JANUARY 23, 1992

COMBO DRAM/GACHE CHIP SPEEDS DATA TRANSFER

A PENTON PUBLICATION

U.S. \$10.00

SPECIAL REPORT: IC-CARD STANDARIDS EVOLVE
SPECIAL
SECTION: PIPS
DESIGN A LOW-COST
12-BIT SINGLE-
SLOPE ADC

Still the Leader in DOS based Electronic Design

Introducing Schematic Design Tools version 4.10

The leader in PC based EDA tools.
Why? Because we never stop improving our products. One example is our world famous Schematic Design Tools package with the ESP framework.

OrCAD has just released version 4.10 with these new features.

- dramatic increase in capacity
- utilities like netlist output have increased speed
- introducing new "hotkeys" in the ESP framework

The ESP Framework

The ESP framework is the first PC based framework that allows seamless integration between OrCAD tools and those of third party vendors. ESP framework is a part of Schematic Design Tools; no need to pay extra.

The OrCAD Difference

Schematic Design Tools still comes with the features you'd expect to pay more for:

- A library of over 20,000 unique parts you can browse through in a breeze.
- Utilities to generate Bill-of-Materials, electrical rules check, create custom library parts.
- Support for over 30 netlist formats.
- Over a hundred supported display adapters, 50 printer drivers, a dozen plotter drivers.
- User definable "smart" macros

As ever, all OrCAD products come with one year of product updates, telephone technical support and 24 hour BBS, and a subscription to The Pointer newsletter.

3175 N.W. Aloclek Drive Hillsboro, OR 97124 FAX (503)690-9891

If you would like information about this or any OrCAD product, contact your local OrCAD Value Added Reseller.

WA, OR, MT, ID, AK, WY Avcom/EDA
(206)828-2726
N. CA, HI, Reno NV
Elcor Associates
Inc.
(408) 980-8868

So. CA
Advanced Digital
Group
(714) 897-0319

Las Vegas NV,
UT, AZ, NM,
CO
Tusar Corporation
(602) 998-3688

TX, OK, AR, LA
Abcor, Inc.
(713) 486-9251

ND, SD, MN, MI, WI, IL, IN, OH, KY, WV,
W. PA, NE, KS,

IA, MO
MacKellar
Associates, Inc.
(313) 335-4440

VA, TN, NC, SC
Tingen Technical
(919) 870-6670
E. PA, NJ, NY, DE, MD, DC
Beta Lambda,
Inc.
(800) 282-5632

CT, RI, MA,
VT, NH, ME
Tri-Logic
(508) 658-3800

CANADA
Pegasus Circuits
(416)567-6840

For 12-bit systems,

 weve combined state-of-the-artIf you're frustrated with fast parts that let you down on signal purity, here's good news. Comlinear's new 12 -bit converter components zoom off the chart to give you simultaneous improvements in speed and performance.

speed with off-the-chart performance.

Converters to optimize your designs.

Choose our new 20MSPS CLC936 if you're looking for the fastest 12 -bit A / D converter available that also delivers better than 73dB SFSR (Spurious-Free-Signal-Range), 65 dB SNR (signal-to-noise ratio) and 0.7LSB differential nonlinearity. And if you need the very best in signal fidelity, choose the 15MSPS CLC935 with 77dB SFSR and 67 dB SNR.

CIRCLE 198

New high-speed multiplexer.

Here again, you get speed and signal purity. The CLC532 2:1 multiplexer delivers 12 -bit settling (0.01%) in just 17 ns .
Along with a low -80dB harmonic distortion and better than -80 dB channel isolation @ 10 MHz .
Fast, high-fidelity converter design has never been easier. Because now you can get the critical components from Comlinear... and avoid the usual performance tradeoffs. Call today for details.

CIRCLE 199

The Yellow Page

sOf CMOS PLDS.

Let your fingers do the you-know-what through our PLD databook, and see what we mean. In it you'll find everything you'll ever need in a CMOS PLD. Available now and in quantity from AMD.

Which shouldn't surprise you, coming from the undisputed leader in programmable logic. After all, we invented the PAL device and the 22 VlO , and established them as industry standards in programmable logic. In fact, we sell more programmable logic devices than all of our competitors combined.

What's more, we offer the widest variety of CMOS PLDs of any vendor. Everything from our high speed, high density MACH ${ }^{\text {m }}$ Family, to low density commodity parts. Even PLDs for specialized applications.

All of which are supported by the design, test, and programming tools you're already familiar with, through our FusionPLD" program.

Our new Submicron Development Center in Sunnyvale represents our commitment to innovation and performance in CMOS technology. That's where we continue to develop CMOS PLDs with the highest systems performance.

In short, everything from A to Z in CMOS PLDs is always right at your fingertips. So reach for your AMD databook, and place an order today. Or call 1-800-222-9323 for more information.

7

Advanced Micro Devices

COVER 39 COMBINATION DRAM-SRAM REMOVES SECONDARY CACHES
FEATURE Avoid wait states by building simple $50-\mathrm{MHz}$ systems with cached DRAMs.
Eeectronic 45 IC-CARD SPEC AdAPTS I/0 T0 MEMORY-CARD SLOT
DESIEN REPORT PC-Card Standard Release 2.0 unleashes a myriad of applications.
Desion 59 Get Low-COST 12-BIT ADCS WITH SINGLE-SLOPE CONVERSION
APPLICATIONS
Microcontroller-based design uses minimal support ICs and code to get highaccuracy analog-to-digital conversion.
Proouct 135 ENHANCED EPLDS TACKLE 70-MHZ SYSTEMS
INNOVATIONS
High-density UV-EPROM-based PLDs also deliver top I/O.

139 MICROCONTROLLERS SPAN 8- AND 16-BIT APPLICATIONS

By applying a register-based architecture to solve control problems in the 8 - and 16 -bit worlds, an MCU series can add up to 29 on-chip functions.

14 EDITORIAL

18 TECHNOLOGY BRIEFING

ISO 9000: The key to success in Europe

23 TECHNOLOGY NEWSLETTER

- Copper is deposited directly onto Teflon
- DMOS process mixes 600-V FETs with bipolar logic
- Partnership to yield image-processing ICs
- Normal-paper fax claims smallest size
- Dense terminations eliminate via holes
- Siemens and IBM to produce

16-Mbit DRAMs

- Fast two-step process makes copper circuits
- SGS, Philips team up in VLSI processes
- RISC ICs push processor advances

31 TECHNOLOGY ADVANCES

- Programmable interconnection matrix in silicon speeds system design
- Silicon bipolar ICs set record of 30 Gbits/s
- BiCMOS technology tackles demanding performance needs of Sonet systems
- Silicon drying method promises to improve IC quality and yields

Jesse H. Neal Editorial Achievement Awards: 1967 First Place Award 1967 First Place Award 1968 First Place Award
1972 Certificate of Merit 1975 Two Certificates of Merit 1976 Certificate of Merit 1978 Certificate of Merit 1980 Certificate of Merit 1986 First Place Award 1989 Certificate of Merit

69 IDEAS FOR DESIGN

- Feedback linearizes current source
- Turn scope into curve tracer
- Circuit autoselects clock source

77 QUICK LOOK

- How nomenclature and timing affect financial results in developing new products
- Electronic design systems take on many jobs
- How-to handbook for creating high-tech startups
- Offers you can't refuse

81 PEASE PORRIDGE

What's all this customer satisfaction stuff, anyhow?

PIPS SPECHAL EDITORIAL SEGTION
83 Electrical-transient immunity: A growing imperative for system design
101 Power
114 Converters
120 Regulators \& Power ICs
122 Batteries
124 Interconnections
126 Passives
128 Switches \& Relays
132 Packaging \& Materials
133 New Literature

NEW PRODUCTS

141 Computers \& Peripherals
Workstation duo fills low end, does
35 MIPS for under $\$ 5000$
144 Computer-Aided Engineering
145 Instruments
146 Digital ICs
149 Software

152 INDEX OF ADVERTISERS

153 READER SERVICE CARD

GOMING NEXT ISSUE

- CAE Special Report: System simulation still holds promise
- Solving switcher problems with power-factor correction
- Sophisticated instruments take on EMI testing
- A new analyzer automates SCSI tests
- First details on new memory controllers
- New FIFO memories cut system costs
- Buscon West Preview: Mezzanine buses coming on strong
- PLUS:

Ideas for Design
Pease Porridge
Technology Advances
QuickLook

[^0]
Tap a reliable source of DSP

Times being what they are, now more than ever you need a faithful partner who can help you rise to the top.

A partner like Spectrum Signal Processing. One who saves you time, money and headaches by offering the broadest range of off-the-shelf DSP board-level solutions available. Solutions that fit your needs and put DSP to work. Each one fully tested. Fully warrantied. And easy to implement.

All backed by our Manufacturing Resource Planning System. That means the best service for you. From production scheduling to order processing. Plus, we provide complete support including extensive documentation, development software, applications notes and engineering assistance.

So go to the source that's gushing with DSP solutions by calling today for your free catalog or a distributor near you: 1-800-323-1842 (Western U.S.), 508-366-7355 (Eastern U.S.) or 604-438-7266 (Canada).

Putting DSP to work

[^1]
solutions from Spectrum.

© 1991. Spectrum and Media~Link are trademarks of Spectrum Signal Processing, Inc. All other trademarks are trademarks of their respective holders.

SCSI - bus Analyzer/Emulator

- SCSI 1 \& 2 FAST Support, over 110 Mhz tracing capability.
- REO-ACK recording, all four edjes.
- 32 K event trace memory stand ard, 128K optional.
- Easy to use; easy to read SCSI english display.

Ancot's SCSI Analyzer/Emulator is powerful, easier to use and costs less. Proven in use worldwide, this portable equipment can significantly reduce development time and improve design quality. Also saves time and labor in manufacturing and repair applications.
(O (415) 322-5322
Fax: (415) 322-0455
115 Constitution Drive,
Menlo Park, CA 94025 USA

12 BIT Programmable Pulse Generator

Features:

- 5 ns to 10 ns incremental steps
- Inverted \& non-inverted outputs
- Precise pulse width
- Rising-edge triggered
- 40 pins DIP package
- Low profile

Clifton, New Jersey • (201) 773-2299 • FAX (201) 773-9672

ELECTRONIC DESICIN

Editor-in-Chief: Stephen E. Scrupski
Executive Editor: Roger Allan
Managing Editor: Bob Milne
Senior Editors: Frank Goodenough, Milt Leonard, John Novellino

Technology Editors:
Analog \& Power: Frank Goodenough Communications \& Industrial: Milt Leonard (San Jose)
Components \& Packaging: David Maliniak Computer-Aided Engineering: Lisa Maliniak
Computer Systems: Richard Nass Semiconductors: Dave Bursky (San Jose) Software: Sherrie Van Tyle
Test \& Measurement: John Novellino

Field Bureaus:

West Coast Executive Editor:
Dave Bursky (San Jose)
Communications \& Industrial:
Milt Leonard (San Jose)
Dallas: Jon Campbell
Frankfurt: John Gosch
London: Peter Fletcher
Chief Copy Editor: Roger Engelke, Jr.
Contributing Editors:
Ron Kmetovicz, Robert A. Pease
Editorial Production Manager:
Lisa Iarkowski
Production Coordinator: Pat A. Boselli
Associate Art Director: Tony Vitolo
Staff Artist/Designer: Tom Pennella
Editorial Support Supervisor: Mary James
Editorial Assistant: Ann Kunzweiler
Editorial Secretary: Bradie Guerrero

Editorial Offices: (201) 393-6262
Advertising Production:
(201) 393-6093 or FAX (201) 393-0410

Production Manager: Michael McCabe
Production Assistants:
Donna Marie Bright, Lucrezia Hlavaty, Eileen Slavinsky
Circulation Manager: Robert Clark
Promotion Manager: Clifford Meth
Reprints: Helen Ryan 1-800-835-7746

Group Art Director: Peter K. Jeziorski

Published by Penton Publishing Vice President-Editorial: Perry Pascarella

Publisher: Paul C. Mazzacano

For aSpectacular VGADisplay...

It'sthe Least YouCanDo.

Introducing the LCD VGA that rivals CRT displays

Your next LCD display will look great with the CL-GD6410. Proprietary color mapping techniques offer 64 shades of gray on monochrome LCD panels or a palette of 24,000 colors on 512-color active-matrix LCD panels, with virtually no flickering. Linear gray scales give you display images unmatched by any other LCD VGA controller.

For a palette of up to 256,000 brilliant colors, simply add our CL-GD6340 Color LCD Interface Controller.

SimulSCAN: Exclusive! Drive notebook and external displays simultaneously

This hot new feature is ideal for portables used in audience presentations. Get it now for the first time in a single-chip LCD controller without extra external circuitry. Any notebook computer without it will be unpresentable.

The CL-GD6410: the first VGA controller with SimulSCAN. Simultaneously drives both LCD and CRT displays for your presentations, demos and seminars.

One-chip LCD VGA control for smaller, lighter notebooks
Integrated features give you the smallest form factor available. Simply add DRAMs and a clock synthesizer and you have a complete solution in 5 ICs, requiring less than 4 square inches of board space. Making it the ideal solution for your next notebook design.

Lowest power requirements for longer battery life

Our frame accelerator architecture allows you to run the LCD with clock frequencies half those of other solutions and with half the power consumption. Operating down to 4.5 V extends battery life as much as 10%. Three on-chip power-down modes and a variety of system design options provide flexibility in power management.

The least you can do to get a most impressive image is to look into the CL-GD6410.

Get detailed information by barely lifting a finger. Call 1-800-952-6300. Ask for dept. LL37.

> "When I think about den mind. For example, Earth solar system-it's 5.515 tim most densely populated pl Macao, on the coast of C area of 6.5 square miles. H for programmable logic, density goes to Altera's n to 20,000 usable gates. An PLD family. Bye-bye mas dense as it gets. Well, there old college roommate. $30-$ beer cans into his head.
sity，a few things come to is the densest planet in our es denser than water．The ace on the densest planet is hina．479，000 people in an ope they like each other．As the award for the highest ew MAX 7000．With 1，000 d more I／O than any other ked gate arrays．That＇s as is Rocko Miller，my inch neck，crushed ou know the type．＂

1986-MAC100. We introduce a combinel disk formatter and buffer controller in a single dist connoler chip.

1988-MAC200. Our advanced merged arshitecture controller is the finst to indude an automated
Data Flow feature for faster clata handling

1990- FAS 236. We delier the foist Fast SCSI chips with a 16 -fit DMA Poct.

1987. ESP 100 . The industy'st finst high pofformance SCSI chip is foom at Emulex.

1989. BC200. A dynamic 4-pot DMA controler for DRAMA is created.

1991-TEC 200. Our Aecoul. generation TEC beosmes the industry's finst Fast single chip
diss controller.

1988-ESP200. Second gemeration SCSI anives with SCS/-2 Jupport and parity pass Througn:

1989- TEC100. EMD combines disk, bubfer, and SCSI contorers in a single chip.

1991. TEC 256 . The firist Fast and Wide SCSI clisp controller also broath the fastest clisk clata rate and highest system bandurdth.

1988. ESP 2×6 lue gire SCS $1 a$ 16 - bit split-bus architacture for greater efficiency and throughput.

1990.7EC 100.A. Mid-to-low capacity SCSI drives get a reducel- puce version of the TECIOO.

1991- FAS256. 16-Bit Fast and Wide SCSI bringt SCSI-2 support to host adapters and peripherals induding drive aray appliations.

 NII.

1992. Emulex Chips. A whole new generation of firsta is due, starting in march.

CIRCLE 158 FOR U.S. RESPONSE CIRCLE 159 FOR RESPONSE OUTSIDE THE U.S.

In all honesty, we've been building a history of innovative microcontroller products for disk and system applications right from the start.

In fact, the first high-performance SCSI chips we designed have become an industry standard in workstation and PC platforms. And our ESP chips have been so popular they're also marketed under license to NCR as the 53 C 9 X family.

But that's just for openers.
We've continued to lead the evolution of SCSI power-in speed, single-chip integration, full SCSI-2 support, Fast and Wide architecture, and more. Plus, we've created matching disk controller and buffer controller devices.

And now we're preparing to launch a new generation of products-a whole new family of microcontrollers...to again pioneer new industry standards in SCSI and other bus interfaces.

Look for our
announcements starting in March.

Or if you can't wait until March, call us. We'll send you a preview of the big pictureso you can begin to spec for the future...now.

Firsts are part of our tradition. And we're not done yet.

Emulex Micro Devices.
Excellence in Microcontroller Design.

Advantage By Design."
3545 Harbor Blvd., Costa Mesa, CA 92626
Outside California: 1-800-442-7563
Inside California: (714) 662-5600
Emulex Micro Devices Sales Representatives: NEW ENGLAND: Advanced Tech Sales, Inc. (508) 664-0888 • CANADA: Electro Source (416) 675-4490 • MICHIGAN: JMJ Associates (616) 774-9480 • SOUTHEAST: Montgomery Marketing, Inc. (919) 851-0010 • MIDWEST: Oasis Sales Corporation (708) 640-1850 NORTHERN CALIFORNIA: Promerge Sales (408) 453-5544 • NORTHWEST: QuadRep-Crown, Inc. (503) 620-8320 • SOUTHERN CALIFORNIA: QuadRep Southern, Inc. (714) 727-4222 • FLORIDA: Sales Engineering Concepts (407) 830-8444 - MID-ATLANTIC: T.A.I. Corporation (609) 778-5353 • ROCKY MOUNTAINS: Wescom Marketing, Inc. (303) 422-8957 • TEXAS FOUR-STATES: West Associates (214) 680-2800 (C) 1992 by Emulex Corporation. All rights reserved.

LCD Proto Kit

Everything you need to start your LCD application create complex screens in just a few hours!

Kit also includes:

(\$595 pre-assembled \& tested)
*The CY325 CMOS 40-pin DIP and 44-pin PLCC LCD Controller IC are available from stock @ \$75/singles, \$20/1000s
CyberneticMicroSystems
Box 3000 - San Gregorio CA 94074 Tel: 415-726-3000 • Fax: 415-726-3003

CIRCLE 102 F0R U.S. RESP0NSE CIRCLE 103 FOR RESPONSE OUTSIDE THE U.S.

Non-Facts And New Found Freedou

T
wo unrelated topics have captured our attention recently. First, here at home in New Jersey, engineers have that well-known feeling of "With friends like these, who needs enemies?" being stirred up once again. The state public television network is running a three-part special on a topic that just won't die, no matter what the facts might be: the supposed shortage of scientists and engineers.

As might be expected, the program's tone was set by a professor at a statesupported university, who dredged up the National Science Foundation's prediction of an engineering shortage early in the next century. The program also included comments from a panel that was hardly representative of working engineers: a personnel manager for a petroleum company, a high-school science teacher, a representative of a group encouraging more minorities in science and engineering, and a high-school senior planning to be an engineer. We agree with the importance of attracting more minorities to engineering, as well as the need to improve science education in the public schools. But we wish that someone would have mentioned the unemployment among EEs, and the difficulties they face in making engineering a lifetime profession.

This type of television program highlights the need for national engineering leadership to point up the plight of the working engineer to the general public and to government. As mentioned in an editorial a few issues ago, there is some hope that, with a new president, the IEEE will step up its efforts in this cause. But if the IEEE doesn't follow through on that end, it should at least cooperate with, and support the efforts of, a group like the American Engineering Association (also mentioned in a recent editorial) in carrying the engineers' banner.

Secondly, we would feel remiss if we let slip by one of the most momentous world events of the 20th century: the dissolution of the Union of Soviet Socialist Republics. Before the break-up, the 70-year Russian Revolution had in one way or another directly affected nearly everyone's lives. Though it's outside our purview to comment on political ramifications, we can note that Soviet technology during those Cold War years clearly had its triumphs: Sputnik I, Yuri Gagarin's orbital flight, extended space-station flights - it took more than raw rocket power to pull off these technological coups. Now, a new world beckons for applications of Russian Commonwealth technology. We wish our colleagues in the newly independent republics of the former U.S.S.R. well as they work to become a force in international technological commerce. We also hope that the U.S. will soon lift its restrictions on high-technology exports, because it's in everybody's interests to help build up the economy and the non-military industrial base of the Russian Commonwealth.

Editor-in-Chief

rugged plug-in

 cmplifers
0.5 to $2000 \mathbf{M H z}_{\text {tom }} \$ 133^{95}$

Tough enough to meet full MIL-specs, capable of operating over a wide -55° to $+100^{\circ} \mathrm{C}$ temperature range, in a rugged package ...that's Mini-Circuits' new MAN-amplifier series. The MAN-amplifier's tiny package (only 0.4 by 0.8 by 0.25 in .) requires about the same pc board area as a TO-8 and can take tougher punishment with leads that won't break off. Models are unconditionally stable and available covering frequency ranges 0.5 to 2000 MHz , NF as low as 2.8 dB , gain to 28 dB , isolation greater than 40 dB , and power
output as high as +15 dBm . Prices start at only $\$ 13.95$ including screening,
thermal shock $-55^{\circ} \mathrm{C}$ to $+100^{\circ} \mathrm{C}$, fine and gross leak, and burn-in for 96 hours at
$100^{\circ} \mathrm{C}$ under normal operating voltage and current. Internally the MAN amplifiers consist of two stages, including coupling capacitors.

A designer's delight, with all components self-contained. Just connect to a dc
supply voltage and you are ready to go.
The new MAN-amplifiers series... - wide bandwidth • low noise - high gain

- high output power - high isolation

	FREQ. RANGE (MHz)	GAIN dB		MAX PWR \dagger	$\begin{aligned} & \mathrm{NF} \\ & \mathrm{~dB} \end{aligned}$	$\begin{aligned} & \text { ISOL. } \\ & \text { dB } \end{aligned}$	$\begin{gathered} \text { DC } \\ \text { PWR } \end{gathered}$	PRICE \$ ea.
MODEL	f_{L} to f_{U}	min	flat ${ }^{+\dagger}$	dBm	(typ)	(typ)	V / ma	(10-24)
MAN-1	0.5-500	28	1.0	+8	4.5	40	12/60	13.95
MAN-2	0.5-1000	18	1.5	+7	6.0	34	12/85	15.95
MAN-1LN	0.5-500	28	1.0	+8	2.8	39	12/60	15.95
\diamond MAN-1HLN	10-500	10	0.8	+15	3.7	14	12/70	15.95
MAN-1AD	5-500	16	. 05	+6	7.2	41	12/85	24.95
MAN-2AD	2-1000	9	0.4	-2	6.5	28	15/22	22.50
MAN-11AD	2-2000	8	0.5	-3.5	6.5	22	15/22	29.95

$\dagger \dagger$ Midband $10 f_{\mathrm{L}}$ to $\mathrm{f}_{\mathrm{U} / 2}, \pm 0.5 \mathrm{~dB} \dagger 1 \mathrm{~dB}$ Gain Compression \diamond Case Height 0.3 in . Max input power (no damage) +15 dBm ; VSWR in/ out 1.8:1 max.

Free ...48-pg "RF/MW Amplifier Handbook" with specs, curves, handy selector chart, glossary of modern amplifier terms, and a practical Question and Answer section.

IN THE ERA OF MegaChip"'TECHNOLOGIES

We've squeezed more ABT Widebus as fast

speed from our logic. as 4.1 ns !

With our new Advanced BiCMOS interface logic (ABT) family, you get the speed, drive and low power you need to optimize the performance of processors operating at 33 MHz and above.
Fabricated in our 0.8 -micron BiCMOS process, this new family delivers maximum speeds down to 4.1 ns over recommended operating conditions. Typical performance of the devices is in the 2.5to $3.0-\mathrm{ns}$ range.
Other critical performance parameters are as impressive. Drive capability is 32 to 64 mA . Static power consumption is typically 2 mA (IOCH, IOCZ) and 30 mA (ICCL). Ground bounce is less than 800 mV typ.

All this in Widebus

Our ABT family, a second-generation advance of our leadership BiCMOS (BCT) family, includes versions of our 16-, 18- and 20-bit-width Widebus ${ }^{\text {t" }}$ functions.
Among the many ABT Widebus functions released is the 'ABT16244, a 16-bit buffer and line driver. It exhibits much greater stability of propagation delay (see chart), which results in a lower derating factor across the number of outputs switched.
Also in volume production are the Widebus 'ABT16245 16-bit bidirectional bus transceiver and the 'ABT16543 and 'ABT16952 16 -bit bidirectional registered bus transceivers. As in our successful Advanced CMOS Logic (ACL) Widebus family, these devices come in our leadership surface-mount shrink small-outline package (SSOP) that gives you twice the number of I / Os as a standard smalloutline package in the same space.

Unique additions included
There are also new devices in our ABT Widebus family featuring greater density and functionality. Our 'ABT16500A is a good example. An 18-bit registered transceiver, it combines D-type latches and D-type flip-flops to allow data flow in transparent, latched and clocked modes.
AVERAGE tPLH AND tPHLPROPAGATION DELAY

NUMBER OF OUTPUTS SWITCHING $\mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$
TI's speed advantage: In a one-to-one comparison, a TI 'ABT16244 16-bit Advanced BiCMOS driver proves to be much faster and more stable than Advanced Bipolar and standard CMOS octal drivers.

To complement our full line of Widebus products, our ABT family will include at least 39 octal buffers/ drivers, flip-flops, transceivers and registered transceivers.

Squeeze more out of your system with a free sample 'ABT16500A: Call 1-800-336-5236, ext. 3009
To learn firsthand how our new ABT family can boost the performance of your bus-interface designs, get a free 'ABT16500A transceiver and data sheet. Just complete and mail the return card or call the number above.

Now up to 100V DC Output

 P/CO Converters
IS0 9000: The Key To Success In Europe

As European executives see it, many American companies and their quality-control engineers aren't aware of the ISO 9000 set of standards. If that's the case, firms seeking to TECHNOLOGY BRIEFING do business in Europe had better know what these quality norms are all about. And they must stick to them if they want to succeed in the single European market to be created by January 1, 1993. To be sure, if they don't abide by the 9000 standards, non-European firms won't be discriminated against. "However, they'll be in a better competitive position if they do," says an executive of a U.S. company in Germany.

JOHN GOSCH FIELD EDITOR

The Single Market will tear down the trade barriers between the 12 countries that make up the European Community, as well as bring a free flow of goods, services, and capital across national borders. Moreover, there will be common standards for all EC countries, replacing the hodgepodge of national norms that impede across-the-border trade, which some countries also use to protect their home markets.
One set of standards already common in Europe is ISO 9000, which was recommended by the International Standards Organization in 1987. Globally, more than 30 countries have opted for ISO 9000. Among them is the U.S., where the American National Standards Institute and the American Society for Quality Control adopted it as the ANSI/ASQC Q90 standard.But many U.S. firms "seem to be unaware of it and are following MIL standards or in-house guidelines," says an official at the German Society for Quality. However, that doesn't mean Americans are less quality-conscious than Europeans. An expert at Germany's Siemens AG states, "It's only because of their huge home market that U.S. firms are using their own standards and are unfamiliar with others."

While the giants in the U.S. industry know about ISO 9000, most smaller firms eager to enter foreign markets are unaware of it. Actually, ISO 9000 doesn't specify product design and operation. Instead, it's a set of quality system standards and guidelines complementing product or service requirements. It aims to help firms set up procedures to achieve optimum quality in all operations, from incoming inspection to product installation and service.
The first standard in the five-norm set, the actual ISO 9000, defines quality terms and offers advice on how to use the other four norms. ISO 9001 describes a model for quality assurance in the design and development of a product and its fabrication, installation, and servicing. It shows the customer that a supplier can deliver and service a product. ISO 9002 goes into more details on quality assurance in production and installation than ISO 9001. The next norm is ISO 9003, which provides a model for quality assurance in test and final inspection. Finally, ISO 9004 offers guidelines on elements of quality management and quality systems. The ISO 9000 set is flexible: It will be periodically reviewed using customer feedback, and may be extended to include software development, supply, and maintenance.

In Europe, ISO 9000 is gaining popularity, especially among high-tech and export-intensive firms. Considered an important element in a company's business strategy, the norms are often used as a sales argument in product ads and negotiations. Classified ads will sometimes specify that engineers seeking jobs in quality control know about it. Customers are beginning to pressure their suppliers to implement ISO 9000 and many have started to rate suppliers on how well they can fill an order for quality products.

To qualify as an "ISO 9000 firm," an acceredited agency must certify that the quality system it is using meets the standard's requirements. A number of agencies can give such certification, including the British Standards Institute in the United Kingdom and the Society for the Certification of Quality Assurance Systems in Germany.

Take a Look at LabWindows"2.0

LabWindows 2.0 brings a new look to data acquisition and instrument control. The new look is graphical-a graphical user interface for your acquisition and control system.

Create a Graphical User Interface
With LabWindows 2.0 , you can easily create custom graphics panels to interface with your DOS-based system. Using the graphical editor and standard development tools, you can develop a system that combines data acquisition, data analysis, and data presentation.

Program with C or BASIC

When you develop a system with LabWindows 2.0, you have the benefit of using standard programming languages with development tools designed specifically for data acquisition and instrument control.

Use any Acquisition Hardware LabWindows 2.0 has libraries of functions to control data acquisition hardware ranging from plug-in boards to industry-standard GPIB, VXI, and

RS-232 instruments. You can develop a system with LabWindows to meet all of your measurement and control needs.
See Us At ATE And Instrumentation Booth \#108
Take a look at the new LabWindows 2.0.
You'll like what you see.

POWER SPLIIERS COMBINERS

the world's largest selection 2 KHz to 8 GHz from $\$ 495$

With over 300 models, from 2-way to 48 -way, $0^{\circ}, 90^{\circ}$ and 180°, a variety of pin and connector packages, 50 and 75 ohm, covering 2 KHz to 8000 MHz , Mini-Circuits offers the world's largest selection of off-the-shelf power splitter/combiners. So why compromise your systems design when you can select the power splitter/combiner that closely matches your specific package and frequency band requirements at lowest cost and with immediate delivery.

And we will handle your "special" needs, such as wider bandwidth, higher isolation, intermixed connectors, etc. courteously with rapid turnaround time.

Of course, all units come with our one-year guarantee Unprecedented 4.5 sigma unit-to-unit repeatability also guaranteed, meaning units ordered today or next year will provide performance identical to those delivered last year.

For detailed specs and performance data, refer to the MicroWaves Product Directory, EEM or MIni-Circuits RF/IF Signal Processing Handbook, Vol. II. Or contact us for our free 68-page RF/IF Signal Processing Guide. CIRCLE 214 FOR U.S. RESPONSE

CIRCLE 215 FOR RESPONSE OUTSIDE THE U.S. finding new ways
setting higher standards

뮹Mini-Circuits
 PO. Box 350166 , Brooklyn, New York 11235-0003 (718) 934-4500

 Fax (718) 332-4661 Domestic and International Telexes: 6852844 or 620156

TECHNOLOGY NEWSLETTER

Copper Is Deposited Directly 0nto Teflon

An additive technique for depositing copper circuit lines directly onto Teflon in only three steps has been developed by researchers at Sandia National er processes for races, and requ , But he famous "non-stick" properties that make Teflon so desirable in frying pans made additive deposition of copper a challenge. The breakthrough came when researchers discovered that copper won't adhere to Teflon that's been irradiated with X-rays or electrons (step one), but will stick to areas that are subjected to a commercial chemical-etching solution (step two). At first, copper was applied with chemicalvapor deposition (step three). But it was subsequently found that standard electroless copper plating works as well. Interestingly, only the initial irradiation step requires a patterning mask. The entire Teflon surface is subjected to the etchant in step two, but the irradiation apparently makes the unmasked areas immune to the solution. In addition to printed-circuit applications, Sandia's Microelectronics Development Laboratory is exploring copper interconnects as wiring for next-generation ICs. $D M$

DMOS Process Mixes 600-VBy extending its proven high-voltage IC process from 500 to 600 V and adding a few proprietary circuit tricks, International Rectifier, El Segundo, FETS WITH BIPOLAR LOGIC Calif., developed the first three-phase power MOSFET-gate driver. The process puts 600-V DMOSFETs on the same chip as low-voltage bipolar transistors and CMOS logic. Increasing the voltage rating required enlarging device size and improving termination techniques. The new IC, the IR2130, is aimed at controlling fractional- and integral-horsepower three-phase motors, up to 5 horsepower, in pulse-width-modulated and six-step drive systems. Alternatively, two of its three half-bridge drive circuits can be used with four power FETs in any of several full-bridge switching-regulator topologies, while the remaining pair of FETs drives two power MOSFETs in a power-factor-correcting pre-regulator. The IR2130 contains three ground-referenced low-side and three floating high-side drivers, all capable of sourcing and sinking 250 and 500 mA , respectively. For additional information, call Shawn Fogarty at (800) 245-5549. FG

Partnership To Yield
In an enhancement of a partnership inked nearly a year ago, Array Microsystems Inc., Colorado Springs, Colo., and Samsung Semiconductor Inc., San Jose, Calif., have agreed to develop a family of image-compression chips. The Image-Processing ICS programmable circuits, based on a core CPU technology optimized for video processing, could be configured to perform JPEG, MPEG, Px64, and other image-processing algorithms. By making the core programmable instead of hardwired, the chips can overcome many shortcomings inherent in currently available image-processing ICs. The cores can also switch quickly between algorithms and thus perform multiple tasks, while still permitting real-time video processing compatible with the NTSC CCIR 601 standards. The chips will implement a paral-lel-processing architecture so that multiple chips or chip sets can be added to improve system performance. Furthermore, derivative products-specialized versions of the chips-will also be possible thanks to the flexible design and support tools also being developed. Software tools will be released in the late second quarter. However, initial samples of the first chips in the family are slated for release in the fourth quarter. $D B$ suming because of the many electromechanical components needed to implement laser- or ink-jet-based normal-paper systems. Now Siemens AG is coming out with a fax machine using electrophoretic printing methods (in electrophoresis, the movement of charged particles suspended in a fluid medium is exploited under the influence of an electric field). That, the Munich, Germany company claims, makes it the smallest normalpaper fax system developed to date. It occupies an area no larger than a page of this magazine ($81 / 2$ by 11 in.). The Teamfax HF2312 delivers copies that can be marked up with pencil or ballpoint pen, much easier than copies on specially layered paper. It prints four pages $/ \mathrm{min}$. at document-quality levels and has a high degree of sharpness-resolution is $300 \mathrm{dots} / \mathrm{in}$. At only 44 dBA , the noise the machine generates is rather low. The Teamfax HF2312 features such functions as abbreviated and automatic repeat dialing and has a 15 -page memory. Transmission speed per page is 13 seconds. An error-correction scheme eliminates any errors that may

Putting you 3.3V ahead of

the portable market.

That'sAT\&T "Customerizing."

These days, a dream design for a portable system can become a nightmare overnight. By the time you launch, you may be late to market.
"Customerizing" means helping you differentiate your product. By providing a 3.3 volt, reduced-heat route to a smaller, lighter, longer-operating notebook, disc drive or cellular system. And by giving you all the latitude you need to add product enhancements of your own.

3 times longer battery life Our 3.3V ASIC solution enables you to slash system power requirements. Lets you pack more circuit gates within inexpensive plastic packages. And achieve tighter IC packaging densities.

3.3 volt CMOS ASIC library

 Speed and simplify your 3.3 design-in with AT\&T's exclusive LP900C 3.3 V library A 0.9 micron,CMOS ASIC library that includes over 4003.3 V standard cells, optimized from our existing, industry-standard 5 V library.
Our 3.3V performance also extends to industry standard PC macrocells including RAM, ROM, a DMA controller, UART and 80C51-compatible microcontroller.
More 3.3V ASICs design tools Our libraries are ported to CAD tools like AT\&T, Mentor Graphics, Synopsys, Verilog and Viewlogic, providing the symbols, simulation models and ERC tools you need to ensure optimum 3.3 V circuit operation. So if 3.3 sounds like a "portable" number you'd like to try, ask for our 3.3 Volt ASIC Information Package, including Data Book and Product Brief. Just call AT\&T Microelectronics at $1800372-2447$, ext. 633.

TECHNOLOGY NEWSLETTER

be caused by, say, poor phone connections. Contrast can be set in three steps so that pages with very bright and very dark areas can be transmitted with good quality. A display for operating instructions can be switched to the German, English, French, Italian, or Spanish language. JG

DENSE TERMINATIONS A patented process creates high-density terminations that eliminate the need Eliminate Via Holes for the traditional via hole connecting an internal conductor with a compoTechnology (AIT), Islip, N.Y., the ends of 0.0025 -in. polyimide-insulated copper wire are displaced vertically in the Z axis into an epoxy resin. Then, the circuit is planarized to expose the wire ends and electroplated copper is deposited on the surface to form a component pad on top of the wire ends. With no holes required, signal termination can be achieved directly on pad pitches down to 0.012 in. This eliminates fan-out to the typical $0.050-\mathrm{in}$. pitch and dramatically increases I/ O density. In addition, there's no more capacitance and inductance associated with vias. Contact AIT at (516) 968-1400. DM

Sienens And IBM T0 PRoduce 16-Mbit DRAMS

 An agreement made in July 1991 between Siemens AG of Munich, Germany, and IBM Corp., Armonk, N.Y., to produce 16-Mbit dynamic RAMs at IBM's factory in Corbeil-Essonnes, France, will soon bear fruit. Data measured on first samples will be used to fine-tune production lines this spring, and products will be available in volume quantities toward the end of 1992 . The first 16 -Mbit DRAM will be a device with a 4-Mbit-by-4-bit organization. It will have an access time between 50 and 70 ns and come in a 400 -mil-wide SOJ plastic package with 28 or 24 pins. The device will integrate some 35 million elements on a $137 \mathrm{~mm}^{2}$ chip. The smallest structures will be $0.5 \mu \mathrm{~m}$. Other versions will follow in 1993, among them byte-oriented 16-Mbit DRAMs with a 2-Mbit-by-8-bit and 1-Mbit-by-16-bit organization, as well as DRAM parts supplied in a TSOPII package. JGA two-step process makes 100% copper circuit traces in just 10 seconds- 50 times faster than permitted by current technology. The Pathways system, developed by Printron Inc., Albuquerque, N.M., uses atmospheric pressure to print metal slurries on a wide variety of substrates, including paper, plastics, and ceramics. Initial circuit resolution for lines and spaces is 4 mils. The metal-slurry inks consist of micronsized metal particles of either copper or a combination of copper, silver, and gold suspended in a proprietary media. A proprietary technique directs intense energy to the printed-slurry patterns, which fuses them into solid-copper conductors. The initial version of the system is targeted at prototyping applications. $D M$ Philips Semiconductors, a division of Philips Electronics in Eindhoven, the In VLSI PRocesses Netherlands, and SGS-Thomson Microelectronics, the Italian-French semiadvanced CMOS logic processes below $0.7 \mu \mathrm{~m}$, including design rules and libraries. The first common process will be a $0.5-\mu \mathrm{m}$ CMOS logic process on $8-\mathrm{in}$. silicon wafers. It's expected to be completed by the end of 1993. Activities will take place atSGS-Thomson's new R\&D Center in Italy and at the French telecommunication research institute at Crolles, France. JG

Three new developments based on the 32 -bit RISC architecture from MIPS Computer Systems, Sunnyvale, Calif., should enhance the position of Siemens AG, Munich, Germany, in the microprocessor market. The first is the Siemens SAB-R3500, which integrates an integer- and floating-point-processor on one chip. The second development is the SAB-R3223, a read/write buffer for use between the main memory and a 32 -bit processor core. Finally, the Munich company housed its standard SABR3000A and SAB-R3010A processors in a low-cost surface-mounted plastic quad flat package, the PQFP-160. These processors have an integrated heat sink and are designed for applications where clock frequencies go beyond 25 MHz . Main applications for these RISC devices are workstations, laser printers, robotics, and in the aerospace field. The single-chip SAB-R3500, now being sampled, is pin-compatible with the company's SAB-R3000A processor and comes in the CPGA-161 pin grid array as well as the PQFP-160 packages. It can be clocked at 40 MHz . The SAB-R3223 read/write buffer, which has an 8 -word-deep read memory and a one-stage write memory, raises a system's computing performance by up to 30%.JG

For years, people have been trying to run

 100 meters in under 9 seconds, clear 8 feet in the high jump, and hit 5.5 ns in a 22 V 10 PLD .

We're still having some trouble with the first two.

OK, the Olympics may not be in our future.
But the 5.5 ns barrier is history.
The $125 \mathrm{MHz}^{*}$ TriQuint GA22V10-5 isn't just a pipe dream. It's proven.
TTL-compatible. Price-competitive. And shipping right now.
We make it available in both surface-mount and DIP packages.
The GA22V10-5 is only one of a slew of record-setting performances in speed, quality, technology and service that you can count on from TriQuint - now comprising the combined forces of Gazelle Microcircuits, GigaBit Logic, and TriQuint Semiconductor.

If you want a 25% performance advantage for your logic devices, and you're working on a fast track, call or write TriQuint for complete details on the GA22V10-5 today! Call (408) 982-0900.

dc to 3 CHz . $\$ 1745$ lowpass, highpass, bandpass

- less than 1dB insertion loss • greater than 40 dB stopband rejection • surface-mount \bullet BNC, Type N, SMA available
\bullet 5-section, 30dB/octave rolloff •VSWR less than 1.7 (typ) • rugged hermetically-sealed pin models \bullet constant phase \bullet meets MIL-STD-202 tests • over 100 off-the-shelf models •immediate delivery
low pass, Plug-in, dc to 1200 MHz

Model No.	$\begin{gathered} \text { Passband } \\ \mathrm{MHz} \\ \text { loss }<1 \mathrm{~dB} \end{gathered}$	$\begin{array}{r} \text { Stop } \\ \text { loss } \\ > \\ 20 \mathrm{~dB} \end{array}$	MHz $\begin{aligned} & \text { loss } \\ & > \end{aligned}$	Model No.	$\begin{gathered} \text { Passband } \\ \mathrm{MHz} \\ \text { loss }<1 \mathrm{~dB} \end{gathered}$	$\begin{aligned} & \text { Stopba } \\ & \text { loss } \\ &> 20 \mathrm{~dB} \end{aligned}$	$\begin{aligned} & \mathrm{MHz} \\ & \quad \text { loss } \\ & >40 \mathrm{~dB} \end{aligned}$
PLP-5	DC-5	8-10	10-200	PLP-250	DC-225	320-400	400-1200
PLP-10.7	DC-11	19-24	24-200	PLP-300	DC-270	410-550	550-1200
PLP-21.4	DC-22	32-41	41-200	PLP-450	DC-400	580-750	750-1800
PLP-30	DC-32	47-61	61-200	PLP-550	DC-520	750-920	920-2000
PLP-50	DC-48	70-90	90-200	PLP-600	DC-680	840-1120	1120-2000
PLP-70	DC-60	90-117	117-300	PLP-750	DC-700	1000-1300	1300-2000
PLP-90	DC-81	121-137	167-400	PLP-800	DC-720	1080-1400	1400-2000
PLP-100	C-98	146-189	189-400	PLP-850	DC-760	1100-1400	1400-2000
PLP-150	DC-140	210-300	300-600	PLP-1000	DC-900	1340-1750	1750-2000
PLP-200	DC-190	290-390	390-800	PLP-1200	DC-1000	1620-2100	2100-2500

Price, (1-9 qty), all models: plug-in $\$ 14.95$, BNC $\$ 32.95$, SMA $\$ 34.95$. Type $\mathrm{N} \$ 35.95$
Surface-mount, dc to 570 MHz

SCLE-21.4	DC-22	$32-41$	$41-200$	SCLF-190	DC-190	$290-390$	$390-800$
SCLF-30	DC-30	$47-61$	$61-200$	SCLF-380	DC-380	$580-750$	$750-1800$
SCLF-45	DC-45	$70-90$	$90-200$	SCLF-420	DC-420	$750-920$	$920-2000$
SCLF-135	DC-135	$210-300$	$300-600$				

Price, (1-9 qty), all models: $\$ 11.45$
Flat Time Delay, dc to 1870 MHz

	Passband MHz	Stopband MHz		VSWR Freq. Range, DC thru		Group Delay Variations, ns Freq. Range, DC thru		
Model No.	$\text { loss }<1.2 \mathrm{~dB}$	$\begin{aligned} & \text { loss } \\ & > \\ & 10 \mathrm{~dB} \end{aligned}$	$\begin{gathered} \text { loss } \\ > \\ 20 \mathrm{~dB} \end{gathered}$	$\frac{0.2 \mathrm{fco}}{\overline{\mathrm{X}}}$	$\frac{0.6 \mathrm{fco}}{\overline{\mathrm{x}}}$	$\frac{\mathrm{fco}}{\mathrm{X}}$	$\frac{2 \mathrm{fco}}{\mathrm{x}}$	$\frac{2.67+00}{x}$
PBLP-39	DC-23	78-117	117	1.3:1	2.311	0.7	4.0	5.0
PBLP-117	DC-65	234-312	312	1.3:1	2.41	0.35	1.4	19
PBLP-156	DC-94	312-416	416	0.3:1	1.1:1	0.3	1.1	1.5
PBLP-200	DC-120	400-534	534	1.6:1	1.9:1	0.4	1.3	1.6
PBLP-300	DC-180	600-801	801	$1.25: 1$	2.1	02	0.6	0.8
PBLP-467	DC-280	934-1246	1246	1.25:1	2.2:1	0.15	0.4	0.55
ABLP-933	DC-560	1866-2490	2490	1.3:1	2.2:1	0.09	0.2	0.28
ABLP-1870	DC-850	3740-6000	5000	1.45:1	2.9:1	0.05	0.1	0.15

Price, (1-9 qty), all models: plug-in \$19.95, BNC $\$ 36.95$, SMA $\$ 38.95$, Type N $\$ 39.95$
NOTE: A: -933 and -1870 only with connectors, at additional $\$ 2$ above other connector modeis.
high pass, Plug-in, 27.5 to 2200 MHz

	Stopband MHz		$\begin{gathered} \text { Passband } \\ \mathrm{MHz} \\ \text { loss } \\ <1 \mathrm{~dB} \end{gathered}$	VSWR Passband Typ.	Model No.	Stopband		$\begin{gathered} \text { Passband } \\ \mathrm{MHz} \\ \text { loss } \\ <1 \mathrm{~dB} \end{gathered}$	VSWR Passband Typ.
Model No.	$\begin{aligned} & \text { loss } \\ & <40 \mathrm{~dB} \end{aligned}$	$\begin{aligned} & \text { loss } \\ & <20 \mathrm{~dB} \end{aligned}$				$\begin{aligned} & \text { loss } \\ & < \\ & < \end{aligned} 40 \mathrm{~dB}$	$\begin{array}{r} 10 \mathrm{ss} \\ <20 \mathrm{~dB} \\ \hline \end{array}$		
PHP-25	DC-13	13-19	27.5-200	181	PHP-400	DC-210	210-290	395-1600	1.7:1
PHP-50	DC-20	20-26	41-200	1.5:1	PHP-500	DC-280	280-365	500-1600	1.81
PHP-100	DC-40	40-55	90-400	1.8:1	PHP-600	DC-350	350-440	600-1600	2.0:1
PHP-150	DC-70	70-95	133-600	$1.8: 1$	PHP-700	DC-400	400-520	700-1800	1.6:1
PHP-175	DC-70	70-105	160-800	1.51	PHP-800	DC-445	445-570	780-2000	2.1:1
PHP-200	DC-90	90-116	185-800	16.1	PHP-900	DC-520	520-660	910-2100	1.81
PHP-250	DC-100	100-150	225-1200	1.3:1	PHP-1000	DC-550	550-720	1000-2200	1.9:1
PHP-300	DC-145	145-170	290-1200	1.7.1					

Price, (1-9 qty), all models: plug-in $\$ 14.95$, BNC $\$ 36.95$, SMA $\$ 38.95$, Type $\mathrm{N} \$ 39.95$

bandpass, Elliptic Response,
Constant Impedance,
21.4 to 70 MHz

Model No.	Center Freq. (MHz)	Passband I.L. 1.5 dB Max. (MHz)	3 dB Bandwidth Typ. (MHz)	topbands	
				$\begin{aligned} & 1 \mathrm{~L} \\ &> 20 \mathrm{~dB} \\ & \text { at } \mathrm{MHz} \end{aligned}$	$>35 \mathrm{~dB}$ $\text { at } \mathrm{MHZ}$
PBP-10.7	10.7	9.6-11	8.9-	7.5	0.6 \& 50-1
PBP-21.4	21.4	19.2-23.6	17.9-25.3	15.5 \& 29	3.0 \& 80-1000
-	30.0	27.0-33.0	25-35	22 \& 40	3.2 \& 99-10
BP-60	60.0	55.0-67.0	9.5-70.5	4.4 \& 79	4.6 \& 190-100
PBP-70	70.0	63.0-77.0	68.0-82.0	51 \& 94	6.0 \& 193-100

Model No.	Center Freq. MHz	$\begin{gathered} \text { Passband } \\ \mathrm{MHz} \\ \text { loss } \\ <1 \mathrm{~dB} \end{gathered}$	Stopband loss $>20 \mathrm{~dB}$ at MHz	VSWR $1: 3: 1$ Total Band MHz
PIF-21.4	21.4	18-25	1.3 \& 150	DC-220
PIF-30	30	25-35	1.9 \& 210	DC-330
PIF-40	42	35-49	2.6 \& 300	DC-400
PIF-50	50	41-58	3.1 \& 350	DC-440
PIF-60	60	50-70	3.8 \& 400	DC-500
PIF-70	70	58-82	4.4 \& 490	DC-550
Price, (1-9 qty), all models plug-in \$1495. BNC \$36.95, SMA \$38.95. Type N $\$ 39.95$				

finding new ways
setting higher standards

Success Is Having
 A Reliable Partner

Programmable Interconnection Matrix In Silicon Speeds System Design

Creating the first custom pe boards during system design can be an expensive, time-consuming process that requires many iterations and is error-prone. That's true even though most designers take advantage of PCor workstation-based pcboard design tools. And, with few exceptions, current prototyping boards still require designers to hand wire-wrap point-topoint connections. Seeking a better solution, designers at Aptix Corp., San Jose, Calif., created a programmable signal-wiring matrix in silicon that can replace pe-board wiring.

The concept, dubbed by the company "field-programmable interconnect components" (FPICs), makes possible user-configurable component-tocomponent interconnections. Unlike cross-point switching matrices, which typically have a set of dedicated inputs and a set of dedicated outputs, the Aptix concept let any pin be
routed to any pin or pins, says Aptix's founder Dr. Amr Mohsen. Expandability of the concept, he adds, is only limited by the number of package pins-not by the number of programming points, as in crosspoint matrices.
More than 20 patents protect the concept, in areas such as device and system architectures, programming elements, and packaging technology. Aptix will demonstrate the concept next quarter, when it plans to unveil two field-programmable components, one built around reprogrammable static-RAM-based control cells, and the other around one-time-programmable control elements.
The two FPICs, though, are pin compatible. Consequently, designers could do early prototyping with the SRAM-based chip, which permits quick configuration changes to alter signal routing. Once the pattern is firm, lower-cost one-time programmable
versions can be used for low-to-medium-volume production.

One major advantage of the SRAM-based chip is that it can be dynamically reconfigured in the system to adjust the interconnection paths. The SRAMbased chip also consumes minimal power once it's configured-aside from a small current needed to maintain the contents in the SRAM cells, the chip requires no power except when it's being reconfigured, which only takes several seconds. The onetime programmable version needs even less power once programmed because there are no memory cells to keep alive.

