EVALUATE ADCS IN THE ERECUENGY DOMAN:

Who says you can't afford the world's best PLD development tools? Data I/O ${ }^{\text {®'s }}$ industry-standard design software and programming solutions are more powerful-and more affordable-than ever before. So now the best tools on the market are also the best value.

NEW ABEL ${ }^{\mathrm{TM}}-4$ marks a major milestone in PLD software. The leader in device support, ABEL-4 automatically identifies which PLDs match your design needs with new SmartPart ${ }^{\text {Th }}$ intelligent device selection. New optional device fitters automatically assign pins and
configure macrocells for complex device architectures. And an all-new user interface speeds the entire PLD design process.

A major new version of the leading schematic capture software, NEW FutureNet ${ }^{\circledR}-5$, redefines "ease-of-use" with pop-up menus, extensive dialog boxes and a fast symbol browsing feature.

To make designing for testability practical, choose NEW PLDgrade. ${ }^{\text {TM }}$ This inexpensive fault grading software helps you optimize your design for testability before production.

And the affordable NEW 2900 Programming System brings the cost of high-performance programming down to earth. Its innovative technology makes programming any PLD-even surface-mount devicesfast and easy.

CALL TODAY for your FREE tutorial on designing with PLDsa $\$ 12.95$ value.

$1-800-247-5700$

The Personal Silicon Experts
DATA I/O
Corporation

Control Tower

When it comes to motion control products, Hewlett-Packard towers over the rest with a more diversified and innovative line of solutions. Giving you one source to meet all your design needs.
Just look at our award-winning HEDS 9000 series of encoder modules. Using HP's unique optical technology, these modules are the ideal building blocks for creating precision high-speed linear or rotary applications.
Your choices include everything from a 3 -channel module for industrial applications to the small footprint of our 9700 collection for business equipment.

Control panel: the HRPG series.

For front panel applications, turn to our RPG series of potentiometers. Offering you full configuration flexibility, improved rotational feel, and small footprint, HP delivers the perfect line of data entry devices for your test, medical, analytical, and computer equipment.

Controlled performance: the HCTL series.

Our new line of high-speed HCTL ICs give you high performance servo control in low-power CMOS. The result: superior performance and more microprocessing
power left over for your laboratory, medical, and industrial automation designs.
And because these motion control solutions come from HP, you're assured of our on-going commitment to excellence in service, support, and reliability.
So why take a chance, when you can take control. With motion control products from HP. Call for our free brochure:
1-800-752-0900, ext. 1497.
There is a better way.

ELELTROMCDETCM

(20)
technology 43 POWERFUL SYSTEMS AND LAPTOPS MUSCLE INT0 SPOTLIGHT
ANALYSIS This year's fall Comdex will highlight PCs built around the 486 chip and more potent notebook PCs.
cover feature 57 Register Windows Speed Real-Time Control Tasks
The first embedded controller based on the Sparc core packs caches, peripheral functions, and enhanced math for faster control.

Wescon preview 67 CAE AND MEMORIES HEADLINe AT WeSCON

Automated-design tools move to the forefront as designers seek to stay competitive in the 1990s.

desicn 89 Data CONVERTERS: GETTING TO KNOW DYNAMIC SPECS
 APPLICATIONS
 The ongoing evolution in data converters requires that they be characterized beyond static accuracy and throughput.
 107 ACHIEVE PRECISION IN LINEAR ASIC DEVICES
 When the building blocks of an ASIC require high speed and accuracy, try resistive-trimming techniques.
 proouct 147 ARCNET CHip TACKLES REAL-TiME EMBEDDED CONTROL
 INNOVATIONS Teamed up with a microcontroller, an IC cuts cost for peer-to-peer networking over Arcnet.
 152 GAAS GATE ARRAYS HIT 100,000 + GATES/CHIP
 High-performance system design just got easier with a family of GaAs gate arrays that hold more of the complex circuit on one chip.

156 PuLSe Generators Sport High Accuracy
Three models aim at device characterization.
159 SIMPLIFY CONVERTER CONNECTION TO DSPS
Link digital signal processors to DACs and ADCs without glue logic.

164 CONNECTORS PASS PULSES WITH NANOSECOND RISE TIMES

By acting like a digital transmission line, a connector eliminates the noise roadblock to higher system throughput.

14 EDITORIAL

18 TECHNOLOGY BRIEFING

The solid-state floppy has arrived

25 TECHNOLOGY NEWSLETTER

- FDDI chip set handles copper cable
- Fast thermometer nabs transients
- Consortium pushes open BIOS
- Streamlined 68030 tackles embedded applications
- Micro Linear gets biCMOS from AMCC
- Motorola fine-tunes wireless net
- Burr-Brown betters bulletin board
- Networked controller manages remotely
- Second-gen RISC ups 88 K speed
- Deal nets new GaAs IC source
- Sensorless IC drives de motors
- Transceiver links LAN to 10Base-T
- IC converts bilevel to gray scale
- Round-up of Buscon and

Futurebus+ announcements

35 TECHNOLOGY ADVANCES

- Silicon-on-insulator process can enhance virtually any species of IC
- Diamond film ices hot chips
- Parallel-processor systems for

DSP become easily expandable

- S-H amplifier on video amplifier IC performs de restoration
- High-speed optical backplane to be made of ordinary glass

119 quick Look

- Trimming development time
- Windows 3 gives a boost to the PC software market

Certificate of Merit
Winner, 1988
Jesse H. Neal Editorial
Achievement Awards

- How engineers can avoid some common investor mistakes
- Two PC products ease input and cost less than $\$ 100$
- On the education that young engineers receive these days

125 PEASE PORRIDGE

What's all this CMRR stuff, anyhow?

135 IDEAS FOR DESIGN

- Attain drive for MOSFET relay
- Convert V_{C} to duty cycle
- Add programmable gain and attenuation

142 PRODUCTS NEWSLETTER

- Math chip ups floating-point speed
- Fast IGBTs cut energy losses
- Upgrade path for HC 11
- Programmable dot-clock IC
simplifies PC video
- C++ advances code development
- 80386SX runs in notebook PC
- Burst-mode controllers ease CPU system design
- Video RAMDAC adds timing logic

new products

169 Analog
Simultaneous sampling-IC ADC grabs 4 signals to 12 -bit accuracy
175 Computer Boards
179 Computer-Aided Engineering

185 Instruments

191 Digital ICs
206 Computers \& Peripherals
Sparc-based workstations boast faster CPU, better I/O, more features
Sparc-based workstations deliver top price/performance mix
223 Power
225 Software
226 Components
230 Packaging \& Production

239 INDEX OF ADVERTISERS

241 READER SERVICE GARD

COMING NEXT ISSUE

- Special Report: Image process-ing-adapting PCs for multimedia applications
- A preview of semiconductor advances disclosed at the International Electron Devices Meeting
- First details on new CASE and simulation tools
- Building analog behavioral models in six easy steps
- Measure PLL open-loop
response-with the loop closed
- Plus regular features:

Ideas for Design
Pease Porridge
Quick Look
Technology Advances

ELECTRONIC DESIGN (USPS 172-080; ISSN 0013-4872) is published semi monthly by Penton Publishing Inc., 1100 Superior Ave., Cleveland, OH 441142543. Paid rates for a one year subscription are as follows: $\$ 75$ U.S., $\$ 140$ Canada, $\$ 230$ International. Second-class postage paid at Cleveland, OH, and additional mailing offices. Editorial and advertising addresses: ELECTRONIC DESIGN, 611 Route \#46 West, Hasbrouck Heights, NJ 07604. Telephone (201) 393-6060. Facsimile (201) 393-0204.

Printed in U.S.A. Title registered in U.S. Patent Office. Copyright © 1990 by Penton Publishing Inc. All rights reserved. The contents of this publication may not be reproduced in whole or in part without the consent of the copyright owner.
Permission is granted to users registered with the Copyright Clearance Center Inc. (CCC) to photocopy any article, with the exception of those for which separate copyright ownership is indicated on the first page of the article, provided that a base fee of $\$ 1$ per copy of the article plus $\$.50$ per page is paid directly to the CCC, 27 Congress St., Salem, MA 01970 (Code No. 0013-4872/90 \$1.00 + .50), Copying done for other than personal or internal reference use without the express permission of Penton Publishing, Inc. is prohibited. Requests for special permission or bulk orders should be addressed to the editor.

For subscriber change of address and subscription inquiries, call (216) 696-7000.

POSTMASTER: Please send change of address to electronic design, Penton Publishing Inc., 1100 Superior Ave., Cleveland, OH 44114-2543.

THIS MAN MANAG

 MULTIPLE DESIGN DISCIPLIN DEADLINES THAT COULD KILThe dilemma rears its ugly head time and time again. Do the impossible. By tomorrow. Worse yet, do it with an intimidating hodge-podge of design automation tools and data formats. And while you're at it, make sure all these tools and data play together freely and efficiently. No problem. Right?

To avoid this kind of chaos, you need to consider a fundamental change in your engineering strategy. Which is why we now offer you our Concurrent Design Environment."

Simply put, the Concurrent Design Environment allows tools from virtually any source to work together.

Within it, our new Falcon Framework'm lets you assemble precisely the design automation environment your situation requires - without sacrificing the considerable benefits of integration. And our OpenDoor ${ }^{\text {s" }}$ program ensures that your choice of tools includes the best the entire industry has to offer.

ES 125 ENGINEERS ES, DISPARATE TOOLS AND L. SO WHY IS HE SMILING?

The Concurrent Design Environment also includes engineering management tools of unprecedented scope and power. Like our Decision Support System, which automatically monitors any aspect of the design process you care to specify. So you spot and correct little problems long before they grow into big ones.

No matter how tight your deadlines, no matter how large your engineering teams, our Concurrent Design Environment will keep you ahead of the game. Which, after all, is a very nice place to be. For a free videotape, call 1-800-547-7390.

Changing The Way The World Designs. Together.

ANCOT's SCSI instruments are powerful, easier to use, and cost less. Proven in use worldwide, Ancot's portable equipment travels from bench to field and back again without ever slowing down. They are time and labor saving instruments, for design, manufacturing, repairing, and inspection applications.
Call today for product data sheets, demo disc, or to make arrangements for a free evaluation unit in your facility.

T[415] 363-0667
fax: (415) 363-0735 Redwood City, California

UNIVERSAL INPUT IS NOT THE ONLY ENTREE, IT'S THE BEGINNING. And the whole menu are:

* 85 - 264 VAC universal input
* 30W/40W/65W output power
* Single to quad outputs
* Very compact footprints:
$3^{\prime \prime} \times 5^{\prime \prime} \times 1.5^{\prime \prime}(40 \mathrm{~W})$ $3.5^{\prime \prime} \times 6^{\prime \prime} \times 1.77^{\prime \prime}(65 \mathrm{~W})$
$2.76^{\prime \prime} \times 5.12^{\prime \prime} \times 1.5^{\prime \prime}(30 \mathrm{~W})$

©
Wescon" 80
Nov 13-15 Anaheim, CA Booth \#. 1698

* Superb price/performance ratio
* UL/CSA/TUV approvals in process
* Years of expertise in OEMs, distributors, and private labels.
* Also welcome inquiries on other product lineups:

OEM Switchers (20 to 300 W)
International Series Linears (6 to 112W)
AC-DC Power Modules (15 \& 25W)
PC Power Supplies (150 to 375 W)
DC-DC Converters (0.5 to 45 W)
Call: 1-800-821-9771
FCIRTICN/SCUIPC:
ATTN: MONICA/JENNIFER

ELELTROUCDESTM

Editor-in-Chief: Stephen E. Scrupski
Executive Editor: Roger Allan
Managing Editor: Bob Milne
Senior Editors: Frank Goodenough, Milt Leonard, John Novellino

Technology Editors:
Analog \& Power: Frank Goodenough Communications \& Industrial:
Milt Leonard (San Jose)
Components \& Packaging: David Maliniak Computer-Aided Engineering: Lisa Maliniak
Computer Systems: Richard Nass Semiconductors: Dave Bursky (San Jose) Test \& Measurement: John Novellino

News Editor: Sherrie Van Tyle
New Products Editor: Susan Nordyk
Field Bureaus:
West Coast Executive Editor:
Dave Bursky (San Jose)
Boston: Lawrence Curran
Dallas: Jon Campbell
Frankfurt: John Gosch
London: Peter Fletcher
Chief Copy Editor: Roger Engelke, Jr.
Editorial Production Manager: Lisa Iarkowski

Administrative Assistant: Janis Kunkel
Editorial Support Supervisor: Mary James
Editorial Assistant: Ann Kunzweiler
Editorial Secretary: Bradie Guerrero

Editorial Offices: (201) 393-6272
Advertising Production:
(201) 393-6093 or FAX (201) 393-0410

Production Manager: Michael McCabe
Production Assistants:
Donna Marie Bright, Doris Carter, Eileen Slavinsky
Circulation Manager: Elaine Brown
Subscription Inquiries:
Mary Lou Allerton (216) 696-7000
Promotion Manager: Clifford Meth
Reprints: Helen Ryan (201) 423-3600

Group Art Director: Peter K. Jeziorski
Computer Systems Administrator:
Anne Gilio Turtoro

Published by Penton Publishing
Vice President-Editorial: Perry Pascarella Group Editorial Director: Leland Teschler

Build EMC into your design now, and it won't be a problem later:

With all the new regulations surrounding electromagnetic compatibility (EMC), the best way to avoid costly delays is to locate problems as early as possible. Two new HP EMC solutions make that easy.
The HP 84100A Design Development Solution helps you correct problem areas at the design stage. It pinpoints hot spots on breadboards and prototypes
using a spectrum analyzer with software memory cards that simplify troubleshooting.
The HP 84110A Pre-Production Solution gives you added confidence that your designs will pass compliance. It has all the analysis capability, software and accessories you need to uncover conducted and radiated emission problems before final EMI testing. So, find out how to build EMC
into your designs. For information about HP's full line of EMC solutions and design training programs, call 1-800-752-0900* Ask for Ext. 1351, and we'll send you our EMC Measurement Solutions fact kit.

There is a better way.

Welcome to Warp Speed: The Am27H010 from AMD. At 45 ns , it's faster than any other megabit CMOS EPROM. Fast enough to eliminate those irritating short term memory lapses.

AMD's 1 micron CMOS technology delivers zero wait state performance with no cost or density penalty. So now you can replace those high-ticket, low-density PROMs you've been putting up with.

We have commodity EPROM solutions beat, too. Their program code must get routed to fast RAMs to achieve high speed. With the Am27H010 rocket chip you execute directly from the EPROM.

The IBM RISC System/ Designing on any other workstation

Whatever you're creating, you'll sail into a whole new age with any of the four POWERstations in the RISC System/6000 family. Because POWER (Performance Optimization With Enhanced RISC) processing can give you performance you've probably only dreamed about:

up to four instructions per machine cycle, 42 MIPS and 13 MFLOPS. Suddenly, complex designs don't take eons anymore.

The four RISC System/6000 POWERstations feature a range of graphics processors from grayscale to Supergraphics to satisfy any graphics demand. Great news for Power Seekers working on animation, scientific visualization, medical imaging and engineering solutions like CADAM, ${ }^{\text {m }}$ CAEDS ${ }^{\mathrm{w}}$ and CATIA.' And for electrical design automation, there's IBM's all new CBDS ${ }^{\text {w }}$ and an arsenal of over 60 EDA appli-

6000 family. will seem downright primitive.

cations from more than a dozen vendors.
With every POWERstation, you can get an almost unimaginable palette of 16 million colors, which gives you 3D images so realistic, they fairly leap off the screen, with super sharp resolution of $1,280 \mathrm{xl}, 024$ pixels. And when it's time to call in the heavy artillery, the POWERstation 730 draws nearly one million 3D vectors per second. Like all POWERstations, it can come complete with its own graphics processor, freeing the POWER processor to rapidly create and analyze your designs. All at prices that won't sink anybody's budget.

So if you're tired of paddling upstream with yesterday's performance, call your IBM marketing representative or Business Partner to find out more about the RISC System/6000 family. For literature, call 1800 IBM-6676, ext. 991.

Civilization never looked so good.

Accelerate your Stepper Motor to 27,000 Steps/second! Travel 16 Million Steps and back!

Is your motor earthbound by sluggish
 controllers that can't give you the performance you need? Look at what you get with the new CY545 single chip stepper motor controller:

- 40-pin, cMOS, +5v chip
- Speeds up to 27 K Steps/sec
- 16 Million steps per motion
- Programmable start rate, accel/decel, slew rate
- Pulse and Direction Output
- Separate Limit Switches
- Jog operation
- Home seek command
- ASCII or binary commands
- Parallel or Serial interface
- 8 General Purpose I/O lines
- External memory control
- LCD \& LED Display interface
- Thumbwheel Switch interface

Break the single chip speed barrier and the high performance price barrier. You can't afford to pass up this latest innovation from the company that, ten years ago, brought you the first stepper motor controller on a single chip! Order by Fax or phone or call today for free info.

Cybernetic Micro Systems

PO Box 3000 - San Gregorio CA 94074 Ph: (415) 726-3000 • Fax: (415) 726-3003

LOOKING AHEAD T0 1991

s the leaves begin to turn color, it signals that time when we must develop our editorial calendar for the coming year-special reports, conference and show previews, special sections, and so on. Of course, this does not fully cover all of our features for the year. In this fast-moving industry, it's impossible to foresee every emerging hot topic. However, the calendar is representative of the type of important technology material you will be seeing in ELECTRONIC DESIGN in 1991.

ELECTRONIC DESIGN 1991 EDITORIAL CALENDAR
Jan 10 Technology Forecast: Critical Issues for the Design Team; PC Design
Jan 31 PIPS: Power, Interconnections, Passives, Switches and Relays; Computer Systems: Boards/Buses/Peripherals
Feb 14 Advanced Semiconductors: ISSCC
Feb 28 CAE: Packaging Design Tools; Test \& Measurement Update: VXI Bus Instruments
Mar 14 Digital Semiconductors: PLDs \& FPGAs; PC Design
Mar 28 Communications ICs: Modems; Design Team Issues: SystemLevel Design; PIPS: Power, Interconnections, Passives, Switches and Relays
Apr 11 Analog Technology; CAD/Printed-Circuit Board Designers' Guide; Electro Preview
Apr 25 Digital Semiconductors: Memory ICs; Packaging \& Materials Designers' Guide
May 9 PC Design: Personal Computers as Design Tools; ASICs
May 23 Image Processing; PIPS: Power, Interconnections, Passives, Switches and Relays
Jun 13 CAE: Simulation; DAC Preview; Careers Special: Reader Opinions Survey
Jun 27 Digital Semiconductors: Embedded Controllers: RISC + CISC; Design Team Issues: Design for Testability
Jul 11 Communications: Networks; PC Design; Test \& Measurement Update: Digital Oscilloscopes
Jul 25 Analog Technology; PIPS: Power, Interconnections, Passives, Switches and Relays
Aug 8 Digital Semiconductors: Graphics ICs; Automotive Electronics Designer's Guide
Aug 22 CAE: Advanced Tools; Test \& Measurement Update: Digital Multimeters
Sep 12 Analog Technology; PC Design; Computer Bus/Board Designers' Guide; Buscon Preview
Sep 26 Communications: Digital Speech Technology; Design Team Issues: Design for Manufacturability; PIPS: Power, Interconnections, Passives, Switches and Relays
Oct 10 Digital Semiconductors: Digital Signal Processing ICs; Careers Special: Reader Salary Survey
Oct 24 PC Design: PC Chip Sets Designers' Guide; ATE/VLSI Testing; Comdex Preview
Nov 7 CASE; Programmable Logic: Development Tools Designer's Guide
Nov 21 Analog and Mixed-Signal ASICs; PIPS: Power, Interconnections, Passives, Switches and Relays; Wescon Preview
Dec 5 CAE: VHDL; Advanced Semiconductors: IEDM; Test \& Measurement Update: Communications Test Equipment
Dec 191991 Technology Review: Top 100 Products

SPDT switch dc to 5 GHz with built-ind driver

Truly incredible... a superfast 3nsec GaAs SPDT reflective switch with a built-in driver for only $\$ 19.95$. So why bother designing and building a driver interface to further complicate your subsystem and take added space when you can specify Mini-Circuits' YSW-2-50DR?

Check the outstanding performance specs of the rugged device, housed in a tiny plastic case, over a -55° to $+85^{\circ} \mathrm{C}$ span. Unit-to-unit repeatability for insertion loss is 3 -sigma guaranteed, which means less than 15 of a 10,000-unit production run will come close to the spec limit. Available for immediate delivery in tape-and-reel format for automatic placement equipment.

SPECIFICATIONS
YSW-2-50DR
Insertion loss, typ (dB) Isolation, typ $(\mathrm{dB})^{\star}$ 1 dB compression, typ (dBm@ in port) RF input, max dBm (no damage) VSWR (on), typ Video breakthrough to RF, typ (mV p-p) Rise/Fall time, typ (nsec)

$\mathrm{dc}-$	$500-$	$2000-$
500 MHz	2000 MHz	5000 MHz
0.9	1.3	1.4
50	40	28
20	20	24
22	22	26
	1.4	
	30	

\star typ isolation at 5 MHz is 80 dB and decreases
5 dB /octave from $5-1000 \mathrm{MHz}$

IN THE ERA OF MegaChip ' TECHNOLOGIES APPLYING TI's BiCMOS

> With more than 50 BiCMOS logic functions from Texas Instruments, you can beat tough bus-interface design challenges. Our free SamplePacs will show you how.

DIFFERENCE

In fact, your system power savings can amount to more than 25%, and you should experience reduced switching noise as well.
Yet you can maximize system speed. Switching speeds are comparable to advanced bipolar devices and provide the high drive current required for today's industrystandard buses ($48 / 64 \mathrm{~mA}$ commercial, $24 / 48 \mathrm{~mA}$ military).

Gaining even greater performance If you need even lower power and higher speeds, our submicron Advanced BiCMOS (ABT) family is the choice for you. Planned devices include 8-, 9-, and 10 -bit buffers/drivers, transceivers, latches, registers, and registered and latched transceivers.
Our broad BiCMOS family also includes unique functions that can help you more quickly meet the design challenges involved with incident wave switching, driving MOS memories, and system testability.

Assuring incident wave switching Wider word widths and additional cards on backplanes are requiring higher drive currents to assure incident wave switching.
Our BiCMOS family delivers. With our low-impedance line drivers, you
get more "instantaneous" current even when impedances are as low as 25 ohms. You minimize transition "flat" spots that can degrade speed or cause oscillation at the receiving devices.

Managing MOS memory loads

 MOS memory array interfaces create the high-capacitive loading environments that can result in overshoot and undershoot conditions. As a result, system reliability suffers. To handle this situation, our BiCMOS memory drivers incorporate a series damping resistor output structure that delivers advanced system performance when driving $256 \mathrm{~K}, 1 \mathrm{M}$, and 4 M DRAMs.
Building in testability with SCOPE

It is becoming more difficult to accurately test today's highly integrated boards and systems, but TI's BiCMOS family contains your solution: SCOPE $^{\text {TM }}$ (System Controllability and Observability Partitioning Environment) octals.

Used in place of standard octals, SCOPE devices allow specific circuitry within an assembled module, board, or system to be isolated for verification and debugging without manual probing. Currently, our BiCMOS family includes an octal buffer, transceiver, D-type latch, and D-type flip-flop.
TI's SCOPE products are the first to conform to the Joint Test Action Group (JTAG) specifications adopted by the IEEE 1149.1 Test Standards Committee.

Get your free SamplePac and sample our BiCMOS difference; call 1-800-336-5236, ext. 3008 You can take your choice of our BiCMOS SamplePacs containing a free BiCMOS device, our latest advanced logic brochure, plus appropriate product data. Just call the number given above, or use the return card to let us know which SamplePac you need to begin applying TI's BiCMOS difference.

4nthextyat?

Surface Mount Oscillators are Powertul and Cost Effective

- TTL/HCMOS oscillators from 80 KHz to 67 MHz
- Enable/Disable and Tristate
- Package similar to PLCC 28 floating J-leads permit flexing of the PCB without damage
- Plastic outside for easy handling by pick and place, yet true hermetic inside

Phone or FAX for our catalog or 350 K catalog-on disk on all our products including VCXO's, Phase-Lock Loop or $\begin{aligned} & \text { See US At } \\ & \text { WESCON BOth } \\ & \# 2590\end{aligned}$ Oscillators, ECL up to 225 MHz , Tristate HCMOS/TTL and Wide Temp Range oscillators in DIL package.

Headquarters and manufacturing plant: 36,000 sq. feet

10 Commerce Drive
New Rochelle, NY 10801
914-576-6570 Fax: 914-576-6204

The SolidState Floppy Has Arrived

Advances in memory density and packaging technology over the past few years have led to prac-tical-capacity memory cards that can store millions of bytes. Such densities make it possible for the cards to offer storage capacities that match, or even exceed, current-generation $3.5-\mathrm{in}$. floppy disks. Housed in a casing the size of a credit card with about five times the thickness, these cards promise to revolutionize the portable computing market if costs recede and a universal interface standard can be agreed on by all card makers.
The latter is close to reality: The Personal Computer Memory Card International Association, with the Japan

DAVE BURSKY SEMICONDUCTORS Electronic Industry Development Association, has developed a PC card standard. Currently in the form of Release 1.0 , the standard defines the card's dimensions, the 68 -contact connector format, the signal and electrical interface, the metaformat for the data storage, and other aspects.
The standard doesn't impose one philosophy on all applications, thus allowing very small memory cards to be used for such applications as appliance memory modules. The standard will also permit different data-storage (recording) formats so that the market can determine the preferred structure (to get a copy of the standard, contact Daniel Chen, the committee chairman, at Mitsubishi Electronics America, Sunnyvale, Calif., (408) 730-5900).
ROM cards, RAM cards (some with internal battery back-up), one-time programmable EPROM-based cards, and the recently released flash EPROM memory cards from Intel Corp., Folsom, Calif., are all available. Although most of these cards cost several orders of magnitude more than the $\$ 2$ or so that the floppy disk sells for, they promise to eliminate the powerhungry disk drive and all of the reliability issues that the mechanical drive carries with it. Furthermore, because most cards permit random addressing of their contents, the host system will see a noticeable jump in apparent performance. Random accesses occur at sub-microsecond rates-about two or three orders of magnitude faster than the disk drive's access time.
The cost of the card-reader electronics must also come down. This is so that the card reader/programmer the card plugs into is priced comparably to a high-capacity floppy-disk drive. A few companies have started to offer "card drives," but the components used today aren't well integrated to reduce cost and board space. One such company, Databook Inc., Ithaca, N.Y., has developed drive replacements that contain all of the circuitry to both read data from, or store data in, the memory cards. The company is currently exploring ways to cost reduce the electronic drive through the use of ASICs. Software used by Databook to control the memory is the pre-release version of Microsoft Corp.'s flash file system. With that software, the memory card appears as if it were a fast disk drive. At least one portable computer maker, Poqet Computer Inc., Sunnyvale, Calif., incorporated the memory card standard and flash-file interface into its palm/pocket-sized personal computer.
With the prices of 4-Mbyte flash-based memory cards currently well over $\$ 1000$, and CMOS static-RAM-based cards with 1 Mbyte of storage costing about half that, few users could afford the cost premium of the cards and the drive replacement. For now, most of that cost stems from the memory chips. However, chip costs should drop substantially over the next 6 to 12 months as manufacturing volumes ramp up. Studies done by several card makers suggest that by the middle of this decade, almost all of the portable computers expect to use memory cards rather than floppy-disk drives. This will save power, weight, mechanical wear and tear, and perhaps even more importantly, time. With solid-state memory, file loads and storage can run three to ten times faster than on a floppy drive.

SMC: Above the rest.

Climbing takes skill, experience and teamwork. Reaching the top also takes leadership, forward thinking and focus. Since 1971, Standard Microsystems has applied this philosophy to the design and manufacture of standard and semi-custom integrated circuits.

Today, SMC's engineering expertise and extensive SuperCell ${ }^{\text {TM }}$ library, allows us to offer innovative and timely solutions to your unique application needs. Our portfolio focuses on networking and mass storage controller devices for the computer industry.

The next time you face a networking or mass storage challenge, call SMC. Discover how our cost-effective and technically superior products can help you climb ahead of your competition.

The Standard for LAN and Mass Storage ICs.

[^0]

dc to 3 CHz _\$1145 lowpass, highpass, bandpass, narrowband IF

- less than 1dB insertion loss - greater than 40 dB stopband rejection
- 5-section, 30dB/octave rolloff • VSWR less than 1.7 (typ) • meets MIL-STD-202 tests
- rugged hermetically-sealed pin models - BNC, Type N; SMA available
- surface-mount - over 100 off-the-shelf models - immediate delivery
low pass dc to 1200 MHz
\mid PASSBAND, MHz \mid fco, M

bandpass 20 to $\mathbf{7 0 M H z}$

$\begin{aligned} & \text { MODEL } \\ & \text { NO. } \end{aligned}$	CENTER FREQ. MHz FO	PASS BAND, MHz (loss $<1 \mathrm{~dB}$)		STOP BAND, MHz $10 \mathrm{~dB}) \quad$ (loss $>20 \mathrm{~dB}$)				VSWR 1.3:1 typ. total band MHz	$\begin{gathered} \text { PRICE } \\ \$ \\ \text { Qty. } \\ (1-9) \end{gathered}$
		Max. F1	Min. F2	Min. F3	Max. F4	Min. F5	Max. F6		
PIF-21.4	21.4	18	25	4.9	85	1.3	150	DC-220	14.95
PIF-30	30	25	35	7	120	1.9	210	DC-330	14.95
PIF-40	42	35	49	10	168	2.6	300	DC-400	14.95
PIF-50	50	41	58	11.5	200	3.1	350	DC-440	14.95
PIF-60	60	50	70	14	240	3.8	400	DC-500	14.95
PIF-70	70	58	82	16	280	4.4	490	DC-550	14.95

narrowband IF

Here's one reason thatover half of all SCSI devices sold are NCR.

We created the market... and we still lead the way.

Here's another.

The NCR 53C700 SCSI I/O Processor... So good, Electronic Design named it the product of the year.

"You can't tell a good SCSI chip just by looking at it..." and according to Electronic Design, NCR's 53 C 700 is the best there is.

The only third generation SCSI device on the market today, it concentrates all the functions of an intelligent SCSI adapter board on a single, smart and extremely fast, chip... for about 15% of the cost.

As the first SCSI I/O processor on a chip, the 53 C 700 allows your CPU to work at maximum speed while initiating I/O operations up to thousands of times faster than any non-intelligent host adapter. DMA controllers can burst data at speeds of up to $50 \mathrm{Mbytes} / \mathrm{s}$. This new chip cuts down system time hookup to a fraction of what it has been.

Those are just a few of the reasons Electronic Design's "Best of the Digital IC's" award went to NCR's 53 C700 last year.

And now the NCR 53C710!

For the complete story on the NCR SCSI product line featuring the new 53C710, as well as the upcoming SCSI seminars with the NCR SCSI Development Team, please call:

PEP Card News 1990

FDDI Chip Set Takes On Copper Cable

The Supernet chip set for Fiber Distributed Data Interface (FDDI) local-area networks is now ready for use, without modification, in FDDI applications that use copper cabling. The developer of the chip set, Advanced Micro Devices Inc., Sunnyvale, Calif., announced that tests at its own laboratories and at key customer sites support this statement. The announcement is timely in view of the effort by the ANSI-accredited X3T9.5 work group to find less costly solutions to the current FDDI documents that specify glass fiber-optic cable as its medium. The work group is expected to define the transformer, carrier-detect functions, and equalization standards required for FDDI over wire. Except for yet-to-be-standardized carrier-detect functions and passive components for equalization, AMD says Supernet products are ready for FDDI over wire today. ML

Ultrafast Thermoneter Captures Transients

Scientists at the Univ. of Rochester in N.Y. have devised a way to measure the temperature of the top few atomic layers of a material's surface in less fraction the meth , the method uses a pulsed-laser beam to heat the sample surface and another beam to activate an electron gun. The electron gun directs electrons onto the sample surface at a shallow angle-just a few trillionths of a second after the sample is heated by the laser. Electrons bouncing off the sample surface pass through an amplifier and form a reflection high-energy electron diffraction pattern on a phosphor screen. The screen indicates the angle at which the electrons are deflected and their intensity. These two quantities determine surface temperature to within $10^{\circ} \mathrm{C}$. Funded by the Department of Energy, the work is expected to benefit the electronics industry by giving deeper insight into the thermal behavior of material surfaces used in the production of microchips. $M L$

Real-Time Consortium Pushes Open BIOS The Real Time Consortium has completed a preliminary specification for OBIOS, an Open Basic Input Output System designed to provide interoperability between hardware platforms and software operating systems from various vendors. The OBIOS standard supplies an efficient physical I/O interface that sharply reduces the programming time needed to create device drivers. Independent of operating system, bus, and microprocessor types, the standard eliminates the need to continuously rewrite device driver modules for each new marriage of hardware and operating systems or real-time kernels. A preliminary specification will be expanded into a first draft by the consortium's Technical Committee, which will be ready at Buscon next January. The draft will include driver code for connecting to several classes of drivers, including serial I/Os, networks, SCSI ports, and timers and counters. The consortium expects OBIOS software to be ready by next spring. Charter founding members of the consortium include Ready Systems Corp., Sunnyvale, Calif.; Wind River Systems, Alameda, Calif.; Lynx Real-Time Systems, Los Gatos, Calif.; Heurikon Corp., Madison, Wis.; and Force Computers Inc., Campbell, Calif. Heurikon is presently working on OBIOS hardware drivers. $R A$

BUSES BROUGHT Several developments unfolded at the recent Buscon Trade Show held in Forward At Buscon Marlborough, Mass., such as: ers Group, Aloha, Ore. Actual volumes are expected to be 58,000 units, compared with 36,000 units shipped in 1989. The figures were based on data supplied by Multibus II bus-interface vendors.
A Futurebus + chip set from National Semiconductor Corp., Santa Clara, Calif., to be unveiled next January. All parts should be available in sample quantities by that time.
A single-board computer from Ziatech Corp., San Luis Obispo, Calif., that conforms to STD 32 , the long-heralded 32 -bit specification for the STDbus. While STD 32 isn't an official specification yet, companies have started to develop products for it. The 8901, a 286 -compatible board, boasts a mean-time-between-failure of 20 years. The 16 -bit board works with 16 - and 32 bit backplanes for universal compatibility. The board contains a $16-\mathrm{MHz}$ NEC V53 processor, up to 1 Mbyte of on-board, battery-backed static RAM, and 1 Mbyte of ROM. $R N$

TECHNOLOGY NEWSLETTER

The Futurebus + committee for standards met recently to exchange views on ten different standards activities concerning Futurebus+. Some of the proposed activities were granted sponsor ballot status, meaning that the proposals are considered completed in their respective work groups. From here, the acting members vote on the proposals, and if passed, they become specifications. Otherwise, the committee must rework the proposals. In addition, some new work groups were started. These include the conformance-testing group and the group for the VMEbus-to-Scalable-Coherent-Interface (SCI) bridge. One standard discussed in detail was the Futurebus+ Logical Layer (P896.1). This specification was voted on and rejected by a slim margin, mainly due to the speed of the arbitration circuitry as well as the circuit's overall cost.
The focus of item P896.2 (physical layer) revolves around the work done by Raytheon Corp. and Digital Equipment Corp. The companies were asked to apply their high-bandwidth expertise in an exhaustive set of simulations to help finalize the specifications. Over 11,000 Spice elements per signal were simulated to develop a comprehensive noise-margin-analysis methodology. Other parts of the Futurebus + specification discussed were node management, the I/O architecture, the military and telecommunications profiles, and bridges from Futurebus + to VMEbus and Multibus II. RN

STREAMLINED 68030 Tackles Embedded Uses

Although a number of applications already use the 68030 complex-instruc-tion-set processor in embedded systems, many of its features suitable for Unix and large memory environments often go unused. That adds an unacceptable cost premium to the chip. To combat that problem, designers at Motorola Inc., Austin, Texas, made several adjustments: they streamlined the central processor by removing the memory-management unit, moved the chip to a $1-\mu \mathrm{m}$ process rather than the $1.5-\mu \mathrm{m}$ process used by the 68030, and housed the chip in a relatively inexpensive plastic pin-grid-array package. The final product-the MC68EC030-was unveiled last month at Microprocessor Forum. It delivers double the throughput of the older 68020 at about the same price. The first version of the 68 EC 030 is actually the same silicon circuitry as the 68030 , but some metal-mask changes were made to permanently disable the MMU. That reduces testing time and contributes to the lower price. By the second half of 1991, designers expect to finish a redesign that physically removes the MMU circuits to further shrink the chip area. Complete emulation support for the chip is available from Applied Microsystems Corp., Redmond, Wash. Contact Jim Reinhart, (512) 891-2931. DB soon see a new player in the biCMOS arena. Micro Linear Corp. (MLC), San Jose, Calif., and Applied Micro Circuits Corp. (AMCC), San Diego, Calif., announced a joint agreement in which Micro Linear would license AMCC's $1.5-$ and $1-\mu \mathrm{m}$ biCMOS process. AMCC will supply process know-how and technology details so that MLC can produce its own products using the processes. As part of the agreement, MLC will supply foundry services for AMCC. The availability of a viable biCMOS process will permit MLC to develop a more complex range of mixed-signal semicustom and standard product ICs. Like Analog Devices, Wilmington, Mass., MLC will be able to build ICs using bipolar devices for precision analog circuits, and CMOS devices for analog switches and dense logic. FG CIRCLE 400

Two Minds Improve Futurebus + Chip Choice

Futurebus+-compatible system design took major strides toward simplicity earlier this year when Philips Components-Signetics (PCS) Corp., Sunnyvale, Calif., released its chip-set approach to the interface. Now, in a product exchange and codevelopment deal signed with Texas Instruments Inc., Dallas, both companies will pool their efforts to design future chip-set members. In addition, the companies will alternate-source each other's Futurebus+ products. All of the bus-interface chips and two of the three LSI chips that were previously disclosed by Philips Components-Signetics will be alternate-sourced by TI (electronic design, May 10, p. 63). The one chip that won't be alternate sourced-the packet-data FIFO memory-must be redesigned to meet the latest changes already adopted by the Futurebus + committee. The family will be called the FB2000 series by Signetics, and the TFB2000 by TI. Futurebus+ chips haven't been released by Texas Instruments yet, but the company already developed a few that will be part of the family: the 2001/2002 parallel protocol controller, the 2011 competition transceiver, and the 2021 data-

APPLICATIONS

LASER DIODE DRIVERS
SONAR TRANSDUCER DRIVERS PIN DRIVER

To Place An Order Call 602-742-8601

For Applications Assistance Call
1-800-421-1865

dedicated to excellence APEX MICROTECHNOLOGY CORPORATION

LASER DIODE DRIVERS
VIDEO AMPLIFIERS WAVEFORM GENERATIORS
path unit. The five-year deal doesn't cover process technology-each company will use its own proprietary biCMOS processes to fabricate the chips. Samples of several interface chips are now available, but the more complex chips won't be ready until the first quarter. $D B$

Motorola Fine-Tunes Following FCC action earlier this year to allow low-power in-building radio communications, the Radio-Telephone Systems Group of Motorola Inc., Arlington Heights, Ill., initiated its WIN (wireless in-building networking) program to overcome the limitations of existing wireless communications technologies. Compared to hard-wired systems, wireless in-building networks that transmit information through the electromagnetic spectrum require less expense, time, and effort to install, maintain, and reconfigure. However, existing wireless systems do have drawbacks. For example, spread-spectrum networking is an unlicensed technology that lacks service guarantees, is vulnerable to interference, and is limited to about a 2-Mbit/s data rate. Infrared fares no better in terms of bandwidth capability-its transmission pattern is limited to line-of-sight, and it's not transparent to network operating systems. Essential to Motorola's program is the development of four hardware building blocks: a gallium-arsenide monolithic microwave IC (MMIC) transceiver chip, a 6 -sector intelligent antenna that avoids interference by dynamically selecting the best signal, a radio-frequency digital-signal processor for specialized modulation and demodulation techniques, and a single-chip packet switch and network interface with stan-dard-protocol transparency. The desktop system will operate in the interference-free $18-\mathrm{GHz}$ microwave band with a $15-\mathrm{Mbit} / \mathrm{s}$ data rate. To meet both present and future networking requirements, the system uses $10-\mathrm{MHz}$ channels. Hardware and software will become available next year. $M L$

The electronic bulletin board service (BBS) from Burr-Brown Corp., Tucson, Ariz., has been improved and expanded. New features include multiuser capabilities, the addition of a component cross-reference and pricing database, and on-line literature ordering. Accommodating up to 16 simultaneous users, the service offers product data 24 hours a day. Various literature can be ordered, including data sheets, application notes, and data books. Information is faxed or mailed. Future enhancements in the planning stage are a product-selection guide and ANSI graphics support. The board can be accessed with any type of computer that contains a modem and communications software. Anyone calling the BBS is presented with a simple, menu-driven interface to browse through available information. Other key information from the BBS includes PSpice macro models for analog components, application tips and notes, software utilities and updates ready for downloading, and private electronic mail. Files can be viewed on-line or downloaded to your computer. The data is updated daily. The BBS is operated by application engineers. You can access the BBS by calling (602) 741-3978. Communication settings are (300/1200/2400 8,N,1). For more information, call John Conlon at 1-(800) 548-6132. FG

CIRCLE 401
In an exhibit at Interop ' 90 in San Jose, Calif., TVG Inc., Santa Cruz, Calif., demonstrated a new technology that controls any analog or digital device over a telecommunications network. The firm specializes in networking and applications software for Digital Equipment's VAX/VMS computers. TVG showcased its Simple Network Management Protocol (SNMP) device controller, which uses the TCP protocol suite that includes the SNMP and the Serial Line Internet Protocol (SLIP) link module. Exhibiting a "trial balloon" rather than a product offering, the device was applied in an AM/FM/ CD stereo unit connected to the show network. The controller is a small Motorola 68000 -based unit containing customized off-the-shelf hardware that links to a stereo remote-control system and the CD player. From a VAXstation using an X-Windows graphical interface, an operator was able to control all aspects of the stereo system, including CD track selection, audio input and frequency selection, and volume. $M L$

NEW 12－BIT ADCS REDUCE S74A POWER， SPEED SIZE BY $3 X$ ！

Maxim＇s new MAX174，MX574A and MX674A offer you complete 12－bit analog－to－digital converters（ADCs）that combine high speed（as low as 8μ s for MAX174），low power（150mW for all）and a smaller footprint（small outline packages available for all）－without a price premium．
－Complete A／D Converters with Reference and Clock
－12－Bit Linearity，No Missing Codes over Temperature
－Low Power and High Speed－150mW at $8 \mu \mathrm{~S}$
－＋10V，＋20V， $\pm 5 \mathrm{~V}, \pm 10 \mathrm{~V}$ Analog Input Ranges
－On－Chip＋10V，10ppm／²C Voltage Reference
－Laser－Trimmed Internal Clock
－3－State Output Buffers for 8－or 16－Bit μ P Interface

A single MAX174 matches the speed performance of three 574As at a third of the power，and in much less board area

Drop－in Upgrades For Industry Standard 574A and 674A

The MAX174，MX574A，MX674A utilize a BiCMOS technology that combines low－power CMOS with high－speed／low－noise bipolar making them better suited for battery－powered applications and high speed data conversion than the industry standard devices．And，they are available in the extended temperature range $\left(-40^{\circ} \mathrm{C}\right.$ to $\left.+85^{\circ} \mathrm{C}\right)$ to save you from buying expensive military grade parts for your industrial applications．

	MAX174	MX674A	MX574A
Speed（Max）	$8 \mu \mathrm{~s}$	$15 \mu \mathrm{~s}$	$25 \mu \mathrm{~s}$
Price ${ }^{\star}$	$\$ 28.13$	$\$ 23.44$	$\$ 18.24$
No Missing Codes			
Power	Guaranteed		
Data Access Time（Max）	SO $/$ PDIP $/$ CERDIP $/$ PLCC $/$ SB CERAMIC Package Types		
Temp Ranges	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C} /-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C} /-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$		

＊Prices 1，000－up FOB USA．

See For Yourself

Call your Maxim representative or distributor today for applications information，data sheets and samples．Or，write Maxim Integrated Products， 120 San Gabriel Drive， Sunnyvale，CA 94086，（408）737－7600，FAX（408）737－7194

Distributed by Arrow，Bell／Graham，Hall－Mark，Nu Horizons，Pioneer，and Wyle．Authorized Maxim Representatives：Alabama，（205）830－0498；Arizona， （602）730－8093；California，（408）248－5300，（619）278－8021；（714）261－2123；（818）704－1655；Colorado，（303）799－3435，Connecticut，（203）384－1112；Delaware，（609）778－5353； Florida，（305）426－4601，（407）682－4800；Georgia，（404）447－6124；Illinois，（312）577－9222；Indiana，（317）921－3450；lowa，（319）393－2232；Kansas，（816）436－6445；Louisiana， （214）238－7500；Maryland，（301）644－5700；Massachusetts，（617）329－3454；Michigan，（313）583－1500；Minnesota，（612） $944-8545$ ；Mississippi，（205）830－0498；Missouri， （314）839－0033；Montana，（503）292－8840；Nebraska，（816）436－6445；Nevada，（408）248－5300；New Hampshire，（617）329－3454；New Jersey，（609）778－5353；New Mexico， （505）268－4232；New York，（201）428－0600，（607）754－2171；North Carolina，（919）846－6888；Ohio，（216）659－9224，（513）278－0714，（614）895－1447；Oklahoma，（214）238－7500； Oregon，（503）292－8840；E．Pennsylvania，（609）778－5353；W．Pennsylvania，（919）851－0010；South Carolina，（919）851－0010；Tennessee，（404）447－6124；Texas，（214）238－7500， （512）835－5822，（713）789－2426；Utah，（801）561－5099；Virginia，（801）644－5700；Washington，（206）823－9535；Wisconsin，（414）792－0920；Canada，（416）238－0366， （613）225－5161，（604）439－1373，（514）337－7540．
Maxim is a registered trademark of Maxim Integrated Products．© 1990 Maxim Integrated Products．
hancements: a 3D graphics-execution unit and an 80 -bit wide data path to handle extended double-precision math. Improvements in the instruction set will permit the processor to sustain more than one instruction per clock cycle. Acceleration in the branch section will help maintain continuous-instruction execution whether or not a branch is taken. To pack the more than 1.4-million transistors on the chip, designers opted for a triple-level-metal $0.8-\mu \mathrm{m}$ CMOS process. Also disclosed were plans to release a family of RISC-based chips optimized for embedded control-the 88300 series. That family will use of large standard-cell building blocks from the 68300 design library to quickly add customized functions to the chip. $D B$

Technology Deal Nets New GaAs IC Source

Vitesse Semiconductor Corp., Camarillo, Calif., struck a deal with ThomsonCSF, Paris, which would provide gallium arsenide manufacturing technology to Thomson in exchange for manufacturing capacity. The initial result of the deal gives Vitesse a European seller of its products as well as access to a new manufacturing facility built by Thomson in Grenoble, France. In return, Thomson has made an equity investment in Vitesse that will permit Vitesse to pursue new product and technology development. Furthermore, the deal gives Thomson-CSF exclusive distribution rights for all Vitesse products in Western Europe and the option to second-source all logic and communication products, including the Vitesse Fury gate-array family. That broadens Thomson's portfolio, giving them a digital GaAs process that complements their microwave GaAs monolithic microwave IC (MMIC) capability. DB

SENSORLESS CoNTROLLER
IC DRIVES Dc Motors
A family of single-chip motor controllers from Philips Components-Signetics, Sunnyvale, Calif., can drive full-wave, brushless de motors without the need for commutator sensors. Targeted for such applications as laptop-computer disk drives and handheld tools, the devices require no microprocessor support for startup, but instead control the coil-energizing sequence, according to the back-emf sensed in the motor windings. A proprietary startup protocol also eliminates hunting and jitter. The bipolar controllers draw less than 5 mA from a 4 -to-18-V unregulated supply. Each circuit has a tachometer output, and some contain facilities that monitor rotor position with an external sensor. Thermal-protection and current-limiting features are also included. The TDA5140A drives loads up to 0.6 A , and the TDA5141 drives loads up to 1.8 A . The TDA5142 is for heavier loads. Prices are $\$ 2.45$ and $\$ 2.15$ for the TDA5141 and 5142, respectively; the TDA5140A costs \$2.25. Call Joseph Resendes, (408) 991-5396. $M L$

CIRCLE 402
Transceiver Links LAN Hub T0 10BASE:T any standard microcontroller for media-access-unit (MAU) management functions. The hardware mode makes the chip a standalone hub transceiver. Features of the LXT903 include automatic detection and correction of received polarity reversal, 10Base-T integrity testing, and watchdog timing to jab continuous transmission. Also provided are pre-distorted signals to the transmit filter, programmable squelch circuits, a differential or single-ended transmit input, and LED drivers for jabber, link, and reversed polarity. The device requires an external $20-\mathrm{MHz}$ clock signal, and transmitter and receive filters. In lots of 10,000 , the 24 -pin plastic DIP version costs $\$ 7.98$; in a 28 -pin PLCC, the part costs $\$ 8.30$. Call (916) 985-3670. ML CIRCLE 403

Imaging Chip Converts Bilevel To Gray-Scale

An image scaler and rotator circuit from Brooktree Corp., San Diego, Calif., can scale bilevel images to produce a more readable gray-scale result when displayed on gray-scale and color monitors. The Bt710 includes two DMA channels that manage read operations from source image buffers and write operations to destination image buffers. The DMA channels also support address translation for image rotation and bit-aligned block transfers to window or frame-buffer pixel boundaries. The scaling range is from 6% (scale down) to 750% (scale up), and the scaler output can be bilevel (one bit) or 4 -bit gray. An on-chip lookup table offers image inversion, gamma correction, or mapping from 4-bit gray to 8 -bit pixels. The Bt710 is supported by a software toolkit for PC, Macintosh, and Sun platforms. Packaged in a 132 -pin PGA, the Bt710 is being sampled for $\$ 132$ in lots of 100. Call (619) 452-7580. ML

CIRCLE 404

UN-PARALLELED o CONVERTERS.

 New 12-Bit, 3-Wire Serial A/D, D/As Now Available In 8-Pin Mini-DipsUnlike unwieldy parallel interfaces, Maxim's new serial interfacing converters can conserve valuable board space in your next design-and save you an unparalleled amount of money. The new MAX170, 500 and 543 can also reduce the digital noise problems experienced when interfacing to microprocessors, and they can make opto- or transformer-isolation a breeze. Only Maxim offers you a full line of serial converters to meet the demands of your applications, and, your budget.

5μ S 12-Bit Complete A/D, \$11.95*

- 12-Bit Accuracy in 8-pin Mini-DIP
- 3-Wire Serial Interface
- No Missing Codes Over Temperature
- Complete With On-Chip Reference
- Low Power (135mW)
- Easy To Opto- or Transformer-Isolate
- Operates With +15V or +12V, -5 V Supplies

12-Bit Multiplying CMOS D/A, \$6.80*

- 12-Bit Accuracy in 8-pin Mini-DIP
- 3-Wire Serial Interface
- Monotonic Over Temperature
- Gain Accurate To ± 1 LSB
- Double Buffered, With LOAD Input
- Operates With +5V or +15V Supply

Quad 8-Bit Voltage D/A, \$5.70*

- Four Complete D/As In 16-pin DIP
- Replaces 4 Trim-Pots
- 2- Or 3-Wire Serial Interface
- Voltage Outputs With Buffer Amplifiers
- Requires No External Trims
- Cascadable, Makes Data-In Line Sharable
- Double Buffered, With LOAD Input
- Operates With +15V or +12V, -5 V Supplies
- Single +15V Supply Mode Specified

* 1,000 up prices (F.O.B. USA)

Un-Paralleled Offer

If you feel these new serial converters are just too good to be true, call or write Maxim Integrated Products, 120 San Gabriel Dr., Sunnyvale, CA 94086, (408) 737-7600, for FREE samples and data sheets You'll find that the MAX170, 500 and 543 are TTL/CMOS compatible. And they're available in small outline packages for surface mount applications.

[^1]

Philips Components

you've putsomuch it perfect.

OF ICs, YOU GET OUT OF IT WHAT YOU PUT INTO IT.

This includes products based on our advanced BiCMOS technology, QUBiC. Developed from our strength in bipolar technology and fully integrated with our sub-micron CMOS technology, QUBiC gives you nearly twice the speed of previous-generation bipolar ICs. With CMOS power savings. We're incorporating QUBiC into all our product families, creating a new class of high-performance devices.

Philips Components-Signetics is committed to the military market, with over 80% of our ICs meeting MIL-SPEC certification. This commitment is evident in our Class S domestic assembly plant and DESCcertified wafer fabs.

To learn how Philips Components-Signetics helps you make the perfect design, call today for more information: 800-227-1817, ext. 711C.
PAL is a trademark of AMD/MMI

At last, a LeCroy you won't have to beg for.

Now you can get LeCroy Digital Oscilloscope performance for the price of an ordinary oscilloscope. At just $\$ 6,990$, the new Model 9410 offers you unrivaled measurement capabilities. Waveforms are digitized with high signal fidelity into 10 K acquisition memories and presented on the sharpest display of any oscilloscope (the above picture speaks for

LeCroy Corporate Headquarters
700 Chestnut Ridge Road - Chestnut Ridge, NY 10977-6499
Tel.: 1-800-5 LeCroy - (914) 4252000 / TWX: (710) 577-2832
Fax: (914) 425-8967

Practical Silicon-ON-Insulator Process Can Enhance Virtually any Species of IC

The possible longsought replacement for building dielectrically isolated (DI), highperformance ICs may be found in Tizer (Trench Isolated Selective Epitaxial Regrowth). The technology, created by Silicon General, Garden Grove, Calif., has been used to build marketable DI diode arrays (electronic design, Sept. 27, p. 23). If this sili-con-on-insulator (SOI) process can build DI-demanding ICs at costs equal to or less than present DI processes, it could be a Tiger.

An ideal SOI process must permit its users to build monocrystalline sili-con-filled DI tubs on a purchased silicon wafer, using conventional lithography. And for many applications, the silicon in the tubs must be able to build good bipolar transistors-often thick or large ones. Tizer meets those demands.
Its starting wafers aren't just sliced off a boule, they're also processed. Silicon General has two wafer sources: Kopin Corp. of Taunton, Mass., and IBIS Inc. of Danvers, Mass. Each source uses a different technology. Starting material from both sources consists of an insulating layer of silicon dioxide, SiO_{2}, or oxide, sandwiched between a silicon wafer and bipolar-tran-sistor-quality silicon.
Kopin supplies wafers called ISE, built on a modified zone-melted recrystallized (ZMR) process. To build the wafers, Kopin grows the oxide layer on the wafer, deposits a layer of polysilicon on the oxide,

and with proprietary techniques (related to the way silicon boules are grown), turns the polysilicon into a layer of monocrystalline silicon. The oxide layer is $1-$ $\mu \mathrm{m}$ thick; the silicon layer is $2-\mu \mathrm{m}$ thick.

IBIS offers SIMOX wafers. They're built by implanting oxygen ions beneath the wafer's surface. Then the surface is heated so that the oxygen oxidizes the silicon, forming a 0.4 $\mu \mathrm{m}$ thick layer of oxide beneath 0.4μ m of silicon.

That's the starting material for Silicon General. It grows $1.6 \mu \mathrm{~m}$ of epitaxial silicon on the IBIS wafers to bring the exposed silicon to the thickness of the Kopin material.

The firststep in the Tizer process is to selectively implant the silicon layer with antimony to form an n^{+} low-sheet-resistance (20$\Omega /$ square) buried layer.

This is followed by the growth of seven to ten microns of epitaxy, depending on the function of the final ICs to be built in the material. Next, a heavy oxide layer is grown on the surface for later use as a hard mask when etching the bottom oxide layer. During oxide growth, updiffusion occurs from the buried layer to the epitaxial layer. Trenches are then cut in the silicon down to the bottom oxide layer with a reactive ion etcher (RIE) followed by a lateral etch, which causes an oxideoverhang on the surface.

Next, the sidewalls of the trenches are oxidized to a thickness of 0.5 to 0.6 $\mu \mathrm{m}$, followed by reaction ion etching of the trenchbottom oxide to expose the substrate silicon. Selective epitaxial growth techniques can then fill the trenches without the need
for planarization (see the figure). The oxide's top layer is removed and the wafer is full of oxide-isolated tubs filled with silicon ready to build most transistors with any process.

Unlike conventional DI tubs, standard lithography has determined the dimensions of Tizer tubs as part of the chip layout. There's no limit on epitaxial thickness or tub size, like conventional DI. Moreover, thermal-expansion characteristics are closer to those of bulk silicon, and the vertical sidewalls increase transistor density.
While the process was developed to build radia-tion-hardened ICs, it's a natural for high-speed analog and digital chips, as well as power ICs. The reduced collector-substrate capacitance enhances analog and digital circuit speed. Analog performance is enhanced further with its ability to build fast vertical pnps. According to Richard Belanger, a Silicon General design engineer, "Because of the inherent capabilities of the SOI devices at high temperature, we're exploring operation at $300^{\circ} \mathrm{C}$. The isolation is stable at $300^{\circ} \mathrm{C}$, but the transistors become very soft. However, we're evaluating new techniques to resolve the problem." For more information, call Richard Belanger at (714) 898-8121

FRANK GOODENOUGH

Diamond Film Stands Poised To Ice Hot Chips

Besides being the world's hardest substance, diamond conducts heat faster than any other solid. Its thermal conductivity is almost three times that of silver.

Heat sinks incorporating diamond film are an ideal solution to thermal management of the multichip modules that will be the building blocks for the next generation of comput-
ers. And now, there's an economically feasible process to deposit diamond film on free-standing substrates large enough to serve as heat sinks.

As packaging engineers

jam circuitry closer together in modules, heat dissipation becomes a critical factor. When it's coupled with higher clock speeds that account for more current draw, even more heat is dispersed. Norton estimates that the thermal characteristics of diamond could permit clock speeds of 100 MHz or more.
In its pilot process that's ready to scale up to full production, Norton Co.'s Diamond Film Division, Northboro, Mass., combined several proprietary manufacturing techniques to achieve diamond films of sufficient size and quality for use as heat sinks or, potentially, as diamondbased ICs. More than 100 academic and corporate labs-including some 70 in Japan alone-have strived to scale up production of di-amond-film products.
The free-standing dia-mond-film heat sinks offer a lightweight solution to thermal management. They also make it possible to place electronic equipment in harsher thermal environments, such as military aircraft or missileguidance systems, with a higher degree of reliability. Circuit densities ten times greater than today's
can be achieved, Norton claims. Furthermore, the company says it can now get metal to adhere directly to diamond substrates. Those substrates can be overlaid with polyimide for microelectronic-circuitry etching.

For several years, researchers worldwide have focused their diamond-production efforts on plasmaassisted chemical-vapordeposition (CVD) processes, which deposit carbon from the vapor phase onto a supporting material at low pressure and moderate temperatures. Typically, methane gas and hydrogen are used as raw materials.

With multiple communication ports and intelligent DMA control, a forthcoming digital signal processor can take on applications that demand the high performance of parallel processing. Each DSP chip can execute 275 million operations per second (MOPS). As a result, designers can create arrays with any

After five years of investigation, Norton scientists settled on two methods that fulfilled almost all of the requirements to scale up to diamond-film growth economically. The two systems differ in the way they transfer energy to create a plasma and manufacture a diamond crystal.
One method involves arcing current in a way that's similar to dc rocket thrusters. With the arc-jetengine method, researchers can manipulate the flow of methane, hydrogen, and other gases to create films with the desired characteristics. The other technique, microwave processing, centers on a tunable microwave cavity that's adjusted in terms of its geometry to produce the most efficient plasma.

Under an agreement with Darpa, Norton is developing real-time computer control systems that regulate the deposition process, to ensure that diamond films are made with no impurities. Real-time process control is essential to economical mass production with high quality.

DAVID MALINIAK

Parallel-Pr0cessor Systems FOR DSP APPLICATIONS Become Easily Expandable

number of chips, and can now easily confront computational problems previously too complex or timeconsuming for uniprocessors or limited arrays of processors.
Based on the same integer and floating-point processor core used by Texas Instruments Inc., Houston, in its TMS320C30 DSP chip, the TMS320C40 is de-
signed for parallel processing. The processor architecture has been extend-ed-the program counter was increased from 24 to 32 bits. There are four more extended-precision registers, bringing the total to 12 ; divide and square root instructions are incorporated; and the pipeline is streamlined to improve efficiency.
Six on-chip byte-wide serial ports and another halfdozen DMA controllers handle an aggregate datatransfer rate of 320 Mbytes/s. Those bytewide ports, similar in concept to the bit-wide serial ports on the Inmos Transputer chip, are bidirectional and handle interprocessor communication as well as I/O operations. Each port includes the eight data lines plus four control lines-Strobe, Ready, Acknowledge, and Request-giving designers total control of the transfers. Multiple ports can be set up to operate in parallel for 16-, 24-, 32-bitwide, etc. data transfers. Various system architec-tures-linear pipeline arrays, bidirectional rings, tree structures, a variety of 2D schemes for image processing, and even 3D or 4D system architecturesare practical and can be implemented efficiently.

