

WD76C30 Peripheral Controller, Interrupt Multiplexer, and Clock Generator Device

TABLE OF CONTENTS

	Page
1.0 DESCRIPTION	. 18-1
1.1 FEATURES	. 18-1
1.2 GENERAL	. 18-1
1.3 PERIPHERAL CONTROLLER	. 18-2
2.0 PIN DESCRIPTION	. 18-4
3.0 SERIAL PORT REGISTERS	. 18-9
3.1 SERIAL PORT REGISTER ADDRESSING	. 18-9
3.1.1 Chip Select (CS0, CS1)	. 18-9
3.1.2 Register Select (A0, A1, A2)	. 18-9
3.2 ACE OPERATIONAL DESCRIPTION	. 18-10
3.2.1 Master Reset	. 18-10
3.2.2 ACE Accessible Registers	. 18-10
3.3 LINE CONTROL REGISTER	. 18-13
3.4 ACE PROGRAMMABLE BAUD RATE GENERATOR	
3.5 LINE STATUS REGISTER	. 18-16
3.6 INTERRUPT IDENTIFICATION REGISTER	
3.7 INTERRUPT ENABLE REGISTER	
3.8 SCRATCH PAD REGISTER	
3.9 FIFO CONTROL REGISTER	
3.10 MODEM CONTROL REGISTER	. 18-21
3.11 MODEM STATUS REGISTER	. 18-23
3.12 FIFO OPERATION NOTES	. 18-24
3.12.1 FIFO Interrupt Mode Operation	. 18-24
3.12.2 FIFO Polling Mode Operation	
3.12.3 FIFO Pointer	
4.0 PARALLEL PORT DESCRIPTION	
4.1 READ PORT REGISTER	
4.2 READ STATUS REGISTER	
4.3 READ CONTROL REGISTER	
4.4 WRITE PORT REGISTER	
4.5 WRITE CONTROL REGISTER	
5.0 INTERRUPT, CLOCK, AND MODE SELECTION REGISTERS	
5.1 ADDRESS SELECTION REGISTER	. 18-28
5.2 CLOCK SELECTION REGISTER	
5.3 SLEEP MODE	
5.4 CLOCK DISABLE REGISTER	
5.5 MODE SELECTION REGISTER	
5.6 INTERRUPT MULTIPLEXER	40.04

			Page
5.7 SERIAL PORT 0 INTERRUPT SELECTION REGISTER			. 18-32
5.8 SERIAL PORT 1 INTERRUPT SELECTION REGISTER			. 18-33
5.8 PARALLEL PORT INTERRUPT SELECTION REGISTER			. 18-33
6.0 ELECTRICAL SPECIFICATIONS		•••	18-34
6.1 MAXIMUM RATING		• •	. 18-34
6.2 CAPACITANCE			, 18-34
6.3 DC OPERATING CHARACTERISTICS		•	. 18-35
6.4 AC OPERATING CHARACTERISTICS	•		. 18-36
7.0 PACKAGE DIMENSIONS			. 18-48
8.0 CRYSTAL MANUFACTURES			. 18-50
8.1 CRYSTAL SPECIFICATIONS		• ; •	. 18-50

LIST OF ILLUSTRATIONS

Figure	Title	· .`			Page
1-1	84-PIN PLCC Signal/Pin Assingnments	•			18-2
1-2	WD76C30 Block Diagram				18-3
3-1	Interrupt Signal Logic			•	18-22
5-1	Interrupt MUX Block Diagram				18-30
5-2	IRQSET When Not In Stand Alone Mode				18-32
6-1	Receiver Timing			•	18-37
6-2	Transmitter Timing		• .•	•	18-38
6-3	MODEM Control Timing				18-39
6-4	Read Cycle Timing	•		•	18-40
6-5	Write Cycle Timing	•		•	18-40
6-6	RCVR FIFO Signaling Timing for First Byte			•	18-42
6-7	RCVR FIFO Signaling Timing after First Byte (RBR already set)	•		•	18-42
6-8	Parallel Port Timing	•			18-43
6-9	Parallel Port Interrupt Timing	•		•	18-43
6-10	Clock Generation Timing	•			18-45
6-11	Interrupt MUX Timing A				18-46
6-12	Interrupt MUX Timing B				18-46
7-1	84-Pin PLCC Package		• •		18-48
7-2	84-Pin PQFP Package			• .	18-49
8-1	External Clock Input (8.0 MHz MAX.)			•	18-50
8-2	Typical Crystal Oscillator Network			•	18-50

7/2

LIST OF TABLES

Table	Title	Page
2-1	Pin Description	18-4
3-1	Register Addressing	18-9
3-2	Reset Control of Registers and Pinout Signals	18-10
3-3	Accessible WD76C30 Serial Port Registers	18-11
3-4	Baud Rates Using 1.8432 MHz Clock	18-14
3-5	Baud Rates Using 3.072 MHz Clock	18-15
3-6	Baud Rates Using 8.0 MHz Clock	18-15
3-7	Interrupt Control Functions	18-19
4-1	Parallel Port (CS2 = 0) Register Addresses	18-25
4-2	Accessible Parallel Port Registers	18-25
4-3	Parallel Port Operation Modes	18-27
5-1	Clock Selection Register	18-29
5-2	Stand Alone Mode	18-31
5-3	MXCTL2 - 0 IRQSET0 - 1 Multiplexing	18-31
6-1	Capacitance	18-34
6-2	DC Operating Characteristics	18-35
6-3	Timing Figure/Table Numbers	18-36
6-4	Receiver Timing	18-37
6-5	Transmitter Timing	18-38
6-6	MODEM Control Timing	18-39
6-7	Read/Write Cycle Timing	18-41
6-8	Parallel Port Timing	18-44
6-9	Clock Generation Timing	18-45
6-10	Interrupt MUX Timing	18-47

.

.

en de la companya de la comp La companya de la comp

1.0 DESCRIPTION

1.1 FEATURES

- Two fully programmable and independent serial I/O ports configurable as PC/AT compatible (WD16C452) or PS/2 compatible (WD16C552)
 - Loopback controls for communications link fault isolation for each ACE
 - Line break generation and detection for each ACE
 - ° Complete status reporting capabilities
 - Generation and stripping of serial asynchronous data control bits (start, stop, parity)
 - Programmable baud rate generator and MODEM control signals for each port
 - Programmable baud rate generator input clock
 - Optional 16 byte FIFO buffers on both transmit and receive of each port for CPU relief during high speed data transfer
 - Programmable FIFO threshold levels of 1, 4, 8, or 14 bytes on each port
- Parallel port configurable as a fully Centronics or PS/2 compatible, bidirectional parallel port
- Independently programmable parallel port
- Interrupt multiplexing logic
 - Selectable multiplexing logic for connecting PC/AT interrupt request lines to the WD76C10 single chip AT controller
- Clock generation circuitry
 - ° 80287 coprocessor clock generation
 - WD76C10 and floppy controller clock generation
 - ° 8042 keyboard clock generation
- Built-in testability features
- Hardware or software controllable sleep mode

- CMOS implementation for high speed and low power requirements
- Pulse extension on IRQ inputs
- 84-pin PLCC and PQFP packages

1.2 GENERAL

The WD76C30 device provides three functional groups. It is a Peripheral Controller, Interrupt Multiplexer, and Clock Generator.

The low power CMOS WD76C30 is a single device solution which provides interrupt multiplexing logic, clock generation, two serial ports, and one bidirectional parallel port.

Interrupt multiplexing logic interfaces the PC/AT interrupt request lines with the WD76C10 Single Chip AT Controller.

Integrated clock generation circuitry uses the 48 MHz input signal to generate the 1.8462, 3.072, and 8.0 MHz clocks used internally for the two serial ports, a 9.6 MHz signal used for the keyboard controller and floppy controller, a programmable duty/frequency clock for the 80287 coprocessor, and a 16 MHz clock for driving the WD76C10 Single Chip AT Controller, and floppy controller.

For low power implementations such as laptops, oscillator disable and sleep modes are available to power down unused logic.

The bidirectional parallel port is software configurable as either a PC/AT or a PS/2 compatible port. The parallel port data lines and open drain printer signals have high current drive capabilities.

Each ACE is programmable as either a WD16C550 or WD16C450 compatible device. Each WD16C550 configured ACE is capable of buffering up to 16 bytes of data upon reception, relieving the CPU of interrupt overhead. Buffering of data also allows greater latency time in interrupt servicing which is vital in a multitasking environment. Each ACE has a maximum recommended data rate of 512K.

1

1.3 PERIPHERAL CONTROLLER

The peripheral controller is functionally equivalent to the WD16C452/552. The mode of operation of the serial ports and parallel port is selectable via the Mode Select Register. Each serial port is configurable as either a FIFO enhanced ACE (WD16C550 compatible) or a standard ACE (WD16C450). The parallel port is configurable as either a PS/2 bidirectional parallel port or a PC/AT compatible parallel port. A detailed description of the Mode Selection Register is described in the parallel port section.

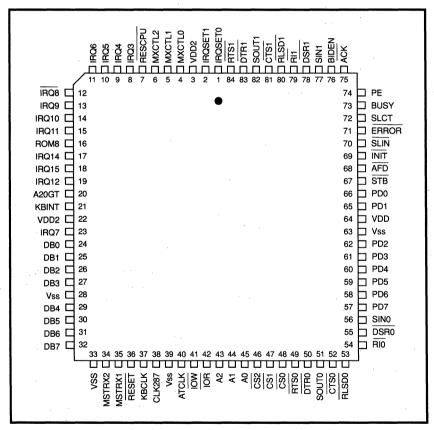


FIGURE 1-1. 84-PIN PLCC - SIGNAL/PIN ASSIGNMENT

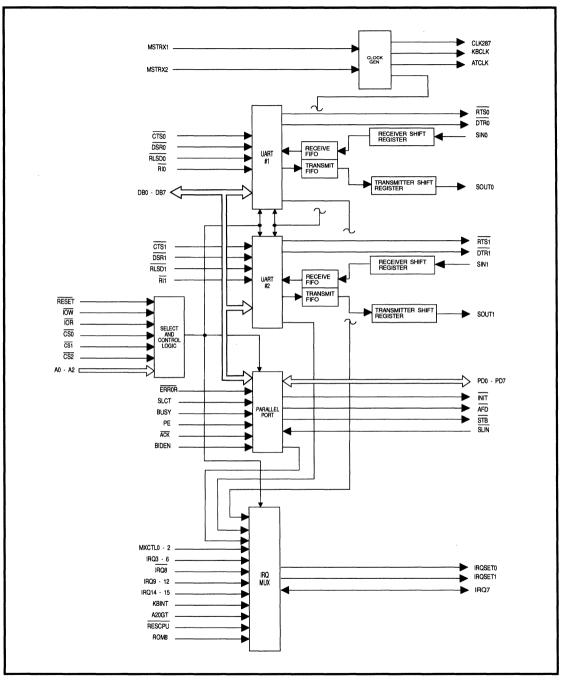


FIGURE 1-2. WD76C30 BLOCK DIAGRAM

18

2.0 PIN DESCRIPTION

Table 2-1 provides a description of the signals serviced by the WD76C30. A drawing of the 84-pin QUAD package, showing the pin and signal loca-

tions, is provided on the front cover. The DC operating characteristics and timing is presented in Section 6.

