
TMS320C54x Simulator

Addendum to the
TMS320C5xx C Source Debugger User’s Guide

SPRU170
February 1996

Printed on Recycled Paper

Running Title—Attribute Reference

ii

IMPORTANT NOTICE

Texas Instruments (TI) reserves the right to make changes to its products or to discontinue any
semiconductor product or service without notice, and advises its customers to obtain the latest
version of relevant information to verify, before placing orders, that the information being relied
on is current.

TI warrants performance of its semiconductor products and related software to the specifications
applicable at the time of sale in accordance with TI’s standard warranty. Testing and other quality
control techniques are utilized to the extent TI deems necessary to support this warranty.
Specific testing of all parameters of each device is not necessarily performed, except those
mandated by government requirements.

Certain applications using semiconductor products may involve potential risks of death,
personal injury, or severe property or environmental damage (“Critical Applications”).

TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, INTENDED, AUTHORIZED, OR
WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT APPLICATIONS, DEVICES
OR SYSTEMS OR OTHER CRITICAL APPLICATIONS.

Inclusion of TI products in such applications is understood to be fully at the risk of the customer.
Use of TI products in such applications requires the written approval of an appropriate TI officer.
Questions concerning potential risk applications should be directed to TI through a local SC
sales office.

In order to minimize risks associated with the customer’s applications, adequate design and
operating safeguards should be provided by the customer to minimize inherent or procedural
hazards.

TI assumes no liability for applications assistance, customer product design, software
performance, or infringement of patents or services described herein. Nor does TI warrant or
represent that any license, either express or implied, is granted under any patent right, copyright,
mask work right, or other intellectual property right of TI covering or relating to any combination,
machine, or process in which such semiconductor products or services might be or are used.

Copyright 1996, Texas Instruments Incorporated

 Contents

iii

Contents

1 Changes to the TMS320C5xx C Source Debugger User’s Guide 1-1.
Describes changes to the TMS320C5xx C Source Debugger User’s Guide that pertain to the
simulator version of the debugger.

2 Defining a Memory Map 2-1.
Replaces Chapter 6, Defining a Memory Map, in the TMS320C5xx C Source Debugger User’s
Guide.

2.1 The Memory Map: What It Is and Why You Must Define It 2-2.
Defining the memory map in a batch file 2-2.
Potential memory map problems 2-3.

2.2 Customizing the Memory Map 2-4.
Mapping on-chip dual-access RAM to program memory 2-5.
Simulating data memory (ROM) 2-5.
Programming your memory 2-6.

2.3 A Sample Memory Map 2-7.
2.4 Identifying Usable Memory Ranges 2-8.

Usage notes 2-9.
Memory mapping with the simulator 2-11.

2.5 Enabling Memory Mapping 2-12.
2.6 Checking the Memory Map 2-13.
2.7 Modifying the Memory Map During a Debugging Session 2-14.

Returning to the original memory map 2-15.
2.8 Using Multiple Memory Maps for Multiple Target Systems (Emulator Only) 2-15.
2.9 Simulating I/O Space (Simulator Only) 2-16.

Connecting an I/O port 2-16.
Disconnecting an I/O port 2-20.

2.10 Simulating External Interrupts (Simulator Only) 2-21.
Setting up your input file 2-21.
Programming the simulator 2-23.

2.11 Simulating Peripherals (Simulator Only) 2-25.
2.12 Simulating Standard Serial Ports (Simulator Only) 2-26.

Setting up your transmit and receive operations 2-27.
Connecting input/output files 2-28.
Programming the simulator 2-29.

Contents

iv

2.13 Simulating Buffered Serial Ports (Simulator Only) 2-30.
Setting up your transmit and receive operations 2-31.
Connecting input/output files 2-32.
Programming the simulator 2-32.

2.14 Simulating TDM Serial Ports (Simulator Only) 2-33.
Setting up your transmit and receive operations 2-34.
Connecting input/output files 2-35.
Programming the simulator 2-35.

1-1

Changes to the
TMS320C5xx C Source Debugger

User’s Guide

Section 1.8, Debugger Options, in the TMS320C5xx C source Debugger
User’s Guide, describes the options that you can use when invoking the de-
bugger. The –mv option has been added for the simulator version of the de-
bugger.

The –mv option specifies which memory map the simulator loads. By default,
the simulator loads the memory map contained in the siminit.cmd file, which
is a generic memory map. Each of the provided memory maps simulates a dif-
ferent ’C54x device, as described in the following table:

Option
Device
Simulated

Initialization
File Used Peripherals Simulated

–mv541 ’C541 sim541.cmd Serial port 0, serial port 1, timer

–mv542 ’C542 sim542.cmd Buffered serial port, TDM serial port,
timer

–mv543 ’C543 sim543.cmd Buffered serial port, TDM serial port,
timer

–mv544 ’C544 sim544.cmd Serial port 0, serial port 1, timer

–mv545 ’C545 sim545.cmd Buffered serial port, serial port 1, timer

–mv546 ’C546 sim546.cmd Buffered serial port, serial port 1, timer

–mv547 ’C547 sim547.cmd Buffered serial port, serial port 1, timer

–mv549 ’C549 sim549.cmd Buffered serial port, serial port 1, timer

Chapter 1

2-1

Defining a Memory Map

Note:

This chapter replaces Chapter 6, Defining a Memory Map, in the
TMS320C5xx C Source Debugger User’s Guide.

Before you begin a debugging session, you must supply the debugger with a
memory map. The memory map tells the debugger which areas of memory it
can and can’t access. Note that you can use the Memory pulldown menu to
enter the commands described in this chapter.

Topic Page

2.1 The Memory Map: What It Is and Why You Must Define It 2-2.

2.2 Customizing the Memory Map 2-4.

2.3 A Sample Memory Map 2-7.

2.4 Identifying Usable Memory Ranges 2-8.
2.5 Enabling Memory Mapping 2-12.

2.6 Checking the Memory Map 2-13.

2.7 Modifying the Memory Map During a Debugging Session 2-14.

2.8 Using Multiple Memory Maps for Multiple Target Systems
(Emulator Only) 2-15.

2.9 Simulating I/O Space (Simulator Only) 2-16.

2.10 Simulating External Interrupts (Simulator Only) 2-21.

2.11 Simulating Peripherals (Simulator Only) 2-25.

2.12 Simulating Standard Serial Ports (Simulator Only) 2-26.

2.13 Simulating Buffered Serial Ports (Simulator Only) 2-30.

2.14 Simulating TDM Serial Ports (Simulator Only) 2-33.

Chapter 2

The Memory Map: What It Is and Why You Must Define It

 2-2

2.1 The Memory Map: What It Is and Why You Must Define It

A memory map tells the debugger which areas of memory it can and can’t
access. Memory maps vary, depending on the application. Typically, the map
matches the MEMORY definition in your linker command file.

