual 
matrix planes is usually followed by another expen
sive step wherein the planes' of a memory stack are 
interconnected. The key to low cost matrix memo
ries lies in integrated or batch fabrication of the 
memory elements and wiring structure of a plane, 
and also batch forming the interconnections be
tween planes in a memory stack. Additional econo
my results from making the bit capacity of a plane 
as large as possible. The need for batch fabricated 
memory planes appears to be generally recognized, 
considering the number of suggestions that have 
been made for achieving the goal. Thin magnetic 

*This program is receiving support from the Air Force 
Materials Laboratory, Research and Technology Division 
Air Force Systems Command, United States Air Force: 
under contract no. AF 33(615)-3018; and Rome Air Devel
opment Center, Research and Technology Division, Air 
Force Systems Command, Griffiss Air Force Base, N. Y., 
under contract no. AF 30(602)-3826, as well as LFE Elec
tronics, a division of Laboratory For Electronics, Inc., Bos
ton, Mass. 
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film memory· elements were initially of interest be
cause of their high switching speed, which made very 
fast memories possible, but today thin magnetic 
film memories are of interest principally because 
they offer one approach to batch fabrication, since 
in the meantime ways have been found for achiev
ing high speed with ferrites. 

Although low cost is the principal motivation for 
developing batch fabricated memory planes, the re
sult is that such manufacturing methods also make 
small physical size and low power practically achiev
able. The small physical size of memory elements 
makes large-capacity planes possible, and this, to
gether with the low-power requirements, works to 
reduce the cost of selection, drive and sense elec
tronics. This reduction in electronics cost possible 
with batch fabricated memory planes. is very impor
tant to the objective of low cost memory systems 
since the cost of electronics in present-day memo
ry systems is a substantial and sometimes dominat
ing fraction of the total. 

A new approach to batch fabrication of memory 
planes based on the use of permalloy-sheet toroids 
as memory elements is employed. The etched per
malloy-sheet toroid approach is attractive because 
the fabrication techniques are applicable to a varie
ty of memory systems. 
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BATCH FABRICATED MEMORY PLANES 

The batch fabricated memory plane consists of 
flat toroids etched from sheet permalloy with the 
necessary control wiring formed by etching and 

X, X2 

Y, .. -

SENSE 
INN/Sir 

.$, 

S~ ..... ----

X, 

plating copper. The wiring pattern required for 
planes to operate in the coincident current mode is 
shown in Fig. 1. A slightly modified version is used 
for the linear select mode. The dark circles repre
sent the etched toroids; wiring, indicated by solid 

-+ 'tl 
--0 Y, 

Fi~l!re 1. Wiring pattern for 4 X 4 memory matrix. 

lines, is in the plane above the toroids, while the 
wiring indicated by dotted lines is in the plane be
low the toroids. Connections between the two wir
ing layers are made through the interior of the to
roids. The topology is such that wires never cross 
on the same plane, thus allowing the wiring pattern 
to be formed by two layers of etched copper insulat-

ed from each other and the toroids but connected 
by means of plated regions through the interior of 
the toroids. Larger arrays are made by repeating 
this basic pattern. Figure 2 shows an early test 
model with toroids on 25-mil centers prepared by 
bonding sheet permalloy to a plastic sheet, coating 
it with photo resist and exposing it to the negative 
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Figure 2. Hand-wired 4 X 4 matrix model. 23-Mil O.D. on 25-mil centers. 
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of the toroid pattern. The model was then devel- In Fig. 3 are shown the photo masters which are 
oped and etched, and holes were burned in the plas- required to batch fabricate the memory array shown 
tic in the middle of the toroids. It was then hand- in the previous figures. The two lower patterns are 
wired. the top and bottom halves of the wiring pattern. At 

0000 -i :, ,i :, 

0000 -' ~, " ~, ., • ., • 

0000 ,i :, ,i :, 

0000 -' ~, " 
I, ., • ., • 

( a) ( b) 

( c) ( d) 

Figure 3. Partially reduced photo-etched masters for a 4 X 4 matrix model. 

upper left is shown the toroid pattern, while to its 
right is shown the mesa pattern which produces the 
connection between the two wiring layers through 
the interior of the toroid. 

The steps involved in batch fabricating a memory 
plane of the design shown will be described, briefly, 
with reference to Fig. 4 (a-e) , which show cross 

sections of a plane in various stages of fabrication. 
In Fig. 4a, a 1.3-mil-thick copper sheet has been 
bonded to a temporary substrate via a thermoplastic 
adhesive. The copper has subsequently been coated 
with a photo resist, the mesa pattern exposed, and 
the resist developed. This layer has been baked and 
a subsequent coating of photo resist applied and 
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Figure 4. Steps in batch fabricating technique of memory plane manufacture. 
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Figure 5. Fabrication stages of 64 X 64 models. Upper 
left: Toroids with mesas plated up. Upper right: Top wiring 
pattern completed. Lower left: Top and bottom wiring com
pleted. Lower right: Lead-in from edges and top to bottom 
wiring feed through technique for edge connectors. 
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exposed to the mesa pattern as before, then devel
oped. This layer of resist serves as the adhesive 
which bonds the permalloy. In Fig. 4b the permal
loy has been bonded, coated with photo resist, ex
posed to the toroid pattern and developed, and the 
toroids have been etched. In 4c the specimen has 
been recoated with photo resist, the mesa pattern 
exposed and developed once more (this completely 
surrounds the permalloy toroid with an insulating 
layer of photo resist), then the specimen is placed 
in an electroplating bath and the mesas plated up 
level with the top layer of photo resist. In 4d a 
coating of copper has been evaporated onto the sur
face and electroplated up to a thickness of 1.3 mils; 
this surface is then coated with photo resist and ex
posed to one wiring pattern, developed, and etched. 
In Fig. 4e the specimen has been transferred to the 
permanent substrate, the. temporary substrate re
moved, the newly exposed copper surface cleaned, 
coated with photo resist, exposed to the final wiring 
pattern, developed and etched. 

The basic 4 X 4 pattern has been developed into 
larger models; Fig. S shows 64 X 64 models at vari
ous stages of fabrication, upper ·left, toroids with 
mesas plated; upper right, top wiring pattern com
pleted; lower left, top and bottom wiring completed; 
lower right, shows details of lead-ins. Figure 6 
shows a completed 64 X 64 memory plane. This plane 
is 1.6 inches square and has 4,096 toroids on 2S-mil 
centers. 

The completed planes may be stacked; the man
ner of accomplishing this is indicated in Fig. 7. These 
connections are formed by stacking and potting the 
planes in register, lapping off the surfaces to be in
terconnected, coating the surface with copper, photo 
resist, exposing through a mask and finally etching. 
In this way the plane-to-plane interconnections are 
formed in the same manner as the memory plane 
wiring. Figure 8 shows a section of a 64 X 64 stack 
of 5 planes where the edge of the copper lines is 
clearly visible. A stack of S 16 X 16 planes is shown 
in Fig. 9. 

Some essential features of the technique de
scribed are: (a) no new materials need to be devel
oped; (b) the magnetic material, thin permalloy 
sheet, is inexpensive, is available from several 
sources, and rigid quality control has been in hand 
for many years; (c) closed flux structure memory 
elements allow close coupling to wiring and close 
spacing of elements without interaction and with 
low sensitivity to external fields; (d) the chemical, 

photochemical and electrochemical materials and 
processes are individually inexpensive, well
known and well-established ones; (e) the pro
cessing methods are relatively simple and allow 
large planes to be fabricated with simple apparatus; 
(f) the tolerance and resolution required in indi
vidual steps of the fabrication process are well 
within the present state-of-the-art; !g) the 
batch fabrication processes used to make intercon
nection wiring between planes of a memory stack 
are identical to those used to manufacture memory 
planes. These properties of the fabrication tech
niques give good assurance that a high yield of 
memory planes at low cost can be dependably and 
reproducibly expected, once all the steps in the 
manufacturing sequence are brought under control. 
By reason of the nature of the batch fabrication 
techniques, the same expectations folloW for con
nection of individual planes to automatic test 
equipment and interconnection of planes in a stack. 

BATCH FABRICATED PLANE RESULTS 

Early models consisted of an array of 16 X 16 
toroids on 62.S-mil centers. These were used pri
marily as a demonstration of the feasibility of the 
process. Subsequently arrays of 16 X 16 toroids on 
2S-mil centers have been made, and the develop
ment of a satisfactory fabrication process has been 
a part of the program. Planes are generally fabricated 
in lots of 10 and as many as 9 out of 10 planes are 
being carried successfully through fabrication with 
an average of 6 out of 10 for the last 8 lots fabri
cated. In additions, the yield of testable planes has 
improved so that if a plane was processed completely 
through fabrication it was also a testable plane. Fur
ther, the yield of planes has steadily improved, de
spite the fact that planes 'are actually being made 
on an experimental basis where it is understandable 

~ that the yield may temporarily drop from the intro
duction of changes in the process which are expected 
ultimately to improve planes. In the last 3 lots of 
16 X 16 planes fabricated, one lot had 3 out of 10 
planes perfect, the next 3 out of 7 perfect, and in the 
last S out of 10 were perfect. Fabrication is nowin 
progress on 64 X 64-bit planes. Of the 90 processed 
to date, SO have been completed, and of these 37 
were testable. The first 7 lots have been tested, with 
6 planes having perfect wiring (no shorts or opens). 
Spot switching tests have shown S curves similar to 
those for the 16 X 16 planes. 
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Figure 6. Completed 64 X 64 bit memory plane. 

LOW-POWER LINEAR SELECT OPERATION 

The memory· planes presently· being fabricated 
are suitable for use either in the linear select mode 
or the coincident current mode. When operated in 
the linear select mode, reasonably short cycle times 
can be realized since the switching constant is less 
than 0.5 oersted-microseconds. Figure lOis a switch
ing curve taken using one of the planes and it may 
be seen that a 120-milliamp, 0.5-microsecond pulse 
should switch the toroid fully. In Fig. 11 d it may be 
seen that a 2-microsecond read-write cycle time 
may be readily achieved with read word pulses of 

0.5-microsecond at 150 milliamps and a write word 
pulse of 1.0 microsecond at 67 milliamps with bit 
current at -+-33 milliamps. These currents are less 
than one-third the values generally required with fer
rites at the same cycle time. 

At present a system design using these memory 
planes in a linear select memory of 8,000 30-bit 
words is under study. Present estimates are (for 2-
microsecond cycle time): power - less than 10 
watts; volume - approximately a 4-inch cube; cost 
- 7 to 14 cents per bit depending upon the number 
of units. Figure 12 shows an artist's sketch of this 
memory. 
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PLANE I 

PLANE 2 • 

PLANE 3 • 

PLANE 4 • 

PLANE 5 • 

Figure 7. Wiring diagram of completed stack. 

MASS MEMORY 

The low cost per bit resulting from the method of 
batch fabricating memory described, typically 0.01 
to 0.02 cents per bit, combined with key system 
techniques make it possible to build very large mem
ories with a capacity in the order of 108 bits at a 

cost in the order of 0.1 cents per bit including elec
tronics. 

The present mass memory system approach is 
based on the use of coincident-current memory or
ganization, since for a large memory the drive and 
selection electronic circuits are many fewer for a co
incident-current memory compared with those in a 
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Figure 8. Magnified views of end cross sections at 20X (top) and lOOX (bottom). 
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(0) 

Figure 9. Views of five 16 X 16 planes stacked with batch fabricated plane to plane interconnections. 

linear-select memory. It is next considered impor
tant in a low-cost memory that the matrix plane size 
be as large as possible, e.g., at least 256X256, since 
drive, selection and sense costs are again reduced as 
a result. Matrix planes in coincident-current mem
ories are normally restricted to much smaller sizes, 
e.g., 64 X 64, and even then the planes may require 
partitioning of the sense line, and the use of addition
al sense amplifiers, to reduce delta noise. To elimi
nate delta noise and make large planes possible, an 
unconventional two-frequency C.w. selection schemel 
was . adopted for the reading operation, while con
ventional coincident-current writing is employed. 
Small toroidal storage elements are used to reduce 
the length and losses of drive and sense lines. Closed 
flux storage memory elements allow close coupling 
to wiring and result in low sensitivity to external 
fields. Sense signals are relatively small, but the sinus: . 
oidal nature of sense signals p'rovides system versa
tility by permitting narrow-band filtering prior to 

sensing for acceptable signal-to-noise ratio. The read
ing method is nondestructive, which enhances relia
bility in large memories, and which reduces access 
time in the frequent case where read accesses signifi
cantly outnumber write accesses. The reading signals 
are sinusoidal while the write signals are d-c pulses; 
this difference provides a degree of electrical isola
tion between reading and writing operations. In Fig. 
13 are shown the characteristic S-curves (set pulse 
amplitude as the variable) traced from all 256 toroids 
on one 16X 16 plane read in this manner. Outputs 
from 64 X 64 planes are similar. The majority of ex
perimental fabrication work has been done using 
permalloy toroids that are 0.025 inch on centers. 
Small toroid size and low coercive force (0.2 oersteds 
for some permalloy) make possible a low, 30 milli
ampere, half-select write current for O.025-inch to
roids, read drive currents are approximately the same 
peak magnitude. Memories using these toroids are 
potentially low-power ones, and the memory fabri-
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Figure 10. Switching curve for mo-permalloy. 

cation technique can be compatible, therefore, with 
present capabilities of integrated semiconductor 
microcircuits. 

Figure 14 shows a simplified block diagram for a 
lOs-bit mass memory. The system consists of 16 
modules of 6.5 X 106 bits showing common elec
tronics organized as in the CCM. The basic system 
design has been described previously.2 A model of 
this memory is shown in Fig. 15. The model has a 
volume of 4.85 cubic feet. 

FABRICATION FACILITY 

It is apparent that yield is a critical factor in any 
batch fabrication process and this is no exception. 
Present results in a normal laboratory environment 
are quite good for the 64 X 64 planes now being fab
rica ted, but the next step is to prepare 256 X 25 6-bit 

( 65 X 103 bits total) planes. In order to assure good 
yield the total fabrication process has been devel
oped carefully, including the provision for a clean 
production area. A series of 10 clean work stations 
have been designed and are now being installed to 
implement the process on a pilot plant production 
basis. Figure 16 shows two of the clean stations which 
are designed for class 100 conditions. The fabrica
tion facility includes in contiguous areas the pilot 
plant, photo master preparation and electrical test 
areas. 

ACKNOWLEDGMENTS 

The authors would like to acknowledge the as
sistance of the staff of the Solid State Electronics 
Laboratory at Laboratory For Electronics, Inc., for 
the work reported here. 



BATCH FABRICATED MATRIX MEMORIES 1047 

(a) 
Iset = 33 rnA p @ 1 p.sec 

Ireset :. 150 rnA p @ O. 51-lsec 

(c) 
Iset • 100·rnA p @ 1 !J.sec 

Ireset· 150 rnA p @ 0.5l-lsec 

Figure 11. Test of write operation of ~-mil mo-permalloy. 
Plane 5H line Y-13. Vertical voltage sides are 10 mv/cm 
for (b), (c) and (d), and 5 mv/cm for (a). (a): Readout 
from 1/3 selected elements (0). (b): Readout from 2/3 
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Figure 13. S curves for all 256 elements on plane 2N. 
Reset pulse -80 rna peak, 5 fLsec wide; set pulse varied 0 to 
!f-80 rna peak, 5 fLsec wide. Read currents 40 rna pp. Ver-

tical scale 10 fLV /main div. Horizontal scale 10 rna/major 
div. Each photo shows 16 S curves associated with one Y 
line. Material is No. 43 - Y:z mil. 
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Figure 15. Model of lOS-bit memory. Outside dimensions 
are 17 X 17 X 29 inches. 
X 29 inches. 
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Figure 16. Clean work stations used for batch fabricated memory plane manufacture. 
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INTRODUCTION 

The concept of active circuit data storage (flip
flop) is as old as electronic data processing sys
tems. The attributes of highest access speed, steady 
state nondestructive readout and flexibility of appli
cation have been partially offset by higher costs and 
higher standby power per storage bit. As a result, 
flip-flop storage has until recently been really only 
feasible for registers. 

As integrated circuits have been perfected to pro
vide a multiplicity of gates or flip-flops on each 
monolithic die at lower costs than traditional dis
crete component circuits, the always interesting 
possibility of an integrated all-semiconductor 
memory of reasonable capacity becomes exciting. 
Simply integrating the circuits is not enough. A 
maximum number of storage positions in a given 
device package should also require a minimum of 
leads. Since a memory system is the objective, the 
need for the usual logic level compatible interface is 
waived. The storage device is optimized for mini
mum complexity per bit of storage and greatest 
electrical tolerance allowance at its terminals. Inter
face (peripheral) circuits are required such as word 
bit drivers and sense amplifiers much as for mag
netic core or film memory systems. However, the per-
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formance required from the peripheral circuits is 
much less stringent for the· semiconductor memory 
described. 