PIN NUMBER	MNEMONIC	SIGNAL NAME	I/O	DESCRIPTION
76	BIDEN	Bidirectional Enable	I	When de-asserted, the BIDEN enables the parallel port data lines as outputs. When as- serted, BIDEN works in conjunction with the DIR bit (see Table 4-3) to control the direction of the parallel port data bit.
78, 55	DSR1, DSR0	Data Set Ready	I The communication link asserts thes to indicate that it is ready to exchange the associated Asynchronous Commu Element (ACE). Bit 5 of the as MODEM Status Register reflects th state of DSR.	
79, 54	RI1, RI0	Ring Indicator		When asserted, these signals indicate that a ringing signal for the associated ACE is being received by the MODEM or data set. This logical value is reflected in bit 6 of the associated MODEM Status Register.
80 53	RLSD1 RLSD0	Received Line Signal Detect	:	The Data Circuit-terminating Equipment (DCE) asserts these signals when the associated ACE is receiving a signal that meets its signal quality conditions. Bit 3 of the associated MODEM Status Register reflects this value.
82 51	SOUT1 SOUT0	Serial Data Output	0	SOUT1 is the transmitted Serial Data Output from ACE#1 to the communication link. SOUT0 is the transmitted Serial Data Output from ACE#0 to the communication link. The SOUT signals are set to a marking condition (logical 1) upon a Master Reset.
77, 56	SIN1, SIN0	Serial Data Inputs		SIN1 is the received Serial Data Input from the communication link to ACE#1. SIN0 is the received Serial Data Input from the communication link to ACE#0.
				Data on the serial data inputs are disabled when exercising loop back mode and internally connected to their respective SOUT lines.
	5 1 1 1 1 1 1		e.	· · · ·

TABLE 2-1. PIN DESCRIPTION

20 20 - 1

PIN NUMBER	MNEMONIC	SIGNAL NAME	I/O	DESCRIPTION	
83, 50	DTR1, DTR0	<u>Data T</u> erminal Ready	0	When asserted, the Data Terminal Ready in forms the MODEM or data set that the as sociated ACE is ready to receive. This value in reflected in bit 0 of the MODEM Control Register.	
84, 49	RTS1, RTS0	Request To Send	O When asserted, the Request To Send info the MODEM or data set that the associa ACE is ready to transmit data. This valu reflected in bit 1 of the MODEM Con Register.		
81, 52	CTS1, CTS0	Clear to Send	1	The DCE asserts the $\overline{\text{Clear To Send}}$ to signal the associated ACE that a remote device is ready to transmit. This value is reflected in bit 4 of the MODEM Status Register.	
32 - 29, 27 - 24	DB7 - DB0	Data Bits	I/O	The Data Bits are tri-state, bidirectional com- munication lines between the WD76C30 and Data Bus.	
				DB0 is the least significant bit and the first serial bit to be transmitted or received.	
43 - 45	A2, A1, A0	Address lines A2-A0	1	Address Lines A2 - A0 are used to select the registers internal to the WD76C30.	
41	IOW	Input/Output Write Strobe	I	When Input/Output Write Strobe is asserted, data is written to the Port's addressed register from the Data Bus (DB7 - DB0). The register is addressed by Address Lines A2 - A0. ACE#0, ACE#1, or the Parallel Port is selected by CS0, CS1, or CS2 respectively.	
42	IOR	Input/Output Read Strobe	I	When Input/Output Read Strobe is asserted, data is read from the Port's addressed register and placed on the Data Bus (DB7 - DB0). The register is addressed by Address Lines A2 - A0. ACE#0, ACE#1, or the Parallel Port is selected by CS0, CS1, or CS2 respectively.	
48	CS0	Chip Select 0	I	Chip Select 0 when asserted, selects serial port 0.	
47	CS1	Chip Select 1	I	Chip Select 1 when asserted, selects serial port 1.	
46	CS2	Chip Select 2	J	Chip Select 2 when asserted, enables the parallel port.	

TABLE 2-1. PIN DESCRIPTIONS Cont.

18

PIN NUMBER	MNEMONIC	SIGNAL NAME	I/O	DESCRIPTION
36	RESET	Reset	1	When asserted, RESET forces the WD76C30 into an idle mode in which all serial data ac- tivities are terminated. The IRQ MUX is forced into a non-compatible mode. The WD76C30 remains in the idle state until programmed to begin data activities.
57 - 62, 65 - 66	PD7 - PD0	Parallel Data Bits	I/O	Bidirectional data port, providing parallel input and output to the parallel port.
67	STB ①	Line Printer Strobe	0	When asserted, the Line Printer Strobe signals the line printer to latch the data currently on the parallel port (PD7 - PD0).
68	AFD ①	Line Printer Autofeed	0	When asserted, the Line Printer Autofeed sig- nals the line printer to autofeed continuous form paper.
69	INIT ①	Line Printer Initialize	0	When asserted, Line Printer Initialize signals the line printer to begin an initialization routine.
70	SLIN ①	Line Printer Select	0	When asserted, Line Printer Select selects the printer.
23	IRQ7/IRQ7	Interrupt Request 7	I/O	IRQ7/IRQ7 is an input to the IRQ MUX when the WD76C30 is not in the Stand Alone Mode.
				IRQ7/IRQ7 is output as the Parallel Port Inter- rupt when the WD76C30 is in the Stand Alone Mode (refer to Section 5.6, 5.7).
				When operating as the Parallel Port Interrupt, IRQ7/IRQ7 is a tri-state signal and must be enabled by bit 4 in the Write Control Register (refer to Section 4.0).
				When the Parallel Port Interrupt is PC/AT com- patible, this signal is IRQ7 and is asserted at the rising edge of ACK and de-asserted at the falling edge of ACK.
				When the Parallel Port is PS/2 compatible, this signal is IRQ7 and is asserted at the rising edge of ACK and de-asserted at the rising edge of IOR, when reading the Parallel Port Status Register.
71	ERROR	Line Printer Error	I	The printer asserts this signal to inform the parallel port of a deselect condition, PE, or other error condition.
① The:	se outputs are op	ben drain with interna	al pull	

TABLE 2-1. PIN DECSRIPTION Cont.

PIN NUMBER	MNEMONIC	SIGNAL NAME	I/O	DESCRIPTION
72	SLCT	Line Printer Select	I	The line printer asserts the Line Printer Select signal when it has been selected.
73	BUSY	Line Printer Busy	1	The line printer asserts the Line Printer Busy signal when it has an operation in progress.
74	PE	Line Printer Paper Empty	I	The line printer asserts the Line Printer Paper Empty signal when it is out of paper.
75	ACK	Line Printer Acknowledge		
4 - 6	MXCTL0 - MXCTL2	IRQ MUX Control	1	MXCTL0 - MXCTL2 are encoded select signals generated by the WD76C10 for sampling the IRQ inputs.
8 - 15, 17-19	<u>IRQ3</u> - 6 IRQ8 IRQ9-11 IRQ14, 15, 12	IRQ MUX Inputs	1	These 11 interrupt signals, along with IRQ7, RESCPU, ROM8, KBINT, and A20GT are mul- tiplexed into IRQSET0 and IRQSET1 at a period rate defined by MXCTL0 - MXCTL2.
7	RESCPU	Reset CPU	1	The keyboard controller asserts $\overrightarrow{\text{Reset}}$ $\overrightarrow{\text{CPU}}$ when the CPU should be reset.
16	ROM8	8-bit ROM	1	ROM8 is multiplexed into the IRQSET1 signal and, when asserted, indicates to the WD76C10 that the system ROM is eight bits, when de-as- serted it is 16 bits.
21	KBINT	Keyboard Interrupt	I	KBINT is multiplexed into the IRQSET1 signal and indicates to the WD76C10 that a keyboard interrupt is pending.
20	A20GT	Address 20 Signal	I	A20GT is multiplexed into the IRQSET1 signal and reflects the state of the address 20 signal. This allows compatibility with the 8086 and 80286 processors when addressing memory in the 64 Kbyte boundary above 1 Mbyte.
35	MSTRX1 ①	Master Clock 1	I	The Master Clock 1 signal can be driven by either a 16 MHz crystal or 48 MHz TTL oscillator.
34	MSTRX2 ①	Master Clock 2	0	Master Clock 2 is connected to the 16 MHz crystal to generate Master Clock 1 for the clock generation circuitry. This pin is left disconnected if Master Clock 1 is being driven by a 48 MHz TTL oscillator.

TABLE 2-1. PIN DESCRIPTION Cont.

1/

PIN NUMBER	MNEMONIC	SIGNAL NAME	I/O	DESCRIPTION
38 .	CLK287	80287 Clock	O CLK287 clock drives the 80287 coproc CLK287 is programmable via the Clock s tion Register. A variety of clock freque and duty cycles provide compatibility variety of 80287 or 80287 compa coprocessors.	
37	KBCLK	Keyboard Clock	eyboard Clock O Keyboard Clock is a 9.6 MHz clock drive the keyboard controller. This sig be used to drive the WD37C65 Flop Controller for systems not using the WI Storage Controller.	
40	ATCLK	AT Clock	0	AT Clock is a 16 MHz clock used to drive the ATCLK input to the WD76C10. AT Clock provides a fixed reference that allows the PC/AT bus state machine to run with 8 MHz compatible timing. This signal can be used to drive the Floppy Disk Controller in the WD76C20 Storage Controller.
1 2	IRQSET0 IRQSET1	Interrupt Request Set 0, 1	O These signals are outputs of the IRQ mu ing logic. When in the Stand Alone IRQSET0 and IRQSET1 become the t interrupt outputs from Serial Port 0 respectively. (Refer to Section 5.6)	
64	Vdd	Power Supply		+5V power supply to the serial and parallel port logic. This supply can be turned off.
3, 22	Vdd2	Power Supply		+5V power supply to the WD76C30 with the exclusion of serial and parallel port logic.
28, 39, 63, 33	Vss	Ground		System signal ground.

TABLE 2-1. PIN DESCRIPTION Cont.

3.0 SERIAL PORT REGISTERS

The WD76C30 contains two serial ports, therefore, the following registers exist in duplicate, one per port.

3.1 SERIAL PORT REGISTER ADDRESSING

3.1.1 Chip Select ($\overline{CS0}$, $\overline{CS1}$)

When $\overline{CS0}$ is low, registers for serial port 0 can be accessed, and when $\overline{CS1}$ is low, registers for serial port 1 can be accessed. No more than one \overline{CS} ($\overline{CS0}$, $\overline{CS1}$, or $\overline{CS2}$) should ever be low at any time, unless all three are low for Sleep Mode.

Power Down Reset:

In the Parallel Port, asserting Mode Selection Register bit 3 causes the ACE to reset to the condition listed in Table 3-2.

Software Reset:

A software reset is performed by writing to the Divisor Latches, forcing the transmitter and receiver to an idle mode. Registers are not reset by this operation. Prior to enabling interrupts, the LSR and RBR registers should be read to clear out any data, returning them to a known state without resetting the system. Chip Select ($\overline{CS0}$, $\overline{CS1}$) and register select (A0, A1, A2) signals must be stable for the duration of a read or write operation.

3.1.2 Register Select (A0, A1, A2)

To select a register for read or write operation, see Table 3-1.

NOTE

Divisor Latch Access Bit (DLAB) is the MSB of the Line Control Register. DLAB must be programmed high (logic 1) by the system software to access the Baud Rate Generator Divisor Latches.

DLAB	A2	A1	A0	REGISTER	
0	0	0	0	Receiver Buffer Register (read), Transmitter Holding Register (write)	
0	0	0	1	Interrupt Enable Register	
х	0	1	0	Interrupt Identification Register (read only)	
х	0	1	0	FIFO Control Register (write only)	
х	о	1	1	Line Control Register	
х	1	0	0	MODEM Control Register	
х	1	0	1	Line Status Register (read only)	
х	1	1	0	MODEM Status Register	
х	1	1	1	Scratch Pad Register	
1	0	0	0	Divisor Latch Register (least significant byte)	
1	0	0	1	Divisor Latch Register (most significant byte)	

TABLE 3-1. REGISTER ADDRESSING

3.2 ACE OPERATIONAL DESCRIPTION

3.2.1 Master Reset

Asserting $\overline{\text{RESET}}$ on pin 36 causes the ACE to reset to the condition listed in Table 3-2.

3.2.2 ACE Accessible Registers

The system programmer has access to any of the registers as summarized in Table 3-3. For individual register descriptions, refer to the following pages under register heading.