Note:

When the debugger compares memory accesses against the memory map,
it performs this checking in software, not hardware. The debugger can’t
prevent your program from attempting to access nonexistent memory.

A special default initialization batch file included with the debugger package
defines a memory map for your version of the debugger. This memory map
may be sufficient when you first begin using the debugger. However, the de-
bugger provides a complete set of memory-mapping commands that let you
modify the default memory map or define a new memory map.

You can define the memory map interactively by entering the memory-map-
ping commands while you’re using the debugger. However, this can be incon-
venient because, in most cases, you’ll set up one memory map before you be-
gin debugging and will use this map for all of your debugging sessions. The
easiest method of defining a memory map is to put the memory-mapping com-
mands in a batch file.

Defining the memory map in a batch file

There are two methods for defining the memory map in a batch file:

� Redefine the memory map defined in the initialization batch file
� Define the memory map in a separate batch file of your own

When you invoke the debugger, it follows these steps to find the batch file that
defines your memory map:

1) The debugger checks if you’ve used the –t debugger option. If the debug-
ger finds the –t option, it executes the specified file. (Use the –t option to
specify a batch file other than the initialization batch file shipped with the
debugger.)

 The Memory Map: What It Is and Why You Must Define It

2-3 Defining a Memory Map

2) If you don’t use the –t option, the debugger looks for the default initializa-
tion batch file. The batch filename differs for each version of the debugger:

� For the emulator, this file is called emuinit.cmd.
� For the EVM, this file is called evminit.cmd.
� For the simulator, this file is called siminit.cmd.

If the debugger finds the file corresponding to your tool, it executes the file.

3) If the debugger does not find the –t option or the initialization batch file, it
looks for a file called init.cmd. This search mechanism allows you to have
one initialization batch file for more than one debugger tool. To set up this
file, you can use the IF/ELSE/ENDIF commands (for more details, see the
controlling command execution in a batch file information in Chapter 5, En-
tering and Using Commands) to indicate which memory map applies to
each tool.

Potential memory map problems

You may experience these problems if the memory map isn’t correctly defined
and enabled:

� Accessing invalid memory addresses. If you don’t supply a batch file
containing memory-map commands, then the debugger is initially unable
to access any target memory locations. Invalid memory addresses and
their contents are highlighted in the data-display windows. (On color moni-
tors, invalid memory locations, by default, are displayed in red.)

� Accessing an undefined or protected area. When memory mapping is
enabled, the debugger checks each of its memory accesses against the
memory map. If you attempt to access an undefined or protected area, the
debugger displays an error message. For specific error messages, see
Appendix D, Debugger and PDM Messages.

� Loading a COFF file with sections that cross a memory range. Be sure
that the map ranges you specify in a COFF file match those that you define
with the MA command (described on page 2-8). Alternatively, you can
turn memory mapping off during a load by using the MAP OFF command
(see page 2-12).

� Accessing conflict and extra cycles (simulator only). If two memory
read access requests occur simultaneously during an execution, you may
be unable to complete both requests within the same clock cycle. If both
locations belong to the same physical memory block and the block is
single-access memory, both requests cannot be processed within the
same clock cycle.

Customizing the Memory Map

 2-4

2.2 Customizing the Memory Map

The customizable ’C54x (cDSP) debugger allows you maximum flexibility in
configuring a memory map. Because the size and address of the memory map
is not fixed in the debugger, you can select any amount of ROM or RAM inter-
nally, externally, or both.

The following example shows how you can have both RAM and ROM mapped
to the same address:

ma 0xc000, 0, 0x1000, R ;Internal Program ROM

ma 0xc000, 0, 0x1000, R|EX ;External Program ROM

During execution or when the debugger performs memory accesses, the block
of memory accessed is based on the ’C54x MP/MC bit located in the PMST
register. When this bit is set to 0, the on-chip program ROM is enabled. When
it is set to 1, the off-chip program RAM is enabled.

The next example shows you two blocks of RAM, one internal and one
external, mapped to the same address.

ma 0x0080, 0, 0x0380, R|W ;Internal Program RAM

ma 0x0080, 0, 0x0380, R|W|EX ;External Program RAM

For the above example, the block of memory is accessed based on the OVLY
bit located in the PMST register during execution or when the debugger per-
forms memory accesses. When this bit is set to 1, the on-chip dual-access data
RAM is mapped to internal program space. When it is set to 0, the off-chip pro-
gram RAM is enabled.

The debugger accesses the three types of memory (data, program ROM, and
program RAM) according to the type of memory and the values of the MP/MC
bits. The following table summarizes how the debugger accesses memory:

Type of Memory Memory Access

Data Accesses internal memory block, then external memory
block.

Program ROM If MP/MC is set to 0, accesses internal memory block, then
external memory block; if MP/MC is set to 1, accesses exter-
nal memory block.

Program RAM If OVLY is set to 1, accesses internal memory block, then ex-
ternal memory block; if OVLY is set to 0, accesses external
memory block.

 Customizing the Memory Map

2-5 Defining a Memory Map

Mapping on-chip dual-access RAM to program memory

The following steps describe how to map a block of memory to program
memory. The memory that is mapped is configured as on-chip dual-access
RAM in the data memory.

Step 1: Set the OVLY (overlay bit) in the PMST register to 1.

Step 2: Define the data-memory map before the program-memory map. It is
essential to define the data-memory map for the overlay mode.

Step 3: Add a dummy program-memory map in the same region as the ex-
ternal memory. To do this, use the EX attribute.

Note:

The size of the data-memory map and the program-memory map must be
the same.

The following is an example of mapping the on-chip dual-access RAM to pro-
gram memory. The example shows the commands to set the mode to overlay.

ma 0x0080, 1, 0x0f80, R|W|DA

ma 0x0080, 0, 0x0f80, R|W|EX

?pmst=0xffc0 ; mp/mc=0, ovly=1

Simulating data memory (ROM)

With the ’C54x simulator, you can simulate the DROM bit in the ’C541, ’C543,
’C544, ’C545, ’C546, ’C547, or ’C549 processor. This simulation allows you
to map the on-chip program memory (ROM) to the data memory. To map the
program memory (ROM) to the data memory, follow these steps:

Step 1: Set the DROM bit in the PMST register to 1.

Step 2: Invoke the simulator with the –mv541, –mv543, –mv544, –mv545,
–mv546, –mv547, or –mv549 option.

The following is an example of simulating data memory:

?pmst=0x10 ; DROM bit is set to 1

Customizing the Memory Map

 2-6

Programming your memory

The easiest time to set up your memory is during the initialization process.
However, you can edit your memory map while your program is running.