The following sections will describe the circuits, 
devices, packaging and system design for a random 
access 256-word memory of 72 bits per word. 

SYSTEM DESCRIPTION 

System Design Goals 

The main goal to be achieved is a memory sys
tem competitive in cost and superior in perform
ance for a certain range of applications. To achieve 
the goal, the storage device's complexity must not 
push processing technology toward low yields, must 
use fairly standard, easily installed packages and 
require a minimum number of packages for the sys
tem complement. To meet these needs, a 16-lead 
dual in-line package (similar to Fairchild CT ILL 
logic family) containing 4 words of 9 bits per word 
(36 bits) was selected. An 8x10-inch double
sided printed circuit card readily holds 160 pack
ages. Of this number, 128 are arranged in an array 
of 16x8 to provide 64 words of 72 bits each, with 
the balance of the packages containing word drivers 
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at 2 circuits per package. Thus the 256-word 
memory requires 4 such cards (storage). In addi
tion, 2 data circuit cards at 36 bits per card (bit 
driver and sense amplifier) and a single address 
register and control card are needed to complete the 
card complement. A power density of approximate
ly 5 milliwatts per bit was chosen with a view to 
providing high speed ( ISO-nanosecond cycle 
time) but moderate system power required ( 130 

watts). The basic storage cell has wide application 
flexibility and the specifications which follow are 
one compromise to several-co.nflicting needs. Minor 
modifications to. the design permit optimization for 
higher speeds, larger capacity for one set of peri
pheral circuits or reduced power. The capacity of 
the storage device itself (36-bit package) is a 
function of present device and package technology 
and should be regarded as a first expedient. 

Table 1. 

Capacity. 
Repetitive access or 

write cycle time . 
Read mode 
Write mode. 

Read access time 
Data flow rate . 
Interface signal levels . 

System Organization 

· 256 words, 72 bits/word, 18,432 bits total 

· 150 nanoseconds 
· nondestructive 
· jam set to one or zero (at storage 

device) 
· 120 nanoseconds 
· 480 bits/microsecond 

+ 2 volts = one, -0.5 volt = zero 
(compatible with Fairchild CTJLL family) 

The functional components of the semi-conductor 
memory are similar to most random access memo-

ries as shown in the block diagram of Fig. 1. A 
nondestructive steady state output is obtained from 
the storage cell. Strictly speaking, buffer registers 
are unnecessary. In the memory described,· registers 

MEMORY ADDRESS 
REGISTER . 

STORAGE 
DATA 

IN 
256 WORDS X 

72 BITS 

d DATA 
J---.....;.......-'--~ OUT GATE DATA OUT 

Figure 1. Block diagram. 

have been included primarily as a convenience for 
writing in data so that the computer need not be 
tied up any longer than necessary. Instead of having 
an output level directly compatible with logic level 
signals, a relatively low 30-millivolt signal is 
sensed as a one. Although a sense amplifier is re
quired, the advantage of relatively low-impedance 

sense/bit line (50 to 150 ohms) justifies its use. 
Such an impedance level is compatible with inter
connection techniques such as printed wiring, twist
ed pair and coaxial cable. Yet only about 400 micro
amperes are required from the storage cell tend
ing to minimize standby power needs for high speed 
capability. 
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Logic elements for the memory are standard com
plementary transistor micrologic units. The memory 
address register is formed from Dual Rank Flip-Flop 
circuits (Fairchild CT fLL-957). The first level de
coder uses dual, 4-input positive "and" gate (Fair
child CTfLL-954) followed by inverters (Fairchild 
CTfLL-952) to provide the correct signals for the 
second-level decoders and Word Drivers. On the 
first memory cycle after the memory has been idle, 
the address with a start command is loaded into 
both ranks and decoding begins immediately. After 
the correct word has been selected and delay through 
the sense amplifier completed, a gating signal trans
fers the . output to the computer system. If an input 
command ( write-in) is presented to the memory, 
data is gated into the Data Register (a Latch circuit 
Fairchild CT fLL-968 ), Bit Drivers corresponding to 
zeros are energized and after decode delay time a 
Write Control signal causes the Word Driver to 
change the state of the storage cells to correspond 
with Bit Driver outputs. 

For repetitive memory cycles, the earlier address 
is retained in the second rank of the memory ad
dress register until the first cycle is complete. The 
new address, if a start command is also present, is 
loaded in the first rank only, pending completion of 
the preceding cycle. Near the end of the first cycle, 
the new address is transferred to the second rank 
and, soon after the new cycle begins, the first rank 
is cleared. By storing the. start command also in dual 
rank register, an asynchronous input can keep the 
memory cycling at maximum speed. 

Special integrated circuits are the 36-Bit Stor
age Cell, Decoder-Word Driver, the Bit Driver, and 
the Sense Amplifier. (The Sense Amplifier is a 
Fairchild fLA-710 Comparator.) 

Typical voltage and current levels at the storage 
array interface are given in Table 2. 

Function 

Word' drive, read 
Word drive, write 
Bit drive 
Sense output 

Table 2. 

V 

1.5-2v 
> 3.0v 
-0.7v 
50 mv 

Imax 

25 rna 
55 ma 
10 rna 
0.5 ma 

A timing diagram is shown in Fig. 2. Times cor
respond to functional blocks in Fig. 1. Response of 
the storage bit after word drive is applied is about 
40 nanoseconds. The time required to store infor
mation in a storage bit is about 50 nanoseconds. A 

o 20 40 60 80 100 120 140 160 1110 

O. START OUTPUT 

ADDRESSING DELAYr--------:=-..J b. WORD DRIVE 
C. STORAGE 81T OUTPUT 
d. DATA OUT 

e. START INPUT 

f. DATA IN 

g. BIT DRIVE 

-FIRST 
CYCLE 
START 

Figure 2. Timing diagram. 

SECOND 
CYCLE 
START 

ISO-nanosecond repetitive cycle time is obtained 
by allowing overlap into the subsequent cycle. The 
sense amplifier is not limited to 256 bits on a sense 
line. U sing a multiplexed sense amplifier (4 seg
ments of 1024 words) a 4096 word memory of 72 
bits per word should easily achieve a repetitive 
cycle time of 500 nanoseconds. A cycle time of 100 
nanoseconds is obtained at 64 words of 72 bits. 
These timing estimates are projected on the basis of 
5 milliwatts per bit for the particular partitioning 
scheme described. A higher redundancy of peripher
al circuits obviously tends toward maximum speed. 
The other variable is the power density in the stor
age package. This may be modified readily by 
changing the applied power supply voltages or by 
changing the internal resistances within the device 
either to optimize for speed, cost or power con
sumption. The most significant point is that basi
cally a single device design in the storage package 
will serve a large spectrum of application require
ments. The goal of competitive costs is achieved 
mainly by producing a very large volume of essen
tially a single device with the attendant cost mini
mization realizable with microcircuitry. 

CIRCUIT DESIGN 

Basic Memory Cell 

The particular circuit configuration that one 
chooses for an integrated semiconductor memory is 
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dependent on a number of considerations such as 
chip complexity and size, number of leads" power 
dissipation, speed, logical flexibility, fabrication 
capability, etc. After analyzing the complete memo
ry system costs and considering the type of packag
ing to be used, we concluded that the most impor
tant criteria for selection of the circuit configura
tion is to minimize the number of leads required to 
the memory cell. This approach permits achiev
ing the highest functional complexity possible for 
any given package chosen. Consistent with the 
above statements is the belief that the memory cell 
circuit should be as simple as possible even at the 
expense of more complex peripheral circuits. if re
quired. 

After investigating both linear selection and 
coincident selection circuits as well as separate data 
in and data out buses, we decided on a linear selec
tion cell with a common data in-data out bus as 
shown in Fig. 3. The circuit is a conventional emit
ter-coupled binary except that the right-hand 

WRITEJL 

RE A D .J""'""'\.-
WORD SELECT LINE 

Figure 3. Basic memory cell. 

load resistor has been omitted and this node tied to 
ground. This forces the left-hand collector output 
node (point A) to vary from -0.7 volt (defined as a 
zero) to + 0.7 volt (one state) under quies,cent 
conditions. These voltages are determined only by 
the transistor parameters and are as follows: 

Vone = + Vbe sat - Vee sat and 
V zero = -Vbe sat + Vee sat 

Transistor T 3 acts as an input/output switch and 
is driven by a bi-amplitude positive pulse as shown 

on the word select line. Consider first the read oper
ation. A lower amplitude positive pulse forward 
biases the T3 base to emitter turning the transistor 
on. If a one is stored (+0.7 at A), T3 acts as a 
normal transistor and a positive output appears across 
RL. Its amplitude is determined by the ratio of RL 
to Rl + RE and the magnitude of + Vee Veesat. 
The purpose of RE is to prevent point A from going 
closed to ground that + 200 mv even with Do 
shorted to ground and minimum Veesat on T 3. 

If a zero is stored, T 3 acts as an inverse transistor 
and a slight current (dependent on inverse beta) 
flows into node A, tending to produce a negative 
output signal. Thus, a zero or a negative level at 
Do corresponds to a zero and a positive level cor
responds to a one. When readiag a zero, the base 
collector junction of T3 is forward biased forcing base 
current into node A: In order not to write a one into 
the cell, this current must be limited and this in turn 
is the reason for the bi-amplitude word select pulse. 
To write a one, transistor T4 is left off and the higher 
amplitude word select pulse is applied. This forces 
sufficient current into node A to cause T 1 to turn 
off and T2 to turn on, thus writing in a one. To write 
a zero, T4 is saturated, pulling the data in-data out 
line negative and thus pulling node A negative when 
T 3 is saturated. 

In designing the circuit, three primary constraints 
must be met to satisfy the conditions that the cell 
performs correctly at d-c or low frequency. These 
design constraints are: 

1. Minimum write current is sufficient to write 
a one. 

2. Maximum read current does not write in a 
one if the F /F is in the zero state. 

3. Minimum read current is sufficient to satu
rate the gate transistor (T 3) . 

In considering the design problem, it is soon real
ized that there are many more degrees of freedom 
in the design than there are constraints on design 
conditions which must be met. Thus one must use 
many secondary design considerations and some 
judgment in order to arrive at a unique solution. 
Our approach was to consider first the word driver 
circuit and determine roughly what read and write 
voltage levels and spreads could be realized. From 
this preliminary work, all terminal voltages were 
specified for the cell (i.e., word line and data line 
voltages for both reading and writing). The next step 
is to define the power supply voltages and the approx
imate power level of the cell. From the standpoint 
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of wide tolerances in the cell, it is desirable to have 
+ Vee and -V E both large in magnitude compared 
to V BE, and Rl and R2 large so that the node A and 
the emitter node are fed from a constant current 
source. However, this increases both the power dis
sipation and the size of the circuit in addition to 
yielding a somewhat slower circuit due to the RC 
time constant at node A. Consideration of these 
tradeoffs lead to fixing + Vee, -V E and R2. 

The three worst case equations for the three pri
mary constraints are: 

1. 

2. 

(Use high temperature values for transistor 
parameters) 

VA = [~lR3 ] [VR - ~eb3 + Vee 
R 1+R3 Ra Rl 

_ (V E - V be sat t) ] 
R2 

(Use low temperature values for transistor 
parameters) 

[
V R - Vbe satl Vee] 

3. VA = (RE+Rd R3 + Rl + Vee sat3 

where the bar above a parameter indicates the maxi
mum value and a bar below indicates the minimum 
value. V R is the "read" voltage on the word select 
line and Vw is the "write" voltage at the same point. 
All other notations are defined in Fig. 3. 

The following values were used in the design equa- . 
tions: , 

Resistor tolerance . -t- 30% 
Power supply tolerance . -t- 5 % 
"Read" word select voltage tolerance. -t- 0.25 volt 
Minimum difference between "read" and 

"write" word select voltage 
VA (write 1) 
VA (read 0) . 
VA (read 1) . 

1 volt 
· = 0 volt 
· = -200 mv 
· = +200 mv 

The voltage levels at node A were chosen so that 
there would be no change in the state of the cell dur
ing reading. By using the above values in Eqs. (1) 

and (2), Rl and R3 can be uniquely determined in 
terms of R2 which was previously chosen. The values 
of Rl and R3 along with RL were then used in Eq. (3) 
and RE was determined. The analytical results were 
verified by breadboarding all worst configurations 
using kit-integrated parts and determining the points 
at which failures occurred. 

The decision was made to package the memory 
circuits in Fairchild's new dual in-line configuration 
having 14 or 16 leads available. Since the memory cell 
requires .... power supply contacts (+ Vee,-VE, 
and ground), 13 signal leads are available with the 
16 pin package. These 13 pins can be used in a near 
optimum fashion by organizing the memory chip as 
a 4-word array of 9 bits per word. This gives 36 
bits of storage with 4 word select lines and 9 data in
data out lines required. The chip size is 60 by 80 
mils and utilizes two layers of metal to solve the 
crossover problem. Fig. 4 is a photomicrograph of 
the 36 bit memory array. 

Peripheral Circuits 

Final Decoder and Word Driver. In order to min
imize the number of gates required for word decod
ing, the decoding has been broken down into two 
levels called 'a first decoder level and final decoder. 
The final decoder is a two-input "and" gate whose 
output ties to the word driver circuit. Thus for a 
memory of 2n words, there are 2n of these circuits 
required. The first level decoding is performed by 
2 X 2n / 2 "and" gates with n/2 inputs each. For n = 8, 
there are 256 final decoder and driver circuits and 
32-4 input "and" gates for the first level decoder. 
The fan out required of the first level decoder is 
simply 2n

/
2 with this decoding scheme. 

The final decoder and word driver circuit is 
shown in Fig. 5. It consists of a current mode gate 
providing a "negative and" function with the non
inverting output directly coupled to a common 
emitter inverter stage which in turn drives an emit
ter follower output stage. To make the input levels 
compatible with the first decoder output, the ref
erence transistor in the C.M. stage (T 3) is tied one 
diode drop above the group. This also gives some 
temperature compensation to the circuit. The input 
resistors are used to suppress any tendency of the 
circuit to oscillate. The bi-amplitude output is 
achieved by controlling the voltage on the write 
control bus (WeB). If this line is tied to ground, a 
voltage divider is created and the lower amplitude 
output (read) results. If the bus is opened, the high-
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Figure 4. 36 Bit memory circuit (60 x 80 mils). 

TO WORD SELECT 
LINE 

Figure 5. Final decoder and word driver. 

er amplitude output (write) results. Again the pur
pose of diode D2 is to provide temperature compen
sation. The output stage is designed to drive a 72 bit 
or less length word which requires about 50 rna 
current for writing. 

Again the circuit was worst-case designed using 
the same tolerances as previously listed for the bas
ic memory cell. In addition, the output transistor 
was designed to withstand momentary shorting to 
the minus supply voltage. The circuit was designed 
to operate within the correct levels at a junction 
temperature of 110°C and was actually tested at 
this ambient temperature with no special heat sinks 
on the transistors. 

In order to keep the integrated circuit relatively 

simple, only two such circuits were put on one chip 
and single layer metal was used. The chip is 45 mils 
onaside, has a nominal power dissipation of 250 
mw and is shown in Fig. 6. The chip is packaged in 
the 14 lead dual in-line header and two such 
packages are required to service the four words 
contained in the memory package. 

Data Circuits. The sensing problem with this mem
ory cell is strictly a compromise solution based on 
system size, speed and complexity. Basically, the 
output of the memory cell during reading is a given 
current (about 0.5 rna) and this current may be 
driven into any impedance from zero on up as long 
as it is referenced to ground. Thus an ideal method 
of sending would be to use a common base stage 
which would terminate the line in a low impedance 
and provide voltage gain with good bandwidth. Un
fortunately, the polarity is such that a PNP transistor 
is required and good PNP common base stages are 
not easily integrated. For this reason, and also to 
limit the number of special integrated circuits that 
have . to be designed, we decided to build the pro
totype system using a convential integrated ampli
fier, the pA 710. All 256 words in the memory sys
tem are tied to a common data line. This can be 
done since the leakage current of the gating traI1sis
tor in the memory cell and its emitter capacitance 
are both very low. The data lines are then termi-
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Figure 6. Dual final decoder and word driver (45 mils square). 

nated in a 150.0, resistor and the 0.5 rna sensing cur
rent produces about 75 mv output signal nominally. 
This signal is amplified to the logic level by the 
JLA710 and a CTp.L-956 buffer is used as an output 
gate and line driver as shown in Fig. 7. 

Figure 7. Data circuits. 

DATA 
OUT 

A CT JtL dual latch element is used as a data in
put register. This circuit is simply a flip-flop with 
single rail input and output and a gate on both 
the input and output. Its output cannot pull neg
ative enough on the data line to write in a zero 
and thus a single common emitter transistor tied to 

-0.8 volt is required on the output of the latch. Sat
urating this transistor when a "write" pulse is pres
ent on the word select line will write in a zero and, 
if the transistor is turned off, the data line will be 
referenced to ground and a one will be written in. 

