: L-,;_ S=-100

MICROSYSTEMS

™

SORTING
PROGRAMS
~ FOR
MICROCOMPUTERS

See Pages 35-47

|

Also in this Issue

An Introduction to CP/M, Pant 3 by Jake Epstein............... Page 12
Notih SIar TOPIES by Rancy Rellz . fiis i o il Sk vuen i Page 18
Linear Programming — Part 2 by william Yamall Page 24
Addressmg the Cursor, Part 2 bylamSten ... Fage 30
eeeeeeeeeeeeeeeeeeeeeee LAy

Complete Table of Contents on Page 3

<« 26MEGABYTES

Sugﬁ iy, S$-100 microcomputer systems can easily handié 100 million
byfes. Because Morrow Designs™ now offers the first 26 megabyte hard disk
n?emory for S-100 systems—the DISCUS M26™ Hard Disk System,

It has 26 megabytes of useable memory (29 megabytes
ﬁnformuﬂed) And it's expandable to 104 megabytes.

The DISCUS M26™ system is delivered cornpfe}e-—»

h 26 megabyte hard disk drive, controller, cables and operating systemxfor

;ust '$4995. Up to three additional drives can be added, $4495 apiece. «

The DISCUS M26™ system features the Shugart SA4008

‘Wmchester -type sealed media hard disk drive, in a handsome metal cobgn

wnh fan and power supply. !

The single-board S-100 controller incorporates miellt
génce to supervise all data transfers, communicating with the CPU via
three 1/0 ports (command, status, and data). The controller has the abilify to
generate inferrupts af the completion of each command to increase system
throughput. There is a 512 byte sector buffer on-board. And each sectorcanﬁe
individually write-protected for data base security. iy

i The operating system fumished with DISCUS Mzem

systems is the widely accepted CP/M* 2.0.

See the biggest, most cost-efficient memory ever mtr&
 duced for S-100 systems, now at yourlocal computer shop. If unavailable 04{ - MORROW DESIGNS ™

locally, write Morrow Designs™ 5221 Central Avenue, Richmond, CA 948
/9; call (415) 524-2101, weekdays 10-5 Pacific Time. : er Toys

“CP/M is a frademark of Digital Research. .

W

S-100

MIGRO SYSTEMS

Volume 1 Number 3

Editorial Correspondence should be sent
to: $-100 MICROSYSTEMS, BOX 1192,
Mountainside, NJ 07092.

STAFF

Sol Libes
publisher/editor

Russell Gorr
executive editor

Jacob Epstein
CP/M* editor

Jon Bondy
Pascal editor

Don Libes
assistant editor

Lennie Libes
Susan Libes
subscriptions/office manager

5-100 MICROSYSTEMS is seeking arficles
on S-100 software, hardware and applica-
tions. Program listings should be typed on
white paper with a new riblon. Articles
should be typed 40 characters/inch at 10
pitch. Author's name, address and phone
number should be included on first page
of article and all pages should be num-
bered. Photos are desirable and should
be black and white glossy.

Commercial advertising is welcomed.
Write fo $-100 MICROSYSTEMS, Box 1192,
Mountainside, NJ 07092, or phone Sol
Libes at 201-277-2063 after 4 PM EST.

*TMK Digital Research

May/June 1980

IN THIS ISSUE

An Intfroduction to CP/M, Part 3
by Jake Epstein

North Star Topics
by Randy Reitz

Linear Programming — Part 2
by William Yamnall

Addressing the Cursor, Part 2
by Larry Stein

Is Your Computer Out of Sorts? 35
by Chris Terry

No More Waiting for Sorts
by Robert L. Sheffield

DEPARTMENTS

Editor's Page

News & Views
Announcements
Software Directory
Letters to the Editor
New Products
Advertiser Index

$-100 MICROSYSTEMS (USPS 529-530) is published six fimes
per year for $9.50 per year (US.A) by LIBES. INC., 995
Chimney Ridge, Springfield, N.J. 07084, Controlled circula-
tion postage paid at Westfield, N.J.

POSTMAGSTER: Send address changes to §-100 MICRO-
SYSTEMS, P.O. Box 1192, Mountainside, N.J. 07092.

Copyright © 1980 by Libes, Inc.
AII rights reserved, reproduction prohibited without permis-
sion.

Editor’s Page
by Sol Libes

The S-100 Bus: Past, Present,
and Future

Part I
By Sol Libes

This is the first of a two-part article
analyzing the S-100-based computer
systems picture. The 5-100 bus is cur-
rently the most widely used microcom-
puter system bus and hence, I feel, is
deserving of an in-depth analysis of
where it came from, where it is present-
ly, and what its future looks like. I
would like to thank the following in-
dividuals who have spoken to me at
great length on this topic: Dr. Bob
Stewart, IEEE; Bill Godbout, Godbout
Electronics; George Morrow, Mor-
row/Thinker Toys; Steve Edelman,
Ithaca InterSystems; and Larry Stein,
Computer Mart of New Jersey.

ATE IN 1974, Ed Roberts, then

President of a small Albuquerque,
New Mexico company by the name of
Micro Instrumentation and Telemetry
Systems (better known as MITS) called
Les Solomon, Technical Editor of
Popular Electronics magazine. Ed told
Les that he had designed a microcom-
puter system using the new Intel 8080
microprocessor IC, and that MITS
wanted to produce it as a kit aimed at
hobbyists. MITS was than a small com-
pany of about a dozen people who had
previously attempted, unsuccesfully,
to make and sell radio telemetry kits
for model rockets and programmable
calculator kits. Popular Electronics had

4

Reprinted, with permission, from March 17,
1980 issue of INFOWORLD, 530 Lytton Ave.,
Palo Alto, CA 94301 Subscription $18/yr.

helped Ed in promoting these failures
in the past; therefore, he turned to
them again with his new computer kit
project. Two earlier kits based on the
Intel 8008 microprocessor had met
with some limited acceptance.* MITS,
in late 1974, was doing poorly, and the
microcomputer kit was, as Ed himself
later admitted “a sort of last hope.”
Ed projected that they could sell 300
of these computer kits in 1975. Les
Solomon thought the project was
great and asked Ed to bring the work-
ing prototype to New York City for a
demonstration and a photo session. PE
agreed to run a feature construction
type article, including schematic
diagrams. Ed, with Les’ help, dream'nt
up a name for the computer. They
called it the “Altair 8800.” Ed brought
the prototype unit to NYC, but
something happened in transit, and

Those interested in the early history of
Personal Computing (1964 to 1974)
should consult my article, “The First
Ten Years of Amateur Computing,”
which appeared in the July, 1978,
issue of Byte magazine.

the unit would not work. Les had
faith, and decided to run the article
anyway.

HE REST OF THE STORY is

pretty well known. The article
appeared in the January 1975 issue of
Popular Electronics, which was actual-
ly published and distributed in

December, 1374. At the end of the ar-
ticle it was mentioned that MITS was

offering a parts kit for the Altair 880
for $395. At the time, Intel was charg-
ing $350 for a single 8080 IC. The
Altair price seemed like an absolute
steal. Further, MITS offered a com-
plete PC board set for the Altair for
only $77, and a complete set of parts
(less the cabinet, power supply and
front panel switches) for only $189.
How cheap could you get?

It was like opening the flood gates.
Within one week after the article ap-
peared, MITS had received 200 orders
for the Altair; later that year, they
received 300 orders in one afternoon.
By the end of February, they had 2000
orders and still all they had was one
prototype Altair. Working day and
night, with the phones constantly jam-
med, they managed to ship some
board sets by early April; in May, they
started shipping complete kits.

S-100 MICROSYSTEMS

While everyone’s been busy

trying to convince you that large

buses housed in strong metal
boxes will guarantee versatzh.ty_

and ward off obsolescence, we've

been busy with something better.

Solving the real problem with the

first line of computer products

built from the ground up to con-

form to the new IEEE 5-100 Bus
Standard. Offering you extra ver-

satility in 8-bit applications today.

And a full 16 bits tomorrow.

We call our new line Series
1I™ And even if you don’t need the- A
= .Mapm addressing to a full mega-
~ byte. Our fast, flexible 16K Static
~ RAM and 64K Dynamic RAM =
--boards An mcredlbiy versati!e and

full 24-bit address for up to 16
megabytes (!) of memory right

now, they’re something to think _
about. Because of all the perform-

We're bou_t. to be ad%esain‘ .

they Offer Whether you're lookmg
~ at a new mainframe, expandmg

your present one or upgrading
your system with an eye to the
future. (Series Il boards are com-
patible with most existing 5-100

systems and all IEEE 5-100 Stan-
‘dard cards as other man ufacturefq :
get around to building them.) '

Consider some of the fea-

i tures: Reliable operation to. 4MHZ=T.
~and beyond. Full compatibility

with 8- and 16-bit CPUs, pe-

- ripherals and other devices. &ght
levels of prioritized interrupts. Up

to 16 individually-addressable

overlapped operation. User-selec-

~ table functions addressed by DIP-
switch or jumpers, eliminati ng sol-

~ dering. And that's just for openers i
The best part is that all his
= ‘heady stuff is available now! In
_our advanced processor —a fuill

IEEE Bus Master featuring Memory

ocan{)mmai 2 ser‘etai 4 paralie! -
Multiple 1/0 board. 8-bit A/D-D/A

-~ converter. Our Double-Density
~ High-Speed Disk Controller. And -
what is undoubtediy the most flex-

ible front panel in the business.
~ Everything you need for a com-

~ plete IEEE 5-100 system. Available |
~ separately, or all together in our

new DPS-1 Mainframe!
- Whatever your needs, why

_dump your money into obsolete

~ products labelled “IEEE timing
~ compatible” or other words peo-

~ ple use to make up for a lack of

~ product. See the future now, at

- . your lnt@rsystems dealer or call/
- DMA devices, with IEEE Standard =

~ tell you all about Series Il and the
new IEEE S-100 Bus we helped

~ pioneer. Because it doesn’t make

write for our new catalog. We'll.

sense to buy yesterday’s products

“when tomorrow's are already here.

Huaﬁ@a"%mt@nm '

. Ithaca Intersystems Inc.,
. 1630 Hansﬁaw Road/P.O. Box 91,
Ithaca, NY 14850
607- 257 0190/TWX: 510 255 4346

HE ALTAIR-8080 used a 100-

pin bus that was created by an
anonymous draftsman, who selected
the connector from a parts catalog
and arbitrarily assigned signal names
to groups of connector pins. Originally
known as the “Altair BUS,"” its name
was changed by other manufacturers
of compatible products to the “S-100
Bus.” The Altair-8800 came with a
1K-RAM card and promises from
MITS of additional boards for O in-
terfacing, memory expansion and the
like. But the owners of Altairs were
desperate for these boards so that
they could get their systems to do
something.

This led to the introduction of $-100
peripheral plug-in boards by other
suppliers. The first company to in-
troduce these boards was a small
2-man operation in a 1,000 square foot
shop in Berkeley, California. Named
Processor Technology Company, it
was run by Gary Ingram and Bob
Marsh. Most of their boards were
designed by Lee Felsenstein, an in-

dependent electronics consultant.
Lee's designs included the 3P+S IO
board, which allowed the interfacing
of interminals, printers, etc., to the
Altair, and the VDM-1, an amazing
device which permitted the use of ‘a
television monitor to provide alpha-
numeric and graphics output at very
low cost. PTCo also introduced RAM
and ROM boards, as well as a software
package (appropriately called
“Package #1") which made the Altair a
real computer rather than just a toy.
PTCo also experienced incredible
growth.

N LATE 19785, Bill Gates, Paul

Allen, and some cohorts wrote a
small Basic language interpreter pro-
gram in 8080 code with a cross-
assembler on a large computer
system. They took a paper tape of the
program from their location in Seattle
down to MITS in Albuquerque, loaded
it into an Altair, and with only a few
patches, got it to work the same day.
Later, Bill and Paul formed MicroSpft,
Inc., to market their software directly.
The result was that by the end of
1975, a person could build a CPU
mainframe for a little over $1,000, to
which he oould attach a terminal and
printer and run Basic, Assembler,
Debugger, and even do basic word

6

processing. This enabled MITS, during
1975, to sell about 8.000 Altair-8800
computers.

At the end of 1975, Imsai Manufac-
turing Corporation introduced their
own 8080 CPU which also used the
same bus struchire and a similar
operator panel. More rugged. with a
larger power supply, it was con-
sidered more professional than the
Altair so that, although it cost $100
more, it started to out-sell the Altair to
both hobbyists and professional users.
Imsai was also started as a garage-type
operation by Bob Millard, a consulting
electronics engineer.

VER A DOZEN MORE 5100

board vendors came onto the
scene in 1976. Cromemco (started in
Harry Garland's garage), building the
Dazzler,” a color television controller
for the Altair and Imsai computers.
TDL (Technical Design Labs - later to
become XITAN) started in mid 1976 in
Roger Amidom’s basement with a Z-80
CPU card and a powerful monitor
software program: By the end of 1976,
there were a half dozen different
§-100 mainframes being sold, and
close to 30 suppliers of $-100 plug-in
boards. Over 30,000 S-100 systems
were sold in 1976.

Meanwhile, MITS began thinking of
themselves as “the IBM of the
microcomputer business.” They began
to redirect their marketing to com-
mercial and business wusers; and
started to set up a dealer network that
sold Altair products exclusively. They.
introduced a system package for
business users.

UT, MITS LEARNED the hard

way ‘that there was a big dif-
ference between a hobbyist system
and a business system. Now with over
100 employees, MITS was having dif-
ficulty developing reliable memory,
VO, and disk storage systems. Even
worse; the development of business
software was proving an even more
formidable task than they had envi-
sioned. By early 1977, Ed Roberts
realized that MITS did not have the
financial wherewithall for the task.
Further, Imsai’s better mainframe and
the new PTCo Sol computer (named
after Les Solomon), Crumemco, and
TDL computers were having an im-
pact on the sales of the Akair. An at-

tempt by MITS ta broaden its product
line with an Altair-6800 computer was
a failure. In addition, several products
(e.g. a 4K dynamic RAM board) proved
very unreliable, and caused an in-
credible number of returns to the fac-

tory.

8 MITS SOUGHT to move from

kits to assembled business sys-
tems, they found that their production
problems, restrictive marketing
organization (limited to less than 60
dealers by early 1977), and the in-
creased competition were causing
financial problems. Therefore, in July
1977, Ed Roberts sold MITS to Pertec
Computer Corp. Pertec, a cbn-
glomerate with high overhead, raised
the Altair prices, stopped all kit pro-
duction, and ceased all premotion to
the personal computer market.

Imsai, PTCo, TDL, Cromemeo, North
Star, Vectorgraphics, and several
other 5100 computer systemn makers
were now selling systems through
over 500 personal computer stores
waorld-wide. As Pertec sought to turn
the Altair into a serious business
oriented system, a dark cloud ap-
peared in the form of low-cost in-
tegrated computer systema from Com-
modore (PET) and Radio Shack
(TRS-80), which had becomse available
by the end of 1977. By year-end,
Pertec gave up the ghost and ceased
production of all Altair products.
Despite this event, over 60,000 5-100
systems were sold in 1977

8 MORE AND MORE manufac-

turers introduced 5-100 main-
frames and peripheral plug-in boards,
it became apparent that compatibility
problems were- developing. In many
cases, $-100 boards would operate in
some $-100 systems and not in others.

The problems derived from the fact
that MITS had only loosely defined the
electrical specifications of the bus and
had left 19 of the 100 pins undefined.
Also, 5-100 manufacturers started to
ook to the future. They realized that
some redesign of the $-100 bus was re-
quired to accommodate the new 16-bit
microprocessors and expanding
systems capabilities, i.e., muiti-
processing, higher speed operation,
and enhanced interrupt vectoring.
The result was that in. mid 1978,
several companies (most notably Mor-

S-100 MICROSYSTEMS

IR21/0...The S-100 ROM,
RAM & 1/0 Board

ELECTRONIC CONTROL TECHNOLOGY's R?lI/O is an
S-100 Bus /O Board with 3 Serial /O Ports (UART's), 1
Parallel I/O Port, 4 Status Ports, 2K of ROM with Monitor
Program and 2K of Static RAM. The R2|/O provides a conven-
ient means of interfacing several I/O devices, such as - CRT
terminals, line printers, modems or other devices, to an S-100
Bus Microcomputer or dedicated controller. It also provides for
convenient Microcomputer system control from a terminal
keyboard with the 8080 Apple ROM monitor containing 26
Executive Commands and I/O routines. It can be used in
dedicated control applications to produce a system with as few
as two boards, since the R?/O contains ROM, RAM and I/O.
The standard configuration has the Monitor ROM located at
FO00 Hex with the RAM at F800 Hex and the I/O occupies the
first block of 8 ports. Jumper areas provide flexibility to change
these locations, within reason, as well as allow the use of

*S-100 BUS 3 Serial I/O Ports ROM's other than the 2708 (e.g. 2716 or similar 24 pin de-
¢ 2K ROM ¢ 1 Parallel I/O Port vices). Baud rates are individually selectable from 75 to 9600.
e 2K RAM ¢ 4 Status Ports Voltage levels of the Serial /O Ports are RS-232.

e ROM Monitor (Operating System)

8080 APPLE MONITOR

COMMANDS
R21/0 A —Assign I/0
ROM, RAM & I/O B —Branch to user routine A-Z
C —Undefined
: . D - Display memory on console in Hex
UART * 1 E -End of file tag for Hex dumps
F —Fill memory with a constant
STATUS i G -GOTO an address with breakpoints
H —Hex math sum & difference
| —User defined
UART : J —Non-destructive memory test
K —User defined
STATUS L —Load a binary format file
; M —Move memory block to another
UART ; address
H%(M - N —Nulls leader/trailer
MONITOR STATUS | 0 ~User defined
(OPERATING P —Put ASCII into memory
SYSTEM) 8 BIT LATCH Q —Query I/0 ports: QI (N)-read I/0;
: QO(N,V)-send I/0
Bl EATeE R —Read a Hex file with checksum
STATUS } - S - Substitute’examine memaory in Hex
T -Types the contents of memory in

ASCII equivalent
U ~Unload memory in Binary format
V —Verify memory block against another
memory block
W —Write a checksummed Hex file
X —Examine/modify CPU registers
Y —‘Yes there’ search for ‘N’ Bytes
in memory
Z —'Z END' address of last R/W memory
location

o Specializing in Quality Microcomputer Hardware
Building Blocks for Microcomputer Systems, Control and Test Equipment
Card Cages, Power Supplies, Mainframes, CPU’s, Memory, 1/0

ELECTRONIC CONTROL TECHNOLOGY (201) 635-8080

763 Ramsey Ave., Hiliside, N.J. 07205

S-100 MICROSYSTEMS 7

No.12:

(Gourmet
Goodies

i

Software tor most popular 8080/ Z80* computer disk systems inciuding NORTH STAR,iCOM, MICROPOLIS,DYNABYTE DB8/2
& DB8/4,EXIDY SORCERER, SD SYSTEMS, ALTAIR, VECTOR MZ, MECA, 8" IBM, HEATH H17 & H89, HELIQS,

IMSAI VDP42 & 44, REX,NYLAC, INTERTEC SUPER-BRAIN, VISTA V80 and V200, TRS-80* MODEL [and MODEL I, ALTOS,
OHIO SCIENTIFIC, DIGI-LOG, KONTRON PS180, IMS 5000 DISKETTE formats and CSSN BACKUP cartridge tapes.

CP/M” VERSION 2 FOR TRS-80 MODEL Il NOW AVAILABLE

Sofrwes
n/ll-u-
Manusi/ Aions

[0 CP/M* FLOPPY DISK OPERATING SYSTEM — Digital
Research’s operating system configured for many
popular micro-computers and disk systems:

System Price
North Star Single Density . ..
North Star Double Density
North Star Double/Quad
ICOM Micro-Disk 2411

Version

s
Haath H! + H1T
leath H

TRS-BO Modal Vor
TRS-80 Model Il
Processor Tecnnmngy Helios 1|
Cromemco System 3
Intsl MDS Single Dansity
Intel MDS Single Density
Intel MDS B0D Dou Dens\ly
Intel MOS 230 Double Denslty
Micropolis Mod | .
Micropolis Mod Wi s
The following configurations are
lease during the first half of 1980:

schedu\ed for re-

North Star Double/Quad + Corvus 2 l. ...250/25
North Star Horizon HD-1250/25
Ohio Scientitic C3 . 200/25
Ohio Scientific C3-B 250/25
Ohio Scientific CJ C fereaady 250/25
Micropolis Mod | -5 A /25
Mo:lek MDX STD Bus Syslem2.x....350/25 **
ICOM3B12 - 4 225/25 *
ICOM 45:1.’Parm. D3000 375/25 * +
TRS-80 Model Il + Corvu 250/25

Software consists of the opereting system, text edi-
tor, assembler, debugger end other utilties for file
i Complete set
and additionsl

of Digital R h's
implemeniation noles included. Systems markad *
and ** include tirmware on 2708 and 2716, Systems
marked + include 5440 media charge. Syslem:
marked ®@ require the spacial ® versians of :arlwarn
in this calalog. Systems marked v have minor varianis
available 10 suit console interface of system. Call or
write for full list of options.

[MP/M* — Intal MDS single density only (Documentaf
tion includes CP/M 2.0 manuals) . $300/350

Z80 DEVELOPMENT PACKAGE — Consists of: (1) disk
file line editor, with global inter and intra-line facili-
ties; (2) Z80 relocating assemblar. Zilog/Mostek mne-
monics, conditional assembly and cross reference
table onpabﬂlhee (3) hnkmg ioaa‘er praducm abso-
lute Intel hex disk file . 95/$20
[ZDT — 280 Monitor Dabuggar to break and examine
M registers with standard Zilog/Mostek mnemonic dis-
assembly displays. $35 when ordered with Z80 Devel-
opment Package . !50510
] XASM-88 — Non-macra z:mss-assemhrur with nested
conditionals and full range of pseudo operalions. As-
sembles from standard Motorola MCE800 mnemonics
to Intel hex .$200/%:
[0 XASM-65 — As KASM«EB for MOS Technology MCS-
6500 series mnemonics g 200/$25
[DISTEL — Disk based disassembler to Intel 8080 or
TDL/Xitan 280 source code, listing and cross refer-
ence files, Intel or TDLIx- psaudu aps lIunuJ
Runs on 8080cciiiiiinnnnns
O DISILOG — As DISTEL to Z\log.'Meswx mnemoﬂlc
@ files. Runs on Z80 o .. 965/310
0 SMAL/80 Slruclursd Mucru Assembler nguana -
@ Package of powerful general purpose text macro
processor and SMAL siructured language compiler.

SMAL is an assembler language with IF-THEN-ELSE,
LOOP- HEPEAT-WHJL DO-END, BEGIN-END con-
structs 75/815

O tiny € — Interactive Interprelive system for teaching
@ structured programming |s:hniqun Manual includes
full source listings $105/340

(O BDS C COMPILER — Suppcr\:s most features of lan-
®& guage, including Structures, Arrays, Pointers, recur-
(@ sive function evaluation, overlays. Includes linking

loader, library manager, and library containing gen-

l\h‘u /0, and floating point functions.
Lacks initializers, smms, floats and longs. Docu-

eral purpose, file
s
mentation includes “The C PROGHAMMING LAN-
GUAGE" by Kernighan and Ritchie $12
0 WHITESMITHS C COMPILER — The ultimate in uys-
@ lems software tools. Produces faster code than
(& Ppseuda-code Pascal with more extensive fac\lllm
Conforms to the full UNIX* ion 7 C language, de-
scribed by Kernighan and Ritchie, and makes avai
able over 75 functions for p-rfurmmg 170, string
manipulation and stor; allocation. Linkable to
Microsott REL files. Requires 60K CP/M$630/$30

& oAl
e

procedure calls and the S|
Provides convenient string handling capabi with
/Ime added variable type STRING. Untyped mes allow

HENM BASIC to PASCAL conversion. Source for the run-

6K TRE9

Softwars
wim | Manual
Marual/ Ao

MICROSOFT

[0 BASIC-80 — Disk Extended BASIC, ANSI compatible
with long variable names, WHILE/WEND, chaining,
& variable length file records o $325/825
[] BASIC COMPILER — Language compatible with
(D BASIC-80 and 3-10 times faster execution. Produces
& standard Microsoft relocatable binary output. In-
cludes MACRO-80. Also linkable to FORTRAN-B80 or
COBOL-80 code modules . ..$350/825

[] FORTRAN-80 — ANS| 68 (E)(C!pt for COMPLEX) plus
(© many extensions. Includes relocatable object com-
@ piler, linking loader, library with ‘manager. Also in-

cludes MACRO-B0 (see below) . . $425/325

[COBOL-80 — Level 1 ANSI ‘74 slandald COBOL plus
(© most of Level 2. Full sequential, relative, and in-
@ dexed file support with variable file names. STRING,
UNSTRING COMPUTE, VARYING/UNTIL, EXTEND,
CALL, COPY, SEARCH, 3-dimensional arrays, com-
pcund and abbreviated conditions, nested IF. Power-
ful interactive screen-handling extensions. Includes
compalible assembler, linking loader, and relocat-
able library manager as described under Mgcn%gg

] MACRO-80 — B0B0/ZBD Macro Assembler. Intel and
Zilog mnemonics supported. Relocatable linkable
& output. Loader, Library Manager and Cross Refer-
ence List ulilities included$149/815
[] XMACRO-86 — 8086 cross assembler. AIJ Macro and
(@ utility features of MACRO-80 package. Mnemonics
slightly modified from Intel ASM86. Compatibility data
sheet available $275/52!

[EDIT-80 — Very fast random access text editor for lext
(© with or without line numbers. Giobal and intra-line
commands suppor!ed File compare utility mcluf:d
$89/815

[PASCAL/M* — Compiler generates P code from ex-
c lended language, implementation of standard PAS-
AL. Supporls overlay structure through additional
GMENT p-ocedure type

memory image /0. Requires 56K CP/M ... $150/$20

[J PASCAL/Z — Z80 native code PASCAL cumplrsr Pro-
{D duces optimized, ROMable re-enirant code. All inter-
facing to CP/M is through the support library. The
ckage includes compiler, Microsoft Compatible re-
locating assembler and linker, and source for all
library modules. Variant records, strings and direct
1/ are supported. Requires 56K CP/M and 280 CPU.
........................... $395/$25

[m] I’ASCALFMYﬁ Subset of standard PASCAL. Gener-
® ates ROMable 8080 machine code. Symbolic debug-
@® ger included. Supports interrupt procedures, CP/M
ms 1/O and assembly language interiace. Real vari-
ables can be BCD, software floating point, or AMD
8511 hardware floating point. Version 3 includes
Enumeration and Record data types. Manual explains

time nac.kage reqmres D\g\lnl Research's MAC.
quires 32K . .$250/$30
[J ALGOL-60-Powerful block-structured Ianguagg com-
piler featuring economical run-time dynamic alloca-
tion of memory. Very compact (24K total RAM) sys-
tem implementing aimast all Algol 60 repori features
plus many powerful extensions including string han-
dling direct disk address I'O elc. Hequ\ras 280
CPU .8$199/$20

DOBASlCZ Disk Exteno‘ed BASIC Non-interactive
BASIC with pseudo-code compiler and run-time in-
terprster. Subporls full ffa conirol, chaining, inleger
and extended precision variables, etc.$120/$15

MICRO FOCUS

L[] STANDARD CIS COBOL — ANSI ‘74 COBOL sland-
@ ard_compiler fully validated by U.S. Navy lesls to
ANSI level 1. Supports many features to level 2 in-
cluding dynamic loading of COBOL modules and a

\uhels‘ Comes with sample applications,
| Sales Activity, Inventory, Payables, Receivables,
F}“d’ Check Register, and Client/Patient Appointments, etc.
a

distibution on 8" singl

gle ity diskoltes
quested which requires ade

nal diskafies.
arge of $8. per additional diskelte will be added
A sureharge of 525 will be sdded for softwars on CSSN

formal DG 300XL cartridges.

All Lifeboat programs require CP/M, unless otherwise stated.

i s
arun] Miamn

[KBASIC — Microsoft Disk Extended BASIC with all

© KISS facilities, integrated by implementation of nine
additional commands in language. Package includes.
KISS. REL as described above, and a sﬂmple mail
list program 5/$45
To licensed users of Microseil BASIC-80 (MBASICJ

[XYBASIC Interactive Process Control BASIC — Full
disk BASIC features plus unique commands 1o han-
die bytes, rotate and shift, and to test and set bits.
Available in Integer, Extended and ROMable versions.
Integer Disk or Integer ROMable ..$295/525
Extended Disk or Extended ROMable . $395/525

BASIC UTILITY DISK — Consists of: (1) CRUNCH-14
- Campmmg unlny 1o reduce the size and increase

he speed of programs in Microsoft BASIC and TRS-
BO BASIC. (2) DPFUN Double precision subroutines
for compuung nineteen transcendenial functions in-
cluding square root, natural log, log base 10, sin, arc
sin, hyperbalic sin, hyperbalic arc sin, etc. Furnished
in source on diskelle and documenlaiion . ..$50/$35

[] STRING/80 — Character string handling plus roulines
® for direct CP/M BDOS calls from FORTRAN and other
compatible Microsoft languages. The utility library
conlains routines that enable programs to chain to
a COM file, retrieve command line paramelers, and
search file directories with full wild card facilities.
Supplied as linkable modules in Microsolt format.
............................... ...$95/$20
STRING/B0 source code available separately $295/n.a.
[J THE STRING BIT — FORTRAN character string han-
dling. Routines to find, fill, pack, move, separate,
concatenale and compare characler strings. This
package complelely eliminates the problems asso-
ciated with characler siring handling in FORTRAN.
Supplied with source .$65/515

[J YSORT — Versalile sori/merge system fm fixed length

- records with fixed or variable length fields, VSORT
used as a stand-alone package or lcaded and

N callen asa subrcuune from CBASIC-2. When used as

@D

7ya subroutine, VSORT_maximizes the use of buffer
space by saving the TPA on disk and restering it on
:nmp\elmn of sorting. Records may be up lo 255
bytes leng with a maximum of 5 fields. Upper/lower

case translation and numeric fields supporied,
$175/820

] cﬂwa'rax Has full range of functions to create or
re-name an IBM 3741 volume, display directory infor-
mation and edit the data set contents. Provides full
file transfer facilities between 3741 volume dala sels
and CP/M files$195/510

[BSTAM — Utility to link one computer to another also

& equipped with BSTAM. Allows file transfers at full
data speed (no conversion to hex), with CRC block
conlrol check for very reliable error detection and
automalic retry. We use it! It's great! Full wildcard
expansion o send *.COM, etc. 8600 baud with wire.
300 baud with phone connection. Both ends need
one. Standard and & versions can talk to one another,

SRR PR e e et 1 1
- - D S ..

[WHATSIT?* Interactive data-base system using as-
socialive tags lo retrieve information by subject.
Hashing and random access used for fast response.
Requires CBASIC-2 ..$175/825

[] SELECTOR il (:27 Data Base Processor lo creale

® and maintain multi Key data bases. Prints formatted

1 sorted reports with numerical summaries or mailing

ions, including

Requires CBASIC-2. Supplied in source ...$295/§20

GLECTOR — General Ledger option to SELECTOH

1II-C2. Interactive system provides for customized

COA. Unigue chart of ransactlion types insure proper

g:uble enlry bookkeeping. Generates balance sheets,
L

full*ISAM tile facility. Also, program
interactive debug and powerful inleractive exlensions
to support protected and unprotected CRT screen
formatting from COBOL progums used wwlh any
* dumb terminal 50/$50
[FORMS 2 — CRT screen editor. Dulput is coam data
(D descriptions for copying into CIS COBOL programs.
Automatically creates a query and update program of
indexed files using CRT protected and unprotected
screen formats. No programming experience needed.
Qutput program d.re:ny oompvied by C'S|c°?3'6

(standard)
a.o?&wufm/

EIDOS SYSTEMS

[KISS — Keyed Index Sequential Search. Offers com-
@ plete Multi-Keyed Index Sequanlml and Direct Ac-
cess file management. Includes utility func-
tions for 16 or 32 bit arithmetic, slnnghmegercon\reb
sion and String compare. Delivered as a

and journals. Two year record allows
for statement of changes in linancial positicn report.
Supplied in source. Requwes SELECTOR IlI 02
CBASIC-2 and 52K system$250/$25

[CBS — Configurable Business Syslem is a compre-
® hensive set of programs for defining custom data
files and application systems without using program-

\ ming language such as BASIC, FORTRAN, etc. Mul-
6 tiple key fields for each data lile are supporied. Set-up
N/program customizes syslem to user’s CRT and printer.
Provides fast and easy interaclive data entry and
refrieval with transaction processing. Report genera-

tor program does complex calculations with stored

and derived data, record selection with multiple cri-

teria, and custom formats. Sample inventory and mail

ing list systems included. No supporl language re-

quired$295/525

linkable module in Microsoft format for use with
FORTRAN-80 or COBOL-80, elc. .

Pricesand subjecttochange without notice.

Scrware
i [Manust
anuni/ Alons
MICRO DATA BASE SYSTEMS

[J HDBS — Hierarchical Data Base System. CODASYL
oriented with FILEs, SETs, RECORDs and ITEMs
which are all user delined. ADD, DELETE, UPDATE,
SEARCH, and TRAVERSE commands supported. SET
erdering s sorted, FIFO, LIFO, next or prior. One fo
many set relationship supported. Read/Write protec-
tion at the FILE level. Supports FILEs which exlend

over multiple floppy or hard disk devices.

[MDBS — Micro Data Base System. Full nelwork data
base with all features of HDES plus multi-level Read/
Wrile pratection for FILE, SET, RECORD and ITEM.
Explicit representation of one to ¢ne, one te many,
many to many, and many to one SET relationships.
Supports multiple owner and multiple record lypes
within SETs. HDBS files are fully compatible

[] MDBS-DRS — MDBS with Dynamic Restructuring Sys-
tem option which allows allering MDBS dala bases
when new ITEMs. RECORDs, or SETs are needed
without changing existing data.