What's more, parallel processing occurs on the chip, because the communication ports, DMA controllers, and integer and floating-point sections can all operate in parallel. That gives the chip its peak throughput of 275 MOPS. The floating-point unit and integer processor operate with 80 -ns and 40 -ns instruction cycle times, respectively, resulting in re-
Break Through 7ns (ouAtre Here

Speed Leadership

Design tomorrow's fastest systems today. Our IDT10484 ($4 \mathrm{~K} \times 4$) will be the fastest high-density BiCMOS memory to run primary caches in ECL systems. At 7 ns , the IDT10494 ($16 \mathrm{~K} \times 4$) is the fastest BiCEMOS 64 K ECL SRAM available in volume production today.
In addition, we offer the densest BiCEMOS ECL RAM, the IDT10504 ($64 \mathrm{~K} \times 4$), at 12 ns . And our new 12 ns IDT10496RL ($16 \mathrm{~K} \times 4$) synchronous self-timed SRAM (STRAM)
offers registered inputs, latched outputs, and self-timed write for easier system design.
Each of our ECL SRAMs is available today in $10 \mathrm{~K}, 100 \mathrm{~K}$, and 101 K configurations in 300 mil SOJ and 400 mil Sidebraze DIP packages.

Technology for the '90s

We engineered BiCEMOS technology to offer the best of both worlds: the low power consumption of CMOS with the high speed of bipolar technology.

BiCEMOS ECL SRAM Family

Part No.	Description	Max. Speed (ns)	Typ. Power (mW)
IDT10484	$16 \mathrm{~K}(4 \mathrm{~K} \times 4) 10 \mathrm{~K} \mathrm{ECL}$	7	700
IDT100484	$16 \mathrm{~K}(4 \mathrm{~K} \times 4) 100 \mathrm{~K} \mathrm{ECL}$	7	500
IDT101484	$16 \mathrm{~K}(4 \mathrm{~K} \times 4) 101 \mathrm{~K} \mathrm{ECL}$	7	700
IDT10490	$64 \mathrm{~K}(64 \mathrm{~K} \times 1) 10 \mathrm{~K} \mathrm{ECL}$	8	420
IDT100490	$64 \mathrm{~K}(64 \mathrm{~K} \times 1) 100 \mathrm{~K} \mathrm{ECL}$	8	320
IDT101490	$64 \mathrm{~K}(64 \mathrm{~K} \times 1) 101 \mathrm{~K} \mathrm{ECL}$	8	420
IDT10494	$64 \mathrm{~K}(16 \mathrm{~K} \times 4) 10 \mathrm{~K} \mathrm{ECL}$	7	700
IDT100494	$64 \mathrm{~K}(16 \mathrm{~K} \times 4) 100 \mathrm{~K} \mathrm{ECL}$	7	500
IDT101494	$64 \mathrm{~K}(16 \mathrm{~K} \times 4) 101 \mathrm{~K}$ ECL	7	700
IDT10496RL	$64 \mathrm{~K}(16 \mathrm{~K} \times 4)$ 10K STRAM	12	1000
IDT100496RL	$64 \mathrm{~K}(16 \mathrm{~K} \times 4) 100 \mathrm{~K}$ STRAM	12	800
IDT101496RL	$64 \mathrm{~K}(16 \mathrm{~K} \times 4)$ 101K STRAM	12	1000
IDT10504	$256 \mathrm{~K}(64 \mathrm{~K} \times 4) 10 \mathrm{~K} \mathrm{ECL}$	12	800
IDT100504	$256 \mathrm{~K}(64 \mathrm{~K} \times 4) 100 \mathrm{~K} \mathrm{ECL}$	12	600
IDT101504	$256 \mathrm{~K}(64 \mathrm{~K} \times 4) 101 \mathrm{~K} \mathrm{ECL}$	12	800

Count on our BiCEMOS ECL to take you through the 7 ns speed barrier for 64 K densities. We believe our BiCEMOS ECL will achieve speed increases of 20% a year every year for the next five years, making BiCEMOS the technology for the '90s.

Samples Available

Call or FAX us today for samples and a copy of the new BiCEMOS ECL Product Information booklet with information on designing with BiCEMOS ECL for ultra-high-speed systems.

IDT Corporate Marketing P.O. Box 58015 3236 Scott Blvd. Santa Clara, CA 95052-8015
(800) 345-7015 FAX: 408-492-8454

When cost-effective performance counts
spective throughputs of 50 MFLOPS and 25 MIPS. To ensure that the high throughput is maintained, TI's designers plan to add lots of memory-a 128-word-by-32-bit cache, a pair of $1-k-$ by- 32 static RAMs, and a $4-k-b y-32$ ROM. Furthermore, to handle various timing and control operations, two timers were included as part of the chip definition.

The intelligent DMA-
controller block on the chip is self-programming, minimizing its overhead requirements on the CPU. Rather than be totally controlled by the CPU, the DMA controller examines a task queue that the CPU sets up. That queue contains various DMA transfer requests. As the DMA coprocessor finishes one transfer, it checks the queue for another task. As many as three system op-

erations can occur each cycle in the DMA coproces-sor-a 32-bit data transfer, an address register update, and a transfercounter update.

For many DSP chips, it's important to test the chip to ensure correct system operation. To simplify testing, the chip will include a full JTAG (Joint Test Action Group)-compatible test port. Many development tools that will be optimized for programming multiple chips in parallel are also being crafted. In addition, a complex analysis block was included on the chip to aid in system debugging. The block contains breakpoint comparators for program, data, and DMA accesses, a programtrace stack, and an event counter for benchmarking (see the figure).
TI and several partners are developing an optimizing and parallelizing C compiler, assemblers and linkers with support to map the program and data to parallel processors, software behavioral models, and a version of the SPOX operating system that includes parallel processing support. Samples of the chip are expected in the second quarter of next year; software tools will appear in the first quarter. Contact TI at (214) 9956611, Ext. 700; in the U.S., (800) 336-5236, Ext. 700.

DAVE BURSKY

Sample-And-Hold Amplifier 0n Video amplifier IC Performs dc Restoration

An innovative IC improves the performance of conventional de-restoration techniques (many of which introduce their own
distortion) and cuts pcboard space. The EL2090 from Elantec Inc., Milpitas, Calif., holds a video amplifier and a sample-and-hold amplifier (SHA)
(see the figure). The chip is expected to help designers of electronic circuits for recording and broadcast-studio equipment.

Dc restoration of video
signals in these studios is mandatory. A typical signal is routed through as many as two dozen separate amplifiers and/or gain-control blocks before reaching its final destination: magnetic tape or the airwaves. Each point along that route represents a potential source of distortion. With so many of these sources in series, the output signal at each point must be exceptionally clean. Gain-control circuits, in particular, can be distortional. Therefore, extreme measures must be taken to optimize their performance. Studio engineers often employ a simple trick. They position each gain control's video signal at its own unique "sweet spot"-the range of dc input offset voltages for minimum distortion.

Though the technique reduces distortion, it causes other problems. If dc-coupled, the many cascaded circuits produce large dc offsets. If ac-coupled, the dc level is unknown and alters the signal's actual video content. Either way, dc restoration is required. In addition, the chroma-burst portion of the video signal must occur absolutely at a constant dc level. This is so the minute differential gain and phase aberrations in the circuits don't alter the chroma phase reference, which also takes dc restoration. As a result, the input to virtually every block in a video signal chain is de-restored.

And de restoration may be repeated several times within the block. Moreover, the process eliminates the effects of any 50 / $60-\mathrm{Hz}$ noise that's picked up in cabling located be-
tween the blocks.
The Elantec chip is built on a complementary bipolar dielectrically isolated process. Its video amplifier employs a current-feedback architecture and offers a $3-\mathrm{dB}$ bandwidth of 100 MHz . Once per video line, during the "back porch," or black period of the signal, the SHA compares the video amplifier's output level against a dcclamp (black-level) reference applied to the SHA's minus input. The SHA stores the correction voltage that offsets the "back porch" to the clamp level on the Hold capacitor. Itrestores a 1.4 -V output offset to zero in under $10 \mu \mathrm{~s}$.

While the SHA logic-level Hold input is low, its plus input tracks the video amplifier's output. During the video-line period, the Hold input is high and the SHA holds the offset-correction voltage.

The chip is basically an autozeroed, video-bandwidth de amplifier. It can be used for that purpose in various applications. In fact, it's the first time autozero techniques have been applied to a video or cur-

rent-feedback amplifier.
The SHA's input stage is an operational transconductance amplifier (OTA) that converts the input voltage to a current that charges the Hold capacitor. By current steering, the bipolar switch switches from track to hold in under 2 ns . Although the output buffer is an open-loop complementary follower, the

OTA, switch, and buffer form a negative-feedback loop around the video amplifier. At the same time, the Hold capacitor is charging. Because the capacitor is in the feedback loop, it charges accurately.

Additional specifications include differential gain and phase within 0.01% and 0.02°, respectively (at 3.58 MHz while driv-
ing 150Ω and at $6-\mathrm{dB}$ gain), and a $600-\mathrm{V} / \mu \mathrm{s}$ slew rate. Droop is less than 2.5 mV during a video line. The chip can put $\pm 2.5 \mathrm{~V}$ across 50Ω while operating from $\pm 5 \mathrm{~V}$, and $\pm 12 \mathrm{~V}$ across 200Ω running off $\pm 15 \mathrm{~V}$. Open-loop gain typically exceeds 60 dB . For more information, call Aki Kaniel at (408) 945-1323.

FRANK GOODENOUGH

HighSpeed Optical Backplane To Be Made Of Ordinary Glass

0rdinary window glass forms the basis of a solid-state optical backplane system under development at the Institute for Applied Optics, Erlangen, Germany. The backplane will be used to interconnect circuit-card racks in high-speed dataprocessing and telecommunications applications.

To make the optical backplane system, scien-
glass. They're then reflected between the internal surfaces of the glass to provide optical data "pickoff" points at intervals along the surface of the glass sheet.
The two-year project is backed by the German government and by three leading European industrial companies, Siemens A.G., AEG A.G., and Alcatel SEL A.G. Dr. Norbert Siebl, project leader, says the purpose of the project is to produce a technology demonstrator with 16 par-
allel data tracks that are 1 mm apart, with each capable of carrying data at a rate of $100 \mathrm{Mbits} / \mathrm{s}$ over a distance of 1 m .
Once the laboratory development of the backplane is finished, the three participating companies will take over commercial development. So far, scientists at the Institute have made a laboratory prototype that proves the feasibility of the technology with a single $100-\mathrm{Mbits} / \mathrm{s}$ $10-\mathrm{cm}$-long connection.

PETER FLETCHER

Test development today:

The write way

$$
\begin{aligned}
& \text { 適 }
\end{aligned}
$$

© 1990 Hewlett-Packard Co. TMMSO041B/ED Microsoft is a registered trademark of Microsoft Corporation.

POWEROTE D.C.POWERSUPPIES
 NotOnly The Best...The BestSelection, Too

SWITCHERS

POWER-ONE' International Switcher Series incorporates the latest state-of-the-art switching technology while providing POWER-ONE's traditional high quality at low prices. With certification to the world's toughest safety agency requirements, the series is especially suited for products sold not only domestically, but internationally as well. - 85 models. . . 40 watts to 400 watts • Efficient. . . reliable. . .economical - VDE construction • Up to 5 fully regulated outputs • Full international safety and EMI approvals

POWER-ONE'S International Linear Series is the world's undisputed leader in versatile, cost-effective linear power supply products. A long-time favorite of designers and engineers worldwide, the series is the most widely purchased power supply line through distribution in the industry. The most popular voltage and current combinations are available in a wide variety of off-the-shelf standard models. - Popular industry standard packages • 77 models. . . 6 watts to 280 watts $\bullet \pm 0.05 \%$ regulation • Up to 4 fully regulated outputs • Worldwide safety approvals

HIGH POWER

POWER-ONE'S International High Power Series is the industry's only true fully-modular high power product line. Specify a power system that meets your exact requirements from a wide selection of single, dual and triple output plug-in power modules. Virtually any combination of output voltage and current rating can be delivered from stock. - 500 watts to 1500 watts - Fully modular construction - Up to 15 fully regulated outputs • UPS battery backup option - Parallelable outputs with current sharing

POWER-ONE offers one of the largest selections of switcher, linear, and high power standard models in the world. So, whatever your D.C. power supply requirement calls for, make POWER-ONE your first choice and be sure you're getting the best-not only in quality, but selection and value as well. Call today for our new 1990 catalogs.

"Innovators in Power Supply Technology"

D.E. PDUIET SIIPPLIES

POWER-ONE, INC.

740 Calle Plano - Camarillo, CA 93010-8583
Phone: (805) 987-8741 - (805) 987-3891
TWX: 910-336-1297 • FAX: (805) 388-0476

This Year’s Fall Comdex Will Highlight PCs Built Around The 486 Chip And More Potent Notebook PCs.

POWERFULSYSTENS, LAPTOPS Muscle Into SpotLight

RICHARD NASS

igh performance is the key phrase when describing the latest wave of personal computers based on 80486 microprocessors, and laptops based on the 80386SX processor. These two growing areas will be the focus of attention at this year's Fall Comdex, Nov. 12 through 16 in Las Vegas. Moreover, the show's "highend" slant will spill over into the technical program, where standards and networking are examined.
Desktop, tower-configuration, and laptop PCs on display at Comdex will exhibit various enhanced-performance features, ranging from improved graphical user interfaces to better networking capabilities to improved data bases. Many of these performance improvements owe their existence to the greater power of the 486 and 386 processors, the availability of software packages to take advantage of the processors' power, and improved peripheral products.
As the 80486 microprocessor continues to mature, systems built with this chip are becoming more prominent. The 486 (as well as the 386) contains a protected mode that runs software, like Windows 3.0 from Microsoft Corp., more efficiently. And the growing popularity of the Enhanced Industry Standard Architecture (EISA)

1. WITH A 24-IN. CASE that fits under a standard desk, the System 433 TE from Dell Computer Corp. can be used as a Unixbased host or as a PC-network server. This $33-\mathrm{MHz}$, 486 -based system is based on the EISA architecture.
bus is making the 486 mi croprocessor a more natural selection. This is because the chip can take greater advantage of the bus' functionality than lesspowerful CPUs.

Graphical user interfaces, such as Windows 3.0, are starting to appear regularly in PCs. Windows is currently shipped standard with many PCs, not as an option. In addition, Microsoft is selling three of its popular Windows software packages together as one unit: Excel (for spreadsheets), Word (for word processing), and PowerPoint (for presentation graphics) combined now sell for $\$ 995$. Individually, they would cost about $\$ 1500$.

As workstations start to appear for under $\$ 10,000$ from a host of makers-Hewlett-Packard, MIPS Computer Systems, Solarix, Solbourne Computer, and Sun Microsystems, among oth-ers-there's a push for desktop PCs to be more costcompetitive for the same set of performance features.

One PC-based system headed in that direction is the System 433TE from Dell Computer Corp., Austin, Tex. This tower system not only houses a $33-\mathrm{MHz} 486$ processor, but is also designed using the 32 -bit EISA bus. The 433TE, with its 64 -Mbyte main-memory capability, can be used as a Unix-based multiuser host system or as a work group or PC-network server. It incorporates a password protection that "locks" the system from unauthorized access.

Although the 433TE is a tower configuration, it mea-
sures only $24-\mathrm{in}$. high, enabling it to fit comfortably under most desks (Fig. 1). A lockable side panel gives users easy access to vertically mounted option cards. Cable connections are located at the top of the machine. Moreover, eight EISA expansion slots are available. An integrated 16 -bit VGA adapter comes standard with 512 kbytes of RAM, and it displays up to 1024 by 768 pixels in 16 colors.

In addition to the 8 kbytes of cache memory built into the 486 microprocessor, Dell included 128 kbytes of external cache. Faster RAM accesses are achieved with an advanced in-terleaved-memory architecture and shadow RAM. Up to 1.6 Gbytes of hard-disk storage are accessed through IDE (Integrated Device Electronics) interfaces and ESDIs (Enhanced Small Device Interfaces).

The 433 TE is fully compatible with MS-DOS, OS/2, and Unix System V. Prices for the 433 TE range from $\$ 8949$ to $\$ 17,599$, depending on the configuration. A $25-\mathrm{MHz}$ versionthe 425 TE -is also available.

Two other 486 -based machines come from Compaq Computer Corp., Houston, Tex. Their DeskPro and SystemPro systems both run at 33 MHz . The DeskPro-Compaq calls it the most powerful desktop PC-is suitable for design automation, scientific analysis, software development, and resource-sharing workgroup environments.

To increase system performance, the machine is built around the EISA bus. The PC contains a second-level cache controller and 128 kbytes of internal cache memory to service up to 98% of all processor requests at zero wait states. An integrated floatingpoint unit performs compute-intensive math applications, such as fi-nite-element analysis. A socket for an optional $33-\mathrm{MHz} 4167$ Weitek math coprocessor is supplied for extremely demanding applications.

The system is designed for configuration flexibility with its nine expansion slots: a 32-bit system processor slot, a 32-bit high-speed systemmemory expansion slot, and seven full-size 32 -bit EISA slots. But the EISA slots can also hold 8- or 16 -bit
boards. The DeskPro also incorporates Compaq's Flexible Advanced System Architecture that uses two buses, one for the microprocessor and memory subsystem and an EISA expansion bus for compatibility. Four Mbytes of enhanced page memory, expandable to 100 Mbytes, is standard. Three hard-disk sizes are available: 650, 320 , and 120 Mbytes. The units range from $\$ 13,999$ to $\$ 19,499$ and are available now.

The SystemPro series reaches a performance level that suits it for network-server and multiuser applications. It comes with a 512 -kbyte cache memory that's designed specifically for advanced connectivity applications, from 15 -user networks to complex departmental database applications with up to 200 users. The SystemPro can also be used as a multiuser host running Unix. Within the next year, Compaq offers massstorage solutions of over 10 Gbytes for the SystemPro family.

Computing power in the SystemPro can be increased by adding a second processor. Each processor and the I/O bus can operate concurrently, maximizing the overall throughput. Up to five busmaster 32-bit network - interface controllers optimize network-user response time. Prices start at $\$ 20,999$ for a 240 Mbyte system and go up to $\$ 29,999$ for an 840 -Mbyte system.

The DTC3290E SCSI cache controller, which is also designed for the EISA bus, supports a 32 -bit burst bus-master transfer rate across the EISA bus at a maximum data-transfer rate of 33 Mbytes/s. The board, from the Data Technology Div. of Qume Corp., Milpitas,

Calif., decreases the I/O bottle neck with 300 disk I/Os per second. And optional dual SCSI ports permit even higher speeds with parallel data transfer.
The controller board uses an Intel EISA BMIC (bus master IC) as the host interface chip, supplying optimum compatibility between the EISA system and controller cards. With internal and external SCSI connectors, the DTC3290E supports up to seven SCSI devices, such as a hard disk, tape drive, CD-ROM drive, or rewritable optical drive.

By using mailbox architecture as the system-interface protocol, developers can multithread command execution and queuing. This enables the board to fetch multiple commands and execute them simultaneously. The controller also supports data scattering and gathering through the mailbox architecture. With this architecture, the developer can issue one SCSI command to read and/or write data to and from different memory locations, rather than use multiple SCSI commands. Production quantities of the board will be available in January. It costs $\$ 895$

The programmable display system: Design applications for land, sea or air.

Vivisun Series 2000, now the leading programmable display pushbutton system, interfaces the operator with the host computer. The user-friendly LED dot-matrix displays can display any graphics or alpha-numerics and are available in green, red or amber. They can efficiently guide the operator through any complex sequence with no errors and no wasted time.
They also simplify operator training as well as control panel design. One Vivisun Series 2000
programmable display system can do the work of 50 or more dedicated switches. In short, Vivisun Series 2000 gives the design engineer more control over the design.

Contact us today
(AEROSPACE OPTICS INC.
3201 Sandy Lane, Fort Worth, Texas 76112 (817) 451-1141 • Telex 75-8461 • Fax (817) 654-3405

Vivisun Series 2000 programmable displays. The intelligent communications system.

See us at

Fujitsu's new low-cost SCSI protocol controller is optimized for PC applications.

Up to now, if you needed a high-performance SCSI protocol controller (SPC) IC for your PC application, you were faced with two options. Neither of which met your needs.

You could use older products that can't keep up with your PC. Or you could use highpriced SPCs that were also high in pin count and cost.

Now, thanks to Fujitsu's MB89352, there's no need to compromise. Because its a low-cost, high-performance SPC that meets the stringent cost and size requirements of PC applications.

Which makes your life a lot easier. Because instead of having to choose between slower products and higher prices, the only choice you have to make is Fujitsu.

And in contrast to other devices with pin counts of 68 to 150 , the MB89352 provides you with a modest pin count of 48 . All of which meets your need for smaller, lighter, more compact systems.

FUJITSU

But with a 2.7. Mbyte/sec. transfer rate, it packs all the power and speed your PC application needs. Today and tomorrow.

All in a 48 -pin quad plastic surfacemount package no larger than a dime. Or a conventional 48-pin DIP.

But having the right SPC for your PC is only half of what you need to win the race to market. You also need the right development tools.

Which is why Fujitsu provides a complete SCSI host adapter with all the hardware and software you need to convert any $\mathrm{IBM}^{\circledR} \mathrm{PC} / \mathrm{XT}^{\text {™ }}{ }^{1 /} \mathrm{AT}^{\circledR}$ or compatible into an MB89352 evaluation system.

Including a real working software driver complete with source code listings. Giving you the edge to win the race to market.

To find out more about Fujitsu's new PC-based SCSI protocol controller, call 1-800-642-7616. We'll show you how to power your PC with a SCSI IC.

COMDEX PREVIEW

with 512 kbytes of RAM; the dual-SCSI-port version goes for $\$ 995$.

Intel Corp., Santa Clara, Calif., is releasing two 486 machines, one with the EISA bus and one with the ISA bus. Both systems support DOS, OS/2, and Unix. The 402 is a $25-\mathrm{MHz}$ system that contains eight ISA expansion slots. It comes with 4 Mbytes of RAM and is expandable to 8 Mbytes. The 403 E is a $33-\mathrm{MHz}$ model that was designed as a server. It's more flexible than the 402-it has ten EISA expansion slots, up to 64 Mbytes of on-board RAM, and optional external cache memory. Either is available as a board or a complete system (the 402 as a desktop and the 403 E in tower form).

Bridge The Unix-DOS Gap

A joint effort between Mars Microsystems, Mars, Pa., and Tatung Co., Taipei, Taiwan, resulted in a product that combines Sparc and PC technologies in one workstation (Fig. 2). The Mariner 4i enables Unix and DOS application software to run on the same platform, both with full functionality. The system is basically a Spare workstation in which users can add DOS compatibility with an 80386 mi croprocessor and VGA graphics. In addition, the PC applications run independently of the Spare system.

The Mariner 4i runs Sparc/OS 1.0, a derivative of SunOS, Sun's version of Unix. This makes it fully compatible with the 2100 hardware and software solutions available for Sparc workstations. The system is built on a standard PC/AT-size motherboard, integrated on an ISA bus. Its $25-\mathrm{MHz}$ Cypress Semiconductor Sparc CPU offers 16.8 MIPS of performance.

The DOS-processor module, which simply plugs into the motherboard, includes an independent 1 to 8 Mbytes of memory, 32 kbytes of cache, and an optional floating-point accelerator. A diskless unit with a 16in. monochrome monitor costs $\$ 5995$. With all of the extras, including the DOS module, the system sells for $\$ 10,995$.

Oracle Corp., Redwood Shores, Calif., has released several database servers for PC Unix. They run on a full range of high-performance sin-
gle- and multiprocessor PCs, including Compaq's SystemPro.

One server supports SCO Unix MPX and is the first implementation of native symmetrical multiprocessing (SMP) database management for the PC environment. SMP offers huge performance improvements over nonSMP or uniprocessor systems. As more processors are added to a system, SMP makes it possible for each processor to run a complete version of Oracle. This results in significant transaction-throughput gains as processors are added. This marks the first time SMP has been implemented on a PC.

Oracle servers for PC Unix are based on the company's relational database-management system (RDBMS) Version 6.0 , which operates identically on more than 80 different hardware platforms. It requires a minimum of 6 Mbytes of RAM and 80 Mbytes of disk space. Prices begin at $\$ 5100$ for a two- to eight-user single processor.

Intended for such high-end applications as network servers or CAD/ CAM, the MAE486 from Mylex Corp., Fremont, Calif., is an 80486based EISA system board that runs at 33 MHz . Its 128 -kbyte external zero-wait-state write-back cache augments the 8 kbytes that are internal to the 486 chip. The board, with its PC/AT form factor, supports up to 32 Mbytes of DRAM. It's compatible with MS-DOS and Unix.

Mylex also developed three peripheral boards to go with the MAE486: the DCE376 32-bit caching SCSI host adapter, the LNE390 highperformance Ethernet LAN adapt-

3. CONNECTING TO A STATIONARY docking

 station is NEC's Prospeed SX/20, a 386SX-based laptop computer. With the docking station, users can add expansion cards, drives, or other peripherals through the interface slots.er, and the GXE020 high-resolution TIGA graphics controller, which is based on TI's 34020 graphics processor. The system board is priced from $\$ 4620$ to $\$ 5200$, depending on volume.

Peripherals, T00

To go along with these high-end systems, Fujitsu Component of America Inc., Santa Clara, Calif., released a high-resolution 18-in. diagonal ac-memory, plasma-display monitor. The FPF17000S standalone unit features a resolution of 1024 by 816 pixels and two-level gray scale. It's suited for workstations and PCs with split-screen and graphics-intensive applications. It has a contrast ratio of $20: 1$ and a 160° viewing angle.

However, these features don't occupy lots of space. The monitor boasts a $3-1 / 2-\mathrm{in}$. profile and weighs just 5 lbs. It comes mounted on an adjustable tiltstand for viewing comfort. Samples, available now, cost $\$ 4500$. Production starts in January.

For higher performance, laptop makers, specifically notebook PC makers, will build their portable PCs with 386SX processors. Judging from the crop of 386SX-based lap-

TEXASINSTRUMENTS

A PERSPECTIVE ON DESIGN ISSUES: Creating systems with an analog edge

IN THE ERA OF
MegaChip

Advanced Linear can help you raise system performance levels.
 A leadership family of analog circuits from Texas Instruments is helping designers meet difficult design challenges.

 he evidence is strong. Throughout the design community, systems using the new breed of Advanced Linear functions from Texas Instruments are achieving the keener performance edges that can spell marketplace success.

TI's new analog devices are enabling design engineers to link digital brains to analog worlds more effectively and efficiently than ever before. Some offer new standards of accuracy or speed while others are highly integrated devices combining analog and digital functions on a single chip. The result is superior system performance and design flexibility.

These Advanced Linear functions are the result of leadership process technologies that we at TI firmly believe are the key to the advanced analog devices your future applications will demand.

Intelligent power for automobiles

Designers in the automotive industry face a tough challenge: Handle high reverse voltages and achieve rapid load turnoff while providing fault protection, detection, and reporting and efficient load management. To provide the needed intelligent power devices, we developed one of our newest process technologies, Multi-EPI Bipolar. It is unique because it can combine rugged power transistors with intelligent control functions.

The resulting circuits are now providing reliable, cost-efficient control of solenoids and valves in such automotive applications as antiskid braking systems, electronic transmission controls, and active suspension systems.

Other industry segments are also benefiting from TI's Advanced Linear process technologies. Here are a few of the winning designs to which we have helped add an analog edge:

Toledo Scale

Challenge: Improve the accuracy of point-of-purchase scales by eliminating drift over time and temperature.
Solution: The TI TLC2654 Chopper op amp. Our Advanced LinCMOS ${ }^{\text {tw }}$ process makes possible chopping frequencies as high as 10 kHz , reducing noise to the lowest in the industry.

Pulsecom

Challenge: Develop a linecard capable of driving low-impedance loads with greater precision.
Solution: Our TLE206X family of JFET-input, low-power, precision operational amplifiers. These devices offer outstanding output drive capability, low power consumption, excellent dc precision, and wide bandwidth. Fabricated in our Excalibur process, they remain stable over time and temperature.

Leitch Video

Challenge: Design a compact, costefficient direct broadcast satellite TV descrambler for consumer use. Solution: TI's TLC5602 8-bit Video DAC. Our LinEPIC ${ }^{\text {¹ }}$ process combines one-micron CMOS with precision analog to satisfy the demands of the application for video speeds and lowpower operation.

U.S. Robotics

Challenge: Build a modem for highspeed data transmission between computers; allow flexible operation and minimize data errors. Solution: Our TLC32040 Analog Interface Circuit (AIC). A product of our Advanced LinCMOS process, the AIC combines programmable filtering, equalization, and 14 -bit A / D and D / A converters with such digital functions as control circuitry, program registers, and a DSP interface.

Xerox

Challenge: Cut component count and cost of copier systems while boosting reliability.
Solution: Our TPIC2406, a topperformance peripheral driver in a standard DIP package that is capable of driving heavy loads. It is fabricated using our Power BIDFET" process which permits greater circuit density and incorporates CMOS technology for low total power dissipation.

Mr. Coffee

Challenge: Design an intelligent coffee maker that brews faster, maintains optimum temperature, shuts off automatically, and has a built-in cleaning cycle.
Solution: Our LinASIC" ${ }^{\text {m// }}$ LinBiCMOS ${ }^{\text {tw }}$ capability permits us to combine both analog and digital library cells with custom analog cells. This results in cost-efficient integration of temperature monitoring, timing, and high-current outputs on a single control chip.

All of these examples point to one conclusion: TI's Advanced Linear functions are adding an analog edge to many system designs. They are contributing significantly to the enhanced system performance that marks a market winner.

Helping you implement your designs in a changing world.

An increasing share of the total analog market is being captured by mixed-signal devices. As they gain more widespread acceptance, they are driving the expansion of the overall analog market (see above).

Changes such as this are the order of the day in the IC marketplace. Texas Instruments continues to provide not only the high-performance circuits you need but also the depth of experience, support, and service fundamental to successful completion of your designs.

Experience:
 Building on three decades in ICs

We at TI can successfully meet your requirements for mixed-signal devices because we have acquired the necessary knowledge from 30 years of experience in developing both analog and digital functions. We have also drawn upon our digital ASIC strengths in developing our LinASIC capabilities.

Support:

Speeding our chips to you
The faster we move new products through our design cycles, the faster you can get through yours.

We employ a wide variety of designautomation tools and sophisticated software to speed our development process.

Service:

Providing a surety of supply
However advanced our circuits may be, they are of little value if they are inaccessible to you. TI operates on the principle of global coverage, local service. We manufacture semiconductors in 13 countries and operate support centers in 22 . We have product and applications specialists, designers, and technicians around the world. They are linked by one of the world's largest privately owned communications networks so that we can bring you our best - circuits and support - from wherever they may be to wherever you are.

Keeping our communications open

The relationship between you as customer and us as vendor is vital: You are our chief source for firsthand information that can help guide us in developing the circuits you will need for your future designs. We at TI welcome your comments and your suggestions.

TI's Leadership Analog

 Processing Technologies LinBiCMOS - Combines Advanced LinCMOS, digital ASIC CMOS, and up to $30-\mathrm{V}$ bipolar technologies to allow the integration of digital and analog standard cells and handcrafted analog components on a monolithic chip.LinEPIC - One-micron CMOS double-level metal, doublelevel polysilicon technology, which adds highly integrated, high-speed analog devices to the high-performance digital EPIC process.

Advanced LinCMOS - An
N -well, silicon-gate, double-level polysilicon process featuring improved resistor and capacitor structures and having three-micron minimum feature sizes.

Power BIDFET - Merges standard linear bipolar, CMOS, and DMOS processes and allows integration of digital control circuitry and high-power outputs on one chip. Primarily used for circuits handling more than 100 V at currents up to 10 A .

Multi-EPI Bipolar - A very cost-effective technology that utilizes multiple epitaxial layers instead of multiple diffusion steps to reduce mask steps by more than 40%. Used to produce intelligent power devices that can handle loads as high as 20 A and voltages in excess of 100 V .

Excalibur - A true, single-level poly, single-level metal, junctionisolated, complementary bipolar process developed for high-speed, high-precision analog circuits providing the most stable op amp performance available today.

If you would like a more detailed explanation of our Advanced Linear process technologies, please call 1-800-336-5236, ext. 3423. Ask for a copy of our Advanced Linear Circuits brochure.

TM Trademark of Texas Instruments Incorporated (C) 1990 Tl 08-0082
tops at the show, few sacrifice little if any performance when compared to their desktop counterparts.

One newsworthy entry is the TravelMate 3000 notebook PC from Texas Instruments. The PC, built at TI's Temple, Texas location, features a $20-\mathrm{MHz}$ 80386SX microprocessor; a 10-in. diagonal black-on-white VGA display; a 1.44 -Mbyte, 3.5 -in. floppydisk drive; and a 20 - or $40-\mathrm{Mbyte}$ hard-disk drive. All this fits in a box just 8.5 by 11 by 1.8 in., weighing 5.7 lbs. with the battery.

The display, taken from TI's TravelMate 2000, employs triple supertwist LCD technology. Its resolution is 640 by 480 pixels with 32 gray scales. This allows the computer to run such applications as Windows 3.0. It comes standard with 2 Mbytes of RAM that's expandable to 6 Mbytes in 2-Mbyte increments.

The PC comes with DOS 4.01 loaded onto its hard disk. Other software is also bundled, such as LapLink for easy data exchange with a desktop PC; BatteryWatch, which tells users how much life is left in the battery; BatteryPro, a battery conservation application; display utilities; and a laptop file-management system.

The removable nickel-cadmium battery holds a charge for about three hours. Standard features are a parallel and a serial port, interfaces for an external monitor, a mouse, and an external numeric keypad. Options include extra batteries and a 2400 -baud modem with facsimile capabilities. The TravelMate 3000 costs $\$ 5199$ and $\$ 5799$ for the 20 - and 40 Mbyte models, respectively.
Stiff competition for TI's TravelMate comes from the Premium Exec 23 V and 43 V PCs from AST Research Inc., Irvine, Calif. These notebook laptops are also built around the 386SX processor running at 20 MHz , and they come with either 20 or 40 -Mbyte hard-disk drives. The PCs are 9 by 11.4 by 2.2 in . and weigh 6.5 lbs. A 1.44 -Mbyte, $3.5-\mathrm{in}$. floppydisk drive is standard, as is a $3-1 / 2-\mathrm{hr}$ removable NiCd battery.

The Premium Execs' display is a cold-cathode fluorescent-tube backlit LCD that uses 32 shades of gray. It has a resolution of 640 by 480 pix-
els. The computer's 2 Mbytes of RAM are expandable up to 8 Mbytes; a 2400 -baud modem is optional. The notebook PCs come loaded with LapLink, BatteryWatch, DOS 3.3, and some utilities from AST Research.
NEC, Wood Dale, Ill., tossed its notebook-PC hat into the ring with a $12-\mathrm{MHz} 286$-based model that weighs in at 6.5 lbs . The UltraLite 286 V features a 10 -in. backlit display with VGA resolution, 1 Mbyte of RAM expandable to 5 Mbytes, and a 20 Mbyte hard-disk drive. Its $2-1 / 2-\mathrm{hr}$. battery can be changed on-the-fly without any data loss, and can be recharged in four hours. The company's 286 V comes with a RAM card slot for either proprietary NEC RAM cards or ROM-card software from third-party vendors. It's also bundled with an external 3.5 -in., 1.44Mbyte floppy-disk drive. The PC retails for $\$ 3699$.

A second laptop from NEC is the ProSpeed SX/20. This 386SX-based machine, with dimensions of 10.6 by 13.4 by 3.4 in ., is slightly larger than the UltraLite. It weighs 12.9 lbs. with the battery. Running at 20 MHz , the laptop plugs into a fixed docking station to supply instant desktop features (Fig. 3). The docking station offers such desktop features as expansion slots, space for hard-disk, flop-py-disk, CD-ROM, or tape drives, a full complement of peripheral ports, and a locking mechanism so that the complete two-piece unit also becomes portable.

The list of bundled software includes MS-DOS 4.01, an extendedmemory driver, a DOS and user's guide, and a diagnostic utility. With a 40-Mbyte hard-disk drive, the ProSpeed SX/20 retails for \$5999. The optional docking station costs $\$ 1199$.
At the component level, Allegro Microsystems Inc., Worcester, Mass., has launched the 8900 family of mixed-signal ICs consisting of eight motor controllers and drivers. The first three parts from Allegro, the $8901 / 2 / 3$, drive the three-phase brushless dc spindle motors used in hard disk drives for laptops and desktops. These chips combine backEMF (electromotive force) sensing
with power DMOS outputs and programmable control logic to supply drive makers with the control and system flexibility they need. In $1000-$ piece quantities, the chips range from $\$ 6$ to $\$ 6.50$.
Two other ICs designed to drive three-phase, brushless dc motorsthe 8922 and 8925-are used in tape and hard drives, respectively. The 8925 specifies a continuous output current of $\pm 4 \mathrm{~A}$ to supply faster "up-to-speed" times. The 8922 is similar except that it specifies an output current of $\pm 3 \mathrm{~A}$ with an on-resistance of 0.25Ω. The 8925 costs $\$ 8$ and the 8922 $\$ 7.50$, in quantities of 1000 .
The last three parts, the 8931/32/ 58 , are 5 - and 12 -V voice-coil ICs with sense FET outputs. The output current of the chips' on-board fullbridge amplifier can be determined through an externally applied control voltage or current. Each voicecoil IC is priced at $\$ 6$ in 1000 -piece quantities. All eight devices can be had in low-profile packages suitable for surface mounting. They're available now in sample quantities with production to start in January.

By glancing at the technical conference schedule for Comdex, it's easy to see that it's becoming a highend show. You'd almost think it was a workstation show rather than a PC show. One session revolves around standards. PC makers never were too concerned with standards. But now that the PCs are reaching workstation performance levels, the makers are having the same concerns as their workstation counterparts.

A second Comdex technical session is titled "Network Computing, The Challenge of the 90 s: ClientServer Applications Come of Age." This indicates that high-end PC makers are feeling the heat from the lowend workstation makers. Workstations always had a decided advantage over the PCs as far as networking goes. Now, PCs makers have more reason to go to battle. \square

For 17 years yoùve been better look at your

OIICOX

CHANNELS 1--8
EXT CLK
\square 0 o 0 o 0

trying to get a logic signals.

CHANNELS 9-16
LOGIC / OSCILLOSCOPE

Fast things come in small packages.

QS74FGT 24180 3016 $4+4+1445$

High-speed, low-noise CMOS logic and memories in new, space-saving packages

Quality Semiconductor has the highspeed, low-noise logic and memories you need to make the most out of high speed design. FCT logic in FCT/A/B/C speeds. 16Kx 4 SRAMs with 12 ns access. 1 Kx 9 and 512 x 9 FIFOs at 15 ns with fast flags. Logic especially designed to eliminate noise problems. Valueadded enhancements like on-chip resistors, burst-mode counters and cache-tag comparators. Memories with reliable 6-T cell design. In the packages you want-including spacesaving ZIP and our new, ultra-small QSOP. Available now.
Proprietary CMOS Process Quality's QCMOS"' process gives you better
performance than Bipolar or $\mathrm{BiCMOS}-$ yet runs cooler and draws less power. Low Noise A controlled output swing of 0 to 3.5 V reduces problematic ground bounce. Optimized slew rates help reduce line and signal noise.
New, Space-Saving Packaging Innovative packaging options help you save precious board space. 20 and 24 -pin ZIP saves board space by 50% over PDIP. Ask about our new, 150 -mil QSOP with reduced pin spacing to increase logic density by 400%.
High Speed Hotline Call (408) 986-8991 for the latest copy of Quality's HighPerformance CMOS data book-product is available NOW.

QCMOS and QSFCT are trademarks of Quality Semiconductor Inc.

The First Embedded Controller Based On The Sparc Core Packs Caches, Peripheral Functions, And Enhanced Math For Faster Control. Register Windows Speed Real-Tine Control Tasks

Dave Bursky

Although high-speed RISC processors satisfy the throughput needs of embedded-control systems, most RISC-based systems can't meet the board area and cost restrictions imposed by the applications. Fast responses to interrupts, highspeed math computations, and high levels of system integration are all key to taking on tough applications and meeting them with processing power to spare.
As a supplier of general-purpose Sparc processors licensed from Sun Microsystems, Fujitsu took note of the benefits and shortcomings of the current Sparc implementations. Fujitsu enhanced the best features of its previous Sparc processor by instituting a fivestage pipeline that achieves close to one cycle per instruction for most general-purpose code. It also improved the instruction set and integrated many of the off-chip circuits onto the processor chip. An eighth register window was added for more flexible task switching. All of these enhancements were incorporated into the MB86930, a new processor chip that becomes the first member of the company's Sparclite family. A soon-to-arrive multifunction companion support chip, the MB86940, has also been designed.
The processor will be offered in speeds of 20 to 40 MHz (18.5 to 37 MIPS). When idling, its static CMOS logic keeps system power drain to a minimum. This is because the clock can be stopped without losing data held in onchip registers. On-chip instruction and data caches of 2 kbytes each store the most critical data or instruction loops for fastest access (see the figure).
Unlike direct-mapped caches on some re-

cently released high-integration RISC processors, the MB86930's caches are two-way set-associative. As a result, they produce a higher hit rate while imposing a penalty of just a few tag bits per word.

Separate instruction and data caches of 2 kbytes each give designers what the company expects to be the best trade-off between chip cost and performance benefits for most embedded applications. A majority of high-

SPARC-BASED EMBEDDED CONTROLLER

volume embedded applications have only a small amount of code that benefits from being executed from a cache-tight inner loops forming the bulk of most compute-intensive algorithms. The processor's internal Harvard architecture coupled with the caches makes it possible for two words to be pulled simultaneously from the caches. That, in turn, enables the CPU to achieve a very low cycles-per-instruction ratio without resorting to superscalar circuit approaches.

Cache is also important when storing small amounts of interrupt service code to minimize interrupt latency . To that end, the instruction cache was designed to permit each 4 -word line of the cache to be "locked" (write protected), so that normal cache updates won't overwrite the key routines or data. Because a two-way setassociative organization enables a memory location to be mapped into either of two cache entries, the cache can still work effectively even if one of the two entries is locked. Consequently, one entire bank (1024 bytes) can be locked. The remainder can be kept as a fully functional directmapped cache. Furthermore, the data cache can be locked. In that case, locked entries are treated as local scratchpad RAM-writes to locked locations aren't reflected externally to off-chip memory.

Many Registers

A total of 136 registers, each 32 bits wide, are included on the Sparclite processor. The registers appear to users as eight overlapping banks (or windows) that consist of 32 regis-ters-eight are "global," and remain the same in each of the windows. Unlike simple microcontrollers that just switch entire banks of registers, the Sparc architecture employs a more sophisticated approach. In the register windows approach, key parameters can be transferred from task to task without rewriting them into the register file. This is possible because eight registers of the current window are accessible in the next window. Thus, only 16 registers change when windows change. The 16 registers take on slightly different char-
acteristics, depending on which window they were in and the window that they're currently in.
With such a windowing system, C procedure calls and task switching can be implemented efficiently. The calling program can write parameters that are passed into the "out" registers portion of the 16 registers. When the window changes, those parameters appear in the "in" registers. Nothing actually moves, only the register names change to match their task in the window. That eliminates the memory overhead associated with writing and reading parameters, and effectively caches the top of the C run-time stack in the hid-
occur because it has at least eight registers that are unable to impinge on the user's process that trapped. The trap service time is also low because there's very little state information that the trap service routine must save in order to reenter the trapped program (just the program status register and the Y register need be saved-and only if the service routine or another trap service routine will alter those values).

Furthermore, by using the Window Invalid Mask instruction, supervisor code can segment the register set into a smaller number of window sets. This reduces the number of windows, and thus the number of con-

> THE SPARCLITE PROCESSOR takes advantage of a full Harvard architecture internally, which enables the integer unit to simultanoeusly pull both data and instructions from the dual 2-kbyte caches. The bus interface block not only provides full 32 -bit data and address buses, but also supplies all of the timing needed for DRAM subsystem control.
den register windows.
To readily handle real-time control applications, interrupt latency must be extremely short-just four cycles are required by the MB86930 from the time the trap instruction is fetched to when the trap target is fetched. At 20 MHz , that translates to about 200 ns . With the automatic decrementing of the current window pointer during a trap, a trap service routine can execute quickly. This can
secutive Save operations without a window overflow trap. In turn, users can trade off between the nested procedure call time and context or process switch time, if the process is a real-time event service routine and it's desirable to reduce the process switch time.

The processor chip also includes a clock generator that requires just an external crystal (alternatively, a simple single-phase clock can be sup-

SPECIFY SOLID GaAs.

High-performance ASICs call for a high-performance technology like GaAs. But if all the exaggerated claims and unreal numbers leave you totally confused, there's one source you can count on for the facts.

TriQuint.
As the first and most experienced GaAs ASIC vendor, TriQuint will show you the true numbers, economics, techniques and trade-offs culled from hundreds of GaAs applications. Chances are, we can show you results based on demands similar to your own.

We'll show you the proven potential of GaAs

to boost speed...reduce power drain ... consolidate chip functions - not based on theory, but on solid evidence. We'll show you a semi-custom offering fully compatible with Daisy and Mentor sys-
tems. We'll show you our extensive training seminar program, and our full compliance with standard I/O lev-
els and power supplies for TTL,
ECL and CMOS.
We'll show you the bottom line and let you judge for yourself. Call 1-800-344-7641. In Oregon, 644-3535.
See why so many major companies have made TriQuint the solid resource in GaAs.

SPARC-BASED EMBEDDED CONTROLLER

plied to the chip), and a dynamicRAM interface and address decoder. The DRAM block contains eight programmable wait-state generators. It also contains another eight programmable chip-select lines that simplify the attachment of off-chip, low-cost DRAMs.
Special page-mode detection logic helps minimize the cache-miss penalty. Each time there's a cache miss, a worst-case assumption is that the first word accessed is in a new memory page. That typically isn't the case, because most code is sequential: If instruction n caused a miss, instruction $\mathrm{n}+4$ will also cause a miss (a cache line is four words long). Because pages in external DRAM are much larger than the 4 -word cacheline boundary, the fetch of instruction $n+4$ can often be treated as a page-mode address. The circuits included as part of the cache subsystem will take advantage of such cases automatically, treating the DRAM page as if it were a secondary cache memory.

Multiplier Adds P0wer

More computational power was embedded in the Sparclite by adding a 32 -bit multicycle multiplier (organized as 32 -by- 8) and several multiplication instructions, a Scan command, and an improved division capability (a new Divide-Step instruction) to accelerate physical data processing. Multiplications, along with additions and the combined mul-tiplication-accumulation operation, are workhorse operations in many control algorithms in linear, quasilinear and non-linear domains. The on-chip multiplier allows the MB86930 Sparclite chip to perform floating-point emulations with a throughput of about 1 MFLOPS.

To see the improvement in throughput, consider the following example of the previous MB86901 Sparc integer processor. An MB86901 converts 8 -bit pixels from red, green, and blue planes to 8 -bit pixel intensity planes over a 1024-by-1024-pixel image. When running at 20 MHz , the MB86901 requires 2.57 seconds to do the operations when it uses 0 -wait-state static RAM to
hold the data.
In contrast, the MB86930 needs just 0.93 seconds, and requires much-less-expensive 1 -wait-state DRAM to hold the data. Thanks to the multiplication instruction, the pixel-conversion routine needs only 32 words of storage. And it can be held in a locked portion of the cache for maximum speed.
Scan is a new single-cycle operation that examines a register to see how many leading bits are the same; then it returns the count. The equivalent operation done with standard Sparc instructions would require between 43 and 52 clock cycles. The new Scan instruction peeds the software floating-point post-normalization so that the integer unit can take care of floating-point operations during initialization and outer-loop execution. The scan operation also accelerates interrupt selection and runlength encoding for compression.

The Divide-Step instruction improves division speed over the original Sparc integer unit considerably, with a minimal impact on hardware cost. It performs a one-bit cycle of a non-restoring shift-before-add, signed or unsigned division. The standard coding on previous Spare processors requires between 243 and 258 cycles to perform the division of a signed 64 -bit number by a signed 32 -bit number (and obtain a signed 32-bit quotient and correctly signed 32 -bit remainder with detection of di-vide-by-0 and finite overflow). In contrast, the new Division instruction reduces the time to between 48 and 62 cycles.

The multiplication operation conforms to the Sparc International specifications with an additional early terminate feature to help the em-bedded-control system designer. The early terminate feature permits a 32 -bit-by-8-bit multiplication to be done in just two cycles, a 32 -by- 16 operation to be completed in three cycles, and a 32 -by-32-bit multiplication in just five cycles.

Four variations of the multiplication instruction actually exist: unsigned multiply, signed multiply, unsigned multiply and modify condition code register, and signed multi-
ply and modify condition code register. By using condition codes, multiplies can be programmed more efficiently when products aren't more than 32 bits wide. In addition, the codes still retain the ability to detect and handle exceptions.
To make systems easier to debug, Fujitsu's designers included a separate 8 -bit analyzer bus on the Sparclite chip. The bus, which carries coded bus-trace information to an emulator, is needed because the on-chip caches of the processor hide lots of bus activity from the outside world. The separate bus also makes the emulator connection non-intrusive to the system side of the processor. As a result, any loading or other performance-deteriorating effects are eliminated from the host system.
The chip also contains hardware breakpoint registers that, when used with target monitors to generate complex breakpoints, further aid in program debugging. There are two registers for instruction breakpoints, two for data address breakpoints, and two others for data-value breakpoints. To ensure that boardlevel systems are testable, the chip includes a JTAG test port for bound-ary-scan testing.

In control systems, the compute subsystem must often perform other tasks, such as interrupt control, counting and timing, and data communications. The MB86940 companion chip will offer all of this support integrated into one 100 -lead quadsided flat package. The chip will include an interrupt controller that deals with 15 interrupt requests. It will have a selectable interrupt trigger and both masking and polling registers. Four 16 -bit counter-timers will also be incorporated, each with a programmable prescaler. Each timer can respond to either an internal or external clock, and each has its own capture and compare registers. Inputs can respond to a wide range of trigger events, while the timers deliver a wide range of pulse or level outputs. In addition, a pair of universal synchronous/asynchronous serial ports are integrated on the chip. Each is 8251 -compatible and can be

Take Advantage of Sharp Mask ROMs.

Whatever nonvolatile memory path you should be heading To Sharp. The world

You've chosen mask ROMs for their density. But now you can choose them for their high speed as well. And you can choose the best of both worlds in one place. Sharp.
Setting New Speed Records-And Getting Faster. Now available from Sharp: a 100 -ns, 4 -Meg mask ROM. That's a speed/density combination unprecedented in the industry. But that's only the beginning.

This milestone is one step on a technology path initiated by Sharp to produce ever-speedier mask ROMs. The key is a chip design focused entirely on speed.

Sharp will take this layout to new speed levels in the 1990s. Look for a $35-\mathrm{ns}$, 1-Meg mask ROM from Sharp as early as the end of 1990.

And Sharp will continue on this unrivaled speed path for years to come. You can look forward to a new generation of mask ROMs, reducing wait state requirements. All available in a wide range of standard DIP and leading-edge surface mount packaging, for maximum design flexibility.

Sharp High-Speed Mask ROMs							
1 Meg	Max Speed	Org.	DIP	QFP	SOP	PLCC	Intro.
$\begin{aligned} & \text { LH530800 } \\ & \text { LH530xx } \\ & \text { LH530xx } \end{aligned}$	150 ns 35 ns 55 ns	$\begin{aligned} & \times 8 \\ & \times 8 \\ & \times 16 \end{aligned}$	$\begin{aligned} & 32 \\ & 32 \\ & 40 \end{aligned}$	44	32	32	$\begin{aligned} & 2 \mathrm{H} 90 \\ & 1 \mathrm{H} 91 \end{aligned}$
$\begin{aligned} & \frac{2 \mathrm{Mcg}}{\text { LH532300 }} \\ & \text { LH532L00 } \end{aligned}$	$\begin{aligned} & 150 \mathrm{~ns} \\ & 120 \mathrm{~ns} \end{aligned}$	$\begin{array}{r} x 8 \\ \times 8 \\ \hline \end{array}$	$\begin{aligned} & 32 \\ & 32 \\ & \hline \end{aligned}$		$\begin{aligned} & 32 \\ & 32 \\ & \hline \end{aligned}$	$\begin{aligned} & 32 \\ & 32 \\ & \hline \end{aligned}$	
Meg LH534300 LH534500 LH534L00 LH534600	$\begin{aligned} & 150 \mathrm{~ns} \\ & 150 \mathrm{~ns} \\ & 120 \mathrm{~ns} \\ & 100 \mathrm{~ns} \end{aligned}$	$\begin{aligned} & \times 8 \\ & \times 16 \\ & \times 8 \\ & \times 16 \\ & \hline \end{aligned}$	$\begin{aligned} & 32 \\ & 40 \\ & 32 \\ & 40 \end{aligned}$	44 44	$\begin{aligned} & 32 \\ & 32 \end{aligned}$	$\begin{aligned} & 32 \\ & 32 \end{aligned}$	
$\begin{gathered} \underline{8 \mathrm{Meg}} \\ \text { LH538xxx } \\ \text { LH538xxx } \end{gathered}$	$\begin{aligned} & 150 \mathrm{~ns} \\ & 150 \mathrm{~ns} \end{aligned}$	$\begin{aligned} & \times 16 \\ & \times 8 \\ & \hline \end{aligned}$	$\begin{aligned} & 42 \\ & 32 \\ & \hline \end{aligned}$	64	32		$\begin{aligned} & 1991 \\ & 1991 \end{aligned}$

Setting New Density Records-And

 Delivering Lowest Cost Per Bit.Now available from Sharp: a $16-\mathrm{Meg}$ mask ROM at 200ns. Another milestone in the industry. The key is a totally different die. And a totally different technology called Flat Cell.
With greater and greater densities in mind,

HICH
DENSITY Sharp has produced a cell half the size of its high-speed counterpart. But while some speed has been traded off for die size, Sharp's higher-density mask ROMs are pretty speedy as well (see table that follows).
Moreover, in addition to producing a record-setting 16-Meg mask ROM, the effort has delivered extremely costeffective $4-\mathrm{Meg}$ and 8 -Meg versions, now in volume production. All exemplify Sharp's commitment to deliver what many system designers consider their most important requirement. Lowest cost per bit.
And the commitment to delivering lowest cost per bit is long-term. Even now, Sharp designers are working on a $64-$ Meg mask ROM for the early 1990s. So you know you can always depend on Sharp to deliver ever-denser mask ROMs. And ever-lower cost per bit.

Sharp High-Density Mask ROMs							
2 Meg	Max Speed	Org.	DIP	QFP	SOP	PLCC	Intro.
LH532000B	200 ns	$\times 16$	40	44			
LH532100B	200 ns	$\times 8$	32		32	32	
4 Mcg							
LH534000B	200 ns	$\times 16$	40	44			
LH534100B	200 ns	$\times 8$	32		32	32	
8Mcg							
LH5380xx	200 ns	$\times 16$	42	64			
LH5381xx	200 ns	$\times 8$	32		32		
16 Mcg							$2 Q^{9} 9$

Why EPROMs Are Not Always the Answer.

With the advances Sharp is making both in lowering the cost per bit and increasing speed, now may be the time to ask a very important question: Are EPROMs really preferable to mask ROMs?

rou're on-highest density or speedn one direction. leader in mask ROMs.

For many of you, the answer is now no. It's time to re-examine conventional thinking about EPROMs.

For example, if your code is stable and your annual volume is moderate, then you simply can't afford not to consider Sharp mask ROMs.

One of the advantages that EPROMs have over mask ROMs is their ability to be erased and reprogrammed. However, for most users the flexibility that makes EPROMs a lot more expensive than mask ROMs will never be needed. And if your code is stable, a lot of money will have been wasted.

Moreover, as you know, even if field changes are required, most EPROM users won't reprogram the units in the field. Instead, the EPROM will simply be dumped and replaced. And considerably more expense will be added.

Because mask ROMs are custom parts, another alleged EPROM advantage is the ability to inventory the unprogrammed devices. However, the ability to stockpile master EPROMs is increasingly being offset by the cost incurred by the system manufacturer who must program the EPROMs on his factory floor.

Why Sharp Mask ROMs Are the Answer.

Now consider some clearcut advantages you will get with mask ROMs. Thanks to Sharp.

For one thing, mask ROMs have always been much denser. But Sharp has made that density advantage even more pronounced-and it will only get greater. This is good news for those users who would need to use multiple OTP EPROMs to satisfy increasing bit requirements. With Sharp's extensive line of high-density mask ROMs, no problem. Simply use one high-density Sharp mask ROM instead of multiple OTP EPROMs. And also lower your cost per bit to levels that EPROM users can only dream about.

Moreover, through Sharp's creation of and commitment to a speed path, mask ROMs no longer suffer a speed disadvantage. You can look forward to new generations of high-speed mask ROMs. And with greater densities than EPROMs. From Sharp.

Take Advantage of Sharp's Unrivaled Mask ROM Development.

When you come to Sharp, you can take advantage of our unrivaled leadership in developing distinctive, leading-edge speed and lowest-cost-per-bit (density) paths. And you can choose from a wide range of high-speed or high-density products. Right now.

Whatever mask ROM technology path you require, you will capitalize on several features that have helped make Sharp a world leader in mask ROM development:

- Simple Processing. Sharp uses a single-poly, single-metal process for all its mask ROMs to keep costs down. You know you can look forward to new, cost-effective generations of higher-density and higher-speed mask ROMs.
- Fast Turnaround Time. Expect initial quantities within 4 to 6 weeks. Not the usual 12 to 16 weeks. And at a fraction of the cost of EPROMs. The reasons: late programming (pre-metal)-even on the highest-density parts-along with fast, U.S.-based satellite code transfer, combined with speedy in-house mask making and assembly/testing.
- Wide Selection of Leading-Edge Packages. This includes JEDEC standard DIPs most common for EPROMs. But at Sharp, high-density PLCC and even higher-density QFP and SOP surface mount packages are all standard. And COB and TAB are available on request.
- Rock Solid Customer Support. Whatever technology path you're on-speed or density-you can count on Sharp to meet our commitment to deliver what we promise to deliver. Speed or density. Every time.

To find out more about Sharp's full line of mask ROMs, call: 1-201-529-8757 • FAX: 1-201-512-2020. Or write to: Sharp Electronics Corp., Microelectronics Division, Sharp Plaza, Mahwah, New Jersey 07430.

Sharp Regional Offices

Sharp Electronics Corp.
20600 S. Alameda Street
Carson, CA 90810
Tel: 213-637-9488
Fax: 213-63l-2945

Sharp Electronics Corp.
800 Turnpike Strect
Suite 300
North Andover, MA 01845
Tel: 508-975-1979
Fax: 508-975-1680

Sharp Electronics Corp.
1300 Naperville Road
Romeoville, IL 60441
Tel: 708-759-8555
Fax: 708-759-6319

Sharp Electronics Corp.
4677 Old Ironsides Dr.
Suite 450
Santa Clara, CA 95054
Tel: 408-727-7914
Fax: 408-748-1837

Sharp Electronics Corp.
725 Old Norcross Road
Lawrenceville, GA 30245
Tel: 404-995-0717 Ext. 303
Fax: 404-995-0622

Sharp Electronics Corp.
14275 Midway Road
Suite 220-2
Dallas, TX 75244
Tel: 214-991-5185
Fax: 214-991-5071

Call Representative Location Nearest You

Alabama
 Interep Associates, Mobile (205) 478-1036
 (205) 881-1096
 Arizona
 ETS, Inc., Tempe
 (602) 921-7122

Interep Associates, Huntsville

California

Mesa Components, San Diego
(619) 278-8021

Plustronics, Newport Beach (714) 476-8009

Plustronics, Sherman Oaks (818) 995-8908

Quorum Technical Sales, Santa Clara (408) 980-0812

Colorado
Seale \& Associates, Inc., Denver (303) 695-1980

Connecticut

Orion/ DSA Group, Southington (203) 621-8371

Florida

Component Design Marketing, Orlandc
(407) 240-3903

Georgia

Interep Associates, Norcross
(404) 449-8680

Illinois

Synergistic Sales, Glendale Heights (708) 858-8686

Indiana

Mohrfield Marketing, Indianapolis (317) 546-6969

Kansas

Baka Corporation, Wichita (316) 682-8411

Maryland
Advanced Technology Sales, Towson (301) 296-9360

Massachusetts
Orion/DSA Group, Peabody
(508) 532-6266

Orion/DSA Group, Marlborough (508) 480-0516

Michigan

DEM Sales Inc., St. Clair Shores
(313) 777-1750

DEM Sales Inc., Grand Rapids
(616) 364-4024

Minnesota
Reptek, Minneapolis
(612) 331-8865

Missouri
Baka Corporation, St. John
(314) 429-2252

North Carolina

Zucker Associates, Raleigh
(919) 782-8433

New Jersey
Eastec Associates, Allendale
(201) 934-7135

New York

W. Kreger Associates, E. Rochester (716) 381-4430

Ohio

Five Star Electronics Inc., Dayton (513) 299-1718

Five Star Electronics Inc., Solon (216) 349-1611

SPARC-BASED EMBEDDED CONTROLLER

programmed for stop bit, parity, character length, and baud rate.

If users don't want to use the new multiplication commands, all previous software development tools can be employed to develop application programs. Some of those tools include native (Sun-4) and cross tools (Sun-3 and IBM PC and compati-bles)-C compilers, linkers, loaders, librarian, libraries, target monitor, and so on.

For additional software, Fujitsu struck a deal with Microtec Research Inc., Santa Clara, Calif., for that company to develop a high-performance compiler that applies interprocedural data-flow analysis and run-time feedback, as well as other optimizing techniques. An evaluation board containing the $40-\mathrm{MHz}$ processor, 4 Mbytes of 80 -ns DRAM, 128 kbytes of EPROM, an 8-bit parallel port, two serial ports, 32 - and 16 bit timers, various indicators, and an expansion port will be ready in the second quarter of 1991.