In the preliminary design, data line recovery time 
was recognized as an important system parameter. 
The capacity associated with the line was estimated 
as 0.2 pf per emitter times 256 plus about 20 pf 
wiring for a total of 70 pf. Thus the RC time con
stant would be about 10 nanoseconds with a 150 
ohm termination. This appears to be a. reasonable 
number. 

With regard to packaging, all Circuits are housed 
into dual in-line packages with two latches, two 
data drivers, two p.A 71 O's and two buffers per pack
age. In addition, a special interface circuit will be 
provided so that the memory will be compatible 
with any logic levels commonly used. Thus it re
quire five of the dual in-line packages to service 
two bits of data. 
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PACKAGE DESIGN board. Fig. 8 is a photograph of the storage board 
which is 8" x 10". The boards are standard 1/16" 

Printed Circuit Boards G-10 material with 1 oz. copper. The plated through 
holes are 30 mils in diameter with a 40 mil land. The 

All the circuits are packaged in the dual in-line 
14 or 16 lead configuration which, in turn, are insert
ed and flow-soldered in a two-sided printed circuit 

copper runs are 20 mils wide with a minimum clear
ance of 20 mils. The power supply voltages and 
ground are interconnected on the two sides of the 

Figure 8. Storage printed circuit board (64-72 bit word). 

board to form an interleaved grid pattern. This helps 
to reduce the self inductive and resistive drops in 
the lines. 

Interconnection Techniques 

The 7 pc cards are interconnected by means of a 
two sided mother board which also functions as the 
base of the specially developed connector. Fig. 9 
shows a photograph of the top side of the mother 
board with some of the contacts installed. The sig
nal interconnection pattern between boards is con
tained on this side of the board. This is also the 
side into which the contacts and pc boards are in
serted. The other side of the mother board contains 
power supply busing and solder contacts. 

Fig. 10 shows a photograph of the connector as
sembly. It consists principally of three parts: the 

mother board, the contacts, and a set of cams. 
When the cams are in the relaxed position, the pc 
cards may be freely inserted or withdrawn since 
they do not touch the contact fingers on the board. 
After a board is inserted the cans are rotated, caus
ing the contacts to exert a wiping action on the fin
gers and thus make contact. The contact pressure is 
designed to wipe through any oxide films that may 
be built up on the pc card. 

The same mother board and connector is de
signed to be usedlls the equipment interface con
nector in order to minimize hand wiring required 
in the memory system. Fig. 11 shows a photograph 
of the interface connector card with sub-miniature 
coaxial cable connected to it. Two such cards are 
required to complete the approximately 160 con
nections to the system. The cables are secured with 
a hood and clamp piece that feeds them out the 
back end of the card cage in a bundle. 
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Figure 9. Mother board - topv side. 

Card Cage 

Figure 12 shows a photograph of the partially 
assembled card cage. This mechanical assembly pro
vides two primary functions. They are mechanical 
support and guiding of the individual boards into 
the mother board and connector assembly, and pro
viding proper cooling for the assembly via a small 
fan and a controlled air flow path. In addition, the 
card cage will house the right angle drives that al
low rotating the cams from the front of the unit. 
Thus it will be possible to completely service the 
unit from the front, i.e., withdraw and insert cards 
or insert an extender board and contact assembly. 

Overall Unit and Power Supply 

The card cage is bolted to a standard 7" rack 
panel. The panel has a cutout to permit servicing 
the unit. The depth of the assembly will be about 
11", allowing the power supply to be placed directly 
behind the memory unit in the same rack space. 
The power supply requirements are approximately 
as follows: 

Total d-c Power 
+ 12 V 
+ 4.5V 

0.7 amps 
7 amps 

132 watts 
+ 10% 
+ 5% 

+ 2 V 5 amps + 5% 
- 0.8V 1 amp + 10% 
- 2 V 3 amps + 10% 
- 5 V 15 amps + 5% 

OPERATING CHARACTERISTICS 

A pulse program consisting of write one, read 
one, write one, read zero, and then repeat has been 
used for the testing. The oscillographs of Fig. 13 
show some of the waveforms for this system. A is 
the negative output pulse from the first decoder and 
inverter as it appears on one of the decode input 
lines on the storage card. These are all essentially 
"open" lines so the reflections present are reason
able. 

B shows the output of the final decoder and word 
driver as it appears on the word select line. The 
first pulse is the read zero, followed by write one, 
etc. Mid-amplitude delay through the circuit is ob
served to be about 20 nanoseconds. The long tail 
off (about 50 nanoseconds) on the trailing edge of 
the pulse is due to stored charge in the base of the 
gating transistors. The cycle time shown here is 150 
nanoseconds. 

C shows the output of the sense amplifier. As ex-
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pected, a signal is produced by the write "1" opera
tion as well as the read "1" operation. Mid-amplitude 

delay from word line to data out is about 30 nano
seconds. 

Figure 10. Connector assembly. 

Figure 11. System interface connector assembly. 
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Figure 12. Card cage. 

To demonstrate possible crosstalk that exists on 
the bit line, the repetition rate was slowed down 
and a zero and one superimposed. . Figure 14 (a) 
shows the word line and 14 (b) the bit line wave
forms. For this case, the two adjacent bit lines of 
both sides of the central bit had . complement data 
written in and read out at the same time as the cen-> 
tral bit line was being operated on. The photo is of. 
the central line and the small amount of crosstalk at 
the leading and trailing edges is apparent. 

CONCLUSIONS 

The results obtained have shown the f~asibi1ity 
of producing integrated circuit memory systems 
which offer advanced performance and design sim
plicity. Such memories may be expected to have an 
important place in applications where high speeds 
at low costs for moderate storage capacity are need
ed. Our experience has shown that the engineering 

of an integrated semiconductor memory system is 
much easier than that required for a thin magnetic 
film memory of comparable performance. 

~As semiconductor fabrication techniques contin
ue to advance, further improvement in semiconduc
tor memory systems is certain. 
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Figure 13. Memory system waveforms (50 nanoseconds/ 

square, 2 volts/square - execept as noted). 
a. Decode input pulse. 
b. Word line. 
c. Sense amplifier output. 

Figure 14. Superimposed one and zero outputs (40 nano
seconds/square) . 
a. Word line (2 volts/square). 
b. Bit line (100 mv/square). 
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INTRODUCTION 

The trend towards larger, more elaborate, and 
more complex computer systems is gradually modi
fying many programming and engineering tech
niques. The sheer bulk of equipment required by 
contemporary' computer centers, in itself, creates 
new and severe problems in many areas. In particu
lar, the maintenance of big systems has been com
plicated by three important characteristics: redun
dancy, complexity, and expense. 

Redundancy has adversely affected system relia
bility. Devices such as memory modules are respec
tably reliable when administered in small doses
but memory banks consisting of 32 or more mo
dules are currently available. In these quantities, 
even the most reliable modules can become collec
tively significant as a source of down-time. One 
popular, but expensive, approach to the problem is 
the refinement of packaging techniques so that en
tire modules, including addressing circuits, may be 
unplugged and replaced as units. 

The complexity of a big system imposes a heavy 
burden on maintenance personnel. As a rough com-

*This work was supported by the Advanced Research 
Projects Agency of the Office of the Secretary of Defense 
(SD-146). 

parison of complexity, a maintenance engineer who 
is responsible for a single unit in a big system may 
be required to retain an understanding of a device 
two orders of magnitude larger, by circuit count, 
than an equivalent unit produced six years ago. 
Maintenance crews have been growing, in response 
to the problem, so that each engineer need be famil
iar with only a fragment of the entire system. 
Again, the approach appears to be more expensive 
than effective. 

Big systems mean big cost in down-time. Al
though the maintenance engineer can think no fas
ter than he did six years ago, the hourly cost of 
down-time has grown considerably. Proportional 
increases in maintenance crew sizes is an unsatis
factory approach to the problem. Thinking speed is 
not linearly accumulative. 

STROBES (Shared-Time Repair Of Big Elec
tronic Systems) is an attempt to ease these prob
lems. It is based upon two assumptions. First, a big 
computer system is an unnecessarily overpowered 
device for regenerating the trace on a CRT console 
-even if the console is a maintenance engineer's 
oscilloscope. Flicker-free wave shape display re
quires no more than 32 uniformly spaced runs of 
the maintenance program during each second of 
use. Second, the bigger the system, the lower the 

1065 
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probability that any isolated facility is crucial to 
system operation. A redundant system facility, such 
as a core memory module, a magnetic tape drive, a 
telephone channel, etc., can be removed from gener
al use without destroying the integrity of the com
puter system. The two assumptions lead to the 
STROBES approach of isolating the faulty unit, so 
that standard time-shared programs are denied its 
use, and of blanking the maintenance CRT cathode 
whenever standard programs are running. 
STROBES thereby achieves a "stroboscopic" effect 
in which the maintenance engineer is able to moni
tor the faulty equipment, at cyclic intervals, during 
the time-shared running of his maintenance rou
tines. In typical trouble-shooting situations, the 
standard users are hardly aware of the presence of 
the maintenance engineer, and he is totally unaware 
of them. 

TIME-SHARED TROUBLESHOOTING 

The STROBES equipment and programs treat 
the maintenance engineer as a nonstandard time
shared system user. The equipment consists of a 
modified oscilloscope, a small control panel, and 
central processor circuits for communicating with 
the oscilloscope and control panel. The control pan
el offers a few basic operating options and is 
mounted on the oscilloscope frame. The oscillo
scope is modified to accept blanking and unblanking 
commands from the STROBES programs. 

Three modes of operation are provided by the 
STROBES programs. A "log-in" mode is furnished 
for identifying the maintenance engineer and the 
faulty unit and for initiating the "conversational" 
mode of troubleshooting. In conversational mode, 
the maintenance engineer can monitor and control 
the ·system by means of tasks called from the per
manent library. The tasks can be used to exercise 
faulty units, assemble other tasks, inspect and alter 
the permanent library, terminate operation, and ini
tiate or terminate a "stroboscopic" mode without 
terminating the conversational mode. The strobos
copic mode serves the purpose of regenerating the 
trace on the modified oscilloscope. A real-time in
terrupt, of the frequency selected at the control pan
el, calls a previously specified maintenance routine 
which unblanks the CRT, exercises the faulty unit, 
blanks the CRT, and returns control to the inter
rupted program. 

The primary advantage of this approach to troub
leshooting is the drastically reduced cost of down
time. Each run through a typical stroboscopic mode 
program, for example one which reads and writes 
into a faulty memory module, requires less than 1 
millisecond including interrupt overhead. At 15 re
petitions per second, near flicker-free display is ob
tained for the cost of 1.5 percent degradation in 
system speed. (During extended periods of indepen
dence from the CRT, the maintenance engineer can 
reduce this time degradation to zero by disenabling 
the STROBES interrupt. A switch on the oscillo
scope control panel is provided for this purpose.) 
Ignoring for the moment the cost of configuration 
degradation, the cost of down-time apparently drops 
to a negligible value. 

In addition to its more obvious value, virtually 
free troubleshooting time should lower the require
ments imposed upon maintenance crew sizes, indi
vidual skills, and equipment familiarity. 

The effect of configuration degradation during 
STROBES troubleshooting is not easily related to 
the cost of down-time. In special cases (for the ex
ample given, those in which the system programs 
handle a "virtual memory" which far exceeds the 
capacity of the "actual memory") system perform
ance is relatively insensitive to small changes in the 
system configuration. System performance degrades 
as some function of lost capacity when configura
tion changes are sufficiently large; but in the exam
ple, large changes reduce multiple faults and are 
rare. In general, configuration degradition has a 
binary effect on programs. Programs which reduce 
service from the faulty unit cannot be run. For 
them, the entire system can be considered inopera
tive during the repair period. For those which do 
not require the faulty unit, the entire system can be 
considered fully and continuously operative. The 
system is more reliable in effect, if not in fact. This 
increase in effective reliability is of particular sig
nifficance to users who interact with the system in 
real time and are therefore acutely aware of inac
tive periods. 

The advantages of the STROBES system are not 
obtained without cost. System programs must be 
rewritten to accept the maintenance engineer as a 
nonstandard user. More important, they must func
tion in a system which can change configuration 
upon operator command. System programs having 
similar properities are already available from manu-
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facturers who support many configurations of one 
basic system. Systems which make use of paging 
and segmenting hardware are particularly adaptable 
to the STROBES troubleshooting of memory mo
dules. However, a sizable cost can be expected if 
these systems are to be adapted to permit the isola
tion of any nonessential system facility during 
STROBES troubleshooting. The obstacles are great
er, but not insurmountable, for system programs 
which are rigidly fixed to one system configuration. 

A worthwhile gain can be obtained by relegating 
one facility at a time to the nonessential status. For 
example, an essential line-printer can be buffered by 
tape or disk so that images are loaded on an inter
mediate storage during printer down-time, then un
loaded and printed later. (Because of the image 
scrambling problem, elaborate printer buffering is 
already mandatory in time-shared systems. ) Buf
fered line printers can be efficiently isolated for 
STROBES troubleshooting because of their normal
ly low duty cycles. At Carnegie Tech, a 900-line
per-minute-printer produces an average of about 2 
X 10-5 Jines per 24-hour day. At that rate, about 20 
hours each day can be devoted to line-printer main
tenance without affecting system performance. 

Another important cost of implementing 
STROBES results from the rewriting of mainte
nance programs. They are subject to the same ver
satility requirements as system programs. They 
must be parametric so that they may be confined in 
extent, and non-iterative so they can be run in stro
boscopic mode. They must be cataloged and assem
bled in a maintenance library so that small relevant 
subroutines may be called conveniently. Finally, the 
conversational mode requires an appropriate inter
pretation and assembly system. 

Other costs and disadvantages of the STROBES 
system are less tangible. A psychological reaction 
can be expected on the part of both the mainte
nance engineer and the standard time-shared user. 
Both object to trouble shooting during production 
runs. The objections are based upon the fear that 
the maintenance engineer will interfere with the 
standard user's program by accidently touching a 
circuit component with an electrically active object. 
Such accidents might cause program errors which 
are difficult or impossible to detect. Although 
standard maintenance procedures rarely endanger 
the standard maintenance programs in this way, in-

sufficient data are available to determine the extent 
to which the objections are valid for production 
runs where mishaps are more costly. 

In conclusion, it is worth noting that the disad
vantages of STROBES may not survive installa
tion and general user acceptance. 

STROBES OPERATION 

Mandatory Equipment 

The stroboscopic mode requires a nonstandard 
oscilloscope, a small control panel, and appropriate 
communicating circuitry located in the central pro
cessor. The circuit shown in Fig. 1 is used at Car
negie Tech to adapt a Model 535A Techtronix os
cilloscope. It is housed in the preamp storage bay of 
the oscilloscope and mounted on the control panel 
which covers the front of the bay. No modifications 
to the oscilloscope proper are required other than 
the addition of the CATHODE BLANK and 
TRIGGER INHIBIT wires shown in Fig. 1. The 
switches, indicators, and connectors shown in the 
figure constitute the control panel. Repetition rates 
of 1, 15, and 60 per second are selected by the 3-
position REP RATE switch. Repetitive traces are 
easily visible on the standard 535A CRT at the 1 
per second rate. Traces are near flicker-free at 15 
per second and entirely free at 60 per second. The 
reptition rate selector wires run to AND gates in 
the processor which enable interrupts generated by 
a real-time clock. The connecting cable is 100 feet 
in length so that the oscilloscope may be wheeled to 
any unit in the system. The four-position MODE 
switch must be positioned at AUTO to obtain auto
matic trace repetitions at the selected rate. Inter
rupts are generated manually, for one--shot cycling, 
by depressing the ENABLE switch while MODE is 
in the MAN position. The manual interrupt line 
circumvents the real-time clock at the processor. 
INHIBIT TRACE is the only signal received from 
the processor. It is a d-c level supplied by a pro
grammable processor flip-flop. In either AUTO or 
MAN mode, INHIBIT TRACE blanks the CRT ca
thode and inhibits further triggering. The TEST 
position of MODE substitutes a l-kc square-wave 
oscillator for the inhibit trace sigrial. The NORM 
position returns the oscilloscope to normal operat
ing condition. 
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Figure I, The oscilloscope circuits. 

The STROBES Assembly Language 

A version of the standard machine language has 
been augmented by special STROBES macros and 
pseudos so that closed relocatable subroutines can 
be assembled in conversational mode. Statements 
in the language are of the form "LABEL, OP
CODE, PARAMETER, PARAMETER; COM
MENTS" and are assembled as they are typed. The 
relative address of each statement is automatically 
typed at the beginning of each input line so that it 
may be used as a parameter. Relative addresses are 
distinguished from numeric values by a preceding 
decimal point. 