HDBS-Z80 version $250/$40
MDBS-Z80 version . ..$750/540
MDBS-DRS-Z80 version . .$850/$50

8080 Version available al $75. extra.
6 When ordering, specify one of the
D'(languages listed below.
/>HDBS and MDBS manuals purchased alone come

without specific language intertace manuals. Manuals
are available for the following Microsoft languages:
1) MBASIC 4.51, 2) BASIC-80. 5.0, 3} Compiled
BasiC-80 or FORTRAN-80, 4) COBOL-80, 5) MACF;OV

MW
MICROPRO i Cbtw/zza{ /

{1 SUPER-SORT | — Sort, merge, extract utility as abso-
(© lute executable program or linkable module in Micro-
saft format. Sorls fixed or variable records with data
in binary, BCD, Packed Decimal, EBCDIC, ASCII,
tioating & fixed point, exponential, field juslified. etc.
Even variable number of fields per record! . $225/$25

[] SUPER-SORT Il — Above available as ab-:o!:r: pro-

© gram only . 5/$25
[] SUPER-SORT Ill — As Il without SELECT/EXCLUDE
© - T ——— $125/825

(] WORD-STAR — Menu driven visual word processing
(© system for use with standard lerminals. Text format-
ting performed on screen. Facilities for text paginate,
page number, justify, center and underscore. User
can print one document while simultaneously editing
a second. Edit facilities include global search and
replace, Aead/Write to other lext files, block mave,
elc. Requires CRT terminal with addressable cursor
positioning $445/840
WORD-STAR Customization Notes — For sophlsflcalsd
users who do not have one of the many standard
terminal or printer cc'vllqwa’\uns in the distribution
version of WORD-STAR . NA/$95
() WORD-MASTER Text Ed;lor—ln one mode has super-
(© set of CP/M's ED commands including global search-

ing and replacing, forwards and backwards in file in

video mode, provides full screen editor for users with

serial addressable-cursor lerminal . .. $125/$25

a

. :
Lifeboat Associates, 2243 Broadway, N.Y., N.Y. 10024 (212) 580-0082 Telex: 220501 T . —emuR—

e s
[J POLYVUE/80 — Full screen editor for any CRT with
@ XY cursor ning. Includes vertical and horizon-
tal scrolling, interactive search and replace, auto-
matic text wrap around for word processing, opera-
tions for manipulating blocks of text, and compre-
hensive 70 page manual§135/815

[POLYTEXT/80 — Text lovma!ter lcr word processing
@ applications. Justifies and paginates source text files,
Will generate form letters with custom fields and
condilianal” processing. Support for Daisy Wheel
ers includes variable pitch justification and mo-

tion optimizationo $85/§15
[TEXTWRITER Wil — Text formatter to justify and pagi-
@ nate letters and other documents. Special features
include insertion of text during execution from other
disk files or console, permitling recipe documents
to be created from linked fragments on other f»les
Has facilities for sorted Index, table of contents and
footnote insertions. Ideal for contracts, manuals, efc. |
Now compatible with Electric Pencil* prepa;ed f’w\sezs

i ,
%S/C jﬁzﬁ»}m 4
PEACHTREE SOFTWARE

[GENERAL LEDGER — Records details of all financial
© transactions. Generates a balance sheet and an in-
come stalement. Flexible and adaptable design for
both smail businesses and firms performing client
writeup services. Produces reports as follows: Trial
Balance, Transaction Registers, Balance Sheet, Prior
Year Comparative Balance Sheet, Income Statement,
Prior Year Comparative Income Statement and De-
partment Income Statements. Interactive with u'her
PEACHTREE accounting packages. d
source code for Microsoft BASIC wssu
[] ACCOUNTS PAYABLE — Tracks current and aged
@ payables and incorporates a r.heck wnlmg fealu:e
t Maintains a complete vendor file wi

-+

)
Manual!/ Alone

[J APARTMENT MANAGEMENT SYSTEM — Financlal
management system for rewgts and security de-
posits of apartment projects. Captures dala on va-

t cancies, revenues, etc. for annual trend analysis.
Daily report shows lale rents, vacancy notices, va-
cancies, income lost through vacancies, elc. H.eqwes
CBASIC-2. Supplied in source 90/$35

[J CASH REGISTER — Maintains files on da\ly sales.
© Files dala by sales person and item. Tracks sales,
& over-rings, refunds, payouts and total net dapnslls
1 Requires CBASIC-2. Supplied in source . ..3$590/$35

[POSTMASTER — A comprehensive package for mail
® list maintenance that is completely menu driven,
) Fealures include keyed record extraction and labal
production. A form letter program is included which
provides neat letters on single sheet or continu-
ous forms. Compatible with NAD files. Requires
CBABIC 2. ciiiavv i s nman vaai on $150/815

STRUCTURED SYSTEMS GROUP

[) GENERAL LEDGER — Interactive and flexible system
providing proof and report outputs. Customization of
COA created interactively. Multiple branch account-
ing centers. Extensive checking performed et data
entry for proof, COA correctness, etc. Journal entries
may be batched prior to posting. Closing procedure
automahcally backs up input files. Now includes
statcmcnl of Changes in Financial Pesition. Requires

CBASIC-2 . .- §1250/825

[ACCOUNTS RECEIVABLE — Opcn item syslem with
t output for internal aged reports and customer-ori-
ented stalement and billing purposes. On-Line En-
quiry permits information for Customer Service and
Credit departments. Interface to General Ledger pro-
vided if both sysisms used. Heqmres CBASIC-2.
.. $1250/525
D ACCOUNTS PAYABLE— F'revides agsd slate s
T of accounts hy uandnr with chack writing for selected
invoices. Can be used along or with General Led Er
and/or with NAD. Hequlres CBASIC-2$1250/

"

purchase orders and discount Ir:rms as well 25 active
account status. Produces reporls as follows: Open
Vaucher Report, Accounts Payable Aging Report and
Cash Requirements. Provides input to PEACHTREE
General Ledger. Supp ied in source code for Micro-
soft. BASICo ..$930/$30

[J ACCOUNTS RECEIVABLE — Generates Inuolce regis-
{© ter and complele monthly statements. Tracks current
and aged receivables. Maintains customer file includ-
ing credit information and accouni stalus, The cur-
rent status of any customer account is instantly avail-
able. Produces reports as follows: Aged Accounts
Receivable, Invoice Register, Payment and Adjust-
ment Register and Customer Account Status Report.
Provides input to PEACHTREE General Ledger. Sup-
plied in source code for Microsoft BASIC . .$990/§30

[J PAYROLL — Prepares payroll for hourly, salaried and
© monthly, quar-
t ferly and annual returns. Prepares employea W-2's.
Includes tables for federal withholding and FICA as
well as withnalding for all 50 stales plus up to 20
cities from pre-computed or user generaled tables.
Will print checks, Payroll Register, Monthly Summary
and Unemploymcm Tax Report. Provides input to
PEACHTREE General Ledger, Supplied in source
code for Microsoft BASIC . $990/530

[J INVENTORY — Maintains detailed information on

@ each inventory item including part number, descrip-

tion, unit of measure, vendor and reorder data, item
actwny and complete information on current item
costs, pricing and sales. Produces reports as follows:
Physical Inventory Worksheet, Inventory Price List,
Departmental Summary Report, Inventory Stalus Re-
port, The Reorder Report and the Period-to-Date and
Year-lo-Date reports. Supplied in source code for
Microsoft BASICcouvunnn $1,190/830

[MAILING ADDRESS — Keeps track of name and ad-
© dress information and allows the selective printing of
this information in the form of mailing lists or ad-
dress labels. Allows the user to tailor the system to
his own paticular requirements, User-cefined for-
mal and print-out system uses a special format file
which lelis programs how to print the mailing list or
address labels, Standard format files are included
with system. Automatic sorting of data uses indexed
file management routines which allow the name and
address information to be sequentially retrieved and
printed without file sorting. Supplied in source code
for Microsoft BASICo.ovennns $790/830

—+

e~

-+

GRAHAM-DORIAN SOFTWARE SYSTEMS

[J GENERAL LEDGER — An on-line system; no batch-
ing is required. Entries to other GRAHAM-DORIAN
accounting packages are automatically posted. User
establishes customized C.0.A. Provides transaction
register, record of journal entries, irial balances and
monthly closings. Keeps 14 month history and pro-
vides comparison of current year with pravious year.
Requires CBASIC-2. Supplied in source .. $895/$35
[ACCOUNTS PAYABLE — Maintains vendor list and
{© check register. Performs cash flow analysis. Flexibla
@& — writes checks to specific vendor for certain in-
+ voices or can make partial paymants. Automatically

posts to GRAHAM-DORIAN General Ledger or runs as

stand alone system. Requires CBASIC-2. Supplied in

T T S R R R .$995/535

[J ACCOUNTS RECEIVABLE — Creates trial balance re-
@ ports, prapares statemants, agss accounts and rec-
@ ords invoices. Provides complete information describ-
t ing customer payment aclivity. Receipts can be
posted o different ledger accounts. Enlries auto-
matically updale GRAHAM-DORIAN General Ledger
or runs as stand alane system Hequwea CBASIC-2.
Supplied in source-$995/835
O] PAYROLL SYSTEM — Maintains cmployee master file.
@ Computes payroll withholding for FICA, Federal and
® Siate taxes. Prints payroll register, checks, quarterly
t reports and W-2 forms. Can generale ad hoc reports
and employee form letters with mail labels. Requires
CBASIC-2. Supplied in source $590/$35
1 INVENTORY SYSTEM — Caplures stock levels, costs,
S sources, sales, ages, turnover, markup, etc. Trans-
1

B0

action information may be entered for reporting by
salesman, type of sale, dale of sale, etc. Reports
available both for accounting and decision making.
Requires CBASIC-2. Supplied in source ...$590/$35

[] JOB COSTING — Designed for general contractars.
@© To be used interactively with other GRAHAM-DORIAN
® accounting packages for tracking and analysing ex-
1 penses. User establishes customized cost categories
and job phases, Permits comparison of actual versus
estimated costs. Automatically updates GRAHAM-
DORIAN General Ledger or runs as stand alone sys-
tem. Requires CBASIC-2, Supplied in source $895/$35

Orders must specify disk Manual cost app icable
d

systems and lormals: agains! price of

e.g. North Star single, subsequent software
double or quad density, purchase.

IBM single or 201256,

Altair, Helios I, The sale of each

Micropolis Med 1 or I, proprietary software

51" soft seclor (Micro package conveys a
ICOM/SD Systems license for use on one
Dynabyte), etc. system only.

Prices F.0.B. New York
Shmbﬂg handling and
charges exlra.

™The Software Supermarkat is a trademark of Lifeboat Associates

qD

PA\'ROLL Flexlble payroll system handles weskly.

ly, se y and monthly payroll periods.
Tips, bﬂnusss re-imbursements, advances, sick pay,
vacation pay, and compensation time are all part of
the payroll records. Prints gavernment required peri-
odic reporls and will post to multiple SSG General
Ledger accounts. Requires CBASIC-2 and 541(of
b A T iir o s s e $1250/$25

[INVENTORY CONTROL SYSTEM — Performs control

1 functions of adding and depleting stock items, add-
ing new items and deleting old items. Tracks quantity
of items on hand, on order and back-ordered. Op-
tional hard copy audil trail is available. Hepnrls m-
clude Master llem List, Stock Activity, Stock Val
tion and Re-order Lis chul!ea CBASIC-; 23125”525

3 ANALYST — Customized dala entry and reporting sys-
tem. User specifies up to 75 data items per record.
Interactive data entry, retrieval, and update facility
makes information managemen! easy. Sophisticated
report generator provides customized reports using
selected records with multiple level break-points for
summarization. Requires CBASIC-2 . .. $250/%15
1 LETTERIGHT — Program to create, edit and type let-
ters or other documents. Has facilities to enter, dis-
play, delete and move lext, with good video screen
presentation. Designed to infegrate with NAD for
form lattar mamngs Requires CBASIC-2 ..$200/$25

(] NAD Name and Address selection system — interac-
tive mail list creation and maintenance program with
output as full reports with reference data or restricted
information for mail labels. Transfer system for ax
traction and transfer of selecled records to cre;
new files. Requires CBASIC-2 smumu

[@SORT — Fast sort/merge program for files with fixed
record length, variable field length information. Up to
five ascending or descending keys. Full back-up of
inpul files created $100/$20

* Kk Kk k %k k
CONDIMENTS

[J HEAD CLEANING DISKETTE-Cleans the drive Read/
Write head in 30 seconds. Diskette absorbs loose
oxide parlicles, fingerprints, and ofher foreign parti-
cles that might hinder the performance of the drive
head. Lasls al lgast 3 months with daily use. Specify

§" or
‘(\J Singlesided $20 each/§55 for 3
l\w,?ncunremad g .. $25 each/$65 for 3
'/"] FLIPPY DISK KIT — Tsmplale and instructions 1o
modily single sided 5% " diskettes for use of second

side in single sided drives $12.50

[FLOPPY SAVER Protecur.m for center holes of 5"
and 8" floppy disks. Only 1 needed per diskette. Kit
contains centering post, pressure tool and tough

, 7 mil mylar reinforcing rings for 25 diskett

o

=

B, Rings only .
[PASCAL USER MANUAL AND REPORT — By Jensen

and Wirth. The standard textbook on the language.
Recommended for use by Pascal/Z, Pascal/M and
Pascal/MT users . $10

[J THE C PROGRAMMING LANGUAGE By Kemlghan

and Ritchie. The standard textbook on the language.
Recommended for use by 80S G, tiny G, and While:

smiths C users ot $12

D STRUCTURED M\CRDFROCESSBH PROGRAMMING

— By the authors of SMAL/B0. Covers structured pra-

(;’ !, gramming, the 8080/8085 instruction set and the

7 SMAL/BO 18NGUAGE+ ..vvvrnreennenees $20.00
D ACCOUNTS PAYABLE & ACCOUNTS RECEIVABLE—
Nﬂl” CBASIC — By Osborne/McGraw-Hill $20

u] GENEFIAL LEDGER—CBASIC — By Dsbuma!McGra;\ro-

Hearty
Appetite.

“CP/M and MP/M are trademarks of Digital Research.
Z80 is a rademark of Zilog, Inc.
UNIX is a trademark of Bell Laboratories.
WHATSIT? is a trademark of Computer Headware,
Electric Pencil is a trademark of Michael shrayer

ware,
TRS-80 is a trademark of Tandy Corp
Pascal/M is a trademark of Sorcim,

tRecommended system configuration consists of 48K
CP/M, 2 full size disk drives, 24 x 80 CRT and 132
column printer.

®@Modified version available for use with CP/M as im-
plemented on Heath and TAS-80 Model | computers.

@user license agreement for this product must be
signed and returned to Lifeboal Associates belore
shipment may be made.

(@ ®This product includes/eXcludes the language manual
recommended in Condiments.

row/Thinker Toys, Parasitic Engineer-
ing, and Ithaca InterSystems) began
development, under the aegis of the
IEEE (Institute of Electrical & Elec-
tronic Engineers), of an S5-100 Bus
Standard**. All in all, 1978 was
another glorious year for 5-100 system
producers as nearly, 100,000 $-100
systems were manufactured.

HE YEAR 1979 WAS DISAS-

TROUS for three of the leading
5-100 manufacturers. A tight money
market combined with bad marketing
decisions and manufacturing prob-
lems led to Imsai going bankrupt and
PTCo closing their doors {even though
they were financially solvent).
Polymorphics filed for bankruptcy but
was able to get additional financing, go
through reorganization, and by mid-
year, turned around and came out of

bankruptcy. Imsai was purchased by
the Fisher-Freitas Corporation, who
have resumed manufacturing and
marketing of the entire Imsai product
line.

On the other hand, 1979 proved to
be another excellent year for most
S5-100 systermn suppliers: six new S-100
mainframes were introduced, making
a total of 17 companies manufacturing
5-100 mainframes. Nearly 60 com-
panies were manufacturing §-100
plug-in boards, and over 140 com-
panies offered S5-100 software
packages. Although the increase in the
sales of 5100 hardware was signifi-
cant in 1979, it was not the dramatic
100% to 200% increases of prior
years. On the other hand, S-100 soft-
ware sales skyrocketed. Total number
and dollar figures are difficult to ob-
tain, since so many manufacturers are
involved. However, there is little
doubt that presently, 5-100 type com-
puter systems are more widespread
than any other type of computer
system.

In the second, and concluding, part
of this article, I will analyze the pres-
ent state and future prospects of the
5-100 marketplace. &

**This proposed standard is 25 pages
long, nearing adoption, and has been
printed in Computer (July 1979) and
S-180 Microsystems (Jan-Feb 1980)
magazines.

NEWS & VIEWS
by Sol Libes

S-100 PASCAL MICROENGINE BOARD SET SOON

Digicomp Research Corp., Terrace Hill, ithaca, NY
14850, will shortly start shipping an S-100 plug in
board set (two boards) using the Western Digital
PASCAL MICROENGINE™ chipset. It will directly
execute the UCSD™ P-code (version Ill.0) and promises
7 to 12 times speedup over software PASCALs. A Z80
mpu is included to run CP/M™ and I/O. DRC is selling
pre-production units for $750 and the actual production
units to be available later this year should be twice this
price.

PL-1 COMPILER ANNOUNCED

Digital Research, the people who created CP/M™,
MP/M, etc., have announced a full implementation of
the PL-1 language for 8080/Z80 based systems. They
claim that the compiler will generate compiled code
which takes fewer bytes and runs faster than the same
program written in PASCAL.

FULL UNIX™ RUMORED

Microsoft has disclosed that they are very close to
signing a contract with Bell Laboratories to distribute
UNIX™. It will include a C-compiler. They will write
versions to run on 8086, Z8000 and 68000 based
systems.

™UCSD PASCAL is a trademark of the Regents of the
University of California.

™CP/Mis atrademark of Digital Research Corporation.
“PASCAL MICROENGINE is a trademark of Western
Digital Corporation.

"UNIX is a trademark of Bell Laboratories.

PASCAL NEWS

UCSD did do one thing to pacify all those PASCAL
owners and clubs whose software license was arbi-
trarily terminated. It provided an offer to owners of
Version 1.4 of UCSD PASCAL an upgrade to Version i
at a charge of $95 instead of the usual $300. However,
clubs and owners received very short notice, about 4
weeks, and therefore the offer expired before several
clubs were able to notify their members.

Softech, the distributor of UCSD PASCAL, is
starting a national user’s group for UCSD PASCAL.
They will distribute software (a la CP/M User Group)
and expect to publish a newsletter. They are talking
about a meeting of UCSD Pascal users sometime this
summer in La Jolla, CA.

Jim McCord, publisher of the UCSD PASCAL
HOBBY NEWSLETTER, has now released disk #3
(LIB.3) of UCSD PASCAL software. You can get a copy
for $5 + disk or $9 if he supplies disk. Write to: Jim
McCord, 330 Vereda Leyenda, Goleta, CA 93017.

10

‘-------------ﬂ-~
3

(4

ANNOUNCEMENTS

5th ANNUAL CALIFORNIA COMPUTER SWAP MEET
SUNDAY, JUNE 1st - 10 AM to 6 PM
Santa Clara County Fairgrounds, Gateway Hall
344 Tully Road (West on Tully Rd off 101)
San Jose, California
Selling Spaces: $25 & $55 (non-commercial)
$60 & $130 (commercial)
Admision: Free
Consignment Table: 8% fee
Free Literataure Table
For information call: John Craig (415) 324-2404
or write: Box 52, Palo Alto, CA 94302

3rd ANNUAL PERSONAL COMPUTER ARTS FESTIVAL
SATURDAY & SUNDAY - August 23 & 24
Philadelphia, PA
Call for computer musicians and artists to participate.
Write to:
PCAF'80, c/o Philadelphia Area Computer Society
Box 1954, Philadelphia, PA 19105

3rd ANNUAL PERSONAL COMPUTER FAIR

NOVEMBER 8 & 9

Pacific Science Center

Seattle, Washington

For information call: (206) 284-6109

or write: Northwest Computer Society, Box 4193,
Seattle, WA 98119

-----------..----------~

BACK ISSUES OF
S-100 MICROSYSTEMS

Did you miss the previous issues of S-100 Micro- I
systems? They are still available. Vol. 1, No. 1 isl
already a collector’s item; we only have a small supply I
which we expect will be exhausted by the end of April
(we are considering reprinting it).

The price is $2.00 each or $3.50 for both. Add
$1.00 to cover postage and handling.

-.'

Vol. 1, No. 1 - Jan/Feb 1980
The IEEE S-100 Standard (complete)
An Introduction to CP/M, Part |
Modifying the SDS VDB-8024 Display Card
Computerized Bulletin Board Systems
An 8080 Disassembler (complete source code)

Vol. 1, No. 2 - March/April 1980
North Star Topics, Part |
Linear Programming in Pascal, Part |
Introduction to CP/M, Part |l
Addressing the Cursor, Part |
S-100 Bus - New versus Old
Product Review - CGS-808 Color Graphics Board

Tarbell Disk Controller Mods 'I'

LR R R 8 B § 8 2 3 % 1 B B W B % B R B R 4

S-100 MICROSYSTEMS

NEW! TPM* for TRS-80 Model Il
NEW! System/6 Package

Computer Design Labs

280 Disk Software

We have acquired the rights to all TDL software (& hardware). TDL software has long had the reputation of being the best in the
industry. Computer Design Labs will continue to maintain, evolve and add to this superior line of quality software.
— Carl Galletti and Roger Amidon, owners.

Software with Manual/Manual Alone

All of the software below is available on any of the
following media for operation with a Z80 CPU using
the CP/M* or similar type disk operating system
(such as our own TPM*).

for TRS-80* CP/M (Model | or I}

for 8”” CP/M (soft sectored single density)
for 5" CP/M (soft sectored single density)
for 5% North Star CP/M [single density)
for 5%’ North Star CP/M (double density)

BASIC 1

A powerful and fast Z80 Basic interpreter with EDIT,
RENUMBER, TRACE, PRINT USING, assembly language
subroutine CALL, LOADGO for “chaining”, GOPY to
move text, EXCHANGE, KILE, LINE INPUT, error inter-
cept, sequential file handling in both ASCII and binary
formats, and much, much more. Itrunsin a little over 12
K. An excellent choice for games since the precision
was limited to 7 digits in order to make it one of the
fastest around. $49.95/$15.

BASICH ..

Basic | but with 12 digit precision to make its power
available to the business world with only & slight sacrifice
in speed, Still runs faster than most other Basics (even
those with mueh less precision). $99.95/$15.

BUSINESS BASIC

The most powerful Basic for business applications. It
adds to Basic |l with random or sequential disk tiles in
either fixed or variable record lengths, simultaneous
access to multiple disk fites, PRIVACY command to
prohibit user aceess to ‘source code, global editing,
added mathfunctions, and disk file maintenance capa-
bility ' without leaving Basic (list, rename, or delete).
$179.95/825.

ZEDIT
A character oriented text editor with 26 commands
and “macro” capability for stringing multiple commands
together. Included are a complete array of character
move, add, delete, and display function. $49.95./$15.

ZTEL

ZB0 Text Editing Language - Not just a text editor.
Actually a language which allows you to edit text and
also write, save, and recall programs which manipulate
text. Commands include conditional branching, subrou-
tine calls, iteration, block move, expression evaluation,
and much more. Contains 36 value registers and 10 text
registers. Be creative! Manipulate text with commands
you write using Ztel. $79.95/825.

TOP
A Z80 Text Output Processor which will do text
formatting for manuals, documents, and other word
processing jobs. Works with any text editor. Does
justification, page numbering and headings, spacing,
centering, and much more! $79.95/$25.

MACRO |

A macro assembler which will generate relocateable
or absolute code for the 8080 or Z80 using standard
Intel mnemonics plus TDL/Z80 extensions. Functions
include 14 conditionals, 186 listing controls, 54 pseudo-
ops, 11 arithmetic/logical operations, local and global
symbols, chaining files, linking capability with optional
linker, and recursive/reiterative macros. This assembler
is so powerful you'll thinkit isdoing all the work foryou. It
actually makes assembly language programming much
less of an effort and more creative. $79.95/$20.

MACRO 11
Expands upon Macro I's linking capability (which is
useful but somewhat limited) thereby being able to take
full advantage of the optional Linker. Also a time and
date function has been added and the listing capability
improved. $99.95/$25.

LINKER

How many times have you written the same subroutine
in each new program? Top notch professional pro-
grammers compile a library of these subroutines and
use a Linker to tie them together at assembly time.
Development time is thus drastically reduced and
becomes comparable to writing inahigh level language
but with all the speed of assembly language. So, get the
new CDL Linker and start writing programs in a fraction
of the time it took before. Linker is compatible with
Macro | &It as well as TDL/Xitan assemblers version 2.0
or later. $79.95/$20.

DEBUG |

Many programmers give up on writing in assembly
language even though they know their programs would
be faster and more powerful. To them assembly language
seems difficult to understand and follow, as well as
being a nightmare to debug. Well, not with proper tools
like Debug I. With Debug | you can easily follow the flow
of any Z80 or 8080 program. Trace the program one
step at a time or 10 steps or whatever you like. At each
stepyou will be able tc see the instruction executed and
what it did. If desired, modifications can then be made
before continuing. It's all under your control. You can
even skip displaying a subroutine call and up to seven
breakpoints canbe set during execution. Use of Debugl
can payforitself manytimes overbysaving you valuable
debugging time. $79.95/%20.

DEBUG Il

This is an expanded debugger which has all of the
features of Debug | plus many more. You can “trap” {i.e.
trace a program until a set of register, flag, and/or
memory conditions occur). Also, instructions may be
entered and executed immediately. This makes it easy
to learn new instructions by examining registers/memory
before and after. And a RADIX function allows changing
between ASCII, binary, decimal, hex, octal, signed
decimal, or split octal. All these features and more add
up to give you a very powerful development tool. Both
Debugland |l mustrunonaZ80 butwilldebug both Z80
and 8080 code. $99.95/%20.

ZAPPLE
A Z80 executive and debug monitor. Capable of
search, ASCI| put and display, read and write to /0
ports, hex math, breakpoint, execute, move, fill, display,
read and write in Intel or binary format tape, and more!
on disk $34.95/815.

APPLE
8080 version of Zapple $34.95/815.

NEW! TPM now available for TRS-80 Model
{1 G

TPM*

A NEW Z80 disk operation system! This is not CP/M*.
It's better! You can still run any program which runs with
CP/M* but unlike CP/M* this operating system was
written specifically for the Z80* and takesfulladvantage
of its extra powerful instruction set. In other words its
not warmed over 8080 code! Available for TRS-80*
(Model | or ll). Tarbell, Xitan DDDC, SD Sales “VERSA-
FLOPPY”, North Star (SD&DD), and Digital (Micro)
Systems. $79.95/$25.

SYSTEM MONITOR BOARD (SMB II)
Acomplete /0 board forS-100systems. 2 serial ports,
2 parallel ports, 1200/2400 baud cassette tape inter-

face, sockets for 2K of RAM, 3-2708/2716 EPROM's or

ROM, jump on reset circuitry. Bare board $49.95/$20.

ROM FOR SMB 11
2KX8 masked ROM of Zapple monitor. Includes source
listing $34.95/$15.

PAYROLL (source code only)
The Osborne package. Requires C Basic 2.
5" disks $124.95 (manual not included)
8" disks $ 99.95 (manual not included)
Manual $20.00

ACCOUNTS PAYABLE/RECEIVABLE
{source code only)
By Osborne, Requires C Basic 2
5" disks $124.95 (manual not included)
8" $99.95 (manual not included)
Manual $20.00

GENERAL LEDGER (source code only)
By Osborne. Requires C Basic 2
5" disks $99.95 (manual not included)
8" disks $99.95 (manual not included)
Manual $20.00

C BASIC 2
Required for Osborne software. $99.95/$20.

SYSTEM/6
TPM with utilities, Basic | interpreter, Basic E compiler,
Macro | assembler, Debug { debugger, and ZEDIT text
editor.
Above purchased separately costs $339.75
Special introductory offer. Only $179.75 with coupon!!

ORDERING INFORMATION
Visa, Master Charge and C.0.D. O.K. To order call or

write with the following information. ==)

1. Name of Product (e.g. Macro) P}z- @

2. Media (e.g. 8" CP/M) g | !

3. Price and method of payment (e.g. C.0.D.) include
credit card info. if applicable.

4. Name, Address and Phone number.

5. For TPM orders only: Indicate if for TRS 80, Tarbell,
Xitan DDDC, SD Sales (5%" or 8"). ICOM (5%" or
8"}, North Star (single or double density) or Digital
(Micro) Systems.

6. N.J. residents add 5% sales tax.

Manual cost applicable against price of subsequent
software purchase in any item except for the Osborne
software.

For information and tech queries cali
609-599-2146

For phone orders ONLY call toll free

1-800-327-9191
Ext. 676

(Except Florida)
OEMS
Many CDL products are available for licensing to
OEMs. Write to Carl Galletti with your requirements.

* Z80 is a trademark of Zilog

* TRS-80 is a trademark for Radio Shack

* TPM is a trademark of Computer Design Labs. It is not
CP/M*

* CP/M is a trademark of Digital Research

Prices and specifications subject to change without

notice.

DEALER INQUIRIES INVITED.

COMPUTER

342 Columbus Avenue
Trenton, N.J. 08629

AN INTRODUCTION
TO CP/M—Part 3

by

Jake Epstein

Box 571

Pittsfield, Ma. 01201

CCP FUNCTIONS

In this month’s article, the third in a series on the
CP/M operating system, | will be discussing the
practical matter of console operation of CP/M. | have
also included a section on mass-storage configura-
tions available to CP/M users.

Once the CP/M operating system is 'booted up’,
the user has two options that can exercised. One is to
execute the various commands inherent in the CCP,
(CONSOLE COMMAND PROCESSOR). The otheristo
execute a program that has been stored as afile onthe
disk. While functioning in the CCP mode, the syntax of
CP/M, as discussed in Article Il, will prevail, but once a
program is executed, then console syntax may change.

The 7 commands built into the CCP are shown in
Table 1:

TABLE 1 - CCP COMMANDS

COMMAND TYPE FUNCTION

ERA Alter Erase a FCB in the directory
DIR Non-alter List files in the directory
REN Alter Rename a file

SAVE Alter Save memory image as afile
TYPE Non-alter Type contents of a file
(LOAD FILE- Non-alter Load file in TPA then
EXECUTE) execute code at 100h
USER Non-alter Set user number, ver. 2.0

only

In the above list, functions that alter will change
contents of a disk, and thus, care must used when
exercizing commands that do so or data may be lost.
Once data has been erased, it cannot be recovered so
an important chore that users must do is make backup
copies of files that are important in case of accident or
mistake in command usage. More on this later.

Before explaining each built-in command, | will
first describe disk log-in commands. As described in
Article |, when the system is initially booted up, the
prompt A> appears. This indicates that as far as the

12

operating system is concerned, the storage device
named A is online and ready to function as com-
manded by the user via the CCP. In the computer field,
two terms are used to describe /O devices: LOGICAL
and PHYSICAL. Physical is a term referring to the
device as it actually ocurrs in the real world. Logical
refers to devices as they are seen by software. The
following list should clarify the differences.

PHYSICAL LOGICAL

8 inch floppy disk A:
5.25 inch floppy disk B:
1600 bpi mag-tape C:

CRT CON
ASR 33 teletype LST
Paper tape RDR

When there are several physical devices of the
same type, then numbers are used beginning with 0. In
other words, drive 0, drive 1, drive 2, and drive 3 would
be the physical devices in a computer system with 4
floppy disk units. On the other hand, when the the user
wants to access any of these via the operating system,
then the logical device name is used. The value of this
is that physical matters are taken care of by hardware/
software interfaces found in the operating system
leaving the user free to concentrate on other functions
that use the logical devices.

In CP/M 1.4, BDOS (BASIC DISK OPERATING
SYSTEM) and BIOS (BASIC INPUT/QUTPUT System)
both contain software that is dependent of disk type,
density, and size. As discussed last month, sector
skew is a function determined in BDOS thus CP/M for
5.25 inch disks will not function with 8 inch and vice-
versa. Also, all disks in a system have to be compatible
with the mixing of disk types impossible. A big
advantage of CP/M 2.0 is that a section of BIOS
contains tables that are used to describe each physical
device in the system. Thus any number and/or type of
mass storage device could be utilized as long as

S-100 MICROSYSTEMS

hardware and software interfacing is implemented for
each device in the BIOS. The following mass storage
list is feasible with CP/M 2.0:

LOGICAL PHYSICAL APPROX
CAPACITY IN BYTES

A Double density 500k
floppy disk O

B: Double density 500k
floppy disk 1

C: Double density 150k
5 inch floppy

D: Hard disk 20meg

E: Single density 256k
floppy disk O

F: Single density 256k
floppy disk 1

In the above list, there is an example of one
physical device, floppy disk 0, having two logical
names, A: and E:. This was done because dual density
floppy disk controllers can read/write in either single
or double density. This implementation gives a means
for easily transfering information from single to double
density or vice versa.

When using any version of CP/M, disk drives are
logged-in at the CCP by simply typing the logical name
followed by a colon and carriage return (cr). In the
above system, to log-in floppy disk 0 in single density
mode the following is typed:

A>E: User types E: (cr)
E: System response

When naming files, the logical device where the
file is located is indicated by placing the device name
in front of the file name:

B:STAT.COM File STAT.COM on device B:

If the logical device is not given, then the logged-in
device is used.

In this article, | will limit the discussion of other I/O
devices to just the console {logical-CON:) and the
hardcopy device (logical-LST:). When | discuss user
implementation of BIOS functions and advanced uses
of the STAT and PIP utility program, then | will describe
other physical-logical device pairings available in
CP/M.

In order to determine which files have fcb (file
control block) entries in the directory, the DIR com-
mand is used. In ver. 1.4 typing DIR(cr) will give a listing
of all the files that have fcbs. In ver 1.4 these files are
simply listed in order vertically on the console device.
Inversion 2.0, however, file names are listed in rows of
4 names on the console. By using file names, wild card
functions, and logical device names, the following
command string variations are possible:

DIR TEST.COM Find and list file name
DIR B:DDT.* List all files on device B: with primary

name DDT

DIR *.?7?M List all files that have M as last
character of secondary name

DIR E: List all files on E:

S-100 MICROSYSTEMS

DIR A???.COM Find COMfiles with primary name of 4
characters with A as first character

In naming files, remember that secondary names
are not necessary, but primary names are. Also, one
space is used between names and commands. The
prompt, NO FILE, is printed when the DIR command
does not find a file or group of files. Finally, ver. 2.0
allows the user to designate files as SYS (System)files
so that when the DIR function is given, they will not be
listed in the directory. The ability to implement this
option is a function of the STAT utility program and will
be discussed later.

The TYPE function will read a specified file from a
disk and print it on the console device. Since console
devices interpret information sent to them as ASCII
data, only ASCII format files will give proper print
although any file type can be used. This function will
read and print an entire file up to the EOF (End of file)
delimiter which is cntr-z (1Ah) in CP/M. Wild card
functions are not permitted. Typing a 'space’ while a
file is being listed will abort the TYPE function and
return control to the CCP. This is also true of the DIR
command.

The REN function is used to change the name ofa
file. The command syntax is:

REN HELLO.COM=TEST.ASM

In this case, file name TEST.COM is changed to
HELLO.COM. Wild card functions are not allowed.

The ERA function is used to erase fcb entries in
the directory on a disk. The data itself is not erased but
the space that it occupies on the disk may be used
when other files are created at a later time. If afcbis
removed, it is normally impossible to retrieve the data
unless directory information is stored elswhere. In a
later article | will discuss deciphering fcb information
so that the user can reconstruct files when directory
entries are lost. The ERA function uses wild cards so
the following variations are possible:

ERA * ASM Erase all ASM files

ERA C:DUMP.COM Erase file on device C:

ERA TEST?.* Erase all TEST files with extra
character in primary name

ERA *.* Erase all files.

When using the *.* file name, the CCP will ask for
verification by typing 'ALL FILES (Y OR N)?' in which
case the user has to type Y for the function to occur.
Any other character causes the function to abort.

The SAVE command is used to store an image of
memory starting at location 100h, start of TPA
(Transient Program Area), as a COMfile. Article | in this
series contains a description of the TPA. Although the
beginning location of the data to be saved is always
100h, the user signifies the size of the memory image.

CP/M uses three terms that signify differing
amounts of memory. The record as described in
previous articles is given as 128 (80h) bytes and is
equal to the size of a single sector on a single density

13

floppy disk. A page of memory is equal to 256 (100h)
bytes and is thus two records in length. Remembering
that location Q0h is a position, the first page of memory
is from 00-FFh, the second page is from 100-200h and
so on. Thus in a computer whose address bus is 16
bits, (2 bytes), each page is addressed by all of 8 bit
combinations of the lower byte with one value of the
upper byte. Thus there are 256 pages in a 16 bit
machine. The term block is used to describe 2 records
or 256 bytes of data. Since block and page in this
context have the same value, it is important to
remember that page refers to memory addresses but
block refers to an amount of data. Page aimost always
is equal to 256 but block as well as record can have
other sizes when working with different operating
systems. A final point is that when dealing with data in
these sizes as determined by hardware, the user is
working with physical concepts. Records, pages,
and/or blocks can take on differing values when one is
dealing in logical concepts. For example, arecordina
data base system could be made up of a person’s
name, his/her pay scale, and address. This logical unit
may need one or more records of physical space on
disk.

