The Weitek WTL 2264 Floating Point Multiplier and WTL 2265 Floating Point ALU provide high speed 32 and 64 -bit numeric processing. Each chip can deliver up to 20 MFLOPs of single precision, and 12 MFLOPs of double precision
 performance. Single precision Divide occurs at a 500 ns rate, with Double precision reaching $1 \mu \mathrm{~s}$ speeds.

Contents

Features	1
Description	1
Specifications	2
Block Diagram	6
Signal Description	8
Method of Operation	19
Timing	27
IEEE Compatibility	31
Operations	42
I/O Characteristics	44
Pin Configuration	46
Physical Dimensions	46
Application Note	47
Ordering Information	appendix
Revision Summary	back cover
Documentation Request Form	49
Sales Offices	

Features

HIGH SPEED

20 MFlops (50 ns) pipelined for 32-bit ALU operations and 64-bit accumulations
20 MFlops (50 ns) pipelined for 32-bit multiplications 12 MFlops (80 ns) pipelined for 64-bit multiplications

FULL FUNCTION

Addition
Subtraction
Multiplication
Division
Conversion to and from two's complement integer
Compare
Absolute value
32-bit integer ALU operations

FULL INTERNAL 64-BIT ACCUMULATION
PATH (WTL 2265)
CONFORMANCE TO IEEE STANDARD 754, VERSION 10.0

Full 32-bit and 64-bit floating point formats and operations

THREE 32-BIT PORTS
Two data inputs and one result output every 50 ns
LOW POWER CMOS
One Watt power dissipation
STANDARD 144-PIN PIN GRID ARRAY

Description

The WTL 2264 floating point multiplier/divider and the WTL 2265 floating point ALU provide high speed 32 -bit and 64 -bit floating point processing.

By virtue of their high I/O bandwidth and flexible pipeline structure, the WTL 2264/2265 can optimize either single precision or double precision performance. If optimization of double precision throughput is desired, the WTL 2264/2265-80 should be used. With the WTL 2264/2265-80, either single or double precision additions and multiplications can proceed at a 12.5 MFLOP (80 ns) rate. The latency for single precision operations is 280 ns , while the latency for double precision operations is 320 ns .
To optimize single precision performance or double precision latency, the WTL $2264 / 2265-50$, -60 or -75 should be used. With the WTL 2264/2265-50, all single precision operations can be performed at a 20 MFLOP (50 ns) rate with a latency of 200 ns . Double precision multiplications can be performed with the 2264-50 at a 10 MFLOP rate with a latency of 300 ns . Double precision addition can also be performed at a 10 MFLOP rate, but has a latency of 250 ns .
In the "compatibility" mode, the WTL 2264/2265 are form-, fit- and function-compatible with the WTL 1264 and WTL 1265. Consequently, by asserting the compatibility mode bit, code written for the WTL
$1264 / 1265$ will run on the WTL $2264 / 2265$. New routines may be written or speed critical routines re-written to take advantage of the WTL 2264/2265's higher throughput and lower latency. The higher throughput may be used to upgrade a system's performance.

This flexible two-chip set performs operations on single (32-bit) and double (64-bit) precision operands corresponding to IEEE Standard 754, Version 10.0 and 32-bit two's complement integers. Conformance to the standard includes all rounding modes, infinity and reserved operand representations, and the treatment of exceptions, such as overflow, underflow, invalid and inexact. Exact conformance also ensures complete software portability between systems designed using these devices and other general purpose computer systems which may be used to prototype algorithms and applications software. A "FAST" mode, which removes the time penalty of underflow exception handling by substituting zero for denormalized numbers, is included. All other features of the specification are retained in "FAST" mode.

Since the function specification is also pipelined there is no time penalty for interleaving various functions. Internal timers on the chips permit the pipeline to advance automatically so explicit pipeline flushing by pushing in new data is not required.

Description, continued

The WTL 2265 has a 64-bit internal accumulation path that allows the summation of 32 - and 64 -bit numbers without an external feedback path. Thus one cycle of latency can be saved on all accumulate operations, simplifying programming.

The devices' flexible I/O structure allows them to be integrated into systems with one, two or three 32-bit buses or one 64-bit bus. This flexibility provides an easy interface to systems with a variety of memory configurations. Separate input and output controls are used to program the ports. All inputs and outputs are
fully registered and are loaded on each positive-going transition of the clock.

The function control determines the arithmetic operation to be performed. A 4-bit status output flags arithmetic exceptions and conditions. Function inputs and status outputs propagate with the corresponding data for designing and programming ease. A mode register selects optional characteristics that are not often changed, such as the selection of the IEEE rounding mode, which reduces microcode requirements.

Specifications

ABSOLUTE MAXIMUM RATINGS (Above Which The Useful Life May Be Impaired)

RECOMMENDED OPERATING CONDITIONS

PARAMETER	COMMERCIAL			UNIT
	MIN	NOM	MAX	
Supply voltage, VCC	4.75	5.0	5.25	V
Supply voltage, VDD	4.75	5.0	5.25	V
Operating temperature, T CASE	0		85	${ }^{\circ} \mathrm{C}$

Specifications, continued

DC ELECTRICAL CHARACTERISTICS, 1

PARAMETER	TEST CONDITIONS	COMMERCIAL		UNIT
		MIN	MAX	
V_{H} High-level input voltage	$V_{C C} / V_{D D}=M A X$	2.0		V
VIL Low-level input voltage	$V_{C C} / V_{D D}=$ MIN		0.8	V
Vor High-level output voltage	$\mathrm{V}_{C C} / \mathrm{V}_{D D}=\mathrm{MIN} ; \quad 1 \mathrm{OH}=-1 \mathrm{~mA}$	2.4		V
VoL Low-level output voltage	$\mathrm{V}_{\mathrm{CC}} / \mathrm{V}_{\mathrm{DD}}=\mathrm{MIN} ; \quad \mathrm{loL}=4 \mathrm{~mA}$		0.4	V
IIH Input high current	$\mathrm{V}_{C C} / \mathrm{V}_{D D}=M A X ; \quad \mathrm{V}_{1}=5 \mathrm{~V}$		10	$\mu \mathrm{A}$
IIL Input low current	$V_{C C} / V_{D D}=M A X ; \quad V_{L}=O V$		10	$\mu \mathrm{A}$
lozl 3 state leakage current low	$V_{C C} / V_{D D}=M A X ; \quad V_{L L}=O V$		10	$\mu \mathrm{A}$
lozH 3 state leakage current high	$\mathrm{V}_{C C} / \mathrm{V}_{\mathrm{DD}}=\mathrm{MAX} ; \mathrm{V}_{1}=5 \mathrm{~V}$		10	$\mu \mathrm{A}$
I sB Standby supply current	All $\mathrm{V}_{\mathrm{IN}}=2.4($ High Z$)$			
I sB Standby supply current	All $\mathrm{V}_{\mathbb{N}}=\mathrm{V}_{\text {DD }}($ High Z$)$			

Note 1: $\mathrm{Tc}=0^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$; $\mathrm{Vcc} / \mathrm{VDD}=+4.75 \mathrm{~V}$ min. to +5.25 V max.

Specifications, continued

AC ELECTRICAL CHARACTERISTICS, 1

PARAMETER	TEST CONDITIONS (for all parameters)	2264/2265-75		2264/2265-60		2264/2265-50		UNIT
		MIN	MAX	MIN	MAX	MIN	MAX	
TCY Clock cycle time	Note 1	75	DC	60	DC	50	DC	ns
TCH Clock high time	Note 1	30						ns
TCL Clock low time	Note 1	30						ns
Ts Input setup time	Note 1	15						ns
TH Input hold time	Note 1	2						ns
TD Output delay time	Note 1		35					ns
TVo Output valid time	Notes 1 and 3	3						ns
Toz Output disable time	Note 1 modifled by Note 2, Note 3		35					ns
Tzo Output enable time	Note 1		35					ns
Icc Supply current 2264	$\begin{aligned} & V_{D D}=\text { MAX; TTL inputs } \\ & T=0^{\circ} \mathrm{C} ; \mathrm{TCY}=\mathrm{MIN} \end{aligned}$		75					mA
Icc Supply current 2265	$\begin{aligned} & V_{D D}=M A X ; T T L \text { inputs } \\ & T=0^{\circ} \mathrm{C} ; T C Y=M I N \end{aligned}$		75					mA
IDD Supply current 2264	$\begin{aligned} & V_{D D}=\text { MAX; } T T L \text { inputs } \\ & T=0^{\circ} \mathrm{C} ; T C Y=\text { MIN } \end{aligned}$		125					mA
IDD Supply current 2265	$\begin{aligned} & V_{D D}=\text { MAX; TTL inputs; } \\ & T=0^{\circ} \mathrm{C} ; \mathrm{TCY}=\mathrm{MIN} \end{aligned}$		125					mA
TLA Total Latency WTL 2265 32-bit operations \& 64-bit accumulations WTL 2265 64-bit operations (2 new 64-bit inputs) WTL 2264 32-bit operations WTL 2264 64-bit operations WTL 2264 32-bit divisions WTL 2264 64-bit divisions			$\begin{gathered} 300 \\ 375 \\ 300 \\ 450 \\ 975 \\ 1,725 \\ \hline \end{gathered}$		$\begin{gathered} 240 \\ 300 \\ 240 \\ 360 \\ 780 \\ 1,380 \\ \hline \end{gathered}$		$\begin{gathered} 200 \\ 250 \\ 200 \\ 300 \\ 650 \\ 1,150 \\ \hline \end{gathered}$	$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$
Top Pipelined Time Pe WTL 2265 all operations WTL 2264 32-bit multiplic WTL 2264 64-bit multiplic WTL 2264 32-bit divisions WTL 2264 64-bit divisions	tage ns ns		$\begin{gathered} 75 \\ 75 \\ 150 \\ 900 \\ 1,575 \end{gathered}$		$\begin{gathered} 60 \\ 60 \\ 120 \\ 720 \\ 1,260 \end{gathered}$		$\begin{gathered} 50 \\ 50 \\ 100 \\ 600 \\ 1,050 \end{gathered}$	ns ns ns ns ns

Note 1: All switching characteristics are tested with inputs of 0.4 and 3.5 V ; output delay load shown in Figure 15. $\mathrm{TC}^{\circ}=0^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$; $\mathrm{VCC} / \mathrm{V}_{\mathrm{DD}}=4.75 \mathrm{~min}$. to +5.25 max ; timing transitions are are measured at 1.5 V unless otherwise stated.
Note 2: Output load shown in Figure 16.
Note 3: Guaranteed but not tested.
Specifications subject to change without notice.

PRELIMINARY DATA

July 1986

Specifications, continued

AC ELECTRICAL CHARACTERISTICS, 1

PARAMETER	TEST CONDITIONS (for all parameters)	2264/2265-80		2264/2265-100		UNIT
		MIN	MAX	MIN	MAX	
TCY Clock cycle time	Note 1	40	DC	50	DC	ns
TCH Clock high time	Note 1			20	DC	ns
TCL Clock low time	Note 1			20	DC	ns
Ts Input setup time	Note 1			15		ns
TH Input hold time	Note 1			2		ns
Tvo Output valid time	Notes 1 and 3			3		ns
TD Output delay time	Note 1				35	ns
Toz Output disable time	Note 1 modified by Note 2; Note 3				35	ns
Tzo Output enable time	Note 1				35	ns
Icc Supply current 2264	$V_{\text {DD }}=$ MAX; $T T L$ inputs; $T=0^{\circ} \mathrm{C} ; ~ T C Y=$ MIN				75	mA
Icc Supply current 2265	$V_{\text {DD }}=$ MAX; TTL inputs; $T=0^{\circ} \mathrm{C} ; \mathrm{TCY}=\mathrm{MIN}$				75	mA
IDD Supply current 2264	$V_{D D}=$ MAX; TTL inputs; $T=0^{\circ} \mathrm{C} ;$ TCY $=$ MIN				125	mA
IDD Supply current 2265	$V_{\text {DD }}=$ MAX; T TL inputs; $T=0^{\circ} \mathrm{C} ;$ TCY $=$ MIN				125	mA
Tla Total Latency						
WTL 2265 32-bit operatio	4-bit accumulations		280		350	ns
WTL 2265 64-bit operatio	new 64-bit inputs)		320		400	ns
WTL 2264 32-bit operatio			280		350	ns
WTL 2264 64-bit operatio			320		400	ns
WTL 2264 32-blt divisions			640		850	ns
WTL 2264 64-bit divisions			1,000		1,300	ns
Top Pipelined Time Per Stage						
WTL 2265 all operations			80		100	ns
WTL 2264 32-bit multiplications			80		100	ns
WTL 2264 64-bit multiplications			80		100	ns
WTL 2264 32-bit divisions			600		750	ns
WTL 2264 64-bit divisions			960		1,200	ns

Note 1: All switching characteristics are tested with inputs of 0.4 and 3.5 V ; output delay load shown in Figure 15. Tc $=0^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C} ; \mathrm{Vcc} / \mathrm{VDD}=4.75 \mathrm{~min}$. to +5.25 max ; timing transitions are are measured at 1.5 V unless otherwise stated.
Note 2: Output load shown in Figure 16.
Note 3: Guaranteed but not tested.
Specifications subject to change without notice.

