A PREVIEW OF ELEGTRONIGA 90

GETTING TO KNOW SPICE MACROMODELS

RRODUCT REPORT:

LOMIE ANELYztis B HEI FOB 100-WIZ si inamiyss

This is NOT

THE TIME TO

 FIND A FAULT IN YOUR DESIGN.

The best time to find problems with a design is in the design cycle. NOT during prototype stage, certainly NOT after delivery to the customer. Simulation lets you predict how a circuit will behave before building expensive prototypes. The OrCAD/VST logic simulator lets you predict it faster, more accurately and for less money.

With time-to-market critical, you need the competitive edge that OrCAD/VST provides. Because it runs on the world's most affordable design platform, OrCAD/VST offers virtually unlimited accessibility. Which means you'll have unparalleled productivity for every engineer in your design team. And, shorter time-to-market.

What's more, with every copy of OrCAD/VST, you'll be getting the extensive technical support of the best-known logic simulator manufacturer. Including free product updates, telephone support and access to our 24 hour BBS.

OrCAD users outnumber the competition by three to one (or approximate ratio). For good reason. We provide high-performance productivity tools and back them with the highest level of technical services and support in the industry.

Call today for your demonstration disk. Then, try OrCAD/VST for 30 days and see if you don't agree. . .

Now is the time for simulation and quality, error-free designs.

3175 N.W. Aloclek Drive Hillsboro, OR 97124 USA
(503) 690-9881 • (503) 690-9891 fax

Our new function generator has all the bells and whistles.

In fact, it has any kind of waveform you can imagine. Because the Model 95 combines a high performance function generator with a powerful arbitrary generator.

As a function generator, Model 95 produces remarkably pure square waves, triangles and sines, from 1 mHz to 20 MHz with synthesized accuracy up to 0.001%. It has
the power to output $15 \mathrm{Vp}-\mathrm{p}$ into 50Ω, and includes sweep, pulse and modulation modes plus four user-selectable output impedances. There's even an internal trigger generator for trigger, gate and burst.

If you'd rather be arbitrary, Model 95 gives you up to 128 k of waveform memory to work with, and a sample rate of 20 MHz . Four different editing
modes help you produce even the most complicated wave shapes quickly and accurately, while analog and digital filters allow you to create the purest output possible.

For information about all the other bells and whistles you'll find on the Model 95, call Wavetek San Diego, Toll Free at 1-800-874-4835 today.

Our new pulse generators will test what you have.

That's a big statement. But these are powerful new programmable pulse generators. Combined, they deliver top speed, high resolution and pulse-parameter flexibility. So you get accurate testing of your present and future highspeed designs, whether they're ICs, PCBs, or components.

Put the new 500 MHz HP 8131A to work on your hot-

HP 8130A Pulse Generator

HP 8131A Pulse Generator
test new devices. With a transition time of $<200 \mathrm{ps}$, plus pulse widths down to 500 ps with 10 ps timing resolution, you get the stimulus you've needed for accurate testing of your fastest designs.
For the most complete testing of your high-speed devices, choose the new HP 8130A. It has the features you've wanted in a 300 MHz pulse generator,

And what you have in mind.

© 1990 Hewlett-Packard Co. TMBID957A/ED
including variable transition times down to 1 ns , and 10 ps timing resolution. Which means you not only have the flexibility for high-speed parametric testing of digital devices, but for analog device testing as well.
So call 1-800-752-0900 today. Ask for Ext. 217X to get data sheets and application information. Then get the program-
mable pulse generators you need for the fast devices you have in hand and mind.

There is a better way.

(ip)
 HEWLETT PACKARD

technology 37 ELECTRONICA HIGHLIGHTS COMPONENTS, ASSEMBLIES
ANALYSIS With more exhibitors from Asia, Eastern Europe, and the U.S., the huge Mu-nich-based show is truly international.

electronic 43 MIXED-SIGNAL SIMULATORS ABOUND
 DESIGN REPORT Today's mixed analog-digital simulators handle jobs from de and fast logic to microwaves.

cover: 57 LOGIC ANALYZERS
 PRODUCT REPORT
 Designers who once shunned the logic analyzer now find instruments that are more capable and easier to use.

pronuet repprit 65 Three New analyzers Sport Improved Features
Tektronix's new $100-\mathrm{MHz}$ logic analyzer card boasts deeper memory (p. 65), Fluke-Philips' easy-to-use analyzers eliminate dual probing (p. 66), and Hew-lett-Packard's $100-\mathrm{MHz}$ analyzer card improves its interfaces (p .68).

desien 71 Models Can Mimic behavior 0f Real Op amps
 APPLICATIONS By taking into account such effects as output limiting and asymmetrical slew rates, Spice macromodels perform as actual op amps.
 proouct 101 SOLID-STATE SENSOR SWITCHES SAVE LIVES AND EqUIPMENT
 INNOVATIONS Temperature and current-sensing ICs will go in products for the home, office, and factory.

106 Highly Integrated RISC CPU PackS I/0 AND CACHE
Aimed at embedded control systems, a Mips CPU chip takes on demanding tasks.
113 PROCESS-INDEPENDENT IC TOOLS AID TOP-DOWN DESIGN
A device-level compactor is the key to fast and easy migration of digital ICs to alternate process technologies.

14 EDITORIAL

16 TECHNOLOGY BRIEFING

Mixed-signal simulation is proven

23 TECHNOLOGY NEWSLETTER

- TI CASE tools aim at multiple platforms
- Emulate LaserJet in hardware and software.
- Small disk drives pack intelligent cache
- Technology centers ease design access
- Dual $18-\mathrm{bit} 96-\mathrm{kHz}$ ADC runs off

5 -V rail

- NewWave grows with integrator, E-mail, fax
- Digital I/O card cuts cost, raises
reliability
- Undervoltage sensors reset microprocessors

30 TECHNOLOGY ADVANCES

- 32-bit VMEbus board with two DSP ICs delivers 30 MFLOPS
- Integrated 80386SL simplifies laptop systems, trims power demands
- Trio of revamped Macintoshes trim costs, offer new options

Certificate of Merit Winner, 1988 Jesse H. Neal Editorial Achievement Awards

81 QUICK LOOK

- Controlling creeping features in product definition
- Handling IRAs when you change jobs
- Venture capitalists look at early stage companies, not early stage products.
- More designers are working with 32-bit microprocessors
- What do you think about the education that young engineers are receiving these days?

87 PEASE PORRIDGE

What's all this neatness stuff, anyhow?

91 IDEAS FOR DESIGN

- Amp stabilizes with bridge oscillator
- Disconnect unstable communications channel
- Obtain optimum Zener current

NEW PRODUCTS

117 Digital ICs
Communications-targeted DSP chips deliver top throughput

119 Instruments

121 Software

123 Power

Build 5-V-in., $100 \mathrm{~mA}, \pm 15$-V-out converters on your pc boards

127 Computer Boards

146 INDEX OF ADVERTISERS

151 READER SERVICE CARD

122A EXECUTIVES ON THE 60

Best-selling businessman/author Harvey Mackey shows executives how to succeed. Also: A peek at Manhattan's small luxury hotels, where every guest is a VIP.

COMITIG NTM ISSUIF

- Latest in desktop and laptop PCs: A preview of the upcoming Comdex show
- First details on a new RISC embedded controller IC
- Wescon 90: What's new in CAE, test and measurement, and components
- Delving into the fine points of dataconverter dynamic specs
- Achieving precision in linear ASIC devices
- LAN controller tackles real-timed embedded applications
- A new breed of high-density GaAs gate arrays
- A new family of pulse generators
with high-accuracy outputs
- Plus regular features:

Ideas for Design
Pease Porridge
Quick Look
Technology Advances

ELECTRONIC DESIGN (USPS 172-080; ISSN 0013-4872) is published semi monthly by Penton Publishing Inc., 1100 Superior Ave., Cleveland, OH 44114. Paid rates for a one year subscription are as follows: $\$ 75$ U.S., $\$ 140$ Canada, $\$ 230$ International. Second-class postage paid at Cleveland, OH, and additional mailing offices. Editorial and advertising addresses: ELECTRONIC DESIGN, 611 Route \#46 West, Hasbrouck Heights, NJ 07604. Telephone (201) 393-6060. Facsimile (201) 393-0204.

Printed in U.S.A. Title registered in U.S. Patent Office. Copyright © 1990 by Penton Publishing Inc. All rights reserved. The contents of this publication may not be reproduced in whole or in part without the consent of the copyright owner.

Permission is granted to users registered with the Copyright Clearance Center Inc. (CCC) to photocopy any article, with tine exception of those for which separate copyright ownership is indicated on the first page of the article, provided that a base fee of $\$ 1$ per copy of the article plus $\$.50$ per page is paid directly to the CCC, 27 Congress St., Salem, MA 01970 (Code No. 0013-4872 $290 \$ 1.00+.50$). Copying done for other than personal or internal reference use without the express permission of Penton Publishing, Inc. is prohibited. Requests for special permission or bulk orders should be addressed to the editor.

For subscriber change of address and subscription inquiries, call (216) 696-7000.
POSTMASTER: Please send change of address to electronic design, Penton Publishing Inc., 1100 Superior Ave., Cleveland, OH 44114.

ASSURED MIGRATION TO 16-BIT ARCHITECTURE. THE TRUE TEST OFA DESIGN THAT FLIES.

Moving up from 8 to 16-bit? With Motorola's new 68 HC 16 , there's no need to venture to parts unknown, where your architecture and software base become extinct.

Now you can rise to power with the world's only 16-bit microcontroller that features full upward source code compatibility with Motorola's huge 8-bit portfolio.

IF YOU'RE HEADED FOR HIGH PERFORMANCE, YOU'RE ON THE RIGHT PATH.

The 68 HC 16 not only makes upward migration easier than ever. It also sends 16-bit performance soaring into a whole new realm. This incredible device averages over eight times faster than the fastest member of our HC11 Family. And its powerful controloriented DSP instructions push the limits of 16-bit performance.

OUR 68HC16 TAKES YOU IN THE RIGHT DIRECTION.
 With our 68HC16 Family's modular design, your flight to the future is fast. And

efficient. The HC16 can use any intermodule bus peripheral from our rapidly expanding 68300 Family.

So the 68HC16 Family can grow quickly to meet your needs.
And when you're ready to take the next step up, you can apply your HC16 knowledge directly toward your 32-bit migration.
The 68 HC 16 . Yet another addition to the ever-expanding families of Motorola microcontrollers that make one thing very clear.

For well-planned migration to high performance, travel with the leader. Motorola.

To receive a Technical Product Preview for the 68 HC 16 , plus more news to come on our high performance migration path, please complete and return this coupon to:
Motorola, Inc.
P.O. Box 1466

Austin, Texas 78767
ED10/25/90
Name
Company
Title
Address
City
State \qquad Zip \qquad Phone

THE PATHWAY TO PERFORMANCE.

(c) 1990 Motorola, Inc

UNIVERSAL INPUT IS NOT THE ONLY ENTREE, IT'S THE BEGINNING. And the whole menu are:

* 85 - 264 VAC universal input
* 30W/40W/65W output power
* Single to quad outputs
* Very compact footprints:
$3^{\prime \prime} \times 5^{\prime \prime} \times 1.5^{\prime \prime}$ (40W) $3.5^{\prime \prime} \times 6^{\prime \prime} \times 1.77^{\prime \prime}(65 \mathrm{~W})$ $2.76^{\prime \prime} \times 5.12^{\prime \prime} \times 1.5^{\prime \prime}(30 \mathrm{~W})$

Wescon $/$ (20
Nov 13-15 Anaheim, CA Booth \# 1698

* Superb price/performance ratio
* UL/CSA/TUV approvals in process
* Years of expertise in OEMs, distributors, and private labels.
* Also welcome inquiries on other product lineups:

OEM Switchers (20 to 300 W)
International Series Linears (6 to 112W)
AC-DC Power Modules (15 \& 25W)
PC Power Supplies (150 to 375W)
DC-DC Converters (0.5 to 45W)

() Fornizn/saurcie

Call: 1-800-821-9771
ATTN: MONICA/JENNIFER

CIRCLE 84

ELETROMICDESTM

Editor-in-Chief: Stephen E. Scrupski
Executive Editor: Roger Allan
Managing Editor: Bob Milne
Senior Editors: Frank Goodenough, Milt Leonard, John Novellino

Technology Editors:
Analog \& Power: Frank Goodenough Communications \& Industrial: Milt Leonard (San Jose) Components \& Packaging: David Maliniak Computer-Aided Engineering: Lisa Maliniak
Computer Systems: Richard Nass Semiconductors: Dave Bursky (San Jose) Test \& Measurement: John Novellino

News Editor: Sherrie Van Tyle
New Products Editor: Susan Nordyk
Field Bureaus:
West Coast Executive Editor:
Dave Bursky (San Jose)
Boston: Lawrence Curran
Dallas: Jon Campbell
Frankfurt: John Gosch
London: Peter Fletcher
Chief Copy Editor: Roger Engelke, Jr.
Editorial Production Manager: Lisa Iarkowski

Administrative Assistant: Janis Kunkel Editorial Support Supervisor: Mary James Editorial Assistant: Ann Kunzweiler Editorial Secretary: Bradie Guerrero

Editorial Offices: (201) 393-6272
Advertising Production:
(201) 393-6093 or FAX (201) 393-0410

Production Manager: Michael McCabe Production Assistants:
Donna Marie Bright, Doris Carter, Eileen Slavinsky

Circulation Manager: Elaine Brown
Subscription Inquiries:
Mary Lou Allerton (216) 696-7000
Promotion Manager: Clifford Meth
Reprints: Helen Ryan (201) 423-3600

Group Art Director: Peter K. Jeziorski
Computer Systems Administrator: Anne Gilio Turtoro

Published by Penton Publishing Vice President-Editorial: Perry Pascarella Group Editorial Director: Leland Teschler

Publisher: Paul C. Mazzacano

40 MHz

New PACEMIPS Components - Less Space, Lower Cost

First Again from the Production Leader in MIPS Architecture

Now design your single-board RISC computer with three NEW Performance components: CPU/FPA R3400, PACEWRAP", \& BiCameral SCRAM.'

PACEMIPS" R3400

CPU/FPA in a CPU Socket

- $40 / 33 / 25 \mathrm{MHz}$ operation
- Only 1.2 clock cycles/instruction
- Up to 33 MIPS and 11.6 MFLOPS
- 172 lead flat pack/144-pin PGA
- Full R3000A/R3010A functionality

PACEWRAP R3100

- Replaces four R3020s and up to 24 other chips
- Eight-word-deep Write Buffer - with readback
- Programmable Read Buffer - to 32 words and matches refill
- Parity generation - allows use of main memory without parity
- Bus snooping support

BiCameral SCRAM Logic Diagram

BICAMERAL SCRAM

- Dual $8 \mathrm{~K} \times 15$ or dual $8 \mathrm{~K} \times 16$ high-speed SCRAMs
- Instruction and data cache on one chip
- On-Chip address latches
- Four BiCameral SCRAMs replace $168 \mathrm{~K} \times 8$ SRAMs \& 4 latches
- Available for up to 40 MHz CPU operation in early 1991

For more information or to order, call or write Performance Semiconductor, the Leading Volume and Speed Supplier of MIPS RISC components.
610 E. Weddell Drive, Sunnyvale, Ca 94089 Telephone: (408) 734-9000

No other chip supplier knows its way around networks like Advanced Micro Devices: Backbones, LANs, WANs, you name it.

Just ask our chipset development partners at HP* and SynOptics.'

AMD is a major, major maker of 10BASET transceivers. We sell the most cost-effective solution. Our silicon is CMOS, so we'll save you energy as well as time. And you can trust that we're compliant. (We helped write the standard.)

Are you starting development soon? How about now? Call (800) 222-9323.

Advanced Micro Devices 71

901 Thompson Place, P.O. Box 3453, Sunnyvale, CA 94088.

IN 1990, WERE FINA JOE, BOB, BEN AND FRAN

Nowadays it's called "Concurrent Engineering". Back then it was simply the way the job got done. A small group of people in constant communication. From flowchart changes to thermal problems. From concept to manufacturing.

Did it work? You bet. It gave us things we now use every day. Like
television. Radio. And computers.
But time passed, the technology got more complex, and the people became departments. "Over the wall" engineering carried the day. Unfortunately, a lot was lost in the process. Projects began to control people, instead of people controlling projects.

Now there's a way to regain the human dimension that makes concurrent engineering such a powerful competitive weapon. It's called the Concurrent Design Environment.'"

No matter how many engineers, no matter how complex the technology, no matter how many design disciplines involved, the Concurrent

LLY BACK TO WHAT K WERE DOING IN 1963.

Design Environment binds your engineering force into a highly interactive team. Its Falcon Framework ${ }^{\text {™ }}$ combines state of the art design tools with unprecedented engineering management capacity. For virtually all electronics technologies and engineering disciplines. With tools from any source, includ-
ing third party and in-house.
So let us show you how to turn back the clock by moving your engineering forward. For a free videotape about the Concurrent Design Environment, call 1-800-547-7390.

Changing The Way The World Designs. Together.

LCD Proto Kit

Everything you need to start your LCD application create complex screens in just a few hours!

Kit also includes:

(\$595 pre-assembled \& tested)
*The CY325 40-pin CMOS LCD Controller IC is available from stock @ $\$ 75 /$ singles, \$20/1000s (Surface mount also avail in qty.)

CyberneticMicroSystems

(1)

Box 3000 - San Gregorio CA 94074 Tel: 415-726-3000 • Fax: 415-726-3003

SH0WTIME

Summer once again has come and gone, and we find ourselves in the midst of autumn. But just as autumn once meant back to serious schoolwork and studies, for us it means we've come to the serious time of year for the electronics business: the industry trade show season. Buscon East was held a couple of weeks ago in Marlborough, Mass. (see the preview in our previous issue). In this issue, we preview Electronica, the giant international show held biennially in Munich (this year, from Nov. 6 to 10), and in the next issue, we'll look at both Comdex (Las Vegas, Nov. 13-17) and Wescon (Anaheim, Calif., November 13-15).
Of these, Wescon deserves some special comment this year (as well as a small commercial at the end of this piece). It's certainly the oldest of the group, and, like Electronica, it spreads its wings over the entire electronics industry (although Electronica is much larger), while the other fall shows are more specialized. As a show, Wescon certainly has seen better years in attendance and in numbers of exhibitors. In years past, it was the premier show on the West Coast. What still brings us back to Wescon year after year is the wide mix of technologies and new products that can be found each year on the exhibits floor. Plus there's the steadfast belief that the show still is important to the electronics industry as a whole. In recent years, for example, it has attracted a growing number of exhibitors offering PC-based CAE tools, as well as exhibitors from the Far East, Europe, and Canada.
Ah yes, the commercial. If you plan to attend Wescon next month, be sure to set aside some time to attend "CAE Day," an all-day track of technical sessions on CAE. The three sessions, which will be jointly sponsored by Electronic Design Automation Companies (EDAC) and Electronic Design, will kick off with a panel of experts from EDAC member companies discussing EDA directions in the 1990s. That will be followed by a session on VHDL chaired by Electronic Design CAE Editor Lisa Maliniak. The day concludes with a panel session, moderated by myself, discussing the shifting priceperformance crossover point between PC-based CAE and workstations.

Stephen E. Scrupski Editor-in-Chief

CIRCLE 117

transformers

$3 \mathrm{KHz}-800 \mathrm{MHz}$ over 50 off-the-shelf models from ${ }^{\$ 295}$

Choose impedance ratios from $1: 1$ up to $36: 1$, connector or pin versions (plastic or metal case built to meet MIL-T-21038 and MIL-T-55631 requirements*). Fast risetime and low droop for pulse applications; up to 1000 M ohms (insulation resistance) and up to 1000 V (dielectric withstanding voltage). Available for immediate delivery with one-year guarantee.

Call or write for 64 -page catalog
units are not QPL listed
finding new ways
setting higher standards

Fax (718) 332-4661 Domestic and International Telexes: 6852844 or 620156

Hardware

* NAT4882 Controller chip - 100\% IEEE-488.2 compatibility - Optimized GPIB functionality
- NEC μ PD7210 and TI 9914A compatibility
- Bus line monitoring
* Turbo488 performance chip
- 1 Mbytes/sec data rates
- FIFO buffers
- Last-byte handling
- Byte/word packing
\star SCSI, serial, parallel Converters
\star Full-function Analyzer
\star Data Buffer (900 kbytes/sec)
* Extenders and Expander
\star FCC certified
Software
\star High-speed IEEE-488.2 routines
FindLstn(0, addrlist, fndlist, 5);
\star Industry-standard NI-488 ${ }^{\text {e functions }}$ ibwrt (scope, "curve?", 6);
\star HP-style commands PRINT \#1,"OUTPUT 1;F1S2"
* Use any popular language
\star Windows 3.0 support
\star Interactive development and configuration utilities

Call for FREE Catalog (512) 794-0100
(800) IEEE-488 (U.S. and Canada)

MixedSignal Simulation Is Proven

P
racticality is obviously a key factor when examining all of the elements in a particular emerging technology. And, when writing a report, such as the one in this issue on mixed-signal CAE (see "Mixed-Signal Simulators Abound, " p. 43), it's my aim to bring you up to date on a technology that's either practical now or soon will be. However, it's easy to succumb to the spell of a technology that has promise, yet isn't totally practical. After many false starts, mixed-signal simulation might appear to be dangerously close to this category. But, stemming from the events at the recent Bipolar Circuits and Technology Meeting (BCTM) in Minneapolis, it seems that mixed-signal simulation has ar-
 rived as a bona fide, practical design tool.

At the BCTM evening panel session, six teams, employing tools from eight CAE companies, proved hands-down that a 12 -bit successive-approximation IC analog-to-digital converter (ADC) could be simulated successfully beyond the transistor level. Moreover, the simulation techniques that were demonstrated included finding and fixing serious bugs.
The six teams (and their tools) were Analogy with Saber, Cadence with Analog Artist-Verilog, EES/Mentor with Precise-LSIM, Intergraph with ISIMse, Meta-Software/Mentor with HSpice-LSIM, and Viewlogic/Microsim with PSpice-Viewsim. Four of the six employed Sparc workstations; Intergraph engineers used their Clipper-based Interpro and Meta-Software employed the Apollo DN4500. Meta-Software also made a few runs with the DN4500 for LSIM, while a more powerful Apollo DN10000 handled HSpice.

Before the meeting, session moderator John Shier of VTC, Bloomington, Minn., gave the teams transistor-level schematics of the ADC and Spice models of its transistors (for an earlier article on these tests, see ELECTRONIC DESIGN, July 26, p. 16; for more information, call VTC's Jan Jopke at (612) 934-5082). Results from all of the teams were consistent. According to Shier, ADC conversion times were expected to run between 100 and 250 ns , and the results ran from 90 to 260 ns . Simulation times, depending on the platform and the level of modeling, ranged from less than a minute to about two hours.

What came through loud and clear is that all of these mixed-signal tools are hierarchical, making possible top-down and bottom-up design. A mix of both approaches was used by each team. However, all of the teams made it mandatory that individual behavioral circuit-blocks, whether analog or digital, must be simulated at the primitive (transistor-resistor-capacitor) level at some time prior to, or during, the design process.
The bottom-up approach, for example, was used by Intergraph. They captured the primitive schematic and simulated the individual blocks. Then behavioral models were developed-particularly for the successive approximation register (SAR)-simulated, and the results of the simulations compared.

Analogy started at the top, capturing the block diagram of the ADC in their behavioral language, and simulating to prove functionality. Then each block was broken down in more and more detail until the primitive level was reached. Simulation time ran 20 seconds pure-behavioral, 75 minutes pureprimitive (510 transistors), and 2 minutes in a hybrid mode with 50 transistors. In the hybrid simulation, the DAC's switches were a mix of primitive and a digital-switch model, and the SAR, D-latch, and clocks were pure digital behavioral-models. Indicative of compute power, the pure-primitive HSpiceLSim that ran on the two Apollos took less than two minutes.

For some designs, these tools may never replace breadboards or transis-tor-level simulations. However, the tools' ability to quickly simulate complex mixed-signal circuits, hundreds or even thousands of times, enables you to optimize such circuits and play "what if" games early on.

SMC: Above the rest.

Climbing takes skill, experience and teamwork. Reaching the top also takes leadership, forward thinking and focus. Since 1971, Standard Microsystems has applied this philosophy to the design and manufacture of standard and semi-custom integrated circuits.

Today, SMC's engineering expertise and extensive SuperCell ${ }^{\text {TM }}$ library, allows us to offer innovative and timely solutions to your unique application needs. Our portfolio focuses on networking and mass storage controller devices for the computer industry.

The next time you face a networking or mass storage challenge, call SMC. Discover how our cost-effective and technically superior products can help you climb ahead of your competition.

STANDARD MICROSYSTEMS CORPORATION
 COMPONENT
 COMPONENT

The Standard for LAN and Mass Storage ICs.

[^0]

lowpass, highpass, bandpass, narrowband IF

- less than 1 dB insertion loss - greater than 40 dB stopband rejection
- 5-section, 30dB/octave rolloff • VSWR less than 1.7 (typ) • meets MIL-STD-202 tests
- rugged hermetically-sealed pin models - BNC, Type N; SMA available
- surface-mount - over 100 off-the-shelf models • immediate delivery
low pass dc to 1200 MHz

MODEL No.	PASSBAND, MHz (loss <1dB) Min.	fco, MHz (loss 3db) Nom.	STOP BAND, MHz (loss $>20 \mathrm{~dB}$) (loss $>40 \mathrm{~dB}$)			VSWR pass-- stop- band band typ. typ.		$\begin{gathered} \text { PRICE } \\ \$ \$ \\ \text { Oty. } \\ (1-9) \\ \hline \end{gathered}$
			Max.	Max.	Min.			
PLP-10.7	DC-11	14	19	24	200	1.7	18	11.45
PLP-21.4	DC-22	24.5	32	41	200	1.7	18	11.45
PLP-30	DC-32	35	47	61	200	1.7	18	11.45
PLP-50	DC-48	55	70	90	200	1.7	18	11.45
PLP-70	DC-60	67	90	117	300	1.7	18	11.45
PLP-100	DC-98	108	146	189	400	1.7	18	11.45
PLP-150	DC-140	155	210	300	600	1.7	18	11.45
PLP-200	DC-190	210	290	390	800	1.7	18	11.45
PLP-250	DC-225	250	320	400	1200	1.7	18	11.45
PLP-300	DC-270	297	410	550	1200	1.7	18	11.45
PLP-450	DC-400	440	580	750	1800	1.7	18	11.45
PLP-550	DC-520	570	750	920	2000	1.7	18	11.45
PLP-600	DC-580	640	840	1120	2000	1.7	18	11.45
PLP-750	DC-700	770	1000	1300	2000	1.7	18	11.45
PLP-800	DC-720	800	1080	1400	2000	1.7	18	11.45
PLP-850	DC-780	850	1100	1400	2000	1.7	18	11.45
PLP-1000	DC-900	990	1340	1750	2000	1.7	18	11.45
PLP-1200	DC-1000	1200	1620	2100	2500	1.7	18	11.45

high pass dc to 2500 MHz

MODEL	$\underset{\text { (loss }<1 \mathrm{~dB} \text {) }}{\text { PASSBAND }}$		foo, MHz (loss 3db) Nom.	STOP BAND, MHz (loss $>20 \mathrm{~dB}$) (loss $>40 \mathrm{~dB}$)		vswr		$\begin{gathered} \text { PRICE } \\ \mathbf{\$} \\ \text { Oty. } \\ (1-9) \end{gathered}$
	Min.	Min.		Min.	Min.	typ.	typ.	
PHP-50	41	200	37	26	20	1.5	17	14.95
PHP-100	90	400	82	55	40	1.5	17	14.95
PHP-150	133	600	120	95	70	1.8	17	14.95
PHP-175	160	800	140	105	70	1.5	17	14.95
PHP-200	185	800	164	116	90	1.6	17	14.95
PHP-250	225	1200	205	150	100	1.3	17	14.95
PHP-300	290	1200	245	190	145	1.7	17	14.95
PHP-400	395	1600	360	290	210	1.7	17	14.95
PHP-500	500	1600	454	365	280	1.9	17	14.95
PHP-600	600	1600	545	440	350	2.0	17	14.95
PHP-700	700	1800	640	520	400	1.6	17	14.95
PHP-800	780	2000	710	570	445	2.1	17	14.95
PHP-900	910	2100	820	660	520	1.8	17	14.95
PHP-1000	1000	2200	900	720	550	1.9	17	14.95

bandpass 20 to $\mathbf{7 0 M H z}$

A true leader

DECration 5000:200
14FWhFprpan

The UNIX based DECstation ${ }^{\text {TM }} 5000$ Workstation

leads by example.

Example \#1: Performance

No matter how you measure it, Digital's DECstation 5000 workstation leads all others in performance. Whether it's raw CPU performance, 2D or 3D graphics speed, or price/performance, the DECstation 5000 workstation comes out ahead. In fact, for overall performance, nothing else is close. And we've got the numbers to prove it.

PERFORMANCE COMPARISON CHART (1)	SUN SPARCstation 1+	IBM $320 / 520$	DECstation 5000 cx
 Windowing (2)	0.24	0.71	1.59
Integer	$1.04(3)$	1.34	1.61
Floating Point	$1.10(3)$	2.6	1.7
Overall Performance	0.65	1.35	1.63

(1) All data normalized to DECstation 3100 . Comparable configurations tested. Geometric mean used to combine results. Performance will vary depending on applications and environment. (2) Graphics and windowing data measured using X11perf benchmark. CPU Integer and Floating Point performance measured from running SPEC V1.0 workload. (3) SPEC performance estimate based on SUN $4 / 330$ results published by Sun Microsystems, Inc.

UNIX based applications, including the industry's most popular MCAD and EDA applications.
Example \#3: PowerFrame ${ }^{\text {TM }}$ for Design Integration.

With Digital's PowerFrame design framework, you can easily integrate the DECstation 5000 workstation with your existing UNIX based EDA and MCAD systems. PowerFrame is the most widely

Example \#2:

UNIX based Applications
When you run with the leader, you know you're in good company. The DECstation 5000 workstation runs more than 1,500
used framework for heterogeneous design management.

And, of course, as the leader in integrated multi-vendor
networked computing, you can count on Digital for full service and support. We can help you design, implement and maintain an engineering computing strategy that capitalizes on today's technol-

ogy, while keeping your options open for the future.

For your copy of benchmark test results and a list of available applications, call 1-800-343-4040, ext. 970. These are filled with examples of what you expect from a leader.

High_Speed Amplifiers

- 10,000 V/us Slew Rate
- 1 Amp Output (1.5 A Pulse)
$- \pm 5$ to ± 15 Supply
- 70 MHz Full Power Bandwidth
- Up To 15 Watts Dissipation

APPLICATIONS

LASER DIODE DRIVERS
SONAR TRANSDUCER DRIVERS PIN DRIVER

To Place An Order Call 602-742-8601

For Applications Assistance Call 1-800-421-1865

dedicated to excellence
APEX MICROTECHNOLOGY CORPORATION

LASER DIODE DRIVERS
VIDEO AMPLIFIERS WAVEFORM GENERATIORS

TECHNOLOGY NEWSLETTER

 As the software backlog grows, so does the demand for computer-aided software engineering (CASE) tools. To tap this rich vein-estimated to hit $\$ 8$ bilrun under Digital starting early next year. Later in 1991, developers will be able to write for the Tandem Computers Inc. NonStop environment. With TI's case tools, which the company calls the Information Engineering Facility (IEF), applications can be written for many platforms from the same specification. A developer chooses from a menu of languages, operating systems, and database management systems. Then the IEF's construction tools generate the appropriate source code, data structures, and screens. SVT
Emulate Laserjet In HaRDWARE AND SOFTWARE

 The first complete hardware and software emulation of HP's LaserJet III/ PCL 5 is now available. Printer-control language (PCL) 5, an extension of PCL4, is the newest page-description language (PDL) that controls the functions of the LaserJet III. Previously, OEMs could get either the hardware or software emulations from a supplier. Now they can get LaserAct 5 from Destiny Technology Corp., Milpitas, Calif. It's a complete solution that incorporates all of the LaserJet III functionality and adds such features as PostScript capability and on-the-fly scaling of resident or downloadable fonts from 0.25 - to 999.75 -point size. Its powerful image modeling can accomplish overlay-image combinations in transparent or opaque modes to create special effects, such as shadows and reverse-image printing. Destiny has also come up with a software architecture for the language. The architecture breaks the language down into four modules, each supplying a relationship to a different area: orientation, image modeling, coordinate translation, and network interfacing. Destiny will supply the software as well as the ASICs to OEMs. $R N$Small Disk Drives Pack Intelligent Cache

By simultaneously developing a disk-drive controller chip set and the drive itself, a pair of 2.5 -in.-diameter drives offer designers formatted capacities of 31.5 or 62.9 Mbytes. From Western Digital Corp., Irvine, Calif., the AT-compatible drives include an intelligent caching scheme called CacheFlow. The scheme improves system performance by using a multisegmented adaptive cache algorithm that evaluates the way data is requested by the system, and then adapts automatically to the optimum caching mode (such as sequential or repetitive). The drives offer six modes for power management-read-write, seek, idle, standby, sleep, and shut-down. They work with the company's WD7600LP motherboard logic chip set, which is optimized for low-power laptop, notebook computers. The drives are also the lowest-weight units yet released. The WDAB130, with its 31.5 Mbytes of storage and $19-\mathrm{ms}$ access time, weighs in at just 144 grams and is just $0.6-\mathrm{in}$. high. The WDAH260 packs double the storage, has the same access time, and weighs in at 160 grams due to its second platter. The extra platter also increases the drive's height to 0.75 in . Evaluation units sell for $\$ 325$ and $\$ 495$, respectively. Contact Bob Blair at (714) 932-7834. DB

Abstract

Technology Centers Ease Design Access Following the path of several other companies in an effort to offer customers easier access to ASIC, SCSI, and PC design expertise, NCR Corp., Dayton, Ohio, is assembling a worldwide network of Regional Technology Centers. The RTCs will be set up at strategic locations around the U.S., as well as in other parts of the world. The centers will provide extensive technical support, and will offer design resources for NCR customers developing application-specific ICs as well as other products, such as SCSI-based host adapters. The first center is based in San Jose, Calif., and includes private work areas with Apollo, Sun, and 486 -based workstations. The workstations run software from Mentor, Cadence, and Viewlogic for customers that don't have their own in-house design capability. Also available will be various logic analyzers, scopes, and PC platforms for easier software and hardware debugging. Five additional centers are slated to open before the end of 1990. They'll be located in Orange County, Calif; Boston, Mass.; Dallas, Texas; Munich, Germany; and Taipei, Taiwan. Each RTC will be linked to all of NCR's other facilities through a wide-area computer network. $D B$

Dual 18 -Bit $96-\mathrm{KHz}$ ADC Runs 0ff 5-V Rail

 Hailing from a newcomer to the ADC field, a novel dual IC meant for digitalaudio applications may fill the need for 12 -to- 18 -bit sampling ADCs. The AT76C120, from Atmel, San Jose, Calif., is the first of the genre to run off a single $5-\mathrm{V}$ supply, and it costs just $\$ 25$ each in 1000 s. If two converters are required, the cost drops to $\$ 12.50$ each for an ADC that offers a typical signal-to-noise ratio of 90 dB (approximately 15 bits) while sampling at 96 kHz . Moreover, a reference isn't required (it's on-chip), and both ADCs on the chip sample simultaneously. Differential linearity is ± 1 LSB at 18 bits (no-missing-code performance). Atmel brings their expertise in EEPROMs to the AT76C120. The chip contains two successive-approximation ADCs. Each combines binary-weighted poly-silicon-oxide-polysilicon capacitor arrays for the MSBs, with polysilicon resistor strings forming the LSBs. The switched-capacitor arrays provide the inherent sampling needed to capture signals to 44 kHz . At the completion of each conversion, a digital correction for tap-weight errors (in the capacitor arrays) modifies the two serial output words. The correction factor is determined during factory testing and stored in the on-chip EEPROM. Call Jeff Katz, (408) 4410311. $F G$CIRCLE 349
With the arrival of three new software products, Hewlett-Packard Corp.'s (Palo Alto, Calif.) suite of NewWave tools now numbers twenty. One prod, called AdvanceLink, enables PC users to integrate micone cations with a workstation. The tool automates repetitive tasks, such as logging onto the host or transferring data, by creating a command file that's invoked with a simple sequence of keystrokes or by using a mouse. AdvanceLink also supports Microsoft's DDE (dynamic data exchange) protocol, making it possible for further integration with other PC applications. And it supplies emulation of HP 2392 and 700/94 terminals, allowing users to access applications running on HP 3000 or 9000 systems in line or block mode. AdvanceLink should be available by year's end for $\$ 299$. The second product is NewWave Mail, an electronic-mail tool that lets users send messages, video objects, and other data types to other users. It's available now for $\$ 195$. Finally, with OfficeFax, NewWave Mail users can send other users facsimile messages directly from their computers. It costs $\$ 6000$ and is also available now. For more information, contact HP's customer information center at (800) 752-0900. $R N$

CIRCLE 350 Using a PC/AT interface card designed around a proprietary ASIC, users can get reduced cost per I/ 0 and improved reliability. The ZT 14CT72 from
 card can drive high-current peripherals, such as industrial I/O modules, with the help of the 16C48 48-point ASIC. In addition, it supplies a current sink of 12 mA . Each of the 14CT72's digital I/ O lines can be programmed individually as an input or an output, adding configuration flexibility for industrial applications. The digital I/O card also features open-collector outputs that don't glitch at power-up and power-down. Therefore, external devices aren't inadvertently triggered. The board, which takes up only one slot in the backplane, costs $\$ 5450$ and comes with the device-driver software. Large-volume discounts are available. For more information, call Phil Nash at (805) 541-0488. RN

CIRCLE 351

Undervoltage Sensors Reset Microprocessors

The MC34164-3 and MC33164-5 from Motorola, Phoenix, Ariz., can monitor the supply rails of 3 -and 5 -V microprocessors, respectively, and apply a reset pulse at power-on. Such a pulse is mandatory in MC68HC11-family microcontrollers and beneficial in many others. When the $3-\mathrm{V}$ rail rises between 2.55 and 2.8 V , the MC34164-3's output goes high; when the rail drops to that window, the output goes low. A minimum of 30 mV of hysteresis is supplied to prevent erratic operation. The 5 -V rail monitor's window is between 4.15 and 4.45 V , and the hysteresis is a minimum of 20 mV . Quiescent current of these chips is just $15 \mu \mathrm{~A}$ from a $3-\mathrm{V}$ rail, and $20 \mu \mathrm{~A}$ from a $5-\mathrm{V}$ rail. As a result, they lend themselves to battery-powered applications from automotive to medical to PCs. The MC34164-3 and MC33164-5 are for commercial-temperature-range operation; two siblings will handle industrial temperatures. All four come in plastic 3-pin TO-226AA (modified TO-92) and SO-8 packages. Pricing in quantities of 10,000 ranges from $\$ 0.43$ to $\$ 0.55$ each. (602) 8973615. FG

CIRCLE 352

HPandApollo proudly announce the birth of
 five new workstations.

the family.

tion system

aided engineering

Presentation spreadsheet

CASE configuration management

Mechanical CAD and manufacturing

Electronic design automation

You're ready for more powerful workstations. But you want them at a reasonable price. And you don't want to sacrifice your software investment to get them.
Hewlett-Packard has a better way.
The new Hewlett-Packard Apollo 9000 Series 400 workstations. Based on the latest Motorola technology, they give you astonishingly fast performance at a very low price. As well as the capability to handle over 3200 applications, the
broadest and best set of applications available.
At the entry level, there's the very powerful 400 dl with 12 MIPS for under $\$ 5,000$ * The 425 t with 20 MIPS and 3.5 MFLOPS is priced under $\$ 9,000$ * And, there's the affordable 433 s , with 26 MIPS and 4.5 MFLOPS for under $\$ 16,000$.

Our new VRX graphics options offer you excellent performance for 2D graphics with X Windows. Or add the unparalleled power of our advanced 3D graphics for the best rendering technology in the industry.

The affordable, compatible new generation of Hewlett-Packard Apollo workstations. Just the kind of innovation you'd expect from HP Apollo. For more information, call 1-800-752-0900, Ext. 1455.

There is a better way.

(1p)
 HEWLETT
 PACKARD

Heres one reason thatover half of all SCSI devices sold are NCR.

We created the market... and we still lead the way.

Here's another.

The NCR 53C700 SCSI I/O Processor... So good, Electronic Design named it the product of the year.

"You can't tell a good SCSI chip just by looking at it... " and according to Electronic Design, NCR's 53 C700 is the best there is.

The only third generation SCSI device on the market today, it concentrates all the functions of an intelligent SCSI adapter board on a single, smart and extremely fast, chip... for about 15% of the cost.

As the first SCSI I/O processor on a chip, the 53C700 allows your CPU to work at maximum speed while initiating I/O operations up to thousands of times faster than any non-intelligent host adapter. DMA controllers can burst data at speeds of up to $50 \mathrm{Mbytes} / \mathrm{s}$. This new chip cuts down system time hookup to a fraction of what it has been.

Those are just a few of the reasons Electronic Design's "Best of the
Digital IC's" award went to NCR's 53 C700 last year.

And now the NCR 53C710!

For the complete story on the NCR SCSI product line featuring the new 53C710, as well as the upcoming SCSI seminars with the NCR SCSI Development Team, please call:

1-800-334-5454

32-Bit VMEbus B0ard With Two DSP ICS DELIVERS 30 MFLOPS

With a pair of 32 -bit parallel buses for each of two Motorola DSP-96002 chips and for a shared VMEbus, a VMEbus board can offer multiprocessor systems more flexibility and processing power. Developed by Data β Ltd., Theale, Berkshire, the United Kingdom, the DBV96 board delivers sustained processing power of more than 30 MFLOPS, suiting it to real-time DSP, arrayprocessing, and math-acceleration applications in standard workstations and other systems. Up to eight boards can be connected in various topologies, including rings and cubes, with each board accessing up to 20 Mbytes/s.

Each DSP96002 has access to two expansion ports on nonshared parallel data buses, to common memory, and to the VMEbus for optimum configuration (see the figure). Robert Shaddock, Data β 's director, explains "In a radar or sonar application, a parallel connection might be the most efficient, while for graphics image processing, the boards would be connected in series as a pipeline." Because they operate independently, the two DSP96002s can be interconnected in series to form a single-board linear multiprocessor suitable for complex-number arithmetic.
One expansion port, a $24-$ bit peripheral bus, provides an interface to dataacquisition systems. It can be used for direct connection with analog-to-digital converter systems or video
boards. The other port supplies a high-speed 32-bit multimaster data and address facility to interconnect with other DBV96 boards. It's also used as an interface with a series of daughter modules that can be coupled to the user-defined pins on the DSP96002 to create interfaces with non-VMEbus bus systems.

Each processor has its own 256-kword fast SRAM array, accessed by a dedicated 32 -bit bus, for programming or scratchpad use. Each also contains its
own bootstrap EPROM for firmware and data libraries. Both processors have access to a 4 -Mword shared-memory array that combines static and dynamic RAM. Up to 16 Mbytes of common memory on the board are multiported between the two processors and the VMEbus. With access to the VMEbus, memory can be shared with processors on other boards in a system. As a result, each processor can address a full 4-Gbyte memory and the whole 32 bit memory space of the VMEbus as a master.

An assortment of software and development
tools are available from Data β. Cost of the board depends on configuration, ranging in price from $£ 5,000$ to $£ 12,000$. The DBV-96 will be marketed in Europe by Data Cell Ltd. In the U.S., it will be marketed by Areal Inc., Highland Park, N.J. Prices in the U.S. have yet to be set.

For more information, contact Data β Ltd., Unit 7, Chiltern Enterprise Centre, Theale, Berks RG7 4AA, United Kingdom, Telephone +44 (0)734 303631; or Data Cell Ltd., 10 West End Rd., Mortimer Common, Reading, Berks RG7 3SY, United Kingdom.

