COMMUNICATION PRODUCTS

1991 Data Book

Table of Contents

INDEX Section **K-SERIES MODEM FAMILY** Section MODEM PROTOCOL **& BUS INTERFACE** Section SPECIAL MODEM PRODUCTS Section TONE SIGNALLING Section **TELEPHONY**/ DIGITAL TELECOM Section CUSTOM/SEMICUSTOM CAPABILITIES Section **QUALITY ASSURANCE** AND RELIABILITY Section PACKAGING/ORDERING INFORMATION Section GLOSSARY Section SALES OFFICES/ DISTRIBUTORS

1

2

3

4

5

6

8

9

10

Advanced and Preliminary Information In this data book the following conventions are used in designating a data sheet

tions are used in designating a data shee "Advanced" or "Preliminary."

Advance Information-

Indicates a product still in the design cycle, and any specifications are based on design goals only. Do not use for final design.

Preliminary Data-

Indicates a product not completely released to production. The specifications are based on preliminary evaluations and are not guaranteed. Small quantities are available, and Silicon Systems should be consulted for current information.

Product Index

Page

	Customer Reply Card	
	Table of Contents	
	Product Index	
	Discontinued Parts List	
	Numerical Index	IV
	Communication Products Capabilities	
	Product Selector Guide	
		•••••••••••••••••••••••••••••••••••••••
Sectio	n 1. K-SERIES SINGLE-CHIP MODEM FAMILY	
Jectio	K-Series Modem Family Introduction	1-0
	73K212/K212L, Bell 212A/103 Single-Chip Modem	
	73K221/K221L, CCITT V.22, V.21 Single-Chip Modern	1_25
	73K222/73K222L, V.22, V.21, Bell 212A Single-Chip Modern	
	73K222U, Single-Chip Modem with UART	
	73K224L, V.22 bis Single-Chip Modem	
	73K302L, Bell 212A, 103, 202 Single-Chip Modem	
	73K321L, CCITT V.23, V.21 Single-Chip Modem	
	73K322L, CCITT V.23, V.22, V.21 Single-Chip Modem	
	73K324L, CCITT V.22 bis, V.22, V.21, V.23 Single-Chip Modem	1-225
	K-Series Application Notes	4 055
	- Setting DTMF Levels for 1200 Bit/s K-Series Modems	
	- SSI 73K212A High Speed Connect Sequence	
	- V.22 & V.22bis Connect Sequences	
	- Remote Loop Handshake Sequence	
	- SSI 73K224 Retrain at 2400 Bit/s	
	- SSI 73K212, K222 Originate & Answer Handshake Sequences	
	- SSI 73K224 Originate & Answer Handshake Sequences	1-262
	- Modem Performance Testing	
	- Troubleshooting the Modem Design	1-2/0
0		
Sectio		
	73D2180, Bell 212A/103 CCITT V.22, V.21 Modem Device Set	
	73D2240, V.22 bis 2400 Bit/s Low Power Modern Device Set	
	73D2404, V.22bis 2400 Bit/s Modem Device Set	
NEW	73D2407, MNP5 Controller & Modern Device Set	
NEW	73D2417, MNP5 Datacom/FAX Modem Device Set	
NEW	73D2420/2421, V.42, V.42bis Protocol & Controller Device Set	
NEW	73D2291/2292, FAX Modem Device Set with TIA/EIA User Interface	
NEW	73D2331/2332, V.17 FAX Modem Device Set with EIA 578 User Interface	
NEW	73M376, K-Series Integrated Line Interface Unit	
	73M450/450F, Universal Asynchronous Receiver/Transmitter	
	73M450L/450LF, Universal Asynchronous Receiver/ Transmitter	
NEW	73M550/1550/2550, Universal Asynchronous Receiver/Transmitter with FIFOs	2-213
	73M1450/2450 Universal Asynchronous Receiver/Transmitter	2-247
NEW	73M650/1650, Serial Packet Controller	2-271
Sectio		
	73M214, Modem Analog Front End	3-1
NEW	73M235, High Speed Modem Analog Front End	3-27
NEW	73M670, V.32 Multi-mode Modem, Analog Front End	3-29
Sectio		
	75T201, Integrated DTMF Receiver	4-1
	75T202/203, 5V Low-Power DTMF Receiver	
	75T204, 5V Low-Power Subscriber DTMF Receiver	
	75T2089, DTMF Transceiver	

	75700	090, DTMF Transceiver and Call Progress Detection	4.99
		1990, DTMF Transceiver and Can Progress Detection	
		57/957A, DTMF Receiver with Dial Tone Reject Filter	
		Receiver Application Guide	
		30, Call Progress Tone Detector	
	/5190	1/902, Precise Call Progress Tone Delector	
Sectior	ר 5 .	TELEPHONY/DIGITAL TELECOM	
	78A09	03A/B, 12x8x1 Crosspoint Switch with Control Memory	5-1
	78A20	07, MFR1 Receiver	5-13
		33, DS-1 Line Interface	
	78P23	34, 2048 KBit/s PCM Interface Unit	5-33
	78P23	36, DS-3 Line Interface	5-45
NEW		361, STS-1 Line Interface	
NEW	78P23	362, 34.368 Mbit/s Line Interface	5-59
Sectior	16.	CUSTOM/SEMICUSTOM CAPABILITIES	6-1
Sectior	۱ 7 .	QUALITY ASSURANCE AND RELIABILITY	7-1
Sectior	ı 8.	PACKAGING/ORDERING INFORMATION	
	Packa	iging Index	8-0
	Packa	iging Matrix	8-1
	Packa	ige Types	8-2
		ting Number Definition	
	Plastic	c DIP 8, 14, 16 and 18 Pins	8-5
	Plastic	DIP 20, 22, 24 and 24S Pins	8-6
		c DIP 28, 32 and 40 Pins	
		9 8, 14, 16 and 18 Pins	
		22, 24 and 28 Pins	
		e Mount Device (PLCC) 28, 32 and 44 Leads	
		e Mount Device (PLCC) 52 and 68 Leads	
		Fine Pitch 52, 100	
	SON 8	3, 14 and 16 Leads	8-13
	SOL 1	6, 18, 20, 24 and 28 Leads	8-14
	SOL 3	4 and 36 Leads	
		32 Leads	
		36 Leads	
		44 Leads	
		ackage Dimensional Diagrams and Chart 10, 24, 28 and 32 Leads	
Sectior	n 9.	GLOSSARY	9-1
0			40.0
Section	1 10.	SALES OFFICES/DISTRIBUTORS	

DISCONTINUED PARTS LIST

The following parts are no longer supplied or supported by Silicon Systems. Please note alternate sources.

Part #	Alternate Source	No Alternate Source
22100	RCA	SSI 291 (use SSI K-Series)
22101/102	RCA	SSI 213 (use SSI 73M3522)
22106	RCA	SSI 263A (SC02)
SSI 32C452A	SSI 32C452	SSI 169 (SC01)
SSI 32D536	SSI 32D5362	SSI 32D450A
SSI 32D537	SSI 32D5371/2	SSI 32P542
6020 & 60XX	Plessey Semiconductor	SSI 73M3522
any 60 number	(516) 543-0200	SSI 78P8050
(A/D, D/A convertors)		SSI 78P8060

Numerical Index

SSI Device Numbers

Page

73D2180	2-1
73D2240	2-23
73D2404	2-47
73D2407	2-73
73D2417	2-97
73D2420/2421	2-121
73D2291/2292	2-151
73D2331/2332	2-169
73K212/212L	1-1
73K221/221L	1-25
73K222/222L	1-51
73K222U	1-77
73K224L	1-117
73K302L	1-145
73K321L	1-173
73K322L	1-197
73K324L	1-225
73M214	3-1
73M235	3-27
73M376	2-173
73M450/450F	2-181
73M450L/450LF	2-209
73M550/1550/2550F	2-213
73M1450/2450	
73M650/1650	2-271
73M670	3-29
75T201	4-1
75T202/203	4-9
75T204	4-17
75T2089	4-25
75T2090	
75T2091	4-41
75T957/957A	
75T980	
75T981/982	
78A093A/B	
78A207	5-13
78P233	
78P234	
78P236	
78P2361	
78P2362	

Silicon Systems' Communication Products Capabilities

Silicon Systems offers a broad line of standard integrated circuits aimed at providing cost effective system solutions for many mixed signal communications equipment problems. For those manufacturers that have special mixed signal requirements we offer custom or customized integrated circuit capability. The heart of Silicon Systems' efforts in the communications market is the continuous expansion of circuit technology. Our pioneering work with CMOS switched capacitor filters enabled us to develop the first integrated DTMF receiver which led to our industry standard DTMF family. This CMOS switched capacitor technology has been used in many non-DTMF filtering functions of other Silicon Systems integrated circuits, most notably, our family of modem products.

The pioneering continues as our mixed signal technology expansion has led us to develop DSP techniques to supplement traditional analog signal processing techniques. The SSI 73K224 V.22bis modem is one example of how the use of this DSP technology has been used with analog signalling processing to optimize die size so that a single IC modem solution was possible. Our highly integrated system solutions demonstrate not only technological leadership in our own semiconductor field but also the ability to anticipate the growing needs of the fast-paced communications marketplace.

Here are a few examples of custom and standard ICs that demonstrate our broad communications IC capabilities.

CMOS

Integrated Circuit Function	Application
DTMF Receiver	Decodes Touch-Tone® Telephone Signals
One-chip Modems	Data Transmission
Error Control and Compression	Data Transmission
Remote Transmitter	Telephone Ans. Machine
Modem AFE	V.32 Data Transmission
Analog Crosspoint Switch	PBX's
Video Processor	Infrared Video System
16 Channel Switching Matrix	Bank Comm. Systems
Digital Loop Detector	Traffic Signal Control
∑∆ Convertor Plus DSP and Control AFE	High Speed Data Transmission
DSP Based Filter	Programmable Filters
Satellite Descrambler	CATV Receiver
Modem AFE	19.2 Kbit/s Data Transmission
DSP-based Telemetry	Watt Hour Meter

BIPOLAR

Integrated Circuit Function	Application
Audio System Receiver	Telephone Answering Machine
VHF/UHF Gain Mixer	Radio Receiver
Digital Receiver	Remote Control
PCM Encoder/Decoder	Telecom System
Digital Correlator/Integrator	Radio Telescope
DS-1 Line Interface	T1 Channel Banks Multiplexers
LAN Transceiver	IEEE 802.3 Ethernet LAN
Modem AFE	1200 bit/s Data Transmission
DS-3 Line Interface	T3 Sonet

PROCESSES

Three **bipolar** processes are used to optimize cost/ performance. Key features include polysilicon emitter structures, base and collector plugs, double metal, fr from 3 to 7.5 GHz and metal-nitride-poly capacitors.

There are also three **CMOS** processes in production for cost/performance optimization. Key features include poly-poly capacitors, poly resistors, operating voltages from 5 to 12 volt, double poly and double metal.

PRODUCT QUALITY

Silicon Systems' quality goals will be given the highest priority in the 90s. The mission to achieve total customer satisfaction through quality excellence forms the basis of The Silicon Systems Master Quality Plan. The Quality Mission further sets its sites on products to have fewer than 1 ppm defective by the end of the decade through an ongoing process of specified continuous improvement in every phase of its operation.

CUSTOMER SERVICE

Silicon Systems provides individualized service for every customer. Our Customer Service Department is dedicated to responsive service and is staffed with personnel trained to consider our customers' needs as their most urgent requirement. Product quality and service are both viewed as cornerstones for Silicon Systems' continued growth.

۷

Communication IC Selector Guide

	Operating Modes	Features		 Power	Available
Device Number	212A V.22, V.22bis			Supply	Packages

K-SERIES SINGLE CHIP MODEM FAMILY

SSI 73K212	×			300, 1200 bit/s, Bell 212A/103 compatible	12	28, 22 DIP, 28 PLCC
SSI 73K212L	×			Low power 73K212, 40 mW, +5V single supply	5	28, 22 DIP, 28 PLCC
SSI 73K212U	X			73K212 with integral 16C450 UART	5	40 DIP
SSI 73K221		×		600, 1200 bit/s, CCITT V.22/V.21 compatible	12	28, 22 DIP, 28 PLCC
SSI 73K221L		×		Low power 73K221, 40 mW, +5V single supply	5	28, 22 DIP, 28 PLCC
SSI 73K221U		×		73K221 with integral 16C450 UART	5	40 DIP
SSI 73K222	×	×		300, 600, 1200 bit/s Bell 212/103, CCITT V.22/V.21	12	28, 22 DIP, 28 PLCC
SSI 73K222L	X	×		Low power 73K222, 40 mW, +5V single supply	5	28, 22 DIP, 28 PLCC
SSI 73K222U	X	×		73K222 with integral 16C450 UART	5	40 DIP
SSI 73K224	×	×	×	300, 1200, 2400 bit/s, V.22bis, V.22, V.21 Bell 212/103 compatible	12	28, 44 PLCC
SSI 73K224L	×	X	×	Low power 73K224, 100mW,+5V single supply	5	28, 44 PLCC
SSI 73K302L	×			0-1200 bit/s		
SSI 73K321L				0-1200 bit/s, V.23, V.21 modes	5	28, 22 DIP, 28 PLCC
SSI 73K322L		X	1 · · ·	73K221 w/ V.23 mode (European applications)	5	28, 22 DIP, 28 PLCC
SSI 73K324L		×	×	300, 1200, 2400 bit/s, V.22bis, V.22, V.21 w/ V.23 mode (European applications)		

MODEM PROTOCOL & BUS INTERFACE PRODUCTS

SSI 73D2180	×	X		1200 bit/s low power "AT" modem device set for integral applications	5	40 DIP, 44 PLCC
SSI 73D2240	×	X	×	2400 bit/s low power "AT" modem device set	5	28, 40 DIP, 32, 44 PLCC
SSI 73D2404	×	X	×	2400 bit/s "AT" modem device set	±5	28, 40 DIP, 28, 44 PLCC
SSI 73M450				16C450 pin compatible UART	5	40 DIP, 44 PLCC
SSI 73M450F				Fast version of SSI 73M450 UART	5	40 DIP, 44 PLCC
SSI 73M1450				28-pin version of SSI 73M450	5	28 DIP, 28 PLCC
SSI 73M2450				Adds µPRST function to SSI 73M1450	5	28 DIP, 28 PLCC
SSI 73M550				16C550 pin compatible UART	5	40 DIP, 44 PLCC
SSI 73M550F				Fast version of SSI 73M550 UART	5	40 DIP, 44 PLCC
SSI 73M1550				28-pin version of SSI 73M550	5	28 DIP, 28 PLCC
SSI 73M2550				Adds µPRST function to SSI 73M1550	5	28 DIP, 28 PLCC

Communication IC Selector Guide

Silico	on Systems	Circuit Function	Features	· · ·	Power	Available
Devic	æ Number				Supply	Packages

SPECIAL MODEM PRODUCTS

SSI 73M214	2400 bit/s Modem Filter	V.22bis/V.22/V.21, Bell 212/103 modes	±5V	28 DIP, 28 PLCC
SSI 73M223	1200 bit/s Modem	Compact HDX V.23 modem	5V	16 DIP
SSI 73M3522	1200 bit/s Modem Filter	High performance filter for V.22/212A modes	±5V	16 DIP

TONE SIGNALLING PRODUCTS

SSI 75T201	Integrated DTMF Receiver	Binary of 2-of-8 output	12V	22 DIP
SSI 75T202	Int. DTMF Receiver	Low power, binary output	5V	18 DIP
SSI 75T203	Int. DTMF Receiver	Early detect, binary output	5V	18 DIP
SSI 75T204	Int. DTMF Receiver	Low power, binary output	5V	14 DIP, 16 SO
SSI 75T2089	Int. DTMF Transceiver	Generator & receiver, μP interface	5V	22 DIP
SSI 75T2090	Int. DTMF Transceiver	Like 75T2089 w/ call progress detect	5V	22 DIP
SSI 75T2091	Int. DTMF Transceiver	Like 75T2090 w/ early detect	5V	28 DIP, 28 PLCC
SSI 75T957	Int. DTMF Receiver	Early detect, dial tone reject	5V	22 DIP, 24 SO
SSI 75T980	Imprecise Call Progress Det.	Energy detect in 305-640 Hz band, Teltone	5V	8 DIP
SSI 75T981	Precise Call Progress Det.	Det. 350, 400, 440, 480 Hz, Teltone 2nd source	5V	22 DIP
SSI 75T982	Precise Call Progress Det.	Det. 350, 440, 480, 620 Hz, Teltone 2nd source	5V	22 DIP

TELEPHONY / DIGITAL TELECOM

SSI 78P233	DS-1 Line Interface	T1 clock data recovery, transmit equalization	5V	24 DIP, SDIP, SO
SSI 78P234	2048 kbit/s PCM Interface	Receive clock & data recovery, transmit drivers	5V	20 DIP, SO
SSI 78A093A/B	12x8x1 Crosspoint Switch	Low ON resistance, two versions	5-12V	40 DIP, 44 PLCC
SSI 78A207	Integrated MF Receiver	Detects central office toll signals	5V	20 DIP
SSI 78A400	4-Wire Loopback	2713 Hz detector, failsafe timeouts	±5V	16 DIP, 18 SO
SSI 78A420	4-Wire Loopback	As above w/ gain/loss block	±5V	22 DIP

VIII

Section

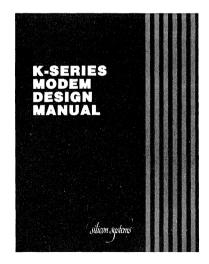
K-SERIES MODEM FAMILY

Silicon Systems K-Series Family of One-Chip Modems

Silicon Systems is a leader in the design and manufacturing of CMOS VLSI modems, and has been providing innovative solutions to the communication industry for more than ten years. Currently, Silicon Systems offers the most extensive line of one-chip modem ICs available, with high-performance, cost-effective designs suitable for a wide range of applications. Silicon Systems' fully compatible modem IC family has redefined the modem IC as a universal component which can be easily integrated into any system. Designs can be upgraded to meet different standards and speeds by simply substituting one K-Series IC for another. Using a K-Series family modem IC in your application eliminates product obsolesence, and minimizes development costs.

The Silicon Systems modem IC family consists of four basic products:

- 1. The SSI 73K222, a multi-mode device which combines both Bell 212A/103 and V.22/V.21 capability in one chip, with operating modes at 0 - 30, 600 and 1200 bit/s.
- 2. The SSI 73K222U which combines the functionality of the 73K222 with the industry standard 16C450 UART.
- The SSI 73K224, a major technological breakthrough which provides 2400 bit/s V.22bis operation in addition to V.22/V.21 and Bell 212A/103 modes in a single IC.
- 4. The SSI 73K322 provides CCITT V.22/V.21 plus V.23 Videotex modes.


New additions to Silicon Systems' modem IC family extend the available operating modes and provide features which greatly simplify integral modem design. The SSI 73K324 offers V.22bis, V.22/V.21 and V.23 operating modes on one chip. These products dramatically reduce external circuitry required for dedicated integral modem designs.

Silicon Systems' one-chip modem IC products represent technical achievements unmatched in the industry. An advanced Digital Signal Processor resides on the same chip with sophisticated analog circuitry in the SSI 73K224 and SSI 73K324 products. "U" versions of the K-Series devices integrate an industry standard UART with full modem capability on a single chip. In addition, an innovative bus structure makes a separate controller unnecessary in dedicated integral designs. All K-Series devices are available in low-power versions. This feature allows optimal performance with single +5V supply operation and is unique to Silicon Systems' products.

Silicon Systems' single-chip modem IC family is designed to be the most effective solution for a wide variety of modem applications. The products provide for a full range of communications standards and speeds up to 2400 bit/s. Moreover, features can be extended to include additional modes and higher operating speeds without impacting existing designs. Take advantage of these capabilities. Design for tomorrow's needs today by using Silicon Systems' K-Series modem IC family.

K-Series Modem Design Manual

The Silicon Systems K-Series Modem Design Manual contains a large body of application literature for the K-Series family of single chip modem products. This manual is intended as a tutorial for those users who may be designing with modems for the first time, and also as a helpful guide for more experienced modem designers.

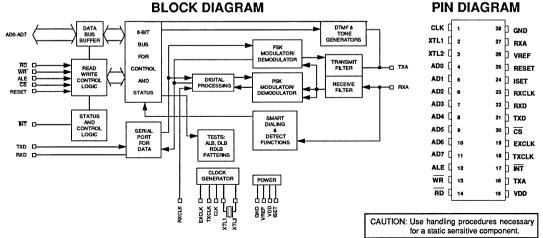
The K-Series Modem Design Manual is available through our worldwide network of representatives and distributors.

silicon systems®

ала 1 - А

July, 1990

DESCRIPTION


The SSI 73K212 is a highly integrated single-chip modem IC which provides the functions needed to construct a typical Bell 212A full–duplex modem. Using an advanced CMOS process that integrates analog, digital and switched–capacitor filter functions on a single substrate, the SSI 73K212 offers excellent performance and a high level of functional integration in a single 28- or 22-pin DIP configuration. The SSI 73K212L low power version of the SSI 73K212 provides identical performance and features, but operates from a single +5 volt supply with substantially lower power consumption.

The SSI 73K212 includes the DPSK and FSK modulator/demodulator functions, call progress and handshake tone monitor test modes and a DTMF dialer. This device supports all Bell 212A modes of operation allowing both synchronous and asychronous communications.

Test features such as analog loop, digital loop, and remote digital loopback are provided. Internal pattern generators are also included for self-testing. The SSI73K212 is designed to appear to the systems designer as a microprocessor peripheral, and will easily interface with popular one-chip microprocessors (Continued)

FEATURES

- One-chip Bell 212A and 103 standard compatible modem data pump
- Full-duplex operation at 0-300 bit/s (FSK) or 1200 bit/s (DPSK)
- Pin and software compatible with other SSI K-Series 1-chip modems
- Interfaces directly with standard microprocessors (8048, 80C51 typical)
- Serial (22-pin DIP) or parallel (28-pin DIP) microprocessor bus for control
- Serial port for data transfer
- Both synchronous and asynchronous modes of operation
- Call progress, carrier, precise answer tone and long loop detectors
- DTMF generators
- Test modes available: ALB, DL, RDL, Mark, Space, Alternating bit patterns
- Precise automatic gain control allows 45 dB dynamic range
- Space efficient 22- or 28-pin DIP packages
- CMOS technology for low power consumption using 30 mW @ 5V or 180 mW @ 12V
- Single +5 volt (73K212L) or +12 volt (73K212) versions

0790 - rev.

DESCRIPTION (Continued)

(80C51 typical) for control of modem functions through its 8-bit multiplexed address/data bus or serial control bus. An ALE control line simplifies address demultiplexing. Data communications occurs through a separate serial port only.

The SSI 73K212 is ideal for use in either free standing or integral system modem products where full-duplex 1200 bps data communications over the 2-wire switched telephone network is desired. Its high functionality, low power consumption and efficient packaging simplify design requirements and increase system reliability. A complete modem requires only the addition of the phone line interface, a control microprocessor, and RS-232 level convertor for a typical system. The SSI 73K212 is part of SSi's K-Series family of pin and function compatible single-chip modem products. These devices allow systems to be configured for higher speeds and Bell or CCITT operation with only a single component change.

OPERATION

ASYNCHRONOUS MODE

Data transmission for the DPSK mode requires that data ultimately be transmitted in a synchronous fashion. The SSI 73K212 includes ASYNC/SYNC and SYNC/ASYNC converters which delete or insert stop bits in order to transmit data within a 0.01% rate. In asynchronous mode the serial data comes from the TXD pin into the ASYNC/SYNC converter. The ASYNC/SYNC converter accepts the data provided on the TXD pin which normally must be 1200 bit/s +1.0%, -2.5%. The rate converter will then insert or delete stop bits in order to output a signal which is 1200 bit/s \pm .01% (\pm .01% is the required synchronous data rate accuracy).

The serial data stream from the ASYNC/SYNC converter is passed through the data scrambler and onto the analog modulator. The data scrambler can be bypassed under processor control when unscrambled data must be transmitted. The ASYNC/SYNC rate converter and the data scrambler are bypassed in all FSK modes. If serial input data contains a break signal through one character (including start and stop bits) the break will be extended to at least $2 \cdot N + 3$ bits long (where N is the number of transmitted bits/character).

Serial data from the demodulator is passed first through the data descrambler and then through the SYNC/ASYNC rate converter. The SYNC/ASYNC convertor will reinsert any deleted stop bits and transmit output data at an intra-character rate (bit-to-bit timing) of no greater than 1219 bit/s. An incoming break signal (low through two characters) will be passed through without incorrectly inserting a stop bit.

SYNCHRONOUS MODE

The Bell 212A standard defines synchronous operation only at 1200 bit/s. Operation is similar to that of the asynchronous mode except that data must be synchronized to a provided clock and no variation in data transfer rate is allowable. Serial input data appearing at TXD must be valid on the rising edge of TXCLK.

TXCLK is an internally derived 1200 Hz signal in internal mode and is connected internally to the RXCLK pin in slave mode. Receive data at the RXD pin is clocked out on the falling edge of RXCLK. The ASYNCH/SYNCH converter is bypassed when synchronous mode is selected and data is transmitted out at the same rate as it is input.

DPSK MODULATOR/DEMODULATOR

The SSI 73K212 modulates a serial bit stream into dibit pairs that are represented by four possible phase shifts as prescribed by the Bell 212A standard. The baseband signal is then filtered to reduce intersymbol interference on the bandlimited 2-wire telephone line. Transmission occurs using either a 1200 Hz (originate mode) or 2400 Hz carrier (answer mode). Demodulation is the reverse of the modulation process, with the incoming analog signal eventually decoded into di-bits and converted back to a serial bit stream. The demodulator also recovers the clock which was encoded into the analog signal during modulation. Demodulation occurs using either a 1200 Hz carrier (answer mode or ALB originate mode) or a 2400 Hz carrier (originate mode or ALB answer mode). The SSI 73K212 uses a phase locked loop coherent demodulation technique for optimum receiver performance.

FSK MODULATOR/DEMODULATOR

The FSK modulator produces a frequency modulated analog output signal using two discrete frequencies to represent the binary data. In the Bell 103, the standard frequencies of 1270 and 1070 Hz (originate, mark and

space) or 2225 and 2025 Hz (answer, mark and space) are used. V.21 mode uses 980 and 1180 Hz (originate, mark and space) or 1650 and 1850 Hz (answer, mark and space). Demodulation involves detecting the received frequencies and decoding them into the appropriate binary value. The rate converter and scrambler/descrambler are bypassed in the 103 mode.

PASSBAND FILTERS AND EQUALIZERS

High and low band filters are included to shape the amplitude and phase response of the transmit and receive signals and provide compromise delay equalization and rejection of out-of-band signals in the receive channel. Amplitude and phase equalization are necessary to compensate for distortion of the transmission line and to reduce intersymbol interference in the bandlimited receive signal. The transmit signal filtering approximates a 75% square root of raised Cosine frequency response characteristic.

AGC

The automatic gain control maintains a signal level at the input to the demodulators which is constant to within 1 dB. It corrects quickly for increases in signal which would cause clipping and provides a total receiver dynamic range of >45 dB.

PARALLEL BUS INTERFACE

Four 8-bit registers are provided for control, option select and status monitoring. These registers are addressed with the AD0, AD1, and AD2 multiplexed address lines (latched by ALE) and appear to a control microprocessor as four consecutive memory locations. Two control registers and the tone register are read/write memory. The status detect register is read only and cannot be modified except by modem response to monitored parameters.

SERIAL COMMAND INTERFACE

The serial command mode allows access to the SSI 73K212 control and status registers via a serial command port (22-pin version only). In this mode the A0, A1 and A2 lines provide register addresses for data passed through the data pin under control of the $\overline{\text{RD}}$ and $\overline{\text{WR}}$ lines. A read operation is initiated when the $\overline{\text{RD}}$ line is taken low. The next eight cycles of EXCLK will then transfer out eight bits of the selected address location LSB first. A write takes place by shifting in eight bits of data LSB first for eight consecutive cycles

of EXCLK. \overline{WR} is then pulsed low and data transferred into the selected register occurs on the rising edge of \overline{WR} .

SPECIAL DETECT CIRCUITRY

The special detect circuitry monitors the received analog signal to determine status or presence of carrier, call-progress tones, answer tone and weak received signal, (long loop condition). An unscrambled mark request signal is also detected when the received data out of the DPSK demodulator before the descrambler has been high for 165.5 ms \pm 6.5 ms minimum. The appropriate detect register bit is set when one of these conditions changes and an interrupt is generated for all purposes except long loop. The interrupts are disabled (masked) when the enable interrupt bit is set to 0.

DTMF GENERATOR

The DTMF generator will output one of 16 standard tone pairs determined by a 4-bit binary value and TX DTMF mode bit previously loaded into the tone register. Tone generation is initiated when the DTMF mode is selected using the tone register and the transmit enable (CR0 bit D1) is changed from 0 to 1.

PIN DESCRIPTION

POWER

NAME	28-PIN	22-PIN	TYPE	DESCRIPTION
GND	28	1	1	System Ground.
VDD	15	11	I	Power supply input, $12V+10\%, -20\%$ (73K212) or $5V\pm10\%$ (73K212L). Bypass with .1 and 22 μF capacitors to ground.
VREF	26	21	0	An internally generated reference voltage. Bypass with .1 μ F capacitor to GND.
ISET	24	19	I	Chip current reference. Sets bias current for op-amps. The chip current is set by connecting this pin to VDD through a 2 M Ω resistor. ISET should be bypassed to GND with a .1 μ F capacitor.

PARALLEL MICROPROCESSOR INTERFACE

ALE	12	-	1	Address latch enable. The falling edge of ALE latches the address on AD0-AD2 and the chip select on CS.			
AD0-AD7	4-11	-	1/0	Address/data bus. These bidirectional tri-state multi- plexed lines carry information to and from the internal registers.			
<u>cs</u>	20	-	Ι	Chip select. A low during the falling edge of ALE on this pirallows a read cycle or a write cycle to occur. AD0-AD7 with not be driven and no registers will be written if \overline{CS} (latched is not active. The state of \overline{CS} is latched on the falling edge of ALE.			
CLK	1	2	0	Output clock. This pin is selectable under processor control to be either the crystal frequency (for use as a processor clock) or 16 x the data rate for use as a baud rate clock in DPSK modes only. The pin defaults to the crystal frequency on reset.			
INT	17	13	0	Interrupt. This open drain output signal is used to inform the processor that a detect flag has occurred. The processor must then read the detect register to determine which detect triggered the interrupt. INT will stay low until the processor reads the detect register or does a full reset.			
RD	14	-	I	Read. A low requests a read of the SSI 73K212 internal registers. Data cannot be output unless both $\overline{\text{RD}}$ and the latched $\overline{\text{CS}}$ are active or low.			

1

PARALLEL MICROPROCESSOR INTERFACE (Continued)

NAME	28-PIN	22-PIN	TYPE	DESCRIPTION
RESET	25	20	I	Reset. An active high signal on this pin will put the chip into an inactive state. All control register bits (CR0, CR1, Tone) will be reset. The output of the CLK pin will be set to the crystal frequency. An internal pull down resistor permits power on reset using a capacitor to VDD.
WR	13	-	I	Write. A low on this informs the SSI 73K212 that data is available on AD0-AD7 for writing into an internal register. Data is latched on the rising edge of \overline{WR} . No data is written unless both \overline{WR} and the latched \overline{CS} are low.

SERIAL MICROPROCESSOR INTERFACE

A0-A2	-	5-7	I	Register Address Selection. These lines carry registe addresses and should be valid during any read or write operation.			
DATA	-	8	I/O	Serial Control Data. Data for a read/write operation clocked in or out on the falling edge of the EXCLK pin. The direction of data flow is controlled by the RD pin. RD low outputs data. RD high inputs data.			
RD	-	10	I	Read. A low on this input informs the SSI 73K212 that data or status information is being read by the processor. The falling edge of the \overline{RD} signal will initiate a read from the addressed register. The \overline{RD} signal must continue for eight falling edges of EXCLK in order to read all eight bits of the referenced register. Read data is provided LSB first. Data will not be output unless the \overline{RD} signal is active.			
WR		9	1	Write. A low on this input informs the SSI 73K212 that data or status information has been shifted in through the DATA pin and is available for writing to an internal register. The normal procedure for a write is to shift in data LSB first on the DATA pin for eight consecutive falling edges of EXCLK and then to pulse WR low. Data is written on the rising edge of WR.			
				AD0-AD7, ALE and \overline{CS} are removed and replaced with the nected pin. Also, the \overline{RD} and \overline{WR} controls are used differently.			
				n the 28-pin version by tying ALE high and \overline{CS} low. In this nd AD0, AD1 and AD2 become A0, A1 and A2, respectively.			

DTE USER INTERFACE

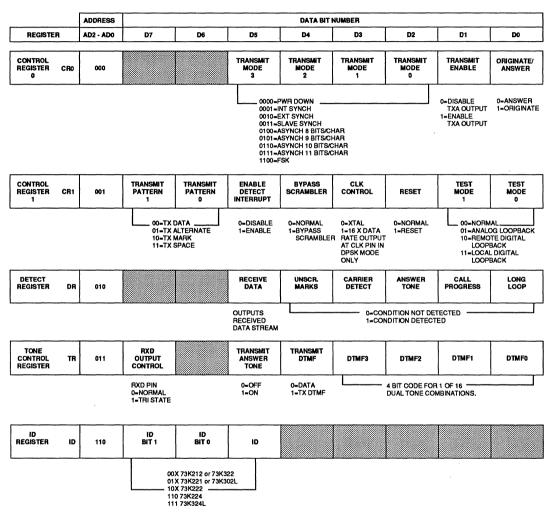
NAME	28-PIN	22-PIN	TYPE	DESCRIPTION				
EXCLK	19	15	I	External Clock. This signal is used in synchronous trans- mission when the external timing option has been selected. In the external timing mode the rising edge of EXCLK is used to strobe synchronous DPSK transmit data applied to the TXD pin. Also used for serial control interface.				
RXCLK	23	18	O Receive Clock. The falling edge of this clock outpu coincident with the transitions in the serial received d output. The rising edge of RXCLK can be used to latch valid output data. RXCLK will be valid as long as a car is present. O Received Data Output. Serial receive data is available					
RXD	22	17	0	Received Data Output. Serial receive data is available this pin. The data is always valid on the rising edge RXCLK when in synchronous mode. RXD will out constant marks if no carrier is detected.				
TXCLK	18	14	0	Transmit Clock. This signal is used in synchronous trans- mission to latch serial input data on the TXD pin. Data must be provided so that valid data is available on the rising edge of the TXCLK. The transmit clock is derived from different sources depending upon the synchronization mode selection. In Internal Mode the clock is generated inter- nally. In External Mode TXCLK is phase locked to the EXCLK pin. In Slave Mode TXCLK is phase locked to the RXCLK pin. TXCLK is always active.				
ТХD	21	16	I	Transmit Data Input. Serial data for transmission is applied on this pin. In synchronous modes, the data must be valid on the rising edge of the TXCLK clock. In asynchronous modes (1200 bit/s or 300 baud) no clocking is necessary. DPSK data must be 1200 bit/s +1%, -2.5%.				

ANALOG INTERFACE AND OSCILLATOR

RXA	27	22	I	Received modulated analog signal input from the tele- phone line interface.
ТХА	16	12	0	Transmit analog output to the telephone line interface.
XTL1 XTL2	2 3	3 4		These pins are for the internal crystal oscillator requiring a 11.0592 MHz parallel mode crystal and two load capacitors to Ground. Consult crystal manufacturer for proper valves. XTL2 can also be driven from an external clock.

REGISTER DESCRIPTIONS

Four 8-bit internal registers are accessible for control and status monitoring. The registers are accessed in read or write operations by addressing the A0, A1 and A2 address lines in serial mode, or the AD0, AD1 and AD2 lines in parallel mode. In parallel mode the address lines are latched by ALE. Register CR0 controls the method by which data is transferred over the phone line. CR1 controls the interface between the microprocessor and the SSI 73K212 internal state. DR is a detect register which provides an indication of monitored modem status conditions. TR, the tone control register, controls the DTMF generator, answer and guard tones and RXD output gate used in the modem initial connect sequence. All registers are read/write except for DR which is read only. Register control and status bits are identified below:


REGISTER BIT SUMMARY

		ADDRESS				DATA BIT	NUMBER				
REGISTE	R	AD2 - AD0	D7	D6	D5	D4	D3	D2	D1	DO	
CONTROL REGISTER 0	CRO	000			TRANSMIT MODE 3	TRANSMIT MODE 2	TRANSMIT MODE 1	TRANSMIT MODE 0	TRANSMIT ENABLE	ANSWER/ ORIGINATE	
CONTROL REGISTER 1	CR1	001	TRANSMIT PATTERN 1	TRANSMIT PATTERN 0	ENABLE DETECT INTERRUPT	BYPASS SCRAMBLER	CLK CONTROL	RESET	TEST MODE 1	TEST Mode 0	
DETECT REGISTER	DR	010			RECEIVE DATA	UNSCR. MARKS	CARRIER DETECT	ANSWER TONE	CALL PROGRESS	LONG LOOP	
TONE CONTROL REGISTER	TR	011	RXD OUTPUT CONTROL		TRANSMIT ANSWER TONE	TRANSMIT DTMF	DTMF3	DTMF2	DTMF1	DTMF0	
CONTROL REGISTER 2	CR2	100				THESE RE					
CONTROL REGISTER 3	CR3	101				USE WITH OTHER K-SERIES FAMILY MEMBERS					
ID REGISTER	ID	110	0	0							

NOTE: When a register containing reserved control bits is written into, the reserved bits must be programmed as 0's.

1

REGISTER ADDRESS TABLE

1

	D7	D6	D5		D4		D3	D2	D1	D0		
CR0 000			TRANSMI MODE 3	ГТ	RANSM MODE		TRANSMIT MODE 1	TRANSMIT MODE 0	TRANSMIT ENABLE	ANSWER/ ORIGINATE		
BIT N	0.	NAME	CON	DIT	ION		DESCRIPTI	ON				
D0		Answer/ Originate		0			Selects answer mode (transmit in high band, receive in low band).					
				1			Selects origin high band).	nate mode (tra	insmit in low b	band, receive in		
D1		Transmit		0		Disables transmit output at TXA.						
		Enable		1		Enables transmit output at TXA.						
						Note: Answer tone and DTMF TX control require TX enable.						
			D5 D4	D	3 D2							
D5, D D2	4,D3,	Transmit Mode	0 0	0	0	0 Selects power down mode. All functions disabled except digital interface.						
			0 0	0) 1		internally de appearing at	rived 1200 H TXD must be ceive data is	z signal. Se valid on the	le TXCLK is an rial input data rising edge of of RXD on the		
			0 0	1	0		internal sync	hronous, but CLK pin, and	TXCLK is co	n is identical to innected inter- clock must be		
			0 0	1	1		synchronous		LK is connect	ration as other ed internally to		
			0 1	0	0			K asynchrond data bits, 1 s		bits/character		
			0 1	0) 1			K asynchrond data bits, 1 s		bits/character		
			0 1	1	0	Selects DPSK asynchronous mode - 10 b (1 start bit, 8 data bits, 1 stop bit).			bits/character			
			0 1	1	1	Selects DPSK asynchronous mode - 11 bits/charac (1 start bit, 8 data bits, Parity and 1 stop or 2 stop bit						
			1 1	0	0	Selects FSK operation.						
D6				0			Not used, m	ust be written	as "0."			

CONTROL REGISTER 0

CONTROL REGISTER 1

		D7		D6	D5	D4	D3	D2	D1	D0		
CR1 001		ANSMIT TTERN 1		NSMIT TERN 0	ENABLE DETECT INTER.	BYPASS SCRAMB	CLK CONTROL	RESET	TEST MODE 1	TEST MODE 0		
BIT N	0.	NAM	E	CON	DITION	DESCRIP	TION					
				D1	D0							
D1, D0	0	Test Mo	ode	× 0 0		Selects no	ormal operatir	ng mode.				
				0 1		signal bac use the sa	opback mode is to the receiv ame center fre ne TXA pin, tra	ver, and ca quency as	uses the re the transr	eceiver to nitter. To		
				1	0	Selects remote digital loopback. Received data is looped back to transmit data internally, and RXD is forced to a mark. Data on TXD is ignored.						
				11-1		Selects local digital loopback. Internally loops TXD back to RXD and continues to transmit data carrier at the TXA pin.						
D2		Rese	et		0	Selects no	ormal operatio	on.				
			,	1.		Resets modem to power down state. All control reg- ister bits (CR0, CR1, Tone) are reset to zero. The output of the CLK pin will be set to the crystal frequency on reset.						
D3		CLK Cor (Clock Co		0		Selects 11.0592 MHz crystal echo output at CLK pin.						
					1	Selects 16 X the data rate, output at CLK pin in DPSK modes only.						
D4		Bypas Scramb			0	Selects normal operation. DPSK transmit data is passed through scrambler.						
					1		crambler By					
D5		Enable D			0	Disables i	interrupt at IN	T pin.				
	Interrupt		1		Enables INT output. An interrupts will be generated with a change in status of DR bits D1-D4. The answer tone and call progress detect interrupts are masked when the TX enable bit is set. Carrier detect is masked when TX DTMF is activated. All interrupts will be disabled if the device is in power down mode.							

CONTROL REGISTER 1 (Continued)

		D7		D6	D5	D4	D3	D2	D1	D0	
CR1 001		NSMIT ITERN 1	TRANSMIT PATTERN 0		ENABLE DETECT INTER.	BYPASS SCRAMB	CLK CONTROL	RESET	TEST MODE 1	TEST MODE 0	
BIT N	0.	NAME		CON	DITION	DESCRIPTION					
					D6						
D7, D6	6	Transr Patter	• • •	0	0	Selects normal data transmission as controlled by the state of the TXD pin.					
				0	1	Selects ar modem te	n alternating n esting.	nark/space	transmit p	attern for	
			1 0		Selects a constant mark transmit pattern.						
				1	1	Selects a constant space transmit pattern.					

DETECT REGISTER

	D7	D6	D5	D4	D3	D2	D1	D0	
DR 010			RECEIVE DATA	UNSCR. MARK	CARR. DETECT	ANSWER TONE	CALL PROG.	LONG LOOP	
BIT N	0.	NAME	CONDI	CONDITION DESCRIPTION					
D0		LONG LOOP	0		Indicates no	rmal received	signal.		
			1		Indicates lov	v received sigr	nal.		
D1		CALL	0		No call prog	ress tone dete	cted.		
	PROGRESS DETECT		1		Indicates presence of call progress tones. The call progress detection circuitry is activated by energy in the 350 to 620 Hz call progress band.				
D2		ANSWER	0		No answer tone detected.				
		TONE DETECT	1		Indicates detection of 2225 Hz answer tone. The device must be in originate mode for detection of answer tone.				
D3		CARRIER	0		No carrier de	etected in the	eceive chan	nel.	
		DETECT	1		Indicated carrier has been detected in the received channel.				
D4		UNSCRAM-	0		No unscram	bled mark.			
		BLED MARK	1		Indicates detection of unscrambled marks in the received data. A valid indication requires that unscrambled marks be received for > 165.5 ± 6.5 ms.				

1

	D7	D6	D5	D4	D3	D2	D1	D0	
DR 010			RECEIVE DATA	UNSCR. MARK	CARR. DETECT	ANSWER TONE	CALL PROG.	LONG LOOP	
BIT N	BIT NO. NAME CONDITION DESCRIPTION								
D5		RECEIVE DATA			Continuously outputs the received data stream. This data is the same as that output on the RXD pin, but it is not disabled when RXD is tri-stated.				
D6, D	7				Not used.				

DETECT REGISTER (Continued)

TONE REGISTER

	T	D7	De	;	D	5	D4	D	3		D2		D1	D0
TR 011	0	rxd Jtput Ontr.			TRAN ANS\ TO	NER	TRANSMIT DTMF	DTM	1F 3	D	TMF	2	DTMF 1	DTMF 0
BITI	BIT NO. NAME CONDITION			DESCRIP	TION									
D3, D2, DTMF D1, D0		D3 0 1	D2 D1 0 0 1 1	D0 0 - 1	Programs 1 of 16 DTMF tone pairs that will be transmitted when TX DTMF and TX enable bit (CR0, D1) are set. Tone encoding is shown below:KEYBOARDDTMF CODETONES EQUIVALENTBQUIVALENTD3D2D1D0LOWHIGH					it (CR0, bit w: NES				
							1		0	0	0	1	697	1209
							2		0	0	1	0	697	1336
							3		0	0	1	1	697	1477
							4		0	1		0	770	1209
							5		0	1	0	1	770	1336
							6		0	1		0	770	1477
							7		0	1	1	1	852	1209
							8		1	0		0	852	1336
							9		1	0	0	1	852	1477
		-					0		1	0		0	941	1336
1									1	0	1	1	941	1209
							#		1	1		0	941	1477
							A		1	1	0	1	697	1633
							В			1	1	0	770	1633
							C D		1	1	1	1 0	852 941	1633 1633
									10	U	U	U	941	1033

TON	TONE REGISTER (Continued)										
		D7	De	;	D5	D4	D3	D2	D1	D0	
TR 011	01	RXD JTPUT ONTR.			TRANSMIT ANSWER TONE	TRANSMIT DTMF	DTMF 3	DTMF 2	DTMF 1	DTMF 0	
BITN	١0.	NAM	E	С	ONDITION	DESCRIP	NOIT				
D4		TRANSMIT 0			0	Disable DTMF.					
	DTMF			1	transmitte Transmit	Activates DTMF. The selected DTMF tones are transmitted continuously when this bit is high (w Transmit Enable, CR0-D1). TX DTMF overrides other transmit functions.					
D5	TRANSMIT				0	Disables a	es answer tone generator.				
		ANSWER TONE 1			1	Enables answer tone generator. A 2225 Hz answer tone will be transmitted continuously when the Transmit Enable bit is set in CR0. The device must be in answer mode.					
D7		RXD OUTPUT 0 CONTROL			0	Enables RXD pin. Receive data will be output on RXD.					
					1	Disables RXD pin. The RXD pin reverts to a impedance with internal, weak pull-up resistor.					

ID REGISTER

	D7		D6		D5		D5		D4	D3	D2	D1	D0
ID 110	ID		ID		ID								
BIT	١0.	N	АМЕ	со	NDITIC)N	DES	SCRIPTION					
				D	7 D6 I	D5	India	Indicates Device:					
D7, 0	06	D	evice	(0 (Х	SSI	73K212(L) o	or 73K322L				
		lden	tification	() 1	Х	SSI	73K221(L) o	or 73K302L				
	Signature 1 0 X SSI 73K222(L)												
					1	0	SSI 73K224L						
					1	1	SSI	SSI 73K324L					

1

ELECTRICAL SPECIFICATIONS

ABSOLUTE MAXIMUM RATINGS

PARAMETER	RATING	UNIT					
VDD Supply Voltage	14	V					
Storage Temperature	-65 to 150	°C					
Soldering Temperature (10 sec.)	260	°C					
Applied Voltage	-0.3 to VDD+0.3	V					
Note: All inputs and outputs are protected from static charge using built-in, industry standard protection devices and all outputs are short-circuit protected.							

RECOMMENDED OPERATING CONDITIONS

PARAMETER	CONDITIONS	MIN	NOM	MAX	UNITS			
VDD Supply Voltage		4.5	5	5.5	V			
TA, Operating Free-Air Temperature		-40		+85	°C			
Clock Variation	(11.0592 MHz) Crystal or external clock	-0.01		+0.01	%			
External Components (Refer to Application section for placement.)								
VREF Bypass capacitor	(External to GND)	0.1			μF			
Bias setting resistor	(Placed between VDD and ISET pins)	1.8	2	2.2	MΩ			
ISET Bypass capacitor	(ISET pin to GND)	0.1			μF			
VDD Bypass capacitor 1	(External to GND)	0.1			μF			
VDD Bypass capacitor 2	(External to GND)	22			μF			
XTL1 Load Capacitor	Depends on crystal characteristics;			40	pF			
XTL2 Load Capacitor	from pin to GND			20				

ELECTRICAL SPECIFICATIONS (Continued)

DC ELECTRICAL CHARACTERISTICS

(TA = -40°C to 85°C, VDD = recommended range unless otherwise noted.)

PARAMETER	CONDITIONS	MIN	NOM	MAX	UNITS			
IDD, Supply Current	ISET Resistor = 2 M Ω							
IDDA, Active	CLK = 11.0592 MHz		8	12	mA			
IDD1, Power-down	CLK = 11.0592 MHz			4	mA			
IDD2, Power-down	CLK = 19.200 KHz			3	mA			
Digital Inputs	Digital Inputs							
VIH, Input High Voltage								
Reset, XTL1, XTL2		3.0		VDD	V			
All other inputs		2.0		VDD	V			
VIL, Input Low Voltage		0		0.8	V			
IIH, Input High Current	VI = VIH Max			100	μA			
IIL, Input Low Current	VI = VIL Min	-200			μA			
Reset Pull-down Current	Reset = VDD	1		50	μA			
Input Capacitance	All Digital Input Pins			10	pF			
Digital Outputs								
VOH, Output High Voltage	IOH MIN = -0.4 mA	2.4		VDD	V			
VOL, Output Low Voltage	IO MAX=1.6 mA			0.4	V			
VOL, CLK Output	IO = 3.6 mA			0.6	V			
RXD Tri-State Pull-up Curr.	RXD = GND	-1		-50	μA			
CMAX, CLK Output	Maximum Capacitive Load			15	pF			

ELECTRICAL SPECIFICATION (Continued)

DYNAMIC CHARACTERISTICS AND TIMING

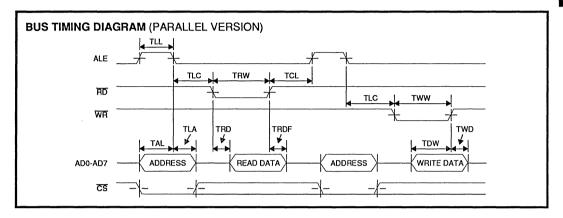
(TA = -40°C to + 85°C, VDD = recommended range unless otherwise noted.)

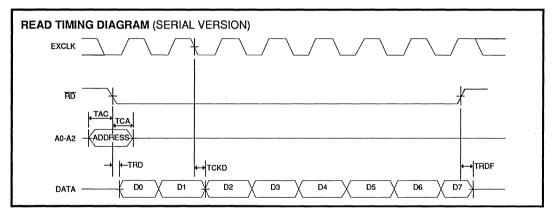
CONDITIONS	MIN	NOM	MAX	UNITS			
				·····			
Measured at TXA	55			dB			
TX scrambled marks	-11	-10.0	-9	dBm0			
FSK Mod/Demod							
CLK = 11.0592 MHz	-0.35		+.35	%			
Transmit Dotting Pattern	-11	-10.0	-9	dBm0			
THD in the alternate band DPSK or FSK		-60	-50	dB			
Transmit Dotting Pattern In ALB @ RXD		±8		%			
Random Input in ALB @ RXD	-15		+15	%			
			•				
	25		+.25	%			
Low-Band, DPSK Mode	-10	-9	-8	dBm0			
High-Band, DPSK Mode	-8	-7	-6	dBm0			
High-Band to Low-Band, DPSK mode	1.0	2.0	3.0	dB			
DPSK or FSK	-38		-28	dBm0			
Refer to Performance Curves		45		dB			
2-Tones in 350-600 Hz band	-34		0	dBm0			
2-Tones in 350-600 Hz band			-41	dBm0			
-70 dBm0 to -30 dBm0 STEP	27		80	ms			
-30 dBm0 to -70 dBm0 STEP	27		80	ms			
	2			dB			
in dBm0 refer to the following defini	ition:						
12V Version 10 dB loss in the Transmit path to the line. 9 dB gain in the Receive path from the line. 5V Version 0 dB loss in the Transmit path to the line. 2 dB gain in the Receive path from the line.							
	Measured at TXA TX scrambled marks CLK = 11.0592 MHz Transmit Dotting Pattern THD in the alternate band DPSK or FSK Transmit Dotting Pattern In ALB @ RXD Random Input in ALB @ RXD CLW-Band, DPSK Mode High-Band, DPSK Mode High-Band to Low-Band, DPSK mode DPSK or FSK Refer to Performance Curves 2-Tones in 350-600 Hz band 2-Tones in 350-600 Hz band -70 dBm0 to -30 dBm0 STEP -30 dBm0 to -70 dBm0 STEP in dBm0 refer to the following defini- tione Transmit path to the line. Transmit path to the line.	Measured at TXA 55 TX scrambled marks -11 CLK = 11.0592 MHz -0.35 Transmit Dotting Pattern -11 THD in the alternate band DPSK or FSK Transmit Dotting Pattern -11 THD in the alternate band DPSK or FSK Transmit Dotting Pattern -11 In ALB @ RXD -15 Random Input in ALB @ RXD -15 Low-Band, DPSK Mode -10 High-Band to Low-Band, DPSK Mode -8 High-Band to Low-Band, DPSK mode 1.0 DPSK or FSK -38 Refer to Performance Curves -34 2-Tones in 350-600 Hz band -34 2-Tones in 350-600 Hz band -70 -70 dBm0 to -30 dBm0 STEP 27 -30 dBm0 to -70 dBm0 STEP 27 -30 dBm0 refer to the following definition:	Measured at TXA 55 TX scrambled marks -11 TX scrambled marks -11 CLK = 11.0592 MHz -0.35 Transmit Dotting Pattern -11 THD in the alternate band -60 DPSK or FSK -11 Transmit Dotting Pattern ±8 In ALB @ RXD -15 Random Input in ALB @ RXD -15 Low-Band, DPSK Mode -10 High-Band, DPSK Mode -8 PSK or FSK -38 DPSK reference 45 Z-Tones in 350-600 Hz band -34 2-Tones in 350-600 Hz band -34 2-Tones in 350-600 Hz band -34 2-Tones in 350-600 Hz band -7 -70 dBm0 to -30 dBm0 STEP 27 -30 dBm0 to -70 dBm0 STEP 27 -30 dBm0 to the line. 2 in dBm0 refer to the following definition: 10 The Transmit path to the line. 2 Toms in tpath to the line. 2 2 2 1 -10 -70 dBm0 to -70 dBm0 STEP 27 -30 dBm0 to the line	Measured at TXA 55 TX scrambled marks -11 TX scrambled marks -11 -10.0 -9 CLK = 11.0592 MHz -0.35 +.35 Transmit Dotting Pattern -11 -10.0 -9 THD in the alternate band -60 -50 DPSK or FSK -15 +15 Transmit Dotting Pattern ±8 - In ALB @ RXD -15 +15 Random Input in ALB @ RXD -15 +15 Low-Band, DPSK Mode -10 -9 -8 High-Band to Low-Band, 1.0 2.0 3.0 DPSK mode 0 2.0 3.0 DPSK or FSK -38 -28 Refer to Performance Curves 45 -28 2-Tones in 350-600 Hz band -41 -70 dBm0 to -30 dBm0 STEP 27 80 -30 dBm0 to -70 dBm0 STEP 27 80 -30 dBm0 to -70 dBm0 STEP 27 80 -30 dBm0 refer to the following definition: 2 -1 -1 -10 -2 -1 in dBm0 refer to the following definition: <			

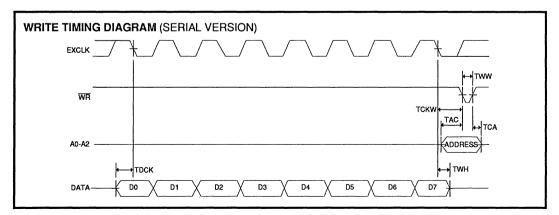
Refer to the Basic Box Modem diagram in the Applications section for the DAA design.

ELECTRICAL SPECIFICATION (Continued)

DYNAMIC CHARACTERISTICS AND TIMING (Continued)


PARAMETERS	CONDITIONS	MIN	NOM	МАХ	UNITS
Carrier Detect			•	·	L
Threshold	DPSK or FSK receive data	-49		-42	dBm0
Delay Time	-70 dBm0 to -30 dBm0 STEP	15		45	ms
Hysteresis	Single tone detected	2	3		dB
Hold Time	-30 dBm0 to -70 dBm0 STEP	10		24	ms
Answer Tone Detector					•
Detect Level	In FSK mode	-49		-42	dBm0
Delay Time	-70 dBm0 to -30 dBm0 STEP	20		45	ms
Hold Time	-30 dBm0 to -70 dBm0 STEP	10		30	ms
Detect Freq. Range		-2.5		+2.5	%
Output Smoothing Filter					
TXA pin Output Impedance			200	300	Ω
Output load	TXA pin; FSK Single Tone out for THD = -50 db	. 10		50	KΩ
0	in .3 to 3.4 KHz	-		50	pF
Spurious Freq. Comp.	Frequency = 76.8 KHz			-39	dBm0
	Frequency = 153.6 KHz			-45	dBm0
Clock Noise	TXA pin; 76.8 KHz	1			
5V Version (73K212L)				1.0	mVrms
12V Version (73K212)				2.0	mVrms
Carrier VCO		1			1
Capture Range	Originate or Answer	-10		+10	Hz
Capture Time	-10 Hz to +10 Hz Carrier Freq. Change Assum.		40	100	ms
Recovered Clock		_			
Capture Range	% of frequency center frequency (center at 1200 Hz)	-625		+625	ppm
Data Delay Time	Analog data in at RXA pin to receive data valid at RXD pin		30	50	ms


ELECTRICAL SPECIFICATION (Continued)


DYNAMIC CHARACTERISTICS AND TIMING (Continued)

PARAMETERS	CONDITIONS	MIN	NOM	МАХ	UNITS	
Timing (Refer to Timing Diagr	ams)					
TAL	CS/Addr. setup before ALE low	30			ns	
TLA	CS/Addr. hold after ALE low	20			ns	
TLC	ALE low to RD/WR low	40			ns	
TCL	RD/WR Control to ALE high	10			ns	
TRD	Data out from RD low	0		160	ns	
TLL	ALE width	60			ns	
TRDF	Data float after RD high	0		80	ns	
TRW	RD width	200		25000	ns	
TWW	WR width	140		25000*	ns	
TDW	Data setup before WR high	150			ns	
TWD	Data hold after WR high	20			ns	
TCKD	Data out after EXCLK low			200	ns	
тскw	WR after EXCLK low	150			ns	
TDCK	Data setup before EXCLK low	150			ns	
TAC	Address setup before control**	50			ns	
TCA	Address hold after control**	50			ns	
ТѠН	Data Hold after EXCLK	20			ns	
* Maximum time applies to parallel version only.						
 ** Control for setup is the falling edge of RD or WR. Control for hold is the falling edge of RD or the rising edge of WR. 						

TIMING DIAGRAMS

APPLICATIONS INFORMATION

GENERAL CONSIDERATIONS

Figures 1 and 2 show basic circuit diagrams for K-Series modem integrated circuits. K-Series products are designed to be used in conjunction with a control processor, a UART or RS-232 serial data interface, and a DAA phone line interface to function as a typical intelligent modem. The K-Series ICs interface directly with Intel 8048 and 80C51 microprocessors for control and status monitoring purposes. Two typical DAA arrangements are shown: one for a split ± 5 or ± 12 volt design and one for a single 5 volt design. These diagrams are for reference only and do not represent production-ready modern designs.

K-Series devices are available with two control interface versions: one for a parallel multiplexed address/ data interface, and one for a serial interface. The parallel version is intended for use with 8039/48 or 8031/51 microcontrollers from Intel or many other manufacturers. The serial interface 22-pin version can be used with other microcontrollers or in applications where only a limited number of port lines are available or the application does not lend itself to a multiplexed address/data interface. The parallel versions may also be used in the serial mode, as explained in the data sheet pin description.

In most applications the controller will monitor the serial data for commands from the DTE and the received data for break signals from the far end modem. In this way, commands to the modem are sent over the same line as the transmitted data. In other applications the RS-232 interface handshake lines are used for modem control.

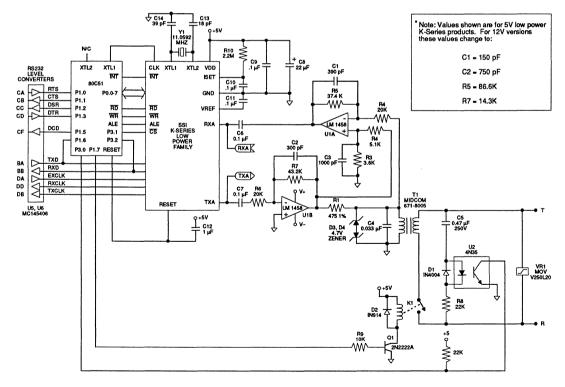


FIGURE 1: Basic Box Modem with Dual-Supply Hybrid

DIRECT ACCESS ARRANGEMENT (DAA)

The telephone line interfaces show two examples of how the "hybrid" may be implemented. The split supply design (Figure 1) is a typical two op-amp hybrid. The receive op-amp serves two purposes. It supplies gain to amplify the receive signal to the proper level for the modem's detectors and demodulator, and it removes the transmitted signal from the receive signal present at the transformer. This is done by supplying a portion of the transmitted signal to the non-inverting input of the receive op-amp at the same amplitude as the signal appearing at the transformer, making the transmit signal common mode.

The single-supply hybrid is more complex than the dual-supply version described above, but its use eliminates the need for a second power supply. This circuit (Figure 2) uses a bridged drive to allow undistorted signals to be sent with a single 5 volt supply. Because DTMF tones utilize a higher amplitude than data, these

signals will clip if a single-ended drive approach is used. The bridged driver uses an extra op-amp (U1A) to invert the signal coming from the gain setting op-amp (U1B) before sending it to the other leg of the transformer. Each op-amp then supplies half the drive signal to the transformer. The receive amplifier (U1C) picks off its signal at the junction of the impedance matching resistor and the transformer. Because the bottom leg of the transformer is being driven in one direction by U1A and the resistor is driven in the opposite direction at the same time by U1B, the junction of the transformer and resistor remains relatively constant and the receive signal is unaffected.

DESIGN CONSIDERATIONS

Silicon Systems 1-chip modem products include all basic modem functions. This makes these devices adaptable for use in a variety of applications, and as easy to control as conventional digital bus peripherals.

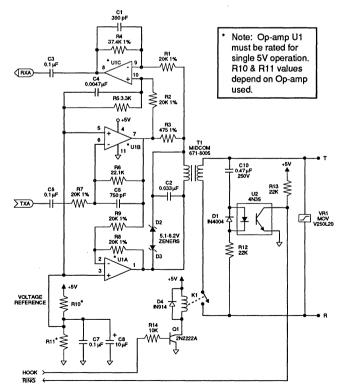


FIGURE 2: Single 5V Hybrid Version

Unlike digital logic circuitry, however, modem designs must properly contend with precise frequency tolerances and very low level analog signals, to ensure acceptable performance. Using good analog circuit design practices will generally result in a sound design. Following are additional recommendations which should be taken into consideration when starting new designs.

CRYSTAL OSCILLATOR

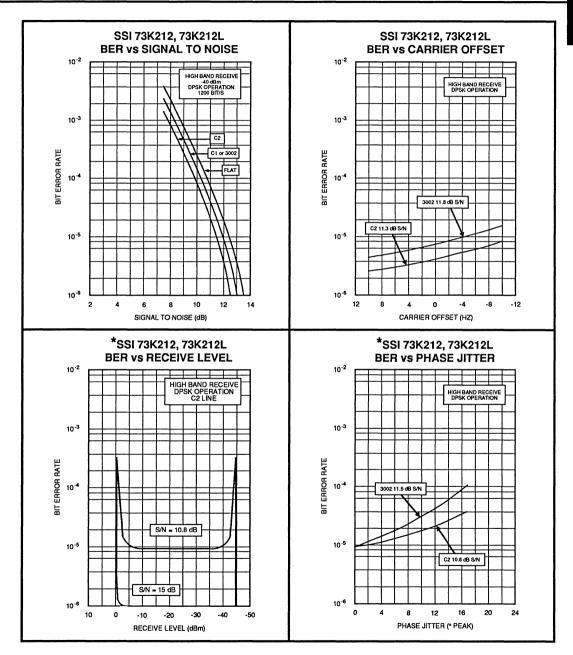
The K-Series crystal oscillator requires a parallel mode (antiresonant) crystal which operates at 11.0592 MHz. It is important that this frequency be maintained to within $\pm 0.01\%$ accuracy.

In order for a parallel mode crystal to operate correctly and to specification, it must have a load capacitor connected to the junction of each of the crystal and internal inverter connections, terminated to ground. The values of these capacitors depend primarily on the crystal's characteristics, and to a lesser degree on the internal inverter circuit. The values used affect the accuracy and start up characteristics of the oscillator.

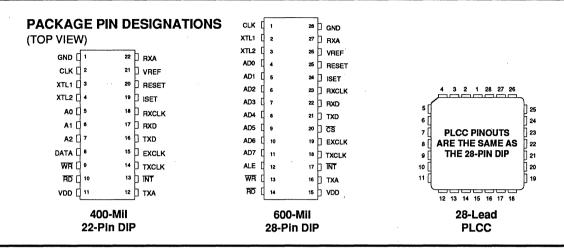
LAYOUT CONSIDERATIONS

Good analog/digital design rules must be used to control system noise in order to obtain highest performance in modem designs. The more digital circuitry present on the PC board, the more this attention to noise control is needed. The modem should be treated as a high impedance analog device. A 22 uF electrolytic capacitor in parallel with a 0.1 µF ceramic capacitor between VDD and GND is recommended. Liberal use of ground planes and larger traces on power and ground are also highly favored. High speed digital circuits tend to generate a significant amount of EMI (Electro-Magnetic Interference) which must be minimized in order to meet regulatory agency limitations. To accomplish this, high speed digital devices should be locally bypassed, and the telephone line interface and K-Series device should be located close to each other near the area of the board where the phone line connection is accessed. To avoid problems, power supply and ground traces should be routed separately to the analog and digital functions on the board, and digital signals should not be routed near low level or high impedance analog traces. The analog and digital grounds should only connect at one point near the K-Series device ground pin to avoid ground loops. The K-Series modem IC's should have both high frequency and low frequency bypassing as close to the package as possible.

MODEM PERFORMANCE CHARACTERISTICS


The curves presented here define modem IC performance under a variety of line conditions while inducing disturbances that are typical of those encountered during data transmission on public service telephone lines. Test data was taken using an AEA Electronics' "Autotest I" modem test set and line simulator, operating under computer control. All tests were run fullduplex, using a Concord Data Systems 224 as the reference modem. A 511 pseudo-random-bit pattern was used for each data point. Noise was C-message weighted and all signal-to-noise (S/N) ratios reflect total power measurements similar to the CCITT V.56 measurement specification. The individual tests are defined as follows.

BER vs.S/N


This test measures the ability of the modem to operate over noisy lines with a minimum of data-transfer errors. Since some noise is generated in the best of dial-up lines, the modem must operate with the lowest S/N ratio possible. Better modem performance is indicated by test curves that are closest to the BER axis. A narrow spread between curves representing the four line parameters indicates minimal variation in performance while operating over a range of aberrant operating conditions. Typically, a DPSK modem will exhibit better BER-performance test curves receiving in the low band than in the high band.

BER vs. Receive Level

This test measures the dynamic range of the modem. Because signal levels vary widely over dial-up lines, the widest possible dynamic range is desirable. The minimum Bell specification calls for 36 dB of dynamic range. S/N ratios are held constant at the indicated values while the receive level is lowered from a very high to very low signal levels. The width of the "bowl" of these curves, taken at the BER point, is the measure of dynamic range.

= "EQ On" Indicates bit CR1 D4 is set for additional phase equalization.

ORDERING INFORMATION

PART DESCRIPTION	ORDER NO.	PKG. MARK
SSI 73K212 with Parallel Bus Interface		
28-pin 12 volt supply		
Plastic Dual-In-Line	SSI 73K212 – IP	73K212 – IP
Plastic Leaded Chip Carrier	SSI 73K212 IH	73K212 – IH
28-pin 5 volt supply		
Plastic Dual-In-Line	SSI 73K212L - IP	73K212 – IP
Plastic Leaded Chip Carrier	SSI 73K212L – IH	73K212L – IH
SSI 73K212 with Serial Interface		
22-pin 12 volt supply		
Plastic Dual-In-Line	SSI 73K212S – IP	73K212S – IP
22-pin 5 volt supply		
Plastic Dual-In-Line	SSI 73K212SL – IP	73K212S - IP
Ceramic Dual-In-Line	SSI 73K212SL – IC	73K212SL – IC

No responsibility is assumed by Silicon Systems for use of this product nor for any infringements of patents and trademarks or other rights of third parties resulting from its use. No license is granted under any patents, patent rights or trademarks of Silicon Systems. Silicon Systems reserves the right to make changes in specifications at any time without notice. Accordingly, the reader is cautioned to verify that the data sheet is current before placing orders.

Silicon Systems, Inc., 14351 Myford Road, Tustin, CA 92680, (714) 731-7110, FAX: (714) 731-5457

silicon systems*

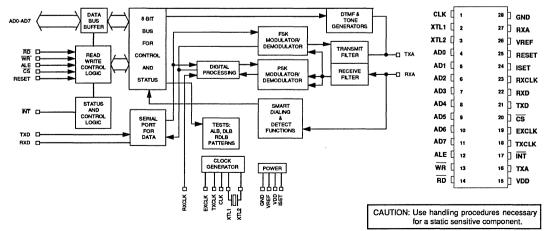
SSI 73K221/K221L CCITT V.22, V.21 Single-Chip Modem

July, 1990

1

DESCRIPTION

The SSI 73K221 is a highly integrated single-chip modem IC which provides the functions needed to construct a CCITT V.22 and V.21 compatible modem, capable of 1200 or 0-300 bit/s full-duplex operation over dial-up lines. The SSI 73K221 is an enhancement of the SSI 73K212 single-chip modem with performance characteristics suitable for European and Asian telephone systems. The SSI 73K221 produces either 550 or 1800 Hz guard tone, recognizes and generates a 2100 Hz answer tone, and allows V.21 for 300 Hz FSK operation. The SSI 73K221 integrates analog. digital, and switched-capacitor array functions on a single substrate, offering excellent performance and a high level of functional integration in a single 28- or 22-pin DIP configuration. The SSI 73K221L, low power version of the SSI 73K221 provides identical performance and features, but operates from a single +5 volt supply with substantially lower power consumption.


The SSI 73K221 includes the DPSK and FSK modulator/demodulator functions, call progress and handshake tone monitor test modes, and a tone generator capable of producing DTMF, answer and 550 or 1800 Hz guard tone. This device supports V.22 (except mode v) and V. 21 modes of operation, (Continued)

BLOCK DIAGRAM

FEATURES

- One-chip CCITT V.22 and V.21 standard compatible modem data pump
- Full-duplex Operation at 0-300 bit/s (FSK) or 600 and 1200 bit/s (DPSK)
- Pin and software compatible with other SSI K-Series 1-chip modems
- Interfaces directly with standard microprocessors (8048, 80C51 typical)
- Serial (22-pin DIP) or parallel (28-pin DIP) microprocessor bus for control
- Serial port for data transfer
- Both synchronous and asynchronous modes of operation
- Call progress, carrier, precise answer tone (2100 Hz), and long loop detectors
- DTMF, and 550 or 1800 Hz guard tone generators
- Test modes available: ALB, DL, RDL, Mark, Space, Alternating bit patterns
- Precise automatic gain control allows 45 dB dynamic range
- Space efficient 22- or 28-pin DIP packages
- CMOS technology for low power consumption using 30 mW @ 5V or 180 mW @ 12V
- Single +5 volt (73K221L) or +12 volt (73K221) versions

PIN DIAGRAM

DESCRIPTION (Continued)

allowing both synchronous and asynchronous communications. The SSI 73K221 is designed to appear to the systems designer as a microprocessor peripheral, and will easily interface with popular one-chip microprocessors (80C51 typical) for control of modem functions through its 8-bit multiplexed address/data bus or alternatively via the serial control bus. An ALE control line simplifies address demultiplexing. Data communications occurs through a separate serial port only.

The SSI 73K221 is ideal for use in either free standing or integral system modem products where full-duplex 1200 bit/s data communications over the 2-wire switched telephone network is desired. Its high functionality, low power consumption and efficient packaging simplify design requirements and increase system reliability. A complete modem requires only the addition of the phone line interface, a control microprocessor, and RS-232 level converter for a typical system. The SSI 73K221 is part of SSi's K-Series family of pin and function compatible single-chip modem products. These devices allow systems to be configured for higher speeds and Bell or CCITT operation with only a single component change.

OPERATION

ASYNCHRONOUS MODE

Data transmission for the DPSK mode requires that data ultimately be transmitted in a synchronous fashion, The SSI 73K221 includes ASYNC/SYNC and SYNC/ASYNC converters which delete or insert stop bits in order to transmit data at a regular rate. In asynchronous mode the serial data comes from the TXD pin into the ASYNC/SYNC rate converter. The ASYNC/SYNC rate converter accepts the data provided on the TXD pin which normally must be 1200 or 600 bit/s +1.0%, - 2.5%. The rate converter will then insert or delete stop bits in order to output a signal which is 1200 or 600 bit/s \pm .01%.

The serial data stream from the ASYNC/SYNC converter is passed through the data scrambler and onto the analog modulator. The data scrambler can be bypassed under processor control when unscrambled data must be transmitted. The ASYNC/SYNC rate converter and the data scrambler are bypassed in all FSK modes. If serial input data contains a break signal through one character (including start and stop bits) the break will be extended to at least $2 \cdot N + 3$ bits long (where N is the number of transmitted bits/character).

Serial data from the demodulator is passed first through the data descrambler and then through the SYNC/ASYNC rate converter. The SYNC/ASYNC convertor will reinsert any deleted stop bits and transmit output data at an intra-character rate (bit-to-bit timing) of no greater than 1219 bit/s. An incoming break signal (low through two characters) will be passed through without incorrectly inserting a stop bit.

The SYNC/ASYNC converter also has an extended overspeed mode which allows selection of an output range of either +1% or +2.3%. In the extended overspeed mode, stop bits are output at 7/8 the normal width.

SYNCHRONOUS MODE

The CCITT V.22 standard defines synchronous operation at 600 and 1200 bit/s. The Bell 212A standard defines synchronous operation only at 1200 bit/s. Operation is similar to that of the asynchronous mode except that data must be synchronized to a provided clock and no variation in data transfer rate is allowable. Serial input data appearing at TXD must be valid on the rising edge of TXCLK.

TXCLK is an internally derived signal in internal mode and is connected internally to the RXCLK pin in slave mode. Receive data at the RXD pin is clocked out on the falling edge of RXCLK. The ASYNC/SYNC converter is bypassed when synchronous mode is selected and data is transmitted at the same rate as it is input.

DPSK MODULATOR/DEMODULATOR

The SSI 73K221 modulates a serial bit stream into dibit pairs that are represented by four possible phase shifts as prescribed by the V.22 standard. The baseband signal is then filtered to reduce intersymbol interference on the bandlimited 2-wire telephone line. Transmission occurs on either a 1200 Hz (originate mode) or 2400 Hz carrier (answer mode). Demodulation is the reverse of the modulation process, with the incoming analog signal eventually decoded into di-bits and converted back to a serial bit stream. The demodulator also recovers the clock which was encoded into the analog signal during modulation. Demodulation occurs using either a 1200 Hz carrier (answer mode or

Ĩ

ALB originate mode) or a 2400 Hz carrier (originate mode or ALB answer mode). The SSI 73K221 uses a phase locked loop coherent demodulation technique for optimum performance.

FSK MODULATOR/DEMODULATOR

The FSK modulator produces a frequency modulated analog output signal using two discrete frequencies to represent the binary data. V.21 mode uses 980 and 1180 Hz (originate, mark and space) or 1650 and 1850 Hz (answer, mark and space). Demodulation involves detecting the received frequencies and decoding them into the appropriate binary value. The rate converter and scrambler/descrambler are bypassed in the V.21 mode.

PASSBAND FILTERS AND EQUALIZERS

High and low band filters are included to shape the amplitude and phase response of the transmit and receive signals and provide compromise delay equalization and rejection of out-of-band signals in the receive channel. Amplitude and phase equalization are necessary to compensate for distortion of the transmission line and to reduce intersymbol interference in the bandlimited receive signal. The transmit signal filtering approximates a 75% square root of raised Cosine frequency response characteristic.

AGC

The automatic gain control maintains a signal level at the input to the demodulators which is constant to within 1 dB. It corrects quickly for increases in signal which would cause clipping and provides a total dynamic range of >45 dB.

PARALLEL BUS INTERFACE

Four 8-bit registers are provided for control, optionselect and status monitoring. These registers are addressed with the AD0, AD1, and AD2 multiplexed address lines (latched by ALE) and appear to a control microprocessor as four consecutive memory locations. Two control registers and the tone register are read/write memory. The detect register is read only and cannot be modified except by modem response to monitored parameters.

SERIAL COMMAND INTERFACE

The serial command mode allows access to the SSI 73K221 control and status registers via a serial command port (22-pin version only). In this mode the A0, A1 and A2 lines provide register addresses for data passed through the data pin under control of the RD and WR lines. A read operation is initiated when the RD line is taken low. The first bit is available after RD is brought low and the next seven cycles of EXCLK will then transfer out the remaining seven bits of the selected address LSB first. A write takes place by shifting in eight bits of data LSB first for eight consecutive cycles of EXCLK. WR is then pulsed low and data transferred into the addressed register on the rising edge of WR.

SPECIAL DETECT CIRCUITRY

The special detect circuitry monitors the received analog signal to determine status or presence of carrier, call-progress tones, answer tone and weak received signal (long loop condition). An unscrambled mark signal is also detected when the received data out of the DPSK demodulator before the descrambler has been mark for 165.5 ms \pm 6.5 ms minimum. The appropriate detect register bit is set when one of these conditions changes and an interrupt is generated for all conditions except long loop. The interrupts are disabled (masked) when the enable interrupt bit is set to 0.

DTMF GENERATOR

The DTMF generator will output one of 16 standard tone pairs determined by a 4-bit binary value and TX DTMF mode bit previously loaded into the tone register. Tone generation is initiated when the DTMF mode is selected using the tone register and the transmit enable (CR0 bit D1) is changed from 0 to 1.

PIN DESCRIPTION

POWER

NAME	28-PIN	22-PIN	TYPE	DESCRIPTION
GND	28	1	I	System Ground.
VDD	15	11	I	Power supply input, 12V +10%, -20% (or 5V \pm 10%). Bypass with .1 and 22 μF capacitors to ground.
VREF	26	21	0	An internally generated reference voltage. Bypass with .1 μ F capacitor to GND.
ISET	24	19	I	Chip current reference. Sets bias current for op-amps. The chip current is set by connecting this pin to VDD through a 2 M Ω resistor. ISET should be bypassed to GND with a .1 μ F capacitor.

PARALLEL MICROPROCESSOR INTERFACE

ALE	12	-	I	Address latch enable. The falling edge of ALE latches the address on AD0-AD2 and the chip select on \overline{CS} .
AD0-AD7	4-11	-	I/O	Address/data bus. These bidirectional tri-state multi- plexed lines carry information to and from the internal control registers.
टड	20	-	I	Chip select. A low on this pin during the falling edge of ALE allows a read cycle or a write cycle to occur. AD0-AD7 will not be driven and no registers will be written if \overline{CS} (latched) is not active. The state \overline{CS} is a latched on the falling edge of ALE.
CLK	1	2	0	Output clock. This pin is selectable under processor control to be either the crystal frequency (for use as a processor clock) or 16 x the data rate for use as a baud rate clock in DPSK modes only. The pin defaults to the crystal fre- quency on reset.
INT	17	13	0	Interrupt. This open drain output signal is used to inform the processor that a detect flag has occurred. The processor must then read the detect register to determine which detect triggered the interrupt. INT will stay low until the processor reads the detect register or does a full reset.
RD	14	-	ļ	Read. A low requests a read of the SSI 73K221 internal registers. Data cannot be output unless both $\overline{\text{RD}}$ and the latched $\overline{\text{CS}}$ are active or low.
RESET	25	20	I	Reset. An active high signal on this pin will put the chip into an inactive state. All control register bits (CR0, CR1, Tone) will be reset. The output of the CLK pin will be set to the crystal frequency. An internal pull down permits power on reset using a capacitor to VDD.

PIN DESCRIPTION (Continued)

PARALLEL MICROPROCESSOR INTERFACE (Continued)

NAME	28-PIN	22-PIN	TYPE	DESCRIPTION
WR	13	-	I	Write. A low on this pin informs the SSI 73K221 that data is available on AD0-AD7 for writing into an internal register. Data is latched on the rising edge of \overline{WR} . No data is written unless both \overline{WR} and the latched \overline{CS} are low.

SERIAL MICROPROCESSOR INTERFACE

A0-A2	-	5-7		Register Address Selection. These lines carry register addresses and should be valid during any read or write operation.
DATA	-	8	I/O	Serial Control Data. Data for a read/write operation is clocked in or out on the falling edge of the EXCLK pin. The direction of data flow is controlled by the RD pin. RD low outputs data. RD high inputs data.
RD	-	10	I	Read. A low on this input informs the SSI 73K221 that data or status information is being read by the processor. The falling edge of the $\overline{\text{RD}}$ signal will initiate a read from the addressed register. The $\overline{\text{RD}}$ signal must continue for eight falling edges of EXCLK in order to read all eight bits of the referenced register. Read data is provided LSB first. Data will not be output unless the $\overline{\text{RD}}$ signal is active.
WR	-	9	I	Write. A low on this input informs the SSI 73K221 that data or status information has been shifted in through the DATA pin and is available for writing to an internal register. The normal procedure for a write is to shift in data LSB first on the DATA pin for eight consecutive falling edges of EXCLK and then to pulse WR low. Data is written on the rising edge of WR.
Note:				AD0-AD7, ALE and \overline{CS} are removed and replaced with the nected pin. Also, the \overline{RD} and \overline{WR} controls are used differently.
				In the 28-pin version by tying ALE high and \overline{CS} low. In this and AD0, AD1 and AD2 become A0, A1 and A2, respectively.

PIN DESCRIPTION (Continued)

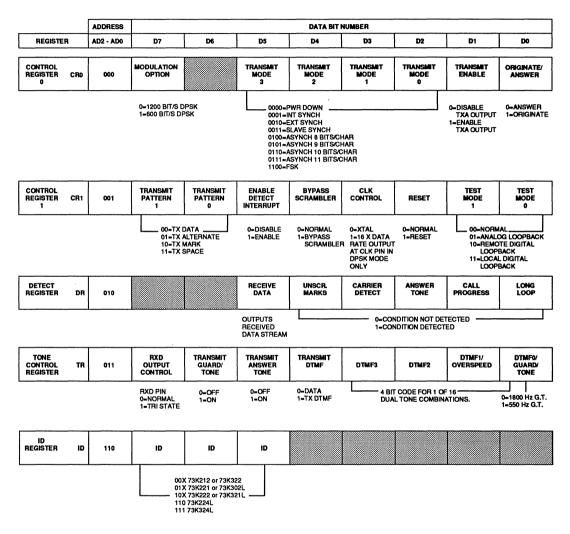
DTE USER INTERFACE

NAME	28-PIN	22-PIN	TYPE	DESCRIPTION
EXCLK	19	15	Ι	External Clock. This signal is used in synchronous trans- mission when the external timing option has been selected. In the external timing mode the rising edge of EXCLK is used to strobe synchronous DPSK transmit data applied to the TXD pin. Alternately used for serial control interface.
RXCLK	23	18	0	Receive Clock. The falling edge of this clock output is coincident with the transitions in the serial received data output. The rising edge of RXCLK can be used to latch the valid output data at RXD. RXCLK will be valid as long as a carrier is present in DPSK synchronous modes.
RXD	22	17	0	Received Digital Data Output. Serial receive data is available on this pin. The data is always valid on the rising edge of RXCLK when in synchronous mode. RXD will output constant marks if no carrier is detected.
TXCLK	18	14	0	Transmit Clock. This signal is used in DPSK synchronous transmission to latch serial input data on the TXD pin. Data must be provided so that valid data is available on the rising edge of the TXCLK. The transmit clock is derived from different sources depending upon the synchronization mode selection. In Internal Mode the clock is generated internally. In External Mode TXCLK is phase locked to the EXCLK pin. In Slave Mode TXCLK is phase locked to the RXCLK pin. TXCLK is always active.
ТХD	21	16	I	Transmit Data Input. Serial data for transmission is applied to this pin. In synchronous modes, the data must be valid on the rising edge of the TXCLK. In asynchronous modes (1200/600 bit/s or 300 baud) no clocking is necessary. DPSK data must be 1200/600 bit/s +1%, -2.5% or +2.3%, -2.5% in extended overspeed mode.

ANALOG INTERFACE AND OSCILLATOR

RXA	27	22	Ĩ	Received modulated analog signal input from the tele- phone line interface.
ТХА	16	12	0	Transmit analog output to the telephone line interface.
XTL1 XTL2	2 3	3 4	1	These pins are for the internal crystal oscillator requiring an 11.0592 MHz parallel mode crystal. Load capacitors should be connected from XTL1 and XTL2 to Ground. XTL2 can also be driven from an external clock.

REGISTER DESCRIPTIONS


Four 8-bit internal registers are accessible for control and status monitoring. The registers are accessed in read or write operations by addressing the A0 and A1 address lines in serial mode, or the AD0 and AD1 lines in parallel mode. In parallel mode AD0 and AD1 lines are latched by ALE. Register CR0 controls the method by which data is transferred over the phone line. CR1 controls the interface between the microprocessor and the SSI 73K221 internal state. DR is a detect register which provides an indication of monitored modem status conditions. TR, the tone control register, controls the DTMF generator, answer and guard tones and RXD output driver used in the modem initial connect sequence. All registers are read/write except for DR which is read only. Register control and status bits are identified below:

REGISTER BIT SUMMARY

		ADDRESS				DATA BIT	NUMBER			
REGISTE	R	AD2 - AD0	D7	D6	D5	D4	D3	D2	D1	D0
CONTROL REGISTER 0	CR0	000	MODULATION OPTION		TRANSMIT MODE 3	TRANSMIT MODE 2	TRANSMIT MODE 1	TRANSMIT MODE 0	TRANSMIT ENABLE	ANSWER/ ORIGINATE
CONTROL REGISTER 1	CR1	001	TRANSMIT PATTERN 1	TRANSMIT PATTERN 0	ENABLE DETECT INTERRUPT	BYPASS SCRAMBLER	CLK CONTROL	RESET	TEST MODE 1	TEST MODE 0
DETECT REGISTER	DR	010			RECEIVE DATA	UNSCR. MARKS	CARRIER DETECT	ANSWER TONE	CALL PROGRESS	LONG LOOP
TONE CONTROL REGISTER	TR	011	RXD OUTPUT CONTROL	TRANSMIT GUARD TONE	TRANSMIT ANSWER TONE	TRANSMIT DTMF	DTMF3	DTMF2	DTMF1/ OVERSPEED	DTMF0/ GUARD/
CONTROL REGISTER 2	CR2	100			[THESE RE	GISTER LOCATIO	ONS ARE RESER	VED FOR]
CONTROL REGISTER 3	СЯЗ	101				USE WI	TH OTHER K-SER	IES FAMILY MEN	BERS	
ID REGISTER	iD	110	0	1						

NOTE: When a register containing reserved control bits is written into, the reserved bits must be programmed as 0's.

REGISTER ADDRESS TABLE

1

	D7		D6		D5	Γ	1	D4	D3	D2	D1	D0		
CR0 000	MOD				ANSMI ⁻ ODE 3			NSMIT	TRANSMIT MODE 1	TRANSMIT MODE 0	TRANSMIT ENABLE	ANSWER/ ORIGINATE		
BITN	10.		NAME		со	N	DITIC	DN	DESCRIPTION					
D0		-	Answei Priginat		0				Selects an receive in		ransmit in hig	h band,		
							1		Selects ori high band)		transmit in low	band,receive in		
D1		Т	ransm	lit			0		Disables tr	ransmit outpu	t at TXA.			
		1	Enable)			1		Enables tra Note: TX E and DTMF	ow Answer Tone				
					D5	D4	D3	D2						
D5, D D2	4,D3,		ransm Mode	-	0	0	0	0		Selects power down mode. All functions disabled except digital interface.				
					0	0	0	1	internally of appearing TXCLK.	derived 1200 at TXD must	Hz signal. S be valid on th	de TXCLK is an erial input data e rising edge of t of RXD on the		
					0	0	1	0	internal sy nally to EX	nchronous, b	ut TXCLK is o	on is identical to connected inter- 01% clock must		
					0	0	1	1	synchrono		CLK is conne	eration as other cted internally to		
					0	1	0	0		PSK asynchro 6 data bits, 1		8 bits/character		
					0	1	0	1	Selects DF (1 start bit,	9 bits/character				
					0	1	1	0		PSK asynchro 8 data bits, 1		0 bits/character		
		0 1 1 1			1	Selects DPSK asynchronous mode - 11 bits/character (1 start bit, 8 data bits, Parity and 1 stop bit).								
					1	1	0	0	Selects FS	SK operation.				

CONTROL REGISTER 0

D6

Not used; must be written as a "0."

1 0 0 0

CONTROL REGISTER 0 (Continued)

	D7	7	D6		D5	D4		D3	D2	D1	D0	
CR0 000	MOD OPTI	83		TRANSMIT MODE 3			NSMIT	TRANSMIT MODE 1	TRANSMIT MODE 0	TRANSMIT ENABLE	ANSWER/ ORIGINATE	
	10.	١	NAME		CONDITION			DESCRIPTION				
					D	D7 D5 D4		Selects:				
D7		Мо	dulatio	on	0	0 0 X		DPSK mode at 1200 bit/s.				
		C	Option		1 0		x	DPSK mod X = Don't d	de at 600 bit/s care	i.		

CONTROL REGISTER 1

	[D6	D5	D4	D3	D2	D1	D0	
CR1 001				NSMIT TERN 0	ENABLE DETECT INTER.	BYPASS SCRAMB	CLK CONTROL	RESET	TEST MODE 1	TEST MODE 0	
	D .	NAME		CON		DESCR	DESCRIPTION				
D1, D0		Test M	ode	D (Analog I signal ba use the s	normal operat oopback mode ack to the rece same center fr the TXA pin, t	e. Loops the iver, and ca requency as	uses the re the transn	eceiver to nitter. To	
				1	I 0	looped I	Selects remote digital loopback. Received dat looped back to transmit data internally, and RX forced to a mark. Data on TXD is ignored.				
				1	1		local digital lo RXD and cor				
D2		Res	et	0		Selects normal operation.					
					1	register	modem to po bits (CR0, CR of the CLK p cy.	1, Tone) ar	e reset to z		
D3	(CLK Control (Clock Control)		0		Selects pin.	Selects 11.0592 MHz crystal echo output at CLK pin.				
					1	Selects modes o	16 X the data only.	rate, output	at CLK pin	in DPSK	

	NUL	REGISTE		onunuea)								
		D7		D6	D5	D4	D3	D2	D1	D0		
CR1 001				NSMIT TERN 0	ENABLE DETECT INTER.	BYPASS SCRAMB	CLK CONTROL	RESET	TEST MODE 1	TEST MODE 0		
BIT NO	0.	NAM	IE	CON	NDITION	DESCR	IPTION					
D4		Bypa Scram			0		normal operat scrambler.	ion. DPSK	data is pas	sed		
					1		Selects Scrambler Bypass. Bypass DPSK data is routed around scrambler in the transmit path.					
D5		Enable Detect			0	Disables	Disables interrupt at INT pin.					
		Interru	upt	1		with a ch tone and when the when T	INT output. hange in status d call progress e TX enable bit X DTMF is ac l if the device	s of DR bits s detect int t is set. Can ctivated.	D1-D4. Th errupts are rier detect is All interrupt	e answer masked s masked s will be		
				D	7 D6							
D7, D6	6	Trans Patte		0 0		Selects normal data transmission as determined by the state of the TXD pin.				termined		
				0 1		Selects modem	an alternating testing.	mark/space	e transmit p	attern for		
				1 0		Selects a constant mark transmit pattern.						
					1	Selects	a constant spa	ace transmi	t pattern.			

CONTROL REGISTER 1 (Continued)

DETECT REGISTER

		D7	D6	D5		D4	D3	D2	D1	D0	
DR 010				RECEIVE DATA	UNSCR. MARK		CARR. DETECT	ANSWER TONE	CALL PROG.	LONG LOOP	
BIT NC).	N	NAME	CONDITIO	N	DES	DESCRIPTION				
D0		Lor	ng Loop	0		Indicates normal received signal.					
				1		Indi	cates low rece	eived signal le	vel.		
D1		Call	Progress	0		No call progress tone detected.					
		Detect		1		prog	ress detectio	ce of call prog n circuitry is a z call progress	activated b		

DETECT REGISTER (Continued)

	D7	D6	D5	D4	D3	D2	D1	D0	
DR 010			RECEIVE DATA					LONG LOOP	
BIT NO.	1	NAME	CONDITION	CONDITION DESCRIPTION					
D2		nswer	0	0 No answer tone detected.					
		Tone Detect	1	1 Indicates detection of 2100 Hz answer tone. T device must be in originate mode for detection answer tone.					
D3		Carrier	0	0 No carrier detected in the receive channel.					
		Detect	1 Indicates carrier has been detected in the rec					ne received	
D4		crambled	0	No	unscrambled	mark.			
		Mark	1	the con to c indi	cates detection received data nect sequence onfigure itself cation means eived for > 168	a. This may e or for reques for remote dig that unscramb	be used i sting a rem jital loopba	in the V.22 ote modem ick. A valid	
D5	1	eceive Data		Thi	ntinuously outp s data is the sa not disabled v	me as that out	out on the F		
D6, D7				Not	used.				

TONE REGISTER

	D7	,	D6	D5		D4	D3	D2	D1	D0			
TR 011	RXI OUTF CON	TU	TRANSMIT GUARD TONE	TRANSMIT ANSWER TONE	Т	RANSMIT DTMF	DTMF 3	DTMF 2	DTMF 1/ OVER- SPEED	DTMF 0/ GUARD			
віт	NO.		NAME	CONDITION	CONDITION DESCRIPTION								
				D6 D4 D)	D0 inte	eracts with	bits D6, D	5, and D4 as	s shown.			
D0		-	TMF 0/	X 1 X	,	Transr	nit DTMF t	ones.					
		Gu	ard Tone	X 0 0		Transr	nits 1800 H	lz guard to	one.				
				X 0 1		Transr	nits 550 Hz	guard to	ne.				
		D4		D4 D1		D4 D1		D1 interacts with D4 as shown.					
D1		C	TMF 1/	0 0	Asynchronous DPSK 1200 or 600 bit/s +1.0% - 2.5%								
				0 1	0 1 Asynchronous DPSK 1200 or 600 bit/s +2.3% -2.5%.								

									1
D4	D3		D2		D	1		D0	
ANSMIT DTMF	DTMF 3	DT	MF 2		DTM OVI SPE			DTMF 0/ GUARD	
DESC	RIPTION								
 transm	ms 1 of 16 hitted when set. Tone	ТΧΙ	отм	Far	ю́ТХ	(enabl	et	oit (CR0, bit	
	OARD ALENT		MF D2			T LOV		NES HIGH	
	1	0	0	0	1	697	7	1209	
	2	0	0	1	0	697	7	1336	
	3	0	0	1	1	697	7	1477	
	4	0	1	0	0	770)	1209	
	5	0	1	0	1	770)	1336	
	6	0	1	1	0	770)	1477	
	7	0	1	1	1	852	2	1209	
	8	1	0	0	0	852	2	1336	
	9	1	0	0	1	852	2	1477	
	0	1	0	1	0	941		1336	
	*	1	Δ	1	1	0/1		1209	

TONE	REGISTER	(Continued)
------	----------	-------------

D6

I

D5

D7

1			00						04	0		<i></i>					
TR 011	RX OUTF CON	דטי	TRANSM GUARE TONE	>		NSMI WEF DNE			ANSMIT DTMF	DTMF 3	DT	MF		DTMI OVE SPEI	R-	DTMF 0. GUARD	
віті	NO.		NAME		CONI	ΟΙΤΙΟ)N		DESCI	RIPTION							
				[D3 D2	D1	D0										
D3, I D1, I			0TMF 3, 2, 1, 0		0 0 1 1	0 1	0 - 1		Programs 1 of 16 DTMF tone pairs that w transmitted when TX DTMF and TX enable D1) is set. Tone encoding is shown below			bit (CR0,	bit				
										OARD ALENT		MF D2		DE D0		ONES 'HIGH	
										12	0	0 0	0 1	1 0	697 697	1209 1336	
										3	0	0	1	1	697	1477	
										4	0	1	0	0	770	1209	
									ļ	5	0	1	0	1	770	1336	
										6	0	1	1	0	770	1477	
									•	7	0	1	1	1	852	1209	
										8	1	0	0	0	852	1336	
										9	1	0	0	1	852	1477	
										0	1	0	1	0	941	1336	
										*	1	0	1	1	941	1209	
										#	1	1	0	0	941	1477	
								-		A	1	1	0	1	697	1633	
										В	1	1	1	0	770	1633	
								$\left \right $		с D	1	1	1	1	852	1633	
		.				~		-			0	0	0	0	941	1633	
D4			ransmit DTMF			0	-			e DTMF.							
						1			transm DTMF	nuou all of	isly her	whe tran	en thi Ismit f	is bit i functio	tones a s high. ns. Mode nsmission	TX əm	
D5			ransmit			0			Disables answer to			ger	nera	tor.			
			nswer Tone			1		Enables answer tone generator. A 2100 H tone will be transmitted continuously w Transmit Enable bit is set in CR0. The device in answer mode.			when the	he					

TONE REGISTER (Continued)

	. D7	,	D6	D5		D4	D3	D2	D1	D0	
TR 011	RX OUTF CON	UT	TRANSMI GUARD TONE		TI	RANSMIT DTMF	DTMF 3	DTMF 2	DTMF 1/ OVER- SPEED	DTMF 0/ GUARD	
BITI	NO.		NAME	CONDITION		DESC	RIPTION				
D6		T	X Guard	0		Disables guard tone generator.					
		· ·	ransmit ard Tone)	1			es guard to on of guard	•	or (See D0	for	
D7			D Output Control	0		Enable RXD.	es RXD pin	. Receive	data will be	output on	
				1		Disables RXD pin. The RXD pin becomes a high impedance with internal weak pull-up resistor.					

ID REGISTER

		D7	D6	D	5	D4 .	D3	D2	D1	D0			
ID 110		ID	ID	IC)								
BIT N		ΝΔ	ME			DES	CRIPTION		L				
				 D7 D6		 	ates Device:						
D7, D	6	Dev	vice	0 0	Х	SSI	73K212(L) oi	73K322L					
		Identif	ication	 01	Х	SSI	73K221(L) o	73K302L					
		Sign	ature	 1 0	Х	SSI	73K222(L) o	73K321L					
				1 1	0	SSI	73K224L						
				1 1	1	SSI	73K324L						

•

ELECTRICAL SPECIFICATIONS

1

ABSOLUTE MAXIMUM RATINGS

PARAMETER	RATING	UNIT
VDD Supply Voltage	14	V
Storage Temperature	-65 to 150	°C
Soldering Temperature (10 sec.)	260	°C
Applied Voltage	-0.3 to VDD+0.3	v
Nata, All impute and submute are must at all		

Note: All inputs and outputs are protected from static charge using built-in, industry standard protection devices and all outputs are short-circuit protected.

RECOMMENDED OPERATING CONDITIONS

PARAMETER	CONDITIONS	MIN	NOM	MAX	UNITS
VDD Supply voltage		4.5	5	5.5	V
TA, Operating Free-Air Temperature		-40		+85	°C
Clock Variation	(11.0592 MHz) Crystal or external clock	-0.01		+0.01	%
External Components (Refer to	Application section for placement.)				
VREF Bypass Capacitor	(External to GND)	0.1			μF
Bias setting resistor	(Placed between VDD and ISET pins)	1.8	2	2.2	MΩ
ISET Bypass Capacitor	(ISET pin to GND)	0.1			μF
VDD Bypass Capacitor 1	(External to GND)	0.1			μF
VDD Bypass Capacitor 2	(External to GND)	22			μF
XTL1 Load Capacitor	Depends on crystal characteristics;			40	pF
XTL2 Load Capacitor	from pin to GND			20	

DC ELECTRICAL CHARACTERISTICS

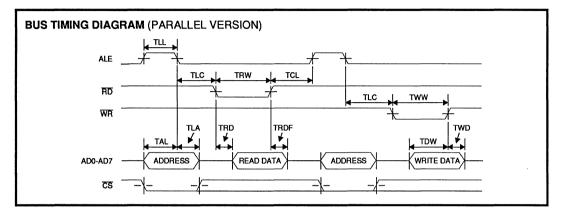
(TA = -40°C to 85°C, VDD = recommended range unless otherwise noted.)

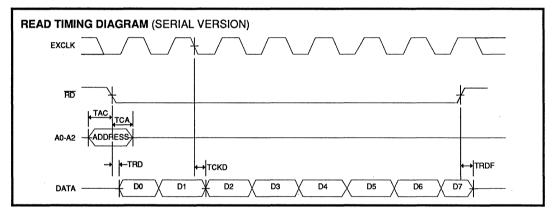
PARAMETER	CONDITIONS	MIN	NOM	MAX	UNITS
IDD, Supply Current	ISET Resistor = 2 M Ω				
IDDA, Active	CLK = 11.0592 MHz		8	12	mA
IDD1, Power-down	CLK = 11.0592 MHz			4	mA
IDD2, Power-down	CLK = 19.200 KHz			3	mA
Digital Inputs					
VIH, Input High Voltage					
Reset, XTL1, XTL2		3.0		VDD	v
All other inputs		2.0		VDD	v
VIL, Input Low Voltage		0		0.8	v
IIH, Input High Current	VI = VIH Max			100	μA
IIL, Input Low Current	VI = VIL Min	-200			μA
Reset Pull-down Current	Reset = VDD	1		50	μA
Input Capacitance	All Digital Input Pins			10	pF
Digital Outputs					
VOH, Output High Voltage	IOH MIN = -0.4 mA	2.4		VDD	V
VOL, Output Low Voltage	IO MAX = 1.6 mA			0.4	V
VOL, CLK Output	IO = 3.6 mA			0.6	v
RXD Tri-State Pull-up Curr.	RXD = GND	-1		-50	μA
CMAX, CLK Output	Maximum Capacitive Load			15	pF

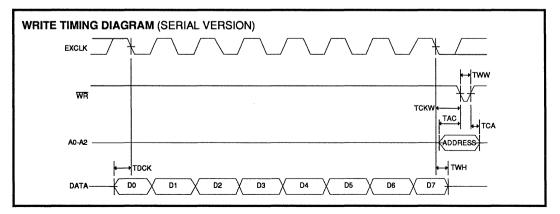
DYNAMIC CHARACTERISTICS AND TIMING

(TA = -40°C to +85°C, VDD = recommended range unless otherwise noted.)

Ieasured at TXA X scrambled marks	MIN 55	NOM	MAX	UNITS				
	55							
X scrambled marks				dB				
	-11	-10	-9	dBm0				
LK = 11.0592 MHz	-0.35		+.35	%				
ransmit Dotting Pattern	-11	-10	-9	dBm0				
HD in the alternate band PSK or FSK		-60	-50	dB				
ransmit Dotting Pattern n ALB @ RXD		±8		%				
andom Input in ALB @ RXD	-15		+15	%				
e in DPSK mode to meet specifica	tions)							
	25		+.25	%				
ow Group, DPSK Mode	-10	-9	-8	dBm0				
ligh Group, DPSK Mode	-8	-7	-6	dBm0				
ligh-Group to Low-Group	1.0	2.0	3.0	dB				
PSK or FSK	-38		-28	dBm0				
efer to Performance Curves		45		dB				
-Tones in 350-600 Hz band	-34		0	dBm0				
-Tones in 350-600 Hz band			-41	dBm0				
70 dBm0 to -30 dBm0 STEP	27		80	ms				
30 dBm0 to -70 dBm0 STEP	27		80	ms				
	2			dB				
dBm0 refer to the following definition	on:							
 12V Version 10 dB loss in the Transmit path to the line. 9 dB gain in the Receive path from the line. 5V Version 0 dB loss in the Transmit path to the line. 2 dB gain in the Receive path from the line. Refer to the Basic Box Modem diagram in the Applications section for the DAA design. 								
	igh Group, DPSK Mode igh-Group to Low-Group PSK or FSK efer to Performance Curves Tones in 350-600 Hz band Tones in 350-600 Hz band 0 dBm0 to -30 dBm0 STEP 0 dBm0 to -70 dBm0 STEP dBm0 refer to the following definition fransmit path to the line.	igh Group, DPSK Mode-8igh-Group to Low-Group1.0PSK or FSK-38efer to Performance Curves-34Tones in 350-600 Hz band-34Tones in 350-600 Hz band00 dBm0 to -30 dBm0 STEP270 dBm0 to -70 dBm0 STEP2722dBm0 refer to the following definition:Transmit path to the line.eceive path from the line.	igh Group, DPSK Mode-8-7igh-Group to Low-Group1.02.0PSK or FSK-38efer to Performance Curves45Tones in 350-600 Hz band-34Tones in 350-600 Hz band-340 dBm0 to -30 dBm0 STEP270 dBm0 to -70 dBm0 STEP2722dBm0 refer to the following definition:Transmit path to the line.eceive path from the line.	igh Group, DPSK Mode-8-7-6igh-Group to Low-Group1.02.03.0PSK or FSK-38-28efer to Performance Curves45Tones in 350-600 Hz band-340Tones in 350-600 Hz band-410 dBm0 to -30 dBm0 STEP27800 dBm0 to -70 dBm0 STEP278022				


DYNAMIC CHARACTERISTICS AND TIMING (Continued)


PARAMETERS	CONDITIONS	MIN	NOM	МАХ	UNITS
Carrier Detect	••••••••••••••••••••••••••••••••••••••			•	
Threshold	DPSK or FSK receive data	-49		-42	dBm0
Delay Time	-70 dBm0 to -30 dBm0 STEP	15		45	ms
Hysteresis	Single tone detected	2	3.0		dB
Hold Time	-30 dBm0 to -70 dBm0 STEP	10		24	ms
Answer Tone Detector				_	
Detect Level	In FSK mode	-49.5		-42	dBm0
Delay Time	-70 dBm0 to -30 dBm0 STEP	20		45	ms
Hold Time	-30 dBm0 to -70 dBm0 STEP	10		30	ms
Detect Freq. Range		-2.5		+2.5	%
Output Smoothing Filter					
Output load	TXA pin; FSK Single	10			ΚΩ
	Tone out for THD = -50 db in .3 to 3.4 KHz			50	p⊢
Spurious Freq. Comp.	Frequency = 76.8 KHz			-39	dBm0
	Frequency = 153.6 KHz			-45	dBm0
Output Impedance	TXA pin		200	300	Ω
Clock Noise	TXA pin; 76.8 KHz				
5V Version (73K221L)				1.0	mVrms
12V Version (73K221)				2	mVrms
Carrier VCO					
Capture Range	Originate or Answer	-10		+10	Hz
Capture Time	-10 Hz to +10 Hz Carrier Frequency Change		40	100	ms
Recovered Clock					
Capture Range		-625		+625	ppm
Data Delay Time	Analog data in at RXA pin to receive data valid at RXD pin		30	50	ms


DYNAMIC CHARACTERISTICS AND TIMING (Continued)

PARAMETERS	CONDITIONS	MIN	NOM	MAX	UNITS
Guard Tone Generator					
Tone Accuracy	550 or 1800 Hz	-20		+20	Hz
Tone Level	550 Hz	-4.0	-3.0	-2.0	dB
(Below DPSK Output)	1800 Hz	-7.0	-6.0	-5.0	dB
Harmonic Distortion	550 Hz			-50	dB
700 to 2900 Hz	1800 Hz			-60	dB
Timing (Refer to Timing Dia	igrams)				
TAL	CS/Addr. setup before ALE low	30			ns
TLA	CS/Addr. hold after ALE low	20			ns
TLC	ALE low to RD/WR low	40			ns
TCL	RD/WR Control to ALE high	10			ns
TRD	Data out from \overline{RD} low	0		160	ns
TLL	ALE width	60			ns
TRDF	Data float after RD high	0		80	ns
TRW	RD width	200		25000	ns
тww	WR width	140		25000*	ns
TDW	Data setup before WR high	150			ns
TWD	Data hold after WR high	20			ns
TCKD	Data out after EXCLK low			200	ns
TCKW	WR after EXCLK low	150			ns
TDCK	Data setup before EXCLK low	150			ns
TAC	Address setup before control**	50			ns
ТСА	Address hold after control**	50			ns
тwн	Data hold after EXCLK	150			ns
* Maximum time applies t	o parallel version only.		•••••	• • • • • • • • • • • • • • • • • • • •	
	alling edge of RD or WR. Iling edge of RD or the rising edge of W	VR.			

TIMING DIAGRAMS

APPLICATIONS INFORMATION

GENERAL CONSIDERATIONS

Figures 1 and 2 show basic circuit diagrams for K-Series modem integrated circuits. K-Series products are designed to be used in conjunction with a control processor, a UART or RS-232 serial data interface, and a DAA phone line interface to function as a typical intelligent modern. The K-Series ICs interface directly with Intel 8048 and 80C51 microprocessors for control and status monitoring purposes. Two typical DAA arrangements are shown: one for a split±5 or±12 volt design and one for a single 5 volt design. These diagrams are for reference only and do not represent production-ready modem designs.

K-Series devices are available with two control interface versions: one for a parallel multiplexed address/ data interface, and one for a serial interface. The parallel version is intended for use with 8039/48 or 8031/51 microcontrollers from Intel or many other manufacturers. The serial interface 22-pin version can be used with other microcontrollers or in applications where only a limited number of port lines are available or the application does not lend itself to a multiplexed address/data interface. The parallel versions may also be used in the serial mode, as explained in the data sheet pin description.

In most applications the controller will monitor the serial data for commands from the DTE and the received data for break signals from the far end modem. In this way, commands to the modem are sent over the same line as the transmitted data. In other applications the RS-232 interface handshake lines are used for modem control.

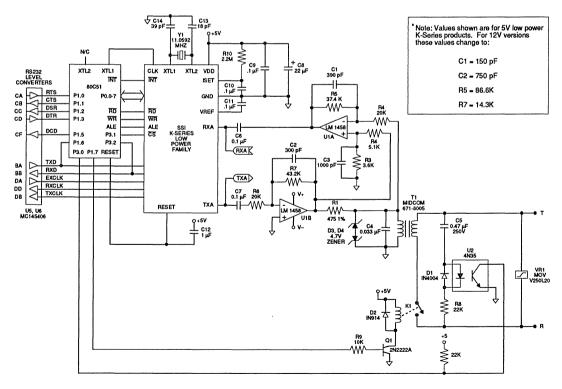


FIGURE 1: Basic Box Modem with Dual-Supply Hybrid

DIRECT ACCESS ARRANGEMENT (DAA)

The telephone line interfaces show two examples of how the "hybrid" may be implemented. The split supply design (Figure 1) is a typical two op-amp hybrid. The receive op-amp serves two purposes. It supplies gain to amplify the receive signal to the proper level for the modem's detectors and demodulator, and it removes the transmitted signal from the receive signal present at the transformer. This is done by supplying a portion of the transmitted signal to the non-inverting input of the receive op-amp at the same amplitude as the signal appearing at the transformer, making the transmit signal common mode.

The single-supply hybrid is more complex than the dual-supply version described above, but its use eliminates the need for a second power supply. This circuit (Figure 2) uses a bridged drive to allow undistorted signals to be sent with a single 5 volt supply. Because DTMF tones utilize a higher amplitude than data, these

signals will clip if a single-ended drive approach is used. The bridged driver uses an extra op-amp (U1A) to invert the signal coming from the gain setting op-amp (U1B) before sending it to the other leg of the transformer. Each op-amp then supplies half the drive signal to the transformer. The receive amplifier (U1C) picks off its signal at the junction of the impedance matching resistor and the transformer. Because the bottom leg of the transformer is being driven in one direction by U1A and the resistor is driven in the opposite direction at the same time by U1B, the junction of the transformer and resistor remains relatively constant and the receive signal is unaffected.

DESIGN CONSIDERATIONS

Silicon Systems 1-chip modem products include all basic modem functions. This makes these devices adaptable for use in a variety of applications, and as easy to control as conventional digital bus peripherals.

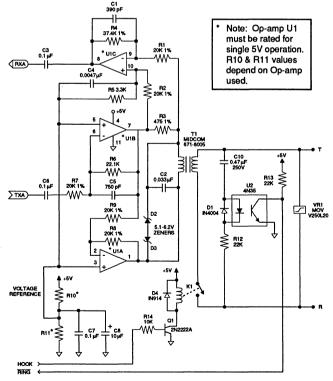


FIGURE 2: Single 5V Hybrid Version

Unlike digital logic circuitry, however, modem designs must properly contend with precise frequency tolerances and very low level analog signals, to ensure acceptable performance. Using good analog circuit design practices will generally result in a sound design. Following are additional recommendations which should be taken into consideration when starting new designs.

CRYSTAL OSCILLATOR

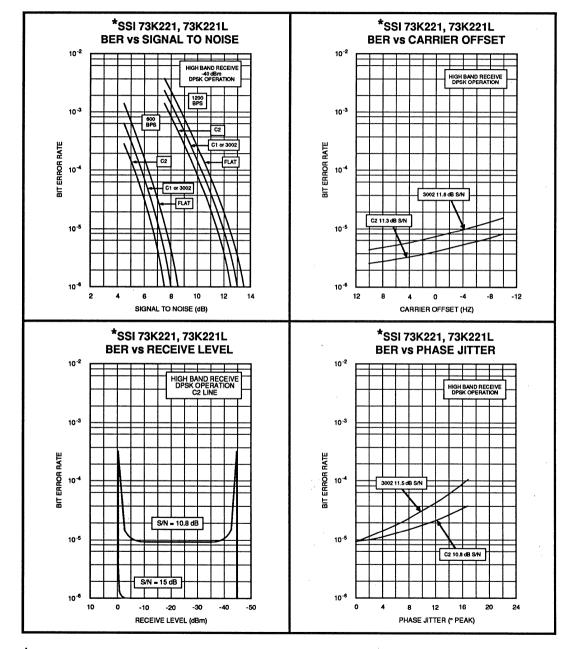
The K-Series crystal oscillator requires a parallel mode (antiresonant) crystal which operates at 11.0592 MHz. It is important that this frequency be maintained to within $\pm 0.01\%$ accuracy.

In order for a parallel mode crystal to operate correctly and to specification, it must have a load capacitor connected to the junction of each of the crystal and internal inverter connections, terminated to ground. The values of these capacitors depend primarily on the crystal's characteristics, and to a lesser degree on the internal inverter circuit. The values used affect the accuracy and start up characteristics of the oscillator.

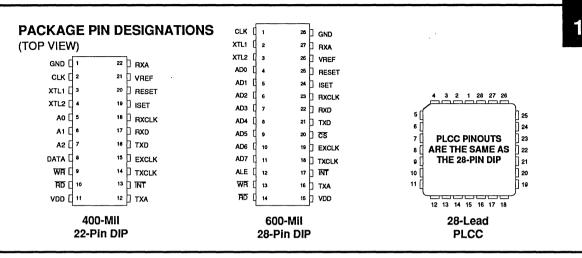
LAYOUT CONSIDERATIONS

Good analog/digital design rules must be used to control system noise in order to obtain highest performance in modem designs. The more digital circuitry present on the PC board, the more this attention to noise control is needed. The modem should be treated as a high impedance analog device. A 22 µF electrolytic capacitor in parallel with a 0.1 µF ceramic capacitor between VDD and GND is recommended. Liberal use of ground planes and larger traces on power and ground are also highly favored. High speed digital circuits tend to generate a significant amount of EMI (Electro-Magnetic Interference) which must be minimized in order to meet regulatory agency limitations. To accomplish this, high speed digital devices should be locally bypassed, and the telephone line interface and K-Series device should be located close to each other near the area of the board where the phone line connection is accessed. To avoid problems, power supply and ground traces should be routed separately to the analog and digital functions on the board, and digital signals should not be routed near low level or high impedance analog traces. The analog and digital grounds should only connect at one point near the K-Series device ground pin to avoid ground loops. The K-Series modem IC's should have both high frequency and low frequency bypassing as close to the package as possible.

MODEM PERFORMANCE CHARACTERISTICS


The curves presented here define modem IC performance under a variety of line conditions while inducing disturbances that are typical of those encountered during data transmission on public service telephone lines. Test data was taken using an AEA Electronics' "Autotest I" modem test set and line simulator, operating under computer control. All tests were run fullduplex, using a Concord Data Systems 224 as the reference modem. A 511 pseudo-random-bit pattern was used for each data point. Noise was C-message weighted and all signal-to-noise (S/N) ratios reflect total power measurements similar to the CCITT V.56 measurement specification. The individual tests are defined as follows.

BER vs.S/N


This test measures the ability of the modem to operate over noisy lines with a minimum of data-transfer errors. Since some noise is generated in the best of dial-up lines, the modem must operate with the lowest S/N ratio possible. Better modem performance is indicated by test curves that are closest to the BER axis. A narrow spread between curves representing the four line parameters indicates minimal variation in performance while operating over a range of aberrant operating conditions. Typically, a DPSK modem will exhibit better BER-performance test curves receiving in the low band than in the high band.

BER vs. Receive Level

This test measures the dynamic range of the modem. Because signal levels vary widely over dial-up lines, the widest possible dynamic range is desirable. The minimum Bell specification calls for 36 dB of dynamic range. S/N ratios are held constant at the indicated values while the receive level is lowered from a very high to very low signal levels. The width of the "bowl" of these curves, taken at the BER point, is the measure of dynamic range.

* = "EQ On" Indicates bit CR1 D4 is set for additional phase equalization.

ORDERING INFORMATION

PART DESCRIPTION	ORDER NO.	PKG. MARK
SSI 73K221 with Parallel Bus Interface		
28-pin 12 volt supply		
Plastic Dual-In-Line	SSI 73K221 – IP	73K221 – IP
Plastic Leaded Chip Carrier	SSI 73K221 – IH	73K221 – IH
28-pin 5 volt supply		
Plastic Dual-In-Line	SSI 73K221L – IP	73K221L – IP
Plastic Leaded Chip Carrier	SSI 73K221L IH	73K221L – IH
SSI 73K212 with Serial Interface		
22-pin 12 volt supply		
Plastic Dual-In-Line	SSI 73K221S – IP	73K221S – IP
22-pin 5 volt supply		
Plastic Dual-In-Line	SSI 73K221SL – IP	73K221S – IP

No responsibility is assumed by Silicon Systems for use of this product nor for any infringements of patents and trademarks or other rights of third parties resulting from its use. No license is granted under any patents, patent rights or trademarks of Silicon Systems. Silicon Systems reserves the right to make changes in specifications at any time without notice. Accordingly, the reader is cautioned to verify that the data sheet is current before placing orders.

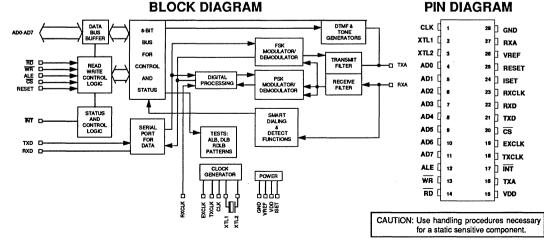
Silicon Systems, Inc., 14351 Myford Road, Tustin, CA 92680, (714) 731-7110, FAX: (714) 731-5457

Notes:

silicon systems*

July, 1990

1


DESCRIPTION

The SSI 73K222 is a highly integrated single-chip modem IC which provides the functions needed to construct a CCITT V.22, V.21 and Bell 212A compatible modem, capable of 1200 bit/s full-duplex operation over dial-up lines. The SSI 73K222 is an enhancement of the SSI 73K212 single-chip modem which adds V.22 and V.21 modes to the Bell 212A and 103 operation of the SSI 73K212. In Bell 212A mode, the SSI 73K222 provides the normal Bell 212A and 103 functions and employs a 2225 Hz answer tone. The SSI 73K222 in V.22 mode produces either 550 or 1800 Hz quard tone, recognizes and generates a 2100 Hz answer tone, and allows 600 bit/s V.22 or 0-300 bit/s V.21 operation. The SSI 73K222 integrates analog, digital, and switched-capacitor array functions on a single substrate, offering excellent performance and a high level of functional integration in a single 28or 22-pin DIP configuration. The SSI 73K222L, low power version of the SSI 73K222 provides identical performance and features, but operates from a single +5 volt supply with substantially lower power consumption.

The SSI 73K222 includes the DPSK and FSK modulator/demodulator functions, call progress and handshake tone monitor and a tone generator capable of (Continued)

FEATURES

- One-chip CCITT V.22, V.21, Bell 212A and 103
 standard compatible modem data pump
- Full-duplex operation at 0-300 bit/s (FSK) or 600 and 1200 bit/s (DPSK)
- Pin and software compatible with other SSI K-Series 1-chip modems
- Interfaces directly with standard microprocessors (8048, 80C51 typical)
- Serial (22-pin DIP) or parallel (28-pin DIP) microprocessor bus for control
- Serial port for data transfer
- Both synchronous and asynchronous modes of operation including V.22 extended overspeed
- Call progress, carrier, precise answer tone (2100 or 2225 Hz), and long loop detectors
- DTMF, and 550 or 1800 Hz guard tone generators
- Test modes available: ALB, DL, RDL, Mark, Space, Alternating bit patterns
- Precise automatic gain control allows 45 dB dynamic range
- Space efficient 22- or 28-pin DIP packages
- CMOS technology for low power consumption using 30 mW @ 5V or 180 mW @ 12V
- Single +5 volt (73K222L) or +12 volt (73K222) versions

DESCRIPTION (Continued)

tone required for European applications. This device supports V.22 (except mode v) and V. 21 modes of operation, allowing both synchronous and asynchronous communications. Test features such as analog loop, digital loop, and remote digital loopback are supported. Internal pattern generators are also included for self-testing. The SSI 73K222 is designed to appear to the systems designer as a microprocessor peripheral, and will easily interface with popular one-chip microprocessors (80C51 typical) for control of modem functions through its 8-bit multiplexed address/data bus or serial control bus. An ALE control line simplifies address demultiplexing. Data communications occurs through a separate serial port only.

The SSI 73K222 is ideal for use in either free standing or integral system modem products where full-duplex 1200 bit/s data communications over the 2-wire switched telephone network is desired. Its high functionality, low power consumption and efficient packaging simplify design requirements and increase system reliability. A complete modem requires only the addition of the phone line interface, a control microprocessor, and RS-232 level converter for a typical system. The SSI 73K222 is part of Silicon Systems' K-Series family of pin and function compatible single-chip modem products. These devices allow systems to be configured for higher speeds and Bell or CCITT operation with only a single component change.

OPERATION

ASYNCHRONOUS MODE

Data transmission for the DPSK mode requires that data ultimately be transmitted in a synchronous fashion, The SSI 73K222 includes ASYNC/SYNC and SYNC/ASYNC converters which delete or insert stop bits in order to transmit data within a $\pm 0.01\%$ rate. In asynchronous mode the serial data comes from the TXD pin into the ASYNC/SYNC converter. The ASYNC/SYNC converter accepts the data provided on the TXD pin which normally must be 1200 or 600 bit/s $\pm 1.0\%$, -2.5%. The converter will then insert or delete stop bits in order to output a signal which is 1200 or 600 bit/s $\pm 0.01\%$ ($\pm 0.01\%$ is required synchronous data rate accuracy).

The serial data stream from the ASYNC/SYNC converter is passed through the data scrambler and onto the analog modulator. The data scrambler can be bypassed under processor control when unscrambled data must be transmitted. The ASYNC/SYNC converter and the data scrambler are bypassed in all FSK modes. If serial input data contains a break signal through one character (including start and stop bits) the break will be extended to at least $2 \cdot N + 3$ bits long (where N is the number of transmitted bits/character).

Serial data from the demodulator is passed first through the data descrambler and then through the SYNC/ASYNC converter. The SYNC/ASYNC convertor will reinsert any deleted stop bits and transmit output data at an intra-character rate (bit-to-bit timing) of no greater than 1219 bit/s. An incoming break signal (low through two characters) will be passed through without incorrectly inserting a stop bit.

The SYNC/ASYNC converter also has an extended overspeed mode which allows selection of an overspeed range of either +1% or +2.3%. In the extended overspeed mode, stop bits are output at 7/8 the normal width.

SYNCHRONOUS MODE

The CCITT V.22 standard defines synchronous operation at 600 and 1200 bit/s. The Bell 212A standard defines synchronous operation only at 1200 bit/s. Operation is similar to that of the asynchronous mode except that data must be synchronized to a provided clock and no variation in data transfer rate is allowable. Serial input data appearing at TXD must be valid on the rising edge of TXCLK.

TXCLK is an internally derived signal in internal mode and is connected internally to the RXCLK pin in slave mode. Receive data at the RXD pin is clocked out on the falling edge of RXCLK. The ASYNCH/SYNCH converter is bypassed when synchronous mode is selected and data is transmitted out at the same rate as it is input.

DPSK MODULATOR/DEMODULATOR

The SSI 73K222 modulates a serial bit stream into di-bit pairs that are represented by four possible phase shifts as prescribed by the Bell 212A or V.22 standards. The baseband signal is then filtered to reduce intersymbol interference on the bandlimited 2-wire

1

telephone line. Transmission occurs using either a 1200 Hz (originate mode) or 2400 Hz carrier (answer mode). Demodulation is the reverse of the modulation process, with the incoming analog signal eventually decoded into di-bits and converted back to a serial bit stream. The demodulator also recovers the clock which was encoded into the analog signal during modulation. Demodulation occurs using either a 1200 Hz carrier (answer mode or ALB originate mode) or a 2400 Hz carrier (originate mode or ALB answer mode). The SSI 73K222 uses a phase locked loop coherent demodulation technique for optimum receiver performance.

FSK MODULATOR/DEMODULATOR

The FSK modulator produces a frequency modulated analog output signal using two discrete frequencies to represent the binary data. In Bell 103, the standard frequencies of 1270 and 1070 Hz (originate, mark and space) or 2225 and 2025 Hz (answer, mark and space) are used. V.21 mode uses 980 and 1180 Hz (originate, mark and space), or 1650 and 1850Hz (answer, mark and space). Demodulation involves detecting the received frequencies and decoding them into the appropriate binary value. The rate converter and scrambler/descrambler are bypassed in the 103 or V.21 modes.

PASSBAND FILTERS AND EQUALIZERS

High and low band filters are included to shape the amplitude and phase response of the transmit and receive signals and provide compromise delay equalization and rejection of out-of-band signals in the receive channel. Amplitude and phase equalization are necessary to compensate for distortion of the transmission line and to reduce intersymbol interference in the bandlimited receive signal. The transmit signal filtering approximates a 75% square root of raised Cosine frequency response characteristic.

AGC

The automatic gain control maintains a signal level at the input to the demodulators which is constant to within 1 dB. It corrects quickly for increases in signal which would cause clipping and provides a total receiver dynamic range of >45 dB.

PARALLEL BUS INTERFACE

Four 8-bit registers are provided for control, option select and status monitoring. These registers are addressed with the AD0, AD1, and AD2 multiplexed address lines (latched by ALE) and appear to a control microprocessor as four consecutive memory locations. Two control registers and the tone register are read/write memory. The detect register is read only and cannot be modified except by modem response to monitored parameters.

SERIAL COMMAND INTERFACE

The serial command interface allows access to the SSI 73K222 control and status registers via a serial command port (22-pin version only). In this mode the A0, A1 and A2 lines provide register addresses for data passed through the data pin under control of the RD and WR lines. A read operation is initiated when the RD line is taken low. The first bit is available after RD is brought low and the next seven cycles of EXCLK will then transfer out seven bits of the selected address LSB first. A write takes place by shifting in eight bits of data LSB first for eight consecutive cycles of EXCLK. WR is then pulsed low and data transferred into the addressed register occurs on the rising edge of WR. This interface mode is also supported in the 28-pin packages. See serial control interface pin description.

SPECIAL DETECT CIRCUITRY

The special detect circuitry monitors the received analog signal to determine status or presence of carrier, call-progress tones, answer tone and weak received signal (long loop condition). An unscrambled mark request signal is also detected when the received data out of the DPSK demodulator before the descrambler has been high for 165.5 ms \pm 6.5 ms minimum. The appropriate detect register bit is set when one of these conditions changes and an interrupt is generated for all purposes except long loop. The interrupts are disabled (masked) when the enable interrupt bit is set to 0.

DTMF GENERATOR

The DTMF generator will output one of 16 standard tone pairs determined by a 4-bit binary value and TX DTMF mode bit previously loaded into the tone register. Tone generation is initiated when the DTMF mode is selected using the tone register and the transmit enable (CR0 bit D1) is changed from 0 to 1.

PIN DESCRIPTION

POWER

NAME	28-PIN	22-PIN	ТҮРЕ	DESCRIPTION
GND	28	1	1	System Ground.
VDD	15	11	1	Power supply input, 12V +10%, -20% (73K222) or 5V \pm 10% (73K222L). Bypass with .1 and 22 μF capacitors to GND.
VREF	26	21	0	An internally generated reference voltage. Bypass with .1 µF capacitor to ground.
ISET	24	19	I	Chip current reference. Sets bias current for op-amps. The chip current is set by connecting this pin to VDD through a 2 M Ω resistor. ISET should be bypassed to GND with a .1 μ F capacitor.

PARALLEL MICROPROCESSOR INTERFACE

E				
ALE	12	-	I	Address latch enable. The falling edge of ALE latches the address on AD0-AD2 and the chip select on \overline{CS} .
AD0-AD7	4-11	-	I/O	Address/data bus. These bidirectional tri-state multi- plexed lines carry information to and from the internal registers.
CS	20	-	I	Chip select. A low on this pin during the falling edge of ALE allows a read cycle or a write cycle to occur. AD0-AD7 will not be driven and no registers will be written if \overline{CS} (latched) is not active. The state of \overline{CS} is latched on the falling edge of ALE.
CLK	1	2	0	Output clock. This pin is selectable under processor control to be either the crystal frequency (for use as a processor clock) or 16 x the data rate for use as a baud rate clock in DPSK modes only. The pin defaults to the crystal fre- quency on reset.
INT	17	13	0	Interrupt. This open drain output signal is used to inform the processor that a detect flag has occurred. The processor must then read the detect register to determine which detect triggered the interrupt. INT will stay low until the processor reads the detect register or does a full reset.
RD	14	-	I	Read. A low requests a read of the SSI 73K222 internal registers. Data cannot be output unless both $\overline{\text{RD}}$ and the latched $\overline{\text{CS}}$ are active or low.
RESET	25	20	I	Reset. An active high signal on this pin will put the chip into an inactive state. All control register bits (CR0, CR1, Tone) will be reset. The output of the CLK pin will be set to the crystal frequency. An internal pull down resistor permits power on reset using a capacitor to VDD.

PIN DESCRIPTION (Continued)

PARALLEL MICROPROCESSOR INTERFACE (Continued)

NAME	28-PIN	22-PIN	TYPE	DESCRIPTION
WR	13	-	I	Write. A low on this informs the SSI 73K222 that data is available on AD0-AD7 for writing into an internal register. Data is latched on the rising edge of \overline{WR} . No data is written unless both \overline{WR} and the latched \overline{CS} are low.

SERIAL MICROPROCESSOR INTERFACE

A0-A2	-	5-7	I	Register Address Selection. These lines carry register addresses and should be valid during any read or write operation.		
DATA	-	8	I/O	Serial Control Data. Data for a read/write operation clocked in or out on the falling edge of the EXCLK pin. T direction of data flow is controlled by the RD pin. RD I outputs data. RD high inputs data.		
RD	-	10	I	Read. A low on this input informs the SSI 73K222 that data or status information is being read by the processor. The falling edge of the $\overline{\text{RD}}$ signal will initiate a read from the addressed register. The $\overline{\text{RD}}$ signal must continue for eight falling edges of EXCLK in order to read all eight bits of the referenced register. Read data is provided LSB first. Data will not be output unless the $\overline{\text{RD}}$ signal is active.		
WR	-	9	I	Write. A low on this input informs the SSI 73K222 that data or status information has been shifted in through the DATA pin and is available for writing to an internal register. The normal procedure for a write is to shift in data LSB first on the DATA pin for eight consecutive falling edges of EXCLK and then to pulse WR low. Data is written on the rising edge of WR.		
Note:				AD0-AD7, ALE and \overline{CS} are removed and replaced with the nected pin. Also, the \overline{RD} and \overline{WR} controls are used differently.		
				in the 28-pin version by tying ALE high and $\overline{\text{CS}}$ low. In this nd AD0, AD1 and AD2 become A0, A1 and A2, respectively.		

,

1

PIN DESCRIPTION (Continued)

DTE USER

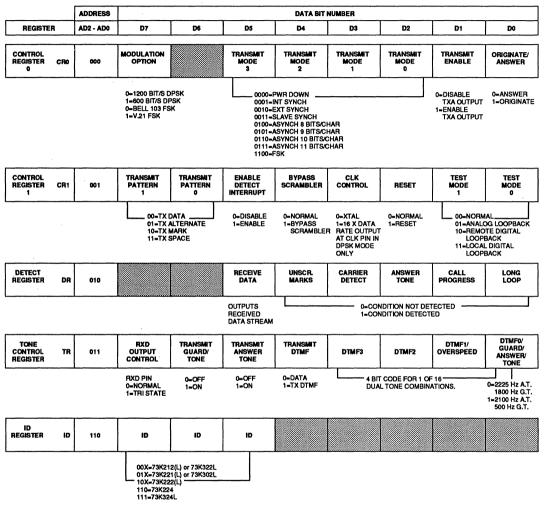
NAME	28-PIN	22-PIN	TYPE	DESCRIPTION
EXCLK	19	15	1	External Clock. This signal is used in synchronous trans- mission when the external timing option has been selected. In the external timing mode the rising edge of EXCLK is used to strobe synchronous DPSK transmit data applied to on the TXD pin. Also used for serial control interface.
RXCLK	23	18	0	Receive Clock. The falling edge of this clock output is coincident with the transitions in the serial received data output. The rising edge of RXCLK can be used to latch the valid output data. RXCLK will be valid as long as a carrier is present.
RXD	22	17	0	Received Data Output. Serial receive data is available on this pin. The data is always valid on the rising edge of RXCLK when in synchronous mode. RXD will output constant marks if no carrier is detected.
TXCLK	18	14	0	Transmit Clock. This signal is used in synchronous trans- mission to latch serial input data on the TXD pin. Data must be provided so that valid data is available on the rising edge of the TXCLK. The transmit clock is derived from different sources depending upon the synchronization mode selec- tion. In Internal Mode the clock is generated internally. In External Mode TXCLK is phase locked to the EXCLK pin. In Slave Mode TXCLK is phase locked to the RXCLK pin. TXCLK is always active.
TXD	21	16	I	Transmit Data Input. Serial data for transmission is applied on this pin. In synchronous modes, the data must be valid on the rising edge of the TXCLK clock. In asynchronous modes (1200/600 bit/s or 300 baud) no clocking is neces- sary. DPSK data must be 1200/600 bit/s $+1\%$, -2.5% or +2.3%, -2.5% in extended overspeed mode.