Use the OVLY and MP/MC bits of the status/PMST registers to set the amount
of external and internal program memory you need. The values for the OVLY
and MP/MC bits are as follows:

� OVLY bit

0 = external program memory

1 = internal program memory

� MP/MC bit

0 = internal program memory (ROM)

1 = external program memory

You can edit the the values of the OVLY and MP/MC bits by using the debugger
or by programming the PMST register. To edit the values of these bits, scroll
down the CPU window until you see the PMST register. The CPU window is
editable; you can enter the values for each bit.

 A Sample Memory Map

2-7 Defining a Memory Map

2.3 A Sample Memory Map

Because you must define a memory map before you can run any programs,
it’s convenient to define the memory map in the initialization batch files.
Example 2–1 shows the memory map commands that are defined in the initial-
ization batch file that accompanies the simulator. If you are using the simulator,
you can use the file as is, edit it, or create your own memory map batch file.
The files shipped with the emulator and EVM are similar to that of the simulator.

Example 2–1.Sample Initialization Batch File for Use with the TMS320C54x Simulator

ma 0x0000, 0, 0x80, EX|RAM
ma 0xc000, 0, 0x1000, ROM
ma 0xd000, 0, 0x1000, EX|RAM

ma 0x0000, 1, 0x0060, RAM
ma 0x0060, 1, 0x0020, RAM
ma 0x0080, 1, 0x0380, RAM
ma 0x0400, 1, 0x0400, EX|RAM

The MA commands (shown in Example 2–1) define valid memory ranges and
identify the read/write characteristics of the memory ranges. The MAP
command enables mapping (see Section 2.5, Enabling Memory Mapping, on
page 2-12). By default, mapping is enabled when you invoke the debugger.
Figure 2–1 illustrates the memory map defined in Example 2–1.

Figure 2–1. Sample Memory Map for Use With the TMS320C54x Simulator

0x0000
to 0x007F

0x0080
to 0xBFFF

0xC000
to 0xCFFF

0xD000
to 0xDFFF

0xE000
to 0xFFFF

0x0000
to 0x005F

0x0060
to 0x007F

0x0080
to 0x03FF

0x0800
to 0xFFFF

Available

Available

Internal RAM
Scratch Pad

Available

0x0400
to 0x07FF

Program Memory Data Memory

External
Single-Access RAM

Internal
Single–Access ROM

External
Single-Access RAM

External
Single-Access RAM

Internal RAM
for MMR

Internal
Dual–Access RAM

Identifying Usable Memory Ranges

 2-8

2.4 Identifying Usable Memory Ranges

ma The debugger’s MA (memory add) command identifies valid ranges of target
memory. The syntax for this command is:

ma address, page, length, type

� The address parameter defines the starting address of a range. This
parameter can be an absolute address, any C expression, the name of a
C function, or an assembly language label.

A new memory map must not overlap an existing entry. If you define a
range that overlaps an existing range, the debugger ignores the new
range and displays this error message in the COMMAND window display
area:

Conflicting map range

� The page parameter is a one-digit number that identifies the type of
memory (program, data, or I/O) that a range occupies:

To identify this page,
Use this value as the page
parameter

Program memory 0
Data memory 1
I/O space 2

� The length parameter defines the length of the range. This parameter can
be any C expression.

� The type parameter identifies the read/write characteristics of the memory
range. The type must be one of these keywords:

To identify this kind of memory,
Use this keyword as the
type parameter

Read-only memory R or ROM

Write-only memory W or WOM

Read/write memory R|W or RAM

Read/write external memory RAM|EX or R|W|EX

Read-only port P|R

Read/write port P|R|W

Single-access memory SA

Dual-access memory DA

 Identifying Usable Memory Ranges

2-9 Defining a Memory Map

Usage notes

� The debugger caches memory that is not defined as a port type (P|R, P|W,
or P|R|W). For ranges that you don’t want cached, be sure to map them
as ports.

� When you are using the simulator, you can use the parameter values P|R,
P|W, and P|R|W to simulate I/O ports. See Section 2.9, Simulating I/O
Space, on page 2-16.

� Be sure that the map ranges that you specify in a COFF file match those
that you define with the MA command. A command sequence such as:

ma x,0,y,ram; ma x+y,0,z,ram

doesn’t equal

ma x,0,y+z,ram

If you plan to load a COFF block that spans the length of y + z, you should
use the second MA command example. Alternatively, you can turn
memory mapping off during a load by using the MAP OFF command (see
Section 2.5, Enabling Memory Mapping, on page 2-12)

� Although the address range for both of the following MA commands is the
same (0x0400 to 0x0800), one range is internal and the other range is ex-
ternal.

ma 0x0400, 0, 0x0800, ROM
ma 0x0400, 0, 0x0800, EX|ROM

When the simulator is operating in microcomputer mode, the internal
program ROM is accessed. Otherwise, if the simulator is running in micro-
processor mode, the external program memory module is used.

Identifying Usable Memory Ranges

 2-10

� If a range of memory is configured as single-access RAM (using the SA
attribute with the MA command), it means only one access (read/write)
can be performed on any address in the block in one cycle. You can config-
ure more than one single-access RAM block. Simultaneous accesses to
different single-access RAM blocks during the same cycle are permitted.

For example, the following commands create two single-access RAM
blocks. The blocks are 0x100 in size. If an instruction performs two ac-
cesses, one in the first block (for example, address 0x110) and another in
the second block (for example, address 0x230), the instruction executes in
only one cycle.

ma 0x0100, 1, 0x0100, R|W|SA
ma 0x0200, 1, 0x0100, R|W|SA

Contrarily, if the blocks were combined into one block and configured as
one single chunk of 0x200 words (as shown in the following command),
simultaneous accesses to addresses 0x110 and 0x230 would take two
cycles to complete.

ma 0x100, 1, 0x200, R|W|SA

� If a range of memory is configured as dual-access RAM (using the DA at-
tribute with the MA command), it means two simultaneous accesses
(read/write) can be performed during the same cycle to the block.

For example, the following command creates one dual-access RAM as a
data page. If an instruction performs two simultaneous accesses to two
addresses in this block, both accesses execute in one cycle.

ma 0x0100, 1, 0x0100, R|W|DA

 Identifying Usable Memory Ranges

2-11 Defining a Memory Map

Memory mapping with the simulator

Unlike the emulator and EVM, the ’C54x simulator has memory cache capabil-
ities that allow you to allocate as much memory as you need. However, to use
memory cache capabilities effectively with the ’C54x, do not allocate more
than 20K words of memory in your memory map. For example, the memory
map shown in Example 2–2 allocates 64K words of ’C54x program memory.