The SRAM-based version of the FPIC is made by a $0.8-\mu \mathrm{m}$ CMOS process and packs over 1 million transistors in its configuration logic (assuming six transistors per SRAM cell, that translates into about 160,000 configuration cells). Similarly, just over 160,000 interconnection el-
ements are used in the equivalent one-time programmable version.
The one potential drawback of an FPIC is the large number of pins such interconnection components would require. To counter that limitation, Aptix developed a novel 1024contact, land-grid array, multilayer ceramic package. The high-density LGA package can be seated into a matching socket that, in turn, is mounted in the target system.

Comprised of a regular grid of attachment points (the I/O pads), the internal array architecture employs multiple, segmented signal-routing "tracks" in each wiring channel to carry the signals routed onto them by the configuration elements (see the figure, $l e f t$). There are several different types of tracks, arranged in a hierarchy. At the top are continuouswire tracks that span the length or width of the chip (good for long routes). Next down are tracks that are divided into a few independent segments (good for moderate routes). And at the bottom are tracks

Teks new encore TDS 400. Extraordinary 4-channel power. Ordinary 2-channel price.

Tek's new TDS 400 Series oscilloscopes make TDS performance from 150 MHz to 350 MHz more portable and affordable than ever.
Now you can pick up where Tek's breakthrough TDS 500 Series left off - with a compact, versatile new series that puts the TDS plafform's 4-channel acquisition, multiprocessing and intuitive operation within easy reach of digital, analog and electro-mechanical design, production test, field service, and many other demanding tasks.
For the usual price of two channels, you can now have:

- $100 \mathrm{MS} / \mathrm{s}$ sampling on each of four channels.
- On-the-fly signal processing with up to 12 -bit vertical resolution.
- Record lengths to 30,000 points.
- Video trigger option with back-porch clamp and dial-up line/field selection.
- 22 time-saving automatic measurements.
- The unique graphical user interface that lets most TDS manuals stay shrinkwrapped on the shelf. Call 1-800-426-2200

Ext. TDS4, for more information on either the new TDS 400 or the recently-announced TDS 500 Series with up to 4 channels, $1 \mathrm{GS} / \mathrm{s}$ sampling and 500 MHz bandwidth - and for the number of your nearest Tek sales office. We'll put you through to all the right channels, fast!

TECHNOLOGY ADVANCES

that have many physical divisions (the short segments are good for localized routing between adjacent I/O pads). Routing control elements or memory cells are at the intersections of orthogonal tracks (see the figure, right).
Signal paths through the FPICs are bidirectional and passive, and have typical pin-to-pin path delays of less than 10 ns . Either version of the FPIC allows more than 1000 externally accessible interconnects to fit in one package, while permitting systems to op-
erate at over 50 MHz .
Any combination of pins can be universally interconnected to any other combination of pins by the matrix. Consequently, if a group of chips on a pc board must be interconnected, all signal pins from that group of ICs could be directly routed to pins on the FPIC. The configuration pattern loaded into the FPIC would then connect IC 1 pin 1 to IC 3 pin 3, IC 1 pin 2 to IC 5 pin 5 , etc., until all chips in the group are interconnected. Multiple FPICs can also be used in a
system, with some signal pins used for the FPIC-toFPIC interconnections to route signals between large logic blocks.

Proprietary programming and configuration software developed by the company can perform automatic signal routing to 100% completion. Furthermore, itallows users to control critical path placement and deal with incremental changes or updates to the design files. Signals are also observable-the FPICs include several "viewing ports" that can
access any of the signals in the array. That feature should come in very handy during system debugging.
When the software runs on a Sun SparcStation IPC workstation, the interconnection routing time needed to fully configure the 1024-pin FPIC device is less than two minutes. In-circuit configuration time for the SRAM version is a few seconds; the one-time programmable version needs less than five minutes in a special device programmer for full configuration.

DAVE BURSKY

Silicon Bipolar ICs Set Record 0f 30 Gbits/s

Agroup of researchers at the Ruhr University in Bochum, Germany, set a speed record for semiconductor devices by developing siliconbased multiplexer and demultiplexer ICs that operate at up to 30 Gbits/s. Consequently, the researchers upstaged themselves; about nine months ago they reported a speed of $24 \mathrm{Gbits} / \mathrm{s}$-the highest for silicon at that time (Electronic design, Apr. 25, 1991, p. 23).

The $30-\mathrm{Gbit} / \mathrm{s}$ rate is a record not only for silicon but for any type of material. The new chips outperform even ICs using the more expensive gallium arsenide material, for which speeds of $28 \mathrm{Gbits} / \mathrm{s}$ have been reported, according to Hans-Martin Rein, a professor at the university's Electrical Engineering Department and head of the research group.

What's more, the silicon approach taken is not some exotic laboratory technology, but rather the kind that the industry is now trans-
ferring into production. The group's extremespeed multiplexer and demultiplexer ICs were fabricated in a $0.8-\mu \mathrm{m}$ selfaligned silicon bipolar process at the HewlettPackard Company in Palo Alto, Calif.

The Bochum feat again demonstrates silicon's usefulness in extremely fast semiconductor devices. At one time, experts predicted that it wouldn't be long before silicon would be replaced by gallium arsenide as a material in high-speed circuits. But researchers everywhere have kept pushing out the speed limits for the good old sili-con-so often, that experts have stopped predicting silicon's diminishing role.

The ICs that the Bochum group developed are intended for high-speed measuring equipment and future glass-fiber transmission systems. Their $30-$ Gbit/s data rate is more than ten times that of the fastest glass-fiber links now being installed. The latter's speed is around 2.5

Gbits/s.
In addition to the latest silicon bipolar technology, the new devices owe their performance to improved techniques for optimizing circuit design, as well as to high-accuracy transistor models for simulating extreme speeds. The Rein group has used these techniques and transistor models for several years. This work is now paying off.

The transistor models are so flexible that they can be applied in a simple way to different technologies used in IC fabrication. A suitable computer program, also developed at the Ruhr University, allows fast calculations of the models' parameters for any transistor dimension. This enables chip designers to optimally adapt a transistor's characteristics to the task it's to perform in a specific circuit.

Optimizing transistors individually is a prime factor responsible for the 30 Gbit/s speed, Rein says. Using this and other design aids, his group devel-
oped a number of highspeed ICs in the pastamong them decision circuits, frequency dividers, driver stages for laser diodes, and various types of amplifiers. Meanwhile, the industry uses the Bochum design techniques and transistor models.
One problem the Bochum researchers faced was checking the extremespeed chips. As a solution, they built a pulse generator that could produce pulses at up to 30 Gbits/smore than twice that of the fastest pulse generator on the market.
The self-made generator consists essentially of the 30-Gbit/s multiplexers that the group developed and special frequency dividers operating at more than 15 GHz . The dividers were developed together with Siemens AG, Munich, as part of the Esprit program (the European Strategic Program for Research in Information Technologies).
The Bochum researchers also took into account that the pulse rise time is less than 17 ps , which in-

TECHNOLOGY ADVANCES

cludes the inherent rise time of the oscilloscopes used. 17 ps is about the time it takes light to travel a distance of 5 mm . Such steep pulses must be fed into and out of the chip via conductors, connectors, and contact wires.
Here, the Rein group used a novel approach for best measuring results. While other groups generally measure fast ICs on the wafer, these researchers mounted their chips on a measuring fixture using a conventional bonding technique. A careful design of the measuring fixture and precise calcula-
tions of the critical interfaces helped solve the measuring problems.
Rein expects that further records will be achieved with some of the silicon devices his group is currently developing together with German companies such as Siemens, ANT in Backnang, and Telefunken Electronic in Heilbronn. In this work, duplication of effort is avoided as the circuits each firm develops differs in device type, technology used, and the chips' tasks.

Under development are decision circuits, frequency dividers, driver stages,
and amplifiers, as well as multiplexers and demulti-plexers-all intended mainly for future opticalfiber transmission links sporting data rates exceeding $10 \mathrm{Gbits} / \mathrm{s}$. The development work also aims to demonstrate to what extent today's silicon technologies can be used in high-speed device design.
According to Rein, the results obtained by his group are still far from the speed limits achievable with silicon technologies. Further improvements in speed can be expected from modifying the transistor base or emitter, by
adding other atoms (such as germanium atoms to the base). In this way, heterojunction bipolar transistors (HBTs) are obtained.
ICs using HBTs are currently made elsewhere on the basis of compound semiconductor materials such as gallium arsenide. In the long run, these ICs, which are still in the laboratory stage, will be faster than silicon-based circuits, Rein says. However, because of certain disadvan-tages-among them high cost-the application of these circuits will be limited.

JOHN GOSCH

BiCMOS Technology Tackles Demanding Performance Needs 0f Sonet Systems

The changeover from copper to optical-fi-ber-based telecommunications is increasing the need for high-speed chips, with internal operating speeds two to four times that of the data rate. The result is that performance needs have leapt past the levels that most CMOS processes can deliver, making biCMOS the technology of choice. As data rates migrate from the $1.54-$ and $44.7-\mathrm{Mbit} / \mathrm{s}$ levels of asynchronous DS1 and DS3 channels, to the 51.84 -Mbits/s base rate (and its multiples) of the synchronous transport signal 1 (STS-1), high-performance digital interface and system-logic chips are being called for.
In a deal struck in 1991, Texas Instruments Inc., Dallas, has worked with TranSwitch Corp., Shelton, Conn., to create a family of biCMOS chips specifically targeted at the DS3
and synchronous optical network (Sonet) equipment makers. The chips will be released later this year and are expected to perform key functions such as signal encoding and decoding, serial-toparallel and parallel-to-serial conversion, framing, clock recovery, and overhead processing.
Sonet's $51.84-\mathrm{Mbit} / \mathrm{s}$ throughput is the root rate the U.S. The equivalent in Europe, the synchronous digital hierarchy (SDH), is 155.52 Mbits/s (STM-1). Three multiplexed STS-1 lines form an STS-3 line, which is equivalent to one STM-1 channel.

The international agreement regarding the use of Sonet benefits the system designer as it allows semiconductor suppliers to slice up the systems into integratable sections to further reduce cost and simplify system designs.
TranSwitch created five
chips that will be offered for Sonet, CEPT, and Japanese wideband communication applications. Those chips include a multi-rate line interface that terminates CEPT E2 (8448-kbit/ s), CEPT E3 (34,368-kbit/ s), or Japanese T2 (6313kbit/s) lines, and an E2/ E3F framer that frames wideband payload signals into any one of four digital hierarchy signals, specified by the Consultative Committee on International Telephony and Telegraphy (CCITT). CEPT stands for European Conference on Postal and Telecommunications Administrations. Another framer chip, the JT2F, is for the 6312 -kbit/s format specified in CCITT recommendation G. 702 and Japan's NTT technical specifications. The other two chips are high-level data-link control (HDLC) ICs-both operate at up to 51.84 Mbits/s. One has a 36- or 9-bit interface on the

HDLC side; the other only has a 9-bit interface.
Asynchronous ICs coming from TI include a full DS3 receive/transmit interface (DS3RT) and a high-speed HDLC that are similar to the multi-rate line interface chip and the 9 -bit HDLC chip from TranSwitch. Synchronous products include a Sonet overhead terminator (SOT3) chip for STS-3 line rates, and a synchronizer chip (SYN155) for STS-3 systems. The interface requirements for the chips revolve around one key point-the ICs must initially interface to systems with data rates up to 155 Mbits/s.

Additional chips are being jointly defined by TranSwitch and TI, which the companies hope to release in 1993. Some of those functions may have to operate at four times the speed of the STS-3 line$622 \mathrm{Mbits} / \mathrm{s}$, and at the next level above that at four times that speed-2.5 Gbits/s. To operate at such speeds, TI's designers ex-

Synchronous SRAMs

B का

DASE OE DESSIGN

Make your next move on time

You're ready to make your next strategic design move. So make it on time with Micron Synchronous SRAMs.

Micron Synchronous SRAMs reduce the logic required with commodity SRAM solutions - simplifying your system designs and greatly reducing propagation delays. Plus you'll speed-up cycle times, reduce power consumption and decrease board space more than the commodity-plus-logic solution. All in one move.

We've also made your move to synchronous easier by offering on-board data latches, dual chip enables and a variety of different packages including PQFP.

So whether you design high-performance systems, cache subsystems, DSP or systems requiring wide SRAMs, make the smart move and call Micron at 208-368-3900. And see why the time is right to move to synchronous.

Micron. Technology that works for you.

Memory Configuration	$\begin{gathered} \text { Part } \\ \text { Number } \end{gathered}$	Access Time	Output Enable Access Time	Package
$16 \mathrm{~K} \times 16$	MT58C1616**	$\begin{aligned} & 13,15,17, \\ & 20,25 \mathrm{~ns} \end{aligned}$	5,6,7,8,10ns	52-pin PLCC and PQFP
$16 \mathrm{~K} \times 18$	MT58C1618**	$\begin{gathered} 13,15,17 \\ 20,25 \mathrm{~ns} \\ \hline \end{gathered}$	5,6,7,8,10ns	$\begin{aligned} & \text { 52-pin PLCC } \\ & \text { and PQFP } \\ & \hline \end{aligned}$
$128 \mathrm{~K} \times 9$	MT58C1289	$16.6,20 \mathrm{~ns}$	*	32-pin SOJ

MICAON

2805 E. Columbia Rd., Boise, ID 83706 (208) 368-3900

TECHNOLOGY ADVANCES

pect to transition to galli-um-arsenide technology and exploit advanced packaging technologies. Initial chips will use familiar plas-tic-leaded chip carriers with $1.27-\mathrm{mm}$ pin pitches. However, finer-pitch packages, with lead spacings of $0.635,0.5$, and eventually 0.4 mm , will be available to improve the package I/O without greatly increasing needed pc-board space.
At data rates of 155 Mbits/s, TI's designers believe that the bipolar output structure of biCMOS logic offers a more-stable, well-behaved, signal swing than pure CMOS. That results in less simultaneous switching noise and higher system reliability. Furthermore, because biCMOS does not swing rail-to-rail, its overall power dissipation is less than that of an equivalent CMOS output that runs at high frequency. As a result, the chips will consume less current and will run cooler.
Both CMOS andbiCMOS will be used, where appropriate, for the various chips that were jointly defined with TranSwitch. For DS3 applications, a $1-\mu \mathrm{m}$ CMOS-only process will deliver the best mix of performance at low cost. For the Sonet SOT-2 and SYN155 circuits, a $0.8-\mu \mathrm{m}$ biCMOS process will be used.
The DS3RT chip provides the interface between the bipolar transmission line (DS3) and the digital-signal processing functions on the equipment terminal side. The receiver section converts the incoming bipolar signal, which is coded as a special string of bits, into its digital equivalent. It also determines the number of bipolar violations as a bit-er-
ror rate, when an external $8-\mathrm{kHz}$ clock is supplied. The chip must also recover the data clock from the incoming DS3 signal. Both "loss-of-signal" and "clock" alarms warn of potential signal errors.
Data is ultimately delivered by the chip to the terminal equipment in a non-return-to-zero (NRZ) format. When it transmits the NRZ data from its terminal port to the DS3 line, the chip also monitors the clock line for loss of the clock. The chip can simultaneously receive a signal from a DS3 line, while it
sends data to a DS 3 line.
The HDLC chip sends and receives packets into serial or parallel communi-cation-line interfaces at up to $51.84 \mathrm{Mbits} / \mathrm{s}$, letting it be used in DS3, Sonet, and CCITT line interfaces. It generates warning flags, does zero insertion and deletion, and abort detection and byte framing.
Handling all aspects of section, line, and pathoverhead processing for an STS-3 155-Mbit/s signal channel, the SOT-3 overhead terminator offers a byte-parallel interface. Overhead bytes may be
passed through or modified in either or both receive and transmit directions. The companion SYN155 supplies complete STS-3/STM-1 frame synchronization, including synchronizing with the 155-Mbit/s signal, and providing, as an output, the signal bytes or nibbles along with a byte/nibble clock and frame-indication signal. In the transmit direction, the signal flow is reversed-the chip accepts a byte-wide signal and clock, while delivering a serial data stream and clock.

DAVE BURSKY

Silicon Drying Method Promises To Improve IC Quality and Yields

Setting new standards in cleanliness, Philips Research Laboratories in Eindhoven, the Netherlands, has come up with a novel, ultra-clean method for drying silicon wafers and glass plates. The technique promises to improve the quality and yield levels of IC devices. It relies on the Marangoni effect: The flow of liquid along the surface of another liquid induced by local variations in surface tension, due to a gradient in temperature or concentration along the surface. The method is of particular interest in IC production, where demands for cleanliness are very high.
The fabrication of ICs, liquid-crystal displays, and pc boards often necessitates wet-processing steps, which usually involve rinsing the devices in water and subsequently drying them. After drying, dissolved or dispersed contaminants in even the pur-
est water may be left on the device's surface. This can have disastrous effects on further processing and on product quality.
A device that's withdrawn from a water bath after rinsing is covered with a water film about 10 $\mu \mathrm{m}$ thick. Conventional spin drying reduces this thickness about ten times. But the equipment involved usually generates tiny contaminating particles that are deposited on the device surface. These methods may also lead to stress-induced damage of fine surface structures.
If, however, vapor of a water-soluble organic compound like isopropyl alcohol is directed toward the device surface at the point where it emerges from the rinsing bath, water on the surface absorbs the vapor. This leads to a larger concentration increase at the top of the meniscus against the device than further down where the dissolved
vapor can more easily diffuse away from the surface (the meniscus is the curved upper surface of a liquid column that's concave when the containing walls are wetted and convex when not). Thus, a concentration gradient is set up along the meniscus resulting in a surface tension gradient. This gradient, in turn, induces a Marangoni flow of water back into the rinsing bath. The water film on the device is cut to a thickness of only a few nanometers, and the device emerges from the water bath dry and clean.
Marangoni drying, Philips says, doesn't pollute the environment and consumes little energy. It doesn't call for expensive safety measures when a low-vapor-pressure organic compound is used. Most important, its application ensures the highest degree of cleanliness to date in device drying.

JOHN GOSCH

Here's How We Stach Lp To Other Single Baard Computers...

Teknor TEK-AT3 386 PC/AT

We Don't.

And that's just fine. Because of all the small footprint single board computers, only Teknor TEK-AT boards give you so much integrated power on a $7 \times 4.7 \times 1.25$ " form factor.

Consider, for example, our TEK-AT3 386 PC/AT. A complete single board solution with a capacity to support up to 16 Megabytes of DRAM and 2 Megs of solid state disks. Plus, expansion abilities accommodate flat panel display drivers or additional memory boards.

With no messy cabling. And no need to worry about additional mounting hardware.

That's a lot more than the Ampro Little Board/386 offers. In a lot less space*

$\begin{array}{r} \text { BASIC } \\ \text { COMPARISON } \end{array}$	AMPRO LITTLE BOARD/ 386	$\begin{aligned} & \text { TEKNOR } \\ & \text { TEK-AT3 } \\ & 386 \text { PCIAT } \\ & \hline \end{aligned}$
DIMENSIONS*	$8 \times 5.75 \times 2.25{ }^{\prime \prime}$	$7 \times 4.7 \times 1.25{ }^{\text {" }}$
CPU SPEED	20MHZ	33MHZ
MEMORY	4MB DRAM NO CACHE	16MB DRAM /16K CACHE
FLASH EPROM SUPPORT	NO	YES
DIRECT PCIAT PASSIVE BACKPLANE CONNECTION	NO, REQUIRES CABLING	YES
POWER CONSUMPTION	12 WATTS	6 WATT
WARRANTY	1 YEAR	2 YEARS

[^2]So call us today at 1-800-387-4222 to learn more about the TEK-AT3 and our complete line of small footprint single board computers.

Or better yet, evaluate one. And find out for yourself why not stacking up is tops.

』』 MICROSYSTEMS INC.

P.O. Box 455, Sainte-Therese (Quebec), Canada J7E 4]8 Tel.: (514) 437-5682 Fax: (514) 437-8053

"The product works great, but the battery dies...

When your product depends on rechargeable batteries, insist on

Designed-in IC intelligence for Faster, Safer Recharging, and Full-Charge Efficiency of nickel-cadmium batteries.

Fast.
Complete charge in as little as 20 minutes (vs. all day!)

Safe.

Total battery protection and longer battery life through "intelligent"
charging technology
Full-Charge Efficiency.
Eliminate memory effects for increased productivity of your products

Now you can design in all the convenience and versatility of super fast, "full-charge" nickel-cadmium battery recharging without worrying about battery damage, thanks to the ICS 1700 "QuickSaver" Rapid Charge Controller.

ICS "QuickSaver" controllers ensure a full-charge every time, and can actually enhance nickel-cadmium battery reliability and prolong battery life.

That's the kind of convenience and efficiency that can make your product stand out from the rest.

See for yourself. Call ICS toll-free at 1-800-220-3366 for your FREE ICS 1700 "QuickSaver" Sample Kit with all the details on the most exciting nickel-cadmium battery rapid charge controllers on the market.

Developing New Standards in Systems Technology.

Integrated Circuit Systems, Inc.
2626 Van Buren Avenue
P.O. Box 968

Valley Forge, PA 19482-0968
215-666-1900
FAX 215-666-1099

Avoid Wait States By Building Simple, Compact 50-MHz Systems With Cached DRAMs. COMBINATION DRAM-SRAM Removes Secondary Caches

H
Dave Bursky
igh-performance micropro-cessor-based systems almost universally include high-speed secondary cache subsystems between the main memory and the RISC or CISC CPU. The cache minimizes the time the processor must spend waiting for data or instructions to be read from the slower main memory, thus reducing the bandwidth requirement of the main-memory bus. However, the high-speed static RAMs required for the cache consume valuable board space and are relatively power hungry-two negatives for systems that designers are continually trying to reduce in size or trim in power drain.

By integrating a slice of the SRAM-based cache and DRAM-based main memory onto one chip, designers at Ramtron solved some of the bus-bandwidth issues, reduced board space, and lowered system power. The DM 2202 enhanced DRAM (EDRAM) combines a 1-Mword-deep by 4 -bit-wide DRAM with 512 4 -bit nibbles of static RAM. Additional features include write posting (for no wait-state writes) to the DRAM section, making it possible for a system to achieve maximum-speed system-bus transfers.

A second version of the EDRAM, the DM 2212 , includes a write-per-bit capability-a feature that permits selective writes to each of the four I/O pins. Such an attribute is handy for video applications and when the 2212 is used to hold the parity bits in systems that incorporate parity checking to improve data integrity. For memory systems that need more than 4 Mbytes, the DM 2200 , a $4-$ M-by-1 EDRAM, can be used to form a 16 -Mbyte main-memory subsystem with a tightly-coupled internally integrated 8 -kbyte cache.

Data reads from the cache portion of the chip (a cache hit) can be done in just 15 ns . That permits the host CPUs to perform no-wait-state reads, burst reads, and back-toback reads, at system clock rates of up to 50 MHz , by using a simple two-way interleaving scheme with two banks of EDRAMs. If a sin-gle-bank architecture (no interleaving) is employed, systems can run at speeds up to 40 MHz without requiring any memory wait

COMBINATION CACHE AND DRAM CHIP

states or stand-alone secondary caches.
If a cache miss occurs, the EDRAMs have a 35 -ns row-enable access time and a 65 -ns row-enable cycle time. Those short times are due "to a fast DRAM process, highspeed circuit design, and the close internal coupling of the DRAM section to the high-speed integrated SRAM" explains Dave Bondurant, the company's director of concept engineering (Fig. 1a). "Because of the proximity," he says, "chip architects were able to take advantage of IC metalization technology to create a very wide data path on the chip between the DRAM and SRAM. That 2048-bit-wide path permits the entire cache to be updated in a single cycle, thus greatly reducing the cache-line refill time. The equivalent transfer speed during a cache refill hits 7.3 Gbytes/s over the 2048 -bit-wide onchip bus between the DRAM and cache blocks."
Input latches for both the address and data lines allow the system to send addresses or data, or both, and then continue on to another operation. This minimizes delays caused by slow write operations. One write operation (from the host CPU to the

Processor					
	Clock rate	Read/write cycles(hit)	Read/write cycles(miss)	Burst read cycles(miss)	Burst read cycles(hit)
386DX	20 MHz	2-2	2-2	NA	NA
	25 MHz	2-2	2-2	NA	NA
	33 MHz	3-2	2-2	NA	NA
	40 MHz	3-2	2-2	NA	NA
486DX	25 MHz	2-2	2-2	2-1-1-1	2-1-1-1
	33 MHz	3-2	2-2	3-1-1-1	2-1-1-1

EDRAM) requires just 15 ns , because the word is written into the onchip latch (posting register). Once the data is latched to the chip, the write to the DRAM array is performed. While the write is being done, the CPU can go off and start another operation-such as a memory read. Because the cache operates in a write-through mode, if the address of the data being written into the DRAM array matches the last-row-read address, data is also written back into the cache portion of the chip to maintain coherency. The address matching procedure is done by an 11-bit comparator that's built into the chip.

If two back-to-back random writes must be done in systems that run at

33 MHz or faster, a two-way interleaved memory architecture is recommended. Although data can be posted in 15 ns , in a single-bank system, the write to the DRAM block imposes a 65 -ns cycle time, so one wait state would have to be added between back-to-back writes. For 25 MHz and slower buses, the EDRAM cycle time is not noticed as the CPU posts each word. In the two-way interleaved memory architecture, accesses are alternated between memory banks, consequently each bank is written to just every other cycle (see the table).

Compared to standard 4-Mbit DRAMs, the 2202 has a few more signal lines-dedicated Array Function and Write/Read ($\overline{\mathrm{F}}$ and W / R, respec-

1. BY INTEGRATING a static-RAM-based cache and main-memory DRAM onto the same chip, Ramtron eliminates a stand-alone secondary cache memory and simplifies system design. The close proximity of the SRAM and DRAM allows the entire cache to be refilled in one bus cycle via a 2048 -bit-wide bus between the two sections (a). Flaunting a new pinout, the combination cache-DRAM chip packs many of the same control signals as a standard 1-M-by-4 DRAM. Added to the memory are refresh-control, array write and read, chip-select, and four center power and ground pins (b).

E L E C T R O N I C

Now catch the bugs that defy logic.

The HP16500A logic analysis system shows what's bothering your designs.
Power up a new design and you're in for a battle. That's when you need the HP 16500A logic analysis system. With one modular system, you can focus measurement power on those press-
ing problems. Before things get out of hand.

Choose from a wide range of modules. The state/timing module provides advanced capabilities, including 100 MHz state speed for debugging RISC and high-end CISC processors. There's a 1 GSa /s scope for sin-gle-shot troubleshooting. A 1 GHz timing module for precision timeinterval measurements. And pattern generation for functional testing.
And you get the industry's broadest microprocessor and bus support...more than 100 solutions to speed and simplify debugging of virtually any microprocessor based design. Plus an intuitive
full-color, touch-screen interface to make setup and operation easier too.
So take control of the debugging process. Call 1-800-452-4844. Ask for Ext. 2601 and we'll send a brochure on the analysis system that can catch the toughest bugs before they start bothering you.
There is a better way.

(h)
 HEWLETT PACKARD

[^3]
COMBINATION CACHE AND DRAM CHIP

tively) pins, which determine DRAM array functions. A dedicated Chip Select- $\bar{S}-$ is also available, and four dedicated center power and ground pins help minimize noise on the fast I/O lines (Fig. 1b). Most of the other pins are similar to the pins on a standard 1-M-by-4 DRAM. There are 11 address lines, corner power and ground pins, and four more control lines. The control lines are $\overline{\text { Row-Enable }}(\overline{\mathrm{RE}})$,Column Ad$\overline{\text { dress Latch (} \overline{\mathrm{CAL}} \text {), Output Enable }}$ ($\overline{\mathrm{G}}$), and $\overline{\text { Write Enable }}(\overline{\mathrm{WE}})$.

The memories have two types of read cycles: Major and minor. Major cycles begin when the $\overline{\mathrm{RE}}$ line is brought low when the $\overline{\mathrm{F}}$ and W / R pins are respectively high and low. In that state, the row addresses are
latched into the address buffer as well as retained in the last-read-row (LRR) latch. Access is then possible to the DRAM array, the cache is filled, and data is valid on the output pin-all within 35 ns of the $\overline{\mathrm{RE}}$ being asserted (brought low). If the row being read is the same as the last row that was read, then the cache is not refilled and the data is valid in 20 ns from $\overline{\mathrm{RE}}$ (Fig. 2, top).
Minor read cycles don't require the assertion of the $\overline{\mathrm{RE}}$ line and only need the presentation of a column address in conjunction with the assertion of the $\overline{\mathrm{S}}$ and $\overline{\mathrm{G}}$ signals. Data from the cache reaches the output pins in 15 ns from the column address. That data represents the contents of the most-recently read row
(from the last major read cycle) as modified by subsequent write cycles that have a row address common to that of the current cache.
The short, 25 -ns, $\overline{\mathrm{RE}}$ precharge time, coupled with the EDRAM's ability to release the $\overline{\mathrm{RE}}$ line as soon as row addresses are latched in, permits the precharge to take place during data accesses. This eliminates the need for interleaved memory banks and, in turn, simplifies system design. The fast access time for reads from the embedded cache allows most CPUs to burst in data at the rate of one word every clock cycle, again, without interleaving or a bank of SRAMs for a discrete secondary cache.
The $\overline{\mathrm{F}}$ pin is polled by the on-chip

2. MOST MEMORY timing operations are controlled by the falling edge of the Row-Enable signal. During a Burst-Read cycle, the cache is loaded from the DRAM array and the data is read out from the cache by changing the column addresses (top). The write-through architecture of the cache allows the first word to be latched into the posted-write register on the memory chip. Data, however, can be read from the cache portion of the chip while the posted word is being written into the DRAM array. If the processor generates sequential write bursts within a row, the effective write time is 25 ns for the first cycle and 15 ns for each subsequent write cycle (bottom).

New From Matrix Systems: 3 -Stage $32 \times 32 \mathrm{DC}-100 \mathrm{MHz}$ Switching Matrices

Our new model 10693 is an intelligent 3-stage switching matrix that saves space, has higher performance but lower price.

This is accomplished with an efficient 3 -stage design that reduces the number of actual switches used.

Which adds up to an excellent 32×32 coaxial matrix capable of CIRCLE 126 FOR U.S. RESPONSE
switching signals from DC to 100 MHz .

Why choose Matrix for audio, video and RF switching? Because

for over 21 years we've been designing state-of-the-art switching modules, matrices, and complete systems to the toughest electrical and packaging specs imaginable.

For demanding customers including government agencies, defense contractors, the TV industry, ATE and telecommunications companies... and more. CIRCLE 127 FOR RESPONSE OUTSIDE THE U.S.

Technical calculations made easy!

Now it's easier than ever to perform faster, more reliable engineering and scientific calculations.

- Windows graphics features make Mathcad 3.0 the simple solution to complex analytic needs. Dialogs, pull-down menus, and mouse point-and-click capabilities make it easy to combine equations, text, and graphics right on your screen and print it all in a presentation-quality document.
- New Electronic Handbook Help facility serves as an on-line reference library. Paste standard formulas, constants, and diagrams from searchable, hypertext Electronic Handbooks for instant use in your Mathcad worksheet.
- Symbolic calculations with a simple menu pick. Use expressions resulting from sym bolic derivations in your numeric calculations or for further symbolic manipulation
- Mathcad works on PC DOS, PC Windows, Macintosh, or UNIX. More than 120,000 engineers, scientists, and educators already use Mathcad for a variety of tech nical applications. Applications packs are also available to customize Mathcad for particular disciplines, including electrical mechanical, and civil engineering and advanced math

Call 800-MATHCAD or use this coupon to request a free 3.0 demo disk!

In Massachusetts, call 617-577-1017. Please specify diskette size.
$31 / 2^{\prime \prime}$
5 1/4"
For a free Mathcad 3.0 Introductory kit, clip this coupon and mail it back to us, or fax it to 617-577-8829. Or circle your reader service card. Yes! Tell me more about Mathcad 3.0! Name
Title
Company or Institution
Address
City \qquad
Phonel
Math Soft MathSoft, Inc. 201 Broadway Cambridge, MA 02139 USA TECH 3.0
CIRCLE 186 FOR U.S. RESPONSE CIRCLE 187 FOR RESPONSE OUTSIDE THE U.S.

COMBINATION CACHE AND DRAM CHIP

DRAM logic when $\overline{\mathrm{RE}}$ is asserted. When $\overline{\mathrm{F}}$ is detected on the falling edge of $\overline{\mathrm{RE}}$, an internal refresh cycle is executed. An internal counter supplies the row address, and the counter is updated at the end of the $\overline{\mathrm{RE}}$ cycle. When $\overline{\mathrm{F}}$ refresh is used, at least $1024 \overline{\mathrm{~F}}$ cycles must be executed every 16 ms . Minor reads (reads from the cache) can be performed during an $\overline{\mathrm{F}}$ refresh cycle. Data can be accessed in the cache by changing the column addresses and optionally toggling the $\overline{\mathrm{CAL}}$ and $\overline{\mathrm{G}}$ (with $\overline{\mathrm{S}}$ low). $\overline{\mathrm{S}}$ must also be asserted if minor cycle reads are executed during the $\overrightarrow{\mathrm{F}}$ refresh operation.

Write cycles take place when the $\overline{\mathrm{F}}$ and W/R pins are both high and the $\overline{\mathrm{RE}}$ pin is asserted. Data gets latched into the chip when the WE line is asserted. Once the data is latched in, the chip can ignore the logic state of the data-input pins. That, in turn, permits the subsequent cache accesses to be concurrent with the internal physical write operations. Such a capability is possible when the address to be written is equal to the address to be read (a special case of the Read-Modify-Write operation). This scheme permits very fast memory-to-memory transfers and makes it easy to implement write "posting" without external datapath latches.
The on-chip cache employs a writethrough architecture to ensure coherency between the cache data and the DRAM-hosted array data. An onchip 11-bit address comparator monitors the write-cycle row addresses. If the address is equal to the current cache address, the comparator will appropriately modify the selected data. Writes are physically initiated on the chip by the later assertion of either the $\overline{\mathrm{CAL}}$ or $\overline{\mathrm{WE}}$ line. A minor read cycle can begin as soon as $\overline{\text { CAL }}$ and $\overline{W E}$ are both high if a cache hit has occurred (Fig. 2, bottom).
To build a memory subsystem for a 32 -bit CPU, one bank of eight 2202 chips would form a 4 -Mbyte main memory with 2 kbytes of cache (organized as 1 M by 32 of DRAM and 512 by 32 of integrated secondary cache). If parity is needed, one of the 2212s with the write-per-bit capabili-
ty can be added to form a 36 -bit-wide, 1-Mword-deep memory-similar to the DM1M36SJ, a 72-contact single-in-line memory module.
To control such a memory subsystem, a custom chip or high-performance a field-programmable gate array would be used to implement the logic that controls the cache and DRAM accesses. At 25 MHz and below, an FPGA could probably be used to handle the timing requirements, while for $33-\mathrm{MHz}$ and faster systems, gate-array or standard cellbased controllers would probably have to be used to handle the sub-15ns critical signal timing.
The logic required for that controller chip would include multiplexers for the parity data and two banks of address lines (A2-10 and A11-21), as well as decoders for the bank selection, and boot memory address. Additional logic is needed for a refresh signal divider, address comparators, and a state machine that controls the timing for boot-memory control, Banks $0-3$ and Banks 4-7, and the processor. In small systems, a single SIMM provides the entire 4 Mbyte DRAM space and 2 kbytes of cache. Larger systems can be created by adding more SIMMs.

Price And Availability

The three versions of the 4 -Mbit/2-kbit cache-enhanced DRAM include the DM 2200 with a 4 -M-by-1 organization, the DM 2202 with a 1-M-by-4 organization, and the DM 2212 which is also a 1-M-by-4 chip, but with a write-per-bit capability. The chips will initially be offered in 28-lead smalloutline J-lead 300 -mil-wide plastic packages. In lots of 10,000 units, the chips sell for $\$ 19.50$ apiece (any organization). A re-duced-speed version (20-ns cache access) will sell for $\$ 15.60$ in similar quantities. Samples of the DM 2202 are immediately available. The DM 2212 and 2201 will be sampled in the second quarter. Also available is the DM1M36SJ, a 36-bit-wide 1Mword SIMM built from the 2202s and the 2212. In lots of 100 , the $15-n s$ SIMMs sell for $\$ 290$ apiece, while the 20-ns version goes for $\$ 236$.
Ramtron International Corp., 1850 Ramtron Dr., Colorado Springs, CO 80921; Andy Brock, (719) 481-7000.

CIRCLE 511

How Valuable?	Circle
HIGHLY	525
Moderately	526
SLightLy	527

IC-CARD SPEC ADAPTS I/0 T0 MEMORY-CARD SLOT

R
ecent technology breakthroughs in the plug-in IC card arena promise to impact all segments of the computing industry, from portable systems to high-end workstations, including test-andmeasurement equipment. Last September saw a major stride taken in this direction, when the Personal Computer Memory Card International Association (PCMCIA) took the wraps off Release 2.0 of the PC Card Standard (see "What is the

Richard Nass

PC-CARD

 Standard Release 2.0 UnLEASHES A Myriad Of Applications.
PCMCIA?," $p .46$).

The standard was jointly accepted by the PCMCIA and the Japanese Electronics Industry Development Association (JEIDA). JEIDA was responsible for laying the initial ground work on many card issuesthe PCMCIA actually adopted many of their standards. When the Release 2.0 discussions began, the two groups put their heads together on many issues. They realized the importance of working collectively, because while many of the card-related systems come from Japan, the Japanese supply card-related components, as well as the cards themselves, to the U.S. The two groups plan to continue their joint cooperation in future endeavors.

Release 2.0 is divided into three parts-electrical (interface), physical, and software. Six different types of chips are outlined for use in the cards: ROM, one-time programmable ROM, static RAM, UV EPROM, flash EPROM, and EEPROM. One of the keys to Release 2.0 is that it introduces new applications in the form of I/O cards (Release 1.0 only defined memory cards). While memory cards find their niches in portable and industrial applications, I/O cards are sure to turn up for countless applications because of their ruggedness.

Before this can happen, though, a number of challenges brought on by I/O cards must be conquered. These include designing and implementing the needed hardware for I/O expan-
sion on the card. Another challenge is that many lines of complex code must be written to make this a viable solution. The code includes BIOS, de-vice-driver software, and core-BIOS modifications. While most PCMCIA members are working on hardware solutions, companies like Phoenix Technologies, Norwood, Mass., and Award Software, Los Gatos, Calif., and others, are plugging away with the software.

The PCMCIA card slot will eventually serve as an I/O expansion slot, similar to the expansion slots found in the backplanes of desktop systems. Hence, users can plug in any number of expansion cards when they become available. "Think of the IC card of the future as the add-in slot of the present. Almost all PC add-in cards can be used in a similar way in the form of IC cards," says Bill Ringer, product manager for modem cards at Intel Corp., Folsom, Calif. For example, SunDisk Corp., Santa Clara, Calif., is developing a solid-state disk drive on a card that will take advantage of the I/O expansion capabilities. One card that's already in production is a plug-in modem, the Modem $2400+$, from Intel (Fig. 1).

Communications On A Card

The Modem $2400+$ contains a UART, a microcontroller, and an analog front-end. It supports the Hayes AT command set and most communication software, as well as the MNP 5 protocol for error correction and data compression. Two versions of the card are available, one for use in North America and one for Japan. In quantities of 1000 , the Modem $2400+$ sells for $\$ 200$ ($\$ 230$ for the Japanese card).

Intel says that no trade-offs were necessary to fit the modem into such a small package. The company felt that just achieving the small size and innovative packaging was breakthrough enough. But expect a $9600-$ baud product in the not-too-distant future.

Intel also announced a third member of its flash-card family, a 2 Mbyte version (iMC002FLKA); the family already has 1 - and 4 -Mbyte

> 1. THE MODEM $2400+$ fits in a PCMCIA Type II package ($5 \mathrm{-mm}$ thick). The 2400 -baud modem, from Intel, is compatible with the PCMCIA Release 2.0 specification, as well as the company's ExCA standard. No external power is needed to run the modem.

cards. And higher densities are looming on the horizon. The 2 -Mbyte card is built with the same architecture that was used on the previous two cards. In large quantities, it sells for $\$ 375$.

Other applications under investigation include facsimile and cellular modem cards. The cellular modem card would allow a portable computer to access the phone system without being connected to a phone line. Wired and wireless LAN cards are another possibility. This would per-
mit users to own just a portable system. If the portable could be connected to a LAN, a desktop wouldn't be needed. A SCSI port is also being looked into because of the growth of SCSI peripherals.

T And M, To0

Another area where memory cards are making some strides is in test and measurement. LeCroy Corp., Chestnut Ridge, N.Y., recently released a PCMCIA-compatible card containing 23 standard templates to test various communications signals. The card comes as a $\$ 700$ option to the company's latest family of oscilloscopes, Models 9410 , 9414, 9424, 9430, and 9450A.

Release 2.0 contains enhancements, changes, and additions to Release 1.0 , which was announced in May of 1990. The enhancements include clearer card-function definitions, improved memory performance using the + Reset and -Wait signals, the addition of IEEE nomenclature to timing charts, and reliabil-ity-requirement and testing-methods definition. Some additions include dual-voltage operation and an execute-in-place (XIP) specification. The XIP spec lets a system execute code directly from a card without loading the code into the system's RAM.

The specification outlines two types of cards: Type I and Type II. Each is 85.6 by 54 mm , yet Type I is 3.3 mm thick and Type II is 5 mm thick. The two different card types appear in different applications. The $5-\mathrm{mm}$ cards are used for PLCC-type

WHAT IS THE PGWHII?

The Personal Computer Memory Card International Association (PCMCIA) is made up of over 150 members, including major manufacturers and OEMs worldwide, representing every level of PC-card development. These companies include Apple, AT\&T, Fujitsu, IBM, Intel, Mitsubishi, Phoenix Technologies, Poqet Computer, SunDisk, and To-
shiba. There are three levels of membership: Executive, Associative, and Affiliate. The association's objectives are to establish, maintain, and promote a worldwide standard for IC cards. For more information, call or write to the PCMCIA at 1030B E. Duane Ave., Sunnyvale, CA 94086; (408) 720-0107. A Taiwan-based chapter is located at the Institute for Information Industry in Taipei.

			PBMHA	- 0		7 TH	13	
Pin	Memory-only card interface (always available at card insertion)			1/0 and memory card interface (available only after card and socket are configured)				
	Signal	1/0	Function	+1-*	Pin	Signal	1/0	Function +1-*
1	GND		Ground		1	GND		Ground
2	D3	1/0	Data bit 3		2	D3	1/0	Data bit 3
3	D4	1/0	Data bit 4		3	D4	1/0	Data bit 4
4	D5	1/0	Data bit 5		4	D5	1/0	Data bit 5
5	D6	1/0	Data bit 6		5	D6	1/0	Data bit 6
6	D7	1/0	Data bit 7		6	D7	1/0	Data bit 7
7	CE1	1	Card Enable	-	7	CE1	1	Card Enable
8	A10	1	Address bit 10		8	A10	1	Address bit 10
9	OE	1	Output Enable	-	9	OE	1	Output Enable
10	A11	1	Address bit 11		10	A11	1	Address bit 11
11	A9	1	Address bit 9		11	A9	1	Address bit 9
12	A8	1	Address bit 8		12	A8	1	Address bit 8
13	A13	1	Address bit 13		13	A13	1	Address bit 13
14	A14	I	Address bit 14		14	A14	1	Address bit 14
15	WE/PGM	1	Write Enable	-	15	WE/PGM	1	Write Enable
16	RDY/BSY	0	Ready/Busy	+ $1-$	16	IREQ	0	Interrupt request
17	VCC				17	VCC		
18	VPP1		Programming supply voltage 1		18	VPP1		Programming and peripheral supply voltage 1
19	A16	,	Address bit 16		19	A16	1	Address bit 16
20	A15	1	Address bit 15		20	A15	1	Address bit 15
21	A12	1	Address bit 12		21	A12	1	Address bit 12
22	A7	I	Address bit 7		22	A7	1	Address bit 7
23	A6	1	Address bit 6		23	A6	1	Address bit 6
24	A5	1	Address.bit 5		24	A5	1	Address bit 5
25	A4	1	Address bit 4		25	A4	1	Address bit 4
26	A3	1	Address bit 3		26	A3	1	Address bit 3
27	A2	1	Address bit 2		27	A2	1	Address bit 2
28	A1	1	Address bit 1		28	A1	1	Address bit 1
29	A0	1	Address bit 0		29	A0	1	Address bit 0
30	D0	1/0	Data bit 0		30	D0	1/0	Data bit 0
31	D1	1/0	Data bit 1		31	D1	1/0	Data bit 1
32	D2	1/0	Data bit 2		32	D2	1/0	Data bit 2
33	WP	0	Write Protect	+	33	IOIS16	0	1/0 port IS 16 bit
34	GND		Ground		34	GND		Ground
35	GND		Ground		35	GND		Ground
36	CD1	0	Card Detect	-	36	CD1	0	Card Detect
37	D11	1/0	Data bit 11		37	D11	1/0	Data bit 11
38	D12	1/0	Data bit 12		38	D12	1/0	Data bit 12
39	D13	1/0	Data bit 13		39	D13	1/0	Data bit 13
40	D14	1/0	Data bit 14		40	D14	1/0	Data bit 14
41	D15	1/0	Data bit 15		41	D15	1/0	Data bit 15
42	CE2	1	Card Enable	-	42	CE2	1	Card Enable
43	RFSH	1	Refresh		43	RFSH	I	Refresh
44	RFU		Reserved		44	IORD	1	1/0 Read
45	RFU		Reserved		45	IOWR	I	1/O Write
46	A17	,	Address bit 17		46	A17	1	Address bit 17
47	A18	1	Address bit 18		47	A18	1	Address bit 18
48	A19	1	Address bit 19		48	A19	1	Address bit 19
49	A20	1	Address bit 20		49	A20	1	Address bit 20
50	A21	1	Address bit 21		50	A21	1	Address bit 21
51	VCC				51	VCC		
52	VPP2		Programming supply voltage 2		52	VPP2		Programming and peripheral supply voltage 2
53	A22	,	Address bit 22		53	A22	1	Address bit 22
54	A23	1	Address bit 23		54	A23	1	Address bit 23
55	A24	1	Address bit 24		55	A24	1	Address bit 24
56	A25	1	Address bit 25		56	A25	1	Address bit 25
57	RFU		Reserved		57	RFU		Reserved
58	RESET	1	Card reset	+	58	RESET		Card reset +
59	WAIT	0	Extend bus cycle	-	59	WAIT	0	Extend bus cycle
60	RFU		Reserved		60	INPACK	0	Input port acknowledge
61	REG	1	Register select	-	61	REG	1	Register select
62	BVD2	0	Battery voltage detect 2		62	SPKR	0	Audio digital waveeform
63	BVD1	0	Battery voltage detect 1		63	STSCHG	0	Card status
64	D8	1/0	Data bit 8		64	D8	1/0	Data bit 8
65	D9	1/0	Data bit 9		65	D9	1/0	Data bit 9
66	D10	1/0	Data bit 10		66	D10	1/0	Data bit 10
67	CD2	0	Card detect	-	67	CD2	0	Card detect
68	GND		Ground		68	GND		Ground

packages, such as UV-erasable PROMs. They permit a greater variety of circuitry, suitable for present and future I/O cards. Applications that only require memory cards, such as handheld computers and digital cameras, can take advantage of the $3-\mathrm{mm}$ card, thus saving 2 mm . However, notebook and palmtop systems are now being developed with 5 mm slots. Manufacturers of these systems feel that the 2 -mm trade-off is a small price to pay for the vast number of applications that will be available.

A third card, Type III, is currently under investigation. With the Type III card, rotating-storage products can be used. A working group was recently formed within the PCMCIA to explore the viability of putting an integrated-device-electronics (IDE) interface into a PCMCIA slot to determine whether further investigations are necessary. One key issue here is the physical form factor of such a slot. Systems designed with two PCMCIA slots-one on top of the other-are candidates for the Type III slot. In this case, the physical form factor wouldn't really have to change; the Type III card would just occupy both Type II slots. But more than a few eyebrows would be raised if the Type III card had to be increased in height or made wider to fit into that form factor. The Type III form factor could open up a plethora of new applications, because of the additional space that becomes available in the cards.
The PCMCIA feels that while this issue does invite competition from the rotating-media makers, it must be addressed. One reason is that some of the group's members manufacture rotating media. Another is that those members would probably pursue the issue, with or without the consent of the PCMCIA. "If it means a radical change to the standard, then it probably wouldn't be passed by the association. But if it doesn't pass, then the group behind the Type III specification might just go ahead and do it anyway. If it becomes a standard, the PCMCIA could maintain some control over it,"says John Reimer, president and chairman of
the PCMCIA (Reimer is also the vicepresident of marketing at SunDisk Corp.).
Types I and II card connectors contain 68 pins, some of which are saved for future definitions (see the table). One pin, a "no-connect" pin, was left entirely undefined. In addition, some informal discussions have bandied about the issue of applying some of the unmultiplexed pins to direct memory access.
Under the specifications of Release 2.0, the card socket transparently changes from a memory card to an I/O slot, from the user's perspective. Release 2.0 defines the elec-
trical signals at the interface and stops there. Intel decided to take the specification one step further by developing its Exchangeable Card Architecture (ExCA), which sits on top of the PCMCIA interface specification. The company felt that this was necessary because some cards and interfaces being built were compliant with Release 2.0, yet weren't interchangeable between systems. That was because the cards contained different internal architectures. ExCA ensures that all of the cards will have the same architecture, thereby guaranteeing compatibility between systems.

2. THE MB86301 MEMORY-CARD CONTR0LLER from Fuitsu sits
between the 68 -pin connector of the PCMCIA memory card and the host microprocessor. The internal card-address counter ensures rapid data transfer.

12-BIT DATA ACQUISITION SYSTEM

Now you can have easy access to the analog world.

Unsurpassed integration makes analog design easy.

When crossing the border from analog to digital the last thing you want is excess baggage.

That's why we designed the industry's first +5 V 12 -bit plus sign Data Acquisition System, the LM12458. A one-chip solution that not only shrinks board space but also reduces design and debug time.

Versatility through software programmability.

Easily configured via software, the LM12458 lets you switch the mux from differential to singleended mode "on the fly."

What's more, with conversion times of $8.8 \mu \mathrm{~s}$ (12-bit plus sign), $4.2 \mu \mathrm{~s}$ (8-bit plus sign), and $2.2 \mu \mathrm{~s}$ ("watchdog" comparison mode) you get optimized system performance at a throughput rate of $87 \mathrm{kS} / \mathrm{s}$ min.

Single +5 V Operation.

With single +5 V operation, you get all this performance while consuming just 30 mW max
($50 \mu \mathrm{~W}$ in standby mode).
Plus, its self-calibrating architecture ensures high accuracy over time and temperature.

So hurry up and get on board. And gain duty-free passage to the analog world.

Access us with one easy call.

For a free software design kit, call: 1-800-NAT-SEMI, Ext. 143.

Or, fax: 1-800-888-5113

[^4]

How Siemens Has Become One Of America's Fastest-Growing IC Suppliers.

> When it comes to superior products and service, Siemens brings you a world of experience, right here at home.

To succeed in the international market, you first need a partner who can provide the products and support necessary for you to succeed here in the United States. Siemens is that partner, with the global expertise and wide range of innovative products you need to build for the world market, right here at home.

Building On A Reputation For Quality

Quality has always been a priority at Siemens, and we've taken great strides towards achieving the highest level of reliability for our customers, year after year.
This commitment to quality has resulted in more than a 300\% improvement in defects-per-million for production in the past four years, which is twice as good as the industry quality average. And fewer defects means more reliable systems and
subsystems, which reduces the cost of ownership, repairs and replacements.