PETER FLETCHER

Integrated 80386SL Simplifies Laptop Systens, Trims Power Demands

Fulfilling their promise to merge the CPU chip with the basic support circuitry on a PC's motherboard, Intel Corp., Santa Clara, Calif., created a high-integration version of the 80386SX. The 80386SL includes the 386 core CPU, cache and memory control logic with an LIM EMS 4.0 memory manager, AT-bus control
circuits, a high-speed peripheral interface bus (with twice the standard AT speed), and flexible power-management capabilities. With special programmable features for cacheand other memory on the chip, system designers can create various configurations. Thus a range of system performance and price points is possible.

Unlike the recently unveiled 286 ZX from Advanced Micro Devices Inc., Austin, Texas, which includes many of the PC/AT motherboard functions, Intel decided to put all of the I/O and control functions into a second chip, the 82360 SL . This chip contains the programmable interrupt controllers, counter-timers, DMA con-

Break Through 7ns

 with BiCEMOS ${ }^{\text {"' }}$ ECL

Speed Leadership

Design tomorrow's fastest systems today. Our IDT10484 ($4 \mathrm{~K} \times 4$) will be the fastest high-density BiCMOS memory to run primary caches in ECL systems. At 7 ns , the IDT10494 ($16 \mathrm{~K} \times 4$) is the fastest BiCEMOS 64 K ECL SRAM available in volume production today.
In addition, we offer the densest BiCEMOS ECL RAM, the IDT10504 ($64 \mathrm{~K} \times 4$), at 12 ns . And our new 12 ns IDT10496RL ($16 \mathrm{~K} \times 4$) synchronous self-timed SRAM (STRAM)
offers registered inputs, latched outputs, and self-timed write for easier system design.
Each of our ECL SRAMs is available today in $10 \mathrm{~K}, 100 \mathrm{~K}$, and 101 K configurations in 300 mil SOJ and 400 mil Sidebraze DIP packages.

Technology for the '90s

We engineered BiCEMOS technology to offer the best of both worlds: the low power consumption of CMOS with the high speed of bipolar technology.

Count on our BiCEMOS ECL to take you through the 7 ns speed barrier for 64 K densities. We believe our BiCEMOS ECL will achieve speed increases of 20% a year every year for the next five years, making BiCEMOS the technology for the '90s.

Samples Available

Call or FAX us today for samples and a copy of the new BiCEMOS
ECL Product Information booklet with information on designing with BiCEMOS ECL for ultra-high-speed systems.

BiCEMOS ECL SRAM Family

Part No.	Description	Max. Speed $(\mathbf{n s})$	Typ. Power $(\mathbf{m W})$
IDT10484	$16 \mathrm{~K}(4 \mathrm{~K} \times 4) 10 \mathrm{~K} \mathrm{ECL}$	7	700
IDT100484	$16 \mathrm{~K}(4 \mathrm{~K} \times 4) 100 \mathrm{~K} \mathrm{ECL}$	7	500
IDT101484	$16 \mathrm{~K}(4 \mathrm{~K} \times 4) 101 \mathrm{~K} \mathrm{ECL}$	7	700
IDT10490	$64 \mathrm{~K}(64 \mathrm{~K} \times 1) 10 \mathrm{~K} \mathrm{ECL}$	8	420
IDT100490	$64 \mathrm{~K}(64 \mathrm{~K} \times 1) 100 \mathrm{~K} \mathrm{ECL}$	8	320
IDT101490	$64 \mathrm{~K}(64 \mathrm{~K} \times 1) 101 \mathrm{~K} \mathrm{ECL}$	820	
IDT10494	$64 \mathrm{~K}(16 \mathrm{~K} \times 4) 10 \mathrm{~K} \mathrm{ECL}$	8	700
IDT100494	$64 \mathrm{~K}(16 \mathrm{~K} \times 4) 100 \mathrm{~K} \mathrm{ECL}$	7	500
IDT101494	$64 \mathrm{~K}(16 \mathrm{~K} \times 4) 101 \mathrm{~K} \mathrm{ECL}$	7	700
IDT10496RL	$64 \mathrm{~K}(16 \mathrm{~K} \times 4) 10 \mathrm{~K} \mathrm{STRAM}$	7	1000
IDT100496RL	$64 \mathrm{~K}(16 \mathrm{~K} \times 4) 100 \mathrm{~K}$ STRAM	12	800
IDT101496RL	$64 \mathrm{~K}(16 \mathrm{~K} \times 4) 101 \mathrm{~K}$ STRAM	12	1000
IDT10504	$256 \mathrm{~K}(64 \mathrm{~K} \times 4) 10 \mathrm{~K} \mathrm{ECL}$	12	800
IDT100504	$256 \mathrm{~K}(64 \mathrm{~K} \times 4) 100 \mathrm{~K} \mathrm{ECL}$	12	600
IDT101504	$256 \mathrm{~K}(64 \mathrm{~K} \times 4) 101 \mathrm{~K}$ ECL	12	800

IDT Corporate Marketing P.O. Box 58015

3236 Scott Blvd.
Santa Clara, CA 95052-8015
(800) 345-7015

FAX: 408-492-8454

When cost-effective performance counts

Integrated Device Technolozy

BiCEMOS is a trademark of Integrated Device Technology, Inc.

TECHNOLOGY ADVANCES

trollers, a real-time clock, $24-\mathrm{mA}$ bus drivers, and a parallel and serial I/O port. Various power-managementfunctions are also incorporated. These include event recognizers that can trigger a systemmanagement interrupt, a programmable CPU clock generator, memory refresh logic to support slow DRAM refresh, and an IdeaPort interface. Together, the two chips, with their 1.1 million transistors, form a complete 386SX-type AT-bus motherboard minus the memory, math coprocessor, and such major peripheral controllers as keyboard, video, and mass-storage control.
The first version of the chip set is optimized for portable applications, such as notebook computers. It consumes much less power than other integrated solutions: Intel estimates that systems based on the SL chip set may double their battery life. To keep power low, a new interrupt scheme was created. The scheme is based on what Intel designers defined as a system management interrupt (SMI), which allows the system to perform many power-management tasks. Those tasks include suspend or resume operation, put peripherals into standby, control the CPU speed, and allow uninterruptible power-supply changeovers. There's also various other extensions users can define.

To minimize the CPU chip space in portable environments, the IC will be housed in a 227 -pad land-grid-array package. The package can be surface mounted and has no leads that can be damaged. The companion system support
chip comes in a 196-lead plastic quad-sided flat package; the CPU can also be had in a similar 196-lead PQFP.

As part of the system expansion capabilities, Intel defined a memory-card interface that's compatible with the Personal Computer Memory Card International Association and the Japan Electronic Industry Development Association (PCMCIA/JEIDA). With the standard68-pin connec-
tor, memory cards based on RAM, EPROM, flash EPROM, or any other technology can be connected to the system. The standard memory card measures 85.6 by 54 mm and is just $3.3-\mathrm{mm}$ thick. In that format, Intel plans to offer a 4Mbyte flash memory with a $250-\mathrm{ns}$ read-access time, and a 2 -second block erase (for 256 -kbyte blocks). A 1 Mbyte card will also be released.

A similar card format
has been adapted for a network interface. Though only in prototype form, the card promises to offer the same connectivity to notebook computers that fullsize adapter cards bring to desktop systems.

The 386SL CPU and 82360 I/O support chip will be sold separately. They go for $\$ 176$ and $\$ 45$, respectively, in 1000-unit lots. Contact Bruce Schechter (408) 765-5688.

DAVE BURSKY

Trio 0f Revamped Macintoshes Trim Costs, 0ffer New 0ptions

With the arrival of three recently unveiled Macintosh computers, sporting more feature-laden motherboards and sleeker cabinets, the minimum cost of the all-in-one original Macintosh as well as the modular Macintosh II family has been reduced. And designers at Apple Computer Inc., Cupertino, Calif., brought the prices down while improving performance.

The lowest-cost system is the sub- $\$ 1000$ Macintosh Classic, the only one that still retains the 9-in.-diagonal monochrome display and all-in-one cabinet (though slightly restylized). Based on an $8-\mathrm{MHz}$ 68000 , it delivers about 25% more performance than the Macintosh Plus. It includes 1 Mbyte of RAM (expandable to 4 Mbytes on the motherboard) and 512 kbytes of ROM to hold the basic operating system and device drivers. The system also has one SuperDrive, which can read and write to any $3.5-\mathrm{in}$. Macintosh, ProDos, or IBM-compatible DOS diskette.

Moreover, the cabinet can hold a second drive inter-nally-a 40 -Mbyte harddisk drive-which ups the price to $\$ 1499$, including a second megabyte of RAM. Built-in features include AppleTalk network interfaces, an Apple Desktop Bus interface, a SCSI port for peripheral expansion, a floppy-disk expansion port, and a four-voice sound generator that drives a sound-output port.

The Macintosh LC, Apple's lowest-cost color system at $\$ 2499$, has a limitedexpansion modular format. Based on a $16-\mathrm{MHz}$ 68020, it delivers about double the throughput of the MacintoshSE for about the same price. Support is also included for three monitor types-a new 12in. RGB unit with 256 -color, 512-by-384-pixel capability; a 12-in. monochrome monitor with 16 gray scales and 640-by-480-pixel resolution; and the already available 13-in. AppleColor 16-color monitor. An optional 512 -kbyte videoRAM module enables the system to display more
than 32,000 colors with the 12-in. RGB monitor.

The LC's low-profile cabinet is just 3-in. high and about $12-\mathrm{by}-15-\mathrm{in}$. on its sides. The box has all basic features of the Classic plus a sound-input port. The port digitizes microphone input signals for voice annotation of documents and electronic mail. A 40-Mbyte hard-disk drive is standard.

A unique LC option is an Apple IIe add-in card that allows most, if not all, of the thousands of IIe software packages to run on the Macintosh screen.
The IIsi swings in on the low end of the modular Mac II family, with its 4-in. high by 12.4 -by-14.9-in. cabinet. It sets a new low-cost option$\$ 3769$. Its single expansion slot can be configured as a NuBus-compatible slot or as a processor-direct slot via an adapter card. Based on a $20-\mathrm{MHz}$ 68030, it's about five times faster than the Macintosh SE. The IIsi comes standard with 2 Mbytes of RAM, a 40-Mbyte hard-disk drive, one SuperDrive, and all the I/O ports of the LC. A new release of Apple's A/UX Unix will be ready for the IIsi later this year.

DAVE BURSKY

Like you, Woody Newman will go to any length to become a better designer. This time he went into another dimension.

Woody Newman has vanished into to get a better look at his designs.

the Modulation Domain

Recently, a design engineer named Woody Newman was working against a deadline when he found himself in a familiar predicament: To get the performance he wanted from his design, he needed a better understanding of his prototype.

Like many modern designers, Woody knew the information he needed would be revealed if he could just see the dynamic behavior of frequency agile signals, study the transient response of phase-locked loops, or understand potential sources of jitter. But conventional measurement techniques simply couldn't give him the right perspective.
Where could he get a view like that? In his search for the answer, Woody found the Modulation Domain. A place unknown to most engineers, where changes in frequency, phase or timing can be measured with respect to time.
There, he saw things he had never seen before. Like characterization of frequency agile signals in secure communications and advanced radar systems. Quantification of jitter in high-performance disk drives and digital communications systems. And single-shot analysis of step response in phase-locked loops and VCOs. It was just what he was looking for.

Join Woody in his search to become a better designer. Call 1-800-752-9000. Ask for Ext. 1700 , and we'll send you a brochure and videotape describing the Modulation Domain and what you can expect to find there.
There is a better way.

POWERONE D.C.POWERSUPPIES
 NotOnly The Best...The BestSelection, Too

SWITCHERS

> POWER-ONE'S International Switcher Series incorporates the latest state-of-the-art switching technology while providing POWER-ONE's traditional high quality at low prices. With certification to the world's toughest safety agency requirements, the series is especially suited for products sold not only domestically, but internationally as well. - 85 models. . . 40 watts to 400 watts • Efficient. . . reliable. . .economical - VDE construction • Up to 5 fully regulated outputs - Full international safety and EMI approvals

POWER-ONE'S International Linear Series is the world's undisputed leader in versatile, cost-effective linear power supply products. A long-time favorite of designers and engineers worldwide, the series is the most widely purchased power supply line through distribution in the industry. The most popular voltage and current combinations are available in a wide variety of off-the-shelf standard models. - Popular industry standard packages • 77 models. . 6 watts to 280 watts $\bullet \pm 0.05 \%$ regulation • Up to 4 fully regulated outputs • Worldwide safety approvals

HIGH POWER

POWER-ONE'S International High Power Series is the industry's only true fully-modular high power product line. Specify a power system that meets your exact requirements from a wide selection of single, dual and triple output plug-in power modules. Virtually any combination of output voltage and current rating can be delivered from stock. - 500 watts to 1500 watts - Fully modular construction - Up to 15 fully regulated outputs • UPS battery backup option - Parallelable outputs with current sharing

POWER-ONE offers one of the largest selections of switcher, linear, and high power standard models in the world. So, whatever your D.C. power supply requirement calls for, make POWER-ONE your first choice and be sure you're getting the best-not only in quality, but selection and value as well. Call today for our new 1990 catalogs.

> TOLL-FREE LITERATURE HOT-LINE: (800) 235-5943 In California: (800) 421-3439

"Innovators in Power Supply Technology"

D.e. PIUET SIIPPLIES

POWER-ONE, INC.
740 Calle Plano - Camarillo, CA 93010-8583
Phone: (805) 987-8741 - (805) 987-3891
TWX: 910-336-1297 • FAX: (805) 388-0476

With More Exhibitors From Asia, Eastern Europe, And The U.S., The Huge Show Is Truly International. Electronica Highlights COMPONENTS, ASSEMBLIES

IJohn Gosch And Peter Fletcher of industry and trade officials in the U.S. and Japan.

The significance of Electronica 90, to be held Nov. 6-10, lies not only in its size in terms of floor space and numbers of visitors and exhibitors, but also in its international quality and the type of exhibitors (Fig. 1). The latest count shows nearly 2000 exhibitors, about 10% more than at Electronica 88. Besides their own wares, they'll display those of an additional 530 companies.

Of the 2000 -plus "direct" exhibitors, around 870 will come from outside Eu-

1. ELECTRONICA 90, an international trade fair for electronic components and assemblies, opens its doors Nov. 6 through 14. The annual event will be held at the Fairgrounds in Munich, Germany. rope, 44% of the total. They'll come from 39 different countries, both East and West. Carrying the U.S. flag will be 223 firms, representing the largest foreign contingent at the show. Second and third in line will be the United Kingdom with 125 firms and France with 85.

Some 120,000 visitors are expectedabout 12% more than in 1988-to flock to the Bavarian capital to see Electronica 90 displays in 16 exhibition halls with a total floor space of $110,000 \mathrm{~m}^{2}$, or about 1 million ft^{2}. Electronica will draw 30% more visitors from East European countries than in the 1988 edition, which is "a result of the political thaw between East and West," says Gerd vom Hövel, managing director of the Munich Trade Fair Corp., Electronica's host.

A key element of the show is it's specialization. Electronica officials keep a close watch on what firms plan to exhibit. Anything that's not components-oriented or related to electronic subassemblies is barred from the show. This ensures that only the specialists attend the fair, that is, those who are potential buyers of the prod-

ELECTRONICA 90 PREVIEW

ucts displayed, vom Hövel says.
The Microelectronics Congress, which ran concurrently with the exhibition, will no longer be held. Show organizers felt that what was presented at the congress was often too remote from the practitioner and diverted attention from the displays. Compensating for the absence of the congress will be a number of seminars and conferences relating to components and their markets.

Of note will be a half-day conference on Nov. 6, at which Raimondo Paletto, chairman of the management board of the Joint European Submicron Silicon Initiative (Jessi) will discuss Jessi's status, direction, and goals for the next five years. Jessi aims to develop equipment, materials, and technologies needed to produce, for instance, engineering samples of $0.5-\mu \mathrm{m}$ ICs by mid-1991, first silicon of $0.3-\mu \mathrm{m}$ parts by mid1993, and engineering samples of such parts by mid-1994. The $0.3-\mu \mathrm{m}$ samples will be in pilot production by the end of 1995.

A number of seminars will be conducted at the show. They range from microsystem technology, test-cost optimization, and power electronics to producers' liability, quality assurance, microelectronic sensors, and connector miniaturization.

Much attention will focus on memories, demonstrating how Europe ranks in the field. Germany's Siemens AG will present samples of 16Mbit DRAMs. The $0.6-\mu \mathrm{m}$ CMOS IC integrates more than 33 million elements on a $142-\mathrm{mm}^{2}$ chip.
The Siemens memory, the result of a two-year development effort that drew heavily on the Siemens/ Philips high-density-memory Mega project, is now being transferred into pilot production. Full production will start in 1992, when Siemens believes it will have pulled even with Japanese memory producers.

SGS-Thomson Microelectronics (STM), the Italian-French semiconductor maker, will present the latest additions to the company's EEPROM family. A minimum of one million write/erase cycles are possible. Such performance is an order-ofmagnitude improvement over previ-
ous-generation EEPROMs.
The ST93C46A and ST93CS56 are 1 - and 2-kbit EEPROMs built with a special process STM calls CMOS F3. This is a single-metal/single-poly process derived from the firm's established $1.5-\mu \mathrm{m}$ CMOS technology, with additional process steps adapted for implementing high-performance nonvolatile memory cells.

The 5-V ST93C46A and ST93CS56 guarantee 10 -year data retention after one million erase/write cycles per word. They include built-in elec-trostatic-discharge protection; all inputs withstand 2 kV .
The increase from 100,000 to 1 million write/erase cycles means virtually unlimited write/erase capability in most applications. Coupled with the low CMOS power consumption and the small footprint of the 8 -pin package, this makes the devices ideal for use in TV and radio tuners, telephone dialer memories, and cordless phones.

LCDs Advance

Eying the vast potential for liquidcrystal displays to move color pictures, Philips Components developed a high-resolution 6-in.-diagonal LCD that will be unveiled as preliminary samples. The active-matrix LCD works with less than 50 leads to drive more than 400,000 pixels in 756 lines and 565 columns.

The Philips LCD achieves a contrast ratio of at least 1:100 over a temperature range of -10 to $+60^{\circ} \mathrm{C}$. Viewing angle in the horizontal plane is 60 to 90° before the contrast falls to below a $1: 10$ ratio. In the vertical plane, the viewing angle is 40°. Color displays on the screen compare in quality with those attained by CRTs. The LCD has a gray scale of 256 different shades. Development work on the LCD will be finished by the end of this year. Working samples will be ready during the second half of next year and pilot production will begin in early 1992.

Also moving to center stage at this year's Electronica will be ICs for telecommunications applications. In this field, Siemens will show a singlechannel high-level communications controller for local-area network, In-
tegrated Services Digital Network (ISDN), and point-to-point high-level data-link control (HDLC) applications. The SAB82526 has won over 70 design-ins in Europe so far, and many more are expected to come.
The controller features a transfer speed of up to $6 \mathrm{Mbits} / \mathrm{s}, \mathrm{a} 1.2-\mathrm{Mbit} / \mathrm{s}$ digital phase-locked loop, and a $64-$ byte internal first-in, first-out (FIFO) memory for the transmitter and receiver. Also included are a DMA interface and collision detection. The controller is suitable for printers, diagnostic systems, robotics and communication networks. It's in a 44 -pin plastic leaded chip carrier and costs $\$ 8$ in 10,000 -unit lots.
To speed up design-in time, Siemens offers an evaluation board for IBM PCs. The board has two SAB82526 ICs, an 80188 processor, and a dual-port RAM. Menu-driven software, a board description, and a manual complete the design kit.
Rugged miniature pushbutton switches that comply with MIL-STD22885 C and the new pan-European CECC96000 quality-assessment approval will be exhibited for the first time at Electronica by ITW Switches Ltd., Portsmouth, England. The mo-mentary-action with tactile-feedback silent Series 59 switches, using improved-contact plating techniques, have a life of 50,000 cycles.
To debug a multiprocessor computer, Microsoft Corp.'s Windows 3 graphics user interface would be a good choice. This is particularly true when the processors to be debugged are on cards added into a IBM AT or compatible. That way, each processor can have its own set of windows, visible on-screen simultaneously with each of the others. That environment was chosen by Loughborough Sound Images Ltd., Loughborough (pronounced LUFF-bruh), United Kingdom, to ease software development for its new DSP96002 DSP board (Fig. 2).

Up to four of the cards, based on the Motorola DSP-96002 digital-sig-nal-processor chip, can be added to a PC and interlinked to give a combined processing power of up to 200 MFLOPS. Each board can contain up to 4 Mbytes of fast static RAM. The

ELECTRONICA 90 PREVIEW

2. DEBUGGING SEVERAL MICROPROCESSORS simultaneously in a multiprocessor system (each with its own window) is possible with the DSP96002 DSP board from Loughborough Sound Images. Register, disassembler, and memory activity can all be displayed at the same time to ease software development.

SRAM can be configured in one of two ways: to provide three distinct data regions for each of the 96002's two ports as well as for program memory, or for partitioned memory to software, enabling X and Y memories to be defined dynamically during operation. Proprietary logic controls 2 kwords of dual-port RAM, which appears as an 8 -kbyte block in the host-PC's memory map. The map is accessed through the ISA bus for fast data transfer to hard disks and video displays.

The DSP-96002 board is rich in interfaces. In addition to the ISA PC bus connection to the host PC, Loughborough has made full use of the Motorola chip's many ports. Interprocesser links are set up through a proprietary 96 -way parallel backplane that the company calls Motoway. This is an extension of the memory bus with added control lines for arbitration logic. With these lines, each of up to four interconnected boards can be defined dynamically as bus-master, thus making it possible to address the SRAM on all other boards in the system. Loughborough describes the set-up as a "four-
layer round-Robin arbiter." Using the Motoway bus allows the DSP boards to transfer 32-bit words at 44 Mbytes/s. For external interconnection, an "open-standard" 50 -way interface uses the Motorola DSPLINK ports to provide access to "off-board resources." Loughborough is building a range of peripheral interface boards for such applications as digital audio processing, multichannel analog-to-digital converters (ADCs) and digital-to-analog converters (DACs), and a board to capture highspeed transients.

United Kingdom price for the DSP96002 board is between $£ 3295$ and $£ 3795$, depending on memory configuration. Adding support software, including Windows 3 , may tack on an extra $£ 1,200$. Loughborough says delivery depends on the availability of the Motorola DSP 96002 chip. The board will be ready to ship during December.

DC-DC Converter Transformers and Power Inductors

These units have gull wing construction which is compatible with tube fed automatic placement equipment or pick and place manufacturing techniques. Transformers can be used for self-saturating or linear switching applications. The Inductors are ideal for noise, spike and power filtering applications in Power Supplies, DC-DC Converters and Switching Regulators.

- Operation over ambient temperature range from $-55^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$
- All units are magnetically shielded
- All units exceed the requirements of MIL-T-27 ($+130^{\circ} \mathrm{C}$)
- Transformers have input voltages of $5 \mathrm{~V}, 12 \mathrm{~V}, 24 \mathrm{~V}$ and 48 V . Output voltages to 300 V .
- Transformers can be used for self-saturating or linear switching applications
- Schematics and parts list provided with transformers
- Inductors to 20 mH with DC currents to 23 amps
- Inductors have split windings

Electronics, Inc.
453 N. MacQuesten Pkwy. Mt. Vernon, N.Y. 10552
Call Toll Free 800-431-1064
IN NEW YORK CALL 914-699-5514

High sec

AMP MICRO-EDGE SIMM sockets provide the highest security your memory or logic module could ask for: Each contact produces 200 grams normal force on each module pad. Minimum. And the contacts float. They're free to move laterally, so uneven thermal expansion can't separate contacts from pads. Goodbye, fretting corrosion, opens and intermittents.

Hello, reliable performance on 100 mil and 50 mil center modules.

We've also thought about the effects of use on long-run reliability. So our MICRO-EDGE SIMM sockets provide positive wiping action during insertion. And contacts are designed to deflect up to $.017^{\prime \prime}$, with full anti-overstress protection-forgiving enough to handle any standard (.047" to .054" thick) module board.

Over the life of your product, the socket housing can take a real beating. We've thought that through, too. Our liquid crystal polymer housings, rated for continual use at $200^{\circ} \mathrm{C}$, give ramps and latches the strength and dimensional stability that promise a long, useful life.

We've also seen to it that contact retention in the housings allows robotic application, as well as inde-

urityarea.

pendent repair or replacement. Closed bottom design prevents solder wicking and bridging. And, naturally, latching ears are protected against overstress, and module polarization is designed in.
Now the best part: MICRO-EDGE SIMM sockets are available in the style you need. We have $.100^{\prime \prime}$ or .050 " centerlines in a wide selection of singles and duals, vertical and slanted. Plus options, including a
the 50 mil versions especially attractive Every version comes with the quality and support you expect from AMP.

For literature and product information, contact the AMP Information Center, toll-free, at 1-800-522-6752. AMP Incorporated, Harrisburg, PA 17105-3608.

Our very-low-insertion-force design and high-reliability contacts make
choice of gold or tin on contact mating surfaces.

A picture is worth a thousand points in a time inferval measurement.

SR620 Output

The SR620 brings graphic statistical analysis to time interval and frequency measurements. The SR620 shows you more than just the mean and standard deviation - multimode frequency distributions or systematic drift for example. Histograms or time variation plots are displayed on any X-Y oscilloscope, complete with Autoscale, Zoom, and Cursor functions. Hardcopy to plotters or printers is as easy as pushing a button.

HP5370B Oufpuf

Of course, the SR620 does everything else you'd expect from a high resolution universal counter, such as frequency, period, time interval, pulse width, rise / falltime, and phase measurements. The SR620 offers 25 ps single-shot time and 11 digit frequency resolution and complete statistical analysis, all for a fraction of the cost of comparable instruments.

For the whole picture, call SRS and ask about the SR620.

SR620
$\$ 4500$

- 4 ps single shot least significant digit
- 25 ps rms single shot resolution
- 1.3 GHz maximum frequency
- $10^{-9} \mathrm{~Hz}$ frequency resolution
- Sample size from 1 to 1 million
- Frequency, period, time interval, phase, pulse width, rise and fall time
- Statistics - mean, standard deviation, min max, and Allan variance
- Analyzer display on any X-Y oscilloscope
- Hardcopy to printer or plotter
- GPIB and RS232 interfaces
- Optional oven timebase

Frank Goodenough
Today's Mixed Analog-Digital Simulators Handle Jobs From Dc And Fast Logic To Microwaves.

Mixed.Signal

 Simulators AboundThe upsurge in systems well-populated with mixed-signal ASICs has spearheaded the arrival of a broad range of mixed-signal simulators. Although these tools aim at aiding the design of both mixed-signal systems and ASICs, a major need for these tools has sprung up from another quarter. Rapidly rising clock speeds of purely digital systems have forced board and ASIC designers to consider second- and third-order analog effects that cause clock skew and ground bounce. As a result, mixed-signal tools and a diverse group of circuit simulators-from special versions of Spice to special versions of microwave simulators-are being brought to the digital design arena.
Most mixed-signal simulators consist of one or more analog and/or digital point tools, under the aegis of the large open frameworks being developed by major elec-tronic-design-automation (EDA) tool suppliers. In most
more than three years away).

Many of those point tools, particularly analog-circuit simulators, come from third-party tool suppliers and are available within frameworks from multiple companies. Each tool and framework offers its own features and benefits. Analog tools continue to increase in speed and performance. Such features as optimization, synthesis, and design centering are being added to their presently available statistical tools, including Monte Carlo and sensitivity analysis.

While some mixed-signal tools focus on IC design, and others on system design, the capabilities of each are being forced to merge. Today's designers must capture and simulate a complete system at a high level, then gradually partition the system into standard parts and ASICs. Next, designers must determine the mix of analog, mixed analog-digital, and digital ASICs; in each case deciding between array and cell approaches. Finally, the individual ASICs must be partitioned and designed. Throughout the process, the simulation of the complete system and its parts must be repeated, with different blocks modeled and simulated at different levels.

If the design process occurs within a framework, it's possible to sequentially simulate different parts of the circuit or system at different levels of hierarchy. This permits concurrent top-down and bottom-up designs, with designers often changing simulators as the design process continues. Moreover, the ultimate goal of framework designers is to let the tool user switch between levels and simulators on-the-fly, and employ several simulators of the same type at the same time. While more than one digital simulator can now be used simultaneously on different parts of a system, no one has figured out how to do it with circuit simulators.

So-called mixed technology, or mixed-media tools, has added another dimension. These tools aren't limited to modeling and simulating just electrical/electronic elements; they can also handle mechanical, optical, thermal, chemical, and other phenomena. Simulators with this capability are now available from Analogy, Intergraph, Meta-Software, and Valid Logic. Real-world analog signals can be used to stimulate simulation and hardware modelers. Hardware accelerators are available for the digital portion of the systems. In addition, most of the frameworks offer the use of multiple platforms, at the same time, to speed simulation.
The most accurate simulators are circuit tools, such as the ubiquitous Spice. (see "SpiceY tips," p. 45). In its most accurate form, circuit simulation of complex analog circuits with transistor-level models can take hours on a Cray computer, while a million-transistor microprocessor simulated in Spice could tax the computing power of a code-cracking or-
ganization. Basically, multilevel and mixed-signal simulators trade off simulation accuracy for computing time.
If all versions of Spice as well as the different look-and-feel of each point tool are included on each framework porting it, the varieties of mixed-signal simulators can be overwhelming. But even though mixed-signal simulators breakdown into the six general species, at times it's unclear as to which group a particular tool belongs. In order of decreasing accuracy and increasing computational speed, mixed-signal simulators can be classified as:

- A Spice simulator.
- One that uses high-level analog models of functional digital blocks, such as gates, flip-flops, and registers (and analog blocks that include op amps).
- One with a built-in, event-cue-driven digital simulator.
- A so-called "glued" simulator, in which digital and circuit simulators are tightly linked by communica-
tions software.
- An event-cue-driven, logic or tim-ing-analysis tool with analog ability.
- A high-level language that can handle both analog and digital entries.
In general, the glued simulator works best for loosely coupled systems containing large blocks of ana\log and digital circuits with relatively few events passing between the two simulators. Easy multiprocessing is possible with the simulator. For example, the digital logic can be handled by the user's workstation, and by the compute-intensive analog simulation on a server or second networked workstation (Valid Logic and Analogy recently announced the ability to offload a portion of a pure analog simulation on additional machines).
The top-down design of a mixed analog-digital feedback control system is one example of the glued simulator's proficiency. At the heart of the system lies a digital signal processor, although both the input signal (the process itself) and the feed-

[^1]back signal are analog. A 12 bit analog-to-digital converter (ADC) and digital-toanalog converter (DAC) connect the processor with the real world (Fig. 1). The circuit was simulated with Sa -ber-CADAT from Analogy/ Recal-Redac at three different levels. At the third level (bottom), a CATS 12000 hardware modeler simulated the TMS32010 digital signal processor as a real device.

With the exception of the last item on the listing of simulators, the remaining tools are often lumped under the general term "core" or "unified" simulators. They're particularly useful when there's tight coupling between analog and digital circuits (for example, within an ADC or phase-locked loop). However, nearly all the major glued and core simulators successfully simulated tightly coupled circuits.

Either or both tools (digital and circuit simulators) that form a typical glued simulator may already have some mixed-signal capability. For example, the analog tool might have so-called analog macro, or behavioral, models of digital blocks, like the Spice models in Valid Logic's "Analog Workbench II," Cadence's "Analog Artist," Meta-Software's "HSpice," and "Precise" from Electrical Engineering Software (EES) (Non-Spice-based Saber also has analog macros). Alternatively, they

2. "NETWORK-SPLITTER" software is used in
glued mixed-signal simulators, such as Viewsim/AD from
VIEWlogi. The spliter sends digital modeds to a digital
simulator and analog models to a circuit simulator. Models
tagged for a simulator are available in the frameworks library.
Designers can tag them at the schematiccapture stage.
might have built-in event cues, such as Analogy's "Saber," MicroSim's "PSpice," and the just-announced "ISIM-se" from Intergraph.

With the exception of the pure-circuit simulators, all of the mixed-signal tools contain code that determines whether a portion of a circuit (a model) should be handled as an analog or as a digital entity. In such glued tools as VIEWlogic's "Viewsim/SD," this code is called a "netlist splitter." It divides the initial net list created during capture of the system schematic into two separate net lists-one for the analog simula-
tor and one for the digital simulator (Fig. 2). In both the core and glued tools, circuit/ system elements are tagged as either analog or digital models so that the simulator knows how to treat them. These tags are attributes of the model and are handled similarly to the resistance of a resistor, the beta (currentgain) of a bipolar transistor, or the propagation delay of a logic gate.

If the blocks are standard parts in the library of a framework, the tags are already there at capture. If designers create a model at any level from discrete transistors to a high-level language, they apply the tag. In most mixed-signal tools, the type of model (either analog or digital) can be switched at any time.
As the net-list splits in the glued simulator, a one-bit ADC model is inserted automatically between analog and digital circuits if the analog circuit drives the digital circuit. Should the digital model drive the analog one, a one-bit DAC model is inserted. The accuracy of these converters, often called "hooks", determines the performance of the simulator. Similar hooks do the same job in the unified tools. Analogy calls these hooks "hyper-models."
Regardless of tool type, the level of simulation selected in the hierarchy for each portion of the circuit/

"SPIGEY TIPS"

Whether you're a day-to-day user of Spice or a newcomer to circuit simulation, you may want to take advantage of the newsletter "Inside Spice," published six times a year by RCG Research of Indianapolis, Ind. Each issue of this 8-page letter packs up-to-date information about circuit simulation and includes tips on curing convergence and other problems that can occur when using Spice. Many tips are
given in its "User's Corner," where questions from readers are answered. Additional topics have included modeling, and the relative speed of various PC platforms. The latest issue is devoted to a hands-on evaluation/comparison (including pricing) of five popular versions of Spice available for the PC: IS-Spice from Intusoft, HSpice from Meta-Software, Spice2 and Spice3 from Northern Valley Software, MicroSim's PSpice, and Microcap III
from Spectrum Software. Visionics' Spice-based tool will be reviewed in an upcoming issue.
A subscription to Inside Spice runs $\$ 60$ for the first copy; each copy is $\$ 24$. RCG Research also offers one-day hands-on training classes (in major U.S. cities) for beginners, present users, and expert users of Spice. Each one-day class costs $\$ 240$. For additional information on Inside Spice and/or the classes, call Ron Kielkowski at 1-(800) 442-8272.

A Precision Start, Every Time.

Motorola's Low-Skew Clock Drivers for Precision Control and Timing of High Speed RISC and CISC Designs

Abstract

Record setting performance for high speed processor designs depends on perfect timing, perfect control from start to finish. If your high speed CISC or RISC processor flies off the blocks at $25 \mathrm{MHz}, 33 \mathrm{MHz}$ or faster, clock signal skew from ordinary clock drivers can result in false starts for devices in close proximity. And, you may also require very exact 50% duty cycle waveforms.

 the same time.
Either way, without precise operation, performance suffers. Worst case? You blow your race to production and the entire design could be disqualified.

A Precision Start

To get all of your board's devices off to a precision start for critical events, Motorola's low-skew clock drivers are setting the target pace.

Offering 200\% to 300% less output skew than ordinary clock drivers, typical delay skews are as low as 0.1 nS in ECL and 0.5 nS for TTL or 0.5 nS for CMOS outputs.
When you design with low-skew clock drivers, you don't need to handicap your high speed circuits with delay chips that compromise power and speed. And you can avoid trial and error tests with other high speed logic devices you had hoped would sooner or later work.

Instead, Motorola's line of low skew clock drivers let you design for optimum speed control from the beginning, with high performance dependability part-topart and tight clock duty cycles.

Programmable Time Delays
For really difficult timing requirements, your design can also incorporate Motorola's Programmable Time Delays. Along with Low Skews, MC10E/100E195 (20 pS steps) or 196 (80 pS steps) ECL input delays provide you with more design options when board layout dictates.

| Part\# | Input
 Levels | Output
 Skew (nS) | Output/Input
 Freq. Ratio | Max. Input
 Freq. (MHz) | Output
 Levels |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| F803 | TTL | 1 | +2 | 70 | TTL |
| H640 | TTL orECL | 0.5 | +2 and +4 | 135 | TTL |
| H641 | ECL | 0.5 | $1 X$ | 100 | TTL |
| H642 | TTL orECL | 0.5 | +2 and +4 | 135 | TTL |
| H643 | ECL | 0.5 | 1 X | 100 | TTL |
| E111 | ECL | 0.1 | $1 X$ | 1000 | ECL |
| MC88913 | TTL | 1 | +2 | 110 | CMOS |
| MC88914 | TTL | 1 | +2 | 110 | CMOS |
| MC88915 | TTL | 0.5 | $\mathbf{1 X}, 2 X$, and $4 X$ | $70 \mathrm{MHz}^{*}$ | CMOS |

*MC88915 is a PLL Clock Driver, therefore 70MHz is the maximum output frequency.

CMOS Skews of $0.5-1 \mathrm{nS}$ and

 Phase-Locked Loop CapabilityFor multiple synchronous outputs, the MC88913 Clock Driver (skew 1.0 nS) and MC88914 CMOS Clock Driver with Reset (1.0 nS skew) provide high speed, low power hex divide by two capability. The MC88915 LowSkew Phase-Locked Loop Clock Driver locks output frequency and phase into the input reference clock - and can synchronize several boards. It also functions as a frequency multiplier that can double or quadruple the input frequency. Skew is 0.5 nS .

FAST Schottky TTL
Low-Skew Clock Drivers

For quad D-type flip-flop applications requiring matched propagation delays, the MC74F803 Clock Driver provides 1.0 nS skew

68030/040 0.5 nS Skew
 ECL/TTL Clock Driver

Motorola's MC10H640 series Clock Drivers generate clock output for 68030/ 040 and are warranted to meet all clock specs required by these microprocessors.

ECL Clock Driver with 9 Differential Outputs

The MC10E111 is a low-skew differential driver designed with clock distribution in mind - nine outputs and .1 nS skew.

Full Microprocessor Support

Motorola's clock drivers support the full 68000 CISC and 88000 RISC MPU lines. They also can drive Intel CISC and RISC MPUs, AMD, SPARC, MIPS, and Clipper MPUs.

Start your drive for the finish

If you want the best in clock drivers for fast processor designs, begin your drive for the finish with a perfect start. Specify Motorola Clock Drivers to win at any pace.

To get off the blocks fast, call toll free for more information: 1-800-521-6274. Or, fill out and return the coupon below.

A
 MOTOROLA

To: Motorola Literature Distribution Center, P.O. Box 20912, Phoenix, AZ 85036. Send me more information about Motorola Clock Drivers.

Name

Title
Company
Address
City
Phone (
system determines the complexity of the hooks. The hooks can be nonlinear subcircuits or simple primitives (Figs. 3a, 3b, and 3c). These software models are used by MicroSim (called circuit-to-logic and logic-tocircuit translators by the company) in their "Digital Simulation" option, a single unified simulator using a 28 state event cue within PSpice.

A digital event is a change in a signal's state at a specific time. When a time-step of the on-going, current simulation reaches that of any pending events, the signal's new state is propagated to every device it's driving. The new devices, in turn, are evaluated to see if a transition should occur. This causes another event at the current time plus the propagation delay of the device. Similar translators are used in the glued simulator Viewsim/SD, which employs PSpice as its circuit simulator.

The TTL circuit-to-logic (C-to-L) primitive looks like an R-C circuit (Fig. 3b). When fed up and down ramp voltages, it delivers a logiczero output when the input is between -1.5 and 0.8 V , an X (unknown) state between 0.8 and 2 V , and a logic 1 when the input is between 2 and 7 V . The analog output of the TTL log-ic-to-circuit primitive models the upper and lower npn transistors in a totem pole as different resistor values for the $1, \mathrm{X}, 0$, and Z (high-impedance) states (Fig. 3c). The capacitance is handled by the switching time (TSW). The result is an output waveform of rise and fall times, and dc values. There's a double line in the digital waveforms for the X state and solid lines for the Z state (three state). The C-to-L and logic-to-circuit (L-to-C) symbols can be shown on the schematic, or deleted.

At the heart of all simulators lie their numerous algorithms. One of the most important in mixed-signal tools is the algorithm that synchronizes the timing between the circuit simulation and the internal event cue of a unified simulator or the digital tool of a glued simulator. In virtually all cases, the two run separately and are synchronized only when information must be passed between them. With these algorithms, the cir-

[^2]
YOU DONT BECOME THE LEADER IN FFT ANAIYSIS WAITING FOR SOMEONE ELSE TO INTRODUCE 200 kHz.

You do it first. You set the pace with a total measurement solution. Tektronix 2642 Personal Fourier analyzer does exactly that. It extends analog signal acquisition, analysis and generation capability far beyond any other analyzer you can buy. With 200 kHz , the 2642 opens the door to a whole new world of information. Measurement data that's critical to filter design, switching power supplies, surveillance, and underwater acoustics is now accessible.

For high performance closedloop system analysis, and general electronic design and
test, the 2642 is ideal. And it's available with a library of powerful software solutions including: production test management with limit testing, math, one command data acquisition and storage, swept-sine, one-third octave, structural analysis, and others. Tek leads the way in PC based FFT systems and technology. With a broad family of Personal analyzers all the way up to the new 200 kHz 2642 . For complete information on the Tek 2600 family, call 1-800-234-1256 Ext. 001 or write: Tektronix, 1350 Dell Ave., Suite 104, Campbell, CA 95008.

Quick interactive graphics provide rapid access to measurement information.
cuit simulator can run at a maximum rate when nothing is happening in the analog circuitry. As a result, the variable time-step capability of typical circuit tools, such as Spice and Saber, is used to its maximum. Inherent in today's circuit simulators is a record of everything that has previously run. Thus, it can jump ahead of the digital simulator in time.

Froggy Tools

For example, if the circuit tool is at some arbitrary time t_{5}, and the digital tool has a new event input for it at an earlier time t_{3}, the circuit tool jumps back to t_{3}. It also receives the new information and takes up a new simulation path, integrating the new data into the differential equations it's solving. Similarly, if an analog event causes a change of state in the digital world, it will be given to the event cue for scheduling, with a delay if the circuit tool is ahead of the digital tool. Alternatively, the digital operations can be processed with zero delay, feeding the results back
to the circuit tool to see the effects. It's mandatory that these mixed-signal tools accurately handle feedback of all types at every level.

Analogy calls their software that implements these techniques within Saber the "Calaveras algorithm," from Mark Twain's famous story about a frog that jumped forward and backward. Saber and its frog is now used as the circuit tool in the following glued simulators: Saber-CADAT, Cadence's new system simulator "Saber-Verilog," and in Europe, GenRad's "Saber-HiLo." Saber-CADAT is also available from ComputerVision, and from NCR and Gould AMI for use with their mixed-signal standard-cell libraries. Other similar glued tools include Analog ArtistVerilog and Viewsim/SD.