The syntax of the SAVE command is as follows:

SAVE 12 D:HELP.TEX

In this case 12 is the number of blocks that are to
be saved, and is entered in decimal values. The user
has to convert hexadecimal locations into decimai
blocks. Only an even number of sectors are used, so
there will be times when even though one sector of
data needs to be saved, the file will be 2 sectors long.
Actually this does not prove to be wasteful of disk
space, because as discussed in Article I, the smallest
unit that can be handied by BDOS is a cluster of 8
sectors or 400h (1024) bytes. When working with
hexadecimal addresses, conversion from memory
locations to blocks of memory in decimal can be
accomplished using the following steps:

1: Round the final address in the memory to the
next highest page value. (xx00h)

2: Subtract 100h. Page 0, 00-FFh, is not saved.

3. Convert the most signficant nibble to decimal
and then multiply by 16 (16 pages in 1000h).

4. Convert the second most significant nibble to
decimal and then add to value computed in 3.

5. The result is number of pages needed to save
memory image.

Here is example of a memory image from 100h to
2E6GAh:

2E6Ah = 2F00h

2F00h — 100h := 2E00h
2h:=2dec,2* 16 =32
Eh := 14 dec, 14 + 32 = 46

1:
2:
3
4:
5: 46 pages is the size of memory image

14

When using the SAVE function for files longer than
16k bytes, areas of the TPA will be destroyed when
using CP/M ver. 1.4 because the CCP uses this area
when building extension file control blocks (See Article
ll). Thus only one SAVE can safely be done. CP/M 2.0
uses areas outside the TPA for this function allowing
multiple saves of the same memory image.

The final built-in command of the CCP is the LOAD
file and execute function. This function is implemented
by simply typing in the primary name of the file to be
loaded and then a carriage return. Only COM files will
work and any other file type will generate an error
prompt and the system will return to the CCP. Thefile is
loaded at 100h and then the computer jumps to this
location. Programs that are run can have differing
interactions with CP/M depending on their coding.
Programs can be totally independent or they can use
functions and subroutines available in BDOS and
BIOS via a group of SYSTEM calls. These functions will
be the topics of susequent articles on CP/M. Also, the
term transient program is often used for files as loaded
and executed in the TPA.

A function found only in CP/M 2.0 is USER. With
this command, the operator can specify a user number
of 0 to 156. The result of this is that only files as
previously stored under that number can be accessed
by the operator. Thus all the CCP commands are
effected. When the system is initially booted up, the
user number is O which is where files stored under ver
1.4 are found. To change the user number the following
is typed: USER <0-15>. To copy files from one areato
another, the PIP 2.0 utility is needed although the SAV
and USER functions can be used with memory images.
Last of all, the function ERA *.* will not erase the entire
directory in ver 2.0; the quickest way to erase the disk
is to use a utility such as a disk format program that
clears all sectors.

Allinput of the console is buffered in the 128 bytes
of memory from 80h to FFh as is disk /O when the
system is at the CCP level. After a program is loaded,
the CCP will save all the information in the command
line excluding the original entry.

RUN TEST EMPTY.BAS $L HEX
would be stored as:
TEST EMPTY.BAS $L HEX

beginning at 81h with the number of characters (21)
being stored at 80h.

The transient program can read up to 128
characters of information from this area using string
handling routines. Also, the second entry (TEST in the
example) is place at the default fcb location tfcb (5Ch)
while the third entry (EMPTY.BAS) is placed at tfcb +
16 (6Ch). Since the full fcb is 33 bytes long, the user
program must move the second file name. The use of
these functions will also be discussed with system
calls in a future article.

S-100 MICROSYSTEMS

CCP CONTROL CODE OPERATION

Since console I/0 is buffered, the user can edit
text strings by typing control characters. The carriage
return code instructs the CCP to execute the com-
mand string typed in just previous to it. If a (cr) is typed
when no other information has been input, then the
disk prompt is printed. Control codes are selected on
the keyboard of the console by first depressing the
control key and then the desired character. Certain
keyboards have function keys that are substitutes for
control codes. The control key functions by forcing bit

6 (40h) of the alphanumeric key depressed to zero,
thus only those codes that have bit 6 set (1) will be

effected:

CHAR- ASCII CONTROL

ACTER CODE CODE FUNCTION
M 100 1101 000 1101 CARRIAGE RET
J 100 1010 000 1010 LINE FEED

H 100 1000 000 1000 BACK-SPACE

| 100 1001 000 1001 TAB

The codes used by the CCP are shown in Table 2:

TABLE 2 - CCP CODES

CHARACTER FUNCTION KEY ASCII CODE
ctl-u 15h

ctl-X 18h
RUBOUT (RUB) 7Fh
DELETE (DEL)

cti-H BACK-SPACE 08h

ctl-R 12h

ctl-E 05h

cti-M CR, RET ODh
RETURN

ctl-J LINE FEED OAh
LF

ctl-C 03h

ctl-Z 1Bh

ctl-S 13h

ctl-P 10h

While in CCP mode, inputing ctl-C causes a 'warm-
boot’. When this occurs, CP/M executes a routine in
BIOS that brings in the CCP and BDOS. If
implemented while in CCP mode, the net effect is that
the system logs in device A: and is ready to begin
operation as if the system was initially booted on
power up. Many transient programs implement a ctl-C
option to return to CCP mode so care must be used not
to execute this function accidently causing a loss of
work and/or data. Also, when programs return control
to CP/M, they usually do so by jumping to location O or
by using the reset system call of BDOS which directs
the computer via jumps to the warm boot routine in

S-100 MICROSYSTEMS

FUNCTION

delete line from buffer but do not erase from console
screen; # is printed at end old line to indicated deleted
line

same as ctl-U but erases line from screen

delete last character in the console buffer but echo it
on screen (command string is typed backwords as
DEL is depressed

same as rubout but last character is deleted from
screen implemented as CCP function in ver 2.0; user
option installed in BIOS inver 1.4

retype console buffer; used with DEL to give clear
display of string; # is printed at console at end of old
line before printing to indicate deleted text

breaks line at console by sending (cr)(if) to console
without entering (cr)in console buffer; allows line of up
to 128 characters to entered on console that allows
lines of shorter length

(cr)(If) sent to console then command string is inter-
preted and executed by CCP

same as ctl-M

CP/M system reboot (see discusion below)

not a CCP function; used to indicate end of console
input in utility programs

used to stop printout to console during DIR, TYPE, or
similar functions in transient programs; typing any key
will cancel ctl-S

text printed on console device will also be printed on
list device; if function is active then ctl-P cancels effect

BIOS. When the warm boot function occurs or when a
new device is logged-in for the first time after a warm
boot, the disk is checked for read/write status. Using
the STAT utility, disks can be software protected, and
the CCP can also tell when a disk has been placedina
drive that has been initialized with another disk. As a
result of both software write protection or swapping of
disks, an error code will be generated when data is
written to the disk. Thus whenever changing disks a
ctl-C must be typed. Also, a warm boot will not change
the contents of the TPA so that programs that have
been developed using one disk can be saved after
swapping disks in the same drive. When the CCP

15

cannot alter disk contents because of write protection
then the following statement is printed on the console:

BDOS ERROR ON A: R/O

A can be any logical device and R/O means Read
Only.

ONE, TWO or THREE DRIVES?

Many computer users when first researching
mass storage alternatives ask the quetion: 'How many
drives are needed for my application? Although
alternatives can vary depending on application, my
experiences have given the following conclusions.
First of all, the two drive system is the minimal
configuration for intensive work. As mentioned above,
file duplication on different disks is a necessity for
protection against loss of data, but even though this
can be done with one drive, it can be quite time
consuming. The PIP (Peripheral Interchange Utility) is
used to copy files from one disk to another. In one drive
systems, two different floppy diskettes can be used by
swapping disks when required by the system. When
the system requires a change of disk, it will print the
command '"MOUNT B:' or '"MOUNT A:" depending on
whether information is to be read from A: or written to
B:. This procedure can be very confusing, and can be
costly when copying original files and errors occur. It
should be noted that this facility is implemented in
BIOS, and it may or may not be present depending on
the BIOS in the system. Also, some BIOS’ have this
function as an option during assembly of the BIOS
source code while other systems use the prompt
during system boot up of: 'HOW MANY DISK
DRIVES?'. With two or more storage devices, however,
file duplication using PIP is a simple chore.

Probably the best configuration in terms of num-
ber of units is three. One of the areas needing more
development is multi-tasking software. Multi-tasking
hardware/software systems have the abiltity to per-
form two or more functions at same time. This is
accomplished through procedures that allow routines
to share computer time. Several programs have been
developed that use multi-tasking, and for the most
part, these have been based on SPOOL or DESPOOL
functions. In the early days of computing, when
computers could only accomplish one task at a time,
having the computer spend time printing information
on list device or entering data from card readers could
be both expensive and/or problematical due to
scheduling considerations. A simple solution was to
write (SPOOL) the information to be printed on a mass
storage device which usually was magnetic tape;
hence the term SPOOL. At a later time, the information
could be printed (DESPOOLED) onto a printer which
was either on-line (connected to and controlled by the
original computer) or off-line (not connected to the
original computer).

In CP/M programs, time that is spent while the
computer waits for input from the console is used to
output information on a disk file to the list device. This
can prove to be a great time saver in installations that

16

require a lot of printing. One problem, however, is that
the disk containing the file that is being printed cannot
be removed from its drive until completion of despool-
ing. With a two drive system, this causes problems if
two disks are required for an operation, for even
though space on the despooling disk can be used, the
non-despooling disk is the only free disk. With the
three drive system, one drive can be dedicated as in
the above example while two drives are left free.

A second advantage of having three drives is that
one of the drives can be write-protected while the
other two are free for both reading and/or writing. This
allows the user to protect important files from possible
loss due to mistake or accident. Another point is that
one drive can be dedicated to holding the system
diskette and various utilities while the other two are
free for disk swapping.

A final advantage, and in my mind the most
important, is hardware backup. In situations where the
computer is a necessity for operation, failure of hard-
ware can prove disasterous, and due to this, entire
computer manufactering firms have been built or
broken by the ability of users to get quick and effective
maintenance. At the present time, this is by far the
biggest problem in the microcomputer industry.
Although microcomputers have proven to be very
reliable, many tales have been circulating about failures
of equipment and days, weeks, and even months of
computer 'down’ time. Since the disk unit is a device
with moving parts that can wear out or lose adjustment,
it is one of the first devices to fail and due to its nature
one of the most difficult to repair. With the three drive
system, if one drive malfunctions, then the other two
are still available while the third is off-line. In most
cases, the user will not need to alter hardware except
in that case where drive-0 (the SYSTEM drive) is
effected.

WHICH DISK SIZE, TYPE & DENSITY?

Another question commonly asked is: ‘What size,
type, and/or density format do | need?” My opinion on
type of drive for most micro-computer installations, at
the start, is 8 inch single density format. The reason is
that this is the most time proven and standard media
for microcomputing. Other systems such as tape, hard
disk, and even 5.25 inch floppy disk although viable
have problems due to price, avaiability, capacity, and
most importantly, dependability. The reason | maintain
single density is that the standard in the industry for the
transferring of data is still single density. Although the
bugs seem to have been worked out of double density
hardware/software in the 8 inch drive, | suggest than
when purchasing or updating to this type system, that
it be thorougly tested before purchase and use. Users
should also beware that many disk drives are rated for
both single and double density use, so when pur-
chasing a single density system, check the drives so
that update to dual density at a later time can be done
without change of drives, the most expensive com-
ponent. Another consideration is that when pur-
chasing dual density systems, (can perform single and

S-100 MICROSYSTEMS

double density operations), check the software and
documentaion for clearness and ease of single vs.
double density operation. Although 5.25 inch disks
have proven dependable, cost effective, and advan-
tageous over larger devices in physical size and
weight, they have been used mostly in micro-
computers or stand-alone devices such as smart
terminals or word processors. The 8 inch variety has
been used widely in the entire computer industry, and
when disk formats are standardized for the inter-
change of data between different systems, the 8 inch
disk will probably be used.

HARD DISK SYSTEMS

Small, high capacity, cost effective hard disk
alternatives have developed quickly over the last year.
Also, S-100 controllers have appeared for older hard
disk designs. Capacities range from 5 megabyte onup
for single units with multi unit sytems controlled by
CP/M 2.0 getting into the 100 megabyte range. Of
importance to the average CP/M user is the fixed disk
alternatives that are becoming competitive with floppy
disks. Some floppy disk manufactures are building
units that are hard disks within 8 inch floppy disk
housings, have similar if not identical signal connec-
tions, and have the same power requirements as their
flexible counterpart. As a result of this, the new idea is
to mix hard disks with floppies using one controller and
CP/M 2.0 software.

There are two reasons why these disks are cost
effective, smaller, and more energy efficient. One,
Winchester Technology, allows very high densities of
data per track and tracks per disk. Secondly and most
important to CP/M users is that the storage medium is
non-removable. This allows the manufacturer a lot
more mechanical freedom than in systems where
movement of the disk due to physical support becomes
a problem. As a result, these new 8 inch hard disks
although offering large capacity do not offer disk
backup. As long as the user does not use up his/her
disk space, need to transfer data on mass storage
media, need to get new data onto his/her disk systems,
or have an accident, hard disks are fine.

In other words, unless the media is removable,
having a second floppy is a necessity. Evenif all or part
of the media is removable, CP/M software will still be
distributed on 8 or 5.25 inch floppy unless the software
distributor has hardware that is identical to the user’s.
The real value of the hard disk is in using its storage
capacity to greatly expand computer memory. Since
data transfer on hard disks is much faster than floppies

IN CONCLUSION

A few final remarks. If you are new to the mass
storage market, do not be afraid to buy now for fear that
your purchase will quickly become obsolete. Try to buy
equipment with the philosophy that if expansion is
needed at a later date, then hardware should be
supplemented rather than replaced. Microcomputer
equipment is like stereo equipment: once purchased
its resale value drops quickly, thus replacement can
prove quite costly. As far as obsolesence is concerned,
as long S-100 bus systems are used, the user has a
world of manufacturers and products to draw from. If
one device needs to be replaced, the entire system
need not be replaced. This philosophy is quite unique
to the S-100 industry for a great majority of manu-
factures still viable today have survived because they
have used industry compatibility as a major marketing
point. The same can be said of CP/M and CP/M
compatible operating systems.

Inthe next article in this series, | will list the various
utility programs that are included by Digital Research
with CP/M and give a brief overview of the functions
they provide. | will also begin to describe the BIOS
giving its structure and possible modifications that the
user can implement.

Aglgt @199 Erik T. Mueller
APL
APL
APL

SOFTRONICS A PL
M for the 8080/8085/Z-80

APL is an interactive general-purpose programming language with
powerful primitive functions. SOFTRONICS APL runs under the CP/M"
operating system. It is ‘ready-to-go’ in ASCII, using CP/M standard 1/0.
The interpreter runs in a variety of character set configurations. In addi-
tion to the standard ASCIl mnemonic representstions, it supports type-
writer and bit-pairing ASCII-APL character sets. It can run with user-

supplied 1/O drivers.
FEATURES:

e« Most of the functions and operators of full APL, including n-
dimensional inner and outer product, reduction, compression, general
transpose, reversal, take, drop. Execute and format.

s The interpreter resides in 30K bytes of memory, leaving remaining
memory for the workspace and disk operating system.

e Shared-variable mechanism for CP/M disk input and output, system
functions and variables, system commands.

e Abrams’ descriptor calculus and shared data storage are the advanced
optimization techniques employed by the interpreter. This saves
memory space and execution time. Values are stored internally in a
variety of formats for efficient memory utilization.

Optional driver program for video display with programmable character
generator.

$350 on CP/M disk vexs manuar
NJ residents please add 5% sales tax.
$30 FOR USER'S MANUAL ALONE
TR
SOFT RO NICS 36 Homestead Lane
I Roosevelt, N.J. 08555

(Refundable With Order)
* CP/M is a registered trademark of Digital Research

and much larger files can be maintained, operations
such as searching and sorting or storage and retrieval
of system memory images become quite feasible on 8
bit and 16 bit (8086 or Z8000) CP/M systems. When
backup storage on floppy disk becomes a problem
due file length, then magtape units based on digital
cartridges become a feasible alternative and as disk
technology develops, this area will also expand.

S-100 MICROSYSTEMS 17

NORTH % STAR
TOPICS

by

Randy Reitz
26 Maple St.
Chatham Township, N.J. 07928

A General Purpose Permuted Keyword Index Program

| have been interested in PASCAL ever since the
August 78 BYTE magazine feature. | purchased
Kenneth L. Bowles's book Microcomputer Problem
Solving Using PASCAL some time later and quickly
became sold on the ease of expressing algorithms in
this language. By this time | had already been
experimenting with a “structured” language using Tom
Gibson's Tiny-c, so | knew that BASIC was a thing of
the past for me. When North Star announced the
availability of the UCSD PASCAL development system
for only $50 on their disk system, | couldn't resist any
longer. For $50, UCSD PASCAL on North Star has to
be one of the best software bargains ever offered. I'm
surprised that North Star wasn't swamped with orders.
This is one piece of good news that seems to travel
very slowly.

|was anxious to try out my “new" software toy; and
by this time | was all the way up to chapter 7 in Bowles’s
book. There was a problem that caught my eye. The
problem had to do with removing “noise” words from a
character string in preparation for using the stringin a
keyword in context -KWIC -program. | had seen this
type of index also called a permuted keyword index.
Since atitle willbe entered into the index once for each
keyword it contains, the title is permuted so the
keyword always starts in the same column. | always
wished | had such a program to keep track of all the
articles contained in the 5 monthly computer publi-
cations | receive. It is very frustrating when | can
remember reading an article but have great difficulty
finding the publication. | decided it was time to apply
PASCAL power to build a permuted keyword index
program that | could use to easily search for articles in
my rapidly growing volume of computer publications.

A fully capable permuted keyword index system
can get quite complicated, so | wanted to decide on
some limited goals before | got carried away. Remem-
ber, at this time | believed that my new PASCAL system
could express any algorithm with the greatest of ease.

18

Indeed it can, but no language can handle foggy
thinking by its programmer. | found just the simple
algorithm | was looking for in a personal filing system a
friend of mine was using at Bell Labs. Consider the
following data taken from the index of several BYTE
publications:

.Distributed.networks/Horton/78 11

.Graphic input of wheather.data/Smith/79 7
Quest; .games/Chaffee/79 7
.Subroutine.parameters;.data/Maurer/79 7

A spacecraft.simulator/Sirvak/79 11

The Intel.B8086;system design.kit/Ciarcia/79 11
The Cherry pro.keyboard/Parker/79 11

The title of the article, author and date of publication
are listed along with some unusual punctuation. The
punctuation is used to indicate the following:

1) A period is placed in front of a keyword

2) The author is enclosed in “slashes” (/).

3) The date of publication is always after the last /and
is in year month format.

All other punctuation is superfluous to the
algorithm. Since the “filing system” for magazine
publications is constrained to be ordered by date, the
permuted keyword index program should produce an
alphabetically sorted listing of each keyword foundina
title (identified by a period) along with the remaining
title, author and date. If all of the keywords found are
listed left justified, you can simply scan down the list
for the keyword of interest and presto find all the
articles which contain this keyword in the title. This
simple idea can be extended to sort by author or date
as well. Also, since | was using a video terminal, |
wanted to add the capability to specify the range of
keywords, authors or dates that were displayed so |
could leisurely read the results before they disappeared
from the screen. The UCSD PASCAL program that

S-100 MICROSYSTEMS

follows implements this simple idea using the North
Star disk system that | am running on my “antique”
IMSAI 8080. | call it a general purpose permuted
keyword index program because | can easily think of
many more applications other than a magazine publi-
cation index.

| must warn you that the program | am about to
describe must be considered unfinished. Also, since
this was my first PASCAL experience, | used as many
of the language features | could. You will find string
manipulation using the UCSD string intrinsics, record
data structures and pointers, sorting with binary trees,
variable arguments and more. All of the “modern” stuff
that makes PASCAL so much more exciting than
BASIC. Unfortunately the result isn't as “clean” as it
could be.

All PASCAL programs begin with a “program”
statement and a declaration of global variables:

PROGRAM KWIC;

CONST

N=10;

BLANKS=' (72 blanks here) ';
TYPE

INDEXES=ARRAY[l..N] OF INTEGER;
STRING1=STRING[1];

LINKS ="ENTRY;

ENTRY =RECORD
STUFF :STRING;
RLINK, LLINK: LINKS

END;

VAR
LINE, LON, HIGH :STRING;
TITLE,AUTHOR,DATE, ABL,DBL :STRING([72];
ERROR :BOOLEAN;
F :TEXT;
PLOC,SLOC : INDEXES;
I1,J,NUM,SORT,MAX : INTEGER;
ROOT :LINKS;

| find this part of structured programming the most
difficult to get used to. You have to have well laid out
plans to begin a program by defining all of the variables
and types. First, two constants are defined. | cheated
in the definition of the constant BLANKS since | can’t
type 72 blanks in one of these columns. The next
section defines variable types. These items are called
type identifiers. They are not variables but are used to
define variables in the next section. The capability that
PASCAL offers to define variable types to suit the
needs of the algorithm is an extremely valuable feature
which | think sets PASCAL apart from the other
“modern” languages. The type identifier “INDEXES"
will be used to define variables that are arrays of 10
integers. “STRING1"” will define variables that are
strings of only one character. In a strongly typed
language like PASCAL, a string of one character is
quite different than a variable of type character. Finally,
“LINKS” will define a pointer type variable that points

S-100 MICROSYSTEMS

to a data structure of type record defined by “ENTRY".
Each variable of type “ENTRY” will contain “STUFF”
and two pointers to variables of the same type as
“ENTRY”. This data structure elegantly implements a
linked list that will be used in a binary tree sort
algorithm.

The variables are defined next. The type STRING
is pecular to UCSD PASCAL. The default string length
is 80 characters but can be specified to any value less
than 256 using a number in brackets. The variable F is
of type ‘TEXT" which is a synonym for “FILE OF
CHARACTERS". The input data will be read from this
file. Finally, the variable ROOT will serve as the root of
the binary tree so it is of type “LINKS”. All of these
variables are global and can be used by the main
program as well as all functions and procedures
defined below.

The next feature in a PASCAL program is the
definition of the functions and procedures used in the
program.

FUNCTION UPPERCASE (CH:CHAR) :CHAR;
BEGIN
IF CH IN ['a'..'z'] THEN
UPPERCASE : =CHR (ORD (CH) -32)
ELSE
UPPERCASE : =CH
END;

This function is used to be sure a character is
upper case ASCII only. Notice that functions which
return values must be given types just like variables.
Also notice the use of the set constant (‘a’..’z"). The
meaning is self explanatory and is certainly preferable
to arithmetic comparisons. The ORD function is builtin
and is similar to the BASIC ASC function. The CHR
function is similar to the BASIC CHR$ funciton.

PRCCEDURE FINDR (PAT:STRING1l; VAR S:STRING;
VAR WHERE:INDEXES; VAR CNT:INTEGER);
VAR J,CUM: INTEGER;
BEGIN
CUM:=0; CNT:=0; WHERE([1]:=0;
REPEAT
J:=POS (PAT, COPY (S,CUM+1, LENGTH(S)=CUM)) ;
CUM:=CUM+J;
IF J>0 THEN
BEGIN
S{Cw]:="' *;
CNT:=CNT+1;
WHERE [CNT] : =CUM;
WHERE [CNT+1] : =0
END
UNTIL (J=0) OR (CUM=LENGTH(S))
END;

19

A subroutine which doesn't return any explicit
value is called a procedure. This procedure finds the
punctuation used to define keywords and the author.
When the punctuation defined in argument “PAT” is
found in argument “S”, the punctuationis replaced by a
blank and the location is noted in the next argument
“WHERE”. The final argument “CNT” returns the
number of punctuations found. Notice that this pro-
cedure really returns values in three of it's four
arguments. That's why these arguments are prefixed
with “VAR" to identify that they are to be passed to the
procedure by address rather than value. This may
seem overly tedious but PASCAL keeps you aware of
what variables a procedure is free to change and what
variables it can't change. In a long program, this
feature can help you to avoid those really hard to find
bugs. The procedure uses two local variables, “J"” and
“CUM”. Even though “J” is also a global variable since
it can only access the local variable. “POS” and
“COPY" are two built in UCSD string intrinsics. “POS”
returns the position of the first occurrence of the
pattern (first argument) in the second argument.
“COPY" returns a string which is a-copy of the first
argument starting with the character position defined
by the second argument for the number of character
defined by the third argument. For example,

STUFF:='TAKE THE BOTTLE WITH A METAL CAP';
PATTERN:="TAL'
WRITELN (POS (PATTERN, STUFF)) ;

will print 26. Also,
WRITELN (COPY (STUFF,POS('B' ,STUFF) ,6));

will print "BOTTLE". The next two procedures
implement the binary tree:

PROCEDURE ENTER (NEW:LINKS);
VAR THIS,NEXT:LINKS;
BEGIN
NEW" ,STUFF[1] : =UPPERCASE (NEW™ .STUFF[1]);
IF ROOT=NIL THEN ROOT:=NEW
ELSE
BEGIN
NEXT :=R0OOT;
REPEAT
THIS:=NEXT;
IF NEW".STUFF<=THIS" .STUFF THEN
NEXT :=THIS" . LLINK
ELSE
NEXT :=THIS" .RLINK
UNTIL NEXT=NIL;
IF NEW" .STUFF<=THIS" .STUFF THEN
THIS" .LLINK:=NEW
ELSE
THIS" .RLINK:=NEW
END
END;

20

PROCEDURE TRAVERSE (PTR: LINKS) ;
BEGIN
IF (PTR”.LLINK<>NIL) AND (PTR".STUFF>=LCW)
THEN TRAVERSE (PTR".LLINK);
IF (PTR".STUFF>=LOW) AND (PTR".STUFF<HIGH)
THEN BEGIN
WRITELN (PTR" .STUFF) ;
J:=J+1;
IF J>20 THEN
BEGIN
J:=0;
WRITE ('Type <ret> to continue');
READLN
END
END;
IF (PTR".RLINK<>NIL) AND (PTR".STUFF<HIGH)
THEN TRAVERSE (PTR™.RLINK)
END;

The ENTER procedure will take a data structure of
type “ENTRY” and link it into the appropriate node in
the binary tree. The binary tree is implemented using a
linked list data structure defined as type “ENTRY”
above. Each entry is a record which contains 3 items:
1) STUFF which is a string, 2) RLINK which is a pointer
to the next “ENTRY” record with STUFF greater than
this record’s STUFF and 3) LLINK which is a pointer to
the next “ENTRY” record with STUFF less than or
equal to this record’s STUFF. The procedure works
with these pointers which are of type “LINKS”.
PASCAL allows the items of a record to be accessed
using the construction “record variable.item variable”.
| do not have any variables of type “ENTRY”, which is
the record variable type. | only use pointers to these
record variables so | access the variables contained in
a record using the construction “pointer variable.item
variable”. The ENTER procedure first makes sure the
first character of STUFF is upper case. Next, ifROOT is
empty, it will contain the special value NIL and will be
initialized to point to the NEW record. If ROOT contains
a valid pointer, the search of the tree is begun to find
the proper node for the NEW record. The search will
follow either the left link (LLINK) or right link (RLINK)
depending on the relationship between STUFF in the
NEW record and STUFF in the current (THIS) record.
UCSD PASCAL allows strings of different lengths to be
compared. The search continues until the end of the
tree is found (a pointer value of NIL). The NEW recordis
entered by making the current (THIS) record point to
the NEW record.

The TRAVERSE procedure is used to retrieve in a
sorted fashion STUFF from the tree. This procedure is
really simple; but is difficult to understand if you are not
familiar with recursion. The main program below will
define the LOW and HIGH search strings and start
TRAVERSE at the ROOT of the tree. TRAVERSE
procedes down the left link (LLINK) until it finds either
the end of the tree or a record with STUFF less than
LOW. Remember that STUFF was entered with lesser

S-100 MICROSYSTEMS

North Star Horizon-

COMPUTER WITH CLASS

The North Star Horizon computer can be found everywhere
computers are used: business, engineering, home — even the
classroom. Low cost, performance, reliability and software
availability are the obvious reasons for Horizon's popularify.
But, when a college bookstore orders our BASIC manuals,

we know we have done the job from Ato Z.

Don't take our word for it. Read what these instructors have to
say about the North Star Horizon:

“We bought a Horizon not only for its reliability record,
but also because the North Star diskette format is the industry
standard for software exchange. The Horizon is the first computer
we have bought that came on-line as soon as we plugged it in,
and it has been running ever since!”
— Melvin Davidson, Western Washington University,
Bellingham, Washington

“Affer | gave a Y2 hour demonstration of the Horizon
to our students, the sign-ups for next term’s class in BASIC
jumped from 18 to 72.”
— Harold Nay, Pleasant Hill HS, Pleasant Hill, Califonia

“With our Horizon we brought 130 kids from knowing
nothing about computers to the point of writing their own Pascal
programs. | also use it to keep track of over 900 student files,
including a weekly updated report card and attendance figures.”

— Armando Picciotto, Kennedy HS, Richmond, California

“The Horizon is the best computer | could find for my class.
It has an almost unlimited amount of software to choose from.
And the dual diskefte drives mean that we don’'t have fo waste
valuable classroom time loading programs, as with computers
using cassetfte drives.”
— Gary Montante, Ygnacio Valley HS, Walnut Creek, Calif.

See the Horizon at your local North Star dealer.

NorthSkar®

North Star Computers, Inc.
1440 Fourth Street
Berkeley, CA 94710
(415) 527-6950
TWX/Telex 910-366-7001

STUFF on the left link. When the trip down the left link
stops with a record with STUFF between LOW and
HIGH, the record is printed on the terminal. The global
variable J keeps track of the number of records printed
and stops at 20 so the CRT screen can be leisurely
read. Now TRAVERSE starts down the right leg if it
exists and if the STUFF down there is less than HIGH.
This defines a new “subtree” which is searched in
similar fashion. The resulting listing will have STUFF
sorted from low to high.

The final procedure creates a record and the
variable STUFF:

WHILE NOT EOF(F) DO
BEGIN
FINDR('/' ,LINE,SLOC,NUM) ;
ERROR:=NUMC>2;
FINDR('.',LINE,PLOC,NUM) ;
ERROR:=ERROR OR (NUM=0);
IF SORT IN [2,3] THEN NWM:=1;
IF NOT ERROR THEN
FOR I:=1 TO NUM DO

BEGIN

CREATIT;

Je=J+l

END
ELSE

PROCEDURE CREATIT;
VAR P:LINKS;
BEGIN

NEW(P) ;
CASE SORT OF

1: TITLE:=CCNCAT(COPY (LINE,PLOC[I]+1,

SLOC [I]-PLOC[I]),COPY (LINE,
1,PLOC[I]));

2,3: IF LINE[1]=' ' THEN
TITLE:=COPY (LINE, 2,SLOC (I])
ELSE

TITLE:=COPY (LINE,1,SLOC[1]);

END;

TITLE :=COPY (CONCAT (TITLE, BLANKS) ,1,56);

AUTHOR:=COPY (LINE,SLOC[I]+1,
(SLOC(2]=-SLOC[1])-1);
IF LENGTH(AUTHOR)>14 THEN
BEGIN
AUTHOR:=COPY (AUTHOR, 1, 14) ;
ABL:=' '
END
ELSE

ABL:=COPY (BLANKS, 1, 15~-LENGTH (AUTHOR)) ;
DATE:=CONCAT ('19',COPY (LINE,SLOC [2]+1,

LENGTH (LINE)-SLOC[2]));
DBL:=COPY (BLANKS, 1, 8-LENGTH (DATE)) ;
CASE SORT OF

1: P".STUFF:=CONCAT(TITLE,ABL,AUTHOR,

' ',DATE);

2: P”.STUFF:=CONCAT (AUTHOR, ABL,TITLE,

,' ' ,DATE) ;
3z P‘.S‘I‘UFF:=CQCAT(DAT£,EBL,TI'I’LE,
ABL, AUTHOR)
END;
P*.LLINK:=NIL;
P® .RLINK:=NIL;
ENTER(P)
END;
(* Begin Main program *)
BEGIN
ROOT:=NIL; J:=0;
WRITE ('Enter data file name ->');
READLN (LINE);
RESET (F,LINE);
REPEAT

WRITE('Sort by 1) TITLE, 2) AUTHOR ',
‘or 3) DATE? Enter 1,2 or 3 ->");
READLN (SORT)
UNTIL SORT IN [1,2,3];
READLN (F,LINE) ;

BEGIN
WRITELN (' **BAD LINE**' ,CHR(7));
WRITELN (LINE)
END;
READLN (F, LINE)
END;
WRITELN('Sort complete with ',J,
' records entered. Enter range',
' for output.');
REPEAT
WRITE('Low string (<etx> to quit)->');
READLN (LOW) ;
IF NOT EQF THEN
BEGIN
LOWN([1) :=UPPERCASE (LOW[1]);
WRITE('High string->');

READLN (HIGH) ;

IF NOT ECF THEN
BEGIN
HIGH (1] :=UPPERCASE (HIGH[1]);
J:=0;
TRAVERSE (ROOT)
END

END

UNTIL ECF

The main program asks for the name of the data
file and the type of sorting to do. Records are read from
the data file and the position of the two slashes are
saved in SLOC. The position of the periods are saved
in PLOC. The CREATIT procedure is called once if the
sort is by author or date. CREATIT is called for each
keyword if the sort is by title.

The CREATIT procedure creates a new record
with pointer in “P”. If the sort is by title, the title is
permuted using the value of the index “I". Strings for
title, author and date are created with the proper
lengths. Then STUFF is put together depending on the
type of sort requested. Finally, ENTER is used to link
the new record into the tree.

The main program finishes by requesting the
values for the low and high strings. If control-C is not
entered, the first character of each string is converted
to uppercase and TRAVERSE is started at the ROOT.
You canrepeatedly query the data by enteringnew low
and high strings. | have 56K of memory which will hold
one year’s worth of a publication’s titles.

If you try this program, | hope you will find it as
interesting and useful as | have.

S-100 MICROSYSTEMS

SMC-100

Hard disk and hardtape control

Up to 2400 Megabytes of
hard disk control for the
S-100 bus.

Konan’s SMC-100 interfaces S-100 bus micro
computers with all hard disk drives having the
Industry Standard SMD Interface. It is available
with software drivers for most popular operating
systems. Each SMC-100 controls up to 4 drives
ranging from 8 to 600 megabytes per drive,
including most “Winchester” drives - - such as
Kennedy, Control Data, Fujitsu, Calcomp,
Microdata, Memorex, Ampex, and others.

SMC-100 is a sophisticated, reliable system
for transferring data at fast 6 fo 10 megahertz
rates with onboard sector buffering, sector
interleaving, and DMA.

SMC-100's low cost-per-megabyte
advanced technology keeps your micro computer
system micro-priced. Excellent quantity discounts
are available.

Konan’s HARDTAPE™
subsystem...very low cost
tape and/or hard disk

Winchester backup and more.

Konan’s new DAT-100 Single Board Controller
interfaces with a 172 megabyte (unformaited)
cartridge tape drive as well as the Marksman
Winchester disk drive by Century Data.

The DAT-100 “hardtape” system is the only
logical way to provide backup for “Winchester”
type hard disk systems. (Yields complete hard
disk backup with data verification in 20-25
minutes.)

Konan’s HARDTAPE™ subsystem is
available off the shelf as a complete tape and
disk mass storage system or an inexpensive tape
and/or disk subsystem.

Konan controllers and
subsystems support most
popular software packages
including FAMOS™, CP/M®
version 2.X, and MP/M.