Communication Breakthrough

With our advanced Enhanced Serial Communication Controller-the ESCC2

(SAB82532)-Siemens continues to demonstrate the innovation in communications technology which has made us the leaders in the field.
2-Channel
Our popular ESCC2 provides transfer rate speeds of up to $10 \mathrm{Mbit} / \mathrm{sec}$ in synchronous mode. And it supports a wide range of protocols-including X. 25 LAPB, ISDN, LAPD, HDLC, SDLC and both ASYNC and BISYNC-plus easy adaptability to either Intel ${ }^{\circ}$ or Motorola ${ }^{\circ}$ microprocessors. For fast, accurate and reliable multi-protocolling.

Superior Embedded Control Solutions

For high-speed embedded control applications, Siemens also offers the SAB80C166, the fastest real-time controller in the world.

As the industry's only 16-bit microcontroller with a 4 -stage pipeline, the 80C166 reaches 16-Bit speeds of up to 10 native Microcontroller MIPS, and delivers the fastest interrupt performance and bit processing capabilities of any controller on the market.

High-End Computing Solutions

Plus, Siemens offers a complete portfolio of products to match your specific needs for state-of-the-art computer or computer peripheral designs. Including the R4000 -the first microprocessor with a complete 64-bit architecture-plus the advanced DRAMs, tightly-coupled ASICs, and communications ICs you need to build a total systems solution.

In CMOS ASICs, we offer both Sea-of-Gates and standard-cell product families, featuring sub-micron technology which is completely compatible Microprocessor with Toshiba, even at the GDS2 database level, for true alternate sourcing worldwide. And they're fully supported by Siemens ADVANCAD design system, which is based on industry-standard workstations and simulators. As well as the best service in the industry.

Siemens is also the only European DRAM manufacturer, with

Gate Arrays and Standard Cells high-quality $1-\mathrm{Mb}$ and $4-\mathrm{Mb}$ DRAMs in production today, and $16-\mathrm{Mb}$ and $64-\mathrm{Mb}$ DRAM programs for the near future. And a commitment to innovation which has made us one of the leading DRAM suppliers to companies across America. This means you not only get the high performance of the innovative R4000
but the quality in design and production that has made our full line of ASICs and DRAMs the industry leaders.

Servicing The United States

Because quality doesn't end with the product,Siemens also works very closely with you to provide the type of service and support that fits your individual needs. Services such as Field Application Engineering, Just-In-Time delivery, flexibility in packaging and design, and multiple-sourcing-the type of support which has won us preferred vendor status with Fortune 500 companies, including the Q1 Preferred Supplier Award from Ford. And has made the name Siemens synonymous with quality for over 150 years.
Call us today at 800-456-9229 for more information. We'll show you how you can get a world of products and service, right here at home.
Ask for literature package M11A018.

The PCMCIA is reserving judgment on ExCA because the group hasn't yet fully evaluated all aspects of the standard. But the initial reaction is that it could be a viable solution after resolving some of the issues. "Because of Intel's clout in the 80X86 marketplace, the ExCA architecture will have an impact on PCMCIA slots," says Reimer. He feels that as long as the specification remains open to the whole market, without creating a monopoly for Intel, hindering future performance, or prohibiting cost reductions, there's a good chance that it will forge ahead as a de facto standard. Reimer notes that although the PCMCIA has only had a few informal discussions with Intel to make ExCA a PCMCIA standard, both parties are open to suggestions.

Intel simultaneously announced an interface controller that supports both memory and I/O cards. The 82365SL, built to the ExCA specification, works in tandem with the 386SL low-power microprocessor. The chip features power-management support and supplies a direct interface to the ISA bus and two PCMCIA sockets. It eliminates the need for sys-tem-configuration jumpers by dynamically configuring any card in the system upon power-up and reset. This entire interface can be implemented in less than $2 \mathrm{in}^{2}$ of board space. In OEM quantities, the 82365SL sells for $\$ 35$.

The MB86301 from Fujitsu Microelectronics Inc., San Jose, Calif., is
similar to Intel's 82365SL-it's also compatible with Release 2.0. The chip was jointly developed by Fujitsu and Databook Inc., Ithaca, N.Y., the latter one of the pioneers in IC-card applications. Unlike the Intel chip, however, the single-chip interface controller handles just memory cards, not I/O cards. Built-in features include cyclic redundancy checking (CRC) and checksum error detection. Checksum control is done by adding up all of the bytes, throwing out the high-order result, and keeping the lower-order one or two bytes. That's the method commonly used on EPROMs to verify their integrity when they're programmed. The chip lies between the generalpurpose host microprocessor's data, address, and control lines, and the memory card (Fig. 2).
"This configuration minimizes the overhead that's needed to control the host microprocessor while interfacing the memory card," says Dan Sternglass, president of Databook. The MB86301 is available now; an evaluation board can be obtained from Fujitsu for $\$ 499$.

A second part from Fujitsu, the MB86965 EtherCoupler, is an integrated Ethernet LANchip that includes a controller, a 10Base-T transceiver, an encoder-decoder, bus-interface logic, and filters. With the device, designers can build a LAN adapter with just five chips, making it suitable for PCMCIA-compatible LAN cards. Samples of the MB86955 are available now. Production should
commence at the beginning of the second quarter. In 1000 -unit quantities, the chip sells for $\$ 30.60$. Additional discounts exist for larger quantities.
Dual-operating voltages add another dimension to Release 2.0. Although all cards will initially operate at 5 V , some will be able to powerdown to 3 V . When the card is first plugged in, the system will read the card-information structure, then determine whether the card is intended for operation at 3 or 5 V . Cutting the voltage to 3 V reduces the power consumption, a critical factor in portable systems. The dual-voltage card differs from a 3 -V-only card, which won't work in a PCMCIA slot.

Reset Upon Power-Up

As outlined in Release 2.0, a card can be reset to a known state by employing the + Reset signal. In other words, a card already in place in a system will reset itself when the system is powered up. The + Reset signal clears the card-configuration option register, placing the card in an unconfigured state. + Reset also signals the beginning of card initialization. The system must place the + Reset signal in a high-impedance mode whenever a card is being powered up. The signal must remain at high impedance for at least 1 ms after $V_{\text {CC }}$ becomes valid. The specification points out that all configurable cards must monitor + Reset and return to an unconfigured state when the signal is active.

[^5]A card remains in the unconfigured state until the card-configuration option register has been written to with a valid configuration. The card could generate a power-on + Reset internally or the signal can be pulled up to V_{CC} through a resistor greater than $100 \mathrm{k} \Omega$ on any cards that require the reset feature. This will ensure that an inserted card is reset before the signal pins make contact with the socket. While the PCMCIA recognizes the need for a live-insertion specification, a standard to guarantee data retention hasn't yet been decided on, although it's in the works.

The -Wait signal was included in Release 2.0 to synchronize fast hosts with slow cards. In other words, the signal tells the high-speed host system (with a 386 or 486 processor) to wait for the card that doesn't operate as fast. The card asserts this signal to delay completion of the memoryor I/O-access cycle in progress.

Error detection, a necessary feature for IC cards, is a key concern because the environment and operation of any removable media has the potential to introduce errors. Some causes of errors include electrostatic discharge (ESD) exceeding the card's rating, users pulling cards out of systems while the cards are being accessed, or mechanical shock interrupting the "keep-alive" power of a battery-backed card. These events are rare enough that consumergrade products might not require protection against them.

High-reliability applications, such as industrial, military, or medical systems, require error detection. CRC and checksum approaches are both recognized by the PCMCIA standard, and are appropriate for proprietary formats. Error detection isn't as important for random errors because the intrinsic error rate in a system that's properly designed is quite low.

The Layered Metaformat

The first piece of information contained in each card's memory is a metaformat header that describes the card's data organization, including both hardware and software. The
metaformat is organized in four layers. The basic compatibility layer contains only the minimal information needed to access the card, such as device speed, type, and size, as well as a programming algorithm if it's required. The second layer, the data-format layer, specifies what type of data blocking and error checking the card implements. This is analogous to a floppy disk's physical formatting. Both blocked-data and raw-byte formats (a block of data that's just a binary image or a bunch of data with no higher-level organization) are supported, as well as CRC and other types of error detection. Mixed-format cards like ROM and RAM are allowed. In the data-format level, nothing is DOSspecific.

The third level, the data-organization layer, is DOS-specific. Here, the defined file system can be the file-allocation-table (FAT) file system used on conventional disks, the flash file system (FFS) developed for UV and flash memories, or XIP. When a FAT file system is used, certain defaults are defined that make up a minimum interchange format. The last layer can be customized so users can define their own data organizations. Even cards with a proprietary data format at this level can be recognized by any system, as long as they contain the proper metaformat header.

X-bcute In Place

Two types of XIP support are defined within Release 2.0: EXIP and LXIP. EXIP refers to the ability of 386- and 486-type processors, with their virtual-memory capability, to map a whole card into one address space. For example, instead of forcing the system's RAM to store 16 kbyte pages, the whole card (containing a few Mbytes) or just portions can be mapped because $386 / 486$ systems have such large virtual- and physical-address spaces.

LXIP is used in applications structured to operate in a 16 -kbyte pagedexecution mode, similar to the Lotus/Intel/Microsoft (LIM) 4.0 environment. The differences between LXIP and EXIP don't change the
card's metaformat, data structures, or driver architecture. They're only noticeable in the applications-programming interface. However, a significant difference exists in the hardware support required and in the way applications are structured for the two environments.

The standard assumes that an XIP partition only stores XIP applications and isn't part of a FAT or FFS partition. Only two tuples are relevant to XIP-format and organization (a tuple is a block of data that appears in the card-information structure and records pieces of data concerning the card's layout). The format tuple defines the card's datarecording format and the location and size of its associated memory region. The organization tuple defines the organization of the data within a specific partition. The organization tuple must follow a format tuple in the card's memory to be associated with it.

Descriptive information, such as the card-hardware and data-formatting information, is stored in an attribute memory-address space and is accessible when the REG pin is active. Release 2.0 allows physically separate memory to be used. This type of non-card ROM could convey detailed card information to the system software, relieving the end user from this burden.

In cases where there's no attribute memory, the REG pin is a no connect, and the hardware and format descriptions are stored starting at the beginning of the main memory. This is standard practice with ROM cards, where the descriptions can be split among the two address spaces. In this case, user flexibility is retained to define the data organization, partitions, or other information, while allowing the card manufacturer to supply the hardware information in ROM.
To retain compatibility with 8-bit host systems, the card-information structure must be stored on even bytes only. The contents of odd-byte attribute memory are undefined. The specification describes the tuples as if the bytes were recorded consecutively. When the tuple is re-

Keeping reliabilityup as form factors go down.

THIS IS AMP TODAY.

. 050 CL, leaf-contact design

In today's tight-corner designs, reliability all too often depends on precise (and costly) manufacturing practices. Our CHAMP . 050 connectors weigh in on your side with economic simplicity, and inherently tolerant contacts.
Overview: 0.050 " centers, trapezoidal interface, dual-row leaf-contact design. Small, friendly, and forgiving.
Board-to-board: our proprietary compliant-receptacle, fixed-plug contact system tolerates wide mat-
ing depth variations that come with pcb warp-happy news for high-line-count designs-and offers superior performance in assembly, especially in blind-mate applications. Parallel, perpendicular, and in-line styles, 30-200 positions.

Shielded I/0: here, compliant plug and receptacle contacts take full advantage of the controlled header-to-plug interface to meet emerging global intermateability standards. Shielded receptacles and
plugs provide EMI protection. Mass IDC termination and fast braid crimp keep production rates up; AMP tooling covers your volume requirements. 14-100 positions.
The CHAMP . 050 high-density line: think of it as a very big factor in small-form design. For details, call our Product Information Center toll-free at 1-800-522-6752 (fax 717-986-7575). In Canada call 416-475-6222. AMP Incorporated, Harrisburg, PA 17105-3608.

AVANTEK 5GHz ACTIVE SMT MIXERS WILL BRING YOUR SYSTEM DESIGN TO LIFE

And Bring A Little Fun Back To Designing

Avantek's new IAM-81008 silicon MagIC ${ }^{\text {m }}$ MMIC is the Gilbert cell active mixer/amp that will keep your parts count low, increase your circuit yield and become the design-in standard for all your communication circuits. In an SO-8 plastic SMD package, it's a complete frequency conversion device that

> IAM- 81008 RF to IF Conversion Gain vs. Frequency

costs only $\$ 3.40$ in 25,000 piece quantities. Made with Avantek's advanced $10 \mathrm{GHz} \mathrm{f}_{\mathrm{T}}$ ISOSAT ${ }^{\text {m }}$ process for more consistent performance than passive diode/ balun devices. It requires as little as -5 dBmLO drive, and provides up to 6 dB RF and IF conversion gain from 50 MHz to 5 GHz , with high isolation and broad load-insensitivity-all from a single 5 V supply.

Upconverter, Downconverter, Multiplier, Phase Detector, Modulator, or Demodulator...

The versatile IAM-81008 is perfect for pocket transceivers, portable telephones, or spread spectrum terminals, MSAT and GPS receivers-it's the mixer for
all your communications circuit designs. And it's available in tape and reel for high volume SMT manufacturing.

Avantek Delivers Today

Call your Avantek distributor or 1 (800) AVANTEK for your free mixer design kit, and see if this mixer/amp doesn't make you
 smile.
corded in attribute memory space, it occupies even bytes. However, when a tuple is recorded in common memory space, it must be recorded in consecutive bytes. Using common memory for tuple storage is indicated by a long-link tuple. Card-information structure stored entirely in common memory must begin with even bytes only. The tuple is then linked to the region of common memory containing the remainder of the card-information structure in contiguous bytes.

Tuples can be put into three categories: control, basic compatibility, and card information. Control tuples govern the metaformat-linked list, including national language definition and checksum control. The basic compatibility tuples describe device characteristics, such as type, speed, and size. The card-information tuples contain specific information regarding organization of data within a partition.

A sequence of tuples containing at least the minimum required information constitutes a partition descriptor. The card-information structure can contain multiple partition descriptors, allowing several, independent logical volumes on one card. These partitions can contain standard formats. Each independent partition's definition begins with a format tuple. Programmable memory cards, including ROM and flash, are identified by the JEDEC identifier tuple. A RAM card is characterized by its device-information, ID, speedtype, and size fields.

In a memory-card system, buffering, control-signal isolation, and power switching are major circuitdesign aspects affecting system and card reliability. Card power-up and buffer-enabling must be triggered by detecting card presence after an appropriate delay. This is where the -Wait signal comes in. Typically, system software leaves these buffers disabled, and removes the power to avoid problems when a card is removed. Furthermore, the analog switches and their control inputs that isolate the control signals must be biased to avoid possible data corruption during system power-up and
-down with the card inserted. A di-ode-isolated supply solves this problem, with buffers controlled by an analog power monitor.

ESD can also cause reliability problems. System designers must supply a low-impedance path to ground to dissipate any charge that may build up on a card, which affects packaging design. In addition to ensuring that the cards pass all of the reliability tests, companies must try to squeeze the maximum storage capacity into the cards. Panasonic Industrial Co., Secaucus, N.J., does just that by using a multilayer-bonding technique (MBT). MBT increases the mounting density of the cards by stacking the chips on top of each other (Fig. 3). Several stacks of up to four chips can be interconnected on the same substrate.

Relability And Test

Release 2.0 specifies strict reliability standards for the interconnect system. In office and harsh environments, the guaranteed number of insertions and ejections must surpass 10,000 and 5000 , respectively. An office environment is defined as having year-round air conditioning and humidity control. The harsh environment has no air conditioning or humidity control, yet contains normal heating and ventilation.

Standards for the total insertion and pulling forces are 8.8 lbs . and 1.5 lbs./min., respectively, at a speed of $1 \mathrm{in} . / \mathrm{min}$. The outermost plating of the socket- and pin-contact areas must be fabricated with gold or some other plated material that's compatible with gold. The cards must be fully functional in the 0 to $+55^{\circ} \mathrm{C}$ temperature range while withstanding storage temperatures from -20 to $+65^{\circ} \mathrm{C}$. All cards must undergo tests for thermal shock, moisture resistance, ESD, X-ray and ultraviolet light exposure, vibration, shock, bending, dropping, torque, and card warpage.

H0w Valuable?	Circle
HIGHLY	528
MoDERately	529
SLIGHTLY	530

NO WAITING AVANTEK DELIVERS TODAY

North American Distributors

Northeast
Nu Horizons
(617) 246-4442 MA Sickles Distribution Sales (617) 862-5100 MA

East Central
Applied Specialties, Inc. (301) 595-5395 MD Nu Horizons
(301) 995-6330 MD
(201) 882-8300 NJ
(516) 226-6000 NY (215) 557-6450 PA Penstock East (800) 842-4035 NJ (516) 368-2773 NY (215) 383-9536 PA

Southeast
Penstock, Inc.
(404) 951-0300 GA Nu Horizons (305) 735-2555 FL

North Central

 Penstock Midwest (708) 934-3700 IL (317) 784-3870 INSouth Central Insight Electronics, Inc. (800) 677-7716 TX Penstock, Inc. (214) 701-9555 TX

Northwest

Insight Electronics, Inc. (800) 677-7716

Penstock, Inc.
(800) PENSTOCK
(206) 454-2371 WA

Southwest/Rocky Mountain
Insight Electronics
(800) 677-7716

Sertek, Inc.
(800) 334-7127

Canada
Sertek, Inc.
(800) 548-0409

International Distributors

Europe
Italy
BFI-Ibexsa SpA
(39) 2-331-005-35 Milan
(39) 6-8088191 Rome

Germany/Switzerland/Austria BFI-Ibexsa Electronik GmbH
(49) 89-3195135

France/Belgium
Scie Dimes
(33) 1-69-41-8282 Sweden/Norway/Finland BFI-lbexsa Nordic AB
(46-8) 626-99-00 U.K.

BFI-Ibexsa Electronics LTD.
(44) 62-288-2467

Asia and Far East
Japan
Yamada Corporation
(81) 03-3475-1121

Putting Microwave Technology to Work for You

CIRCLE 300

DSP BOARD SLASHES IMAGE PROCESSING TIME

" The DT2878 ADVANCED PROCESSOR for the PC AT accelerates Fourier analysis, geometric processing, and custom algorithms."
-Fred Molinari, President

25 Mflops; 32-bit floating point -AT\&T DSP32C processor
 2, 4 or 8 Mbytes data memory
 Extensive software support available
 - Advanced Image Processing Library
 More than 80 routines for: Fourier analysis, geometric processing, morphology, convolutions, statistics
 Callable from Microsoft C
 -AT\&T C compiler and development tools
 DT-Connect ${ }^{\text {TM }}$
 -10 MHz interface to Data Translation's DT-Connect family of frame grabbers
 Quantity pricing available
 FAST 5 day delivery

THE LEADER IN DATA ACQUISITION AND IMAGE PROCESSING

DATA TRANSLATION

World Headquarters: Data Translation, Inc., 100 Locke Drive, Marlboro, MA 01752-1192 USA, (508) 481-3700, Fax (508) 481-8620, Tix 951646
United Kingdom Headquarters: Data Translation Ltd., The Mulberry Business Park, Wokingham, Berkshire RG11 20, U.K., (734) 793838, Fax (734) 776670, Tlx 94011914 United Kingdom Headquarters: Data Transiation, Im Weilerlen 10, 7120 Bietigheim-Bissingen, Germany 7142 -54025, Fax 7142 .64042
Germany Headquarters: Data Translation GmbH, im Weilerien 12, 7120 Bietigheim-Bissingen, Germany 7142-54025, Fax 7142-64042 Hong Kong (5) 448963; India (22) 23-1040; Israel $52-545685$; Italy (2) 82470.1; Japan (3) $502-5550$, (3) 5379-1971; Korea (2) 718-9521; Malaysia 3-2486788; Netherlands (70) 399-6360; New Zealand (9) 415-8362; Norway (2) 53 12 50; Poland (22) 580701; Portugal (1) 7934834; Singapore 338-1300; South Africa (12) 803-7680/93; Spain (1) 555-8112; Sweden (8) 76178 20; Switzerland (1) 723-1410; Taiwan (2) 3039836

DT-Connect is a trademark and Data Translation is a registered trademark of Data Translation, Inc. All other trademarks and registered trademarks are the property of their respective holders.

Microcontroller-Based Design Uses Minimal Support ICs And Code To Get High-Accuracy Analog-To-Digital Conversion TRY SINGLESLOPE A-D CONVERSION FOR A LOW-COST 12-Bit S0LUTION

hen high speed isn't a top priority, several options exist for implementing high-resolution analog-to-digital conversion in cost-sensitive products. Typical of such applications are measurements for automotive (oil temperature/pressure), industrial (process temperature control, weighing scales), and consumer (home thermostats and ranges) products. Functions like these are often performed cost-effectively with microcontrollers. For example, the cost of a discrete single-slope analog-to-digital converter (ADC), including additional interface hardware to the microcontroller, is less than $\$ 1$. This compares favorably with dedicated 12 -bit hardware solutions that can cost more than $\$ 10$ in high volume.
Before going into detail on how to build a discrete single-slope circuit, let's look at some alternative solutions. One is the 12 -bit successive- approximation integrated circuit, which has the advantage of easy system interface and relatively high conversion speed (between 7 and $100 \mu \mathrm{~s}$). The major disadvantage is very high cost, especially for wide operating temperature ranges. Two other options are the single- and dual-slope ADC. For applications up to 14 bits, the easi-er-to-apply single-slope approach can be used.

For applications requiring greater than 14-bit resolution, consider a dual- or multi-slope approach, which uses the input signal to drive an integrator that can easily average out noise. There are several variations of a dual-slope ADC. Typically, the input $V_{\text {in }}$ is integrated for a fixed amount of time (determined by the required resolution). Then the integration is ramped in the opposite direction by switching in a reference voltage of opposite polarity to V_{in}. The amount of time required to ramp back to zero determines the magnitude of $V_{i n}$. However, compared to the single-slope approach, the software overhead and hardware is more involved. The dual-slope technique requires more analog switches and two voltage references to produce multiple ramps, plus an additional calibration cycle within software to eliminate offset errors.

Earlier integrated-circuit versions of the single-slope ADC have the major drawbacks of low accuracy (8 bits typical), poor linearity ($\pm 0.5 \%$), and a cost

KEVIN DAUGHERTY

National Semiconductor Corp., 38701 Seven Mile Rd., Ste. 150, Livonia, MI 48152; (313) 464-0020.

DESIGN APPIICATIONS
 DESIGNING
 SINGLE-SLOPE ADCS

exceeding $\$ 1$, which is about the same as a common 8 -bit successiveapproximation ADC.

Before starting the design of an ADC , the first thing to determine is system accuracy and resolution requirements. Absolute accuracy requires a stable voltage reference that matches the system accuracy needs.

For example, 12 -bit accuracy requires a 0.025% tolerance $(1 / 4096 \times$ 100), for which some calibration is necessary, and low temperature drift (about $5 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$). Applications that require relative measurements between two or more signals (ratiometric) can use a low-cost voltage reference with no calibration.

The host microcontroller's workload and the rate of change of the signal to be measured dictates the required speed and conversion technique for the ADC. More often than not, the time needed to perform all system tasks is the limiting factor. In applications where the microcontroller needs to perform monitoring and control functions that can't be easily interrupted, a relatively soft-ware-independent method is best.

This approach determines how the ramp voltage is timed with the onchip timer. The conversion speed is directly proportional to the required resolution and the microcontrollertimer clock rate.

Low-cost microcontrollers, such as National Semiconductor's COP800 line, have 16-bit timers that clock at $1 \mu \mathrm{~s}$. This results in a conversion speed of approximately 5 ms for 12-bit accuracy. When higher speed is needed, microcontrollers like the NSC COP820CJ can operate as fast as 250 ns , resulting in $1.5-\mathrm{ms}$ conversions.

Layout Considerations

Good layout is critical for any high-accuracy analog circuit. This involves using decoupling capacitors on the integrated circuits, minimizing circuit traces, using input filters, and separating analog and digital grounds. In addition, a guard ring around the integrator inputs could be added and connected to the reference voltage. This will limit the leakage current caused by the circuit board.
To create a single-slope ADC, a
voltage ramp, comparator, and a multiplexer in addition to a microcontroller are required. The heart of the design is the voltage ramp. The basic idea behind the single-slope ADC is to time how long a ramp voltage takes to reach a voltage input to a comparator. Full-scale counts can be determined by applying a reference voltage $V_{\text {REF }}$ to the comparator and measuring the time to go from zero volts to $\mathrm{V}_{\mathrm{REF}}$. This time, T_{X}, is later used to measure other input voltages, V_{x}. For example, from equation 1, if $\mathrm{T}_{\mathrm{REF}}$ is 4000 for a V_{REF} of 5 V and T_{X} is 2000 for V_{X}, then $V_{X}=5 \mathrm{~V}$ $(2000 / 4000)=2.5 \mathrm{~V}$.
$\mathrm{V}_{\mathrm{X}}=\mathrm{V}_{\text {REF }}\left(\mathrm{T}_{\mathrm{X}}\right.$ counts $/ \mathrm{T}_{\text {REF }}$ counts)(1)
The voltage ramp for a singleslope ADC can be implemented with an LMC6034 quad CMOS amplifier set up as an integrator (Fig. 1). This arrangement offers a 12 -bit accuracy, which requires very low input leakage current compared to the ramp charge current. The LMC6034 has a maximum input leakage current of 200 pA over a temperature range of -40 to $+85^{\circ} \mathrm{C}$. Other key features of the LMC family of op amps

1. A MULTICHANNEL ADC with 12 -bit accuracy can be designed with an 8 -bit microcontroller, a voltage comparator, a multiplexer, and an op amp. The LMC6034 op amp configured as a voltage-integrating ramp generator, A, is the heart of the ADC. Optional buffer op-amp B may be required to offset errors caused by the multiplexer input resistors. Op-amp C isn't mandatory for limited measurement ranges.

Over 2500 standard models add up to a lot of flexibility. Whatever your requirements...input voltage, output voltages, power levels or temperature...odds are that Vicor has your solution.

Our component-level power solutions feature high efficiency and low-noise FM control, in small standard packages, at prices that won't break your budget. Give us a call... let us show you how quickly and easily power components add up to your total power system solution.

is the ability to operate to ground on the input with a single supply, and to swing extremely close ($\pm 10 \mathrm{mV}$) to the supplies on the outputs.

This performance provides maximum ramp-voltage swing and range for the ADC. The $0.022-\mu \mathrm{F}$ integrating capacitor across the negative input and output of op-amp A uses a charging current of $6.8 \mu \mathrm{~A}(1.5 \mathrm{~V} /$ $220 \mathrm{k} \Omega$ resistor) to generate a positive linear ramp.
This capacitor must be a highquality film type, such as a polypropylene with high insulation resistance over temperature. Tolerances of the capacitor and resistor don't affect the circuit's accuracy because the changes in values would affect each measurement equally.
The values of the integrating capacitor and resistor are determined by the clock rate of the timer, the resolution, and the maximum voltage range. The component values shown are for a $16-\mathrm{ms}$ ramp, a $5-\mathrm{V}$ input range, and a counting rate of $1-\mu \mathrm{S} /$ count (Fig. 1, again).
This counting rate produces overcounting because only 4096 counts $(4.096 \mathrm{~ms})$ are needed. Overcounting is required only if a software polling method is used to time the ramp, as opposed to the input-capture method. The capacitance value C can be calculated from $\mathrm{C}=(\Delta \mathrm{T} / \Delta \mathrm{V}) \times \mathrm{I}$, where $\Delta \mathrm{T}$ is the resolution multiplied by $1 /$ clock rate, $\Delta \mathrm{V}$ is the differential input voltage range, and I is the charge current.
The microcontroller output L0 toggles between 0 and 5 V to ramp the integrator up and down. Conversions are performed during ramp-up, which is when $L 0$ is at 0 V . The positive input of the op amp is referenced to 1.5 V , causing a constant $6.8-\mu \mathrm{A}$ ($1.5 \mathrm{~V} / 220 \mathrm{k} \Omega$) current flow through the capacitor. When the positive-going ramp reaches the input threshold voltage at the comparator, the timer is stopped.
To get ready for the next conversion, L0 switches to 5 V and the discharge current is $(5 \mathrm{~V}-1.5 \mathrm{~V}) / 220$ $\mathrm{k} \Omega$, or about $16 \mu \mathrm{~A}$. As a result, ramp-down is much faster than ramp-up, minimizing the time between conversions.

2. CODE FOR the polling method in single-slope analog to-digital conversion starts with initializing the $/ / 0$ to control the integrator and multiplexer. For maximum accuracy, the length of the polling loop during the measurement of $\mathrm{V}_{\text {in }}$ should be a short as possible.

Comparator selection should be made on the basis of input bias current, single-supply operation, and in-put-voltage range. In the example shown in Fig. 1, the comparator is fed by the CD4051 8-channel multiplexer, which has several input resistors. Comparator input-bias offset current multiplied by the total input resistances leading up to the comparator must be kept below the resolution voltage of one LSB (least significant bit), or 1.2 mV for a $0-\mathrm{to}-5-\mathrm{V}$ range.
The LM393 dual comparator has an input-bias offset current of ± 100 nA . If this causes undesirable errors, then an LMC6034 CMOS buffer (B) can be used to eliminate the effects of the input resistance to the multiplexer. However, low-value resistors are still required for the inputs to the comparator.
Using a low-cost, 8 -channel multiplexer (CD4051) makes a 6 -channel ADC, with two channels reserved for a reference (full scale) and zero threshold. Crosstalk is the only important multiplexer specification of concern, and should not be a factor for the frequencies at which most applications operate.
The power-supply requirement depends on the voltage range required by the ADC. The 8 -V supply shown in the example for the integrator and comparator is needed only for applications measuring input voltages above 3.5 V , which is the limitation of the comparator operating at 5 V . The multiplexer and microcontroller (COP822) are powered by 5 V . That enables the microcontroller's logic levels to drive the CMOS-level inputs of the CD4051.

In the example, $\mathrm{V}_{\text {zero }}$ is derived from $V_{\text {REF }}$ using 1% tolerance resistors to equal $\mathrm{V}_{\mathrm{REF}} / 65$. The idea is to create a zero voltage that allows some headroom for the ramp function. When the microcontroller drives the integrator down, the negative input must remain at 1.5 V . If the integrator overshoots by letting the output ramp bottom out at its lowest output voltage, the negative input will charge above 1.5 V .

This condition would cause a significant delay error when restarting

Easy, Plug-In Solutions

The world of DSP is far from simple. You need a secret code book to wade through its bevy of acronyms, a doctorate in mathematics to create its complex algorithms, and years of signal processing expertise to develop the necessary hardware.
Or you need Burr-Brown. We've developed a line of easy, painless, plug-in solutions that let you concentrate on your application instead of the hairy details.

From Chips to Systems

- Need a direct interface ADC or DAC for one of today's DSP processor chips?
- Need a DSP processor for your VME or PC platform?
- Need one with high speed, high accuracy data conversion, single channel or multi-channel, or high dynamic range?
- Need an easy way to create and execute DSP algorithms?
- Need an inexpensive and simple approach to analyzing your analog signals?
- Need a custom solution? We have your solution waiting, in most cases,
from off-the-shelf.

Over 30 Years of Signal Processing

Ask around. We've been making and delivering high performance precision microelectronics for over 30 years to a worldwide customer base. We're known for the highest performing data conversion products for signal processing available, and since 1986, engineers have known us for some of the best DSP tools around.
For more information about our product line or for a copy of our free brochure, call 1-800-548-6132, contact your local salesperson, or write:

Burr-Brown Corporation

P.0. Box 11400

Tucson, AZ 85734
Fax (602) 741-3895

DESIGN APPLIGATIONS
 DESIGNING SINGIL-SLOPE ADCs

the positive ramp cycle for another conversion. Using a value for $\mathrm{V}_{\text {zero }}$ sufficiently above the minimum amplifier output voltage prevents this error. Op-amp C is used as a noninverting summing amplifier to add $\mathrm{V}_{\text {zero }}$ to each input (Fig. 1, again). This allows full 0 to $\mathrm{V}_{\text {REF }}$ measurements while restricting the ramp voltage swing to within the integrator output-voltage range.
The conversion cycle starts with ground selected on the multiplexer. The summing amplifier, which adds $\mathrm{V}_{\text {zero }}$ to all inputs, sets the comparator threshold at $V_{\text {in }}+V_{\text {zero }}$. When the integrator ramps down and reaches $\mathrm{V}_{\text {zero, }}$, the microcontroller starts the positive ramp. When the positive-going ramp again crosses $V_{\text {zero }}$ from the low side, $\mathrm{V}_{\text {in }}$ is selected and the timer starts counting. The integrator will continue to ramp up until the ramp equals the input voltage at the comparator.
The ramp time is directly proportional to the voltage input. The ramp starts with $V_{\text {zero }}$ and continues until it reaches $V_{\text {in }}+V_{\text {zero, }}$ so that the total differential voltage on the ramp is simply V_{in}.
For limited measurement ranges, op-amp C is optional. Feeding in $\mathrm{V}_{\text {zero }}$ $=\mathrm{V}_{\mathrm{REF}} / 65$ on one of the input channels and operating the circuit without adding $\mathrm{V}_{\text {zero }}$ to each input provides a conversion range of $1 / 65$ to full scale. Then $\mathrm{V}_{\mathrm{REF}}$ should be measured, dividing the counts by 64 with simple shifting. Finally, the result in software should be added to each conversion. When $\mathrm{V}_{\text {REF }}$ is measured this way, the voltage range is just 64/65 of full scale with the first 1/ 65th of full scale not measured. The following illustrates how to handle the mathematics for this technique:
$\mathrm{V}_{\text {zero }}=1 / 65 \mathrm{~V}_{\text {REF }}$
$\mathrm{T}_{\mathrm{REF}}=64 / 65$ full scale
counts $/$ volt $=\mathrm{T}_{\text {REF }} /\left(64 / 65 \mathrm{~V}_{\mathrm{REF}}\right)$
Therefore, $\mathrm{T}_{\text {zero }}=1 / 65 \mathrm{~V}_{\mathrm{REF}}\left[\mathrm{T}_{\mathrm{REF}} /\right.$ $\left.\left(64 / 65 \mathrm{~V}_{\text {REF }}\right)\right]=1 / 64 \mathrm{~T}_{\text {REF }}$, where $\mathrm{T}_{\text {REF }}$ is the time measurement for $\mathrm{V}_{\mathrm{REF}}$, which is actually only $64 / 65$ of $\mathrm{V}_{\text {REF }}$. Using the value of $\mathrm{T}_{\text {zero }}$ for the untimed portion of the ramp added to each measurement in software provides a linear result:

3. THE INPUT capture method uses logic that's similar to the polling method. But for a given resolution, it generates less jitter. Input-capture measurements also have quicker conversions because overcounting and averaging aren't used.
$\mathrm{V}_{\text {in }}=\mathrm{V}_{\text {REF }}\left(\mathrm{T}_{\text {in }}+\mathrm{T}_{\text {zero }}\right) /$
$\left(\mathrm{T}_{\text {REF }}+\mathrm{T}_{\text {zero }}\right)$
If an accurate reference voltage is used, errors caused by the hardware circuitry are minimal and require no calibration.

As mentioned previously, the integrator resistor and capacitor don't cause any error if a good film capacitor is used. The conversion process automatically cancels the offset voltages of every op amp and the comparator. By starting the conversion with the ramp below $V_{\text {zero }}$ and going in the positive direction, the threshold voltage of $V_{\text {zero }}$ will include a net $\mathrm{V}_{\text {offset }}$. This $\mathrm{V}_{\text {offset }}$ has the same magnitude and polarity when the ramp voltage again reaches the voltage to be measured later on in the conversion cycle. The delta voltage on the ramp is still only $V_{\text {in }}=\left(V_{\text {in }}+V_{\text {zero }}+\right.$ $\left.V_{\text {offset }}\right)-\left(V_{z e r o}+V_{\text {offsee }}\right)$.

In applications requiring only a limited range (excluding $0-[1 / 65$ times voltage range]), the error caused by the $\mathrm{V}_{\text {zero }}$ resistor network is only $1 / 65 \%$ using 1% resistors. For the full 0 V to $\mathrm{V}_{\text {REF }}$ range option, the actual value of $V_{\text {zero }}$ isn't important, but the effect on the summing amplifier is. Because a CMOS amplifier (C) with extremely low input-leakage current can be used, high-value input resistors ($1 \mathrm{M} \Omega$) can also be employed. These, combined with a low value $\mathrm{R}(<100 \Omega)$ for deriving $\mathrm{V}_{\text {zeror }}$, don't alter $V_{\text {zero }}$ appreciably with changes in $V_{\text {in }}$. Therefore, a buffer amplifier for $V_{\text {zero }}$ is unnecessary.

Software Operation

Polling-method software requires comparator transitions to be monitored by polling the microcontroller input G0 within a consistent tight loop. Keeping the loop down to the fewest cycles possible (four cycles) keeps the delta time to a minimum when the microcontroller exits the loop. This translates to minimum jitter or error when measuring $V_{i n}$.

The maximum jitter is the loop cycles divided by the total counts. Potential error can be greatly reduced by either averaging a few measurements or overcounting-that is, counting to 14 bits for 12-bit accura-

DESIGN APPLICATIONS DESIGNING SINGIL-SLOPE ADCS

cy (see the table).

Code for the polling method begins by initializing the $I / 0$ to control the integrator and multiplexer (Fig. 2). The B register is then loaded with the address to read the G input register, which provides a single-cycle instruction to poll G0 (IFBIT 0, [B]). The 16 -bit timer is set to run in autoreload mode and will count down from the initialized value of FFFF (hexadecimal). The next step is to select $V_{\text {zero }}$ by selecting channel 7 on the multiplexer and then drive the ramp down by setting L0 high with the LD LDATA, \#0 1D instruction. Once the ramp is below $V_{\text {zero, }}$, the ramp is driven positive by RBIT 0, LDATA, which drives L0 low.

Accuracy Considerations

The accuracy of the polling method is largely determined by keeping the polling loop as short as possible. During the $\mathrm{V}_{\text {in }}$ measurement, the tight loop consists of the IFBIT $0,[B]$ and JP LOOP instructions. There's a maximum of four cycles from the time G0 goes high and the loop is exited. This same number of cycles are used when starting and stopping the timer and will tend to cancel out.
The same principle applies if an interrupt is used instead of polling the G0 input. An interrupt will take a fixed amount of cycles (seven) to push the program counter onto the stack and increment the stack pointer by two. The amount of additional cycles depends on which instruction was in progress at the time (between one and four cycles). A two-cycle instruction can be assumed. This time, plus the cycles required by an interrupt routine to stop the timer, is addtional delay that's required before starting the timer. Therefore, the only potential jitter error would be the two cycles of uncertainty.
The loop is exited once the comparator threshold is exceeded. Then $\mathrm{V}_{\text {REF }}$ is selected and the timer is started by an instruction sequence that takes a total of eight cycles:
3 cycles
LDLDATA
SELECT VREF
1 cycle
NOP
SBIT 4,CNTRL ; START TIMER

The NOP instruction is inserted in the previous sequence so that it has the same number of cycles as the sequence for exiting the loop and stopping the timer once the ramp equals $\mathrm{V}_{\mathrm{REF}}$:

4 cycles SBIT 0,LDAT ; STARTNEGA -
TIVE RAMP
4 cycles RBIT 4,CNTRL ; STOP TIMER

The potential error caused by the delay while selecting V_{X} and starting and stopping the timer is eliminated if the total number of cycles is kept the same. This will provide eight cycles of delay to start and stop the timer and therefore cancel. After $V_{\text {PEF }}$ is measured, the 16 -bit value in the timer is inverted (since it counts down) by exclusive ORing it with the

SINGIE-SIOPE A/D POLIING ROUIINE

THIS IS A SINGLE SLOPE A/D POLLING ROUTINE FOR THE BASIC COP800 FAMILY OF MICROCONTROLLERS THAT COUNTS TO 14 BITS FOR 12 BITS OF ACCURACY. VREF IS STORED IN RAM 00,01 AND VIN IS STORED IN RAM 02, 03

CHIP 820
TLOW=0EA
THIGH=0EB
LCONF $=0 \mathrm{D} 1$
LDATA=0D0
GCONF $=0 \mathrm{D} 5$
GDATA $=0 \mathrm{D} 4$
$\mathrm{G} \mid \mathrm{N}=0 \mathrm{D} 6$
CNTRL = OEE
; INITIALIZE REGISTERS AND TIMER

WAIT: IFBIT 0, [B JP WAIT
CAP IS RESET
RAMP: RBIT O,LDATA ; START POSITIVE RAMP
LOOP: $|F B| T$ 0,[B] ;CHECK FOR + Vzero CROSSING
JP LOOP
LD LDATA, \#018 ; SELECT Vref ON CHANNEL 6
NOP ;PROVIDE EQUAL DELAY
SBIT 4,CNTRL ; START TIMER
IFBIT 0,[B] ;WAIT UNTIL RAMP IS > Vref
JP POLL
SBIT 0,LDATA ; START NEGATIVE RAMP
RBIT 4,CNTRL STOP TIMER
LD A, TLOW
XOR A, \#OFF
$\times \mathrm{A}, 00$
INVERT A
STORE Vref RESULT IN RAM 00 \& 01
D A, THIGH
XOR A, \#OFF ;INVERT A
X A, 01
; START VIN MEASUREMENT
LD TLOW, \#OFF
LD THIGH, \#OFF
LD LDATA,\#01D ; SELECT Vzero ON CHANNEL 7
WAIT1: $|F B| T 0,[B]$
JP WAIT1
;CAP IS RESET
RAMP 1: RBIT O,LDATA ;START POSITIVE RAMP
LOOP 1: IFBIT 0,[B] ;CHECK FOR + Vzero CROSSING
JP LOOP 1
LD LDATA, \#04
NOP
SELECT Vin ON CHANNEL
EQUALIZE TIME TO START TIMER
START TIMER
POLL 1: IFBIT 0,[B] ;SIT AROUND AND DO NOTHING UNTIL
;RAMP IS > THAN Vref
NOP
NOP
RBIT 4, CNTRL ; STOP TIMER
D A, TLOW
XOR A, \#OFF
A, THIGH
XOR A, \#OFF
ND
\leftarrow CIRCLE 122 FOR U.S. RESPONSE
\leftarrow CIRCLE 123 FOR RESPONSE OUTSIDE THE U.S.

Catch emissions problems at board level, where compliance fixes are least costly.

Now you can quickly get a color image of the electromagnetic performance of your printed-circuit board or subassembly before final compliance testing. Spatial and spectral displays generated by the EMSCAN PCB emissions scanner show you which frequencies and which areas of the board under test are guilty. These scans are stored for later comparison after design alterations, to check whether offending emissions are now down to acceptable levels.
Just plug your receiver or spectrum analyzer, and your computer with IEEE-488 interface, into the EMSCAN scanner, and a matrix of 1280 H -field probes maps the area of your test board (up to 9 " x 12") for high, medium, and low-emissions spots within the $10-$ to $-750-\mathrm{MHz}$ frequency range. Or you can see a spectral display showing the overall condition of the board across the spectrum. You may then choose a
frequency of particular interest for intensive spatial examination.

After the development stage, you can use EMSCAN as a qualitycontrol tool, checking completed boards against a "good" scan before they go into assembly. This is the point where production compliance becomes virtually assured.
The software operates under "Windows" to make early diagnosis easy, even for those who are new to compliance testing. It can run on several PCs and workstations, and is readily ported to other environments for analysis.

You should learn all about this qualitative and quantitative measure of emissions for use during product development-where design corrections are least costly. To start, call toll-free (1-800-933-8181) to speak with an applications engineer and arrange to see a demonstration in your office or plant.

160 School House Road
Souderton, PA 18964-9990 USA
215-723-8181 • Fax 215-723-5688

DESIEN APPLICATIONS DESIGNING SINGLE-SLOPE ADCS

FF XOR A, \#OFF instruction. Finally, the result is stored in the first two bytes of RAM ($00 / 01$) using the x A, 00/01 command.

The code for measuring $V_{\text {in }}$ is nearly identical to that for $\mathrm{V}_{\text {REF }}$ with the following minor exceptions: $V_{\text {in }}$ is selected instead of selecting $V_{\text {REF }}$, the result is stored in RAM locations 02/ 03 , and the ramp is continued in the positive direction. Instead of using the SBIT 0, LDATA instruction, four NOPs are substituted to provide an equal number of cycles.

The reason for not driving the ramp negative is to avoid over driving the integrator toward its minimum output voltage. This situation could occur if additional microcontroller code takes longer to execute than the time for the integrator to ramp down.

A benefit is realized when using the input-capture method to measure the ramp time to equal $V_{\text {in }}$-the conversion is completed with minimal jitter, which is limited to the level of circuit noise. Conversions will also be quicker for a given resolution since overcounting or averaging isn't needed.
The logic used for the input-capture method is very similar to the polling method (Fig. 3). However, because it's unnecessary to poll the input G0 after $V_{\text {in }}$ is switched in, other software functions can be performed while the conversion is in progress.

When the ramp reaches $V_{\text {in }}$ at the comparator, the captured value in the timer will be automatically saved. This value can be read after the comparator transition either by generating an interrupt upon capture or by simply polling the status register when convenient.

Kevin Daugherty, a staff field application engineer at National Semiconductor Corp., holds a BSEE from Wayne State Univ., Detroit, Mich.

How Valuable?	Circle
Highly	531
Moderately	532
SLightly	533

PB50

- Up to $\pm 100 \mathrm{~V}$ Supply
- Up to $\pm 2 \mathrm{~A}$
$100 \mathrm{~V} / \mu \mathrm{s}$ Slew Rate
祭 $\$ 54.90$ in 100 s

For Immediate
Product Information
Call 1-800-448-1025
or FAX (602) 888-3329

THE PB50 AND PB58 PROVIDE DESIGN FLEXIBILITY BY BOOSTING SMALL SIGNALS UP TO $\pm 150 \mathrm{~V}$ AT $\pm 2 \mathrm{~A}$ WITHOUT RISK OF SECOND BREAKDOWN.

PB58

- Up to $\pm 150 \mathrm{~V}$ Supply
- Up to $\pm 2 \mathrm{~A}$
- $100 \mathrm{~V} / \mu \mathrm{s}$ Slew Rate
- $\$ 64.90$ in 100 s

ПРЕ天
 dedicated to excellence

APEX MICROTECHNOLOGY CORPORATION 5980 N. SHANNON ROAD, TUCSON, ARIZONA 85741

For Applications and Product Selection Assistance Call Newly Expanded Hotline 1-800-421-1865

[^6]
rF TRANSFORMERS

Over 50 off-the-shelf models... $3 K \mathrm{~Hz}-800 \mathrm{MHz}$ from $\$ \mathbf{3} \mathbf{2 5}$

Having difficulty locating RF or pulse transformers with low droop, fast risetime or a particular impedance ratio over a specific frequency range?... Mini-Circuits offers a solution.

Choose impedance ratios from 1:1 to 36:1, connector or pin versions (plastic or metal case built to meet MIL-T-21038 and MIL-T-55831 requirements ${ }^{\star}$). Ultra-wideband response achieves low droop and fast risetime for pulse applications. Ratings up to 1000 M ohms insulation resistance and up to 1000 V dielectric voltage. For wide dynamic range applications involving up to 100 mA DC primary current, use the T-H series. Coaxial connector models are offered with 50 and 75 ohm impedance; BNC standard; request other types. Available for immediate delivery with one-year guarantee.

CIRCLE 220 FOR U.S. RESPONSE
CIRCLE 221 FOR RESPONSE OUTSIDE THE U.S.
finding new ways ...
setting higher standards
case styles
T, TH, case W 38, X 65 bent lead version, KK81 bent lead version TMO, case A 11, † case B 13 FT, FTB, case H 16 NEW TC SURFACE MOUNT MODELS from 1 MHz to 1500 MHz

NSN GUIDE

MCL NO NSN
FTB1-1-75 5950-01-132-8034 FTB1-6 5950-01-225-8773 T1-1 5950-10-128-3745 T1-1T 5950-01-153-0668 T2-1 5950-01-106-1218 T3-1T 5950-01-153-0298 $\begin{array}{ll}\text { T4-1 } & 5950-01-024-7626 \\ \text { T9-1 } & 5950-01-105-8153\end{array}$ T9-1 5950-01-105-8153 $\begin{array}{ll}\text { T16-1 } & 5950-01-094-7439 \\ \text { TMO1-1 } & 5950-01-178-2612\end{array}$ TMO1-1 5950-01-178-2612

MCL NO. NSN
TMO2-1
TMO2 5-6 5950-01-183-6414 TMO2.5-6T 5950-01-215-4638 TMO2.5-6T 5950-01-215-8697 TMO3-1T 5950-01-168-7512 TMO4-1 5950-01-067-1012 TMO4-2 5950-01-091-3553 TMO4-6 5950-01-132-8102 TMO5-1T 5950-01-183-0779 TMO9-1 5950-01-141-0174 TMO16-1 5950-01-138-4593

CIRCIE
 21 Feedback Linearizes 021 Current Source

JERALD GRAEME

Burr-Brown Corp., P.O. Box 11400, Tucson, AZ 85734; (602) 746-7412.

Many adjustable dc current sources typically exhibit nonlinear control charac-teristics-most often an inverse relationship between pot rotation and current. That nonlinearity, which is most pronounced at high current levels, means that the control tends to be hypersensitive at one end of its adjustment range and unresponsive at the other. By employing bootstrap feedback (see the figure), it's possible to provide an inherently linear control that works equally well at all current levels.

Reduced to its essentials, the circuit consists of a voltage reference $\left(\mathrm{IC}_{1}\right)$, which drives a load $\left(\mathrm{Z}_{\mathrm{L}}\right)$ through a sensing resistor $\left(\mathrm{R}_{\mathrm{S}}\right)$. Amplifier feedback controls the voltage across R_{S} to set the current.

Unlike conventional implementations that adjust the current by varying R_{S}, the bootstrap circuit varies the voltage directly by controlling the bootstrap gain. That produces direct, rather than inverse, proportionality between the control setting and the output current.

Potentiometer R_{V} varies the bootstrap gain to control the fraction of reference voltage V_{R} that appears across R_{S}. Op-amp feedback forces that voltage, V_{S}, to equal the voltage
across the xR_{V} portion of R_{V}. Because the voltage reference is in parallel with the control pot, the voltage across R_{V} is constrained to be V_{R}, and the voltage fraction across $x R_{V}$ is simply xV_{R}. The voltage across the sensing resistor is the same. Hence, the output current is given by: $I_{0}=x V_{R} / R_{S}$. For the components shown in the diagram, I_{0} can be varied from 0 to 1.25 A .

In addition to linearizing the current control, this approach keeps the control potentiometer out of the main current path. Because the pot needn't carry the full output current, it can have a high value, making its end resistance negligible. That eliminates an extra source of nonlinearity.

With nonlinearity removed, component errors set the limits on circuit performance. The LM117 regulator drifts 0.01% per ${ }^{\circ} \mathrm{C}$ and R_{S} may drift 0.015% per ${ }^{\circ} \mathrm{C}$. Thus, even assuming that all errors have been trimmed out at nominal temperature, $\mathrm{a} \pm 5{ }^{\circ} \mathrm{C} \mathrm{C}$ environment limits trim accuracy to around 0.125%.

Error also results from a circuit output resistance of:
$\mathrm{R}_{0}=\mathrm{R}_{\mathrm{S}} /\left(\mathrm{xL}_{\mathrm{R}}+1 / \mathrm{PSRR}\right)$
where L_{R} is the line regulation of the regulator and PSRR is the powersupply rejection ratio of the amplifier. For the components shown, and x $=1, \mathrm{R}_{0}=8 \mathrm{k} \Omega$. A $10-\mathrm{V}$ change in load voltage produces a 0.1% change in output current.