ANALOG INTERFACE AND OSCILLATOR

RXA	27	22	I	Received modulated analog signal input from the tele- phone line interface.
ТХА	16	12	0	Transmit analog output to the telephone line interface.
XTL1 XTL2	2 3	3 4	1	These pins are for the internal crystal oscillator requiring a 11.0592 MHz parallel mode crystal. Load capacitors should be connected from XTL1 and XTL2 to Ground. XTL2 can also be driven from an external clock.

REGISTER DESCRIPTIONS

Four 8-bit internal registers are accessible for control and status monitoring. The registers are accessed in read or write operations by addressing the A0, A1 and A2 address lines in serial mode, or the AD0, AD1 and AD2 lines in parallel mode. In parallel mode the address lines are latched by ALE. Register CR0 controls the method by which data is transferred over the phone line. CR1 controls the interface between the microprocessor and the SSI 73K222 internal state. DR is a detect register which provides an indication of monitored modem status conditions. TR, the tone control register, controls the DTMF generator, answer and guard tones and RXD output gate used in the modem initial connect sequence. All registers are read/write except for DR which is read only. Register control and status bits are identified below:


REGISTER BIT SUMMARY

		ADDRESS				DATA BIT	NUMBER			
REGISTE	R	AD2 - AD0	D7	D6	D5	D4	D3	D2	D1	D0
CONTROL REGISTER 0	CR0	000	MODULATION OPTION		TRANSMIT MODE 3	TRANSMIT MODE 2	TRANSMIT MODE 1	TRANSMIT MODE 0	TRANSMIT ENABLE	ANSWER/ ORIGINATE
CONTROL REGISTER 1	CR1	001	TRANSMIT PATTERN 1	TRANSMIT PATTERN 0	ENABLE DETECT INTERRUPT	BYPASS Scrambler	CLK CONTROL	RESET	TEST MODE 1	TEST MODE 0
DETECT REGISTER	DR	010			RECEIVE DATA	UNSCR. MARKS	CARRIER DETECT	ANSWER TONE	CALL PROGRESS	LONG LOOP
TONE CONTROL REGISTER	TR	011	RXD OUTPUT CONTROL	TRANSMIT GUARD TONE	TRANSMIT ANSWER TONE	TRANSMIT DTMF	DTMF3	DTMF2	DTMF1/ OVERSPEED	DTMF0/ GUARD/ ANS TONE
CONTROL REGISTER 2	CR2	100				THESE RE	GISTER LOCATI	DNS ARE RESER	VED FOR	
CONTROL REGISTER 3	CR3	101				USE WI				
ID REGISTER	ID	110	ID	ID	ID					

NOTE: When a register containing reserved control bits is written into, the reserved bits must be programmed as 0's.

REGISTER ADDRESS TABLE

	D7	D6		D5			D4		D3	D2	D1	D0			
CR0 000	MODI OPTI	10000000000000000000000000000000000		ANSI IODE		1	IANSN 10DE		TRANSMIT MODE 1	TRANSMIT MODE 0	TRANSMIT ENABLE	ANSWER/ ORIGINATE			
BIT N	10.	NAME		CC	DND	ITIC	N		DESCRIPTIO	Л					
D0		Answer/ Originate			C)		Selects answer mode (transmit in high band, receive in low band).							
				1					Selects origin high band).	nate mode (transmit in low band, receive in					
D1		Transmit			C)			Disables trar	ismit output a	at TXA.				
		Enable	ble 1					Enables trans Note: TX Ena and DTMF T	able must be s	et to 1 to allow	Answer Tone				
				D5	D4	D3	D2								
D5, D D2	D5, D4,D3, Transmit D2 Mode				0	0	0		Selects power	er down mode ept digital inte	e. All function erface.	S			
				0	0	0	1		internally der appearing at	rived 1200 H TXD must be ceive data is	e TXCLK is an rial input data rising edge of of RXD on the				
7						0	0	1	0		internal sync	hronous, but .K pin, and a ⁻	TXCLK is co	n is identical to nnected inter- 1% clock must	
				0	0	1	1			modes. TXC	LK is connect	ation as other ed internally to			
				0	1	0	0		Selects PSK (1 start bit, 6			bits/character			
		0 1 0 1 Selects PSK asynchronous mode - 9 bits/c (1 start bit, 7 data bits, 1 stop bit).							bits/character						
			0				0	Selects PSK asynchronous mode - 10 bits/char (1 start bit, 8 data bits, 1 stop bit).				bits/character			
				0	1	1	1	Selects PSK asynchronous mode - 11 bits/cha (1 start bit, 8 data bits, Parity and 1 or 2 stop b							
				1	1	0	0		Selects FSK operation.						
D6					C)			Not used; mu	nust be written as a "0."					

CONTROL REGISTER 0

	D7	D6		D5	D4		D3	D2	D1	D0	
CR0 000	MOD OPTI	· K		ANSMIT TRANS			TRANSMIT MODE 1	TRANSMIT MODE 0	TRANSMIT ENABLE	ANSWER/ ORIGINATE	
BIT N	D. NAME CONDITION						DESCRIPTIO	ОМ			
	D7 D5			5 D4		Selects:					
D7		Modulation	1	0 0	X		DPSK mode at 1200 bit/s.				
		Option		1 0	X		DPSK mode	at 600 bit/s.			
				0 1	1	FSK Bell 103 mode.					
			1 1 1		FSK CCITT V.21 mode.						
						X = Don't care					

CONTROL REGISTER 0 (Continued)

CONTROL REGISTER 1

		D7		D6	D5	D4	D3	D2	D1	D0	
CR1 001	1	ANSMIT TTERN 1		NSMIT TERN 0	ENABLE DETECT INTER.	BYPASS SCRAMB	CLK CONTROL	RESET	TEST MODE 1	TEST MODE 0	
BIT N	0.	NAM	E	CONE	DITION	DESCRIP	TION				
D1, D0 Test Mode					D0 0 1	Analog loo signal bac use the sa squelch the low.	ormal operatin opback mode k to the receiv ame center fre ne TXA pin, tr	Loops the ver, and ca equency as ansmit ena	uses the r the transi able must	eceiver to mitter. To be forced	
			1	0	Selects remote digital loopback. Received d looped back to transmit data internally, and F forced to a mark. Data on TXD is ignored.						
				1 1		Selects local digital loopback. Internally loops TXD back to RXD and continues to transmit carrier from TXA pin.					
D2		Rese	ət		0	Selects n	ormal operation	on.			
			1		Resets modem to power down state. All control register bits (CR0, CR1, Tone) are reset to zero. The output of the CLK pin will be set to the crystal frequency.						
D3		CLK Control 0 (Clock Control)		0	Selects 11.0592 MHz crystal echo output at CLK pin.						
					1	Selects 16 X the data rate, output at CLK pin in DPSk modes only.					

CONTROL REGISTER 1 (Continued)											
	D7		D6		D5		D4	D3	D2	D1	D0
CR1 001	1	ANSMIT TTERN 1		NSMIT TERN 0	ERN DETEC		PASS RAMB	CLK CONTROL	RESET	TEST MODE 1	TEST MODE 0
BIT N	0.	NAM	E	CON	DITION	DE	SCRIP	TION			
D4		Bypass Scrambler		0		Selects normal operation. DPSK data is passed through scrambler.					
	1 Selects Scrambler Byp routed around scramble				pass. Bypass DPSK data is er in the transmit path.						
D5 Enable Detect				0	Disables interrupt at INT pin.						
				1		Enables INT output. An interrupts will be generated with a change in status of DR bits D1-D4. The answer tone and call progress detect interrupts are masked when the TX enable bit is set. Carrier detect is masked when TX DTMF is activated. All interrupts will be disabled if the device is in power down mode.					
				D7	D6						
D7, D	6	5 Transmit Pattern		0 0		Selects normal data transmission as controlled by the state of the TXD pin.					
0 1				1	Selects an alternating mark/space transmit pattern for modem testing.						
	1 0 Selects a constant ma		constant mar	nark transmit pattern.							
				1	1	Se	lects a	constant space	ce transmit	pattern.	

DETECT REGISTER

	D7	D6	D5	D4	D3	D2	D1	D0		
DR 010			RECEIVE DATA	UNSCR MARK		ANSWER TONE	CALL PROG.	LONG LOOP		
BIT NO.		NAME	CONDI	TION	DESCRIPTION					
D0		Long Loop	0		Indicates normal received signal.					
			1		Indicates low received signal level.					
D1		Call	0		No call progress tone detected.					
		Progress Detect	1		Indicates presence of call progress tones. The call progress detection circuitry is activated by energy in the 350 to 620 Hz call progress band.					

••

DETECT REGISTER (Continued)

	D7	D6	D5	D4	D3	D2	D1	D0		
DR 010			RECEIVE DATA	UNSCR. MARK	CARR. DETECT	ANSWER TONE	CALL PROG.	LONG LOOP		
BIT	10.	NAME	CONDI	TION	DESCRIPTI	ON				
D2		Answer	0		No answer t	one detected.				
		Tone Detect	1	1 Indicates detection of 2225 Hz answer tone in mode or 2100 Hz in CCITT mode. The device mus in originate mode for detection of answer tone. CCITT answer tone detection, bit D0 of the T Register must be set to a 1.				evice must be ver tone. For		
D3		Carrier	0		No carrier d	o carrier detected in the receive channel.				
		Detect	1		Indicates ca channel.	irrier has beel	n detected in	n the receive		
D4		Unscrambled	0		No unscrambled mark.					
		Mark Detect	1		Indicates de	tection of unsc	rambled mar	ks in		
		Deleci				the received data. A valid indication requires tha unscrambled marks be received for > 165.5 ± 6.5 ms				
D5		Receive Data			Continuously outputs the received data stream. The data is the same as that output on the RXD pin, but is not disabled when RXD is tri-stated.					
D6, D	07				Not used.					

TONE REGISTER

	D)7	D6			D5		D4	D3	D2	D1	D0
TR 011	OUT	KD 'PUT NTR.	TRANSMIT TRANSMI GUARD ANSWEP TONE TONE			R	TRANSMIT DTMF	DTMF 3	DTMF 2	DTMF 1/ OVER- SPEED	DTMF 0/ ANSWER/ GUARD	
BIT	10.	N	IAME	С	ONE	DITIC	N	DESC	RIPTION			
				D6	D5	D4	D0	D0 inte	racts with b	oits D6, D5,	and D4 as sl	hown.
D0			TMF 0/ nswer/	Х	Х	1	Х	Transm	it DTMF to	nes.		
ļ			ard Tone	Х	0	0	0	Detects	s 2225 Hz ii	n originate r	node.	
				Х	1	0	0	Transm	nits 2225 H	z in answer	mode (Bell).	
				Х	0	0	1	Detects	s 2100 Hz ii	n originate n	node.	
				Х	1	0	1	Transm	nits 2100 H	z in answer	mode (CCIT	Т).
				1	0	0	0	Select	1800 Hz gu	ard tone.		
				1	0	0	1	Select 550 Hz guard tone.				
					D4	D1		D1 interacts with D4 as shown.				
D1			TMF 1/		0	0		Asynchronous DPSK +1.0% -2.5%.				
		Ov	erspeed		0	1		Asynch	ronous DP	SK +2.3% -	2.5%.	

1

TON	E REGI	STER	1												
	D	7	D6			D5		D4	D3		D2		D1	D0	
TR 011	R) OUT CON		TRANSM GUARD TONE			NSI SWI ONI	ER	TRANSMIT DTMF	DTMF (3 D	TMF 2	0	MF 1/ /ER- PEED	DTMF ANSWE GUAR	ER/
BIT	NO.	N	IAME		CON	DITI	ON	DESC	RIPTION						
D3, [72.		ſMF 3,	D	3 D2	D1 0	D0 0-	Progra	ims 1 of 1	16 D	TMF ton	e pair	rs that v	vill be	
D1, [2, 1, 0	1	-	1	1				e bit (CR0), bit			
									BOARD ALENT		MF CO D2 D1			ONES / HIGH	
									1	0	0 0	1	697	1209	
									2	0	0 1	0	697		
									3	0	0 1	1	697		
									4	0	1 0	0	770		
									5	0	1 0	1	770		
									6 7	0	1 1	0	770		
									/ 8	0	<u>1 1</u> 0 0	1 0	852 852		
									o 9	1	0 0	1	852		
									0	1	0 1	0	941		
}									*	1	0 1	1	941		
									#	1	1 0	0	941		
									A	1	1 0	1	697	1633	
									В	1	1 1	0	770	1633	
									С	1	1 1	1	852	1633	
									D	0	0 0	0	941	1633	
D4			ransmit			0		Disabl	e DTMF.						
			DTMF			1		Activates DTMF. The selected DTMF tones are transmitted continuously when this bit is high. TX DTMF overrides all other transmit functions.					тх		
					D5 [)4 E	D 0	D5 inte	eracts wit	h bits	s D4 and	I D0 a	as show	vn.	
D5		Т	ransmit		0	0	х	Disables answer tone generator.							
		-	nswer Tone		-		0	Enables answer tone generator. A 2225 Hz answer tone will be transmitted continuously when Transmit Enable bit is set in CR0. The device mus in answer mode.				st be			
					1	0	1	Likewi	se a 2100) Hz	answer	tone	will be t	ransmitt	ed.

TONE REGISTER

TONE REGISTER (Continued)

	D	7	D6	D5	D4	D3	D2	D1	D0		
TR 011		kd Put Ntr.	TRANSMIT GUARD TONE	TRANSMIT ANSWER TONE	TRANSMIT DTMF	DTMF 3	DTMF 2	DTMF 1/ OVER- SPEED	DTMF 0/ ANSWER/ GUARD		
BITN	10.	N	AME	CONDITION	DESC	RIPTION					
D6			ransmit	0	Disable	Disables guard tone generator.					
		Gu	ard Tone	1		s guard to on of guard		or (See D0	for		
D7			Output ontrol	0	Enable RXD.	Enables RXD pin. Receive data will be output on RXD.					
				1		•		(D pin reve k pull-up re:	rts to a high sistor.		

ID REGISTER

	D7	7	D6		D5		D4	D3	D2	D1	D0
ID 110	ID 1		ID 0		D						
BITN	١0.	N	AME	со	NDIT	ION	DES	SCRIPTION			
				D7	D6	D5	India	cates Device):		
D7, C	D 6	D	evice	0	0	Х	SSI	73K212(L) c	or 73K322L		
		Iden	tification	0	1	Х	SSI	73K221(L) c	or 73K302L		
		Sig	nature	1	0	Х	SSI	73K222(L)			
				1	1	0	SSI 73K224L				
	1	•		1	1	1	SSI	73K324L			

ELECTRICAL SPECIFICATIONS

ABSOLUTE MAXIMUM RATINGS

PARAMETER	RATING	UNIT					
VDD Supply Voltage	14	V					
Storage Temperature	-65 to 150	°C					
Soldering Temperature (10 sec.)	260	°C					
Applied Voltage	-0.3 to VDD+0.3	V					
Note: All inputs and outputs are protected from static charge using built-in, industry standard protection							

devices and all outputs are short-circuit protected.

RECOMMENDED OPERATING CONDITIONS

PARAMETER	CONDITIONS	MIN	NOM	МАХ	UNITS
VDD Supply voltage		4.5	5	5.5	v
TA, Operating Free-Air Temperature		-40		+85	°C
Clock Variation	(11.0592 MHz) Crystal or external clock	-0.01		+0.01	%
External Components (Refer to	Application section for placement.)				
VREF Bypass Capacitor	(External to GND)	0.1			μF
Bias setting resistor	(Placed between VDD and ISET pins)	1.8	2	2.2	MΩ
ISET Bypass Capacitor	(ISET pin to GND)	0.1			μF
VDD Bypass Capacitor 1	(External to GND)	0.1			μF
VDD Bypass Capacitor 2	(External to GND)	22			μF
XTL1 Load Capacitor	Depends on crystal characteristics;			40	pF
XTL2 Load Capacitor	from pin to GND			20	

ELECTRICAL SPECIFICATIONS (Continued)

DC ELECTRICAL CHARACTERISTICS

(TA = -40°C to 85°C, VDD = recommended range unless otherwise noted.)

PARAMETER	CONDITIONS	MIN	NOM	МАХ	UNITS
IDD, Supply Current	ISET Resistor = 2 M Ω				
IDDA, Active	CLK = 11.0592 MHz		8	12	mA
IDD1, Power-down	CLK = 11.0592 MHz			4	mA
IDD2, Power-down	CLK = 19.200 KHz			3	mA
Digital Inputs					
VIH, Input High Voltage					
Reset, XTL1, XTL2		3.0		VDD	V.
All other inputs		2.0		VDD	v
VIL, input Low Voltage		0		0.8	v
IIH, Input High Current	VI = VIH Max			100	μA
IIL, Input Low Current	VI = VIL Min	-200			μA
Reset Pull-down Current	Reset = VDD	1		50	μA
Input Capacitance	All Digital Input Pins			10	pF
Digital Outputs					
VOH, Output High Voltage	IOH MIN = -0.4 mA	2.4		VDD	v
VOL, Output Low Voltage	IO MAX = 1.6 mA			0.4	v
VOL, CLK Output	IO = 3.6 mA			0.6	v
RXD Tri-State Pull-up Curr.	RXD = GND	-1		-50	μA
CMAX, CLK Output	Maximum Capacitive Load			15	pF

ELECTRICAL SPECIFICATIONS (Continued)

DYNAMIC CHARACTERISTICS AND TIMING

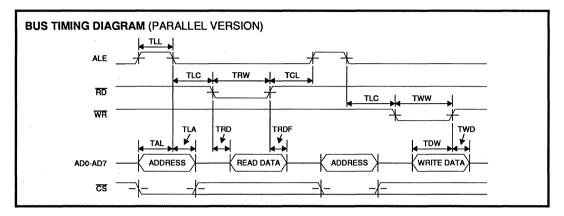
(TA = -40°C to +85°C, VDD = recommended range unless otherwise noted.)

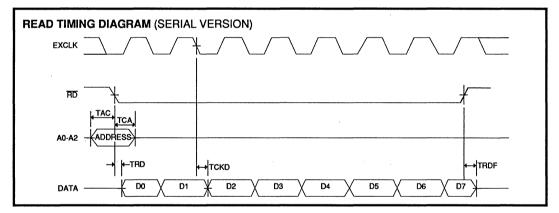
			MAX	UNITS				
Measured at TXA	55			dB				
TX scrambled marks	-11	-10.0	-9	dBm0				
CLK = 11.0592 MHz	-0.35		+.35	%				
Transmit Dotting Pattern	-11	-10.0	-9	dBm0				
THD in the alternate band DPSK or FSK		-60	-50	dB				
Transmit Dotting Pattern in ALB @ RXD		±8		%				
Random Input in ALB @ RXD	-15		+15	%				
	25		+.25	%				
Low Band, DPSK Mode	-10	-9	-8	dBm0				
High Band, DPSK Mode	-8	-7	-6	dBm0				
High-Band to Low-Band, DPSK Mode	1.0	2.0	3.0	dB				
DPSK or FSK	-38		-28	dBm0				
Refer to Performance Curves		45		dB				
2-Tones in 350-600 Hz band	-34		0	dBm0				
2-Tones in 350-600 Hz band			-41	dBm0				
-70 dBm0 to -30 dBm0 STEP	27		80	ms				
-30 dBm0 to -70 dBm0 STEP	27		80	ms				
	2			dB				
d in dBm0 refer to the following definiti	on:							
 12V Version 10 dB loss in the Transmit path to the line. 9 dB gain in the Receive path from the line. 5V Version 0 dB loss in the Transmit path to the line. 2 dB gain in the Receive path from the line. 								
	TX scrambled marks CLK = 11.0592 MHz Transmit Dotting Pattern THD in the alternate band DPSK or FSK Transmit Dotting Pattern in ALB @ RXD Random Input in ALB @ RXD Low Band, DPSK Mode High Band, DPSK Mode High-Band to Low-Band, DPSK Mode DPSK or FSK Refer to Performance Curves 2-Tones in 350-600 Hz band -70 dBm0 to -30 dBm0 STEP -30 dBm0 to -70 dBm0 STEP d in dBm0 refer to the following definiti the Transmit path to the line. ne Receive path from the line. ne Receive path from the line.	TX scrambled marks-11CLK = 11.0592 MHz-0.35Transmit Dotting Pattern-11THD in the alternate bandDPSK or FSKTransmit Dotting Patternin ALB @ RXDRandom Input in ALB @ RXD-15Low Band, DPSK Mode-10High-Band to Low-Band, DPSK Mode-8High-Band to Low-Band, DPSK Mode1.0DPSK or FSK-38Refer to Performance Curves-342-Tones in 350-600 Hz band-34-70 dBm0 to -30 dBm0 STEP27-30 dBm0 to -70 dBm0 STEP272dd in dBm0 refer to the following definition:the Transmit path to the line.he Receive path from the line.he Receive path from the line.	TX scrambled marks-11-10.0CLK = 11.0592 MHz-0.35Transmit Dotting Pattern-11-10.0THD in the alternate band-60DPSK or FSK-11Transmit Dotting Pattern±8in ALB @ RXD-15Random Input in ALB @ RXD-15Low Band, DPSK Mode-10-9High Band, DPSK ModeHigh-Band to Low-Band, DPSK Mode1.02.0DPSK or FSK2-Tones in 350-600 Hz band-342-Tones in 350-600 Hz band-34-70 dBm0 to -30 dBm0 STEP27-30 dBm0 to -70 dBm0 STEP2722d in dBm0 refer to the following definition:the Transmit path to the line.he Receive path from the line.he Receive path from the line.	TX scrambled marks-11-10.0-9CLK = 11.0592 MHz-0.35+.35Transmit Dotting Pattern-11-10.0-9THD in the alternate band DPSK or FSK-60-50Transmit Dotting Pattern in ALB @ RXD±8-60Random Input in ALB @ RXD-15+15Low Band, DPSK Mode-10-9High Band, DPSK Mode-8-7High-Band to Low-Band, DPSK Mode1.02.0DPSK or FSK-38-28Refer to Performance Curves452-Tones in 350-600 Hz band-3402-Tones in 350-600 Hz band-41-70 dBm0 to -30 dBm0 STEP2780-30 dBm0 to -70 dBm0 STEP278022-d in dBm0 refer to the following definition:the Transmit path to the line.the Transmit path to the line.the Transmit path to the line.				

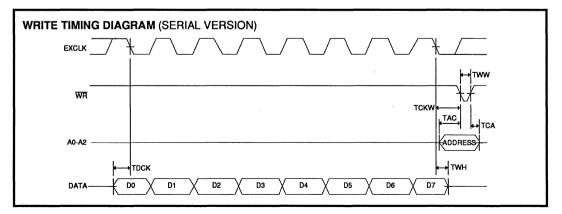
1

ELECTRICAL SPECIFICATIONS (Continued)

DYNAMIC CHARACTERISTICS AND TIMING (Continued)


PARAMETERS	CONDITIONS	MIN	NOM	МАХ	UNITS
Carrier Detect	DPSK or FSK				
Threshold	receive data	-49		-42	dBm0
Delay Time	-70 dBm0 to -30 dBm0 STEP	15		45	ms
Hysteresis	Single tone detected	2	3.0		dB
Hold Time	-30 dBm0 to -70 dBm0 STEP	10		24	ms
Answer Tone Detector				•	
Detect Level	In FSK mode	-49.5		-42	dBm0
Delay Time	-70 dBm0 to -30 dBm0 STEP	20		45	ms
Hold Time	-30 dBm0 to -70 dBm0 STEP	10		30	ms
Detect Freq. Range		-2.5		+2.5	%
Output Smoothing Filter					
Output load	TXA pin; FSK Single	10			KΩ
	Tone out for THD = -50 db in .3 to 3.4 KHz			50	pF
Spurious Freq. Comp.	Frequency = 76.8 KHz			-39	dBm0
	Frequency = 153.6 KHz			-45	dBm0
TXA pin Output Impedance			200	300	Ω
Clock Noise	TXA pin; 76.8 KHz				
5V Version (73K222L)				1.0	mVrms
12V Version (73K222)				2.0	mVrms
Carrier VCO	-				1
Capture Range	Originate or Answer	-10		+10	Hz
Capture Time	-10 Hz to +10 Hz Carrier Freq. Change Assum.		40	100	ms
Recovered Clock					
Capture Range	% of frequency center frequency (center at 1200 Hz)	-625		+625	ppm
Data Delay Time	Analog data in at RXA pin to receive data valid at RXD pin		30	50	ms


DYNAMIC CHARACTERISTICS AND TIMING (Continued)


PARAMETERS	CONDITIONS	MIN	NOM	МАХ	UNITS		
Guard Tone Generator							
Tone Accuracy	550 Hz						
	1800 Hz	-20		+20	Hz		
Tone Level	550 Hz	-4.0	-3.0	-2.0	dB		
(Below DPSK Output)	1800 Hz	-7.0	-6.0	-5.0	dB		
Harmonic Distortion	550 Hz			-50	dB		
700 to 2900 Hz	1800 Hz			-60	dB		
Timing (Refer to Timing Dia	igrams)						
TAL	CS/Addr. setup before ALE Low	30			ns		
TLA	CS/Addr. hold after ALE Low	20			ns		
TLC	ALE Low to RD/WR Low	40			ns		
TCL	RD/WR Control to ALE High	10			ns		
TRD	Data out from RD Low	0		140	ns		
TLL	ALE width	60			ns		
TRDF	Data float after RD High	0		200	ns		
TRW	RD width	200		25000	ns		
TWW	WR width	140		25000	ns		
TDW	Data setup before WR High	150			ns		
TWD	Data hold after WR High	20			ns		
ТСКО	Data out after EXCLK Low			200	ns		
TCKW	WR after EXCLK Low	150			ns		
TDCK	Data setup before EXCLK Low	150			ns		
TAC	Address setup before control*	50			ns		
ТСА	Address hold after control*	50			ns		
тwн	Data Hold after EXCLK	20					
 Control for setup is the falling edge of RD or WR. Control for hold is the falling edge of RD or the rising edge of WR. 							

0790 - rev.

TIMING DIAGRAMS

APPLICATIONS INFORMATION

GENERAL CONSIDERATIONS

Figures 1 and 2 show basic circuit diagrams for K-Series modem integrated circuits. K-Series products are designed to be used in conjunction with a control processor, a UART or RS-232 serial data interface, and a DAA phone line interface to function as a typical intelligent modem. The K-Series ICs interface directly with Intel 8048 and 80C51 microprocessors for control and status monitoring purposes. Two typical DAA arrangements are shown: one for a split ± 5 or ± 12 volt design and one for a single 5 volt design. These diagrams are for reference only and do not represent production-ready modem designs.

√C14

K-Series devices are available with two control interface versions: one for a parallel multiplexed address/ data interface, and one for a serial interface. The parallel version is intended for use with 8039/48 or 8031/51 microcontrollers from Intel or many other manufacturers. The serial interface 22-pin version can be used with other microcontrollers or in applications where only a limited number of port lines are available or the application does not lend itself to a multiplexed address/data interface. The parallel versions may also be used in the serial mode, as explained in the data sheet pin description.

In most applications the controller will monitor the serial data for commands from the DTE and the received data for break signals from the far end modem. In this way, commands to the modem are sent over the same line as the transmitted data. In other applications the RS-232 interface handshake lines are used for modem control.

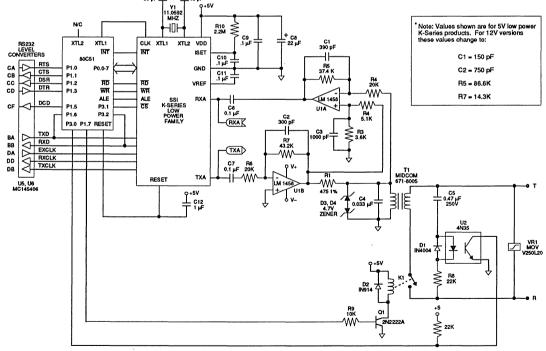


FIGURE 1: Basic Box Modem with Dual-Supply Hybrid

DIRECT ACCESS ARRANGEMENT (DAA)

The telephone line interfaces show two examples of how the "hybrid" may be implemented. The split supply design (Figure 1) is a typical two op-amp hybrid. The receive op-amp serves two purposes. It supplies gain to amplify the receive signal to the proper level for the modem's detectors and demodulator, and it removes the transmitted signal from the receive signal present at the transformer. This is done by supplying a portion of the transmitted signal to the non-inverting input of the receive op-amp at the same amplitude as the signal appearing at the transformer, making the transmit signal common mode.

The single-supply hybrid is more complex than the dual-supply version described above, but its use eliminates the need for a second power supply. This circuit (Figure 2) uses a bridged drive to allow undistorted signals to be sent with a single 5 volt supply. Because DTMF tones utilize a higher amplitude than data, these

signals will clip if a single-ended drive approach is used. The bridged driver uses an extra op-amp (U1A) to invert the signal coming from the gain setting op-amp (U1B) before sending it to the other leg of the transformer. Each op-amp then supplies half the drive signal to the transformer. The receive amplifier (U1C) picks off its signal at the junction of the impedance matching resistor and the transformer. Because the bottom leg of the transformer is being driven in one direction by U1A and the resistor is driven in the opposite direction at the same time by U1B, the junction of the transformer and resistor remains relatively constant and the receive signal is unaffected.

DESIGN CONSIDERATIONS

Silicon Systems' 1-chip modem products include all basic modem functions. This makes these devices adaptable for use in a variety of applications, and as easy to control as conventional digital bus peripherals.

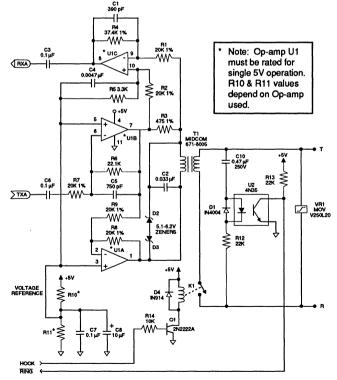


FIGURE 2: Single 5V Hybrid Version

1

Unlike digital logic circuitry, modem designs must properly contend with precise frequency tolerances and very low level analog signals, to ensure acceptable performance. Using good analog circuit design practices will generally result in a sound design. Following are additional recommendations which should be taken into consideration when starting new designs.

CRYSTAL OSCILLATOR

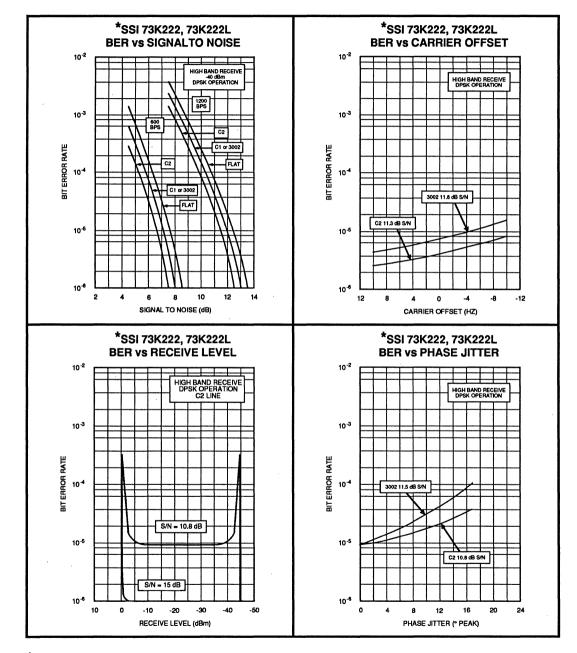
The K-Series crystal oscillator requires a parallel mode (antiresonant) crystal which operates at 11.0592 MHz. It is important that this frequency be maintained to within $\pm 0.01\%$ accuracy.

In order for a parallel mode crystal to operate correctly and to specification, it must have a load capacitor connected to the junction of each of the crystal and internal inverter connections, terminated to ground. The values of these capacitors depend primarily on the crystal's characteristics, and to a lesser degree on the internal inverter circuit. The values used affect the accuracy and start up characteristics of the oscillator.

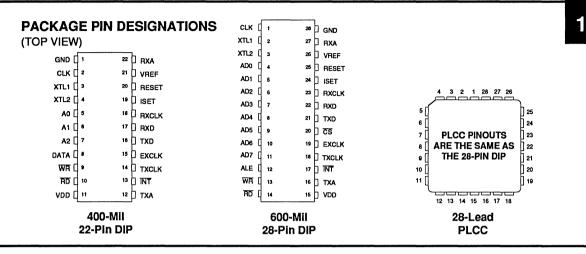
LAYOUT CONSIDERATIONS

Good analog/digital design rules must be used to control system noise in order to obtain highest performance in modern designs. The more digital circuitry present on the PC board, the more this attention to noise control is needed. The modem should be treated as a high impedance analog device. A 22 µF electrolytic capacitor in parallel with a 0.1 uF ceramic capacitor between VDD and GND is recommended. Liberal use of ground planes and larger traces on power and ground are also highly favored. High speed digital circuits tend to generate a significant amount of EMI (Electro-Magnetic Interference) which must be minimized in order to meet regulatory agency limitations. To accomplish this, high speed digital devices should be locally bypassed, and the telephone line interface and K-Series device should be located close to each other near the area of the board where the phone line connection is accessed. To avoid problems, power supply and ground traces should be routed separately to the analog and digital functions on the board, and digital signals should not be routed near low level or high impedance analog traces. The analog and digital grounds should only connect at one point near the K-Series device ground pin to avoid ground loops. The K-Series modem IC's should have both high frequency and low frequency bypassing as close to the package as possible.

MODEM PERFORMANCE CHARACTERISTICS


The curves presented here define modem IC performance under a variety of line conditions while inducing disturbances that are typical of those encountered during data transmission on public service telephone lines. Test data was taken using an AEA Electronics' "Autotest I" modem test set and line simulator, operating under computer control. All tests were run fullduplex, using a Concord Data Systems 224 as the reference modem. A 511 pseudo-random-bit pattern was used for each data point. Noise was C-message weighted and all signal-to-noise (S/N) ratios reflect total power measurements similar to the CCITT V.56 measurement specification. The individual tests are defined as follows.

BER vs.S/N


This test measures the ability of the modem to operate over noisy lines with a minimum of data-transfer errors. Since some noise is generated in the best of dial-up lines, the modem must operate with the lowest S/N ratio possible. Better modem performance is indicated by test curves that are closest to the BER axis. A narrow spread between curves representing the four line parameters indicates minimal variation in performance while operating over a range of aberrant operating conditions. Typically, a DPSK modem will exhibit better BER-performance test curves receiving in the low band than in the high band.

BER vs. Receive Level

This test measures the dynamic range of the modem. Because signal levels vary widely over dial-up lines, the widest possible dynamic range is desirable. The minimum Bell specification calls for 36 dB of dynamic range. S/N ratios are held constant at the indicated values while the receive level is lowered from a very high to very low signal levels. The width of the "bowl" of these curves, taken at the BER point, is the measure of dynamic range.

* = "EQ On" Indicates bit CR1 D4 is set for additional phase equalization.

ORDERING INFORMATION

PART DESCRIPTION	ORDER NO.	PKG. MARK
SSI 73K222 with Parallel Bus Interface 28-Pin 12 Volt Supply Plastic Dual-In-Line Plastic Leaded Chip Carrier	SSI 73K222 – IP SSI 73K222 – IH	73K222 - IP 73K222 - IH
28-Pin 5 Volt Supply Plastic Dual-In-Line Plastic Leaded Chip Carrier	SSI 73K222L – IP SSI 73K222L – IH	73K222L - IP 73K222L - IH
SSI 73K222 with Serial Interface 22-Pin 12 Volt Supply Plastic Dual-In-Line	SSI 73K222S - IP	73K222S - IP
22-Pin 5 Volt Supply Plastic Dual-In-Line Ceramic Dual-In-Line	SSI 73K222SL – IP SSI 73K222SL – IC	73K222SL - IP 73K222SL - IC

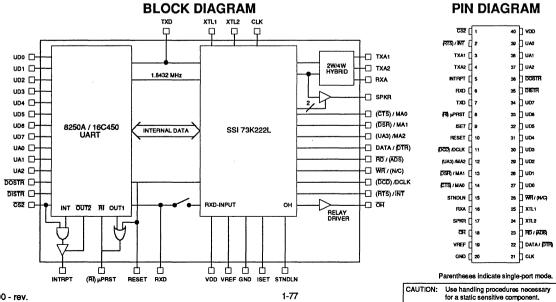
No responsibility is assumed by Silicon Systems for use of this product nor for any infringements of patents and trademarks or other rights of third parties resulting from its use. No license is granted under any patents, patent rights or trademarks of Silicon Systems. Silicon Systems reserves the right to make changes in specifications at any time without notice. Accordingly, the reader is cautioned to verify that the data sheet is current before placing orders.

Silicon Systems, Inc., 14351 Myford Road, Tustin, CA 92680, (714) 731-7110, FAX: (714) 731-5457

Notes:

silicon systems*

July, 1990


1

DESCRIPTION

The SSI 73K222U is a compact, high-performance modem which includes a 8250A/16C450 compatible UART with the 1200 bit/s modem function on a single chip. Based on the SSI 73K222L 5-volt low power CMOS modem IC, the SSI 73K222U is the perfect modem/UART component for integral modem applications. It is ideal for applications such as portable terminals and laptop computers. The SSI 73K222U is the first fully featured modem IC which can function as an intelligent modem in integral applications without reguiring a separate dedicated microcontroller. It provides for data communication at 1200, 600, and 300 bit/ s in a multi-mode manner that allows operation compatible with both Bell 212A/103 and CCITT V.22/V.21 standards. The digital interface section contains a high speed version of the industrystandard 8250A/16C450 UART, commonly used in personal computer products. A unique feature of the SSI 73K222U is that the UART section can be used without the modem function. providing an additional asynchronous port at no added cost. The SSI 73K222U is designed in CMOS technology and operates from a single +5V supply. Available packaging includes 40-pin DIP or 44-pin PLCC for surface mount applications.

FEATURES

- Modem/UART combination optimized for integral bus applications
- Includes features of SSI 73K222L single-chip modem
- Fully compatible 16C450/8250 UART with 8250B or 8250A selectable interrupt emulation
- High speed UART will interface directly with high clock rate bus with no wait states
- · Compatible with SSI 73K212U (Bell 212A/103) and SSI 73K221U (CCITT V.22/V.21) family members
- Single-port mode allows full modem and UART control from CPU bus, with no dedicated microprocessor required
- Dual-port mode suits conventional designs using local microprocessor for transparent modem operation
- Complete modern functions for 1200 bit/s (Bell 212A. V.22) and 0-300 bit/s (Bell 103, V.21)
- Includes DTMF generator, carrier, call-progress and precise answer-tone detectors for intelligent dialing capability
- On chip 2-wire/4-wire hybrid driver and off-hook relay buffer
- Speaker output with four-level software driven volume control
- Low power CMOS (40 mW) with power down mode (15 mW)
- Operates from single +5V supply

FUNCTIONAL DESCRIPTION

The SSI 73K222U integrates an industry standard 8250/16C450 UART function with the modem capability provided by the SSI 73K222L single chip modem IC. The SSI 73K222U is designed specifically for integral microprocessor bus intelligent modem products. These designs typically require the standard 8250 or higher speed 16450 UART to perform parallel-to-serial and serial-to-parallel conversion process necessary to interface a parallel bus with the inherently serial modem function. The SSI 73K222U provides a highly integrated design which can eliminate multiple components in any integral bus modem application, and is ideal for internal PC modem applications.

The SSI 73K222U includes two possible operating modes. In the dual-port mode, the device is suitable for conventional plug-in modem card designs which use a separate local microprocessor for command interpretation and control of the modem function. In this mode, a dedicated microcontroller communicates with the SSI 73K222U using a separate serial command port. In the single-port mode the main CPU can control both the UART and modem function using the parallel data bus. This allows very efficient modem design with no local microprocessor required for dedicated applications such as laptop PC's or specialized terminals.

To make designs more space efficient, the SSI 73K222U includes the 2-wire to 4-wire hybrid drivers, off-hook relay driver, and an audio monitor output with software volume control for audible call progress monitoring. As an added feature the UART function can be used independent of the modem function, providing an added asynchronous port in a typical PC application with no additional circuitry required.

UART FUNCTION (16C450)

The UART section of the SSI 73K222U is completely compatible with the industry standard 16C450 and the 8250 UART devices. The bus interface is identical to the 16450, except that only a single polarity for the control signals is supported. The register contents and addresses are also the same as the 16C450. To insure compatibility with all existing releases of the 8250 UART design, external circuitry normally used in PC applications to emulate 8250B or 8250A interrupt operation has been included on the SSI 73K222U. A select line is then provided to enable the desired interrupt operation. The UART used in the SSI 73K222U can be used with faster bus read and write cycles than a conventional 16C450 UART. This allows it to interface directly with higher clock rate microprocessors with no need for external circuitry to generate wait states.

The primary function of the UART is to perform parallelto-serial conversion on data received from the CPU and serial-to-parallel conversion on data received from the internal modem or an external device. The UART can program the number of bits per character, parity bit generation and checking, and the number of stop bits. The UART also provides break generation and detection, detection of error conditions, and reporting of status at any time. A prioritized maskable interrupt is also provided.

The UART block has a progammable baud rate generator which divides an internal 1.8432 MHz clock to generate a clock at 16 x the data rate. The data rate for the transmit and receive sections must be the same. For DPSK modulation, the data rate must be 1200 Hz or 600 Hz. For FSK modulation, the data rate must be 300 Hz or less. The baud generator can create a clock that supports digital transfer at up to 115.2 KHz. The output of the baud generator can be made available at the CLK pin under program control.

MODEM FUNCTION (SSI 73K222L)

The modem section of the SSI 73K222U provides all necessary analog functions required to create a single chip Bell 212A/103 and CCITT V.22/V.21 modem, controlled by the system CPU or a local dedicated microprocessor. Asynchronous 1200 bit/s DPSK (Bell 212A and V.22) and 300 baud FSK (Bell 103 and V.21) modes are supported.

The modem portion acts as a peripheral to the microprocessor. In both modes of operation, control information is stored in register memory at specific address locations. In the single-port mode, the modem section can be controlled through the 16C450 interface, with no external microcontroller required. The primary analog blocks are the DPSK modulator/demodulator, the FSK modulator/demodulator, the high and low band filters, the AGC, the special detect circuitry, and the DTMF tone generator. The analog functions are performed with switched capacitor technology.

PSK MODULATOR / DEMODULATOR

The SSI 73K222U modulates a serial bit stream into dibit pairs that are represented by four possible phase shifts as prescribed by the Bell 212A or V.22 standard. The baseband signal is then filtered to reduce intersymbol interference on the band limited 2-wire PSTN line. Transmission occurs using either a 1200 Hz (originate mode) or 2400 Hz carrier (answer mode). Demodulation is the reverse of the modulation process, with the incoming analog signal eventually decoded into dibits and converted back to a serial bit stream. The demodulator also recovers the clock which was encoded into the analog signal during modulation. The demodulator decodes either a 1200 Hz carrier (originate carrier) or a 2400 Hz carrier (answer carrier). The SSI 73K222U uses a phase-locked-loop coherent demodulation technique that offers inherently better performance than typical DPSK demodulators used by other manufacturers.

FSK MODULATOR/DEMODULATOR

The FSK modulator frequency modulates the analog output signal using two discrete frequencies to represent the binary data. In Bell 103, the standard frequencies of 1270 Hz and 1070 Hz (originate mark and space) and 2225Hz and 2025 Hz (answer mark and space) are used. V.21 mode uses 980 Hz and 1180 Hz (originate, mark and space) or 1650 Hz and 1850 Hz (answer, mark and space). Demodulation involves detecting the received frequencies and decoding them into the appropriate binary value.

PASSBAND FILTERS AND EQUALIZERS

A high and low band filter is included to shape the amplitude and phase response of the transmit signal and provide compromise delay equalization and rejection of out-of-band signals in the receive channel. Amplitude and phase equalization is necessary to compensate for distortion of the transmission line and to reduce intersymbol interference in the band limited receive signal. The transmit signal filtering approximates a 75% square root of raised Cosine frequency response characteristic.

AGC

The automatic gain control maintains a signal level at the input to the demodulators which is constant to within 1 dB. It corrects quickly for increases in signal which would cause clipping, and provides a total dynamic range of >45 dB.

SPECIAL DETECT CIRCUITRY

The special detect circuitry monitors the received analog signal to determine status or presence of carrier, call-progress tones, answer tone, and weak received signal (long loop condition). An unscrambled mark signal is also detected when the received data out of the DPSK demodulator before the descrambler has been high for 165.5 mS \pm 13.5 mS. The appropriate status bit is set when one of these conditions changes and an interrupt is generated for all monitored conditions except long loop. The interrupts are disabled (masked) when the enable interrupt bit is set to a 0.

DTMF GENERATOR

The DTMF generator will output one of 16 standard dual-tones determined by a 4-bit binary value and TX DTMF mode bit previously loaded into the tone register. Tone generation is initiated when the DTMF mode is selected and the transmit enable (CR0 bit D1) is changed from a 0 to a 1.

TEST FEATURES

Test features such as analog loopback (ALB), remote digital loopback, local digital loopback, and internal pattern generators are also included.

LINE INTERFACE

The line interface of the SSI 73K222U consists of a twoto-four wire hybrid, and an off-hook relay driver.

The two-to-four wire converter has a differential transmit output and requires only a line transformer and an external impedance matching resistor. Four-wire operation is also available by simply using either of the transmit output signals.

The relay driver output of the SSI 73K222U is an open drain signal capable of sinking 20 mA, which can control a line closure relay used to take the line off hook and to perform pulse dialing.

AUDIO MONITOR

An audio monitor output is provided which has a software programmable volume control. Its output is the received signal. The audio monitor output can directly drive a high impedance load, but an external power amplifier is necessary to drive a low-impedance

PIN DESCRIPTION

GENERAL

NAME	DIP	PLCC	TYPE	DESCRIPTION
VDD	40	44	I	+5V Supply $\pm 10\%$, bypass with a .1 and a 22 μF capacitor to GND
GND	20	22	1	System Ground
VREF	19	21	0	VREF is an internally generated reference voltage which is externally bypassed by a .1 μ F capacitor to the system ground.
ISET	9	11	I	The analog current is set by connecting this pin to VDD through a $2M\Omega$ resistor. ISET should be bypassed to GND. Alternatively, an internal bias can be selected by connecting ISET to GND, which will result in a larger worst-case supply current due to the tolerance of on-chip resistors. Bypass with .1 μ F capacitor if resistor is used.
XTL1	25	27	I	These pins are connections for the internal crystal
XTL2	24	26	I	oscillator requiring an 11.0592 MHz crystal (9216Hz x 1200). XTAL2 can also be TTL driven from an external clock.
CLK	21	23	0	Output Clock. This pin is selectable under processor control to be either the crystal frequency (which might be used as a processor clock) or the output of the baud generator.
RESET	10	12	I	Reset. An active signal (high) on this pin will put the chip into an inactive state. The control register bits (except the Receiver Buffer, Transmitter Holding, and Divisor latches) will be reset. The output of the CLK pin will be set to the crystal frequency. An internal pull-down resistor permits power-on reset using a 0.1μ F capacitor connected to the 5V supply.
STNDLN	15	17	I	Single-port mode select (active high). In a single-port system there is no local microprocessor and all the modem control is done through the 16C450 parallel bus interface. The local microprocessor interface is replaced with UART control signals which allow the device to function as a digital UART as well as modem.

PIN DESCRIPTION (continued)

UART INTERFACE

NAME	DIP	PLCC	TYPE	DESCRIPT	ΓΙΟΝ			
UA0-UA2 UA3	37-39 12	41-43 14	1	UART Address. These pins determine which of the UART registers is being selected during a read or write on the UART data bus. The contents of the DLAB bit in the UART's Line Control Register also control which register is referenced. In single-port mode, UA0-UA3 are latched when ADS goes high. In dual-port, only UA0-UA2 are used.				
UDO-UD7	27-34	30-37	I/O			Data. Data or control information to the scarried over these lines.		
DISTR	35	38	1	Data Input Strobe. A low on this pin requests a read of the internal UART registers. Data is output on the D0-D7 lines if $\overline{\text{DISTR}}$ and $\overline{\text{CS2}}$ are active.				
DOSTR	36	39	I	Data Output Strobe. A low on this pin requests a write of the internal UART registers. Data on the D0-D7 lines are latched on the rising edge of DOSTR. Data is only written if both DOSTR and CS2 are active.				
CS2	1	2	I		Chip Select. A low on this pin allows a read or write to the UART registers to occur. In single port mode, $\overline{CS2}$ is latched on \overline{ADS} .			
INTRPT	5	7	0	interrupt cc Enable 825 is 0 the int compatibili high imped Modem Cc also becor	(3 state) UART Interrupt. This signal indicates that an interrupt condition on the UART side has occurred. If the Enable 8250A interrupt bit in the interrupt Enable Register is 0 the interrupt is gated by the DISTR signal to provide compatibility with the 8250B. The output can be put in a high impedance state with the OUT2 register bit in the Modern Control Register. In single-port mode, INTRPT also becomes valid when a modern interrupt signal is generated by the modern section's Detect Register.			
RXD	6	8	1/0	Function is Control Re		mined by STNDLN pin and bit 7, Tone		
				STNDLN	D7			
				0	0	RXD outputs data received by modem.		
				1	0	RXD is electrically an input but signal is ignored.		
				Х	1	RXD is a serial input to UART.		

PIN DESCRIPTION (continued)

UART INTERFACE (continued)

TXD	7	9	0	Function is determined by STNDLN pin and bit 7, Tone Control Register:		
				STNDLN	D7	
				0	0	TXD is a serial output of UART.
				1	0	TXD is forced to a mark.
				X	1	TXD is a serial output of UART.

ANALOG / LINE INTERFACE

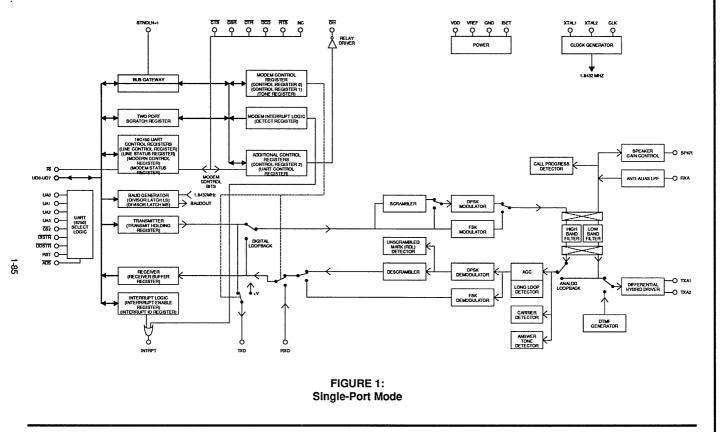
NAME	DIP	PLCC	TYPE	DESCRIPTION
TXA1 TXA2	3 4	4 5	0 0	(differential) Transmitted Analog. These pins provide the analog output signals to be transmitted to the phone line. The drivers will differentially drive the impedance of the line transformer and the line matching resistor. An external hybrid can also be built using TXA1 as a single ended transmit signal.
RXA	16	18	l	Received Analog. This pin inputs analog information that is being received by the two-to-four wire hybrid. This input can also be taken directly from an external hybrid.
SPKR	17	19	0	Speaker Output. This pin outputs the received signal through a programmable attenuator stage, which can be used for volume control and disabling the speaker.
OH	18	20	0	Off-hook relay driver. This signal is an open drain output capable of sinking 20mA and is used for controlling a relay. The output is the complement of the OH register bit in CR3.

PIN DESCRIPTION (continued)

UART CONTROL INTERFACE (STNDLN = 1)

(See Figure 1: Single-port mode)

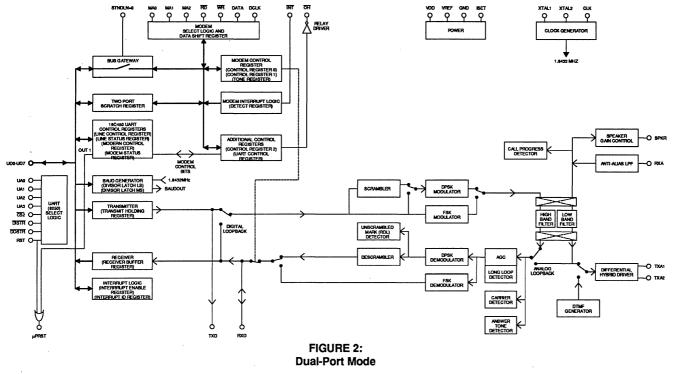
NAME	DIP	PLCC	TYPE	DESCRIPTION
ADS	23	25	1	Address Strobe. ADS is used to latch address and chip select to simplify interfacing to a multiplexed Address/Data Bus. UA0-UA3 and CS2 are latched when the ADS signal goes high.
UA3	12	14	I	UART Address Bit 3. UA3 is used in single-port mode to address the modem registers from the 16C450 interface. If UA3 is 0, the normal 16C450 registers are addressed by UA0-UA2 and if UA3 is 1, the modem registers are ad- dressed. UA3 is latched when ADS goes high.
CTS	14	16	I	Clear to Send. This pin is the complement of CTS bit in the Modem Status Register. The signal is used in modem handshake control to signify that communications have been established and that data can be transmitted.
DSR	13	15	Ι	Data Set Ready. This pin is the complement of DSR bit in the Modem Status Register. The signal is used in modem handshake to signify that the modem is ready to establish communications.
DCD	11	13	I	Data Carrier Detect. This pin is the complement of DCD bit in the Modem Status Register. The signal is used in modem control handshake to signify that the modem is receiving a carrier.
DTR	22	24	0	Data Terminal Ready. The $\overline{\text{DTR}}$ output is programmed through a bit in the Modem Control Register. The signal is used in modem handshake to signify that the 16C450 is available to communicate.
RTS	2	3	0	Request to Send. The $\overline{\text{RTS}}$ output is programmed through a bit in the Modern Control Register. The signal is used in modern handshake to signify that the 16C450 has data to transmit.
RI	8	10	I	Ring Indicator. This Indicates that a telephone ringing signal is being received. This pin is the complement of the RI bit in the Modern Status Register.


1

PIN DESCRIPTION (continued)

MICROPROCESSOR INTERFACE (STNDLN = 0)

(See Figure 2: Dual-port mode)


NAME	DIP	PLCC	TYPE	DESCRIPTION	
MA0-MA2	12-14	14-16	I	Modem Address Control. These lines carry register addresses for the modem registers and should be valid throughout any read or write operation.	
DATA	22	24	I/O	Serial Control Data. Serial control data to be read/written is clocked in/out on the falling edge of the DCLK pin. The direction of data transfer is controlled by the state of the \overline{RD} pin. If the \overline{RD} pin is active (low) the DATA line is an output. Conversely, if the \overline{RD} pin is inactive (high) the DATA line is an input.	
RD	23	25	I	Read. A low on this input informs the SSI 73K222U that control data or status information is being read by the processor from a modem register.	
WR	26	28	1	Write. A low on this input informs the SSI 73K222U that control data or status information is available for writing into a modem register. The procedure for writing is to shift in data LSB first on the DATA pin for eight consecutive cycles of DCLK and then to pulse \overline{WR} low. Data is written on the rising edge of \overline{WR} .	
DCLK	11	13	I	Data Clock. The falling edge of this clock is used to strobe control data for the modem registers in or out on the DATA pin. The normal procedure for a write is to shift in data LSB first on the DATA pin for eight consecutive cycles of DCLK and then to pulse \overline{WR} low. Data is written on the rising edge of \overline{WR} . The falling edge of the \overline{RD} signal must continue for eight cycles of DCLK in order to read all eight bits of the reference register. Read data is provided LSB first. Data will not be output unless the \overline{RD} signal is active.	
INT	2	3	0	(with weak pull-up) Modem Interrupt. This output signal is used to inform the modem processor that a change in a modem detect flag has occurred. The processor must then read the Modem Detect Register to determine which detect triggered the interrupt. INT will stay active until the proc- essor reads the Modem Detect Register or does a full reset.	
µPRST⁺	8	10	0	Microprocessor Reset. This output signal is used to pro- vide a hardware reset to the microprocessor. This signal is high if the RESET pin is high or the MCR bit D3 (OUT1) bit is set.	
* NOTE: The μPRST pin is an upgraded function which was not included in the initial definition of the SSI 73K222U.					

In the single-port mode, the SSI 73K222U is designed to be accessed only by the main CPU using the same parallel bus utilized for data transfer. This mode is enabled when the STNDLN pin is at a logic "1". In the single port mode, internal registers are accessed by the main CPU to configure both the UART section and the

modem function, eliminating the need for a separate microcontroller. In this mode, multiplexed pins provide the $\overline{\text{CTS}}$, $\overline{\text{DSR}}$, $\overline{\text{DTR}}$, $\overline{\text{DED}}$ and $\overline{\text{RI}}$ signals normally associated with the UART function. A separate pin, $\overline{\text{ADS}}$, is used for bus control.

SSI 73K222U Single-Chip Modem with UART

The dual-port mode allows use of a dedicated microprocessor for control of the modem function, and is enabled when the STNDLN pin = "0". This mode is useful for conventional plug-in card modem designs where it is necessary to make the modem function transparent to the main CPU. In this mode, the SSI 73K222U's multiplexed pins form the serial command bus used to communicate with the external microprocessor. The RI, CTS, DSR, DTR, and DCD logic functions must then be implemented using ports from the dedicated microprocessor.

The serial control interface allows access to the control and status registers via a serial command port. In this mode the MA0, MA1, and MA2 lines provide register addresses for data passed through the DATA pin under control of the RD and WR lines. A read operation is initiated when the RD line is taken low. The next eight cycles of DCLK will then transfer out eight bits of the selected address location LSB first. A write takes place by shifting in eight bits of data LSB first for eight consecutive cycles of DCLK. WR is then pulsed low and data transfer into the selected register occurs on the rising edge of WR.

with

UART ē

ing

Chip

Modem

SS ഗ

3K222U

1

UART CONTROL REGISTER OVERVIEW

			DATA BIT NUMBER							
REGISTE	R	UART ADDRESS UA3-UA0*	D7	D6	D5	D4	D3	D2	D1	D0
RECEIVER BUFFER REGISTER (READ ONLY)	RBR	0000 DLAB = 0	BIT 7 (MSB)	BIT 6	BIT 5	BIT 4	ВІТ З	BIT 2	BIT 1	BIT 0 (LSB)
TRANSMIT HOLDING REGISTER (WRITE ONLY)	THR	0000 DLAB = 0	BIT 7 (MSB)	BIT 6	BIT 5	BIT 4	віт з	BIT 2	BIT 1	BIT 0 (LSB)
INTERRUPT ENABLE REGISTER	IER	0001 DLAB = 0	0	0	0	ENABLE 8250A/ 16C450 INTERRUPT	ENABLE MODEM STATUS INTERRUPT	ENABLE REC. LINE STATUS INTERRUPT	ENABLE THR EMPTY INTERRUPT	ENABLE REC. DATA AVAILABLE INTERRUPT
INTERRUPT ID REGISTER (READ ONLY)	IIR	0010	0	0	0	0	0	INTERRUPT ID BIT 1	INTERRUPT ID BIT 0	"0" IF INTERRUPT PENDING
LINE CONTROL REGISTER	LCR	0011	DIVISOR LATCH ACCESS (DLAB)	SET BREAK	STICK PARITY	EVEN PARITY SELECT (EPS)	PARITY ENABLE (PEN)	NUMBER OF STOP BITS (STB)	WORD LENGTH SELECT 1 (WLS1)	WORD LENGTH SELECT 0 (WLS0)
MODEM CONTROL REGISTER	MCR	0100	O	0	0	LOOP	ENABLE INTERRUPT (OUT2 IN 16C450)	μPRST (OUT1 IN 16C450)	REQUEST TO SEND (RTS)	DATA TERMINAL READY (DTR)
LINE STATUS REGISTER	LSR	0101	0	TRANSMIT SHIFT REG. EMPTY (TSRE)	TRANSMIT HOLDING REGISTER EMPTY(THRE)	BREAK INTERRUPT (BI)	FRAMING ERROR (FE)	PARITY ERROR (PE)	OVERRUN ERROR (OE)	DATA READY (DR)
MODEM STATUS REGISTER (READ ONLY)	MSR	0110	DATA CARRIER DETECT (DCD)	RING INDICATOR (RI)	DATA SET READY (DSR)	CLEAR TO SEND (CTS)	DELTA DATA CARR. DETECT (DDCD)	TRAILING EDGE RING INDICATOR (TERI)	DELTA- DATA SET READY (DDSR)	DELTA CLEAR TO SEND (DCTS)
SCRATCH REGISTER	SCR	0111	BIT 7	BIT 6	BIT 5	BIT 4	BIT 3	BIT 2	BIT 1	BIT 0
DIVISOR LATCH (LS)	DLL	0000 DLAB = 1	BIT 7	BIT 6	BIT 5	BIT 4	BIT 3	BIT 2	BIT 1	BIT 0
DIVISOR LATCH (MS)	DLM	0001 DLAB = 1	BIT 15	BIT 14	BIT 13	BIT 12	BIT 11	BIT 10	BIT 9	BIT 8

* In single-port mode (STNDLN pin = 1), all four address lines UA3-UA0 are used to address the UART Control Registers.

* In dual-port mode (STNDLN pin = 0), only three address lines UA2-UA0 are used to address the UART Control Registers; the UA3 pin becomes the MA2 pin in this mode.

	ADDRESS		DATA BIT NUMBER								
REGIST	FR	STN 0	IDLN	D7	D6	D5	D4	D3	D2	D1	Do
		MA2- MA0	UA3- UA0								
CONTROL REGISTER 0	CRO	000	1000	MODULATION OPTION	O	MODULATION MODE	POWER ON	CHARACTER SIZE 1 (READ ONLY)	CHARACTER SIZE 0 (READ ONLY)	TRANSMIT ENABLE	ORIGINATE/ ANSWER
CONTROL REGISTER 1	CR1	001	1001	TRANSMIT PATTERN 1	TRANSMIT PATTERN 0	ENABLE DETECT INTERRUPT	BYPASS SCRAMBLE	CLK CONTROL	RESET	TEST MODE 1	TEST MODE 0
DETECT REGISTER	DR	010	1010	DEVICE SIGNATURE 1	DEVICE SIGNATURE 0	RECEIVE DATA	UNSCR. MARK DETECT	CARRIER DETECT	ANSWER TONE DETECT	CALL PROGRESS DETECT	LONG LOOP DETECT
TONE CONTROL REGISTER	TONE	011	1011	RXD/TXD CONTROL	TRANSMIT GUARD TONE	TRANSMIT ANSWER TONE	TRANSMIT DTMF	DTMF 3	DTMF 2	DTMF 1	DTMF 0 GUARD/ANS. TONE
CONTROL REGISTER 2	CR2	100	1100		RESERVED FOR FUTURE USE						
CONTROL REGISTER 3	CR3	101	1101	SPEAKER VOLUME 1	SPEAKER VOLUME 0	OFF-HOOK	x	x	x	x	x
SCRATCH REGISTER	SCR	110	1110	BIT 7	BIT 6	BIT 5	BIT 4	ВІТ З	BIT 2	BIT 1	BIT O
UART CONTROL REGISTER	UCR	111	1111	TXCLK (READ ONLY)	x	REQUEST TO SEND (RTS) (READ ONLY)	DATA TERM. READY (DTR) (READ ONLY)	RING INDICATOR (RI)	DATA CARRIER DETECT (DCD)	DATA SET READY (DSR)	CLEAR TO SEND (CTS)

MODEM CONTROL REGISTER OVERVIEW

UART SECTION

UART REGISTER BIT DESCRIPTIONS

RECEIVER BUFFER REGISTER (RBR) (READ ONLY)							
STNDLN:	0	1					
ADDRESS:	UA2 - UA0 = 000, DLAB = 0	UA3 - UA0 = 0000, DLAB = 0					

This read only register contains the parallel received data with start, stop, and parity bits (if any) removed. The high order bits for less than 8 data bits/character will be set to 0.

TRANSMIT HOLDING REGISTER (THR) (WRITE ONLY)							
STNDLN:	0	1					
ADDRESS:	UA2 - UA0 = 000, DLAB = 0	UA3 - UA0 = 0000, DLAB = 0					

This write only register contains the parallel data to be transmitted. The data is sent LSB first with start, stop, and parity bits (if any) added to the serial bit stream as the data is transferred.

INTERRUPT ENABLE REGISTER (IER)						
STNDLN:	0	1				
ADDRESS:	UA2 - UA0 = 001, DLAB = 0	UA3 - UA0 = 0001, DLAB = 0				

This 8-bit register enables the four types of interrupts of the UART to separately activate the chip Interrupt (INTRPT) output signal. It is possible to totally disable the interrupt system by resetting bits 0 through 3 of the Interrupt Enable Register. Similarly, by setting the appropriate bits of this register to a logic 1, selected interrupts can be enabled. Disabling the interrupt system inhibits the Interrupt Identification Register and the active (high) INTRPT output from the chip. All other system functions operate in their normal manner, including the setting of the Line Status and Modern Status Registers.

BIT NO.	NAME	CONDITION	DESCRIPTION
D0	Received Data	1	This bit enables the Received Data Available Inter- rupt when set to logic 1.
D1	Transmitter Holding 1 Register Empty		This bit enables the Transmitter Holding Register Empty Interrupt, when set to logic 1.
D2	Receiver Line Status Interrupt	1	This bit enables the Receiver Line Status Interrupt, when set to logic 1.
D3	Modem Status	1	This bit enables the Modem Status Register Inter- rupt when set to interrupt logic 1.
D4	8250A/16450	1/0	Set for compatibility with 8250A/16C450 UARTS. Reset this bit to disable the gating of the INTRPT interrupt line with the DISTR signal which is needed for 8250B compatibility.
D5 - D7	Not Used	0	These three bits are always logic 0.

INTERRUPT ID REGISTER (IIR) (READ ONLY) STNDLN: 0 1 ADDRESS: UA2 - UA0 = 010 UA3 - UA0 = 0010

UART SECTION

The IIR register gives prioritized information as to the status of interrupt conditions. When accessed, the IIR freezes the highest priority interrupt pending and no other interrupts are acknowledged until the particular interrupt is serviced by the CPU.

BIT NO.	NAME	CONDITION	DESCRIPTION
D0	Interrupt Pending	0	This bit can be used in either a hardwired priortized or polled environment to indicate whether an inter- rupt is pending. When bit 0 is a logic 0, an interrupt is pending and the IIR contents may be used as a pointer to the appropriate interrupt service routine.
		1	When bit 0 is a logic 1, no interrupt is pending.
D1, D2	Interrupt ID bits 0, 1	Table below	These two bits of the IIR are used to identify the highest priority interrupt pending as indicated in the following table.
D3 - D7	Not Used	0	These five bits of the IIR are always logic 0.

INTERRUPT PRIORITY TABLE

D2	D1	D0	PRIORITY	ТҮРЕ	SOURCE	RESET
0	0	1	-	None	None	-
1	1	0	Highest	Receiver Line Status	Overrun Error, Parity Error, Framing Error or Break Interrupt	Reading the Line Status Register
1	0	0	Second	Receive Data Available	Receive Data Available	Reading the Rcvr. Buffer Register
0	1	0	Third	Transmit Holding Register Empty	Transmit Holding Register Empty	Reading IIR Register (if source of interrupt) or Writing to Transmit Holding Register
0	0	0	Fourth	Modem Status	Clear to Send or Data Set Ready or Ring Indicator or Data Carrier Det.	Reading the Modem Status Register

LINE CONTROL REGISTER (LCR) STNDLN: 0 ADDRESS: UA2 - UA0 = 011

1 UA3 - UA0 = 0011

The user specifies the format of the asynchronous data communications exchange via the Line Control Register. In addition to controlling the format, the user may retrieve the contents of the Line Control Register for inspection. This feature simplifies system programming and eliminates the need for separate storage in system memory of the line characteristics.

BIT NO.	NAME	CONE	NITION	DESCRIPTION
D0	Word Length Select 0			Bits D0 and D1 select the number of data bits per character as shown:
D1	Word Length Select 1	D1	D0	Word Length
		0	0	5 bits
		0	1	6 bits
		1	0	7 bits
		1	1	8 bits
D2	Number of Stop Bits	0 or 1		This bit specifies the number of stop bits in each transmitted character. If bit 2 is a logic 0, one stop bit is generated in the transmitted data. If bit 2 is a logic 1 when a 5-bit word length is selected via bits 0 and 1, one-and-a-half stop bits are generated. If bit 2 is a logic 1 when either a 6, 7, or 8-bit word length is selected, two stop bits are generated. The receiver checks the first stop bit only, regard- less of the number of stop bits selected.
D3	Parity Enable	1		This bit is the Parity Enable bit. When bit 3 is a logic 1, a parity bit is generated (transmit data) or checked (receive data) between the last data word bit and stop bit of the serial data. (The parity bit is used to produce an even or odd number of 1's when the data word bits and the parity bit are summed).
D4	Even Parity Select	1 or 0		This bit is the Even Parity Select bit. When bit 3 is a logic 1 and bit 4 is a logic 0, an odd number of logic 1's are transmitted or checked in the data word bits and parity bit. When bit 3 is a logic 1 and bit 4 is a logic 1, an even number of logic 1's are transmitted or checked.

UART SECTION

LINE CONTROL REGISTER (LCR) (Continued)

UART SECTION

BIT NO.	NAME	CONDITION		DESCRIPTION
D5	Stick Parity	1 or 0		This bit is the Stick Parity bit. When bit 3 is a logic 1 and bit 5 is a logic 1, the parity bit is transmitted and checked by the receiver as a logic 0 if bit 4 is a logic 1 or as a logic 1 if bit 4 is a logic 0.
		D5	D4	Parity
		0	0	ODD Parity
		0	1	EVEN Parity
		1	0	MARK Parity
		1	1	SPACE Parity
D6	Set Break	1		Output of modem is set to a spacing state. When the modem is transmitting DPSK data if the Set Break bit is held for one full character (start, data, parity, stop) the break will be extended to $2 N + 3$ space bits (where $N = #$ data bits + parity bit + 1 start + 1 stop). Any data bits generated during this time will be ignored. See note below.
D7	Divisor Latch Access Bit (DLAB)	1		This bit is the Divisor Latch Access Bit (DLAB). It must be set high (logic 1) to access the Divisor Latches of the baud generator during a Read or Write operation. It must be set low (logic 0) to access the Receiver Buffer, the Transmitter Hold- ing Register, or the Interrupt Enable Register.

NOTE: This feature enables the CPU to alert a terminal in a computer communications system. If the following sequence is followed, no erroneous or extraneous characters will be transmitted because of the break.

- 1. Load an all 0's pad character in response to THRE.
- 2. Set break in response to the next THRE.
- 3. Wait for the Transmitter to be idle. (TSRE = 1), and clear break when normal transmission has to be restored.

During the break, the Transmitter can be used as a character timer to accurately establish the break duration.

UART SECTION

MODEM CONTROL REGISTER (MCR) STNDLN: 0 ADDRESS: UA2 - UA0 = 100

1 UA3 - UA0 = 0100

The MCR register controls the interface with the modem. Bits D1 and D0 are also available as read only bits in the UART Control Register in the Modem Registers. In single-port mode, bits D1 and D0 are available inverted at the RTS and DTR pins.

BIT NO.	NAME	CONDITION	DESCRIPTION
D0	DTR	1	This bit controls the Data Terminal Ready ($\overline{\text{DTR}}$) output. When bit 0 is set to a logic 1, the $\overline{\text{DTR}}$ output is forced to a logic 0. When bit 0 is reset to a logic 0, the $\overline{\text{DTR}}$ output is forced to a logic 1.
D1	RTS	1	This bit controls the Request to Send (\overline{RTS}) output. When bit 1 is set to a logic 1, the \overline{RTS} output is forced to a logic 0. When bit 1 is reset to a logic 0, the \overline{RTS} output is forced to a logic 1.
D2	μPRST* (OUT1 in 16C450)	1	In single-port mode inactive unless loop = 1, then functions as below (D4). In dual-port mode the μ PRST pin is the logical OR of this bit and the RESET pin.
D3	Enable Interrupt (OUT2 in 16C450)	0	Sets INTRPT pin to high impedance if STNDLN = 1.
		1	INTRPT output enabled.
D4	LOOP	1	This bit provides a local loopback feature for diag- nostic testing of the UART portion of the SSI 73K222U. When bit D4 is set to logic 1, the following occurs:
			1. TXD is forced to mark, RXD is ignored.
			2. The output of the Transmitter is looped to the Receiver.
			3. The four modem control inputs to the UART ($\overline{\text{CTS}}$, $\overline{\text{DSR}}$, $\overline{\text{DCD}}$, and $\overline{\text{RI}}$) are ignored and the UART signals $\overline{\text{RTS}}$, $\overline{\text{DTR}}$, $\overline{\text{Enable Interrupt}}$, and $\mu PRST$ are forced inactive.
			4. The UART signals RTS, DTR, Enable Inter- rupt, and μ PRST are internally connected to the four control signals CTS, DSR, DCD and RI respectively. Note that the Modem Status Register Interrupts are now controlled by the lower four bits of the Modem Control Register. The interrupts are still controlled by the Inter- rupt Enable Register.
D5 - D7		0	These bits are permanently set to logic 0.
* Note: The µ	PRST bit has an upgraded funct	ion which was not incl	uded in the initial definition of the SSI 73K222U.

LINE STATUS REGISTER (LSR) STNDLN: 0 ADDRESS:

UA2 - UA0 = 101

1 UA3 - UA0 = 0101 UART SECTION

This register provides status information to the CPU concerning the data transfer.

BIT NO.	NAME	CONDITION	DESCRIPTION
D0	DR	1	The Data Ready (DR) bit is set to a 1 whenever a complete incoming character has been received and transferred into the Receiver Buffer Register. Data Ready is reset to 0 by reading the data in the Receiver Buffer Register or by writing a 0 into it from the processor.
D1	OE	1	The Overrun Error (OE) bit indicates that the data in the Receiver Buffer Register was not read by the CPU before the next character was transferred into the Receiver Buffer Register, thereby destroying the previous character. The OE indicator is reset whenever the CPU reads the contents of the Line Status Register.
D2	PE	1	The Parity Error (PE) bit indicates that the received character did not have the correct parity. The bit is reset to 0 whenever the CPU reads the Line Status Register.
D3	FE	1	The Framing Error (FE) bit indicates that the re- ceived character did not have a valid stop bit. The FE indicator is reset whenever the CPU reads the contents of the Line Status Register. A framing error will not occur in DPSK receive from the modem due to the fact that missing stop bits are reinserted.
D4	BI	1	The Break Interrupt (BI) bit indicates that a break has been received. A break occurs whenever the received data is held to 0 for a full data word (start + data + stop) or for two full data words when receiving in DPSK mode from the modem. The BI bit is reset to 0 whenever the CPU reads the Line Status Register.
D5	THRE	1	The Transmit Holding Register Empty (THRE) indicates that the Transmitter is ready to accept a new character for transmission. The THRE bit is reset when the CPU loads a character into the Transmit Holding Register.
D6	TSRE	1	The Transmit Shift Empty (TSRE) indicates that both the Transmit Holding Register and the Transmit Shift Registers are empty.
D7		0	Always zero.

UART SECTION

MODEM STATUS REGISTER (MSR) (READ ONLY) STNDLN: 0 1 ADDRESS: UA2 - UA0 = 110 UA3 - UA0 = 0110

This register provides the current state of the control signals from the modem. In addition, four bits provide change information. The CTS, DSR, DCD, and RI signals come from the UART Control Register if STNDLN = 0 and from the CTS, DSR, DCD and RI pins (inverted) if STNDLN = 1. This register is READ ONLY. The delta bits indicate whether the inputs have changed since the last time the Modem Status Register has been read. In Loop Mode CTS, DSR, RI and DCD are taken from RTS, DTR, μ PRST, and Enable Interrupt in the Modem Control Register respectively.

BIT NO.	NAME	CONDITION	DESCRIPTION
D0	DCTS	1	This bit is the Delta Clear to Send (DCTS) indica- tor. Bit 0 indicates that the CTS input to the chip has changed state since the last time it was read by the CPU.
D1	DDSR	1	This bit is the Delta Data Set Ready (DDSR) indicator. Bit 1 indicates that the DSR input to the chip has changed state since the last time it was read by the CPU.
D2	TERI	1	This bit is the Trailing Edge of the Ring Indicator (TERI) detector. Bit 2 indicates that the RI input to the chip has changed state.
D3	DDCD	1	This bit is the Delta Data Carrier Detect (DDCD) indicator. Bit 3 indicates that the DCD input to the chip has changed state.
D4	CTS	1	This bit is the complement of the Clear To Send (\overline{CTS}) input. If STNDLN = 0, this reflects the status of the UART Control Register bit. If bit 4 (loop) of the MCR is set to a 1, this bit is equivalent to RTS in the MCR.
D5	DSR	1	This bit is the complement of the Data Set Ready (\overline{DSR}) input. If STNDLN = 0, this reflects the status of the UART Control Register bit. If bit 4 of the MCR is set to a 1, this bit is the equivalent of DTR in the MCR.
D6	RI	1	This bit is the complement of the Ring Indicator (\overline{RI}) input. If STNDLN = 0, this reflects the status of the UART Control Register bit. If bit 4 of the MCR is set to a 1, this bit is equivalent to μ PRST in the MCR.
D7	DCD	1	This bit is the complement of the Data Carrier Detect (\overline{DCD}) If STNDLN = 0, this reflects the status of the UART Control Register bit. If bit 4 of the MCR is set to a 1, this bit is equivalent to Enable Interrupt in the MCR.

SCRATCH REGISTER (SCR) UART SECTION STNDLN: 0 1 ADDRESS: UA2 - UA0 = 111 UA3 - UA0 = 0111

The Scratch Register is a dual port register which can be simultaneously accessed through both the UART bus and the modem bus. This provides the possibility for the modem controller to communicate directly with the central CPU. Note that if both processors write the Scratch Register, the data stored will be from whichever processor last wrote the register.

 DIVISOR LATCH (Least significant byte) (DLL)

 STNDLN:
 0

 ADDRESS:
 UA2 - UA0 = 000, DLAB = 1

 UIVISOR LATCH (Most significant byte) (DLM)

 STNDLN:
 0

 ADDRESS:
 UA2 - UA0 = 001, DLAB = 1

DIVISOR LATCH VALUE VS. DATA RATE

The Divisor Latch is two 8-bit write only registers which control the rate of the programmable baud generator. The programmable baud generator generates an output clock by dividing an internal 1.8432MHz clock by the value stored in the divisor latch. This output clock has a value of 16X the data rate at which the modern will operate. This output clock is available at pin 21 under the control of bit 3 (D3) of the Modern Control Register 1. Upon loading either of the Divisor Latches the 16-bit device counter is immediately loaded, preventing long counts on initial load. The following table shows divisor values for common data rates.

DESIRED DATA RATE	DIVISOR USED FOR 16 x DATA RATE CLOCK	% ERROR GENERATED	DESIRED DATA RATE	DIVISOR USED FOR 16 x DATA RATE CLOCK	% ERROR GENERATED	
50 ·	2304		4800	24		
75 [,]	1536		7200	16		
110 ·	1047		9600	12		
134.5	857	0.058	19200	6		
159 [,]	768		38400	3		
300 ,	384		56000	2	2.86	
600 ·	192		1. Data Ra	ate valid for FSK trar	nsmission.	
1200 ·	96		2. Data Ra	ate valid for halfspee	d DPSK transmis-	
1800	64		sion.			
2000	58	0.69		3. Data Rate valid for normal 1200BPS DPSK transmission.		
2400	48		l uansmi	001011.	,	
3600	32					

MODEM REGISTER BIT DESCRIPTIONS

0

CONTROL REGISTER (CR0)

STNDLN:

MODEM SECTION

STNDLN: ADDRESS	0 : MA2 - MA0 = 0	00 UA3 - UA0 = 1000		
BIT NO.	NAME	CONDITION		DESCRIPTION
D0	Answer/Originate	0		Selects Answer Mode (transmit in high band, re- ceive in low band).
		1		Selects Originate Mode (transmit in low band, receive in high band).
D1	Transmit Enable	(()	Disables transmit output at TXA.
		1		Enables transmit output at TXA.
				NOTE: Answer tone and DTMF TX control require Transmit Enable. If Transmit Enable is on, call progress and answer tone detector interrupts are masked.
D2, D3	Character Size 0, 1			These bits are read only. These bits represent the character size. The character size is determined by the UART Line Control Register and includes data, parity (if used), one start bit, and one stop bit.
		D3	D2	Character length
		0	0	8-bit character
		0	1	9-bit character
		1	0	10-bit character
		1	1	11-bit character
D4	Power ON			This bit controls the power down mode of the SSI 73K222U, the analog, and most digital por- tions of the chip. The digital interface is active during power down.
		C)	Power down mode.
		1		Normal operation.
D5	Modulation Mode	C)	DPSK
		1		FSK
D6	Reserved	0		Must be written as zero.
D7	Modulation Option	C)	DPSK: 1200 bit/s
		1		600 bit/s
		C		FSK: 103 mode
		1		V.21 mode

1

0790 - rev.

CONTROL STNDLN: ADDRESS	REGISTER (CR1) 0 : MA2 - MA0 = 0	01 U/	1 43 - UAO	MODEM SECTION
BIT NO.	NAME	COND	ITION	DESCRIPTION
D0, D1	Test Mode	D1	D0	
		0	0	Selects normal operating mode.
		0	1	Analog Loopback Mode. Loops the transmitted analog signal back to the receiver, and causes the receiver to use the same center frequency as the Transmitter. To squelch the TXA pin, transmit enable bit must be forced low.
		1	0	Selects remote digital loopback. Received data is looped back to transmit data internally, and RXD is forced to a mark. Data in TXD is ignored.
		1	1	Selects half-duplex. Internally performs a logical AND of TXD and RXD to send to the UART receiver. Both transmit and receive characters will occur at the Receiver Buffer Register.
D2	Reset	C)	Selects normal operation.
		1		Resets modem to power down state. All Control Register bits (CR0, CR1, TONE) are reset to zero. The output of the clock pin will be set to the crystal frequency.
D3	CLK Control (Clock Control)	0		CLK pin output is selected to be an 11.0592 MHz crystal echo output.
		1		CLK pin output is selected to be 16 x the Data Rate set by the UART divisor latch.
D4	Bypass Scrambler	C)	Selects normal operation. DPSK data is passed through scrambler.
		1		Selects Scrambler Bypass. DPSK data is routed around scrambler in the transmit path.

CONTROL	REGISTER (CR1) (Contin	nued)		MODEM SECTION		
BIT NO.	NAME	COND	NOITION	DESCRIPTION		
D5	Enable Detect Interrupt	0		0		Disables interrupts generated by Detect Register bits D1 - D4 at INT pin in dual-port mode, or at INTRPT pin in single-port mode. All interrupts normally disabled in power down modes.
				1		Enables interrupts generated by Detect Register bits D1 - D4 at INT pin in dual-port mode, or at INTRPT pin in single-port mode. An interrupt will be generated with a change in status of DR bits D1 - D4. The answer tone and call progress detect interrupts are masked when the TX enable bit is set. Carrier detect is masked when TX DTMF is activated. All interrupts will be disabled if the device is in power down mode. The interrupt is reset when the DR register is read.
D6, D7	Transmit Pattern	D7	D6			
		0	0	Selects normal data transmission as controlled by the state of the TXD pin.		
		0 1		Selects an alternating mark/space transmit pattern for modern testing.		
		1	0	Selects a constant mark transmit pattern.		
		1	1	Selects a constant space transmit pattern.		

0790 - rev.

DETECT R STNDLN: ADDRESS	REGISTER (DR) 0 5: MA2 - MA0 = 01	10 UA	1 43 - UAO	MODEM SECTION		
BIT NO.	NAME	COND	ITION	DESCRIPTION		
D0	Long Loop	0		Indicates normal received signal.		
		1		Indicates low received signal level (< -38 dBm).		
D1	Call Progress Detect	0		No call progress tone detected.		
		1		Indicates presence of call progress tones. The call progress detection circuitry is activated by energy in the normal 350 to 620 Hz call progress bandwidth.		
D2	Answer Tone Received	C)	No answer tone detected.		
		1		Indicates detection of 2225 Hz answer tone in Bell mode or 2100 Hz in CCITT mode. The device must be in Originate Mode for detection of answer tone for normal operation. For CCITT answer tone detection, bit D0 of the Tone Register must be set.		
D3	Carrier Detect	C)	No carrier detected in the receive channel.		
		1		Carrier has been detected in the receive channel.		
D4	Unscrambled Marks	C)	No unscrambled mark detected.		
		1		Indicates detection of unscrambled marks in the received data. A valid indication requires that unscrambled marks be received for > 165.5 \pm 13.5 ms.		
D5	Receive Data					Continuously outputs the received data stream. This data is the same as that output on the RXD pin, but it is not disabled when RXD is tri-stated.
D6, D7		D7	D6	Product Identified		
	Device Signature 0, 1	0	0	SSI 73K212U		
		0	1	SSI 73K221U		
		1	0	SSI 73K222U		

MODEM SECTION

1

TONE CONTROL REGISTER (TONE) STNDLN: 0 1 ADDRESS: MA2 - MA0 = 011 UA3 - UA0 = 1011

The Tone Control Register contains information on the tones that are transmitted. Tones are transmitted only if the Transmit Enable bit is set. The priority of the transmit tones are: 1) DTMF, 2) Answer, 3) FSK, 4) Guard.

BIT NO.	NAME	СС	DND	ΠΙΟ	N	DESCR	IPTIO	N				
D0	DTMF 0 / Answer/	D6	D5	D4	D0	D0 inter	acts w	vith t	oits [D6, D5	, and D4 as	shown:
	Guard Tone	X X 1 X Transmit			t DTM	F to	nes					
		X	1	0	0	Select 2	225Hz	z an	swe	r tone ((Bell).	
		X 1 0 1 Select 2100Hz answer tone (CCITT).										
		1	0	0	0	Select 1	800Hz	z gu	ard t	one.		
		1	0	0	1	Select 5	50Hz	gua	rd to	ne.		
D0, D1, D2, D3	DTMF	transmitte			Programs 1 of 16 DTMF tone pairs that will be transmitted when TX DTMF and TX enable bit (CR0, bit D1) is set. Tone encoding is shown below.					nable bit		
						OARD ALENT			CO D1		TO LOW	NES HIGH
				1	0	0	0	1	697	1209		
						2	0	0	1	0	697	1336
					į	3	0	0	1	1	697	1477
						4	0	1	0	0	770	1209
						5	0	1	0	1	770	1336
						6	0	1	1	0	770	1477
					•	7	0	1	1	1	852	1209
					1	В	1	0	0	0	852	1336
						9	1	0	0	1	852	1477
						0	1	0	1	0	941	1336
						*	1	0	1	1	941	1209
						#	1	1	0	0	941	1477
						۹	1	1	0	1	697	1633
						В	1	1	1	0	770	1633
						0	1	1	1	1	852	1633
						2	0	0	0	0	941	1633

MODEM SECTION

D4	TX DTMF	0		Disable DTMF.		
	(Transmit DTMF)	1		1		Activates DTMF. The selected DTMF tones are transmitted continuously when this bit is high. TX DTMF overrides all other transmit functions.
D5	TX ANS	D5	D0	D5 interacts with bit D0 as shown.		
	(Transmit Answer Tone)	0	Х	Disables answer tone generator.		
		1 0		Enables answer tone generator. A 2225Hz an- swer tone will be transmitted continuously when the transmit enable bit is set. The device must be in answer mode.		
		1 1		Enables a 2100Hz answer tone generator, with operation same as above.		
D6	TX Guard	0		Disables guard tone generator.		
	(Transmit Guard Tone)	1		Enables guard tone generator. (See D0 for selec- tion of guard tones).		
D7	RXD/TXD Control	STNDLN	D7	Function is dependant on status of STNDLN pin.		
		0	0	RXD is output data received by modem, TXD is serial output of UART.		
		1	0	RXD is electrically an input, but the signal is ignored, TXD is forced to a mark.		
		X	1	RXD is serial input to UART, TXD is serial output of UART.		

 CONTROL REGISTER (CR3)

 STNDLN:
 0
 1

 ADDRESS:
 MA2 - MA0 = 101
 UA3 - UA0 = 1101

BIT NO.	NAME	CONDITION		DESCRIPTION
D0 - D4	Not Used			Not presently used.
D5	Off Hook	0		Relay driver open.
		1		Open drain driver pulling low.
D6, D7	Speaker Volume 0, 1	D7	D6	Speaker volume control status.
		0	0	Speaker off
		0	1	-24dB
		1	0	-12dB
		1	1	0dB

MODEM SECTION

SCRATCH REGISTER (SCR) STNDLN: 0 1 ADDRESS: MA2 - MA0 = 110 UA3 - UA0 = 1110

The Scratch Register is a dual-port register which can be accessed either through the UART bus or the modem bus. It can be used for a communication path outside the data stream.

 UART CONTROL REGISTER (UCR)

 STNDLN:
 0
 1

 ADDRESS:
 MA2 - MA0 = 111
 UA3 - UA0 = 1111

The UART Control Register contains the handshaking signals necessary for the microprocessor to communicate with the central CPU through the UART.

BIT NO.	NAME	CONDITION	DESCRIPTION
D0	CTS	1	In dual-port mode, CTS, DSR, DCD and RI are writeable locations which can be read through the 16C450 port in the Modem Status Register.
D1	DSR	1	
D2	DCD	1	In the single-port mode, D0 - D3 are ignored and the information for the Modem Status Register comes directly from the external pins.
D3	RI	1	
D4	DTR	1	
D5	RTS	1	DTR and RTS are read only versions of the same register bits in the Modem Contol Reg- ister.
D6	Not Used		
D7	TXCLK	Clock	TXCLK is the clock that the UART puts out with TXD. The falling edge of TXCLK is coincident with the transitions of data on TXD. TXCLK can also be used for the microprocessor to send synchronous data independent of the UART by forcing data patterns using CR1 bits 6 and 7 before the rising edge of TXCLK.
NOTE: Cor	trol Register 2 (CR2) is re	served for future	products and is disabled.

ELECTRICAL SPECIFICATIONS

ABSOLUTE MAXIMUM RATINGS

TA = -40°C to 85°C, VDD = 5V \pm 10%, unless otherwise noted.

PARAMETER	RATING	UNIT
VDD Supply Voltage	7	v
Storage Temperature	-65 to 150	°C
Soldering Temperature (10 sec.)	260	°C
Applied Voltage	-0.3 to VDD +0.3	V
NOTE: All inputs and outputs are protected devices and all outputs are short-circuit pro		ndustry standard protection

RECOMMENDED OPERATING CONDITIONS

PARAMETERS	CONDITIONS	MIN	NOM	MAX	UNIT
VDD, Supply Voltage		4.5	5	5.5	v
TA, Operating Free-Air Temperature		-40		85	°C
External Component (Refer to a	pplication drawing for placemer	nt.)	• • • • • • • • • • • • • • • • • • •	<u> </u>	
VREF Bypass Capacitor •	(VREF to GND)	0.1			μF
Bias Setting Resistor	(Placed between VDD and ISET pins)	1.8	2	2.2	MΩ
ISET Bypass Capacitor	ISET pin to GND	0.1			μF
VDD Bypass Capacitor	(VDD to GND)	0.1			μF
XTL1 Load Capacitor	From pin to GND			40	рF
XTL2 Load Capacitor	From pin to GND			20	pF
Input Clock Variation	(11.0592 MHz)	-0.01		+0.01	%
Hybrid Loading					
R1	See Figure 3		600		Ω
R2			600		Ω
C	TXA Hybrid Loading		0.033		μF
 Optional for minimum worst ca Minimum for optimized system 	•	ues for noisy	environm	ients.	

0790 - rev.

DC ELECTRICAL CHARACTERISTICS

TA = -40°C to +85 °C, VDD = 5V \pm 10%, unless otherwise noted.

PARAMETERS	CONDITIONS	MIN	NOM	МАХ	UNIT
IDD, Supply Current					
IDDA, Active	ISET Resistor = $2M\Omega$		8	12	mA
IDDA, Active	ISET = GND		8	15	mA
IDD1, Power-Down	CLK = 11.0592MHz		3	4	mA
IDD2, Power-Down	CLK = 19.200KHz		2	3	mA
Digital Inputs					
Input High Current IIH	VI = VDD			100	μΑ
Input Low Current IIL	VI = 0	-200			μΑ
Input Low Voltage VIL				0.8	v
Input High Voltage VIH	Except RESET & XTL1	2.0			v
Input High Voltage VIH	RESET & XTL1	3.0			v
Pull Down Current RESET PI	1	5		30	μΑ
Input Capacitance				10	pF
Digital Outputs					
Output High Voltage VOH	IOUT = - 1 mA	2.4		VDD	V
VOL UD0-UD7 and INTRPT	IOUT = 3.2 mA			0.4	v
VOL other outputs	IOUT = 1.6 mA			0.4	v
CLK Output VOL	IOUT = 3.2 mA			0.6	v
OH Output VOL	IOUT = 20 mA			1.0	v
OH Output VOL	IOUT = 10 mA			0.5	v
Offstate Current INTRPT pin	VO = 0V	-20		20	μΑ
Capacitance					
Inputs	Input Capacitance			10	pF
CLK	Maximum capacitive load to pin			15	pF
Analog Pins					
RXA Input Resistance			200		KΩ
RXA Input Capacitance				25	pF

DYNAMIC CHARACTERISTICS AND TIMING

TA = -40°C to +85°C, VDD = 5V \pm 10%, unless otherwise noted.

PARAMETERS	CONDITIONS	MIN	NOM	MAX	UNIT
DPSK Modulator			L		
Carrier Suppression	Measured at TXA	55			dB
Carrier Suppression Output Amplitude SK Tone Error DTMF Generator Freq. Accuracy Output Amplitude Output Amplitude Cong Loop Detect Demodulator	ANS TONE 2225 or 2100 Hz	-11	-10.0	-9	dBm0 [,]
	DPSK TX Scrambled Marks	-11	-10.0	-9	dBm0
	FSK Dotting Pattern	-11	-10.0	-9	dBm0
FSK Tone Error	Bell 103 or V.21			±5	Hz
DTMF Generator					
Freq. Accuracy		25		.25	%
Output Amplitude	Low Band, not in V.21 mode	-10	-9	-8	dBm0
Output Amplitude	High Band, not in V.21 mode	-8	-7	-6	dBm0
Long Loop Detect	DPSK or FSK	-40		-32	dBm0
Demodulator Dynamic Range	DPSK or FSK		45		dB
Call Progress Detector					
Detect Level	2-Tones in 350-600Hz Band	-39		0	dBm0
Reject Level	2-Tones in 350-600Hz Band			-46	dBm0
Delay Time	-70dBm0 to -30dBm0 Step	27		80	ms
Hold Time	-30dBm0 to -70dBm0 Step	27		80	ms
Hysteresis		2			dB
Carrier Detect	DPSK or FSK Receive				
Threshold	Data	-49		-42	dBm0
Delay Time	-70 dBm0 to -30 dBm0 Step	15		45	ms
Hysteresis		2	3.0		dB
Hold Time	-30 dBm0 to -70 dBm0 Step	10		24	ms
Answer Tone Detector					
Detect Level Threshold	In FSK mode	-49.5		-42	dBm0
Delay Time	-70dBm0 to -30dBm0 STEP	20		45	ms
Hold Time	-30dBm0 to -70dBm0 STEP	10		30	ms
Detect Frequency Range		-2.5		+2.5	%

MAX

+1

10

100

+625

50

+20

-2.0

-5.0

-60

UNIT

dB

VP

Hz

ms

ppm

ms

Hz

dB

dB

dB

NOM

40

30

-3.0

-6.0

MIN

-1

2.75

-10

-625

-20

-4.0

-7.0

SERIAL	BUS INT	ERFACE	(See Figure 4)
TTL			

PARAMETERS

Speaker Output Gain Error

Carrier VCO

Output Swing SPKR

Capture Range

Capture Range

Data Delay Time

Guard Tone Generator Tone Accuracy

(Below DPSK Output)

Harmonic Distortion

Tone Level

Capture Time

Recovered Clock

The following times are for CL = 100pF.

PARAME	TER	MIN	NOM	МАХ	UNIT
TRD	Data out from Read	0		140	ns
TCKD	Data out after Clock			200	ns
TRDF	Data Float after Read	0		200	ns
TRCK	Clock High after Read	200			ns
TWW	Write Width	140		10000	ns
TDCK	Data Setup Before Clock	150			ns
тскн	Data Hold after Clock	20			ns
TCKW	Write after Clock	150			ns
TACR	Address setup before Control ¹	50			ns
TCAR	Address Hold after Control ¹	50			ns
TACW	Address setup before Write	50			ns
TCAW	Address Hold after Write	50			ns
1. Contro	I is later of falling edge of RD or DCLK.			•	

DYNAMIC CHARACTERISTICS	AND TIMING (Continued)

CONDITIONS

10K||50pF LOAD 5% THD

Originate or Answer

-10Hz to +10Hz Carrier

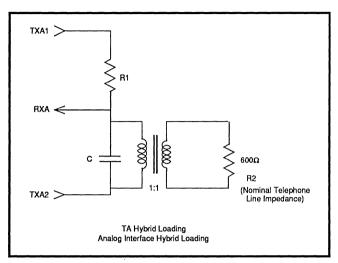
% of Center Frequency

550 or 1800Hz

700 to 2900HZ

550HZ

1800HZ


Frequency change assumed

Analog data in at RXA pin to

receive data valid at RXD pin.

PARAME	TER	MIN	МАХ	MIN	МАХ	UNIT
		Dual-Po	ort Mode	Single-F	ort Mode	
RC	Read Cycle = TAD + TRC	240		340		ns
TDIW	DISTR Width	80		80		ns
TDDD	Delay DISTR to Data (read time)		80		80	ns
THZ	DISTR to Floating Data Delay	0	50	0	50	ns
TRA	Address Hold after DISTR	20		20		ns
TRCS	Chip select hold after DISTR	20		20 ⁻		ns
TAR	DISTR Delay after Address	20		20		ns
TCSR	DISTR Delay after Chip Select	20		20		ns
WC	Write Cycle = TAW + TDOW + TWC	140		140		ns
TDOW	DOSTR Width	80		80		ns
TDS	Data Setup	30		50		ns
TDH	Data Hold	20		20		ns
TWA	Address Hold after DOSTR	20		20		ns
TWCS	Chip select hold after DOSTR	20		20		ns
TAW	DOSTR delay after Address	20		20		ns
TCSW	DOSTR delay after Chip Select	20		20		ńs
TADS	Address Strobe Width			40		ns
TAS	Address Setup Time			30		ns
ТАН	Address Hold Time			0		ns
TCS	Chip Select Setup Time			30		ns
тсн	Chip Select Hold Time			0		ns
TRC	Read Cycle Delay	40		40		ns
тwс	Write Cycle Delay	40		40		ns
TAD	Address to Read Data	200		300		ns

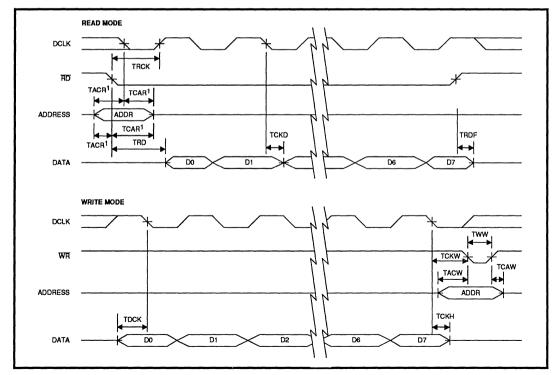
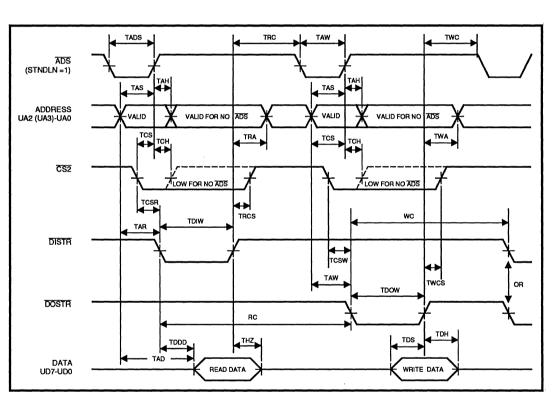
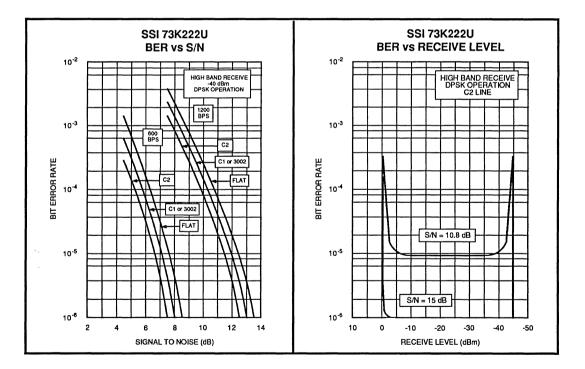


FIGURE 4: Modem Serial Bus Timing



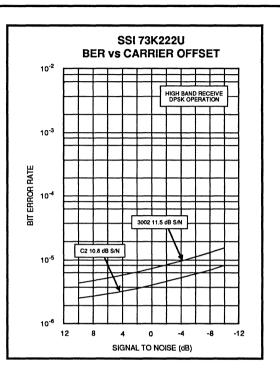

FIGURE 5: UART Bus Timing

TYPICAL PERFORMANCE CHARACTERISTICS

The SSI 73K222U was designed using an integrated analog/digital architecture that offers optimum performance over a wide range of line conditions. The SSI 73K222U utilizes the circuit design proven in SSI's 73K222L one-chip modem, with added enhancements which extend low signal level performance and increase immunity to spurious noise typically encountered in integral bus applications. The SSI 73K222U provides excellent immunity to the types of disturbances present with usage of the dial-up telephone network. The following curves show representative Bit Error Rate performance under various line conditions.

BER vs S/N

This test measures the ability of the modem to function with minimum errors when operating over noisy lines. Since some noise is generated by even the best dialup lines, the modem must operate with as low a S/N ratio as possible. Optimum performance is shown by curves that are closest to the zero axis. A narrow spread between curves for the four line conditions indicates minimal variation in performance when operating over a range of line qualities and is typical of high performance adaptive equalization receivers. High band receive data is typically better than low band due to the inherent design of PSK modems.



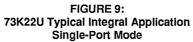
BER vs Receive Level

This measures the dynamic range of the modem. As signal levels vary widely over dial-up lines, the widest dynamic range possible is desirable. The minimum Bell specification calls for 36dB of dynamic range. S/N ratios were held constant at the indicated values while receive level was lowered from very high to very low signal levels. The "width of the bowl" of these curves taken at the 10- BER point is a measure of the dynamic range.

BER vs Carrier Offset

This parameter indicates how the modem performance is impacted by frequency shifts encountered in normal PSTN operation. Flat curves show no performance degradation from frequency offsets. The SSI K-Series devices use a 2nd order carrier tracking phase-lockedloop, which is insensitive to carrier offsets in excess of 10Hz. The Bell network specifications allow as much as 7Hz offset, and the CCITT specifications require modems to operate with 7Hz of offset.

APPLICATION


The SSI 73K222U includes additional circuitry to greatly simplify integral modem designs in either of two different configurations. The single-port mode represents the most efficient implementation for an integral modem. Figure 9 shows a typical schematic using this mode. In this configuration, the SSI 73K222U transfers data and commands through the single parallel port. All modem control is provided by the main CPU, eliminating the need for an external microcontroller and supporting components. The SSI 73K222U is unique in that access to both the UART and modem sections is possible through the UART port. Also shown is a separate serial port, which can be used independent of the modem function when the modem

section is inactive. Figure 10 shows a more conventional integral modem design, in which a local microprocessor handles modem supervision, allowing the modem function to be transparent to the main processor. Inclusion of the hybrid drivers, audio volume control, and off hook relay driver reduces component count for a highly efficient design. In either mode of operation, the SSI 73K222U's ability to operate from a single +5 volt power supply eliminates the need for additional supply voltages and keeps power usage to a minimum.

(See Figure 9 & 10: Typical Integral Applications Single and Dual-Port Modes.)

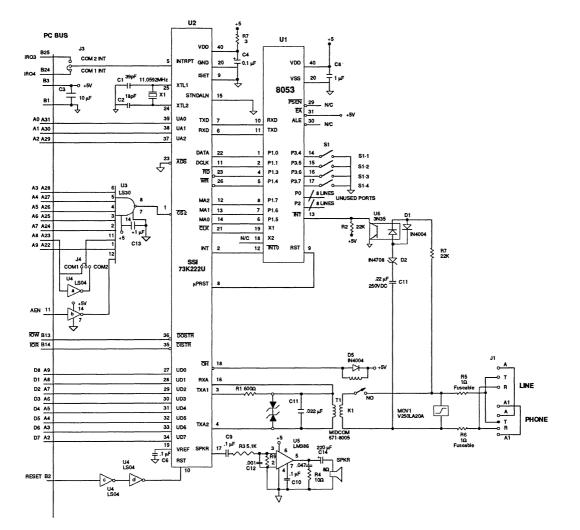
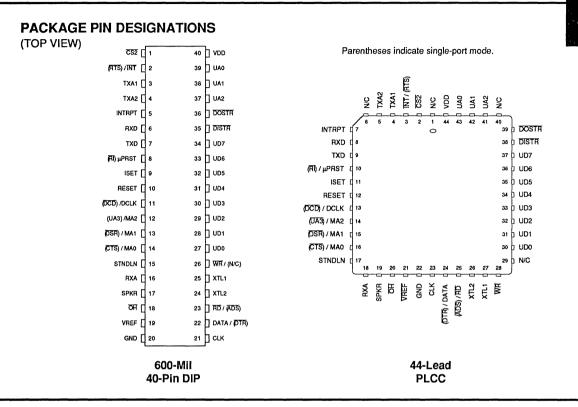



FIGURE 10: 73K22U Typical Integral Application Dual-Port Mode SSI 73K222U Single-Chip Modem with UART

ORDERING INFORMATION

PART DESCRIPTION	ORDER NO.	PKG. MARK
SSI 73K222U		
40-Pin Plastic Dual-In-Line	SSI 73K222U – IP	73K222U – IP
44-Pin Plastic Leaded Chip Carrier	SSI 73K222U – IH	73K222U IH

No responsibility is assumed by Silicon Systems for use of this product nor for any infringements of patents and trademarks or other rights of third parties resulting from its use. No license is granted under any patents, patent rights or trademarks of Silicon Systems. Silicon Systems reserves the right to make changes in specifications at any time without notice. Accordingly, the reader is cautioned to verify that the data sheet is current before placing orders.

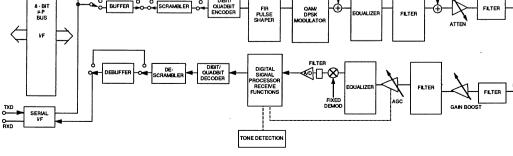
Silicon Systems, Inc. 14351 Myford Road, Tustin, CA 92680, (714) 731-7110, FAX (714) 731-5457

Notes:

silicon systems*

July, 1990

DESCRIPTION


The SSI 73K224L is a highly integrated single-chip modem IC which provides the functions needed to construct a V.22 bis compatible modem, capable of 2400 bit/s full-duplex operation over dial-up lines. The SSI 73K224L offers excellent performance and a high level of functional integration in a single 28-pin DIP. This device supports V.22 bis, V.22, V.21, Bell 212A and Bell 103 modes of operation, allowing both synchronous and asynchronous communication. The SSI 73K224L is designed to appear to the systems designer as a microprocessor peripheral, and will easily interface with popular single-chip microprocessors (80C51 typical) for control of modern functions through its 8-bit multiplexed address/data bus or via an optional serial control bus. An ALE control line simplifies address demultiplexing. Data communications normally occur through a separate serial port. The SSI 73K224L is pin and software compatible with the SSI 73K212L and SSI 73K222L single-chip modem ICs, allowing system upgrades with a single component change.

The SSI 73K224L operates from a single +5 volt supply for low power consumption.

The SSI 73K224L is ideal for use in either free-standing or integral system modem products where full-duplex (Continued)

FEATURES

- One-chip multi-mode V.22 bis/V.22/V.21 and Bell 212A/103 compatible modem data pump
- FSK (300 bit/s), DPSK (600, 1200 bit/s), or QAM (2400 bit/s) encoding
- Pin and software compatible with other SSI K-Series 1-chip modems
- Interfaces directly with standard microprocessors (8048, 80C51 typical)
- Parallel microprocessor bus (28-pin DIP, 32- and 44pin PLCC) for control
- Selectable asynch/synch with internal buffer/debuffer and scrambler/descrambler functions
- All synchronous and asynchronous operating modes (internal, external, slave)
- Adaptive equalization for optimum performance over all lines
- Programmable transmit attenuation (16 dB, 1 dB steps), selectable receive boost (+12 dB)
- Call progress, carrier, answer tone, unscrambled mark, S1, and signal quality monitors
- DTMF, answer and guard tone generators
- Test modes available: ALB, DL, RDL, Mark, Space, Alternating bit, S1 pattern
- CMOS technology for low power consumption (125 mW @ 5V) with power-down mode (30 mW @ 5V) TTL and CMOS compatible inputs and outputs
- BLOCK DIAGRAM ANSWER GUARD & CALLING GENERATOR FSK AODULATOR DIBIT/ BUFFER SCRAMPI FE FILTER EQUALIZER FILTER

1-117

DESCRIPTION (Continued)

2400 bit/s data communications over the 2-wire switched telephone network is desired. Its high functionality, low power consumption, and efficient packaging simplify design requirements and increase system reliability.

The SSI 73K224L is designed to be a complete V.22 bis compatible modem on a chip. The complete modem requires only the addition of the phone line interface, a control microprocessor, and RS-232 level converter for a typical system. Many functions were included to simplify implementation of typical modern designs. In addition to the basic 2400 bit/s QAM, 600/1200 bit/s DPSK and 300 bit/s FSK modulator/demodulator sections, the device also includes SYNCH/ASYNCH converters, scrambler/descrambler, call progress tone detect. DTMF tone generator capabilities and handshake pattern detectors. V.22 bis, V.22, V.21 and Bell 212A/103 modes are supported (synchronous and asynchronous) and test modes are provided for diagnostics. Most functions are selectable as options and logical defaults are provided.

OPERATION

QAM MODULATOR/DEMODULATOR

The SSI 73K224L encodes incoming data into quadbits represented by 16 possible signal points with specific phase and amplitude levels. The baseband signal is then filtered to reduce intersymbol interference on the bandlimited telephone network. The modulator transmits this encoded data using either a 1200 Hz (originate mode) or 2400 Hz (answer mode) carrier. The demodulator, although more complex, essentially reverses this procedure while also recovering the data clock from the incoming signal. Adaptive equalization corrects for varying line conditions by automatically changing filter parameters to compensate for line characteristics.

DPSK MODULATOR/DEMODULATOR

The SSI 73K224L modulates a serial bit stream into di-bit pairs that are represented by four possible phase shifts as prescribed by the Bell 212A/V.22 standards. The base-band signal is then filtered to reduce intersymbol interference on the bandlimited 2-wire PSTN line. Transmission occurs on either a 1200 Hz (originate mode) or 2400 Hz carrier (answer mode). Demodulation is the reverse of the modulation process, with the incoming analog signal eventually decoded into di-bits and converted back to a serial bit stream. The demodulator also recovers the clock which was encoded into the analog signal during modulation. Demodulation occurs using either a 1200 Hz carrier (answer mode or ALB originate mode) or a 2400 Hz carrier (originate mode or ALB answer mode). Adaptive equalization is also used in DPSK modes for optimum operation with varying line conditions.

FSK MODULATOR/DEMODULATOR

The FSK modulator produces a frequency modulated analog output signal using two discrete frequencies to represent the binary data. The Bell 103 standard frequencies of 1270 and 1070 Hz (originate mark and space) and 2225 and 2025 Hz (answer mark and space) are used when this mode is selected. V.21 mode uses 980 and 1180 Hz (originate, mark and space) or 1650 and 1850 Hz (answer, mark and space). Demodulation involves detecting the received frequencies and decoding them into the appropriate binary value. The rate converter and scrambler/ descrambler are bypassed in the FSK modes.

PASSBAND FILTERS AND EQUALIZERS

High and low band filters are included to shape the amplitude and phase response of the transmit and receive signals and provide compromise delay equalization and rejection of out-of-band signals. Amplitude and phase equalization are necessary to compensate for distortion of the transmission line and to reduce intersymbol interference in the bandlimited receive signal. The transmit signal filtering corresponds to a 75% square root of raised Cosine frequency response characteristic.

ASYNCHRONOUS MODE

The asynchronous mode is used for communication with asynchronous terminals which may communicate at 600,1200, or 2400 bit/s +1%, -2.5% even though the modem's output is limited to the nominal bit rate \pm .01%. When transmitting in this mode the serial data on the TXD input is passed through a rate converter which inserts or deletes stop bits in the serial bit stream in order to output a signal that is the nominal bit rate \pm .01%. This signal is then routed to a data scrambler and into the analog modulator where quad-bit/di-bit

encoding results in the output signal. Both the rate converter and scrambler can be bypassed for handshaking, FSK, and synchronous operation as selected. The device recognizes a break signal and handles it in accordance with Bell 212A specifications. Received data is processed in a similar fashion except that the rate converter now acts to reinsert any deleted stop bits and output data to the terminal at no greater than the bit rate plus 1%. An incoming break signal (low through two characters) will be passed through without incorrectly inserting a stop bit.

The SYNC/ASYNC converter also has an extended overspeed mode which allows selection of an output overspeed range of either +1% or +2.3%. In the extended overspeed mode, stop bits are output at 7/8 the normal width.

Similar to the transmit side, both the SYNC/ASYNC rate converter and the data descrambler are bypassed in the FSK modes.

SYNCHRONOUS MODE

Synchronous operation is possible only in the QAM or DPSK modes. Operation is similar to that of the asynchronous mode except that data must be synchronized to a provided clock and no variation in data transfer rate is allowable. Serial input data appearing at TXD must be valid on the rising edge of TXCLK. TXCLK is an internally derived 1200 or 2400 Hz signal in internal mode and is connected internally to the RXCLK pin in slave mode. Receive data at the RXD pin is clocked out on the falling edge of RXCLK. The asynch/synch converter is bypassed when synchronous mode is selected and data is transmitted at the same rate as it is input. 1

PARALLEL BUS INTERFACE

Seven 8-bit registers are provided for control, option select, and status monitoring. These registers are addressed with the AD0, AD1, and AD2 multiplexed address lines (latched by ALE) and appear to a control microprocessor as seven consecutive memory locations. Five control registers are read/write memory. The detect and ID registers are read only and cannot be modified except by modem response to monitored parameters.

DTMF GENERATOR

The DTMF generator will output one of 16 standard tone pairs determined by a 4-bit binary value and the TX DTMF mode bit previously loaded into the tone register. Transmission of DTMF tones is initiated when the DTMF mode is selected and the transmit enable (CR0 bit D1) is changed from 0 to 1.

PIN DESCRIPTION

POWER

NAME	28-PIN	32-PIN	44-PIN	TYPE	DESCRIPTION
GND	28	32	44	1	System Ground.
VDD	15	17	23	I	Power supply input, 5V -5% +10%. Bypass with .1 μF and 22 μF capacitors to GND.
VREF	26	30	42	0	An internally generated reference voltage. Bypass with .1 μF capacitor to GND.
ISET	24	27	36	I	Chip current reference. Sets bias current for op-amps. The chip current is set by connecting this pin to VDD through a 2 $M\Omega$ resistor. Iset should be bypassed to GND with a .1 μF capacitor.

PARALLEL MICROPROCESSOR INTERFACE

NAME	28-PIN	32-PIN	44-PIN	TYPE	DESCRIPTION
ALE	12	14	20	l	Address latch enable. The falling edge of ALE latches the address on AD0-AD2 and the chip select on CS.
AD0- AD7	4-11	4, 6-12	4,9-15	I/O	Address/data bus. These bidirectional tri-state multi-plexed lines carry information to and from the internal registers.
<u>CS</u>	20	23	32	I	Chip select. A low on this pin allows a read cycle or a write cycle to occur. AD0-AD7 will not be driven and no registers will be written if \overline{CS} (latched) is not active. \overline{CS} is latched on the falling edge of ALE.
CLK	1	1	1	0	Output clock. This pin is selectable under processor control to be either the crystal frequency (for use as a processor clock) or 16 x the data rate for use as a baud rate clock in QAM/DPSK modes only. The pin defaults to the crystal frequency on reset.
INT	17	19	25	0	Interrupt. This open drain weak pullup, output signal is used to inform the processor that a detect flag has occurred. The processor must then read the detect register to determine which detect triggered the interrupt. INT will stay active until the pro- cessor reads the detect register or does a full reset.
RD	14	16	22	1	Read. A low requests a read of the SSI 73K224L internal registers. Data cannot be output unless both $\overline{\text{RD}}$ and the latched $\overline{\text{CS}}$ are active or low.
RESET	25	28	37	ł	Reset. An active high signal on this pin will put the chip into an inactive state. All control register bits (CR0, CR1, CR2, CR3, Tone) will be reset. The output of the CLK pin will be set to the crystal frequency. An internal pull down resistor permits power on reset using a capacitor to VDD.
WR	13	15	21		Write. A low on this informs the SSI 73K224L that data is available on AD0-AD7 for writing into an internal register. Data is latched on the rising edge of \overline{WR} . No data is written unless both \overline{WR} and the latched \overline{CS} are active (low).
					in version by tying ALE high and $\overline{\text{CS}}$ low. In this configuration AD7 come A0, A1 and A2, respectively.

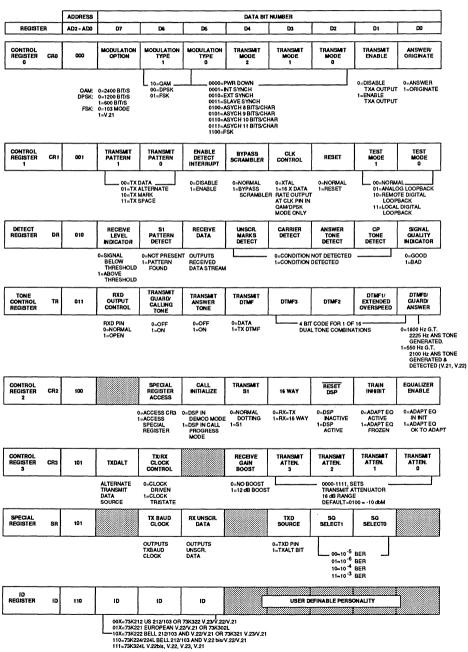
DTE USER INTERFACE

NAME	28-PIN	32-PIN	44-PIN	TYPE	DESCRIPTION
EXCLK	19	22	31	1	External Clock. This signal is used in synchronous transmission when the external timing option has been selected. In the external timing mode the rising edge of EXCLK is used to strobe synchronous DPSK transmit data available on the TXD pin. Also used for serial control interface.
RXCLK	23	26	35	0	Receive Clock. The falling edge of this clock output is coincident with the transitions in the serial received data output. The rising edge of RXCLK can be used to latch the valid output data. RXCLK will be active as long as a carrier is present.
RXD	22	25	34	0	Received Digital Data Output. Serial receive data is available on this pin. The data is always valid on the rising edge of RXCLK when in synchronous mode. RXD will output constant marks if no carrier is detected.
TXCLK	18	20	26	0	Transmit Clock. This signal is used in synchronous transmission to latch serial input data on the TXD pin. Data must be provided so that valid data is available on the rising edge of the TXCLK. The transmit clock is derived from different sources depending upon the synchronization mode selection. In Internal Mode the clock is generated internally. In External Mode TXCLK is phase locked to the EXCLK pin. In Slave Mode TXCLK is phase locked to the RXCLK pin. TXCLK is always active.
TXD	21	24	33	I	Transmit Digital Data Input. Serial data for transmission is input on this pin. In synchronous modes, the data must be valid on the rising edge of the TXCLK clock. In asynchronous modes (2400/ 1200/600 bit/s or 300 baud) no clocking is necessary. DPSK data must be +1%, -2.5% or +2.3%, -2.5 % in extended overspeed mode.

ANALOG INTERFACE AND OSCILLATOR

NAME	28-PIN	32-PIN	44-PIN	TYPE	DESCRIPTION
RXA	27	32	43	I	Received modulated analog signal input from the phone line.
ТХА	16	18	24	0	Transmit analog output to the phone line.
XTL1 XTL2	2 3	2 3	2 3	1	These pins are for the internal crystal oscillator requiring a 11.0592 MHz parallel mode crystal. Two capacitors from these pins to ground are also required for proper crystal operation. Consult crystal manufacturer for proper values. XTL2 can also be driven from an external clock.

REGISTER DESCRIPTIONS


Seven 8-bit internal registers are accessible for control and status monitoring. The registers are accessed in read or write operations by addressing the A0, A1 and A2 address lines in serial mode, or the AD0, AD1 and AD2 lines in parallel mode. The address lines are latched by ALE. Register CR0 controls the method by which data is transferred over the phone line. CR1 controls the interface between the microprocessor and the SSI 73K224L internal state. DR is a detect register which provides an indication of monitored modem status conditions. TR, the tone control register, controls the DTMF generator, answer and guard tones and RXD output gate used in the modem initial connect sequence. CR2 is the primary DSP control interface and CR3 controls transmit attenuation and receive gain adjustments. All registers are read/write except for DR and ID which are read only. Register control and status bits are identified below:

REGISTER BIT SUMMARY

		ADDRESS				DATA BIT NUMBER					
REGISTER		AD - A0	D7	D6	D5	D4	D3	D2	D1	Do	
CONTROL REGISTER 0	CRO	000	MODULATION OPTION	MODULATION TYPE 1	MODULATION TYPE 0	TRANSMIT TRANSMIT MODE MODE 2 1		TRANSMIT MODE 0	TRANSMIT ENABLE	ANSWER/ ORIGINATE	
CONTROL REGISTER 1	CR1	001	TRANSMIT PATTERN 1	TRANSMIT PATTERN 0	ENABLE DETECT INTERRUPT	BYPASS SCRAMBLER CLK CONTROL		RESET	TEST MODE 1	TEST MODE 0	
DETECT REGISTER	DR	010	RECEIVE LEVEL	PATTERN S1 DET	RECEIVE DATA	UNSCR. MARK DETECT	CARRIER DETECT	SPECIAL TONE DETECT	CALL PROGRESS DETECT	SIGNAL QUALITY	
TONE CONTROL REGISTER	TR	011	RXD OUTPUT CONTROL	TRANSMIT GUARD TONE	TRANSMIT ANSWER TONE	TRANSMIT DTMF	DTMF3	DTMF2	DTMF1/ EXTENDED OVERSPEED	DTMF0/GUARD/ ANSWER	
CONTROL REGISTER 2	CR2	100	0	SPECIAL REGISTER ACCESS	CALL INITIALIZE	TRANSMIT S1	16 WAY	RESET DSP	TRAIN INHIBIT	EQUALIZER ENABLE	
CONTROL REGISTER 3	CR3	101	TXDALT	TX/RX CLOCK CONTROL	0	RECEIVE GAIN BOOST	TRANSMIT ATTEN. 3	TRANSMIT ATTEN. 2	TRANSMIT ATTEN. 1	TRANSMIT Atten. 0	
SPECIAL REGISTER	SR	101		TX BAUD CLOCK	RX UNSCR. DATA		TXD SOURCE	SQ SELECT 1	SQ SELECT 0		
id Register	ID	110	1	1	1		USER DEI	INABLE PERSON			

NOTE: When a register containing reserved control bits is written into, the reserved bits must be programmed as 0's.

REGISTER ADDRESS TABLE

CONTROL REGISTER 0

	D7	,	D6	D	5		D4	D3	D2	D1	D0										
CR0 000	MOD OPTI		MODUL. TYPE 1	MOD TYP			ANSM		TRANSMIT TRANSMIT MODE 0 ENABLE		ANSWER/ ORIGINATE										
BIT N	10.		NAME	C	OND	ITIC	л	DESCRIPTIC	Л												
D0			Answer/ Driginate		0)		Selects answ receive in low	ver mode (tra v band).	nsmit in high	band,										
					1			Selects origin high band).	nate mode (tra	ansmit in low b	band,receive in										
D1		-	Transmit		0)		Disables trar	nsmit output a	at TXA.											
			Enable		1			Enables tran	smit output a	t TXA.											
									smit Enable Answer Tone		to 1 to allow										
				D5	D4		D2														
D5, D D3, D	'	Т	ransmit Mode	0	0	0	0		er down mode ept digital inte		าร										
				0	0	0	1	internally der data appeari	chronous mode. In this mode TXCLK is rived 1200 or 2400 Hz signal. Serial inp ing at TXD must be valid on the rising ed Receive data is clocked out of RXD on t of RXCLK.												
											0	0	1	0	internal sync	hronous, but _K pin, and a	TXCLK is co	n is identical to onnected inter- Hz clock must			
				0	0	1	1	synchronous	e synchronous mode. S hronous modes. TXCLK RXCLK pin in this mode.												
												0	1	0	0	•	chronous mo ts, 1 stop bit).		aracter (1 start		
				0	1	0	1	•	chronous mo ts, 1 stop bit).		aracter (1 start										
														0	1	1	0	•	chronous moo s, 1 stop bit).		aracter (1 start
				0	1	1	1		chronous mod ts, Parity and		aracter (1 start o bits).										
				1	1	0	0	Selects FSK	operation.												
D6,D	5	м	odulation	-	D6 1	D5 0		QAM													
			Туре		0	0		DPSK	· · · · · · · · · · · · · · · · · · ·												
					0	1		FSK	,,. <u></u>												

CONTROL REGISTER 0 (Continued)

	D7	,	D6	D5	D4		D3	D2	D1	D0
CR0 000	MOD OPTI		MODUL. TYPE 1	MODUL. TYPE 0	TRANSMIT MODE 2		TRANSMIT MODE 1	TRANSMIT MODE 0	TRANSMIT ENABLE	ANSWER/ ORIGINATE
BIT	NO. NAME		COND	ITION		DESCRIPTI	ON			
D7			odulation Option		0		QAM selects FSK selects	2400 bps. E 103 mode.	PSK selects	1200 bps.
		1		1		DPSK select FSK selects	•			

CONTROL REGISTER 1

		D7		D6	D5	D4	D3	D2	D1	D0			
CR1 001		ANSMIT TTERN 1		NSMIT TERN 0	ENABLE DETECT INT.	BYPASS SCRAMB	CLK CONTROL	RESET	TEST MODE 1	TEST MODE 0			
BIT NO) .	NAM	E	CON	DITION	DESCRIP	TION						
				D1	D0								
D1, D0		Test Mo	ode	0	0	Selects no	ormal operatir	ng mode.					
				0	1	signal bac use the sa	opback mode. k to the receiv ame center fre ne TXA pin, tra	ver, and ca quency as	uses the re the transr	eceiver to nitter. To			
				1	0	looped ba	emote digital ack to transm a mark. Data	it data inte	rnally, and				
				1	1		cal digital loc KD and contin						
D2		Rese	t		0	Selects no	ormal operatio	on.					
					1	Resets modem to power down state. All contru- register bits (CR0, CR1, CR2, CR3 and Tone) are reset to zero except CR3 bit D2. The output of the clock pin will be set to the crystal frequency.							
D3		Clock Co	ontrol		D	Selects 11	.0592 MHz c	rystal echo	output at	CLK pin.			
		1		1	Selects 16 QAM mod	S X the data ra les only.	te, output a	at CLK pin	in DPSK/				

CONTROL REGISTER 1 (Continued)

	D7		D6	D5	D4	D3	D2	D1	D0			
CR1 001	TRANSMIT PATTERN 1	1	NSMIT TERN 0	ENABLE DETECT INT.	BYPASS SCRAMB	CLK CONTROL	RESET	TEST MODE 1	TEST MODE 0			
BIT NO). NAM	1E	CON	DITION	DESCRIP	TION						
D4	Bypa Scram		0		Selects normal operation. DPSK data is passed through scrambler.							
						1	Selects Scrambler Bypass. Bypass DPSK data is routed around scrambler in the transmit path.					
D5	Enable Interr			0		nterrupt at IN disabled in po			are			
				1	with a cha answer to masked w is masked	NT output. A nge in status one and call p when the TX e when TX DT abled if the de	of DR bits I progress d nable bit is MF is activ	D1-D4 and etect inter set. Carr ated. All	D6. The rupts are ier detect interrupts			
			D7	D6								
D7, D6	Trans Patte		0	0		ormal data tra ate of the TXE		as control	led			
			0	1	modem te	n alternating mesting and ha	ndshaking.	Also use				
			1	0	Selects a constant mark transmit pattern.							
			1 1		Selects a	constant space	ts a constant space transmit pattern.					

DETECT REGISTER

	D	7	D6	D5	D4	D3	D2	D1	D0	
DR 010	LE\	EIVE /EL ATOR	S1 PATTERN DETECT	RECEIVE DATA	UNSCR. MARK DETECT	CARR. DETECT	ANSWER TONE DETECT	CALL PROG. DETECT	SIGNAL QUALITY INDICATOR	
BIT	NO.	N	AME	CONDITION	DESC	RIPTION				
D0		Signa	I Quality	0	Indica	ites normal r	received signal.			
				1	Indica error		eived signal	quality (ab	ove average	
D1			Progress	0	No ca	III progress t	one detected	i.		
		D	etect	1	progre	ess detection		activated	es. The call by energy in bandwidth.	

DETECT REGISTER (Continued)
-------------------	------------

	D)7	D6	D5	D4	D3	D2	D1	D0	
DR 010	LE\	EIVE /EL ATOR	S1 PATTERN DETECT		UNSCR. MARK DETECT	CARR. DETECT	ANSWER TONE DETECT	CALL PROG.	SIGNAL QUALITY INDICATOR	
BIT	NO.	N	AME	CONDITION	DESC	RIPTION				
D2			ver Tone	0 No answer tone detected.						
		Re	ceived	1	1 Indicates detection of 2225 Hz answe mode (TR bit D0=0) or 2100 Hz if in CC bit D0=1). The device must be in orig detection of answer tone.					
D3				0	No ca	rrier detecte	d in the rece	ive chann	el.	
				1	Indica chann		nas been de	tected in	the received	
D4			rambled	0	No un	scrambled n	nark.			
		h	<i>l</i> lark	1			on of unscra ould be time		harks in the by software.	
D5			eceive Data		data is	the same a		on the R	stream. This XD pin, but it	
D6			Pattern	0	No S1	pattern beir	ng received.			
		D	etect	1	softwa (0011)	S1 pattern detected. Should software. S1 pattern is defir (001100) unscrambled 1200 t tern must be aligned with bauc		ed as a it/s DPSK	double di-bit signal. Pat-	
D7		Recei	ve Level	0	Received signal level below threshold, (≈ -21 dBm0);can use receive gain boost (+12 dB).					
				1	Receiv	ed signal al	oove thresho	ld.	1	

TONE REGISTER

	D)7	D6			D5		D4	D3	D2	D1	D0
TR 011			TRANSM GUARD TONE			NSN SWE ONE	R	TRANSMIT DTMF	DTMF 3	DTMF 2	DTMF 1/ EXTENDED OVER- SPEED	DTMF 0/ ANSWER/ GUARD
BIT	10.	N	AME	С	ONE	οιτια)N	DESC	RIPTION			
				D6	6 D5	D4	D0	D0 inte	racts with	bits D6, D	5, and D4 as	shown.
D0			TMF 0/	Х	Х	1	Х	Transn	nit DTMF te	ones.		
			nswer/ ard Tone	х	1	0	0		Bell mode a 8 bit D5.	answerton	e. Interacts w	ith DR bit D2
(Contir	nued)			Х	1	0	1		CCITT mod d TR bit D		tone. Interact	s with DR bit

TONE REGISTER (Continued)

	D	7	D6			D5		Γ	D4	D3		D2		C)1	D0
TR 011		(D PUT ITR.	TRANSM GUARD TONE		٨N		smit /er Ie	Т	RANSMIT DTMF	DTMF 3	т	MF	2	EXTE OV	/IF 1/ NDED ER- EED	DTMF 0/ ANSWER/ GUARD
	10.	N	AME		CON	DIT	ION		DESC	RIPTION						
D0		D	TMF 0/	D	6 D	5 D	4 D()	D0 interacts with bits D6, D5, and D4 as shown.						shown.	
			nswer/ ard Tone	1	I 0	C	0		Select	1800 Hz g	uarc	d ton	e.			
		Gua	ard rone	1	0	C) 1		Select	550 Hz gu	ard	tone				
					D4	1 D	1		D1 inte	racts with	D4 :	as s	how	/n.		
D1			TMF 1/ tended		0	C)		Asynch	nronous Q	AM d	or D	PSł	< +1.C	% -2.5	i%.
	Overspeed 0 1 D3 D2 D1 D						Asynch	ronous Q	AM d	or D	PSł	(+2.3	% -2.5	6%.		
				D	3 D2	2 D	1 D()								
D3, D D1, D			MF 3, , 1, 0	C 1		-	-	-	transm	ms 1 of 16 itted when set. Tone	ТΧΙ	ЭТΜ	Fai	ndTX	enable	bit (CR0, bit
										OARD ALENT		MF D2		DE D0		ONES / HIGH
1									-	1	0	0	0	1	697	1209
									2	2	0	0	1	0	697	1336
										3	0	0	1	1	697	1477
										1	0	1	0	0	770	1209
										5	0	1	0	1	770	1336
										6	0	1	1	0	770	1477
										7	0	1	1	1	852	1209
										3	1	0	0	0	852	1336
	:									•	1	0	0	1	852	1477
)	1	0	1	0	941	1336
										•	1	0	1	1	941	1209
										#	1	1	0	0	941	1477
										۹	1	1	0	1	697	1633
										3	1	1	1	0	770	1633
									(1	1	1	1	852	1633
									[)	0	0	0	0	941	1633
D4	TX DTMF 0				Disable	DTMF.										
	(Transmit 1 DTMF)					mitted		sly w	vhen	thi	s bit i	s high	es are trans- . TX DTMF			

TONE REGISTER (Continued)

	D	7	D6		D5	;		D4	D3	D2	D1	D0		
TR 011	OUT				TRANS ANSW TON	/ER		RANSMIT DTMF	DTMF 3	DTMF 2	DTMF 1/ OVER- SPEED	DTMF 0/ ANSWER/ GUARD		
BIT	T NO. NAME			CONDITION				DESCR	RIPTION					
						D0		interact		bit D2 in orig		hown. Also . See Detect		
D5		Tr	ansmit		0 0 X			Disables answer tone generator.						
		Ansv	wer Tone	1 0 0				•		5 Hz tone is mit Enable	s transmitted bit is set.			
					1 0	1		Likewise, a CCITT 2100 Hz answer tone is transmitted.						
D6			ansmit		0			Disable	es guard to	ne generat	or.			
		Guard Tone 1						s guard to d tones.)	ne generato	or. (See D0	for selection			
D7	RXD Output 0					Enable	s RXD pin.	Receive da	ata will be ou	tput on RXD.				
	Control 1							D pin revei k pull-up res	rts to a high sistor.					