Virtually all successful mixed-signal simulators are also multilevel tools. For example, Saber has devicelevel primitives and analog macros, and can also represent large parts of a system when capturing a system at high-level equations. And Analogy's

REPRESENTATE MEED-STHNAL BAE TOOL MANUFAGTURERS		
Analogy Inc. Beaverton, Ore. (503) 626-9700 CIRCLE 313	Electrical Engineering Software Inc. Santa Clara, Calif. (408) 296-8151	MicroSim Corp. Invine, Calif. (714) 770-3022 CIRCLE 328
Analog Libraries Ltd. Boulder, Colo. (303) 440-3475 CIRCLE 314	CIRCLE 321 EEsof Inc. Westlake Village, Calif. (818) 991-7109	Northern Valley Software Rancho Palos Verdes, Calif. (213) 541-3677 CIRCLE 329
Cadence Design Systems Inc. San Jose, Calif. (408) 943-1234 CIRCLE 315	CIRCLE 322 GenRad Inc. Concord, Mass. (508) 369-4400	Recal-Redac Inc. Mahwah, N.J. (201) 848-8000 CIRCLE 330
Cad Group Inc. Santa Cruz, Calif. (408) 475-5800 CIRCLE 316	CIRCLE 323 Intergraph Corp. San Ramon, Calif. (414) 866-0520	Silver-Lisco Inc. Sunnyvale, Calif. (408) 991-6000 CIRCLE 331
Compact Software Inc. Paterson, N.J. (201) 881-8361 CIRCLE 317	CIRCLE 324 Intusoft Inc. San Pedro, Calif. (213) $833-0710$	Spectrum Software Inc. Sunnyvale, Calif. (408) $738-4387$ CIRCLE 332
Contec Microelectronics Inc. San Jose, Calif. (408) 436-0340 CIRCLE 318	CIRCLE 325 Mentor Graphics Corp. Beaverton, Ore. (503) 626-7000	Valid Logic Systems Inc. San Jose, Calif. (408) 432-9400 CIRCLE 333
Computervision A Prime Company Bedford, Mass. (617) 275-1800	CIRCLE 326 Meta-Software Inc. Campbell, Calif. (408) 371-5100	Viewlogic Systems Inc. Marlboro, Mass (508) 480-0881 CIRCLE 334
CIRCLE 319 Dazix Inc. Boulder, Colo. (303) 444-8075 CIRCLE 320	CIRCLE 327	Visionics Corp. Sunnyvale, Calif. (408) 745-1551 CIRCLE 335

MAST programming language can be employed at an even higher level.

Moreover, alternatives to Saber for high-level circuit modeling and simulation are now accessible. MetaSoftware supplies behavioral models for HSpice, and can employ equations as functional blocks. They're now available as the analog tool in Viewsim/AD, complementing PSpice as an alternative to CadenceSpice in Analog Artist, and along with Saber and Precise as the analog simulators in Mentor's Explorer Lsim. Also, Valid's recently announced Analog Workbench II can do multilevel analog simulation.

Different Strokes

Explorer Lsim from Mentor Graphics was designed originally as a unified, multilevel digital tool so that designers of digital CMOS ICs could operate with different parts of their systems, modeled and simulated at different levels, from device to VHDL. However, it evolved into a framework incorporating a collection of simulators, including both unified and glued multilevel, mixedsignal tools. It's equally at home with ASICs, boards, and even systems. And by the end of next year, it will operate under Mentor's Falcon Framework.

The tool's digital capability is built from a multilevel digital simulator plus a special high-speed circuit simulator for CMOS digital circuits. IN addition, HSpice, Precise and Saber are also now available for circuit-level simulation. These three tools also take care of analog-simulation tasks. Mixed-signal simulation is performed either by moving vertically or horizontally through the mixedsignal boundary (Fig. 4). Vertical movement occurs when digital-circuit simulation is performed; horizontal movement occurs when handling mixed analog-digital blocks. However, even Lsim's programming language M can provide analog behavioral modeling of digital circuits with text entry, creating the analog-to-digital and digital-to-analog primitives. It produces an analog waveform by calculating a $V_{\text {out }}$ applied to a gate output that's modeled as a

JUST KEEP ADDING CHANNELS.

Analytek 2000-the only Waveform Sampling System that expands in 4,8 , or 16-channel modules up to 196 channels.

We started out right. We built the Analytek 2000 Waveform Sampling System using VME/VXI architecture. A smart move for you. Yourre not stuck with just a few channels like one competing system. Nor do you have to buy an additional base system each time you add another four channels, like you
do with another competitor.
Our modular design allows the Analytek 2000 to expand all the way up to 196 channels with the same sampling, timing and processor cards.

Every time you add channels, you can do so without facing a programming nightmare.

And mixing and matching sampling modules allows you to trade channel count for sampling
speed and record length as your needs change.

You can also incorporate any add-ons from other manufacturers that tie into the VME/VXI bus-memory cards, disk drive controllers, instruments, you name it.

Remarkable specs. Easy to use.

The Analytek 2000 offers the best specs of any waveform sampling system: 2 GS/s sampling speed, 12 -bit digitizing resolution, greater than 60 dB dynamic range. It's extremely easy to use; every operation is mouse driven via on-screen menus.

And there's the extraordinary price, as low as $\$ 1,200$ per channel.

Grow now; grow later. The Analytek 2000 is the highperformance waveform sampling system optimized for expansion. Call your local Tektronix sales engineer or call Analytek at (800) 366-5060. FAX (408) 745-1894. 365 San Aleso Drive, Sunnyvale, CA 94086.

	Le Croy 6880B	$\underset{\text { 54111D }}{\text { HP }}$	Analytek Series 2000
Maximum Channels per Chassis	$\begin{gathered} 6 @ 1.3 \\ \text { GS/s } \end{gathered}$	$\begin{aligned} & \text { 1@ } 2 \mathrm{GS} / \mathrm{s} \\ & \text { 2@1GS/s } \end{aligned}$	12 @ 2 GS/s 24 @ 1 GS/s 48 @ $500 \mathrm{MS} / \mathrm{s}$ 96 @ $250 \mathrm{MS} / \mathrm{s}$ 192 @ $125 \mathrm{MS} / \mathrm{s}$
Sampling Speed	$\begin{gathered} 1.3 \mathrm{GS} / \mathrm{s} \\ \text { Fixed } \end{gathered}$	Up to 2 GS/s Programmable	Up to 2 GS/s Programmable
Dynamic Range	Not Specified	Not Specified	$>60 \mathrm{~dB}$
Vertical Resolution	.1\%	1.56\%	.05\%

Tektronix

ANALOG AND MIXED ANALOG-DIGITAL SIMULATION

Thevenin-equivalent driver-similar to those described for PSpice.

The multilevel digital portion of Lsim enables users to assign, and reassign, portions of the circuit to any level during the simulation, depending on the accuracy desired. Consequently, one part of the circuit can employ VHDL, another major block may use the hardware accelerator MACH (built by Zycad), a third may work at the gate level, and a fourth could take advantage of the accurate timing offered by the switch-level tool. The tool includes not only R-C circuit parasitics, but it can also simulate bidirectional circuits, such as a CMOS pass-transistor EXOR gate.

In addition, designers can move a part of a CMOS circuit at any time into Adept, a unique transistor-level analog-simulator for digital circuits. Unlike Spice or its variants, which take discrete time steps and solve equations for voltage, Adept takes discrete voltage steps and solves for time. In addition, similar to eventdriven logic simulators, it only evaluates active nodes. As a result, simulation time grows linearly with the number of transistors rather than exponentially, as with Spice. Mentor says Adept always converges.
Semicustom chip makers Sierra Semiconductor and International Microelectronic Products (IMP) have adopted Lsim for their mixed-signal standard-cell libraries. In fact, Sierra added proprietary analog algorithms to Lsim to create a mixed-signal tool called Montage.

Salty Simulation

A real sleeper in the mixed-signal simulator arena could be SALT from the CAD Group Inc. A true multilevel, mixed-signal, unified simulator, SALT was designed, like Lsim, to deliver high-speed and accurate simulation of large digital ICs and even multi-IC systems. Also like Lsim, it's event-driven and handles digital models at all levels, from switch to HDL, concurrently within the same simulator. SALT also handles analog circuits and incorporates analog-todigital and digital-to-analog hooks. Its speed on analog circuitry is 50 to 100 times that of Spice, and its per-

4. A MULTILEVEL UNIFIED SIMULATOR is incorporated in the Lsim mixedsignal tool within a glued simulator. The mixedsignal boundary may be crossed vertically while simulating digital circuits, or horizontally to handle analog circuits.
formance correlates well with Spice. SALT also was ported to, and successfully run on, platforms from PCs to Crays (virtually all other mixed-signal tools require too much memory for PCs).

Various forms of statistical analysis represent major features secondary to most circuit simulators. These features include Monte Carlo, sensitivity, and stress analysis, all based on performing repeated and directed simulations. For example, Analog Workbench II using Monte Carlo determines the combined effect of variations in component tolerance on the dc , ac, and transient performance of the circuit. Sensitivity analysis run with the tool determines the sensitivity of a circuit's dc, ac, or transient performance to individual design variables-component values, temperature, and process variables. When performing stress analysis, Analog Workbench II simulates actual operating conditions of all circuit elements, including passive parts, semiconductors, and power supplies. It flags any of these elements which exceed their voltage, current, or power ratings.

New features in this genre include optimization, synthesis, and design centering. Optimization programs, available as an option to Precise and
to Analog Artist, help designers choose exactly the right components to maximize circuit performance. For example, optimization goals for an amplifier can include maximizing voltage gain, or gain-bandwidth, while minimizing power drain. Optimization programs are particularly useful in tailoring the frequency response of a circuit with multiple peaks and dips. And it's been used successfully to reduce groundbounce in digital IC design.
Just as designers might do multiple "what ifs" on a breadboard (or simulator), an optimization tool takes an initial circuit and performs multiple simulations. For each simulation, it changes from one to all component values. But these aren't random selections. Rather, after each simulation, the tool examines and analyzes the results and tries a new value based on the results. If a larger resistor was expected to raise gain at a given frequency on a particular pass, but the gain dropped, the tool would try a smaller resistor on the next pass

H0w Valuable?	Circle
Highly	556
MODERATELY	557
SLIGHTLY	558

Design with Service in Mind

You can now design superb automatic servicing into a system for less than the cost of a single service call. Teleservicing products monitor and adjust equipment 24 hours a day, diagnose and repair systems, and release software revisions. All from a PC connected to an ordinary telephone line.

The House Call vs. the Telephone Call

House calls by service technicians do not come cheap. Nor do they come fast. Especially when the equipment is in another city. Or country.

Plug 'n' Go Telephony: The FCC-certified DS2245 Soft Modem and the DS2249 DAA offer the AT command set, DTMF decoding, and direct connection to the public telephone network.

When you design in our alternative, teleservicing monitors equipment around the clock in order to pinpoint problems before the machine breaks down. If something's wrong, the problem is automatically called in to the PC at the service center. In many cases, equipment performance can be remotely adjusted into conformance with a few keystrokes.
Lower maintenance costs. Less downtime. Minimal aggravation. All of which makes for very happy customers

CIRCLE 178

Build in Fast, Efficient Service

Teleservicing kits retrofit to existing systems. For new designs, components are available in the form of Stiks, modular subassemblies that snap into locking connectors.
Like the DS2245 Soft Modem Stik, which is about the size of a stick of chewing gum. And about onetenth the size of other line-ready modems. Available in 1200 and 2400 bps versions, the DS2245 interprets DTMF signals and implements the standard Hayes AT command set. The DS2245M adds MNP-5 for error correction and data compression.
The DS2249PH Phantom DAA (Data Access Arrangement) eliminates the cost of extra phone lines by borrowing the unused capacity of existing lines. Versions are available for both the US and Europe.
We also offer the DS2244 TeleMicro Stik, an 8-bit, user-programmable microcontroller with a built-in modem. And DS0010 Service Toolbox software that supervises dispersed equipment from a central location.

FCC-Approved to Reduce Your Time to Market

All our components have transferable FCC registration so you don't have to go through the aggravation of getting approval when you're designing from scratch.
Let's talk numbers. $\$ 102.70^{*}$ is what it costs to incorporate teleservicing into a machine. So if you're willing to shell out a little cash at the front end to lower your customers' maintenance costs over the long haul, give us a call.
*100-piece price for DS2244 and DS2249.

SEMICONDUCTOR
4401 SOUTH BELTWOOD PARKWAY
DALLAS, TEXAS 75244-3292
TELEPHONE: 214-450-0448
FAX: 214-450-0470

Signetics. Because com isn't just a product

COMPUTING					
APPLICATION	PRODUCT	APPLICATION	PRODUCT	APPLICATION	PRODUCT
Workstations	- Advanced BiCMOS Logic (ABT) - High-Speed ASICs - Futurebus + Chip Set - High Speed PAL ${ }^{\text {® }}$-type Devices High Performance MCUs	Desk Top Video Personal Computers	- Video Data Converters - Digital Color Decoders - High Density ASICs/PLDs - DRAM Controllers - OTP EPROMs - FLASH Memory	Peripheral Products	- 8-bit 80C51-based MCUs - Zero Power PLDs - Programmable Sequencers 3-State ECL Transceivers

puting performance of your engine.

WITHOUT THE RIGHT SELECTION OF ICs, YOUR CPU COULD BE DEAD IN ITS TRACKS.

Today, everyone is using the same processors.
So, to separate your computer design from the rest, you need to get the full potential out of your processor. Full potential that's only possible through high-performance supporting subsystems.
To give you this performance we're offering a full range of ICs for major subsystem applications. Together they help you get the most from your processor, so your designs perform like never before.

For example, our bus interface logic devices are the industry's fastest. With our proven BiCMOS process - known as QUBiC - our ABT logic family is nearly twice as fast as the highest performing Bipolar ICs. This means you get the speed to keep pace with today's 16 - and 32 -bit systems, as well as tomorrow's emerging performance standards.

We also offer you a complete family of advanced PLDs. Including a full range of PAL ${ }^{\circledR}$-type devices with speeds from 4 ns to 7.5 ns . As well as our innovative programmable logic arrays (PLA), programmable logic sequencers (PLS) and program mable macro logic (PML).

When you need microcontrollers, we offer the industry's most complete selection. Including devices from 8 - to 32 -bits and in OTP, EPROM, ROM and ROMless versions. Features include $\mathrm{I}^{2} \mathrm{C}$ serial bus, low voltage/low power, A/D, extended memory and more. All for EDP peripheral applications ranging from keyboards, disk drives and printers, to terminals and mouse devices.

And for desktop video applications, we've applied our expertise in digital video signal processing to offer you an 8-bit digital multistandard TV decoder subsystem, complete with data conversion and clock companion chips.

So when you need subsystem performance that

PHILIPS

Fast things come in small packages.
 QST4FCT

High-speed, low-noise CMOS logic and memories in new, space-saving packages

Quality Semiconductor has the highspeed, low-noise logic and memories you need to make the most out of highspeed design. FCT logic in FCT/A/B/C speeds. 16Kx4 SRAMs with 12 ns access. 1 Kx 9 and 512 x 9 FIFOs at 15 ns with fast flags. Logic especially designed to eliminate noise problems. Valueadded enhancements like on-chip resistors, burst-mode counters and cache-tag comparators. Memories with reliable 6-T cell design. In the packages you want-including spacesaving ZIP and our new, ultra-small QSOP. Available now.
Proprietary CMOS Process Quality's QCMOS" ${ }^{\text {m }}$ process gives you better
performance than Bipolar or BiCMOSyet runs cooler and draws less power. Low Noise A controlled output swing of 0 to 3.5 V reduces problematic ground bounce. Optimized slew rates help reduce line and signal noise.
New, Space-Saving Packaging Innovative packaging options help you save precious board space. 20 and 24 -pin ZIP saves board space by 50% over PDIP. Ask about our new, 150 -mil QSOP with reduced pin spacing to increase logic density by 400%.
High Speed Hotline Call (408) 986-8991 for the latest copy of Quality's HighPerformance CMOS data book-product is available NOW.

QUALITY SEMICONDUCTOR INC. 2946 Scott Boulevard, Santa Clara, CA 95054 Phone: (408) 986-8991 FAX: (408) 496-0773

QCMOS and QSFCT are trademarks of Quality semiconductor Inc

LOGIC ANALYZERS Designers Who Once Shunned The Logic analyzer Now Find Instruments That Are More Capable And Easier To Use.

John Noveluno

The logic analyzer was often considered a tool of last resort, the instrument designers pulled out only when they couldn't find a problem by other means. Today, however, a logic analyzer is often the designer's tool of choice, from board turn-on through hardware-software integration. In addition to their traditional role in research and development, logic analyzers are finding applications that stretch into manufacturing and service.

Several reasons account for this new popularity. Better interfaces, including menu-driven screens, and microprocessor pods and adapters for fast connections, make logic analyzers easier to use. In addition, higher levels of integration have reduced analyzer prices while improving performance. And in some cases, the logic analyzer is simply the only instrument fast enough to debug current designs.

The speed issue is particularly important to designers working with advanced microprocessors. With $33-\mathrm{MHz}$ speeds becoming common, it's hard to find suitable emulators, especially if price is a concern. But logic analyzers and disassemblers available today can help designers debug microprocessor code over 50 MHz .

Consequently, a trend toward using logic analyzers as the primary debugging tool has emerged. It started with the introduction of RISC processors, because no emulators existed for these devices. The trend spread to digital-signal-processing applications, because no emulators exist for DSP chips, and to the high-power CISC processors competing with RISC speeds.

Emulators have two important pluses compared with logic analyzers: They can single-step through code and are able to look inside a chip's registers. But an emu-

lator is at a disadvantage because it must get signals out to the system under test and back, and it must simulate the system's entire memory, notes David Blakemore, vice president of Arium Corp. Sending signals out and back is a technical challenge, and both problems are very expensive. "An analyzer with a really good disassembler, an embedded debugger, and a ROM-emulation system (either separate

COVER: LOGIC ANALYZERS

or in the logic analyzer) costs much less than a microprocessor emulator for the same speed," says Blakemore.
Although logic analyzer prices have ebbed in recent years, designers shouldn't expect that trend to continue, especially if they want to work with the latest microprocessors. These devices need analyzers with more channels and deeper memories, as well as $50-$ to $100-\mathrm{MHz}$ speeds. Adding channels and memory aren't major technical hurdles, although they obviously increase prices. Keeping up with processor speeds is the tough job.

As a result, analyzer prices are probably going to flatten out, according to Greg Peters, a product marketing manager at HewlettPackard Co.'s Colorado Springs Div. "We're forced to use more expensive technology to get the functionality that the customer needs," says Peters. "For 100 MHz , we have to go to ECL, and that gets a lot more expensive. ECL obviously has less density and needs morc power, and those factors generally mean a higher cost of processing."
As important as cost is in these competitive times, no instrument is a good value if it doesn't do its required job. For complex instruments, the right specifications are highly dependent on the application. This is even more true of logic analyzers. Speed, number of channels,
and memory depth, are obvious considerations and relatively easy to evaluate.

Designers working on micropro-cessor-based systems, however, must make microprocessor support their first priority. They should look at the disassembler available for the specific processor or processors being used, as well as the probing scheme for connecting the analyzer to the device in the system.

Take A Test Drive

Peters advises prospective users to actually connect hardware to competing systems: "Just try out what they have. I say that because whenever people talk about microprocessor support, so many variables are always involved."

HP offers a broad range of microprocessor support, which the company calls preprocessing, for its two logic-analyzer lines. The low-cost, portable HP 1650 series and the highperformance, modular HP 16500 series accommodate processors from Hitachi, Intel, Motorola, National Semiconductor, Zilog, and other manufacturers. Five models in the 1650 series range from 32 to 80 channels, with $100-\mathrm{MHz}$ timing analysis and $25-$ or $35-\mathrm{MHz}$ state speeds. The 80-channel 1652B and 32-channel 1653B include two 400-Msample/s digitizing oscilloscope channels. HP limits the scope bandwidth to onefourth the sample rate- 100 MHz -

1. THE CLAS 4000 FROM BIOMATION (left) is hosted by a Macintosh II computer. The analyzer mainframe can hold up to four 96 -channel cards, which can be used as one 394 -channel instrument or four separate units.
to avoid aliasing.
The 16500 series is based on a fiveslot mainframe with a 9 -in. color display. The HP 16510B module supplies 80 channels of $100-\mathrm{MHz}$ timing analysis and $35-\mathrm{MHz}$ state analysis. It also allows simultaneous timing and state analysis. Other modules offer 1-GHz timing capability, 5 -Mbit/ s pattern generation, and digital-oscilloscope functions. The newest module, the HP 16540 A , boasts 100 MHz state and timing capability (see "100-MHz Card, Improved Interface Enhance Analyzer, " p. 68).

Another critical consideration is the analyzer's trigger capabilities and trigger speed. To debug complex systems, triggering on event A, or event A followed by event B, may not be sufficient. Designers may want to trigger on a certain event, but only after executing a specific subroutine and after a specific pattern of interrupts. That requires a state machine with multiple states.

It's hard to generalize how many states are needed, but four is probably a good minimum, according to Chuck Wiley, strategic planning manager in Tektronix Inc.'s Digital Instruments Div. He notes that state triggers are more advanced than level triggers, so it's tough to equate the two types in terms of numbers.

For state analysis, it's important to trigger at the same speed at which the designer wants to acquire data. Because very high-speed triggers are hard to implement, Wiley cautions users to read the fine print. The analyzer may run at the desired speed, but if it won't trigger at that speed, the data rate for state analysis will be limited.

Tektronix expanded its logic-analyzer product line last year with the Prism 3000 series, a modular system available in three different package configurations. The Prism architecture integrates emulation and realtime performance analysis into the same platform with the more conventional logic-analyzer functions of state and timing analysis and microprocessor disassembly. Maximum capabilities include 90 channels of $200-\mathrm{MHz}$ or 40 channels of 2 GHz timing analysis, and 960 channels of

Now you can replace a fistful of components, and drive power FETs and IGBTs with one costeffective part: The IR2110 monolithic dual channel 2 A gate driver with floating high side and ground reference low side.

Count your design time in hours instead of days. And cut assembly time to a fraction.

The IR2110 runs as fast as it designs. With operation above

1 MHz . On-chip bootstrap. Plus matched channel delay within 10 ns . That's right. 10 ns .

It takes good care of your circuit too, with gate undervoltage protection.

And latched shutdown makes current mode control both simple and easy.
IR211C

Is it rugged? $50 \mathrm{~V} / \mathrm{ns}$ dv/dt at -55 to 150° C in plastic. Versatile? Operates off 12 to 500 V rails with 5 to 20 V input, in any circuit topology. Reliable? The IR2110 meets the same high standards as IR's incomparable HEXFET ${ }^{\circ}$ power MOSFETs.

Call (800) 245-5549 for more information. We'll get it off the ground and on your desk in no time.

COVER: LOGIC ANALYZERS

$16-\mathrm{MHz}$ or 180 channels of $300-\mathrm{MHz}$ state analysis.

The basic Prism series building blocks are the MPM and MPX microprocessor analysis modules. The MPM and MPX include a Prototype Debug Tool (PDT) that gives designers emulator-like control of the system under test without the intrusiveness of conventional emulators. Together with the module's triggering capabilities, the PDT sets complex breakpoints and employs the analyzer's 8 -kbit memory as a trace buffer. The system lets the microprocessor run at full speed with no wait states.

Tektronix's latest analyzer advance is the Centurion, a $100-\mathrm{MHz}$ state, timing, and triggering module for the company's high-end DAS9200 digital-analysis system (see "100-MHz Analyzer Card Boasts Deep Memory, p. 65).

A pair of less-obvious analyzer specifications also contribute significantly to the ease-or difficulty-of the debugging process. Setup and hold times are important for accurate capture of the system-undertest's performance. Also, probe loading and its effect on signal capture can be critical. If the probe capacitance is too high, some microprocessors must be slowed down for proper operation. Moreover, probe resistance can mask glitches in the acquired signal.

Even with a thorough knowledge of an analyzer's specifications, designers must read data sheets carefully to find out if using various functions will affect the instrument's performance. For instance, a unit may be rated for $25-\mathrm{MHz}$ state speed and $100-\mathrm{MHz}$ timing. But if complex clocks are needed, the speed may drop to 17 MHz , warns Bob Roth, product marketing manager for logic analyzers in John Fluke Manufacturing Co.'s Philips T\&M Group. Furthermore, the use of the glitch-capture mode or time tagging may cut speed and channel count or even state memory, says Roth. Designers can usually work around these limitations, but doing so can increase total test time significantly.

The Fluke/Philips PM 3655 logic analyzer requires no performance
trade-offs, regardless of which functions are used. The unit comes in 24 to 96 -channel versions, with all channels usable for timing or state analysis at $100-\mathrm{MHz}$ clock rates. Using the 5 -ns glitch-capture mode won't reduce the speed or the $2-\mathrm{kbit} /$ channel memory. A built-in MS-DOS-based PC has its own separate system bus architecture and includes a 5.25 -in floppy drive and four expansion slots. The trigger function features a multilevel trigger word sequencer, true range recognition, and four clock qualifiers. Setup and hold times are less than 2.5 ns .

With features aimed at RISC and custom microprocessor designs, the PM 3655/R version includes 96 channels, a custom disassembler for the Intel i 960 CA microprocessor, 640 kbytes of memory, and a 40 -Mbyte hard drive. In its new analyzers-the PM 3580 family-the Fluke/Philips team stresses ease of use and simultaneous state and timing acquisition (see "Easy-To-Use Analyzers Eliminate Dual-Probing," p. 66).

Arium also added RISC capability to its line with the MIP-R30 microprocessor support package for the ML4400 logic analyzer. The hard-ware-software package consists of a target interface adapter and disassembler for the MIPS R3000 RISC device. The adapter creates an easy connection to the board under test by plugging into the R3000's PGA socket. The processor plugs into the adapter. Implemented with Arium's
proprietary User-Defined Disassembler, the R3000 disassembler supports all of the chip's instructions and displays each data cycle below the instruction with which it's associated.

The ML4400 can run 160 channels at a synchronous clock rate of 50 MHz and 16 channels at an asynchronous rate of 400 MHz . It can also handle four microprocessors simultaneously. A recently introduced 256 kbyte ROM emulator pod can replace and emulate most popular 28-, 32-, and 40-pin EPROMs in the user's target circuit. The pod supports sin-gle- or double-address buses, emulating devices as fast as 70 ns .

Designers who prefer PC-based instrumentation can look at logic analyzers from Rapid Systems Inc. and MetraByte Corp., the latter a subsidiary of Keithley Instruments Inc. Rapid Systems has a new offering, the R3800, which the company believes can compete against low-end standalone instruments. Priced at $\$ 2995$, the R3800 features a $100-\mathrm{MHz}$ sample rate on 32 channels. It performs timing analysis at up to 100 MHz and state analysis to 50 MHz . Memory depth is 16 kbits/channel for timing and $8 \mathrm{kbits} /$ channel for state analysis.

For timing analysis, trigger capabilities include a sequence of four 32 bit data patterns. Multilevel, multiword triggers with data qualifiers are possible for state analysis. The analyzer comes with EGA color

DIRECT 1GHz SYNTHESIZER WITH PROVEN PTS QUALITY

Good Sines $\&$ Bad Stims

Looking for a low-noise, fast-switching signal source? Good Sines MM
Whether it's automatic test equipment, satellite uplinks, EW communications or imaging systems, Programmed Test Sources has a frequency synthesizer to fit your needs. GE MRI units, Teradyne Testers, Varian Spectrometers . . . all use PTS synthesizers.

Bad Signs \$\$\$

And while other manufacturers have big dollar signs, PTS synthesizers start as low as $\$ 1,950$.
PTS manufactures a complete line of precision synthesizers covering the 100 KHz to 500 MHz frequency range with switching times as fast as 1μ second for our direct digital models.. And plenty of other options as well, like resolution down to .1 hertz (millihertz available as special order), GPIB and digital phase rotation.
Just as importantly, along with every PTS synthesizer comes our "absolutely everything covered". 2-year warranty. At the end of two years comes our flat $\$ 350$ senvice charge for any repair up to the year 2000! PTS has a commitment to quality you won't find anywhere else.
Find out how PTS synthesizers used the world over can help you in your application today. Call for our complete catalog, or to talk to an applications engineer.

Call (508) 486-3008 Fax (508) 486-4495

PROGRAMMED TEST SOURCES, Inc 9 Beaver Brook Road, P.O. Box 517, Littleton. MA 01460

If you think that ultra-low phase noise and

 $\mu \mathrm{s}$ switching cost a bundle, we have a pleasant surprise for you!The PTS 1000, our

new direct synthesizer
with 0.1 Hz resolution
and low-noise standard
$\left(1 \times 10^{-9} /\right.$ day $)$ costs
only $\$ 11,500$

How tostayahead

Start with our high-performance standard products.Then add unique functional or performance capabilities with our semi-standard options.To get the ICs you want. And the competitive advantage you need. Quickly. Easily. With minimal risk.

Want power factor correction?

Don't just meet the standard. Beat the standard. With single-chip standard products
that offer power factor correction of .99, in either boost or flyback (buck-boost) configurations. They're the first ICs designed to reduce harmonic currents to help you meet both existing and proposed regulations for switch mode power supplies. And help you reduce
your customer's power distribution problems.

Or how about our complete

 family of high-frequency PWM controllers.They offer you a wide range of highfrequency, highperformance single chip solutions for state-of-the-art switching power supplies with operating frequencies up to 1 MHz . With advanced

Micro Linear's family of PWM and Power Factor Control IC's provide highlyintegrated solutions for a broad range of switching power supplies.
features like improved fault protection.
Added synchronization

Product Category	Features
Power Factor Control	High Efficiency Flyback or Boost
PWM Controllers	1 MHz , Additional Fault Protection, Synchronization
Resonant Control	ZVS and ZCS to 3 MHz
Motor Control	BLDC Sensorless Commutation

of the powercurve.

capability. Even stability improvements.
Looking for new techniques in motion control?

Now you have some unique design options. With our new ML4410 sensorless motor controller, the first controller designed to automatically commutate brushless DC motors without the need for Hall-effect sensors. So you can eliminate the inherent alignment, torque ripple and flutter problems previously encountered with Hall-effect commutation. And design smaller, lower cost, higher reliability motors for any continuous speed application.

Semi-standard options.

Since these standard products are based on our FB3480, FB3490 and FB3631 tile arrays, they can all be easily

modified to satisfy specific application
 requirements.Whether you require proprietary circuit modifications, special screening, packaging or reliability levels. modifications of our standard products offer you better application fit, with lower risk.

And we're not stopping there.

We'll soon be introducing a new line of resonant controllers for ZVS and ZCS applications and a new softswitching, phase modulation controller that will enable you to design smaller, more efficient power supplies.

Want some straight answers?

Just call Jon Klein today at (408) 433-5200 and ask him about our complete line of power control products. And about our semi-standard capabilities. He'll show that the best way to stay ahead of the power curve is to take a straight line.

Straight to Micro Linear.

COVER: LOGIC ANALYZERS

software with file, setup, trigger, display, and options menus. Optional disassemblers are available for most processors.

At only $\$ 1295$, MetraByte's PCIP-DLA delivers a userprogrammable sampling rate up to 20 MHz in either synchronous or asynchronous modes. A setup time of 2 ns ensures the validity of the acquired data, which can be displayed in a timing diagram or state format. The system consists of a full-size PC card containing clock, timing, memory, and interface functions, and two 8 -channel pods. The pods, which connect to the board through a 3 -ft. ribbon cable, hold all sampling comparators and buffer circuits.

To conserve data memory, users can set the programmable trigger function to pre-, post-, or midpoint positions. Alternatively, triggering can be initiated randomly through the keyboard. Trace memory is 256 words by 16 bits. The analyzer comes with menu-driven software for programming display type, board-address setup, trace type, clock select, sample period, display magnification, and data/disk functions.

Macintosh Control

A unique feature of the Biomation CLAS 4000 is that users control the system through an Apple Macintosh IIcx with a graphical interface (Fig. 1). Pictorial representations establish probe location and reassignment, triggering, and external clocking. The Mac's large color monitor can accommodate 16 windows that contain such information as instrument configuration, status, and time-correlated data in multiple formats. A mainframe holds up to four measurement modules, a separate trace-control triggering module, and a Motorola 68000 -based computer for mainframe control.

The basic measurement module supplies 96 channels at sampling rates to 50 MHz , with either internal or multiple external clocks. The module is software-configurable to 48

> 2. IN ADDITION TO OFFERING up to 192 channels, the PLA/2 portable logic analyzer from Kontron holds a complete PC/AT-compatible host computer. The $3.5-\mathrm{in}$. floppy drive and a 25 -Mbyte hard disk are standard.
channels at 100 MHz or 24 channels at 200 MHz . The four modules can operate as completely independent analyzers or can be connected for 384-channel operation. A crosspoint switch in the module makes it possible for users to reorder the channels or reassign them as high-resolution inputs without moving the connections.

Another modular logic analyzer, the Kontron PLA/2, is hosted internally by a complete 80286 -based, 10 MHz PC/AT-compatible computer. The system has a 3.5 -in floppy drive, a 25 -Mbyte hard disk, and an EGA/ Hercules-compatible graphics card (Fig. 2). Three open AT slots allow RAM expansion, modem use, or additional measurement capability. The basic analysis card is the Kontron 48channel General Purpose Data Acquisition (GPDA) board. A PLA/2 can hold four GPDAs, which users can configure as one 192-channel analyzer or four independent units. Synchronous analysis of 50 MHz and asynchronous analysis of 100 MHz are possible with 4 - or 16 -kbit/channel memory. Triggering capability includes 12 levels, with 15 pattern and two range recognizers. And users can avoid programming complex statements across an array of levels by writing a Boolean trigger statement in one level.

To uncover a particularly tricky timing problem, designers may require more than the 1 -bit resolution of a logic analyzer. But reprobing
can be time-consuming if only a typical two-channel oscilloscope is available. Consequently, Outlook Technology Inc. introduced its model 1600 Logic/Oscilloscope. The system's mainframe offers a $200-$ MHz synchronous or asynchronous sample rate for logic analysis on each of 16 channels. Every channel can also be used in the scope mode, with a $100-\mathrm{Msample} / \mathrm{s}$ sampling rate and 4-bit resolution in the one-shot mode, or 6 -bit resolution in the repetitive mode (ELECTRONIC DESIGN, April 26, p. 57). With a full complement of nine expansion modules, the system supplies 160 channels of logic analysis and scope capability. Users can store setups or data on the standard 3.5 -in floppy drive. An optional hard drive is also available.

A unique instrument is the OmniLab II from Orion Instruments Inc. In addition to a 48-channel logic analyzer, the OmniLab holds a 2 -channel digital oscilloscope, an arbitrary-an-alog-waveform function generator, a 24 -channel digital stimulus generator, and a $500-\mathrm{MHz}$ frequency counter. The basic system comes with 4 kbits of trace memory and 4 kbits of stimulus memory.
The logic analyzer handles state analysis to 34 MHz and timing analysis to 204 MHz . Orion's Mixed A/D Triggering system examines all analog and digital inputs simultaneously to help capture rarely occurring events or mixed-mode problems. And designers can use the logic-analyzer criteria, such as time qualification and pass counters, to describe analog waveforms for capture by the scope. Test setups are programmed with a mouse to adjust settings shown on the screen. With the OmniMacros programming function, users can arrange the setups into an automated test sequence.

How Valuable?	Circle
Highly	541
MODERATELY	542
SLIGHTLY	543

TEXAS INSTRUMENTS

A PERSPECTIVE ON DESIGN ISSUES:
Creating systems with an analog edge

IN THE ERA OF

Advanced Linear can help you raise system performance levels.

A leadership family of analog circuits from Texas Instruments is helping designers meet difficult design challenges.

The evidence is strong. Throughout the design community, systems using the new breed of Advanced Linear functions from Texas Instruments are achieving the keener performance edges that can spell marketplace success.

TI's new analog devices are enabling design engineers to link digital brains to analog worlds more effectively and efficiently than ever before. Some offer new standards of accuracy or speed while others are highly integrated devices combining analog and digital functions on a single chip. The result is superior system performance and design flexibility.

These Advanced Linear functions are the result of leadership process technologies that we at TI firmly believe are the key to the advanced analog devices your future applications will demand.

Intelligent power for automobiles

Designers in the automotive industry face a tough challenge: Handle high reverse voltages and achieve rapid load turnoff while providing fault protection, detection, and reporting and efficient load management. To provide the needed intelligent power devices, we developed one of our newest process technologies, Multi-EPI Bipolar. It is unique because it can combine rugged power transistors with intelligent control functions.

The resulting circuits are now providing reliable, cost-efficient control of solenoids and valves in such automotive applications as antiskid braking systems, electronic transmission controls, and active suspension systems.

Other industry segments are also benefiting from TI's Advanced Linear process technologies. Here are a few of the winning designs to which we have helped add an analog edge:

Toledo Scale

Challenge: Improve the accuracy of point-of-purchase scales by eliminating drift over time and temperature.
Solution: The TI TLC2654 Chopper op amp. Our Advanced LinCMOS ${ }^{\text {tu }}$ process makes possible chopping frequencies as high as 10 kHz , reducing noise to the lowest in the industry.

Pulsecom

Challenge: Develop a linecard capable of driving low-impedance loads with greater precision.
Solution: Our TLE206X family of JFET-input, low-power, precision operational amplifiers. These devices offer outstanding output drive capability, low power consumption, excellent dc precision, and wide bandwidth. Fabricated in our Excalibur process, they remain stable over time and temperature.

Leitch Video

Challenge: Design a compact, costefficient direct broadcast satellite TV descrambler for consumer use. Solution: Tl's TLC5602 8-bit Video DAC. Our LinEPIC ${ }^{\text {m" }}$ process combines one-micron CMOS with precision analog to satisfy the demands of the application for video speeds and lowpower operation.

U.S. Robotics

Challenge: Build a modem for highspeed data transmission between computers; allow flexible operation and minimize data errors. Solution: Our TLC32040 Analog Interface Circuit (AIC). A product of our Advanced LinCMOS process, the AIC combines programmable filtering, equalization, and 14 -hit A / D and D / A converters with such digital functions as control circuitry, program registers, and a DSP interface.

Xerox

Challenge: Cut component count and cost of copier systems while boosting reliability.
Solution: Our TPIC2406, a topperformance peripheral driver in a standard DIP package that is capable of driving heavy loads. It is fabricated using our Power BIDFET" ${ }^{\text {"I }}$ process which permits greater circuit density and incorporates CMOS technology for low total power dissipation.

Mr. Coffee

Challenge: Design an intelligent coffee maker that brews faster, maintains optimum temperature, shuts off automatically, and has a built-in cleaning cycle.
Solution: Our LinASIC" ${ }^{m} /$ LinBiCMOS ${ }^{\text {T" }}$ capability permits us to combine both analog and digital library cells with custom analog cells. This results in cost-efficient integration of temperature monitoring, timing, and high-current outputs on a single control chip.

All of these examples point to one conclusion: TI's Advanced Linear functions are adding an analog edge to many system designs. They are contributing significantly to the enhanced system performance that marks a market winner.

Helping you implement your designs in a changing world.

An increasing share of the total analog market is being captured by mixed-signal devices. As they gain more widespread acceptance, they are driving the expansion of the overall analog market (see above).

Changes such as this are the order of the day in the IC marketplace. Texas Instruments continues to provide not only the high-performance circuits you need but also the depth of experience, support, and service fundamental to successful completion of your designs.

Experience:
 Building on three
 decades in ICs

We at TI can successfully meet your requirements for mixed-signal devices because we have acquired the necessary knowledge from 30 years of experience in developing both analog and digital functions. We have also drawn upon our digital ASIC strengths in developing our LinASIC capabilities.

Support:

Speeding our chips to you
The faster we move new products through our design cycles, the faster you can get through yours.

We employ a wide variety of designautomation tools and sophisticated software to speed our development process.

Service:

Providing a surety of supply
However advanced our circuits may be, they are of little value if they are inaccessible to you. TI operates on the principle of global coverage, local service. We manufacture semiconductors in 13 countries and operate support centers in 22. We have product and applications specialists, designers, and technicians around the world. They are linked by one of the world's largest privately owned communications networks so that we can bring you our best - circuits and support - from wherever they may be to wherever you are.

Keeping our communications open

The relationship between you as customer and us as vendor is vital: You are our chief source for firsthand information that can help guide us in developing the circuits you will need for your future designs. We at TI welcome your comments and your suggestions.

TI's Leadership Analog Processing Technologies

 LinBiCMOS - Combines Advanced LinCMOS, digital ASIC CMOS, and up to $30-\mathrm{V}$ bipolar technologies to allow the integration of digital and analog standard cells and handcrafted analog components on a monolithic chip.LinEPIC - One-micron CMOS double-level metal, doublelevel polysilicon technology, which adds highly integrated, high-speed analog devices to the high-performance digital EPIC process.

Advanced LinCMOS - An N -well, silicon-gate, double-level polysilicon process featuring improved resistor and capacitor structures and having three-micron minimum feature sizes.

Power BIDFET - Merges standard linear bipolar, CMOS, and DMOS processes and allows integration of digital control circuitry and high-power outputs on one chip. Primarily used for circuits handling more than 100 V at currents up to 10 A .

Multi-EPI Bipolar - A very cost-effective technology that utilizes multiple epitaxial layers instead of multiple diffusion steps to reduce mask steps by more than 40%. Used to produce intelligent power devices that can handle loads as high as 20 A and voltages in excess of 100 V .

Excalibur - A true, single-level poly, single-level metal, junctionisolated, complementary bipolar process developed for high-speed, high-precision analog circuits providing the most stable op amp performance available today.

If you would like a more detailed explanation of our Advanced Linear process technologies, please call 1-800-336-5236, ext. 3423. Ask for a copy of our Advanced Linear Circuits brochure.
${ }^{\text {rm }}$ Trademark of Texas Instruments Incorporated (C) 1990 Tl

08-0082

100-MHz ANALYZER CARD B0ASTS DEEP MEMORY

John Novelino

The rare baseball player who hits 40 home runs and steals 40 bases is known as a $40-40$ man. An equivalent magic number in today's logic-analyzer field is 100 . So it's natural that Tektronix named its newest analyzer, which hits that goal in five categories, the Centurion.
The Centurion, offered as a card for the DAS9200 digital-analysis system, features $100-\mathrm{MHz}$ sampling, clocking, triggering, and time stamping on 100 channels (96 data and 4 clock). Channels can be multiplexed for asynchronous acquisition up to 400 MHz on 24 channels. Users can connect three cards in one DAS mainframe and as many as 16 cards with expansion units.

Introduced this month, the Centurion supports 1032 -bit RISC and CISC devices with microprocessor analysis packages: the AMD 29000; the Intel 80386, 80486, 80860, and 80960; the MIPS R3000; and the Motorola $68020,68030,68040$, and 88100 . The modules include preprogrammed setups for clocking, channel names and groups, and symbol tables. A sample reference memory allows quick familiarization with processor-specific capabilities.

Tektronix says it can quickly add support for other devices as demand warrants. This ability is based on the Centurion's 16 -state, $100-\mathrm{MHz}$ state machine, which can accommodate new microprocessors without additional hardware or emulator pods. The state machine, which permits real-time tracking of bus activity, can be programmed to emulate the machine-state operation of complex buses and to properly place samples for processor monitoring.

To ensure real-time operation at the analyzer's full speed, the trigger must run at the same speed. Therefore, the Centurion has a $100-\mathrm{MHz}$

THE CENTURION logicanalyzer probes can be used individually for isolated lines, or bundled together in groups of eight with a special clip for fast connection to wide buses.
trigger that can identify an event and make a trigger decision before the next event occurs. The trigger can operate at full speed across all channels. In addition, users can program the state-machine trigger from libraries or by defining their own events. Full symbolic triggering simplifies the definition of complex events. Trigger resources include 16 programmable states, 8 decisions per state, 8 events and actions per decision, and 17 action types.

The 8 -kbit memory in the Centurion 92A96 should facilitate debugging (a 92A96D version stores 32 kbits). Because the root of a problem may occur long before its first visible symptom, users must trigger on the symptom, then look back on the acquired data. To supply sufficient memory economically, Tektronix developed an efficient way to interface the analyzer circuitry to commercial bulk memory. In traditional designs, performance demands require that the RAM be integrated onto the cus-
tom analyzer chips, an expensive proposition.
To squeeze 96 channels of 100 MHz analysis capability onto one card, Tektronix designed custom ICs. The company packed many functions onto each chip, so that most signal traffic is on-chip and chip-to-chip connections are minimal. This eliminated most of the timing and skew problems encountered when functions were split across several smaller devices.

With speeds as high as they are today, probe technology is critical to any measurement instrument. Vendors must counter lead capacitance to ensure signal fidelity. In the Centurion, Tektronix uses the same passive compensation technique found in the company's high-performance oscilloscopes. The probes incorporate a nichrome wire that creates a complex characteristic impedance. The result is a transmission-line quality connection from the probe tip to the analyzer's front end, which itself has a $200-\mathrm{MHz}$ bandwidth.
Mechanical connections are also important in dense circuitry. Consequently, the company designed the probes to be used separately or in groups. Each probe can be connected individually to isolated lines, such as clocks and strobes.
Alternatively, a special clip enables designers to band eight probes together into a small package for easy connection to wide buses (see the figure). The same probes can connect to a microprocessor bus for state analysis with disassembly, or to a fast asynchronous clock to look at bus timing.