At the completion of an assembly, a debugging 
mode is automatically entered, in which error com
ments are typed-out and corrections are typed-in. 
When errors are corrected to the satisfaction of the 

assembler, a request for a unit name is automatical
ly typed-out. After the name is typed, the subrou
tine is automatically dumped onto a temporary lib
rary and classified as a "task" for the specified 
unit. The task can be called and executed in either 
the conversational or stroboscopic mode, only if the 
specified unit was reserved during log-in. If no unit 
is specified, the task is assigned to all units. A per
manent task is available which copies tasks from 
the temporary library to a permanent master library 
which remains intact when STROBES is terminated. 

A task call is of the form "NAME, FIRST P ARA
METER, SECOND PARAMETER, ... , Nth PARA
METER, STROBES MODE; COMMENTS" where 
NAME can be any alphanumeric string and N ~ 9. 
The task can be run in stroboscopic mode only if 
indicated by the STROBES MODE parameter. The 
actual parameters are passed by means of a macro 
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called "Par." The PAR macro requires one para
meter: a digit which represents the position, in 
the task call, of a parameter which is to be brought 
to the accumulator. For example, the occurrence 
"PAR,2;" in the task called by "LOAD, 
100, 200, 300;" will cause the assembly of code 
which brings the number 200 to the accumulator. A 
list of pseudos and macros are given in Table 1 and 
Table 2. Angle brackets are used in the tables to 
denote class names. 

ENT; 

Table 1. The STROBES Assembly 
Language Pseudos. 

Defines the automatically typed relative address 
as the entry point of a library task. 

DEF, < LABEL >, < INTEGER >; 
Defines < INTEGER > as the value of < 
LABEL >. 

END; 
Terminates assembly and enters the task being 
assembled into the temporary library. 

PRT; 
Causes each used label and its defined value, 
if any, to be typed-out in tabular form. 

PRT, < INTEGER >; 
Executes the PRT pseudo for labels LO through 
< INTEGER > only. 

DMP, < INTEGER >, < LOCATION >; 
Types the contents of the < INTEGER > 
memory locations beginning at < LOCA
TION >. 

RTM; 

Table 2. The STROBES Assembly 
Language Macros. 

Returns control to the program marked in the 
ENT location. 

TON; 
Turns the oscilloscope trace on (unblanks the 
CRT). 

TOF; 
Turns the oscilloscope trace off (blanks the 
CRT). 

TPI, < INTEGER >, < LOCATION >; 
Enables type-in of < INTEGER > octal num
bers beginning at < LOCATION >. 

TPO, < INTEGER >, < LOCATION >; 
Types-out the octal contents of the < INTE
GER > words beginning at < LOCATION>. 

PAR, < INTEGER >; 
Brings the parameter in call position < INTE
GER > to the accumulator. 

CLL, < NAME >, < PARAMETER >, 
< PARAMETER >, ... ; 

Calls the library task specified by < NAME > 
and supplies the ensuing parameters. 

The Operation Modes 

The first phase of the log-in mode identifies the 
maintenance engineer to the general time:-shared 
system programs and registers. his request for 
STROBES. In the second phase, any tasks accessi
ble in log-in mode may be called. Of the log-in 
tasks shown in Table 3 only "DIRECTORY" leaves 
the system in log-in mode. The third phase termi-

Table 3. The Log-In Tasks. 

DIRECTORY; 
Types the unit, name, number of parameters, 
STROBES mode, and length of each task reg
istered in the permanent library. 

DONE; 
Terminates STROBES. 

RESTORE; 
Establishes the conditions which existed when 
a SAY task was last executed. (See Table 4.) 

UNIT, < ALPHA-NUMERIC >, 
< ALPHABETIC >; 

Declares the unit or units specified by the name 
< ALPHA-NUMERIC >, or the subunit deli
neated by the < ALPHABETIC> descriptor, 
as reserved for exclusive use of the maintenance 
engineer, loads all of the relevant subroutines 
from the permanent library, creates an appro
priate temporary directory, and initiates the 
conversational mode. 

nates log-in by returning to a previously aborted 
state, by terminating STROBES, or by progressing 
to the conversational mode. 

Once initiated, the conversational mode remains 
in effect until STROBES is terminated. Successful 
initiation is verified by the automatic type-out of 
the message "STROBES IS NOW PREPARED 
FOR" followed by the name of the unit requested. 
After an automatic carriage return; the letter "T" is 
typed-out to request input of a task call. When the 
task call is received, either a standard message, in-
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formation particular to the called task, or a "T" is 
typed-out. In this way, the reception of typed-in in
formation is always verified by a subsequent type
out. The conversational mode tasks are listed in Ta
ble 4. 

Table 4. Conversational Mode Tasks. 

TSK, < NAME >, < INTEGER >, 
< MODE >; 

Begins assembly of the temporary library task 
called < NAME > requiring < INTEGER > 
parameters and operable in stroboscopic mode 
if < MODE> = 1. 

STT, < NAME >, < PARAMETER >, 
< PARAMETER >, ... ; 

STP; 

Initiates stroboscopic mode and calls the task 
specified by < NAME > with the ensuing 
parameters. 

Stops the stroboscopic mode by inhibiting the 
STROBES interrupt. 

DIRECTORY; 

INI; 

Identical to the log-in mode task by the same 
name. 

Clears the temporary library. 

DLT, < NAME >; 
Deletes the task specified by < NAME > 
from the temporary library. 

RMV, < NAME >; Deletes the task specified by 
< NAME> from the permanent library. 

CPY, < NAME >; 
Copys the task called < NAME> from the 
temporary library to the permanent library if 
it is not already permanent. 

MRG, < NAME >; 
Merges the entire temporary library with the 
permanent library. 

TPI, < INTEGER >, < LOCATION >; 
Enables type-in of < INTEGER > octal num
bers beginning at < LOCATION >. 

TPO, < INTEGER >, < LOCATION >; 
Types-out the octal contents of the < INTE
GER > words beginning at < LOCATION >. 

ATI, < INTEGER >, < LOCATION >; 
Enables type-in of < INTEGER > alpha
numeric characters, one per word, beginning 
at < LOCATION >. 

ATO, < INTEGER >, < LOCATION >; 
Types-out the alpha-numeric contents of the 
< INTEGER > words, one character per 
word, beginning at < LOCATION >. 

SAY; 
Completely copies the state of the STROBES 
system so that restoration can be made by 
the log-in task "RESTORE" and terminates 
STROBES. 

OUT; 
Terminates STROBES unrecoverably. 

Entrance and exit to the stroboscopic mode is 
controlled by the conversational mode tasks STT 
and STP. The STP task is equivalent, in effect, to 
disenabling the STROBES interrupt at the control 
panel. Thus, the stroboscopic mode can be consid
ered to be the "iterative" form of conversational 
mode tasks. 

AN EXAMPLE OF USE 

The coordination of conversational and strobos
copic modes, during the trouble-shooting process, is 
best described by example. What follows is a con
trived protocol intended to illustrate the effect that 
the maintenance engineer is the sole system user 
while he absorbs an estimated 2 percent of total 
system time. Typing performed by the STROBES 
system programs is underlined for clarity. 

The maintenance engineer is required to elimi
nate recurrent parity errors in an 8K memory mo
dule having the octal address range 120000 to 
140000. He initiates log-in by the standard identif
ication procedure required of all time-shared users. 
He then requests all library procedures relevant to 
the faulty memory module (module MM11, E) and 
reserves it for his own exclusive use. 

UNIT~ MM11, E; 

After a brief pause in which the requested routines 
are prepared for use, a type-out informs the mainte
nance engineer that conversational mode has been 
established. 

STROBES IS NOW PREPARED FOR MM11 E 

The letter "T" is typed-out to request a conversa
tional mode task. The maintenance engineer then 
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types a small routine, by means of the task "TSK", 
which simply clears and then sets every bit in a 
word of the defective module. Three parameters are 
required by TSK: the task name (MEM), the num
ber of parameters (2), and the mode of operation 
desired (1 for stroboscopic). The maintenance en
gineer intends to use the oscilloscope to trace the 
information path to and from the defective module. 

T TSK, MEM, 2, 1; 
0000 ENT; SPACE FOR THE MARK 
0001 PAR, 1; BRING THE FIRST PARAMETER 
0004 STL" LO; STORE IT IN LOCATION LO 
0005 PAR, 2; BRING THE SECOND 

PARAMETER 
0010 STL" L1; STORE IT IN LOCATION L1 
0013 STZ, 1, LO; STORE ZEROS IN THE LOCA
--TION SPECIFIED BY LO 
0014 CAL" L1; CLEAR ADD THE PATTERN 
--IN LOCATION L1 
0015 STL, 1, LO; STORE THE PATTERN IN 
--THE LOCATION SPECIFIED BY LO 
0016 TOF; TURN OFF THE OSCILLOSCOPE 

TRACE 
0017 RTM; RETURN TO MARK 
0020 LO, 0; DECLARE LO AND ITS CONTENTS 
0021 L1, 0; DECLARE L1 AND ITS CONTENTS 
0022 END; TERMINATE ASSEMBLY 

If assembly is unsuccessful, special debugging com
ments and requests will be typed-out. The mainte
nance engineer may then debug and correct his 
code. When the task is acceptable to the asembler, a 
type-out requests the name of the unit for which the 
task is intended. 

SPECIFY UNIT 
MM11 

The task is added to the MM11 category of the 
temporary library. Successful assembly and library 
updating is then reported by a type-out and the next 
task is requested. The maintenance engineer enters 
stroboscopic mode by calling the newly created 
MEM task with STT. He supplies the address 
120000 and the pattern 77777777777 as parameters 
toMEM. 

LIBRARY UPDATED 

T STT, MEM, 120000, 77777777777; 

T 

The stroboscopic mode is now in effect. The main
tenance engineer commences trouble-shooting with 

the oscilloscope. After an hour of unsuccessful la
bor, he decides that a call to his supervisor is ap
propriate. The SA V task will recoverably remove 
STROBES from the operating system. After recog
nizing the call for SA V, STROBES types a recogni
tion message, preserves the temporary library and 
the operating state, and terminates. 

TSAV 

STROBES SAVED 

After consulting with his supervisor, the mainte
nance engineer must log-in once again. He can re
cover from the SA V operation by means of the RST 
task. 
RST 
STROBES IS NOW PREPARED FOR MM11, E 
T STT 
T 

Troubleshooting with the oscilloscope resumes. As 
other tasks are found necessary, they may be writ
ten or called from the library. 

T TSK, SEQ, 1, 1; 
0000 ENT 

-- code which sequences the MEM task 0001 { 

00 i 6 through memory 

0017 END 
"SPF:CIFY UNIT 
MM11 
T STT, SEQ, 77777777777; 
T STP 
T 

When the faulty component is found, stroboscopic 
mode is terminated by STP, the memory modules is 
powered down, the component is replaced, the 
memory modules is again powered up, and an ac
ceptance routine MT A is called. The routine re
ports faultless operation so the maintenance engi
neer terminates operation. 

T MTA, 'E'; 
MEMORY MODULE E O.K. 
TOUT; 

CONCLUSION 

The work described in this paper serves more to 
introduce than to exploit the STROBES approach. 
The central theme has been efficient troubleshoot-
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ing in emergency conditions. No mention is made 
of the many periodic "preventive maintenance" 
formance. These procedures are particularly adapt
able to the STROBES approach and should be a 
profitable realm of application. As systems increase 
in size, speed, and modularity, they should become 
more adaptable to the STROBES approach. An 
attempt to incorporate STROBES at the equipment 

and program design level may lead to significantly 
reduced maintenance costs in future systems. 
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INTRODUCTION 

A self-diagnosable computer is a computer which 
has the capabilities of automatically detecting and 
isolating a fault (within itself) to a small number 
of replaceable modules. 

This paper presents a new concept which, in 
mid-1962, resulted in the design of a self -diag
nosable computer called the DX-l. The design ef
fort represented one of a number of related and 
continual efforts aimed at finding the best way to 
achieve maximum operational availability of a 
computer to do useful work. The design objectives 
were: 

1. Maximum capability for self-diagnosis. 
2. Minimum mean-time-to-diagnosis (MTTD). 

(MTTD). 
3. Minimum additional hardware to make it 

self-diagnosable. 
4. Minimum hard core (that portion of logic 

which must function correctly) . 

The DX-l was logically implemented and simu
lated on the IBM 7090 during 1963. The results of 
the logic simulation indicated that the basic philos
ophy of self-diagnosis is technically correct. It also 
confirmed two facts, namely: (l) the design of a 
self-diagnosable computer must originate with the 
system architecture and must be treated as a princi
pal design parameter, and (2) it is mandatory that 
the diagnostic programs be automatically generated 
by a computer. 

This paper describes one way a computer can be 
designed to be self-diagnosable. Although much of 
what is discussed here has undergone substantial 
modification and advancement, it remains funda
mental and valid. 

Before discussing the design techniques used to 
make the DX-l a self-diagnosable computer, we 
present an abstract model as a basis for design and 
then describe the DX-l's organizational structure 
and operation in its normal mode. We conclude 
with certain specific results. 

1073 
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A MODEL OF SELF-DIAGNOSABLE DIGITAL 
SYSTEMS 

It is well known that a digital system Sl possessing 
a certain configuration is capable of diagnosing single 
solid faults of another digital system S2, provided 
that all the nonredundant inputs and outputs of sys
tem S2 are accessible to Sl. In particular, where sys
tem S2 consists of combinational logic, this method 
has been demonstrated for various systems.1,2,3 

When a digital system is partitioned under cer
tain restrictions into subsystems it is possible to 
achieve self-diagnosis of the system through the 
mutual diagnosis of its subsystems. 

Diagnosis and Diagnostic Systems 

We state briefly, without proof, a method of di
agnosis of logical malfunctions of a digital system 
and the requirements of a diagnostic system to be 
used for such diagnosis. 

1. Let Sl and S2 be two examples of a digital 
system S, where Sl is the system to be diag
nosed and S2 is known to be nonmalfunc
tioning. The diagnostic method consists of 
applying a sequence of stimuli to the inputs 
of Sl and S2 and of comparing the outputs 
of Sl to the corresponding outputs of S2. 

2. When S contains combinational circuits 
only, the sequence of stimuli may consist 
of all distinct combinations of input signals 
or some subset thereof. By utilizing the re
sults of the comparison previously referred 
to in (1), it is possible to decide whether 
Sl is malfunctioning, if the sequence of 
stimuli is properly chosen. In most cases, 
it is possible to obtain better diagnostic reso
lution, in the sense that the malfunction can 
be isolated to a relatively small portion of Sl. 

3. When S contains sequential circuits, a suit
able sequence of stimuli may be derived 
from the original design information. How
ever, it is difficult to obtain as good a reso
lution as is possible with combinational cir
cuits. 

4. Applying the diagnostic procedure4 and im
plementing the above-described method" a 
digital system R can be used to diagnose 
another malfunctioning digital system S, 
provided that R has the following capabil
ities: 

F 1: Supply the linkage to enable execution 
of a given sequence consisting of the 
operations F 2, F 3, F 4 and F 5 appearing 
repeatedly in any order. 

F 2 : Transmit predetermined stimuli to all, 
or any selected portion, of the inputs 
of the system S. 

F3: Observe the outputs of the system S 
and compare them with given patterns. 

F4 : Proceed to the next operation in the se
quence or branch to a different point of 
the sequence of operations, depending 
on the result of the last F 3 operation. 

F 5: Stop and communicate to the human 
operator the place in the sequence where 
the stop occurred or communicate other 
chosen information such as the loca
tion (s) of replaceable unit ( s) that have 
been diagnosed as being faulty. 

A Model of Self-Diagnosable Digital Systems 

A system S is self-diagnosable if S can be parti
tioned into n mutually exclusive subsystems, Sl, S2, 
... , Sn for n ~ 2; and, the following conditions 
hold: 

( a) Diagnosability of subsystems Si: 
Each Si, i = 1, 2, ... , n, must consist of 
either combinational circuits only; or, if it 
contains sequential circuits, a sequence of 
stimuli for its diagnosis must be possible 
and known. 

(b) Existence of diagnostic subsystems: 
Among the subsystems Sl, S2, ... , Sn, 
there exist subsystems, each of which can 
perform all the five operations F 1, F2, ... , 
F 5. These subsystems form the class of the 
diagnostic subsystems which we will denote 
by CDS' CDS = {Sj}, j = i1, i2, ... , im , 

m:::; n. 
(C) Communication between Si and CDS: 

The inputs and outputs of each subsystem 
Si, i = 1, 2, . . . , n, are accessible to at 
least one of the diagnostic subsystems 
(other than itself if it is in CDS). 