Block Diagram

Figure 1. WTL 2264 Block Diagram

Block Diagram, continued

Figure 2. WTL 2265 Block Diagram

Signal Description

X31-0

32-bit X Input Port

Y31-0

32-bit Y Input Port

L5-0
The 6-bit load control is used to implement the input configuration of the WTL 2264/2265 by specifying the destination (AM, AL, BM, BL or arithmetic array) of data on the X and Y inputs. The WTL 2264 uses only five bits of the load control; L_{5} should be tied to ground on the WTL 2264.

F6-0

7-bit function control on the WTL 2265; 8-bit function control for the WTL 2264. F7 is unused on the WTL 2265 and should be tied to ground.

CSL-

A logic " 0 " on the CSL- pin enables the Load Control Bus; a logic " 1 " forces a Nop on the Load Control Bus. The CSL- signal allows the WTL 2264/2265 to share Data Input and Control buses.

Z31-0
32-bit Z Output Port
S3-0
Four-bit status output - indicates any exceptions or conditions that result from operations performed by the floating point units.

U2-0

The unload control is used to specify the output source.

OE

A logic " 0 " on the asynchronous output enable disables outputs, while a logic "1" enables outputs.

CSU-

This signal is a synchronous output enable that allows the microcode to control the tri-stating of the output bus. This signal is staged with the same latency as the U2-0 field.

READY

For division, READY goes high for one cycle, on the cycle that partial results are clocked into Pipe Stage 3 of the WTL 2264. See figures 9 through 12 for more detail.

VDD
The 5 V power to the internal circuitry.

Vcc

The 5 V power to the devices' output drivers

GND
Ground
CLK
Clock

Method of Operation

Both the WTL 2264 and the WTL 2265 consist of a pipelined arithmetic array with two input ports and one output port. Arithmetic operations are selected by the
function control, while the input and output ports have 6-bit and 3-bit control fields. This section will discuss the hardware and controls of the WTL 2264/2265.

WTL 2264/WTL 2265 FLOATING POINT MULTIPLIER/ DIVIDER AND ALU

PRELIMINARY DATA

July 1986

Method of Operation, continued

INPUT PORTS

The WTL 2264 and WTL 2265 have the same input structure and controls. Data presented on either of the 32-bit X or Y buses may be written into the on-chip registers (AL, AM, BL, BM) and/or may be passed directly into the arithmetic unit. Data input and output transfer may occur at twice the maximum double precision pipeline rate.

The large number of internal destinations for input data, combined with the high I/O bandwidth, permits the WTL $2264 / 2265$ to be used in a variety of bus configurations for both 32- and 64-bit operations (one or two 32-bit input buses or one 64-bit input bus).

All inputs are fully registered, and, if CSL- is at logic " 0 ", can be loaded on each positive-going transition of the clock. Transfers from the input ports to the internal registers, the ALU or the multiplier array are accomplished with the load controls $L 5-0$ as specified below. Lo controls the initiation of an operation. If Lo is a logic " 0 ", only a data transfer occurs. If Lo is a logic " 1 " the
specified data is transferred and an operation begun as follows: the AREG and BREG are loaded with data from the specified $A L, A M, B L$ or $B M$ registers and the X and Y ports; the FREG is loaded from the F Port; and the operation specified by the FREG begins with the data loaded in the AREG and BREG.

Whenever L5 is asserted on the WTL 2265, the contents of the DM/DL registers rather than the contents of the AM/AL registers are transferred to the AREG at the beginning of an operation. This allows on-chip accumulation.

Both X and Y ports can be used for unary operations. Unary operands (both integer and 32-bit floating point) must be loaded into the AREG. All 32-bit floating point operands must be loaded into the more significant half of the AREG or BREG. All 32-bit integer operands must be loaded into the less significant half of the AREG or BREG.

Load Controls

L5 L4 L3 L2 L1 Lo	OPERATION
$\begin{array}{llllll}0 & 0 & 0 & 0 & 0 & 0\end{array}$	(nop)
$\begin{array}{llllll}0 & 0 & 0 & 0 & 0 & 1\end{array}$	AM,AL \rightarrow AREG; BM, BL \rightarrow BREG; F \rightarrow FREG
$\begin{array}{llllll}0 & 0 & 0 & 0 & 1 & 0\end{array}$	Load mode
$\begin{array}{llllll}0 & 0 & 0 & 0 & 1 & 1\end{array}$	Reserved
$\begin{array}{llllll}0 & 0 & 0 & 1 & 0 & 0\end{array}$	$Y \rightarrow A L ; X \rightarrow B L$
$\begin{array}{llllll}0 & 0 & 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 1 & 1 & 0\end{array}$	$Y \rightarrow A L ; X \rightarrow B L, A M, Y \rightarrow A R E G ; B M, X \rightarrow B R E G ; ~ F ~ T ~ F R E G ~$
$\begin{array}{llllll}0 & 0 & 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 & 1 & 1\end{array}$	$\begin{aligned} & Y \rightarrow A M ; X \rightarrow B M \\ & Y \rightarrow A M ; X \rightarrow B M, Y, A L \rightarrow A R E G ; X, B L \rightarrow B R E G ; F \rightarrow F R E G \end{aligned}$
$\begin{array}{llllll}0 & 0 & 1 & 0 & 0 & 0\end{array}$	$X \rightarrow B M ; Y \rightarrow B L$
$\begin{array}{llllll}0 & 0 & 1 & 0 & 0 & 1\end{array}$	$X \rightarrow B M ; Y \rightarrow B L, A M, A L \rightarrow A R E G ; X, Y \rightarrow B R E G ; F \rightarrow$ FREG
$\begin{array}{llllll}0 & 0 & 1 & 0 & 1 & 0\end{array}$	$X \rightarrow A M ; Y \rightarrow A L$
$\begin{array}{llllll}0 & 0 & 1 & 0 & 1 & 1\end{array}$	$X \rightarrow A M ; Y \rightarrow A L, X, Y \rightarrow A R E G ; B M, B L \rightarrow B R E G ; F \rightarrow F R E G$
$\begin{array}{llllll}0 & 0 & 1 & 1 & 0 & 0\end{array}$	
$\begin{array}{llllll}0 & 0 & 1 & 1 & 0 & 1\end{array}$	$X \rightarrow A L ; Y \rightarrow B L, A M, X \rightarrow A R E G ; B M, Y \rightarrow B R E G ; ~ F \rightarrow F R E G$
$\begin{array}{llllll}0 & 0 & 1 & 1 & 1 & 0\end{array}$	$X \rightarrow A M ; Y \rightarrow B M$ l ${ }^{\prime} \rightarrow$
$\begin{array}{llllll}0 & 0 & 1 & 1 & 1 & 1\end{array}$	$X \rightarrow A M ; Y \rightarrow B M, X, A L \rightarrow A R E G ; Y, B L \rightarrow B R E G ; F \rightarrow F R E G$
$\begin{array}{llllll}0 & 1 & 0 & 0 & 0 & 0\end{array}$	$Y \rightarrow B M$
$\begin{array}{llllll}0 & 1 & 0 & 0 & 0 & 1\end{array}$	$Y \rightarrow B M ; A M, A L \rightarrow A R E G, Y, B L \rightarrow B R E G ; F \rightarrow F R E G$
$\begin{array}{llllll}0 & 1 & 0 & 0 & 1 & 0\end{array}$	$Y \rightarrow B L$
$\begin{array}{llllll}0 & 1 & 0 & 0 & 1 & 1\end{array}$	$Y \rightarrow B L ; A M, A L \rightarrow A R E G, B M, Y \rightarrow B R E G ; F \rightarrow F R E G$
$\begin{array}{llllll}0 & 1 & 0 & 1 & 0 & 0\end{array}$	$Y \rightarrow A L$
$\begin{array}{llllll}0 & 1 & 0 & 1 & 0 & 1\end{array}$	$Y \rightarrow A L ; A M, Y \rightarrow A R E G, B M, B L \rightarrow B R E G ; F \rightarrow F R E G$
$\begin{array}{llllll}0 & 1 & 0 & 1 & 1 & 0\end{array}$	$Y \rightarrow A M$
$\begin{array}{llllll}0 & 1 & 0 & 1 & 1 & 1\end{array}$	$Y \rightarrow A M ; Y, A L \rightarrow A R E G, B M, B L \rightarrow B R E G ; F \rightarrow F R E G$

Method of Operation, continued
Load Controls, continued

L5 L4 L3 L2 Li Lo	OPERATION
$\begin{array}{llllll}0 & 1 & 1 & 0 & 0 & 0\end{array}$	$X \rightarrow B M$
$\begin{array}{lllllll}0 & 1 & 1 & 0 & 0 & 1\end{array}$	$X \rightarrow B M ; A M, A L \rightarrow A R E G, X, B L \rightarrow B R E G ; ~ F \rightarrow F R E G$
0 0 1 1 10010	$X \rightarrow B L$
$\begin{array}{llllll}0 & 1 & 1 & 0 & 1 & 1 \\ 0 & 1 & 1 & 1 & 0 & \end{array}$	$X \rightarrow$ BL; AM,AL \rightarrow AREG, BM, $X \rightarrow$ BREG; F \rightarrow FREG
$\begin{array}{llllll}0 & 1 & 1 & 1 & 0 & 0 \\ 0 & 1 & 1 & 1 & 0 & 1\end{array}$	X $X$$\rightarrow A L$ AL; $A M, X \rightarrow$ AREG, BM, BL \rightarrow BREG; $F \rightarrow$ FREG
$\begin{array}{lllllll}0 & 1 & 1 & 1 & 1 & 0\end{array}$	$X \rightarrow$ AM $A M, X \rightarrow$ AREG, BM, $\mathrm{BL} \rightarrow$ BREG; $F \rightarrow F R E G$
$\begin{array}{llllll}0 & 1 & 1 & 1 & 1 & 1\end{array}$	$\mathrm{X} \rightarrow \mathrm{AM} ; \mathrm{X}, \mathrm{AL} \rightarrow$ AREG, BM,BL \rightarrow BREG; F \rightarrow FREG
$1 \times \times \times \times \times$	* DM, DL \rightarrow AREG rather than AM, AL (see next table)

* WTL 2265 only; L5 should be grounded on the WTL 2264.