Example 2–2.Sample Memory Map for the TMS320C54x Using Memory Cache Capabilities

MA 0,0,0x5000,R|W
MA 0x5000,0,0x5000,R|W
MA 0xa000,0,0x5000,R|W
MA 0xf000,0,0x1000,R|W

The simulator creates temporary files in a separate directory on your disk. For
example, when you enter an MA (memory add) command, the simulator
creates a temporary file in the root directory of your current disk. Therefore,
if you are currently running your simulator on the C drive, temporary files are
placed in the C:\ directory. This prevents the processor from running out of
memory space while you are executing the simulator.

Note:

If you execute the simulator from a floppy drive (for example, drive A), the
temporary files are created in the A:\ directory.

All temporary files are deleted when you exit the simulator using the QUIT
command. If, however, you exit the simulator with a soft reboot of your comput-
er, the temporary files will not be deleted; you must delete these files manually.
(Temporary files usually have numbers for names.)

With the memory cache capabilities of the simulator, your memory map is now
restricted only by your PC’s capabilities. As a result, there should be sufficient
free space on your disk to run any memory map you want to use. If you use
the MA command to allocate 20K words (40K bytes) of memory in your
memory map, then your disk should have at least 40K bytes of free space
available. To do this, you can enter:

ma 0x0, 0, 0x5000, ram

Note:

You can also use the memory-cache capability feature for the data memory.

Enabling Memory Mapping

 2-12

2.5 Enabling Memory Mapping

map By default, mapping is enabled when you invoke the debugger. In some
instances, you may want to explicitly enable or disable memory. You can use
the MAP command to do this; the syntax for this command is:

map on
or map off

Note that disabling memory mapping can cause bus fault problems in the
target because the debugger may attempt to access nonexistent memory.

Note:

When memory mapping is enabled, you cannot:

� Access memory locations that are not defined by an MA command
� Modify memory areas that are defined as read only or as protected

If you attempt to access memory in these situations, the debugger displays
this message in the COMMAND window display area:

Error in expression

 Checking the Memory Map

2-13 Defining a Memory Map

2.6 Checking the Memory Map

ml If you want to see which memory ranges are defined, use the ML (memory list)
command. The syntax for this command is:

ml

The ML command lists the page, starting address, ending address, and read/
write characteristics of each defined memory range.

For example, assume you issue the following MA commands:

ma 0,0, 0x3000, ROM
ma 0x4000, 0, 0x2000, EX|RAM
ma 0, 1, 0x4000, RAM
ma 0x8000, 1, 0x2000, EX|RAM
ma 0x6, 2, 0x3, P|R

If you enter the ML command, the debugger displays the following in the
COMMAND window display area:

page 0 = program memory
page 1 = data memory

ending address
starting address

page 2 = I/O space

Page Memory range Attributes
0 0000 – 2fff R
0 4000 – 5fff R|W|EX
1 0000 – 3fff R|W
1 8000 – 9fff R|W|EX
2 0006 – 0008 P|R

Modifying the Memory Map During a Debugging Session

 2-14

2.7 Modifying the Memory Map During a Debugging Session

If you need to modify the memory map during a debugging session, use these
commands.

md To delete a range of memory from the memory map, use the MD (memory
delete) command. The syntax for this command is:

md address, page

� The address parameter identifies the starting address of the range of
program, data, or I/O memory. If you supply an address that is not the
starting address of a range, the debugger displays this error message in
the COMMAND window display area:

Specified map not found

� The page parameter is a one-digit number that identifies the type of
memory (program, data, or I/O) that the range occupies:

To identify this page,
Use this value as the page
parameter

Program memory 0

Data memory 1

I/O space 2

Note:

If you are using the simulator and want to use the MD command to remove
a simulated I/O port, you must first disconnect the port with the MI command
(see Disconnecting an I/O port, page 2-20).

mr If you want to delete all defined memory ranges from the memory map, use
the MR (memory reset) command. The syntax for this command is:

mr

This resets the debugger memory map.

ma If you want to add a memory range to the memory map, use the MA (memory
add) command. The syntax for this command is:

ma address, page, length, type

The MA command is described in detail on page 2-8.

 Modifying the Memory Map During a Debugging Session / Multiple Memory Maps for Multiple Target Systems

2-15 Defining a Memory Map

Returning to the original memory map

If you modify the memory map, you may want to go back to the original memory
map without quitting and reinvoking the debugger. You can do this by resetting
the memory map and then using the TAKE command to read in your original
memory map from a batch file.

Suppose, for example, that you had set up your memory map in a batch file
named mem.map. You could enter these commands to go back to this map:

mr Reset the memory map
take mem.map Reread the default memory map

The MR command resets the memory map. (Note that you could put the MR
command in the batch file, preceding the commands that define the memory
map.) The TAKE command tells the debugger to execute commands from the
specified batch file.

2.8 Using Multiple Memory Maps for Multiple Target Systems (Emulator Only)

If you’re debugging multiple applications, you may need a memory map for
each target system. Here’s the simplest method for handling this situation.

Step 1: Let the initialization batch file define the memory map for one of your
applications.

Step 2: Create a separate batch file that defines the memory map for the
additional target system. The filename is unimportant, but for this ex-
ample assume that the file is named filename.x. The general format
of this file’s contents should be:

mr Reset the memory map
MA commands Define the new memory map
map on Enable mapping

(Of course, you can include any other appropriate commands in this
batch file.)

Step 3: Invoke the debugger as usual.

Step 4: The debugger reads the initialization batch file during invocation.
Before you begin debugging, read in the commands from the new
batch file:

take filename.x

This redefines the memory map for the current debugging session.

You can also use the –t option instead of the TAKE command when
you invoke the debugger. The –t option allows you to specify a new
batch file to use instead of the default initialization batch file.

Simulating I/O Space (Simulator Only)

 2-16

2.9 Simulating I/O Space (Simulator Only)

In addition to adding memory ranges to the memory map, you can use the MA
command to add I/O ports to the memory map. To do this, use P|R (input port)
or P|R|W (input/output port) as the memory type. Use page 2 to simulate I/O
space. Then you can use the MC command to connect a port to an input or
output file. This simulates external I/O cycle reads and writes by allowing you
to read data in from a file and/or write data out to a file. Use page 1 for file
connects to data memory.

Connecting an I/O port

mc The MC (memory connect) command connects P|R or P|R|W to an input or
output file. MC also allows you to connect any data memory location (except
0x0000–0x001F) to an input or output file to read data from or write data into
the file. The syntax for this command is:

mc portaddress, page, length, filename, fileaccess

� The portaddress parameter defines the address of the I/O space or data
memory. This parameter can be an absolute address, any C expression,
the name of a C function, the name of a C function, or an assembly lan-
guage label.