REGISTER/SIGNAL	RESET CONTROL	RESET STATE
Receiver Buffer Register	First Word Received	Data
Transmitter Holding Register	Writing into the Transmitter Holding Register	Data
Interrupt Enable Register	Master Reset	All Bits Low (0-3 forced and 4-7 permanent)
Interrupt Identification Register	Master Reset	Bit 0 is High and Bits 1-3; 6 and 7 are forced Low. Bits 4 and 5 are Permanently Low
Line Control Register	Master Reset	All Bits Low
MODEM Control Register	Master Reset	All Bits Low
Line Status Register	Master Reset	All Bits Low, except Bits 5 and 6 are High
MODEM Status Register	Master Reset	Bits 0-3 Low,
	MODEM Signal Inputs	Bits 4-7 at Input Signal
Divisor Latch (low order byte)	Writing into the Latch	Data
Divisor Latch (high order byte)	Writing into the Latch	Data
SOUT	Master Reset	High
RTS	Master Reset	High
DTR	Master Reset	High
RCVR FIFO Counter	MR or FCR1 • FCR0 or ∆FCR0	All Bits Low
XMIT FIFO Counter	MR or FCR2 • FCR0 or ∆FCR0	All Bits Low
FIFO CONTROL	Master Reset	All Bits Low
D7 - D0 Data Bus Lines	In Tri-State Mode,	Tri-State
	Unless IOR = Low	Data (ACE to CPU)
Address Selection Register	Master Reset	All Bits Low
Clock Selection Register	Master Reset	All Bits Low
CLK Disable Register	Master Reset	All Bits Low
Serial Port Interrupt Selection Register	Master Reset	All Bits Low
Serial Port Interrupt Selection Register	Master Reset	All Bits Low
Parallel Port Interrupt Selection Register	Master Reset	All Bits Low
Mode Selection Register	Master Reset	All Bits Low
Parallel Port Control	Master Reset	Bits 7 - 6 High, Bits 5 - 0 Low
Parallel Port Data	Master Reset	All Bits Low
Parallel Port StatusNone		
SLIN, INIT, AFD, STB,	Master Reset	High, Low, High, High

* Reset disables the Stand Alone Mode *

TABLE 3-2. RESET CONTROL OF REGISTERS AND PINOUT SIGNALS

		REG	ISTER ADDR	ESS 2						
	DLAB = 0 A2-A0 = 0 Read Only	DLAB = 0 A2-A0 = 0 Write Only	DLAB = 0 A2-A0 = 1	DLAB = X A2-A0 = 2 Read Only	DLAB = X A2 - A0 = 2 Write Only	DLAB = X A2 - A0 = 3				
	REGISTER TITLE									
Bit No.	Receiver Buffer Register	Transmitter Holding Register	Interrupt Enable Register	Interrupt Identification Register	FIFO Control Register	Line Control Register				
0	Data Bit 0	Data Bit 0	Enable Received Data Available Interrupt (ERBFI)	"0" if Interrupt Pending (IP)	FIFO Enable (FEWO)	Word Length Select Bit 0 (WLS0)				
1	Data Bit 1	Data Bit 1	Enable Transmitter Holding Register Empty Interrupt (ETBEI)	Interrupt ID Bit 1 (IID)	Rcvr FIFO Reset (RFR)	Word Length Select Bit 1 (WLS1)				
2	Data Bit 2	Data Bit 2	Enable Receiver Line Status Interrupt (ERLSI)	Interrupt ID Bit 2 (IID)	Transmitter FIFO Reset (TFR)	Number of Stop Bits (STB)				
3	Data Bit 3	Data Bit 3	Enable MODEM Status Interrupt (EDSSI)	Interrupt ID Bit 3 (IID) ①	Not Used	Parity Enable (PEN)				
4	Data Bit 4	Data Bit 4	0	0	Reserved	Even Parity Select (EPS)				
5	Data Bit 5	Data Bit 5	0	0	Reserved	Stick Parity (STP)				
6	Data Bit 6	Data Bit 6	0	FIFO Enabled ① (FERO)	Rcvr FIFO Trigger Level (LSB)(RFTL)	Set Break Control (SBR)				
7	Data Bit 7	Data Bit 7	0	FIFO Enabled ① (FERO)	Rcvr FIFO Trigger Level (MSB) (RFTL)	Divisor Latch Access Bit (DLAB)				
① The	ese bits are 0 in Ch	aracter Mode. 2	See Table 3-	1						

TABLE 3-3. ACCESSIBLE WD76C30 SERIAL PORT REGISTERS

	DLAB = X A2-A0 = 4	DLAB = X A2-A0 = 5	DLAB = X A2-A0 = 6	DLAB = X A2-A0 = 7	DLAB = 1 A2-A0 = 0	DLAB = 1 A2-A0 = 1
		an	REGISTER TI	ŤLE		
Bit No.	MODEM Control Register	Line Status Register	MODEM Status Register	Scratch Pad Register	Divisor Latch (LSB)	Divisor Latch (MSB)
0	Data Terminal Ready (DTR)	Data Ready (DR)	Delta Clear to Send (DCTS)	Bit 0	Bit 0	Bit 8
1	Request to Send (RTS)	Overrun Error (OE)	Delta Data Set Ready (DDSR)	Bit 1	Bit 1	Bit 9
2	Not Connected (NC)	Parity Error (PE)	Trailing Edge Ring Indicator (TERI)	Bit 2	Bit 2	Bit 10
3	Interrupt (Int)	Framing Error (FE)	Delta Receive Line Signal Detect (DRLSD)	Bit 3	Bit 3	Bit 11
4	Loop	Break Interrupt (BI)	Clear to Send (CTS)	Bit 4	Bit 4	Bit 12
5	0	Transmitter Holding Register Empty (THRE)	Data Set Ready (DSR)	Bit 5	Bit 5	Bit 13
6	0	Transmitter Empty (TEMT)	Ring Indicator (RI)	Bit 6	Bit 6	Bit 14
7	0	Error in RCVR FIFO ① (EIRF)	Received Line Signal Detect (RLSD)	Bit 7	Bit 7	Bit 15

TABLE 3-3. ACCESSIBLE WD76C30 SERIAL PORT REGISTERS (Cont.)

3.3 LINE CONTROL REGISTER

The Line Control Register provides control over the word length, number of Stop Bits, Parity, Break Control and selection of the Receiver Buffer, Transmitter Holding Register and Interrupt Enable Register.

Address A2-A0 = 3, DLAB = X - Read and Write

7	6	5	4	3	2	1	0
DLAB	SBR	STP	EPS	PEN	STB	WLS1	WLS0

Bit 7 - DLAB, Divisor Latch Access

DLAB = 0 -

Access the Receiver Buffer, Transmitter Holding Register or Interrupt Enable Register.

DLAB = 1 -

Access the Divisor Latches of the Baud Rate Generator during a Read or Write operation.

Bit 6 - SBR, Set Break Control

The SBR feature enables the CPU to alert a terminal in a computer communications system.

SBR = 0 -

Resets the Serial Output (SOUT) from the Spacing State.

SBR = 1 -

The Serial Output (SOUT) is forced to the Spacing (logic 0) state and remains there (until reset by a low-level SBR) regardless of other transmitter activity.

Bit 5 - STP, Stick Parity

STP = 0 -

When parity is enabled by PEN (bit 3), it is represented as indicated by the state of EPS (bit 4).

STP = 1 -

When parity is enabled by PEN, the Parity bit is transmitted and then detected by the receiver in the opposite state indicated by EPS.

Bit 4 - EPS, Even Parity Select

EPS = 0 -

When PEN (bit 3) equals 1, an odd number of logic 1's are transmitted or checked in the data word bits and Parity bit.

EPS = 1 -

When PEN equals 1, an even number of bits are transmitted or checked.

Bit 3 - PEN, Parity Enable

PEN = 0 -

No parity is generated or checked.

PEN = 1 -

Parity is generated on transmitted data or checked on received data between the last data word bit and Stop bit of the serial data. The Parity bit is used to produce an even or odd number of 1's when the data word bits and the Parity bit are summed.

Bit 2 - STB, Number Of Stop Bits

This bit specifies the number of Stop Bits in each transmitted serial character.

STB = 0 -

One Stop Bit is generated in the transmit data.

STB = 1 -

When WLS1 and WLS0 (bits 1 and 0) select a 5-bit word length, 1-1/2 Stop bits are generated.

When WLS1 and WLS0 select a 6, 7 or 8-bit word length, two Stop bits are generated.

Bits 1, 0 - WLS1, WLS0, Word Length Select

WLS1 and WLS0 specify the number of bits in each transmitted or received serial character.

WLS1	WLS0	Word Length
0	0	5 bits
0	1	6 bits
1	0	7 bits
1	1	8 bits

3.4 ACE PROGRAMMABLE BAUD RATE GENERATOR

The ACE contains a programmable Baud Rate Generator with a programmable input clock of 1.843 MHz, 3.0 MHz or 8 MHz clocks, as well as a 48 MHz input for test purposes. The output frequency of the Baud Generator is 16 times the baud rate. Two 8-bit latches store the divisor in a 16-bit binary format. These Divisor Latches must be loaded during initialization in order to insure desired operation of the Baud Rate Generator. Upon loading either of the Divisor Latches, a 16-bit Baud counter is immediately loaded. This prevents long counts on initial load. Loading of either divisor Latch forces the Transmitter and Receiver into the Idle Mode. Tables 3-3, 3-4 and 3-5 illustrate the use of the Baud Generator with three different driving frequencies. One is referenced to a 1.8432 MHz clock, another is a 3.072 MHz clock and the third is an 8.0 MHz clock.

NOTE

The maximum operating frequency of the Baud Rate Generator is 8.0 MHz.

The data rate should never be greater than 512K baud.

DESIRED BAUD RATE	DIVISOR USED TO GENERATE 16 TIMES CLOCK	PERCENT ERROR DIFFERENCE BETWEEN DESIRED AND ACTUAL
50	2304	· · · · · · · · · · · · · · · · · · ·
75	1536	
110	1047	0.026
134.5	857	0.058
150	768	_
300	384	_
600	192	—
1200	96	—
1800	64	<u> </u>
2000	58	0.690
2400	48	
3600	32	—
4800	24	· · · · <u> </u>
7200	16	··
9600	12	· ·
19200	6	·
38400	3	—
56000	2	2.860

TABLE 3-4. BAUD RATES USING 1.8432 MHz CLOCK

DESIRED BAUD RATE	DIVISOR USED TO GENERATE 16 TIMES CLOCK	PERCENT ERROR DIFFERENCE BETWEEN DESIRED AND ACTUAL
50	3840	_
75	2560	
110	1745	0.026
134.5	1428	0.034
150	1280	_
300	640	—
600	320	_
1200	160	_
1800	107	
2000	96	_
2400	80	_
3600	53	0.628
4800	40	
7200	27	1.230
9600	20	_
19200	10	
38400	5	

TABLE 3-5. BAUD RATES USING 3.072 MHz CLOCK

DESIRED BAUD RATE	DIVISOR USED TO GENERATE 16 TIMES CLOCK	PERCENT ERROR DIFFERENCE BETWEEN DESIRED AND ACTUAL
50	10000	
75	6667	0.005
110	4545	0.010
134.5	3717	0.013
150	3333	0.010
300	1667	0.020
600	833	0.040
1200	417	0.080
1800	277	0.080
2000	250	
2400	208	0.160
3600	139	0.080
4800	104	0.160
7200	69	0.644
9600	52	0.160
19200	26	0.160
38400	13	0.160
56000	9	0.790
128000	4	2.344
256000	2	2.344
512000	1	2.344

TABLE 3-6. BAUD RATE USING 8.0 MHz CLOCK

3.5 LINE STATUS REGISTER

The Line Status Register provides status information to the CPU concerning the data transfer.

Address A2-A0 =	5,	DLAB = X -	Read and Write
-----------------	----	------------	----------------

7	6	5	4	-3	2	1	0
EIRF	темт	THRE	ві	FE	PE	OE	DR

Bit 7 - EIRF, Error in RCVR FIFO

EIRF = 0 -

When in Character Mode, EIRF is always 0.

When in FIFO Mode, a 0 indicates no error in the RCVR.

EIRF = 1 -

There is at least one parity error, framing error or break indication in the FIFO. EIRF is set to 0 when the Line Status Register is read and there are no additional errors in the FIFO.

Bit 6 - TEMT, Transmitter Empty

TEMT = 0 -

When in the Character Mode, at least one byte has been written into the Transmitter Holding Register.

When in the FIFO Mode, at least one byte has been written into the XMIT FIFO.

TEMT = 1 -

When in the Character Mode, the Transmitter Holding Register and Transmitter Shift Register are idle (empty).

In the FIFO Mode, the XMIT FIFO and XMIT Shift Registers are empty.

Bit 5 - THRE, Transmitter Holding Register Empty

Character Mode:

THRE indicates that the ACE is ready to accept a new character for transmission. THRE also causes the ACE to issue an interrupt to the CPU when the Transmit Holding Register Empty interrupt enable is set high. THRE = 0 -

The CPU has loaded the Transmitter Holding Register.

THRE = 1 -

A character has been transferred from the Transmitter Holding Register into the Transmitter Shift Register.

FIFO Mode:

Normally

THRE responds immediately when the XMIT FIFO is emptied or when the first character is written into the XMIT FIFO.

The first transmitter interrupt after changing the first bit of FIFO Control Register will be immediate if the FIFO Control Register is enabled.

Exception

The Transmitter FIFO empty indications are delayed one character time, minus the last Stop Bit time, whenever the Transmitter FIFO is empty and there have not been at least two characters in Transmitter FIFO at the same time since the last time that Transmitter FIFO was empty.

THRE = 0 -

At least one character has been written into the XMIT FIFO.

THRE = 1 -

The XMIT FIFO is empty.

Bit 4 - BI, Break Interrupt

BI indicates that the received character is a Break.

BI = 0 -

The CPU read the contents of the Line Status Register. Restarting after a break is received requires the SIN pin to be high for at least one half bit time.