CONTROL REGISTER 2

	D7	D6	D5	D4		D3	D2	D1	D0			
CR2 100	0	SPEC REG ACCESS	CALL INIT			16 WAY	RESET DSP	TRAIN INHIBIT	EQUALIZER ENABLE			
BIT NC).	NAME	CON	CONDITION		DESCRIPTION						
D0		Equalizer		0	-	The adaptive	equalizer is	in its initializ	ed state.			
		Enable		1	i		es to control		s signal is used qualizer should			
D1		Train		0	The adaptive equalizer is active.							
		Inhibit		1	The adaptive equalizer coefficients are frozen.							
D2		RESET DSP		0	-	The DSP is i	nactive and a	II variables a	are initialized.			
				1		The DSP is r	running based	d on the mo	de set by other			
D3		16 Way		0		The receiver and transmitter are using the same decision plane (based on the Modulator Control Mode).						
			1		The receiver, independent of the transmitter, is force into a 16 point decision plane. Used for QAM hand shaking.							

)790 - rev.

CONTROL REGISTER 2 (Continued)

	D7	D6	D5	D4		D3	D2	D1	D0			
CR2 100	0	SPEC REG ACCESS	CALL INIT	TRANSMIT S1		16WAY	RESET DSP	TRAIN INHIBIT	EQUALIZER ENABLE			
BIT NO		NAME	CON	DITION	DESCRIPTION							
D4		Transmit		0	:	space mode		01 scram	Iternating mark/ abled or not de-			
				1		placed in alte D6, an unscr	rnating mark/	space mode titive double	e transmitter is by CR1 bits D7, dibit pattern of			
D5		Call Init		0			setup to do sed on the va		on and pattern bits.			
				1		The DSP corogress ton		th answer	tone and call			
D6		Special		0		Normal CR3	access.					
		Register Access		1		•	REGISTER	•	llows access to SPECIAL REG-			
D7		Not used at this time		0	(Only write ze	ero to this bit.					

CONTROL REGISTER 3

	D	D7 D6		D5			D4		D3	D2	D1	D0	
CR3 101	C)	0	0		E	ECEIV NABL	Ē	TRANSMIT ATTEN. 3	TRANSMIT ATTEN. 2	TRANSMIT ATTEN. 1	TRANSMIT ATTEN. 0	
BIT NO).	١	IAME	со	ND	ITIC	DN		DESCRIPTI	ON			
				D3	D2	D1							
D3, D2,	.		ransmit	0 0 0 0 -			Sets the attenuation level of the transmitted signal						
D1,D0		Attenuator			1 1 1 1				transmit leve	l of -10 dBm) at the line w	100) is for a ith the recom- ange is 16 dB.	
D4		R	eceive	0				12 dB receiv	e front end be	post is not use	ed.		
		Ga	in Boost		1		Boost is in the path. This boost does not cl reference levels. It is used to extend dynamic rar compensating for internally generated noise receiving weak signals. The receive level detect and knowledge of the hybrid and transmit atter setting will determine when boost should be en						
D7, D6,	, D5		t used at his time		C)			Only write ze	eros to these	bits.		

								
D	7 D6	D5 D4 D3 D2 D1 D0						
SR 101	TXBAUD CLOCK	RXUN- DSCR TXD SIGNAL SIGNAL DATA SOURCE QUALITY QUALITY DATA LEVEL LEVEL SELECT1 SELECT0						
BIT NO.	NAME	DESCRIPTION						
D7, D4, D0		NOT USED AT THIS TIME. Only write ZEROs to these bits.						
D6	TXBAUD CLK	TXBAUD clock is the transmit baud-synchronous clock that can be used to synchronize the input of arbitrary quad/di-bit patterns. The rising edge of TXBAUD signals the latching of a baud-worth of data internally. Synchronous data to be entered via the TXDALT bit, CR3 bit D7, should have data transitions that start 1/2 bit period delayed from the TXBAUD clock edges.						
D5	RXUNDSCR DATA	This bit outputs the data received before going to the descrambler. This is useful for sending special unscrambled patterns that can be used for signaling.						
D3	TXD SOURCE	This bit selects the transmit data source; either the TXD pin if ZERO or the TXDALT if this bit is a ONE. The TRANSMIT PATTERN bits D7 and D6 in CR1 override either of these sources.						
D2, D1	D1 SIGNAL QUALITY LEVEL SELECT The signal quality indicator is a logical ONE when the signal acceptable for low error rate reception. It is determined by the Mean Squared Error (MSE) calculated in the decisioning compared to a given threshold. This threshold can be set to four rate. The SQI bit will be low for good or average connections rate crosses the threshold setting, the SQI bit will toggle at a Toggling will continue until the error rate indicates that the data convergence and a retrain is required. At that point the SQI bit constantly. The SQI bit and threshold selection are valid DPSK only.							
	D2 D1	THRESHOLD VALUE UNITS						
	0 0	10 ⁻⁵ BER (default)						
	0 1	10 ⁻⁶ BER						
	1 0	10 ⁻⁴ BER						
	1 1	10 ⁻³ BER						

NOTE: This register is "mapped" and is accessed by setting CR2 bit D6 to a ONE and addressing CR3. This register provides functions to the 73K224L user that are not necessary in normal communications. Bits D7-D4 are read only, while D3-D0 are read/write. To return to normal CR3 access, CR2 bit D6 must be returned to a ZERO.

ID REGISTER

	D7	,	D6 ID 1		D5 ID 0		D4	D3	D2	D1	D0	
ID	ID 2						USER DEFINABLE PERSONALITY					
BIT NO. NAME			CON	CONDITION DESCRIPTION								
	D7, D6, D5 110		Identification		D7 D6 D5			Indicates Device:				
D7,					0 X		SSI 73K212(L) or 73K322L					
· ·								SSI 73K221(L) or 73K302L				
					0 X		SSI 73K222(L)					
				1	1 0		SSI	73K224L				
				1	1 1		SSI	73K324L				

ELECTRICAL SPECIFICATIONS

ABSOLUTE MAXIMUM RATINGS

PARAMETER	RATING	UNIT
VDD Supply Voltage	14	v
Storage Temperature	-65 to 150	°C
Soldering Temperature (10 sec.)	260	°C
Applied Voltage	-0.3 to VDD+0.3	v
Note: All inputs and outputs are protected f devices and all outputs are short-circuit prot		ry standard protection

RECOMMENDED OPERATING CONDITIONS

PARAMETER	CONDITIONS	MIN	NOM	МАХ	UNITS		
VDD Supply voltage		4.75	5	5.5	V		
External Components (Refer to Application section for placement.)							
VREF Bypass capacitor	(VREF to GND)	0.1			μF		
Bias setting resistor	(Placed between VDD and ISET pins)	1.8	2	2.2	MΩ		
ISET Bypass capacitor	(ISET pin to GND)	0.1			μF		
VDD Bypass capacitor 1	(VDD to GND)	0.1			μF		
VDD Bypass capacitor 2	(VDD to GND)	22			μF		
XTL1 Load Capacitance	Depends on crystal requirements			40	pF		
XTL2 Load Capacitance	Depends on crystal requirements			20	pF		
Clock Variation	(11.0592 MHz) Crystal or external clock	-0.01		+0.01	%		
TA, Operating Free-Air Temperature		-40		55	°C		

DC ELECTRICAL CHARACTERISTICS

(TA = -40°C to 55°C, VDD =recommended range unless otherwise noted.)

PARAMETER	CONDITIONS	MIN	NOM	MAX	UNITS
IDD, Supply Current	CLK = 11.0592 MHz				
	ISET Resistor = 2 M Ω				
IDD1, Active			25	27	mA
IDD2, Idle			3	5	mA
Digital Inputs					
VIL, Input Low Voltage				0.8	V
VIH, Input High Voltage					
All Inputs except Reset XTL1, XTL2		2.0		VDD	V
Reset, XTL1, XTL2		3.0		VDD	v
IIH, Input High Current	VI = VIH MAX			100	μA
IIL, Input Low Current	VI = VIL MIN	-200			μΑ
Reset Pull-down Current	Reset = VDD	5		50	μΑ
Digital Outputs					
VOH, Output High Voltage	IO = IOH Min IOUT = -0.4 mA	2.4		VDD	V
VOL, Output Low Voltage	IO = IOUT = 1.6 mA			0.4	v
VOL, CLK Output	IOUT = 3.6 mA			0.6	v
RXD Tri-State Pull-up Curr.	RXD = GND	-5		-50	μA
Capacitance			Lan <u>an</u> a ang ang ang ang ang ang ang ang ang an	•	
Maximum Capacitive Load					
CLK	Maximum permitted load			15	pF
Input Capacitance	All Digital Inputs			10	pF

DYNAMIC CHARACTERISTICS AND TIMING

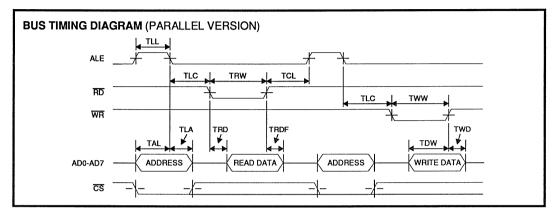
(TA = -40°C to +55°C, VDD = recommended range unless otherwise noted.)

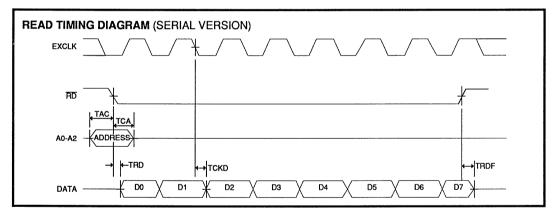
PARAMETERS	CONDITIONS	MIN	NOM	МАХ	UNITS
QAM/DPSK Modulator	•				
Carrier Suppression	Measured at TXA	35			dB
Output Amplitude	TX scrambled marks ATT=0100 (default)	-11.5	-10.0	-9	dBm0
FSK Modulator					
Output Freq. Error	CLK = 11.0592 MHz	31		+.05	%
Transmit Level	ATT = 0100 (Default) Transmit Dotting Pattern	-11.5	-10.0	-9	dBm0
Output Distortion	All products through BPF			-45	dB
Output Bias Distortion	Transmit Dotting Pattern in ALB @ RXD	-5		+5	%
2100 Hz Answer Tone Ger	ierator	-			
Output Amplitude	ATT = 0100 (Default Level) Not in V.21	-9	dBm0		
Output Distortion	All products though BPF			-40	dB
NOTE: Parameters expresse	d in dBm0 refer to the following definiti	ion:			
0 dB loss in th	ne Transmit path to the line.				
2 dB gain in ti	ne Receive path from the line.				
Refer to the Basic Box	Modem diagram in the Applications	section fo	or the DAA	design.	
DTMF Generator	Not in V.21				
Freq. Accuracy		25		+.25	%
Output Amplitude	Low Band, ATT = 0100, DPSK Mode	-10		-8	dBm0
Output Amplitude	High Band, ATT = 0100, DPSK Mode	-8		-6	dBm0
Twist	High-Band to Low-Band, DPSK Mode	1.0	2.0	3.0	dB
Receiver Dynamic Range	Refer to Performance Curves	-48		-3.0	dBm0
Call Progress Detector	In Call Init mode				
Detect Level	460 Hz test signal	-34		0	dBm0
Reject Level				-50	dBm0
Delay Time	-70 dBm0 to -30 dBm0 STEP			25	ms
Hold Time	-30 dBm0 to -70 dBm0 STEP			25	ms

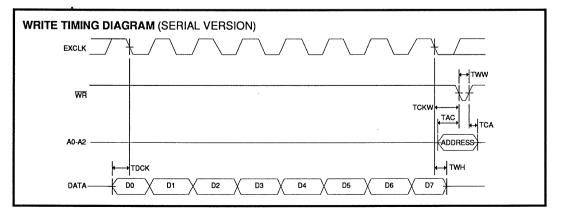
DYNAMIC CHAR	ACTERISTI	CS AND TIMING (Continued)				
PARAMETERS		CONDITIONS	MIN	NOM	МАХ	UNITS
DTMF Generator	•	· · · · · · · · · · · · · · · · · · ·				
Freq. Accuracy			25		+.25	%
Output Amplitud	de	Low Band ATT = 0100	-10		-8	dBm0
Output Amplitud	de	High Band ATT = 0100	-8		-6	dBm0
Twist		High-Band to Low-Band	1.0	2.0	3.0	dB
Receiver Dynam	ic Range	Refer to Performance Curves	-48		-3	dBm0
Carrier Detect						
Threshold		FSK	-51		-38	dBm0
		QAM/DPSK receive data	-49		-42	dBm0
Hysteresis		All Modes	2			
Delay Time DPSK		-70 dBm0 to -6 dBm0	15	20	25	ms
		-70 dBm0 to -40 dBm0	10	20	25	ms
		-70 dBm0 to -6 dBm0	25	30	35	ms
		-70 dBm0 to -40 dBm0	25	33	41	ms
Hold Time	DPSK	-6 dBm0 to -70 dBm0	15	22	28	ms
		-40 dBm0 to -70 dBm0	10	15	20	ms
	QAM	-6 dBm0 to -70 dBm0	54	60	66	ms
	-40 dBm0 to -70 dBm0		21	26	31	ms
Answer Tone De	tectors					
Detect Level			-48		-43	dBm0
Detect Time		Call Init Mode for signals from	7		37	ms
Hold Time		-6 to -40 dBm0, 2100 or 2225 Hz	10		48	ms
Detect Time		Demod Mode for signals from	4		26	ms
Hold Time		-6 to -40 dBm0, 2100 or 2225 Hz	11		43	ms

1

DYNAMIC CHARACTERISTICS AND TIMING (Continued)


PARAMETERS	CONDITIONS	MIN	NOM	МАХ	UNITS
Pattern Detectors	DPSK Mode				
S1 Pattern					
Delay Time	For signals from -6 to -40 dBm0,	5		65	ms
Hold Time	-6 to -40 dBm0, Demod Mode	5		45	ms
Unscrambled Mark					
Delay Time	For signals from -6 to -40	5		38	ms
Hold Time	Demod or call Init Mode	5		47	ms
Receive Level Indicator					
Detect On				19	dBm0
Valid after Carrier Detect		10			ms
Output Smoothing Filter					
Output Impedance	TXA pin		200	300	Ω
Output load	TXA pin; FSK Single	10			ΚΩ
	Tone out for THD = -50 dB in .3 to 3.4 kHz range			50	pF
Maximum Transmitted	4 kHz, Guard Tones off			-35	dBm0
Energy	10 kHz, Guard Tones off			55	dBm0
	12 kHz, Guard Tones off			65	dBm0
Anti Alias Low Pass Filter					
Out of Band Signal Energy (Defines Hybrid Trans-	Level at RXA pin with receive Boost Enabled				
Hybrid loss requirements)	Scrambled data at 2400 bit/s in opposite band			-14	dBm
	Sinusoids out of band			-9	dBm
Transmit Attenuator					
Range of gain	Default ATT=0100 (0 dBm0)	+4		-11	dB
Step Accuracy		-0.15		+0.15	dB
Output Impedance			200	300	Ω
Clock Noise					
	TXA pin; 153.6 kHz			1.5	mVrms
Carrier Offset					·····
Capture Range	Originate or Answer		±7	±10	Hz


DYNAMIC CHARACTERISTICS	AND TIMING (Continued)


PARAMETERS	CONDITIONS	MIN	NOM	MAX	UNITS	
Recovered Clock						
Capture Range	% of frequency originate or answer	024		+.024	%	
Guard Tone Generator						
Tone Accuracy	550 Hz			+1.18	%	
	1800 Hz	-0.7				
Tone Level	550 Hz	-5.0	-3.5	-2.0	dB	
(Below QAM/DPSK Output)	1800 Hz	-8.0	-6.5	-5.0	dB	
Harmonic Distortion	550 Hz			-60	dB	
(700 to 2900 Hz)	1800 Hz			-60	dB	
Timing (Refer to Timing D	iagrams)					
TAL	CS/Addr. setup before ALE Low	30			ns	
TLA	CS/Addr. hold after ALE Low	20			ns	
TLC	ALE Low to RD/WR Low	ALE Low to RD/WR Low 40				
TCL	RD/WR Control to ALE High	10			ns	
TRD	Data out from RD Low	0		140	ns	
TLL	ALE width	60			ns	
TRDF	Data float after RD High	0		200	ns	
TRW	RD width	200		25000	ns	
TWW	WR width	140		25000*	ns	
TDW	Data setup before WR High	150			ns	
TWD	Data hold after WR High	20			ns	
TCKD	Data out after EXCLK Low			200	ns	
TCKW	WR after EXCLK Low	150			ns	
TDCK	Data setup before EXCLK Low	150			ns	
TAC	Address setup before control**	50			ns	
TCA	Address hold after control**	50			ns	
TWH	Data Hold after EXCLK	20			ns	
* Maximum time applies	to parallel version only.					

1. 1

TIMING DIAGRAMS

APPLICATIONS INFORMATION

GENERAL CONSIDERATIONS

Figures 1 and 2 show basic circuit diagrams for K-Series modem integrated circuits. K-Series products are designed to be used in conjunction with a control processor, a UART or RS-232 serial data interface, and a DAA phone line interface to function as a typical intelligent modem. The K-Series ICs interface directly with Intel 8048 and 80C51 microprocessors for control and status monitoring purposes. Two typical DAA arrangements are shown: one for a split $\pm 5 \text{ or} \pm 12$ volt design and one for a single 5 volt design. These diagrams are for reference only and do not represent production-ready modem designs.

K-Series devices are available with two control interface versions: one for a parallel multiplexed address/ data interface, and one for a serial interface. The parallel version is intended for use with 8039/48 or 8031/51 microcontrollers from Intel or many other manufacturers. The serial interface 22-pin version can be used with other microcontrollers or in applications where only a limited number of port lines are available or the application does not lend itself to a multiplexed address/data interface. The parallel versions may also be used in the serial mode, as explained in the data sheet pin description.

In most applications the controller will monitor the serial data for commands from the DTE and the received data for break signals from the far end modem. In this way, commands to the modem are sent over the same line as the transmitted data. In other applications the RS-232 interface handshake lines are used for modem control.

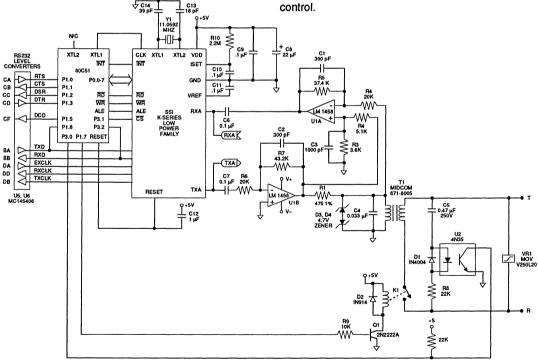


FIGURE 1: Basic Box Modem with Dual-Supply Hybrid

DIRECT ACCESS ARRANGEMENT (DAA)

The telephone line interfaces show two examples of how the "hybrid" may be implemented. The split supply design (Figure 1) is a typical two op-amp hybrid. The receive op-amp serves two purposes. It supplies gain to amplify the receive signal to the proper level for the modem's detectors and demodulator, and it removes the transmitted signal from the receive signal present at the transformer. This is done by supplying a portion of the transmitted signal to the non-inverting input of the receive op-amp at the same amplitude as the signal appearing at the transformer, making the transmit signal common mode.

The single-supply hybrid is more complex than the dual-supply version described above, but its use eliminates the need for a second power supply. This circuit (Figure 2) uses a bridged drive to allow undistorted signals to be sent with a single 5 volt supply. Because DTMF tones utilize a higher amplitude than data, these

signals will clip if a single-ended drive approach is used. The bridged driver uses an extra op-amp (U1A) to invert the signal coming from the gain setting op-amp (U1B) before sending it to the other leg of the transformer. Each op-amp then supplies half the drive signal to the transformer. The receive amplifier (U1C) picks off its signal at the junction of the impedance matching resistor and the transformer. Because the bottom leg of the transformer is being driven in one direction by U1A and the resistor is driven in the opposite direction at the same time by U1B, the junction of the transformer and resistor remains relatively constant and the receive signal is unaffected.

DESIGN CONSIDERATIONS

Silicon Systems' 1-chip modem products include all basic modem functions. This makes these devices adaptable for use in a variety of applications, and as easy to control as conventional digital bus peripherals.

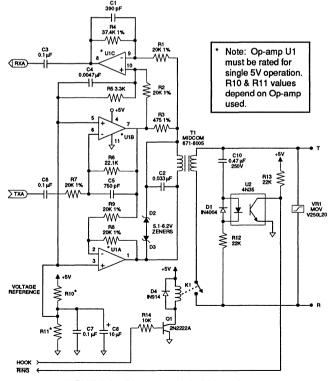


FIGURE 2: Single 5V Hybrid Version

1

Unlike digital logic circuitry, modem designs must properly contend with precise frequency tolerances and very low level analog signals, to ensure acceptable performance. Using good analog circuit design practices will generally result in a sound design. Following are additional recommendations which should be taken into consideration when starting new designs.

CRYSTAL OSCILLATOR

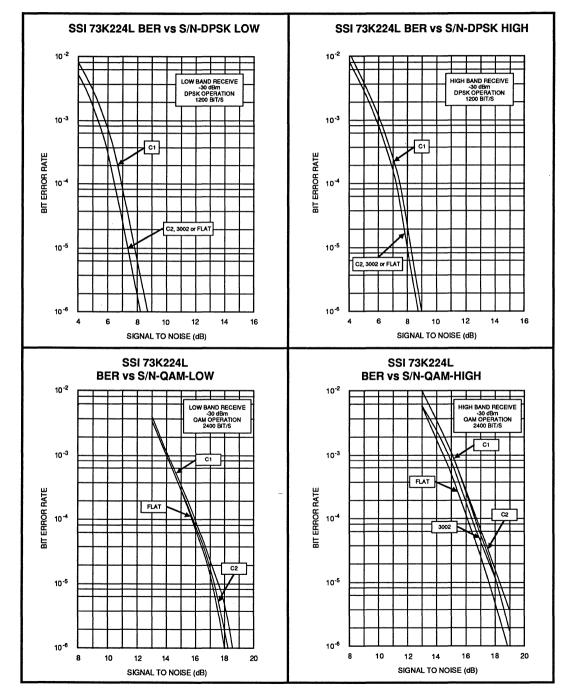
The K-Series crystal oscillator requires a parallel mode (antiresonant) crystal which operates at 11.0592 MHz. It is important that this frequency be maintained to within $\pm 0.01\%$ accuracy.

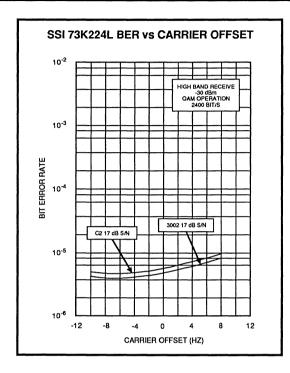
In order for a parallel mode crystal to operate correctly and to specification, it must have a load capacitor connected to the junction of each of the crystal and internal inverter connections, terminated to ground. The values of these capacitors depend primarily on the crystal's characteristics, and to a lesser degree on the internal inverter circuit. The values used affect the accuracy and start up characteristics of the oscillator.

LAYOUT CONSIDERATIONS

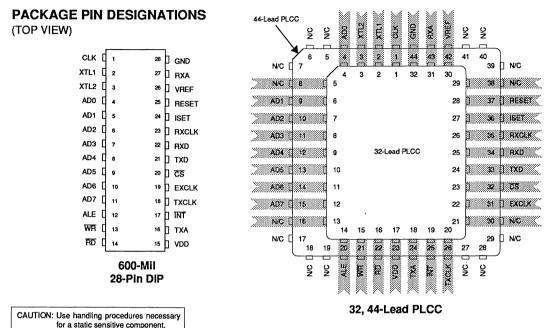
Good analog/digital design rules must be used to control system noise in order to obtain highest performance in modern designs. The more digital circuitry present on the PC board, the more this attention to noise control is needed. The modern should be treated as a high impedance analog device. A 22 µF electrolytic capacitor in parallel with a 0.1 µF ceramic capacitor between VDD and GND is recommended. Liberal use of ground planes and larger traces on power and ground are also highly favored. High speed digital circuits tend to generate a significant amount of EMI (Electro-Magnetic Interference) which must be minimized in order to meet regulatory agency limitations. To accomplish this, high speed digital devices should be locally bypassed, and the telephone line interface and K-Series device should be located close to each other near the area of the board where the phone line connection is accessed. To avoid problems, power supply and ground traces should be routed separately to the analog and digital functions on the board, and digital signals should not be routed near low level or high impedance analog traces. The analog and digital grounds should only connect at one point near the K-Series device ground pin to avoid ground loops. The K-Series modem IC's should have both high frequency and low frequency bypassing as close to the package as possible.

MODEM PERFORMANCE CHARACTERISTICS


The curves presented here define modem IC performance under a variety of line conditions while inducing disturbances that are typical of those encountered during data transmission on public service telephone lines. Test data was taken using an AEA Electronics' "Autotest I" modem test set and line simulator, operating under computer control. All tests were run fullduplex, using a Concord Data Systems 224 as the reference modem. A 511 pseudo-random-bit pattern was used for each data point. Noise was C-message weighted and all signal-to-noise (S/N) ratios reflect total power measurements similar to the CCITT V.56 measurement specification. The individual tests are defined as follows.


BER vs.S/N

This test measures the ability of the modem to operate over noisy lines with a minimum of data-transfer errors. Since some noise is generated in the best of dial-up lines, the modem must operate with the lowest S/N ratio possible. Better modem performance is indicated by test curves that are closest to the BER axis. A narrow spread between curves representing the four line parameters indicates minimal variation in performance while operating over a range of aberrant operating conditions. Typically, a DPSK modem will exhibit better BER-performance test curves receiving in the low band than in the high band.


BER vs. Receive Level

This test measures the dynamic range of the modem. Because signal levels vary widely over dial-up lines, the widest possible dynamic range is desirable. The minimum Bell specification calls for 36 dB of dynamic range. S/N ratios are held constant at the indicated values while the receive level is lowered from a very high to very low signal levels. The width of the "bowl" of these curves, taken at the BER point, is the measure of dynamic range.

1

for a static sensitive component.

ORDERING INFORMATION

PART DESCRIPTION	ORDER NO.	PKG. MARK
SSI 73K224L with Parallel Bus Interface 28-Pin Plastic Dual-In-Line	SSI 73K224L – CP	73K224L – CP
32-Pin Plastic Leaded Chip Carrier	SSI 73K224L – 32CH	73K224L – 32CH
44-Pin Plastic Leaded Chip Carrier	SSI 73K224L – CH	73K224L – CH

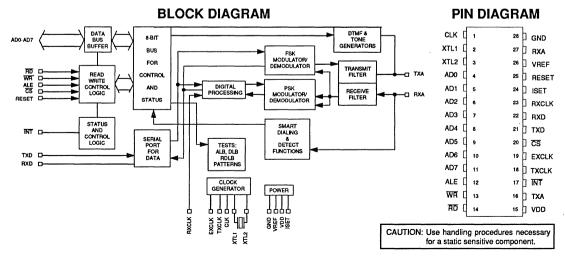
No responsibility is assumed by Silicon Systems for use of this product nor for any infringements of patents and trademarks or other rights of third parties resulting from its use. No license is granted under any patents, patent rights or trademarks of Silicon Systems. Silicon Systems reserves the right to make changes in specifications at any time without notice. Accordingly, the reader is cautioned to verify that the data sheet is current before placing orders.

Silicon Systems, Inc. 14351 Myford Road, Tustin, CA 92680, (714) 731-7110, FAX (714) 731-5457

silicon systems*

Preliminary Data

July, 1990


DESCRIPTION

The SSI 73K302L is a highly integrated single-chip modem IC which provides the functions needed to construct a Bell 202, 212A and 103 compatible modem. The SSI 73K302L is an enhancement of the SSI 73K212L single-chip modem with Bell 202 mode features added. The 73K302L is capable of 1200 or 0-300 bit/s full-duplex operation over dial-up lines. 4-wire full-duplex capability and a low speed back channel are also provided in Bell 202 mode. The SSI 73K302L recognizes and generates a 900 Hz soft carrier turn-off tone, and allows 103 for 300 bit/s FSK operation. The SSI73K302L integrates analog, digital, and switched-capacitor array functions on a single substrate, offering excellent performance and a high level of functional integration in a single 28 or 22pin DIP configuration. The SSI 73K302L operates from a single +5 volt supply with very low power consumption.

The SSI 73K302L includes the DPSK and FSK modulator/demodulator functions, call progress and handshake tone monitors, test modes, and a tone generator capable of producing DTMF, answer, and 900 Hz soft carrier turn-off tone. This device supports Bell 202, 212A and 103 modes of operation, allowing both (Continued)

FEATURES

- One-chip Bell 212A, 103 and 202S/T standard compatible modem data pump
- Full-duplex operation at 0-300 bit/s (FSK), 1200 bit/ s (DPSK) or 0-1200 bit/s (FSK) forward channel with or without 0-150 bit/s back channel
- Full-duplex 4-wire operation in Bell 202 mode
- Pin and software compatible with other SSI K-Series 1-chip modems
- Interfaces directly with standard microprocessors (8048, 80C51 typical)
- Serial (22-pin DIP) or parallel microprocessor bus (28-pin DIP) for control
- Serial port for data transfer
- Both synchronous and asynchronous modes of operation
- Call progress, carrier, precise answer tone (2225 Hz), soft carrier turn-off (SCT), and FSK mark detectors
- DTMF, answer, and SCT tone generators
- Test modes available: ALB, DL, RDL, Mark, Space, Alternating bit patterns
- Space efficient 22 or 28-pin DIP packages
- CMOS technology for low power consumption using 35 mW @ 5V from a single power supply

DESCRIPTION (Continued)

synchronous and asynchronous communications. The SSI 73K302L is designed to appear to the systems designer as a microprocessor peripheral, and will easily interface with popular one-chip microprocessors (80C51 typical) for control of modem functions through its 8-bit multiplexed address/data bus or via an optional serial command bus. An ALE control line simplifies address demultiplexing. Data communications occurs through a separate serial port only.

The SSI 73K302L is ideal for use in either free standing or integral system modem products where multi-standard data communications is desired. Its high functionality, low power consumption and efficient packaging simplify design requirements and increase system reliability. A complete modem requires only the addition of the phone line interface, a modem controller, and RS232 level converter for a typical system.

Tri-mode capability in one-chip allows full-duplex Bell 212 and 103 operation or assymetrical Bell 202S operation over the 2-wire switched telephone network. 202T mode full-duplex operation at 1200 bit/s is also possible when operating on 4-wire leased lines.

A soft carrier turn-off feature facilitates fast line turn around when using the 202S mode for half-duplex applications.

The SSI 73K302L is part of Silicon Systems K-Series family of pin and function compatible single-chip modem products. These devices allow systems to be configured for higher speeds and Bell or CCITT operation with only a single component change.

OPERATION

ASYNCHRONOUS MODE

Data transmission for the DPSK mode requires that data ultimately be transmitted in a synchronous fashion, The SSI 73K302L includes ASYNC/SYNC and SYNC/ASYNC converters which delete or insert stop bits in order to transmit data at a regular rate. In asynchronous mode the serial data comes from the TXD pin into the ASYNC/SYNC converter. The ASYNC/SYNC converter accepts the data provided on the TXD pin which normally must be 1200 bit/s +1.0%, 2.5%. The rate converter will then insert or delete stop bits in order to output a signal which is 1200 bit/s \pm .01%

 $(\pm .01\%$ is the required synchronous data rate accuracy).

The SYNC/ASYNC converter also has an extended overspeed mode which allows selection of an output overspeed range of either +1% or +2.3%. In the extended overspeed mode, stop bits are output at 7/8 the normal width.

The serial data stream from the transmit buffer or the rate converter is passed through the data scrambler and onto the analog modulator. The data scrambler can be bypassed under processor control when unscrambled data must be transmitted. If serial input data contains a break signal through one character (including start and stop bits) the break will be extended to at least $2 \cdot N + 3$ bits long (where N is the number of transmitted bits/character).

Serial data from the demodulator is passed first through the data descrambler and then through the SYNC/ASYNC converter. The ASYNC/ASYNC converter will reinsert any deleted stop bits and output data at an intra-character rate (bit-to-bit timing) of no greater than 1219 bit/s. An incoming break signal (low through two characters) will be passed through without incorrectly inserting a stop bit.

SYNCHRONOUS MODE

The Bell 212A standard defines synchronous operation at 1200 bit/s. Operation is similar to that of the asynchronous mode except that data must be synchronized to a provided clock and no variation in data transfer rate is allowable. Serial input data appearing at TXD must be valid on the rising edge of TXCLK.

TXCLK is an internally derived signal in internal mode and is connected internally to the RXCLK pin in slave mode. Receive data at the RXD pin is clocked out on the falling edge of RXCLK. The ASYNCH/SYNCH converter is bypassed when synchronous mode is selected and data is transmitted out at the same rate as it is input.

DPSK MODULATOR/DEMODULATOR

In DPSK mode the SSI 73K302L modulates a serial bit stream into di-bit pairs that are represented by four possible phase shifts as prescribed by the Bell 212A standards. The base-band signal is then filtered to reduce intersymbol interference on the bandlimited 2-wire telephone line. Transmission occurs using

1

either a 1200 Hz (originate mode) or 2400 Hz (answer mode) carrier. Demodulation is the reverse of the modulation process, with the incoming analog signal eventually decoded into di-bits and converted back to a serial bit stream. The demodulator also recovers the clock which was encoded into the analog signal during modulation. Demodulation occurs using either a 1200 Hz carrier (answer mode or ALB originate mode) or a 2400 Hz carrier (originate mode or ALB answer mode). The SSI 73K302L uses a phase locked loop coherent demodulation technique for optimum receiver performance.

FSK MODULATOR/DEMODULATOR

The FSK modulator produces a frequency modulated analog output signal using two discrete frequencies to represent the binary data. Bell 103 mode uses 1270 and 1070 Hz (originate, mark and space) or 2225 and 2025 Hz (answer, mark and space). Bell 202 mode uses 1200 and 2200 Hz for the main channel and 387 and 487 Hz for the back channel. The modulation rate of the back channel is up to 150 baud. Demodulation involves detecting the received frequencies and decoding them into the appropriate binary value. The rate converter and scrambler/descrambler are automatically bypassed in the 103 or 202 modes.

PASSBAND FILTERS AND EQUALIZERS

High and low band filters are included to shape the amplitude and phase response of the transmit and receive signals and provide compromise delay equalization and rejection of out-of-band signals in the receive channel. Amplitude and phase equalization are necessary to compensate for distortion of the transmission line and to reduce intersymbol interference in the bandlimited receive signal. The transmit signal filtering approximates a 75% square root of raised Cosine frequency response characteristic.

AGC

The automatic gain control maintains a signal level at the input to the demodulators which is constant to within 1 dB. It corrects quickly for increases in signal which would cause clipping and provides a total receiver dynamic range of >45 dB.

PARALLEL BUS INTERFACE

Four 8-bit registers are provided for control, option select and status monitoring. These registers are

addressed with the AD0, AD1, and AD2 multiplexed address lines (latched by ALE) and appear to a control microprocessor as four consecutive memory locations. Two control registers and the tone register are read/write memory. The detect register is read only and cannot be modified except by modem response to monitored parameters. The parallel bus interface is not available in the 22-pin package.

SERIAL COMMAND INTERFACE

The serial command interface allows access to the SSI 73K302L control and status registers via a serial command port. In this mode the A0, A1 and A2 lines provide register addresses for data passed through the data pin under control of the RD and WR lines. A read operation is initiated when the RD line is taken low. The first bit is available after RD is brough low and the next seven cycles of EXCLK will then transfer out seven bits of the selected address location LSB first. A write takes place by shifting in eight bits of data LSB first for eight consecutive cycles of EXCLK. WR is then pulsed low and data transfer into the selected register occurs on the rising edge of WR.

SPECIAL DETECT CIRCUITRY

The special detect circuitry monitors the received analog signal to determine status or presence of carrier, answer tone and weak received signal (long loop condition), special tones such as FSK marking and the 900 Hz soft carrier turn-off tone are also detected. A highly frequency selective call progress detector provides adequate discrimination to accurately detect lower quality call progress signals.

DTMF GENERATOR

The DTMF generator will output one of 16 standard tone pairs determined by a 4-bit binary value and TX DTMF mode bit previously loaded into the tone register. Tone generation is initiated when the DTMF mode is selected using the tone register and the transmit enable (CR0 bit D1) is changed from 0 to 1.

SOFT CARRIER TURN-OFF TONE GENERATOR

The soft carrier turn-off tone generator will output a 900 Hz tone. When activated in Bell 202 main channel transmit mode, the output signal will shift to 900 Hz, maintaining phase continuity during the transition.

PIN DESCRIPTION

POWER

NAME	28-PIN	22-PIN	TYPE	DESCRIPTION
GND	28	1	1	System Ground.
VDD	15	11	I	Power supply input, 5V $\pm 10\%.$ Bypass with .1 and 22 μF capacitors to GND.
VREF	26	21	0	An internally generated reference voltage. Bypass with .1 µF capacitor to GND.
ISET	24	19	I	Chip current reference. Sets bias current for op-amps. The chip current is set by connecting this pin to VDD through a 2 M Ω resistor. ISET should be bypassed to GND with a .1 μ F capacitor.

PARALLEL MICROPROCESSOR INTERFACE

ALE	12	-	I	Address latch enable. The falling edge of ALE latches the address on AD0-AD2 and the chip select on \overline{CS} .
AD0-AD7	4-11	-	I/O	Address/data bus. These bidirectional tri-state multi- plexed lines carry information to and from the internal registers.
CS	20	-	I	Chip select. A low on this pin during the falling edge of ALE allows a read cycle or a write cycle to occur. AD0-AD7 will not be driven and no registers will be written if \overline{CS} (latched) is not active. The state of \overline{CS} is latched on the falling edge of ALE.
CLK	1	2	0	Output clock. This pin is selectable under processor control to be either the crystal frequency (for use as a processor clock) or 16 x the data rate for use as a baud rate clock in DPSK modes only. The pin defaults to the crystal fre- quency on reset.
INT	17	13	0	Interrupt. This open drain output signal is used to inform the processor that a detect flag has occurred. The processor must then read the detect register to determine which detect triggered the interrupt. INT will stay low until the processor reads the detect register or does a full reset.
RD	14	-	I	Read. A low requests a read of the SSI 73K302L internal registers. Data cannot be output unless both $\overline{\text{RD}}$ and the latched $\overline{\text{CS}}$ are active or low.
RESET	25	20	I	Reset. An active high signal on this pin will put the chip into an inactive state. All control register bits (CR0, CR1, Tone) will be reset. The output of the CLK pin will be set to the crystal frequency. An internal pull down resistor permits power on reset using a capacitor to VDD.

PIN DESCRIPTION (Continued)

PARALLEL MICROPROCESSOR INTERFACE (Continued)

NAME	28-PIN	22-PIN	TYPE	DESCRIPTION
WR	13	-	1	Write. A low on this informs the SSI 73K302L that data is available on AD0-AD7 for writing into an internal register. Data is latched on the rising edge of \overline{WR} . No data is written unless both \overline{WR} and the latched \overline{CS} are active low.

SERIAL MICROPROCESSOR INTERFACE

SERIAL MICHOFHOCLSSON INTERFACE							
A0-A2	-	5-7	1	Register Address Selection. These lines carry register addresses and should be valid during any read or write operation.			
DATA	-	8	I/O	Serial Control Data. Data for a read/write operation is clocked in or out on the falling edge of the EXCLK pin. The direction of data flow is controlled by the RD pin. RD low outputs data. RD high inputs data.			
RD	-	10	I	Read. A low on this input informs the SSI 73K302L that data or status information is being read by the processor. The falling edge of the RD signal will initiate a read from the addressed register. The RD signal must continue for eight falling edges of EXCLK in order to read all eight bits of the referenced register. Read data is provided LSB first. Data will not be output unless the RD signal is active.			
WR	-	9	1	Write. A low on this input informs the SSI 73K302L that data or status information has been shifted in through the DATA pin and is available for writing to an internal register. The normal procedure for a write is to shift in data LSB first on the DATA pin for eight consecutive falling edges of EXCLK and then to pulse WR low. Data is written on the rising edge of WR.			
	Note: In the serial, 22-pin version, the pins AD0-AD7, ALE and \overline{CS} are removed and replaced with the pins; A0, A1, A2, DATA, and an unconnected pin. Also, the \overline{RD} and \overline{WR} controls are used differently.						
				in the 28-pin version by tying ALE high and \overline{CS} low. In this nd AD0, AD1 and AD2 become A0, A1 and A2, respectively.			

1

PIN DESCRIPTION (Continued)

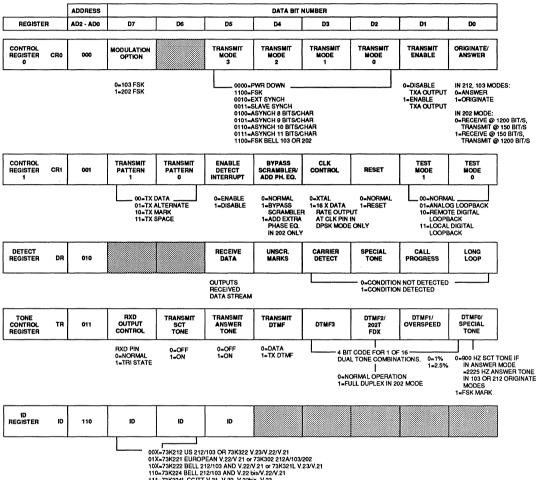
DTE USER INTERFACE

NAME	28-PIN	22-PIN	ТҮРЕ	DESCRIPTION
EXCLK	19	15	I	External Clock. This signal is used in synchronous DPSK transmission when the external timing option has been selected. In the external timing mode the rising edge of EXCLK is used to strobe synchronous DPSK transmit data available on the TXD pin. Also used for serial control interface.
RXCLK	23	18	0	Receive Clock. The falling edge of this clock output is coincident with the transitions in the serial received DPSK data output. The rising edge of RXCLK can be used to latch the valid output data. RXCLK will be valid as long as a carrier is present. In Bell 202 mode a clock which is 16 x 1200 baud data rate is output.
RXD	22	17	0	Received Data Output. Serial receive data is available on this pin. The data is always valid on the rising edge of RXCLK when in synchronous mode. RXD will output constant marks if no carrier is detected.
TXCLK	18	14	0	Transmit Clock. This signal is used in synchronous DPSK transmission to latch serial input data on the TXD pin. Data must be provided so that valid data is available on the rising edge of the TXCLK. The transmit clock is derived from different sources depending upon the synchronization mode selection. In Internal Mode the clock is 1200 Hz generated internally. In External Mode TXCLK is phase locked to the EXCLK pin. In Slave Mode TXCLK is phase locked to the RXCLK pin. TXCLK is always active. In Bell 202 mode the output is a 16 x 1200 baud clock.
TXD	21	16		Transmit Data Input. Serial data for transmission is applied on this pin. In synchronous modes, the data must be valid on the rising edge of the TXCLK clock. In asynchronous modes (1200 or 300 baud) no clocking is necessary. DPSK must be 1200 bit/s +1%, -2.5% or +2.3%, -2.5 % in extended overspeed mode.

ANALOG INTERFACE AND OSCILLATOR

RXA	27	22	1	Received modulated analog signal input from the tele- phone line interface.
TXA	16	12	0	Transmit analog output to the telephone line interface.
XTL1 XTL2	2 3	3 4		These pins are for the internal crystal oscillator requiring a 11.0592 MHz parallel mode crystal and two load capaci- tors to Ground. XTL2 can also be driven from an external clock.

REGISTER DESCRIPTIONS


Four 8-bit internal registers are accessible for control and status monitoring. The registers are accessed in read or write operations by addressing the A0 and A1 address lines in serial mode, or the AD0 and AD1 lines in parallel mode. The AD0 and AD1 lines are latched by ALE. Register CR0 controls the method by which data is transferred over the phone line. CR1 controls the interface between the microprocessor and the SSI 73K302L internal state. DR is a detect register which provides an indication of monitored modem status conditions. TR, the tone control register, controls the DTMF generator, answer and guard tones and RXD output gate used in the modem initial connect sequence. All registers are read/write except for DR which is read only. Register control and status bits are identified below:

REGISTER BIT SUMMARY

		ADDRESS				DATA BIT	NUMBER			
REGISTE	R	AD2 - AD0	D7	D6	D5	D4	D3	D2	D1	D0
CONTROL REGISTER 0	CR0	000	MODULATION OPTION		TRANSMIT MODE 3	TRANSMIT MODE 2	TRANSMIT MODE 1	TRANSMIT MODE 0	TRANSMIT	ANSWER/ ORIGINATE
CONTROL REGISTER 1	CR1	001	TRANSMIT PATTERN 1	TRANSMIT PATTERN 0	ENABLE DETECT INTERRUPT	BYPASS SCRAMBLER/ ADD PH. EQ. 202	CLK CONTROL	RESET	TEST MODE 1	TEST MODE 0
DETECT REGISTER	DR	010			RECEIVE DATA	UNSCR. MARKS	CARRIER DETECT	SPECIAL TONE	CALL PROGRESS	LONG LOOP
TONE CONTROL REGISTER	TR	011	RXD OUTPUT CONTROL	TRANSMIT SCT TONE	TRANSMIT ANSWER TONE	TRANSMIT DTMF	DTMF3	DTMF/ 202T FDX	DTMF1/ OVERSPEED	DTMF0/ SPEC. TONE/ ANSWER TONE/ SELECT
CONTROL REGISTER 2	CR2	100			[THESE RE	GISTER LOCATIO	ONS ARE RESER	VED FOR	
CONTROL REGISTER 3	CR3	101				USE WITH OTHER K-SERIES FAMILY MEMBERS				
id Register	ID	110	0	1						

NOTE: When a register containing reserved control bits is written into, the reserved bits must be programmed as 0's.

BEGISTER ADDRESS TABLE

111=73K324L CCITT V.21, V.22, V.22bis, V.23

CONTROL REGIST	ΈR	0
----------------	----	---

	D7	,	D6		D5			D4	D3	D2	D1	D0			
CR0 000	MOD OPTI				ANSMIT ODE 3			NSMIT DE 2	TRANSMIT MODE 1	TRANSMIT MODE 0	TRANSMIT ENABLE	ANSWER/ ORIGINATE			
BIT N	10.		NAME		со	NC	оптю	Л	DESCRIP	ΓΙΟΝ					
D0			Answei Driginat			(0		receive in			n band, ode, receive at			
					1				high band (band, receive in at 150 bit/s and			
									Note: This bit works with TR bit D0 to program special tones detected in Tone Register. See detect and tone registers.						
D1			ransm			(0		Disables transmit output at TXA.						
			Enable	•		•	1		Enables transmit output at TXA.						
									Note: Answer tone and DTMF TX control require TX enable.						
					D5 [)4	D3	D2							
D5, D D2	4,D3,	T	ransm Mode	it	0	0	0	0		wer down mo kcept digital ii	de. All functio nterface.	ns			
					0	0	0	1	Internal synchronous mode. In this mode TXCLK internally derived 1200 Hz signal. Serial input appearing at TXD must be valid on the rising edg TXCLK. Receive data is clocked out of RXD or falling edge of RXCLK.						
					Ò	0	1	0	internal syn nally to EX	nchronous, b	ut TXCLK is c	on is identical to connected inter- 01% clock must			
					0	0	1	1	synchrono		CLK is conned	eration as other cted internally to			
					0	1	0	0		PSK asynchro 6 data bits, 1		8 bits/character			
					0	1	0	1	Selects DPSK asynchronous mode - 9 bits/character (1 start bit, 7 data bits, 1 stop bit).						
					0	1	1	0		SK asynchro 8 data bits, 1		0 bits/character			
					0	1	1	1			nous mode - 1 Parity and 1 or	1 bits/character 2 stop bits).			
					1	1	0	0	Selects 10	3 or 202 FSK	operation.				

	D7	7 D6		- D5		D5 D4		D3 D2		D1	D0
CR0 000	MOD			TRANSMIT MODE 3			ISMIT DE 2	TRANSMIT MODE 1	TRANSMIT MODE 0	TRANSMIT ENABLE	ANSWER/ ORIGINATE
BIT	BIT NO. NAME CONDITION DESCRIPTION										
D6					0			Not used;	must be writte	en as a "0."	
					D7 D5 D4			Selects:			
D7		M	odulat	ion [X 0 X		DPSK asynchronous mode at 1200 bit/s.				
			Option			01	1	FSK Bell 1	03 mode.		
						1 1	1	FSK Bell 2	02 mode.		

CONTROL REGISTER 0 (Continued)

CONTROL REGISTER 1

		D7		D6	D5	D4 .	D3	D2	D1	D0			
CR1 001		NSMIT TERN 1			ENABLE DETECT INTER.	BYPASS SCRAMB/ ADD PH. EQ.	CLK CONTROL	RESET	TEST MODE 1	TEST MODE 0			
BIT NO	o.	NAME CONDITION				DESCR	DESCRIPTION						
					1 D0								
D1, D0	ן כ	Test M	ode 0 0		0	Selects	normal operat	ing mode.					
				0 1		signal ba use the squelch	oopback mode ack to the rece same center fr the TXA pin, t t supported in	iver, and ca equency as ransmit en	auses the re s the transn able must t	eceiver to nitter. To			
							10	looped I	remote digita back to transn b a mark. Data	nit data int	ernally, and		
		1 1			1	Selects local digital loopback. Internally loops TXI back to RXD and continues to transmit carrier from TXA pin.							
D2		Reset 0				Selects	normal operat	ion.					
					1	register	modem to po bits (CR0, CR of the CLK p cy.	1, Tone) ar	e reset to z				

CONT	ROL	REGISTE	R1 (C	ontinued)								
		D7		D6	D5	D4	D3	D2	D1	D0		
CR1 001		ANSMIT TTERN 1		NSMIT TERN 0	ENABLE DETECT INTER.	BYPASS SCRAMB/ ADD PH. EQ.	CLK CONTROL	RESET	TEST MODE 1	TEST MODE 0		
BIT NO	Э.	NAN	IE	CONDITION DESCRIPTION								
D3		CLK Co	ontrol		0	Selects pin.	11.0592 MHz	crystal ech	o output at	CLK		
					1	Selects modes c	16 X the data only.	rate, output	at CLK pin	in DPSK		
D4*		Bypa Scram	oler/	0 Selects normal operation. DPSK data is passed through scrambler.								
		Add Ph Equaliz		1		Selects Scrambler Bypass. DPSK data is routed around scrambler in the transmit path. In Bell 202 mode, additional phase equalization is added to the main channel filters when D4 is set to 1.						
D5		Enable D			0	Disables	interrupt at II	NT pin.				
		Interrupt		1		a change and call the TX e TX DTM	INT output. A e in status of E progress dete nable bit is set F is activated. ce is in power	OR bits D1-D ect interrupt . Carrier de All interrup	04. The spe s are mask tect is mask ots will be d	ecial tone ed when ked when		
				D	7 D6							
D7, D6	6	Trans Patte		C) ()		normal data tr tate of the TX		as control	ed		
			:	C) 1	Selects a modem	an alternating testing.	mark/space	transmit p	attern for		
				1	0	Selects	a constant ma	irk transmit	pattern.			
				1	1	Selects	a constant spa	ace transmi	t pattern.			
	* D4 should always be set to 1 when receiving 1200 bit/s data and to 0 when transmitting 1200 bit/s data in 202 mode.											

DETECT REGISTER

	D	7	D6	D5	D4	D3	D2	D1	D0				
DR 010				RECEIVE DATA	UNSCR. MARK	CARR. DETECT	SPECIAL TONE	CALL PROG.	LONG LOOP				
BIT NC).	N	AME	CONDITION	N DES	CRIPTION							
D0		Lon	ig Loop	0	Indi	Indicates normal received signal.							
				1	Indi	cates low rece	eived signal le	vel.					
D1			Progress	0	No	call progress t	one detected.						
		Detect		1	prog	ress detectio	e of call prog n circuitry is a 620 Hz call p	ctivated by	energy in				
D2			cial Tone	0	0 No special tone detected as programmed by CR0 bit D0 and Tone Register bit D0.								
				1	Spe	cial tone dete	cted. The det	ected tone	is:				
				(1) 2225 Hz answer tone is in Bell 103 or 212A				if D0 of TR=0 and the device A originate mode.					
								(2) Soft carrier turn-off tone if D0 of TR=0 and the device is in Bell 202 answer mode.					
					1 1-7	(3) an FSK mark in the mode the device is so receive if D0 of TR is set to 1.							
						Tolerance on special tones is $\pm 3\%$.							
D3		Carri	er Detect	0	No	carrier detecte	ed in the received	ve channel					
				1		cated carrier nnel.	has been det	ected in th	e received				
D4			rambled	0	No	unscrambled	mark.						
		Detect marks in the receiv						K only) Indicates detection of unscrambled s in the received data. A valid indication requires unscrambled marks be received for > $165.5 \pm$ s.					
D5			eceive Data		This	data is the sa	outs the receiv me as that outp vhen RXD is t	out on the R					
D6, D7					Not used.								

TON													
	D7	,	D6	D5	D4	D3	D2	D1		D0			
TR 011	RXI OUTF CON ⁻	τυν	TRANSMIT SOFT CARRIER TURN-OFF TONE	ANSWER	TRANSMIT DTMF	DTMF 3	DTMF 2/ 202 FDX	DTMF OVE SPEI	R-	DTMF 0/ SPECIAL TONE SEL			
BIT	NO.		NAME	CONDITION	DESC	RIPTION							
				D5 D4 D0	D0 inte	D0 interacts with bits D6, D4, and CR0 as shown.							
DO		D	TMF 0/	0 1 X	Transr	Transmit DTMF tones.							
		Spe	ecial Tone	0 0 0			tone will be s selected i			D2 of DR if			
		Det	ect/Select				will be dete selected in		D2 of	02 of DR if Bell 202			
				X 0 1	Marko in D2 d		iode selecte	ed in CF	R0 is to	o be detected			
				1 0 0		2225 Hz answer tone will be generated when in answer mode and transmit enable is selected in CR0.							
				1 0 1		2100 Hz answer tone will be generated when in answer mode and transmit enable is selected in CR0.							
				D4 D1	D1 inte	eracts with	D4 as show	wn.					
D1		DTMF 1/ 0 0			Async	nronous D	PSK 1200 I	oit/s +1	.0% -	2.5%.			
		Ov	respeed	0 1	Async	Asynchronous DPSK 1200 bit/s +2.3% -2.5%.							
D2		DTN	MF2/202T	0	Enable	Enables 202 half-duplex operation if D4=0							
			FDX	1	Enable	Enables 202 full-duplex operation if D4=0							
				D3 D2 D1 D0									
D3, 0 D1, 0			0TMF 3, 2, 1, 0	0 0 0 0- 1 1 1 1	transm	itted when	DTMF ton TX DTMF a e encoding	und TX (enabl	e bit (CR0, bit			
						OARD ALENT	DTMF CO D3 D2 D			ONES V HIGH			
						1	0 0 0	1	697	1209			
						2	0 0 1		697				
						3	0 0 1		697				
						4	0 1 0		770				
						5 6	0 1 0		770 770				
						6 7	0 1 1		852				
						8	1 0 0		852				
						9	1 0 0		852				
						0	1 0 1		941	1336			

TONE REGISTER (Continued)

			_									
	D	7	D6	D5	D4	D3	D2	D1	D0			
TR 011	RX OUT CON	PUT	TRANSMIT SOFT CARRIER TURN-OFF TONE	TRANSMIT ANSWER TONE	TRANSMIT DTMF	DTMF 3	DTMF 2/ 202T FDX	DTMF 1/ OVER- SPEED	DTMF 0/ SPECIAL TONE SEL			
BIT	NO.		NAME	CONDITION	DESCI	RIPTION	······					
D3, [D1, [OARD ALENT	DTMF CO D3 D2 D		TONES W HIGH			
(cont	t.)					*	1 0 1	1 94	1 1209			
						#	1 1 0	0 94	1 1477			
						A	1 1 0) 1 69	7 1633			
						3	1 1 1	0 77	0 1633			
					(0	1 1 1	1 85	2 1633			
						D		0 94	1 1633			
D4		Т	ransmit	Disable	DTMF.							
			DTMF	1	transm	itted conti	nuously wh	ed DTMF tor ien this bit is r transmit fu	s high.			
D5		Т	ransmit	0	Disable	Disables answer tone generator.						
		Ans	swer Tone	1	answei transm	r tone will t it enable b	be transmitt	transmit an	5 Hz usly when the swer tone, the			
D6			ransmit CT Tone	0	Disable	es SCT to	ne generato	or.				
				1	Transn	Transmit SCT tone in Bell 202 mode.						
D7			D Output Control	0	Enable RXD.	Enables RXD pin. Receive data will be outpu RXD.			output on			
				1				XD pin reve ak pull-up re	erts to a high esistor.			

Notes for Tone Register use:

1. To detect SCT tone, 202 answer mode must be selected. To transmit SCT tone, 202 originate mode must be selected.

2. For answer tone detection, 103 or 212 originate mode must be active. To transmit answer tone, the 73K302 must be in 103 or 212 answer mode.

3. After completion of DTMF dialing, bit D2 should be reset unless 202 full-duplex mode is selected.

ID REC	GISTE	ĒR																					
		D7	D	6	D5			D4	D3	D2	D1	D0											
ID 110		D ID)	ID																		
BIT NO	BIT NO. NAME				ON	DITIO	N	DESCRIPTION															
					D7 [D6 D5	;	Indic	ates Device	:													
D7, D6	;		Device		0	0 X		SSI	73K212 or 7	3K322L													
		Identification												Identification Signature			0	1 X		SSI 73K221 or 73K302L			
		Signe			1	0 X		SSI	73K222 or 7	3K321L													
					1	1 0		SSI	73K224L														
				1	1 1		SSI	73K324L															

ELECTRICAL SPECIFICATIONS

ABSOLUTE MAXIMUM RATINGS

PARAMETER	RATING	UNIT
VDD Supply Voltage	14	V
Storage Temperature	-65 to 150	°C
Soldering Temperature (10 sec.)	260	°C
Applied Voltage	-0.3 to VDD+0.3	V
Note: All inputs and outputs are protected f devices and all outputs are short-circuit prot	U U U	ry standard protection

RECOMMENDED OPERATING CONDITIONS

PARAMETER	CONDITIONS	MIN	NOM	МАХ	UNITS
VDD Supply voltage		4.5	5	5.5	V
TA, Operating Free-Air Temp.		-40		+85	°C
Clock Variation	(11.0592 MHz) Crystal or external clock	-0.01		+0.01	%
External Components (Refer to	Application section for placement.)			_	
VREF Bypass Capacitor	(External to GND)	0.1			μF
Bias setting resistor	(Placed between VDD and ISET pins)	1.8	2	2.2	MΩ
ISET Bypass Capacitor	(ISET pin to GND)	0.1			μF
VDD Bypass Capacitor 1	(External to GND)	0.1			μF
VDD Bypass Capacitor 2	(External to GND)	22			μF
XTL1 Load Capacitor	Depends on crystal characteristics;			40	pF
XTL2 Load Capacitor	from pin to GND			20	

DC ELECTRICAL CHARACTERISTICS

(TA = -40°C to 85°C, VDD = recommended range unless otherwise noted.)

PARAMETER	CONDITIONS	MIN	NOM	MAX	UNITS	
IDD, Supply Current	ISET Resistor = 2 M Ω					
IDDA, Active	CLK = 11.0592 MHz		8	12	mA	
IDD1, Power-down	CLK = 11.0592 MHz			4	mA	
IDD2, Power-down	CLK = 19.200 KHz			3	mA	
Digital Inputs						
VIH, Input High Voltage						
Reset, XTL1, XTL2		3.0		VDD	v	
All other inputs		2.0		VDD	v	
VIL, Input Low Voltage		0		0.8	v	
IIH, Input High Current	VI = VIH Max			100	μΑ	
IIL, Input Low Current	VI = VIL Min	-200			μA	
Reset Pull-down Current	Reset = VDD	1		50	μA	
Input Capacitance	All Digital Input Pins			10	pF	
Digital Outputs						
VOH, Output High Voltage	IOH MIN = -0.4 mA	2.4		VDD	v	
VOL, Output Low Voltage	IO MAX = 1.6 mA			0.4	v	
VOL, CLK Output	IO = 3.6 mA			0.6	v	
RXD Tri-State Pull-up Curr.	RXD = GND	-1		-50	μA	
CMAX, CLK Output	Maximum Capacitive Load			15	pF	
Capacitance						
Inputs	Capacitance, all Digital Input pins			10	pF	
XTL1, 2 Load Capacitors	Depends on crystal	15		60	pF	
CLK	Maximum Capacitive Load			15	pF	

DYNAMIC CHARACTERISTICS AND TIMING

(TA = -40°C to +85°C, VDD = Recommended range unless otherwise noted.)

PARAMETERS	CONDITIONS	MIN	NOM	МАХ	UNITS
DPSK Modulator					
Carrier Suppression	Measured at TXA	45			dB
Output Amplitude	TX scrambled marks	-11	-10	-9	dBm0
FSK Modulator	-	within the second second			
Output Freq. Error	CLK = 11.0592 MHz	-0.35		+0.35	%
Transmit Level	Transmit Dotting Pattern	-11	-10	-9	dBm0
Soft Carrier Turnoff Tone		-11.9	-10.9	-9.9	dBm0
Harmonic Distortion in 700-2900 Hz band	THD in the alternate band DPSK or FSK		-60	-50	dB
Output Bias Distortion	Transmit Dotting Pattern In ALB @ RXD		±3		%
Total Output Jitter	Random Input in ALB @ RXD	-10		+10	%
DTMF Generator	Must not be in 202 mode				
Freq. Accuracy		-0.25		+0.25	%
Output Amplitude, Low group	DPSK mode	-10	-9	-8	dBm0
Output Amplitude, High group	DPSK mode	-8	-7	-6	dBm0
Twist	High-Band to Low-Band	1.0	2.0	3.0	dB
Long Loop Detect	With Sinusoid	-38		-28	dBm0
Dynamic Range	Refer to Performance Curves		45		dB
Note: Parameters expressed	I in dBm0 refer to the following defir	nition:			
EV/ Voreien					

5V Version:

0 dB loss in the Transmit path to the line.

2 dB gain in the Receive path from the line.

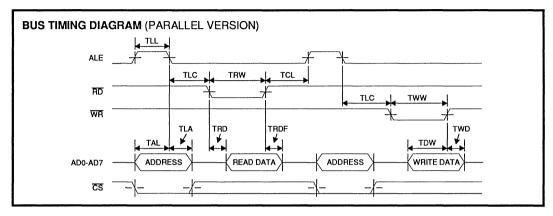
Refer to the Basic Box Modem diagram in the Applications section for the DAA design.

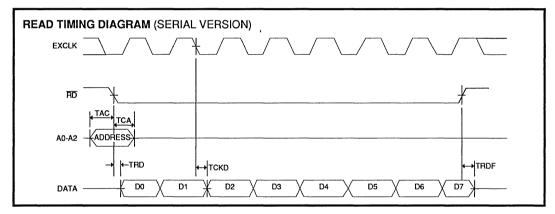
DYNAMIC CHARACTERISTICS AND TIMING (Continued)

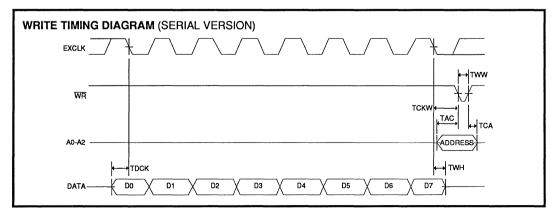
PARAMETERS	CONDITIONS	MIN	NOM	МАХ	UNITS	
Call Progress Detector						
Detect Level	-3 dB points in 285 and 675 Hz	-38			dBm0	
Reject Level	Test signal is a 460 Hz sinusoid			-45	dBm0	
Delay Time	-70 dBm0 to -30 dBm0 STEP	20		40	ms	
Hold Time	-30 dBm0 to -70 dBm0 STEP	20		40	ms	
Hysteresis		2			dB	
Carrier Detect						
Threshold	DPSK or FSK receive data	-49		-42	dBm0	
Delay Time						
Bell 103		8		20	ms	
Bell 212A		15		32	ms	
Bell 202 Forward Channel		6		12	ms	
Bell 202 Back Channel		25		40	ms	
Hold Time						
Bell 103		6		20	ms	
Bell 212A		10		24	ms	
Bell 202 Forward Channel		3		8	ms	
Bell 202 Back Channel		10		25	ms	
Hysteresis		2			dB	
Special Tone Detectors						
Detect Level	See definitions for TR bit D0 mode	-49		-42	dBm0	
Delay Time						
Answer tone		10		25	ms	
900 Hz SCT tone	Preceded by valid carrier*	4		10	ms	
202 Main Channel Mark		10		25	ms	
202 Back Channel Mark		20		65	ms	
1270 or 2225 Hz marks		10		25	ms	

* If SCT duration >4ms, it is guaranteed to detect.

PARAMETERS	CONDITIONS	MIN	NOM	МАХ	UNITS	
Special Tone Detectors (Continued)						
Hold Time						
Answer tone		4		15	ms	
900 Hz SCT tone		1		10	ms	
202 Main Channel Mark		3		10	ms	
202 Back Channel Mark		10		25	ms	
1270 or 2225 Hz marks		5		15	ms	
Hysteresis		2			dB	
Detect Freq. Range	Any Special Tone	-3		+3	%	
Output Smoothing Filter						
Output load	TXA pin; FSK Single Tone out for THD = -50 dB	10			kΩ	
	in 0.3 to 3.4 kHz			50	pF	
Out of Band Energy	Frequency >12 kHz in all modes See Transmit Energy Spectrum			-60	dBm0	
Output Impedance	TXA pin		20	50	Ω	
Clock Noise	TXA pin; 76.8 kHz or 122.88 kHz in 202 main channel		0.1	0.4	mVrms	
Carrier VCO		.		•	ł	
Capture Range	Originate or Answer	-10		+10	Hz	
Capture Time	-10 Hz to +10 Hz Carrier Frequency Change		40	100	ms	
DPSK Recovered Clock		•				
Capture Range	% of data rate (center at 1200 Hz)	-625		+625	ppm	
Data Delay Time	Analog data in at RXA pin to receive data valid at RXD pin		30	50	ms	
Tone Generator				•	•	
Tone Accuracy	DTMF or FSK tones	-5		+5	Hz	
Tone Level	For DTMF, must not be in 202 mode	-1		+1	dB	


DYNAMIC CHARACTERISTICS AND TIMING (Continued)


1


DYNAMIC CHARACTERISTICS AND TIMING (Continued)

PARAMETERS	CONDITIONS	MIN	NOM	MAX	UNITS	
Timing (Refer to Timing Diagrams)						
TAL	CS/Addr. setup before ALE Low	30			ns	
TLA	CS/Addr. hold after ALE Low	20			ns	
TLC	ALE Low to RD/WR Low	40			ns	
TCL	RD/WR Control to ALE High	10			ns	
TRD	Data out from RD Low	0		140	ns	
TLL	ALE width	60			ns	
TRDF	Data float after RD High	0		200	ns	
TRW	RD width	200		25000	ns	
TWW	WR width	140		25000	ns	
TDW	Data setup before WR High	150			ns	
TWD	Data hold after WR High	20			ns	
TCKD	Data out after EXCLK Low			200	ns	
тскw	WR after EXCLK Low	150			ns	
TDCK	Data setup before EXCLK Low	150			ns	
TAC	Address setup before control*	50			ns	
TCA	Address hold after control*	50			ns	
тwн	Data Hold after EXCLK	20				
 Control for setup is the falling edge of RD or WR. Control for hold is the falling edge of RD or the rising edge of WR. 						

TIMING DIAGRAMS

1

APPLICATIONS INFORMATION

GENERAL CONSIDERATIONS

Figures 1 and 2 show basic circuit diagrams for K-Series modem integrated circuits. K-Series products are designed to be used in conjunction with a control processor, a UART or RS-232 serial data interface, and a DAA phone line interface to function as a typical intelligent modem. The K-Series ICs interface directly with Intel 8048 and 80C51 microprocessors for control and status monitoring purposes. Two typical DAA arrangements are shown: one for a split \pm 5 or \pm 12 volt design and one for a single 5 volt design. These diagrams are for reference only and do not represent production-ready modem designs.

K-Series devices are available with two control interface versions: one for a parallel multiplexed address/ data interface, and one for a serial interface. The parallel version is intended for use with 8039/48 or 8031/51 microcontrollers from Intel or many other manufacturers. The serial interface 22-pin version can be used with other microcontrollers or in applications where only a limited number of port lines are available or the application does not lend itself to a multiplexed address/data interface. The parallel versions may also be used in the serial mode, as explained in the data sheet pin description.

In most applications the controller will monitor the serial data for commands from the DTE and the received data for break signals from the far end modem. In this way, commands to the modem are sent over the same line as the transmitted data. In other applications the RS-232 interface handshake lines are used for modem control.

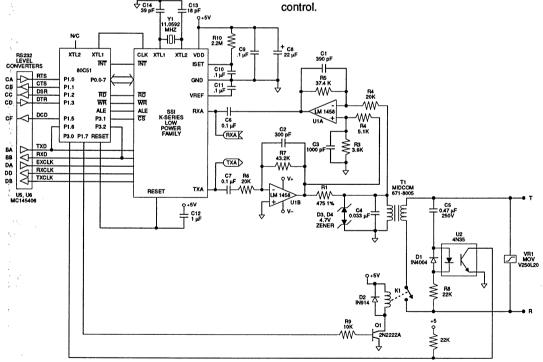


FIGURE 1: Basic Box Modem with Dual-Supply Hybrid

DIRECT ACCESS ARRANGEMENT (DAA)

The telephone line interfaces show two examples of how the "hybrid" may be implemented. The split supply design (Figure 1) is a typical two op-amp hybrid. The receive op-amp serves two purposes. It supplies gain to amplify the receive signal to the proper level for the modem's detectors and demodulator, and it removes the transmitted signal from the receive signal present at the transformer. This is done by supplying a portion of the transmitted signal to the non-inverting input of the receive op-amp at the same amplitude as the signal appearing at the transformer, making the transmit signal common mode.

The single-supply hybrid is more complex than the dual-supply version described above, but its use eliminates the need for a second power supply. This circuit (Figure 2) uses a bridged drive to allow undistorted signals to be sent with a single 5 volt supply. Because DTMF tones utilize a higher amplitude than data, these

signals will clip if a single-ended drive approach is used. The bridged driver uses an extra op-amp (U1A) to invert the signal coming from the gain setting op-amp (U1B) before sending it to the other leg of the transformer. Each op-amp then supplies half the drive signal to the transformer. The receive amplifier (U1C) picks off its signal at the junction of the impedance matching resistor and the transformer. Because the bottom leg of the transformer is being driven in one direction by U1A and the resistor is driven in the opposite direction at the same time by U1B, the junction of the transformer and resistor remains relatively constant and the receive signal is unaffected.

DESIGN CONSIDERATIONS

Silicon Systems' 1-chip modem products include all basic modem functions. This makes these devices adaptable for use in a variety of applications, and as easy to control as conventional digital bus peripherals.

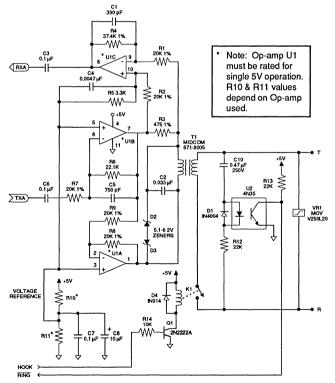


FIGURE 2: Single 5V Hybrid Version

Unlike digital logic circuitry, modem designs must properly contend with precise frequency tolerances and very low level analog signals, to ensure acceptable performance. Using good analog circuit design practices will generally result in a sound design. Following are additional recommendations which should be taken into consideration when starting new designs.

CRYSTAL OSCILLATOR

The K-Series crystal oscillator requires a parallel mode (antiresonant) crystal which operates at 11.0592 MHz. It is important that this frequency be maintained to within $\pm 0.01\%$ accuracy.

In order for a parallel mode crystal to operate correctly and to specification, it must have a load capacitor connected to the junction of each of the crystal and internal inverter connections, terminated to ground. The values of these capacitors depend primarily on the crystal's characteristics, and to a lesser degree on the internal inverter circuit. The values used affect the accuracy and start up characteristics of the oscillator.

LAYOUT CONSIDERATIONS

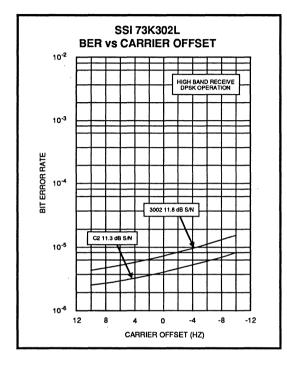
Good analog/digital design rules must be used to control system noise in order to obtain highest performance in modem designs. The more digital circuitry present on the PC board, the more this attention to noise control is needed. The modem should be treated as a high impedance analog device. A 22 µF electrolytic capacitor in parallel with a 0.1 µF ceramic capacitor between VDD and GND is recommended. Liberal use of ground planes and larger traces on power and ground are also highly favored. High speed digital circuits tend to generate a significant amount of EMI (Electro-Magnetic Interference) which must be minimized in order to meet regulatory agency limitations. To accomplish this, high speed digital devices should be locally bypassed, and the telephone line interface and K-Series device should be located close to each other near the area of the board where the phone line connection is accessed. To avoid problems, power supply and ground traces should be routed separately to the analog and digital functions on the board, and digital signals should not be routed near low level or high impedance analog traces. The analog and digital grounds should only connect at one point near the K-Series device ground pin to avoid ground loops. The K-Series modern IC's should have both high frequency and low frequency bypassing as close to the package as possible.

MODEM PERFORMANCE CHARACTERISTICS

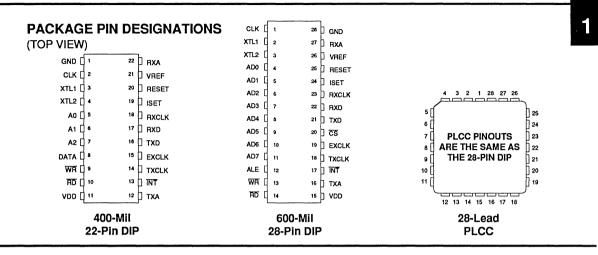

The curves presented here define modem IC performance under a variety of line conditions while inducing disturbances that are typical of those encountered during data transmission on public service telephone lines. Test data was taken using an AEA Electronics' "Autotest I" modem test set and line simulator, operating under computer control. All tests were run fullduplex, using a Concord Data Systems 224 as the reference modem. A 511 pseudo-random-bit pattern was used for each data point. Noise was C-message weighted and all signal-to-noise (S/N) ratios reflect total power measurements similar to the CCITT V.56 measurement specification. The individual tests are defined as follows.

BER vs.S/N

This test measures the ability of the modem to operate over noisy lines with a minimum of data-transfer errors. Since some noise is generated in the best of dial-up lines, the modem must operate with the lowest S/N ratio possible. Better modem performance is indicated by test curves that are closest to the BER axis. A narrow spread between curves representing the four line parameters indicates minimal variation in performance while operating over a range of aberrant operating conditions. Typically, a DPSK modem will exhibit better BER-performance test curves receiving in the low band than in the high band.


BER vs. Receive Level

This test measures the dynamic range of the modem. Because signal levels vary widely over dial-up lines, the widest possible dynamic range is desirable. The minimum Bell specification calls for 36 dB of dynamic range. S/N ratios are held constant at the indicated values while the receive level is lowered from a very high to very low signal levels. The width of the "bowl" of these curves, taken at the BER point, is the measure of dynamic range.



1-169

SSI 73K302L Bell 212A, 103, 202 Single-Chip Modem

SSI 73K302L Bell 212A, 103,202 Single-Chip Modem

ORDERING INFORMATION

PART DESCRIPTION	ORDER NO.	PKG. MARK		
SSI 73K302L with Parallel Bus Interface 28-Pin 5 Volt Supply Plastic Dual-In-Line	SSI 73K302L - IP	73K302L - IP		
Plastic Leaded Chip Carrier	SSI 73K302L - IH	73K302L - IH		
SSI 73K302L with Serial Interface 22-Pin 5 Volt Supply Plastic Dual-In-Line	SSI 73K302SL - IP	73K302SL - IP		

Preliminary Data: Indicates a product not completely released to production. The specifications are based on preliminary evaluations and are not guaranteed. Small quantities are available, and Silicon Systems should be consulted for current information.

No responsibility is assumed by Silicon Systems for use of this product nor for any infringements of patents and trademarks or other rights of third parties resulting from its use. No license is granted under any patents, patent rights or trademarks of Silicon Systems. Silicon Systems reserves the right to make changes in specifications at any time without notice. Accordingly, the reader is cautioned to verify that the data sheet is current before placing orders.

Silicon Systems, Inc., 14351 Myford Road, Tustin, CA 92680, (714) 731-7110, FAX: (714) 731-5457

Notes:

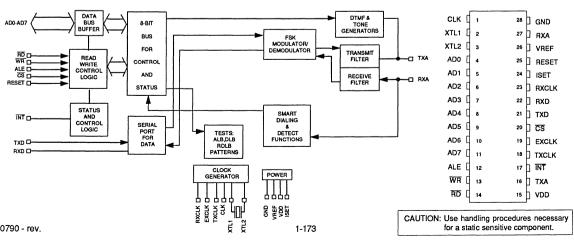
silicon systems*

Preliminary Data

July, 1990

1

DESCRIPTION


The SSI 73K321L is a highly integrated single-chip modem IC which provides the functions needed to construct a CCITT V.23 and V.21 compatible modem, capable of 0-300 bit/s full-duplex or 0-1200 bit/s halfduplex operation over dial-up telephone lines. The 73K321L provides 1200 bit/s operation in V.23 mode and 300 bit/s in V.21 mode. The SSI 73K321L also can both detect and generate the 2100 Hz answer tone needed for call initiation. The SSI 73K321L integrates analog, digital, and switched-capacitor array functions on a single substrate offering excellent performance and a high level of functional integration in a single 28or 22-pin DIP configuration. The SSI 73K321L operates from a single +5 volt supply with very low power consumption.

The SSI 73K321L includes the FSK modulator/demodulator functions, call progress and handshake tone monitor test modes, and a tone generator capable of producing DTMF, answer, calling tones. The SSI 73K321L is designed to appear to the systems designer as a microprocessor peripheral, and will easily interface with popular one-chip microprocessors (80C51 typical) for control of modem functions through its 8-bit multiplexed address/data bus or via an optional serial control bus. An ALE control line simplifies address demultiplexing. Data communications occurs through a separate serial port only. (Continued)

BLOCK DIAGRAM

FEATURES

- One-chip CCITT V.23 and V.21 standard compatible modem data pump
- Full-duplex operation at 0-300 bit/s (V.21) or 0-1200 bit/s (V.23) forward channel with or without 0-75 bits/s back channel
- Full Duplex 0-1200 bit/s (V.23) in 4-wire mode
- Pin and software compatible with other . SSI K-Series 1-chip modems
- Interfaces directly with standard microprocessors (8048, 80C51 typical)
- Serial (22-pin DIP) or parallel microprocessor bus (28-pin DIP) for control
- Serial port for data transfer
- Call progress, carrier, precise answer tone (2100 Hz), calling tone (1300 Hz) and FS mark detectors
- ٠ **DTMF** generator
- Test modes available: ALB, DL, RDL, Mark, Space, Alternating bit patterns
- Precise automatic gain control allows 45 dB dynamic range
- Space efficient 22- or 28-pin DIP packages
- CMOS technology for low power consumption using 30 mW @ 5V from a single power supply

DESCRIPTION (Continued)

The SSI 73K321L is ideal for either free standing or integral system modem applications where multi-standard data communications over the 2-wire switched telephone network is desired. Typical uses include videotex terminals. low-cost integral modems and built-in diagnostics for office automation or industrial control systems. The 73K321L's high functionality, low power consumption and efficient packaging simplify design requirements and increase system reliability in these applications. A complete modem requires only the addition of the phone line interface, a control microprocessor, and RS-232 level converter for a typical system. The SSI 73K321L is part of Silicon Systems K-Series family of pin and function compatible single-chip modem products. These devices allow systems to be configured for higher speeds and Bell or CCITT operation with only a single component change.

OPERATION

FSK MODULATOR/DEMODULATOR

The FSK modulator produces a frequency modulated analog output signal using two discrete frequencies to represent the binary data. V.21 mode uses 980 and 1180 Hz (originate, mark and space) or 1650 and 1850 Hz (answer, mark and space). V.23 mode uses 1300 and 2100 Hz for the main channel and 390 and 450 Hz for the back channel. The modulation rate of the back channel is up to 75 baud. Demodulation involves detecting the received frequencies and decoding them into the appropriate binary value.

PASSBAND FILTERS AND EQUALIZERS

High and low band filters are included to shape the amplitude and phase response of the transmit and receive signals and provide compromise delay equalization and rejection of out-of-band signals in the receive channel. Amplitude and phase equalization are necessary to compensate for distortion of the transmission line and to reduce intersymbol interference in the bandlimited receive signal.

AGC

The automatic gain control maintains a signal level at the input to the demodulators which is constant to within 1 dB. It corrects quickly for increases in signal which would cause clipping and provides a total receiver dynamic range of >45 dB.

PARALLEL BUS INTERFACE

Four 8-bit registers are provided for control, option select and status monitoring. These registers are addressed with the AD0, AD1, and AD2 multiplexed address lines (latched by ALE) and appear to a control microprocessor as four consecutive memory locations. Two control registers and the tone register are read/write memory. The detect register is read only and cannot be modified except by modem response to monitored parameters. The parallel bus interface is not available with the 22-pin package.

SERIAL COMMAND INTERFACE

The serial command mode allows access to the SSI 73K321L control and status registers via a serial command port. In this mode the A0, A1 and A2 lines provide register addresses for data passed through the data pin under control of the RD and WR lines. A read operation is initiated when the RD line is taken low. The first bit is available after RD is brought low and the next seven cycles of EXCLK will then transfer out seven bits of the selected address location LSB first. A write takes place by shifting in eight bits of data LSB first for eight consecutive cycles of EXCLK. WR is then pulsed low and data transferred into the selected register occurs on the rising edge of WR.

SPECIAL DETECT CIRCUITRY

The special detect circuitry monitors the received analog signal to determine status or presence of carrier, answer tone and weak received signal (long loop condition), special tones such as FSK marking and the 1300 Hz calling tone are also detected. A highly frequency selective call progress detector provides adequate discrimination to accurately detect European call progress signals.

DTMF GENERATOR

The DTMF generator will output one of 16 standard tone-pairs determined by a 4-bit binary value and TX DTMF mode bit previously loaded into the tone register. Dialing is initiated when the DTMF mode is selected using the tone register and the transmit enable (CR0 bit D1) is changed from 0 to 1.

PIN DESCRIPTION

POWER

NAME	28-PIN	22-PIN	TYPE	DESCRIPTION
GND	28	1	1	System Ground.
VDD	15	11	1	Power supply input, 5V $\pm 10\%.$ Bypass with 0.1 and 22 μF capacitors to GND.
VREF	26	21	0	An internally generated reference voltage. Bypass with 0.1 μF capacitor to GND.
ISET	24	19	I	Chip current reference. Sets bias current for op-amps. The chip current is set by connecting this pin to VDD through a 2 M Ω resistor. ISET should be bypassed to GND with a 0.1 μ F capacitor.

PARALLEL MICROPROCESSOR INTERFACE

	1	(I	
ALE	12	-	1	Address latch enable. The falling edge of ALE latches the address on AD0-AD2 and the chip select on CS.
AD0-AD7	4-11	-	I/O	Address/data bus. These bidirectional tri-state multi- plexed lines carry information to and from the internal registers.
<u>cs</u>	20	-	I	Chip select. A low during the falling edge of ALE on this pinallows a read cycle or a write cycle to occur. AD0-AD7 will not be driven and no registers will be written if \overline{CS} (latched) is not active. The state of \overline{CS} is latched on the falling edge of ALE.
CLK	1	2	0	Output clock. This pin is selectable under processor control to be either the crystal frequency (for use as a processor clock) or 16 x the data rate for use as a baud rate clock. The pin defaults to the crystal frequency on reset.
INT	17	13	0	Interrupt. This open drain output signal is used to inform the processor that a detect flag has occurred. The processor must then read the detect register to determine which detect triggered the interrupt. INT will stay low until the processor reads the detect register or does a full reset.
RD	14	-	l	Read. A low requests a read of the SSI 73K321L internal registers. Data cannot be output unless both RD and the latched CS are active or low.
RESET	25	20	I	Reset. An active high signal high on this pin will put the chip into an inactive state. All control register bits (CR0, CR1, Tone) will be reset. The output of the CLK pin will be set to the crystal frequency. An internal pull down resistor permits power on reset using a capacitor to VDD.

PIN DESCRIPTION (Continued)

PARALLEL MICROPROCESSOR INTERFACE (Continued)

NAME	28-PIN	22-PIN	TYPE	DESCRIPTION
WR	13	-	I	Write. A low on this informs the SSI 73K321L that data is available on AD0-AD7 for writing into an internal register. Data is latched on the rising edge of \overline{WR} . No data is written unless both \overline{WR} and the latched \overline{CS} are low.

SERIAL MICROPROCESSOR INTERFACE

1				
A0-A2	-	5-7	I	Register Address Selection. These lines carry register addresses and should be valid during any read or write operation.
DATA	-	8	I/O	Serial Control Data. Data for a read/write operation is clocked in or out on the falling edge of the EXCLK pin. The direction of data flow is controlled by the RD pin. RD low outputs data. RD high inputs data.
RD	-	10	I	Read. A low on this input informs the SSI 73K321L that data or status information is being read by the processor. The falling edge of the RD signal will initiate a read from the addressed register. The RD signal must continue for eight falling edges of EXCLK in order to read all eight bits of the referenced register. Read data is provided LSB first. Data will not be output unless the RD signal is active.
WR	-	9	I	Write. A low on this input informs the SSI 73K321L that data or status information has been shifted in through the DATA pin and is available for writing to an internal register. The normal procedure for a write is to shift in data LSB first on the DATA pin for eight consecutive falling edges of EXCLK and then to pulse WR low. Data is written on the rising edge of WR.
				s AD0-AD7, ALE and \overline{CS} are removed and replaced with the nected pin. Also, the \overline{RD} and \overline{WR} controls are used differently.
				in the 28-pin version by tying ALE high and \overline{CS} low. In this and AD0, AD1 and AD2 become A0, A1 and A2, respectively.

DTE USER INTERFACE

NAME	28-PIN	22-PIN	TYPE	DESCRIPTION
EXCLK	19	15	1	External Clock. Used for serial control interface to clock control data in or out of the 73K321L.
RXCLK	23	18	0	Receive Clock. A clock which is 16 x1200 or 16 x 300 baud data rate is output in either V.23 or V.21, respectively.
RXD	22	17	0	Received Digital Data Output. Serial receive data is available on this pin. The data is always valid on the rising edge of RXCLK when in synchronous mode. RXD will output constant marks if no carrier is detected.
TXCLK	18	14	0	Transmit Clock. TXCLK is always active. In V.23 or V.21 mode the output is either a 16×1200 baud clock or 16×300 baud clock, respectively.
TXD	21	16	I	Transmit Digital Data Input. Serial data for transmission is input on this pin. In asynchronous modes (1200 or 300 baud) no clocking is necessary.

ANALOG INTERFACE AND OSCILLATOR

RXA	27	22	I	Received modulated analog signal input from the phone line.
ТХА	16	12	0	Transmit analog output to the phone line.
XTL1 XTL2	2 3	3 4		These pins are for the internal crystal oscillator requiring a 11.0592 MHz parallel mode crystal and two load capacitors to Ground. XTL2 can also be driven from an external clock.

REGISTER DESCRIPTIONS

Four 8-bit internal registers are accessible for control and status monitoring. The registers are accessed in read or write operations by addressing the A0 and A1 address lines in serial mode, or the AD0 and AD1 lines in parallel mode. The AD0 and AD1 lines are latched by ALE. Register CR0 controls the method by which data is transferred over the phone line. CR1 controls the interface between the microprocessor and the SSI 73K321L internal state. DR is a detect register which provides an indication of monitored modem status conditions. TR, the tone control register, controls the DTMF generator, answer and guard tones and RXD output gate used in the modem initial connect sequence. All registers are read/write except for DR which is read only. Register control and status bits are identified below:

REGISTER	BIT SUMMARY
----------	--------------------

		ADDRESS				DATA BIT	NUMBER			
REGISTE	R	AD2 - AD0	D7	D6	D5	D4	D4 D3 D2			D0
CONTROL REGISTER 0	CR0	000	MODULATION OPTION	TRANSMIT MODE 3		TRANSMIT MODE 2	TRANSMIT MODE 1	TRANSMIT Mode 0	TRANSMIT ENABLE	ANSWER/ ORIGINATE
CONTROL REGISTER 1	CR1	001	TRANSMIT PATTERN 1	TRANSMIT PATTERN 0	ENABLE DETECT INTERRUPT	ADD PH. EQ. (V.23)	CLK CONTROL	RESET	TEST MODE 1	TEST MODE 0
DETECT REGISTER	DR	010			RECEIVE DATA		CARRIER DETECT			LONG LOOP
TONE CONTROL REGISTER	TR	011	RXD OUTPUT CONTROL	TRANSMIT CALLING TONE	TRANSMIT ANSWER TONE	TRANSMIT	DTMF3	DTMF2/ V.23 FDX	DTMF1	DTMF0/ ANSWER/SPEC. TONE SELECT
CONTROL REGISTER 2	CR2	100				THESE RE		ONS ARE RESER	VED FOR]
CONTROL REGISTER 3	CR3	101				USE WI	TH OTHER K-SER	IES FAMILY MEN	IBERS	
ID REGISTER	ID	110	ID	ID	ID					

NOTE: When a register containing reserved control bits is written into, the reserved bits must be programmed as 0's.

1

REGISTER ADDRESS TABLE ADDRESS DATA BIT NUMBER REGISTER AD2 - AD0 D7 D6 D5 D4 D3 D2 D1 DO CONTROL REGISTER ORIGINATE/ TRANSMIT TRANSMIT TRANSMIT TRANSMIT TRANSMIT MODULATION CR0 000 MODE MODE MODE MODE ENABLE OPTION 0 3 , 1 • 0-ANSWER 1-ORIGINATE IN V.23 MODE : 0-RECEIVE @ 1200 BIT/S, 0=V.23 FSK 1=V.21 FSK 0000-PWR DOWN 0-DISABLE 1=ENABLE TXA OUTPUT 1=ENABLE TXA OUTPUT 1100=FSK 0001=TRANSMIT DTMF TRANSMIT @ 75 BIT/S 1=RECEIVE @ 75 BIT/S, TRANSMIT @ 1200 BIT/S CONTROL REGISTER 1 ENABLE DETECT INTERRUPT TEST MODE 1 TRANSMIT PATTERN TRANSMIT CLK CONTROL TEST MODE CRI 001 ADD PH. EQ. RESET 1 0 ٥ 0=NORMAL EQ. 1=ADD EXTRA PHASE EQ. IN V.23 0=XTAL 1=16 X DATA RATE OUTPUT AT CLK PIN 00=TX DATA 0-DISARI ED 0=NORMAL 00-NORMAL 01=TX ALTERNATE 10=TX MARK 11=TX SPACE 00=NOHMAL ______ 01=ANALOG LOOPBACK 10=REMOTE DIGITAL LOOPBACK 1=ENABLED 1=RESET 11=LOCAL DIGITAL LOOPBACK DETECT RECEIVE CARRIER SPECIAL CALL LONG DR REGISTER 010 DATA DETECT TONE PROGRESS LOOF OUTPUTS RECEIVED DATA STREAM 0=CONDITION NOT DETECTED 1=CONDITION DETECTED TRANSMIT RXD OUTPUT CONTROL DTMF0/ SPECIAL TONE TONE CONTROL TRANSMIT TRANSMIT DTMF2/ V.23 FDX TR 011 ANSWER DTMF3 DTMF1 CALLING REGISTER RXD PIN 0=OFF 0=DATA 1=TX DTMF 4 BIT CODE FOR 1 OF 16 0=OFF 1=ON DUAL TONE COMB-INATIONS. OVERIDES OTHER TRANSMIT MODES 0=ANSWER TONE FREQ.=2225 Hz 0=NORMAL 1-0N D-ANSWER TONE FREC.-2225 Hz FSK MARK WILL BE INDICATED BY SPECIAL TONE BIT IN DR I-ANSWER TONE FREC.-2100 Hz EITHER 2100 Hz (IN ORIG.) OR 1300 Hz (IN ANS.) WILL BE INDICATED BY SPECIAL TONE BIT IN DB 1=TRI STATE 0=HALF DUPLEX V.23 1=ALLOWS V.23 FULL DUPLEX OPERATION BIT IN DB ID REGISTER ID 110 iD ID ID 00X-73K212 US 212/103 OR 73K322 V.23V 22V 21 01X-73K221 EUROPEAN V22V.21 or 73K302, 212V103202 10X-73K222 EUROPEAN V22V.21 or 73K302, 212V103202 110-73K224 BELL 212/103 AND V.22 bioV 22V 21 111-73K324L BELL 212/103 AND V.22 bioV 22V 21 111-73K324L GCTT V.226V, V22, V.21, V.23

CONTROL REGISTER 0

	D7	,	D6		D5	Τ	D	4	D3	D2	D1	D0	
CR0 000	MOD OPTI			TRANSMIT MODE 3			RAN: MOD	SMIT DE 2		TX DTMF	TRANSMIT ENABLE	ANSWER/ ORIGINATE	
BIT	BIT NO. NAME COND					NDI	TION	1	DESCRIPTIO	NC			
. D0	D0 Answer/ Originate				0				Selects answer mode (transmit in high band, receive in low band or in V.23 mode, receive at 1200 bit/s and transmit at 75 bit/s).				
		1							high band o transmit at 12	or in V.23 mo 200 bit/s). If in	ode, receive a	band,receive in at 75 bit/s and of TR=1, selects iguration.	
									Note: This bit works with TR bit D0 to program special tones detected in Tone Register. See detect and tone registers.				
D1			ransm			0			Disables transmit output at TXA.				
			Enable	2		1			Enables tran	smit output a	t TXA.		
									Note: Answer tone and DTMF TX control require TX enable.				
D5, 0	D4,D3,	Т	ransm	it	D5 I	04	D3 E	02					
D2			Mode		0	0	0	1	Transmit DT	MF			
D2					0	0	0	0	Selects powe digital interfa		e. All functions	disabled except	
					1	1	0	0	Selects FSK	operation.			
D6		I	Unused	ł		0			Not used; m	ust be written	as a "0."		
D7				dulation D7 D5 D4				Selects:					
		Option			0	1	1		FSK CCITT V.23 mode.				
					1	1	1		FSK CCITT	V.21 mode.			

		D7		D6	D5	D4	D3	D2	D1	D0		
CR1 001		NSMIT ITERN 1		NSMIT TERN 0	ENABLE DETECT INTER.	ADD PH. EQ.	CLK CONTROL	RESET	TEST MODE 1	TEST MODE 0		
BIT NO	BIT NO. NAME CONDITION						TION					
D1, D0 Test Mode			lode		1 D0	-						
			(rmal operating						
				L L	, ,	signal bac use the sa	Analog loopback mode. Loops the transmitted analog signal back to the receiver, and causes the receiver to use the same center frequency as the transmitter. To squelch the TXA pin, transmit enable must be forced low.					
			1	0	back to tra	note digital loc Insmit data int a on TXD is ic	ernally, and					
				1	1		al digital loopt d continues to					
D2		Res	et		0		Selects normal operation.					
			1		Resets modem to power down state. All control register bits (CR0, CR1, Tone) are reset to zero. The output of the clock pin will be set to the crystal frequency.							
D3		CLK Co (Clock Co			0	Selects 11.0592 MHz crystal echo output at CLK pin.						
					1	Selects 16x the data rate. (16 x 75 or 300 or 1200 Hz.)						
D4		Add Ph	. Eq.		0	Selects normal equalization.						
					1	In V.23 mode, additional phase equalization is added to the main channel filters when D4 is set to 1.						
D5		Enable D Interro			0	Disables interrupt at INT pin. All interrupts are normally disabled in power down modes.						
				1		Enables INT output. An interrupt will be generated with a change in status of DR bits D1-D3. The special tone and call progress detect interrupts are masked when the TX enable bit is set. Carrier detect is masked when TX DTMF is activated. All interrupts will be disabled if the device is in power down mode.			ecial tone when the when TX			
D7, D6		Trans										
		Pattern		C	0 0		ormal data tra e TXD pin.	nsmission	as controlle	ed by the		
						0 1		Selects an alternating mark/space transmit pattern for modem testing.				
				1			constant mark					
				1	1	Selects a	constant space	e transmit p	oattern.			

CONTROL REGISTER 1

DETECT REGISTER

	D7	D6	D5	D4	Т	D3	D2	D1	D0		
DR 010			RECEIVE DATA			CARR. DETECT	SPECIAL TONE	CALL PROG.	LONG LOOP		
BIT NO	. 1	NAME	CONDITION	I DE	SCF	RIPTION					
D0	Lo	ng Loop	0	Inc	Indicates normal received signal.						
			1	Inc	icate	es low receiv	ed signal leve	el.			
D1		Progress	0	No	call	progress tor	ne detected.				
		Detect	1	pro	gres	ss detection o	of call progr circuitry is active dz call progres	vated by er			
D2		Special Tone 0 No special tone detected as programmed and tone Register bit D0. Detect CR0 bit D0 and Tone Register bit D0.							'		
			1	Sp	Special tone detected. The detected tone is:						
				(1)	 (1) 2100 Hz answer tone if D0 of TR=1 and the device is in V.21 originate mode. 						
				(2)	(2) 1300 Hz calling tone if D0 of TR=1 and the device is in V.21 or V.23 answer mode.						
				(3)	(3) an FSK mark for the mode the device is set to receive in if D0 of TR = 0.						
				NC	NOTE: Tolerance on special tones is $\pm 3\%$.						
D3	Carr	ier Detect	0	No	No carrier detected in the receive channel.						
			1		Indicated carrier has been detected in the received channel.						
D4	ι	Inused		No	tuse	ed in the 73K	321L.				
D5	R	leceive Data		Th	Continuously outputs the received data stream. This data is the same as that output on the RXD pin, but it is not disabled when RXD is tri-stated.						
D6, D7				No	t use	ed.		×			

1

	E REGI	SIE	ĸ															
	D7	,	D6		1	25			D4	D3		D2		D1			D0	
TR 011	RXI OUTF CON ⁻	TUY	TRANSM CALLING TONE		TRANSMIT ANSWER TONE		ANSWER		TF	ANSMIT DTMF	DTMF 3	DT	MF	2	DTM	F 1	ANS SI	TMF 0/ S. TONE/ PECIAL NE/ SEL
BIT	BIT NO. NAME		(CONDITION				DESCRIPTION										
D0		C	TMF 0/	D	6 D5	5 D4	D0)	D0 intera	acts with b	its D	6, D	5, D	94, an	d CR	0 as	shown.	
		Ans	wer Tone/	>	(X	1	Х		Transmit	DTMF to	nes.							
			cial Tone/ ect/Select	\rightarrow	x x	0	0		Mark of a in D2 of	an FSK mo DR.	ode s	selec	ted	in CR	l0 is t	o be (detected	
				>	×	0	1			answer to mode is					in D2	2 of D	R if V.21	
									calling tor answer mo						of D	R if V.21		
				>	(1	0	0		Transmit	2225 Hz	ansv	ver to	one	in an	swer	mode	э.	
		1		>	(1	0	1		Transmit 2100 Hz answer tone in answer mode.							Э.		
D3, [D1, [0TMF 3, 2, 1, 0	D (1		D1 0 1	D0 0 - 1		transmitt	s 1 of 16 I ed when 1 t. Tone e	X D	TMF	and	d TX e	enable	e bit (CR0, bit	
									KEYBC EQUIVA	1		TMF D2			L	TON OW	IES HIGH	
									1		0	0	0	1	6	97	1209	
									2		0	0	1	0	6	97	1336	
									3		0	0	1	1		97	1477	
									4		0	1	0	0		70	1209	
									5		0	1	0	1		70	1336	
									6 7		0	1	1	0		70 52	1477 1209	
									8		1	0	0	0		52	1336	
									9		1	0	0	1		52	1477	
									0		1	0	1	0		41	1336	

BIT NO.	NAME	CONDITION	DESCRIPTION							
D3, D2, D1, D0			KEYBOARD EQUIVALENT			CO D1		TOI LOW	NES HIGH	
(Cont.)			*	1	0	1	1	941	1209	
			#	1	1	0	0	941	1477	
			A	1	1	0	1	697	1633	
			В	1	1	1	0	770	1633	
			С	1	1	1	1	852	1633	
		· · · · · · · · · · · · · · · · · · ·	D	0	0	0	0	941	1633	
D4	Transmit	0	Disabled DTMF.							
DTMF		1	Activates DTMF. The selected DTMF tones are trans mitted continuously when this bit is high. TX DTM overrides all other transmit functions.							
D5	Transmit	0	Disables answer tone generator.							
	Answer Tone	1	Enables answer tone generator. A 2100 Hz answ will be transmitted continuously when the transmi able bit is set. The device must be in answer mo						nsmit en-	
D6	Transmit	0	Disables calling tone generator.							
	Calling Tone	1	Transmit calling to	one in	eith	ner n	node.	•		
D7	RXD Output	0	Enables RXD pin.	Rec	eive	dat	a will	be output	on RXD.	
	Control	1	Disables RXD pin. The RXD pin reverts to a high impedance with internal weak pull-up resistor.						o a high	

TONE REGISTER (Continued)

ID REGISTER

		D7	D7 D6		6 D5			D4	D3	D2	D1	D0			
ID 110		ID	IC)	ID										
BIT NO	IO. NAME			C	CONI	DITION		DESC	RIPTION						
D7, D6	6, D5	Dev			D7 [06 D5		Indicates Device:							
		Identification 0 0 X SSI 73K212(L) or 73K322L													
		Jight			0	1 X		SSI 73	3K221(L) or 1	73K302L	3K302L				
					1 0 X SSI 73K222(L) or 73K321L				<u>, , , , , , , , , , , , , , , , , , , </u>						
				1	1 0		SSI 73K224L								
	1 1 1			SSI 73K324L											

ELECTRICAL SPECIFICATIONS

ABSOLUTE MAXIMUM RATINGS

PARAMETER	RATING	UNIT					
VDD Supply Voltage	14	V					
Storage Temperature	-65 to 150	°C					
Soldering Temperature (10 sec.)	260	°C					
Applied Voltage -0.3 to VDD+0.3 V							
Note: All inputs and outputs are protected from static charge using built-in, industry standard protection devices and all outputs are short-circuit protected.							

RECOMMENDED OPERATING CONDITIONS

PARAMETER	CONDITIONS	MIN	NOM	MAX	UNITS			
VDD Supply voltage		4.5	5	5.5	V			
TA, Operating Free-Air Temperature		-40		+85	°C			
Clock Variation	(11.0592 MHz) Crystal or external clock	-0.01		+0.01	%			
External Components (Refer to Application section for placement.)								
VREF Bypass Capacitor	(External to GND)	0.1			μF			
Bias setting resistor	(Placed between VDD and ISET pins)	1.8	2	2.2	MΩ			
ISET Bypass Capacitor	(ISET pin to GND)	0.1			μF			
VDD Bypass Capacitor 1	(External to GND)	0.1			μF			
VDD Bypass Capacitor 2	(External to GND)	22			μF			
XTL1 Load Capacitor	Depends on crystal characteristics;			40	pF			
XTL2 Load Capacitor	from pin to GND			20				

DC ELECTRICAL CHARACTERISTICS

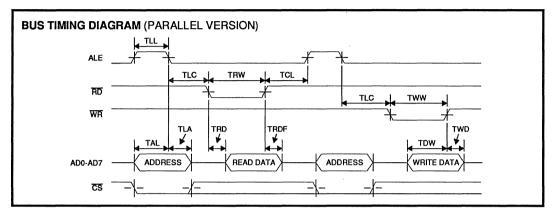
(TA = -40°C to 85°C, VDD = recommended range unless otherwise noted.)

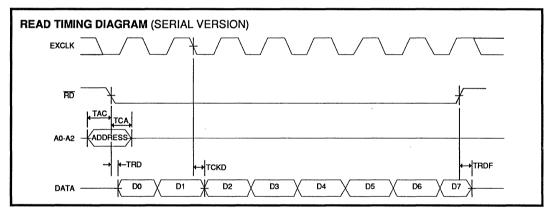
PARAMETER	CONDITIONS	MIN	NOM	МАХ	UNITS
IDD, Supply Current	ISET Resistor = 2 M Ω				
IDDA, Active	CLK = 11.0592 MHz		8	12	mA
IDD1, Power-down	CLK = 11.0592 MHz			4	mA
IDD2, Power-down	CLK = 19.200 KHz			3	mA
Digital Inputs					
VIH, Input High Voltage					
Reset, XTL1, XTL2		3.0		VDD	v
All other inputs		2.0		VDD	v
VIL, Input Low Voltage		0		0.8	v
IIH, Input High Current	VI = VIH Max			100	μA
IIL, Input Low Current	VI = VIL Min	-200			μA
Reset Pull-down Current	Reset = VDD	1		50	μA
Input Capacitance	All Digital Input Pins			10	pF
Digital Outputs					
VOH, Output High Voltage	IOH MIN = -0.4 mA	2.4		VDD	V
VOL, Output Low Voltage	IO MAX = 1.6 mA			0.4	V
VOL, CLK Output	IO = 3.6 mA			0.6	v
RXD Tri-State Pull-up Curr.	RXD = GND	-1		-50	μA
CMAX, CLK Output	Maximum Capacitive Load			15	pF

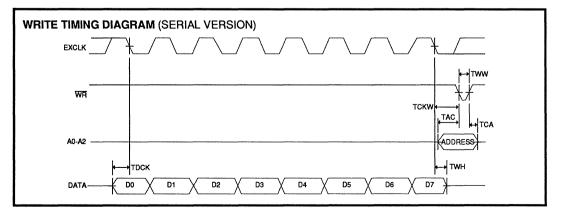
DYNAMIC CHARACTERISTICS AND TIMING

(TA = -40°C to +85°C, VDD = Recommended range unless otherwise noted.)

PARAMETERS	CONDITIONS	MIN	NOM	MAX	UNITS
FSK Modulator					
Output Freq. Error	CLK = 11.0592 MHz	-0.35		+0.35	%
Transmit Level	Transmit Dotting Pattern	-11	-10	-9	dBm0
Harmonic Distortion in 700-2900 Hz band	THD in the alternate band FSK		-60	-50	dB
Output Bias Distortion	Transmit Dotting Pattern in ALB @ RXD		±3		%
Total Output Jitter	Random Input in ALB @ RXD	-10		+10	%
NOTE: Parameters expressed	in dBm0 refer to the following definition	on:			
0 dB loss in th	e Transmit path to the line.				
2 dB gain in th	e Receive path from the line.				
Refer to the Basic Box	Modem diagram in the Applications s	ection fo	or the DAA	design.	
DTMF Generator					
Freq. Accuracy		-0.25		+0.25	%
Output Amplitude	Low Band, CR0 bit D2=1	-10	-9	-8	dBm0
Output Amplitude	High Band, CR0 bit D2=1	-8	-7	-6	dBm0
Twist	High-Band to Low-Band, as above	1.0	2.0	3.0	dB
Long Loop Detect	Not valid for V.23 back channel	-38		-28	dBm0
Dynamic Range	Refer to Performance Curves		43		dB
Call Progress Detector					
Detect Level	-3 dB points in 285 and 675 Hz	-38			dBm0
Reject Level	Test signal is a 460 Hz sinusoid			-45	dBm0
Delay Time	-70 dBm0 to -30 dBm0 STEP			40	ms
Hold Time	-30 dBm0 to -70 dBm0 STEP			40	ms
Hysteresis		2			dB
Carrier Detect					
Threshold	Single Tone	-48		-43	dBm0
Delay Time					
V.21		10		20	ms
V.23 Forward Channel		6		12	ms
V.23 Back Channel		25		40	ms
Hold Time					
V.21		6		20	ms
V.23 Forward Channel		3		8	ms
V.23 Back Channel		10		25	ms
Hysteresis		2			dB


DYNAMIC CHARACTERISTICS AND TIMING (Continued)


PARAMETERS	CONDITIONS	MIN	NOM	MAX	UNITS
Special Tone Detectors					
Detect Level	See definitions for TR bit D0 mode	-48		-43	dBm0
Delay Time	-70 dBm0 to -30 dBm0 Step				
2100 Hz answer tone		10		25	ms
1300 Hz calling tone		10		25	ms
390 Hz V.23 back channel mark		20		65	ms
980 or 1650 Hz V.21 marks		10		25	ms
Hold Time	-30 dBm0 to -70 dBm0 Step				
2100 Hz answer tone		4		15	ms
1300 Hz calling tone		3		10	ms
390 Hz V.23 back channel mark		10		25	ms
980 or 1650 Hz V.21 marks		5		15	ms
Hysteresis		2			dB
Detect Freq. Range	Any Special Tone	-3		+3	%
Output Smoothing Filter					
Output load	TXA pin; FSK Single Tone out for THD = -50 dB	10			kΩ
	in .3 to 3.4 kHz			50	pF
Out of Band Energy	Frequency >12 kHz in all modes			-60	dBm0
Output Impedance	TXA pin, TXA Enabled		20	50	Ω
Clock Noise	TXA pin; 76.8 kHz or 122.88 kHz in V.23 main channel		0.1	0.4	mVrms


DYNAMIC CHARACTERISTICS AND TIMING (Continued)

PARAMETERS	CONDITIONS	MIN	NOM	МАХ	UNITS
Timing (Refer to Timing Diagr	ams)				
TAL	CS/Addr. setup before ALE Low	30			ns
TLA	CS/Addr. hold after ALE Low	20			ns
TLC	ALE Low to RD/WR Low	40			ns
TCL	RD/WR Control to ALE High	10			ns
TRD	Data out from RD Low	0		140	ns
TLL	ALE width	60			ns
TRDF	Data float after RD High	0		200	ns
TRW	RD width	200		25000	ns
TWW	WR width	140		25000	ns
TDW	Data setup before WR High	150			ns
TWD	Data hold after WR High	20			ns
ТСКД	Data out after EXCLK Low			200	ns
тскw	WR after EXCLK Low	150			ns
TDCK	Data setup before EXCLK Low	150			ns
TAC	Address setup before control*	50			ns
TCA	Address hold after control*	50			ns
TWH	Data Hold after EXCLK	20			
 Control for setup is the fall Control for hold is the falling 	ing edge of $\overline{\text{RD}}$ or $\overline{\text{WR}}$. ng edge of $\overline{\text{RD}}$ or the rising edge of $\overline{\text{W}}$	R.			

TIMING DIAGRAMS

1

APPLICATIONS INFORMATION

GENERAL CONSIDERATIONS

Figures 1 and 2 show basic circuit diagrams for K-Series modem integrated circuits. K-Series products are designed to be used in conjunction with a control processor, a UART or RS-232 serial data interface, and a DAA phone line interface to function as a typical intelligent modern. The K-Series ICs interface directly with Intel 8048 and 80C51 microprocessors for control and status monitoring purposes. Two typical DAA arrangements are shown: one for a split $\pm 5 \text{ or} \pm 12$ volt design and one for a single 5 volt design. These diagrams are for reference only and do not represent production-ready modem designs.

K-Series devices are available with two control interface versions: one for a parallel multiplexed address/ data interface, and one for a serial interface. The parallel version is intended for use with 8039/48 or 8031/51 microcontrollers from Intel or many other manufacturers. The serial interface 22-pin version can be used with other microcontrollers or in applications where only a limited number of port lines are available or the application does not lend itself to a multiplexed address/data interface. The parallel versions may also be used in the serial mode, as explained in the data sheet pin description.

In most applications the controller will monitor the serial data for commands from the DTE and the received data for break signals from the far end modem. In this way, commands to the modem are sent over the same line as the transmitted data. In other applications the RS-232 interface handshake lines are used for modem control.

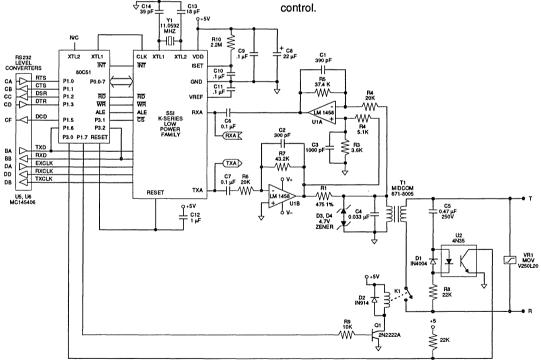


FIGURE 1: Basic Box Modem with Dual-Supply Hybrid

DIRECT ACCESS ARRANGEMENT (DAA)

The telephone line interfaces show two examples of how the "hybrid" may be implemented. The split supply design (Figure 1) is a typical two op-amp hybrid. The receive op-amp serves two purposes. It supplies gain to amplify the receive signal to the proper level for the modem's detectors and demodulator, and it removes the transmitted signal from the receive signal present at the transformer. This is done by supplying a portion of the transmitted signal to the non-inverting input of the receive op-amp at the same amplitude as the signal appearing at the transformer, making the transmit signal common mode.

The single-supply hybrid is more complex than the dual-supply version described above, but its use eliminates the need for a second power supply. This circuit (Figure 2) uses a bridged drive to allow undistorted signals to be sent with a single 5 volt supply. Because DTMF tones utilize a higher amplitude than data, these

signals will clip if a single-ended drive approach is used. The bridged driver uses an extra op-amp (U1A) to invert the signal coming from the gain setting op-amp (U1B) before sending it to the other leg of the transformer. Each op-amp then supplies half the drive signal to the transformer. The receive amplifier (U1C) picks off its signal at the junction of the impedance matching resistor and the transformer. Because the bottom leg of the transformer is being driven in one direction by U1A and the resistor is driven in the opposite direction at the same time by U1B, the junction of the transformer and resistor remains relatively constant and the receive signal is unaffected.

DESIGN CONSIDERATIONS

Silicon Systems' 1-chip modem products include all basic modem functions. This makes these devices adaptable for use in a variety of applications, and as easy to control as conventional digital bus peripherals.

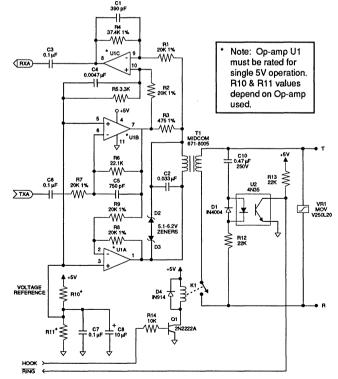


FIGURE 2: Single 5V Hybrid Version

Unlike digital logic circuitry, modem designs must properly contend with precise frequency tolerances and very low level analog signals, to ensure acceptable performance. Using good analog circuit design practices will generally result in a sound design. Following are additional recommendations which should be taken into consideration when starting new designs.

CRYSTAL OSCILLATOR

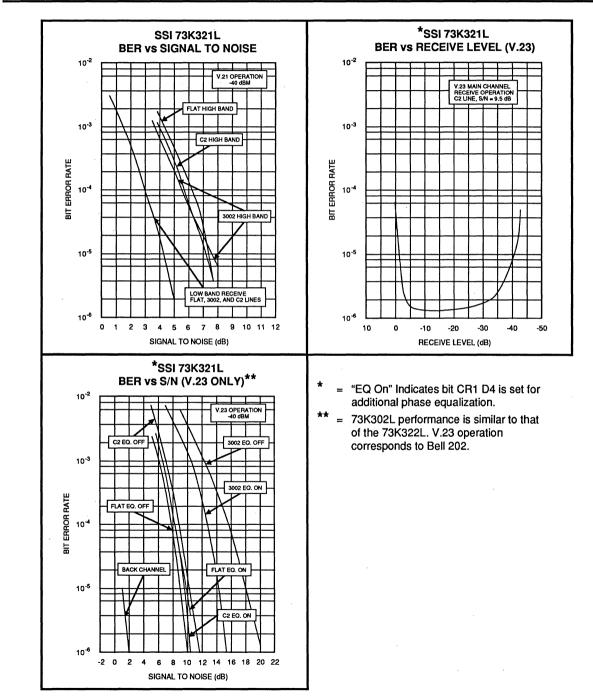
The K-Series crystal oscillator requires a parallel mode (antiresonant) crystal which operates at 11.0592 MHz. It is important that this frequency be maintained to within $\pm 0.01\%$ accuracy.

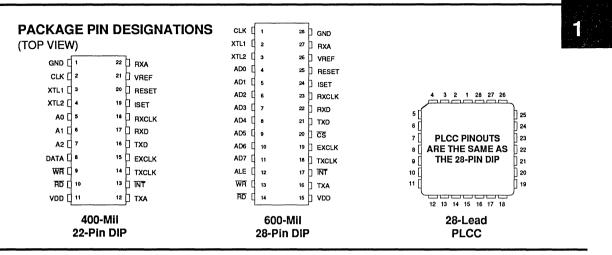
In order for a parallel mode crystal to operate correctly and to specification, it must have a load capacitor connected to the junction of each of the crystal and internal inverter connections, terminated to ground. The values of these capacitors depend primarily on the crystal's characteristics, and to a lesser degree on the internal inverter circuit. The values used affect the accuracy and start up characteristics of the oscillator.

LAYOUT CONSIDERATIONS

Good analog/digital design rules must be used to control system noise in order to obtain highest performance in modern designs. The more digital circuitry present on the PC board, the more this attention to noise control is needed. The modern should be treated as a high impedance analog device. A 22 µF electrolytic capacitor in parallel with a 0.1 µF ceramic capacitor between VDD and GND is recommended. Liberal use of ground planes and larger traces on power and ground are also highly favored. High speed digital circuits tend to generate a significant amount of EMI (Electro-Magnetic Interference) which must be minimized in order to meet regulatory agency limitations. To accomplish this, high speed digital devices should be locally bypassed, and the telephone line interface and K-Series device should be located close to each other near the area of the board where the phone line connection is accessed. To avoid problems, power supply and ground traces should be routed separately to the analog and digital functions on the board, and digital signals should not be routed near low level or high impedance analog traces. The analog and digital grounds should only connect at one point near the K-Series device around pin to avoid around loops. The K-Series modern IC's should have both high frequency and low frequency bypassing as close to the package as possible.

MODEM PERFORMANCE CHARACTERISTICS


The curves presented here define modem IC performance under a variety of line conditions while inducing disturbances that are typical of those encountered during data transmission on public service telephone lines. Test data was taken using an AEA Electronics' "Autotest I" modem test set and line simulator, operating under computer control. All tests were run fullduplex, using a Concord Data Systems 224 as the reference modem. A 511 pseudo-random-bit pattern was used for each data point. Noise was C-message weighted and all signal-to-noise (S/N) ratios reflect total power measurements similar to the CCITT V.56 measurement specification. The individual tests are defined as follows.


BER vs.S/N

This test measures the ability of the modem to operate over noisy lines with a minimum of data-transfer errors. Since some noise is generated in the best of dial-up lines, the modem must operate with the lowest S/N ratio possible. Better modem performance is indicated by test curves that are closest to the BER axis. A narrow spread between curves representing the four line parameters indicates minimal variation in performance while operating over a range of aberrant operating conditions. Typically, a DPSK modem will exhibit better BER-performance test curves receiving in the low band than in the high band.

BER vs. Receive Level

This test measures the dynamic range of the modem. Because signal levels vary widely over dial-up lines, the widest possible dynamic range is desirable. The minimum Bell specification calls for 36 dB of dynamic range. S/N ratios are held constant at the indicated values while the receive level is lowered from a very high to very low signal levels. The width of the "bowl" of these curves, taken at the BER point, is the measure of dynamic range.

ORDERING INFORMATION

PART DESCRIPTION	ORDER NO.	PKG. MARK
SSI 73K321L with Parallel Bus Interface 28-Pin 5 Volt Supply Plastic Dual-In-Line	SSI 73K321L - IP	73K321L - IP
Plastic Leaded Chip Carrier	SSI 73K321L - IH	73K321L - IH
SSI 73K321L with Serial Interface 22-Pin 5 Volt Supply Plastic Dual-In-Line	SSI 73K321SL - IP SSI 73K321SL - IC	73K321SL - IP 73K321SL - IC

Preliminary Data: Indicates a product not completely released to production. The specifications are based on preliminary evaluations and are not guaranteed. Small quantities are available, and Silicon Systems should be consulted for current information.

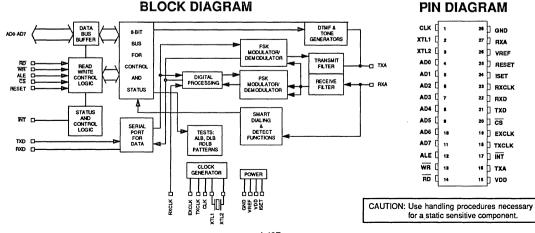
No responsibility is assumed by Silicon Systems for use of this product nor for any infringements of patents and trademarks or other rights of third parties resulting from its use. No license is granted under any patents, patent rights or trademarks of Silicon Systems. Silicon Systems reserves the right to make changes in specifications at any time without notice. Accordingly, the reader is cautioned to verify that the data sheet is current before placing orders.

Silicon Systems, Inc., 14351 Myford Road, Tustin, CA 92680, (714) 731-7110, FAX: (714) 731-5457

Notes:

silicon systems*

July, 1990


DESCRIPTION

The SSI 73K322L is a highly integrated single-chip modem IC which provides the functions needed to construct a CCITT V.23, V.22 and V.21 compatible modem, capable of 1200 or 0-300 bit/s full-duplex operation or 0-1200 bit/s half-duplex operation with or without the back channel over dial-up lines. The SSI 73K322L is an enhancement of the SSI 73K221L single-chip modem with performance characteristics suitable for European and Asian telephone systems. The SSI 73K322L produces either 550 or 1800 Hz auard tone, recognizes and generates a 2100 Hz answer tone, and supports V.21 for 300 Hz FSK operation. It also operates in V.23, 1200 bit/s FSK mode. The SSI 73K322L integrates analog, digital, and switched-capacitor array functions on a single substrate.offering excellent performance and a high level of functional integration in a single 28- or 22-pin DIP configuration. The SSI 73K322L operates from a single +5 volt supply with very low power consumption.

The SSI 73K322L includes the DPSK and FSK modulator/demodulator functions, call progress and handshake tone monitor test modes, and a tone generator capable of producing DTMF, answer, calling and 550 or 1800 Hz guard tone. This device supports V.23, V.22 (except mode v) and V. 21 modes of operation, allowing both synchronous and (Continued)

FEATURES

- One-chip CCITT V.23, V.22 and V.21 standard compatible modem data pump
- Full-duplex operation at 0-300 bit/s (FSK) or 600 and 1200 bit/s (DPSK) or 0-1200 bit/s (FSK) forward channel with or without 0-75 bit/s back channel
- Interfaces directly with standard microprocessors (8048, 80C51 typical)
- Serial (22-pin DIP) or parallel microprocessor bus (28-pin DIP) for control
- Serial port for data transfer
- Both synchronous and asynchronous modes of operation
- Call progress, carrier, precise answer tone (2100 Hz), calling tone (1300 Hz) and FSK mark detectors
- DTMF and 550 or 1800 Hz guard tone generators
- Test modes available: ALB, DL, RDL, Mark, Space, Alternating bit patterns
- Precise automatic gain control allows 45 dB dynamic range
- Space efficient 22- or 28-pin DIP packages
- CMOS technology for low power consumption using 30 mW @ 5V from a single power supply

DESCRIPTION (Continued)

asynchronous communications. The SSI 73K322L is designed to appear to the systems designer as a microprocessor peripheral, and will easily interface with popular one-chip microprocessors (80C51 typical) for control of modem functions through its 8-bit multiplexed address/data bus or via an optional serial control bus. An ALE control line simplifies address demultiplexing. Data communications occurs through a separate serial port only.

The SSI 73K322L is ideal for use in either free standing or integral system modem products where multi-standard data communications over the 2-wire switched telephone network is desired. Its high functionality, low power consumption and efficient packaging simplify design requirements and increase system reliability. A complete modem requires only the addition of the phone line interface, a control microprocessor, and RS-232 level converter for a typical system. The SSI 73K322L is part of Silicon Systems K-Series family of pin and function compatible single-chip modem products. These devices allow systems to be configured for higher speeds and Bell or CCITT operation with only a single component change.

OPERATION

ASYNCHRONOUS MODE

Data transmission for the DPSK mode requires that data ultimately be transmitted in a synchronous fashion, The SSI 73K322L includes ASYNC/SYNC and SYNC/ASYNC converters which delete or insert stop bits in order to transmit data at a regular rate. In asynchronous mode the serial data comes from the TXD pin into the ASYNC/SYNC converter. The ASYNC/SYNC converter accepts the data provided on the TXD pin which normally must be 1200 or 600 bit/s \pm 1.0%, -2.5%. The rate converter will then insert or delete stop bits in order to output a signal which is 1200 or 600 bit/s \pm .01% (\pm .01% is the crystal tolerance).

The SYNC/ASYNC converter also has an extended overspeed mode which allows selection of an output overspeed range of either +1% or +2.3%. In the extended overspeed mode, stop bits are output at 7/8 the normal width.

The serial data stream from the transmit buffer or the rate converter is passed through the data scrambler and onto the analog modulator. The data scrambler can be bypassed under processor control when unscrambled data must be transmitted. If serial input data contains a break signal through one character (including start and stop bits) the break will be extended to at least $2 \cdot N + 3$ bits long (where N is the number of transmitted bits/character).

Serial data from the demodulator is passed first through the data descrambler and then through the SYNC/ASYNC converter. The ASYNC/ASYNC converter will reinsert any deleted stop bits and output data at an intra-character rate (bit-to-bit timing) of no greater than 1219 bit/s. An incoming break signal (low through two characters) will be passed through without incorrectly inserting a stop bit.

SYNCHRONOUS MODE

The CCITT V.22 standard defines synchronous operation at 600 and 1200 bit/s. Operation is similar to that of the asynchronous mode except that data must be synchronized to a provided clock and no variation in data transfer rate is allowable. Serial input data appearing at TXD must be valid on the rising edge of TXCLK.

TXCLK is an internally derived signal in internal mode and is connected internally to the RXCLK pin in slave mode. Receive data at the RXD pin is clocked out on the falling edge of RXCLK. The ASYNCH/SYNCH converter is bypassed when synchronous mode is selected and data is transmitted out at the same rate as it is input.

DPSK MODULATOR/DEMODULATOR

In DPSK mode the SSI 73K322L modulates a serial bit stream into di-bit pairs that are represented by four possible phase shifts as prescribed by the V.22 standards. The base-band signal is then filtered to reduce intersymbol interference on the bandlimited 2-wire telephone line. Transmission occurs using either a 1200 Hz (originate mode) or 2400 Hz carrier (answer mode). Demodulation is the reverse of the modulation process, with the incoming analog signal eventually decoded into di-bits and converted back to a serial bit stream. The demodulator also recovers the clock which was encoded into the analog signal during modulation. Demodulation occurs using either a 1200 Hz carrier (answer mode or ALB originate mode) or a 2400 Hz carrier (originate mode or ALB answer mode). The SSI 73K322L uses a phase locked loop coherent demodulation technique for optimum receiver performance.

FSK MODULATOR/DEMODULATOR

The FSK modulator produces a frequency modulated analog output signal using two discrete frequencies to represent the binary data. V.21 mode uses 980 and 1180 Hz (originate, mark and space) or 1650 and 1850 Hz (answer, mark and space). V.23 mode uses 1300 and 2100 Hz for the main channel and 390 and 450 Hz for the back channel. The modulation rate of the back channel is up to 75 baud. Demodulation involves detecting the received frequencies and decoding them into the appropriate binary value. The rate converter and scrambler/descrambler are automatically bypassed in the V.21 or V.23 modes.

PASSBAND FILTERS AND EQUALIZERS

High and low band filters are included to shape the amplitude and phase response of the transmit and receive signals and provide compromise delay equalization and rejection of out-of-band signals in the receive channel. Amplitude and phase equalization are necessary to compensate for distortion of the transmission line and to reduce intersymbol interference in the bandlimited receive signal. The transmit signal filtering approximates a 75% square root of raised Cosine frequency response characteristic.

AGC

The automatic gain control maintains a signal level at the input to the demodulators which is constant to within 1 dB. It corrects quickly for increases in signal which would cause clipping and provides a total receiver dynamic range of >45 dB.

PARALLEL BUS INTERFACE

Four 8-bit registers are provided for control, option select and status monitoring. These registers are addressed with the AD0, AD1, and AD2 multiplexed address lines (latched by ALE) and appear to a control microprocessor as four consecutive memory locations. Two control registers and the tone register are read/write memory. The detect register is read only and cannot be modified except by modem response to monitored parameters.

SERIAL COMMAND INTERFACE

The serial command interface allows access to the SSI 73K322L control and status registers via a serial command port (22-pin version only). In this mode the A0, A1 and A2 lines provide register addresses for data

passed through the data pin under control of the $\overline{\text{RD}}$ and $\overline{\text{WR}}$ lines. A read operation is initiated when the $\overline{\text{RD}}$ line is taken low. The first bit is available after $\overline{\text{RD}}$ is brought low and the next seven cycles of EXCLK will then transfer out seven bits of the selected address location LSB first. A write takes place by shifting in eight bits of data LSB first for eight consecutive cycles of EXCLK. $\overline{\text{WR}}$ is then pulsed low and data transferred into the selected register occurs on the rising edge of $\overline{\text{WR}}$.

SPECIAL DETECT CIRCUITRY

The special detect circuitry monitors the received analog signal to determine status or presence of carrier, answer tone and weak received signal (long loop condition), special tones such as FSK marking and the 1300 Hz calling tone are also detected. A highly frequency selective call progress detector provides adequate discrimination to accurately detect European call progress signals.

DTMF GENERATOR

The DTMF generator will output one of 16 standard tone pairs determined by a 4-bit binary value and TX DTMF mode bit previously loaded into the tone register. Tone generation is initiated when the DTMF mode is selected using the tone register and the transmit enable (CR0 bit D1) is changed from 0 to 1. 1

PIN DESCRIPTION

POWER

NAME	28-PIN	22-PIN	ТҮРЕ	DESCRIPTION
GND	28	1	1	System Ground.
VDD	15	11	I	Power supply input, 5V $\pm 10\%.$ Bypass with .1 and 22 μF capacitors to GND.
VREF	26	21	0	An internally generated reference voltage. Bypass with .1 μ F capacitor to GND.
ISET	24	19	I	Chip current reference. Sets bias current for op-amps. The chip current is set by connecting this pin to VDD through a 2 M Ω resistor. ISET should be bypassed to GND with a .1 μ F capacitor.

PARALLEL MICROPROCESSOR INTERFACE

		_	_	
ALE	12	-	t	Address latch enable. The falling edge of ALE latches the address on AD0-AD2 and the chip select on \overline{CS} .
AD0-AD7	4-11	-	1/0	Address/data bus. These bidirectional tri-state multi- plexed lines carry information to and from the internal registers.
CS	20	-	I	Chip select. A low on this pin during the falling edge of ALE allows a read cycle or a write cycle to occur. AD0-AD7 will not be driven and no registers will be written if \overline{CS} (latched) is not active. The state of \overline{CS} is latched on the falling edge of ALE.
CLK	1	2	0	Output clock. This pin is selectable under processor control to be either the crystal frequency (for use as a processor clock) or 16 x the data rate for use as a baud rate clock in DPSK modes only. The pin defaults to the crystal fre- quency on reset.
INT	17	13	0	Interrupt. This open drain output signal is used to inform the processor that a detect flag has occurred. The processor must then read the detect register to determine which detect triggered the interrupt. INT will stay low until the processor reads the detect register or does a full reset.
RD	14	-	I	Read. A low requests a read of the SSI 73K322L internal registers. Data cannot be output unless both $\overline{\text{RD}}$ and the latched $\overline{\text{CS}}$ are active or low.
RESET	25	20	I	Reset. An active high signal on this pin will put the chip into an inactive state. All control register bits (CR0, CR1, Tone) will be reset. The output of the CLK pin will be set to the crystal frequency. An internal pull down resistor permits power on reset using a capacitor to VDD.

PARALLEL MICROPROCESSOR INTERFACE (Continued)

NAME	28-PIN	22-PIN	ТҮРЕ	DESCRIPTION
WR	13	-	I	Write. A low on this informs the SSI 73K322L that data is available on AD0-AD7 for writing into an internal register. Data is latched on the rising edge of \overline{WR} . No data is written unless both \overline{WR} and the latched \overline{CS} are low.

SERIAL MICROPROCESSOR INTERFACE

A0-A2		-	5-7	I	Register Address Selection. These lines carry register addresses and should be valid during any read or write operation.			
DATA		- 8		I/O	Serial Control Data. Data for a read/write operation is clocked in or out on the falling edge of the EXCLK pin. The direction of data flow is controlled by the RD pin. RD low outputs data. RD high inputs data.			
RD		-	10	1	Read. A low on this input informs the SSI 73K322L that data or status information is being read by the processor. The falling edge of the RD signal will initiate a read from the addressed register. The RD signal must continue for eight falling edges of EXCLK in order to read all eight bits of the referenced register. Read data is provided LSB first. Data will not be output unless the RD signal is active.			
WR	-	9	l	Write. A low on this input informs the SSI 73K322L that data or status information has been shifted in through the DATA pin and is available for writing to an internal register. The normal procedure for a write is to shift in data LSB first on the DATA pin for eight consecutive falling edges of EXCLK and then to pulse WR low. Data is written on the rising edge of WR.				
Note:	 In the serial, 22-pin version, the pins AD0-AD7, ALE and CS are removed and replaced with the pins; A0, A1, A2, DATA, and an unconnected pin. Also, the RD and WR controls are used differently. The serial control mode is provided in the 28-pin version by tying ALE high and CS low. In this configuration AD7 becomes DATA and AD0, AD1 and AD2 become A0, A1 and A2, respectively. 							