Following the discussion in the preceding sec
tion, we assume that a subsystem Si is diagnosable 
if its input and output terminals are accessible to a 
nonmalfunctioning subsystem Sa E CDS. The word 
"diagnosable" implies that the action of diagnosis 
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described in the preceding section is possible by using 
Sa as the diagnostic digital system where Si is the 
digital system/being diagnosed. We assume also that 
S is diagnosable if all the & are diagnosable. Fur
thermore, we assume that when a malfunction sub
system is diagnosed, it is immediately repaired. 

Classes of Subsystem Failures for Which the Model 
is Self-Diagnosable 

Certain conditions of failure are inconsistent 
with self -diagnosability, the extreme case being 
simultaneous malfunctioning of all subsystems. We 
will examine the classes of failures for which the 
model defined above is self-diagnosable. 

1. It is possible to construct a self-diagnosable 
system S if at least two subsystems among 
Sl, S2, ... , Sn belong to CDS. 

2. S is self-diagnosable, independent of the 
number of malfunctioning Si (i = 1, 2, 
... , n), if no more than one of the mal
functioning Si is in CDS. 

3. S is self-diagnosable no matter how many 
of the & are malfunctioning if for each of 
the malfunctioning Si in CDS, there exists 
at least one known nonmalfunctioning Sj E 

CDS, and the inputs and outputs of Si are 
accessible to Sj. 

4a. Let Sil, ... , Sim be a subset of Sl, S2 ... , 
Sn. Sil, Si2, ... , Sim is said to form a diag
nostic sequence from Si to Sim if the input 
and output terminals of Sip are accessible 
to Sip-l for p = 2, 3, ... , m, while Sil, 
Si2, ... , Sim-l E CDS and Si2, Si3, ... , Sim 
are malfunctioning subsystems .. Then, Sim 
is diagnosable if Sil is known to be non
malfunctioning. 

4b. S is self-diagnosable no matter how many 
of the &(i = 1, 2, ... ,n) are malfunc
tioning, if there exists at least one non
malfunctionillg Sj E CDS and a diagnostic 
sequence can be formed from a nonmal
functioning S3 to each malfunctioning &. 

Extensions of the Model of Self-Diagnosable Digi
tal Systems 

In this subsection, we will consider the extensions 
of the self-diagnosable digital system model, taking 
into account realistic situations as found in actual 

system design. We shall define S; Sl, S2, ... , Sn; and 
CDS as above (see A Model of Self-Diagnosable Dig
ital Systems). 

1. Let Sa be any of the Si E CDS. Let Sa be 
further partitioned into subsystems Sal, Sa2, 
. .. , Sak. The partition possesses the follow
ing properties: 

(a) Sal, i = 1, 2, ... , k, are also subsys-
1 

terns of S. 
(b) Sa is nonmalfunctioning if each of the 

Sai (i = 1, 2, . . . , k) is nonmalfunc
tioning. 

( c) When Sa contains no redundant or ir
relevant elements, each Sai (i = 1, 2, 
. . . , k) is nonmalfunctioning if Sa 
is nonmalfunctioning. 

2. Forming new diagnostic subsystems during 
diagnosis: Let Sal, Sa2 , ... , Sak be the sub
systems of a diagnostic subsystem Sa result
ingfrom a partitioning of Sa. Let Sil, Si2, 
. . . , Sip be some of the subsystems Si of S. 
( a) If a new diagnostic subsystem SI3 can 

be formed by combining Sil, Si2, . . . , 
Sip and some or all of the Sai, say Sit, 
S12, . . . ,S1m, then we can consider 
SI3 as the result of a new partitioning 
of S. 

(b) If all the Sil, Si2, ... ,Sip and Sit, Si2, 
... ,S1m are diagnosable, then SI3 is 
diagnosable. 

3. (a) Sit, Si2, ... , Sim are said to form a 
chain diagnostic sequence from Sil to 
Sim if they possess the properties of a 
diagnostic sequence and at least one of 
the Sij is formed by a new partition of 
S immediately after the Sij-l is diag
nosed and repaired, and each of these 
Sij is a combination of known nonmal
functioning subsystems of S in the new 
partition. 

(b) Sim is diagnosable if Sil is known to be 
nonmalfunctioning. 

(c) S is self-diagnosable no matter how 
many Si (i = 1, 2, ... ,n) are mal
functioning if there exists at least one 
nonmalfunctioning Sj E CDS, and a 
chain diagnostic sequence can be 
formed from a nonmalfunctioning Sj 
to each malfunctioning Si. 
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4. Indirect access in diagnosis: Consider Fig. 1 
where a diagnostic subsystem Sa has access 
to the inputs but not the outputs of S1 and 
the outputs of S2, Sa, and S4; while at the 

Figure 1. Indirect access. 

same time, the output of S1 can control the 
input of S2, Sa, and S4. S1, S2, Sa, and S4 
can be diagnosed by using a majority tech
nique if only one of these four is assumed 
to be malfunctioning. This can be done as 
follows: ( a) apply stimuli to S1 and ob
serve the output indirectly through the out
puts of S2, Sa, and S4 individually; and 
then (b) accept only the majority of the 
three results. It is possible to use this tech
nique in a variety of ways including the 
joining of diagnostic sequences and chain 
diagnostic sequences. 

5. Partition vs. resolution in diagnosis: Even 
though each Si (i = 1, 2, ... ,n) is diag
nosable, the resolution of diagnosis depends 
on the configuration of Si. However, if S is 
partitioned such that each of the Si is small 
enough and preferably packaged in a single 
replaceable unit, it is not necessary to ob
tain better resolution than diagnosis to an Si. 

6. Hard core: When it is not possible to parti
tion S into mutually exclusive diagnostic 
subsystems, and additional hardware can
not be added for economic or other reasons, 
some elements, say H(S), are then necessary 
to be in common to two or more diagnostic 
subsystems, say Si1, Si2, . . . , Sim. If the 
nonmalfunctioning of at least one of these 
Sii is necessary for S to be self-diagnosable, 

we must be certain that H (S) is not mal
functioning prior to the commencement of 
diagnosis. In this case, H (S) is called the 
"hard core" of S. 
When a hard core H (S ) exists, S is not 
completely self-diagnosable. We can, how
ever, design H (S) to utilize self-checking 
hardware, and we can employ manual 
methods to diagnose H (S ). When H (S) is 
tested and is known to be nonmalfunction
ing, we may leave H (S) alone and treat S 
as a self-diagnosable system. 

7 . Use of additional hardware during diag
nosis: Certain parts of a self-diagnosable 
digital system might not be necessary for 
the normal operation of the system. Such 
parts would therefore not be required to be 
connected to the system except when the 
system is to be used for self-diagnosis. 

Diagnostic Procedure 

For a given self-diagnosable digital system, there 
are various ways of constructing diagnostic pro
cedures. We will present a method which will aid in 
determining whether a system is self-diagnosable. If 
this is the case, this method will also assist in the 
construction of a diagnostic procedure. A simple 
example is given in conjunction with this discussion. 

1. List all the mutually exclusive subsystems 
S1, S2, ... , Sn which are the result of all the 
expected partitions of S. For each subsys
tem Si (i = 1, 2, . . . , n) list all the diagnos
tic subsystem or subsystems (denoted by 
DS j ) by which & is diagnosable, either by 
direct or indirect access. 
In the example, there are eight subsystems. 
They are given in Table 1. 

Table 1. Subsystems 

Subsystems 

S1 ...................... . 
S2 

Diagnosed by 

DS2 
DS2 

Sa ............................... . DS1 

DS4 
DSa 

S4 ............................... . 
S5 
S6 
S7 ............................... . 
S8 

DS1 

D~ 

DS4 
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2. List all diagnostic subsystems in the same 
manner. Furthermore, for each diagnostic 
subsystem DSj, j = 1, 2, ... , k, list all the 
subsystems resulting from its partition. 
There are four diagnostic subsystems in the 
example. They are given in Table 2. 

Table 2. Diagnostic Subsystems 

Diagnostic Subsystems Diagnosed by 

DS1 (Sl, S2) ................. DS2 
DS2 (Sa) .................... DS1 
DSa (Sl, S6) ................. DS2, DS1 
DS4 (Sl, S2, Sa, S5) ............ DS2, DS1, DSa 

The method of partitioning and the diag
nostic system requirements are necessarily 
interacting. Therefore, Tables 1 and 2 
should be constructed simultaneously. Sev
eral trials are likely to be required before 
a satisfactory list can be constructed. If a 
list cannot be constructed, the system is not 
self-diagnosable. 

3. Denote A ~ B to mean that subsystem B 
is diagnosable by subsystem A, A B ~ 
C to mean that subsystem C is diagnosable 

X Select 
Read Write 

Memory Y Select 

!--10-n-

by the combination of subsystems A and B, 
etc. By examining Tables 1 and 2, using 
the relationship that a diagnostic subsys
tem is diagnosable if all the resulting sub
systems from its partition are diagnosable, 
construct a diagnostic diagram as in Fig. 2. 
The diagnostic diagram shows how each of 
the diagnostic subsystems may be diagnosed. 

Figure 2. Diagnostic diagram. 

DX-l AS A COMPUTER 

Figure 3 presents the data flow within DX-l. In 
its normal mode, the DX-l is a binary, fixed point, 
parallel, microprogrammed digital computer. It in
cludes a single bus, six arithmetic registers (Rl 

X Select 
ROM Maximum of 256 x 16 = 4096 Words 

Y Select 
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\MAR Decode I 
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Figure 3. DX-l data flow. 



1078 PROCEEDINGS - FALL JOINT COMPUTER CONFERENCE, 1965 

through R6), an ADDER, gates for logical AND 
and ZERO TEST, buffer registers IPR and OPR 
for communication with input and output devices, a 
read-write memory (RWM) addressed by the MAR 
and buffered by the MBR, and a read-only memory 
(ROM) addressed by the ROMAR (which is divided 
into Hand L parts) and buffered by the ROMBR. 
The standard word length is eight data bits with two 
parity check bits and no sign bit. The ROM word is 
34 bits long. 

Micro operations are stored in the ROM. One field 
(0) of the ROMBR acts as the micro operation 
code register. Two other ROMBR fields (F and T) 
hold codes specifying which registers the micro 
operation must connect, respectively from and to 
the bus. The F, T, and 0 fields appear in both A 
and B control registers within the ROMBR because 
register control is divided into A (left or high order) 
and B (right or low order) parts. In normal opera
tion, CONTROL A and CONTROL B contain iden
tical bit configurations. The lengths of fields F, T, 
and 0 are six bits, six bits, and eight bits, respec
tively; and each must always contain exactlv two 
binary ones in normal operation. They provide ad
dressing capability for 15 registers, and codes for 
28 micro operations. 

The two remaining fields in the ROMBR can 
contain arbitrary binary numbers. The data (D) 
field holds one word and is 10 bits long. The next 
instruction (Nl) field holds four bits. Its role in 
determining the next micro operation's address in 
ROM will be detailed later. Note that one ROM 
word is required for each micro operation. 

Each micro operation is executed in one clock 
cycle. At time tl, the micro operation is fetched into 
the ROMBR from the location in ROM addressed 
by ROMAR. Transfer (by micro operation XFER) 
of a number from the register addressed by the T 
field [R(T)] to the register addressed by the F 
field [R(F)] requires only two more clock times: 
t4 for clearing R(F) and t5 for connecting to the bus 
both the input of R(F) and the output of R(T). 
Other micro operations which require more timed 
steps are interleaved with the XFER micro opera
tion using times t2, t3, and t6. At time t7, the ROMBR 
is always cleared to prepare it to accept the next 
micro operation (Fig. 4). 

The DX-l uses its micro operations to follow a 
sequence of macro operation codes stored in the 
R WM. Each macro operation is the high order eight 

bits of the addresses of 16 ROM locations. These lo
cations, and more, if necessary, are used to store the 
sequence of micro operations that constitutes that 
particular macro operation. Each such sequence 
starts, by convention, in a ROM location whose four 
low order address bits are zeros. Consequently, each 
macro operation can start the next macro operation 
by READing its macro operation code from RWM 
into ROMAR H and simultaneously placing zero in 
ROMARL. 

Within each block of 16 ROM locations, the NI 
field of each micro operation specifies the address 
of the next micro operation. The ROMAR L is 
cleared at time t4 and then loaded from the NI field 
at t5 so the specified micro operation will be fetched 
at the next tl. This is the ordinary sequencing within 
a macro operation. Continuing a macro operation be
yond the 16 ROM locations addressed by its macro 
operation code is easily effected. 

The last micro operation in the first group of 16 
is made a XFER from its own D field to ROMAR 
H. The next micro operation executed will be in the 
group of 16 specified by D, and the low order four 
bits of its address will be determined by its predeces
sor's NI field as usual. 

Micro Operations 

This completes the general description of DX-1. 
The various micro operations are now described in 
detail. How they may be combined to perform the 
ordinary functions of a digital computer is also 
shown. 

1. XFER: Data Transfer Micro Operation 

As has been mentioned, the micro operation code 
for XFER appearing in the 0 field of the control 
registers causes the computer to clear R(F) and 
transfer R(T) into R(F) by way of the bus. Micro 
operation XFER has special uses in addition to its 
obvious applications in shuffling data. First, any 
XFER specifying the AND GATE by its T field con
nects registers R5 and R6 to the inputs of the gates 
so that the bit-wise AND of the contents of these 
registers is transferred to R(F). Second, special F 
and T codes are provided for registers R2 and R3, 
respectively, which flip (interchange high and low 
halves of) their contents on XFER'S into and out of 
them, respectively. Third, special T codes are pro
vided for register R1, which shifts its contents either 
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left or right when it is XFERed to the bus. Of 
course, normal inputs and outputs are also provided 
for registers R3, R2, and Rl. Fourth, a XFER with 
the ZERO TEST GATE specified by its F field can 
be used to provide a 1 output from these gates if 
R(T) is zero. In normal operation, this output is 
connected to the input of ROMAR bit 9 so that, if 
the NI field of the XFER is between zero and seven, 
the address in ROM of the next micro operation is 
effectively increased by eight. This conditional 
branch can be used to construct most conditional 
operations that normally appear in a computer's 
operation code list. 

2. XFC5: Transfer, and Clear Register R5, Micro 
Operation 

The ordinary transfer micro operation, XFER, 
never clears register RS, even when field F specifies 
this register, so the function of logical OR may be 
performed by successive XFER's into RS. For nor
mal transfer of data into RS, a special micro opera
tion XFCS is provided to clear RS whenever it is 
executed, whether or not the transfer which it also 
performs is in register RS. 

3. CLAD: Add Micro Operation 

The most elementary arithmetic micro operation, 
CLAD, clears R6 at time 14 and, if field F specifies 
the ADDER, connects RS and the bus to the two 
sets of adder inputs at time 15. Hence, the CLAD 
micro operation places in R6 the sum of the con
tents of RS and R(T). 

4. eLHA: Half Add Micro Operation 

Micro operation CLHA is like CLAD except that 
CLHA provides a carry inhibit signal to the ADDER. 
This causes the ADDER to perform the EXCLU
SIVE OR logical operation that is useful for com
paring the contents of a register with the contents of 
RS. The result in R6 is zero if the two registers con
tain identical bit configurations. 

S. CATO: Add, and Transfer Control on Overflow, 
Micro Operation 

Another modification of the CLAD micro opera
tion is CATO. It forces bit 9 of the ROMAR to a 
1 if the ordinary addition performed by CA TO 

causes an overflow. This micro operation is a con
ditional branch that is necessary in subtract and mul
tiply macro operations. 

6 and 7. READ and WRIT: Read and Write Micro 
Operations 

Communication with the R WM location addressed . 
by the MAR is effected with the READ and WRIT 
micro operations. The WRIT micro operation exe
cutes an ordinary XFER into the MBR at times t4 
and t5 and writes the MBR into the R WM at time t6. 
The READ micro operation clears the MBR at time 
t2 and reads into it from R WM at time t3. Then it 
executes an ordinary transfer from the MBR at times 
t4 and t5. 

8 and 9. IPUT and OPUT: Input and Output, Micro 
Operations 

Communication with the external world is through 
the input and output registers, IPR and OPR. When 
the IPR is addressed by the T field of an IPUT 
micro operation, the machine waits at time t3 until 
it receives an input ready signal (or IR), from the 
input reader, executes the ordinary transfer into 
R(F), and, at times t5 and t6 , signals the input reader 
to begin reading in the next 10-bit word. It is assumed 
that the input reader withholds its IR signal until this 
operation is complete. In an analogous way, the 
OPUT micro operation causes the output writer 
to write out R(T) and inhibit further OPUT micro 
operations until its buffer is free to receive new data 
as indicated by the presence of an output ready, or 
OR, signal. 

10. PAUS: Pause Micro Operation 

P AUS waits for a restart signal, or RS, and then 
executes an XFER micro operation. 