BI = 1 -

When in the Character Mode, the received data input has been held in the Spacing (Logic 0) state for longer than a full word transmission time (that is, the total time of Start Bit + data bits + Parity + Stop Bits).

When in FIFO Mode, BI is associated to the particular character in the FIFO, and

is set when the associated character is in the top of the FIFO.

Bit 3 - FE, Framing Error

FE indicates that the received character did not have a valid Stop Bit.

FE = 0 -

The CPU read the contents of the Line Status Register.

FE = 1 -

In the Character Mode, the Stop Bit following the last data bit or parity bit was detected as a zero bit (Spacing Level).

In the FIFO Mode, an FE is associated with a particular character in the FIFO, and is set when the associated character is at the top of the FIFO.

Bit 2 - PE, Parity Error

PE indicates that the received data character does not have the correct even or odd parity, as selected by the even-parity-select bit.

PE = 0 -

The CPU read the contents of the Line Status Register.

PE = 1 -

In the Character Mode, a parity error has been detected.

In the FIFO Mode, a parity error is associated with a particular character in the FIFO, and PE is set when the associated character is at the top of the FIFO.

Bit 1 - OE, Overrun Error

OE indicates that an Overrun Error occured.

OE = 0 -

The CPU read the contents of the Line Status Register.

OE = 1 -

In the Character Mode, the data in the Receiver Buffer Register was not read by the CPU before the next character was transferred into the Receiver Buffer Register. This destroyed the previous character. When in FIFO Mode, an OE occurs after the RCVR FIFO is full and the Receiver Shift Register has completely received the next character. An OE is indicated to the CPU as soon as it happens. The character in the shift register will be written over but nothing will be transferred to the FIFO.

Bit 0 - DR, Receiver Data Ready

DR = 0 -

In the Character Mode, the CPU read the data in the Receiver Buffer Register.

In the FIFO Mode, the receiver FIFO is empty.

DR = 1 -

In the Character Mode, a complete incoming character has been received and transferred into the Receiver Buffer Register.

In the FIFO Mode, a complete incoming character has been received and transferred into the RCVR FIFO.

NOTE

Bits 4 through 1 are the error conditions that produce a Receiver Line Status interrupt whenever any of the corresponding conditions are detected and Receiver Line Status interrupt is enabled. All bits of the Line Status Register, except bit 7, can be set or reset by writing to the register.

3.6 INTERRUPT IDENTIFICATION REGISTER

The ACE has an interrupt capability that allows for complete flexibility in interfacing with all popular microprocessors presently available. In order to provide minimum software overhead during data character transfers, the ACE prioritizes interrupts into four levels. Listed according to their priority the four levels of interrupt conditions are:

Receiver Line Status Received Data Ready Transmitter Holding Register Empty MODEM Status

Information indicating that a prioritized interrupt is pending and source of that interrupt is stored in the Interrupt Identification Register (IIR).

The IIR, when addressed during chip-select time, freezes the highest priority interrupt pending and no other interrupts are acknowledged until the particular interrupt is serviced by the CPU. Bits 3-0 are further described in Table 3-7.

Address A2-A0 = 2, DLAB = X - Read only

7	6	5	4	3	2	1	0
FE	RO	0	· ´ 0		IID		IP

Bits 7, 6 - FERO, FIFO Enable

The FE bits identify whether the FIFO Control Register bit 0, has placed the device in the Character Mode or FIFO Mode.

FERO = 0, 0 -The device is in the Character Mode

FERO = 1, 1 -The device is in the FIFO Mode.

Bits 5, 4 - These bits are always logic 0.

Bits 3-1 - IID, Interrupt ID

The IID bits identify the highest priority interrupt pending (see Table 3-7).

Bit 0 - IP, Interrupt Pending

The IP bit can be used in either a hardwired prioritized or polled environment to indicate whether an interrupt is pending.

IP = 0 -

An interrupt is pending and the IIR contents may be used as a pointer to the appropriate interrupt service routine.

IP = 1 -

No interrupt is pending and polling (if used) continues.

INTER	RUPT IDI REGIST		TION		INTERRUPT S	ET AND RESET FUI	NCTIONS
Bit 3	Bit 2	Bit 1	Bit 0	Priority Level	Interrupt Flag	Interrupt Source	Interrupt Reset Control
0	0	0	1		None	None	
0	1	1	0	Highest	Receiver Line Status	Overrun Error or Parity Error or Framing Error or Break Interrupt	Reading the Line Status Register
0	1	0	0	Second	Received Data Available	Receiver Data Available	Reading the Receiver Buffer Register
1	1	0	0	Second	Character Timeout Identification	No Characters have been input or removed from RCVR FIFO during the last 4 character times, and at least one character occupies it during this time.	Reading the Receiver Buffer Register
0	0	1	0	Third	Transmitter Holding Register Empty	Transmitter Holding Register Empty	Reading the IIR Register (if source of interrupt) or Writing into the Transmitter Holding Register
0	0	0	0	Fourth	MODEM Status	Clear to Send or Data Set or Ring Indicator or Received Line Signal Detect	Reading the MODEM Status Register

TABLE 3-7. INTERRUPT CONTROL FUNCTIONS

18

3.7 INTERRUPT ENABLE REGISTER

When INT (bit 3 of Modem Control Register) is a logic 1, the Interrupt Enable Register controls the selection of the four interrupt sources of the ACE, making it possible to separately activate the device's internal Interrupt signals.

It is possible to disable the entire interrupt system, or selected interrupts by configuring bits three though zero of the Interrupt Enable Register.

Disabling the interrupt system inhibits the Interrupt Identification Register and the active internal interrupt signal. All other system functions operate in their normal manner, including the setting of the Line Status and MODEM Status Registers.

Address A2-A0 = 1, DLAB = 0 - Read and Write

7	6	5	4	3	2	1	0
0	0	0	0	EDSSI	ERLSI	ETBEI	ERBFI

- Bits 7-4 These four bits are always set to 0 by the hardware.
- Bit 3 EDSSI, Enable MODEM Status Interrupt

EDSSI = 0 -

Disables the MODEM Status Interrupt.

EDSSI = 1 -

Enables the MODEM Status Interrupt.

Bit 2 - ERLSI, Enable Receiver Line Status Interrupt

ERLSI = 0 -

Disables the Receiver Line Status Interrupt.

ERLSI = 1 -

Enables the Receiver Line Status Interrupt.

- Bit 1 ETBEI, Enable Transmitter Holding Register Empty Interrupt
 - ETBEI = 0 -Disables the Transmitter Holding Register Empty Interrupt.
 - ETBEI = 1 -Enables the Transmitter Holding Register Empty Interrupt.
- Bit 0 ERBFI, Enable Received Data Available Interrupt

ERBFI = 0 -

Disables the Received Data Available Interrupt.

ERBFI = 1 -Enables the Received Data Available Interrupt.

3.8 SCRATCH PAD REGISTER

This 8-bit register does not control or report status on any part of the ACE. It can be used by the programmer as a general purpose register.

Address A2-A0 = 7, DLAB = X - Read and Write

-	v

3.9 FIFO CONTROL REGISTER

The FIFO Control Register is used to enable the FIFO Mode, clear FIFOs, set the RCVR FIFO trigger levels and select the mode of DMA signaling.

Address A2-A0 = 2, DLAB = X, Write only

7	6	5	4	3	2	1	0
RF	TL	Rese	erved	Not Used	TFR	RFR	FEWO

Bits 7, 6 - RFTL, RCVR FIFO Trigger Level

RFTL controls the trigger level of the Received Data Available Interrupt.

RFTL

7 6 Trigger Level (bytes)

0	0	-	01
0	1	-	04
1	0	-	08
1	1	-	14

- Bits 5, 4 Reserved for future use and should be programmed to zeros.
- Bit 3 Not Used

In the WD16C550 this is the DMS bit.

Bit 2 - TFR, Transmitter FIFO Reset

Writing a one to TFR clears all characters from the XMIT Error FIFO and resets its counters and this bit to 0. The shift register and XMIT FIFO are not cleared.

Bit 1 - RFR, Reciver FIFO Reset

Writing a one to RFR clears all characters from the RCVR Error FIFO and resets its counters and this bit to 0. The shift register and RCVR FIFO are not cleared.

Bit 0 - FEWO, FIFO Enable

FEWO = 0 -

XMIT and RCVR FIFOs are disabled

FEWO = 1 -

XMIT and RCVR FIFOs are enabled. When changing from Character Mode to FIFO Mode, data in the FIFOs does not automatically clear. Setting or resetting FEWO clears all characters from the RCVR Error FIFO and resets the XMIT and RCVR FIFO counters to 0. FEWO must be set to 1 before setting TFR and RFR or they will not be programmed.

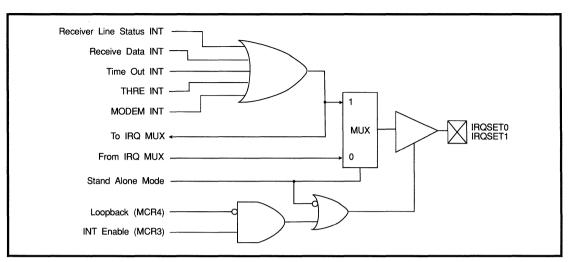
3.10 MODEM CONTROL REGISTER

The MODEM Control Register controls the interface with the MODEM, data set or a peripheral device emulating a MODEM.

Address A2-A0 = 4, DLAB = X - Read and Write

7	6	5	4	3	2	1	0
0	0	0	LOOP	INT	NC	RTS	DTR

Bits 7-5 - These three bits are always set to 0 by the hardware.


Bit 4 - LOOP, Loopback Mode

This bit provides a loopback feature for diagnostic testing of the ACE. Selecting the Loopback Mode results in the following setup (Refer to Figure 3-1):

- The transmitter Serial Output (SOUT) is set to a logic 1 (high) state.
- The receiver Serial Input (SIN) is disconnected.
- The output of the Transmitter Shift Register is "looped back" into the Receiver Shift Register input.
- The four MODEM Control Inputs (CTS, DSR, RLSD and RI) are disconnected, and the MODEM Control Register bits 3-0 are internally connected to the four MODEM Control inputs.

If, while in the Standalone Mode Loopback is enabled, the IRQSET output is tri-stated. In the Loopback Mode, data that is transmitted is immediately received. This feature allows the processor to verify the transmit and receive data paths of the ACE.

In the Loopback Mode, the receiver and transmitter interrupts are fully operational. The MODEM Control Interrupts are also operational but the interrupts' sources are now the lower four bits of the MODEM Control Register instead of the four MODEM Control inputs. The interrupts are still controlled by the Interrupt Enable Register.

The ACE MODEM interrupt system can be tested by writing into the lower four bits of the MODEM Status Register.

To return to normal operation, the registers must be reprogrammed for normal operation and then LOOP (bit 4) reset to a logic 0.

LOOP = 0 -

Normal Mode.

LOOP = 1 -

Loopback Mode.

Bit 3 - INT, Interrupt

INT enables the IRQSET output when in the Stand Alone Mode. In Loopback Mode this bit is connected internally to bit 7 of the MODEM Status Register (Refer to Figure 3-1).

INT = 0 -

The IRQSET output is tri-stated.

INT = 1 -

The IRQSET output is enabled in the Stand Alone Mode.

Bit 2 - NC, No external connection.

In the Loopback Mode, this bit is connected internally to bit 6 of the MODEM Status Register.

Bit 1 - RTS, Request To Send

Bit 1 controls the $\overline{\text{RTS}}$ signal. In the Loopback Mode, this bit is connected internally to bit 4 of the MODEM Status Register.

$RTS = 0 - \frac{1}{RTS}$ is set to a logic one.

RTS = 1 -

RTS is set to a logic zero.

Bit 0 - DTR, Data Terminal Ready

Bit 0 controls the $\overline{\text{DTR}}$ signal. In the Loopback Mode, this bit is connected internally to bit 5 of the MODEM Status Register.

DTR <u>= 0 -</u>

DTR is set to a logic one.

DTR = 1 -

DTR is set to a logic zero.

NOTE

The DTR output of the ACE may be applied to an EIA inverting line driver (such as the DS1488) to obtain the proper polarity input at the succeeding MODEM or data set.

3.11 MODEM STATUS REGISTER

The MODEM Status Register provides the current state of the control lines from the MODEM (or peripheral device) to the CPU. In addition to this current-state information, bits 3 through 0 of the MODEM Status Register provide change information. These bits are set to a logic 1 whenever a control input from the MODEM changes state. They are reset to logic 0 whenever the CPU reads the MODEM Status Register.