Microtec will also develop a version of its XRay source-level debugger that's compatible with native host, architectural simulator, execution vehicle, and hardware emulators. Furthermore, real-time operating systems are also available from Wind River Systems Inc., Alameda, Calif., Ready Systems Inc., Sunnyvale, Calif., and JMI Software Inc., Spring House, Penn. Step Engineering Inc., Sunnyvale, Calif., is crafting a hardware emulator that's expected to be ready in the first quarter of next year.

Price And Availabilty

Full-speed samples of the MB86930 Sparclite processor and the MB86940 support chips will be available in the early second quarter of 1991. Prices for the processor will start at less than $\$ 50$ in lots of over 1000 units when housed in a 160-lead, plastic quad-sided flat package. Production is expected in the third quarter.
Fujitsu Microelectronics Inc., Advanced Products Div., 50 Rio Robles, Bldg. 3, M/S 356, San Jose, CA 95134-1806; Peter von Clemm, (408) 922-9722.

CIRCLE 514How Valuable?CircleHighly535
Moderately 536
Slightly 537

Trimmer Capacitors. The World's Broadest Líne.

SPRAGUE goodman

Including SURFTRIM ${ }^{*}$ SMT plus SURFCOIL Chip Inductors STAB-L' Ultra Stable Inductors

SEE US AT WESCON-BOOTH 2536

SPRAGUE-GOODMAN ELECTRONICS, INC. 134 FULTON AVENUE, GARDEN CITY PARK, NY 11040-5395
TEL: 516-746-1385 • TELEX: 14-4533. FAX: 516-746-1396

CIRCLE 146

Dip Your Imagination into ROHM's Electronic PaintBox:

Since seeing is believing, we want you to discover how ROHM's LEDs can brighten your future sign business. Just look what's in our Electronic PaintBox:

Daylight Readability to 1500 Feet.

 ROHM SLA-580 superbrights are the first LEDs to give you a practical, cost-effective alternative to incandescent bulbs.Outlast Incandescents 20-to-1. Our rated lifespan is 100,000 hours, compared with 5,000 hours typical for incandescents. This reduces replacement costs and keeps money in your pocket.

Make or Buy. You can assemble our LEDs into your own pixels or, if you like, we'll supply them as modules. Either way, you can specify size, brightness and color to fit the need.
Choice of Viewing Angles. The lensed LED chip and reflector cup give you accurate viewing angles from 12° (in superbrights) to totally diffused lenses. Chip placement tolerance of . 2 mm makes the optical axis of the beam virtually coincident with the mechanical axis of the part.

Color Uniformity.

Statistical Process Control (SPC) and Total Productive Maintenance (TPM) are used throughout the manufacturing process to ensure consistency and uniformity, part-to-part and lot-to-lot.

To see for yourself, send us $\$ 5$, your business card and your company's brochure and we'll send you an Electronic PaintBox to light up your imagination.

∞^{n} nesene

processor itself. Intel Corp.'s 1486 and Motorola's 68040 processors each contain 8 kbytes of cache. When the speed of these machines rises to 33 MHz and beyond, a large secondary cache will be needed.

Can't Cache Up

As semiconductor minimum feature sizes continue to decrease, microprocessors will integrate even more cache on the chip. The nextgeneration Intel machine, the 80586 , is expected to have from 32 to 64 kbytes of on-chip cache. But with the advent of multitasking, multiprocessing, and multimedia presentations, the size of programs and the number of frequently used instructions and data will increase dramatically. Secondary caches of 512 kbytes to 2 Mbytes will be needed to keep systems running without wait states. According to Reeber, this means that the trend toward inte-
grating cache memory into microprocessors will not keep pace with the requirement for caching.

When system-clock cycles approach 50 MHz , or 20 ns , cache memory requires a 10 -to- 12 -ns cycle time. Such high-speed static RAMs (SRAMs) are rare in CMOS. In the ECL arena, a $100-\mathrm{MHz}$ system, which corresponds to a 10 -ns clock cycle, calls for fast ECLSRAMs. But in an ECL machine, a $1-\mathrm{ft}$. board trace would represent 20% of the clock cycle. That precludes using asynchronous SRAMs, because so much of the clock cycle is taken up by timing skew.
This has spurred on the development of synchronous self-timed RAMs (STRAMs), which internally generate write-pulse signals and I/O latches. David F. Naren, of Synergy Semiconductor Corp., Santa Clara, Calif., describes a new generation of STRAMs that simplify design and
optimize CPU performance.
The STRAM operates in a synchronous mode, which eliminates many of the problems associated with asynchronous static RAMs. In the STRAM, all inputs and outputs are latched or registered, and both read and write operations are initiated with a common clock. A major advantage of the devices is their on-chip write-timing generator, which delivers a truly balanced read and write cycle. One problem with STRAMs, though, is the hold time of output data after clock initiation. The data must be held long enough to satisfy the input hold time, clock, and data skews of the receiving circuits, which takes about 1 to 2 ns . Most STRAMs guarantee a hold time of 0.3 ns at best.

Advanced STRAMS (ASTRAMs) are now addressing this problem. They feature a separate output-register clock, which is generated on the

\oplus
 Wescon/80 PRODUCTS

Reliability-analysis tool spots thermal problems during board design. Now designers can analyze the thermal and reliability parameters of boards during their design phase with the Tango-BETAsoft tool. Analysis of boards with the tool shows that the highest IC-junction temperatures may not correspond to the highest failure rates. The tool reveals both temperature and failure rates for individual components as well as the MTBF for the entire board. Up to 400 component types and 600 components on a side can be analyzed. The tool costs

$\$ 3195$ for double-sided boards and $\$ 2195$ for single-sided boards. Delivery is from stock.
Accel Technologies Inc.
San Diego, Calif.; (619) 554-1000.
Booth 423
Circle 300
Lithium time-clock battery for computers makes replacement easy. Now the clock battery for computers can be replaced without powering the machine down or even removing its cover. The BatteryGuard lithium-battery system uses a battery holder that's installed in

the opening above an expansion slot at the back panel. Once installed, battery replacement is done from outside the case. The battery, which is less than $0.2-\mathrm{in}$. thick, incorporates lithium manganese dioxide chemistry for high energy output. Call for pricing and delivery.

Ever Corp.

San Mateo, Calif.; (415) 572-1077.
Booth 2544
Circle 301
Smart dc cooling fan cuts noise while maintaining temperature level. Significant noise reduction is achieved while the SmartFan cooling fan maintains a consistent temperature level inside an enclosure. The fan offers a longer life than earlier models because it usually runs at a reduced speed. The fan incorporates a closed-loop tempera-ture-regulating system that automatically controls the air flow to hold ambient temperatures constant within enclosures. Pricing is $\$ 15$ for lots of 5000 . Small quanti-

Oument

chip, a hidden write cycle, parity checking, and scan diagnostics. All inputs and outputs are registered with a second internal clock that clocks the output registers. This guarantees a minimum hold time of 2.5 ns -long enough to transfer data to the next stage even when the system clock is running at the memory's spec-sheet limits. Synergy Semiconductor is developing the industry's fastest ASTRAM with a 2 -kbit-by-9 organization.
One way to address the clock skews and attendant system-timing problems in high-speed systems is to minimize wiring runs and to keep interconnections as short and close as possible. Multichip-module technology is the key to such packaging improvements. Three scientists from General Electric's Corporate Research and Development Center, Schenectady, N.Y., will report on the status of the company's High-Densi-
ties are delivered from stock.
NMB Technologies Inc.
Chatsworth, Calif.; (818) 341-3355.
Booth 1596
Circle 302
IEEE-488-programmable hipot tester jams several tests into one cycle. Arc detection with $3-\mu \mathrm{s}$ sensitivity, leakage-current detection in microamps and milliamps, and ground-continuity testing from 0.1 to 10Ω are performed in one test cycle by the DC310P hipot tester. The instrument, which is program-

mable over the IEEE- 488 bus, sports separate audible, visual, and remote failure alarms for each test. It simplifies compliance with UL, CSA, VDE, IEC, and other international standards. The tester costs $\$ 7000$ and is available now.

Qualitec Technologies Inc.
Fremont, Calif.; (415) 498-1046.
Booth 949
Circle 303
ty Interconnect (HDI) multichipmodule technology.

In the HDI process, complex chips of various types are placed virtually edge-to-edge in cavities machined into a ceramic, silicon, or aluminumnitride substrate. A multilayer inter-
connection structure is built up on top of the chips, and the surrounding substrate directly forms the chip-tochip electrical connections. A 1-milthick polyimide film is bonded over the top surface of the chips and the ceramic substrate with a thermal

We've already designed, built, and tested your operator interface . . . so you don't have to. Our new and complete family of OEM Microterminals is easy to integrate with your microprocessor-based systems, easy to use, and very easy to cost justify.
And, they could be the solution to your make/buy dilemma. These cost-effective devices can save you valuable design, tooling and development costs and time, and let you concentrate on your product designs.

- Large, easy-to-read LCDs
- Programmable function keys
- RS-232 or RS-422 communications
- 80-character display buffer
- Gray or computer beige case colors
- 16-bit I/O and auxiliary RS-232 available
- Low-Price: From \$195.00

For a copy of our new 8-page brochure, or information about demo units, write Burr-Brown Corp., P.O. Box 11400, Tucson, AZ 85734. Or call toll free 1-800-548-6132.

Our New LED Agreement Goes Beyond The Surface.

When it comes to surface-mount (SMT) LED indicators, Hewlett-Packard and Siemens are making a world of difference. Through our extensive co-development efforts, we can offer you standard, multi-sourced SMT LEDs.

By combining our expertise in the optoelectronics field, we've done more than respond to your need for a global standard. Our SMT LEDs are designed to give you performance comparable to through-hole LEDs.
To brighten your design outlook even further, our LED indicators will provide SMT manufacturing process compatibility for ease of placement and soldering. Plus, we'll offer a full range of LED colors, and light intensity that outshines all others.

Best of all, these lamps are from HP and Siemens. So you're assured of our commitment to excellence in service, support and reliability.
For more information, call (408) 725-3524. Or write: Siemens Components, Inc. Optoelectronics Division 19000 Homestead Road
Cupertino, CA 95014-0799

Siemens
 Practical Solutions by Design.

(Wescon/90

plastic adhesive. The film bridges the gaps between the chips and the ceramic frame. A laser "drills" via holes directly to the chip pads, and the surface is metallized and patterned to form the first-layer interconnects and via metallization.
The second-layer dielectric and all subsequent dielectric layers are formed by spinning or spraying on a different polyimide. Via drilling and metal-patterning steps are then repeated. Multichip modules have been built with two or four interconnect layers. Typical feature sizes are 1mil vias, 1 -mil lines, and 2 -mil spaces.

Rework or repair of the modules can be performed either with in-line processing steps or after module testing is performed. Lasers can be

(1) Wescon/90 $\begin{gathered}\text { PRODUCTS }\end{gathered}$

Real-time emulation arrives for Mo^{-} torola's 68332 microprocessor. Support for the Motorola 68332 microprocessor is now featured in the HMI-200 series emulators. The units offer four complex break and trigger points and two 4 -kbit-by-104-bit trace buffers with 16 external trace bits and 32 bits of time-tag information. Included are 256

kbytes of emulation memory with an option for 1, 2 , or 4 Mbytes. The emulators are integrated with SourceGate, a windowed high-lev-el-language debugger. Pricing is $\$ 16,000$ for the emulators and $\$ 1500$ for the IBM PC version of SourceGate. Call for delivery information.

Huntsville Microsystems Inc.
 Huntsville, Ala.; (205) 881-6005.

Booth 317
Circle 304
used to correct opens or shorts for random defects found during a layer inspection, or to completely remove and reapply a metal layer if widespread defects occur. The HDI overlay can be removed by peeling the polyimide film off after the substrate
was heated to soften the adhesive. A defective chip can then be removed and replaced in the substrate.

An advantage of the HDI approach is that complex bare chips can be fully tested and burned-in without risking damage to the chips. The pro-

for all your operator interface needs.

For over a decade, we've been designing, manufacturing, testing, and shipping our microterminals throughout the world . . . over 100,000 to date for use as operator interfaces and control panels. The applications have been almost limitless from instrumentation, control systems, monitoring equipment, and more. Designed with the OEM buyer in mind, they're flexible and easy to integrate. And they're very cost effective - priced from $\$ 195$

Now, we've expanded our line so that you can select the
model with just the right features you need. From the most basic unit to a multifunction microterminal or a heavy-duty industrial unit. Whatever your operator interface or control panel requirements, we can help. Fourteen new models from which to choose . . . plus multiple customized options to make them fit your particular needs.
For a copy of our new 8-page brochure, or information about demo units, write Burr-Brown Corp., P.O. Box 11400, Tucson, AZ 85734. Or call toll free 1-800-548-6132.

CIRCLE 205
cess includes a chip coating that protects the chips from test, probe, handling, or processing damages. Temporary wire-bond pads can be formed on the polymer overcoat, which facilitates full functional testing and burn-in. The chips can then be easily restored to bare condition for installation in modules.

As with multichip modules, 3D integrated packaging is an emerging technology that can help packaging engineers meet the density demands of new computer systems. Manufacturing issues for 3D packaging are discussed in a paper by Stuart Shanken and Ronald Indin of Irvine Sensors Corp., Costa Mesa, Calif.

The company's approach to 3D packaging involves stacking as many as 128 memory ICs on their edge with multiple chip-to-chip inter-connects-up to 16,000 per side. Be-
fore stacking, the ICs are shaved to thicknesses as small as 2 mils.

In the manufacturing process, ICs in wafer form are given a second metal layer to fan their input and output leads to the edge of the die. Therefore, they can be accessed after the die is stacked. The wafers are burned-in, shaved to the desired thickness, and diced for stacking into module form. The resulting cube's face is lapped to expose the leads, and the IC edges are passivated so that subsequent metallizations aren't shorted to the silicon. Metals are deposited to provide input and output signal lines onto which solder bumps are placed. The module is then flip-chip-bonded to a carrier substrate.

According to Shanken and Indin, the reliability of the manufacturing process depends on testing and burn-
in procedures as well as on module reworkability. The die are tested at the wafer level to assure that only working die go into the module. Functional testing is performed again at the module level. Even so, redundant chips are included in the stack. Burn-in is a die-stressing procedure that's done before final testing. If it was performed before wa-fer-level testing, then only working, robust die would go into the modules. But wafer-level burn-in is expensive and time-consuming. The trade-off is the need to include redundant chips in the stack.

Thermal modeling and analysis showed that each IC in the module can dissipate more than 0.6 W without the junction temperature exceeding $90^{\circ} \mathrm{C}$ or military standards. This indicates that the junction temperature inside the working module

CIIE DAY AT WESCOL

Electronic-design automation (EDA) is working its way into every facet of the electronic engineer's job. Without it, few of today's highly complex systems could exist. That's why this year's Wescon will feature an all-day track of technical sessions called "CAE Day." In four session tracks devoted to the fast-evolving world of EDA, attendees can learn how to maximize their productivity using EDA tools. They'll also discover how VHDL affects various segments of the design cycle. A panel discussion will tackle the question of when PCs end and workstations begin as EDA platforms. And, scientists from the Jet Propulsion Laboratory, Pasadena, Calif., will describe three software-development environments they've created.

The sessions are sponsored jointly by Electronic Design Automation Companies (EDAC), an EDA-industry group, and ELECTRONIC DESIGN magazine. Two of the four sessions were organized by Lisa Maliniak, ELECTRONIC DESIGN's CAE technology editor.

In the EDAC session, which will forecast EDA directions in the 1990s, EDA-industry leaders will speak and then be led in a panel discussion by Jim Hammock of Mentor Graphics, San Jose, Calif. The shift from device-level design to system-level design is the theme of a talk by Wayne Gutschick of Minc Inc., Colorado Springs, Colo. Lowering testing costs through EDA usage will be covered by Leif Rosqvist of Test Systems Strategies Inc., Beaverton, Ore. EDA also reduces time-to-market, a topic that Alain Hannover of Viewlogic Systems Inc., Marlboro, Mass., will speak on. Other panel members include Prabhu Goel of Cadence Design Systems Inc., Lowell, Mass., and Bob Fulks of Valid Logic Systems, San Jose.

With VHDL now gaining acceptance as a standard, the interest level in the language is running higher than ever. At Wescon's VHDL session, presentations begin with top-down design and move through each design phase. A description of how VHDLstatements can be combined with other
inputs to design an entire system will be given by Paul Lindemann of Racal-Redac, Westford, Mass. VHDL modeling at a conceptual level is the topic of a talk by David Jakopac of Vista Technologies Inc., Schaumburg, Ill.

The session then moves to a presentation on mixed-signal, multilevel simulation with VHDL, led by Glenn House of Mentor Graphics Corp., Beaverton. David Coelho, of Vantage Analysis Systems Inc., Fremont, Calif., will discuss advanced simulation and debugging in the VHDL environment. To close out the session, a system using VHDL to link design and test will be described by Ghulam Nurie of ExperTest Inc., Mountain View, Calif.

A panel session moderated by Steve Scrupski, ELECTRONIC DESIGN's editor-in-chief, will decide when PC-based CAE is sufficient and when designers would be wise to move up to workstations. Representatives from Aldec, OrCAD Corp., P-CAD, Racal-Redac, and Sun Microsystems will discuss the pros and cons of both approaches.

What do computer makers really want?

More applications know-how,

That's AT\&T

less"what-now."

"Customerizing."

Applications. Applications. At AT\&T Microelectronics we're working harder than ever to help our customers deliver those applications. Better. Faster. We call it "Customerizing"working hand-in-hand with our customers as partners. We're working with major computer manufacturers on multi-media and graphics applications. With major disk drive manufacturers on low-power read-channel devices and controllers. With a major laser printer manufacturer on a specialized 3-D connector. And with major computer manufacturers on optical data links for all levels of local area networking. From custom offline switchers to the most sophisticated ASICs, we're helping our customers with applications that are not only userfriendly, they're manufacturer-friendly. Our high quality, high volume and low cost have made us one of the largest ASICs suppliers toWinchester disk drive makers. Whether it's off-theshelf or custom made, it's better to "Customerize" with AT\&T Microelectronics.

Genuine parts,

That's AT\&T

not artificial promises.

AT\&T Microelectronics designs and manufactures a broad line of "Customerized" component solutions to help you design and build the smallest portables, most powerful PCs, fastest workstations.
"Customerized" Data Communications Components -AT\&T offers standard and custom networking solutions including "Customerized" V.32 modem components, such as DSPs, solid state relays, CODECs and data transformers. In addition, there's AT\&T's complete line of twisted pair Ethernet, ISDN and cellular components. And if your needs call for fiber, AT\&T offers FDDI, Ethernet and Fiber Channel solutions with our fiber optic data links, bypass switches and communications ICs.
"Customerized" Multi Media Components -AT\&T manufactures high performance RAMDACs and DSPs: plus software for modem and fax tasks, speech coding, recognition and synthesis. Everything you need for wideband audio coding/decoding, image compression/ decompression, and 3-D graphics.
"Customerized" Mother Board Components -AT\&T can help you all along the way: With cache memory, custom peripheral logic and processors using our CMOS and ECL ASICs, FPGAs, SRAMs, custom-printed circuit boards and Metral ${ }^{\text {TM }}$ high-density modular interconnection system.
"Customerized" Power Products-AT\&T can help you solve your power requirements by assisting you in determining your power architectures with high quality off-line switchers and highly reliable board mounted power modules. Your solution can also include AT\&T's regulation control circuits and power transformers.

Rolled up sleeves,

That's AT\&T

not twiddling thumbs.

"Customerizing."
"Customerizing" means more than advanced applications and a full line of off-the-shelf and custom-designed components. "Customerizing" means technical support staff at nine design centers and eleven factories worldwide work with you at the design-in stage. And field application engineers support you long afterwards. "Customerizing" means AT\&T's Bell Laboratories. World-renowned R\&D. Fieldproven, high-quality standards. In fact, one of our CMOS design, test and assembly facilities was the first to be QML certified. AT\&T Microelectronics is working hard to help ensure our partners have the latest and greatest. Fastest and smallest. "Customerizing" means working around the clock, around the world. For one purpose: You. That's AT\&T Microelectronics. That's "Customerizing."

Call $1800372-2447$, Ext.625, for your free copy of AT\&T's Microelectronic Product Selection Guide.

Examine component solutions for applications in PCs andWorkstations, Telecommunications and Cellular.

See what "Customerizing" can mean for you.

Cowesonte

should not be high enough to adversely affect device lifetimes.

Packaging Prowess

Packaging issues are among those confronting system designers working with ASICs. The advantages and limitations of quad flat packs (QFPs) and the feasibility of various types of multichip modules are the topics of a paper by Thomas Wong of Hitachi America's Semiconductor Division, Brisbane, Calif. Disadvantages cited
by Wong include the higher thermal resistance of plastic QFPs compared with ceramic packages, their limited ability to handle large die, their special handling requirements, and their tendency to absorb moisture. But these are offset by the availability of additional pins without increasing the body size or decreasing the pin pitch. Unspecified pins are available to designers as extra power and ground pins to minimize noise.

Multichip modules, such as those
described by General Electric, are another packaging alternative for system designers using ASICs. Wong groups the latest developments into three categories based on the substrate materials: cofired ceramics, silicon or metal substrates, and printed-circuit boards. Silicon substrates can potentially handle the highest power dissipation and wiring density, Wong asserts, but are likely to make for expensive modules.
A constraint of multichip modules,

\varnothing^{2} PRODUCTS

Pc-board-prototyping system makes boards quickly and at low cost. With the CAPtech prototyping system, etched, production-like pc boards can be produced in-house. Component legends, drilling, and resist application are all automatically controlled from CAD output files. The system handles a plotting size of 11 by 17 in . with a repeat accuracy of $\pm 0.0039 \mathrm{in}$. and minimum line width of 0.010 in . In less than four hours, users can produce a typical 4-by-6-in. board with over 500 through holes. The system costs $\$ 13,850$ and is delivered 30 days from receipt of order.

HiTech Equipment Corp.

San Diego, Calif.; (619) 566-1892.
Booth 1439
Circle 305
Three-color pc-board indicators boast high luminous intensity. Two GaP solid-state LED chips make up the series $550-3505 \mathrm{pc}$-board indicator. The three-leaded device, which

comes in a T-1-3/4 package, produces red, green, and yellow light, as well as a range of colors in the
spectrum between red and green. Because it cuts down the need for multiple lamps, the indicator is well suited for use as a logic-status, cir-cuit-board, and position indicator. Pricing is $\$.97$ in lots of 1000 . Delivery is from stock to eight weeks.

Dialight Corp.

Manasquan, N.J.; (908) 528-8932.
Booth 2328
Circle 306
Digital voltmeter boasts $1-n V$ sensitivity with $15-\mathrm{nV}$ noise ceiling. The highest accuracy available for measuring extremely low voltages is claimed for the model 182 sensitive digital voltmeter. The instrument offers 1-nV sensitivity while holding noise to 15 nV pk-pk on its lowest range. A high input resistance of more than $10 \mathrm{G} \Omega$ on all ranges further ensures accuracy by pre-

venting the meter from affecting the measurement. The meter costs $\$ 3695$ and is available four weeks from receipt of order.
Keithley Instruments Inc.
Cleveland, Ohio; (800) 552-1115.

Booth 523

Circle 307
48-V dc-dc converters squeeze 10 W into $1.6-\mathrm{by}-2$-in. space. Operating from the $48-\mathrm{V}$ input power that's common to most telecommunication systems, the TC series of dc-dc
converters combine a small footprint with 500 V dc of isolation in a six-sided, shielded case. The $10-\mathrm{W}$, pc-board-mounted units offer a choice of three dc outputs: 5 V at $2000 \mathrm{~mA}, 12 \mathrm{~V}$ at 850 mA , or 15 V at 700 mA . Line and load regulation are 0.01% and 0.1%, respectively. Single quantities go for $\$ 105$ each and availability is from stock.

Calex Mfg. Co. Inc.
Pleasant Hill, Calif.; (800) 542-3355.
Booth 2792
Circle 308
Active-filter design package supports various filter types. The Advanced Filter Designer is an interactive design aid for the PC and Macintosh II. It gives users the ability to design and analyze active filters, including low-pass, highpass, band-pass, and band-reject types. Functions include Butter-

worth, Chebyshev, inverse Chebyshev, and elliptic (Bauer). The PC and Macintosh versions cost $\$ 1800$ and $\$ 2700$, respectively. Less sophisticated standard versions go for $\$ 600$ and $\$ 900$, respectively. Delivery is from stock.

MicroSim Corp.

Irvine, Calif.; (800) 245-3022.
Booth 358
Circle 309

LIVING COLOR.

HIGH-END GRAPHICS FROM A 478 RAM DAC?

The cost-effectiveness of the 478 RAM DAC makes it very attractive. But of course you can't use it for bigh-end graphics. Or at least you couldn't until the new Samsung part, rated at 120 Mbz , came on the market.

It makes things quite different. An industry-standard part, it provides resolution previously available only with 451/458 RAM DACd - up to 1280×1024 on 60 Hz non-interlaced displays. And, like our 80 Mbz 471 and 476 RAM DACo, our 478 also gives you "onow-free" operation.

BLINDING SPEED.

THAT'S RIGHT: IT'S THE FASTEST EVER MADE.
Its blinding 120 Mbz speed makes our 478 RAM DAC the fastest such part ever made. Which means that besides cost-effectiveness in bigh-end graphics applications, it offers a migration path to bigher
resolution in products already using 478 RAM DAC. All tbree of our specy RAM DACs are available now. For information on any of them, write to RAM DAC Marketing, Samsung Semiconductor, 3725 No. First St., San Jose, CA 95134. Or call 1-800-669-5400, or 408-954-7229.

Still the World's Most Powerful Universal Waveform Analyzer

Analogic's Model 6100
Combines Multiple Instruments in One Cost-Effective System

For Applications Assistance:

As a primary measurement instrument, nothing measures up to the Model 6100 Universal Waveform Analyzer from Analogic. From DSO applications to standalone production testing, only the Model 6100 has the raw signal processing power and unsurpassed resolution to provide critical answers fast and cost effectively.
Just look at these features:
© Up to $250 \mathrm{MS} / \mathrm{s}$ transient
-Up to $100 \mathrm{GS} / \mathrm{s}$ repetitive
-Over 50 signal processing functions at the touch of a button or by IEEE-488 or RS232
-Only instrument with ZOOM CZT
■Up to 240 K of data point storage
EUp to 128 K of acquisition memory per channel
-Up to 48 K of non-volatile memory
■On-board programmability of processing functions
With thousands of units in use worldwide, the Model 6100 functions as a digital storage oscilloscope, an FFT analyzer, an auto/cross correlator, a transient analyzer, and much more. By adding plug-in digitizers ranging from low frequency with high resolution to high speed samplers, the 6100 is ideal for vibration testing, acoustics, audio, biomedical, telecommunications, radar, RF, and scores of other applications.

For proven high speed waveform acquisition and high resolution signal processing that provides the information in the waveshape, trust the world class power of the Model 6100 from Analogic's Data Precision ${ }^{\text {TM }}$ products.

Onssonte

though, is the scarcity of bare die, tape-automated-bonded, or flip-chip ASICs. Wong concludes that multichip modules show promise but aren't in the mainstream yet.
In another arena, federal spending for the military is on the decline. As a result, the market for MIL-STD circuit boards is shifting toward military communication systems and high-reliability, non-military applications. In a session titled "Emerging New Roles for MIL-STD Communi-
cation Boards," five board vendors will discuss solutions to challenges presented by these new applications.
One market possibility lies in the use of adapter cards to link PCs to MIL-STD buses. In an overview paper, session organizer and chairman Milt Leonard, ELECTRONIC DESIGN's senior communications editor, describes the MIL standards that adapter boards must be based around. In other session papers, Rahim Sabadia, Sabtech Industries, An-
aheim, Calif., discusses the conversion of low-cost PCs into military data-communication peripherals. Stanag, the 3910 NATO standard for a $20-\mathrm{MHz}$ fiber bus, is described in a paper by Mike Glass, ILC Data Device Corp., Bohemia, N.Y.

How Valuable?	Circle
HIGHLY	553
Moderately	554
Slightly	555

(1) Wescon/\%0 PRODUCTS

Telecommunications relay boasts 4000-V rms breakdown from contacts to coil. Thanks to a molding technique used to encapsulate the relay's coil, the DSB relay offers telecommunications designers a $4000-\mathrm{V}$ rms breakdown voltage between the contacts and coil. The sealed, polarized device is available

in a 2 Form C contact arrangement and nominally switches 2 A at 30 V dc. Call for pricing and delivery.

Aromat Corp.

New Providence, N.J.; (201) 464-3550.
Booth 2482
Circle 310
Board equips PCs for frequency and pulse measurements and waveform generation. With its 10 channels of 16 -bit counter-timers, and 8 -bit TTL-compatible digital input and output ports, the PC-TIO-10 dataacquisition board outfits a PC for frequency and pulse measurements. The counters can be con-

trolled by software, level gating, or edge gating. The board runs the new version 2.0 of LabWindows, which contains an extensive set of libraries to help with development of instrumentation applications. Pricing for the board is $\$ 335$ in single quantities.

National Instruments Corp.
Austin, Texas; (512) 794-0100.
Booth 702
Circle 311

Surface-mounted PLCC socket has same footprint as chip carrier. Precision stampings, high-temperature plastics, and Samtec's body and contact designs distinguish its PLCC series of plastic leaded chip carrier sockets. The liquid-crystal polymer body permits high-temper-
ature vapor-phase and infrared-reflow soldering. Sockets are available for carriers with $28,32,44,52$, 68, and 84 leads. Pricing starts at $\$ 1.50$ for lots of 1000 with delivery in seven days.
Samtec Inc.
New Albany, Ind.; (812) 944-6733.
Booth 3542
Circle 312
Universal logic compiler smashes DOS's 640-kbyte barrier. Very large state machines and other logic systems can now be implemented in programmable logic without regard to DOS's 640 -kbyte memory restriction. Thanks to the CUPL386 universal compiler, all of the memory and processing power available in the 80386 and 80486 CPUs becomes accessible without losing the

familiar DOS environment. The compiler moves the processor into a protected mode that permits it to address 4 Gbytes of memory. As a result, users gain DOS access to 32 bit registers and can eliminate up to 20% of their lines of code. The compiler goes for $\$ 1995$. Delivery begins in January.

Logical Devices Inc.

Ft. Lauderdale, Fla.; (800) 331-7766.
Booth 422
Circle 313

At AnalogDevices, it's ourgoal

to be a smallerpartof of the fiture.

It's a goal that's earning us a big name with seven of the top 10 disk
drive manufacturers. Because as they try to pack more and more data into small-
er and smaller spaces, we're delivering the technology that helps them succeed.

We're helping in two ways. With the broadest line of advanced highperformance linear, digital signal processing and mixed-signal components. And by meeting the demands of faster production ramps, shorter product life cycles, and ever-tightening cost pressures.

In fact,for 25 years we've been helping companies in just about every
industry. One measure of our success is that we've grown to become a $\$ 540$
million company and one of the largest analog suppliers in the world.
If you want your company to play a bigger part of the future, we can
help you do it.

For more information and a free copy of our recent white paper on
Mixed Signal Technology, call 1-800-262-5643. Or to speak to an applications

AD897 - This fully integrated read channel is a complete solution for data recovery at transfer rates of up to 40 megabits per second. A wideband AGC loop, data qualifier and synchronizer are integrated to perform the peak detection and clock recovery functions.

Servo front end - Integrates the demodulator function, or burst detector, and the analog VO port to provide a costeffective, high-performance solution. And it's just one of the many read/write and servo solutions we offer, along with complete analog $\mathbf{V} \mathbf{0}$ systems, embedded servo front ends, precision wideband processors, channel qualifiers, peak detectors and digital signal processors. engineer, ask for Extension 102.

Introducing The New CADSTAR...

ITALMOST READS YOUR MIND.

CADSTAR's revolutionary new user interface almost reads your mind, anticipating your next move and intelligently defaulting to the most likely action. For example, if you pick a part, CADSTAR lets you move it without selecting an action from a menu. If you pick a connection, you can manually route it instantly.

CADSTAR's new Motif style graphical interface has clear, logical menus integrated across all functions. The best part is, you'll rarely need to use those menus! Imagine software so smart, it knows what you want to do next. CADSTAR is easy to learn, and it drastically reduces keystrokes, saving you hours.

The Power Remains

CADSTAR remains the most powerful design software you can
run on a PC. Unique features like comprehensive, automatic/interactive routines for placement, gate and pin swapping, and routing give you remarkable design flexibility. Racal-Redac continues to enhance the design technology used by thousands of engineers worldwide. CADSTAR includes:

- Integrated Schematic Capture, PCB Layout, Autorouting,
Manufacturing Outputs
- 5,000 part library
- Double sided SMDs
- Curved tracks \& copper, teardrop pads
- Copper maximization
- Blind \& buried vias
- Toll Free hotline support CADSTAR works with RacalRedac's 386 Advanced Router, the CIRCLE 182
most powerful PC based router available. It features 32 bit, gridless, shove aside, rip up and retry technology for 100% routing completion. Is There A CADSTAR In Your Future?

Call or write for your free
CADSTAR demo disk and brochure. See for yourself how powerful, and easy to use, new CADSTAR really is. Call (508) 692-4900.

CADSTAR
 RACAL-REDAC

Racal-Redac, Inc.
238 Littleton Road
Westford, MA 01886-9984, USA
Phone: (508) 692-4900
Fax: (508) 692-4725
R $3 /(4)(A) L$

DESIGN APPLICATIONS

Data Converters: Getting To Know Dynamic Specs
 The Ongoing Evolution In Data Converters Requires That They Be Characterized Beyond Static Accuracy And Throughput.

ROBERT E. LEONARD JR.
Datel Inc., 11 Cabot Blvd., Mansfield, MA 02048; (508) 339-3000.

Akaleidoscope of architectures is available for today's data converters. But ensuring that a data converter can obtain a desired transfer rate and accuracy at a particular input frequency is more important than any architectural nuances. Now that converter data sheets carry frequency-domain specifications, designers are finally gaining insight into how they'll perform on the job.

A designer's first consideration is to ensure that the converter can provide data at the required throughput. The second concern is whether the data converter can meet the system's static accuracy requirements. Stated simply, when the converter operates at the designated throughput, does it yield the desired transfer accuracy for a dc input? A third consideration is that the data converter, when operating at the designated throughput, must deliver the required dynamic accuracy. In other words, is the data converter accurately digitizing a high-frequency or transient input? This "dynamic accuracy" is often best assessed by using frequency-domain specifications.

Designers face many pitfalls in assessing throughput and static and dynamic accuracy, however. For one thing, the three performance considerations mentioned previously are often interrelated. For another, time and error budgets need to take into account the overall performance required for a system. And to assess what's needed in a data-acquisition system, designers must know the idiosyncrasies of particular analog-to-digital converter (ADC) architectures and sample-and-hold amplifiers (SHAs). For multichannel applications, an error analysis must be expanded to include the input multiplexer and instrumentation amplifier.

In the past, engineers tackled their data-converter requirements by buying a separate, standalone ADC. If the analog inputs were beyond basically de signals, such as those found in measurements of temperature, pressure, and so forth, then a companion SHA was required. Some applications today still use

> 1. WHEN A DATA converter digitizes a sinusoidal signal, Δt is the delay from the time that a designer wants to read the voltage to when the voltage was actually sampled. This period is called the aperture delay time. ΔV is the difference between the exact voltage that's digitized from the desired voltage.

DESIGN APPIICATIONS ADC SPECIFICATIONS

(a)

SINUSOIDAL FREQUENCY
(b)

2. THESE GRAPHS QUICKLY IDENTIFY what aperture-uncertainty
specification is required to keep up with a particular input frequency or slew rate. Assuming a $10-\mathrm{V}$ pk-pk full-scale signal, the first graph depicts the aperture time required to digitize a particular input frequency to an accuracy of 1 LSB (a). For the same set of conditions, the other graph shows the relationship between aperture time and slew rate (b).
only an ADC because of slow input signals. Others have a separate ADC and SHA. Sampling ADCs, which include an internal ADC and SHA in one package, are growing increasingly popular.

But designers must scrutinize other factors before deciding that a sampling ADC can deliver the needed accuracy under certain dynamic conditions. Clean input digitization when the ADC operates up to the Ny quist rate (signal frequency at onehalf the sampling rate) isn't a given. The flash ADC category is another example of an ADC used without a preceding SHA. The generic family of flash ADCs includes devices from 4 to 10 bits of accuracy with throughputs from 10 MHz to 500 MHz .

Some flash ADC architectures may or may not need a SHA in digitizing high-frequency signal inputs. Available flash ADC architectures include the "true flash" with a straight comparator design, an interpolation/folding design, and a twopass design. Two factors determine if a SHA is needed. One is the aperture jitter specification, which often depends on architecture. The other deciding factor is the ability to drive the flash ADC's dynamic input impedance at the desired frequency.

As previously noted, there's a proliferation of ADC architectures today. For example, the integrating ADC with various slope architectures is still focused on slow, highresolution applications-it doesn't require an external SHA.

The successive-approximation ADC and companion SHA have long been workhorses for medium speed and resolution. Now they share some of these applications with the deltasigma ADC.

The delta-sigma architecture has an inherent SHA function built in. To obtain increased speeds beyond the range of 20 kHz to 1 MHz , the successive approximation and delta-sigma ADCs give way to the two-pass ADC. The various types of two-pass (also known as a two-step or subranging ADC) and companion SHAs also reach their speed/resolution limitations as next-generation limits are pushed.

Food For Thought About Field Programmable Gate Arrays.

Be Brilliant At In Productio

7:05 am:Breakfast
Suddenly, between bites, the answer to that new system design jumps right into your brain. But how to make it work in silicon? Use an Actel field programmable gate array!

8:50 am : Design

You warm up the design program on your 386 and put in the final touches. Then a quick rule check and 25 MHz system simulation with the Action Logic System soffware.

11:00 am :Place \& Route You watch the system place and route all 1700 gates (out of 2000 available) in under 40 minutes. 100% automatically! A final timing check. Then think of something to do until lunch.

12:00pm:Lunch
Remember lunch? Normal people actually stop working and have a nice meal-right in the middle of the day! With Actel's logic solution, this could become a habit.

Actel Field Programmable Gate Array Systems.

They're a feast for your imagination.

Actel's ACT ${ }^{m 1} 1$ arrays bring you a completely new approach to logic integration. Not just another brand of EPLD, PAL or LCA ${ }^{m}$ chips. But true, high density, desktop configurable, channeled gate arrays.

They're the core of the Action Logic System, Actel's comprehensive design and production solution for creating

Actel FPGA Product Family		1010A	1020A
Equivalent Gates	Gate Array	1200	2000
	PLD/LCA	3000	6000
User I/0		57	69
System Clock (MHz)		20-40	20-40
Availability		NOW	NOW
Technology (micron)		1.2	1.2

your own ASICs. Right at your desk. On a 386 PC or workstation. With familiar design tools like Viewlogic,'' OrCAD,", and Mentor.'

And do it in hours instead of weeks. Even between meals.

How? With features like
85% gate utilization. Guaranteed.Plus 100% automatic placement and routing. Guaranteed. So you finish fast, and never get stuck doing the most

Breakfast And n By Dinner.

1:15pm: Program
You load the Activator ${ }^{\text {m" }}$ programming module with a 2000-gate ACT 1020 chip and hit "configure." Take a very quick coffee break while your design becomes a reality.

1:25pm:Test
You do a complete, real-time performance check, with built-in test circuits that provide 100% observability of all on-chip functions. Without generating any test vectors.

4:00 pm: Production
Your pride and joy is designed, created, tested, and off to the boys in Production. And you're finished way ahead of schedule! Better think of something to do until 5:00.

6:00 pm: Dinner
Remember dinner? Normal people actually go home and eat with their families. On your way, start thinking about how Actel's logic solution can help you be brilliant tomorrow.
tedious part of the job by hand.
Design verification is quick and easy with our Actionprobe ${ }^{m}$ diagnostic tools, for 100% observability of internal logic signals. Guaranteed. So you don't have to give up testability for convenience.

In fact, the only thing you'll give up is the NRE you pay with full masked arrays. You can get started with an entry level Action Logic System for under $\$ 5000$. Guaranteed.

And Actel FPGAs are even 883 mil-spec compliant.

You can be brilliant right now
with $1200-$ and 2000 -gate devices, and a whole new family of 8000-, 4000 - and 2500 -gate parts are on the way. Call 1-800-227-1817, ext 60 today for a free demo disk and full details about the Action Logic System. It could make your whole day.

Risk-Free Logic Integration

[^2] Actionprobe are trademarks of Acte corporation. Ah olher

ACTEL CORPORATION DIRECT SALES OFFICES

955 E. Arques Ave.
Sunnyvale, CA 94086
Tel: (408) 739-1010

8130 McFadden Ave., Suite 109
Westminster, CA 92683
Tel: (714) 373-4488
9101 Guilford Road, Suite 107
Columbia, MD 21046
Tel: (301) 604-0111

425 N. Martingale Rd., Suite 800 Schaumburg, IL 60173
Tel: (708) 706-3866
2350 Lakeside Blvd., Suite 850
Richardson, TX 75082
Tel: (214) 235-8944

DOMESTIC REPRESENTATIVES

ALABAMA

Rep Inc.
ARIZONA
Luscombe Engineering
CALIFORNIA
Centaur Corporation (Calabasas)
Centaur Corporation (Irvine).
Centaur Corporation (San Diego)
I^{2} Inc. (Santa Clara)
F^{2} Inc. (Orangevale)
COLORADO
Luscombe Engineering
CONNECTICUT
CompRep Associates

FLORIDA

Sales Engineering Concepts (Altamonte Springs)
Sales Engineering Concepts (Deerfield Beach)
GEORGIA
Rep Inc.
ILLINOIS
CarIson Electronic Sales Associates (708) 956-8240
INDIANA
Giesting \& Associates
(317) 844-5222

IOWA
Carison Electronic Sales Associates (319) 378-1450
KANSAS
DLE Electronics
(316) 683-6400

MARYLAND
New Era Sales
(301) 544-4100

MASSACHUSETTS
CompRep Associates
(617) 329-3454

MICHIGAN
Giesting \& Associates (Livonia) . (313) 478-8106
Giesting \& Associates (Comstock Park)
(313) 478-8106
(616) $784-9437$

MINNESOTA
Gibb Technology Sales
(612) 835-3370

MISSOUR

John G. Macke Co.
NEW JERSEY
Nexus.
NEW MEXICO
Luscombe Engineering
NEW YORK
L-MAR Associates (Apalachin)
L-MAR Associates (E. Rochester)
L-MAR Associates (Poughkeepsie)
NORTH CAROLINA
Rep Inc. (Charlotte)
Rep Inc. (Morrisville)
OHIO
Giesting \& Associates (Cincinnati)
Giesting \& Associates (Cleveland)
Giesting \& Associates (Columbus) .
OREGON
L^{2} Ltd.
PENNSYLVANIA
Omega Sales
TENNESSEE
Rep Inc.
TEXAS
OM Associates (Austin)
OM Associates (Richardson)
Luscombe Engineering
L^{2} Ltd.
Carlson Electronic Sales Associates

CANADA

Clark-Hurman Associates (Quebec)
Clark-Hurman Associates (Ontario-Brampton) (416) 840-6066
Clark-Hurman Associates (Ontario-Nepean)
(615) 475-4105
(512) 794-9971
(713) 789-4426
(214) 690-6746
-
(801) 565-9885
(206) 827-8555
(414) 476-2790
(414) 476-2790
(514) 426-0453
(314) 432-2830
(201) 947-0151
(505) 888-0333
(607) 687-1828
(716) 381-9100 (914) 462-8025
(704) 563-5554
(919) 469-9997
.(513) 385-1105
.(216) 261-9705
. (614) 486-5616
(503) 629-8555
(215) 244-4000
(613) $727-5626$

INTERNATIONAL DISTRIBUTORS

AUSTRALIA

Reptechnic (Neutral Bay, NSW)
(2) 953.9844

BELGIUM
Acal Auriema N.V.S.A. (Zavenlem)
(2) 720.5983
(42) 84.20 .00

Nordisk Electronik AS (Herlev) .
(2) 665.948

SEE (Cairo)
ENGLAND
Gothic-Crellon Ltd. (Wokingham).
(0734) 78.88 .78 (0628) 75.85 .1

FINLAND

OY Fintronic AB (Helsinki)
(0) 69.26 .022

FRANCE
ASAP (Montigny Le Bretonneux) . (1) 30.43 .8233
SCAIB S.A. (Meylan-Zirst) . (76) 90.22 .60
SCAIB S.A. (Rungis Cedex)
(1) 46.87 .2313

HONG KONG

Twin-Star Trading Co. (Yau Tong Industrial City) (852) 346.9085 INDIA
Benchmark Systems (Madras)
(44) 413.866

ISRAEL

A.S.T.Ltd. (Herzlia).

ITALY
LASI Elettronica S.p.A. (Milan)
JAPAN
Innotech Corporation (Tokyo)
(3) 499.8351

Matsushita Electronics Corporation (Kyoto)
KOREA
Eastern Electronics, Inc. (Seoul)

NETHERLANDS

Transfer B.V. (Enschede) . (53) 33.43 .81
NORWAY
Nordisk Electronik AS (Hvalstad) . (2) 84.50 .70
SPAIN
Semiconductores S.A. (Barcelona)
93) 217.23 .40

Semiconductores S.A. (Madrid)
(1) 742.2313

SWEDEN
Traco AB (Farsta)
(8) 93.00 .00

SWITZERLAND.
Omni Ray AG (Dietlikon)
(1) 835.21 .11

TAIWAN
SEED TECH Corporation (Taipei) (2) 521.1100
WEST GERMANY
bit-electronic AG (Munich) . (089) 41.80 .070
ECN Component Network (Ismaning) (089) 96.09.080

DOMESTIC DISTRIBUTORS

Actel products can be purchased from the major distributors listed below:
Wyle Laboratories: call (714) 851-9953 for the number of the office nearest you.
Pioneer Standard Electronics and Pioneer Technologies: call (516) 921-8700 for the number of the office nearest you.

3. A FAST FOURIER TRANSFORM plot is a handy method for viewing unknown input frequencies or distortions introduced by a
data converter. This plot is based on data from an ADS-130 ADC.

The successive-approximation ADC and two-pass ADCs' speed (kilohertz to megahertz range) suit most applications beyond de measurements. They use sample-andhold amplifiers that can be combined with the ADC either externally or internally. An analysis of the constraints on the data-acquisition system's dynamic performance should start with the sample-and-hold amplifier to be used.

Sinusoidal Signals

To ensure appropriate accuracy at a particular frequency, sinusoidal signals must be explored. Assume that the $2.5-\mathrm{V} \mathrm{pk}-\mathrm{pk}$ sinusoidal signal will be digitized by a data converter to 12-bit accuracy (Fig. 1). When designers want the ADC or sample-and-hold amplifier in front of the converter to take a sample, timing delays occur. As a result, the exact point that was originally intended isn't acquired.
Δt represents the delay from the
time that designers want to read the voltage to when the voltage was actually sampled. This aperture-delay time appears on the data sheets for SHAs and for flash ADCs, where appropriate. The amplifier's aperturedelay time is affected by the logic threshold voltage on the pin that controls going into the sample or hold mode.
For TTL or other logic families, there's an internal delay in the digital logic going from a logic 1 (assume a sample-mode) to a logic 0 (assume a hold-mode) and the time the internal switch actually opens. The sample-and-hold amplifier also experiences an analog delay as the input goes through the input buffer to be stored on the hold capacitor. The difference between the digital and analog delays is known as the "effective" aperture delay time.

The aperture-delay time prevents designers from digitizing the sinusoid at exactly the right moment. The exact voltage that's digitized dif-
fers from the desired voltage by $\Delta \mathrm{V}$ (Fig. 1, again). For a 12-bit converter with a $\pm 1.25-\mathrm{V}$ input ($1.25-\mathrm{V}$ full scale, $2.5-\mathrm{V}$ full-scale range), 1 LSB equates to:

```
\(2.5 \mathrm{~V} / 2^{12}=2.5 \mathrm{~V} / 4096=1 \mathrm{LSB}=\)
\(610 \mu \mathrm{~V}\)
```

Maintaining 12 -bit, ± 1-LSB accuracy requires that during the aper-ture-delay time (Δt), the voltage change ($\Delta \mathrm{V}$) is held to $\pm 1 \mathrm{LSB}$ maximum. The change in voltage over the change in time $(\Delta V / \Delta t)$ is the maximum slew rate of the input signal allowed. Mathematically, formula 1 is derived as:

Slew rate $=\Delta V / \Delta t=2 \pi f V$
This yields the maximum input frequency of the sinusoid, which can be digitized as formula 2 :
$\mathrm{f}=\Delta \mathrm{V} /(\Delta \mathrm{t} 2 \pi \mathrm{~V})$
where $f=$ maximum input frequency
$V=$ full-scale voltage

4. WHEN ALIASING OCCURS, frequency components exceeding the Nyquist criteria are folded back into the desired frequency spectrum. In this example, 270 Hz and 320 Hz frequencies appear at 30 Hz and 20 Hz , respectively.

In practice, substituting the aper-ture-delay specification into the formulas doesn't allow a very fast slew rate or input frequency before accuracy errors occur. However, in digitizing sinusoidal signals, the aperture delay is repeatable from sample to sample. Upon performing a discrete Fourier transform (DFT) to define the frequency, the aperture delay doesn't affect identifying the input frequency. The aperture delay now just represents itself as a phase shift.

However, designers interested in capturing single-shot events would be limited in accuracy by the "effective" aperture delay. In contrast, the maximum sinusoidal frequency that can be acquired isn't limited by the repeatable aperture delay times. Now, the input-frequency limiting factor is the uncertainty of the delay from sample to sample.

This uncertainty can be derived from the effect that various noise sources create when changing the exact threshold voltage of the sam-ple-and-hold amplifier's digital control command. The aperture uncertainty (jitter) now becomes the limiting factor ($\Delta \mathrm{t})$ in determining the maximum input frequency. A digi-tal-signal-processing application on repetitive sinusoidal signals is one area whose ultimate performance and upper-frequency range depends upon the aperture-uncertainty specification. For example, the upper-frequency range of a spectrum analyzer becomes limited by the apertureuncertainty specification.

Keep in mind that unpredictable events are digitized once they're detected. Such events include seismic or biological applications, which digitize an error in the signal based upon the aperture-delay specification. Graphing formulas 1 and 2 can quickly identify the aperture-uncertainty specification required to keep up with a particular input frequency or slew rate (Figs. $2 a$ and 2b). To ensure that each sample has the desired accuracy, the aperture uncertainty should be a peak value vs. root mean square (rms).

Frequency Domain

It's essential to determine whether the SHA or the flash ADC can meet the input frequency and accuracy requirements based on aper-ture-uncertainty or slew-rate considerations. Although they're prerequisites, these specifications are insufficient in judging the performance to be obtained. Designers must also consider other dynamic specifications.

For example, because the ADS-$130,12-$ bit, $10-\mathrm{MHz}$ sampling ADC combines an ADC and SHA in one package, it allows dynamic specifications that are often reserved only for system instruments to be published (see the table). As a result, sampling ADCs are easing the manufacturer's ability to specify data converters in the frequency domain. If a standalone ADC had these specifications and a companion sample-and-hold amplifier were still required, there's no guarantee that an overall system
would still meet these specifications.
Two common and important ADC specifications are integral and differential nonlinearity (see the table, again). What is uncommon, however, is that they're specified for Nyquist, operation $(5-\mathrm{MHz}$ input frequency with a $10-\mathrm{MHz}$ sampling rate). Errors in these specifications at a high input frequency appear as errors in the frequency-domain specifications.

A fast Fourier transform (FFT) plot is the basis for determining the frequency domain specifications, such as total harmonic distortion (THD), spurious-free dynamic range, signal-to-noise and distortion ratio (SINAD), and signal-to-noise ratio without distortion. These specifications are given at a particular input frequency and full-scale range (FSR) of -0.5 dB below full scale (or about 95% of the input range). Beware of what these specifications might mean if the foregoing conditions aren't listed. The two-tone intermodulation distortion tests require two input frequencies (tones) to be generated for testing vs. the single fundamental for the other tests.

An FFT plot is an excellent way to identify unknown input frequencies (Fig. 3). Actually, a discrete Fourier transform (DFT) is performed on the discontinuous data from the data converters. Various windowing functions then ensure that the DFT's fast Fourier transform algorithm is for data representing complete cycles when noncoherent sampling is used. Examples of windowing functions include the Blackman-Harris or Hamming windows, whose functions are to prevent the signal energy from "leaking" into other frequencies.

If a continuous bandwidth-limited signal contains no frequency components higher than the analog input frequency ($\mathrm{F}_{\text {in }}$), then the original signal can be recovered without distortion if it's sampled $\left(\mathrm{F}_{\mathrm{s}}\right)$ at more than twice the analog input frequency (Nyquist rate). Because of imperfect filters, which go to zero asymptotically and introduce phase distortion, the sampling rate might be a mini-
mum of four times the analog input in practice.

If the sampling frequency $\left(\mathrm{F}_{\mathrm{s}}\right)$ isn't high enough or if harmonics are generated by the input or data converter, part of the spectrum folds over into the original signal spectrum (Fig. 4). This undesirable effect, called frequency folding, creates an alias frequency in the original signal spectrum as given in the following example:

The input frequency is analyzed as $\mathrm{F}_{\mathrm{in}}=\mathrm{K}\left(\mathrm{F}_{\mathrm{s}} / 2\right)+6 \mathrm{~F}$, where:
(a) K is an odd or even integer that's a multiple of half the sampling period.
(b) $0 \leq 6 \mathrm{~F} \leq \mathrm{Fs} / 2$

Case 1. Alias frequency $=\left(\mathrm{F}_{\mathrm{s}} / 2\right)-6 \mathrm{~F}$ if K is odd.
Example: If $\mathrm{F}_{\mathrm{in}}=270 \mathrm{~Hz}$ and $\mathrm{Fs}=$ 100 Hz , then $270 \mathrm{~Hz}=5(100 / 2)+20$, where $\mathrm{K}=5$

K is odd so that 270 Hz has an alias appearing at ($100 / 2$) - $20=30 \mathrm{~Hz}$ in the original signal spectrum
Case 2. Alias frequency $=6 \mathrm{~F}$ if K is even
Example: if $\mathrm{F}_{\text {in }}=320 \mathrm{~Hz}^{2}$ and $\mathrm{F}_{\mathrm{s}}=100$
Hz , then $320 \mathrm{~Hz}=6(100 / 2)+20$ where $\mathrm{K}=6$
K is even so that 320 Hz has an alias appearing at 20 Hz in the original spectrum.

Designers should also be careful when it comes to signal-to-noise ratios (SNRs). When inspecting the FFT plot, the classic definition defines the signal as the fundamental frequency. Noise is defined as all of the other unwanted errors (harmonics, spurious frequencies, and the noise floor) in the FFT plot. In practice, the term SNR may not always include the harmonics.