LINEAR CURRENT CONTROL results

 from bootstrap feedback, which redefines the control characteristic. This circuit has a current range of 0 to 1.25 A , an output resistance of $8 \mathrm{k} \Omega$, and a maximum drift of 0.025% per ${ }^{\circ} \mathrm{C}$.
522

 Turn Scope Into

 Turn Scope Into Curve Tracer

 Curve Tracer}
LESTER R. ORENSE

Allegro Microsystems Philippines, Inc., Sampaguita St., Marimar Village, Parañaque, Metro Manila, Philippines 1700; Tel.: (632) 828-90-26;

Fax: (632) 828-40-45.

An inexpensive yet effective way to evaluate semiconductor component quality is to display the device's I-V characteristics on an oscilloscope. Sharp, clear transitions indicate
"healthy" junctions (Fig. 1). Soft, gradual ones imply leakage or possibly even shorts.

All that's needed to set up an appropriate I-V display are a pair of dual op amps and a handful of pas-
sive components (Fig. 2). Op amp $\mathrm{A}_{1 \mathrm{~A}}$ generates a $300-\mathrm{Hz}$ sine wave with a peak-to-peak amplitude of 20 V . That sinusoid is buffered by op amp $\mathrm{A}_{1 \mathrm{~B}}$ to drive the device under test (DUT).
$O p \operatorname{amp} \mathrm{~A}_{2 \mathrm{~A}}$ provides a return path for the current from the DUT and converts that current into a voltage. Finally, op amp $\mathrm{A}_{2 \mathrm{~B}}$ inverts the voltage before feeding it to the scope for a correct I-V display.

The scope must, of course, be in its X-Y mode. A good initial gain setting is about $2 \mathrm{~V} /$ division.

In addition to individual compo-

IDEAS FOR DESIGN

1. THE CLEAN, SQUARE transitions on this display of a transistor's base-emitter junction are characteristic of a "healthy" device.
nents, this circuit can be used to isolate faulty components in circuit boards. The idea is to compare the scope display across various points of the unit under test with the display for the corresponding points on a board that's known to be good. With a bit of practice, it should be possible to recognize at least some common faults on sight.
Figure 1 depicts a transistor's baseemitter junction characteristics.

Send in Your Ideas for Design

Address your Ideas-for-Design submissions to Richard Nass, Ideas-for-Design Editor, Electronic Design, 611 Route 46 West, Hasbrouck Heights, NJ 07604.

UOTI

Read the Ideas for Design in this issue, select your favorite, and circle the appropriate number on the Reader Service Card. The winner receives a $\$ 150$ Best-of-Issue award and becomes eligible for a $\$ 1,500$ Idea-of-the-Year award.
2. FOUR $_{\text {op }}$ amps (actually two dual AD647s) form the heart of this I-V display circuit. All of the op amp power supply leads should be decoupled with 0.1^{-} $\mu \mathrm{F}$ capacitors. The power supply, which is not shown, is $\pm \mathbf{1 5 ~ V}$.

CIRCIE
 523 CLOCK SOURCE

MICHAEL A. WYATT
Honeywell Inc., 13350 US Highway 19N, M.S. 931-4, Clearwater, FL 34624; (813) 539-5653.

This simple circuit automatically chooses between internal and external clock sources with no need for a
selector switch or any other input
(see the figure). If an external clock signal is present, the circuit chooses it. If not, it selects the internal clock source.

The circuit has proven valuable in
laboratory test equipment, where it provides a simple and economical way to set up clock inputs. It should also find use in complex gear, where an automatic clock-selection feature has the potential to eliminate human error.
The circuit's operation is as follows: When no external clock signal is present, R_{1} pulls one of the gate's inputs low, and fixes the output of $\mathrm{U}_{1 \mathrm{~A}}$ at V_{CC}. That fixed dc level charges the capacitor through resis-

Afford. Ability.

© 1991 Hewlett-Packard Co. TMLID135/ED

Get more of what you want in a $61 / 2$ digit DMM for just $\mathbf{\$ 9 9 5}$.

The HP 34401A gives you more performance than any other DMM for the price. More resolution. Better accuracy. The highest reading speed. Fastest throughput. And widest ac bandwidth.

It has more standard features. Like HP-IB, RS-232 and built-in SCPI commands for more system flexibility. Plus ten extended functions including continuity, diode test, limit test, reading hold, dB and null to give you greater flexibility on the bench.

What more could you want? The HP 34401A also comes with a 3-year warranty, standard.

- For more information or sameday shipment from HP DIRECT, call 1-800-452-4844*. Ask for
Ext. T508 and we'll send you a data sheet.

HP 34401A Digital Multimeter	
DC Accuracy (1 year)	$\mathbf{0 . 0 0 3 5 \%}$
AC Accuracy (1 year)	0.09%
Maximum input	1000 Vdc
Reading speed	$\mathbf{1 0 0 0} / \mathbf{s e c}$
Resolution	$100 \mathrm{nV}, 10 \mathrm{nA}$,

* U.S. list price
** In Canada call 1-800-387-3867, Dept. 434
There is a better way.

CIRCLE 116

IDEAS FOR DESIGN

AUTOMATIC CLOCK DETECTION is provided by $\mathrm{U}_{1 A}$ in combination with R_{1}.
Resistors R_{3} and R_{4} and diodes D_{2} and D_{3} protect the input of $\mathrm{U}_{1 \mathrm{~A}}$.
tor R_{2}, enabling the internal clock signal to pass through $\mathrm{U}_{1 \mathrm{~B}}$, and then $\mathrm{U}_{1 \mathrm{C}}$, to the output.

Upon application of a clock signal from an external source, the output of gate $U_{1 A}$ toggles at the external clock frequency and discharges the
capacitor through diode D_{1} to a logic Zero.

With one of its inputs driven low, the output of $\mathrm{U}_{1 \mathrm{~B}}$ goes high, blocking the internal clock signal and enabling $\mathrm{U}_{1 \mathrm{C}}$ to pass the external clock signal to the output.

For proper operation, the $\mathrm{R}_{2} \mathrm{C}$ time constant should be made 10 times longer than the longest expected clock period.

IFD Winner

IFD Winner for September 12, 1991

Yishay Netzev, Yuvalim 112, Israel 20142; (972) 480-1017. His idea: "Voltage Reference Has Dual Polarity."

IFD Winner for September 26, 1991

James Wong, Analog Devices Inc., 1500 Space Park Dr., Santa Clara, CA 95052; (408) 727-9222. His idea: "Low-Cost ISO Amp Has High Precision."

Touch Dale

For Brighter Ideas In Display Communication

When just any display won't do, touch 402-563-6506. You'll get:

- Bright, easily-viewed DC plasma modules in versatile dot matrix or segmented formats.
- Innovative infrared touch panels to fit almost any flat panel technology.

And something more: You'll get immediate focus on your application from people who've designed hundreds of application-specific displays for out-of-the-ordinary situations. If experience, plus concern for your project goals, is important, get in touch with Dale.

Dale Electronics, Inc., 1122 23rd Street, Columbus, NE 68601-3647, Phone 402-563-6506

CIRCLE 104 FOR U.S. RESPONSE
CIRCLE 105 FOR RESPONSE OUTSIDE THE U.S.

WORLD CLASS WORLD POWER

Transistor

Devices Inc.

WORLD CLASS

FAULT TOLERANT POWER SYSTEMS
up to 100 KW featuring

- Battery Backup
- N+1 Redundancy
- Hot Bus Plug-In

CIRCLE 301

MODULAR POWER SUPPLIES

- Operate from World Power Sources
- Power Factor Corrected

CIRCLE 302

CUSTOM PRODUCTS

- Military, FAA, and Commercial applications
- Designed, Manufactured and Tested
to your Specifications

HIGH VOLTAGE POWER SUPPLIES

- Up to 30,000 VDC
- CRT Displays, TWT Systems and other sophisticated applications

CIRCLE 303

WORLD POWER

TRANSISTOR DEVICES, INC. is the largest independent manufacturer of Custom Power Conversion Products for Military and Commercial applications. We are an industry leader in various power technologies including:

- Switching Power Supplies
- Fault Tolerant Power Systems
- Static AC Inverters
- Dynamic Electronic Loads
- High Voltage Power Supplies

Our Power Supplies incorporate active Power Factor Correction with less than 5\% Total Harmonic Distortion on input line current complying with the requirements of IEC 555.2, FAA 2100E and DOD-STD-1399/300.

We.welcome your system requirements with innovative standard or custom power conversion solutions. For additional information call or write.

STANDARD PRODUCTS DIVISION
274 So. Salem Street
Randolph, NJ 07869
(201) 361-6622

ALUMITEK

Box H
Broad Street
Delaware Water Gap, PA 18327
(717) 476-1455

WEAPONS PRODUCTS DIVISION
85 Horsehill Road
Cedar Knolls, NJ 07927
(201) 267-1900

FERNWOOD TRANSFORMER
560 Independence Street
Belvidere, NJ 07823
(908) 475-3207

FLORIDA DIVISION

35 Hill Avenue
Fort Walton Beach, FL 32548
(904) 644-2211

CIRCUITEK

Box H
Broad Street
Delaware Water Gap, PA 18327
(717) 421-2060

markit facts

\squareesigners and companies are racing to put ever more complex ICs on the market. Tight schedules and competitive pressure are fueling growth in the market for computer hardware and software that supports electronic design. In response to designers' needs, suppliers are coming up with front-end tools that accept and simulate circuit descriptions simultaneously in terms of behavior, structure, and gate-level design. Designers are turning to new implementations of hardware-description languages (HDL) to represent designs. Debugging will become more efficient with concurrent multilevel simulators. Translating high-level descriptions to gate-level implementations calls for powerful logic synthesis tools.

Total sales in the electronic design automation (EDA) market should surge from $\$ 2.08$ billion last year to $\$ 4.92$ billion in 1995 , according to New York market researchers Frost \& Sullivan Inc. EDA hardware, worth $\$ 518$ million in sales last year, should be worth $\$ 1.24$ billion by 1995 . Software for electronic design should more than double in sales, from $\$ 1.56$ bilion last year, to $\$ 3.69$ billion in 1995.

In other developments, designers will have at hand better layout tools to handle developing complex mixed-block and standard-cell designs. Also, look for tools for board layout that cope with multichip modules and pc boards crammed with application-specific ICs (ASICs) and surface-mounted devices.

SYSTEMS FOR ELECTRONIC DESIGN: HANDLING DIVERSE TASKS

Total 1991 market was worth $\$ 2.08$ billion
Source: Frost \& Sullivan Inc

QUIGK NEWS: EDUGATION

exas Instruments is giving one-day seminars on control using its family of digital signal processors. The seminars focus on using digital technology for control and how to implement control applications like hard disk drives, robotics, and motor control with TI TMS20 DSPs. Seminars will be held in various U. S. cities from Jan. 27 through Feb. 7. Registration fee is $\$ 50$, which includes lunch, seminar workbook, and TT's application book, Digital Control Applications with the TMS320 Family. Contact TI, Semiconductor Group, SC-91082, P. 0. Box 809066 , Dallas, TX 75380-9066; (800) $336-5236$, ext. 700 or (214) $995-6611$, ext. 700.

CIRCLE 451

Aseries of short courses takes aim at managers in technical environments. Course offerings include project management, finance for non-financial managers, and influence skills-getting results without direct authority. Course sites range from Washington DC to Los Angeles through June, 1991. Further information is available by calling Learning Group International at (800) 421-8166, or (703) 709-9019 East Coast or (310) 417-8888 West Coast.

CIRCLE 452

aBC Flowcharter from Roykore is a what-you-see-is-what-you-get (WSIWYG) drawing package to create, edit, and print flowcharts. The program does multidimensional charts-pointing to a shape in one chart causes a linked chart to be displayed automatically. Shapes can be numbered for cross-referencing and error checking. The program, which runs on PC ATs, PS/2s, and compatibles, supports Windows 3.0 and works on Windows networks. Registered users receive free updates and unlimited free technical support for up to one year after purchase. Flowcharter lists for $\$ 295$.

Also from Roykore, Instant ORGcharting works with Windows 3.0 to make organizational charts with a few clicks of the mouse. Pieces of charts can be cut and pasted into another through the Windows Clipboard. When boxes are resized or moved, lines are rerouted automatically. The program also can be used for personnel managementemployee pictures can be linked to boxes and reports created from the information. The charting software, which runs on PC ATs, PS/2s, and compatibles, sells for $\$ 195$.

For further information, contact Rykore, 2215 Filbert St., San Francisco, CA 94123; (415) 563-0836.

CIRCLE 453

QuickL00K

Which technical books are the most popular in Silicon Valley?

EIECTRONIGS:

1. Art of Electronics, 2nd ed., by Paul Horowitz and Winfield Hill. Cambridge University Press, 1989. \$54.50.
2. C Language Algorithms for Digital Signal Processing by Paul Embree and Bruce Kimble. Prentice-Hall, 1990. \$55.
3. Noise Reduction Techniques in Electronics by Henry 0tt. Wiley, 1988. $\$ 47.95$.

Switching Power Supply Design by Abraham Pressman. McGraw-Hill, 1991. $\$ 49.95$.
5. Spice for Circuits and Electronics Using PSpice by Mohammed Rashid. Prentice-Hall, 1990. \$55.

COMPUTER SCIENGE:

C ++ Programming Language, second edition, by Bjarne Stroustrup. Addison-Wesley, 1991. \$34.50.2. $C++$ Primer, second edition, by Stanley Lippman. Addison-Wesley, 1991. $\$ 32.25$.
3. Motif Programming Manual, vol. 6, by Dan. Heller. 0'Reilly, 1991. \$34.95.
4. C Programming Language by Brian Kernigan and Dennie Ritchie. Prentice-Hall, 1989. \$33.50.

5. Unix System Administration

 Handbook by Evi Nemeth, Garth Snyder, and Scott Seebass. Prentice-Hall, 1990. \$38. This list is compiled for Electronic Design by Stacey's Bookstore, 219 University Ave., Palo Alto, CA 94301; (415) 326-0681; fax (415) 326-0693.
0 J \| K NEWS: GONFERENGES

The U. S. gallium arsenide Mantech Conference will take up manufacturing issues for GaAs and its application in high-speed digital and analog ICs. Emphasis will be placed on processing, design for manufacturability, materials, and testing. The technical program focuses on quality in manufacturing and includes papers from industry and government experts. An informal workshop will be held on application of statistical process control/ design of experiments techniques as the basis for continuous measurable improvement. The conference will be held in San Antonio, Texas April 21-23. Further information is available by calling (215) 758-4061 or (508) 453-3100.

DID YOUKN OW?

... that one of five buyers of used computers is female and on average younger than her male counterparts. Of the female buyers polled, 60% were 29 or younger, whereas 86% of the male buyers were 30 or older. Professionals buy 28% of used PCs; self-employed professionals and entrepreneurs, 32%; managers, 17%; students, 15%; and nonmanagers, 8%.

Nacomex Insider, newsletter published by National Computer Exchange, New York, N.Y.

...Perspectives on Time-to-Market

BY RON KMETOVICZ

President, Time to Market Associates Inc.
Cupertino, Calif:; (408) 446-4458; fax (408) 253-6085

I' d like to discuss the link between nomenclature and timing
 concepts (developed in previous columns) and financial performance of a project.
The horizontal axis (see the figure) begins at month -36 , when the one-page document of the product idea appears. This point begins the measurement of time to market (TTM) and break-even time (BET). The axis continues to month 60 . Between the -36 to +60 time interval, the product-development effort completes the promotion, definition, plan, execution, and revenue phases.

The vertical axis is calibrated in millions of dollars. Cumulative investment and profit dollars are plotted on the same scale. Investment expenses start at month - 36 and accumulate up to month 0 , displaying three changes in slope. At month 0 , the slope of the investment curve is significantly reduced. As illustrated, profit dollars begin to flow in during this month. As a result, month 0 is where emphasis shifts from investment to profit generation.

TTM, BEAR, AND BET RELATIONSHIPS

The start of TTM and BET have been established. TTM ends when product is delivered to customer in exchange for monetary compensation. BET ends when the compensation, expressed as profit, equals the cumulative investment in the product's development. BET is always greater than TTM. Break-even after release (BEAR) measures the time from when profit dollars are generated to when cumulative profits equal cumulative expenses on the project. As such, TTM + BEAR $=$ BET.

Under most business conditions, it is optimal to minimize TTM and BEAR. Doing so naturally results in minimizing BET. Knowing BET without knowing its constituents supplies limited information about the complexities of the development and revenue-generating processes.

The Protontpe Doenn't Work.

Six ASICs, fifteen PLDs and the whole thing's gone south. Maybe I should go south too. Yeah, hop a bus. Head for Mexico.

The Prototipe Doern't Work.

Software? Could be. Hardware? Might be. So where do I start? At the beginning, of course. And just where is that, smart guy?

The Protoonpe Doern't Work.

And my performance review comes up next month. Maybe they'll just forget about all this, right? Yeah. Sure.

The Protontpe Doern't Work.

Wait. What about that glitch in the handshake on the first pass? Couldn't reproduce it. Maybe it just reproduced itself.

These are just a few of the reasons Tek makes a complete line of scopes, logic analyzers and signal
sources. Instrumentation that can quickly get to the core of your prototype's problems. Whether theyre digital, analog
or software. Because even when your prototype doesn't work, Tek does. TALK TO IEK/1-800-426-2200

A1W-188146 Copyright© 1991, Tektronix, Inc.

OFFERS YOU GANT REFUSE

areference manual describing the Verilog Hardware Description Language is available from the Open Verilog International committee. The 300-page Language Reference Manual Release 1.0 has all the information needed to create Verilog HDL-based tools and descriptions. Made up of 18 companies, 17 non-voting members, and six university members, OVI supports the use of the previously proprietary Verilog HDL. The manual, priced at $\$ 50$ plus tax, is available from Deborah Kelley, OVI membership manager at (408) 776-1684. OVI's address is 1016 East El Camino Real, Suite 408, Sunnyvale, CA 94087.

CIRCLE 453

1he Computer Events Calendar lists 200 high-technology trade shows, analyst conferences, and special events. The calendar includes U.S. and international events from semiconductors, supercomputers, and bank automation to consumer electronics. An index gives contact information for shows. A subject index arranges events by type. The calendar includes hightech trivia questions and answers. Retail price is $\$ 29.95$, plus $\$ 4$ for shipping. Contact Tech Trade Events, 5637 Ocean View Dr., Oakland, CA 94618; (510) 428-2439.

CIRCLE 454

asubscription to the monthly NASA Tech Briefs magazine is free to engineers who qualify for it. The publication has up-to-date listings of NASA new technology, including inventions and ideas. Subscribers may also request technical support packages, which supply details about innovations reported in the magazine. General information is also available on NASA's Technology Utilization program (technology transfer). For Tech Briefs information, contact the NASA Scientific and Technical Information Facility, Technology Utilization Office, P. O. Box 8757, SWI Airport, MD 21240; (309) 859-5300. For information on technology transfer, contact NASA Headquarters, Leonard A. Ault, Code IU, Washington, DC 20546; (202) 453-2636.

CIRCLE 455

ELECTRICAL ENGINEERING CITATION IMPACT

No.	University	$\begin{aligned} & \text { Papers } \\ & \text { 1986-90 } \end{aligned}$	Citations 1986-91	Citations per paper
$\begin{aligned} & 1 \\ & 2 \end{aligned}$	Stanford University University of	$\begin{array}{r} 243 \\ 51 \end{array}$	$\begin{array}{r} 1,283 \\ \quad 269 \end{array}$	$\begin{aligned} & 5.28 \\ & 5.27 \end{aligned}$
3	University of Illinois, Urbana	211	1,100	5.21
$\begin{aligned} & 4 \\ & 5 \\ & 6 \end{aligned}$	Columbia University Caltech University of Southampton (UK)	$\begin{array}{r} 74 \\ 69 \\ 69 \end{array}$	$\begin{aligned} & 343 \\ & 294 \\ & 631 \end{aligned}$	$\begin{aligned} & 4.64 \\ & 4.26 \\ & 4.21 \end{aligned}$
$\begin{aligned} & 7 \\ & 8 \\ & 9 \end{aligned}$	Purdue University Cornell University University of Tokyo (Japan)	$\begin{aligned} & 95 \\ & 97 \\ & 82 \end{aligned}$	$\begin{aligned} & 366 \\ & 351 \\ & 293 \end{aligned}$	$\begin{aligned} & 3.85 \\ & 3.62 \\ & 3.57 \end{aligned}$
10	University of So. California	58	195	3.36
A survey from JPT Publishing Group's Institute for Scientific Information shows a U.S. advantage over Japan in basic electrical engineering research. The statistics show that research papers published by scientists at American universities and companies have been the most-often cited by other researchers. The data was compiled from 38,535 articles, reviews, and technical notes published in 70 EE journals from 1986 to 1990. A list of the top 10 shows a British university ranked sixth for the number of citations and a Japanese university in ninth place. Source: Institute for Scientific Information's Science Watch, JPT Publishing Group				

QUICKREVIEWS

0n a new book, High Tech Startup, John L Nesheim writes that 60% of venture-backed startups go bankrupt. To reverse that trend, Nesheim analyzes 25 successful high-tech startups from conception through initial public offering from his experience as president of Satatoga Venture Finance. Among his findings: mixed sources of venture funding are becoming more common as the number of venture capital firms shrinks; startups within companies are on the rise. The book draws on six years of research and 300 interviews with 180 people in 120 U. S. companies. It lists for $\$ 49.50$ from Electronic Trend Publications, 12930 Saratoga, Suite D1, Saratoga, CA 95070; (800) 726-6858; (408) 996-7416.

What's All This Customer Satisfaction Stuff, Anvrow?

Let's start off with another esaeP's fable. Once upon a time, there was a King who told his Courtiers, "Send up the Royal Wizard." The Wizard promptly came running up, asking, "Sire, what is your desire?" The King said, "Make me invisible." So the Wizard went down to his cavern, got his book of potions, brought up an Eye of Newt, a Wing of Bat, and all of the other good things he needed, and went to see the King. He sprinkled the right potion and incanted the correct phrase and, presto, the King was INVISIBLE.The King's robes and crownkept moving around the throne room, but the King himself was invisible. The whole court was impressed. Good stuff! Good magic!

The next morning, the King awoke early and roared, "Get that lousy wizard up here." The Wizard came running up, in fear for hislife, assoonashe got the word. "Sire, what is the problem?" The King replied,"Dammit,I asked you to make me invisible, but I'm still bumping into things." End of fable.
Think about it. The Wizard did what he was asked to do, yet he didn't get a satisfied customer. The King specified what he wanted, yet when he got what he asked for, he was unhappy.

Doesthis everhappen withyourcus-
tomers? How can we avoid this in the future? It sure takes much better communication than the King had with his Wizard. Perhaps the Wizard should ask what the King was trying to accomplish. What did he really want?

Here's something to think about: Do you ever ask your customers what they really want? And are you then prepared to give them what they really want, rather than what they said they wanted?

For example, once an engineer at company A went out for a bid on a signal conditioner circuit, and he defined the function he wanted. "This function must consist of an input filter followed by an amplifier/comparator. When you put in 200 mV pk-pk at 100 kHz , the output must give a TTL signal at 100 kHz . When you put in a $4-\mathrm{V}$ pk-pk signal at 5 MHz , the output must not respond." His intention was to specify a steep roll-off of the frequency response, but he never really said that. He just specified a couple of tests that a good part ought to pass.

The Marketing Engineer at Company B looked at this specification and figured out, "If I put a $200-\mathrm{mV}$ clipper or limiter on the inputstage, I can meet that spec with a simple 2-pole roll-off." Sure enough, this approach gave a very simple and low-cost circuit. Company B won the bidding with a low price that many would consider a lowball bid. They began production and had no problem meeting the incoming inspection tests. But when these signal conditioners were put into service, some worked well. Others, though, worked very badly if they happened to be in a noisy environment (which was the whole reason behind having a filter anyhow).

After some side-by-side compar-
isons, the circuit with the limiter was found to perform quite differently from the intention of Company A. The filter circuit passed the specified tests and fulfilled the spec. But it failed to meet the intention of Company A, because they never spelled out what they really wanted. They really wanted to be able to put in BOTH the $5-\mathrm{MHz}$ noise and the $100-\mathrm{kHz}$ signal and get a $100-\mathrm{kHz}$ TTL output, while rejecting the $5-\mathrm{MHz}$ noises. The circuit from Company B passed all of the specified tests, but it did not meet this unwritten spec. So, most users found that circuit unusable, and the businessfellapart, eventhough the units met every spec. But, YOU would never get caught making that kind of mistake. Would you?

All for now. / Comments invited! RAP / Robert A. Pease / Engineer

Address:
Mail Stop C2500A
National Semiconductor
P.O. Box 58090

Santa Clara, CA 95052-8090

BOB'S MAILBOX

Dear Bob,

Your reasoning on the Little Egbert problem in the Sept. 12, 1991 issue is wrong. Consider a horn whose radius is $1 / x^{2}$ instead of $1 / x$. Both its area and volume are finite. Yet by your reasoning, an infinite amount of paint would be required to paint the outside, since the surface is still infinitely long. On the other hand consider a horn whose radius is $1 / \mathrm{x}^{1 / 2}$. Both its area and volume are infinite. Yet again by your reasoning, only a finite amount of paint is required to paint the inside, since there will be some point at which a single molecule will no longer fit. Thus the math tells us nothing about the real-life situation because it is improperly applied.

NORMAN D. MEGILL Lexington, Mass.

[^7]

You're in the initial stages of design. You need a prototype and you're facing a deadline. You also need a power supply with specific voltage/current outputs. And you need it fast!

That's where POWER-ONE's fully modular SPM High Power Series comes in. Single, dual, or triple output modules enable you to specify up to IS DC outputs...from stock. With delivery time as little as two weeks.

And there's more. The incredibly versatile SPM represents the industry's highest power density-up to 2000 watts of multiple output power in the most compact package available today. There's even an optional on-board UPS capability. And no matter what configuration you require, be assured this internationally recognized power supply will meet the toughest safety regulations, worldwide.

So remember....whatever your requirements, we're keeping our shelves stocked for those urgent, limited-quantity deliveries. You'll get the exact voltage/ current combination you need, on time. Every time.

Get Complete
Details Today. Call our Toll Free LITERATURE
HOT-LINE for our Sensational New Tutorial and Product Catalog!
(800) $678-9445$
"Innovators in Power Supply Technology"
(1) PTUET-DIE

D.E. PIUEP SUPPLIES

POWER-ONE, INC.
740 Calle Plano • Camarillo, CA 93012-8583
Phone: (805) 987-874I • FAX: (805) 388-0476

Electrical-Transient Immunity: A Growing Imperative For System

 1 I 1 Equipment reliability and market acceptance often depend on compliance with key standards.BY O. MELVILLE CLARK AND DONALDE. NEILL General Semiconductor Industries Inc., 2001 W. Tenth Pl., Tempe, AZ 85281; (602) 968-3101.

Understanding transientvoltage threats and immunizing electronic equipment and systems against them is becoming essential for a growing segment of the electronic-engineering community. In particular, designers of equipment incorporating the latest in IC technology and requiring reliability and/or global marketing acceptance must heed the call.

Gains in IC technology dramatically boost performance, cut equipment costs and, in most cases, improve reliability. But the corresponding shrinking of circuit geometries and trend toward CMOS make ICs more vulnerable to voltage-transient events. To address this situation, the IEC 801 international tran-sient-immunity standards have evolved. Several key documents are either completed or close to it. These documents will likely form the basis for future mandatory transient-immunity requirements within the European Community (EC). They'll also serve as a criteria for the purchase of electronic equipment among many companies, regardless of their location.

In May 1989, the European Community issued a Council Directive (No. 89/336/EEC) requiring that electronic and electrical apparatus have "an adequate level of intrinsic im-

1. As defined by IEC 801-5, the short-circuit current waveform is for power-line applications. The current waveform for signalline applications approaches that of the voltage waveform.

munity" to "electromagnetic disturbance to...operate as intended." Originally, compliance was required by January 1992; but this date was recently amended to January 1996. The European Committee for Electrotechnical Standardization (CENELEC), with representation from the 12 EC-member states and the six European Free Trade Association Countries, was designated to develop the associated standards "to facilitate proof of conformity." Typically, CENELEC adopts IEC standards with little or no change. That's why the IEC 801 series takes on paramount importance for those companies expecting to sell electronic products into the EC market after 1995, and even before.

There are several compelling reasons for designers to strive
for their projects to comply with the applicable IEC 801 standards. For one, as CENELEC adopts these standards through issuance of European Norms (EN) numbers, equipment conformance, along with the acquisition of a CE identification (the EC conformity mark), will meet the requirements of all ECmember states. ${ }^{1}$ Furthermore, products sold into the EC that already meet the subject standards will have a competitive edge, all else being equal.

Another reason is that standards agencies outside the EC, such as ANSI and IEEE, are also beginning to adopt IEC standards. This is likely to heighten awareness of the immunity standards and induce purchasers of electronic equipment to either require or prefer products that meet the applica-

TRANSIENT IMMUNITY

ble IEC 801 standards. And aside from the standards' legalistic demands, conforming equipment will offer superior reliability with protection from what's reportedly the most common cause of failures.

This article discusses three standards within the IEC 801 series and associated design guidelines that lead not only to compliance, but protection against a real-world transient environment. All important transient events are addressed except for very unique situations, like those found in aircraft. In most instances, such applications already have their own standards.

Three standards are discussed: IEC 801-2 addresses electrostatic discharge (ESD), IEC 801-4 is aimed at electrical fast transients (EFTs), and IEC 801-5 governs electrical surges. Each standard defines the transient sources and applicable equipment-entry paths; tran-sient-severity levels by installation or environmental classes; and details regarding immunity testing including test instrumentation, setup, and procedures. Also included are definitions of performance criteria. This article's goal is to equip the designer with methods of protecting electronic equipment that's exposed
to the defined threats. Therefore, only those aspects of the standards necessary to this end are discussed in detail.

The most severe of all transient conditions, in terms of peak current and duration, are those described in IEC 801-5, which specifies surge immunity for both power and signal lines. As indicated within the standard, the defined origin of electrical surges falls into two major categories, switching and lightning. The first category comprises switching disturbances, electrical system faults, and resonating circuits associated with switching devices.

Within the latter category are surges resulting from lightning directly striking outdoor power circuits, as well as electromagnetic energy generated by nearby strokes. More distant lightning may induce significant voltages only on long outside conductors, while nearby activity has been known to induce damaging voltages on conductors within structure interiors.

The power-service entry sustains the greatest impact, because the electrical mains receive residual current directly from lightning strikes on power lines. In addition to ac-line suppressors, insulation resistance,

TABE 1: IEC 801-5 THREAT LEVELS AS FNHBTION OF KSTALIATION BLASS						
Peak voltage with $1.2 / 50 \mu \mathrm{~s}^{* *}$ waveform						
Class	Power supply		Unsym lines (long-distance bus)		Sym lines	Data bus (short distance)
	Coupling mode		Coupling mode		Coupling mode	Coupling mode
	Line-Line $Z_{s}=2 \Omega$	Line-GND $Z_{\mathrm{s}}=12 \Omega$	Line-Line $Z_{\mathrm{s}}=42 \Omega$	$\begin{aligned} & \text { Line-GND } \\ & Z_{\mathrm{s}}=42 \Omega^{* * *} \end{aligned}$	$\begin{aligned} & \text { Line-GND } \\ & \mathbf{Z}_{\mathrm{s}}=42 \Omega \end{aligned}$	Line-GND $Z_{\mathrm{s}}=42 \Omega$
0			NO REQUIREMENTS			
1	-	0.5 kV	-	0.5 kV	1.0 kV	-
2	0.5 kV	1.0 kV	0.5 kV	1.0 kV	1.0 kV	0.5 kV
3	1.0 kV	2.0 kV	1.0 kV	2.0 kV	2.0 kV	-
4	2.0 kV	4.0 kV	2.0 kV	4.0 kV	-	-
5	*	*	2.0 kV	4.0 kV	4.0 kV	
* Depends on class of local power-supply system. ** Short-circuit waveform- $8 / 20 \mu \mathrm{~s}$ for $\mathrm{Z}_{\mathrm{s}}=2 \Omega$. Not applicable to telecommunication applications where open-circuit voltage waveform is $10 / 700 \mu \mathrm{~s}$ and short-circuit current waveform is $5 / 300 \mu \mathrm{~s}$ with $Z_{\mathrm{s}}=40 \Omega$. *** For telecommunication, $\mathrm{R}_{\mathrm{s}}=\mathrm{N} \times 25 \Omega$ to each line with resistors terminated at surge generator with $\mathrm{Z}_{\mathrm{s}}=15 \Omega$. $\mathrm{N}=$ number of lines (this formula applies for $\mathrm{N}>2$).						

The next generation of IDC Interconnection:

Same performance, one-half the size.

System 311 is the next generation of reliable high performance IDC mass termination systems from Thomas \& Betts, a pioneer in the development of IDC. A natural evolution, the new System 311 combines the finest capabilities of our proven Ansley ${ }^{\circledR}$ IDC System, downsized and precision engineered to terminate .025 pitch cable.
Performance-oriented features make System 311 the new standard in IDC fine pitch systems - a beryllium copper contact with a dual mating beam that provides greater than 100 grams normal force (150 KPSI Hertz Stress), a unique "coined-slot" IDC contact joint, one piece housing design,

Contact-to-Conductor Relationship Thomas \& Betts' "coined-slot" contacts are designed to position the terminated conductors within a specified region for maximum conductivity and reliability.

Precision Lead-In Design assures that repeated connect/ disconnect functions are consistently smooth and without pin damage.

Our Own Vertical Eject Design saves board real estate and ensures positive locking and easy disengagement of header from mating socket without stress to cable, contacts, or solder joints.
and high performance materials are combined to ensure excellent system integrity and maximum reliability.
System 311 incorporates these customer-requested features into a compact interconnect system with board space savings of up to 50%.
From cable to connectors to application tooling, System 311 is designed to meet or exceed the most stringent customer requirements for fine pitch IDC mass termination.
For complete information or help with a specific application, call or fax: Thomas \& Betts Corporation, Electronics
Division, 200 Executive Center Drive, Greenville, S.C.,
Phone: 803-676-2900, Fax: 803-676-2991.

For the new System 311 Catalog call 800-344-4744.

ThomaseBetts

- EUROPE - England: Marlow, 44-6284-6055; France: Rungis Cedex, 33-1-4687-2385; Germany: Egelsbach, 49-6103-4040; Italy: Milano, 39-2-6120451; Luxembourg: Foetz, 35-255-0002; Spain: Barcelona, 34-3-3002252; Sweden: Upplands Vasby, 46-760-88110

In contrast to the $2-\Omega$ impedance associated with power-line surges, the defined source impedance for data- and signal-line applications requires the addition of a $40-\Omega$ resistive component. This results in a current waveform that approaches the $1.2 / 50-\mu$ s waveform of the open-circuit voltage.

For the two-wire telecommunication interface, the specified open-circuit voltage has a 10/ $700-\mu$ s waveform and the shortcircuit current is a $5 / 300-\mu \mathrm{s}$ waveform. The dynamic source impedance equals 40Ω.

It's important to note that suppressors with the common $20-\mu \mathrm{s}$-duration current rating must be derated for longer durations. For example, a typical av-alanche-junction, transientvoltage suppressor (AJTVS) with a stated current rating for a $8 / 20-\mu$ s waveform must be derated 50% for the $1.2 / 50-\mu \mathrm{s}$ current waveform required for data-line applications. Most manufacturers of discrete suppression devices supply applicable derating data as a function of waveform duration.

Thevenin-equivalent, opencircuit voltages for both powersupply and signal- and data-line applications depend on installation conditions. These values, which define the required equip-ment- and system-immunity levels, are provided within the IEC 801-5 document by installation classes. These are listed in ascending order of threat level:

- Class 0: Well-protected environment
- Class 1: Partially-protected environment
- Class 2: Cables well-separated
- Class 3: Cables run in parallel
- Class 4: Multi-wire cables for all circuitry
- Class 5: Connection to telecommunication cables and overhead power lines (low-density population)

The classes are self-descriptive. Class 0 represents a com-
2. IEC 801-4 specifies the model waveform for immunity testing against transients typ ically generated by arcing across switching contacts. Unlike the surge-voltage waveform in Fig. 1, the time segment before the crest is defined from 10 to 90% of peak value, while the time duration is the interval from 50\% of peak before the crest to 50% of peak after the crest. The standard specifies repetitive bursts of at least 1 minute.
 \longrightarrow
puter room that satisfies all of the inherent conditions for protection, including power conditioning, a common ground reference, short data lines, and well-separated power and data cables. At the opposite end of the spectrum, Class 5 exemplifies the highest threat level typical of the small, remote system connected to long "antennas" presented by telecommunication and overhead-power lines.

As defined in IEC 801-5, surge-severity levels (in terms of Thevenin-equivalent, open-circuit voltages) can be shown for both power and data lines by the aforementioned installation classes (Table 1). The required protection ranges from "none" to 4 kV for those sites with virtually no inherent hardening.
Short-circuit current, with its waveform description, is the key parameter in choosing a suppression device. Therefore, a second table shows how surgecurrent levels were calculated for each installation class by dividing the open-circuit voltages by the appropriate source impedances as given in the first table (Table 2).
The standard offers a practical means of characterizing the surge threat. The next engineering task is to design in the required immunity. The first and most vital step is to ensure that all insulations and electrical spacings exposed to the applica-
ble maximum open-circuit voltage (up to 4 kV) can withstand voltages of equal or greater magnitude. Exposure from both line-to-line and line-to-ground surges must be considered. Components requiring the appropriate insulation stand-off voltage ratings include transformers, optocouplers, and capacitors.

Using ac-surge protectors, as discussed below, can drop the required insulation ratings to just above the suppressionclamping voltage levels. European applications, however, need more precautions. Qualification to existing TUV/VDE documents preclude the insertion of suppressor components from line to ground, but they can be installed from line to line. The only component allowed between line and ground is a socalled " Y " capacitor, which is basically ineffective as a surge protector. Hence, associated power-supply insulations and spacings to ground as well as RF-bypass capacitors require ratings up to 4 kV to prevent failure from neutral-to-ground and line-to-ground surges (known as common-mode surges).

For line-to-line surge suppression on incoming power, metal-oxide varistors (MOVs) are usually chosen because of their high surge-current ratings and low cost. A device with an operating voltage of at least 275

Name Title

Company \qquad Mail Stop

Address \qquad City \qquad State \qquad Zip

Telephone \qquad FAX \qquad Email
MAIL this completed form with payment (in U.S. Dollars) to: SysTech Research, 1248 Olive Branch Ln, San Jose, CA 95120; (408) 997-8265 (fax or phone)

V ac rms is recommended for $240-\mathrm{V}$ ac service to accommodate high-line conditions. This also prevents the breakdown voltage from eroding to the maximum operating-voltage level after too many current pulses. A $20-\mathrm{mm}$-diameter MOV will withstand more than 50 pulses at 1 kA for a $8 / 20-\mu \mathrm{s}$ surge. This exceeds the Class 5 requirement of five positive and five negative $1-\mathrm{kA}$ pulses at a rate of one per minute.

For optimum clamping-voltage performance, the device must be installed with minimal series-parasitic lead impedance. A 2.5 -to- 5 -A fuse should be placed directly in series with the MOV to remove it from the circuit in the event of failure. An indicator light wired across the MOV helps detect failures.

Historically, protection across ac-power lines is better understood because of early awareness of the threat. Model waveforms were first published in the 1980 version of the IEEE 587 (now designated as ANSI/ IEEE C62.41) guide. Today, with the broader distribution and networking of systems and the greater susceptibility of data lines, a new dimension is brought to the transient-suppression discipline. That's why the IEC 801-5 standard's pioneer effort to address protection across data lines fulfills an im-
portant need. However, many informal requirements existed among major electronic-equipment suppliers as reliability insurance for their products.

As noted, the maximum specified current threat for data lines is 24 A for Class 2 (Table 2, again). This covers most office and residential locations, which are typically in semi-protected environments. For most applications, AJTVSs are best because of their superior clamp-ing-voltage characteristics, which lend better protection to I/O-interface ICs. For this purpose, board-level suppressors are available, including both surface-mounted- and through-hole-discrete and multi-chip/ multi-pin offerings.

The designer must heed several factors in choosing and applying board-level protectors. After determining the peak-current requirement corresponding to the applicable installation class (such as 24 A for Class 2), the component must be able to handle this magnitude for a $1.2 / 50-$ μ s (not $8 / 20-\mu$ s) current waveform. Furthermore, with most bipolar driver/receiver devices having reported failure thresholds in the 40 -to- $90-\mathrm{V}$ range, a suppressor should be chosen with a clamping voltage no greater than 40 V at the maximum anticipated peak current.

Special care should be taken

> Future CMOS driver/receiver chips will be more sensitive to transients than today's bipolar devices.

TABIE 2. IEG 801-5 THREAT LEVEIS AS FUNGTION OF ILSTALLATION GLASS

Calculated short-circuit peak current ($8 / 20 \mu \mathrm{~s}$) for $\mathrm{Z}_{\mathrm{s}}=2 \Omega$ and approximately $1.2 / 50 \mu \mathrm{~s}$ for $\mathrm{Z}_{\mathrm{s}}=42 \Omega^{* *}$						
Class	Power supply		Unsym lines (long-distance bus)		Sym lines	Data bus (short distance)
	Coupling mode		Coupling mode		Coupling mode	Coupling mode
	Line-Line $Z_{\mathrm{s}}=2 \Omega$	Line-GND $Z_{s}=12 \Omega$	Line-Line $\mathrm{Z}_{\mathrm{s}}=42 \Omega$	Line-GND $\mathrm{Z}_{\mathrm{s}}=42 \Omega$	$\begin{aligned} & \text { Line-GND } \\ & Z_{\mathrm{s}}=42 \Omega \end{aligned}$	Line-GND $\mathrm{Z}_{\mathrm{s}}=42 \Omega$
0			NO REQUIREMENTS			
1	-	42 A	-	12 A	24 A	-
2	250 A	83 A	12 A	24 A	24 A	12 A
3	500 A	167 A	24 A	48 A	48 A	-
4	1 kA	333 A	48 A	95 A		-
5	*	*	48 A	95 A	95 A	
* Depends on class of local power-supply system. ** Current levels for telecommunication applications not shown.						

when choosing the AJTVS location and associated conductor layouts. The suppressor should be mounted on the pc board as close as possible to the signal-input connector. This reduces the effects of radiation energy coupling into sensitive areas of the circuitry. Because induced voltages (proportional to the product of parasitic inductance and the rate transient current rises) can add to the suppressorclamping voltage, leads and conductor lengths directly in series with the suppressor must be kept to a minimum.

Emerging generations of CMOS driver/receiver chips are expected to be far more sensitive to lightning-related currents than today's bipolar devices. As a result, failure-threshold voltages are expected to be lower, driving the need for increasingly effective suppression methods.

In the presence of long outdoor signal-line runs, it is necessary to protect I/O ports to higher current levels. This is achieved by placing "primary" protection at either the cable-entry location into the structure or near the protected equipment. Primary protectors typically consist of a combination of elements to handle large currents and, at the same time, provide low clamping levels. Combinations of gas-discharge tubes and AJTVSs are often used in these assemblies.

Because of the potentially high surge currents associated with primary protectors, lowimpedance ground paths are required. When placing such assemblies next to the protected equipment, the ground connection should be tied to the equip-ment-frame ground using the shortest and most direct route. Where possible, a common "ground window" should serve as a reference for all externalsystem protection involving both power and signal lines. ${ }^{3}$ This reduces ground-potential differences in the presence of the large current transient, and

Bud Industries, Inc. Phone: (216) 946-3200 or (602) 979-0300.
FAX: 216-951-4015 or 602-878-5371.
keeps clamping levels close to the true capability of the suppressor assembly.

Thanks to its potential to corrupt data and memories without equipment failure or apparent software errors, the EFT may properly be described as the "insidious disturbance." IEC 801-4 specifies applicable EFT-immunity testing involving both power and data lines. The defined threat consists of high-voltage spikes occurring at a repetition rate of either 2.5 kHz or 5 kHz (depending on the voltage level) within periodic $15-\mathrm{ms}$-wide bursts every 300 ms . This lasts over a specified time interval of not less than one minute (Fig. 2).

EFT disturbances will most likely occur in industrial environments, and can be attributed to arcing mechanical contacts on power mains. The rapid cycles of interruption and restoration of the current path interacts with distributed and lumped reactive components to produce the usual repetitive bursts.

Within the standard, severity levels are given in terms of opencircuit voltages as a function of four installation environments. In addition, the standard stipulates a nominal dynamic source impedance of 50Ω for the EFT generator and specifies the voltage waveform shown across a $50-\Omega$ terminating resistance (Fig. 2, again).

Because the clamping voltage and dynamic impedance of a given suppressor are expected to be far less than the EFT-generator's open-circuit voltage and source impedance, respectively, estimated peak currents through the suppressor will be double those values through a $50-\Omega$ load. Therefore, if it's assumed that the suppressor presents a short circuit, the corresponding estimated values are calculated by dividing the EFT open-circuit voltage by its $50-\Omega$ source impedance (Table 3). Levels are shown for both incoming power and data lines.

Attempts to mitigate the EFT
threat have been made using MOVs, AJTVSs, and off-theshelf EMI/RFI filters. ${ }^{4}$ All devices evaluated were found to clamp bursts of kilovolt spikes to levels low enough to be harmless to microchips within the hardware. The energy level for each pulse is relatively low and steady-state power dissipation for a 1-minute burst was reported at less than $1 / 2 \mathrm{~W}$. This earlier work indicates that the EFT isn't a major threat on incoming power lines. But for data lines, problems may still loom.

A test-system clamp for EFT injection, as specified by IEC 801-4, capacitively couples the specified waveform to the data lines by introducing a series value within the range of 50 to 200 pF . This presents a relatively low impedance with little effect
ware that recognizes the disturbance and asks for retransmission. However, in extremely dirty electrical environments, the efficiency of high-performance computers may be compromised or the system rendered ineffective by such measures. In fact, some systems have been completely disabled by unexpected and extensive repetitions of EFT. Parity checks and error-correcting codes must supplement suppressor devices to achieve satisfactory protection. Most high-end systems now have these features.

For data lines, the threat levels for EFT pulses extend over a broad range of both voltage and current, from 250 V through 2 kV , with worst-case short-circuit currents estimated at 5 A through 40 A, respectively (Ta-
3. IEC 801-2 specifies an ESD generator that allows testing using either the "air-discharge" or "contact" methods. Using the recommended contac method for conduc-tive-surface applications, the storage capacitor (Cs) is
charged to the appropriate value, and with the discharge switch open, a pointed tip is brought into contact with the target. The switch is then closed.

on the rise time. In the absence of intervening suppression, the stress levels associated with the parametric values specified across a $50-\Omega$ load are retained. Consequently, a string of rapid, high-voltage pulse bursts appears across the system or equip-ment-interface microchips. As indicated earlier, AJTVS devices easily suppress this disturbance to a level that's harmless to data-I/O ports. But it also introduces noise that may be interpreted as part of the signal, corrupting the transmitted data.
When equipment must work within an environment experiencing an occasional EFT, it may be necessary to design soft-
ble 3, again). Because the pulses last only 50 ns , their maximum energy content is a relatively low $4-\mathrm{mJ} / \mathrm{pulse}$. Any suppressor devices installed for protection from lightning surges as specified in IEC 801-5 are more than capable of withstanding and protecting against EFT-originated spikes. But installing them for the fast-rising transient voltages demands more care than for applications involving lightning's slower rise times.
Parasitic impedances associated with the length of pc-board traces between the source and the protector, and between the protector and I/O chip along with the terminating impedance

HOW MORE COMPANIES ARE ADDING LIFE TO THEIR DESIGNS.

Rayovac Lifex ${ }^{\text {ru }}$ Coin Cells and Lifex $\mathrm{FB}^{\text {r" }}$ Batteries have the highest reliability ratings in the industry. That's why major electronics manufacturers worldwide already specify Lifex in their product designs.

Rayovac reliability is especially valuable for critical memory applications, such as encryption codes, cash values, or control parameters.

The Lifex FB offers extended temperature tolerance-operating

In high-temperature sustained storage, Lifex continues strong long after others fade away.
comfortably in a range of $-40^{\circ} \mathrm{C}$ to $+100^{\circ} \mathrm{C}$. And our products are made in the U.S.A., with on-time delivery available around the world.

So add longer life to your design. Specify a Rayovac Lifex Coin Cell or Lifex FB Battery in your design. Call Rayovac's Technical Sales \& Marketing Department for complete information and battery specifications at 608-275-4694. Fax: 608-275-4994.

In Europe contact:
Rayovac Europe B.V. Tel: 31-1892-17855 Fax: 31-1892-17138

CIRCLE 138 FOR U.S. RESPONSE
CIRCLE 139 FOR RESPONSE OUTSIDE THE U.S.
presented by the interface chip, play a major role in determining the magnitude of the transient let-through voltage. ${ }^{5}$ The study cited generally concluded that parasitic impedance ahead of the suppressor was beneficial. It's desirable, however, to minimize the impedance between the suppressor and load. This study joins with earlier work to illustrate the adverse effects of excessive parasitic inductance in series with the suppressor, including that presented by suppres-sor-lead lengths ${ }^{6}$. For example, under nanosecond rise-time conditions, the induced voltage across a $12-\mathrm{cm}$ trace can reach 1200 V.

Therefore, although EFTs as defined in IEC 801-4 can be severe in voltage magnitude, their low energy content allows easy mitigation. However, suppression devices must be installed carefully to adequately clamp EFTs to acceptable levels. In addition, the system must differentiate between induced noise and transmitted data.

The most prevalent of transients, electrostatic discharge (ESD), is addressed by IEC 8012. The presence of ESD doesn't depend on connections to any outside power or data line, and it poses a universal threat to equipment without special protection. This applies even to the otherwise well-protected class-0 environment specified in IEC 801-5.

ESD results from environmental conditions in which a low relative humidity allows electrical charges to build up from contact and subsequent separation of dissimilar materials. The resulting potential of the human body can exceed 15 kV in arid or sub-freezing environments, especially when surrounding materials, floors, or furniture are nonconductive and synthetic.

The ESD-related standard defines immunity requirements against electrostatic-discharge energy, which couples into the equipment either directly or

Level	Peak amplitudes			
	On power supply		On I/0 signal, data, and control lines	
	$\mathrm{V}_{\mathrm{oc}}{ }^{*}$	$\mathrm{Isc}^{\text {** }}$	$\mathrm{V}_{\text {oc }}{ }^{\text {* }}$	$\mathrm{Isc}^{* *}$
1	0.5 kV	10 A	0.25 kV	5 A
2	1 kV	20 A	0.5 kV	10 A
3	2 kV	40 A	1 kV	20 A
4	4 kV	80 A	2 kV	40 A
Repetition frequency: 5 kHz for V_{0} across $50-\Omega$ load $=1 \mathrm{kV}$ and Lower 2.5 kHz for V_{0} across $50-\Omega$ load $=2 \mathrm{kV}$				
Burst duration: 15 ms Burst period: 300 ms				
* Open-circuit voltage ** Short-circuit current			Note: Voltage waveform across $50-\Omega$ load: 5 -ns risetime; 50 -ns duration	

through radiation. Included are such events as direct-injection discharge to keyboards, switches, metal housings, connector pins, and any other parts accessible to people. Without adequate protection, ESD stresses inadvertently applied at any of these locations can cause brief or permanent malfunction. This demands built-in immunity.