Address A2-A0 = 6, DLAB = X - Read and Write

7	6	5	4	3	2	1	0
RLSD	RI	DSR	CTS	DRLSD	TERI	DDSR	DCTS

Bit 7 - RLSD, Received Line Signal Detect

RLSD is the complement of the Received Line Signal Detect (RLSD) input.

In the Loopback Mode (bit 4 of the MODEM Control Register set to 1) this bit is connected internally to bit 3 of the MODEM Control Register (INT).

Bit 6 - RI, Ring Indicator

RI is the complement of the Ring Indicator (\overline{RI}) input. In the Loopback Mode (bit 4 of the MODEM Control Register set to 1) this bit is connected internally to bit 2 of the MODEM Control Register.

Bit 5 - DSR, Data Set Ready

DSR is the complement of the Data Set Ready (\overline{DSR}) input. In the Loopback Mode (bit 4 of the MODEM Control Register set to 1) this bit is connected internally to bit 0 of the MODEM Control Register (DTR).

Bit 4 - CTS, Clear To Send

<u>CTS</u> is the complement of the Clear to Send $\overline{(CTS)}$ input. In the Loopback Mode (bit 4 of the MODEM Control Register set to 1) this bit is connected internally to bit 1 of the MODEM Control Register (RTS).

Bit 3 - DRLSD, Delta Received Line Signal Detector

DRLSD is the Delta Received Line Signal Detector (DRLSD) indicator.

DRLSD = 0 -

The RLSD input to the WD76C30 has not changed state since the last time it was read by the CPU.

DRLSD = 1 -

The RLSD input to the WD76C30 has changed state since the last time it was read by the CPU.

Bit 2 - TERI, Trailing Edge of Ring Indicator

TERI is the Trailing Edge of Ring Indicator (TERI) detector.

TERI = 0 -

The \overline{RI} input to the WD76C30 has not changed from an On (logic 1) to an Off (logic 0) condition.

TERI = 1 -

The \overline{RI} input to the WD76C30 has changed from an On (logic 1) to an Off (logic 0) condition.

Bit 1 - DDSR, Delta Data Set Ready

DDSR is the Delta Data Set Ready (DDSR) indicator.

DDSR = 0 -

The DSR input to the WD76C30 has not changed state since the last time it was read by the CPU.

DDSR = 1 -

The DSR input to the WD76C30 has changed state since the last time it was read by the CPU.

Bit 0 - DCTS, Delta Clear to Send

DCTS is the Delta Clear to Send (DCTS) indicator.

DCTS = 0 -

The CTS input to the WD76C30 has not changed state since the last time it was read by the CPU.

DCTS = 1 -

The CTS input to the WD76C30 has changed state since the last time it was read by the CPU.

NOTE

Setting bits 3, 2, 1, or 0 to a logic 1 generates a MODEM Status Interrupt.

3.12 FIFO OPERATION NOTES

3.12.1 FIFO Interrupt Mode Operation

When FEWO and ERBFI are 1 (bit 0 of the FIFO Control Register and bit 1 of the Interrupt Enable Register), the following RCVR interrupts will occur.

- 1. A FIFO timeout interrupt occurs when the following is true:
 - a. There is at least one byte in the RCVR FIFO.
 - b. No character has been received in four continuous character times (if two stop bits are being used, the second one is included in this time delay).
 - c. The most recent CPU read from the FIFO has exceeded four continuous character times.

The timeout counter is proportional to the baud rate. After a timeout interrupt, the interrupt is cleared and the timer is reset when the CPU reads a character from the RCVR FIFO.

- 2. When the RCVR FIFO reaches its programmed trigger level, the receive data interrupt is set. This interrupt is cleared as soon as the FIFO level falls below the trigger level.
- When the XMIT FIFO is empty, the THRE interrupt is set and is reset when one character is written to the XMIT FIFO.

3.12.2 FIFO Polling Mode Operation

The FIFO Polling Mode is initialized when FEWO is 1 and EDSSI, ERLSI, ETBEI and ERBFI are 0 (bit 1 of the FIFO Control Register and bits 3 through 0 of the Interrupt Enable Register). In polling mode, the user can poll the LSR directly to check the transmitter and receiver status. Since the receiver and transmitter are controlled separately, either one or both can be in polling mode.

There is no trigger level reached or timeout condition indicated on the interrupt pin in the FIFO Polling Mode. However, the RCVR and XMIT FIFOs are still fully capable of holding characters.

3.12.3 FIFO Pointer

The RCVR FIFO has an internal pointer that automatically points to the RCVR Data byte and associated Status byte to be read. Reading the RCVR Data byte increments the internal counter, while reading the Status byte does not, therefore, the Status byte should always be read prior to reading the Data byte associated with it.

1

4.0 PARALLEL PORT DESCRIPTION

The parallel port supports Centronics type printers. When CS2 is asserted, the parallel port is selected, allowing access to all parallel port control and status registers. (Refer to Tables 4-1 and 4-2.)

A2	A1	A0	IOR	IOW	REGISTER
X	0	0	0	1	Read Data
X	0	1	0	1	Read Status
X	1	0	0	1	Read Control
0	1	1	0	1	Address Select Register Read
1	1	1	0	1	Data Access Register Read
X	0	0	1	0	Write Data
X	0	1	1	0	Invalid
X	1	0	1	0	Write Control
0	1	1	1	0	Address Select Register Write
1	1	1	1	0	Data Access Register Write

	DODT	/AAA A\	DEALATER	ADDDCOO
TABLE 4-1.		11 SZ – III	REGISTER	
	1 0111			ADDITEOD

BIT NO.	READ PORT 0	READ STATUS 1	READ CONTROL 2	WRITE CONTROL 2	WRITE DATA 0
0	Data Bit 0	1	STB	STB	Data Bit 0
1	Data Bit 1	1	AFD	AFD	Data Bit 1
2	Data Bit 2	INT ①	INIT	INIT	Data Bit 2
3	Data Bit 3	ERROR	SLIN	SLIN	Data Bit 3
4	Data Bit 4	SLCT	IRQ ENB	IRQ ENB	Data Bit 4
5	Data Bit 5	PE	1	DIR 2	Data Bit 5
6	Data Bit 6	ACK	1	NC	Data Bit 6
7	Data Bit 7	BUSY	1	NC	Data Bit 7

 This bit is only available when the parallel port interrupt is PS/2 compatible (Mode Selection Register bit 2 is a 1), Otherwise the bit is always a 1.

 This bit is only available when the parallel port bus is PS/2 compatible (Mode Selection Register bit 1 is a 1).

TABLE 4-2. ACCESSIBLE PARALLEL PORT REGISTERS

4.1 READ PORT REGISTER

This register is used to read the data from the parallel bus.

Register select:

 $\overline{\text{CS2}}$ asserted - $\overline{\text{IOR}}$ asserted - $\overline{\text{IOW}}$ de-asserted Address A2 = X, A1-A0 = 0

7 6 5 4 3 2 1 0										
Parallel Bus Data										

Bits 7-0

These bits correspond to the data on the parallel bus.

4.2 READ STATUS REGISTER

The contents of this register represents the status of the Parallel Port (refer to Table 4-2).

Register select:

 $\overline{CS2}$ asserted - \overline{IOR} asserted - \overline{IOW} de-asserted Address A2 = X, A1-A0 = 1

7	6	5	4	3	2	1	0
BUSY	ACK	PE	SLCT	ERROR	INT	1	1

Bit 7 - BUSY

Bit 6 - ACK, Acknowledge

Bit 5 - PE, Parity Error

Bit 4 - SLCT, Select

Bit 3 - ERROR

Bit 2 - INT, Interrupt

INT represents the status of the Parallel Port's internal interrupt signal. This bit is only available when the parallel port interrupt is PS/2 compatible (Mode Selection Register bit 2 equals 1) otherwise it is a 1.

Bits 1, 0

These bits are set to one by the hardware.

4.3 READ CONTROL REGISTER

With the exception of DIR (bit 5), the contents of this read only register represents the status of the control signals capable of being set/reset by writing to the Write Control Register (refer to Table 4-2).

Register select:

 $\overline{\text{CS2}}$ asserted - $\overline{\text{IOR}}$ asserted - $\overline{\text{IOW}}$ de-asserted Address A2 = X, A1-A0 = 2

7	6	5	4	3	2	1	0
1	1	1	IRQ_ ENB	SLIN	INIT	AFD	STB

Bits 7-5

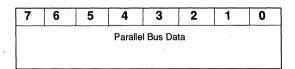
These bits are set to one by the hardware.

Bit 4 - IRQ_ENB, Interrupt Request

IRQ represents the status of the Parallel Port Interrupt prior to the IRQ7 I/O Buffer.

Bit 3 - SLIN, Line Printer Select

Bit 2 - INIT, Line Printer Initialize


Bit 1 - AFD, Line Printer Autofeed

Bit 0 - STB, Line Printer Strobe

4.4 WRITE PORT REGISTER

This register is used to write data to the parallel bus.

Register select: $\overline{CS2}$ asserted - \overline{IOR} de-asserted - \overline{IOW} asserted Address A2 = X, A1-A0 = 0

Bits 7-0

These bits represent the data being written to the parallel bus.

The Write Control Register is used to write to the associated lines and, with the exception of bit 5, is a duplicate of the Read Control Register (refer to Table 4-2).

Register select:

 $\overline{\text{CS2}}$ asserted - $\overline{\text{IOR}}$ de-asserted - $\overline{\text{IOW}}$ asserted Address A2 = X, A1-A0 = 2

l	7	6	5	4	3	2	1	0
	NC	NC	DIR	IRQ_ ENB	SLIN	INIT	AFD	STB

Bit 5 - DIR, Direction

DIR works in conjunction with the BIDEN pin to determine the direction of the parallel port data bus (refer to Table 4-3). This bit is only available when the parallel port bus is PS/2 compatible (Mode Selection Register bit 1 is a 1).

Port Mode	Port Direction	Biden Pin 76	Direction Bit - 5	Compat- ability				
Extended	Write *	1	0	PS/2				
Extended	Write *	0	x	PS/2				
Extended	Read *	1	1	PS/2				
Compatible	Read *	1	N/A	PC/AT				
Compatible	Write *	0	N/A	PC/AT				
* Road and	* Bead and write refer to internal WD76C30 reading and							

^{*} Read and write refer to internal WD76C30 reading and writing the Parallel Port.

TABLE 4-3. PARALLEL PORT OPERATION MODES

Bit 4 - IRQ_ENB, Interrupt Request

IRQ represents the status of the Parallel Port Interrupt prior to the IRQ7 I/O Buffer.

- Bit 3 SLIN, Line Printer Select
- Bit 2 INIT, Line Printer Initialize
- Bit 1 AFD, Line Printer Autofeed
- Bit 0 STB, Line Printer Strobe

1

5.0 INTERRUPT, CLOCK AND MODE SELECTION REGISTERS

The internal registers used for the interrupt multiplexing, clock selection and mode selection are accessed in a two step process, using two address locations in the Parallel Port Register. First, the address for the desired register to be accessed is written into the Address Select Register located at address three of the Parallel Port. Then the data to be read from or written to the selected register is accessed through the Data Access Register, located at address seven in the Parallel Port. It is not necessary for these write operations to follow each other.

5.1 ADDRESS SELECTION REGISTER

Register select - Read:

 $\overline{\text{CS2}}$ asserted - $\overline{\text{IOR}}$ asserted - $\overline{\text{IOW}}$ de-asserted Address A2-A0 = 3

Register select - Write:

 $\overline{\text{CS2}}$ asserted - $\overline{\text{IOR}}$ de-asserted - $\overline{\text{IOW}}$ asserted Address A2-A0 = 3

7	6	5	4	3	2	1	0
TEST BIT	SER_F CLK	PRT_1	SER_F CLK	PRT_0	DAT	ACC_F	REG

Bit 7 - Testbit

The Testbit replaces the Serial 1, Serial 0 and Parallel Port interrupt signals to the internal interrupt multiplexer with the SLCT, BUSY and PE signals, respectively.

Bits 6, 5 - SER_PRT_1 CLK, Serial Port 1 Clock

These bits select the input clock used by serial port 1.

SER_PRT_1 CLK

6 5 Serial Port 1 Clock

- 0 0 1.8432 MHz
- 0 1 3.072 MHz
- 1 0 MSTRX1
- 1 1 8.0 MHz

Bits 4, 3 - SER_PRT_0 CLK, Serial Port 0 Clock

These bits select the input clock used for serial port $\ensuremath{\mathsf{0}}$.