In specifying ADCs, manufacturers now use the term SINAD, for si-ginal-to-noise and distortion ratio. Or they note if the signal-to-noise ratio includes or excludes distortion. After mathematical derivation through Gaussian quantization errors, the ideal SNR and distortion specification (rms signal to rms
noise) is expressed in formula 3 as:
$\mathrm{SNR}=6.02 \mathrm{ndB}+1.76 \mathrm{~dB}$, where n is the number of bits

For harmonics, the specification THD includes all harmonics. The inband harmonic specification is meant to include the worst harmonic (usually the second one). The spuri-ous-free dynamic range resembles the in-band harmonic specification. In practice, the spurious occurrences and noise present are lower than the harmonics. Total harmonic distortion, the ratio of the sum of all the
harmonics to the fundamental signal as analyzed at the ADC output can be expressed in formula 4 as:
$\mathrm{THD}_{\mathrm{rms}}=$

While total harmonic distortion is a more conservative specification, the in-band harmonic and spuriousfree dynamic-range specifications can be of interest for particular ap-

	Minimum	Type	Maximum	Units
Integral nonlinearity $\begin{aligned} & @ \mathrm{f}_{\text {in }}=5 \mathrm{MHz},+25^{\circ} \mathrm{C} \\ & 0 \text { to }+70^{\circ} \mathrm{C} \\ & -55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \end{aligned}$			$\begin{aligned} & \pm 1 \\ & \pm 1 \\ & \pm 2 \end{aligned}$	$\begin{aligned} & \text { LSB } \\ & \text { LSB } \\ & \text { LSB } \end{aligned}$
Differential nonlinearity $\begin{aligned} & @ \mathrm{f}_{\text {in }}=5 \mathrm{MHz},+25^{\circ} \mathrm{C} \\ & 0 \text { to }+70^{\circ} \mathrm{C} \\ & -55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \end{aligned}$			$\begin{aligned} & \pm 1 \\ & \pm 1 \\ & \pm 2 \end{aligned}$	$\begin{aligned} & \text { LSB } \\ & \text { LSB } \\ & \text { LSB } \end{aligned}$
```Total harmonic distortion ( -0.5 dB ) Dc to 500 kHz 500 kHz to 2.5 MHz 2.5 MHz to 5 MHz```	$\begin{aligned} & -68 \\ & -65 \\ & -65 \end{aligned}$	$\begin{aligned} & -70 \\ & -67 \\ & -67 \end{aligned}$		dB below FS dB below FS dB below FS
In-band harmonics Dc to 500 kHz 500 kHz to 2.5 MHz 2.5 MHz to 5 MHz	$\begin{array}{r} -69 \\ -66 \\ -66 \end{array}$	$\begin{aligned} & -70 \\ & -67 \\ & -67 \end{aligned}$		dB below FS dB below FS dB below FS
Spurious-free dynamic range Dc to 500 kHz 500 kHz to 2.5 MHz 2.5 MHz to 5 MHz	$\begin{aligned} & -69 \\ & -66 \\ & -66 \end{aligned}$	$\begin{aligned} & -70 \\ & -67 \\ & -67 \end{aligned}$		dB below FS dB below FS dB below FS
Signal-to-noise ratio (without distortion, -0.5 dB ) Dc to 500 kHz 500 kHz to 2.5 MHz 2.5 MHz to 5 MHz	$\begin{aligned} & -67 \\ & -65 \\ & -65 \end{aligned}$	$\begin{aligned} & -70 \\ & -69 \\ & -69 \end{aligned}$		dB below FS dB below FS dB below FS
Signal-to-noise ratio and distortion, -0.5 dB Dc to 500 kHz 500 kHz to 2.5 MHz 2.5 MHz to 5 MHz	$\begin{aligned} & -65 \\ & -63 \\ & -63 \end{aligned}$	$\begin{aligned} & -66 \\ & -65 \\ & -65 \end{aligned}$		dB below FS   dB below FS   dB below FS
Effective bits, -0.5 dB Dc to 500 kHz 500 kHz to 2.5 MHz 2.5 MHz to 5 MHz	$\begin{aligned} & 10.6 \\ & 10.2 \\ & 10.0 \end{aligned}$	$\begin{aligned} & 11.0 \\ & 10.5 \\ & 10.2 \end{aligned}$		bits   bits bits
Two-tone intermodulation Distortion ( $\mathrm{f}_{\mathrm{in}}=2.2 \mathrm{MHz}$, $\left.2.3 \mathrm{MHz}, \mathrm{F}_{\mathrm{s}}=8 \mathrm{MHz},-0.5 \mathrm{~dB}\right)$	-72	-75		dB below FS
Input bandwidth   Small signal ( -20 dB input)   Large signal ( 0 dB input)	$\begin{aligned} & 50 \\ & 30 \end{aligned}$	$\begin{aligned} & 65 \\ & 40 \end{aligned}$		MHz   MHz
Slew rate	175	200		$\mathrm{V} / \mu \mathrm{S}$
Aperture delay time		5	7	ns
Aperture uncertainty Sample and hold acquisition time to $0.01 \%$ ( 2.5 V step)		5 30	7 50	ns
FS $=$ full scale				

Up to 64 Channel Capacity With Anti-Aliasing Filter


Yes! R.C. Electronics has put together a complete hardware and software solution, so you don't have to flip through catalogs to mix and match a data acquisition system. Plus, our software is user friendly, making it a cinch to learn and get on line to begin your measurements.

## Hardware Features:

- 12 bit, 1 MHz
- Pretrigger option
- Up to 64 Channels
- Simultaneous Sample and Hold
- Anti-Aliasing Filter
- Up to 140 KHz Continuous to Disk
- Internal and External Trigger
- External Sample Clock

Instrument Software Options:

- Digital Scope
- Electronic Chart Recorder
- Digital Filters
- Signal Averaging
- Spectrum Analysis


## NEW! PC-Based Waveform Synthesizer

Offers 16 Bit Resolution Easy to Use Rubberbanding Waveform Design Software


- 16 bit, 250 KHz output
- Up to 32 waveform segments
- Function generation of square or ramp waveforms
- Continuous output from disk
- Modulated sine output
- Deglitched output

 Electronics Inc.

5386-D Hollister Ave. Santa Barbara, CA 93111 (805) 964-6708

CIRCLE 126
plications. For example, insufficient usable dynamic range that enables noise and harmonics to intrude on the measurement could interfere in distinguishing a low-level radar signal. In the effective-bits specification, a mathematical representation of an ideal sine wave is compared with the sinusoid digitized by the data converter. Numerical method algorithms help compute the accuracy, which is specified in bits.

Basically, the effective-bit specification is a combination of all the other errors. Any errors from differential and integral nonlinearity, aperture uncertainty, and missing codes show up as part of the overall rms error. In what "no missing codes" means to ADCs and "monotonicity" to DACs, effective bits will likely be the leading comparative specification for the dynamic performance of sampling ADCs.

Effective bits can be derived from the SNR (and distortion) specification in formula 5 as:

## Effective bits $=($ SNR -1.76$) / 6.02$

If the signal-to-noise ratio without distortion is employed, then the THD specification can be used to derive the effective bits in formula 6 as:

Effective bits $=20 \log \left\{\left[10^{(S N R / 20)}\right.\right.$ $\left.+10^{(\text {THD } / 20)}-1.76\right] / 6.02$
The specification of input bandwidth is also important. Most dynamic specifications already discussed are based upon sinusoids. It's certainly commendable that a data converter can operate atits Nyquistrate for sinusoidal inputs. The data converter would then digitize minus fullscale signals to plus full-scale signals on alternative samples.

Some applications, however, encounter a more difficult situation, such as when channels are switched from a multiplexed input. In this case, the sample-and-hold amplifier doesn't get to track the input all along. This is a tougher test of its input bandwidth than other, less-demanding applications.
Similarly, fast-slewing transient conditions need wide input bandwidth and short sample-and-hold acquisition time to acquire the signal.

A wide-input-bandwidth data converter also minimizes phase shifts on the signal being digitized.

As mentioned, ADC specifications have different significance with respect to various applications. The input bandwidth, for example, becomes important in avoiding phase shifts between in-phase and quadrature channels in a radar system. Imaging systems, whether based on a charge-coupled device or on infrared, step changes from one pixel to the next. This resembles multichannel signals being switched through a multiplexer. In an imaging application, the edge between a black object on a white background simulates this step condition.

Fast acquisition times and wide input bandwidth ensure performance for these applications. Some applications require that the harmonics, spurious frequencies, and noise not be as large as the lowest signal to be digitized. Spurious-free dynamic range becomes important to these users. In practice, the in-band harmonies specification yields essentially the same information because the worst harmonic is usually greater than the noise floor and spurious frequencies.

Digital storage oscilloscopes (DSOs) take advantage of the aliasing of a data converter and its sampling rate to digitize repetitive frequencies outside the normal range of a data converter. Here, the effectivebits specification yields the DSO's overall accuracy at particular frequencies. Communication systems may have multiple frequencies (tones) and their interaction is of interest. In this case, specifications of two-tone (two-frequency) intermodulation distortion give the needed insight into ADC requirements.

Bob Leonard, product marketing manager for Datel, received a BSEE from Northeastern University, Boston, Mass.

How Valuable?	Circle
Highly	544
Moderately	545
SLightly	546

## AR\&T's 50 to 150 Watt Board Mounted Power Modules: Engineered to take the heat... for virtually $100 \%$ system up-time.

Our UL*-recognized modules not only withstand $0^{\circ}$ to $90^{\circ} \mathrm{C}$ temperatures, they bring Bell Labs' design innovation and AT\&T quality to your distributed power architecture. This provides leading-edge power features that help you reduce design time, and manufacturing and servicing costs, while enhancing reliability.

Component needs are cut by including filtering and control functions within the package. They include an EMI filter to meet FCC requirements (Class A) by controlling both radiated and conducted EMI.

Modules are hot-plugable in parallel configuration and can be replaced or serviced while the system is up and runningwith no loss of power or data.

AT\&T power modules also allow parallel redundancy, so you need only one extra module to back up the system. All 50,

## The components of success.

 100 and 150watt modules measure $4.8 \times 2.5 \times .5^{\prime \prime}$ and are available in a variety of outputs.

Save space and prevent downtime with AT\&T's power modules. Call today for our complete catalog of AT\&T 5W to 150W devices: 1800 372-2447, ext. 590.

## "We designed-in heavyweight performance with lightweight Toshiba ST-LCDs."



## "Why Toshiba?"

"For the outstanding readability and wide viewing angles of their ST-LCD panels."

> "With a full line to choose from?"
"Everything from mid- and large-size supertwist displays, to large-size, high-resolution $(640 \times 480)$ monochrome supertwist (M-ST) displays."

Toshiba ST-LCDS combine optimum readability with the size, weight and performance specifications designers and OEMs need most for lightweight, low-power, portable applications.
Take the TLX-1641-G3B for example. This CGA-compatible ( $640 \times 400$ ), EL backlit, B-ST display is thinner (only 10.5 mm thick) and lighter than standard supertwist displays. Or the TLX-1551A-C3M. A singlelayer VGA compatible $(640 \times 480)$, CCFL backlit M-ST display that's about $25 \%$ lighter and $10 \%$ thinner than double-layer supertwist displays. And Toshiba has a full line of mid-size supertwist, EL backlit, graphic displays with built-in controller, character generator, ROM and RAM, all designed for easy interfacing to the CPU.

Part mumber	$\begin{gathered} \text { NO. } \\ \text { OFDOTS } \end{gathered}$	outline DIMENSION $(\mathbf{W} \times \mathrm{H} \times \mathrm{D})$	APPROX. WEIGHT	DISPLAY	васкLIaHt
TLX-1641-G3E	$640 \times 400$	$256 \times 146 \times 10.5$	4009	B.ST	$\varepsilon$.
TLX-1551A-C3M	$640 \times 480$	$276 \times 182 \times 205$	7009	M-ST	CCFL
TLX-1342.63B	$640 \times 200$	$275 \times 126 \times 14$	450 g	8-ST	EL
TLX-7t11-E0	$240 \times 64$	$180 \times 65 \times 12$	1509	W-ST	EL
TLX-1013-E0	$160 \times 128$	$129 \times 104.5 \times 14$	1509	W-ST	EL
TLX-1391-EO	$128 \times 128$	$84.4 \times 100 \times 14$	1059	W-ST	EL

Toshiba LCDs are ideal for a wide range of lightweight, compact designsfrom laptop computers and word processors, to portable medical and industrial terminals- and built with the quality and reliability Toshiba products are known for world-wide.
To receive more information about Toshibảs ST-LCDs, call 1-800-888-0848, ext. 517 , now. And see how much better your next project will look. Service is our key component.

In Touch with Tomorrow TOSHIBA

CIRCLE 181

## Achieve Precision

## In Linear ASIC DEVICES <br>  <br> 1. BASED ON an analog macrocell, this power-supply supervisor monitors three voltages and a current. If all supplies are within tolerance, a Power 0 K signal is generated during startup.

## When The Building Blocks Of An ASIC Require High Speed And Accuracy, Try ResistiveTrimming Techniques.

P
otential linear ASIC users typically submit applications consisting of medium-performance standard products. Consequently, most linear houses employ a proven, reliable medium-performance technology for their main product line. Such a bipolar technology would feature npn transistors with, say, an $f_{t}$ equal to 500 MHz and a $\mathrm{BV}_{\text {CEO }}$ in the $32-\mathrm{V}$ range. This technology is much easier to create and less costly than those needed to implement high slew rates or precision op amps.

But what happens when the proposed application contains one or more blocks requiring higher speed and accuracy? System designers are usually faced with two choices: either leave these components off the ASIC and sacrifice cost, efficiency, and board space, or move the entire application to a higher performance technology where the price of the ASIC can skyrocket.

However, a third alternative exists: Use the medium-performance technology and employ resistive-trimming techniques to enhance the precision of the critical blocks. The process is best illustrated by examining the development of a power-supply supervisor circuit. Designers must often implement this function in an ASIC or with standard parts that are restrictive in scope and performance, and occupy extra board space.

Power-supply malfunctions cause many of the system breakdowns due to some components' delicate nature. The concerns created by faulty power supplies include data loss on systems with volatile memory, damage and deterioration of mechanical or monolithic components, the interruption and loss of in-progress computations, and system crashes.

The power-supply supervisor, found in various systems, protects against random power faults by supplying an early potential-failure warning. To perform this task, the supervisor monitors several of the system's voltages or currents and compares them to an accurate, internal voltage reference. With mediumperformance ASIC technology, however, it's difficult to obtain the accuracy required for the internal voltage reference.

This power-supply supervisor circuit uses the most common mode of development interface between the ASIC vendor and the system house. Here, system designers work out the design and system concepts, translate the schematics into the ASIC components, and evaluate the performance through simulation and breadboarding. The ASIC house assists through schematic capture and simulation. They can also advise on choosing the proper tools. However, the final functioning design responsibility rests on the system house. The ASIC vendor finishes the integration by doing circuit layout on silicon and completing the remaining manufacturing process.

> 2. RESISTOR-trimming techniques are used in this voltage-reference circuit to get an appropriate value for $\mathrm{V}_{\text {out }}$, which depends directly on the ratio of $\mathrm{R}_{1}$ and $\mathrm{R}_{2}$ and the bandgap voltage, $\mathrm{V}_{\mathrm{bg}}$.

Designers can also choose to add more or less input to the development flow. For example, some ASIC vendors permit, and encourage, customers to take on physical-design (IC layout) tasks. Then, the integration begins with the designers evaluating their needs and design concepts.

Most complex, multiple powersupply systems already incorporate some sort of guard against catastrophic faults. Designers can choose among several available predetermined standard-voltage supervisors. In addition, backup power supplies and battery systems are often used to protect against undervoltage. Supervisor chips also warn of overcurrent situations, which can be caused by an internal component's failure (shorting). Other considerations are therefore required. To facilitate proper supply power-up, which would avoid potential overcurrent conditions, power-up and -down systems can be im-