The portaddress must be previously defined with the MA command (de-
scribed on page 2-8) and have a keyword of either P|R (input port) or
P|R|W (input/output port). The length of the address range defined for the
port (or peripheral frame) can be 0x1000 to 0x1FFF bytes and does not
have to be a multiple of 16.

� The page parameter is a one-digit number that identifies the type of
memory (data or I/O) that the address occupies:

To identify this page,
Use this value as the page
parameter

Data memory 1

I/O space 2

� The length parameter defines the length of the range. This parameter can
be any C expression.

� The filename parameter can be any filename. If you connect a port or
memory location to read from a file, the file must exist, or the MC command
will fail.

 Simulating I/O Space (Simulator Only)

2-17 Defining a Memory Map

� The fileaccess parameter identifies the access characteristics of the I/O
memory and data memory. The file access must be one of the keywords
identified below:

To identify this file access type
Use this keyword as the
fileaccess parameter

Input port (I/O space) P|R

Simulator halt at EOF of input space
(I/O space)

R|P|NR

Output port (I/O space) P|W

Read-only internal memory R

Read-only external memory EX|R

Simulator halt at EOF of input file
for internal memory

R|NR

Simulator halt at EOF of input file
for external memory

EX|R|NR

Write-only internal memory W

Write-only external memory EX|W

For I/O memory locations, the file is accessed during a read or write instruction
to the associated port address. You can connect any I/O port to a file. A maxi-
mum of one input and one output file can be connected to a single port;
however, multiple ports can be connected to a single file.

For data memory locations, the debugger accesses the data as follows:

� When you’re executing code:

� If you have specified a file, the debugger reads the data from the file
and updates the memory location with that data.

� If you have specified a file, the debugger writes the data to the memory
location, as well as to the file.

� When you’re using the debugger:

� The debugger reads the data value from the memory location, not
from the connected file.

� If you have specified a file, the debugger writes the data to the memory
location, as well as to the file.

Simulating I/O Space (Simulator Only)

 2-18

If you use the NR parameter, then the simulator halts execution when it reads
an EOF. The debugger displays the appropriate message in the COMMAND
window display area:

<addr> EOF reached – connected at port(I/O_PAGE)
or

<addr> EOF reached – connected at location (DATA_PAGE)

At this point, you can disconnect the file by using the MI command and attach
a new file by using the MC command. If you don’t do anything, then the input
file rewinds automatically, and execution continues until EOF is read.

If you do not specify the NR parameter, execution does not halt, and you are
not notified when EOF is reached. The input file rewinds automatically, and the
simulator resumes reading from the file.

Example 2–3 shows how input and output ports can be connected to specific
memory blocks.

Example 2–3.Connecting Input and Output Ports to Input or Output Files.

Assume that you have two data-memory blocks:

ma 0x100,1, 0x10, EX|RAM ;block1
ma 0x200,1, 0x10, RAM ;block2

� You could use the MC command to set up and connect an input file to
block1:

mc 0x100, 1, 0x1, my_input.dat, EX|R

� You could use the MC command to set up and connect an output file
to block2:

mc 0x205, 1, 0x1, my_output.dat, W

� You could use the MC command to halt simulator at EOF of input file:

mc 0x100, 1, 0x1, my_input.dat, EX|R|NR

or

mc 0x100, 1, 0x1, my_input.dat, R|NR

 Simulating I/O Space (Simulator Only)

2-19 Defining a Memory Map

Example 2–4 shows how to connect an input port to an input file named in.dat.

Example 2–4.Connecting an Input Port to an Input File

Assume that the file in.dat contains words of data in hexadecimal format,
one per line, like this:

0A00
1000
2000

.

.

.

Use MA and MC commands to set up and connect an input port:

MA 0x50,2,0x1,R|P Configure port address 50h
as an input port.

MC 0x50,2,0x1,in.dat,R Open file in.dat and
connect it to port address 50.

Assume that the following instruction is part of your program; it reads from
the file in.dat:

PORTR 050,data_mem Read file in.dat, and put the
value into the DATA_MEM location.

Notes:

1) You can only connect a file to configured location(s).

2) You cannot connect a file to program memory (page 0) locations.

3) You cannot connect a file to the core-memory map register area (0x0000
to 0x001F) of data memory (page 1).

4) While connecting a file to a set of locations:

� Locations must not spread across memory block boundaries.
� Two read-only files must not overlap.
� Two write-only files must not overlap.

Simulating I/O Space (Simulator Only)

 2-20

Disconnecting an I/O port

Before you can use the MD command to delete a port from the memory map,
you must use the MI command to disconnect the port.

mi The MI (memory disconnect) command disconnects a file from an I/O port. The
syntax for this command is:

mi port address, page, {R|W|EX}

The port address and page identify the port that will be closed. The read/write/
execute characteristics must match the parameter used when the port was
connected.

 Simulating External Interrupts (Simulator Only)

2-21 Defining a Memory Map

2.10 Simulating External Interrupts (Simulator Only)

The ’C54x simulator allows you to simulate the external interrupt signals INT1
to INT4 and allows you to select the clock cycle where you want an interrupt
to occur. To do this, you create a data file and connect it to one of the interrupt
pins, INT1 to INT4 or the BIO pin.

Note:

The time interval is expressed as a function of CPU clock cycles. Simulation
begins at the first clock cycle.

Setting up your input file

In order to simulate interrupts, you must first set up an input file that lists inter-
rupt intervals. Your file must contain a clock cycle in the following format:

[clock cycle, logic value] rpt {n | EOS}

Note that the square brackets are used only with logic values for the BIO pin.

� The clock cycle parameter represents the CPU clock cycle in which you
want an interrupt to occur.

You can have two types of CPU clock cycles:

� Absolute . To use an absolute clock cycle, your cycle value must rep-
resent the actual CPU clock cycle in which you want to simulate an
interrupt. For example:

12 34 56

Interrupts are simulated at the 12th, 34th, and 56th CPU clock cycles.
No operation is performed on the clock cycle value; the interrupt oc-
curs exactly as the clock cycle value is written.

� Relative . You can also select a clock cycle that is relative to the time at
which the last event occurred. For example:

12 +34 55

In this example, a total of three interrupts are simulated at the 12th,
46th (12 + 34), and 55th CPU clock cycles. A plus sign (+) before a
clock cycle adds that value to the total clock cycles preceding it. You
can mix both relative and absolute values in your input file.