Macro Operations 

Fifty-two macro operations were constructed using 
the 10 micro operations. Most of the macro opera
tions were single address instructions in which the 
address used by each macro operation was stored in 
the location immediately following its operation code. 
Executing such an instruction involved adding one 
to the MAR to get the address of the operand, and 
adding two to its original value to get the address of 
the next macro operation. 
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ORGANIZATION AND DESIGN OF 
THE DIAGNOSTIC SUBSYSTEMS AND 
DIAGNOSTIC PROCEDURES 

Diagnostic Subsystems 

We shall now discuss design facets of the com
puter system just presented (Fig. 3) relating to the 
design of the diagnostic subsystems. A diagnostic 
subsystem is that portion of a digital system capable 
of effectively diagnosing another portion of the digi
tal system. It has been shown that at least two mu
tually exclusive diagnostic subsystems are needed in 
self-diagnosable systems. 

Optimization Criteria 

The DX-l was made almost completely self-diag
nosing (in the sense that it contained a small per
centage of hard core) by choosing two diagnostic 
subsystems (A and B). The DX-l was designed 
with the objective of minimizing hardware cost and 
hard core. In this example, hard core means those 
parts of the system common to all diagnostic sub
systems; for example, the clock and power supply. 
The diagnostic subsystems were made identical for 
reasons of simplicity. 

Partitioning the CPU 

The process of dividing the CPU into subsystems 
was quite straightforward because of the organiza
tion and implementation of the DX-l with diag
nosis as a principal design parameter and because 
of data flow simplicity inherent in micropro
grammed machines. A simple visualization of the 
concept of partitioning the machine is given in Fig. 
5. 

All registers were divided by assigning the left 
halves to subsystem A and the right halves to sub
system B. The control was also divided into A and 
B halves controlling the A and B halves of all regis
ters. The data bus consisted of two identical por
tions: the high or A bus which affected the left 
halves of all' registers and the low or B bus which 
affected the right halves of all registers. Timing was 
treated in a similar manner by driving two timing 
rings: one for. each subsystem. Arithmetic and Pari
ty circuitry was divided equally between subsystems 
A and B. From these two subsystems (exclusive of 
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Figure 5. Concept of machine partition (s) . 

the memories and I/O), we defined two diagnostic 
subsystems for the CPU. Each was associated with 
one subsystem and performed diagnosis on the 
other, or object, subsystem. 

Diagnostic Subsystem Requirements 

The functional requirements of each diagnostic 
subsystem are restated as follows. 

1. It must be capable of reading a set of 
identifiable numbers from some medium. 

2. It must be capable of directing these sets 
of numbers appropriately. 

3. It must be able to interpret the stored 
numbers to: 

( a) control switching between the diagnos
tic subsystem and the object subsystem; 

(b) make decisions affecting the next diag
nostic subsystem step, based on the 
result of the last operation; 

(c) apply stored stimulus data to the 6bject 
subsystem; 

( d) receive response data from the object 
subsystem; 

( e ) initiate and sense the completion of 
each process in the diagnostic subsys
tem. 
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4. The diagnostic subsystem must have provi
sion for indicating the physical location of 
suspected object subsystem malfunctions. 

The ideal situation is that as much as possible of 
each diagnostic system be derived from each parti
tion. This reduces the amount (and cost) of hard
ware that must be added; and also reduces hard 
core because the parts of the diagnostic system in
cluded in the partition are checked when the parti
tion is checked. 

This ideal was compromised in our example be
cause our diagnostic systems were externally pro
grammed. This tradeoff placed an input/output de
vice in hard core but removed from hard core the 
ROM, RWM and all of their associated circuitry. 

We assumed that the diagnostic subsystem 
(DSA) associated with subsystem A was diagnos
ing subsystem B, so SB was the object machine in 
this case. It must be kept in mind that the A and B 
machines were perfectly symmetrical so diagnosis 
of faults in A by B could be described in exactly 
the same way in which we describe the diagnosis of 
faults in B by A. 

Gating Requirements of DSA 

Additional paths were added to the data flow 
from the data bus of SA to allow the gating of bus 
data to: 

1. CONTROL A 
2. CONTROL B 
3. The timing ring of SB. 

Only three paths were added to control register A 
since a single byte (equal to four information bits) 
for each of the F, T, and 0 fields would satisfy the 
needs of DSA. CONTROL Band TB required sev
en transfer paths from the A bus since the full con
tents of these registers were needed in the diagnosis 
of SB. 

In the diagnostic mode, the· memories were disa
bled until they were to be diagnosed. That is, the 
ROMAR DECODER and MAR DECODER were 
disconnected from the ROMAR and MAR respec
tively; and the buffer registers were freed from in
terference by the memories. The clock (oscillator) 
was disconnected from the B timing ring. 

Diagnostic Commands 

The IPR A acts as the command code register when 
DX-1 is in its diagnostic mode. It is loaded from 

the A BUS at time t6
A and determines the destinations 

of the bytes placed on the A bus by the input device 
at times t7A, t8A, tlA, t2A and ts which follow in se
quence from the eight-place timing ring. Only three 
commands were needed, so a one-out-of-three com
mand code was used; the left bit of IPRA being 
ignored in the diagnostic mode. 

Command LA loads the CONTROL A register 
and the B timing ring TB. Because the diagnostic 
mode needs to address only a few A register halves 
and execute only a few micro operations, only the 
four low order bits (or first byte) of the AF, AT, 
and AO fields of CONTROL A need to be loaded. 
The TB ring expects a bit of one of its eight posi
tions, so it can be loaded with two bytes. Thus, com
mand LA connects to BUS A four bits of AF, AT, 
AO, TB (first byte), and TB (second byte) at times 
f7A, t8A, ftA, t2/',. and t2A and tsA respectively. 

Command LB loads the CONTROL B register. 
Control B's 20 bits are divided into five bytes of 
four bits each. Command LB connects the five bytes 
to the A BUS sequentially at times t7A through tsA in
clusive. Each LA or LBcode appearing on the A 
BUS at time t6

A must therefore be followed by five 
bits of binary information appearing on A BUS at 
the five succeeding clock times. 

Command XQ executes a micro operation. Its code 
is read into IPR at t6

A
• Nothing happens at times 

t7A through tsA; but at t4A the half-register addressed 
by AF is cleared, and at t5A the input of this half
register ~nd the output of the half-register addressed 
by AT are connected to a bus. Late in time t5A

, the 
XQ command clears not only the IPR but also CON
TROL A, TB, and CONTROL B. Other micro oper
ations, of which CLHA (an exclusive-OR of some 
half-register and R5A) is the most useful, are modi
fications of the fundamental XFER using only times 
t4A and t5A. 

Three simple abbreviations were used in our diag
nostic programs. The mnemonic of an ordinary micro 
operation (XFER and CLHA for examples) means 
load its addresses and code with LA and LB com
mands and execute it with an XQ command. Com
pare RNA with x means load x inR5A, CLHA RNA 
and R5A, and XFER the result from R6A to the OPR. 
Branch on (non) zero to N means transfer external 
diagnostic programmer control to step N if the con
tents of OPR is (not) zero. 
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Diagnostic Programs 

The diagnostic procedure was dictated by two fun
damental principles. They were (1) diagnose faults 
first in those portions of the system having widest 
utilization in the system, and (2) the result of each 
diagnostic step should depend as little as possible on 
untested portions of the system and should depend 
as much as possible on the portion currently being 
tested. The first principle suggested that we test por
tions in the following order: (a) B BUS, (b) TB 
positions t4B and t5B, (c) CONTROL B fields BF and 
BT, (d) arithmetic registers, (e) special gating, (f) 
ROM system, (g) RWM system (see Fig. 6). Some 
programs (suggested by principle two) are given for 
all but the last portion of the machine. 

EXAMPLE 

DS A DS B 

BUS BUS r--- .... 

I 1-------1 
~---'> 

TIMING TIMING 
r----
~ - - ~I-------; 

CONTROL - CONTROL 

L ___ -:) 

REGISTERS REGISTERS r----
~-------I 

ARITH. ARITH. 
REGISTERS REGISTERS 

RW-,tI. 

Figure 6. Example of bootstrapping. 

(a) B BUS Diagnosis 

A diagnostic program (Fig. 7) for detecting a 
stuck B BUS bit follows. 

1. Load 11111 in R3A. 
2. XFER R3A into R2A by way of the B BUS. 
3. Compare R2A with 11111. 
4. Branch on non zero to 8~ (B BUS struck to 

zero.) 
5. Repeat 1 through 4; loading and comparing 

with 00000. 
6. Branch on non zero to 9. (B BUS stuck to 

one.) 
7. Branch to (b) Timing diagnosis. (B BUS 

not stuck.) 

8. Stop and write out aPR. B BUS position 
indicated by a 1 is stuck to zero. Write out 
locations of cards that could cause this fail
ure. 

9. Stop and write out aPR. B BUS position 
indicated by a 1 is stuck to one. Write out 
locations of cards that could cause this fail
ure. 

RE6. 3A R E6. 2A 

F T F T 
A 8US 

Xl X.F 

8 BUS 

Figure 7. Bus diagnosis. 

(b) Timing Diagnosis (of t4B and t5B) 

The sample diagnostic program for this portion of 
the machine indicates that we cannot distinguish 
among two failures (namely a permanent clear con
dition set up by t4B and a missing signal to open the 
input gates on t5B ); and this is the worst resolution 
obtained by any diagnostic routine. Note that diag
nosis of failures assumes explicitly that bnly a single 
fault has occurred. A part of the timing diagnosis 
program follows: 

1. Load each RNB (Le., all B half-registers) 
with 11111. 

2. Compare RIBand R2B with 00000. 

3. Branch on both non zero to 9. (If and 
only if the branch does not occur, failures 
8, 10, 1, 3 are possible.) 

4. Compare R3B and R4B with 00000. 
5. Branch on both non zero to 8. (If and only 

if the branch does not occur, failures 8, 
(10 and 12), 1, (3 and 5) are possible.) 

6. Stop. The failure is number 8 or 1. Write 
out location of card(s) causing these fail
ures. 

7. Branch to 9. 
8. Stop. The failure is number 12 or 5. Write 

out locations of card(s) causing these fail
ures. 

9. Compare R5B and R6B with 00000. 
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10. Continue to diagnose other failure num
bers. 

It should be noted that the diagnostic program 
used a "serial voting" technique to make the tests 
insensitive to a single bit of a register being stuck 
to 1. 

(c) CONTROL B Diagnosis 

Because each BT bit was connected to five AND 
gates and each BF bit was connected to ten AND 
gates, a serial voting technique was used to diag
nose these fields, independent of a possible failure 
in the gates or registers they control. We placed 1 
in a field's four bit positions successively, each 
time attempting to execute an XFER micro opera
tion. 

If three or more of the XFER's actually transfer 
data, we knew that the bit position common to the 
XFER's in that field was stuck to 1. Similarly, we 
tested a field for a bit position stuck to zero by 
trying each allowed bit configuration as an address 
of aX FER. If two or more of these XFER's failed 
to work, their common bit position must have been 
at fault. 

The diagnostic programming example for the 
control portion of the machine diagnoses BT for a 
bit stuck to 1. 

1. Load each RNB with 11111. 
2. XFER RIB into R2A by way of the B BUS. 
3. Compare R2A with 00000. 
4. Branch to 7 on non zero. 
5. Repeat 2 through 4 taking R2B, R3B, etc., 

in sequence. 
6. Branch to BF one-stuck diagnosis. 
7. Write out number of last register read from. 
8. Stop if this is the third execution of this 

instruction and write out location of card 
causing this failure. 

9. Branch to 2, taking next register in sequence. 

Note that if the output record contains the num
bers of three registers with a common address bit, 
then this· bit of BT must be stuck to 1 even if one 
or two failures exist in the registers and gating in
volved. 

(d) Arithmetic Registers Diagnosis 

Knowing that the B BUS, control, and timing were 
operational, we proceeded to test and/or diagnose 

faults in individual bits of individual arithmetic reg
isters. In the program for diagnosing this portion 
of the system, "AND R6A with x" means load x into 
R5A, pass R6A and R5A through the A half of the 
AND GATES on an XFER which puts their logical 
AND in the aPR. For example, if x is 00001, then 
AND R6A with x effectively places only the low order 
bit of R6A in the aPR. The complete diagnostic pro
gram for arithmetic register diagnosis follows. 

1. Load each RNB with 11111. 
2. XFER R1 B into R2A by way of the B BUS. 
3. Compare R2 with 11111. 
4. Branch to 8 on non zero. (A bit is stuck 

to zero.) 
5. Repeat 2 through 4 for R2B, R3B, etc., in 

sequence. 
6. Repeat 1 through 5 loading and comparing 

with 00000. 
7. Branch to ROM Diagnosis routine. 
8. AND R6A with 11100. 
9. Branch to 14 on zero. 

10. AND R6A with 11110. 
11. Branch to 13 on zero. 
12. Stop. The fourth bit of the last register 

read from is stuck. Write out the location 
of its card. 

13. Stop. The fifth bit of the last register read 
from is stuck. Write out the location of its 
card. 

14. AND R6A with 11011. 
15. Branch to 17 on non zero. 
16. Stop. The third bit of the last register read 

from is stuck.· Write out the location of its 
card. 

17. AND R6A with 01111. 
18. Branch to 20 on non zero. 
19. Stop. The second bit of the last register 

read from is stuck. Write out the location 
of its card. 

20. Stop. The first bit of the last register read 
from is stuck. Write out the location of its 
card. 

Steps 14 through 20 of this program simply de
termine which bit of a register is stuck. 

(e) Special Gating Diagnosis 

The ADDER, AND GATE, and ZERO TEST 
GA TE in SB in our example were checked and diag
nosed by exhaustion techniques. Since we were deal-
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ing with a four-bit device, this was practical. In the 
general case, where the number of tests required by 
exhaustion is unreasonable, we would have used tests 
which were generated through a process of computer 
analysis and simulation. 

Diagnosis of the parity checking circuitry in SB was 
also done by exhaustion. Here, however, the output 
of the parity checking circuitry of SB was observable 
by DSA. This required that a gate be provided to 
direct the parity check output in SB to a bit position 
of the A BUS. 

SIMULATION RESULTS AND SUMMARY RE
MARKS 

The DX-1 logic was built into a simulator which 
was designed to be processed on the IBM 7090. 
The simulator is capable of operating the machine 
in two distinct modes-normal and self-diagnostic. 
The normal mode was used to debug the original 
computer design, read-only memory programs, read
write memory programs and simulator design. It 
was also used to prove that the DX-1 is a computer. 
The normal mode simulation served its purpose in 
that it accomplished the above objectives and also 
proved that the DX-1 can perform all of the opera
tions as specified in the earlier sections of this pa
per. The diagnostic mode was used to evaluate the 
philosophy of self-diagnosis and to investigate 
problems encountered in the application of this 
principle. 

It was assumed that only solid single faults can 
occur. The diagnostic inputs and procedures were 
manually generated. Several changes in the design 
resulted from the logic simulation. The simulation 
did not consider the failures of ROM and/or RWM 
and their corresponding addressing systems. 

The results of the simulation are as follows: 

1. 94 percent of the DX-1 CPU logic was 
self-diagnosable. 

2. 14.6 percent of the DX-1 CPU logic was 
added to achieve self-diagnosis. 

3. 1 percent of the DX-1 CPU logic was hard 
core. 

4. MTTD was less than 2 minutes for an in
put rate of 600 cards per minute. 

Experience in simulation showed that the manual 
effort of preparing a diagnostic program is a long 
and tedious task and errors in judgment are always 
possible. Moreover, any modification in the pro-

gram, because of a change in load assignment or 
control register coding, can become very formida
ble. Engineering changes could result in the scrap
ping of a computer program. These' problems would 
become almost trivial if a computer could be used 
to generate the required diagnostic procedures or 
programs. Therefore, if the theory of self-diagnos
ing computers is to become practical for a family of 
machines, further study and development of ma
chine generation of diagnostic procedures is neces
sary. 

The degree of discrimination between the diag
nostic results is highly dependent upon the ground 
rules followed in packaging the equipment. Packag
ing also has a major influence on the total time 
(MTTD) required to process the diagnostic pro
gram. This emphasizes the important fact that the 
design of a self-diagnosable computer must origi
nate with the machine specification and must be 
treated as a principal design parameter. 

The simulation study of the DX-1 has shown that 
both its design and the basic concept and philoso
phy of self-diagnosis are technically correct. How
ever, many questions must be answered before the 
concepts of self-diagnosis and self-repair can be
come physical realities. 

In conclusion, consider the following questions as 
samples: 

1. How do we automate the generation of the 
diagnostic procedure? 

2. How do we automatically initiate the diag
nostic procedure? 

3. What techniques applied singly and/or in 
combinations provide the great improve
ment in reliability and/or availability? 

4. How can the design be optimized with re
spect to performance, cost, speed, and/or 
complexity? That is, what tradeoffs are 
possible? 