Price And Availabilty

Prices for the Centurion 92A96 start at $\$ 17,950$, which includes one year of on-site support. Delivery is estimated at 6 weeks after receipt of an order. DAS 9200 mainframes start at $\$ 9970$.

Tektronix Inc., Logic Analyzer Div., P.O. Box 12132, Portland, OR; (800), 245 . 2036.

CIRCLE 544

How Valuable?	Circle
Highly	545
Moderately	546
Slightly	547

EASY-T0-USE ANALYZERS Eliminate Dual-Probing

John Noveluino

Performance specifications don't always tell the whole story in test and measurement. Sometimes ease of use is as important in determining how fast and how well a task gets done. The Philips PM 3580 family of logic analyzers is one example. Because of their improved architecture and probe technology, even inexperienced users can have them up and running in less than 30 min ., according to the John Fluke Manufacturing Co., which is introducing the analyzers in North America.

The family's performance is good enough to stand on its own. In the maximum configuration, they offer 96 channels of $50-\mathrm{MHz}$ state analysis and $200-\mathrm{MHz}$ timing analysis, with 2 kbits of memory per channel (see the figure). But the key contribution made by the 3580 series is a dual-analyzer per pin architecture. Using only one set of probes, every channel can collect both state and timing in-
formation simultaneously.
This capability eliminates the need to either dual-probe a circuit under test or acquire two sets of data successively. It also cuts down on the total number of channels needed.

The other alternative, dual probing, is potentially unreliable and can load down the target system. The new low-capacitance passive and semi-passive probing adapters, however, hold loading to only 7 pF , even while recording both state and timing data. In most cases, the quickconnect adapters are matched to de-vice-specific software disassemblers. In cases where clock timing requires an active adaptor (such as the 80386), Fluke can supply a separate adapter for timing information.

Pop-up menus and VGA graphics also make the analyzers easy to use even for inexperienced or occasional operators. But expert users can speed the process by taking one-let-

[^3]ter short cuts. For instance, hitting " T " on the front-panel keyboard moves the cursor to the trigger point. The full alphanumeric keypad makes it easy to enter labels and values, and the large rotary dial speeds data scrolling or the positioning of the cursor.

The analyzers feature a fully integrated state and timing trigger sequencer that users can program with any combination of state and timing parameters, such as data patterns, bus ranges, edges, or glitches. As a result, designers can use a state sequence to define a trigger for a timing acquisition. Or a glitch can trigger the instrument, even if only state data is being collected.

When an external clock is defined, the memory splits between state and timing data automatically so that both can be stored. But users can configure the memory for either state or timing information. Therefore, the sequencer can use one type of data as a trigger to collect the other version.

A transitional timing scheme optimizes memory use during timing acquisitions. Rather than continuously collect data, the analyzers record the changes and time stamps indicating when they occurred.

Also, memory depth automatically adjusts for the speed of the recorded signals. For fast signals, transitional timing ensures at least the same recorded length as a conventional timing analyzer with the same memory size. For slower signals, the technique permits longer data acquisitions.

Price And Availabilty

Prices for the PM 3580 family range from $\$ 4250$ for the PM 3580/30, with 32 channels of $50-\mathrm{MHz}$ state and $100-\mathrm{MHz}$ timing recording and a 1-kbit deep memory, to $\$ 10,950$ for the PM 3585/90, which features 96 channels, $50-\mathrm{MHz}$ state and $200-\mathrm{MHz}$ timing analysis, and 2-kbits of memory.
John Fluke Mfg. Co. Inc., P.O. Box 9090, Everett, WA 98206-9090; (206) 347-6100. CIRCLE 548

How Valuable?	Circle
Highly	549
Moderately	550
Slightly	551

THE HP 16540A OFFERS 100-MHz state analysis with microprocessor support for several RISC and high-performance CISC devices. Shown here is the disassembled code for the MIPS R3000.

100-MHz CaRd, ImPR0VED Interface Enhance analyzer

John Noveluino

Building on its successful HP 16500A-series logic-analysis products, Hewlett-Packard has introduced a $100-\mathrm{MHz}$ state and timing module with fullspeed triggering and adjustable setup and hold times. The company also improved the system's user interface.

The HP 16540A is the basic master card that supplies 16 channels of 100 MHz state and timing analysis. Up to four 48-channel HP 16541A expansion modules can also reside in the 16500 A mainframe, offering a total of 208 channels. The $100-\mathrm{MHz}$ speed is available across all channels, as is the full-speed ($10-\mathrm{ns}$) triggering. The analyzer features a 4-kbit/channel memory with full-speed time or event tagging.

The ability to adjust setup and hold times (T_{S} and T_{H}, respectively) enables users to capture narrow windows of valid data. Three pairs of settings are possible: $\mathrm{T}_{\mathrm{S}}=4 \mathrm{~ns}$ and $\mathrm{T}_{\mathrm{H}}=$ $0 \mathrm{~ns} ; 2 \mathrm{~ns}$ and 2 ns , or 0 ns and 4 ns .

Interface enhancements include the ability to control the logic analyzer using the built-in color touchscreen, or through an optional mouse, trackball, or ASCII keyboard. The keyboard, for instance, speeds entry of labels and patterngenerator data. In addition, users can now scroll through data acquired by the optional 1-GHz timing module and $400-\mathrm{Msample}$ /s digital-oscilloscope module.

The basic interface and software features are similar to those in the system's first-generation module,
the HP 16510A. That unit offers 100MHz timing analysis and $35-\mathrm{MHz}$ state analysis.

Along with the two modules, HP is adding processor support interfaces for the latest RISC and high-performance CISC devices. The devices supported include the Intel 80386, 80486, 80860, 80960CA and KA; Motorola 68030, 68040, and 88100/88200; AMD 29000; and MIPS R3000 (see the figure). The interfaces bring the number of microprocessors supported by the analyzer series to nearly 100.

The HP 16540A eases the debugging process with four trigger sequence levels. Before triggering, each level can be qualified with an occurrence counter (up to 65,535 times), store qualifier, and a branch to a previous level. A store qualifier follows the trigger level.

Trigger capabilities include four pattern recognizers, each an AND combination of bit patterns in each label. A range recognizer identifies data that's numerically on or between two specified patterns. The maximum size is 32 bits. The state trigger can also cross arm the 1-GHz timing module and digital scope module to look for glitches that may be causing a problem.

Two master clocks on the 16540A can clock in data lines on the module and on the 16541A. In addition, two slave clocks are available on each 16541A when operating in the multiphased mixed mode. Users can OR together clock edges to run simultaneously in the single-phase or multiphase mixed mode.

Price And Availabilty

The 16-channel HP 16540A master card costs \$7000, and the 48-channel HP 16541A expansion card goes for $\$ 8500$. Delivery is within 16 weeks. The HP 16500A mainframe costs $\$ 7500$. The new microprocessor interfaces range from $\$ 1200$ to $\$ 2500$, with estimated deliveries of 2 to 16 weeks.

Hewlett-Packard, Colorado Springs Div., P.O. Box 2197, Colorado Springs, CO 809072197; (800) 752-0900.

CIRCLE 552

How Valuable?
Circle
Highly
553
Moderately
554
SLightly
555

New! RISC, CISC and DSP Support

Arium announces three new features on their high-speed, modular ML4400

1High-Speed RISC Support

- Fastest R3000 support available
- Supports the 88000
- Priced 60% below the competition
- User-modifiable disassemblers for R3000 and 88000 micros with full instruction mnemonic and data display
- Low-impedance, locally buffered connection to the R3000 and 88000 micros

High-Speed CISC Support

- Full hardware and software support available for the 68030, 80386, 80486 micros
- The only fully synchronizing disassemblers for these micros

3

Full DSP Support Software

- Disassembler support available
- Supports Motorola's 56000, Analog Devices' ADSP2100, and more
- Source code for disassembler provided; user can customize displays

The ML4400 Features:

- Synchronous channels: 160 @ $50 \mathrm{MHz}, 64$ © 100 MHz
- Timestamped trace, data qualification
- Real-time performance analysis (histograms)
- 400 MHz on 16 ch ., with 32 K bits/ch. trace depth
- 100 MHz on 80 ch ., with 8 K bits/ch. trace depth
- Transitional timing, up to one billion virtual samples
- Trigger functions include AND, OR, NOT, RANGE, COUNT, TIME and GOTO
- User-defined disassembler ARIUM CORPORATION 1931 Wright Circle
Anaheim, California 92806. 714/978-9531. FAX 714/978-3341

AT\&T's 50 to 150 Watt Board Mounted Power Modules: Engineered to take the heat... for virtually 100% system up-time.

Our UL*-recognized modules not only withstand 0° to $90^{\circ} \mathrm{C}$ temperatures, they bring Bell Labs' design innovation and AT\&T quality to your distributed power architecture. This provides leading-edge power features that help you reduce design time, and manufacturing and servicing costs, while enhancing reliability.

Component needs are cut by including filtering and control functions within the package. They include an EMI filter to meet FCC requirements (Class A) by controlling both radiated and conducted EMI.

Modules are hot-plugable in parallel configuration and can be replaced or serviced while the system is up and runningwith no loss of power or data.

AT\&T power modules also allow parallel redundancy, so you need only one extra module to back up the system. All 50,

The components of success.

 100 and 150watt modules measure $4.8 \times 2.5 \times .5^{\prime \prime}$ and are available in a variety of outputs.

Save space and prevent downtime with AT\&T's power modules. Call today for our complete catalog of AT\&T 5W to 150W devices: 1800 372-2447, ext. 590.

By Taking Into Account Effects Like Output Limiting And Asymmetrical Slew Rates, Spice Macromodels Perform As Actual Op Amps.

Models Can Mimic Behavior 0 F Real 0p Amps

WALT JUNG
Linear Technology Corp., 1630 McCarthy Blvd., Milpitas, CA 95035;
(408) 432-1900.

0p amp macromodels are, in a sense, much like actual parts. For example, a given op amp is good or bad for an application, depending on its usage. Logically, it can be expected that op-amp models successfully mimicking modern parts will contain a diversity of features, as do their real counterparts. But many don't. Rather, they're extremely generic and don't accurately depict such phenomena as current and voltage limiting, common-mode problems, phase-reversal, and asymmetrical slew rates. Yet the purpose of Spice simulations, which is to minimize, supplement, or corroborate breadboarding with accuracy, is pointless if the models aren't accurate.

When transistor-level op-amp models are used, the memory usage and simulation time required quickly become impractical for anything but small

[^4]circuits. In contrast, using op-amp macromodels has the advantage of allowing memory use and simulation speed to become much more attractive, making larger circuits possible. In truth, the macromodel approach to Spice may be the only practical way for designers to simulate today's complex circuits in reasonable times. Otherwise, circuit size is limited by the inescapable bounds of memory and computer speed.
Though op-amp macromodels are hardly new, the most important thing to remember is their fundamental objective-to beat the simulation memory/speed limits. If they don't meet this, they're virtually useless. And, while IC op-amp designers have access to a full transistor-level model, most board and system users of op amps will likely never encounter it. Therefore, good op-amp macromodels are critical when using Spice in real-world designs.
Internally, a macromodel achieves efficiency by using elements inherent to Spice. For active gain, this

2. THIS SIMPLIFIED PMOS-INPUT-STAGE op-amp macromodel provides accurate simulation of op amps with dissimiliar output current sink-tosource ratios.

means using "ideal controlled source" stages instead of transistors, a few passive resistors and capacitors, and generally minimum use of p-n junctions. Four basic "controlled sources" dominate most opamp macromodels: the voltage-controlled voltage-source (VCVS), the voltage-controlled current-source (VCCS), the current-controlled cur-
rent-source (CCCS), and the currentcontrolled voltage-source (CCVS).
Typically, a macromodel will have two transistors at the input to realistically simulate most input parameters. Depending on model complexity, macromodeling can show useful reductions in simulation time and memory usage.
Macromodeling got its start about

3. A MOTION DETECTOR CIRCUIT using an IR sensor and a quad micropower singlesupply op amp (an LTC1079) can be
simulated with a macromodel that accurately represents the op amp. The amp can put out 15 mA , yet it draws just $45 \mu \mathrm{~A}$ from a single supply.

REAI OP-AMP MAGROWODELS CAN SLEW ASYWMETRIGIITY

Many popular p-channel, JFET-input op amps like the 1974-vintage $355 / 356$ types intrinsically slew twice as fast for nega-tive-going outputs swings. Similar comments apply to the OP-15 and OP-16 clones. The slew rate (SR) specified on the data sheet typically was the lower of the two rates, the positive.

Most JFET macromodels available simply don't address the asymmetric slew rate at all. Others have seldom modeled it accurately. Slew-rate control was built into the original Boyle model, and it addresses asymmetry for com-mon-mode signals by means of capacitor ce (or es for JFET amps). However, this approach leaves something to be desired, because the slopes produced are inconsistent. LTC has implemented a new means of modeling slew rate asymmetry (upper figure).

This circuit represents a much simplified Boyle-type model with p-channel JFET input devices j1 and j2. In typical usage, the slew rate is simply iss/c2, which is symmetrical when es is zero. When the common source capacitor cs is added, the slew rate for commonmode signals can be adapted (ce, as is noted in the Boyle paper). Unfortunately, this strategy works best when dealing with commonmode inputs, and not as well with inverting inputs.

LTC models asymmetrical slew rates by adding a VCCS, designated "gosit" (shown dotted), which dynamically modifies the total tail current available to $\mathrm{j} 1 / \mathrm{j} 2$. This source is driven by the differential output of $\mathrm{j} 1 / \mathrm{j} 2$ and produces a current which adds to, or subtracts from, the fixed current iss. Consequently, the resulting current available to charge or discharge compensation capacitor c2 is higher for one slewing slope than for its opposite. This holds regardless of whether the amplifier operates in the inverting or noninverting mode. As an op-

(a)

(b)
tion, es (also shown dotted) can still be used for further slew control of common-mode inputs.

When generating a macromodel with asymmetrical slew rates, the lower of the two slew rates is taken from the data sheet, in addition to the ratio of the high-to-low slew rates. Algorithms in the program then calculate an appropriate static value for iss and the gain of the VCCS "gosit." This is so that a proper slewing characteristic is produced by the model. Nonin-verting-mode Spice waveforms of an LT1056 op amp and those produced by an actual device clearly depict asymmetrical slewing (lower figure a and b, respective$l y)$.

15 years ago with seminal papers by Boyle, Cohn, Pederson, and Solomon 1, and Solomon ${ }^{2}$. This general model topology, now known as the Boyle model, is fairly well understood in basic form.

The underlying principles of the topology stand behind the many modifications and extensions of it found in the diverse models available today. While the Boyle model has been criticized on a number of points, many useful adaptations do exist. Some even offer answers to the criticisms.

Spice modeling in general and macromodels in particular have certain "facts of life" which sooner or later become evident. For example, it's a non-negotiable truth that more complex models (whether based on the Boyle topology or not) must obey certain simulation trade-off rules. The LTC (Linear Technology Corp.) models to be discussed in this article are no exception.

Model Trade-0ffs

Several rules can be stated forthright: Simple macromodels will always run the fastest, use the least overhead, converge fast, and (may) produce modest accuracy. Conversely, more complex models will run slower, use the most memory, and may have difficulty convergingbut they can ultimately provide greater accuracy. In a world that deals with engineering practicalities, we designers must always be aware of these factors.

If the modeling process is carried to an extreme, it's possible to produce a very complex macromodel that offers little or no speed and/or overhead advantages over a transis-tor-level model for the same circuit. Worse yet, it may never find a bias point in large- or medium-sized circuits (even when the Spice defaults are "tweaked"). At this stage, the obvious question becomes "What's the point of such a macromodel?" If we ignore these factors, it can lead to complex models which simply don't perform as needed. Because of such simulation issues, overly-complex models (which can actually supply very fine emulation in certain areas)
may never turn out to be a totally general solution.
The original Boyle macromodel used a 741 bipolar op amp, and could be configured for bipolar npn or pnp input transistors. The current Boyle topology adaptations use many different transistor types. Interestingly enough, many still operate in some ways as a Boyle-type macromodel, and can be implemented with similar design equations.

A schematic of the LTC p-channel JFET macromodel represents a case in point (Fig. 1). This model behaves fundamentally as a Boyle type, but has a host of added enhancements (many are optional to the user). It's used as an example in the following discussions for the general Boyle topology, and as a departure point for other variations.

Key equations for a basic Boyle macromodel are noted in figure 1 , and the dc signal path is indicated by heavy lines. The topology models the following op-amp parameters: gain bandwidth product (GBP), slew rate (SR), phase margin, de gain (Avd), common-mode rejection ratio (CMRR), input offset voltage ($\mathrm{V}_{\text {os }}$), input bias and offset currents (I_{b} and I_{os}), output current limiting, positive and negative-output-voltage limits, output resistance, and power-supply quiescent current.

The parts of the general circuit involved with defining the simulation operation are noted in the basic equations (lower left of figure 1). Some minor variations occur when input transistors change from junction to PMOS FET types, or to npn or pnp bipolar transistors. More op-ampspecific options involve details of voltage/current limiting and slew rate control, so these equations aren't shown (see "Real op-amp" models can slew asymmetrically," p. 73). This topology adapts well to different op amps. Devices using all of the transistor types mentioned can be used in the front end. Moreover, various options can be added for input clamping, differential or common-mode characteristics, limiting employed in the output circuit, and the complexity of phase-frequency compensation used.

To appreciate the Boyle model topology's flexibility in adapting and/ or extending to other input transistor types, look no further than the j1/ j2 input differential JFET pair (q1/ q2 if bipolar, $\mathrm{m} 1 / \mathrm{m} 2$ if MOS), which is set by the design parameters to operate at a differential gain of unity. This normalization step has the benefit of increasing the utility of the model when simplifying design expressions for slew rate and gainbandwidth product. It can substitute other input devices within this architecture relatively easy.

Model Flexibility

Specifically, the input-stage gainnormalization step enables other structure variants to be implemented without major topology changes. As noted, the original paper allowed for bipolar pairs in the basic design equations. However, if this model is viewed more generally, a fundamental characteristic stands out-virtually any differentially operated transconductance pair can be used in the front end. From the point in the circuit Va (the differential outputs of $j 1 / \mathrm{j} 2$), the signal path through the model remains essentially the same and the basic design equations hold.
While JFETs $\mathrm{j} 1 / \mathrm{j} 2$ are shown at the input here, other variations have provisions for transconductance adjustments so that other transistor types also operate at unity gain with suitable biasing. As a result, this concept allows many variations of the original Boyle model to exist. The design equations in the figure dictate the overall model performance. It can be extended to include all of the transistor types mentioned. To create a model for an op amp with different input-transistor types, Spice transistor model-parameters $\mathrm{q} 1 / \mathrm{q} 2$ or $\mathrm{m} 1 / \mathrm{m} 2$ replace $\mathrm{j} 1 / \mathrm{j} 2$. The transistor-model parameters of these devices then determine the amplifier's $\mathrm{V}_{\mathrm{os}}, \mathrm{I}_{\mathrm{b}}$, and I_{os}.

Though this input-stage gain normalization step makes the input flexible, it does insert a trade-off. This occurs because the input transistors operate at currents and gain levels unlike that used in an actual op-amp circuit. As a result, input noise per-
formance of a Boyle model won't usually track a real part accurately. This factor isn't unique just to the Boyle model, but is true of other models with input-stage gain normalization.
In the original Boyle model's output stage, voltage limiting is set by a diode and voltage source (brute force) hard-clamp to the rail for the positive limit (not shown). A similar diode and voltage source supplies a negative rail limit, and typically these limits are within a volt or two of their respective supply rails. This relatively simple limit scheme produces high internal currents approaching 100 A when limiting.

Current limiting of the original Boyle model is supplied by back-to-back diodes. They work in concert with controlled sources producing a buffered voltage drop proportional to load current (not shown). At high output currents, the diodes conduct and limit the output current. As with the voltage limiter, this is also a brute-force limit design, producing high currents in operation.

These limiting schemes have been improved in several regards within model upgrades, allowing more freedom for the limits and less interaction with the model's small signal performance. In the model shown, more complex voltage limiters are deployed, which may or may not be used for a given opamp type. The diodes d3a, d 3 b , and controlled source (gpl) form a positive voltage limiter, while 44 a , d 4 b , and gnl form a negative voltage limiter. The improved current limiter is described later.

The LTC approach to macromodel design aims toward practical macromodels that emulate the amplifiers in both specification and functionality while maintain-
ing reasonable speed and accuracy. The Boyle macromodel was chosen to be built upon, enhancing it where appropriate, extending and redesigning it where necessary.

To generate new models, LTC uses a family of programs that implement four types of custom macro-
models. Each op-amp input type, JFET, PMOS FET, npn, and pnp has an associated program. These produce new, unique, ready-to-run op-amp-specific macromodels from data-sheet specifications. With this approach, the company can quickly respond with new models, or to requests for custom values.
The use of junction and MOSFET transistor types in a macromodel input stage was described by Krajewska in an early Boyle model enhancement. ${ }^{3}$ LTC's p-channelJFET model is fundamentally similar to Krajewska's, but with further adaptations added. With all its features active, this model is one of the more complex within the LTC library. It may appear overly busy, but seldom will all options be present at once. The following discussions highlight the various enhancements that go beyond the basic Boyle model.
The $\mathrm{j} 1 / \mathrm{j} 2$ front end offers a number of possible options within the stage. Input capacitance is simulated by capacitor cin, and the buffered clamping network around dcm1-4 simulates the anti-phase-reversal, commonmode clamping of LTC JFET amplifiers (because this circuit isn't needed for all simulations, it comes "commented out" in the model file).
Transistors $\mathrm{j} 1 / \mathrm{j} 2$ have model characteristics calculated to yield unity gain with gate currents consistent with the I_{b} and I_{os} of the amplifier modeled. The $\mathrm{j} 1 / \mathrm{j} 2$ model parameters for $\mathrm{V}_{\text {to }}$ supplies V_{os}, and voltage source vcm 2 simulates the negative common-mode characteristic of some JFET amplifiers. In general, these macromodels should act as a real op amp. For example, they contain a power consumption current source ip, as well as a reverse diode dsub that also models maximum
supply voltage.
In the model's inner stages, gain and frequency response characteristics are set by ga, gb, r2, ro2, and c2. For a simple case, this essentially follows the Boyle equations. Capacitor c 2 is used alone as the main compensation capacitor, while c1 is used alone across the input to ga to control phase margin. The system has a primary pole set by c2, and a secondary one set by c1.

For amplifiers with multiple polezero compensation stages, such as the LT1007 and OP-27 families, additional phase-frequency compensation can be brought into play through rxcl and exc1, or through rxc2 and cxc2. Together, these controls enable more complex frequency responses to be simulated without additional active stages. Though limited in versatility relative to adding many gain stages, it does have advantages. It's a simple extension of the Boyle model and it adds no major penalty in simulation time and memory needs, which would be the case if active stages were added. Moreover, because this extension consists only
of passive parts, optionally added to the internal main frequency control points of a Boyle-type model, it can be incorporated with any op amp in the families under discussion. The extension is used in the LT1007 and OP-27 models mentioned, as well as the LT1115 model illustrated in later examples.

This model's slew rate is set by the tail current of $\mathrm{j} 1 / \mathrm{j} 2(\mathrm{~m} 1 / \mathrm{m} 2)$ and c 2 for a simple JFET (PMOS) amplifier case (or, the tail current of $q 1 / q 2$ and c2, for a bipolar case). However, many p-channel JFET op amps aren't simple cases because they don't slew symmetrically. The optional circuitry used for these JFET amplifiers is described in the separate section on asymmetrical slew rates (see p. 73). The LT1056, LT1057, and LT1058 LTC amplifier families and older standard devices, such as the OP-15 and OP-16, use this model.

So far, what's been discussed for the model in figure 1 also generally applies when PMOS transistors are used ($\mathrm{m} 1 / \mathrm{m} 2$ replace $\mathrm{j} 1 / \mathrm{j} 2$). In this PMOS input macromodel, much of
the rest of the overall model is similar, and there are few changes in the FET equations. The PMOS-inputstage model easily handles such useful device categories as the low I_{b}, low $\mathrm{V}_{\text {os }}$ chopper-stabilized units as well as single-supply CMOS devices.

The output current and voltage limiters used with the LTC PMOS model are usually of the more complex form shown, due to several important performance issues. For example, amplifiers emulated by these PMOS models have rail-to-rail output voltage swings combined with the millivolt-level saturation voltages typical of CMOS outputs. They also have gains of 160 dB and CMRRs of 140 dB . Moreover, that's combined with the sub-microvolt offsets typical of chopper-stabilized op amps. The ability to handle many of these performance characteristics is made possible by model features shown in the figure. These include improved voltage limiters supplying very low saturation voltages with minimal gain error.

Most current-limit schemes used within op-amp macromodels sink and

5. AN AC SPICE ANALYSIS of an RIAA preamplifier, using a macromodel of the LT1115 op amp, agrees to within 0.1 dB when compared with a frequency-response plot run in the lab.

ACCURATE, DEVICE-SPECIFIC, IC OP-AMP MACROMODELS

source output current symmetrically. This typically isn't a problem, because most real op amps also have symmetrical limits. However, some types don't limit symmetrically at all. Their sinking and sourcing current levels may differ by a factor of 3 to 5. For example, some CMOS amplifiers have common drain outputs, and the lower n-type device can sink more current than the upper p-device can source. For example, the LTC1050-a chopper-stabilized op amp with a CMOS output stage-can only source 5 mA of current, yet it sinks 20 mA .
LTC implemented an improved technique to model current limiting, one that can also incorporate different degrees of asymmetry. A much simplified PMOS input stage macromodel shows how it's done (Fig. 2). In this circuit, output current is sampled by a low-value series resistor, rso, which is typically 1Ω. The current, proportional to the voltage drop across rso, is scaled up by the VCVS ecl. This eliminates any possible effects of the limiting loading the output and thus reducing gain. The technique was developed to remove the loading effects of brute-force limiting. The brute-force approach can cause gain errors in a very-highgain amplifier, such as the chopperstabilized LTC1050. In general, any op amp modeled with a gain of more than 120 dB can be subject to limiterrelated loading errors. In choppertype amplifiers, where gains are typically 160 dB or more, the effects of brute-force limiting can cause significant errors.

Selecting the value of rso, the gain of ecl, the diodes d1-d2 and voltage sources vod1-vod2 provide plus and minus current-limit thresholds. The gain of ecl is common for both plus and minus current limits, and the voltage of the two voltage sources is adjusted to reflect the desired sinking and sourcing thresholds (for equal current limits, the diodes are the same and the voltage sources are dropped). When an output current limit occurs, a predetermined voltage appears across rcl. The overall-current-limiting feedback loop is then balanced in defining the output
current limit, with VCCS (gcl) absorbing the current from the main signal path through the VCCS (ga).

A somewhat more subtle advantage of this limiter is its freedom from large internal currents in limit, unlike brute-force limiters. Although it's shown in the context of the LTC1050 PMOS chopper-stabilized op amp, the limiter is also quite adaptable. Variations of it appear in a number of other LTC macromodels, including those mentioned along with the JFET families and many of the npn bipolar types.

Not all IC vendors have taken these steps in modeling PMOS input, CMOS output op amps. Inspecting some models released reveal such obvious deficiencies as input transistors that are totally different from the part actually modeled, and lack of close attention to output limiting levels. Obviously, such a model can't simulate input or output commonmode ranges with a high degree of fidelity. Nevertheless, these parameters can be critical in single-supply operation. For example, what engineer would trust a model simulation that depicts amplifier output swing going negative at limit when only a positive power supply is used? Some models do just that.

PNP Macromodels

The pnp-input-transistor macromodel behaves very similar to the Boyle-derived, enhanced-FET models (just described), with pnp transistors replacing $\mathrm{j} 1 / \mathrm{j} 2$. However, other practical differences exist due to the functional characteristics of the amplifiers that it models. These differences are the thrust of the enhancements for the pnp-input models.

To start, pnp-input op amps are often designed for single-supply and/ or micropower applications. For these applications, common-mode input and output ranges are crucial. Obviously, a good model should reflect what the real parts do for meaningful simulations. More than just the basic dc gain and frequency response should be considered. For example, models should take into account common-mode input voltages to ground (or slightly below it), like
the actual parts will see when they're in the circuit. Similarly, com-mon-mode transients should be clamped as in the real parts. The pnp model addresses these additional points brought on by micropower and single-supply applications.

LTC single-supply op amps have a unique, common feature-input-phase-reversal protection using a common-mode clamp network. In the macromodel, common-mode diodes referenced to a voltage (vemc) clamp voltages applied to the input pair. Though not shown, this is similar to the buffered clamp network of the first model discussed (Fig. 1, again). Using this clamping in the models is optional, but when present, it allows linear common-mode response to a few hundred $m V$ below ground with no phase reversal, just like the actual parts behave. ${ }^{4}$

Though not depicted in figure 1, an extra output network enhances small-signal saturation behavior while still allowing full short-circuit currents. This represents another important feature of the pnp model that's also specific to micropower devices. It comes into play in the LT1078 and LT1178 series devices. For this type of amplifier, one of the more difficult aspects of model performance lies in simulating the sup-ply-rail saturation voltage while still retaining the effects of micropower current drain coupled with high maximum output current. For example, in the case of the LT1078, the typical supply current is only $45 \mu \mathrm{~A}$ and outputresistance is a few kilohms, but it can deliver $\pm 15 \mathrm{~mA}$ to a load. The output network makes it possible to model concurrent micropower smallsignal characteristics and high maximum current. The LTC LT1013/ LT1014/LT1006 and related micropower pnp-input op-amp families use this model.

NPN Macromodels

The npn macromodel schematic is also similar, with of course, npn transistors replacing the JFETs (Fig. 1, again). As with other amplifier models, there are many part-specific details the npn model can handle, depending upon the specific op amp be-

ACCURATE, DEVICE-SPECIFIC, IC OP-AMP MACROMODELS

ing modeled.
Precision npn input op amps often use differential-input clamp diodes. For example, the LT1001 and OP-07 family models have back-to-back clamp diodes, series resistors, and the input capacitance cin. Others have various clamping-resistance combinations. Most op amps today are compensated internally, yet the LTC models also handle externally compensated units. For instance, with the LM108 family of amplifiers, compensation capacitor c 2 is outside the model.

The extended phase-frequency combinations discussed previously come to play within a number of npninput, op-amp types, such as the LT1007/LT1037, the OP27/37, the LT1028 and LT1115, and the LT118 series. Most of these also use the improved voltage-current limiters shown in the first model discussed. Others, like the LT1012, LT1097, and OP-97, use a classic Boyle method of current limiting. ${ }^{5}$

It may or may not be obvious, but the enhancements added to the various models are generally "removable." In other words, these moderately complex models aren't cast in concrete. Examples include the anti-phase-reversal clamp and the differential clamps. For situations where these enhancements are not essential, the items can be commented out in the model file to enhance speed, lower memory requirements, and aid convergence.

Virtually all of the enhancements can be selectively disabled this way, either as a potential aid to troubleshooting, or simply to enable a "turbo" mode. However, while this is possible, it's not recommended unless the different ramifications are understood, and in no case should model tweaking be attempted by the inexperienced. ${ }^{6}$

Readers should note that a given macromodel available from a vendor may or may not model all of the device parameters listed. For example, V_{os} and I_{os} can often be skipped, simplifying a model's front end to just one transistor model for both $\mathrm{j} 1 / \mathrm{j} 2$ (or $q 1 / q 2$ for bipolar, $m 1 / m 2$ for MOS). With $\mathrm{V}_{\text {os }}$ and $\mathrm{I}_{\text {os }}$ modeled, ap-
propriately different transistor models are used, as opposed to one common transistor. The latter approach is an example of trading off simplicity (and a slightly faster speed) against the loss of several rather key performance parameters.

Models at Work

The "proof of the macromodel pudding" lies in how well they achieve the tasks intended. In this section, two circuits are both simulated and lab tested. The examples are chosen to bring out some of the modeling issues discussed.

The first example circuit is a motion detector. It uses a single-supply op amp, the LT1079 quad micropower device (Fig. 3). The detector has the general design objectives of low power consumption from a single battery. Consequently, the LT1079 with a standby drain of 45 $\mu \mathrm{A}$ /amplifier is a good choice.

The circuit operates with an IR detector placed in a field illuminated by an IR source. When motion within the field occurs, the sensor produces an ac output. This signal is amplified, detected, and stretched to trigger an alarm. The circuit consists of a twostage bandpass amplifier $\left(\mathrm{A}_{1}\right.$ and $\left.\mathrm{A}_{2}\right)$ with variable gain and an absolute value detector (also A_{2}). These are followed by a threshold comparator $\left(\mathrm{A}_{3}\right)$ and a resettable timer $\left(\mathrm{A}_{4}\right)$.

The circuit was simulated for both ac and transient analysis, using the LT1079 model. Spice ac analysis makes it easy to check gain vs. frequency, even down to 0.01 Hz . This is a difficult and time-consuming task in the lab. The ac Spice analysis of the circuit was run between the signal input and the outputs of both A_{1} and A_{2}. In this case, the amplifier gain peaks between 0.1 and 10 Hz , as shown in the Spice plot (Fig. 4a). Transient results from both Spice and the lab test show the composite operation of the system exercised with a $1-\mathrm{mV}$ pulse input, which is detected as an "alarm" condition (Figs. $4 b$ and $4 c$).

This system was designed and tested on the simulator, and later verified in the lab. Only minor adjustments to address parasitic coupling
issues were necessary in the lab. There were no convergence problems found in the simulation. Typical runs took 2-3 minutes on a MAC using PSpice.

An ac preamplifier with frequen-cy-dependent gain was chosen for the second simulation example (Fig. 5). In the past, when this was a popular method to accomplish Record Industry Association of America (RIAA) phono equalization, predictive analysis was very useful toward designs of this circuit type. Regardless of the dwindling popularity of LP records, this type of amplifier is still sufficient to illustrate the utility of Spice analysis.

The circuit employs frequency-dependent feedback around a very high quality amplifier gain block. With the appropriate choice of the network values and sufficient amplifier gain bandwidth, very close conformance to a standard RIAA curve can be attained. To correctly deemphasize the preequalized signal, three well-known time constants are required: 3180,318 , and $75 \mu \mathrm{~s}$. ${ }^{7}$

In this circuit, four passive R-C components comprise the main RIAA equalization network as detailed on the LTC demo-diskette ${ }^{8}$ and the LT1115 data sheet ${ }^{9}$. For the chosen gain of 40 dB , the network supplies accurate RIAA equalization with standard values. The active circuit consists of an LT1115 op amp with its output followed by an LT1010 unity gain IC buffer (Fig. 5). The LT1115 model is from the LTC library, while a unity gain VCVS stands in for the LT1010.

In audio circuits of this type, relative errors on the order of $\pm 0.25 \mathrm{~dB}$ or less for frequency response are considered negligible. In figure 5, both the Spice and lab results show deviations less than this. The agreement between the lab and Spice results is mostly within $\pm 0.1 \mathrm{~dB}$.

This circuit was designed entirely on the simulator, and later verified in the lab. No problems exist with convergence. The simulation took 9.4 seconds on a $16-\mathrm{MHz} 386 \mathrm{PC}$ clone. Interested readers may try it for themselves with the LTC demo Spice macromodel diskette (available free

DESIGN APPLIGATIONS

ACCURATE, IC OP-AMP MACROMODELS

from LTC literature request 1 (800) 637-5545). Any of the LTC application notes listed in the references can be obtained by calling that number. \square

References:

1. Boyle, G.R., Cohn, B.M., Pederson, D.O., and Solomon, J.E., "Macromodeling of Integrated Circuit Operational Amplifiers." IEEE Journal of Solid-State Circuits, Vol. SC-9, \# 6, December 1974.
2. Solomon, J.E., "The Monolithic Op Amp: A Tutorial Study." IEEE Journal of Solid-State Circuits, Vol. SC9, \# 6, December 1974.
3. Krajewska, G. and Holmes, F.E., "Macromodeling of FET/Bipolar Operational Amplifiers." IEEE Journal of Solid-State Circuits, Vol. SC-14, \# 6, December 1979.
4. Jung, W. G., "An LT1013 Op Amp Macromodel." Linear Technology Design Note \# 13, July, 1988.
5. Jung, W. G., "A Spice Op Amp Macromodel for the LT1012." Linear Technology Design Note \# 28, November, 1989.
6. Jung, W. G., "Questions and Answers on the Spice Macromodel Library." Linear Technology Application Note \# 41, April, 1990.
7. "Standard Recording and Reproducing Characteristic, Bulletin E1." November 6, 1978, RIAA.
8. Jung, W.G., "DEMORIAA.CIR" and "RIAAREF.INC." Spice source files, Linear Technology Corp. Spice macromodel diskette, March, 1990. 9. Jung, W.G., Markell, R.N., "RIAA Phono Preamplifier." LT1115 data sheet, Linear Technology Corporation, November, 1989.

Walter Jung, staff scientist at Linear Technology Corporation, specializes in application circuits and technology. A recognized authority on op amp applications, he's the author of the "IC Op Amp Cookbook, " which is now in its third edition. Jung attended Drexel University, Philadelphia, Pa.

H0w VaLUABLE?	CIRCLE
Highly	559
Moderately	560
SLIGHTLY	561

Pick up a little HP quality today.

500 Hz AC
bandwidth.
3 -year warranty.
\$99.00*

3 -year warranty.
\$169.00*
HP E2377A
0.3\% DCV, 1\% ACV accuracy; 1 kHz AC bandwidth.

C1990 Hewlett-Packard Co. TMLID025B/ED
Call HP DIRECT, 800-538-8787, Ext.TH02 to order your HP handheld multimeter. Call before 4:00 P.M. and we'll ship the same day.
*U.S. list prices.
There is a better way.
HEWLETT
PACKARD

At last, a LeCroy you won't have to beg for.

Now you can get LeCroy Digital Oscilloscope performance for the price of an ordinary oscilloscope. At just \$6,990, the new Model 9410 offers you unrivaled measurement capabilities. Waveforms are digitized with high signal fidelity into 10 K acquisition memories and presented on the sharpest display of any oscilloscope (the above picture speaks for

Price being equal, wouldn't you rather have a LeCroy?
LeCroy Corporate Headquarters
700 Chestnut Ridge Road - Chestnut Ridge, NY 10977-6499
Tel. : 1-800-5 LeCroy - (914) 4252000 / TWX: (710) 577-2832
Fax: (914) 425-8967

T I P S F 0 B
 ENTREPRENEURS

- Venture capitalists look at early stage companies, not early stage products. Don't focus on the merits of the product. Rather, show precisely what is needed to build a company to produce and market it.
- Set your marketing priorities early and research well, squeezing out risk at each stage.
- Clearly identify your customer base and profile it in detail in your business plan. To show existing support and shrink investment risk, share your product idea with potential customers and garner early endorsements.
- Seek the best support: a reputable industry consultant, respected accounting firm, and, if the product core is patentable, a top legal firm. Get them excited about your company so they can help you network with contacts in the financial community.
- Don't underestimate your competition for venture capital funds. Early stage funding is available but harder to get than in the past. Those who do the best homework may have the edge. Study the major players, their track records, and distribution channels.
- Watch your industry to be sure your product will be competitive in two years.
- A special product should be able to pull together an experienced team of senior marketing and salespeople. They are essential to engineers and designers. A business plan without them probably will lack credibility.
- Like packaging on a new product, how a business plan is written plays an important role in its acceptance. Consult expert sources who can help you do a professional job. Be sure the plan answers key risk parameters.
- Be creative in pursuing funding. Besides venture capital, consider aligning with strategic corporate partners, perhaps in a royalty relationship; check out Small Business Administration loans and boutique investment banking firms; or put together an investor group of friends and relatives.
- Don't lose hope. It's a long and difficult process where persistence pays.
by Alex Cilento, vice president of 321 Ven-
tures, Newport Beach, Calif., which funds technology startups.

Most design work still focuses on 16 - and 8 -bit applications. The next 12 months should bring big changes, though. More designers are working with 32 -bit microprocessors as fewer focus on 8 -bitbased projects. About one-third use 8 -bit microcontrollers. These conclusions come from a recent survey of Electronic Design readers on microprocessor design and use.

Use of reduced-instruction-set computer (RISC) chips is growing sharply. About 10% of the designers polled currently use 32 -bit RISC microprocessors. In the next 12
months, 20% plan to use 32-bit RISC processors. In comparison, 24% of the readers now use 32 -bit complex-instruction-set computer (CISC) chips. And 32% expect to use CISC processors of 32 bits in the next year. In the next 12 months, about half the readers expect to use 16 -bit CISC processors. And 19% expect to use 16 -bit RISC processors.

Earlier this year, the Adams Co. mailed surveys to 1000 Electronic Design subscribers in the U.S., chosen at random. The Palo Alto, Calif.-based company received and tabulated the 406 responses.

-Time, Big-Time.

©ne glance at the full array of options Motorola offers in real-time, and you'll see why it's become the developer's platform of choice. For both target and host environments, no other single vendor has anything like it.

One reason is our long-time experience with real-time technology, beginning with our pioneering work back in 1980. Another is the broad spectrum of our product line, which includes ICs, boards, systems, and software. In short, Motorola has everything you need to build realtime applications ranging from simulation to industrial automation to imaging and more.

Yet another reason to choose Motorola is our unending commitment to open standards. Our real-time platform gives you standards-based choices at various levels of integration. The centerpiece of this nonproprietary approach is VMEexec,"' our wide-open, totally integrated development environment.VMEexec allows you to use standard UNIX ${ }^{*}$ interfaces to write a single set of application code, and then reuse it for other projects. Better still, you can combine any software product that conforms to these standards.VMEexec includes a high-performance realtime executive, a strong run-time connection to UNIX-based systems, flexible and efficient real-time I/O and file systems, as well as powerful development and debug capabilities. And because VMEexec is integrated with the hardware, you can begin
software development even before the hardware is available.

If yourre thinking about real-time, you should be thinking about time to market, and that's all the more reason to think Motorola. Especially when you consider that we can help speed product integration by serving as a single source for boards, software and systems. Add to that the industry's best applications expertise and design support, ranging from small embedded control systems to multi-processor simulation. Then factor in Six Sigma quality control. And remember that Motorola gives you the industry's only true migration path from

Right now, Motorola real-time systems are hard at work in critical applications worldwide.

We Do Real-Time Full-Time.

At Motorola, we've dedicated an entire division solely to realtime development systems. Our real-time system architecture begins at the microprocessor level in either CISC or RISC, and
extends all the way to the end-user.

Right now, you can use VMEexec to port UNIX applications to a SVID/POSIX-compliant real-time environment, and vice versa. And they can be used for runtime capabilities as well

INTEGRATED REAL-TIME PLATFORM

as for development. Several human interfaces are available, including X.11, Motif, DeltaWindows", X .400 , and LU6.2. As for networking, Motorola supports all popular protocols, including TCP/IP, NFS, OSI, and SNA. We also offer a real-time database and CASE tools, and you can work in C, FORTRAN, ADA, PASCAL, LISP, COBOL, and BASIC. Put it all together, and you'll discover only one company gives you the full story on real-time, and that's Motorola.

Motorola's In Real

1990 Motorola, Inc. Motorola Computer Group is a member of Motorolas General Systems Sector. VMEexec is a trademark of Motorola, Inc. All other product or brand names mentioned are trademarks or registered trademarks their respective holders.

Y O U R M O N E Y

IRAS: WHEN YOU CHANGE JOBS

Engineers are changing jobs more often these days. Career growth, company mergers, and defense cutbacks all play a part. On leaving a company with a $401(\mathrm{k})$ retirement plan, an employe receives a lump sum distribution of the vested amount.

Funds in retirement plans have been growing on a tax-deferrred basis. Taxes are postponed until funds are withdrawn. Once an engineer receives the lump sum, he can:
-Pay taxes now. He may be eligible to take advantage of certain favorable tax rates. Then he can use or reinvest the balance.