Simulating External Interrupts (Simulator Only)

 2-22

� The logic value parameter is only for the BIO pin. You must use a value
to force the signal to go high or low at the corresponding clock cycle. A val-
ue of 1 forces the signal to go high, and a value of 0 forces the signal to
go low. For example:

[12,1] [23,0] [45,1]

This causes the BIO pin to go high at the 12th cycle, low at the 23rd cycle,
and high again at the 45th cycle.

� The rpt {n | EOS} parameter is optional and represents a repetition value.

Two forms of repetition simulate interrupts:

� Repetition on a fixed number of times . You can format your input
file to repeat a particular pattern a fixed number of times. For example:

5 (+10 +20) rpt 2

The values inside the parenthesis represent the portion that is
repeated. Therefore, an interrupt is simulated at the 5th CPU cycle,
then the 15th (5 + 10), 35th (15 + 20), 45th (35 + 10), and 65th
(45 + 20) CPU clock cycles.

Note that n is a positive integer value.

� Repetition to the end of simulation . To repeat the same pattern
throughout the simulation, add the string EOS to the line. For example:

10 (+5 +20) rpt EOS

Interrupts are simulated at the 10th CPU cycle, then the 15th (10+5),
35th (15 + 20), 40th (35 + 5), 60th (40 + 20), 65th (60 + 5), and 85th
(65 + 20) CPU cycles, continuing in that pattern until the end of
simulation.

 Simulating External Interrupts (Simulator Only)

2-23 Defining a Memory Map

Programming the simulator

After creating your input file, you can use debugger commands to connect, list,
and disconnect the interrupt pin to your input file. Use these commands as de-
scribed below, or use them from the PIN pulldown menu.

pinc To connect your input file to the pin, use the following command:

pinc pinname, filename

� The pinname identifies the pin and must be one of the simulated pins
(INT1–INT4) or the BIO pin.

� The filename is the name of your input file.

Example 2–5 shows you how to connect your input file using the PINC com-
mand.

Example 2–5.Connecting the Input File With the PINC Command

Suppose you want to generate an INT2 external interrupt at the 12th, 34th,
56th, and 89th clock cycles.

First, create a data file with an arbitrary name, such as myfile:

12 34 56 89

Then use the PINC command in the pin pulldown menu to connect the in-
put file to the INT2 pin.

pinc myfile, int2 Connects your data file
to the specific interrupt pin

This command connects myfile to the INT2 pin. As a result, the simulator
generates an INT2 external interrupt at the 12th, 34th, 56th, and 89th clock
cycles.

Simulating External Interrupts (Simulator Only)

 2-24

pinl To verify that your input file is connected to the correct pin, use the PINL
command. The syntax for this command is:

pinl

The PINL command displays all of the unconnected pins first, followed by the
connected pins. For a pin that has been connected, it displays the name of the
pin and the absolute pathname of the file in the COMMAND window.