```
FORN=0TO31
Z1=(N) AND (1)
Z2=((N) AND (2))/2
Z3=((N) AND (4))/4
Z4=((N) AND (8)/8
Z5=((N) AND (16))/16
R1=37.5+1/(Z3/85+1/(10+1/(1/5+Z2/12.5+Z1/27.5)))
R1=1/(1/R1+1/(25+1/(24/60+1/12.5)))
R2=15/167+1/(1/5.167+25/5.3)
R2 }=\textrm{R}\mp@subsup{2}{}{*}13.5/(\textrm{R}2+3.5
VOLD =V
V=1.374*(R1+R2)/R2-5.075
DV=V-VOLD
HALF =VOLD +DV/2
LPRINTUSING "###";25,Z4,Z3,Z2,71:
LPRINTUSING "###.###";V,DV,HALF
NEXTN
```

3. A BASIC program calculates the effect of different Zener zapping combinations on the output of a voltage reference. It finds the total resistance of networks A and B.
plemented by software.
To make the right choice, designers must first analyze the function's specific requirements. All power-supply schemes start with degradation and fluctuation detection of a power supply outside the permissible limits. In accordance with the system specifica-
tions, this detection must be accurate and quick enough to let the system's "brains" activate emergency system-protection mechanisms. In a multiple power-supply system, for example, a $5-\mathrm{V}$ supply may be required for CMOS and TTL logic, a 12V supply for the analog transducer, human interface, and other linear functions, and a second $12-\mathrm{V}$ highcurrent supply for the motor drives and servo mechanisms. The number of supplies, as well as their voltage levels and specifications, can vary widely for each application. Yet existing off-the-shelf power supervisors have a predetermined number of controls as well as restrictive specifications. And in many cases, they aren't cost effective. At this point, designers should consider a semicustom solution.
For instance, a macrocell-array approach proves to be a simple, inexpensive alternative in these applications. In this voltage-supervisor application, the designer put together a scheme to monitor three different supplies for undervoltage and one for overcurrent (Fig. 1). In some applications, designers may need special regulation support and error feedback from a key supply. This can be done by adding a few simple array components. In this particular integrated solution, the system receives a TTL Power Up signal when all supplies comply with preset system specifications. The Power Up signal is maintained while in operation by logically ORing all supplies to indicate a healthy system. If any supply fails by falling outside the specified level, the system immediately receives a signal to start power-down procedures, protecting circuitry, motors, and servo mechanisms.
By understanding the power supply's capabilities and the system's sensitive areas, the system designer defines the IC specification in this stage. The designer's logical choice is to implement this function in an IC. Current can be monitored with a shunt configuration, which effectively converts the current to a known voltage. Other power supplies can be monitored using medi-um-performance comparators with

# The power-user's guide to the new HP48SX. 



## Before you buy development

One glance at the advertising in this magazine and you know your embedded design involves mega choices. But too much of a good thing may lead to one thing: confusion.

We can help clear this up, for free. With the articles and technical notes you see above.

Because whether you're an old hand or just
starting out, they'll provide timely insights and techniques. To help you get to market first.

Learn which development tools are right for your project. Do you need emulation or simulation? And just how can you debug less and enjoy it more.

These papers are based on Applied Microsystems' experience at setting up over 12,000 systems


## tools, read the fine print.

worldwide for 8 -, 16 - and 32 -bit designs. Our field engineers have seen enough to write a book.

But we've boiled some of it down to several thousand well-chosen words.

To order an article, or to receive a system demonstration, call 1-800-343-3659.

And get the bigger story.

transition times of 1 to $10 \mu \mathrm{~s}$. They compare the supply voltage to an internally generated voltage. This voltage level is then monitored by relating the good voltage reference to the compared voltage outside the supplies.

Judiciously chosen resistor-voltage dividers limit external voltages to a level that's close to the internal reference. The ASIC permits a wide selection of resistors and customizes the finished IC to these preset supply values. Good resistor matching and temperature tracking are desirable features in this IC. The ORing function following the comparators is complet-

4. THE REQUIRED ACCURACY for voltage reference is achieved by the digital nulling network. The network's values come from the Basic program. ed by simple open-
collector logic implementing a wiredOR function.

This ORing concept is then transferred to an existing family of ASICs. Raytheon's linear ASICs (RLA) supply all of the needed components to meet the required specifications. Designers pick these components directly from the RLA library, where all specifications are clearly delineated. The RLA's macrocell approach offers configurable gain stages that implement various functions, including comparators and op amps. The comparator's configurations easily meet the requirements to protect the design in question.

## Achieving Accuracy

When looking at the IC's full implementation, one important accuracy issue remains-delivering sufficient precision from the voltage reference supply. A voltage-reference function is simple to implement. In fact, the largest array offered by Raytheon, a 16 -macrocell IC, in-
cludes a built-in bandgap reference voltage because of its widespread use in linear systems. This reference can also be built with the standard macrocell building blocks.

When analyzing the system, however, first look at the accuracy required for the application. Examining off-the-shelf, commercially available components shows that they offer data-sheet performance when the supplies are held within $5 \%$ of the specified value ( $10 \%$ for military). Outside this range, the output levels and functionality can't be guaranteed. Such fluctuations must be detectable to advise the system of malfunctions. A second look at this requirement reveals another aspect. To achieve a satisfactory level of detection within a voltage-supervisor monolithic application, a voltage reference that's stable enough to within one order of magnitude (about $1 \%$ voltage accuracy) better than the supply being monitored is needed.
This level of precision is difficult to
achieve with standard medium-performance technology. The first step toward attaining high precision is to look at the resistor technology being employed. Thin-film resistors (presently available in the RLA) offer excellent tracking-typically under $1 \%$-and temperature coefficients in the range of 200 ppm . These onboard devices help to achieve precision in linear ASICs. The resistors lay atop the glass rather than on the active silicon like diffused resistors. This avoids parasitic effects and side diffusion, two sources of process errors and inaccuracies.
Spice and data-sheet-parameter analysis of Zener-voltage references built with thin-film resistors and standard npns ( $\mathrm{f}_{\mathrm{t}}=500 \mathrm{MHz}$, IgfinC $=200 \mathrm{~mA}$ ) and pnps can uncover some vital information. Accuracies up to $5 \%$ are achievable with this technology, including variations for process. But $5 \%$ is still inadequate for this application. Further investigation is needed to meet the ASIC's
requirements without resorting to larger macrocells and resistors.

Smart design techniques are a concern when searching for added precision. Designers can refer to other sources of circuit ideas for better designs. One possibility is a bandgap voltage reference with an initial accuracy of about $4 \%$. It's a $1 \%$ improvement over the first consideration, yet not enough to meet this application's requirements.
Taking advantage of process variation distributions is another way of attaining more accurate parts. Engineers from the ASIC house, experienced in these matters, can give ASIC designers a good idea of the process distribution for a particular parameter. In the voltage-reference circuit, an accuracy reading of the worst-case distribution extends past the $4 \%$ limit. By sorting die to a $\pm 2 \%$ limit, $50 \%$ of the distribution could be obtained. However, low die yields can lead to higher chip prices. Even with this yield loss, the expected requirements still aren't met. Other undesirable considerations at this point would be to move to a more expensive, higher-performance technology or simply leave the voltage reference outside altogether.

## Trim By Zener Zapping

One way to get higher precision in the ASIC without moving to more expensive options is to adjust and eliminate error sources with resistor trimming. Although laser trimming is common, it's still considered a "hightechnology" method. But in spite of its popularity, laser trimming is a costly solution to a relatively simple problem. Therefore, this option isn't always practical.
Raytheon now offers ASIC designers the trimmable Zener-resistor network method. Zener diodes in parallel or series with pre-chosen resistor values create a digital nulling network that can be trimmed to specific values. This trimming network achieves better accuracy in certain functions, such as a voltage reference. The Zener diodes have relatively high breakdown voltages and never operate in the Zener mode. Moreover, they can short out serially

5. THE BASIC PROGRAM'S OUTPUT shows the change in the voltage reference's output produced by different zener zapping combinations. The table comes into play later, to create the actual zapping program used during screening.
placed resistors or bring in new parallel resistance. High reverse current through the diode shorts the junction, creating a reliable, low-resistance conductor. This opens a conductive path through the Zener. Therefore, either parallel resistance can be added or serial resistance eliminated.
To benefit from this technique, determine how and when resistor trimming can improve performance. The voltage reference needs an accuracy within $0.5 \%$ for a $5-\mathrm{V} \mathrm{V}_{\text {out }}$ signal. Designers would start with a conventional bandgap voltage reference whose initial accuracy is about $4 \%$ typical. $\mathrm{V}_{\text {out }}$ depends on the ratio of $\mathrm{R}_{1}$ and $\mathrm{R}_{2}$ (Fig. 2). This is an ideal opportunity for resistor trimming techniques. The value of $V_{\text {out }}$ is:
$\mathrm{V}_{\text {out }}=\mathrm{V}_{\mathrm{bg}}\left[\left(\mathrm{R}_{1} /\right.\right.$
$\left.\left.R_{2}\right)+1\right]$, where $V_{b g}$
equals the $1.25-\mathrm{V}$ bandgap voltage.
Small variations in resistors $R_{1}$ and $R_{2}$ will vary the final value of $\mathrm{V}_{\text {out }}$. By adjusting their values, higher precision can be achieved, setting the stage for resistor trimming. One way to adjust these values is to add resistance in parallel or series. Designers then choose resistor values that, when added, have a desired predetermined effect on the final value of $V_{\text {out }} \cdot R_{1 E Q}$ and $R_{2 E Q}$ are the total resistor equivalence for the $\mathrm{R}_{1}$ and $\mathrm{R}_{2}$ networks. By reducing $\mathrm{R}_{2 \mathrm{EQ}}$, the resulting $\mathrm{V}_{\text {out }}$ is reduced. Converse$\mathrm{ly}, \mathrm{V}_{\text {out }}$ is increased by reducing $\mathrm{R}_{1 \mathrm{EQ}}$.
Determining how fine a given application should be adjusted is an important factor. It's desirable to have every Zener-zapped trim (addition or deletion of resistor values) improve
the output's accuracy by a factor of two. In other words, one trim improves $\mathrm{V}_{\text {out }}$ by a factor 2, two by 4, and so on. Unless all possible errors can be identified, it's safer to add one extra trim as a guardband.

Another important consideration is choosing the overall resistor values, as similar values tend to select similar resistor sizes or aspect ratios (the ratio of a resistor's length to its width). This effect maximizes temperature and time-tracking performance. Every trimming option would need a separate bonding pad to be accessible for zapping. And, these pads won't be bonded out to the package.

One tool that can calculate the effect of resistor zapping comes in the form of a Basic program (Fig. 3). The program computes the total resistance of network A $\left(\mathrm{R}_{1}\right)$ and $\mathrm{B}\left(\mathrm{R}_{2}\right)$ based on all zapping combinations. The program iteratively calculates all binary combinations and computes the total amount of $\mathrm{V}_{\text {out }}$ change produced by the different values of $\mathrm{R}_{1 \mathrm{EQ}}$ and $\mathrm{R}_{2 \mathrm{EQ} \cdot}$. The program also calculates the difference between the alternative zapping combinations.

By inserting different values into the program, a digital nulling network is chosen (Fig. 4). In this case, five different zapping options were selected that could improve the performance by a factor of 32 . The main resistor value for $\mathrm{R}_{2 \mathrm{EQ}}$ was chosen as 12.5 because there are many $12.5-\mathrm{k} \Omega$ resistors available for voltage references. Trimming resistors with ratios of 12.5 can optimize temperature tracking performance. All other re-

## A true leader


bievitd DECAEation 5000/200

1

The UNIX based DECstation ${ }^{\text {TM }} 5000$ Workstation

## leads by example.

## Example \#1: Performance

No matter how you measure it, Digital's DECstation 5000 workstation leads all others in performance. Whether it's raw CPU performance, 2 D or 3 D graphics speed, or price/performance, the DECstation 5000 workstation comes out ahead. In fact, for overall performance, nothing else is close. And we've got the numbers to prove it.

PERFORMANCE   COMPARISON   CHART (1)	SUN   SPARCstation 1+	IBM   $320 / 520$	DECstation   5000 cx
  Windowing (2)	0.24	0.71	1.59
Integer	$1.04(3)$	1.34	1.61
Floating   Point	$1.10(3)$	2.6	1.7
Overall   Performance	0.65	1.35	1.63

(1) All data normalized to DECstation 3100. Comparable configurations tested. Geometric mean used to combine results. Performance will vary depending on applications and environment. (2) Graphics and windowing data measured using X11perf benchmark. CPU Integer and Floating Point performance measured from running SPEC V1.0 workload. (3) SPEC performance estimate based on SUN $4 / 330$ results published by Sun Microsystems, Inc.


UNIX based applications, including the industry's most popular MCAD and EDA applications. Example \#3: PowerFrame ${ }^{\mathrm{TM}}$ for Design Integration. With Digital's PowerFrame design framework, you can easily integrate the DECstation 5000 workstation with your existing UNIX based EDA and MCAD systems. PowerFrame is the most widely used framework for heterogeneous design management.

And, of course, as the leader in integrated multi-vendor
networked computing, you can count on Digital for full service and support. We can help you design, implement and maintain an engineering computing strategy that capitalizes on today's technol-

ogy, while keeping your options open for the future.

For your copy of benchmark test results and a list of available applications, call 1-800-343-4040, ext. 970 . These are filled with examples of what you expect from a leader.


## Example \#2:

## UNIX based Applications

When you run with the leader, you know you're in good company. The DECstation 5000 workstation runs more than 1,500

## DEsIGN APPIICATIONS ACHIEVE LINEAR ASIC PRECISION

sistor values used in the network were chosen for the amount of change they could produce in the output.

In the finalized network, $\mathrm{R}_{1 \mathrm{EQ}}$ has the equivalent resistance of network A, while $\mathrm{R}_{\text {2EQ }}$ has the equivalent resistance of network B. All selected resistor values improve the accuracy by a specified percentage. Adding $\mathrm{R}_{17}$ (Zener zap 3) improves the accuracy by $1.25 \%, \mathrm{R}_{15}$ (Zener zap 2) improves the accuracy by $6 \%$, and $\mathrm{R}_{14}$ by $3 \%$. The exact values of the changes can be read in the Basic program's output (Fig. 5). The binary table shows the different zapping combinations and its corresponding change on the final value. This table will later create the actual zapping program used during screening.

Raytheon does the actual zapping or trimming of re-

6. THIS DIGITAL NULLING network controls $\mathrm{v}_{\text {os }}$ of the op amps by adjusting the collector-resistor ratio.
sistor values during the wa-fer-sort stage of manufacturing. The values and effect of the different zapping combinations created are submitted to the test engineers, who create a high-level ATE language to execute the zapping loop. The adjustment procedure works as follows: The tester measures the untrimmed $\mathrm{V}_{\text {out }}$ obtained at the output and finds the difference between the measured and ideal voltages. Then, by accessing a lookup table based on the Basic program's result, the optimal zapping combination is chosen (identified as $0-32$ ) to bring the voltage closer to the desired value. For example, to control whether $\mathrm{V}_{\text {out }}$ should increase or decrease, zap $\mathrm{R}_{21}$ ( $\mathrm{Z}_{5}$ ).

This process continues iteratively with a programming loop where the tester continually measures $\mathrm{V}_{\text {out }}$ and chooses the zapping combination based on the required change until the value is brought within the specification. The actual zapping is done by high-current injection supplied by the tester. This method of automatic equipment-control trimming cuts
high-volume manufacturing costs.
The procedure that assures an accurate voltage level for all parts is performed on all die at the wafersort stage, and is completed within milliseconds. In this case, a 5 -V reference with an accuracy better than $0.3 \%$ is produced from a medium-performance process and is guaranteed regardless of process variations and transistor matching. In specific and rare cases, the actual zapping can be done on a assembled package by bonding out the appropriate zapping bond pads.

## Improve $V_{0 S}$

Another useful and common application of Zener zapping is to minimize $V_{\text {OS }}$ on an op amp. The procedure is similar to that for referencevoltage adjustment. In this case, the op amp's input-offset voltage can be adjusted by varying the collec-tor-resistor ratio. In this type of circuit (Fig. 6), if the difference in the two collector resistors $\left(R_{C}\right)$ is a small increment, $\mathrm{V}_{\text {OS }}$ can be written as:

$$
\begin{aligned}
& \mathrm{V}_{\mathrm{OS}}=\mathrm{T}_{\mathrm{T}} \ln \left[\left(\mathrm{R}_{\mathrm{C}}+\Delta \mathrm{R}_{\mathrm{C}}\right) / \mathrm{R}_{\mathrm{C}}\right] \\
& =\mathrm{V}_{\mathrm{T}} \ln \left[1+\left(\Delta \mathrm{R}_{\mathrm{C}} / \mathrm{R}_{\mathrm{C}}\right)\right] .
\end{aligned}
$$

For $\Delta R_{C} / R_{C} \ll 1.0, \ln [1+$ $\left.\left(\mathrm{DR}_{\mathrm{C}} / \mathrm{R}_{\mathrm{C}}\right)\right] \approx \Delta \mathrm{R}_{\mathrm{C}} / \mathrm{R}_{\mathrm{C}}$.
As a result, $\mathrm{V}_{\mathrm{OS}} \approx \mathrm{V}_{\mathrm{T}}\left(\Delta \mathrm{R}_{\mathrm{C}} /\right.$ $\mathrm{R}_{\mathrm{C}}$.
$R_{2}+R_{3} \gg 8 R_{1}$, thus:
$\mathrm{V}_{\text {OS }} \approx-\mathrm{V}_{\mathrm{T}}\left[\mathrm{R}_{1} /\left(8 \mathrm{R}_{1}+\mathrm{R}_{2}\right.\right.$
$+\mathrm{R}_{3}$ ]
$\left(7-\mathrm{B}_{3} \mathrm{~B}_{2} \mathrm{~B}_{1}\right)$ for $\mathrm{B}_{0}=1$
or
$\mathrm{V}_{\mathrm{OS}} \approx \mathrm{V}_{\mathrm{T}}\left[\mathrm{R}_{1} /\left(\mathrm{R}_{2}+\mathrm{R}_{3}\right)\right]$
$\left(1+B_{3} B_{2} B_{1}\right)$ for $B_{0}=0$.
where $B_{0-3}$ are binary numbers that correspond to the state of zener diodes $\mathrm{Z}_{0-3}$ and $V_{t}$ is the thermal equivalent voltage, equal to -2.6 mV (Fig. 5, again). The change in $V_{\text {OS }}$ is:

$$
\begin{aligned}
& \Delta \mathrm{V}_{\mathrm{os}}\left(25^{\circ} \mathrm{C}\right) \approx[-2.6 \mathrm{mV} \\
& \left(7-\mathrm{B}_{3} \mathrm{~B}_{2} \mathrm{~B}_{1} \mathrm{R}_{1}\right] / \\
& \left(8 \mathrm{R}_{1}+\mathrm{R}_{2}+\mathrm{R}_{3}\right) \text { when } \mathrm{B}_{0}=0 .
\end{aligned}
$$

$B_{N}$ equals 1 when $Z_{N}$ is unshorted, and equals 0 when $\mathrm{Z}_{\mathrm{N}}$ is shorted. $\mathrm{B}_{1} \mathrm{~B}_{2} \mathrm{~B}_{3}$ will then equal a binary numbers from 000 to 111 or 0 to 7 decimal.
$\Delta \mathrm{V}_{\text {OS }}\left(25^{\circ} \mathrm{C}\right) \approx[2.6 \mathrm{mV}$
$\left.\left(1+B_{3} B_{2} B_{1}\right) R_{1}\right] /$
$\left(R_{2}+R_{3}\right)$ when $B_{0}$ equals 0 .
This formula can then determine the effect of the different zapping combinations on the op amp's $\mathrm{V}_{\mathrm{os}}$. Again, by choosing the correct resistor values, designers can adjust the range of flexibility as well as the maximum accuracy required for the application. As in the previous example, once the resistor values and its desired effects are chosen using the formula, the information (in binary lookup table form) is used by Raytheon test engineers to implement the ATE high-level-language zapping loop at wafer sort. $\mathrm{V}_{\text {OS }}$ is then guaranteed on every die to fall within the required precision. This technique is useful in other applications, such as instrumentation-amp configurations where the common-mode rejection ratio must be controlled to more than 60 dB .
These techniques open up a new dimension in linear ASIC applications.

## DESIGN APPLIGATIONS <br> ACHIEVE LINEAR ASIC PRECISION

Nothing can replace smart design techniques when dealing with a system. Therefore, it's best to start with an optimized design for the parameters that are critical to the application. However, by using this trimming technique, relatively high-precision components can be attained, such as voltage references and op amps, while maintaining a mediumperformance technology to minimize risk, cost, and engineering.

Using all of the procedures described, ASIC designers can start a design with components contained in the linear-array library. Some necessary functions may have already been implemented and presented in Raytheon's linear applications manual. As in all ASIC designs, the primary steps consist of evaluating the existing technology in light of the system requirements. This is done by checking the data-sheet parameters of typical functions implemented with this technology, such as op amps or comparators, and see how they compare with the present system or the one needed. If the existing technology doesn't meet the system requirements, designers may look for different ways to implement the function in question. One approach is to change the gain-stage design by using individual transistors rather than preconfigured gain stages. Taking advantage of the on-board thin-film resistors is another way to achieve higher accuracy. To reemphasize, standard linear manuals and textbooks can also be a good source of novel circuit ideas.

After the circuit design is optimized for performance for the specific need, it's always best to check the simulated results using the complete Spice parameters supplied by Raytheon. Kit parts are also available to evaluate real-life performance employing the same silicon geometries that are used for final integration. Temperature and voltage effect can also be determined in a real-life environment.

If the performance still falls short of the requirements, consider using the techniques described in the article. Designers first must determine if the parameter in question can be
controlled by a resistor network. If so, the level of accuracy to be achieved should be determined in relation to the existing performance. Yield considerations can also be evaluated.

By using the procedures described in this voltage-reference application, designers can put together an appropriate network and determine its effect on the parameter's final value. Helpful tools, such as previously discussed Basic program, can be provided. This is an iterative process that gives designers total flexibility in customizing the function. The final results, in lookup-table form, can build a zapping loop on high-level language to be used by the ATE. Resistor trimming is usually done in packaged parts at the customer site, similar to field-programmable parts.

One drawback of resistor trimming with Zener zaps is the extra pads used within the linear array. For every zapping point, one pad must access that diode with the necessary programming current to metallize the Zener junction. This current is in the range of 400 to 600 mA for about 2 ms . This current capability must reside in the user's tester. With a little ingenuity, users don't need many extra pads to get the performance level that's typically seen only on high-performance systems.

Designers' familiarity with linear ASICs is still nowhere near that of digital arrays. However, by properly utilizing existing tools and with some ingenuity, designers can get higher and more efficient levels of integration without investing in more sophisticated designs or moving to more expensive technologies. Good design practices coupled with flexible technologies helps solve integration problems.

Edwin Lugo, a field applications engineer for Raytheon, received a BSEE from the University of California at Berkeley.

How Valuable?	Circle
HIGHLY	541
Moderately	542
SLightLy	543

Spectrol's Model 63
Available in 12 Different Models


Spectrol's $3 / 8$-inch square single-turn cermet trimmer, the Model 63 is offered in four terminal styles with pin configurations to suit any standard PCB application as well as two topadjust and two side-adjust versions, and two different knob types. Quick adjustment is achieved with a multi-fingered wiper. Resistance range is from 10 ohms to 2 megohms with a $\pm 10 \%$ resistance tolerance. Features include improved solder-plated terminals, and an " 0 " ring seal for solvent and aqueous washing. Tempco is 100 $\mathrm{ppm} /{ }^{\circ} \mathrm{C}$, and a CRV of $2 \%$ or 2 ohm. The Model 63 continues to provide excellent performance as the industry standard across a broad spectrum of applications.

## spectrol

Spectrol Electronics Corporation
P.O. Box 1220, La Puente, CA 91749

Phone: (818) 964-6565 Fax: (818) 810-1093
CIRCLE 184
Spectrol Dials for
Precise Pot Calibration


Spectrol Electronics makes your job easier by offering a versatile line of potentiometers and dials which can be combined to fit almost any application. Make a perfect match with one of the industry's most popular turns-counting dials: either Spectrol's Model 15 digital or Model 16 concentric, and Spectrol's Model 534 or 536,10 -turn, $7 / 8^{\prime \prime}$ wirewound potentiometers. It's a winning combination worth looking into an easy reading dial that looks good on everybody's panel, plus a versatile, 10 -turn, wirewound potentiometer available in scores of standard and special variations. Contact your nearest Spectrol Electronics Distributor today and order your winning combination!

## spectrol

Spectrol Electronics Corporation<br>P.O. Box 1220, La Puente, CA 91749<br>Phone: (818) 964-6565 Fax: (818) 810-1093 CIRCLE 185

## "expensive"

## The Multibus II product line has changed.

We've dramatically reduced your costs and added dozens of products. And that's great news when your designs call for more than a PC.

Today, our Multibus II system with a $386^{\text {w }}$ CPU, disk, tape, and 4 MB of RAM is priced at just $\$ 9,995$.

And the costs of our Multibus II single board computers are down as much as $47 \%$.

Now you can build the Multibus II discipline right into your system for the price of VME or EISA. Multibus II's new MPI bus interface chip is perfect for building simple analog, digital, or serial interface boards. It costs just $\$ 40$ in quantities over 100.

The Multibus II product line has expanded, too. In the last year alone, we've added over a
dozen I/O and CPU board products. And you can choose from the more than 500 Multibus II products on the market, including 150 full-size Multibus II boards.

Need help migrating from VME? Our singleslot VME-to-Multibus II adapters will give you a jump on switching your custom VME boards to Multibus II.

To view the entire expanse of Multibus II products - from over 100 vendors - call Intel at (800) 548-4725, Dept. AA60. Ask for a free copy of the 1990 Multibus II Product Directory.

So don't delay. Call now, and start a change for the better.

WHAT IS THE FASTEST MICROPROCESSOR SPEED YOU REQUIRE IN YOUR SYSTEMS?


[^3]
## MARKET FACTS

Software developers are scrambling to come up with Windows 3 versions of their applications now that this latest edition has taken off. More than 1 million copies of Windows 3 have shipped since May. Replacing cryptic DOS commands with icons, Windows 3 affords multitasking and data exchanges between applications. The total software market should be worth about $\$ 6.5$ billion this year, according to International Data Corp., Framingham, Mass.

Robertson Stephens \& Co., a San Francisco-based market research company, recently surveyed 83 Fortune 500 sites. With about 300,000 PCs installed at these sites, $72 \%$ of the microcomputer managers said that they planned to use Windows 3. Although the software lists for $\$ 149$-with a $\$ 99$ street price-running Windows doesn't come cheap. The managers surveyed said it costs an average of $\$ 950$ to equip a PC for Windows-that includes the cost of boosting RAM to 2 Mbytes and buying Windows versions of applications. Moreover, that price tag doesn't include upgrading hardware-running multiple applications under Windows 3 requires a 386 processor.

## DO YOU PLAN TO USE WINDOWS 3?



Source: a Robertson Stephens \& Co. Survey


©onnectors of all sorts are described in a free 576-page catalog. The Electronic Interconnection Systems Product Ordering Guide has specification drawings and photos of EM Electronic Products Division products. The catalog has information on IC socket connectors, board- and wiremount socket connectors, stacking connectors, headers, cable, and assembly equipment. Products are indexed by grid spacing, part number, and product type. To request a copy, write to 3M Electronic Products Division Catalog, P. 0. Box 3064, Cedar Rapids, Iowa 52406-3064.

## -Time, Big-Iime.

©ne glance at the full array of options Motorola offers in real-time, and you'll see why it's become the developer's platform of choice. For both target and host environments, no other single vendor has anything like it.

One reason is our long-time experience with real-time technology, beginning with our pioneering work back in 1980. Another is the broad spectrum of our product line, which includes ICs, boards, systems, and software. In short, Motorola has everything you need to build realtime applications ranging from simulation to industrial automation to imaging and more.

Yet another reason to choose Motorola is our unending commitment to open standards. Our real-time platform gives you standards-based choices at various levels of integration. The centerpiece of this nonproprietary approach is VMEexec,"' our wide-open, totally integrated development environment.VMEexec allows you to use standard UNIX ${ }^{*}$ interfaces to write a single set of application code, and then reuse it for other projects. Better still, you can combine any software product that conforms to these standards.VMEexec includes a high-performance realtime executive, a strong run-time connection to UNIX-based systems, flexible and efficient real-time I/O and file systems, as well as powerful development and debug capabilities. And because VMEexec is integrated with the hardware, you can begin
software development even before the hardware is available.

If you're thinking about real-time, you should be thinking about time to market, and that's all the more reason to think Motorola. Especially when you consider that we can help speed product integration by serving as a single source for boards, software and systems. Add to that the industry's best applications expertise and design support, ranging from small embedded control systems to multi-processor simulation. Then factor in Six Sigma quality control. And remember that Motorola gives you the industry's only true migration path from


Right now, Motorola real-time systems are hard at work in critical applications worldwide.

## We Do Real-Time Full-Time.

At Motorola, we've dedicated an entire division solely to realtime development systems. Our real-time system architecture begins at the microprocessor level in either CISC or RISC, and
extends all the way to the end-user.

Right now, you can use VMEexec to port UNIX applications to a SVID/POSIX-compliant real-time environment, and vice versa. And they can be used for runtime capabilities as well


CISC to RISC in both the development and run-time environments. Give us a call today at 1-800-624-8999,ext. 230, and put the realtime resources of Motorola on your side. We think you'll find the benefits are very big, and very real.
as for development. Several human interfaces are available, including X.11, Motif, DeltaWindows"', X .400 , and LU6.2. As for networking, Motorola supports all popular protocols, including TCP/IP, NFS, OSI, and SNA. We also offer a real-time database and CASE tools, and you can work in C, FORTRAN, ADA, PASCAL, LISP, COBOL, and BASIC. Put it all together, and you'll discover only one company gives you the full story on real-time, and that's Motorola.

## Motorola's In Real



O 1990 Motorola, Inc. Motorola Computer Group is a member of Motorolas General Systems Sector. VMEexec is a trademark of Motorola, Inc. All other product or brand names mentioned are trademarks or registered trademarks of their respective holders.

Malcoln
Baldrige
Nationa

# QuickLook 

## S E L L E i S

Which technical books are the most popular in Silicon Valley?

## ELEGRONICS:

Art of Electronics by Paul Horowitz and Winifred Hill. Cambridge University Press, 1989. \$47.95.

2. $N$
Noise Reduction Techniques in Electronic Systems, 2nd ed. by Henry W. Ott. Wiley, 1988. \$47.95.
3. SPICE: A Guide to Circuit Simulation and Analysis Using PSPICE by Paul Tuinega. Prentice-Hall, 1988. \$20.60
4. Logic Design Principles by Edward J. McCluskey. Prentice Hall, 1986. \$50.
5. Introduction to VLSI Design by Eugene D. Fabricus. McGraw-Hill, 1990. $\$ 48.95$.

## COMPUIER SAIENGE:

Object-oriented Design with Applications by Grady Booch. Addison Wesley, 1990. \$37.25.
2. Computer Architecture: A Quantitative Approach by John Hennessy and David Patterson. Morgan Kaufman, 1990. \$54.95.
3. Designing Object-oriented Software by Rebecca Wirfs-Brock, Brian Wilkerson, and Lauren Wiener. Prentice-Hall, 1990.

## $\$ 26.95$.

Object-oriented Software by Ann L. Winblad. Addison- Wesley, 1990. \$28.50. 5. Object Orientation by Setrag Khoshafian and Razmik Abnous. Wiley, 1990. $\$ 26.95$.

This list is compiled for Electronic Design by Stacey's Bookstore, 219 University Ave., Palo Alto, CA 94301: (415) 326-0681; fax (415) 326-0693.

## A G i 0 N Y in S

EISA Extended industry standard architecture
MMACS Million multiply-accumulates per second
OODB Object-oriented database
SPOX DSP operating system
SQL Structured (database) query language
SSOP Shrink small outline package
UGBW Unity gain bandwidth, a measure of op amp performance
$\mathrm{V}_{\text {on }} \quad 0 \mathrm{n}$ voltage for double diffused
DMOS MOS

PR10 D O C I S

Some software calls for entering key combinations again and again. So it often makes sense to store these strings of keystrokes as macros. The Chameleon device, which attaches to a PC keyboard, stores 8 k worth of macros in nonvolatile RAM. Keys can be remapped or redefined. Key combinations can be up- and downloaded from the host. Sirius Industries' Chameleon is IBM PC, XT, and AT compatible. The unit, which takes up no host memory, draws its power from the keyboard. Users can safeguard their macros by unplugging the Chameleon from the keyboard and taking it home. The Chameleon lists for $\$ 89$. For more information, contact the company at 21608 North 20th Ave., Phoenix, AZ 85027; (800) 229-0034; fax (602) 780-0140.

With Agiler's Touchman, users move their fingers over a panel rather than roll the pointing device. Because Touchman stays put, it's suitable for laptop and notebook computers; it also can be built into a regular size keyboard. Touchman lists for $\$ 89$. For more information, contact Contek International Corp., 66 Field Crest Rd., New Canaan, CT 06840; (203) 972-3406; fax (203) 972-0156.

## K M E T S K O R W E R <br> ...Perspectives on Time-to-Warket

## BY RON KMETOVICZ

President, Time to Market Associates Inc.
Cupertino, Calif;; (408) 446-4458

0hanges in technology and new-product development time are tightly coupled. Time to market must be held to a
 minimum so that technological change does not obsolete the product currently under development. Said another way, the best insurance for getting a project done is to keep its development time short so that technological change does not affect delivering the product to market.
The technical people involved in setting the product's definition have a difficult balancing act to perform. They must select a technological sword that gives a competitive advantage without excessive cost, as well as one that has reasonable developmental risk. Also, they must look ahead to ensure that the technology selected will remain competitive when the product reaches the market. These factors need to be addressed and incorporated in the product's definition.

On me-two-with-a-twist products, technology selections must be made almost entirely on time-to-market considerations. Selections are made up front and they must be right! Product development must stay in phase with the cycle time of technology. If Intel and Motorola produce a new generation of microprocessor every 18 months, then products based on that technology must follow suit within a few months of supplier introduction to remain competitive. It's becoming well accepted knowledge within the cyclic product development environment that a few months' savings on each product turn can produce a 6 - to 12 -month advantage by the time the third turn takes place. This time advantage is generally sufficient to gain a dominant competitive position. The Definition Matrix gives developers of me-too-with-a-twist products adequate checks and balances to select the appropriate technology up front so that it will not require revision in the planning and executive phases. This type of development cannot tolerate a technology change and still remain competitive.

0 ther efforts are likely to assume more technological risk. It is not unusual to have technological development and product development occurring concurrently on first-of-akind, derivative, and next-generation product efforts. The Definition Matrix provides the initial structure to assist in the management of the explosive mixture. Later, elements will be added to assist in the planning and execution phases of the project. A product development team that completes the new product development matrix will have identified most technological risk areas and will have thought through most of the management details associated with moving forward at an aggressive pace.

## QuickLook

## T I P S 1 N | N V E S T | N G

An engineering maxim says: The only constant is change. Nowhere is that truer than in investing. Today's rapidly changing economic and political scenes are reshaping the investment world. A return to basic investment principles helps engineers achieve long-range goals of building wealth, preserving capital, planning for retirement, and paying for their children's education. Two commonsense principles, patience and discipline, not only build wealth, but help engineers avoid investment pitfalls. Here's a checklist of common investor errors.
$\bullet$ Fuzzy goals. An engineer must first ask, "Why am I investing-for immediate income or long-term capital gains?"

- Investing without understanding. An engineer must understand what each of his investments represents. He should never buy an investment because someone wants to sell him one.
- Not adjusting to changing market conditions. Just as an engineer's goals can change over time, the long-term prospects of financial markets may change greatly. Investors must respond to trends.
-Investing in today's marketplace with yesterday's investments. Today's market is made up of much more than stocks and bonds.
-Inconsistent security selection. The more risked assumed, the greater the potential for profit, or loss. Investors must weigh each investment according to these parameters.
-Profits taken too soon. Some investors takes profits early for shorttern gains, shrinking profit potential.
- Losses allowed to run. If an investment performs poorly, engineers may be better off cutting their losses quickly.
-Lack of understanding of tax laws. Engineers must rethink investment strategies because of recent tax reforms.
-Ignorance of the time value of money. There is good earning potential in long-term investments in which interest or dividends are compounded over time, expecially if interest accrues on a tax-free or taxdeferred basis.
- Unrealistic expectations. Some investors demand dramatic and immediate return from investments. Yet investing in securities is a means of putting money to work toward a financial end.

An engineer who finds himself facing any of these issues should seek the help of a professional financial advisor.
by Henry Wiesel, a financial consultant with Shearson Lehman Bros., Shrewsbury, N. J. Questions and comments are invited in care of the news editor, Electronic Design.


## 1-M I V U T E

What do you think about the education that young engineers are getting these days?

In Stephen Scrupski's editorial regarding engineering education (Electronic Design, Aug. 23), he states, "I must question the wisdom of many humanities courses for engineers when there's so much new technology to be learned-what courses are they forfeiting to fit these non-engineering subjects into the curriculum?"

The more important question to be asked here is: What part of their education would they be forfeiting by not including these "nonengineering" subjects in the curriculum? One of the present complaints by industrial managers is the lack of communication skills of most engineers. Any knowledge of a new technology is useless if an engineer cannot effectively communicate his ideas.

An engineering education should prepare an engineer for life, not just for his first job upon graduation. Today's new technologies become tomorrow's obsolete technologies, but engineering fundamentals such as Ohm's law remain the same. An engineering curriculum should provide a solid theoretical foundation as well as develop good communication skills. Ted Manikas, Research Triangle Park, North Carolina.

Communication skills are poor. Engineering colleges have lower verbal SAT score entrance requirements than the liberal arts colleges. Communication skills should be developed in high school.

Our college professors have shortened the length of the semester by $19 \%$, down from 16 weeks to 13 weeks during the last 20 years. Our educators don't want to educate.

Computers are used extensively in college engineering. Shouldn't high school typing be a mandatory prerequisite for computer usage? One semester of typing would increase speed and accuracy. Typing isn't in vogue.

College teaching assistants (TAs) have poor communication skills. English is a second language. Engineering courses are demanding enough without facing a TA who can't communicate.

To address your questions specifically, four years should be adequate to provide the engineering foundation to perform effectively. The course structure should stick to basics of engineering, math, and physies and should not push superficial subjects that are in vogue. Volleyball isn't worth three credits.

Education is only the starting point. The first few years out of college require some guidance and mentoring while developing good engineering skills. You don't get this in school or at companies that lose or replace their senior engineers with inexperienced personnel.

As an associate of mine put it: The younger engineers are running around looking for information that our senior engineers have at their fingertips. Richard F. Tax, River Vale, N. J.

What's your opinion on the education of today's young engineers? Are there any subject areas that are being under- or over-emphasized by college or university curriculums? What role should courses in the humanities play in engineering education? Are four years enough to give young engineers a good foundation in their field or are five years required? Send your opinions to our Reader Opinions fax number, which is (201) 393-0637. Or send your comments to Compuserve address 75410,3624 . Or mail your responses to Electronic Design, Reader Opinions, 611 Route 46 West, Hasbrouck Heights, NJ 07604.


## PEASE PORRIDGE

## Whars Aul This CMRR STuFf, Auvhow?

Recently, many people have asked me about how to test op amps for common-mode rejection ratio (CMRR), which is defined as the delta of the offset voltage $\left(\mathrm{V}_{\mathrm{OS}}\right)$ versus the com-mon-mode voltage ( $\mathrm{V}_{\mathrm{CM}}$ ). The first thing I tell them is how not to measure CMRR (Fig. 1). If you drive a sine wave or triangle wave into point A, it seems like the output error, as seen by a floating scope, will be $(\mathrm{N}+1)$ times ( $\mathrm{V}_{\mathrm{CM}}$ divided by the CMRR).

But that's not quite true: you will see ( $\mathrm{N}+1$ ) times (the CM error plus the gain error). So, at moderate frequencies where the gain is rolling off and the CMRR is still high, you will see mostly the gain error, and your curve of CMRR vs. frequency will look just as bad as


## BOB PEASE

 OBTAINED A BSEE FROM MIT IN 1961 AND IS STAFF SCIENTIST AT NATIONAL SEMICONDUCTOR CORP., SANTA CLARA, CALIF. the Bode plot. That's because with this circuit, that's just what you will be seeing!It turns out that a few op-amp data sheets still exist in which the CMRR curve is stated to be the same as the Bode plot. The National LF400 and LF401 are two examples; next year we will correct those curves to show that the common-mode rejection ratio is actually much higher than the gain at 100 or 1000 Hz .

Ah, let's avoid that floating scope. We'll drive the sine wave generator into the mid-point of the power supply, and ground the scope and ground point A (Fig. 2). Then we'll
get the true CMRR, because the output won't have to swing. Right? Wrong! The circuit function hasn't changed at all; only the viewpoint of the observer changed. The output does have to swing, referred to any power supply, so this still gives the same wrong answer. You may say that you asked for the CMRR as a function of frequency-but the answer is, in most cases, the curve of gain vs. frequency.

What about, as an alternative, the well-known scheme where an extra servo amplifier closes the loop and doesn't require the op-amp output to do any swinging (Fig. 3)? That's okay at dc. So it's adequate for dc testing with automatic test equipment (ATE), for production test, and for stepped dc levels.

And it will give the same answer as my circuit (which I'll discuss a little later) at all low frequencies up to where it doesn't give the same answer. Now what frequency would that be? Nobody knows! Because if you have an op amp with low CMRR, the servo scheme will work accurately up to one frequency. And if you have an op amp with high CMRR, the servo scheme will work accurately only up to a different frequency.

Also, the servo amplifier adds so much gain into the loop that ringing, overshoot, or marginal stability at some mid frequencies is inevitable. That's much too horrible for me to
worry about. I'll just avoid that by using a circuit which gives very consistent and predictable results.

When I ran an LF356 in the circuit of figure 1, I got an error of 4 mV pk pk at 1 kHz -a big fat quadrature error, 90 degrees out of phase with the output (Fig. 4, upper trace). If you think that's the CM error, you might say the CMRR is as low as 5000 at 1 kHz , and falling rapidly as the frequency increases. But the actual CMRR is about $0.2 \mathrm{mV} \mathrm{pk}-\mathrm{pk}$ (Fig. 4, lower trace). As a result, the CMRR is about 100,000 at 1 kHz or any lower frequency. In addition, the CM error on this unit isn't really linear. As you get near -9 V , the error gets more nonlinear (this is a $-9-\mathrm{V}$ to $+12-\mathrm{V}$ CM range on a $12-\mathrm{V}$ supply; I chose a $\pm 12$-V supply so my function generator could overdrive the inputs).

As you can see, this business of CMRR testing isn't trivial. Just how, then, can we test for CMRR and get the right results? Well, there's a darned fine circuit I invented myself about 22 years ago (Fig. 5). It has limitations, but it's the best circuit I've seen. Let's choose $R_{1}=R_{11}=1 \mathrm{k}$, $\mathrm{R}_{2}=\mathrm{R}_{12}=10 \mathrm{k}$, and $\mathrm{R}_{3}=200 \mathrm{k}$ and $\mathrm{R}_{4}$ = a $500-\Omega$ single-turn carbon pot, or its equivalent.
These values will permit us to set up a more-or-less balanced bridge, with a fine trim for dc balance. In this


## PEASE PORRIDGE


sit down and compute it, the noise gain rises from 11 to 111. Namely, the noise gain was ( $1+$ $R_{2} / R_{1}$ ), increasing to ( $1+\mathrm{R}_{2} / \mathrm{R}_{1}$ ) plus $\left(\mathrm{R}_{2}+\mathrm{R}_{12}\right) / \mathrm{R}_{100}$. In this example, that's an increase of 100 . So, you're now looking at a change of $V_{\text {out }}$ equal to 100 times the input error voltage, (and that is $\mathrm{V}_{\mathrm{CM}}$ divided by CMRR).

Of course, it's unlikely for this error voltage to be a lin-
case, the noise gain is defined as $\left(\mathrm{R}_{\mathrm{f}} /\right.$ $\mathrm{R}_{\text {in }}+1$ ), or about 11. Let's puta $\pm 11$ volt sine wave into the signal input so that the CM voltage is about $\pm 10$ volts. The output error signal will be about 11 times the error voltage plus some function of the mismatch of all those resistors.

Okay, first connect $V_{\text {in }}$ to the scope's horizontal input, $\mathrm{V}_{\text {out }}$ to the vertical input, and operate the scope in cross-plot (X-Y) mode. Trim pot $\mathrm{R}_{4}$ until the output error is very small, or until the slope is nominally flat. We don't know if the CMRR error is balanced out by the resistor error or whatever, but it turns out we don't care. Just observe that the outputerror, as viewed on a cross-plot scope, is quite small. Now connect in $\mathrm{R}_{100 \mathrm{a}}$ a nice low value, such as $200 \Omega$. If you
ear function of $\mathrm{V}_{\mathrm{CM}}$, which is why I recommend you look at it with a scope in X-Y mode. Too many people are inclined to make a pretend game that CMRR is constant at all levels and CM error is a linear function of $\mathrm{V}_{\mathrm{CM}}$. So they just look at 2 points and assume every other voltage has a linear error; and that's just too silly. Even if you want to use some ATE you will want to look at this error in at least 3 places-maybe even at 4 or 5 voltages.

Another good reason to use a scope in the X-Y mode is so you can use your eyeball to subtract out the noise. You certainly can't use an ac voltmeter to detect the CMRR error. For example, with the waveform of figure 4 (lower trace), the CM error is fairly stated as $0.2 \mathrm{mV} \mathrm{pk}-\mathrm{pk}$, not 0.5 mV pk-pk (as your meter might say if you let it include the noise).

Anyhow, if you have a good amplifier with a CMRR of about 100 dB , the CM error will be about $200 \mu \mathrm{~V}$ pk-pk. When it's magnified by 100 , you can easily see an output error of 20 mV pk pk. If you have a really good unit with CMRR of 120 or 140 dB , you'll
want to clip in the $\mathrm{R}_{100 \mathrm{~b}}$, such as $20 \Omega$, and then the delta (noise gain) will be 1000 . The noise will be magnified by 1000 , but so will the error, and you can see what you need to see. Now, I won't get embroiled in the question: Are you trying to see exactly how good the CMRR really is, or just if the CMRR is better than the datasheet value? In either case, this approach is the best way I have seen.

For use with ATE, you don't have to look with a scope; you can use a step or trapezoidal wave and look just at the de levels at the ends, or the middle, or wherever you need. Note that you needn't trim that resistor network all of the time, nor do you have to trim it perfectly. All you have to know is that when the noise gain changes from a low value to a high value, and the output error changes, the change of the output error is of interest-not really the pk-pk value before or after, but the delta. You don't have to trim the resistor to get the slope perfect, but that's the easy way for the guy working at his bench to see and appreciate the changes.

This is a great circuit to fool around with. When you get it running, you'll want to test every op amp in your area, because it gives you such a neat high-resolution view. It gives you a good feel for what's happening, rather than just hard, cold, dumb numbers. For example, if you see a $22-\mathrm{mV}$ pk-pk output signal that's caused by a $22 \mu \mathrm{~V}$ error signal, you know that the CMRR really is way up near a million, which is much more educational than a cold "119.2 dB" statement.

Besides, you learn rather quickly that the display's slope and curvature are important. Not all amplifiers with the same " 119.2 dB " of CMRR are actually the same. Some have a positive slope, some may have a negative slope, and some curve madly, so that if you took a 2-point measurement, the slope would change wildly, depending on which two points you choose (if you increase the amplitude of the input signal, you can also see plainly where severe distortion sets in-that's the extent of the common-mode range).

Limitations: If you set the noise

## Pump Up Your Performance



## Clearpoint Workstation Memory Products. . .

. . . out-perform system vendor offerings. You can count on Clearpoint for innovative design - superior reliability - highest density $\quad$ round-theclock support unconditional lifetime warranty
DEC Family Compatibles

- MicroVAX 3100
- DECstation 3100 and 2100
- MicroVAX 3000
- MicroVAX 2000
- MicroVAX II


## SUN Family Compatibles

- $4 / 2 \mathrm{xx}, 3 / 4 \mathrm{xx}, 3 / 2 \mathrm{xx}$
- $3 / 75$ and $3 / 1 \mathrm{xx}$
- $3 / 50$
- $3 / 60,3 / 80,386 \mathrm{i}, 4 / 60,4 / 1 \mathrm{xx}, 4 / 3 \mathrm{xx}$
- $3 / \mathrm{E}$

APOLLO Family Compatibles

- DN 3010A, 3500, 4000, 4500
- DN 3000

COMPAQ Family Compatibles

- Deskpro 386/20, 20e, 25 memory modules
- Deskpro 20e expansion memory

APPLE Family Compatibles

- All Macintoshes excluding the 512

IBM Family Compatibles

- RT PC
- $\mathrm{PS} / 250 \mathrm{z}, 70$ and 80
- PS/2 50z "Piggy-back" SIMMS


## VME/VSB

- Dual-ported memory
- Memory with Parity
- Memory with EDC


No pain, your gain.
Call or write and we'll send information:

- Clearpoint's Product and Services Catalog
- the Designer's Guide to Add-in Memory
- Specific Product Information
- the Clearpoint Sales office nearest you - worldwide!



## CLEARPOINT RESEARCH CORP.

 35 Parkwood DriveHopkinton, MA 01748-1659
1-800-CLEARPT (508) 435-2000
Telex: 298281 CLEARPOINT UR

## 

These mini-DIN plugs feature mass IDC terminationone quick stroke for productivity. In fact, our 'little’ breakthrough in circular connector termination lets you reduce labor costs by $50 \%$ to $75 \%$.

Using insulation displacement contacts and our exclusive one-step shield crimp, it takes less than a minute from start of termination to overmolding readiness. And the plug

is designed to be troublefree: conductors and shield are completely isolated, and preloaded contacts assure true contact position. The finished package provides an outstandingly quiet interface.


Breakthrough technology includes production support: our simplified tooling handles plugs with 3 to 8 contact positions, with no changeover between sizes. The tooling does all the

work of critical alignment, so work goes even faster. And domestic availability makes an even stronger case for local cable production.

Call our Product Information Center at 1-800-522-6752 and ask for more information on AMP Mini-DIN plug and receptacle lines. AMP Incorporated, Harrisburg, PA 17105-3608.

AMP is a trademark of AMP Incorporated.

Complete component system: AMP shielded mini-DIN receptacles are a mere $1 / 2$-inch cube, designed for automated or robotic insertion and high-temp processing. With a wide range of AMP connectors available for the other end.


## PICO POWER INDUCDIS

## SURFACE MOUNT

 AXIAL INDUCTORS TOROIDAL INSULATED LEADS

PICO's Ultra-Miniature
Power Inductors are ideal for
Noise, Spike and Power Filtering Applications in Power Supplies, DC-DC Converters and Switching Regulators.

- QPL standards available MIL-T-27/356
- Temperature range $-55^{\circ} \mathrm{C}$ to $+130^{\circ} \mathrm{C}$
- All units are magnetically shielded
- All units meet the requirements of MIL-T-27 (TF5S04ZZ)
- Minimum possible size
- Split windings
- Inductance values to 20 mH with DC currents to. 23 amps

PICO manufactures complete lines of Transformers, Inductors, DC-DC Converters and AC-DC Power Supplies


Electronics, Inc.
453 N. MacQuesten Pkwy. Mt. Vernon, N.Y. 10552
Call Toll Free 800-431-1064
IN NEW YORK CALL 914-699-5514


Figure 4
gain as high as 100 , then this circuit, of course, will be 3 dB down at ( $\mathrm{F}_{\mathrm{GBW}}$ ) divided by 100 , so you would only use this up to about 1 kHz on an ordinary 1-MHz op amp, and only up to 100 Hz at a gain of 1000 . That's not too bad, really.

To look at CMRR above 1 kHz , you might use $\mathrm{R}_{100 \mathrm{c}}=2 \mathrm{k}$ to give good results up to 10 kHz . In other words, you have to engineer this circuit a little to know where it gives valid data. You can't avoid the fact that thinking is required. Sorry about that.

For really fast work, I go to a highspeed low-gain version where $R_{1}=$ $\mathrm{R}_{11}=5 \mathrm{k}, \mathrm{R}_{2}=\mathrm{R}_{12}=5 \mathrm{k}$, and $\mathrm{R}_{100}=2 \mathrm{k}$ or 1 k or 0.5 k . This works pretty well up to 50 kHz or more, depending on what gain-bandwidth product your amplifier has.

For best results at ac, it's important to avoid stray capacitance of wires or of a real switch at the points where you connect to $\mathrm{R}_{100 \mathrm{a}}$ or $\mathrm{R}_{100 \mathrm{~b}}$. Usually I get excellent results from just grabbing on to the resistor with a minigator clip. You can avoid the stray pF that way. If you use a good selector switch, with all of the wires dressed neatly in the air (which is an excellent insulator) you may be able to get



## Panel of experts.



Brighter, sharper, clearer, and flicker-free. When it comes to displays for industrial and medical applications, see the experts: Fujitsu Component of America.
It didn't take much research to discover what computer users in heavy-duty industrial, medical, and mainframe environments want from their displays. A bright, reliable, and interference-free picture.

To answer this need would take a lot more than a brilliant idea. It would take at least two.

## Built to scale.

Idea number one is the very

Product Selection Guide			
Parts Nos.	Pixel/Format	Gray Scale	Screen Diog.
FPF8050HRUD-101	$640 \times 400$	4	$9{ }^{\prime \prime}$
FPF8050HRUK	$640 \times 400$	4	$10^{\prime \prime}$
FPF8050HFUGA*	$640 \times 400$	1	$10^{\prime \prime}$
FPF8060HRUM	$640 \times 480$	1	101/2"
FPF8060HRUK	$640 \times 480$	4	101/2"
FPF8060HRUS-120	$640 \times 480$	16	101/2"
FPF12896HRUF*	$1024 \times 768$	1	$15^{\prime \prime}$
FPF128102HRUF*	$1024 \times 816$	1	$18^{\prime \prime}$

*Also available as a monitor.

## Our big picture.

Our next bright idea was a $15^{\prime \prime}$ diagonal extended VGA display panel with $1024 \times 768$ pixels of bright, crystal clear image. Offering the same performance as our gray scale, it's also available with a standard AT-bus video controller, and TIGA ${ }^{\text {TM }}$ compatibility.
first 16-gray scale AC-memory plasma display available anywhere. An easy design-in, it interfaces with a standard Paradise ${ }^{m \mathrm{~m}}$ VGA card to provide $640 \times 480$ pixels of flicker-free, high contrast viewing in even the toughest EMI environments. And that holds true for over 50,000 hours of continuous operation.

## Every step of the way." ${ }^{\text {s. }}$

Fujitsu Component of America, Inc. 3545 North First Street • San Jose, CA 95134-1804.
 offer premium gray scale and extended VGA performance for a competitive price, call the experts at Fujitsu Component of America at 1-800-441-2345 (ask for ext. 238). Inside California, call 1-800-441-2345 and ask for ext. 238. It may be the brightest thing you'll ever do.

Which brings us to our next idea: that choosing Fujitsu for your next design is one brilliant move. Our panel of technical experts can provide all the advice, design assistance, and support you need-every step of the way.

## Talk to an expert.

To find out how you can

## How tostay ahead

Start with our high-performance standard products.Then add unique functional or performance capabilities with our semi-standard options.To get the ICs you want. And the competitive advantage you need. Quickly. Easily. With minimal risk.

Want power factor correction?

Don't just
meet the standard.
Beat the standard. With single-chip standard products that offer power factor correction of .99, in either boost or flyback (buck-boost) configurations. Theyre the first ICs designed to reduce harmonic currents to help you meet both existing and proposed regulations for switch mode power supplies. And help you reduce
your customer's power distribution problems.

Or how about our complete family of high-frequency PWM controllers.

They offer you a wide range of highfrequency, highperformance single chip solutions for state-of-the-art switching power supplies with operating frequencies up to 1 MHz . With advanced
Micro Linear's family of PWM and Power Factor Control IC's provide highlyintegrated solutions for a broad range of switching power supplies.
features like improved fault protection. Added synchronization

Product Category	Features
Power Factor   Control	High Efficiency Flyback or   Boost
PWM Controllers	1 MHz , Additional Fault   Protection, Synchronization
Resonant Control	ZVS and ZCS to 3 MHz
Motor Control	BLDC Sensorless   Commutation

## of the powercurve.

capability. Even stability improvements. Looking for new techniques in motion control?

Now you have some unique design options. With our new ML4410 sensorless motor controller, the first controller designed to automatically commutate brushless DC motors without the need for Hall-effect sensors. So you can eliminate the inherent alignment, torque ripple and flutter problems previously encountered with Hall-effect commutation. And design smaller, lower cost, higher reliability motors for any continuous speed application.

## Semi-standard options.

Since these standard products are based on our FB3480, FB3490 and FB3631 tile arrays, they can all be easily


The ML4410se motor controller ean control any wye or delta wound 3 -phase brushless DC motor:
modified to satisfy specific application requirements.Whether you require proprietary circuit modifications, special screening, packaging or reliability levels.
Semi-standard modifications of our standard products offer you better application fit, with lower risk.

We'll soon be introducing a new line of resonant controllers for ZVS and ZCS applications and a new softswitching, phase modulation controller that will enable you to design smaller, more efficient power supplies.

## Want some straight answers?

Just call Jon Klein today at (408) 433-5200 and ask him about our complete line of power control products. And about our semi-standard capabilities. He'll show that the best way to stay ahead of the power curve is to take a straight line.

Straight to Micro Linear.


# ATTAIN DRIVE FOR 521 MOSFET RELAY 

DAVID JOHNSON

10198 W. Berry Dr., Littleton, CO 80127; (303) 973-8408.