- IRA rollover. If he doesn't need the money immediately, he can deposit it into an IRA rollover account within 60 days of receiving the distribution. His retirement funds thus keep growing tax-deferred.
-Partial IRA rollover. He may elect to roll over part of the distribution into an IRA. He must pay income taxes on the amount kept, at ordinary rates.

If he decides to keep the entire distribution, his age and number of years he participated in his company's plan determines how the distribution is taxed.

- If he is more than $591 / 2$ years old and participated in the plan for at least 5 years, he may elect favorable tax treatments known as 5 - or 10- year income averaging. Income averaging calculates his tax liability as though his distribution were received in equal, yearly installments. As a result, the distribution may be taxed at a lower overall rate than if it was considered ordinary income.
-Those who receive less than $\$ 500,000$ benefit most from 10 -year averaging (1986 rates).
- If an engineer turned 50 before Jan. 1, 1986, participated in the plan for at least 5 years, but is still under $591 / 2$, he can take advantage of 5 - or 10 - year averaging. But he is subject to an additional 10% penalty tax (unless he's taking early retirement at 55).
-If he wasn't 50 before Jan. 1, 1986, he must pay income tax and a 10\% penalty tax.

An engineer can avoid all taxation and the penalty tax by rolling over the lump sum distribution into an IRA. He should weigh all his choices against his near- and long-term financial needs and goals and consult his tax and financial advisors.
> by Henry Wiesel, a licensed financial consultant with Shearson Lehman Brothers, Shrewsbury, N. J. He is also a qualified pension coordinator. Comments and questions are invited c/o the editor.

OFFERS YOU GANT REFUSE

1he X terminal market is a turbulent one. Vendors and product models enter and leave the market almost daily. Sorting out \mathbf{X} products and players should get a bit easier, though. A free Comparison Guide to X Terminals is available from the X Business Group. The fall edition covers 90 products, monochrome and color, from 30 vendors.

The X Business Group, a market research and consulting company, focuses on X windowing systems, graphical user interfaces, and X terminals. For a copy of the guide, contact the X Business Group, 39791 Paseo Padre Parkway, Fremont, CA 94538; the telephone number is (415) 226-1075; the fax number is (415) 226-1094.

K M E T S K O R N E R ...Perspectives on Time-to-Market

BY RON KMETOVICZ

President, Time to Market Associates Inc. Cupertino, Calif:; (408) 446-4458

Idevote this column to a definition problem often called
 "creeping features." First off, it's unlikely that such features will ever be stopped-too many forces are at work to ensure their existence. But they can be brought under control.
At the intersection of the market information row and the product column of the Definition Matrix (Kmet's Korner, Sept. 13), the product development team is asked to agree upon necessary performance, features, cost, price, and timing.

A change in the product feature set is likely to influence the product's performance, cost, price, and timing. Change to the original definition should be produced only with close coupling and interaction between functional members of the team. R\&D, marketing, and manufacturing must calibrate each other on what change is desired, why it is necessary, and what is possible within a given time reference. All participants need to compromise. Good business judgment must dominate. At times, certain team members have to really flex to make necessary changes a reality. At other times, the program progresses without altering the product's feature set. The team has to make difficult choices followed by rigorous work.

Using the external reference specification (ERS) as a control document exposes feature creep throughout new product development. Any change, regardless of size, should be presented to the entire matrix team so they can assess the affect it will have on their work. The program manager then collects team feedback to determine the possible impact in the marketplace. Based on the cost/benefit analysis, a decision is made. If change is viewed as desirable, the ERS is revised.

A cost/benefit analysis is easiest to produce on me-too-with-a-twist and next-generation product-development efforts. For these classifications, a fair amount of market knowledge is available. This makes it easier to assess the sales gains produced by the added feature. Market research techniques (sales research, structured surveys, focus groups, interviews, and so on) can be put to good use so that hte customer's desires are included in the decisionmaking process.

Cost/benefit analysis is difficult to do on first-of-a-kind and derivative development efforts that are targeted at new markets. These efforts are also the ones most subject to the creative instincts of those involved in coming up with new product and market concepts. Completing a Definition Matrix for these types of efforts is an important step forward to keep creeping changes visible and under control. Visionary people now have a product and process model that exists outside of the mind that they must physically modify. This action forces them to think through the cause-and-effect relationships of their actions. If the visionaries are prudent, they will do the mind work before they suggest changes in the product's feature set.

I don't advocate making feature change difficult for first-of-a-kind efforts. Sometimes it's very necessary. But those who advocate changes should be made fully aware of the implications of their actions.

What do you think about the education that young engineers are receiving these days?

As a 1987 BSEE, I feel that I have a good perspective on the current status of the engineering curriculum.
Post-secondary schools are getting an unfair portion of the blame for low-quality engineers. Much of current public elementary and secondary education consists of learning by rote. Students are not taught how to think, only to regurgitate the facts. Universities are the last stage of the educational process, and the most visible to employers, so most of the blame gets directed at them. If employers are worried about the continued supply of good engineers, I feel that, for now, they should be concentrating more on elementary and secondary schools than on universities.

Improvements can be still be made at the university level. The curriculum should be lengthened to five years, but not necessarily to cram in more technology. The courses that should be added are ones that address production and manufacturing concerns, concurrent engineering philosophies, and real-world scenarios for engineering business, instead of focusing strictly on design. Requiring internships for the engineering profession would also give young designers an introduction to the demands of an engineering career.

Finally, leave room for humanities courses. Bringing in real-world issues from outside the laboratory can help broaden students' perspectives, help them appreciate diversity, and encourage new and creative ways of thinking. Brad R. Kelley, Albuquerque, N. M.

Humanities courses must continue to play a role in engineering education. Granted, today's electronics engineer faces everchallenging technologies; they are equaled by the world's ever-challenging social conditions. In short, things are tough all over.

All students must be aware of environmental issues, the alarming incidents of racial and cultural intolerance on North American campuses, the erosion of individual liberties in the U. S., and the importance of maintaining physical health to enhance mental performance. To these, add the importance of written and verbal communication skills in the workplace.

It's essential for graduating engineers to participate in the contemporary global climate that engineers previously helped to establish. Craig Cullum, McFarland, Wis.

T'he current level of learning upon graduation can be considered adequate. It would always be nice to learn more, but you must draw the line somewhere. When a young engineer graduates, he may have four years of student loans to reimburse. Adding an extra one or two years will strongly "demotivate" pursuing engineering when you can make as much money from business, commerce, or other fields.

The first use of an engineer is in low-level design and this is what the curriculum should provide for. Humanities and other ancillary courses may rather be more appropriate when going up into management (for example, group leader, and so forth) and should be provided by employers. Does the inverse stand? I don't believe that graduates of humanities are required to take engineering courses. That is also why too many managers do not have technical knowledge. Only the bottom line counts, and the Japanese corporations surpass the American ones.

In addition, too many employers treat engineers as disposable resources (i. e. do not allow technical upgrading during business hours). Engineers must often reinvent the wheel because of this and can make serious errors of omission while doing so, thereby exposing their employer to serious liabilities. By formal upgrading, learning from the mistakes of others also prevents the unnecessary stress associated with reinventing the wheel within an optimistic and management-imposed deadline.

Let me add another question: Should an engineer learn a second language to provide access to untranslated engineering knowledge (for example, Russian, Japanese, German, or French)? This could also ease access to foreign markets. Alain Beaulieu, Ottawa, Ontario, Canada.

What's your opinion on the education of today's young engineers? Which areas are being under- or over-emphasized? What role should humanities courses play in engineering education? Are four years enough to give young engineers a good foundation? Send your opinions to our fax (201) 393-0637 or to Compuserve address 75410,3624 . Or mail your responses to Electronic Design, Reader Opinions, 611 Route 46 W., Hasbrouck Heights, NJ 07604.

HOTPGPRODUGTS

IIoving various shapes around on flowcharts can be a headache, whether the charts are drawn by hand or in software. To ease making these changes, Patton \& Patton's Flow Charting 3 displays the object or area as it is moved to ensure precise placement.

Flowcharts can be imported and exported to other documents. Flow Charting 3 makes multipage charts and prints at 300 dots/in. on HP LaserJet laser printers and compatibles in normal, compressed, and ultracompressed modes. Version 3, an upgrade to II + , also has drivers for dot-matrix printers.

Besides a pop-up menu that has 35 predefined shapes, the program permits use of 200 shape sizes. Text can be displayed and printed in 10 styles, inside and outside of shapes. The program has a list price of $\$ 250$; an upgrade from II + costs $\$ 60$. For more information, contact the company at 485 Cochrane Circle, Morgan Hill, CA 95037; (800) 5250082, ext. 3366; fax (408) 778-9972.

When Many Things Come Together, BREAKTHROUGHS HAPPEN.

Now Available! A Real Breakthrough In DSP: 400MOPS Array Processing Chip Sets.

The world's fastest DSP product family is now together as a complete system solution from Array Microsystems. We started by gathering world leaders in digital signal processing to build a new company dedicated to supplying the next generation of DSP. Our products are a response to the needs of E-Systems, Tektronix, United Technologies, and our other industry development partners. Together, we pioneered VAST ${ }^{m "}$ technology; the first architecture to perform a complete DSP algorithm while operating on entire arrays of data in parallel-in real time, on a single silicon chip. Not only does array processing make 400 million operations per second possible, its high-level instructions make programming nearly trans-

SOLUTION	1 K complex FFT	64 K complex FFT	2 K tap FIR
Array A66			
1 processor	131 $\mu \mathrm{Sec}$	13.1 mSec	2.3 MHz
Fully cascaded	$26 \mu \mathrm{Sec}$ (5)	1.6 mSec (8)	25 MHz (13)

parent. For example, eight simple instructions execute a complex 64K-point FFT. Array Microsystems delivers complete solutions, not just DSP chips. The A66 family includes everything you need: chip sets, software development tools, complete array processor boards, and custom memory ICs and modules. The Digital Array Signal Processor (DASP) is the heart of the chip set, and executes 16 highlevel functions, including FFT butterflies, windowing, complex multiplies, and general-purpose functions. The Programmable Array CIRCLE 131

Controller (PAC) manages the entire system, including address generation for DASP and memory, and I/O up to 80 MHz . For even higher performance, you can cascade DASP/PAC chip sets (see table). You'll see A66 solutions in next-generation aerospace and defense systems, test equipment, medical instruments, and other breakthrough applications like HDTV. Join us by calling our DSP hotline. We'll help put the world's fastest DSP into your next application.

PEASE PORRIDGE

What's All THIS NEATMESS STUFF, ANYHOW?

0nce upon a time, there was a rapidly converging conflict: My boss thought my office was getting messier and messier, and he wanted me to make it neater. Now, this was just a year or so after my desk had won a $\$ 500$ prize for being the "Ugliest Desk in Northern California." So I guess he thought he was justified in pressuring me to clean up my act. He solved that problem by making it one of my goals to get my office to an acceptable (whatever that meant) level of neatness. Well, we never found out what that meant. Every time he would ask me how I was coming on the neatness campaign, I would tell him all of the other things I was doing to help our customers.
What if I came in on a Saturday

BOB PEASE
OBTAINED A BSEE FROM MIT IN 1961 AND IS STAFF SCIENTIST AT NATIONAL SEMICONDUCTOR CORP., SANTA CLARA, CALIF. with good intentions of neatening up some of my office, and the phone rang. Should I tell the customer, "No, I won't help you, I have more important things to do"?

So every year he would mark me down points in my review for not fulfilling my goals. He finally got so discouraged that he left the company. The poor guy. He just wasn't devious enough! He could have waited until the next earthquake and told one of the guys to knock over a couple of my piles of papers. Then he could then explain that I had to get it at least to a reasonable level of safety. But he never
figured that out, and I didn't tell him until after he left.
Some people keep their desk neat because that's what feels good to them. I find that neatness is not a priority compared to a number of other things, such as answering the phone when a guy needs help, or volunteering advice when a customer has a problem. Some people find it easy to keep a neat desk because they throw out things that make it look messy. I just don't operate that way.
office and asked, "Bob, do you have a Siliconix catalog?" I replied, "Sean. . . . you're standing on it." He looked down and, indeed, he was. He was impressed. But I knew right where it was, because I had recently tossed it over by the doorway so I could then put it in the bookcase by the door. Sean just happened to walk in before I put it in the bookcase.

More recently, I inherited a couple of filing cabinets and a huge $7 \mathrm{ft} . \times 3$ $\mathrm{ft} . \times 7 \mathrm{ft}$. cabinet from a Fairchild laboratory. Our secretary explained that I would have to junk it unless I could find a use for it. I said, "Well, I could always put it in my office." She looked at this huge ark and said, aghast, "No, you couldn't do that."
I thought about it. I got a yardstick, and I figured out that, with an

One time I was working on a Saturday after being at National just a few months. My desk was already stacked up pretty high. Another guy was at his desk, which had just a few dozen things on it. He was picking them up, one by one, studying them, and then throwing most of them in the wastebasket. I commented, "You sure do keep your desk neat." He said, "Yeah, if I find something I don't need, I throw it out." I said, "Doesn't your wife ever get nervous?" He replied, "It's my third wife...." No, I don't operate that way.
One day, an engineer stepped gingerly into the entry way of my

Surface Mountain

Sprague-Goodman offers a wide range of Surftrim ${ }^{\circledR}$ trimmer capacitors and Surfcoil® chip inductors for surface mount applications.
For high quality, sensible prices and ready availability, phone (516) 746-1385 today.

134 Fulton Avenue
Garden City Park, NY 11040-5395
TEL: 516-746-1385 • TELEX: 14-4533
TWX: 510-600-2415 • FAX: 516-746-1396

CIRCLE 110

Analog Designers... COMTRAN ${ }^{\text {® }}$ Is Now On The 386

Automatic optimization adjusts selected component values of your topology to make its response fit your arbitrary target curves in magnitude, phase, $\mathrm{Z}_{\text {in }}, \mathrm{Z}_{\text {out }}$ or any combination. Multiple passes allow standard value capacitors in precision filters or other networks.

- COMTRAN ${ }^{\circledR}$ is fast. Each plot here was generated on screen in 6 seconds. Optimization took less than 3 minutes using a $25 \mathrm{MHz} 386 / 387$ (or an HP 310). - COMTRAN ${ }^{\circledR}$ is an interactive, intuitive $A C$ circuit analysis program that handles component entry, editing, analysis, optimization, and user scaled Linear/Log graphics in one program.
- COMTRAN ${ }^{\text {® }}$ s tolerance mode graphically shows the effect of real world components. Impedance mode plots impedance at ANY node in your circuit.

Actual Plotted Output of COMTRAN (Reduced Size)

- $C O M T R A N^{\circledR}$ can create, capture and analyze time domain data, then use it to stimulate your circuit and plot the result in either time or frequency domain. - COMTRAN ${ }^{\circledR}$ has over 10 years of field experience on HP computers. Now it runs on 386^{TM} machines, too. And it still drives HPGL plotters.
- COMTRAN ${ }^{\text {® }}$ is modular-buy only what you need today. Ready-to-use packages start at under $\$ 1000$.

COMTRAN ${ }^{\circledR}$ Integrated Software

A Division of Jensen Transformers, Inc. 10735 BURBANK BOULEVARD, N. HOLLYWOOD, CA 91601 FAX (818) 763-4574 PHONE (213) 876-0059
COMTRAN is a registered trademark of Jensen Transformers, Inc. 386 is a trademark of Intel Corporation.

PEASE PORRIDGE

inch to spare, I could do that. My technician and I spent nearly all morning reassembling that cabinet and easing it into the corner of my office. I put about $1 / 3$ of a million cubic inches of my paperwork into that, and into the other file cabinets, and improved the appearance of my office so much that our senior secretary admitted that I qualified for an "Enviros Award." In the past, the various departments would vie to achieve cleaner clean rooms and higher-yield fab lines by having better cleanliness. A whole department of 20 or 30 people would work real hard to cut down the number of particles in their area and win an Enviros Award. But I got my Enviros Award single-handedly. I hate to guess how many particles I straightened up.

Right now, my office seems to be in the getting-messier-again phase. When I have to review a mask set, with precision down to the last tenth of a micron, I get my head in the right mood to do that. And when I'm done, in sheer rebellion I guess, I abandon the neatness for a while. I save what seems to me to be of value. Often that includes documents and papers and notes that other people would think aren't very valuable-until they come to see me years later, hoping I might have the information they need. Often I do. Go ahead, call me retentive. See if I care.

Now that the NBS has changed its name to the "NIST" or "National Institute of Standards and Technology," I have figured out the next way to enhance the neatness of my office. I'm going to buy a big dresser with 6 big drawers and a mirror and everything. I'm going to put it right at the entrance of my office, and put our ultra-precision resistors and capacitors in those dresser drawers. And I'm going to call it "The National Bureau of Standards."

All for now. / Comments invited! / RAP / Robert A. Pease / Engineer

ADDRESS:

Mail Stop C2500A
National Semiconductor
P.O. Box 58090

Santa Clara, CA 95052-8090

2PADS is a Personal -II \mid Computer based Printed Circuit board design system with many advanced features capable of outperforming most Workstation-based CAD systems-at a fraction of the cost.

As the most productive PC based board CAD system available today, PADS-2000 can handle even the most complex designs including: double sided surface mount boards, mixed technology boards, high speed designs and layouts exceeding 2000 IC's.

PADS-2000 design functionality includes:

- Over 11,000 parts/32,000 connections
- 1 micron Resolution
- True T-Routing capability
- Intelligent Copper Pour feature leaving isolated tracks and pads
- 0.1° parts/pads rotation
- Extensive Macro capability
- Digital, Analog and Critical Circuit autorouters

- On-line and Batch Design Rule Checking
- Instant track/segment length measurement
- Complete Forward/Backward ECO capability
- Uses 32 bit/386 native code for increased speed and functionality
- Easy-to-learn and Easy-touse

Call today for a demonstration at your local authorized CAD Software Dealer

Ask about our affordable Leasing Plan.

Call Today Inside MA:
(508) 486-8929

Outside MA:
(800) 255-7814

Software, Inc.
119 Russell Street
Littleton, MA 01460
 The MAN-amplifier's tiny package (only 0.4 by 0.8 by 0.25 in.) requires about the same pc board area as a TO-8 and can take tougher punishment with leads that won't break off. Models are unconditionally stable and available covering frequency ranges 0.5 to
$1000 \mathrm{MHz}, \mathrm{NF}$ as low as 2.8 dB , and power output as high as +15 dBm . Prices start at only $\$ 13.95$, including screening, thermal shock $-55^{\circ} \mathrm{C}$ to +100 C , fine and gross leak, and burn-in for 96 hours at $100^{\circ} \mathrm{C}$ under normal operating voltage and current.
Internally the MAN amplifiers consist of two stages, ir.cluding coupling capacitors. A designer's delight, with ail components self-contained. Just connect to a dc supply voltage and you are ready to go.
The new MAN-amplifiers series... another Mini-Circuits' price/performance breakthrough.

	RANGE (MHz)			MAX. OUT/PWR \dagger	$\begin{aligned} & \mathrm{NF} \\ & \mathrm{~dB} \end{aligned}$	DC PWR 12 V ,	PRICE \$ ea.
MODEL	f_{L} to fu	min	flatnesst†	dBm	(typ)	mA	(10-24)
MAN-1	0.5-500	28	1.0	8	4.5	60	13.95
MAN-2	0.5-1000	19	1.5	7	6.0	85	15.95
MAN-1LN	0.5-500	28	1.0	8	2.8	60	15.95
$\triangle M A N-1 H L N$	10-500	10	0.8	15	3.7	70	15.95
*MAN-1AD	5.500	16	0.5	6	7.2	85	24.95
$\dagger+$ Midband 10 fL to $\mathrm{f}_{\mathrm{L} / 2} \pm \pm 0.5 \mathrm{~dB} \quad \dagger \mathrm{ldB}$ Gain Compression \diamond Case Height 0.3 ln .							
Max input power (no damage)+15dBm; VSWR in/out 1.8:1 max.							
*Active Directivity (difference between reverse and forward gain) 30 dB typ.							

finding new ways
setting higher standards

CIRCLE
 521AMP STABILIZES WEIN BRIDGE OSCILLATOR

KARL TIPPLE

P.O. Box 181208, Dallas, TX 75218.

When making frequencyresponse measurements with a Wein Bridge oscil-lator-type audio-signal generator, it can be frustrating and time consuming to check and reset the generator output level after each frequency change. Unfortunately, many such signal generators using light bulbs or FETs as gain-control devices in the oscillator circuit suffer from fairly severe amplitude variations as the frequency is changed.

A circuit using an LM13600 operational transconductance amplifier (OTA) can stabilize the output level.

The OTA is connected as a variable resistance in the oscillator circuit's negative feedback loop (see the figure). The circuit operates with a maximum amplitude variation of about 0.1 dB over each decade in the $20-\mathrm{Hz}$ to $20-\mathrm{kHz}$ frequency range. This comes from combining the large dynamic resistance range represented by the OTA with the oscillator lev-el-sensing scheme used. An additional 0.1 to 0.2 dB variation is evident up to a maximum operating frequency slightly above 100 kHz . The maximum operating frequency of the circuit shown is determined by the char-
acteristics of the OTA.
The variable resistance represented by the OTA circuit is connected effectively between pin 3 of oscillator $\operatorname{amp} \mathrm{A}_{1}$ and ground, through C_{6} and the OTA. This resistance, with R_{1} and R_{2}, form a voltage divider that determines the gain of A_{1}.

The OTA circuit gets its control voltage from $A_{2} . A_{2}$ is biased so that the OTA represents a low resistance for oscillator startup. As the oscillator output rises to about 6 V pk -pk, the positive peaks of the sine wave begin to exceed the LM311 comparator threshold set by the voltage divider R_{3} and R_{4}. As a result, the comparator output is switched low for a short time on each positive peak. This action prompts a negative dc voltage to develop across C_{5}, which alters the control voltage for the OTA, causing it to represent a higher resistance. The higher resistance re-

THE LM13600 0TA, connected as a variable resistance in the negative feedback loop of a Wein Bridge oscillator, stabilizes the output.
This serves to eliminate amplitude variations as the frequency is changed.
duces the oscillator circuit's gain. At this point, any slight variation in the oscillator output's amplitude causes a significant change in the comparator's conduction low period. The resulting correction of the OTA control voltage supplies regulation to the oscillation amplitudes.
The $\mathrm{R}_{6}-\mathrm{C}_{5}$ time constant must be long enough to supply stable operation at the lowest desired oscillator frequency. The various values shown in the figure work down to 20

Hz . If a lower frequency limit is desired, say 10 Hz , it may be necessary to increase either R_{6} or C_{5}. A longer-than-necessary time constant is undesirable because of the adverse effect on the circuit's recovery time after a frequency change.

Circuit adjustment should start in the $100-\mathrm{Hz}$ to $2-\mathrm{kHz}$ frequency range. Vary the circuit by first increasing R_{2} until oscillation starts and then stabilizes over the tuning capacitor's full range. A_{1} 's output
should be about 6 V pk-pk. Next, adjust the dial pointer and tuning-capacitor trimmer for best dial calibration and tracking. Tweak R_{2} for maximum flatness as the tuning is varied over the full range. At higher frequencies, the OTA starts to introduce phase shift, which degrades dial-calibration accuracy if left uncorrected. As a result, the final circuit adjustment is to set C_{1} for correct dial calibration at some high frequency, such as 20 kHz or above.

520 DISCONNECT UNSTABLE 522 COMM Channel

H. STEPHEN BERGER

ROLM Systems, 2420 Ridgepoint Dr., Austin, TX 78754; (512) 469-5000.

The receivers used in today's high-speed fiber-optic communications channels must remain predictable and stable when the transmitter is either turned off or disconnected. The highgain front end that maximizes the system's dynamic range makes these receivers susceptible to noise and oscillation when no incoming signal is present.

In FDDI and similar applications, a synchronization signal keeps the receiver phase-lock loop tied to the transmitter. However, the high-gain front end may oscillate or amplify noise when not loaded. These errant signals could be interpreted as an incoming data stream, causing most receiver-decoder chips to signal invalid data patterns. The system controller then deals with the data errors. But, in the "quiet-line state," the decoder will attempt to decode amplified noise which it occasionally decodes as valid data.

The system controller, which can deal rather nicely with occasional transmission errors, could be completely occupied servicing the quiet line. This will degrade the controller's ability to perform any other tasks assigned to it. The controller should see occasional errors in a valid transmission so that it can NAK (negative acknowledge) the transmission, call for retransmission, or
deal with the error according to the system's protocol. However, it's desirable to mask off a data stream containing continual errors so that the controller can ignore that channel and perform its other functions.

A simple technique can effectively close off a channel that's receiving an unacceptably high error rate (see

The values of the RC circuit are chosen so that an occasional error won't trip the comparator and the circuit will discharge before the next error occurs. Designers must define the frequency of errors that that would trigger the circuit. Occasional errors will be fed through because they won't charge the RC combination enough to trip the comparator. But a data stream with continuous errors will keep the comparator turned on and mask off the channel causing the trouble. Designers must also be sure that sufficient hysteresis is used in the circuit to avoid constantly turning the channel turning

the figure). First, a line associated with decode violations is rectified. In this example, the violation pin on a transparent asynchronous receiver (AMD AM7969) is used. The line then charges an RC circuit, which is input to a comparator with the other input set to about half of V_{CC}. When the rectified signal charges the circuit above the preset level, U_{1} triggers and generates a low signal that masks off the received signal.
the channel on and off.
With this inexpensive technique, fiber-optic channels can use all of the available dynamic range without being plagued by noise from a disconnected receiver. A series resistor, R_{1}, should also be used with the rectifying diode, D_{1}, to send an acceptable load to the violation line driver.

The design starts by setting the comparator's trigger and reset level. This circuit generates an active-low

SOLID StAIE RELAY

Our FB Series military solid-state relay features high speed and low off-state leakage.

ACTUAL SIZE

Here's what you get:

- Availability to pending DESC drawing 89116 with screening to "W" and " Y " levels of MIL-R-28750.
- High-voltage output
- Very-low leakage current (200 nA)
- DC or bi-directional power FET output (see wiring diagrams)
- Ideal for ATE applications
- Optical isolation
- Fast switching speed
- Adjustable turn-on times
- Low profile 6-pin mini-DIP
- Cost efficiency

Review the electrical characteristics below and call us for immediate application assistance:

INPUT ELECTRICAL CHARACTERISTICS $\left(-55^{\circ}\right.$ to $+105^{\circ}$ unless otherwise noted)				
	Min	Max		Units
Continuous Input Current ($\mathrm{I}_{\text {IN }}$)	10	50		$m A_{D C}$
Input Current (Guaranteed On)	10			$m A_{D C}$
Input Current (Guaranteed Off)		100		$\mu A_{D C}$
Input Voltage Drop at ($\mathrm{I}_{\text {IN }}$) $=25 \mathrm{~mA}$				V_{DC}
OUTPUTELECTRICAL CHARACTERISTICS $\left(-55^{\circ}\right.$ to $+105^{\circ}$ unless otherwise noted)				
Part Number	FB00CD	FB00FC	FB00KB	Units
Bidirectional Load Current (load	± 1.0	± 0.50	± 0.25	$A_{\text {DI }} / A_{\text {PK }}$
DC Load Current (LOAD $^{\text {) }}$)	2.0	1.0	0.5	$\mathrm{A}_{D C}$
Bidirectional Load Voltage (V $\mathrm{V}_{\text {LOAD }}$)	± 80	± 180	± 350	$\mathrm{V}_{\text {DC }} \mathrm{V}_{\text {PK }}$
DC Load Voltage (V LOAD $^{\text {) }}$	80	180	350	$V_{D C}$
ON-Resistance ($\mathrm{R}_{\text {ON }}$) at (LIOAD) max.	0.72	1.8	12.9	Ohms
Turn-On Time (Ton)	800	800	500	$\mu \mathrm{s}$
Turn-Off Time (OfFF)	300	600	500	$\mu \mathrm{s}$

Notes: 1. A series resistor is required to limit continuous input current to 50 mA (peak current can be higher). 2. Rated input current is 25 mA for all tests.
3.Loads may be connected to any output terminal.
4.ON resistance shown is for the bidirectional configuration. The DC ON resistance is $1 / 4$ of these values,
"CREATING THE STANDARD OF THE FUTURE"

FTELEDYNE SOLID STATE
A Division of Teledyne Relays
*For immediate application assistance call 1-800-284-7007.
output. The first comparison voltage $\left(\mathrm{V}_{\text {СОМ }}\right)$ triggers the comparator.
$\mathrm{V}_{\text {con }}$ (inactive) $=$
$+5 \mathrm{R}_{4} /\left\{\mathrm{R}_{4}+\left[\mathrm{R}_{3} \mathrm{R}_{5} /\left(\mathrm{R}_{3}+\mathrm{R}_{5}\right)\right]\right\}$.
The violation pulses must charge C_{1} above this level to drop the output. Once the comparator is triggered, its output goes low. This lowers the comparison voltage, which is the circuit hysteresis. The reset level-the point where the circuit output goes high-is calculated as:
$\mathrm{V}_{\text {com }}($ active $)=$
$+5\left[\mathrm{R}_{4} \mathrm{R}_{5} /\left(\mathrm{R}_{4}+\mathrm{R}_{5}\right)\right] /$
$\left\{\mathrm{R}_{3}+\left[\mathrm{R}_{4} \mathrm{R}_{5} /\left(\mathrm{R}_{4}+\mathrm{R}_{5}\right)\right]\right\}$.
The circuit will reset when the error pulses are infrequent enough so that the voltage on C_{1} falls below V_{co}. m (active).
The next step is to determine a hold time - the time the circuit stays low after triggering. This can be calculated as:
$\mathrm{t}_{\text {hold }}=\mathrm{R}_{2} \mathrm{C}_{1} \ln \left[\mathrm{~V}_{\text {MAX }}\right.$
$/ \mathrm{V}_{\text {com }}$ (active) $]+\mathrm{t}_{393}$, where
$\mathrm{V}_{\text {MAX }}=\mathrm{V}_{\text {signal }}(\mathrm{high})-\mathrm{V}_{\text {diode }}$
and $\mathrm{t}_{393}=$ LM393 response time.
Finally, the density of the violations that trigger the circuit must be set. One pulse shouldn't trigger the comparator, therefore choose R_{1} and C_{1} to satisfy:
$\mathrm{t}_{\text {pulse }}>\mathrm{R}_{1} \mathrm{C}_{1} \ln \left\{\mathrm{~V}_{\text {max }}\right.$
$\left[\mathrm{V}_{\text {MAX }}-\mathrm{V}_{\text {com }}\right.$ (inactive) $\left.]\right\}+\mathrm{t}_{\text {sa3 }}$,
where $\mathrm{t}_{\text {pulse }}=$ maximum violation
pulse width.
Now, the frequency of pulses that trigger the channel must be set. If $\mathrm{t}_{\text {pulse }} / \mathrm{R}_{1}$ is greater than $\mathrm{t}_{\text {off }} / \mathrm{R}_{2}\left(\mathrm{t}_{\text {off }}=\right.$ the average time between pulses), then the circuit will trigger. This relationship sets the frequency of error pulses that will close off the channel. \square

VOTE

Read the Ideas for Design in this issue, select your favorite, and circle the appropriate number on the Reader Service Card. The winner receives a $\$ 150$ Best-of-Issue award and becomes eligible for a \$1,500 Idea-of-the-Year award.

2? 0bTain 0ptimum Zener Current

JOHN DUNN and CHUCK MEYER

Bertan Associates Inc., 121 New South Rd., Hicksville, NY 11801; (516) 433-3110.

Typically, an op amp and zener diode are used to derive reference voltages that aren't readily obtained from common reference ICs (Fig. 1). The circuit's Zener diode can be a temper-ature-compensated device from the 1N823 family. However, that type of diode requires a $7.5-\mathrm{mA}$ current to guarantee the best possible temper-
ature coefficient. Because the actual Zener voltage a device can exhibit at 7.5 mA is toleranced at $\pm 5 \%$, a gain adjustment is needed to obtain the exact reference voltage required. Thus, a select-at-test resistor, $\mathrm{R}_{\mathrm{SAT}}$, must be calculated on a case-bycase basis to establish the required current.
This procedure can be cumber-

2. T0 FIND A VALUE for the select-at-test resistor easily, adjust the potentiometer so that $\mathrm{E}_{\text {out }}$ equals the $\mathrm{V}_{\text {REF }}$ from the first circuit. Then measure $\mathrm{E}_{\text {out2 }}$. This number, in millivolts, is equal to $\mathrm{R}_{\mathrm{SAT}}$ in ohms.

BROOKTREES

I M
A
c
E

TECHNOLOGIES

Capture it

Capture an image, manipulate it, transmit it, display it-and do it all with Brooktree's Image Technologies. They'll give your system a visual edge in competitive markets.
In fact, Image Technologies can be the key differentiator in today's look-a-like world. At Brooktree, we're dedicated to creating the highly integrated devices designers need to set their systems apart with exciting imaging and graphics capabilities.
IMAGEACQUISITION Image Acquisition starts with our Bt251 Gray-Scale or Bt253 Color Image Digitizer chips. They're the easy, economical way to add image capture to your system, with flexible architectures and standard MPU interfaces.
And they link up to our new Bt261 30 MHz Line Lock Controller. It will change the way you bring video images into your system. It's flexible and fully programmable.
Program it to strip horizontal and vertical sync information from any incoming video signal it encounters. Program its sync noise gating to cope with noisy signals and to enable locking to horizontal sync.
In fact, you won't find a more flexible solution to the timing control section of your design. Or a better way to assure your Image Acquisition system is programmed for success.

IMAGEMANIPULATION

 Once you capture an image, change it.That's easy with our Bt281 real-time Color Space Converter/ Color Corrector chip. It's programmable and lets you convert from any color space to any other, including YIQ, YUV, RGB and Y, R-Y, $B-Y$, while capturing or displaying the image.

So now you can optimize the color space of your frame buffer for image processing independent of the video signal you're digitizing and the CRT's RGB needs. The Bt281 handles everything.

Since the Bt281 has programmable matrix coefficients and input look-up RAMs you can also use it for gamma correction, color correction or other image restoration techniques.

And if you think that's hot, you should see the Image Manipulation chips we'll be introducing this winter. Here's a hint: It will scale new heights.

IMAGETRANSMISSION

How can you send your image from here to there? Digitally? In real time?

Enter two more pieces of Brooktree's Image Technologies story: The Bt291 and Bt294 VideoNet ${ }^{\text {™ }}$ point-to-point Video Interfaces.

Simply put, the Bt291 and Bt294 let you ship and receive live color digital video using an 8 -bit interface.
Which means you can replace about a square foot of board real estate with two highly integrated devices. And take the rest of the week off.
The two devices have, respectively, input or output look-up table RAMs to simplify the interface to the frame buffer and to add or remove gamma correction and scale signal levels.
So if you're working with CCIR601, SMPTE RP125, EBU 3246-E or other digital video standards, we've done our parts. You take it from here.

IMAGEPRESENTATION

When it comes to display technology, our true colors really shine. We invented RAMDACs. We understand the special needs of graphics systems designers. And we've never stopped innovating.

A perfect example is our Bt473, designed specifically for VGA true-color graphics. It has three 256×8 color look-up tables with 8 -bit video D/A converters to support 24-bit true-color operation. And it can also support 8 -bit pseudo-color, 8-bit true-color and 15bit true-color operations. That makes it a perfect match for the Bt253 supporting the same formats.

Now our new TrueVu ${ }^{\text {TM }}$ RAMDAC, the Bt463 is what's hot for designers of next-generation workstations eager to add windows capability, and delighted to do virtually everything with a single device. The Bt463 is the first monolithic true-color RAMDAC. That means it supports multiple display modes-both True Color and Pseudo Colorsimultaneously. And with multiple windows, you get multiple colormaps, avoiding conflicts. Bt463 supports multiple plane depth, too, so a window can be 24, 16, 12 or 8 planes deep. And for a little frosting on the cake, it's flexible and easy to design in.

Dive into Image Technologies with
Brooktree. We've got the growing family of highly integrated chips you need to handle graphics and imaging requirements in leading edge systems. Check these specs

Bt208: 8-Bit Flash A/D Converter, 18 MSPS, External Zero and Clamp Control, On-Chip Voltage Reference, Overflow Output, No Video Amplifier Required, 28-Pin PLCC or 24-Pin DIP Package.

Bt251: 8-Bit Single Channel Image Digitizer, 18 MSPS, 4:1 Multiplexed Video Inputs, 256X8 Look-up Table RAM, MPU Adjustable Gain and Offset, Sync Detection, No Video Amplifier Required, 44-Pin PLCC Package.

Bt253: 8-Bit Triple Channel Image Digitizer, 18 MSPS, 2:1 Multiplexed Video Inputs, Output Format Logic, MPU Adjustable Gain and Offset, Sync Detection, No Video Amplifier Required, 84-Pin PLCC Package.

Bt261: HSYNC Line Lock Controller, 30 MHz Pixel Clock Generation, MPU Programmable Video Timing, Programmable Noise Gating, Generate HSYNC, Recovers VSYNC and FIELD, External VCO or High Speed Crystal Oscillator Clock Generation, 28-Pin PLCC Package.

M A N I P U L A T I O N Bt281: Color Space Converter, Three 256X8 Input Look-up Table, Programmable Matrix Coefficients, Optional Input Interpolation/Output Decimation, Standard MPU Interface, 36 MHz , 84-Pin Package.
 Bt291: RGB to CCIR 601/SMPTE RP125 Encoder, RGB Input Look-up Tables, RGB to YCrCb Conversion, Flexible Digital Filtering of YCrCb, 16-Bit YCrCb I/O Bus, Ancillary Input Port, Handles Video Timing Control, 100-Pin PLCC Package.

Bt294: YCrCb to CCIR 601/SMPTE RP125 Decoder, Handles Video Timing Recovery, Ancillary Output Port, Error Checking, 16-Bit YCrCb I/O Bus, YCrCb to RGB Output Look-up Tables, 100-Pin PLCC Package.

RORPE E E N T A T I O N Bt463: TrueVu RAMDAC, 4:1, 2:1 MUX's, Switch on a Pixel Basis Between True Color and Pseudo Color of Multiple Plane Depths with Multiple Colormaps, Two 8 Plane Overlay Cursors, Variable Palette Size, Reconfigurable Pixel Port, Advanced Diagnostics including JTAG Port, 170, 135 and 110 MHz Operation, 169-Pin PGA.

Bt473: True-Color RAMDAC VGA Compatible, Compatible with Bt253 Output Formats-24-Bit, 15-Bit and 8-Bit True-Color, 6/8-Bit Pseudo-Color, Programmable Setup (0 or 7.5 IRE), Internal/External Voltage Reference, RS-343A/RS-170 Compatible Outputs, 80, 66, 50 and 35 MHz Operation, 68-Pin PLCC Package.

IDEAS FOR DESIGN

some because the Zener voltage, V_{Z}, of the device at currents other than 7.5 mA won't be exactly the same as the $7.5-\mathrm{mA} \mathrm{V}_{\mathrm{Z}}$ value. Trying to find $\mathrm{R}_{\mathrm{SAT}}$ by adjusting for 7.5 mA in the circuit can be difficult because any metering needed to measure that current can, upon removal, cause a marginal current shift.

A convenient solution to the problem is a test circuit (Fig. 2). The de-vice-under-test is the specific Zener diode to be used in the voltage reference circuit. With the Zener diode connected, first adjust the $10-\mathrm{k} \Omega$ potentiometer so that $\mathrm{E}_{\text {outt }}$ in the test circuit equals the intended $V_{\text {REF }}$ output from the first circuit. Then, $\mathrm{E}_{\text {out2 }}$ is measured. This measurement will be in millivolts, equal to the required $\mathrm{R}_{\mathrm{SAT}}$ resistance in ohms.

For example, let the intended $V_{\text {REF }}$ equal 8.0 V . Then connect a Zener to the circuit and turn it on. O p amps A A_{1} and A_{2} will pump exactly 7.5 mA into the Zener, regardless of the exact value of V_{Z}. Afterwards, set $\mathrm{E}_{\text {out }}$ for the intended value of 8.0 V . Assume that the Zener exhibits 6.32 V at 7.5 mA . Then:
$\mathrm{E}_{\text {out } 2}=\left(\mathrm{E}_{\text {out1 }}-\mathrm{V}_{\mathrm{Z}}\right) / 7.5=(8.0-$ $6.32) / 7.5=224 \mathrm{mV}$, meaning that $\mathrm{R}_{\mathrm{SAT}}$ of the first circuit should equal 224Ω to go with the Zener being tested.

This result's accuracy depends on the accuracy of the components chosen for the second circuit. Using quality op amps, resistors, and a good +5 -V reference IC is highly recommended.

IFD Winvers

IFD Winner for June 14
Robert A. Pease, National Semiconductor Corp., 2900 Semiconductor Dr., Santa Clara, CA 95051; (408) 721-5613. His idea: "Protection circuit cuts voltage loss."

IFD Winners for June 28 Jeff Kirsten and Len Sherman, Maxim Integrated Products, Inc., 120 San Gabriel Dr., Sunnyvale, CA 94037; (408) 737-7600. Their idea: "Isolate data-converter signals."

The Standard for Circuit Simulation Has Expanded

Advanced Filter Designer Bode Plot

Advanced Filter Designer: New Front End Design Tool

The PSpice family of products includes both the Circuit Analysis and Circuit Synthesis packages. The Circuit Analysis package contains our PSpice circuit simulator and its options, and the Circuit Synthesis package contains our filter synthesis products, Advanced Filter Designer and Standard Filter Designer.
Advanced Filter Designer is an interactive design aid giving you the ability to design and analyze active filters. Features include a menu-driven interface, hard copy report summaries and plots, cascading multiple designs, and interfaces to PSpice and SWITCAP.
Advanced Filter Designer uses a well established methodology in applying classical approximations to your filter specification. Available filter types include low pass, high pass, band pass, and band reject, all of which may be synthesized by Butterworth, Chebyshev, Inverse Chebyshev, and Elliptic (Cauer) functions. There is also the capability to synthesize arbitrary fransfer functions and delay equalization filters.
A full editing capability allows you to insert, delete, and reorder stages, and modify coefficient values. These editing features allow a filter expert to fine tune a design, or quickly make a small modification to an existing design.
Advanced Filter Designer supports both active RC and switched-capacitor biquad filter structures. The components may be scaled or resized to center the values in preferred ranges.
Both Bode and pole-zero plots are available. Normally, you can determine the acceptability of your design by the inspection of its Bode plot. The Advanced Filter Designer plots gain, phase, and delay vs. frequency. For sampled data designs, you can plot your choice of the s - or z-domain transfer function. Pole-zero plots allow you to inspect the roots of the transfer function in either the s-domain or z-domain.
Filter Designer works with our PSpice circuit simulation package. PSpice and its options form an integrated package for the analysis of electronic and electrical circuits.
Each copy of our Circuit Analysis and Circuit Synthesis programs comes with our extensive product support. Our technical staff has over 150 years of experience in CAD/CAE, and our software is supported by the engineers who wrote it.
For further information about our Circuit Analysis or Circuit Synthesis packages, please call us at (714) 7703022 or toll free (800) 245-3022.

20 Fairbanks • Irvine, CA 92718 USA • FAX (714) 455-0554

PRODUCT INNOVATION

SOLID-STATE SENSOR SWITCHES Save Lives and Equipuent Temperature And Current-Sensing ICs Will Go In Products For Home, Office, And Factory.

T
wo new low-cost chips, from Raytheon and Teledyne Components, can help overcome two natural hazards to every piece of electrical or electronic gear-water and high temperature. The Teledyne ICs represent the first members of a new family of solid-state thermal switches, designed to replace expensive, vi-bration-sensitive, bimetallic temperature sensors commonly used in applications ranging from coffee makers to home-heating thermostats. Raytheon's device is a low-power two-wire ground-fault interrupter (GFI) controller. Though designed

[^5]Frank Goodenough

SENSING SWITCHES

for use in home hair dryers, it could be used as a safety element in anything that plugs into the ac line which gets wet at the same time a human touches it. It's a result of Underwriters Laboratory (UL) edict UL943: To be UL certified, all hair dryers sold in the U.S. after 1990 must include a leakage current detector in the dryer, or in the cord.