COMMAND

>>>

INT1 NULL

INT3 NULL

INT4 NULL

BIO NULL

INT2 /320hll/myfile

PIN FILENAME
~~~~~~~~~~~~~~~~~~~~~~~~~~~

pind To end the interrupt simulation, disconnect the pin. You can do this with the
following command:

pind pinname

The pinname parameter identifies the interrupt pin and must be one of the ex-
ternal interrupt pins (INT1–INT4) or the BIO pin. The PIND command de-
taches the file from the input pin. After executing this command, you can con-
nect another file to the same pin.



 Simulating Peripherals (Simulator Only)

2-25  Defining a Memory Map

2.11 Simulating Peripherals (Simulator Only)

With the ’C54x simulator, you can simulate the timer, standard serial port, buff-
ered serial port, and TDM serial port. The peripherals simulated depend upon
the device that you simulate. You simulate a device by starting the simulator
(sim5xx command) with the appropriate option. Table 2–1 summarizes the op-
tions used to simulate the peripherals for each device.

Table 2–1.Debugger Options for the Simulator

Option Device Simulated Peripherals Simulated

–mv541 ’C541 Serial port 0, serial port 1, timer

–mv542 ’C542 Buffered serial port, TDM serial port, timer

–mv543 ’C543 Buffered serial port, TDM serial port, timer

–mv544 ’C544 Serial port 0, serial port 1, timer

–mv545 ’C545 Buffered serial port, serial port 1, timer

–mv546 ’C546 Buffered serial port, serial port 1, timer

–mv547 ’C547 Buffered serial port, serial port 1, timer

–mv549 ’C549 Buffered serial port, serial port 1, timer

Detailed information about simulating the different types of serial ports is dis-
cussed in the following sections:

Type of Serial Port See Section . . .

Standard 2.12 on page 2-26

Buffered 2.13 on page 2-30

TDM 2.14 on page 2-33



Simulating Standard Serial Ports (Simulator Only)

 2-26

2.12 Simulating Standard Serial Ports (Simulator Only)

The ’C54x simulator supports standard serial port transmission and reception
by reading data from, and writing data to, the files associated with the DXR/
TDXR and DRR/TDRR registers, respectively.

The simulator also provides limited support for the simulation of the serial port
control pins (frame synchronization pins) with the help of external event simu-
lation capability. Frame synchronization pin values for receive and transmit op-
erations at various instants of time are fed through the files associated with the
pins.

The ’C54x simulator supports the following operations in the standard serial
port simulation:

� Internal clocks (1/4 CPU clock) and external clocks for the transmit
and receive operations.  External clocks are simulated by using the
DIVIDE command (described on page 2-27) in the files connected to the
FSX/TFSX and FSR/TFSR pins.

� External frame synchronization pulses  (FSX/TFSX transmit and FSR/
TFSR receive frame synchronization pulses). Transmit and receive op-
erations are initiated when the signals for these values go high.

� The operations associated with the following memory-mapped registers:

Register Memory Bits Used Description

SPC 0x22 FO Format specifier (8/16 bits)

TSPC 0x32 MCM
XRST/RRST
XRDY/RRDY
XSREMPTY
RSRFULL

Internal/external clock
Transmit/receive reset
Transmit/receive ready
Transmit register empty flag
Receive register full flag

DXR
TDXR

0x20
0x30

All bits are used Transmit data register

DRR
TDRR

0x21
0x31

All bits are used Receive data register



 Simulating Standard Serial Ports (Simulator Only)

2-27  Defining a Memory Map

Setting up your transmit and receive operations

The ’C54x simulator supports the simulation of the following pins using exter-
nal event simulation. The pulses occurring on the FSX and FSR pins initiate
the standard serial port transmit and receive operations, respectively.

� FSR/TFSR—Frame synchronization pulses for the receive operation

� FSX/TFSX—Frame synchronization pulses for the transmit operation

Connect the files to the pins using the PINC (pin connect) command (de-
scribed on page 2-23). Use the following command syntax, selecting the ap-
propriate command for the pin you want:

pinc FSX, filename
pinc TFSX, filename
pinc FSR, filename
pinc TFSR, filename

filename is the name of the file that contains the CPU cycles at which the pin
value goes high. Use the following syntax in the files to define clock cycles:

[clock cycle] rpt {n | EOS}

Note that the square brackets are used only with logic values for the BIO pin.
For more information about defining clock cycles, see Section 2.10 on page
2-21.

Additionally, you can use the DIVIDE command to specify the clock divide ratio
for the device. Use the following syntax in the files for the DIVIDE command:

DIVIDE r

r is a real number or integer specifying the ratio of serial port clock versus the
CPU clock. Use the divide ratio when the serial port is configured to use the
external clock. When you use the DIVIDE command, it must be the first com-
mand in the file.

The following example specifies the clock ratio of the transmit clock and the
clock cycles for the occurrence of TFSX pulses (if this file is connected to the
TFSX pin):

DIVIDE 5
100  +200  +100

The DIVIDE command specifies the divide-down ratio of the clock against the
CPU clock. That is, the CLKX frequency is 1/5 of the CPU clock. The second
line indicates that the TFSX should go high at the 100th, 300th (100 + 200),
and 400th (300 + 100) CPU cycles. The TFSX pin goes high in the 500th,
1500th, and 2000th cycles of the serial port clock.



Simulating Standard Serial Ports (Simulator Only)

 2-28

Connecting input/output files

Input and output files are connected to DRR/TDRR and DXR/TDXR registers
for receive and transmit operations, respectively. To simulate the transmit op-
eration, data is written to the file that is connected to the DXR/TDXR register.
To simulate the receive operation, data is read from the file that is connected
to the DRR/TDRR register.

The input and output file formats for the standard serial port operation requires
at least one line containing an hexadecimal number. The following is an ac-
ceptable format for an input file:

0055
aa55
efef
dead

Note:

To simulate the standard serial port 0, use the DXR and DRR registers and
the FSX and FSR pins. To simulate the standard serial port 1, use the TDXR
and TDRR registers and the TFSX and TFSR pins.



 Simulating Standard Serial Ports (Simulator Only)

2-29  Defining a Memory Map

Programming the simulator

To simulate the standard serial port, configure the DXR/TDXR and DRR/
TDRR registers as the output port (OPORT) and the input port (IPORT), re-
spectively. Connect these ports to an output file and an input file. Also, connect
files to the TFSX/FSX and TFSR/FSR pins to specify the clock cycles during
which the frame synchronization pins go high.

To make these connections, use the following commands in the simulator ini-
tialization batch file (siminit.cmd):

ma DRR,1,1,R|P
ma DXR,1,1,W|P

mc DRR,1,1, receive filename ,READ
mc DXR,1,1, transmit filename ,WRITE

pinc FSX, fsx timing filename
pinc FSR, fsr timing filename

Variable Description

receive filename The file to read data from, which simulates the input port

transmit filename The file to write data to, which simulates the output port

fsx timing filename The file that contains the CPU cycles at which the FSX
frame synchronization pin goes high

fsr timing filename The file that contains the CPU cycles at which the FSR
frame synchronization pin goes high



Simulating Buffered Serial Ports (Simulator Only)

 2-30

2.13 Simulating Buffered Serial Ports (Simulator Only)

The ’C54x simulator supports buffered serial port transmission and reception
by reading data from and writing data to the files associated with the DXR and
DRR registers, respectively.

The simulator also provides limited support for the simulation of the serial port
control pins (frame synchronization pins) with the help of external event simu-
lation capability. Frame synchronization pin values for receive and transmit op-
erations at various instants of time are fed through the files associated with the
pins. The ’C54x simulator supports the following operations in the buffered se-
rial port simulation:

� Automatic buffering and standard serial port modes

� Internal clocks (1/(CLKDV + 1) CPU clock) and external clocks for the
transmit and receive operations

� External frame synchronization pulses  (FSX transmit and FSR receive
frame synchronization pulses). Transmit and receive operations are initi-
ated when the signals for these values go high.

� The operations associated with the following memory-mapped registers:

Register Memory Bits Used Description

SPC 0x22 FO
MCM
XRST/RRST
XRDY/RRDY
XSREMPTY
RSRFULL

Format specifier (8/16 bits)
Internal/external clock
Transmit/receive reset
Transmit/receive ready
Transmit register empty flag
Receive register full flag

DXR 0x21 All bits are used Transmit data register

DRR 0x20 All bits are used Receive data register

SPCE 0x23 CLKDV
FE
RH/TH
BXE/BRE
HALTX/HALTR

Clock divide ratio
Extended format specifier
Buffer half received or transmitted
Enable/disable automatic buffering
Switch to standalone mode after the
current half is transmitted/received

AXR 0x38 All bits are used Address register for transmit

ARR 0x3a All bits are used Address register for receive

BKX 0x39 All bits are used Block size register for the transmit