Other adverse effects are caused by radiated energy resulting from discharge between two objects outside the equipment. The resulting electromagnetic energy is coupled into unpredictable and possibly sensitive sections of the circuit and may cause problems.

IEC 801-2 uses a "humanbody model" to define the ESD threat against which qualifying equipment is protected. Following the pattern of the other two standards, four severity levels are defined. The chosen level depends on anticipated conditions of humidity and materials within the installation (Table 4). One extreme is a humidity-controlled computer room with static-controlled surfaces. The other is a remote monitoring station without air conditioning and special protective measures. Within the referenced table, three columns with voltage-related headings are given. The first, labeled "maximum charge," is the assumed voltage of the human body under the de-

The ESD potential of the human body can exceed 15 kV in arid or sub-freezing (low-humidity) environments.

fined conditions.

The next two columns indicate the charging voltage of a storage capacitor (Cs) within a specified ESD generator for subsequent immunity testing (Fig. 3). One set of voltages, which ranges up to 8 kV , is for the "contact" test method. For this case, the relay (discharge switch) is initially in an open position, the storage capacitor is charged to the chosen level, and the generator probe with a pointed tip is brought into contact with the target. Closing the relay applies the ESD stress.

The last column involves the "air-discharge" method, in which the relay is kept closed and, with the storage capacitor charged to the indicated voltage, a rounded tip probe is advanced rapidly toward the target. The ESD-stress event occurs through arcing.

The "air-discharge" method is recommended only for insula-tion-withstand voltage tests. This method also indirectly tests for upset under corona discharge at the probe tip.

Although in practice injection is almost always by air discharge, the contact method is preferred for conductive surfaces. That's because the resulting applied current, which is the principal parameter of interest, is more easily repeated. However, it's important to note that the air-discharge approach can pro-

Coilcraft Designer's Kits

First they save you time. Then they save you money.

These kits make it easier than ever to pick the right coils, chokes and other magnetics for your project.
Why waste hours calling around
for samples or trying to wind them yourself. Coilcraft's low-cost kits put dozens of values right at your fingertips!

You not only save time on engineering. You also save money when you go into production
because we stock just about all the parts in our kits at low off-the-shelf prices.
Call in today, and you can have your kit tomorrow!

To order, phone 800/322-COIL.
"Unicoil" $7 / \mathbf{1 0} \mathbf{~ m m}$ Tuneable Inductors $.0435 \mu \mathrm{H}-1.5 \mu \mathrm{H}$
49 shielded, 49 unshielded (2 of each) Kit M102 $\mathbf{S 6 0}$
"Slot Ten" 10 mm Tuneable Inductors $0.7 \mu \mathrm{H}-1143 \mu \mathrm{H}$
18 shielded, 18 unshielded (3 of each) Kit M100 $\mathbf{\$ 6 0}$
Surface Mount Inductors
$4 \mathrm{nH}-33 \mu \mathrm{H}$
48 values (10 of each)
Kit C100 \$125
Axial Lead Chokes
$0.1 \mu \mathrm{H}-1000 \mu \mathrm{H}$
25 values (5 of each)
Kit F101 550
Horizontal Mount Inductors
Tuneable and fixed
Inductance: 31.5-720nH
33 Values (6 of each)
Kit M104 560
Common Mode Data Line Filters Attenuation bandwidth: $15 \mathrm{dBm}, 1.5-30 \mathrm{mHz}$ DC current capacity: 100 mA 2, 3,4 and 8 line styles (4 of each) Kit D101 \$65
Common Mode Line Chokes Current: . 25 - 9 amps RMS Inductance: $508 \mu \mathrm{H}-10.5 \mathrm{mH}$ 8 styles (2 of each)
Kit P202 \$100
Current Sensors
Sensing range: $0.5-35 \mathrm{amps}$
Freq. resp.: $1-100 \mathrm{kHz}, 50-400 \mathrm{~Hz}$ Transformer and sensor-only versions 8 styles (15 total pieces) Kit P203 $\$ 50$
Base/Gate Driver Transformers Inductance: 1.5 mH Min
Frequency: $10-250 \mathrm{kHz}$
2 single, 2 double section (2 of each) Kit P204 $\$ 50$
Mag Amp Toroids
Current: $1,5 \mathrm{amps}$
Volt-time product: 42 - 372 V - $\mu \mathrm{sec}$
6 styles (2 of each)
Kit P206 \$100
Power Filter Chokes
Current: 3, 5, 10 amps
Inductance: 5-300 $\mu \mathrm{H}$
18 styles (48 total pieces) Kit P205 \$75
Axial Lead Power Chokes
Current: .03-4.3 amps
Inductance: $3.9 \mu \mathrm{H}-100 \mathrm{mH}$
60 styles (2 of each)
Kit P209 \$150

duce intense localized radiation that may not be present with contact discharge. Therefore, in a practical sense, the contact method may fail to adequately test for certain aspects of radiation immunity.

The standard specifies the ESD-current waveform and associated peak amplitudes for the four levels (Fig. 4 and Table 5, respectively). All of the related times are in the range of nanoseconds. Included are the extremely fast rise time between 0.7 and 1 ns , a second peak current close to 30 ns , and a short overall duration (based on the peak of the second amplitude) of 60 ns .

Although it's evident that ESD events contain very little energy (on the order of tens to hundreds of microjoules), the extremely fast rise time plays a major role in the destruction of microcircuits. Both bipolar and CMOS ICs typically have ESDfailure thresholds of less than 2000 V. Consequently, failures occur at levels imperceptible at the fingertip, where the sensitivity threshold is around 3500 V .

ESD protection is generally provided by good shielding and bonding practices against externalíy radiated emissions, and by transient suppressors to divert ESD-conducted currents. The important parameters in the
choice of a suppressor are low clamping voltage, a fast response time, and a package with minimal lead inductance. The last two attributes are essential in handling the fast ESD-current rise time with a low clamp-ing-voltage overshoot. These requirements invariably point to the AJTVS as the component of choice. Axial-leaded devices are proven to be effective in suppressing ESD. Surface-mounted devices, however, offer very low inductance-about 3 nH for discrete offerings.

Note that peak power rating was not mentioned. With no surge-suppression requirements, and with the small ESD energy involved, the size of the suppressor die is determined by the required clamping voltage (and also by capacitance requirements for high data rate applications) rather than by power rating. To further illustrate this point, a data-line AJTVS suppressor chosen to provide lightning-surge immunity at the Installation Class 2 Level (24 A for a $1.2 / 50-\mu \mathrm{s}$ waveform) is stressed at less than 10% of its full rating with application of the maximum specified level of ESD current.

Of primary importance in ESD-suppression design is the accompanying circuit-board layout. Current flow, resulting from voltage suppression, must be diverted through a low-impedance path to a common reference on the board. Ideally, this reference is a full conductive layer in the board. Low parasitic inductance in this total shunt path reduces the self-induced voltage, the L (di/dt) effect, which would otherwise add to the sup-
pressor's clamping voltage.
The prior EFT-related discussion on the influence of parasitic impedances presented by board traces to and from the suppression network is equally, if not more, applicable to the ESD case. Refer to that discussion for important guidelines in this area.

Circuit-layout precautions are also critical in skirting problems from internally generated radiation. The fast rise time of the ESD current in a circuitboard conductor produces radiation that can generate induced voltages into parallel and adjacent traces. That's why it's necessary to carefully restrict con-ducted-ESD currents to strategically located traces away from the circuit's sensitive areas. As a general rule, place suppression devices close to data ports, which are typically the immediate points of ESD entry.

Finally, when threats from surges and EFT are also present with ESD, the meeting of all immunity specifications requires careful choice and coordination of circuit-board layouts. It's important to consider the recommended suppression practices for each of the stresses and formulate an approach that satisfies each requirement within the protection scheme.

As indicated at the outset, both market forces (driven by emerging and eventually mandatory standards) and reliability requirements dictate that designers learn transient-voltage suppression. Fortunately, the formulation of the IEC 801 im munity standards is a major and practical step toward defining essential parameters of the three

TABLE 4: SEVERITY LEVELS AND RECOMMENDED TEST YOLTAOES (FOR I:C 801-2)						
Class	Relative humidity as low as C\%	Anti-static	Synthetic	Voltages (kV)		
				Maximum Charge	$\begin{gathered} \text { Test } \\ \text { (contact) } \end{gathered}$	$\begin{aligned} & \text { Test } \\ & \text { (air) } \end{aligned}$
1	35	x		2		2
2	10	x		4	4	4
3	50		x	8	6	8
4	10		x	15	8	15

JOIN THE TEAM WITH ALL THE MCU TOOLS.

Oki MCUsFor Total Toolset Support.

s incomplete support preventing your MCU design from moving forward? Join the nX crew at Oki, where our nX MCUs provide the performance upgrades and toolset support needed to propel your design swiftly to the finish line.

Choose from a range of nX generation 8 -bit or 16 -bit MCUs, including OTPs, and a variety of onchip features: A/Ds, I/Os, PWMs, and more.

Our in-circuit emulator and evaluation modules expedite programming and emulation. And with nX , you receive complete software support-including assemblers, debuggers, converters, and translators.

Starting a new design? Want to convert your resident 80 C 51 codes? Look to the team that won't leave your design dead in the water. With nX and Oki's total tool support, your design glides smoothly and quickly from concept to code.

Call 1-800-OKI-6388 for our nX Brochure (ask for Package 052).

Description	$65 K$	$\mathbf{6 6 K}$	$\mathbf{6 7 K}$
Software			
Relocateable Assembler	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$
Linker	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$
Librarian	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$
Symbolic Debugger	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$
Object Converter	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$
Object Analyzer			$\sqrt{ }$
80C51 Translator	$\sqrt{ }$		$\sqrt{ }$
C-Compiler	$*$	$*$	$\sqrt{ }$
C-Debugger	$*$	$*$	$\sqrt{ }$

Hardware

OMFICE + EVM65524
OMFICE + EVM66201
OMFICE + EVM67620

* Under development

OKI
Semiconductor
785 North Mary Avenue Sunnyvale, CA 94086-2909
1-800-OKI-6388
(Ask for Pkg 052)

TABLE 5: IEG 801-2 WIUEFORM PARAWETERS

| | Levels | | $\begin{array}{c}\text { Indicated } \\ \text { voltage }\end{array}$ | $\begin{array}{c}\text { First peak } \\ \text { current of } \\ \text { discharge } \\ (+/-10 \%)\end{array}$ | $\begin{array}{c}\text { Risetime } \\ \text { (tr) with } \\ \text { discharge } \\ \text { switch }\end{array}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | \(\left.\begin{array}{c}Current

(+/-30 \%)

at 30 \mathrm{~ns}\end{array}\right)\)
major threats, namely, electrical surge, EFT, and ESD. The documents also "harmonize" requirements so that both manufacturers and suppliers of equipment agree on what makes for acceptable transient immunity.

References:
${ }^{1}$ Frey, O. and Makowski, L.P., "European EMC Transient Standardization," EMC Test and Design, Sept./Oct. 1991, pp. 45-51.
${ }^{2}$ Martzloff, F., "Coupling, Propagation, and Side Effects of Surges in an Industrial Building

System," IEEE/IAS Conference Proceedings, Oct. 1988, p. 1467.
${ }^{3}$ Martzloff, F., "Protecting Computer Systems Against Transients," IEEE Spectrum, April 1990, pp. 38-40.
${ }^{4}$ Hartwig, B., "Suppressing Electrical Fast Transients of IEC 801-4," Power Quality Conference Proceedings, Oct. 1989, pp. 282-288.
${ }^{5}$ Dalsing, T.M., and Neill, D.E., "Suppression of Defined IEC 801-2 Waveform by PC Board and Silicon Avalanche Components," PCIM Power-Conversion Conference Proceedings,

Oct. 1991, pp. 305-320.
${ }^{6}$ Clark, O.M., "Suppression of Fast Rise-Time Transients," EMC Conference Proceedings, IEEE 75CH1012-4 MONT, 1975, pp. 66-71.
O. Melville Clark, senior member of the technical staff at General Semiconductor Industries Inc., holds a BA and MA in physical science from Arizona State University, Tempe.
Donald E. Neill, manager of application engineering at General Semiconductor Industries Inc., holds a BSEE from the University of Colorado, Boulder, and an MSEE from Syracuse University.

HOW VALUABLE?

HIGHLY
CIRCLE 534
MODERATEL CIRCLE 535
SLIGHTLY
CIRCLE 536

CIRCLE 200 FOR U.S. RESPONSE
CIRCLE 201 FOR RESPONSE OUTSIDE THE U.S.

When space is at a premium, stacking makes a lot of sense.

Micro/Q 3500SM noise decoupling capacitors save valuable board space by surface mounting below PLCC packages.

In today's high-density designs, you need to maximize every square inch of PC board space. The low profile of the Micro/Q 3500SM makes it easy to mount under the PLCC, saving space and improving noise suppression at the same time.

Surface mounting under the PLCC increases board density by eliminating the need for traditional decoupling
capacitors around the perimeter of the IC package. This "stacking" technique also helps to lower inductance and impedance compared to conventional multi-layer capacitors.

Very thin ($0.020^{\prime \prime}$ MAX) metallic-parallel plate construction results in less than 1 nH of inductance.
Low decoupling loop inductance value improves control of EMI/RFI. Besides
providing superior noise reduction, the Micro/Q 3500SM also absorbs CTE mismatch and prevents electrical failure caused by cracks typical of MLC chips.

The device is ideal for wide frequency bandwidth applications such as $16 / 32$ bit MPUs, DSPs, FPPs, gate arrays, standard cells and custom ASICs. Now available in two sizes: 0.520 " to fit below 44 and 52 pin PLCCs, and $0.820^{\prime \prime}$ for placement under 68,84 and higher pin-count PLCCs. Choose either X7R or Z5V dielectric, in tape and reel or bulk formats.

Technology for tomorrow built on TQC today.

. ROGERS

Rogers Corporation
Circuit Components Division
2400 S. Roosevelt St., Tempe, AZ 85282
Tel: (602) 967-0624, Fax: (602) 967-9385

Our new GP switchers have everyone's approval!

Condor's Global Performance (GP) switching power supplies offer full agency approvals, continuous range input and more!
Our newest switchers have the approvals you need (UL 1950, VDE Level B EMI, IEC 950, CSA and TUV) and the features you want, including:

- 71 models (single- and multi-output)
- Industry-standard packages
- 6 power levels (40 to 200W)
- Continuous input voltage (85-264V)
- OVP on all 5 V outputs and single-output units
- Fully regulated outputs
- MTBF 100,000 + hours per Mil Hndbk 217E
- 8-hour burn-in with cycling (24 hours on medical versions)
- Computerized testing (data sheets furnished)
- 2-year warranty
- 30-day FREE evaluation (call us for samples)

If you're looking for world class performance, quick turnaround and competitive pricing, try our new GP switchers - the only approval they're missing is yours!

UL 544/IEC 601 MEDICAL VERSIONS ALSO AVAILABLE All Global Performance switchers are available in full medical configurations. Call us for details.
 CALL FOR OUR FREE CATALOG!
 =CONDOR

Condor D.C. Power Supplies, Inc. 2311 Statham Parkway Oxnard, CA 93033 • (805) 486-4565 CALL TOLL FREE:
1-800-235-5929 (outside CA)
FAX: (805) 487-8911

250-W, 2-IN. SUPPLY FITS OEM APPLICATIONS

Measuring just 2 in . high by 4.5 in . wide by 9 in . long, the Series 2 A switching power supply is claimed to be the industry's smallest $250-\mathrm{W}$, multi-output switcher. The 22 models have three or four regulated dc

outputs. Each supply's main output is rated at 5 V at 30 A . Applications include computers, telecommunications, ATE, and process control. OEM pricing ranges from $\$ 279$ to $\$ 302$ with sample deliveries in from four to six weeks.

Qualidyne Systems Inc.

3055 Del Sol Blvd.
San Diego, CA 92154
(619) 575-1100

-CIRCLE 840

SWITCHING SUPPLIES OFFER FLEXIBILITY

Though they vary in size, the MSC series of switchers are all substantially smaller than comparable competitive units. The series includes $350-$, $400-$, and $750-\mathrm{W}$ triple-output units and a $400-\mathrm{W}$ dual-output sup-

ply. Each has high current on their 12-V output for powering up to 16 disk drives with 1% regulation on all outputs. Pricing ranges from under $\$ 300$ to under $\$ 500$ in large lots. Delivery is in two to six weeks.

Todd Products Corp.
50 Emjay Blvd.
Brentwood, NY 11717
(800) 223-TODD

-CIRCLE 841

POWER-SOURGE MANUFAGTURERS

AT\&T

Power Systems Div.
3000 Skyline Dr.
Mesquite, TX 75149
(214) 284-8260
(50S) (10S) (11S) (200S) (RM)
(OF) (CV) (RP) (50C) (10C)
(11C) (200C) (DC) (MO) (LC)
CIRCLE 603
Abacus Electronics
P.O. Box 534

South River, NJ 08882-0534
(201) 238-4631
(50C) $(51 \mathrm{C})(500 \mathrm{C})(10 \mathrm{C})$
(DC) (AC) (BI) (MF) (TH) (PI)
(PC)
CIRCLE 604
Abbott Electronics Inc. 2727 S. La Cienega Blvd. Los Angeles, CA 90034 (213) 202-8820
(50S) (51S) (10S) (11S)
(200S) (RM) (CV) (PR) ((RP)
(MD) (PF) (50C) (51C) (10C) (11C) (200C) (DC) (AC) (MO) (IC) (MI) (50R) (10R) (11R) (LI) (SW) (MU) (ML)

CIRCLE 605
Acme Electric Corp.
20 Water St.
Cuba, NY 14727
(716) 968-2400
(50S) (200S) (OF) (CV) (UN)
(PF) (50C) (200C) (DC) (50R)
(200R) (LI) (SW)
CIRCLE 606
Acopian Technical Co
P.O. Box 638

Easton, PA 18044
(215) 258-5441
(50S) (51S) (500S) (10S)
(11S) (200S) (RM) (CV) (RP)
(MD) (50C) (10C) (11C) (DC)
(MO)
CIRCLE 607
Advance Power
Supplies Inc.
32111 Aurora Rd
Solon, OH 44139
(216) 349-0755
(50S) (11S) (200S) (OF)
CIRCLE 608

Advanced Analog
2270 Martin Ave.
Santa Clara, CA 95050
(408) 988-4930
(50C) (DC) (MI)
CIRCLE 609
Advanced Power
Technology
405 S.W. Columbia St.
Bend, OR 97702
(503) 382-8028
(MF)
CIRCLE 610
Advantest America Inc.
Instrument Div.
300 Knightsbridge Pkwy
Lincolnshire, IL 60069
(708) 634-2552
(50S) (51S) (10S) (11S) (LA)
(RM) (CV) (RP)
CIRCLE 611
Allegro MicroSystems Inc.
115 N.E. Cutoff
Worcester, MA 01615
(508) 853-5000
(BT) (PI) (PC)
CIRCLE 612
Alliant Techsystems
Power Sources Center 104 Rock Rd.
Horsham, PA 19044
(215) 674-3800
(LT)
CIRCLE 613
American Power Conversion 132 Fairgrounds Rd.
West Kingston
RI 02892
(401) $789-5735$
(51S) (500S) (UN)
CIRCLE 614
American Reliance Inc.
9952 E. Baldwin PI.
EI Monte, CA 91731
(818) 575-5100
(50S) (LA) (CV) (RP) (PF)
CIRCLE 615
Apex Microtechnology Corp.
5980 N. Shannon Rd.
Tucson, AZ 85741
(602) 742-8600
(50C) (11C) (DC) (PI)
CIRCLE 616
Argraph Corp.
111 Asia PI.
Carlstadt, NJ 07072
(201) 939-7722
(NC)
CIRCLE 617
Arnold Magnetics Corp.
4000 Via Pescador St.
Camarillo, CA 93012
(805) 484-4221
(50S) (51S) (500S) (10S)
(11S) (200S) (RM) (OF) (CV)
(MD) (UN) (PF) (50C) (51C)
(500C) (10C) (11C) (200C)
(DC) (MO) (MI) (50R) (51R)
(500R) (10R) (11R) (200R)
(LI) (SW) (MU) (ML)

CIRCLE 618

Astec America Inc
401 Jones Rd
Oceanside, CA 92054
(619) 757-1880
(50S) (10S) (11S) (200) (RM)
(OF) (PR) (50C) (10C) (11C)
(DC) (50R) (10R) (11R)
(200R) (LI) (SW) (MU)
CIRCLE 619
Ault Inc.
7300 Boone Ave. N.
Minneapolis, MN 55428
(612) 493-1900
(10S) (11S) (PR) (LI) (SW)
CIRCLE 620
Autec Power Systems
9301-101 Jordan Ave.
Chatsworth, CA 91311
(818) 341-6123
(50S) (OF) (UN) (50C) (51C)
(500C) (200C) (AC) (50R) (LI)
(SW)
CIRCLE 621
Avex Portable Battery
1683 Winchester Rd.
Bensalem, PA 19020
(215) 638-1515
(AL) (LT) (NC)
CIRCLE 622
B \& K Precision
6470 W. Cortland St.
Chicago, IL 60635
(312) 889-1448
(50S) (51S) (11S) (200S) (LA)
(CV) (PR)

CIRCLE 623
BICC-VERO Electronics
1000 Sherman Ave
Hamden, CT 06514
(203) 288-8001
(50S) (RM)
CIRCLE 624
Basler Electric Co.
Electronic Product Group
P.O. Box 269, Route 143

Highland, IL 62249
(618) 654-2341
(50S) (10S) (11S) (200S) (RM)
(OF) (PF) (50C) (DC)
CIRCLE 625
Battery Engineering Inc.
1636 Hyde Park Ave.
Hyde Park, MA 02136
(617) 361-7555
(LT)
CIRCLE 626
Battery Fabricators Inc.
P.O. Box 88716

Atlanta, GA 30338
(404) 449-4651
(AL) (CZ) (LC) (LT) (NC) (SO)
CIRCLE 627
Battery Source
7069 1/2 Vineland Ave.
N. Hollywood, CA 91605
(818) 982-3150
(AL) (CZ) (LC) (LT) (ME) (NC)
SO) (ZA) (ZC)
CIRCLE 628
(see p. 116 for key)
(continued on p. 102)
(continued on p. 102)

1000-W PFC SWITCHER FEATURES LOW DISTORTION

Total harmonic distortion of less than 5% is featured in the model HC1010 1000-W switching supply. The unit also offers 0.99 power-factor correction as standard and meets the proposed IEC $555-2$ specification. Other features include current-mode control, absolute current sharing, and shut-down current limiting. Call for pricing and delivery.

> HC Power Inc.
> 17032 Armstrong Ave.
> Irvine, CA 92714-5716
> (714) 261-2200

MODULAR POWER SYSTEM IS CUSTOMIZABLE

A list of pre-designed modules makes it easy to configure the MPS Series into a system that meets the user's exact needs. Each 5.25 -in. tall MPS module can deliver up to 1 kW . The latest addition to the line is a $7-\mathrm{in}$.

high module that can supply up to 3 kW . The MPS units also feature float and equalize operating modes as a battery charger. Call for pricing and delivery.

Transistor Devices Inc.
 85 Horsehill Rd.
 Cedar Knolls, NJ 07927
 (201) 267-1900

3100 W OF PFC POWER SURGE FROM CONVERTER

Designed for distributed-power converter applications of up to 3100 W , the PM22959 single-output convert-

er features built-in 0.99 power-factor correction. With nominal inputs of 170 to 264 V ac, outputs can be configured from 310 to 380 V dc. The converter measures 4 by 8 by 11 in . and weighs 10 lbs. Unit price is $\$ 895$. Call for delivery information.

Pioneer Magnetics
 1745 Berkeley St.
 Santa Monica, CA 90404
 (800) 233-1745

-CIRCLE 844

POWER-SOURGE MANUFAGTURERS

Behiman An Astrosystems Co. 2021 Sperry Ave., Suite 18 Ventura, CA 93003 (805) 642-0660 (RM) (CV) (PR) (RP) (200C) CIRCLE 629	Brandt Electronics Inc.	(50S) (11S) (RM) (CV) (UN)	Cherry Semiconductor	(500C) (11C) (200C) (DC)
	815 E. Middlefield Rd.	CIRCLE 636	Corp.	(MI)
	Mountain View, CA 94043		2000 S. County Trail	CIRCLE 646
	(415) 967-4944	Calex Mfg. Co. Inc.	East Greenwich, RI 02818	
	(50S) (51S) (500S) (11S)	3355 Vincent Rd.	(401) 885-3600	Computer Products Inc.
	(200S) (OF) (CV) (MD) (PF)	Pleasant Hill, CA 94523	(50R) (LI) (SW) (ID) (BT) (PI)	Power Conversion America
	(50C) (51C) (500C) (11C)	(510) 932-3911	(PC)	P.O. Box 5102
	(200C) (DC) (MI) (50R) (51R)	(50S) (10S) (11S) (LA) (RM)	CIRCLE 642	Fremont, CA 94537-5102
Bertan Associates Inc.	(500R) (11R) (200R) (LI) (SW)	(CV) (50C) (51C) (10C) (11C)		(415) 657-6700
121 New South Rd.	(ML)	(DC) (MO)	Christie Electric Cor	(50S) (10S) (11S) (200S) (OF)
Hicksville, NY 11801 (516) 433-3110	CIRCLE 633	CIRCLE 637	Industrial-Government Div. 18120 S. Broadway	$\text { (CV) }(50 \mathrm{C})(10 \mathrm{C})(11 \mathrm{C})$ $(200 \mathrm{C})(\mathrm{DC})(\mathrm{MO})$
(51S) (500S) (200S) (LA)	Burr-Brown Corp.	California Instruments Corp.	Gardena, CA 90248	CIRCLE 647
(RM) (OF) (CV) (RP) (51C)	Power Convertibles Corp.	5125 Convoy St., \#201	(310) 715-1402	
(500C) (10C) (11C) (DC)	3450 S. Broadmont, \#128	San Diego, CA 92111	(50S) (200S) (RM) (CV) (MD)	Condenser Products Corp.
(MO)	Tucson, AZ 85713	(619) 279-8620	CIRCLE 643	2131 Broad St.
CIRCLE 630	(800) 548-6132	(51S) (LA) (RM) (PR) (RP)		Brooksville, FL 34609
	(50C) (51C) (10C) (11C) (DC)	CIRCLE 638	Clary Corp.	(904) 796-3561
Bikor Corp.	(MO) (IC)		Precision Instruments Div.	(500S) (10S) (CV)
Microsemi Div. 1504 W. 228th St	CIRCLE 634	Caritronics Inc.	320 W. Clary Ave	CIRCLE 648
		P.O. Box 821	San Gabriel, CA 91776	
Torrance, CA 90501	CEC Electronics Corp.	West Caldwell, NJ 07007	(818) 287-6111	Contact East Inc.
(213) 539-6320	Power Supply Div.	(201) 575-8916	(200S) (LA) (RM) (OF) (CV)	335 Willow St.
(50S) (11S) (200S) (RM) (CV)	1324 Motor Pkwy.	(50C) (51C) (500C) (10C)	(PR) (RP) (MD) (200C) (AC)	North Andover, MA 01845
(50C) (11C) (200C) (DC)	Hauppauge, NY 11788	(11C) (DC)	(MO) (MI)	(508) 682-2000
(50R) (11R) (200R) (SW)	(516) 582-4422	CIRCLE 639	CIRCLE 644	(50S) (LA) (CV) (RP) (UN)
(MU)	(50S) (51S) (10S) (11S)			CIRCLE 649
CIRCLE 631	(200S) (LA) (RM) (OF) (CV)	Catalyst Research Corp.	Computer Power Inc.	
	(PR) (MD) (PF) (50C) (51C)	3706 Crandall Ln.	124 W. Main St.	Controlled Power Co.
Boeing Defense	(10C) (11C) (200C) (DC)	Owings Mills, MD 21117	High Bridge, NJ 08829	1955 Stephenson Hwy.
\& Space Group	(AC) (MO) (IC) (MI) (50R)	(301) 356-2945	(908) 638-8000	Troy, MI 48083
Electronic Systems Div.	(51R) (10R) (11R) (200R)	(LT)	(50C) (51C) (500C) (AC)	(313) 528-3700
P.O. Box 3999, M/S 9F-UF	(SW) (MU) (ID) (ML) (BT)	CIRCLE 640	(NC) (BT) (MF) (RE) (TH)	(50S) (51S) (500
Seattle, WA 98124-2499	(MF) (RE) (TH) (PI) (PC)		CIRCLE 645	(11S) (200S) (50R) (51R)
(206) 657-7474	CIRCLE 635	Central Semiconduct		(500R) (10R) (11R) (SW)
(50S) (11S) (200S) (RM)		Corp.	Computer Products	CIRCLE 650
(CV) (MD) (50C) (11C)	Cal-Tek Engineering	145 Adams Ave.	Tecnetics Inc.	
(200C) (DC) (MO) (MI)	UPS Div.	Hauppauge, NY 11788	6287 Arapahoe Ave	
(50R) (11R) (200R) (SW)	P.O. Box 202	(516) 435-1110	Boulder, CO 80303	
(MU) (ML)	Kingston, MA 02364	(BT) (TH)	(303) 442-3837	
CIRCLE 632	(617) 585-5666	CIRCLE 641	(50S) (51S) (500S) (11S)	(see p. 116 for key)
			(200S) (MD) (50C) (51C)	(continued on p. 104)

Our newest line of defence against heat

Insist on Interpoint.

A full line of high-temperature DC-DC converters from the industry leader.

Get the hottest technology in board-mounted power supplies. Full military temperature range. Unsurpassed reliability. The lowest profiles. You can get it all with Interpoint's new line of DC-DC converters.

From arctic blasts to desert storms, Interpoint's new generation $D C-D C$ converters stand up to the toughest military environments. They deliver full power over the entire -55° to $+125^{\circ} \mathrm{C}$. temperature range. And over an unprecedented power range, too. Interpoint can now offer you an off-the-shelf hybrid power supply for any power level from 2 to 200 watts.

For more than a decade, Interpoint DC-DC converters have proven their reliability in many of the world's most
advanced weapons systems - including mission-critical electronics on the Leopard II Tank and Harrier Aircraft, the Bradley Fighting Vehicle and F/A-18 aircraft. Our new generation converters are the most reliable yet. Each of them was designed with the specific intent of being qualified to the full performance and reliability standards of MIL-STD-883C.

And Interpoint continues to lead the way in power supply miniaturization. With power densities as high as 40 watts per cubic inch and package heights as low as 6.8 mm , this new generation of converters is built for the tightly packed boards
in today's military and commercial avionics, ground vehicles and portable equipment.

It's the hottest new technology in DC-DC converters. And it's available only from Interpoint. For more information, call 44 (0)276-26832

SWITCHING SUPPLIES ARE EASILY INTEGRATED

Ease of integration into systems is featured in the LZ Series switching power supplies. The $1000-\mathrm{W}$ unit offers auto-selectable ac input from 85

to 132 V ac or from 170 to 265 V ac. Other features include operation from -30 to $+71^{\circ} \mathrm{C}$, single-wire current sharing, and all status indications. Pricing starts at $\$ 1025$ in lots of 25 and delivery is from stock.

Lambda Electronics
 515 Broad Hollow Rd.
 Melville, NY 11747
 (516) 694-4200

- CIRCLE 845

LOGIC-CONTROLLED SUPPLY SHRUGS OFF INPUT SWINGS

The model 70423 logic-controlled switcher self-adjusts to any input from 92 to $264 \mathrm{~V} \mathrm{ac}, 47$ to 450 Hz , with no jumpers, taps, switches, or other circuit modifications. The $160-\mathrm{W}$ unit monitors the output of each of its six

channels and latches itself off if any voltage is out of specification (high or low), if output currents exceed ratings, or if an overtemperature condition occurs. Pricing is $\$ 259$ in lots of 1000 . Large lots are delivered in 16 weeks.

```
Onan Power/Electronics
9713 Valley View Rd.
Minneapolis, MN 55344
(612) 943-4642
```


POWER-SOURGE WINUFIGTURERS

Conversion Devices Inc. 15 Jonathan Dr.
Brockton, MA 02401
(508) 559-0880
(50C) (DC)
CIRCLE 651
Crydom Co.
6015 Obispo Ave.
Long Beach, CA 90805
(310) 865-3536
(RE) (TH)
CIRCLE 652
Current Technology
101 W. Buckingham Rd.
Richardson, TX 75081
(214) 238-5300
(50S) (51S) (11S) (200S) (RM)
(CV) (PR) (UN) (PF) (50C) (51C) (11C) (200C) (AC) (SW) (MU)
CIRCLE 653
Custom Power Systems
33 Comac Loop
Ronkonkoma, NY 11779
(516) 467-5328
(50S) (51S) (500S) (10S)
(11S) (200S) (LA) (RM) (OF)
(CV) (RP) (MD) (PF) (50C)
(51C) (500C) (10C) (11C)
(200C) (DC) (MO) (MI) (50R)
(51R) (500R) (10R) (11R)
(200R) (LI) (SW) (MU) (ML)
CIRCLE 654
Cyberpak Co.
Custom Design
251 S. Frontage Rd., \#23
Burr Ridge, IL 60521
(800) 328-3938
(11S) (200S) (OF) (CV) (11C)
(200C) (11R) (200R) (SW)
CIRCLE 655
D\&B Power Inc.
204 N. Fehr Way,
P.O. Box 40M

Bayshore, NY 11706
(516) 586-5955
(50S) (10S) (11S) (OF) (CV)
(MD) (50C) (11C) (MI) (50R)
(10R) (11R) (LI)
CIRCLE 656
Datel Inc.
11 Cabot Blvd.
Mansfield, MA 02048
(508) 339-3000
(51S) (10S) (LA) (CV) (PR)
(50C) (DC) (MO)
CIRCLE 657
Delta Products Corp.
3225 Laurelview Ct.
Fremont, CA 94538
(510) 770-0660
(50S) (51S) (10S) (11S) (200S) (OF) (PF) (50C) (51C) (10C) (11C) (DC) (AC) (50R) (51R) (10R) (11R) (200R) (SW)
CIRCLE 658
Deltec Electronics Corp. PowerRite Div.
2727 Kurtz St.
San Diego, CA 92110
(619) 291-4211
(200S) (UN)
CIRCLE 659

Deltron Inc.
290 Wissahickon Ave.
North Wales, PA 19454
(215) 699-9261
(50S) (11S) (200S) (OF) (PF)
(714) 979-4440
(50S) (EX)
CIRCLE 660
Endicott Research Group Inc.
P.O. Box 267

Endicott, NY 13760
(607) 754-9187
(50C) (10C) (11C) (DC) (AC)
(50R) (LI) (SW)
CIRCLE 661
Entran Devices Inc.
10 Washington Ave.
Fairfield, NJ 07004
(201) 227-1002
(50S) (LA) (RM) (CV)
CIRCLE 662
Ericsson Components Inc.
Power Products Div. 403 International Pkwy., \#500
Richardson, TX 75081
(214) 997-6561
(50S) (11S) (200S) (RM) (OF)
(50C) (10C) (11C) (DC)
CIRCLE 663
Ericsson Network Systems
Power Systems Div.
P.O. Box 833875

Richardson, TX 75083-3875
(214) 669-0906
(50S) (200S) (PF)
CIRCLE 664
Exide Electronics
8521 Six Forks Rd.
Raleigh, NC 27615
(919) 872-3020
(LC)
CIRCLE 665
Fedco Electronics Inc.
P.O. Box 1403

Fond Du Lac, WI 54936
(800) 542-9761
(50S) (10S) (11S) (50C) (10C)
(11C) (200C) (AC) (AL) (CZ)
(LC) (LT) (ME) (NC)
CIRCLE 666
Fiskars Electronics Corp.
P.O. Box 1490, Newton Rd.

Littleton, MA 01460
(508) 486-9551
(51S) (200S) (LA) (RM) (CV)
(PR) (MD) (50C) (51C) (11C)
(200C) (DC) (AC)
CIRCLE 667
Fujitsu Microelectronics
Integrated Circuits Div.
3545 N. First St.
San Jose, CA 95134-1804
(408) 922-9000
(BT) (PI) (PC)
CIRCLE 668
Gamma High Voltage
Research
1096 N. U.S. Hwy. \#1
Ormond Beach, FL 32174
(904) 677-7070
(51S) (500S) (10S) (11S)
(200S) (LA) (RM) (CV) (RP)
(51C) (500C) (10C) (11C)
(200C) (DC) (MO)
CIRCLE 669
Gates Energy Products Inc. Portable Battery Div.
P.O. Box 147114 Gainesville, FL 32614-7114
(904) 462-3911
(LC) (NC) (NH) (NM)
CIRCLE 670
Gennum Corp.
P.O. Box 489, Station A

Burlington, Ontario
Canada, L7R 3 Y3
(416) 632-2996
(PC)
CIRCLE 671

Georator Corp.

9617 Center St.
Manassas, VA 22110
(800) 523-9938
(200S) (OF) (PR) (MD) (51C)
(200C) (MI) (AT)
CIRCLE 672
Germanium Power Devices Corp.
P.O. Box 3065, SVS

Andover, MA 01810-3065
(508) 475-5982
(REC)
CIRCLE 673
Glassman High Voltage
P.O. Box 551, Route 22 Whitehouse Station, NJ 08889 (908) 534-9007
(500S) (200S) (LA) (RM) (CV) (RP)
CIRCLE 674
HC Power Inc.
17032 Armstrong Ave.
Irvine, CA 92714-5716
(714) 261-2200
(50S) (RM) (CV) (PF) (DC)
(50R) (SW)
CIRCLE 675
Harris Semiconductor
IC Products Div.
1301 Woody Burke Rd.
Melbourne, FL 32902
(407) 724-3886
(50C) (DC) (IC) (50R) (51R)
(LI) (SW) (ID) (PC)

CIRCLE 676
Harris Semiconductor
724 Rte. 202, P.O. Box 591
Somerville, NJ 08876
(201) 685-6920
(50S) (51S) (10S) (11S) (OF)
(CV) (MD) (50C) (51C) (DC)
(AC) (IC) (50R) (51R) (10R)
(11R) (LI) (SW) (MU) (ID)
(ML) (BT) (MF) (RE) (TH) (PI)
(PC)
CIRCLE 678
Hewlett-Packard Co.
Power Supplies Div.
19310 Pruneridge Ave.
Cupertino, CA 95014
(800) 452-4844
(50S) (51S) (LA) (RM) (CV)
(RP)
CIRCLE 679
(see p. 116 for key)
(continued on p. 106)

COMPLETE 12-BIT DAS has Progranmable mux

Plus On-Chip T/H, ADC and 25ppm/ ${ }^{\circ} \mathrm{C}$ Voltage Reference

Maxim's new MAX180 is a complete 10μ s data-acquisition system (DAS) that combines a no-missing codes 12 -bit A/D, a wide-bandwidth (6 MHz) track-hold, a $25 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ voltage reference, a fast-parallel $\mu \mathrm{P}$ interface, and a Flex-Mux, Maxim's flexible 8 -channel analog multiplexer-all in a single package. Program each channel independently to fit your ranges: differential or single-ended, unipolar +5 V or bipolar $\pm 2.5 \mathrm{~V}$. Simplify your design Save time and \$\$.

Add a Filter or PGA Easily

For applications where a programmable-gain amplifier (PGA) or a filter is required following the multiplexer. Maxim's 6-channel MAX181 gives you access to the Flex-Mux output, and otherwise works the same as the MAAX180. With the same simplicity, and even more flexibility.

FREE A/D Converter Design Guide

Includes: Application Notes Data Sheets Cards For Free Samples Simply circle the reader response number, contact your Maxim representative or Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086, (408) 737-7600, FAX (408) 737-7194

MAXIAV

Distributed by Arrow, Bell/Graham, Elmo, Hall-Mark, Nu Horizons, Pioneer, and Wyle. Authorized Maxim Representatives: Alabama, (205) 830-0498; Arizona (602) 730-8093; California. (408) 248-5300, (619) 278-8021. (714) 261-2123; (818) 704-1655; Colorado (303) 779-8060; Connecticut, (203) 384-1112; Delaware (609) 778-5353; Florida, (305) 426-4601, (407) 830-8444; Georgia. (404) 447-6124; Idaho, (503) 292-8840; Illinois, (708) 358-6622; Indiana, (317) 844-8462; Iowa (319) 393-2232; Kansas, (816) 436-6445; Louisiana. (214) 234-8438; Maryland, (301) 644-5700; Massachusetts, (617) 329-3454: Michigan, (313) 352-5454 Minnesota. (612) 941-9790; Mississippi, (205) 830-0498; Missouri, (314) 839-0033, (816) 436-6445: Montana, (503) 292-8840; Nebraska, (816) 436-6445; Nevada, (408) 248-5300; New Hampshire, (617) 329-3454: New Jersey. (516) 351-1000, (609) 778-5353: New Mexico, (602) 730-8093; New York. (516) 351-1000, (607) 754-2171: N. Carolina, (919) 851-0010; Ohio, (216) 659-9224, (513) 278-0714, (614) 895-1447; Oklahoma, (214) 234-8438; Oregon, (503) 292-8840; E. Pennsylvania, (609) 778-5353; W. Pennsylvania, (614) 895-1447; S. Carolina, (919) 851-0010; Tennessee, (404) 447-6124; Texas, (214) 234-8438, (713) 782-4144. (512) 346-9186; Utah, (801) 561-5099; Virginia, (301) 644-5700; Washington, (206) 823-9535; W. Virginia, (513) 278-0714; Wisconsin, (414) 476-2790; Canada, (416) 238-0366, (613) 225-5161, (604) 439-1373, (514) 337-7540.

1000-up FOB USA suggested resale

350-W SWITCHING SUPPLY CORRECTS POWER FACTOR

A four-output, 350-W switcher incorporates built-in active power-factor correction and accepts universal inputs. The PFQ350 switcher takes any input from 90 to 264 V ac with no jumpers. Main output rating is 5 V at 50 A . One of the auxiliary outputs

handles $10 \mathrm{~A} / 16$ A peaks for spin-up loads associated with hard-disk drives. Pricing in lots of 100 is $\$ 339$. Small quantities are delivered from stock to three weeks with 12 -week leads for large lots.

Switching Systems International 500 Porter Way
Placentia, CA 92670
(714) 996-0909
-CIRCLE 847

VARIABLE DC BENCH SUPPLY IS THREE SUPPLIES IN ONE

Designed to power a mix of analog and digital circuitry, the model 1651 triple-output bench supply is three

supplies in one. Included within the unit are two variable $24-\mathrm{V}, 0.5$-A supplies and a fixed $5-\mathrm{V}, 4-\mathrm{A}$ unit. The two $24-\mathrm{V}$ supplies are switch-selectable for series operation, which doubles the output to 48 V ; parallel operation, which delivers up to 1 A of output; or independent operation. Suggested pricing is $\$ 395$ and delivery is from stock.

B\&K Precision

Maxtec International Corp.
6470 Cortland St.
Chicago, IL 60635
(312) 889-1448

WIDE-INPUT SUPPLY SPANS 85 TO 265 V AC

Automatic operation with any voltage from 85 to 265 V ac and from 120 to 364 V dc at a $100-\mathrm{kHz}$ switching frequency is featured in the ZPS-45 switcher. The $45-\mathrm{W}$ unit is a $3-\mathrm{by}-5-\mathrm{in}$.

board assembly with a $1.25-\mathrm{in}$. profile. The triple-output supply has no minimum load requirements. Suggested retail price is $\$ 55$. Small quantities are delivered from stock.

Zenith Magnetics

1000 Milwaukee Ave.
Glenview, IL 60025-2493
(708) 391-7733

- CIRCLE 849

848

POMEIESORGE MATVABTES				
Hitachi America Ltd.	Miami Lakes, FL 33014	(617) 782-3331	(DC) (MO) (IC) (SW)	Joule Power Inc.
Semiconductor \& IC Div.	(305) 822-2558	(50C) (51C) (10C) (11C)	CIRCLE 695	Summer Rd.
2000 Sierra Point Pkwy.	(51S) (500S) (RM) (OF)	(200C) (DC) (MO) (IC)		Boxborough, MA 01719
Brisbane, CA 94005-1819	(CV) (51C) (500C) (DC)	CIRCLE 690	Jameco Electronics	(508) 263-9712
(415) 589-8300	CIRCLE 685		1355 Shoreway Rd.	(50S) (RM) (OF) (CV) (UN)
(SW) (BT) (MF) (PI) (PC)		International Power Sources	Belmont, CA 94002	(PF) (50C) (DC) (50R) (SW)
CIRCLE 680	IXYS Corp. 2355 Zanker Rd.	Astec High Voltage 200 Butterfield Dr.	$\begin{aligned} & \text { (415) 592-6718 } \\ & \text { (11S) (200S) (RM) (OF) (CV) } \end{aligned}$	CIRCLE 701
Hitran Corp.	San Jose, CA 95131-1109	Ashland, MA 01721	(PR) (LT) (NC) (BT) (RE)	Kaiser Systems Inc.
Power Systems Div.	(408) 435-1900	(508) 881-8407	CIRCLE 696	126 Sohier Rd.
362 Highway 31	(MF) (RE) (TH) (PI) (PC)	(51S) (500) (10S) (11S)		Beverly, MA 01915
Flemington, NJ 08822 (908) 782-5525	CIRCLE 686	(200S) (LA) (RM) (CV) (RP) (MD) (51C) (500C) (10C)	James Electronics Inc. 4050 N. Rockwell St.	(508) 922-9300
(50S) (51S) (200S) (CV)	Intech Inc.	(11C) (200C) (DC) (AC) (MI)	Chicago, IL 60618	CIRCLE 702
(51C) (200C) (AC)	Advanced Analog	CIRCLE 691	(312) 463-6500	
CIRCLE 681	2270 Martin Ave.		(50S) (10S) (11S) (RM) (OF)	Keltec Florida Inc.
	Santa Clara, CA 95050	International Power Sources	(50C) (11C) (DC)	84 Hill Ave.
Hokuriku USA, Ltd.	(408) 988-4930	200 Butterfield Dr.	CIRCLE 697	Ft. Walton Beach, FL 32548
8145 River Dr.	(50C) (10C) (11C) (DC)	Ashland, MA 01721		(904) 244-0043
Morton Grove, IL 60053 (708) 470-8440	CIRCLE 687	$\begin{aligned} & \text { (508) } 881-7434 \\ & \text { (50S) (50C) (DC) (MO) (IC) } \end{aligned}$	Jerome Industries 730 Division St.	(50S) (51S) (500S) (10S) (11S) (200S) (MD) (50C)
(50C) (DC) (MO)	Integrated Power Designs	CIRCLE 692	Elizabeth, NJ 07201	(11S) (200S) (MD) (50C) (11C) (DC) (MI)
CIRCLE 682	Inc. 9C Princess Rd.	International Rectifier	$\begin{aligned} & \text { (201) } 353-5700 \\ & \text { (50S) (10S) (11S) (CV) (} 50 \mathrm{C} \text {) } \end{aligned}$	CIRCLE 703
Hydrocap Corp.	Lawrenceville, NJ 08648	233 Kansas St.	(50R) (LI) (SW)	Kepco Inc.
975 N.W. 95th St.	(609) 896-2122	El Segundo, CA 90245	CIRCLE 698	131-38 Sanford Ave.
Miami, FL 33150-2095	(50S) (11S) (200S) (OF) (CV)	(213) 772-2000		Flushing, NY 11352
(305) 696-2504	(50C) (10C) (11C) (DC) (MO)	(MF) (RE) (TH) (PI)	Jeta Power Systems Inc.	(718) 461-7000
(LC) (NC)	(50R) (10R) (11R) (SW)	CIRCLE 693	2675 Junipero Ave.	(50S) (51S) (500S) (10S)
CIRCLE 683	CIRCLE 688	Interpoint Corp.	Signal Hill, CA 90806 (213) 427-0095	(11S) (200S) (LA) (RM) (OF)
ILC Data Device Corp.	International Power DC	10301 Willow Rd.	(50S) (200S) (CV)	$(10 \mathrm{C})(11 \mathrm{C})(\mathrm{DC})(\mathrm{AC})(\mathrm{MO}$
105 Wilbur Pl.	Power Supplies Inc.	Redmond, WA 98073-9705	CIRCLE 699	$(50 R)(51 R)(500 R)(10 R)$
Bohemia, NY 11716 (516) 567-5600	355 N. Lantana, Suite 710 Camarillo, CA 93010-9030	(206) 882-3100 (50C) (10C) (11C) (DC) (M		(11R) (200R) (LI) (SW) (MU)
(50C) (11C) (200C) (DC)	(805) 987-7900	CIRCLE 694	John Fluke Mfg. Co. Philips T \& M Group	CIRCLE 704
(MO) (MI)	(50S) (200S) (RM) (OF) (LI)		Box 9090	
CIRCLE 684	CIRCLE 689	Intronics Inc. 150 Dan Rd.	Everett, WA 98203	
IMC Magnetics Corp.	International Power Devices	Canton, MA 02021	(206) $356-6157$ (50S) (51S) (LA) (RM) (C)	
Florida Div.	155 N. Beacon St.	(617) 828-4992	(RP)	(continued on p. 108)
14025 N.W. 60th Ave.	Brighton, MA 02135	(LA) (RM) (OF) (CV) (50C)	CIRCLE 700	

SMALL +5V REGULATOR HAS 94\% EFFICIENCY!

No Design Required for Guaranteed 300 mA or 750 mA Outputs

The new MAX730 and MAX738 step-down switching regulators are compact and simple solutions for batterypowered portable applications. They extend battery life by providing high-efficiency step-down regulation. The MAX730 comes in an 8-pin SOIC package, making it the smallest PWM step-down regulator available. They are easy to use, requir ing no design effort or inductor selection. Using the single set of component values listed in the data sheet, the standard application circuit delivers the guaranteed power over all specified line, load, and temperature conditions.

The MAX730/738 are loaded with features, including short-circuit and soft-start protection, and a pin-controlled shutdown that cuts quiescent supply current to $6 \mu \mathrm{~A}$. High-frequency 160 kHz pulse-width modulation (PWM) current mode control provides low-noise operation and reduces output voltage ripple to less than $50 \mathrm{mVp}-\mathrm{p}$

- No Component or Inductor Selection Required
- Guaranteed Output Currents:

750mA for $\mathrm{V}_{+}>10.2 \mathrm{~V}$ (MAX738)
300mA for $\mathrm{V}_{+}>6.0 \mathrm{~V}$ (MAX730)

- Space Saving Footprints:

8-Pin SOIC and DIP Packages (MAX730)
16-Pin SOIC and 8-Pin DIP (MAX738)

- Wide Input Voltages:
+5.2 V to +11.0V (MAX730)
+6.0 V to $\mathbf{+ 1 6 . 0 \mathrm { V }}$ (MAX738)

The MAX730 and MAX738 deliver high efficiency over a wide load range.

FREE Power Supply Design Guide
Includes: Application Notes \bullet Data Sheets \bullet Cards For Free Samples
Simply circle the reader response number, contact your Maxim representative or Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086, (408) 737-7600, FAX (408) 737-7194.