5. Can the concept be extended to encompass 
other CPU's and systems as related to the 
concept of a "Central Diagnostic Com
puter"? 

6. What is the effect on diagnosability, cost, 
and maintenance of partitioning into more 
than two subsystems? 

7. What are the packaging ground rules? 
8. What design notation is necessary for auto

mation? 
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9. What will be the programming require
ments? 

10. To what extent could our assumptions be 
relaxed (e.g., types and number of assumed 
failures)? 
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AN AUTOMATED INTERCONNECT DESIGN SYSTEM 

W. E. Pickrell 
Automation Systems, Incorporated 

INTRODUCTION 

This paper describes a system for automatically 
designing and producing artwork for interconnect 
surfaces. This system consists of a number of com
puter programs which can be a subsystem of a gen
eral design automation effort. The interconnect de
sign programs deal with the problems of artwork 
production and interconnection of electronic com
ponents frequently experienced in computer system 
design and construction. 

One such system was developed for a former em
ployer and spanned a period of about 18 months. 
During this period of development numerous exper
iments comparing the automatic interconnect design 
method to the manual method were performed. This 
paper discusses the results of these experiments 
along with some details of the programs and their 
operation. Before a discussion of automated inter
connect design can proceed, some preliminary defi
nitions are required. 

The laminate of this paper is a series of single
sided etched boards or layers. Each layer has its 
own series of conductive interconnect paths. Layer
to-layer communication is accomplished through 
plated holes drilled through the layer. A group of 
layers are stacked and bonded together under heat 
and pressure to form a laminated interconnection 
board. Electronic components which require inter-
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connection are mounted on the surface (or both 
sides) of the laminated board according to the 
scheme of the logic. 

The "feed-thm" or "drill-thru" implies a second 
form of layer-to-Iayer or side-to-side communica
tion in addition to component terminals. The sys
tem accepts either fixed or "floating" locations on 
the interconnect media. 

MANUAL INTERCONNECT DESIGN AND 
ARTWORK 

As with many computer applications the begin
ning of the analysis is the "present" manual method 
of how things are done, since this situation is usu
ally the one that requires some improvement in 
speed, accuracy, or cost. This holds true equally 
well for the interconnect design effort. A typical 
circuit board design task can be divided into the 
following steps: 

1. Prepare a schematic wiring diagram. 
2. Prepare a cover (master design pattern). 
3. Place components in the best pattern. 
4. Assign the external pins. 
5. Check the artwork design. 
6. Tape the artwork. 
7. Check the artwork against the design lay

out. 
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8. Photographically reproduce (chronoflex) 
and reduce the artwork to desIred size; 
produce necessary negatives and positives. 

9. Deliver finished negatives to laboratory for 
fabrication. 

Analysis of these steps shows that some of the 
work is particularly suited to automation with com
puter programs. If some or all of the functions 
could be performed for less cost, time and greater 
accuracy with computer programs, a significant 
gain in computer technology would be realized. The 
following section describes the program system and 
programs developed to meet that end, concluding 
with a section of remarks and statistical results for 
review. 

THE PROGRAM SYSTEM 

The system includes the following general pro
gram areas: 

1. Generation of the simulated physical com
position of the surfaces in digital form 
(mapping or cover layer generation). 

2. Organization of the data to be intercon
nected (routed). This may include: selec
tion processes, determination of a minimal 
connection tree fOJ a signal net, construc
tion of various sort keys and selected se
quences of sorts. These are all designed to 
facilitate and increase the yield of the 
routing phase which normally follows. 

3. Routing of the organized data strings 
against the simulated physical environment 
of the surfaces taking into account any 
special constraints imposed by the hard
ware system being processed. 

4. Editing and generating inputs to graphic 
devices such as plotters for covers and 
routed surfaces. 

5. A uxiliary program providing secondary 
passes or continued processing such as: 
(a) routing update - to allow manual in

tervention, 
(b) net change - to pass first run failures 

onto alternate paths, 
(c) drill through - a subsequent run to the 

router phase if further laminate inter
layer communications are required. 

THE PROGRAMS 

This interconnect design system is modular and 
independent of other systems and, as such, operates 
on a fixed placement of components on the board as 
provided by a Logic Assignment and Placement 
Subsystem which precedes it. The programs can be 
best described by function, input and output, in the 
sequence they normally retain in operation. 

1. Title: Cover Layer 

Function: Simulate the environment in digital 
form for interconnection (grid, size 
of board, obstacles, number of layers, 
external connectors, component pin 
arrays). 

Apply grid coordinates to all neces
sary data. 

Provide for special requirements such 
as clock, voltage singularities, dele
tion of grounds, etc. 

Inputs: (l) String list (signal nets with com-
ponent-pin identifications) as 
assigned and placed. 

(2) External connectors available. 

(3) Obstacle descriptors, drill-thru 
locations, module or chip arrays. 

( 4) Signals to be deleted and signals 
to special layers. 

Outputs: ( 1) Cover layer tape (include all 
routine obstacles). 

(2) Special layers signal nets tape. 

(3) General layers signal nets tape. 
( 4) External connectors mesh. 

(5) Printer plot of cover layer; errata 
list. 

2. Title: Organizer 

Function: Inspect each signal net. Select an ex
ternal where required. Produce the 
minimal tree for inter-connect based 
on straight-line distances. 
Establish sort keys for data organ
ization for the Router. Compute slope 
class, distance, number of pins/net 
and signal priority. 

Sort as directed. 
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Inputs: (1) Signal nets tape. 
(2) Control data for external selec

tion. 
(3) Slope class criteria. 
( 4) Sort criteria (sequences, keys). 

Outputs: (l) Connect input tape(s) in speci
fied sort. 

3. Title: 

(2) Class statistics, errata, external 
connection list. 

(3) External connecti( m puncbed 
cards (optional). 

Router 

Function: Set the environment to memory. 

Inputs: 

Route the interconnect of two points 
according to the organization, con
straints and bounded routing area. 
Record the path if successful. Record 
the event of a failure for further rout
ing trials on subsequent layers or up
date processing. Set a coordinate tape 
for a plotter editing. Record path in 
core as a layer his tory. 

( 1) Cover layer tape. 
(2) Connect input tape. 
(3) Media parameters (grid, num

ber layers, etc.). 

Outputs: (1) Coordinate lists (for each layer) 
tape. 

4. Title: 

(2) Fail list (unconnected pairs of 
pins) tape. 

(3) Layer or side history (cover + 
paths for each) tape. 

( 4) Statistics and layer listing. 

Plot Editors 

Function: Translate data from cover layer tape 
and coordinate list tape into formats 
required for the plotting devices (i.e., 
CALCOMP, GERBER). 

Inputs: (l) Cover layer tape. 
(2) Coordinate list tape. 
(3) Control data (scaling, conver

sion factors, etc.). 

Outputs: ( 1) Plotter tapes (cover + layers) 
either magnetic or paper, as re
quired. 

(2) Signal name tape (optional). 
( 3) Line length lists (by layer and 

by signal). 

AUXILIARY PROGRAMS 

1. Title: Router Update 

Function: Reconstruct cover layer and routed 
history from the initial routing run. 
Process manually derived inputs 
through erasure and rerouting to at
tain total interconnect for plot edit
ing and artwork. 
Provide sufficient errata reports on 
fails or invalid conditions to allow 
feedback through the man-machine 
loop. 
Provide outputs for checking con
tinuity of signal interconnection. 

Inputs: (1) Cover layer tape. 
(2) Coordinate list (lst run) tape. 
(3) Layer parameters 
(4) Update list (deletions, inser

tions) . 

Outputs: (1) Coordinate list tape (updated). 
(2) Listing of connections updated, 

fails and errata. 

2. Title: Net Change 

Function: Reconstruct layer history (lst run) 
and try to route from a list of alter
nate paths. Use only original failures 
where alternate paths are available to 
interconnect the signal net. 

Inputs: (1) Layer history tape (1st run). 
(2) Coordinate list tape (lst run). 
(3) Net prep tape (a list of alter

nate routes). 

Outputs: ( 1) Layer history tape (updated). 
(2) Coordinate list tape (updated). 
(3) Fail list tape. 

3. Title: Drill Thru 

Function: Apply a subsequent run to the router 
program with the capability of using 
"drill thru" locations for layer-to
layer communication. 
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Inputs: (l) Layer history tape (1st run). 
(2) Coordinate list tape (lst run). 
(3) Fail list tape (lst run). 

Outputs: (l) Layer history tape (updated). 
(2) Coordinate list tape (updated). 
(3) Fail list tape. 

RESULTS 

The following table illustrates the degree of suc
cess in using the design system. Five different lami
nate boards (in five different hardware systems) 
were designed. In all cases, no drill-thru pass was 
used. In one case the manual update feature was 
employed to attain 100 percent interconnection. 

Com- Board Lay- Per-
ponents Size ers Inputs Paths Fails cent 

Modules 346 X 139 6 593 518 75 87 
Modules 268 X 168 7 1006 965 41 96 
Chips 70 X 84 6 685 670 15 97 
Chips 88 X 105 5 712 659 53 91 
Chips 98 X 78 4 312 304 8 97 

Additional items of importance derived from this 
study are: 

1. "Chips" on a board result in a higher yield 
of interconnect in a shorter period of time. 
This physical configuration offers a better 
distribution of pins about the board, 
simplifying the interconnect problem. 

2. Presentation of the data, pairs of points, in 
the following sequence is the most optimal 
for the routing phase: 

( a ) Classification by slope of the straight 
line connecting the two points. 

(b) Straight line distance between the two 
points. 

( c) Minor sorts on signal priority and num
ber of pins in the signal net. 

Since the deterministic method used in the rout
ing phase does not yield 100 percent interconnect 
design, in most cases, manual intervention is re
quired. This phase involves an analysis of the fail
ures against the plotted layers. Subsequent introduc
tion of the failures into the machine solution is 
achieved through the preparation of update and in
sertion inputs to the Router Update Program. 

Direct comparisons of manual design versus the 

man/machine method for multilayer laminates have 
shown the following results: 

1. A calendar time compression to 5-10 days 
for the design cycle. 

2. Cost reductions to the project of 50 per
cent or more. 

3. An accuracy or reliability factor unobtain
able by manual approaches. 

4. Shorter line lengths for etched paths. 
5. By-product provisions for automated tool

ing for board manufacture. 

Figure 1 illustrates in flow form the programs 
(input/output) comprising the basics of a design 
system. 

(Inputs) 

Board Geometry 
Net Inputs 

Selection 
Criteria 

Cover Layer 
Connects' 

Parameters 

. 

Start 

Cover • Layer 
Program 

· Organizer 
Program 

· Router 
Program 

· Graphic Edit 
Programs 

. 

(Outputs) 

Cover Layer 
Environment 

Minimal Tree 
(nets) 
Sorts as Directed 
(connect) 

Interconnection 
Coordinates Fail 
List 

Device Input 
(cover) 
Device Output 
(layers.or sides) 

(Update) (Artwork) 

Figure 1 

The environment of the interconnect medium 
must be completely described in the following 
areas: module or chip pin arrays, drill-thru or via 
locations and identifications, dimensions of the lay
er or board ( it is highly desirable to design the 
board to an equally-spaced grid in both directions), 
cutouts, mounting, or fabrication areas where rout
ing is not allowed, and the external connector array 
where signals enter or leave the board. 

In general, for a multilayered laminate, the cover 
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layer (environment) is constant for all cases. How
ever, some newer manufacturing techniques are 
being used ("Post" or "build-up") that permit dele
tion of pins which are net terminals in all layers 
below that of the interconnection. The concept here 
is that this deletion "opens up" further areas for 
interconnect routing as the process proceeds. This 
is, of course, highly desirable for boards of high in
terconnect density and tightly packed pin arrays. 

This process requires "customizing" the router 
program to reflect the deletions. In additon, if one 
desired pen plots as design or update tools, it would 
require the generation of n cover layers for an 
n-layer laminate. 

For the two-sided board, one would normally 
have two cover layers reflecting the environments 
on the respective sides. 

The function of a Cover Layer Program is to 
generate this environment and append all coordi
nates to the net input list for subsequent program 
processing. 

Organization of the data to meet changing re
quirements of board design, external usage, size, 
singularities of environment, and so on can very 
well be the key to the degree of success attained in 
the routing phase. 

The methods employed in the router phase of a 
system such as this are not iterative. Thus the se
quence of presentation of inputs to the router pro
gram is extremely important. 

Experience in several different environments in
dicates that so far a typical, practical approach 
might include some of the following: 

1. Inspect the environment for singularities 
which can prove useful in selecting a set of 
criteria. For example, a well-distributed 
pin population on a square board might 
suggest the use of slope classes in equal 
angle segments. 

2. Also with respect to slope, for laminates it 
is generally good to equate the number of 
classes with the number of layers. 

3. Specification of pairs of pins selected for 
interconnection of an entire signal (net) is 
normally the result of a minimal tree cal
culation based on straight line distances 
pin-to-pin. 

4. Selection of external connectors available 
for signals entering or leaving the board 

can also be accomplished during the tree 
phase. 

S. Other considerations in this stage prior to 
final sorting are number of pins in the net 
(this can be important in an update pro
cess), and special priorities to be consid
ered in the routing phase. 
At this point, an additional function of an 
Organization Program is to monitor the 
soring of the data for which the various 
keys mentioned above have been included. 
For example, a typical sort sequence pre...; 
paratory for routing might be: 
( a) Slope class (numeric). 
(b) Distance (in grid units). 
(c) Number of pins/net. 
(d) Priority. 

The routing phase of the design system generally 
has little freedom in changing the sequence of pro
cessing the input data. However, a moderate 
amount of override capability should exist. For ex
ample, due to statistics from the organizer phase, it 
is indicated that several classes should be attempted 
on layer 1, rather than the single class originally 
planned. At this point it would be desirable to have 
the capability to modify the presentation with, say, 
input cards rather than returning to the organizer 
phase. 

A rather important aspect of a routing program 
is the ability to "customize" the routing algorithm 
routines to meet particular requirements of a board 
or laminate. Certain restrictions or constraints can 
be imposed in this area which would be germane to 
a certain type of environment. For example, spacing 
between etched path and adjacent pad areas (a ter
minal where an interconnect already exists) might 
be critical on a board and require a prohibitive ac
tion. To reduce computer processing time, only the 
required logical inspections of the routing space are 
performed and these are functions of the particular 
board. 

Outputs from a router program are normally: 

1. Descriptions of the interconnect paths 
which can be edited for a plotting device. 
In previous systems these were in the form 
of a "from-to" terminal or pad identifica
tions accompanied by a coordinate chain 
which represented every unit cell in the 
interconnect path. 
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2. A listing of all input pairs which the pro
gram failed to layout. 

Finally, programs which perform the necessary 
translation of data into plotting device input format 
are required. There are several ways to develop the 
graphic output; one of these is to edit the cover lay
er (environment) and router output separately. If a 
pen plot is used, the cover and interconnect can be 
plotted in superimposition using contrasting colors 
for clarity. Size or scale of the plot may be as de
sired within the limits of the device. 

The "ultimate" at the moment is production of 
final artwork for the interconnection surfaces. This 
requires high resolution and optical capabilities in 
the plotting device. 

Within the realm of design automation, automat
ic interconnect design is in its infancy. Many new 
things are being done presently, and many more 
will follow in the months ahead; some of these will 
include: automatic board design, refinements in the 
analysis of data organization, and new "custom
ized" router algorithms to accommodate advanced 
manufacturing techniques. 



SYSTEMATIC DESIGN OF AUTOMATA 

J. P. Roth 
IBM Watson Research Center 
Yorktown Heights, New York. 

The subject of this paper is a system of programs 
to aid in the logical design of automata. Figure 1 
depicts the experimental system as it presently ex
ists within IBM. There are essentially two internal 

CODE 
TRANSLATION 

POSITION 
ASSIGNMENTS 

Figure 1. The logic automation complex. 

CUBICAL 
COVER 
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formats for the system, one called the injective 
word as shown in Fig. 3. which in essence specifies 
all the logic blocks in a circuit and how they are 
linked together. The other is termed a cubical cover 
(or ON-OFF-ARRAYS) which is a means of de
scribing the behavior of the circuit as if it were a 
two-level circuit consisting of ANDs followed by 
ORs (or vice versa). See references 1 and 2 for a 
more detailed description of these notations. 

The programs of the system, the principal ones 
being shown in boxes (Fig. 1), may be thought of 
as transformations of these formats into themselves. 
There are two exceptions. They are the Sequence 
Chart Analyzer SCA and the program EQIWT, the 
equation-to-injective-word translator. 