DTE USER INTERFACE

NAME	28-PIN	22-PIN	TYPE	DESCRIPTION
EXCLK	19	15	1	External Clock. This signal is used in synchronous DPSK transmission when the external timing option has been selected. In the external timing mode the rising edge of EXCLK is used to strobe synchronous DPSK transmit data available on the TXD pin. Also used for serial control interface.

0790 - rev.

NAME	28-PIN	22-PIN	ТҮРЕ	DESCRIPTION
RXCLK	23	18	0	Receive Clock. The falling edge of this clock output is coincident with the transitions in the serial received DPSK data output. The rising edge of RXCLK can be used to latch the valid output data. RXCLK will be valid as long as a carrier is present. In V.23 or V.21 mode a clock which is 16 x1200 or 16 x 300 Hz baud data rate is output, respectively.
RXD	22	17	0	Received Data Output. Serial receive data is available on this pin. The data is always valid on the rising edge of RXCLK when in synchronous mode. RXD will output constant marks if no carrier is detected.
TXCLK	. 18	. 14	0	Transmit Clock. This signal is used in synchronous DPSK transmission to latch serial input data on the TXD pin. Data must be provided so that valid data is available on the rising edge of the TXCLK. The transmit clock is derived from different sources depending upon the synchronization mode selection. In Internal Mode the clock is 1200 Hz generated internally. In External Mode TXCLK is phase locked to the EXCLK pin. In Slave Mode TXCLK is phase locked to the RXCLK pin. TXCLK is always active. In V.23 or V.21 mode the output is a 16 x 1200 or 16 x 300 Hz baud clock, respectively.
ТХО	21	16	1	Transmit Data Input. Serial data for transmission is applied on this pin. In synchronous modes, the data must be valid on the rising edge of the TXCLK clock. In asynchronous modes (1200 or 300 baud) no clocking is necessary. DPSK must be 1200/600 bit/s +1%, -2.5% or +2.3%, -2.5% in extended overspeed mode.

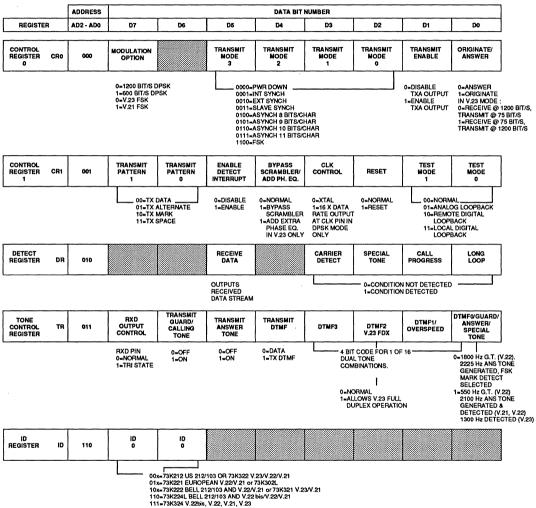
RS-232 INTERFACE (Continued)

ANALOG INTERFACE AND OSCILLATOR

RXA	27	22	I	Received modulated analog signal input from the tele- phone line interface.
ТХА	16	12	0	Transmit analog output to the telephone line interface.
XTL1 XTL2	2 3	3 4	1	These pins are for the internal crystal oscillator requiring a 11.0592 MHz parallel mode crystal and two load capacitors to Ground. XTL2 can also be driven from an external clock.

REGISTER DESCRIPTIONS

Four 8-bit internal registers are accessible for control and status monitoring. The registers are accessed in read or write operations by addressing the A0 and A1 address lines in serial mode, or the AD0 and AD1 lines in parallel mode. The AD0 and AD1 lines are latched by ALE. Register CR0 controls the method by which data is transferred over the phone line. CR1 controls the interface between the microprocessor and the SSI 73K322L internal state. DR is a detect register which provides an indication of monitored modem status conditions. TR, the tone control register, controls the DTMF generator, answer and guard tones and RXD output gate used in the modem initial connect sequence. All registers are read/write except for DR which is read only. Register control and status bits are identified below:


REGISTER BIT SUMMARY

		ADDRESS	DATA BIT NUMBER									
REGISTER		AD2 - AD0	D7	D6	D5	D4	D3	D2	D1	DO		
CONTROL REGISTER 0	CR0	000	MODULATION OPTION		TRANSMIT MODE 3	TRANSMIT MODE 2	TRANSMIT MODE 1	TRANSMIT MODE 0	TRANSMIT ENABLE	ANSWER/ ORIGINATE		
CONTROL REGISTER 1	CR1	001	TRANSMIT PATTERN 1	TRANSMIT PATTERN 0	ENABLE DETECT INTERRUPT	BYPASS SCRAMBLER/ ADD PH. EQ. (V.23)	CLK CONTROL	RESET	TEST MODE 1	TEST Mode 0		
DETECT REGISTER	DR	010			RECEIVE DATA	UNSCR. MARKS	CARRIER DETECT	SPECIAL TONE	CALL PROGRESS	LONG LOOP		
TONE CONTROL REGISTER	TR	011	RXD OUTPUT CONTROL	TRANSMIT GUARD/ CALLING TONE	TRANSMIT ANSWER TONE	TRANSMIT DTMF	DTMF3	DTMF2/ V.23 FDX	DTMF1/ OVERSPEED	DTMF0/GUARD/ ANSWER/SPEC. TONE SELECT		
CONTROL REGISTER 2	EGISTER CR2 100					THESE REGISTER LOCATIONS ARE RESERVED FOR			VED FOR			
CONTROL REGISTER 3	СЯЗ	101				USE WI	TH OTHER K-SER	IES FAMILY MEN	IBERS			
ID REGISTER	ID	110	ID	ID	ID							

NOTE: When a register containing reserved control bits is written into, the reserved bits must be programmed as 0's.

1

REGISTER ADDRESS TABLE

D0

D1

Selects DPSK asynchronous mode - 8 bits/character

Selects DPSK asynchronous mode - 9 bits/character

Selects DPSK asynchronous mode - 10 bits/character

Selects DPSK asynchronous mode - 11 bits/character

(1 start bit, 8 data bits, Parity and 1 or 2 stop bits).

(1 start bit, 6 data bits, 1 stop bit).

(1 start bit, 7 data bits, 1 stop bit).

(1 start bit, 8 data bits, 1 stop bit).

Selects FSK operation.

l	0,				00				00	02	Ы	50		
	MODI	6			ANSM ODE 3			NSMIT	TRANSMIT MODE 1	TRANSMIT MODE 0	TRANSMIT ENABLE	ANSWER/ ORIGINATE		
IO. NAM		NAME		CONDITION			л	DESCRIPTION						
		Answer/ Originate							Selects answer mode (transmit in high band, receive in low band or in V.23 HDX mode, receive at 1200 bit/s and transmit at 75 bit/s).					
									Selects originate mode (transmit in low band, receive in high band or in V.23 HDX mode, receive at 75 bit/s and transmit at 1200 bit/s).					
								Note: This bit works with TR bit D0 to program special tones detected in Tone Register. See detect and tone registers.						
		Т	nit O					Disables transmit output at TXA.						
		Enable		1				Enables transmit output at TXA.						
								ſ	Note: Answer tone and DTMF TX control require TX enable.					
					D5 D4 D3 D2			D2	-					
)	4,D3,	,D3, Transmit Mode				0	0	0		wer down mo kcept digital ir	de. All functio nterface.	ns		
				0	0	0	1	internally of appearing TXCLK.	lerived 1200 at TXD must	Hz signal. S	de TXCLK is an erial input data e rising edge of of RXD on the			
				0	0	1	0	internal syn nally to EX	nchronous, b	ut TXCLK is c	on is identical to connected inter- 01% clock must			
				0	0	1	1	synchrono		CLK is conned	eration as other cted internally to			
						and the second								

D3

D2

CONTROL REGISTER 0

D6

D5

D4

D7

CR0

000

D1

D5, D4, D3, D2

BIT NO. D0

0

1

0 1

0 1 0

0 1

0 1 1 0

0 1 1

1 1 0 0

CONTROL	REGISTER	0 (Continued)
---------	----------	---------------

	D7		D6]	D5		04	D3	D2	D1	D0		
CR0 000	MOD OPTI				TRANSMIT MODE 3		NSMIT DE 2	TRANSMIT MODE 1	TRANSMIT MODE 0	TRANSMIT ENABLE	ANSWER/ ORIGINATE		
BIT N	10.		NAME CONDITION			ON	DESCRIP	TION					
D6		0				0		Not used; must be written as a "0."					
					[07 D5	D4	Selects:					
D7		М	odulati	ion		0 0	Х	PSK asynchronous mode at 1200 bit/s.					
			Optior	וו		10	Х	PSK async	chronous mod	le at 600 bit/s	•		
			0 1 1				1	FSK CCITT V.23 mode.					
		1 1 1				1	FSK CCIT	T V.21 mode.					

CONTROL REGISTER 1

		D7		D6	D5	D4	D3	D2	D1	D0		
CR1 001		NSMIT ITERN 1			ENABLE DETECT INTER.	BYPASS SCRAMB/ ADD PH. EQ.	CLK CONTROL	RESET	TEST MODE 1	TEST MODE 0		
	Э.	NAN	IE	CON	IDITION	DESCRIPTION						
				D	1 D0							
D1, D0)	Test M	lode	(0 0	Selects	normal operat	ing mode.				
				, c) 1	signal ba	oopback mode ack to the rece same center fr the TXA pi ow.	iver, and ca equency as	uses the re the transn	eceiver to hitter. To		
				1	0	looped l	remote digita back to transr b a mark. Dat	nit data int	ernally, and			
				1	1		local digital lo RXD and cor					
D2		Res	et		0 Selects normal operation.							
					1	register	modem to po bits (CR0, CR of the CLK p cy.	1, Tone) ar	e reset to z	ero. The		

		D7	1	D6	D5	D4	D3	D2	D1	D0		
CR1 001		ANSMIT TTERN 1	ERN PATTERN		ENABLE DETECT INTER.	BYPASS SCRAMB/ ADD PH. EQ.	CLK CONTROL	RESET	TEST MODE 1	TEST MODE 0		
	0.	NAN	1E	CON		DESCR	IPTION					
D3		CLK Co	ontrol		0	Selects pin.	11.0592 MHz	crystal ech	o output at	CLK		
					1	Selects modes o	16 X the data only.	rate, output	at CLK pin	in DPSK		
D4		Bypa Scram			0		normal operat scrambler.	ion. DPSK	data is pa	ssed		
		Add Ph Equaliza			1	Selects Scrambler Bypass. DPSK data is routed around scrambler in the transmit path. In V.23 mode, additional phase equalization is added to the main channel filters when D4 is set to 1.						
D5		Enable [Detect		0	Disables	interrupt at INT pin.					
					1	with a ch tone and when the when T	INT output. hange in status d call progress TX enable bit X DTMF is ac if the device	s of DR bits s detect int t is set. Can ctivated.	D1-D4. Therrupts are bier detect is all interrupt	e special e masked s masked is will be		
				D	7 D6							
D7, D6	6	Trans Patte		C) 0		normal data tr state of the TX		as control	led		
				C) 1	Selects an alternating mark/space transmit pattern f modem testing.						
				1	0	Selects a constant mark transmit pattern.						
				1	1	Selects	a constant spa	ace transmi	t pattern.			

CONTROL REGISTER 1 (Continued)

DETECT REGISTER

	D7	D6	D5	D4	D3	D2	D1	D0			
DR 010			RECEIVE DATA	UNSCR. MARK	CARR. DETECT	SPECIAL TONE	CALL PROG.	LONG LOOP			
BIT NO).	NAME	CONDITION	N DES	SCRIPTION						
D0	L	ong Loop	0	Indi	cates normal	received signa	al.				
			1	Indi	cates low rece	eived signal le	vel.				
D1	Ca	II Progress	0	No	call progress t	one detected.					
		Detect	1	proç	gress detectio	ce of call prog n circuitry is a 620 Hz call p	activated by	/ energy in			
D2	Sp	ecial Tone Detect	0			etected as pro one Register		by			
	1		1	Spe	cial tone dete	cted. The det	ected tone	is:			
						ver tone if D0 o /.22 originate		the device			
						ng tone if D0 o V.22 answer r		the device			
				1	an FSK mark receive.	in the mode	the device	is set to			
	-				Tolerance on	special tones	is ±3%.				
D3	Ca	rrier Detect	0	No	carrier detecte	ed in the recei	ve channel	•			
			1		cated carrier nnel.	has been det	ected in th	e received			
D4	Ur	scrambled	0	No	unscrambled	mark.					
		Mark	1	the	Indicates detection of unscrambled marks in the received data. A valid indication requires that unscrambled marks be received for > 165.5 ± 6.5 ms.						
D5		Receive Data		This	s data is the sa	outs the receiv me as that out when RXD is t	put on the F				
D6, D7				Not	used.						

	TON	E REGI	STE	R											
TR 011 OUTPUT CNF. GUARD/ CALLING TONE ANSWER TONE DTMF DTMF V.23 FDX OVER- SPEED G.7/ANSW/ SPEED BIT NO. NAME CONDITION DESCRIPTION SELECT BIT NO. NAME CONDITION DESCRIPTION SELECT D0 DTMF 0 X X 1 X Transmit DTMF tones. D0 DTMF 0 X X 1 X 0 Select 1800 Hz guard tone if in V.22 and answer mode in CR0. Special Tone/ Answer Tone 1 X 0 0 Markof an FSK mode selected in CR0 is to be detected in CR0. Special Tone/ Detect/Select X 0 0 Markof an FSK mode selected in CR0 is to be detected in CR0. X X 0 0 0 Transmit 225 Hz Answer Tone Transmit 220 DR if V.21 or V.22 answer mode is selected in CR0. X 0 0 0 1 Transmit 225 Hz Answer Tone D1 DTMF 1/ Overspeed 0 0 1 Transmit 220 DR if V.21 or V.23 mode. D2 DTMF 3, V.23 FDX		D7	,	D6		C)5			D4	D3	D2	D	1	D0
D0 DTMF 0 D6 D5 D4 D0 D0 interacts with bits D6, D4, and CR0 as shown. Transmit DTMF tones. D0 DTMF 0 X X 1 X Transmit DTMF tones. Select 1800 Hz guard tone if in V.22 and answer mode in CR0. Select 1800 Hz guard tone if in V.22 and answer mode in CR0. Special Tone/ Detect/Select 1 X 0 0 Select 550 Hz guard tone if in V.22 and answer mode in CR0. X X 0 0 Mark of an FSK mode selected in CR0 is to be detected in D2 of DR if V.21 or V.22 originate mode is selected in CR0. X X 0 1 2100 Hz answer tone will be detected in D2 of DR if V.21 or V.22 answer mode is selected in CR0. X 0 0 0 Transmit 2205 Hz Answer Tone X 1 0 1 Transmit 2100 Hz Answer Tone X 1 0 1 Transmit 2100 Hz Answer Tone D1 DTMF 1/ Overspeed 0 D2 DTMF 2/ V.23 FDX 0 0 D3, D2, D1, D0 DTMF 3, 2, 1, 0 1 1 D1, D0 2, 1, 0 1 1 1 D1 T 1 1 1 1 D2 DTMF 3, D1, D0 0 0 0 0 0 D1, D0		OUTF	TUY	GUARD CALLING	/ A	NS	WE						OVE	R-	G.T./ANSW./ SP. TONE/
D0 DTMF 0 X X 1 X Transmit DTMF tones. Guard Tone/ Answer Tone 1 X 0 0 Select 1800 Hz guard tone if in V.22 and answer mode in CR0. Special Tone/ Detect/Select 1 X 0 1 Select 550 Hz guard tone if in V.22 and answer mode in CR0. X X 0 0 Mark of an FSK mode selected in CR0 is to be detected in D2 of DR. X X 0 0 Mark of an FSK mode selected in CR0 is to be detected in D2 of DR. X X 0 0 1 2100 Hz answer tone will be detected in D2 of DR if V.21 or V.22 answer mode is selected in CR0. Mark of an FSK mode selected in CR0. 1300Hz calling tone will be detected in D2 of DR if V.21 answer mode is selected in CR0. Mark of an FSK mode selected in CR0. 1 0 1 Transmit 2100 Hz answer Tone D1 DTMF 1/ Overspeed 0 0 0 1 Transmit 2100 Hz answer Tone D2 DTMF 2/ V.23 FDX 1 0 1 Transmit 2100 Hz answer tone in V.23 mode. D3 D2, 1, 0 1 1 1 <td>BIT</td> <td>10.</td> <td></td> <td>NAME</td> <td>С</td> <td>ONE</td> <td>ытю</td> <td>лс</td> <td></td> <td>DESC</td> <td>RIPTION</td> <td></td> <td></td> <td></td> <td></td>	BIT	10.		NAME	С	ONE	ытю	лс		DESC	RIPTION				
Guard Tone/ Answer Tone 1 X 0 0 Select 1800 Hz guard tone if in V.22 and answer mode in CR0. Special Tone/ Detect/Select 1 X 0 1 Select 550 Hz guard tone if in V.22 and answer mode in CR0. X X 0 0 Markof an FSK mode selected in CR0 is to be detected in D2 of DR. X X 0 0 Markof an FSK mode selected in CR0 is to be detected in D2 of DR. X X 0 0 1 2100 Hz answer tone will be detected in D2 of DR if V.21 or V.22 originate mode is selected in CR0. 1 X 0 0 0 Transmit 225 Hz Answer Tone D1 DTMF 1/ Overspeed 0 0 0 Transmit 2100 Hz Answer Tone D2 DTMF 2/ V.23 FDX 0 0 0 Transmit 2100 Hz Answer Tone D2 DTMF 3, V.23 FDX 0 0 0 - Asynchronous DPSK 1200 or 600 bit/s +1.0% -2.5%. D2 DTMF 3, V.23 FDX 0 0 0 - Programs 1 of 16 DTMF tone pairs that will be transmitted when TX DTMF and TX enable bit (CR0, bit D1) are set. Tone encoding is shown below:					D6	D5	D4	D0		D0 interacts with bits D6, D4, and CR0 as shown.					as shown.
Answer Tone mode in CR0. Special Tone/ Detect/Select 1 X 0 1 Select 550 Hz guard tone if in V.22 and answer mode in CR0. X X 0 0 Mark of an FSK mode selected in CR0 is to be detected in D2 of DR. X X 0 0 Mark of an FSK mode selected in CR0 is to be detected in D2 of DR. X X 0 0 Mark of an FSK mode selected in CR0 is to be detected in D2 of DR. X X 0 0 1 Answer tone will be detected in D2 of DR if V.21 or V.22 answer mode is selected in CR0. X 0 0 0 Transmit 2225 Hz Answer Tone X 1 0 1 Transmit 2100 Hz Answer Tone D1 DTMF 1/ Overspeed 0 0 Asynchronous DPSK 1200 or 600 bit/s +1.0% -2.5%. D2 DTMF 2/ V.23 FDX 0 1 Asynchronous DPSK 1200 or 600 bit/s +2.3% -2.5%. D3 D2 DTMF 3, D1, D0 0 0 0 0 J3, D2, D1, D0 Z, 1, 0 1 1 1 1 1	D0			OTMF 0	х	Х	1	Х		Transmit DTMF tones.					
Detect/Select X X 0 0 Mark of an FSK mode selected in CR0 is to be detected in D2 of DR. X X 0 0 Mark of an FSK mode selected in CR0 is to be detected in D2 of DR if V.21, or V.22 originate mode is selected in CR0. X X 0 0 1 2100 Hz answer tone will be detected in D2 of DR if V.21, or V.22 originate mode is selected in CR0. X X 0 0 0 Transmit 2225 Hz Answer Tone X 1 0 1 Transmit 2100 Hz Answer Tone D1 DTMF 1/ 0 0 0 Asynchronous DPSK 1200 or 600 bit/s +1.0% -2.5%. D2 DTMF 2/ 0 Half-duplex asymetric operation in V.23 mode. 1 D3 D2, DTMF 3, 0 0 0 - D1, D0 2, 1, 0 1 1 1 1 1 D1, D0 2, 1, 0 1 1 1 1 1 1 D3 D2, 1, 0 1 1 1 1 1 0 0 1 1					1	Х	0	0		e e e e e e e e e e e e e e e e e e e					d answer
in D2 of DR. X X X 0 1 2100 Hz answer tone will be detected in D2 of DR if V.21 or V.22 originate mode is selected in CR0. 1300 Hz calling tone will be detected in D2 of DR if V.21, or V.22 answer mode is selected in CR0. 1300 Hz calling tone will be detected in D2 of DR if V.21, or V.22 answer mode is selected in CR0. X 0 0 0 Transmit 2225 Hz Answer Tone D1 DTMF 1/ 0 1 Transmit 2100 Hz Answer Tone D2 DTMF 1/ 0 0 0 Asynchronous DPSK 1200 or 600 bit/s +1.0% -2.5%. D2 DTMF 2/ 0 0 1 Asynchronous DPSK 1200 or 600 bit/s +2.3% -2.5%. D2 DTMF 3/ 0 0 0 -2 D3, D2, D1, D0 DTMF 3, 0 0 0 -2 D1, D0 2, 1, 0 1 1 1 1 1 D1, D0 2, 1, 0 1 1 1 1 1 1 D1, D0 2, 1, 0 1 1 1 1 1 1 1 1					1	х	0	1			•	ard tone if	in V.22	and	answer mode
D1 DTMF 1/ Overspeed O O O Transmit 2225 Hz Answer Tone D2 DTMF 2/ V.23 FDX 0 0 0 Transmit 2100 Hz Answer Tone D3, D2, D1, D0 DTMF 3, 2, 1, 0 0 0 0 0 0 Half-duplex (4-wire) operation in V.23 mode. D1 Transmitted when TX DTMF and TX enable bit (CR0, bit D1 are set. Tone encoding is shown below: No D3 D2 D1 D0 Programs 1 of 16 DTMF tone pairs that will be transmitted when TX DTMF and TX enable bit (CR0, bit D1) are set. Tone encoding is shown below: KEYBOARD 1 1 1 1 697 1209 1 0 0 0 1 697 1336 1 0 0 0 1 6 0 1 697 1336					Х	Х	0	0				ode selecte	ed in Cl	R0 is	to be detected
D1 DTMF 1/ Overspeed 0 0 0 0 1 Transmit 2225 Hz Answer Tone D1 DTMF 1/ Overspeed D4 D1 Transmit 2100 Hz Answer Tone D2 DTMF 2/ V.23 FDX 0 0 Asynchronous DPSK 1200 or 600 bit/s +1.0% -2.5%. D2 DTMF 2/ V.23 FDX 0 0 Asynchronous DPSK 1200 or 600 bit/s +2.3% -2.5%. D3 D2 DTMF 3, 0 0 0 - D1, D0 2, 1, 0 1 1 1 1 1 1 L1 1 1 1 1 1 1 1 1 D3, D2, D1, D0 2, 1, 0 1 1 1 1 1 1 1 1 D1, D0 2, 1, 0 1 1 1 1 1 1 1 1 L2 0 0 0 0 0 0 1 1 1 1 D3 D2 D1 D0 D1 </td <td></td> <td></td> <td></td> <td></td> <td>х</td> <td>х</td> <td>0</td> <td>1</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>					х	х	0	1							
D1 DTMF 1/ Overspeed D4 D1 Transmit 2100 Hz Answer Tone D1 DTMF 1/ Overspeed D4 D1 D1 interacts with D4 as shown. D2 DTMF 2/ V.23 FDX 0 0 1 Asynchronous DPSK 1200 or 600 bit/s +1.0% -2.5%. D2 DTMF 2/ V.23 FDX 0 0 1 Asynchronous DPSK 1200 or 600 bit/s +2.3% -2.5%. D3, D2, D1, D0 DTMF 3, 2, 1, 0 0 0 0 0 0 D3, D2, D1, D0 DTMF 3, 2, 1, 0 0 0 0 0 0 0 1 KEYBOARD DTMF CODE TONES TONES LOW HIGH 1 0 0 0 1 0 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1											0				
D1 DTMF 1/ Overspeed D4 D1 D1 interacts with D4 as shown. D2 DTMF 2/ V.23 FDX 0 0 Asynchronous DPSK 1200 or 600 bit/s +1.0% -2.5%. D2 DTMF 2/ V.23 FDX 0 1 Asynchronous DPSK 1200 or 600 bit/s +2.3% -2.5%. D3 D2 DTMF 3, D1, D0 0 0 0 0 D3, D2, D1, D0 DTMF 3, 2, 1, 0 0 0 0 0 0 M1 1 1 1 1 1 1 1 1 M2, D1, D0 2, 1, 0 1 1 1 1 1 1 1 1 M3, D2, D1, D0 2, 1, 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0					Х	0	0	0		Transn	nit 2225 H:	z Answer T	one		
D1 DTMF 1/ Overspeed 0 0 Asynchronous DPSK 1200 or 600 bit/s +1.0% -2.5%. D2 DTMF 2/ V.23 FDX 0 1 Asynchronous DPSK 1200 or 600 bit/s +2.3% -2.5%. D2 DTMF 2/ V.23 FDX 0 0 1 Half-duplex asymetric operation in V.23 mode. D3, D2, D1, D0 DTMF 3, 2, 1, 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 D1, D0 2, 1, 0 1 1 1 1 1 1 1 1 KEYBOARD DTMF CODE TONES TONES LOW HIGH 1 0 0 0 1 6 1 0 0 1 0 1 697 1336 2 0 0 1 0 0 1 697 1477 4 0 1 0 770 1209 5 0 1 0 770 1336 6					Х	1	0	1		Transn	nit 2100 H	z Answer T	one		
Overspeed 0 1 Asynchronous DPSK 1200 or 600 bit/s +2.3% -2.5%. D2 DTMF 2/ V.23 FDX 0 Half-duplex asymetric operation in V.23 mode. D3, D2, DTMF 3, 0 0 0 - D1, D0 2, 1, 0 1 1 1 1 1 KEYBOARD DTMF CODE TONES TONES TONES EQUIVALENT D3 D2 D1 D0 V2, 1, 0 1 1 1 1 1 1 D1, D0 2, 1, 0 1 1 1 1 1 1 1 V2, 1, 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0						D4	D1		_	D1 inte	racts with	D4 as show	wn.		
D2 DTMF 2/ V.23 FDX 0	D1					0	0			Asynch	ronous DI	PSK 1200 (or 600	bit/s	+1.0% -2.5%.
V.23 FDX 1 Full-duplex (4-wire) operation in V.23 mode. D3, D2, DTMF 3, 0 <td></td> <td></td> <td></td> <td></td> <td></td> <td>0</td> <td>1</td> <td></td> <td>_</td> <td>Asynch</td> <td>ronous DI</td> <td>PSK 1200 (</td> <td>or 600</td> <td>bit/s</td> <td>+2.3% -2.5%.</td>						0	1		_	Asynch	ronous DI	PSK 1200 (or 600	bit/s	+2.3% -2.5%.
D3 D2 D1 D0 Programs 1 of 16 DTMF tone pairs that will be D1, D0 2, 1, 0 1	D2					0)			Half-du	plex asym	etric opera	tion in	V.23	mode.
D3, D2, D1, D0 DTMF 3, 2, 1, 0 1 1 <th1< th=""> <th1< <="" td=""><td></td><td></td><td>v.</td><td>23 FDA</td><td></td><td>1</td><td>l</td><td></td><td></td><td>Full-du</td><td>plex (4-wir</td><td>e) operatio</td><td>on in V.</td><td>23 m</td><td>ode.</td></th1<></th1<>			v.	23 FDA		1	l			Full-du	plex (4-wir	e) operatio	on in V.	23 m	ode.
D1, D0 2, 1, 0 1 1 1 1 1 transmitted when TX DTMF and TX enable bit (CR0, bit D1) are set. Tone encoding is shown below: KEYBOARD EQUIVALENT DTMF CODE D3 TONES LOW TONES 1 0 0 1 697 1209 2 0 0 1 697 1336 3 0 0 1 1 697 1477 4 0 1 0 0 770 1209 5 0 1 0 1 770 1336 6 0 1 1 0 770 1477															
D1) are set. Tone encoding is shown below: KEYBOARD EQUIVALENT DTMF CODE D3 D2 D1 D0 TONES LOW HIGH 1 0 0 1 697 1209 2 0 0 1 0 697 1336 3 0 0 1 1 697 1477 4 0 1 0 0 770 1209 5 0 1 0 770 1336 6 0 1 0 770 1477	•				-	-		-							
EQUIVALENT D3 D2 D1 D0 LOW HIGH 1 0 0 0 1 697 1209 2 0 0 1 0 697 1336 3 0 0 1 1 697 1477 4 0 1 0 0 770 1209 5 0 1 0 1 770 1336 6 0 1 1 0 770 1477	D1, D	0	:	2, 1, 0	1	1	1	1							
2 0 0 1 0 697 1336 3 0 0 1 1 697 1477 4 0 1 0 0 770 1209 5 0 1 0 1 770 1336 6 0 1 1 0 770 1477															
3 0 0 1 1 697 1477 4 0 1 0 0 770 1209 5 0 1 0 1 770 1336 6 0 1 1 0 770 1477										-		0 0 0	1	69	7 1209
4 0 1 0 770 1209 5 0 1 0 1 770 1336 6 0 1 1 0 770 1477										2	2	0 0 1	0	69	7 1336
5 0 1 0 1 770 1336 6 0 1 1 0 770 1477															
6 0 1 1 0 770 1477															
									ł						
									ł						

0790 - rev.

1

TONE REGISTER (Continued)

	D	7	D6	D5	D4	D3	Г	02	р	1	D0	
TR 011	R) OUT CON	(D PUT	TRANSMIT GUARD/ CALLING TONE		TRANSMIT DTMF	DTMF 3	DT	MF 2/	DTM	IF 1/ ER-	DTMF 0/ GUARD/ SPECIAL TONE SEL	
віт і	NO.		NAME	CONDITION	DESC	DESCRIPTION						
D3, [D1, [OARD ALENT		MF C D2 D	ODE 1 D0		rones W High	
(Cont.	.)					3	1	0	0 0	85	2 1336	
						Э	1	0	01	85	2 1477	
						00	1	0	10	94	1 1336	
						*	1		1 1	94	1 1209	
						#	1		0 0	94		
						۹	1) 1	69		
						3	1		10	77(
						2	1		1 1	852		
)	0	0.	0 0	94	1 1633	
D4			ransmit DTMF									
			DTMF	1	transm		tinud	ously	when	this	F tones are bit is high. nctions.	
D5			ransmit	0	Disable	Disables answer tone generator.						
		Ans	wer Tone	1	answei transm mode.	it enable b	be tra it is se iit ans	insmit et. Th	ted cor e devic	ntinuo e mus	0 Hz usly when the t be in answer ice must be in	
D6			Guard or ling Tone	0	Disable	es guard/c	alling	tone	gener	ator.		
				1	otherw	nit guard to ise transn ng V.23 m	nit ca				vering; v other mode	
D7			D Output Control	0	Enable RXD.	s RXD pir	. Re	eceive	data v	vill be	output on	
				1		Disables RXD pin. The RXD pin reverts to a high impedance with internal weak pull-up resistor.						

ID REC	GISTI	ER										
		D7	De	6		D5		D4	D3	D2	D1	D0
ID 110) ID								
BIT NO) .	NA	ME	С	ON	DITI	ION	DES	CRIPTION			
					D7 D6 D5 Indicates Device:							
D7, D6	;	Dev			0	0	х	SSI	73K212(L)	or 73K322L		
		Identifi Signa			0	1	х	SSI	73K221(L)	or 73K302L		
1		Gigine			1	0	х	SSI	73K222(L)	or 73K321L		
					1	1	0	SSI	73K224L			
					1	1	1	SSI	73K324L			

ELECTRICAL SPECIFICATIONS

ABSOLUTE MAXIMUM RATINGS

- -

PARAMETER	RATING	UNIT
VDD Supply Voltage	14	V
Storage Temperature	-65 to 150	°C
Soldering Temperature (10 sec.)	260	°C
Applied Voltage	-0.3 to VDD+0.3	V
Note: All inputs and outputs are protected to devices and all outputs are short-circuit protected to the short-circuit prote		ry standard protection

RECOMMENDED OPERATING CONDITIONS

PARAMETER	CONDITIONS	MIN	NOM	MAX	UNITS
VDD Supply voltage		4.5	5	5.5	V
TA, Operating Free-Air Temp.		-40		+85	°C
Clock Variation	(11.0592 MHz) Crystal or external clock	-0.01		+0.01	%
External Components (Refer to	Application section for placement.)				
VREF Bypass Capacitor	(External to GND)	0.1			μF
Bias setting resistor	(Placed between VDD and ISET pins)	1.8	2	2.2	MΩ
ISET Bypass Capacitor	(ISET pin to GND)	0.1			μF
VDD Bypass Capacitor 1	(External to GND)	0.1			μF
VDD Bypass Capacitor 2	(External to GND)	22			μF
XTL1 Load Capacitor	Depends on crystal characteristics;			40	pF
XTL2 Load Capacitor	from pin to GND			20	

DC ELECTRICAL CHARACTERISTICS

(TA = -40°C to 85°C, VDD = recommended range unless otherwise noted.)

PARAMETER	CONDITIONS	MIN	NOM	MAX	UNITS
IDD, Supply Current	ISET Resistor = 2 M Ω				
IDDA, Active	CLK = 11.0592 MHz		8	12	mA
IDD1, Power-down	CLK = 11.0592 MHz			4	mA
IDD2, Power-down	CLK = 19.200 KHz			3	mA
Digital Inputs					
VIH, Input High Voltage					
Reset, XTL1, XTL2		3.0		VDD	v
All other inputs		2.0		VDD	v
VIL, Input Low Voltage		0		0.8	v
IIH, Input High Current	VI = VIH Max			100	μA
IIL, Input Low Current	VI = VIL Min	-200			μA
Reset Pull-down Current	Reset = VDD	1		50	μΑ
Input Capacitance	All Digital Input Pins			10	pF
Digital Outputs					
VOH, Output High Voltage	IOH MIN = -0.4 mA	2.4		VDD	v
VOL, Output Low Voltage	IO MAX = 1.6 mA			0.4	V
VOL, CLK Output	IO = 3.6 mA			0.6	V
RXD Tri-State Pull-up Curr.	RXD = GND	-1		-50	μA
CMAX, CLK Output	Maximum Capacitive Load			15	pF
Capacitance					
Inputs	Capacitance, all Digital Input pins			10	pF
XTAL1, 2 Load Capacitors	Depends on crystal characteristics	15		60	pF
CLK	Maximum Capacitive Load			15	pF

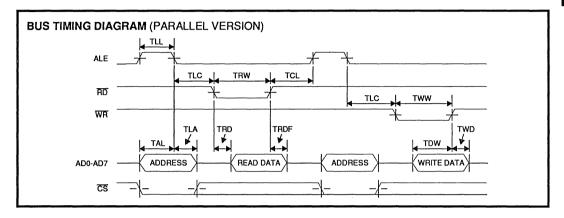
DYNAMIC CHARACTERISTICS AND TIMING

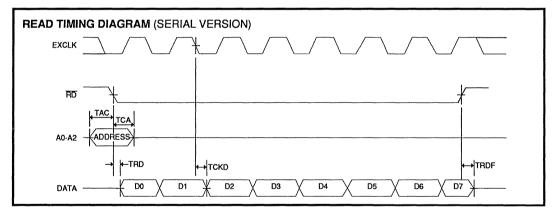
(TA = -40°C to +85°C, VDD = Recommended range unless otherwise noted.)

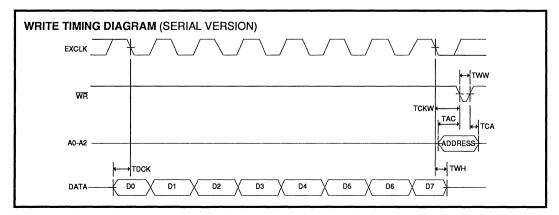
PARAMETERS	CONDITIONS	MIN	NOM	MAX	UNITS				
DPSK Modulator	• • • • • • • • • • • • • • • • • • •	L		-	•				
Carrier Suppression	Measured at TXA	45			dB				
Output Amplitude	TX scrambled marks	-11	-10	-9	dBm0				
FSK Modulator									
Output Freq. Error	CLK = 11.0592 MHz	-0.35		+0.35	%				
Transmit Level	Transmit Dotting Pattern	-11	-10	-9	dBm0				
Harmonic Distortion in 700-2900 Hz band	THD in the alternate band DPSK or FSK		-60	-50	dB				
Output Bias Distortion	Transmit Dotting Pattern In ALB @ RXD		±3		%				
Total Output Jitter	Random Input in ALB @ RXD	-10		+10	%				
DTMF Generator									
Freq. Accuracy	Must be in V.22 mode	25		+.25	%				
Output Amplitude	Low Band, V.22 mode	-10	-9	-8	dBm0				
Output Amplitude	High Band, V.22 mode	-8	-7	-6	dBm0				
Twist	High-Band to Low-Band, V.22 mode	1.0	2.0	3.0	dB				
Long Loop Detect	With Sinusoid	-38		-28	dBm0				
Dynamic Range	Refer to Performance Curves		45		dB				
Note: Parameters expressed in dBm0 refer to the following definition:									
0 dB loss in th	0 dB loss in the Transmit path to the line.								
2 dB gain in th	e Receive path from the line.								
Refer to the Basic Box Modem diagram in the Applications section for the DAA design.									

DYNAMIC CHARACTERISTICS AND TIMING (Continued)

PARAMETERS	CONDITIONS	MIN	NOM	МАХ	UNITS
Call Progress Detector					
Detect Level	-3 dB points in 285 and 675 Hz	-38			dBm0
Reject Level	Test signal is a 460 Hz sinusoid			-45	dBm0
Delay Time	-70 dBm0 to -30 dBm0 STEP			40	ms
Hold Time	-30 dBm0 to -70 dBm0 STEP			40	ms
Hysteresis		2			dB
Carrier Detect					
Threshold	DPSK or FSK receive data	-48		-43	dBm0
Delay Time					
V.21		10		20	ms
V.22		15		32	ms
V.23 Forward Channel		6		12	ms
V.23 Back Channel		25		40	ms
Hold Time					
V.21		6		20	ms
V.22		10		24	ms
V.23 Forward Channel		3		8	ms
V.23 Back Channel		10		25	ms
Hysteresis		2			dB
Special Tone Detectors			•		
Detect Level	See definitions for TR bit D0 mode	-48		-43	dBm0
Delay Time					
2100 Hz answer tone		10		25	ms
1300 Hz calling tone		10		25	ms
390 Hz V.23 back channel mark		20		65	ms

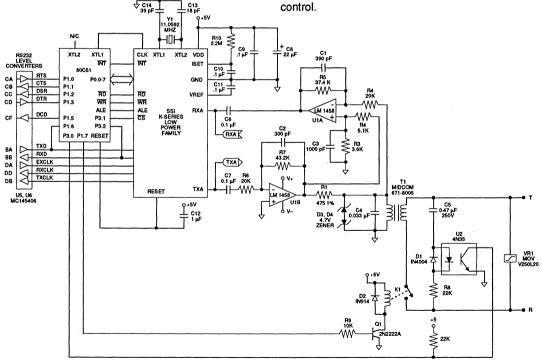

1


PARAMETERS	CONDITIONS	MIN	NOM	MAX	UNITS	
Special Tone Detectors (Cont	inued)					
980 or 1650 Hz V.21 marks		10		25	ms	
Hold Time						
2100 Hz answer tone		4		15	ms	
1300 Hz calling tone		3		10	ms	
390 Hz V.23 back channel mark		10		25	ms	
980 or 1650 Hz V.21 marks		5		15	ms	
Hysteresis		2			dB	
Detect Freq. Range	Detect Freq. Range Any Special Tone -3					
Output Smoothing Filter						
Output load	TXA pin; FSK Single Tone out for THD = -50 dB in 0.3 to 3.4 kHz	10		50	kΩ pF	
Out of Band Energy	Frequency >12 kHz in all modes			-60	dBm0	
Output Impedance	TXA pin, TXA enabled		20	50	Ω	
Clock Noise	TXA pin; 76.8 kHz or 122.88 kHz in V.23 main channel		0.1	0.4	mVrms	
Carrier VCO	•	· · · · · · · · · · · · · · · · · · ·		• ••••••••••••••••••••••••••••••••••••	-	
Capture Range	Originate or Answer	-10		+10	Hz	
Capture Time	-10 Hz to +10 Hz Carrier Freq. Change Assum.		40	100	ms	
Recovered Clock						
Capture Range	Capture Range % of frequency -625 +62 center frequency (center at 1200 Hz)				ppm	
Data Delay Time	Analog data in at RXA pin to receive data valid at RXD pin		30	50	ms	


DYNAMIC CHARACTERISTICS AND TIMING (Continued)

PARAMETERS	CONDITIONS	MIN	NOM	МАХ	UNITS
Guard Tone Generator					
Tone Accuracy	550 or 1800 Hz	-20		+20	Hz
Tone Level	550 Hz	-4.0	-3.0	-2.0	dB
(Below DPSK Output)	1800 Hz	-7.0	-6.0	-5.0	dB
Harmonic Distortion	550 Hz			-50	dB
700 to 2900 Hz					
Timing (Refer to Timing Dia	igrams)				
TAL	CS/Addr. setup before ALE Low	30			ns
TLA	CS/Addr. hold after ALE Low	20			ns
TLC	ALE Low to RD/WR Low	40			ns
TCL	RD/WR Control to ALE High	10			ns
TRD	Data out from RD Low	0		140	ns
TLL	ALE width	60			ns
TRDF	Data float after RD High	0		200	ns
TRW	RD width	200		25000	ns
TWW	WR width	140		25000	ns
TDW	Data setup before WR High	150			ns
TWD	Data hold after WR High	20			ns
TCKD	Data out after EXCLK Low			200	ns
тскw	WR after EXCLK Low	150			ns
TDCK	Data setup before EXCLK Low	150		1	ns
TAC	Address setup before control*	50			ns
TCA	Address hold after control*	50			ns
ТѠН	Data Hold after EXCLK	20			
	alling edge of RD or WR. Illing edge of RD or the rising edge of W	R.			

TIMING DIAGRAMS


APPLICATIONS INFORMATION

GENERAL CONSIDERATIONS

Figures 1 and 2 show basic circuit diagrams for K-Series modem integrated circuits. K-Series products are designed to be used in conjunction with a control processor, a UART or RS-232 serial data interface, and a DAA phone line interface to function as a typical intelligent modem. The K-Series ICs interface directly with Intel 8048 and 80C51 microprocessors for control and status monitoring purposes. Two typical DAA arrangements are shown: one for a split \pm 5 or \pm 12 volt design and one for a single 5 volt design. These diagrams are for reference only and do not represent production-ready modem designs.

K-Series devices are available with two control interface versions: one for a parallel multiplexed address/ data interface, and one for a serial interface. The parallel version is intended for use with 8039/48 or 8031/51 microcontrollers from Intel or many other manufacturers. The serial interface 22-pin version can be used with other microcontrollers or in applications where only a limited number of port lines are available or the application does not lend itself to a multiplexed address/data interface. The parallel versions may also be used in the serial mode, as explained in the data sheet pin description.

In most applications the controller will monitor the serial data for commands from the DTE and the received data for break signals from the far end modem. In this way, commands to the modem are sent over the same line as the transmitted data. In other applications the RS-232 interface handshake lines are used for modem control.

1

DIRECT ACCESS ARRANGEMENT (DAA)

The telephone line interfaces show two examples of how the "hybrid" may be implemented. The split supply design (Figure 1) is a typical two op-amp hybrid. The receive op-amp serves two purposes. It supplies gain to amplify the receive signal to the proper level for the modem's detectors and demodulator, and it removes the transmitted signal from the receive signal present at the transformer. This is done by supplying a portion of the transmitted signal to the non-inverting input of the receive op-amp at the same amplitude as the signal appearing at the transformer, making the transmit signal common mode.

The single-supply hybrid is more complex than the dual-supply version described above, but its use eliminates the need for a second power supply. This circuit (Figure 2) uses a bridged drive to allow undistorted signals to be sent with a single 5 volt supply. Because DTMF tones utilize a higher amplitude than data, these

signals will clip if a single-ended drive approach is used. The bridged driver uses an extra op-amp (U1A) to invert the signal coming from the gain setting op-amp (U1B) before sending it to the other leg of the transformer. Each op-amp then supplies half the drive signal to the transformer. The receive amplifier (U1C) picks off its signal at the junction of the impedance matching resistor and the transformer. Because the bottom leg of the transformer is being driven in one direction by U1A and the resistor is driven in the opposite direction at the same time by U1B, the junction of the transformer and resistor remains relatively constant and the receive signal is unaffected.

DESIGN CONSIDERATIONS

Silicon Systems' 1-chip modem products include all basic modem functions. This makes these devices adaptable for use in a variety of applications, and as easy to control as conventional digital bus peripherals.

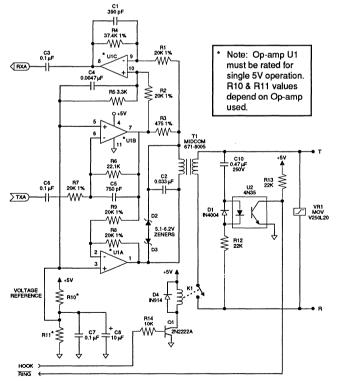


FIGURE 2: Single 5V Hybrid Version

Unlike digital logic circuitry, modem designs must properly contend with precise frequency tolerances and very low level analog signals, to ensure acceptable performance. Using good analog circuit design practices will generally result in a sound design. Following are additional recommendations which should be taken into consideration when starting new designs.

CRYSTAL OSCILLATOR

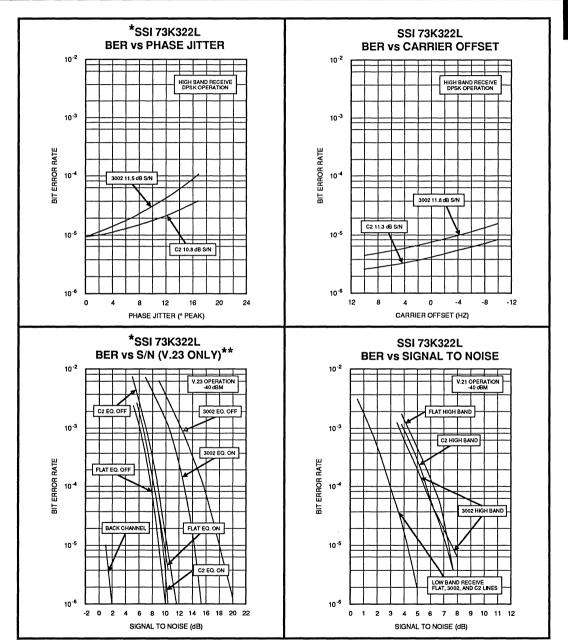
The K-Series crystal oscillator requires a parallel mode (antiresonant) crystal which operates at 11.0592 MHz. It is important that this frequency be maintained to within $\pm 0.01\%$ accuracy.

In order for a parallel mode crystal to operate correctly and to specification, it must have a load capacitor connected to the junction of each of the crystal and internal inverter connections, terminated to ground. The values of these capacitors depend primarily on the crystal's characteristics, and to a lesser degree on the internal inverter circuit. The values used affect the accuracy and start up characteristics of the oscillator.

LAYOUT CONSIDERATIONS

Good analog/digital design rules must be used to control system noise in order to obtain highest performance in modem designs. The more digital circuitry present on the PC board, the more this attention to noise control is needed. The modern should be treated as a high impedance analog device. A 22 µF electrolytic capacitor in parallel with a 0.1 µF ceramic capacitor between VDD and GND is recommended. Liberal use of ground planes and larger traces on power and ground are also highly favored. High speed digital circuits tend to generate a significant amount of EMI (Electro-Magnetic Interference) which must be minimized in order to meet regulatory agency limitations. To accomplish this, high speed digital devices should be locally bypassed, and the telephone line interface and K-Series device should be located close to each other near the area of the board where the phone line connection is accessed. To avoid problems, power supply and ground traces should be routed separately to the analog and digital functions on the board, and digital signals should not be routed near low level or high impedance analog traces. The analog and digital grounds should only connect at one point near the K-Series device ground pin to avoid ground loops. The K-Series modem IC's should have both high frequency and low frequency bypassing as close to the package as possible.

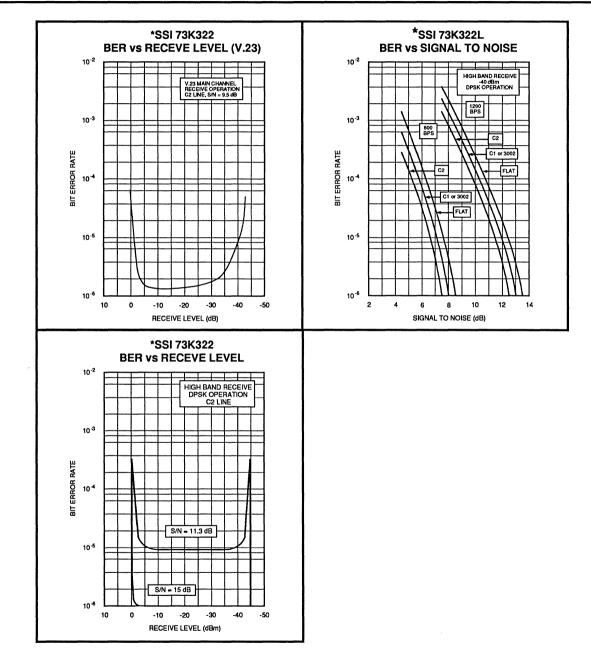
MODEM PERFORMANCE CHARACTERISTICS

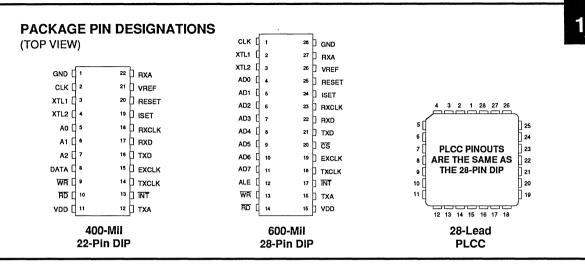

The curves presented here define modem IC performance under a variety of line conditions while inducing disturbances that are typical of those encountered during data transmission on public service telephone lines. Test data was taken using an AEA Electronics' "Autotest I" modem test set and line simulator, operating under computer control. All tests were run fullduplex, using a Concord Data Systems 224 as the reference modem. A 511 pseudo-random-bit pattern was used for each data point. Noise was C-message weighted and all signal-to-noise (S/N) ratios reflect total power measurements similar to the CCITT V.56 measurement specification. The individual tests are defined as follows.

BER vs.S/N

This test measures the ability of the modem to operate over noisy lines with a minimum of data-transfer errors. Since some noise is generated in the best of dial-up lines, the modem must operate with the lowest S/N ratio possible. Better modem performance is indicated by test curves that are closest to the BER axis. A narrow spread between curves representing the four line parameters indicates minimal variation in performance while operating over a range of aberrant operating conditions. Typically, a DPSK modem will exhibit better BER-performance test curves receiving in the low band than in the high band.

BER vs. Receive Level


This test measures the dynamic range of the modem. Because signal levels vary widely over dial-up lines, the widest possible dynamic range is desirable. The minimum Bell specification calls for 36 dB of dynamic range. S/N ratios are held constant at the indicated values while the receive level is lowered from a very high to very low signal levels. The width of the "bowl" of these curves, taken at the BER point, is the measure of dynamic range.


* = "EQ On" Indicates bit CR1 D4 is set for additional phase equalization.

* = 73K302L performance is similar to that of the 73K322L. V.23 operation corresponds to Bell 202.

1

- * = "EQ On" Indicates bit CR1 D4 is set for additional phase equalization.
- ** = 73K302L performance is similar to that of the 73K322L. V.23 operation corresponds to Bell 202.

ORDERING INFORMATION

PART DESCRIPTION	ORDER NO.	PKG. MARK
SSI 73K322L with Parallel Bus Interface 28-Pin 5 Volt Supply <u>Plastic Dual-In-Line</u> Plastic Leaded Chip Carrier	SSI 73K322L - IP SSI 73K322L - IH	73K322L - IP 73K322L - IH
SSI 73K322L with Serial Interface 22-Pin 5 Volt Supply Plastic Dual-In-Line	SSI 73K322SL - IP SSI 73K322SL - IC	73K322SL - IP 73K322SL - IC

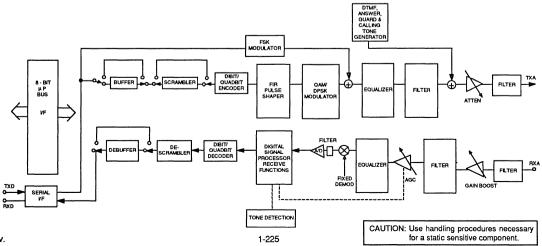
No responsibility is assumed by Silicon Systems for use of this product nor for any infringements of patents and trademarks or other rights of third parties resulting from its use. No license is granted under any patents, patent rights or trademarks of Silicon Systems. Silicon Systems reserves the right to make changes in specifications at any time without notice. Accordingly, the reader is cautioned to verify that the data sheet is current before placing orders.

Silicon Systems, Inc., 14351 Myford Road, Tustin, CA 92680, (714) 731-7110, FAX: (714) 731-5457

Notes:

Advance Information

July, 1990


DESCRIPTION

The SSI 73K324L is a highly integrated single-chip modem IC which provides the functions needed to design a quad-mode CCITT compatible modem capable of operation over dial-up lines. The SSI 73K324L adds V.23 capability to the CCITT modes of SSI's 73K224 one-chip modem, allowing a one-chip implementation in designs intended for European markets which require this added modulation mode. The SSI 73K324L offers excellent performance and a high level of functional integration in a single 28-pin DIP. The device supports V.22bis, V.22, V.21, and V.23 operating modes, allowing both synchronous and asynchronous operation as defined by the appropriate standard.

The SSI 73K324L is designed to appear to the Systems Engineer as a microprocessor peripheral, and will easily interface with popular one-chip microcontrollers (80C51 typical) for control of modem functions through its 8-bit multiplexed address/data bus. An optional serial control bus is also available for applications not requiring a parallel interface. Data communications occurs through a separate serial port. (Continued)

FEATURES

- One-chip multi-mode CCITT V.22bis, V.22, V.21, V.23 compatible modem data pump
- FSK (75, 300/1200 bit/s), DPSK (600, 1200 bit/s), or QAM (2400 bit/s) encoding
- Pin and software compatible with other SSI K-Series family one-chip modems
- Interfaces directly with standard microprocessors (8048, 80C51 typical)
- Serial or parallel microprocessor bus for control
- Selectable asynch/synch with internal buffer/ debuffer and scrambler/descrambler functions
- All synchronous (internal, external, slave) and asynchronous operating modes
- Adaptive equalization for optimum performance
 over all lines
- Programmable transmit attenuation (15 dB, 1 dB steps), and selectable receive boost (+12 dB)
- Call progress, carrier, answer tone, unscrambled mark, S1, SCT (900 Hz) calling tone (1300 Hz) and signal quality monitors
- DTMF, answer, calling, SCT and guard tone generators
- Test modes available: ALB, DL, RDL, Mark, Space and Alternating bit patterns
- CMOS technology for low power consumption
- 4-wire full duplex operation in all modes

BLOCK DIAGRAM

DESCRIPTION (Continued)

The SSI 73K324L offers full hardware and software compatibility with other products in Silicon Systems' K-Series family of single-chip modems, allowing system upgrades with a single component change. The SSI 73K324L is ideal for use in free-standing or integral system modem products where full-duplex 2400 bit/s operation with alternate mode capability is required. Its high functionality, low power consumption, and efficient packaging simplify design requirements and increase system reliability. A complete modem requires only the addition of the phone line interface, a control microprocessor, and RS-232 level converters for a typical system.

The SSI 73K324L is designed to provide a complete V.22bis, V.22, V.21, and V.23 compatible modem on a chip. Many functions were included to simplify implementation in typical modern designs. In addition to the basic 2400 bit/s QAM, 1200/600 bit/s DPSK and 1200/ 300/75 bit/s FSK modulator/demodulator sections, the device also includes synch/asynch buffering, DTMF, guard, and calling tone generator capabilities. Handshake pattern detectors simplify control of connect sequences, and precise tone detectors allow accurate detection of call progress, answer back, and calling tones. All operating modes defined by the incorporated standards are included, and test modes are provided for simplified diagnostics. Most functions are selectable as options, and logical defaults are provided when override modes are activated. The device can be directly interfaced to a microprocessor via its 8-bit multiplexed address/data bus for control and status monitoring. Data communications takes place through a separate serial port. Data may also be sent and received through the control registers. This simplifies designs requiring speed buffering, error control and compression.

FUNCTIONAL DESCRIPTION

QAM MODULATOR/DEMODULATOR

The SSI 73K324L encodes incoming data into quadbits represented by 16 possible signal points with specific phase and amplitude levels. The baseband signal is then filtered to reduce intersymbol interference on the bandlimited telephone network. The modulator transmits this encoded data using either a 1200 Hz (originate mode) or 2400 Hz (answer mode) carrier. The demodulator, although more complex, essentially reverses this procedure while also recovering the data clock from the incoming signal. Adaptive equalization corrects for varying line conditions by automatically changing filter parameters to compensate for line characteristics.

DPSK MODULATOR/DEMODULATOR

The SSI 73K324L modulates a serial bit stream into di-bit pairs that are represented by four possible phase shifts as prescribed by the Bell 212A/V.22 standards. The baseband signal is then filtered to reduce intersymbol interference on the bandlimited 2-wire PSTN line. Transmission occurs on either a 1200 Hz (originate mode) or 2400 Hz carrier (answer mode). Demodulation is the reverse of the modulation process, with the incoming analog signal eventually decoded into di-bits and converted back to a serial bit stream. The demodulator also recovers the clock which was encoded into the analog signal during modulation. Demodulation occurs using either a 1200 Hz carrier (answer mode or ALB originate mode) or a 2400 Hz carrier (originate mode or ALB answer mode). The SSI 73K324L use a phase locked loop coherent demodulation technique that offers excellent performance. Adaptive equalization is also used in DPSK modes for optimium operation with varying lines.

FSK MODULATOR/DEMODULATOR

The FSK modulator/demodulator produces a frequency modulated analog output signal using two discrete frequencies to represent the binary data. V.21 frequencies of 980 and 1180 Hz (originate mark and space), or 1650 and 1850 Hz (answer mark and space) are used in V.21 mode. V. 23 mode uses 1300 and 2100 Hz for the main channel or 390 and 450 Hz for the back channel. Demodulation involves detecting the received frequencies and decoding them into the appropriate binary value. The rate converter and scrambler/descrambler are bypassed in the FSK modes.

PASSBAND FILTERS AND EQUALIZERS

High and low band filters are included to shape the amplitude and phase response of the transmit and receive signals and to provide compromise delay equalization as well as rejection of out-of-band signals. The transmit signal filtering corresponds to a $\sqrt{75\%}$ raised cosine frequency response characteristic.

The asynchronous mode is used for communciation with asynchronous terminals which may transfer data at 600, 1200, or 2400 bit/s +1%, -2.5% even though the modem's output is limited to the nominal bit rate $\pm .01\%$. When transmitting in this mode the serial data on the TxD input is passed through a rate converter which inserts or deletes stop bits in the serial bit stream in order to output a signal that is the nominal bit rate $\pm .01\%$. This signal is then routed to a data scrambler and into the analog modulator where di-bit or guad-bit encoding results in the output signal. Both the rate converter and scrambler can be bypassed for handshaking. FSK, and synchronous operation as selected. Received data is processed in a similar fashion except that the rate converter now acts to reinsert any deleted stop bits and output data to the terminal at no greater than the bit rate plus 1%. An incoming break signal (low through two characters) will be recognized in accordance with the appropriate standard and passed through without incorrectly inserting a stop bit.

The SYNC/ASYNC converter has an extended overspeed mode which allows selection of an output speed range of either +1% or +2.3%. In the extended overspeed mode, some stop bits are output at 7/8 the normal width.

Similar to the transmit side, both the SYNC/ASYNC rate converter and the data descrambler are bypassed in the FSK modes.

SYNCHRONOUS MODE

Synchronous operation is possible only in the QAM or DPSK modes. Operation is similar to that of the asynchronous mode except that data must be synchronized to a clock and no variation in data transfer rate is allowable. Serial input data appearing at TXD must be valid on the rising edge of TXCLK.

TXCLK is an internally derived 1200 or 2400 Hz signal in internal mode and is connected internally to the RXCLK pin in slave mode. Receive data at the RXD pin is clocked out on the falling edge of RXCLK. The asynch/synch converter is bypassed when synchronous mode is selected and data is transmitted out at essentially the same rate as it is input.

PARALLEL BUS INTERFACE

Seven 8-bit registers are provided for control, option select, and status monitoring. These registers are addressed with the AD0, AD1, and AD2 multiplexed address lines (latched by ALE) and appear to a control microprocessor as seven consecutive memory locations. Five contol registers are read/write. The status detect and ID register are read only and cannot be modified except by modem response to monitored parameters.

SERIAL COMMAND INTERFACE

The serial command mode allows access to the SSI 73K324 control and status registers via a serial command port. In this mode the A0, A1, and A2 lines provide register addresses for data passed through the data pin under control of the RD and WR lines. A read operation is initiated when the RD line is taken low. The next eight cycles of EXCLK will then transfer out eight bits of the selected addresss location LSB first. A write takes place by shifting in eight bits of data LSB first for eight consectuive cycles of EXCLK. WR is then pulsed low and data transfer into the selected register occurs on the rising edge of WR.

TONE GENERATOR

The tone generator will output one of 16 standard dual tones determined by a 4-bit binary value and TX DTMF mode bit previously loaded into the tone register. Guard, answer, SCT and calling tones are also provided by this section.

FULL DUPLEX OPERATION

Four wire full duplex operation is allowed in all modes. This feature allows transmission and reception in the same band for four wire applications only. 1

PIN DESCRIPTION

POWER

NAME	28-PIN	32-PIN	TYPE	DESCRIPTION			
GND	28	32	I	System Ground.			
VDD	15	17	I	Power supply input, 5V $\pm 10\%.$ Bypass with .1 and 22 μF capacitors to GND.			
VREF	26	30	0	An internally generated reference voltage. Bypass with .1 μF capacitor to GND.			
ISET	24	27	I	Chip current reference. Sets bias current for op-amps. The chip current is set by connecting this pin to VDD through a 2 M Ω resistor. Iset should be bypassed to GND with a .1 μ F capacitor.			

PARALLEL MICROPROCESSOR INTERFACE

NAME	28-PIN	32-PIN	TYPE	DESCRIPTION
ALE	12	14	I	Address latch enable. The falling edge of ALE latches the address on AD0-AD2 and the chip select on $\overline{\text{CS}}$.
AD0-AD7	4-11	4, 6-12	I/O	Address/data bus. These bidirectional tri-state multi-plexed lines carry information to and from the internal registers.
CS	20	23	I	Chip select. A low on this pin allows a read cycle or a write cycle to occur. AD0-AD7 will not be driven and no registers will be written if \overline{CS} (latched) is not active. \overline{CS} is latched on the falling edge of ALE.
CLK	1	1	0	Output clock. This pin is selectable under processor control to be either the crystal frequency (for use as a processor clock) or $16 x$ the data rate for use as a baud rate clock in QAM/DPSK modes only. The pin defaults to the crystal frequency on reset.
INT	17	19	0	Interrupt. This open drain weak pullup, output signal is used to inform the processor that a detect flag has occurred. The processor must then read the detect register to determine which detect triggered the interrupt. INT will stay active until the processor reads the detect register or does a full reset.
RD	14	16	1	Read. A low requests a read of the SSI 73K324L internal registers. Data cannot be output unless both $\overline{\text{RD}}$ and the latched $\overline{\text{CS}}$ are active or low.
RESET	25	28	Ι	Reset. An active signal high on this pin will put the chip into an inactive state. All control register bits (CR0, CR1, CR2, CR3, Tone) will be reset. The output of the CLK pin will be set to the crystal frequency. An internal pull down resistor permits power on reset using a capacitor to VDD.
WR	13	15	I	Write. A low on this informs the SSI 73K324L that data is available on AD0-AD7 for writing into an internal register. Data is latched on the rising edge of \overline{WR} . No data is written unless both \overline{WR} and the latched \overline{CS} are low.
				vided in the 28-pin version by tying ALE high and \overline{CS} low. In this ATA and AD0, AD1 and AD2 become A0, A1 and A2, respectively.

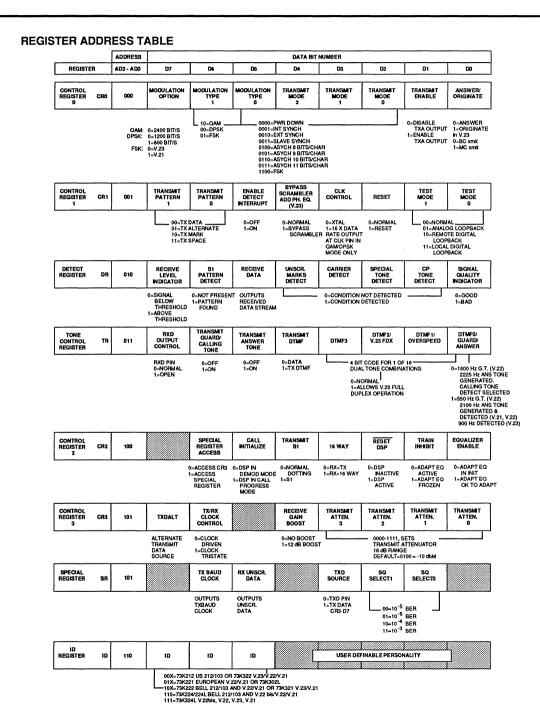
	1		

RS-232 INTERFACE

NAME	28-PIN	32-PIN	TYPE	DESCRIPTION
EXCLK	19	22	I	External Clock. This signal is used in synchronous transmission when the external timing option has been selected. In the external timing mode the rising edge of EXCLK is used to strobe synchro- nous DPSK transmit data available on the TXD pin. Also used for serial control interface.
RXCLK	23	26	0	Receive Clock Tristate. The falling edge of this clock output is coincident with the transitions in the serial received DPSK data output. The rising edge of RXCLK can be used to latch the valid output data. RXCLK will be valid as long as a carrier is present. In V.23 or V.21 mode a clock which is 16 x 1200/75 or 16 x 300 Hz data rate is output, respectively.
RXD	22	25	0	Received Data Output. Serial receive data is available on this pin. The data is always valid on the rising edge of RXCLK when in synchronous mode. RXD will output constant marks if no carrier is detected.
TXCLK	18	20	0	Transmit ClockTristate. This signal is used in synchronous DPSK transmission to latch serial input data on the TXD pin. Data must be provided so that valid data is available on the rising edge of the TXCLK. The transmit clock is derived from different sources depending upon the synchronization mode selection. In Internal Mode the clock is 1200 Hz generated internally. In External Mode TXCLK is phase locked to the EXCLK pin. In Slave Mode TXCLK is phase locked to the RXCLK pin. TXCLK is always active. In V.23 or V.21 mode the output is a 16 x 1200/75 or 16 x 300 Hz clock, respectively.
TXD	21	24	I	Transmit Data Input. Serial data for transmission is input on this pin. In synchronous modes, the data must be valid on the rising edge of the TXCLK clock. In asynchronous modes (2400/1200/ 600 bit/s or 300 baud) no clocking is necessary. DPSK/QAM data must be +1%, -2.5% or +2.3%, -2.5 % in extended overspeed mode.

ANALOG INTERFACE

RXA	27	32	1	Received modulated analog signal input from the phone line.
TXA	16	18	0	Transmit analog output to the phone line.
XTL1 XTL2	2 3	2 3	1	These pins are for the internal crystal oscillator requiring a 11.0592 MHz parallel mode crystal. Two capacitors from these pins to ground are also required for proper crystal operation. Consult crystal manufacturer for proper values. XTL2 can also be driven from an external clock.


REGISTER DESCRIPTIONS

Seven 8-bit internal registers are accessible for control and status monitoring. The registers are accessed in read or write operations by addressing the A0, A1 and A2 address lines in serial mode, or the AD0, AD1 and AD2 lines in parallel mode. The address lines are latched by ALE. Register CR0 controls the method by which data is transferred over the phone line. CR1 controls the interface between the microprocessor and the SSI 73K324L internal state. DR is a detect register which provides an indication of monitored modem status conditions. TR, the tone control register, controls the DTMF generator, answer and guard tones and RXD output gate used in the modem initial connect sequence. CR2 is the primary DSP control interface and CR3 controls transmit attenuation and receive gain adjustments. All registers are read/write except for DR and ID which are read only. Register control and status bits are identified below:

REGISTER BIT SUMMARY

		ADDRESS				DATA BIT I	NUMBER			
REGISTER		AD - A0	D7	D6	D5	D4	D3	D2	D1	Do
CONTROL REGISTER 0	CRO	000	MODULATION OPTION	MODULATION TYPE 1	MODULATION TYPE 0	TRANSMIT MODE 2	TRANSMIT MODE 1	TRANSMIT MODE 0	TRANSMIT ENABLE	ANSWER/ ORIGINATE
CONTROL REGISTER 1	CR1	001	TRANSMIT PATTERN 1	TRANSMIT PATTERN 0	ENABLE DETECT INTERRUPT	BYPASS SCRAMBLER ADD PH. EQ. (V.23)	CLK CONTROL	RESET	TEST MODE 1	TEST MODE 0
DETECT REGISTER	DR	010	RECEIVE LEVEL	PATTERN S1 DET	RECEIVE DATA	UNSCR. MARK DETECT	CARRIER DETECT	SPECIAL TONE DETECT	CALL PROGRESS DETECT	SIGNAL QUALITY
TONE CONTROL REGISTER	TR	011	RXD OUTPUT CONTROL	TRANSMIT GUARD TONE	TRANSMIT ANSWER TONE	TRANSMIT DTMF	DTMF3	DTMF2/ 4 WIRE FDX	DTMF1/ OVERSPEED	DTMF0/GUARD/ ANSWER/ CALLING/SCT
CONTROL REGISTER 2	CR2	100	0	SPECIAL REGISTER ACCESS	CALL INITIALIZE	TRANSMIT S1	16 WAY	RESET DSP	TRAIN INHIBIT	EQUALIZER ENABLE
CONTROL REGISTER 3	CR3	101	TXDALT	TX/RX CLOCK CONTROL	0	RECEIVE GAIN BOOST	TRANSMIT ATTEN. 3	TRANSMIT ATTEN. 2	TRANSMIT ATTEN. 1	TRANSMIT ATTEN. 0
SPECIAL REGISTER	SR	101		TX BAUD CLOCK	RX UNSCR. DATA		TXD SOURCE	SQ SELECT 1	SQ SELECT 0	
ID REGISTER	ID	110	1	1	1		USER DEI	FINABLE PERSON		

NOTE: When a register containing reserved control bits is written into, the reserved bits must be programmed as 0's.

CONTROL REGISTER 0

	D7		D6	D5			D4	D3	D2	D1	D0
CR0 000		ODUL. MODUL. PTION TYPE 1		MODI TYPE			ANSMI		TRANSMIT MODE 0	TRANSMIT ENABLE	ANSWER/ ORIGINATE
BIT N	10.		NAME	co	DND	ΙΤΙΟ	Л	DESCRIPTIC	NC		
D0			Answer/ Driginate		0	1			in V.23 HDX		and, receive in e at 1200 bit/s
					1			Selects originate mode (transmit in low band, receive in high band or in V.23 HDX mode, receive at 75 bit/s and transmit at 1200 bit/s.)			
											rogram special letect and tone
D1		Т	ransmit		0			Disables trar	nsmit output a	at TXA.	
			Enable		1				smit output a		
									smit Enable Answer Tone		to 1 to allow arrier.
				D5	D4	D3	D2				
D5, D D3, D	· ·	Т	ransmit Mode	0	0	0	0		er down mode ept digital inte		าร
				0	0	0	1	internally der data appeari	rived 1200 or : ng at TXD mu Receive data i	2400 Hz sign st be valid on	le TXCLK is an al. Serial input the rising edge of RXD on the
				0	0	1	0	internal sync	hronous, but LK pin, and a	TXCLK is co	n is identical to onnected inter- Hz clock must
				0	0	1	1	synchronous		LK is connect	ration as other red internally to
				0	1	0	0		ichronous mo ts, 1 stop bit).		aracter (1 start
				0	1	0	1		ichronous mo ts, 1 stop bit).		aracter (1 start
				0	1	1	0	•	chronous mo ts, 1 stop bit)		aracter (1 start
				0	1	1	1		chronous mo ts, Parity and		aracter (1 start p bits).
				1	1	0	0	Selects FSK	operation.		

CONTROL REGISTER 0 (Continued)

BIT NO.	NAME	CONDITION	DESCRIPTION
		D6 D5	
D6,D5	Modulation	1 0	QAM
	Туре	0 0	DPSK
		0 1	FSK
D7	Modulation Option	0	QAM selects 2400 bit/s. DPSK selects 1200 bit/s. FSK selects V.23 mode.
		1	DPSK selects 600 bit/s. FSK selects V.21 mode.

CONTROL REGISTER 1

		D7		D6	D5	D4	D3	D2	D1	D0
CR1 001		NSMIT ITERN 1		NSMIT ENABLE TTERN DETECT 0 INT.		BYPASS SCRAMB/ ADD PH.EQ		RESET	TEST MODE 1	TEST MODE 0
BIT NO) .	NAM	E	CONI		DESCRIPT	ION			
D1, D0		Test M	ode	D1 0 0	D0 0 1	Analog loop signal back	nal operating back mode. to the receivence center free	Loops the er, and cau	ises the re	eceiver to
				1 0		Selects rem	TXA pin, trar ote digital loop	back. Rec	eived data	is looped
							smit data inte on TXD is igi		RXD is fo	rced to a
				1 1		Selects local digital loopback. Internally loops TXD back to RXD and continues to transmit data carrrier at TXA pin				
D2		Rese	et		0	Selects nor	nal operation	•		
					1	bits (CR0, C except CR3	em to power o R1, CR2, CF bit D2. The o al frequency.	3 and Ton	e) are rese	et to zero
D3		CLK Co			0	Selects 11.0)592 MHz cry	stal echo c	utput at C	LK pin.
		(Clock Control)				Selects 16 X	(the data rate	output at C	LK pin in a	Il modes.

		D7	1	D6	D5	D4	D3	D2	D1	D0			
CR1 001		ANSMIT TTERN 1	PAT	NSMIT TERN 0	ENABLE DETECT INT.	1	CLK CONTROL	RESET	TEST MODE 1	TEST MODE 0			
BIT NO) .	NAME		CONDITION		DESCRIPTION							
D4		Bypa Scramb			0	Selects norm scrambler.	nal operation.	DPSK dat	a is passe	d through			
		Add Ph	. Eq.		1	scrambler in additional ph	ambler Bypass n the transm nase equaliza nen D4 is set	iit path. tion is adde	In the V.2	23 mode,			
D5		Enable D Interru			0	Disables interrupt at INT pin. All interrupts are normally disabled in power down modes.							
					1	a change in s tone and ca when the TX when TX D	output. An ir status of DR b all progress of enable bit is IMF is activa device is in po	its D1-D4 a detect inte set. Carri ted. All in	and D6. Therrupts are er detect interrupts w	e answer masked s masked			
				D7	D6								
D7, D6	;	Transr Patter		0	0	Selects norr	nal data trans TXD pin.	smission a	s controlle	d by the			
				0 1		Selects an alternating mark/space transmit pattern for modern testing and handshaking. Also used for S pattern generation. See CR2 bit D4.							
				1	0	Selects a co	onstant mark t	transmit pa	attern.				
				1	1	Selects a co	onstant space	transmit p	attern.				

CONTROL REGISTER 1 (Continued)

DETECT REGISTER

		D7	D	6	D	5	D4	D3	D2	D1	D0			
DR 010		ECEIVE LEVEL DICATOR	S [.] PATT DETI	ERN	REC DA		UNSCR. MARK DETECT	CARRIER DETECT	SPECIAL TONE DETECT	CALL PROG. DETECT	SIGNAL QUALITY INDICATOR			
BIT N	10.	NAM	E	cc	NDIT	ION	DESCRIPTION							
D0		Signal Q			0		Indicates normal received signal.							
		Indicat	tor		1			s low receive iteracts with s			average error 5 D1, D0.			
D1		Call Proc			0		No call p	progress tone	detected.					
		Deteo	ct		1		progress	s presence s detection ci 350 to 620 Hz	rcuitry is ac	tivated by	s. The call energy in the			
D2		Special			0		Conditio	n not detecte	d					
		Deteo	ct		1		Conditio	n detected		· · · · · · · · · · · · · · · · · · ·				
				CRO DO	0	CR2 D5	2225 Hz		wer tone de	etected in V	.22bis, V.22,			
				1	1	1			tone detect	ed in V.22b	is, V.22, V.21			
				1	x	0		1% or 2100 I V.22, V.21 п		Answer ton	e detected in			
				0	0	1	1300 Hz modes.	calling tone of	detected in V	7.22 bis, V.2	2, V.21, V.23			
				0	1	0	900 Hz	SCT tone det	ected in V.2	3 mode.				
D3		Carrier D	etect		0		No carri	er detected ir	the receive	channel.				
					1			d carrier ha . Should be t			he received re.			
D4		Unscr. N			0		No unsc	rambled mar	k bring rece	ived.				
		Detec	ct		1			s detection of nould be time			the received			
D5		Receiv					Continue	ously outputs	the receive	d data strea	am.			
		Data	l					a is the same sabled when			XD pin, but it			
D6		S1 Patt			0		No S1 p	attern being i	received.					
		Detec	:t		1		S1 pattern detected. Should be time qualified by software. S1 is an unscrambled double dibit (11001100) sent in DPSK mode.							
D7		Receive I Indicat			0		Received signal level below threshold, (≈ -19 dBm0);can use receive gain boost (+12 dB.)							
					1		Receive	d signal abov	e threshold	•				

1

TONE REGISTER

	D7		D6			D	5		D4	D3	D2	D1	D0			
TR 011	RXD OUTP CONT	UT	TRANSM GUARD CALLING/S TONE	<i>i</i>		ISV	SM VEF NE	. 1	TRANSMIT DTMF	DTMF 3	DTMF 2/ FDX	DTMF 1/ OVER- SPEED	DTMF 0/ G.T./ANSW./ CALLING/SCT TONE/SEL			
BIT	NO.		NAME			1D	ΤΙΟ	N	DESC	DESCRIPTION						
				D	6 D	5	D4	D0	D0 inte	eracts with	bits D6, D4	4, and CR0	as shown.			
D0			DTMF 0/	>	$\langle \rangle$	(1	Х	Transr	nit DTMF t	ones.		······			
		Ans	ard Tone/ wer Tone/ lling/SCT/	1		<	0	0		1800 Hz g r mode in (if in V.22bi	s or V.22 and			
			Tone/ ect/Select	1		(0	1		550 Hz g r mode in (f in V.22bis	s or V.22 and			
				>	(()	0	0					D2 of DR or if elected in D0.			
				>	(()	0	1				e detected i is selected	in D2 of DR if d in CR0.			
				C) ()	0	0	V.22, \		/.23 answe		2 of DR if V.21, elected in CR0			
				>	(()	0	0		nit 2225 H r mode.	z Answer	Tone. Mus	t be in DPSK			
				>	(·	1	0	0		nit 2100 H r mode.	z Answer	Tone. Mus	t be in DPSK			
				.)	(()	0	1				noff) tone de R0 bit D0 =	tected in V.23 0).			
D1					D	4	D1		D1 inte	eracts with	D4 as sho	wn.				
		-	DTMF 1/		()	0		Asyncl	nronous Q	AM/DPSK	+1% -2.5%.				
		O	verspeed		()	1			nronous Q -2.5%.	AM/DPSK,	2400, 120	0 or 600 bit/s			
D2					D	94	D2									
		1	DTMF 2/		()	0		Select	s 2-wire fu	II-duplex or	half-duplex				
			FDX		(כ	1		Select D7-D5		I-duplex in t	he mode se	lected by CR0			
Note	ote: DTMF0 - DTMF2 should be set an appropriat operation.				riate state aft	erDTMFd	ialing to avo	oid inadverta	int unintended							

TONE	REGISTER	(Continued)
------	----------	-------------

	D	7	D6		D5		D4	D3		D2		D	1	D0	
TR 011	RX OUT CON	PUT	TRANSMIT GUARD/ CALLING/SC TONE	A	TRANSMIT T ANSWER TONE		TRANSMIT DTMF	DTMF 3		MF 2 DX		DTM OVE SPE	R-	DTMF GUAF CALLING TONE	RD/ /SCT
BIT	NO.		NAME	со	NDITIO	N	DESC	RIPTION							
D3, I D1, I			0TMF 3, 2, 1, 0	-	00 11	0 - 1	transm D1) is s	ms 1 of 16 itted when set. Tone	TX [enco	otm	Far g is	nd TX show	enab /n bel	le bit (CR ow:	10, bit
								OARD ALENT		MF D2		DE D0		FONES W HIGH	1
							-	1	0	0	0	1	69	7 1209	
								2	0	0	1	0	69	7 1336	
							;	3	0	0	1	1	69	7 1477	
							4	4	0	1	0	0	77	0 1209	
								5	0	1	0	1	77	0 1336	
								3	0	1	1	0	77	0 1477	
								7	0	1	1	1	85		
								3	1	0	0	0	85		
								€	1	0	0	1	85		
)	1	0	1	0	94		
								•	1	0	1	1	94		
								#	1	1	0	0	94		
								4	1	1	0	1	69	·	
5								3	1	1	1	0	77		
								>	1	1	1	1	85		
							[2	0	0	0	0	94	1 1633	

TONE REGISTER (Continued)

	D7		D6		D5		D4	D3	D2	D1	D0	
TR 011	RXI OUTP CONT	UT	TRANSM GUARD CALLING/S TONE	/	TRANSMIT ANSWER TONE		RANSMIT DTMF	DTMF 3	DTMF 2/ FDX	DTMF 1/ OVER- SPEED	DTMF 0/ GUARD/ CALLING/SCT TONE SEL	
BIT	NO.		NAME	c	CONDITION DESCRIPTION							
D4			ransmit		0		Disable	d DTMF.				
			DTMF		1		transm	itted conti	. The sele nuously wh all other tra	nen this bi	<u> </u>	
D5			ransmit		0		Disable	Disables answer tone generator.				
		,	Answer Tone		1		answei transm mode.	tone will b it enable bi	e transmitte t is set. The it answer to	ed continuo device mu	Hz or 2225 Hz busly when the st be in answer vice must be in	
D6		Т	ransmit		0		Disable	es guard/c	alling SCT	tone gener	ator.	
		So Ti	Guard, ift Carrier urnoff or lling Tone		1		or trans	Transmit guard tone if in V.22 bis, V.22 and answering, or transmit Calling Tone if Orig and not V.23; or trans- mit SCT if Orig and in V.23.			U. 1	
D7			D Output Control		0		Enable RXD.	s RXD pin	. Receive	data will be	output on	
					1				n. The Ra nternal wea		erts to a high esistor.	

CONTROL	REGISTER 2
---------	-------------------

						50		20				
CR2	D7	D6 SPEC	D5 CALL	D4 TRANSMIT	D3	D2	D1 TRAIN	D0 EQUALIZER				
100	0	REG ACCESS	INIT	S1	16 WAY	RESET DSP	INHIBIT	ENABLE				
BIT NO).	NAME	CON		DESCRIPTION							
D0		Equalizer		0	The adaptive	equalizer is	in its initializ	ed state.				
		Enable		1		es to control		is signal is used qualizer should				
D1		Train		0	The adaptive	equalizer is	active.					
		Inhibit		1	The adaptive	e equalizer co	efficients ar	e frozen.				
D2		RESET DSF	5	0	The DSP is i	nactive and a	II variables a	are initialized.				
				1	The DSP is control bits	running base	d on the mo	de set by other				
D3		16 Way		0	The receiver and transmitter are using the same deci- sion plane (based on the Modulator Control Mode).							
				1	The receiver, independent of the transmitter, is forced into a 16 point decision plane. Used for QAM hand-shaking.							
D4		Transmit S1		0	The transmitter when placed in QAM alternating mark/ space mode transmits 0101 scrambled or not dependent on the bypass scrambler bit.							
				1	placed in alte D6, an unsci	rnating mark/	space mode titive double	e transmitter is by CR1 bits D7, dibit pattern of				
D5		Call Init		0	detection bas		ous mode bi	on and pattern ts. Answertone ±1%.				
				1	The DSP decodes both answer tone and call progress tones. 2100 Hz answer tone ±1%, 2225 Hz ±10 Hz.							
D6	Ī	Special		0	Normal CR3	access.						
		Register Access		1	Setting this bit and addressing CR3 allows access to the SPECIAL REGISTER. See the SPECIAL REG- ISTER for details.							

1

CONTROL REGISTER 3

	D	7	D6	D5	5		D4		D3	D2	D1	D0		
CR3 101	TXD	ALT	TX/RX CLOCK CONTROL	0	0 ENABL BOOS		NABL	E			TRANSMIT ATTEN. 1	TRANSMIT ATTEN. 0		
BIT NC).		NAME	C	DND	ΙΤΙΟ	DN		DESCRIPTI	ON				
				D3	D2	D1	D0							
D3, D2 D1,D0	,	-	ransmit tenuator	0 1	0 1	0 1	0 - 1		in 1dB step transmit leve	s. The defa el of -10 dBm0) at the line w	itted signal 100) is for a ith the recom- ange is 16 dB.		
D4			Receive		C)			12 dB receive front end boost is not used.					
		G	ain Boost		1	I			reference lev compensatir receiving we and knowled	vels. It is used ng for interna ak signals. Th Ige of the hyb	to extend dyn ally generated ne receive leve orid and trans	s not change amic range by d noise when el detect signal mit attenuator d be enabled.		
D5		N	lot Used						Not used. C	only write zero	s this location	1.		
D6			(/TX Clock Control					RX/TX Clock TXCLK and		rol. Controls	output state of			
					(0			Outputs driv	en				
					1	1			Outputs in T	ristate mode				
D7		Т	XDALT		N	N/A		Alternate TX data source. See Special Register.				Register.		

SPECIAL REGISTER

	D	7	D6	D5	D4	D3	D2	D1	D0	
SR 101			TXBAUD CLOCK	RXUN- DSCR DATA		TXD SOURCE	SIGNAL QUALITY LEVEL SELECT1	SIGNAL QUALITY LEVEL SELECT0		
BIT NO).	N	IAME	DESCR	IPTION					
D7, D4	, D0			NOT US	ED AT THIS	TIME. Only	write ZEROs	to these bits.		
D6		TXBA	AUD CLK	synchro TXBAUI data to	nize the inpu Dsignalsthel be entered	It of arbitrary atching of a ba	quad/di-bit pa aud-worth of d ALT bit, CR3	atterns. The ata internally. bit D7, shou	an be used to rising edge of Synchronous uld have data clock edges.	
D5			INDSCR DATA	This bit outputs the data received before going to the descrambler. This is useful for sending special unscrambled patterns that can be used for signaling.						

SPECIAL REGISTER (Continued)

BIT NO.	NAI	ME	DESCRIPTION	
D3	TXD SO	URCE		ata source; either the TXD pin if ZERO or the TRANSMIT PATTERN bits D7 and D6 in CR1 ps.
D2, D1	SIGN QUAI LEV SELE	LITY 'EL	acceptable for low error rate re Mean Squared Error (MSE) compared to a given threshold. rate. The SQI bit will be low for rate crosses the threshold set Toggling will continue until the convergence and a retrain is re	a logical ONE when the signal received is not ecception. It is determined by the value of the calculated in the decisioning process when This threshold can be set to four levels of error or good or average connections. As the error ting, the SQI bit will toggle at a 1.66 ms rate. error rate indicates that the data pump has lost equired. At that point the SQI bit will be a ONE reshold selection are valid for QAM and DPSK
	D2	D1	THRESHOLD VALUE	UNITS
	0	0	10 ⁻⁵	BER (default)
	0	1	10-6	BER
	1	0	10-4	BER
	1	1	10 ⁻³	BER

NOTE: This register is "mapped" and is accessed by setting CR2 bit D6 to a ONE and addressing CR3. This register provides functions to the 73K324L user that are not necessary in normal communications. Bits D7-D4 are read only, while D3-D0 are read/write. To return to normal CR3 access, CR2 bit D6 must be returned to a ZERO.

ID REGISTER

	D7		D6		D5		D4	D3	D2	D1	D0
ID 110	ID 2		ID 1		ID 0				-		
BIT	NO.	NAME		CONDITION			DESCRIPTION				
D7, D6, D5		Device Identification		D7 D6 D5			Indicates Device:				
				0	0	х	SSI 73K212(L) or 73K322L				
				0	1	х	SSI	73K221(L) o	or 73K302L		
		Sig	nature	1	0	Х	SSI	73K222(L)			
				1	1	0	SSI	73K224L	andro da anti-Aliana		
				1	1	1	SSI	73K324L			

1

ELECTRICAL SPECIFICATIONS

ABSOLUTE MAXIMUM RATINGS

PARAMETER	RATING	UNIT		
VDD Supply Voltage	14	V		
Storage Temperature	-65 to 150	°C		
Soldering Temperature (10 sec.)	260	°C		
Applied Voltage -0.3 to VDD+0.3 V				
Note: All inputs and outputs are protected f	rom static charge using built-in, indust	ry standard protection		

Note: All inputs and outputs are protected from static charge using built-in, industry standard protection devices and all outputs are short-circuit protected.

RECOMMENDED OPERATING CONDITIONS

PARAMETER	ARAMETER CONDITIONS			МАХ	UNITS
VDD Supply voltage	4.5	5	5.5	V	
External Components (Refer	to Application section for placement.)				
VREF Bypass capacitor	(VREF to GND)	0.1			μF
Bias setting resistor	(Placed between VDD and ISET pins)	1.8	2	2.2	MΩ
ISET Bypass capacitor	(ISET pin to GND)	0.1			μF
VDD Bypass capacitor 1	(VDD to GND)	0.1			μF
VDD Bypass capacitor 2	(VDD to GND)	22			μF
XTL1 Load Capacitance	Depends on crystal requirements			40	pF
XTL2 Load Capacitance	Depends on crystal requirements			20	pF
Clock Variation	(11.0592 MHz) Crystal or external clock	-0.01		+0.01	%
TA, Operating Free-Air Temperature		-40		55	°C

DC ELECTRICAL CHARACTERISTICS

(TA = -40°C to 70°C, VDD =recommended range unless otherwise noted.)

PARAMETER	CONDITIONS	MIN	NOM	МАХ	UNITS
IDD, Supply Current	CLK = 11.0592 MHz				
	ISET Resistor = 2 M Ω				
IDD1, Active			25	27	mA
IDD2, Idle			3		mA
Digital Inputs					
VIL, Input Low Voltage				0.8	V
VIH, Input High Voltage					
All Inputs except Reset XTL1, XTL2		2.0		VDD	v
Reset, XTL1, XTL2		3.0		VDD	V
IIH, Input High Current	VI = VIH MAX			100	μA
IIL, Input Low Current	VI = VIL MIN	-200			μA
Reset Pull-down Current	Reset = VDD	5		50	μΑ
Digital Outputs					
VOH, Output High Voltage	IO = IOH Min IOUT = -0.4 mA	2.4		VDD	V
VOL, Output Low Voltage	IO = IOUT = 1.6 mA			0.4	v
VOL, CLK Output	IOUT = 3.6 mA			0.6	v
RXD Tri-State Pull-up Curr.	RXD = GND	-5		-50	μА
Capacitance		•		•	
Maximum Capacitive Load					
CLK				15	pF
Input Capacitance	All Digital Inputs			10	pF

DYNAMIC CHARACTERISTICS AND TIMING

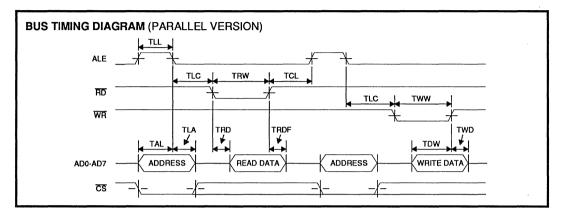
(TA = -40°C to +85°C, VDD = recommended range unless otherwise noted.)

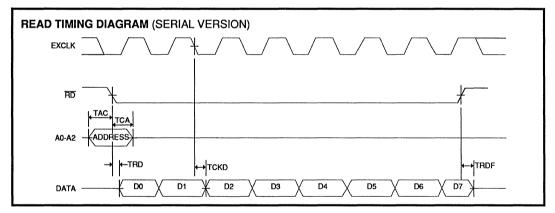
PARAMETERS	CONDITIONS	MIN	NOM	МАХ	UNITS
QAM/DPSK Modulator	Francisco				
Carrier Suppression	Measured at TXA	35			dB
Output Amplitude	TX scrambled marks ATT=0100 (default)	-11.5	-10.0	-9	dBm0
FSK Modulator					
Output Freq. Error	CLK = 11.0592 MHz	31		+.05	%
Transmit Level	ATT = 0100 (Default) Transmit Dotting Pattern	-11.5	-10.0	-9	dBm0
Output Distortion	All products through BPF			-45	dB
Output Bias Distortion	Transmit Dotting Pattern in ALB @ RXD		±10		%
Jitter	Transmit Dotting Pattern in ALB @ RXD		±10		%
2100 Hz Answer Tone Gene	rator				
Output Amplitude	ATT = 0100 (Default Level) Not in V.21 or V.23 Mode	-10	-9	dBm0	
Output Distortion	All products though BPF			-40	dB
NOTE: Parameters expresse	d in dBm0 refer to the following definit	ion:			
0 dB loss in tl	ne Transmit path to the line.				
2 dB gain in t	he Receive path from the line.				
Refer to the Basic Bo	x Modem diagram in the Applications	section fo	or the DAA	design.	
DTMF Generator	Not in V.21 or V.23 mode	_			
Freq. Accuracy		25		+.25	%
Output Amplitude	Low Band, ATT = 0100	-10		-8	dBm0
Output Amplitude	High Band, ATT = 0100	-8		-6	dBm0
Twist	High-Band to Low-Band	1.0	2.0	3.0	dB
Receiver Dynamic Range	Refer to Performance Curves	-48		-3.0	dBm0
Call Progress Detector	In Call Init mode	-			
Detect Level	460 Hz test signal	-34		0	dBm0
Reject Level				-40	dBm0
Delay Time	-70 dBm0 to -30 dBm0 STEP			25	ms
Hold Time	-30 dBm0 to -70 dBm0 STEP			25	ms
Hysteresis		2			dB

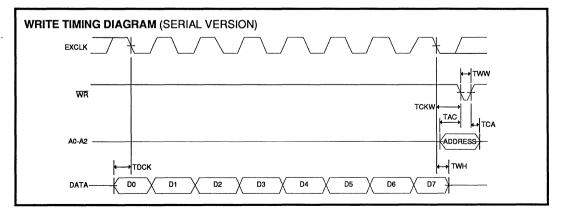
DYNAMIC CH	ARACTERISTIC	CS AND TIMING (continued)				
PARAMETERS		CONDITIONS	MIN	NOM	МАХ	UNITS
Carrier Detect						
Threshold		QAM/DPSK or FSK receive data	-48		-43	dBm0
Hysteresis		All Modes	2			dB
Delay Time	FSK, DPSK or QAM	-70 dBm0 to -6 dBm0	10		30	ms
Hold Time	FSK, DPSK or QAM	-6 dBm0 to -70 dBm0	10		65	ms
Special Tone	e Detectors					
Detect Level		See definitions for TR bit D0 mode	-48		-43	dBm0
Delay Time						
2225 or 21 answer ton		See detect register for detect bandwidth	10		45	ms
1300 Hz ca	Illing tone	Tone Accuracy ±0.5%	10		45	ms
900 Hz SCT V.23 main channel		Tone Accuracy ±5 Hz	10		45	ms
Hold Time						
2100 Hz ar	nswer tone	See detect register for detect bandwidth	10		45	ms
1300 Hz ca	Illing tone	Tone Accuracy ±0.5%	10		45	ms
900 Hz SC main chanr		Tone Accuracy ±5 Hz	10		45	ms
Hysteresis			2			dB
Pattern Detect	ors	DPSK Mode				
S1 Pattern						
Delay Time		For signals from -6 to -40 dBm0,	10		45	ms
Hold Time		Demod Mode	10		45	ms
Unscrambled Mark						
Delay Time		For signals from -6 to -40	10		45	ms
Hold Time		Demod or call Init Mode	10		45	ms
Receive Level	Indicator					
Detect On					-19	dBm0
Valid after Ca	urrier Detect		10			ms

1

DYNAMIC CHARACTERISTICS AND TIMING (Continued)


PARAMETERS	CONDITIONS	MIN	NOM	МАХ	UNITS
Output Smoothing Filter					
Output Impedance	TXA pin		200	300	Ω
Output Load	TXA pin; FSK Single	10			kΩ
	Tone out for THD = -50 dB in .3 to 3.4 kHz range			50	pF
Maximum Transmitted	4 kHz, Guard Tones off			-35	dBm0
Energy	10 kHz, Guard Tones off			-55	dBm0
	12 kHz, Guard Tones off			-65	dBm0
Anti Alias Low Pass Filter					
Maximum allowed Out-of-Band Signal Energy	Level at RXA pin with receive Boost Enabled				
(Defines Hybrid Trans- Hybrid loss requirements)	Scrambled data at 2400 bit/s in opposite band			-14	dBm
	Sinusoids out of band			-9	dBm
Transmit Attenuator	•				
Range of Gain	Relative to -10 dBm0	+4		-11	dB
Step Accuracy		-0.15		+0.15	dB
Clock Noise	TXA pin; 153.6 kHz		1.5		mV rms
Carrier Offset					
Capture Range	Originate or Answer	-10	±7	+10	Hz
Recovered Clock					
Capture Range	% of data rate originate or answer	024		+.024	%
Guard Tone Generator					
Tone Accuracy	550 Hz			+1.18	%
	1800 Hz	-0.7			%
Tone Level	550 Hz	-5.0	-3.0	-2.0	dB
(Below QAM/DPSK Output)	1800 Hz	-8.0	-6.0	-5.0	dB
Harmonic Distortion	550 Hz			-50	dB
(700 to 2900 Hz)	1800 Hz			-60	dB


1


DYNAMIC CHARACTERISTICS	AND TIMING (Continued)
-------------------------	------------------------

PARAMETERS	CONDITIONS	MIN	NOM	МАХ	UNITS		
Timing (Refer to Timing Diagrams)							
TAL	CS/Addr. setup before ALE Low 30				ns		
TLA	CS/Addr. hold after ALE Low		ns				
TLC	ALE Low to RD/WR Low	40			ns		
TCL	RD/WR Control to ALE High	10			ns		
TRD	Data out from RD Low	0		140	ns		
TLL	ALE width	60			ns		
TRDF	Data float after RD High	0		200	ns		
TRW	RD width	200	200 25000		ns		
TWW	WR width	140	140 25000*		ns		
TDW	Data setup before WR High	150			ns		
TWD	Data hold after WR High	20			ns		
ТСКО	Data out after EXCLK Low		200	ns			
TCKW	WR after EXCLK Low	150			ns		
TDCK	Data setup before EXCLK Low	150			ns		
TAC	Address setup before control**	50			ns		
TCA	Address hold after control**	50			ns		
тwн	Data Hold after EXCLK	20					
* Maximum time applies to	parallel version only.		•.•	•	•		
 ** Control for setup is the falling edge of RD or WR. Control for hold is the falling edge of RD or the rising edge of WR. 							

TIMING DIAGRAMS

APPLICATIONS INFORMATION

GENERAL CONSIDERATIONS

Figures 1 and 2 show basic circuit diagrams for K-Series modem integrated circuits. K-Series products are designed to be used in conjunction with a control processor, a UART or RS-232 serial data interface, and a DAA phone line interface to function as a typical intelligent modem. The K-Series ICs interface directly with Intel 8048 and 80C51 microprocessors for control and status monitoring purposes. Two typical DAA arrangements are shown: one for a split $\pm 5 \text{ or} \pm 12$ volt design and one for a single 5 volt design. These diagrams are for reference only and do not represent production-ready modem designs.

K-Series devices are available with two control interface versions: one for a parallel multiplexed address/ data interface, and one for a serial interface. The parallel version is intended for use with 8039/48 or 8031/51 microcontrollers from Intel or many other manufacturers. The serial interface 22-pin version can be used with other microcontrollers or in applications where only a limited number of port lines are available or the application does not lend itself to a multiplexed address/data interface. The parallel versions may also be used in the serial mode, as explained in the data sheet pin description.

In most applications the controller will monitor the serial data for commands from the DTE and the received data for break signals from the far end modem. In this way, commands to the modem are sent over the same line as the transmitted data. In other applications the RS-232 interface handshake lines are used for modem control.

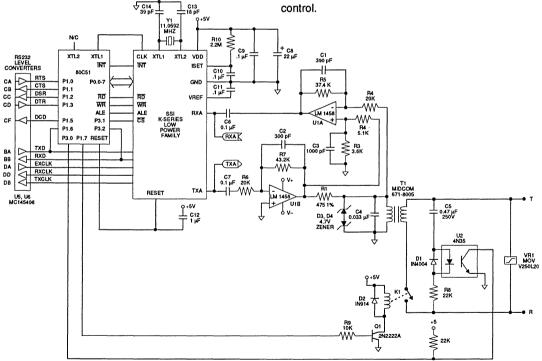


FIGURE 1: Basic Box Modem with Dual-Supply Hybrid

DIRECT ACCESS ARRANGEMENT (DAA)

The telephone line interfaces show two examples of how the "hybrid" may be implemented. The split supply design (Figure 1) is a typical two op-amp hybrid. The receive op-amp serves two purposes. It supplies gain to amplify the receive signal to the proper level for the modem's detectors and demodulator, and it removes the transmitted signal from the receive signal present at the transformer. This is done by supplying a portion of the transmitted signal to the non-inverting input of the receive op-amp at the same amplitude as the signal appearing at the transformer, making the transmit signal common mode.

The single-supply hybrid is more complex than the dual-supply version described above, but its use eliminates the need for a second power supply. This circuit (Figure 2) uses a bridged drive to allow undistorted signals to be sent with a single 5 volt supply. Because DTMF tones utilize a higher amplitude than

data, these signals will clip if a single-ended drive approach is used. The bridged driver uses an extra opamp (U1A) to invert the signal coming from the gain setting op-amp (U1B) before sending it to the other leg of the transformer. Each op-amp then supplies half the drive signal to the transformer. The receive amplifier (U1C) picks off its signal at the junction of the impedance matching resistor and the transformer. Because the bottom leg of the transformer is being driven in one direction by U1A and the resistor is driven in the opposite direction at the same time by U1B, the junction of the transformer and resistor remains relatively constant and the receive signal is unaffected.

DESIGN CONSIDERATIONS

Silicon Systems' 1-chip modem products include all basic modem functions. This makes these devices adaptable for use in a variety of applications, and as easy to control as conventional digital bus peripherals.

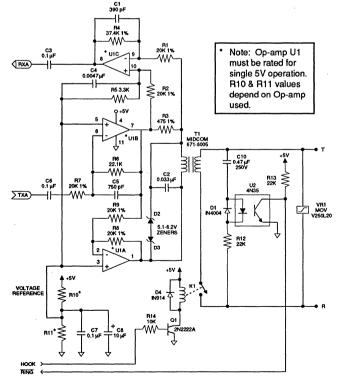


FIGURE 2: Single 5V Hybrid Version

Unlike digital logic circuitry, modem designs must properly contend with precise frequency tolerances and very low level analog signals, to ensure acceptable performance. Using good analog circuit design practices will generally result in a sound design. Following are additional recommendations which should be taken into consideration when starting new designs.

CRYSTAL OSCILLATOR

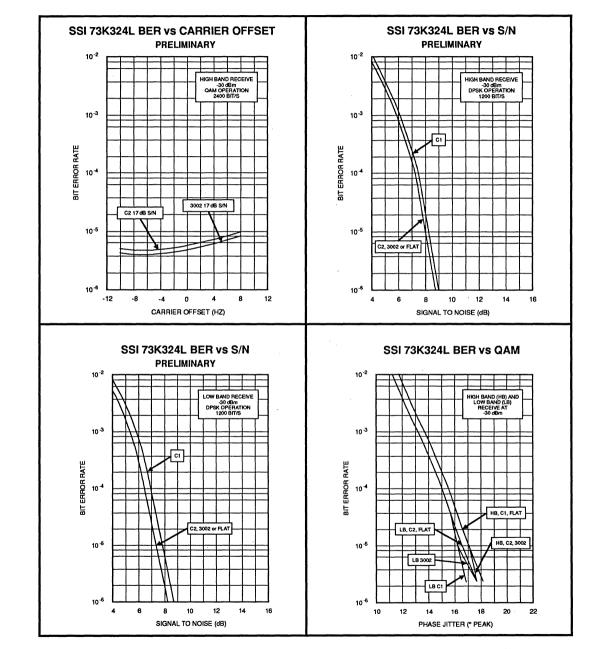
The K-Series crystal oscillator requires a parallel mode (antiresonant) crystal which operates at 11.0592 MHz. It is important that this frequency be maintained to within $\pm 0.01\%$ accuracy.

In order for a parallel mode crystal to operate correctly and to specification, it must have a load capacitor connected to the junction of each of the crystal and internal inverter connections, terminated to ground. The values of these capacitors depend primarily on the crystal's characteristics, and to a lesser degree on the internal inverter circuit. The values used affect the accuracy and start up characteristics of the oscillator.

LAYOUT CONSIDERATIONS

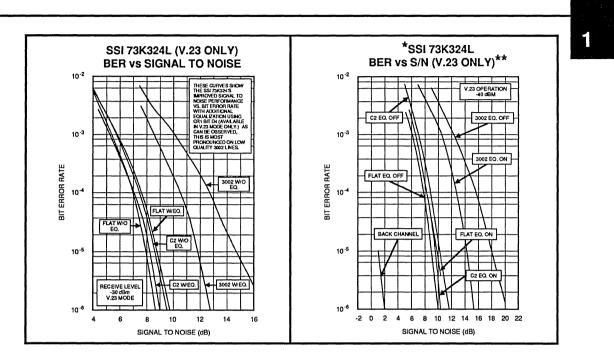
Good analog/digital design rules must be used to control system noise in order to obtain highest performance in modem designs. The more digital circuitry present on the PC board, the more this attention to noise control is needed. The modern should be treated as a high impedance analog device. A 22 µF electrolvtic capacitor in parallel with a 0.1 µF ceramic capacitor between VDD and GND is recommended. Liberal use of ground planes and larger traces on power and ground are also highly favored. High speed digital circuits tend to generate a significant amount of EMI (Electro-Magnetic Interference) which must be minimized in order to meet regulatory agency limitations. To accomplish this, high speed digital devices should be locally bypassed, and the telephone line interface and K-Series device should be located close to each other near the area of the board where the phone line connection is accessed. To avoid problems, power supply and ground traces should be routed separately to the analog and digital functions on the board, and digital signals should not be routed near low level or high impedance analog traces. The analog and digital grounds should only connect at one point near the K-Series device ground pin to avoid ground loops. The K-Series modem IC's should have both high frequency and low frequency bypassing as close to the package as possible.

MODEM PERFORMANCE CHARACTERISTICS


The curves presented here define modem IC performance under a variety of line conditions while inducing disturbances that are typical of those encountered during data transmission on public service telephone lines. Test data was taken using an AEA Electronics' "Autotest I" modem test set and line simulator, operating under computer control. All tests were run fullduplex, using a Concord Data Systems 224 as the reference modem. A 511 pseudo-random-bit pattern was used for each data point. Noise was C-message weighted and all signal-to-noise (S/N) ratios reflect total power measurements similar to the CCITT V.56 measurement specification. The individual tests are defined as follows.

BER vs.S/N

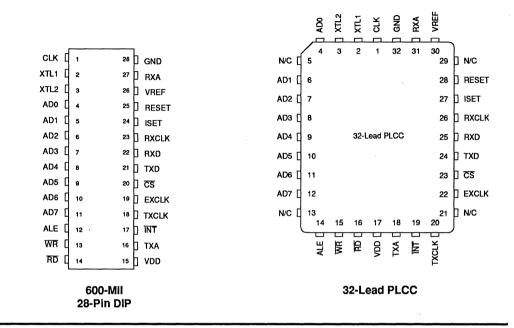
This test measures the ability of the modem to operate over noisy lines with a minimum of data-transfer errors. Since some noise is generated in the best of dial-up lines, the modem must operate with the lowest S/N ratio possible. Better modem performance is indicated by test curves that are closest to the BER axis. A narrow spread between curves representing the four line parameters indicates minimal variation in performance while operating over a range of aberrant operating conditions. Typically, a DPSK modem will exhibit better BER-performance test curves receiving in the low band than in the high band.


BER vs. Receive Level

This test measures the dynamic range of the modem. Because signal levels vary widely over dial-up lines, the widest possible dynamic range is desirable. The minimum Bell specification calls for 36 dB of dynamic range. S/N ratios are held constant at the indicated values while the receive level is lowered from a very high to very low signal levels. The width of the "bowl" of these curves, taken at the BER point, is the measure of dynamic range.

* = "EQ On" Indicates bit CR1 D4 is set for additional phase equalization.

** = 73K302L performance is similar to that of the 73K322L. V.23 operation corresponds to Bell 202.



* = "EQ On" Indicates bit CR1 D4 is set for additional phase equalization.

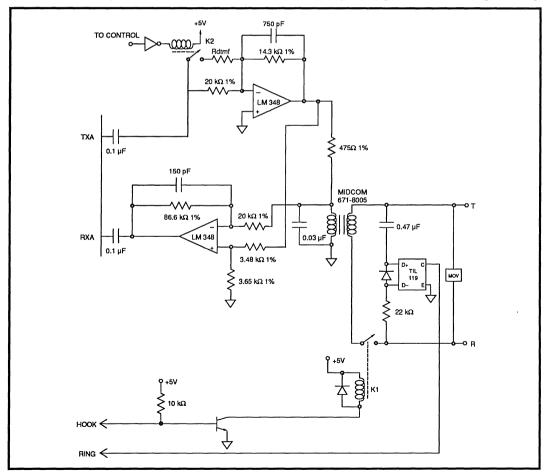
** = 73K302L performance is similar to that of the 73K322L. V.23 operation corresponds to Bell 202.

(TOP VIEW)

Advance Information: Indicates a product still in the design cycle, and any specifications are based on design goals only. Do not use for final design.

No responsibility is assumed by Silicon Systems for use of this product nor for any infringements of patents and trademarks or other rights of third parties resulting from its use. No license is granted under any patents, patent rights or trademarks of Silicon Systems. Silicon Systems reserves the right to make changes in specifications at any time without notice. Accordingly, the reader is cautioned to verify that the data sheet is current before placing orders.

Silicon Systems, Inc., 14351 Myford Road, Tustin, CA 92680, (714) 731-7110, FAX: (714) 731-5457

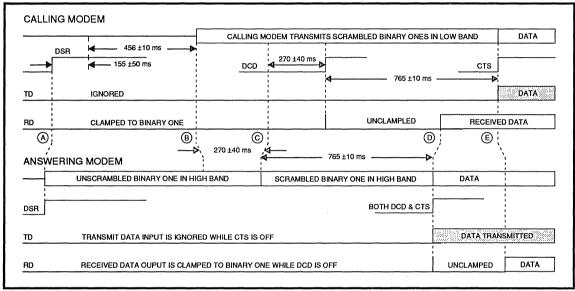

Setting DTMF Levels for 1200 Bit/s K-Series Modems

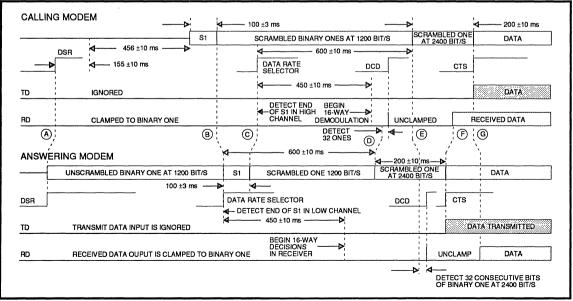
Some applications of the K-series modems without output level adjustment may require setting the DTMF transmit level to something other than the normally transmitted level. This level is nominally about 5 dB higher than during data transmission. If the data is transmitted at -10 dBm, the DTMF levels will be at about -5 dBm, which is adequate in most applications.

silicon systems*

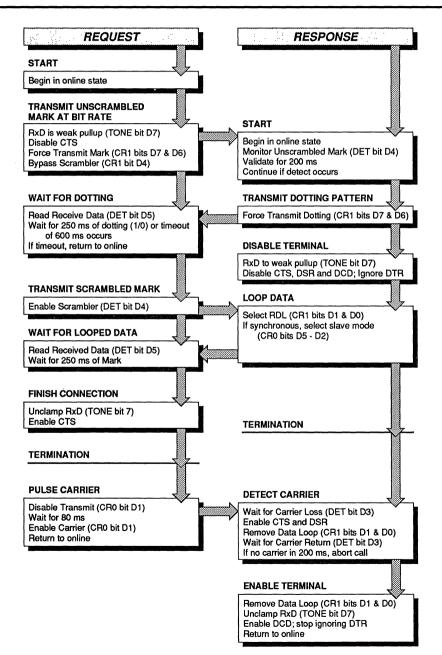
The simplest way to change the relative levels of DTMF tones and data is to change the transmit gain during dialing. This can be accomplished as shown below. In this example, it is assumed that the DTMF tones are to be transmitted at a higher level than normal. Closing relay K2 will increase the gain of the transmit op-amp and allow a higher DTMF tone level during dialing. If it is desired to decrease the DTMF level, the relay can be open for dialing and closed for data. The value of the shunt resistor, Rdtmf, will be relatively large compared to the resistor R1, therefore the precision of Rdtmf is not as critical as R1. This means an analog switch or similar device could be used instead of a relay, with the on resistance of the switch not seriously affecting the tolerance of the gain setting.

SSI 73K212A High Speed Connect Sequence


		ORIGINATING N	ODEM TRANSMIT	S SCRAMBLED MARKS I	N LOW BAND	DATA
osr —	508 - 626 ms	DCD	231 - 308 ms	774 ms	CTS	
D	I IGNORED					DATA
RD	I I CLAMPED TO MARK		1	UNCLAMPED	RECE	IVED DATA
		231 - 308 ms		74 ms) (E	\
	ANSWERING MODEM TRANSMITS 2225	Hz	SCRAMBLED M	ARKS IN HIGH BAND	DATA	1
D	SR ALREADY ON			BOTH DCD & CTS		1
D	TRANSMIT DATA INPUT IS IGN	ORED WHILE CTS I	S OFF		DATA TR/	L INSMITTED T
D	RECEIVED DATA OUTPUT IS C	LAMPED TO MARK	WHILE DCD IS OFF	.	UNCLAMPED	DATA

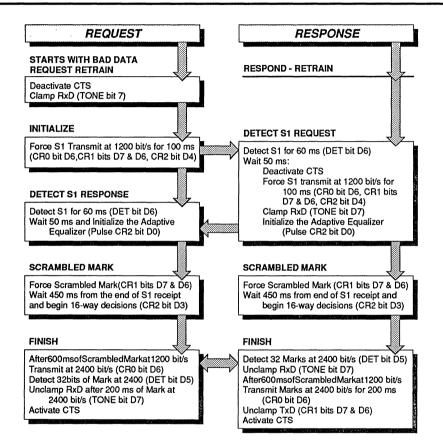

V.22 & V.22bis Connect Sequences

1


V.22

V.22bis

Remote Loop Handshake Sequence



silicon systems •

SSI 73K224 Retrain at 2400

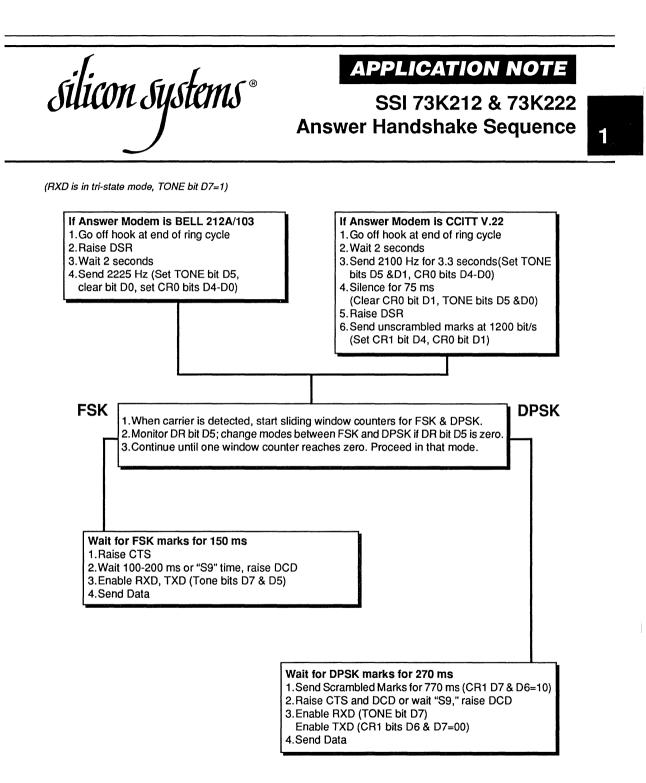
SSI 73K212 & 73K222 Originate Handshake Sequence

(RXD is in tri-state mode, TONE bit D7≤1)

DIAL

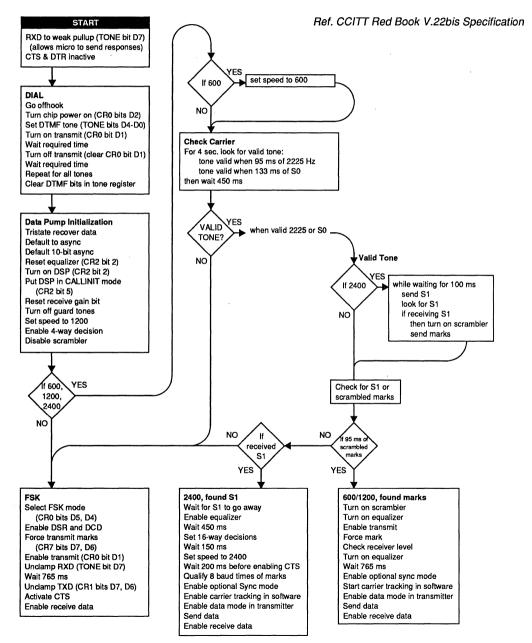
- 1. Go off hook
- 2. Bring out of power down mode (CR0 bits D5-D2)
- 3. Set DTMF tone (Tone bits D4-D0)
- 4. Turn on transmitter (Set CR0 bit D1)
- 5. Wait DTMF on time
- 6. Turn off transmitter (Clear CR0 bit D1)
- 7. Wait DTMF off time
- 8. Repeat 3-7 for all digits

WAIT FOR CARRIER

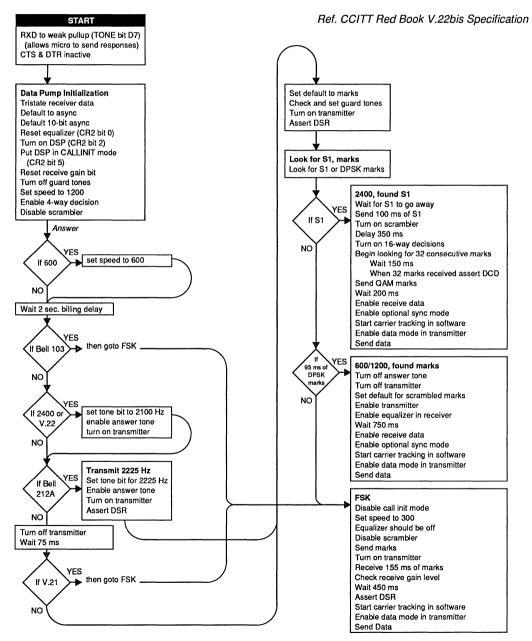

- 1. Start S7 (Wait for carrier) timeout
- 2. Set to Bell 103 originate mode (Set CR0 bits D5-D0 to 110001)
- 3. Wait for carrier detect bit (DR bit D3) to come on
- 4. Start sliding window counter (Wait through possible 2100 Hz answer tone period)
- Qualify RXD mark* for 150 ms (DR bit D5) to detect answer modem (Carrier detect bit must also be on)
- 6. Raise DSR

- FSK

- 1. Wait 100-200 ms
- 2. Raise DCD, start 755-774 ms timer; wait 426-446 ms, send FSK marks (Set CR1 bits D7 & D6 to 10, set CR0 bit D1)
- 3. At end of 755-774 ms timer period (started in #2 above); raise CTS, unclamp RXD & TXD from marking (clear TONE bit D7; clear CR1 bits D7 & D6)


- DPSK

- 1. Wait 456 (V.22) or 508-626 ms (212A), switch to DPSK
- 2. Send scrambled marks (Set CR1 bits D7 & D6 to 10)
- 3. Qualify scrambled marks from answer modem for 150 ms
- 4. Wait for 231-302 ms of scrambled marks, raise DCD
- 5. Enable RXD (Tone bit D7)
- 6. Wait 774 ms, raise CTS, enable TXD (Clear CR1 bits D7 & D6)


silicon systems*

SSI 73K224 Originate Handshake Sequence

SSI 73K224 Answer Handshake Sequence

silicon systems*

Performance Testing Silicon Systems K-Series Single-Chip Modem Family

Why Modem Performance Is Important

In today's world of expanding communications, the modem has become an essential element in providing data communications capability for such applications as personal computers, lap-top PCs, and hand-held portable terminals. To fit the requirements of these systems, the modem must become more compact even as it becomes more complex. As more modem functions are integrated onto a single chip, it is the modem IC that becomes the key to designing small footprint modems that integrate well into today's computer applications.

Trying to compare competitive modem ICs by analyzing published technical specifications can be misleading. No meaningful comparisons can be made, because data sheets provide little useful performance information. Products that appear functionally competitive can vary widely in datacom performance.

Hidden differences in modem architecture can have a profound effect on overall modem operation. Where one modem IC might perform well within a real-world operating environment, another seemingly comparable IC might perform just marginally. So ultimately what the designer needs is a way to realistically compare modem ICs by their ability to perform, error-free, under realworld operating conditions.

The Real World of Telecommunications

Telephone lines vary. Indifferent geographical areas, factors such as age, technology, and upkeep of equipment all contribute to variations in the physical operating environment. The physical mechanics of call-routing introduce other uncertainties, since call-routing can be completely random in a typical dial-up connection due to the automatic routing techniques being used.

Also, differences in the switching and multiplexing methods used in different locations, as well as differences in the conductive medium (copper-wire or fiber-optics), all add to the mix, making it difficult to design a modem that will perform well in a manner that is transparent to all of these factors.

These equipment and routing factors that adversely affect data communications create performance aberrations that are known collectively as line impairments. These line impairments cause the realworld side-effects that define the actual environment in which the modem, and the modem IC, must survive and perform.

Line Impairments

Generally, line impairments can be classified into four categories: line noise, signal-level variations, phase distortion, and carrier offset.

Line Noise

Line noise is the most common impairment to efficient datacommunications and can manifest itself in many ways. Ambient noise, for example, can be caused by copper line conductors. Wideband noise can be generated by hybrid repeater amplifiers in the network. Crosstalk from adjacent lines can sometimes couple into the connection and add to noise on the line.

Generally, noise impairments occur within the 300 to 3000 Hz voiceband, since other frequencies are attenuated by repeaters or filters on the line. The specific quality that enables a modem IC to operate error-free in a noisy line environment can be found in its design architecture, which reflects the functional efficiency of both its components and its circuit layout.

Signal-Level Variations

High signal-level is one impairment in this category. This stronger-than-normal signal can occur when an unusually efficient connection is made, as when routed through a PBX or when the transmitter and receiver are within close proximity to one another. A maximum level for normal operation on a dial-up line might be -10 dBm. An abnormally high level might approach 0 dBm.

Low signal-levels result from high line-resistance or from long, circuitous call-routing paths. The lowest signal level expected on a dial-up line is -45 dBm. The ability of the modem to handle abnormally high or low signal-levels is defined by its dynamic range.

Gain hits are short, quick changes in the receive signal's amplitude. The phenomenon can be caused by trunk-line switching activity or by sudden changes in line impedance, both of which can cause a breakdown in data-transfer integrity. Gain hits can be offset by fasttracking capability within the AGC circuitry of the modem IC.

Phase Distortion

These impairments include phase litter, phase hits, and group/envelope delay. Phase litter is a periodic shift in the phase of the received carrier, which can be caused by variations in the line characteristics or by imperfections in the transmitting modem. Phase hits are more instantaneous in nature. They are characterized by significant changes in phase in the received carrier and are caused by ongoing switching action in the dial-up network. Group delay (envelope delay) results from reactive line-impedance characteristics that induce phase shifts in the frequencies present in the received signal. The modem must correct for group-delay distortion. Failure to do so can result in a phenomenon known as intersymbol interference. This occurs when frequency elements from one signal-modulation period overlap those of another, making it difficult to detect the original phaseencoded information in the signal, thus introducing data errors.

Carrier Offset

This impairment refers to a shift infrequency between the transmitted signal and the received signal. The condition is often introduced during long-distance call routing, where frequency-division multiplexing combines lower-frequency voiceband signals into a higher frequency signal. This phenomenon can be offset by the modem's phase-lock-loop tracking capabilities.

How Modems Can Be Compared For Performance

In order to compare modem ICs realistically, the design engineer needs to test each device under conditions that reflect real-life telephone line conditions. To achieve this, a test environment must be set up to simulate a set of actual line characteristics that conform to specifications defined by Bell System published standards. The engineer can then subject each test modem to artificially induced impairments under each of these line-standard conditions and compare the specific performance of competitive modems. A range of line conditions must be used to show how the modem will operate over the random variety of lines that might be encountered in typical operation.

Line Standards

Characteristics for dial-up telephone lines are not commonly specified, but leased lines are conditioned lines for which linear-distortion characteristics, including frequency-response and envelope-distortion parameters, are guaranteed by the telephone company. The Bell System line standards define four premium line conditions that operate with characteristics similar to those found in dial-up lines. These lines, which allow for modem performance testing over a wide range of representative conditions, include the following:

<u>The 3002 Line</u> is the lowest quality leased line and represents the poorest environment for accurate data communications. Allowable amplitude variation is 15 dB over the voiceband range. Envelope delay can vary as much as 1750 microseconds over the 800 to 2600 Hz range.

The C1 Line is conditioned to a greater extent than the 3002 line and can be considered to represent the average in dial-up line characteristics. Amplitude variation over the frequency band of interest is limited to 8 dB. Allowable envelope delay is the same as for the 3002 line.

<u>The C2 Line</u> represents an intermediate-quality line for modem testing. Frequency response is limited to 8 dB amplitude variation. Envelope delay is improved to not more than 500 microseconds over a 1000 to 2600 Hz range.

The C4 Line represents the best line conditions to be expected in a dial-up telephone environment. Optimum modem performance would be expected using this standard. Group delay or attenuation is negligible. Frequency response is limited to 8 dB. Envelope delay distortion is held to less than 300 microseconds over a 1000 to 2600 Hz range.

The Testing Method

To qualify modem ICs for performance, the test method must be uniformly applied. A test unit is used to simulate each of the Bell System line standards and to generate the environmentally representative line impairments. A typical test set-up includes a line simulator, a personal computer, an RMS voltmeter, and a reference modem to test against. Control of the test parameters is handled by the PC connected to the test fixture through a GPIB data bus. The PC sets up and controls the line simulator, monitors the results, and accumulates the error count for each iteration.

Two modem ICs are compared in a typical test sequence. The modem IC to be tested is connected to the modem testing equipment via a breadboard evaluation fixture and is fed a continuous data stream for testing. The tester monitors the data received from the test modem and the data bit-errors are counted and plotted to signify the ratio between the number of bits transmitted compared to the number of transmission error-bits. This results in a statistical bit-error rate (BER).

The test method calls for a large sample of data errors to be simulated for each device, under each line condition. Multiple data points are taken for each test for each device. Test message data is transmitted in a random, broad-range pattern. Each data point results from the transmission of a million data bits and a complete test sequence on a single modem IC could represent 100 hours of test time before a realistic error sampling might be realized.

The SSI K-Series Modem ICs

Silicon Systems' K-Series family of modem ICs use an integrated analog/digital design philosophy for enhanced high-performance operation, which virtually eliminates data-error-related modem failures. These pin and function-compatible family products comply with the full range of relevant worldwide operating standards for data transfer speeds ranging from 300 to 2400 bit/s. The SSI 73K224L, the industry's first 2400 bit/s single-chip modem for both US and European standards, features adaptive equalization, which further enhances performance by giving the modem the ability to adapt automatically to varying line conditions.

The K-Series modem ICs are used in the sample test curves presented with this document as a base against which competitive performance information can be compared.

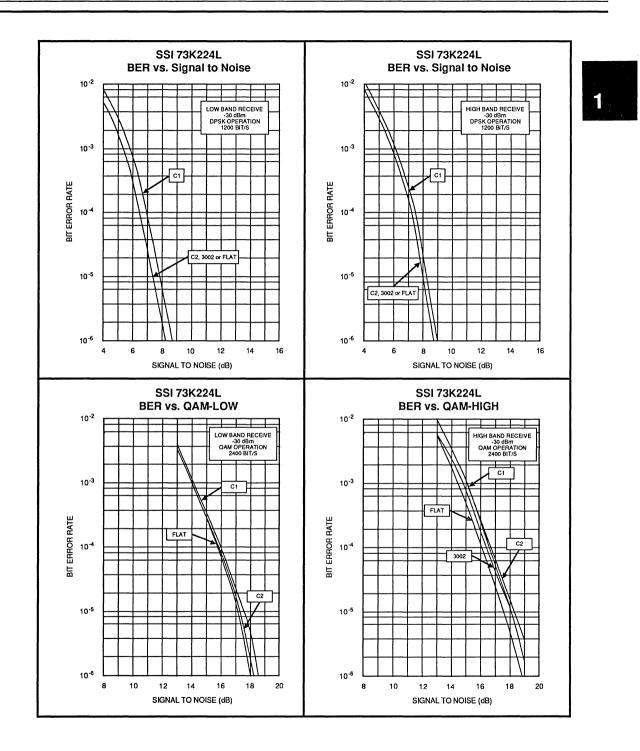
MODEM PERFORMANCE CHARACTERISTICS

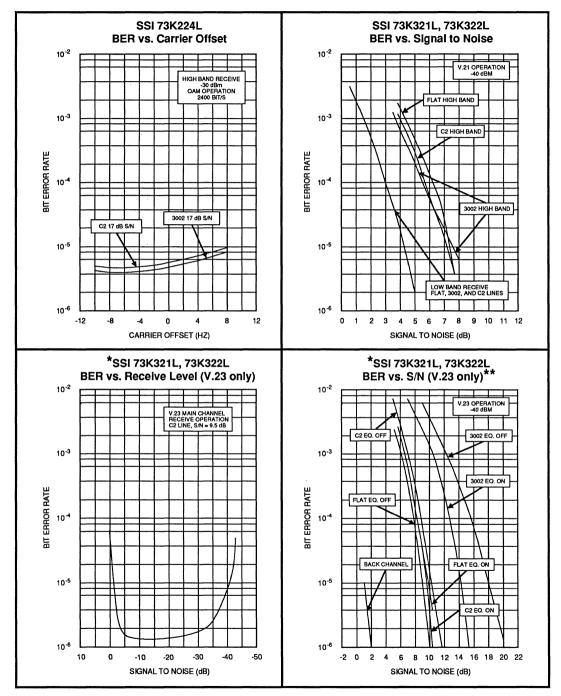
The curves presented here define modem IC performance under a variety of line conditions while inducing disturbances that are typical of those encountered during data transmission on public service telephone lines. Test data was taken using an AEA Electronics' "Autotest I" modem test set and line simulator, operating under computer control. All tests were run full-duplex, using a Concord Data Systems 224 as the reference modem. A 511 pseudo-randombit pattern was used with 1X10⁶ bits transmitted for each data point. Noise was C-message weighted and all signal-to-noise (S/N) ratios reflect total power similar to the CCITT V.56 measurement specification. The individual tests are defined as follows.

BER vs.S/N

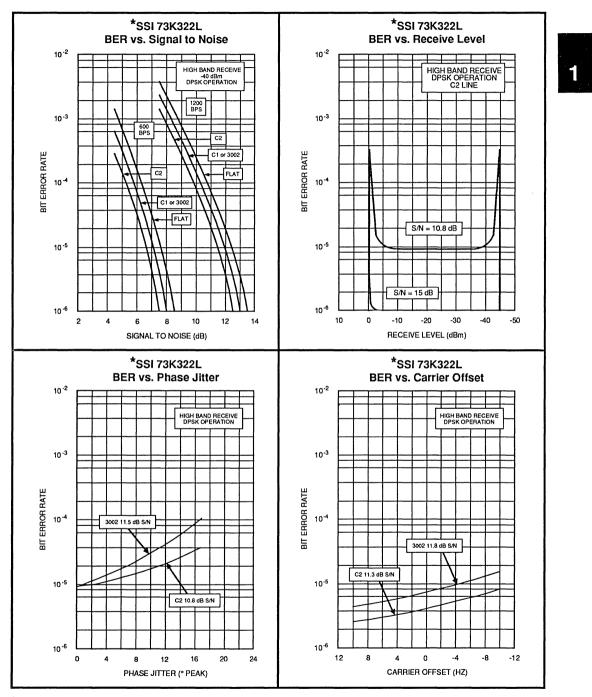
This test measures the ability of the modem to operate over noisy lines with a minimum of datatransfer errors. Since some noise is generated in the best of dial-up lines, the modem must operate with the lowest S/N ratio possible. Optimum modem performance is indicated by test curves that are closest to the zero axis. A narrow spread between curves representing the four line parameters indicates minimal variation in performance while operating over a range of operating conditions. Typically, a DPSK modem will exhibit better BER-performance test curves operating in the highband range than in the lowband.

BER vs. Receive Level


This test measures the dynamic range of the modem. Because signal levels vary widely over dial-up lines, the widest possible dynamic range is desirable. The minimum Bell specification calls for 36 dB of dynamic range. S/N ratios are held constant at the indicated values while the receive level is lowered from a very high to very low signal levels. The width of the "bowl" of these curves, taken at the BER point, is the measure of dynamic range.


BER vs. Phase Jitter

DPSK and QAM modulation is sensitive to phase jitter. Modems using these techniques need to be as tolerant as possible of phase jitter on the line. In this test, relatively flat curves indicate minimal degradation of performance when phase jitter is encountered on the line.


BER vs. Carrier Offset

This parameter indicates how the modem's performance is affected by the shifts in carrier frequency encountered in normal public telephone network operation. Flat curves are an indication that there is no performance degradation from frequency offsets. The SSI K-Series modem ICs use a second-order, carrier-tracking phase-lock-loop that is insensitive to carrier offsets in excess of 10 Hz. Both the Bell and European/Japanese CCITT specifications allow as much as 7 Hz offset.