Because both the Teledyne and the Raytheon ICs aim at products for the consumer, they are low-priced: In low volume, they go for under $\$ 1$ each. Therefore, not only will they find their way into various appliance, toy, entertainment, garden, automotive, and tool products for the consumer, but they also should represent a low-cost way for sharp design-er-marketers to distinguish their products from the competition. Computers and office machines of all types (for example, medical instruments) seem a natural for both.

The Teledyne ICs, TSC620 and TSC621, both sense temperature: The TSC620 has an absolute accuracy of $\pm 3^{\circ} \mathrm{C}$ with an on-chip ion-implanted resistor, while the TSC621
uses an external thermistor. The TSC620 can replace the snap-action thermal switches found in many appliances or motors, providing simple on-off protection and/or control. However, unlike such switches, these ICs sport high and low-temperature, user-programmable (with two resistors) set-point inputs and a trio of logic outputs for control. As a result, they lend themselves to simple, but versatile, multi-temperature alarm or control systems. One TSC620 and less than two dozen lowcost parts can build a complete heat-ing-cooling thermostat for the home.

One $90-\mathrm{k} \Omega$ to $200-\mathrm{k} \Omega$ resistor connected between each programming input and the supply determine high and low temperature set-points, respectively (Fig. 1). The two logic outputs, Low Limit and High Limit, obey the following truth-table: The Low Limit and High Limit outputs go high whenever the chip (or external thermistor) rises to the temperature programmed by its respective resistor. That is, as the temperature rises, the Low Limit output first goes high and then the High Limit
output will go high. Each limit-output goes low when the chip (or thermistor) temperature drops about two degrees below its programmed value. In a typical application, when the Low Limit goes high, it could turn on a fan and alert a host (human or silicon). If the temperature rises enough to trip the High Limit, the system can shut down and set off an alarm.

The Regulate logic output goes high when the temperature that's sensed rises to the High set-point and goes low when it drops below the Low set-point.

No More Shockers

The Raytheon device's job is to open both sides of the ac line in less than 24 ms if a dangerous condition arises. That is, it must detect 5 or 10 mA of leakage current (5 mA in the U.S., 10 mA in Europe) and open the line in less than two cycles of 50 or 60 Hz . Two major features that affect a hair dryer's cost, design, and time-tomarket separate the RV4140 from other approaches for detecting and stopping ground-fault leakage cur-

2. A CURRENT TRANSFORMER, plus the RV4140 twowire ground-fault interrupter (GFI) from Raytheon, senses the difference in current between the hot and neutral side of the ac line if the leakage current between the two through the load exceeds 5 mA . The same situation would occur if a load, such as a hair dryer, falls into a tub of water. When detecting the fault, the chip fires the SCR, which in turn opens the latched relay and then the line.

- Current outputs
- Surface-mount or thru-hole package
- 5 mW power dissipation
- Surface-mount or thru-hole package

For data sheets on our high performance Monolithic Quad DAC's, call 1-800-272-1772. Today.

AUTOCAD
 for
 Electronic Engineers

AutoSchema

- Only \$195
- New Symbol icon browsing
- Unlimited levels of hierarchy
- Spice \& Susie interfaces

AutoPCB ${ }^{\circ}$

- Best performance on a P.C.
- Double sided SMT
- Real time design rule check
- Interactive push \& shove routing

AutoHybrid

- Worlds only P.C. Hybrid system
- Automatic component synthesis
- Custom die geometry
- 0.5 micron resolution

CADISYS

2099 Gateway Place, Suite 400, San Jose, CA 95110 USA
FAX (408) 441-8300

CALL FOR CATALOG 408-441-8800 EXT 200

CIRCLE 177

Philips 2 GHz PM 3340 and 300 MHz PM 3323
DSOs with extended analysis functionality.
FAST-PM 3323

- 300 MHz bandwidth
- $500 \mathrm{MS} / \mathrm{s}$ single-shot sampling rate
- 2 ns glitch capture
- 10 -bit vertical resolution

FASTER-PM 3340

- 2 GHz bandwidth with $1 \mathrm{mV} /$ div sensitivity
- Full range triggering up to 2 GHz
- High 1.6 V dynamic range

Call 1-800-44-FLUKE ext. 77 for the video titled "DSOs With a Difference: Chapter 3," or a product demonstration.

FLபKE

${ }^{\circ}$ Copyright 1990 John Fluke Mfg. Co., Inc. P.O. Box 9090, M/S 250C, Everett, WA 98206 0401-P3320

- Molded from UL 94-5V approved resins.
- Video monitor and analog cases also available.
- Painting, shielding and fabrication facilities in-house.

HETTINGA, INC.

2123 N.W. 111TH ST., DES MOINES, IOWA 50325-3788 515-270-6900 FAX 515-270-1333

SENSING SWITCHES

rent-no modification to existing dryer designs is needed, and only a two-wire line is required between wall outlet and dryer (Fig. 2).

Present solutions require three wires from the GFI to the dryer; the third wire connects to a metal plate inside the dryer. The metal plate and third wire increase the cost. The metal plate requires both redesign and retooling for each existing and new design, adding further cost and design time. Finally, every new design and every redesign must be qualified or requalified by UL, extending the time-to-market.

The RV4140 and its circuit eliminate these problems. They are molded into the cord set, which, once qualified, can be used to connect to any dryer, or to any other appliance. Reducing cost and size even further, the RV4140 contains a full-wave bridge rectifier, which must be added externally to available GFI ICs (including Raytheon's RV4145).

At the heart of the detector is a current-sensing transformer with a toroidal laminated-steel or solid-ferrite core. A ground fault causes a difference between the currents in the hot and neutral wires.

Amplified, rectified current generates an error at pin 1 . If the error is greater than
the reference voltage at pin 3 , the comparator C trips and fires the SCR, thus opening the relay and the line to the dryer. \square

Price And Availabilty

In quantities of 100, Teledyne's commer-cial-grade TSC620 goes for $\$ 1.18$ each, dropping to $\$ 0.70$ in volume quantities. The Raytheon RV4140 typically runs on 350μ A from the ac line through pin 8 and the bridge rectifier. It comes in 8-pin DIPs and SOICs. In quantities of 100, the controller goes for just $\$ 0.68$, and is significantly less in greater volume.

Teledyne Components, 1300 Terra Bella Ave., P.O. Box 7267, Mountain View, CA 94039-7267; Rich Clarke, (415) 968-9241.

Raytheon Company, Semiconductor Div., 350 Ellis St., Mountain View, CA 940397016; Harry Gil, (415) 968-9211.

CIRCLE 533

How Valuable?	Circle
Highly	534
Moderately	535
SLIGHtLy	536

The power-user's guide to the new HP48SX.

Serial interface to PCor Mac.

Automatic unit management.

Over 2100 built-in functions.

Graphics integrated with calculus.
 math.

32 Kbytes of RAM built in.

This guide only skims the surface of the HP 48SX's breakthrough features. With over 2100 built-in functions, for starters, what could you expect?
To grasp its true power, get your hands on one at your nearest HP retailer.
HP calculators. The best for your success.

THE HIGHEST-INTEGRATION MIPS PROCESS0R from LSI Logic packs 8 kbytes of instruction cache, 1 kbyte of data cache, a DRAM controller, and three counter-timers. The chip's features let the processor tackle demanding control applications.

Aimed At Embedded Control Systems, A MIPS CPU Chip Takes On Demanding Tasks. HIGHLY INTEGRATED RISC CPU PACKS I/0 AND CACHE Dave Bursky

A
lthough RISC-based systems offer top performance, they're usually expensive to implement because they require many more high-speed support components than their CISC-based counterparts. This is particularly true for embedded controllers. The high implementation cost is critical when RISC processors are being considered for embedded control applications. In such applications, the large number of fast static RAMs and other support functions push the RISC subsystem cost up, and very often demand more board area than the application can spare.

By redesigning its licensed version of the R3000 processor, LSI Logic has taken into account many of the system-level requirements for an embedded controller. As a result, they've combined the equivalent of about 20 chips into one device - the LR33000. The CMOS chip is built with static logic to minimize power consumption during standby or power-down situations.

Along with the R3000-compatible integer processor, the LR33000 proces-

Designing in National's one-chip motor driver could be the smartest move you'll make.

UNSURPASSED INTEGRATION.

Power. Protection. Control. These critical elementsessential to all motor-driving applications-are also inherent in the most highly integrated Smartpower ${ }^{\text {m }}$ device available today, the LMD18200.

Our one-chip solution with on-chip intelligence eliminates multiple discrete parts, saving you valuable board space.

The control logic of the LMD18200 connects both sides of the H -Bridge. Which eliminates crossover problems and makes it easy to use. Plus, its rugged design and process makes it extremely reliable. The device operates at supply voltages from +12 V to +55 V with continuous output of 3 A . Or peak to 6A.

BORNE OUT OF A STRATEGIC PARTNERSHIP.

The LMD18200 is the brainchild of National Semiconductor and International Rectifier (IR). A jointly developed product made

possible through distinct, leadingedge process technologies. CMOS and bipolar from National. And DMOS with HEXSense ${ }^{\text {m }}$-for virtually lossless current sensing-from IR. An optimized process mix that results in a high-

FAIL-SAFE PROTECTION.

Not only does the LMD18200 know when to start, it knows when to quit. Specially equipped with a two-stage thermal warning system, it transmits a distress flag to the host system at $145^{\circ} \mathrm{C}$, allowing you enough time to take any corrective action.

And if the temperature reaches $170^{\circ} \mathrm{C}$, the device automatically shuts down. A fail-safe feature that eliminates damage to your equipment.

What's more, the LMD18200's on-chip defense system provides overcurrent protection, which prevents damage both to the device and the motor in case a shorted load causes the motor to draw excessive current.

PLAY IT SMART.

For your LMD18200 design information kit, call or write us today. But make the move now. Before your competition wises up.

1-800-NAT-SEMI, Ext. 18
National Semiconductor Corp. P.O. Box 7643

Mt. Prospect, IL 60056-7643

National
semiconducoror
(C) 1990 National Semiconductor Corporation

HEXSense is a trademark of International Rectifier. Smartpower is a trademark of Nartron.

HIGH-INTEGRATION MIPS CPU

sor includes 8 kbytes of instruction cache, 1 kbyte of data cache, a dy-namic-RAM refresh controller, three counter-timers, a one-word-deep write buffer, and other features (see the figure). All of that memory and logic has been compressed into one 160-lead quad-sided plastic flat package or a 155-lead pin-grid array. One reason for the high pin count is separate address and data buses, and optional parity lines on the data bus. The processor will come in maximum operating frequencies of 25,33 , and 40 MHz , with maximum power consumption of 2 W at 25 MHz .

On-chip caches and an integrated write buffer give the chip almost the same performance as the R3000 CPU with a large external cache for embedded systems applications. The benefit of integrating on one IC cache and other logic with the CPU was also adopted by Integrated Device Technology. The firm has also embellished the R3000 CPU with features targeted at embedded control (see "Approaching the problem differently,"this page).

Both the on-chip caches on the LR33000 are direct-mapped. To ensure data-cache coherency, a writethrough approach is used to keep data current. Single-word memory references or blocks of data can be loaded into the cache. The block size for refill operations of $2,4,8$, or 16 words can be programmed independently for both the data and the instruction caches.
To offload the write operations, a one-word write buffer lets the processor think it wrote a word into memory. Therefore, the CPU can start its next operation while the buffer actually writes the word into main memory. If the buffer is full and the CPU tries to write to external memory, the processor will stall until the buffer is free. In addition, if an entry is located in the cache, the processor will update the cache as well as the main memory.
To pack all of the system features on the chip, designers at LSI did make some sacrifices. Unlike the R3000, the LR33000 doesn't include a memory-management unit because most embedded control applications

APRAOMGINLG TLE PROBLEM DIFERENTIY

As if they gazed into a crystal ball concerning LSI Logic's introduction, designers at Integrated Device Technology Inc., Santa Clara, Calif., jumped the gun on LSI and unveiled a pair of Mips-based CMOS embedded-controller chips targeted for similar applications. However, the chips have a different mix of features than those selected by LSI. As a result, they're optimized, perhaps, for yet a different set of em-bedded-control applications. The IDT R305X family consists of two basic high-integration CPUs, both based on the R3000A processor.

Four different speed options$20,25,33$, and 40 MHz -will be available for each processor, giving users a performance span from 16 to 35 MIPS. Designers at IDT, though, decided not to redesign the CPU core to use static CMOS logic. Consequently, the R305X processors, like the R3000A, require that a clock signal always be present to keep the internal dynamic logic active.

The lowest-cost version, the 20 MHz R3051, contains instruction and data caches of 4 kbytes and 2 kbytes, respectively. A higher-integration version, the R3052, packs 8 kbytes of instruction cache and also 2 kbytes of data cache. But unlike the LR33000, which has separate address and data buses, the IDT processors employ a multiplexed address/ data bus to reduce chip pin count, squeezing into 84 -lead plastic leaded chip carriers. Furthermore, the IDT processors include both a 4 -word-deep read buffer and a 4 -word-deep write buffer rather than the LR33000's singleword write buffer. IDT also includes DMA arbitration logic on the processor, making it easier to add DMA channels. The LSI LR33000 has two modes for its direct memory access, one which grants the address and data bus, and the other in which the DMA
logic uses the on-chip DRAM controller to access the memory.

Although the 3051 or 3052 don't have the DRAM controller or the counter-timers that LSI felt necessary to include on the chip, the IDT processors kept the memorymanagement unit (MMU) and translation-look-aside buffer (TLB). Actually, IDT designers thought that each processor should be available with a choice. As a result, two versions of the R3051 and two versions of the 3052 actually exist: one version of each without the TLB for lowest cost, and another version of each with the TLB for slightly more.

The more-spartan CPU chips from IDT will sell for less-in 1000 -unit lots the lowest-cost version of the R3051 (20 MHz , no TLB) will sell for about $\$ 45$, while the larger-cache version, the 3052, will go for about $\$ 65$. Limited sampling will start this quarter.
To add many of the system-level features, such as multiple DMA channels, serial I/O ports, DRAM control, parallel ports, countertimers, interrupt controllers, and more, IDT has planned a trio of support chips. The circuits include the IDT79R3720 bus exchanger, the 79R3721 DRAM controller, and the 79R3722 I/O interface controller. The three support chips will come in low-cost 68- and 84-lead plastic leaded chip carriers and a 132-lead plastic quad-sided flat package, respectively. When used as a set with the highintegration CPU, they form a compact and relatively complete RISC system-somewhat akin to a PC motherboard. The cost for the entire chip set, including the $20-\mathrm{MHz}$ R3051, CPU will be less than $\$ 100$ in large quantities. The three support chips will be ready to sample in the first quarter of 1991.

Integrated Device Technology Inc., 3236 Scott Blvd., Santa Clara, CA 95052; Bob Rowe, (408) 492-8631.

CIRCLE 524

INSIST ON SOLID GaAs:

All this flap about newer, faster, more efficient technologies doesn't hide the fact that few of them ever get off the ground.

One newer, faster, more efficient ASIC technology that bas taken off is TriQuint GaAs - the world's most solid and substantial GaAs ASIC offering, from the first and most experienced GaAs ASIC vendor. That's why we're a preferred supplier for many of the world's most respected telecommunications, instrumentation and computer companies.

Count on TriQuint to tell you if and
how GaAs makes sense for your system. We give you the facts on performance. Yield. Delivery. Reliability. We offer LSIlevel macros for efficient design. flexible packaging ... the option to mix analog cells with digital designs. We can show you credentials that stretch through hundreds of jobs.

Call TriQuint at 1-800-344-7641. In Oregon, 644-3535. We'll show you a list of major customers and major applications that prove our promises don't vanish into thin air.

Up to 64 Channel Capacity With Anti-Aliasing Filter

Yes! R.C. Electronics has put together a complete hardware and software solution, so you don't have to flip through catalogs to mix and match a data acquisition system. Plus, our software is user friendly, making it a cinch to learn and get on line to begin your measurements.
Hardware Features:

- 12 bit, 1 MHz
- Pretrigger option
- Up to 64 Channels
- Simultaneous Sample and Hold
- Anti-Aliasing Filter
- Up to 140 KHz Continuous to Disk
- Internal and External Trigger
- External Sample Clock

Instrument Software Options:

- Digital Scope
- Electronic Chart Recorder
- Digital Filters
- Signal Averaging
- Spectrum Analysis

NEW! PC-Based Waveform Synthesizer

Offers 16 Bit Resolution Easy to Use Rubberbanding Waveform Design Software

- 16 bit, 250 KHz output
- Up to 32 waveform segments
- Function generation of square or ramp waveforms
- Continuous output from disk
- Modulated sine output
- Deglitched output
 WAAC WAAN Electronics Inc.

5386-D Hollister Ave. Santa Barbara, CA 93111 (805) 964-6708

HIGH-INTEGRATION MIPS CPU

don't rely on virtual memory addressing. Moreover, because float-ing-point math is more the exception than the rule in embedded control, the math coprocessor interface was also eliminated.

One area that LSI didn't skimp on, though, was aids for troubleshooting and diagnostics. Because debugging embedded systems can be more difficult than debugging generalpurpose computers, a strong set of diagnostic features were included on the chip. Separate instruction and data breakpoint registers are available. And the processor can perform instruction traces to track down erroneous operations.

Furthermore, since the chip is still software-compatible with the R3000, existing R3000 software development tools will serve the development teams. However, because nine instructions using the coprocessor and four that reference the transla-tion-look-aside buffer can't execute, the processor traps when it encounters one of those commands and can either raise a flag or vector to a subroutine to aid in program debugging.

To take on the embedded applications, the three on-chip timers serve both the on- and off-chip timing needs. Of the three timers, two are 24-bit down counters and are available for any application. Each counter operates at the system clock rate. Each will reload the initial count value after it reaches a 0 count. Timer 2 also has a Terminal Count Output pin, as well as a Count Enable Input pin, suiting it for timing external events.

The third timer is just 12-bits long and supports the DRAM refresh controller. That refresh controller includes a programmable wait-state generator that allows almost anyspeed DRAM to be used with the chip. Commonly available 70 - and 80 ns memories can be used with the processor. When running with the page-mode DRAMs, four CPU cycles are needed for the first access, and then two for each subsequent access on the same memory page.

The chip provides the row-addressstrobe, column-address strobe (RAS, CAS) and output-enable signals
needed to control standard and pagemode DRAMs. The on-chip memory controller allows for an address space of 256 Mbytes. However, to drive more than one bank of memory chips, address multiplexers and buffers should be used. The memory controller can also tie into off-chip DMA controllers that use a synchronous bus protocol. Single-cycle block refills can thus be done when interleaved memories are employed.
The processor can handle 32 -, 16 -, and 8 -bit data-words. Byte ordering can be set for either "big-endian" or "little-endian" formats. To deal with different system-cost strategies efficiently, the processor can boot itself from either a low-cost 8 -bit EPROM, or from a full 32-bit storage subsystem. A Bytewide control pin tells the processor which type of memory subsystem to look for. With a programmable wait-state generator, users can also specify the time between reads, from 0 to 15 wait states. In addition, the internal wait-state generator can be overridden by setting a control bit in the processor's configuration register. That lets the memory access be controlled by the External Data Ready signal.

Furthermore, a generic synchronous 32 -bit interface makes it easy to tie the LR33000 into support chips or moderate-speed static RAMs. A memory-mapped 16 -Mbyte I/O space gives users plenty of room for peripheral extensions to the chip. \square

Price And Availabilty

In $1000-$ unit quantities, the $25-\mathrm{MHz}$, ceramic pin-grid-array version of the LR33000 sells for $\$ 192$; samples will be ready in December. A plastic quad flatpackaged version of the $25-\mathrm{MHz}$ chip will sell for \$99.95, available in the second quarter of 1991. Ceramic PGA versions of the 33- and $40-\mathrm{MHz}$ chips will be ready to sample in the first and second quarters of 1991 and will sell for $\$ 230$ and $\$ 385$, respectively.
LSI Logic Corp., MIPS Div., 1525 McCarthy Blvd., Milpitas, CA 95035; Rob Tobias, (408) 954-4789.

CIRCLE 525

How Valuable?	Circle
HIGHLY	526
MoDerately	527
SLIGHTLY	528

Pure Signal Low SSB Phase Noise of -140 dBc

Anritsu's MG3633A Synthesized Signal Generator reduces sideband noise to $-140 \mathrm{dBc} / \mathrm{Hz}(20 \mathrm{kHz}$ offset from 1 GHz signal), for the most precise performance and characteristics evaluation of all bands of radio communications equipment, even quasi-microwave.

Operating over the frequency range of 10 kHz 2.7 GHz , the MG3633A provides AM, FM, and pulse (combined with the MA1610A) modulation, as well as simultaneous modulation in any combination. The DC mode enables simulations of
digital transmissions, and provides FM stability of $\pm 10 \mathrm{~Hz} / \mathrm{H}$ (typical).
The MG3633A also has an extremely accurate programmable attenuator to ensure $\pm 1 \mathrm{~dB}$ accuracy over the broad range of output levels from -123 dBm to a powerful +20 dBm . Output can be displayed in $\mathrm{dBm}, \mathrm{dB}_{\mu}, \mathrm{V}, \mathrm{mV},{ }_{\mu} \mathrm{V}$, or relative values.

From research to system maintenance, Anritsu gives you the best there is.

SYNTHESIZED SIGNAL GENERATOR MG3633A
$\begin{aligned} & \text { ANRITSU CORPORATION 10-27, Minamiazabu 5-chome, Minato-ku, Tokyo 106, Japan Tel. 03-446-1111 } \\ & \text { U.S.A. ANRITSU AMERICA, INC. } 15 \text { Thornton Road, Oakland, N.J. O7436 Tel. 201-337-1111 Sales \& Service 1-800-255-7234 } \\ & \text { U.K. ANRITSU EUROPE LIMITED Capability Green, Luton, Bedtordshire LU1 3LU Tel. (STDO582) } 418853\end{aligned}$
F.R. Germany ANRITSU ELEKTRONIK GmbH Gratenberger Allee 54-56, 4000 Düsseldorf 1 Tel. 0211-679760
Italy ANRITSU ITALIA S. p.A. Centro Direzionale Colleoni, Via Paracelso N.14, 20041 Agrate Brianza (MI) Italy Tel. 039-639411, Fax: 039-639419
Brazil ANRITSU ELETRONICA S.A. Av. Passos, 91 -Sobrelojas 203/205-Centro, 20.051-Rio de Janeiro-RJ Tel. 021-221-6086

[^6]Murti-Window CAE UNIX \& DOSCAE EDIF Integration ASGLLayout Simulaion VHIDL System Simulation - AAEDecign Framemokk MivedA/D Simulation WHDL Synthosis
$\%$

When it comes to CAE tool innovations, the company that sets the pace is...

PR0CESS-INDEPENDENT IC T00LS AID T0P-D0WN DESIGN

 A Device-Level Compactor Is The Key To Fast And Easy Migration Of Digital ICs To Alternate Process Technologies.Lisa Maliniak

T
wo major concerns for engineers are the ability to reuse IC designs and the ability to catch critical mistakes before the end of the design cycle. These concerns can now be driven away with two IC design tools from Valid Logic Systems: Construct Process-Independent (P.I.), an advanced cell-layout tool, and Compose Architect, a floorplanning tool. These devices implement process-independent and top-down IC design methods. Process independence means that users can create IC designs without concern for specific process design rules.

With the tools, which are enhanced versions of Valid's previous Construct and Compose software, users can architect and analyze an entire

THE DEVICE-LEVEL COMPACTOR in Construct P.I. is the essential element in process-independent IC design. The compactor references the technology database to shrink or expand all layers of the layout while keeping design-rule correctness. In this screen, the compacted layout is in the right window.
chip at a high level. Both tools enable design teams to migrate chips quickly when a process change occurs. In addition, they save time because design teams can reuse portions of their design in future chips.
Construct P.I. includes device-level compaction, graphical device generation, and net-list-driven layout. Essentially, it brings process-independence into the realm of the layout designer. The device-level compactor is the key to process-independent physical layout. This new feature complements the existing processindependent methodology for chip assembly made possible by the mixed block-cell compactor in Compose. In addition, these compactors work from one process technology database.

Device-level compaction spaces (shrinks or expands) the layout automatically according to the design rules in the technology database (see the figure). The software can compact both orthogonal and encapsulated non-orthogonal geometries. It also maintains connectivity between wires and devices during compaction.

The single technology database centralizes control over both physi-cal-layout and chip-assembly tasks, eradicating schedule impacts due to design-rule changes. Design rules stored in the technology database can be easily modified when a change in process is necessary due to technology advancements or foundry changes. For instance, designs can be easily migrated from a $2-\mu \mathrm{m}$

PROCESS-INDEPENDENT IC DESIGN TOOLS

to a $1-\mu \mathrm{m}$ CMOS process with a minimal amount of manual layout work.

In addition to the device-level compactor, Construct P.I. implements process independence through the Graph-A-Cell graphical device generator. Graph-A-Cell minimizes the effort needed to lay out and maintain device libraries. Designers automatically generate parameterized cell (PCELL) programs that produce de-sign-rule-correct layout. In addition, because the primary input source is graphical, layout designers of all skill levels can easily generate PCELL programs rather than rely on a CAD programmer to accomplish this task.

Graph-A-Cell

Using Graph-A-Cell, designers can quickly sketch a device without regard for design rules or efficient use of area. Graph-A-Cell then uses scanning technology to assign layer-to-layer constraints automatically. The C-code program output from Graph-A-Cell can be stored in a device library and called by the designer during layout editing to generate PCELLS instantly. These programs can also be manually modified to create complex PCELLS containing spirals and odd angles. Entire device libraries, as well as the designs containing the devices, can be rolled over to a new process simply by changing the rules in the technology database and recompacting for de-sign-rule correctness.

Construct P.I. achieves correct-by-construction layout design with net-list-driven editing that maintains actual connectivity in the design database. The net-list-driven editing feature reads the net list and associated schematic properties-such as gate sizes, wire widths, and device groupings-to drive the physicallayout design. Net-list-driven editing and correct-by-construction layout design reduce the need to perform design-rule checking and layout-vs.schematic comparison.

Construct P.I. also includes symbolic editing. This editing technique gives engineers the flexibility to view and edit physical design data at the symbolic level for simplified data
representation and faster display speeds. It also lets them view and edit at the mask level for detailed representation.

In addition to a process-independent IC design environment, Valid offers Compose Architect, a multilevel, top-down floorplanner for mixed block-cell chips. The top-down design implemented by Compose Architect improves designer productivity and shortens the design cycle.

Compose Architect is a net-listdriven chip floorplanning and analysis tool that lets IC design engineers explore architectural trade-offs early in the design cycle. They can work with mixed block and cell designs from the top level of hierarchy down, assembling a chip floorplan to optimal size and performance specifications. This top-down method facilitates the use of different design methodologies on one chip. For example, engineers can create chips using a combination of handcrafted devices, compiled modules, standard cells, synthesized layouts, and scaled existing layouts.

At any level of design hierarchy, Compose Architect coordinates the assembly of IC design elements in varying stages of abstraction or completion. Each design level and design element can be individually floorplanned and partitioned so that design teams can work simultaneously. Top-down floorplanning is linked with bottom-up chip assembly and layout to minimize design iterations. Detailed placement, routing, and compaction can be performed throughout the floorplanning process before all of the underlying physical layout data is fully created. Compose Architect tracks the status of all levels and elements in the floorplan to the end of the design cycle. At this point, the floorplan represents the finished chip design, incorporating all physical layout data.

To speed floorplanning and facilitate concurrent design, Compose Architect includes a suite of in-process tools for power, delay, and path analysis. With these tools, engineers can identify and correct chip size and performance problems up front, before the problems seriously affect the de-
sign or work schedule.
Compose Architect's power analyzer improves the accuracy of pow-er-supply tapering by calculating voltage drops and adjusting net widths accordingly. With the delay analyzer, engineers can dynamically examine chip timing at any design stage. Compose Architect calculates pin-to-pin delays automatically for direct input into Valid's RapidSim digital simulator or other commercial simulators. Engineers can further improve chip speed with the static critical path analyzer. Compose Architect calculates resistance and capacitance values and passes them to Pathmill. Pathmill then highlights critical paths and delay bottlenecks in the floorplan.

Valid's Design Process Framework is the key to providing a complete family of IC products. The framework features rules-driven and multilevel design techniques that improve communication between engineering and layout personnel using the products. Front-toback integration through the framework ties Valid's front-end tools with Construct, Construct P.I., Compose, Compose Architect, and the Confirm verification tools. The Confirm suite includes tools for on-line design rule checking and layout-vs.-schematic comparison. \square

Price And Availabilty

Construct P.I. and Compose Architect will begin shipping in the fourth quarter for Sun workstations. Both will be available for the DEC and IBM workstations in early 1991. Construct P.I., including the de-vice-level compactor, starts at $\$ 50,000$. Current Construct users can upgrade to process independence by purchasing the device-level compactor separately. The de-vice-level compactor option begins at $\$ 15,000$. Compose Architect can be purchased standalone starting at $\$ 30,000$. It also comes bundled with the detailed routers of the Compose chip assembly tool, starting at $\$ 65,000$. All prices include Access network licensing.

Valid Logic Systems Inc., 2820 Orchard Pkwy., San Jose, CA 95134; (408) 4329400.

CIRCLE 529

How Valuable?	Circle
HIGHLY	530
Moderately	531
Slightly	532

When you're the first and fastest, what do you do for an encore?

Whatever it is, it better be good.

After all, our EL 3200 was the first 68020/030 development system with 33 MHz speed.

So, while others were just getting into the act, Applied Microsystems upped the ante.

We made the EL 3200 a more powerful performer. So you get an

advanced event system for easier tracing and debugging of complex 32-bit designs. Support for the memory management unit, floating point, cache burst and synchronous cycles. And a graphical interface to set breakpoints more quickly and a powerful macro language to simplify lengthy routines.

All this comes with full Ethernet
network support to maximize your investment in workstations and PCs. Plus installation, training and application assistance to help you finish your designs faster.

For a free demonstration, call Telemarketing at 1-800-343-3659 (in WA, 206-882-2000).

Because folks, it's show time.

Power Source Up-Date

Single Board Construction Shrinks 750W Size and Cost: 58\% Smaller, 30\% Cost Savings

Designed for high-end computer products, TODD's MAX-750 combines a compact size, $13.5^{\prime \prime} \times 5^{\prime \prime} \times 2.6^{\prime \prime}$ compared to the typical $5^{\prime \prime} \times 8^{\prime \prime} \times 11^{\prime \prime}$ shoebox switcher (see photo insert), and very competitive pricing. OEM product designers can reduce product size with a MAX-750 or build in power supply
redundancy, replacing one "shoebox" switcher with two MAX-750's in the same space.
The small package size, high power density of 4 watts/in., high peak current for motor starting, and cooling options, make the MAX-750 the power supply of choice for VMEbus systems, workstations, file servers and mini-computer systems. The switcher provides 120 amps of +5 volts for logic and memory, and features up to three auxiliary outputs providing high efficiency, tightly regulated 12 volts or -5.2 volts at up to 20 amps . Designed for world wide use, the series offers $A C$ power fail, $A C$ autoline select, and meets International Safety standards and Class A RFI requirements of FCC and VDE 0871.

Call 1-800-223-TODD, or CIRCLE 169

High Efficiency DC Converters Fit AC To DC Footprint

TODD's DC to DC converters provide up to 350 watts from 48 volts DC input, Designed as companion units to TODD's standard line of AC input power supplies, they are fit, form, and function compatible with the MAX-350, MTC250, MTC-350, and certain single output

SC series products.

Available in a 250 watt "DC" single output series and a 350 watt multi output "DCX" series these power supplies have up to 50 amp main output of tightly regulated 5 V power, two fully regulated, high-efficiency, post-regulated magamp outputs and one low-power threeterminal regulated output.

Call 1-800-223-TODD or CIRCLE 170

New Technology Shrinks 500 Watt Power Supply

TODD's MAX-500 switchers pack 25% more power into TODD's 400 watt package size ($11.5^{\prime \prime} \times 5^{\prime \prime} \times 2.5^{\prime \prime}$). The series incorporates a new SMT circuit, newlyavailable components, improvements to TODD's VERI-DRIVE current-fed inverter topology, monocoque construction, and a high efficiency FLUX-GATE switching mag-amp auxiliary post regulation. Result: higher performance, higher reliability (approaching 100,000 hours MTBF) and lower cost.

Call 1-800-223-TODD or CIRCLE 171

Super Micro Supply Has a Cool 350 Watts

Targeting the computer-based OEM, TODD engineers developed the $9^{\prime \prime} \times 5^{\prime \prime}$ $\times 2.5^{\prime \prime}$ MAX-350 series of competitively priced switching power supplies. Low component count, extensive use of SMT and raising efficiencies to 80% with attendant reduction of heat sink requirements results in MTBF approaching 100,000 hours.

The series features up to 50 amps of +5 volts for logic and memory and fully regulated high efficiency mag-amp outputs to power up to four disc drives. Auxiliary outputs power common peripherals like ECL monitors, RS232 outputs, communications drivers, etc.
Call 1-800-223-TODD, or CIRCLE 172

More information on these and the full line of TODD Switching Power Supplies can be obtained in EEM File 4000, by circling the response card numbers, or by contacting:

50 Emjay Boulevard
Brentwood, New York 11717 (516) 231-3366 or 1-800-223-TODD

FAX (516) 231-3473

Communications-Targeted DSP Chips Deliver Top Throughput dave brasky s the communication spec-

Atrum gets more crowded, more precise filtering and frequency control is needed to ensure high-quality and stable reception of transmissions. To aid in the filtering and tuning, a digital decimation filter and a combination numerically controlled oscillator and modulator have been developed by Harris Semiconductor. With those two CMOS chips, designers can now build the heart of a digital receiver with an out-of-band attenuation of 96 dB and a tuning accuracy of 0.006 Hz (with a $30-\mathrm{MHz}$ sampling rate). The chip set can considerably simplify applications such as i-f channels for satellite data links, radar and sonar data gathering, narrowband spectrum analysis, and others.
The first of the two chips, the HSP43220 decimating digital filter, operates at clock rates of up to 35 MHz and can be programmed for decimation levels of up to $16,384-$ loosely equivalent to about 512,000 standard filter taps. On the chip is actually a two-stage filter structure, with the first stage performing the high-order decimation. The decimation is performed with a sample-ratereduction scheme that delivers decimations of up to 1024 through a coarse low-pass filtering process. The high-order section provides up to 96 dB of alaising rejection in the signal passband.
Employing a finite-impulse-response decimation filter in the second stage, the circuit can appear as a transversal FIR filter with up to 512 symmetric taps, or an arbitraryphase filter with up to 256 taps. The FIR section can perform decimation by up to 16 while preserving the 96 dB rejection.
Data words fed into the filter chip are 16 bits wide, and data outputs are 24 bits. The wider data output bus allows more accurate results to be delivered. Internal routing paths permit the designer to bypass either the high-order filter or the FIR filter sec-

tion if only one level of filtering is needed. The chip has three-state outputs, which permit multiple circuits to tie into a common bus.
With a complex multiplier and complex accumulator as well as a quadrature numerically-controlled oscillator (NCO), the HSP45116 allows complex vectors to be rotated for quadrature modulation and demodulation subsystems. The NCO portion of the chip includes a phase and frequency control section, as well as the sine/cosine ROM. The resultant sine and cosine outputs of the NCO section are fed into the complex multiplier-accumulator that computes the product of those terms with the magnitude and phase values of the incoming vector.
A 32 -bit input controls the input frequency, with a frequency resolution of better than 0.01 Hz at 30 MHz . Furthermore, the error in the sinusoidal vector is less than -90 dB . Although input vectors are represented with 16 -bit real and imaginary values, the chip delivers two 20 -bit output values that represent the rotated complex vector.

When the HSP45116 is used in conjunction with a pair of 43220 decimating digital filters, the trio forms the main section of a quadrature downconverter. The system can tune in on signals whose bandwidths are several orders of magnitude less than that of the input-signal sampling frequency. The entire system could offer sampling rates of over 30 MHz , 16-bit accuracy, out-of-band attenuation of up to 96 dB , and $0.006-\mathrm{Hz}$ tuning accuracy. The chips permit the tuning frequency and phase to be altered in a single clock period, with no loss of data due to settling time. That permits schemes such as frequencyhopping for secure communications.
Samples of both chips are immediately available. The 84-lead pin-grid array version of the HSP43220 decimating filter sells for $\$ 140$ in 1000unit lots, while the 144 -pin PGA version of the HSP45116 goes for $\$ 175$ in similar quantities.

Harris Semiconductor Corp., 1301 Woody Burke Rd., Melbourne, FL 32902; Clay Olmstead, (407) 7243868. In the U.S., call (800) 442-7747, ext. 1083.

CIRCLE 336

VGA IC UPS ReSOLUTION

The OTI-067 graphics controller from Oak Technology provides 1028-X-768-pixel resolution with 16 colors for IBM VGA-compatible graphics systems. Compared with the company's OTI-037 entry-level VGA controller, the 067 requires fewer external components.

Only two 256 k -by- 4 DRAMs are required for 800-X-600-pixel resolution or 1024-X-768-pixel resolution with 16 colors. Four DRAMs support 800-X-600pixel resolution with 256 colors, and 1024-X-768-pixel resolution with 16 colors, all with noninterlaced operation for cleaner screen appearance. Older VGA controllers require eight DRAMs for noninterlace operation.

The controller is supported with application software drivers for popular programs such as Windows, OS/2, and GEM. Also available is a kit for usercustomized drivers, which includes internal register definitions and an evaluation board. The company also offers
an OEM turnkey manufacturing kit that includes schematics, film for pcboard layout, a data book, VGA BIOS PROMs, and a bill of material for making VGA boards and subsystems. For added design simplicity, the OTI-069 clock synthesizer is also available for
replacing four discrete crystals. Now in full production, the OTI-067 is priced at $\$ 29.00$ each in lots of 1000 .

Oak Technology, Inc., 139 Kifer Ct.,
Sunnyvale, CA 94086; Scott Al-
berts, (408) 737-0888. CIIGIF 337

- MILT LEONARD

IEEE-488 InTERFACE INCLUDES I/0 LINES AND COUNTER/TimERS

The Power488CT board carries not only an IEEE-488.2 interface, but also 40 digital I/O lines and five programmable 16 -bit counter/timers. All that is packed onto a full-slot card that plugs into a 16 -bit PC/AT-style bus. The board is programmable using the new Standard Commands for Programmable Instruments (SCPI). It's fully compatible with IEEE-488.2, including the ability to monitor bus handshake lines and detect changes on the SRQ line.

The board reads data from IEEE-488 devices at the standard's full speed of 1 Mbyte/s. It also supports interruptdriven I/O capability, with 11 user-selectable interrupt lines. The counter/ timers can be configured for counting pulses or for measuring frequency or time. The unit counts pulses and frequency to 7 MHz and measures time to a resolution of 140 ns .

The board comes with Driver488, an enhanced version of IOtech's device

driver software. Among other improvements, the company added serial port control, which lets users integrate control of serial devices with the board's other functions.

The Power 488 CT costs $\$ 595$. Without the counter/timers, the Power 488 goes for $\$ 495$. Delivery is from stock.

IOtech Inc., 25971 Cannon Rd., Cleveland, OH 44146; (216) 439-
4091. GIRGIF 338

- JOHN NOVELLINO

MIXED-SIGNAL SYSTEM TESTS 50-MHZ DEVICES

The M3600 mixed-signal test system offers versatile component test capabilities at digital clock speeds to 50 MHz and on up to 256 mixed-signal pins. The system, built by SZ Testsysteme and offered in North America by SemiTech International, is well-suited to production and characterization testing and can easily be adapted to incoming-inspection test. A modular architecture allows the M3600 to expand as needs change. In the standard configuration with 64 pin drivers, analog, and digital instrumentation, 20 slots remain available for special instrument requirements. Timing resolution is 500 ps . The M3600 runs more than 1000 applications developed for the earlier M3000 Universal Test System. Prices for the M3600 start at under $\$ 175,000$ in North America, and include a 32 -bit HewlettPackard color graphics workstation. Orders are being accepted, with delivery in 10 to 12 weeks.

Marketing Dept., SemiTech International, 56 Roland St., Boston, MA 02129; (617) 628-8880. GHIGIF 389

Now it takes this.

It used to be that protecting multiple data or signal lines from transient voltages meant sacrificing valuable board space.

Not so today.
Presenting the transient voltage suppressor arrays from General Semiconductor Industries (GSI),

These arrays have been de signed with GSI's proven TransZorb. technology to deliver premium protection in a single package This allows you to add needed protection to your circuitry and save on board space and assembly costs.

Whats more we manufacture

different arrays for different heeds, including commercial and military applications. Our product line includes arrays that provide inidirectional or bidirectional protec tion for $4,6,8,12$ or 15 lines.
And since every GSi array features FransZorb technology, they consistently deliver high current handling capability, low clamping voltage and extremely fastresponse time.

But then, youd expect such performance from a GSI array. After all, wéve been the leader in transient voltage suppression for more than 20 years.

When it comes to protecting your data and signal lines, wéve got what it takes.

For more information on these products, call or write us at General Semiconductor Industries, Inc, 2001 West Tenth Place, Tempe, AZ 85281 , (602) 968-3101.

Authorized Distributors:

100-MHZ TESTER B0ASTS 350-PS ACCURACY

The HP 82000 IC evaluation system family has been extended to include a $100-\mathrm{MHz}$ version, the Model D100. The system delivers edge-placement accuracy of 350 ps and a maximum pin count of 512 pins, with full tester capability
on each channel. The D100 is fully compatible with the 50 -, 200 -, and $400-\mathrm{MHz}$ versions of the HP 82000 , running the same software and operating system. Thus users can upgrade their system as needs change. Automatic-test functions and fast setup time offer users high-volume design throughput. And HP's recently introduced production-

CIRCLE 159

Enhanced Smalltalk Gets More P0werful, Portable

Abevy of enhancements to ParcPlace Systems' year-old release of Smalltalk 2.5 has resulted in a more portable, more fea-ture-laden and more-efficient version, Objectworks/Smalltalk Release 4. For starters, the latest release includes the hooks necessary so that it can work with all standard windowing systems, thus making it easier to program and

use by anyone already familiar with the window controls. Furthermore, the company developed a Smalltalk portable imaging model that allows Smalltalk to maintain consistent graphic images for application programs on different computers. Thus, an application running on a Sun workstation would look the same (within machine limitations) when it runs on an Apple Macintosh, for example.

Additional improvements include the ability to implement 24 -bit non-indexed true-color imaging descriptions so that photographic-quality color imaging can be done consistently on any platform that runs Release 4. A more efficient "garbage collection" scheme that incrementally reclaims storage space was added to transparently eliminate intermediate results that are no longer needed. To attract international users, ParcPlace added the ability to Release 4 so that it can simultaneously handle multiple character sets and doublebyte character definitions.

The company also added considerably to the portable object library that comes with the software, upping the count to about 300 reusable objects that come with source code and documentation. An optional advanced programming ObjectKit includes analysis tools, programming tools, browser programs, communication drivers, and more. Initial versions of Release 4 will be released first on the Sun 3 and 4 workstations, Apple Macintosh computers, IBM PS/2 and RISC System

6000, Digital Equipment DECstations, and Hewlett-Packard and HP-Apollo workstations. On the Sun workstations, the single-user price will be $\$ 3500$, with availability slated for November. In the first quarter of 1991, us-
ers can add ObjectKit for $\$ 500$.
ParcPlace Systems Inc., 1550 Plymouth St., Mountain View, CA 94043; Catherine Tucker, (415) 6916700. CIICIF 342 - DAVE BURSKY

[^7]CIRCLE 106

NEED BROAD-BAND COAXIAL RELAYS? FROM 2 TO 24 THROW, MATRIX HAS THE ANSWER

Our versatile 7000 series of coaxial relays have band-widths from DC up to 800 MHz . They're available from 2 to 24 throw. And by using our 9000 series cross-straps, switching matrices of any size can be configured.