Konan, first (and still the leader) in high-
reliability tape and disk mass storage devices,
offers OEM’s, dealers and other users continuing
diagnostic support and strong warranties. Usual
delivery is off the shelf fo 30 days with complete
subsystems on hand for immediate delivery.

Call Konan’s TOLL FREE ORDER LINE today:
800-528-4563

Or write fo Bob L. Gramley
Konan Corporation, 1448 N. 27th Avenue
Phoenix, AZ 85009. TWX/TELEX 9109511552

CP/M® is aregistered trade name of Digital Research,
FAMOS™ is a trade name of MVT Micro Computer Systems.
HARDTAPE™ is a trade name of Konan Corporation.

LINEAR PROGRAMMING
PART 2

by

W.M. Yarnall

19 Angus Lane
Warren, N.J. 07060

Setting Up & Solving A Problem

INTRODUCTION
In Part 1, the UCSD PASCAL implementation of the
Revised Simplex Algorithm was presented, together
with the output from a sample problem. In this part, four
example problems will be taken up, one in each of the
four problem classes mentioned in Part 1:

*The PRODUCT MIX problem,
*The TRANSPORTATION problem,
*the DIET problem, and

*GAMING STRATEGY.

The program shown in Listing 1 of Part 1 (LINEARP)
provides very voluminous output, including an echo of
all input data, as well as a list of the status of the
solution at each iteration.

For this part, since the problems are longer, we
prefer to suppress some of the output, leaving only the
data at the end of the problem. The program LINPROG
we will use is derived from LINEARP by deleting the
procedures PRINTC and PRINTD (lines 55 thru 90),
their references in lines 161 and 186, and three calls

on the procedure PRINTX in lines 189, 302, and 401

This will reduce the output to more manageable
proportions for publication.

In the solution of any problem by Linear Program-
ming techniques, there are several necessary steps
(in common with any problem solution by any other
technique):

*STATEMENT OF THE PROBLEM -- what problem
do we wish to solve? -

*GATHERING OF DATA -- what data are available
for the solution, and what are their values?

*FORMULATION OF THE MODEL -- construct the
equations describing the problem and its data.

*Enter the data into the data file, and run the
program.

24

When we take up each of the example problems,
we will discuss each of these four steps, include a
listing of the data file, and output from the computer
program.

GENERAL

The format of the data file, as can be seen by the
declarations of the program listing (see Listing 1, part
1) in lines 13-21, is a collection of records of variant
types. This file can be constructed using the EDITFILE
program shown in Listing 1. This program provides the
capability to build a new file, or to modify/list an
existing file. Upon execution of the program, you are
prompted by

EDIT: LUST, B(UILD, M(ODIFY, Q(UIT (1.0)

and the program will wait for a command, followed by
(CR). Aresponse of one of the letters L, B, M or Q will
proceed to execute the command; Q exits to the
PASCAL system. If a new file has been created (via the
B or M command), then the file is LOCKED onto the
disk. Each of the other commands prompts for the data
to be entered at each stage.

When the action is L(ist or M(odify, the program
will ask for a file name, and the record number at which
the requested action is to start. Record numbers begin
with O for the firstrecord. If you are M(odifying a file, you
are also asked for the name of the new file -- which will
contain the results of the edit. Each record, starting
with 0, until the designated record, is copied from the
old file to the new file. Then the designated record is
printed out, and a prompt is given for the action to be
taken on the record. The options are:

K(EEP, C(HANGE, (NSERT, D(ELETE.

If Kor Dis selected, the next record is displayed. If
C or | is selected, a new record is requested by
prompting for each element of the record. The firstitem
requested is the TAG. The valid values are:

S-100 MICROSYSTEMS

0 - Must be the firstrecord in the file.
It identifies the size of the problem.

1 - Optional. It provides the text to
name the problem

2 - |dentifies a row name and index,
and the RHS data.

4 - |[dentifies a column name, index
and OBJ (objective) data.

6 - Identifies an element of the ABAR
matrix.

99 - Identifies the logical EQF.

Except for the first (TAG 0) and the last (TAG 99),
records may be in any order; it is recommended,
however, that they be grouped to make it easier to
proofread a listing to make sure your data are correct.

When B(uilding a file, the program continuously
prompts for a new record. The action is continued until
aTAG greaterthan 100is entered (as an escape). luse
999. In the other modes, the editor returns to its
command level when the end of the input file is seen.

EXAMPLE PROBLEMS

In each of the four areas, we will present the
problem, and carry thru the formulation of the model,
and provide listings of the data file and the program run
output. Now, on to the problems--

PROBLEM 1 -- A PRODUCT MIX PROBLEM

This problem is also sometimes called a pro-
duction balance problem.

Problem Statement

A Manufacturer of a product with a very seasonal
demand decides to carry out an analysis of his pro-
duction strategy to minimize production costs. You
volunteer to do the job on your home micro --

It appears that there are two alternatives: extra
help can be hired or overtime used (or both) to meet the
needs of high peak demand, laying off the extra help
when demand is slow, or an attempt may be made to
level the work force, and to stock the excess produced
during the slow demand periods.

Each of these alternatives has cost factors
associated with them; it is desired to minimize the
production cost. The Sales Department has analyzed
the demand for the product for the next year, and feels
that customer demand for each of six two-month
periods will be

Period 1 - 100 units
2 - 250 units (spring sales)
3 - 100 units
4 - 200 units (early Christmas orders)
5 - 400 units (mail Christmas orders)
6 - 500 units (refills of stock at retail)

It has been determined that the cost of stocking a
unit of prior production in 2.0. (Note - all costs are given
in units of standard production unit costs). Workforce

S-100 MICROSYSTEMS

can be augmented by use of overtime, and by hiring of
temporary help. Because of the cost of hiring and
training, and the time-and-a-half overtime rule, each
unit of augmented production costs 1.75; moreover,
when personnel cutbacks are made, the cost of
decreasing production capacity by one unit is 1.25
(partly due to unemployment compensation). It is
estimated that the current work force can produce for
unit (1.0) cost. Since this is a new model, there is no
prior stock to start. (Note - we missed last year’s
holiday sales because the computer-aided design
program didn't work too well.

Problem Formulation

The variables we will use are:

X; - Quantity of standard production in period 1

Y; - Quantity of productive capacity increase at the
start of the i-th period

Z; - Units of productive capacity to be dropped, either
by layoff or discontinuation of overtime at the start
of period i

S; - Units produced for stock during the i-th period, to
be used to fill orders during period (i+1).

The constraining equations are

X1 = 81 - 100
x2+S1'32=250
X3+Sz'33=100
X4+33'S4=200
X5+S4'85=400
Xs +Ss =500

for the production balance equations, and

‘X1 +X2'Y2+22=0
-X2+X3-Y3+Z3=O
‘X3+X4"‘Y4+Z4=0
K4+ X5-Ys+Z5=0
-X5+X6-Y5+Zs=0

for the manpower balance equations. These equations
reflect the fact that you can't have both a net increase
AND a net decrease in capacity for a production
period.

The cost function to be minimized is:

COST = 1.0*(sum of X’s, i=1 to 6)
+ 1.75*(@sum of Y's, i=2 to 6)
+ 1.25*(sum of Z's, i=2 to 6)
+ 2.0*(sum of S's, i=1 to 5).

Listing 2 shows the data file listing for this
problem. Rows 1 thru 6 are the sales constraints,
and rows 7 thru 11 are the manpower balance
constraints. These 11 values are the RHS of the
equations. Column data (TAG = 4) are the
objective (Cost) items: columns 1 - 6 are the X's,
columns 7 - 11 are the Y's, columns 12 - 16 are
the 2’s, and columns 17 - 21 are the stocking
quatities. Since the equations above have unity
coefficients for the variables, only 1 or -1 will
show up in the non-zero elements of ABAR (TAG
6 items).

25

: PROGRAM EDITFILE:

A3

= RECORD

(9]

88asnne

-~

: FILE OF FREC;
: FREC:

OFLAG, NFLAG : BOOLEAN:
OFIL. NFIL : STRING:
EDITING : BOOLEAN:
COMMAND : CHAR;.

VAR
OLDF,
0BUF,

1:

FUNCTION INREC :
VAR J:INTEGER;

INTEGER;

BEGIN
WRITEC(” ENTER TAG “);
RERDC(J);
READLN;
NBUF. TRG:=J;
WITH NBUF DO
CASE TRG OF
@: BEGIN
WRITEC” PROGMNAME “);
RERD(NAME);
RERDLN:
WRITEC” NO. ROMWS “);
RERD(N1);
READLN;
WRITEC” NO. COLS)i
RERD(N2);
READLN
END;
: BEGIN

BEYRALHRLEBINABRNRRBEEN AL LLREB vovouannn

Fy bbb
Grades
"

READ(HERDER)
RERDL
END;

2: BEGIN
WRITEC” ROW NAME “);
READ(RNAME) ;
RERDLN;
WRITEC” ROW NO. “);
RERD(RINDEX);
READLN;,
HRITEC” RHS “);
RERD(RHS);
RERDLN
END;

4: BEGIN
WRITEC” COL NRME “);
READ(CNAME);
RERDLN:
WRITEC” COL NO. “);
READCCINDEXY;

RERDLN;
WRITEC” 0BJ)i
RERDCOBJ);
RERDLN
END;
6: BEGIN
WRITEC” ROW NO. “);
RERD(R);
RERDLN;
HWRITEC(COL NO. ‘2
READ(S);
RERDLMN;

N1

READCT)Y;
READLN
END;

SIIVAIFIYNIBLIRGRARREL BARURABHLES

26

CASE TRG: INTEGER OF

: (NAME :STRINGIE) M4, N2:INTEGER):
CHERDER : STRINGL 64 1);

C(RNAME :STRINGL6) RINDEX:INTEGER; RHS:REAL);
(CNAME :STRINGLEL CINDEX:INTEGER; OBJ:REAL);
(R, S:INTEGER; T:REAL),

WRITELNC” HERDER: “);

HWRITEC” ABARLR.S] ‘%

B

58

BEERGEERAERENRRRENERE S

140:
141:
142:
143:
144:
145:
146:
147:
148:
149:
138:
154:
i132:
133:
154:
155:
156:
157:
138:
159:
168:

EEREEBRSRARERRE S8 IR R B SEBIRALERE

3

99: ;

END; (* CRSE *)

IF J > 18@ THEN J:=288;
INREC:=J
END; (+ INREC =)

PROCEDURE PRINT(F:FREC; N:INTEGER);
BEGIN
WRITELNCY)
WRITELNC” REC’.N:4.” TRAG:“.F. TRG:5);
WITH F DO
CRSE TRG OF
8: BEGIN
HRITELNCY NAME: “, NAME);
WRITELNC” NO ROMS: ., Hi);
MRITELNC” NO COLS: “, N2>
END;
1: BEGIN
WRITELNC” HERDING:”);
WRITELNCHERDER)
END;
2: BEGIN
WRITELNCZ ROW: “, RNAME);
WRITELNC” INDEX: “, RINDEX);
WRITELNCY RHS: “,RHS)
END;
4: BEGIN
KRITELNC” COL: “,CNAME);
WRITELNC INDEX: “, CINDEX);
WRITELNCY 0BJ: 7,0BY)

END; -
6: WRITELNC” RBARL ", R, %, 7, S: 7 1: 7. T)
99: WRITELNC(’ --—— LOGICAL EOF -— “);
END; (* CASE *)
KRITELNCZ #)

END; (x PRINT =)

PROCEDURE BUILD;
VAR N:INTEGER:

BEGIN
WRITELNCY “);
WRITEC” BUILD WHAT FILE? “);
RERDCNFILY;
RERDLMN:
REWRITE(NEWF, NFIL);
NFLAG: =TRUE;
N:=8;
WHILE N < 18@ DO
BEGIN
N:=INREC;
IF N < 108 THEN
BEGIN
NEWF ™ : =NBUF ;
PUT (NEWF)
END
END C(x WHILE =)
END; ¢ BUILD *>

PROCEDURE LIST;
VAR REC: INTEGER;

BEGIN
IF NOT OFLAG THEN
BEGIN
BRITELNCY “);
WRITEC” LIST WHAT FILE? “);
RERDCOF IL);
BRITELNCY 7);
RERDLN;
RESET(OLDF, OFIL);
OFLAG: =TRUE

END;

WRITEC(” STARTING AT WHAT RECORD? “);
RERD{REC)Y;

READLN;

WRITELNCY ‘s

SEEK(OLDF, REC);

GETCOLDF);

WHILE NOT EOF(OLDF> DO

Listing 1: Data File Editor Program

S-100 MICROSYSTEMS

i64: BEGIN

i62: OBUF : =0LDF";

1632: WRITEC(REC:S5. *: *);
164 WITH OBUF DO

165: CASE TRAG OF

HAYDEN HAS THE BOOKS

166: 8: WRITELNCTAG:3, NAME :8, NA:7, N2:7);

167: i: WRITELN(TAG:3, © “IHERDER);

168: 2: WRITELNC(TAG:2, RNAME : 8, RINDEX: 7, RHS:14:8); FOR TOMORROW S
169: 4: WRITELN(TAG:3, CNAME : 8, CINDEX:7, 0BJ:14:8);

178: 6: WRITELNC(TARG:3.” ROW‘,R:3. 7 COL’,S5:3, T:14:8);

171: 99: WRITELNCTRG:3, ¢ LOGICAL EOF); _

172: END; (% CRSE =)
173: REC :=REC+4;

174 GET(OLDF>

175: END (& WHILE #)
176: END; Cx LIST =)

178: PROCEDURE MODIFY:
179: VAR REC. J:INTEGER; ANS:CHAR;

PROSUMER}

New! 5-100 BUS HANDBOOK

(Bursky). Explains all the details of com-
monly available 5-100 systems and how
they are organized. Covers computer fun-

188:

i8i: BEGIN damentals, basic electronics, and each
182: IF OFLRG : i i
183 THEN ¢+ OLD FILE IS OPEN #5 section of ?he computer. Schernatic draw
184: SEEKCOLDF, 8) ings and illustrations are provided for
185: ELSE reference. #0897-X, $12.95

186: BEGIN

187: WRITEC” MODIFY WHAT FILE? *);
ies: RERDCOFIL);
189: RESETC(OLDF, OFILY;

1%a: OFLAG : =TRUE;
i‘g“"zf E,D'E'_””“ (Pooch and Chattergy). Describes three of
: TR the most popular microcomputer families:
193: WRITEC’ NAME OF NEW FILE? *)
194: RERDCNFIL); ’ the Intel 8080,Zilog Z80,and Motorola 6800
i55: IF NFLAG in ferms of microprocessor architecture,
g TPC?.SE(NE&F, LOCK) fiming, conrrol. onjd clpclﬂ signals, interrupf
198: ELSE handling, etc. Timing diagrams are included
199: BEGIN as well as information on building micro-
2e0: REWRITE (NEWF, NFIL); its. # - :
=iy b computersystems from kits. #5679-6, $8.95
282: END: N ; :
283: READLN: .
2084: WRITE(” STRRTING AT WHICH RECORD? *); ew: PASCAL WITH STYLE:
205. READCD; Programming Proverbs
%f ’I‘En"" (Ledgard, Nagin, & Hueras). Infroduces
: o8 THEN : :
2e8: FOR REC:=8 TO (J-1) DO superior methods for program design and
2e9: BEGIN consfruction. Stresses overall program or-
221':.’ ﬁ&bf REC): ganization and “logical thinking.” A special
212: IF NOT EOFCOLDF> THEN chapter shows you how fo use the top down
213: BEGIN approach with PASCAL. Includes samples
214: NEWF~: =0LDF~; of PASCAL programs. #5124-7, $6.95
218: PUT CNEWF))
216: END
2i7: END;
S RTlE hit e Hprosumers are those who measure their
228: BEGIN personal success by their ability to inde-
221: SEEK(OLDF, REC); pendently produce goods and services for
g; ?,ET%DEEF(W> THEN and by themselves...and their compufers.
224: BEGIN
225: PRINT(OLDF~, REC); "
226: WRITELNC/ PROCESS THIS RECORD?”); Available at your local computer store.
227: MRITELNC” KCEEP, CCHANGE, I(NSERT, DCELETE’);
gf RERDCANS; Or write to:
230: CASE ANS OF Hoyden Book
231: “K’: BEGIN
232: NEWE~; 0L P Company, Inc.
234: REC: =REC+ 50 Essex Street, Rochelle Park, N.J. 07662
235: END;
26: ‘C*: BEGIN
27: J:=INREC; Call (201) 843-0550, ext. 307
g: égs;rfim THEN TO CHARGE YOUR ORDER TO:
240 NEWF ™~ : =NBUF ; Master Charge or Visal
244: PUTCNEWF) - .
242. REC : =RECH. Minimum order is $10.00; customer
gﬁ: t_::z;n ELSE REC:=REC+1 pays postage and handling.
H i

S-100 MICROSYSTEMS

New! DESIGNING
MICROCOMPUTER SYSTEMS

27

245:
246:
247:
248:
249;

269
261:

By

264:

B3R

269:
&l

273:
274

276:
277:

CEREEEEEE

“D7: REC:=REC+1;

“17: BEGIN
J:=INREC:
IF JCie@ THEN
BEGIN
NEWF "~ : =NBUF ;
PUTCNEWF)
END
END;
END (% CASE *)
END
END (% WHILE =)
END; (* MODIFY %)
. BEGIN (% MRIN *)
OFLAG: =FALSE;
NFLAG: =FALSE;

EDITING: =TRUE;
WHILE EDITING DO
BEGIN

WRITELNCY “);

RERD(COMMAND);
REARDLN:
CRSE COMMAND OF
‘L’: LISTS
‘B: BUILD;
‘M’: MODIFY;
‘Q7: EDITING:=FALSE;
END (* CASE *)
END; (x WHILE »)
IF NFLRG THEN CLOSEC(NEWF, LOCK)>
END.

WRITEC” EDIT: LCIST, BCUILD. MCODIFY. QCUIT [1 8] “);

CATCH THE
S-100 INC. Q)

©

BUS! OUR
LIST SPECIAL
PRICE CASH
PRICE
Godbout, Econoram XIV 16K Static
Ram w/Extended Addressing
4 MHz Assembled & Tested 349.00 298.00
Godbout Econoram X 32K 4 MHz
Static Memory Board — “‘Unkit” 599.00 512.00
S.D. Systems VDB 80x24 Video
Board Kit 370.00 309.00
S.D. Systems Z-80 Starter Kit w/PIO 340.00 275.00
Sanyo Video Monitor 9" 240.00 160.00
Intertec Intertube Terminal U/L Case
80x25 995.00 779.00

Subject to Available Quantities e Prices Quoted Include Cash Discounts.

Shipping & Insurance Extra.
We carry all major lines such as

§.D. Systems, Cromemco, Ithaca Intersystems, North Star,
Sanyo, ECT, TEI, Godbout, Thinker Toys, Hazeltine, IMC

For a special cash price, telephone us.

BUS S-100.,inc.

Mf:)zurlin Address 7 White Place
10 A.M.-6 P.M. Clark, N.J. 07066

Interface201-382-1318

28

EDIT: LCIST, BCUILD, MCODIFY, QCUIT [1 8L

LIST WHAT FILE? BALANCE. DATA

STARTING AT WHAT RECORD? @

8: @ BALPRD 11 21

i: 1 PRODUCTION BRLANCE EXAMPLE
2: 2 SALES1 i 4100 ee8

3: 2 SALES2 2 250 898

4: 2 SALES3 3 100 G2

S: 2 SALES4 4 200. 620

6: 2 SALESS S 400 660

?7: 2 SALESE € 500. oed

8: 2 BAL2 7 0. Beges
9: 2 BAL3 8 0. beeee
18: 2 BAL4 9 0. 82882
11: 2 BALS i@ 8. Boeoe
12: 2 BAL6 11 0. 6B0ee
i13: 6 ROM 41 cCOL 14 i oeooo
14: 6 ROM 2COL 2 1 00069
15: 6 ROW 3 COL 3 1. 08080
16: 6 ROW 4 COL 4 1 66088
17: 6 ROM SCOL S 1 066008
is: 6 ROW 6 COL € i eeoee
19: € RONW 7 COL 41 -1 @8eoes
20: 6 ROW 7COL 2 1. cocee
21: 6 ROW 8 COL 2 -1 880e8
22: 6 ROW B8 COL 3 1. 68080
23: 6 ROW S COL 2 -1 0800
24: 6 ROW 9 COL 4 1. ceeso
25: 6 ROM 10 COL 4 -1 00000
26: 6ROW IO COL S i 068000
27: 6 ROW 11 COL S -1 oGeee
28: 6 ROW 11 COL 6 1 eoeed
29: 6 ROW 7 COL 7 -1 @068
38: 6 ROMW 8 COL 8 -1 02000
3: 6 ROW 9 COL 9 -i eeees
32: 6 ROW 18 COL 18 -1 06608
33: 6 ROM 11 COL 11 -1 08000
34: 6 ROW 7 COL 12 1 eeees
3s: 6 ROW 8 COL 12 1 eoeoe
36: 6 ROW 9 COL 14 1. eeoea
37: 6 ROW 18 COL 15 1. 08000
38: 6 ROW 11 COL 16 1 0006
39: 6 ROW 41 COL 17 -1 06060
40: 6 ROW 2 COL 17 1. eeeee
41: 6 ROW 2 COL 18 -1 oeege
42: 6 ROW 3 COL 18 1. 80000
43: 6 ROW 3 COL 19 -1 Peees
44: 6 ROW 4 COL 19 1 02089
45: 6 ROW 4 COL 280 -1 @eeee
46: 6 ROW S5 COL 20 1. 00000
47: 6 ROMW S COL 24 -1 90808
48: 6 ROW 6 COL 24 i o626
49: 4 PRODL i i eooee
S@: 4 PROD2 2 1. Becos
Si: 4 PROD3 3 1. eeeve
S52: 4 PROD4 4 1. eceoe
S3: 4 PRODS S 1. eeee8
S4: 4 PRODS 6 1 eecees
55: 4 HIRE2 7 1. 75088
36: 4 HIRE3 8 i 7Seee
57: 4 HIRE4 9 i 75800
S8: 4 HIRES 18 1. 75000
59: 4 HIRES 11 i 75eee
68: 4 FIRE2 12 1 25eee
61: 4 FIRE3 13 1 25669
62: 4 FIRE4 14 1 25609
63: 4 FIRES 15 1. 25680
64: 4 FIRES 16 i 25800
65: 4 STOCK4 17 2. 00088
66: 4 STOCK2 i8 2. 60080
67: 4 STOCK3 19 2. 80060
68: 4 STOCK4 20 2. 83280
69: 4 STOCKS 21 2. 68ge0
78: 99 LOGICAL EOF

EDIT: L<IST. BCUILD.

MCODIFY, QUIT [1 81 Q

Listing 2: Data File,
Product Mix Example

S-100 MICROSYSTEMS

The output of the run is shown in Listing 3,
and shows that if the following production
strategy is used:

Period
1 2 3 4 5 6
Std. production 175 175 150 150 400 500
Produce for stock 75 50
Add capacity 250 100
Drop capacity 25

Listing 3: Product Mix
Program Run

ENTER DATA FILE NAME —> BALANCE. DATA

PROG. NAME = BALPRD
HO. ROWS = i1
NO. coLs = 21

START PHASE 1

ITERATION 1 OF BALPRD
ITERATION 2 OF BALPRD
ITERATION 3 OF BRLPRD
ITERATION 4 OF BALPRD
ITERATION S OF BALPRD
ITERATION 6 OF BALPRD
ITERATION 7 OF BALPRD

ITERATION & OF BRLPRD
ITERATION S OF BALPRD
ITERATION 16 OF BRLPRD
ITERATION 11 OF BALPRD
END OF PHASE 1 FOR BALPRD AFTER i1 ITERATIONS

LIST & X ARRAYS

STOCKZ
STOCK4
PROD1
STOCKL
HIRE3
STOCKS
PROD2
PROD3
PROD4
PRODS
PRODG
M+l
M2

BEERARNAGRE

foavaswnlolenBl
§3§§§§§§§§§§§

ﬁﬁngmw-dnu.n WP

1
]
[+4
®o

START PHASE 2

ITERATION 1 OF BALPRD
ITERATION 2 OF BALPRD
ITERATION 3 OF BALPRD
END OF PHRSE 2 FOR BRALPRD AFTER 3 ITERATIONS

LIST & X ARRAYS

1 STOCK3 19 S50, 6eee
2 FIREZ iz 25. 6868
3 PRODL b 3 175. o8
4 STOCK1 17 75. 8888
5 HIRES i 250, oee
6 HIRES 11 100. 888
7 PROD2 2 175. 8e8
8 PROD3 3 150, e6e
9 PROD4 4 158. eea
18 PRODS S 400. 899
11 PRODS 6 S0e. ge8
12 M+ 33 -2443. 75
i3 M2 34 -8, eggei7es

PRODUCTION BRALANCE EXAMPLE

S-100 MICROSYSTEMS

then the total cost of this program is 2443.75 (units).
For the 1550 units produced and sold, the average
production unit costs are 1.577. This is a minimum cost
for the assumptions made on the cost elements. Other
assumptions on stocking, hiring and firing costs would
give a different production program and cost.

If, for example, the storage costs were lower, a
more uniform production would have resulted. (Try it
yourself).

PROBLEM 2 - A TRANSPORTATION PROBLEM

This type of problem is concerned with the ship-
ment of goods from M sources to N destinations. The
ABAR matrix, X(i,j), has M*N columns and M+N rows.
X(i,j) then represents the amount shipped from the i-th
source to the Jth destination. Let us set up a problem
with three sources and four destinations.

Problem Statement

In this problem, we have 3 sources, with availabilities
of 6, 8 and 10 units respectively. We have 4 4
destinations with requirements for 4, 6, 8 and 6 units.
(Note that the total of the availabilities MUST equal the
total of the requirements; nothing is created or lost
enroute).

Costs of shipment of one unit, C(i,j), between
source i and destination j are:

cl,1)=1 C(1,2)=2 C(1,3)=3 C(1,4=4
C(2,1)=4 C(22)=3 C(23)=2 C(24)=0
C@3,1)=0 C(3,2)=2 C@B,3)=2 C(34)=1
Problem Formulation
The constraints on availabilities can be expressed
by:
X(1,1) + X(1,2) + X(1,3) + X(1,4) =
X(2,1) + X(2,2) + X(2,3) + X(2,4) =
X(3,1) + X(3,2) + X(3,3) + X(3,4) =1
and for the requirements:
X1, +X21)+X3,1)=4
X(1,2)+X(2,2) + X(3,2)=6
X(1,3)+ X(2,3) + X(3,3)=8
X(1,4) + X(2,4) + X(3,4) =6

6
8
0

The data file is shown in Listing 4, and the program
RUN output is shown in Listing 5.

We can see that Source 1 ships all 6 of its units to
Dest. 2, thereby filling 2’s requirements. Source 2
ships 2 units to Dest. 3 and 6 to Dest. 4. Source 3 ships
4units to Dest. 1, and 6 to Dest. 4. The total cost for the
problem is 28.

There are manual techniques available for solving

small transportation problems such as this more quickly
than through the use of the computer; when the
problem is only a little larger than this one, then the
computer is much faster.

—Continued on Page 50—

29

ADDRESSING THE CURSOR

by

Larry Stein
Computer Mart of New Jersey, Inc.
501 Route 27
Iselin, N.J. 08830

PART II - An Analysis of the BASIC program presented in Part I

This is the second part of an article describing the
structure of a basic program, the first part being
published in the March /April 1980 issue of S-100
Microsystems. In the first part, | concentrated primarily
on the cursor positioning aspects of programming in
BASIC. In this part | will discuss some very specific
features of BASIC as well as some standards for
writing programs in BASIC.

The program being described was written in
Microsoft Basic version 4.51 and running under the
CP/M operating system version 2.0. Other BASICs
and operating systems may have different syntax and
different results. It is up to the reader to identify the
differences, if any, for himself/herself. However, the
general concepts probably apply to all programming,
in general.

This program allows the operator to specify a
mailing label of any size up to 66 characters wide by 20
lines deep, enter data into that label on a formatted
screen and then print out any number of these labels.
The program is very useful for club meeting notices, by
printing the information on pressure sensitive labels
and then applying the labels to the message side of a
postcard. The address side of the postcard can be
likewise addressed by using one of the many available
mailing label programs.

Most likely, when you sit down to write a program,
it is to perform specific function and you do not intend
to make it your life’s work. However, any program worth
writing is worth writing with some structure, so that if
you need to go back to modify it, or if someone else
would like to use it, the job won't have to be started
from scratch.

This leads to the area of program comments. Each
routine or sub-routine within your program should have
atitle with enough description so as to alert you where
to find all of the areas of the logic of the program. If you
look at the accompanying program, you will see one
method of titling subroutines. Now, you do not need to
make all the pretty boxes, but they do serve as targets
for your eyes as you scan down the listing looking for
some special routine within your program. 'Nuff said.

30

Within most programs there will be certaininstruc-
tions or sets of instructions, called subroutines, that
will be used more than just one time. These subroutines
should be identified within the program and whenever
they are required, they should be entered with a
GOSUB statement. The LABEL program described
here uses many such subroutines. The most frequently
used subroutine is the cursor positioning routine
located between lines 2170 and 2560. As you can see,
this subroutine is GOSUBed from lines 320, 330, 350
and many other places by the statement GOSUB
2320. This method of programming makes the program
shorter by not duplicating instructions and also easier

to change.
Let's now look at the program in some detail and

see some of the techniques employed.

Line 150 clears 2000 bytes of string space for the
program variables. BASIC normally allows a fixed
amount of string space, each version of BASIC allowing
adifferent number. If you do not know how much string
space is normally allowed, you can assign some
arbitrary amount, say 100, and if the program needs
more, you will get some message such as 'OUT OF
STRING SPACE' which alerts you to allocate more. Not
very scientific, but it works. If you want a more
scientific method, consult your BASIC manual for the
method of calculating string space.

Line 160 is a dimension statement for A$ and
contains a comment indicating that it is a dummy
statement. This is for reasons of consistency. Later in
the program, it is necessary to create the dimension of
A$ depending data being entered from the console
and we may do in more than one time. In order to
dimension an array that has been previously dimen-
sioned, we must first ERASE the array. The first time
this is encountered, line 2680-2690 or line 3030-3040,
unless the array has already been dimensioned, an
error will occur.

Lines 170-260 will present the program title and
adjust the screen display depending upon the terminal
selected. Note that the SOL screen is only 64 charac-
ters wide while the other two choices are 80 characters

S-100 MICROSYSTEMS

wide.

Line 220 is a special input statement that allows
the user to enter data from the keyboard without using
the return or enter key. This instruction accepts one
character (1) into the variable Z$. It can be used
whenever the programmer knows exactly how many
characters are needed from the console.

Lines 270-380 continue the program sign-on
messages.

Line 390 is called a program switch. The first time
the program encounters this statement, BGis equal to
0, therefore the program does not GOTO 490 and will
execute the following statements. Line 480 sets BG
equal to a 1, so that the next time line 390 is
encountered, it will skip the questions asked in lines
400-470. This is known as a one-time switch.

Lines 400-470 allow the user to define which
characters on the keyboard will be used to backspace,
forward space, insert and delete. Depending on the
terminal used, the operator may select any keys which
are convenient. These questions utilize the sub-routine
at line 2830 for data input because any characters are
allowed, including control characters which most
BASICs reject.

Lines 490-540 allow the user to select a label
previously stored on diskette or a standard label
defined elsewhere in the program. Note that all YES/NO
questions allow both upper or lower case answers.
Upper/lower case translations can be accomplished
using a more sophisticated subroutine (line 1280
converts Z$ to upper case), however for single character
entry, this method seems acceptable.

Line 600 uses the subroutine at 2620 to determine
the label size. The instructions from line 2620-2760
could have been inserted here at line 600 instead of
using the GOSUB; your preference.

Lines 660-720 will display the label format on the
screen depending on the size of the label you specify.
It will number the lines from 1 to the size specified and
will show the left and right boundaries of the label.

Lines 780-810 will display the current contents of
the label. On first input, these lines will be blank, but
later if the label is to be changed, these lines will re-
display the current label for the A$ array.

Lines 820-990 are used to accept input from the
console into the proper line of the A$ array. Note that if
the input statements in lines 890-940 encounter certain
characters, namely those entered as the cursor moving
commands, special subroutines are executed to handle
the cursor moving and the aligning of the data in A$.
Also, in line 940 if a backspace character (ASCll value
8) or a delete character (ASCll value 127) are entered,
they will be ignored by the program. As valid characters
are entered, they are placed into the current line
buffer, L$, in the proper place. This is what allows the
user to use the forward and backward space instruc-
tions and still maintain the correct data. When the data
is entered in its entirety, it is then placed into the
proper line of the array A$ in statement 1000.

Note: these 18 lines of code along with the
subroutines at 1860, 2050 and 2130 should be
completely studied to understand the operation of the

S-100 MICROSYSTEMS

cursor moving aspects of the data entry of this program
if you wish to use this code in another program.

Lines 1040-1080 allow the user to make any
changes to the label by simply repositioning the cursor
to the beginning of the label, and going back to the
data entry routine at 660.

Lines 1140-1390 allow the user to save the label
on diskette for future use. The program stores the
labels on the diskette with the file suffix (.LAB). First,
the directory of the diskette selected is displayed,
showing those files which have the suffix (.LAB). Then
the user is asked to supply a new name. This name is
converted to upper case characters in line 1280.
When the label is stored on diskette, the first record of
the file contains the width and length of the label and
the remaining lines are the data entered into the label.

Lines 1450-1570 allow alignment of the labels by
printing X’s.

Lines 1630-1700 print the number of labels
requested and ask if more labels are desired. If so,
either the same label or a different label can be printed.

Lines 1860-1900 keep the position of the data
within the current label line when using the backspace
and forward space keys. The screen position is
automatically adjusted in the data entry routine.

Lines 1960-1990 handle the end of line condition.
When the cursor is at the end of the label line, the only
allowable characters are the carriage reiurn and the
backspace character.

Lines 2050-2160 handle the deletion and insertion
of characters into the label text. This is done by
readjusting the position within the current line and
redisplaying the line on the screen.

Lines 2170-2560 handle the cursor positioning.
This was described in detail in the previous article.

Lines 2620-2770 determine the label size. The
label parameters are stored in the variables WD, LN,
SKand NB. The variables WD and LN are also stored in
the disk file if the label is stored on the diskette, so
when the label is redisplayed, it is the correct size.

Lines 2830-2870 provide for direct input from the
port of the computer. If the standard input statement in
BASIC is used, then no control characters will be
allowed as input. Since this program allows the insert,
delete, backspace and forward space characters to
be any characters, including control characters, some
other method of input had to be used. This must be
configured for the computer you are using. If you do not
know how to directly input from your computer, the
following routine may be substituted for lines 2830-
2870:

2830 IN$=INPUT$(1)
2840 IN=VAL(IN$)
2850 REM

2860 REM

2870 RETURN

The purpose for the REM at lines 2850 and 2860
are only to maintain the line numbering consistent.
They may be removed.