- * = "EQ On" Indicates bit CR1 D4 is set for additional phase equalization.
- ** = 73K302L performance is similar to that of the 73K322L. V.23 operation corresponds to Bell 202.

* = "EQ On" Indicates bit CR1 D4 is set for additional phase equalization.

silicon systems*

Troubleshooting the Modem Design

Excerpt from the Silicon Systems K-Series Modem Design Manual

Possible Causes of a Totally Dead System

It is always particularly depressing when you power-up a new design for the first time and absolutely nothing happens. However, this is often the easiest type of fault to find. We will try to think of a few things that could cause this problem (apart from the obvious, like the plug falling out of the wall socket).

The K-Series Modem IC is Stuck in the Reset State

You will generally get very little cooperation from a K-Series modem IC while it is in the power-down state. It enters this state when a reset operation is performed, either by writing to the Reset bit (bit 2) in Control Register 1 or by taking the RESET input pin to logic ONE. Make sure that your firmware is bringing the part out of this state by writing something other than all ZEROs to bits 5 to 2 in Control Register 0. Also, make sure that this happens after the RESET pin has been returned to logic ZERO. A capacitor from this pin to VDD can hold the part in the reset state for many seconds. Attempts to program the part during this time will not take effect. For products with a DSP, check that the RESET DSP bit (CR2 bit D2) is also written with ONE when appropriate.

Crystal Oscillator Fails to Start

If a complete crystal oscillator is used to directly drive the K-Series modem, any starting problem should be addressed to the manufacturer of that device. If the internal oscillator is used with a crystal, there may be situations in which it will not start. Check the values of the capacitors from XTL1 and XTL2 to ground. If these are too high in value, 40 pF or above, the oscillator may not start. Such large values are not recommended and should not be necessary if the crystal is correctly specified. Also ensure that the circuit board is designed to minimize stray inductance and capacitance in the area of the oscillator. The crystal and both capacitors should be placed as close as possible to the XTL pins of the K-Series modern IC and connected by direct traces. The ground connection of the capacitors should be via wide traces to the digital grounding system. It is also

possible that the oscillator will not start or will be slow to start if the risetime of the power supply voltage is very long. The starting properties are helped by the asymmetry in the load capacitor values, the capacitor at XTL1 should be about twice as large as that at XTL2.

Clock to Microcontroller Isn't Getting Through

Using the K-Series modem ICs on-chip clock oscillator to generate timing for the entire system is very efficient from the point of view of component count and EMI generation. However, note that the CLK output of the modem chip is specified only to drive TTL compatible inputs. Many common microcontrollers require clock inputs that rise closer to the supply voltage for logic ONE. We have seen applications which use the CLK pin to drive these inputs without problem, however, the low-power (5V supply) parts may give a lower logic ONE level than is necessary at elevated temperature. We recommend that you use a TTL to CMOS level converting buffer between the CLK pin and the controller clock input in 5V systems. A pull-up resistor to the 5V supply is not effective in increasing the logic high voltage. In some cases capacitive coupling to a CMOS input is also effective if the controller clock input is properly biased.

Connect Handshake Fails

If your system seems to be working well but cannot get into the situation of exchanging data with another modem, it is likely that you have a problem in the connect handshake. It is better to examine handshake problems using a "known good" modem at the remote end rather than another of your own systems. This helps isolate problems if more than one are present. Use a modem from an established and reputable manufacturer, as discounted generic modems may not conform fully to established specifications. Depending on the modulation mode, there may be many or few opportunities to fail so we can only offer general pointers to problems we have encountered in the past. It is very helpful to build extra diagnostic code into the handshake to diagnose unexpected conditions.

1

If things never start, check that the initial set-up of the chip is correct. The chip must be taken out of power-down before it will do anything and in DSPbased chips the DSP must have been reset after any previous call and then taken out of the reset state. (A DSP-based part cannot be used in a non-DSP socket without many such changes to the controller code; watch this when upgrading a 73K222 system to use a 73K224L.) If in CALLINIT mode the answer tone is not detected, check that you have selected the desired answer tone frequency by programming in the Tone Register. The selectivity of the answer tone detector is quite high, so verify that your answering modem is generating a frequency within the specifications of the modulation standard. You should be able to verify the operation of your various signal detectors with breakpoints in the controller code. If these do not fire at the appropriate point, the handshake is likely to hang-up or get out of step with the other modem. Be especially careful with the S1 detector, if this is failing you may get connections at 1200 bit/s which were supposed to be at 2400 bit/s. With DSP-based chips in QAM or DPSK modes, make sure that you are enabling the adaptive equalizer at the appropriate time. Enabling it too early, when the received signal is unsuitable for training, and too late, when there is too little time left before the gear shift to 2400 bit/s, can both give connect problems. Finally, make sure the crystal oscillator frequency is in specification as a gross error here can cause failure of the handshake.

Errors Committed Immediately After Handshake, With Later Improvement

We have seen situations in which a K-Series modem makes many data errors during the first few seconds of a connection, but then shapes up and performs normally thereafter. This is generally due to some problem in equalizer training in a DSP-based chip. The equalizer must be held in the initial state (bit 0 of CR2 = ZERO) up to the point in the handshake when scrambled DPSK binary ONES first appear at the receiver. It must then be released promptly (bit 0 of CR2 = ONE) and allowed to adapt so that it is fully trained before the gear shift to 2400 bit/s and the transition to data mode occurs. Enabling the equalizer too early will cause it to train on an unsuitable unscrambled signal. Because it adapts more rapidly immediately after being enabled, it may take a long time to recover from a bad solution when the correct receiver signal arrives. Enabling the equalizer too late reduces the time available for training before the received data is relied upon to be correct. If you have to put the equalizer back into the initialized state after a period of training, make sure that Equalizer Enable (bit 0 of CR2) stays at ZERO for at least 2 ms. It is better to have the Receiver Gain Boost bit dealt with

before the equalizer is enabled, otherwise transients caused by changing this bit may upset the equalizer solution.

Errors Experienced at High Receive Signal Levels

If the error rate gets worse at high receive signal levels, you should look for some source of clipping in the receive path. Injecting a signal of known level at the line coupling transformer and looking at the RXA pin with an oscilloscope should enable you to isolate any problem in the line interface. Look for excessive gain in the receiver buffer amplifier or other causes of clipping at this point such as badly chosen op-amps for single 5V supply operation. If the signal at RXA looks good and you are using a DSP-based modem chip, it is possible that the controller is incorrectly inserting the 12 dB receiver gain boost even if the Receive Level bit in the Detect Register is set. Note that early data sheets for the 73K224L gave this bit the wrong sense, i.e., ONE for low level. Only set Receive Gain Boost if this bit is ZERO.

Errors Experienced at Low Receive Signal Levels

There can be many causes of data errors at low receive signal levels, almost all associated with the presence of some level of interference or noise in the receive path. If you are performing tests over the telephone network, make sure that the error rate you are experiencing is not to be expected from the background noise level on the line. It is best to use a line simulator or a direct connection through an attenuator if looking for system noise problems. The capacitor across the feedback resistor of the receiver buffer amplifier is important to attenuate out-of-band noise at the modem chip receiver input.

Distortion in the telephone line interface can be located by injecting low-level signals into the line terminals and examining the signal at the RXA pin with a spectrum analyzer. Look for crossover distortion in the receiver buffer amplifier. This can arise from a poorly chosen op–amp type, such as the LM324 which makes a transition from class A to class AB operation at low signal levels and is not suitable for this application. We have found LM348 and LM1458 type op-amps to be free from this problem. It is also possible for the line coupling transformer to introduce harmonic distortion, particularly when a large D.C. holding current is flowing.

In the absence of significant distortion, look for a high noise level at the RXA pin. Another symptom of this problem, apart from data errors, is that the Carrier Detect bit (bit 3 in DR) comes on or blinks when no signal is applied to the modem receiver. The system may also fail to disconnect at the end of a call. If this is your experience don't confine your search to the normal carrier bandwidth because the modem chip will also be susceptible to higher frequencies. Op-amps may be noisy or may self-oscillate at low level due to poor layout. If the op-amps themselves are not causing the noise, it may be due to poor circuit layout or grounding. If, finally, nothing suspicious is visible at the RXA pin then the noise must be getting into the receive signal inside the modem IC. This can be from the power supply and bias pins or from signals routed under the chip. Check the connections to GND, VDD, VREF and ISET pins for component values and placement and routing of decoupling components. You are more likely to have problems with supply noise if you are using a switching power supply. Look also for fast digital signals routed under the modem IC; these should be re-routed and a ground plane placed under the chip. Serious interference pickup problems can be created by two crystal oscillators producing beat frequencies in-band to the modem. We strongly recommend using one master crystal in the system. Check the gain in the receive path from the line terminals and, in DSP-based parts, the state of the Receive Gain Boost bit set by the controller. If either of these are incorrect, then noise in the chip will appear more significant compared to the signal.

The transmitter of the modem can be a source of noise in the receiver. It should not generate signals that are in-band to the receiver, but this can happen if either the buffer amplifier or the line transformer are causing harmonic distortion. This will be most noticeable in call mode, when the low band transmit signal has harmonics in the high band filter of the receiver. For 5V only systems, the choice of op-amps in the buffer amplifier and their D.C. bias point is crucial to obtaining a sufficient voltage swing without distortion. Because of its internal operation, a small amount of switching noise is present at the TXA pin. The capacitor across the buffer amplifier feedback resistor is important to prevent this signal from reaching the receiver. It is difficult to obtain good rejection of the transmit signal at the receiver for all practical line conditions, but you should check that your four-wire to two-wire hybrid circuit is operating correctly. For most terminations, the transmit signal at the RXA pin minus the receive buffer gain should be 6 dB below the level at the line.

Modem Works in Loopback but Fails to Connect or Makes Errors in Bursts with Some Other Modems

If anything appears "flaky" about the modem operation it is a good idea to check the oscillator frequency with a counter capable of resolving to at least ten parts per million. Using an oscilloscope is of no use whatsoever. Many systems that use crystal oscillators are not very particular about the exact frequency; this is not so of modems. Measure the frequency at the CLK pin and verify that it is between 11.0581 MHz and 11.0603 MHz. Do not measure at the XTL1 or XTL2 pinsas the probe capacitance will alter the frequency of oscillation. Some causes of out-ofspecification readings are: a) the wrong crystal frequency entirely, b) a series-resonant crystal, or c) a parallel-resonant crystal unmatched to the circuit capacitance.

Problems Unique to FSK Modes

The SSI 73K224L does not permit answer tone detection in FSK modes, so ensure that a mode other than FSK is selected before attempting to detect answer tones.

Section

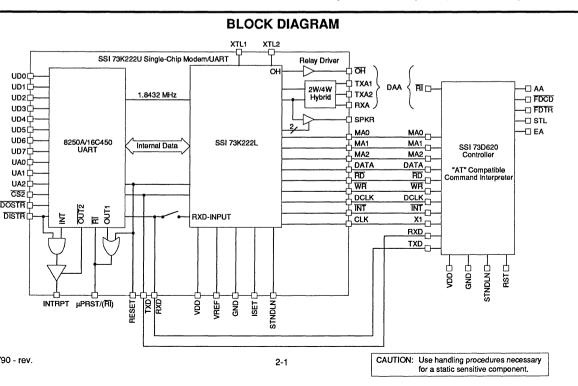
MODEM PROTOCOL & BUS INTERFACE

2-0

SSI 73D2180 **Modem Device Set**

DESCRIPTION

The SSI 73D2180 consists of two CMOS integrated circuits which provide the data pump functions and command interpretation required to construct a high performance 1200 bit/s full-duplex intelligent modem. The 73D2180 includes operating modes compatible with CCITT V.22, V.21, Bell 212A, and 103 datacommunications standards. Using advanced processes that include analog and switched capacitor filter techniques, the SSI 73D2180 offers excellent performance and a high level of functional integration in a compact two-chip set. The 73D2180 provides a Haves "AT" compatible command interpreter, a 16C450 compatible UART and an enhanced version of Silicon Systems' 73K222L single-chip modem.


The 73D2180 is ideal for use in integral system modem products where full-duplex 1200 bit/s data-communications over the 2-wire public service telephone network is desired.

FEATURES

Multi-mode CCITT V.22/V.21 & Bell 212A/103 compatible device set for intelligent modem designs

July, 1990

- Full duplex operation at 0-300 and 1200 bit/s
- Includes high-level "AT" command interpreter compatible with 1200 bit/s industry standard products
- Complete complement of "AT" modem features
- Selectable automatic speed detect, handshake and • autobaud functions
- Dynamic range from 0 to -45dBm
- Call progress, carrier and answer tone detectors provide intelligent dialing functions
- DTMF and CCITT guard tone generators
- Test modes available ALB, DL, RDL for complete test capability
- Space efficient 40-pin DIPs or 44-pin PLCCs
- Low power consumption (115 mW using +5V)

SSI 73D2180 Bell 212A/103, CCITT V.22, V.21 Modem Device Set

OPERATION

The SSI 73D2180 is a complete Bell 212A/103 and V.22/V.21 intelligent modem contained in two IC's. The device set forms the basis for a high performance integral modem product with self-contained command interpreter and a 16C450 compatible UART.

The 73D2180 chip set is composed of the SSI 73K222U single-chip modem/UART and the SSI 73D620 controller chip. The 73K222U is a single-chip modem integrated on the same die with a 16C450 compatible UART. The 73K222U interfaces with the main CPU via a parallel demultiplexed bus. Commands and data are passed to the chip set over this port and are serialized by the on-board UART. The 73D620 controller chip hosts an "AT" compatible command interpreter. This controller monitors the internal serial bus of the 73K222U (UART output) for user commands which it interprets and executes. The 73D620 controller communicates with the 73K222U modem/UART via a serial port. Refer to the block diagram on Page 1 and to the 73K222U Modem/UART Data Sheet for further details

The SSI 73K222U provides the DPSK and FSK modulator/demodulator functions, call progress and handshake tone monitors, test modes and a tone generator capable of producing DTMF, answer and CCITT guard tones. This device supports the V.22, V.21 and Bell 212A/103 operating modes.

DPSK MODULATOR/DEMODULATOR

In DPSK mode the 73D2180 modulates the 1200 bit/s incoming data into dibits represented by four possible signal points as specified by CCITT recommendation V.22 and Bell 212A. The modulator transmits this encoded data using either a 1200 Hz (originate mode) or 2400 Hz (answer mode) carrier. The demodulator reverses this procedure and recovers the data and data clock from the incoming signal.

FSK MODULATOR/DEMODULATOR

The FSK transmitter frequency modulates the analog output signal using two discrete frequencies to represent the binary data. The Bell 103 standard frequencies of 1270 and 1070 Hz (originate mark and space) and 2225 and 2025 Hz (answer mark and space) or the V.21 standard frequencies of 980 and 1180 Hz (originate mark and space) and 1650 and 1850 Hz (answer mark and space) are used when this mode is selected. Demodulation involves detecting the received frequencies and decoding them into the appropriate binary value.

PASSBAND FILTERS AND EQUALIZERS

A bandsplit filter is included to shape the amplitude and phase response of the transmit signal to a square root 75% raised cosine and provide rejection of out-of-band signals in the receive channel.

AUTOMATIC HANDSHAKE

The SSI 73D2180 will automatically perform a complete handshake as defined by the CCITT V.22, V.21 and Bell 212A/103 standards to connect with a remote modem. The 73D2180 automatically determines the speed and operating mode and adjusts its operation to correspond to that of an originating modem when answering a call.

TEST MODES

The SSI 73D2180 allows use of Analog Loopback, Digital Loopback and Remote Digital Loopback test modes. Full test mode capability allows testing of the modem and interface functions from the local terminal using the appropriate control commands, or remotely using the RDL function.

"AT" COMMAND INTERPRETER

The SSI 73D620 controller includes an AT command interpreter which is compatible with the Hayes 1200 Smartmodem[™] command set. Functions and features included with intelligent modems are provided by the 73D620 controller including auto-dial/auto-answer, handshake with auto-fallback, and selectable pulse or DTMF dialing sequences.

The 73D620 is also compatible with other SSI modem/ UART family members and can be used interchangably with these products. Modes not available will be automatically disabled by the 73D620 controller in this case.

SSI 73D2180 Bell 212A/103, CCITT V.22, V.21 Modem Device Set

PIN DESCRIPTION - SSI 73D620 CONTROLLER

GENERAL

NAME	DIP	PLCC	ТҮРЕ	DESCRIPTION
VDD	40	44	1	+5V supply ±10%. Bypass with a 0.1 μF capacitor to ground.
GND	20	22	I	Digital ground
X1	19	21	I	11.0592 MHz clock input from the 73K222U.
RST	9	10	1	Reset Input. A high on this pin for two machine cycles while the oscillator is running resets the device. An internal pull-down resistor permits power-on reset using a 0.1 μ F capacitor to the 5V supply.
STNDLN	13	15	I	Stand alone. Tie low for proper operation as a command interpreter. Tie high to disable device.
EA	31	35	1	Tie to VDD.
AA	28	31	I	Auto Answer at power-up. Tie high to enable auto answer on power-up feature. Controller will automatically answer a ring as specified in the S11 register. Tie low to disable auto answer on power-up.
FDCD	14	16	J	Force on data carrier detect. Tie low to permanently force on data carrier detect indication to controller. Tie high or leave floating to allow carrier detection from telephone line.
FDTR	15	17	1	Force on data terminal ready. Tie low to permanently force on the data terminal ready indication to the controller. Tie high or leave floating to allow data terminal ready indication to be obtained from the 73K222U register.
STL	16	18	I	Switched telephone lines. Tie high or leave floating if operating with the public switched telephone network lines. Tie low if operating with leased lines.
RI	17	19	I	Ring indication. Input to the controller from the telephone ring isolation circuit.

PIN DESCRIPTION - SSI 73D620 CONTROLLER (Continued)

MODEM INTERFACE

NAME	DIP	PLCC	TYPE	DESCRIPTION
MA0-MA2	6-8	7-9	0	See SSI 73K222U pin description
DATA	1	2	I/O	See SSI 73K222U pin description
RD	4	5	0	See SSI 73K222U pin description
WR	5	6	<u>,</u> O	See SSI 73K222U pin description
DCLK	2	3	ο	See SSI 73K222U pin description
INT	12	14	0	See SSI 73K222U pin description
RXD	10	11	l	See SSI 73K222U pin description
TXD	11	13	I	See SSI 73K222U pin description

Note: Unused 73D620 controller pins are active, but not used for this application. These pins should be left floating.

PIN DESCRIPTION - SSI 73K222U

GENERAL

NAME	DIP	PLCC	TYPE	DESCRIPTION
VDD	40	44]	+5V Supply $\pm 10\%$, bypass with a 0.1 and a 22 μF capacitor to GND.
GND	20	22	1	Ground. Connect to analog ground.
VREF	19	21	0	VREF is an internally generated reference voltage which is externally by passed by a 0.1 μ F capacitor to the system ground.
ISET	9	11	I	The analog current is set by connecting this pin to VDD through a $2M\Omega$ resistor. ISET should be bypassed to GND. Alternatively, an internal bias can be selected by connecting ISET to GND, which will result in a larger worst-case supply current due to the low tolerance of on-chip resistors. Bypass with .1µF capacitor if resistor is used.
XTL1, XTL2	25 24	27 26	1	These pins are inputs for the internal crystal oscillator requir- ing an 11.0592 MHz crystal. XTL2 can also be driven from an external clock.
CLK	21	23	0	Output Clock. This pin provides an 11.0592 MHz clock to drive the 73D620 controller.

2

GENERAL (Continued)

NAME	DIP	PLCC	TYPE	DESCRIPTION
RESET	10	12	I	Reset. An active signal (high) on this pin will put the chip into an inactive state. The control register bits (except the Receiver Buffer, Transmitter Holding, and Divisor latches) will be reset. The output of the CLK pin will be set to the crystal frequency. An internal pull-down resistor permits power-on reset using a 0.1μ F capacitor connected to the 5V supply.
STNDLN	15	17	I	Tie low to enable the dual-port mode of the chip. This is required in order to operate properly with the 73D620.

UART INTERFACE

NAME	DIP	PLCC	TYPE	DESCRIPTION
UA0-UA2	37-39	41-43	I	UART Address. These pins determine which of the UART registers is being selected during a read or write on the UART data bus. The contents of the DLAB bit in the UART's Line Control Register also control which register is referenced. See the SSI 73K222U data sheet.
UD0-UD7	27-34	30-37	1/0	UART Data. Data or control information to the UART registers is carried over these lines.
DISTR	35	38	I	Data Input Strobe. A low on this pin requests a read of the internal UART registers. Data is output on the D0-D7 lines if DISTR and CS2 are active.
DOSTR	36	39	1	Data Output Strobe. A low on this pin requests a write of the internal UART registers. Data on the D0-D7 lines are latched on the rising edge of DOSTR. Data is only written if both DOSTR and CS2 are active.
CS2	1	2	l	Chip Select. A low on this pin allows a read or write to the UART registers to occur.
INTRPT	5	7	0	UART Interrupt. This signal indicates that an interrupt condition from the UART has occurred. If the Enable 8250A interrupt bit in the interrupt Enable Register is 0 the interrupt is gated by the DISTR signal to provide compatibility with the 8250B. The output can be put in a high impedance state with the OUT2 register bit in the Modem Control Register. See the SSI 73K222U data sheet.

PIN DESCRIPTION - SSI 73K222U (Continued)

ANALOG / LINE INTERFACE

NAME	DIP	PLCC	TYPE	DESCRIPTION
TXA1, TXA2	3 4	4 5	00	Transmitted Analog (differential). These pins provide the ana- log output signals to be transmitted to the phone line. The drivers will differentially drive the impedance of the line trans- former and the impedance matching resistor. An external hybrid can also be built using TXA1 as a single ended transmit signal; in such a case, TXA2 should be left floating.
RXA	16	18	ł	Received Analog. This pin inputs analog signals from the line transformer to the two-to-four wire hybrid. This input can also be taken directly from an external hybrid.
SPKR	17	19	0	Speaker Output. This pin outputs the received signal through a programmable attenuator stage, which controls volume or disables the speaker.
ŌĦ	18	20	0	Off-hook relay driver. This signal is an open drain output capable of sinking 20mA and is used for controlling a hook relay.

MICROPROCESSOR INTERFACE (STNDLN = 0)

NAME	DIP	PLCC	TYPE	DESCRIPTION
MA0-MA2	12-14	14-16	1	Modem Address Control. These lines carry register addresses for the modem registers and are valid throughout any read or write operation.
DATA	22	24	I/O	Serial Control Data. Serial control data to be read/written is clocked in/out on the falling edge of the DCLK pin. The direction of data transfer is controlled by the state of the \overline{RD} pin. If the \overline{RD} pin is active (low) the DATA line is an output. Conversely, if the \overline{RD} pin is inactive (high) the DATA line is an input.
RD	23	25	1	Read. A low on this input informs the SSI 73K222U that control data or status information is being read by the processor from a modem register.
WR	26	28	I	Write. A low on this input informs the SSI 73K222U that control data or status information is available for writing into a modem register. The procedure for writing is to shift in data LSB first on the DATA pin for eight consecutive cycles of DCLK and then to pulse WR low. Data is written on the rising edge of WR.

MICROPROCESSOR INTERFACE (STNDLN = 0)

NAME	DIP	PLCC	ТҮРЕ	DESCRIPTION
DCLK	11	13	1	Data Clock. The falling edge of this clock is used to strobe control data for the modem registers in or out on the DATA pin. The procedure for a WRITE is to shift in data LSB first on the DATA pin for eight consecutive cycles of DCLK and then to pulse WR low. Data is written on the rising edge of WR. The falling edge of the RD signal must continue for eight cycles of DCLK in order to read all eight bits of the reference register. Read data is provided LSB first. Data will not be output unless the RD signal is active.
INT	2	3	0	Modem Interrupt (with weak pull-up). This output signal is used to inform the 73D620 controller that a change in a modem detect flag has occurred. The controller then reads the Modem Detect Register to determine which detect triggered the inter- rupt. INT stays active until the controller reads the Modem Detect Register or does a full reset.
μPRST	8	10	0	Microprocessor Reset. This output signal is used to provide a hardware reset to the controller. This signal is high if the RESET pin is high or the MCR bit D3 (OUT1) bit is set. See the SSI 73K222U data sheet.
RXD	6	8	0	RXD outputs data received by modem from telephone line. This data is monitored by the 73D620 controller.
TXD	7	9	0	TXD is serial output of UART. This data is monitored by the 73D620 controller which checks for and executes the "AT" commands downloaded from the computer's CPU.

"AT" COMMANDS SUPPORTED

(Note: s=string; n=decimal, 0-255; x=Boolean, 0/1=false/true)

COMMAND	OPTIONS	DEFAULT
A/	Repeats last command line	N/A
А	Answer	N/A
Bx	BELL/CCITT = 1/0*	1
Ds	Dial string specified by s	No string
Ex	Command echo, 0/1 = off/on	1
Hn	Hook status, 0/1 = on/off	N/A
In	ID code, 0/1/2/3/4 (see Table 5)	N/A
Ln	Speaker volume, (0)1/2/3 = lo/med/hi	2
Mn	Speaker, 0/1/2/ = control (see Table 3)	1
On	Online, 0/1/2/ = on-line/on-line with remote digital loopback (see Table 4)	N/A
Р	Pulse dial	Pulse
Qx	Quiet result, 0/1 = 1-quiet	0
R	Reverse originate	N/A
Sn=n	Set S register (see Table 2)	N/A
Sn?	Return value in register n (see Table 2)	N/A
т	Touch tone dial	Pulse
Vx	Verbose result, 0/1 = off/on	1
Xn	Result code, 0/1/2/3/4 (see Table 1)	4
Yx	Enable long space disconnect, 1 = enable	0
Z	Restore all default settings	N/A

*B0 command (CCITT mode) is operational only when using K-series modem/UARTs that include CCITT modes.

Dial string arguments:

, = delay

@ = silent answer W = wait for tone ; = return to command

! = flash R=reverse mode

TABLE 1: Result Codes

Xn	VOCAL/NUMERIC RESULT CODE	
X0	OK/0, CONNECT/1, RING/2, NO CARRIER/3, ERROR/4	
X1	All functions of X0 + CONNECT (RATE)/1 = 300, 5 = 1200	2
X2	All functions of X1 + NO DIAL TONE/6	
Х3	All functions of X1 + BUSY/7	
X4	All functions of X3 + NO DIAL TONE/6	

TABLE 2: S Registers Supported

NUMBER	FUNCTION	UNITS	DEFAULT
S0	Answer on ring	No. of rings	000¹
S1	Ring counter	No. of rings up to 8	000
S2	Escape code	ASCII CHR\$()	043
S3	Carriage return	ASCII CHR\$()	013
S4	Line feed	ASCII CHR\$()	010
S5	Back space	ASCII CHR\$()	008
S6	Wait for dial tone	Seconds	002
S7	Wait for carrier	Seconds	030
S8	Pause time	Seconds	002
S9	Carrier valid	100 milliseconds	006
S10	Carrier drop out	100 milliseconds	007
S11	DTMF tone duration	1 millisecond	070
S12	Escape guard time	20 milliseconds	050
S13	Bit mapped register		N/A
S14	Bit mapped register	Decimal 0-255	Hex 6A
S15	Bit mapped register		N/A
S16	Test register	Decimal #	000

¹Valid for AA pin tied low.

DIP SWITCH FUNCTIONS SUPPORTED

(DIP switches are only read on power-up.)

PIN	FUNCTION	SETTINGS (Suggested default underlined)
FDTR	Force DTR on	Tie high or float: DTR signal controls modem
		Tie low: DTR always on
STL	Operate with switched	Tie high or float: Switched telephone lines
	telephone lines	Tie low: Leased lines
FDCD	Force DCD on	Tie high or float: RS-232 DCD line follows carrier
		Tie low: DCD line always on

TABLE 3: Speaker Modes

Mn	SPEAKER MODE
MO	Speaker off
M1	Speaker on during connect only
M2	Speaker on always

TABLE 4: O Modes

On	ONLINE/RETRAIN MODE
00	Return online
01	Return online
02	Return online with remote digital loopback enabled

TABLE 5: ID Codes

In	CODE
10	Product code (139)
1	ROM checksum
12	Checksum test
13	Product revision
14	Software copyright

ELECTRICAL SPECIFICATIONS

ABSOLUTE MAXIMUM RATINGS

TA = 0°C to 70°C, VDD = 5V \pm 10%, unless otherwise noted.

PARAMETER	RATING	UNIT
VDD Supply Voltage	7	V
Storage Temperature	-65 to 150	٥C
Soldering Temperature (10 sec.)	260	°C
Applied Voltage	-0.3 to VDD +0.3	V

NOTE: All inputs and outputs are protected from static charge using built-in, industry standard protection devices and all outputs are short-circuit protected.

RECOMMENDED OPERATING CONDITIONS

PARAMETERS	CONDITIONS	MIN	NOM	МАХ	UNIT
VDD, Supply Voltage		4.5	5	5.5	v
TA, Operating Free-Air Temperature		0		70	°C
External Component 3					
VREF Bypass Capacitor ²	(External to GND)	0.1			μF
Bias Setting Resistor ¹	(Placed between VDD and ISET pins)	1.8	2	2.2	MΩ
ISET Bypass Capacitor ²	ISET pin to GND	0.1			μF
VDD Bypass Capacitor ²	(External to GND)	0.1			μF
Input Clock Variation	(11.0592 MHz)	-0.01		+0.01	%

Note 1: Optional for minimum worst case current consumption.

Note 2: Minimum for optimized system layout; may require higher values for noisy environments.

Note 3: Refer to application drawing for placement.

DC CHARACTERISTICS

TA = 0°C to +70°C, VDD = 5V \pm 10%, unless otherwise noted.

PARAMETERS	CONDITIONS	MIN	NOM	MAX	UNIT
IDD, Supply Current					
73K222U IDDA, Active	ISET Resistor = 2 M Ω		8	12	mA
73K222U IDDA, Active	ISET = GND	1	8	15	mA
73K222U IDD1, Power-Dowr	CLK = 11.0592 MHz		3	4	mA
73K222U IDD2, Power-Dowr	CLK = 19.200 kHz		2	3	mA
73D620L IDDA, Active		11	15	19	mA
Digital Inputs	×				
Input High Current II	H VI = VDD			100	μΑ
Input Low Current	L VI = 0	-200			μΑ
Input Low Voltage V	L			0.8	v
Input High Voltage VI	H Except RESET & XTL 1	2.0			V
Input High Voltage VI	H RESET & XTL 1	3.0			v
Pull Down Current	RESET pin	5		30	μΑ
Input Capacitance				10	pF
Digital Outputs					
Output High Voltage VO	H IOUT = - 1 mA	2.4		VDD	v
VOL UD0-UD7 and INTRPT	IOUT = 3.2 mA			.4	V
VOL other outputs	IOUT = 1.6 mA			.4	v
CLK Output VC	L IOUT = 3.2 mA			0.6	v
OH Output VC	L IOUT = 20 mA			1.0	v
OH Output VC	L IOUT = 10 mA			0.5	v
Offstate Current INTRPT pin	VO = 0V	-20		20	μΑ
Analog Pins					
RXA Input Resistance			200		kΩ
RXA Input Capacitance				25	pF

DYNAMIC CHARACTERISTICS AND TIMING

TA = 0°C to +70°C, VDD = 5V \pm 10%, unless otherwise noted.

PARAMETERS	CONDITIONS	MIN	NOM	МАХ	UNIT
DPSK Modulator					
Carrier Suppression	Measured at TXA	55			dB
Output Amplitude	ANS TONE 2225 or 2100 Hz	-11	-10.0	-9	dBm01
	DPSK TX Scrambled Marks	-11	-10.0	-9	dBm0
	FSK Dotting Pattern	-11	-10.0	-9	dBm0
FSK Tone Error	Bell 103 or V.21			±5	Hz
DTMF Generator					
Freq. Accuracy		25		.25	%
Output Amplitude	Low Band	-10	-9	-8	dBm0
Output Amplitude	High Band	-8	-7	-6	dBm0
Long Loop Detect	DPSK or FSK	-40		-32	dBm0
Demodulator Dynamic Range	DPSK or FSK		45		dB
Call Progress Detector					
Detect Level	2-Tones in 350-600Hz Band	-39		0	dBm0
Reject Level	2-Tones in 350-600Hz Band			-46	dBm0
Delay Time	-70dBm0 to -30dBm0 Step	27		80	ms
Hold Time	-30dBm0 to -70dBm0 Step	27		80	ms
Hysteresis		2			dB
Carrier Detect	DPSK or FSK Receive				
Threshold	Data	-49		-42	dBm0
Delay Time	-70 dBm0 to -30 dBm0 Step	15		45	ms
Hysteresis		2	3.0		dB
Hold Time	-30 dBm0 to -70 dBm0 Step	10		24	ms

Note 1: All units in dBm0 are measured at the line side to the transformer. The interface circuit inserts an 8dB loss in the transmit path (TXA1 - TXA2 to line), and a 3dB loss in the receive path (line to RXA).

DYNAMIC CHARACTERISTICS AND TIMING (Continued)

PARAMETERS	CONDITIONS	MIN	NOM	MAX	UNIT
Answer Tone Detector					ĸ
Detect Level Threshold	In FSK mode	-49.5		-42	dBm0
Delay Time	-70dBm0 to -30dBm0 STEP	20		45	ms
Hold Time	-30dBm0 to -70dBm0 STEP	10		30	ms
Detect Frequency Range		-2.5		+2.5	%
Hybrid Loading					
R1	See Figure 1		600		Ω
R2	Nominal telephone line load		600		Ω
C	TXA Hybrid Loading	.02		.033	μF
Speaker Output					
Gain Error		-1		+1	dB
Output Swing SPKR	10K 50pF LOAD 5% THD	2.75			VPP
Carrier VCO					
Capture Range	Originate or Answer	-10		10	Hz
Capture Time	-10Hz to +10Hz Carrier Frequency change assumed		40	100	ms
Recovered Clock					
Capture Range	% of Center Frequency	-625		+625	ppm
Data Delay Time	Analog data in at RXA pin to receive data valid at RXD pin.		30	50	ms
Guard Tone Generator					
Tone Accuracy	550 or 1800Hz	-20		+20	Hz
Tone Level	550 Hz	-4.0	-3.0	-2.0	dB
(Below DPSK Output)	1800 Hz	-7.0	-6.0	-5.0	dB
Harmonic Distortion	700 to 2900 Hz			-60	dB
Capacitance					
Inputs	All digital inputs			10	pF
XTL1, XTL2 load capacitors	Per crystal manufacturer's recommendations		30		pF
CLK	Maximum capacitive load			15	pF

SERIAL BUS INTERFACE (See Figure 2)

The following times are for CL = 100 pF.

PARAM	ETER	MIN	NOM	MAX	UNIT
TRD	Data out from Read	0		140	ns
тскр	Data out after Clock			200	ns
TRDF	Data Float after Read	0		200	ns
TRCK	Clock High after Read	200			ns
TWW	Write Width	140		25000	ns
TDCK	Data Setup Before Clock	150			ns
TCKD	Data Hold after Clock	20			ns
тскw	Write after Clock	150			ns
TACR	Address setup before Control ¹	50			ns
TCAR	Address Hold after Control ¹	50			ns
TACW	Address setup before Write	50			ns
TCAW	Address Hold after Write	50			ns

Note 1: Control is later of falling edge of RD or DCLK.

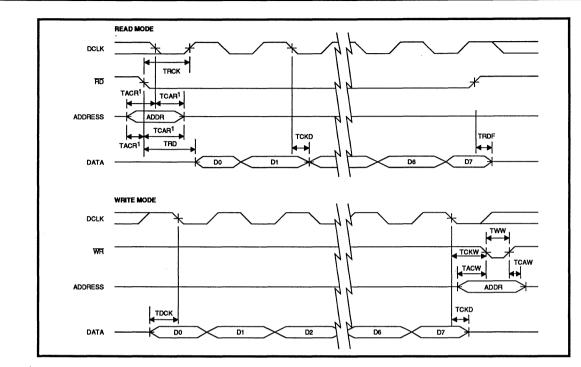


FIGURE 2: Modem Serial Bus Timing

PARALLEL BUS INTERFACE (See Figure 3)	The following times are for $CI = 100 pF$.
---------------------------------------	---

PARAME	TER	MIN	МАХ	UNIT
RC	Read Cycle = TAD + TRC	240		ns
TDIW	DISTR Width	80		ns
TDDD	Delay DISTR to Data (read time)		80	ns
THZ	DISTR to Floating Data Delay	0	50	ns
TRA	Address Hold after DISTR	20		ns
TRCS	Chip select hold after DISTR	20		ns
TAR	DISTR Delay after Address	20		ns
TCSR	DISTR Delay after Chip Select	20		ns
wc	Write Cycle = TAW + TDOW + TWC	140		ns
TDOW	DOSTR Width	80		ns
TDS	Data Setup	30		ns
TDH	Data Hold	20		ns

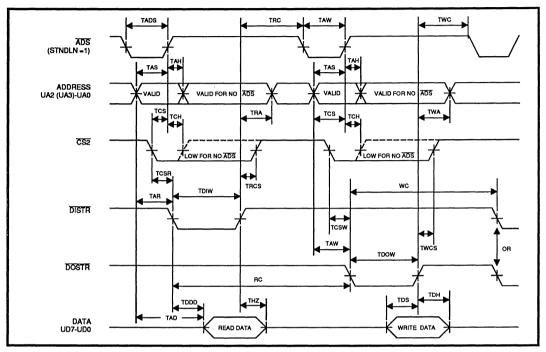


FIGURE 3: UART Bus Timing

PARALLEL BUS INTERFACE (Continued)

PARAME	TER	MIN	MAX	UNIT
TWA	Address Hold after DOSTR	20		ns
TWCS	Chip select hold after DOSTR	20		ns
TAW	DOSTR delay after Address	20		ns
TCSW	DOSTR delay after Chip Select	20		ns
TADS	Address Strobe Width			ns
TAS	Address Setup Time			ns
TAH	Address Hold Time			ns
TCS	Chip Select Setup Time			ns
TCH	Chip Select Hold Time			ns
TRC	Read Cycle Delay	40		ns
тwс	Write Cycle Delay	40		ns
TAD	Address to Read Data	200		ns

TYPICAL PERFORMANCE CHARACTERISTICS

The SSI 73K222U was designed using an integrated analog/digital architecture that offers optimum performance over a wide range of line conditions. The SSI 73K222U utilizes the circuit design proven in SSI's 73K222L one-chip modem, with added enhancements which extend low signal level performance and increase immunity to spurious noise typically encountered in integral bus applications. The SSI 73K222U provides excellent immunity to the types of disturbances present with usage of the dial-up telephone network. The following curves show representative Bit Error Rate performance under various line conditions. (See Figures 4, 5 and 6 Performance Curves)

BER vs S/N

This test measures the ability of the modem to function with minimum errors when operating over noisy lines. Since some noise is generated by even the best dialup lines, the modem must operate with as low a S/N ratio as possible. Optimum performance is shown by curves that are closest to the zero axis. A narrow spread between curves for the four line conditions indicates minimal variation in performance when operating over a range of line qualities and is typical of high performance adaptive equalization receivers. High band receive data is typically better than low band due to the inherent design of PSK modems.

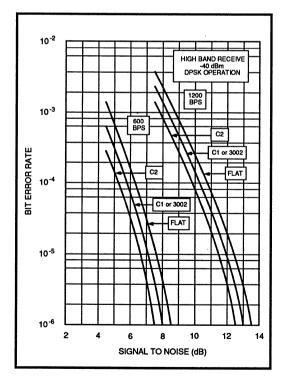
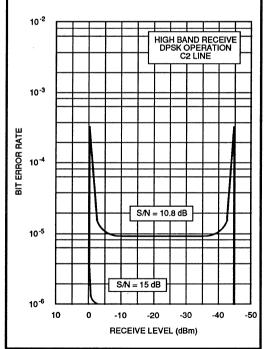
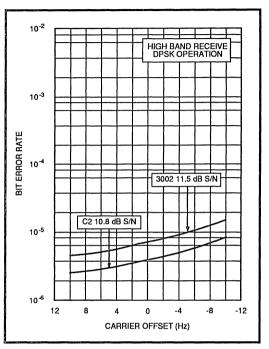


FIGURE 4: SSI 73K222U Typical BER vs. S/N




FIGURE 5: SSI 73K222U Typical BER vs. Receive Level

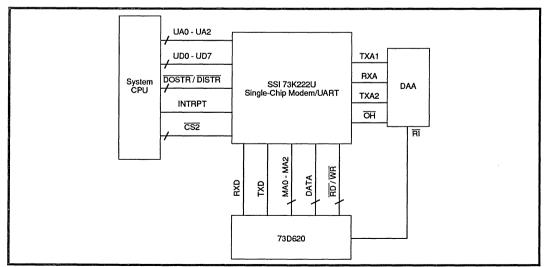
BER vs Receive Level

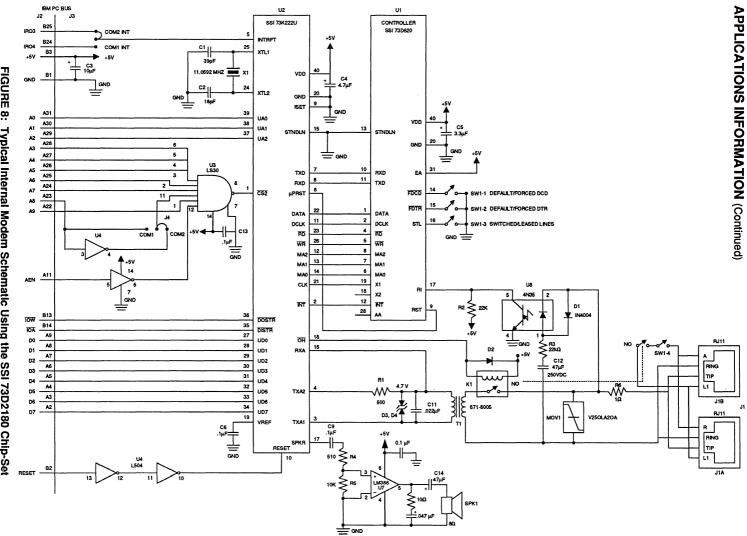
This measures the dynamic range of the modem. As signal levels vary widely over dial-up lines, the widest dynamic range possible is desirable. The minimum Bell specification calls for 36dB of dynamic range. S/N ratios were held constant at the indicated values while receive level was lowered from very high to very low signal levels. The "width of the bowl" of these curves taken at the 10- BER point is a measure of the dynamic range.

BER vs Carrier Offset

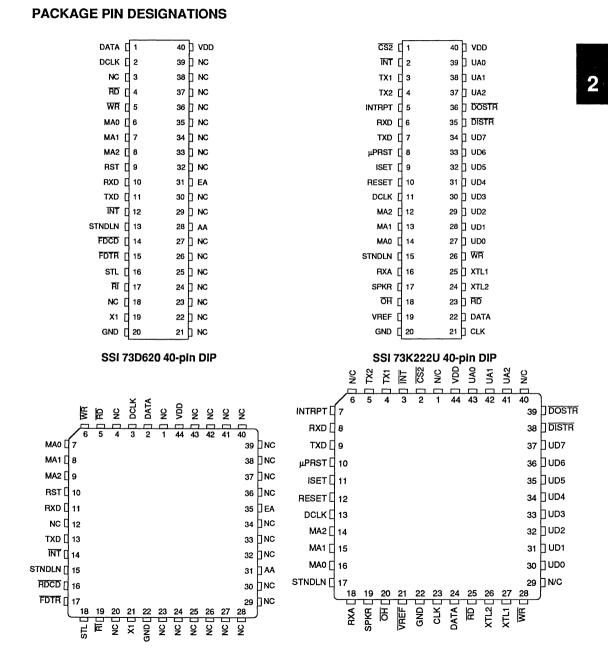
This parameter indicates how the modem performance is impacted by frequency shifts encountered in normal PSTN operation. Flat curves show no performance degradation from frequency offsets. The SSI K-Series devices use a 2nd order carrier tracking phase-lockedloop, which is insensitive to carrier offsets in excess of 10Hz. The Bell network specifications allow as much as 7Hz offset, and the CCITT specifications require modems to operate with 7Hz of offset.

FIGURE 6: SSI 73K222U Typical BER vs. Carrier Offset




FIGURE 7: Typical Block Diagram for an Internal Modem Utilizing the SSI 73D2180 Chip-Set

APPLICATIONS INFORMATION


0790 - rev.

2-20

SSI 73D620 44-pin PLCC

SSI 73K222U 44-pin PLCC

ORDERING INFORMATION

PART DESCRIPTION	ORDER NO.	PKG. MARK
SSI 73D2180 Chip-set Two 40-pin DIP packages	SSI 73D2180L-CP	73K222U-IP 73D620L-CP
SSI 73D2180 Chip-set Two 44-pin PLCC packages	SSI 73D2180L-CH	73K222U-IH 73D620L-CH

No responsibility is assumed by Silicon Systems for use of this product nor for any infringements of patents and trademarks or other rights of third parties resulting from its use. No license is granted under any patents, patent rights or trademarks of Silicon Systems. Silicon Systems reserves the right to make changes in specifications at any time without notice. Accordingly, the reader is cautioned to verify that the data sheet is current before placing orders.

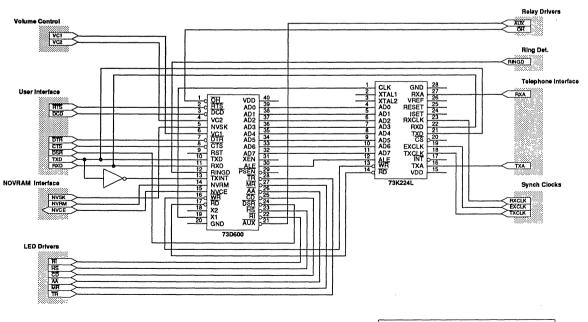
Silicon Systems, Inc., 14351 Myford Road, Tustin, CA 92680 (714) 731-7110, FAX (714) 731-5457

SSI 73D2240 V.22bis 2400 Bit/s Modem Device Set Advance Information

DESCRIPTION ⁴

The SSI 73D2240 is a set of two ICs that provide the data pump functions needed to design a high-performance, low-power 2400 bit/s intelligent modem for use in dial-up telephone network applications. The 73D2240 consists of the SSI 73K224L 1-chip multi-mode modem along with the SSI 73D600, a companion supervisory controller that provides a complete "AT" command and feature set compatible with industry standard products.

The 73D2240 includes operating modes compatible with CCITT V.22bis, V.22, and V.21, as well as Bell 212A and 103 data communications standards. Using advanced CMOS processes that integrate analog, digital signal processing and switched capacitor filter functions on the same chip, the SSI 73D2240 offers excellent performance, full modem features and the lowest power consumption available in a compact 2chip set. Multi-mode V.22bis/V.22/V.21 & Bell 212A/103 compatible device set for intelligent modem designs


- Full duplex operation at 0-300, 1200 and 2400 bit/s with all synch & asynch operating modes
- Includes high-level "AT" command interpreter compatible with 2400 bit/s industry standard products
- 73K600 Controller Compatible with other K-series
 products
- Complete complement of "AT" modem features
- Selectable automatic speed detect, handshake and autobaud functions
- Supports external non-volatile memory to store user configurations
- Adaptive equalization for optimum performance over all lines
- (Continued)
 Dynamic range from -3 to -45 dBm

(Continued)

Julv. 1990

BLOCK DIAGRAM

FFATURES

CAUTION: Use handling procedures necessary for a static sensitive component.

DESCRIPTION (Continued)

The 73D2240 can be used in free-standing and integral modern designs where full-duplex 2400 bit/s operation is required. Single 5V supply operation with extremely low power draw make it ideal for battery powered terminals, lap-top PCs and other power sensitive applications.

FEATURES (Continued)

- Call progress, carrier and answer tone detectors provide intelligent dialing functions
- DTMF and CCITT guard tone generators
- Test modes available ALB, DL, RDL for complete test capability
- Space efficient 28- and 40-pin DIPs
- All CMOS technology for low power consumption (< 600mW using ±5V)

OPERATION

The SSI 73D2240 is a complete V.22bis intelligent modem contained in two CMOS ICs. The device set forms the basis for a high performance stand-alone modem product with self-contained command interpreter, indicator LEDs, and interface lines for an RS-232 serial port. Both data and commands are passed over the serial port as in conventional intelligent modem designs.

The SSI 73D2240 provides the QAM, PSK and FSK modulator/demodulator functions, call progress and handshake tone monitors, test modes and a tone generator capable of producing DTMF, answer and CCITT guard tones. This device supports the V.22bis, V.22, V.21 and Bell 212A/103 operating modes, both synchronous and asynchronous. The 73D2240 is designed to provide functions needed for an intelligent modem and includes auto-dial/auto-answer, handshake with auto-fallback, and selectable pulse or DTMF dialing sequences to simplify these designs.

The SSI 73D2240 consists of two devices. The SSI 73K224L is an analog processor and DSP that perform the filtering, timing adjustment, level detection and modulation/demodulation functions. The SSI 73D600 is a command processor that provides

supervisory control and command interpretation. The SSI 73D600 is also compatible with the SSI 73K212, 221 and 222 K-series modern ICs.

QAM MODULATOR/DEMODULATOR

The SSI 73D2240 scrambles and encodes the 2400 bit/s incoming data into quad bits represented by 16 possible signal points as specified by CCITT recommendation V.22 bis. The modulator transmits this encoded data using either a 1200 Hz (originate mode) or 2400 Hz (answer mode) carrier. The demodulator reverses this procedure and recovers a data clock from the incoming signal. Adaptive equalization corrects for different line conditions by automatically changing filter parameters to compensate for line characteristics.

DPSK MODULATOR/DEMODULATOR

In DPSK mode the 73D2240 modulates the 1200 bit/s incoming data using a subset of the QAM signal points as specified by CCITT recommendation V.22bis, V.22 and Bell 212A. The DPSK demodulator is similar to the QAM demodulator.

FSK MODULATOR/DEMODULATOR

The FSK transmitter frequency modulates the analog output signal using two discrete frequencies to represent the binary data. The Bell 103 standard frequencies of 1270 and 1070 Hz (originate mark and space) and 2225 and 2025 Hz (answer mark and space) or the V.21 standard frequencies of 980 and 1180 Hz (originate mark and space) are used when this mode is selected. Demodulation involves detecting the received frequencies and decoding them into the appropriate binary value.

PASSBAND FILTERS AND EQUALIZERS

A bandsplit filter is included to shape the amplitude and phase response of the transmit signal to a square root 75% raised cosine and provide rejection of out-of-band signals in the receive channel.

ASYNCHRONOUS MODES

The character asynchronous modes are used for communication between asynchronous terminals which may vary the data rate from +1.5% to -2.3%. When transmitting in this mode the serial data on the TXD input is passed through a rate converter which inserts or deletes stop bits in the serial bit stream in order to output the data within 0.01%. The signal is routed to a data scrambler (following the CCITT V.22bis algorithm) and into the modulator. The 73D2240 recognizes a break signal and handles it in accordance with specifications. Received data is processed in a similar fashion except that the rate converter now acts to reinsert any deleted stop bits. An incoming break signal will be passed through without incorrectly inserting a stop bit.

SYNCHRONOUS MODES

Synchronous operation is possible only with the QAM or DPSK modes. Operation is similar to that of the asynchronous mode except that data must be synchronized to a provided clock and no variation in data transfer rate is allowable. External synchronous mode is provided for a user supplied clock accurate to $\pm 0.01\%$. Serial input data appearing at TXD must be valid on the rising edge of TXCLK. Receive data at the RXD output is clocked out on the rising edge of RXCLK. The async/synch converter is bypassed when synchronous mode is selected and data is transmitted out at the same rate as is input. The RXCLK, TXCLK and EXCLK are for synchronous modes only.

AUTOMATIC HANDSHAKE

The SSI 73D2240 will automatically perform a complete handshake as defined by the V.22bis, V.22 and Bell 212A/103 standards to connect with a remote modem. The 73D2240 automatically determines the speed and operating mode and adjusts its operation to correspond to that of an answering modem when originating a call.

TEST MODES

The SSI 73D2240 allows use of Analog Loopback, Digital Loopback and Remote Digital Loopback test modes. Full test mode capability allows testing of the modem and interface functions from the local terminal using the appropriate control commands, or remotely using the RDL function.

ADAPTIVE EQUALIZATION WITH AUTO-RETRAIN

The SSI 73D2240 uses adaptive equalization which automatically compensates for varying line characteristics by adjusting taps on a multi-tap FIR filter. Optimum performance is obtained with this technique over a wide range of line conditions. When the line quality deteriorates to a specified level the 73D2240 can automatically initiate a retrain of the equalizer to reestablish data communications without the need to go through a complete handshake sequence.

"AT" COMMAND INTERPRETER

The SSI 73D2240 includes an AT command interpreter which is compatible with the Hayes 2400 Smartmodem[™] command set. Functions and features included with intelligent modems are provided by the 73D2240 command interpreter. The 73D600 controller may also be used with the 73K212, K221, and K222. It will function with these parts in the modes supported by the device. It will still support the Hayes Smartmodem[™] 2400 commands even though operation at 2400 bit/s will not be permitted. The controller reads the device signature of the modem IC installed to determine which modes should be allowed.

NON-VOLATILE MEMORY

The SSI 73D2240 supports connection to an external non-volatile memory (National 9346 or equivalent) to store dial strings and the current AT command configuration. If NOVRAM is not present, the factory default configuration is automatically used, but dial string storage is not permitted.

SPEED/PROTOCOL COMPATIBILITY GUIDE

				73D2	240 originatir	ng as:	
			В	ell		CCITT	
	Calling a:		300	1200	300	1200	2400
Beli	300	(103)	300	300	-	-	300
	1200	(212)	300	1200	-	1200	1200
	2400 ¹	(224)	300	1200	-	1200	2400
ССІТТ	300	(V.21)	-	-	300	-	-
	1200	(V.22)	300	1200	-	1200	1200
	2400	(V.22bis)	300	1200	-	1200	2400
		73D2240 answering as:					
		В	ell		CCITT		
с	Called from a:		300	1200	300	1200	2400
Bell	300	(103)	300	300	-	-	300
	1200	(212)	300	1200	-	1200	1200
	2400	(224)	300	1200	-	1200	2400
ССІТТ	300	(V.21)	-	-	300	-	-
	1200	(V.22)	300	1200	-	1200	1200
	2400	(V.22bis)	300	1200	-	1200	2400

¹ A Bell 2400 is a V.22bis using a 2225 Hz answer tone without unscrambled marks.

"AT" COMMANDS SUPPORTED

(Note: s=string; n=decimal, 0-255; x=Boolean, 0/1=false/true)

COMMAND	OPTIONS	DEFAULT
A/	Repeats last command line	N/A
А	Answer	N/A
Bx	BELL/CCITT = 1/0 answer tone @1200 (N/A @2400)	1
DS = n	Dial string specified by n, n = 0-3	n = 0
Ex	Command echo, 0/1 = off/on	1
Hn	Hook status, 0/1 = on/off	N/A
In	ID code, 0/1/2 (see Table 8)	N/A
Ln	Speaker volume, (0)1/2/3 = lo/med/hi	2
Mn	Speaker, 0/1/2/3 = control (see Table 3)	1
On	Online, 0/1/2/3 = online/retrain/no retrain (see Table 4)	N/A
Р	Pulse dial	Pulse
Qx	Quiet result, 0/1 = 1-quiet	0
R	Reverse originate	N/A
Sn=n	Set S register (see Table 2)	N/A
Sn?	Return value in register n (see Table 2)	N/A
Т	Touch tone dial	Pulse
Vx	Verbose result, 0/1 = off/on	1
Xn	Result code, 0/1/2/3/4 (see Table 1)	4
Yx	Enable long space disconnect, 1 = enable	0
Zx	Restore from Non-Volatile Memory, x = 0 or 1	N/A
&Cx	Carrier detect override, 0/1 = on/normal	0
&Dn	DTR mode, 0/1/2/3 (see Table 5)	0
&F	Restore to factory configuration	N/A
&Gn	CCITT guard tone, 0/1/2 = off/1800/550	0
&Jx	Auxiliary relay control	0
&Mn	Async/Sync mode, 0/1/2/3 (see Table 6)	0

"AT" COMMANDS SUPPORTED (Continued)

COMMAND	OPTIONS	DEFAULT
&Px	Pulse dial mode, 0/1=U.S./U.K.	0
&Qx	Same as &M	N/A
&Rx	Enable RTS/CTS	0
&Sx	DSR override, 0/1=U.S./U.K.	0
&Tn	Test mode (see Table 7)	N/A
&V	View active configuration and user profiles	N/A
&Wx	Write current configuration to NVRAM x = 0 or 1	0
&Xn	Sync Tx clock mode, 0/1/2=int/ext/slave	0
&Yx	Designate default user profile Z0 or Z1	N/A
&Zn = s	Store a telephone number n = 0-3	N/A

Factory configuration¹:

B1 E1 F1 L2 M1 P Q0 V1 X4 Y0 &C0 &D0 &G0 &J0 &M0 &P0 &R0 &S0 &T4 &X0

Dial string arguments:

, = delay	@ = silent answer	! = flash	
; = return to command	s = dial stored number	W = wait for tone	R=reverse mode

TABLE 1: Result Codes

Xn	VOCAL/NUMERIC RESULT CODE	
X0	OK/0, CONNECT/1, RING/2, NO CARRIER/3, ERROR/4	
X1	All functions of X0 + CONNECT (RATE)/1 = 300, 5 = 1200, 10 = 2400	
X2	All functions of X1 + NO DIAL TONE/6	
Х3	All functions of X1 + BUSY/7	
X4	All functions of X3 + NO DIAL TONE/6	

TABLE 2: S Registers Supported

Sn	FUNCTION	UNITS	DEFAULT
S0 ²	Answer on ring	No. of rings	000
S1	Ring counter	No. of rings up to 8	000
S2	Escape code	ASCII CHR\$()	043
S3	Carriage return	ASCII CHR\$()	013

If the NOVRAM has not been initialized it may be necessary to Power down/Power up and type AT&F&W<cr> to properly initialize modem state.

² Stored in NVRAM with &W command

TABLE 2: S Registers Supported (Continued)

NUMBER	FUNCTION	UNITS	DEFAULT
S4	Line feed	ASCII CHR\$()	010
S5	Back space	ASCII CHR\$()	008
S6	Wait for dial tone	Seconds	002
S7	Wait for carrier	Seconds	030
S8	Pause time	Seconds	002
S9	Carrier valid	100 milliseconds	006
S10	Carrier drop out	100 milliseconds	014
S11	DTMF tone duration	1 millisecond	070
S12	Escape guard time	20 milliseconds	050
S13	Unused		N/A
*S14²	Bit mapped register	Decimal 0-255	170
S15	Unused		N/A
S16	Test register	Decimal #	000
S18	Test timer	Decimal 0-255	000
S19	Unused		N/A
S20	Unused		N/A
*S21²	Bit mapped register	Decimal 0-255	000
*S22 ²	Bit mapped register	Decimal 0-255	118
*S23 ²	Bit mapped register	Decimal 0-255	007
S24	Unused		N/A
S25 ²	DTR delay	10 milliseconds	005
S26 ²	CTS delay	10 milliseconds	001
*S27 ²	Bit mapped register	Decimal 0-255	064

* The bit mapped register functions are equivalent to normal "AT" command modern registers. They are not needed for evaluation of the 73D2240 capabilities.

Asynchronous character formats supported: [Number of data bits, parity (even/odd/none), number of stop bits]

1200/2400 bit/s: 7N2, 7E1, 7O1, 8N1

300 bit/s: 7N2, 7E1, 7O1, 8N1

² Stored in NVRAM with &W command

TABLE 3: Speaker Modes

Mn	SPEAKER MODE
М0	Speaker off
M1	Speaker on during connect only
M2	Speaker on always
МЗ	Speaker on during call progress

TABLE 4: O Modes

On	ONLINE/RETRAIN MODE	
00	Return online	
01	Return online with retrain	
02	Enable automatic retrain (default)	
O3	Disable automatic retrain	

TABLE 5: DTR Modes

&Dn	DTR MODE
&D0	Ignore DTR
&D1	Go to command state if ON to OFF detected
&D2	Go to command state and disable auto- answer if ON to OFF detected
&D3	Initialize modem with NVRAM if ON to OFF detected

TABLE 6: Synchronous Modes

&Mn	SYNCHRONOUS MODE
&M0	Asynchronous
&M1	Sync mode entered upon completion of connect sequence
&M2	Dial stored number on OFF to ON tran- sition of DTR and go online
&МЗ	Manual dial using DTR as talk data switch

TABLE 7: Test Modes

&Tn	TEST MODE
&T0	End/Abort test
&T1	Initiate local analog loopback (L3)
&T3	Initiate local digital loopback
&T4	Permit remote digital loopback (L2)
&T5	Prohibit remote digital loopback
&T6	Initiate remote digital loopback (L2)
&T7	Initiate RDL with self-test and error detector
&Т8	Initiate ALB with self-test and error detector

TABLE 8: ID Codes

In	CODE
10	Product code (249)
11	ROM checksum
12	Checksum test
13	Product revision
14	Software copyright

HARDWARE INTERFACE

POWER SUPPLIES AND CLOCKS

LABEL	I/O	PIN CON	NECTION	DESCRIPTION
		73M224L	73D600	
VDD	1	15	40	Positive supply (+5V)
VDD	I	28		System ground
GND	1	28		Digital ground
X1	-		19	Clock input 11.0592 MHz
CLK	0	18		Clock output 11.0592 MHz
RST	1	25	9	Reset (10 µF & 8.2k)

DAA INTERFACE

RxA	i	27	Receive analog from DAA	
ТхA	0	16	Transmit analog to DAA	
VC1	0		6	Audio volume control
VC2	0		4	Audio volume control
RINGD	1		12	From ring indicator
OH	0		1	Off hook relay control
AUX	0		21	Auxiliary relay control

RS-232/V.24 INTERFACE

RI	0		22	Ring indicator output
HS	0		23	Indicates high speed
TXD	1	21	10	Digital data from terminal
RXD	0	22	11	Digital receive data
DCD	0		3	Data carrier detect
DSR	0		24	Data set ready
EXCLK	1	19		External Tx sync clock input
RXCLK	0	23		Receive clock ouptut
TXCLK	0	18		Transmit clock output
CTS	0		8	Clear to send
RTS	I		2	Request to send
DTR	1		7	Indicates DTE available

2

HARDWARE INTERFACE (Continued)

LED DISPLAY SIGNAL SOURCE

LABEL	I/O	PIN CONNECTION 73D600	DESCRIPTION
TR	LED	28	Data terminal ready (Active Low)
SD	LED	11	Transmit data (Mark = High)
RD	LED	10	Receive data (Mark = High)
CD	LED	25	Data carrier detect (Active Low)
HS	LED	23	High speed indicator (Active Low)
MR	LED	27	Modem ready/test in progress (Active Low)
AA	LED	26	Auto answer indicator (Active Low)
ОН	LED	1	Off hook indicator (Active Low)

NVRAM INTERFACE 73D600

NVCE	0	15	NVCE
NVRM	I/O	14	NVRM
NVSK	1	5	NVSK

ELECTRICAL SPECIFICATIONS

ABSOLUTE MAXIMUM RATINGS

PARAMETER		RATING	UNIT
VDD Supply Voltage	73K224L	14	V
	73D600	7	V
Storage Temperature		-65 to 150	°C
Soldering Temperature	(10 sec.)	260	°C
Applied Voltage		-0.3 to VDD+0.3	V
Note: All inputs and ou devices and all outputs		om static charge using built-in, indust	ry standard protection

RECOMMENDED OPERATING CONDITIONS

PARAMETER	CONDITIONS	MIN	NOM	MAX	UNITS
External Components (Refe	r to Application section for placer	nent.)			
VREF Bypass capacitor	(VREF to GND)	0.1			μF
Bias setting resistor	(Placed between VDD and ISET pins)	1.8	2	2.2	MΩ
ISET Bypass capacitor	(ISET pin to GND)	0.1			μF
VDD Bypass capacitor 1	(VDD to GND)	0.1			μF
VDD Bypass capacitor 2	(VDD to GND)	22			μF

RECOMMENDED OPERATING CONDITIONS (continued)

PARAMETER	CONDITIONS	MIN	NOM	MAX	UNITS	
External Components - 73D600						
VDD Bypass Capacitor	VDD to GND	1			μF	
XTL1, 2 Load Capacitors	Typical, depends on crystal	15		40	pF	
Clock Variation	(11.0592 MHz) Crystal or external clock	-0.01		+0.01	%	
TA, Operating Free-Air Temperature		-40		70	°C	

DC ELECTRICAL CHARACTERISTICS

*(TA = -40°C to 70°C, VDD =recommended range unless otherwise noted.)

VDD Supply Voltage	•				
73D600, 73K224L		4.5	5	5.5	V
IDD, Supply Current	CLK = 11.0592 MHz				
73K224L	ISET Resistor = 2 M Ω				
IDD1, Active			25	27	mA
IDD2, Idle	CLK = 11.0592 MHz		3		mA
73K600					
IDD1, Active				16	mA
IDD2, Idle				3.7	mA
Digital Inputs 73K224L					
VIL, Input Low Voltage				0.8	v
VIH, Input High Voltage					
All Inputs except Reset XTL1, XTL2		2.0		VDD	V
Reset, XTL1, XTL2		3.0		VDD	v
IIH, Input High Current	VI = VIH MAX			100	μA
IIL, Input Low Current	VI = VIL MIN	-200			μA
Reset Pull-down Current	Reset = VDD	5		50	μA
Digital Outputs 73K224L					
VOH, Output High Voltage	IO = IOH Min IOUT = -0.4 mA	2.4		VDD	V
VOL, Output Low Voltage	IO = IOUT = 1.6 mA			0.4	V
VOL, CLK Output	IOUT = 3.6 mA			0.6	V
RXD Tri-State Pull-up Curr.	RXD = GND	-5		-50	μA
Capacitance 73K224L					
Inputs	Input capacitance, all Digital Input pins			10	pF
CLK	Maximum Capacitive Load			15	pF
 Although marked as a comm with industrial temperature rate 	ercial temperature range part (0-70°C ange rated devices.) the 73K	224L ope	erates to -4	0°C as

DC ELECTRICAL CHARACTERISTICS (Continued)

PARAMETER	CONDITIONS	MIN	NOM	MAX	UNITS
Digital Inputs 73K600					
VIL, Input Low Voltage		0		.2VDD1	V
VIH, Input High Voltage					
Reset, X1		.7 VDD		VDD	V
All Other Pins		.2 VDD +.9		VDD	v
IIL, Low Input Current	Vin = 0.45 V			-50	μA
ITL, Logic 1 to 0 Transition Current	Vin = 2.0V			-500	μA
Digital Outputs 73K600					
VOH Output High Voltage					
All Ports Except ALE, AD0-7	IOH = -80 μA	2.4			v
AD0-7, ALE	IOH = -400 μA	2.4			
VOL Output Low Voltage					
All Ports Except ALE, AD0-7	IOL = 1.6 μA			0.45	v
AD0-7, ALE	IOL = 3.2 μA			0.45	V
Reset Pull Down Resistor		40		125	kΩ

DYNAMIC CHARACTERISTICS AND TIMING

(TA = -40°C to +70°C, VDD = recommended range unless otherwise noted.)

PARAMETERS	CONDITIONS	MIN	NOM	MAX	UNITS
QAM/DPSK Modulator					
Carrier Suppression	Measured at TXA	55			dB
Output Amplitude	TX scrambled marks	-11.5	-10.0	-9	dBm0
FSK Modulator					
Output Freq. Error	CLK = 11.0592 MHz	-0.31		+0.05	%
Transmit Level	Transmit Dotting Pattern	-11.5	-10.0	-9	dBm0
Output Distortion	All products through BPF			-45	dB
Output Bias Distortion	Transmit Dotting Pattern in ALB @ RXD	-5		+5	%
2100 Hz Answer Tone Ger	nerator				
Output Amplitude		-11.5	-10	-9	dBm0
Output Distortion	All products though BPF			-40	dB
NOTE: Parameters express	sed in dBm0 refer to the following de	efinition:			
0 dB loss in	the Transmit path to the line.				
0 dP asin in	the Dessive noth from the line				

2 dB gain in the Receive path from the line.

Refer to the Basic Box Modem diagram in the Applications section for the DAA design.

DYNAMIC CHARACTERISTICS AND TIMING (Continued)

PARAMETERS		CONDITIONS	MIN	NOM	мах	UNITS
DTMF Generator		CONDITIONS		NOM		
Freq. Accuracy		I	-0.25		+0.25	%
Output Amplitude			-10		-8	dBm0
Output Amplitude			-8	-	-6	dBm0
Twist		High-Band to Low-Band	1.0	2.0	3.0	dB
Receiver Dynamic Range		Refer to Performance Curves	-48		-3	dBm0
Call Progress Detector		In Call Init mode				
Detect Level		460 Hz test signal	-34		0	dBm0
Reject Level					-40	dBm0
Delay Time		-70 dBm0 to -30 dBm0 STEP			25	ms
Hold Time		-30 dBm0 to -70 dBm0 STEP			25	ms
Hysteresis			2			dB
Carrier Detect						
Threshold		QAM/DPSK or FSK receive data	-48		-43	dBm0
Hysteresis		All Modes	2			dB
	DPSK	-70 dBm0 to -6 dBm0	15	20	25	ms
Dolov Time		-70 dBm0 to -40 dBm0	15	20	25	ms
Delay Time	QAM	-70 dBm0 to -60 dBm0	25	30	35	ms
		-70 dBm0 to -40 dBm0	25	33	41	ms
	DPSK	-6 dBm0 to -70 dBm0	15	22	28	ms
Hold Time		-40 dBm0 to -70 dBm0	10	15	20	ms
	QAM	-6 dBm0 to -70 dBm0	44	50	56	ms
		-40 dBm0 to -70 dBm0	21	26	31	ms
Answer Tone Dete	ectors	Call Init Mode	<u>.</u>			
Detect Level			-48		-43	dBm0
Detect Time		For signals from	7		37	ms
Hold Time		-6 to -40 dBm0, 2100 or 2225 Hz	10		48	ms
Detect Time		Demod Mode for signals from	4		26	ms
Hold Time		-6 to -40 dBm0, 2100 or 2225 Hz	11		43	ms

PARAMETERS	CONDITIONS	MIN	NOM	MAX	UNITS
Pattern Detectors	DPSK Mode				
S1 Pattern				1	
Delay Time	For signals from -6 to -40 dBm0,	15		32	ms
Hold Time	Demod Mode	4		21	ms
Unscrambled Mark					
Delay Time	For signals from -6 to -40,	16		38	ms
Hold Time	Demod or call Init Mode	13	•	47	ms
Receive Level Indicator					
Detect On				-20	dBm0
Valid after Carrier Detect		10			ms
Output Smoothing Filter					
Output Impedance	TXA pin		200	300	Ω
Output load	TXA pin; FSK Single	10			kΩ
	Tone out for THD = -50 dB in 0.3 to 3.4 kHz range			50	pF
Maximum Transmitted	4 kHz, Guard Tones off			-35	dBm0
Energy	10 kHz, Guard Tones off			-60	dBm0
	12 kHz, Guard Tones off			-70	dBm0
Anti Alias Low Pass Filter	(Frequency kHz)				
Out of Band Signal Energy (Defines Hybrid Trans-	Level at RXA pin with receive Boost Enabled				
Hybrid loss requirements)	Scrambled data at 2400 bit/s in opposite band			-14	dBm
	Sinusoids out of band			-9	dBm
Clock Noise	TXA pin; 153.6 kHz				
73K224L				1.5	mVrms
Carrier Offset					
Capture Range	Originate or Answer		±7	±10	Hz

DYNAMIC CHARACTERISTICS AND TIMING (Continued)

2

DYNAMIC CHARACTERISTICS	AND TIMING (Continued)
-------------------------	------------------------

PARAMETERS	CONDITIONS	MIN	NOM	MAX	UNITS
Recovered Clock					
Capture Range	% of frequency originate or answer	024		+.024	%
Guard Tone Generator					
Tone Accuracy	550 Hz			+1.18	%
	1800 Hz	-0.7			
Tone Level	550 Hz	-5.0	-3.0	-2.0	dB
(Below QAM/DPSK Output)	1800 Hz	-8.0	-6.0	-5.0	dB
Harmonic Distortion	550 Hz			-50	dB
(700 to 2900 Hz)	1800 Hz			-60	dB
Timing (Refer to Timing D	Diagrams)				
TAL	CS/Addr. setup before ALE	30			ns
TLA	CS/Addr. Hold after latch	20			ns
TLC	Latch to RD/WR control	40			ns
TCL	RD/WR Control to Latch	10			ns
TRD	Data out from RD	0		140	ns
TLL	ALE width	60			ns
TRDF	Data float after READ	0		200	ns
TRW	READ width	200		25000	ns
TWW	WRITE width	140		25000	ns
TDW	Data setup before WRITE	150			ns
TWD	Data hold after WRITE	20			ns
1: Control for setup is the	falling edge of RD or WR.		L		•
Control for hold is the f	alling edge of \overline{BD} or the rising edge of	WA			

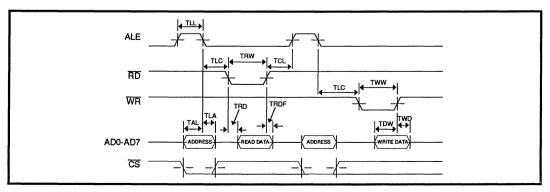
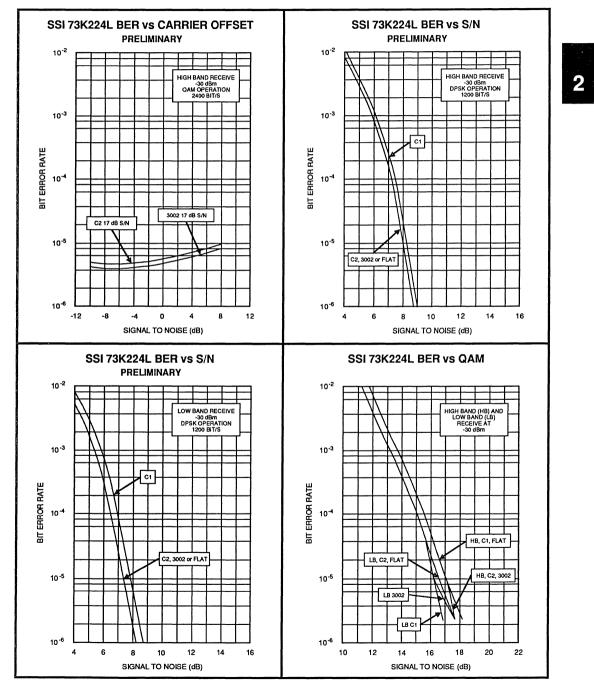


FIGURE 1: Bus Timing Diagram (Parallel Version)


PERFORMANCE DATA

(This performance data was taken using an AEA tester and the 73D2402 MEU board.)

TYPICAL BER PERFORMANCE

(-20dBm receive level 10-5 BER)

PARAMETER - RECEIVE BAND C-WEIGHTED	MINIMUM SNR REQUIRED
2400 bit/s Originate	17 dB SNR
2400 bit/s Answer	18.5 dB SNR
1200 bit/s Originate	8.0 dB SNR
1200 bit/s Answer	8.5 dB SNR
0-300 bit/s Originate	8.0 dB SNR
0-300 bit/s Answer	8.0 dB SNR

2-39

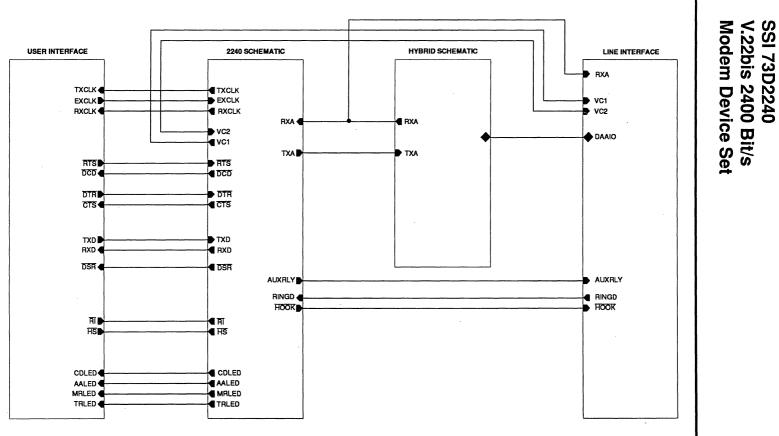
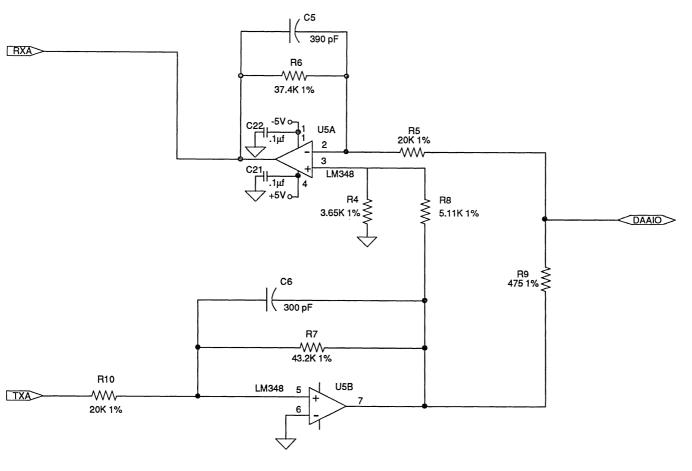
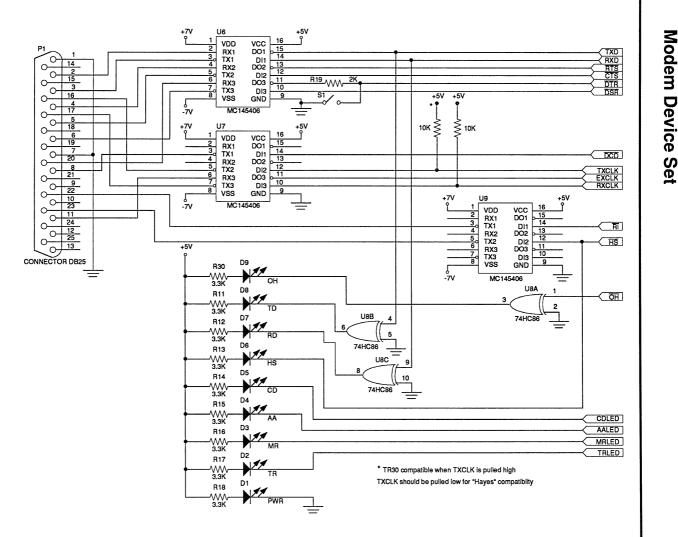



FIGURE 2: SSI 73D2240 Box Modern Block Diagram

2-40



Modem Device Set

V.22bis 2400 Bit/s

SSI 73D2240

SSI 73D2240 V.22bis 2400

2400

Bit/s

FIGURE 4: 73D2240 User Interface

2-42

0790 - rev.

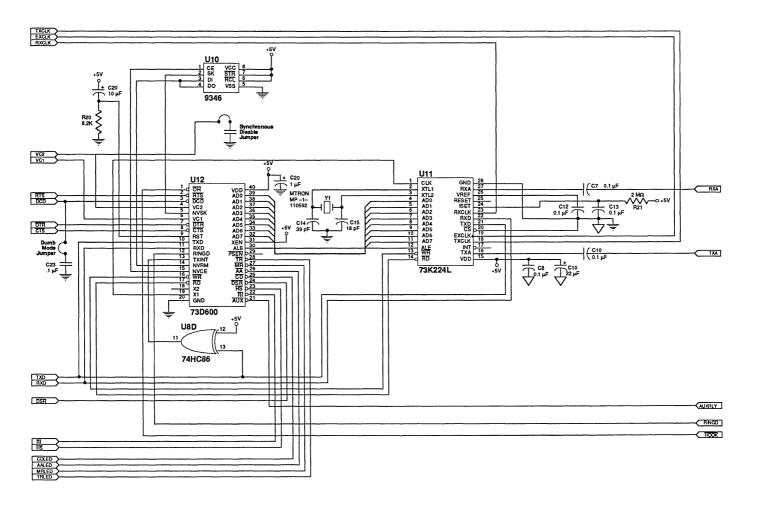


FIGURE 5: 73D2240 Interconnect

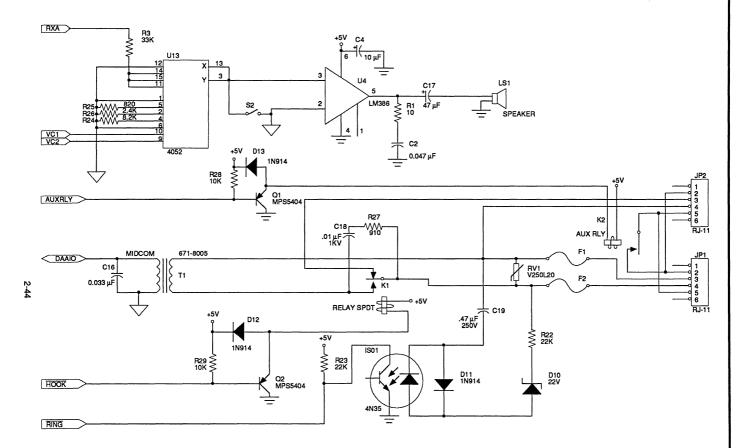
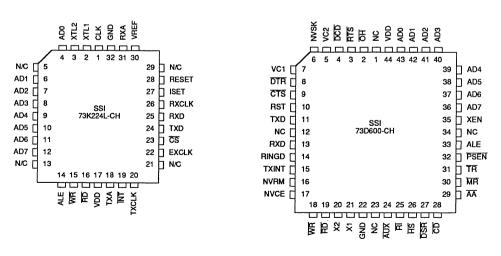


FIGURE 6: 73D2240 Line Interface


SSI 73D2240 V.22bis 2400 Bit/s Modem Device Set

PIN DIAGRAMS - Top View

он 🛛	1		40	Ь	VDD
RTS [2		39	b	AD0
	З		38	b	AD1
VC2	4		37	þ	AD2
NVSK [5		36	þ	AD3
VC1	6		35	þ	AD4
dte [7		34	þ	AD5
CTS [8		33	þ	AD6
RST [9	SSI 73D600-CP	32	þ	AD7
TXD [10	/3000-01	31	þ	XEN
	11		30	þ	ALE
RINGD	12		29	þ	PSEN
	13		28	þ	TR
	14		27	þ	MR
	15		26	þ	ĀĀ
WR	16		25	þ	CD
ੇ ਹਸ	17		24	þ	DSR
X2 [18		23	þ	HS
X1 [19		22	þ	RI
	20		21	þ	AUX

CLK	С	1		28	Ь	GND
XTL1	Π	2		27	Ь	RXA
XTL2	Π	3		26	Ь	VREF
AD0	Ц	4		25	Ь	RESET
AD1	E	5		24	b	ISET
AD2	С	6		23	þ	RXCLK
AD3	С	7	SSI 73K224L-CP	22	b	RXD
AD4		8	/3K224L-GP	21	þ	TXD
AD5	C	9		20	b	CS
AD6	Ц	10		19	þ	EXCLK
AD7	Ц	11		18	þ	TXCLK
ALE	d	12		17	b	INT
WR	d	13		16	þ	ТХА
RD	þ	14		15	þ	VDD

SSI 73K2240-CP 28- and 40-Pin DIP

SSI 73K2240-CH 32- and 44-Pin PLCC

Advance Information: Indicates a product still in the design cycle, and any specifications are based on design goals only.

No responsibility is assumed by Silicon Systems for use of this product nor for any infringements of patents and trademarks or other rights of third parties resulting from its use. No license is granted under any patents, patent rights or trademarks of Silicon Systems. Silicon Systems reserves the right to make changes in specifications at any time without notice. Accordingly, the reader is cautioned to verify that the data sheet is current before placing orders.

Copyright Notice:

The software contained within certain components of the Silicon Systems, Inc. 73D2240 is copyright protected and may only be used in conjunction with the 73D2240 product as supplied by Silicon Systems, Inc. No license to reproduce this software is granted or implied. This material may not be reproduced in any form without the express written permission of Silicon Systems, Inc. © Copyright 1989. All rights reserved.

Protected by the following patents: (4,777,453) (4,789,995) (4,870,370) (4,847,868) (4,866,739)

Silicon Systems, Inc. 14351 Myford Road, Tustin, CA 92680, (714) 731-7110, FAX (714) 731-5457

The SSI 73D2404 consists of three CMOS integrated

circuits which together provide the data pump functions required to construct a high performance 2400

bit/s full-duplex intelligent modem for use over the dial-

up telephone network. The 73D2404 includes operat-

ing modes compatible with CCITT V.22bis, V.22, V.21,

as well as Bell 212A and 103 data-communications standards. Using advanced CMOS processes that

include analog, digital signal processing and switched

capacitor filter techniques, the SSI 73D2404 offers

excellent performance and a high level of functional integration in a compact three-chip set available in DIP

The 73D2404 is ideal for use in both free-standing or

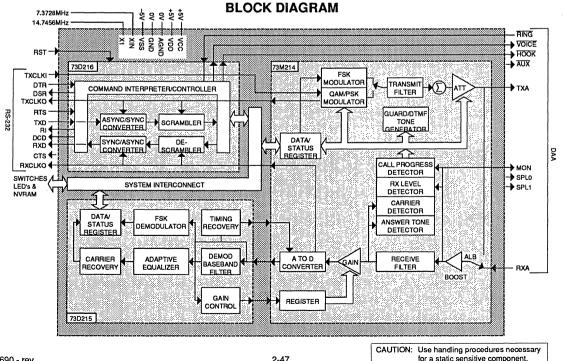
integral system modem products where full-duplex

2400 bit/s data-communications over the 2-wire public

SSI 73D2404 V.22bis 2400 Bit/s Modem Device Set

DESCRIPTION

or surface mount packages.


service telephone network is desired.

FFATURES

June, 1990

- Multi-mode V.22bis/V.22/V.21 & Bell 212A/103 compatible device set for intelligent modem designs
- Full duplex operation at 0-300, 1200 and 2400 bit/s with with both synch & asynch operating modes
- Includes high-level "AT" command interpreter compatible with 2400 bit/s industry standard products
- Complete complement of "AT" modem features
- Selectable automatic speed detect, handshake and autobaud functions
- Supports external non-volatile memory to store user configurations
- Adaptive equalization for optimum performance over all lines
- Dynamic range from 0 to -45dBm
- Call progress, carrier and answer tone detectors provide intelligent dialing functions

⁽Continued)

FEATURES (Continued)

- DTMF and CCITT guard tone generators
- Test modes available ALB, DL, RDL for complete test capability
- All CMOS technology for low power consumption

OPERATION

The SSI 73D2404 is a complete V.22bis intelligent modem contained in three CMOS IC's. The device set forms the basis for a high performance stand-alone modem product with self-contained command interpreter, indicator LED's, default switches and interface lines for an RS-232 serial port. Both data and commands are passed over the serial port as in conventional intelligent modem designs.

The SSI 73D2404 provides the QAM, PSK and FSK modulator/demodulator functions, call progress and handshake tone monitors, test modes and a tone generator capable of producing DTMF, answer and CCITT guard tones. This device supports the V.22bis, V.22, V.21 and Bell 212A/103 operating modes, both synchronous and asynchronous. The 73D2404 is designed to provide functions needed for an intelligent modem and includes auto-dial/auto-answer, handshake with auto-fallback, and selectable pulse or DTMF dialing sequences to simplify these designs.

The SSI 73D2404 consists of three devices. The SSI 73M214 is an analog processor that performs the filtering, timing adjustment, level detection and modulation functions. The 73D215 is the receiver digital signal processor. The 73D216 is a command processor that provides supervisory control and command interpretation.

QAM MODULATOR/DEMODULATOR

The SSI 73D2404 scrambles and encodes the 2400 bit/s incoming data into quad bits represented by 16 possible signal points as specified by CCITT recommendation V.22bis. The modulator transmits this encoded data using either a 1200 Hz (originate mode) or 2400 Hz (answer mode) carrier. The demodulator

reverses this procedure and recovers a data clock from the incoming signal. Adaptive equalization corrects for different line conditions by automatically changing filter parameters to compensate for line characteristics.

PSK MODULATOR/DEMODULATOR

In PSK mode the 73D2404 modulates the 1200 bit/s incoming data using a subset of the QAM signal points as specified by CCITT recommendation V.22bis, V.22 and Bell 212A. The PSK demodulator is similar to the QAM demodulator.

FSK MODULATOR/DEMODULATOR

The FSK transmitter frequency modulates the analog output signal using two discrete frequencies to represent the binary data. The Bell 103 standard frequencies of 1270 and 1070 Hz (originate mark and space) and 2225 and 2025 Hz (answer mark and space) or the V.21 standard frequencies of 980 and 1180 Hz (originate mark and space) are used when this mode is selected. Demodulation involves detecting the received frequencies and decoding them into the appropriate binary value.

PASSBAND FILTERS AND EQUALIZERS

A bandsplit filter is included to shape the amplitude and phase response of the transmit signal to a square root 75% raised cosine and provide rejection of out-of-band signals in the receive channel.

ASYNCHRONOUS MODES

The asynchronous mode is used for communication between asynchronous terminals which may vary the data rate from +1.5% to -1.5%. When transmitting in this mode the serial data on the TXD input is passed through a rate converter which inserts or deletes stop bits in the serial bit stream in order to output a signal whose data rate is accurate to 0.01%. The signal is routed to a data scrambler (following the CCITT V.22bis algorithm) and into the modulator. The 73D2404 recognizes a break signal and handles it in accordance with BELL 212A specifications. Received data is processed in a similar fashion except that the rate converter now acts to reinsert any deleted stop bits. An incoming break signal will be passed through without incorrectly inserting a stop bit.

SYNCHRONOUS MODES

Synchronous operation is possible only with the QAM or PSK mode. Operation is similar to that of the asynchronous mode except that data must be synchronized to a provided clock and no variation in data transfer rate is allowable. Serial input data appearing at TXD must be valid on the falling edge of TXCLK. Receive data at the RXD output is clocked out on the rising edge of RXCLK. The async/synch converter is bypassed when synchronous mode is selected and data is transmitted out at the same rate as is input.

AUTOMATIC HANDSHAKE

The SSI 73D2404 will automatically perform a complete handshake as defined by the V.22bis, V.22 and Bell 212A/103 standards to connect with a remote modem. The 73D2404 automatically determines the speed and operating mode and adjusts its operation to correspond to that of an answering modem when originating a call.

TEST MODES

The SSI 73D2404 allows use of Analog Loopback, Digital Loopback and Remote Digital Loopback test modes. Full test mode capability allows testing of the modem and interface functions from the local terminal using the appropriate control commands, or remotely using the RDL function.

ADAPTIVE EQUALIZATION WITH AUTO-RETRAIN

The SSI 73D2404 uses adaptive equalization which automatically compensates for varying line characteristics by adjusting taps on a multi-tap FIR filter. Optimum performance is obtained with this technique over a wide range of line conditions. When the line quality deteriorates to a specified level the 73D2404 can automatically initiate a retrain of the equalizer to reestablish data communications without the need to go through a complete handshake sequence.

"AT" COMMAND INTERPRETER

The SSI 73D2404 includes an AT command interpreter which is compatible with the Hayes 2400 Smartmodem[™] command set. Functions and features included with intelligent modems are provided by the 73D2404 command interpreter.

NON-VOLATILE MEMORY

The SSI 73D2404 supports connection to an external non-volatile memory (ie. Xicor X2444) to store a dial string and the current AT command configuration.

SPEED/PROTOCOL COMPATIBILITY GUIDE

				73D2	73D2404 originating as:					
			B	ell		CCITT				
	Calling a	1 :	300	1200	300	1200	2400			
Bell	300	(103)	300	300	-	-	300			
	1200	(212)	300	1200	-	1200	1200			
	2400 ¹	(224)	300	1200	-	1200	2400			
CCITT	300	(V.21)	-	-	300	-	-			
	1200	(V.22)	300	1200	-	1200	1200			
	2400	(V.22bis)	300	1200	-	1200	2400			
			73D2404 answering as:							
			B	Bell CCITT						
с	alled fron	n a:	300	1200	300	1200	2400			
Bell	300	(103)	300	300	-	-	300			
	1200	(212)	300	1200	-	1200	1200			
	2400	(224)	300	1200		1200	2400			
CCITT	300	(V.21)	-	-	300	-	-			
	1200	(V.22)	300	1200	-	1200	1200			
	2400	(V.22bis)	300	1200	-	1200	2400			

¹ A Bell 2400 is a V.22bis using a 2225 Hz answer tone without unscrambled marks.

HARDWARE INTERFACE

POWER SUPPLIES AND CLOCKS

LABEL	I/O	PIN	PIN CONNECTION		DESCRIPTION	
		73M214	73D215	73D216		
VDD	1			40	Positive supply (analog +5V)	
VCC	I	28	28		Positive supply (digital +5V)	
VSS	1	14			Negative supply (analog -5V)	
AGND	I	26			Analog ground	
GND	1	15	14	20	Digital ground	
X1	I			19	Clock input 14.7456 MHz	
XIN	l	18			Clock input 7.3728 MHz	
RST	I			9	Reset (10 µF & 8.2k)	

DAA INTERFACE

RXA	1	27		Receive analog from DAA
ТХА	0	20	Transmit analog to DAA	
MON	0	25	Audio monitor	
SPL0	0		B.4*	Audio volume control
SPL1	0		B.5*	Audio volume control
RING	1		5	From ring indicator
HOOK	0		6	Off hook relay control
AUXR	0		B.7*	Auxiliary relay control

RS-232/V.24 INTERFACE

RI	0		3	Ring indicator output
RATE	0		B.3*	Indicates high speed
TXD	I		10	Digital data from terminal
RXD	0		11	Digital receive data
DCD	0		2	Data carrier detect
DSR	0		4	Data set ready
EXCLK	1	22		External Tx sync clock input
RXCLK	0	24	8	Receive clock ouptut
TXCLK	0	23	15	Transmit clock output
CTS	0		B.6*	Clear to send
RTS	1		B.6*	Request to send
DTR	-		B.7*	Indicates DTE available

* Available with expanded I/O

HARDWARE INTERFACE (Continued)

LED DISPLAY

		PIN CONNECTION		ION	
LABEL	I/O	73M214	73D215	73D216	DESCRIPTION
WR	0	4	24	16	Write strobe (active low)
TR	LED	Perf	ormed exter	nally	Data terminal ready
SD	LED		10		Transmit data
RD	LED			11	Receive data
CD	LED			2	Data carrier detect
HS	LED			B.3*	High speed indicator
MR	LED			B.2*	Modem ready/test in progress
AA	LED			B.1* Auto answer indicator	
OH	LED		B.0*		Off hook indicator

DEFAULT SWITCHES

IOEN	0		26		LED/switch enable (active low)
RD	0	3	25 17		Read strobe (active low)
SW2-1	SW	Perfe	ormed exter	nally	Force DTR
SW2-2	SW			B.5*	Disable "AT" recognition ("Dumb" mode)
SW2-3	SW	Perfe	ormed externally		Force DCD

NVRAM INTERFACE

NVRCE	0		14	NVRAM CE (active high)
TXD	I/O		10	NVRAM DI/DO
RXD	I		11	NVRAM SK

* Available with expanded I/O

Η	IA	RD	W	ARE	INT	ERFA	CE	(Continued)
---	----	----	---	-----	-----	------	----	-------------

		PIN		ION						
LABEL	I/O *	73M214	73D215	73D216	DESCRIPTION					
DEVICE SE	DEVICE SET INTERCONNECT (Refer to Figure 7 & 8.)									
VPP	I		1		+5V					
INT			17		+5V					
ĒĀ	I			31	+5V					
EXADCC	I	19			OV					
DACK			2		+5V					
CLK	s	16	15		7.3728 MHz					
RXINT	S		5	13	RX Interrupt					
TXINT	s	21		12	TX Interrupt					
RST	S		16	1						
FSK	s		4	7						
RD	s	3	25	17						
WR	S	4	24	16						
A15	S	2		28						
A8	S		27	21						
D0	I/O	5	6	39	Data Bus 0					
D1	I/O	6	7	38	Data Bus 1					
D2	I/O	7	8	37	Data Bus 2					
D3	I/O	8	9	36	Data Bus 3					
D4	I/O		10	35	Data Bus 4					
D5	I/O		11	34	Data Bus 5					
D6	I/O		12	33	Data Bus 6					
D7	I/O		13	32	Data Bus 7					
SIN	S	10	22							
SOUT	S	11	21							
SIRQ	S	9	23							
SCK	S	13	18							
SEN	S	12	19,20							

* "S" refers to system interconnect

"AT" COMMANDS SUPPORTED

(Note: s=string; n=decimal, 0-255; x=boolean, 0/1=false/true)

COMMAND	OPTIONS	DEFAULT
A/	Repeats last command line	N/A
А	Answer	N/A
Bx	BELL/CCITT = 1/0 answer tone @1200 (N/A @2400)	1
Ds	Dial string specified by s	No string
Ex	Command echo, 0/1 = off/on	1
Hn	Hook status, 0/1 = on/off	N/A
In	ID code, 0/1/2/3/4 (see Table 8)	N/A
Kn	SSi test	N/A
Ln	Speaker volume, (0)1/2/3 = lo/med/hi	2
Mn	Speaker, 0/1/2/3 = control (see Table 3)	1
On	Online, 0/1/2/3 = on-line/retrain/no retrain (see Table 4)	N/A
Р	Pulse dial	Pulse
Qx	Quiet result, 0/1 = 1-quiet	0
R	Reverse originate	N/A
Sn=n	Set S register (see Table 2)	N/A
Sn?	Return value in register n (see Table 2)	N/A
т	Touch tone dial	Pulse
Ux	User help screen, Sreg, dial string, data format	N/A
Vx	Verbose result, 0/1 = off/on	1
Xn	Result code, 0/1/2/3/4 (see Table 1)	4
Yx	Enable long space disconnect, 1 = enable	0
Z	Restore from Non-Volatile Memory	N/A
&Cx	Carrier detect override, 0/1 = on/normal	0
&Dn	DTR mode, 0/1/2/3 (see Table 5)	0
&F	Restore to factory configuration	N/A
&Gn	CCITT guard tone, 0/1/2 = off/1800/550	0
&Jx	Auxiliary relay control	0
&Mn	Async/Sync mode, 0/1/2/3 (see Table 6)	0

2

"AT" COMMANDS SUPPORTED (Continued)

COMMAND	OPTIONS	DEFAULT
&Rx	Enable RTS/CTS	0
&Sx	DSR override, 0/1=on/normal	0
&Tn	Test mode (see Table 7)	N/A
&Px	Pulse dial mode, 0/1=U.S./U.K.	0
&W	Write current configuration to NVRAM	N/A
&Xn	Sync Tx clock mode, 0/1/2=int/ext/slave	0
&Zs	Store a telephone number=string	N/A

Factory configuration¹:

B1 E1 F1 L2 M1 P Q0 V1 X4 Y0 &C0 &D0 &G0 &J0 &M0 &P0 &R0 &S0 &T4 &X0

Dial string arguments:

, = delay	@ = silent answer	! = flash	
; = return to command	s = dial stored number	W = wait for tone	R=reverse mode

¹If the NovRAM has not been initialized it may be necessary to type AT&F&W<cr> to properly initialize modem state.

TABLE 1: Result Codes

Xn	VOCAL/NUMERIC RESULT CODE	
X0	OK/0, CONNECT/1, RING/2, NO CARRIER/3, ERROR/4	
X1	All functions of X0 + CONNCET (RATE)/1 = 300, 5 = 1200, 10 = 2400	
X2	All functions of X1 + NO DIAL TONE/6	
ХЗ	All functions of X1 + BUSY/7	
X4	All functions of X3 + NO DIAL TONE/6	

TABLE 2: S Registers Supported

NUMBER	FUNCTION	UNITS	DEFAULT
S0 ¹	Answer on ring	No. of rings	000
S1	Ring counter	No. of rings up to 8	000
S2	Escape code	ASCII CHR	043
S3	Carriage return	ASCII CHR	013

¹Stored in NVRAM with &W command

NUMBER	FUNCTION	UNITS	DEFAULT
S4	Line feed	ASCII CHR	010
S5	Back space	ASCII CHR	008
S6	Wait for dial tone	Seconds	002
S7	Wait for carrier	Seconds	030
S8	Pause time	Seconds	002
S9	Carrier valid	100 milliseconds	006
S10	Carrier drop out	100 milliseconds	014
S11	DTMF tone duration	1 millisecond	070
S12	Escape guard time	20 milliseconds	050
S13	Unused		N/A
*S141	Bit mapped register	Decimal 0-255	170
S15	Unused		N/A
S16	Test register	Decimal #	000
S17	SSI Special test register	Decimal 0-255	096
S18	Test timer	Decimal 0-255	000
S19	Unused	· · · · · · · · · · · · · · · · · · ·	N/A
S20	Unused		N/A
*S211	Bit mapped register	Decimal 0-255	000
*S221	Bit mapped register	Decimal 0-255	118
*S231	Bit mapped register	Decimal 0-255	007
S24	Unused		N/A
S251	DTR delay	10 milliseconds	005
S261	CTS delay	10 milliseconds	001
*S271	Bit mapped register	Decimal 0-255	064

TABLE 2: S Registers Supported (Continued)

*The bit mapped register functions are equivalent to normal "AT" command modem registers. They are not needed for evaluation of the 73D2404 capabilities.

Asynchronous character formats supported:

[Number of data bits, parity (even/odd/none), number of stop bits]

1200/2400 bit/s: 7N2, 7E1, 7O1, 8N1

300 bit/s: 7N2, 7E1, 7O1, 8N1, 8E1, 8O1

¹Stored in NVRAM with &W command

2

TABLE 3: Speaker Modes

Mn	SPEAKER MODE	
М0	Speaker off	
M1	Speaker on during connect only	
M2	Speaker on always	
МЗ	Speaker on during call progress	

TABLE 4: O Modes

On	ONLINE/RETRAIN MODE	
O 0 .	Return online	
01	Return online with retrain	
O2	Enable automatic retrain (default)	
O3	Disable automatic retrain	

TABLE 5: DTR Modes

&Dn	DTR MODE
&D0	Ignore DTR
&D1	Go to command state if ON to OFF detected
&D2	Go to command state and disable auto- answer if ON to OFF detected
&D3	Initialize modem with NVRAM if ON to OFF detected

TABLE 6: Synchronous Modes

&Mn	SYNCHRONOUS MODE	
&M0	Asynchronous	
&M1	Sync mode entered upon completion of connect sequence	
&M2	Dial stored number on OFF to ON tran- sition of DTR and go online	
&M3	Manual dial using DTR as talk data switch	

TABLE 7: Test Modes

&Tn	TEST MODE
&T0	End/Abort test
&T1	Initiate local analog loopback (L3)
&T3	Initiate local digital loopback
&T4	Permit remote digital loopback (L2)
&T5	Prohibit remote digital loopback
&T6	Initiate remote digital loopback (L2)
&T7	Initiate RDL with self-test and error de- tector
&T8	Initiate ALB with self-test and error de- tector

TABLE 8: ID Codes

In	CODE	
10	Product code (249)	
11	ROM checksum	
12	Checksum test	
13	Product revision	
14	Software copyright	

DIP SWITCH FUNCTIONS SUPPORTED

(DIP switches are only read on power-up if NovRAM is not present.)

SWITCH	FUNCTION	SETTINGS (Suggested default underlined)
SW2-1	DTR override	off = DTR signal controls modem
		on = DTR always on
SW2-2	"AT" command set recognition	off = Normal operation
		on = "AT" command recognition disabled ("dumb" mode)
SW2-3	Carrier detect override	off = RS-232 CD line toggles (&C1)
		on = CD line always on (&C0)

RECOMMENDED OPERATING CONDITIONS

PARAMETER	CONDITIONS	MIN	NOM	МАХ	UNITS
Ta, Ambient Temperature		0		70	°C
VCC & VDD, Supply Voltage	73M214, 73D215, 73D216	4.25		5.25	v
VSS, Supply Voltage	73M214	-4.25		-5.25	v
VDD, VSS Bypass Capacitors		10+0.1			μF
CLK Load Capacitance				25	pF
Digital Load Capacitance				50	pF
TxA, MON Loading				See Note	
Input Clock Frequency (X1)			14.7456		MHz
Input Clock Variation (X1, XIN)	XIN must be X1 div. by 2	-0.01		0.01	%

Note: 10 K Ω in parallel with 50 pF

INPUT CLOCK TIMING (See Figure 1.)

PARAMETER	CONDITIONS	MIN	NOM	МАХ	UNITS
TCLCX		20			ns
TCLCX2		54		82	ns
ТСНСХ		20			ns
TCHCX2		54		82	ns
TR, TF				15	ns
ТСНСН		0		20	ns

INTERFACE TIMING (This information is provided to assist in the connection of external circuitry to the data bus. Refer to application circuit in Figure 9.)

PARAME	TER	CONDITIONS	MIN	NOM	МАХ	UNITS		
LED Writ	LED Write Timing (See Figure 2.)							
TWLWH	WR pulse width		307			ns		
TAVWL	Address valid to WR low		141			ns		
TQVWH	Data valid to WR high		370			ns		
τανωχ	Data valid to WR transition		27			ns		
TWHDX	Data hold after WR		86			ns		
Switch R	ead Timing (See Figure 3.)							
TRLRH	RD pulse width		307			ns		
TAVRL	Address valid to RD low		141			ns		
TRLDV	RD low to data valid				174	ns		
TRHDX	Data hold after RD		0			ns		

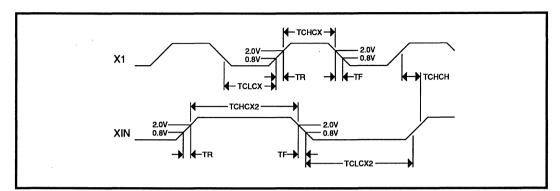


FIGURE 1: Input Clock Timing

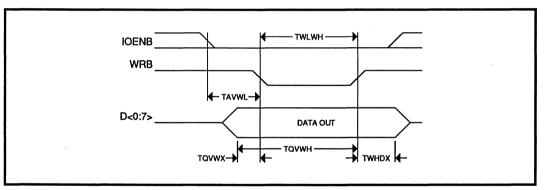
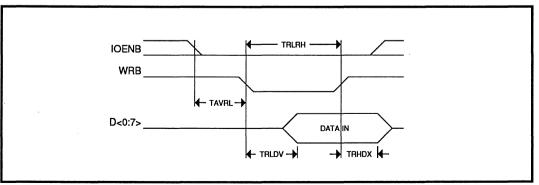



FIGURE 2: LED Write Timing

DC ELECTRICAL CHARACTERISTICS

PARA	METER	CONDITIONS	MIN	NOM	МАХ	UNITS
IDD	Supply Current				100	mA
ISS					25	mA
VIL	Input Low Voltage		0		0.8	v
VIH	Input High Voltage		2.0		VDD	V
ШН	Input High Current	Except \overline{CS} which has a pullup of 20 k Ω			-20 10	μΑ μΑ
IIL	Input Low Current	Except TxCLKI, EXADC which have pullup of 20 k Ω			-20	μA
	Digital Input Capacitance				10	pF
VOH	Output High Voltage	lout =4 mA	2.4			v
VOL	Output Low Voltage	lout = 1.6 mA			0.4	v
RXA	Input Resistance		100k			Ω
RXA	Input Capacitance				25	pF

TRANSMITTER SPECIFICATIONS

TRANSMITTER POWER

Values given are measured at the line connection point and assume that the DAA shown in Figure 8 is used with a 600Ω load.

TRANSMITTER POWER	CONDITIONS	MIN	NOM	МАХ	UNITS
QAM/DPSK Transmitter Power	With or without CCITT tones	-9.8		-8.2	dBm
CCITT Guard Tone	550	-14.8		-12.8	dBm
	1800	-16.0		-14.0	dBm
FSK Transmitter Power	103/V.21	-10.0		-8.0	dBm
Answer Tone Power		-10.0		-8.0	dBm
DTMF Transmitter Power	High band tones	-7.0		-5.0	dBm
	Low band tones	-9.0		-7.0	dBm
	Twist	-3.0		-1.0	dB

2

TRANSMITTER FREQUENCY

(All tones are digitally derived from the clock input and have the input clock frequency tolerance.)

TRANSMITTE		CONDITIO	ONS	MIN	NOM	МАХ	UNITS
QAM/DPSK Carrier Frequencies		Originate			1200.0		Hz
		Answer			2400.0		Hz
FSK Tone Fre	quencies						
103	Originate	Space	1070		1066.7		Hz
		Mark	1270		1269.4		Hz
	Answer	Space	2025		2021.1		Hz
		Mark	2225		2226.1		Hz
V.21	Originate	Space	1180		1181.6		Hz
		Mark	980		978.3		Hz
	Answer	Space	1850		1850.0		Hz
		Mark	1650		1651.6		Hz
Special Tone	Frequencies						
Answe	er Tone		2100		2104.1		Hz
CCITI	Guard Tones		550		556.5		Hz
			1800		1786.0		Hz
DTMF Dialing	Tone Frequencies			······			
Low G	iroup	Columns	697		698.2		Hz
			770		771.9		Hz
			852		853.3		Hz
			941		942.3		Hz
High C	Group	Rows	1209		1209.5		Hz
			1336		1335.7		Hz
			1477		1476.9		Hz
			1663		1634.0		Hz

TRANSMITTER DISTORTION

TRANSMITTER DISTORTION	CONDITIONS	MIN	NOM	МАХ	UNITS
QAM/DPSK Carrier Suppresion	Measured at TxA	35			dB
CCITT Guard Tone Distortion	800-1600 Hz band			-60	dB
	0-10 kHz band			-45	dB
Answer Tone Distortion	800-1600 Hz band			-60	dB
	0-10 kHz band			-40	dB
FSK Output Bias Distortion	Transmit dotting 300 bit/s	-6		6	%
FSK Opposite Band Distortion				-60	dB
DTMF Tone Distortion	700-2900 Hz band			-29	dB

RECEIVER SPECIFICATIONS

PARAMETER	CONDITIONS	MIN	NOM	МАХ	UNITS
Carrier VCO					
Capture Range	Carrier offset	-10		10	Hz
Carrier Jitter	50-65 Hz			30	Degrees
Data Clock Recovery Capture Range	From system clock div. by 24576 (600 Hz symbol clock)	025		+.025	%
Data Delay Time	RxA to RxD	30		75	ms
Retrain Request Threshold	If enabled	10-3		10-2	BER
Carrier Detect					
Threshold		-48		-43	dBm
Hysteresis		2			dB
Answer Tone Detect	2100/2225 Hz				
Threshold		-48		-43	dBm
Hysteresis		2			dB
Call Progress Detect	350-650 Hz dual tone				
Threshold		-40		-30	dBm
Hysteresis		2			dB

PERFORMANCE DATA

(This performance data was taken using an AEA tester and the 73D2404 MEU board.)

BER PERFORMANCE

(-20dBm receive level 10-5 BER)

PARAMETER	MINIMUM SNR REQUIRED
2400 bit/s Originate	16.5 dB SNR
2400 bit/s Answer	16.0 dB SNR
1200 bit/s Originate	9.0 dB SNR
1200 bit/s Answer	8.0 dB SNR
0-300 bit/s Originate	9.0 dB SNR
0-300 bit/s Answer	7.5 dB SNR

DYNAMIC RANGE

PARAMET	ER	CONDITIONS	CONDITIONS		NOM	МАХ	UNITS
2400 bit/s	Originate	10-5 BER @	17dB SNR	-45		0	dBm
2400 bit/s	Answer	10-5 BER @	17dB SNR	-45		0	dBm
1200 bit/s	Originate	10-5 BER @	12dB SNR	-45		0	dBm
1200 bit/s	Answer	10-5 BER @	12dB SNR	-45		0	dBm
0-300 bit/s	Originate	10-5 BER @	12dB SNR	-45		0	dBm
0-300 bit/s	Answer	10-5 BER @	12dB SNR	-45		0	dBm

2

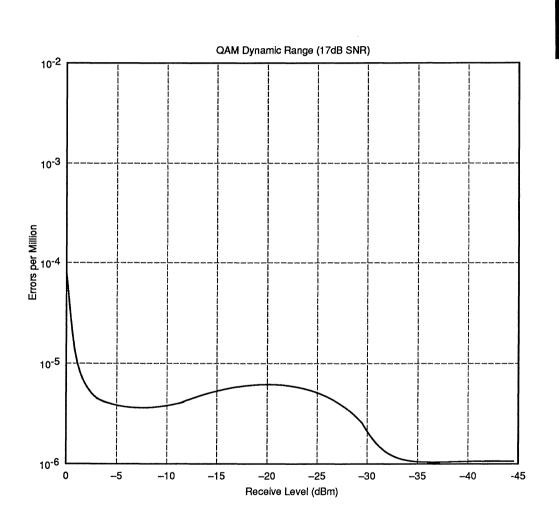


FIGURE 4: QAM Dynamic Range

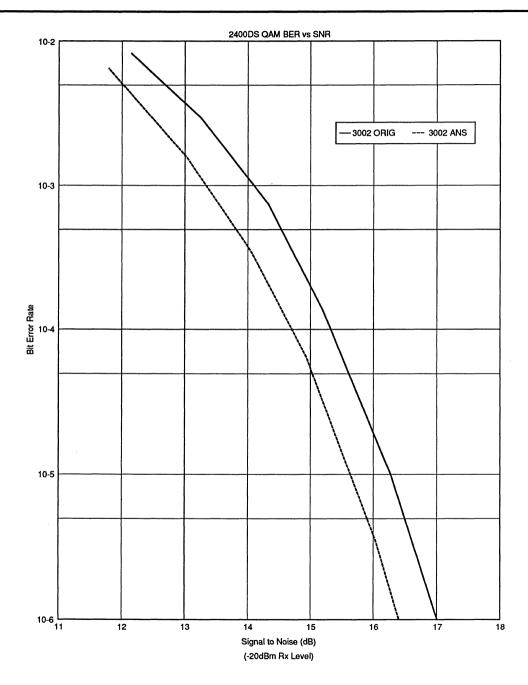


FIGURE 5: BER vs. SNR

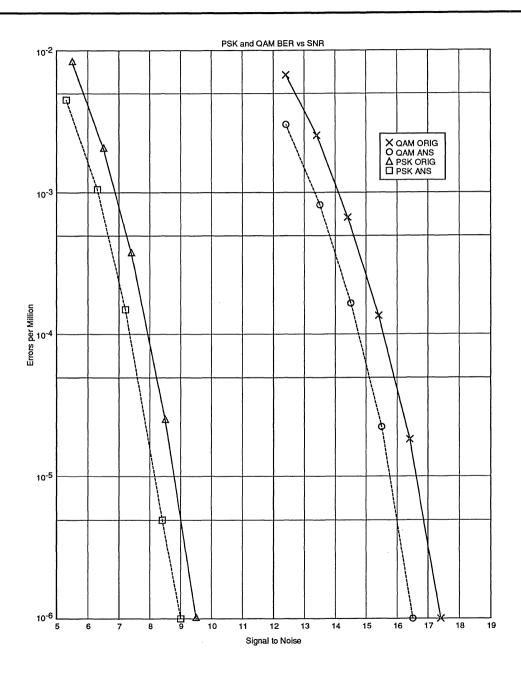


FIGURE 6: QAM and PSK BER vs. SNR with -20dBm Receive Level

2

APPLICATION INFORMATION

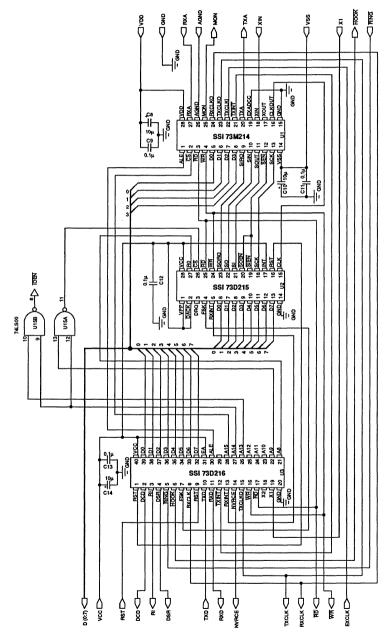
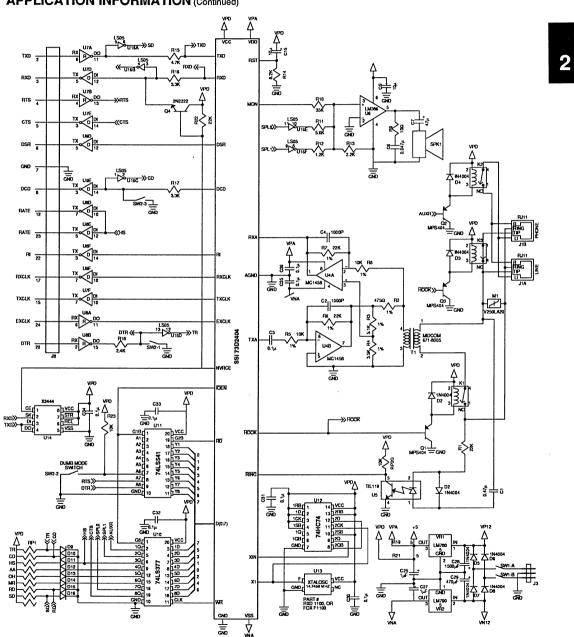
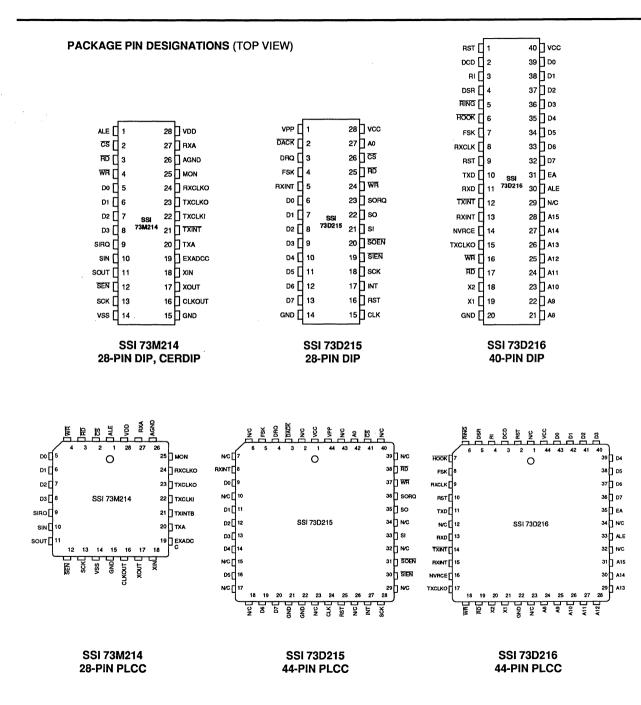




FIGURE 7: SSI 73D2404 System Interconnect

APPLICATION INFORMATION (Continued)

ORDERING INFORMATION

PART DESCRIPTION	ORDER NO.	PKG. MARK
SSI 73D2404 Dual-In-Line Package	SSI 73D2404-CP	
28-pin Plastic DIP		73M214-IP
28-pin Plastic DIP		73D215-CP
40-pin Plastic DIP		73D216-CP
SSI 73D2404 Surface Mount Package	SSI 73D2404-CH	
28-pin Plastic Leaded Chip Carrier		73M214-IH
44-pin Plastic Leaded Chip Carrier		73D215-CH
44-pin Plastic Leaded Chip Carrier		73D216-CH

Copyright Notice:

The software contained within certain components of the SSI 73D2404 is copyright protected and may only be used in conjunction with the 73D2404 product as supplied by Silicon Systems, Inc. No license to reproduce this software is granted or implied. This material may not be reproduced in any form without the express written permission of Silicon Systems, Inc. © Copyright 1987, 1988. All rights reserved.

Protected by the following patents: (4,777,453) (4,789,995)

No responsibility is assumed by Silicon Systems for use of this product nor for any infringements of patents and trademarks or other rights of third parties resulting from its use. No license is granted under any patents, patent rights or trademarks of Silicon Systems. Silicon Systems reserves the right to make changes in specifications at any time without notice. Accordingly, the reader is cautioned to verify that the data sheet is current before placing orders.

Silicon Systems, Inc., 14351 Myford Road, Tustin, CA 92680 (714) 731-7110, FAX (714) 731-5457

2

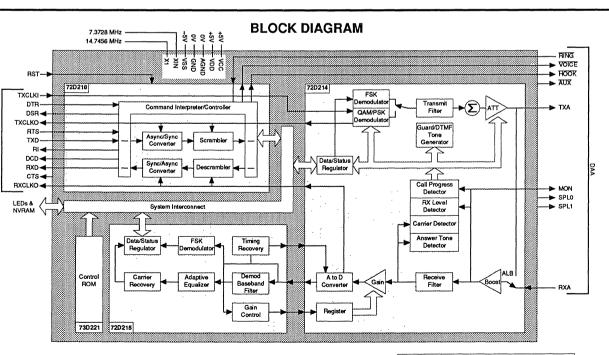
Notes:

silicon systems*

SSI 73D2407 MNP5 Controller and Modem Device Set

Advance Information

July, 1990


DESCRIPTION

The SSI 73D2407 consists of four CMOS integrated circuits which together provide the data pump functions required to construct a high performance 2400 bit/s full-duplex intelligent modem for use over the dial-up telephone network. The SSI 73D2407 includes operating modes compatible with CCITT V.22 bis, V.22, V.21, as well as Bell 212A and 103 datacommunications standards. Using advanced CMOS processes that include analog, digital signal processing and switched capacitor filter techniques, the SSI 73D2407 offers excellent performance and a high level of functional integration in a compact four-chip set available in DIP or surface-mount packages.

The SSI 73D2407 is ideal for use in both free-standing or integral system modem products where full-duplex 2400 bit/s data-communications over the 2-wire public service telephone network is desired.

FEATURES

- Multi-mode V.22bis/V.22/V.21 & Bell 212A/103 compatible device set for intelligent modem designs
- Full duplex operation at 0-300, 1200 and 2400 bit/s with both sync & async operating modes
- Includes Microcom Networking Protocol (MNP) levels 4 and 5
- Includes high-level "AT" command interpreter compatible with 2400 bit/s industry standard products
- Supports external non-volatile memory to store user configurations
- Adaptive equalization for optimum performance over all lines
- Dynamic range from 0 to -45 dBm
- Call progress, carrier and answer tone detectors provide intelligent dialing functions (Continued)

)790 - rev.

FEATURES (Continued)

- DTMF and CCITT guard tone generators
- Test modes available ALB, DL, RDL for complete test capability
- All CMOS for low power consumption

OPERATION

The SSI 73D2407 is a complete V.22bis intelligent modem consisting of four CMOS ICs. The device set forms the basis for a high performance stand-alone modem product with self-contained command interpreter, indicator LEDs, default switches and interface lines for an RS-232 serial port. Both data and commands are passed over the serial port as in conventional intelligent modem designs. Error control of MNP4 and data compression are included.

The SSI 73D2407 provides the QAM, PSK and FSK modulator/demodulator functions, call progress and handshake tone monitors, test modes and a tone generator capable of producing DTMF, answer and CCITT guard tones. This device supports the V.22 bis, V.22, V.21 and Bell 212A/103 operating modes, both synchronous and asynchronous. The SSI 73D2407 is designed to provide functions needed for an intelligent modem and includes auto-dial/auto-answer, handshake with auto-fallback, and selectable pulse or DTMF dialing sequences to simplify these designs.

The SSI 73D2407 consists of four devices. The SSI 73M214 is an analog processor that performs the filtering, timing adjustment, level detection and modulation functions. The SSI 73D215 is the receiver digital signal processor. The SSI 73D218 is a command processor that provides supervisory control and command interpretation. A SSI 73D221 ROM for code storage completes the package.

QAM MODULATOR/DEMODULATOR

The SSI 73D2407 scrambles and encodes the 2400 bit/s incoming data into quad bits represented by 16 possible signal points as specified by CCITT recommendation V.22 bis. The modulator transmits this encoded data using either a 1200 Hz (originate mode) or 2400 Hz (answer mode) carrier. The demodulator recovers a data clock from the incoming signal and reverses this procedure. Adaptive equalization cor-

rects for different line conditions by automatically changing filter parameters to compensate for line characteristics.

PSK MODULATOR/DEMODULATOR

In PSK mode the SSI 73D2407 modulates the 1200 bit/s incoming data using a subset of the QAM signal points as specified by CCITT recommendation V.22bis, V.22 and Bell 212A. The PSK demodulator is similar to the QAM demodulator.

FSK MODULATOR/DEMODULATOR

The FSK transmitter frequency modulates the analog output signal using two discrete frequencies to represent the binary data. The Bell 103 standard frequencies of 1270 and 1070 Hz (originate mark & space) and 2225 and 2025 Hz (answer mark & space) or the V.21 standard frequencies of 980 and 1180 Hz (originate mark and space) and 1650 and 1850 Hz (answer mark and space) are used when this mode is selected. Demodulation involves detecting the received frequencies and decoding them into the appropriate binary value. The data may be any value up to 300 bit/s.

PASSBAND FILTERS AND EQUALIZERS

A bandsplit filter is included to shape the amplitude and phase response of the transmit signal to a square root of 75% raised cosine and provide rejection of out-ofband signals in the receive channel.

ASYNCHRONOUS MODES

The asynchronous mode is used for communication between asynchronous terminals which may vary the data rate from +1.5% to -1.5% from the nominal 1200 or 2400 value. When transmitting in this mode the serial data on the TXD input is passed through a rate converter which inserts or deletes stop bits in the serial bit stream in order to output a signal whose data rate is accurate to 0.01%. The signal is routed to a data scrambler (following the CCITT V.22 bis algorithm) and into the modulator. The SSI 73D2407 recognizes a break signal and handles it in accordance with BELL 212A specifications. Received data is processed in a similar fashion except that the rate converter now acts to reinsert any deleted stop bits. An incoming break signal will be passed through without incorrectly inserting a stop bit.

SSI 73D2407 MNP5 Controller and Modem Device Set

SYNCHRONOUS MODES

Synchronous operation is possible with the PSK or QAM modes at 1200 or 2400 bit/s. Operation is similar to that of the asynchronous mode except that data must be synchronized to a provided clock and no variation in data transfer rate is allowable. Serial input data appearing at TXD must be valid on the falling edge of TXCLK. Receive data at the RXD output is clocked out on the rising edge of RXCLK. The async/synch converter is bypassed when synchronous mode is selected.

AUTOMATIC HANDSHAKE

The SSI 73D2407 will automatically perform a complete handshake as defined by the V.22 bis, V.22 and Bell 212A/103 standards to connect with a remote modem. The SSI 73D2407 automatically determines the speed and operating mode and adjusts its operation to correspond to that of an answering modem when originating a call.

TEST MODES

The SSI 73D2407 allows use of Analog Loopback, Digital Loopback and Remote Digital Loopback test modes. Full test mode capability allows testing of the modem and interface functions from the local terminal using the analog loopback command, or remotely using the RDL command. The digital loopback command must be entered at the remote modem.

ADAPTIVE EQUALIZATION WITH AUTO-RETRAIN

The SSI 73D2407 uses adaptive equalization which automatically compensates for varying line characteristics by adjusting taps on a multi-tap FIR filter. Optimum performance is obtained with this technique over a wide range of line conditions. When the line quality deteriorates to a specified level the SSI 73D2407 can automatically initiate a retrain of the equalizer to reestablish data communications without the need to go through a complete handshake sequence.

"AT" COMMAND INTERPRETER

The SSI 73D2407 includes an AT command interpreter which is compatible with the Hayes 2400 Smartmodem[™] command set. Functions and features included with intelligent modems are provided by the SSI 73D2407 command interpreter.

NON-VOLATILE MEMORY

The SSI 73D2407 supports connection to an external non-volatile memory (i.e., 93C46) to store a dial string and the current AT command configuration.

MICROCOM NETWORKING PROTOCOL

Error control features of the Microcom Networking Protocol (MNP) Level 4 and data compression Level 5 are available through AT commands. Throughput increases of up to 20% are available with MNP4 and 200% with MNP5. In either case, data passed is errorfree.

SPEED/PROTOCOL COMPATIBILITY GUIDE

				73D2	407 Originati	ng as:		
			B	ell		ССІТТ		
	Calling a:			1200	300	1200	2400	
Bell	300	(103)	300	300	-	-	300	
	1200	(212)	300	1200	-	1200	1200	
	2400 ¹	(224)	300	1200	-	1200	2400	
CCITT	300	(V.21)	-	-	300	-	-	
	1200	(V.22)	300	1200	-	1200	1200	
	2400	(V.22bis)	300	1200	-	1200	2400	
				73D2	407 Answerir	ıg as:		
			B	ell		CCITT		
с	alled from	n a:	300	1200	300	1200	2400	
Bell	300	(103)	300	300	-	-	300	
	1200	(212)	300	1200	-	1200	1200	
	2400	(224)	300	1200	-	1200	2400	
CCITT	300	(V.21)	-	-	300	-	-	
	1200	(V.22)	300	1200	-	1200	1200	
	2400	(V.22bis)	300	1200	-	1200	2400	

¹Bell 2400 is the same as V.22bis using a 2225 Hz answer tone without unscrambled marks.

HARDWARE INTERFACE

POWER SUPPLIES AND CLOCKS

LABEL	I/O		PIN	CONNEC	ΓΙΟΝ		DESCRIPTION
		73M214	73D215	73D218	73D221 DIP	73D221 SMT	
VDD	1			40			Positive supply (analog +5V)
VCC	1	28	28		28	32	Positive supply (digital +5V)
VSS	-	14					Negative supply (analog -5V)
AGND	1	26					Analog ground
GND	1	15	14	20	14	16	Digital ground
X1	1			19			Clock input 14.7456 MHz
XIN	I	18					Clock input 7.3728 MHz
RST	I			9			Reset (10 μF & 8.2 kΩ)

DAA INTERFACE

RXA	I	27		Receive analog from DAA
TXA	0	20		Transmit analog to DAA
MON	0	25		Audio monitor
SPL0	0		B.4*	Audio volume control
SPL1	0		B.5*	Audio volume control
RING	1		5	From ring indicator
HOOK	0		6	Off hook relay control
AUXR	0		B.7*	Auxiliary relay control

RS-232/V.24 INTERFACE

RI	0		3	Ring indicator output
RATE	0		B.3*	Indicates high speed
TXD	1		10	Digital data from terminal
RXD	0		11	Digital receive data
DCD	0		2	Data carrier detect
DSR	0		4	Data set ready
EXCLK	1	22		External Tx sync clock input
RXCLK	0	24	8	Receive clock ouptut
TXCLK	0	23	15	Transmit clock output
CTS	0		B.6*	Clear to send
RTS	1		B.6*	Request to send
DTR	1		B.7*	Indicates DTE available

* Available with expanded I/O

HARDWARE INTERFACE (Continued)

LED DISPLAY

			PIN	CONNECT	TION		
LABEL	I/O	73M214	73D215	73D218	73D221 DIP	73D221 SMT	DESCRIPTION
WR	0	4	24	16			Write strobe (active low)
TR	LED	Perfo	rmed exte	rnally			Data terminal ready
SD	LED			1			Transmit data
RD	LED			11			Receive data
CD	LED			2			Data carrier detect
HS	LED			B.3*			High speed indicator
MR	LED			B.2*			Modem ready/test in progress
AA	LED			B.1*			Auto answer indicator
ОН	LED			B.0*			Off hook indicator

NVRAM INTERFACE

NVRCE	0		14	NVRAM CE (active high)
TXD	I/O		10	NVRAM DI/DO
RXD	I		11	NVRAM SK

* Available with expanded I/O

DEVICE SET INTERCONNECT

			PIN	CONNECT	TION		
LABEL	I/O*	73M214	73D215	73D218	73D221 DIP	73D221 SMT	DESCRIPTION
VPP	1		1		1	2	+5V
INT	1		17				+5V
ĒĀ	-			31			+5V
EXADCC	I	19					0V
DACK	1		2				+5V
CLK	S	16	15				7.3728 MHz
RXINT	S		5	13			RX Interrupt
TXINT	S	21		12			TX Interrupt
RST	S		16				
FSK	S		4	7			
RD	S	3	25	17	22	25	
WR	S	4	24	16			

DEVICE SET INTERCONNECT (Continued)

			PIN				
LABEL	I/O*	73M214	73D215	73D218	73D221 DIP	73D221 SMT	DESCRIPTION
D0	I/O	5	6	39	11	13	Data Bus 0
D1	I/O	6	7	38	12	14	Data Bus 1
D2	I/O	7	8	37	13	15	Data Bus 2
D3	I/O	8	9	36	15	18	Data Bus 3
D4	I/O		10	35	16	19	Data Bus 4
D5	I/O		11	34	17	20	Data Bus 5
D6	1/0		12	33	18	21	Data Bus 6
D7	1/0		13	32	19	22	Data Bus 7
SIN	S	10	22				
SOUT	S	11	21				
SIRQ	S	9	23				
SCK	S	13	18				
SEN	S	12	19, 20				
A0	S				10	11	Address Bus 0
A1	S				9	10	Address Bus 1
A2	S				8	9	Address Bus 2
A3	S				7	8	Address Bus 3
A4	S				6	7	Address Bus 4
A5	S				5	6	Address Bus 5
A6	S				4	5	Address Bus 6
A7	S				3	4	Address Bus 7
A8 (AH0)	S		27	21	25	29	Address Bus 8
A9 (AH1)	S				24	28	Address Bus 9
A10(AH2)	S				21	24	Address Bus 10
A11 (AH3)	S				23	27	Address Bus 11
A12 (AH4)	S				2	3	Address Bus 12
A13 (AH5)	S				26	30	Address Bus 13
A14 (AH6)	S			7	27	31	Address Bus 14
A15 (AH7)	S						Address Bus 15
CE	I				20	23	GND

* "S" Refers to system interconnect.