L5 L4 L3 L2 L1 Lo	OPERATION		
1000000	(NOP)		
$\begin{array}{llllll}1 & 0 & 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 & 1 & 0\end{array}$	DM, DL \rightarrow AM, AL,AREG	$\mathrm{BM}, \mathrm{BL} \rightarrow \mathrm{BREG}$	$F \rightarrow$ FREG
$\begin{array}{llllll}1 & 0 & 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 & 1 & 1\end{array}$	LOAD MODE RESERVED		
$\begin{array}{llllll}1 & 0 & 0 & 1 & 0 & 0\end{array}$	$\mathrm{DM}, \mathrm{DL} \rightarrow \mathrm{AM}, \mathrm{AL}$	$X \rightarrow B L$	
$\begin{array}{llllll}1 & 0 & 0 & 1 & 0 & 1\end{array}$	DM, DL \rightarrow AM,AL,AREG	$X \rightarrow B L ; B M, X \rightarrow$ BREG	$F \rightarrow$ FREG
$\begin{array}{llllll}1 & 0 & 0 & 1 & 1 & 0\end{array}$	$\mathrm{DM}, \mathrm{DL} \rightarrow \mathrm{AM}, \mathrm{AL}$	$\mathrm{X} \rightarrow \mathrm{BM}$	
$\begin{array}{llllll}1 & 0 & 0 & 1 & 1 & 1\end{array}$	DM, DL \rightarrow AM,AL,AREG	$X \rightarrow B M ; X, B L \rightarrow$ BREG	$F \rightarrow$ FREG
$\begin{array}{llllll}1 & 0 & 1 & 0 & 0 & 0\end{array}$	DM, DL \rightarrow AM, AL	$X \rightarrow B M ; Y \rightarrow B L$	
$\begin{array}{llllll}1 & 0 & 1 & 0 & 0 & 1 \\ 1 & 0 & 1 & 0 & 1\end{array}$	DM, DL \rightarrow AM,AL,AREG	$X \rightarrow B M ; Y \rightarrow B L ; ~ X, Y \rightarrow B R E G$	$F \rightarrow$ FREG
$\begin{array}{lllllll}1 & 0 & 1 & 0 & 1 & 0 \\ 1 & 0 & 1 & 0 & 1 & 1\end{array}$		$\mathrm{BM}, \mathrm{BL} \rightarrow$ BREG	$\mathrm{F} \rightarrow$ FREG
$\begin{array}{llllll}1 & 0 & 1 & 1 & 0 & 0\end{array}$	DM, DL \rightarrow AM, AL	$\mathrm{Y} \rightarrow \overrightarrow{\mathrm{BL}}$	$F \rightarrow$ FREG
$\begin{array}{llllll}1 & 0 & 1 & 1 & 0 & 1 \\ 1 & 0 & 1 & 1 & 1 & 1\end{array}$	DM,DL \rightarrow AM,AL,AREG	BM, Y \rightarrow BREG; Y \rightarrow BL	$F \rightarrow$ FREG
$\begin{array}{llllll}1 & 0 & 1 & 1 & 1 & 0 \\ 1 & 0 & 1 & 1 & 1 & 1\end{array}$		$\begin{aligned} Y & \rightarrow \mathrm{BM} \\ \mathrm{Y} & \rightarrow \mathrm{BM} ; \mathrm{Y}, \mathrm{BL} \rightarrow \mathrm{BREG}\end{aligned}$	$F \rightarrow$ FREG
$\begin{array}{llllll}1 & 1 & 0 & 0 & 0 & 0\end{array}$	$\mathrm{DM}, \mathrm{DL} \rightarrow \mathrm{AM}, \mathrm{AL}$	$Y \rightarrow B M$	
$\begin{array}{llllll}1 & 1 & 0 & 0 & 0 & 1\end{array}$	DM,DL \rightarrow AM,AL,AREG	$Y \rightarrow B M ; Y, B L \rightarrow$ BREG	$F \rightarrow$ FREG
$\begin{array}{llllll}1 & 1 & 0 & 0 & 1 & 0 \\ 1 & 1 & 0 & 0 & 1 & 1\end{array}$	DM,DL \rightarrow AM, AL	$Y \rightarrow B L$	
$\begin{array}{llllll}1 & 1 & 0 & 0 & 1 & 1 \\ 1 & 1 & 0 & 1 & 0 & 0\end{array}$	$\xrightarrow[\text { DM, }]{\text { INVALID }} \rightarrow$ AM,AL,AREG	$Y \rightarrow B L ; B M, Y \rightarrow$ BREG	$\mathrm{F} \rightarrow$ FREG
$\begin{array}{lllllll}1 & 1 & 0 & 1 & 0 & 1 \\ 1 & 1 & 0 & 1 & 1 & 0\end{array}$	DM, DL \rightarrow AM,AL,AREG	$\mathrm{BM}, \mathrm{BL} \rightarrow \mathrm{BREG}$	$F \rightarrow$ FREG
$\begin{array}{llllll}1 & 1 & 0 & 1 & 1 & 0 \\ 1 & 1 & 0 & 1 & 1 & 1\end{array}$	$\stackrel{\text { INVALID }}{\text { DM }} \rightarrow$ AM AL AREG	$\mathrm{BM}, \mathrm{BL} \rightarrow \mathrm{BREG}$	
$\begin{array}{llllll}1 & 1 & 1 & 0 & 0 & 0\end{array}$	DM, DL \rightarrow AM,AL	$X \rightarrow B M$	
$\begin{array}{llllll}1 & 1 & 1 & 0 & 0 & 1\end{array}$	DM, DL \rightarrow AM,AL,AREG	$X \rightarrow B M ; X, B L \rightarrow$ BREG	$F \rightarrow$ FREG
$\begin{array}{llllll}1 & 1 & 1 & 0 & 1 & 0 \\ 1 & 1 & 1 & 0 & 1 & 1\end{array}$	DM, ${ }^{\text {DL }} \rightarrow$ AM,AL DM, DL $\mathrm{AM,AL,AREG}$	$\begin{aligned} & X \\ & X \\ & \mathrm{X}\end{aligned} \mathrm{BCB} \mathrm{BL} ; \mathrm{BM}, \mathrm{X} \rightarrow \mathrm{BREG}$	
$\begin{array}{lllllll}1 & 1 & 1 & 1 & 0 & 0\end{array}$	INVALID ${ }^{\text {d }}$, AL,AREG	$X \rightarrow$ BL; BM, $X \rightarrow$ BREG	F \rightarrow FREG
$\begin{array}{lllllll}1 & 1 & 1 & 1 & 0 & 1 \\ 1 & 1 & 1 & 1 & 1 & 0\end{array}$	DM, DL \rightarrow AM,AL,AREG	$\mathrm{BM}, \mathrm{BL} \rightarrow \mathrm{BREG}$	$\mathrm{F} \rightarrow$ FREG
$\begin{array}{lllllll}1 & 1 & 1 & 1 & 1 & 1\end{array}$	DM, DL \rightarrow AM,AL,AREG	$\mathrm{BM}, \mathrm{BL} \rightarrow \mathrm{BREG}$	$\mathrm{F} \rightarrow$ FREG
		10	

WTL 2264/WTL 2265
 FLOATING POINT MULTIPLIER/ DIVIDER AND ALU

PRELIMINARY DATA

July 1986

Method of Operation, continued

These tables can be condensed by noting the following regularities. The information on nodes NAM, NAL, NBM and NBL (as shown in Figure 2) is controlled by L_{1}, L_{2}, L_{3} and L_{4}, respectively, as shown in the table below. Node NAM feeds into the AM Register, while $N A L \rightarrow A L, N B M \rightarrow B M$ and $N B L \rightarrow B L$. If $L o$ is asserted
high, then the information on NAM and NAL is latched into the AREG, the information on NBM and NBL is latched into the BREG and the operation begins. If L_{5} is asserted high, the control of NAM and NAL by L_{1} through L_{4} is superseded and NAM and NAL receive the contents of the DM and DL registers, respectively.

Load Sequences For Example Configurations
32-bit Operations With Two 32-bit Ports

Operation	L_{4}	L_{3}	L_{2}	L_{1}	L_{0}
Y,AL \rightarrow AREG; $X, B L \rightarrow B R E G ;$ $F \rightarrow F R E G ; ~ Y \rightarrow A M ; X \rightarrow B M$	0	0	1	1	1

64-bit Operations Using The X And Y Ports As A Single
Port

Operation	L_{4}	L_{3}	L_{2}	L_{1}	Lo
$X \rightarrow A M ; Y \rightarrow A L$	0	1	0	1	0
AM,AL $\rightarrow A R E G ; X, Y \rightarrow B R E G$					
$F \rightarrow F R E G ; X \rightarrow B M ; Y \rightarrow B L$	0	1	0	0	1

Method of Operation, continued

UNLOAD CONTROLS

CSU-	$U_{2} U_{1} U_{0}$	OPERATION
$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{array}{lll} 0 & 0 & 0 \\ 0 & 0 & 1 \end{array}$	DM $_{31-0} \rightarrow$ ZPORT; STREG \rightarrow SPORT $\mathrm{DM}_{15-0,}$ DM $\mathrm{B}_{31-16} \rightarrow$ ZPORT; STREG \rightarrow SPORT
$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{array}{lll}0 & 1 & 0 \\ 0 & 1 & 1\end{array}$	DM_{31-16}, $\mathrm{DL}_{31-16} \rightarrow$ ZPORT; STREG \rightarrow SPORT $\mathrm{DL}_{31-16,}$ DM $\mathrm{B}_{31-16} \rightarrow$ ZPORT; STREG \rightarrow SPORT
$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{array}{lll}1 & 0 & 0 \\ 1 & 0 & 1\end{array}$	DL ${ }_{31-0} \rightarrow$ ZPORT; STREG \rightarrow SPORT DL $_{15-0}$,DL ${ }_{31-16} \rightarrow$ ZPORT; STREG \rightarrow SPORT
$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{array}{lll}1 & 1 & 0 \\ 1 & 1 & 1\end{array}$	DM $_{15-0}$, DL ${ }_{15-0}, \rightarrow$ ZPORT;STREG \rightarrow SPORT DL $_{15-0, \text { DM }_{15-0} \rightarrow \text { ZPORT; STREG } \rightarrow \text { SPORT }}$
1	$x \times \mathrm{x}$	SPORT and ZPORT tri-stated

The results of 32-bit floating point operations are stored in the DM Register. The more significant half of the result of a 64-bit operation is stored in the DM Register and the less significant 32 bits are stored in the DL Register. The results of integer operations are stored in the DL Register. One 32-bit result is transferred from the DM or DL Register to the Z Port every cycle. The unload control determines what portions of the DM or DL register are transferred to the Z Register.

MULTIPLIER/DIVIDER

The multiplier in the WTL 2264 has five basic elements: front end circuits to detect exceptions, a fixed point multiplier array, a circuit in parallel with the multiplier for adding exponents, a shifter to normalize the result of the fixed point multiplication and an IEEE rounding circuit. Exceptions (NaN and denormalized input) are detected at the input of the WTL 2264 by the exception circuitry. The timing for an exception is the same as that for a normal multiplication. For valid inputs, the exponents are added by the exponent adder.

A synchronous multiplier array performs the mantissa multiplication. One pass is required for a single precision IEEE multiply, while two passes are required for a double precision multiplication. The number of cycles required to pass through the array depends upon the
system cycle time and the WTL 2264 speed grade. If the system has a 50 ns cycle time and a WTL 2264-50 is used, one cycle is required to pass through the array. If, on the other hand, the system cycle time is 40 ns and a WTL 2264-50 is used, two cycles would be required to pass through the array. A programmable timer, called the accumulate timer, is used to determine the time required to make a pass through the array and indirectly determines when results are latched into the WTL 2264's Pipe 2 Register.

Renormalization and IEEE rounding are performed between the pipeline register and the DM/DL registers. Mode control bits $\mathrm{M}_{3}-2$ are used to select the desired rounding mode.

The pipeline registers, the DM Register and the DL Register can be made transparent by mode bits M_{1}, M_{5} and M_{4}. At the beginning of every operation the AREG and BREG are clocked. This clock pulse will ripple down to the Pipe 1, Pipe 2 and DM/DL registers after delays that are specified by the Pipeline Advance Control, M9-8, and the Pipe 2 Advance Control, M_{7-6}, and M_{13}. The delay between the AREG, BREG and Pipe Register 1, as well as the delay between Pipe Register 2 and the DM/ DL registers, is specified by the Pipeline Advance Control. The delay between Pipe 1 and Pipe 2 is specified by the Pipe 2 Advance Control. PRELIMINARY DATA
July 1986

Method of Operation, continued

In order to achieve the highest possible performance, it was necessary to eliminate the direct multiplication and division of denormalized numbers in the WTL 2264. In "FAST" mode, denorms (DNRMs) at the input and unorms (UNRMs) at the output of both the WTL 2264 and WTL 2265 are treated as zero. In IEEE mode, the WTL 2264 flags denorms. They must then be sent to
the ALU to be wrapped. Wrapped numbers (WNRMs) can then be multiplied or divided using the WTL 2264. The section on "IEEE COMPATIBILITY" discusses this in detail.

The floating point multiplier controls are given below.

Function Controls For Floating Point Multiplier

$F_{2} F_{1} F_{0}$	OPERATION (BREG Op AREG)	DESCRIPTION
	F32 op F32	Single operation
0 0 010 (1)	F64 op F64	Double operation
$\begin{array}{llll}0 & 1 & 0 & \text { (2) }\end{array}$	F32 op W32	Single operation, A wrapped
$\begin{array}{llll}0 & 1 & 1 & \text { (3) }\end{array}$	F64 op W64	Double operation, A wrapped
100 (4)	W32 op F32	Single operation, B wrapped
$1 \begin{array}{llll}1 & 0 & 1 & \text { (5) }\end{array}$	W64 op F64	Double operation, B wrapped
$\begin{array}{llll}1 & 1 & 0 \\ 1 & 1 & 1 & (7)\end{array}$	W32 op W32	Single operation, A \& B wrapped
$\begin{array}{llll}1 & 1 & 1\end{array}$	W64 op W64	Double operation, A \& B wrapped

$F_{5} F_{4} F_{3}$	OPERATION (BREG op AREG)	DESCRIPTION	
$00000(0)$	B op A	Operate	
$\begin{array}{llll}0 & 0 & 1 & \text { (1) }\end{array}$	B OP $\|A\|$	B operate magnitude of A	
$\begin{array}{llll}0 & 1 & 0 & \text { (2) }\end{array}$	B\|OP A	A operate magnitude of B	
$\begin{array}{llll}0 & 1 & 1 & \text { (3) }\end{array}$	$\mid \mathrm{B}$ op $\|A\|$	Magnitude of A operate B	
$\begin{array}{llll}1 & 0 & 0 & (4) \\ 1 & 0 & 1 & \end{array}$	$-\left(\begin{array}{l}\text { B op A) }\end{array}\right.$	Operate and negate	
$\begin{array}{llll}1 & 0 & 1 & \text { (5) }\end{array}$	B op ($-\|A\|$)	B operate negative value of A	
$\begin{array}{llll}1 & 1 & 0 & (6) \\ 1 & 1 & 1 & (7)\end{array}$	(-\|B) OP A	A operate negative value of B
$\begin{array}{llll}1 & 1 & 1 & (7)\end{array}$	($\|B\|$ op $\|A\|$)	Negative value of A operate B	

If F_{6} is a logic " 0 ", the operation is an IEEE multiply. If, on the other hand, F_{6} is a logic " 1 ", the function performed is an IEEE division with all the options shown above. F_{7} is used to perform mixed-mode calculations. If F_{7} is asserted high, then (F32 • F32 = F64) or ($\mathrm{F} 32 \div \mathrm{F} 32=\mathrm{F} 64$) functions are performed. All combinations of sign specified by F5, F_{4} and F_{3} are supported. Wrapped formats are not supported for mixed mode operations.

When denormalized operands are encountered in mixed-mode operations, the single precision operand must be converted to double precision and the operation executed in double precision.

Division takes the form of $\mathrm{B} \div \mathrm{A}$.

ALU

The WTL 2265's ALU consists of five basic elements: front end circuitry to detect exceptions, a shifter to
denormalize the smaller of the two input operands, an adder, a shifter to renormalize results and circuits to perform the IEEE rounding. However, the user can consider it to be a simple ALU with two internal pipeline registers. Two additional pipeline registers are available to maintain compatibility with the WTL 1265. Any combination of the pipeline registers as well as the DM and DL registers can be made transparent by mode bits M_{7-4}. At the beginning of every operation the AREG and BREG are clocked. This clock pulse will ripple down to the Pipe 1, Pipe 2 and DM/DL registers after delays specified by the Pipeline Advance Control, M9-8.