31

10 REM *kkkkkkk*k* DROGRAM NAME "LABELS" 11/6/70 #*kskdkdksdnsk](0() REM **hkhkrhkhhhnhhhhhhhhhhhhhhhhhhahhnhhhhhbhhrhhhbhhbrhdhds
*

20 REM * 1100 REM * : *
30 REM kkkkkkkkkkkkk®® YRITTEN BY LARRY STEIN ****xkkdkkdaxkskas]1]10 REM * ROUTINE TO SAVE LABELS ON DISK X
40 REM - * 1120 REM * *
50 REM deokk Rk kdok Rk ko kkk ko Rk k ko Rk ke ko ok kR Rk kR Ak]]3() REM KRk kok ko ko ko sk kok ok ok ko ok ok kR Rk ok Rk kR R Rk R kR Rk R kK Rk k
60 REM * * 1140 PRINT "DO YOU WANT TO SAVE THIS LABEL ON DISK (Y/N) “;

70 REM * PROGRAM FOR DISKETTE LABEL PREPARATION * 1150 Z$=INPUTS$ (1) :PRINT Z$

80 REM * B 1160 IF Z$="N" OR 2Z$="n" THEN 1450

90 REM B e T T 1170 PRINT "ENTER THE DRIVE ON WHICH LABEL IS TO BE STORED (A,B,C,D) ";
100 REM khkkhkkhhkkhkhhkhhrhhkhkhhkhhhh kb kAR A h AR AR AR ARk AR A AR AR AN 1180 DS=INPUT$(1)=PRINT DS

110 REM * * 1190 D$=CHR$ (ASC(D$) AND &HDF)

120 REM * INITTALIZATION ROUTINE FOR SPECIFIC TERMINALS * 1200 IF D$["A" OR D$|"D" THEN 1170
130 REM * * 1210 D$=D$+":"

140 REM AR AR AR IR R AR A AR AR AR R AR A AR AR A Ak ko kb hkkkkhhhhdkk ko khk ke h 1220 F$=D$+"*-LAB"

150 CLEAR 2000 1230 PRINT

160 DIM A$(2) : REM DUMMY DIMENSION SO THAT ERASE WILL WORK LATER 1240 FILES F$
170 PRINT:PRINT "THIS PROGRAM IS DESIGNED FOR ANY OF THE FOLLOWING:" 1250 PRINT:PRINT

180 PRINT:PRINT "1 - LEAR SIEGLER ADM-3A" 1260 PRINT "ENTER A FILE NAME *** NOT *** IN THE ABOVE LIST"

190 PRINT:PRINT "2 - HAZELTINE 1500" 1270 LINEINPUT "USE FILE NAME ONLY, NO EXTENSION ";z$

200 PRINT:PRINT "3 - SOL TERMINAL COMPUTER" 1280 FOR N=1 TO LEN({ZS$):MID$(Z$,N,1)=CHRS${ASC(MIDS$(Z$,N,1)) AND &HDF) :NEXT N
210 PRINT:PRINT "ENTER THE NUMBER OF THE ONE YOU ARE USING "; 1290 F$=D$+2$+".LAB"

220 Z$=INPUTS (1) :PRINT Z$ 1300 OPEN "O",1,F$

230 IF 2$="1" THEN AM=1:WIDTH 80:GOTO 320 1310 PRINT¥1,WDS+","+LNS

240 IF 2z$="2" THEN AM=2:WIDTH 80:GOTO 320 1320 FOR N=1 TO LN

250 IF Z$="3" THEN AM=3:WIDTH 64:GOTO 320 1330 PRINT#1,A$(N)

260 GOTO 170 1340 NEXT N

270 REM hhkkhhkhkhhkhkhhkhkhhhhhhhhbhdhhhhhhhhhhhhhhhhhhhh bk hdhhk 1350 CLOSE

280 REM * * 1360 PRINT

290 REM * BEGINNING OF PROGRAM - TITLE * 1370 F$=D$+"*,LAB"

300 REM * * 1380 FILES F$

310 REM s ok o ok ke g e ok e ok e ok e e ok e ok e ok o e ok ke ok e o ok ok ok e o ok ok ok o ok ok e ok e ok ok ok ok ok ok e e ke ke e e ok 139[] PRIN’I‘

320 Y=0:X=0:G0SUB 2320 1400 REM **dkkkkkhhhkhhh Rk hhkkkhhkkhkhhk ko h ke kkhh ko h ke hkhdkh &k
330 Y=11:X=14:GOSUB 2320 1410 REM * *
340 PRINT "DISKETTE LABEL PREPARATION PROGRAM - NOVEMBER 6, 1979" 1420 REM * ROUTINE TO ALIGN LABELS *
350 Y=15:X=32:GOSUB 2320 1430 REM * *
360 PRINT "LARRY STEIN" 1440 REM **dkkkkkdkdkkhhkhhhhhhhhhdhhhhhhhhhhdhhhhkhhhhkkhdhhhhhhhhtidkd
370 FOR Z=1 TO 1000:NEXT Z : REM SET FOR DELAY OF TITLE ON SCREEN 1450 PRINT "READY THE LABELS IN THE PRINTER AND PRESS RETURN ";
380 Y=0:X=0:GOSUB 2320 1460 z$=INPUTS$ (1) :PRINT

390 IF BG=1 THEN 490 1470 PRINT "DO YOU WANT TO ALIGN THE LABELS (Y/N) ";

400 PRINT "ENTER THE CHARACTER YOU WANT TO USE FOR BACKSPACE "; 1480 Z$S=INPUT$ (1) :PRINT Z$

410 GOSUB 2830:BS=IN:PRINT CHRS (BS) 1490 IF Z$="N" OR Z$="n" THEN 1630

420 PRINT "ENTER THE CHARACTER YOU WANT TO USE FOR FORWARD SPACE "; 1500 FOR N=1 TO LN

430 GOSUB 2830:FS=IN:PRINT CHRS (FS) 1510 LPRINT STRINGS (WD,88)

440 PRINT "ENTER THE CHARACTER YOU WANT TO USE FOR INSERTING "; 1520 NEXT N

450 GOSUB 2830:IT=IN:PRINT CHR$(IT) 1530 FOR N=1 TO SK

460 PRINT "ENTER THE CHARACTER YOU WANT TO USE FOR DELETING "; 1540 LPRINT

470 GOSUB 2830:DT=IN:PRINT CHRS$ (DT) 1550 NEXT N

480 BG=1 1560 PRINT "DO YOU NEED MORE ALIGNMENT (Y/N) ";

490 PRINT "DO YOU WANT TO USE A PREVIOUSLY SAVED LABEL (Y/N) "; 1570 Z$=INPUTS (1) :PRINT Z$:GOTO 1490

500 Z$=INPUT$(1) :PRINT zs 1580 REM R R R R R e S S S R s
510 IF Z$="Y" OR Z$="y" THEN 3280 1580 REM * »
520 PRINT "DO YOU WANT STANDARD PRODIGY LABELS (Y/N) "; 1600 REM * ROUTINE TO PRINT LABELS *
530 Z$=INPUTS (1) :PRINT 2§ 1610 REM * bl
540 IF z$="Y¥Y" OR zZ$="y" THEN 2930 1620 REM *Akkhohhhrrhnhhhhhhhhrhhhhh kXA KRAKRRKIRRRRR IR AR KRR R Xk Rk
550 REM hkhkhhkhkhkhkhhhkhhhhhhhhhhhhhhhrhhhhhhdhhhhhhhhh bbbk hhrhhhhhd 1630 FOR M=1 TO NE

560 REM * * 1640 FOR N=1 TO LN

570 REM * GET LABEL PARAMETER * 1650 LPRINT AS (N)

580 REM * e 1660 NEXT N

590 REM LR s e e e R e R R RS S R 1670 FOR N=1 TO SK

600 GOSUB 2620 1680 LPRINT

610 REM hkkkhkkhkhkkhhkhkkhhhhkdhkh bk kb hrhhhhh kb kbbb hh bk k & 1690 NEXT N

620 REM * . 1700 NEXT M

630 REM * DISPLAY LEFT SIDE OF SCREEN i 1710 PRINT "DO YOU WANT TO PRINT MORE LABELS (Y/N) ";

640 REM * w 1720 2Z$=INPUTS (1) :PRINT z$

650 REM dhkdkkkhkkhhkkhkdkdhhdhdkdhhddhhdbhhhhd bbb hhdbhhhbkdhdhhdhrhdhdddh 1730 iF z$=nyn OR ZS:HY" THEN 1760

660 ¥Y=0:X=0:GOSUB 2320 1740 sTOP

670 PRINT 1750 GOTO 1740

680 FOR N=1 TO LN 1760 PRINT "DO YOU WANT TO PRINT THE SAME LABEL (Y/N) ";

690 Y=N:X=1:GOSUB 2320 1770 2$=INPUTS$ (1) :PRINT Z$

700 N$=STR$ (N) : IF LEN(N$)=2 THEN N$=" "+N§ 1780 IF Z$="N" OR Z$="n" THEN 380

710 PRINT "LINE ";N$;" ";TAB (WD+14) ;" " 1790 GOSUB 2750

720 NEXT N 1800 GOTO 1040

730 REM KA AR AR AR R A AR A AR AR AR AR AR R A AR R Ak A AR A A AR Ak kA Ak Ak h k& 1810 REM Tokkkhkhk ke kh kb kA kR A AR kA ARk AR AR ARk h ke hkhdhhhhkhkhhkdhdh
740 REM * * 1820 REM * b4
750 REM * GET LABEL INFORMATION " 1830 REM * ROUTINE TO MOVE CURSOR RIGHT AND LEFT .
760 REM * * 1840 REM * *
770 REM de vk e e e e ok e e ok ok ok ok o e ok ok e e ok e ok ok ok ok ok ok o ok ok ok ok ok ok ol ok ok ok ok ok ok ke ok ok ke ok e ke ok ok ke ek 1850 REM hhkhkhkk kR kAR A A AR AR AR A AR R A IR A bk hkhh ko khhhhh kb kb hh Rk kb hk
780 FOR N=1 TO LN 1860 I=1

790 Y=N:X=12:GOSUB 2320 1870 IF IN=BS AND M[|1 THEN M=M-1:GOTO 870

800 PRINT AS$(N) 1880 IF IN=FS AND M[|WD THEN M=M+1:GOTO 870

810 NEXT N 1890 I=0

820 FOR N=1 TO LN 1900 GOTO 870

830 I=1 1910 REM **khkkhdkhdarhhhhhdhhdhhhhhhhhh ko h kb hhhh ko hh bk hhhhddsn
840 L$=A$(N) 1920 REM * *
850 FOR M=1 TO WD 1930 REM * ROUTINE TO HANDLE CURSOR AT END OF FIELD *
860 IF I=0 THEN 880 1940 REM * *
37’0 Y=N:X=11+M:GOSUB 2320 1950 REM kkhkhkkhkh kAR hhkhr kb hh kb kb hphhhh kb dhhh
880 GOSUB 2830 1960 GOSUB 2830

890 IF IN=13 THEN M=WD:GOTQO 990 : REM CARRIAGE RETURN 1970 IF IN=BS THEN I=1:GOTO 870

900 IF IN=BS THEN 1860 : REM MOVE CURSOR TO THE LEFT 1980 IF IN$=CHR$(13) THEN 990

910 IF IN=FS THEN 1860 : REM MOVE CURSOR TO THE RIGHT 1990 GOTO 1960

920 IF IN=DT THEN 2050 : REM DELETE CHARACTER 2000 REM Kr kAR AKARKARARRKKAK R AR ok R Rk bk ke hhh kb hdhhhh bk kb hhdhhk
930 IF IN=IT THEN 2130 : REM INSERT CHARACTER 2010 REM * *
940 IF IN=8 OR IN=127 GOTO 880 : REM CHARACTERS TO BE NOT CONSIDERED 2020 REM * ROUTINE TO DELETE A CHARACTER *
950 I=0 AT ALL 2030 REM * *
960 MIDS(LS,M,1)=INS 2040 REM hokhkkkkhhhhkhkhhkhkokhhhkkhhkhkhhhhhhhhhkhhhhh kAR R I A XA KAk K
970 PRINT INS; 2050 MID$ (L$,M,WD-M+1)=MID$ (L$,M+1,WD-M}+" "

980 IF M=WD THEN 1960 2060 PRINT MIDS$ (L$,M,WD-M+1)

990 NEXT M 2070 GOTO 870

1000 A$(N)=L$ 2080 REM Gk ok Ak kR A AR R AARAKAR AR AR IR AR R bk b Ak khhhkkhhkkdkhk
1010 PRINT 2090 REM * *
1020 NEXT N 2100 REM * ROUTINE TO INSERT A CHARACTER *
1030 PRINT 2110 REM * *
1040 PRINT "DO YOU WANT TO MAKE ANY CHANGES (¥/N) "; 2120 REM **khkhkdhkhkhhhhkkhhkhhkkhk Rk Rk kA XK AR R I KRN R AR kAR Rk hkhhk
1050 2$=INPUT$ (1) :PRINT 2$ 2130 L1$=MID$(L$,M,WD-M)

1060 IF Z$="N" OR Z$="n" THEN 1140 2140 MIDS$(L$,M,WD-M+1)=" "+L18%

1070 ¥=0:X=0:GOSUB 2320 2150 PRINT MID$ (L$,M,WD-M+1)

1080 GOTO 660 2160 GOTO 870

32 S-100 MICROSYSTEMS

2170
2180
2190
2200
2210
2220
2230
2240
2250
2260
2270
2280
2290
2300
2310
2320
2330
2340
2350
2360
2370
2380
2390
2400
2410
2420
2430
2440
2450
2460
2470
2480
2490
2500
2510
2520
2530
2540
2550
2560

2570
2580
2590
2600
2610
2620
2630
2640
2650
2660
2670
2680
2690
2700
2710
2720

REM *hkkkdhhhhkhhhhhhhhhdhhhhhhhhh bbbt hhhhbhdhrhhhhhdddhhnhd 2730
REM * « 2740
REM * UNIVERSAL CURSOR POSITIONING ROUTINE * 2750
i « 2760
e X L]
REM * » 2780
REM * THE FOLLOWING INSTRUCTION CORRECTS FOR TEE FACT THAT * 2790
REM * BASIC WILL OUTPUT A CR/LF AUTOMATICALLY, AFTER A * 2800
REM * CERTAIN NUMBER OF CHARACTERS ARE SENT TO THE SCREEN * 2810
REM * SINCE THESE CURSOR POSITIONING ROUTINES SEND MANY * 2820
REM * CHARACTERS TO THE SCREEN WITHOUT A CR, WE WILL * 2830
REM * ARBITRARILY SEND A CR (PRINT) TO THE SCREEN EACH TIME* 2840
REM * WE EXECUTE THIS ROUTINE 5 TIMES. + 2850
REM * + 2860
REM R kkhkkkh ok aa kAR AR R AR AR RK KR KRR R AR KA KR AR AR R R IR AR kN %gg%

D=D+1:IF D=5 THEN D=0:PRINT

ON AM GOTO 2390,2530,2460

REM *hdkkhhkhkohkdihkhkhhhhhdhhhkhhhhkhhhhddhkkkhhhkhkkdhhdokhddk
REM *

REM * CURSOR POSITIONING FOR ADM-3A TERMINAL *
REM * o
REM *M ks aa kA rh Rk Rk kAR R AR KA AR AR AR AR KA A KRR AR KRR AR AR R AR R AR KRR

IF Y+X=0 THEN PRINT CHRS (26) 420
PRINT CHRS$ (27) +CHRS (61) +CHRS (32+Y) +CHRS (32+4X) ; : RETURN

D R O R R iass, 2970
REM * « 2980
REM * CURSOR POSITIONING FOR THE SOL TERMINAL COMPUTER * gggg
REM * *

REM Ak kb Ak kR kAR A AR R ARk kR A A AR AR R R R AR Rk AR R A& 3010

LINEINPUT "ENTER NUMBER OF LINES TO SKIP BETWEEN LABELS ";SK$
SK=VAL (SK$)

LINEINPUT "ENTER TOTAL NUMBER OF LABELS TO BE PRINTED ";NB$
NB=VAL (NBS)

RETURN

REM ** A Ak Ak A R AR KK AR AR AR AR AN KRR A ARKN AR R AR R KRR R KRR R AR R ARk b kL
REM * *
REM * ROUTINE FOR DIRECT INPUT FROM TERMINAL *
REM * *
REM hkkkkkhhhkhkhkhkhh kb hhhhkddhhh kA kA kA A kAR AR A Ak hhk
our 29,1

WAIT 29,1,0

IN=INP(28)

IN$=CHRS$ (IN)
gauiri**t**li**ti*titi**i—*t**i*ktitﬁhﬁ**i***i***i**i*****t**

REM * *

REM * ROUTINE TO GENERATE PRODIGY DISKETTE LABELS :
REM *
REM %k khd kA A K hkkhhkkk kA A IR RARKRRARARRR KRR KR AR AR AR AR AR Ak

Y=0:X=0:GOSUB 2320

PRINT "ENTER DISKETTE NUMBER XXXX";STRINGS(4,8);
LINEINPUT DS$

PRINT "ENTER UNIT NUMBER
LINEINPUT UN$
PRINT "ENTER DATE
LINEINPUT DT$
PRINT "ENTER DEALER NAME
LINEINPUT DL$

IF LEN(DL$)|30 THEN PRINT "DEALER NAME TOO LONG !":GOTO 3000

XXXX" ;STRINGS (4,8) ;

(MM/DD/YY) XX/XX/XX";STRINGS(8,8);

IF Y+X=0 THEEN PRINT CHRS(1ll); :RETURN
PRINT CHRS$ (27)+CHRS$ (2) +CHRS (Y-1) +CHRS (27) +CHRS$ (1) +CHRS (X-1) ; : RETURN
REM teokdeskoodede ok e dekkd ek ke ok ok ok ok kb Rk kbR ok ok kR ko ko ok =

3030 ERASE A$
REM :) . 3040 DIM AS(8)
i}:ﬂi : CURSOR POSITIONING FOR HAZELTINE 1500 TERMINAL * 3450 ag(1)=" PRODIGY SYSTEMS, INC."

- n " ; " " w

REM *#dkhkkhkddrddhhhhdddhddehrdhbdkbhhbhdhdhhrkrhbdhhkrrdrhohhdrhd gougg :g((_?j;;“: EISKETTE # +DS$+ UNIT * +UNS+ DATE +DT$
IF Y+X=0 THEN PRINT CHR$(126)+CHR$(28);:RETURN = .
IF X[32 THEN X=X+96 2060 A5 (4] = OEALER: “3DLD
Y=v496 a 3090 A$(5)=" MASTER DISKETTE - RETURN IMMEDIATELY"
= 3100 Aa$(6)=" "
PRINT CHRS (126) +CHRS (17) +CHRS (X-1) +CHRS (Y-1) ; : RETURN 3110 AS(7)="COPYRIGHT (C) 1979 PRODIGY SYSTEMS, INC."
REM *A*hkhhhhxhhdhhhkhhkkhhhrdhhhh kAR Ak A kR AR ARk Rk kR o AN RRRR 3720 AG(8)=" ALL WORLDWIDE RIGHTS RESERVED"
REM * * 3130 LINEINPUT "ENTER TOTAL NUMBER OF LABELS TO BE PRINTED ";NB$
REM * ROUTINE TO DETERMINE LABEL SIZE * 3140 NB=VAL(NBS)
REM * * 3150 wp$="40"
REM **%&a &k dhdkkddhhhhdkhh®hd ok adhhhhddhk kb ks kkkkh** kX k¥ X*% 37160 WD=VAL (WD$)
LINEINPUT "ENTER LABEL WIDTH (IN CHARACTERS) " ;WD$ 3170 LN§="8"

WD=VAL (WD$)

IF WD|65 OR WD[1 THEN PRINT "LABEL WIDTH OUT OF RANGE (1-65) ":GOTO 2620

LINEINPUT "ENTER NUMBER OF PRINT LINES PER LABEL ";LN$
LN=VAL (LN$)

LN=VAL (LN$)
SK$="1"
SK=VAL(SKS$)
GOTO 1450

IF LN|20 OR LN[1 THEN PRINT "LABEL LENGTH OUT OF RANGE (1-20) ":GOTO 2650
ERASE AS 1180
DIM A$ (LN) 3190
FOR N=1 TO LN 3200
A$ (N) =STRINGS (WD, 32)
NEXT N 3210
3220

S$-100 bus

FCC APPROVED

HE MM-103 DATA MODE

AND COMMUNICATIONS ADAPTER
N

STOP

compatible

XXXEXKXXAAX XA XX XX KX KXXXANXKXKX" ; STRINGS (30,8)

HIGH QUALITY

\

Both the modem and telephone system interface are
FCC approved, accomplishing all the required protective
functions with a miniaturized, proprietary protective

dialer with computer-controlled dial rate.

rate selection under computer control.

WARRANTY

ware-controlled, maskable interrupt system.

-50 dBm sensitivity. Auto answer. Auto originate. Auto
61 to 300 baud
(anywhere over the long-distance telephone network),
Flexible, sofi-

ASSEMBLED & TESTED

One year limited warranty. Ten-day unconditional
return privilege. Minimal cost, 24-hour exchange policy
for units not in warranty.

Not a kit! (FCC registration prohibits kits)

LOW PRICE—3359 %°—

For Modem
AND Coupler

plus shipping
& handling

S-

Write for brochure:
First Lincolnia Bldg., Suite B1
4810 Beauregard St.

Alexandria, Va. 22312

100 MICROSYSTEMS

Call for further information:
VOICE: (703) 750-3727

MODEM: (703) 750-0930 (300 baud)

33

SOFTWARE DIRECTORY

Program Name: APL
Hardware System: 8080/8085/Z280 CP/M
Minimum Memory Size: 44K
Description: Implementation of most of the APL
functions and functions of full APL, including n-
dimensional inner and outer product, reduction,
compression, general transpose, reversal, take,
drop; execute and format, system functions and
variables, system commands. Runs in either
ASC Il or bit-pairing ASC II-APL character sets.
Can run with user-supplied 1/O drivers. Shared
variable mechanism allows CP/Mdisk I/O. Uses
Abranis descriptor calculus and shared data
storage to save memory space and execution
time. Comes with optional driver program for
video display with programmable character
generator.
Release: October 1980
Price: $350 (NJ residents add 5% sales tax)
Included with price: CP/M disk and Users
Manual
Author: Erik T. Mueller
Where to purchase it:

Softronics

36 Homestead Lane

Roosevelt, NJ 08555

Program Name: MDBS.DRS: A Dynamic Restruc-
turing System for MDBS Data Bases
Hardware System: Z-80, 8080,6502
Minimum Memory Size: 19K plus approximately
3K for buffers (Z-80)
23K plus approximately 3K for buffers (8080)
29K plus approximately 3K for buffers (6502)
Language: Written is assembly language; inter-
faces with BASIC, COBOL, FORTRAN and
assembly languaga.
Description: MDBS.DRS is a system which can
be used to alter the structure of an existing
MDBS data base. Its primary use is to permit an
MDBS user to include new data fields in existing
data records, to define new data records or set
relationships in the data base or to delete
existing fields, records or sets from adata base.
These functions can all be performed without
the need to dump the data base contents and
reload it, saving much time for the data base
user.
Release: Currently available
Price: $100.00 (Manual only: $5.00)
Included with price: MDBS.DRS system and
manual with sample application program
Author: Micro Data Base Systems
Where to purchase it:

Micro Data Base Systems

PO Box 248

Lafayette, IN 47902

34

In each issue of S-100 MICROSYSTEMS we will have this
catalog listing of S-100 system software. If you have a soft-
ware package you are offering for sale and want to be
listed then send us the information in the format shown.
All information must be included. We reserve the right to
edit and/or reject any submission.

Program Name: Diagnostics |
Hardware System: CP/M 5" & 8"
Minimum Memory Size: 24K
Language: Supplied as object only
Description: Comprehensive set of CP/M com-
patible system check-out programs. Finds hard-
ware errors in system, confirms suspicions, or
just gives system a clean bill of health. Tests:
Memory, Disk, CPU (8080/8085/Z80), CRT, and
printer.
Release: now
Price: $50
Included with price: Complete user manual and
Discette.
Author: SuperSoft Associates
Where to purchase it: Direct from us or dealers
everywhere.

SuperSoft

Box 1628

Champaign, IL 61820

Program Name: MDBS: A Full Network Data
Base Management System
Hardware System: Z-80, 8080, 6502
Minimum Memory Size: 17K plus approximately
3K for buffers. (Z-80)
20K plus approximately 3K for buffers. (8080)
26K plus approximately 3K for buffers. (6502)
Language: Written in assembly language; inter-
faces with BASIC, COBOL, FORTRAN and
assembly language.
Description: MDBS is a full network data base
system expressly designed for microcomputer
use. Details of physically storing, sorting, up-
dating and retrieving data are handled by the
MDBS system, freeing the programmer from the
tedium and complexity of data management
tasks. The amount of data stored is limited only
by the amount of on-line disk storage available.
Up to 254 different types of datarecords may be
processed, each of which can contain up to 255
data fields. Read/Write access protection is
provided at the record, field and set levels. Use
of the MDBS system can significantly reduce
the cost of developing and maintaining data
oriented applications programs.
Release: Currently available
Price: $750.00 - $825.00 (Manual only: $35.00)
Included with price: 260 page User's Manual,
MDBS.DDL Data Definition Language, MDBS.DMS
Data Management System and a sample program
Author: Micro Data Base Systems
Where to purchase it:

Micro Data Base Systems

PO Box 248

Lafayette, IN 47902

Program Name: Encode/Decode | & Il
Hardware System: CP/M 5" & 8" disks
Minimum Memory Size: 24K CP/M
Language: Supplied as object only
Description: Complete software security system
for CP/M. Transforms data stored on disk into
coded text whichis completely unrecognizable.
Encode/decode supports multiple security
levels and passwords. A user defined combina-
tion (one billion possible) is used to code and
decode a file. Encode/decode is available in
two versions: Level | provides a level of security
for normal use. Level Il provides enhanced
security for the most demanding needs.
Release: Now
Price: $50/$100
Included with price: User manual and diskette
Author: SuperSoft Associates
Where to purchase it: Direct from us or dealers
everywhere

SuperSoft

Box 1628

Champaign, IL 61820

Program Name: HDBS: An Extended Hierarchi-
cal Data Base Management System
Hardware System: Z-80, 8080,6502
Minimum Memory Size: 17K plus approx. 3K
for buffers (Z-80)
20K plus approximately 3K for buffers (8080)
26K plus approximately 3K for buffers (6502)
Language: Written in assembly language; inter-
faces with BASIC, COBOL, FORTRAN and
assembly language.
Description: HDBS is a data base management
system similar to the MDBS system, except that
the data structures which can be handled by
HDBS are limited to hierarchics. For many appli-
cations a hierarchical system will suffice. A
limited read/write protection is available in
HDBS at the data base file level. HDBS is
designed for use by hobbyists and applications
programmers with relatively straight-forward
data representation needs.
Release: Currently available
Price: $250.00 - $375.00 (Manual only: $35.00)
Included with price: 260 page User’'s Manual,
HDBS.DDL Data Definition Language, HDBS.DMS
Data Management System and a sample program
Author: Micro Data Base Systems
Where to purchase it:

Micro Data Base Systems

PO Box 248

Lafayette, IN 47902

S-100 MICROSYSTEMS

IS YOUR COMPUTER
OUT OF SORTS?

by

Chris Terry
324 E. 35th St.
New York, NY 10016

Use These Guidelines to Choose a Tonic For It —
the sorting method that best suits both your system and your application.

From time to time | get asked ‘What is the best
sorting method?’ If you search the literature, you find
hundreds of sorting methods, each of which has some
attraction and gains an ounce or two of efficiency for
particular types of data, but they all fall into a few
general classes, and all the methods in a given class
have similar general characteristics. Each class has
advantages and disadvantages of its own. Thus, in its
broad form, the question is almost meaningless. Best
from what point of view? Simplicity? Speed? Ease of
using the result? Economy of memory space? You
have to consider all these things, and more. There
really is no ‘best’ method that gives a clear-cut advan-
tage under all circumstances and for all types of data
encountered.

Quite a number of articles on sorting have ap-
peared in the personal computing journals, most of
which extol one, or perhaps two, sorting methods, and
there is an overwhelming mass of material in textbooks
and professional journals, but nobody in the personal
computing field has so far assembled in one place the
basic information that is needed to make an intelligent
choice of sorting algorithm. This article is an attempt to
plug that gap. It is not intended for end-users who buy
complete software packages -- one hopes that the
sort/merge routines included in such packages are
already optimized for the application. Rather, it is
intended for hobbyists who need a sort for their own
system or application programs but don’t know how to
make a choice.

I have therefore chosen to test and compare five
common sorting algorithms, all of which are classed as
INTERNAL sorts -- that is, all of the items to be sorted
are available in main memory. Three of these methods
(Bubble, Shell-Metzner, and Heap) can be further
classified as exchange sorts; when two items are
compared and found to be out of order, they are
physically swapped. The Tree Sort does not swap

S-100 MICROSYSTEMS

items, but constructs (in a separate area of memory)
an ordered list of pointers to the original items. The
remaining method (Quicksort) is an example of a
partitioning sort. These terms will be explained later,
in the comments on the individual methods.

The general characteristics of these five methods
are summarized in Table 1. Table 2 lists execution
times for three file sizes in each method on an Altair
8800a (8080A CPU), an Apple Il (6502 CPU), and a
TRS-80 (Z-80 CPU), using a number of different BASIC
interpreters.

The books and articles on sorting that | have found
most readable and most generally useful for my own
microcomputer applications are listed in the bibli-
ography. Knuth, of course, is the classic source of
information. However, his approach is highly mathe-
matical, and his programming examples are in MIX, an
assembly language for a hypothetical machine which
does not resemble any current microcomputer. If yoy
are not mathematically inclined, you will find Lorin’s
book much more readable and rewarding. It is written
(in beautiful and lucid English) “for a programmer who
desires a complete but pragmatic knowledge of
sorting and sort systems, and does not wish to learn a

specific programming language, advanced statistics,
or a hypothetical machine in order to obtain that
knowledge.” The book fully lives up to this promise. It
discusses all of the factors affecting sort performance,
as well as the mechanisms of both simple and complex
methods. The extremely clear descriptions are en-
hanced by really excellent diagrams and trace exam-
ples.

GENERAL CONSIDERATIONS

FILE SIZE. For small files with fewer than 50
records, execution speed may be less important than
simple coding. As file size grows, differences between
execution speeds become more noticeable and carry
more weight in the choice of method.

35

RECORD SIZE. If record size is large in compari-
son to the sort key length, it may be worth while to build
a table containing only sort keys and pointers to the
associated records, and to sort this table instead of
the records. This procedure becomes worth while
when the time spent in building the key/pointer table is
significantly less than the time that would be spent in
moving large records around during the sort.. Moving
large records may never present a problem in Z-80
machines which have an efficient block-move instruc-
tion, but experimentation along these lines should
certainly be done if an 8080 machine is used.

RECORD ORGANIZATION. All of the methods
described, except the Tree sort, require that items to
be sorted should be of exactly the same length. A
single record of abnormal length can cause total
destruction of the file by the sort routine. If the file was
created from the keyboard, record length should be
checked by the computer before entering the sort, to
ensure that no invisible control characters crept in. If
variable-length records are to be sorted, the keys
MUST be extracted and put into a table for sorting.

LANGUAGE. The BASIC interpreters tested on
microcomputers are all abominably slow in sorting
(see Table 2). If the application program is written in
BASIC, IT SHOULD CALL A MACHINE-language sort
routine which will run the same algorithm 70-100 times
faster than the BASIC interpreter can do it. However, if
the sort routine must be written in BASIC, try to match
the sort method to the peculiarities of your BASIC
interpreter. For example, the Processor Technology
interpreter runs Tree sort about 4.5 percent faster than
Quicksort. Also, you may obtain some speed increase
by concatenating multiple statements per line, if your
interpreter allows this. For the sake of portability and
simplicity, no attempt was made to optimize the test
program in this way.

If your application must sort files with unknown or
very widely varying data distribution, Shell-metzner
may be better, although slower, because its perfor-
mance is more consistent. Heapsort is said (by Knuth
and others) to be inefficient for small files; my ex-
perimental timings do not support that idea, unless
“small” is taken to mean “less than 10 items” -- and for
such tiny lists Bubble is the obvious choice because of
its simple and compact coding.

MEMORY USAGE. Some methods, such as the
Tree sort and all insertion methods, require a work
space equal to or larger than the unsorted list. If the
available memory space is limited, such methods may
not be feasible for large files.

NATURE OF THE DATA. Some methods (notably
the Quicksort) are extremely sensitive to the distribu-
tion of the data. If your application (like many of mine)
involves adding records to the end of a file and then
resorting the file, be very cautious in using Quicksort.
Versions that are optimized for randomly distributed
data become very slow when they encounter nearly-
ordered data; versions that are optimized for nearly-
ordered data become slow when they encounter
random data.

EXECUTION SPEED. Execution time for a given
sort run is determined by two groups of computer
operations: 1) Array/String compares and Array/String
exchanges, which have a non-linear relationship to file
size; and 2) overhead operations such as address
computation, or the addition, subtraction, and com-
parison of simple variables, which have a linear rela-
tionship to file size. In Table 1, overhead operations
are represented by the variable K. As file size in-
creases, the linear increase in K has much less
influence on total run time than the exponential growth
of comparisons and exchanges.

Table 1. General Characteristics of Five Sorting 'fethods

EosixssssoassssssssassSssSSs==—=azss EzsSSass sSsSESS SR ECSsxssSISSSSSSSSSssSSsSsSS=sSsS====

BASIC EXTRA SPEED PRINTING OF
METHOD STMTS* WORK SPACE FACTOR OUTPUT REMARKS
===zzzzzazsazssasssssc=a== azss=s=saz==s-as=Ssassasss==sssssssssssssass===
Bubble 8 1 record, K* (N**2) Linear dump Intolerably slow for large
for swaps Very Slow of sorted files
list
Shell- 16 1 record, K*N*log2(N) Linear dump Very consistent and reliable
Metzner for swaps Fast ?f sorted == no pathological cases
ist
Heap 22 1 record, K*N*1og2 (N) Linear dump On small files (<50) may run
for swaps Very Fast of sorted slower than Shell-M, but
list §enerally faster on large
iles
Tree 65 Array for Super Fast; Print Too complex to be worth
N+log2(N) some BASICs routine while for small files;
pointers run it must access excellent for 1ar§e flles of
faster than original integers or for files with
Quicksort records long or variable-length
from the records.
linkage
list
Quick 34 log2(N)+l1 Slow to Linear dump Very sensitive to data; best
Super Fast of sorted case approaches K*N, worst
list case approaches K*(N**2),

Emssmm=m=n

average around K*log2(N)

SIS SEESSSSUNETITNE AN X O ===

*Executable statements only; does not include REMARKs

S-100 MICROSYSTEMS

Optimizing overhead code can give only small
increases in speed. Reduction of the exponential
factors is the only way to obtain a substantial speed
increase; it is more difficult to do, however, and
increases the complexity of the code. All of the work in
this field has been aimed at finding the best way to
accomplish a reduction of comparisons and exchanges
without nullifying the benefits by excessive code
complexity. To take the concrete example of a 200-
item file to be sorted by a Processor Tech BASIC
routine, 7.5 seconds gained by shifting from Shell-
Metzner to Tree may not be worth the entry, checking,
and memory space entailed by 50 extra BASIC state-
ments -- but for a list of 5000 items, the gain may be
several minutes, and so be worth while.