COB- A carriage return of varices r - terminates command line; by into answer mode; attempt to go to on-line state on preceded by AT nor followed by COB- B Ed2 180.0 Hz guard tone A go into answer mode; attempt to go to on-line state on preceded by AT nor followed by COB- B Ed2 180.0 Hz guard tone BJ select Bell 2124 standard for 1200 bit's communication mode EM2 synchronous mode 1 BJ go into answer mode; attempt to go to on-line state, originate mode SM2 synchronous mode 2 BJ dial atored number in location "n" (0-3) EM2 synchronous mode 3 BJ go of hock (parge auxiliary relay go on hock (parge auxiliary relay go on hock (parge auxiliary relay initiate remote digital loopback ST3 initiate local aniego (popback BJ go of hock (parge auxiliary relay go to no-line state and initiate equalizer retrain at 2400 bit's modem does not return result codes ST3 initiate local aniego (popback BJ speaker oil mt speaker oil mt SZ2 receive carrier provides transmit clock signal BJ speaker volume SZ2 receive carrier provides transmit clock signal BJ speaker volume SZ2 receive carrier provides transmit clock signal SZ modem does not return resuit codes SZ receive car	comma	nd Description	Comma	and Description
A go into answer mode; attempt to po to on-line state A//r re-vector pervisor communitions: B//r select CGTT V.22 standard for 1200 bit/s communication B//r select CGTT V.22 standard for 1200 bit/s communication D//r select CGTT V.22 standard for 1200 bit/s communication D//r select CGTT V.22 standard for 1200 bit/s communication D//r select CGTT V.22 standard for 1200 bit/s communication D//r dial stored number in location "1" (0-3) D//r po of hook; parate suxiliary relay F//r po of hook; parate suxiliary relay D//r go of hook; parate suxiliary relay D//r go into hook; parate suxiliary relay D//r go of hook; parate suxiliary relay D//r go into hook; parate suxiliary relay D//r modium spasker volume Lo of L1 we supt we sub oto in marker BOM; return checksum B//r sinitate remote digital loopback with self test S//r save strable parameters of active configuration, user prolifes, and	AT	command prefix – precedes command line	&G1	550 Hz guard tone
A/ not precoded by AT not bilewed by GB. B0 select CCITT V.22 standard for 1200 bit/s communication B1 select Bull 2124 standard for 1200 bit/s communication B1 select Bull 2124 standard for 1200 bit/s communication B1 select Bull 2124 standard for 1200 bit/s communication B1 select Bull 2124 standard for 1200 bit/s communication B2 dial atored number in location "n" (0-3) B2 bit bit bit bit scall on primate last in progress at most one data analog topback B1 go on hook (nang up) B1 go of hook (corrate auxiliary relay B1 perform checksum on firmware ROM; return checksum B2 numotim seaser volume B2 says back rot B3 high speaker of thit B3 speaker on unlit carrier datacted B4 speaker on unlit carrier datacted B3 speaker on unlit carrier datacted, except during dialing <	<cr></cr>	carriage return character - terminates command line	&G2	1800 Hz guard tone
a spect CCTT V2 standard for 1200 bits communication B1 select Bull 212A standard for 1200 bits communication B1 synchronous mode 1 B1 synchronous mode 2 B2 all stored number in location "n" (0-3) B2 Disable character echo in command state E1 Enable character echo in command state E1 Enable character echo in command state E1 perform checksum on firmware ROM; return checksum perform checksum on firmware ROM; return checksum firm initiate local analog loopback with self test E1 medium speaker volume E1 medium speaker volume E2 medium speaker volume E3 high speaker volume E4 Speaker oill E4 speaker oill E4 speaker oill E3 high speaker volume E4 modem returns result codes E4 speaker oill carrier detected E4 speaker oill carrier detected, except during dialing E4 speaker oill carrier detected, except during dialing E5 go to on-line state E4 modim returns represented by result code	A	go into answer mode; attempt to go to on-line state	&J0	RJ-11/RJ-41S/RJ-45S telco jack
B0 select CCITT V2 zinandard for 1200 bits communication B1 select Bell 212A standard for 1200 bits communication B1 select Bell 212A standard for 1200 bits communication B1 select Bell 212A standard for 1200 bits communication B2 dial number that follows: statemy to go to on-line state, origination B2 dial stored number in location "n" (0-3) B2 Disable character e-choin command state E7 E7.abbe character e-choin command state H0 go of hook (ingu up) H1 go of hook (coparta auxillary relay H0 returns OK or ERROR result codes L2 medium speaker volume L3 high speaker volume L4 Speaker on until carrier detected Speaker on until carrier detected speaker on until carrier detected Sr. store phone number are follows on firm seell codes G0 go to on-line state and initiate equalizer retrain at 2400 bits G0 go to on-line state and initiate equalizer retrain at 2400 bits G0 go to on-line state and initiate equalizer retrain at 2400 bits G0 go to on-line state and initiate equalizer retrain at 2400 bits G0 go to on-li	A/	re-execute previous command line;	8J1	RJ-12/RJ-13 telco jack
Bit select Bill 2724 standard for 1200 bit/s communication Synchronous mode 2 D dia number that follows; attempt to go to on-line state, originat mode Synchronous mode 2 Bit synchronous mode 2 Bit synchronous mode 3 DS-m dia stored number in location "n" (0-3) DS fill stored number in location "n" (0-3) DS go on hook (hang up) H1 go of hook; operate auxiliary relay D request product indentification code In perform checksum on firmware ROM; return checksum 873 I2 perform checksum on firmware ROM; return checksum I2 medium speaker volume L2 medium speaker volume L3 high speaker volume L4 medium speaker volume L3 high speaker on until carrier detected, sccept during dialing Og to on-line state on until carrier detected, sccept during dialing Og to on-line state ond initiate equalizer retrain at 2400 bit/s M2 speaker on until carrier detected, sccept during dialing Og to on-line state ond initiate equalizer retrain at 2400 bit/s M2 speaker on until carrier detected, sccept during dialing M3		not preceded by AT nor followed by <cr></cr>	&M0	asynchronous mode
D dial number that follows; attempt to go to on-line state, originate mode DSahe dial stored number in location "n" (0-3) DSahe biasble character echo in command state E7 Enable character echo in command state H0 go of hook (ingu up) H1 go of hook (ingu up) H1 go of hook (ingu up) H1 go of hook (ingu up) H2 perform checksum on firmware ROM; return checksum H2 perform checksum on firmware ROM; return checksum H2 perform checksum on firmware ROM; return checksum L3 high speaker volume M2 speaker an until carrier detected, except during dialing O0 go to n-line state O1 po to n-line state O2 po to n-line state O3 po to n-line state <td>B0</td> <td>select CCITT V.22 standard for 1200 bit/s communication</td> <td>&M1</td> <td>-</td>	B0	select CCITT V.22 standard for 1200 bit/s communication	&M1	-
mode and space DSa-n dial stored number in location "n" (0-3) terminate test in progress DSa-n dial stored number in location "n" (0-3) terminate test in progress DSa-n dial store character echo in command state ST Product indentification code initiate local analog loopback with self test Product indentification code St In perform checksum on firmware ROM; return checksum ST Initiate local analog loopback with self test ST Initiate local analog loopback with self test ST Initiate renue digital loopback ST Initiate renue digital loopback ST Initiate renue digital loopback ST Iso product indentification code ST Iso product models from speaker volume ST Loor L1 Iwe speaker ourume Step after an unit carrier detacted, except during dialing Step after an unit carrier detacted, except during dialing Of go to n-line state ST Step after to register "1" Step after an unite codes Sr.en set register '1" to value "1" Stere pathe f	B1	select Bell 212A standard for 1200 bit/s communication	&M2	synchronous mode 2
DS-n dial stored number in location "n" (0-3) E0 Disable character echo in command state E0 Disable character echo in command state E1 Enable character echo in command state H0 go of hook (hang up) In of hok (hang up) Initiate local inalog loopback 10 request product indentification code 11 perform checksum on firmware RDM; return checksum 12 perform checksum on firmware RDM; return checksum 12 perform checksum on firmware RDM; return checksum 12 perform checksum on firmware RDM; return checksum 13 high speaker volume 14 speaker off 15 speaker on until carrier detected 16 speaker on until carrier detected, except during dialing 17 go to on-line state 10 modem neturns result codes 16 modem returns result codes 17 orialiste represented by result codes 0-5, 10-12 18 enable features represented by result codes 0-5, 10-12 10 modem dota carrier 17 display result codes 0-5, 10-12 18 enable features represented by re	D		&M3	synchronous mode 3
E0 Disable character echo in command state E7 Enable character echo in command state E7 Enable character echo in command state E7 Brable character echor in enote modem for RDL E8 Tri initiate remote digital loopback E7 Brable character echor in enote modem for RDL E8 Tri initiate remote digital copback with self test E7 Initiate local analigita loopback E8 Tri initiate coal analigita copback with self test E7 Indiate coal analigita loopback <tr< td=""><td></td><td></td><td>&T0</td><td>terminate test in progress</td></tr<>			&T0	terminate test in progress
E1 Enable character scholin command state H0 go of hock (hang up) H0 go of hock (pareta auxiliary relay H0 request product indentification code H1 perform checksum on firmware ROM; return checksum H2 perform checksum on firmware ROM; return checksum H2 perform checksum on firmware ROM; return checksum L2 medium speaker volume L3 high speaker volume L4 speaker volume L3 high speaker volume L4 speaker volume L4 speaker volume L4 speaker volume Speaker volume &X0 M4 speaker volume result codes Go to on-line state and initate equalizer retrain at 2400 bit/s Command des nor returm result codes Sr. set register "1" Y1 display result codes form (codes 0-4 X2 enable features represented by result codes 0-5, 10-12 X3		• •	&T1	initiate local analog loopback
H0 ge on hook (hang up) H1 ge of hook; operate auxiliary relay H2 perform checksum on firmware ROM; return checksum H2 perform checksum on firmware ROM; return checksum H2 medium spacker volume L3 high speaker volume L3 high speaker volume M3 speaker on unil carrier detected M2 speaker on unil carrier detected, except during dialing Q0 go to n-line state and initate equalizer retrain at 2400 bit/s Q1 modem does not return result codes G1 modem does not return result codes G2 modem does not return result codes G2 modem does not return result codes G3 enable features represented by result codes 0-5, 10-12 K4 maine returnes reproduct index of a carrier K4 actar reminal mode K4 actar reminal mode K5 set pointer to register '' K6 modem returne resented by resuit codes 0-5, 10-12 <			&T3	initiate local digital loopback
Attraction Attraction Attraction A			&T4	
10 request product indentification code 11 perform checksum on firmware ROM; return checksum 12 perform checksum on firmware ROM; return checksum 13 perform checksum on firmware ROM; return checksum 14 medium speaker volume 15 bigh speaker volume 16 speaker volume 17 speaker volume 18 speaker volume 19 speaker volume 10 speaker or until carrier detected 11 speaker or until carrier detected, except during dialing 10 go to on-line state 10 modem neturns result codes 11 go to on-line state 11 go to on-line state 11 go to on-line state 12 modem neturns result codes 13 speaker on unil carrier detected, except during dialing 14 go to on-line state 157 display result codes in varbose form (as words) 157 display result codes 0-4, 10-12 16 enable features represented by result codes 0-5, 10-12 17 disable long space disconnect 17			&T5	deny request from remote modem for RDL
00 request product indentification code 10 perform checksum on firmware ROM; returns OK or ERROR result codes 12 perform checksum on firmware ROM; returns OK or ERROR result codes 12 medium speaker volume 12 medium speaker volume 13 high speaker volume 14 speaker off 15 speaker off 16 speaker off 17 initiate coal analog loopback with self test 18 initiate coal analog loopback with self test 12 medium speaker volume 13 high speaker volume 14 speaker off 15 speaker on until carrier detected, except during dialing 160 go to on-line state 17 initiate coal analog loopback with self test 18 view active configuration, user prolifes, and stored numbers 18 save storable parameters of active configuration 18 speaker off 18 speaker off 19 to on-line state 19 to on-line state 20 modem noturns result codes 57: display result			&T6	initiate remote digital loopback
11 perform checksum on firmware ROM; return checksum returns CK or ERROR result codes 12 perform checksum on firmware ROM; return checksum returns CK or ERROR result codes 12 modium speaker volume 13 high speaker volume 14 speaker volume 15 high speaker volume 16 speaker on until carrier detected 17 speaker on until carrier detected, except during dialing 16 go to on-line state 17 go to on-line state 18 go to on-line state 19 modem does not return result codes 20 modem does not return result codes 21 modem does not return result codes of speaker of until carrier form 21 modem does not return result codes 0-4 21 enable features represented by result codes 0-5, 7, 10-12 22 enable features represented by result codes 0-5, 7, 10-12 24 enable features represented by result codes 0-5, 7, 10-12 24 modem port flow control 24 modem port flow control 24 modem port flow control 25 reset modem 26 samole features represen			&T7	initiate remote digital loopback with self test
I2 perform checksum on firmware ROM; returns OK or ERROR result codes L0 or L1 low speaker volume L2 medium speaker volume L3 high speaker volume M0 speaker off M1 speaker on until carrier detected M2 speaker on until carrier detected, except during dialing Q0 go to on-line state Q1 go to on-line state Q1 modem returns result codes Q1 modem teturns result codes Q1 modem otes not return result codes Q1 modem to register "1" Sr: sst pointer to register "1" Sr: display result codes in numeric form V1 display result codes 0.5, 10-12 V2 enable features represented by result codes 0.5, 10-12 V2 enable features represented by result codes 0.5, 10-12 V2 enable features represented by result codes 0.5, 10-12 V3 enable features represented by result codes 0.5, 10-12 V4 enable features represented by result codes 0.5, 10-12 V3 enable features represented by result codes 0.5, 10-12 V4 enable features represented by resul				
BW0 save storable parameters of active configuration L2 medium speaker volume L3 high speaker volume L3 high speaker volume K40 speaker volume K50 speaker off K1 speaker off K1 speaker on until carrier detected K5 speaker on until carrier detected, except during dialing Q0 go to on-line state and initiate equalizer retrain at 2400 bit/s Q1 modem dees not return result codes S7 display result codes S7 stopilar row register "r" S7 display result codes in numeric form S7 display result codes in numeric form S8 orginate features represented by result codes 0-5, 10-12 S8 enable features represented by result codes 0-7, 10-12 S8 enable features represented by result codes 0-7, 10-12 S9 reset modem 4C0 assume data carrier always present S7 rest modem S9 reset modem S9 reset modem S9 reset modem S9 reset modem <	12			
LD of L1 indiversity volume L2 medium speaker volume L3 high speaker volume L3 high speaker volume M0 speaker of if M1 speaker always on speaker always on 8X2 go to on-line state on-line state and initiate equalizer retrain at 2400 bit/s C0 modem returns result codes Q1 modem ore so tretum result codes Q1 modem ore on line state Q1 modem ore on line state Q1 modem ore on line state Q1 modem ore returns result codes Sr=n set register "r" Sr=n set register or to value "n" Sr display result codes in numeric form V1 display result codes form (as words) X0 enable features represented by result codes 0-5, 10-12 X3 enable features represented by result codes 0-5, 7, 10-12 Y0 display page disconnect Y1 ersable features represented by result codes 0-5, 7, 10-12 Y0 displa to assume command state when an on-to-off transition of DTR occurs X01 garameter (0, 1, etc.) is not				
L2 meaning speaker volume 13 high speaker volume M0 speaker off M1 speaker on until carrier detected M2 speaker on until carrier detected, except during dialing C0 go to on-line state C1 go to on-line state and initiate equalizer retrain at 2400 bit/s C0 modem returns result codes C1 go to on-line state and initiate equalizer retrain at 2400 bit/s C0 modem does not return result codes Sr set pointer to register "r" Sr set pointer to register "r" Sr sterigister "r" to value "n" Sr set pointer to register "r" V1 display result codes in numeric form V1 display result codes 0-5, 10-12 X2 enable features represented by result codes 0-5, 10-12 X3 enable features represented by result codes 0-5, 10-12 X4 enable features represented by result codes 0-5, 10-12 X4 enable features represented by result codes 0-5, 10-12 Y0 disable long space disconnect Y1 enable features represented by result codes 0-5, 10-12 Y0 disable		•		ů ů
L3 nigh speaker volume M3 speaker on until carrier detected M1 speaker on until carrier detected M3 speaker on until carrier detected, except during dialing Og ob on-line state on-line state O1 go to on-line state equalizer retrain at 2400 bit/s O2 modem dees not return result codes Sr set pointer to register "r" Sr=n steregister "r" to value "n" Sr set pointer to register "r" Sr set pointer to register "r" V1 display result codes in numeric form V1 display result codes 0-5, 10-12 V3 enable features represented by result codes 0-5, 10-12 V3 enable features represented by result codes 0-5, 10-12 V3 enable features represented by result codes 0-5, 10-12 V4 display call codes 0-5, 10-12 V3 enable features represented by result codes 0-5, 10-12 V4 enable features represented by result codes 0-7, 10-12 V4 enable features represented by result codes 0-7, 10-12 V4 enable features represented by result codes 0-7, 10-12 V4 enable features represented by result codes		•		
Model and the speaker on unil carrier detected Mission of Unit carrier detected Mission of DTR occurs Mission of				
Speaker always on Mile Speaker always on Mile Speaker always on Mile Speaker on until carrier detected, except during dialing Operating Go to on-line state Off go to on-line state MNP COMMANDS Off go to on-line state and initiate equalizer retrain at 2400 bit/s MNP COMMANDS Off modem neturns result codes Command Description Stren set pointer to register "r" %A Auto-Reliable failback character Stren set pointer to register "r" %A Auto-Reliable failback character V0 display result codes in numeric form %A Auto-Reliable failback character V1 display result codes in verbose form (as words) V maximum block size V1 display result codes 0-5, 10-12 W operating mode V2 enable features represented by result codes 0-5, 7, 10-12 W operating mode V2 disable long space disconnect W accept Reliable Link V V1 enable features represented yresent X XON/XOFF pass-through V1 enable long space disconnect X <td></td> <td>-</td> <td></td> <td></td>		-		
M3 speaker on until carrier detected, except during dialing M3 speaker on until carrier detected, except during dialing M3 speaker on until carrier detected, except during dialing M3 go to on-line state M3 speaker on until carrier detected, except during dialing M3 go to on-line state MINP COMIMANDS M3 speaker on until carrier detected, except during dialing Minp Commentation M3 speaker on until carrier detected, except during dialing Minp Commentation M3 speaker on until carrier detected, except during dialing Minp Commentation M3 speaker on until carrier detures represented by result codes Minp Commentation M4 display result codes in numeric form %A Auto-Reliable failback character M4 enable features represented by result codes 0-4 Minp Commentation Minp Commentation M4 enable features represented by result codes 0-5, 7, 10-12 Minp Commentation Minp Commentation M4 enable features represented by result codes 0-5, 7, 10-12 Minp Commentation Minp Commentation M4 enable features represented by result codes 0-7, 10-12 Minp Commentation Minp Commentatis <tr< td=""><td></td><td>•</td><td>ULII-A</td><td></td></tr<>		•	ULII-A	
Q0 go to on-line state Q1 go to on-line state and initiate equalizer retrain at 2400 bit/s Q0 modem returns result codes Q1 modem does not return result codes Q2 set register "r" Sr=n set register "r" Q0 display result codes in numeric form Y1 display result codes 0-4 X1 enable features represented by result codes 0-5, 10-12 X2 enable features represented by result codes 0-5, 10-12 Y2 enable features represented by result codes 0-5, 7, 10-12 Y4 enable features represented by result codes 0-5, 7, 10-12 Y4 enable foatures represented by result codes 0-5, 7, 10-12 Y4 enable foatures represented by result codes 0-7, 10-12 Y6 assume data carrier always present X20 reset modem X20 reset modem X20 ignore DTR signal XD1 ignore DTR signal				
O1 go to on-line state and initiate equalizer retrain at 2400 bit/s O2 modem returns result codes O3 modem does not return result codes Sr set pointer to register "r" Sr set register "r" to value "n" Sr set register "r" to value "n" Sr set register "r" to value "n" Sr display result codes in numeric form V0 display result codes in verbces form (as words) X0 enable features represented by result codes 0-4 X1 enable features represented by result codes 0-5, 10-12 X2 enable features represented by result codes 0-5, 7, 10-12 X4 enable features represented by result codes 0-7, 10-12 X3 enable features represented by result codes 0-7, 10-12 Y0 display code disconnect Y1 enable foat carrier always present &CO assume command state when an on-to-off transition of DTR occurs &D3 reset when an on-to-off transition of DTR occurs Course				
Q0modem returns result codesQ1modem does not return result codesQ1modem does not return result codesSrset pointer to register "r"Sr=nset register "r" to value "n"Sr?display value stored in register "r"V0display result codes in numeric formV1display result codes in verbose form (as words)X0enable features represented by result codes 0-4X1enable features represented by result codes 0-5, 10-12X2enable features represented by result codes 0-5, 10-12X3enable features represented by result codes 0-5, 10-12X4enable foatures represented by result codes 0-5, 10-12Y0disable long space disconnectY1enable foatures represented by result codes 0-7, 10-12Y0disable long space disconnectY1enable foatures represented by result codes 0-7, 10-12Y0disable long space disconnectY1enable foat carrierX4maximum block sizeX60assume command state when an on-to-off transition of DTR occurs8D2hang up and assume command state when an on-to-off transition of DTR occurs8D3reset when an on-to-off transition of DTR occurs		-		
Q1modem does not return result codesSrset pointer to register "r"Sr=nset register "r" to value "n"Sr=nset register "r" to value "n"Srdisplay value stored in register "r"V0display result codes in numeric formV1display result codes in numeric formV1display result codes in verbose form (as words)X0enable features represented by result codes 0-4X1enable features represented by result codes 0-5, 10-12X2enable features represented by result codes 0-5, 10-12X3enable features represented by result codes 0-5, 7, 10-12X4enable foatures represented by result codes 0-7, 10-12Y0disable long space disconnectY1enable long space disconnectY1enable long space disconnectY1enable foat carrier always present&COassume data carrier always present&D0ignore DTR signal&D1assume command state when an on-to-off transition of DTR occurs&D3reset when an on-to-off transition of DTR occurs		· ·		
C1 inducting to solut codes Sr set pointer to register "r" Sr set register "r" to value "n" Sr? display value stored in register "r" V0 display result codes in numeric form V1 display result codes in verbose form (as words) X0 enable features represented by result codes 0-4 X1 enable features represented by result codes 0-5, 10-12 X2 enable features represented by result codes 0-6, 10-12 X3 enable features represented by result codes 0-7, 10-12 X4 enable features represented by result codes 0-7, 10-12 X4 enable features represented by result codes 0-7, 10-12 X4 enable features represented by result codes 0-7, 10-12 X4 enable features represented by result codes 0-7, 10-12 X4 enable features represented by result codes 0-7, 10-12 Y0 disable long space disconnect Y1 enable long space disconnect Y1 enable features represented Y1 enable features represented Y1 enable long space disconnect Y2 reset modem &CO assume command state when an on-to-off transition of D			Comma	and Description
Sr=nset register "" to value "n""%AAuto-Heliable faiblack characterSr:nset register "" to value "n"%Ccompression controlSr:ndisplay value stored in register "r"%Ccompression controlV0display result codes in numeric form%Ccompression controlV1display result codes in verbose form (as words)%Ccompression controlX0enable features represented by result codes 0-4%Ccompression controlX1enable features represented by result codes 0-5, 10-12%Ccompression controlX2enable features represented by result codes 0-5, 7, 10-12%Coperating modeX3enable features represented by result codes 0-5, 7, 10-12%Coperating modeX4enable features represented by result codes 0-5, 7, 10-12%Coperating modeX4enable features represented by result codes 0-7, 10-12%Cflow controlX4enable features represented by result codes 0-7, 10-12%Cinactivity timerY0disable long space disconnect%Cassume data carrier always present%KX1track presence of data carrier%KXON/XOFF pass-throughX6C1track presence of data carrier%K%K&D2hang up and assume command state when an on-to-off transition of DTR occurs%C&D3reset when an on-to-off transition of DTR occurs%C&D3reset when an on-to-off transition of DTR occurs%C				
Sr?display value stored in register "r"V/2Compression controlV0display result codes in numeric formW/2maximum block sizeV1display result codes in verbose form (as words)Urate adjustX0enable features represented by result codes 0-4Wbreak controlX1enable features represented by result codes 0-5, 10-12Woperating modeX2enable features represented by result codes 0-6, 10-12VOoriginate Reliable LinkX3enable features represented by result codes 0-5, 7, 10-12Woperating modeX4enable features represented by result codes 0-5, 7, 10-12VOoriginate Reliable LinkX4enable features represented by result codes 0-7, 10-12VOoriginate Reliable LinkX4enable features represented by result codes 0-7, 10-12VIaccept Reliable LinkY0disable long space disconnectVVresult code formY1enable long space disconnectVVresult code formY1enable features representedVresult code formY2reset modemWXON/XOFF pass-through&C0assume command state when an on-to-off transition of DTR occursVswitch to Normal mode&D3reset when an on-to-off transition of DTR occursNote:Italicized parameters indicate default settings. parameter (0, 1, etc.) is not specified, the moc assumes the 0 narameter			%A	Auto-Reliable failback character
V0display result codes in numeric formV4maximum block sizeV1display result codes in verbose form (as words)V3enable features represented by result codes 0-4V4X1enable features represented by result codes 0-5, 10-12V4modem port flow controlX2enable features represented by result codes 0-5, 10-12V4break controlX3enable features represented by result codes 0-5, 7, 10-12V4operating modeX4enable features represented by result codes 0-5, 7, 10-12V0originate Reliable LinkX4enable features represented by result codes 0-7, 10-12V0originate Reliable LinkY0disable long space disconnectV1accept Reliable LinkY1enable long space disconnectV4result code formY1enable long space disconnectV4versult code formY1enable long space disconnectV4result code formY1enable long space disconnectV4versult code formY1enable long space disconnectV4versult code formY2reset modemVXXON/XOFF pass-through&C0assume command state when an on-to-off transition of DTR occursV4&D2hang up and assume command state when an on-to-off transition of DTR occursV6&D3reset when an on-to-off transition of DTR occursV6		-	%C	compression control
V1display result codes in verbose form (as words)VIrate adjustX0enable features represented by result codes 0-4VIrate adjustX1enable features represented by result codes 0-5, 10-12VIoperating modeX2enable features represented by result codes 0-6, 10-12VIoperating modeX3enable features represented by result codes 0-5, 7, 10-12VIoperating modeX4enable features represented by result codes 0-7, 10-12VIoperating modeY0disable long space disconnectVIaccept Reliable LinkY1enable long space disconnectVIaccept Reliable LinkY1enable long space disconnectVIresult code formY1enable long space disconnectVIresult code formY1enable long space disconnectVIresult code formY1enable long space disconnectVIresult code formY2reset modemVIswitch to Reliable LinkY1enable foatures corrier always presentVIswitch to Reliable mode&C0assume command state when an on-to-off transition of DTR occursVIswitch to Normal mode&D2hang up and assume command state when an on-to-off transition of DTR occursNote:Italicized parameters indicate default settings. parameter (0, 1, etc.) is not specified, the mod assumes the 0 narameter			A	maximum block size
X0enable features represented by result codes 0-4Vbreak controlX1enable features represented by result codes 0-5, 10-12Voperating modeX2enable features represented by result codes 0-6, 10-12Voperating modeX3enable features represented by result codes 0-5, 7, 10-12Voperating modeX4enable features represented by result codes 0-5, 7, 10-12VQflow controlX4enable features represented by result codes 0-7, 10-12VVY0disable long space disconnectVvY1enable long space disconnectVvY1enable long space disconnectVvY0reset modemXXON/XOFF pass-throughX60assume data carrier always presentVswitch to Reliable modeXDignore DTR signalVswitch to Normal modeXD1assume command state when an on-to-off transition of DTR occursNote:Italicized parameters indicate default settings. parameter (0, 1, etc.) is not specified, the mode assumes the 0 narameter			١G	modem port flow control
X0 enable features represented by result codes 0-4 VK break control X1 enable features represented by result codes 0-5, 10-12 VK operating mode X2 enable features represented by result codes 0-5, 10-12 VK operating mode X3 enable features represented by result codes 0-5, 7, 10-12 VC originate Reliable Link X4 enable features represented by result codes 0-5, 7, 10-12 VC flow control X4 enable features represented by result codes 0-7, 10-12 VC flow control Y1 enable long space disconnect VC reset modem Y1 enable long space disconnect VV result code form X2 reset modem VX XON/XOFF pass-through &C0 assume command state when an on-to-off VY switch to Reliable mode &Z1 transition of DTR occurs VX XON/XOFF pass-through &D1 assume command state when an on-to-off VX switch to Normal mode &D2 hang up and assume command state when an on-to-off VX Note: Italicized parameters indicate default settings. withor Normal mode VX VX			U U	rate adjust
X2 enable features represented by result codes 0-6, 10-12 Vi operating mode X3 enable features represented by result codes 0-5, 7, 10-12 Vi originate Reliable Link X4 enable features represented by result codes 0-7, 10-12 Vi flow control X4 enable features represented by result codes 0-7, 10-12 Vi flow control X4 enable features represented by result codes 0-7, 10-12 Vi flow control Y0 disable long space disconnect Vi accept Reliable Link Y1 enable features represented by result codes 0-7, 10-12 Vi inactivity timer Z0 reset modem Vi result code form Vi &C0 assume data carrier Vi switch to Reliable Link &C1 track presence of data carrier Vi switch to Reliable mode &D0 ignore DTR signal Vi switch to Normal mode &D1 assume command state when an on-to-off Vi switch to Normal mode &D2 hang up and assume command state when an on-to-off transition of DTR occurs Note: Italicized parameters indicate default settings. &D3 reset when an on-			к	•
X2 enable features represented by result codes 0-6, 10-12 VO originate Reliable Link X3 enable features represented by result codes 0-5, 7, 10-12 VO flow control X4 enable features represented by result codes 0-7, 10-12 VO flow control X4 enable features represented by result codes 0-7, 10-12 VC flow control X4 enable long space disconnect VC inactivity timer Y0 disable long space disconnect VC accept Reliable Link Y1 enable features represented by resent VC wresult code form X60 assume data carrier always present VC XON/XOFF pass-through &C1 track presence of data carrier V switch to Reliable mode &D0 ignore DTR signal VZ switch to Normal mode &D1 assume command state when an on-to-off transition of DTR occurs Note: Italicized parameters indicate default settings. &D3 reset when an on-to-off transition of DTR occurs parameter (0, 1, etc.) is not specified, the mode assumes the 0 narameter			W	
X3 enable features represented by result codes 0-5, 7, 10-12 VQ flow control X4 enable features represented by result codes 0-7, 10-12 VQ flow control Y0 disable long space disconnect VI inactivity timer Y1 enable long space disconnect VI accept Reliable Link Y1 enable long space disconnect VI result code form Z0 reset modem VX XON/XOFF pass-through &C0 assume data carrier always present VX XON/XOFF pass-through &C1 track presence of data carrier V2 switch to Reliable mode &D0 ignore DTR signal V2 switch to Normal mode &D1 assume command state when an on-to-off transition of DTR occurs Vote: Italicized parameters indicate default settings. parameter (0, 1, etc.) is not specified, the mode assumes the 0 narameter &D3 reset when an on-to-off transition of DTR occurs assumes the 0 narameter		enable features represented by result codes 0-6, 10-12		
X4 enable features represented by result codes 0-7, 10-12 VT inactivity timer Y0 disable long space disconnect VU accept Reliable Link Y1 enable long space disconnect VV result code form Z0 reset modem VX XON/XOFF pass-through &C0 assume data carrier always present VX XON/XOFF pass-through &C1 track presence of data carrier VY switch to Reliable mode &D0 ignore DTR signal VZ switch to Normal mode &D1 assume command state when an on-to-off transition of DTR occurs Note: Italicized parameters indicate default settings. parameter (0, 1, etc.) is not specified, the mode assumes the 0 parameter &D3 reset when an on-to-off transition of DTR occurs assume stue to 0 parameter		· · · · · · · · · · · · · · · · · · ·		-
Y0 disable long space disconnect U accept Reliable Link Y1 enable long space disconnect W result code form Z0 reset modem W result code form XC0 assume data carrier always present W XONXOFF pass-through &C0 assume data carrier W switch to Reliable mode &C1 track presence of data carrier V switch to Reliable mode &D0 ignore DTR signal V switch to Normal mode &D1 assume command state when an on-to-off transition of DTR occurs Vote: Italicized parameters indicate default settings. parameter (0, 1, etc.) is not specified, the mode &D3 reset when an on-to-off transition of DTR occurs assumes the 0 narameter		enable features represented by result codes 0-7, 10-12		
Y1 enable long space disconnect V result code lorm Z0 reset modem V result code form Z0 assume data carrier always present V XON/XOFF pass-through &C1 track presence of data carrier V switch to Reliable mode &D0 ignore DTR signal V switch to Normal mode &D1 assume command state when an on-to-off transition of DTR occurs Vote: Italicized parameters indicate default settings. parameter (0, 1, etc.) is not specified, the mode assumes the 0 narameter &D3 reset when an on-to-off transition of DTR occurs Source set to 0 narameter		disable long space disconnect		-
Z0 reset modem X XON/XOFF pass-through &CO assume data carrier always present Y switch to Reliable mode &CI track presence of data carrier Y switch to Reliable mode &DO ignore DTR signal Y switch to Normal mode &D1 assume command state when an on-to-off transition of DTR occurs Y switch to Normal mode &D2 hang up and assume command state when an on-to-off transition of DTR occurs Note: Italicized parameters indicate default settings. parameter (0, 1, etc.) is not specified, the mode assumes the 0 narameter	Y1	enable long space disconnect		•
&C0 assume data carrier always present &C1 track presence of data carrier &D0 ignore DTR signal &D1 assume command state when an on-to-off transition of DTR occurs &D2 hang up and assume command state when an on-to-off transition of DTR occurs &D3 reset when an on-to-off transition of DTR occurs				
AC1 track presence of data carrier &D0 ignore DTR signal &D1 assume command state when an on-to-off transition of DTR occurs &D2 hang up and assume command state when an on-to-off transition of DTR occurs &D3 reset when an on-to-off transition of DTR occurs				
 assume command state when an on-to-off transition of DTR occurs assume command state when an on-to-off transition of DTR occurs assume command state when an on-to-off transition of DTR occurs assume command state when an on-to-off transition of DTR occurs 		•		
transition of DTR occurs &D2 hang up and assume command state when an on-to-off transition of DTR occurs &D3 reset when an on-to-off transition of DTR occurs &D3 reset when an on-to-off transition of DTR occurs			۳ I	
transition of DTR occurs &D3 reset when an on-to-off transition of DTR occurs AD4 reset when an on-to-off transition of DTR occurs AD5 reset when an on-to-off transition of DTR occurs		transition of DTR occurs		
above reset when an on-to-off transition of DTR occurs assumes the O parameter		transition of DTR occurs	Note:	Italicized parameters indicate default settings. I parameter (0, 1, etc.) is not specified, the mode
&F recall factory settings as active configuration			1	
	&F	recall factory settings as active configuration		assumes me o parameter.

* Hayes Standard AT Command Set as implemented in Hayes Smartmodem 2400

Dial	strina	arguments:
Diui	oung	argumento.

, = delay

: = return to command

@ = silent answer s = dial stored number ! = flash W = wait for tone

R=reverse mode

2

If the NovRAM has not been initialized it may be necessary to Power down/Power up and type AT&F&W<cr> to properly initialize modem state.

TABLE 1: Result Codes

Xn	VERBOSE/TERSE RESULT CODES
X0	OK/0, CONNECT/1, RING/2, NO CARRIER/3, ERROR/4
X1	All functions of X0 + CONNECT (RATE)/1 = 300, 5 = 1200, 10 = 2400
X2	All functions of X1 + NO DIAL TONE/6
X3	All functions of X1 + BUSY/7
X4	All functions of X3 + NO DIAL TONE/6, NO ANSWER/8

TABLE 2: S Registers Supported

Sn	FUNCTION	UNITS	DEFAULT
S01	Answer on ring	No. of rings on which to answer	000²
S1	Ring counter	No. of rings accumulated	000
S2	Escape code	ASCII CHR Decimal 0-127	043
S3	Carriage return	ASCII CHR Decimal 0-127	013
S4	Line feed	ASCII CHR Decimal 0-127	010
S5	Back space	ASCII CHR	008
S6	Wait for dial tone	Seconds	002
S7	Wait for carrier	Seconds	030
S8	Pause time	Seconds	002
S9	Carrier valid	100 milliseconds (0.1 sec)	006
S10	Carrier drop out	100 milliseconds (0.1 sec)	014
S11	DTMF tone duration	1 millisecond (0.001 sec)	070
S12	Escape guard time	20 milliseconds (0.05 sec)	050
S13	Unused		N/A
*S141	Bit mapped register	Decimal 0-255	170

1 Stored in NVRAM with &W command.

2 Modem will not answer until value is changed to 1 or greater.

NUMBER	FUNCTION	UNITS	DEFAULT
S15	Unused		N/A
S16	Test register	Decimal #	000
S17	SSi Special test register	Decimal 0-255	096
S18	Test timer	Decimal 0-255	000
S19	Unused		N/A
S20	Unused		N/A
*S211	Bitmapped register	Decimal 0-255	000
*S221	Bitmapped register	Decimal 0-255	118
*S231	Bitmapped register	Decimal 0-255	007
S24	Unused		N/A
S251	DTR delay	10 milliseconds (0.01 sec)	005
S261	CTS delay	10 milliseconds (0.01 sec)	001
*S271	Bitmapped register	Decimal 0-255	064
S37	Desired Modem Line Speed	Decimal 0-3	000

TABLE 2: S Registers Supported (Continued)

* The bitmapped register functions are equivalent to normal "AT" command modem registers. They are not needed for evaluation of the 73D2407 capabilities.

Asynchronous character formats supported: [Number of data bits, parity (even/odd/none), number of stop bits]

1200/2400 bit/s: 7N2, 7E1, 7O1, 8N1

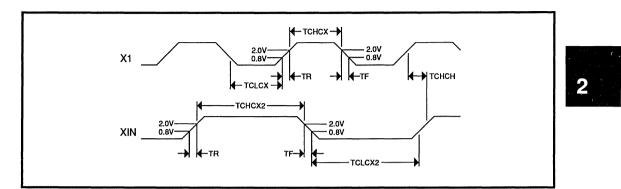
300 bit/s: 7N2, 7E1, 7O1, 8N1, 8E1, 8O1

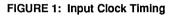
¹ Stored in NVRAM with &W command

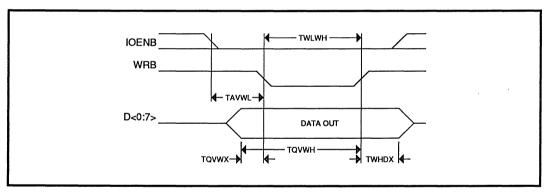
RECOMMENDED OPERATING CONDITIONS

PARAMETER	CONDITIONS	MIN	NOM	МАХ	UNITS
T _A , Ambient Temperature		0		70	°C
$V_{cc} \& V_{DD}$, Supply Voltage	73M214, 73D215, 73D218, 73D221	4.75		5.25	v
V _{ss} , Supply Voltage	73M214	-4.25		-5.25	v
V _{DD} , V _{ss} Bypass Capacitors		10+0.1			μF
CLK Load Capacitance				25	pF
Digital Load Capacitance				50	pF
TXA, MON Loading				See Note	
Input Clock Frequency (X1)			14.7456		MHz
Input Clock Variation (X1, XIN)	XIN must be X1 + 2	-0.01		0.01	%

Note: 10 k Ω in parallel with 50 pF




INPUT CLOCK TIMING (See Figure 1.)


PARAMETER	CONDITIONS	MIN	NOM	МАХ	UNITS
TCLCX		20			ns
TCLCX2		54		82	ns
TCHCX		20			ns
TCHCX2		54		82	ns
TR, TF				15	ns
тснсн		0		20	ns

INTERFACE TIMING

PARAMETER		CONDITIONS	MIN	NOM	МАХ	UNITS		
LED Write	LED Write Timing (See Figure 2.)							
TWLWH	WR pulse width		307			ns		
TAVWL	Address valid to WR low		141			ns		
TQVWH	Data valid to \overline{WR} high		370			ns		
τανωχ	Data valid to WR transition		27			ns		
TWHDX	Data hold after WR		86			ns		

DC ELECTRICAL CHARACTERISTICS

PARA	METER	CONDITIONS	MIN	NOM	MAX	UNITS
I _{DD}	Supply Current				130	mA
ا ss					25	mA
V _{IL}	Input Low Voltage		0		0.8	v
V _{IH}	Input High Voltage		2.0		VDD	v
I _H	Input High Current	Except \overline{CS} which has a pulldown of 20 k Ω			10	μA
I _{IL}	Input Low Current	Except TXCLKI, EXADCC which have pullups of 20 k Ω			-20	μA
	Digital Input Capacitance				10	pF
V _{он}	Output High Voltage	lout =4 mA	2.4			v
Vol	Output Low Voltage	lout = 1.6 mA			0.4	v
RXA	Input Resistance		100			kΩ
RXA	Input Capacitance				25	pF

TRANSMITTER SPECIFICATIONS

TRANSMITTER POWER

(Values given are measured at the line connection point and assume that the DAA shown in our application literature is used with a 600 Ω load.)

TRANSMITTER POWER	CONDITIONS	MIN	NOM	MAX	UNITS
QAM/DPSK Transmitter Power	With or without CCITT tones	-9.8		-8.2	dBm
CCITT Guard Tone	550	-14.8		-12.8	dBm
	1800	-16.0		-14.0	dBm
FSK Transmitter Power	103/V.21	-10.0		8.0	dBm
Answer Tone Power		-10.0		8.0	dBm
DTMF Transmitter Power	High Band Tones	-7.0		5.0	dBm
	Low Band Tones	-9.0		-7.0	dBm
	Twist	-3.0		-1.0	dB

TRANSMITTER FREQUENCY

(All tones are digitally derived from the clock input and have the input clock frequency tolerance.)

TRANSMITTER FREQUENCY		CONDITIC	ONS	MIN	NOM	MAX	UNITS
QAM/DPSK Carrier Frequencies		Originate	Originate		1200.0		Hz
		Answer			2400.0		Hz
FSK Tone Fre	quencies						
103	Originate	Space	1070		1066.7		Hz
		Mark	1270		1269.4		Hz
	Answer	Space	2025		2021.1		Hz
		Mark	2225		2226.1		Hz
V.21	Originate	Space	1180		1181.6		Hz
		Mark	980		978.3		Hz
	Answer	Space	Space 1850		1850.0		Hz
		Mark	1650		1651.6		Hz
Special Tone	Frequencies						
Answe	er Tone		2100		2104.1		Hz
CCIT	Guard Tones		550		556.5		Hz
· · · · · · · · · · · · · · · · · · ·			1800		1786.0		Hz
DTMF Dialing	Tone Frequencies						
Low G	iroup	Columns	697		698.2		Hz
			770		771.9		Hz
			852		853.3		Hz
			941		942.3		Hz
High (High Group		1209		1209.5		Hz
			1336		1335.7		Hz
			1477		1476.9		Hz
			1663		1634.0		Hz

TRANSMITTER DISTORTION

TRANSMITTER DISTORTION	CONDITIONS	MIN	NOM	МАХ	UNITS
QAM/DPSK Carrier Suppresion	Measured at TXA	35			dB
CCITT Guard Tone Distortion	800-1600 Hz band			-60	dB
	0-10 kHz band			-45	dB
Answer Tone Distortion	800-1600 Hz band			60	dB
	0-10 kHz band			-40	dB
FSK Output Bias Distortion	Transmit dotting 300 bit/s	6		6	%
FSK Opposite Band Distortion				60	dB
DTMF Tone Distortion	700-2900 Hz band			-29	dB

RECEIVER SPECIFICATIONS

PARAMETER	CONDITIONS	MIN	NOM	МАХ	UNITS
Carrier VCO					
Capture Range	Carrier offset	-10		10	Hz
Carrier Phase Jitter	50-65 Hz			30	Degrees
Data Clock Recovery Capture Range	From system clock + 24576 (600 Hz symbol clock)	025		+.025	%
Data Delay Time	RXA to RXD	30		75	ms
Retrain Request Threshold	If enabled	10-3		10-2	BER
Carrier Detect	•				
Threshold		-48		-43	dBm
Hysteresis		2			dB
Answer Tone Detect	2100/2225 Hz				
Threshold	•	48		-43	dBm
Hysteresis	. 1	2			dB
Call Progress Detect	350-650 Hz dual tone				
Threshold		-40		-30	dBm
Hysteresis		2			dB

PERFORMANCE DATA

(This performance data was taken using an AEA tester and the SSI 73D2404 MEU board.)

BER PERFORMANCE

(-20 dBm receive level, 10⁻⁵ BER)

PARAMETER	MINIMUM SNR REQUIRED
2400 bit/s Originate	16.5 dB SNR
2400 bit/s Answer	16.0 dB SNR
1200 bit/s Originate	9.0 dB SNR
1200 bit/s Answer	8.0 dB SNR
0-300 bit/s Originate	9.0 dB SNR
0-300 bit/s Answer	7.5 dB SNR

DYNAMIC RANGE

PARAMETI	ER	CONDITIONS	;	MIN	NOM	MAX	UNITS
2400 bit/s	Originate	10 ^{-₅} BER @	17dB SNR	-45		0	dBm
2400 bit/s	Answer	10 ^{-₅} BER @	17dB SNR	-45		0	dBm
1200 bit/s	Originate	10⁵ BER @	12dB SNR	-45		0	dBm
1200 bit/s	Answer	10⁵ BER @	12dB SNR	-45		0	dBm
0-300 bit/s	Originate	10⁵ BER @	12dB SNR	-45		0	dBm
0-300 bit/s	Answer	10 ^{-₅} BER @	12dB SNR	-45		0	dBm

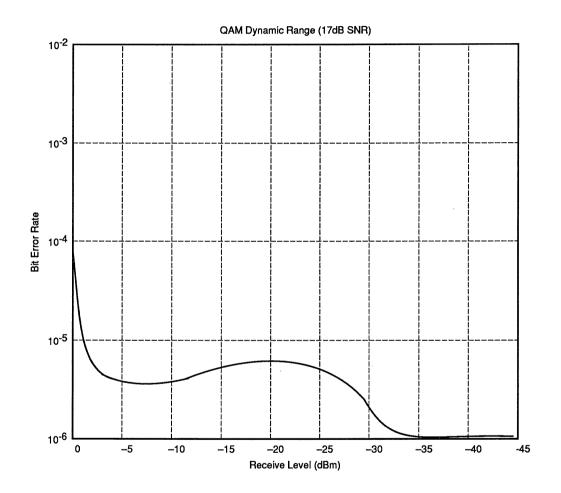


FIGURE 4: QAM Dynamic Range

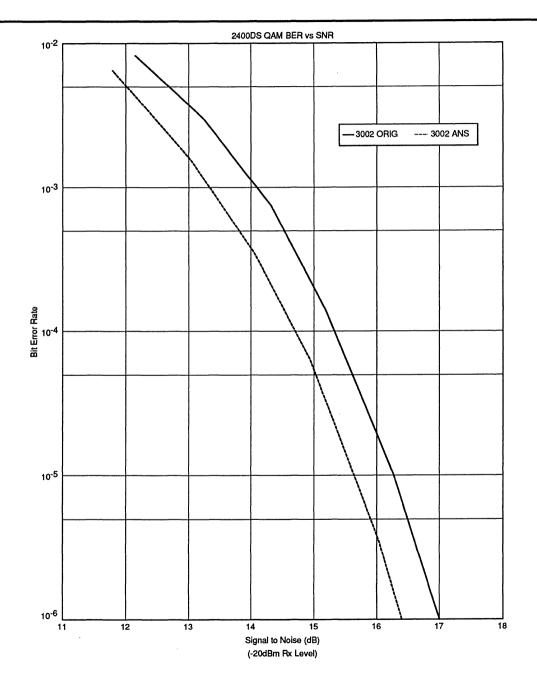


FIGURE 5: BER vs. SNR

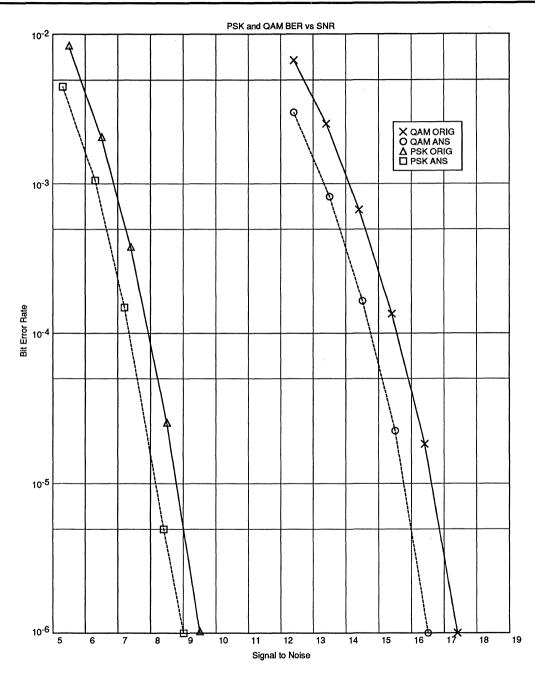
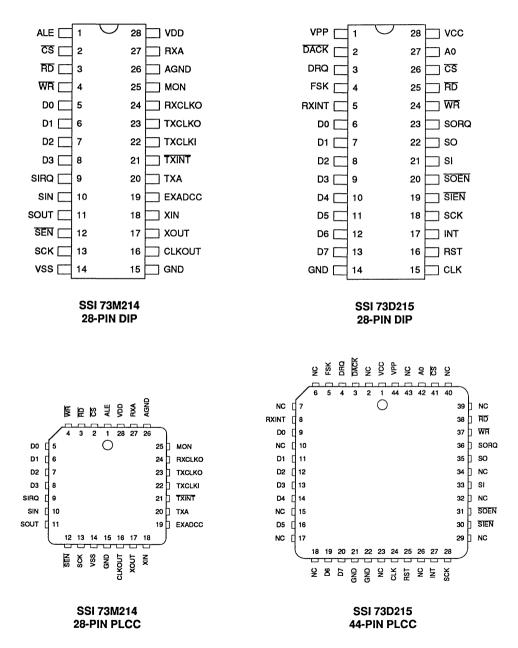
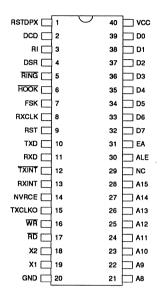
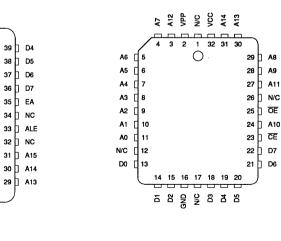
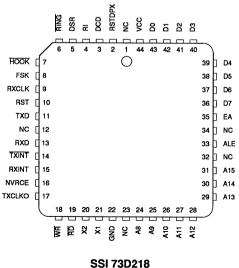




FIGURE 6: QAM and PSK BER vs. SNR with -20 dBm Receive Level

PACKAGE PIN DESIGNATIONS (TOP VIEW)

PACKAGE PIN DESIGNATIONS (TOP VIEW)




1 28 A12 [2 A14 27 A7 з 26 A13 A6 [____ 4 7 A8 25 A5 🕅 5 24 _____ A11 A4 [6 23 АЗ 🖂 7 22 A2 8 21 A10 A1 9 20 D7 A0 10 19 D0 🗌 11 18] D6 _] D2 12 17 D2 🔲 13 ___ D4 16 D3 ך GND 14 15

> SSI 73D221 28-PIN DIP

SSI 73D221

32-PIN PLCC

44-PIN PLCC

SSI 73D218

40-PIN DIP

Advance Information: Indicates a product still in the design cycle, and any specifications are based on design goals only. Do not use for final design.

No responsibility is assumed by Silicon Systems for use of this product nor for any infringements of patents and trademarks or other rights of third parties resulting from its use. No license is granted under any patents, patent rights or trademarks of Silicon Systems. Silicon Systems reserves the right to make changes in specifications at any time without notice. Accordingly, the reader is cautioned to verify that the data sheet is current before placing orders.

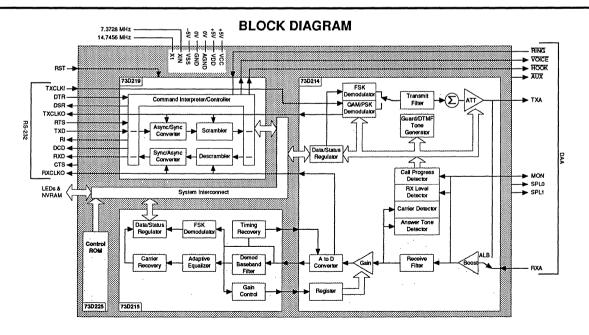
Copyright Notice:

The software contained within certain components of the SSI 73D2407 is copyright protected and may only be used in conjunction with the SSI 73D2407 product as supplied by Silicon Systems. No license to reproduce this software is granted or implied. This material may not be reproduced in any form without the express written permission of Silicon Systems, Inc. © Copyright 1990. All rights reserved.

Silicon Systems, Inc., 14351 Myford Road, Tustin, CA 92680 (714) 731-7110, FAX (714) 731-5457

Notes:

Preliminary Data


July, 1990

DESCRIPTION

The SSI 73D2417 is a 4-chip CMOS device set that combines 2400 bit/s smart modem functions, including MNP 5, with FAX transmit capability. The 73D2417 includes operating modes compatible with V.22bis, V.22, V.21, and Bell 212A/103 communications standards. The 73D2417 also complies with V.27 ter FAX standards for transmit only FAX operation at 4800 and 2400 bit/s. All user interface and modem protocol is included in the 73D2417 to provide a turnkey modem/ FAX design. In datacom mode, the 73D2417 command interpreter provides an AT command set compatible with industry standard software. MNP 5 capability can also be used during data communication to provide error free data transfer and compression, increasing the effective data throughput. In FAX mode, the 73D2417 provides a send only FAX function, operating at speeds of 4800 or 2400 bit/s, that can transmit to conventional FAX machines. The 73D2417 includes a subset of the industry standard AT user interface commands as defined by EIA/TIA, and is compatible (continued)

FEATURES

- 2400 bit/s data communication, MNP5, and FAX capability combined in one product
- Multimode V.22bis/V.22/V.21, and Bell 212A/ 103 data com
- Microcom Networking Protocol (MNP) level 4 and 5 error control and data compression
- V.27ter FAX transmit capability at 4800/ 2400 bit/s rates for text, ASCII, or graphic files
- Standard 2400 bit/s AT and TIA/EIA Class 2 (FAX AT) command sets and features for software compatibility
- Supports external NVRAM for nonvolatile storage of user setup configurations
- Compact DIP or PLCC packages for surface mount designs

CAUTION: Use handling procedures necessary for a static sensitive component.

DESCRIPTION (Continued)

with existing terminal software. The SSI 73D2417 is designed to provide an economical, high performance solution for applications needing both datacom and FAX capability. Its high level of performance and integrated features make it ideal for use in personal computer, portable terminal, and laptop FAX applications which communicate using the dialup telephone network.

OPERATION

The SSI 73D2417 is a complete datacom/FAX capable "smart" modem with MNP5 functions included in four CMOS ICs. The device set forms the basis for a high performance stand alone modem/FAX product with self contained AT command interpreter and features, RS232 or UART interface lines, and expansion for NVRAM for storage of default parameters.

MNP5 error control and data compression is included in datacom modes, and an EIA/TIA industry standard AT user interface is provided in FAX mode for compatibility with conventional software.

The SSI 73D2417 provides the QAM, PSK and FSK modulator/demodulator functions, call progress and handshake tone monitors, test modes and a tone generator capable of producing DTMF, answer and CCITT guard tones. This device supports the V.22bis, V.22, V.21 and Bell 212A/103 operating modes, both synchronous and asynchronous. The SSI 73D2417 is designed to provide functions needed for an intelligent modem and includes auto-dial/auto-answer, handshake with auto-fallback, and selectable pulse or DTMF dialing sequences to simplify these designs.

The SSI 73D2417 consists of four devices. The SSI 73M214 is an analog processor that performs the filtering, timing adjustment, level detection and modulation functions. The SSI 73D215 is the receiver digital signal processor. The SSI 73D219 is a command processor that provides supervisory control and command interpretation. A SSI 73D225 ROM provides storage for internal control software.

QAM MODULATOR/DEMODULATOR

The SSI 73D2417 scrambles and encodes the 2400 bit/s incoming data into quad bits represented by 16 possible signal points as specified by CCITT recommendation V.22bis. The modulator transmits this encoded data using either a 1200 Hz (originate mode) or 2400 Hz (answer mode) carrier. The demodulator recovers a data clock from the incoming signal and reverses this procedure. Adaptive equalization corrects for different line conditions by automatically changing filter parameters to compensate for line characteristics.

PSK MODULATOR/DEMODULATOR

In PSK mode the SSI73D2417 modulates the 1200 bit/s incoming data using a subset of the QAM signal points as specified by CCITT recommendation V.22bis, V.22 and Bell 212A. For FAX operation, the modulator conforms to V.27 ter signal point locations. The PSK demodulator is similar to the QAM demodulator.

FSK MODULATOR/DEMODULATOR

The FSK transmitter frequency modulates the analog output signal using two discrete frequencies to represent the binary data. The Bell 103 standard frequencies of 1270 and 1070 Hz (originate mark & space) and 2225 and 2025 Hz (answer mark & space) or the V.21 standard frequencies of 980 and 1180 Hz (originate mark and space) and 1650 and 1850 Hz (answer mark and space) are used when this mode is selected. Demodulation involves detecting the receive frequencies and decoding them into the appropriate binary value. The speed rate may be any up to 300 bit/s.

PASSBAND FILTERS AND EQUALIZERS

A bandsplit filter is included to shape the amplitude and phase response of the transmit signal to a square root of 75% raised cosine and provide rejection of out-ofband signals in the receive channel.

ASYNCHRONOUS MODES

The asynchronous mode is used for communication between asynchronous terminals which may vary the data rate from +1.5% to -2.3% from the nominal 1200 or 2400 value. When transmitting in this mode the serial data on the TXD input is passed through a rate converter which inserts or deletes stop bits in the serial bit stream in order to output a signal whose data rate is accurate to 0.01%. The signal is routed to a data scrambler (following the CCITT V.22bis algorithm) and into the modulator. The SSI 73D2417 recognizes a break signal and handles it in accordance with BELL 212A specifications. Received data is processed in a similar fashion except that the rate converter now acts to reinsert any deleted stop bits. An incoming break signal will be passed through without incorrectly inserting a stop bit.

SYNCHRONOUS MODES

Synchronous operation is possible with the PSK or QAM mode at 1200 or 2400 bit/s. Operation is similar to that of the asynchronous mode except that data must be synchronized to a provided clock and no variation in data transfer rate is allowable. Serial input data appearing at TXD must be valid on the falling edge of TXCLK. Receive data at the RXD output is clocked out on the rising edge of RXCLK. The async/synch converter is bypassed when synchronous mode is selected.

AUTOMATIC HANDSHAKE

The SSI 73D2417 will automatically perform a complete handshake as defined by the V.22bis, V.22 and Bell 212A/103 standards to connect with a remote modem. The SSI 73D2417 automatically determines the speed and operating mode and adjusts its operation to correspond to that of an answering modem when originating a call.

TEST MODES

The SSI 73D2417 allows use of Analog Loopback, Digital Loopback and Remote Digital Loopback test modes. Full test mode capability allows testing of the modem and interface functions from the local terminal using the analog loopback command, or remotely using the RDL command. The digital loopback command must be entered at the remote modem.

ADAPTIVE EQUALIZATION WITH AUTO-RETRAIN

The SSI 73D2417 uses adaptive equalization which automatically compensates for varying line characteristics by adjusting taps on a multi-tap FIR filter. Optimum performance is obtained with this technique over a wide range of line conditions. When the line quality deteriorates to a specified level the SSI 73D2417 can automatically initiate a retrain of the equalizer to reestablish data communications without the need to go through a complete handshake sequence.

AT COMMAND INTERPRETER

The SSI 73D2417 includes an AT command interpreter which is compatible with the Hayes 2400 Smartmodem[™] command set. Functions and features included with intelligent modems are provided by the SSI 73D2417 command interpreter.

NON-VOLATILE MEMORY

The SSI 73D2417 supports connection to an external non-volatile memory (i.e., 93C46) to store a dial string and the current AT command configuration.

MICROCOM NETWORKING PROTOCOL

Error control features of the Microcom Networking Protocol (MNP) Level 4 and data compression Level 5 are available through AT commands. Throughput increases of up to 20% are available with MNP4 and 200% with MNP5. In either case, data passed is errorfree.

FAX TRANSMIT CAPABILITY

The 73D219 Controller, when operating in FAX mode, sends data to a digital-to-analog converter, the output of which is converted from a current to a voltage and filtered to emulate the output of a V.27 FAX modulator. This, in conjunction with the 300 bit/s capability of the basic modem, provides the hardware necessary to communicate with a FAX machine at 2400 or 4800 bit/s. Firmware necessary to dial a FAX call, determine the capabilities of the remote receiver and pass the FAX traffic is included.

SPEED/PROTOCOL COMPATIBILITY GUIDE

			73D2417 Originating as:					
			Bell CCITT					
	Calling a:			1200	300	1200	2400	
Bell	300	(103)	300	300	-	-	300	
	1200	(212)	300	1200	-	1200	1200	
	2400 ¹	(224)	300	1200	-	1200	2400	
CCITT	300	(V.21)	-	-	300	-	-	
	1200	(V.22)	300	1200		1200	1200	
·	2400	(V.22bis)	300	1200		1200	2400	
				73D2	417 Answerir	ig as:		
			B	ell		CCITT		
с	alled from	n a:	300	1200	300	1200	2400	
Bell	300	(103)	300	300	-	· _	300	
	1200	(212)	300	1200	-	1200	1200	
	2400	(224)	300	1200	-	1200	2400	
CCITT	300	(V.21)	-	-	300	-	-	
	1200	(V.22)	300	1200	-	1200	1200	
	2400	(V.22bis)	300	1200	-	1200	2400	

¹ Bell 2400 is the same as V.22bis using a 2225 Hz answer tone without unscrambled marks.

HARDWARE INTERFACE

DEVICE SET INTERCONNECT

		}	PIN C					
LABEL	I/O*	73M214	73D215	73D218	73D221 DIP	73D221 SMT	DESCRIPTION	
VPP	1		1		1	2	+5V	
INT	1		17				+5V	
ĒĀ	1			31			+5V	
EXADCC	1	19					GND	
DACK	1		2				+5V	
CLK	S	16	15				7.3728 MHz	
RXINT	S		5	13			Rx Interrupt	
TXINT	S	21		12			Tx Interrupt	
RST	S		16	1				
FSK	S		4	7				
RD	S	3	25	17	22	25		
WR	S	4	24	16				
D0	I/O	5	6	39	11	13	Data Bus 0	
D1	I/O	6	7	38	12	14	Data Bus 1	
D2	I/O	7	8	37	13	15	Data Bus 2	
D3	I/O	8	9	36	15	18	Data Bus 3	
D4	I/O		10	35	16	19	Data Bus 4	
D5	1/0		11	34	17	20	Data Bus 5	
D6	1/0		12	33	18	21	Data Bus 6	
D7	I/O		13	32	19	22	Data Bus 7	
SIN	S	10	22					
SOUT	S	11	21					
SIRQ	S	9	23					
SCK	S	13	18					
SEN	S	12	19,20					
A0	S				10	11	Address Bus 0	
A1	S				9	10	Address Bus 1	
A2	S				8	9	Address Bus 2	
A3	S				7	8	Address Bus 3	
A4	S				6	7	Address Bus 4	
A5	S				5	6	Address Bus 5	
A6	S				4	5	Address Bus 6	
A7	S				3	4	Address Bus 7	
A8 (AH0)	S		27	21	25	29	Address Bus 8	

* "S" refers to System Interconnect

HARDWARE INTERFACE (Continued)

DEVICE SET INTERCONNECT

		PIN CONNECTION					
LABEL	I/O	73M214	73D215	73D218	73D221 DIP	73D221 SMT	DESCRIPTION
A9 (AH1)	S				24	28	Address Bus 9
A10 (AH2)	S				21	24	Address Bus 10
A11 (AH3)	S				23	27	Address Bus 11
A12 (AH4)	S				2	3	Address Bus 12
A13 (AH5)	S				26	30	Address Bus 13
A14 (AH6)	S				27	31	Address Bus 14
A15 (AH7)	S						Address Bus 15
CE	1				20	23	0V
ALE	S	1		30			
DSP/CS	S		26				
PSEN	S			29	22		Program Store Enable
CE					20		GND

NVRAM INTERFACE

NVRCE	1	14	NVRAM CE (active high)
TXD	I/O	10	NVRAM DI/DO
RXD	1	11	NVRAM SK

POWER SUPPLIES AND CLOCKS

			PIN C	ONNECT			
LABEL	I/O	73M214	73D215	73D218	73D225 DIP	73D225 SMT	DESCRIPTION
VDD	1			40			Positive supply (analog +5V)
VCC	1	28	28		28		Positive supply (digital +5V)
VSS	1	14					Negative supply (analog -5V)
AGND	I	26					Analog ground
GND	1	15	14	20	14	16	Digital ground
X1	I			19			XTAL input 14.7456 MHz
X2	0			18			XTAL output 14.7456 MHz
XIN	I	18					Clock input 7.3728 MHz
RST	I			9			Reset (10 μF & 8.2 kΩ)
Vpp			1				+5V

HARDWARE INTERFACE (Continued)

DAA INTERFACE

			PIN C	ONNECT				
LABEL	I/O	73M214	73D215	73D218	73D225 DIP	73D225 SMT	DESCRIPTION	
RXA	1	27					Receive analog from DAA	
TXA	0	20					Transmit analog to DAA	
MON	0	25					Audio monitor	
HOOK	0			8			Off hook relay control	

RS-232/V.24 INTERFACE

RI	0		3	Ring indicator output
TXD	1		10	Digital data from terminal
RXD	0		11	Digital receive data
DCD	0		2	Data carrier detect
DSR	0			Data set ready
TXCLK1	I	22		External Tx sync clock input
RXCLK	0	24	15	Receive clock ouptut
TXCLK	0	23	15	Transmit clock output
CTS	0		5	Clear to send
RTS	Ι		1	Request to send
DTR	I		4	Indicates DTE available

comma	nd Description	Commar	nd Description
AT	command prefix – precedes command line	&G1	550 Hz guard tone
<cr></cr>	carriage return character - terminates command line	&G2	1800 Hz guard tone
Α	go into answer mode; attempt to go to on-line state	&J0	RJ-11/RJ-41S/RJ-45S telco jack
A/	re-execute previous command line;	8J1	RJ-12/RJ-13 telco jack
	not preceded by AT nor followed by <cr></cr>	&M0	asynchronous mode
B0	select CCITT V.22 standard for 1200 Bit/s communication	&M1	synchronous mode 1
B1	select Bell 212A standard for 1200 Bit/s communication	&M2	synchronous mode 2
D	dial number that follows; attempt to go to on-line state, originate mode		synchronous mode 3
DS=n	dial stored number in location "n" (0-3)		terminate test in progress
E0	Disable character echo in command state		initiate local analog loopback
E1	Enable character echo in command state		initiate local digital loopback
HO	go on hook (hang up)		grant request from remote modem for RDL
H1	go off hook; operate auxiliary relay		deny request from remote modem for RDL
10	request product indentification code		initiate remote digital loopback
11	perform checksum on firmware ROM: return checksum		initiate remote digital loopback with self test
12	perform checksum on firmware ROM;	1	initiate local analog loopback with self test
	returns OK or ERROR result codes	E Contraction of the second se	view active configuration, user profiles, and stored numbers
L0 or L1	low speaker volume		save storable parameters of active configuration
L2	medium speaker volume		modem provides transmit clock signal
L3	high speaker volume		data terminal provides transmit clock signal
MO	speaker off	1	receive carrier provides transmit clock signal
M1	speaker on until carrier detected	&Zn≕x	store phone number "x" in location "n" (0-3)
M2	speaker always on		
МЗ	speaker on until carrier detected, except during dialing		
00	go to on-line state		
01	go to on-line state and initiate equalizer retrain at 2400 Bit/s		MNP COMMANDS
Q 0	modem returns result codes	Commar	d Description
Q1	modem does not return result codes	Commar	nd Description
Sr	set pointer to register "r"	%A	Auto-Reliable fallback character
Sr=n	set register "r" to value "n"	%C	compression control
Sr?	display value stored in register "r"		maximum block size
VO	display result codes in numeric form		modem port flow control
V1	display result codes in verbose form (as words)		rate adjust
X0	enable features represented by result codes 0-4		break control
X1	enable features represented by result codes 0-5, 10-12		operating mode
X2	enable features represented by result codes 0-6, 10-12		originate Reliable Link
ХЗ	enable features represented by result codes 0-5, 7, 10-12		flow control
X4	enable features represented by result codes 0-7, 10-12		inactivity timer
YO	disable long space disconnect		accept Reliable Link
Y1	enable long space disconnect		result code form
Z0	reset modem		XON/XOFF pass-through
&C0	assume data carrier always present		switch to Reliable mode
&C1	track presence of data carrier		switch to Normal mode
&D0	ignore DTR signal	I -	
&D1	assume command state when an on-to-off transition of DTR occurs		
&D2	hang up and assume command state when an on-to-off transition of DTR occurs	Note:	Italicized parameters indicate default settings. parameter (0, 1, etc.) is not specified, the mode
&D3	reset when an on-to-off transition of DTR occurs		assumes the 0 parameter.
&F	recall factory settings as active configuration		acconnectine o parameter.

* Hayes Standard AT Command Set as implemented in Hayes Smartmodem 2400

	AT COMMANE	SUMMARY		
TRA	TRANSMIT FAX COMMANDS		TRING ARGUMENTS	
Command	Description	Argument	Description	
#F0 #F1 #M0 #M1	Return to normal modem mode Enter FAX mode at DTE speed of 19200 bit/s Speaker always off Speaker off after connect message	;	Delay Return to Command Mode After Dialing	2
#M2 #M3 #Pn #R0 #R1	Speaker always on Speaker off during dial number of pages to send (n=1 to 255) send with normal resolution send with fine resolution	@ S ! W	Wait For Silent Answer Dial Stored Number Hook Flash Wait for Dial Tone	
Extended com followed by a the value 0 ma entered, com 19200 bit/s an one of the folk 1. The host return to 2. A call dis 3. The host DTR. The &D2 com	software issues a #F command to modem command mode. connect frame is received. software issues an abort by dropping mand must be issued for a DTR con- AX mode assumes XON/XOFF or CTS	R	Reverse Mode	

TABLE 1: Result Codes

Xn	VERBOSE/TERSE RESULT CODES
X0	OK/0, CONNECT/1, RING/2, NO CARRIER/3, ERROR/4
X1	All functions of X0 + CONNECT (RATE)/1 = 300, 5 = 1200, 10 = 2400
X2	All functions of X1 + NO DIAL TONE/6
ХЗ	All functions of X1 + BUSY/7
X4	All functions of X3 + NO DIAL TONE/6, NO ANSWER/8

TABLE 2: S Registers Supported

Sn	FUNCTION	UNITS	DEFAULT
S01	Answer on ring	No. of rings on which to answer	000²
S1	Ring counter	No. of rings accumulated	000
S2	Escape code	ASCII CHR Decimal 0-127	043
S3	Carriage return	ASCII CHR Decimal 0-127	013
S4	Line feed	ASCII CHR Decimal 0-127	010
S5	Back space	ASCII CHR Decimal 0-127	008
S6	Wait for dial tone	Seconds	002
S7	Wait for carrier	Seconds	030
S8	Pause time	Seconds	002
S9	Carrier valid	100 milliseconds (0.1 sec)	006
S10	Carrier drop out	100 milliseconds (0.1 sec)	014
S11	DTMF tone duration	1 millisecond (0.001 sec)	070
S12	Escape guard time	20 milliseconds (0.05 sec)	050
S13	Unused		N/A
*S14¹	Bit mapped register	Decimal 0-255	170

¹ Stored in NVRAM with &W command.

² Modem will not answer until value is changed to 1 or greater.

³ If the NovRAM has not been initialized it may be necessary to type AT&F&W <cr> to set initial modem state.

2

NUMBER	FUNCTION	UNITS	DEFAULT
S15	Unused		N/A
S16	Test register	Decimal #	000
S17	SSi Special test register	Decimal 0-255	096
S18	Test timer	Decimal 0-255	000
S19	Unused		N/A
S20	Unused		N/A
*S211	Bit mapped register	Decimal 0-255	000
*S221	Bit mapped register	Decimal 0-255	118
*S231	Bit mapped register	Decimal 0-255	007
S24	Unused		N/A
S251	DTR delay	10 milliseconds (0.01 sec)	005
S261	CTS delay	10 milliseconds (0.01 sec)	001
*S271	Bit mapped register	Decimal 0-255	064
S37	Desired Modem Line Speed	Decimal 0-3	000

TABLE 2: S Registers Supported (Continued)

* The bit mapped register functions are equivalent to normal "AT" command modem registers. They are not needed for evaluation of the 73D2417 capabilities.

Asynchronous character formats supported: [Number of data bits, parity (even/odd/none), number of stop bits]

1200/2400 Bit/s: 7N2, 7E1, 7O1, 8N1

300 Bit/s: 7N2, 7E1, 7O1, 8N1, 8E1, 8O1

RECOMMENDED OPERATING CONDITIONS

PARAMETER	CONDITIONS	MIN	NOM	МАХ	UNITS
T _A , Ambient Temperature		0		70	°C
$V_{cc} \& V_{DD}$, Supply Voltage	73M214, 73D215, 73D219, 73D225	4.75		5.25	v
V _{ss} , Supply Voltage	73M214	-4.25		-5.25	v
V _{DD} , V _{ss} Bypass Capacitors		10+0.1			μF
CLK Load Capacitance				25	рF
Digital Load Capacitance				50	рF
TXA, MON Loading				See Note	
Input Clock Frequency (X1)			14.7456		MHz
Input Clock Variation (X1, XIN)	XIN must be X1 + 2	-0.01		0.01	%

Note: 10 k Ω in parallel with 50 pF

INPUT CLOCK TIMING (See Figure 1.)

TCLCX	20		ns
TCLCX2	54	82	ns
ТСНСХ	20		ns
TCHCX2	54	82	ns
TR, TF		15	ns
ТСНСН	0	20	ns

INTERFACE TIMING

LED Write Timing (See Figure 2.)

TWLWH	WR pulse width	307	ns
TAVWL	Address valid to WR low	141	ns
TQVWH	Data valid to WR high	370	ns
τονωχ	Data valid to WR transition	27	ns
TWHDX	Data hold after WR	86	ns

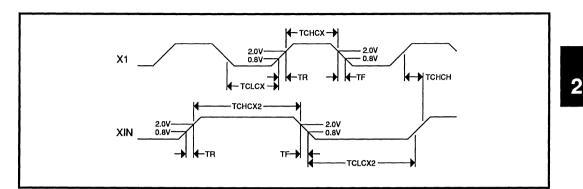


FIGURE 1: Input Clock Timing

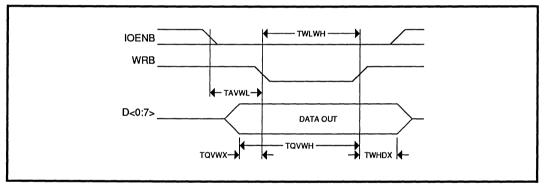


FIGURE 2: LED Write Timing

DC ELECTRICAL CHARACTERISTICS

PARAMETER		CONDITIONS	MIN	NOM	МАХ	UNITS
I _{DD}	Supply Current				130	mA
I _{ss}					25	mA
VIL	Input Low Voltage		0		0.8	v
VOH	Input High Voltage		2.0		VDD	v
I _{IH}	Input High Current	Except \overline{CS} which has a pulldown of 20 k Ω			10	μA
l _{il}	Input Low Current	Except TXCLKI, EXADCC which have pullups of 20 $k\Omega$			-20	μA
	Digital Input Capacitance				10	pF
V _{oh}	Output High Voltage	lout =4 mA	2.4			v
V _{ol}	Output Low Voltage	lout = 1.6 mA			0.4	v
RXA	Input Resistance		100			kΩ
RXA	Input Capacitance				25	pF

TRANSMITTER SPECIFICATIONS

TRANSMITTER POWER

Values given are mearsured at the line connection point and assume that the DAA shown in our application literature is used with a 600Ω load.

TRANSMITTER POWER	CONDITIONS	MIN	NOM	МАХ	UNITS
QAM/DPSK Transmitter Power	With or without CCITT tones	-9.8		-8.2	dBm
CCITT Guard Tone	550	-14.8		-12.8	dBm
	1800	-16.0		-14.0	dBm
FSK Transmitter Power	103/V.21	-10.0		8.0	dBm
Answer Tone Power		-10.0		8.0	dBm
DTMF Transmitter Power	High band tones	-7.0		-5.0	dBm
	Low band tones	-9.0		-7.0	dBm
	Twist	-3.0		-1.0	dB

TRANSMITTER FREQUENCY

(All tones are digitally derived from the clock input and have the input clock frequency tolerance.)

TRANSMITTE	TRANSMITTER FREQUENCY C		ONS	MIN	NOM	МАХ	UNITS
QAM/DPSK Carrier Frequencies		Originate	Originate		1200.0		Hz
		Answer			2400.0		Hz
FSK Tone Fre	quencies						
103	Originate	Space	1070		1066.7		Hz
		Mark	1270		1269.4		Hz
	Answer	Space	2025		2021.1		Hz
		Mark	2225		2226.1		Hz
V.21	Originate	Space	1180		1181.6		Hz
		Mark	980		978.3		Hz
	Answer	Space	1850		1850.0		Hz
		Mark	1650		1651.6		Hz
Special Tone	Frequencies						
Answe	er Tone		2100		2104.1		Hz
CCITT Guard Tones			550		556.5		Hz
			1800		1786.0		Hz
DTMF Dialing	Tone Frequencies						
Low G	Low Group		697		698.2		Hz
			770		771.9		Hz
			852		853.3		Hz
			941		942.3		Hz
High Group		Rows	1209		1209.5		Hz
			1336		1335.7		Hz
			1477		1476.9		Hz
			1663		1634.0		Hz

TRANSMITTER DISTORTION

TRANSMITTER DISTORTION	CONDITIONS	MIN	NOM	МАХ	UNITS
QAM/DPSK Carrier Suppresion	Measured at TXA	35			dB
CCITT Guard Tone Distortion	800-1600 Hz band			-60	dB
	0-10 kHz band			-45	dB
Answer Tone Distortion	800-1600 Hz band			-60	dB
	0-10 kHz band			-40	dB
FSK Output Bias Distortion	Transmit dotting 300 bit/s	-6		6	%
FSK Opposite Band Distortion				-60	dB
DTMF Tone Distortion	700-2900 Hz band			-29	dB

RECEIVER SPECIFICATIONS

PARAMETER	CONDITIONS	MIN	NOM	МАХ	UNITS
Carrier VCO					
Capture Range	Carrier offset	-10		10	Hz
Carrier Phase Jitter	50-65 Hz			30	Degrees
Data Clock Recovery Capture Range	From system clock + 24576 (600 Hz symbol clock)	025		+.025	% ·
Data Delay Time	RXA to RXD	30		75	ms
Retrain Request Threshold	If enabled	10 ⁻³		10 ⁻²	BER
Carrier Detect					
Threshold		-48		-43	dBm
Hysteresis		2			dB
Answer Tone Detect	2100/2225 Hz				
Threshold		-48		-43	dBm
Hysteresis		2			dB
Call Progress Detect	350-650 Hz dual tone				
Threshold		-40		-30	dBm
Hysteresis		2			dB

PERFORMANCE DATA

(This performance data was taken using an AEA tester and a Silicon Systems evaluation modem.)

BER PERFORMANCE

(-20dBm receive level 10-5 BER)

PARAMETER	MINIMUM SNR REQUIRED
2400 Bit/s Originate	16.5 dB SNR
2400 Bit/s Answer	16.0 dB SNR
1200 Bit/s Originate	9.0 dB SNR
1200 Bit/s Answer	8.0 dB SNR
0-300 Bit/s Originate	9.0 dB SNR
0-300 Bit/s Answer	7.5 dB SNR

DYNAMIC RANGE

PARAMETI	ER	CONDITIONS	;	MIN	NOM	МАХ	UNITS
2400 Bit/s	Originate	10-5 BER @	17dB SNR	-45		0	dBm
2400 Bit/s	Answer	10-5 BER @	17dB SNR	-45		0	dBm
1200 Bit/s	Originate	10-5 BER @	12dB SNR	-45		0	dBm
1200 Bit/s	Answer	10-5 BER @	12dB SNR	-45		0	dBm
0-300 Bit/s	Originate	10-5 BER @	12dB SNR	-45		0	dBm
0-300 Bit/s	Answer	10-5 BER @	12dB SNR	-45		0	dBm

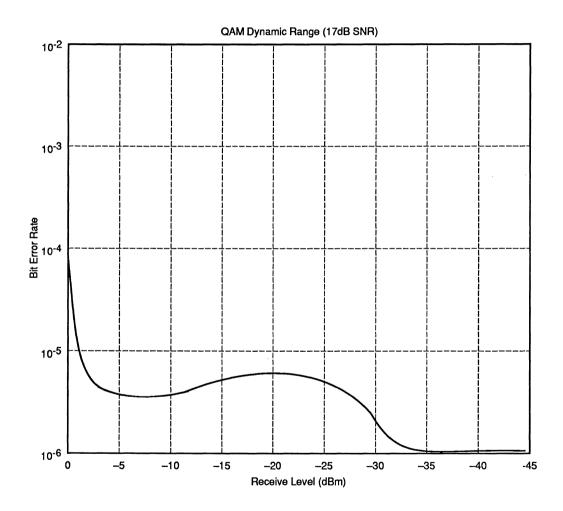


FIGURE 4: QAM Dynamic Range

2

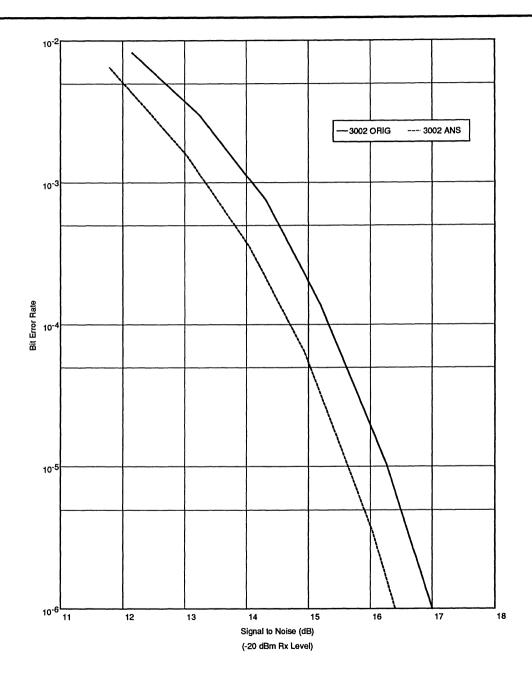


FIGURE 5: BER vs. SNR

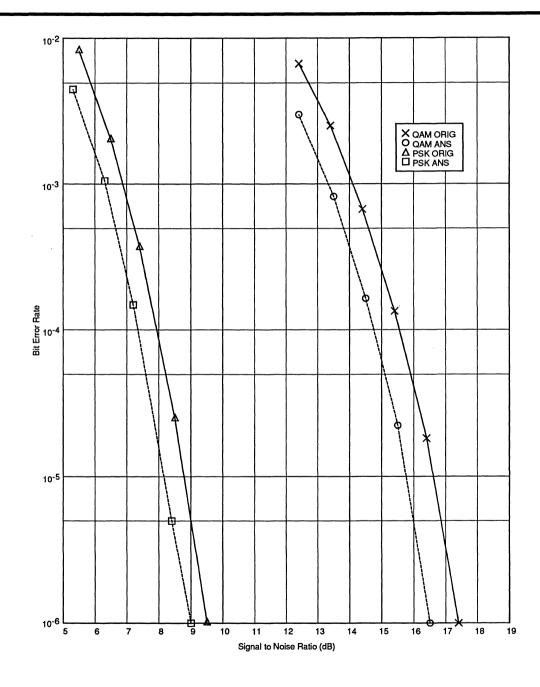
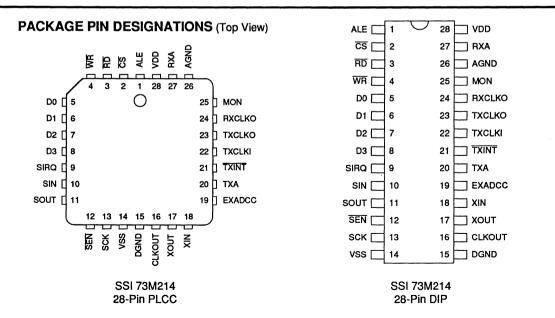
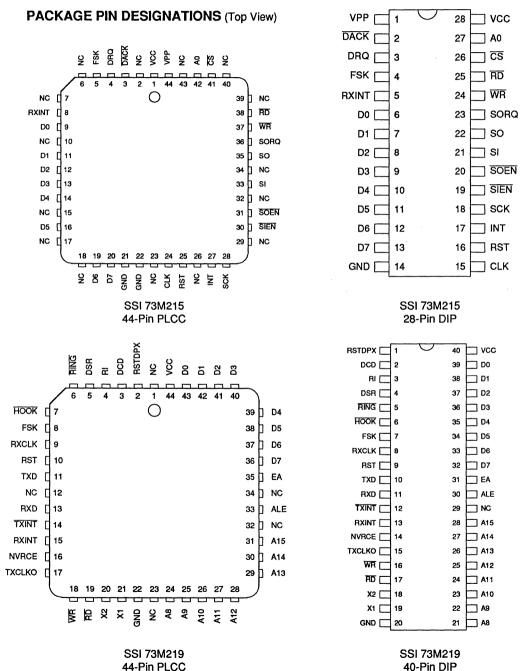


FIGURE 6: QAM and PSK BER vs. SNR with -20dBm Receive Level

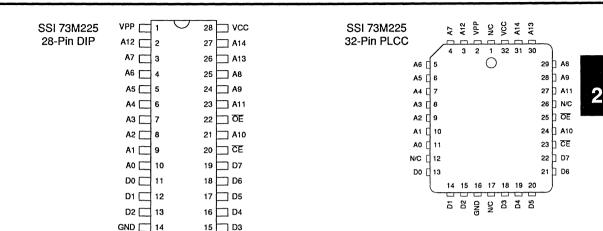
APPLICATIONS INFORMATION

The SSI 73D2417 includes features and commands that are needed to design a full featured "smart" modem with industry standard AT commands and functions, including MNP5.


Control software needed for modem management, AT user interface, and FAX transmit mode is included within the device set. A complete basic modem requires the addition of an RS232 or UART interface, an appropriate telephone line interface, and circuitry for clock generation and address decode logic. Optional features that are provided for in the SSI 73D2417 and that may be included in a full featured modem design include: Nonvolatile memory for storage of setup parameters, a speaker and amplifier for audible monitoring of call activity, and LEDs for display of modem status.


The FAX transmit mode additionally requires a low cost D/A converter and band shaping filter to provide a V.27ter conformant transmit waveform. For data communication modes, the SSI 73D2417 employs an AT command set user interface that is compatible with existing modem products and software. With this interface, the user can directly control a modem using

simple AT commands. As an option, communications software programs such as Smartcom™ may be used to provide a menu driven interface and additional features that make the modem easier to use.


A FAX operating sequence is similar to, but more complex than that required for data communication, as the FAX operation adds an additional format conversion step which must be implemented by external communications software. A compatible communications software package, in conjunction with the SSI 73D2417 will provide full transmit FAX capability. Sources for datacom software that currently support this standard are listed below:

- 1. Bit FAX available from Bit Software (408) 263-2197
- QuickLink II FAX available from Smith Micro Software (714) 964-0412

44-Pin PLCC

ORDERING INFORMATION

PART DESCRIPTION	ORDER NO.	PKG. MARK
SSI 73D2417 Dual-In-Line Package	SSI 73D2417-CP	
28-pin Plastic DIP		73M214-IP
28-pin Plastic DIP		73D215-CP
40-pin Plastic DIP		73D219-CP
28-pin Plastic DIP		73D225-CP
SSI 73D2417 Surface Mount Package	SSI 73D2417-CH	
28-pin Plastic Leaded Chip Carrier		73M214-IH
44-pin Plastic Leaded Chip Carrier		73D215-CH
44-pin Plastic Leaded Chip Carrier		73D219-CH
32-pin Plastic Leaded Chip Carrier		73D225-CP

Preliminary Data: Indicates a product not completely released to production. The specifications are based on preliminary evaluations and are not guaranteed. Small quantities are available, and Silicon Systems should be consulted for current information.

No responsibility is assumed by Silicon Systems for use of this product nor for any infringements of patents and trademarks or other rights of third parties resulting from its use. No license is granted under any patents, patent rights or trademarks of Silicon Systems. Silicon Systems reserves the right to make changes in specifications at any time without notice. Accordingly, the reader is cautioned to verify that the data sheet is current before placing orders.

Copyright Notice: The software contained within certain components of the SSI 73D2417 is copyright protected and may only be used in conjunction with the SSI 73D2417 product as supplied by Silicon Systems. No license to reproduce this software is granted or implied. This material may not be reproduced in any form without the express written permission of Silicon Systems, Inc. © Copyright 1990. All rights reserved.

Silicon Systems, Inc., 14351 Myford Road, Tustin, CA 92680 (714) 731-7110, FAX (714) 731-5457

Notes:

The SSI 73D2420/2421 is an integrated circuit set

which contains Silicon Systems' 73D680 controller,

73D681 K-Series interface, and 73D682 ROM. The IC

set provides CCITT V.42 error-control and CCITT

V.42bis data compression, Lap-B error-control, Asyn-

chronous Framing Technique (AFT) error-control,

adaptive data compression, automatic feature negotiation, flow control, automatic speed buffering and

Haves® AutoSync, when connected to an SSI 73K224

2400 bit/s multi-mode modern IC. Other K-Series mo-

dem ICs can be used, but the SSI 73K224 provides the

highest level of connectivity. This IC set allows the user

to build modems with advanced features not available from other semiconductor manufacturers. These ad-

vanced features are the same technology used by

This Hayes technology is the same used by Hayes in

their V-series products to implement the advanced

features of these products. Silicon Systems is offering

this integrated circuit set only to licensees of the Hayes

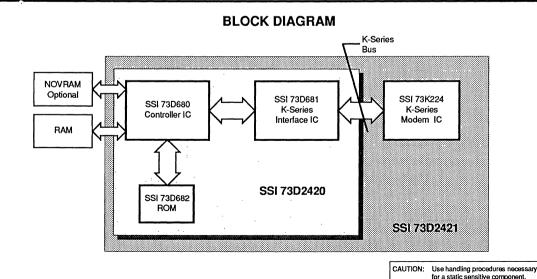
Hayes and V-series are registered trademarks, and Smartmodem

2400 is a trademark, of Haves Microcomputer Products, Inc.

Hayes in their V-series® system products.

Patent License Agreement,

DESCRIPTION


SSI 73D2420/2421 CCITT V.42/V.42bis Protocol and Controller IC Set

Advance Information

June, 1990

- Supports CCITT V.22bis, V.22, V.21, and U.S. Modem Standards 212A and 103
- Full compliance with CCITT V.42, both LAP-Mand the alternate Microcom Networking Protocol (MNP[®]) 4
- Supports CCITT V.42bis and MNP Level 5
- Hayes standard AT Command Set as implemented in Hayes V-series Smartmodem 2400™ V.42
- Hayes V-series features:
 - Lap-B error-control
 - Automatic Feature Negotiation
 - Adaptive Data Compression*
 - AutoSync
 - Flow Control
 - Automatic Speed Buffering
 - Asynchronous Framing Technique (AFT)
- Power Down (Stand-By) Mode
- Indicates Hayes patented technology. In addition to these patents, other patents concerning Hayes developed technology are pending.

0690 - rev.

2

FUNCTIONAL DESCRIPTION

ERROR-CONTROL

The SSI 73D2420/2421 operates in full compliance with CCITT V.42, the international standard for pointto-point modem error-control, adopted in November 1988. LAP-M (Link Access Procedure for Modems), the Primary Protocol, and Annex A, the Alternate Protocol, provide backward compatibility with MNP[®]. Classes 2 through 4 are included. LAP-B (Link Access Procedure Balanced), the CCITT standard used by packet switched networks is also included. Lap-B was adapted by Hayes for use in modem point-to-point error-control for connectivity to all Hayes V-series system products.

DATA COMPRESSION*

The SSI 73D2420/2421 supports CCITT V.42bis, the international compression standard which provides compression capabilities up to 4:1, for use by modems incorporating the V.42 LAP-M error-control standard. The IC set provides a migration path to CCITT V.42bis data compression by supporting backward compatibility with Hayes adaptive data compression and MNP 5, each of which provide up to 2:1 compression.

AUTOMATIC FEATURE NEGOTIATION

Eliminates the need for user configuration for connection between dissimilar types of modems. Automatic Feature Negotiation occurs following the modulation handshake and provides the best possible connection. The range of features negotiated can be controlled by S-Register settings and include protocol type, compression, and parameters specific to the protocols.

DATA FLOW CONTROL

In error-control mode, the modem's buffers must hold incoming data until accurate transmission is verified. This process requires flow control to prevent possible data loss resulting from buffer overflow. Three types of flow control are used: RTS/CTS (hardware-based), XON/XOFF, and Transparent Flow Control (both character-based).

AUTOMATIC SPEED BUFFERING (ASB)

ASB permits computer equipment to transmit data to and from the modem at a constant rate regardless of the type or speed of the modem-to-modem connection.

ASYNCHRONOUS FRAMING TECHNIQUE

Hayes-developed framing technique which provides synchronous-like transmission across an asynchronous link. Synchronous protocols assemble data in frames prior to transmission and disassemble the frames on arrival.

HAYES AUTOSYNC*

The Hayes AutoSync capability provides synchronous communications to the remote modern, while using an asynchronous interface to the local DTE. Hayes Auto-Sync supports Binary Synchronous (BSC) and High-Level Data Link Control (HDLC) protocols by providing functions such as FCS generation and checking that are used by those protocols. The Hayes Synchronous Driver (HSD) supports this technology on IBM® PC and compatible computers, and is available to developers.

IC SET DESCRIPTION

SSI 73D680 Controller IC

The Hayes V-series protocol processor is a CMOS VLSI chip integrating Z80 CPU, a four-channel Counter Timer (CTC), dual port Parallel I/O (PIO), and dual channel Serial I/O (SIO), together with about 1200 logic gates. All functions are included on a single piece of silicon packaged in a 100-pin gull wing flat pack.

SSI 73D681 K-Series Interface IC

This chip takes commands from the 73D680 Controller and converts them to a form useful to the 73K224 modem chip. Responses from the modem are accumulated and interpreted by the interface and passed back to the controller.

SSI 73D682 ROM

This is a high performance, 1,048,576-bit Electrically Programmable Read Only Memory chip. It's organized as 128 K-words of 8 bits each, and provides code storage for the 73D680.

SSI 73K224 K-Series Modem IC

This chip is included in the SSI 73D2421 IC set and distinguishes it from the SSI 73D2420. Please refer to the SSI 73K224 stand-alone data sheet.

AT COMMAND SUMMARY*

Comm	nand Description	Com	nand Description
AT	command prefix - precedes command line	&C0	assume data carrier always present
<cr></cr>	carriage return character - terminates command line	&C1	track presence of data carrier
Α	go into answer mode; attempt to go to on-line state	&C2	data carrier support for UNIX
A/	re-execute previous command line;	&D0	ignore DTR signal
BO	not preceded by AT nor followed by <cr> select CCITT V.22 standard for 1200 bit/s communication</cr>	&D1	assume command state when an on-to-off transition of DTR occurs
B1	select Bell 212A standard for 1200 bit/s communication	&D2	hang up and assume command state when an on-to-off
B15	select CCITT V.21 standard for 110/300 bit/s communication	100	transition of DTR occurs
B16	select Bell 103 standard for 110/300 bit/s communication	&D3	reset when an on-to-off transition of DTR occurs
D	go into originate mode; dial number that follows; attempt to go to on-line state	&D4 &F	reset and enter low power mode when DTR is low recall factory settings as active configuration
E0	Disable character echo in command state	&G0	no guard tone
E1	Enable character echo in command state	&G1	550 Hz guard tone
HO	go on hook (hang up)	&G2	1800 Hz guard tone
H1	go off hook; operate auxiliary relay	&J0	RJ-11/RJ-41S/RJ-45S telco jack
10	request product indentification code	8J1	RJ-12/RJ-13 telco jack
11	perform checksum on firmware ROM; return checksum	&K0	local flow-control disabled
12	perform checksum on firmware ROM;	&K3	RTS/CTS
	returns OK or ERROR result codes	&K4	XON/XOFF
L0 or L1	low speaker volume	&K5	transparent XON/XOFF
L2	medium speaker volume	&Q0	asynchronous mode
L3	high speaker volume	8Q1	synchronous mode 1
мо	speaker off	8Q2	synchronous mode 2
M1	speaker on until carrier detected	&Q3	synchronous mode 3
M2	speaker always on	8Q4	synchronous mode 4
МЗ	speaker on until carrier detected, except during dialing	805	error-control mode
NO	require modem to handshake at DCE speed selected with S37	&Q6	automatic speed buffering (ASB)
N1	permit modem to handshake at any DCE speed permitted by S37		Note: &Mn may be used in place of all &Qn options
00	go to on-line state		except &Q4, &Q5, and &Q6
01	go to on-line state and initiate equalizer retrain at 2400 bit/s	&R0	track CTS according to RTS
QU	modem returns result codes	&R1	ignore RTS; always assume presence of CTS
Q1	modem does not return result codes	&S0	assume presence of DSR signal
Q2	modem returns result codes in originate mode:	&S1	track presence of DSR signal
	does not return result codes in answer mode	&T0	terminate test in progress
Sr	set pointer to register "r"	&T1	initiate local analog loopback
Sr=n	set register "r" to value "n"	&T3	initiate local digital loopback
Sr?	display value stored in register "r"	&T4	grant request from remote modem for RDL
VO	display result codes in numeric form	&T5	deny request from remote modem for RDL
V1	display result codes in verbose form (as words)	&T6	initiate remote digital loopback
WO	negotiation progress result codes not returned	&T7	initiate remote digital loopback with self test
W1	negotiation progress result codes returned	&T8	initiate local analog loopback with self test
XO	enable features represented by result codes 0-4	&V	view active configuration, user profiles, and stored numbers
X1	enable features represented by result codes 0-5, 10-12	&W0	save storable parameters of active configuration as profile 0
X2	enable features represented by result codes 0-6, 10-12	&W1	save storable parameters of active configuration as profile 1
X3	enable features represented by result codes 0-5, 7, 10-12	&X0	modem provides transmit clock signal
X4	enable features represented by result codes 0-7, 10-12	&X1	data terminal provides transmit clock signal
YO	disable long space disconnect	&X2	receive carrier provides transmit clock signal
Y1	enable long space disconnect	&Y0	recall user profile 0 on power-up
ZO	reset modem and recall user profile 0	&Y1	recall user profile 1 on power-up
Z1	reset modem and recall user profile 1	&Zn=x	store phone number "x" in location "n" (0-3)
		1	(Continued

2

* Hayes Standard AT Command Set as implemented in Hayes V-Series Smartmodem 2400 V.42

AT COMMAND SUMMARY (continued) The AT commands and the associated conditions described below may also affect the modem configuration and opera- tion. These commands issued with parameters other than those specified will generate the ERROR result code. Cr enable transmit carrier switching F1 Word Description 0 OK command executed 1 CONNECT connection at 0-300 bits or higher if Xo selected 2 enable transmit carrier switching F1 disable on-line state character echo S-REGISTER SUMMARY Register Range Description S0 0-255 rings S1 select ring to answer on ring count (incremented with each ring). select ring to answer on ring count (incremented with each ring). 0 CONNECT 1200 connection at 2400 bits 53 0-225 rings S1 select witi me before bind dailing S1 select witi me before bind dailing S1 select witi me before bind dailing S2 select witi me before bind dailing S2 carrier detected at 200 bits 54 0-127 ASCII define back space character select duration of comma dial modifer select witi the carrier/sing to thos select transmet de carrier loss/mang up protocol selecton select transme detect response in select transmet detect response in select transme detect response in select transme detect response in select transmet detect response in select transmet detect response in select transme detect						
below may also affect the modem configuration and opera- tion. These commands issued with parameters other than those specified will generate the ERROR result code. 0 <td< th=""><th>A</th><th>COMMAND</th><th>SUMMARY (continued)</th><th></th><th>RESULT (</th><th>CODES SUMMARY</th></td<>	A	COMMAND	SUMMARY (continued)		RESULT (CODES SUMMARY
tion. These commands issued with parameters other than those specified will generate the ERROR result code. 0 OK command executed C1 enable transmit carrier switching F1 disable on-line state character echo 1 CONNECT connection at 2030 bit/s or higher if Xo selected F1 disable on-line state character echo 1 CONNECT connection at 2030 bit/s or higher if Xo selected F1 disable on-line state character echo 1 CONNECT 1200 command ine, or command line, or command				#	Word	Description
those specified will generate the ERROR result code. 1 CONNECT connection at 0-300 bits of higher it to selected C1 enable transmit carrier switching 1 CONNECT carrier signal detected F1 disable on-line state character scho 3 NO CARRIER carrier signal not detected, or lost S-FEGISTER SUMMARY Senecister Range Description S0 0-255 rings select ring to answer on ring count (incremented with each ring) S2 0-127 ASCII define carriage return character S4 0-127 ASCII define carriage return character S5 0-32, 127 ASCII define back space character S6 0-255 sec. select with time for carrier/dial long S6 0-255 sec. select duration of comma dial modifier S1 0-255 sec. select arrier descher tesponse time S1 0-255 sec. select arrier folsch ung upanthonous mode S1 0-255 sec. select arrier loss/hang upanthonous mode S6 0-255 sec. select arrier loss/hang upanthonous mode S1 0-255 sec. select TB between cariner losshang upanthonous mode				0	ОК	command executed
C1enable transmit carrier switching fill disable on-line state character echoS1disable on-line state character echoS-RECISTER SUMMARYSelect TPSUMMARYRegisterRange 0-255 rings 10 -255 ringsDescription select ring to answer on ring count (incremented with each ring) define escape sequence character define line feed character define ecape frequency guard time select three there arrier /dist/ select three select DTR change detect time select time for carrier detect free proces select test timer select test timer select test timer select test timer select test iner detect free proces select test timer select test timer select test by boty for lower limit ASB (ACG) but/fer lower l				1	CONNECT	
F1 disable on-line state character ocho S-RECISTER SUMMARY ERROR Line and under optimized and output of the command line, or command l				2	RING	ring signal detected
S-REGISTER SUMMARY Command line, or command l	C1	enable transmit ca	rrier switching	3	NO CARRIER	carrier signal not detected, or lost
SERECISTER SUMMARYRegisterRangeDescription500-255 ringsselect ring to answer on ring count (incremented with each ring) define escape sequence character8NO ANSWERthe @ dial mondifer failed to detect quiet answer520-127 ASCIIdefine escape sequence character66NO ANSWERthe @ dial mondifer failed to detect quiet answer530-127 ASCIIdefine line feed character10CONNECT 2400connection at 2400 bit/s540-127 ASCIIdefine line feed characterdefine back space character12CONNECT 19200connection at 19200 bit/s550-32, 127 ASCIIdefine back space characterdefine back space character6CARRIER 300carrier detected at 1200 bit/s562-255 sec.select wait time for carrier/dial toneselect arrier detect response time70PROTCOCL: ENROR- control./AP-Berror-control mode with LAP-B protocol control./AP-B5101-255 1/10 sec.select tartimerselect timeselect timeerror-control mode with AFT CONTROL/AP-Berror-control mode with AFT5110-255 msc.select test timerselect there there and there speed select there inter ASI (&C6)select arrier detact the speed select day before torced hang up parameter (0, 1, etc.) is not specified, the modem assumes the 0 parameter.5260-255 1/100 sec.select deside DCE line speed select day before torced hang up parameter (0, 1, etc.) is not specified, the modem assumes the 0 parameter.5360-14Duffer lower limit ASB (&C6) break	F1	disable on-line stat	te character echo	4	ERROR	command line, or command line
RegisterRangeDescription\$00-255 ringsselect ring to answer on ring count (incremented with each ring) define earlage return character8NO ANSWERthe @ dial modifier failed to detect quiet answer\$20-127 ASCIIdefine earlage return character10CONNECT 2400connection at 2400 bit/s\$30-127 ASCIIdefine ine feed character10CONNECT 9800connection at 2400 bit/s\$40-127 ASCIIdefine ine feed character0CONNECT 9800connection at 9000 bit/s\$50-32, 127 ASCIIdefine back space character0CARRIER 1200carrier detected at 300 bit/s\$62-255 sec.select wait time before bind dialingcarrier detected at 200 bit/s46CARRIER 1200carrier detected at 200 bit/s\$62-255 sec.select currier detect response timeselect currier detect response time70PROTOCOCI: ERROR- cONTROL/AP-Berror-control mode with LAP-B protocol\$1150-255 TIS0 sec.select TTS to CTS delayselect timeselect timeselect time\$260-255 11/10 sec.select TTS to CTS delayselect timeselect time sepotation failure treatment\$260-255 11/10 sec.select tore tored hang up77PROTOCOCI: LAP-MAFTV.42 LAP-M\$380-255 sec.select tore tored hang up79PROTOCOCI: LAP-MAFTV.42 LAP-M\$380-255 sec.select tore tored hang upparameter (0, 1, etc.) is not specified, the modem\$480, 7, 128feature negotiatio				5	CONNECT 1200	connection at 1200 bit/s
RegisterRangeDescription500-255 ringsselect ring to answer on510-255 ringsring count (incremented with each ring)520-127 ASCIIdefine escape sequence character530-127 ASCIIdefine end the effect character540-127 ASCIIdefine back space character550-32, 127 ASCIIdefine back space character560-255 sec.select wait time for carrier/dial tone571-255 sec.select duration of comma dial modifier580-255 sec.select time between carrier loss/hang up510-255 sec.select time duration/spacing of tones510-255 sec.select time frequency guard time510-255 sec.select TRS to CTS delay510-255 sec.select TRS to CTS delay520-255 1/100 sec.select del to CTS delay530-31, 13, 138protocol selection5480, 7, 128feature negotiation failure treatment5302-250buffer lower limit ASB (&G6)5491-244buffer lower limit ASB (&G6)5491-244buffer lower limit ASB (&G6)5460-14cronnection failure craise orde		S-REGIS	TER SUMMARY	6	NO DIALTONE	no dial tone detected
S00-255 ringsselect ring to answer on ring count (incremented with each ring)quiet answerS10-255 ringsring count (incremented with each ring)connection at 2400 bit/sS20-127 ASCIIdefine earage return characterconnection at 9600 bit/sS30-127 ASCIIdefine line feed characterconnection at 9600 bit/sS40-127 ASCIIdefine line feed characterconnection at 9600 bit/sS50-32, 127 ASCIIdefine back space characterconnection at 9600 bit/sS62-255 sec.select wait time before bilnd dialingcarrier detected at 300 bit/sS71-255 1/10 sec.select duration of comma dial modifierS101-255 1/10 sec.select carrier detect response timeS120-255 sec.select fore duration/spacing of tonesS1150-255 1/10 sec.select engotiation failure treatmentS250-255 1/10 sec.select DTR change detect timeS260-255 sec.select DTR change detect timeS260-255 sec.select desired DCE line speedS260, 1, 3, 4, 5, 7select desired DCE line speedS260, 255 sec.select desired DCE line speedS260, 2250bulfer lower limit ASB (&Q6)S262-250bulfer lower limit ASB (&Q6)S262-250bulfer lower limit ASB (&Q6)S260-14comercing failure cause orde				7	BUSY	busy signal detected
S10-255 fingsring count (incremented with each ring)CONNECT 2400connection at 2400 bit/sS20-127 ASCIIdefine escape sequence characterconnection at 4800 bit/sconnection at 4800 bit/sS30-127 ASCIIdefine line feed characterconnection at 2600 bit/sconnection at 2600 bit/sS40-127 ASCIIdefine back space characterconnection at 2600 bit/sconnection at 2600 bit/sS50-32, 127 ASCIIdefine back space characterconnection at 2600 bit/sS62-255 sec.select wait time for carrier/dial tonecarrier detected at 200 bit/sS71-255 1/10 sec.select carrier detect response timeS101-255 1/10 sec.select time between carrier loss/hang upS1150-255 msec.define escape frequency guard timeS120-255 1/100 sec.select DTR change detect timeS260, 1, 3, 4, 5, 7select TS to CTS delayS360, 1, 3, 4, 5, 7select desired DCE line speedS360, 7, 128feature negotiation failure treatmentS370-3, 136, 138protocol selectionS480, 7, 128feature negotiation actionS491-249buffer lower limit ASB (&G6)S502-250buffer lower limit ASB (&G6)S260-14connectim Atilure cause orde	•	•	•	8	NO ANSWER	
11CONNECT 4800Connection at 4800 bit/s520-127 ASCIIdefine escape sequence character530-127 ASCIIdefine ine feed character540-127 ASCIIdefine line feed character550-32, 127 ASCIIdefine back space character562-255 sec.select wait time for carrier/dial tone580-255 sec.select duration of comma dial modifier591-255 1/10 sec.select time between carrier detect response time5101-255 1/10 sec.select time between carrier loss/hang up51150-255 msec.define escape frequency guard time5120-255 1/100 sec.select DTR change detect time5260-255 1/100 sec.select DTR change detect time5260-255 1/100 sec.select desired DCE line speed5380-255 sec.select desired DCE line speed5360, 1, 3, 4, 5, 7select desired DCE line speed5360, 1, 36, 138protocol selection5491-249buffer lower limit ASB (&O6)5491-249buffer lower limit ASB (&O6)5402-250buffer lower limit ASB (&O6)5412-250buffer lower limit ASB (&O6)5420-14connection failure rause code		•	-	10	CONNECT 2400	connection at 2400 bit/s
 CONNECT 9800 Connection at 9800 bits CONNECT 9200 connection at 9200 bits CONNECT 9200 connection at 9200 bits CARRIER 300 carrier detected at 300 bits CARRIER 1200 carrier detected at 1200 bits CARRIER 1200 carrier detected at 2400 bits CARRIER 1200 carrier detected at 1200 bits CONTROLAP-B PROTOCOL: ERROR- error-control mode with LAP-B protocol CONTROL/AP-B CONTROL/AFT PROTOCOL: LAP-M V.42 LAP-M V.42 LAP-M with AFT PROTOCOL: LAP-MWAFT V.42 LAP-M with AFT PROTOCOL: ALT alternate protocol S00 0, 1, 3, 4, 5, 7 select desired DCE line speed S38 0-255 sec. select desired DCE line speed S38 0, 7, 128 feature negotiation action S49 1-249 buffer lower limit ASB (&Ge) S50 2-250 buffe		•		11	CONNECT 4800	connection at 4800 bit/s
S40-127 ASCII define line feed characterdefine line feed characterdefine back space characterS50-32, 127 ASCII define back space characterdefine back space characterdefine back space characterS62-255 sec.select wait time for carrier/dial tonedefine back space characterS80-255 sec.select wait time for carrier/dial tonedefine duration of comma dial modifierS91-255 1/10 sec.select arrier detect response timeS101-255 1/10 sec.select tarrier detect response timeS1150-255 msc.define duration/spacing of tonesS120-255 1/100 sec.select TS to CTS delayS180-255 sec.select TS to CTS delayS260-255 1/100 sec.select trars to CTS delayS380-255 sec.select desired DCE line speedS380-255 sec.select desired DCE line speedS380-7, 128feature negotiation failure treatmentS491-249buffer lower limit ASB (&Ge)S491-249buffer lower limit ASB (&Ge)S460-7, 128break handlingS460-7, 128break handlingS460-7, 128break handlingS420, 7, 128break handlingS460-144compaction failure cause orde				12	CONNECT 9600	connection at 9600 bit/s
S50-32, 127 ASCIIdefine back space characterS62-255 sec.select wait time before blind dialingS71-255 sec.select wait time tor carrier/dial toneS80-255 sec.select duration of comma dial modifierS91-255 1/10 sec.select carrier detect response timeS101-255 1/10 sec.select time between carrier loss/hang upS1150-255 msec.define duration/spacing of tonesS120-255 1/50 sec.select timeS180-255 sec.select DTR change detect timeS260-255 1/100 sec.select DTR change detect timeS260-255 1/100 sec.select desired DCE line speedS370-3, 5, 6select desired DCE line speedS380, 7, 128feature negotiation actionS480, 7, 128feature negotiation actionS491-249buffer lower limit ASB (&Q6)S491-249buffer lower limit ASB (&Q6)S423, 7, 128break handlingS460-14connection failure cause orde			-	14	CONNECT 19200	connection at 19200 bit/s
S62-255 sec.select wait time before blind dialing select duration of comma dial modifier select carrier detect response time select carrier detect response time select time between carrier loss/hang up S1146CARRIER 2400 carrier detected at 2400 bit/s asynchronous modeS10-255 sec.select duration of comma dial modifier select tarrier detect response time between carrier loss/hang up S1150-255 1/10 sec.select tarrier detect response time select time between carrier loss/hang up select test timer70PROTOCOL: NONE error-control mode with LAP-B protocol CONTROLAP-BS120-255 1/50 sec.define descape frequency guard time select RTS to CTS delay select desired DCE line speed S360, 1, 3, 4, 5, 7 select negotiation failure treatment sasselect desired DCE line speed select delay before forced hang up parameter (0, 1, etc.) is not specified, the modem assumes the 0 parameter.S480, 7, 128feature negotiation action buffer lower limit ASB (&Q6) S86buffer lower limit ASB (&Q6) buffer lower limit ASB (&Q6)Hayes, the Hayes logo, and V-series Smartmodem 2400 are registered trademarks of Hayes Micro- computer Products, Inc.				40	CARRIER 300	carrier detected at 300 bit/s
1-255 Sec.select wait ime for carrier/dial tone580-255 sec.select duration of comma dial modifier591-255 1/10 sec.select carrier detect esponse time5101-255 1/10 sec.select time between carrier loss/hang up51150-255 msec.define duration/spacing of tones5120-255 1/50 sec.define frequency guard time5180-255 sec.select TR change detect time5260-255 1/100 sec.select RTS to CTS delay5370-3, 5, 6select desired DCE line speed5380-255 sec.select desired DCE line speed5460-3, 136, 138protocol selection5480, 7, 128feature negotiation action5491-249buffer lower limit ASB (&Q6)5802-250buffer lower limit ASB (&Q6)5823, 7, 128break handling5860-14compaction failure cause orde				46	CARRIER 1200	carrier detected at 1200 bit/s
S80-255 sec.select duration of comma dial modifierS91-255 1/10 sec.select carrier detect response timeS101-255 1/10 sec.select time between carrier loss/hang upS1150-255 msec.define duratior/spacing of tonesS120-255 1/50 sec.define duration/spacing of tonesS120-255 1/100 sec.select test imerS260-255 1/100 sec.select DTR change detect timeS260-255 1/100 sec.select TRS to CTS delayS260-255 sec.select desired DCE line speedS280, 1, 3, 4, 5, 7select desired DCE line speedS380-255 sec.select delay before forced hang upS480, 7, 128feature negotiation actionS491-249buffer lower limit ASB (&Q6)S402-250buffer lower limit ASB (&Q6)S423, 7, 128break handlingS460-3, 136, 138protocol selectionS480, 7, 128feature negotiation actionS491-249buffer lower limit ASB (&Q6)S402-250buffer lower limit ASB (&Q6)S423, 7, 128break handlingS460-14connection failure cause orde				47	CARRIER 2400	carrier detected at 2400 bit/s
 Sign 1-255 1/10 sec. Select carrier detect response time Sign 1-255 1/10 sec. Select time between carrier loss/hang up Source Sign 2-255 1/50 sec. Select time between carrier loss/hang up Source Sign 2-255 1/50 sec. Select time between carrier loss/hang up Source Sign 2-255 1/100 sec. Select TRS to CTS delay Source Sign 2-255 1/100 sec. Select TRS to CTS delay Source Sign 2-255 sec. Select DRT change detect time Source Sign 2-255 1/100 sec. Select TRS to CTS delay Source Sign 2-255 sec. Select desired DCE line speed Source Sign 2-255 sec. Select desired DCE line speed Source Sign 2-250 buffer lower limit ASB (&Q6) Source Sign 2-250 buffer lower limit ASB (&Q6)<th></th><th></th><th></th><th>70</th><th>PROTOCOL: NONE</th><th>asynchronous mode</th>				70	PROTOCOL: NONE	asynchronous mode
S101-255 1/10 sec.select time between carrier loss/hang up define duration/spacing of tonesS1150-255 msec.define escape frequency guard time select test timerS120-255 1/50 sec.define escape frequency guard time select test timerS180-255 sec.select test timerS260-255 1/100 sec.select TRS to CTS delayS360, 1, 3, 4, 5, 7select negotiation failure treatmentS370-3, 5, 6select desired DCE line speedS380-255 sec.select delay before forced hang upS460-3, 136, 138protocol selectionS480, 7, 128feature negotiation actionS491-249buffer lower limit ASB (&O6)S502-250buffer lower limit ASB (&O6)S860-14connection failure cause orde				71	PROTOCOL: ERROR-	error-control mode with LAP-B protocol
S1150-255 msec. define duration/spacing of tones73PROTOCOL: EAROR- CONTROL/AFTerror-control mode with AFTS120-255 1/50 sec. select test timerselect test timer77PROTOCOL: LAP-MV.42 LAP-MS180-255 sec. select test timerselect test timer79PROTOCOL: LAP-M V.42 LAP-MS260-255 1/100 sec.* select DTR change detect time select test timerselect TS to CTS delay79PROTOCOL: LAP-MVFTS260-255 sec. select delay before forced hang up S460-3, 136, 138protocol selectionNotes:Italicized parameters indicate default settings. If a parameter (0, 1, etc.) is not specified, the modem assumes the 0 parameter.S480, 7, 128feature negotiation action buffer lower limit ASB (&Q6)Hayes, the Hayes logo, and V-series Smartmodem 2400 are registered trademarks of Hayes Micro- computer Products, Inc.			•		CONTROL/LAP-B	
S120-255 1/50 sec.define escape frequency guard timeS180-255 sec.select test timerS250-255 1/100 sec.*select DTR change detect timeS260-255 1/100 sec.*select DTR change detect timeS260-255 1/100 sec.*select TTS to CTS delayS370-3, 5, 6select desired DCE line speedS380-255 sec.select delay before forced hang upS460-3, 136, 138protocol selectionS480, 7, 128feature negotiation actionS491-249buffer lower limit ASB (&Q6)S502-250buffer lower limit ASB (&Q6)S860-14connection failure cause orde				73	PROTOCOL: ERROR-	error-control mode with AFT
S180-255 sec.select test timerS250-255 1/100 sec.*select DTR change detect timeS260-255 1/100 sec.*select DTR change detect time79PROTOCOL: LAP-MAFTV.42 LAP-M with AFTS260-255 1/100 sec.*select RTS to CTS delay80PROTOCOL: LAP-MAFTV.42 LAP-M with AFTS260-255 1/100 sec.*select RTS to CTS delay80PROTOCOL: ALTalternate protocolS370-3, 5, 6select delay before forced hang upprotocol selectionNotes:Italicized parameters indicate default settings. If aS380-255 sec.select delay before forced hang upprotocol selectionsasumes the 0 parameter.S480, 7, 128feature negotiation actionHayes, the Hayes logo, and V-series SmartmodemS491-249buffer lower limit ASB (&Q6)2400 are registered trademarks of Hayes Micro- computer Products, Inc.S660-14connection failure cause ordeconnection failure cause orde					CONTROL/AFT	
 0-255 1/100 sec.* 12-249 selection 12-249 selection 12-249 buffer lower limit ASB (&Q6) 12-249 buffer lower limit ASB (&Q6) 2400 are registered trademarks of Hayes Micro-computer Products, Inc.* 				77	PROTOCOL: LAP-M	V.42 LAP-M
S260-255 1/100 sec.select RTS to CTS delayS360, 1, 3, 4, 5, 7select negotiation failure treatmentS370-3, 5, 6select desired DCE line speedS380-255 sec.select delay before forced hang upS460-3, 136, 138protocol selectionS480, 7, 128feature negotiation actionS491-249buffer lower limit ASB (&Q6)S502-250buffer lower limit ASB (&Q6)S823, 7, 128break handlingS460-14connection failure areas orde				79	PROTOCOL: LAP-M/AFT	V.42 LAP-M with AFT
S360, 1, 3, 4, 5, 7select negotiation failure treatmentS370-3, 5, 6select desired DCE line speedS380-255 sec.select delay before forced hang upS460-3, 136, 138protocol selectionS480, 7, 128feature negotiation actionS491-249buffer lower limit ASB (&Q6)S502-250buffer lower limit ASB (&Q6)S423, 7, 128break handlingS460-14connection failure cause orde			-	80	PROTOCOL: ALT	alternate protocol
S370-3, 5, 6select desired DCE line speedS380-255 sec.select delay before forced hang upS460-3, 136, 138protocol selectionS480, 7, 128feature negotiation actionS491-249buffer lower limit ASB (&O6)S502-250buffer lower limit ASB (&O6)S423, 7, 128break handlingS460-14connection failure cause orde						
S380-255 sec.select delay before forced hang upparameter (0, 1, etc.) is not specified, the modemS460-3, 136, 138protocol selectionassumes the 0 parameter.S480, 7, 128feature negotiation actionHayes, the Hayes logo, and V-series SmartmodemS491-249buffer lower limit ASB (&O6)2400 are registered trademarks of Hayes Micro- computer Products, Inc.S460-14connection failure cause orde			-			
S460-3, 136, 138protocol selectionassumes the 0 parameter.S480, 7, 128feature negotiation actionassumes the 0 parameter.S491-249buffer lower limit ASB (&Q6)Hayes, the Hayes logo, and V-series SmartmodemS502-250buffer lower limit ASB (&Q6)2400 are registered trademarks of Hayes Micro- computer Products, Inc.S860-14connection failure cause orde				Not		
S480, 7, 128feature negotiation actionS491-249buffer lower limit ASB (&Q6)S502-250buffer lower limit ASB (&Q6)S823, 7, 128break handlingS860-14conpection failure cause onde						
S491-249buffer lower limit ASB (&Q6)Hayes, the Hayes logo, and V-series SmartmodemS502-250buffer lower limit ASB (&Q6)2400 are registered trademarks of Hayes Micro- computer Products, Inc.S860-14connection failure cause code		• •			assumes the 0	parameter.
S50 2-250 buffer lower limit ASB (&Q6) 2400 are registered trademarks of Hayes Micro- S82 S82 3,7,128 break handling computer Products, Inc.		• •	-		Havaa tha Have	a lago and V parios Smortwordom
S82 3,7,128 break handling computer Products, Inc.						
S86 0-14 connection failure cause onde			. ,			
S86 0-14 connection failure cause code IBM is a registered trademark of International Busi-		3, 7, 128	5		computer Produ	icis, inc.
	S86	0-14	connection failure cause code		IBM is a register	ed trademark of International Busi-

IBM is a registered trademark of International Business Machine Corporation.

Silicon Systems is a registered trademark of Silicon Systems, Inc.

All other trademarks are the property of their respective companies.

* Indicates Hayes patented technology (in addition to these patents, other patents concerning Hayes developed technology are pending).

When the modern is configured for synchronous operation, and until online, units of S25 are measured in whole seconds rather than 1/100 sec.

0 = no power down

compression result code

S89

S95

•

0-255

bit mapped

DIAL MODIFIERS

Modifier	Description
0-9*#ABCD	digits/characters for dialing
Р	pulse dial (factory setting)
т	tone dial
,	delay processing of next character
1	hookflash
@	wait for quiet answer
W	wait for dial tone
;	return to command state after dialing
R	reverse mode (to call an originate-only modem)
S=n	dial stored number in location "n" (n=03)

SSI 73D680

The SSI 73D680 Hayes V-series protocol processor is a CMOS VLSI chip integrating Z80 CPU, a four channel Counter Timer (CTC), dual port Parallel I/O (PIO), and dual channel Serial I/O (SIO), together with about 1200 logic gates. All functions are included on a single piece of silicon packaged in a 100-pin gull wing flat pack.

PIN DESCRIPTION

NAME	TYPE	DESCRIPTION
OSCIN, OSCOUT	 0	Crystal The OSCIN and OSCOUT pins provide the interface for either an external crystal or a CMOS compatible clock. Frequency of the crystal or external clock source is 11.0592 MHz \pm 0.01%. If an external CMOS clock is applied, the OSCOUT pin should be left unterminated. The external clock may be connected directly to the OSCIN pin.
MA0-MA8	Ο	Multiplexed Address Bus MA0-MA8 are output pins which provide multiplexed address signals from the Z80 CPU and bank switch logic. Under most circumstances the lower 8 bits of the Z80 CPU's address, A0-A7, will be placed on pins MA0-MA7. MA8 will typically source XA17 from the bank select logic. When a memory access to a valid DRAM address is made, these lines will be switched to provide high order address lines A8-A12, and the bank switched lines XA13-XA16, respectively. Switching occurs shortly after the beginning of the second T-State of the memory cycle. These signals are intended to provide a multiplexed address bus for direct interface to external Dynamic RAM. These signals also are used as low order address signals for interfacing external memory and I/O devices.
A8-A15	0	High Order Address Bus The A8-A15 output pins source the most significant 8 bits of the processor address directly from the Z80 CPU. These signals are to be used for interfacing external memory and "extended" I/O devices.
XA13- XA17	0	Bank Switched Address Bus XA13-XA17 are output pins which provide bank switched address signals directly from the bank switched multiplexer logic. These signals are to be used for interfacing external non- multiplexed memory devices.
D0-D7	I/O	Data Bus Signals D0-D7 provide a common 8-bit bidirectional data bus used for all memory and I/O data transactions.
RD	0	Read Strobe The RD signal indicates when the Z80 CPU is requesting read data from a memory or an I/O device. This signal should be used by addressed memory or I/O devices to gate data onto the data bus.
WR	0	Write Strobe The $\overline{\rm WR}$ signal indicates when the Z80 CPU has placed valid data on the 8-bit data bus for storage by the addressed memory or I/O device.
MREQ	0	Memory Request The MREQ signal indicates when the Z80 CPU address bus holds a valid memory address for either a memory read or memory write transaction.

SSI 73D680 PIN DESCRIPTION, Continued

NAME	TYPE	DESCRIPTION
ĪORQ	0	Input/Output Request The IORQ signal indicates when the Z80 CPU address bus holds a valid memory address for either an I/O read or I/O write cycle. This signal is also used in conjunction with an active low $\overline{M1}$ signal during a Mode 2 interrupt acknowledge cycle to indicate to the interrupting device that its interrupt vector should be placed on the data bus.
MT	0	Machine Cycle One The $\overline{M1}$ signal when active together with \overline{MREQ} indicates that the current machine cycle is an opcode fetch. The $\overline{M1}$ signal when active together with \overline{IORQ} indicates an interrupt acknowledge cycle.
NMI	I	Non-Maskable Interrupt The NMI signal is a negative edge triggered interrupt input used to force the Z80 CPU to restart at location 0066H. NMI is recognized at the end of the current instruction and has a higher priority than NT. This signal is pulled high internally via an on-chip 20K pullup cell.
INT	1	Interrupt Request The INT signal is an open drain interrupt request line which is shared by both on-chip I/O resources and external interrupt sources. This signal is wired-OR and is pulled high internally via an on-chip 20K pullup cell. The Z80 CPU will respond to an active interrupt signal at the end of the current instruction if the internal software controlled interrupt enable flip-flop is enabled.
RESET	1	Reset The RESET input signal is used to initialize the Z80 CPU, SIO, CTC and all programmable registers contained on board the chip. The RESET input is Schmitt-triggered and is internally latched and extended for 256 system clock cycles after the externally applied signal goes inactive.
ZRESET	0	Z80 System Reset The ZRESET signal is an output signal intended to be used as an active low reset signal for external peripherals to the chip. ZRESET will be driven low whenever the RESET returns high. ZRESET may also be activated by a low to high transition of the signal on the PIOA_0 pin if such detection has been enabled via programming of an internal reset enable control register bit.
CLK	0	Clock The CLK signal provides a divide by two output of the OSCIN clock input frequency. This signal provides a single phase timing reference which matches the internal Z80 system clock. This signal is to be used by external peripherals requiring access to the Z80 system clock reference.
CSROM	0	Chip Select ROM The CSROM signal indicates when the Z80 CPU is performing a memory transaction to a memory location over the 0 to 32K Z80 physical address range. This signal is intended to be used as the chip select strobe for an external ROM device.
CSRAM	0	Chip Select RAM The CSRAM signal indicates when the Z80 CPU is performing a memory read cycle to a memory location over the 32K to 64K Z80 physical address range. This signal is intended to be used as the output enable strobe for external DRAM devices and is used to instruct such devices to gate data onto the Z80 data bus. Additionally, an internal register can be programmed to allow CSRAM to occur during a memory read cycle to any address over the entire 64K physical address range.

		SSI 73D680
NAME	TYPE	DESCRIPTION
CSIO1	0	Chip Select IO1 The CSIO1 signal indicates when the Z80 CPU is performing a read or write transaction to an external device mapped over the Z80 I/O address range of 2C-2F (hex). This signal is not qualified by IORQ and is intended to be used with I/O mapped devices which require chip select to become active before the write or read strobe. The IRD and IWR signals provide the suitable IORQ qualification for such devices.
CSIO2	0	Chip Select IO2 The $\overline{\text{CSIO2}}$ signal indicates when the Z80 CPU is performing an I/O transaction to an external device mapped over the Z80 I/O address range of 40-5F (hex). This signal is intended to be used as the chip select strobe for an external I/O device and is internally qualified by $\overline{\text{IORQ}}$.
CSEE	0	Chip Select EEPROM The CSEE signal indicates when the Z80 CPU is performing an I/O transaction to an external device mapped over the Z80 I/O address range of 60-7F (hex). This signal is intended to be used as the chip select strobe for the external I/O device and is internally qualified by IORQ.
CSIO3	0	Chip Select IO3 The CSIO3 signal indicates when the Z80 CPU is performing an I/O transaction cycle to an external device mapped over the Z80 I/O address range of 80-9F (hex). This signal is intended to be used as the chip select strobe for an external I/O device and is internally qualified by IORQ.
RAS	0	Row Address Strobe The RAS signal is intended to be used as the row address strobe when used in conjunction with external DRAM devices. The first falling edge of RAS during a memory cycle instructs the DRAM devices to latch the current value present on the MA0-MA8 address lines. RAS timing is also designed to activate the internal refresh counter of the DRAM during all opcode fetch cycles.
CAS	0	Column Address Strobe The CAS signal is intended to be used as the column address strobe when used in conjunction with external DRAM devices. The first falling edge of CAS during a memory cycle instructs the DRAM devices to latch the current value present on the MA0-MA8 address lines.
WEEE	0	Write Enable EEPROM The WEEE signal indicates that the Z80 CPU data bus holds valid data to be stored into an I/O device mapped over the address range of 60-7F (hex). This signal is intended to be used as the write strobe for an external device enabled with the \overline{CSEE} signal.
ĪRD	0	I/O Read Strobe The IRD signal indicates when the Z80 CPU is requesting read data from an I/O device. This signal should be used by addressed I/O devices to gate data onto the data bus. The IRD signal is qualified by both active IORQ and RD from the Z80 CPU.
ĪWR	0	I/O Write Strobe The IWR signal indicates when the Z80 CPU has placed valid data on the 8-bit data bus for storage by the addressed I/O device. This signal is qualified by both active IORQ and WR from the Z80.

SSI 73D680 PIN DESCRIPTION, Continued

NAME	TYPE	DESCRIPTION
TXD_DTE	Ι	Transmit Data DTE The TXD_DTE signal is the serial transmit data input for the built-in data terminal interface implemented on the A-channel of the internal SIO. Signal polarity is high for mark and low for space.
RXD_DTE	0	Receive Data DTE The RXD_DTE signal is the serial receive data output for the built-in data terminal interface implemented on the A-channel of the internal SIO. Signal polarity is high for mark and low for space.
TXD_MOD	0	Transmit Data MOD The TXD_MOD signal is the serial transmit data output for the built-in modem $\overline{\text{DCE}}$ interface implemented on the B-channel of the internal SIO. Signal polarity is high for mark and low for space.
RXD_MOD	I	Receive Data MOD The RXD_MOD signal is the serial receive data input for the built-in modem $\overline{\text{DCE}}$ interface implemented on the B-channel of the internal SIO. Signal polarity is high for mark and low for space.
TXC_IN	Ι	Transmit Clock Input The TXC_IN signal accepts signal element timing information for synchronous serial data transmitted on the TXD_MOD serial data output signal. The low to high transition indicates the center of each signal element on TXD_MOD.
RXC_IN	1	Receive Clock Input The RXC_IN signal accepts signal element timing information for synchronous serial data received on the RXD_MOD serial data input signal. The low to high transition indicates the center of each signal element on RXD_MOD.
TXC_OUT	0	Transmit Clock Output The TXC_OUT signal provides signal element timing information for synchronous serial data received on the TXD_DTE serial data input signal. The low to high transition indicates the center of each signal element on TXD_DTE.
RXC_OUT	0	Receive Clock Output The RXC_OUT signal provides signal element timing information for synchronous serial data transmitted on the RXD_DTE serial data output signal. The low to high transition indicates the center of each signal element on RXD_DTE.
XTC_IN	1	Transmit Clock Input The XTC_IN signal accepts signal element timing information for synchronous serial data received on the TXD_DTE serial data input signal for modes where the data terminal must supply the transmit clock. The low to high transition indicates the center of each signal element on TXD_DTE.
PORT1_0 - PORT1_7	0	Output Port PORT1_0 - PORT1_7 provide an eight-bit wide general purpose fixed output port. All eight outputs are derived from a common on chip I/O accessed register with readback capability.

		SSI 73D680	
NAME	TYPE	DESCRIPTION	
PIOA_0	1	PIOA Bit 0 PIOA_0 is the least significant I/O line provided from the A-channel of the internal PIO. This signal is user programmable as either an input or output and may be used for general purpose I/O applications. When configured as an input, this signal can also be programmed to generate a system reset upon receipt of a low to high transition.	2
PIOA_1	1	PIOA Bit 1 PIOA_1 is an I/O line provided from the A-channel of the internal PIO. When configured as an input, this signal may also be programmed to generate interrupts via the DCDA external status interrupt line on the A-channel of the internal SIO. Interrupts generated in this manner are transition sensitive.	
PIOA_2	0	PIOA Bit 2 PIOA_2 is an I/O line provided from the A-channel of the internal PIO.	
PIOA_3	0	PIOA Bit 3 PIOA_3 is an I/O line provided from the A-channel of the internal PIO.	
PIOA_4	0	PIOA Bit 4 PIOA_4 is an I/O line provided from the A-channel of the internal PIO.	
PIOA_5	1	PIOA Bit 5 PIOA_5 is an I/O line provided from the A-channel of the internal PIO. When configured as an input, this signal may also be programmed to generate interrupts via the CTS external status interrupt line on the B-channel of the internal SIO. Interrupts generated in this manner are transition sensitive.	
PIOA_6	1	PIOA Bit 6 PIOA_6 is an I/O line provided for the A-channel of the internal PIO.	
PIOA_7	I	PIOA Bit 7 PIOA_7 is the most significant I/O line provided from the A-channel of the internal PIO.	
PIOB_0-1 PIOB_2-5 PIOB_6-7	 0 	PIOB_0-PIOB_7 provide an eight-bit wide general purpose I/O port. All eight lines are derived from the B-channel of the internal PIO and can individually be programmed as either an input or output. PIOB lines 6 and 7, when programmed as inputs, are internally pulled high via on-chip 20K pullup cells to facilitate their use as jumper strap inputs.	
INTDCD	1/0	Interrupt DCD INTDCD is a general purpose input signal which is gated to the $\overline{\text{DCD}}$ external status line on the B-channel of the SIO. This signal can also be programmed to generate transition sensitive interrupts via the SIO or act as the master IEI daisy chain interrupt enable input.	
SYNCA	I/O	SYNCA SIO Channel A SYNCA can be defined as either an input or output based on the configuration of SIO channel A. This signal is directly connected to the SYNCA line of the SIO. This signal may either be pulled high or left open in the final application circuit.	
ITC1-ITC3	1	Internal Test Control ITC1-ITC3 are internal test control lines required to verify proper functionality of internal chip circuity. These signals should be tied low in the final application circuit.	