F7 has no effect in the WTL 2265 and should be grounded.

The WTL 2265's function controls are given below.

Function Controls for ALU

$\mathrm{F}_{6} \mathrm{~F}_{5} \mathrm{~F}_{4} \mathrm{~F}_{3} \mathrm{~F}_{2} \mathrm{~F}_{1} \mathrm{~F}_{0}$	Operation (AREG op BREG)	Description
000000000000	F32 - F32	single subtract
$\begin{array}{llllllll}0 & 0 & 0 & 0 & 0 & 0 & 1 & \text { (1) }\end{array}$	F64 - F64	double subtract
$\begin{array}{llllllll}0 & 0 & 0 & 0 & 0 & 1 & 0 & \text { (2) } \\ 0 & 0 & 0 & 0 & 0 & 1 & 1 & \end{array}$	F32 - F32	single magnitude of difference
$\begin{array}{llllllll}0 & 0 & 0 & 0 & 0 & 1 & 1 & \text { (3) }\end{array}$	F64 - F64	double magnitude of difference
$\begin{array}{lllllllll}0 & 0 & 0 & 0 & 1 & 0 & 0 & (4) \\ 0 & 0 & 0 & 0 & 1 & 0 & 1 & (5)\end{array}$	Reserved	
$\begin{array}{lllllllll}0 & 0 & 0 & 0 & 1 & 1 & 0 & (6)\end{array}$	Reserved	
$\begin{array}{lllllllll}0 & 0 & 0 & 0 & 1 & 1 & 1 & \text { (7) }\end{array}$	Reserved	
$\begin{array}{llllllll}0 & 0 & 0 & 1 & 0 & 0 & 0 & \text { (8) }\end{array}$	-F32	single negate
$\begin{array}{llllllll}0 & 0 & 0 & 1 & 0 & 0 & 1 & \text { (9) }\end{array}$	-F64	double negate
$\begin{array}{llllllll}0 & 0 & 0 & 1 & 0 & 1 & 0 & (10) \\ 0 & 0 & 0 & 1 & 0 & 1 & 1 & (11)\end{array}$	Reserved	
$\begin{array}{llllllll}0 & 0 & 0 & 1 & 1 & 0 & 0 & (12)\end{array}$	Reserved	
$\begin{array}{llllllll}0 & 0 & 0 & 1 & 1 & 0 & 1 & (13)\end{array}$	Reserved	
$\begin{array}{lllllllll}0 & 0 & 0 & 1 & 1 & 1 & 0 & (14) \\ 0 & 0 & 0 & 1 & 1 & 1 & 1 & (15)\end{array}$	Reserved	
$\begin{array}{lllllllll}0 & 0 & 0 & 1 & 1 & 1 & 1 \\ 0 & 0 & 1 & 0 & 0 & 0 & 0 & (15)\end{array}$	Reserved F32	single add
$\begin{array}{llllllll}0 & 0 & 1 & 0 & 0 & 0 & 1 & (17)\end{array}$	F64 + F64	double add
$\begin{array}{llllllll}0 & 0 & 1 & 0 & 0 & 1 & 0 & (18) \\ 0 & 0 & 1 & 0 & 0 & 1 & 1 & \end{array}$	F32 + F32	single magnitude of sum
$\begin{array}{lllllllll}0 & 0 & 1 & 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & 0 & 1 & 0 & 0 & (20)\end{array}$		double magnitude of sum single add magnitude
$\begin{array}{llllllll}0 & 0 & 1 & 0 & 1 & 0 & 1 & (21) \\ 0 & 0 & 1 & 0 & 1 & 1 & 0\end{array}$	F64 $\|+\|$ F64 \mid	double add magnitude
$\begin{array}{lllllllll}0 & 0 & 1 & 0 & 1 & 1 & 0 & (22) \\ 0 & 0 & 1 & 0 & 1 & 1 & 1 & \\ 0\end{array}$	Reserved	
$\begin{array}{lllllllll}0 & 0 & 1 & 0 & 1 & 1 & 1 & (23) \\ 0 & 0 & 1 & 1 & 0 & 0 & 0 & (24)\end{array}$	Reserved	single identity
$\begin{array}{llllllll}0 & 0 & 1 & 1 & 0 & 0 & 1 & (25)\end{array}$	F64	double identity
$\begin{array}{lllllllll}0 & 0 & 1 & 1 & 0 & 1 & 0 & (26) \\ 0 & 0 & 1 & 1 & 0 & 1 & 1 & \\ 0\end{array}$	Reserved	
$\begin{array}{lllllllll}0 & 0 & 1 & 1 & 0 & 1 & 1 & (27) \\ 0 & 0 & 1 & 1 & 1 & 0 & 0 & (28)\end{array}$	Reserved	
$\begin{array}{lllllllll}0 & 0 & 1 & 1 & 1 & 0 & 1 & (29)\end{array}$	F64	single absolute value double absolute value
$\begin{array}{lllllllll}0 & 0 & 1 & 1 & 1 & 1 & 0 & (30)\end{array}$	Reserved	
$\begin{array}{lllllllll}0 & 0 & 1 & 1 & 1 & 1 & 1 & (31) \\ 0 & 1 & 0 & 0 & 0 & 0 & 0 & (32)\end{array}$	Reserved 32 - F32	
$\begin{array}{lllllllll}0 & 1 & 0 & 0 & 0 & 0 & 1 & (33)\end{array}$	Compare F64-F64	double compare
$\begin{array}{lllllllll}0 & 1 & 0 & 0 & 0 & 1 & 0 & (34) \\ 0 & 1 & 0 & 0 & 0 & 1 & 1 & \\ 0\end{array}$	Reserved	
$\begin{array}{llllllll}0 & 1 & 0 & 0 & 0 & 1 & 1 & (35) \\ 0 & 1 & 0 & 0 & 1 & 0 & 0 & \\ & \\ 0\end{array}$	Reserved	
$\begin{array}{llllllll}0 & 1 & 0 & 0 & 1 & 0 & 1 & \text { (37) }\end{array}$	Compare $\begin{gathered}\text { Compare } \\ \text { Co3 }\end{gathered}$	single compare magnitude double compare magnitude
$\begin{array}{lllllllll}0 & 1 & 0 & 0 & 1 & 1 & 0 & \text { (38) }\end{array}$	Reserved	
$\begin{array}{lllllllll}0 & 1 & 0 & 0 & 1 & 1 & 1 & (39) \\ 0 & 1 & 0 & 1 & 0 & 0 & 0 & \\ 0 & 40\end{array}$	Reserved	
$\begin{array}{lllllllll}0 & 1 & 0 & 1 & 0 & 0 & 0 & (40) \\ 0 & 1 & 0 & 1 & 0 & 0 & 1 & (41)\end{array}$	Compare F64-0	single compare with zero double compare with zero
$\begin{array}{lllllllll}0 & 1 & 0 & 1 & 0 & 1 & 0 & (42)\end{array}$	Reserved	
$\begin{array}{llllllll}0 & 1 & 0 & 1 & 0 & 1 & 1 & (43) \\ 0 & 1 & 0 & 1 & 1 & 0 & 0\end{array}$	Reserved	
$\begin{array}{lllllllll}0 & 1 & 0 & 1 & 1 & 0 & 0 & (44) \\ 0 & 1 & 0 & 1 & 1 & 0 & 1 & (45)\end{array}$	Reserved	
$\begin{array}{lllllllll}0 & 1 & 0 & 1 & 1 & 1 & 0 & (46)\end{array}$	Reserved	
$\begin{array}{lllllllll}0 & 1 & 0 & 1 & 1 & 1 & 1 & (47) \\ 0 & 1 & 1 & 0 & 0 & 0 & 0\end{array}$	Reserved	
$\begin{array}{llllllll}0 & 1 & 1 & 0 & 0 & 0 & 0 & (48) \\ 0 & 1 & 1 & 0 & 0 & 0 & 1 & \text { (49) }\end{array}$	U32 \rightarrow D32 (Exact)	single unwrap exact value
$\begin{array}{lllllllll}0 & 1 & 1 & 0 & 0 & 1 & 0 & (50)\end{array}$	U64 ${ }_{\text {D }} \rightarrow$ W 324 (Exact)	double unwrap exact value
$\begin{array}{lllllllll}0 & 1 & 1 & 0 & 0 & 1 & 1 & (51) \\ 0 & 1 & 1 & 0 & 1 & 0 & 0\end{array}$	D64 \rightarrow W64	single wrap denormalized value
$\begin{array}{lllllllll}0 & 1 & 1 & 0 & 1 & 0 & 0 & (52) \\ 0 & 1 & 1 & 0 & 1 & 0 & 1 & \\ 0 & 53)\end{array}$	U32 \rightarrow D32 (Inexact)	single unwrap inexact value
$\begin{array}{llllllll}0 & 1 & 1 & 0 & 1 & 1 & 0 & (54)\end{array}$	U64 ${ }^{\text {Reserved }}$ (${ }^{\text {dexact) }}$	double unwrap inexact vlaue
$\begin{array}{lllllllll}0 & 1 & 1 & 0 & 1 & 1 & 1 & (55) \\ 0 & 1 & 1 & 1 & 0 & 0 & 0 & \end{array}$	Reserved	
$\begin{array}{lllllllll}0 & 1 & 1 & 1 & 0 & 0 & 0 & \text { (56) }\end{array}$	F32 ${ }^{\text {I }} 32$	single fix

Method of Operation, continued

Function Controls for ALU, continued

$F_{6} F_{5} F_{4}$							F_{3}	F_{2}	F_{1}

*For long word integer operations, the carry or borrow is only valid for one pipeline delay.

MODE CONTROLS

Mode controls are not directly loaded from dedicated pins. Instead, the LOAD MODE instruction uses the function control bits F5-4 to determine which one of four 4-bit subsets of the mode word is loaded through function bits $\mathrm{F}_{3}-0$.

"FAST"/IEEE Format Mode Control

Mode bit Mo controls the treatment of denormalized numbers.

M_{0}	DENORMALIZED NUMBER HANDLING		
0	IEEE single or double format; multiplier and ALU generate denormalized operand exceptions and produce UNRM values on underflow exceptions. IEEE single or double format; multiplier and ALU		
(IEEE mode)			
flush denormalized operands to zero and			
round underflow results to zero.		\quad (FAST mode)	
:---			

Method of Operation, continued

Rounding Mode Control

Mode bits $\mathrm{M}_{3}-2$ determine the IEEE rounding mode for all operations except SINGLE FIX and DOUBLE FIX.

M_{3}	M_{2}	SELECTED ROUNDING MODE	
0	0	(0)	Round toward nearest value or even significand, if a tie Round toward zero Round toward positive infinity Round toward negative infinity
1	1	(1)	(2)
1	1	(3)	R)

Rounding Mode Control For FIX Operations (WTL 2265 only)
Mode bit M1 controls the IEEE rounding mode for SIN-
GLE FIX and DOUBLE FIX.

MODE $_{1}$	SELECTED ROUNDING MODE
0	Round according to default rounding mode (MODE3-2) Round toward zero, regardless of the default rounding mode

Pipeline Configuration Control

Mode bits M_{7}, M_{6} and M_{4} of the floating point ALU and mode bits M_{1}, M_{5} and M_{4} of the floating point multiplier/divider determine which of the pipeline registers are latched and which are transparent. Pipeline Regis-
ters 3 and 4 on the ALU cannot be independently controlled. These registers are enabled to match the latency of the WTL 1265 in the compatibility mode. If a mode bit is set to logic " 0 ", the corresponding register is transparent; if it is a logic " 1 ", the register is latched by the rising edge of the clock.

	PIPE 1	PIPE 2	DM, DL
2264 MODE BIT	M_{1}	M_{5}	M_{4}
2265 MODE BIT	M_{7}	M_{6}	M_{4}

Compatibility Mode Control

The WTL 2264/2265 may be programmed for microcode compatibility with the WTL 1264 and WTL 1265. The most common WTL $1264 / 1265$ configuration is selected by setting M_{12} to zero. In this mode

32-bit throughput and 64-bit throughput are equal and 64-bit throughput is maximized. For more information consult the application note at the end of this data sheet.

Method of Operation, continued

Pipe 2 Advance Control (WTL 2264 only)
Mode bits M_{7-6} (ACC) and M13 control the timing of the partial product accumulator in the WTL 2264.

ACC		M 13	PIPE 2 ADVANCE	
M7	M6		Single Precision	Double Precision
0 0 1 1	$\begin{aligned} & 0 \\ & 1 \\ & 0 \\ & 1 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	clock clock/2 clock/3 clock/4	clock/2 clock/4 clock/6 clock/8
0 0 1 1	0 1 0 1	1 1 1 1	clock/2 clock/4 clock/6 clock/8	clock/2 clock/4 clock/6 clock/8

If mode bit M_{13} is a logic " 0 ", Pipe Register 2 is latched [1-($\left.\mathrm{M}_{7-6}+1\right)$] after Pipe Register 1 for single precision operations and [$2 \cdot\left(M_{7-6}+1\right)$] for double precision operations. If M_{13} is a logic " 1 ", then single precision

Pipeline Advance Control (PAC)

Mode bits Mo-8 control when the pipeline registers are latched, following the beginning of an operation. The pipeline registers are clocked at the beginning of every operation and $\mathrm{N}+1$ cycles after the beginning of every operation, where N is given by mode bits Mo-8. In the WTL 2264, pipeline stages 1 and 3 are controlled by the Pipeline Advance Control, while Pipeline Stage 2 is controlled by the accumulator advance control. In the WTL 2265, pipeline stages 1,2 and 3 are controlled by the Pipeline Advance Control. Division has unique timing and is described in a separate section beginning on page 23.
operations have the same timing as double precision operations and double precision operations are latched [2•($\left.\left.M_{7-6}+1\right)\right]$ cycles after Pipe 1.