- SER_PRT_0 CLK
 - 4 3 Serial Port 0 Clock
 - 0 0 1.8432 MHz
 - 0 1 3.072 MHz
 - 1 0 MSTRX1
 - 1 1 8.0 MHz

Bits 2-0 - DAT_ACC_REG, Data access register name

These bits select the address of the register to be accessed by the Data Access Register.

DAT_ACC_REG

2	1	0	Data Access Register Name	Reset Mode
0	0	0	Clock Select Reg.	00H
0	0	1	Clock Disable Reg.	00H
0	1	0	Serial Port 0 Int.	
			Selection Reg.	00H
0	1	1	Serial Port 1 Int.	
			Selection Reg.	00H
1	0	0	Parallel Port Int.	
			Selection Reg.	00H
1	0	1	Mode Selection Reg.	00H

5.2 CLOCK SELECTION REGISTER

The Clock Selection Register is addressed by bits 2-0 of the Address Selection Register described in Section 5.1.

7	6	5	4	3	2	1	0
RESERVED						ск со-с	PU

Bits 7-3 - Reserved for future use and should be programmed to 0.

Bits 2-0 - CLOCK CO-CPU

These bits are used to select the desired frequency and duty cycle for supporting the 80287 coprocessor. Refer to Table 5-1 for the bit configurations.

B2	B 1	В0	CLK287 FREQUENCY	COPROCESSOR SUPPORTED
0	0	0	8 MHz, 33% Duty Cycle	8 MHz Intel 80287
				8 MHz AMD 80C287
0	0	1	9.6 MHz, 33% Duty Cycle	10 MHz Intel 80287
				10 MHz AMD 80C287
				10 MHz AMD 80EC287
0	1	0	12 MHz, 33% Duty Cycle	12 MHz AMD 80C287
				12 MHz AMD 80EC287
0	1	1	12 MHz, 50% Duty Cycle	12 MHz Intel 80C287A
1	0	0	16 MHz, 33% Duty Cycle	16 MHz AMD 80C287
				16 MHz AMD 80EC287
1	0	1	16 MHz, 50% Duty Cycle	Future Expansion
1	1	0	Logic Low	CLK287 Stopped low
1	1	1	Logic High	CLK287 Stopped high

TABLE 5-1. CLOCK SELECTION REGISTER

5.3 SLEEP MODE

For low power consumption, the internal oscillators may be individually disabled via the Clock Disable Register described in Section 5.4. For minimum power consumption, a sleep mode is offered which disables the 48 MHz clock, KBCLK, CLK287, ATCLK, Parallel Port (PD0 - 7), Data Bus (D0-7), all outputs, all pullups and, except for CS0, CS1, CS2 and RESET, all inputs. Although KBCLK, CLK287, and ATCLK are disabled during sleep mode, their outputs are held low with small pulldown transistors.

Sleep Mode is activated by hardware asserting all three Selects ($\overline{CS0}$, $\overline{CS1}$ and $\overline{CS2}$) simultaneously. All registers are preserved in the sleep mode. Sleep Mode is deactivated when one or more of the Select signals are de-asserted.

5.4 CLOCK DISABLE REGISTER

The Clock Disable Register is addressed by bits 2-0 of the Address Selection Register described in Section 5.1.

7	6	5	4	3	2	1	0
ISP1 CLK	ISP0 CLK			AT_ CLK	KB_ CLK	OSC_ DIS	

Bit 7 - ISP1 CLK, Internal Serial Port 1 Clock

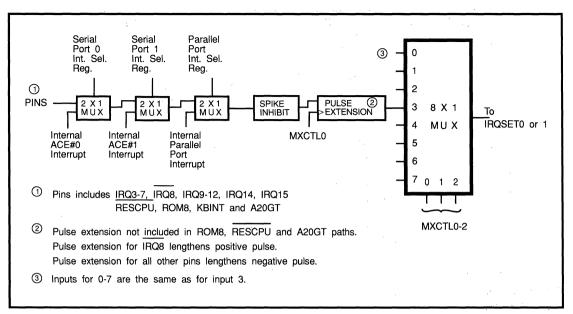
- ISP1 CLK = 0 -Internal Serial Port 1 clock is not disabled.
- ISP1 CLK = 1 -Internal Serial Port 1 clock is disabled.

Bit 6 - ISP0 CLK, Internal Serial Port 0 Clock

- ISP0 CLK = 0 -Internal Serial Port 0 clock is not disabled.
- ISP0 CLK = 1 -Internal Serial Port 0 clock is disabled.

Bit 5, 4 - Reserved and should be programmed to 0.

Bit 3 - ATCLK


ATCLK = 0 -ATCLK is not disabled.

ATCLK = 1 -ATCLK signal is held at a logic low.

Bit 2 - KBCLK

KBCLK = 0 -KBCLK is not disabled.

KBCLK = 1 -KBCLK signal is held at a logic low.

Bit 1 - OSC_DIS, Oscillator Disable

OSC DIS = 0 -

The 48 MHz oscillator is not disabled and, KBCLK, CLK287 and ATCLK are not frozen.

OSC_DIS = 0 -

The 48 MHz oscillator is disabled and, KBCLK, CLK287 and ATCLK are frozen.

Bit 0 - Reserved and should be programmed to 0.

NOTE

Asserting $\overline{CS0}$, $\overline{CS1}$ and $\overline{CS2}$ simultaneously disables the 48 MHz oscillator. Upon removing the disabling of the 48 MHz oscillator, it restarts itself within 30 ms. Logic prevents the internal OSC Clock from starting again until the 48 MHz oscillator is running at full amplitude.

5.5 MODE SELECTION REGISTER

The Mode Selection Register is addressed by bits 2-0 of the Address Selection Register described in Section 5.1.

7	6	5	4	. 3	2	1	0
		×		PUD	ATPS2 INT	ATPS2 PP	SP FIFO

Bits 7-4 - Reserved and should be programmed to 0.

Bit 3 - PUD, Power-up Power-down

PUD must always be high when powering down the ports by turning off VDD.

PUD = 0 -

The serial and parallel ports are in the power-up mode.

PUD = 1 -

The serial and parallel ports are in the power-down mode.

With the exception of addresses 011 and 111 of the parallel port, all registers are reset. Also the following signals are disabled: DTR0, DTR1, RST0, RST1, SOUT0, SOUT1, PD0-7, BIDEN, ERROR, SLCT, PE, ACK, BUSY, INIT, SLIN, STB AND AFD.

- Bit 2 ATPS2_INT, PC/AT PS/2 Parallel Port Interrupt
 - ATPS2_INT = 0 -

The Parallel Port interrupt signal is compatible to a PC/AT compatible Parallel Port.

ATPS2_INT = 1 -

The Parallel Port interrupt signal is compatible to a PS/2 compatible Parallel Port.

- Bit 1 ATPS2_PP, PC/AT PS/2 Parallel Port
 - $ATPS2_PP = 0 -$

The Parallel Port Bus is configured as a PC/AT compatible Parallel Port.

 $ATPS2_PP = 1 -$

The Parallel Port Bus is configured as a PS/2 compatible Parallel Port.

Bit 0 - SP_FIFO, Serial Port FIFO

SP_FIFO = 0 -

Both Serial Ports are configured to operate in non-FIFO mode.

SP_FIFO = 1 -

Both Serial Ports can operate in the FIFO mode if the applicable FEWO is set to 1.

5.6 INTERRUPT MULTIPLEXER

The WD76C30 provides the logic required to interface the PC/AT interrupt request lines with the WD76C10 Single Chip AT Controller. The WD76C10 generates input signals MXCTL2 - 0 and the WD76C30 uses these signals to select the IRQ inputs. Table 5-3 identifies the multiplexing sequence for the IRQSET0 and IRQSET1 signals. The output of the sampled IRQ inputs are provided on the IRQSET0 and IRQSET1 outputs (see Figure 5-1 IRQSET).

Negative pulse extension logic widens negative pulses on twelve of the sixteen MUX inputs. They are IRQ3-7, IRQ9-12, IRQ14,15 and KBINT. Positive pulse extension logic widens a positive pulse on IRQ8. The pulse width is extended by five positive going edges on MXCTL0 from the leading edge of the pulse or three positive going edges on MXCTL0 from the trailing edge of the pulse, whichever lasts longer. Note that pulses in the opposite direction that don't include three rising MXCTL0 edges are never seen on IRQSET0 or IRQSET1. None of this pulse extension logic applies to RESCPU, ROM8 or A20GT. When the appropriate bits in the Serial Port 0 Interrupt Selection Register (see Section 5.7) are set to the Stand Alone Mode, the interrupt multiplexing logic is disabled. IRQSET0 and IRQSET1 are defined in Table 5-2. The Serial Port 0 Interrupt Selection Register and Serial Port 1 Interrupt Selection Register are used to assign Serial Port Interrupts to IRQ MUX inputs. The Parallel Port Interrupt Selection Register is used to assign the Parallel Port Interrupt to one IRQ MUX input.

IRQSET0 = Serial Port 0 Interrupt (tri-state
enabled by Modem Control
Register)

- IRQSET1 = Serial Port 1 Interrupt (tri-state enabled by Modem Control Register)
- IRQ7 = Parallel Port Interrupt (tri-state enabled by bit 4 of the parallel port Write Control Register)

TABLE 5-2. STAND ALONE MODE

M	CTL	_	
2	` 1	0	IRQSET0
0	0	0	IRQ8
0	0	1	IRQ9
0	1	0	IRQ10
0	1	1	IRQ11
1	0	0	ROM8
1	0	1	RESCPU
1	1	0	IRQ14
1	1	1	IRQ15
M	ксті	-	
2	1	0	IRQSET1
0	0	0	IRQ12
0	0	1	KBINT
0	1	0	A20GT
0	1	1	IRQ3
1	0	0	IRQ4
1	0	1	IRQ5
1	1	0	IRQ6
1	1	1	IRQ7

TABLE 5-3. MXCTL2 - 0 IRQSET0 - 1 MULTIPLEXING

5.7 SERIAL PORT 0 INTERRUPT SELECTION REGISTER

The Serial Port 0 Interrupt Selection Register is addressed by bits 2-0 of the Address Selection Register described in Section 5.1.

7	6	5	4	3	2	1	0
			· · ·	SF	P0_INT_	SEL	

Bits 7-4 - Reserved and should be programmed to 0.

Bits 3-0 - SP0_INT_SEL, Serial Port 0 Interrupt Select

These bits determine which IRQ MUX input is to be replaced by the internal Serial Port 0 Interrupt. The Stand Alone Mode may also be selected by these bits and applies to all ports.

Bits 4 and 3 of the Modem Control Register (refer to Section 3.10) must be set as follows:

 $\mathsf{EN} = (\mathsf{MCR} \mathsf{bit} 4 = 0 \bullet \mathsf{bit} 3 = 1)$

EN B3 B2 B1 B0 Serial Port 0 Interrupt Selection

Х	0	0	0	0	Disabled
1	0	0	0	1	IRQ3
1	0	0	1.	0	IRQ4
1	0	0	<u></u> 1	1	IRQ5
1	0	1	0	0	IRQ6
1	0	1	0	1	IRQ7
1	0	1	1	0	IRQ10
1	0	1	1	1	IRQ11
1	1	0	0	0	ROM8
1	1	0	0	1	IRQ15
Х	1	1	1	-1	Stand Alone Mode

All other combinations are reserved.

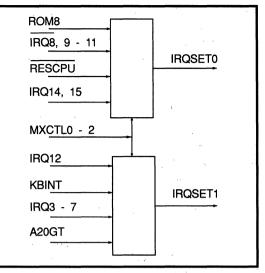


FIGURE 5-2. IRQSET - WHEN NOT IN STAND ALONE MODE

5.8 SERIAL PORT 1 INTERRUPT SELECTION REGISTER

The Serial Port 1 Interrupt Selection Register is addressed by bits 2-0 of the Address Selection Register described in Section 5.1.

7	6	5	4	3	2	1	0
				SI	P1_INT_	SEL	

Bits 7-4 - Reserved and should be programmed to 0.

Bits 3-0 - SP1_INT_SEL, Serial Port 1 Interrupt Select

These bits determine which IRQ MUX input is to be replaced by the internal Serial Port 1 Interrupt.