SSI 73D680 PIN DESCRIPTION, Continued

NAME	TYPE	DESCRIPTION
TEN	1	Internal Test Control TEN is the internal test enable control line required to verify proper functionality of internal chip circuitry. This signal should be tied low in the final application circuit.
VDD	1	+5 Volt Power Input Four VDD power input leads are provided by this chip package. These signals should be connected to a +5 Volt power supply with a tolerance rating of \pm 5% or better.
VSS	1	Power Return Input Four VSS power return leads are provided by this chip package. These signals should be connected to the ground return line of the +5 Volt power supply. These pins provide the ground reference for all signals on the chip.

ABSOLUTE MAXIMUM RATINGS

GENERAL REQUIREMENTS

Power Supply (V _{DD})	–0.3V to 7.0V
Input Voltage (Vi)	0.3V to V _{DD} + 0.3V
Input Current (Ii)	
Soldering Temperature	
Storage Temperature (Tstg)	40°C to 125°C

Power Supply Range	5V ±5%
Operating Temperature Range	0-70°C
Operating Humidity Range 10-90% non	condensing

Notice: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods of time may affect device reliability.

SYMBOL	PARAMETER	TEST CONDITIONS	MIN	TYP(3)	MAX	UNIT
V _{IL}	Input Low Voltage	except RESET	-0.3		0.8	v
V _{IH}	Input High Voltage	except RESET	2.2		V _{DD}	V
V _{ILT}	Min. Low Going Input Threshold Voltage for RESET		0.9			v
V _{IHT}	Max. High Going Input Threshold Voltage for RESET				3.6	v
V _H	Input Hysterysis Voltage		0.4		2.5	V
V _{ol}	Output Low Voltage	l _{oL} = 2 mA			0.4	V
V _{он1}	Output High Voltage	I _{он} = -1.6 mA	2.4			V
V _{OH2}	Output High Voltage	I _{он} = –250 µА	V _{DD} - 0.8			V
l _u	Input Leakage Current	$V_{SS} \le V_{IN} \le V_{DD}$			±10	μΑ
l _{LOZ}	3-State Output Leakage Current in Float	$V_{SS} + 0.4 \le V_{IN} \le V_{DD}$			±10	μΑ
I _{DD}	Power Supply Current	$V_{cc} = 5V, fCLK = 8 MHz$ $V_{IH} = V_{DD} - 0.2V, V_{IL} = 0.2V$			80	mA

DC CHARACTERISTICS, TTL Level Input Buffer (Ta = 0°C - 70°C; $V_{DD} = 5.0V \pm 5\%$)

SSI 73D680

AC CHARACTERISTICS	(VCC = 5.0V ±5%, Ta = 25°C, Load	= 100 pF for all signals except \overline{RAS} = 30 pF)
--------------------	----------------------------------	---

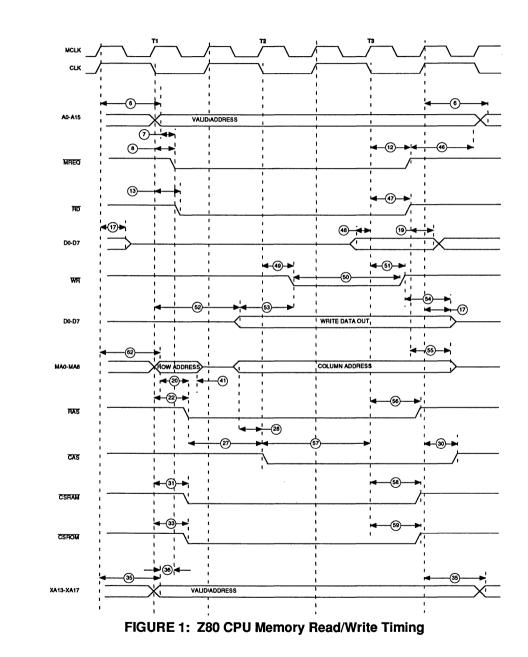
NO.	SYMBOL	PARAMETER	MIN	МАХ	UNIT	_
1	TcC	System Clock Cycle Time	125	DC	ns	
2	TwCh	System Clock Pulse Width (high)	55	DC	ns	9
3	TwCl	System Clock Pulse Width (low)	55	DC	ns	2
4	TfC	System Clock Fall Time		10	ns	
5	TrC	System Clock Rise Time		10	ns	
6	TdCrADR	Clock to Address Valid Delay		80	ns]
7	TdA	Address Valid to MREQ Delay	20		ns	
8	TdCfMREQf	Clock to Falling MREQ Delay		58	ns	
9	TdCrMREQr	Clock to Rising MREQ Delay		58	ns	1
10	TwMREQh	MREQ Pulse Width (high)	45		ns	
11	TwMREQI	MREQ Pulse Width (low)	100		ns]
12	TdCfMREQr	Clock to Rising MREQ Delay		58	ns	
13	TdCfRDf	Clock to Falling RD Delay		70	ns	1
14	TdCrRDr	Clock to Rising RD Delay		60	ns	
15	TdCrM1f	Clock to Falling M1 Delay		70	ns]
16	TdCrM1r	Clock to Rising M1 Delay		70	ns	1
17	TdCrDz	Clock to Data Float Delay		70	ns	1
18	TsDCr	Data Setup Time to Clock	30		ns	1
19	ThDRDr	Data Hold Time to RD Rising	0		ns	1
20	TdMAR	Row Address to RAS Delay	5		ns	1
21	ThMAR	Row Address Hold Time from RAS (Note 1)	15		ns	1
22	TdCfRASf	Clock to Falling RAS Delay		70	ns	1
23	Tw1RASI	RAS First Pulse Width (low)	120		ns	1
24	TwRASh	RAS Pulse Width (high)	105		ns	1
25	Tw2RASI	RAS Second Pulse Width (low)	120		ns	1
26	TdCrRASr	Clock to Rising RAS Delay		30	ns	1
27	TdRASCAS	RAS to CAS Delay (Note 2)	30		ns	
28	TdMACCAS	Column Address to CAS Delay	5	-	ns	1
29	TdCASfCr	CAS Falling to Rising Clock of T3 (Note 2)	120		ns	1
30	TdCrCASr	Clock Rising to CAS Rising Delay		30	ns	1
31	TdCSRAMf	Clock to CSRAM Falling Delay		80	ns	1
32	TdCSRAMr	Clock to CSRAM Rising Delay		70	ns	1

Note:

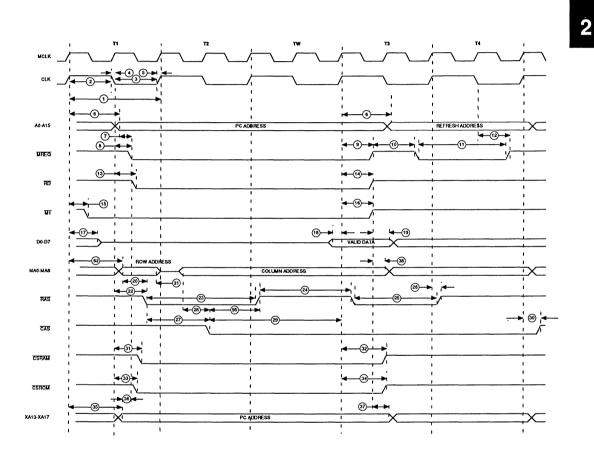
 To meet this specification when fCLK = 8 MHz, the EXTEND mode must be enabled to delay CAS and the MA0-8 address multiplexer by a quarter system clock cycle or (8) must occur within 45 ns after the falling edge of the clock during the T1 state time.

2. These timing specifications are valid for either setting of the EXTEND timing control signal.

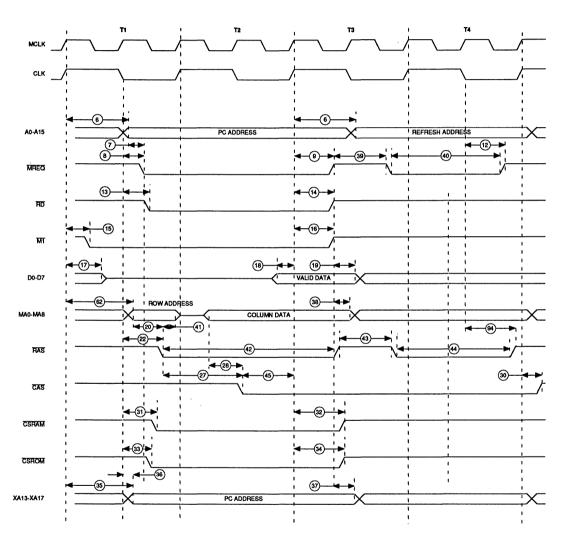
AC CHARACTERISTICS, Continued

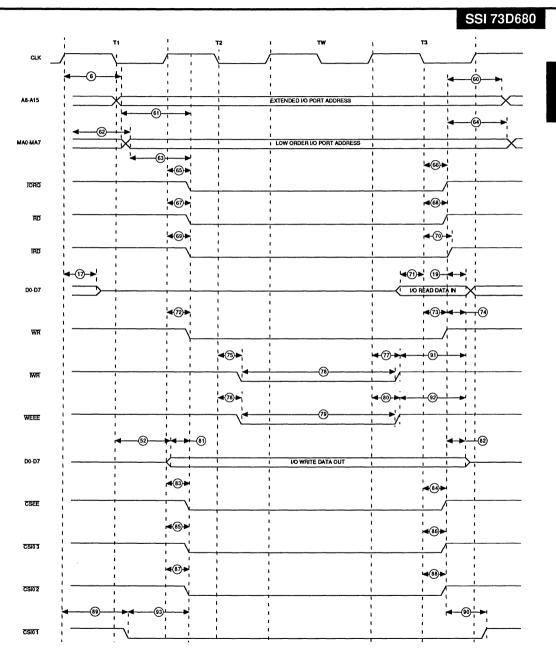

(VCC = 5.0V \pm 5%, Ta = 25°C, Load = 100 pF for all signals except \overline{RAS} = 30 pF)

NO.	SYMBOL	PARAMETER		MIN	MAX	UNIT
33	TdCSROMf	Clock to CSROM F		70	ns	
34	TdCSROMr	Clock to CSROM R		70	ns	
35	TdCrXA	Clock to XAddress	Valid Delay		95	ns
36	TdXA	XAddress Valid to N	MREQ Delay	5		ns
37	ThXA	XAddress Hold afte	r MREQ	10		ns
38	ThMAC	Column Address Ho	old after MREQ	0		ns
39	TwMREQh4	MREQ Pulse Width	(high) (Note 3)	110		ns
40	TwMREQI4	MREQ Pulse Width	(low) (Note 3)	160		ns
41	ThMAR4	Row Address Hold	Time from RAS (Note 3)	20		ns
42	Tw1RASI4	RAS First Pulse Wi	dth (low) (Note 3)	200		ns
43	TwRASh4	RAS Pulse Width (h	high) (Note 3)	110		ns
44	Tw2RASI4	RAS Second Pulse	Width (low) (Note 3)	160		ns
45	TdCASfCr4	CAS Falling to Risir	ng Clock of T3 (Note 3)	110		ns
46	TdMREQrAh	MREQ Rising to Ad	dress Hold Time	20		ns
47	TdCfRDr	Clock to RD Rising	Delay		60	ns
48	TdDCf	Data Setup Time to M2, M3, M4 or M5 o		30		ns
49	TdCfWRf	Clock to WR Falling	Delay		60	ns
50	TwWR	WR Pulse Width (lo	w)	100		ns
51	TdCfWRr	Clock to Rising WR	Delay		60	ns
52	TdCfD	Clock to Write Data	Valid		115	ns
53	TdDWRf	Write Data Valid pri	or to WR	5		ns
54	TdDWRr	Write Data Hold De	lay after WR	15		ns
55	TdMREQrMA	Column Address Ho	old after MREQ	0		ns
56	TdCfRASr	Clock to RAS Rising	g Delay		70	ns
57	TdCASfCf	CAS Falling to	Early CAS	110		ns
		Falling T3 Clock	Extended CAS	100		ns
58	TdCSRAMr2	Clock to CSRAM Ri	sing Delay		70	ns
59	TdCSROMr2	Clock to CSROM R	Clock to CSROM Rising Delay		70	ns
60	Td1ORQrAh	IORQ to Address H	old Time	20		ns
61	TsAlORQf	Address Setup to IC	Address Setup to IORQ Falling			ns
62	TdCrMA	Clock to MAddress	Delay		100	ns


Note:

 These specifications only apply when fCLK is ≤ 4 MHz. Operation above 4 MHz requires the enabling of the Op-Code Fetch Wait State generator circuitry.


					SSI 73D680
NO.	SYMBOL	PARAMETER	MIN	МАХ	UNIT
63	TsMAIORQf	MAddress Setup to IORQ Falling	55		ns
64	ThIORQrMA	IORQ to MAddress Hold Time	20		ns
65	TdCrIORQf	Clock to IORQ Falling Delay		55	ns
66	TdCflORQr	Clock to IORQ Rising Delay		60	ns
67	TdCrRDf	Clock to RD Falling Delay		60	ns
68	TdCfRDr	Clock to RD Rising Delay		60	ns
69	TdCrlRDf	Clock to IRD Falling Delay		70	ns
70	TdCIRDr	Clock to IRD Rising Delay		70	ns
71	TsDCf	Data Setup to Clock during T3	30		ns
72	TdCrWRf	Clock to WR Falling Delay		55	ns
73	TdCfWRr	Clock to WR Rising Delay		60	ns
74	ThWRrD	Data Hold Time after WR Rising	15		ns
75	TdCflWRf	Clock to IWR Falling Delay		20	ns
76	TwiWR	IWR Pulse Width (low)	170		ns
77	TdCrlWRr	Clock to IWR Rising Delay		25	ns
78	TdCfWEEEf	Clock to WEEE FallingDelay		30	ns
79	TwWEEE	WEEE Pulse Width (low)	170		ns
80	TdCrWEEEr	Clock to WEEE Rising Delay		35	ns
81	TdDWRfIO	Data Stable prior to WR Falling	55		ns
82	TdDWRr	Data Hold Time after WR	15		ns
83	TdCrCSEEf	Clock to CSEE Falling Delay		70	ns
84	TdCfCSEEr	Clock to CSEE Rising Delay		75	ns
85	TdCrCSFEf	Clock to CSFE Falling Delay		70	ns
86	TdCfCSFEr	Clock to CSFE Rising Delay		75	ns
87	TdCrCSGAf	Clock to CSGE Falling Delay		70	ns
88	TdCfCSGAr	Clock to CSGE Rising Delay		75	ns
89	TdCCSDEDf	Clock to CSDED Falling Delay		100	ns
90	TdlCSDEDr	IORQ Rising to CSDED Rising Delay	20		ns
91	ThDWRr	Data Hold Time after IWR	60		ns
92	ThDWEEEr	Data Hold Time after WEEE	60		ns
93	TdCSDEDfl	CSDED Falling to IORQ Delay	30		ns
94	TdCfRASr	Clock to RAS Rising Delay		70	ns



2

0690 - rev.

SSI 73D681

The SSI 73D681 Interface Chip takes commands from the SSI 73D680 Controller and converts them to a form useful to the SSI 73K224 modem chip. Responses from the modem are accumulated and interpreted by the interface and passed back to the Controller.

PIN DESCRIPTION

NAME	TYPE	DESCRIPTION
TEST2	0	For Silicon Systems use only. Do not connect.
DTR	1	Powers up chip when power saving mode is enabled. This signal must be low for at least 100 ms for power-up to occur.
TEST3	ο	For Silicon Systems use only. Do not connect.
TEST4	ο	For Silicon Systems use only. Do not connect.
CCMD	I	Command input for isochronous data from the host processor.
CINT	ο	Interrupt pin to the host processor. This pin may be as either an interrupt out pin or as a detector pin. The function of this pin is controlled by the host processor.
МАСК	0	Clock for data transfers from SSI 73D681 to the host processor.
MRSP	0	Isochronous data from SSI 73D681 that is transferred to the host processor.
RST	1	Reset in, active high.
RXD	1	Serial Asynchronous Command Port: receive data pin for asynchronous commands. This pin is used for testing and evaluation only.
TXD	0	Serial Asynchronous Command Port: transmit data pin for asynchronous commands. This pin is used for evaluation of the data pump.
SPL0	0	Speaker – Volume Command port. LSB
SPL1	0	Speaker – Volume Command port. MSB
HOOK	0	Hook drive relay, active low.
RESET	0	Reset active low to host processor.
RESET	0	Reset active high to RAM. This pin is assigned to a circuit that protects the RAM during power-up.

PIN DESCRIPTION, Continued

NAME	TYPE	DESCRIPTION
RELAY	0	Aux drive relay active low.
DAASEL	1	DAA type select 373/Other. This pin is an input. It should be connected low while reset is asserted by SSI 73D681. This pin is only used as input while reset is asserted. This pin is used as an output during internal Silicon Systems testing. This pin displays detector bits.
UARTEN	0	UART Enable. This pin is asserted low when the UART should be turned on for data after power saving mode is exited.
PSEN	0	Do not connect.
RD	0	Read active low to Silicon Systems "K" Family Data Pump.
WR	0	Write active low to Silicon Systems "K" Family Data Pump.
ALE	0	Address Strobe to "K" Family Data Pump.
AD0	I/O	Data line D0 to Data Pump.
AD1	I/O	Data line D1 to Data Pump.
AD2	I/O	Data line D2 to Data Pump.
AD3	I/O	Data line D3 to Data Pump.
AD4	I/O	Data line D4 to Data Pump.
AD5	I/O	Data line D5 to Data Pump.
AD6	I/O	Data line D6 to Data Pump.
AD7	I/O	Data line D7 to Data Pump.
CLKIN	I	11.0592 MHz clock in.
CLKOUT	0	11.0592 MHz clock out.
STR	I	Host Processor command data block.
CMD1	I	First command bit from Host Processor.
RXCLK	I	RXCLK from data pump.
RI	I	Ring indicate from DAA.
ĒĀ	I	Internal test pin.
vcc	1	Digital five volts power input.
VSS	0	Digital ground.

SSI 73D681

2

ABSOLUTE MAXIMUM RATINGS

Ambient Temperature Under Bias	0°C to +70°C
Storage Temperature	65°C to +150°C
Voltage on any Pin to V _{ss}	-0.5V to V _{cc} +0.5V
Voltage on V _{cc} to V _{ss}	0.5V to +6.5V
Maximum IoL per I/O pin	15 mA
Power Dissipation	

*This value is based on the maximum allowable die temperature and the thermal resistance to the package. Notice: Stresses listed above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods of time may affect device reliability.

Notice: Specifications contained within the following tables are subject to change.

SYMBOL	PARAMETER	TEST CONDITIONS	MIN	TYP(3)	MAX	UNIT
V _{iL}	Input Low Voltage (Except EA)		-0.5		0.2 V _{cc} – 0.1	V
V _{IL1}	Input Low Voltage (EA)		-0.5		$0.2 V_{cc} - 0.3$	V
V _{IH}	Input High Voltage (Except CLKIN, RST)		0.2 V _{cc} + 0.9		V _{cc} + 0.5	v
V _{IH1}	Input High Voltage (CLKIN, RST)		0.7 V _{cc}		V _{cc} + 0.5	V
V _{ol}	Output Low Voltage (Ports 1, 2, 3)				0.45	V
V _{ol1}	Output Low Voltage (Port 0, ALE, PSEN)	l _{oL} = 3.2 mA			0.45	V
V _{он}	Output High Voltage	$I_{oH} = -60 \ \mu A$, $V_{cc} = 5V \pm 10\%$	2.4			V
	(Ports 1, 2, 3, ALE, PSEN)	I _{он} = –25 µА	0.75 V _{cc}			V
		I _{он} = –10 µА	0.9 V _{cc}			v
I _{IL}	Logical 0 Input Current (Ports 1, 2, 3)	V _{IN} = 0.45V			-50	μA
۱ _n	Logical 1 to 0 Transition Current (Ports 1, 2, 3)	V _{IN} = 2.0V			-650	μA
և	Input Leakage Current (Port 0, EA)	0.45 < V _{IN} < V _{cc}			±10	μA
CIO	Pin Capacitance	Test Freq. = 1 MHz, Ta = 25°C			10	pF
l _{cc}	Power Supply Current Active Mode, 12 MHz (4) Idle Mode, 12 MHz (4) Power Down Mode			11 1.7 5	20 5 50	mA mA μA

DC READ CHARACTERISTICS (Ta = 0°C to 70°C; $V_{cc} = 5V \pm 20\%$; $V_{ss} = 0V$)

Port 0 = pins 32-39

Port 1 = pins 1-8

Port 2 = pins 21-28

Port 3 = pins 10-17

(This page intentionally left blank.)

SSI 73D682

The SSI 73D682 is a high performance, 1,048,576-bit Electrically Programmable Read Only Memory. It's organized as 128 K-words of 8 bits each, and provides code storage for the SSI 73D680 Controller.

Key Features Include:

.

- High Performance CMOS
- 120 ns Access Time
- 50 mA Active Power
- Simplified Upgrade Path
 - V_{PP} and PGM are "Don't Care" During Normal Read Operation
- EPI Processing
 - Latch-up Immunity to 200 mA
 - ESD Protection Exceeds 2000 Volts

JEDEC Standard Pin Configuration

- 32-pin Dip
- 32-pin Chip PLCC
- Compatible with JEDEC 27C010 EPROMs

ABSOLUTE MAXIMUM RATINGS

Storage Temperature65°C to +125°C
Voltages on any Pin with0.6V to +7V
Respect to Ground
V _{PP} with Respect to Ground0.6V to +14V
V _{cc} Supply Voltage with0.6V to +7V
Respect to Ground
ESD Protection>2000V

Notice: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods of time may affect device reliability.

PIN DESCRIPTION

NAME	TYPE	DESCRIPTION	
A0-A16	1	Addresses	
CE	1	Chip Enable	2
OE	I	Output Enable	
00-07	0	Outputs	
PGM	1	Program	
XX		Don't Care (During Read)	

ELECTRICAL CHARACTERISTICS

TIMING

PARAMETER	SSI 73D682
Address Access Time (max)	120 ns
Chip Select Time (max)	120 ns
Output Enable Time (max)	35 ns

OPERATING RANGE

RANGE	TEMPERATURE	V _{cc}	TOLERANCE
Comm.	0°C to +70°C	+5V	±5% / ±10%

DC READ CHARACTERISTICS (Over operating range with $V_{pp} = V_{cc}$)

SYMBOL	PARAMETER	TEST CONDITIONS	MIN	МАХ	UNIT
V _{IL}	Input Low Level		-0.5	0.8	۷
V _{IH}	Input High Level		2.0	V _{cc} + 0.5	٧
V _{oL}	Output Low Voltage	l _{oL} = 2.1 mA		0.4	V
V _{OH}	Output High Voltage	l _{oH} = -400 μA	2.4		٧
I _{SB}	V _{cc} Standby Current			1	mA
I _{cc}	V _{cc} Active Current	$\overline{CE} = \overline{OE} = V_{\mu}$, F = 5 MHz		50	mA
l _{pp}	V _{PP} Supply Current (1)	$V_{pp} = V_{cc}$		10	μA
V _{pp}	V _{PP} Read Voltage		$V_{cc} - 0.7$	V _{cc}	V
l _u	Input Load Current	$V_{IN} = 5.5V \text{ or GND}$		1	μA
I _{LO}	Output Leakage Current	V _{out} = 5.5V or GND	-10	10	μA

AC READ CHARACTERISTICS (Over operating range with $V_{pp} = V_{cc}$)

SYMBOL	PARAMETER	MIN	МАХ	UNIT
t _{acc}	Address to Output Delay		120	ns
t _{ce}	CE to Output Delay		120	ns
t _{oe}	OE to Output Delay		35	ns
t _{DF}	Output Disable to Output Float (2)		35	ns
t _{он}	Output Hold from Addresses, \overline{CE} or \overline{OE} , whichever occurred first (2)	0		ns

Notes:

- 1. The supply current is the sum of I_{cc} and I_{pp} . The maximum current value is with Outputs $O_0 O_7$ unloaded.
- 2. This parameter is only sampled and not 100% tested. Output Float is defined as the point where data is no longer driven see timing diagram.

MODE SELECTION

SSI 73D682

The mode of operation of the SSI 73D682 are listed below. A single 5V power supply is required in the read mode. All inputs are TTL levels except for V_{pp} and A_a for device signature.

			PINS						
MODE		CE	ŌĒ	PGM	A ₉	A _o	V _{pp}	V _{cc}	OUTPUTS
Read		V _{IL}	V _{IL}	X (1)	X	Х	X	5.0V	D _{OUT}
Output Disable		х	V _{IH}	Х	Х	Х	Х	5.0V	High Z
Standby		V _{IH}	Х	Х	X	Х	X	5.0V	High Z
Programm	ing	V	V _{IH}	V _{IL}	Х	Х	V _{pp} (2)	6.0V	D _{IN}
Program V	/erify	V _{IL}	V _{IL}	V _{IH}	х	Х	V _{PP} (2)	6.0V	D _{out}
Program Inhibit		V _{IH}	Х	Х	Х	Х	V _{PP} (2)	5.0V	High Z
Signature	Manufacturer (3)	V _{IL}	V _{IL}	х	V _H (2)	V _{iL}	X	5.0V	YY H (4)
	Device (3)	V _{IL}	V _{IL}	Х	V _H (2)	V _{IH}	Х	5.0V	ZZ H (5)

Notes:

1. X can be V_{μ} or V_{μ} 3. $A_1 - A_8$, $A_{10} - A_{16} = V_{\mu}$ 5. Z2. $V_{\mu} = V_{\mu p} = 12.75 \pm 0.25V$ 4. YY represents the manufacturer code 5. ZZ represents the device code

PROGRAMMING INFORMATION

DC CHARACTERISTICS (Ta = $25 \pm 5^{\circ}$ C, V_{cc} = $6.0V \pm 0.25V$, V_{PP} = $12.75 \pm 0.25V$)

PARAMETER	SYMBOLS	MIN	MAX	UNIT
Input Leakage Current	ا _u	-10	10	μA
$(V_{IN} = V_{cc} \text{ or GND})$				
V _{PP} Supply Current During Programming Pulse	I _{PP}		60	mA
$(\overline{CE} = \overline{PGM} = V_{\mu})$				
V _{cc} Supply Current	I _{cc}		50	mA
Input Low Level	V _{IL}	-0.1	0.8	V
Input High Level	V _{IH}	2.0	V _{cc} + 0.3	V
Output Low Voltage During Verify	V _{oL}		0.4	V
(I _{oL} = 2.1 mA)				
Output High Voltage During Verify	V _{он}	3.5		V
(I _{OH} = -400 μA)				

Notes:

- 1. V_{cc} must be applied either coincidentally or before V_{pp} and removed either coincidentally or after V_{pp} . 2. V_{pp} must not be greater than 14V including overshoot. During $\overline{CE} = \overline{PGM} = V_{\mu}$, V_{pp} must not be switched from 5V to 12.75V or vice-versa.
- 3. During power up the \overline{PGM} pin must be brought high ($\geq V_{\mu}$) either coincident with or before power is applied to V_{pp}.

AC CHARACTERISTICS (Ta = $25 \pm 5^{\circ}$ C, V_{cc} = $6.0V \pm 0.25V$, V_{pp} = $12.75 \pm 0.25V$)

PARAMETER	SYMBOLS	MIN	ТҮР	MAX	UNIT
Address Setup Time	t _{AS}	2			μs
CE High to OE High	t _{сон}	2			μs
Output Enable Setup Time	t _{oes}	2			μs
Data Setup Time	t _{os}	2			μs
Address Hold Time	t _{AH}	0			μs
Data Hold Time	t _{он}	2			μs
Chip Disable to Output Float Delay	t _{DF}	0		55	ns
Data Valid from Out Enable	t _{oE}			55	ns
V _{PP} Setup Time / CE Setup Time	t _{vs} /t _{ces}	2			μs
PGM Pulse Width	t _{PW}	0.1		4	ms

CAPACITANCE (2) Ta = $25^{\circ}C, f = 1 \text{ MHz}$

PARAMETER	CONDITIONS	SYMBOL	TYP (1)	МАХ	UNITS
Input Capacitance	$V_{iN} = 0V$	C _{IN}	4	6	pF
Output Capacitance	V _{out} = 0V	C _{out}	8	12	pF
V _{PP} Capacitance	$V_{PP} = 0V$	C	18	25	pF

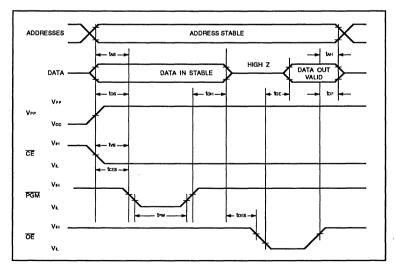
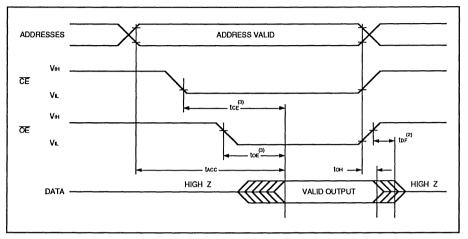



FIGURE 5: Programming Waveforms

SSI 73D682

FIGURE 6: AC Waveforms

Notes:

- 1. Typical values are for $Ta = 25^{\circ}C$ and nominal supply voltages.
- 2. This parameter is only sampled and is not 100% tested.
- 3. \overline{OE} may be delayed up to $t_{ce} t_{ce}$ after the falling edge of \overline{CE} without impact on t_{ce}

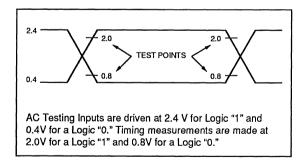


FIGURE 7: AC Testing I/O Waveform

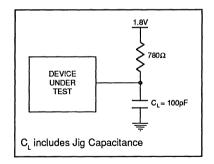
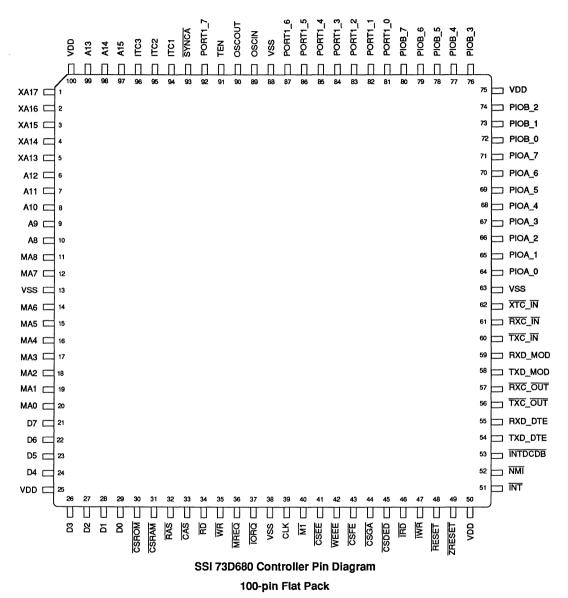
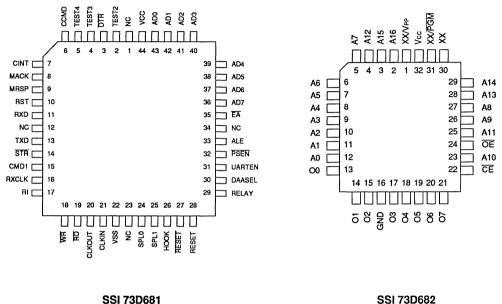



FIGURE 8: Testing Load Circuit


SSI 73D2420/2421 CCITT V.42/V.42bis Protocol and Controller IC Set

SSI 73D2420/2421 CCITT V.42/V.42bis Protocol and Controller IC Set

PIN DIAGRAMS - Top View

44-pin PLCC Surface Mount

SSI 73D682 32-pin PLCC

Advance Information: Indicates a product still in the design cycle, and any specifications are based on design goals only.

No responsibility is assumed by Silicon Systems for use of this product nor for any infringements of patents and trademarks or other rights of third parties resulting from its use. No license is granted under any patents, patent rights or trademarks of Silicon Systems. Silicon Systems reserves the right to make changes in specifications at any time without notice. Accordingly, the reader is cautioned to verify that the data sheet is current before placing orders.

Silicon Systems, Inc., 14351 Myford Road, Tustin, CA 92680 (714) 731-7110, FAX (714) 731-5457

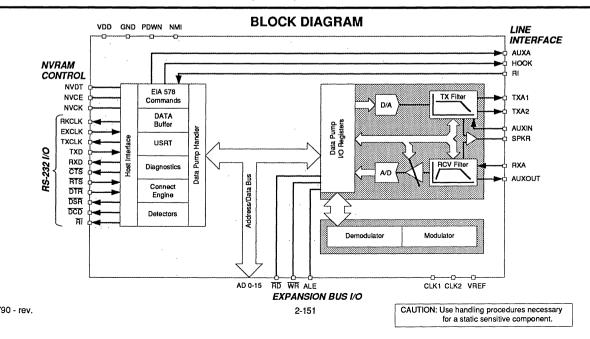
Notes:

Advance Information

July, 1990

2

DESCRIPTION


The SSI 73D2291 is a CMOS device set that allows half-duplex transmit and receive G3 facsimile data communication over the dial-up telephone network. The 73D2291 conforms to CCITT V.29 and V.27ter standards as defined for FAX operation, and it includes an EIA/TIA industry standard AT user interface for high level control of FAX functions. The AT command set provided by the 73D2291's user interface simplifies control of the FAX modes, and insures compatibility with existing personal computer applications software designed for FAX communications.

The 73D2291 employs the same control architecture used in Silicon Systems 1-chip modem products, and is compatible with these devices. 2400 bit/s datacom modes can be incorporated into the product by addition of the SSI 73K224L 1-chip modem (73D2292 product). Other Silicon Systems 1-chip modems may be used to provide alternate datacom modes. The SSI 73D2291's built in AT command interpreter can control both the FAX and datacom modes, eliminating the need for separate controllers and additional components.

The high level of performance, integrated features, and industry standard user interface provided by the (Continued)

FEATURES

- Full G3 facsimile modes including V.21 ch. 2, V.27ter, and V.29
- 9600, 7200, 4800 bit/s (V.29), 4800, 2400 bit/s (V.27ter), and 300 bit/s (V.21) operation with T.4 and T.30 compatibility
- Includes EIA/TIA industry standard (AT) user interface and command interpreter for FAX transmission and reception
- Compatible with existing Silicon Systems products for, 1-chip addition of datacom modes
- Upgrades to 14.4 kbit/s operation with future Silicon Systems products
- Adaptive equalization plus selectable compromise equalizer
- Automatically adapts to terminal speeds of 300 to 19.2 kbit/s, with flow control
- Includes HDLC framing to facilitate T.30 FAX handshake protocol
- Low power operation (450 mW) from a single +5V supply
- PLCC packages for surface mount designs

DESCRIPTION (Continued)

73D2291 make it easy to design both FAX and datacom capability into one product. It is ideal for use in personal computer, portable terminal, and Laptop FAX/ datacom applications which communicate using existing telephone lines.

OPERATION

The SSI 73D2291 is designed for applications that require half-duplex 9600 bit/s operation over the GSTN. This product is optimized for personal computer-based FAX and related applications which combine both FAX and datacom into a single product. The SSI 73D2291 includes full group 3 FAX modes, along with an industry standard EIA/TIA user interface, providing an AT command interpreter with special commands for control of FAX functions. The 73D2291 provides for simple expansion to include 2400 bit/s datacom modes by adding the SSI 73K224L 1-chip modem, or other Silicon Systems modem products for alternate modes such as V.23 operation, if desired. The SSI 73D2292 is a version of the SSI 73D2291 configured for, and including the SSI 73K224L to provide full FAX and datacom. The SSI 73D2291's AT command interpreter controls the datacom function in this case, eliminating the need for additional circuitry. Other features such as DTMF dialing and detection, call progress detection, and diagnostics are included and may be controlled using selected AT commands.

A complete FAX/datacom modern using the 73D2291/ 2292 in a PC environment requires only the addition of the phone line interface, a UART, and driver routines or a commercial software program for the PC to handle FAX management, file transfer, and graphics conversion. The SSI 73D2291 is one member in a family of new Silicon Systems products for high speed modern applications. These products allow interchangeable upgrades to higher speeds or alternate modes, while retaining compatibility with existing Silicon Systems 1– chip modern products.

HOST INTERFACE

The EIA 578 standard for PC FAX operation provides for communication of commands and data over a serial RS-232 port. The SSI 73D2291 provides an asynchronous interface and appropriate control signals conforming to this standard to allow data and command transfer between the DTE and DCE.

COMMAND PROCESSOR

The 73D2291/2292's AT command processor (CP) automatically determines the communications speed. character length, and parity of the DTE, and adjusts its operation accordingly, using an autobaud technique. The CP interprets EIA standard "AT" commands, as well as conventional and extended "AT" commands for data communications, and provides appropriate control for both FAX and data modes, eliminating the need for additional circuitry. Other features such as DTMF dialing and detection, call progress detection, and diagnostics are included and may be controlled using selected AT commands. The command processor can also be expanded with external memory to allow integration of popular protocols such as V.42bis for error control and compression used in conjunction with data communications modes.

DATA BUFFER

The CP will autobaud over a range of 110 bit/s to 19.2 kbit/s and can use either hardware flow control (RTS/CTS) or software flow control (XON/XOFF) at high speeds if required making use of an internal 32 byte buffer. Autobaud speed must be at least 20% higher than the data transfer rate of the selected modulation technique for proper operation.

USRT

The SSI73D2291/2292 can transmit and receive HDLC frames in data modes as needed to support the Group 3 FAX T.30 protocol. In transmit modes the USRT takes data out of the buffer, computes a Frame Check Sum (FCS), does zero insertion, and appends flags. The USRT also filters the data stream from the DTE removing all character pairs beginning with the ASCII <DLE> character (hex \$10). In addition, the USRT recognizes the pattern <DLE> <ETX> (hex \$10, hex \$03) as the stream terminator. The USRT recognizes the pattern <DLE> <DLE> and will reinsert a single <DLE> character in its place. In receive modes, it reverses the process by detecting flags, deleting inserted zeros, and checking FCS for errors which are then reported to the DTE. The USRT also filters the data stream to the DTE and inserts an extra <DLE> (ASCII hex \$10) character ahead of <DLE> data.

DATA PUMP

The 73D2291/2292 data pump consists of three sections, the AFE, the DSP, and the CP, as shown in the block diagram. The AFE provides signal conditioning and data acquisition for the DSP, which performs modulation and demodulation under control of the CP. The AFE provides A/D and D/A conversion, scrambler/ descrambler functions, timing generation and recoverv, and filtering. The DSP section modulates and demodulates data, transmits and detects DTMF and other call progress tones, and provides pattern detection needed to complete the initial call connect sequence. In a data mode transmit operation, the CP receives 8-bit characters, strips start and stop bits, and rate buffers the data with flow control. If HDLC is enabled, the data is formatted as HDLC frames. The DP then extracts data from the buffer for transmission. In a receive operation, the DP processes data received from the phone line. If HDLC is enabled, frames are detected, and data is deposited into the buffer. The buffered data is then formatted into characters by the CP, and transmitted to the DTE.

COMMAND INTERPRETER

The 73D2291/2292 includes an integral command interpreter with the ability to recognize and take action on 3 categories of commands. For conventional data modes, a basic, and an enhanced "AT" command set is included for use with data modem speeds up to 2400 bit/s. An EIA 578 compatible set of "AT" commands is also provided by the 73D2291/2292 for FAX operation. EIA standard commands are similar to data modem "AT" commands, but are preceded by a "+F" character, to distinguish them from basic and extended "AT" commands. In addition to these three groups of commands, special Silicon Systems commands are included that add extra diagnostic and control features to the 73D2291/2292 when operating in FAX mode.

MODE	SPEED	BAUD RATE	CARRIER (Hz)	MOD. METHOD	APPLICATION
V.29	9600	2400	1700	QAM	FAX G3
	7200	2400	1700	QAM	FAX fallback
	4800	2400	1700	QAM	FAX fallback
V.27ter	4800	1600	1800	DPSK	FAX fallback
	2400	1200	1800	DPSK	FAX fallback
V.21 CH2	300	300	1650/1850	FSK	FAX handshake
V.22bis*	2400	600	2400,1200	QAM	FDX data com
V.22*	1200	600	2400,1200	DPSK	FDX data com
Bell 212A*	1200	600	2400,1200	DPSK	FDX data com
Bell 103*	300	300	2025,2225	FSK	FDX data com
V.21*	300	300	1650/1850	FSK	FDX data com
			980/1180		

* SSI 73D2292 only

		73D2292 originating as:					
		Bell		CCITT			
Ca	alling a:	300	1200	300	1200	2400	
Bell	300 (103)	300	300	-	-	300	
	1200 (212)	300	1200	-	1200	1200	
	2400* (224)	300	1200	-	1200	2400	
CCITT	300 (V.21)	-	-	300	-	-	
	1200 (V.22)	300	1200	-	1200	1200	
	2400 (V.22bis)	300	1200	-	1200	2400	
		73D2292 answering as:					
			Bell			CCITT	
Ca	Called from a:		1200	300	1200	2400	
Bell	300 (103)	300	300	-	-	300	
	1200 (212)	300	1200	-	1200	1200	
	2400 (224)	300	1200	-	1200	2400	
CCITT	300 (V.21)	-	-	300	-	-	
	1200 (V.22)	300	1200	-	1200	1200	
	2400 (V.22bis)	300	1200	-	1200	2400	

* A Bell 2400 is a V.22bis using a 2225 Hz answer tone without unscrambled marks.

PIN DESCRIPTION

235 PINS

48-PIN	44-PIN	NAME	DESCRIPTION
36	33 ·	VPA	+5 Analog
37	34	VPD	+5 Digital
13	13	GNA	Analog Ground
12	12	GND	Digital Ground
41	38	СКІ	Clock Input (11.0592 MHz)
22	21	RXA	Receive Input
26	24	TX1	Transmitter Output
25	23	TX2	Transmitter Output
24		N/C	No Connect
27	25	AXI	Auxilliary Input
21	20	AXO	Auxilliary Output
23	22	MON	Speaker Output
11	11	CS	Chip Select
14	14	CS	Chip Select
15	15	WR	Write Enable

PIN DESCRIPTION (Continued)

73M235 PINS

48-PIN	44-PIN	NAME	DESCRIPTION
16	16	RD	Read Enable
17	17	ALE	Address Latch Enable
18	18	Π	Interrupt Request
20	19	NMI	Non Maskable Interrupt
19		N/C	No Connect
6		N/C	No Connect
2-10	3-10	AD0-AD7	Address/Data
	46	43	SO0 Serial Output 0
45	42	SO1	Serial Output 1
1	2	S10	Serial Input 1
48	1	SI1	Serial Input 1
42	39	SCK	Serial Clock
43	40	TFS	Transmit Frame Sync
44	41	RFS	Receive Frame Sync
47	44	SAK	Serial Acknowledge
39	36	RCK	Receive Bit Clock Output
35	32	тск	Transmit Bit Clock Output
40	37	ХСК	External Bit Clock Input
38	35	RXD	Receive Data
34	31	TXD	Transmit Data
33	30	TX	Transmit Data (inverted)
28	26	RI	Ring Detect
29	27	HOOK	Hook Relay Control
30		N/C	No Connect
31	28	DRST	DSP Reset
32	29	PWDN	Power Down Output

PIN DESCRIPTION (Continued)

73D640 PIN

73D640 F		NAME	DESCRIPTION
40-PIN	44-PIN	NAME	DESCRIPTION
30	34	VCC	+5V
10	1,12,18,29	VSS	Ground
40	44	PA2	Peripheral Address
1	2	PA1	Peripheral Address
2	3	PA0	Peripheral Address
4	5	RS	Reset
5	6	INT	Interrupt
6	7	CLK	Clock/4 Output
7	8	X1	Crystal
8	9	CKI/X2	Clock Input/Crystal
9	10	BIO	Polling Input
	11	N/C	No Connect
3	4	MC	Code Select
27	31	PM	Code Select
26	30	D0	Data Bus
25	28	D1	Data Bus
24	27	D2	Data Bus
23	26	D3	Data Bus
22	25	D4	Data Bus
21	24	D5	Data Bus
20	23	D6	Data Bus
19	22	D7	Data Bus
11	13	D8	Data Bus
12	14	D9	Data Bus
13	15	D10	Data Bus
14	16	D11	Data Bus
15	17	D12	Data Bus
16	19	D13	Data Bus
17	20	D14	Data Bus
18	21	D15	Data Bus
32	36	RD	Read Enable
31	35	WR	Write Enable
28	32	SAK	Serial Acknowledge
29	33	S10	Serial Input 0
33	37	SI1	Serial Input 1
34	38	SCK	Serial Clock
35	39	SO0	Serial Output 0
36	40	SO1	Serial Output 1
37	41	FR	Frame Output
38	42	TFS	Transmit Frame Sync
39	43	RFS	Receive Frame Sync

PIN DESCRIPTION (Continued)

'3D641 F	PIN			
40-PIN	44-PIN	NAME	DESCRIPTION	
	1	N/C	No Connect	
1	2	DSR	Modem Ready	
2	3	DTR/NVCK	Terminal Ready	
3	4	NVCE	EEProm Enable	
4	5	RĪ	Ring Indicate	
5	6	DCD	Carrier Detect	
6	7	CTS	Transmit Flow Control	
7	8	RTS/NVDT	Receive Flow Control	
8	9	AUXR	A/A1 Relay Control	
9	10	RST	Reset	
10	11	TXD	Transmit Data	
	12	N/C		
11	13	RXD	Receive Data	
12	14	INT0	"A" Search Interrupt	
13	15	INT1	AFE Interrupt	
14	16	RXC	Receive Bit Clock	
15	17	тхс	Transmit Bit Clock	
16	18	WR	Write Enable	
17	19	RD	Read Enable	
18	20	X2	11.0592/22.184 MHz Input	
19	21	X1		
20	22	vss	Ground	
	23	N/C		
21-28	24-32	A8-A15	Address Bus	
29	32	PSEN	External ROM Enable	
30	33	ALE	Address Latch Enable	
	34	N/C		
31	35	EA	External ROM Select	
32-39	36-43	AD7-AD0	Address/Data Bus	
40	44	VDD	+5V Power	

EIA-578 STANDARD "AT" COMMANDS FOR FAX OPERATION

COMMAND	DESCRIPTION/OPTIONS
+FCLASS=n	Sets class of operation for: n = 0 (FAX modem in Data mode). Responds OK if FAX modem, Error if data only modem n = 1 Enables Class 1 commands n = 2 (Reserved)
+FCLASS?	Queries current setting
+FCLASS=?	Reports all possible modes
+FTS= <u>nnn</u>	Stops transmitting, then transmits nnn/100 seconds of silence. After nnn/100 seconds, responds with OK, or executes next command on command line.
+FRS= <u>nnn</u>	Wait for nnn/100 seconds of silence. Responds with OK, or executes next command on command line.
+FTH= <u>nnn</u>	Transmit HDLC frame using modulation nnn. Responds with CONNECT, enters data mode, then begins transmitting HDLC flags. Characters received will be transmitted in HDLC frames. Data overrun will result in closing frames, and occurs if the second byte of the frame is 0 x C8(T.30 final frame byte). In this case the response will be OK, otherwise the modem will respond CONNECT and begin the next frame.
+FRH= <u>nnn</u>	Receive HDLC frame using modulation nnn. Modem responds with CONNECT if flags are detected. If no carrier is detected the modem responds NO CARRIER. If another carrier is detected the modem responds +FCERROR (+F4). The end of data is indicated by <dle><etx> from modem. The 2 bytes preceding the end of frame will be the FCS. Following the end of frame the modem will respond OK or ERROR indicating the status of the FCS.</etx></dle>
+FTM= <u>nnn</u>	Transmit using modulation nnn. Will respond CONNECT after completion of the training sequence. Data mode will be terminated if a character other than NUL (0x00) is the last character transmitted when underrun occurs, or a <dle><etx> is encountered.</etx></dle>
+FRM= <u>nnn</u>	Receive using modulation nnn. Will respond CONNECT after completion of the training sequence. Will respond +FCERROR(+F4) if another modulation type is detected. Sends data followed by <dle><etx> ok.</etx></dle>
+ACU?	Query EIA command capability. Modem responds OK if available.
+CNG= <hz></hz>	Enable selected Transmit calling tone of Hz frequency.
+MFR?	Query manufacturer name. Responds with manufacturer's name.
+MDL?	Query product model. Responds with MFG. product model.
+Rad(ix)=n	Set base for numeric results as shown: 0 = Decimal 1 = Hex 2 = Binary
+REV?	Query component revision number. Responds with individual component device numbers and revision in form "Device.rev"

Modulation codes for above commands:	nnn = Code	Speed
	3	300
	24	2400
	48	4800
	72	7200
	96	9600
Note: The host must protect <dle> characters in the data</dle>	120	12000 (reserved)
with another <dle>, and strip extra <dle> on reception.</dle></dle>	144	14400 (reserved)

SILICON SYSTEMS EXTENDED COMMANDS

COMMAND	DESCRIPTION/OPTIONS			
%ATT=nn	Sets transmit attenuator for value of nn = 0 to 15 dB.			
%DAA=n	Selects DAA configuration for RJ11 (n=0) or RJ45 (n=1).			
%EQU=n	Configures link and cable equalizers in RX and TX directions.			
	The preceding 3 commands are issued only once for initialization of NVRAM. If NVRAM is not present, then default values are used.			
%ERASE	Erases NVRAM to allow reconfiguration of hardware parameters.			
%DACa= pnnnb%	Displays diagnostic information as follows when in diagnostic mode: <u>Value</u> <u>Action</u> a = X or Y Selects D/A address X or Y p = A (AFE), D (DSP) Selects source for data R (RAM), U (controller)			
	nnn = Hex # 000—FFF Selects memory location			
	b = H/L Selects high or low memory byte			
%DEBUG=n	Enables diagnostic modes and updates as follows: <u>"n" Value Action</u> 0 Disable diagnostic (default) 1 Enable diagnostic display at interrupt rate 2 Enable diagnostic display update every 10 ms			
%DUMP= pnnnb	Dumps RAM location nnn of selected device to serial port. Command is aborted by expiration of S18 test timer or receipt of %DUMP command. Parameters are same as for %DAC command.			
%BITa= pnnn.b	Display RAM bit b of location nnn for selected device p to test bit a. Bit a is the \overline{RI} pin. Bit b is \overline{DSR} . Default addresses are RI and DSR.			
%PDWN=nnn				

2

	BASIC "AT" COMMAND SET*	EXT	ENDED "AT" COMMAND SET**	
	COMMAND & DESCRIPTION	COMMAND & DESCRIPTION		
A	Answer call In FAX Mode: 1. Modern goes off hook 2. Waits billing delay 3. Optionally reports CNG presence (1100 Hz) 4. Sends 3 seconds of CED tone (2100 Hz) 5. Begins V.21 HDLC preamble (1 sec. of flags)	&D <i>n</i> [DCD modes CO DCD always on CC1 DCD follows carrier detect DTR modes 2D0 Ignore DTR	
A/ Ds	Repeat last command Dial using Dial string "s" In FAX Mode: 1. Modem goes off hook 2. Optionally searches for dial tone 3. Dials number (processing embedded dial mods.) 4. Optionally generates CNG (1100 Hz)	8	 kD1 Go to command state if ON-to-OFF detected kD2 Go to command state and disable autoanswer if ON-to-OFF detected kD3 Initialize modem with EEPROM if ON-to-OFF detected Factory configuration. Restores modem to factory 	
	5. Optionally reports presence of CED (2100 Hz) 6. Reports CONNECT when V.21 HDLC llags are detected Dial Modifiers	&J[0 1] A	ettings. Auxilliary relay control 8 <i>J0 AUXR off</i> 8J1 AUXR follows HOOK	
	Modifier Description 0-9 * # digits/characters for dialing A B C D pulse dial (factory setting) T tone dial , delay processing of next character ! hookflash	&M <i>n</i> S 8 8	Synchronous modes Synchronous modes M0 Asynchronous M1 Sync mode entered upon completion of dial M2 Dial stored number on OFF-to-ON transition of DTR and go on-line M3 Manual dial using DTR as Talk/Data switch	
	 wait for quiet answer wait for dial tone return to command state after dialing reverse mode (to call an originate-only modern) dial stored number in location "n" (n = 03) 	&P[0 1] P & & &Sn D	Pulse dial make/break ratio kPO US 39%/61% kP1 UK/HK 33%/67% DSR modes	
E[0 1]	Command local echo E0 Disabled E1 Enabled	8	SO DSR always on S1 DSR normal Test modes (TBD)	
H[0 1]	Hook relay control H0 Go on hook (hang up) H1 Go off hook	&Wn V	Display current configuration Vrite configuration to EEPROM Select power up EEPROM configuration	
l <i>n</i>	Identify I0 Product code I1 ROM check sum I2 Check ROM check sum	&Zn≕s S	store telephone number "s" in EEPROM location "n"	
Ln	Speaker volume L0,1 Low L2 Medium	lf a assi	<i>icized</i> parameters indicate default settings. parameter (0, 1, etc.) is not specified, the modern umes the 0 parameter.	
Mn	L3 High Speaker mode M0 Speaker off <i>M1 Speaker on during connect only</i> M2 Speaker always on M3 Speaker on during call progress	follo be 1 mer deci	ic AT commands consist of a single letter optionally weed by a numeric argument. The numeric argument can 1 or 0 indicating a TRUE or FALSE condition. No argu- nt means "0." The numeric argument can also be a imal number in the range 0-255. ended AT commands are preceded by an ampersand.	
P Qn	Pulse dial Quiet mode, enables command responses <i>Q0 Responses enabled</i> Q1 Responses disabled			
Sn	S registers Sn=nnn set "S" register to value Sn? query current "S" register value			
Т	Tone dial			
V[0 1]	Verbose command responses V0 Enable terse numeric response V1 Enable verbose responses			
Zn	Reset to configuration n in EEPROM			

÷		S-REGISTE	RSUM	IARY	
Reg.	Description	Range:Default	Reg.	Description	Range:Default
S0	select ring to answer on	0-255 rings:0	S22	bit mapped options	
S1	ring count (incremented with each ring)	0-255 rings		Bit 0, 1 - Speaker Volume 00 - res. 01 - L1 10 - L2	11 - L3
S2	define escape sequence character	0-127 ASCII:43		Bit 2, 3 - Speaker Modes	11-23
S3	define carriage return character	0-127 ASCII:13		00 - M0 01 - M1 10 - M2	11 - M3
S4	define line feed character	0-127 ASCII:10		Bit 4, 5, 6 - Call Progress	
S5	define back space character	0-32, 127 ASCII:8	1	000 - X0 001 - res. 010 - res.	
S6	select wait time before blind dialing	2-255 sec.:10	1	100 - X1 101 - X2 110 - X3 Bit 7 - & Pn Pulse Type	111 - X4
S7	select wait time for carrier/dial tone	1-255 sec.:30		bit mapped options	
S8	select duration of comma dial modifier	0-255 sec.:2	323	Bit 0, 1 - Speaker Volume	
S9	select carrier detect response time	1-255 1/10 sec.:6	1	00 - res. 01 - L1 10 - L2	11 - L3
S10	select time between carrier loss/hang up	1-255 1/10 sec.:14	1	Bit 2, 3 - Speaker Modes	
S11	define duration/spacing of tones	50-255 ms:70	1	00 - M0 01 - M1 10 - M2 Bit 4, 5, 6 - Call Progress	11 - M3
S12	define escape frequency guard time	0-255 1/50 sec.:50	1	000 - X0 001 - res. 010 - res.	011 - res.
S14	bit mapped options Bit 1 - En Command Echo	:1		100 - X1 101 - X2 110 - X3 Bit 7 - &Pn Pulse Type	
	Bit 2 - Qn Quiet	:0	S25	detect DTR change timer	0-255 1/100 sec.:5
	Bit 3 - Vn Verbose Results Bit 5 - Tone (0), Pulse (1) Dial Bit 7 - Answer (0), Originate (1)	:1 :0 :1	S27	bit mapped options Bit 0, 1 - Sync Mode 00 - &M0 01 - &M1 10 - &M2	11 - &M3
S16	modem test options Bit 0 - &T1 Analog Loopback Bit 2 - &T3 Local Digital Loopback Bit 6 - &T8 ALB with self test	:0 :0 :0		Bit 4, 5 - Sync Mode	11 - &X3
S18	modem test timer	0-255 sec.:0]		
S21	modem test options Bit 0 - &Jn Auxilliary Relay Bit 3, 4 - DTR Modes	:0			
	00 - &D0 01 - &D1 10 - &D2 11 -				
	Bit 5 - &Cn DCD Bit 6 - &Sn DSR	:0 :0			

RECOMMENDED OPERATING CONDITIONS

PARAMETER	CONDITION	MIN	NOM	MAX	UNITS
Ambient Temperature, Ta		0		70	°C
Supply Voltage, VCC, VDD		4.75		5.25	v
Input Low Voltage, VIL		0		0.8	V
Input High Voltage, VIH		2.0		VDD	V
Output Low Current				1.6	mA
Output High Current		-0.4			mA
Digital Load Capacitance				50	pF
Input Clock Frequency, X2 XTL2, CKI			22.1184 11.0592		MHz
Input Clock Variation, X1, XIN	XIN must be (X1) + 2	-0.01		0.01	%

DC ELECTRICAL CHARACTERISTICS

PARA	METER	CONDITIONS	MIN	NOM	MAX	UNITS
IDD	Supply Current				110	mA
IIН	Input High Current		•		10	μА
IIL	Input Low Current		-10			μA
	Digital Input Capacitance				10	pF
VOH	Output High Voltage	lout = -0.4 mA	2.4			V
VOL	Output Low Voltage	lout = 1.6 mA			0.4	V
RXA	Input Resistance		100			kΩ
RXA	Input Capacitance				25	pF

APPLICATIONS INFORMATION

The SSI 73D2291/2292 includes features and commands that are needed to design a full featured FAX/ Datacom modem with industry standard "AT" commands and functions. All control software needed for modem control, AT user interface, and FAX modes are included within the device set. A complete basic modem requires the addition of an RS-232 or UART interface, and an appropriate telephone line interface. PC resident software then performs the T.4 FAX compression/decompression and format manipulation for proper screen display or print-out. Software can be customized for specific applications, or commercial software packages can be used that support FAX operation using the EIA 578 interface.

Optional features that are provided for in the 73D2291/ 2922 and that may be included in a full-featured modem design include: Non-volatile memory for storage of set-up parameters; a speaker and amplifier for audible monitoring of call activity; and LEDs for display of modem status.

For data communication modes, the SSI 73D2292 employs an AT command set user interface that is compatible with existing modem products and software. With this interface, the user can directly control a modem using simple AT commands, or commercially available communications software programs such as Smartcom[™] may be used to provide a menu driven interface and additional features that make the modem easier to use.

The FAX operating sequence is similar to, but more complex than that required for data communication, as the FAX operation adds the additional format conversion and file compression steps to normal data transfer. The industry standard EIA/TIA "AT" user interface included in the 73D2291/2922 provides a high level user interface to the FAX modem function. FAX data pump control, format conversion, and compression must be implemented by external communications software. A compatible communications software package, in conjunction with the 73D2291/2292 will provide full FAX capability. The industry standard user interface provided in the 73D2291/2292 is expected to be widely supported in the future by popular commercial software programs.

SAMPLE T.30 FAX HANDSHAKE SESSION

The following table is a sample FAX connect session using the EIA578 defined "AT" commands incorporated in the SSI 73D2291/2292. All transmissions take place at 19.2 kbit/s using 8-bit characters and no parity setting. Verbose result codes are shown for clarity. Binary data formatted as characters is shown as <DATA>.

DTE Commands	DCE Responses	Local DCE Action	Remote DCE Action	Notes
AT+FCLASS=1	ок	set to Class 1		
ATDT5846161	CONNECT <nsf frame=""> <dle><etx> OK</etx></dle></nsf>	 Dials Enters V.21 HDLC Receive Detects HDLC Flags 	 Answers Sends CED Sends HDLC Flags Sends NSF Frame 	AT+FRH=3 implied by dialing +FCLASS=1
AT+FRH=3	CONNECT <csi frame=""> <dle><etx> OK</etx></dle></csi>	Detect Flags	Sends CSI	Frame Status
AT+FRH=3	CONNECT <dis frame=""> <dle><etx> OK</etx></dle></dis>	Detect Flags	 Sends DIS Drops Carrier Receives Flags 	
AT+FRH=3	NO CARRIER	Detects loss of Carrier		
AT+FTH=3 <tsi frame=""> <dle><etx></etx></dle></tsi>	CONNECT	Send Flags 1) Sends Frame 2) Appends FCS 3) Appends Flag	Receives TSI	
<dcs frame=""> <dle><etx></etx></dle></dcs>	OK	 Sends Frame Appends FCS Appends Flag Drops Carrier 	Receives DCS	Final Frame
AT+FTS=8	ок	waits 80ms		
AT+FTM=96 <tcf frame=""> <dle><etx></etx></dle></tcf>	CONNECT	Transmits V.29 (9600) Drops Carrier	Receives and Checks TCF	

EXAMPLE: Single Page FAX Transmission Without Any Reported Problems

2

DTE Commands	DCE Responses	Local DCE Action	Remote DCE Action	Notes
AT+FRH=3	CONNECT <cfr frame=""> <dle><etx> OK</etx></dle></cfr>	Detects Flags	1) Sends CFR 2) Drops Carrier	Frame Status
AT+FRH=3	NO CARRIER	Detects loss of Carrier		
AT+FTM=96 <page data=""> <dle><etx></etx></dle></page>	CONNECT	Transmits V.29 Drops carrier	Receives page data	
AT+FTH=3 <eop frame=""> <dle><etx></etx></dle></eop>	CONNECT	Sends Flags 1) Sends Frame 2) Appends FCS 3) Appends Flag 4) Drops Carrier	Receives EOP	Final Frame
AT+FRH=3	CONNECT <mcf frame=""> <dle><etx> OK</etx></dle></mcf>	Detects Flags	Sends MCF Drops Carrier	Frame Status
AT+FRH=3	NO CARRIER	Detects loss of Carrier		
AT+FTH=3 <dcn frame=""> <dle><etx> ATH0</etx></dle></dcn>	CONNECT	Sends Flags 1) Sends Frame 2) Appends FCS 3) Appends Flag 4) Drops Carrier Hangs up	Receives DCN Hangs up	Final Frame
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	ок	י ומוועס עף		

EXAMPLE: Single Page FAX Transmission Without Any Reported Problems (continued)

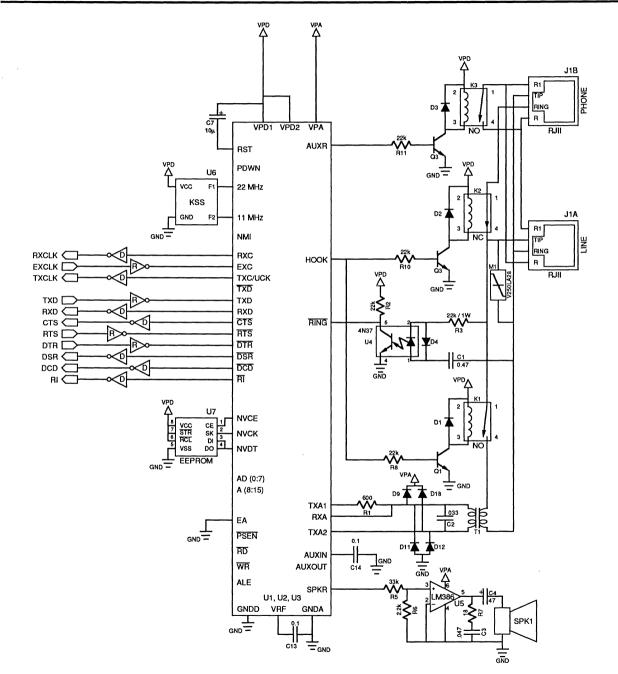
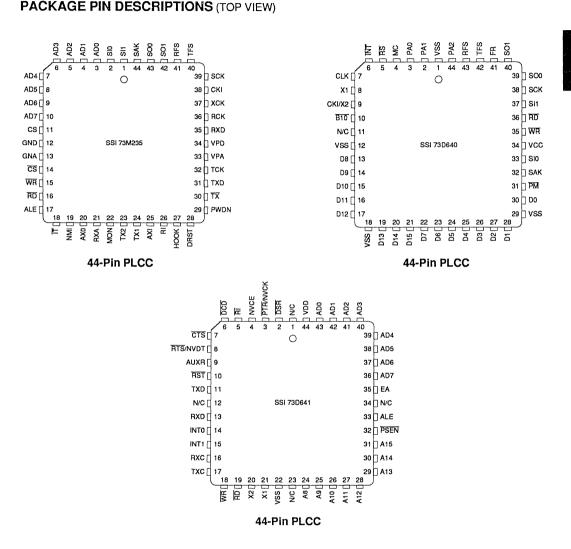



FIGURE 2: SSI 73D2291 Typical Application - FAX Modem

Advance Information: Indicates a product still in the design cycle, and any specifications are based on design goals only.

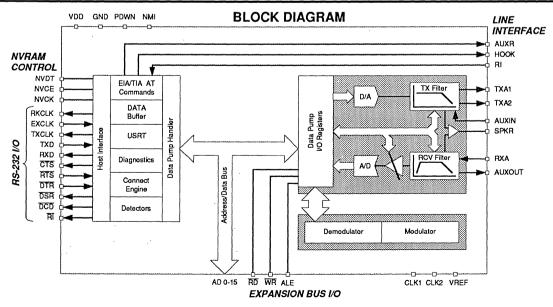
No responsibility is assumed by Silicon Systems for use of this product nor for any infringements of patents and trademarks or other rights of third parties resulting from its use. No license is granted under any patents, patent rights or trademarks of Silicon Systems. Silicon Systems reserves the right to make changes in specifications at any time without notice. Accordingly, the reader is cautioned to verify that the data sheet is current before placing orders.

Silicon Systems, Inc., 14351 Myford Road, Tustin, CA 92680, (714) 731-7110, FAX: (714) 731-5457

Notes:

Advance Information

DESCRIPTION


The SSI 73D2331 is a CMOS device set that allows 14.4 kbit/s transmit and receive facsimile data communication over the dial-up telephone network. The 73D2331 conforms to CCITT V.17, V.29 and V.27ter standards as defined for FAX operation, and it includes an EIA 578 industry standard "AT" user interface for high level control of FAX functions in Personal Computers, or similar applications. The "AT" command set provided by the 73D2331's user interface simplifies control of the FAX modes, and insures compatibility with personal computer applications software designed for FAX communications.

The 73D2331 employs the same control architecture used in Silicon Systems' 1-chip modem products, and is compatible with these devices. 2400 bit/s data communications modes can be incorporated into the product by the addition of the SSI 73K224L 1-chip modem (73D2332 product.) Other Silicon Systems 1-chip modems may also be used to provide alternate data communications modes. (continued)

FEATURES

July, 1990

- High speed G3 facsimile modes including V.21 ch.2, V.27ter, V.17, and V.29
- 14,400 bit/s (V.17), 9600, 7200, 4800 bit/s (V.29), 4800, 2400 bit/s (V.27ter), and 300 bit/s (V.21) operation
- Includes EIA 578 industry standard ("AT") user interface and command interpreter
- Compatible with existing Silicon Systems products for easy upgrades
- Trellis encoding forward error correction with fast training capability in V.17 modes at speeds of 14,400, 1200, 9600, and 7200 bit/s
- Automatically adapts to terminal speeds of 300 to 19,200 bit/s, with flow control
- Includes HDLC framing to facilitate T.30 FAX handshake protocol
- Low power CMOS design operates from a single +5V supply
- Compact DIP or PLCC packages for surface-mount designs

DESCRIPTION (Continued)

The 73D2331's built-in AT command interpreter can control both the FAX and data communications modes, eliminating the need for separate controllers and additional components.

The high level of performance, integrated features, and industry standard user interface provided by the 73D2331 make it easy to design both FAX and data communications capability into one product. It is ideal for use in personal computer, portable terminal, and Lap-top FAX/ data communications applications which communicate using existing telephone lines.

OPERATION

The SSI73D2331 is designed for applications that require high speed operation at 14,400 bit/s over the General Switched Telephone Network (GSTN). This product is optimized for Personal Computer-based FAX and related applications which combine both FAX and data communications into a single product. The 73D2331 includes the new V.17 high performance FAX mode using Trellis encoding, for speeds of 14,400, 12000, 9600, and 7200 bit/s. Full group 3 FAX modes, and an industry standard EIA 578 user interface are also included, providing an "AT" command interpreter with special commands for control of FAX functions. The 73D2331 provides for simple expansion to include 2400 bit/s data communications modes by adding SSI's 73K224L 1-chip modem, or other Silicon Systems modem products for special modes of operation. The 73D2332 is a version of the 73D2331 configured for, and including the 73K224L to provide full FAX and data communications capability.

A complete FAX/data communications modem using the 73D2331/2 in a PC environment requires only the addition of the phone line interface, a UART, and driver routines or a commercial software program for the PC to handle FAX management, file transfer, and graphics conversion. The 73D2331 is one member in a family of new Silicon Systems products for high speed data communications applications. These products allow interchangeable upgrades to different speeds or alternate modes, while retaining compatibility with existing Silicon Systems 1-chip modem products.

HOST INTERFACE

The EIA 578 standard for PCFAX operation provides for communication of commands and data over a serial RS-232 port. The SSI 73D2331 provides an asynchronous interface and appropriate control signals conforming to this standard to allow data and command transfer between the DTE and DCE.

COMMAND PROCESSOR

The 73D2331/2's AT command processor (CP) automatically determines the communications speed, character length, and parity of the DTE, and adjusts its operation accordingly, using an autobaud technique. The CP interprets EIA standard "AT" commands, as well as conventional and extended "AT" commands for data communications, and provides appropriate control for both FAX and data modes, eliminating the need for additional circuitry. Other features such as DTMF dialing and detection, call progress detection, and diagnostics are includes and may be controlled using selected AT commands. The command processor can also be expanded with external memory to allow integration of popular protocols such as V.42bis for error control and compression used in conjunction with data communications modes.

DATA BUFFER

The CP will autobaud over a range of 110 bit/s to 19,200 bit/s and can use either hardware flow control (RTS/CTS) or software flow control (XON/XOFF) at high speeds, if required, making use of an internal 32 byte buffer. Optional RAM may be added to extend buffer size, if needed. Autobaud speed must be at least 20% higher than the data transfer rate of the selected modulation technique for proper operation.

USRT

The SSI 73D2331/2 can transmit and receive HDLC frames in data modes as needed to support the Group 3 FAX T.30 protocol for completion of handshake. In transmit modes the USRT takes data out of the buffer, computes a Frame Check Sum (FCS), does zero insertion, and appends flags. The USRT also filters the data stream from the DTE removing all character pairs beginning with the ASCII <DLE> character (hex \$10>). In addition the USRT recognizes the pattern <DLE> <ETX> (hex \$10, hex \$03) as the stream terminator. The USRT also recognizes the pattern <DLE><DLE> and reinsert a single <DLE> character in its place. In receive modes, it reverses the process by detecting flags, deleting inserted zeros, and checking FCS for errors which are then reported to the DTE. In addition, the USRT filters the data stream to the DTE and inserts an extra <DLE> (ASCII hex \$10) character ahead of <DLE> data.

DATA PUMP

The 73D2331/2 data pump consists of three sections, the AFE, the DSP, and the CP, as shown in the block diagram. The AFE provides signal conditioning and data acquisition for the DSP, which performs modulation and demodulation under control of the CP. The AFE provides A/D and D/A conversion, scrambler/descrambler functions, timing generation and recovery, and filtering. The DSP section

DATA PUMP (Continued)

modulates and demodulates data, transmits and detects DTMF and other call progress tones, and provides pattern detection needed to complete the initial call connect sequence. In a data mode transmit operation, the CP receives 8 bit characters, strips start and stop bits, and rate buffers the data with flow control. If HDLC is enabled, the data is formatted as HDLC frames. The DP then extracts data from the buffer for transmission. In a receive operation, the DP processes data received from the phone line. If HDLC is enabled, frames are detected, and data is deposited into the buffer. The buffered data is then formatted into characters by the CP, and transmitted to the DTE.

COMMAND INTERPRETER

The 73D2331/2332 includes an integral command interpreter with the ability to recognize and take action on 3 categories of commands. For conventional data modes, a basic, and an enhanced "AT" command set is included for use with data modem speeds up to 2400 bit/s. An EIA 578 compatible set of "AT" commands is also provided by the 73D2291/2292 for FAX operation. EIA standard commands are similar to data modem "AT" commands, but are preceded by a "+" character, to distinguish them from basic and extended "AT" commands, special Silicon Systems commands are included that add extra diagnostic and control features to the 73D2331/2332 when operating in FAX mode.

APPLICATIONS INFORMATION

The SSI 73D2331/2332 includes features and commands that are needed to design a full featured FAX/Datacom modem with industry standard "AT" commands and functions. All control software needed for modem control, AT user interface, and FAX modes are included within the device set. A complete basic modem requires the addition of an RS-232 or UART interface, and an appropriate telephone line interface. PC resident software then performs the T.4 FAX compression/decompression and format manipulation for proper screen display or print-out. Software can be customized for specific applications, or commercial software packages can be used that support FAX operation using the EIA 578 interface.

Optional features that are provided for in the 73D2331/ 2332 and that may be included in a full-featured modem design include: non-volatile memory for storage of set-up parameters; a speaker and amplifier for audible monitoring of call activity; and LEDs for display of modem status. For data communication modes, the 73D2332 employs an AT command set user interface that is compatible with existing modem products and software. With this interface, the user can directly control a modem using simple AT commands, or commercially available communications software programs such as Smartcom[™] may be used to provide a menu driven interface and additional features that make the modem easier to use.

MODE	SPEED	BAUD RATE	CARRIER (Hz)	MOD. METHOD	APPLICATION
V.17	14,400	2400		Trellis	V.17 FAX
V.29	9600	2400	1700	QAM	FAX G3
	7200	2400	1700	QAM	FAX fallback
	4800	2400	1700	QAM	FAX fallback
V.27ter	4800	1600	1800	DPSK	FAX fallback
	2400	1200	1800	DPSK	FAX fallback
V.21	300	300	1650, 1850	FSK	FAX handshake
V.23	1200	1200	1300, 2100	FSK	Videotex
(73D2332 d	only)		·		
V.22bis	2400	600	2400, 1200	QAM	FDX data com
V.22	1200	600	2400, 1200	DPSK	FDX data com
Bell 212A	1200	600	2400, 1200	DPSK	FDX data com
Bell 103	300	300	FSK	FSK	FDX data com
V.21	300	300	FSK	FSK	FDX data com

COMMUNICATIONS MODES AND COMPATIBILITY

			73D2331 originating as:						
		E	Bell		CCITT				
C	alling a:	300	1200	300	1200	2400			
Bell	300 (103)	300	300	-	-	300			
	1200 (212)	300	1200	-	1200	1200			
	2400* (224)	300	1200	-	1200	2400			
CCITT	300 (V.21)	-	-	300	-	-			
	1200 (V.22)	300	1200	-	1200	1200			
	2400 (V.22bis)	300	1200	-	1200	2400			
			73D2332 answering as:						
		E	Bell CCITT						
C	Called from a:		1200	300	1200	2400			
Bell	300 (103)	300	300	-	-	300			
Bell	300 (103) 1200 (212)	300 300	300 1200		- 1200				
Bell	· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·		- 1200 1200	300			
Bell	1200 (212)	300	1200	-		300 1200			
	1200 (212) 2400 (224)	300 300	1200 1200		1200	300 1200 2400			

COMPATIBILITY FOR DATA COMMUNICATIONS MODES (SSI 73D2332 only)

* A Bell 2400 is a V.22bis using a 2225 Hz answer tone without unscrambled marks.

APPLICATIONS INFORMATION (Continued)

The FAX operating sequence is similar to, but more complex than that required for data communication, as the FAX operation adds the additional format conversion and file compression steps to normal data transfer. The industry standard EIA "AT" user interface included in the 73D2331/2332 provides a high level control interface for

the FAX modem function. FAX data pump control, format conversion, and compression must be implemented by external communications software. A compatible communications software package, in conjunction with the 73D2331/2332 will provide full FAX capability. The industry standard user interface provided in the 73D2331/2332 is expected to be widely supported in the future by popular commercial software programs.

Silicon Systems, Inc., 14351 Myford Road, Tustin, CA 92680, (714) 731-7110, FAX: (714) 731-5457

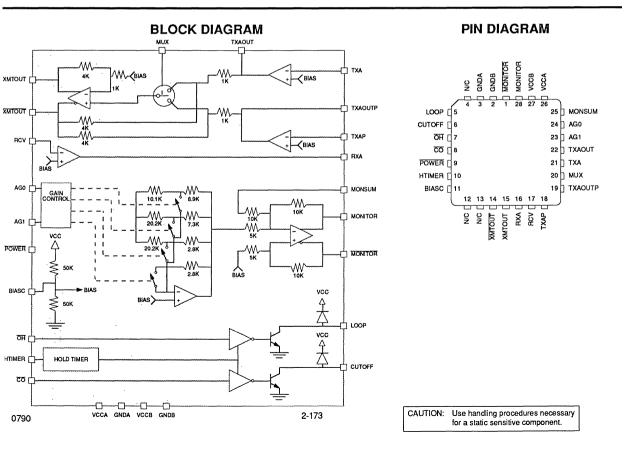
Advance Information: Indicates a product still in the design cycle, and any specifications are based on design goals only. Do not use for final design.

No responsibility is assumed by Silicon Systems for use of this product nor for any infringements of patents and trademarks or other rights of third parties resulting from its use. No license is granted under any patents, patent rights or trademarks of Silicon Systems. Silicon Systems reserves the right to make changes in specifications at any time without notice. Accordingly, the reader is cautioned to verify that the data sheet is current before placing orders.

silicon systems*

SSI 73M376 Integrated Line Interface

Preliminary Data


July, 1990

DESCRIPTION

The SSI 73M376 K-Series Integrated Line Interface Unit(LIU) enables the modem to make direct connections to the Public SwitchedTelephone Network. This single chip data access arrangement integrates all external active (line side) components required in Kseries modem designs. The SSI 73M376 operates from a single 5 volt supply ideally suited for low power portable applications. Along with the transmit and receive function, it provides transmit and receive amplifiers, programmable audio monitor, and relay drivers. In the transmit path it has provision for level programmable gain path as well as a normal gain path which can be switched via a TTL input. The 73M376 comes in a 28-lead PLCC package.

FEATURES

- One-Chip data access arrangement
- Compatible with all SSi K-Series Modem
 Products
- On-board receive and transmit paths. Transmit has level protected programmability
- On-board differential speaker driver with four step variable gain
- On-board relay driver with power conserving hold state
- Low power (85 mW) with power down mode (25 mW) when on-hook
- Operates from a single +5V supply

2

FUNCTIONAL DESCRIPTION

The transmit output uses a differential drive to allow undistorted signals to be sent with a single 5 volt supply. Each output supplies half the drive signal to the transformer thus increasing the available output amplitude by 100%. Two dedicated transmit op-amps are supplied with the outputs and minus inputs brought out so that external resistors and capacitors can be connected facilitating gain setting and filtering. The TTL input, MUX, switches the output of the op-amps to the differential driver. If the MUX input is pulled high, or left floating, the TXA op-amp is selected. If the MUX input is pulled low the TXAP op-amp is selected.

The receive input, RCV, is the minus input of a dedicated op-amp where external resistors and capacitors can be connected facilitating gain setting and filtering. The bias, or plus, input for all the dedicated op-amps are connected to a VCC/2 bias point which allows for maximum swing between the supply rails. The VCC/2 bias point is brought out to an external pin, BIASC, where a compensation capacitor can be connected for power supply noise filtering.

The audio monitor gain stage has the RXA output as its input and has four gain settings; off or squelch, low, medium, and high. The output of the gain cell is fed to a summer where a signal can be summed in through the MONSUM pin. The audio amp differential output can drive an 8Ω speaker with up to 400 mW rms of power. A capacitor needs to be in series with the speaker so no DC current will flow.

On board relay drivers can directly drive the loop and cutoff relays. The TTL input \overrightarrow{OH} (Off Hook) controls the loop relay driver. The TTL input \overrightarrow{CO} (Cut Off) controls the cutoff relay driver. A timer, which uses an external timing capacitor connected to the HTIMER pin, is available to set a delay after relay energizing before the driver will go into its hold state. A negative transition on \overrightarrow{OH} or \overrightarrow{CO} starts the timer. When the timer has expired, both relay drivers will go into the hold state. While the timer is timing the relay drivers are in their full energizing state. If \overrightarrow{OH} is low and \overrightarrow{CO} goes low before the timer expires, or vice versa, then the timer will reset and start timing again.

The TTL input POWER controls the power down state. When POWER is low the part is powered up and when it is high, it is in its power down state.

NAME	TYPE	DESCRIPTION
VCCA	I	Analog power supply input.
VCCB	1	Digital power supply input.
GNDA	I	Analog ground pin.
GNDB	I	Digital ground pin.
ТХА	1	Negative input to transmit op-amp.
TXAOUT	0	Transmit amplifier output.
ТХАР	1	Minus level programmed transmit op-amp input.
TXAOUTP	0	Level programmed transmit amplifier output.
MUX	0	Transmit amplifier outputs mux control (TTL).
ХМТОИТ	0	Transmit output.
XMTOUT	0	Transmit output (inverted).
RCV	I	Negative input to receive amplifier.
RXA	0	Receive amplifier output.
MONITOR	0	Positive audio amplified output.
MONITOR	0	Negative audio amplified output.

PIN DESCRIPTION

SSI 73M376 Integrated Line Interface

PIN DESCRIPTION (continued)

NAME	ТҮРЕ	DESCRIPTION
MONSUM	1	Monitor summing input.
AG0	J	Bit1 (TTL) input to set audio gain.
AG1	I	Bit2 (TTL) input to set audio gain.
BIASC	I	VCC/2 bias compensation point.
OH	1	Off hook TTL compatible input. Controls the loop relay
<u>co</u>	I	Cut off TTL compatible input. Controls the cutoff relay.
HTIMER	1	Relay hold timing control pin.
LOOP	0	Loop relay drive output.
CUTOFF	0	Cutoff relay drive output.
POWER	I	Power Down TTL compatible input. Controls power down mode

ELECTRICAL SPECIFICATIONS

ABSOULUTE MAXIMUM RATINGS

Operation above absolute maximum ratings may permanently damage the device.

PARAMETER	RATING	UNIT
VCC Supply Voltage	7	V
Storage Temperature	-65 to 150	°C
Soldering Temperature (10 sec.)	300	°C

RECOMMENDED OPERATING CONDITIONS

Unless otherwise specified 4.50V < Vcc < 5.50V and $0^{\circ}C < T(ambient) < 70^{\circ}C$. Currents flowing into the chip are positive. Current maximums are currents with the highest absolute value.

PARAMETER	CONDITIONS	MIN	NOM	МАХ	UNITS
VCC SUPPLY VOLTAGE					
+5V	POWER low Outputs unloaded			17.0	mA
+5V	POWER high			5.0	mA
Junction Temperature	Relay drivers in hold state driving maximum current. MONITOR, MONITOR driving 8Ω speaker to max rms power			135	°C

SSI 73M376 Integrated Line Interface

DIGITAL PINS

(TTL compatible inputs: AG0, AG1, OH, CO, MUX, POWER pins)

PARAMETER	CONDITIONS	MIN	NOM	MAX	UNITS
Input low voltage	(VIL)	-0.3		0.8	V
Input high voltage	(VOH)	2.0		VCC+0.3	V
Input low current	VIL = 0.4 V	0.0		-0.4	mA
Input high current	VIH = 2.4 V			100	μA

TRANSMIT AND RECEIVE SECTION

Transmit Gain Single ended into Differential	(XMTOUT – XMTOUT) TXAOUT MUX=High	11.5		12.5	dB
Transmit Gain Single ended into Differential	(XMTOUT – XMTOUT) TXAOUTP MUX=Low	11.5		12.5	dB
XMTOUT, XMTOUT Differential Output Impedance				30	Ω
Transmit THD	7V p-p differential From TXA or TXAP to XMTOUT-XMTOUT with Op-Amp gain=0dB @ 4 kHz Zload = 600Ω speaker driver off			-56	dB
Max. Capacitive differential load XMTOUT, XMTOUT				300	pF
RCV, TXA, TXAP input impedance			1		MΩ
RCV, TXA, TXAP input offset voltage	RCV - VCC/2 TXA - VCC/2 TXAP - VCC/2		10		mV
RCV, TXA, TXAP input bias current	Vin = VCC/2			500	nA
Receive THD	From receive Op-Amp input to RXA with Op-Amp gain=8dB 4 kHz speaker driver off			-56	dB
Max. Capacitive load, TXAOUT, TXAOUTP, RXA				150	pF
Transmit and Receive Op-Amps Unity Gain Bandwidth			500		kHz
BIASC impedance VBIASC=VCC/2		18K		32K	Ω

MONITOR OUTPUT CIRCUIT

(All of the measurements are made with an 8Ω load, tied from MONITOR to MONITOR, AC coupled through a 20 μ F capacitor.)

PARAMETER	CONDITIONS	MIN	NOM	МАХ	UNITS
Gain	From RXA to Monitor outputs (MONITOR-MONITOR)/RXA AG0=Low, AG1=Low			-60	dB
	AG0=High, AG1=Low	-12		-10	dB
	AG0=Low, AG1=High	-4		-2	dB
	AG0=High, AG1=High	4		6	dB
Max Output Swing	THD < -20 dB MONITOR-MONITOR	3.5			Vpp
MONSUM gain	MONITOR - MONITOR MONSUM	-2		0	dB
Max input at MONSUM				3.5	Vpp
MONITOR output offset	MONITOR-MONITOR AG0=Low, AG1=Low		5		mV
MONITOR output offset	MONITOR-MONITOR AG0=High, AG1=High		10		mV
MONSUM input impedance		8K			Ω

RELAY DRIVER OUTPUTS

Peak pull in current	-25 °C < T(ambient) < 85 °C at Vol=0.8 V	35		mA
Hold voltage	After hold timer has timed out	25%	40%	Vcc
Hold voltage delay	t=Cнтімея • 750K for 0.01 μF <cнтімея<0.47 td="" μf<=""><td></td><td>±45</td><td>%</td></cнтімея<0.47>		±45	%

SSI 73M376 Integrated Line Interface

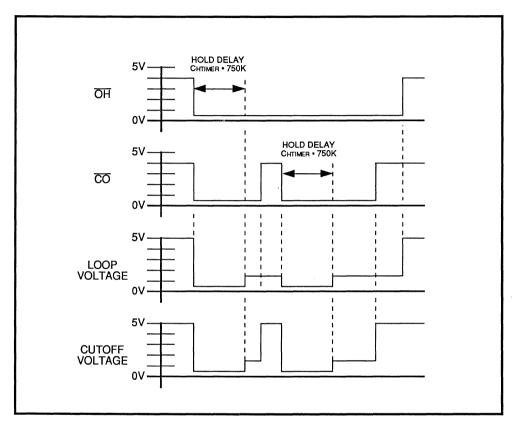


FIGURE 1: Relay Hold and Power Down Timing Diagrams

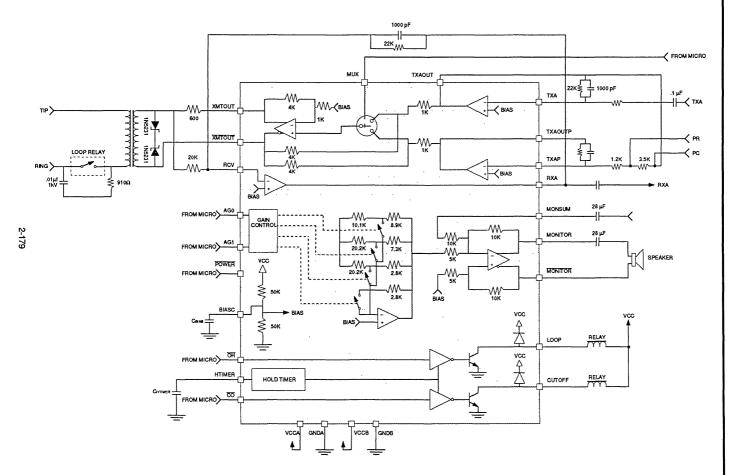
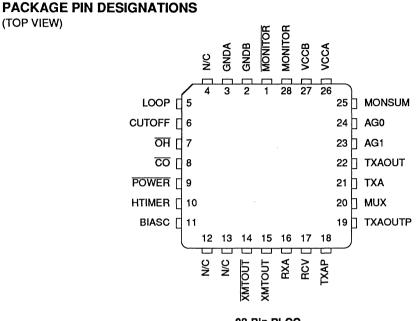



FIGURE 2: System Configuration

2

SSI 73M376 Integrated Line Interface

28-Pin PLCC

ORDERING INFORMATION

PART DESCRIPTION	ORDER NO.	PKG. MARK
SSI 73M376		
28-Pin PLCC	SSI 73M376-CH	73M376-CH

Preliminary Data: Indicates a product not completely released to production. The specifications are based on preliminary evaluations and are not guaranteed. Small quantities are available, and Silicon Systems should be consulted for current information.

No responsibility is assumed by Silicon Systems for use of this product nor for any infringements of patents and trademarks or other rights of third parties resulting from its use. No license is granted under any patents, patent rights or trademarks of Silicon Systems. Silicon Systems reserves the right to make changes in specifications at any time without notice. Accordingly, the reader is cautioned to verify that the data sheet is current before placing orders.

Silicon Systems, Inc., 14351 Myford Road, Tustin, CA 92680 (714) 731-7110, FAX (714) 731-5457

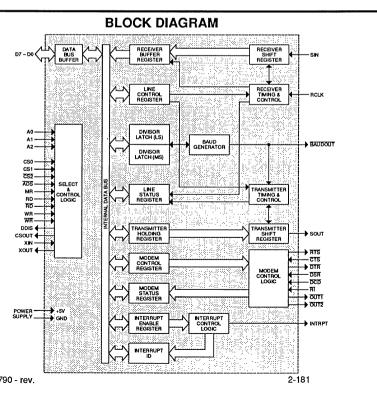
SSI 73M450/450F Universal Asynchronous Receiver/Transmitter

July, 1990

DESCRIPTION

The SSI 73M450 is a Universal Asynchronous Receiver/Transmitter (UART) circuit which is pin- and function-compatible with industry-standard 16C450type UARTs. It is primarily used in the interface between the serial data port and the parallel peripheral bus in 8-bit microprocessor systems. The 73M450F is a fast version of the UART that does not require wait states for operation with newer, higher-speed processors. Both versions are designed in CMOS for lowpower quiescent operation. The 73M450 and 73M450F require only a single 5-volt supply and are available in either a 40-pin DIP or 44-pin PLCC package.

FEATURES


- Compatible with industry-standard UARTs
- High-speed version for zero wait-state
 operation with higher-speed busses

FEATURES (Continued)

- Fully CMOS for low-power quiescent operation
- High drive current for directly driving large loads
- Full double buffering

•

- Independent control of transmit, receive, line status and data set interrupts
- Contains modem control function including CTS, TRS, DSR, DTR, RI and DCD
- Programmable serial interface characteristics include:
 - 5, 6, 7 or 8-bit characters
 - even, odd or no-parity bit generation and detection
 - 1, 1 1/2 or 2 stop-bit generation
 - baud rate generation (dc to 56K baud)
- Full status reporting capabilities
- Available in 40-pin DIP or 44-pin PLCC

PI	NI	JIAG	R	чΜ
D0 [1		40	vcc
D1 [2		39] ਜਾ
D2 [3		38	000
D3 [4		37] DSR
D4 [5		36] ਨਾਤ
D5 [6		35] MR
D6 [7		34	
D7 [8		33	ਸਾਹ [
	9		32] ਜਾਤ
SIN [10	SSI	31	
SOUT [11	73 M 450	30	
cso [12		29	
CS1 [13		28	A0
CS5	14		27	□ ▲1
BAUDOUT	15		26] A2
XIN [16		25	
хоит [17		24	CSOUT
WR	18		23	DDIS
WR [19		22] RD
vss [20		21	D RD

CAUTION: Use handling procedures necessary for a static sensitive component.

SSI 73M450/450F Universal Asynchronous Receiver/Transmitter

PIN DESCRIPTION

BUS INTERFACE

NAME	DIP	PLCC	ТҮРЕ	DESCRIPTION
ADS	25	28	I	Address Strobe: The rising edge of this signal is used for latching the Register Address and Chip Select inputs, thus facilitating interface to a multiplexed Address/Data bus. If not required, ADS should be tied permanently low.
<u>CS0,</u> CS1, CS2	12-14	14-16	I	Chip Select: The UART is selected when CS0 and CS1 are high and $\overline{CS2}$ is low. Chip selection is complete when the decoded chip select signal is latched with an active (low) \overline{ADS} input. This enables communication between the UART and the CPU.
A0-2	28-26	31-29	I	Register Select Address: These pins determine which of the UART registers is being selected during a read or write on the UART Data Bus. The contents of the DLAB bit in the UART's Line Control Register (see Table 1) also controls which register is referenced.
RD, RD	22,21	25,24	1	Read Strobe: A request to read status information or data from a selected register may be made by pulling RD high or \overline{RD} low while the chip is selected. Since only one input is required for a read, tie either RD permanently low or \overline{RD} permanently high if not used.
WR, WR	19, 18,	21, 20	1	Write Strobe: A request to write control words or data into a selected register may be made by pulling WR high or WR low while the chip is selected. Since only one input is required for a write, tie either WR permanently low or WR permanently high if not used.
D0-7	1-8	2-9	I/O	UART Data Bus (three-state): This bus provides bi-direc- tional communications between the UART and the CPU; data, control words and status information are transferred via this bus.
CSOUT	24	27	0	Chip Select Out: When high, indicates that the chip has been selected by active CS0, CS1 and $\overline{CS2}$ inputs. No data transfer can be initiated until the CSOUT signal is a logic "1." CSOUT goes low when the chip is deselected.
DDIS	23	26	0	Driver Disable: Goes low when the CPU is reading data from the UART. A high-level DDIS output can be used to disable an external transceiver (if used between the CPU and UART on the D0-D7 Data Bus) at all times, except when the CPU is reading data.

BUS INTERFACE (Continued)

NAME	DIP	PLCC	TYPE	DESCRIPTION
INTRPT	30	33	0	Interrupt: Goes high whenever any one of the following interrupt types has an active high condition and is enabled via the IER: Receiver Error Flag, Received Data Available, Transmitter Holding Register Empty and Modern Status. The INTRPT signal is reset low upon the appropriate interrupt service or a Master Reset operation.

DATA I/O

NAME	DIP	PLCC	TYPE	DESCRIPTION
SIN	10	11	I	Serial Input: Input for serial data from the communications link (peripheral device, modem or data set).
SOUT	11	13	0	Serial Output: Output for serial data to the communications link (peripheral device, modem or data set). This signal is set high upon a Master Reset.

MODEM CONTROL

NAME	DIP	PLCC	ТҮРЕ	DESCRIPTION
RTS	32	36	0	Request To Send: This output is programmed by bit 1 of the Modem Control Register and is used in modem handshaking to signify that the UART has data to transmit. This signal is set high upon Master Reset or during loop mode operation.
CTS	36	40	I	Clear To Send: A modem status input whose condition corresponds to the complement of the CTS bit (bit 4) of the Modem Status Register. When CTS is low, it indicates that communications have been established and that data may be transmitted.
DTR	33	37	0	Data Terminal Ready: This output is programmed by bit 0 of the Modem Control Register, and is used in modem hand- shaking to signify that the UART is available to communicate. This signal is set high upon Master Reset or during loop mode operation.
DSR	37	41	I	Data Set Ready: A modem status input whose condition corresponds to the complement of the DSR bit (bit 5) of the Modem Status Register. When DSR is low, it indicates that the modem is ready to establish communications.

NAME	DIP	PLCC	TYPE	DESCRIPTION		
DCD	38	42	I	Data Carrier Detect: A modern status input whose condition corresponds to the complement of the DCD bit (bit 7) of the Modern Status Register. When DCD is low, it indicates that the modern is receiving a carrier.		
RI	39	43	I	Ring Indicator: A modem status input whose condition corresponds to the complement of the RI bit (bit 6) of the Modem Status Register. When \overline{RI} is low, it indicates that a telephone ringing signal is being received.		
OUT1 OUT2	34 31	38 35	00	Output 1, 2: User designated outputs that can be set to an active low by setting bit 2 (OUT1) or bit 3 (OUT2) of the Modem Control Register high. These output signals are set high upon Master Reset or during loop mode operation.		

MODEM CONTROL (Continued)

GENERAL & CLOCKS

NAME	DIP	PLCC	ТҮРЕ	DESCRIPTION
vcc	40	44	1	+5V Supply, ±10%: Bypass with 0.1 μF capacitor to VSS.
VSS	20	22	I System Ground.	
MR	35	39	I	Master Reset: When high, this input clears all UART control logic and registers, except for the Receiver Buffer, Transmitter Holding and Divisor Latches; also, the state of output signals SOUT, INTRPT, OUT1, OUT2, RTS and DTR are affected by an active MR input. This input is buffered with a TTL-compatible Schmitt Trigger.
XIN, XOUT	16,17	18,19	I/O	External System Clock I/O: These two pins connect the main timing reference (crystal or signal clock) to the UART. Additionally, XIN may be driven by an external clock source.
RCLK	9	10	I	Receiver Clock: This input is the 16X baud rate clock for the receiver section of the chip.
BAUDOUT	15	17	0	Baud Generator Output: 16X clock signal for the transmitter section of the UART, equal to the main reference oscillator frequency divided by the specified divisor in the Baud Gen- erator Divisor Latches. May also be used for the receiver section by tying this output to the RCLK input of the chip.
NC	29	1,12 23, 34	-	No Connection: These pins have no internal connection and may be left floating.

DLAB	A2	A1	A0	REGISTER
0	0	0	0	Receiver Buffer (read), Transmitter Holding Register (write)
0	0	0	1	Interrupt Enable
х	0	1	0	Interrupt Identification (read only)
Х	0	1	1	Line Control
Х	1	0	0	Modem Control
х	1	0	1	Line Status
х	1	1	0	Modem Status
Х	1	1	1	Scratch
1	0	0	0	Divisor Latch (least significant byte)
1	0	0	1	Divisor Latch (most significant byte)

TABLE 1: Control Register Address Table

TABLE 2: UART Reset Functions

REGISTER/SIGNAL	RESET CONTROL	RESET STATE
Interrupt Enable Register	Master Reset	All bits low (0-3 forced and 4-7 permanent)
Interrupt Identification Register	Master Reset	Bit 0 is high; bits 1 & 2 are low; bits 3-7 are permanently low
Line Control Register	Master Reset	All bits low
Modem Control Register	Master Reset	All bits low
Line Status Register	Master Reset	All bits low, except bits 5 & 6 are high
Modem Status Register	Master Reset	Bits 0-3 are low; bits 4-7 = input signal
SOUT	Master Reset	High
INTRPT (RCVR Errs)	Read LSR/MR	Low
INTRPT (RCVR Data Ready)	Read RBR/MR	Low
INTRPT (THRE)	Read IIR/Write THR/MR	Low
INTRPT (Modem Status Changes)	Read MSR/MR	Low
OUT2	Master Reset	High
RTS	Master Reset	High
DTR	Master Reset	High
OUT1	Master Reset	High

CONTROL REGISTER OVERVIEW

						DATA BIT	NUMBER			
REGISTE	ĒR	REGISTER ADDRESS (A2-A0) & DLAB	D7	D6	D5	D4	D3	D2	D1	D0
RECEIVER BUFFER REGISTER (READ ONLY)	RBR	000 DLAB = 0	BIT 7 (MSB)	BIT 6	BIT 5	BIT 4	ВІТ З	BIT 2	BIT 1	BIT 0 (LSB)
TRANSMIT HOLDING REGISTER (WRITE ONLY)	THR	000 DLAB = 0	BIT 7 (MSB)	BIT 6	BIT 5	BIT 4	ВІТ З	BIT 2	BIT 1	BIT 0 (LSB)
INTERRUPT ENABLE REGISTER	IER	001 DLAB = 0	0	0	0	O	ENABLE MODEM STATUS INTERRUPT	ENABLE REC. LINE STATUS INTERRUPT	ENABLE THR EMPTY INTERRUPT	ENABLE REC. DATA AVAILABLE INTERRUPT
INTERRUPT ID REGISTER (READ ONLY)	IIA	010 DLAB = X	0	0	0	0	0	INTERRUPT ID BIT 1	INTERRUPT ID BIT 0	"0" IF INTERRUPT PENDING
LINE CONTROL REGISTER	LCR	011 DLAB = X	DIVISOR LATCH ACCESS (DLAB)	SET BREAK	STICK PARITY	EVEN PARITY SELECT (EPS)	PARITY ENABLE (PEN)	NUMBER OF STOP BITS (STB)	WORD LENGTH SELECT 1 (WLS1)	WORD LENGTH SELECT 0 (WLS0)
MODEM CONTROL REGISTER	MCR	100 DLAB = X	0	O	0	LOOP	OUT2	OUT1	REQUEST TO SEND (RTS)	DATA TERMINAL READY (DTR)
LINE STATUS REGISTER	LSR	101 DLAB = X	O	TRANSMIT- TER EMPTY (TEMT)	TRANSMIT HOLDING REGISTER EMPTY(THRE)	BREAK INTERRUPT (BI)	FRAMING ERROR (FE)	PARITY ERROR (PE)	OVERRUN ERROR (OE)	DATA READY (DR)
MODEM STATUS REGISTER (READ ONLY)	MSR	110 DLAB = X	DATA CARRIER DETECT (DCD)	RING INDICATOR (RI)	DATA SET READY (DSR)	CLEAR TO SEND (CTS)	DELTA DATA CARR. DETECT (DDCD)	TRAILING EDGE RING INDICATOR (TERI)	DELTA DATA SET READY (DDSR)	DELTA CLEAR TO SEND (DCTS)
SCRATCH REGISTER	SCR	111 DLAB = X	BIT 7	BIT 6	BIT 5	BIT 4	ВІТ З	BIT 2	BIT 1	BIT 0
DIVISOR LATCH (LS)	DLL	000 DLAB = 1	BIT 7	BIT 6	BIT 5	BIT 4	BIT 3	BIT 2	BIT 1	BIT 0
DIVISOR LATCH (MS)	DLM	001 DLAB = 1	BIT 15	BIT 14	BIT 13	BIT 12	BIT 11	BIT 10	BIT 9	BIT 8

REGISTER BIT DESCRIPTIONS

RECEIVER BUFFER REGISTER (RBR) (READ ONLY) UART ADDRESS: A2 - A0 = 000, DLAB = 0

This read only register contains the parallel received data with start, stop, and parity bits (if any) removed. The high order bits for less than 8 data bits/character will be set to 0.

TRANSMIT HOLDING REGISTER (THR) (WRITE ONLY) UART ADDRESS: A2 - A0 = 000, DLAB = 0

This write only register contains the parallel data to be transmitted. The data is sent LSB first with start, stop, and parity bits (if any) added to the serial bit stream as the data is transferred.

INTERRUPT ENABLE REGISTER (IER) UART ADDRESS: A2 - A0 = 001, DLAB = 0

This 8-bit register enables the four types of interrupts of the UART to separately activate the chip Interrupt (INTRPT) output signal. It is possible to totally disable the interrupt system by resetting bits 0 through 3 of the Interrupt Enable Register. Similarly, by setting the appropriate bits of this register to a logic 1, selected interrupts can be enabled. Disabling the interrupt system inhibits the Interrupt Identification Register and the active (high) INTRPT output from the chip. All other system functions operate in their normal manner, including the setting of the Line Status and Modem Status Registers.

BIT	NAME	COND.	DESCRIPTION
D0	Received Data	1	This bit enables the Received Data Available Interrupt when set to logic 1.
D1	Transmitter Holding Register Empty	1	This bit enables the Transmitter Holding Register Empty Interrupt when set to logic 1.
D2	Receiver Line Status Interrupt	1	This bit enables the Receiver Line Status Interrupt when set to logic 1.
D3	Modem Status	1	This bit enables the Modem Status Interrupt when set to logic 1.
D4 - D7	Not Used	0	These three bits are always logic 0.

INTERRUPT ID REGISTER (IIR) (READ ONLY) UART ADDRESS: A2 - A0 = 010

The IIR register gives prioritized information as to the status of interrupt conditions. When accessed, the IIR freezes the highest priority interrupt pending and no other interrupts are acknowledged until the particular interrupt is serviced by the CPU. The order of interrupt priorities is shown in the table below.

BIT	NAME	COND.	DESCRIPTION
D0	Interrupt Pending	0	This bit can be used in either a hardwired prioritized or polled environment to indicate whether an interrupt is pending. When bit 0 is a logic 0, an interrupt is pending and the IIR contents may be used as a pointer to the appropriate interrupt service routine.
		1	When bit 0 is a logic 1, no interrupt is pending.
D1, D2	Interrupt ID bits 0, 1	Table below	These two bits of the IIR are used to identify the highest priority interrupt pending as indicated in the following table.
D3 - D7	Not Used	0	These five bits of the IIR are always logic 0.

INTERRUPT PRIORITY TABLE

D2	D1	D0	PRIORITY	ТҮРЕ	SOURCE	RESET
0	0	1	-	None	None	N/A
1	1	0	Highest	Receiver Line Status	Overrun Error, Parity Error, Framing Error or Break Interrupt	Reading the Line Status Register
1	0	0	Second	Receive Data Available	Receive Data Available	Reading the Rcvr. Buffer Register
0	1	0	Third	Transmit Holding Register Empty	Transmit Holding Register Empty	Reading IIR Register (if source of interrupt) or Writing to Transmit Holding Register
0	0	0	Fourth	Modem Status	Clear to Send or Data Set Ready or Ring Indicator or Data Carrier Det.	Reading the Modem Status Register

LINE CONTROL REGISTER (LCR) UART ADDRESS: A2 - A0 = 011

The user specifies the format of the asynchronous data communications exchange via the Line Control Register. In addition to controlling the format, the user may retrieve the contents of the Line Control Register for inspection. This feature simplifies system programming and eliminates the need for separate storage in system memory of the line characteristics.

BIT	NAME	со	ND.	DESCRIPTION
D0	Word Length Select 0 (WLS0)			Bits D0 and D1 select the number of data bits per character as shown:
D1	Word Length	D1	D0	Word Length
	Select 1	0	0	5 bits
	(WLS1)	0	1	6 bits
		1	0	7 bits
		1	1	8 bits
D2	Number of Stop Bits (STB)	0 or 1		This bit specifies the number of stop bits in each trans- mitted character. If bit 2 is a logic 0, one stop bit is generated in the transmitted data. If bit 2 is a logic 1 when a 5-bit word length is selected via bits 0 and 1, one-and-a-half stop bits are generated. If bit 2 is a logic 1 when either a 6, 7, or 8-bit word length is selected, two stop bits are generated. The receiver checks the first stop bit only, regardless of the number of stop bits selected.
D3	Parity Enable (PEN)	1		This is the Parity Enable (PEN) bit. When set to a logic 1, a parity bit is generated (transmit data) or checked (receive data) between the last data word bit and stop bit of the serial data. (The parity bit is used to produce an even or odd number of 1's when the data word bits and the parity bit are summed).
D4	Even Parity Select (EPS)	1 0	or O	This is the Even Parity Select (EPS) bit. When bit 3 is a logic 1 and bit 4 is a logic 0, an odd number of logic 1's is transmitted or checked in the data word bits and parity bit. When bit 3 is a logic 1 and bit 4 is a logic 1, an even number of logic 1's is transmitted or checked.

BIT	NAME	со	ND.	DESCRIPTION
D5	Stick Parity	1 or 0		This is the Stick Parity bit. When bit 3 is a logic 1 and bit 5 is a logic 1, the parity bit is transmitted and checked by the receiver as a logic 0 if bit 4 is a logic 1 or as a logic 1 if bit 4 is a logic 0.
		D5	D4	Parity
		0	0	ODD Parity
		0	1	EVEN Parity
		1	0	MARK Parity
		1	1	SPACE Parity
D6	Set Break	1		This is the Break Control bit. When set to a logic 1, the serial out (SOUT) is forced to a logic 0 state. The break is disabled by setting bit 6 to a logic 0. This bit acts only on SOUT and has no effect on the transmitter logic. See note below.
D7	Divisor Latch Access Bit (DLAB)		1	The Divisor Latch Access Bit (DLAB) must be set high (logic 1) to access the Divisor Latches of the baud generator during a Read or Write operation. It must be set low (logic 0) to access the Receiver Buffer, the Transmitter Holding Register, or the Interrupt Enable Register.

LINE CONTROL REGISTER (LCR) (Continued)

- NOTE: This feature enables the CPU to alert a terminal in a computer communications system. If the following sequence is followed, no erroneous or extraneous characters will be transmitted because of the break.
 - 1. Load an all 0's pad character in response to THRE.
 - 2. Set break in response to the next THRE.
 - 3. Wait for the Transmitter to be idle. (TEMT = 1), and clear break when normal transmission has to be restored.

During the break, the Transmitter can be used as a character timer to accurately establish the break duration.

MODEM CONTROL REGISTER (MCR) UART ADDRESS: A2 - UA0 = 100

The Modern Control Register controls the interface with the modern, data set or peripheral device. Bits D1 and D0 are also available as read only bits in the UART Control Register in the Modern Registers.

BIT	NAME	COND.	DESCRIPTION
D0	DTR	1	This bit controls the Data Terminal Ready ($\overline{\text{DTR}}$) output. When bit 0 is set to a logic 1, the $\overline{\text{DTR}}$ output is forced to a logic 0. When bit 0 is reset to a logic 0, the $\overline{\text{DTR}}$ output is forced to a logic 1.
D1	RTS	1	This bit controls the Request to Send (\overline{RTS}) output. When bit 1 is set to a logic 1, the \overline{RTS} output is forced to a logic 0. When bit 1 is reset to a logic 0, the \overline{RTS} output is forced to a logic 1.
D2	OUT1	1	This bit controls the Output 1 ($\overline{OUT1}$) signal, which is an auxiliary user- designated output. When bit 2 is set to a logic 1, the $\overline{OUT1}$ output is forced to a logic 0. When bit 2 is reset to a logic 0, the $\overline{OUT1}$ output is forced to a logic 1.
D3	OUT2	0	This bit controls the Output 2 ($\overline{OUT2}$) signal, which is an auxiliary user- designated output. When bit 3 is set to a logic 1, the $\overline{OUT2}$ output is forced to a logic 0. When bit 3 is reset to a logic 0, $\overline{OUT2}$ output is forced to a logic 1.
D4	LOOP	1	This bit provides a local loopback feature for diagnostic testing of the UART. When bit 4 is set to logic 1, the following occurs: the transmitter Serial Output (SOUT) is set to the logic 1 state; the receiver Serial Input (SIN) is disconnected; the output of the Transmitter Shift Register is "looped back" into the Receiver Shift Register input; the four Modem Control inputs (CTS, DSR, DCD and RI) are disconnected; the four Modem Control outputs (DTR, RTS, OUT1 and OUT2) are internally connected to the four Modem Control inputs, and the Modem Control output pins are forced to their inactive state (high). In the diagnostic mode, data that is transmitted is immediately received. This feature allows the processor to verify the transmit and received-data paths of the UART.
			In the diagnostic mode, the receiver and transmitter interrupts are fully operational. The Modem Control Interrupts are also operational, but the interrupts' sources are now the lower four bits of the Modem Control Register instead of the four Modem Control inputs. The interrupts are still controlled by the Interrupt Enable Register.
D5-D7		0	These bits are permanently set to logic 0.

2

LINE STATUS REGISTER (LSR) UART ADDRESS: A2 - A0 = 101

This register provides status information to the CPU concerning the data transfer. Bits 1-4 are the error conditions that produce a Receiver Line Status interrupt whenever any of the corresponding conditions are detected. The Line Status Register is intended for read operation only. Writing to this register is not recommended as this operation is used for factory testing.

BIT	NAME	COND.	DESCRIPTION
D0	DR	1	The Data Ready (DR) bit is set to a 1 whenever a complete incoming character has been received and transferred into the Receiver Buffer Register. DR is reset to 0 by reading the data in the Receiver Buffer Register.
D1	OE	1	The Overrun Error (OE) bit indicates that the data in the Receiver Buffer Register was not read by the CPU before the next character was transferred into the Receiver Buffer Register, thereby destroying the previous character. OE is reset to 0 whenever the CPU reads the contents of the Line Status Register.
D2	PE	1.	The Parity Error (PE) bit indicates that the received character did not have the correct parity. PE is reset to 0 whenever the CPU reads the Line Status Register.
D3	FE	1	The Framing Error (FE) bit indicates that the received character did not have a valid stop bit. FE is reset to 0 whenever the CPU reads the contents of the Line Status Register.
D4	ВІ	1	The Break Interrupt (BI) bit indicates that a break has been received. A break occurs whenever the received data is held to 0 for a full data word (start + data + stop). BI is reset to 0 whenever the CPU reads the Line Status Register.
D5	THRE	1	The Transmit Holding Register Empty (THRE) is set to a logic 1 when a character is transferred from the Transmit Holding Regsiter into the Transmit Shift Register, indicating that the UART is ready to accept a new character for transmission. In addition, this bit causes the UART to issue an interrupt to the CPU when the THRE Interrupt enable is set high. THRE is reset to 0 when the CPU loads a character into the Transmit Holding Register.
D6	ТЕМТ	1	The Transmit Empty (TEMT) indicates that both the Transmit Holding Register and the Transmit Shift Registers are empty. TEMT is reset to 0 whenever the TSR or THR contains a data character.
D7	-	0	Always zero.

MODEM STATUS REGISTER (MSR) (READ ONLY) UART ADDRESS: A2 - A0 = 110

This register provides the current state of the control signals from the modem or peripheral device. In addition, four bits provide change information. Whenever bit 0, 1, 2 or 3 is set to logic 1, a Modem Status Interrupt is generated; reset to logic 0 occurs whenever they are read. In Loop Mode CTS, DSR, RI and DCD are taken from RTS, DTR, OUT1, and OUT2 in the Modem Control Register respectively.

BIT	NAME	COND.	DESCRIPTION
D0	DCTS	1	The Delta Clear to Send (DCTS) bit indicates that the $\overline{\text{CTS}}$ input to the chip has changed state since the last time it was read by the CPU.
D1	DDSR	1	The Delta Data Set Ready (DDSR) bit indicates that the $\overline{\text{DSR}}$ input to the chip has changed state since the last time it was read by the CPU.
D2	TERI	1	The Trailing Edge of the Ring Indicator (TERI) detect bit indicates that the \overline{RI} input to the chip has changed from an Off (logic 0) to an On (logic 1) condition.
D3	DDCD	1	The Delta Data Carrier Detect (DDCD) bit indicates that the $\overline{\text{DCD}}$ input to the chip has changed state.
D4	CTS	1	This bit is the complement of the Clear To Send (\overline{CTS}) input. If bit 4 (loop) of the MCR is set to a 1, this bit is equivalent to RTS in the MCR.
D5	DSR	1	This bit is the complement of the Data Set Ready ($\overline{\text{DSR}}$) input. If bit 4 of the MCR is set to a 1, this bit is the equivalent of DTR in the MCR.
D6	RI	1	This bit is the complement of the Ring Indicator (\overline{RI}) input. If bit 4 of the MCR is set to a 1, this bit is equivalent to OUT1 in the MCR.
D7	DCD	1	This bit is the complement of the Data Carrier Detect (\overline{DCD}) input. If bit 4 of the MCR is set to a 1, this bit is equivalent to OUT2 in the MCR.

SCRATCH REGISTER (SCR) ADDRESS: A2 - A0 = 111

This 8-bit Read/Write Register does not control the UART in any way. It is intended as a scratchpad register to be used by the programmer to hold data temporarily.

DIVISOR LATCH (LS) (DLL) ADDRESS: A2 - A0 = 000, DLAB = 1

This register contains the least significant byte of the divisor which is used to control the rate of the programmable baud generator.

DIVISOR LATCH (MS) (DLM) ADDRESS: A2 - A0 = 001, DLAB = 1

This register contains the most significant byte of the divisor which is used to control the rate of the programmable baud generator.

PROGRAMMABLE BAUD GENERATOR

The UART contains a programmable Baud Generator that is capable of taking any clock input (DC to 4 MHz) and dividing it by any divisor from 1 to 2^{16} -1. The output frequency of the Baud Generator is 16 x the Baud [divisor # = (frequency input)/(baud rate x 16)]. Two 8-bit latches store the divisor in a 16-bit binary format. These Divisor Latches must be loaded during initialization in order to ensure desired operation of the Baud Generator. Upon loading either of the Divisor Latches, a 16-bit Baud counter is immediately loaded. This prevents long counts on initial load.

Tables 3 and 4 illustrate the use of the Baud Generator with crystal frequencies of 1.8432 MHz and 3.072 MHz respectively. For baud rates of 38400 and below, the error obtained is minimal. The accuracy of the desired baud rate is dependent on the crystal frequency chosen.

Note: The maximum operating frequency of the Baud Generator is 4 MHz. However, when using divisors of 3 and below, the maximum frequency is equal to the divisor in MHz. For example, if the divisor is 1, then the maximum frequency is 1 MHz. In no case should the data rate be greater than 56K Baud.

DESIRED BAUD RATE	DIVISOR USED TO GENERATE 16 X CLOCK	PERCENT ERROR DIFFERENCE BETWEEN DESIRED AND ACTUAL
50	2304	-
75	1536	-
110	1047	0.026
134.5	857	0.058
150	768	-
300	384	-
600	192	-
1200	96	-
1800	64	-
2000	58	0.69
2400	48	-
3600	32	-
4800	24	-
7200	16	-
9600	12	-
19200	6	-
38400	3	-
56000	2	2.86

TABLE 3: Baud Rates Using 1.8432 MHz Crystal

2

DESIRED BAUD RATE	DIVISOR USED TO GENERATE 16 X CLOCK	PERCENT ERROR DIFFERENCE BETWEEN DESIRED AND ACTUAL
50	3840	-
75	2560	-
110	1745	0.026
134.5	1428	0.034
150	1280	-
300	640	-
600	320	-
1200	160	-
1800	107	0.312
2000	96	-
2400	80	_
3600	53	0.628
4800	40	-
7200	27	1.23
9600	20	-
19200	10	-
38400	5	-

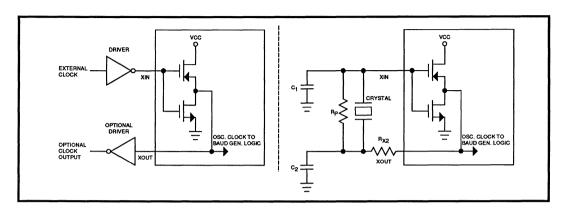


FIGURE 1: Typical Clock Circuits

TYPICAL CRYSTAL OSCILLATOR NETWORK

CRYSTAL	CRYSTAL RP		C1	C2	
1.8 - 3.1 MHz	1 MΩ	1.5K	10-30 pF	40-60 pF	

ABSOLUTE MAXIMUM RATINGS

 $(TA = -40^{\circ}C \text{ to } +85^{\circ}C, VCC = 5V \pm 10\%$, unless otherwise noted. Operation above absolute maximum ratings may permanently damage the device.)

PARAMETER	CONDITIONS	RATING
VCC Supply Voltage		+14V
Storage Temperature		-65°C to 150°C
Lead Temperature	Soldering, 10 sec.	260°C
Applied Voltage		-0.3 to Vcc + 0.3

DC CHARACTERISTICS

(TA = -40° C to $+85^{\circ}$ C, VCC = 5V ± 10%, unless otherwise noted.)

PARAM	ETER	CONDITIONS	MIN	NOM	MAX	UNITS
VILX	Clock input Low voltage		-0.5		0.8	v
VIHX	Clock input High Voltage		2.0		Vcc	v
VIL	Input Low Voltage		-0.5		0.8	v
VIH	Input High Voltage		2.0		Vcc	v
VOL	Output Low Voltage	IOL = 4.0 mA (except XOUT)			0.4	V
VOH	Output High Voltage	IOH = 5.0 mA on all outputs except XOUT	2.4			v
ICC	Average Power Supply	See Note 1		5	10	mA
	Current	See Note 2			50	μA
IIL	Input Leakage	VCC=5.25V, VSS=0V. All other pins floating.			±10	μA
ICL	Clock Leakage	VIN=0V, 5.25V			±10	μА
IOZ	3-State Leakage	VCC=5.25V, VSS=0V, VOUT=0V, 5.25V 1) Chip deselected 2) Chip & write mode selected			±20	μA
VILMR	MR Schmitt VIL				0.8	v
VIHMR	MR Schmitt VIH		2.0			v

Note 1: VCC = 5.25V, TA = 25°C; No loads on outputs. SIN, DSR, DCD, CTS, RI = 2.4V. All other inputs = 0.4V. Baud Rate Gen. = 4 MHz; Baud Rate = 50 KHz.

Note 2: VCC = 5.5V, TA = -40°C; No output load; CMOS-level inputs, XIN = Vcc

CAPACITANCE

(TA = 25°C, VCC = VSS = 0V, fc = 1 MHz, unmeasured pins returned to VSS)

PARAM	ETER	CONDITIONS	MIN	NOM	MAX	UNITS
CXTAL2	Clock Input Capacitance			15	20	pF
CXTAL1	Clock Output Capacitance			20	30	pF
CI	Input Capacitance			6	10	pF
со	Output Capacitance			10	20	pF

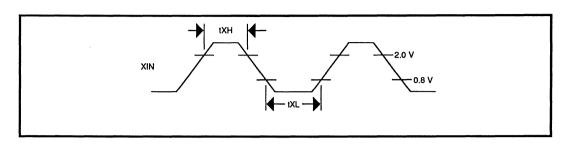


FIGURE 2: External Clock Input* (4 MHz Maximum)

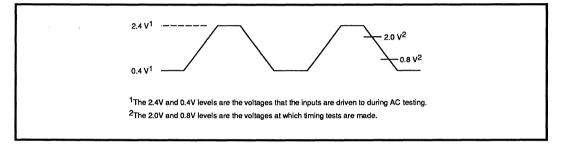


FIGURE 3: AC Test Points*

*All timings are referenced to valid 0 and valid 1.

AC CHARACTERISTICS (TA = -40° C to $+85^{\circ}$ C, VCC = 5V \pm 10%, unless otherwise noted.)

READ &	WRITE	CYCLE	(Refer to	Figures 4 & 5.)
--------	-------	-------	-----------	-----------------

PARAMETER		CONDITIONS	73M450		73M450F		UNITS
			MIN	МАХ	MIN	МАХ	
tADS	Address Strobe Width		60		50		ns
tAS	Address Setup Time		60		30		ns
tAH	Address Hold Time		0		0		ns
tCS	Chip Select Setup Time		60		30		ns
tCH	Chip Select Hold Time		0		0		ns
tCSC	Chip Select Output Delay from Select	100 pF load See Note 3		100		80	ns
tCSR	RD, RD Delay from Chip Select	See Note 3	50		30		ns
tAR	RD, RD Delay from Address	See Note 3	60		30		ns

2

READ & WRITE CYCLE (Continued)

PARAN	IETER	CONDITIONS	73N	1450	73M450F		UNITS
			MIN	MAX	MIN	МАХ	
tRD	RD, RD Strobe Width		125		80		ns
tRC	Read Cycle Delay		175		50		ns
tAD	Address to Read Data	73M450F only		NA		160	ns
RC	Read Cycle	See Note 1	360		210		ns
tRDD	RD, RD to Driver Disable Delay	100 pF load See Note 2		60		50	ns
tRVD	Delay from RD, RD to Data	100 pF load		125		80	ns
tHZ	RD, $\overline{\text{RD}}$ to Floating Data Delay	100 pF load See Note 2	0	100	0	60	ns
tRA	Address Hold Time from RD, RD	See Note 3	20		20		ns
tRCS	Chip Select Hold Time from RD, RD	See Note 3	20		20		ns
tCSW	WR, WR Delay from Select	See Note 3	50		30		ns
tAW	WR, WR Delay from Address	See Note 3	60		30		ns
tWR	WR, WR Strobe Width		100		80		ns
tWC	Write Cycle Delay		200		50		ns
wc	Write Cycle=tAW+tWR+tWC		360		160		ns
tDS	Data Setup Time		40		30		ns
tDH	Data Hold Time		40		30		ns
tWA	Address Hold Time from WR, WR	See Note 3	20		20		ns
tWCS	Chip Select Hold time from WR, WR	See Note 3	20		20		ns
tMRW	Master Reset Pulse Width		5		1		μs
tXH	Duration of Clock High Pulse	External Clock (4 MHz max.)	100		100		ns
tXL	Duration of Clock Low Pulse	External Clock (4 MHz max.)	100		100		ns

Note 1: RC = tAR + tRD + tRC for 73M450

RC = tAD + tRC for 73M450F

Note 2: Charge and discharge time is determined by VOL, VOH and the external loading.

Note 3: Applicable only when ADS is tied low.

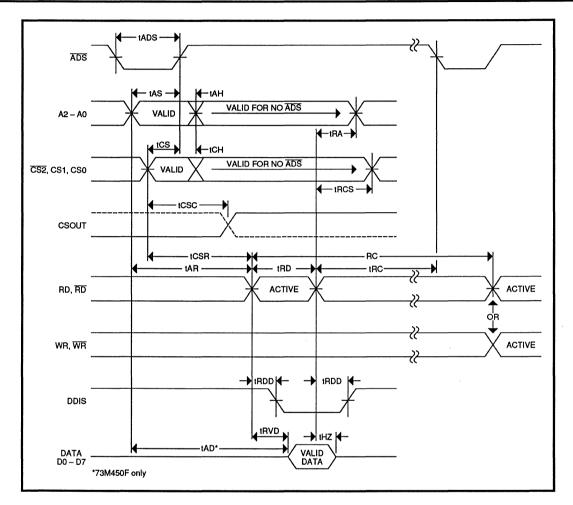
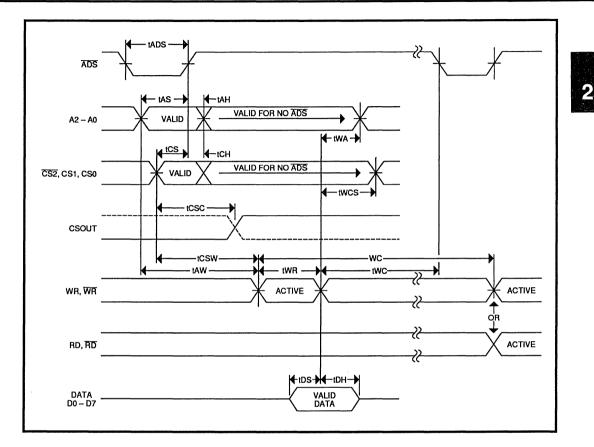
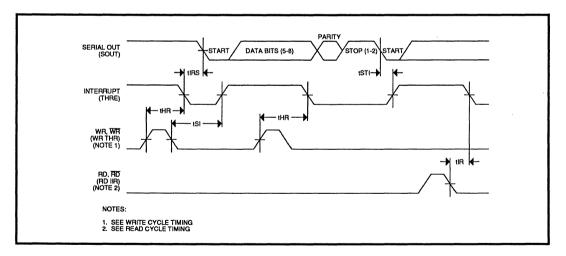
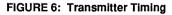


FIGURE 4: Read Cycle Timing


FIGURE 5: Write Cycle Timing

AC CHARACTERISTICS (Continued)

TRANSMITTER (Refer to Figure 6.)

PARAMETER		CONDITIONS	MIN	МАХ	UNITS
tHR	Delay from rising edge of WR, WR (WR THR)to Reset Interrupt	100 pF load		175	ns
tIRS	Delay form Initial INTR Reset to Transmit Start		24	40	BAUDOUT cycles
tSI	Delay from Initial Write to Interrupt		16	32	BAUDOUT cycles
tSTI	Delay from Stop to Interrupt (THRE)		8	8	BAUDOUT cycles
tiR	Delay from RD, RD (RD IIR) to Reset Interrupt (THRE)	100 pF load		250	ns

AC CHARACTERISTICS (Continued)

MODEM CONTROL (Refer to Figure 7.)

PARAM	ETER	CONDITIONS	MIN	МАХ	UNITS
tMDO	Delay from WR, WR (WR MCR) to Output	100 pF load		200	ns
tSIM	Delay to Set Interrupt from Modem Input	100 pF load		250	ns
tRIM	Delay to Reset Interrupt from RD, RD (RS MSR)	100 pF load		250	ns

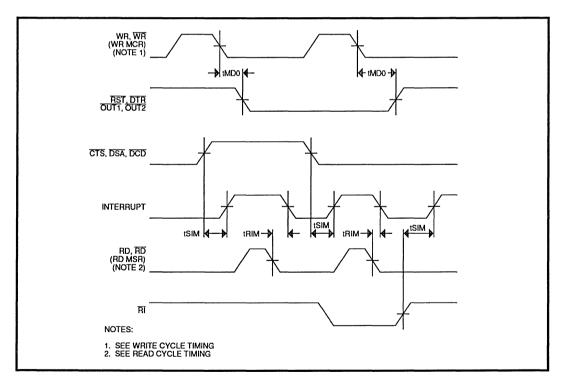


FIGURE 7: Modem Controls Timing

AC CHARACTERISTICS (Continued)

BAUD GENERATOR (Refer to Figure 8.)

PARAN	IETER	CONDITIONS	MIN	МАХ	UNITS
N	Baud Divisor		1	2 ¹⁶ -1	
tBLD	Baud Output Negative Edge Delay	100 pF load		125	ns
tBHD	Baud Output Positive Edge Delay	100 pF load		125	ns
tLW	Baud Output Down Time	fX=2 MHz, div. by 2, 100 pF load	425		ns
tHW	Baud Output Up Time	fX=3 MHz, div. by 3, 100 pF load	250		ns

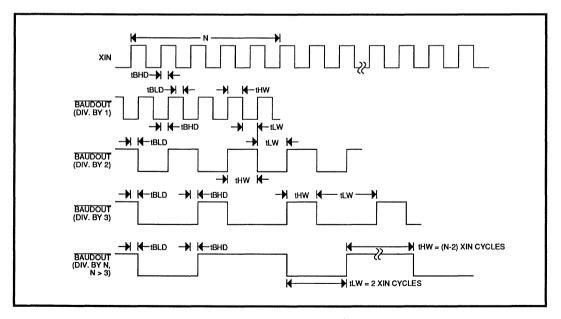


FIGURE 8: BAUDOUT Timing

AC CHARACTERISTICS (Continued)

RECEIVER (Refer to Figure 9.)

PARAMETER		CONDITIONS	MIN	МАХ	UNITS
tSCD	Delay from RCLK to Sample Time			2	μs
tSINT	Delay from Stop to Set Interrupt	RCLK=tXH & tXL		1	RCLK cycles
tRINT	Delay from RD, RD (RD RBR/RDLSR) to Reset Interrupt	100 pF load		1	μs

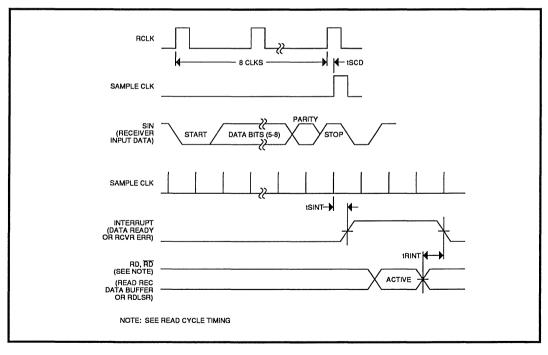
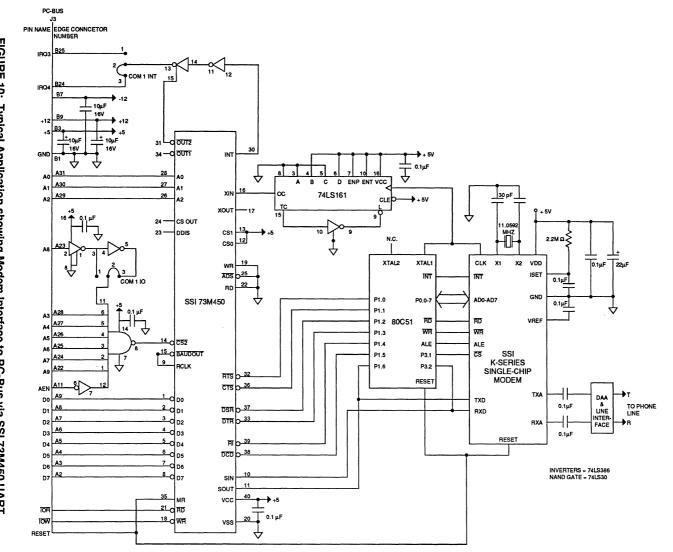
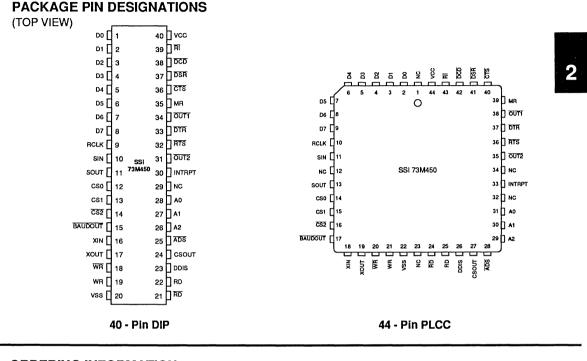



FIGURE 9: Receiver Timing


Universal Asynchronous Receiver/Transmitter

SSI 73M450/450F

FIGURE 10: Typical Application showing Modem Interface to PC-Bus via SSI 73M450 UART

2-206

0790 - rev.