$\begin{gathered} \text { PAC } \\ \mathrm{M}_{9} \quad \mathrm{M}_{8} \end{gathered}$	PIPELINE RATE
$\begin{array}{ll}0 & 0 \\ 0 & 1 \\ 1 & 0 \\ 1 & 1\end{array}$	clock clock/2 clock/3 clock/4

Method of Operation, continued

SUMMARY OF MODE CONTROLS

MODE BIT	WTL 2265	WTL 2264
M_{0}	IEEE/"FAST" mode selection	IEEE/"FAST" mode
M_{1}	Round mode for "FIX" selection	Pipe 1 enable
$M_{2,3}$	Round mode selection	Round mode selection
M_{4}	DM, DL pipe enable	DM, DL pipe enable
M_{5}	Pipe 3, Pipe 4 enable	Pipe 2 enable
M_{6}	Pipe 2 enable	ACC - bit 0
M_{7}	Pipe 1 enable	ACC - bit 1
M_{8}	Pipeline advance	PAC - bit 0
M_{9}	Pipeline advance	PAC - bit 1
M_{10}	-	-
M_{11}	-	Compatibility
M_{12}	-	Compatibility
M_{13}	-	Advance Control
M_{14}	-	-
$M 15$	-	

RESULTS STATUS

The S Bus indicates any exceptions or conditions that result from operations performed by the WTL 2264 and WTL 2265. For floating point comparison opera-
tions, the S Bus indicates the condition resulting from the comparison. For all other floating point operations, the S Bus indicates exception status.

Under certain conditions, multiple exceptions can occur. These exceptions may be resolved with the
following priority table, where higher priority will mask lower priority exceptions.

WTL 2264/WTL 2265

FLOATING POINT MULTIPLIER/
DIVIDER AND ALU
PRELIMINARY DATA
July 1986
Method of Operation, continued

Priority	Exception
Highest	Operands A \& B are NaN Operand A in NaN B is NaN Invalid Operation Divide by zero Operands A \& B are denormalized Operand A is denormalized Operand B is denormalized Lowest Underflow \& inexact Underflow Overflow \&nexact Result is finite and $\neq 0$, inexact

For fixed point operations (WTL 2265 functions 64-77), the status codes are as follows.

S_{3}	S_{2}	S_{1}	S_{0}	Exception Status
sign	0	0	0	Zero
sign	0	1	0	Result is finite and $\neq 0$ sign
1	0	1	Overflow	

Timing

The WTL 2264 and WTL 2265 can be optimized for high performance for either single or double precision operations. For double precision operations, the binding constraints are the I/O time and the multiplier's array time.

Therefore, to achieve the highest throughput for double precision operations the WTL 2264/2265-80 or -100 should be used. These parts have the fastest I/O and array times (40 ns and 50 ns , respectively).

To achieve the highest performance for single precision operations the time spent in each pipeline stage must be minimized. Since the pipe times are shortest for the WTL 2264/2265-75, WTL 2264/2265-50 and WTL $2264 / 2265-60$, these devices should be used when low latency and single precision throughput are to be maintained.

64-BIT MAXIMUM PIPELINED THROUGHPUT (WTL 2264-80 and -100)

To maximize throughput for 64-bit multiplications, set ACC to $00, M_{13}$ to " 1 " and PAC to 01 , and put Pipe 1, Pipe 2 and the DM/DL registers in the latched mode. Figure 3 shows the timing. As soon as the inputs and function code are loaded, the operation begins. At the end of Cycle 4, as shown, the operands are at the output of Pipe 1 , which is just before the multiplier array. One cycle after that, the Accumulate Register latches partial results from the first pass through the multiplier array. At the end of Cycle 6, the unrounded results of the multiplication are latched into the Pipe 2 Register. Two cycles are required between Pipe 2 and the DM/DL registers. At the end of Cycle 8, the results are at the input of the DM/DL registers.

Timing, continued

Figure 3. WTL 2264/2265-80 and -100 32- and 64-bit Pipelined Operation Timing

32-BIT MAXIMUM PIPELINED THROUGHPUT

(WTL 2264-80 and -100)
Since the Pipeline Advance Control is set to $01, M_{13}$ is set to " 1 " and PAC is set to 00 , single precision multiplications proceed at the same rate as double precision multiplications for the WTL 2264-80 and -100. Therefore, the timing illustrated in Figure 3 applies. The 32 -bit operands may be loaded during cycle two to reduce the latency by one cycle.

32- AND 64-BIT ALU OPERATIONS

(WTL 2265-80 and -100)
ALU operations have the same timing as multiplications for the WTL 2264/2265-80 and -100. Therefore, the timing shown in Figure 3 applies.

64-BIT MAXIMUM PIPELINED THROUGHPUT

 (WTL 2264-50, -60 or -75)To maximize throughput for 64-bit multiplications, set ACC to $00, M_{13}$ to " 0 " and PAC to 00 , and put Pipe 1, Pipe 2 and the DM/DL registers in the latched mode. The timing is described in Figure 4. As soon as the inputs and function code are loaded, the operation begins. At the end of Cycle 3, as shown, the operands are at the output of Pipe 1, just before the multiplier array. One cycle after that, the Accumulate Register latches partial results from the first pass through the multiplier array. At the end of Cycle 5, the unrounded results of the multiplication are latched into the Pipe 2 Register. At the end of Cycle 6, the results are received at the input of the DM/DL registers.

PRELIMINARY DATA

Timing, continued

Figure 4. WTL 2264-50, -60 or -75 64-bit Pipelined Operation Timing

32-BIT MAXIMUM PIPELINED THROUGHPUT (WTL 2264-50, -60 or -75)

To obtain maximum throughput for 32 -bit multiplications, set ACC to $00, \mathrm{M}_{13}$ to " 0 " and PAC to 00 , and put the pipeline registers and the $\mathrm{DM} / \mathrm{DL}$ registers in the latched mode. The result will be located in the most
significant half of the DM Register. The timing for 32 -bit pipelined multiplications is shown in Figure 5. Note that the time spent in Pipe Stage 2 is one cycle for 32-bit operations and two cycles for 64 -bit operations.

Figure 5. WTL 2264-50, -60 or -75 32-bit Pipelined Operation Timing

Timing, continued

MAXIMUM THROUGHPUT WITH INTERNAL ACCUMULATION (WTL 2265-50, -60 or -75)

The ALU has the same throughput for both 32- and 64-bit accumulations. For all other 64-bit operations, the WTL 2265 is I/O limited. To obtain maximum
throughput, set PAC to 00 and activate all pipeline stages (except Pipe 3 and Pipe 4). The timing for pipelined throughput in the ALU is shown in Figure 6.

Figure 6. WTL $2265-50$, -60 or -75 Accumulate Timing (when accumulating 32- or 64-bit numbers)

Timing, continued

MAXIMUM THROUGHPUT WITH INTERNAL ACCUMULATION (WTL 2265-80 or -100)
The timing for accumulate operations using the WTL
$2265-80$ and -100 speed devices is described in Figure
7. Set PAC to 01.

Figure 7. WTL $2265-80$ or -100 Accumulate Timing

Timing, continued

MAXIMUM THROUGHPUT FOR ALU OPERATIONS WITH TWO NEW INPUTS (WTL 2265-50, -60 or -75)

For 32-bit ALU operations, the WTL 2265-50, -60 and -75 have the same throughput as 32 -bit accumulations. For 64-bit ALU operations, on the other hand, two input cycles are required. Only one cycle per pipe-
line stage is required, however. To obtain maximum pipelined throughput, set PAC to 00 and activate all pipeline stages except Pipe 3 and Pipe 4 . The timing is shown on the next page.

Figure 8. WTL 2265-50, -60 or -75 Pipelined ALU Operation Timing

DIVISION

Single precision division ($\mathrm{F} 32 \div \mathrm{F} 32$) has an operation time of (1•PAC) + (9•ACC) + (2•PAC). The total latency is one cycle longer than this. Double precision division (F64 $\div \mathrm{F} 64$) has an operation time of (1$\mathrm{PAC})+(18 \cdot \mathrm{ACC})+(2 \cdot \mathrm{PAC})$ and a latency that is two cycles longer than this. The values in parentheses designate the number of cycles that are spent, respectively, in pipe stages 1, 2 and 3 (WTL 2264). For division, M_{13} has no effect. The pipe 2 advance is always (9 - ACC) for single precision operations and (18 - ACC) for double precision operations.

A "normally low" READY signal is provided, which goes high for one cycle on the cycle in which partial results are clocked into pipe stage 3. For the WTL

2264-50, -60 and -75 another operation can begin two cycles later. For the WTL 2264-80 and -100 another operation can begin four cycles later. To ensure compatability with future upgrades to the WTL 2264/2265 the operation after a divide should be keyed by the READY signal.
If another function is loaded at any time during a division operation the second operation completes while the divide is corrupted.

Since the WTL 2264-80 and -100 require two cycles per pipeline stage, they have different timing, as is shown in the diagrams on the next two pages.

Division takes the form $B \div A$.

Timing, continued

Figure 9. WTL 2264-50, -60 or -75 32-bit Divide Operation

Figure 10. WTL 2264-50, -60 or -75 64-bit Divide Operation

Timing, continued

Figure 11. WTL 2264-80 or -100 32-bit Divide Operation

Figure 12. WTL 2264-80 or -100 64-bit Divide Operation

IEEE Compatibility, continued

IEEE Standard 754, Version 10.0 specifies floating point processor data formats, rounding modes and exception handling. The WTL 2264 and WTL 2265 conform to the specification. The discussion below re-

DATA FORMATS

The WTL 2264/2265 perform both 32 -bit and 64-bit IEEE standard floating point operations. The 32-bit IEEE Standard Single Precision
views IEEE 754 implementation on the WTL $2264 / 2265$. A separate note describes how denormalized numbers (DNRMs) are handled.
format has a 24 -bit sign-magnitude fraction field and an 8 -bit exponent, in the following format:

31		30	
S	E	23	F
1	8	23	

Exponent values for normalized single precision numbers range from one to 254 , with exponents of zero and 255 reserved for special operands. To calculate the value of a number in this format, the exponent is decremented by 127 (the "exponent bias" is +127), and the fraction has a one inserted before the binary
point. (This is called the hidden bit.) The value of the number is then $(-1)^{\mathrm{s}} \cdot 2^{\mathrm{e}-127}$ • (1.f)
The 64 -bit format has a 53 -bit signed-magnitude fraction field and an 11-bit exponent, in the following format:

IEEE Standard Double Precision

| 63 | 62 | 52 | |
| :--- | :--- | :--- | :--- | :--- |
| S | E | 51 | F |
| 1 | 11 | 52 | |

Exponent values for normalized double precision numbers range from one to 2,046 with exponents of zero and 2,047 being reserved for special operands. To calculate the value of a number in this format, the exponent is decremented by 1,023 (the exponent bias is $+1,023$), and the fraction has a one inserted before the binary point. Thus the value of a double precision number is $(-1)^{s} \cdot 2^{e-1023}$ - (1.f)
Several number types are required to implement in the standard. These are normalized numbers, denormalized numbers, wrapped numbers, infinity and ZERO.

Normalized Numbers (NRM)
Most caculations are performed on normalized numbers. For single precision, normalized numbers have an exponent that ranges from 00000001 to 11111110 (one to 254) and a normalized fraction field (the leftmost or hidden bit is a one). In decimal notation, this allows one to represent a range of both positive and negative numbers from roughly 10^{38} to 10^{-38} with accuracy to seven decimal places. Double precision numbers have an exponent ranging from one to 2,046 and a normalized fraction field.

IEEE Compatibility, continued

Infinity (INF)
Infinity has an exponent of all ones and a fraction field equal to zero. Both positive and negative infinity are allowed.

ZERO

ZERO has an exponent of zero, a hidden bit equal to zero and a value of zero in the fraction field. Both +0 and -0 are supported.

Wrapped Numbers (WNRM)

A wrapped number is created by normalizing a DNRMs fraction field and subtracting from the exponent the number of shift positions required. (Normalizing is accomplished by left shifting until the hidden bit contains a one.) The value of the exponent is equal to (1 - (the number of shifts)) and is represented in two's complement.
number. A UNRM has a normalized fraction field, a wrapped exponent and a hidden bit equal to one. The minimum UNRM is attained by multiplying two DNRM.MINs. UNRMs are turned into DNRM values using the ALU's unwrap function.

Denormalized Numbers (DNRM)

Denormalized numbers have a zero exponent and a denormalized (hidden bit equal to zero) non-zero fraction field.

Not A Number (NaN)

NaN is a special data format usually used as a flag for data flow control, for uninitialized variables or to signify an invalid operations such as $0 \cdot \infty$. The format for a NaN is an exponent of all ones and a non-zero fraction. The NaN produced by the WTL 2264/2265 has a sign bit of zero and fraction and exponent fields of all ones.