Bits 4 and 3 of the Modem Control Register (refer to Section 3.10) must be set as follows:

 $\mathsf{EN} = (\mathsf{MCR} \mathsf{ bit } 4 = 0 \bullet \mathsf{ bit } 3 = 1)$

EN	B 3	B 2	B1	B 0	Serial Port 1 Interrupt Selection
Х	0	0	0	0	Disabled
1	0	0	0	1	IRQ3
1	0	0	1	0	IRQ4
1	0	0	1	1	IRQ5
1	0	1	0	0	IRQ6
1	0	1	0	1	IRQ7
1	0	1	1	0	IRQ10
1	0	1	1	1	IRQ11
1	1	0	0	0	ROM8
1	1	0	0	1	IRQ15

All other combinations are reserved.

NOTE

The Serial Port 1 Interrupt Selection Register has priority over the Serial Port 0 Interrupt Selection Register. That is, Serial Port 1 interrupt replaces the Serial Port 0 interrupt when both registers select the same interrupt. The interrupts are not ORed.

5.9 PARALLEL PORT INTERRUPT SELECTION REGISTER

The Parallel Port Interrupt Selection Register is addressed by bits 2-0 of the Address Selection Register described in Section 5.1.

7	6	5	4	3	2	1	0
				Р	P_INT_S	EL	

Bits 7-4 - Reserved and should be programmed to 0.

Bits 3-0 - PP_INT_SEL, Parallel Port Interrupt Select

These bits determine which IRQ MUX input is to be replaced by the internal Parallel Port Interrupt.

Bit 4 of the Parallel Port Write Control Register (refer to Section 4.5) must be set as follows:

EN = (WCR bit 4 = 1)

EN	B 3	B2	B 1	B0	Parallel Port Interrupt Selection
Х	0	0	0	0	Disabled
1	0	0	0	1	IRQ3
1	0	0	1	0	IRQ4
1	0	0	1	1	IRQ5
1	0	1	0	0	IRQ6
1	0	1	0	1	IRQ7
1	0	1	1	0	IRQ10
1	0	1	1	1	IRQ11
1	1	0	0	0	ROM8
1	1	0	0	1	IRQ15

All other combinations are reserved.

NOTE

The Parallel Port Interrupt Selection Register has priority over both of the Serial Port Interrupt Selection Registers. That is, the Parallel Port interrupt replaces the Serial Port 0 or 1 interrupt when the registers select the same interrupt. The interrupts are not ORed.

6.0 ELECTRICAL SPECIFICATIONS

6.1 MAXIMUM RATINGS

 Temperature Under Bias
 0°C (32°F) to 70°C (158°F)

 Storage Temperature
 -65°C (-85°F) to +150°C (302°F)

 All Input or Output Voltages with respect to Vss
 -0.5V to +7.0V

 Power Dissipation
 300 mW

NOTE

Maximum limits indicate where permanent device damage occurs. Continuous operation at these limits is not intended and should be limited to those conditions specified under DC Operating Characteristics.

6.2 CAPACITANCE

Ta = 25°C (77°F), f = 1.0 MHz, VccA = 5.0V, VccB = 5.0V, Vss = 0V

SYMBOL	CHARACTERISTIC	TYP.	MAX.	UNITS	TEST CONDITIONS
Cxin	Clock Input Capacitance	15	20	pF	fc = 1 MHz
Cxout	Clock Output Capacitance	20	30	рF	
Cin	Input Capacitance	6	10	pF	Unmeasured Pins Returned to Vss
Cout	Output Capacitance	10	20	pF	Unmeasured Pins Returned to Vss

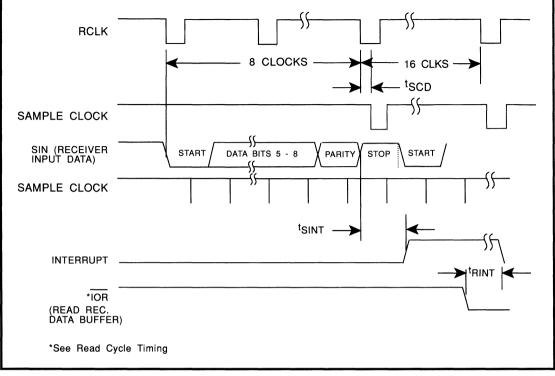
 TABLE 6-1
 CAPACITANCE

6.3 DC OPERATING CHARACTERISTICS

Ta = 0°C (32°F) to =70°C (158°F), VDD = +5V \pm 10%, VDD2 = +5V \pm 10%, Vss = 0V, unless otherwise specified.

SYMBOL	CHARACTERISTIC	MIN	МАХ	UNITS	TEST CONDITIONS
Vilx	Clock Input Low Voltage			V	
Vihx	Clock Input High Voltage			V	
Vil	Input Low Voltage	-0.5	0.8	V	
Vih	Input High Voltage	2.0	Vcc	v	
Vol	Output Low Voltage		0.4	V	$\label{eq:lol} \begin{array}{l} \mbox{lol} = 4.0 \mbox{ mA on DB0-DB7.} \\ \mbox{lol} = 24 \mbox{ mA on PD0-PD7.} \\ \mbox{lol} = 20 \mbox{ mA on INIT, STB ,SLIN, AFD } \end{tabular} \\ \mbox{lol} = 2.0 \mbox{ mA on other outputs.} \end{array}$
Voh	Output High Voltage	2.4		V	$\label{eq:intermediate} \begin{array}{l} \mbox{loh} = -0.4 \mbox{ mA on DB0-DB7.} \\ \mbox{loh} = -15.0 \mbox{ mA on PD0-PD7.} \\ \mbox{loh} = -0.55 \mbox{ mA on INIT, AFD, STB,} \\ \hline \mbox{SLIN.} \\ \mbox{loh} = -0.2 \mbox{ mA on other outputs.} \end{array}$
lcc	Power Supply Current		60	mA	Vcc = 5.5V MSTRX1 = 48 MHz All other inputs = 5.5V. All outputs floating Baud Rate = 512K. Serial Port CLK = 8 MHz.
lil ②	Input Leakage		æ15	μA	Vcc = 5.5V, Vss = 0.0V. All other pins float.
lcl	Clock Leakage				Vin = 0.0V, 5.5V.
ldl	Data Bus Leakage (DB and PD)		±10	μΑ	Vout = 0.4V, Vout = 4.5V Data Bus in High Impedance State.
loz	Tri-State Leakage		± 20	μΑ	Vcc = 5.5V, GND = 0V, Vout = 0.0V, 5.5V.
Vil (RES)	Reset Schmitt Vil		0.8	V	
Vih (RES)	Reset Schmitt Vih	2.0		v	

TABLE 6-2. DC OPERATING CHARACTERISTICS

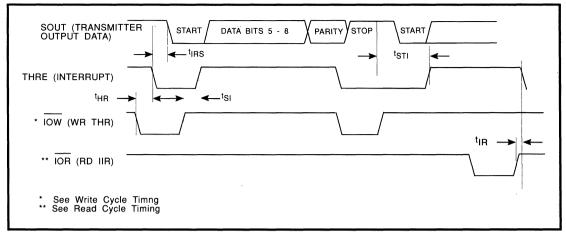

- ① The SLIN, AFD, STB and INIT outputs are all open collector with 2.5K to 3.5K Ohms internal pull-up resistors. In PS/2 mode IRQ7 is also an open collector. When in Vol state, each input sinks a minimum of 10 mA.
- ② RESCPU, IRQ3 7, IRQ8, IRQ9 12, IRQ14 15, ROM8, A20GT, KBINT, AND CS1 have nominally 300 μA pullups. These pullups, along with all others, are disabled when the 48 MHz oscillator is disabled by asserting CS0, CS1, and CS2 simultaneously. The pulldowns on KBCLK, ATCLK, and CLK287 are enabled when the three chip selects are low and nominally sink 300 μA.

6.4 AC OPERATING CHARACTERISTICS AND TIMING

Ta = 0°C (32°F) to +70°C (158°F), Vss = +5V \pm 10%, VDD2 = +5V \pm 10%, Table 6-1 lists the timing categories and their Figure and Table number.

	•				
FIGURE NUMBER	TABLE NUMBER	FIGURE TITLE			
6-1	6-4	Receiver Timing			
6-2	6-5	Transmitter Timing			
6-3	6-6	MODEM Control Timing			
6-4	6-7	Read Cycle Timing			
6-5	6-7	Write Cycle Timing			
6-6	6-4	RCVR FIFO Signaling Timing for First Byte			
6-7	6-4	RCVR FIFO Signaling Timing after First Byte (RBR already set)			
6-8	6-8	Parallel Port Timing			
6-9	6-8	Parallel Port Interrupt Timing			
6-10	6-9	Clock Generation Timing			
6-11	6-10	Interrupt MUX Timing (A)			
6-12	6-10	Interrupt MUX Timing (B)			

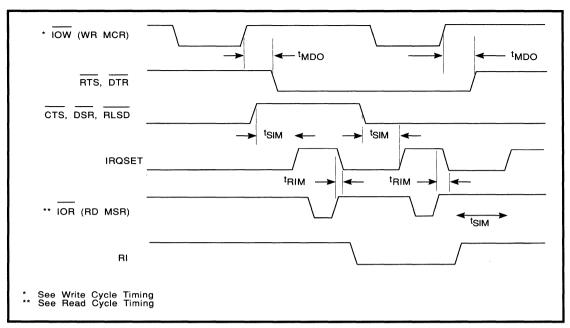
TABLE 6-3. TIMING FIGURE/TABLE NUMBERS



SYMBOL	CHARACTERISTIC	MIN	МАХ	UNITS	TEST CONDITIONS
tSCD	Delay from RCLK† to Sample Time		2	μs	·
tSINT	Delay from Stop to Set Interrupt		17 ①	RCLK @ Cycles	100 pF Load
^t RINT	Delay from IOR (RD RBR) Reset Interrupt	250	1000	ns	100 pF Load

TABLE 6-4. RECEIVER TIMING

- When receiving the first byte in FIFO Mode, ^tSINT (only for timeout or trigger level interrupt) will be delayed 19 RCLK cycles, except for a timeout interrupt where ^tSINT will be delayed 24 RCLK cycles.
- ② RCLK is an internal clock used for sampling serial in data. RCLK is equivalent to 16 times the baud rate clock.



SYMBOL	CHARACTERISTIC	MIN	МАХ	UNITS	TEST CONDITIONS
tHR	Delay from IOW (WR_THR) to Reset Interrupt		175	ns	100 pF Load
^t IRS	Delay from initial INTR Reset to Transmit start	8	24	TCLK ① Clock Cycles	
^t SI ②	Delay from Initial Write to Interrupt	16	24	TCLK ① Clock Cycles	
tSTI	Delay from Stop to Interrupt (THRE)	8	8	TCLK ① Clock Cycles	
tIR	Delay from IOR (RD IIR to Reset Interrupt (THRE)		250	ns	100 pF Load
tSXA	Delay from Start to TXRDY Active	0	8	TCLK ① Clock Cycles	
tWXI	Delay from Write to TXRDY Inactive	0	300	ns	

TABLE 6-5. TRANSMITTER TIMING

- ① TCLK is an internal clock used for sending serial out data. TCLK is equivalent to 16 times the baud rate clock.
- In FIFO mode tSI might extend to beginning of Stop Bit. See Line Status Register for details.