ЛVIXIAV

Distributed by Arrow, Bell/Graham, Elmo, Hall-Mark, Nu Horizons, Pioneer, and Wyle. Authorized Maxim Representatives: Alabama, (205) 830-0498; Arizona, (602) 730-8093; California (408) 248-5300, (619) 278-8021, (714) 261-2123; (818) 704-1655; Colorado (303) 779-8060; Connecticut, (203) 384-1112; Delaware, (609) 778-5353; Florida, (305) 426-4601, (407) 830-8444; Georgia, (404) 447-6124; Idaho, (503) 292-8840; Illinois, (708) 358-6622; Indiana, (317) 844-8462; Iowa, (319) 393-2232; Kansas, (816) 436-6445; Louisiana, (214) 234-8438; Maryland, (301) 644-5700; Massachusetts, (617) 329-3454; Michigan, (313) 352-5454; Minnesota, (612) 941-9790; Mississippi, (205) 830-0498; Missouri, (314) 839-0033, (816) 436-6445; Montana, (503) 292-8840; Nebraska. (816) 436-6445; Nevada, (408) 248-5300; New Hampshire, (617) 329-3454: New Jersey, (516) 351-1000, (609) 778-5353: New Mexico, (602) 730-8093; New York, (516) 351-1000, (607) 754-2171: N. Carolina, (919) 851-0010; Ohio, (216) 659-9224, (513) 278-0714, (614) 895-1447; Oklahoma, (214) 234-8438; Oregon, (503) 292-8840; E. Pennsylvania, (609) 778-5353; W. Pennsylvania, (614) 895-1447: S. Carolina, (919) 851-0010; Tennessee, (404) 447-6124; Texas, (214) 234-8438, (713) 782-4144, (512) 346-9186; Utah, (801) 561-5099; Virginia, (301) 644-5700; Washington, (206) 823-9535; W. Virginia, (513) 278-0714; Wisconsin, (414) 476-2790; Canada, (416) 238-0366, (613) 225-5161, (604) 439-1373, (514) 337-7540

- HIGH-VOLTAGE SUPPLIES BOAST PRECISE OUTPUTS

Easy front-panel controls with analog voltage and current meters are featured in the Alpha III series of precision lab power supplies. Three units are available with positive or negative outputs of 0 to 5 kV at 10 mA (model 3507), 0 to 15 kV at 3 mA (model 3707), and 0 to 30 kV at 1.5 mA (model 3807). Output drift is less than 20 ppm and noise is less than 0.01% pk-pk. Line and load regulation values are 0.001% and 0.002%, respectively. Fine and coarse adjustments are provided for the output voltage. Pricing is $\$ 3995$ each with delivery from stock.

Astec High Voltage
 200 Butterfield Dr.
 Ashland, MA 01721
 (508) 881-8407

- CIRCLE 850

TWO SUPPLIES TEAM UP TO DELIVER 10 KW

Two independent-output supplies are combined to provide up to 10 kW in the Series 5600,5700 , and 5800 switching-regulator supplies. The unit, which fits in a single 19-in. rack, saves over 50% in rack space and 40% in weight compared with two separate units. Nineteen different output voltage-current combinations are available. Pricing ranges from $\$ 3250$ to $\$ 4900$ with delivery from stock to 60 days.

Power Ten Inc.
 486 Mercury Dr.
 Sunnyvale, CA 94086
 (408) 738-5959

- CIRCLE 851

ON-LINE UPS SYSTEM KEEPS POWER CLEAN

A reliable source of clean, continuous, sine-wave ac power is provided to computers and other sensitive equipment by the UPSY Series of uninterruptible power supplies. The $120-\mathrm{V}, 60-\mathrm{Hz}$ systems come in $400-$, $800-$, and $1250-\mathrm{VA}$ models. Units are also available with $220 / 240-\mathrm{V}$ and 50 Hz ratings. Pricing ranges from $\$ 1150$ to $\$ 2995$ depending on the mod-
el. Delivery is from stock.

Superior Electric Co.

383 Middle St.
Bristol, CT 06010
(203) 582-9561

- CIRCLE 852

POWER-SOURGE MANUFAGTURERS

Kikusui International
1980 Orizaba Ave. Signal Hill, CA 90804 (800) 545-8784
(50S) (51S) (500S) (11S)
(200S) (LA) (RM) (CV) (PR) (RP)
CIRCLE 705
LH Research Inc.
14402 Franklin Ave
Tustin, CA 92680
(714) 730-0162
(50S) (10S) (11S) (200S) (RM)
(OF) (CV) (UN) (PF) (50C) (10C) (11C) (200C) (DC) (MO)
(50R) (10R) (11R) (200R) (LI)
(SW) (MU)
CIRCLE 706
LZR Electronics Inc.
8051 Cessna Ave.
Rockville, MD 20855
(301) 921-4600
(50S) (51S) (LA) (OF) (CV)
(PR) (50C) (51C) (DC) (AC)
CIRCLE 707
Lambda Electronics Inc.
515 Broad Hollow Rd.
Melville, NY 11747-3700
(516) 694-4200
(50S) (51S) (10S) (11S)
(200S) (LA) (RM) (OF) (CV)
(RP) (MD) (UN) (PF) (50C)
(51C) (10C) (11C) (200C)
(DC) (MO) (MI)

CIRCLE 708
Linear Technology Corp.
1630 McCarthy Blvd.
Milpitas, CA 95035-7487
(408) 432-1900
(50C) (10C) (DC) (IC) (MI)
(50R) (51R) (11R) (10R) (LI)
(SW) (ID) (ML) (PI) (PC)
CIRCLE 709
Logitek Inc.
101 Christopher St
Ronkonkoma, NY 11779
(516) 467-4200
(50S) (51S) (500S) (10S)
(11S) (200S) (RM) (CV) (MD)
(50C) (51C) (500C) (10C)
(11C) (200C) (DC) (MO) (MI)
CIRCLE 710
M.S. Kennedy Corp.

8170 Thompson Rd.
Clay, NY 13041
(315) 699-9201
(50R) (51R) (10R) (11R) (LI) (ML)
CIRCLE 711
MIL Electronics Inc.
106 Perimeter Rd.
Nashua, NH 03063
(603) 882-3200
(50S) (51S) (10S) (11S) (CV) (500C) (10C) (11C) (DC) (MO)
(MI) (50R) (51R) (500R) (10R)
(11R) (SW) (ML)
CIRCLE 712

```
Marathon Power
Technologies
Flitetronics Div.
P.O. Box 8233
Waco, TX 76714-8233
(817) 776-0650
(51S) (11S) (200S) (RM) (PR) (MD) (50C) (DC) (AC) (MI) (NC) CIRCLE 713
```

Marconi Circuit Technology
160 Smith St.
Farmingdale, NY 11735
(516) 393-8686
(BT) (TH) (PC)
CIRCLE 714
Maxell Corp. of America
22-08 Route 208 S.
Fair Lawn, NJ 07410
(201) 794-5938
(AL) (CZ) (LT) (NM) (SO)
CIRCLE 715
Maxim Integrated Products
120 San Gabriel Dr.
Sunnyvale, CA 94086
(408) 737-7600
(50S) (10S) (LA) (MD) (50C)
(10C) (DC) (MO) (IC) (MI)
(50R) (10R) (LI) (SW) (MU)
(ID) (ML) (PI) (PC)
CIRCLE 716
Melcher Inc.
200 Butterfield Dr.
Ashland, MA 01721
(800) 882-9712
(50S) (51S) (10S) (11S)
(200S) (RM) (CV) (RP) (MD)
(50C) (51C) (10C) (11C) (DC)
(MO) (IC) (MI) (50R) (51R)
(10R) (11R) (200R) (SW)
(MU) (ID) (ML)
CIRCLE 717
Micrel Semiconductor
560 Oakmead Pkwy.
Sunnyvale, CA 94086
(408) 245-2500
(SW) (ID)
CIRCLE 718
Micro Linear Corp.
2092 Concourse Dr.
San Jose, CA 95131
(408) 433-5200
(PC)
CIRCLE 719
Micropac Industries Inc.
905 E. Walnut St.
Garland, TX 75040
(214) 272-3571
(50S) (51S) (10S) (11S) (CV)
(MD) (50C) (51C) (10C) (11C)
(DC) (MO) (MI) (50R) (10R)
(11R) (LI) (MU) (ML)
CIRCLE 720
Microsemi Corp.
Colorado Div.
800 Hoyt St
Broomfield, CO 80020
(303) 469-2161
(RE)
CIRCLE 721
Microsemi Corp.
Micro Quality
Semiconductor
1000 N. Shiloh Rd.,
P.O. Box 469013

Garland, TX 75046-9013
(214) 272-7811
(RE)
CIRCLE 722
Modular Devices Inc Power Supplies Div.
4115 Spencer St.
Torrance, CA 90503
(213) 542-8561
(50S) (200S) (OF) (CV)
(50C) (DC)
CIRCLE 723

Modular Devices Inc.
One Rone Rd. Brookhaven
Shirley, NY 11967
(516) 345-3100
(50S) (51S) (500S) (10S)
(11S) (200S) (RP) (MD) (50C)
(51C) (500C) (10C) (11C)
(DC) (AC) (MO) (IC) (MI)
(50R) (51R) (500R) (10R)
(11R) (200R) (LI) (SW) (MU)
(ID) (ML)
CIRCLE 724
Modupower Inc.
1400 Coleman Ave., H-18
Santa Clara, CA 95050
(408) 496-5796
(50S) (51S) (10S) (11S) (OF)
(CV) (50C) (51C) (10C) (11C)
(DC) (AC) (MO) (IC) (50R)
(10R) (LI) (SW) (MU) (ID)
CIRCLE 725
Motorola Inc.
Semiconductor Products Sector
3102 N. 56th St.
Phoenix, AZ 85018-6606
(602) 952-4103
(50R) (10R) (LI) (SW) (ID)
(BT) (MF) (RE) (TH) (PI) (PC)
CIRCLE 726
MultiProducts International
250 Lackawanna Ave.
West Paterson, NJ 07424
(201) 890-1344
(50S) (51S) (10S) (11S) (LA)
(CV) (EX) (50C) (51C) (10C)
(11C) (DC) (AC) (MO) (50R)
(10R) (11R) (LI) (SW) (MU)
CIRCLE 727
Multiplier Industries
P.O. Box 630, Radio Circle

Mt. Kisco, NY 10549
(914) 241-9510
(AL) (LC) (ME) (NC)
CIRCLE 728
NH Research Inc.
16601 Hale Ave.
Irvine, CA 92714
(714) 474-3900
(50S) (51S) (200S) (RM) (CV)
(PR) (RP) (MD) (50C) (51C)
(200C) (MO) (MI) (SW) (MU)
CIRCLE 729
National Semiconductor
2900 Semiconductor Dr.
Santa Clara, CA 95052
(408) 721-2641
(50C) (10C) (11C) (DC) (IC)
(MI) (50R) (10R) (11R) (LI)
(SW) (MU) (ID) (ML) (BT)
(MF) (PI) (PC)
CIRCLE 730
OECO Corp.
4607 S.E. International Way
Milwaukie, OR 97222
(503) 659-7932
(50S) (51S) (500S) (200S)
(OF) (CV) (PR) (RP) (MD)
(50C) (51C) (500C) (11C)
(200C) (DC) (MI)
CIRCLE 731
(see p. 116 for key)
(continued on p. 110)

NOINDUCTORS! $+5 V$ IN-SV OUT INVERTER POWERS 100 mA LOADS

MAX660 Plus 2 Capacitors Deliver 95\% Efficiency

Using two low-cost capacitors, Maxim's new MAX660 charge-pump voltage inverter converts a 1.5 V to 5.5 V input to a -1.5 V to -5.5 V output. The charge pump's 100 mA output replaces switching regulators, eliminating the need for inductors and their associated cost, size and EMI. For instance, with a 5 V input, the MAX660 delivers 100 mA at -4.35 V . Compact 8 -pin DIP and SOIC* packages coupled with a 95% powerconversion efficiency make the MAX660 ideal for battery-powered applications.

- Only 2 Capacitors, NO Inductors
- 10kHz and 45kHz Internal Oscillator
- Voltage Inverter Mode: VOUT $=-V_{\mathbf{I N}}$
- Voltage Doubler Mode: Vout $=2 \times V_{\text {IN }}$
1.5V to 5.5V Input Voltage Range
- $200 \mu \mathrm{~A}$ No-Load Supply Current
- Only \$2.95 ${ }^{\boldsymbol{t}}$

Maxim's new MAX660 voltage inverter powers 100mA loads.
 FAX (408) 737-7194.

The MAX660 uses only 2 external components and is available in space-saving 8-pin DIP and SO packages.

High efficiency makes the MAX660 ideal for portable applications.

FREE DC-DC Converter Design Guide

Includes: Application Notes * Data Sheets Cards For Free Samples
Simply circle the reader response number, contact your Maxim representative or Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086, (408) 737-7600,

MAXIM

Distributed by Arrow, Bell/Graham, Elmo, Hall-Mark, Nu Horizons, Pioneer, and Wyle. Authorized Maxim Representatives: Alabama, (205) 830-0498; Arizona, (602) 730-8093; California, (408) 248-5300, (619) 278-8021, (714) 261-2123; (818) 704-1655; Colorado (303) 779-8060; Connecticut, (203) 384-1112; Delaware, (609) 778-5353; Florida, (305) 426-4601, (407) 830-8444; Georgia, (404) 447-6124; Idaho, (503) 292-8840; Illinois, (708) 358-6622; Indiana, (317) 844-8462; Iowa, (319) 393-2232; Kansas, (816) 436-6445; Louisiana, (214) 234-8438; Maryland, (301) 644-5700; Massachusetts, (617) 329-3454; Michigan, (313) 352-5454; Minnesota, (612) 941-9790; Mississippi, (205) 830-0498; Missouri, (314) 839-0033, (816) 436-6445; Montana, (503) 292-8840; Nebraska, (816) 436-6445; Nevada, (408) 248-5300; New Hampshire, (617) 329-3454; New Jersey, (516) 351-1000, (609) 778-5353; New Mexico, (602) 730-8093; New York, (516) 351-1000, (607) 754-2171: N. Carolina, (919) 851-0010; Ohio, (216) 659-9224, (513) 278-0714, (614) 895-1447; Oklahoma, (214) 234-8438; Oregon, (503) 292-8840; E. Pennsylvania, (609) 778-5353; W. Pennsylvania, (614) 895-1447; S. Carolina, (919) 851-0010; Tennessee, (404) 447-6124; Texas, (214) 234-8438, (713) 782-4144, (512) 346-9186; Utah, (801) 561-5099; Virginia, (301) 644-5700; Washington, (206) 823-9535; W. Virginia, (513) 278-0714; Wisconsin, (414) 476-2790; Canada, (416) 238-0366, (613) 225-5161, (604) 439-1373, (514) 337-7540.

SINGLE-PHASE UPS PROTECTS MAINFRAMES

True on-line, single-phase power protection is available for computers, networks, telecommunications, and other applications in the Integrity 800-VA rack-mounted model and $5000-\mathrm{VA}$ tower from EPE Technologies. Both versions protect sensitive equipment from surges, sags, oscillations, brownouts, and complete power outages. Call for pricing and delivery information.

> EPE Technologies Inc.
> 1660 Scenic Ave.
> Costa Mesa, CA 92626
> (714) 557-1636

- CIRCLE 853

UNIVERSAL INPUTS MAKE SWITCHERS VERSATILE
Four outputs and a $85-$ to- $265-\mathrm{V}$ ac input range make the FLU4-100 series of 100 -W switchers useful in a wide range of applications. Five models offer outputs of +5 V dc and combinations of $-5, \pm 12, \pm 15$, and $\pm 24 \mathrm{~V}$

dc. An onboard input-line filter exceeds the requirements of VDE/ FCC Class B by an average margin of 10 dB . Pricing is $\$ 159$ in quantities to 24 . Call for delivery.

Power General
 152 Will Dr.

Canton, MA 02021
(617) 828-6216

CIRCLE 854

AC-DC OFF-LINE SOURCE SUITS DISTRIBUTED TASKS

A line of ruggedized ac-dc conditioned power sources is well suited for use with distributed-power dc-dc converters and systems. The PB Series is available with single- or threephase ac input and dc outputs from 24 to 300 V , including $28,48,155$, and 270 V . True N +1 current sharing as well as 0.99 power-factor correction is featured. Call for pricing and delivery.

Arnold Magnetics Corp.
 4000 Via Pescador
 Camarillo, CA 93010
 (805) 484-4221

- CIRCLE 855

POWER-SOUREE MANUFAGTURERS

Omnirel Corp.

Leominster, MA 01453
(508) 534-5776
(50R) (10R) (11R) (LI) (SW)
(ML) (BT) (MF) (TH) (PI) (PC)

CIRCLE 732
Onan Power/Electronics
9713 Valley View Rd.
Minneapolis, MN 55344-3508 (612) 943-4642
(50S) (51S) (10S) (11S)
(200S) (OF) (PF) (50C)
(51C) (10C) (11C) (200C)
(DC) (AC) (50R) (51R)
(10R) (11R) (200R) (LI) (SW) CIRCLE 733

Optek Technology Inc.
1215 W. Crosby Rd.
Carrolton, TX 75006
(214) 323-2200
(BT) (RE)
CIRCLE 734
PC Power \& Cooling Inc. 31510 Mountain Way Bonsall, CA 92003
(619) 723-9513
(50S)
CIRCLE 735

PDS Technologies Inc.

 415 Howe Ave. Shelton, CT 06484 (203) 924-7030 (50S) (51S) (11S) (200S) (RM) (OF) (UN) (PF) (50C (51C) (11C) (200C) (DC) (AC) (MO) (LI) (SW) (MU) (AC) (MO)CIRCLE 736

Pacific Power Source Corp. 15122 Bolsa Chica St. Huntington Beach, CA 92649 (714) 898-2691
(50S) (51S) (11S) (200S) (LA)
(RM) (PR) (RP) (UN)
CIRCLE 737
Panasonic Industrial Co. AVCC
Two Panasonic Way Secaucus, NJ 07094
(201) $348-5244$
(50S) (51S) (RM) (OF) (PF)
CIRCLE 738

Panasonic Industrial Co.

Battery Sales Group Two Panasonic Way Secaucus, NJ 07094 (201) 348-5266
(AL) (CZ) (LC) (LT) (ME) (NC)
(NH) (NM) (SO) (ZA) (ZC)
CIRCLE 739
Perma Power Electronics Inc.
5601 W. Howard St.
Chicago, IL 60648
(312) 763-0763
(11S) (200S) (CV) (PR)
CIRCLE 740
Philips Components 2001 W. Blue Heron Blvd. Riviera Beach, FL 33404
(407) 881-3308
(BT) (MF) (RE) (TH) (PI) (PC) CIRCLE 741

Phoenix Contact Inc. P.O. Box 4100

Harrisburg, PA 17111-0100 (717) 944-1300
(50S) (11S) (LA) (CV) (50R) (LI) (MU)

CIRCLE 742
Pico Electronics Inc.
Power Div.
453 N. MacQuesten Pkwy. Mount Vernon, NY 10552 (800) 431-1064
(50S) (10S) (11S) (OF) (PR) (MD) (50C) (51C) (500C)
(10C) (11C) (DC) (IC) (MI)
CIRCLE 743
Pioneer Magnetics Inc.
1745 Berkeley St.
Santa Monica, CA 90404
(213) 829-6751
(50S) (10S) (11S) (200S) (RM)
(CV) (RP) (UN) (PF) (50C)
(10C) (11C) (200C) (DC) (MO)
(50R) (10R) (11R) (200R)
(SW)
CIRCLE 744
Plainview Batteries Inc. 23 Newtown Rd.
Plainview, NY 11803
(516) 249-2873
(AL) (LC) (LT) (NC)
CIRCLE 745
Polytron Devices Inc.
P.O. Box 398

Paterson, NJ 07544
(201) 345-5885
(50S) (LA) (RM) (CV) (MD) (50C) (DC) (MO) (IC) (MI)
(50R) (LI) (SW) (MU) (ML)
CIRCLE 746

Powell Electronics Inc. P.O. Box 8765 Philadelphia, PA 19101 (215) 365-1900
(AL) (CZ) (LC) (LT) (ME) (NC)
(SO) (ZA)
CIRCLE 747
Power Components
Div. of Vanguard Electronics 1480 W. 178th St.
Gardena, CA 90248
(213) 323-8120
(50S) (10S) (11S) (200S) (RM)
(OF) (CV) (50C) (DC)
CIRCLE 748
Power Conversion Products Inc.
42 East St., P.O. Box 380
Crystal Lake, IL 60014 (815) 459-9100 (11S) (200S) (RM) (CV) (PF)
(50C) (51C) (11C) (200C)
(DC) (AC) (MO)

CIRCLE 749

Power General

152 Will Dr.
Canton, MA 02021
(617) 828-6216
(50S) (11S) (OF) (50C) (10C)
(11C) (DC) (MO) (IC)
CIRCLE 750
Power Integrations Inc.
411 Clyde Ave.
Mountain View, CA 94043
(800) 552-3155
(PI)
CIRCLE 751

Power Solutions Inc. 21 Fairwind Ct .
Northport, NY 11768
(516) $757-8749$ (50S) (51S) (10S) (11S) (200S) (RM) (OF) (CV) (PR) (PF) $(50 \mathrm{C})(10 \mathrm{C})(11 \mathrm{C})(\mathrm{DC})$ (IC) (50R) (10R) (11R) (LI) (SW) (MU) (ID)
CIRCLE 752
Power Switch Corp.
17 Vreeland St. Lodi, NJ 07644
(201) 478-5788
(50S) (11S) (200S) (50C)
(10C) (11C) (200C) (DC) (MO)
(LI) (SW) (MU)

CIRCLE 753
Power Systems Inc.
45 Griffin Rd. South Bloomfield, CT 06002
(203) 726-1300
(50S) (51S) (500S) (11S)
(200S) (OF) (CV) (PF)
CIRCLE 754
Power Tech Inc.
0-02 Fair Lawn Ave.
Fair Lawn, NJ 07410
(201) 791-5050
(BT) (TH)
CIRCLE 755
(see p. 116 for key) (continued on p.112)

The European Community (EC) Directive for electrical transient immunity is a reality. Sound engineering practices and careful design are no longer enough. Transient suppression will be required in the electronic products you sell to the EC to meet IEC 801-2, IEC 801-4, and IEC 801-5 standards. Don't let your competition pass you by.

General Semiconductor Industries, the worldwide leader in transient voltage suppression (TVS)
technology, introduces the IEC 801 series of TVS components to give your products the required levels of transient immunity. With axial, radial, multi-pin array, surface mount discrete, and surface mount array packages, we'll keep you on the road to the European Community.

Don't be left in the dust. Call or write us for more information on the IEC 801 series of suppressors at General Semiconductor Industries, Inc., 2001 West Tenth Place, Tempe, AZ 85281, (602) 968-3101.

Objects in mirror are closer than they appear!

[IEC 801]

General Semiconductor Industries, Inc.

PLUG-IN SUPPLY CONDUCTS HEAT AWAY

Waste heat is conducted outside the subrack by a plug-in power supply for 19 -in. racks. The Monovolt PK 60 FKK is a primary switched-mode, 60 W supply that offers switch-selectable input voltages from 110 to 220/ 240 V ac. A front heat sink dissipates the heat generated by the supply. Pricing is $\$ 275$ in single quantities with delivery from stock to four weeks.

BICC-VERO Electronics
 1000 Sherman Ave.
 Hamden, CTO6514
 (203) 288-8001
 - CIRCLE 856

1000-W PFC SWITCHER BOASTS COMPACT PACKAGE

In a case measuring just 5 by 5 by 12.5 in., a series of power-factor-corrected switchers offer 1000 W of output power. The units, which will find uses in computers, peripherals, telecommunication equipment, and simulators, meet most international environmental and safety specs. A $90-$ to-264-V ac input range further enhances the supplies' international appeal. Other features include floating outputs, overvoltage protection on the main output, and power-status signals. In OEM lots, single-output units go for $\$ 800$. Call for delivery information.

Acme Electric Corp.

20 Water St.
Cuba, NY 14727
(716) 968-2400

- CIRCLE 857

- HIGH-VOLTAGE SUPPLIES BOAST TIGHT REGULATION

Line and load regulation of 0.001% with ripple of less than 0.0005% is featured in a line of high-voltage supplies. Output ratings range from 0 to 1000 V at 15 mA to 0 to 5000 V at 3 mA . Other features include con-stant-voltage/current crossover, provisions for output inhibiting, and remote programmability. Pricing is $\$ 675$ for modular models and $\$ 1195$ for rack-mounted types. Delivery is from stock.

Acopian Technical Co.

P.O. Box 638

Easton, PA 18044
(800) 523-9478

- CIRCLE 858

POWER-SOURGE MANUFAGTURERS

Power Technology Components a Microsemi Co. 23201 S. Normandie Ave. Torrance, CA 90501 (213) 534-3737
(BT) (RE)
CIRCLE 756
Power Ten Inc.
486 Mercury Dr.
Sunnyvale, CA 94086
(408) 738-5959
(50S) (51S) (500S) (LA) (RM)
(CV) (RP) (MD)

CIRCLE 757
Power Trends Inc.
1101 N. Raddant Rd.
Batavia, IL 60510
(708) 406-0900
(50C) (DC) (MO) (50R) (SW)
(MU)
CIRCLE 758
Power-One Inc.
740 Calle Plano
Camarillo, CA 93010-8583
(800) 678-9445
(50S) (OF) (CV) (50C) (MO)
(50R) (10R) (11R) (200R) (LI)
(SW) (MU)
CIRCLE 759
Power-Sonic Corp.
3106 Spring St.
Redwood City, CA 94063
(415) 364-5001
(LC) (NC)
CIRCLE 760
Powercard Corp.
393 Totten Pond Rd
Waltham, MA 02154-2014 (617) 890-6789
(AL) (LT)
CIRCLE 761
Powercube Corp.
1810 N. Glenville, \#102
Richardson, TX 75081
(214) 480-9281
(50S) (51S) (10S) (11S)
(200S) (MD) (50C) (51C)
(10C) (11C) (200C) (DC) (MO)
(MI) (50R) (51R) (10R) (11R)
(200R) (LI) (SW) (MU) (ML)
CIRCLE 762
Powerex Inc.
Hillis St.
Youngwood, PA 15697
(412) 925-7272
(BT) (MF) (RE) (TH)
CIRCLE 763
Preferred Electronics Inc.
Main Line Dr., P.O. Box 248
Westfield, MA 01086
(413) 568-2301
(50S) (500S) (10S) (OF) (CV)
(MD) (50C) (11C) (200C) (DC)
(MO) (50R) (51R) (11R)
(200R) (LI) (SW)
CIRCLE 764
Qualidyne Systems Inc.
Lambda Group of Unitech 3055 Del Sol Blvd.
San Diego, CA 92154
(619) 575-1100
(50S) (51S) (11S) (200S) (RM)
(CV) (RP) (PF) (50C) (51C)
(11C) (200C) (DC) (50R)
(51R) (11R) (200R) (SW)
(MU)
CIRCLE 765
RO Associates Inc.
246 Caspian Dr
Sunnyvale, CA 94089
(408) 744-1450
(50S) (11S) (200S) (RM) (OF)
(CV) (MD) (50C) (10C) (11C)
(200C) (DC) (MO) (MI)
CIRCLE 766
Rantec Microwave
\& Electronics
9401 Oso Ave.
Chatsworth, CA 91311
(818) 885-8223
(50S) (51S) (500S) (11S)
(200S) (OF) (CV) (MD) (50C)
(51C) (500C) (11C) (200C)
(DC) (MO) (MI) (50R) (51R)
(500R) (11R) (200R) (LI) (SW)
(MU) (ML)
CIRCLE 767
Rantec Microwave
\& Electronics
1173 Los Olivos Ave.
Los Osos, CA 93402
(805) 528-5858
(500S) (10S) (11S) (OF) (MD)
CIRCLE 768
Rayovac Corp.
601 Rayovac Dr.
Madison, WI 53711-2497
(608) 275-3340
(AL) (LT) (SO)
CIRCLE 769
Reich Associates Inc.
Route 4, Box 4620
Lakehills, TX 78063
(512) 751-3220
(LA) (RM) (OF) (CV) (MD)
(50C) (51C) (500C) (10C)
(11C) (200C) (DC) (AC) (MI)
(50R) (51R) (500R) (10R)
(11R) (200R) (LI) (SW) (ML)
CIRCLE 770
Reliance Comm/Tec
Lorain Products
1122 F St.
Lorain, OH 44052
(216) 288-1122
(50S) (200S) (RM) (OF) (51C)
(200C) (DC) (50R) (200R)
(SW) (MU)
CIRCLE 771
Renata Batteries U.S.
Electronics Div.
990 North Bowser Rd. Ste. 900
Richardson, TX 75081
(214) 234-8091
(AL) (LT) (ME) (SO) (ZA)
CIRCLE 772

Resonant Power

Technology Inc.
3350 Scott Blvd., Bldg. 42/01
Santa Clara, CA 95054
(408) 982-0200
(50S) (51S) (11S) (200S) (OF)
(CV) (MD) (PF)

CIRCLE 773
Ritz Electronics Ltd.
196 Queens St. N.
New Dundee, Ontario, Canada

NOB 2EO
(519) 696-2616
(50S) (51S) (LA) (RM) (OF)
(CV) (UN) (50C) (DC) (AC) (니)
CIRCLE 774
SGS-THOMSON
Microelectronics
1000 E. Bell Rd.
Phoenix, AZ 85022
(602) 867-6100
(50C) (10C) (11C) (DC) (MO)
(50R) (10R) (11R) (200R) (LI)
(SW) (ID) (BT) (MF) (RE) (TH)
(PI) (PC)
CIRCLE 775

Sager Electronics

60 Research Rd.
Hingham, MA 02043
(617) 749-6700
(50S) (51S) (500S) (10S)
(11S) (200S) (LA) (RM) (OF) (CV) (UN) (DC) (AC) (MO)
(IC) (50R) (10R) (11R) (200R)
(LI) (SW) (MU) (ID) (AL) (CZ)
(LC) (LT) (ME) (NC) (SO)
(ZA) (ZC) (MF) (RE) (TH) (PI)
CIRCLE 776
Samsung Semiconductor Inc.
3725 N. First St.
San Jose, CA 95131-1708
(800) 423-7364
(50R) (10R) (ID) (BT) (MF)
(PC)
CIRCLE 777
Sanyo Energy Corp.
OEM Div.
2001 Sanyo Ave.
San Diego, CA 92173
(619) 661-6620
(AL) (LT) (NC) (NM)
CIRCLE 778
Schaeffer Inc.
200 Butterfield Dr
Ashland, MA 01721
(508) 879-8658
(50S) (51S) (RM) (50C) (51C)
(DC) (LI) (SW)

CIRCLE 779
Sem Tech Corpus Christi
121 International Blvd. Corpus Christi, TX 78406 (512) 289-0403
(50R) (10R) (11R) (200R) (LI)
(SW) (MU) (ID) (ML) (BT) ((PI) (PC)
CIRCLE 780
Semiconductor Circuits Inc. 49 Range Rd.
Windham, NH 03087
(603) 893-2330
(50S) (11S) (RM) (50C) (11C)
(DC) (MO) (IC)

CIRCLE 781
Semikron Inc.
11 Executive Dr., P.O. Box 66 Hudson, NH 03051
(603) 883-8102
(BT) (MF) (TH)
CIRCLE 782
(see p. 116 for key)
(continued on p. 114)

Somewhere in the world a Sanyo battery is being "designed-in" to a high performance application. Right now.

Industry leaders select industry leaders.
CADNICA. In 1964 Sanyo's proprietary technology led to a breakthrough battery that withstands continuous overcharging and overdischarging...the sealed, rechargeable nickel cadmium Cadnica.
LITHUM. Sanyo developed the tectnology for manganese dioxide compounds to be used in Lithium batteries which produced a cell with high voltage and high energy density characteristics.
CADNICA EXTRA. incorporates high-density electrode plates in a new concept design for 40% greater capacity than conventional batteries and 1 -hour charge capability via Sanyo's $-\Delta V$ voltage sensor changing method.
SOLAR. Sanyo leads the development of solar cells with the application of amorphous silicon for physical flexibility and the ability to be fabricated into large-area cells.

NiMH. Sanyo's proprietary electrode manufacturing process and built-in resealable safety vent lead the development of high capacity, high performance rechargeable, Nickel Metal Hydride batteries.
If you're developing an industry leading product right now, perhaps you should contact Sanyo...
right now.

SMALL 10-W CONVERTER HAS WIDE INPUT RANGE

Two input ranges of 10 to 33 V dc and 18 to 72 V dc are offered in the IPS 10 dc-dc converter. The $10-\mathrm{W}$ unit comes with one or two isolated outputs of

$\pm 5,12$, or 15 V dc. Packaged in a 2 -by-2-by-0.41-in. metal case, the converter delivers 80% efficiency with $500-\mathrm{V}$ rms input-to-output isolation.

Melcher Inc.

200 Butterfield Dr.
Ashland, MA 01721
(800) 828-9712

- CIRCLE 859

- 10-W DC-DC CONVERTERS HAVE 1 OR 2 OUTPUTS

Single or dual outputs are offered in the XWR Series of wide-input-range de-dc converters. The $10-\mathrm{W}$ units come in input ranges of 4.7 to 7 V dc, 9 to 18 V dc, and 18 to 72 V dc. A highfrequency, current-mode design yields fully regulated, low-ripple (25-

mV minimum) output power with efficiencies of up to 84%. Pricing starts at $\$ 120$ with delivery from stock.

Datel Inc.

11 Cabot Blvd.
Mansfield, MA 02048
(508) 339-3000

- CIRCLE 860

RUGGED PACKAGING HOUSES CONVERTERS

A packaging technology with inherent low-temperature gradients, wave solderability, and ruggedness distinguishes the DB2800 Series of dc-dc converters. The hermetic units are $22.5-\mathrm{W}, 12$ - and $15-\mathrm{V}$ converters that offer 33% more power at a $125^{\circ} \mathrm{C}$ case temperature than competitive units. There is no power derating over the full military temperature range. Pricing starts at $\$ 298$ in lots of 100 . Samples are delivered from stock with production quantities delivered in six weeks.

Apex Microtechnology Corp. 2895 W. Rudasill Rd.
Tucson, AZ 85741
(800) 421-1865

- CIRCLE 861

SINGLE-OUTPUT CONVERTERS POWER MANY CIRCUITS

The DCU1-5-WR series of single-output de-dc converters includes three models with one tightly regulated

output of 5,12 , or 15 V dc . The units accept inputs of 7 to 32 V ($5-\mathrm{V}$ output), 14 to 32 V (12-V output), and 17 to 32 V ($15-\mathrm{V}$ output). Each unit comes in a 1 -by-2-by- 0.38 -in. copper case for low-noise operation. Pricing is $\$ 82$ in quantities up to 24 .

Power General
 152 Will Dr.

Canton, MA 02021
(617) 828-6216

- CIRCLE 862

POWER-SOUREE MANUFAGUURERS

Shindengen America Inc. 5999 New Wilke Rd. Rolling Meadows, IL 60008 (708) 593-8585 (50S) (51S) (10S) (11S) (200S) (OF) (CV) (50C) (10C) (11C) (DC) (MO) (BT) (MF) (RE) (TH) (PI) (PC) CIRCLE 783	(51R) (500R) (10R) (11R) (200R) (LI) (SW) (MU) (ML)	Sola Electric a Unit of General Signal	Speliman Electronics 7 Fairchild Ave.	(200S) (RM) (UN) CIRCLE 799
	CIRCLE 786	1717 Busse Rd.	Plainview, NY 11803	
		Elk Grove Village, IL 60007	(516) 349-8686	Supertex Inc.
	Signetics Corp.	(708) 439-2800	(500S) (10S) (11S) (200S)	1225 Bordeaux Dr.
	811 E. Arques Ave.	(50S) (51S) (10S) (11S)	(LA) (RM) (CV) (RP) (500C)	
	P.O. Box 3409	(200S) (RM) (OF) (PR) (50R)	(10C) (11C) (DC) (MO)	(408) 744-010
	Sunnyvale, CA 94088-3409	(51R) (500R) (10R) (11R)	CIRCLE 795	
	(408) 991-2000	(200R)		CIRCLE 800
Shogyo International Corp. 287 Northern Blvd. Great Neck, NY 11021-4799 (516) 466-0911 (50S) (50C) (DC) (AC) (MO) (50R) (니) CIRCLE 784	CIRCLE 787	CIRCLE 791	Sprague Semiconductor 363 Plantation St.	Switching Power Inc.
	Silicon General In	Solidstate Cont	Worcester, MA 01613	
	Semiconductor Div.	875 Dearbor	(508) 7995-1300	$\text { Y } 11$
	11861 Western Ave.	Columbus, OH 43085	T) (PI) (PC)	0S) (200S) (OF)
	Garden Grove, CA 9264	(614) 846-7500		(50C) (DC) (50R) (200R) (SW)
	(714) 898-8121	(51S) (UN) (51R) (LI)	Square D/Topaz	CIRCLE 801
	(50R) (10R) (LI) (SW) (MU) (ID) (ML) (BT) (PI) (PC)	CIRCLE 792	9192 Topaz Way San Diego, CA 92123-1165	Switching Systems
Siemens Components Inc. Integrated Circuit Div. 2191 Laurelwood Rd.	CIRCLE 788	Sorensen Co. 5555 N. Elston Ave.	$\begin{aligned} & \text { (619) } 279-0111 \\ & \text { (11S) (200S) (UN) (11C) } \end{aligned}$	International 500 Porter Way
	Silicon Transistor Corp	Chicago, IL 60630	(200C) (AC) (11R) (200R)	Placentia, CA 92670
Santa Clara, CA 95054	BBF	(312) 775-0843	(SW)	(714) 996-0909
(408) 980-4547	2 Katrina Rd.	(50S) (51S) (500S)	CIRCLE 797	(50S) (200S) (OF) (PF) (50C
(MF) (PI) (PC)	Chelmsford, MA 01824	(11S)200S) (LA) (RM) (OF)		(11C) (DC)
CIRCLE 785	$\begin{aligned} & \text { (508) 256-3321 } \\ & \text { (BT) (MF) (RE) (TH) } \end{aligned}$	(CV) (RP) (MD) (500R) (LI) CIRCLE 793	Stanford Research Systems 1290 D. Reamwood Ave.	CIRCLE 802
Sierra West Power Systems 2615 Missouri Ave., Bldg. 5	CIRCLE 789	Speco/Emco Electronics	Sunnyvale, CA 94089 (408) 744-9040	TNR Technical Inc. 279 Douglas Ave.
Las Cruces, NM 88001	Silicon	1172 Rt. 109	(500S) (LA) (RM) (CV) (RP)	Altamonte Springs, FL 32714
(505) 522-8828	2201 Laurelwood Rd	Lindenhurst, NY 11757	CIRCLE 798	(407) 682-4311
(50S) (51S) (500S) (10S)	Santa Clara, CA 95054-1516	(516) 957-8700		CIRCLE 803
(11S) (200S) (RM) (OF) (CV)	(408) 970-5697	(50S) (LA)	Superior Electric Co.	CIRCLE 803
(RP) (MD) (PF) (50C) (51C)	(MF) (PI) (PC)	CIRCLE 794		
(500C) (10C) (11C) (200C)	CIRCLE 790		Bristol, CT 06010 (203) 582-9561	(see p. 116 for key)
				(continued on p. 116)

BMB STBATEGY -R Th: .o.

A Conference for Rocky Mountain BASIC Users

Rocky Mountain BASIC (RMB) is a generic name for HP's Series 200/300 Workstation BASIC and TransEra's HTBasic

Hewlett-Packard's HP BASIC Plus gives you ease of use and ultimate control of your workstation. HP's award-winning HP BASIC environment has helped more than 200,000 users worldwide to achieve unprecedented productivity since it was first introduced more than 10 years ago.

TransEra's HTBasic, on the PC platform, integrates your RMB applications with all of the industry standard PC hardware and software.

- Computiel Amed Tlest
- Dhatracquistion - Instrumint Control.
- Griapilics - Datrabasis - 3ID Soun Moobeling - Reminering The Most Important
Event of the Decade
for HP BASIC Users.
"HP and TransEra have revitalized the RMB market for the '90s. This conference is a must for anyone who uses RMB."
-Jim Bailey, conference organizer and noted RMB columnist.

Organized by the International User Association.

March 18-20, 1992 • Iong Beach, Falif.

CIRCLE 210 FOR U.S. RESPONSE CIRCLE 211 FOR RESPONSE OUTSIDE THE U.S.

POWER-SOUREE MANUFAGTURERS					
Tadiran Electronic	(10R) (11R) (200R) (SW) CIRCLE 812	Merrimack, NH 03054-0399 (603) 424-2410 (IC) (ID) (PI) (PC)	(508) 852-3674 (50S) (51S) (500S) (200S) (LA) (CV)		KEY
Industries				Power Supplies	
Seaview Blvd.	Toko America Inc. 1250 Feehanville Dr. Mount Prospect, IL 60056 (708) 297-0070 (50S) (10S) (11S) (RM) (OF) (CV) (PR) (50C) (10C) (11C)	CIRCLE 821	CIRCLE 830	Outp	
Port Washington, NY 11050					P1
(516) 621-4980		Universal Voltronics Corp. 27 Radio Circle Dr. Mount Kisco, NY 10549 (914) 241-1300 (500S) (200S) (LA) (RM) (OF)	Wall Industries Inc. 5 Watson Brook Rd. Exeter, NH 03833 (800) 321-9255	(51S)	51 to 500
(AL) (LT) (SO)				(500S)	Over 500
CIRCLE 804				$\begin{aligned} & \text { (10S) } \\ & (1115) \end{aligned}$	$\begin{aligned} & \text { Up to } 10 \mathrm{~W} \\ & 11 \text { to } 200 \mathrm{~W} \end{aligned}$
tronics C	(DC)			(200S)	Over 200 W
404 Armour St., P.O. Box 339	CIRCLE 813	(CV) (PR) (RP) (MD) (500C) (200C) (DC) (MO) (MI) (500R)	(11S) (200S) (OF) (CV) (50C) (51C) (500C) (10C) (11C)	Ty	
Davidson, NC 28036					Labo
(704) 892-8872	Toshiba America Electronic Components 9775 Toledo Way	(200R) (LI) (SW) (MU) (ML) CIRCLE 822	(200C) (DC) (MO) (IC) (MI) CIRCLE 831	(RM)	Rack mounti
(50S) (10S) (115) (200S) (OF)				(OF)	Open-frame OEM
CIRCLE 805				(CV)	onstant voltage/c
	Irvine, CA 92718 (714) 455-2000 (BT) (MF) (RE) (TH) (PI) (PC) CIRCLE 814	VSR Corp. 4609 S. 33rd PI.	Wayne Kerr Inc. 600 West Cummings Park		Prent ${ }_{\text {Precision ac output }}$
Tamura Corp. of America1150 Dominguez St.		Phoenix, AZ 85040	Woburn, MA 01801	(RP)	
		(602) 243-6200	(50S) (51S) (10S) (11S) (200S) (LA) (RM) (OF) (CV) (RP) (MD) (UN)	(MD)	Military designs
Carson, CA 90746-3518		(PR) (RP) (UN) (AC) CIRCLE 823		(UN)	Uninterruptible
$\begin{aligned} & (213) 638-1790 \\ & (50 S)(10 S)(11 S) \end{aligned}$	Total Power International 418 Bridge St.			(PF)	wer-factor-co
(CV) (50C) (10C) (DC) (A	Lowell, MA 01850	Valor Electronics 6275 Nancy Ridge Dr. San Diego, CA 92121-2245 (619) 458-1471 (50C) (10 C) (DC) CIRCLE 824	CIRCLE 832		
(IC) (50R) (10R) (11R) (20	(508) $453-727$				
(LI) (SW) (MU) (ID)	(50S) (10S) (11S) (200S)		Wells-Gardner Electronics 2701 N. Kildare Chicago, IL 60639	Power Converters	
CIRCLE 806 Tauber Electronics Inc. 4901 Morena Blvd. \#314 San Diego, CA 92117 (619) 274-7242 (51S) (500S) (UN) (AL) (CZ) (LC) (LT) (ME) (NC) (NH) (NM) (SO) (ZA) (ZC) CIRCLE 807	(RM) (OF) (50C) (11C) (DC) (AC) (MO) (IC) (50R) (10R) (11R) (LI) (SW) (MU) (ID) CIRCLE 815				
				O	
			(312) 252-8220		Up to
			(50S) (51S) (OF) (CV) (50		51 to 500 V
		Varta Batteries Inc. 300 Executive Blvd. Elmsford, NY 10523-1202 (914) 592-2500 (AL) (CZ) (LC) (LT) (ME) (NC) (NM) (SO) (ZA) (ZC) CIRCLE 825	(51C) (50R) (51R) (SW) CIRCLE 833	$(500 \mathrm{C})$ $(10 \mathrm{C})$	Over 500
	Transistor Devices Inc. 85 Horsehill Rd. Cedar Knolls, NJ 07927 (201) 267-1900 (50S) (51S) (500S) (11S) (200S) (RM) (CV) (PR) (RP)			(10C)	Up to 10 W
			Westcor Corp.485-100 Alberto Way		to
				Types	
			Los Gatos, CA 95032 (408) 395-7050		
Technology Dynamics Inc.	(MD) (UN) (PF) (50C) (51C)		(50S) (200S) (RM) (CV)	(AC)	Dc to ac
100 School St	(500C) (11C) (200C)	Vicor Corp. 23 Frontage Rd. Andover, MA 01810 (508) 470-2900 (50S) (51S) (11S) (200S) (RM) (MD) (PF) (50C) (51C) (10C) (11C) (200C) (DC) (MO) CIRCLE 826	(PF) (50R) (200R) (SW)		$A c$ to dc
Bergenfield, NJ 0	(AC) (MO) (MI) (50R		CIRCLE 834		
(201) 385-0500 (50S) (51S) (500S) (10S)	(500R) (200R) (LI) (MU) (ML)			(IC) (MI)	IC DIP Military des
(11S) (200S) (LA) (RM) (OF) (CV) (RP) (MD) (50C) (51C) (500C) (10C) (11C) (200C) (DC) (MO) (MI) CIRCLE 808	CIRCLE 816	(50S) (51S) (11S) (200S) (RM) (MD) (PF) (50C) (51C) (10 C)	5501 Los Robles	Power Regulators	
			Laursbad, CA 92083 (619) 727-0940		
	Tri-Mag Inc. 1601 N. Clancy Ct. Visalia, CA 93291 (209) 651-2222	(11C) (200C) (DC) (MO) CIRCLE 826			
			(50S) (51S) (11S) (200S) (RM)		51 to 500 V
CIRCLE 808		Viking Industrial Product	(OF) (CV) (MD) (50C) (10 C) (DC) (MO) (50R) (51R) (11R)	(500R)	Over 500 V
Teledyne Compo		729 Farm Rd.	(200R) (LI) (SW) (MU) (ML)	(10R)	Up to 10 W
1300 Terra	(11S) (200S) (RM) (OF)	Marlboro, MA 0	(10)	(118)	11 to 200 W
Mountain View, CA	(50C) (51C) (10C)	(508) 481-4600		(200R)	Over 2
(415) 968-9241	(DC) (AC) (MO) (SW)	(50S) (51S) (10S) (11S)	Yuasa-Exic	Typ	
(DC) (ID) (MF) (PC)	U.S. Elco Inc.	(200S) (OF) (CV) (PR) (50C) (51C) (10C) (11C) (200C) (DC) (AC) (50R) (LI) (SW) CIRCLE 827	9728 Alburis	(LI)	Linear
CIRCLE			Santa Fe S	(SW)	Switching
			(213) 949-42	(MU)	Modula
Teledyne Microelectronics 12964 Panama St.	2930 Scott Blva.Santa Clara, CA 9505		(LC) (NC) CIRCLE 836	(ID)	IC DIP
		CIRCLE 827		(ML)	Milary
Los Angeles, CA 90066	(408) 980-5144	Viteq Corp. 10000 Aerospace Rd			
(213) 822-8229	$\begin{aligned} & (50 S)(10)(50 C)(10 C)(D C) \\ & \text { (SW) (MU) } \\ & \text { CIRCLE } 818 \end{aligned}$			Batteries	
(50S) (51S) (10S) (11S)		10000 Aerospace Rd. Lanham, MD 20706 (301) 731-0400 (51S) (200S) (PR) CIRCLE 828			
(200S) (CV) (RP) (MD) (50C)			Stationary Div. 645 Penn Ave.		
(51C) (10C) (11C) (200) (DC)			Reading, PA 19601		Alkaline Carbon zin
(MO) (MI) (50R) (51R) (10R)	USSNA/U.S. Power		(215) 378-0333 (LC) (NC)		Lead acid
(11R) (200R) (LI) (SW) (MU)	21517 Ocean Ave.		CIRCLE 837	(LT)	Lead acid
CIRCLE 8				(ME)	Mercury
	(213) 316-9984 (50S) (51S) (500S) (10S) (11S) (200S) (LA) (RM) (OF)	3460 Great Neck Rd. N. Amityville, NY 11701	Zenith Electronics Corp.	(NC)	Nickel cadm
Texas Instruments In		(516) 842-2772 (50S) (51S) (500S) (10S) (11S) (200S) (RM) (OF) (CV) (RP) (50C) (51C) (500C)		(NH	Nickel hydrogen Nickel metal hydr
	(11S) (200S) (LA) (RM) (OF) (CV) (UN) (LI) CIRCLE 819		1000 Milwaukee Ave. Glenview, IL 60021 (708) 391-8510 (50S) (51S) (11S) (200S) (OF)	(50)	
Dallas, TX 75380-				(SO)	Silver oxide
(214) 997-5453				(ZA)	
(50R) (10R) (11R) (LI) (SW)	Unipower Corp. 2981 Gateway Dr. Pompano Beach, FL 33069 (305) 974-2442	(10C) (11C) (200C) (DC) (MO) (50R) (51R) (500R) (10R)			Zinc chloride
(ID) (ML) (BT) (PI) (PC)			(50S) (51S) (11S) (200S) (OF) (CV)		
CIRCLE 8		(11R) (200R) (LI) (SW) CIRCLE 829	CIRCLE 838	Power Semiconductor	
	$\begin{aligned} & \text { (305) 974-2442 } \\ & \text { (50S) (200S) (RM) (CV) (UN) } \end{aligned}$			(BT)	
50 Emjay Blva.					Bipolar transisto MOSFETs
Brentwood, NY 117	CIRCLE 820	Walker Magnetics Group	Bedford, NH	(RE)	
(516) 231-3366		Rockdale St.	(603) 623-8888		
(50S) (51S) (10S) (11	Unitrode Integrated Circuits UICC Div. 7 Continental Blvd.	Worcester, MA 01606	(51S) (200S) (RM) (OF) (CV) (PR) (RP) (UN) (PF) (50C) (200C) (DC) (AC) CIRCLE 839	$\begin{aligned} & (\mathrm{PI}) \\ & (\mathrm{PC}) \end{aligned}$	Power ICs Power-control ICs
(200S) (RM) (OF) (CV) (RP)					
(PF) (50C) (51C) (10C) (11C) (200C) (DC) (MO) (50R) (51R)					
(200C) (DC) (MO) (50R) (51R)					

Call toll-free 1-800-255-2550 for the P\&B authorized distributor, sales representative or regional sales office serving your area.

T90/T91 relays are well thought of in lots of high places.

Reliable 30A switching

Sophisticated elevator controls are typical of the sort of applications for which our T90/T91 series relays receive high marks. These low-cost relays squeeze dependable, 30 amp switching capability into a compact package which can be either PC board or panel mounted.

Options expand versatility

 With AC or DC coils in a range of voltages, high temperature insulation and magnetic blowout options, T90/T91 relays are well-suited for many applications. Their low coil power requirement makes these relays ideal for appliances, industrial controls, power supplies, computer peripherals and HVAC equipment. And P\&B T90/T91 relays are available off-theshelf from our network of authorized stocking distributors.
Experience the P\&B advantage

 Contact us today for detailed information on T90/T91 series relays.Potter \& Brumfield Inc. 200 S. Richland Creek Dr. Princeton, IN 47671-0001 Fax (812) 386-2335

Ready to make the jump to surface mount?