Why have Matrix broad-band relays become the industry standard? Because we construct them of precision machined anodized aluminum alloy, all signal shield paths are silver plated, and basic switch elements are hermetically sealed in nitrogen filled gas envelopes with rhodium plated contacts to insure non-stick operation.

The end result is extremely low crosstalk, EMI and VSWR. Another plus, all switchpoints are individually field replaceable.

The units are plug compatible with Matrix 6100A and 1600 Series Logic Modules for compatibility with RS-232, RS-422 and IEEE-488 Interface busses as well as 16 bit parallel.

Non-blocking Matrix configuration may be easily assembled

5177 NORTH DOUGLAS FIR ROAD CALABASAS, CALIFORNIA 91302 CIRCLE 129
using our self-terminating relays and 5100A series power dividers. Built-in Video/RF amplifiers allow zero insertion loss designs.

So if you're looking for broadband relays, it pays to deal with Matrix. After all, we've been designing state-of-the-art reed relay and semiconductor switching systems for over 18 years.

Our customers include government agencies, defense contractors, the TV industry, ATE and telecommunications companies-and more.
Phone: 818-992-6776
TWX: 910-494-4975
FAX: 818-992-8521

An Exclusive Offer from the American Express ${ }^{*}$ Card and the Employee-Owners of Avis...

Luxury ForLess\& Free Unlim Mileage.

Now the employee-owners of Avis, Inc. are "trying harder than ever" with this exciting exclusive for American Express ${ }^{*}$ Cardmembers. Travel in firstclass comfort at a coach rate, without paying a penny for mileage.

To get this exclusive rate from Avis and the American Express ${ }^{\circ}$ Card, here are some things you should know: Your car rental must be charged with the American Express* Card. Rate and cars are subject to availability at participating Avis U.S. locations now through Dec. 17, 1990. Rate is nondiscountable (not available in Metro N.Y., N.Y. State, Philadelphia or Illinois). Cars must be returned to renting location. There is no refueling charge if you return the car with a full tank. Blackout periods may apply. Renter must meet Avis age, driver and credit requirements. There is an extra charge for additional drivers, local taxes, optional Personal

$\$ 45_{\text {a day. }}$

Cadillac Sedan de Ville.
Free unlimited mileage.
Optional Loss Damage Waiver \$13/day or less. Limited availability. Ask for Rate Code 76.
 Accident Insurance, Personal Effects Protection and Additional Liability Insurance, where available. To get this elegant bargain from Avis and the American Express ${ }^{\circ}$ Card, advance reservations are required. So call an Avis employeeowner at 1-800-331-1212 or your travel consultant today.

We're trying harder than ever." ${ }^{\text {s" }}$

TAJ woos Execs...

High-roller executives are being tugged east and west by the newest and most extravagant upscale casino resorts in Atlantic City and Las Vegas. Donald Trump labels his $\$ 1$ billion Taj Mahal, the 17-acre casino and hotel complex that opened on Atlantic City's Boardwalk in April, "the eighth wonder of the world". Among its credentials: a $120,000-\mathrm{sq}-\mathrm{ft}$ casino that's the biggest in the world; 1,250 rooms and suites; $\$ 14$ million worth of Austrian crystal chandeliers, including two dozen in the casino valued at $\$ 250,000$ apiece; a dozen restaurants; and $175,000 \mathrm{sq} \mathrm{ft}$ of convention and exhibit space. On the top 12 floors of the 51 -story tower are 237 luxury suites and the exclusive Maharajah Club. The 51st floor features seven luxury two-bedroom penthouse suites, topped by the $4,500-\mathrm{sq}-\mathrm{ft}$ Alexander the Great, which has its own butler as well as steam room, sauna, and weight room. Cost is $\$ 10,000$ a night but no one ever pays; the lavish suites are given to big spendors and special guests. Regular room rates now are $\$ 140$ and $\$ 150$. for information, circle no. 15

...SO DOES MIRAGE

In Las Vegas, the $\$ 630$ million Mirage is "a special place," says owner Steve Wynn. "It's a resort hotel which includes a casino-not a casino which includes a hotel." The Mirage, which opened last

November on a 100 -acre site north of Caesars Palace, has 3,049 rooms in three 30 -story towers. There's no "cheap neon," which Wynn says typified "yesterday's Las Vegas". Rather, the Mirage appears as a tropical paradise in the desert. Its entrance is marked by a lagoon with a fivestory waterfall and a volcano which erupts every few minutes. The casino measures $60,000 \mathrm{sq} \mathrm{ft}$ but the gaming areas are grouped under separate Polynesian-style roofs to give the feeling of intimacy. Attractions include a 53 -ft, shark-filled aquarium; the royal white tigers of illusionists Siegfried and Roy; five restaurants; and over $60,000 \mathrm{sq} \mathrm{ft}$ of convention space. Rooms are $\$ 89-\$ 159$, suites $\$ 325-\$ 750$, and six lanai bungalows $\$ 750-\$ 1,250$. In June Circus Circus Enterprises opened the largest hotel in the world-the $\$ 290$ million Excalibur, containing 4,032 rooms. With rooms $\$ 45-\$ 110$, it aims at a more middle-class market. The Mirage competes directly with the spectacular Caesars Palace and Wynn's Golden Nugget, both completely renovated.

Atlantis submarines have sufficient life support systems to stay submerged up to 72 hrs.

DIVNG IN STYIE

Even if you're not a scuba diver or snorkeler, you can discover the brilliantly colored fish, exotic marine life, coral formations, and other natural wonders of life beneath the sea-while enjoying the air conditioned comfort and safety of a tourist submarine. Atlantis Submarines International operates the largest fleet-six submarines in Grand Cayman Islands, Barbados, St. Thomas/U.S. Virgin Islands, Guam, and Hawaii (Kona Coast of Hawaii and Waikiki Beach in Honolulu). It will launch its seventh sub in Aruba in November. The 65 -ft-long, $\$ 3$ million subs, which dive to a maximum 150 ft , seat as many as 46 passengers and three crew members. They have $262-\mathrm{ft}$ portholes and a $52-\mathrm{ft}$ front viewport. The hour-long voyages cost $\$ 58-\$ 85 \mathrm{a}$ person (604/875-1367).

Checking in at the Mirage includes checking out a 20,000-gallon aquarium.

Whether he's in
a hotel or car,
Harvey Mackay carries along his
cellular phone. It's one of about 35
"time savers" that gointo his brief-

WITH "FANATICAL" ATTENTION TO DETAIL AND AN BUSINESSMAN/AUTHOR HARVEY MACKAY SHOWS EXECUTIVES HOW TO SUCCEED

- AT PLAY AS WELL AS WORK.

Deliver More Than You Promise-is another easy-to-read primer of short, simple business "lessons" topped by clever, snappy titles. Like Swim with the Sharks without Being Eaten Alive, it's a best seller.

His publishing success has propelled his lecture popularity to the point where he commands $\$ 20,000$ for a typical one-hour presentation, and he gives 40 to 50 a year. He's also a sports-oriented Minneapolis civic leader, donating a quarter of his time to volunteer work. As an avocation, he has counselled more than 500 college students.

The man, obviously, is organized. He seems to prepare for everything: "I have a fanatical attention to detail, but it's not that difficult. All success is, really, is having a predetermined plan and carrying it out successfully over a long period of timereaching your potential." The result becomes, to quote one of his pet phrases, "a piece of cake."

Thus, want to be creative? Start reading books on creativity. Hang around with creative people. "All of a sudden, it's a funny thing, you start to become creative."

Want to become a better tennis playeradvance from class B to A? With the Mackay way there's usually a list of things to do. In this case, one, find a really good "mentor" or teacher. Two, take "copious" notes, and refer to them often (Mackay still has his golf notes from playing for the University of Minnesota in the 1952 NCAA championships). Three, tape the lessons so you can hear them while driving. Four, videotape yourself playing tennis for "visualization" Five, attend tennis tournaments. Six, watch tennis on TV. Seven, ask your instructor for "the five best books on tennis -not just the technical but the mental aspect, too." Eight, hang around with tennis players, and play with better players. Nine, compete in tournaments. Result: Harvey Mackay, who took up tennis in his mid-30s, is now No. 1 ranked in his age group in Minnesota.

Want to run a 26 -mile marathon-even though you're 55 years old and the most you've ever run is three miles? Again, simple. Follow practically the same steps as for tennis, plus "change your eating and sleeping patterns", and in time the event itself becomes "incidental." Even before the 1988 New York Marathon began, he already had "won." How? "By trying my guts out for 100 days. Perfect practice makes

nerfect" savs Mackav_nrenaring nowto perfect", says Mackay, preparing \boldsymbol{E} now to run his second NewYork Marathon Nov. 4.

In promoting his books, Harvey Mackay followed his own advice. Before selecting a publisher he researched the industry, visiting bookstores across the country. He even hired his own publicist and attended the Frankfort, Germany, book fair to personally solicit foreign buyers.
"It's all research, doing your homework, preparing to win," he stresses, citing his early September trip to the Soviet Union as an example. Finvest, the Soviet chamber of commerce, invited him to speak on national Soviet TV about free enterprise and the American way of doing business. His audience: "the whole damn Soviet Union!" he exclaims. "I will have an opening seven-minute talk-so what do you think I'm going to do? I'm going to deliver the speech in Russian!" Last month he hired his own "Russian instructor. It is one of a half-dozen languages he has studied.

In his appreciation of time, travel ("the best education you can give a child"), contacts, research, and curiosity ("I have an insatiable curiosity to know about human beings"), Harvey Mackay has adopted habits he learned from his "mentor"-his father Jack, who was a veteran Associated Press reporter and bureau chief in the Twin Cities. "My whole life is one-on-one networking", Harvey says. "When I was about 18, my dad taught me that every person you meet for the rest of your life, assuming you want to keep in touch with him or her, goes into a card file. You do that for about 40 years and you've got a pretty good network."

Rolodex is the "key," says the man who in 40 years has accumulated some 6,500 cards or names, in several files. "It's simple", he says. "Every time you go to a conference or a party or you sit on an airplane, you meet somebody and ask him for a card, and you jot down maybe one or two salient points." His cards include such personal data that, when a man phoned recently from Bombay, for example, Mackay was able to quickly flip through his Rolodex and ask: "How's your daughter Carol?" Says Mackay, "This shows I care about them. People don't care how much you know about them once they realize how much you care about them."

Approximately 20% of his 6,500 cards, alphabetically arranged, represent people with whom he maintains regular contact.

Going for the green in Hong Kong.

To get to where the deals are swung in Hong Kong, take the airline that goes there more often than any other. United.

United gives you the best possible shot, with more nonstops from the U.S. than anyone. Each one comes with lots of extras, like generous Mileage Plus creditsin First and Business Class. And our exclusive Concierge Service for First Class passengers.

Come fly the friendly skies.

The others are sorted by cities, states, and countries. When he travels, Mackay simply looks up his cards for that area and jots down the names and phone numbers of people he intends to call. So lavish has been his praise for Rolodex - "the most important word in the English language" -that he has written a book on how to best use it. The Harvey Mackay Rolodex Network Builder will be available in late September.

Of course, much of Mackay's information comes from reading 35-40 hours a week -mostly business and current eventsin all the major business journals, news magazines, and local and national newspapers. He also gleans much from the Cable News (TV) Network.

Instructional or inspirational cassette tapes provide further information. Mackay has more than 300 tapes to listen to while traveling. "Most people drive 12,000 miles a year. If you live to be 72, that's $31 / 2$ years in a car," he reasons. "Why not turn your car into a university?"

Much of this year Mackay has been crisscrossing America on a combined book and lecture tour, and even the interviews to him present opportunity: "You learn from a Larry King or an Oprah Winfrey. You get a chance to study at their feet. Any new experience is another opportunity." The tour also permits him to visit his son in Los Angeles or daughters in New York and Detroit.

Despite all its problems, Mackay seems to thrive on travel. In fact, he and Carol Ann, his wife of 29 years, have a goal to see every country in the world; they have visited about 60 of the approximately 170 . "Flying is like jogging. At 30,000 feet it's all in the attitude", says the upbeat Mackay. "It can be so fabulous with the nice views, the peace and quiet, and the fascinating people you meet. Of course, 40 below zero can be exciting-if you want it to be exciting."

The detail-minded Mackay offers some tips to make traveling more pleasant. For example, he always sits "on the side of the plane where I can see the sunset and sunrise. It's a little thing but it really makes traveling nice."

When the airline doesn't have the seat he'd prefer, he asks whether any "non-revs" (non-revenue passengers, usually airline personnel) are aboard, and requests one
 CAN BEAT 80\% OF THE COMPETITION JUST BY SHOWING UP.
of those seats if desirable. "The airline
will ask the 'non-revs' to move-but you have to know to ask this."

At hotels, Mackay also makes sure he enjoys the finest view. "It costs virtually the same, you just have to ask," says Mackay, who insists on being on an upper floor, with a view of water, skyline, mountains, or the like. He even knows what room numbers to request. He also prefers hotels near a park, track, or golf course on which he can run.
No matter where he goes, he carries his "prioritized" reading material, for business and pleasure. In larger cities, he arranges to be picked up by a town car at the airport. Why? "To take advantage of night reading. Cabs don'thave a reading light in the back".

His briefcase always contains his 35 or so "time savers", including a cellular phone with extra batteries, a tiny dictating machine, a list of 250 phone numbers of people he calls regularly, postage stamps, Swiss Army knife, Post-it notes, 25 new dollar bills, and change. He carries his list of favorite restaurants for that city.

Just as meticulous about his health, Mackay neither smokes nor drinks coffee, and rarely drinks alcohol. What he does drink is an astounding amount of wateras many as 20 glasses a day. He didn't need to be convinced by his marathon "running coach" to consume 16-20 glasses daily to prevent dehydration. He already knew the wonders of water, that it cools the body, improves circulation and digestion, and fuels the muscles. "Whether you're a runner or not, water is fabulous. It gives you unbelievable energy!" Mackay exclaims.
"Totally addicted" to running for its relaxing benefits, Mackay also uses his seven miles daily as an opportunity to work on speeches-and even Minnesota's winters don't deter him.
As for work, Mackay says that he's not a "workaholic", that his family comes first. He takes his wife on about a third of his business trips. For two weeks every holiday season the family vacations together; every four years he takes them all to the Olympics.

He "cannot fathom" ever retiring. To him his job is not work, just as it wasn't to his father, who "was successful and happy and loved what he was doing. Find what you love to do", says Harvey Mackay, "and you'll never have to work a day in your life." \&

At Motorola, we believe through one of the most a cellular phone not only should work the first time out of the box, but we feel it should also be working years down the road.

And after we build them, we make it our business to ensure they're built right.

We put our phones
rigorous testing progroms in the industry, exposing them to everything from temperature extremes to assorted shock and drop tests.

And this painstaking attention to quality parys off. Over the years the quality built into our phones has
won over more than custom ers. It's also won some very prestigious awards. In 1988, Motorola received the first Malcolm Baldrige award, given by the President of the U.S. to recognize the quality of Motorola's equipment and services. And this year. Motorola received Japan's

1989 Nikkei award for creative excellence in products and services.

The fact is, when it comes to quality and durability, our phones don't just stand out.

They stand alone.
(4). Motorola Micro T•A•C and Digital Personal Communicator are trademarks of Motorola Inc © 1990 Motorola Inc

At Manhattan's small luxury hotelsoffering warmth, intimacy, elegance, and impeccable serviceevery guest is a VIP. shops and boutiques, apartments of the rich and famous, as well as Central Park.

With each, less is more. Often the hotel appears more like a private club or residential building. The entrance is small and discreet, but friendly. A few highly capable staffers await behind the desk

BY JIMBBRABAM

New York's finest small hotels present a welcome sight, from the Westbury (left) where a Rolls-Royce lis not in the least uncommon, to the Peninsula (above) where a sweeping marble staircase leads up to the Iobby, to the Mayfair Regent whose lobby ls among the loveliest of public rooms.
 society, and wealth, within waiking distance of the museums, galleries and concert halls, high-fashion and Stanhope-all generally considered the creme de la creme of New York's finest small luxury hotels -as well the jewel-like Peninsula, Ritz-Carlton, Parc Fifty One, Mark, and Westbury. With no more than 250 rooms apiece, each specializes in personalized, VIP service, each in its own distinctive manner. Room rates typically begin at about $\$ 250$ a night.

Most of these hotels are on New York's fashionable Upper East Side, in the center of high style, society, and wealth, within walking distance of the

With over 3,400 locations around the world, Best Western does business where you do.

Wherever you do business, Best Western is sure to have the right place for your schedule-and the right price for your budget.

And because every Best Western is an independently owned and operated business itself, we know what it takes to make business people come back again and again.

Like clean, comfortable meeting rooms. Efficient messaging service. An ongoing renovation plan. And one of the most generous frequent guest programs in the business.

For an application to our fee-free Gold Crown Club call l-800-BEST GUEST.

For reservations in 38 different countries, ask your travel agent or call us toll-free at 1 -800-528-1234.

and you'll see no lines or signs, certainly no conventions.

Return guests represent the majority of business, and client preference and whims are recorded and extended at each visit. No request seems excessive. Two tickets to Phantom of the Opera, toughest tickets on Broadway, you say? No problem, says Frank Bowling, vice president/manager of the Carlyle."By the way," he adds, "did you know that Andrew Lloyd Webber wrote some of Phantom while staying here?"

At many of these hotels, afternoon tea is a favorite activity, usually in a small lounge area off the lobby. The dining rooms are elegant but relaxing, the food and drink superb. Operators often man the elevators and room service is around the clock.
The luxuriously comfortable rooms are frequently adorned by fresh flowers, and perhaps a fruit bowl. The baths are marble, the mini-bars well-stocked. Multiple phones and lines are common, as are stereos, VCRs, 6 -ft bath towels, terrycloth robes, exotic soaps and toiletries, bathroom scales, hair dryers, evening turndown service, complimentary shoeshines overnight, and complimentary newspapers at your door in the morning.

At these hotels, privacy of the many celebrities is protected, but hosts aren't above dropping a few names. As Mariotti says, "We get our share of Hollywood and business people, bankers, and glamorous ladies. We don't court the large official groups because it disrupts the hotel. But Mrs. Reagan likes to stay here, so what are you going to do?"

+ ${ }^{*}$
 The Carlile

Unlike most of its competitors, the classically elegant Carlyle doesn't advertise. New York's only Mobil Five Star hotel doesn't have to. The 60 -year-old grande dame has everything: location, service, and facilities. Towering above its residential neighbors, the 35 -story Carlyle permits outstanding views of Central Park and the skyline. Every one of its 196 rooms is unique in decor and has a stereo entertainment center including a CD player and VCR. Practically every room has a Jacuzzi and fax machine, and fresh fruit and flowers are standard. Service is impeccable from a veteran staff that outnumbers guests. A new fitness center sports the latest equipment. The Carlyle Restaurant features the finest French cuisine, Bobby Short is still singing strong in the Cafe Carlyle, and Bemelmans Bar remains a favorite watering hole. (Room rates $\$ 250-\$ 1,300$; Madison Ave. at E. 76th St.; 800-227-5737).

The Mayfair Regent

Displaying papers from around the world, the newspaper rack in the lobby lounge of the Mayfair Regent receives considerable

The best way to a man's stomach...NordicTrack

World's best aerobic exerciser.
NordicTrack duplicates the motion of cross-country skiing, what most experts agree is the most efficient and effective aerobic exercise.

It burns more calories in less time than any other kind of exercise machine. Up to 1,100 calories per hour according to tests at a major university.

Besides burning calories it strengthens the heart, tones the muscles and improves stamina. And it's much less stressful on the body than running and high-impact sports. Working out on NordicTrack also boosts creativity and productivity and lowers stress, making you feel as good as you look.

It's time to change the spare tire.

Unlike most inhome exercisers, NordicTrack works all the major muscle groups of the body including the arms, legs, buttocks, shoulders and yes, even stomach.

So what are you waiting for? Call

NordicTrack today.
 Nordictrack

[^8]attention. Little wonder: in this "European island in New York", as managing director Dario Mariotti calls his 16 -floor hotel, about 40% of the guests in the 80 rooms and 1119 suites are European. When we visited, Queen Sofia of Spain was staying, but you'd never find that out from the white-gloved elevator operators for whom mum's the word. One of America's best (and priciest) restaurants is off the lobby: owner Sirio Maccioni's Le Cirque, where both peoplewatching and cuisine (pasta primavera is his specialty) are spectacular. Among new services: a fitness room and pocket-sized cellular phones ($\$ 15$ daily rental). A soap lady daily brings to the room a basket of unusual European selections. (Rates $\$ 265-\$ 1,700 ; 610$ Park Ave. at 65th St.; 800-545-4000).

- $*$
 The LOWELL

With only 60 rooms, the Lowell "is able to care for and pamper our clients to the hilt," says general manager Martin Hale. Outnumbering guests by a more than 2 -to1 ratio, the concierges (dressed in morning coats and striped trousers) and other staffers do everything from stoking a log fire (most rooms are suites, with wood-burning fireplaces) to stocking your refrigerator (every apartment has a kitchen) to tailoring an individual menu for your room. The only New York member of the exclusive Relaix \& Chateaux Chain, this intimate haven of understated opulence is an historical-landmark building, completely renovated. The independent Post House steak palace is off the boutique-sized lobby. (Rates $\$ 240-1,200 ; 28$ E. 63rd St.; 212/838-1400).

- ${ }^{*}$
 The Plaza Athenee

At this sister hotel of the famed Hotel Plaza Athenee in Paris, incoming guests realize immediately that they are in no ordinary hostelry. For one thing, they sit down at the front desk to register. That's just a hint of all the personalized attention forthcoming in this exquisite,17-story European gem, for the last six years a Trusthouse Forte property. The 160 rooms - most of which have pantries and refrigera-tors-echo the luxurious, but understated, good taste of the public areas. Le Regence restaurant is a feast for eyes as well as palate. When guest leave, they receive another indication of all the extra-special service and surroundings: the average room rate of $\$ 350$ is highest in the U.S. (Rates \$245-\$1,950; 37 E. 64 th St.; $800-$ CALL THF).

- ${ }^{*}$

The Pierre

The toast of Upper Manhattan since it opened in 1930, the Pierre remains a grand tradition, ideally situated on Fifth Avenue along Central Park. The 205 -room hotel has been given a fresh, new look by the Four

The Stanhope (above) has been restored in the tradition of the grand hotels

Seasons management that took over in 1981, without losing a bit of its European charm, service, or elegance.The Cafe Pierre is one of New York's finest hotel dining rooms and the classic Rotunda-with its marble staircase, soaring ceiling, and floor-to-ceiling murals-is a favorite meeting spot. (Rates $\$ 265-\$ 1,750$; Fifth Ave. at 61st St.; 800-332-3442).

- *

The Stanhope

One of the first signs of spring in New York comes when the Stanhope opens its Terrace sidewalk cafe. It's a perfect spot for peoplewatching and resting between visits to the Metropolitan Museum of Art and Central Park, both directly across Fifth Avenue. The elegant and intimate Stanhope (141 rooms, including 88 suites)-since 1926 a home away from home for business and art leaders-recently underwent a $\$ 28$ million restoration by the Grand Bay Hotels. The new owners aren't tampering with formality: the hotel remains.the only one in Manhattan where ties and jackets still are required (except for breakfast) in the diming areas. (Rates $\$ 245-\$ 2,000 ; 995$ Fifth Ave.; 800-828-1123).

of Europe, while art deco features some suites in the Parc Fifty One Hotel.

-1

The Ritz-Carlton

At the Ritz-Carlton on Central Park South, be sure to request a room on the north side. From these 77 rooms (amoung the hotel's 228), the view is spectacular: Central Park with all its greenery, framed by the skyscrapers along Fifth Ave. and Central Park West. Off the intimate, pine-paneled lobby is the popular Jockey Club restaurant and bar, where Norman the bartender seems to know everyone and crab cakes are everyone's favorite. The Ritz-Carlton chain, which took over the onetime Navarro residential hotel last year, will begin a $\$ 30$ million renovation in late September; additions will include a health club. (Rates $\$ 190-\$ 1,200$; 112 Central Park South; 800-241-3333.

- 1

Parc Fifty One Hotel

Not all of the cabbies have heard of the Parc Fifty One, but they will. The former Grand Bay at Equitable Center (before that the old Taft Hotel) has been completely renovated and since January part of Park Lane Hotels International. The first European-style luxury hotel on the West

Side, near midtown business as well as the theater district, is a surprising jewel, exquisitely decorated and furnished. Its relatively large lobby and public areas are deceptive, for it has only 178 rooms on seven floors. From the marble-floored lobby with its piano bar and lounge, a staircase leads to the Mezzanine Cafe for breakfast. The popular Bellini by Cipriani restaurant (privately owned) is on the ground floor. Amenities include clean reading: the complimentary Sunday New York Times comes with white gloves. (Rates $\$ 220-\$ 925 ; 152$ W. 51st St.; 800-338-1338).

- ${ }^{\circ}$ |
 The Peninsula

With sweeping marble staircases leading up to the lobby and dining rooms, the $23-$ story Peninsula-at the corner of 51st and Fifth Avenue - appears at first to be a large hotel. Not so, the former Hotel Maxim's de Paris (orginally the Gotham) has but 250 rooms Completely remodeled and now owned by Hong Kong's Peninsula Group, the hotel offers grand, elegant public areas and large, well-appointed guest rooms, with over-sized marble baths. The 21st and 22nd floors house a new, $35,000-\mathrm{sq}$ - ft . health spa, with a 42 -ft, glass-enclosed pool. On the rooftop, the Pen-Top Bar \& Terrance (also glass-enclosed) serves lunch with a view. For more formal dining, there's the Adrienne and Le Bistro restaurants, as well as the Gotham Lounge. (Rates \$220-\$2,500; 700 Fifth Ave.; 800-262-9467).

- ${ }^{*}$

Hotel Westbury

From its small but stately marble lobby to its 235 elegant guest rooms (all furnished with writing desks), the Hotel Westbury reflects the warmth and grace of an English country manor. Like the Plaza Athenee, it was acquired (in 1983) by Trusthouse Forte Hotels, which has spent $\$ 12$ million in restoring the 64 -year-old Upper East Side landmark. The Polo Restaurant, one of the city's finest, specializes in French-inspired American cuisine; there's piano music in the Polo Lounge. (Rates $\$ 240-\$ 2,000 ; 15 \mathrm{E}$. 69th St. at Madison Ave.; 800-CALL-THF).

- ${ }^{*}$
 The Mark

A block north of the Carlyle, the new, 16 -story Mark offers a quiet alternative to its long-established neighbor. Opened in 1926 as the Hyde Park and renamed the Madison Avenue Hotel seven years ago, the 180-room, neo-Italian Renaissance property with the striking art-deco facade was taken over last year by the Rafael Group. The new owners have spent $\$ 30$ million in renovation, and it shows. Additions include Mark's Restaurant, just beyond the elegant lobby. (Rates $\$ 250-\$ 1,500$; Madison Ave. at E. 77th St.; 800-THE-MARK). \&

Herte *icmber

© REG. U.S. PAT. OFF © HERTZ SYSTEM INC. 1900 .
Hertz rents Fords and other fine cars.

Build 5-V-IN, 100-MA, ± 15-V-0ut Converters 0n Your pc Boards fank goomaocar

How would you like tell your boss that you can save ten dollars out of 16 on every dc-to-dc converter module that converts +5 V to ± 12 or $\pm 15 \mathrm{~V}$? If you use several thousand converters a year, that's quite a savings. If you're ready to try building your own converters on your own pc boards, Maxim now eases the task with the MAX743. You can get 1000 pieces of the MAX743, a dual (two switches), current-mode boost-converter IC, for just $\$ 5820$, and for another $\$ 2360$ you can get all the other parts needed to build 1000 suppliesincluding the two inductors in each supply. The converters come kitted up, ready for board stuffing. No circuit design, component selection, or multi-supplier purchase is required.
Every MAX743 is burned-in and then final-tested, in the circuit. Thus every converter built from the production kits is guaranteed to meet its basic specification. The output voltage will hold within $\pm 4 \%$ of its nominal values of ± 12 or $\pm 15 \mathrm{~V}$ over worst-case conditions of input voltage, load current, and temperature. Input-voltage range is 4.5 to 5.5 V , and load-current range is 0 to ± 100 mA for $\pm 15 \mathrm{~V}$ out and 0 to $\pm 125 \mathrm{~mA}$ for $\pm 12 \mathrm{~V}$ out. Commercial-, extend-ed-industrial and military-tempera-ture-range models are available.
In addition to cost savings, these constant-frequency $(200-\mathrm{kHz})$ pulsewidth modulated switching regulators offer another advantage, efficiency over a wide range of loads. With $\pm 100 \mathrm{~mA}$ out, efficiency typically runs from 78% to 84% over the 4.5 -to-5.5-V input-voltage range. Efficiency still runs better than 70% with $\pm 10 \mathrm{~mA}$ out. Typical 3-W modules are about 60% efficient at ± 100 mA , and less than 20% efficient at $\pm 10 \mathrm{~mA}$. In addition, if some of your designs need $\pm 12 \mathrm{~V}$ while others need $\pm 15 \mathrm{~V}$, there's no need to order (and stock) additional parts. Connecting pin 11 of the 16 -pin DIP or SOIC to ground with a jumper gets

you $\pm 15 \mathrm{~V}$ out; connecting pin 11 to the +5 -V input gets you $\pm 12 \mathrm{~V}$ out.
The converters offer other interesting features. For example, there's undervoltage lock-out, a feature that takes over between 3.8 and 4.5 V . The chip also typically shuts down if its temperature exceeds $190^{\circ} \mathrm{C}$. Its soft-start circuitry limits peak switch currents at power-up, and resets for all fault conditionsincluding a short between the reference pin and ground or the supplyor if the supply goes out of regulation. Soft-start action can be delayed by an external capacitor to further limit surge currents at start-up.

A $200-\mathrm{kHz}$ oscillator is lasertrimmed to its frequency, on-chip, and requires no external timing components. It turns on both switches at the same time. But each switch is turned off when its current reaches a threshold set by the error signalthe difference between the output voltage and the reference voltage. The result is a duty-cycle modulated pulse train where the duty cycle is a function of the output-voltge error signal and the peak inductor current, resulting in cycle-by-cycle current limiting. Duty cycles can reach 90%-one of the reasons for high ef-
ficiency-along with a switch-resistance of just 3 -ohm.

Other specifications include a maximum quiescent current from the $5-\mathrm{V}$ input of 40 mA , and a maximum standby current during shutdown of 4 mA . Maximum line and load regulation are 0.05% and 1%, respectively, over the input and load currents called out earlier.

Each production kit contains one MAX743, two $100-\mu \mathrm{H}$ inductors, 3 $100-\mu \mathrm{F}$ low-ESR capacitors, and 2 1N5817 Schottky rectifiers. In addition to these kits, Maxim also has evaluation kits containing a pe board ready for stuffing, as well as additional components including compensation capacitors, and optional pifilter output inductors. (Without the inductors, $200-\mathrm{kHz}$ output ripple typically runs 75 mV pk -pk at full load on the negative output, and 20 mV less on the plus output). The filters drop the noise about 30 dB . The evaluation kits (comercial-grade only) go for $\$ 20$ each in small quantities. The production kits are also available in extended-temperature ranges.
Maxim Integrated Products Inc., 120 San Gabriel Dr., Sunnyvale, CA 94086; Douglas Vargha. (408) 737-7600.

CIRCLE 343

Control any
IEEE-488 (HP-IB, GP-IB)
device with our cards, cables, and software for the PC/AT/386, EISA, MicroChannel, and NuBus.

As the voltage rises back to within regulation, internal circutitry creates a reset pulse at the open-collector output. Load regulation from 5 to 500 mA , with 8.5 V in, is a maximum of 50 mV . The CS-403 optimizes power-supply rejection by switching the internal reference from the regulator's input to its output, when the nominal output voltage is reached. The CS-403 comes in a 5 -pin TO-220 package and goes for $\$.95$ each in quantities of 10,000 .

Cherry Semiconductor Corp. 2000
South County Trail, East Greenwich, RI 02818; Robert LeFort. (401) 8233959 GTRGIF 345

P AND NDMOS H-BRIDGE HANDLES 10 A AT 60 V

Aimed at driving small dc, servo, voicecoil and stepping motors, as well as solenoids and other actuators, the Motorola MPM3004 contains a complementary power MOSFET H-Bridge rated at 60 V and 10 A (continuous for any two transistors). The four die are contained in Motorola's isolated, multi-chip power SIP (single inline package) called the ICePAK. Maximum permissible pulsed drain current runs 25 A . With 10 V of gate-to source voltage, and 5 A of drain current, static on resistance of the pchannel FETs in the upper legs of the bridge runs a maximum of $280 \mathrm{~m} \Omega$, while that of the n-channel FETs in the lower legs is about $150 \mathrm{~m} \Omega$. Since 2000 V rms of isolation is provided between any pin and the metal mounting tab, no insulating hardware is required for mounting. Operating temperature range is -40 to $125^{\circ} \mathrm{C}$. In quantities of 1000 , the MPM3004 go for $\$ 7.90$ each.

Motorola Inc., msZ310, 5005 E. Mc-
Dowell Rd., Phoenix, AZ 85008; Kirby
Dorwachter. (602) 244-3370.
GTBGIF 344

5-V LD0 REGULAT0R OFFERS ACTIVE RESET

Designed to post-regulate the output of a switching power supply, Cherry Semiconductor's CS-403 low-dropout (LDO) linear regulator controls up to 500 mA at 5 V . The typical voltage drop across it is 1 V while putting out 350 mA , and 1.1 V while putting out 500 mA . The regulator offers a unique feature called active-reset, useful if powering critical logic or a processor: when the output voltage drops below 4.75 V , an open-collector output goes low acting as a flag to digital circuits.

You get fast hardware and software support for all the popular languages. A software library and time saving utilities are included that make instrument control easier than ever before. Ask about our no risk guarantee.

FAST DUAL, MOSFET DRIVER OFFERS UVLO

Designed to turn 5-V logic inputs into the 10 -to- $12-\mathrm{V}$ pulses needed to turn a pair of medium to large-power MOSFETs on and off fast, Motorola's MC34151/33151 dual inverting-drivers offer guaranteed maximum rise and fall times of 30 ns . And that's while driving 1-nF loads (typically 60 ns for driving $10-\mathrm{nF}$ loads). Operating from a 12-V rail, these bipolar ICs provide to-tem-pole outputs capable of sinking or sourcing up to 1.5 A . The output swings from 1.2 to 10.5 V , handling 10 mA . The input stage offers 170 mV of hystere-sis-independent of the supply railinsuring fast switching regardless of input-signal transition time. No oscillations occur as the input thresholds are crossed. The chip's undervoltage lockout (UVLO) circuit, operating with its on-chip reference, keeps the outputs
low as the supply rail rises from 1.4 to 5.8 V . Once above 5.8 V , the outputs go low when the voltage drops to 5.3 V . The drivers come in 8 -pin DIPs and SOICs-commercial (MC34151) and industrial versions (MC33151). Unit pricing in quantities of 10,000 runs from $\$ 0.65$ to $\$ 0.87$ each.

Bipolar Analog IC Div., Motorola Inc., EL-340, 2100 E. Eliot Rd., Tempe, AZ 85284; (602) 897-3615. CITHE 346

QUAD DMOSFET DRIVERS HANDLE OTHER JOBS

Four families of quad "Power Logic" drivers from Teledyne Semiconductors were designed to turn on and off four power MOSFETs fast. However they're just as much at home providing direct or PWM drive to motors, relays, small solenoids and LEDs, or hitting pulse transformers with fast pulses. Typical peak output is 1.2 A . The four families are designated by their output circuits: the TSC4435/6/7/8/9 has pullup outputs; the TSC4455-59 has pulldown outputs and a clamp to the plus supply; the CMOS TSC4465 has pull-up/ pull-down outputs; and the TSC4485-89 has pull-up outputs. Each driver is available with any of the following input logic: OR, NOR, NAND, AND, and AND with inverted output. Rise and fall times driving 470 pF run 25 ns maximum. Delay time is 75 ns . The chips take 4 mA from a $4.5-$ to-18-V supply.

Teledyne Components, 1300 Terra Bella Ave., P.O. Box 7267, Mountain View, CA 94039-7267; Rich Clarke. (415) 968-9241. GITGIF 347

Applications help (617) 273-1818

Capital Equipment Corp. Burlington, MA. 01803

CIRCLE 86

All the features of HPBASC, and more.

HTBasic	BASIC FEATURES:	HP BASIC
YES	IEEE-488 GPIB (HP-IB), RS-232 Instrument Control	YES
YES	Integrated Environment: Mouse, Editor, Debugger, Calculator	YES
YES	Supports 16 Megabytes of Memory (breaks DOS 640K barrier)	YES
YES	Engineering Math: Matrix Math, Complex Numbers	YES
YES	High Level Graphics: Screen, Plotter, Printer	YES
YES	Structured Programming with Independent Subprograms	YES
YES	Runs on Industry Standard Personal Computers	NO*
YES	Industry Standard Graphic Printer Support: Epson, IBM, lasers, etc.	N0
YES	Industry Standard Network Support: Novell, IBM, Microsoft, NFS, etc.	N0
YES	Industry Standard IEEE-488 Support: National Instruments, IOtech, etc.	NO
YES	Exchange data files with Industry Standard PC applications	NO*
YES	No-charge Telephone Technical Support	NO
YES	Instant on-line HELP system	NO

A Costly Situation. Every engineer needs the power and features of a "Rocky Mountain" BASIC workstation, but not everyone can have one. They simply cost too much. Fewer workstations, less productivity. The Best Way. TransEra HTBasic software provides the only way for serious technical computer users to turn their PC into a workstation without having to add costly hardware. Powerful workstations for everyone means greater productivity. Extraordinary Versatility. In addition, TransEra HTBasic works with the Industry Standard Personal Computer hardware, software, and networks. It even allows you to easily exchange data between your favorite DOS programs and the files you create in the BASIC workstation environment. All at a fraction of the cost of other solutions.

More compatibility. More versatility More possibilities. Less expense. Less hassle.

To find out more, call 1-801-224-6550.

TransEra
Engineering Excellence for 15 Years ${ }^{\text {TM }}$

-
 Introducing a little peace of mind.

Whatever means or media your customers use to store or transmit information can induce errors. . . and cause worry about the integrity of their data.

Corrected Bit Error Rate vs. Input Raw Bit Error Rate for random bit errors.
Code: RS $(72,62)$ corrects 5 errors.
Now, protecting data by detecting and correcting errors is easy and inexpensive, whether they're caused by magnetic media, optical disks, modems, satellite or microwave links. Ampex
packages peace of mind in a tiny 2-chip set, with the complete ($\mathrm{N}, \mathrm{N}-2 \mathrm{t}$) ReedSolomon encoding and decoding algorithm for both errors and erasures. Better yet, it's available today:

With Ampex's new error correction circuits (ECC), data reliability can be increased by many orders of magnitude.

These new devices are more reliable, thousands of times smaller, and use hundreds of times less power than discrete implementations.

For maximum system throughput, the ECC operates in real time, on eightbit symbols, and with sustained data rates of 15 MBytes per second.

Since all RAMs and ROMs are internal and no external buffering is needed, system interface is simplified because all of the correction processing is pipelined.

For professional applications in video, the Ampex ECC adheres to SMPTE's
D-1 Digital Component Video Standard and the D-2 Digital Composite Video Standard. In instrumentation recording, the Ampex ECC meets MIL-STD-2179A and ANSI ID-1 standards.

If that's not enough, the ECC's correction power is programmable, so your customers can keep their data as clean as they need to.

With more than 40 years of awardwinning pioneering in the business of storing, processing and retrieving data of every kind, Ampex understands your needs.

To add a little peace of mind to your product, call Ampex today, (415) 367-2758, for full specifications, application information, prices, and delivery.

AMPEX

Ampex Data Systems Corporation

See High-Res and VGA Graphics ON ONE MONITOR

Fleaturing digital VGA loopthrough technology, two graphiccontroller boards from Elsa America Inc. enable users to combine high speed and high resolution with DOS compatibility of existing VGA cards on a multisync monitor. Now, users can switch between VGA and highresolution graphics on the same monitor without waiting for time-consuming redraws of text and graphics since both images are resident on separate frame buffers.

The digital VGA loop-through architecture of the XHR Alpha and XHR Spectra boards take the signal from the feature connector of the existing VGA card and run it through the ELSA controller where it automatically switches between VGA and high-resolution modes, depending on which software is updating the data on the screen. With the loop-through feature, any application can be operated that would normally run with a standard VGA video controller.

The Elsa graphics controller contains its own coprocessor. The drivers are designed to balance the workload between the system CPU and the graphics processor to achieve the fastest and most efficient computing speeds. The Alpha and Spectra, with resolutions of 1024 by 768 and 1280 by 1024, respectively, are available now for $\$ 1765$ and $\$ 2450$, respectively. All necessary cables and drivers are included.

Elsa America Inc., 400 Oyster Point Blvd., Suite 109, South San Francisco, CA 94080; (800) 272-ELSA or (415) 588-6285.

CITGIF 348
RICHARD NASS

DEVELOP AND DEBUG APPLICATION CODE ON A

The CPU-186 CMOS single-board computer for industrial OEMs lets users develop their own application code directly on a PC under MS-DOS. It offers up to 16 MHz of true 16 -bit processing, an increased instruction set, and twice the throughput of an 8086-based system.

The unit has 24 processor I/O lines, up to 256 kbytes of EPROM, 512 kbytes of battery-backed SRAM, and four programmable serial ports. Two software
packages, RDSD and ROM Tools, make it easy to port PC-generated code to an on-board EPROM. RDSD is a source-level debugger that tests the program right on the target hardware. ROM Tools puts the program into ROM and can duplicate the DOS environment.

The board, with software, sells for $\$ 1395$ in single quantities, with discounts for large quantities. Availability is stock to 30 days. A free demo disk is also available.
Computer Dynaimics Sales, 107 S. Main St., Greer, SC 29650, (803) $877-$ 8700. GIRGIF 349

Programmable Anti-Alias Filters for Critical A/D Prefiltering

848P8E Series are Elliptic lowpass filters providing extremely sharp roll-off for A/D prefiltering.