Unrounded Normalized Number (UNRM)

A UNRM is the result of an operation that has magnitude less than the minimum representable normalized
IEEE SINGLE PRECISION FORMATS SUPPORTED BY THE WTL 2264 AND WTL 2265

OPERAND	EXPONENT	FRACTION	HIDDEN BIT	VALUE
NaN	255	ANY	N/A	NONE
INFINITY	255	ALL 0's	1	$(-1)^{s} \infty$
NORM.MAX	254	ALL 1's	1	$(-1)^{s} \times 2^{127} \times(2)$
NORM	1 to 254	ANY	1	$(-1)^{\mathrm{s}} \times 2^{\mathrm{e}-127} \times(1 . \mathrm{f})$
NORM.MIN	1	ALL 0's	1	$(-1)^{s} \times 2^{-126} \times(1)^{126}$
DNRM.MAX	0	ALL 1's	0	$(-1)^{s} \times\left(2^{-126}-2^{-149}\right)$
DNRM	0	ANY	0	$(-1)^{s} \times 2^{-126} \times(0 . f)$
DNRM.MIN	0	000... 01	0	$(-1)^{s} \times 2^{-126} \times 2^{-23}$
WNRM.MAX	0	ALL 1's	1	$(-1)^{s} \times 2^{-126}$
WNRM	0 to (-22)	ANY	1	$(-1)^{s} \times 2^{\text {e-127 }} \times(1 . f)$
WNRM.MIN	-22	ALL O's	1	$(-1)^{s} \times 2^{-149}$
UNRM.MAX	0	ALL 1's	1	$(-1)^{s} \times 2^{-126}$
UNRM.MIN	-171	ALL O's	1	$(-1)^{s} \times 2^{-298}$
ZERO	0	ALL 0's	0	$(-1)^{s} 0$

IEEE Compatibility, continued

The same formats are supported in double precision. The range of the double precision numbers and their values are obtained by substituting the double precision
mantissa and exponent in the pattern shown above. A partial table of values is given below.

E	F	VALUE	NAME	MNEMONIC
2047	Not all zeros	None	Not a number	NaN
2047	All zeros	$(-1)^{S *}$ Infinity	Infinity	INF
$1-2046$	Any	$(-1)^{S * 2^{E-1023}(1 . F)}$	Normalized number	NOR
0	Not all zeros	$(-1)^{S} * 2^{-1022_{\star}}(0 . F)$	Denormalized number	DNRM
0	Zero	$(-1)^{S * 0}$	Zero	ZERO

ROUNDING OPTIONS

The WTL 2264/2265 support all four rounding modes of the IEEE standard - round to nearest, round toward zero, round toward plus infinity and round toward minus infinity. Rounding may be biased or unbiased. Biased rounding introduces a small offset in the direction of the bias. Positive bias, negative bias or a bias toward zero are specified in the IEEE format. Unbiased rounding rounds the result to the nearest representable number. In the case of a number exactly halfway between two representable numbers, the number is rounded toward the closest even number, resulting in half the numbers rounding up and half rounding down, on average.

Round To Nearest

Rounds the result to the nearest representable value. If two numbers are equally near the result, the even number is chosen.

Round Toward Zero

Rounds the result to the value closest to but not greater than the magnitude of the result.

Round Toward Plus Infinity

Rounds the result to the value closest to but not less than the result.

Round Toward Minus Infinity

Rounds the result to the value closest to but no greater than the result.

EXCEPTION HANDLING

The WTL 2264/2265 generate the exceptions specified in the IEEE standard for floating point operations. The status word corresponding to an operation is propagated through the array and pipeline registers in synchrony with the operands and partial results. The status outputs are registered when the output data is clocked into the output register and is valid until the next rising edge of the clock. The status outputs also indicate the result of a COMPARE operation. Thus a COMPARE precludes the indication of other exceptions.

Inexact (NXT)

NXT is generated on the WTL 2264/2265 whenever there is a loss of accuracy. The chips compute results to higher precision than the number of mantissa bits that appear in the result. If any of the fraction bits less than the LSB was equal to one prior to rounding, the inexact bit will be high. NXT will be signaled in the WTL 2265 if there is a partial or complete loss of significance in a float-to-fixed operation.

Divide By Zero (DVZ)

The WTL 2265 will assert a DVZ exception when performing division on a normalized dividend and a zero divisor. The result is a properly signed infinity.

IEEE Compatability

Overflow (OVF)

OVF is generated when the result of a floating point operation overflows the largest representable normalized number. The result produced at the output is either infinity or the largest representable positive or negative number, depending upon the rounding mode as follows:

$+M A X . N R M$	if $((\mathrm{RM}$ or RZ$)$ and the result is positive) if $((\mathrm{RP}$ or RZ$)$ and the result is negative $)$
if ($(\mathrm{RN}$ or $R P)$ and the result is	
$+\infty$	positive) if $((\mathrm{RN}$ or $R M)$ and the result is negative)

Overflow is also generated when converting floating-point-to-fixed-point and the result overflows the 32-bit format.

GRADUAL UNDERFLOW

The minimum normalized number has an exponent of one and a fraction field of zero. Zero has an exponent of zero and a fraction field of all zeros. This gives users the ability to deal with numbers between NORM.MIN and ZERO. These numbers are known as denormals. Their format is given in the number format section. The IEEE standard has specified gradual underflow to handle denormals. Many of the WTL 2264/2265's features are included to deal with denormals in a manner consistent with IEEE Standard 754, Version 10.0. Since denormals are very close to zero, many applications can substitute zero for a denormal without a signifcant loss of accuracy. For these applications, a "FAST" mode is included which substitutes zero for all denormalized inputs to the WTL 2264/2265. Zero is also inserted for all UNRM outputs in "FAST" mode.

For all arithmetic operations, the WTL 2265 handles denormalized inputs directly as it would handle any other number.

Unfortunately, a floating point multiplier must either operate exclusively on normalized numbers or suffer large cost and performance penalties in dealing directly with denormals. A normalized format that yields an equivalent to a given denormalized number is the wrapped format. The number format table shows the equivalence of wrapped and denormalized numbers. To translate a denormalized number to a wrapped number, the fraction is normalized (shifted up so that

Underflow (UNF)

When the result of an operation after rounding is less than the minimum normalized number, UNF is asserted. A result of exactly zero does not underflow.

Invalid Operation (INV)

INV will be signaled in the WTL 2264/2265 if either input is a NaN (the status code will distinguish which) or if an invalid operation occurs. Operations invalid in the WTL 2264 are $(0 \cdot \infty),(\infty \div \infty)$ or $(0 \div 0)$. Operations invalid in the WTL 2265 are subtraction of like infinities ($\infty-\infty$) or addition of opposite infinities $(-\infty+\infty)$. For both the WTL 2264 and WTL 2265 the result of an INV is a NaN with fraction and exponent fields of all ones. The sign bit is zero.

Denormalized Input (DIN)
DIN is asserted whenever an operand is denormalized and the chip is in the IEEE mode. DIN applies only to the WTL 2264.
a one is in the hidden bit) and one is subtracted from the exponent for every position shifted. The WTL 2264 can multiply correctly either two wrapped numbers or a wrapped and a normalized number. To better understand the full procedure, consider the following case.

Assume one of the two input operands to the WTL 2264 is a denormalized number. Four cycles after the input, the denorm exception is flagged. The denormalized operand must then be sent to the WTL 2265 to be wrapped. Once wrapped, the operand can be sent back to the WTL 2264 for multiplication. The result of the multiplication will either be a normalized number or a UNRM.

If the result is a UNRM, status bit So indicates either UNF (if all the truncated bits are equal to zero) or UNFNXT (if any of the truncated bits is equal to one).

No rounding will occur regardless of the rounding mode specified.
The underflowed number may then be sent to the WTL 2265 for "unwrapping". To unwrap a number, the fraction field is shifted right and the exponent incremented by one for each shift position. Status bit So must be used to conditionally execute the UNWRAP $\operatorname{IN}-$ EXACT or UNWRAP EXACT instruction. The rounding must be performed in the ALU. The unwrapping may have three possible results:

IEEE Compatability, continued

RESULT	EXCEPTION	COMMENT
DNRM	UNF	When the denormalized result is exact. Note that his result is possible only if the UNWRAP EXACT instruction is possible (i. e., both the input and the result must be exact.)
DNRM	UNF-NXT	If the UNWRAP INEXACT instruction is executed or if the result of the UNWRAP EXACT instruction is inexact.
The result is zero, but the unwrapping has resulted in the loss of precision.		

Operations

The following tables delineate the results that are obtained for all combinations of input data formats and rounding options, for both the WTL 2264 and the

WTL 2265 in IEEE as well as "FAST" mode. The format used in the tables is STATUS: (Status code)-Result.

TABLE 1: FLOATING POINT ADD/SUBTRACT ("FAST" MODE)					
A/B	ZERO	DNRM	NRM	INF	NaN
NaN	INV:12-Nan	INV:12-NaN	INV:12-NaN	INV:12-NaN	INV:14-NaN
INF	OK* ${ }^{\text {a }} 1-\mathrm{INF}$	OK* ${ }^{\text {² }} 1-\mathrm{INF}$	OK* ${ }^{\text {- }}$ - INF	INV:15-NaN (2) OK*:1-INF (1)	INV: $13-\mathrm{NaN}$
NRM	OK:2-NRM	OK:2,3-NRM	$\begin{gathered} \text { OVF:5-(4) } \\ \text { OK:2,3-NRM } \\ \text { UNF:6,7-ZERO } \\ \text { OK:O-ZERO } \\ \hline \end{gathered}$	OK* 1 - ${ }^{\text {INF }}$	INV: $13-\mathrm{NaN}$
DNRM	OK:0-ZERO (3)	OK:O-ZERO	OK:2,3-NRM	OK* ${ }^{\text {- }}$ - INF	INV:13-NaN
ZERO	OK:0-ZERO (3)	OK:0-ZERO (3)	OK:2-NRM	OK* ${ }^{\text {- }}$ - INF	INV:13-NaN

*If an operand is INF, OK will be signaled rather than OVF (see Note 1)

Operations, continued

Notes:

1. + INF+INF $\rightarrow+$ INF

- INF-INF \rightarrow-INF

2. $+\mathrm{INF}-\mathrm{INF} \rightarrow \mathrm{NaN}$ (invalid operation)

- INF +INF $\rightarrow \mathrm{NaN}$ (invalid operation)

3. +ZERO+ZERO $\rightarrow+$ ZERO (RN, RZ, RP, RM)
-ZERO-ZERO \rightarrow-ZERO (RN, RZ, RP, RM)
+ZERO-ZERO \rightarrow +ZERO (RN, RZ, RP)
+ZERO-ZERO \rightarrow-ZERO (RM)
-ZERO+ZERO \rightarrow +ZERO (RN, RZ, RP)
$-Z E R O+Z E R O \rightarrow-Z E R O$ (RM)
4. OVF will produce INF or MAX.NRM, depending upon the rounding mode:

+MAX.NRM	IF	$[(R M, R Z)$	AND (RESULT IS +)]
$-M A X . N R M$	IF	$[(R P, R Z)$	AND (RESULT IS -) $]$
+ INF	IF	$[(R N, R P)$	AND (RESULT IS +)]
- INF	IF	$[(R N, R M)$	AND (RESULT IS -$)]$

TABLE 2: FLOATING POINT MULTIPLICATION ("FAST" MODE)					
A/B	ZERO	DNRM	NRM	INF	NaN
NaN	INF: $12-\mathrm{NaN}$	INV:12-NaN	INV:12-NaN	INV:12-NaN	INV:14-NaN
INF	INV:15-NaN	INV: $15-\mathrm{NaN}$	OK:1-INF	OK: $1-\mathrm{INF}$	INV:13-NaN
NRM	OK:0-ZERO	OK:O-ZERO	$\begin{gathered} \text { OVF:5-(1) } \\ \text { OK:2,3-NRM } \\ \text { UNF:6,7-ZERO } \end{gathered}$	OK:1-INF	INV:13-NaN
DNRM	OK:O-ZERO	OK:O-ZERO	OK:O-ZERO	INV:15-NaN	INV:13-NaN
ZERO	OK:O-ZERO	OK:O-ZERO	OK:O-ZERO	INV:15-NaN	INV:13-NaN

Notes:

1. OVF will produce INF or MAX.NRM, depending upon the rounding mode:

$$
\begin{aligned}
& \text { +MAX.NRM IF [(RM, RZ) AND (RESULT IS +)] } \\
& \text {-MAX.NRM IF [(RP, RZ) AND (RESULT IS -)] } \\
& \text { +INF IF [(RN, RP) AND (RESULT IS +)] } \\
& -\operatorname{INF} \quad \text { IF }[(\mathrm{RN}, \mathrm{RM}) \text { AND (RESULT IS -)] }
\end{aligned}
$$