THE FIVE METHODS
BUBBLE SORT. See Flow Chart 1. This is the
simplest of all sorts to implement (no more than 8

BASIC statements), but is also the most inefficient by a
whole order of magnitude. The execution time is
proportional to the SQUARE of the number of items to
be sorted, because each item is compared to every
other item, not once but many times. A bubble sort of
1000 numbers logged nearly half a million comparisons
and a quarter of a million swaps. Using a switch to
terminate the run after a pass in which no swaps took
place requires more code and only reduced execution
time by about 10 percent. There is no reason to use
this method for any list of more than 20 items, since the
Shell-Metzner sort, with only 16 BASIC statements,
can do the job 30-50 times as fast on a large computer
with a good BASIC interpreter, and at least 3-4 times
as fast on an 8080 with a merely moderate BASIC. The
only additional space required by the bubble sort is
enough to hold one record (or key) during swaps.
HEAPSORT. See Flow Chart 3. Knuth remarks
that this is a very inefficient method for small files,

Table 2. Comparative Timings (in Seconds) for Sorting Methods on Various Machines

File

Size Bubble Heap Shell-M
Xerox Sigma 9, Xerox BASIC

1000 50.3 1.8 1.8
2000 180.5 3.0 4.0
3000 - 5.6 6.0

===z s=sSSsSs=S======

SORTING METHOD

Tree

8080A, Processor Tech. Extended Cassette BASIC

50 25 14 14.5
200 403.5 75 745
400 = 179 177.5

12
67
149.5

s TSI TSI SITSSITT=IITI=STITISI===

Quick Comments

<1 Sigma 9 is the Xerox

1.8 equivalent of IBM 370-158
2.5

14.5 This interpreter runs
72.5 Treesort 4.5% faster
156.5 than Quicksort.

8080A, BASIC-E Compiler/Interpreter, Thinker Toys Disk with CP/M

50 39 13 11
200 - 68 78
400 - 156 198.5

8080A, Machine-language Sort
210 - - 1.5

6502 Processor, APPLE Integer BASIC

50 19 12 8
200 316 59 57
400 - 146 130

Z-80 Processor, TRS-80 Level II BASIC

50 47 23 22
200 700 118 221
400 2867 269 346

9
48
105

28
119
256

8

47

95

- Assembler Symbol Table
containing 210
7=character strings

= Fastest microcomputer

- BASIC tested.

18

97 Slowest microcomputer

230 BASIC tested.

NOTE:Xerox timings were measured by the program from the system

calendar/clock (resolution of 1 second).

All other timings

were taken manually with a digital stop watch (resolution of 1 second).

S-100 MICROSYSTEMS

37

because the large numbers get moved to the left of the
array before being shifted to their final positions on the
right, but says that for large files it is nearly as fast as
the Quicksort. The implementation by Geoffrey Chase
which | tested confirms this for Processor Tech BASIC,
where Heap is about 12% slower than Quick. For the
other BASICs, the difference is 20-30%. The overhead
is not much greater than for the Shell-metzner (22
BASIC statements). The only additional space re-

BUEBBLE
FlLow CHARY SORT
i

Nz Mo, of ibems

I=r =0

YEs D(D)>DE)
7

SwaAP
T=D(x)

p(£)= D(J)
2(J)=T

wo

quired is sufficient to hold one record (or key) during
comparisons/swaps. One big advantage of this
method is that execution time is guaranteed to be of
the order of N*log2(N), and the worst case time is not
very much longer than the best case time.

SHELL-METZNER SORT. See Flow Chart 2. This
method, which requires only 16 BASIC statements to
implement, is my favorite. Although there are five
variables, the arithmetic is simple (no multiplication
and only one divide-by-2). For a full explanation of the
mechanism, refer to my article in Interface Age of
November, 1978. The only extra space required is
enough to hold one record (or key) during swaps. Here,
too, execution time is guaranteed to be of the order of
N*log2(N).

TREE SORT. The implementation which | tested is
by Richard Hart, who modified the Woodrum sort for
minimum number of comparisons and minimum number
of steps between comparisons. The coding is complex,
but execution goes like greased lightning in spite of a
very large overhead (65 BASIC statements, with quite
a few multiplications and divisions). There is an addi-
tional overhead in the form of an array to hold linked

38

lists. This array must be large enough to hold N+log2(N)
items, where N is the number of items to be sorted.
This is larger than the file itself if the items to be sorted
are integers; however, if the file contains records 100
bytes long the linked lists array becomes a much
smaller proportion of the entire space needed. The
method has the added advantage that the pointers in
the linked list array avoid the need to move the records
themselves. One possible disadvantage is that random
access to a given item is not possible after sorting; you
must start at the head of the linkage list and work
downward until the desired itemis found. One possible
way around this would be to write the items, in sorted
order, to a new file. If stored on a disc, the DOS could
then give random access; if it must be resident in core,
the sorted file could overwrite the original unsorted
file, and a binary search could be used to find a given
item.

Shell-Metzner

2

N=M=
No. ok LEems

ND

Swap

T=D(x)
3(r)=p(#)
p(L)=T1T

I=I-M1

P Tk

YES

TJ=T+1
YES

N ryK?

¢

S-100 MICROSYSTEMS

F-]ou) al\arf‘ 3

HEPLF.SORT
D (N) Arra)v Fo hold

Humbers

A is a variable Fo
hold {1
SW‘P-

Preserve N

Kor Sorkr ng e d.sy Hi
gd

Set N=Ni=
No. o§ items

tem dur:nj

Look Sor

rsone” o5 I

psmjwl?t‘)

1z N1-1

Niis size of

ackive list

YES A)«?U Ho
=A J)(I)_:D(‘r) Larger Zon”
- - replacgs
‘parent”

QUICKSORT. The implementation which | tested
is by Steven Harrington. The overhead is moderate: 34
BASIC statements and an additional array to hold
pointers to the beginning and end of segments of the
main array that are to be individually sorted and then
merged. This is a partitioning sort, which works on the
premise that it is usually quicker (and never slower) to
sort M lists of N/M elements each than to sort one list
of N elements. Successive division of the list into
smaller and smailer segments is not just a question of
finding the center array position of the segment; for
best performance, the “pivot point” should, rather, be
the median value found in the segment. The accuracy
with which the pivot point selected corresponds to the
true median value is crucial to execution speed,
especially in early phases. An enormous amount of
work has been devoted to the search for the most
efficient partitioning methods, culminating in the 1978
publication of an algorithm by Dobosiewicz which is
reputed to run at least twice as fast as any previous
version of quicksort, and involves a complex and
elegant method of finding medians during early phases
of the sort.

The Harrington version has no such sophistication;
it merely picks the value at the center of the array as
the first pivot point. Even so, it generally runs faster
than any of the other methods tested.

The method used for partitioning affects not only
the AVERAGE execution time, but also the worst-case
time. KNUTH and HARRINGTON both caution that for
pathological cases, execution time will be of the order
of N**2, whereas for the average case the time is of the
order of N*log2(N)*K, where K is linearly proportional
to overhead operations; K for the Quicksort is often
considerably smaller than the K for other methods. For
the version tested, the pathological case is the con-
catenation of two nearly ordered lists. If randomization
is introduced into the partitioning, then nearly ordered
lists become the best case and completely random
lists the worst case. The Dobosiewicz algorithm is
aimed at optimizing partitioning for average cases in
such a way that the average time factor approaches

8086 Boards
CPU with
Vectored Interrupts

PROM-1/0

RAM

8K x 16/16K x 8

ANALOG Boards

A/D 16 Channel, $495.
12 Bit, High Speed

D/A 4 Channel, $395.
12 Bit, High Speed
$650.

$495.
$395.

VIDEO
DIGITIZATION

Real Time Video $850.
Digitizer and Display
Computer Portrait
System

S$-100 Boards

Video and/or Analog
Data Acquisition
Microcomputer Systems

Teclllee,.

The High Performance S-100 People

TECMAR, INC.
23414 Greenlawn ¢ Cleveland,OH 44122
(216) 382-7599

$4950.

S-100 MICROSYSTEMS

39

(417

— =D \D OO O D DD
IO R PRI I3 0O I3 RO I b et st bt ot bt it b ot et ot o ot ot Bt et ot et Leons
gﬁ;aisﬁﬂggg:zgzg:ﬁaﬂo‘ubaumwoocmwmw:—uun-—o—v—-—‘oooocooumm

SWILSASOUDIW 001-S
=t
co

XEROX BASIC CONVENTIONS
. *'-‘REH'
‘4" concatenates multiple statements on a line

Arra¥ subscripts MUST start at | (not 0)
Multiple assignments are aegarate by a comma,
e.g., Y6=1,Y7=5 OR C,S9=D
IF...THEN must be followed b¥ a line number
:” indicates a print image for PRINTUSING
* SORTTEST -- Tests sortin algorithms
* by Chris Terry, 15 Feb 1§79
ARARRRARKRARARAR IR KR AR AR R AR AR & Ak A Aok ok
* ARRAYS: D hold list to be sorted
* F saves unsorted list for re-use
* B hold segment pointers for Quicksort
* L holds N+1082(N)+2 linkages for Tree sort
DIM D§2500) & 0)

P

DIM F(25

DIM B(100) & DIM L(2050)
AARARRARKARNKAR KK AR KAk kA ARRR AR R*AAXAK AR AR AAK
* File size and Sort selection
PRINT “HOW MANY NUMBERS’TAR(0)
INPUT N$ & X2=LEN(N$)
IF N$="" THEN 230
N=VAL (N$)
FOR X=1 TO N

X1=RND(0) & X3=INT(X1*10000)

D(X),F(X)=X3
NEXT X

PRINT “BUBBLE (1), HEAP (2), SHELL-METZNER (3),”
PRINT ‘TREE (4), OR QUICK (5)*TAB(0)
INPUT 2

YI=TIM(1l) & Y1=Y1%*3600

0¥0% GOTO 240,400,700, 1000,2000

ﬁﬁ*t********** BUBBLE SORT *t******i******i***
C,59=0
FOR A=l TO N~1
FOR B=A+l TO N
C=C+1
IF D(A)<D(B) THEN 300
9=59+]

S
T=D(A) & D(A)=D(B)
D(B)=T

NEXT B
NEXT A
GOTO 4000
KARARARARRAAKAAAHEAP SORT *Addahhhhhkkkkkkk k& hk kA
» Implementation by G. Chase

L=INT(N/2)+1

IF L=1 THEN 470
L=L~1

A=D (L)

GOTO 510

1
I# Ni=] THEN 610

SN SNISNISNINSN N SN NN VO YT b inn
AVMOUVOOOOOOOWVMNOOOCOOCO0O0COOO

N0 I D 1t 1ttt bttt bt i O
e S 0 B I oy P 1= S D
00000000 COO0000O0

J=1

I=J

Jm2%]

IF J=N1 THEN 580

IF J>N1 THEN 600

C-C+% & IF D(J)=>D(J+1) THEN 580

=C+1 & IF A>D(J) THEN 600
I1)=D(J) & GOTO 520
=A & GOTO 430

=A

GOTO 4000

KRRRRARKXARKARR SHELL-METZNER SORT A*AARmAAAARARAAR
*

C,59=0
M=N

M=INT (M/2)
IF M=0 THEN 4000

K=N=M

J=1

I=J

L=T+4M

C=C+1

IF D(I)<-DEL; THEN 810
T=D(I) & D(I

$9=59+4]
I=T-M

IF I=>]1 THEN 770
J=J+1

IF J>K THEN 720
OGOTO 760

Implementation by J. Grillo

=D(L) & D(L)=T

RARKRRRKKARNKRRATREE SORTRARARA AR AR kAR & kk k
* Implementation by R. Hart

C,S59=0

K, T,M1,T2,T4=0

J=t+] & *EAD OF SEQUENCE 1
L(14+1),L(14+J),K2=1

IF N(-i THEN 1780& *NOTHING TO SORT -- EXIT
Sl=N & *NUMBER OF LEAVES

AXAKAKE Climb the tree *kkik

IF S1<4 THEN 1140& *Low order twig value
K2=K2*2 & *Total number of twigs

B2=51/2

Sl-INTEBZ)

T4=T4+(B2-S1)*K2

GOTO 1070

KAkxkkirkk Init{al calculations *AAkxAkakik
T4=K2-T4 & *Number of low-order twigs
B2=K2/2 & *High bit value of binar counter
KRRXXARARAR Naxp twi& HARARRRK KAk RA Ak

IF K1=K2 THEN 1780& %SORT COMPLETE =~ EXIT
K1,Tl=K1+l & *Twig number
Bl=B2 & *High bit value

T3=T2 & *Previous reflected :wig number
KAAkkkhkArk Add | to reflected bi
T1=T1/2
IF INT(T1)<T1 THEN 1300& *No more carcias
Ml=MI+1 & *Numbar of merges

nary counter and carry **

SWH1SASOHDIW 001-S

v

1260 T2eT2-B1 21?8 EF D(I)(-D(¥i) {HEN 2140 b 3
1270 B1=B1/2 & *Next bit valye %iBU JE}E? a sma element among the large ones
1280 GOTO 1220 2190 IF I=J THEN 2250
1290 *(CARRY ONE) 2200 IF D(J)=>D(M1) THEN 2180
1300 #xkkxkkda**X4Tuig calculationg**rakkshis ks 2210 *Swap elements
1310 T2=T2+B1 & *Reflected twig number 2220 T-D(?) & D(I)=D(J) & D(J)=T
1320 IF S1=2 THEN 13804 *2-twigs and 3—tw1§s 2230 GOTO 2140
1330 Rkkk ks hx 3~twiﬁa and 4-twigs *AEARX KKk AkkR 2240 *Array segment now divided; move compare element between
1340 IF T3<T4 THEN 1390& *Low-order twig (3-twig) 2250 IF I<M1 THEN 2270
1350 Ahakka fotwip *kkkkakikk 2260 I=I-1
1360 Ml==M] & *Disengage number of merges 2270 IF J=M1 THEN 2300
1280 $2 23502 mmen 14408 Mov-order tulg (2-twig) 3700 raove sranciasD (1) & DOML)=T
L ***********‘B-twig .**2:*25*3* g B 2290 ffiif starting point for segment of large elements
iz?g ¥1;¥%+é &N* NuEbeE of merges B(L)=I
- ext Lea *R icksort t of small ele ts
}2%8 3(}1})&L£§+J)-I . *Genegstg — GO%BE§87 ulcksort on segment of small elemen
1428 **********gxg_:ﬁ ;egig**gi**** fgp?§f§%<ga¥ﬂéé"§358' l- and 2-element cases
1450 MI=M1+1 & *Number of merges

1470 L1,L(141),L(1+J)=1 & *Cenerate a leaf

1480 L9=J & *llead of older leaf (last 1line)
1490 J=J+1 & *llead of lates leaf (next two lines)
1500 I=I+] & *Next leaf

1510 L2,L(1+1),L(1+J)=1 & *Generate a leaf
1590

T=D(M) & D(M)=D(M+1) & D(M+1)=T

*Set be%in and end points for segment of large elements
M=B(L)+

L=L-1

—OWRNDNL W N0

2300

2310

2320

2330

2340

g% 8 IF D(M)<D(M+1) THEN 2390

<

1460 I=I+1 & *Next leaf 2370

2380

2390

2400

2410

IF L>0 THEN 2070

2420 *End of Sort;‘EXIT

1520 GaTo 2430 C="=" & 59="= & GOTO 4000
1530 *(Mer§e leaves) 2440 RARRRRARR A KA d R R Ao Aok ok Ak ke e ke et ok ks ke ek
1540 *hkkhRknhAkhkkk Merge twigs and branches *A##kkaskkhk 4000 *END ROUTINE
1550 J=J-1 & *Head of lates branch or twi§ 4010 Y2=TIM(1l) & Y2=Y2*3600
iggg t%*ﬁ~} &9;ﬂgai ofdolger branch ?r twig " 4020 Yi=y2-Y]

- +L Head of sequence ->
1380 L2eL(len) soamnosd 2 sequence 4030 I Ya=21 THEN 4050

2 -’ v
iggg E??Iﬁg? {E 2(51%<;D(§2) THEN 1660 g *Stay in sequence 1 28?8 ggrngl'soar TIME = “Y3* SECONDS’
- wite to se uence
1610 L9=L2 & *Top leaf in sequence 3 24069 IF Ci59<1 THEN4O70

065 PRINT “COMPARISONS: “C ‘SWAPS: °S9
1620 L2=L(1+L.9) *Next leaf in sequence 2 ﬁuya pagﬁr & %RENT "
1630 IF L2=L9 THEN 1710& *End of sequence 2 4080 PRINT ‘WANT TO PRINT SORT RESULT TAB(0)
1640 C=C+1 & IF D(L1)>D(L2) THEN 1610 & * Stay in sequence? 4090 INPUT P$ & IF P$<>°Y” THEN 4110
1650 L(1+L9)=L1 & *Switch to sequence 1 4100 W=1 & GOSUB 4200
1660 L9=L1 & *T°E leaf in sequence 1 4110 PRINT "WANT UNSORTED ARRAY’TAB(0)
1670 L1=L(14L9) *Next leaf in sequence 1 4120 INPUT P$ & IF P$<>’Y” THEN 4140
1680 IF L1<>L9 THEN 1590& *Not end of sequence 1 4130 W=2 & GOSUB 4208
}938 éé,}gb?;zlﬁz & *Switch to sequence 2) 4140 PRINT “RE-USE UNSORTED ARRAY’TAB(0)
1710 L(1+L9)=L1 & *Switch to sequence 1 F <>°Y’ THEN 120
1720 Mi=Ml=l & *Number of merges }NPUT t % Eopgsarray F into Array D
1730 IF M1>0 THEN 1540 FOR X=1 TO N
1740 IF M1=0 THEN 1170 D(X)=F (X)
1750 kARkX*i% Generate 2nd half Of a h-twig **kkAAkR## NEXT X
1760 Ml=1-M] & *Re-engage number of merges COTO 190
1770 GOTO 1460 Rhhh AR R AR kAR KA AR AR AR A KAk kA e b Aok ek Ak
1780 XXAXRARRARR EXTT AARRARKKARRAR * PRINT 1ST 100 ELEMENTS OF SORTED OR UNSORTED ARRAY
1790 GOTO 4000 L9=N+1
2000 HRAIKRARRRAAIIARARAARARRRERRRR H KA KA RRRRAERAR R AR kA FOR X=1 TO 100 STEP 10
ggig : . QUICKSORT ROUTINE IF W=2 THEN 4280

mplementation by S.Harrington
2020 *Initialize gegin and end points to entire array
2030 L=1 & C,5=0
2040 B (L)=N+]

IF Z=4 THEN 4300

PRINTUSING 4370,D(x),D(X+l),D(X+2),D(X+3),D(x+h),b(x+5),D(x+6),D(X+7).D(X+B),D(X+9)
GOTO 4350

PRINTUSING a370.P(X),F(x+1).F(X+2),F(x+3),r(x+4),F(x+5).F(x+6).1-'(x+7).F(X+8).F(X+9)
2050 M=1 GOTO 4350
2060 *Set end of array segment * Print Tree-sorted numbers

2070 J=B(L)

FOR Y=1 TO 10
2080 *Set start of array segment

s
P Y e ok o o o
$$:ELJMMLMJMNNHQNNHJMNLHQ;;:x;;:
msubmbﬂann—Quham-ummaqgm—<DOCNDOLno
[=lslalolelalslslalV]elelelslelelelsl=]e)

L9=L(1+L9)
2090 I=M-1 PRINT D(L9);
2100 *If only 2 or 3 elements, then handle specially gg%gTY
2110 IF (J=M)<3 THEN 2350 FEINE
2120 M1=INT((I+J)/2) 11 Ly R
5:23 ;5%2? § 185368 Wlshant gmcog the assll ones sBOON MRS ARRR BARD BOER RARR ARAR BRAD A00D BAAH
2150 IF I=J THEN 2250

ARARARRKKARRRARAAAR KA AR KRR ARARARRRRA AR AAAAA KRR AR

K*N (with a K between 3 and 6), and the worst-case
time factor does not exceed K*N*log2(N).

From curiosity, | tried two runs of the Harrington
version on a 1000-element sorted array in which | had
manually disordered a few pairs of numbers. The
sorting time in each run was no more than double the
sorting time for a random array. Nevertheless, various
authors have produced abundant evidence that under
worst-case conditions Quicksort can run nearly as
slowly as a bubble sort. If you find that it consistently
runs slowly on the type of file that you most often sort,
introduce or remove randomization in the manner
suggested by Harrington.

THE TEST RUNS

To ensure portability, only DARTMOUTH BASIC
statements were used. Where possible, the code of
the original implementer was used without change;
where translation from his dialect was necessary, it
was done as straightforwardly as possible.

To provide comparison with a large machine, and
for ease of debugging, the first runs were made on a
Sigma 9 with a very powerful and efficient BASIC
interpreter -- The Sigma 9is the Xerox equivalent of the
largest IBM System/370.

Table 2 summarizes the results of the timing tests |
have run on various machines, for various file sizes. ltis
quite evident that most microcomputer BASIC inter-
preters are pretty slow, and that a machine-language
sort routine would be advantageous for large files; my
article in Interface Age describes a machine language
Shell-Metzner sort routine that can handle strings or
integers with sort keys in any position. Although the
version published is limited to 255 items, | later
modified it to sort up to 65K strings or integers on
8080/Z80 machines, and the documentation is ade-
quate to allow adaptation to other machines.

All runs listed in Table 2 were performed on an
array of random numbers generated by the test program.

The times shown are the Averages of severalruns - 10
runs per file size for each method in the case of the
Xerox Sigma 9 machine, and 3 runs per file size for
each method on all other machines. Times are shown
in seconds.

REFERENCES:

CHASE, Geoffrey. Heapsort. Creative Computing,
Nov/Dec 1977

DOBOSIEWICZ, Wlodzmierz. Sorting by Distributive
Partitioning. Information Processing Letters, Vol. 7
No. 1, January 1978. {(North-Holland Publishing Co.,
Netherlands).

GRILO, John P. A Comparison of Sorts. Creative
Computing Nov/Dec 1977.

HARRINGTON, Steven. Quicksort! Kilobaud /

42

Microcomputing, April, 1979.

HART, Richard. Tree Sort. Creative Computing,
Jan/Feb 1978.

KNUTH, Donald E. The Art of Computer Programming,
Volume 3: Sorting and Searching. Addison-Wesley,
1973.

LORIN, Harold. Sorting and Sort Systems. Addison-
Wesley, 1975.

RERKO, Andrew J. Sorting Routines. Kilobaud No.
4, April 1977.

RICH, Robert. Internal Sorting Methods lllustrated
with PL/1 Programs. Prentice-Hall, 1972.

TERRY, Chris. A Generalized 8080 String Sorting
Routine. interface Age, Nov 1978.

ACKNOWLEDGEMENTS

My sincere appreciation and thanks go to John
Grillo, whose lively article in Creative Computing
started me exploring a field that | have found completely
fascinating; to Bob St. Hilaire, of Dun & Bradstreet,
Inc., and Dave Zernoske of the New York Amateur
Computer Club, who did the TRS-80 runs; and to Rick
Auricchio (formerly of Dun & Bradstreet, now of Apple
Computer Co.) who did the Apple runs.

GAT-100 Graprics
The original 256-colorimaging system with
high resolution video FRAME GRABBER

for the S-100 bus. S

Capture and digitize a video framein 1/60of a
second. Select the best resolution for your
application, from 256 to 1280 pixels .5
per TV line. Display your digitized
or computer processed image ¢
with 256 gray levels or 256 %
colors on standard
B&W, NTSC or RGB

color TV monitors.

@ Highest possible quality 480x512x8 digital video
image presently available on the market

® Input capability from TV camera or other sources

@ Variety of synchronizatjon” choices

® 2 selectable video A/D conversion circuits

@ Cholce of 1, 2, 4, B, 16 or 32 bits per pixel

® 32K-byte image memory on the basic system

® 32, 64, 128 & 256K byte system capacity

® Lightpen input

® Photographic trigger control input

@ Software selectable system parameters

support software
SEND FOR FREE CATALOG

DIGITAL GRAPHIC SYSTEMS
== 441 California Ave.,Palo Alto, CA 94306 415/494-6088

4B0x512 Computergenerated

S-100 MICROSYSTEMS

NO MORE WAITING
FOR SORTS

by

Robert L. Sheffield
4505 Apache Road
Boulder, CO 80303

You have a list of names to put in alphabetical
order. So you sit down at your favorite computer and
load your bubble sort routine (written in BASIC). You
enter the names you want alphabetized - about a
hundred, say. You enter the sort command. And you go
away and read the newspaper while you computer sits
there grinding away on your list of names. in 10 to 20
minutes you may have your list in RAM ready to print.

YOU DON'T HAVE TO TAKE IT ANY MORE!

My First Sort Routine

My wife Janet, who is into businesses, clubs, and
children’s activities, always has lists of people’s names
she wants to put in alphabetical order. Soon after | got
my Poly 88 up and running reliably enough to complete
a losing same of Star Trek, Janet had names of about
100 of her summer swim club members scattered in
random order over several lists. Could my computer
(she wanted to know) put her names in alphabetical
order? My son Bob (who knew BASIC) and | (who knew
the alphabet) sat down with Poly and, going by a
magazine article on sorting algorithms wrote a bubble
sort routine along with the other programming neces-
sary to let Janet enter her names and print out the
alphabetized list.

Sure (I said) my computer could sort her list. She
entered her names and entered the command to sort.
Janet doesn't claim to be patient. It only took her a
couple of minutes to wonder where her alphabetical
list was. | consider myself to be very patient, but aftera
few more minutes | was convinced Poly had somehow
failed. When | had tested the sorter with only a dozen
or so entries, Poly had finished immediately. To see
what was going on this time, | stopped the program and
looked at the sort area. It was sorting. We let it finish. It
took more than 15 minutes. When we ran it again
without stopping, it took just under 15 minutes. Janet
was happy enough. Knowing the sort would take a
while, she could start it and go do something else while
it ran.

| figure there had to be a better way. There is.
Trees. Binary trees.

S-100 MICROGSYSTEMS

My Last Sort Routine

Rejoice! With the program on these pages, you
may never have to wait for a sort again. There isn't even
a sort command. You simply enter the things you want
alphabetized; as soon as you are through entering
them, list them - immediately - in alphabetical order!

This sample program is actually a utility program
that Janet now uses to create and maintain many of her
ordered lists. Look at the menu on lines 1200 through
1240. She may enter the things she wants ordered (1)
and delete them (4). She may list them, in ASCIl code
order, on the CRT screen (2) or on the printer (3). And
she can save it away for another day - list, program,
BASIC, and all -to tape (5). (I didn’t have disks yet when
| wrote this program).

This particular version takes a lot of RAM. | allow
for 200 63-character entries requiring 12600 bytes for
the listitself. There are also 3 directory entries created
by the program for each of the 200 data entries. In my
8-digit precision BASIC, each directory entry requires
5 bytes; therefore the directory requires 3000 bytes.
All the other variables add another 500 bytes. The
source code as you see it here takes 9100 bytes, but
densely packed it only takes 2800 bytes. The total
RAM required then is 19000 bytes plus any required by
your BASIC and your save and print routines. You can
cut the whole thing down the size and number of data
entries allowed. For example, 100 20-character entries
would take 12300 less bytes in my BASIC than the 200
B83-character version.

Binary Trees - Planting, Growing, and Climbing

This program is not really a sort program because
it does not sort anything. It just stores the user's
entries in the order he enters them, but as they come in
it makes a directory in the form of a binary tree. When it
lists the entries back at the terminal or on the printer, it
uses the directory to determine the order.

For example, look at Figure 1. Assume the list of
letters down the side - MNO, DEF, TUV, and so forth -
are the entries to be alphabetized and that they are
entered in the order shown. The columns show what

43

the directory for each entry looks like after each of the
subsequent entries is entered. The 3 digits in each
column represent 3 indexes into the list of entries. The
indexes are 0 (for MNO) through 7 (for JKL). The first
digitin each directory element is the back pointer - that
is, the index of the entry that this entry is attached to.
The second digit is the low pointer - the index of the
next entry made which was lower alphabetically than
this entry. The third digit is the high pointer - the index
of the next entry made which was higher. Note that the
indexes start with O like BASIC counts.

Figure 2 shows graphically the logical organization
of the directory -the binary tree. Itis called abinary tree
because there can be two branches from each node.
Each line which connects two boxes represents a low
or high pointer and a back pointer. The line between
DEF and GHI, for example, is DEF’s high pointer and
GHI's back pointer. When you ask for a list, the
program first goes down the leftmost legs until it gets
to the end (ABC) and lists it. It then starts looking for a
right leg, listing each node as it works its way back up.
In this case, it finds a right leg after it lists DEF. It
follows the right leg only to the next node (GHI). It
would next go all the way down the leftmost legs from
this node, but their aren't any, so it lists the node and
checks for a right leg. And so on.

Anyway, you don't have to wait for a sort. The
program makes the directory so fast, as you make the
entries, you don't know it's happening. When you ask
for a list, it starts listing immediately. On the tube, the
list comes out slower than just a straight list would, but
even with only three characters per entry, it comes out
faster than you can read it. On my printer, it comes out
just as fast as any other listing.

You may notice some slowing as you enter data
under certain circumstances. Janet was entering a list
the other day and noticed she was able to enter
several characters of an entry before the characters
began to appear on the screen. It so happened that the
lists she was entering from were already almost
completely alphabetized. Now the response time from
the program as it is taking entries increases as the
depth of the tree increases. While it can branch at each
level and thereby avoid comparing the new entry with
most of the old entries, it must compare the new entry
with exactly one entry at each level until it finds a place
to attach the new entry. The worst thing you can do
from the standpoint of response time is to enter your
list either in alphabetical order or in the reverse of
alphabetical order. The effect would be to create a
very tall tree with no branches.

Planting the Tree

The data areas required to define and manage the
list and the directory are set up in lines 1040 through
1130 of the sample program. Line 1040 establishes
the space for the list - 200 entries of 63 characters
each. Line 111 is the directory - 200 entries (starting
with 0) with 3 pointers each (back pointer, low pointer,

44

and high pointer). 11 gives the index for the next entry
coming in. It is easier to save it each time than to
calculate it. 12 is used to prevent overrunning the end
of the index. Lines 1070 through 1100 set up the input
record and provide for padding it with blanks. Lines
1120 and 1130 provide an easy way to delete an entry.
The program does not really delete an entry; it just
marks it deleted and then skips those marked deleted
when listing the entries in alphabetical order.

EXAMPLE OF DIRECTORY AFTER EACH ENTRY
~~-===-~INDEXES RELATED TO EACH ENTRY------=-

i HNO ! DEF ! TUV ! GHI ! GRS ! ABC 3 XYZ ! JKL @

P-0- § -1- 3 =2= & =3= 1 4= 1 -5= i -6- & <7

¥]
' ¥ 1 H s

MDD —ZTM
-
=3
e e s e O
cococoooo

NMNNNNNOO
E-R-R-E-X-J
RN
o0 C
CoO0C

-

coco

» Noooo

Growing the Tree

Lines 1450 through 1790 grow the tree. Lines
1450 through 1480 create the root when the user
enters his first entry. Line 1460 puts the entry in the list.
Line 1470 sets the next entry to be at index 1. The first
entry, of course, is atindex 0, the way BASIC counts. In
figures 1 and 2, the first entry is the entry MNO. The
indexes relating to the MNO entry are all zeroes
because, being the “root” entry, it has no back pointer
to a previous entry and no other entries are yet
attached to it.

Lines 1490 through 1510 compare each new entry
with existing entries. Line 1490 causes the compari-
sons to start with the first, or “root” entry. E1 (not the
same variable as dimensioned variable E1) will contain
the starting position of the next entry in the list to be
compared with the new entry less one. (BASIC starts
counting with one when it is counting characters in a
string.) Lines 1500 and 1510 do the comparison and
take the appropriate branch when the new entry is
either higher or lower than the old one it is being
compared with.

If the new entry is equal to the old entry, the
program drops through to lines 1520 through 1540.
These lines just turn off the deleted flag for the entry.
This has the effect of reinstating the entry if it had been
previously deleted. If it had not been deleted, the
deleted flag would already be off and the effect of
these lines would be to simply leave the list and the
index as is.

Lines 1580 through 1630 and lines 1670 through
1720 handle the situations where the new entry is
lower or higher, respectively, than the old entry. Take
the DEF entry in the example. Line 1500 compares
DEF with MNO, the root, and branches to line 1560
because DEF is less than MNO. Line 1580 calculates
the index of the old entry just compared - 0 since it is
the root and since the program just set E1 to O at line
1490. Line 1590 checks to see if the low pointer of

S-100 MICROSYSTEMS

MNO is O indicating that no entry lower than MNO has
as yet been entered. That is the case in this instance,
so the program branches to line 1620. Line 1620 puts
the index of the new entry from I1 - in this case, 1 -into
MNO’s low pointer. Look at Figure 1. MNO’s low
pointer (in the MNO column) after the DEF entry (in the
DEFrow)is now a 1 indicating that there is now at least
one entry in the list lower than MNOQ and that one of
them is the one represented by index 1.

Line 1630 branches to the common routine - lines
1760 through 1790 - for adding the new entry tothe list.
Line 1760 sets the new entry’s back pointer - in this
case 0 since it is attached to the root. Line 1770 tacks
the new entry onto the end of the list. Line 1780
indicates the index of the next new entry. Line 1790
goes to set the next entry.

The entry of TUV works the same way except it
goes through line 1670 through 1740 instead of lines
1580 through 1630. In Figure 1, after TUV has been
entered, MNO's index has a high pointer of 2indicating
that there is now at least one entry in the list which is
higher than MNO and that one of them is represented
by the index at 2.

Now let's see what happens when GHI is added.
Line 1490 starts the comparisons at the root, MNO.
Line 1500 finds GHI lower than MNO and branches to
1560. Line 1590 this time finds that MNQ's low pointer
is not 0 - that there is already an entry lower than MNO
in the list - and falls through to line 1600. Line 1600
calculates where this entry that is lower than MNQ is in
the entry list and line 1610 branches to line 1500 for
another compare. Line 1500 compares GHI with the
entry lower than MNO which we know is DEF. Since
GHIl is not lower than DEF, the program falls through to
line 1510.Line 1510branches toline 1650 since GHlis
greater than DEF. Line 1680 finds that DEF's high
pointer is empty and goes to line 1710 where GHI's
index is put in DEF's high pointer and then to 1740
where GHI is added to the list. In Figure 1, row GHI,

GRAPHICAL REFRESENTATION OF THE DIRECTCRY

A BINARY TREE

===t
1 MND
+4+-++
e + o +
+-4-+ +-4-4
VDEF P TUV
-+t HH-++
HE H
===t ===t f==mt f==—t
H H H H
+-4-+ $~4-+ +—+-4 +—4-+
iARC iGHI i @RS} 1 XYZ)
t=—=F +-—1+ +-—4 t--—t
+—4-+
VKL
+-—+
Fisure 2

S-100 MICROSYSTEMS

column DEF, see that DEF’s high pointer now shows 3
which is GHI's index. In column GHI, see that GHI's
back pointer is 1 which is DEF's index.

Climbing the Tree

Lines 2820 through 3150 find the entries in ASCII
code order and list them at the console or on the
printer. There are three rules for finding the nodes in
the binary tree in Figure 2 in the proper order:

1. Iif we came down from above, find the next node to
the left, if any.

2. If we came up from the left or there is no left pointer,
find the next node to the right, if any.

3. If we came up from the right or there is no right
pointer, go up unless we are at the root, in which
case quit.

There are two rules for determining whether itis time to
print a node:

1. If we came down from above and there is no left
pointer, print.
2. If we came up from the left, print.

The variable L1$ on line 2820 records where we
just came from. The variable E on line 2840 is the index
of the node we are at in the tree. To start the climb, L1$
is set to “A” indicating we are coming from above, and
Eis set to O starting us at the root. Lines 2850 through
2880 take us from the root down to ABC following
search rule 1 above. Neither MNO nor DEF were
printed since at the time we passed them the circum-
stances matched neither of the two print rules. At both
MNO and DEF there was a left pointer failing print rule
1, and at both we were coming down, not up from the
left as required by print rule 2. But at ABC we have just
come down from above and there is no left pointer, so
we should print it. Line 2850 finds that ABC has no left
pointer and branches to line 2890. Line 2890 finds that
we did not come up from the right. Since there was no
left pointer we could not have come up from the left.
That leaves that we came from above so we fall
through to line 2920. Lines 2820 through 3050 print
entries not marked deleted. Since there is no left
pointer, search rule 2 says look for a node on the right.
Lines 3060 through 3090 would find a node on the
right, but in this case there is none, so line 3060
branches us to line 3100. If we were at the root node,
line 3100 would end the search in accordance with
search rule 3, since there is no right pointer. But since
we are not at the root, rule 3 and lines 3110 through

3140 back us up to DEF after setting L1$ toindicate we
are coming up from the left. This time line 2860 finds
we did not come from above and sends us to line 2890
which finds we did not come from the right either -
leaving that we must have come from the left - so we
print DEF in accordance with print rule 2. After the print,
line 3060 finds that there is a right pointer from DEF
and lines 3070 and 3080 find it and flag that we are
coming from above. At GHI line 2850 finds no left
pointer and line 2890 finds that we did not come from

45

the right leaving that we must have come from above,
and in accordance with print rule 1 we print GHI. Lines
3060 through 3090 find JKL in accordance with search
rule 2 and lines 2850 and 2890 cause it to print in
accordance with print rule 1. Lines 3110 through 3150
work us all the way back up to MNO in accordance with
search rule 3. Notice that when we arrive at MNO, L1$
= L causing MNO to print. Lines 3060 through 3090
send us down the right leg from MNO in accordance
with searchrule 2. The same things happen on the right
branch from MNO as happened on the left except that
when we get back to MNO this time, L1$ = R. When
line 2890 sees the R it branches to line 3100 which
finds we are at the root and quits the search in
accordance with search rule 3.