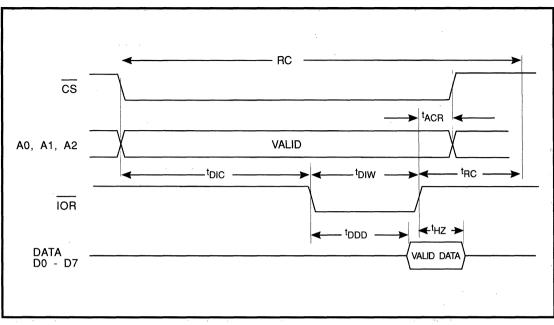


FIGURE 6-3. MODEM CONTROL TIMING

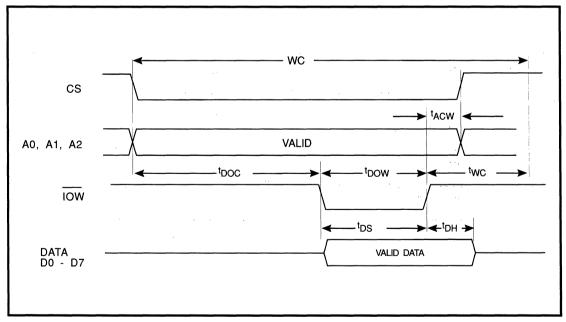

SYMBOL	CHARACTERISTIC	MIN	МАХ	UNITS	TEST CONDITIONS
tMDO	Delay from IOW (WR MCR) to Output		200	ns	100 pF Load
^t SIM	Delay to Set Interrupt from MODEM Input		250	ns	100 pF Load
^t RIM	Delay to Reset Interrupt from IOR (RD MSR)		250	ns	100 pF Load

TABLE 6-6. MODEM CONTROL TIMING

%

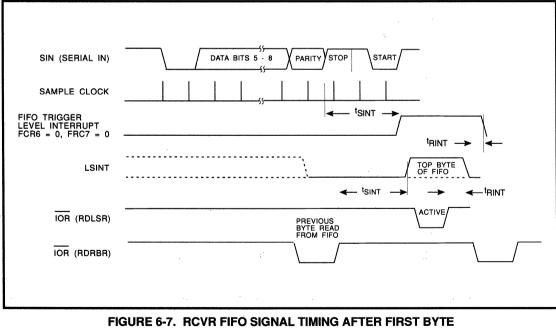
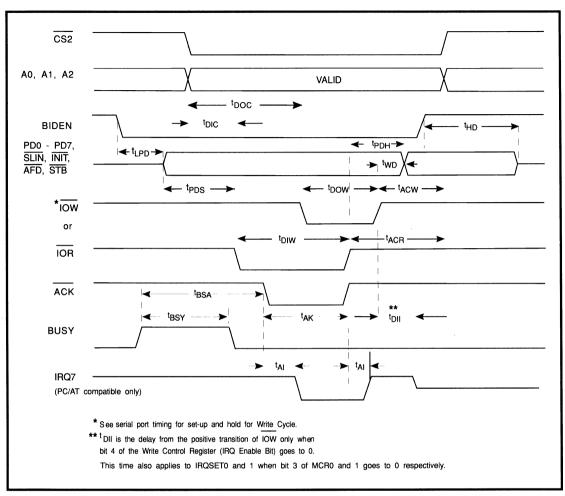
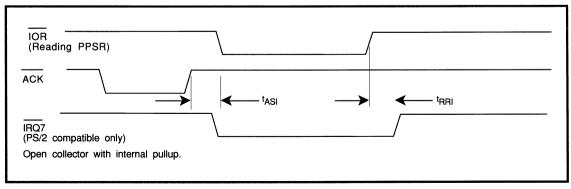

SYMBOL	CHARACTERISTIC	MIN	МАХ	UNITS	TEST CONDITIONS
^t DIW	IOR Strobe Width	125		ns	1TTL Load
^t RC	Read Cycle Delay	125		ns	1TTL Load
RC	Read Cycle = ^t DIC + ^t DIW + ^t RC + 20 ns	300		ns	1TTL Load
tHZ	IOR to Floating Data Delay	0	100	ns	1TTL Load
^t DOW	IOW Strobe Width	100		ns	1TTL Load
tWC	Write Cycle Delay	150		ns	1TTL Load
wc	Write Cycle = + tDOC + tDOW + tWC + 20 ns	300		ns	1TTL Load
tDS	Data Setup Time	30		ns	1TTL Load
tDH	Data Hold Time	30		ns	1TTL Load
†DIC	IOR DELAY from Select or Address	30		ns	1TTL Load
tDOC	IOW Delay from Select or Address	30		ns	1TTL Load
^t ACR	Address and Chip Select Hold Time from IOR	20		ns	1TTL Load
tACW	Address and Chip Select Hold Time from IOW	20		ns	1TTL Load
tDDD	Delay from \overline{IOR} to data		100	ns	1 TTL Load
^t MR	Master Reset Pulse Width	1.0		μs	1 TTL Load
^t PWRUP	Delay from TTL Clock in to internal clock on power up.		30	μs	
tOSCUP	Delay from OSC clock in to internal clock on power up.		30	ms	

TABLE 6-7. READ/WRITE CYCLE TIMING


1/2

SIN (SERIAL IN)	
SAMPLE CLOCK	
FIFO TRIGGER LEVEL INTERRUPT FCR6 = 0, FRC7 = 0	
LSINT	
IOR (LSR)	
IOR (RDRBR)	


FIGURE 6-6. RCVR FIFO SIGNAL TIMING FOR FIRST BYTE

(RBR ALREADY SET)

FIGURE 6-9. PARALLEL PORT INTERRUPT TIMING

″/

SYMBOL	CHARACTERISTIC	MIN	MAX	UNITS	TEST CONDITIONS
^t DOC	IOW Delay from Chip Select and Address	30		ns	
^t DIC	IOR Delay from Chip Select and Address	30		ns	
^t WD	IOW High to PD0-PD7, SLIN, INIT, AFD, STB		1	μs	No External Pull-up Resistor and 50 pF Load
thd	BIDEN High to PD0-PD7 Tri-State		120	ns	50 pF Load
^t LPD	BIDEN Low to PD0-PD7 Delay		100	ns	50 pF Load
^t PDH	PD0-PD7 Hold Time from IOR	100		ns	
^t PDS	PD0-PD7 Set-up Time from IOR	100		ns	
^t DOW	IOW Strobe Width	100		ns	
^t DIW	IOR Strobe Width	125		ns	
^t ACW	Chip Select and Address Hold Time from IOW	20		ns	
^t ACR	Chip Select and Address Hold Time from IOR	20		ns	
^t BSA	BUSY Start to ACK	0		ns	
^t BSY	BUSY Width	100		ns	
^t AK	ACK Width	100		ns	
^t AI	IRQ7 Delay from ACK		60	ns	50 pF Load
tASI	ACK to set interrupt		60	ns	50 pF Load
^t RRI	Read Parallel Port Status Register (PPSR)		60	ns	50 pF Load
^t DII	IOW to Tri-State	0	100	ns	50 pF Load

TABLE 6-8. PARALLEL PORT TIMING

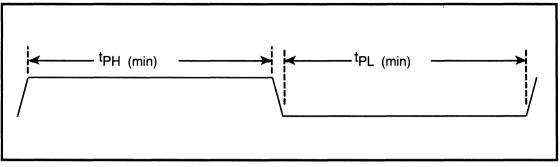


FIGURE 6-10. CLOCK GENERATION TIMING

CLOCK	^t PH	^t PL	FREQUENCY	MAX. EDGE DELAY ①
TYPE	min. ns.	min. ns.	MHz	FROM MSTRX1 EDGE
CLK287 SEL 0 1	43 28	68 62	8 9.6	100 ns 100 ns
2	22	50	12	100 ns
3	35	35	12	100 ns
4	17	37	16	100 ns
5	25	25	16	100 ns
	50	33	9.6	100 ns
	28	28	16	100 ns
MSTRX1	8	8	48	N/A

① All 50 pF loads

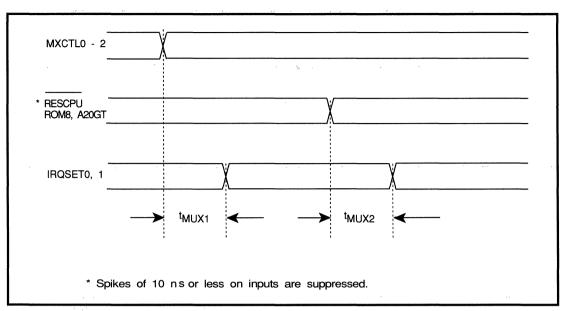


FIGURE 6-11. INTERRUPT MUX TIMING - A

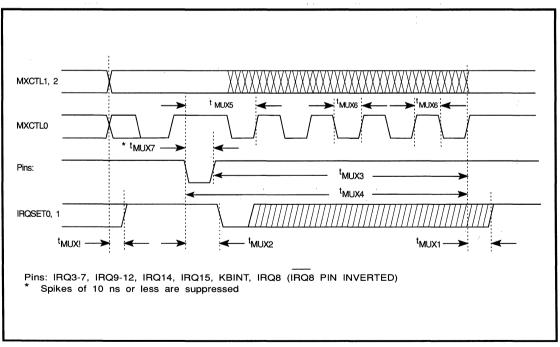


FIGURE 6-12. INTERRUPT MUX TIMING - B

SYMBOL	CHARACTERISTIC	MIN	MAX	UNITS	TEST CONDITIONS
^t MUX1	Delay from MUX control change		25	ns	50 pF load
^t MUX2	Delay from MUX input going low		125	ns	50 pF load
^t MUX3	Rising MXCTL0 clock edges required	3	5		
^t MUX4	Rising MXCTL0 clock edges required	5			
^t MUX5	MUX input setup time	100		ns	
^t MUX6	MXCTL0-2 pulse width	40		ns	
^t MUX7	Pins pulse width	75		ns	

TABLE 6-10. INTERRUPT MUX TIMING

7.0 PACKAGE DIMENSIONS

Figure 7-1. Illustrates the 84-Pin PLCC package showing the dimensions in inches. Figure 7-2. Illustrates the 84-Pin PQFP package showing the dimensions in inches.

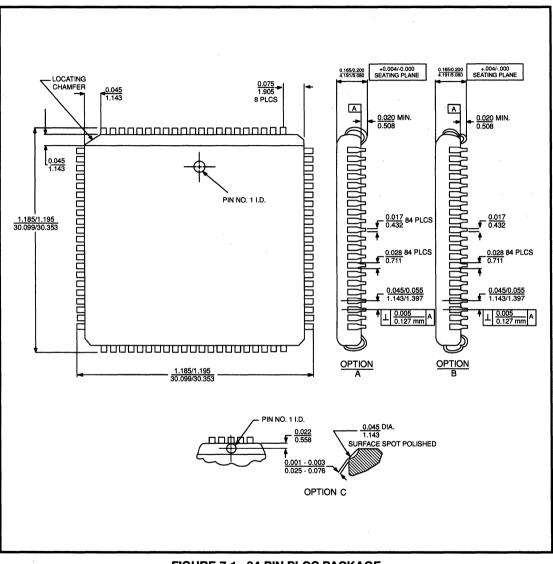


FIGURE 7-1. 84-PIN PLCC PACKAGE

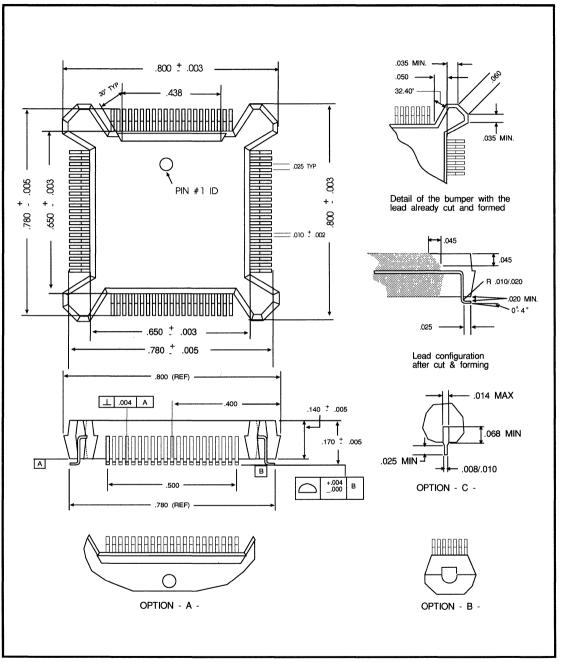


FIGURE 7-2. 84-PIN PQFP PACKAGE

8.0 CRYSTAL MANUFACTURES (Partial List)

American Time Products Division Frequency Control Products, Inc. Woodside, New York 11377

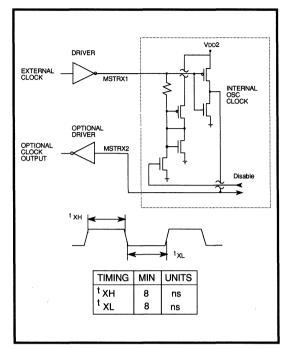
Bliley Electric Company Eire, Pennsylvania 16508

Cryster Crystals Whitby, Ontario

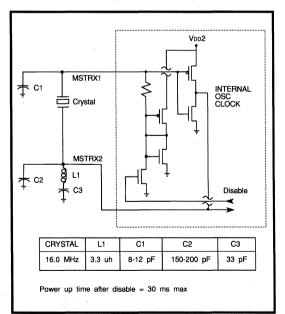
Erie Frequency Control Carlisle, Pennsylvania 17013

Q-Matic Corporation Costa Mesa, California 92626

8.1 CRYSTAL SPECIFICATIONS


Frequency: 16.0 MHz (third overtone = 48 MHz)

Type: Microprocessor Crystal


Temperature Range: 0°C (32°F) to 70°C (158°F)

Series Resistance: 50 Ohms to 75 Ohms (16.0 MHz)

Series Resonant Overall Tolerance: ±0.01%

FIGURE 8-1. EXTERNAL CLOCK INPUT (48 MHz MAX.)

FIGURE 8-2. TYPICAL CRYSTAL OSCILLATOR NETWORK