Operations, continued

TABLE 3: FLOATING POINT ADD/SUBTRACT (IEEE MODE)					
A/B	ZERO	DNRM	NRM	INF	NaN
NaN	INF:12-NaN	INV:12-NaN	INV:12-NaN	INV:12-NaN	INV:14-NaN
INF	OK:1-INF	OK:1-INF	OK:1-INF	$\begin{aligned} & \text { INV:15-NaN (2) } \\ & \text { OK:1-INF (1) } \end{aligned}$	INV:13-NaN
NRM	OK:2-NRM	$\begin{gathered} \text { OVF:5-(4) } \\ \text { OK:2,3-NRM } \end{gathered}$	$\begin{array}{\|c\|} \hline \text { OVF:5-(4) } \\ \text { OK:2,3-NRM } \\ \text { UNF:6,7-UNRM } \\ \text { OK:O-ZERO } \\ \hline \end{array}$	OK:1-INF	INV:13-NaN
DNRM	UNF:6-UNRM	$\begin{gathered} \text { OK:O-ZERO (3) } \\ \text { UNF:6-UNRM } \\ \text { OK:2-NRM } \end{gathered}$	$\begin{aligned} & \text { OK:2,3-NRM } \\ & \text { UNF:6,7-UNRM } \\ & \text { OVF:5-(4) } \end{aligned}$	OK:1-INF	INV:13-NaN
ZERO	OK:O-ZERO (3)	UNF:6-UNRM	OK:2-NRM	OK:1-INF	INV:13-NaN

Notes:

1.	$\begin{aligned} & + \text { INF }+ \text { INF } \\ & \text {-INF-INF } \end{aligned}$		$\begin{aligned} & + \text { INF } \\ & -\operatorname{INF} \end{aligned}$		
2.	+INF-INF	\rightarrow	NaN		
	$-I N F+I N F$	\rightarrow	NaN		
3.	+ZERO+ZERO	\rightarrow	+ZERO	(RN, RZ,	RP, RM)
	-ZERO-ZERO	\rightarrow	-ZERO	(RN, RZ,	RP, RM)
	+ZERO-ZERO	\rightarrow	+ZERO	(RN, RZ,	RP)
	+ZERO-ZERO	\rightarrow	-ZERO	(RM)	
	-ZERO+ZERO	\rightarrow	+ZERO	(RN, RZ,	RP)
	-ZERO+ZERO	\rightarrow	-ZERO	(RM)	

4. OVF will produce INF or MAX.NRM, depending upon the rounding mode:
+MAX.NRM IF [(RM, RZ) AND (RESULT IS +)]
-MAX.NRM IF [(RP, RZ) AND (RESULT IS -)]

+ INF \quad IF $[($ RN, RP) \quad AND (RESULT IS +)]
$-\operatorname{INF} \quad$ IF $[(\mathrm{RN}, \mathrm{RM})$ AND (RESULT IS -)]

Operations, continued

TABLE 4: FLOATING POINT MULTIPLICATION (IEEE MODE)					
A/B	ZERO	DNRM	NRM	INF	NaN
NaN	INF:12-NaN	INV:12-NaN	INV:12-NaN	INV:12-NaN	$\mathbb{I N V}: 14-\mathrm{NaN}$
INF	INV:15-NaN	OK:1-INF	OK:1-INF	OK:1-INF	INV:13-NaN
NRM	OK:0-ZERO	DIN:9-(2)	OVF:5-(1) OK:2,3-NRM UNF:6,7-UNRM	OK:1-INF	INV:13-NaN
DNRM	OK:0-ZERO	DIN:10-(2)	DIN:8-(2)	OK:1-INF	INV:13-NaN
ZERO	OK:0-ZERO	OK:1-ZERO	OK:1-ZERO	$\mathbb{I N V : 1 5 - N a N ~}$	$\mathbb{I N V : 1 3 - N a N ~}$

Notes:

(1) OVF will produce INF or MAX.NRM, depending upon the rounding mode:

+MAX.NRM	IF	$[(\mathrm{RM}, \mathrm{RZ})$	AND (RESULT IS +)]
+ +MAX.NRM	IF	$[(R P, R Z)$	AND (RESULT IS -$)]$
+ INF	IF	$[(R N, R P)$	AND (RESULT IS +) $]$
$-I N F$	IF	$[(R N, R M)$	AND (RESULT IS -$)]$

(2) Result is undefined.

TABLE 5: FLOATING POINT DIVISION ("FAST" MODE)					
A B	ZERO	DNRM	NRM	INF	NaN
NaN	INV:12-NaN	INV:12-NaN	INV:12-NaN	INV:12-NaN	INV:14-NaN
INF	OK:O-ZERO	OK:0-ZERO	OK:0-ZERO	INV: $15-\mathrm{NaN}$	INV: $13-\mathrm{NaN}$
NRM	OK:0-ZERO	OK:0-ZERO	$\begin{gathered} \text { OK:2,3-NRM } \\ \text { OFF:5-(1) } \\ \text { UNF:6,7-ZERO } \end{gathered}$	OK:1-INF	INV:13-NaN
DNRM	INV: $15-\mathrm{NaN}$	INV:15-NaN	DVZ: $11-1 \mathrm{INF}$	OK:1-INF	INV: $13-\mathrm{NaN}$
ZERO	INV : $15-\mathrm{NaN}$	INV:15-NaN	DVZ:11-INF	OK:1-INF	$\mathrm{INV}: 13-\mathrm{NaN}$

Operations, continued

Notes:
(1) Division takes the form $B \div A$
(2) OVF will produce INF or MAX.NRM, depending upon the rounding mode:

+ MAX.NRM	IF	$[(\mathrm{RM}, \mathrm{RZ})$	AND (RESULT IS +)]
+ MAX.NRM	IF	$[(\mathrm{RP}, \mathrm{RZ)}$	AND (RESULT IS $)]$
+ INF	IF $[(\mathrm{RN}, \mathrm{RP})$	AND (RESULT IS +)]	
-INF	IF $[(\mathrm{RN}, \mathrm{RM})$	AND (RESULT IS -$)]$	

TABLE $6:$ FLOATING POINT DIVISION (IEEE MODE)					
A	ZERO	DNRM	NRM	INF	NaN
NaN	INV:12-NaN	INV:12-NaN	INV:12-NaN	INV:12-NaN	INV:14-NaN
INF	OK:0-ZERO	BDIN:9-(2)	OK:0-ZERO	INV:15-NaN	INV:13-NaN
NRM	OK:0-ZERO	BDIN:9-(2)	OK:2,3-NRM OVF:5-(1) UNF:6,7-UNRM	OK:1-INF	INV:13-NaN
DNRM	ADIN:8-(2)	ABDIN:10-(2)	ADIN:8-(2)	ADIN:8-(2)	$\mathbb{I N V : 1 3 - N a N ~}$
ZERO	$\mathbb{I N V : 1 5 - N a N ~}$	DVZ:11-INF	DVZ:11-INF	OK:1-INF	$\mathbb{I N V : 1 3 - N a N ~}$

Notes:

(1) OVF will produce INF or MAX.NRM, depending upon the rounding mode:

$+M A X . N R M$	IF	$[(\mathrm{RM}, \mathrm{RZ})$	AND (RESULT IS +)]
$+M A X . N R M$	IF	$[(R P, R Z)$	AND (RESULT IS -)]
+INF	IF	$[(R N, R P)$	AND (RESULT IS +)]
-INF	IF	$[(R N, R M)$	AND (RESULT IS -)]

(2) Result is undefined.

Operations, continued

TABLE 7: FLOATING POINT COMPARE STATUS									
A/B	NaN	-INF	-NRM	-DNRM	ZERO	+DNRM	+NRM	+INF	
NaN	$\mathrm{U}: 15$								
+INF	$\mathrm{U}: 15$	$\mathrm{G}: 2$	$\mathrm{E}: 0$						
+NRM	$\mathrm{U}: 15$	$\mathrm{G}: 2$	$: 2,1,2$	$\mathrm{~L}: 1$					
+DNRM	$\mathrm{U}: 15$	$\mathrm{G}: 2$	$\mathrm{G}: 2$	$\mathrm{G}: 2$	$\mathrm{G}: 2$	$: 0,1,2$	$\mathrm{~L}: 1$	$\mathrm{~L}: 1$	
ZERO	$\mathrm{U}: 15$	$\mathrm{G}: 2$	$\mathrm{G}: 2$	$\mathrm{G}: 2$	$\mathrm{E}: 0$	$\mathrm{~L}: 1$	$\mathrm{~L}: 1$	$\mathrm{~L}: 1$	
-DNRM	$\mathrm{U}: 15$	$\mathrm{G}: 2$	$\mathrm{G}: 2$	$: 0,1,2$	$\mathrm{~L}: 1$	$\mathrm{~L}: 1$	$\mathrm{~L}: 1$	$\mathrm{~L}: 1$	
-NRM	$\mathrm{U}: 15$	$\mathrm{G}: 2$	$: 0,1,2$	$\mathrm{~L}: 1$					
-INF	$\mathrm{U}: 15$	$\mathrm{E}: 0$	$\mathrm{~L}: 1$						

FORMAT: Condition: Status Code(s)
U:15 := unordered (status = 15)
$\mathrm{E}: 0$:= equal (status = 0)
$\mathrm{L}: 1:=A<B$ (status $=1$)
$\mathrm{G}: 2:=A>B$ (status $=2$)
:0, 1, 2 := may be $A=B, A<B$, or $A>B$, depending upon data values

TABLE 8: CONVERT SINGLE TO DOUBLE			
$\mathrm{F} 32 \rightarrow \mathrm{~F} 64$			
F32 OPERAND	F64 RESULT	STATUS	COMMENTS
7FFFFFFF	7FFFFFFF	12	A operand is NaN
or FFFFFFFF	FFFFFFFF		
7F800000	7FF00000 00000000	1	+INF
7F7FFFFF	47EFFFFF E0000000	2	Input operand is
$3 F 800000$	3 FF00000	2	+1
	00000000		
00800000	38100000	2	Input operand is
	00000000		+MIN.NRM
007FFFFF	380FFFFF	2	Input operand is
	C0000000		+MAX.DNRM Result $=0$ in "FAST" mode
00000001	36A00000	2	Input operand is
	00000000		+MIN.DNRM
00000000	00000000	0	+ZERO
	00000000		

Note:
Sign bit is orthogonal; it is directly copied from the input operand to the output result (except for NaN which is clamped to zero).

Operations, continued

TABLE 9: CONVERT DOUBLE TO SINGLE			
F64 \rightarrow F32 (Round to Nearest)			
F64 OPERAND	F32 RESULT	STATUS	COMMENTS
7FFFFFFF	7FFFFFFF	12	A operand is NaN
FFFFFFFFF			
7FF00000	7F800000	1	+INF
00000000			
7FEFFFFF	7F800000	5	+MAX.NRM
FFFFFFFFF			OVERFLOWS
47EFFFFF	7F800000	5	+OVF RESULT
F0000000			
47EFFFFF	7F7FFFFF	2	+MAX.NRM
E0000000			RESULT
3FF00000	3F800000	2	+1
00000000			
38100000	00800000	2	+MIN.NRM
00000000			RESULT
380FFFFF	00800000	3	Result after rounding
FFFFFFFFF			is +MIN.NRM
38000000	00000000 (UNRM) WTL 2265	6	Result
00000000	00400000 (DNRM) WTL 1265	6	underflows
36FFFFFF	77FFFFFF (UNRM) WTL 2265	7	Produces
FFFFFFFF	00000040 (DNRM) WTL 1265	7	UNRM + NXT
36400000	75000000 (UNRM) WTL 2265	6	+MIN.DNRM
00000000	00000001 (DNRM) WTL 1265	6	RESULT
00000000	40000000 (UNRM) WTL 2265	7	Input is
00000001	00000000 (DNRM) WTL 1265	7	DNRM
00000000	00000000	0	ZERO
00000000			

Note: \quad Sign bit is orthogonal; it is directly copied from the input operand to the output result (except for NaN which is clamped to zero).