For those who understand decision tables, | offer
Figure 3 without comment to help clarify the tree-
climbing process.

TREE CLIMEING DECISION TAELE

CONDIITIONS RULES

From above
Left rointer
From risht
Deleted

Right rointer
Tor node

111 Z<=<

ACTIONS

Print - - X -X - X
Go right - X X -
Quit - - - X X - -
Go back = - - - - - X X
Isrossible @ = =~ === =~ - - = = = = - - X

Figure 3

Variations

There are many ways to improve on the sample
program. Most of the ones | was aware of when |
started this project would severely complicate the
basic message of the article - the way to a fast
alphabetical listing. Furthermore, this project would
become one of those never-ending ones were | to
follow where each idea or misgiving leads me. | will,
however, discuss briefly some of the more useful
variations and extensions that have occured to me as
the project has developed. Be warned that | have not
tested any of these ideas. You may find them useful.
You also may find they will not work.

Pruning the Tree

As indicated earlier, the program does not really
delete entries. When the routine at lines 2140 through
2420 determines what the user wants to delete, it
simply puts a “D”in the string D1$ (defined inline 1120)

46

at the point corresponding to the position in the main
list of the entry to be deleted. When line 2930 in the list
output routine finds a “D” corresponding to an entry, it
skips listing that entry. This, of course, means that you
may find your list space used up even though you have
less than the allowable number of entries active. Away
to reclaim the space is to logically remove the index of
the deleted element and make that index available for
the next entry to be added. Suppose, for example, we
wanted to remove DEF from the structure shown in
Figure 2. We could do this by changing MNO’s low
pointer to point to either ABC or GHI. Let’s choose GHI,
for example. We complete rechaining by pointing
GHI's low pointer to ABC. If there had already been
something attached to GHI's low pointer we would
have traced down GHI's low pointer until we found an
empty one. This effectively removes DEF from the list,
but it does not make its space available for the next
entry. To do this would require complicating the tree-
growing routine somewhat. First we would probably
initialize the entire list with blanks and insert each new
entry instead of just tacking on each new entry as the
sample program does. We would initialize the index
list so that each set of indexes pointed to the next set;
for example, in any as yet unused index, one of its
pointers, say the back pointer, could be used to point
to the next index. 11, the index of the next available
entry, would initially point to the start of the list. Each
time an entry is added, I1 would be updated with the
back pointer of the index used for the new entry. Now,
when we delete an entry, the value of |1 is put in the
back pointer of the index of the deleted entry and the
index of the deleted entry is put in I1.

The result is a chain of available entries starting
with the most recently deleted entry, passing through
all previously deleted entries in reverse order of their
deletion, to the first never-used space in the list, and
finally through to the end of the list. We would also
need a root pointer to provide for deleting the root
entry. The sample program assumes that the first entry
is always the root entry.

Multiple Lists with One Index

One binary tree directory can be used with any
number of lists. You can, for example, have a list of
names, a list of street addresses, and a list of cities,
states, and zip codes using one directory to tie them all
together. You then print or display any of or combina-
tion of the lists ordered according to the index.

Multiple Indexes

Several binary tree directories canindex the same
set of several lists allowing for ordering in as many
different ways as there are directories. Continuing the
example of the address list, you could have two
indexes, one by name and one by city and provide for
listing them in either order.

S-100 MICROSYSTEMS

1000REM — SORTER USING BINARY TREE DIRECTORY

1010REM

1020REM — ENTRY LIST

1030REM

1040 DIM E1% (12400) NREM - LIST OF ENTRIES AS ENTERED
1050 I1 = ¢ \REM — INDEX OF NEXT ENTRY

1060 I2 = 199 NREM — MAX NUMBER OF ENTRIES
1070 DIM E23 (&3) \REM — ENTRY FROM TERMINAL

1080 DIM E3% (&3) \IB!—MSTOFIL.LQLTE;“
1090 FOR I = 1 TO 7\E3S$ = E3% = \NEXT

1100 E3 = LEN (E33%) \HEH-CINSTWLENCFIENTRY

1110 DIM E1 (199»2) \REM
1120 DIM D1s (200) \REM
1130 FOR I = 1 TO 10\D1s$ = Dis$ + *

4OREM
11S0REM - PRIMARY MENU OF FUNCTIONS:

1140REM

1170 PRINT CHR$(12) \REM - CLEAR CRT SCREEN
\REM — PRINT TAPE FILE NAHE
\REM

DIRECTORY OF ENTRIES
“DELETED" FLAGS FOR EA ENT
MNNEXT

1180 GOSUB 3220\PRINT

1190 PRINT "SELECT:"™ — OFFER SELECTION

1200 PRINT = 1 ENTER DATA"

1210 PRINT = 2 DISPLAY ENTRIES ON SCREEN IN N,METIEN.. CRDER"
1220 PRINT = 3 PRINT ENTRIES IN ALPHABETICAL ORDER

1230 PRINT * 4 DELETE ENTRIES*

1240 PRINT * S SAVE TO TAFE™

1250 INPUT = —>"sAS NREM — GET FUNCTION SELECTION

1260 IF LENCAS>T1 THEN 1300 \REM — LENGTH NOT 1 IS
\REM — SELECT LESS THAN 1 IS ERROR

1280 IF A$ > *S5" THEN 1300 \REM — SELECT MORE THAN S IS ERRCR

1290 ON VAL(AS) GOTO 1340518105 1740721207 2440

1300 PRINT AS»" NOT VALID" — SEND ERROR MESSAGE

1310 GOSUB X740 \REH"HJ..DW*‘TOWHESSAGE

1320 GOTO 1150 NREM — REDISFLAY MENU

1330REM

1340REM - ENTER DATA TO BE SORTED

REM
1380 PRINT CHR$(12) \REM — CLEAR CRT SCREEN
1370 PRINT “ENTER ONE LINE (&3 CHARACTERS) PER ENTRY™
1380 IF Il < I2+1 THEN 1420 \REM — IF OUT OF SPACE...
1390 PRINT ~0UT OF SPACE™ NREM — +++SEND MESSAGEr .o
1400 GOSUB Z7&0 +++HOLD SCREENssss
1410 GOTO 1150 T »«+AND REDISFLAY MENU
1420 INPUT™",E2S GET ENTRY
1430 IF E2$ = "* THEN 1150 NULL ENTRY MEANS L[ONE
1440 E23 = E23 + E3% PAD RIGHT WITH ELANKS
1450 IF I1 <> O THEN 14%0 IF THIS IS FIRST ENTRY ...
1460 E1s = E23 +e o JUST PUT IT IN LISTress
1470 I1 = 1 ve s BUMP INDEXr ..o
1480 GOTO 1380 v+ +AND GET NEXT ENTRY
1490 E1 = O INDEX OF NEXT TO COMPARE
1500 IF E2% < E1 E1+1,E14+E3 1560
1510 IF E2% > E1s(E1+1,E1+E3 1630

ERROR

s

i

1520 E = (E1/E3) + 1 \REM — MEW SAME;F JUST REINSTATE...
1530 DI EsE) = = = NREM ~— +¢oIT IF IT WAS DELETEDs s+ o
1540 GOTO 1380 NREM — ...AND GET USER‘S NEXT ENTRY
1S50REM

15&0REM — NEW ENTRY LESS THAN PREVIOUS

1570REM

\REM
1590 IF E1(Es1)=0 THEN 1420 \REM IF STILL LCWER ENTRY».sa

1710 ENK(Es2) = I1
1720 GOTO 1740

17 30REM
1740REM — PUT NEW ENTRY IN LIST

1600 E1 = E1(E,1)%xE3 \REM - FIND START IN LIST

1610 GOTO 1500 \REM — ...AND COHPARE IT WITH NEW

mm E#,—E’”'n \REM — ELSEs POINT TO NEW ENTRY...
1740 \REM -

A . FUT IT IN LIST

1650REM - MEW ENTRY GREATER THAN FREVIOUS

1650REM

1470 E=E1/E3 N\REM — OF COMP

1680 IF EI(Es2)=0 THEN 1710 \REM — IF STILL HIGHER Teas

1490 E1 = EIC(E»2) X E3 — +esFIND START IN LIST...

1700 GATO 1500 — «esAND COMPARE IT WITH NEW

AL

17SOREM

1760 EI(IJ.:O)-E
1770 Ei1s = E1% Es
1780 I1 = I1 + 1
1790 GOTO 1380

1B00REM
1810REM — DISPLAY ENTRIES ON SCREEN IN ALPHABETICAL ORDER

1820REM

1830 IF I1 < 0 THEN 1870 \REM — IF NOTHING IN LIST...
1840 PRINT "NO ENTRIES TO DISPLAY"\REM — ...SEND MESSAGEr...
1850 GOSUB 2780 seoHOLD SCREEN?sss

1860 GOTO 1150 « » «AND REDISFLAY FMENU
1870 PRINT CHR$(12)»s ELSEs CLEAR SCREEN» 4.
1880 O1s = *D° +++FLAG DISFLAYING? ++

i
3
B
:

1890 GOSUB 2800 »+« DISPLAY LISTr.e.
1900 PRINT "END OF LISTS# "» seeTELL USER WE ARE DONE>. .
1710 GOSUB 2760 +e+HOLD SCREEN?..

[A A |

1920 GOTO 1150 « s +AND REDISFLAY MENU

FIOREM

1940REM — PRINT ENTRIES IN ALPHABETICAL ORDER

17SO0REM

1960 IFI1=0THEN!"NO ENTRIES TO PRINT®\GOSUE2740\GOTO1150
1970

NREM - IF NO ENTRIES IN LISTres.
1980 PRINT “ND ENTRIES TO PRINT"\REM - ...TELL USERr...

1990 GOSUB 2760 NREM — oooHOLD SCREEN»+..
GOTO 1150 \REM = +.+.AND REDISPLAY
2010 PRINT CHR$(12)s \REM -~ » CLEAR SCREEN» ee s
2020 PRINT "TURN OoN AND ALIGN PAPER TO TOP OF
2030 GOsuB = e WAIT TILL USER’'S READYs.

\REM
NREM — «2o({QUIT IF HE WANTS TO)#s .
2050 O1% = “P° \REM
2060 P‘RINT CHR$(17)» NREM — «++START PRINTER7 0.
2070 2800 NREM — ¢« oPRINT LISTrese
MF‘RIN'I' CHR$(12)» NREM — «++.EJECT LAST PAGEs .+,
2090 PRINT COHR${19) NREM =~ +++STOF PRINTER?7 .+«
2100 GOTO 1150 \REM — ...AND REDISFLAY MENU"

S-100 MICROSYSTEMS

2110REM

2120REM - DELETE ENTRIES

21 J0REM

IF I1 < 0 THEN 2180 \REM — IF NO ENTRIES»s...
PRINT "NO ENTRIES TO DELETE"\REM — ...TELL USERvs...
:néom.nggo NREM — +¢+HOLD SCREENs...
mﬂ?ﬁo A 12 \REH mn REDISFLAY MENU

\REM -
2190 PRINT "ENTER UNIGUE mTER smmsmnn ENTRY TO DELETE"
INPUT = ->",E2% \REM — GET STRING IN ENTRY TO DELETE
IF E28% = " THEN 1150 \REM - GQUIT IF USER WANTS TO
PRINT “SEARCHING FOR ENTRY TO DELETE...*

5

I0 = LEN (E23) - 1 \REM — GET END OF STG TO COMPARE
FERI-J.TOLB‘(EI‘)-IO\RQ‘O SEARCH LIST FOR MATCH
IF E28 = E1 I»,I+I0) THEN EXIT 2280\REM — MATCH FOUND
NEXTWPRINT “NOT FOUND* — IF NOT FOUND» SEND SSAGE + s
GOTO 2190 = +ssAND GET NEXT STRING

TO DELETE 4 e
NPUT "ENTER ‘D TO DELETE OR RETURN TO LEAVE AS IS —>%»
H 2380 \REM — IF NOT TO DELETEs...
\REM — ...(GET IMDEX INTO FLAGS)»
DELETED

IF mu: I) O'ﬁ' THEN 2190\REM — ...IF ALREADY
D1 IsI)'- - \REM — o++RESTORE ENTRY#:ee

SUBYEURHBRUYRURNANNEY
§

-wss*rm' NREM ~ so+TELL USERs+es

g'xrgrwo \REM — .++.AND GET NEXT STRING
IF AS < "D THEN 2190 \REM — IF NOT RECOGNIZED» ASK AGAIN
I=I+%1 \REM — ELSE (DELETE)» INDEX FLAGS
DI I,I) = =D \REM - DELETE ENTRY

2410 PRINT \REM - TELL USER

2420 GOTO 2190 \REM — GET NEXT STRING
REM

2440REM -~ SAVE TO TAPE

24S0REM

2440 PRINT CHR3(12)» \REM

2470 PRINT "NAME OF FILE TO SAVE

\REM
POKE mt-mm I-I))\Rﬂ"l
NEXT

=20

2530

540

=50

=60

=70 o

2580 PRINT "SAVING “» \m == .
550 IZ20\PRINT NREM = «e.

2400 PRINT "TURN TAPE ONJ "»\REM — LET USER TURN TAPE ON
2610 GOSUB 3170 NREM — WAIT FOR READY SIGNAL
2820 IF R1s="R" THEN 24640 \REM = IF USER NOT READYr...
25630 PRINT "NOT SAVED" NREM — oo oWARN HIMs oo

2540 2760 NREM = ++.HOLD SCREENs...
24850 GOTO 1150 \REM — ...AND REDISFLAY Pﬂu
2850 { 4352r S1440—FREEC 0))\REM — PUT ALL ON TAFE
2870 IF N < 1 2700 \FEH*XFFILEJLSTDU‘E"ED-...
2680 NREM — +..TELL USER WE...
2690 PRINT * 5 NREM = ++.SAVED IT

2700 IF N O 2 THEN 2730 NREM — IF FILE JUST LOADEDs s«
2710 NREM = +++.TELL USER WE...
2720 PRINT " LOADED"™ NREM — +..LOADED IT

2730 GOSUB Z7&0 \REM -~ HOLD SCREEN

zr‘iomcmn 1150 \REM — REDISPLAY MENU

4

27&0REM - HOLD SCREEN UNTIL USER GIVES CONTINUE SIGNAL

770
Z780 INPUT "RETURN TO CONTINUE " ,X1$\RETURNMN

2790REN
2B00REM — DISPLAY OR PRINT LIST IN ASCII
2810REM ORUER
2820 L1s = “A" \REM — FLAG COMING FROM ABOVE
=1 MREM — SET LINE COUNTER
2840 E = \REM - INDEX OF
2850 IF E1C(E»1)=0 THEN 2890 \REM — IF THERE: Flzszaﬂﬂ‘érmv...
2860 IF L13<T*A" THEN 2850 \REM — ...AND WE CAME FROM ABOVE:.
2870 E = EL(Esl) NREM — ...FIND THE...
2890 IF L1s="R* THEN T pprEONeR KNTRY

=R~ 3100 \REM - IF FROM RIGHT .
2920 E0 = E + 1 \REM - I i ere AT
2930 IF DIKEO,E0) = "D* THEN 3060
2940 REM — IF ENTRY NOT DELETEDr...
2950 E0 = E % E3 \REM — +++.FIND ENTRY TO SEND»...
2960 PRINT E13(EO+1,EQ0+ES) “REM — ...SEND ITre..
2970 L= L + 1 \REM = .o.COUNT LINES SENTs...
2980 IF O1$<"D" THEN 3020 \REM — ...IF DISPLAYING...
2990 IF L < 16 THEN 3020 NREM — ...AND SCREEN FULLs...
3000 2760 \REM — +..HOLD SCREEN.
010 GOTO 3040 NREM — .. .AND RESET PAGEs OR...
3020 IF O13<"P= THEN 3080 \REM -
3030 IF L < 55 THEN 30&0 \REM ~-
3040 L = 1 \REM —
3050 PRINT CHR® 12) \REM — ...GET NEXT
3060 IF E1(Es2)=0 THEN 3100 \REM — IF THERE IS A RIGHT LEGr.ss
3070 E = EL(Es2) NREM = +ooFIND ITroos
3080 Lis = "A° \REM — oo +FLAG FROM ABOVEso oo
3090 GOTO \REM = +.+AND CHECX NEXT NODE
3100 IF £ = 0 THEN RETURN _ \REM — IF AT TOP NODE, GUIT
3110 IF E=E1(EI(E»0)»s2) THEN L1$="R* ELSE Lis==L"“
3120 REM ~ ELSEs FLAG IF WE ARE ONeeo
3130 REM — oe+A RIGHT OR LEFT LEGress
3140 E = EA(Es0) NREM — +o+GET PARENT NODErseoe
3150 GOTO 2830 \REM — ...AND CHECK IT OUT
3140REN

3170REM — WAIT FOR “READY’ OR “GUIT’ SIGNAL
31

BOREM
3190 INPUT “TYPE ‘R’ WHEN READY OR RETURN TO QUIT —>",Ris
3200 RETURN

I210REM

3220REM — DISPLAY CURRENT TAPE FILE NAME

IZIZOREM

3240 FOR I =1 TO 8

3250 PRINT CHR® PEERC4793+1))
S0 NEXT
327ra

47

Lists on Disks

Those of you who have direct access mass storage
systems can build a binary tree directory to order a list
of record identifiers. This would allow you to order
records stored on your direct access device. You
could do “instant sorts” on large quantities of data.

Recursive Languages

Those of you who are lucky enough to be using
a high level language that supports recursion or who
are patient enough to code in assembler or machine
language can eliminate back pointers and the indica-
tors telling which direction the tree climber came from
and all the code associated with them. Recursive tree
handling routines call themselves instead of looping to
the beginning of themselves. At each call, they save
their activation records - all values of variables at the
time of the call - in a push down stack. The index of the
node they are onis inthe activation record. Eachreturn
pops the activation record restoring the values it was
working with at that level. The program keeps track of
the node it was working with by the level it is at. It keeps
track of the direction it was coming from by the point of
the call and return. Recursive routines look much
neater - academics say more elegant - than the clumsy
loops and branches in the example.

Final Note

A simulated sortusing a binary tree index is not the
answer for all sorting problems. Some applications
require that the entries really be sorted. Well, the
binary tree index can be used to really sort something
by simply writing the records to storage instead of to
the printer or terminal. And it will be faster than most
methods for that purpose if the inputis well disordered.
But take note: Not counting the index or the extra
program space, to do a real sort, the binary tree sort
will take nearly twice the space that a bubble sort will
take. That can be devastating for the microcomputer
owner.

But for many purposes the binary tree sort is
effective and provides much better overall response to
the user.

But most of all, it is fun to climb trees.

S-100 COMPUTERS

AT SENSIBLE PRICES

NORTHSTAR SPECIALIST
HAZELTINE, IMS,
TELEVIDEO, NEC,
ANADEX

BUSINESS
SOFTWARE

COMPUTERS BY

FREEPORT UTILITIES COMPANY
| 40 NORTH MAIN STREET
[= FREEPORT, NEW YORK 11520

= (516) 379-2400

48

LETTERS TO
THE EDITOR

Sol:

Please publish the new number
for CBBS/Chicago. Randyis moving,
s0 a new number is necessary.
Effective 3/31/80, (312) 528-7141
will be disconnected, and the CBBS
installed at the new number:

(312) 545-8086

Ward Christensen
CACHE

Dear Sol & Russ:

I'm sure |am not alone when I say
that it's about time for a magazine
such as yours.

We do get a little tired of sifting
through TRS-80, Apple, Pet, etc.
looking for something applicable to
our S-100 systems.

Best of luck to you.

Lee Osborne
Orange, Calif.

Dear Mr. Libes:

Please enter my subscription to
S-100 Microsystems, starting with
issue No. 1, if possible. A check for
$7.50is enclosed. Mailing address
is given above.

I would like to see an article
directed at a specific area that, |
suspect, impacts many of us. That
is, how can one buy new, state of
the art, S-100 boards with reason-
able confidence?

| have purchased most of my
hardware through a local dealer or
through a well established mail-
order source. There are, however,
many new interesting boards using
the 8086, 6809, color graphics,
and new CPU's waiting in the wings
which are advertized in the com-
puter magazines. Local dealers
usually don't handle such items for
some time.

Perhaps your publication or some
unbiased and impartial person
would be willing to evaluate some
of these interesting items and in-
dicate their availability, the response
of the manufacturer, the difficulty of
getting them up and running, etc.
Perhaps the manufacturer would
supply a sample or a loan, in retumn
for a review,

| suppose the bottom line is, who
is going to do this and how is he
going to get paid? Perhaps you or

your readers would have some
ideas.

Stanley W. Haskell
Arlington, Mass.

Dear Sirs:

Post haste enter my subscription
to your S-100 Microsystems for 3
yrs. so | can start dropping my
others as they have turned to TRS
etc. Newsletters. My check for 3
yrs. (21.50) enclosed.

John W. Neel
Apopka, Fla.
Dear Mr. Libes:

| recently subscribed to your
magazine in the hope that it would,
in its concentration on the S-100,
deal with the information and ‘need
to know’ problem that | have been
experiencing in this area.

My cumulative frustrations were
the source of my expectations for
the first issue, unfortunately | re-
ceived very little in the way of relief
when Ireceived my first copy, hence
this letter.

For the sake of brevity my list of
‘wants' follows.

1. I am only interested in products
which are fully compatible with the
new |IEEE S-100 standard.

2. I need help in identifying specific
products and their manufacturers,
and in identifying from any one
source those products which meet
the standard and those which do
not.

3. I need critical review information
on specific products and compari-
sons within classes of product (e.g.
mainframes, memory boards, pro-
cessor boards, etc.)

4. | need information on the future
direction of the IEEE S-100 product
industry, with future product inten-
tions of individual companies.

5. Ineed software information par-
ticularly in the Operating System/
Utilities areas, with feature com-
parisons, family variant identifica-
tion, and rational critiques.

One could go on, but no doubt
others will give you reactions in
other ways. For the moment then
my best wishes for your success in
filling a real need in the micro
spectrum.

Derek Grieves
Chestnut Hill, Mass.

S-100 MICROSYSTEMS

MIDWEST
AFFILIATION

OF
COMPUTER
CLUBS
&

FRANKLIN

UNIVERSITY

= € \d¢'9886 -19% (17[9) :uoueuuo;u; 210w IO

®CO-SPONSORSe

5th ANNUAL
COMPUTERFEST

Franklin University

301 E.Rich Columbus, Ohio
JUNE 20-22

* See the latest in small business + Browse through the large,
and personal computers flea market

¢ Learnfromstimulating seminars * Pre-register

= Participate in technical work- * Park free in a convenient,
shops location

To Pre-register, send $3.50 to:
COMPUTERFEST ’80

C/o Paul Pittinger
215 Delhi Ave.,Apt.d
Columbus, Ohio 43202

[%ads lead to Columbus -Heart of the Midwest~

)

50

Linear Programming -
Continued From Page 29

EDIT: LCIST, BCUILD, MCODIFY. QCUIT (4.8 L

LIST WHAT FILE? DIET. DATR

STARTING AT WHAT RECORD? @

BORRBEERA S KSR AL A R SRR UR BN RRYBNEBEESEBEERE Soovaasunne

.

AN NN TN NE DA RERARADAAAARARABNNNNE®

DIET 4 14

DIET PROBLEM EXAMPLE
NUTR. 1 74, 2000
PROT. 2 14 7000
CALC. 3 8. 140008 >
PHOS. 4 8. 5S5eee8)
CORN 1 2 406089
0ATS 2 2 32000
MAIZE 3 2. 18000
BRAN 4 2 14000
HIDDL -] 2. 44008
LINSD. 6 3. 82000
COTTON ? 3 55080
SOYML. 8 3. 70808
GLUTEN 9 2 68000
GRITS ie 2 54800
ENUTR. 11 0. 20ceo
EPROT. 12 8. ecoes
ECALC. i3 2. 82ees
EPHOS. 14 8. 99008
ROW 4 COL 41 78 coee
ROMW 1 COL 2 70 1000
ROW 4 COL 3 89 1600
ROW 1 COL 4 67 2000
ROM 41 COL S 78 9060
ROW 1 COL 6 77 0000
ROW 1 COL 7 70 6809
ROM 41 COL 8 78 Soed
ROW 41 COL 9 76 30080
ROM 1 COL 10 84. 5080
ROW 1 COL 14 -1 068008
ROW 2cCOL 4 €. 50800
ROW 2coL 2 S. 48000
ROW 2COL 3 8. 80008
ROW 2COL 4 13 7008
ROW 2COL S 16 ieee
ROW 2 COL 6 28 4000
ROW 2 COL ?7 32 s@ee
ROW 2 COL 8 37 1ee0
ROW 2COL 9 24 3800
ROW 2 COL 10 8. 38608
ROW 2 COL 12 -1 90880
ROM 3 COL 1 0. 8200000)
ROW 3COL 2 @. 8900009)
ROW 3 COL 2 8. 8308608)
ROW 2 COL 4 8. 148000)
ROM 2 COL S 8. 8996093)
ROM 2 COL 6 8. 418008)
ROW 3 COL 7 8. 200000 >
ROW 2 COL 8 9. 268000)
ROW 3 COL 9 0. 480000)
ROW 2 COL 18 a. 2200009 >
ROW 3 COL 13 -1 90000
ROM 4 COL 1 8. 278608)
ROW 4 COL 2 8. 248008)
ROW 4 COL 3 8. 3000008)
ROW 4 COL 4 1 29000
ROW 4COL S 8. 710008 >
ROW 4 COL 6 8. 868009)
ROW 4 COL 7 1. 22000
ROM 4 COL 8 a. 5500008 >
ROW 4 COL 9 0. s2e008)
ROM 4 COL 18 8. 716000)
ROW 4 COL 14 -1 00008

2
3
B
2
]

EDIT: LCIST, BCUILD. MCODIFY.

QUIT (18] Q

Listing 6: Data File For Diet
Problem

Listing 7: Diet Problem Run

ENTER DATA FILE NAME —> DIET. DATA

PROG. NAME = DIET
NO. ROMS = 4
NO. COLS = 14

START PHASE 1

ITERATION 1 OF DIET
ITERATION 2, OF DIET
ITERATION 3 OF DIET
ITERATION 4 OF DIET
ITERATION 5 OF DIET
END OF PHASE 1 FOR DIET AFTER 5 ITERATIONS

LIST & X ARRAYS

1 EPHOS i4 8. 1442062)

2 LINSD. 6 8. 332143 >

3 GRITS ie 8 575471)

4 ECALC i3 @ 122770)

S M i9 =2. 73837

6 M2 2e 9. 0880862
START PHASE 2

ITERATION 1 OF DIET
ITERATION 2 OF DIET
ITERATION 3 OF DIET
ITERATION 4 OF DIET
ITERATION 5 OF DIET
END OF PHASE 2 FOR DIET AFTER 5 ITERATIONS

LIST & X RRRAYS

i MAIZE 2 8. 187718)
2 GLUTEN 5 8. 178495)
3 MIDDL. S 0. 585280 >
4 EPHOS. 14 8. B614213)
oMl 19 ~2. 27980

5 M+2 20 -0. 02eBea30

DIET PROBLEM EXAMPLE

PROBLEM 4 -- GAMING STRATEGY

If you started here, go back to the beginning, and
start there. After all, | had to save a carrot to induce
reading this, didn't I?

In the theory of games, the principle characteristic
of a game is the PAYOFF MATRIX. Itis the expression
of the gains of Player 1 for all combinations of his
possible plays and those of his opponent (Player 2).
We choose Player 1 (P1), and say we desire to
maximize his payoff; the variables are the playing
strategies which he and his opponent may select.
Usually, these strategies are given as a vector of
probabilities, since if his strategy is fixed, it's not a very
interesting game. As an example, in the game of calling
‘heads’ or ‘tails’ on the flip of a fair coin, there are two
‘pure’ strategies -- always calling ‘heads’ or always
calling ‘tails’. We generally want to calculate the best
‘mixed’ strategy, in which the player uses each of the
pure strategies some fraction of the time. If the game
has two players, it is called a TWO-PERSON game. In
addition, if the sums of the wins and losses balance, it
is also called a ZERO-SUM game. A game of poker, in
which the ‘house’ cuts the pot, is NOT a Zero-Sum
game.

S-100 MICROSYSTEMS

TSR

Another parameter of the game is the value -- this
is the expected (in a statistical or probabilistic sense)
gains by P1 if both he and his opponent adopt their
optimal strategies. The game is ‘fair’ if this value is
zero, otherwise the game is said to be biased in favor
of one of the players.

If the payoff matrix is given by A, P1 selecis a
strategy X = (X1,X2,..Xn), and P2 selects as his
strategy Y = (Y1,Y2,...Yn), then the game’s value, V, is
given by:

V=X*A*Y
where matrix multiplication is indicated.

Let us now examine a game, and ask ‘is it fair?’. As
an example, let us use the ‘skin game’, which has the
following rules:

The two players are each provided with
an Ace of Clubs and an Ace of Diamonds.P1is
also given the Deuce of Diamonds, and P2 the
Deuce of Clubs.

In the first move, P1 selects one of his
cards, playing it face down. P2 then selects
one of his cards, and the two cards are
compared with the following payoff -- P1 wins
if the suits match; P2 wins if they do not. The
amount of the payoff is the numerical value of
the card shown by the winner. If the two
Deuces are shown, however, the payoff is
zero.

: ‘@" o SEIE :
§: 6309 SINGLE BOAHD COMPUTER
bololsiclo clbianoms:l pe e

b IEEE §.100 Praposad Standard
a2k RAM i

'+ 4KIBKI16K ROM

]

®

|| 1+ PIA, ACIA Ports | Pail
» 'adSMOCN; ﬁaoeMonﬂorAvallable W
4 B‘Jﬂrﬂ&m\nual FresgnllyAvailabla g

) BOARDS FROM ADS ARE SOLDER

MASKED, WITH GOLD GONTACTS, & PARTS.. |

LAYQUT SILK SCREENED ON BOARD: -
Add 50¢ postage & handling per |tem il
1. msidentsaddsalestax gap 8 f

Sound Effects . .
-© NODEMACGR *
: S-100 bus . R Applellsm bus

ADD SPACESHIP’ SOUNDS F‘HASEHS SN

GUNSHOTS, TRAINS MUSIC; BIRENS; ETCH

UNDER SOFTWARE GONTHOLH' i Y il
*_SoundboardsUse GIAYS 891010 sto Ganeréle we| e | b
FrbgrammabteSOundEﬁetls g A en |

| * on BoaraAucno Amp Bread‘boam Arga Wﬂh +5 &GND

¢ Noise Sources @ Envelope Generators .. hro Pons

From these rules, we can construct the payoff
matrix. P2’s possible selections are shown across (the
top), and P1’s are shown at the (left) side:

| AD AC 2C
AD 1T -1 2
AC 4011
2D 2 1 0

It can be shown that the optimum strategy, X, for
P1is (0,3/5,2/5); for P2, his strategy, Y, is (2/5,3/5,0).
These strategies mean the P1 plays the Ace of
Diamonds never (0), the Club Ace 60% of the time, and
the Diamond Deuce 40% of the time. When we compute
V for this game, we find that its value is not zero - it is
1/5, which means the game is not fair, but is ‘rigged’ in
favor of P1 (since the value is positive). We say that P1
has an advantage.

Problem Statement and Problem Formulation

Given a payoff matrix, A, and stragegies for the
players P1: (X1,X2,X3) and P2 : (Y1,Y2,Y3), where the
strategies are expressed in terms of probabilities, then
the payoff, V, to P1 is:

X1-Xo-2X3 =V if P2 selects Y1,

X1 +X-X3 =VifP2selects Y2, and
22Xy + %o =V if P2 selects Y3.

. Sound Effects ... it
& © NONEMAEI T

f -'PCE&Manuul BQﬁ(NM: xBS(NHII}

H"' lJ\TTENTI{)N APPLEII USERS'!H" !
. Assambled and Tested NM uumnnownnunbmm o] B ot

Callo;ertainrDetalla, - Pl i ’ m

: Ackarman Dlgltal Syslbms, Inc., TI0N. York Road, Suite 208, Eimhurst, lllinois 60126

S-100 MICROSYSTEMS

51

52

Listing 4: Data File Transportation

EDIT: LCIST.

Problem Example

BCUILD, MCODIFY, QCUIT [4. 81 L

LIST WHAT FILE? TRANSPRT. DATA

STARTING AT WHAT RECORD? @

8: @ TRANSP

PARRSUENREBRURREBBNRBRNRNRILENGGALREBvovauawnn
*mmmﬂ\mﬁﬁmﬁmﬁmho\mﬁmhmmmﬁmm‘&s&&&.&&&‘*M”N””””

45

EDIT: L(IST,

:

QEQEEEEE§§§§§§§

gEE3CCFEeC BRI RRCREEEER agRp

s\aﬂumo\muua; ABAWWWWRNRRNNEERRR

|
.
|

BRBERBBRRRRRRBRRPRRRRRARR
RosBvwBavoankESvonansunegpy o ianaunnvauawnn
HHHH T HHHEHTH BT

PREPPRRPPRPRRRRRRRRRRRR

m
]

BCUILD, MCODIFY., QCUIT (1.8] Q

Listing 5: Transportation Problem

Run

ENTER DATA FILE NAME ——> TRANSPRT. DATA

PROG. NAME = TRANSP

NO. ROWS =
NO. COLS =

START PHASE 1

ITERATION 1
ITERATION 2
ITERATION 3
ITERATION 4
ITERATION S
ITERATION &
ITERATION 7
ITERATION 8
ITERATION 9
END OF PHASE

ARRARIKKKRS

-

7
11

FOR TRANSP RFTER 9 ITERATIONS

LIST & X ARRAYS

€31

Ci3
Ciq
3
c32
M+l
W2

WONAMRALWNP
1

sloprppma

§§§§§§§g§

Bhosvawliow

START PHASE 2

ITERATION 1 OF TRANSP
ITERATION 2 OF TRANSP
ITERATION 3 OF TRANSP
END OF PHASE 2 FOR TRANSP AFTER 3 ITERATIONS

LIST & X RARRAYS

i c1 9 4. 6ooee
2 C12 2 €. boeoe
3 14 0. 868060
4 C33 11 6. 62ase
5 C24 8 6. 68080
6 22 7 2. 86eee
7 C32 ie 0. eeese
8 M 19 ~28. 8020

9 M2 20 0. 6068

TRANSPORTATION PROBLEM EXAMPLE

PROBLEM 3 -- THE DIET PROBLEM

Several models of the diet problem have been
constructed in the past, some with small success.
They all have in common that the minimum cost diet
consists mainly of only a few cheap food elements; the
diets would not appeal to very many. In fact, they have
been described as poor in variety even for a slave labor
camp. One may extend the model, including in the cost
factors such other considerations as taste, ethnic
preferences, and food fads. These extensions invari-
ably increase the cost of the minimum-cost diet. One
areain which considerable success has been achieved,
however, is in the analysis of the minimum-cost feed
mixes for farm animals. The reason for this success is
probably due to the fact that they don't complain about
a monotonous diet.