Features:

- 8 pole, 6 zero elliptic lowpass filters
- Digitally programmable corner frequency
- Shape factor of 1.77 at 80 db
- 8 bit (256:1) tuning ratio
- Internally latched control lines to store frequency selection data
- Ideal for single or multi-channel applications
- Plug in, ready to use, fully finished filter modules
- Five frequency ranges to 51.2 kHz

Other Filter Products Available:

- Linear phase - Programmable
- Fixed frequency • Instrumentation
- Custom designs

Transducer

For more information about how Frequency Devices can meet your most critical filtering requirements, call our applications engineers at
508-374-0761

FREPUEกㄴ DEVICES

25 Locust Street Haverhill, MA 01830 (508) 374-0761

CIRCLE 93

Elempliciesc

Chairman and CEO: Sal F. Marino
President and COO: Daniel J. Ramella
Senior Vice President: James D. Atherton
Group Vice President: James W. Zaremba
Advertising Sales Staff
Publisher: Paul C. Mazzacano
Hasbrouck Heights, NJ; (201) 393-6060 San Jose, CA; (408) 441-0550
National Sales Manager:
Andrew M. Dellins
San Jose, CA; (408) 441-0550
Hasbrouck Heights:
Judith L. Miller, Robert Zaremba
Sales Support Supervisor: Betsy Tapp
611 Route \# 46 West
Hasbrouck Heights, NJ 07604; (201) 393-6060
TWX: 710-990-5071
Boston: Ric Wasley
400 Fifth Ave.
Waltham, MA 02154; (617) 890-0891
FAX: (617) 890-6131
Colorado: Lou Demeter (408) 441-0550
Chicago/Midwest: Russell Gerches
Sales Assistant: Susan Johnson
2 Illinois Center Bldg., Suite 1300
Chicago, IL 60601; (312) 861-0880
FAX: (312) 861-0874
Arizona: James Theriault (408) 441-0550
Los Angeles/Orange County/San Diego:
lan Hill
Sales Coordinator: Debi Neal
16255 Ventura Blvd., Suite 300
Encino, CA 91436; (818) 990-9000
FAX: (818) 905-1206
Pacific Northwest: Bill Giller (408) 441-0550
San Jose:
Lou Demeter (408) 441-0550
Bill Giller (408) 441 1-0550
James Theriault (408) 44 1-0550
Sales Administrator: Amber Hancock
2025 Gateway PI., Suite 354
San Jose, CA 95110; (408) 441-0550
FAX: (408) 441-6052 or (408) 441-7336
Texas/Southeast: Bill Yarborough
12201 Merrit Dr., Suite 220
Dallas, TX 75251; (214) 661-5576
FAX: (214) 661-5573
Direct Connection Ad \& DAC Sales Representative: Jeanie Griffin (201) 393-6080
Canada: Tony Chisholm
Action Communications
135 Spy Court
Markham, Ontario L3R 5H6
Phone: 416-477-3222
FAX: 416-477-4320
Holland: W.J.M. Sanders, S.I.P.A.S
Oosterpark 6-P.O. Box 25
1483 DeRyp, Holland
Phone: 02997-1303
Telex: 13039 SIPAS NL
Telefax: (02997)-1500
Austria, Belgium, Germany, Switzerland:
Friedrich Anacker
InterMedia Partners GmbH
Katernberger Strasse 247
5600 Wuppertal 1
West Germany
Phone: 02-02-711-091/92
Japan: Hirokazu Morita
Japan Advertising Commincations
New Gunza Buiding 3-13
Gunza 7 -chome
Chuo-Ku, Tokyo 104 Japan
FAX: 011-81-3-511-8710
Korea: Young Sang Jo
Business Communications Inc
K.P.O. Box 1916

Midopa Building 146
Dangju-Dong. Chongo-Ku
Seoul, Korea
Phone: 011-82-2-739-7840
FAX: 011-82-2-732-3662
Taiwan: Tomung Lai
United Pacific Internationa
No. 311 Nanking E. Rd., Sec. 3
Taipei, Taiwan R.O.C
Phone: 011-886-27-150-751
FAX: 011-886-27-169-493
United Kingdom/Scandinavia/Israel:
John Maycock
Huttons Buildings
146 West St.
Sheffield, England S14ES
Phone: 742-759186

Reliable security

Antenna Filters
The increasing number of enquiries received by TELE QUARZ, and a relatively small number of manufacturers world-wide, induced our development engineers to make use of already existing know-how to develop a wide range of antenna filters with maximum precision and reliability.
These so-called front-end filters operate for the channel spacing of 25 kHz as standard, special versions available for $12,5 \mathrm{kHz}$ channel spacing. Connected directly infront of the receiver, they are indispensable inter-ference-suppression devices for all densely occupied radio networks, e.g. at airports.
TQF 1400 - 20004 m band ($60-90 \mathrm{MHz}$)
TQF $2400-32002 m$ band ($135-180 \mathrm{MHz}$)
Selectivity: 2 pole, 4 pole or 6 pole
Matching resistance: 50Ω
Housing/Terminals:
G 10 - optional BNC-, N-, UHF- or SMA sockets
G21 - SMA sockets
G27-pins for pcb-mounting
G03- miniature size with pins
Other freq. ranges (from 3 MHz up) on request

Electronic components for the highest requirements Crystals • Filters .

Oscillators

\qquad
electronica'90

TELE QUARZ GROUP

TELE QUARZ GmbH
Landstraße
6924 Neckarbischofsheim 2
Telefon 07268/801-0
Telex 782359 tqd
Telefax 07268/1435
DIVISIONS
Vertriebsbüro Nürnberg
D-8500 Nürnberg 70
TQE GmbH
6924 Neckarbischofsheim 2
EURO QUARZ GmbH
A-2620 Ternitz
LPE. Laboratoires de piézo-électricité S.A.
F-75020 Paris

Stepper Motor Drivers on the right track.

Speed and power in surface mount or through-hole packages.

Switch to Ericsson and take advantage of the highperformance records we've been setting since 1982, when we introduced the first switched mode stepper motor driver IC.
Sit back and enjoy the speed and the power as you command more torque at higher speeds, thanks to our original constant-current chip architecture, now used - and copied - all over the world. Jump on board and meet our team of single and dual drivers, with current ratings up to 1.8 A , in low-cost Batwing DIP or the new Power PLCC package with heat-spreading lead frames.
And make a first class reservation with our microstepping chip set, with features to improve performance and cut hassle in your next robotic or instrumentation design.
Don't miss the Ericsson connection - send for our latest shortform product guide.

Wooden train made by BRIO AB, Sweden. © BRIO AB, Sweden 1990 Protected by Patents and Regd. Trade Marks internationally.

Our new Dual Channel Stepper Motor Driver PBL 3772 delivers more current at less power dissipation than two single channel devices.
Also available: the original PBL 3717 Chopper Driver and the pin-compatible PBL 3770A with 1.8 A peak output, in DIP or power PLCC packages.
And the advanced chip set for microstepping, PBL 3771/PBM 3960.

[^9]
ERICSSON

Ericsson Components Inc.

403 International Pkwy
Richardson, TX 75085-3904
Telephone (214) 480-8300
CIRCLE ${ }^{135}$ Telefax (214) 680-1059

- Military Components

Diodes JAN TX T-27 (TF5SO3ZZ) 39003103 Transformers MIL-C $55365 / 4$; MIL-C 39014/05 Capacitors MIL-C 20/27E; MIL-R-22097
Resistors MIL-R-3901,

- Wide Input Voltage ${ }_{18-36}^{5-15} \mathrm{VDC}$
- 36 Regulated Standard Models
Single and Dual Outputs - Low Profile $1.0^{\prime \prime} \times .3^{\prime \prime}$ Height $1.90^{\prime \prime} \times 1$ Watts
up to 2.5 Wat
- Ambient Operating Temp $-55^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ (No heat sink or electrical derating required)
- Options Available per MIL-STD-883 Stabilization Bake Temperature Cycle Hi Temperature Burn-In (160 Hours at Full Power) 100 Megohm @ 500 DC Isolation

PICO manufactures over 800 regulated and isolated DC-DC Converters and AC-DC Power Supplies and over 2500 standard ultra-miniature Transformers and Inductors
Delivery- stock to one week

SEE EEM THOMAS DIRECT FOR
OR SEND DILATAL
FREE PICO CATAL Electronics,Inc. 453 N. MacQuesten Pkwy. Mt. Vernon, N.Y. 10552
Call Toll Free 800-431-1064 in New York Call 914-699-5514

Make

 Tracks...... to your nearest mailbox and send for the latest copy of the free Consumer Information Catalog.

It lists about 200 free or low-cost government publications on topics like health, nutrition, careers, money management, and federal benefits.

Take a step in the right direction and write today for the free Consumer Information Catalog. Just send your name and address to:

Consumer Information Center Department MT Pueblo, Colorado 81009

[^10]
100\% full-parallel flash ADC performance for 10\% of the price.

Save money and get an extra effective bit every time you convert video from A to D... with the new Philips 8 -bit video ADCs.
while enhancing performance. It also lowers power consumption Giving full-parallel flash performance at up to $1 / 10$ the cost of full-parallel flash converters, these ADCs provide professional performance at a consumer price.

How? Our new folding-and-interpolation technique slashes on-chip component count, thus reducing cost

Type	MSPS	Diss.(mW)	Features
TDA 8703°	40	290	Voltage Re
TDA 8713°	50	290	TLLI/0
TDA 8715°	50	325	ECL I/O
TDE 8715	50	325	Mil. Temp. Range
TDA 8708°	30	365	Clamp/AGC
			CVBS Signal
TDA 8709°	30	380	Clamp/Adj. Gain
			R, G, B, Y, U, V, C
${ }^{-}$in DIL and SO versions.			Signals

Philips Components

Up To

 600 Watts PerlinchOur expanding family of compact, configurable, power systems combine the flexibility of a custom supply with the availability of standard catalog products . . . in low profile, compact packages that let you pack the most power into the least amount of space. And they meet the specialized input voltage, noise and transient requirements of major worldwide markets. Think of them as a universal solution for most of your system power requirements . . . AC or DC input . . . in computer, telecom or vehicular applications . . . up to 600 Watts.
FlatPAC ${ }^{T M}$ is the industry benchmark for power density in off-line applications. And now, ComPAC ${ }^{\text {TM }}$ sets the standard for DC input supplies . . . in a package less than one inch tall! Both offer unprecedented flexibility in configuration along with instant availability . . . in a fraction of the space required by conventional switchers. Just define your requirements . . . we utilize our high frequency, high power-density converters to quickly configure a FlatPAC or ComPAC specific to your needs.

$\left\lvert\, \begin{aligned} & 111111 \\ & \text { inches }\end{aligned}\right.$ INCRES

\square

You benefit from the proven field performance, high efficiency and inherently high reliability of our component-level power converters, without sacrificing any of the features you need: off-line inputs for worldwide application; nominal DC inputs from 24 to 300 VDC; surge limiting; safety agency recognition; EMI/RFI to FCCNDE, British Telecom, Bellcore or MIL-STD-461; totally isolated and trimmable outputs; AC OK and DC OK status signals and more.

You don't have to choose between costly and risky custom development or bulky catalog supplies. Call us to discuss FlatPAC and ComPAC . . . the new standards that make customs obsolete.

Does your power supply measure up?
Call vicor exprainer for a free ruler
at 1-800-735-6200 or 508-470-2900 at ext. 265
 23 Frontage Road, Andover, MA 01810

[^11]
Elemplicievin DIRECT CONNECTION ADS

New Products/Services Presented By The Manufacturer. To Advertise, Call JEANIE GRIFFIN At 201/393-6080

FREE SAMPLE

8PDT "BYTE WIDE" SWITCH HIGH DENSITY . 050 " PINOUT SNAP ACTION GOLD CONTACTS
Circle reader service number for free sample and complete information about Annulus High Density Switches.

ANNULUS TECHNICAL INDUSTRIES, INC. 1296 Osprey Drive, P.O. Box 7407, Ancaster Ontario. Canada L.9G 464
Phone: (416) 648-8100. Fax: 648-8102
ANNULUS TECHNICAL INDUSTRIES CIRCLE 254

NEW, POWERFUL, UNIVERSAL

PILOT-U4O is our second generation 40 -pin universal programmer, following the very successful and popula Sailor-PAL line of programmers. Programs PALs, GALs PROMs, E/EPROMs, micros, AMD MACH-110, etc, etc 28 -pin and 32 -pin versions also available. Industria quality. $\$ 1,095$ to $\$ 2,495$. Satisfaction guaranteed
408-243-7000, 800-627-2465, Fax 408-736-2503

ADVIN SYSTEMS INC.
1050-L E. Duane Ave., Sunnyvale, CA 94086

ADVIN SYSTEMS
CIRCLE 253

End-to-end CAD

Schematic Capture • PCB Layout \bullet Autorouting Only $\$ 495$

Design Computation offerr DC/CAD IV-Level 1 with no copy protection for complete end-to-end PCB design:

- High Capacity Schematic Caprure
- Multi-strategy Autoplacer
-Gridless "1-mil" Parts Placement and Autorouting
- Interactive Rouring with Diagonal Hugger
- Gridess, Diagonal RipUp/Retry Autorouter RipUp/Retry
- Thorough Annotating Design Rule Checker too!!
- Full 2-way GERBER support
- Full 2-way DXF suppor

Several high performance packages available. CALL TODAY!

DESIGN

COMPUTATION
Route 33 Sherman Square, Farmingdale, NJ 07727 (201) 938-6661 FAX:(201) 938-6662 Telex: 5106018352 DESIGN COMPUTATION

CIRCLE 256

6809 SINGLE BOARD COMPUTER
6809 MPU, 2 serial ports, 4 parallel ports, RAM, EPROM, real-time clock, watchdog timer, 44 -pin $4.5^{\prime \prime} \times 6.5^{\prime \prime}$ PCB. EXPANSION MODULES: RAM, EPROM, CMOS RAM/battery, analog I/O, serial I/O, parallel I/O, counter/timer, IEEE-488, EPROM programmer, floppy disks, cassette, breadboard, keyboard/display.
WINTEK CORPORATION,
1801 South Street. Lafayette, IN 47904-2993.
(317) 742-8428 or (800) 742-6809

SINGLE BOARD COMPUTER
CIRCLE 259

PLANAR SYSTEMS

CIRCLE 260

8051 Emulator - $\$ 1250$
d^{2} ICE is a low cost, Full Speed, real time 8051 Emulator.. Powerful user interface for Hi -level multi-window source code debugging. Uses IBM-PC COM1/2. No Slots! Portable, fits in shirt pocket. Assembler and test bed included.

Cybernetic Micro Systems
PO Box 3000 - San Gregorio CA 94074 Ph: (415) 726-3000 - Fax: (415) 726-3003
CYBERNETIC MICRO SYSTEMS
CIRCLE 263

TOP Goniston SOURCE FOR 30 EMI FILTERS

We are a specialist in 3-phase, power line filters, able to concentrate all engineering and productivity in creating the most protective, most dependable high current filters in the world...because no one else comes close to the total quality control which results from our computerized production.

Contact us today for full information ..Emission Control, Ltd., P.O. Box 797 Cedarburg, WI 53012 • Ph: 414-375-4775 CIRCLE 261

HIGH DENSITY-LOW INSERTION FORCE 70-350 POSITION BLIND MATABLE CONNECTOR N Series rack \& panel connectors are available in 70 , $110,150,190,230,270,310$ and 350 position models. The use of the Hypertace LIF (Low Insertion Force) contact provides reliable operation without space consuming, expensive caming or jacking devices.
HYPERTRONICS CORPORATION
16 Brent Drive, Hudson, MA 01749
Telephone (508) 568-0451
HYPERTRONICS CORP.
CIRCLE 264

YOUR AD HERE

Here's all you have to do:

- Send a B/W or 4C glossy photo.
- Include 13 lines of copy.
(37 characters per line)
- Write a headline of 32 characters or less.

We do all the rest.
No production charges.
We also accept camera-ready art
Ad size $2^{3} / 16^{\prime \prime}$ wide $\times 3^{\prime \prime}$ deep.
CIRCLE 268

A D S

RELIABILITY PREDICTION SOFTWARE

ARE YOUR PRODUCTS RELIABLE?

The RelCalc 2 Software Package predicts the reliability of your system using the part stress procedure of MIL-HDBK-217E, and runs on the IBM PC and full compatibles. Say goodbye to tedious, time consuming, and error prone manual methods! RelCalc 2 is very easy to use, and features menu windows, library functions, global editing for what-if? trials, and clear report formats. Try our Demo Package for $\$ 25$.

T-CUBED SYSTEMS, 31220 La Baya Drive \# 110, Westlake Village, CA 91362. (818) 991-0057 • FAX: (818) 991-1281

AUTOMATE MIL-HDBK-217E
CIRCLE 262

DASP100

100 MHz

DATA ACQUISITION \& SIGNAL PROCESSING

* 100 MILLION SAMPLES PER SECOND
* 256k SIGNAL MEMORY (EXPAND TO 2 MB)
* 10 MIPS DSP (320C25)
* EXTENSIVE HARDWARE \& SOFTWARE SUPPORT
* 3 DATA ACQUISITION MODES
* MULTI-CHANNEL CAPABILITY

ALSO ASK ABOUT OUR NEW DASP25!

357 N. Sheridan St. \#119
CORONA, CA 91720
(714) 734-3001

FAX: (714) 734-4356
SIGNATEC CIRCLE 265

Don't Get Zapped!
 High inrush current can destroy your sensitive VAX

 CPUs and peripherals in less time than it takes to filip a switch.THE SOLUTION?
Power up with Z-LINE TPC 115-10 MTD the smallest power distribution and control system available

Our proprietary Multiple Time Delay ${ }^{\top M}$ circuitry sequences your power-up to protect your systems from the spikes and surges, EMI \& RFI, that destroy your hardware and erase your data. And our remote on/off and emergency shutdown gives the power control back to you.
All Pulizzi Engineering MTD ${ }^{\text {M }}$ controllers are compatible with DEC and UPS systems.
PRICES FROM $\$ 453$ TO $\$ 317$
DON'T WAIT UNTIL IT HAPPENS, CALL TODAYI PLLIZZI ENGINEERING INC.
3260 S. Susan Street, Santa Ana, CA 92704-6865 (714) 540-4229 FAX (714) 641-9062

PULIZZI ENGINEERING

DIRECT
 CONNECTION

UNIQUE FILTER DESIGN SOFTWARE

SAVE TIME AND EFFORT -- from specification to production -- or your MONEY BACK!
S/FILSYN is the most poweriul, user-friendly, rugged and stable program in existance for filter design. Modules are structured for synthesis, design and analysis of passive LC. active RC , digital and microwave filters, impedance matching. networks, and delay equalizers. Special features include predistortion for dissipative effects, arbitrary terminations including open or short, complex transmission zeros and specified transfer functions. FREE 90 -day telephone consulting and 90 -day MONEY BACK GUARANTEE. CALL TODAY.
DGS ASSOCIATES. 1353 Sarita Way Santa Clara CA 95051. (408) 554-1469

SOFTW ARE
CIRCLE 270

PONSOR ENTERPRISES
CIRCLE 273
Telecom Design!
S.I.T. \& INTERNATIONAL TONE DETECTOR

M-984 is a low-power 14 pin CMOS DIP that detects S.I.T.s (special information tones), OCC (other common carrier) dial tone $(400 \mathrm{~Hz})$, as well as many international call progress tones.

- Single 5 V supply
- 3.58 MHz time base
- 30 dB dynamic range
- Tri-statable outputs

For more info call: 1-800-426-3926 (In Washington State: 206-827-9626)

Tango-Schematic Series II.' It simply works better.
 We listened to your suggestions and built the best in PC-based

 schematic capture. More versatile than OrCAD. ${ }^{\text {TM }}$ More features than Schema. ${ }^{\text {™ }}$ Easier to use than DASH. ${ }^{\text {TM }}$ Thanks to our streamlined interface and integrated approach, Tango-Schematic makes creating complex schematics simple. Compare for yourself.
Tango

Tango-Schematic features SEDCO ${ }^{\text {w }}$ libraries, with over 8,000 parts guaranteed for accuracy; integrated component creation; true ANSI/IEEE support; forward- and back-annotation; PostScript and DXF output; free tech support; and much more. It's all there for just \$495-guaranteed.
free evaluation package
800 433-7801 619554-1000 619 554-1019 Fax ACCEL ${ }^{\text {™ }}$ Technologies - 6825 Flanders Drive - San Diego, CA 92121 USA
 SEE US AT WESCON BOOTH 423 CIRCLE 271

IEEE-488, (GP-IB, HP-IB) CABLES

- Reliable gold plated contacts.

Durable metal connectors.

- High strength strain reliefs.
- Two shields for high noise immunity.

Custom lengths at low prices.

Capital Equipment Corp. Burlington, MA. 01803 Informative catalog 800-234-4232 Applications help (617) 273-1818 CAPITAL EQUIPMENT

CIRCLE 274

A D S

LOW COST Data Aquisition Cards for PC/XT/AT	
Bit A/D \& D/A [PCL711	
12 Bit A/D \& D/A [PCL812]	
Fast 12 Bit A/D/A [PCL718]	\$795
 supporér) La 12 ,	
6 Channel 12 bit D/A	
MC / VISA / AMEX Calt toden for datasteres	

$$
\begin{aligned}
& \text { PC BASED UNIVERSAL } \\
& \text { DEVICE PROGRAMMER }
\end{aligned}
$$

$\$ 695 / 895$

- Programs EE/EPROMs, PALs, GALs, EPLDs, MICROs, BIPOLARs, PEELs.s.
- Software driven pin drivers. D/A generated programming voltages (8 bit DACs Software driven pin drivers. D/A generated programming voltages (8 bit DA
used to generate voltages from $5-25 \mathrm{~V}$ with $0.1 V$ resolution for all 4 opins) - Upgradeable for virtually any future programmable devices up to 40 pins. Sels subsistent operation. No additional modules or plus-in adapters rec
Includes use friendly MEMORY BUFFER FULL SCRE N EDITOR. Commands include: Fill, Move, Insert, Delete, Search. ASCII or HEX entry.
Friendly Menu-Driven interface. Device selection by PN and manufacturer. - Friendly Menu-Driven interface, Device

Programming algorithm:Normal, Intelligent I\&II, Quick Pulse Programming Verify operation performed at normal \& worst case operating voltage
Funcional test: JEDEC standard functional testing for logic devices. Functional test: JEDEC standard functional testing for log
File formats accepted: JEDEC (fuil), JEDEC (kernai), Straight Hex, MOS Technology, Motorola Hex, Intel Hex, Tektronix Hex. - Customer support iva voice line, fax \& dedicated BBS. Full 1 year warranty. - Library updates can be received via foppy or Customer Support ibs. MC/VISA/AMEX Call today for datasheets!

B\&C MICROSYSTEMS
CIRCLE 275

DIRECT CONNECTION

OEM MODEM $\$ 75$
 in quantity

* High Quality card modems
* Bell 212, 202; CCITT V. 21, 22, 23
* all designs on same $3^{1} / 2^{\prime \prime} \times 2^{3} 4^{\prime \prime}$ size
* 5 volt only, FCC registered design
* Form fit and function with UDS modem

WESTERN RESERVE COMMUNICATIONS
Telephone (216) 788-6583
WESTERN RESERVE COMMUNICATIONS CIRCLE 252

EasyEmulator Pods \& Adapters

- Plug your PLCC and LCC packages into your PC board in minutes, with these easy-to-use adapters.
- Emulator/logic analyzer users: Adapt-a-Pod ${ }^{\text {™ }}$ converts one package type to another (LCC, PLCC, PGA, and DIPs).
- Emulator pods and adapters are available in all standard pin counts, with ribbon or ribbon cable headers.
- Custom engineering services and do-it-yourself emulator pod converters. Free catalog.
Emulation Technology, Inc.
2368-B Walsh Ave. Santa Clara, CA 95051 Phone: 408-982-0660 FAX:408-982-0664 EMULATION TECHNOLOGY

A D S

END WARPAGE WITH BOARD STIFFENERS

- Rigidize boards during and after assembly
- Prevent vibration and shock damage
- One-step installation requires no hardware
- Use as a ground, or to carry up to 64 amps

Send for Rogers Board Stiffeners
Application Bulletin.
Rogers Corp., 2400 S. Roosevelt St.
Tempe, AZ 85282 602/967-0624
BOARD STIFFENERS CIRCLE 288

SIMPLIFY BOARD LAYOUT

MICRO/Q 1000 ceramic decoupling capacitors share board mounting holes with IC pins to simplify board design. Now add more active devices with increased density in the same space, or design the same package on a smaller board.
Send for your free information.
ROGERS CORPORATION
2400 S. Roosevelt St.
Tempe, AZ 85282. Phone: (602) 967-0624
ROGERS CORP.
CIRCLE 289

EETMPDICDETEN

DIRECT CONNECTION ADS
1991 SCHEDULE

Issue Date: Ad Close
Jan. 10 Dec. 14
Jan. 31 Jan. 4
Feb. 14 Jan. 18
Feb. 28 Feb. 1
March 14 Feb. 15
March 28 March 1 June 27 May 31

Issue Date: Ad Close
July 11 June 14
July 25 June 28
August 8 July 12
August 22 July 26
Sept. 12 Aug. 16
Sept. 26 Aug. 30

Issue Date: Ad Close
Oct. 10 Sept. 13
Oct. 24 Sept. 27
Nov. 7 Oct. 11
Nov. 21 Oct. 25
Dec. 5 Nov. 8
Dec. 19 Nov. 20

HSPICE: From Concept to Creation

The competition is tough in today's marketplace. Innovative companies need to bring their products to market just as the demand ripens. HSPICE is the optimizing circuit simulator which brings concepts to reality.

Why HSPICE?

- HSPICE is proven in the marketplace. Engineers have depended on HSPICE for over ten years to provide the circuit simulation solution they demand. - HSPICE addresses all electronic industry segments, including mixed signal ASICs, custom IC design, PCB/backplane design, cell characterization, RF and microwave designs, and discrete power applications. No matter what your speciality, HSPICE provides the answers.
- HSPICE is continually enhanced and improved to stay ahead of your creative processes. When your design is ready to be simulated, HSPICE will be there with the tools you need for accurate results. Transmission lines and submicron MOS models are already part of HSPICE. So is the built-in optimizer.

The HSPICE Instrumentation Interface, ATEM, along with a custom MetaTestchip ${ }^{T M}$ automates HSPICE model creation. Meta-Software also maintains a semiconductor measurements lab for research and development efforts and user model generation. Meta-Software compares results to the silicon itself, not to other simulators. You don't get a comparable answer, you get the right answer. Engineers designing analog and mixed signal circuits turn to Meta-Software's HSPICE for their simulation solution. Yesterday, today and fomorrow -wete there to give you the competitive advantage.

META-SOFTWARE

THE CIRCUIT DESIGN ADVANTAGE!

1300 White Oaks Road - Campbell, CA 95008 Phone (408) 371-5100 : Toll Free (800) 346-5953
FAX (408) 371-5638. Telex 910-350-4928

Inductive Components for ISDN

Success through new materials

Do you need signal transformers for S_{0}-interfaces or common mode chokes for RFI suppression, maybe for applications in consumer terminal equipment or terminal adaptors or for network terminal devices or extension equipment? Contact us immediately if you intend to be more successful than your competitors. Using our ISDN purpose developed core materials as a basis we offer:

- a reduction in volume up to 50% achieved through new high permeability core materials
- considerably improved assembly and cost-effectivity achieved through module design
- components meeting technical specifications as, e.g. in CCITT, FTZ, BABT and CNET
- high insertion losses in the frequency range specified

Forward your individual requirements right away. You won't have to wait long for our solution.

VACUUMSCHMELZE GMBH

186 Wood Avenue South Iselin, N.J. 08830 宊 (201) 494-3530 Fax (201) 3213029 TX 4900006431
Grüner Weg 37, D-6450 Hanau. Fis (**49) 6181/38-0. Fax (**49) 61 81/38-2645. Tx 4184863 vac d

YOU can get a lot more time out of the office when you use the new SUSIE-Concurrent Designer" 6.0 . SUSIE-CD is the fast, efficient way to simulate and verify breadboard designs and skip the time-consuming prototype stage. Powerful and productive SUSIE-CD is the concurrent design and simulation tool optimized for PLD and PGA use.

Design problems can't be overlooked. With SUSIE-CD, every pin of every IC chip is watched and reported on during each clock cycle.
Timing violations, bus conflicts, etc. are automatically reported on.

Easy to learn and use.

Save time by skipping the breadboard stage.Mouse-driven, pop-up menus.

- No software knowledge required.

1	COMPUTER............ .386/486
2	ADDRESSING 32 -BIT DIRECT
3	LOGIC SIMULATION $165-$ STATE
4	PARTS LIBRARYVHDL
5	$\text { DESIGN SIZE } \ldots \ldots \ldots \ldots . . \begin{aligned} & \text { 200K }+ \text { GATES } \\ & 1 \text { MB } \\ & =20 \mathrm{~K} \text { GARES } \end{aligned}$

For a free evaluation kit of SUSIE-CD, the effective simulation tool that enhances your performance and gets you out of the office, call us at

1-800-48-SUSIE

For international sales
Telephone: (805) 499-6867
Fax: (805) 498-7945
ACCEL Technologies 141
Advanced Micro Devices 10-11
Advin Systems 139
Aldec 145
AMP. 40-41
Ampex Data Systems 126
Analytek 51
Analog Microsystems 8
Annulus Technical Industries 139
Anritsu 111
Apex Microtechnology 22
Applied Microsystems 115
Arium 69
Array Microsystems 86
AT\&T 70
B\&C Microsystems 141
Brooktree. 95-98
CAD Software89
Cadisys 104
Capital Equipment Corp. 124, 141
Comtran ${ }^{\circledR}$ IntegratedSoftware88
Cybernetic Micro Systems 14,140
Cypress Semiconductor 67
Dememand D
Dallas Semiconductor 53
Design Computation, Inc. 139
DGS Associates 141
Digital Equipment Corp. 20-21

Emission Control 140
Emulation Technology 142
E.O.T.G $122 \mathrm{~A}-122 \mathrm{P}$
Ericsson Components 29
Export Software, Inc. 89
Weman mer Prand \mathbf{P}
104
John Fluke Mfg.
8
8
Fortron/Source
Fortron/Source 139
Frequency Devices 127

General Semiconductor 118-119
GigaBit Logic148
Hettinga, Inc. 104
Hewlett-Packard
Co............2-3, 25-27, 33-35, 79,105
Hypertronics Corp. 140
I
Integrated Device Technology 31
International Rectifier 59

Lambda Electronics 131-136
LeCroy 80
Linear Technology Cover IVMatrix Systems122
Mentor Graphics 12-13
Meta-Software 143
Micro Crystal. 139
Micro Linear 62-63
Micron Technology 147
MicroSim 100
Mini-Circuits Laboratory, a Div. of Scientific Components
Corp. $15,18-19,90$, Cover II
Motorola Computer Group 83-84
Motorola Semiconductor
Products.6-7, 46-47

National Instruments 16
National
Semiconductor106A-106B, 107
NCR Microelectronics 28-29
Neeham Electronics 142
Nohau Corp. 121
OrCADCover II
Performance Semiconductor 9
Philips Components 137
Pico Electronics, Inc. 39, 130
Planar Systems 140
Ponsor Enterprises 141
Power-One 36
PseudoCorp 140
PTS Communications 61
Pulizzi Engineering 140

Stanford Research Systems 42

0
Quality Semiconductor................ 56
R
RC Electronics............................. 110 Rogers Corp. \qquad
Signatec 140
Signetics 54-55
Sipex 103
Sprague-Goodman...................... 88
Standard Microsystems 17
Stanford Research Systems 42
T
Tatum Labs............................... 141
T-Cubed Systems...................... 140
Tektronix48A, 49
Teledyne Solid State 93
Tele Quarz GmbH...................... 128
Teltone 141
Texas Instruments64A-64D
Todd Products 116
TransEra 125TriQuint Semiconductor........... 109
Ultimate Technology 120
V
Vacuumschmelze GmbH 144
Vicor .. 138Viewlogic Systems 112
Wavetek ... 1Western Reserve Commission 142Wintek Corp. 139
The advertisers index is prepared as an extra service. Elec tronic Design does not assume any liability for omissions or errors.

RC Electronics 110
Rogers Corp140
Signetics103
Sprague-Goodman. 88
m Labs140
Tektronix49
.93
Tele Quarz GmbH 128
141Texas Instruments
Todd Products 116TriQuint Semiconductor109
Vicor 138
Viewlogic Systems 112
Western Reserve Commission 142
Wintek Corp. 139

Part \#	Organization	Speed*	Packages	Availability	Part \#	Organization	Speed*	Packages	Availability
MT5C1001	1 MEG x 1	25ns	PDIP, CDIP, SOJ, LCC, Flatpack	NOW	MT5C6401	$64 \mathrm{~K} \times 1$	12ns	PDIP, CDIP, SOJ	NOW
					MT5C6404	$16 \mathrm{~K} \times 4$	12ns	PDIP, CDIP, SOJ	NOW
MT5C1005	$256 \mathrm{~K} \times 4$	25ns	PDIP, CDIP, SOJ, LCC, Flatpack	NOW	MT5C6405	$16 \mathrm{~K} \times 4 \overline{\mathrm{OE}}$	12ns	PDIP, CDIP, SOJ	NOW
MT5C1008	$128 \mathrm{~K} \times 8$	25ns	PDIP, CDIP, SOJ, LCC, Flatpack	NOW	MT5C6406/7	$16 \mathrm{~K} \times 4 \mathrm{~S}$. I/O	12ns	PDIP, CDIP, SOJ	NOW
					MT5C6408	$8 \mathrm{~K} \times 8$	12 ns	PDIP, CDIP, SOJ,	NOW
MT5C2561	$256 \mathrm{~K} \times 1$	20ns	PDIP, CDIP, SOJ, LCC	NOW	MT5C1601	$16 \mathrm{~K} \times 1$	12ns	LCC, Flatpack	NOW
MT5C2564	$64 \mathrm{~K} \times 4$	20ns	PDIP, CDIP, SOJ, LCC	NOW	MT5C1604	$4 \mathrm{~K} \times 4$	12ns	PDIP, CDIP, SOJ	NOW
					MT5C1605	$4 \mathrm{~K} \times 4 \overline{\mathrm{OE}}$	12 ns	PDIP, CDIP, SOJ	NOW
MT5C2565	$64 \mathrm{~K} \times 4 \overline{\mathrm{OE}}$	20ns	PDIP, CDIP, SOJ, LCC	NOW	MT5C1606/7	$4 \mathrm{~K} \times 4 \mathrm{~S}$. I/O	12ns	PDIP, CDIP, SOJ	NOW
MT5C2568					MT5C1608	$2 \mathrm{~K} \times 8$	12ns	PDIP, CDIP, SOJ	NOW
	$32 \mathrm{~K} \times 8$	20ns	PDIP, CDIP, SOJ, LCC, ZIP, Flatpack	NOW	* Slower speeds also available.				

MICADN

Switch signals $5 x$ faster

2.6 Gbit/s 16x16 Crosspoint Switch IC

Not even a 16-hand operator can switch this fast! GigaBit's new 10G051 16x16 Crosspoint Switch IC can switch signals at $2.6 \mathrm{Gbit} / \mathrm{s}$ rate in less than 2 ns . With its wide bandwidth, the 10G051 handles SONET OC3 to OC48 as well as HIPPI/Fiber Channel signals at full speed.

The 10G051 features full broadcast capability. Any output can independently select any input, including an input chosen by another output. A complete reconfiguration of the switch can be as fast as 1.8 ns .

Switch to the fastest optical fiber communications

IC family available. Contact us for more information on the 10G051 as well as our high-speed clock and data recovery circuits, transimpedance amplifiers, laser diode driver, LED driver, mux/demuxes, limiting amplifier, and the rest of the PicoLogic ${ }^{\text {TM }}$ line of high-performance ICs. For more information, call:United States and Canada: (805) 499-0610; Europe: GIGA, +45 4343 1588; and Japan: Tokyo Electron Ltd., 423338009.

CIRCLE 140 FOR MORE INFORMATION CIRCLE 141 HAVE A REPRESENTATIVE CONTACT ME

IWY SPDT SWTICHES

 ABSORPTIVE... REFLECTIVE
dc to 4.6 GHz tom $\$ 32^{25}$

Tough enough to pass stringent MIL-STD-883 vibration, shock, thermal shock, fine and gross leak tests ... useable to $6 \mathrm{GHz} .$. smaller than most RF switches ... Mini-Circuits' hermetically-sealed (reflective) KSW-2-46 and (absorptive) KSWA-2-46 offer a new, unexplored horizon of applications. Unlike pin diode switches that become ineffective below 1 MHz , these GaAs switches can operate down to dc with control voltage as low as -5 V , at a blinding 2 ns switching speed.

Despite its extremely tiny size, only 0.185 by 0.185 by 0.06 in., these switches provide 50 dB isolation (considerably higher than many larger units) and insertion loss of only 1dB. The absorptive model KSWA-2-46 exhibits a typical VSWR of 1.5 in its "OFF" state over the entire
frequency range. These surface-mount units can be soldered to pc boards using conventional assembly techniques. The KSW-2-46, priced at only $\$ 32.95$, and the KSWA-2-46, at \$48.95, are the latest examples of components from Mini-Circuits with unbeatable price/performance.

Connector versions, packaged in a $1.25 \times 1.25 \times 0.75 \mathrm{in}$. metal case, contain five SMA connectors, including one at each control port to
maintain 3ns switching speed.

Switch fast... to Mini-Circuits' GaAs switches.

SPECIFICATIONS

Pin Model KSW-2-46
Connector Version ZFSW-2-46 FREQ RANGE $\quad d c-4.6 \mathrm{GHz}$ INSERT. LOSS (db $\mathrm{dc}-200 \mathrm{MHz}$
$200-1000 \mathrm{MHz}$ $1-4.6 \mathrm{GHz}$ ISOLATION (dB) dc -200 MHz $200-1000 \mathrm{MHz}$ $1-4.6 \mathrm{GHz}$ VSWR (typ) ON
OFF

SW. SPEED (nsec) rise or fall time MAX RF INPUT (bBm)
up to 500 MHz
above 500 MHz CONTROL VOLT OPER/STOR TEMP

PRICE (10-24)

KSWA-2-46 ZFSWA-2-46 dc-4.6 GHz

typ max
$0.8 \quad 1.1$
$0.9 \quad 1.3$
1.52 .6
typ min
6050
$50 \quad 40$
25
1.4

3(typ)
finding new ways
setting higher standards

Designer Tools

Order Linear's Support Library Today.

Monolithic Filter Handbook:

$230+$ page handbook of filter application notes and data sheets to make filter design easier. Included with the handbook is FilterCAD, a menu-driven filter design program which runs on IBM PCs and compatibles. This CAD program assists in the selection, design, and implementation of optimum switched capacitor filter circuit networks (\$40.00).
Linear Applications Handbook: 928 page handbook of in-depth appli-
cation notes, ideas and design notes. A special feature includes 22 pages on SPICE macromodels ($\$ 20.00$).

Linear Databook: A 1600 page catalog of data sheets covering more than 300 devices ($\$ 10.00$).

NOISE Disk: For IBM PCs or compatibles. This program permits you to calculate circuit noise using LTC op amps, calculate resistor noise, and determine the best LTC op amp for best noise performance. (Free)

SPICE Macromodel Disk: Contains
the LTC SPICE macromodel op amp library for circuit simulations. These hand-tailored models provide a good trade-off between actual device characteristics and fast simulation speed. Includes over 50 models and a working version of PSPICE ${ }^{\text {m }}$ by MicroSim. (Free)

Order by phone or use the coupon below. Visa/MasterCard accepted. Contact Linear Technology Corporation, 1630 McCarthy Blvd., Milpitas, CA 95035. Order by phone: 800-637-5545.

Yes, I'd like to order the following tools:
Linear Monolithic Filter Handbook (US\$40/copy) (Includes FilterCAD Disk)
Linear Application Handbook (US\$20/copy) Linear Databook (US\$10/copy)
NOISE Disk
SPICE Macromodel Disk (Includes application note)
\qquad Copies \$ \qquad
Copies \$
Copies $\$$
No charge
No charge
Total \$ \qquad

Save time. Order by phone: 800-637-5545
Please bill my Visa__ or MasterCard
Account \#
Expiration Date

Signature of Cardholder

Name	Title	
Company	M / S	
Address		Zate
City		
Phone		

Phone
Mail orders require 6-8 weeks. Mail order form and remittance to Linear Technology
Corporation, 1630 McCarthy Blvd., Milpitas. CA 95035, Attn: Communications Dept.

[^0]: 35 Marcus Blva., Hauppauge, NY 11788 (516) 273.3100 Fax (516) 231 -6004

[^1]: 1. THE "GLUED" MIXED ANALOG-DIGITAL SIMULAT0R, Saber-CADAT from Analogy/Recal-Redac, allows for topdown design, simulating a process plant feedback control system at three levels: frequency domain, $\mathrm{G}(\mathrm{s})$, top; time domain, $\mathrm{G}(\mathrm{z})$, including the acquisition and processing of sampled data, center; and circuit level (bottom). At the circuit level, the TMS32010 digital signal processor is operated within a hardware modeler.
[^2]: 3. SIMPLE 1-BIT ADCs AND DACs in mixed-signal simulators prepare signals for alternative forms of processing. Called "circuit-tologic" and "logic-to-circuit" translators by MicroSim, they may contain active, nonlinear elements (a). They may also be simple primitives (b and c). However, even in the latter two cases, the effects of resistance and capacitance are considered when handling, or creating, real-world waveforms.
[^3]: ONE SET OF PROBES, attached with quick-connect adapters, acquires both state and timing data on the PM 3580-series logic analyzers. Users can display both sets of data on the widowed interface.

[^4]: 1. THIS MODIFIED BOYLE op-amp macromodel can represent IC op amps with virtually any differential transconductance stage on the input. As a result, it can be adapted for op amps with npn, pnp, JFET or MOSFET input stages.
[^5]: 1. THE TSC620 TEMPERATURE-SENSING SWITCH from Teledyne

 Components has been programmed to sense when the chip's temperature rises to specific high and low set-point. When it reaches the High set-point, it turns the MOSFET and then the fan on. When its temperature drops to the Low set-point, it turns them off.

[^6]:
 Tel $250394,258793{ }^{\circ}$ Cyprus CHRIS RADIOVISION LTD. Tel. O2-466121 Czechosiovakia ELSINCO GmbH Tel 222.877751 -Denmark INSTRUTEK A/S Tel. O5.611100 ${ }^{\circ}$ Egypt GIZA SYSTEMS ENGINEERING CO. Tel

 SA. DE CV. Tel. $548-5049 / 548-0630$ - Netherlands C.N. ROOD BV. Tel. $070-996360$ - New Zealand WM SCOLLAY \& CO. LTD. Tel. 4.722-961 *Norway TELEINSTRUMENT AS Tel O2-901190 Pakistan ASSOCIATED ELEC TRIC TRADING CORP Tel. $042 \cdot 56351 / 66635{ }^{\bullet}$ Papua New Guinea STANDARD TELEPHONES AND CABLES PTY LTD. Tel $256933 \cdot$ Peru ESTEMAC PERUANA SA Tel. 45 - $5530 \bullet$ Poland ELSINCO GmbH Tel 222 - 877751 - Portugal OMNITECNICA Tel 905517,905617 - Saudi Arabia ELECTRONIC EQUIPMENT MARKETING CO. Tel. 4771650 - Singapore RANK O'CONNOR'S (PTE, LTD. Tel. 473 -7944 - Spain UNITRONICS, S.A. Tel 2425204, 4480162 - Sri Lanka INFOTECHS LTD Tel. 580088,500817 -Sweden TELEINSTRUMENT AB Tel O8-380370 •Switzerland GMP SA. Tel. 021-6348181•Taiwan CHA WEI ELECTRIC TRADING CO, LTD. Tel. 522 -1295 Tell. 91 -1289/ig8-3788 - Yugoslavia ELSINCO GmbH Tel. 222-871751

[^7]: Australia (02) 654 1873, Austria (0222) 3876 38, Benelux +31 1858-16133, Canada (514) 689-5889, Denmark (42) 6511 11, Finland $90-452$ 1255, France (01)-69 4128 01, Great Britain 0962-73 3140 , Israel (03) 484832 , Italy (011) 77100 10, Korea (02) 784784 1, New Zealand (09) 392-464, Portugal (01) 8150454 , Sweden, Norway (040) 9224 25, Singapore (065) 284-6077, Spain (93) 217 2340, Switzerland (01) 74041 05, Taiwan (02) 7640215 , Thailand (02) 281-9596, West Germany 08131-1687.

[^8]: Free Brochure $\overline{\&} \overline{\text { Video }}$ Call Toll Free in U.S. and Canada 1-800-328-5888
 Please send me a free brochure. \square Also a free video tape VHS BETA Name
 Street \qquad
 | City
 State \qquad Zip \qquad
 Phone
 141C Jonathan Blvd. N. • Chaska, MN55318 1278 J 0

[^9]: ALABAMA (205) 880-8050 ARIZONA (602) 991-6300 CALIFORNIA (408) 259.1960, (619) 292-1771, (714) 891-462 INDIANA (317) 577.9950 IOWA (319) 354-4894 MICHIGAN (311) 643-0506- MIN NESOTA (612) 786-7641, NEVAIDA (916) 288-1737 NEW JERSEY ((201) 552-8000, (609) 983-3500 NEW YORK (516) 929-4671, (716) 588-0777, (518) 383-2239, TEXAS (214) $563-1200$, (512) 834-8374, (713) 370-8177, WASHINGTON (206) 882-0962, (206) 254-4572, WISCONSIN (414) 781-1730, ERICSSON COMPONENTS (214) 669-9900.

[^10]: A public service of this publication and the U.S. General Services Administration.

[^11]: Common Stock Traded on NASDAQ under "VICR"