Operations, continued

TABLE 10: DOUBLE FLOAT			
132 \rightarrow F64			
I32 OPERAND	F64 RESULT	STATUS	COMMENTS
7FFFFFF	41DFFFFF FFC00000	2	Largest Positive Integer
00000001	3FF00000 00000000	2	+1
00000000	0000000	0	ZERO
FFFFFFFF	BFF000000		
80000000	0000000	2	-1
	00000000	2	Largest Negative Integer

TABLE 11: SINGLE FLOAT			
132 \rightarrow F32			
132 OPERAND	F32 RESULT	STATUS	COMMENTS
7FFFFFFF	4F000000	3	Largest Positive Integer
7FFFFFCO	4F000000	3	INEXACT
7FFFFF80	4EFFFFFF	2	EXACT
00000001	3F800000	2	+1
00000000	00000000	0	ZERO
FFFFFFFF	BF800000	2	-1
80000080	CEFFFFFF	2	EXACT
80000040	CF000000	3	INEXACT
80000000	CF000000	2	Largest Negative integer

PRELIMINARY DATA
July 1986
Operations, continued

TABLE 12: DOUBLE FIX			
F64 \rightarrow I32 (Round to Nearest)			
F64 OPERAND	132 RESULT	STATUS	COMMENTS
7FFFFFFF FFFFFFFF	7FFFFFFF	12	Input is NaN
7FF00000 00000000	7FFFFFFFF	5	+INF
7FEFFFFF FFFFFFFFF	7FFFFFFF	5	Input is +MAX.NRM
41DFFFFF FFC00000	7FFFFFFF	2	Largest Positive Integer Result
3FF00000 00000000	00000001	2	+1
$\begin{aligned} & \text { 3FE80000 } \\ & 00000000 \end{aligned}$	00000001	3	INEXACT
$\begin{aligned} & 00100000 \\ & 00000000 \end{aligned}$	00000000	3	Input is MIN.NRM
$\begin{aligned} & 00000000 \\ & 00000001 \\ & \hline \end{aligned}$	00000000	3	Input is MIN.DNRM
$\begin{aligned} & 00000000 \\ & 00000000 \\ & \hline \end{aligned}$	00000000	0	+ZERO
$\begin{aligned} & 80000000 \\ & 00000000 \\ & \hline \end{aligned}$	00000000	0	-ZERO
$\begin{aligned} & 8 F F 00000 \\ & 00000000 \\ & \hline \end{aligned}$	00000000	3	Small Negative Number
$\begin{aligned} & \text { BFFO0000 } \\ & 00000000 \\ & \hline \end{aligned}$	FFFFFFFF	2	-1
$\begin{aligned} & \text { C1E00000 } \\ & 00000000 \end{aligned}$	80000000	$\begin{aligned} & \text { 2: WTL } 2265 \\ & \text { 5: } 1165 / 1265 \\ & \hline \end{aligned}$	Largest Negative Integer Result
$\begin{aligned} & \text { FFF00000 } \\ & 00000000 \end{aligned}$	80000000	5	-INF
FFFFFFFF FFFFFFFF	7FFFFFFF	12	- NaN

Operations, continued

TABLE 13: SINGLE FIX			
F32 \rightarrow I32			
F32 OPERAND	I32 RESULT	STATUS	COMMENTS
7FFFFFF	7FFFFFFF	12	Input is NaN
7F800000	7FFFFFFF	5	+INF
7F7FFFFF	7FFFFFFF	5	Input is +MAX.NRM
4F000000	7FFFFFFF	5	+ OVF
4EFFFFFF	7FFFFF80	2	EXACT
3F800000	00000001	2	+1
3F400000	00000001	3	INEXACT
00800000	00000000	3	Input is +MIN.NRM
00000001	00000000	3	Input is +MIN.DNRM
00000000	00000000	0	+ ZERO
80000000	00000000	0	-ZERO
8F800000	00000000	3	Small Negative Number
BF800000	FFFFFFFF	2	-1
CEFFFFFF	80000080	2	Large Negative Number
CF000001	80000000	5	-OVF
FF800000	80000000	5	-INF

TABLE 14: DOUBLE WRAP DENORMALIZED VALUE			
F64 \rightarrow W64			
F64 OPERAND	W64 RESULT	STATUS	COMMENTS
00000000	$7 C D 00000$	6	Input is +MIN.DNRM
00000001	00000000	6	Always Exact
00080000	00000000	6	Input is +MAX.DNRM
00000000	00000000		
000FFFFF	000FFFFF		
FFFFFFFF	FFFFFFFE		

TABLE 15: SINGLE WRAP DENORMALIZED VALUE			
F32 \rightarrow W32			
F32 OPERAND	W32 RESULT	STATUS	COMMENTS
00000001	75000000	6	Input is -MIN.DNRM
00400000	00000000	6	Always Exact
007FFFFF	007FFFFE	6	Input is -MAX.DNRM

PRELIMINARY DATA

Operations, continued

TABLE 16: DOUBLE UNWRAP EXACT VALUE			
U64 \rightarrow D64			
U64 OPERAND	D64 RESULT	STATUS	COMMENTS
000FFFFF FFFFFFFF	$\begin{aligned} & 00100000 \\ & 00000000 \\ & \hline \end{aligned}$	3	Result is NRM + NXT
$\begin{aligned} & 00000000 \\ & 00000000 \end{aligned}$	$\begin{aligned} & 00080000 \\ & 00000000 \\ & \hline \end{aligned}$	6	UNF + EXACT
7FFFFFFF FFFFFFFF	$\begin{aligned} & 00080000 \\ & 00000000 \end{aligned}$	7	UNF + NXT
$\begin{aligned} & 40000000 \\ & 00000000 \end{aligned}$	$\begin{aligned} & 00000000 \\ & 00000000 \end{aligned}$	7	UNF + NXT

TABLE 17: SINGLE UNWRAP EXACT VALUE			
U32 \rightarrow D32			
U32 OPERAND	D32 RESULT	STATUS	COMMENTS
007FFFFF	00800000	3	Result is NRM
007FFFFE	007 FFFFF	6	Result is DNRM
00000000	00400000	6	UNF + EXACT
7FFFFFFF	00400000	7	UNF + NXT
40000000	00000000	7	UNF + NXT

Note: For single and double unwrap functions, the sign bit of the output result is directly copied from the sign bit of the input operand.

I/O Characteristics

Figure 13. Input Equivalent Circuit

Figure 15. Normal Load Circuit for Delay Measurement

Figure 14. Output Equivalent Circuit

Figure 16. Tri-state Delay Load Circuit

Figure 17. Temperature vs. Power Dissipation

I/O Characteristics, continued

Figure 16. Input/Output Timing

Figure 17. Tri-state Enable/Disable Timing Diagram

Pin Configuration

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Pin \#1 Identifier	GND	Z31	Z14	Z13	Z27	Z10	Z25	Z24	Z7	Z22	Z20	Z19	Z3	Z1	GND
	S3	nc	Vco	Z15	Z29	Z12	Z11	Z9	Z6	Z21	Z4	Z18	Z17	Vco	Yo
	GND	S2	Ready	nc	Z30	Z28	Z26	Z8	Z23	Z5	Z2	Z16	Z0	GND	Y17
	OE	So	VDD	WTL 2264 TOP VIEW									VDD	Y16	Y18
	U_{2}	CSU	S1										Y1	Y2	Y4
	F7	Uo	U1										Y3	Y19	Y21
	VDD	CLK	F6										Y5	Y20	Y6
	F5	F4	GND										Y23	Y22	Y7
	F3	Fo	F1										Y8	Y25	Y24
	F2	VDD	L4										Y26	Y10	Y9
	GND	L2	Lo										Y29	Y27	Y11
	L3	nc	nc										Y15	Y13	Y12
	L1	GND	X_{31}	X15	X29	X26	X8	X23	X5	X3	X1	VDD	Y31	Y14	Y28
	CSL	nc	X14	X13	X27	X10	X25	X22	X20	X19	X2	X16	nc	nc	Y30
	GND	χ_{30}	X28	X12	X11	X9	X24	X7	X6	X21	X4	X18	X17	X0	GND

Pin Configuration, continued

Physical Dimensions

Application Note

COMPATABILITY WITH WTL 1264 AND WTL 1265

There are two common WTL 1264/1265 configurations. In the first, one WTL 1264 is used per each WTL 1265. In the second, two WTL 1264 devices are used for each WTL 1265. We will discuss the $1: 1$ configuration. Contact WEITEK for a description of the 2:1 configuration.
Several programming models are used in this first configuration. As discussed in COMPATABILITY MODE, the most common programming model for the WTL $1264 / 1265$ is maximum 64-bit throughput. If the compatability mode bit, M_{12}, is set to " 0 " the WTL
$2264 / 2265$ can operate in the WTL $1264 / 1265$ programming mode. The effect of M_{12} is different for the WTL 2264 and WTL 2265.

If M_{12} is " 0 " in the WTL 2265 , Ms can be used to control the WTL 2265's dummy pipes in the same way it controls Pipe 3 in the WTL 1265. In the WTL 2264, M12 set to " 0 " causes PAC to be 01, ACC to be 01 and M_{13} to be " 1 ". The following tables illustrate the WTL $2264 / 2265$ mode configuration for several other WTL 1264/1265 timing models.

TABLE 18: WTL1264/WTL2264 COMPATABILITY CHART								
	WTL 1264 MODE SETTINGS			COMPATIBLE WTL 2264-50 and -60 MODE SETTINGS				
Operation	M 5-4	M 11-8	M 7-6	M 12	M 5, 4, 1	M 9-8	M 13	M 7-6
	Pipeline Configuration	$\begin{gathered} \text { Pipe } \\ \text { Advance } \end{gathered}$	Accumulator		Plpeline Configuration	$\begin{gathered} \text { Pipe } \\ \text { Advance } \end{gathered}$	Pipe 2 Advance	Accumulator
64-bit max throughput	10	0100	01	0	111*	XX	X	XX
32-bit max throughput	11	0010	01	1	111	01	0	01
$\begin{aligned} & \hline 64 \text {-bit } \\ & \text { min latency } \\ & \hline \end{aligned}$	00	0000	01	1	100	01	X	01
$\begin{array}{\|l} \hline 32 \text {-bit } \\ \text { min latency } \\ \hline \end{array}$	00	0000	01	1	100	00	X	01

${ }^{*}$ Setting M_{12} to 0 causes $M_{1}=1, M_{9-8}=01, M_{13}=1, M_{7-6}=01$.

Application Note, continued

TABLE 19: WTL 1265/WTLL 2265 COMPATABILITY CHART					
	WTL 1265 MODE SETTINGS	COMPATIBLE WTL 2265-50 and -60 MODE SETTINGS			
	M 7-4	M_{11-8}	M_{12}	M_{7-4}	M_{9-8}
Operation	Plpeline Configuration	Pipe Advance		Pipeline Configuration	Pipe Advance
64-bit max throughput	1111	0010	0	1111	01
32-bit max throughput	1111	0010	0	1111	01
64-bit min latency	0000	0000	1	1000	01
32-bit min latency	0000	0000	1	1000	00

Ordering Information

PACKAGE TYPE	TEMPERATURE RANGE	ORDER NUMBER
$144-$ Pin Grid Array	Tc $=0$ to $85^{\circ} \mathrm{C}$	WTL 2264-100-GC/WTL 2265-100-GC
144 -Pin Grid Array	$\mathrm{Tc}=0$ to $85^{\circ} \mathrm{C}$	WTL 2264-080-GC/WTL 2265-080-GC
$144-$ Pin Grid Array	$\mathrm{Tc}=0$ to $85^{\circ} \mathrm{C}$	WTL 2264-075-GC/WTL 2265-075-GC
$144-P i n ~ G r i d ~ A r r a y ~$	$\mathrm{Tc}=0$ to $85^{\circ} \mathrm{C}$	WTL 2264-060-GC/WTL 2265-060-GC
$144-$ Pin Grid Array	$\mathrm{Tc}=0$ to $85^{\circ} \mathrm{C}$	WTL 2264-050-GC/WTL 2265-050-GC

Revision Summary

\qquad

For additional information on WEITEK products, please fill out the form below and mail.
Name Title
Company Phone

Address

Comments

I am currently involved in a design with the following Weitek products
\ldots and wish to be added to your design data base to insure that I receive status updates.

APPLICATION:

\square ENGINEERING WORKSTATIONS
\square SCIENTIFIC COMPUTERS
\square GRAPHICS
\square OTHER \qquad
\square PERSONAL COMPUTERS
Check the products on which you wish to receive data sheets: \square Have a sales person call

ATTACHED PROCESSORS	COPROCESSORS	BUILDING BLOCKS		
\square XL-SERIES OVERVIEW	$\square 1167$	$\square 2264 / 2265$	$\square 1066$	$\square 2516$
\square XL-8200 OVERVIEW	$\square 1164 / 1165$	$\square 3132 / 3332$	$\square 2010$	$\square 2517$
	$\square 3164 / 3364$	$\square 1232 / 1233$	$\square 2245$	
	$\square 3167$			

WEITEK use:
 Status
 WEITEK WTL 2264/WTL 2265 FLOATING POINT Please Comment On The Quality Of This Data Sheet.

Even though we have tried to make this data sheet as complete as possible, it is conceivable that we have missed something that may be important to you. If you believe this is the case, please describe what the missing information is, and we will consider including it in the next printing of the data sheet.

Fold, Staple and Mail to Weitek Corp.

C

C

WEITEK'S CUSTOMER COMMITMENT:

Weitek's mission is simple: to provide you with VLSI solutions to solve your compute-intensive problems. We translate that mission into the following corporate objectives:

1. To be first to market with performance breakthroughs, allowing you to develop and market systems at the edge of your art.
2. To understand your product, technology, and market needs, so that we can develop Weitek products and corporate plans that will help you succeed.
3. To price our products based on the fair value they represent to you, our customers.
4. To invest far in excess of the industry average in Research and Development, giving you the latest products through technological innovation.
5. To invest far in excess of the industry average in Selling, Marketing, and Technical Applications Support, in order to provide you with service and support unmatched in the industry.
6. To serve as a reliable, resourceful, and quality business partner to our customers.
These are our objectives. We're committed to making them happen. If you have comments or suggestions on how we can do more for you, please don't hesitate to contact us.

President

Headquarters Weitek Corporation	Domestic Sales Offices Weitek Corporation
1060 E. Arques Avenue	1060 E. Arques Avenue
Sunnyvale, CA 94086	Sunnyvale, CA 94086
TWX 910-339-9545	TWX 910-339-9545
WEITEK SVL	WEITEK SVL
FAX (408) 738-1185	FAX (408) 738-1185
TEL (408) 738-8400	TEL (408) 738-8400

	European Sales Headquarters	Japanese Representative
Corporate Place IV	Greyhound House, 23/24 George St.	4-8-1 Tsuchihashi
111 South Bedford St.	Richmond, Surrey, TW9 1JY	Miyamae-Ku
Suite 200	England	Kawasaki, Kanagawa-Pre
Burlington, MA 01803	TELEX 928940 RICHBI G	213 Japan
FAX (617) 229-4902	FAX 011-441 940 6208	FAX 044-877-4268
TEL (617) 229-8080	TEL 011-441 549 0164	TEL 044-852-1135