GONU:RTERIS

DC-DC UNITS OFFER ULTRA-HIGH DENSITY

Over $30 \mathrm{~W} / \mathrm{in}^{3}{ }^{3}$ power density is offered by the UHD Series dc-dc converters, a tenfold improvement compared with conventional models which typically deliver 3 -to- 5 -W densities. All models in the series measure 3.8 by 2.4 by 0.635 in . and can be plugged directly into pe boards. Output options are $3.3,5,6,12,15,24$, and 28 V dc. The single-output units in parallel or current-sharing modes. Pricing starts at $\$ 139$ in lots of 250 .
Call for delivery.

Lambda Electronics

515 Broad Hollow Rd.
Melville, NY 11747
(516) 694-4200

- CIRCLE 863

STANDARD CONVERTERS COME FROM CUSTOM HOUSE

Long known for its custom de-dc converters, Shindengen America is now rolling out a line of standard dc-dc products. The family includes both high- and low-power models. There's $1-, 2-$, and $3-W$ units for small distrib-uted-power tasks and analog-digital conversion circuits, mid-level 5-to-50W models for telecommunications, and 100 -to- $150-\mathrm{W}$ units for computer applications. Call for pricing and delivery.

Shindengen America Inc.

2649 Townsgate Rd., Suite 200
Westlake Village, CA 91361
(800) 634-3654

- CIRCLE 864

- RECORD QUIET LEVEL

 FOR DC-DC CONVERTERThe military's MIL-STD-461C CE03 conducted-emission standard is met without external components by the MQO Series dc-dc converters. The 16.5-W, board-mountable units integrate four individual outputs, an EMI filter, and a user-programmable hold-up function that protects against power failure. The independently regulated outputs are rated at $+5,-5$, and either ± 12 or $\pm 15 \mathrm{~V}$ dc from a $28-\mathrm{V}$ input bus. Availability is scheduled for the first quarter of 1992. Call for pricing.

Interpoint Corp.

P.O. Box 97005

Redmond, WA 98073-9705
(206) 882-3100

CIRCLE 865

UP TO 1000 V POUR FROM TINY CONVERTER

Up to 1000 V dc output is available

 from the 0.5 -in.-tall Series AV dc-dc converter. The 36 -model series delivers 1.25 W at $70^{\circ} \mathrm{C}$ ambient temperatures. Input voltages are 5, 12, 24, and 28 V dc. Input-to-output isolation is $100 \mathrm{M} \Omega$ at 1000 and 1500 V dc. The series comes in an ultra-miniature encapsulated package that weighs just 4 grams. Call for pricing and delivery.
Pico Electronics Inc. 453 N. MacQuesten Pkwy. Mount Vernon, NY 10552
 (800) 431-1064

- CIRCLE 866

LOW-VOLTAGE MODULES OFFER TIGHT REGULATION

A line of low-voltage power modules offer system designers power-conservation solutions in a range of computer, telecom, and industrial applications. The MH Series operates from inputs of 4.5 to 5.5 V . The MA Series accepts from 10 to 14 V . Both series have maximum power ratings of 5 and 10 W and offer precisely regulated de outputs at high efficiencies. Full input-to-output isolation permits polarity versatility. The 5 - and $10-\mathrm{W}$ models cost $\$ 39$ and $\$ 45$, respectively, for 500 pieces. Delivery is from stock.

```
AT\&T Microelectronics
Dept. 52ALO40420
555 Union Blvd.
Allentown, PA 18103
(800) 372-2447
```


- CIRCLE 867

DIP DC-DC CONVERTER POWERS ETHERNET LANS

The LPR3XX Power Convertible series is specifically designed for highvolume, low-cost local-area-network applications and provides isolated power for LAN-transceiver devices. The series operates from inputs of 5 or 12 V dc and supplies an isolated -9 V dc output. The unit comes in a 24 pin DIP for upgrading of existing systems. Pricing is $\$ 6.40$ in lots of 1000 . Delivery is from stock to four weeks.

Burr-Brown Corp.
P.O. Box 11400

Tucson, AZ 85734
(800) 548-6132

- CIRCLE 868

LAPTOP LOAD SWITCH TAKES LOGIC SIGNALS

A logic-level load switch overcomes the problems of high-side load switching in portable computers. The Si9405DY comes in an SO-8 package for use in space-limited laptop and notebook machines. It doesn't

require the extra drive circuitry typical of n-channel high-side switches and has an extremely low on-resistance (0.12Ω) even when operating from logic signals. The low on-resistance means more power is available to the load. Pricing is $\$ 0.95$ in large OEM quantities. Samples are available now with production quantities in eight to 12 weeks.

Siliconix Inc.
 2201 Laurelwood Rd.
 Santa Clara, CA 95054
 (800) 554-5565, ext. 1400
 - CIRCLE 869

SMART POWER MOSFETS OFFER VOLTAGE CLAMPING
Voltage-clamping capability is now available in the MLP1N06CL and MLA1N06CL logic-level MOSFETs. The SmartDiscrete monolithic TMOS devices have integrated onchip current limiting, drain-to-source

voltage clamping, and gate-voltage protection. The voltage-clamping capability protects the device against unclamped inductive-switching transients and overvoltage-stress conditions. Pricing starts at $\$ 1.48$ in lots of 1000. Samples and small quantities are from stock.

> Motorola Inc.
> 5005 E. McDowell Rd.
> Phoenix, AZ 85008
> (602) 244-3370
> -CIRCLE 870

MONOLITHIC MOSFET IS FULLY PROTECTED

The industry's first monolithic, fully protected MOSFET provides temperature and short-circuit protection using n-channel, enhancement-mode DMOS technology. The TOPFET's integrated design eliminates the need for external components as it guards against junction temperatures above $150^{\circ} \mathrm{C}$, shorts, overvoltage for repetitive switching of inductive loads, input ESD problems, and reverse-battery situations. A $50-\mathrm{m} \Omega$ unit is available now with others by the second quarter of 1992. Pricing is about $\$ 2.25$ in lots of 1000 . Delivery is in 12 to 16 weeks.

Philips Components
 2001 W. Blue Heron Blvd. Riviera Beach, FL 33404
 (800)447-3762
 - CIRCLE 871

BATTERY-CHARGER ICs FAILSAFE NICAD USE

Nickel cadmium and nickel metal hydride batteries can be charged with no risk of overcharge and potential explosion with the TC675 and TC676 smart battery-charger ICs. The charge cycle ends in one of two ways: an external thermistor input stops it when a selected battery-temperature rise is achieved, or a built-in timer limits charging time to 90 minutes. Packaging is in 14 -pin DIPs, 14 -pin ceramic DIPs, and 16 -pin (wide) small-outline ICs. Pricing is $\$ 7$ in lots of 10,000 . Samples are available from stock.

Teledyne Components

P.O. Box 7267

Mountain View, CA 94039-7267
(415) 968-9241

- CIRCLE 872

- IC CONTROLS UP TO

 FOUR POWER SUPPLIESA four-channel, switching-regulator control IC is capable of independently controlling up to four power supplies. The MB3785 IC is targeted for use in portable devices such as notebook computers and camcorders. Each of the four channels uses pulse-width-modulation control circuitry to ensure $\pm 1 \%$ regulation and accuracy. Each channel also operates at a maximum frequency of 1 MHz . The 48-pin quad flat pack device goes for $\$ 2.99$ in lots of 1000 . Samples are
from stock.
Fujitsu Microelectronics Inc. Integrated Circuits Div. 3545 N. First St. San Jose, CA 95134-1804 (800) 642-7616

```
-CIRCLE }87
```


SWITCHING REGULATOR RUNS AS DC-DC CONVERTER

A monolithic, bipolar switching-regulator subsystem IC intended for use as a dc-dc converter is available. The KA34063AN device integrates a temperature-compensated bandgap reference, a comparator, a con-

trolled-duty-cycle oscillator with an active peak-current limit circuit, a driver, and a high-current output switch. The device operates from a 3-to- $40-\mathrm{V}$ input and has an outputswitch current of up to 1.5 A . Pricing is $\$ 0.65$ in lots of 1000 .

Samsung Semiconductor

3725 N. First St.
San Jose, CA 95134-1708
(800) 423-7364

-CIRCLE 874

- PWM-CONTROL IC

 OPERATES AT 100 MHZA phase-shifted, pulse-width-modulation (PWM) control IC combines the advantages of resonant and PWM control for switching power supplies. The UC3875 controllers implement control of a bridge power stage by phase shifting the switching of one half-bridge with respect to the other. This allows constant-frequency PWM in combination with resonant, zero-voltage switching for high efficiency at high frequencies. In lots of 1000 , the commercial grade UC3875N goes for $\$ 4.50$. Small quantities are delivered from stock.

[^8]
Get your technology news where the rest of the world does... first!

Electronic Design: Leader of the pack since 1952

Electronic Design is the industry's most-often quoted electronics publication. There's a good reason for this: Electronic Design is always the first to report on and describe new technologies as they occur. We're proud of this reputation.

Lots of engineering publications talk about new products, new issues, and new technology. New items are the essence of news reporting.

But when you read about new technology or new implementations of technology in an electronics magazine - any electronics magazine - it's likely that the story was first discussed in Electronic Design.

Why do leading manufacturers select Electronic Design as the vehicle for their significant product introductions? Because they know that Electronic Design is the ideal environment for their important debuts. Each issue contains the latest information on tools and techniques to help shorten the design cycle, helping our readers to incorporate the latest products and technology into their designs.

Proven leadership in circulation and editorial makes Electronic Design the source of critical design
information for 165,000 global readers. And we're first with the information you need in your job.

After all, why should you wait and read about it somewhere else tomorrow?

> YES!
> I want my
> technology news as it happens.

Elempaiclexin

BITIERIIES

REPLACEABLE BATTERIES MEAN USER CONVENIENCE

When Fujitsu Network Transmission wanted to enhance the convenience of using its Pocket Commander Stylus cellular phone, it turned to user-replaceable Duracell AA-size alkaline batteries. The alkaline cells make the unit truly portable and free users from the burden of carrying
spare battery packs. Talk time with the alkaline cells (80 minutes) is comparable to that of standard rechargeable cells. Call for volume pricing and delivery.

Duracell Inc.

Berkshire Industrial Park
Bethel, CT 06801
(800) 431-2656

- CIRCLE 876

Programmable Linear Phase Filters for A / D Prefilitering Applications

848DOW Series Combines Constant Delay of a Bessel Filter With The Sharp Attenuation of a Butterworth Filter.

Features:

- 8 pole, 6 zero linear phase lowpass filters
- Digitally programmable corner frequency
- 8 bit (256:1) tuning ratio
- Internally latched control lines to store frequency selection data
- Linear phase response to minimize phase distortion
- Sharp roll-off for anti-aliasing
- Plug in, ready to use, fully finished, filter module
- Five frequency ranges to 51.2 kHz

Other Filter Products available:

- Elliptic • Programmable • Fixed Frequency
- Instrumentation • Custom Designs

For more information, please call us at
508-374-0761.
an

TWO-CELL LITHIUM BATTERY BACKS UP COMPUTER MEMORIES

A two-cell encapsulated lithium battery is available for computer-backup applications. The 2ER6K batteries offer a $1900-\mathrm{mAh}$ capacity and come in 6.8 - (containing resistor and diode) and 7.2-V (diode-only) formats. The cells can be customized with various lead-wire connector configurations as well as with different values of resistors and diodes. Call for pricing and delivery.

Maxell Corp. of America

22-08 Route 208
Fair Lawn, NJ 07410
(201) 796-8790

- CIRCLE 880

- RECHARGEABLE LAPTOP, PHONE CELLS BOOST RUN TIMES BY UP TO 70\%

The Ultramax line of rechargeable nickel cadmium batteries increase run times as much as 50 to 70% in products such as cellular phones and portable computers. The family includes AA cells with $800-\mathrm{mAh}$ capacity, $2 / 3 \mathrm{~A}$ cells at 600 mAh , Cs size at 1800 mAh , and D cells at 5000 mAh, to name a few. All cells accept 3 -to-5-hour quick charging and 1 -hour fast charging. Samples are available now. Call for pricing and delivery.

Gates Energy Products Inc.
Inquiry Fulfillment Dept.
P.O. Box 667850

Charlotte, NC 28266-9961
(800) 67-POWER

- CIRCLE 881

LEAD-ACID CELLS' CONSTRUCTION MEANS IMPROVED CAPACITY BY 10\%

Thanks to construction improvements, three sealed leadacid batteries offer 10% more capacity than earlier models in the same form factors. The 6-V, 12-Ah LCR6V12P supports high discharge rates in UPS and emergencylighting systems. The 6-V, 7.2-Ah LCR6V7.2P and the 12 V, 7.2-Ah LCR12V7.2P fill both of those applications and add engine-start tasks. Delivery is in 10 to 12 weeks.

Panasonic Industrial Co.

OEM Battery Sales Group
Two Panasonic Way
Secaucus, NJ 07094
(201) 348-5266

- CIRCLE 882

- 9-V, 950-MAH LITHIUM BATTERY LASTS 10 YEARS IN BACKUP ROLE

A life expectancy of up to 10 years is predicted for the model CR 9-V lithium battery. The manganese dioxide battery offers 950 -mAh capacity and is built from cells with 25% more energy density than conventionally built LiMnO^{2} cells. Applications include memory backup, instruments, and remote controls. Pricing is $\$ 9.99$ for lots up to 1000 . Delivery is in three to five weeks.

Varta Batteries Inc.
300 Executive Blvd.
Elmsford, NY 10523
(914) 592-2500

- CIRCLE 883

Plastics Engineering Company does - and more ...

- "For Excellence in Quality and Just-In-Time Delivery" A Best Supplier Award from Philips Singapore PTE Ltd.
- "For Quality Performance, On Time Delivery and Attempting to Contain Prices"
A Quality First Award from Eaton Corporation, Logic Control Diu.
- "For Plenco's Quality Assurance Program" A Certified Supplier Award from Johnson Controls, Inc.
... Just a few examples of the many customer awards earned through the hard work of Plenco employees.
Quality and ongoing research are essentials we provide our customers, and for nearly sixty years, the people of Plastics Engineering Company have been helping Product Designers worldwide produce World Class products efficiently and economically. It is the foundation of our business and a commitment we stand behind.
Why not involve Plastics Engineering Company at the beginning of your next project? We can help you achieve your desired levels of Quality, Product Performance and Total Cost Savings just as we have for so many other World Class customers.
Call (414) 458-2121 for information or write us at P.O. Box 758, Sheboygan, WI 53082-0758.

PLASTICS ENGINEERING COMPANY
Sheboygan, Wisconsin 53082
Since 1934

HIGH-SPEED CONNECTOR KEEPS CROSSTALK LOW

The Quiet Zone SC modular coaxial cable assemblies offer the highest signal fidelity available in 0.025 -in. square post packages. Over $90 \% \mathrm{~V}_{\mathrm{p}}$ signal speeds and 0.5% crosstalk at sub-nanosecond rise times is featured. A patented 360° shielding technique completely shields the signal line, both within the cable and through the connector. This keeps insertion loss to around 2 dB at 1 GHz for $10-\mathrm{ft}$ lengths. Call for pricing.
W.L. Gore \& Associates

555 Paper Mill Rd.
Newark, DE 19714
(800) 638-7775

- CIRCLE 884

2-MM PCB CONNECTORS REPLACE $0.100-\mathrm{IN}$. TYPES

A line of $2-\mathrm{mm}$ interconnects are exact replacements for standard $0.100-$ in. center types. The smaller $2-\mathrm{mm}$ units ($0.79-\mathrm{in}$. centers) do not change

any pc-board layout parameters. The header, socket, and shunt versions of these units have been tooled to accommodate the new design. Singleand double-row configurations are available. Volume pricing is $\$ 0.02$ per contact. Small quantities are delivered from stock.

Comm Com Connectors Inc.

4111 Ocean View Blvd.
Montrose, CA 91020
(818) 957-2018

- CIRCLE 885

ONE-PIECE CONNECTOR LINKS FIBER OPTICS
Fewer parts in the 308 Series SC fi-ber-optic connectors means simple field or factory termination in less time. The single-mode connector's grip has a posi-latch action for en-

hanced mating retention. Zirconia or alumina-ceramic ferrules are available configured for PC polishing. Call for pricing and delivery.

Methode Electronics Inc.
Fiber Optic Products Div.
7444 W. Wilson Ave.
Chicago, IL 60656
(800) 323-6858

- CIRCLE 886

FINE-PITCH IDCs

 SAVE SPACE IN SYSTEMSThe reliability of mass termination combines with the space savings of a $0.050-$ by- $0.100-\mathrm{in}$. mating interface in the System 311 fine-pitch IDC interconnects. The female socket features a dual-beam coined contact that increases reliability. The male header features vertical lock and eject configuration. Call for pricing and delivery.

Thomas \& Betts Corp.

Electronics Div.
P.O. Box 24901

Greenville, SC 29616-2401
(800) 344-4744

- CIRCLE 887

TWO HEADER VERSIONS HAVE BREAK-AWAY KEYS

Both shielded and unshielded versions of the Durabak headers feature break-away keys in four- and five-key schemes. The units mate with 0.100 -by- 0.100 -in. receptacle connectors, including AMP-Latch cable connectors. Riveted top-release latches provide superior retention and strength. Call for pricing and delivery.

AMP Inc.

P.O. Box 3608

Harrisburg, PA 17105-3608
(800) 522-6752

- CIRCLE 888

IDC CABLE ASSEMBLIES OFFER 0.050-IN. CENTERS

A micro IDC system for mating with terminal strips on 0.050 -by- 0.100 -in. centers is available. Socket (female) strips in the FCSD Series feature a dual-beam, tuning-fork-style BeCu contact. Terminal (male) strips in the FCMD Series also feature BeCu contacts. Both male and female strips come in from five to 40 positions per row. Each three-prong contact makes two gas-tight links with each wire. Pricing starts at $\$ 0.06$ per contact. Delivery is in two weeks.

Samtec Inc.

P.O. Box 1147

New Albany, IN 47151-1147
(800) SAMTEC-9

- CIRCLE 889

PROGRAMMING CONVERTER TURNS SOJ INTO DIP

The 32SJ4/D6 programming converter accepts a device packaged in a 32 -pin, 50 -mil-pitch, 400 -mil-wide SOJ package and changes its footprint to a 100 -mil DIP for insertion into a pro-

grammer's socket. The converters can also be used directly on prototyping boards. Unit price is $\$ 85$. Delivery is from stock.

EDI Corp.
P.O. Box 366

Patterson, CA 95363
(209) 892-3270
-CIRCLE 890

SIEMENS

A capacitor can tip the balance.

Specify Siemens and be secure.

That's right. A so-called "commodity component" can tip the balance between a finished product that works and one that doesn't. Siemens capacitors offer quality and reliability you can depend on.
Your design hangs in the balance. For the highest quality at highly competitive prices, specify Siemens capacitors:

- MKT (Metalized Polyester)
- Film (Polyester, Polypropylene)
- Ceramic (Chip)
- Aluminum Electrolytic
- Power Capacitors

Call 1-800-888-7729
for a quote!
(Or fax us at 1-908-632-2830.)

PASSIVES

MILITARY-TYPE CAPS JOIN CERAMIC TRIMMERS

Military-type 7 -by- $9-\mathrm{mm}$ models have been added to a line of ceramicdielectric trimmer capacitors. The GKBxxx 31 and GKBxxx 37 units are offered in seven capacitance ranges from 2 to 8 pF to 7 to 70 pF . Silverplated terminals yield excellent solderability, while phosphor-bronze ro-
tor terminals provide maximum durability. Prices start at $\$ 0.75$ in lots of 1000. Delivery is stock to eight weeks.

Sprague-Goodman Electronics Inc. 134 Fulton Ave. Garden City Park, NY 11040 (516) 746-1385
- CIRCLE 891

High Voltage 20c/Volt

The PS300 programmable power supply series provides up to 5 kV at 25 Watts for laboratory and ATE applications. These supplies offer a wide range of features including programmable current and voltage limits, selectable overload response, and short circuit protection.
Dual LED displays monitor both output current and voltage, while a third display allows error-free front panel entry. A full GPIB interface is available for ATE systems.
The combination of features, price, and performance make the PS300 series the perfect choice for laboratory or systems use.

$\$ 1150.00$

PS350	0 to 5 kV
PS325	0 to 2.5 kV
PS310	0 to 1.25 kV

25 Watts output power
0.001% regulation
0.1\% accuracy

Low output ripple
Dual polarity
Voltage and
current readouts
GPIB Interface
$\$ 495$

> Stanford Research Systems
> 1290 D Reamwood Avenue, Sunnyvale, CA 94089 TEL (408) 744-9040 FAX 4087449049 TLX 706891 SRS UD

SMT RESISTOR NETWORKS ARE THERMALLY STABLE

Temperature coefficients of better than $\pm 200 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ are offered by two families of surface-mounted arrays and networks for terminating and decoupling ECL circuitry. The CRM Series thick-film resistor ar-

rays are comparable in size to discrete $1 / 8$-W resistors. The MRGF Series resistor networks come in 16 -pin SOIC packages in values from 33Ω to $2.2 \mathrm{M} \Omega$. Pricing in lots of 10,000 starts at $\$ 0.80$ for the CRM Series and $\$ 0.30$ for the MRGF Series. Delivery is in eight weeks.

Raltron Electronics Corp.
2315 N. W. 107 th Ave.
Miami, FL 33182
(305) 593-6033

- CIRCLE 892

PANEL-MOUNT LED PUSHES OUT LAMPS

The first true LED version of an 11/ 16 -in. incandescent lamp for panel mounting is represented by the $\mathrm{Se}-$ ries 557 super-bright LED array. The unit offers the light intensity of incandescents and the long life of LEDs. Multiple-LED construction and a proprietary lens design result in high-tech styling, uniform illumination, and a wide viewing angle. The indicators come in red, green, and amber and in $4.3-, 5-, 12$-, and $28-$ V versions. A bicolor (red-green) version comes in 5 V. Pricing is around $\$ 4$ in lots of 1000 .

Dialight Corp.

Dept. P557
1913 Atlantic Ave.
Manasquan, NJ 08736
(908) 223-9400

- CIRCLE 893

SMT TERMINATOR NETWORKS AID 4-MBIT DRAM USERS

A solution to the challenge of memo-ry-damping applications with 4 -Mbit DRAMs is offered by the 4800P Series of terminator networks. Rather than using discrete chip resistors,

which eat up board space, the 4800 P networks cut board-space requirements by more than 50%. The gullwing devices mount on 0.350 -in.-wide land patterns. Call for pricing. Delivery of samples is in eight weeks.

Bourns Networks Inc.
1400 North 1000 West
Logan, UT 84321
(801) 750-7200

- CIRCLE 894
- MINI SMD OSCILLATOR OFFER HCMOS TECHNOLOGY
The MM Series of quartz-crystal oscillators offer HCMOS technology and an AT-strip crystal in a miniature, ceramic surface-mounted package. The unit's output is TTL/ HCMOS-compatible from 1.5 to 40 MHz (A version) and HCMOS-compatible from 40.1 to 60 MHz (G version). Tristate output is optional in both versions. Call for pricing and delivery.

M-tron Industries Inc.

P.O. Box 630

Yankton, SD 57078
(800) 762-8800

- CIRCLE 895

∇ BRIGHT LED CLUSTERS LIGHT UP DISPLAY BOARDS

A line of multicolored LED clusters is available for use in outdoor display boards. The units, which are clearly readable in daylight from up to $1 / 3$ of a mile, are contained within a rain-water-proof structure and feature a wide viewing angle, low power consumption, and freedom from maintenance. Call for pricing and delivery.

II Stanley Co. Inc.
2661 Gates Ave.
Irvine, CA 92714
(800) LED-LCD1

- CIRCLE 896

STRINGS OF BRIGHT LEDS GIVE LIGHT BY THE INCH

A string of tiny, closely spaced brightLEDs is surface-mounted on a thin, extremely flexible 0.23 -in.-wide plastic strip. The Striplight LED product is made up of continuous chains of low-profile, $1.5-\mathrm{in}$. segments. Each segment contains five LEDs wired in series (segments are
in parallel) and spaced on 0.27 -in. centers. A 6-in. Striplight can be bent into a 3-in.-diameter circle or twisted 360° across its length. Call for samples, pricing, and delivery.

Ledtronics Inc.
4009 Pacific Coast Hwy.
Torrance, CA 90505
(213) 549-9995

- CIRCLE 897

SIEMENS

Core magic.

Siemens ferrites... Siemens ferrites perform like magic for your most
the core of good design. demanding applications.
For ISDN interface, our T37 material offers high permeability and excellent frequency response. Our new low profile cores deliver performance and efficiency in a compact design.
For $1 \mathbf{M H z}$ power supplies, Siemens N49 material operates at lower loss and higher operating temperatures-so you can design smaller transformers at the same power.
And for all power applications, Siemens magnetically optimized EFD (Economic Flat Design) Series offers today's most efficient shape. And many shapes are available in surface mount configurations. Call Siemens Components at SCl-1014

1-800-888-7729 for our latest literature pack.

1/2-IN. ROTARY SWITCH CUTS INSTALLED COST

A 1.2-in.-diameter rotary switch is capable of withstanding wave soldering and board-cleaning techniques. The slight premium for the Series $50 / 51 \mathrm{~T}$ switch is more than offset by the savings in assembly costs. Solder-lug terminals and wa-ter-tight panel seals are optional. Pricing is $\$ 7.50$ in lots of 100 for a 1deck, 1-pole switch. Delivery is in four weeks.

Grayhill Inc.

P.O. Box 10373

LaGrange, IL 60525
(708) 354-1040
\rightarrow CIRCLE 898

SEALED TOGGLE SWITCH TAKES TOUGH CONDITIONS

Designed to meet severe-environment application needs, the NT Series toggle switch features moldedin elastomer seals from lever to bushing and cover to case. Options include one-, two-, or four-pole cir-

cuitry; screw, quick-connect, or solder terminations; and momentary or maintained action. Pricing ranges from $\$ 11.59$ to $\$ 26.44$ and delivery is in four to six weeks.

Micro Switch
11 W. Spring St.
Freeport, IL 61032
(815) 235-6600

SUBMINI SMD RELAY SIPS POWER SLOWLY

With 140 mW of nominal power consumption, the G6H-2F submini sur-face-mounted relay needs less power to energize than earlier models. The 2 Form C unit comes in coil voltages of $3,5,6,9,12$, and 24 V dc and can switch up to 1 A . It also conforms to FCC Part 68 surge-withstand requirements of 1.5 kV . List price is $\$ 2.45$ in lots of 1000 .

Omron Electronics Inc.

One E. Commerce Dr.
Schaumburg, IL 60173
(708) 843-7900

- CIRCLE 900

2 GHz
 Micro Miniature Reed Relays

(0.255 "W x 0.550 "L)

Coto Wabash's 9400 Series surface mount package offers you the world's most compact reed relay package currently available. A 50Ω coaxial shield makes this relay suitable for switching applications up to 2 GHz . The 9400 Series offers very low capacitance, excellent RF Characteristics, and is available with "J", Gull, Axial, or Radial Leads. The thermoset epoxy package withstands $430^{\circ} \mathrm{F}$ reflow soldering which makes this relay compatible with surface mounting manufacturing techniques. Call or write to us today for a free full line "Partners is Design" catalog.

A Kearney-National Company
55 Dupont Drive, Providence, R.I. 02907
Tel: (401) 943-2686 Fax: (401) 942-0920

Put Our List On Your List

Our list can help you do the other things you have on your list. Such as buy a car. . . estimate social security. . . start the diet. . . check out investments.

Our list is the Consumer Information Catalog. It's free and lists more than 200 free and low-cost government booklets on employment, health, safety, nutrition, housing, Federal benefits, and lots of ways you can save money.

So to shorten your list, send for the free Consumer Information Catalog. It's the thing to do.

Just send us your name and address. Write:

Consumer Information Center
Department LL
Pueblo, Colorado 81009

CIRCLE 100 FOR U.S. RESPONSE
CIRCLE 101 FOR RESPONSE OUTSIDE THE U.S.

SOLID-STATE RELAYS SUIT 150/270 V DC TASKS

Designed specifically for power control and switching applications, the RD and VD families of solid-state power controllers are designed for $150 / 270-\mathrm{V}$ de applications. Optical isolation between load and control protects the control circuit from load-side surges and transients. The relays are available with W - or Y-level screening per MIL-R-28750. Volume pricing starts at $\$ 370$. Prototype quantities are available from stock to 14 weeks.

Teledyne Solid State

12525 Daphne Ave.
Hawthorne, CA 90250
(213) 777-0077

- CIRCLE 901

TELECOM RELAY MEETS BELLCORE SPECS

The Bellcore specification requiring 2500 -V surge isolation for telecommunication relays is met by the FBR12 relay. With dimensions of 10 mm high by 7.5 mm wide by 15 mm

long, the unit offers a 43% size reduction in pc-board area compared with earlier telecom relays. Coil power has also been reduced to 140 mW compared with the typical range of 200 to 500 mW . Maximum switching voltage for the 12 -pin DIP unit is 150 V dc and 125 V ac. Maximum current is 1 A . List price is $\$ 6$. Volume production is scheduled for the first quarter.

Fujitsu Microelectronics Inc.
3545 N. First St.
San Jose, CA 95134-1804
(408) 922-9000

- CIRCLE 902

SEALED TOGGLE SWITCH DISSIPATES ESD TO 20 KV

Conductive-plastic actuator bushings enable the E and ET Series sealed toggle switches to dissipate up to 20 kV of ESD from the toggle actuator to ground before any measurable current shows up at the ter-

minals. A variety of configurations include 18 pc-mounted styles; miniature and submini sizes; eight switching functions; and up to 3 poles. Prices start at $\$ 4.38$ in lots of 1000 .

C\&K Components Inc.
15 Riverdale Ave.
Newton, MA 02158-1082
(617) 964-6400

- CIRCLE 903

This IsA Happy Retirement

It's the peace of mind you get knowing you have saved for the future. It's a U.S. Savings Bond. With just a little from each paycheck, you can invest in Bonds through the Payroll Savings Plan where you work. And they will keep earning interest for up to 30 years. Make an investment in your future with U.S. Savings Bonds today. Ask your employer for details.

PACKIALIN \& MATERIDIS

COMPUTER ENCLOSURES HOLD SUN SYSTEMS

The Omega DeskMate line of floorstanding enclosures is designed for Sun-bus systems. Models 8, 10, and 14 offer 8,10 , and 14 slots (9 U by 400 mm), respectively. All three systems include card cages, backplanes, power supplies, wiring, and an engineered cooling system. Each fea-
tures a quiet, 10-layer VME monolithic J1/J2 backplane as well as a J3 power/ground backplane. Prices start at $\$ 2995$ with delivery from stock.

Electronic Solutions
6790 Flanders Dr.
San Diego, CA 92121
(800) 854-7086
\rightarrow CIRCLE 904

HIGH
QUALITYI
LOW COST
STATE-OF-ART PERFORMANCE

EG\&G Vactec's complete line of planar silicon photodiodes-the cost-effective way to detect light, from ultra-violet through near-infrared.

Excellent linearity in output signal versus light intensity, low noise, and fast speed of response often make them the ideal detector for automotive, communications, and medical instrumentation applications. They are used in smoke detectors, cameras, security systems, X-ray detection equipment, flame monitors, encoders, bar code scanners, colorimetric analysis equipment, and other products.
Stock and custom devices are available packaged as discretes or configured into arrays, screened or modified to meet particular demands.
Call or write for new catalog:
EG\&G Vactec, Inc.
10900 Page Blvd. - St. Louis, M0 63132
(314) 423-4900 . TWX 910-764-0811 ■ FAX 314-423-3956

CIRCLE 110 FOR U.S. RESPONSE
CIRCLE 111 FOR RESPONSE OUTSIDE THE U.S.

LIQUID SOLDER MASK OFFERS HIGH RESOLUTION

A liquid, photodefinable, fully aqueous solder mask can be applied with conventional screen-printing techniques. The PC 801 solder mask achieves high definition and complete encapsulation of dense circuits. The single-part, epoxy-based photopolymer system is for use over bare copper and tin-lead. It eliminates voids, adhesion loss, and the brittleness of dry films. The mask's flow characteristics mean coating flexibility for a wide range of board-design techniques, especially in SMT types. Call for pricing and delivery.

AMP-AZKO Electronic Materials 710 Dawson Dr.
Newark, DE 19713
(302) 292-6246

- CIRCLE 905

- AQUEOUS SOLDER MASK

 IS PROCESSED EASILYThe Hysol SR8100 liquid photoimageable solder mask offers consistent high adhesion and hardness through any number of soldering processes. The acrylate-epoxy-based liquid is intended for use as a permanent solder resist coating on high-density, copper printed-wiring boards. It consists of two components which are mixed in ratio to yield the working compound. Features include elimination of solder balling. Call for pricing and delivery.

Dexter Electronic Materials

15051 E. Don Julian Rd.
Industry, CA 91746
(818) 968-6511

- CIRCLE 906

FREE-STANDING ENCLOSURE BOASTS STAINLESS FINISH

The ES 5000 enclosure, already endowed with high-impact resistance, now offers corrosion protection thanks to a stainless-steel finish. The finish on the housing, door, and rear panel functions as a no-maintenance, lifetime barrier against corrosion. Electrical and control components are protected by the unit's 10 -fold metal profile. Call for pricing and delivery.

Rittal Corp.
 3100 Upper Valley Pike
 Springfield, OH 45504
 (800) 477-4000

- CIRCLE 907

HEW IITERATURE

DC-DC CONVERTERS SPAN WIDE POWER RANGE

A 20 -page catalog of a standard line of dc-dc converters neatly divides the line in terms of power-output level and explains the products in detail. Sections describe converters ranging in power from 1 W to 150 W . Complete tables of specifications, mechanical diagrams, and ordering information are included. A section on application considerations accounts for fusing and thermal conditions.

Shindengen America Inc.

2649 Townsgate Rd., Suite 200
Westlake Village, CA 91361
(800) 634-3654
-CIRCLE 908

- LITHIUM-BATTERY GUIDE COVERS CELL SELECTION

Battery types and selection, calculation of battery life, performance characteristics, product specifications, and battery-handling procedures are all covered in a lithium product guide. A tear-out worksheet can be used to relay your lithium-battery requirements to the company's technical-support team, who will recommend an optimal selection.

Rayovac

601 Rayovac Dr.
Madison, WI 53711
(608) 275-4694

- CIRCLE 909

LED-INDICATOR GUIDE

 HELPS GET PANELS LITFeaturing 75 new indicators, an eight-page guide to LED panelmount indicators addresses a broad range of industrial and consumer applications that require design flexibility. Exact measurements and dimensions along with helpful charts and photos assist in ordering panelmount and snap-in-mount indicators.

Dialight Corp.

Dept. PMIL 59110
1913 Atlantic Ave.
Manasquan, NJ 08736
(908) 223-9400

- CIRCLE 910

WIRE-HANDLING CATALOG HELPS NEATEN PACKAGING

Non-wire products for interconnection needs are grouped into six distinct families in a wire-management catalog. The 180-page catalog covers harnessing, shielding, handling, con-
necting, identifying, and routing of wire and enables users to spec a complete line of applicable products for each category. Extensive cross-referencing is included.

Alpha Wire Corp.
711 Lidgerwood Ave.
P.O. Box 711

Elizabeth, NJ 07207-0711
(800) 52-ALPHA

- CIRCLE 911

208-PAGE CATALOG COVERS MANY SUPPLIES

One of the industry's broadest pow-er-supply selections is covered in detail in Lambda's 1992 catalog. Ac-dc switching and linear units, dc-dc converters, and test and lab-bench supplies are illustrated and described in full. Industrial, commercial, and MIL-type supplies are included. Mechanical drawings for all types are found in a large section.

Lambda Electronics Inc.

515 Broad Hollow Rd.
Melville, NY 11747-3700
(516) 694-4200

- CIRCLE 912

- SHORT-FORM CATALOG OUTLINES SWITCHERS

A full range of encapsulated switchers, open-frame supplies, and dc-dc converters is covered in a 16-page short-form catalog. Eight new series are included in the booklet. Specifications for all products include input and output voltages, output current, and case styles. Dimensional drawings are included.

Power General

P.O. Box 189

Canton, MA 02021-3798
(617) 828-6216
-CIRCLE 913

906-PAGE DATA BOOK BRIMS WITH DISCRETES

Hundreds of npn power transistors and n - and p-channel power MOSFETs are described in detail in a 906 page data book. Complete specifications are included for each device. The book also covers a wide range of linear ICs as well as ICs for graphics applications.

> Samsung Semiconductor Inc.
> 3725 N. First St.
> San Jose, CA 95134
> (800) 423-7364
> -CIRCLE 914

Spectrol's Model 63
Available in 12 Different Models

Spectrol's $3 / 8$-inch square single-turn cermet trimmer, the Model 63 is offered in four terminal styles with pin configurations to suit any standard PCB application as well as two topadjust and two side-adjust versions, and two different knob types. Quick adjustment is achieved with a multi-fingered wiper. Resistance range is from 10 ohms to 2 megohms with a $\pm 10 \%$ resistance tolerance. Features include improved solder-plated terminals, and an " 0 " ring seal for solvent and aqueous washing. Tempco is 100 $\mathrm{ppm} /{ }^{\circ} \mathrm{C}$, and a CRV of 2% or 2 hmm . The Model 63 continues to provide excellent performance as the industry standard across a broad spectrum of applications.

spectrol

Spectrol Electronics Corporation 4051 Greystone Drive, Ontario, CA 91761
Phone: (714) 923-3313 Fax: (714) 923-6765 CIRCLE 144 FOR U.S. RESPONSE CIRCLE 146 FOR RESPONSE OUTSIDE THE U.S.

Potentiometers, Switches in New Easy to Use Catalog

You'll find everything you need to know about trimmers, potentiometers, dials and switches in Spectrol Electronics' new 48-page catalog. Its easy-to-use format provides complete electrical and mechanical engineering data for the entire Spectrol line of products, as well as detailed information on trimmer accessories, and rotary and linear position sensors. Get all the facts on proven electromechanical designs which incorporate the full range of resistive element technologies. Request your Spectrol catalog today.

spectrol

Spectrol Electronics Corporation
4051 Greystone Drive, Ontario, CA 91761
Phone: (714) 923-3313 Fax: (714) 923-6765
CIRCLE 145 FOR U.S. RESPONSE
CIRCLE 147 FOR RESPONSE OUTSIDE THE U.S.

HOW SUN SNAPPED UP THE LEAD IN SPARC MULTIPROCESSING.

Sun Microsystem's" new 90 SPEC thruput multiprocessing SPARCserver is powered by our new SPARCore Modules.

We have consistently delivered a performance advantage in SPARC RISC chipsets. Now, we are introducing SPARCore ${ }^{\text {TM }}$ high-performance uniprocessing and multiprocessing Modules. Cypress modules provide you (and Sun) with significant competitive advantages based on innovative technology:

1. Shori-Cut to Markef. With this much complexity running at $40+\mathrm{MHz}$ speeds, there are non-trivial issues to integrating the CPU chipset. Using our fully integrated, tested SPARCore modules, you save time, not to mention manufacturing and testing costs. We deliver fully tested modules, with MPU, FPU, MMU, and Cache, for the price of the chipset.
2. Plug and Play on MBus. You design your system to the MBus standard, and you can plug in modules offering a range of speed/power options, to keep your product current without major redesign. This modular approach provides a designed-in upgrade path to keep you on the leading edge.

Call for your Free SPARCore Whitepaper and Data Sheets. Hofline: 1-800-952-6300.* Ask for Dept C3W.

CYM6001K Uniprocessor SPARCore Module

CYM6002K Dual Processor SPARCore Module

CYM6003K Uniprocessor SPARCore Module for Multiprocessing systems

[^9]ADave Bursky
lthough density levels for UV-EPROM-based programmable logic devices (EPLDs) are now exceeding 7000 gates, many applications can utilize only 50% of the available gate count. For designers who need fast a turnaround time, the flexible architectures of antifuse or RAM-based programmable gate arrays are two alternatives to EPLDs. To curb potential designer defections to these other technologies, as well as attract new users, San Jose, Calif.-based Altera Corp. has developed the MAX 7000 EPLD family of high-gate-count, high-I/O-count EPROM- and EEPROM-based fieldprogrammable logic.

The MAX 7000 series is an extension of the MAX 5000 architecture released by Altera in 1988. With the new architecture, the devices can have up to 20,000 usable gates (on a chip with 40,000 available gates). In its first release, chips in the new MAX 7000 EPLD family offer in-system operating speeds of over 83 MHz . The chips will also offer a higher ratio of I/O pin count to internal logic than any other FPGA family, with the largest chips expected to offer up to 288 pins. Moreover, the enhanced architecture includes a number of significant improvements that result in shorter and more predictable propagation delays, and more flexible logic implementations.

Initially, the company will release two members of the 7000 family of EPLDs, the EPM7032 and the 7256. The 7256 has input-to-output propagation delays (input pin to one macrocell and macrocell output to an output pin) of just 15 ns , while the smaller 7032 has an input-tooutput delay of 12 ns , which yields an upper operating frequency of 83.3 MHz in the system.

The 7032 is the smallest member of the family, and represents the company's first venture into electrical-ly-erasable technology. The chip contains 32 macrocells and comes in a 44-lead package. The other released chip is based on the familiar UV EPROM technology and is one of the highest-density devices. Within the family, however, it's regarded as a mid-range-density device, because it packs about 10,000 available (about 5000 usable) gates and 164 user-I/O pins (192 total pins on the windowed ceramic pin-grid-array package).

Both chips contain the same basic architecture, with the 7032 supplying 32 macrocells-two banks of 16 each, plus four lines dedicated as inputs. When running at top speed, the 7032 consumes just 45 mA , which the company claims is less than half that of its closest competitor, the Mach 110 from Advanced Micro Devices Inc., Sunnyvale, Calif.

Compared to other high-density FPGAs, the 7256 reportedly includes more macrocells, more programmable I/O lines, and can operate at higher frequencies than just about every other RAM- or fuse-based FPGA. A simple function, such as a 16-bit loadable counter im-

HIGH-DENSITY, HIGH-PIN-COUNT EPLDS

THE ENHANCED MACROCELL in Altera's EPM 7000 series of EPLDs includes a new parallel-logic expander block that locally expands the number of product terms available to the macrocell, while adding just 2 ns to the signal delay. The macrocell can also use 16 shared expander-product terms. They add about 6 ns to the signal delay, but can be distributed across all logic blocks on the chip.
plemented on the Altera chip, can operate at 71.4 MHz . In contrast, Altera says, the same function programmed into the XC4005-7 from Xilinx Inc., San Jose, Calif., can only operate at 38 MHz . The higher I/O count and performance suits the 7000 -series well for various applications, including support logic for RISC-based systems, graphics engines, data-communication controllers, 32-bit coprocessors, and busmaster interfaces.

The basic architecture of the 7000 family is similar to that of the 5000 series. The logic array blocks (LABs), each containing 16 macrocells, are laid out around a central programmable interconnect array (PIA) that ties all of the blocks together. Because the PIA has no EPROM (or EEPROM) transistors in its signal paths, the PIA provides a predictable, $3-\mathrm{ns}$ delay for signals that flow from one LAB to any other LAB. In addition to the 16 macrocells in each block, there are some limitedflexibility parallel-logic expanders. There are also more flexible, sharedlogic expanders, that are part of each macrocell.

Parallel expanders add product
terms into the product-term array without the penalty of a large delay incurred by the use of traditional logic expanders. To keep the delay short (just 2 ns), the "reach" of the parallel expanders had to be limited to just the immediate LAB.

The expanders are connected by the product-term select matrix in parallel with the five basic product terms in the borrowing macrocell. In contrast, the 16 shared-logic expanders provide additional logic resources to any LAB. But they provide those additional logic resources at the expense of adding a larger signal delay (6 ns each time a signal passes through).

The macrocell also includes a configurable flip-flop that can be programmed to implement D, T, J-K, or S-R flip-flops with individually programmable clock control (see the figure). The flip-flop can also be bypassed when the cell must operate in a combinatorial mode.

Each cell has five basic product terms. The basic product terms can be used as primary inputs for combinatorial functions. They can also be used as secondary inputs for either an additional XOR input, or an indi-
vidual Clear, Preset, Clock, and Clock Enable logic function for the flip-flops. Furthermore, the basic product terms can be used as logic expanders to assist in the generation of complex functions.

Global Clock, Clear, and Output Enable (OE) control signals come in directly from device pins, eliminating the logic-array delay (about 6 ns) as well as minimizing control-function delays.

Designers can also trade off speed to lower chip power consumption. As part of the macrocell library, each logic function comes in either the high-performance standard version or a half-power option. By selectively applying the low-power option to non-speed-critical portions of the design, power can be decreased by as much as 75%. The average speed penalty for the low-power option is 8 ns per macrocell.

Unlike most other PLD architectures, in which the macrocell associated with an I/O pin is lost for use if that I/O pin has been dedicated as an input, the 7000 architecture avoids that type of logic waste by decoupling the I/O pins and macrocell logic resources. Two global OE signals

DC-DC Converter Transformers and Power Inductors

These units have gull wing construction which is compatible with tube fed automatic placement equipment or pick and place manufacturing techniques. Transformers can be used for self-saturating or linear switching applications. The Inductors are ideal for noise, spike and power filtering applications in Power Supplies, DC-DC Converters and Switching Regulators.

- Operation over ambient temperature range from $-55^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$
- All units are magnetically shielded
- All units exceed the requirements of MIL-T-27 ($+130^{\circ} \mathrm{C}$)
- Transformers have input voltages of $5 \mathrm{~V}, 12 \mathrm{~V}, 24 \mathrm{~V}$ and 48 V . Output voltages to 300 V .
- Transformers can be used for self-saturating or linear switching applications
- Schematics and parts list provided with transformers
- Inductors to 20 mH with DC currents to 23 amps
- Inductors have split windings

Electronics, Inc. 453 N. MacQuesten Pkwy. Mt. Vernon, N.Y. 10552 Call Toll Free 800-431-1064 IN NEW YORK CALL 914-699-5514

FLEXIBLE

 RAM-BASED FPGAsmake it possible for the chips to communicate with more than one bus at a time. Because the signals are global, both OE pins can be controlled directly from device pins, ensuring high-speed operation.

Software T00LS

To capture a design and program the configuration data, Altera offers its MAX+Plus II design software, which was released last year. For the 7000 series, just a simple upgrade to the software is required to add the macrocell library and some architec-ture-specific details. The software will then be able to support all three of the company's EPLD familiesthe original Classic family, the MAX 5000 series, and the just-released MAX 7000 family. That spans devices from the 8 -macrocell EP330 PAL/GAL device replacement up to the 1024-macrocell EPM71024 that will be released late this year.

The software runs under the Microsoft Windows graphical user interface on PCs and compatibles, and thus can access up to 64 Mbytes of extended memory to handle very large designs. Furthermore, the multitasking capability in windows enables the designer to simultaneously compile a design, view a simulation, and make changes to the schematic. That combination reduces the time it takes for designs to move from the concept stage to the silicon stage. \square

Price And Availability

The EPM7032 is available immediately. It comes in a 44-lead plastic leaded chip carrier and sells for $\$ 14.75$ apiece in 100-unit lots. Housed in a 192-pin ceramic windowed pin-grid array package, the EPM 256 sells for $\$ 395$ in single-unit quantities. A lower-cost one-time programmable version, housed in a 208-lead plastic quad-sided flat package, can be obtained in the second half of 1992. The MAX+ Plus II development tools are available now.
Altera Corp., 2610 Orchard Pkwy., San Jose, CA 95134-2020; Stan Kopec, (408) 9842800.

CIRCLE 512

How Valuable?	Circle
HIGHLY	
MoDERATELY	541
SLIGHTLY	543

ATTENTION MARKETERS!

> REACH DESIGN AND DEVELOPMENT ENGINEERS

ELECTRONIC DESIGN

subscribers are highly educated engineers and managers in the electronics original equipment market.

Select by: Job Function, Type of Industry, Project Responsibility, Purchasing Influence, Employment Size and Geography

Guaranteed 99\% deliverable 100% BPA audited

Call the List Department at 216(696)7000 for your FREE catalog

Microcontroullers Span 8. AND 16-BIT APPLICATIONS

By Applying A Register-Based Architecture To Solve Control Problems In The 8-And 16-Bit Worlds, An MCU Series Can Add Up To 29 On-Chip Functions.

SDave Bursky ingle-chip microcontrollers can now be had with word sizes from 4 to 32 bits at prices from under $\$ 1.00$ to over $\$ 50.00$. However, most older architectures, especially in the 8 - and 16-bit worlds, aren't robust enough to handle the complex control tasks that today's applications demand. Most recent MCU introductions, though, focused either on the very low end or the very highest, with little attention paid to chips for applications in what Hitachi calls the "leading center."
Such applications stretch the limits of 8-bit processors, while not necessarily justifying the cost of full-16-bit processors. To satisfy most of those types of applications, Hitachi designers created the $\mathrm{H} 8 / 500$ series of microcontrollers. These controllers are implemented in a $1.3-\mu \mathrm{m}$ CMOS process and offer a 16 -bit CPU core with 8 -bit external data paths. Boasting instruction cycle times of as little as 200 ns with a $10-\mathrm{MHz}$ clock rate, the CPU cores are moderately high-performance processors, offering about 50% to 100% better throughput than previous generation 8 - and 16 -bit MCUs, such as the $8051,68 \mathrm{HC} 11, \mathrm{Z} 8$, and the 80 C 196 . Furthermore, performance is compara-

Part \#	ZTAT masked ROM	HD6415108	$\begin{aligned} & \text { HD6475208 } \\ & \text { HD6435208 } \end{aligned}$	$\begin{aligned} & \text { HD6475328 } \\ & \text { HD6435328 } \end{aligned}$	$\begin{aligned} & \text { HD6475348 } \\ & \text { HD6435348 } \end{aligned}$	$\begin{aligned} & \text { HD6475368 } \\ & \text { HD6435368 } \end{aligned}$
Description		H8/510	H8/520	H8/532	H8/534	H8/536
ROM/RAM (bytes)		0/0	16K/512	$32 \mathrm{~K} / 1 \mathrm{~K}$	$32 \mathrm{~K} / 2 \mathrm{~K}$	$62 \mathrm{~K} / 2 \mathrm{~K}$
Timers	16-bit free-run Output comparator Input capture 8 -bit general purpose Pulse-width modulator Watchdog	$\begin{gathered} \text { 2-channel } \\ 4 \\ 2 \\ 1 \\ 0 \\ 1 \end{gathered}$	2-channel 4 2 1 0 1	3 -channel 6 3 1 3 1		
Serial channel		2	2	1		
ADC		10-bit, 4-channel	10-bit, 8-channel	10-bit, 8-channel	10-b	annel
Interrupts		5 external 18 internal 8 -level priority	9 external 18 internal 8 -level priority	3 external 19 internal 8 -level priority		
Data-transfer control		Yes	Yes	Yes		
Wait-state control		Yes	Yes	Yes		
1/0 ports		56 I/0 4 input only	47 I/O 8 input only	$571 / 0$ 8 input only		
Package		QFP-112	$\begin{gathered} \text { PLCC-68 } \\ \text { QFP-64 } \\ \text { DP-64S windowed } \end{gathered}$	PLCC-84 QFP-80 LCC-84 windowed	LCC-8	4 dowed

FEATURE-PACKED MCU FAMILY

ble to the latest $8 / 16$-bit offerings from such companies as NEC and OKI Semiconductor.
As many as 29 different application support functions-counters, timers, RAM, EPROM, ROM, ana-log-to-digital and digital-to-analog converters, and many others-can be integrated on the chip along with the CPU. The controllers allow the most on-chip EPROM of any 8- or 16bit controller- 62 kbytes-and they can be had in either windowed, reprogrammable versions, or plastic one-time-programmable options. Furthermore, the multiple functions integrated on the various chips in the family give the chips an I/O range that's second to none. Pin counts for the chips range from 64 leads for the smaller members to 84 leads for the feature-packed devices. A ROMless, RAMless microcontroller version requires just 112 pins to access off-chip memory as well.
The H8/500 microcontroller family is a complementary upward extension of the previously released H8/300 8-bit microcontrollers. Both families employ a general-purpose register architecture that allows easy implementation of high-levellanguage compilers.
The register-based architecture of the CPU allows high-level language support tools to be developed-tools that will help shorten product development cycles. Although control software written in a high-level language might compile less efficiently than the same routines created in assembly code, the higher performance of the CPU can often compensate for some code inefficiency.