Problem Statement

Our problem is to determine the minimum-cost mix
of feeds for dairy cattle. There are four nutrients
considered essential in the following minimum daily
amounts:

Digestible nutrients : 74.2 Ibs/day
Digestible protein : 14.7 Ibs/day
Calcium : 0.14 Ibs/day
Phosphorous : 0.55 Ibs/day

There are 10 commonly available feeds, with the
amounts (in Ibs) of nutrient, and the cost --datain Table
1. Nutrient content is given in pounds per 100 Ibs. of
feed; cost is based on 100 Ibs.

S-100 MICROSYSTEMS

&

&

AN

R
0 56\((\ ‘\Cz \)\6(

.Q(\G i é OO((\Q

-

260 Tutorial: Design of Microprocessor Systems
(December 1979), John H. Carson

(262 pp.) $12.00/816.00
This tutorial is intended for those in-
volved in the design of microproces-
sor-based systems. Presents the en-
tire design effort, with emphasis on
system configuration, software devel-
opment, and system testing. Stresses
the wide range of available micro-
processor products and the develop-
ment tools for microprocessor-based
design. Topics covered: review of mi-
croprocessor-based systems, design
steps, testing and development tools,
design alternatives, and current
trends affecting design. Contains 23
reprints.

075 Tutorial: Software Design Techniques
(Second Edition, April 1977)
Edited by Peter Freeman and Anthony |. Wasserman

(294 pp.) $9.00/$12.00
Intended for both beginning and expe-
rienced designers, this book contains
23 key papers as well as original
material explaining design concepts.
The contents include the following: in-
troduction, framework of design, ele-
ments of design techniques, design
tools, design methodologies, exam-
ples, and an annotated bibliography.

259 Tutorial: Microcomputer System Design and
Techniques carol Anne Ggdin

(432 pp.) $12.00/$16.00
The purpose of this anthology is to
capitalize on the programmer’s expe-
rience with systems and software in
order to introduce and clarify the dif-
ferences among micros. The volume
is composed of 53 different papers
divided into seven topics, covering
micros and their applications, micro-
processor architecture, microcom-
puter buses and systems, storage
technology, input/output interfacing,
programming and languages, man-
agement, and tools. Text is aimed pri-
marily at programmers, analysts, and
technicians as well as system engi-
neers and project managers who may
become responsible for or participate
in the implementation of microcom-
puter systems.

268 Tutorial: Software Design Strategies
(November 1979)
Edited by Glenn D. Bergland and Ronald D. Gordon

(430 pp.) $12.00/$16.00
This tutorial begins with the Jackson
design methodology and delves into
logical construction programs and
systems, as well as structured design
and stepwise refinement based on
functional decomposition. It displays
numerous methodologies and tech-
niques and concludes with PSL/PSA
structured documentation and analy-
sis, program design languages, and
other tools for software design strat-
egies. Contains 32 reprints, with ex-
amples and exercises.

272 Microprocessors and Microcomputers
(Second Edition), Edited by Portia Isaacson

(298 pp.) $9.00/$12.00
Selected papers from COMPUTER,
organized and introduced by the tech-
nical editor. Sections on architecture,
software, and applications include the
standard specification for $-100 bus
interface devices and special articles
on modular programming in PL/M,
microprocessor networks, and micro-
processors in automation and com-
munications.

=== Return to: Order Desk, IEEE Computer Society, 5855 Naples Plaza #301, Long Beach, CA 90803 =———

ORDER MEMBER | NON-MEMBER
NO. TUTORIAL TITLES QTY. | PRICE PRICE
075 | Tutorial: Software Design $9.00 $12.00
Technigues

259 | Tutorial: Microcomputer System 12.00 16.00
Design and Technigues

260 | Tutorial: Design of Microprocessor 12.00 16.00
Systems

268 | Tutorial: Software Design 12.00 16.00
Strategies

272 | Microprocessors and 9.00 12.00

Microcomputers

Overseas purchases:
Remit U.S. dollars on U.S. Bank.

California residents add 6% sales tax

[0 Billme and add $3.00 billing charge
O Check Enclosed
e Total
[J Bill Visa/BankAmericard
! Optional Shipping Charge
[Bill Master Charge (4th class, no charge)

Total

Charge Card Number Expiration Date Signature

Name (please print) Member No

Address

City/State/Zip Country

Table 1
Nutrient content and cost of dairy feeds

No. Feed Nutr. Prot. Calc. Phos. Cost
1 Com 786 6.5 0.02 0.27 $2.40
2 OQats 701 9.4 0.09 034 252
3 Maize 80.1 88 0.03 0.30 218
4 Bran 67.2 13.7 014 129 214
5 Middlings 789 16.1 0.09 071 244
6 Linseed Meal 77.0 304 0.41 086 3.82
7 Cottonseed Meal 706 328 0.20 1.22 3.55
8 Soybean Meal 785 371 0.26 059 3.70
9 Gluten 763 213 048 082 2.60
10 Hominy Meal 845 8.0 022 071 254

We need four additional variables (having no cost),
which represent excess nutrients in each of the four
categories. These ‘slack’ or dummy variables are
required because the four constraints on daily nutritional
requirements are given as “at least”; we need to
include them to convert the inequalities into equalities.

Problem Formulation

Let X4 through X, represent the amount of the ten
feeds shown in table 1 that are included in the mix, and
X441 thru X;4 the amounts of excess nutrients. Then,

(78.6)*X; + (70.1)*X; + (80.1)*X5 + (67.2)* X4
+ (78.9)*X5 + (77.0)*Xg + (70.6)*X7
+ (78.5)*Xg + (76.3)*Xg + (84.5)* %10
-X41 = 74.2 (Digestible Nutrients)

The “Mainframe.

(or how to get a good night’s sleep)

T

5075 S. LOOP E., HOUSTON, TX. 77033 (713) 783-2300 TWX. 1 910-881-3639

54

(8.5)*X; + (9.4*X; + (8.8)*X3 + (13.7)*%4
+ (18.1)*X5 + (30.4)*Xg + (32.8)*%7
+ (37.1)*Xg + (21.3)*%g + (8.0)*X40
-X42 = 14.7 (Digestible Protein)

(.02)*X4 + (09)*X + (03)*Xg + (.14)*X4
+ (09)*Xs + (.41)*Xg + (:20)*X7
+ (.26)*Xg + (48)*Xg + (:22)*X10
-X13 = 0.14 (Calcium)

(.27)*Xq + (.34)* X5 + (.30)*X3 + (1.29)* X4
+ (.71)*X5 + (.86)*Xg + (1.22)*%X7
+ (.59)*Xg + (.82)*Xg + (.71)*X40
- X44 = 0.55 (Phosphorous)

The data file is shown in Listing 6. We use 6-
character abbreviations for the feeds and excess
nutrients. Listing 7 shows the program run, with the
following results (note that feed quantities are in units
of 100 Ibs.):

Three basic feeds are included -- 18.77 Ibs of
Maize, 17.02 Ibs of Gluten, and 58.53 Ibs of
Middlings. They provide 0.0614 Ibs of Excess
Phosphorous, and the cost is $2.2798 for this
mix.

OK for cattle, | guess, but | wouldn’t want to live on it.

There is no other mainframe that compares
with the performance and reliability of a TEI
mainframe. Its unique design enhances sub-
stantially the reliability of any S-100 computer
system by providing high efficiency power,
brown out protection, line noise rejection and a
sophisticated high-speed bus packaged in a
durable enclosure.

TEImanufactures the broadest selection of S-
100 mainframes . . . 8, 12 and 22 slot, desk top
and rackmount models. Whether your require-
ments are standard or custom, TEl's extensive
manufacturing capacity and know-how can
solve your mainframe problems today!

Successful OEM’s, system integrators and
computer dealers worldwide rely on TEI main-
frames and enjoy a good night's sleep knowing
that their systems are still running. Call TEI to
day . ..youtoocanenjoyagoodnight's sleep!

More than a decade
of reliahility.

S-100 MICROSYSTEMS

Presents:
Personal Computing

and Small Business
Computer Show

August 21,22,23, 24th at the Philadé.iphia Civic Center

Major exhibits by the industries leading companies
Thursday, Aug. 21st, Dealer Day ——— 12 Noon to 6 P.M.
Friday and Saturday, Aug. 22, 23rd 9 A.M. to 6 P.M.
Sunday, Aug. 24th 10 A.M. to 5 P.M.

Free Seminars @ Robotics Contest @ Antique Computer Display
Special Seminars and Tutorials about Computer Music, Saturday, Aug. 23rd

3rd Annual Computer Music Festival, Saturday Evening, Aug. 23rd
(Computer Music Festival is sponsored by the Philadeiphia Area Computer Society-Tickets on sale at show)

® Computer Visual Arts Festival, Sunday, Aug. 24th

Advanced Registration
Saves Time & Money COMPANY NAME

[J Send Dealer-Retailer (4 days) NAME
Registrations at $10. each, $12. at door
for Thursday-Sunday, Aug. 21, 22, 23, STREET
24

O Send

days) at $8. each, $10. at door for
Friday-Sunday, Aug. 22, 23, 24 only. PHONE

\
\
\
|
i
|
\
= Advanced Registrations will be mailed late
\
\
L

July - early August. No Advanced Registra- Send To:

tions accepted after Aug. 8th. PERSONAL CDMPUTING 80

[J Send Exhibitor infcrmation or Phone

\
\
\
\
Regular Registrations (3 CITY STATE zZIp |
\
\
\
|
609-653-1188 Rt. 1, Box 242, Warf Rd., e Mays Landing, NJ 08330 \

Since P1 chooses his plays in some manner, not
yet known to us, we can say that P1 will gain, in these
cases, at least the value, V. These equations indicate
that P1 can maximize his gain by selecting a set of
plays (X1,X2,X3) which will maximize his payoff for any
choice that P2 may make. This is a classical problem
for linear programming, if we add one additional
constraint:

X1 +X2+X3=1

since we are defining the strategy in terms of the
probability that P1 makes any one of the plays available
to him. Let us take a look at another game, with the
following payoff matrix:

3 -2 -4
A= -1 4 2
2 2 6

We would like the answers to the following questions:
1. Is the game fair?

2. What strategy would P1 use if he desires to
maximize his gains (or minimize his losses)?

Qur equations are:
S*X1 - *X2 + 2*X3 >= V
’2*X1 + 4‘X2 + 2'X3>= V
“4*Xy + 2*%p + 6*X3>=V
X-| + X2 + X3 - 1

We must convert the inequalities in the first three
equations to equalities by including ‘slack’ or dummy
variables.

3y - Xp+2%Xg-Xy =V
‘2*)(1 + 4*XZ + 2*)(3 - X5 =V
'*4*)(1 + 2*X2 + 6*)(3 - XG =V

X1 + Xg =+ X3 =1

Take the first equation, since itis an equation for V, and
take it as a statement of our objective:

Maximize 3X; - Xp + 2X3 - X4

and eliminate it from the equations above. Subtracting
this equation from the second and third equations, we
get our set of problem constraints:

Maximize 3*X1 - X2 + 2*X3 - X4
subject to
'5*X1 + 5*XQ + X4 - X5 L 0
“T*Xq + 3*Xo + 4*X3 + X4 -Xg=0
X1 + XQ + X3 =
Since the standard form for the program is to minimize,
we convert our objective (multiply by -1) to give
Minimize -3*X; + X3 - 2*X3 + X4
subject to the above constraints. We have a problem in
3 equations (rows) with six variables (columns) of
which 3 are slack variables.

The data file for this problem is shown in Listing 8,
and the program run in Listing 9.

56

Listing 8: Data File
For Game Problem

EDIT: LCIST, BCUILD, MCODIFY. QCUIT [4. 8] L
LIST WHAT FILE? GAME DATA
STARTING AT WHAT RECORD? @

@: © GAMES 3 [

1: 1 GAMES STRATEGY EXAMPLE
2: 2 A i 0. 20sed
3: 2 82 2 0. beese
4: 2 S3 3 1 eoeed
5: 4 1 i -3 06000
6: 4 2 2 1. egece
7: 4 C3 3 -2 60068
8: 4 C4 4 1. ecege
9: 4 C3 S 8. 6eass
i8: 4 Cs 6 0. eeoes
114: 6 ROW 1 COL 41 -5 82008
12: 6 ROW 1 COL 2 S. 80088
13: 6RO 1 COL 4 1 680ed
14: 6 ROW 4 COL S5 -1 80008
i5: G6ROM 2COL 1 -7 068280
16: 6 ROW 2 COL 2 3. eceed
1?: 6 ROW 2COL 3 4. 88263
18: 6 ROW 2 COL 4 1. 62000
19: 6 ROW 2COL 6 -1 oooe
20: 6 ROM 3 COL 1 1. eceoe
214: 6 ROW 3 COL 2 1 88868
22: 6 ROM 3ICOL 3 1 80600
23: 99 LOGICAL EOF

EDIT: LCIST, BCUILD, MCODIFY. QCUIT (481 Q

Listing 9:
Sample Run of Game

ENTER DATA FILE NAME -—-> GAME. DATA

PROG. NAME = GAMES
NO. ROWS 3
NO. COLS 6

START PHASE 1

ITERATION 1 OF GAMES
ITERATION 2 OF GRMES
ITERATION 3 OF GAMES
END OF PHASE 1 FOR GAMES RFTER 3 ITERATIONS

LIST & X ARRAYS

i i 8. 333333 >

2 2 @. 333333)

3 c 3 8. 333333 >

4 M i@ 1 33332

S M2 11 0. 828208842
START PHASE 2

ITERATION 1 OF GAMES
END OF PHASE 2 FOR GRAMES RFTER 41 ITERATIONS

LIST & X ARRAYS

i1 Cé 6 4. 28008
2 .2 2 0. Dot
3 3 1 0eeed
4 M 18 2. 60000
3 M2 i1 0. 62608812

GAMES STRATEGY EXAMPLE

S-100 MICROSYSTEMS

P1's strategy is that he should select play 1 (X1) 0%
of the time, play 2 (X5) 0% of the time, and play 3 (X3)
100% of the time. His payoff value (shown in the M + 1
row) is 2.0. A zero value would have indicated no bias,
but here, P1 has the game rigged. If the value here had
been negative, it would indicate bias toward P2.

if we wish to caiculate the strategy and payoff for
P2, we would set up our equations using rows, instead
of columns of the payoff matrix as we did above. If we
did this, (and did not make any mistakes), we would
expect a change in sign of the computed game's value.

CONCLUSIONS

In general, the problems which can be solved by
Linear Programming techniques are those in which we
desire to optimize some quantity which is subject to
constraints. The suggested reading referenced in part
1 give hundreds of applications in which it has been
successfully used.

| am willing to provide these programs and data
files on North Star UCSD PASCAL disk. Anyone wishing
a disk may get it from me by sending a Postal Money
Order for $20 (US) to my address. This will cover cost of
disk and handling/mailing costs.

the

microcomputer
people®
THE VITAL
computermart |[NGREDIENT:
of new jersey

EXPERTISE

Before you buy your new

microcomputer, chances are

you have a lot of questions.
Important questions that
could mean the difference
between a working system
and a wasted system. The

Computer Mart of New Jersey
501 Route 27
Iselin, N.J. 08830
(201) 283-0600

HOURS:
Openat 10 am,
Tuesday through Saturday

S-100 MICROSYSTEMS

vital ingredient is expertise.
The microcomputer people at
Computer Mart are expert at
answering your questions
and helping you put together
the best system for your
application. Whether it’s for
business, the home, or the
laboratory; come see the
experts at Computer Mart

of New Jersey. We have the
vital ingredient.

ADDRESSING THE CURSOR

Continued From Page 33

3230 REM **dddddkdhhhhhh kA hh ke h kAR AR R A KR AN R AR AR AR RRARR AR R KR AR ARR

3240 REM * *
3250 REM * ROUTINE FOR RETRIEVING LABELS FROM DISK *
3260 REM * *

3270 REM **kkdkskddokdkhdokhkdokdd kb d kb dk ks d bbbk deh ok ke ke h ke
3280 PRINT "ENTER DRIVE ON WHICH LABEL IS STORED (A,B,C,D) "
3290 Z$=INPUTS$ (1) :PRINT Z$

3300 2Z$=CHR$ (ASC(2$) AND &HDF)

3310 IF Z$["A" OR Z$|"D" THEN 3280

3320 P$=2$+":*.LAB"

3330 PRINT

3340 FILES F$

3350 PRINT:PRINT

3360 PRINT "ENTER A FILE NAME FROM THE ABOVE LIST"

3370 LINEINPUT "USE FILE NAME ONLY, NO EXTENSION ";Z§

3380 FOR N=1 TO LEN(Z$) :MIDS$(Z$,N,1)=CHRS (ASC(MID$(Z$,N,1)) AND &HDF) :NEXT N

3390 F$=2$+".LAB"

3400 OPEN "I",1,F$
3410 INPUT#1,B$,CS
3420 WD$=B$:WD=VAL(WD$)
3430 LN$=C$:LN=VAL(LN$)
3440 ERASE A$

3450 DIM AS$(LN)

3460 FOR N=1 TO LN
3470 LINEINPUT#1,D$
3480 AS$ (N) =D$+STRINGS (WD-LEN(D$) ,32)
3490 NEXT N

3500 CLOSE

3510 GOSUB 2730

3520 GOTO 660

3530 REM

3540 REM

3550 REM hkkkkk kAR A ARk Ak AR A AR AR R A AR AR AR AR R AR AR A ARk ko ke
3560 REM * %
3570 REM * IN THIS LISTING, "|" MEANS "IS GREATER THAN *
3580 REM * "[" MEANS "IS LESS THAN" *
3590 REM * &

J600 REM **#*khkhhhhkhhhhhoxh Ak dhh bk b hdkddhhhrhdhhhhhhbhrhhkhhihs

if the above routine is used, then no control
characters may be used as input to this program.

Lines 2930-3210 are used to enter preformatted
labels for any special purpose. The program here uses
this label to prepare diskette labels for Prodigy
Systems, Inc. When the labels are prepared, certain
questions are asked to provide the variable
information. Ifthe label is stored on diskette, when they
are recalled, the standard method of display is used.
Notice, when using this part of the program, the label
size is set to a width of 40 and a length of 8. You may
substitute any format of label here or delete this code
entirely. If you delete this section of the program, be
sure to delete the question at lines 520-540.

Lines 3280-3520 provide for reusing labels stored
on the diskette. This routine is essentially the same as
the routine for storing labels on the diskette in lines
1140-1390.

The remarks at the end of the program, lines 3550-
3600 may seem to be unnecessary. However, some
printers do not print the ’less than sign’ (<) and 'greater
than sign’ (>). This statement will show the characters
the way your printer will print them so that as you look
through the program listing, you can see what the
characters are. For example, if your printer prints a ">’
as a %, then by looking at the lines 3550-3600 you will
be able to see howa'>'is represented in the rest of the
program listing.

PROFESSIONAL 8080/Z80 SOURCE CODE
COMMUNICATIONS..GRAPHICS, . LANGUAGE SYS

HAWKEYE GRAFIX..213/348=7909
23914 MOBILE,.CANOGA PARK,..CA..91307

57

NEW PRODUCTS

Z-80 CPM Softcard For Apple

Microsoft Consumer Products has announced
the Z-80 SoftCard™, a new plug-in processor for
the Apple Il that allows the Apple to run software
written for Z-80 based computers.

In addition to the plug-in card, the SoftCard
package includes the two most widely used
microcomputer system software packages, the
CP/M operating system from Digital Research
and Microsoft Disk BASIC, ready to run on the
Apple II.

The SoftCard allows the user to use either the
Apple's 6502 processor or the Z-80 processor
as needed to runa program. Acommand is used
to switch between the two processors. The
SoftCard is compatible with existing Apple soft-
ware and peripherals.

Versions of Microsoft's FORTRAN, COBOL
and BASIC Compiler for the Apple Il with Z-80
SoftCard will be available separately. In addition,
CP/M applications software written for Z-80
based computers canbe converted torunonthe
Apple with minimal alteration.

The package includes the card, CP/M and
BASIC on diskette and full documentation.
Suggested retail price for the Z-80 SoftCard
with Microsoft BASIC and CP/M is $349.00. For
the name of the nearest dealer, contact Micro-
soft Consumer Products, 10800 Northeast
Eighth, Suite 507, Bellevue, WA 98004, Tele-
phone 206/454-1315.

$-100 Direct-Language Execution Processor

The DLX-10 from Alasda Computer Systems,
is a direct-language execution processor for S-
100 bus systems. It executes BASIC directly in
high-speed hardware from five to ten times
faster than 8080 systems or two to five times
faster than Z-80 systems. The DLX-10 is a
single-board computer that operates as an addi-
tional processor on the S-100 bus. It does not
replace the CPU but functions as a separate,
dedicated BASIC computer. It can boost an S-
100 bus microcomputer system into the perfor-
mance range of a minicomputer. The DLX-10 is
recommended for scientific or business micro-
computer systems which need increased speed
or precision.

The DLX-10 is built of high-speed bipolar
devices and uses a unique combination of hard-
ware, firmware and state logic to provide extra-

ADVERTISER INDEX

Advertiser Page
Ackerman DigitalSystem 51
ComputerDesignlabs. 11
Computerfest-80/MA.CC...................... 49
Computer Mart of New Jersey 57
Digital GraphicSystems. 42
Electronic Control Technology T
FreeportUtilitiesCo.coviiii i 48
Godbout Electronics . .60
Hayden Book Co.27
Hawkeye Grafix57
1.E.E.E. Computer Magazine D
Ithacalntersystemsco0vvieunann. 5
KonanCotpe. . v vins i e sl el 23
Lifeboat Assoclates.ccovevvneesnvosns 8-9
Microcomputer Investor....... St ...58
Morrow Designs/Thinker Toys .2
NorthStar21
Personal Computing- .35
Potomac Micro-Magic . . .25
SO0 IIE, o cvv0eimramesin scosisnemm s sesessus ...28
S100Microsystems.o ovieiniiaaninna.. 59
SORTONICE ... i oo o mmeicmmsisreimna s e wids ST
TREMBE o vovwiuirassiosis s omsidn Wi arase s e v o Rt 39
TEIIGE: o vninmmenssiomimessstss a3 sas e A0 ase Wt walbcare 54

ordinary performance for small systems. As a
separate processor, itruns independently of the
main CPU and accesses memory as a DMA
device. It runsin parallel to the existing CPU and
accesses memory as a DMA device. It runs in
parallel to the existing CPU and does not inter-
fere with existing software. It has a stack archi-
tecture and utilizes high-speed on-board RAM
to hold intermediate computations.

The DLX-10 supports full-feature BASICs with
multi-dimensional arrays, string handling and
print formatting. BASIC source language pro-
grams are first translated by software to relo-
catable BASIC stack-machine object code. This
compact code is then executed by the DLX-10.

Typical one-byte operations are “floating
multiply” and “string compare.” Because the
computer directly executes many of these time-
consuming operations, the DLX-10 can execute
many programs faster than equivalent machine-
language code for the 8080 or Z80. In addition,
the programs are more compact, thus permit-
ting more efficient use of memory. Numbers are
represented as floating-point decimal. The pre-
cision can be selected by the user to be from 2
digits to 20 digits plus exponent (10**+63). The
accuracy may be set to different values for
different programs.

Programmer productivity can be improved by
using the DLX-10. Because efficient programs
can be written is BASIC rather than assembly
language, the labor cost of programming, de-
bugging and maintaining programs is drastically
reduced. The user does not need to retreat to
assembly language to satisfy performance
requirements.

Manufacturers of application-specific systems
can use the DLX-10 in their systems to provide
the power of a minicomputer in micro system.
This optional power boost extends the range of
price-performance options of microcomputer
systems. A custon option permits the object
code to be “scrambled” to provide built-in
protection for proprietary software.

The DLX-10 is available assembled at $1250
(quantity 1). It comes with software to run North-
star BASIC or CBASIC. Delivery is 60-90 days
ARO. The manufacturer is Alasda Computer
Systems, 12759 Poway Road, Poway, CA 92064.
(714) 748-8640.

S-100 Card Adds Sound Dimension

The NOISEMAKER sound board by Ackerman
Digital Systems Inc, 110 North York Road, Suite
208, Elmhurst, lllinois 60126, generates sound
effects under software control.

The board provides six tone generators, two
noise sources, two envelope generators, and
four 8-bit I/O ports which are software controlled
using four switch selectable 8080 1/0 addresses.
A multitude of sound effects and noises may be
created to add the sound dimension to graphics
and computer games. An on-board audio ampli-
fier (0.2 watts) and breadboard area allows easy
interfacing of this product into any system.
Three 1/O ports, the amplifier output, and the
supply voltage are brought out to a standard 44
pin plugboard connector.

The “Noisemaker” is available currently as a
blank, solder-masked printed circuit board with
the component layout silk screened in white. All
connector contacts are gold plated. Included
withthe PCBis a parts list, schematic, construc-
tion notes and information on how to use the AY
3-8910.

P.C. Board and notes; $34.95. Add 50¢ for
postage and handling.

TI9900-16 bit S-100 Microcomputer System

A powerful Scientific/Business Microcom-
puter based on the 16 bit TI9900 CPU and the S-
100 bus is announced by Interface Technology,
Box 745, College Park, MD 20740. This system
can be viewed as a high end personal computer,
or a small business/research system. Two ver-
sions are presented; both feature a 9900 16-bit
CPU by Marinchip Systems, 32K bytes of
memory, and two 8 inch floppy disks. Included
as standard are a disk operating system, BASIC,
word processor software, Editor, assembler,
linker, and utilities. The scientific machine
features PASCAL and a floating point package
as standard. The business version substitutes
extended commercial BASIC, General Ledger,
Accounts Payable and Receivable, and Payroll.
A Network Operating System for multi-user
environments is available. The system is com-
plete in one cabinet with power supply, fan, and
power line filter. Scientific system: $4495.
Business system: $4895. CRT and Printer,
additional/faster memory, Network Operating
System available at extra cost. Support of hard
disk available.

THE JOURNAL OF THE MICROCOMPUTER INVESTORS ASSOCIATION

" MICROCOMPUTER INVESTOR

INVESTORS WHO USE MICROCOMPUTERS

FOR AN INFORMATION PACKET, SEND ¢+2.00 TO:
MCIA, 902 ANDERSON DR., FREDERICKSBURG, VA 22401
BACK ISSUES ARE NOW AVAILABLE

S-100 MICROSYSTEMS

THE ONLY MAGAZINE BY AND FOR $-100 SYSTEM USERS!
S-100 - _

MICROSYSTEMS

At last there is a magazine written exclusively for 5-100 systern users. No
other publication is devoted to supporting 5-100 system users. No longer
will you have to hunt through other magazines for an occasional 5-100,
CP/M* or PASCAL article. Now find it all in one publication. Find it in 5-100
MICROSYSTEMS.

Every issue of 5-100 MICROSYSTEMS brings you the latest in the 5-100
world. Articles on applications, tutorials, software development, letters to
the editor, newsletter columns, book reviews, new products, etc. Material
to keep you on top of the ever changing microcomputer scene.

SOFTWARE SYSTEMS
CP/M* Cromemco
Assembler North Star
BASIC IMSAI
PASCAL SOL
applications Polymorphics
and lots more and lots more

HARDWARE

8 bit & 16 bit CPUs
interfacing
hardware mods
STMK bulletin board systems
Digital multiprocessors
Research and lots more
Published every other month

S-100 MICROSYSTEMS
SUBSCRIPTION RATES
(effective May 1, 1980)

Sendme 006 12 [J 18 Issues Send me the following
of S=100 back issues

ONE YEAR (6 issues)

($2.50 each;
MICROSYSTEMS it
O 1-1 Jan/Feb 1980
Europe/ Other ™
USA Canada So. Amer. Foreign g ::_g Mar/Apr 1980

May/Jun 1980

TWO YEARS (12 issues)

$17.00 $20.00 $41.00 $45.00

Name

THREE YEARS (18 issues)

Europe, So. America, and other foreign
sent air mail.
Payments must be in U.S. Funds.
BACK ISSUES
US.A., $2.50 each*. 3 for §6*
Foreign, add $1/issue
Subscriptions start with next mailing

City

State. Zip

CPU Make: Disk System Make:

I
I
I
I
I
I
I
I
I
$23.00 $26.00 $59.50 $65.00 i Address
I
{
I
]
l
I
I
I
|
i

IT'S HERE . . . B
AND CPU BOARDS WILL
NEVER BE THE SAME ACGAIN.

The CompuPro Dual Processor Board gives true 16 bit power
with an 8 bit bus, is downward compatible with the vast library
of 8080 software, is upward compatible with hardware and
software not yet developed, accesses 16 Megabytes of
memory, meets all IEEE 5-100 bus specifications, runs 8085 and |
8086 code in your existing mainframe as well as Microsoft 8086
BASIC and Sorcim PASCAL/M™, and runs at 5 MHz for speed as
well as power.

The Dual Processor Board has two CPUs that "talk” to each
other; the 8088 CPU is an 8 bit bus version of the 8086 16 bit CPU,
while the 8085 is an advanced 8 bit CPU that can run existing
software such as CP/M.

Amazingly enough, all this flexibility won't break your |
budget: introductory prices are $385 unkit, $495 assembled,
and $595 qualified under the Certified System Component
high-reliability program. Don't need 16 bit power yet? Then
select our single processor version which does not inlcude the
8088 for $235 unkit, $325 assembled, and $425 CSC.

The Dual Processor Board is built to the same stringent stan-
dards that have established our leadership in 5-100 system com-
ponents ... and starting June 1st, you'll be able to plug it into
your mainframe to experience computing power that, until
now, you could only dream about. CPU boards will truly never
he the same again.

THINKING GRAPHICS?

mm=s THINK "SPECTRUM"
COLOR GRAPHICS BOARD.

The CompuPro Spectrum board is actually three sophis-
ticated products in one: a fast (5 MHz), low power 8K x 8 IEEE
compatible memory board with extended addressing; an 1/0
board with full duplex bidirectional parallel port (including
latched data along with attention, enable, and strobe bits),
capable of interfacing with keyboards, joysticks, or similar
parallel peripherals; and a 6847-based graphics generator board
that can display all 64 ASCII characters. Put these together, and
you've got 10 modes of operation — from alphanumeric/semi-
graphics in 8 colors to ultra-dense 256 x 192 full graphics. In-
cludes a 75 Ohm RS-170 compatible line output and video out-
put for use with FCC approved video modulators. Introductory
pricing is $339 unkit, $399 assembled, and $449 qualified
under the high-reliability €SC program. Looking for graphics
software? Sublogic's 2D Universal Graphics Interpreter (normal-
ly $35) is yours for $25 with the purchase of a Spectrum board
in any configuration.

NoO longer must you settle for B&W graphics, or stripped
down color graphics boards; starting June 1st, you'll be able to
plug one of the industry's most cost-effective and full-feature
color graphics boards into your S-100 system.

OUTSTANDING COMPUTER PRODUCTS:

MEMORY

All boards are static, run in 5 MHz systems, meet all IEEE stan-
dards, include a 1 year limited warranty, and feature low power
consumption. Choose from unkit (sockets, bypass caps pre-
soldered in place), assembled, or boards qualified under our
high-reliability Certified System Component (CSC) program (200
hour burn-in, 8 MHz operation, and extremely low power con-
sumption.
csc

Name Buss & Notes

8K Econoram™ lIA 5100 $169 $189 $239
16K Econoram XIV $-100 (1) $299 $349 $429
16K Econoram X-16 S-100 §329 $379 $479
16K Econoram XIlIA-16 S$-100 (2) $349 $419 $519
16K Econoram XV-16 H8 (3) $339 $399 n/a
24K Econoram XllIA-24 S-100 (2) $479 5539 $649
32K Econoram X-32 $-100 $599 $689 $789
32K Econoram XIlIA-32 5100 (2) $649 $729 $849
32K Econoram XV-32 H8 (3) $649 $749 n/a
32K Econoram Xl SBC/BLC n/a n/a $1050

* Econoram is a trademark of Bill Godbout Electronics.

(1) Extended addressing (24 address lines). Addressable on 4K
boundaries.

(2) Compatible with all bank select systems (Cromemco, Alpha Micro,
Etc.); addressable on 4K boundaries.

(3) ggll'(!k select option for implementing memory systems greater than

SPECIAL PRICE!
TRS-80* -l or -l MEMORY
EXPANSION CHIP SET: $69!

We've done it again...8 low power, 250 ns 16K
dynamic RAMs at a trendsetting price. Don't be im-
pressed with fancy packaging or four color ads; our
chip set gives all the performance you want at a price
you can afford. Offer good while supplies last. Add $3
for TRS-80 compatible DIP shunts and complete in-
stallation instructions.

*TRS-B0 is a trademark of the Tandy Corporation.

TERMS: Cal res add tax. Allow 5% for shipping, excess refunded. VISA®/
Mastercharge® call our 24 hour order desk at (415) 562-0636. COD OK

with street address for UPS. Sale prices good through cover month of
magazine; other prices are subject to change without notice,

ompu PI'OTM from @

Bldg. 725, Oakland Airport, CA 94614

MOTHEREBOARDS

Meet or exceed all IEEE S-100 specs; with true active ter-
mination, grounded Faraday shield, edge connectors for all
slots. Unkits have edge connectors and termination
resistors pre-soldered in place for easy assembly.

6 slot: $89 unkit, $129 assm.

12 slot: $129 unkit, $169 assm.
% 19 slot: $174 unkit, $214 assm.

GODBOUT COMPUTER BOX $289 desktop, $329 rack
mount. With quiet fan, dual AC outlets and fuseholder, line
filter, card guide, etc.

$-100 2708 EROM BOARD $85 unkit. 4 independently
addressable 4K blocks. Includes support chips and manual,
but no EROMS.

S-100 ACTIVE TERMINATOR BOARD $34.50 Kkit. Plugs
into older, unterminated motherboards to improve per-
farmance.

$-100 MEMORY MANAGER BOARD $59 unkit, $85 assm,
$100 CSC. Adds bank select and extended addressing to
older $-100 machines to dramatically increase the available
memaory space.

2S5 "INTERFACER I” 5-100 1/0 BOARD $199 unkit, $249
assm, $324 CSC. Dual RS-232 ports with full handshake. On-
hoard crystal timebase, hardware UARTS, much more.

IP PLUS S "INTERFACER 11" 1/0 BOARD $199 unkit,
$249 assm, $324 CSC. Includes 1 channel of serial I/0 (RS-232
with full handshake), along with 3 full duplex parallel ports
plus a separate status port.

PASCAL/M™ + MEMORY SPECIAL PASCAL can give a
microcomputer with CP/M more power than many minis.
You can buy our totally standard Wirth PASCAL/M™ 8~
diskette, with manual and Wirth's definitive book on
PASCAL, FOR $150 with the purchase of any memory board.
Specify Z-80 or 8080/8085 version. PASCAL/M™ available
separately for $350.

Z-80A CPU BOARD $225 unkit, $295 assm, $395 CSC. Full
compliance with IEEE $-100 bus standards, provision for ad-
ding two EROMSs, on-board fully maskable interrupts, power
on jump and clear, selectable automatic wait state inser-
tion, IEEE extended addressing, much more.

ORCOUC

ELECTRONICS

Many of these products are
stocked by finer computer
stores world-wide, or write
us for further information if
there’'s no dealer in your area.