We shall first discuss the sequence chart analyzer; 
a sequence chart is shown in Fig. 2. This is a se
quence chart for the operation of the instructions 
Floating Point Add, Subtract or Compare for an 
early version of MODEL 60 for System/360. It will 
be observed that across the top of the chart appear 
intervals labelled T1, T2, ... , T10. These refer to 
time intervals and admit of many interpretations. 
Operations are written above horizontal line seg
ments in one of the "time columns". Immediately 
to the left are written the "immediate" conditions 
necessary for its execution. For example in column 
5 the operation Set Condition Register is performed, 
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Figure 2. 

when the sequence chart is "operative" in this area, 
when the condition holds. The given sequence chart 
becomes operative at "Chart Entry Conditions" 
such as (on the far left of the chart) FP ADD + 
FPSUB + COMPARE. Thence in time Tl, in the 
Tl column some, or all, of the operations such as 
INVERT S SIGN are performed provided the im
mediate condition written to its left, such as 
FPSUB + COMPARE, are satisfied. If no immedi
ate condition is there written then the operation is 
automatically performed. Thus several operations 
may be simultaneously executed. Thence one moves 
to the next time interval or else to the next speci
fied interval. For example if after performing any 
of the operations at time Tl if SAZERO (Serial 

Adder is Zero) then one jumps to time interval T4. 
Whichever is the case one proceeds into other 
phases of the chart. For example after an operation 
in time T 4 has occurred then the next operation 
and the next time are determined by the immediate 
conditions written to the left of the line segments 
emanating from the right half of the T5 column. 
For example if LEAD ZERO-OVERFLOW and 
-NORM and ZERO FRACTION is true then the 
operation SET SIGN PLUS [L] is performed. Thus 
any set of conditions are prescribed a "path of op
erations" on the sequence chart ending ultimately in 
an ENDOP which means end of operations. 

It is thus seen that the sequence chart is kind of 
sequenced flow-chart of machine operations as de-
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scribed for some particular data flow structure. of a 
machine. 

The Sequence Chart was originally designed by 
Stanley Pitkowski and subsequently formalized by 
the Logic Automation Group mainly by J. M. Gal
ey, P.N. Sholts and Jere Sanborn. Numerous ab
breviations for indirect addressing are employed in 
the description. 

it is to be open or to be closed. Figure 3 is one 
page of several pages -of the injective word pro
duced by SeA for the sequence chart of Figure 2. 
The meaning of this form may be understood by the 
following example: at left is a circuit and at right is 
the corresponding injective word. 

The Sequence Chart Analyzer (SCA) first pro
duces a hard copy of the sequence chart itself as il
lustrated by Fig. 2. The form of this chart is subject 
to updating and can be changed at will. The second 
output from SCA is a injective word which pre
scribes for each gate the total conditions for which 

A 

-A 

Tl 

a 

8 

T2 

T3 

-8 ." 

a* = A, CE AND 

a =4*, T1 AND 

{:J* = 8,(1'* AND 

{:J={3*, T2 AND 

8* = -A, CE AND 

8 = -A, T1 AND 

E =&*, T2 AND 

.,,* = A, '-8, CE AND 

." =.",*, T2 AND 

z=A,t3,CE AND 
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FLOATING PT. ADO, SUB, COMPARE - ALIGNMENT OF FRACTIONS -

INJECTIVE WORD 

-0018CO 
-OOlBeo 

0038ec 
OClDt1 
0038(2 
0038C" 

-lA1E 
-all 
-112 

tAlE 
-tA3 
-2A1E 
-3A1 
-lA1X 
-3A2 
-)A2X 
-3A3 
-3A1X 
-3A~E 

-3A~ 
-lA<\X 
-3A5 
-1&5X 
-1A6 
-3A6)( 
-3A1 
-3A1X 
-3A8 
-}A8X 
-SALE 

5A2E 
~AJE 

-,)A1 
-I) 
-lAlf 
-lA1 

1A2 
-lAlE 
-7A1 
-lAlfE 
-lA~ 
-lAS 

lA6E 
-1 

'lAtE 
9T 
T2J 
T1J 
T4J 
910005 
910006 

• 5AIE,T2,lOWCNT 
.. 9T,9AlE 
• Tl,9Z0007,SA1£RO 
.. 5A2E,T2,lOWCNT,CTREQl 
• 7A6E,T2,lOWCNT,CNTAll 
• 9T,CNTAll 
• fPSU8,COMPAR 
a 2A1E,1A1£,910005 
• 2AtE ,9Z0005 
• -Sp 
a 2A1£,1A3£,9l0005 
• FPAOO,FPSUD.COMPAR 
• U lX, 910006 
.. SAORT.SP,910028 
.. lA2X.9Z0006 
• SAORT,OP,9Z0028 
• 3A3X,9Z0006 
.. SAORT,fST,9l00Z8 
.. SAZERO,FST,2AlE 
a 3A4tX,9l0006 
• 3A4E.SADRT 
a: :UI)X,910006 

SAORT,9l0028 
• 3A6X,9Z0006 
.. 9l0001,SADRC,OP 
# 3A1(,910006 
.. 910001,$AORC,SP 
.. 'U8X,Ql0006 
.. 9l0001,SADRC 
.. C TREQ 1, I) 
:a: -I) 
• -HIt"" 
.. 5,5A3E,9l0012 
.. 91C~13,910014.9l0015.9l0016,9lCOl7 
• lO_CNT,9AIE,SP 

l,1AIE,9l0012 
.. T),lA6E,LOkCNT 
• lO.CNT.9AIE,OP 
.. 7.7AlE.9Z0012 
.. LOWOH. 9Al E 
• 1.1AItE,910012 
.. 1.5l3E,ql0012 
:AI -7 
.. 9l0018.9100lQ.9IC020 
.. -CNTAll 

-9l00')I. 
>II -OC,lBCIJ 
.. -0028CO 
.. -9l00l~ 

-u 
.. -T2 

Figure 3. 

Each line or argument is given a label; each line, 
for example line 3, emanating from a box is ex
pressed as a function of the lines entering the box, 
together with the name of the logical function 
which the box performs, and the number of inputs, 
e.g. 

3 = 4, 5 AND 2 

l 
A 
A 
I 
A 
A 
OR 
OR 
OR 
N 
OR 
OR 
OR 
A 
OR 
A 
OR 
A 
OR 
OR 
A 
OR 
A 
OR 
l 
OR 
A 
OR 
A 
OR 
"4 
N 
OR 
OR 
A 
OR 
A 
A 
OR 
A 
OR 
OR ,.. 
OR 
N 
N 
"4 
~ 

~ 

N 
N 

3 
2 
3 
It 
It 
2 
2 
3 
1 
1 
J 
1 
2 
3 
2 
) 

2 
3 
3 
2 
1. 
2 
2 
2 
') 

2-
3 
2 
2 
2 
1 
1 
3 
S 
'J 
') 

:3 
3 
3 
2 
3 
3 
1 
3 
1 
1 
1 
1 
1 
1 
1 

3= 4,5 AND 2 

4=3,7,8 OR3 

5 = 2, 3, 6 NOR 3 

This method of description of course allows feed
back in the circuit 

The method of analysis for SCA will be illustrat
ed in the next figure. 

The injective word output of SCA is fed directly 
into the program CIMPL, an acronym for circuit 
implementation. This program accepts an injective 
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word described by any set of logic blocks and con
verts it into an SLT injective word, i.e. one com
posed of SL T logic modules and obeying fan-in, 
fan-out powering, etc. of this particular technology 
(SLT stands for Solid Logic Technology.) 

This program was outlined in architectural form 
by John Earle and programmed by Peter Schneider, 
now of the University of Wisconsin; Michael Galey, 
IBM San Jose; Jere Sanborn, IBM Poughkeepsie; 
and others. 

The first operation which CIMPL performs is to 
search for identical gates or inverters. It eliminates 
all but one of these and fans out from it. It then does 
the SLT· implementation in the low, medium or 
high-speed circuit families so as to preserve the 
general logical structure specified by the designer 
on the Sequence Chart as well as the delays inherent 
in the structure. It does this implementation within 
the SL T circuit constraints manipulating the logic 
locally so as to satisfy the fan-in constraints and 
inserting powering whenever called for by the load
ing equations. It does the fan-in and powering ma
nipulation so as to add the minimum amount of ad
ditional hardware to satisfy the constraints while 
preserving the general logical structure. The pro
gram then assigns the circuit types in the specified 
circuit family and produces an output which can 
feed directly into DRAW, the program which parti
tions the injective word produced into pages and 
assigns print positions for each page,· in sum, in ef
fect to draw the ALD sheets (ALD automated 
logic diagram) for Solid Logic Design Automation; 
it in fact generates the SLDA logic master tape. 

Another input to CIMPL is Boolean.equations: a 
preprocessor called EQIWT (equation to injective 
word translator) accepts Boolean equations and 
converts it to the injective word format. This gives 
the designer the ability to convert his Boolean 
equations directly into hardware. This path within 
the logical automation complex was used in Hur
sley, England,· particularly by K. A. Duke, in the 
design of the Model 40 of System/360. Specifically 
the ALU, the Arithmetic and Logic Unit was so 
designed. 

An alternate program called Position Draw or P
DRAW was written by Galey: this accepts an injec
tive word in which the pages and print positions 
have been specified by the designer in a list struc
ture. It generates the ALD sheets in accordance 
with the pattern prescribed by the engineer and also 

generates the Logic Master Tape of Solid Logic De
sign Automation. It thus saves the designer from 
making careful drawings for the keypunching opera
tion and substantially cuts down on the magnitude 
and difficulty of the keypunch operation itself. 

Figure 4 shows one page of 24 ALD sheets pro
duced by SCA followed by CIMPL followed by 
DRAW. These ALD sheets would have, in the 
manual version, been originally computed and 
hence drawn by hand for insertion into the Solid 
Logic Design Automation System. Total IBM 7094 
time for this operation was about 15 minutes. 

Another entry into the system of logic automa
tion programs besides the sequence chart and Boo
lean equation is through a translation code, as 
shown in Figure 5. This is the translation from 
NPL to typewriter coding. The code translation 
program assembles this into a set of Boolean func
tions, one for each output. This is then formulated 
as a two-level minimization problem with many 
outputs. 

MIN is a program of the extraction algorithm2, 3 

which works with cubical covers and has a domain 
of applicability much wider than those algorithms 
using canonical terms. For the NPL-typewriter code 
translation a minimum was obtained. This mini
mum two-level solution was then converted by a 
decomposition algorithm DE C02, 4, 5 applied by a hu
man computer (the program was unavailable at the 
time). This result was then fed into CIMPL and 
DRAW to produce on 13 ALD sheets an SLT de
sign of the code translator. Total machine time did 
not exceed 10 minutes on the IBM 7094. 

Two more programs of the system will be men
tioned. These programs can be run in conjunction 
with the other programs of the system. The first is 
called 1T*2, 3 and is a program for analyzing Circuits; 
precisely it accepts an injective word and translates 
it to a cubical cover, i.e. a normal form expression, 
for each output of the circuit in terms of its pri
mary inputs. This program requires that all feed
back loops be cut. It enables us to apply minimi
zation procedures to already designed circuits in an 
effort to achieve cost reduction. 

This approach is especially useful in the case of 
design of low-cost circuits for which many copies 
will be made and wherein the savings in diodes or 
transistors are particularly significant. These· pro
grams have had extensive use in IBM Endicott, e.g. 
on the MICR (magnetic ink character recognition) 
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circuitry by Billy N. Carr, on the IBM 1030, a de
vice to transmit data from terminals, and on the 
Serial Wire Printer. In each case, '77'* was followed 
by MIN followed by factorization and thence (in 
two cases) by CIMPL. Incidentally mistakes by the, 
engineer were detected in the design and corrected. 
In each ,case a very small amount of machine time 
was used. 

Another program which has had extensive usage 
is a set of diagnostic programs, labelled DIAG in 
Fig. 1 This is a program which accepts a circuit in 
injective word format and produces a set of input 
patterns termed tests which when applied to the cir
cuits is capable of determining whether or not a 
failure has occurred of a given variety. The variety 
treated by the program basically is a failure . for 
each line wherein the line may be fixed in value, 
either stuck-at-1 or stuck-at-O. This program was 
used specifically in the design of the Memory Pro
tect and Relocation MPR for the 7094 configura
tion going to M. I. T. By an addition of only 2.5 
percent extra hardware it was possible by means of 

the tests generated for this piece of hardware to de
tect any single failure of the stuck-at-1 or stuck-at
o variety. Approximately one hour was required of 
7090 time to compute the tests. DIAG was a prede
cessor of the SLT set of programs FL T (Fault Lo
cation Technology) used on some models of Sys
tem/360, written principally by Frank and Martha 
Evans. 

A new program is being planned8 for an im
proved algorithm called d-DIAG for generating di
agnostic tests. This algorithm is substantially faster 
than other known methods and is based essentially 
on a calculus of injective words rather than by a 
calculus of cubical covers, as is DIAG. Reference 8 
describes this algorithm in considerable detail and 
makes comparisons with previous methods. 

A profitable way to utilized this complex of de
sign programs is in the redesign mode: A computer 
system is designed for one technology and it is de
sired to redesign it in another. For this purpose a 
program EXTRACT is needed to take from the 
SLDA Logic Master Tape the logical essentials to 
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NP L Code B CD Code 

0 1 2 3 4 5 6 7 P 1 2 4 8 B A C W/'M 
1 1 0 0 0 0 0 1 0 1 0 0 0 1 1 0 0 
1 1 0 0 0 0 1 0 0 0 1 0 0 1 1 0 0 
1 1 0 0 0 0 1 1 1 1 1 0 0 1 1 1 0 
1 1 0 0 0 1 0 0 0 0 0 1 0 1 1 0 0 
1 1 0 0 0 1 0 1 1 1 0 1 0 1 1 1 0 
1 1 0 0 0 1 1 0 1 0 1 1 0 1 1 1 0 
1 1 0 0 0 1 1 1 0 1 1 1 0 1 . 1 0 0 
1 1 0 0 1 0 0 0 0 0 0 0 1 1 1 0 0 
1 1 0 0 1 0 0 1 1 1 0 0 1 1 1 1 0 
1 1 0 1 0 0 0 1 1 1 0 0 0 1 0 1 0 
1 1 0 1 0 0 1 0 1 0 1 0 0 1 0 1 0 
1 1 0 1 0 0 1 1 0 1 1 0 0 1 0 0 0 
1 1 0 1 0 1 0 0 1 0 0 1 0 1 0 1 0 
1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 0 

.1 1 0 1 0 1 1 0 0 0 1 1 0 1 0 0 0 
l 

I~ 
1 0 1 0 1 1 1 1 
1 0 1 1 0 0 0 1 

1 1 0 1 1 0 0 1 0 

1 1 1 0 1 0 1 0 
0 0 0 1 1 0 1 0 
1 0 0 1 1 0 0 0 

1 1 1 0 0 0 0 1 1 1 0 0 0 0 1 1 0 
1 1 1 0 0 0 1 0 1 0 1 0 0 0 1 1 0 
1 1 1 0 0 0 1 1 0 1 1 0 0 0 1 0 0 
1 1 1 0 0 1 0 0 1 0 0 1 0 0 1 1 0 
1 1 1 0 0 1 0 1 0 1 0 1 0 0 1 0 0 
1 1 1 0 0 1 1 0 0 0 1 1 0 0 1 0 0 
1 1 1 0 0 1 1 1 1 1 1 1 0 0 1 1 0 
1 1 1 0 1 0 0 0 1 0 0 0 1 0 1 1 0 
1 1 1 0 1 0 0 1 0 1 0 0 1 0 1 0 0 
1 1 1 1 0 0 0 1 0 1 0 0 0 0 0 0 0 
1 1 1 1 0 0 1 0 0 0 1 0 0 0 0 0 0 
1 1 1 1 0 0 1 1 1 1 1 0 0 0 0 1 0 
1 1 1 1 0 1 0 0 0 0 0 1 0 0 0 0 0 
1 1 1 1 --- Q 1 0 1 1 1 0 1 0 0 0 1 0 
1 1 1 1 0 1 1 0 1 0 1 1 0 0 0 1 0 
1 1 1 1 0 1 1 1 0 1 1 1 0 0 0 0 0 
1 1 1 1 1 0 0 0 0 0 0 0 1 0 0 0 0 
1 1 1 1 1 0 0 1 1 1 0 0 1 0 0 1 0 

Figure 5. 

be fed into the analysis and synthesis programs. 
This process has been used partially automated, that 
is to say, the EXTRACT program as it now stands 
requires another routine before being completely 
automatic. This program is in an experimental 
state. 

FUTURE SYSTEM 

The Iverson notation has been used to present a 
very complete specification of the architecture of 
the IBM System/360 (Ref. 9) and this immediate
ly opens the possibility of adjoining this description 
to our Logic Automation Complex. The design for 
the machine would thus be specified initially by 
means of a program or system of programs written 
in the I verson notation. For each model of Sys
tem/360 the data flow would also be given, essen-

tially as a list of facilities available plus their inter
connections. This part of the experimental design 
system remains to be done. 
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