However, if code can be written in C, for example, compilers will let designers quickly port the code to any of the family members in the H8/500 series, or even the previously-released H8/300 family (or H8/300 Ccode can be recompiled to run on the H8/500 series chips). This considerably shortens time-to-market for costreduced or higher-performance versions of the product. C code written for non-Hitachi processors could even be transferred over. Development tools are available from both Hitachi and third-party suppliers-

Microtec and Avocet offer compilers and assembler packages, and Togai Infralogic makes available a fuzzylogic compiler.
To achieve performance levels considerably higher than even most 16 -bit MCUs, the H8/500 CPU core employs an instruction format that locates the effective address field at the beginning of the instruction and the operation code at the end. By positioning the information in this manner, the effective address can be calculated and data fetched while the instruction is being decoded. The CPU's 16 -bit arithmetic-and-logic unit and on-chip 16 -bit data paths provide fast throughput. Two 16 -bit numbers can be multiplied in just 2.3 $\mu \mathrm{s}$ and 32 -bit values can be divided by a 16 -bit value in just $2.6 \mu \mathrm{~s}$.

Real-time operations are well served by the sophisticated on-chip interrupt controller that can respond to an internal or external interrupt in just $1.8 \mu \mathrm{~s}$. Real-world interfaces can be dealt with thanks to either a 10 -bit 4-channel analog-to-digital converter included on the H8/510, the ROMand RAM-less controller. The other family members, the H8/520, 532, 534 , and 536 , all include a higher-resolution, 10 -bit 8 -channel ADC. Each of the five chips includes a different set of resources that are probably best summed up in the table.

Furthermore, the H8/500 series claims to pack more on-chip peripherals than any other family, including the multichannel ADC that delivers digitized samples in just 13.8 ms and a full-duplex serial communications port. The port operates in asynchronous or clock-synchronous modes, and transfers data at up to 2.5 Mbits/ s. An on-chip data-transfer controller can be programmed for automatic direct-memory access transfers for 8 - or 16 -bit values between any of the on-chip peripherals and memory without CPU intervention.

The microcontrollers also contain eight on-chip timers. Three are 16 -bit free-running units, handy for pulse generation and pulse and frequency measurements. Three additional timers can be used for pulse-width-modulation applications. Another 8 -bit timer can be programmed for multi-
ple applications and can deliver variable duty-cycle pulses. And a watchdog timer lets the chips recover from runaway errors.
To handle many of the more complex applications, the CPU core can address a large external memory16 Mbytes-and can handle even some of the most data-intensive control needs. Even long-word (32-bit data types) can be handled by the core processor, so it can tackle applications such as hard-disk control, automobile engine control, and other "soft-DSP" requirements. The orthogonal instruction set of the series permits instructions to use all seven addressing modes the processor offers. Instructions are variable in length, and can range from just 2 bytes up to 7 bytes.

The CMOS process used for chip implementation allows an option for 3 -V operation. As part of the processor design, Hitachi engineers included both sleep and standby powerdown modes. The sleep mode halts the CPU during idle periods, trimming power by about 33% from the active mode. An even lower-power mode, standby, will trim current drain to less than $0.1 \mu \mathrm{~A}$. In the standby mode, all functions are halted and the contents of the on-chip RAM and CPU registers are maintained. \square

Price And Availability

The first five members of the $H 8 / 500$ series are immediately available in three speed grades-6, 8, and 10 MHz . Prices for the memory-less H8/510 start at $\$ 11.85$ in 5000 -unit lots (6 MHz); the $H 8 / 520$ s start at $\$ 11.45$ each for the masked-ROM version in 10,000 -unit lots, or $\$ 22.50$ each for the ZTAT one-time-programmable version in 1000 -unit lots. Prices for the masked-ROM versions of the H8/532 start at \$14.20 apiece in 10,000-unit lots; the H8/536 goes for \$19.40. ZTAT versions of the 532, 534, and 536 are $\$ 25.80, \$ 29.60$, and $\$ 34.10$, respectively, in lots of 1000. Samples of the ZTAT versions are immediately available.
Hitachi America, Ltd., Semiconductor and IC Div., 2000 Sierra Point Pkwy., MS080, Brisbane, CA 94005-1819; John Hull, (415) 244-7136.

CIRCLE 513

How Valuable?	Circle
HIGHLY	544
MoDERATELY	545
SLIGHTLY	546

Workstation Du0 Fills Low End, Does 35 MIPS For Under $\$ 5000$ rchard Nass

Hewlett-Packard's has added two new members to its Series 700 family of work-stations-the Models 705 and 710 . The 705 offers 35 million instructions/s (MIPS) for just $\$ 4990$. In addition, the 710 is the first workstation to perform 50 MIPS for under $\$ 10,000$, the company says. Also, HP is adding two graphics options, the CRX-24 and CRX-24Z, and rendering software called Power Shade. Power Shade performs three-dimensional entry- to moderate-level solids modeling.
The 705 and 710 workstations are based on the same PA-RISC architecture as its 720,730 , and 750 predecessors. The series 700 is software compatible with the company's series 800 workstations. At least 4500 applications are available to the two families, including electronic-design automation, mechanical CAD, desktop publishing, and scientific applications. With Soft PC, a $25-\mathrm{MHZ} 386$ emulator, the systems can run DOS applications. The two systems can be expanded using SCSI, RS-232, and parallel ports to connect up to 10 peripheral devices.
The 710 model is based on the same $50-\mathrm{MHz}$ PA-RISC microprocessor as the 720 , previously the low-end system. The 710's floating-point processor does 12.2 double-precision MFLOPS compared to the 720's 17.9 MFLOPS. The lower floating-point performance is partly caused by the system's higher integration-HP aimed to squeeze the 710 into a smaller box at a lower price. Also, cache memory was cut in half to 32 kbytes in the instruction cache and 64 kbytes in the data cache. Three different graphics configurations are available for the 710 . Users can choose between a $19-\mathrm{in}$. color (1280 by 1024 pixels) or gray scale (1280 by 1024) display or a smaller footprint, 16 -in. color (1024 by 768) display. All three systems can perform $950,0002-$ and 3-D vectors/s. The workstation has an internal disk capacity of 840

Mbytes and 9.4 Gbytes, external.
The entry-level price for the 710 is $\$ 9490$. That includes 16 Mbytes of memory and a 19 -in., gray-scale display. The second-level 710 system, priced at $\$ 11,490$, adds a $16-\mathrm{in}$. color display. The high-end system includes a 19 -in. color display and sells for $\$ 13,990$. Another feature of the 710 is that it can be coupled with one or more X-terminals, further reducing the cost per seat.

The 705 is only being offered with a 19-in. gray-scale display. The $\$ 4990$ diskless system comes with 8 Mbytes of main memory (expandable to 64 Mbytes). A 16 -Mbyte system costs $\$ 6340$. Based on a $35-\mathrm{MHz}$ processor, it delivers 34 SPECmarks and 8 MFLOPS. The system can house two internal disk drives to hold 840 Mbytes of mass storage, the same as the 710 . The 705 incorporates the same quiet, compact desktop or deskside package as the 710. This system lets HP make inroads into the commercial and CASE markets.
As for new graphics capabilities,
the CRX- 24 and -24 Z are compatible with the three previous models of the 700 series, but not with the 705 or 710, whose graphics capabilities are integrated onto the motherboard.

The CRX-24 is aimed at imaging tasks in the scientific and visualization markets. The CRX-24Z, targeting mechanical CAD markets, is similar to the CRX-24, but contains a built-in accelerator and a Z-buffer. Both the 24 and 24 Z products feature double buffering as well as eight overlay planes. They can perform 1.15 million 2 - and 3 D vectors/s, transferring data at 44 Mbytes/s. The 24 Z features antialiasing and volumetric rendering, with accelerated shading.

The Power Shade rendering software, which runs on all series 700 platforms, comes bundled with the CRX-24Z graphics and is a $\$ 2000$ option with all the other color graphics products.

Hewlett-Packard Co., 19310 Pruneridge Ave., Cupertino, CA 95014; (800) 752-0900. CIRCLE 457

This Is A Happy Retirement

It's the peace of mind you get knowing you have saved for the future. It's a U.S. Savings Bond. With just a little from each paycheck, you can invest in Bonds through the Payroll Savings Plan where you work. And they will keep earning interest for up to 30 years. Make an investment in your future with U.S. Savings Bonds today. Ask your employer for details.

> U.S. Savings Bonds

UPGRADABLE WORKSTATIONS OFFER PERFORMANCE OPTIONS

Aredesigned motherboard architecture places the R3000A RISC processor, caches, and floating-point coprocessor on a field-replaceable card. That gives the latest ACE-compliant DECstation workstations and servers the power to handle today's computing needs as well as tomorrow's. Four 5000 -series workstations and three servers were released last month by Digital Equipment Corp.

The workstations range from 16.3 SPECmarks for the budget-priced Personal DECstation up to the $20-\mathrm{MHz}$ Model 20, which sells for $\$ 3995$ with a $17-\mathrm{in}$. grayscale monitor. At the high end is the 32.4 SPECmark, $40-\mathrm{MHz}$, Model 240 , which sells for $\$ 11,995$ with 16 Mbytes of RAM, and a $19-\mathrm{in}$. monochrome 1280 -by-1024 pixel monitor. In the middle are the $25-\mathrm{MHz}$ DECstation $5000 / 25$, and the $33-\mathrm{MHz}$ model 133 , which deliver 19.1 and 25.5 SPECmarks, respectively.
Server models include the low-cost DecSystem 5000/25 and 5000/240, which are offshoots of the workstations and sell for $\$ 4995$ and $\$ 13,495$, respectively. Also released was the highend DecSystem 5900, which has SPECmark ratings of 32.8 or 42.9 , depending on the CPU option selected. That system price starts at $\$ 59,050$. Included

with the model 5900 server is the Prestoserve file system accelerator that can boost network file system performance by as much as 300%. It is available as an option on the other servers for $\$ 4000$.

All the workstations and servers are upgradable with a simple 3 -by- 5 -in. daughtercard replacement to the R4000 processor, which will be available on daughtercards later this year. Three TURBOchannel-based graphics upgrade options, the HG, PXG+, and PXG Turbo+ offer 2D, 3D, and 24plane color capabilities as well as the ability to handle multimedia applications. All system hardware is available now or it will be released this quarter. R4000-based CPU upgrades will be released in the second half of 1992.

Digital Equipment Corp., 146 Main Street, Maynard, MA 01754; (508)
493-5111. GIBGIF 458
DAVE BURSKY

UPGRADE SPARC WORKSTATION T0 40 MHz

By taking advantage of the Opus Systems upgrade kit, users can boost the performance of their Personal Mainframe Sparc workstations from 15.8 to 29 MIPS. The kit consists of a $40-\mathrm{MHz}$ motherboard, Solaris 1.0, documentation, and installation instructions. The $40-\mathrm{MHz}$ microprocessor replaces the existing $20-$ or $25-\mathrm{MHz}$ processor. The upgrade is binary-compatible with all Sun Microsystems hardware and software and adheres to Sparc International SCD 1.1 compliance specifications. Now, users have the power needed for such complex applications as mechanical analysis and design and circuit simulation. Upgrading with the kit requires replacing the original motherboard and loading the software. The kit, available now, sells for $\$ 4195$.

Opus Systems Inc., 329 North Bernardo Ave., Mountain View, CA 94043; (415) 960-4040. CIRGE 459

NONVOLATILE DISK ZIPS DATA AT 3 MBYTES/S

PC users are always seeking faster data speeds. The BlueFlameIII solidstate nonvolatile disk emulator operates more than 20 times faster than a traditional hard disk drive, while performing identical tasks. In addition, the emulator isn't susceptible to environmental conditions such as shock, vibration, thermal sensitivity, and physical wear and tear. The BlueFlameIII is actually an I/O mapped device that uses battery-backed DRAM fitted into 14 single-inline memory modules (SIMMs). 1- and 4 -Mbyte by 9 SIMMs are supported. The speed of the device is limited only by the speed of the I/O bus. Typical transfer rates are 3 Mbytes/s. Capacities for the fulllength 16 -bit card range from 2 to 56 Mbytes. Prices start at $\$ 595$.

SemiDisk Systems Inc., P. O. Box GG,
Beaverton, OR 97075; (503) 6263104. GTiGIE 450

Put Our List On Your List

Our list can help you do the other things you have on your list. Such as buy a car. . estimate social security. start the diet. . . check out investments. .

Our list is the Consumer Information Catalog. It's free and lists more than 200 free and low-cost government booklets on employment, health, safety, nutrition, housing, Federal benefits, and lots of ways you can save money.

So to shorten your list, send for the free Consumer Information Catalog. It's the thing to do.

Just send us your name and address. Write:

Consumer Information Center Department LL Pueblo, Colorado 81009

A public service of this publication and the Consumer Information Center of the U.S. General Services Administration

IEDE-488

SYNTHESIS T00L CREATES TESTABLE CIRCUITS

A new version of the Test Compiler synthesis tool has more features that design testability into synthesized circuits. Test Compiler Version 2.2 outputs test patterns for HDL simulators. In addition, its automatic-test-patterngeneration (ATPG) capabilities are two to three times faster than the previous version for large designs. Through optimization and test-pattern-compaction techniques, Version 2.2 brings the penalties for scan design to a minimum, ultimately reducing the cost of manufacturing testability. A new test mode in Test Compiler lets users specify a chip configuration for test that may be different from that of normal operation, and still meet area and speed objectives. Other Version 2.2 features include an integrated scan-rule checking with schematic generation so that users can immediately identify feedback loops, even across hierarchical boundaries. Test Compiler Version 2.2 runs on Unix workstations, and is shipping now starting at $\$ 40,000$.

Synopsys Inc., 700 E. Middlefield Rd.,
 Mountain View, CA 94043-4033; (415)
 962-5000. GIRGIF 461

VHDL DESIGN SYSTEM COSTS LESS THAN $\$ 5000$

For less than $\$ 5000$, engineers can design and simulate with VHDL on their Sun workstations using the V-System/ Sparc software from Model Technology. V-System/Sparc, which is fully IEEE-1076 compatible, includes a VHDL compiler, interactive VHDL simulator, and VHDL source-language debugger. Its multi-windowed, mousedriven environment can handle designs with more than 100,000 lines of VHDL. Six different interactive windows let users simultaneously view and interro-
gate the design hierarchy, view the VHDL source code during execution, display variables and signals, control the simulator, display selected processes, and list the simulator output. In addition, compilation time is more than 15,000 lines $/ \mathrm{min}$. on a Sun workstation. A single-user license for V-System/ Spare costs $\$ 4995$ plus 15% annual maintenance fee. Floating network licenses are also available.

Model Technology Inc., 15455 N. W. Greenbrier Pkwy., Suite 210, Beaverton, OR 97006; (503) 690-6838. GHBCIF 462

You get fast hardware and software support for all the popular languages. A software library and time saving utilities are included that make instrument control easier than ever before. Ask about our no risk guarantee.

ORCAD UPDATES BOTH TOOLS AND FRAMEWORK

OrCAD has updated its ESP Framework and Schematic Design Tool Release IV. The enhancements to ESP include a hot-key capability, which lets users select and run any given tool with one user-defined strike. Also, additional information in the View Reference Materials menu supplies users with more help files. Version 4.10 of the schematic tool creates net lists 35% faster than the previous version and includes support of AMD's MACH devices. ESP Framework and Schematic Design Tools Release IV Version 4.10 run on PCs and are available now. ESP is included with the schematic tools for $\$ 595$. All OrCAD products include free technical support and access to the company's bulletin board for one year.
OrCAD, 3175 N. W. Aloclek Dr., Hillsboro, OR 97124-7135; (503) 6909881. CHGHIF 463

TIMING-ANALYSIS T00L SIMPLIFIES BUS DESIGN

BusDesigner/AT, an interactive tim-ing-analysis tool from Chronology Corp., speeds and optimizes bus-interface design for AT-based board-level products. The tool reduces the hundreds of stringent timing specifications embedded in IBM AT, ISA, and EISA standards into a small group of requirements that determine bus compatibility. Consequently, engineers can quickly check a variety of architectures while still in the design stage, then automatically generate and analyze detailed timing diagrams once an architecture is chosen. BusDesigner/AT was developed by On Target Associates, Sunnyvale, Calif., using Chronology's core software offering, TimingDesigner. To use BusDesigner/AT, users simply select the type of bus cycle and the appropriate options, and the software automatically generates the proper timing diagrams using a generic delay library. TimingDesigner then redraws and analyzes the diagrams, highlighting any timing violations. BusDesigner/AT, which includes bus timing models, a step-by-step users' guide, a book on AT-bus design, and fully documented design examples, runs on personal computers with TimingDesigner and MS Windows 3.0. It's shipping now for $\$ 695$.
Chronology Corp., 2721 152nd Ave. NE, Redmond, WA 98052. (206) 869 4227. GTBGIF 464

> Capital Equipment Corp. Burlington, MA. 01803

CIRCLE 94 FOR U.S. RESPONSE CIRCLE 95 FOR RESPONSE OUTSIDE THE U.S.

PORTABLE DIGITAL SCOPES BOAST 1-MSAMPLE MEMORIES

Available in both 2 - and 4 -channel versions, the Model 9300 series portable digital oscilloscopes offer record-memory lengths of up to 1 million samples per second. All models have $300-\mathrm{MHz}$ analog bandwidths and independent $100-$ Msample/ s digitizers on all inputs.
Users can select from three memory configurations. The basic units have a 10-ksample record length per channel. The M (medium) versions have $50-$ ksample record memories, and the L (long) versions have 1-Msample record lengths for each channel. The extremely long record lengths make these scopes particularly useful for applications involving radar, magnetic media, data communications, and electromechanical systems.
Features of the 9300 series include fast automatic setup for repetitive signals and a sequence mode, which allows users to store multiple events in segmented acquisition memories. Additional capabilities such as pass/fail testing; fastglitch, dropout, and window triggering; signal processing; and

FFT analysis add to the scopes' functionality.

All members of the scope family incorporate a PC-compatible memory card system. The system is based on the Personal Computer Memory Card International Association standard, which is supported by most major personal computer manufacturers.
The 2-channel Model 9310 (10 ksam ples) costs $\$ 4990$; the 9310 M ($50 \mathrm{ksam}-$ ples) costs $\$ 5990$, and the 9310 L (1 Msamples), $\$ 9990$. The 4-channel Model 9314 is $\$ 7490$, the $9314 \mathrm{M} \$ 8990$, and the 9314L \$14,990.

LeCroy Corp. 700 Chestnut Ridge Rd., Chestnut Rdige., NY 109776499; (914) 425-2000. GIREIF 465

- JOHN NOVELLINO

SMT PROBE ADAPTER W0RKS T0 350 MHZ

The PQFP100 KwiKlip probe adapter allows users to probe JEDEC plastic quad flatpack (PQFP) devices at speeds to 350 MHz . The adapter works with 100 -pin devices such as the Intel 80386SX and 100 -pin ASICs. The device's high bandwidth is made possible by a low-profile design that shortens lead lengths and decreases crosstalk. The result is minimal reactive loading. The low profile also offers easy access to surrounding components. The top portion of the adapter, which fits snugly over a PQFP surface-mount chip carrier, is a pin-grid-array socket. This arrangement offers users a number of probe interconnection schemes. The PQFP100 costs $\$ 260$ and is available from stock.
Tektronix Inc., P. O. Box 1520, Pitts-
field, MA 01201; (800) 426-2200.
Clidif $46 \boldsymbol{A}$

EMULATOR HANDLES 960 CACHE ANALYSIS

The Step Express III emulator expands the line of Step Express emulators to include cache-analysis support for the

Intel i960CA microprocessor. Cacheanalysis is handled by an advan \nmid triggering facility and a performance analysis facility using cache-based execution information. Both features are connected through the SDBUG960, a fully integrated source-level symbolic

debugger. The Express III includes features to selectively store execution cycles from cached operation, identify conditions that are in and out of cached execution range for transition to other trigger levels, and measure system performance with the cache on. The Step Express III is priced from $\$ 35,000$ and is available 30 days after receipt of an order.

Step Engineering Inc., 661 E. Arques Ave., P. O. Box 3166, Sunnyvale, CA 94088-3166; (800) 538-1750 or (408) 733-7837. GIRGIE 467

Behlman's AC Power Source works perfectly to simulate the power that's available in all 172 nations. Use it todo sophisticated 50 Hz testing of trash compactors for tiny Tuvala, as well as 400 Hz avionics testing in Alaska. It gives you up to 9000 VA of clean power, at prices that won't clean you out, starting at just $\$ 2,350$. Call (800) 456-2006 today, or write: Behlman, 6 Nevada Drive, Lake Success, New York 11042.

BEHLMAN
An Astrosystems Company

CIRCLE 208 FOR U.S. RESPONSE CIRCLE 209 FOR RESPONSE OUTSIDE THE U.S.

BOUNDARY SCAN LOGIC COMES IN TRANSCEIVERS

Wide-word transceivers, offering 18 -bit wide data paths, have been designed to be fully compliant with the JTAG (Joint Test Action Group) 1149.1 serial boundary-scan test standard. Moreover, not only do the chips in National Semiconductor's SCAN family include the JTAG port, but they are also compatible, from a pinout and signal viewpoint, with existing non-boundary-scan transceivers. Thus, the 18 -bit circuits can be replaced with 16 -bit FACT-compatible chips without redesigning the pe board (but dropping the two parity bits). In contrast, other transceivers that include JTAG ports have unique pinouts and cannot be directly replaced with a non-JTAG transceiver.

National will initially offer four transceivers and one serial/parallel test access port (TAP) that allows a non-scan device to talk to a JTAG bus. The four transceiver parts include the SCAN18540 and 18541T 18-bit buffers, the SCAN18373T 18-bit register, and the SCAN18374 18-bit latch. The TAP chip's number is SCANOSC100F. The JTAG logic on all the chips implements the required JTAG commands (Sample/preload, External Test, and Bypass), as well as two additional com-

mands (Clamp, and High Impedance) to better test the parts. The CMOS chips draw minimal power during standby, yet allow system speeds of 25 MHz and faster.

The transceivers come in 56-lead, fine-pitch (25 -mil) shrink small outline IC packages (SSOPs), while the TAP chip comes in a 28 -lead (50 -mil spacing) SOIC. The chips also have controlled-output-waveshaping circuits to minimize noise and crosstalk. Samples are immediately available and in 100-unit lots sell for $\$ 5.75$ apiece except for the TAP chip, which sells for $\$ 9.95$.

National Semiconductor Corp., 2900
Semiconductor Dr., P. O. Box 58090, Santa Clara, CA 95052-8090; Gary O'Donnell, (408) 7215000. CITBIF 468

DAVE BURSKY

Burst Cache RaM In bicmos ACCESSES IN ONLY 14 NS

Allowing designers to build 50 MHz , no-wait-state systems based on the 80486, the CY7B173 cache RAM incorporates many support functions right on the chip. Built in biCMOS, the 256 -kbit chip is organized as 32 kwords by 9 bits and has a basic access time of 14 ns . Along with the memory, the chip includes a burst counter, address and data registers, and synchronous, self-timed write-control logic. On-chip decoders also simplify memory expansion from one bank of four devices (128 kbytes) to two banks of four chips, thus doubling the size of the cache with no performance penalty.

The high speed of the part coupled with the glueless interface to the 80486 CPU, the cache controller and the system clock keeps the system running at top speed. Separate pins for processor
and cache controller address strobes enable the CY7B173 to switch control from the 486 to the cache controller during cache misses. Since the CPU doesn't relinquish control to the cache controller during a cache miss, designs done with previously available cache RAMs required external logic to control the cache. The CY7B173 eliminates that external logic and thus further improves system speed. A companion burst RAM that handles linear burst sequences rather than the required sequence for loading the 486 is also available from Cypress (CY7B174). Both cache RAMs are housed in 44-lead plastic leaded chip carriers. In lots of 100 either chip sells for $\$ 69$. apiece. Samples are available from stock.

> Cypress Semiconductor Corp., 3901
> N. First Street, San Jose, CA 95134-

> 1599; (408) 943-2600. GIREIF 469
> DAVE BURSKY

ICs Segment Test Paths For Easier BOUNDARY SCAN

Two scan-path support ICs help designers isolate problems on printed-circuit boards more easily by partitioning boundary-scan test paths into smaller segments. The smaller scan paths, or chains, reduce the number of bits being scanned, which simplifies test software development. The ability to switch to alternative scan paths also increases fault tolerance.
The SN74ACT8997 scan-path linker allows the designer to switch the primary scan path to any combination of four secondary scan paths (SSP). In that way several SSPs can be accessed simultaneously. The device is useful when the designer has functional blocks of circuitry (or boards) that are not autonomous. The test program can then open single SSPs to test one functional block or board or open multiple SSPs to test multiple boards.

The SN74ACT8999 scan-path selector allows the designer to switch the primary scan path to one SSP at a time. When the one SSP is being used, the other three remain in stable test acess port states. This device is useful for partitioning SSPs when the system under test has several functional boards.
Both devices have module identification pins, which are useful when the ICs are installed on multiple printed circuit boards with boundary-scan access across the backplane. Each board can have a unique ID code so the scan controller can automatically configure the sequence in which the boards will be tested.
Fabricated in $1-\mu \mathrm{m}$ Epic advanced CMOS, both devices come in 28 -pin plastic DIP or SOIC packages for commercial use. Military versions will be introduced in 28 -pin ceramic 300 MIL DIP and 28 -pin leaded ceramic chip carrier packages. The ICs are characterized for commercial operation over a range of 0° to $70^{\circ} \mathrm{C}$.
The 'ACT8997 costs $\$ 5.00$ in 1000 piece quantities, and the 'ACT8999 costs $\$ 5.50$ in similar quantities. Both are available immediately.

Texas Instruments Inc. Semiconductor Group (SC-91078), P. O. Box
809066, Dallas, TX 75380-9066; (800)
336-5235, ext. 700 or (214) 995-6611,
ext. 700. GIVGIF 470
JOHNNOVELLINO

M0THERB0ARD CHIP SET EASES 386/486 SYSTEM UPGRADES

Amotherboard chip set for 80386 and 80486-based PCs allows designers to implement a modular architecture that permits CPU upgrades. To make upgrading possible, the OPTi chip set "pushes" the CPU, FPU, and optional cache cluster onto an add-in card that employs an EISA bus format. Rather than use the standard EISA-bus signals, however, the EISAspecific pins carry CPU signals back to the chip set. Thus, the two-chip DXBB concept simplifies motherboards since only the chip set, main system DRAM and BIOS, and I/O functions need be on the motherboard.

The three chips in the set consist of the 82 C 496 , the CPU, block interleave DRAM and AT bus controller; the 82C497, a write-back cache controller; and the previously available 82 C 206 peripheral controller. When implemented with the three chips, a typical motherboard would contain both ISA and EISA-connector card slots. The EISA slots, however, cannot accept standard EISA cards since all the EISA-specific signal lines are different. Instead, they
accept compute-cluster cards that each system manufacturer can create. And since the bus set up by the OPTi chip set is the common connection point, CPU cards from different suppliers should be interchangeable.

The 82 C 496 comes in a 184 -lead PQFP and provides support for 80386DX, 486SX, and 486DX CPUs and control of up to four banks of DRAM (256k, 1-Mbit, or 4-Mbit chips). The controller also supports DRAM transfer bursts and through interleaving allows very compact non-cached $33-\mathrm{MHz}$ systems to be built. The 160 -lead 82C497 supports cache sizes from 64 to 256 kbytes. For systems above 33 MHz , the controller uses an asynchronous interface to the 82C496. As a result, the motherboard runs at a constant 33 MHz when higher speed CPUs are plugged into the system.

Samples of the chip set (the 82C496 and 497) are available now and sell for $\$ 27.50$ per set in lots of 10,000 .

OPTi Inc., 2525 Walsh Ave., Santa
Clara, CA 95051; Raj Jaswa, (408)
980-8178. CHBCIF 471
DAVE BURSKY

Charge Controller MANAGES BATTERY POWER

Managing the quick charging and monitoring of nickelcadmium batteries, the ISC1700-01 employs a patented "Reflex" charge algorithm licensed by ICS to achieve full battery charges in just 20 minutes. The CMOS chip can safely charge the batteries while minimizing memory effects, restoring faded capacity, improving battery life and reliability, enhancing charge acceptance, and increasing charge efficiency. The chip also operates in a pulsed maintenance mode that keeps batteries at peak charge. By providing smart control, the chip permits the use of less costly "standard-charge" batteries, rather than the more expensive "fast-charge" cells. That permits more cost-effective systems to be designed.

As many as eight charge-termination methods ensure safe charging, reduce excessive heating, detect defective cells, and reduce internal pressure to avoid cell venting. Some of the monitoring schemes include examining the
linear regression slope of the battery voltage, sensing the battery temperature, use of a "deadman" timer, short sensing, checking for high-impedance cells, and detecting voltage rise.
The IC has a dedicated processor, DSP, dataROM, RAM, comparators, ADC , and a bandgap reference. An external $1.2-\mathrm{V}$ reference can be fed into the chip. Other inputs include lines for a thermal sensor and an analog voltage, as well as some selection control inputs and R-C connections for the on-chip oscillator (1 MHz , nominal). Output lines provide LED drive for charge status, battery, and contact problem indicators. The ICS1700 is housed in a 16 -pin plastic DIP and consumes just 3 mA , typical, from a $5-\mathrm{V}$ supply. It is available now and sells for $\$ 11$ apiece in lots of 1000 .

Integrated Circuit Systems Inc., 2626 Van Buren Ave., P. O. Box 968, Valley Forge, PA 19482-0968; Thomas Gosse, (215) 666-1900. GIBGIF 472
GIVGIE 472
DAVE BURSKY

ATTENTION MARKETERS!

REACH DESIGN AND DEVELOPMENT ENGINEERS

ELECTRONIC DESIGN

subscribers are highly educated engineers and managers in the electronics original equipment market.

Select by:
Job Function, Type of Industry, Project Responsibility, Purchasing Influence, Employment Size and Geography

Guaranteed 99\% deliverable 100\% BPA audited

> Call the List Department at 216(696)7000 for your FREE catalog

ANALYZE DATA ON PCS, WORKSTATIONS

Available in either a DOS version for IBM PCs and compatibles or in an Open Look or Motif environment under Xwindows for a variety of Unix workstations, S-Plus provides an interactive computing environment for graphical data analysis. The interactive environment permits the software to be used as an application package or as a development environment for custom data analysis. Tje software can perform dynamic graphics (3D rotatable and linked) with brushing and point identification, as well as 2D plotting, basic statistics, multivariate statistics and graphics, time series analysis, and survival analysis. Data can be transferred into and out of the software with ASCII files, or keyboard input, or binary files. Included with the software is its own object-oriented language for programming. Single-user DOS price is $\$ 1195$ and $\$ 2800$ for workstations (plus a $\$ 600$ annual maintenance fee for workstation versions). DOS systems should be $386 / 387$ or 486 -based with at least 2 Mbytes of RAM, an EGA, VGA or Hercules display adapter, and 25 M bytes of disk space.
Statistical Sciences Inc., 1700 Westlake Ave. N, Suite 500, Seattle, WA 98109; Thomas Christie, (206) 2838802. CHRGIF 473

MS-DOS 3.31-COMPATIBLE OS EXECUTES FR0M ROM

The latest version of the ROM-DOS operating system (OS) is compatible with MS-DOS 3.31 and has many new features. It runs from within ROM or from a floppy or hard disk. With the operating system, developers can write applications in any language, then convert the programs into ROMable.EXE files that execute directly from ROM, saving valuable RAM space. ROM-DOS takes up about 34 kbytes of ROM and uses just 10 kbytes of RAM when running. The new features include support for an installable file system (IFS) that's compatible with MS-DOS 3.31 IFS. This allows access to external nonDOS formatted files, such as distributed files or files that appear on devices not using the standard DOS file-allocation table, such as CD-ROM drives. In large quantities, ROM-DOS costs just $\$ 5$ per copy. A developer's kit is available for $\$ 495$. A source-code license sells for $\$ 10,000$.

Datalight Inc., 17455 68th Ave NE, Suite 304, Bothell, WA 98011; (800) 221-6630. CliGIE 474

Program Manager/ Project Leader Sensor Technology

A major unit of a Fortune 500 company, serving the building life safety systems market, is searching for a key individual who is looking for an exciting opportunity to be challenged in a dynamic, growing business.
The successful candidate will be responsible for the design, development, and testing of various sensor technologies (smoke, pressure, temperature, etc.) including the development of linear and digital interface and control circuits using ASIC 's and custom integrated circuits for life safety systems products, worldwide. The position is based in southern New England.

Requirements for this position include at least seven years of direct design and development experience in an appropriate product line (linear \& digital circuitry, power supply design, digital signal processing, microprocessors), a BS/MSEE (MS desired, but not required). The selected candidate will be creative and aggressive and show strong leadership and team-building characteristics.

We offer a very competitive salary and excellent benefits package. Qualified candidates are urged to submit their resume with salary history in confidence to: CA 110 - ED, P.O. Box 6192, Cleveland, OH 44101.

An equal opportunity emplover, $m / f / h / v$.

CLASSIFIED ORDER FORM

BILL TO:
Name:
Company:
Address:

Phone:

FAX:
SIZE OF AD:
Month of ISSuE:
Signature: \qquad
AD Copy: Maximum 35 words per inch. Type your ad copy on company letterhead, include special instructions. Mail or tax with order form.

> Electronic Design Classified Advertising Attn: Lois Walsh 1100 Superior Avenue Cleveland, Ohio 44114 (216) 696-7000 ext. 2359

> FAX: (216) 696-1267

BUSINESS SERVICES

TECHNICAL WITTS, INC.
Switchmode Power Supply Design Software Engineering - Windows, C, C++

6319 W. Villa Theresa Drive
Glendale, AZ 85308
Voice: (602)439-1833
FAX: (602) 547-1123

Penton Classifieds
 will now accept your MasterCard or Visa for prepayment of your Classified Ad!

For more information
call your Classified
Sales Representative at:
(216) 696-7000

MIXED-MODE CIRCUI SIMULATION

ENTER THE FUTURE OF ANALOG DESIGN! Upgrade to the power and speed of topSPICE $p l$ True Analog/Digital/Behavioral Mixed-Mode Circuit Simulator for PC

- Complete SPICE analog simulator with extended syntax. - Fully integrated event-driven logic simulator.
- Analog Behavioral modeling using arbitrary equations, Laplace transforms and look-up tables. • Analog and digital model libraries. - Graphics post-processor. - Compatible with most SPICE CAE products.

Call or write for FREE DEMO disk 800-272-0674 Fax (818) 340-6316
P.O. Box 10358

Canoga Park, CA 91309, (818) 594-0363
PENZAR DEVELOPMENT CIRCLE 409

Instant Microcontroller

Instant C Programming

Don't use a microprocessor, use a SmartBlock ${ }^{\text {TM }}$ microcontroller module to build your custom controller. Our $\$ 195$ interactive Dynamic $\mathbf{C}^{\text {m }}$ development system makes programming easy. 3.5×2.5 inch module includes microprocessor, memory, time/date clock, eeprom, watchdog, serial ports and more. As low as $\$ 59$ in quantity. The efficiency of a custom design without the headaches.

Z-World Engineering

1724 Picasso Ave., Davis, CA 95616 USA
Tel: (916) 757-3737
Regular Fax: (916) 753-5141
Automatic Fax: (916)-753-0618 (Call from your fax, request data sheet \#14.)

IEEE 488.2
 Hardware for IBM PC/AT. Micro Channel, Sun,
 UNIX, WMS, menu-driven and icon-driven environments.
 IEEE 488 extenders, analyzers, converters, analog I/O, and digital I/O.
 Call for your free IEEE catalog

 Macintosh, DEC and NeXTSoftware for DOS,

IOtech, Inc. - 25971 Cannon Road Cleveland, Ohio 44146 • (216) 439-4091 IOTECH

CIRCLE 410

A D S

Free Catalog

The World's Largest Collection of Adapters \& Accessories for VLSI/Surface Mount Devices

- Emulator Pods \& Adapters - Debugging Accessories
- Debug Tools

Prototyping Adapters

- Programming Adapters - Custom Engineering
- Socket Converters

Emulation Technology, Inc.
2344 Walsh Ave. Santa Clara, CA 95051 Phone: 408-982-0660 FAX: 408-982-0664 EMULATION TECHNOLOGY

Schematic Entry • SPICE Simulation - Model Libraries - Waveform Graphics Intusoft has it all at an Affordable Price! Integrated, Easy to use Simulation Environment, Featuring: A powerful SPICE (ISSPICE) simulator performing AC, DC, Transient, Noise, Fourier, Distortion, Sensitivity, Monte Carlo, and Temperature analyses, Extensive model libraries, schematicentry, and Waveform processing. Starting at $\$ 95$ for IsSPICE, complete systems are available for $\$ 815$.
Call Or Write For
Your Free Demo and
P.O. Box 710 San Pedro
intusof CA 90733-0710
Information Kin! Fax 213-833-9658

INTUSOFT
CIRCLE 412

- Use with 0.045" Square Post, $0.156^{\prime \prime}$ Centers
- Crimp Removable Power \& Signal Sockets
- 2 Position Through 28 Position
- Agency Approvals

ELCON
P.O. Box 1885, Fremont, CA 94538 PH. (510) $490-4200$ • FAX (510) 490.3740
ELCON
DIRECT
CONNECTION

NEW SCHEMATIC AND PCB SOFTWARE
With support for extended and expanded memory, HiWIRE II can handle your most demanding schematic and PCB designs quickly and easily. The unique HiWIRE editor allows you to display and edit schematics and PCBs simultaneously, using the same commands for each. HiWIRE II is \$995, and is guaranteed.

WINTEK CORPORATION,
1801 South Street, Lafayette, IN 47904 (800) 742-6809 or (317) 448-1903

WINTEK
CIRCLE 400

Telecom Solutions from Teltone

Central Office Grade DTMF Transceivers

Complete, single-chip
DTMF transmitter/receivers with call progress detection, automatic tone burst mode,
and adjustable guard time.
For paging systems, fax
machines, interconnect dialers, PBX
systems, computer systems, etc. CMOS, 5 -volt
power supply, 20-pin DIP

- M-8880 features 6500/6800 microprocessor interface.
- M-8888 features $8051,8086 / 88$ microprocessor interface.

1-800-426-3926
Or: 206-487-1515 Fax: 206-487-2288

飞ELTロNE

INNOVATING SOLUTIONS In Telecom Interface Components
Teltone Corporation, 22121-20th Avenue SE, Bothell, WA 98021 TELTONE CIRCLE 413

Blind Matable Power Supply Connector
L Seriers rack \& panel connectors provide optional 8, 15, 25, 50 and 200 amp contacts in a rugged float mountable assemble. L Series connectors use the Hypertac® hyperboloid, low force contact which offers high cycle life, immunity to shock and vibration, and contact resistance in the .4 to 2.5 milliohm range.

For Additional Information, Contact:
Hypertronics Corporation
16 Brent Drive
Hudson, Massachusetts 01749
(800) $225-9228$ (In Mass. \& Canada (508) $568-0451$ FAX: (508) 568-0680
HYPERTRONICS CORPORATION
CIRCLE 406

ACCEL TECHNOLOGY
CIRCLE 411

Instrument Control and Data Acquisition Free 1992 catalog of instrumentation products for PCs, workstations, and more. Features IEEE-488.2 interfaces and software, plug-in data acquisition boards, VXIbus controllers, DSP hardware and software, and signal conditioning accessories. Application software for complete acquisition, analysis and presentation of data, including graphical interfaces. Application tutorials and training classes also detailed.
National Instruments
6504 Bridge Point Parkway, Austin, TX 78730 (512) 794-0100 (800) 433-3488 (U.S. and Canada) Fax: (512) 794-8411
NATIONAL INSTRUMENTS
CIRCLE 404

The Only Low Cost/High Performance Arbitrary Waveform Generator

A must for Engineering Development or Production Test.

* IBM AT compatible board
\star Two analog output channels +24 digital outputs
* Up to 50 Megapoints/sec output each channel
* 12 bit resolution
* 10 output filters per channel
* Frequency synthesizer
$\star 64 \mathrm{k}$ words RAM per channel with segment looping * The best software support on the market

Full price is $\$ 3500$. Phone Today for immediate information. Signatec, Inc.
 357 N . Sherid
Corona. Calitomn St., Suite 119 (714) $734-3001$ FAX: (714) 734-4356
SIGNATEC

Free Circular Connector Catalog from LEMO

LEMO's new circular connector catalog highlights expanded shell and insert designs. Insert configurations are available in single, multi or mixed designs
 including signal, coaxial, triaxial, high voltage, fiber optic and fluidic/ pneumatic. Shell styles are available in standard chrome plated brass, anodized aluminum, plastic or stainless steel.

(4) Fly Flla a

P.O. Box 11488, Santa Rosa, CA 95406 Phone (800) 444-LEMO Fax (707) 578-0869 LEMO USA CIRCLE 402

Moiseken
 IEC Pub. 801-2
 HIGH REPRODUCIBLE ESD TESTING.

ELECTROSTATIC
DISCHARGE SIMULATOR ESS-630A
U.S.A WATAHAN NOHARA INTERNATIONAL, INC TEL(800)366-3515

NOISEKEN CIRCLE 403

EAO's PCB MOUNTABLE ILLUMINATED PUSHBUTTONS \& INDICATORS

66 S킼S

* Tactile or non-tactile action
* Single, double and triple width miniatures
* Low-level gold snap-acting contacts
* 5-million operations; washable * Incandescent lamp or LED illumination
* Rating: from low level to $5 \mathrm{~A}, 250 \mathrm{VAC}$

EAO SWITCH, YOU CAN FEEL THE DIFFERENCE

EAO SWITCH CORPORATION
P.O. BOX 552, MILFORD, CT 06460. 203/877-4577 TELEX: EAOSWITCHMFRD 964347. FAX: 203/877-3694

EAO SWITCHES
CIRCLE 407

INDEX OF ADVERTISERS
$\left.\begin{array}{lll|lll}\hline & & & & & \text { READER }\end{array}\right]$ PAGE

Truly incredible...superfast 3nsec GaAs SPDT reflective or absorptive switches with built-in driver, available in pc plug-in or SMA connector models, from only $\$ 19.95$. So why bother designing and building a driver interface to further complicate your subsystem and take added space when you can specify Mini-Circuits' latest innovative integrated components?

Check the outstanding performance of these units ...high isolation, excellent return loss (even in the "off" state for absorptive models) and 3 -sigma guaranteed unit-to-unit repeatability for insertion loss. These rugged devices operate over a -55° to $+100^{\circ} \mathrm{C}$ span. Plug-in models are housed in a tiny plastic case and are available in tape-and-reel format (1500 units max, 24mm). All models are available for immediate delivery with a one-year guarantee.

SPECIFICATIONS (typ)
$\left.\begin{array}{lccc|} & \begin{array}{r}\text { Absorptive SPDT } \\ \text { YSWA-2-50DR }\end{array} \\ \text { ZYSWA-2-50DR }\end{array}\right\}$

Reflective SPDT

dc-	$500-$	$2000-$
500	2000	5000
0.9	1.3	1.4
50	40	28
20	20	24
22	22	26
1.4	1.4	1.4
30	30	30

SW-2-50DR (Din) 1995
ZYSW-2-50DR (SMA) 59.95
finding new ways
setting higher standards

Mini-Circuits

IHINK FAST. THINK LINEAR.

15 New High Speed Op Amps.

No Sacrifice For Speed. Not with Linear's new family of high speed op amps. LT1122, 1220, 1221, and 1222 provide 12 bit performance with nsec settling and bandwidths to 45 MHz . The LT1224, 1225 and 1226 are general purpose parts with the capability to drive unlimited capacitive loads. LT1190, 1191 and 1192 are video speed op amps with differential gain and phase errors of 0.1% and 0.06°. The LT1223, 1229 and 1230 are single, dual and quad current feedback amplifiers with high output drive current $(50 \mathrm{~mA})$ and professional video quality differential gain and phase.

LT1228 is a high speed gain controlled amp with guaranteed operation down $\approx 0 \pm 2 \mathrm{~V}$ or 4 V single supply and output swing to within 1 V of the rails.

LT1122 is a JFET input op amp which slews $80 \mathrm{~V} / \mu$ s. LT1193 and 1194 are video differential input amplifiers with programmable or fixed gain powered from single 5 V or $\pm 5 \mathrm{~V}$ supplies with $\pm 50 \mathrm{~mA}$ output drive.

Singles and duals are available in 8 -pin DIP and 8 -pin SOIC package, quads in 14 -pin. For data sheets and a comprehensive 132 page application note contact Linear Technology Corporation, 1630 McCarthy Blvd., Milpitas, CA 95035. Or call 800-637-5545.

Parameter	$\mathbf{1 2 2 0}$	$\mathbf{1 2 2 4}$	$\mathbf{1 1 9 1}$	$\mathbf{1 2 2 3}$	$\mathbf{1 1 2 2}$	Units	
S.R.	Slew Rate (Typ)	250	400	450	1000	80	$\mathrm{~V} / \mu \mathrm{sec}$
G.B.W. Gain Bandwidth (Typ)	45	45	90	100	14	MHz	
t_{s}	Settling Time (to 0.1\%) (Typ)	90	90	100	75	340^{*}	nsec
AvOL	Open Loop Gain (Typ)	50	7	45	28	450	$\mathrm{~V} / \mathrm{mV}$
VOS	Offset Voltage (Max)	1	2	6	3	0.9	mV
IOS	Offset Current (Max)	0.3	0.4	1	-	.00005	$\mu \mathrm{~A}$
I_{B}	Bias Current (Max)	0.3	8	1.7	3	.0001	$\mu \mathrm{~A}$
e_{n}	Voltage Noise (f = 10KHz)	17	22	25	3.3	15	$\mathrm{nV} / \sqrt{\mathrm{Hz}}$
i_{n}	Current Noise (f = 10KHz)	3	1.5	4	2.1	.002	$\mathrm{pA} / \sqrt{\mathrm{Hz}}$
	Min Gain Stable	1	1	1	1	1	
IS	Suppiy Current (Max)	10.5	9	40	10	11	mA
	Price (100's) S (PDIP)	3.85	2.85	2.40	2.85	2.50	

[^10]CIRCLE 124 FOR U.S. RESPONSE
CIRCLE 125 FOR RESPONSE OUTSIDE THE U.S

[^0]: electronic design (USPS 172-080; ISSN 0013-4872) is published semi monthly by Penton Publishing Inc., 1100 Superior Ave., Cleveland, $\mathrm{OH} 44114-$ 2543. Paid rates for a one year subscription are as follows: $\$ 85$ U.S., $\$ 160$ Canada, $\$ 230$ International. Second-class postage paid at Cleveland, OH , and additional mailing offices. Editorial and advertising addresses: ELECTRONIC DESIGN, 611 Route \#46 West, Hasbrouck Heights, NJ 07604. Telephone (201) 393-6060. Facsimile (201) 393-0204.

 Printed in U.S.A. Title registered in U.S. Patent Office. Copyright 01992 by Penton Publishing Inc. All rights reserved. The contents of this publication may not be reproduced in whole or in part without the consent of the copyright owner.
 Permission is granted to users registered with the Copyright Clearance Center Inc. (CCC) to photocopy any article, with the exception of those for which separate copyright ownership is indicated on the first page of the article, provided that a base fee of $\$ 1$ per copy of the article plus $\$.50$ per page is paid directly to the CCC, 27 Congress St., Salem, MA 01970 (Code No. 0013-4872/92 $\$ 1.00$ +.50). (Can. GST \#R126431964) Copying done for other than personal or internal reference use without the express permission of Penton Publishing, Inc. is prohibited. Requests for special permission or is pronibited. Requests for special permission
 bulk orders should be addressed to the editor.
 For subscriber change of address and subscription inquiries, call (216) 696-7000.
 POSTMASTER: Please send change of address to electronic design, Penton Publishing Inc., 1100 Superior Ave., Cleveland, $0 \mathrm{H} 44114-2543$.

[^1]: Old Faithful, Yellowstone National Park

[^2]: *TEK-AT3 occupies 60% less volume.

[^3]: * In Canada call 1-800-387-3867, Dept. 429. O 1991 Hewlett-Packard Co. TMCOLI23/ED

[^4]: NORTH AMERICA: P.O. Box 7643, Mt. Prospect, IL 60056-7643 (Tel: 18006287364 , ext. 143; Fax: 1800888 5113); EUROPE: Industriestraße 10, D-8080 Fürstenfeldbruck, Germany (Tel: 498141103 0; Fax: 498141103 515); HONG KONG: 15 th Floor, Straight Block, Ocean Center, 5 Canton Rd.,Tsimshatsui, Hong Kong (Tel: 8527371600 ; Fax: 8527369921); JAPAN: 4-15, Nishi-shinjuku, Shinjuku-ku,Tokyo, Japan 160 (Tel: 8133299 7030; Fax: 8133374 4303).

[^5]: 3. BY STACKING CHIPS one on top of the other and in a rightside-up, upside-down configuration (called multilayered bonding),

 Panasonic can achieve a mounting density four times greater than conventional packaging methods.

[^6]: CANADA (416) 821-7800 DENMARK (42) 244888 GERMANY (6152) 61081 SPAIN (1) 4094725 FINLAND (0) 8041-041 FRANCE (1) 69070824 HONG KONG 8339013 ISRAEL (3) 9345171 INDIA (212) 339836 ITALY (2) 99041977 JAPAN (3) $3244-3787$ NETHERLANDS (10) 4519533 NORWAY (2) 500650 KOREA (2) 745-2761 AUSTRIA (1) 50515220 SWITZERLAND (56) 265486 SINGAPORE 284-8537 SWEDEN (8) 795 9650 TAIWAN (02) 721-9533 UK (0844) 278781 BELGIUM/LUXEMBOURG (3) 828-3880 AUSTRALIA (08) 277-3288
 "APEX HYBRID \& IC HANDBOOK" - Order Your Free Copy Of The New 5th Edition Today!

[^7]: I appreciate your restraint in puncturing my ad hominem arguments. You're correct and I apologize.-RAP

[^8]: Unitrode Integrated
 Circuits Corp.
 P.O. Box 399

 Merrimack, NH 03054-0399
 (603) 424-2410
 -CIRCLE 875

[^9]: *In Europe fax your request to the above dept. at (32) 2-652-1504 or call (32) 2-652-0270. In Asia fax to the above dept. at 1 (415) 961-4201. © 1991 Cypress Semiconductor, 3901 North First Street, San Jose CA 95134. Phone: 1 (408) 943-2600, Telex: 821032 CYPRESS SNJ UD, TWX: 910-997-0753. SPARCore is a trademark of Cypress Semiconductor. SPARC is a registered trademark of SPARC International, Inc.
 Products bearing the SPARC trademark are based on an architecture developed by Sun Microsystems, Inc.

[^10]: *12 Bit Settling Time