The necessary drive for a MOSFET bidirectional relay, used to switch power to $120-\mathrm{V}$ ac loads, can be supplied by a circuit where two CMOS Schmitt triggers (74C14) form a 100 kHz square-wave oscillator with complementary outputs (see the figure). The two output signals are cou-
pled to the FET gates of the relay circuit through a pair of $100-\mathrm{pF}$ capacitors and a bridge rectifier that converts the ac voltage to dc. Sufficient gate-source capacitance within the FETs eliminates the need for any added filtering.

Resistor $\mathrm{R}_{1}$ 's value $(220 \mathrm{k} \Omega)$ is chosen to discharge the capacitance and
turn the transistors off in about 2 ms once the drive signal has been disabled. Faster switching times are possible using lower values of $\mathrm{R}_{1}$ and higher drive frequencies. With the values shown, less than 2 mA of current is needed from a 12 - to $15-\mathrm{V}$ supply to drive the circuit. In addition, with such a small coupling capacitance, the leakage current from the power line to the CMOS driver circuit is less than $5 \mu \mathrm{~A}$, which is sufficient isolation for many applications. Leakage currents less than $1 \mu \mathrm{~A}$ are possible by using a $1-\mathrm{MHz}$ drive frequency and $12-\mathrm{pF}$ coupling capacitors.


T0 SUPPLY
the drive needed for a MOSFET bidirectional relay, the Schmitt triggers (74C14) form a $100-\mathrm{kHz}$ square-wave oscillator with complementary outputs. The outputs are rectified bridge and applied to the FET gates of the relay circuit. $\mathrm{R}_{1}$ turns off the transistors.

# $\overline{52}$ Converr V $_{6}$ To Duty Cycle 

B. STASICKI

Max Planck Institut für Strömungsforschung, Göttingen, W. Germany; (0551) 709-1.

Avoltage-to-duty-cycle converter can be useful in many applications such as pulse-forming networks. This externally-triggered circuit generates a rectangular TTL (highspeed CMOS) signal with a duty cycle that's a linear function of the control voltage $\left(\mathrm{V}_{\mathrm{C}}\right)$. The period of the TTL signal is given by the trigger frequency, $\mathrm{f}_{\text {in }}$. The duty cycle is frequency independent over a wide range.

The circuit consists of a positiveedge triggered monostable multivibrator $\left(\mathrm{U}_{1}\right)$ and an analog integrator ( $\mathrm{U}_{2}$ ) (Fig. 1). $\mathrm{U}_{1}$, from an HC or HCT family, generates rail-to-rail pulses of duration $\mathrm{t}_{\mathrm{w}}$, controlled by the collector current of $\mathrm{Q}_{1}$. The duty cycle of $\mathrm{U}_{1}$ 's output equals $\mathrm{t}_{\mathrm{w}} \times \mathrm{f}_{\mathrm{in}}$.

The mean value of a rectangular signal is proportional to its duty cycle. As a result, $\mathrm{U}_{2}$ will supply an error signal for the feedback loop. This signal controls $\mathrm{U}_{1}$ 's output-pulse
width, $\mathrm{t}_{\mathrm{W}}$, keeping the duty cycle at a constant value given by the control voltage, $\mathrm{V}_{\mathrm{C}}$, where
duty cycle $=1-\mathrm{V}_{\mathrm{C}} / 5$.
To get a duty cycle directly proportional to the control voltage, add an analog inverter that supplies $5 \mathrm{~V}-\mathrm{V}_{\mathrm{C}}$.

The circuit is powered by a $+5-\mathrm{V}$ supply. Because this voltage is also used as a reference, is must be stable to obtain good voltage-to-duty-cycleconversion accuracy. With the components specified in figure 1, the converter is stable and accurate in the range from 100 Hz to above 1 MHz . The settling time for large and fast $\mathrm{V}_{\mathrm{C}}$ changes is about 1 second. The up-per-frequency limit is due to the minimum pulse width $\mathrm{t}_{\mathrm{W}_{\text {min }}}(50 \mathrm{~ns})$ that can be generated by a multivibrator and the multivibrator recov-

## IDEAS FOR DESIGN


ery time $t_{R}(30 \mathrm{~ns})$. The lower limit depends on the integrator R-C parameter. To maintain stability, the RC parameter should be much greater than $1 / \mathrm{f}_{\mathrm{in}}$. But a higher R -C value increases the circuit's settling time.

For a given value of $f_{i n}$, the lowest duty cycle is determined by $\mathrm{t}_{\mathrm{Wmin}}$ and the highest by $t_{R}$. For example, when $\mathrm{f}_{\text {in }}=10 \mathrm{kHz}$, the minimum duty cycle is $50 \mathrm{~ns} \times 10 \mathrm{kHz}=0.0005$ and the
maximum is $1-30 \mathrm{~ns} \times 10 \mathrm{kHz}=$ 0.9997 . However, the operation at extremely high duty cycle values isn't recommended, because the multivibrator can be retriggered due to the pulse-width jitter effect in this region and the output pulse missed.
Note that the positive-output signal transition is shifted by the phase ( $\phi$ ) relative to the positive-input-signal transition, where

# 29 AD Procrammaliz 523 GAIN, ATTENUATION 

JAMES WONG
Analog Devices, Precision Monolithics Div., 1500 Space Park Dr., PO Box 58020, Santa Clara, CA 95052; (408) 727-9222.
 1. BY adding $R_{1}$
and $R_{2}$ in the
feedback loop
around a DAC, the
circuit functions as
a digitally-
programmable
amp. The gain or
attenuation is
variable over the
range of $1 / 64$ to 64 .
The resistors are
connected in a $T$ -
configuration.

2. AT HIGH frequencies, when the circuit is used as a voltage-to-phase-shift converter, propagation-delay time ( $\mathrm{t}_{\mathrm{p}}$ ) must be considered. The shift caused by $t_{p}$ can be avoided if a negative-output transition is used as a reference.
$\phi($ degrees $)=360\left(1-V_{C} / 5\right)$.
Therefore, the circuit can also be used as a frequency-independent voltage-to-phase converter for TTL trigger signals. The operating frequency and phase-shift ranges correspond to those obtained when the circuit is used as a voltage-to-duty-cycle converter. However, at higher operating frequencies, the additional phase shift caused by the propagation delay time, $\mathrm{t}_{\mathrm{P}}(40 \mathrm{~ns})$, must be considered (Fig. 2). If the application uses the negative output signal transition as a reference for phase shift instead of a positive-input-signal, this shift will be avoided. $\square$

By adding two resistors to the output-amp feedback loop of a current-output digital-to-analog converter (DAC), both gain control and attenuation control can be achieved (Fig. 1). This digitally programmable amplifier produces gain and attenuation in the range of $1 / 64$ to 64 . The circuit gets its range from a 12 -bit CMOS DAC.

The design works because the transfer function from the DAC's input to its output is purely voltage at-

## IFD Winver

IFD Winner for July 12
Bruce C. Trump, Burr-Brown Corp., 6730 S. Tucson Blvd., Tucson AZ 85706; (602) 746-7347. His idea: "PC Detects Remote Switch Closures."

## Sampling A/Ds

## There's only one complete source.

No matter what your requirement, you will find the answer in DATEL's broad line of Sampling Analog-to-Digital Converters.

## Fast becoming <br> the industry standard

Characterized through Nyquist operation, these converters offer superior Signal-to-Noise ratios and harmonic distortion specifications.
Bottom line, compare these converters with any competitive units, and you'll see there is no reason to look anywhere else.


For details on how DATEL's Sampling A/Ds can improve your circuit's performance call or write DATEL, Inc., 11 Cabot Boulevard, Mansfield, MA 02048.

## Let DATEL convert you.

 Call now 800-233-2765
tenuation. Connecting $\mathrm{R}_{1}$ and $\mathrm{R}_{2}$ in a " T " configuration inside the output amp's feedback loop produces a voltage gain from the resistor junction to the output. If $\mathrm{R}_{1}$ is much less than $\mathrm{R}_{\mathrm{FB}}$ (11 $\mathrm{k} \Omega$ in this example), the gain produced nearly equals $1+\left(R_{2} / R_{1}\right)$, or 64. The result is a programmable gain amp with a transfer function of $\mathrm{A}_{\mathrm{V}}=-(\mathrm{D} / 4096)(64)$,
where D represents the DAC's bina-ry-weighted digital code. Of course, the added gain of the T-network increases the circuit's noise gain. Therefore, it's important to choose first a low-noise amplifier.
By using a low-noise, high-frequency op amp, such as the OP-61, the circuit will have a wide bandwidth performance even at high gain settings. The circuit's frequency response can be plotted at different gain settings (Fig. 2). At high gains, the amp has a $1-\mathrm{MHz}$ bandwidth.

2. GAIN IS PLOTTED versus frequency for various digital inputs of the DAC. The amplifier has a $1-\mathrm{MHz}$ bandwidth at high gains, but it drops for gains below $1 / 4$.

## Custom Modified Enclosures from stock...

PacTec's entire line of standard "H" Series hand held enclosures is designed to be economically custom modified, to your specifications.
Contact PacTec's Design Modification Team for your next enclosure application.


ENTERPRISE \& EXECUTIVE AVES., PHILADELPHIA, PA 19153


## 1985 : smallest



## VI-100 family

$4.6^{\prime \prime} \times 2.4^{\prime \prime} \times 0.5^{\prime \prime}$
50, 75, 100 Watts

## १๑९อ: smaller



## 1-800-735-6200

## If You Need Chips that Talk,

## RealVoice ${ }^{\text {nu }}$ Synthesizers offer Quality and Affordability

If you've talked about designing speech synthesizers into your system but think they sound like toys and are too complex and costly to work with, try Oki's RealVoice family of easy-to-use, affordable speech synthesizers, and listen to the difference.

Once you've heard the high-quality, realistic sound, you'll see why so many highend consumer-interface products use Oki voice chips. Our proprietary ADPCM algorithm provides better than FM signal-to-noise ratio, making them ideal for sophisticated applications like PCs, home and car security systems, point-of-sale advertising, training tools, medical readouts, and more.

Plus these chips are easy to work with and more costeffective than ever. On-chip
features such as a low pass filter and $12-\mathrm{bit} \mathrm{D} / \mathrm{A}$ reduce costly design time and IC count, yet increase system reliability. Choose from a range of devices: Synthesizers with 5- to $40-\mathrm{sec}-$ ond message options, ROMless and OTP-based development chips, a pitch control device, and a solid-state recorder.

We also offer demo boards and our ASE88-a low-cost development system with IBM ${ }^{\circledR}$ PC AT $^{T N}$-based board and software for easy editing and waveform display.

Hearing is believing. Call 1-800-OKI-6388 for samples. See how easy and cost-effective it is to design RealVoice sound features into your system it's quality that speaks for itself.

[^4]

Transforming tecbnology into customer solutions

## Talk to Oki.



## PRODUCTS NEWSLETTER

By moving the 80387 floating-point math coprocessor's original design to its advanced, $1-\mu \mathrm{m}$ CMOS process line, Intel Corp., Santa Clara, Calif., improved the chip's throughput by almost $20 \%$. The fabrication line now yields chips that operate at system clock speeds of 16,20 , and 25 MHz , as well as a high-speed design (previously in production) that runs at 33 MHz . Intended for computer systems that employ the 80386 DX full 32 -bit processor, the enhanced math chip accelerates such programs as Quattro Pro from Borland, AutoCad from Autodesk, and Freelance Plus from Lotus, plus over a thousand others. The finer-line process also reduces the chip's power consumption by about one-third over the previous 387 math chip. Prices for the 80387 math coprocessor start at $\$ 570$ for the $16-\mathrm{MHz}$ version and increase to $\$ 647, \$ 814$, and $\$ 994$, respectively, for the $20-, 25$-, and $33-\mathrm{MHz}$ versions. Samples and production quantities are available immediately. Contact Dennis Carter, (408) 987-8080. DB

CIRCLE 391
Fast IGBTs Cut Energy Losses To New Lows

Insulated-gate bipolar transistors (IGBTs) can now move from motor control to center stage in large switching power supplies running at 50 kHz or higher thanks a new family of these transistors. "UltraFast" IGBTs from International Rectifier, El Segundo Calif., possess the lowest switching energy losses yet per unit of current density-an efficiency about $50 \%$ greater than that of existing IGBTs (ELECTRONIC DESIGN, July 12, p.36). These new power switches have delay-plus-turn-off times as low as 300 ns for a $600-\mathrm{V}, 50-\mathrm{A}$ device. IR suggests that these efficient power switches need an improved rating technique. To that end, they propose the concept of total switching energy losses, or $\mathrm{E}_{\mathrm{TS}}$. This measure of efficiency will be specified, in millijoules, for all of the UltraFast devices. The parameter is supported by three sets of device data: switching losses vs. gate resistance; switching losses vs. case temperature, and switching losses vs. collector current. With this data, designers can calculate total switching losses without worrying about actual voltage and current wave shapes, the tail current, or quasi-saturation. $\mathrm{E}_{\mathrm{TS}}$ for new $600-\mathrm{V}$ IGBTs with a saturation voltage of 3 V range from 0.5 mJ at 6.5 A for a size 2 die (the IRGBC20U rated at 13 A continuous) to 2.8 mJ at 27 A for a size 5 die (the IRGPC50U rated at 55 A continuous). In quantities of 1000 , they go for $\$ 4.65$ and $\$ 22.09$ each, respectively. Call Howard Abramowitz, (213) $607-8900$. FG

CIRCLE 392
UPGRADE PATH F0R HC11 Extending the performance of an 8-bit microcontroller often leads to a nonWIDENS CPU To 16 BITS compatible family of 16 -bit processors. Not so with the popular 68 HC 11 series from Motorola Inc., Austin, Texas. The company has developed the 68 HC 16 family-a 16 -bit series of microcontrollers that will be assembly-code-compatible with the 8 -bit controllers, but offers six times the sustained throughput. Interrupt latencies have been cut to $3 \mu \mathrm{~s}-\mathrm{a}$ six-fold improvement over the HC 11 family. Furthermore, the processor core can address two separate 1-Mbyte memory spaces, one for instructions and one for data. The chip design is highly modularized. For customer-defined versions, it can take advantage of predefined functions that exist in the design library for the 68300 embedded-processor family. The first member of the family is the ROMless HC16Z1, which contains a 16 -bit CPU core, a queued serial module (including two serial ports), a system integration module (bus interface controller), a timer block, 1 kbyte of RAM, and a 10 -bit 8 -channel ADC. Contact John Suchyta, (512) 891-2062. DB

CIRCLE 393

## Programmable Dot.Clock IC SIMPLIFIES PC VIDE0

The SC11410 and 11411A digitally controlled clock synthesizers from Sierra Semiconductor Corp., San Jose, Calif., with outputs of up to 100 MHz , generCraphe ghis card frequencies from 25 through 65 MHz . The input timing source can be a standard $14.318-\mathrm{MHz}$ crystal or host-system bus clock. A simple serial interface enables a host processor to program the timing generator for an output frequency from 4 to 100 MHz . In addition, any of the eight preprogrammed output frequencies can be mask-customized for different values. The 11411 differs from the 11410 in that it doesn't have the serial programming port and must be hardwired to set the frequency. Proprietary circuits keep jitter on the generated frequency to less than 200 ps . The chips consume just 500 mW when run from 5 V . The SC11410 comes in either a 28 -lead plastic leaded chip carrier or 20 -pin DIP, while the 11411 comes in a small-outline 16 lead package. Both are available immediately and sell for $\$ 3.09$ and $\$ 2.41$, respectively, in 10,000-unit lots. Contact Zaheer Hassan, (408) 263-9300. DB

CIRCLE 394

## OPEN A NEN CHAPTER IL BOBBHWHSTORY. . .WIH ASPEGT ${ }^{\circledR}$ TPPE.

If your objective is the efficient production of quality bobbins, look into Aspect® ${ }^{\text {TPPE. }}$

This Application Specific Plastic from Phillips 66 is stiff enough for high-speed winding. And tough enough to thrive on the assembly line. It comes glass fiber reinforced in natural and flame-retardant grades.

Above all, Aspect TPPE offers ease of processing you never thought possible in a thermoplastic polyester.
From now on, demand:

- Smooth processing. The secret is
the flow. Aspect TPPE fills the most intricate parts precisely -even at low injection pressure. Aspect TPPE releases smoothly, too.
- High-temperature endurance. With a 264 psi heat distortion temperature over $210^{\circ} \mathrm{C}$, Aspect TPPE can take the heat. Long term. After 17 weeks at $220^{\circ} \mathrm{C}$, Aspect TPPE still retains over $50 \%$ tensile strength.
- Back up for vour designs. The Phillips 66 Plastics Technical Center can help you design, mold, and evaluate tomorrow's bobbins. Before full-scale production. With computer-aided design. Prototyping and testing. And expert analysis-by engineers who know a winner when they see one.
Along with Aspect TPPE, Phillips 66 offers Ryton ${ }^{\circledR}$ PPS, the resin that sets the standard for hightemperature performance in electrical/electronic applications. And with all Application Specific Plastics, you can count on statistically controlled quality, plus personal support, from concept through the production epilogue. To learn more about Aspect TPPE, call


## 1-:00-53-RE3M.

The next chapter is yours.


## PRODUCTS NEWSLETTER

C+ + ADVANCEMENTS Hasten Code Development

Three object-oriented programming (OOP) advancements for the HP 9000 and Apollo platforms support the latest version of C++ from AT\&T. The three tools, from Hewlett-Packard Co.'s Computer Products Sector, Fort Collins, Colo., include the HP C ++2.1 compiler on HP-UX, Domain/C ++2.1 , and the HP C++ Developer on Domain/OS. The "true" compiler generates object code directly from C++ source code and improves compile-time performance up to $75 \%$. The Domain/C++ gives users advanced programming features, such as multiple inheritance, class libraries, and source-code debugging. Because HP C ++ and Domain/C ++2.1 are OOP languages, programmers can reuse code, reduce the complexity of an application development, and reduce code-maintenance costs. With the developer-a standalone X-window application tool-users can graphically browse through class definition and member function source code, add and modify classes and inheritance hierarchies, generate source-code templates, and diagnose and correct errors automatically. The compiler is priced at $\$ 1700$, Domain $/ \mathrm{C}++$ starts at $\$ 1615$, and the developer costs $\$ 2000$, with discounts for large quantities. All three tools will be available in the first quarter of 1991. $R N$

CIRCLE 395

The 80386SX microprocessor has finally appeared in a notebook PC: The LTE $386 \mathrm{~s} / 20$ from Compaq Computer Corp., Houston, contains a $20-\mathrm{MHz}$ processor, 4 kbytes of cache memory, 2 Mbytes of RAM (expandable to 10 Mbytes), a 3.5 -in., 1.44 -Mbyte floppy-disk drive, and a 30 - or 60 -Mbyte hard-disk drive. The PC's 9 -in. VGA edge-lit monitor displays 16 shades of gray so that graphics software, such as Windows 3.0, can be run. The enhanced NiCd battery lasts more than three hours and recharges in 1-1/2 hours. The $7-1 / 2 \mathrm{lb}$. LTE $386 \mathrm{~s} / 20$ can be plugged into Compaq's Desktop Expansion Base, which adds space for two mass-storage devices and two standard expansion boards. It also lets users easily connect an external monitor and keyboard, and can simultaneously recharge the PC's battery during operation. The 30 -Mbyte PC sells for $\$ 6499$, while the 60 -Mbyte version costs $\$ 6999$. The expansion unit goes for $\$ 1499$. $R N$

CIRCLE 396
Burst-Mode Controllers Ease CPU System Design

A pair of burst-mode memory controllers-one for the Intel Corp. 1960 RISCbased embedded controller (including the CA), and the other for the Adfy the design of hir俍 to, Ontario, Canada, manages single- or double-banked page-mode memory subsystems for the i960. Therefore, when burstaccesses are allowed, data can be read or written at the rate of one word per clock cycle. Housed in a 132 -lead plastic quad-sided flat package, the chip can control up to 128 Mbytes of memory directly, minimizing design complexity. The CMOS chip sells for $\$ 36$ in quantities of 1000 ; units will be available next month. Housed in a similar package, the V29BMC manages burst and pipelined accesses to the memory subsystem of an Am29050. It enables the RISC processor to achieve zero-wait-state performance at full clock speed while using relatively slow DRAMs. The controller manages address spaces from 2 to 32 Mbytes. As with the V96BMC, up to four controllers can be cascaded to quadruple available memory space. In 1000 -unit lots, the V29BMC sells for $\$ 55$ ( $33-\mathrm{MHz}$ version). Contact Mike Alford, (416) 266-5511. DB

CIRCLE 397
Video RAMDAC Adds
Complex Timing Logic
By adding programmable video timing and control logic to basic palette functions, a highly-integrated color-palette chip simplifies system design and reduces system cost. The single chip replaces up to 30 chips typically required in the video-control circuitry that usually surrounds the palette chip. The 34075 VIP chip from Texas Instruments can provide 24 -bit true-color images with an 8 -bit overlay. With its register-programmable features, the control circuits can implement various interfaces with $1,2,4,8$, or 32 bits per pixel. Screen resolutions ranging from VGA and below up to 1024 -by-768 pixels with noninterlaced or interlaced monitors can be configured through software. That flexibility allows one board design to cover a wide range of price and performance points (resolutions and colors) by just changing the register values and adding more RAM. Though optimized to tie into the company's TMS34010 and 020 video controllers and video RAM chips, the integrated palette can easily tie into most other video controllers as well. Volume prices for the $66-\mathrm{MHz}$ U.S. version of the chip will be under $\$ 20$; the $75-\mathrm{MHz}$ European version will go for under $\$ 30$. Contact TI at (214) 995-6611, ext. 700. DB

CIRCLE 398

## QUATIT SOLUTIONS FROM THE BOARID UP

For demanding electrical/ electronic design challenges you require products that provide a solid foundation-and the flexibility to grow in new directions.

Ryton ${ }^{\circledR}$ PPS sets the industry standard in electrical/electronic applications. As a foundation, it offers: inherent flame retardance ...outstanding chemical resistance. . .excellent temperature resistance. . . low moisture absorption. Plus, Ryton ${ }^{\circledR}$ PPS goes beyond the basics:

- The excellent flow and dimensional stability of Ryton ${ }^{\circledR}$ PPS are right for today's 50 mil center connectors, with new toughness for snapfit designs.
- It's the material of choice for bobbins-with excellent stiffness for automated winding and a UL1446 Class N $\left(200^{\circ} \mathrm{C}\right)$ insulation system approval.
- For transistors and capacitors, Ryton ${ }^{\circledR}$ PPS offers laser printable compounds and allows automated encapsulation operations, without the flash that can occur with thermosets.
In addition, Ryton ${ }^{\circledR}$ PPS can help you move into new frontiers such as surface mount technology, automated assembly and system/ component miniaturization. With Application Specific Plastics such as Ryton ${ }^{\circledR}$ PPS from Phillips 66, you also can take advantage of the expertise of the Plastics Technical Center. . . its research and development and advanced molding facilities, the computer-aided design capabilities, the experienced staff, and more.

Phillips 66 offers other Application Specific Plastics for your electrical/electronic requirements: Ryton ${ }^{\circledR}$ S PPSS, Aspect ${ }^{\text {T }}$ TPPE, and Crystalor ${ }^{\text {TM }}$ PMP. Formore information, call toll free 1-800-53-RESM. Or Telex \#492455.

CIRCLE 139

# Power Source Up-Date 

## Single Board Construction Shrinks 750W Size and Cost: 58\% Smaller, 30\% Cost Savings




Designed for high-end computer products, TODD's MAX-750 combines a compact size, $13.5^{\prime \prime} \times 5^{\prime \prime} \times 2.6^{\prime \prime}$ compared to the typical $5^{\prime \prime} \times 8^{\prime \prime} \times 11^{\prime \prime}$ shoebox switcher (see photo insert), and very competitive pricing. OEM product designers can reduce product size with a MAX-750 or build in power supply
redundancy, replacing one "shoebox" switcher with two MAX-750's in the same space.
The small package size, high power density of 4 watts/in., high peak current for motor starting, and cooling options, make the MAX-750 the power supply of choice for VMEbus systems, workstations, file servers and mini-computer systems. The switcher provides 120 amps of +5 volts for logic and memory, and features up to three auxiliary outputs providing high efficiency, tightly regulated 12 volts or -5.2 volts at up to 20 amps . Designed for world wide use, the series offers AC power fail, AC autoline select, and meets International Safety standards and Class A RFI requirements of FCC and VDE 0871.
CALL 1-800-223-TODD, OR CIRCLE \#218

## High Efficiency DC Converters Fit AC To DC Footprint

TODD's DC to DC converters provide up to 350 watts from 48 volts DC input. Designed as companion units to TODD's standard line of AC input power supplies, they are fit, form, and function compatible with the MAX-350, MTC250, MTC-350, and certain single output

SC series products.
Available in a 250 watt "DC" single output series and a 350 watt multi output "DCX" series these power supplies have up to 50 amp main output of tightly regulated 5 V power, two fully regulated, high-efficiency, post-regulated magamp outputs and one low-power threeterminal regulated output.
CALL 1-800-223-TODD, OR CIRCLE \#219

## New Technology Shrinks 500 Watt Power Supply

TODD's MAX-500 switchers pack $25 \%$ more power into TODD's 400 watt package size ( $11.5^{\prime \prime} \times 5^{\prime \prime} \times 2.5^{\prime \prime}$ ). The series incorporates a new SMT circuit, newlyavailable components, improvements to TODD's VERI-DRIVE current-fed inverter topology, monocoque construction, and a high efficiency FLUX-GATE switching mag-amp auxiliary post regulation. Result: higher performance, higher reliability (approaching 100,000 hours MTBF) and lower cost.

CALL 1-800-223-TODD, OR CIRCLE \#220
Super Micro Supply Has a Cool 350 Watts


Targeting the computer-based OEM, TODD engineers developed the $9^{\prime \prime} \times 5^{\prime \prime}$ $\times 2.5^{\prime \prime}$ MAX- 350 series of competitively priced switching power supplies. Low component count, extensive use of SMT and raising efficiencies to $80 \%$ with attendant reduction of heat sink requirements results in MTBF approaching 100,000 hours.

The series features up to 50 amps of +5 volts for logic and memory and fully regulated high efficiency mag-amp outputs to power up to four disc drives. Auxiliary outputs power common peripherals like ECL monitors, RS232 outputs, communications drivers, etc.

CALL 1-800-223-TODD, OR CIRCLE \#221
More information on these and the full line of TODD Switching Power Supplies can be obtained in EEM File 4000, by circling the response card numbers, or by contacting:

## TODD <br> PRODUCTS CORP.

50 Emjay Boulevard
Brentwood, New York 11717 (516) 231-3366 or 1-800-223-TODD

FAX (516) 231-3473
SEE US AT WESCON BOOTH \#1156/58

# Arcnet Chip Tackles Real-Time Embedded CONTROL 

## Teamed Up With <br> A Microcontroller, An IC Cuts Cost For Peer-To-Peer Networking Over Arcnet.



Milt Leonard ith a $2.5-\mathrm{Mbit} / \mathrm{s}$ data rate, support of up to 255 network nodes, and data packet sizes of up to 512 bytes, the Arcnet local area network (LAN) is a popular solution for networking PCs in office-automation applications. However, Arcnet has seen limited use in embed-ded-control applications, such as factory automation and process control. That's because the controller usually requires external buffer memory and up to a dozen support chips for a typical network node, resulting in relatively high cost. Standard Microsystems Corp. now incorporates the Arcnet token-passing protocol in a 24 -pin package that reduces node chip count by one-fifth. The result is half the node cost of competitive approaches.

To implement the Arcnet protocol, SMC's COM20020 universal LAN controller includes a microsequencer, a 2-kword-by-8-bit dual-port buffer RAM, an assortment of registers, bus-arbitration circuitry, a generic microcontroller interface, a flexible media interface, and a transceiver (see the figure). Network nodes can be configured in star, bus, or tree topologies connected with twistedpair, coaxial, or fiber-optic cable.

## Controller Operation

In operation, the 20020's companion microcontroller or other intelligent peripheral device sends data over the network by loading a data packet and a destination identification (ID) number into the 20020's RAM buffer. It then enables the transmitter. When the controller receives the token, it verifies that the receiving node is ready to receive and then transmits the data packet. The packet is followed by a 16 -bit cyclical redundancy check. When the packet is received

## ARCNET CONTROLLER CHIP

successfully, the receiving node transmits an Acknowledge message. This allows the source node to set status bits, which trigger an interrupt to its host microcontroller, indicating a successful packet transmission. If the receiving node can't accept the packet (when its receiver is inhibited, for example), it issues a Negative Acknowledge signal. Thereupon, the source transmitter passes on the token.

For boosted network performance, the 20020's command-chaining mode makes it possible for successive data transmissions and/ or receptions without intervention by the microcontroller. In this mode, a dual two-level first-in first-out buffer pipelines transmit and receive commands and status bits, thereby enabling new packets to be received before the previous packet interrupt is acknowledged and serviced. Com-mand-chaining prevents wasting tokens on the network by guaranteeing that a buffer is always available to receive a data packet.

Several unique features eliminate the need for multiple support chips. For example, the 20020 adapts to network changes by incorporating Arcnet's automatic self-reconfiguration protocol. Whenever the controller senses that a new node is activated or deactivated, it sends a signal that terminates all activity on the network. It then reconfigures the network by adjusting the destinationnode ID numbers stored in internal registers. Network reconfiguration time, which typically ranges between 24 to 61 ms , depends on such factors as the number of nodes on the network, the propagation delay between nodes, and the highest ID number on the network.

Users can set the destination ID number so that the controller transmits a data packet simultaneously to all nodes on the network. Similarly, with the appropriate setting of the command register, each node can ignore broadcast messages.

## On-Chip Memory Benefits

One of the most significant features of the 20020 is the $40-\mathrm{ns}$, dualport RAM. Previous LAN control-
lers used external buffer memory that requires multiplexed address/ data buses and control interfaces, plus support devices, such as latches and other glue logic. The 20020's integrated RAM reduces the chip's package size by $50 \%$ and eliminates costly support logic.

During typical operation, the RAM is partitioned as four 512-byte pages-two to transmit and two to receive. This leaves up to four memory pages for scratch-pad storage. For most control applications that use smaller packet sizes, the memory can be partitioned as any combination of 256 -byte and 512 -byte pages.

The 20020 interfaces directly with popular microcontrollers from Intel, Motorola, NEC, and Zilog. The interface consists of an 8-bit data bus, an address bus, and a control bus. To support various microcontrollers with a minimum number of pins and without the use of glue logic, the 20020 detects and adapts to the microcontroller interface being used automatically.

Upon hardware reset, the chip first determines if the microcontroller has separate Read and Write
signals (as in Intel's 80XX family), or a Direction and Data Strobe (as in Motorola's 60XX family). The controller also determines whether the microcontroller bus is multiplexed or nonmultiplexed. Both determinations require software to access external memory. In each case, the 20020 remains in the selected mode until the next hardware reset occurs.

The chip also has a flexible trans-mission-media interface. A standard Arcnet transceiver interface is offered for applications requiring long transmission distances, or for networks with other nodes that also use a transceiver interface. In this arrangement, a device such as SMC's HYC9068 hybrid transceiver transfers pulse-code data between twist-ed-pair or coaxial cable and the 20020. Containing support logic and coupling for good isolation and com-mon-mode rejection, the hybrid device converts the 20020 's pulse waveform output to sinusoidal form. It also supplies the appropriate termination impedance for a star topology, bus topology, or an Arenet topology, using twisted-pair cable.

For cost-sensitive, short-distance


[^5]
# New 16-Bit ADC with Direct $\mu$ P Interface 



## Complete for \$74*

## ADC700 comes

 complete with 16 -bit A/D converter, laser-trimmed reference, clock, and 8bit port microprocessor interface, all in a spacesaving 28 -pin hermetic ceramic DIP. Never before has a 16 -bit ADC offered so much for so little.Based on Burr-Brown's industry standard ADC76 series, the new ADC700 offers a precision frontend solution for a broad range of instrumentation industrial control, and data acquisition applications.

## Low Noise, High

 PerformanceADC700 excels in low, low noise so you can squeeze out greater resolution. A wide choice of input and temperature ranges increases your design flexibility.

- Linearity error of $\pm 0.003 \%$ FSR, max
- $17 \mu$ s conversion time to 16 bits
- Transition noise (3ap-p) of $\pm 0.001 \%$ FSR
- No missing codes to 14 bits over temp
- Temperature ranges of $0 /+70^{\circ} \mathrm{C}$, $-25 /+85^{\circ} \mathrm{C}$, or $-55 /+125^{\circ} \mathrm{C}$


$$
\mu \mathrm{P}
$$

Easy, Instant $\mu \mathrm{P}$ Interface
ADC700's output buffer latch makes microprocessor interfacing fast and easy. The latch permits the previous word to be read at anytime during conversion of the next word, improving throughput and relaxing timing requirements on software interrupts.
And it keeps up with the speed of the newer, faster microprocessors with 50 ns bus access and 70 ns bus relinquish times. Output data may be in serial or parallel format. And, a serial data strobe provides 16 edges appropriately timed for loading shift registers and microcontroller serial input buffers.
Find out more about this low cost, high performance solution. Ask your sales rep for data sheets and samples, or call 4-800-548-6132 for immediate assistance. Bur-Brown Corp.
P.O. Box 11400

Tucson, AZ 85734
-USA OEM prices in 100 s.


## Thinner SIMM's with TSOP

TOYOCOM, a leader in memory modules, introduces a revolutionary module which employs a TSOP (Thin Small Outline Package) design. This makes it possible to design extremely thin SIMM's without sacrificing quality. The $1 \mathrm{M} \times 9$ SIMM, currently 5.3 mm in conventional design, can now be reduced to 2.8 mm . The double sided $2 \mathrm{M} \times 36$ SIMM, currently 9.3 mm , can be reduced to 4.2 mm . And, it's available in various configurations $1 \mathrm{M} \times 8 / 9,4 \mathrm{M} \times 8 / 9,1 \mathrm{M} \times 36,2 \mathrm{M} \times 36$, plug-in or lead type (SIP, ZIP, DIP) package, single sided or double sided installation, and low profile. Or custom designed if you so desire!

## General-Purpose Current Sensor

THS-56 is designed to automatically detect loop current generated in the network control unit of facsimile, modem or other OA equipment. High detection sensitivity, high withstanding voltage ( 2.2 kV AC ), low DC loop resistance ( $5 \Omega$ max. at $\mathrm{Ta}=$ $+25^{\circ} \mathrm{C}$ ) and low threshold current ( 2 mA to 15 mA ). Detection of analog signals
 in the frequency range from DC to 20 kHz is also possible.

## TOYOCOM

TOYO COMMUNICATION EQUIPMENT CO., LTD.
20-4, Nishi-Shimbashi 3-chome, Minato-ku, Tokyo 105, Japan
Phone: 03-459-7310 Telex: 02423115 TOYOCO J Facsimile: 03-436-1434
TOYOCOM U.S.A., INC.
Chicago Office: 617E. Golf Road, Suite 112 Arlington Heights, Illinois 60005 Phone: 708-593-8780 Telex: 4330274 (TOYOCM) Facsimile: 708-593-5678
Los Angeles Office: Downey Saving Bldg., 3200 Bristol Street, Suite 720,
Costa Mesa, California 92626
Phone: 714-668-9081 Telex: 4720819 TOYOCOM LA Facsimile: 714-668-9158

## ARCNET CONTROLLER CHIP

applications, such as backplanes and instrumentation, a Backplane mode connects the controller directly to the media to transmit straight nonreturn to zero (NRZ) data rather than pulse-coded data. Nodes with the backplane configuration can't communicate directly with nodes using the hybrid transceiver, nor does this configuration provide media isolation and protection from commonmode noise. The noise problem, however, is minimized in short-distance applications. This configuration requires just one pull-up resistor somewhere on the media, not on each individual node.
Some cost-sensitive applications, such as embedded automobile LANs, don't require node isolation or compatibility with other Arenet nodes. Here, a differential-driver interface mode uses an external RS485 driver/receiver to de-couple NRZ data passing between the controller and cable. Maximum transmission distance in this mode can be increased by reducing the data rate below 2.5 Mbits/s.
Bits in the on-chip diagnostics status register help prevent and isolate faults, and support network management. Before entering the network, the 20020 first checks a register bit to see if there's activity on the network. Another bit tells the controller if a token is circulating on the network. A duplicate ID bit indicates when another network node has the same ID number as the entering node. In this case, the 20020 selects another ID number before entering the network. $\square$

## Price And Availabilty

The COM20020 universal LAN controller costs $\$ 16.23$ in 1000-piece lots and is available now in sample quantities. Production quantities are scheduled for January of next year. Evaluation boards will be available in December 1990.
Standard Microsystems Corp., 35 Marcus Blvd., Hauppauge, NY 11788; Ralph Malboeuf, (516) 273-3100.

CIRCLE 516

How Valuable?	Circle
HIGHLY	547
Moderately	548
Slightly	549

## "I was looking for a graphic example of what could be done with a laptop PC... Zenith Data Systems showed me two."

ZENITH DATA SYSTEMS INNOVATES AGAINTM

SupersPort 286e

## ZFN/TH <br> data systems

 Groupe Bull"Source: 1990 Dataquest estimate for U.S. battery-powered laptops. Graphics simulate Microsoft ${ }^{5}$ Windous ${ }^{\text {nu }}$ version 3.0 , a product of Microsoft Corporation. Intel 386SX is a trademark of Intel Corporation. SupersPort is a registered trademark and Intelligent Power Management is a trademark of Zenith Data Systems Corporation.
C 1990 Zenith Data Systems Corporation

## -

The number one laptop brand in America* offers you the clear choice in portable VGA graphics.

Zenith Data Systems brings you two advanced laptop PCs that can run today's sophisticated color VGA applications, using 16 corresponding shades of gray for superior graphics presentations.

First, there's the number-crunching SupersPort ${ }^{*} 286 e$ with its dazzling backlit LCD display. Then there's the SupersPort SX with a Page White screen that virtually duplicates the printed page ... plus Intel386SX ${ }^{\text {MM }}$ power to handle tomorrow's graphical user interfaces.

And each features our Intelligent Power Management ${ }^{\text {TM }}$ System, which puts power usage in your control for hours of battery life.

So, if you want to carry away the clear choice in portable VGA graphics, see our leading VGA-enhanced SupersPort laptops in action. For more information and the name of your nearest Zenith Data Systems Medallion Reseller, call: 1-800-523-9393.

## GaAs Gate ARRAYS Hit 100,000+ GATES/CHIP <br> High-Performance System Design Just Got Easier With A Family Of GaAs Gate Arrays That Hold More Of The Complex Circuit On One Chip.



## Make your move to P\&B for new general purpos and power P.C. board relays. <br> New Models Expand Offering <br> For applications from consumer goods to industrial controls, $\mathrm{P} \& \mathrm{~B}$ relays have the features you need for general purpose and power switching on your printed circuit board. New series greatly expand our already broad line of P.C. board relays. Many models are available from stock, and they're all built to the same exacting standards that have made our T90 series the industry-standard 30A, P.C. board relay.

## New Miniature Relays Switch 1mA to 10A

Our new T73 and T74 series miniature P.C. board relays join the T70 series as inexpensive SPDT units for general purpose applications. A variety of contact materials allow units in these series of sealed relays to switch loads from 1 mA through 10A.

## Expanded Line of $4,000 \mathrm{~V}$ Isolation Relays

Extensions to our line of RK series relays feature 8 mm coil-to-contact spacing for $4,000 \mathrm{~V}$ isolation. SPDT models switch loads to 20A, and DPDT models switch up to 5 A . Both sealed and unsealed types are offered.

## T90 \& T91 - Our 30A Workhorses

Relays in our T90/T91 series have SPDT contacts for loads to 30A. T90 is available as a sealed or openstyle relay. T91 has quick connect terminals for load connections and is offered with either a sealed or unsealed enclosure. High temperature units are available.

## Find Out More

Contact us today for free information on the complete line of P\&B P.C. board relays, including more new models for switching 2A and less. Potter \& Brumfield, A Siemens Company, 200 S . Richland Creek Drive, Princeton, Indiana 47671-0001.

Call toll-free 1-800-255-2550 for the P\&B authorized distributor, sales representative or regional sales office serving your area.



- 386 Standard Models
- Single, Dual and Triple Output
- Output Voltages of 5, 9, 12, 15, 24, 28 and 48 Volts DC Standard
- Ambient Temperature Range $-25^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ with No Heat Sink or Electrical Derating
- All Units Shielded
- 500V DC Isolation Input to Output
- New PLR Series Features $.300^{\prime \prime} \mathrm{ht}$.
- New NR Series, up to 30 Watts50 Models-30 Triple Outputs

OPTIONS AVAILABLE

- Expanded operating temp $\left(-55^{\circ} \mathrm{C}\right.$ to $\left.+85^{\circ} \mathrm{C}\right)$
- Stabilization Bake $\left(125^{\circ} \mathrm{C}\right.$ ambient)
- Temperature Cycle $\left(-55^{\circ} \mathrm{C}\right.$ to $+125^{\circ} \mathrm{C}$ )
- Hi Temp, full power burn in
( $100 \%$ power, $125^{\circ} \mathrm{C}$ case temp)


453 N. MacQuesten Pkwy. Mt. Vernon, N.Y. 10552

## Call Toll Free 800-431-1064

in NEW YORK CALL 914-699-5514
PICO also manufactures over 800 standard DC-DC Converters, AC-DC Power Supplies and over 2500 Miniature Transformers and Inductors
tems to be built, even if they don't operate at higher clock frequencies. And the availability of many gates allows large register files and memory blocks to be included on the logic chip, improving system speed even further. This is because memory accesses don't have the long delays of off-chip memories.
To make the jump from its previous Fury family, which had a $30,000-$ gate chip as its largest member, Vitesse developed an improved finerline process, H-GaAs III. Gate lengths for the GaAs MESFETs are trimmed to $0.6 \mu \mathrm{~m}$-that's about a $25 \%$ reduction over the previous process. The three levels of metal interconnections and line-to-line spaces were scaled by close to $40 \%$, so that on the lowest level, $1.2-\mu \mathrm{m}$ metal lines are separated by $1.8-\mu \mathrm{m}$ spaces. Furthermore, a fourth level of metal interconnection is available, making the FX arrays more routable than any of the company's previous chips.
In addition to shrinking the basic feature sizes, the company revised its basic cell building block. As a result, close to seven gates can now be squeezed into the area originally occupied by one gate in its previous family. The overall net result of the changes yields gates that consume about $50 \%$ of the power required by the previous generation- 0.16 mW vs. 0.32 mW . Also, propagation delays are less than $70 \%$ that of the previous family- 46 vs. 65 ps for an unloaded 2 -input NOR, and 153 vs. 216 ps for a buffered 2-input NOR gate with a fan-out of 3 .
In a typical application, a chip with 100,000 active gates would consume about 14 W , which is considerably less than what an equivalent ECL circuit would require. The lower power level also translates into a simpler cooling requirement. For example, forced air rather than liquid cooling could result in a significant system overhead savings.
Two FX family members have been defined by Vitesse, one packing 100,000 cells, and the second 200,000 . A third array with about 300,000 cells will probably be defined in four to six months. Gate utilization for the channelless arrays is estimated at

## between 50 to $70 \%$.

The first two arrays will have 196 and 256 signal I/O pads, respectively. They come in packages with plenty of power and ground lines-211 or 256 pins for the 100,000 -gate chip, and 344 pins for the $200-\mathrm{k}$ circuit. Maximum and typical power consumption for each chip are estimated at 15 and 8 W for the smaller chip and 25 and 14 W for the larger one.

In addition to logic cells, the FX series will eventually have family members with embedded blocks of up to 128 kbits of static RAM. A 72kbit block of RAM would occupy about $60 \%$ of the logic core area of the 100,000 -gate chip, which still leaves 40,000 raw gates for the designer to use. On the FX-200K array, the RAM needs just $30 \%$ of the chip; 140,000 gates remain available for other logic. Access time for the embedded blocks of RAM is about 3 ns .
The design library developed for the Fury family has been redefined for the advanced process used in the FX family. Consequently, designers that have already created a circuit with the previous family can move that design into the higher-density array. Then, perhaps, they can merge the circuitry with yet another function to improve system integration. For new designs, the FX library can be installed on a number of workstations, which behaves just like any other macrocell library.

## Price And Availabilty

The macrocell library for the FX family of gate arrays is immediately available for designers wishing to capture a design. Delivery of engineering samples from approved net-list submittal is 6 to 10 weeks, with production quantities available in the first quarter of 1991. A rray prices vary depending on the package and complexity, but packaged chips will typically sell for between 0.5 to 1.25 cents per used gate. Non-recurring engineering charges (including 5 prototype chips) typically range from \$125,000 to \$175,000, assuming Vitesse does the placement and routing. $\square$

Vitesse Semiconductor Corp., 741 Calle Plano, Camarillo, CA 93010; Robert Nunn, (805) 388-3700.

CIRCLE 512

How Valuable?	Circle
HIGHLY	527
Moderately	528
SLightLy	529



# Pulse Geverators Sport High accuracy 

## Three Models Aim At Device Characterization. John Noveluino

Characterizing today's high-performance ICs accurately is a tough job-checking ones and zeros with a pattern generator may not be enough. With devices running at 33 MHz and above, such critical timing parameters as setup and hold times, $f_{\text {max }}$, and propagation delay must also be measured in order to evaluate devices properly. Therefore, designers need an accurate, programmable, multichannel stimulus.

Moving in to fill this void is the Tektronix HFS 9000 series precision pulse generators. The modular instruments offer repetition rates to 600 MHz , pulse widths down to 400 ps , and the ability to compensate for external cable skews. Four channels are standard and six are optional, with each edge able to be specified independently. The rms jitter is a low $15 \mathrm{ps} \pm 0.05 \%$. The generators owe their excellent accuracy to a new totally digital pulse-synthesis architecture that replaces older monostable-based techniques.

The three models that make up the HFS 9000 series supply pulse outputs for various logic families (see the figure). The HFS 9010-aimed at ECL, GaAs, and other high-speed devices-delivers a maximum repetition rate of 600 MHz and a fixed transition time of less than 200 ps . For its targeted TTL and CMOS devices, the HFS 9020 has a maximum repetition rate of 300 MHz , programmable transition times down to less than 1 ns , and outputs of -2 to +5.5 V . The HFS 9030 combines the features of both other units. Edge placement resolution is 10 ps for all three models.

Users can program the location of rising and falling edges, delay, width, and duty factor. Outputlevels can be individually set. Each channel supplies both true and complement outputs that can be either active high or active low. A push-button control makes it possible for the operator to disable the outputs.
A particularly useful feature is the pulse-rate off command, which holds a pin at a fixed voltage level. That pin's output can be held at the programmed low level while other channels execute a programmed burst of pulses. For instance, users can hold a flip-flop's reset pin low while the test setup characterizes clock-to-output propagation delay. Then the pin can be actively clocked while the tester characterizes reset-to-output propagation delay.
To simulate data for flip-flop setup and hold-time measurements, users can select the pulse-rate half command. This feature sets a channel to one-half the operat-

## YOU DONT BECOME THE LEADER IN FFT ANAIYSIS WAITING FOR SOMEONE ELSE TO INTRODUCE 200 kHz.



You do it first. You set the pace with a total measurement solution. Tektronix 2642 Personal Fourier analyzer does exactly that. It extends analog signal acquisition, analysis and generation capability far beyond any other analyzer you can buy. With 200 kHz , the 2642 opens the door to a whole new world of information. Measurement data that's critical to filter design, switching power supplies, surveillance, and underwater acoustics is now accessible.

For high performance closedloop system analysis, and general electronic design and
test, the 2642 is ideal. And it's available with a library of powerful software solutions including: production test management with limit testing, math, one command data acquisition and storage, swept-sine, one-third octave, structural analysis, and others. Tek leads the way in PC based FFT systems and technology. With a broad family of Personal analyzers all the way up to the new 200 kHz 2642 . For complete information on the Tek 2600 family, call 1-800-234-1256 Ext. 001 or write: Tektronix, 1350 Dell Ave., Suite 104, Campbell, CA 95008.


Quick interactive graphics provide rapid access to measurement information.


## What Does It Take To Get A High-Ouality Board Design Nowadays?

## All it takes is a phone call to MJS and five working days.

Tired of excuses instead of service? MJS will have your check plots ready in just five working days. ${ }^{*}$ Electronic databases transfer to our state-of-the-art Calay system in standard ASCII format. Around the clock routing assures accuracy and means your project will always be ontime and on-budget. *Pin-thru devices, up to 2000 pins with all design data received on day one. Some exclusions apply.

Quick-turn manufacturing and assembly too! MJS can manufacture your prototype boards in as little as 3 days and ... complete assemblies take just a few days more. Stop listening to excuses from the other guys. Call MJS or send for the MJS guide now.

Free MJS guide to PCB design, manufacturing and assembly.
 1-800-445-9442

Designs 1438 W. Broadway, Suite B185 $\square$ Tempe, Arizona 85282 (602) 966-2858 $\square \mathrm{FAX}(602)$ 966-8528

## CIRCLE 121



## New <br> Surface Mount Inductors



Surface mount .22uH inductors from reel packaging: . 1 uH through 1000 uH in 46 values available.

- Internally welded connections
- Precise dimensions permit automatic insertion.
- Excellent flow soldering terminal strength
- Solderability per MIL STD 202 Method 208
- Operating temperature range: $-20^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
- Shock and pressure resistant
- Positive value identification with laser marking
- Epoxy resin encapsulation...Ferrite core ..Tinned copper terminals
Catalog on request.



## J.W. Miller Division

## BELL INDUSTRIES

306 E. Alondra Blvd. - Gardena, CA 90247 • (213) 537-5200 • FAX (213) 631-4217 Since 1924, leading manufacturer of standard and custom inductors.

## PULSE GENERATORS

ing frequency of the main cycle, while still allowing independent placement of the rising and falling edges. The odd cycles then safely clock the flip-flop to a low state as the even cycles stress setup and hold-time requirements by clocking the device high.
The HFS 9000 series increases trigger flexibility by allowing a Trigger Out signal to occur on any period in the burst of pulses. This capability improves accuracy in tests of devices where the internal state changes on input clock signals. In cases like these, the device's output signals of interest may occur late in a burst of activity.

With a conventional monostablebased pulse generator, the oscilloscope used in the test setup must trigger off the generator's Trigger In signal. Then the scope's main position must be adjusted to the needed delay, which could be 255 periods if the user looks at rollover in an 8-bit synchronous counter. Because of jitter in the generator, this delay could hurt the measurement's accuracy. But by using the HFS 9000's Trigger Out signal, the scope can be triggered on the desired cycle, and no delay is needed.
The HFS 9000's electroluminescent display offers an intuitive graphic interface for easy setup. Users can look at a graphic representation of the output, as well as the complete timing setup of the output parameters. A keypad speeds entry of numeric parameters, and a knob allows fast, high-resolution adjustments. Users can program the generators through an RS-232 port or over the GPIB using the expanded GPIB standard (IEEE-488.2). $\square$

## Price And Availabilty

The HFS 9010 and HFS 9030 cost $\$ 37,500$; the HFS 9020 goes for $\$ 36,500$. The standard configuration is four channels with options for six or two channels. Delivery is 12 weeks from receipt of an order.

Tektronix Inc., P.O. Box 19638, Portland, OR 97219-0638; (800) 426-2200. CIRCLE 511

How Valuable?	Circle
HIGHLY	524
Moderately	525
Slightly	526

# SIMPIfy Convertir CONNECTION T0 DSPS Link Digital Signal Processors To DACs And ADCs Without Glue Logic. 

TFrank Goodenolgh
o link a typical 16 -bit analog-to-digital converter (ADC) or digital-to-analog converter (DAC) to an IC digital signal processor (DSP), usually between 11 and 35 digital ICs are required for glue logic, depending on the flexibility required. As a result, designers haven't been able to cost-effectively use available low-cost DSP ICs to process realworld analog signals digitally. Burr-Brown has made that connection easier and more practical with four high-performance converters in 28-pin plastic DIPsthe DSP101, DSP102, DSP2011, and DSP202. The first pair are single and dual 18 -bit sampling, successive-approximation ADCs , respectively. Their mates, the DSP201 and DSP202, are single and dual, voltage-output, 18-bit DACs.

The four converters connect directly with all of the common DSP ICs, whether they're from Analog Devices, AT\&T, Motorola, or Texas Instruments, over a serial link, without a single glue-logic chip (see the figure). Just three wires are required between the DSP IC and the ADC or DAC . The ADCs offer a minimum throughput rate of 200 kHz ; the DACs update data at up to 500 kHz . The dual DAC accepts data words at two separate ports. While in the cascade mode, both channels are updated with a 32 -bit word at one port.

The converters are based on Burr-Brown's dual, digital-audio chips and were the result of a team approch (see "Design team cuts time-to-market," p. 161). Their dc and dynamic specifications aim toward typical DSP applications. While they have 18 -bit resolution and dynamic range, their accuracy runs from 13 to 15 bits. That's more than enough for most DSP or general-purpose data-acquisition applications. Moreover, virtually any DSP can improve a signal's signal-tonoise ratio by simple averaging.
The DSP102 essentially gives you two 14-bit-accurate ADCs that sample at high speed for just $\$ 30$. It's suitable for applications ranging from souped-up, low-cost, 14-bit analog I/O boards for PCs and other buses to sophisticated vibration-analysis systems (if only need one ADC per system is required, the cost per converter goes to $\$ 24$ ). Other applications include audio analyzers, process-control and weighing systems, and noise cancellation.

The DACs should find their way into various signal sources from arbitrarywaveform generators and frequency synthesizers to test equipment and electronic musical instruments-anyone of which could wind up as, or on, a plug-in board for a PC. With a DAC or ADC, it's easy and inexpensive enough to add one or more shift/storage registers if a parallel interface is preferred.

The ADCs sample and convert $\pm 2.75$-V input signals in under $2.5 \mu$ s maximum, resulting in the minimum throughput rate of 200 kHz . They offer 14-bit

## One of the world's biggest battery suppliers is now on the way to Jupiter.

Varta batteries are on board the missile "Galileo" that will enter Jupiter's atmosphere in 1995. During the 6-year mission, two special 70 V lithium batteries ensure the precise data collection functions of a particle sensor. Varta - supplying the energy to take science into new dimensions. In the same reliable way as in trail-blazing electrotechnical and electronic projects all over the world.
Varta - that's 14,000 employees, a turnover of some DM 2 billion, and factories, subsidiaries and licensees on all 5 continents. The clear No. 1 in Europe - and worldwide in the leading class of battery manufacturers. Varta has one of the most comprehensive
programmes of different electro-chemical energy storage systems; backed up with high-tech innovations for new products, such as superbly over-charge-proof NC button cells, especially fast charging NC cylindrical or 10-year lithium batteries with the highest capacities available.

Varta has the energy potential for today's and tomorrow's markets. But why not speak to our earthbound Varta consultants and find out more?

Varta: The world's largest battery only manufacturer.


## DSP-IC INTERFACE ADCS AND DACS



REAL-WORLD SIGNALS can be processed by feeding them to a DSP102 for analog-to-digital conversion, and then passing their serial digital output words to a DSP IC, such as the TMS320C30, for analysis and processing. To regain the analog signals after processing, apply the DSP IC's serial output to a DSP202 DAC.
no-missing-code conversions. Integral and differential nonlinearities (INL and DNL) run under $\pm 0.003 \%$ ( 15 bits); aperture jitter is 300 ps (rms). All specifications are from 0 to $70^{\circ} \mathrm{C}$ for every device, and accuracy specifications are typical.

While sampling $1-\mathrm{kHz}$ sine-waves at 160 kHz , signal-to-(noise + distortion), or $\mathrm{S} /(\mathrm{N}+\mathrm{D})$, runs $90 \mathrm{~dB}(14.7$
bits) for the premium K-grade ADCs, and 86 dB ( 14 bits) for the Jgrade units. When sampling at 25 $\mathrm{kHz}, \mathrm{S} /(\mathrm{N}+\mathrm{D})$ runs 82 dB (13.3 bits) for both. Total harmonic distortion (THD) is -92 dB ( 15 bits), and spuri-ous-free dynamic range is 94 dB ( 15.3 bits). Full-scale gain error runs a maximum of $5 \%$, and gain mismatch between the two channels of the

## DESIGN TEAM GUIS TIWETO-MIRKE

To get the DSP converters to market quickly, BurrBrown went to the team approach of two IC designers, a test engineer, and a marketing engineer/project manager. The team met weekly for a year, calling in processing, production, purchasing, and other required personnel. The swift meetings concentrated on what was needed to get to the next milestone, allowing resources to be reallocated to reach them.
Personal interaction among the team members yielded better and
more manufacturable products. This process was started by encouraging design, test, and manufacturing inputs during the final revisions of product proposals from marketing. It continued through design, test development, characterization, prototype production, and qualification. Each member was encouraged (and expected) to ask questions, make suggestions, and offer alternatives throughout the process. Eventually, the team approach cut the time-to-market by 6 to 9 months.

DSP102 is just $1 \%$. Both use 400 mW maximum from $\pm 5$-V rails.
The DACs' throughput, or update rate, is a minimum of 500 kHz . Their output op amps can typically put $\pm 3$ V across $375 \Omega$. INL and DNL errors run $\pm 0.004 \%$ for the premium Kgrade DACs, and $0.006 \%$ for the Jgrade D.ACs. While putting out 1 kHz , $\mathrm{S} /(\mathrm{N}+\mathrm{D})$ for the K-grade devices is a minimum of 88 dB ( 14.3 bits ) and 82 dB ( 13.3 bits) for the J -grade parts. At 10 kHz , these figures drop to minimums of 86 dB (14 bits) and 80 dB (13 bits), respectively. Maximum THD runs -88 dB ( 14.3 bits) and -92 dB ( 15 bits) for the J and K grades, respectively. Gain error and gain-error mismatch for the dual unit are a maximum of $3 \%$. Channel separation on the dual DAC runs 105 dB from 1 to 100 kHz . Both DACs need 450 mW maximum from $\pm 5$ - V rails.

## Ins And Outs

In the cascade mode, a TI TMS320C30 DSP IC, with a DSP102 handling its inputs and a DSP202 managing its outputs, represents a typical application for these converters (see the figure, again). Just three lines carry serial ADC output words or DAC input-update words, clock, and synchronization signals between each dual converter and the DSP IC. The first 16 bits of the 32 -bit serial word carries the 16 most-significant bits of channel A; the second 16 bits carry those of channel B. To operate in the normal mode, the SOUTB pin of the ADC is connected to the DR 1 pin of the TMS320C30 (shown dotted), and the CASC pin of the converter is connected to 5 V instead of ground. In the normal mode, both serial words are transmitted simultaneously over the two lines.

Analog-to-digital conversion starts on the falling edge of the Conversion Rate Generator (the convert command), which switches the ADCs sampling circuits into Hold, starts the successive-approximation register (SAR) running, and transmits the last conversion's results to the DSP IC along with a pulse from the Sync output. The bit clock drives the SAR and the serial data transmission. The falling edge of the convert com-


Data I/O®'s new ABEL ${ }^{\text {Tw }}$-4 Design Software propels FPGA and PLD design support into a new level of power and ease.

Its advanced new features like SmartPart ${ }^{\text {TM }}$ intelligent device selection, multilevel simulation, and a device-independent hardware description language (ABEL-HDL ${ }^{\text {Tw }}$ ) help you create more efficient designs in less time. Even today's most complex devices are easy to master with ABEL-4.

You simply won't find a more powerful design tool at such a low price. ABEL-4 versions start at just \$895.*
30-Day Money-Back Guarantee. We'll even guarantee your complete satisfaction with ABEL-4 in 30 days, or your money back. It's your opportunity to put the power of ABEL-4 to work for you - RISK FREE!

So call Data I/O to order.
BUT HURRY - this offer expires December $15,1990$.
1-800-247-5700

The Personal Silicon Experts
DATA I/O
*Price valid in U.S.A. only
mand, when applied to the DAC, updates the analog outputs and starts the clocking in of new data, if the Latch Enable pin is low-if high, the command is ignored. The SSF (sync-select-format) pins are connected high or low depending on the type of DSP IC the converters operate with.