BKR 0x3b All bits are used Block size register for the receive



 Simulating Buffered Serial Ports (Simulator Only)

2-31  Defining a Memory Map

Setting up your transmit and receive operations

The ’C54x simulator supports the simulation of the following pins using exter-
nal event simulation. The pulses occurring on the FSX and FSR pins initiate
the buffered serial port transmit and receive operations, respectively.

� FSR—Frame synchronization pulses for the receive operation

� FSX—Frame synchronization pulses for the transmit operation

Connect the files to the pins using the PINC (pin connect) command (de-
scribed on page 2-23). Use the following command syntax, selecting the ap-
propriate command for the pin you want:

pinc FSX, filename
pinc FSR, filename

filename is the name of the file that contains the CPU cycles at which the pin
value goes high. Use the following syntax in the files to define clock cycles:

[clock cycle] rpt {n | EOS}

Note that the square brackets are used only with logic values for the BIO pin.
For more information about defining clock cycles, see Section 2.10 on page
2-21.

Additionally, you can use the DIVIDE command to specify the clock divide ratio
for the device. Use the following syntax in the files for the DIVIDE command:

DIVIDE r

r is a real number or integer specifying the ratio of serial port clock versus the
CPU clock. Use the divide ratio when the serial port is configured to use the
external clock. When you use the DIVIDE command, it must be the first com-
mand in the file.

The following example specifies the clock ratio of the transmit clock and the
clock cycles for the occurrence of TFSX pulses (if this file is connected to the
TFSX pin):

DIVIDE 5
100  +200  +100

The DIVIDE command specifies the divide-down ratio of the clock against the
CPU clock. That is, the CLKX frequency is 1/5 of the CPU clock. The second
line indicates that the TFSX should go high at the 100th, 300th (100 + 200),
and 400th (300 + 100) CPU cycles. The TFSX pin goes high in the 500th,
1500th, and 2000th cycles of the serial port clock.



Simulating Buffered Serial Ports (Simulator Only)

 2-32

Connecting input/output files

Input and output files are connected to DRR and DXR registers for receive and
transmit operations respectively. To simulate the transmit operation, data is
written to the file that is connected to the DXR register. To simulate the receive
operation, data is read from the file that is connected to the DRR register.

The input and output file formats for the buffered serial port operation requires
at least one line containing an hexadecimal number. The following example
shows an acceptable format for an input file:

0055
aa55
efef
dead

Programming the simulator

To simulate the buffered serial port, configure the DXR and DRR registers as
the output port (OPORT) and the input port (IPORT), respectively. Connect
these ports to an output file and an input file. Also, connect files to the TFSX/
FSX and TFSR/FSR pins to specify the clock cycles during which the frame
synchronization pins go high.

To make these connections, use the following commands in the simulator ini-
tialization batch file (siminit.cmd):

ma DRR,1,1,R|P
ma DXR,1,1,W|P

mc DRR,1,1, receive filename ,READ
mc DXR,1,1, transmit filename ,WRITE

pinc FSX, fsx timing filename
pinc FSR, fsr timing filename

Variable Description

receive filename The file to read data from, which simulates the input port

transmit filename The file to write data to, which simulates the output port

fsx timing filename The file that contains the CPU cycles at which the FSX
frame synchronization pin goes high

fsr timing filename The file that contains the CPU cycles at which the FSR
frame synchronization pin goes high



 Simulating TDM Serial Ports (Simulator Only)

2-33  Defining a Memory Map

2.14 Simulating TDM Serial Ports (Simulator Only)

The ’C54x simulator supports TDM serial port transmission and reception by
reading data from and writing data to the files associated with the TDXR and
TDRR registers, respectively.

The simulator also provides limited support for the simulation of the TDM port
control pins (frame synchronization pins) with the help of external event simu-
lation capability. Frame synchronization pin values for receive and transmit op-
erations at various instants of time are fed through the files associated with the
pins.

The ’C54x simulator supports the following operations in the TDM serial port
simulation:

� TDM and standard serial port modes

� Internal clocks (1/4 CPU clock) and external clocks for the transmit
and receive operations.  External clocks are simulated by using the
DIVIDE command in the files connected to the TFSX and TFSR pins.

� External frame synchronization pulses  (TFSX transmit and TFSR re-
ceive frame synchronization pulses). Transmit and receive operations are
initiated when the signals for these values go high.

� The operations associated with the following memory-mapped registers:

Register Memory Bits Used Description

TSPC 0x32 TDM Multiprocessor/normal mode

MCM Internal/external clock

XRST/RRST Transmit/receive reset

XRDY/RRDY Transmit/receive ready

XSREMPTY Transmit register empty flag

RSRFULL Receive register full flag

TCSR 0x33 All bits are used Channel select register

TRTA 0x34 All bits are used Receive/transmit address reg-
ister

TRAD 0x35 All bits are used Receive address register

TDXR 0x31 All bits are used Transmit data register

TDRR 0x30 All bits are used Receive data register



Simulating TDM Serial Ports (Simulator Only)

 2-34

Setting up your transmit and receive operations

The ’C54x simulator supports the simulation of the following pins using exter-
nal event simulation. The pulses occurring on the TFSX and TFSR pins initiate
the TDM serial port transmit and receive operations, respectively.

� TFSR—Frame synchronization pulses for the receive operation

� TFSX—Frame synchronization pulses for the transmit operation

Connect the files to the pins using the PINC (pin connect) command (de-
scribed on page 2-23). Use the following command syntax, selecting the ap-
propriate command for the pin you want:

pinc TFSX, filename
pinc TFSR, filename

filename is the name of the file that contains the CPU cycles at which the pin
value goes high. Use the following syntax in the files to define clock cycles:

[clock cycle] rpt {n | EOS}

Note that the square brackets are used only with logic values for the BIO pin.
For more information about defining clock cycles, see Section 2.10 on page
2-21.

Additionally, you can use the DIVIDE command to specify the clock divide ratio
for the device. Use the following syntax in the files for the DIVIDE command:

DIVIDE r

r is a real number or integer specifying the ratio of serial port clock versus the
CPU clock. Use the divide ratio when the serial port is configured to use the
external clock. When you use the DIVIDE command, it must be the first com-
mand in the file.

The following example specifies the clock ratio of the transmit clock and the
clock cycles for the occurrence of TFSX pulses (if this file is connected to the
TFSX pin):

DIVIDE 5
100  +200  +100

The DIVIDE command specifies the divide-down ratio of the clock against the
CPU clock. That is, the CLKX frequency is 1/5 of the CPU clock. The second
line indicates that the TFSX should go high at the 100th, 300th (100 + 200),
and 400th (300 + 100) CPU cycles. The TFSX pin goes high in the 500th,
1500th, and 2000th cycles of the serial port clock.



 Simulating TDM Serial Ports (Simulator Only)

2-35  Defining a Memory Map

Connecting input/output files

Input and output files are connected to TDRR and TDXR registers for receive
and transmit operations, respectively. To simulate the transmit operation, data
is written to the file that is connected to the TDXR register. To simulate the re-
ceive operation, data is read from the file that is connected to the TDRR regis-
ter. Use the following syntax to create the files:

channel-address  data

channel-address specifies the TDM channel in which transmission/reception
takes place. data specifies the value that is written or read from the file. Each
field is in hexadecimal format separated by spaces. The following is an accept-
able format for an input file:

10  0055
34  aa55
80  efef
01  dead

Programming the simulator

To simulate the TDM serial port, configure the TDXR and TDRR registers as
the output port (OPORT) and the input port (IPORT), respectively. Connect
these ports to an output file and an input file. Also, connect files to the TFSX/
FSX and TFSR/FSR registers to specify the clock cycles during which the
frame synchronization pins go high.

To make these connections, use the following commands in the simulator ini-
tialization batch file (siminit.cmd):

ma TDRR,1,1,R|P
ma TDXR,1,1,W|P

mc TDRR,1,1, receive filename ,READ
mc TDXR,1,1, transmit filename ,WRITE

pinc TFSX, fsx timing filename
pinc TFSR, fsr timing filename

Variable Description

receive filename The file to read data from, which simulates the input port

transmit filename The file to write data to, which simulates the output port

fsx timing filename The file that contains the CPU cycles at which the FSX
frame synchronization pin goes high

fsr timing filename The file that contains the CPU cycles at which the FSR
frame synchronization pin goes high