Inside each converter's 28 -pin plastic package sits a gate array performing 35 ICs worth of glue logic, and either the dual ADC or the dual DAC. The ADC is the PCM1750, which employs a pair of switched-capacitor array DACs in lieu of the more common thin-film resistors. Laser-trimmed thin-film resistors trim the capacitor DACs (ELECTRONic design, Sept. 14, 1989, p. 49). The DAC is the PCM1700. The singlechannel converters actually contain the dual DAC or ADC chip with only one channel bonded to an input or output pin, and the gate array connected so it only controls half of the chip (this explains similar power drains for single and dual converters). Single-channel converters cost less, but have the same silicon.

If typical specifications are an anathema, but a need for these converters is perceived, they still may be worthwhile to try. Over the next six to twelve months, Burr-Brown will be recording the actual ac and dc specifications of large numbers of both ADC and DAC die to get true production characterization. When reliable yield figures to improve performance are obtained, premiumgrade units will be given up-graded and guaranteed specifications.

Price And Availabilty
In quantities of 1000 , unit pricing for the 18-bit ADCs starts at $\$ 23.95$ for the singlechannel DSP101, and $\$ 29.95$ for the dualchannel DSP102. In similar quantities, the single-channel DSP201 DAC goes for $\$ 19.95$, and the dual-channel DSP202 for \$24.95. The DACs are available now; the ADCs will be available by year's end.

Burr-Brown Corp., P.O. Box, 11400, Tucson, $A Z$ 85734; John Conlon, 1-(800) 5486132. Also contact the Burr-Brown bulletin board at (602) 741-3978.

CIRCLE 513

How Valuable?	Circle
HIGHLY	531
MoDERATELY	532
SLIGHTLY	533

## BRIGHT, BRIGHTER AND BRIGHTEST

When it comes to high-intensity LED performance, Hamilton/Avnet can make you shine. In fact, with the help of Hewlett-Packard, we now offer the brightest new ideas in TS-AIGaAs technology.

Hewlett-Packard's new TS-AIGaAs lamps combine high-flux TS-AIGaAs technology with an advanced optical design to deliver unsurpassed LED performance.

What's more, Hewlett-Packard's entire TS-AIGaAs line features the broad range of LED technology you need for all your high-intensity applications.

You can choose the HLMP-8103 or HLMP-8104. Both are standard-size TS-AIGaAs lamps designed to provide very high intensity. The HLMP8103,3 cd lamp has a maximum intensity of 5.8 candelas. For an even brighter lamp, the HLMP-

8104, 4 cd lamp delivers a maximum intensity of 8.4 candelas.

The HLMP-8150 TS-AIGaAs lamp has a maximum intensity of 25 candelas - making it the brightest LED lamp in the world.

And, if your application calls for a high-intensity lamp with a wider viewing angle, HewlettPackard's HLMP-8100 provides an angle of 24 degrees.

All of which makes Hewlett-Packard's new TSAlGaAs lamps the perfect choice for exterior moving message signs, exterior automotive lighting, incandescent replacement and sensors.

Let Hamilton/Avnet turn you on to HewlettPackard's brightest new ideas in LED performance. For a free sample, call us, toll free, 1 (800) 442-6458.

## ALABAMA

Huntsville
ARIZONA
Phoenix
CALIFORNIA
Costa Mesa
Gardena.
Gardena (Hughes)
Gardena (Int'I)
Los Angeles
Sacramento
San Diego
Sunnyvale
Woodland Hills.
CANADA
Montreal
Ottawa
Toronto
Vancouver
COLORADO
Denver.
CONNECTICUT
Danbury.
FLORIDA
Miami
Orlando
St. Petersburg
GEORGIA
Atlanta
IOWA
Cedar Rapids
ILLINOIS
Chicago.
INDIANA
Indianapolis.
KANSAS
Kansas City
KENTUCKY
Lexington
MASSACHUSETTS
Boston
MARYLAND
Baltimore
MICHIGAN
Detroit
Grand Rapids
MINNESOTA
Minneapolis.
MISSOURI
St. Louis
NORTH CAROLINA
Raleigh.
NEW JERSEY
Cherry Hill (South)
Fairfield (North)
NEW MEXICO
Albuquerque
NEW YORK
Long Island
Rochester.
Syracuse
Westbury (Export)
OHIO
Cleveland
Columbus.
Dayton
Toledo
OKLAHOMA
Tulsa
OREGON
Portland
PENNSYLVANIA
Pittsburgh
PUERTO RICO
Puerto Rico.
TEXAS
Austin.
Dallas
Houston.
UTAH
Salt Lake City WASHINGTON
Seattle.
WISCONSIN
Milwaukee.
(205) $837-7210$
(602) 961-1211
(714) $641-4100$ (213) 516-8600 (213) 217-6888 (213) 327-3693 (213) $516-8600$ (916) 925-2216 (619) $571-1900$ (408) 743-3355 (818) 594-0404
(514) $335-1000$ (613) 226-1700 (416) 677-7432 (604) 420-1101
(303) 799-7800
(203) 743-6077
(305) 767-6377 (407) 628-3888
(813) 573-3930
(404) 446-0611
(319) 362-4757
(708) 860-7700
(317) 844-9333
(913) 888-8900
(606) 259-1475
(508) 532-3701
(301) 995-3500
(313) 347-4270 (616) 243-8805
(612) 932-0600
(314) 537-1600
(919) $878-0810$
(609) 424-0100
(201) 575-3390
(505) 345-0001
(516) 231-9800 (716) 292-0730 (315) 437-2641 (516) 997-6868
(216) $349-5100$ (614) $882-7004$ (513) 439-6700 (419) 242-6610
(918) 664-0444
(503) 627-0201
(412) $281-4150$
(809) 731-1110
(512) 837-8911
(214) 404-9906
(713) 240-7733
(801) 972-2800
(206) 241-8555

Hamilionnavnet
People Dedicated to Service, Committed to Quality

# By Acting Like A Digital Transmission Line, A Connector Eliminates The Noise Roadblock To Higher System Throughput. 

# Connectors Pass Puises With Nanosecond RISe Times 

U

David Maliniak mac nals to zip around a board, there would be a connector representing an impedance discontinuity at its output. This slowed the signals down to disappointingly ordinary speeds. The connectors would degrade the fast digital pulses, rounding edges and generating noise. In contrast, AMP Inc.'s Micro-Strip connector system acts as a high-speed digital transmission line, passing digital pulses with sub-nanosecond rise times with minimal noise and distortion. And the connectors offer high density- 40 signal contacts per linear inch.

To gain speed and performance, system designers often adapt conventional connectors by committing up to $50 \%$ of the signal pins to ground. That practice consumes board real estate and chews up connector costs. The Micro-Strip connectors control transmission characteristics by adjusting dimension, spacing, and dielectric properties, rather than by sacrificing signal pins.
The receptacle contact design presents a uniform flat metal surface that faces the ground plane. This surface provides a controlled-impedtransmission.
ance transmission path, when properly spaced from the ground plane, to help control

By maintaining a $50-\Omega( \pm 10 \%)$ interconnection impedance, the Mi -cro-Strip connectors minimize impedance discontinuities. Crosstalk is limited to less than $4 \%$ at 1 -
 1. BOARD-TO-BOARD CONNECTORS in vertical and right-angle configurations, as well as cable-to-board styles, are offered in AMP Inc.'s Micro-Strip connector family.
sured as active-quiet-active). Because every pin can carry a signal, the effective density is greater than that of conventional connectors.

Because of their high transmission performance, the connectors will benefit designers of supercomputers, superminicomputers, minicomputers, workstations, high-end desktops, and high-end memory modules. Circuit runs can be longer with less related ground noise.

Moreover, all members of the product family have the same signal-and-ground bus-contact systems. That means users who test and qualify one connector style can use all of the connectors in the family.

All three connector styles in the family-vertical stacking, right-angle board-to-board, and cable-to-board-are similar in design (Fig. 1).

The standard Micro-Strip package connects to boards with a staggered five-row grid footprint. The footprint contains 40 signal pins and two ground-bus segments per linear inch. Two staggered rows of signal contacts are located on each side of a separable ground bus situated along the centerline of each connector.
The mating connector sections consist of two rows of signal contacts. The rows are spaced $0.1-\mathrm{in}$. apart and are bisected by the ground bus. Spacing between contacts in each row is 0.05 in . When the plug and receptacle mate, the ground connection is carried from one pc board to the other by the metal ground bus.

Ground-bus segments, each about $0.5-\mathrm{in}$. long, are designed in increments of 20 pins each. This enables users to tailor the connector configu-

YOU can get a lot more time out of the office when you use the new SUSIE-Concurrent Designer" 6.0 . SUSIE-CD is the fast, efficient way to simulate and verify breadboard designs and skip the time-consuming prototype stage. Powerful and productive SUSIE-CD is the concurrent design and simulation tool optimized for PLD and PGA use.

Design problems can't be overlooked. With SUSIE-CD, every pin of every IC. chip is watched and reported on during each clock cycle. Timing violations, bus conflicts, etc. are automatically reported on. and use.

- Save time by skipping the breadboard stage.
- Mouse-driven, pop-up menus.

■ No software knowledge required.

1	COMPUTER. . . . . . . . . . $386 / 486$
2	ADDRESSING . . . . . . . . . $32-\mathrm{BIT}$ DIRECT
3	LOGIC SIMULATION . . . . . 665 -STATE
4	PARTS LIBRARY . . . . . . . VHDL
5	DESIGN SIZE $\ldots \ldots \ldots \ldots$. . . $200 \mathrm{~K}+$ GATES 1 IMB $=20 \mathrm{~K}$ GATES

For a free evaluation kit of SUSIE-CD, the effective simulation tool that enhances your performance and gets you out of the office, call us at

## 1-800-48-SUSIE

For international sales Telephone: (805) 499-6867 Fax: (805) 498-7945

## Less space - More power



## with Surface Mount Stepper Motor Drivers.

Combining power ICs with high density surface mounting technology requires a good heat spreading package as well as low power dissipation. Our new Dual Channel Stepper Motor Driver PBL 3772 lets you have just that. It delivers more output current at less power dissipation than most other drivers.
Total power dissipation is below 2 Watts at $2 \times 750 \mathrm{~mA}$ output current, which means cooler operation and less heat sinking problems.
With its 1 A max output per channel and microstepping capabilities combined in a single PLCC package, you have all the performance you need for your next high density motor drive design.

Contact us today for more information about the PBL 3772 and other stepper motor drivers in surface mount packages.


The PBL 3772 and a few associated components form a powerful driver for a 2-phase stepper motor.

## ERICSSON

Ericsson Components Inc.
403 International Pkwy
Richardson, TX 75085-3904
Telephone (214) 480-8300
Telefax (214) 680-1059

## HIGH-SPEED CONNECTOR SYSTEM


2. FOR CABLE-TO-BOARD applications, a newly designed ribbon cable is mass terminated to the cable connector using a precision-controlled technique.
with 20 and 40 signal positions (Fig. 2). Applications calling for larger cable sizes require a modular approach, in which clam-shell covers group $20-$ and 40 -position modules into 60 -, $80-, 100$-, and $120-$ position assemblies. The cable plugs mate with pc-board receptacles that come in both vertical and right-angle styles ration for each specific application. In applications where transmission control is required in the complete connector, individual ground-bus segments are commoned by the pcboard ground.

The vertical stacking connectors ease parallel board-to-board mounting. Two stacking heights are available: 0.430 and 0.738 in . The vertical receptacle in each is the same; only the plug height changes to create two different board spacings. The plug half of the vertical-stacking connector has signal contacts ending in a $0.015-\mathrm{in}$. square post to mate with the corresponding receptacle contact. When the connectors mate, the ground bus engages first, completing the ground circuit before the signal contacts mate. On the board side, barriers prevent solder from bridging between pins. The verticalstacking connector comes in 20 to 240 positions in ground-segment increments of 20 .
To link daughterboards to backplanes, the right-angle board-toboard connector substitutes a rightangle receptacle for the one used in the vertical-stacking connector. The male plug is the same. Because rightangle connectors are often used in applications where tolerances may exceed 0.035 in ., a second version contains metal guide pins, which provide a 0.090 -in. radial pickup.

For cable-to-board applications, the Micro-Strip connector plugs terminate newly designed ribbon cables

## to suit many applications.

To effectively take advantage of the Micro-Strip technology in a cable assembly, AMP developed a compatible transmission ribbon cable and a new termination method. The cable has 31.5 -gauge silver-plated copper conductors on $0.0125-\mathrm{in}$. centerlines. Teflon is used as the cable insulator to get the highest possible propagation speed. The resulting conductor size and spacing yields a cable with $50-\Omega$ impedance.

Such narrow conductor spacing ruled out conventional insulationdisplacement techniques. Instead, AMP developed a termination method it calls mass termination/ reflow solder, which selectively removes insulation. The conductors are mass-inserted into slots in the rear of the signal-pin and groundbus units. The entire cable-connector assembly is then reflow-soldered using a precise, controlled technique that guarantees a highly reliable interface.

## Price And Availabilty

Board-to-board connectors in volume quantities go for $\$ 0.15$ to $\$ 0.21$ per mated line, depending on configuration. Initial production quantities are available 10 to 12 weeks after receipt of order.

AMP Inc., P.O. Box 3608, Harrisburg, PA 17105-3608; (800) 522-6752.

CIRCLE 515

How Valuable?	Circle
Highly	538
Moderately	539
SLightly	540



Vault into the surging EISA design market first with these new design tools; industry's first off-theshelf EISA support line.

Whether you need a wirewrappable, or pad-per-hole proto-
 you'll have the design edge.

Visit your local Vector distributor for these new, off-the-shelf EISA development tools. Or, call us direct for complete specs and pricing.


ELECTRONIC COMPANY
12460 Gladstone Ave., SyImar, CA 91342 Inside CA (800) 426-4652
Outside CA (800) 423-5659
FAX (818) 365-5718

## CIRCLE 156

## Watt's Up Semiconductor Circuits, Inc.

## New DC/DC Converter Delivers 4.5 Watts in Half the Space at a Fraction of the Cost

The pioneering technology leader in encapsulated power converter modules, Semiconductor Circuits, Inc. introduces the QA series for space critical applications. For pin-for-pin replacement of 2" $\times 2$ " converters, the QA series offers 4.5 watts in a low profile case measuring just $1.0^{\prime \prime} \times 2.0 " \times 0.4^{\prime \prime}$. And it offers all that performance at a significantly reduced price.
With the QA series, you also don't need to sacrifice a wide input range to

Key Features	
Power	4.5 watts
Inputs	$5.0 \mathrm{Vdc} ; 9.0-36.0 \mathrm{Vdc} ; 20.0-72.0 \mathrm{Vdc}$
Short Circuit	
Protection	Continuous with auto restart
Package Size	$1.0^{\prime \prime} \times 2.0^{\prime \prime} \times 0.4^{\prime \prime}$
Isolation	500 Vdc
Efficiency	$75 \%$ (typical)


have linear features such as low ripple and tight power regulation. The QA gives you both.
To achieve these price/performance breakthroughs, the QA series incorporates our extensive MOSFET and surface mount technology. These features also allow us to achieve higher power density and higher reliability.
With an input/output isolation of 500 Vdc , an operating temperature range of $-25^{\circ} \mathrm{C}$ to $+71^{\circ} \mathrm{C}$, with no derating, efficiencies of $75 \%$ (typical), continuous short circuit protection and output voltage tracking providing protection for power sensitive devices requiring $\pm$ voltages. The QA series is ideal for
many board-level power conversion applications. Including cellular and portable telecommunications, process control, ATE,CAD/CAM, and other space critical applications.
For more information on how to put the QA series to work for you, please contact your nearest Semiconductor Circuits, Inc. distributor or representative. Or contact us direct in New Hampshire, (603) 893-2330 or FAX: (603) 893-6280. And be sure to ask for the latest edition of our Quick Selection Guide to Power Converters.


SEMICONDUOTR cardurssins.
SUBSIDIARY OF ASTEC AMERICA, INC.
CIRCLE 131 ASTEC

# First Simultaneous Sampling IC ADC Grabs 4 Signals T0 12-Bit Accuracy frank goodenolgh 

The Analog Devices AD7874 is the first monolithic ana-log-to-digital converter that simultaneously samplesputs into hold-more than one input signal and then sequentially digitizes them all. When it's given an encode command (CONVST), its four sampling amplifiers on its frontend go into hold and a 12 -bit analog-todigital conversion of one of the four held voltages begins (see the figure). Until now, you were stuck with either using a module, or adding a quad IC sample-and-hold amplifier (SHA) ahead of your ADC. The latter required working out your own timing, data storage and data transfer.

This ADC not only offers 12 -bit resolution, but 12 -bit static and dynamic accuracy as well. Just $35 \mu \mathrm{~s}$ passes from the time it grabs four input signals, until it's ready to grab four more. That time translates to a minimum throughput rate-for all four channels-of 29 kHz . And sampling at 29 kHz , it's 12 -bit accurate for $14.5-\mathrm{kHz}$ (Nyquist rate) signals. That $35 \mu \mathrm{~s}$ also includes time to sequentially transfer the four 12 -bit digital words stored in on-chip registers to a processor bus. When switching into hold, aperture delay matching among the four sampling amplifiers is a maximum of 4 ns and aperture uncertainity, or jitter, for each, is typically 200 ps . (Although jitter is a typical specification, because of the cost of production testing, it's sample-tested to insure conformity.)

What do you do with a simultaneous SHA-digitizer? Its forte is digitizing multiple signals with critical phase or timing relationships between them. That includes converting the same signal at multiple locations in a circuit-or in space, for example monitoring an explosion at several sites. The majority of these jobs represent the acquisition of signals for a large class of digital signal processor applications. These include phased-array sonars, the analysis of mechanical vibrations (rang-

ing from seismic signals to those from internal combustion engines), and vector control of large, threephase ac motors to optimize torque. The last involves controlling not only the frequency of the voltage driving the motor, but its phase as well. The IC samples the current in two of the three motor windings and the voltage across two of them.

The CONVST command is asynchronous and independent of the AD7874's internal clock. Where timing is critical, it can be triggered by events or by a precision clock. Its rising edge switches the four SHAs from their tracking (acquisition) mode to hold where they remain until their four outputs have been digitized. The command also starts conversion of channel one. When it's complete, the digital word is stored in register one and the conversion of channel two starts. The sequence is repeated until the digital words representing the four held voltages are stored in registers. At that time $\overline{\mathrm{INT}}$
goes low returning the SHAs to the track mode and telling a host that conversion is complete. The SHAs each acquire new input signals ( $\pm 10$ V , fullscale) to 12 -bit accuracy in under $2 \mu$ s maximum.
Sampling $10-\mathrm{kHz}$ sine waves at 29 kHz typically results in better than $\pm 1 / 4$ LSB differential linearity. Under similar conditions signal-to-noise ratio is a minimum of 70 dB . Total harmonic distortion (THD), spurious noise, and intermodulation distortion (IMD) are a maximum of -80 dB (IMD is specified while sampling 9and $9.5-\mathrm{kHz}$ sine waves.). Integral linearity of the premium B grade is $\pm 1 / 2$ LSB, that of the A grade $\pm 1$ LSB. The AD7874 comes in 28 -pin plastic and ceramic DIPs and plastic SOICs, and extended-industrial and military temperature ranges. Unit pricing in 100 s, ranges from $\$ 30$ to $\$ 43$.

Analog Devices Inc., 181 Ballardvale St., Wilmington, MA 01887; (508) 937-1428.

CIRCLE 314


## HIGH PERFORMANCE • MIL SPEC

## POWER SUPPLIES

## COMPLETE AC-DC/DC-DC MULTI OUTPUT SYSTEMS

Rugged, high density power supplies to 8 watts per cubic inch (including off line front end)...up to 8 outputs and 500 watts per package...efficiencies to $80 \%$ plus.


UP TO 8 DC OUTPUTS
CONFIGURE-YOUR-OWN DESIGNS
Choose inputs and outputs from pre-designed standard modules. Non-recurring engineering and qualification expenses are avoided. Deliveries are in weeks not months.

## PROVEN PERFORMANCE \& RELIABILITY

The no risk alternative to customs...standardized modular designs ensure reliability and reduce the chance of failure inherent in custom circuits and packages. Arnold's 33 years experience in high rel power supplies assures designs field proven in hundreds of tough, high reliability Defense, Aerospace and Industrial Electronics applications.

CALL TOLL FREE FOR OUR EL2000 CATALOG 1-800-421-8181
(in California 805/484-4221)


## RECEIVER-0N-AChip Converts 200 MHz FSK RF T0 $1.2 \mathrm{~KB} / \mathrm{S}$ DATA

Acomplete, direct-conversion radio receiver-on-a-chip from Plessey Semiconductors Corp., known as the SL6639, converts a fequency-shift-keyed modulated radiofrequency carrier signal to baseband. The carrier can range from a frequency of 100 MHz up to 200 MHz . The FSK modulated signal can have a data rate as high as 1200 bits/s. All active devices in the SL6639 receiver, including chan-

nel filters implemented by gyrators, lie on the chip-which fits in a 28 -pin SOIC package.

The device is aimed at low-power, personal communications systems such as miniature pagers and modems. It features a typical power drain of just 5 mW . In its power-down mode, power use drops to a few microwatts.

The gyrator-filters, which are tuned with a single potentiometer, eliminate the space and cost of difficult-to-tune, multi-pole, ceramic or crystal filters. Moreover, external filters often require double conversion to achieve the same channel selectivity as the gyra-tors-adjacent-channel rejection is in excess of 70 dB -with $25-\mathrm{kHz}$ channel spacing.

With its sensitivity of $-124 \mathrm{dBm}(0.14$ $\mu \mathrm{V}$ ) at a frequency of 150 MHz from a $50-\Omega$ source, operation directly from an antenna is possible in most applications. However, an RF stage can be added ahead of it.

Other features include high current-
beeper and LED drive currents of 200 mAand 50 mA , respectively, and a lowbattery flag. The LED is pulsed at a frequency of 32 kHz . A typical receiver uses 1.6 mA of current from a $1.3-\mathrm{V}$ battery, and 0.5 mA of current from a $2.3-\mathrm{V}$ source. An evaluation board is available to simplify trying out the chip. Operating
temperature range is -20 to $+60^{\circ} \mathrm{C}$. In quantities of 100,000 , the SL6639 receiver chip goes for $\$ 7.27$ each.

Plessey Semiconductors Corp., 1500 Green Hills Rd., Scotts Valley, CA 95066; Ashi Majid. (408) 4382900. CIBGIF 315

FRANK GOODENOUGH


## Free Demo

You can start your debugging with this FREE demo simulator. You can load up to 512 bytes of code, assembler, C, or PL/M and do full debugging/simulation in assembly and source level. A great way to get started for FREE. Fantastic for schools! Just call and we'll send it!

## Full Simulator

The full-blown simulator is an extension of the DEMO. You can load up to 64 K of code and use 64 K of XDATA space. You can program an "external environment" to interact with your code to simulate your target system. The emulator is the hardware extension of the simulator!

The 24 MHz real-time emulator has been the industry standard for years. With its complex breakpoint logic and advanced trace, nobody can beat it for performance. Plug-in or RS-232 configuration. All 8051 derivatives are supported!

## nohau <br> CORPORATION

51 E. Campbell Avenue, Campbell, CA 95008
(408) 866-1820 • FAX (408) 378-7869


[^6]
## CIRCLE 144



2000is a Personal Computer based Printed Circuit board design system with many advanced features capable of outperforming most Workstation-based CAD systems-at a fraction of the cost.

As the most productive PC based board CAD system available today, PADS-2000 can handle even the most complex designs including: double sided surface mount boards, mixed technology boards, high speed designs and layouts exceeding 2000 IC's.

PADS-2000 design functionality includes:

- Over 11,000 parts/32,000 connections
- 1 micron Resolution
- True T-Routing capability
- Intelligent Copper Pour feature leaving isolated tracks and pads
- $0.1^{\circ}$ parts/pads rotation
- Extensive Macro capability
- Digital, Analog and Critical Circuit autorouters

- On-line and Batch Design Rule Checking
- Instant track/segment length measurement
- Complete Forward/Backward ECO capability
- Uses 32 bit/386 native code for increased speed and functionality
- Easy-to-learn and Easy-touse

Call today for a demonstration at your local authorized CAD Software Dealer

Ask about our affordable Leasing Plan.

Call Today Inside MA: (508) 486-8929

Outside MA:
(800) 255-7814


Software, Inc.
119 Russell Street
Littleton, MA 01460

## IEED-488

Control any
IEEE-488 (HP-IB, GP-IB)
device with our cards, cables, and software for the PC/AT/386, EISA, MicroChannel, and NuBus.

## THREE S-D CONVERTERS CRam Into Tiny Can

Aimed at three-axis positioning systems for measuring such things as roll, pitch and yaw, the SDC-14610 from ILC Data Device Corp. contains a trio of synchro/resolver-to-digital converters. Because they're based on a custom CMOS chip, the converters are squeezed into a double-DIP 36 -pin metal can less than 2-in. long. All three of these completely independent converters have a resolution of 14 bits and an accuracy of 4 minutes of arc plus 1 LSB. Differential linearity and repeatability are both within 1 LSB maximum. Each a linearity of $1 \%$ of fullscale. They provide velocity feedback in a typical closed-loop servo system, replacing three tachometers. Internal, solid-state Scott-T circuits condition the input from the synchros. The three converters need a total of just 51 mA from $\pm 5$ V rails. In quantities of 100 , the com-mercial-temperature range SDC-14610 goes for a price of $\$ 565$ each.

ILC Data Device Corp., 105 Wilbur Pl.,
Bohemia, NY 11716; Bill Cullum. (516) 567-5600, extension 389. GIFGIF 316

## LOW-NOISE, $1.5-\mathrm{PA}-\mathrm{I}_{\mathrm{b}}$ OP AMP NOW IN DIP

Until now, if you wanted an IC op amp with 1 or 2 pA of bias current, an offset voltage under 1 mV , and low noise, you were stuck with devices in expensive metal cans. That's no longer the case.

Analog Devices' AD645K is a lownoise op amp IC that sports a maximum (warmed-up) bias current $\left(I_{b}\right)$ of just 1.5 pA . It also sports a maximum offset voltage of $400 \mu \mathrm{~V}$, and a guaranteedand $100 \%$ tested for-voltage noise from 0.1 to 10 Hz of $2.5 \mu \mathrm{~V}$ pk-pk. And in quantities of 1000 , it goes for just $\$ 3.76$ each, about half the price of simi-
larly specified op amps in TO-99 metal cans. (It should be noted that offset voltage and offset drift of the competitive units are superior.)

These op amps are designed to convert currents from photodiodes, particularly the numerous photodiodes found in CAT scanners, to voltages. Op-amp voltage noise must be low, because a photodiode is not a true current source. Thus noise gain, usually unity in an I-to-V converter circuit, arises to amplify voltage noise.

Analog Devices Inc., 181 Ballardvale St., Wilmington, MA 01887; (508) 937 1428. CHBGIF 317


You get fast hardware and software support for all the popular languages. A software library and time saving utilities are included that make instrument control easier than ever before. Ask about our no risk guarantee.

## CHIP COMBINES ATE LOAD, DRIVER, COMPARATOR

The Bt698 integrates the load, driver, and comparator functions of automat-ic-test-equipment pin electronics into one IC. The chip's three-statable driver can force -3 to +8 V at $\pm 25-\mathrm{mA}$ static drive currents and $100-\mathrm{mA}$ dynamic edge current. The dual comparator handles the same voltage input range and has a high impedance for direct connection to the device under test without an external buffer. The window comparator can be transparent or the input data can be strobed into a register by an external clock. In 100-piece quantities, the Bt698 costs $\$ 130$ in a $44-$ pin plastic J-lead chip carrier. Samples are available now; production quantities in the second quarter 1991.

Brooktree Corp., 9950 Barnes Canyon Rd., San Diego, CA 92121; (800) 8433642. GTiGIF 318

## 80-MHZ CLOSED-L00P BUFFER DRIVES 50 X



VOLTAGE GAIN \& PHASE LAG
Housed in a 5 -pin TO-220 package, Elantec's EL2012 80-MHz closed-loop buffer IC looks like a power device, but it's pure analog too. It puts a $6-\mathrm{MHz}$ $\pm 10-\mathrm{V}$, sinewave across a load of $50 \Omega$, which represents twice the drive of competitive devices. Moreover, its gain with that load is 0.999 , not the 0.6 typically expected from an open-loop buffer. Its job is to drive cables, capacitive loads, and analog-to-digital converters with precision. Built on Elantec's dielectrically isolated process, it bolts directly to a heat sink-without the need for insulation. In quantities of 100 , the EL2012 goes for a price of $\$ 8.07$ each.
Elantec Inc., 1996 Tarob Ct., Milpitas, CA 95035-6824; (408) 945-1323. CIRCIF 319


Capital Equipment Corp. Burlington, MA. 01803

## Multi-Window CAE UNIX \& DOSGAE EDIF Integration ASIC Layout Simulaion WHIDL System Simulation - OAEDasign Famemak MixedA /D Simulation VHDL Synth


$\%$

## When it comes to CAE tool innovations, the company that sets the pace is...

# VIEWlogic The CAE Company 

## 1-800-422-4660

293 Boston Post Road West, Marlboro, MA 01752 (508) 480-0881

## Two Image-Processing Boards IncRease Speed, Flexibility

Two image-processing boards from Data Translation Inc., the DT2878 and the DT2868, connect directly to the company's DT-Con-nect-compatible frame grabbers to accelerate image-processing-intensive computations. The flexible 2878 advanced processor features true fast-Fourier-transform capability that allows data from partial or whole frames to be processed and analyzed in the frequency domain. And because data transfers bypass the PC/AT bus, the PC host can perform graphics, data analysis, or other operations while data values transfer over DT-Connect.
The 25 -MFLOP, 32 -bit floating-point board is built around AT\&T's DSP32C digital-signal processor chip. The chip's 80 -ns instruction cycle supplies highspeed floating-point operation. Data
can be processed in either floating- or fixed-point formats. Users can also take advantage of Data Translation's advanced image-processing library.
The 2868 high-speed frame processor is a faster version of Data Translation's DT2858 auxiliary frame processor. With its pipelined architecture, the 2868 isn't as flexible as the 2878, yet it performs image-processing operations three times faster than the 2858 , and up to 100 times faster than the PC/AT host computer. The board can carry out 10 million additions or multiplications per second.
The 2868's on-board 16-bit ALU performs over 40 of the most common processing operations at speeds up to 10 MHz . In addition, it supports convolutions, hardware zoom, pan, and scroll, histogram generation on single or multiple frames, and division and normal-

ization.
The 2878 is available in two versions, with either 2 or 4 Mbytes of data memory. It costs either $\$ 4495$ or $\$ 5495$ and is available now. An 8-Mbyte version is in the works. The 2868 comes with 512 kbytes of frame-store memory. It costs $\$ 1995$ and will be available December 15. Large-quantity discounts are available on both boards.

Data Translation Inc., 100 Locke
Dr., Marlboro, MA 01752; (508) 481-
3700. GIVHIF 377

RICHARD NASS


## Allows stacking of PCBs without shorting

- Fabricated to your print
- Pressure sensitive adhesive available
- Fabricated from Fishpaper, Lexan®FR, Nomex ${ }^{\circledR}$, Polyester, Ultem ${ }^{\circledR}$ FR, Valox ${ }^{\circledR}$ FR, etc.
- Most meet UL-94; Flame retardant
the hirol company
1170 West McNab Road, Ft. Lauderdale, FL 33309 305-974-4900 1-800-327-2362 Fax 305-975-4734
Lexan $\odot$ FR, Ultem®FR, Valox ${ }^{\ominus}$ FR are registered trademarks of General Electric. Nomex ${ }^{\circledR}$ is a registered trademark of Dupont.

REPAIR PC'S IN LESS TIME AT LESS COST, WITH LOGIMER
your business is maintenance and repair of personal computers you now can save time and money with the LOGIMER PC Analyzer.


FEATURES:

- More than 1000 Tests Within One Minute
- Locates up to $70 \%$ of Real Breakdowns on Motherboard
- Pin-points Location of Defective IC's
- Especially useful in the case of a Computer's Screen Blackout
- $1 / 2$ Size Card fits into any Slot in PC


## ORDER YOUR LOGIMER NOW!

Visa and Mastercard Accepted
TOTAL POWER
418 Bridge Street, Lowell, MA 01850 Tel. (508) 453-7272
Fax: (508) 453-7395


JANUARY 29-31, 1991
SANTA CLARA CONVENTION CENTER SANTA CLARA, CA

FOR MORE INFORMATION CALL (800) 243-3238 IN CONNECTICUT CALL (203) 852-0500


## Add D0S C0MPatidility And A 386SX Processor T0 A Multibus I System

By using a $16-\mathrm{MHZ}$ 386SX PC and putting it onto a Multibus I form factor, the iSBC board, from Intel Corp., lets users add 32-bit performance and DOS compatibility to their Multibus I systems. It gives them the functionality of a PC in a Multibus I form factor. The board can be used in a new design, or it can replace several existing boards to upgrade a system. In addition to replacing a CPU board, it can replace a peripheral controller board and any add-on modules for local memory or access to printers or a keyboard.

The board also runs Intel's iRMX 32bit real-time operating system. iRMX III is suitable for controlling real-time processes common to industrial, communications, and other time-critical applications. The iSBC can also run DOS

and iRMX III concurrently with full data exchange between the DOS and real-time applications. Using iRMX III, programmers can design high-performance, real-time systems with easy-touse DOS user interfaces.
The iSBC board holds the complete set of on-board I/O, real-time, and pe-ripheral-control resources that are typically found on a PC/AT motherboard.

Included on the board are a floppy-disk drive controller, a Winchester harddisk controller for a $40-$ or 80 -Mbyte drive, two asynchronous serial ports, a parallel port, interrupt controllers, a real-time clock, and two 16 -bit iSBX connectors. VGA graphics can be added by using an optional module, the iSBC 272. There's also a socket on board for an 80387SX numeric coprocessor. The board has a capacity of 8 Mbytes of RAM using plug-in SIMM packages. A complete on-board BIOS can be stored in EPROM. Typical power consumption is 6 A . The iSBC board operates in the temperature range of 0 to $60^{\circ} \mathrm{C}$.

With 512 kbytes of memory, the board costs $\$ 1450$. The price rises to $\$ 1800$ with 2 Mbytes. Either way, it's available in December. The VGA graphics module, also available in December, sells for $\$ 400$.

Intel Corp., 3065 Bowers Ave., San-
ta Clara, CA 95051; (800) 548-4725
or (408) 765-8080. GIFGIF 385

- RICHARD NASS



# Aluminum Electrolytics 

## NON-POLARIZED

## Surface Mount

## 

CAUTION LOW CEILING MAX. HEIGHT 5.5 mm
-$-55^{\circ} \mathrm{C}$ $+105^{\circ} \mathrm{C}$ TEMPERATURE

Lead-time, Cost, Production Savings

## All signs point to Nichicon surface mount electrolytics.

When you need surface mount aluminum electrolytic capacitors, remember that all signs point to Nichicon.

Because now there are seven surface mount electrolytic series ready to help your products meet their marketing window-on time and on budget.
Save time. Save space. Save money.
Who isn't under pressure these days to reduce costs?

Well now you can, without sacrificing performance, when you design your new products or replace comparable tantalum capacitors with Nichicon surface mount electrolytics.

More Nichicon advantages.
Your real bottom line though is still capacitor performance. And with seven series with 1,000 to 5,000 load life ratings to choose from, your chances of finding your capacitor choice are better than ever.


Each series is carrier-taped and reeled and features Nichicon's anti-solvent design.

## 41.c.1.co14 ${ }^{\circ}$ The capacitor choice.

SERIES	FEATURE
WT	$\begin{aligned} & 1,000 \mathrm{hr} . \text { life } / 5.5 \mathrm{~mm} \text { max. ht. } \\ & -55 \sim+105^{\circ} \mathrm{C} / 0.1 \sim 100 \mu \mathrm{~F} \\ & 4 \sim 50 \mathrm{~V} \end{aligned}$
UX	$\begin{aligned} & 2,000 \mathrm{hr} \text { life/ }-55 \sim+105^{\circ} \mathrm{C} \\ & 22 \sim 470 \mu \mathrm{~F} / 6.3 \sim 50 \mathrm{~V} \end{aligned}$
UZ	$\begin{aligned} & \text { 5,000 hr. life/6mm ht./4~50V } \\ & -55 \sim+105^{\circ} \mathrm{C} / 0.1 \sim 200 \mu \mathrm{~F} \end{aligned}$
wx	2,000 hr. life/ 5.5 mm max. ht.   $-40 \sim 85^{\circ} \mathrm{C} / 0.1 \sim 220, \mu \mathrm{~F} / 4 \sim 50 \mathrm{~V}$
UT	$\begin{array}{\|l\|} \hline 2,000 \mathrm{hr} \text {. life } / 6 \mathrm{~mm} \mathrm{ht} . \\ -55 \sim 105^{\circ} / 0.1 \sim 100, \mu \mathrm{~F} / 4 \sim 50 \mathrm{~V} \\ \hline \end{array}$
UP	$1,000 \mathrm{hr} / 6 \mathrm{~mm}$ ht./Non-polarized $-40 \sim+105^{\circ} \mathrm{C} / 0.1 \sim 47 \mu \mathrm{~F}$   6.3~50V
UK Muse	$\begin{aligned} & 2,000 \mathrm{hr} . / 6 \mathrm{~mm} \text { ht. } / \text { For audio } \\ & -40 \sim+85^{\circ} \mathrm{C} / 0.1 \sim 220 \mu \mathrm{~F} \\ & 4 \sim 50 \mathrm{~V} \end{aligned}$

For your free Nichicon Capacitor catalog or more information, call your local Nichicon representative or distributor, or call us at (708) 843-7500. Fax (708) 843-2798.

## One good idea after another.

## CAPTURE SCHEMATICS IN A WINDOWED INTERFACE

Data I/O Corp. has made the latest version of the FutureNet schematic-capture software, FutureNet-5, easier to use with a windowed interface and an expanded design feature set. Safety features such as periodic auto-saves protect work from being lost in the event of power or system failures. Other safety features minimize mistakes when commands are executed unintentionally. Also, the software alerts users

when drawing memory is low, providing the opportunity to save the drawing before available memory is depleted. FutureNet-5 combines a menu-driven design environment with dialog boxes. Dialog boxes visually prompt the user for input, providing a list of possible options for completing a particular command. FutureNet-5, which runs on IBM PCs and compatibles, is shipping now. It cost $\$ 499$ in quantities of ten, and $\$ 895$ for single-site versions. Existing FutureNet users can update for $\$ 595$.

Data I/O Corp., 10525 Willows Rd. N.E., P.O. Box 97046, Redmond, WA 98073-9746; (206) 881-6444. GIBGIF 320

## AUTOPLACEMENT BEEFS UP TANG0 PCB T00LS



Autoplacement heads the list of more than 30 features that have been added to the newest release of Accel Technologies' Tango family of pc-board design tools. A few of the more important features of Version 2.0 are: polygon fill; power and ground planes that can be edited; the addition of four mid-layers,
increasing the total to 23 layers; autopanning; and user-definable keyboard macros. In addition, maze routing was enhanced with a second routing pass using a larger grid area. The four Tango packages in the pc-board design family (Tango-PCB, Tango-PCB Plus, Tango-Route, and Tango-Route Plus)
range from $\$ 495$ for individual entrylevel tools to $\$ 1695$ for a bundled, professional pc-board and autoroute combination. Version 2.0 programs will be available later this month.

Accel Technologies Inc., 6825 Flanders
Dr., San Diego, CA 92121; (619) 5541000. GTBGIF 321

## AMCOBULITY wraps it up beautifully.

If it's electronic, Amco can package it. We've got enclosures for every size and shape, designed and built with a fanatical obsession for quality. Big claims? Yes, but we've got big experience: nearly a half century in applications as demanding as space probes and missile

launchers.


AMCOBILITY also brings high quality and high style together. We make your systems look as good in real life as they looked on the drafting table.
That wraps it up: quality, style, selection and service. Call for Amco's Full Line catalog, with complete specs and loads of applica$\rightarrow$ tion information. See how beautifully AMCOBILITY can wrap up your enclosure needs!


## SOFTWARE SYNTHESIZES MICROWAVE CIRCUITS

RFSynthesist is a new synthesis tool from ingSOFT Ltd. that creates rf and microwave circuits. The tool performs filter synthesis, calculation of trans-mission-line characteristics from physical dimensions, synthesis of microstrip lines, and calculation of coupled trans-mission-line characteristics in stripline and microstrip configurations. It can create Butterworth, Chebyshev, elliptic, and coupled-resonator filters. In addition, the company provides user support in the form of a 500 -page user's manual, an on-line manual, a newsletter with practical examples, and active consulting in rf engineering. The synthesis software works as a standalone application or as a part of the RFDesigner system, ingSOFT's complete rf and microwave engineering environment. RFSynthesist runs on all Macintosh computers. It's available now for $\$ 1200$.
ingSOFT Ltd., 213 Dunview Ave., Willowdale, Onatario, M2N-4H9, Canada; (416) 730-9611. GIGGIF 322

## SABER LIBRARY ADDS 40 OP-AMP MODELS

An agreement between National Semiconductor Corp., Santa Clara, Calif., and Analogy Inc. has produced over 40 behavioral op-amp models for Analogy's Saber simulator. National worked closely with Analogy in model definition and verification. Analogy will of fer two levels of op-amp models. OP1 models are used in the top-level design stage that takes into account first-order effects. OP2 models are used to simulate both first- and second-order effects. In addition to many standard capabilities, OP2 models include such features as external compensation, crossover distortion, nonlinear output inductance and resistance, asymmetry in the output stage, and accurate noise analyses. OP1 models are available now and OP2 models will be available early in 1991. The OP1 models are included in the standard-parts library, which costs $\$ 3600$ a year.

Analogy Inc., 9205 S.W. Gemini Dr.,
Beaverton, OR 97005; (503) 626-
9700. CIICIF 323

## ENHANCED SIMULATOR DEBUGS IN 2D

The newest release of the Silos II fault and logic simulator, version 90.1 , contains new features such as 2D interactive debugging, support for Futur eNet-compatible ASIC part libraries, analog behavioral modeling, and a facility that lets users create custom reports. Debugging can take place in both the time and topology dimensions. When users discover that a node has transitioned to an incorrect state, they can interactively trace the cause of the transition backwards in time and through the fan-in parts of the node, as well as through device layers. Also, version 90.1 lets users scan a time range for spikes or unknown levels. Silos II version 90.1 is shipping now. It runs on a wide variety of platforms, including PCs, Macintosh computers and workstations, and mainframes. Pricing ranges from $\$ 5000$ to $\$ 80,000$, depending on hardware platform.

Simucad Inc., 32970 Alvarado-Niles Rd., Suite 744, Union City, CA 94587; (415) 487-9700. GIRGF 324


# 3 

## All the features of HPBASIC, and more.



HTBasic	BASIC FEATURES:	HP BASIC
YES	IEEE-488 GPIB (HP-IB), RS-232 Instrument Control	YES
YES	Integrated Environment: Mouse, Editor, Debugger, Calculator	YES
YES	Supports 16 Megabytes of Memory (breaks DOS 640K barrier)	YES
YES	Engineering Math: Matrix Math, Complex Numbers	YES
YES	High Level Graphics: Screen, Plotter, Printer	YES
YES	Structured Programming with Independent Subprograms	YES
YES	Runs on Industry Standard Personal Computers	NO*
YES	Industry Standard Graphic Printer Support: Epson, IBM, lasers, etc.	N0
YES	Industry Standard Network Support: Novell, IBM, Microsoft, NFS, etc.	N0
YES	Industry Standard IEEE-488 Support: National Instruments, IOtech, etc.	NO
YES	Exchange data files with Industry Standard PC applications	NO*
YES	No-charge Telephone Technical Support	NO
YES	Instant on-line HELP system	NO

A Costly Situation. Every engineer needs the power and features of a "Rocky Mountain" BASIC workstation, but not everyone can have one. They simply cost too much. Fewer workstations, less productivity. The Best Way. TransEra HTBasic software provides the only way for serious technical computer users to turn their PC into a workstation without having to add costly hardware. Powerful workstations for everyone means greater productivity. Extraordinary Versatility. In addition, TransEra HTBasic works with the Industry Standard Personal Computer hardware, software, and networks. It even allows you to easily exchange data between your favorite DOS programs and the files you create in the BASIC workstation environment. All at a fraction of the cost of other solutions.

More compatibility. More versatility. More possibilities. Less expense. Less hassle.

To find out more, call 1-801-224-6550.

## SYSTEM HIL0 B0ASTS IMPROVED SIMULATION

Enhanced simulation is one highlight of the newest release of GenRad's System Hilo design tools, System Hilo 4. All the tools have increased functionality, are faster, and more accurate. System Hilo 4 can operate with VHDL and

GenRad's own hardware-description language, GHDL. VHDL and GHDL models can be mixed at any level. The new software has source-level debug facilities for both languages. Users can breakpoint, single step, and examine and change variables interactively during simulation. In addition, GenRad is

If your only concern is initial cost, then you'll save a few bucks by choosing fuses over E-T-A Circuit Breakers.

But fuses blow . . . and can drive up your total operational costs including warranties, replacement, service, even product liability.

E-T-A Circuit Breakers, on the other hand, add value to your product. They provide better circuit protection and performance characteristics than fuses. They're trip free and foolproof . . . and can actually lower your total costs.

So forget the fast buck. Go for the longterm value of E-T-A Circuit Breakers . 100\% quality tested and approved for use worldwide. 会 (6)

## [可•A CIRCUIT BREAKERS GROUP

 setting the pace for circuit protection7400 N. Croname Rd., Chicago, IL 60648 Phone: (708) 647-8303 Fax: (708) 647-7494 © 1989 E-T-A Circuit Breakers

CIRCLE 99

working on a project that will bring logic synthesis into the Hilo environment next year. The project, called HiDesignA, will integrate the company's synthesis technology that was pur-
chased from Aptor S.A. Grenoble, chased from Aptor S.A., Grenoble, France, with the System Hilo 4 environment. HiDesignA will take in either VHDL, GHDL, or both. It will output a schematic as well as a gate-level netlist schematic as well as a gate-level netlist
for the ASIC foundry. HiDesignA will also synthesize scan test structures for also synthesize scan test structures for
internal and boundary scan. System Hilo 4, which will be available in the Hilo 4, which will be available in the
first quarter of next year, will cost $\$ 18,000$ in single quantity.

GenRad Inc., 300 Baker Ave., Concord,
MA 01742-2174; (508) 369-4400.
GIRGIF 325

## FPGA T00LS INCREASE UTILIZATION BY 20\%

Plustran 2.0 is the newest version of Plus Logic's FPGA design tools. The new release broadens support for 80286- and 80386-based CAD tools, and adds support for Sun workstationbased tools. Through automatic partitioning, minimization, and optimization, Plustran 2.0 uses FPGA silicon $20 \%$ more efficiently than the previous version. With the improved logic minimization, a 4000 -gate equivalent part becomes a $4800-$ or 5000 -gate equivalent part. The density increase is due to improvements in the optimizer-minimizer that merge and combine functions in one timing pass through the chip. In addition, the user interface has been improved to make it easier for designers to get started. Plustran 2.0 is available now for $\$ 2800$. The design system includes software, documentation, Plus Array Programmer, a choice of symbol library, and one year of maintenance. It runs on 80286- and 80386based PCs and Sun workstations.
Plus Logic Inc., 1255 Parkmoor Ave.,
San Jose, CA 95126; (408) 293-
7587. GIBGIF 326

## COMPUTE IC POWER, SKEW, ON a Hardware accelerator

The Advanced ASIC Designer software package from Zycad Corp. analyzes circuit power consumption, input-output skew timing margins, and critical paths at hardware accelerator speeds. ASIC Designer works with the company's Mach and XP hardware simulation-acceleration systems at speeds up to 2.5 million events per second.

The package consists of three tools, all developed by System Science Inc., Palo Alto, Calif. PowerSim uses functional or test vectors to compute the power consumed by CMOS circuits during operation. Power is calculated by performing a special simulation that takes into account the switching activity and capacitance of all nodes, the constant leakage current for each primitive, and the operating voltage. The information is then fed into a series of equations to compute the instantaneous energy consumption at each time point for the whole circuit, or any part of the circuit. Post-processing determines the peak and average power within any time period.
The second tool, PinSkew, deter-

mines the circuit's sensitivity to signal timing variations. The software simulates circuit operation with functional or test vectors while varying the input stimulus timing and the output strobe timing. PinSkew tests the circuit to determine if its operation matches the results generated with databook timing.

Finally, Critical PathFinder analyzes critical circuit paths using functional or test vectors. It can be used to speed up a circuit or determine where delays occur. Advanced ASIC Designer costs $\$ 60,000$.

Zycad Corp., 1380 Willow Rd., Menlo Park, CA 94025; (415) 6887400. G/iGCIF 327

- LISA MALINIAK


## PC-BASED ASIC T00L OUTPUTS WAVEFORMS

Now engineers designing gate arrays on their 80286- and 80386-based personal computers with International Microcircuits' PC-EasyGate software can get simulation results outputted as waveforms. Users can display up to 14 traces at once through a selected range of cycles. Viewing features include zooming and forward and backward scanning. In addition, help menus aid users in selecting software functions. The PC-EasyGate package helps designers create digital gate-array circuits with up to 12,000 gates. It performs simulation and autotest program generation. The PC-EasyGate simulator will accept both OrCAD and Futurenet schematics. PC-EasyGate with waveform-output capability is available now. The software requires MS-DOS 4.0 or higher, 640 kbytes of RAM, VGA graphics, and a 20 -Mbyte hard disk drive. It costs $\$ 1250$.

International Microcircuits Inc., 525
Los Coches St., Milpitas, CA 95035;
(408) 263-6571. CHRGIF 328

## PCB LAY0UT T00L D0ES FAST AUTOROUTING

The latest release of Ultimate Technology's pe-board layout software, Ultiboard Version 4.2, now has a gridless interactive autorouter that lets engineers specify autorouting by window, net, or component. In addition, the company's batch router has increased tremendously in speed. For example, a complex, surface-mounted, double-eur-ocard-size board typically routes in less than two hours. Version 4.2 also adds block functions that maintain design integrity. The Ultiboard real-time designrule check operates throughout the block commands, making it impossible to cause design-rule violations without overriding the system. Both the interactive and batch routers will be included free in all Version 4.2 packages, which will ship this month. Entry-level DOS-based systems start at $\$ 995$. A free evaluation copy is also available for the asking.

Ultimate Technology, 269 Mt. Herman Rd., Suite 105, Scotts Valley, CA 95066; (408) 439-8944. CHBCIF 323


DDP's packaged LEDs are designed as direct replacements for incandescent lamps. Our LEDs provide long life (averaging 10 years or more), and resistance to vibration and shock.

## Bubble Light Features:

- Large area indicator
- Uniform $180^{\circ}$ viewing angle
- Overall diameter of 1 '"
- Assorted colors \& bases
- 5 to 110 Volts


Data Display Products


445 South Douglas Street EI Segundo, Calif. 90245-4630 (213) 640-0442, Ext. 113 Fax (213) 640-7639

## There IS a Surprise in Every Box!



Yes indeed. You'll be pleasantly surprised at the extent of service and support behind your copy of OrCAD/PCB II. That's one reason why OrCAD users vastly outnumber the competitions.' It goes beyond the superiority of our products, even beyond their ready accessibility. It is, quite simply, a proven commitment to provide high-performance productivity tools and back them up with the highest level of technical service and support in the industry.

At OrCAD, we offer more major new product releases, more product updates and more technical support. That's because, unlike the competition, we listen to our customers and respond with continuing product improvements. Improvements that will help you keep pace with advancing technology.

OrCAD/PCB II . . . the only real surprise is how much more you get for the price.

Call today for your FREE demo disk and guide.

## ICON-BASED SOFTWARE AND TESTER Architecture Speed Programming

Anew hardware architecture and powerful software help the ITS 9000 series component testers slash test-program generation time. The multifunction system offers embedded memory and scan capabilities, as well as single-insertion test coverage of mixed-signal devices.
The new hardware architecture, called Sequencer Per Pin (SPP), is a timing system based on proprietary ASIC technology that allows a true replication of the simulator environment on the tester. Device functionality is directly checked against the simulator output, so manual modifications of CAD-generated vectors are not needed. As a result, test engineers using SPP can generate complex waveforms.
The SPP architecture is tightly coupled with the Advanced Symbolic ATE Programming (ASAP) software. This package is an icon-driven environment that uses interactive windows to create, test, debug, and modify test programs in real time, without the need to recompile. ASAP is self-checking and self-complete, so the programmer can test the program as it's being written. Once a test icon is saved, it becomes

part of a library that can be used to create new programs.

Systems are available with clock rates to 200 MHz and data rates from 40 to 200 MHz for up to 512 pins. Overall edge-placement accuracy is 175 ps . The SPP architecture permits expansion to 1024 pins. ITS 9000 prices range from $\$ 1.8$ to $\$ 2.8$ million for a 256 -pin unit to $\$ 3.1$ to $\$ 4.8$ million for 512 pins. The system can be ordered now.

Schlumberger Technologies, ATE
Div., 1601 Technology Dr., San

Jose, CA 95110-1397; (408) 453-
0137. CHIGIF 330

JOHNNOVELLINO

## T00LS SPEED WRITING 0F TEST-PROGRAMs

Four software tools help users develop linear and mixed-signal component tests on the Teradyne A500 family of test systems. The individual packages offer assistance that ranges from automatically generating program code to generating whole programs from sym-bolic-level code modules. The set includes Image ExPress, a code-producing display that works with the A500 testers or a workstation running Teradyne's Image Simulator/Workstation software. The engineer specifies the test instrument setup by pointing and clicking on the graphic display with a mouse. Other tools are the Progen test database management system, device testing libraries in the Progen format, and Analyzer tools specific to certain device families. Prices for the software range from $\$ 5000$ to $\$ 30,000$. Deliveries will begin in the first quarter of 1991.

Teradyne Inc., Industrial/Consumer Div., 321 Harrison Ave., Boston MA 02118; (617) 482-2700. GIRGIF 331

## 500-MHz TESTER HANDLES ULTRA-FAST MEMORIES

The Ando-9048 $500-\mathrm{MHz}$ memory tester has features aimed at a variety of memory types. The system has independent timing generators at each pin, a 128 -kword fail memory, and a 256 word, 68 -bit-wide data-log memory. Programmable drivers deliver a 2-V pkpk swing from -2 to +2 V . Accuracy is $\pm 200 \mathrm{ps}$. Users can program the syn-thesizer-based timing system for cycle widths from 2 to 128 ns , with 128 -ps resolution. Up to 16 timing sets can be used on-the-fly. The 9048 's 12 X and 12 Y address capability allows testing of up to 16 -Mbit RAMs. For static RAMs, the tester offers data verification to within 8 ps of the end of four complete cycles. For cache memories, the 9048 can test devices up to 32 -bits wide. A 96 -pin version of the Ando-9048 costs about $\$ 2$ million, with delivery in 4 to 6 months, depending on configuration.

[^7]

## THE LED ALTERNATIVE TO INCANDESCENT LAMPS

DDP's packaged LEDs are designed as direct replacements for incandescent lamps. Our LEDs provide long life (averaging 10 years or more), and resistance to vibration and shock.

## Cluster Features:

- Large area illuminator
- Clusters from 4 to 7 LEDs
- Candelabra \& Miniature

Bases

- Assorted colors
- 5 to 110 Volts


Data Display Products 445 South Douglas Street El Segundo, Calif. 90245-4630 (213) 640-0442, Ext. 115 Fax (213) 640-7639 CIRCLE 141

### 0.99 Power Factor Corrected Switcher With Universal Input



1000 watt single and multiple output switchmode power supplies operate from 120 VAC 15 Amp service, or as Universal Input from 90 to 264 VAC line without strapping. Units meet IEC 555-2 harmonic distortion and UL, CSA, VDE, EN, and FCC safety and EMI specifications. Other models operate from 48 VDC or 120/230 VAC.
Contact: Qualidyne (619) 575-1100
Qualidyne

- CIRCLE 641

Compact, Modular Switchmode Supply Meets Class B EMI


Compact power supplies can provide up to 400 watts with hundreds of volt/amp combinations of from 1 to 7 DC outputs. Units are available with in-line or sidemount I/O terminals and operate from 120/230 VAC. Options include Auto Current-Sharing with a isolated Power Supply Fail signal, ideal for $\mathrm{N}+1$ use. Contact: Qualidyne (619) 575-1100 Qualidyne CIRCLE 642

Low Profile/Low Cost Supplies Are Only 2" to 3" High


Compact switchers feature robust, highcurrent main and auxiliary outputs to suit OEM needs. Single and multiple output models provide from 250 to 1000 watts. Wide user-adjustment ranges, auto AC line select, integral fan-cooling, margining, and inhibit are among the features and available options.
Contact: Qualidyne (619) 575-1100
Qualidyne
CIRCLE 643

## ADVERTISEMENT

## Modular 5" x 5" \& 5" x 8" AC-DC Switchers \& DC-DC Converters

Hundreds of models with up to 9 independent outputs can be easily configured to meet custom requirements without delays. Providing 800 to 3000 watts, units operate from 48 VDC or 120/230 VAC. All meet EMI and safety specs from UL, CSA, EN, FCC and VDE. Wide adjustable and current sharing outputs available.
Contact: Qualidyne (619) 575-1100
Qualidyne

- CIRCLE 644


FREE NEW 66-PAGE CATALOG/BINDER CALL OR WRITE: QUALIDYNE 3055 DEL SOL BLVD. SAN DIEGO, CA 92154 PHONE: (619) 575-1100
FAX: (619) 429-1011

## L0W-COST B0ARD OFFERS GPIB-T0-PC INTERFACE

The CIO-PC2A is a low-priced IEEE488 (GPIB) interface board for IBM PC/XT/AT computers. The board, which is based on a standard NEC uPD7210 interface chip, offers complete talker/listner/controller capability. Data transfer rates up to 300

kbytes/s are possible using direct memory access (DMA) on one of the three available channels. Six interrupt lines support transparent enabling and disabling. The board is a half-size card equipped with an rf-shielded IEEE-488 cable connector. The CIO-PC2A costs $\$ 125$ each in quantities up to nine, $\$ 99$ each in lots of 10 to 24 , and $\$ 85$ each for orders over 25 . A 2 -m IEEE-488 cable costs $\$ 59$.
Computer Boards Inc., 44 Wood Ave., Mansfield, MA 02048; (508) 261 -
1123. GIIGIF 333

## 50-MHZ TESTER FEATURES TIMING EDGE FLEXIBILITY

The Polaris 50 is a $50-\mathrm{MHz}$ production tester optimized for the current generation of logic products. Like its "big brother," the $100-\mathrm{MHz}$ Polaris 100 , the new system has a second-generation test-per-pin architecture. But the Polaris 50 is aimed primarily at high-volume testing of today's mainstream logic products, such as popular microprocessors and ASICs. It can be configured with from 32 to 384 pins. The Polaris 50 's ability to place timing edges over four cycles makes automatic generation of test programs much simpler and faster. Additionally, the system's 4 -million vector memory depth satisfies the higher memory requirements of test programs generated directly from CAD tools. Timing accuracy is $\pm 150 \mathrm{ps}$. The system is fieldupgradable to the $100-\mathrm{MHz}$ version. A 256 -pin Polaris 50 costs $\$ 1.7$ million,
with availability 6 months after receipt of an order.

Megatest Corp., 880 Fox Ln., San Jose, CA 95131; (408) 437-9700. GIFGIF 334

## TEST SOFTWARE FEATURES RELATIONAL DATABASE

A software package for test-data collection and analysis includes a net-work-wide distributed relational database, automated data collection tools, and an extensive set of reporting and analysis tools. The system, dataVision, features a platform-independent graphical interface based on X Windows and OSF/Motif. The distributed database has a true next-generation "peer-to-peer" architecture, which provides fault-tolerant protection that eliminates traditional bottlenecks caused by networks or overworked central servers. The software supports the LTX Synchromaster, Micromaster, Validmaster, and Deltamaster test systems. The package's integrated analysis tool offers transparent access to the distributed database, statistical-analysis routines, graphic display system, and tabular report generator. All plots and displays are on-line, so users can quickly generate histograms, scatter plots, X-bar-R charts, and trend charts.

LTX Corp., LTX Park at University Ave., Westwood, MA 02090; (617) 4611000. CIBGIF 335

## TEST PACKAGE SUPPORTS TI 320C2X-BASED B0ARDS

Designers of boards based on the Texas Instruments 32020 , 320 C 25 , and 320 C 26 digital signal processors can now test those boards on the Fluke 9100 A digtal test system. Testing is done through the reconfigurable 9132A memory interface pod using the new 9132A-320C2X processor support package. The package includes a pro-cessor-specific personality module, a sync module adapter, a software disk, and a manual. Besides the standard ROM and RAM tests and checks of the Read and Write functions, the package includes a microfloppy of 9100 A programs with enhanced diagnostic capabilities for kernel hardware faults. The 9132A also incorporates the HyperTest algorithm, which can test 1 Mbyte of the unit-under-test's RAM in a little as 1 second. The 9132A-320C2X list price in the U.S. is $\$ 2500$. Delivery is within 8 weeks.

John Fluke Mfg. Co. Inc., P.O. Box 9090, Everett, WA 98206; (800) 4435853., ext. 88. CTIGIF 336


## THE LED ALTERNATIVE TO INCANDESCENT LAMPS

DDP's packaged LEDs are designed as direct replacements for incandescent lamps. Our LEDs provide long life (averaging 10 years or more), and resistance to vibration and shock.

## Multi-Chip Features:

-6-Chip wide angle illuminator

- $160^{\circ}$ Viewing angle
- Plug compatible for

T13/4 to T3 $1 / 4$ lamps

- Assorted colors \& bases
- 5 to 110 Volts


Data Display Products 445 South Douglas Street El Segundo, Calif. 90245-4630 (213) 640-0442, Ext. 114 Fax (213) 640-7639 CIRCLE 142

The ultimate enclosure with sleek, sophisticated styling, computer-aided, high-tech design and functionality and Bud's legendary built-in quality.


The new Jaguar Cabinet offers the contoured elegance of a modern classic in perfect harmony with advanced engineering and inspired technical innovation. Beneath the graceful curves of its removable top cover, you'll discover a rugged steel frame engineered to be incredibly strong and stable. The sophisticated, functional design provides a precise environment for today's, and tomorrow's, high-tech equipment.

Utilizing Bud's standard option packages and our engineer-assisted custom capabilities, we can create a unique Jaguar Cabinet to meet your specific technical requirements.

```
Bud East, Inc
4605 East 355th Street
P.O. Box 431
Willoughby,Ohio 44004
(216) 046-3200
FAX: 216-951-4015
```


P.O: Box 1029

Peoria, Arizona 85345-0350
(002) 070.0300
(602) $979-0300$

FAX: 602-878-5371

## SPEEDY VGA CONTROLLER PaCKS CURSOR HARDWARE

0ffering over eight times the video display throughput of the IBM VGA display controllers, the 77C22 from NCR can use inexpensive DRAMS yet deliver the performance of systems built with video RAMs. The IC includes support hardware for a bit-mapped cursor, a 16 -bit bus interface with deep 32 -word by 16 bit FIFO registers, and latched address and data lines. Via various control-pin configurations, the same chip can tie directly into AT, EISA, or Micro Channel host buses, simplifying off-chip logic for an adapter card and for embedding the chip on a system motherboard.

Basic VGA display modes are in 640-by-480-pixel resolution in up to 256 colors. Application-software drivers can let the chip display extended-resolution screens that show 1024-by-768, or 800 -by-600 pixels with 16 colors, as well as lower-resolution EGA and earlier-standard screens. Dynamic control of the FIFO buffer allows the 77 C 22 to outperform most other FIFO-bufferbased VGA chips. The data transfers
can be done at maximum host transfer rates, reducing the number of wait states required by the video subsystem. The result: measurably faster performance for text and graphic environments such as Microsoft Windows 3.0 and Presentation Manager.
The chip supports video rates of up to 65 MHz and font widths of 4 , and 7 through 16 pixels, and frame buffers of up to 4 Mbytes. Special addressing logic allows simple-frame buffer copying and automatic offset addressing. A second version of the chip, the 77 C 22 E , provides a pin-compatible superset of features as well as higher transfer rates, interlaced video modes, an even faster system interface, and support for 16 -bit wide DRAMs. Production quantities of the NCR 77C22 are available at $\$ 26$ in 10,000 -unit lots when housed in a 160 -lead plastic quad-sided flat package; the 77 C 22 E costs $\$ 2$ more in the same quantity.

NCR Corp. 1635 Aeroplaza Dr. Colo-
rado Springs, CO 80916; (719) 596-
5612 GIBGIF 337
DAVE BURSKY

## SPEEDY PR0GRAMMABLE LOGIC IC Packs More

The tradeoffs between speed and density usually relegate high-er-complexity CMOS circuits to the slower-speed grade ICs. This locks the chips out of applications such as data paths and fast state machines. By applying its advanced 1-mm CMOS UV EPROM process, Intel has developed a high-speed version of the popular Altera EP910, the 85C090. The new chip can implement state machines that run with external clock frequencies of up to 50 MHz ( 66 MHz internal). Pin-to-pin propagation delays across the chip are also much shorter than those of the 40pin Altera chip-just 15 ns vs. 25 to 30 ns. Similarly, the clock-to-output delays are also about half of those of the Altera chip-the Intel 85CO90 delays the signal by just 9 ns .

A direct pin-to-pin replacement for the EP910, the 85 CO90 offers 24 macrocells, each of which permit their registers to be configured as D, T, J-K, or RS type flip flops. Up to 36 inputs are available for the chip-12 dedicated and the remaining 24 are programma-
ble as inputs or outputs. Two synchronous lock inputs are available on the chip and all macrocells can be set up for asynchronous clocking. Each macrocell has eight $P$ terms, and selectable polarity for the Output, Clear, and Output-Enable terms for each macrocell. Each 85 CO 90 can replace the equivalent of about 3 PAL devices, thus reducing board space while delivering better overall system performance.

A programmable low-power standby option limits the power drain to just 60 mA . During normal operation, the chip draws about 105 mA when running at 50 MHz and 5 V . Samples of the 40 -pin plastic DIP version of the chip are immediately available and sell for $\$ 17.75$ in 1000 -unit lots. Windowed DIPs as well as plastic and windowed 44-lead plastic leaded chip carrier versions will also be produced.

Intel Corp., 3065 Bowers Ave., P. O.
Box 58065, Santa Clara, CA 950528065; (408) 987-8080

CIAGIF 338
DAVE BURSKY

## FAST CHIP DOES P0LAR T0 RECTANGULAR AT 20 MHz

With the ability to convert complex polar coordinate descriptions into cartesian coordinates at rates of up to 20 MHz , the PDSP16340 can simplify calculations in applications such as radar and sonar signal processing, medical imaging, and many others. The CMOS chip is a 16 -bit processor that has registered inputs with separate clock enable lines for the magnitude and phase inputs. Real and imaginary result outputs are also held in registers and each has its won three-state enable control line. There are a number of user-programmable options that allow different word formats to be used for both the input and output operations. The chip runs from a $5-\mathrm{V}$ supply and comes in an 84-lead pin-grid-array package. Samples are immediately available and sell for $\$ 330$ in 1000 -unit lots.

Plessey Semiconductors Corp., Sequoia Research Park, 1500 Green Hills
Road, Scotts Valley, CA 95066; Steve
Brightfield, (408) 438-2900.
GIiGIF 339

## "JAN" <br> DIGITAL DELAY LINES

HYTEK'S HYBRID MICROELECTRONICS CAPABLLITY IS NOW CERTIFIED AND QUALIFIED TO MIL-STD-1772. THS
CAPABILITY ALLOWS HYTEK TO PROVIDE A
VARIETY OF DIGITAL DELAY LINES AND
CUSTOM HYBRID CIRCUITS TO MILITARY REQUIREMENTS. DELAY LINES ARE MANUFACTURED AND TESTED IN COMPLIANCE WTTH MIL-STD-883, MIL-H-38534, AND MIL-D-83532.

- Designed and constructed for military applications
- Schottky buffered inputs and outputs
- Hermetically sealed metal package
- 14-pin standard configuration
- 5 and 10 tap outputs
- Tight tolerances over MIL temperature ranges
- Custom designs available


CIRCLE 162
$\begin{array}{lllll}\text { D } & \mathbf{E} & \mathbf{S} & \mathrm{I} & \mathbf{G}\end{array}$
NOVEMBER 8, 1990

# SPECIFY INCO SPECIALTY POWDERS FOR WIDE RANGE OF ELECTRONIC APPLICATIONS 



Inco Type T 287 Filamentary Powder, particle size (FSSS) 2.6-3.3 microns, apparent density 0.75-0.95 g/cc, relative surface resistivity 0.30 ohms per square ( $\square$ ).


Novamet HCA-1 Flake, screen mesh 98\% minus 400, apparent density $0.90 \mathrm{~g} / \mathrm{cc}$, thickness 1.0-1.1 microns, surface resistivity $0.25 \Omega / \square$.

Inco Specialty Powder Products now has a wide range of nickel and coated powders with exceptional conductive and magnetic properties. These properties make them ideal for a spectrum of electronic applications such as conducting film technology, coatings, adhesives, gaskets and EMI shielding.

## EXTENSIVE PRODUCT RANGE

The development of computer processed control coupled with the continuous powder production improvements enables us to meet your most stringent powder specifications for electronic applications.

In addition to the products pictured above, INCO SPP has available the following high performance powder products. Novamet Conductive Nickel Spheres, particle size (FSSS) 8-9 microns, apparent density 3.2-3.5 g/cc, surface resistivity 1.0 ohms per square. Novamet 525 Conductive Nickel Pigment, screen mesh $100 \%$ minus 400 , particle size 3.2 microns, 0.65 BET surface area $\mathrm{m}^{2} / \mathrm{g}$, surface resistivity 0.35 ohms per square. Silver Coated Nickel Flake, $15 \% \mathrm{Ag}, 2.6 \mathrm{~g} / \mathrm{cc}$ apparent density, particle size (FSSS) 15 microns, screen mesh 99\% minus 200, surface resistivity 0.04 ohms per square.

Magnetic ferrites and surge arrestor applications also


Novamet Silver Coated Nickel Spheres, 15\% Ag, $2.5 \mathrm{~g} / \mathrm{cc}$ apparent density, particle size 10 microns, screen mesh $99 \%-250$, surface resistivity $0.03 \Omega / \square$.


Novamet Nickel Coated Graphite, 60\% fully encapsulated Ni, apparent density $1.6 \mathrm{~g} / \mathrm{cc}$, particle size (FSSS) 100 microns, screen mesh $63 \%-150 /+250$, surface resistivity $0.3 \Omega / \square$.
use our specialized range of nickel oxides. High Purity Black Nickel Oxide, $77.2 \% \mathrm{Ni}$, BET $75\left(\mathrm{~m}^{2} / \mathrm{g}\right)$ particle size (FSSS) 5.2 microns, minus 325 mesh $99 \%$ plus. Green Nickel Oxide, $78.5 \% \mathrm{Ni}$, BET $3\left(\mathrm{~m}^{2} / \mathrm{g}\right)$ particle size 1.6 microns, -325 mesh $100 \%$.
Inco Specialty Powder Products is your unique source for custom fitting high performance powders into electronic applications. Our customer focused, worldwide marketing service group is ready to help you with your current and future needs.
For more information write INCO Specialty Powder Products, Dept. 1-90, Park 80 West-Plaza Two, Saddle Brook, NJ 07662

## $\overline{\mathrm{NCO} \mathrm{SPP}}$

Park 80 West-Plaza Two, Saddle Brook, NJ 07662
Shin-Muromachi Building, 4-3 Nihonbashi-Muromachi 2-Chome, Chuo-ku, Tokyo 103 Japan
1-3 Grosvenor Place, London SW1X7EA England
15/FI Wilson House, 19-27 Wyndham Street Central, Hong Kong


Right up to 1988, the Ericsson range of high reliability power supplies was limited - Eurocard PLB switchers, and the remarkable PKA miniature, high frequency DCIDC converters. Remarkable, because they marked the advent of the power component concept as complete modules
and open frame power supplies. When necessary, there's even a full custom design facility for high volume users.

In short, the EriPower ${ }^{\text {Tu }}$ range has put on a lot of weight, and there's now a product for almost every need.
which can be used to realize distributed power architecture.
 Since then things have changed. Today the EriPower ${ }^{\text {TM }}$ range includes DC/DC modules have modules have
standard pinnin But one or two things haven't changed. For example, EriPower ${ }^{\text {rM }}$ power supplies still meet or exceed international standards for safety and RFI/EMI emission. They all represent the very latest technology of their kind. And they all feature the demanding MTBF performance you'd expect of products from Ericsson - over 200 years in some cases. After all, as a part of one of the world's leading converters from 0.3Watts to 200Watts. And most of them are also designed to be paralleled for system upgrading. scandard pinning:
footpring (Note: Only avallable

What's more, the ACIDC power supply range
in Europe) covers 60 Watt to 400 Watt requirements with Eurocard
telecommunications companies, reliability is a vital part of our culture. As you've probably realized, the EriPower ${ }^{\text {TM }}$ range is expanding fast. Simply get in touch and we promise to keep you up to date, as we continue putting on weight.

[^8]ERICSSON

## Real-Time Compression B00STS DISK Data Space

Available in either chip, board, or software form, the Stacker, a real-time lossless data-compression technology, promises to effectively double or triple the amount of disk-storage space. Designers can buy the 9703 or 9704 compression coprocessor chip and embed that chip into systems of their own design. Or, they can buy Micro-Channel-Adapter or ATcompatible cards that can be inserted into an existing system. And for systems that don't have a spare slot, a soft-ware-only version can also be had.

The 9703 and 9704 coprocessors are similar, but the first can deliver a throughput of $1 \mathrm{Mbyte} / \mathrm{s}$, while the latter ups the average throughput to 1.8 Mbytes/s. Both chips implement QIC122, a standard for $1 / 4-\mathrm{in}$. data-cartridge tape drives, but can also be used on SCSI host adapters, in data-communications systems, helical-scan 4-and 8-
mm tape drives, and other systems. All versions of Stacker are $100 \%$ compatible with both DOS 3.x and 4.x and work with environments such as Windows 3.0., disk-caching programs, and utility programs.
Also available is a developer's kit that allows engineers to integrate the chips into new system designs. Purchasers of the kit, which sells for $\$ 10,000$, get a royalty-free license to redistribute the Stacker device driver when used in conjunction with the 9703 or 04. Both chips are housed in 100-lead plastic quad-sided flat packages. In 1000-unit lots, the 9703 and 04 sell for $\$ 35$ and $\$ 45$, respectively. A 9703 -based board sells for $\$ 229$, and the softwareonly version sells for $\$ 129$. All versions are available from stock.

Stac Electronics, 5993 Avenida Encinas, Carlsbad, CA 92008; Gary Clow, (619) 431-7474. GIBGIE 373
DAVE BURSKY

## FAST FIFOS ACCESS DATA IN 25 NS, PACK 4 KWORDS

With an access time of just 25 ns , the CY7C433 FIFO register offers the shortest access time of any 4-kword-by9 -bit circuit. And, thanks to the use of a submicron manufacturing process, the chip is housed in a space-saving 300 -milwide 28 -pin package, rather than one that's 600 mils wide. A 600 -mil-wide version, the CY7C432, is also available. Read and write operations are asynchronous at either port, permitting separate clock signals to control each port. The FIFO register also includes Full, Half-Full, and Empty flags, and has Expansion-in and Expansion-out signals to allow multiple registers to be cascaded. In addition to plastic and ceramic DIPs, the chip is available in leadless ceramic chip carriers, plastic leaded chip carriers and small-outline Jleaded packages. In 100 -unit lots, the plastic DIP version sells for $\$ 89.30$.

Cypress Semiconductor Corp., 3901
North First Street, San Jose, CA 95134; (408) 943-2600. CTRGIF 374



CIRCLE 117


Sun SPARCstation SBus


Continuing
Unchallenged Leadership


Maromit HSHMUNTMTS
The Software is the Instrument ${ }^{(1)}$


NAT4882 The Only
Way to Reach Full 488.2 Compatibility

- VXI Embedded Controllers


CIRCLE 236
IBM Micro Channel


- CIRCLE 237

Macintosh SE/30


CIRCLE 238
Call for a FREE Catalog (512) 794-0100 (800) IEEE-488 (U.S. and Canada)


## FULL FFT

PROCESSOR FITS In SINGLE CHIP

containing all the data memory as well as all the necessary computational resources, the PDSP16510 fast-Fourier transform processor is a complete subsystem on a CMOS chip. The Plessey processor employs 16 -bit data and coefficient values and can perform computations with block-floating-point math to improve the chip's dynamic range. A complex FFT with 1024 points can be computed by the chip in just $96 \mu \mathrm{~s}$, when the chip is clocked at 40 MHz . That computational result is equivalent to 450 MIPS of CPU throughput.

Either a Hamming or BlackmanHarris window operator can be internally applied to the incoming real or complex data. The operator values are calculated internally and do not require an external ROM, nor do they incur any time penalty. There are three internal control units in the FFT chip that, in the continuous mode, overlap the new data to be loaded with the present data to be transformed, and the previous results to be dumped. The user can choose to overlap the data blocks by 0,50 or $75 \%$. The FFT processor operates from a $5-\mathrm{V}$ supply and comes in an 84-lead pin-grid array. In sample quantities, the PDSP16510 sells for $\$ 1195$. Production quantities will be ready next spring.

Plessey Semiconductors Corp., Sequoia Research Park, 1500 Green Hills Road, Scotts Valley, CA 95066; Steve Brightfield, (408) 438-
2900. GTRCIF 340

DAVE BURSKY

## highly integrated VGa CHIP TRIMS Board SPace

Designed to directly reside on 80286 , 80386SX and 80386DX CPU buses, the HT216 VGA controller reduces the printed-circuit-board space and chip count in cost-sensitive systems. Housed in a 160 -lead plastic quad-sided flat package, the controller can operate at dot clocks of up to 75 MHz and can employ either $64-\mathrm{k}$-by- 4,265 -k-by- 4 , or 64 -k-by-16-bit dynamic memories, depending on the operating modes. Although the chip can operate with inexpensive $100-\mathrm{ns}$ DRAMs, the controller's fast-page-mode capability greatly reduces access time to the screen memory. When running with a $75-\mathrm{MHz}$ dot clock, the chip can provide non-inter-
laced 1024-by-768-pixel displays with 16 colors and a $72-\mathrm{Hz}$ refresh rate, which minimizes eyestrain. The chip can selfboot from either an 8 - or 16 -bit external EPROM, which would typically hold the video BIOS. In addition to the video memory, the controller only requires a RAMDAC and the various clock sig-
nals. Also on the chip is the 46E8 port, used to add special features to the VGA subsystem. The HT216 is priced below $\$ 25$ each in quantities of 10,000 . Samples will be available in 8 weeks.

Headland Technology Inc., 46221
Landing Parkway, Fremont, CA 94538; (415) 623-7857. EIRGIF 341


Our smallest recorder gives you BIG performance.
For complete details write or call 800-342-3757
EJGENERAL SCANNING INC.
Recorder Products Division
37 Broadway, Arlington, Massachusetts 02174
PHONE: (617) 641-2702 FAX: (617) 648-4906

CIRCLE 107

## High-Speed Crossbar Switch SIMPLIFIES BUS CONNECTIONS

0ffering four 20 -bit-wide input ports and the same number of wide output ports, a BiCMOS crossbar switch gives designers the first chip capable of routing large buses. The SC2001 crossbar has an aggregate switching rate of up to 8 Gbits/s, and provides simultaneous multiplesource to multiple-destination synchronous switching. Organized as 4 -ports by 4 -ports by 20 lines per port, the Silicon Connections' chip can run at cycle times as short as 10 ns thanks to its BiC MOS construction. The four independent 20 -bit-wide input ports can be switched to the four corresponding output ports during each cycle. Each of the input ports can be directed to as many as four output ports, but no output can contain more than one input.

Two modes of output-port addressing are available-input-port priority arbitration or direct-output port-ad-
dress selection. Each port includes handshake signals that can be used in some arbitration schemes such as in fair queues or round-robin approaches. Multiple crossbar chips can be operated in parallel when data paths wider than 20 bits must be switched. Furthermore, the crossbars can be cascaded when there are more than 4 data paths to be switched.
Inputs and outputs of the chip are ECL 10 KH -compatible. Several pins are dedicated for scan testing to permit full user testing in the system. The chip consumes about 7.2 W at 100 MHz . Inside the IC's 235 -lead pin-grid package is an aluminum-nitride heat sink to efficiently remove the heat. Samples of the chip are available and sell for $\$ 280$ in lots of 1 to 99 .

Silicon Connections Corp., 6160
Lusk Blvd., Suite C-204, San Diego,
CA 92121; (619) 535-0422. GIRGIF 342 DAVE BURSKY

## OSCILLATORS ENCLOSED IN SMT PACKAGES

A line of surface-mounted crystal-controlled oscillators, designated the VF 315 series, cover the frequency range of 1.5 to 55 MHz . They incorporate TTL and CMOS circuit designs into a packaging format that uses a minimum amount of board space and accommodates automated assembly. Just 0.55 in. long and 0.34 in . wide, the packages have four J-lead surface-mounting terminations on 0.2 -by- $0.3-\mathrm{in}$. spacing. The packages are compatibile with highspeed pick-and-place equipment and other automated-manufacturing techniques. A range of available function options includes enable-disable control, and packaging in a tape-and-reel or a conventional platic-tube format. Priced at $\$ 3.69$ each in quantities of 10,000 , the delivery lead time for the VF series of surface-mounted crystal-controlled oscillators is eight weeks.

Valpey-Fisher Corp., 75 South St, Hopkinton, MA 01748; (508) 4356831. GIRGIF 343
 DESIGN IN MODULES FOR THE WORST REASONS. LIJ. 13 the better your application looks on a SealTouch ${ }^{*}$ flat-panel electroluminescent touch-screen module.
Our ultra-thin NEMA 4 and 12 modules are all display. No fat. An incredibly powerful presentation for your system, in an absolute minimum of space. You get an interactive touch-screen that can - survive the worst while it displays your application at its best. And there are five - models available with the features you're looking
for. Popular VT terminal

$\qquad$
emulations.
High speed
pixel graphics. And
even PC monitors.
SealTouch modules are a complete solution, so you can save months of engineering time. With our unique Touch Assist"' screen design software, your application can be up and running in a matter of hours instead of weeks.


## Waverorm Synthesizer IC OUTRUNS GAAS EQUIVALENTS



## AUTOCAD for

Electronic Engineers

## AutoSchema

- Only $\$ 195$
- New Symbol icon browsing
- Unlimited levels of hierarchy
- Spice \& Susie interfaces


## AutoPCB

- Best performance on a P.C.
- Double sided SMT
- Real time design rule check
- Interactive push \& shove routing


## AutoHybrid

- Worlds only P.C. Hybrid system
- Automatic component synthesis
- Custom die geometry
- 0.5 micron resolution

CADTGY

2099 Gateway Place,	CALL FOR
Suite 400,	CATALOG
San Jose, CA 95110	408-441-8800
USA	EXT 200

CIRCLE 183
$\begin{array}{llllllllll}\mathbf{E} & \mathrm{L} & \mathbf{E} & \mathbf{C} & \mathbf{T} & \mathbf{R} & \mathbf{O} & \mathbf{N} & \mathbf{I} & \mathbf{C}\end{array}$
NOVEMBER 8, 1990

An ECL direct-waveform synthesizer IC from Plessey Semiconductors generates a userselectable sine-, square-, or triangularwave output with frequencies up to 500 MHz . It's designed for use in ultra-high-speed switching applications in commercial and military communications and instrumentation systems. The output frequency can be programmed upwards from 1 Hz in $1-\mathrm{Hz}$ steps by means of an externally applied 30 -bit word, which yields a 0.5 -

Hz frequency resolution from dc to 268 MHz , with a $1.074-\mathrm{GHz}$ clock. The fine resolution, coupled with $10-\mathrm{ns}$ switching between frequencies at the maximum clock frequency of 1.6 GHz , makes the SP2002 suitable for use in frequency-agile radio and radar applications.
The chip includes a 31-bit data accumulator, a lookup table for the three waveforms, two 8-bit DACs, and a multiplexer. This integration level eliminates the time delays associated with off-chip connections. Square-wave outputs come directly from the accumulator. A sawtooth waveform from the accumulator is converted to triangularand sine-wave forms by on-chip logic circuitry and the DACs. The user selects the required waveform through control pins to the multiplexer. Depending on the output option chosen, unused circuits are automatically deenergized to save power.
Inphase, quadrature, true-phase, and complementary-phase outputs are available for all waveforms. The quadrature outputs are useful for carrierrecovery loops in MPSK modems. With a rapid data-update rate which supports frequency steps as fast as 25 ns , the 2002 is also suited for frequencyhopped systems. With all circuits energized, maximum supply current is 1.05 A. The 2002 comes in a 68 -lead pin grid array with two threaded studs for attaching a heat sink. The price is $\$ 1400$ each in lots of 100 .

Plessey Semiconductors Corp., 1500 Green Hills Rd., Scotts Valley, CA 95066; Ashi Majid, (408) 4382900. GTBGIF 344

MILT LEONARD

## QUAD-PORT RAM EASES DSP SYSTEM DESIGN

Containing a total of 16 kbits of multiaccess storage, the PDSP16520 has those bits arranged as four 16 -bit-wide blocks, each holding 256 words. Each block can be accessed via a pair of 16 -bit input buses and a pair of 16 -bit output buses, with each memory block accessible from any input or output port. Within any clock period, data can be read from any two of the memory blocks, and new data can be written to any two blocks. Separate read and write address inputs are available. If the host system tries to read and write to the same location, the old data will be read before new data are written. Such an arrangement is a perfect match for digital signal processing operations such as radix-2 butterfly calculations in fast-

Fourier transforms, which require two reads and two writes in a single cycle. All address and data lines, as well as control inputs, are fully registered to permit all events to be synchronized to a common system clock, which can run at speeds of up to 20 MHz . Furthermore, the user can program a delay of between 0 and 15 clock cycles before the write operation specified on the input pins actually occurs. That eliminates the need for separate address generators and thus simplifies the support circuitry. The PDSP16520 is immediately available in a 144-lead pin-gridarray package and sells for $\$ 295$ in lots of 1000 .

Plessey Semiconductors Corp., Sequoia Research Park, 1500 Green Hills Rd., Scotts Valley, CA 95066; Steve Brightfield, (408) 438-2900.
CIRGIF 345

## BITS OF INFINITY.



High precision and modular design help the Nicolet 400 DSO Series test virtually everything ... especially your imagination. Choose from 224 different configurations!

Every 400 starts with a built-in MS-DOS disk drive, FFT and averaging. Even a LEARN mode to automate test sequences The rest you design . . . bit by bit.

First choose two or four channel operation, with 64 K to 256 K memory in each. Then select eight or 12 bit digitizing resolution, or even a combination of both: Single ended or differential inputs. And anywhere from one to 200 MS s digitizer speed

From there, maybe add a 44 MB removable hard disk or 40MB internal disk for awesome memory capacity. Then continue with a dual timebase, and powerful Nicolet-W indous PC. software for instant remote control. It all adds up to high precision that's made
to order . . . and not one bit less!
Discover the world's new DSO technology of choice, only from Nicolet Send for a new 400 brochure today:

## Nicolet

INSTRLMENTS OF DISOOUER

## CONVOLVER FOR 2D INCLUDES DELAY LINES

Able to modify the center pixel of an 8-by-8-pixel field, depending on the values of surrounding pixels, the Plessey PDSP16488 twodimensional convolver integrates more features than other convolvers. For
starters, in addition the array of multi-plier-accumulators, it contains a 32 -kbit RAM that can either provide four or eight line delays. The length of each delay can be programmed to suit the application, up to a maximum of 1024 pixels per line. The line delays are physi-


## We'll help you find those little critters.

You can look for them all by yourself, and, eventually find them. It might take you two or
 three days, though. Or, you can do what our customers have done, and use the SCSI analyzer from Pacific Electro Data to find them in a matter of minutes.
Our newest product, the PED4500, is a laptop portable SCSI bus analyzer. It guides you through the menu-driven setup, capture and display. SCSI bus changes are time-stamped and stored in the 32,768 word SRAM buffer. Captured data is displayed as a signal listing,
timing wave form, or as easy-to-understand SCSI commands, status and messages.

With optional emulation installed, you can use the PED4500 as SCSI initiator or target.

The PED4500 laptop analyzer features a 16 Mhz 286 processor, 40 MB hard drive, VGAcompatible gas plasma display, and 101-key keyboard. Or, if you wish, you can buy the analyzer as a drop-in card and software and install it in your own PC. The choice is yours!

Yes, we have just the tool to find those little critters. In fact, the PED4500 can locate the bugs easier and more cost-effectively than anything else around. And you can carry it everywhere you go.



Reference Guide
PACIFIC PACIFIC
PACIFIC ELECTRO DATA:
14 Hughes, Suite B205, Irvine, CA 92718
Tel: (714) 770-3244 1-800-676-2468 Fax: (714) 770-7281
CIRCLE 145
cally set up as two groups on the chip and can be internally connected in series, or set up to accept separate pixel inputs, thus permitting either interlaced video or frame-to-frame operations to be handled.

The convolver handles pixel rates of up to 40 MHz and has up to eight internal line stores. With eight line delays, window regions of up to 8 -by- 8 pixels can be evaluated. The 8 -bit coefficients for each pixel value are stored on the chip and are typically downloaded from the host or loaded from EPROM.

The CMOS PDSP16488 is housed in an 84-lead pin-grid array package and sells for $\$ 395$ in lots of 1000 . To help designers evaluate the chip, an IBM PC-compatible add-in card is available from Spectrum Processing Inc., Westborough, Mass. (508) $366-7355$ ), the U.S. office for Loughborough Sound Images, U.K. The board, which sells for $\$ 3295$, includes the 16488 convolver and picture digitization, a field store, a color look-up table, and video output, all controlled by a graphics-based program running on the host PC .

Plessey Semiconductors Corp., Sequoia Research Park, 1500 Green Hills Rd., Scotts Valley, CA 95066;
Steve Brightfield, (408) 438-
2900. CIRCIF 346

DAVE BURSKY

## IC THWARTS PIRATING OF CIRCUIT BOARD DESIGNS

A unique integrated circuit is specifically designed to protect the design and firmware of any printed circuit board from unauthorized copying. When integrated into the hardware of an add-in board, the SentinelChip receives unique data patterns assigned to each manufacturer and built into the firmware by the manufacturer. These data patterns are recognized and answered by the SentinelChip, which uses a proprietary algorithm technique that never provides a fixed response and, thus, cannot be duplicated. The use of scattered data patterns with corresponding responses from the SentinelChip ensures that the security device is in place. An unanswered call renders the board inoperative. It comes in both sur-face-mount and dual-in-line packages, priced at $\$ 19$ each for high-volume orders. An evaluation kit containing the chip, software, and instructions is available for $\$ 50$.

Rainbow Technologies Inc., 18011-A Mitchell South, Irvine, CA 92714; (714) 261-0228. GTRGIE 372


Tens of thousands of designs have proven Xilinx Field Programmable Gate Arrays to be the ideal logic device. In fact, there are over four million of our FPGAs in use around the world today.

Some are commanding satellite earth station receivers. Others are controlling optical disk drives.

Still others are controlling graphics for workstations, PCs and Local Area Networks.

With toggle rates of up to 100 MHz and densities up to 9,000 gates (with faster speeds
and higher gate densities to come), Xilinx Field Programmable Gate Arrays can meet the specs for your most ambitious designs.

In a fraction of the time.
And at a fraction of the cost of anything else available in the industry today.

Turnaround time on design revs is measured in hours, not months.

Non-recurring engineer-
ing charges are non-existent.
Our new Automated
Design Implementation and
Design Manager software give
you the easiest-to-use user interface in the industry. And they run on PCs and the most popular engineering workstations.

Just call, 1-800-255-7778 or if you're working in California, call 408-559-7778. And we'll send you a free copy of the FPGA fact book. It's an objective look at the key reasons why FPGAs should be in your next design.

## EXILINX

The Programmable Gate Array Company. ${ }^{\text {s" }}$

## Color Flat-Panel VGA Chip Set Eases Design

Atrio of chips that control either a color LCD panel or a CRT display integrate almost everything designers need for a minimum-chip-count display subsystem. The chips include the 82 C 457 VGA flat-pan-
el/CRT controller, the 82 C 411 color-flat-panel palette and triple digital-toanalog converters, and the 82C401 clock synthesizer. Bringing full-color CRT-like display quality to color flat panels, the 82C457 contains special log ic to coax thousands of colors from the

color panels.
Able to support multiple flat-panel types, the controller provides full VGA compatability and backward compatibility with all previous video standards. A proprietary vertical compensation scheme in the controller allows application software with smaller resolutions than the physical screen to completely fill the display in all modes. Almost any width DRAM can be used for the screen memory- 4 -, 8 - and even the new 16 -bitwide DRAMs or pseudostatic RAMs can be used.
The companion 82 C 411 contains the 256 -word by 18 -bit palette and triple 6 bit converters as well as color-reduction logic, the equivalent of an LM339 voltage comparator, and a current or voltage reference. All those features considerably simplify the design of a VGA subsystem. Similarly, the 82C401 simplifies the timing circuitry, replacing the multiple crystals typically used to generate the video clocks for VGA or EGA as well as extended VGA modes up to a $40-\mathrm{MHz}$ dot clock.
The 82 C 457 comes in a 160 -lead plastic quad sided flat package, while the C411 comes in a 64-lead PQFP, and the C401 comes in a 16 -lead DIP or smalloutline package. Samples of the chips are immediately available and sell as a set (the C457/411/401 plus the video BIOS) for $\$ 86.90$ in lots of 1000 .

Chips and Technologies Inc., 3050
Zanker Road, San Jose, CA 95134;
Keith Angelo, (408) 434-0600.

## GliGIF 347

DAVE BURSKY

## CMOS DAC CONTAINS 256-BY-18-BIT RAM

The first of a new line of data-conversion products for use in personal-computer graphics, the TMC0171, a triple monolithic-CMOS 6 -bit DAC, works at 35 MHz and includes a 256 -by-18-bit RAM. It is pin-compatible with the Inmos IMS G171 and Brooktree Bt 471. Operating on a single $5-\mathrm{V}$ power supply, the low-power DAC provides 256,000 color choices, color read back, RGB analog output, composite blanking, TTL compatibile inputs, and VGA, EGA, and CGA compatibility. Available off-the-shelf in plastic-DIP (TMC0171N6C) or PLCC (TMC0171R2C) enclosures, the DACs cost $\$ 3.20$ each in 1000 -piece quantities.
TRW LSI Products Inc., P. O.Box 2472,
La Jolla, CA 92038; (619) 457.
1000. Clicit 348

## THE NO COMPROMISE 22V10

Programmable logic always has been a give-and-take affair. If you wanted speed, the price was power-lots of it. And, if you tried to cut power, you lost the speed. It seems you could have either one or the other-but not both. NOW YOU CAN HAVE THE BEST OF BOTH WORLDS.


Announcing the AT22V10-15 - the no compromise 22 V 10 .

Talk about fast. A blazing 15 nanoseconds. That's fast enough for those advanced 32 -bit systems you're designing today for tomorrow's machines.

And it's cool. When you plug in the AT22V10 you won't even think it's on. It typically draws a stingy 55 milliamps
in standby and never asks for more than 90 milliamps.

So, if you're tired of having to compromise. Don't. Call Atmel, the home of the no compromise 22 V 10 . If you're not sure yet that we make the best CMOS 22 V 10 in the whole world drop us a note on your company's letterhead, and we'll send you one. Or in the U.S. call us at 1-800-292-8635.

# Sparc-Based Workstations Boast Faster CPU, Better I/0, More Features dave bussk ushing the CPU clock fre- 

Pquency up to 40 MHz , designers at Sun Microsystems have developed their fastest desktop systems to date, the Sparcstation 2 series. These workstations achieve a SPECmark rating of 21 with a throughput of 28.5 MIPS, the highest numbers yet for Sparc-based platforms. Accompanying the release of the workstations are two new graphics accelerators for 3D solids modeling-a mid-range product called the 2GS that fits inside the workstation, and a high-end external "tower" housed subsystem, the 2GT. There's also a server configuration based on the Sparestation 2 computer. The system consists of the CPU box and two small expansion boxes to hold up to 7.6 Gbytes of Sun-supplied storage and 18 serial ports.

Employing the same pizza-boxlike housing as used for previous CPUs, the Sparcstation 2 delivers about twice the performance of the Sparcstation 1+. The new CPU board also sports an improved I/O architecure and cache subsystem to boost system efficiency and achieve a $50 \%$ improvement in data transfers. An enhanced DMA controller, for example, now lets SCSI data move synchronously at 4 Mbytes/s and a new software driver permits read/write clustering. Furthermore, purchasers of Sparcstation 1 and 1+ systems can upgrade their systems by swapping the CPU board for a nominal charge.

The base color Sparcstation 2 comes with 64 kbytes of cache for the CPU, 16 Mbytes of RAM, a 207Mbyte hard-disk drive, the GX graphics accelerator (previously an option on I and I + platforms), all the standard I/O ports of the previous systems, and the operating system and utilities pre-installed on the disk. A 19-in. monochrome (1-bit pixels), diskless version of the system sells for less than $\$ 15,000$, while the 19 -in. color system with the previously released GX 8-bit color card sells for

less than $\$ 22,000$. The same GX accelerator can now be added to the previously released Sparcstation IPC, which brings the system price up to just under $\$ 15,000$.

The new graphics accelerators provide 24 -bit color with up to eight separate light sources for solids modeling. The 2GS can draw 3D vectors at up to $150,000 / \mathrm{s}$, or 20,000 Gouraud-shaded triangles every second, and includes Z-buffering for hidden-surface removal. The accelerator comes with a low-flicker $76-\mathrm{Hz}$ 19-in. monitor. When bundled with the workstation, the package sells for less than $\$ 27,500$.

For high-end imaging, the 2GT delivers about five times the drawing speed of the GS and includes a new antialiasing scheme for jag-free image edges. The graphics subsystem gets some its punch from an i860 superscaler processor and nine custom chips to maximize throughput. Advanced software schemes such as a virtual display-list accelerator for standard PHIGS applications lets the system quickly move and redraw images. A 24 -bit Z buffer provides realistic quality to the images. Requir-
ing a single SBus slot, the external tower-encased GT sells for $\$ 53,000$, including the workstation and a 21 in. 1280-by-1024-pixel monitor.

Lastly, the server configuration of the Sparcstation 2 replaces the Sparcstation 1+ as the entry version. The server comes with 16 Mbytes of RAM, a 669-Mbyte SCSI hard-disk drive, a 150 -Mbyte tape drive, and a CD-ROM drive. Thanks to the improved I/O of the new CPU board, the server delivers the highest throughput of any comparable unit. The system comes with one SCSI channel. Additional SCSI controllers can be installed in the SBus slots to allow additional storage to be attached, up to a maximum of 7.6 Gbytes of Sun-supplied peripheral storage. Third-party storage could up that level further.

The Sparcstation 2 is immediately available, as is the 2GS graphics accelerator. The 2GT accelerator will be available in the first quarter of 1991.

Sun Microsystems Inc., 2550 Garcia Ave., Mountain View, CA 94043; Mary Swastek, (415) 336-9246.

CIRCLE 349

# NEED BROAD-BAND COAXIAL RELAYS? FROM 2 TO 24 THROW, MATRIX HAS THE ANSWER 



SEE US AT THE ELECTR0 '90 SHOWHYNES CONVENTION CENTER, BOOTH \#1734

Our versatile 7000 series of coaxial relays have band-widths from DC up to 800 MHz . They're available from 2 to 24 throw. And by using our 9000 series cross-straps, switching matrices of any size can be configured.

Why have Matrix broad-band relays become the industry standard? Because we construct them of precision machined anodized aluminum alloy, all signal shield paths are silver plated, and basic switch elements are hermetically sealed in nitrogen filled gas envelopes with rhodium plated contacts to insure non-stick operation.

The end result is extremely low crosstalk, EMI and VSWR. Another plus, all switchpoints are individually field replaceable.
The units are plug compatible with Matrix 6100A and 1600 Series Logic Modules for compatibility with RS-232, RS-422 and IEEE-488 Interface busses as well as 16 bit parallel.

Non-blocking Matrix configuration may be easily assembled

using our self-terminating relays and 5100A series power dividers. Built-in Video/RF amplifiers allow zero insertion loss designs

So if you're looking for broadband relays, it pays to deal with Matrix. After all, we've been designing state-of-the-art reed relay and semiconductor switching systems for over 18 years.

Our customers include government agencies, defense contractors, the TV industry, ATE and telecommunications companies-and more.
Phone: 818-992-6776
TWX: 910-494-4975
FAX: 818-992-8521

# Sparc-Based Workstations Deliver Top Price/Performance Mix dave biragy n a pair of related developments 

Ifrom two companies, designers now have two more high-performance RISC-based workstation families from which to choose. Both are based on the Sun Sparc architecture but deliver different performance levels and features that set new lows in the price curve and new performance highs at those price points.

The highest performer is the 25.5MIPS (12 SPECmark), 1.7-MFLOPS (double precision) S4000 workstation family from Solbourne (see the figure left). Workstations start as low as $\$ 8995$ for a diskless system with a 19 -in. monochrome monitor and 8 Mbytes of RAM. Offering a lowercost, lower-performance system, newcomer Solarix Systems released its Solarix/4 PW+ family, which starts with a base model that delivers 18 MIPS for $\$ 6995$ (see the figure right). The configuration is similar, but includes a $17-\mathrm{in}$. monochrome monitor, and a $1.44-$ Mbyte $3.5-\mathrm{in}$. floppy-disk drive.

There are numerous differences between the two families and the best way to see them is to start with one as the baseline-the Solbourne S4000.

The S 4000 is based on a 64 -bit version of the Sparc processor that Solbourne and its development partner, Matsushita Electric Industrial Co. Ltd., Osaka, Japan, described earlier this year at the International SolidState Circuits Conference. The processor is the first CMOS Sparc chip to contain a 64-bit data path, as well as on-chip floating-point processor, both data and instruction caches, and an MMU with a translation look-aside buffer. Multiple custom chips were also developed to simplify the main processor board. Four custom chips on the board handle memory control, SBus interface, SBus control, and various "glue" logic functions.

The system CPU board contains the RISC processor, the four custom

chips, and 8 Mbytes of error-checked and corrected RAM (extendable to 40 Mbytes). For data transfers, the board also packs a SCSI-2 disk interface, three SBus expansion slots, one M-bus memory expansion connector that permits main memory expansion up to 104 Mbytes, two serial ports, an Ethernet port (thicknet and an off-board adapter to convert it to thinnet), and an audio port. That board plus up to three disk drives (one 1.44 -Mbyte 3.5 -in. floppy-disk and two $200-\mathrm{Mbyte} 3.5-\mathrm{in}$. Winches-ter-disk drives) and the power supply all squeeze into a 17 -by-17-in. case about 5 -in. high. The monochrome or basic color display adapter requires one of the SBus slots, and that adapter delivers 1280-by-1024-pixel resolution. System software includes the company's OS/ MP Unix operating system which is derived from SunOS, SunView, X Window system, some utilities, and a C-language compiler.

An optional graphics accelerator for 2D and 3D color displays can replace the basic single SBus slot monochrome or color frame buffers. It delivers the same 1280-by-1024-pixel resolution but provides a major improvement in drawing speed thanks to a pair of 32 -bit floating-point DSP chips and some custom chips that accelerate the computations.


The cards can accelerate both X and Phigs extensions to X (PEX) primitives and draw up to 450,000 lines/ $s$ in $2 D$, and 200,000 lines/s in $3 D$. Up to 10,000 Gouraud-shaded polygons can also be drawn every second. The SGA40 color adapter, which requires two SBus slots, provides 8-bit color capability for now, but a 24 -bit truecolor version, the SGA50, will be ready in the first quarter. The optional graphics accelerator also has an optional Z buffer for hardware assist to speed hidden-surface removal.

In addition to the diskless base configuration, Solbourne offers a 19in. monochrome system with a 200 Mbyte hard-disk drive, and a 1.44Mbyte $3.5-\mathrm{in}$. floppy-disk drive for $\$ 10,495$. Several color options are available-with a 16 -in. monitor, $200-$ Mbyte hard-disk drive, and basic color frame buffer.

The system sells for $\$ 12,995$. The same CPU hardware but with a 19 -in. monitor, a second 8 -Mbytes of main memory, and the SGA40 accelerator costs $\$ 2500$ more.

Taking a slightly different architectural approach, Solarix put the key CPU building blocks on a single M-bus-compatible palm-sized module (called the A module). To upgrade a system, that module can be removed and replaced with a higherspeed A module.

In such a way the company ex-

## For the first time! DC-DC conrerters that really check out.



## Insist on Interpoint.

It's official! The first high-density, low-profile, thick-film hybrid DC-DC converters that let you check off all the MIL-STD-883C, Method 5008, Class B requirements.

Work on your design, not the exceptions list. If you've ever had to justify a non-compliant part for a MIL-STD-883 design, you know about red tape. Now you can forget it. Interpoint's new MHF/883 DC-DC converters are fully compliant to MIL-STD-883C. No exceptions. No waivers. No apologies.

Premium performance. MHF/883 converters offer up to 12 -watts output power, $84 \%$ efficiency, a 16 to 40 Vdc input range, single and dual outputs, constant frequency switching, and 10 mV typical output regulation. And they're small enough ( $1.5 \times 1.1 \times 0.36$ inches) to leave plenty of room for the rest of your design.

More to come. The MHF/883 converters are the first in a series of compliant power products from Interpointthe worldwide leader in high-reliability DC-DC converters and EMI filters.

Order our Prototyping Kit and see for yourself. You'll get a low-cost converter electrically equivalent to the compliant MHF/883-it's perfect for prototypes or design evaluation. Plus: our FREE Guide to Designing Distributed Power Systems, complete performance specifications and an MTBF Analysis Booklet. Call now: 1-800-822-8782, ext. 229. In Europe: 44-276-26832.

# interpoint 

## Who interrupted the uninterruptible power system?



Did somebody push the wrong switch?

Was it faulty design?
Not at all. The uninterruptible power system turned out to be highly interruptible because a battery died. Scary, isn't it? You get a power system failure followed by a power backup system failure and-prestoyourre plunged into darkness. Of course, while you'll recover, your computers wont. Their memories will be gone for good.


The World Leader In Back-Up Energy.

Well, it wouldn't have happened had that battery been a Yuasa. With Yuasa, sudden death is a virtual impossibility. Its failure rate is an almost non-existent .001 .

The fact is that Yuasa is used by more UPS manufacturers than any other battery made today. No other sealed lead acid battery is more dependable or lasts longer.

Our point is simple. The next time you're designing an uninterruptible power system, make sure it stays uninterruptible.
Specify the battery that doesn't die on the job.

[^9]pects its systems to be able to deliver throughputs from 18 to 40 MIPS with minimal upgrade costs. The first CPU A module is based on the $25-\mathrm{MHz}$ Cypress Semiconductor Sparc processor, 64 kbytes of offchip cache, and a Sparc reference MMU. The monochrome or color display subsystems provide 1152-by-900-pixel resolution-the same resolution as Sun Microsystems provides on its own base workstations.
The A module employs a proprietary programming scheme the company calls FlexScale. The programming scheme permits the SBus interface to be programmed to operate at a different clock than that of the CPU subsystem. That allows slower SBus cards to be used with higherspeed CPUs.
The system's main logic board holds 8 to 32 Mbytes of RAM, both thick and thin Ethernet ports, two serial ports, one Centronics port, SCSI drive controller, and a floppy-disk drive interface. Housed in a minitower cabinet that has six drive bays, the system has plenty of room for expansion. Additional internal RAM can be added via the company's optional SIMM modules, which can boost the system capacity from 64 to 128 Mbytes.
The Solarix operating system is a licensed version of the SunOS Unix operating system and thus allows the hardware to run all Sun-compatible software. Expansion options such as a 104 -Mbyte internal SCSI hard-disk drive or a 19 -in. monochrome or 17-in. color monitor are optionally available.

The hard-disk drive adds $\$ 1000$ to the price tag, while the $19-\mathrm{in}$. monochrome monitor ups the price by about $\$ 800$. A full 19 -in. color system with a 104 -Mbyte hard-disk drive and 8 Mbytes of semiconductor RAM goes for $\$ 10,995$.

Solbourne Computer Inc., 1900 Pike Rd., Longmont, CO 80501; Brian Doyle (303) 772-3400. CIRCLE 375

Solarix Systems Inc., Div. of Able Technologies Inc., 46791 Fremont Blvd., Fremont, CA 94538; Pamela Sloane, (415) 659-1544.

CIRCLE 376

## 386SX PC Takes Half

 The Space 0F TyPICAL PCSThe Infinity desktop computer, from Falco Data Products Inc., is an 80386SX-based computer that takes up half the desk space of standard PCs. It measures a paltry 13.6 by 10 by 2.75 in . Another feature of the machine is that nearly all peripheral functions reside on the motherboard. But it does contain two $3 / 4$-length 16 bit expansion slots. The slots are intended for local-area-network, facsimile, or modem cards.
The zero-wait-state system contains a socket for an 80387SX math coprocessor. It also comes standard with 1 Mbyte of RAM, expandable to 2,4 , or 8 Mbytes. The Falco VGA design includes the Paradise chip set and supports all standard and extended VGA modes including 640 by 480 pixels in 16 colors with 256 kbytes of DRAM. With the optional 512 kbytes, additional modes can be supported, up to 1024 by 768 pixels.
The Infinity PC uses low-power components and a convection-cooled case. And it incorporates a virtually silent cooling fan to eliminate the hum associ-

ated with standard PCs.
Four configurations are available. The first, a diskless model, sells for \$1170. A 1.44-Mbyte, 3.5-in. floppy-disk system costs $\$ 1555$. The PC with a $40-$ Mbyte hard disk is priced at $\$ 2315$, while a 100 -Mbyte hard disk pushes the price to $\$ 2765$. The systems are compatible with DOS 4.01 and all OS/2 software. Optional color or monochrome monitors are also available from Falco.

Falco Data Products Inc., 440 Po-
trero Ave., Sunnyvale, CA 94086;
(408) 745-7123. HIRGIF 351

RICHARD NASS

## Military Gets RugGed 15.8-MIPS Sparcstation

Based on the Sparcstation 1+ CPU from Sun Microsystems, the Codar Technology 300M Sparcstation can deliver 15.8 MIPS of throughput in a rack-mountable cabinet. To complement the workstation, Codar has also developed a ruggedized 19-in. multi-sync monitor with 1280 -by-1024-pixel resolution, a ruggedized keyboard and trackball, and a tough, Tempest-tested system chassis. The 300 M includes shock and vibration isolation for the CPU and up to two fullheight or four half-height $5.25-\mathrm{in}$. removable SCSI peripherals, which provide up to 2 Gbytes of internal storage. A total of 10 Gbytes of on-line storage can be employed by adding additional drives to the external SCSI port.

Operation of the system is specified over a temperature range of 0 to $50^{\circ} \mathrm{C}$, per Mil-Std-810D. Up to 20 Gs of shock, 3.6 Grms or random vibration, and 2.5 Gs of sinusoidal vibration can be tolerated by the system during operation. Mean-time-between-failures for the
system is rated at least 21,500 hours through the extensive use of hermetically packaged ICs, military-grade componets, conformal coatings, and Mil-Spec connectors. The 300M Sparcstation is certified to Mil-Std.-810D for shock, vibration, temperature and humidity; Mil-Std.-461B/Procedure A4; and NACSIM 5100A (Tempest) for EMI. A specially designed power supply lets the system also meet the power and transient requirements of Mil-Stds.-1399, 704D, and 5400T.

Extensive built-in-test features were also added via the company's proprietary system monitoring board which reports the status of temperature, ac and dc power, date, time, and fault conditions on a 16-character front-panel display. With that data, service time can be kept to less than 30 minutes. Prices depend on options and test conditions and delivery is 90 to 120 days.

Codar Technology Inc. 2405 Trade
Centre Ave., Longmont, CO 80503;
(303) 776-0472 GliBGF 352

DAVE BURSKY

## We won't just sell you a display we'll make sure you buy the one that's right for you.



Selecting Alphanumeric Display Modules


To get you started, we'd like to send you a free copy of our product selector, titled Selecting Alphanumeric Display Modules. This informative, easy-to-understand guide contains the valuable information you'll want before buying an alphanumeric display.
Just call or write today and let the display experts show you how you can become a display expert too.

We're here to help you. IEE offers a wide variety of display technologies in an extensive assortment of sizes and formats. But that's not all. We also can provide you with all the technical support and expertise that you'll need to select and use the right display for your application.

Choose from vacuum fluorescent, dc plasma, or liquid crystal flat panel displays.

# CUSTOM IC. UNCONVENTIONAL PACKAGE. 114 th THE COST OF AN ASC. 

## WAS AEnasIINIB! FLYING BLIND?



We can't mention their name. But the story is worth telling-a story about a unique actuator driver in a very peculiar package.

An air frame manufacturer needed a HIGH-REL actuator driver for a large aircraft.
A driver smaller and cooler-running than anything ever made. And so versatile it could be used in over 200 applications throughout the aircraft for everything from controlling flaps to regulating the commodes.

Three other companies looked at the specs and said, "No can do. Not for what you want to spend." Their ASIC approach was intended to solve large digital problems and required an enormous initial investment.

Then somebody thought of calling in The General.
Smart move. Where other companies trot in with standard cells and their router and emulator packages, Silicon General arrives with 20 years of successful silicon solutions. We specialize in those high performance power IC jobs that call for experience and real creative know-how. This was one of those jobs.

Because the circuit needed to have both a high side and low side driver, we found a way to combine opposite functioning chips in the same 16 -pin side-brazed package. We also found the way to handle heat dissipation. CMOS couldn't meet the specs, so we came up with a unique bipolar/DMOS alternative that did the trick.

As (CLASSIFIED) can tell you, when you need custom power ICs, it really pays to call in someone who won't just squeeze you into an expensive ASIC architecture.

It's quite a bargain. First class travel; tourist fares.
To find out more, contact Silicon
General, 11861 Western Avenue, Garden Grove, CA 92641.
TWX: 910-596-1840.
FAX: (714) 893-2570. Phone: (714) 898-8121.


CIRCLE 214

Solutions...
that's the general idea.

## TAPE-BACKUP DRIVES TRANSFER data at 7 Mbytes/Min

Afamily of tape-backup systems from Teac America Inc. can back up 100 Mbytes of data in under 15 min . The TurboTape products consist of complete systems that require no additional parts or software when used with PC/XT/AT or compatible computers.

The family includes two internal models, the Mach 5 and 7, and an external version, the Mach 7X. The Mach 5 holds 60 Mbytes, while the other two each hold 160 Mbytes and feature a data-transfer rate of 7 Mbytes $/ \mathrm{min}$. All three drives come with a host interface card, software, cables, and manuals. The internal versions also come with mounting hardware. The internal drives can fit into either a 3.5 - or a 5.25 in. form factor.

The tape drives are built with all mechanical parts resident within the drive, rather than in the tape like similar drives. Twin motors and servo-controlled circuitry precisely manipulate the relative speeds of the tape's take-up and supply reels to control the tape's speed, tension, and positioning.

The drives also feature dual-gap ferrite recording heads that supply dura-

ble, error-free performance using a read-after-write data-verification capability. Hard-error rates are restricted to a maximum of one per every $10^{14} \mathrm{bits}$.

For networking applications, the drives' software has a queuing feature that enables files that are active during back-up to be automatically reported and queued for a retry at the end of the back-up session. Network security is supported through multilevel password protection that limits access.

The Mach 5 and 7 are priced at $\$ 1095$ and $\$ 1395$, respectively. The 7X costs $\$ 1695$. All are available now.

Teac America Inc., 7733 Telegraph
Rd., Montebello, CA 90640; (213)
726-0303. GIRGIF 351

- RICHARD NASS


## PUSH SPARCSTATION T0 65 MIPS

Designed as an addition to Sun's SparcStation, the SkyStation, from Sky Computers Inc., accelerates existing applications without requiring any sourcecode modification. For under $\$ 10,000$, the SkyStation increases performance to 65 MIPS. The accelerator has the same dimensions and appearance as the SparcStation, and it easily fits above or below the workstation. It simply plugs into the computer.

The SkyStation, built with both the Intel i860 and i960 processors, is fully compatible with the SunOS operating system. By using enhanced Fortran and C compilers, the SparcStation reaches levels not previously attainable. Appropriate applications include simulation, modeling, finite-element analysis, seismic analysis, and fluid dynamics. The maximum-memory level is boosted to 256 Mbytes. Because an entire application can run on the SkyStation, the SparcStation's 5-Mbyte/s SCSI-2 transfer rate isn't affected. Available now, the SkyStation starts at

$\$ 9550$ with large-volume discounts available.

Sky Computers Inc., 27 Industrial Ave., Chelmsford, MA 01824; (508) 250-1920. GIRGIF 358

## DISK DRIVES SHRINK T0 2.5 IN.

Portable computers just became lighter with the Go-Drive series of 2.5in. hard disk drives. The two-member family is also suitable for noncomputer storage applications, such as laser printers and fax machines. The drives, with formatted storage capacities of 42 or 84 Mbytes, contain embedded SCSI or PC/AT bus controllers. The disks' average seek time is 19 ms . Their maximum data-transfer rate is $4 \mathrm{Mbytes} / \mathrm{s}$. The drives offer multiple power-saving

modes ( 0.1 W in sleep mode) and a high resistance to shock, as well as an MTBF of 80,000 power-on hours. Evaluation units of the 42 -Mbyte drive will be available in January, with volume production slated to commence in March. It will sell for $\$ 395$. The 84 -Mbyte unit, priced at $\$ 595$, will be available in mid 1991.

Quantum Corp., 1804 McCarthy Blvd., Milpitas, CA 95035; (408) 432. 1100. GIBGIE 359

## MULTIPROCESSING SERVER COSTS UNDER \$100,000

Designed to supply more data to more users at a lower cost-per-seat, the NS 5000 network server sells for under $\$ 100,000$. The machine is based on a unique multiprocessing architecture that takes network, file, and storage processing, typically performed by a conventional server's CPU, and distributes them to multiple dedicated processors. The NS 5000 is fully compatible with industry standards including SunOS, Ethernet, TCP/IP, and VME. Priced at $\$ 99,900$, the server comes with 663 Mbytes of formatted disk storage and two Ethernet ports. More storage and ports can be added later. It is available now.

Auspex Systems Inc., 2952 Bunker Hill Lane, Santa Clara, CA 95054; (408) 492-0900. CIIGIF 360

## ACCELERATOR BOARD OFFERS 240 MFLOPS

Sun Microsystems' SparcStation 330 VX and 470 VX visualization workstations house the VX accelerator board that offers 40 MIPS and 60 MFLOPS. A multiprocessor MVX board can be added to boost performance to 160 MIPS and 240 MFLOPS. The VX accelerator contains a $40-\mathrm{MHz}$ Intel i860 microprocessor. It features a 16 -Mbyte, 32 -bit frame buffer for image display and an 8-bit frame buffer that's used to display Sun's OpenWindows environment. The board integrates the output of these two buffers for display on a $21-\mathrm{in}$. high-resolution monitor. The MVX version adds four i860 processors, each with 4 Mbytes of memory. Either board can transfer data at a rate of $320 \mathrm{Mbytes} / \mathrm{s}$. The SparcStation 330VX and the 470VX sell for $\$ 55,900$ and $\$ 86,900$, respectively. Or the VX can be purchased separately as an add-in option to all deskside SparcStations and high-end SparcServers for $\$ 24,000$. The MVX board can than be added for $\$ 30,000$. Shipments will begin in March of next year.

Sun Microsystems Inc., 2550 Garcia
Ave., Mountain View, CA 94043; (800)
821-4643 or (800) 821-4642. GIBGIF 361

## 3.5-IN. DRIVE PACKS RECORD 535 MBYTES

With a maximum storage capacity of 535 Mbytes, the LXT-535, a 3.5-in. harddisk drive, gives designers the most disk storage in a $3.5-\mathrm{in}$. format. The multiplatter drive can also have one platter removed to offer a still impressive 437 Mbytes of storage. The drives have an average seek time of 12 ms for read operations, 13 ms for writes, and a track-to-track seek time of 3 ms . An embedded SCSI controller lets the drives deliver 5 Mbytes/s in the synchronoustransfer mode and 3 Mbytes/s in the asynchronous mode. Optionally, an ATinterface version of the drive provides data at $4 \mathrm{Mbytes} / \mathrm{s}$. SCSI command overhead is less than $600 \mu s$ and the AT bus overhead is about half that number. The drives weigh in at about 2.2 lbs . and dissipate about 11 W . They are also format-compatible with the company's previous LXT family members, the 200,213 , and 340 . Volume prices for the drive start at $\$ 1450$ for the LXT-535 and $\$ 1250$ for the LXT-437. Samples are immediately available, with volume deliveries expected to begin in early 1991.

Maxtor Corp., 211 River Oaks Pkwy,
San Jose, CA 95134; Lisa Sklar (408)
432-1700. GTGEF 362

## OPTICAL DRIVES USE REMOVABLE 3.5-IN. MEDIA

The Most RMD series of optical disk drives, packaged in a industry-standard 5-1/4-in. half-height form factor, use removable, rewritable $3.5-\mathrm{in}$. media. The media can hold 128 Mbytes of data, with a shelf life of more than 10 years. The optical drives offer access times significantly faster than other magneto-optic drives and many fixed magnetic disks. The average seek time is rated at 35 ms . A unique short seekscan function makes data within a 128 track band accessible within 9 ms . The data-transfer rate is 512 kbytes/s, with SCSI burst transfer rates of 1.5 Mbytes/s in asynchronous mode and 3 Mbytes/s in synchronous mode.

The drives possess a unique split-optics positioner that also helps to shorten the seek time. Data security is enhanced by a software-controlled media interlock command that prevents premature media removal. An internal user-configurable EEPROM is available to customize specific drive functions. The drives' MTBF is better than 30,000 power-on hours. The drives are available now and prices depend on configuration and quantity. The optical media sells for about $\$ 120$.

Most Inc., 11205 Knott Ave., Cypress,
CA 90630; (714) 898-9400. GIICIF 363

## TRansputer Card INTERFACES NETWORKS

A credit-card-sized module provides an interface between parallel computer networks and up to seven peripherals devices, all connected via a standard SCSI bus. The IMS B422 SCSI TRAM includes a $20-\mathrm{MHz}$ 16-bit transputer processor and 64 kbytes of two-cycle static RAM. The transputer provides local processing and control. Four 20 Mbits/s communications links allow direct connection to larger transputer networks. The transputer implements connection to the SCSI bus, allowing common SCSI sequences to be carried out without processor intervention. Low-level software interfaces for initiator and target modes permit the IMS B422 to act as a hostcomputer system interface or targetperipheral interface. In the initiator mode, interfaces permit Common Command Set SCSI commands to be built and executed by a specified SCSI target.

INMOS Ltd, 1000 Aztec West, Bristol BS12 4SQ, United Kingdom. Telephone: +44 (0)454 616616. G1BGIF364

## TOUCH SCREEN REPLACES MOUSE

Macintosh personal-computer users can replace their mouse-pointing devices with a touch-screen produced by Ellinor Technology Ltd of Reading England. The Touchstar screen fits over the computer's screen. It has two layers of conductive glass, one rigid and the other flexible. The two layers are separated by an array of small plastic insulators. When the top layer is pressed against the bottom layer, X-Y coordinates of the point of pressure are sensed.

A controller card and software driver make the screen self-configure and calibrate itself on computer startup. Features include full mouse emulation and the ability to run all software without modification.

Ellinor Touch Technology, Arkwright Rd., Reading, Berkshire, RG2 0EA, United Kingdom. Telephone: +44 (0)734311066.

CIICIF 365

## 43 Watts



## LapTop Power Supply

- Extremely Small Size
- Multiple Outputs
- 3 Step Battery Charger
- High Efficiency-80\%
- Light Weight - 110 gm


For Information call
1-800-233-9973

CIRCLE 81

The point of this little demonstration is that Coilcraft surface mount inductors are made of ceramic. A decidedly non-magnetic material.

Most other chip inductors are made of ferrite. Which is great for demonstrating the principles of magnetism, but not so hot for high frequency magnetics.

Take self resonance, for example. SRFs on our coils are up to 3 times higher than equivalent ferrite chips. And located a safe distance away from your operating frequency.

The actual inductance you'll get with Coilcraft chips at higher
frequencies is very predictable and consistent. Not so with ferrites. Beyond the test frequency, their inductance curves rise steeply and vary significantly from part to part.

Coilcraft ceramic chips also have a low temperature coefficient of inductance: +25 to $+125 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$, depending on inductance. TCLs on ferrite chips are often two to four times higher!
And if you need close tolerance parts, we offer even more advantages. Thanks to our computer controlled manufacturing and ceramic's neutral properties, it's easier for us to make $5 \%$ or $2 \%$
parts. We can even production-test at your operating frequency! Other chip makers have to cope with ferrite's permeability variations, so their yields are lower. Which means delivery can be unpredictable.

So next time you're selecting surface mount inductors, forget the ferrite and stick with Coilcraft ceramic chips.

For complete specifications and information on our handy Designer's Kits of sample parts, circle the reader service number. Or call 800/322-COIL.

## FIRST, NEGATIVE, LOW-Dr0POUT LINEAR Regulator Handles 3 A

Now for the first time, you can get a low-dropout (LDO) linear regulator that can provide negative voltages. The LT1185 from Linear Technology can control up to 3 A providing an output voltage between 2.5 and 25 V . Voltage drop across the npn pass transistor is a maximum of 1 V at 3 A , and just 370 mV at 500 mA . The accuracy of the chip's internal reference permits setting the output voltage to within $1 \%$ accuracy with two resistors.

Another first for an IC regulator, the LT1185 offers a user-adjustable current limit. Typically, the current limit of earlier 3-A regulators is set at 5 A which can cause a factor-of-two overload on input devices such as the transformer and diodes.
The ability of the designer to program the maximum current of the LT1185 (with a single 1/8-W resistor) to just over the current needed by the load minimizes potential stress on the input components. Additionally, the device can shutdown by bringing the currentlimit programming pin to ground. If no current limit is programmed, an inter-
nal current limit kicks in to prevent self-destruction. The LT1185 operates on power dissipation, so with less than 10 V across the pass transistor, it allows 3 to 4 A to flow. However, if the drop increases to 30 V , it limits the current to no more than 1 A . Thus under some conditions, the internal limit can override the programmed limit. The regulator is also protected by thermal shutdown.

Line and load regulation run 0.3\% and $0.01 \% / \mathrm{V}$ maximum, respectively. The 1185 can also operate as a positive low-dropout regulator from a floating power source such as a multiple-output switching supply. In that case, the negative line is grounded and the output taken from the pin that would be normally grounded. The LT1185 comes in 4 -pin TO-3 cans for military applications and 5-lead plastic TO-220 packages rated for 0 to $125^{\circ} \mathrm{C}$. In quantities of 100 , the latter goes for just $\$ 3.70$ each.

Linear Technology Corp., 1630 Mc Carthy Blvd., Milpitas, CA 950357487; Bob Scott. (408) 432-1900.
CIBGIF 36 G
FRANK GOODENOUGH

## ICS P0WER DISK DRIVE HEAD POSITIONERS

Designed to drive head-positioning motors in 3.5- and $2.5-\mathrm{in}$. disk drives for portable PCs, Elantec's EL2026 and EL2027 can qualify as "smart-power" ICs. Their class-AB linear H-bridge outputs control 1.25 W off a $5-\mathrm{V}$ rail.
The output stage of the EL2027 is a complementary H-bridge; that of its lower-cost sibling holds just the npn transistors-low-cost pnps are added externally. Otherwise, the two ICs are virtually identical. Features include a total harmonic distortion of $1 \%$, a "park" circuit that runs off the motor's back-emf, and a low-voltage detector for the $5-\mathrm{V}$ supply that shuts off the output and actuates the "park" circuit. Additionally, gain can be changed by a factor of 4 to optimize "track" and "seek" modes. When not in use, the ICs have a sleep mode available. In their 28pin SOIC and in 1000 -unit lots, the EL2026 and EL2027 go for $\$ 5.95$ and $\$ 6.95$ each, respectively.
Elantec Inc., 1996 Tarob Ct., Milpitas,
CA 95035-6824; (408) 945-1323.
CIICIF 367

## SCHOTTKY DIODES SWITCH IN UNDER 100 PS

Dual Schottky-barrier diodes from Zetex Ltd, Oldham, can switch in less than 100 ps . Designed for rf switching and fast protection, three versions are available, all in surface-mount packaging. All feature a breakdown specification of 70 V and 2 pF capacitance. Electrical characteristics are identical with reverse-leakage current of 200 nA or less, and forward-current handling of 15 mA maximum. But their interconnection varies. The BAS70-04 is a series pair while the BAS70-05 is a commoncathode device. The BAS70-06 has a common-anode connection. The SOT-23 package the diodes come can dissipate 350 mW at $25^{\circ} \mathrm{C}$ when mounted on a 80 $\mathrm{mm}^{2}$ ceramic substrate. Suggested applications include use as rectifiers, mixers and protection circuits in detectormixers, or for surge protection in MOS circuits. An operating-temperature range of -55 to $+150^{\circ} \mathrm{C}$ makes the diodes suitable for military use.

Zetex plc, Fields New Rd., Chadderton,
Oldham, OL9 8NP. 44616275105.
United Kingdom. GIiGIF 368

## L0W-COST UPS SUPPLIES UP T0 3 KVA

The 2000 series of uninterruptible power supplies provides continuous, lowcost backup protection for small multiuser minicomputers, LANs, and clustered microcomputers. Units feature a no-break, on-line design that eliminates the risk of inverter switching, thereby providing constant, reliable power. Models are available with ratings from 2 to 3 kVA and offer an RS-232-C interface, I/O plug and receptacle configurations, a remote emergency power-off interface, and automatic circuit breakers. Prices range from approximately $\$ 3500$ to $\$ 5000$.

Deltec Corp., 2727 Kurtz St., San Diego, CA 92110; (619) 291-4211.
GITGIF 369

## CORRECTION

Pricing for Powercube Corp.'s model 28DC515-150 de-dc switching regulator module was stated incorrectly on p .118 of our Sept. 13 issue. The price should read $\$ 1283$ in quantities of 100 .

## 2000 Watts


acilc etectruniss
JF 201

- Compact Package (5" $\times 8^{\prime \prime} \times 10^{\prime \prime}$ )
- High Reliability
- 2 Year Warranty
- Single \& 3 Phase Input



## For Information call 1-800-233-9973

Object Design, Inc.
One New England Executive Park
Burlington, MA 01803
TEL 617-270-9797
FAX 617-270-3509

## Introducing

## ObjectStore ODBMS <br> The Only Choice For Design Applications.

The 1980s brought a new class of powerful, design-oriented applications based on single-user workstations. The challenge for the ' 90 s will be to enable developers and knowledge workers to share these applications in workgroups. Collaboration among multiple users and the sharing of objects-not files-will provide the next major gain in productivity.

ObjectStore is an object-oriented database management system for applications written in $\mathrm{C}++$. ObjectStore provides complete DBMS functionality for highly interactive, design-intensive applications.

ObjectStore offers:

- easy migration of existing $C$ applications
- interactive performance comparable to single-user file-based applications
- complete distributed DBMS functionality
- version and configuration management
- concurrency control for collaborative work
- choice of $C_{++}$library interface or full object query language


## Design Applications

- ECAD
- MCAD
- A/E/Construction
- CASE
- CAP
- Multimedia
- Imaging

ObjectStore is available now for the Sun-based LAN configurations. To attend a training course or ObjectStore Seminar near you, please call 617-270-9797, ext. 132.

## SOFTWARE EASES DESIGN Of Real-TIme Systens



Giving designers the ability to model real-time control applications even before a line of code is written, the VRTX designer software package should speed system development. The software allows software developers to create behavioral models of real-time control systems and perform simulation through the use of graphical icons that represent the different operations. Icons model the architecture and represent the multitasking, priority-based preemptive software. The icons represent objects such as tasks, interrupt service routines, external drivers and subsystems. Communication and synchronization mechanisms such as mailboxes and queues can also be simulated. Embedded rule-based design checking and quality assurance reporting assures
complete evaluation of the system. A syntax-driven editor allows designers to specify the internal logic and timing behavior of tasks. For each task, the control statements, the probabilities of each software construct, and the time needed to run each sequential section of application code, can all be specified. Interrupts from external devices can also be simulated, as can the timing behavior and operating-system overhead of multiple paths within the software architecture.

The initial release of VRTXdesigner will be on Sun 3 and Sun 4 platforms, with a single-user price of $\$ 12,500$. If purchased before Dec. 31, 1990, the special promotion price is $\$ 9950$.

Ready Systems Inc., 470 Potrero Ave., Sunnyvale, CA 94086; (408)
736-2600 CHBCIF 370
DAVE BURSKY

## UNIX SPREADSHEET RUNS UNDER X-WINDOWS

Taking full advantage of the X-Window system, eXclaim! is Unix spreadsheet software that runs under the Motif user interface developed by the Open Software Foundation (OSF). The X-Window system adds windowing, a mouse, dialogue boxes, and pull-down windows to the spreadsheet. Because the spreadsheet runs on Unix, it's suitable for networked platforms. The soft-
ware's flexibility lets users port their applications to most Unix hardware platforms, including X-Window display terminals, workstations, servers, mainframes, and supercomputers. Depending on the configuration of licenses, eXclaim! ranges in price from $\$ 1000$ to $\$ 10,000$. It will be available in the second quarter.

Quality Products Software Co., 5711 W. Slauson Ave., Suite 240, Culver City, CA 90230; (213) 410-0303.
CIBGIF 385

## CASE T00L SUPPORTS IBM'S AD/CYCLE

An OS/2-based CASE package supports IBM's recently announced AD/ Cycle application development strategy for the Systems Application Architecture (SAA). The Application Development Workbench provides integrated support, from information-systems planning through analysis, design, and code generation. It is divided into four tool sets, each addressing a different phase of the software development cycle. The Design Workstation and Construction Workstation tool sets are scheduled for release during the first quarter of 1990; the Planning and Analysis Workstations are planned for the second quarter of 1990. The product line is integrated around a central intelligent encyclopedia and uses embedded artificial intelligence to ensure consistency and provide automated assistance in moving through the development cycle.

Knowledge Ware Inc., 3340 Peachtree
Rd. N.E., Suite 1100, Atlanta, GA 30026; (404) 231-8575. GIRGIF 371

## 300 Watts



POWERTEC
29 Series

- Up to 5 Outputs
- $\mathrm{N}+1$ Redundancy
- Auto Current Sharing
- Isolation Diodes
- Remote Sense Outputs


For Information call
1-800-233-9973

# Mechanical Filters Boast Small Size, Low Price 

Thanks to a new packaging concept, a low-cost line of Collins torsional mechanical filters from Rockwell International offers housings that measure just $0.12 \mathrm{in}^{3}$. That's one-third the volume of the
smallest torsional mechanical filter available before, even though the internal filter structure is unchanged.

By keeping the transducer and resonator structure intact, the insertion loss stays at a low 1 dB . Also, the intermodulation distortion is not affected:

The third-order intercept point is greater than 55 dB . The filters are designed with a a flat response with low passband ripple.

The first set of three filters in the product line are centered at 455 kHz , with bandwidths of $500 \mathrm{~Hz}, 2.4 \mathrm{kHz}$, and 6 kHz . The $2.4-\mathrm{kHz}$ and $6-\mathrm{kHz}$ filters have a shape factor (ratio of $60-\mathrm{dB}$ bandwidth to $3-\mathrm{dB}$ bandwidth) of less than 2:1. Low-cost FDM telephonechannel filters at 128 kHz will follow.

The filter package, which is designed for pc-board assembly, measures 1.25 in . long by 0.4 in . wide by 0.24 in . high.

In quantities of 100 , each of the three filters costs $\$ 30$. Delivery is from stock.

Rockwell International, Filter
Products, 2990 Airway Ave., Costa
Mesa, CA 92626; (714) 641-5311.
GITHIF 378
DAVID MALINIAK

## OPTICAL INTERRUPTER SENSORS MEASURE 4-MM ${ }^{2}$

A line of ultra-small optical interrupter sensors for pc mounting measures just $4-\mathrm{mm}$ square. The EE-SX1038, 1052, 1067 , and 1068 sensors provide squarewave "no-noise" outputs and are suited for any application calling for precise switching and/or linear-motion feedback. The sensors are available in slot widths ranging from 0.9 mm to 2 mm . Their outputs are configured for phototransistors and they feature typical response time of $40 \mu \mathrm{~s}$. Prices start at $\$ .78$ in lots of 1000 .

Omron Electronics Inc., Control Components Division, One E. Commerce Dr., Schaumburg, IL 60173; (708) 843-
7900. CTHGIF 379

## TINY SMT MIXER HANDLES + 14-DBM INPUT

Claimed as the world's smallest sur-face-mounted mixer, the RMS-2H operates over a range of 2 to 1000 MHz and has a $1-\mathrm{dB}$ compression point of +14 dBm . The unit houses rf transformers and a four-diode assembly on a ceram-ic-alumina substrate in a tiny 0.25 -by0.3 -by- 0.2 -in. metal case. An edge-plated design eases the task of soldering the device to pc boards. The mixer provides $43-\mathrm{dB}$ rf-lo and $30-\mathrm{dB}$ lo-if isolation and $7.8-\mathrm{dB}$ conversion loss. Pricing is $\$ 14.95$ in quantities up to nine with delivery from stock.

Mini-Circuits, P.O. Box 350166, Brooklyn, NY 11235-0003; (718) 9344500. CIBGIF 380

## Introducing the only linears approved to meet IEC 950 and Level B EMI.



## CONDOR'S NEW INTERNATIONAL

 PLUS LINEAR D.C. POWER SUPPLIES MEET TOMORROW'S TOUGH STANDARDS TODAY!Our International Plus linears offer you performance, price and one more important feature: the agency approvals you need for the 90 's, including IEC 950 and VDE 0871 level B EMI. And Condor has more approved linears in stock than anyone in the industry (including more than 30 models in IEC 601 medical versions).
International Plus linears have what you're looking for:

- 115 models (single and multi-output)
- 7 power levels -3 to 288 W
- Worldwide AC input ranges
- OVP on all 5 V outputs
- Hermetically sealed power transistors
- MTBF 200,000 + hours per Mil Hndbk 217E
- 2-hour burn-in with cycling (8 hours on medicals)
- Computerized testing (data sheets furnished)
- 3-year warranty - longest in the industry
- 30-day FREE evaluation (call us for samples)
If you need world class performance, quick turnaround, competitive pricing and full agency approvals, call Condor - the leader in linear D.C. power supplies.

- $300+$ power supplies
- Standard and medical
- Switchers and linears
- Open frame and enclosed
- Custom capability


2311 Statham Parkway
Oxnard, CA 93033 • (805) 486-4565
CALL TOLL-FREE:
1-800-235-5929 (outside CA)
FAX: (805) 487-8911

## ULTRA-LOW-PRESSURE SENSOR PLAYS WITH CPUS

Pressures as low as 2 in . of water ( 0.075 psi) can be measured by the NPP series of silicon piezoresistive pressure sensors. The sensors' TTL outputs are 2-to-$12-\mathrm{MHz}$, open-collector types that are directly compatible with microproces-
sors. Additional analog-to-digital conversion circuitry is not required, which makes for a space- and cost-effective approach to airflow measurement. Three differential and gauge-pressure ranges are offered: $0.07 \mathrm{psi}, 0.36 \mathrm{psi}$, and 1 psi . Accuracy, combining linearity, hysteresis, and repeatability, is within $\pm 1.0 \%$ at room temperature.

Unit price is $\$ 25$ in lots of 10,000 . Samples are delivered from stock and production lots take eight weeks.

NovaSensor, 1055 Mission Ct., Fre-
mont, CA 94539; (415) 490-9100.
CIGGIF 381

## EMI FILTER UPS CURRENT HANDLING BY 35\%

With the FMB-461 emi filter, the cur-rent-throughput capability of Interpoint de-dc converters is increased by a full $35 \%$. But design advances permit the filter to fit in the same 1.1-by-2.1-by-$0.5-\mathrm{in}$. hermetically sealed metal case as earlier lower-rated models. The filter reduces the reflected input ripple of over 30 converter models, which brings them within the noise limits of MIL-STD-461B's CEO3 standard. Attenuation is 40 dB of reflected input-ripple current over the range of 100 kHz to 50 MHz . Pricing begins at $\$ 148$ in lots of 100 with delivery from stock to 30 days.

Interpoint Corp., 10301 Willows Rd.,
Redmond, WA 98073; (206) 882-
3100. CIVGIF 382

## SOLDER PASTES ARE WATER-SOLUBLE

As the ban on fluorocarbons grows increasingly tighter, engineers can eliminate solvents in circuit board cleaning through the use of water-soluble solder pastes. The high-purity pastes are designed for batch water cleaning, yet have the application and performance qualities of RMA solders. There outstanding flux activity and print definition enable users to eliminate solvents for cleaning, as well as subsequent disposal problems.

AIM Products Inc., 9 Rocky Hill Rd., Smithfield, RI 02917; (401) 232 2772. CHIGIF 383

## S0LID-MATRIX FUSES STAND UP T0 ABUSE

Rather than having its fusible element suspended in air, a line of solid-matrix fuses have their elements embedded in arc-quenching material. The advantages include superior amp-rating stability after exposure to soldering and cleaning. Also, $\mathrm{I}^{2}$ t let-through energy under short-circuit conditions is extremely low. Three packages are available: axial lead, radial lead, and sur-face-mounted. In lots of 10,000 , pricing ranges from $\$ .18$ to $\$ .53$. Delivery is from stock to six weeks.

[^10]
## SIEMENS



## Higher Intelligence.

Siemens, the European leader in 4 Megabit technology, offers a diverse line of ICs for workstation, PC, and embedded control applications.
For example, our 25 MIPS, 32-bit RISC microprocessor, based on the industry standard MIPS* architecture. Or our SAB 80286 microprocessor running up to 16 MHz . But
microprocessors are just the beginning.
Our Advanced DMA controller for 16-bit and 32-bit applications, SAB 82258A, can enhance graphic systems, communication processors or SCSI modules. Giving you an unequaled combination of transfer power and intelligent transfer control.

And for the optimal
low-cost, high-speed microcontroller solution, Siemens offers you a performance range
from 1 to 10 MIPS. To drive up your system speed, without driving up your system cost.

Siemens offers you a wide array of quality products with the European content for the Common Market in 1992. And for our customers who have manufacturing needs elsewhere, Siemens operates 173 plants in 35 countries worldwide. Permitting you to design systems reflecting a higher intelligence.
For details, call (800) 456-9229, or write Siemens Components, Inc. 2191 Laurelwood Road Santa Clara, CA 95054-1514. Ask for literature package M14A008.

##  them

## Siemens

EMPLOYMENT OPPORTUNITIES

ELECTRONIC-ELECTRICAL ENGINEERS. Nationwide Design/Project/ QC/Mfg., Power, Software/Systems, Controls, Circuits, Equipment, Test, Communications, etc. Contact: John Longberry, Longberry Employment, 913 Main Place, P.O. Box 471, Niles, OH 44446. (216) 652-5871.

## BUSINESS SERVICES

HARDWARE AND SOFTWARE DEVELOPMENT SERVICES
We specialize in developing microprocessor/FPGA based
products/systems and embedded software development.
Analog, video, RF, and digital circuit design facilities.

- We can help with part of your project or handle the entire project Full Microprocessor Development Systems, I ${ }^{2}$ ICE, CAD/CAM, and PCB layout system.
us development for Mu
Bus development for Multibus, VME, PC, MCA, LAN and STD
${ }^{\text {A }} \mathrm{C}_{\text {® }}$ Applied Computer Techniques, Inc. Tel. (407) 851-2525


## Looking for

ELECTRONICS ENGINEERS \& ENGINEERING MANAGERS?

## 150,033

Read


Twice Monthly
To reach them with a recruitment ad in the Professional Opportunities section

Contact:
Penton Classifieds
at 216-696-7000, ext. 2520

# Cell the world. 

At Motorola Cellular, we see an incredible change in world communications taking shape. We expect a jump from 7 million to 100 million cellular subscribers by the year 2000. And we're ready to meet the demands of this phenomenal growth. Because wehave the resources and determinationto honethe cutting edge of today's most exciting technologies.
At Motorola, you'll be working with the most advanced development tools...leading the revolution from analog to digital... pioneering the full range of systems applications that allow data and images to be transmitted along with voice...and making a strong impact on the way global industries, businesses, governments and people communicate.

Sell us on yourself today and you could cell the world tomorrow in one of these challenging positions: - Software Engineers (positions also available at our Ft. Worth Texas facility) • Test Equipment Engineers • Hardware Engineers

- Mechanical Engineers - Manufacturing Engineers - Cellular Systems Engineers

We offer an excellent salary, a comprehensive benefits package and opportunities for professional growth. For immediate consideration, send your resume to: Supervisor, Professional Recruitment, Motorola Inc., Cellular, 1501 West Shure Drive, Arlington Heights, IL 60004. Or FAX your resume to (708) 632-3873 (our 24 -hour FAX line). For Software positions in Ft. Worth, please
send your resume to: Professional Staffing, Motorola Inc., P.O. Box 2931,

Ft. Worth, TX 76113 . Or FAX your resume to (817) 232-6367 (our 24-hour FAX line). For more details on the technical requirements of these positions access our On-Line Career Network from your PC, dial (508) 263-3857, press return twice and key in password LEGACY. An equal opportunity employer.
(A) MOTOROLA

Cellular Subscriber Group
Radio Telephone Systems Group
Our breakthroughs are heard around the world.

## Switch signals $5 x$ faster

### 2.6 Gbit/s 16x16 Crosspoint Switch IC



Not even a 16-hand operator can switch this fast! GigaBit's new 10G051 16x16 Crosspoint Switch IC can switch signals at $2.6 \mathrm{Gbit} / \mathrm{s}$ rate in less than 2 ns . With its wide bandwidth, the 10G051 handles SONET OC3 to OC48 as well as HIPPI/Fiber Channel signals at full speed.
The 10G051 features full broadcast capability. Any output can independently select any input, including an input chosen by another output. A complete reconfiguration of the switch can be as fast as 1.8 ns .
Switch to the fastest optical fiber communications

IC family available. Contact us for more information on the 10G051 as well as our high-speed clock and data recovery circuits, transimpedance amplifiers, laser diode driver, LED driver, mux/demuxes, limiting amplifier, and the rest of the PicoLogic ${ }^{\text {TM }}$ line of high-performance ICs. For more information, call:United States and Canada: (805) 499-0610; Europe: GIGA, +454343 1588; and Japan: Tokyo Electron Ltd., 423338009.

## DIRECT CONNECTION

## 

## DIRECT CONNECTION ADS

New Products/Services Presented By The Manufacturer.
To Advertise, Call JEANIE GRIFFIN At 201/393-6080

## Tango-PLD. The New Price/Performance Leader.

Tango-PLD, a universal PLD design tool with sophist cated features at an affordable price, creates complex designs with multiple PALs and GALs. Our top-down approach, emphasizing logic description first and part selection second, along with a "C-like" design language, makes Tango-PLD easy to use

## Tango

Describe designs with Boolean equations, truth tables, state machines, high-level C expressions, or existing JEDEC files. Simulation with test-vector coverage checking guarantees no surprises. Rich functionality, one year's updates, free tech support and BBS, plus our 30 -day guaran tee. All this for just $\$ 495$. Call today.

- $\frac{\text { FREE EVALUATION PACKAGE }}{800433-7801 \quad 619554-1000} 6619554-1019$ FaxACCEL ${ }^{\text {" }}$ Technologies $\quad 6825$ Flanders Drive - San Diego, CA 92121 USA SEE US AT WESCON BOOTH 423 CIRCLE 270

How To Gef More Emulation for Less<br>ORION 8620 ANALYZER-EMULATOR



- High-Level language/Symbolic debug support © Over 170 processors supported with the same base hardware and software environment Easy-to-use, powerful triggering Extensive MACRO capabilities Program Performance Analyzer Built-In EPROM programmer
Go ahead and compare. The 8620 Analyzer-Emulator gets your product to market faster and costs less. Base prices start at $\$ 5080$. Send for more information and free demo disk.
Toll Free 800/729/7700 or 415/327/8800

180 Independence Dr., Menlo Park, CA 94025 ORION INSTRUMENTS

CIRCLE 281


PC based emulators for the 8051 footh 1762
 552/562/652/851, 80532, 83C451/552/652/751/752/851, 8344, 87C451/552/751 552, 8751, 8752, $055000+$ CMOS ... more.

- PC plug-in boards or RS-232 box

Up to 30 MHz real-time emulation

- Full Source-level Debugger w/complete C-variable support
- 48 bit wide, 16 K deep trace, with "source line trace." Bond-out pods for 8051, 83C552, 83C451, 83C652,
83C751, 80C515/80C517, 83C752.

Prices: 32 K Emulator 8031 \$1790; 4 K Trace $\$ 1495^{\circ}$ CALL OR WRITE FOR FREE DEMO DISK! Ask about our demo VIDEO

> NOHOU

ALSO SEE PAGE 171
CIRCLE 256


SC/FOX ${ }^{\text {"I }}$ Embedded-System Computers SC/FOX VIME SBC (Single Board Computer) 18 MIPS, 60 MIPS burst, general purpose, slot-1 Master/Slave System Controller. Up to 640K bytes 0-ws static RAM, 1 SCSI, 1 ptr. 2 serial ports. Uses 16 -bit Harris RTX 2000.
SC/FOX PCS (Parallel Coprocessor System) 15 MIPS, 50 MIPS burst, general purpose PC/AT/386 plug-in board, 32 K to 1 M byte 0 -ws static RAM, multiple PCS operation, SCSI option. Uses Harris RTX 2000.
SC/FOX SBC (Single Board Computer) 18 MIPS, 60 MIPS burst, Stand-alone operation, Eurocard size, 1 pt, 1 serial port, up to 512 K bytes 0 -ws static RAM, 250 -pin user connectors, SCSI option. Uses Harris RTX 2000.
SC/FOX PCS32 (Parallel Coprocessor Systemas2) 15 MIPS to 70 MIPS, general-purpose PC/AT/386 32-bit plug-in board with 64 K to 1 M byte 0 -ws genera-purpose PC/AT/300 32 -bot plug-in board wit
Ideal for ambedded real ime control, data acessor.
Ideal for embedded real-time control, data acquisition, or high-speed pro-
cassing. Forth software and utilities included, C optional. OEM pricing
SILICON COMPOSERS INC. (415) 322-8763
208 California Avenue, Palo Alto CA 94306 SILICON COMPOSERS

CIRCLE 291

## A D S

 PLCC sockets are live-bug auto-eject style providing positive alignment and push-in/pop-out mechanism. Accepts NEW CERQUAD erasable package!
2764 thru 27512, 27C011 ............... PA28-32 ....... $\$ 90.00$ 28 DIP to 32 PLCC.......................... $n$ e w l! 27010 thru 27080 .............................. PA32-32 ..................................... n e I! 27202-3, 27210-27280, 87C75PF .. PA280-44 ...\$115.00 40 DIP to 44 PLCC........................... new ! ! 87C552 PLCC ................................ PA552-68 ... $\$ 165.00$ 87C51 PLCC................................... PA51-44 ..... $\$ 115.00$

CALL or FAX for full device list!
CALL (315) 478-0722 FAX (315) 475-8460 Logical Systems Corporation
P.O. Box 6184, Syracuse NY 13217 USA

LOGICAL SYSTEMS
CIRCLE 251

'488 CONTROL FOR YOUR MACINTOSH II

- Control any instrument in minutes.
- Supports BASIC, Pascal, C and Hypertalk

HyperCard utilities included.
Software library. Risk free guarantee
Capital Equipment Corp. Burlington, MA. 01803
Informative catalog 800-234-4232
Applications help (617) 273-1818 CAPITAL EQUIPMENT

CIRCLE 272

DIRECT CONNECTION

## There is a Difference. Liftime Free Updates <br>  <br> A programmer is not just another programmer. That is why BP Microsystems is commited to bringing our customers the highest quality programmers at an affordable price. This commitment is evident in our EP-1140 E/EPROM programmer supporting thousands of 24,28 - 32 - and 40 pin devices. A 32 -pin model, EP-1132, is available also for $\$ 695$. And, all of our programmers include future chip support at no charge and an unconditional money back guarantee. <br>  <br> 1-800-225-2102 <br> (713) 461-9430

BP MICROSYSTEMS CIRCLE 271

## FREE SAMPLE



## 8PDT "BYTE WIDE" SWITCH HIGH DENSITY .050" PINOUT SNAP ACTION GOLD CONTACTS

Circle reader service number for free sample and complete information about Annulus High Density Switches.


ANNULUS TECHNICAL INDUSTRIES, INC 1296 Osprey Drive, P.O. Box 7407, Ancaster Ontario, Canada L9G 4G4 Phone: (416) 648-8100. Fax: 648-8102 ANNULUS TECHNICAL INDUSTRIES CIRCLE 260

## Cross Assemblers

## Universal Linker, Librarian

PC/MS DOS, micro VAX, VAX VMS UNIX targeting 30 microprocessors
$\star$ High speed

* Compatible with chip manufacturer's assemblers
$\star$ Powerful macros
$\star$ Absolute or relocate code
$\star$ Conditional assembly
$\star$ \$295 up for MS DOS Packages

	1811 W. Fith St. Lonsdale. PA 19446 U.S. A.	telephone: 215-362-0966 telex: 4948709 ENERTEC
CROSS ASS	EMBLERS	CIRCLE 273


Cross-Assemblers trom $\$ 50.00$ Simulators ${ }_{\text {from }} \$ 100.00$	
Cross-Disassemblers from \$100.00 Developer Packages from $\$ 200.00$ (a $\$ 50.00$ Savings)	
Make Programming Easy   Our Macro Cross-assemblers are easy to use. With powerful conditional assembly and unlimited include files.	
Get it Debugged--FAST   Don't wait until the hardware is finished. Debug your software with our Simulators.	
Recover Lost Source!   Our line of disassemblers can help you re-create the original assembly language source.	
Thousands Of Satisfied Customers Worldwide   PseudoCorp has been providing quality solutions for microprocessor problems since 1985	
716 Thimble Shoals Blvd, Suite E Newport News, VA 23606	
(804) 873-19	947 FAX:(804)873-2154
PSEUDOCORP	CIRCLE



## DIRECT CONNECTION



8051 Emulator - $\$ 1250$
$d^{2}$ ICE is a low cost, Full Speed, real time 8051 Emulator.. Powerful user interface for Hi-level multi-window source code debugging. Uses IBM-PC COM1/2. No Slots! Portable, fits in shirt pocket. Assembler and test bed included.


Cybernetic Micro Systems
PO Box 3000 - San Gregorio CA 94074 Ph: (415) 726-3000 - Fax: (415) 726-3003 CYBERNETIC MICRO SYSTEMS

CIRCLE 267


## 200 AMPERE MULTIPIN

 LIF RACK \& PANEL CONNECTORLSH Series Connectors provide one to six 200 amp contacts in a rugged, Ryton® float mountable assembly. The 200 amp continuous per contact rating in a low weight compact assembly make it ideal for power disconnects on electric vehicles, aircraft and other mobile vehicles.

HYPERTRONICS CORPORATION
16 Brent Drive
Hudson, MA 01749
800-225-9228 (In Mass. \& Canada (508) 568-0451)
Fax: 508-568-0680
HYPERTRONICS
CIRCLE 275

NEW, POWERFUL, UNIVERSAL


PILOT-U40 is our second generation 40 -pin universal programmer, following the very successful and popular Sailor-PAL line of programmers. Programs PALs, GALs, PROMs, E/EPROMs, micros, AMD MACH-110, etc, etc 28 -pin and 32 -pin versions also available. Industria quality. $\$ 1,095$ to $\$ 2,495$. Satisfaction guaranteed.
408-243-7000, 800-627-2465, Fax 408-736-2503
ADVIN SYSTEMS INC.
1050-L E. Duane Ave., Sunnyvale, CA 94086
ADVIN SYSTEMS
CIRCLE 252


Quick, Fast Socket Conversion

- Convert-A-Socket ${ }^{\text {TM }}$ makes it a snap to convert a production socket to a test socket and vice-versa.
- Complete line of male/female sockets for LCC, PLCC, PGA, PQFP, and DIP circuits.
- A must if you're inserting circuits repeatedly in low insertion force sockets.
- Quick turnaround on custom engineering services, if needed. For a free catalog, contact:
Emulation Technology, Inc.
2368-B Walsh Ave. Santa Clara, CA 95051
Phone: 408-982-0660 FAX: 408-982-0564
EMULATION TECHNOLOGY


B\&C MICROSYSTEMS
CIRCLE 259


RS232 EE/EPROM, MICRO $\&$ MEMORY CARD PROGRAMMER \$345/495 P Programs EE/EProms, Flash Eproms, ZPRams, Intel Micros, Memory Cards.

- Stand-Alone Mode for EE/EProms and Memory Card Duplication/ Verify. : Stand-Alone Mode for EE/EProms and Memory Card Duplication/V erify. Accepts dedicated modules: Memory Card Programming Module (Seiko,
 - Can be operated with any computer containing an RS-232 serial port. - User friendly Menu-Driven Inturface Program for IBM-PC or Macintosh.
- Full 1 year warranty. Customer support via voice line, fax or dedicated BBS

INTELLIGENT ROM EMULATOR \$395

- Emulates 2716 through 27512 EProms with a single unit. Access time 120 ns . User friendly software. Command set includes: Load (data), Write(data),
Display(memory) Type(of EProm), Edit(memory) Fill (memory), Calculator Reset( Iarget system), Aetivatet(debugging feature), Monitor(seleccted feature) - Address Compare with Halt output, Address Snapshot, Trigger input. - Fast data loading via parallel printer port ( 64 k bytes in less than 10 sec). CMOS (stand-alone) model with rechargeable NiCad battery backup: $\mathbf{S H 9 5}$.
MC/ IISA /AMEX MC/VISA/AMEX


B\&C MICROSYSTEMS
CIRCLE 265

New AFDPLUS Advanced Active Design Software


- Fully Interactive
- Menu Driven
- On Screen Design \& Evaluation
- On Screen Editing
- Automated Installition
- Schematic Display and Print
- Integrated AFDSIM

Introductory price $\$ 850.00$ (price effective through $1 / 31 / 90$ ) Call for your FREE DEMO DISC (303) 499-7566 or to order AFDPLUS send check or purchase order to:

## RLM Research

P.O.Box 3630

Boulder CO 80307-3630
VISA
RLM RESEARCH

## CMOS 186 SINGLE BOARD COMPUTER

This powerful 16-bit computer directly executes EPROM's containing Microsoft C or Turbo C .EXE files. NO LOCATORS! Bundled package including multi-tasking C library allows dozens of $C$ tasks to run concurrently.

- 10 MHz 80 C 186
- CMOS design
- 512K RAM
- 384K EPROM
- STD BUS Expansion
- COM1 RS232/485
- COM2, LPT1
- RTC Avail
-80C187 Avail - OEM discounts


1011 Grand Central Ave.. Glendale, CA 91201 (818) 244-4600 Fax (818) 244-4246

MICRO/SYS



Analog Circuit Simulation Completely Integrated CAE from $\$ 95$
 From Schematic Entry through Spice Simulation to Post Processing IsSpice $\$ 95$, the complate Spice program
PC's.
IsSpice/386 $\$ 386$, The fastest PC based SPice program available. Has virtually no circuit size limitations.

SpiceNer $\$ 295$, a schematic editor for any Spice simulator. Generates a complete SPICE netlist.

IntuScope $\$ 250$, a graphics post processor that performs all the functions of a digital oscilloscope.
PreSpice $\$ 200$, extensive model libraries, Monte Carlo analysis, and parameter sweeping.

Please Write or Call
P.O. Box 6607 (213) 833-0710 San Pedro, CA 30 Day Money 90734-6607 Back Guarantee
INTUSOFT
CIRCLE 262

## DIRECTCONNECTION

## RELIABILITY PREDICTION SOFTWARE

## ARE YOUR PRODUCTS RELIABLE?

The RelCalc 2 Software Package predicts the reliability of your systemusing the partstress procedure of MIL-HDBK-217E, and runs on the IBM PC and full compatibles. Say goodbye to tedious, time consuming, and error prone manual methods! RelCalc 2 is very easy to use, and features menu windows, library functions, global editing for what-if? trials, and clear report formats. Try our Demo Package for $\$ 25$.

T-CUBED SYSTEMS, 31220 La Baya Drive \# 110 , Westlake Village, CA 91362. (818) 991-0057 • FAX: (818) 991-1281

T-CUBED SYSTEMS
CIRCLE 286



## WE'RE BENDING THE RULES

FOR CIRCUIT DESIGNERS
BEND/FLEX ${ }^{\text {TM }}$, the bendable circuit board material that's flexible enough to bend into any multi-plane shape. Eliminates stiffener boards, flexible hardboard connectors, and may reduce the cost of two - and three - plane interconnection systems by as much as $30 \%$ !

## ROGERS CORP.

COMPOSITE MATERIALS DIVISION
One Technology Drive, Rogers, CT 06263 BEND/FLEX"

CIRCLE 263


Mainframe PCB layout features for your PC... + FREE, ongoing, 1-800 support... + our 30 Day Money Back Guarantee!

FREE DEMO KIT 1-800-553-9119
 OMATION CIRCLE 289

A D S


INTEL 8052 BASED CONTROLLER WITH 8 CHANNEL, 10-BIT A/D CONVERTER

Up to 40K RAM/EPROM. EPROM programmer, 24 programmable $\mathrm{P} / \mathrm{O}$ lines, two serial ports, automatic baud rate, real time clock, full BASIC, single +5 V power supply. $\$ 275$ for Qty 1. OEM discount available. 20X4 LCD, optional. Call (609) 799-2963.
KUSTEM DATA SERVICES, INC. 4 Hudson Court, Cranbury, N.J. 08512.
KUSTEM DATA SERVICES
CIRCLE 287



Advanced Engineering Software Call for Free Demo Disk
-Filter designs active, passive, and digital filters up to order 30. Draws Bode and transient plots......from $\$ 650$ - Micro-CSMP models any system. Support for non-linear behavior. $\$ 900$ - BrainMaker neural network solves control \& image processing problems. Menu-driven, mouse, color........ \$195

Califomia Scientific Software 10141 Evening Star Dr. \#6 Grass Valley, CA 95945
FREE Catalog: (916) 477-7481
CALIFORNIA SCIENTIFIC SOFTWARE CIRCLE 246

## EEETROMCDETEM <br> DIRECT CONNECTION ADS

## 1991 SCHEDULE

Issue Date: Ad Close
Jan. 10 Dec. 14
Jan. 31 Jan. 4
Feb. 14 Jan. 18
Feb. 28 Feb. 1
March 14 Feb. 15
March 28 March 1

Issue Date: Ad Close
April 11 March 15
April 25 March 29
May 9 April 12
May 23 April 26
June 13 May 17
June 27 May 31

Issue Date: Ad Close
July 11 June 14
July 25 June 28
August 8 July 12
August 22 July 26
Sept. 12 Aug. 16
Sept. 26 Aug. 30
30 D

To Advertise, Call JEANIE GRIFFIN At 201/393-6080

## DIRECT CONNECTION

## Don't Get Zapped!

High inrush current can destroy your sensitive VAX CPUs and peripherals in less time than it takes to flip a switch.

## THE SOLUTION?

Power up with Z-LINE TPC 115-10 MTD ${ }^{\text {TM }}$ the smallest power distribution and control system available
Z. LINE

POWER UP WITH - - -


Our proprietary Multiple Time Delay ${ }^{\text {TM }}$ circuitry sequences your power-up to protect your systems from the spikes and surges, EMI \& RFI, that destroy your hardware and erase your data. And our remote on/off and emergency shutdown gives the power control back to you.
All Pulizzi Engineering MTD ${ }^{\text {TM }}$ controllers are compatible with DEC and UPS systems. PRICES FROM \$453 TO \$317

DON'T WAIT UNTIL IT HAPPENS, CALL TODAY! PCLIZZI ENGINEERING INC.
3260 S. Susan Street, Santa Ana, CA 92704-6865 (714) 540-4229 FAX (714) 641-9062

PULIZZI ENGINEERING
CIRCLE 280


## FREE!

 120 Page Catalog "Optics for Industry"ROLYN OPTICS supplies all types of "Off-theShelf" optical components. Lenses, prisms, mirrors, irises, microscope objectives \& eyepieces plus hundreds of others. All from stock. Rolyn also supplies custom products \& coatings in prototype or production quantities. Write or call for our free 120 page catalog describing products \& listing off-the-shelf prices. ROLYN OPTICS CO., 706 Arrowgrand Circle, Covina, CA 91722 , (818) 915-5707 \& (818) $915-5717$. TELEX: 67' 0380. FAX: (818) 915-1379.

ROLYN OPTICS
CIRCLE 284


PRINTERS WITH IMPACT
Citizen dot matrix impact printer mechanisms provide for the perfect low-cost solution for point-of-sale, data logging, etc. Avail. in 23,28 or 40 columns, serial or parallel, w/sprocket feed, auto-cutter \& joumal winder options. Fast ( 120 cps ) \& reliable (over 50 milion char. head life). Also avail. in stand-alone versions.
MELFESS FIVE, INC.
12304 Santa Monica Blvd., \#121, Los Angeles, CA 90025. 800/533-2297.

MELFESS FIVE CIRCLE 278

## IE틀 488 <br> Easiest to use, GUARANTEED!

- IBM PC, PS/2, Macintosh, HP, Sun, DEC - IEEE device drivers for DOS, UNIX, Lotus 1-2-3, VMS, XENIX \& Macintosh - Menu or icon-driven acquisition software - IEEE analyzers, expanders, extenders, buffers - Analog I/O, digital I/O, RS-232, RS-422, SCSI, modem \& Centronics converters to IEEE 488
Free Catalog \& Demo Disks (216) 439-4091


10tech - 25971 Cannon Rd. Cleveland, OH 44146 IOTECH CIRCLE 268


SUPPRESS NOISE, POWER HIGH DENSITY BOARDS
MAGNA/PAC ${ }^{\text {n }}$ components combine power distribution and capacitance for dense boards. Mount MAGNA/PAC ${ }^{m}$ between rows of ICs to save space.

- Effective decoupling ZIP arrays
- Capacitance up to $3.0 \mu \mathrm{~F}$ per linear in.
- Reduce noise over a wide frequency range
- Equalize voltage on dense boards

ROGERS CORP.
2400 S. Roosevelt St., Tempe, AZ 85282
Telephone: (602) 967-0624
ROGERS
CIRCLE 285

## Little Giant

C Programmable Controller
This shirt pocket sized computer interfaces directly to the outside world. Use it to control anything Instantly programmable using your PC with Dynamic C. ROM and bat-
 tery backed RAM to 1024 k bytes. 8 Channel, 10 12 bit, A/D with conditioning. High voltage and current drivers. Battery backed time and date clock. Watchdog and power fail. 4 serial channels. 24 parallel I/O lines. Timers. Integral power supply. Terminations for field wiring. Expansion connector. Plastic or metal field packaging available. OEM versions from $\$ 199.00$.

## See Us At Wescon '90 - Booth 458 Z-World Engineering

1340 Covell Blvd., Davis, CA 95616
(916) 753-3722

Fax: (916) 753-5141
Z-WORLD ENGINEERING

## A D S

CIRCLE 277




## "This is no Snow Job", says Oliver Germanium.

"Germanium Rectifiers really are more efficient.
"With low $V_{F}$, low Thermal Impedance and low Thermal Resistance, Germanium Rectifiers waste very little energy generating heat, so you don't have to waste money and equipment cooling them.
"What's more, Germanium's performance is much less temperature-dependent than is Silicon's. "For instance, with a junction temperature of $40^{\circ} \mathrm{C}$, a 100 A rectifier from GPD has a $30 \%$ lower $\mathrm{V}_{\mathrm{F}}$ than the equivalent Silicon 100A device.
"And at $100^{\circ} \mathrm{C}$ they still maintain this advantage.
"The world's leading super-computer maker uses Germanium why don't you?
"May we send our new Cool Rectifier Catalog, hot from the press?"

Germanium Power Devices Corporation, PO Box 3065, SVS, Andover MA 01810 USA Telephone 508475 5982. Telex 947150 . Fax 5084701512.

## INDEX OF ADVERTISERS



H	P
Hamilton Avnet ................................................... 163	Pacific Electro Data ................................................ 202
Hewlett-Packard Co..............................1, 9, 40-41, 109	PacTec.................................................................... 138
Hirol....................................................................... 175	Pep Module Computer.............................................. 24
Hirose Electronics.................................................... 226	Phillips 66.......................................................143, 145
Hypertronics Corp. ............................................... 235	Pico Electronies, Inc..........................................130, 154
Hytek Microsystems .............................................. 191	Planar Systems ........................................................ 237
	Potter \& Brumfield............................................... 153
I	Powerex .............................................................. 204
IBM.......................................................................12-13	Power-One ............................................................... 42
IEE........................................................................................................ 212	PseudoCorp ............................................................. 234
Illinois Capacitor ................................................................................ 177	Pulizzi Engineering..................................................... 237
Inco SPP ........................................................................................ $19 . .$.	0
iTOI Enterprises ................................................... 236	Qualidyne............................................................ 186
Integrated Device Technology .................................... 37	Quality Semiconductor.............................................. 56
Intel Systems Division ............................................. 118	Father ask kremien R
Interpoint ............................................................. $20 . . .{ }^{\text {a }}$ 209	RAM Scientific ................................................ 236
Intusoft............................................................... 23.	RAM Scientific ............................................................................ 236
IOtech ...........................................................189, 190, 237	RCElectronics........................................................................................ 194
J	RLM Research...................................................... 235
JW Miller Div. Bell Industries ................................. 158	Rogers Corp. ................................................234, 236, 237
K	Rolyn Optics ........................................................................... 237
Kustem Data Services ...	S
	Samsung ............................................................ $82-83$
I	SBE .................................................................... 240
Lambda Electronics ...........................................215-220	Sealevel Systems .................................................. 237
LeCroy ................................................................... 34	Semiconductor Circuits.......................................... 168
Logical Systems .................................................... 233	Sharp Microelectronics .......................................... 61-64
Lucas Decco....................................................... 199	Siemens Components ..............................................70, 229
	Signetics ............................................................ 32-33
M	Silicon Composers .................................................. 233
Matrix Systems ...................................................... 207	Silicon General.......................................................... 213
Maxim Integrated Products ...............................................................3, 31	Sipex ................................................................... $19 . . .$.
Melfess Five ....................................................................... 237	Spectrol.................................................................. 117
Mentor Graphics................................................................................. 6.7	Sprague-Goodman Electronics .................................... 65
Methode Electronics ........................................................................	Standard Microsystems ............................................. 19
MF Eleetronics ...................................................... 18	T
Micro Crystal Div................................................. 234	T-Cubed Systems................................................... 236
Micro Linear ...................................................132-133	Tektronix .............................................................. 157
Micron Technology ................................................. 155	Teltone ............................................................... 237
Micro/sys.......................................................... 235	Texas Instruments ...................................... 16-17, 49-52
Mini-Circuits Laboratory, a Div. of Scientific	Todd Products ...................................................... 146
Components Corp.......................15, 20-21, 134, Cover III	Toshiba America................................................... 106
Mitsubishi Electronics America ............................97-102	Total Power International........................................ 175
MJS Designs ........................................................ 158	Toyocom U.S.A. .................................................... 150
Motorola Computer Group...................................121-122	TransEra ............................................................ 181
N	TriQuint Semiconductor................................................. 59
	V
National Instruments ............................................... 88	Varta Batterie AG.................................................. 160
NCR Microelectronics ............................................... 22-23	Vector Electronic............................................................... $16 . .$.
Nichicon................................................................ 17.178	Vicor .................................................................... 139
Nicolet Instruments $\qquad$ 201	Viewlogic Systems ........................................................................................ 174
Nohau Corp. .....................................................171, 233	,
0	Xil
Object Design ....................................................... 224	Y
OKI Semiconductor..........................................140-141	
Omation ............................................................... 236	Yuasa Battery ................................................................................. 210
OrCAD.............................................................. 184	Yuasa Battery ..................................................... 210
Orion Instruments ................................................. 233	2
Outlook Technologies.......................................... $54-55$	Zenith Data Systems ................................................... 151
Owen Electronic GmbH ......................................... 234	Z-World Engineering............................................. 237

## SBE...At the Core of WAN Interface Solutions




## 10 to 3000MHz from $\$ 3995$

Now, high-speed, high-isolation switches with with built-in drivers, tough enough to pass stringent MIL-STD-202 tests. There's no longer any need to hassle with the complexities of designing a TTL driver interface and then adding yet another component to your subsystem ...it's already included in a rugged, low-cost, compact assembly.

Available in the popular hermetically-sealed
TO-8 package or a small EMI-shielded metal connectorized case, these tiny PIN-diode reflective switches, complete with driver, can operate over a 10 to 3000 MHz span with a fast $2 \mu$ sec switching speed.
Despite their small size, these units offer isolation as high as $40 \mathrm{~dB}(\operatorname{typ})$, insertion loss of only $1.1 \mathrm{~dB}($ typ $)$, and a 1 dB compression point of +27 dBm over most of the frequency range. All models are TTL-compatible and operate from a dc supply voltage of 4.5 to 5.5 V with 1.8 mA quiescent current.

Switch to Mini-Circuits for highest quality innovative products ... and leave the driving to us.
finding new ways
setting higher standards

## $\square$ Mini-Circuits

P.O. Box 350166 . Brooklyn. New York 11235-0003 (718) 934-4500

Fax (718) 332-4661 Domestic and International Telexes: 6852844 or 620156

## widfarw 



SPARC Embedded RISC. 18MIPS.

Embedded control challenge of the 90s:
Applications are increasingly burdened with the overhead of friendliness. Even so, users expect everything to happen immediately, if not sooner.

As a result, applications with embedded microprocessors need more computing power than ever. Our CY7C611 SPARC RISC controller gives you the power to create, at a price that fits your application.

It performs. At 25 MHz , our CY7611 delivers 18 sustained MIPS.

It handles interrupts brilliantly. Asynchronous and synchronous traps let you jump to trap routines with 200 ns worst case response. 16 prioritized interrupt levels let you tailor your application. You get 13632 -bit registers that you can divide into register banks for fast context switching.

It has hooks. Connect our CY7C602 concurrent floating point unit for 5 MFLOPS. Use our CY7C157 Cache SRAM for a zero wait state memory system.
*1-(800) 387-7599 in Canada. (32) 2-672-2220 in Europe. © 1990 Cypress Semiconductor, 3901 North First Street, San Jose, CA 95134. Phone: (408) 943-2600, Telex: 821032 CYPRESS SNJ UD, TWX: 910-997-0753. Trademarks: SPARC-Sun Microsystems, Inc.

Use our CY7C289 512K PROM for glueless, virtually waitless program storage.

It is extendable. You get a large address space, and support for multitasking and multiprocessing.

It is affordable. We're talking a few dollars per MIPS.
And it is SPARC. You can choose from a multitude of SPARC platforms to operate as native development platforms. You work with the world's most popular RISC architecture. You can expect faster evolutions, to keep your design current well after it is designed.

The whole story - from data sheet to User's Guide is yours for a fast, free phone call.

Free SPARC RISC User's Guide. Hotline: 1-800-952-6300*. Ask for Dept. C3K.



[^0]:    35 Marcus Blvd. Hauppauge NY 11788 (516) $273 \cdot 3100$ Fax (516) 231-6004

[^1]:    Distributed by Arrow, Bell/Graham, Hall-Mark, Nu Horizons, Pioneer, and Wyle. Authorized Maxim Representatives: Alabama, (205) 830-0498; Arizona, (602) 730-8093; California, (408) 248-5300, (619) 278-8021; (714) 261-2123; (818) 704-1655; Colorado, (303) 799-3435, Connecticut, (203) 384-1112; Delaware, (609) 778-5353; Florida, (305) 426-4601, (407) 682-4800; Georgia, (404) 447-6124; Illinois, (312) 577-9222; Indiana, (317) 921-3450; Iowa, (319) 393-2232; Kansas, (816) 436-6445; Louisiana, (214) 238-7500; Maryland, (301) 644-5700; Massachusetts, (617) 329-3454; Michigan, (313) 583-1500; Minnesota, (612) 944-8545; Mississippi, (205) 830-0498; Missouri, (314) 839-0033; Montana, (503) 292-8840; Nebraska, (816) 436-6445; Nevada, (408) 248-5300; New Hampshire, (617) 329-3454; New Jersey, (609) $778-5353$; New Mexico, (505) 268-4232; New York, (201) 428-0600, (607) 754-2171; North Carolina, (919) 846-6888; Ohio, (216) 659-9224, (513) 278-0714, (614) 895-1447; Oklahoma, (214) 238-7500; Oregon, (503) 292-8840; E. Pennsylvania, (609) 778-5353; W. Pennsylvania, (919) 851-0010; South Carolina, (919) 851-0010; Tennessee, (404) 447-6124; Texas, (214) 238-7500, (512) 835-5822, (713) 789-2426; Utah, (801) 561-5099; Virginia, (801)644-5700; Washington, (206) 823-9535; Wisconsin, (414) 792-0920; Canada, (416) 238-0366, (613) 225-5161, (604) 439-1373, (514) 337-7540.

[^2]:    © 1990 Actel Corporation, 955 E. Arques Ave., Sunnyvale, CA 94086. ACT, Action Logic, Activator, and

[^3]:    Source: a survey of Electronic Design readers conducted by the Adams Co., Palo Alto, Calif.

[^4]:    IBM is a registered trademark of International Business Machines. RealVoice is a trademark of Oki Semiconductor: IBM PC AT is a registered trademark of IBM.

[^5]:    A KEY PLAYER in the COM20020's architecture is the 2 -kword-by-8-bit RAM. Its dual ports and $40-\mathrm{ns}$ access time enables the 20020 and companion microcontroller to arbitrate for, and access, the memory in one clock cycle without using wait states and without impacting the network data rate. Because most microcontrollers have no Ready line,
    previous LAN controllers handling arbitration and microcontroller address decoding could impacting the network data rate. Because most microcontrollers have no Ready line,
    previous LAN controllers handling arbitration and microcontroller address decoding could not extend the microcontroller's read/write cycle. This requires the microcontroller to operate at a much slower speed.

[^6]:    Australia (02) 654 1873, Austria (0222) 387638 , Benelux +31 1858-16133, Canada (514) 689-5889, Denmark (42) 6511 11, Finland $90-452$ 1255, France (01)-69 4128 01, Great Britain 0962-73 3140 , Israel (03) 4848 32, Italy (011) 77100 10, Korea (02) 784784 1, New Zealand (09) 392-464, Portugal (01) 8150454 , Sweden, Norway (040) 9224 25, Singapore (065) 284-6077, Spain (93) 217 2340, Switzerland (01) 74041 05, Taiwan (02) 7640215, Thailand (02) 281-9596, West Germany 08131-1687.

[^7]:    Ando Corp., 480 Oakmead Pkwy., Sunnyvale, CA 94086; (408) 738-2636.
    CITHIF 332

[^8]:    Sweden Ericsson Components AB, Stockholm, Tel: (08) 7217059 Fax: (08) 7217001
    Australia
    France Hong Kong Great Britain
    Italy
    Norway
    United States Ericsson Components A/S, Oslo, Tel: (O2) 650190 Fax: (O2) 644138
    West Germany Ericsson Components GmbH, Engen, Tel: (07733) 50010 Fax: (O7733) 5927

[^9]:    Yuasa Battery (America), Inc. 9728 Alburtis Avenue Santa Fe Springs, CA 90670 (213) 949-4266 or (800) 423-4667
    Eastern Regional Office 131 Industrial Ave. Hasbrouck Heights, N.J. 07604 (201) 641-5900 or (800) 962-1287

[^10]:    Cooper Industries, Bussmann Division, P.O. Box 14460, St. Louis, MO 63178; (314) 394-2877. GIBGIF 384