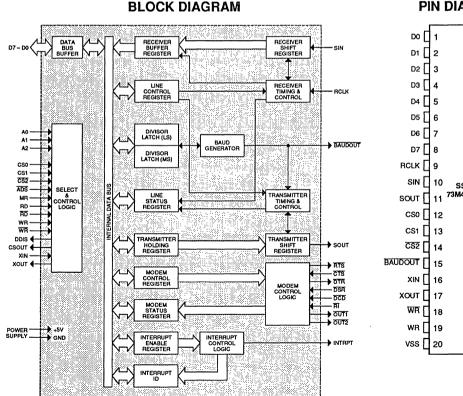
PART	DESCRIPTION	ORDER NO.	PKG. MARK
SSI 73M450	40-pin PDIP	SSI 73M450-IP	73M450-IP
	44-pin PLCC	SSI 73M450-IH	73M450-IH
SSI 73M450F	40-pin PDIP	SSI 73M450F-IP	73M450F-IP
	44-pin PLCC	SSI 73M450F-IH	73M450F-IH

No responsibility is assumed by Silicon Systems for use of this product nor for any infringements of patents and trademarks or other rights of third parties resulting from its use. No license is granted under any patents, patent rights or trademarks of Silicon Systems. Silicon Systems reserves the right to make changes in specifications at any time without notice. Accordingly, the reader is cautioned to verify that the data sheet is current before placing orders.

Silicon Systems, Inc., 14351 Myford Road, Tustin, CA 92680 (714) 731-7110, FAX (714) 731-5457

Notes:

June, 1989


2

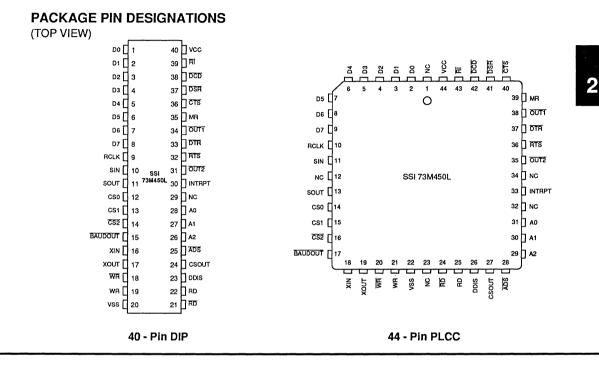
DESCRIPTION

The SSI 73M450L is an enhanced version of the SSI 73M450 Universal Asynchronous Receiver/ Transmitter (UART). The enhancement allows the chip to be placed into low-power operation by shutting off the crystal oscillator. The SSI 73M450LF is a fast version of the chip. Both versions require a single 5V supply, and are available in 40-pin DIP and 44-pin PLCC.

FEATURES

- Pin and register compatible with the SSI 73M450/450F
- Bit programmable oscillator disable provides a shut-down mode while retaining memory
- High drive current for directly driving large loads
- Available in 40-pin DIP and 44-pin PLCC

PIN DIAGRAM


		_			1
D0	d	1		40	
D1	D	2		39] ਸ
D2	C	3		38	020
D3	С	4		37	DSR
D4	С	5		36	ਰਾਤ
D5	D	6		35	MR
D6	C	7		34	
D7	С	8		33	ਸਾਰ [
RCLK	۵	9		32] RTS
SIN	D	10	SSI	31	
SOUT	d	11	73M450L	30	
CS0	Ц	12		29	
CS1	Ц	13		28	A 0
<u>CS2</u>	D	14		27] A1
BAUDOUT	Ц	15		26] A2
XIN	d	16		25	ADS
XOUT	Ц	17		24	CSOUT
WR	Ц	18		23	alda [
WR	Ц	19		22] RD
VSS	Ц	20		21] RD
	- L				

CONTROL REGISTER OVERVIEW

			DATA BIT NUMBER							
REGISTER	1	REGISTER ADDRESS (A2-A0) & DLAB	D7	D6	D5	D4	D3	D2	D1	Do
RECEIVER BUFFER REGISTER (READ ONLY)	RBR	000 DLAB = 0	BIT 7 (MSB)	BIT 6	BIT 5	BIT 4	BIT 3	BIT 2	ВІТ 1	BIT 0 (LSB)
TRANSMIT HOLDING REGISTER (WRITE ONLY)	THR	000 DLAB = 0	BIT 7 (MSB)	BIT 6	BIT 5	BIT 4	BIT 3	BIT 2	BIT 1	BIT 0 (LSB)
INTERRUPT ENABLE REGISTER	IER	001 DLAB = 0	0	0	SSI MODE	0	ENABLE MODEM STATUS INTERRUPT	ENABLE REC. LINE STATUS INTERRUPT	ENABLE THR EMPTY INTERRUPT	ENABLE REC. DATA AVAILABLE INTERRUPT
INTERRUPT ID REGISTER (READ ONLY)	IIR	010 DLAB = X	0	0	0	O	0	INTERRUPT ID BIT 1	INTERRUPT ID BIT 0	"0" IF INTERRUPT PENDING
LINE CONTROL REGISTER	LCR	011 DLAB = X	DIVISOR LATCH ACCESS (DLAB)	SET BREAK	STICK PARITY	EVEN PARITY SELECT (EPS)	PARITY ENABLE (PEN)	NUMBER OF STOP BITS (STB)	WORD LENGTH SELECT 1 (WLS1)	WORD LENGTH SELECT 0 (WLSO)
MODEM CONTROL REGISTER	MCR	100 DLAB = X	OSC OFF	0	0	LOOP	OUT2	OUT1	REQUEST TO SEND (RTS)	DATA TERMINAL READY (DR)
LINE STATUS REGISTER	LSR	101 DLAB = X	0	TRANSMIT- TER EMPTY (TEMT)	TRANSMIT HOLDING REGISTER EMPTY (THRE)	BREAK INTERRUPT (BI)	FRAMING ERROR (FE)	PARITY ERROR (PE)	overrun Error (OE)	DATA READY (DR)
MODEM STATUS REGISTER (READ ONLY)	MSR	110 DLAB = X	DATA CARRIER DETECT (DCD)	RING INDICATOR (RI)	DATA SET READY (DSR)	CLEAR TO SEND (CTS)	DELTA DATA CARR. DETECT (DDCD)	TRAILING EDGE RING INDICATOR (TERI)	DELTA DATA SET READY (DDSR)	DELTA CLEAR TO SEND (DCTS)
SCRATCH REGISTER	SCR	111 DLAB = X	BIT 7	BIT 6	BIT 5	BIT 4	BIT 3	BIT 2	BIT 1	BIT 0
DIVISOR LATCH (LS)	DLL	000 DLAB = 1	BIT 7	BIT 6	BIT 5	BIT 4	BIT 3	BIT 2	BIT 1	ВІТ О
DIVISOR LATCH (MS)	DLM	001 DLAB = 1	BIT 15	BIT 14	BIT 13	BIT 12	BIT 11	BIT 10	BIT 9	BIT 8

POWER SHUT-DOWN OPERATION

The oscillator of the SSI 73M450L/450LF is placed into power shut-down by setting bits D5 of the Interrupt Enable Register (IER) and D7 of the Modern Control Register (MCR) to a "1." During shut-down, the contents of all registers are retained. Resetting bit D7 of the MCR returns the chip to normal operation.

ORDERING INFORMATION

PART	DESCRIPTION	ORDER NO.	PKG. MARK
SSI 73M450L	40-pin PDIP	SSI 73M450L-IP	73M450L-IP
	44-pin PLCC	SSI 73M450L-IH	73M450L-IH
SSI 73M450LF	40-pin PDIP	SSI 73M450LF-IP	73M450LF-IP
	44-pin PLCC	SSI 73M450LF-IH	73M450LF-IH

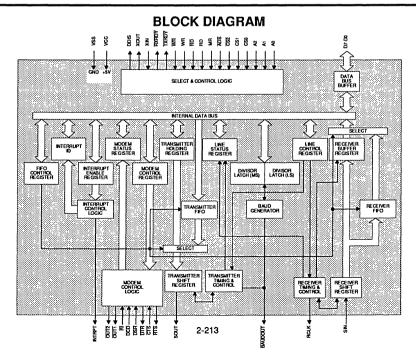
No responsibility is assumed by Silicon Systems for use of this product nor for any infringements of patents and trademarks or other rights of third parties resulting from its use. No license is granted under any patents, patent rights or trademarks of Silicon Systems. Silicon Systems reserves the right to make changes in specifications at any time without notice. Accordingly, the reader is cautioned to verify that the data sheet is current before placing orders.

Notes:

SSI 73M550 SSI 73M1550/2550 UART with FIFOs

August, 1990

DESCRIPTION


The SSI 73M550 is a Universal Asynchronous Receiver/Transmitter (UART) with receive and transmit FIFO buffers. The 16-byte FIFO registers are active during the FIFO mode, allowing the UART to reduce CPU overhead and accomodate Direct Memory Access (DMA) transfers. This mode is supported by interrupt functions and selectable interrupt trigger levels in both the RCVR and TXMR FIFO.

The 73M550 is functionally identical to the SSI 73M450 in the CHARACTER mode. Pins 24 (CSOUT) and 29 (NC) of the 73M450 have been replaced by TXRDY and RXRDY, respectively, on the 73M550. The chip is automatically put into the CHARACTER mode upon power-up, and subsequent mode changes are accomplished via software control.

The 73M1550 and 73M2550 are 28-pin versions of the 73M550. The difference between these versions is that 73M2550 adds a μ PRST pin at the expense of the XOUT pin. See Figure 17 on page 32 for detail. All versions are available in DIP or PLCC and require a single 5V supply.

FEATURES 16 bytes of receive and trar

- 16 bytes of receive and transmit FIFO buffering available in FIFO mode reduces CPU overhead
- Supports DMA transfers with TXRDY and RXRDY pins
- Backwards-compatible with the 73M450 in CHARACTER mode
- Oscillator disable allows a static low-power state
- Bit-programmable high impedance state of INTRPT pin
- High drive current for directly driving large loads
- Full double buffering
- Independent control transmit, receive, line status and data set interrupts
- Contains modem control functions including CTS, TRS, DSR, DTR, RI and DCD
- Full status reporting capabilities
- Available in 40-pin DIP, 44-pin PLCC, 28-pin DIP and PLCC
- CMOS design for low-power operation

SSI 73M550 SSI 73M1550/2550 UART with FIFOs

PIN DESCRIPTION

BUS INTERFACE

NAME	TYPE	DESCRIPTION
ADS	I	Address Strobe: The rising edge of this signal is used for latching the Register Address and Chip Select inputs, thus facilitating interface to a multiplexed Address/Data bus. ADS is also required when register address signals (A2, A1, A0) are not stable for the duration of the read or write cycle. If not required, ADS should be tied permanently low.
<u>CS0</u> , CS1, <u>CS2</u>	1	Chip Select: The UART is selected when CS0 and CS1 are high and $\overline{CS2}$ is low. Chip selection is complete when the decoded chip select signal is latched with the rising edge of an active (low) \overline{ADS} input. This enables communication between the UART and the CPU. If \overline{ADS} is permanently low, then chip select should be stabilized for the duration of the tCSW parameter.
A0-A2	I	Register Select Address: These pins determine which of the UART registers is being selected during a read or write on the UART Data Bus. The contents of the DLAB bit in the UART's Line Control Register (see Table 1) also controls which register is referenced.
RD, RD	I	Read Strobe: A request to read status information or data from a selected register may be made by pulling RD high or \overline{RD} low while the chip is selected. Since only one input is required for a read, tie either RD permanently low or \overline{RD} permanently high if not used.
WR, WR	I	Write Strobe: A request to write control words or data into a selected register may be made by pulling WR high or \overline{WR} low while the chip is selected. Since only one input is required for a write, tie either WR permanently low or \overline{WR} permanently high if not used.
D0-D7	I/O	UART Data Bus (three-state): This bus provides bi-directional communications between the UART and the CPU; data control words and status information are transferred via this bus.
TXRDY	I/O	Transmitter Ready Signal for DMA Transfer: Remains low as long as XMIT FIFO is not completely full. In FIFO mode, DMA transfer modes 0 and 1 are allowed. In the character mode, only DMA transfer mode 0 is allowed. DMA mode 0 supports single DMA transfer mode between CPU bus cycles. DMA mode 1 supports multiple DMA transfers until the XMIT FIFO has been filled.
RXRDY	0	Receiver Ready Signal for DMA Transfer: Remains low until RCVR FIFO has been emptied. In FIFO mode DMA transfer modes 0 and 1 are allowed. In the character mode only DMA mode 0 is allowed. DMA mode 0 supports single DMA transfer made between CPU bus cycles. DMA mode 1 supports multiple DMA transfers until the RCVR FIFO has been emptied.
DDIS	0	Driver Disable: Goes low when the CPU is reading data from the UART. A high- level DDIS output can be used to disable an external transceiver (if used between the CPU and UART on the D0-D7 Data Bus) at all times, except when the CPU is reading data.

BUS INTERFACE (Continued)

NAME	ТҮРЕ	DESCRIPTION	
INTRPT	0	Interrupt: Goes high whenever any one of the following interrupt types has an active high condition and is enabled via the IER: Receiver Error Flag, Received Data Available; Timeout (FIFO mode only); Transmitter Holding Register Empty and Modem Status. The INTRPT signal is reset low upon the appropriate interrupt service or a Master Reset operation.	2

DATA I/O

NAME	TYPE	DESCRIPTION
SIN	1	Serial Input: Input for serial data from the communications link (peripheral device, modem or data set).
SOUT	0	Serial Output: Output for serial data to the communications link (peripheral device, modem or data set). This signal is set high upon a Master Reset.

MODEM CONTROL

NAME	TYPE	DESCRIPTION
RTS	0	Request To Send: This output is programmed by $\overline{\text{RTS}}$ bit (D1) of the Modem Control Register and represents the compliment of that bit. I is used in modem handshaking to signify that the UART has data to transmit. This signal is set high upon Master Reset or during loop mode operation.
CTS	I	Clear To Send: A modem status input whose condition corresponds to the complement of the CTS bit (D4) of the Modem Status Register. When CTS is low, it indicates that communications have been established and that data may be transmitted.
DTR	0	Data Terminal Ready: This output is programmed by DTR bit (D0) of the Modem Control Register, and represents the compliment of that bit. It is used in modem handshaking to signify that the UART is available to communicate. This signal is set high upon Master Reset or during loop mode operation.
DSR	1	Data Set Ready: A modem status input whose condition is complimented and reflected in the DSR bit (D5) of the Modem Status Register. When DSR is low, it indicates that the modem is ready to establish communications.
DCD	1	Data Carrier Detect: A modem status input whose condition is complemented and reflected in the DCD bit (D7) of the Modem Status Register. When DCD is low, it indicates that the modem is receiving a carrier.
RI	I	Ring Indicator: A modem status input whose condition is complimented and reflected in the RI bit (D6) of the Modem Status Register. When \overline{RI} is low, it indicates that a telephone ringing signal is being received.
OUT1 OUT2	000	Output 1, 2: User designated outputs that can be set to an active low by setting bit 2 (OUT1) or bit 3 (OUT2) of the Modern Control Register high. These output signals are set high upon Master Reset or during loop mode operation.

SSI 73M550 SSI 73M1550/2550 UART with FIFOs

GENERAL & CLOCKS

NAME	TYPE	DESCRIPTION			
VCC	I	+5V Supply, ±10%: Bypass with 0.1 μ F capacitor to VSS.			
VSS	I	System Ground			
MR	I	Master Reset: When high, this input clears all UART control logic and registers, except for the Receiver Buffer, Transmitter Holding and Divisor Latches; also, the state of output signals SOUT, INTRPT, OUT1, OUT2, RTS and DTR are affected by an active MR input. This input is buffered with a TTL-compatible Schmitt Trigger. See Table 2.			
XIN, XOUT	1/0	External System Clock I/O: These two pins connect the main timing reference (crystal or signal clock) to the UART. Additionally, XIN may be driven by an external clock source.			
RCLK	I	Receiver Clock: This input is the 16X baud rate clock for the receiver section of the chip.			
BAUDOUT	0	Baud Generator Output: 16X clock signal for the transmitter section of the UAR The clock is equal to the main reference oscillator frequency divided by the specified divisor in the Baud Generator Divisor Latches. May also be used for the receiver section by tying this output to the RCLK input of the chip.			
N/C	-	No Connection: These pins have no internal connection and may be left floating.			

28-PIN VERSION, SPECIAL PINS

NAME	I/O	DESCRIPTION
INTRPT	0	Interrupt: In the 28-pin versions of this chip, the INTRPT pin can be forced into a high impedance state by resetting to 0 the OUT2 bit (D3) of the Modem Control Register. INTRPT pin operation is enabled by setting the OUT2 bit to 1.
XIN, XOUT	I/O	External System Clock: The XOUT pin is not available on the 73M2550 and therefore must be driven by an external clock connected to the XIN pin.
μPRST	0	Microprocessor Reset: This output signal is used to provide a hardware reset to a local controller. This pin becomes active high when the MR pin is pulled high or the OUT1 bit (D2) of the Modern Control Register is set to 1. The μ PRST function is available only on the 73M2550.

TABLE 1: Control Register Address Table

DLAB	A2	A1	A 0	REGISTER		
0	0	0	0	Receiver Buffer (read), Transmitter Holding Register (write)		
0	0	0	1	Interrupt Enable		
Х	0	1	0	Interrupt Identification (read only)		
Х	0	1	0	FIFO Control (write)		
Х	0	1	1	Line Control		
Х	1	0	0	Modem Control		
Х	1	0	1	Line Status		
Х	1	1	0	Modem Status		
Х	1	1	1	Scratch		
1	0	0	0	Divisor Latch (least significant byte)		
1	0	0	1	Divisor Latch (most significant byte)		

TABLE 2: UART Reset Functions

REGISTER/SIGNAL	RESET CONTROL	RESET STATE		
Interrupt Enable Register	Master Reset	All bits low (0-3 & 5 forced and 4, 6 & 7 permanent)		
Interrupt Identification Register	Master Reset	Bit 0 is high; bits 1, 2, 3, 6 & 7 are low; bits 4 & 5 are permanently low		
Line Control Register	Master Reset	All bits low		
Modem Control Register	Master Reset	All bits low (bits 5, 6 & 7 permanent)		
Line Status Register	Master Reset	All bits low, except bits 5 & 6 are high		
Modem Status Register	Master Reset	Bits 0-3 are low; bits 4-7 = input signal		
SOUT	Master Reset	High		
INTRPT (RCVR Errs)	Read LSR/MR	Low		
INTRPT (RCVR Data Ready)	Read RBR/MR	Low		
INTRPT (THRE)	Read IIR/Write THR/MR	Low		
INTRPT (Modem Status Changes)	Read MSR/MR	Low		
OUT2	Master Reset	High		
RTS	Master Reset	High		
DTR	Master Reset	High		
OUT1	Master Reset	High		
FIFO Control Register	Master Reset	All bits low		
RCVR FIFO	MR/FCR1 and FCR0/△FCR0	All bits low		
XMIT FIFO	MR/FCR2 and FCR0/ΔFCR0	All bits low		

SSI 73M550 SSI 73M1550/2550 UART with FIFOs

CONTROL REGISTER OVERVIEW

			DATA BIT NUMBER							
REGISTER		REGISTER ADDRESS (A2-A0) & DLAB	D7	D6	D5	D4	D3	D2	D1 ·	Do
RECEIVER BUFFER REGISTER (READ ONLY)	RBR	000 DLAB=0	BIT 7 (MSB)	BIT 6	BIT 5	BIT 4	BIT 3	BIT 2	BIT 1	ВГГ О (LSB)
TRANSMIT HOLDING REGISTER (WRITE ONLY)	THR	000 DLAB=0	BIT 7 (MSB)	BIT 6	BIT 5	BIT 4	BIT 3	BIT 2	BIT 1	BIT 0 (LSB)
INTERRUPT ENABLE REGISTER	IER	001 DLAB=0	0	0	ENABLE SSI MODE (NOTE 1)	0	ENABLE MODEM STATUS INTERRUPT	ENABLE REC. LINE STATUS INTERRUPT	ENABLE THR EMPTY INTERRUPT	ENABLE REC. DATA AVAILABLE INTERRUPT
INTERRUPT ID REGISTER (READ ONLY)	IIR	010 DLAB _ X	FIFOs ENABLED (NOTE 1)	FIFOs ENABLED (NOTE 1)	SSI MODE RXRDY FOR DMA	SSI MODE TXRDY FOR DMA	INTERRUPT ID BIT 2 (NOTE 1)	INTERRUPT ID BIT 1	INTERRUPT ID BIT 0	'0" IF INTERRUPT PENDING
FIFO CONTROL REGISTER (WRITE ONLY)	FCR	010 DLAB=X	RCVR TRIGGER (MSB)	RCVR TRIGGER (LSB)	SSI MODE XMIT TRIGGER (MSB)	SSI MODE XMIT TRIGGER (LSB)	DMA MODE SELECT	XMIT FIFO RESET	RCVR FIFO RESET	FIFO ENABLE
LINE CONTROL REGISTER	LCR	001 DLAB=X	DIVISOR LATCH ACCESS (DLAB)	SET BREAK	STICK PARITY	EVEN PARITY SELECT (EPS)	PARITY ENABLE (PEN)	NUMBER OF STOP BITS (STB)	WORD LENGTH SELECT 1 (WLS1)	WORD LENGTH SELECT 0 (WLS0)
MODEM CONTROL REGISTER	MCR	100 DLAB=X	SSI MODE OSC OFF	0	O	LOOP	OUT 2	OUT 1	REQUEST TO SEND (RTS)	DATA TERMINAL READY (DTR)
LINE STATUS REGISTER	LSR	101 DLAB=X	ERROR IN RCVR FIFO (NOTE 1)	TRANS- MITTER EMPTY (TEMT)	TRANSMIT HOLDING REGISTER EMPTY(THRE)	BREAK INTERRUPT (BI)	FRAMING ERROR (FE)	PARITY ERROR (PE)	OVERRUN ERROR (OE)	DATA READY (DR)
MODEM STATUS REGISTER (READ ONLY)	MSR	110 DLAB=X	DATA CARRIER DETECT (DCD)	RING INDICATOR (RI)	DATA SET READY (DSR)	CLEAR TO SEND (CTS)	DELTA DATA CARR. DETECT (DDCD)	TRAILING EDGE RING INDICATOR (TERI)	DELTA DATA SET READY (DDSR)	DELTA CLEAR TO SEND (DCTS)
SCRATCH REGISTER	SCR	111 DLAB=X	BIT 7	BIT 6	BIT 5	BIT 4	ВІТ З	BIT 2	BIT 1	BIT 0
DIVISOR LATCH (MS)	DLL	000 DLAB=1	BIT 7	BIT 6	ВП 5	BIT 4	ВІТ З	BIT 2	BIT 1	ВІТ О
DIVISOR LATCH (MS)	DLM	001 DLAB = 1	BIT 15	BIT 14	BIT 13	BIT 12	BIT 11	BIT 10	BIT 9	ВІТ 8

NOTE 1: THESE BITS ARE RESET TO 0 IN THE 73M450 MODE (Character Mode)

REGISTER BIT DESCRIPTIONS

RECEIVER BUFFER REGISTER (RBR) (READ ONLY) UART ADDRESS: A2 - A0 = 000, DLAB = 0

This read only register contains the parallel received data with start, stop, and parity bits (if any) removed. The high order bits for less than 8 data bits/character will be set to 0.

TRANSMIT HOLDING REGISTER (THR) (WRITE ONLY) UART ADDRESS: A2 - A0 = 000, DLAB = 0

This write only register contains the parallel data to be transmitted. The data is sent LSB first with start, stop, and parity bits (if any) added to the serial bit stream as the data is transferred.

INTERRUPT ENABLE REGISTER (IER) UART ADDRESS: A2 - A0 = 001, DLAB = 0

This 8-bit register enables the five types of interrupts of the UART to separately activate the chip Interrupt (INTRPT) output signal. It is possible to totally disable the interrupt system by resetting bits 0 through 3 of the Interrupt Enable Register. Similarly, by setting the appropriate bits of this register to a logic 1, selected interrupts can be enabled. Disabling the interrupt system inhibits the Interrupt Identification Register and the active (high) INTRPT output from the chip. All other system functions operate in their normal manner, including the setting of the Line Status and Modern Status Registers.

The chip's SSi mode can be activated by setting bit D5. Once in the SSi mode, the chip can be placed in a power shut-down state by setting bit D7 in the Modem Control Register.

ВІТ	NAME	COND	DESCRIPTION
D0	Received Data	1	When set to logic 1 this bit enables the Received Data Available Interrupt, and timeout interrupts in FIFO mode.
D1	Transmitter Holding Register Empty	1	When set to logic 1 this bit enables the Transmitter Holding Register Empty Interrupt.
D2	Receiver Line Status Interrupt	1	When set to logic 1 this bit enables the Receiver Line Status Interrupt.
D3	Modem Status	1	When set to logic 1 this bit enables the Modem Status Interrupt.
D4	Not Used	0	This bit are is always logic 0.
D5	SSI Mode	1	When set to logic 1, this bit enables the SSi Mode. In the SSi Mode the oscillator can be turned off via bit D7 in the Modem Control Register, and the XMIT THRE interrupt trigger set via bits D4 & D5 of the FIFO Control Register.
D6-D7	Not used	0	These two bits are always logic 0.

INTERRUPT ID REGISTER (IIR) (READ ONLY) UART ADDRESS: A2 - A0 = 010

The IIR register gives prioritized information as to the status of interrupt conditions and also allows for DMA transfer operations in a polled FIFO manner under the SSi mode. When accessed, the IIR freezes the highest priority interrupt pending and no other interrupts are acknowledged until the particular interrupt is serviced by the CPU. The order of interrupt priorities is shown in the table below.

BIT	NAME	COND	DESCRIPTION
D0	Interrupt Pending	0	This bit can be used in either a prioritized interrupt or polled environment to indicate whether an interrupt is pending. When bit 0 is a logic 0, an interrupt is pending and the IIR contents may be used as a pointer to the appropriate interrupt service routine.
		1	When bit 0 is a logic 1, no interrupt is pending.
D1, D2 D3	Interrupt ID bits 0, 1, 2	See table Page 10	These three bits of the IIR are used to identify the highest priority interrupt pending as indicated in the following table. Bit D3 is reset to 0 when FIFO mode is disabled.
D4	SSI mode TXRDY for DMA	1	This bit function is available only when SSi mode is enabled (bit D5 in IER is set). This bit is the compliment of TXRDY pin and is used to support DMA transfers in a polled environment. A logic 1 indicates transmitter is less than full and is ready for DMA transfer.
		0	A logic 0 indicates transmitter is full and not ready for DMA transfer. Also when SSI mode is disabled this bit will be reset to 0.
D5	SSI mode RXRDY for DMA	1	This bit function is available only when SSi mode is enabled (bit D5 in IER is set). This bit is the compliment of RXRDY pin and is used to support DMA transfers in a polled environment. A logic 1 indicates receiver is not empty and is ready for DMA transfer.
		0	A logic 0 indicates receiver is empty and not ready for DMA transfer. Also when SSi mode is disabled this bit will be reset to 0.
D6, D7	FIFOs enabled	1	These two bits are set to logic 1 when bit D0 in FCR is set to 1 (FIFO mode enabled).
		0	These two bits are reset to logic 0 when bit D0 in FCR is reset to 0 (FIFO mode disabled).

INTERRUPT PRIORITY TABLE

D3	D2	D1	D0	PRIORITY	ТҮРЕ	SOURCE	RESET
0	0	0	1	-	None	None	N/A
0	1	1	0	Highest	Receiver Line Status	Overrun Error, Parity Error, Framing Error or Break Interrupt	Reading the Line Status Register
0	1	0	0	Second	Receive Data Available	Receive Data Available or RCVR FIFO trigger level reached	Reading the Receiver Buffer Register or the RCVR FIFO drops below trigger level
1	1	0	0	Second	Character Timeout Indicator	No characters have been removed from or input to the RCVR FIFO during the last 4 character times and there is at least 1 character in it during this time	Reading the Receiver Buffer Register
00	1	0	Third	Transmit Holding	Transmit Holding Reg Register Empty	ister Empty or below XMIT FIFO trigger level	Reading IIR Register (if source of interrupt) or Writing to Transmit Holding Register or XMIT FIFO tigger level reached
0	0	0	0	Fourth	Modem Status	Clear to Send or Data Set Ready or Ring Indicator or Data Carrier Detect	Reading the Modem Status Register

FIFO CONTROL REGISTER (FCR) (WRITE ONLY) UART ADDRESS: A2 - A0 = 010

This is a write only register at the same location as the IIR read only Register. This register is used to enable the FIFOs, clear the FIFOs, set the XMIT and RCVR FIFO trigger level, and select the type of DMA signalling.

ВІТ	NAME	COND	DESCRIPTION
D0	FIFO Enable	1	Setting this bit to logic 1 enables both XMIT and RCVR FIFOs. This bit must be written as 1 when other FCR bits are written to or they will not be programmed.
		0	Resetting this bit to logic 0 disables the FIFO mode (enables the 73M450 mode) and clears data in both FIFOs when changing from FIFO mode to 73M450 mode and vice versa, data is automatically cleared from FIFOs.
D1	RCVR FIFO Reset	1	Setting this bit to logic 1 clears all data in the RCVR FIFO and resets its counter logic to 0. The shift register is not cleared. The logic 1 written into this bit is self clearing.
D2	XMIT FIFO Reset	1	Setting this bit to logic 1 clears all data in the XMIT FIFO and resets its counter logic to 0. The shift register is not cleared. The logic 1 written into this bit is self clearing.

2

FIFO CONTROL REGISTER (FCR) (WRITE ONLY) (Continued)

BIT	NAME	COND	DESCRIPTION
D3	DMA Mode Select	1	Setting this bit to logic 1 will enable DMA mode 1. In this mode pins TXRDY and RXRDY and bits D4 and D5 in IIR, support multiple DMA transfers.
		0	Resetting this bit to logic 0 will enable DMA mode 0. In this mode, pins TXRDY and RXRDY and bits D4 and D5 in IIR support single DMA transfers.
D5, D4	SSI Mode XMIT Trigger (MSB, LSB)	0/1	These two bits are active in the SSi mode only. The value written into D5 and D4 determine the XMIT FIFO trigger level as described in table below. The THRE interrupt will occur if the XMIT FIFO is below the trigger level and will reset when the XMIT FIFO is filled to trigger level.
D7, D6	RCVR Trigger (MSB, LSB)	0/1	The value written into D7 and D6 determining the RCVR FIFO trigger level as described in table below. The received data available interrupt will occur if the RCVR FIFO is filled to or above the trigger level and will reset when the RCVR FIFO drops below the trigger level.

D5	D4	XMIT FIFO Trigger Level (Bytes)
0	0	01
0	1	04
1	0	08
1	1	14

D7	D6	RCVR FIFO Trigger Level (Bytes)
0	0	01
0	1	04
1	0	08
1	1	14

LINE CONTROL REGISTER (LCR) UART ADDRESS: A2 - A0 = 011

The user specifies the format of the asynchronous data communications exchange via the Line Control Register. In addition to controlling the format the user may retrieve the contents of the Line Control Register for inspection. This feature simplifies system programming and eliminates the need for separate storage in system memory of the line characteristics.

ВІТ	NAME	СО	ND	DESCRIPTION
D0/D1	Word Length Select 0 (WLS0)			Bits D0 and D1 select the number of data bits per character as shown:
	Word Length	D1	D0	Word Length
	Select 1	0	0	5 bits
	(WLS1)	0	1	6 bits
		1	0	7 bits
		1	1	8 bits
D2	Number of Stop Bits (STB)	0 or 1		This bit specifies the number of stop bits in each trans- mitted character. If bit D2 is a logic 0, one stop bit is generated in the transmitted data. If bit D2 is a logic 1 when a 5-bit word length is selected via bits D0 and D1, one-and-a-half stop bits are generated. If bit D2 is a logic 1 when either a 6, 7, or 8- bit word length is selected, two stop bits are generated. The receiver checks the first stop bit only, regardless of the number of stop bits selected.
D3	Parity Enable (PEN)	1		This is the Parity Enable (PEN) bit. When set to a logic 1, a parity bit is generated (transmit data) or checked (receive data) between the last data word bit and stop bit of the serial data. (The parity bit is used to produce an even or odd number of 1's when the data word bits and the parity bit are summed).
D4	Even Parity Select (EPS)	1 or 0		This is the Even Parity Select (EPS) bit. When bit D3 is a logic 1 and bit D4 is a logic 0, an odd number of logic 1's is transmitted or checked in the data word bits and parity bit. When bit D3 is a logic 1 and bit D4 is a logic 1 an even number of logic 1's is transmitted or checked.
D5	Stick Parity	1 or 0		This is the Stick Parity bit. When bit D3 is a logic 1 and bit D5 is a logic 1 the parity bit is transmitted and checked by the receiver as a logic 0 if bit D4 is a logic 1 or as a logic 1 if bit D4 is a logic 0.
		D5 D4		Parity
		0 0		ODD Parity
		0	1	EVEN Parity
		1	0	MARK Parity
		1	1	SPACE Parity

2

LINE CONTROL REGISTER (LCR) (Continued)

BIT	NAME	COND	DESCRIPTION
D6	Set Break	1	This is the Break Control bit. It causes a break condition to be sent to the receiving UART. When set to a logic 1 the serial out (SOUT) is forced to a logic 0 state. The break is disabled by setting bit D6 to a logic 0. This bit acts only on SOUT and has no effect on the transmitter logic. See note below.
D7	Divisor Latch Access Bit (DLAB)	1	The Divisor Latch Access Bit (DLAB) must be set high (logic 1) to access the Divisor Latches of the baud generator during a Read or Write operation. It must be set low (logic 0) to access the Receiver Buffer, the Transmitter Holding Register, or the Interrupt Enable Register.

NOTE: This feature enables the CPU to alert a terminal in a computer communications system. If the following sequence is followed, no erroneous or extraneous characters will be transmitted because of the break.

- 1. Load an all 0's pad character in response to THRE.
- 2. Set break in response to the next THRE.
- 3. Wait for the Transmitter to be idle. (TEMT = 1), and clear break when normal transmission has to be restored.

During the break, the Transmitter can be used as a character timer to accurately establish the break duration.

MODEM CONTROL REGISTER (MCR) UART ADDRESS: A2 - A0 = 100

The Modem Control Register controls the interface with the modem, data set or peripheral device.

BIT	NAME	COND	DESCRIPTION
D0	DTR	0/1	This bit controls the Data Terminal Ready (\overline{DTR}) output. When bit 0 is set to a logic 1 the \overline{DTR} output is forced to a logic 0. When bit 0 is reset to a logic 0 the \overline{DTR} output is forced to a logic 1.
D1	RTS	0/1	This bit controls the Request to Send (\overline{RTS}) output. When bit 1 is set to a logic 1 the \overline{RTS} output is forced to a logic 0. When bit 1 is reset to a logic 0 the \overline{RTS} output is forced to a logic 1.
D2	OUT1	0/1	This bit controls the Output 1 ($\overline{OUT1}$) signal, an auxiliary user-designated output. When bit D2 is set to a logic 1, $\overline{OUT1}$ is forced to a logic 0. When bit D2 is reset to a logic 0, $\overline{OUT1}$ is forced to a logic 1. On the SSI 73M2550 only, this bit controls the μ PRST output. When bit D2 is set to a logic 1, the μ PRST output is forced to a logic 1. When bit D2 is reset to a logic 0, μ PRST is forced to logic 0.
D3	OUT2	0/1	This bit controls the Output 2 ($\overline{OUT2}$) signal, an auxiliary user-designated output. When bit D3 is set to a logic 1, $\overline{OUT2}$ forced to a logic 0. When bit D3 is reset to a logic 0, $\overline{OUT2}$ output is forced to a logic 1. On the 28-pin versions, this bit controls the INTRPT pin. When bit D3 is set to a logic 1, the INTRPT output is enabled. When bit D3 is reset to logic 0, the INTRPT pin is forced into a high impedance state.

MODEM CONTROL REGISTER (MCR) (Continued)

BIT	NAME	COND	DESCRIPTION
D4	LOOP	0/1	This bit provides a local loopback feature for diagnostic testing of the UART. When bit 4 is set to logic 1, the following occurs: the transmitter Serial Output (SOUT) is set to the logic 1 state; the receiver Serial Input (SIN) is disconnected; the output of the Transmitter Shift Register is "looped back" into the Receiver Shift Register input; the four Modem Control inputs (CTS, DSR, DCD and RI) are disconnected; the four Modem Control outputs (DTR, RTS, OUT1 and OUT2) are internally connected to the four Modem Control inputs, and the Modem Control output pins are forced to their inactive state (high). In the diagnostic mode, data that is transmitted is immediately received. This feature allows the processor to verify the transmit and receiver data paths of the UART. In the diagnostic mode, the receiver and transmitter interrupts are fully operational. The Modem Control Inputs are also operational, but the interrupts' sources are now the lower four bits of the Modem Control Register instead of the four Modem Control inputs. The interrupts are still controlled by the Interrupt Enable Register.
D5-D6		0	These bits are permanently set to logic 0.
D7	SSi Mode Osc. off	1	This bit is active in the SSi Mode only. When D7 is set the UART oscillator is tunred off placing the UART in a power shutdown state. All UART memory is retained during power shutdown.
		0	Resetting this bit enable the oscillator and powers up the UART.

LINE STATUS REGISTER (LSR) UART ADDRESS: A2 - A0 = 101

This register provides status information to the CPU concerning the data transfer. Bits D1-D4 are the error conditions that produce a Receiver Line Status interrupt whenever any of the corresponding conditions are detected. The Line Status Register is intended for read operation only. Writing to this register is not recommended as this operation is used for factory testing.

BIT	NAME	COND	DESCRIPTION
D0	DR	0/1	The Data Ready (DR) bit is set to a 1 whenever a complete incoming character has been received and transferred into the Receiver Buffer Register. DR is reset to 0 by reading all data in the Receiver Buffer Register FIFO.
D1	OE	0/1	The Overrun Error (OE) bit is set when data in the Receiver Buffer Register was not read by the CPU before the next character was transferred into the Receiver Buffer Register, thereby destroying the previous character. OE is reset to 0 whenever the CPU reads the contents of the Line Status Register. In FIFO mode if data continues to fill the FIFO beyond the trigger level an overrun error will occur only after the FIFO is full and the next character has been completely received in (Continued)

LINE STATUS REGISTER (LSR) (Continued)

ВІТ	NAME	COND	DESCRIPTION
D1	OE	0/1	the shift register. OE is indicated to the CPU as soon as it occurs. The character in the shift register is overwritten but it is not transferred to the FIFO.
D2	PE	0/1	The Parity Error (PE) bit is set when the received character did not have the correct parity. PE is reset to 0 whenever the CPU reads the Line Status Register. In FIFO mode this error is revealed to the CPU when its associated character is at the top of the FIFO.
D3	FE	1	The Framing Error (FE) bit indicates that the received character did not have a valid stop bit. FE is reset to 0 whenever the CPU reads the contents of the Line Status Register. In the FIFO mode this error is revealed to the CPU when its associated character is at the top of the FIFO. The UART will try to resynchronize after a framing error. To do this it assumes that the framing error was due to the next start bit, so it samples the following start bit twice and then takes in the data that follows.
D4	ВІ	1	The Break Interrupt (BI) bit is set when a break has been received. A break occurs whenever the received data is held to 0 for a full data word (start + data + stop). BI is reset to 0 whenever the CPU reads the Line Status Register. In the FIFO mode this error is revealed to the CPU when its associated character is at the top of the FIFO. When break occurs only one zero character is loaded into the FIFO. The next character transfer is enabled after SIN goes to the marking (high) state and receives the next valid start bit.
D5	THRE	1	The Transmit Holding Register Empty (THRE) is set to a logic 1 when a character is transferred from the Transmit Holding Register into the Transmit Shift Register, indicating that the UART is ready to accept a new character for transmission. In addition this bit causes the UART to issue an interrupt to the CPU when the THRE Interrupt enable is set high. THRE is reset to 0 when the CPU loads a character into the Transmit Holding Register. In the FIFO mode this bit is set when the XMIT FIFO is filled below the trigger level and will reset when the FIFO is filled to the trigger level.
D6	ТЕМТ	1	The Transmit Empty (TEMT) indicates that both the Transmit Holding Register and the Transmit Shift Registers are empty. TEMT is reset to 0 whenever the TSR or THR contains a data character. In the FIFO mode this bit is set whenever the XMIT FIFO and the transmitter shift register are both empty.
D7	Error in Rcvr FIFO	0	In the character mode this bit is reset to 0. In the FIFO mode this bit is set when there is at least one parity error, framing error or break indication in the FIFO. This bit is reset when the CPU reads the Line Status Register if there are no subsequent errors in the FIFO.
			nditions that produce a Receiver Line Status interrupt whenever any of the are detected and the interrupt is enabled.

MODEM STATUS REGISTER (MSR) (READ ONLY) UART ADDRESS: A2 - A0 = 110

This register provides the current state of the control signals from the modem or peripheral device. In addition four bits provide change information. Whenever bit D0, D1, D2 or D3 is set to logic 1 a Modem Status Interrupt is generated; reset to logic 0 occurs whenever they are read. In Loop Mode CTS, DSR, RI and DCD are taken from RTS, DTR, OUT1, and OUT2 in the Modem Control Register, respectively.

BIT	NAME	COND	DESCRIPTION
D0	DCTS	1	The Delta Clear to Send (DCTS) bit is set when the $\overline{\text{CTS}}$ input to the chip has changed state since the last time it was read by the CPU.
D1	DDSR	1	The Delta Data Set Ready (DDSR) bit is set when the DSR input to the chip has changed state since the last time it was read by the CPU.
D2	TERI	1	The Trailing Edge of the Ring Indicator (TERI) detect bit is set when the $\overline{\text{RI}}$ input to the chip has changed from an Off (logic 0) to an On (logic 1) condition.
D3	DDCD	1	The Delta Data Carrier Detect (DDCD) bit indicates that the $\overline{\text{DCD}}$ input to the chip has changed state.
D4	CTS	1	This bit is the complement of the Clear To Send ($\overline{\text{CTS}}$) input. If bit 4 (loop) of the MCR is set to a 1, this bit is equivalent to RTS in the MCR.
D5	DSR	1	This bit is the complement of the Data Set Ready ($\overline{\text{DSR}}$) input. If bit 4 of the MCR is set to a 1, this bit is the equivalent of DTR in the MCR.
D6	RI	1	This bit is the complement of the Ring Indicator (\overline{RI}) input. If bit 4 of the MCR is set to a 1, this bit is equivalent to OUT1 in the MCR.
D7	DCD	1	This bit is the complement of the Data Carrier Detect (\overline{DCD}) input. If bit 4 of the MCR is set to a 1, this bit is equivalent to OUT2 in the MCR.

SCRATCH REGISTER (SCR) ADDRESS: A2 - A0 = 111

This 8-bit Read/Write Register does not control the UART in any way. It is intended as a scratchpad register to be used by the programmer to hold data temporarily.

DIVISOR LATCH (LS) (DLL) ADDRESS: A2 - A0 = 000, DLAB = 1

This register contains the least significant byte of the divisor which is used to control the rate of the programmable baud generator.

¢

DIVISOR LATCH (MS) (DLM) ADDRESS: A2 - A0 = 001, DLAB = 1

This register contains the most significant byte of the divisor which is used to control the rate of the programmable baud generator.

PROGRAMMABLE BAUD GENERATOR

The UART contains a programmable Baud Generator that is capable of taking any clock input (DC to 8 MHz) and dividing it by any divisor from 2 to 2^{16} -1. 4 MHz is the highest input clock frequency recommended when the divisor = 1. The output frequency of the Baud Generator is 16 x the Baud [divisor # = (frequency input)/ (baud rate x 16)]. Two 8-bit latches store the divisor in a 16-bit binary format. These Divisor Latches must be loaded during initialization in order to ensure desired operation of the Baud Generator. Upon loading either of the Divisor Latches, a 16-bit Baud counter is immediately loaded. This prevents long counts on initial load.

Tables 3, 4 and 5 illustrate the use of the Baud Generator with crystal frequencies of 1.8432 MHz, 3.072 MHz, and 8 MHz respectively. For baud rates of 38400 and below, the error obtained is minimal. The accuracy of the desired baud rate is dependent on the crystal frequency chosen.

DESIRED BAUD RATE (BIT RATE CLOCK)	DIVISOR USED TO GENERATE 16 X CLOCK	PERCENT ERROR DIFFERENCE BETWEEN DESIRED AND ACTUAL
50	2304	-
75	1536	· _
110	1047	0.026
134.5	857	0.058
150	768	-
300	384	
600	192	-
1200	96	-
1800	64	-
2000	58	0.69
2400	48	_
3600	32	_
4800	24	_
7200	16	_
9600	12	-
19200	6	_
38400	3	-
56000	2	2.86

TABLE 3: Baud Rates using 1.8432 MHZ Crystal

DESIRED BAUD RATE (BIT RATE CLOCK)	DIVISOR USED TO GENERATE 16 X CLOCK	PERCENT ERROR DIFFERENCE BETWEEN DESIRED AND ACTUAL
50	3840	
75	2560	-
110	1745	0.026
134.5	1428	0.034
150	1280	—
300	640	-
600	320	- •
1200	160	_
1800	107	0.312
2000	96	-
2400	80	-
3600	53	0.628
4800	40	-
7200	27	1.23
9600	20	-
19200	10	<u> </u>
38400	5	-

TABLE 4: Baud Rates using 3.072 MHZ Crystal

DESIRED BAUD RATE (BIT RATE CLOCK)	DIVISOR USED TO GENERATE 16 X CLOCK	PERCENT ERROR DIFFERENCE BETWEEN DESIRED AND ACTUAL
50	10000	_
75	6667	0.005
110	4545	0.010
134.5	3717	0.013
150	3333	0.010
300	1667	0.020
600	833	0.040
1200	417	0.080
1800	277	0.080
2000	250	-
2400	208	0.160
3600	139	0.080
4800	104	0.160
7200	69	0.644
9600	52	0.160
19200	26	0.160
38400	13	0.160
56000	9	0.790
128000	4	2.344
256000	2	2.344

TABLE 5: Baud Rates using 8 MHZ Crystal

2

FIFO INTERRUPT MODE OPERATION

When the RCVR FIFO and receiver interrupts are enabled (FCR D0 = 1, IER D0 = 1) RCVR interrupts will occur as follows:

- A. The receive data available interrupt will be issued to the CPU when the FIFO has reached its programmed trigger level; it will be cleared as soon as the FIFO drops below its programmed trigger level.
- B. The IIR receive data available indication also occurs when the FIFO trigger level is reached and like the interrupt it is cleared when the FIFO drops below the trigger level.
- C. The receiver line status interrupt (IIR = 06), as before, has higher priority than the received data available (IIR = 04) interrupt.
- D. The data ready bit (LSRD0) is set as soon as a character is transferred from the shift register to the RCVR FIFO. It is reset when the FIFO is empty.

When RCVR FIFO and receiver interrupts are enabled, RCVR FIFO timeout interrupts will occur as follows:

- A FIFO timeout interrupt will occur, if the following conditions exist:
 - at least one character is in the FIFO
 - the most recent serial character received was longer than 4 continuous character times ago (if 2 stop bits are programmed the second one is included in this time delay).
 - the most recent CPU read of the FIFO was longer than 4 continuous character times ago.

This will cause a maximum character received to interrupt issued delay of 160 ms at 300 baud with a 12 bit character.

- B. Character times are calculated by using the RCLK input for a clock signal (this makes the delay proportional to the baud rate).
- C. When a timeout interrupt has occurred it is cleared and the timer reset when the CPU reads one character from the RCVR FIFO.
- D. When a timeout interrupt has not occurred the timeout timer is reset after a new character is received or after the CPU reads the RCVR FIFO.

When the XMIT FIFO and transmitter interrupts are enabled (FCRD0 = 1, IERD1 = 1), XMIT interrupts will occur as follows:

- A. The transmitter holding register interrupt occurs when the XMIT FIFO is below the trigger level. It is cleared as soon as the transmitter holding register is written to and reaches the trigger level or the IIR is read. If the SSi mode is disabled (IER D5 = 0) then the XMIT FIFO trigger level is set to 1 byte.
- B. The transmitter FIFO empty indications will be delayed 1 character time minus the last stop bit time whenver the folowing occurs: THRE =1 and there have not been at least two bytes at the same time in the transmit FIFO since the last THRE = 1. The first transmitter interrupt after changing FCR D0 will be immediate, if it is enabled.

Character timeout and RCVR FIFO trigger level interrupts have the same priority as the current received data available interrupt; XMIT FIFO empty has the same priority as the current transmitter holding register empty interrupt.

FIFO MODE OPERATION

With FCR D0 = 1 resetting IER D0, IER D1, IER D2, IER D3 or all to zero puts the UART in the FIFO polled mode of operation. Since the RCVR and XMITTER are controlled separately either one or both can be in the polled mode of operation. In this mode the users program will check RCVR and XMITTER status via the LSR. As stated previously:

LSR D0 will be set as long as there is one byte in the RCVR FIFO

LSR D1 to LSR D4 will specify which error(s) has occurred. Character error status is handled the same way as when in the interrupt mode, the IIR is not affected since IER D2 = 0

LSR D5 will indicate when the XMIT FIFO is empty.

LSR D6 will indicate that both the XMIT FIFO and shift register are empty.

LSR D7 will indicate whether there are any errors in the RVCR FIFO.

There is no trigger level reached or timeout condition indicated in the FIFO Polled Mode, however, the RCVR and XMIT FIFOs are still fully capable of holding characters.

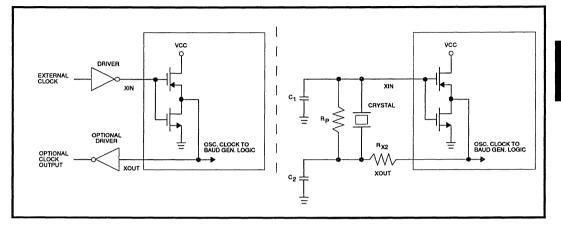


FIGURE 1: Typical Clock Circuits

TYPICAL CRYSTAL OSCILLATOR NETWORK

CRYSTAL	RP	RX2	C1	C2
1.8 - 8 MHz	1 MΩ	1.5K	10-30 pF	40-60 pF

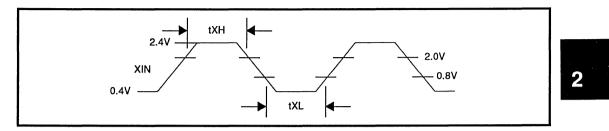
ELECTRICAL CHARACTERISTICS

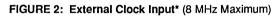
ABSOLUTE MAXIMUM RATINGS

 $(TA = -40^{\circ}C \text{ to } +85^{\circ}C, VCC = 5V \pm 10\%, unless otherwise noted. Operation above absolute maximum ratings may permanently damage the device.)$

PARAMETER	CONDITIONS	RATING
VCC Supply Voltage		+14V
Storage Temperature		-65°C to 150°C
Lead Temperature	Soldering, 10 sec.	260°C
Applied Voltage		-0.3 to Vcc + 0.3

DC CHARACTERISTICS


(TA = -40° C to $+85^{\circ}$ C, VCC = 5V \pm 10%, Vss = 0V, unless otherwise noted; positive current is defined as entering the chip.)


PARAMETER		CONDITIONS	MIN	NOM	MAX	UNITS
VILX	Clock input Low voltage		0.5		0.8	v
VIHX	Clock input High Voltage		2.0		Vcc	v
VIL	Input Low Voltage		-0.5		0.8	V
VIH	Input High Voltage		2.0		Vcc	v
VOL	Output Low Voltage	IOL = 4.0 mA (except XOUT)			0.4	v
VOH	Output High Voltage	IOH = -5.0 mA on all outputs except XOUT	2.4			V
ICC	Average Power Supply	See Note 1		5	10	mA
	Current	See Note 2			50	μΑ
IIL	Input Leakage	VCC=5.25V, VSS=0V. All other pins floating.			±10	μA
ICL	Clock Leakage	VIN=0V, 5.25V			±10	μA
IOZ	3-State Leakage	VCC=5.25V, VSS=0V, VOUT=0V, 5.25V 1) Chip deselected 2) Chip & write mode selected			±20	μA
VILMR	MR Schmitt VIL				0.8	v
VIHMR	MR Schmitt VIH		2.0			v
Note 1:	VCC = 5.25V, TA = 25°C; No k = 0.4V. Baud Rate Gen. = 4 M		, DCD, CI	S, RI = 2	.4V. Allo	ther inputs
Note 2:	VCC = 5.5V, TA = -40°C; No	output load; CMOS-level in	puts, osci	llator disa	abled	

CAPACITANCE

(TA = 25°C, VCC = VSS = 0V, fc = 1 MHz, unmeasured pins returned to VSS)

PARAME	ETER	CONDITIONS	MIN	NOM	МАХ	UNITS
CXTAL2	Clock Input Capacitance			15	20	pF
CXTAL1	Clock Output Capacitance			20	30	pF
CI	Input Capacitance			6	10	рF
со	Output Capacitance			10	20	pF

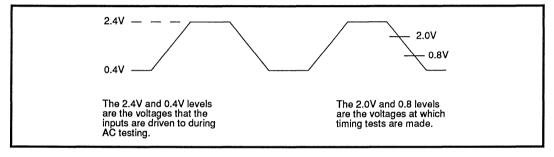


FIGURE 3: AC Test Points*

*All timings are referenced to valid 0 and valid 1.

AC CHARACTERISTICS (TA = -40°C to +85°C, VCC = $5V \pm 10\%$, unless otherwise noted.)

READ 8	CYCLE	(Refer to	Figures 4 &	5.)
			i igui co + u	J.,

PARAMETER		R CONDITIONS		1550	UNITS
			MIN	MAX	
tADS	Address Strobe Width		60		ns
tAS	Address Setup Time		60		ns
tAH	Address Hold Time		0		ns
tCS	Chip Select Setup Time		60		ns
tCH	Chip Select Hold Time		0		ns
tCSR	RD, RD Delay from Chip Select	See Note 3	30		ns
tAR	RD, RD Delay from Address	See Note 3	30		ns
tRD	RD, RD Strobe Width		125		ns
tRC	Read Cycle Delay		125		ns

READ & WRITE CYCLE (Continued)

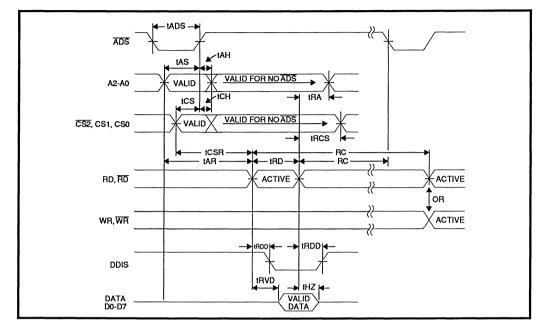
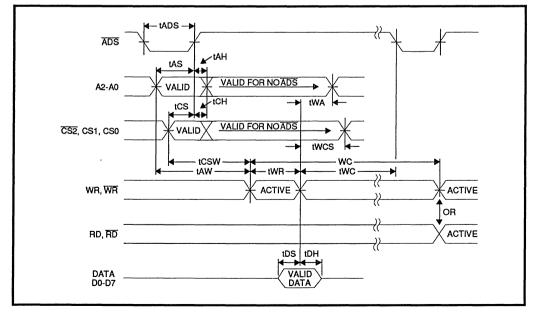
PARAM	ETER	CONDITIONS	73N	1550	UNITS
			MIN	MAX	
RC	Read Cycle	See Notes 1 & 4	280		ns
tRDD	RD, RD to Driver Disable Delay	100 pF load See Note 2		60	ns
tRVD	Delay from RD, RD to Data	100 pF load		125	ns
tHZ	RD, $\overline{\text{RD}}$ to Floating Data Delay	100 pF load See Note 2	0	100	ns
tRA	Address Hold Time from RD, RD	See Note 3	20		ns
tRCS	Chip Select Hold Time from RD, RD	See Note 3	20		ns
tCSW	WR, WR Delay from Select	See Note 3	30		ns
tAW	WR, WR Delay from Address	See Note 3	30		ns
tWR	WR, WR Strobe Width		100		ns
tWC	Write Cycle Delay		150		ns
WC	Write Cycle=tAW+tWR+tWC		280		ns
tDS	Data Setup Time		30		ns
tDH	Data Hold Time		30		ns
tWA	Address Hold Time from WR, WR	See Note 3	20		ns
tWCS	Chip Select Hold time from WR, WR	See Note 3	20		ns
tMRW	Master Reset Pulse Width		5		μs
tXH	Duration of Clock High Pulse	External Clock (8 MHz max.)	55		ns
tXL	Duration of Clock Low Pulse	External Clock (8 MHz max.)	55		ns
Note 1:	RC = tAR + tRD + tRC for 73M5	50	•		

Note 2: Charge and discharge time is determined by VOL, VOH and the external loading.

Note 3: Applicable only when ADS is tied low.

Note 4: In FIFO mode R = 425 ns (minimum) between reads of the RCVR FIFO and the status registers (interrupt identification register or line status register).

2

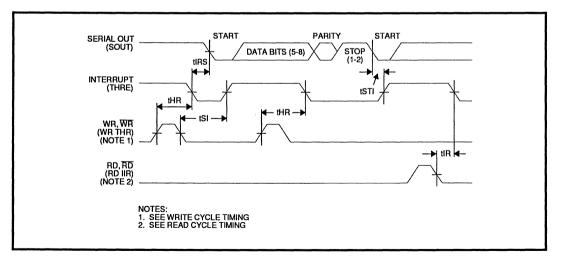

FIGURE 4: Read Cycle Timing

FIGURE 5: Write Cycle Timing

TRANSMITTER (Refer to Figure 6)

PARAN	ETER	CONDITIONS	MIN	МАХ	UNITS	
tHR	Delay from rising edge of WR, WR (WR THR)to Reset Interrupt	100 pF load		175	ns	
tIRS	Delay form Initial INTR Reset to Transmit Start		8	24	BAUDOUT cycles	
tSI	Delay from Initial Write to Interrupt	See Note 1	16	24	BAUDOUT cycles	
tSTI	Delay from Stop to Interrupt (THRE)	See Note 1	8	8	BAUDOUT cycles	
tlR	Delay from RD, RD (RD IIR) to Reset Interrupt (THRE)	100 pF load		250	ns	
tSXA	Delay from Start to TXRDY active	100 pF load		8	BAUDOUT cycles	
tWXI	Delay from Write to TXRDY inactive	100 pF load		195	ns	
Note:						

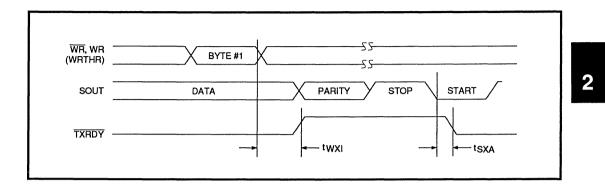


FIGURE 7: Transmitter Ready (Pin 24) FCR D0 = 0 or FCR D0 = 1 and FCR D3 = 0 (Mode 0)

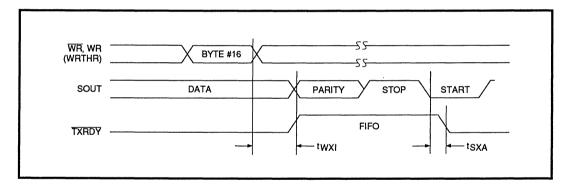


FIGURE 8: Transmitter Ready (Pin 24) FCR D0 = 1 and FCR D3 =1 (Mode 1)

MODEM CONTROL (Refer to Figure 9)

PARAM	ETER	CONDITIONS	MIN	МАХ	UNITS
tMDO	Delay from WR, WR (WR MCR) to Output	100 pF load		200	ns
tSIM	Delay to Set Interrupt from Modem Input	100 pF load		250	ns
tRIM	Delay to Reset Interrupt from RD, RD (RD MSR)	100 pF load		250	ns

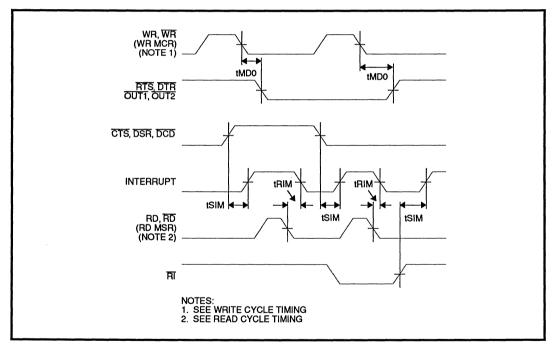
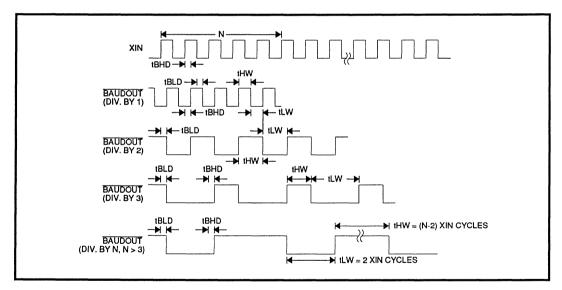
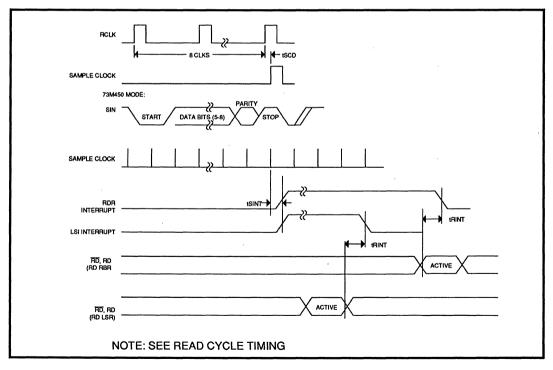



FIGURE 9: Modem Controls Timing

BAUD GENERATOR (Refer to Figure 10)

PARAN	NETER	CONDITIONS	MIN	MAX	UNITS
N	Baud Divisor		1	2 ¹⁶ -1	
tBLD	Baud Output Negative Edge Delay	100 pF load		125	ns
tBHD	Baud Output Positive Edge Delay	100 pF load		125	ns
tLW	Baud Output Down Time	fX=8 MHz, div. by 2, 100 pF load	100		ns
tHW	Baud Output Up Time	fX=8 MHz, div. by 2, 100 pF load	75		ns



2

RECEIVER (Refer to Figure 11)

PARAM	ETER	CONDITIONS	MIN	МАХ	UNITS	
tSCD	Delay from RCLK to Sample Time			2	μs	
tSINT	Delay from Stop to Set Interrupt	RCLK=tXH & tXL See Note 1		1	RCLK cycles	
tRINT	Delay from RD, RD (RD RBR/RD LSR) to Reset Interrupt	100 pF load		1	μs	
Note 1:	In the FIFO mode (FCR D0 = 1) the trigger level interrupts, the receiver data available indica- tion, the active RXRDY indication and the overrrun error indication will be delayed 3 RCLKs. Status indicators (PE, FE, BI) will be delayed 3 RCLKs after the first byte has been received. For subsequently received bytes these indicators will be updated immediately after RD RBR goes inactive. Timeout interrupt is delayed 8 RCLKs.					

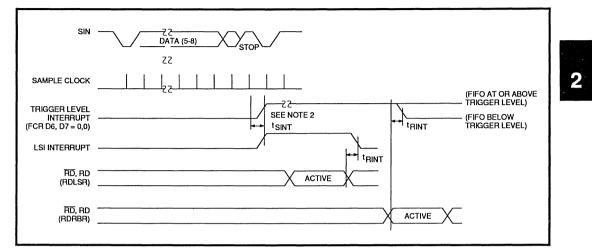


FIGURE 12: RCVR FIFO First Byte (This sets RBR)

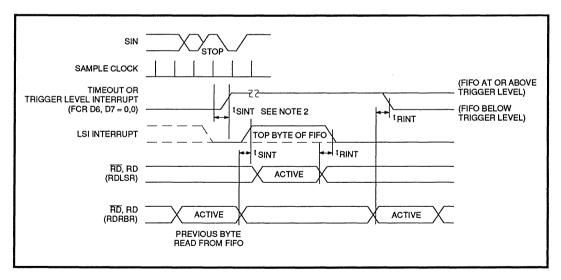


FIGURE 13: RCVR FIFO Bytes Other Than the First Byte (RBR is already set)

Note 1: This is the reading of the last byte in the FIFO Note 2: If FCR D0 = 1, then tSINT = 3 RCLKs. For a timeout interrupt, tSINT = 8RCLKs.

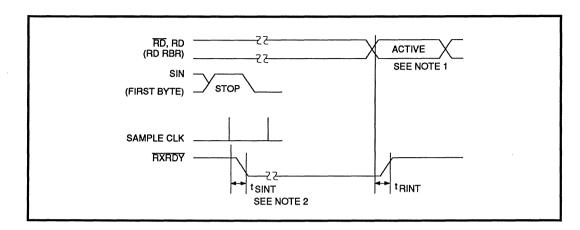


FIGURE 14: Receiver Ready (Pin 29) FCR D0 = 0 or FCR D0 = 1 and FCR D3 = 0 (Mode 0)

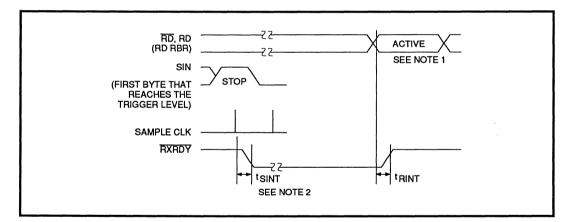
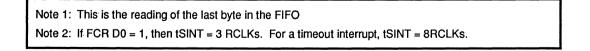
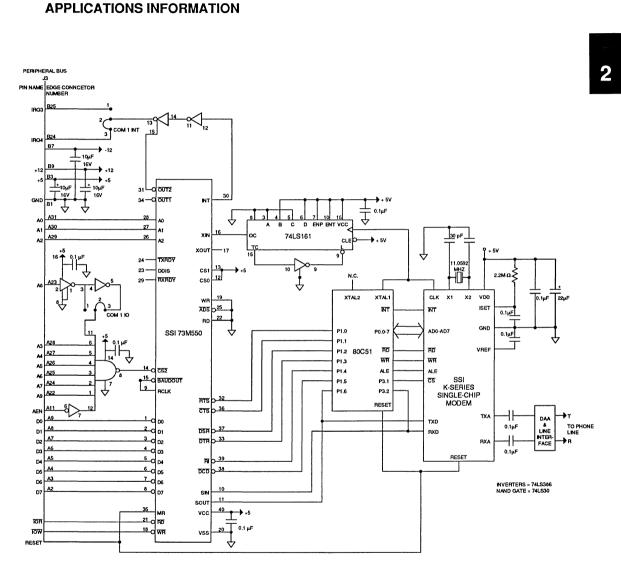
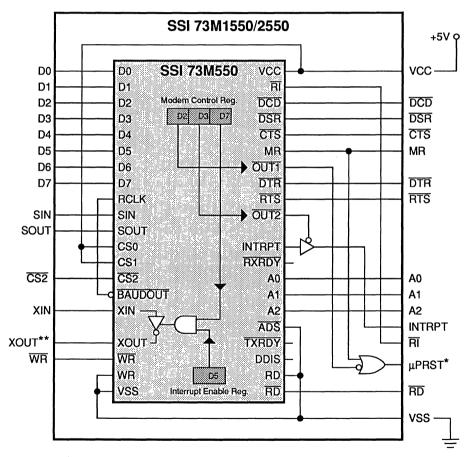



FIGURE 15: Receiver Ready (Pin 29) FCR D0 = 1 and FCR D3 = 1 (Mode 1)




FIGURE 16: Typical Application Showing Modem Interface to Peripheral-Bus via SSI 73M550 UART

ŀ

APPLICATIONS INFORMATION (Continued)

28-PIN VERSION

The 73M550 is available in two 28-pin configurations: SSI 73M1550 and SSI 73M2550. The relation between these two products and the 40-pin version is shown in the accompanying diagram. Note that the only difference between the 73M1550 and 73M2550 is that the 73M2550 adds the μ PRST pin at the expense of the XOUT pin.

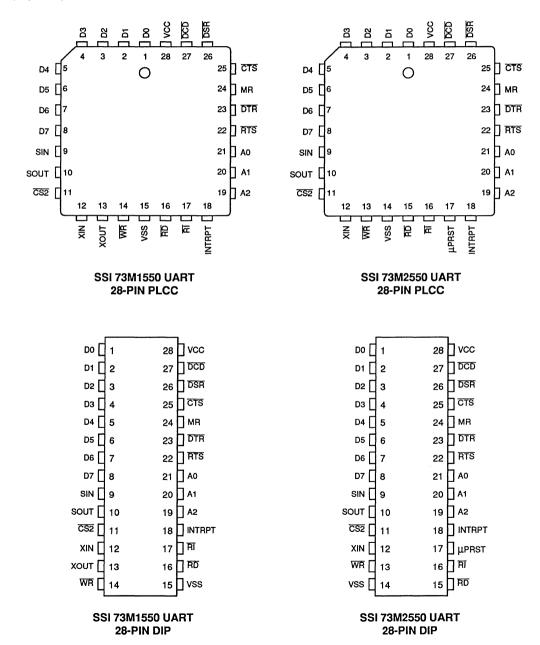
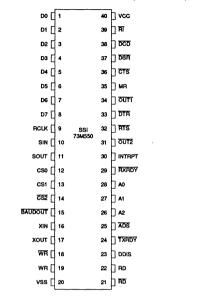

*SSI 73M2550 only. **SSI 73M1550 only.

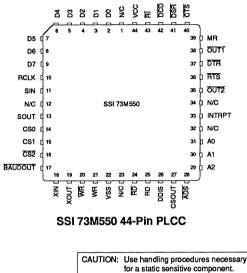
FIGURE 17: Adapter Diagram Showing Internal Connections and Bond-outs from 40-pin to 28-pin Packages

:1

PACKAGE PIN DESIGNATIONS

(Top View)




2

,

PACKAGE PIN DESIGNATIONS (Continued)

(Top View)

SSI 73M550 40-Pin DIP

ORDERING INFORMATION

PART	DESCRIPTION	ORDER NO.	PKG. MARK
SSI 73M550	40-pin PDIP	SSI 73M550-IP	73M550-IP
	44-pin PLCC	SSI 73M550-IH	73M550-IH
SSI 73M1550	28-pin PDIP	SSI 73M1550-IP	73M1550-IP
	28-pin PLCC	SSI 73M1550-IH	73M1550-IH
SSI 73M2550	28-pin PDIP	SSI 73M2550-IP	73M2550-IP
	28-pin PLCC	SSI 73M2550-IH	73M2550-IH

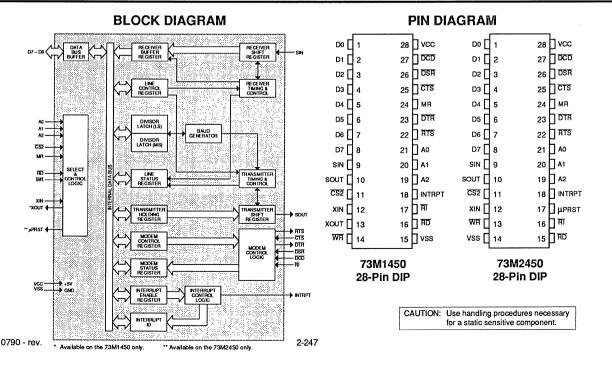
No responsibility is assumed by Silicon Systems for use of this product nor for any infringements of patents and trademarks or other rights of third parties resulting from its use. No license is granted under any patents, patent rights or trademarks of Silicon Systems. Silicon Systems reserves the right to make changes in specifications at any time without notice. Accordingly, the reader is cautioned to verify that the data sheet is current before placing orders.

Silicon Systems, Inc., 14351 Myford Road, Tustin, CA 92680 (714) 731-7110, FAX (714) 731-5457

silicon systems*

SSI 73M1450/2450 Universal Asynchronous Receiver/Transmitter

DESCRIPTION


The SSI 73M1450 and 73M2450 are 28-pin UART ICs. These devices provide the majority of functions performed by the 40-pin SSI 73M450 UART (16C450 compatible), and include additional features. By eliminating redundant pins and minor functions, the 73M1450/2450 retain major compatibility with the 73M450 while reducing the device from a 40-pin package to a 28-pin package. The 73M1450/2450 are primarily used in the interface between a serial data port and the parallel peripheral bus in microprocessor systems.

The 73M1450/2450 provide enhanced functions not found in the 73M450 UART. These functions include a bit-programmable oscillator disable for power conservation, a bit-programmable high impedance state on the INTRPT pin, and mPRST pin available on the 73M2450 for resetting external hardware.

(Continued)

FEATURES

- Compact, 28-pin DIP or PLCC package types
- Bit programmable oscillator disable provides a shut-down mode while retaining memory
- Bit programmable high impedance state of INTRPT pin
- mPRST pin for external hardware reset (73M2450)
- High drive current for directly driving large loads
- Full CMOS design for low-power, quiescent operation
- Available in two versions:
 - 73M1450 features XIN & XOUT pins for crystal connection
 - 73M2450 features XIN pin for external clock input, and mPRST pin for external hardware reset

2

July. 1990

SSI 73M1450/2450 Universal Asynchronous Receiver/Transmitter

DESCRIPTION (Continued)

The 73M1450/2450 eliminates the following pins from a 73M450 UART in order to achieve the smaller, 28-pin package configuration: RCLK, CS0, CS1, BAUDOUT, OUT1, RD, DDIS, CSOUT, ADS, OUT2, and WR. The 73M1450 and 73M2450 differ in one feature only: the 73M1450 retains the XIN and XOUT pins found in the 73M450 for connection to the external crystal, the 73M2450 replaces the XOUT pin with a μ PRST pin used for resetting external hardware. The 73M2450 is then driven with an external clock input at the XIN pin.

PIN DESCRIPTION

BUS INTERFACE

NAME	73M1450	73M2450	TYPE	DESCRIPTION
CS2	11	11	I	Chip Select: The UART is selected when $\overline{\text{CS2}}$ is low. This enables communication between the UART and the CPU.
A0-2	21-19	21-19		Register Select Address: These pins determine which UART register is being selected during a read or write on the UART Data Bus. The contents of the DLAB bit (D7) in the Line Control Register (see Table 1) also controls which register is referenced.
RD	16	15	I	Read Strobe: A request to read status information or data from a selected register may be made by pulling RD low while the chip is selected.
WR	14	13	I	Write Strobe: A request to write control words or data into a selected register may be made by pulling \overline{WR} low while the chip is selected.
D0-7	1-8	1-8	I/O	UART Data Bus (three-state): This bus provides bi-direc- tional communications between the UART and the CPU; data, control words and status information are transferred via this bus.
INTRPT	18	18	0	Interrupt (three-state): Goes high whenever any one of the following interrupt types occurs: Received Data, Transmitter Holding Register Empty, Receiver Line Status, and Modem Status. These interrupt types must be enabled via the IER for the INTRPT pin to become active. The INTRPT pin is reset low upon the appropriate interrupt service or a master reset operation. The INTRPT pin operation is enabled by setting the OUT2 bit (D3) in the Modem Control Register. When the OUT2 bit (D3) is reset to zero, the INTRPT pin is forced into a high impedance state.

2

DATA I/O

NAME	73M1450	73M2450	TYPE	DESCRIPTION
SIN	9	9	ļ	Serial Input: Input for serial data from the communications link (peripheral device, modem or data set).
SOUT	10	10	0	Serial Output: Output for serial data to the communications link (peripheral device, modem or data set). This signal is set high upon a Master Reset.

MODEM CONTROL

NAME	73M1450	73M2450	TYPE	DESCRIPTION
RTS	22	22	0	Request To Send: This output is programmed by RTS bit (D1) of the Modem Control Register and represents the compliment of that bit. It is used in modem handshaking to signify that the UART has data to transmit. This signal is set high upon Master Reset or during loop mode operation.
CTS	25	25	I	Clear To Send: A modem status input whose condition is complimented and reflected in the CTS bit (D4) of the Modem Status Register. When CTS is low, it indicates that commu- nications have been established and that data may be transmitted.
DTR	23	23	0	Data Terminal Ready: This output is programmed by DTR bit (D0) of the Modem Control Register, and represents the compliment of that bit. It is used in modem handshaking to signify that the UART is available to communicate. This signal is set high upon Master Reset or during loop mode operation.
DSR	26	26	I	Data Set Ready: A modem status input whose condition is complimented and reflected in the DSR bit (D5) of the Modem Status Register. When DSR is low, it indicates that the modem is ready to establish communications.
DCD	27	27	I	Data Carrier Detect: A modem status input whose condition is complimented and reflected in the DCD bit (D7) of the Modem Status Register. When DCD is low, it indicates that the modem is receiving a carrier.
RI	17	16	I	Ring Indicator: A modem status input whose condition is complimented and reflected in the RI bit (D6) of the Modem Status Register. When \overline{RI} is low, it indicates that a telephone ringing signal is being received.

SSI 73M1450/2450 Universal Asynchronous Receiver/Transmitter

GENERAL & CLOCKS NAME 73M1450 73M2450 TYPE DESCRIPTION VCC 28 28 I +5V Supply, ±10%: Bypass with 0.1 µF capacitor to GND. vss 15 L 14 System Ground. MR 24 24 L Master Reset: When high, this input clears all UART control logic and registers, except for the Receiver Buffer, Transmitter Holding and Divisor Latches; also, the state of output signals SOUT, INTRPT, RTS and DTR are affected by an active MR input. This input is buffered with a TTL-compatible Schmitt Triager. XIN 12 12 I/O External System Clock I/O: These two pins connect the main XOUT 13 N/A I/O timing reference (crystal or signal clock) to the UART. Additionally, XIN may be driven by an external clock source. The XOUT pin is not available on the 73M2450 which requires an external clock connected to the XIN pin. μPRST N/A 17 0 Microprocessor Reset: This output signal is used to provide a hardware reset to a local controller. This pin becomes active high when the MR pin is pulled high or OUT1 bit (D2) of the Modern Control Register is set. The µPRST function is available with the 73M2450 device only.

TABLE 1: CONTROL REGISTER ADDRESS TABLE

DLAB	A2	A1	A0	REGISTER
0	0	0	0	Receiver Buffer Register (read), Transmitter Holding Reg. (write)
0	0	0	1	Interrupt Enable Register
х	0	1	0	Interrupt Identification Register (read only)
х	0	1	1	Line Control Register
х	1	0	0	Modem Control Register
х	1	0	1	Line Status Register
х	1	1	0	Modem Status Register
x	1	1	1	Scratch Register
1	0	0	0	Divisor Latch Register (least significant byte)
1	0	0	1	Divisor Latch Register (most significant byte)

TABLE 2: UART RESET FUNCTIONS

REGISTER/SIGNAL	RESET CONTROL	RESET STATE
Interrupt Enable Register	Master Reset	All bits low (0-3 forced and 4-7 perma- nent)
Interrupt Identification Register	Master Reset	Bit 0 is high; bits 1 & 2 are low; bits 3-7 are permanently low
Line Control Register	Master Reset	All bits low
Modem Control Register	Master Reset	All bits low
Line Status Register	Master Reset	All bits low, except bits 5 & 6 are high
Modem Status Register	Master Reset	Bits 0-3 are low; bits 4-7 = input signal
SOUT	Master Reset	High
INTRPT (RCVR Errs)	Read LSR/MR	Low
INTRPT (RCVR Data Ready)	Read RBR/MR	Low
INTRPT (THRE)	Read IIR/Write THR/MR	Low
INTRPT (Modem Status Changes)	Read MSR/MR	Low
RTS	Master Reset	High
DTR	Master Reset	High
μPRST	Master Reset/set OUT1 bit	High during active Master Reset/OUT1 bit; low afterwards

2

SSI 73M1450/2450 Universal Asynchronous Receiver/Transmitter

CONTROL REGISTER OVERVIEW

						DATA BIT	NUMBER			
REGISTE	R	REGISTER ADDRESS (A2-A0) & DLAB	D7	D6	D5	D4	D3	D2	D1	D0
RECEIVER BUFFER REGISTER (READ ONLY)	ABA	000 DLAB = 0	BIT 7 (MSB)	BIT 6	BIT 5	BIT 4	ВІТ З	BIT 2	BIT 1	BIT 0 (LSB)
TRANSMIT HOLDING REGISTER (WRITE ONLY)	THR	000 DLAB = 0	BIT 7 (MSB)	BIT 6	BIT 5	BIT 4	ВІТ З	BIT 2	BIT 1	BIT 0 (LSB)
INTERRUPT ENABLE REGISTER	IER	001 DLAB = 0	0	0	SSI MODE	0	ENABLE MODEM STATUS INTERRUPT	ENABLE REC. LINE STATUS INTERRUPT	ENABLE THR EMPTY INTERRUPT	ENABLE REC. DATA AVAILABLE INTERRUPT
INTERRUPT ID REGISTER (READ ONLY)	IIR	010 DLAB = X	0	0	o	0	0	INTERRUPT ID BIT 1	INTERRUPT ID BIT 0	"0" IF INTERRUPT PENDING
LINE CONTROL REGISTER	LCR	011 DLAB = X	DIVISOR LATCH ACCESS (DLAB)	SET BREAK	STICK PARITY	EVEN PARITY SELECT (EPS)	PARITY ENABLE (PEN)	NUMBER OF STOP BITS (STB)	WORD LENGTH SELECT 1 (WLS1)	WORD LENGTH SELECT 0 (WLS0)
MODEM CONTROL REGISTER	MCR	100 DLAB = X	OSC OFF	0	O	LOOP	OUT2 (INTRPT ENABLE)	OUT1 (µPRST CNTRL)	REQUEST TO SEND (RTS)	DATA TERMINAL READY (DTR)
LINE STATUS REGISTER	LSR	101 DLAB = X	O	TRANSMIT- TER EMPTY (TEMT)	TRANSMIT HOLDING REGISTER EMPTY(THRE)	BREAK INTERRUPT (BI)	FRAMING ERROR (FE)	PARITY ERROR (PE)	OVERRUN ERROR (OE)	DATA READY (DR)
MODEM STATUS REGISTER (READ ONLY)	MSR	110 DLAB = X	DATA CARRIER DETECT (DCD)	RING INDICATOR (RI)	DATA SET READY (DSR)	CLEAR TO SEND (CTS)	DELTA DATA CARR. DETECT (DDCD)	TRAILING EDGE RING INDICATOR (TERI)	DELTA DATA SET READY (DDSR)	DELTA CLEAR TO SEND (DCTS)
SCRATCH REGISTER	SCR	111 DLAB = X	BIT 7	BIT 6	BIT 5	BIT 4	BIT 3	BIT 2	BIT 1	BIT 0
DIVISOR LATCH (LS)	DLL	000 DLAB = 1	BIT 7	BIT 6	BIT 5	BIT 4	BIT 3	BIT 2	BIT 1	ВІТ О
DIVISOR LATCH (MS)	DLM	001 DLAB = 1	BIT 15	BIT 14	BIT 13	BIT 12	BIT 11	BIT 10	BIT 9	BIT 8

REGISTER BIT DESCRIPTIONS

RECEIVER BUFFER REGISTER (RBR) (READ ONLY) UART ADDRESS: A2 - A0 = 000, DLAB = 0

This read only register contains the parallel received data with start, stop, and parity bits (if any) removed. The high order bits for less than 8 data bits/character will be set to 0.

TRANSMIT HOLDING REGISTER (THR) (WRITE ONLY) UART ADDRESS: A2 - A0 = 000, DLAB = 0

This write only register contains the parallel data to be transmitted. The data is sent LSB first with start, stop, and parity bits (if any) added to the serial bit stream as the data is transferred.

INTERRUPT ENABLE REGISTER (IER) UART ADDRESS: A2 - A0 = 001, DLAB = 0

This 8-bit register enables the four types of interrupts of the UART to separately activate the chip Interrupt (INTRPT) output signal. This register also allows access to the chip's special SSI mode which contains the oscillator disable function. It is possible to totally disable the interrupt system by resetting bits D0 through D3 of the Interrupt Enable Register. Similarly, by setting the appropriate bits of this register to a logic 1, selected interrupts can be enabled. Disabling the interrupt system inhibits the Interrupt Identification Register and the active (high) INTRPT output from the chip. All other system functions operate in their normal manner, including the setting of the Line Status and Modern Status Registers.

The chip's SSI mode can be activated by setting bit D5. Once in the SSI mode, the chip can be placed in a power shut-down state by setting bit D7 in the Modern Control Register.

BIT	NAME	COND.	DESCRIPTION
D0	Received Data	1	This bit enables the Received Data Available Interrupt when set to logic 1.
D1	Transmitter Holding Register Empty	1	This bit enables the Transmitter Holding Register Empty Interrupt when set to logic 1.
D2	Receiver Line Status Interrupt	1	This bit enables the Receiver Line Status Interrupt when set to logic 1.
D3	Modem Status	1	This bit enables the Modem Status Interrupt when set to logic 1.
D4	Not used	0	Always logic 0.
D5	SSI Mode	0	Disables chip's SSI Mode; normal operation.
		1	Enables chip's SSI mode. In this mode, chip can be placed into power shut-down by setting bit D7 in modem control register.
D6-D7	Not used	0	Always logic 0.

INTERRUPT ID REGISTER (IIR) (READ ONLY) UART ADDRESS: A2 - A0 = 010

The IIR register gives prioritized information as to the status of interrupt conditions. When accessed, the IIR freezes the highest priority interrupt pending and no other interrupts are acknowledged until the particular interrupt is serviced by the CPU. The order of interrupt priorities is shown in the table below.

BIT	NAME	COND.	DESCRIPTION
D0	Interrupt Pending	0	This bit can be used in either a hardwired prioritized or polled environment to indicate whether an interrupt is pending. When bit D0 is a logic 0, an interrupt is pending and the IIR contents may be used as a pointer to the appropriate interrupt service routine.
		1	When bit D0 is a logic 1, no interrupt is pending.
D1, D2	Interrupt ID bits 0, 1	Table below	These two bits of the IIR are used to identify the highest priority interrupt pending as indicated in the following table.
D3 - D7	Not Used	0	These five bits of the IIR are always logic 0.

INTERRUPT PRIORITY TABLE

D2	D1	D0	PRIORITY	ТҮРЕ	SOURCE	RESET
0	0	1	-	None	None	N/A
1	1	0	Highest	Receiver Line Status	Overrun Error, Parity Error, Framing Error or Break Interrupt	Reading the Line Status Register
1	0	0	Second	Receive Data Available	Receive Data Available	Reading the Rcvr. Buffer Register
0	1	0	Third	Transmit Holding Register Empty	Transmit Holding Register Empty	Reading IIR Register (if source of interrupt) or Writing to Transmit Holding Register
0	0	0	Fourth	Modem Status	Clear to Send or Data Set Ready or Ring Indicator or Data Carrier Det.	Reading the Modem Status Register

LINE CONTROL REGISTER (LCR) UART ADDRESS: A2 - A0 = 011

The user specifies the format of the asynchronous data communications exchange via the Line Control Register. In addition to controlling the format, the user may retrieve the contents of the Line Control Register for inspection. This feature simplifies system programming and eliminates the need for separate storage in system memory of the line characteristics.

ВІТ	NAME COND.		ND.	DESCRIPTION
D0	Word Length Select 0 (WLS0)			Bits D0 and D1 select the number of data bits per character as shown:
D1	Word Length	D1	D0	Word Length
	Select 1	0	0	5 bits
	(WLS1)	0	1	6 bits
		1	0	7 bits
		1	1	8 bits
D2	Number of Stop Bits 0 or (STB)		or 1	This bit specifies the number of stop bits in each trans- mitted character. If bit D2 is a logic 0, one stop bit is generated in the transmitted data. If bit D2 is a logic 1 when a 5-bit word length is selected via bits 0 and 1, one-and-a-half stop bits are generated. If bit D2 is a logic 1 when either a 6, 7, or 8-bit word length is selected, two stop bits are generated. The receiver checks the first stop bit only, regardless of the number of stop bits selected.
D3	Parity Enable 1 (PEN)		1	This is the Parity Enable (PEN) bit. When set to a logic 1, a parity bit is generated (transmit data) or checked (receive data) between the last data word bit and stop bit of the serial data. (The parity bit is used to produce an even or odd number of 1's when the data word bits and the parity bit are summed).
D4	Even Parity Select 1 or 0 (EPS)		or O	This is the Even Parity Select (EPS) bit. When bit D3 is a logic 1 and bit D4 is a logic 0, an odd number of logic 1's is transmitted or checked in the data word bits and parity bit. When bit D3 is a logic 1 and bit D4 is a logic 1, an even number of logic 1's is transmitted or checked.

SSI 73M1450/2450 Universal Asynchronous Receiver/Transmitter

ВІТ	NAME	со	ND.	DESCRIPTION
D5	Stick Parity	1 c	or O	This is the Stick Parity bit. When bit D3 is a logic 1 and bit D5 is a logic 1, the parity bit is transmitted and checked by the receiver as a logic 0 if bit D4 is a logic 1 or as a logic 1 if bit D4 is a logic 1 or as a logic 1.
1		D5	D4	Parity
		0	0	ODD Parity
		0	1	EVEN Parity
		1	0	MARK Parity
		1	1	SPACE Parity
D6	Set Break		1	This is the Break Control bit. When set to a logic 1, the serial out (SOUT) is forced to a logic 0 state. The break is disabled by setting bit D6 to a logic 0. This bit acts only on SOUT and has no effect on the transmitter logic. See note below.
D7	Divisor Latch Access Bit (DLAB)		1	The Divisor Latch Access Bit (DLAB) must be set high (logic 1) to access the Divisor Latches of the baud generator during a Read or Write operation. It must be set low (logic 0) to access the Receiver Buffer, the Transmitter Holding Register, or the Interrupt Enable Register.

LINE CONTROL REGISTER (LCR) (Continued)

- NOTE: This feature enables the CPU to alert a terminal in a computer communications system. If the following sequence is followed, no erroneous or extraneous characters will be transmitted because of the break.
 - 1. Load an all 0's pad character in response to THRE.
 - 2. Set break in response to the next THRE.
 - 3. Wait for the Transmitter to be idle. (TEMT = 1), and clear break when normal transmission has to be restored.

During the break, the Transmitter can be used as a character timer to accurately establish the break duration.

MODEM CONTROL REGISTER (MCR) UART ADDRESS: A2 - A0 = 100

The Modern Control Register controls the interface with the modern, data set or peripheral device. Bits D1 and D0 are also available as read only bits in the UART Control Register in the Modern Registers.

ВІТ	NAME	COND.	DESCRIPTION
D0	DTR	0/1	This bit controls the Data Terminal Ready ($\overline{\text{DTR}}$) output. When bit D0 is set to a logic 1, the $\overline{\text{DTR}}$ output is forced to a logic 0. When bit D0 is reset to a logic 0, the $\overline{\text{DTR}}$ output is forced to a logic 1.
D1	RTS	0/1	This bit controls the Request to Send (\overline{RTS}) output. When bit D1 is set to a logic 1, the \overline{RTS} output is forced to a logic 0. When bit D1 is reset to a logic 0, the \overline{RTS} output is forced to a logic 1.
D2	OUT1 (µPRST control)	0/1	This bit controls the μ PRST output. When bit D2 is set to a logic 1, the μ PRST output is forced to a logic 1. When bit D2 is reset to logic 0, the μ PRST is forced to logic 0.
D3	OUT2 (INTRPT enable)	0/1	This bit controls the INTRPT output. When bit D3 is set to logic 1, the INTRPT output is enabled. When bit D3 is reset to logic 0, the INTRPT output is forced into a high impedance state.
D4	LOOP	0/1	This bit provides a local loopback feature for diagnostic testing of the UART. When bit D4 is set to logic 1, the following occurs: the transmitter Serial Output (SOUT) is set to the logic 1 state; the receiver Serial Input (SIN) is disconnected; the output of the Transmitter Shift Register is "looped back" into the Receiver Shift Register input; the four Modem Control inputs (CTS, DSR, DCD and RI) are disconnected; the three modem control output pins (DTR, RTS and μ PRST) are forced to their inactive state; the four modem control register bits DTR, RTS, OUT1 and OUT2 are mapped to the modem status register bits CTS, DSR, RI and DCD, respectively. In the diagnostic mode, data that is transmitted is immediately received. This feature allows the processor to verify the transmit and received-data paths of the UART.
			In the diagnostic mode, the receiver and transmitter interrupts are fully operational. The Modem Control Interrupts are also operational, but the interrupts' sources are now the lower four bits of the Modem Control Register instead of the four Modem Control inputs. The interrupts are still controlled by the Interrupt Enable Register.
D5-D6		0	These bits are permanently set to logic 0.
D7	OSC OFF	0/1	This bit is available only in the SSI mode. Resetting this bit allows normal operation. Setting this bit places the chip in a power shut-down mode.

LINE STATUS REGISTER (LSR) UART ADDRESS: A2 - A0 = 101

This register provides status information to the CPU concerning the data transfer. Bits 1-4 are the error conditions that produce a Receiver Line Status interrupt whenever any of the corresponding conditions are detected. The Line Status Register is intended for read operation only. Writing to this register is not recommended as this operation is used for factory testing.

BIT	NAME	COND.	DESCRIPTION			
D0	DR	1	The Data Ready (DR) bit is set to a 1 whenever a complete incoming character has been received and transferred into the Receiver Buffer Register. DR is reset to 0 by reading the data in the Receiver Buffer Register.			
D1	OE	1	 character has been received and transferred into the Receiver Buff Register. DR is reset to 0 by reading the data in the Receiver Buff Register. The Overrun Error (OE) bit indicates that the data in the Receiver Buff Register was not read by the CPU before the next character was transferred into the Receiver Buffer Register, thereby destroying th previous character. OE is reset to 0 whenever the CPU reads th contents of the Line Status Register. The Parity Error (PE) bit indicates that the received character did n have the correct parity. PE is reset to 0 whenever the CPU reads th Line Status Register. The Framing Error (FE) bit indicates that the received character did n have a valid stop bit. FE is reset to 0 whenever the CPU reads th contents of the Line Status Register. The Break Interrupt (BI) bit indicates that a break has been received. break occurs whenever the received data is held to 0 for a full data wo (start + data + stop). BI is reset to 0 whenever the CPU reads the Line Status Register. The Transmit Holding Register Empty (THRE) is set to a logic 1 whe a character is transferred from the Transmit Holding Register into th Transmit Shift Register, indicating that the UART is ready to accept new character for transmission. In addition, this bit causes the UAR to issue an interrupt to the CPU when the THRE Interrupt enable is s 			
D2	PE	1	The Parity Error (PE) bit indicates that the received character did not have the correct parity. PE is reset to 0 whenever the CPU reads the Line Status Register.			
D3	FE	1	The Framing Error (FE) bit indicates that the received character did not have a valid stop bit. FE is reset to 0 whenever the CPU reads the contents of the Line Status Register.			
D4	ВІ	1	The Break Interrupt (BI) bit indicates that a break has been received. A break occurs whenever the received data is held to 0 for a full data word (start + data + stop). BI is reset to 0 whenever the CPU reads the Line Status Register.			
D5	THRE	1	The Transmit Holding Register Empty (THRE) is set to a logic 1 when a character is transferred from the Transmit Holding Register into the Transmit Shift Register, indicating that the UART is ready to accept a new character for transmission. In addition, this bit causes the UART to issue an interrupt to the CPU when the THRE Interrupt enable is set high. THRE is reset to 0 when the CPU loads a character into the Transmit Holding Register.			
D6	ТЕМТ	1	The Transmit Empty (TEMT) indicates that both the Transmit Holding Register and the Transmit Shift Registers are empty. TEMT is reset to 0 whenever the TSR or THR contains a data character.			
• D7	-	0	Always zero.			

MODEM STATUS REGISTER (MSR) (READ ONLY) UART ADDRESS: A2 - A0 = 110

This register provides the current state of the control signals from the modem or peripheral device. In addition, four bits provide change information. Whenever bit 0, 1, 2 or 3 is set to logic 1, a Modem Status Interrupt is generated; reset to logic 0 occurs whenever they are read. In Loop Mode CTS, DSR, RI and DCD are taken from RTS, DTR, OUT1, and OUT2 in the Modem Control Register respectively.

BIT	NAME	COND.	DESCRIPTION
D0	DCTS	1	The Delta Clear to Send (DCTS) bit indicates that the $\overline{\text{CTS}}$ input to the chip has changed state since the last time it was read by the CPU.
D1	DDSR	1	The Delta Data Set Ready (DDSR) bit indicates that the $\overline{\text{DSR}}$ input to the chip has changed state since the last time it was read by the CPU.
D2	TERI	1	The Trailing Edge of the Ring Indicator (TERI) detect bit indicates that the \overline{RI} input to the chip has changed from an Off (logic 0) to an On (logic 1) condition.
D3	DDCD	1	The Delta Data Carrier Detect (DDCD) bit indicates that the $\overline{\text{DCD}}$ input to the chip has changed state.
D4	CTS	1	This bit is the complement of the Clear To Send (\overline{CTS}) input. If bit D4 (loop) of the MCR is set to a 1, this bit is equivalent to RTS in the MCR.
D5	DSR	1	This bit is the complement of the Data Set Ready ($\overline{\text{DSR}}$) input. If bit D4 of the MCR is set to a 1, this bit is the equivalent of DTR in the MCR.
D6	RI	1	This bit is the complement of the Ring Indicator (\overline{RI}) input. If bit D4 of the MCR is set to a 1, this bit is equivalent to OUT1 in the MCR.
D7	DCD	1	This bit is the complement of the Data Carrier Detect (\overline{DCD}) input. If bit D4 of the MCR is set to a 1, this bit is equivalent to OUT2 in the MCR.

SCRATCH REGISTER (SCR) ADDRESS: A2 - A0 = 111

This 8-bit Read/Write Register does not control the UART in any way. It is intended as a scratchpad register to be used by the programmer to hold data temporarily.

DIVISOR LATCH (LS) (DLL) ADDRESS: A2 - A0 = 000, DLAB = 1

This register contains the least significant byte of the divisor which is used to control the rate of the programmable baud generator.

DIVISOR LATCH (MS) (DLM) ADDRESS: A2 - A0 = 001, DLAB = 1

This register contains the most significant byte of the divisor which is used to control the rate of the programmable baud generator.

PROGRAMMABLE BAUD GENERATOR

The UART contains a programmable Baud Generator that is capable of taking any clock input (DC to 4 MHz) and dividing it by any divisor from 1 to 2^{16} -1. The output frequency of the Baud Generator is 16 x the Baud [divisor # = (frequency input)+(baud rate x 16)]. Two 8-bit latches store the divisor in a 16-bit binary format. These Divisor Latches must be loaded during initialization in order to ensure desired operation of the Baud Generator. Upon loading either of the Divisor Latches, a 16-bit Baud counter is immediately loaded. This prevents long counts on initial load.

Tables 3 and 4 illustrate the use of the Baud Generator with crystal frequencies of 1.8432 MHz and 3.072 MHz respectively. For baud rates of 38400 and below, the error obtained is minimal. The accuracy of the desired baud rate is dependent on the crystal frequency chosen.

DESIRED BAUD RATE	DIVISOR USED TO GENERATE 16 X CLOCK	PERCENT ERROR DIFFERENCE BETWEEN DESIRED AND ACTUAL
50	2304	-
75	1536	-
110	1047	0.026
134.5	857	0.058
150	768	-
300	384	-
600	192	-
1200	96	-
1800	64	-
2000	58	0.69
2400	48	-
3600	32	-
4800	24	-
7200	16	-
9600	12	-
19200	6	-
38400	3	-
56000	2	2.86

TABLE 3: BAUD RATES USING 1.8432 MHZ CRYSTAL

SSI 73M1450/2450 Universal Asynchronous Receiver/Transmitter

TABLE 4: BAUD RATES USING 3.072 MHZ CRYSTAL

DESIRED BAUD RATE	DIVISOR USED TO GENERATE 16 X CLOCK	PERCENT ERROR DIFFERENCE BETWEEN DESIRED AND ACTUAL
50	3840	-
75	2560	-
110	1745	0.026
134.5	1428	0.034
150	1280	-
300	640	-
600	320	-
1200	160	-
1800	107	0.312
2000	96	-
2400	80	-
3600	53	0.628
4800	40	-
7200	27	1.23
9600	20	-
19200	10	-
38400	5	-

2

SSI 73M1450/2450 Universal Asynchronous Receiver/Transmitter

ABSOLUTE MAXIMUM RATINGS

(TA = -40°C to +85°C, VCC = 5V \pm 10%, unless otherwise noted. Operation above absolute maximum ratings may permanently damage the device.)

PARAMETER	CONDITIONS	RATING
VCC Supply Voltage		+14V
Storage Temperature		-65°C to 150°C
Lead Temperature	Soldering, 10 sec.	260°C
Applied Voltage		-0.3 to VDD + 0.3

DC CHARACTERISTICS

 $(TA = -40^{\circ}C \text{ to } +85^{\circ}C, VCC = 5V \pm 10\%, \text{ unless otherwise noted.})$

PARAM	ETER	CONDITIONS	MIN	NOM	МАХ	UNITS
VILX	Clock input Low voltage		-0.5		0.8	v
VIHX	Clock input High Voltage		2.0		Vcc	v
VIL	Input Low Voltage		-0.5		0.8	v
VIH	Input High Voltage		2.0		VDD	v
VOL	Output Low Voltage	IOL = 4.0 mA (except XOUT)			0.4	V
VOH	Output High Voltage	IOH = 5.0 mA on all outputs except XOUT	2.4			v
IDD	Power Supply Current	See Note 1		5	10	mA
IDD	Power Supply Current	See Note 2			50	μA
IIL.	Input Leakage	VCC=5.25V, GND=0V. All other pins floating.			±10	μA
ICL	Clock Leakage	VIN=0V, 5.25V			±10	μA
IOZ	3-State Leakage	VCC=5.25V, VSS=0V, VOUT=0V, 5.25V 1) Chip deselected 2) Chip & write mode selected			±20	μA
VILMR	MR Schmitt VIL				0.8	v
VIHMR	MR Schmitt VIH		2.0			v

Note 1: VCC = 5.25V, TA = 25°C; No loads on outputs. SIN, \overline{DSR} , \overline{DCD} , \overline{CTS} , \overline{RI} = 2.4V. All other inputs = 0.4V. Baud Rate Gen. = 4 MHz; Baud Rate = 50 KHz.

Note 2: VCC = 5.5V, TA = -45°C; No output load; CMOS level inputs; Oscillator disabled or XIN = VCC

CAPACITANCE

(TA = 25°C, VCC = VSS = 0V, fc = 1 MHz, unmeasured pins returned to VSS)

PARAM	ETER	CONDITIONS	MIN	NOM	МАХ	UNITS
CXTAL2	Clock Input Capacitance			15	20	pF
CXTAL1	Clock Output Capacitance			20	30	pF
CI	Input Capacitance			6	10	pF
со	Output Capacitance			10	20	pF

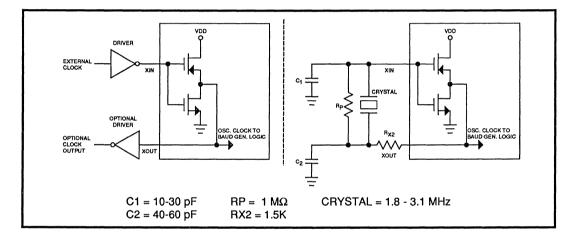
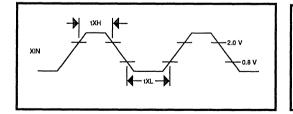
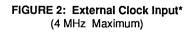
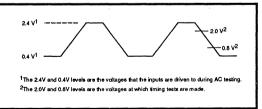





FIGURE 1: Typical Clock Circuits

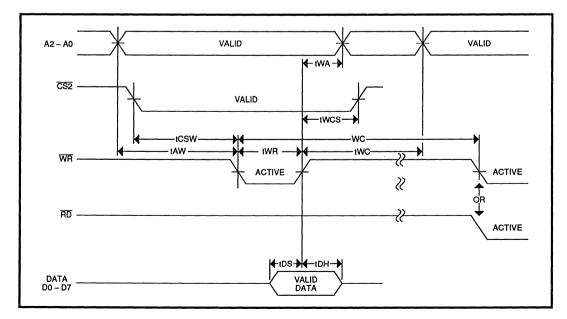
*All timings are referenced to valid 0 and valid 1.

AC CHARACTERISTICS (TA = -40°C to +85°C, VCC = $5V \pm 10\%$, unless otherwise noted.)

READ & WRITE CYCLE (Refer to Figures 4 & 5.)

PARA	METER	CONDITIONS	MIN	МАХ	UNITS
tCSR	RD Delay from Chip Select		50		ns
tAR	RD Delay from Address		60		ns
tRD	RD Strobe Width		125		ns
tRC	Read Cycle Delay		175		ns
RC	Read Cycle	See Note 1	360		ns
tRVD	Delay from \overline{RD} to Data	100 pF load		125	ns
tHZ	RD to Floating Data Delay	100 pF load See Note 2	0	100	ns
tRA	Address Hold Time from $\overline{\text{RD}}$		20		ns
tRCS	Chip Select Hold Time from RD		20	,	ns
tCSW	WR Delay from Select		50		ns
tAW	WR Delay from Address		60		ns
tWR	WR Strobe Width		100		ns
tWC	Write Cycle Delay		200		ns
WC	Write Cycle=tAW+tWR+tWC		360		ns
tDS	Data Setup Time		40		ns
tDH	Data Hold Time		40		ns
tWA	Address Hold Time from WR		20		ns
tWCS	Chip Select Hold time from WR		20		ns
tMRW	Master Reset Pulse Width		5		μs
tXH	Duration of Clock High Pulse	External Clock (4 MHz max.)	100		ns
tXL	Duration of Clock Low Pulse	External Clock (4 MHz max.)	100		ns

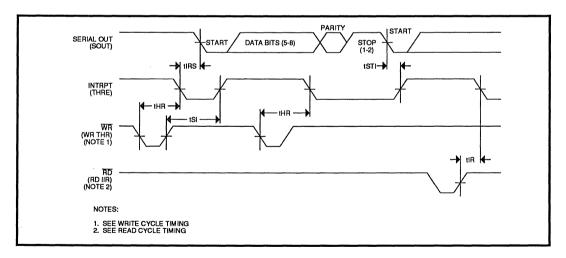
Note 1: RC = tAR + tRD + tRC


Note 2: Charge and discharge time is determined by VOL, VOH and the external loading.

SSI 73M1450/2450 Universal Asynchronous Receiver/Transmitter

2

FIGURE 4: Read Cycle Timing


FIGURE 5: Write Cycle Timing

SSI 73M1450/2450 Universal Asynchronous Receiver/Transmitter

AC CHARACTERISTICS (Continued)

TRANSMITTER (Refer to Figure 6.)

PARAMETER		CONDITIONS	MIN	МАХ	UNITS
tHR	Delay from falling edge of WR (WR THR)to Reset Interrupt	100 pF load		175	ns
tIRS	Delay form Initial INTR Reset to Transmit Start		24	40	BAUD CLK cycles
tSI	Delay from Initial Write to Interrupt		16	32	BAUD CLK cycles
tSTI	Delay from Stop to Interrupt (THRE)		8	8	BAUD CLK cycles
tIR	Delay from RD (RD IIR) to Reset Interrupt (THRE)	100 pF load		250	ns

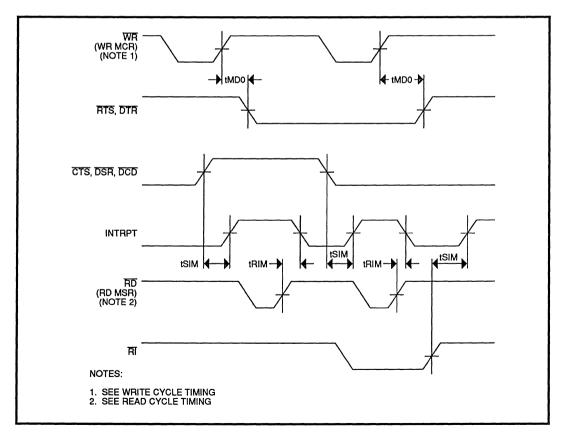


FIGURE 6: Transmitter Timing

AC CHARACTERISTICS (Continued)

MODEM CONTROL (Refer to Figure 7.)

PARAMETER		CONDITIONS	MIN	МАХ	UNITS
tMDO	Delay from WR (WR MCR) to Output	100 pF load		200	ns
tSIM	Delay to Set Interrupt from Modem Input	100 pF load		250	ns
tRIM	Delay to Reset Interrupt from RD (RS MSR)	100 pF load		250	ns

FIGURE 7: Modem Controls Timing

√3M1450/2450 Jniversal Asynchronous Receiver/Transmitter

AC CHARACTERISTICS (Continued)

RECEIVER (Refer to Figure 8.)

PARA	METER	CONDITIONS	MIN	MAX	UNITS
tSCD	Delay from RCLK to Sample Time			2	μs
tSINT	Delay from Stop to Set Interrupt			1	BAUD CLK cycles
tRINT	Delay from RD (RD RBR/RDLSR) to Reset Interrupt	100 pF load		1	μs

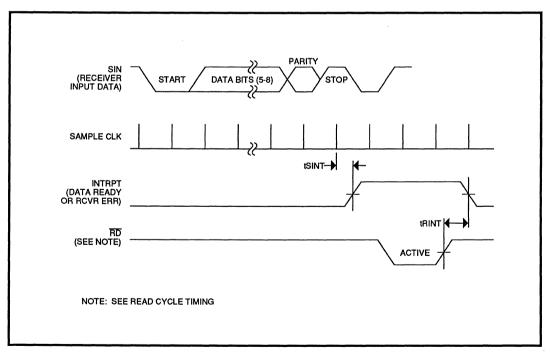


FIGURE 8: Receiver Timing

SSI 73M1450/2450 Universal Asynchronous Receiver/Transmitter

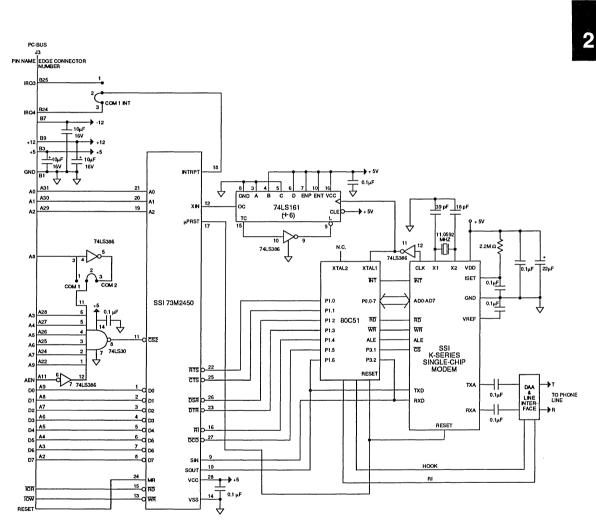
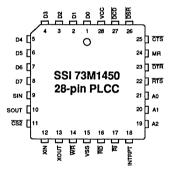
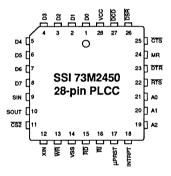


FIGURE 9: Typical Application Showing Modem Interface to PC-Bus via SSI 73M2450 UART


SSI 73M1450/2450 Universal Asynchronous Receiver/Transmitter

PACKAGE PIN DESIGNATIONS

(TOP VIEW)


∞[1	28] vcc
D1 [2	27	<u> 1000</u>
D2 [3	26	DSR
D3 [4	25] ਨਾਤ
D4 [5	24	MR
D5 [6	23] ਰਾਜ
D6 [7	22] माड
D7 [8	21] 🔊
Sin [9	20] A1
SOUT [10	19]~2
<u>CS2</u>	11	18	
XIN [12	17] ਸ
хоит [13	16	DA [
WR C	14	15] vss

SSI 73M1450 28-pin DIP

			_
∞□	1	28	vcc
D1 [2	27	<u> 920 [</u>
D2 [3	26] DSR
D3 [4	25	ा टाइ
⊶[5	24] MR
D5 [6	23	חדם [
∞[7	22] ਸਾਤ
D7 [8	21	_ ▲0
SIN [9	20] A1
ѕоит 🛛	10	19] A2
टड्र [11	18	
	12	17] µрвят
WR	13	16] ਸ
vss [14	15	며

SSI 73M2450 28-pin DIP

ORDERING INFORMATION

PAR	DESCRIPTION	ORDER NO.	PKG. MARK
SSI 73M1450	28-pin PDIP	SSI 73M1450-IP	73M1450-IP
	28-pin PLCC	SSI 73M1450-IH	73M1450-IH
SSI 73M2450	28-pin PDIP	SSI 73M2450-IP	73M2450-IP
	28-pin PLCC	SSI 73M2450-IH	73M2450-IH

No responsibility is assumed by Silicon Systems for use of this product nor for any infringements of patents and trademarks or other rights of third parties resulting from its use. No license is granted under any patents, patent rights or trademarks of Silicon Systems. Silicon Systems reserves the right to make changes in specifications at any time without notice. Accordingly, the reader is cautioned to verify that the data sheet is current before placing orders.

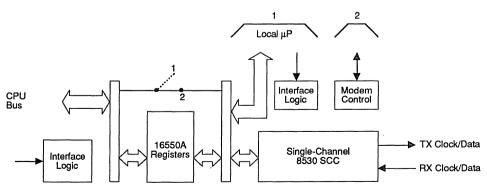
Silicon Systems, Inc., 14351 Myford Road, Tustin, CA 92680 (714) 731-7110, FAX (714) 731-5457

silicon systems*

Advance Information

July, 1990

DESCRIPTION


The SSI 73M650 Serial Packet Controller (SPC) is a multifunction synchronous/asynchronous communications IC that simplifies synchronous communications interface to a standard PC peripheral bus. The SPC consists of the control and FIFO registers of a 16550A UART combined with one channel of an 8530 SCC. It operates in two basic configurations.

The Dual-Processor configuration has two parallel interface ports, one for connection to a CPU and the other to a local protocol controller. The local controller can then use the SCC block for synchronous or asynchronous protocols.

The Single-Processor configuration can be used in either a Mailbox or Non-mailbox mode. The Mailbox mode uses the same internal configuration as Dual-Processor, but all registers are accessible through only one hardware port. This allows the CPU to replace the function of the local controller while the SPC maintains the standard asynchronous interface. In the Non-mailbox mode, the SPC is simply a 16550A and one channel of an 8530 in the same package. The user may select either the 16550A block or the 8530 block.

FEATURES

- Register compatibility with 16550A UART
- Functional superset of a single channel 8530 SCC
- DMA signals available in 44-pin package
- NRZ, NRZI, FM and Manchester encode and decode
- 32-bit CRC for V.42 compatibility
- 3-byte transmit FIFO for SCC reduces interrupt overhead
- External devices can be mapped into PC I/O space
- Oscillator disable for low power standby
- Clock pre-divide to allow input of higher frequency processor clocks
- 16-byte UART transmit and receive FIFOs reduce CPU overhead
- Space-saving 28-pin version (73M1650)

BLOCK DIAGRAM

- 1) Dual Processor Only
- 2) Single Processor Only

FUNCTIONAL DESCRIPTION

The SSI 73M650 Serial Packet Controller (SPC) simplifies high speed packetized serial communications in the PS/2 or PC bus environment.

FUNCTIONAL BLOCKS

The SPC is configured as two main blocks: the 16550A Main Processor UART Register block which facilitates interface to software packages written for 16450/16550A UARTs, and a Serial Communication Controller block (SCC) which is an enhanced version of one-channel of an 8530.

16550A UART Register Block

The UART Register block is hardware- and registercompatible to a 16550A UART and will run most existing software packages. Additional bits to control power down and other features are available through a special hardware mode called Single-Chip-Select (SINGLECS).

A distinct feature of the 73M650 is the accessibility of all these registers to a second processor through Channel-B in the Dual-Processor configuration. The local processor can then modify these registers and the data FIFOs to perform compression and/or error correction (such as V.42bis) at a very high speed. This is not currently possible using standard products.

The scratchpad register, acting as a Mailbox, allows communication between the CPU and a local processor or microcontroller.

SCC Block

The SCC block implements the operation of one-channel (channel A) of an 8530 SCC. Some improvements in the 73M650 over the 8530 may require modifications to be made to the software currently available for the 8530.

The SCC block performs asynchronous data transfer and packetized synchronous protocols such as Monosync, Bisync, HDLC and SDLC. Included in this block are a baud rate generator, a Digital Phase Locked Loop (DPLL) for clock recovery, and a three-byte FIFO in the SCC transmit and receive path. The SCC block has NRZ, NRZI, FM and Manchester data encoding and supports a 32-bit CRC useful in the V.42bis error correction standard.

The SPC can operate at up to 10 Mbit/s data rate. The crystal rate may be as high as 20 MHz with an internal programmable prescaler.

REGISTER SETS

The SSI 73M650 SPC contains three register sets:

Main Processor UART Registers

This register set is virtually identical to a 16550A register set. In a special hardware mode called Single-Chip-Select (SINGLECS), additional bits are introduced into these registers.

Channel A Registers

This register set is similar to 8530 Channel A registers and controls the asynchronous and synchronous serial port.

Channel B Registers

This register set allows for access by a second processor or software package to the main processor 16550A data. An additional register contains a clock prescaler and oscillator shut down.

PRODUCT CONFIGURATIONS

The SPC is used in either single- or dual-processor environments with different applications as follows:

- When a local processor is available for high speed packetized applications, the Dual-Processor configuration is selected by tying the SP pin to GND. In this configuration the local processor and the CPU use separate hardware pins to access the SPC. The 16550A and SCC blocks are accessed independently.
- 2. When no local processor is needed, the SPC is used in the Single-Processor configuration and the SP pin is connected to +5V.

For maximum functionality, the SPC can operate in a unique register access arrangement called Single-Chip-Select (SINGLECS). This is the <u>only</u> operating mode for the 28-pin version (73M1650), and can be selected in 40- and 44-pin versions by tying the $\overline{CS2}$ and \overline{MCS} pins together.

Dual-Processor Configuration

When the SP pin is connected to GND, the SPC is put into the Dual-Processor configuration. In this configuration, the main CPU and local processor use separate address, data and control pins to access the SPC. The 16550A registers are controlled by the CPU. Some of these registers are accessible to a local processor via Channel B through separate pins. The local processor uses Channel A for serial data transfer. Upon any change in the 16550A register contents and FIFOs status, an interrupt can be generated to notify the local processor that the CPU has accessed the SPC.

Note that in Dual-Processor configuration the Modem Control and Status signals (RTS, CTS, etc.) are available to the main CPU via the 16550A registers.

Single-Processor Configuration

When the SP pin is connected to +5V, the SPC operates in the Single-Processor configuration. The CPU has access to all of the registers in the SPC using one data bus (D0-D7), one read strobe (\overline{RD}) and one write strobe (\overline{WR}). The address and chip select pins may be connected in the following ways:

- 1. When maximum firmware compatibility to 16550A/ 8530 operation is desired, the main CPU accesses different registers as follows:
 - a. CS2, A0-A2 to access main port 16550A registers.
 - b. MCS, A/B, D/C to access Channel A and Channel B.
- When maximum functionality is desired, the CS2 and MCS pins are tied together to take the SPC into the Single-Chip-Select (SINGLECS) mode. In this mode, which is the only operating mode for the 28-pin version (73M1650), new bits are added to the 16550A registers to allow for the following features:
 - a. Firmware control of power-down.
 - b. Transmit FIFO trigger level control.
 - c. DMA TXRDY and RXRDY status bits.
 - d. Programmable access to the three register sets using bits 7, 6 of 16550A IER (RSEL0, RSEL1 bits).
 - e. Access to an external device by setting both RSEL0 and RSEL1 bits. In this unique application of the 73M650, proper signals to access a multiplexed address/data bus component (ALE, MRD, MWR) are generated allowing access to the external device in two cycles. This application greatly simplifies the required hardware for interface of PC bus to a local device.

<u>Mailbox Mode</u>

When the PE bit (bit 7 of Channel B, CCR) is set, the CPU can independently access the 16550A and SCC blocks. The SPC has the same internal set-up as the Dual-Processor configuration, however the hardware access to different registers is through only one data bus. The SCC block is now accessible to the CPU.

This allows the user to develop software drivers for the CPU to access and modify the data transmitted or received by a standard software package. This feature is useful in multi-tasking environments.

An interrupt can be sent to the CPU to invoke the operation of the auxiliary software package whenever data is transferred by the main processor. The auxiliary software package can then read the data FIFOs, modify the data by compression or error correction and transmit the new data using the SCC block.

Non-mailbox Mode

When the PE bit (bit 7 of Channel B, CCR) is cleared, the main CPU can access either the 16550A or SCC block. The SPC effectively behaves as either a 16550A or a single-channel 8530 in the same package, always operating as the block (16550A or 8530) that was last

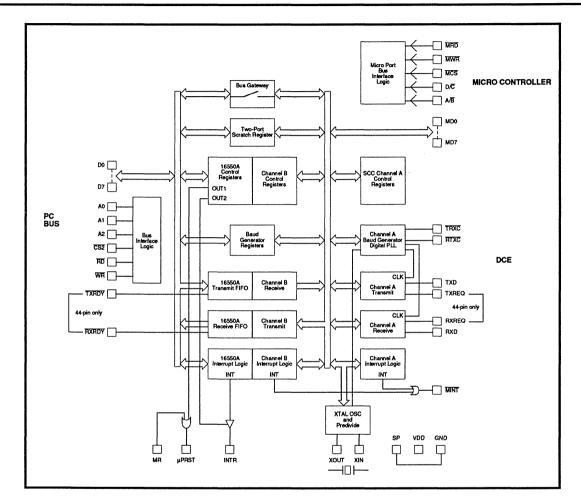


FIGURE 1: Dual-Processor Block Diagram

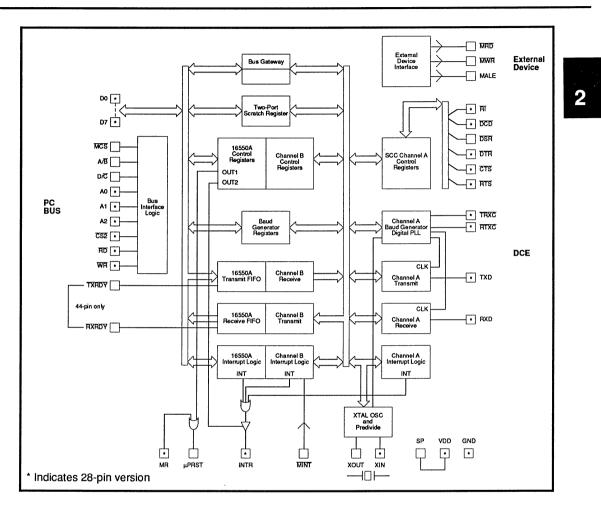


FIGURE 2: Single-Processor Mailbox Mode Block Diagram

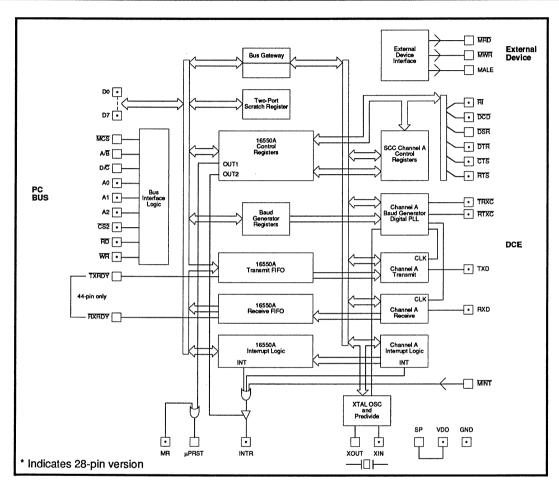


FIGURE 3: Single-Processor Non-Mailbox Mode Block Diagram

PIN DESCRIPTION

Pins marked by * are not available in 28-pin version (73M1650).

NAME	TYPE	DESCRIPTION
VDD	1	+5V Supply, $\pm 10\%$. Bypass with a .1 μ F capacitor.
GND	1	System Digital Ground.
SP *	I	Single-Processor Mode Select. When high, selects Single-Processor mode. When low, selects Dual-Processor mode.
XIN	I	Crystal/Clock Input. When a crystal is used for the time base, it is connected between this pin and XOUT. When an external clock is used, this pin requires a TTL logic level signal at maximum frequency of 20 MHz. By programming the 4-bit prescaler (bits 0, 1, 2, 3 of Channel B CCR), the external clock frequency can be adjusted to supply the required internal clock.
XOUT *	I/O	Crystal output. When a crystal is used for the time base, it is connected between this pin and XIN.
MR	I	Master Reset. When high, internal registers are initialized. This signal should be brought low for the normal operation of the SPC. A high on MR generates a high on the μ PRST pin.
μPRST *	0	Local Microprocessor Reset. This signal follows the state of MR signal and is used to reset a local microprocessor. Programming the μ PRST bit (bit 2 of 16550A MCR) to a high will also generate an active high signal on this pin.
TXD	0	Serial Transmit Data. The serial data is updated on the rising edge of the internal transmit clock. The source of transmit clock is either an inverted version of the TRXC/RTXC pins signal or the output of Baud Rate Generator or the DPLL.
TRXC	I/O	Synchronized Clock. The function of this pin is controlled by the TRXCO/I bit (bit 2 of Channel A WR11). If the TRXCO/I bit is set, this pin is an output clock whose rising edge can be used to sample TXD signal. If the TRXCO/I bit is cleared, this pin functions as an input transmit clock. When the source of the transmit clock is selected to be this pin by programming bits 4, 3 of Port-A WR11 to 01, the serial transmit data (TXD) pin is updated on the falling edge of this signal. When other sources of transmit clock are selected, the TXD has no phase relationship to this signal.
RXD	I	Serial Receive Data. Serial data is sampled on the falling edge of the internal receive clock. The source of the receive clock is either an inverted version of the TRXC/RTXC pins signal or the output of Baud Rate Generator or the DPLL.

PIN DESCRIPTION (Continued)

Pins marked by * are not available in 28-pin version (73M1650).

NAME	TYPE	DESCRIPTION
RTXC	I	Synchronized Receive Clock. When an external receive clock source is selected by clearing bits 4, 3 of Channel A WR11, the data on the RXD pin is sampled on the rising edge of this signal. The received clock may also be supplied by the TRXC pin, Baud Rate Generator or the DPLL, in which case this pin has no function. In comparison with the 8530, this pin has no accommodation for an external crystal to supply the receive clock.
TXRDY ★	O	DMA Transmit Request. Available on the 44-pin version only; shows the status of the 16550A transmit FIFO. In the non-FIFO or 16450 mode (bit 0 FCR cleared) or when no DMA is selected (bit 3 FCR cleared), TXRDY goes active low when there is no character in the transmit FIFO and returns high when the first character is loaded into the FIFO. In the FIFO mode (bit 0 FCR set) and when DMA is selected (bit 3 FCR set), TXRDY goes active low as the transmit FIFO trigger level is reached and goes inactive high when the FIFO is completely full. If the Silicon Systems enhancement mode is not selected (bit 5 IER cleared), TXRDY goes active when the FIFO is not full. This is equivalent to a FIFO trigger level of 15.
RXRDY *	O	DMA Receive Ready. Available on the 44-pin version only; shows the status of the 16550A receive FIFO. In the non-FIFO or 16450 mode (bit 0 FCR cleared) or when no DMA is selected (bit 3 FCR cleared), this signal goes active low when there is at least one character in the receive FIFO. It returns inactive high when there are no more characters in the receive FIFO. In the FIFO mode (bit 0 FCR set) and DMA operation (bit 3 FCR set), this signal goes active low as the receive FIFO trigger level is reached or timeout is occurred. RXRDY returns to the inactive high level when there are no characters in the receive FIFO.
TXREQ *	0	DMA Transmit Request. Available on the 44-pin version only; shows the status of the 8530 three-byte transmit FIFO. TXREQ goes active high when the transmit FIFO is not full. It goes low when the FIFO is completely full.
RXREQ *	0	DMA Receive Request. Available on the 44-pin version only; shows the status of the 8530 three-byte receive FIFO. RXREQ goes active high when data is available in the receive FIFO. It goes inactive low when the receive FIFO is completely empty.

Main processor 16550A port:

Function and timing of these pins are similar to 16550A.

NAME	TYPE	DESCRIPTION
D0-D7	I/O	Data Bus. This bus provides bi-directional communication between the SPC and the main CPU. In Dual-Processor mode, the 16550A registers are accessed by this bus. In the Single-Processor mode; 16550A registers, Channel A and Channel B registers are accessed by this bus.

PIN DESCRIPTION (Continued)

Main processor 16550A port: (Continued)

Function and timing of these pins are similar to 16550A.

Pins marked by * are not available in 28-pin version (73M1650).

NAME	TYPE	DESCRIPTION
A0-A2	I	Register Select Address. These signals determine the address of the 16550A register to be accessed. Eight registers are selected when DLAB bit (bit 7 of 16550A LCR) is low or upon reset. Two additional registers are accessed when DLAB is set high.
CS2	I	Chip Select, Main port. When low while $\overline{\text{RD}}$ or $\overline{\text{WR}}$ are low, allows reading or writing of the registers. In the Dual-Processor mode only the 16550A registers are accessed using this pin. In the Single-Processor mode, 16550A port as well as Channel A and Channel B registers are accessed using this pin.
RD	I	Read Strobe. When low while $\overline{CS2}$ is low, the contents of the register addressed by A0-A2 or A/B,D/C may be read to the D0-D7 data bus.
WR	I	Write Strobe. When low while $\overline{CS2}$ is low, the contents of the D0-D7 data bus are written to the register selected by A0-A2 or A/B,D/C on the rising edge of this signal. No change is made to the register which is marked to be READ-ONLY.
INTR	I	Interrupt, High-impedance. This pin goes high whenever attention is requested from the main CPU. Clearing the E1 bit (bit 3 of 16550A MCR), places this pin in a high impedance state, allowing multiple ICs to share one CPU interrupt signal.

Channel A and Channel B in Dual-Processor Configuration:

Pins marked by # have a different function in the Single-Processor configuration.

NAME		TYPE	DESCRIPTION
MD0-7	*#	I/O	Data Bus, Local Processor: Allows access to Channel A and Channel B. This bus is controlled by the local processor.
A/B	*	l	Port Select Address: Controlled by the local processor. When high selects Channel A (USART) to transmit and receive data serially. When low allows access of the local processor to the main port (16550A) registers through Channel B.
D/C	*	I	Command or Data Select Address: When low, a command register within Channel A or Channel B is selected. Command registers are selected in two cycles: the register address is first written into the lower four bits of command register, and the desired data is subsequently written to the selected command register. When high, the serial transmit/receive data is transferred in one cycle.
MCS	*#	I	Chip Select, Local Processor: In combination with the MRD and MWR; allows access to Channel A and Channel B registers.

PIN DESCRIPTION (Continued)

Channel A and Channel B in Dual-Processor Configuration: (Continued)

Pins marked by * are not available in 28-pin version (73M1650).

Pins marked by # have a different function in the Single-Processor configuration.

NAME		TYPE	DESCRIPTION
MRD	*#	I	Read Strobe, Local Processor. When low while $\overline{\text{MCS}}$ is low, the contents of the selected register in Channel A or Channel B is transferred to the data bus. The serial data register (D/C high) can be read in one cycle. When reading the command register (D/C low), the command register address is determined by bits 0, 1, 2, 3 of WR0. To read a new command register a write cycle to WR0 to change the register address should be done prior to the read cycle.
MWR	*#	I	Write Strobe, Local Processor. When low while $\overline{\text{MCS}}$ is low, contents of the data bus is written into the selected register in Channel A or Channel B if the register is not marked READ-ONLY. Writing into the serial data register (D/ \overline{C} high) can be done in one cycle. When writing the command register (D/ \overline{C} low), The command register address is determined by bits 0, 1, 2, 3 of WR0. To write to a new command register, a write cycle to change the register address should be done prior to the write cycle.
MINT	*#	0	Interrupt, Local Processor. When high, notify the local processor that an access is made by the main CPU to the SPC registers or an interrupt has occurred in the SCC.

Channel A and Channel B in Single-Processor Configuration:

Pins marked by * are not available in 28-pin version (73M1650).

Pins marked by # have a different function in the Dual-Processor configuration.

NAME	TYPE	DESCRIPTION
A∕B *	I	Channel Select Address. When high, selects Channel A (USART) to transmit and receive data serially. When low, allows access to the Main Processor (16550A) registers through Channel B. This signal is only used when the MCS is low.
D/ C *	I	Command or Data Address Select. When low, a command register within Channel A or Channel B is selected. Individual registers are selected in two cycles: The address of the register is first written into the lower four bits of the command register then desired data is subsequently read from or written into the command register. When high, the serial transmit/receive data is transferred in one cycle. This signal is only used when the MCS is low.

PIN DESCRIPTION (Continued)

Channel A and Channel B in Single-Processor Configuration: (Continued)

Pins marked by * are not available in 28-pin version (73M1650).

Pins marked by # have a different function in the **Dual-Processor** configuration.

NAME		TYPE	DESCRIPTION
MCS	*#	Ι	Chip select, Channel A and Channel B. Access to the SPC registers is controlled by this signal and CS2. When these signals are not tied together and individually controlled, the last block selected (16550A or Channel A/B) controls the operation of the serial port. When this signal is tied to CS2, The SPC is put into the Single-Chip-Select (SINGLECS) mode and access to the registers is controlled by two bits in the 16550A IER register (RSEL1, RSEL0). Setting RSEL1 bit enables access to an external device in two cycles.In the SINGLECS mode, new bits are introduced in the Main Processor 16550A registers, allowing additional features.
MALE	*#	0	External Device ALE. When in the Single-Chip-Select (SINGLECS) mode and RSEL1 bit is set, this signal is used by the external device to latch the address of its registers. MALE is an inverted version of the WRB signal in the first cycle of an external device access. Data is transferred to the external device in the subsequent cycle using the MWR or MRD signal. When not in the SINGLECS mode, thispin remains high.
MWR	*#	Ο	External Device Write Strobe. When in the Single-Chip-Select (SINGLECS) mode and RSEL1 bit is set, this signal follows the WR signal issued by the main processor in the second cycle of an external device access. Data present on the main processor data bus (D0-D7) can be written into the external device. When not in SINGLECS mode, this pin remains high.
MRD	*#	0	External Device Read Strobe. When in the Single-Chip-Select (SINGLECS) mode and RSEL1 bit is set, this signal follows the RD signal issued by the main processor in the second cycle of an external device access. Data can be read from the external device to the main processor data bus (D0-D7). When not in the SINGLECS mode, this pin remains high.
MINT	*#	J	External Device Interrupt. When in the Single-Chip-Select (SINGLECS) mode, a low level on this pin generates an interrupt to the main processor on the INTR pin if enabled by the software. When not in the SINGLECS mode, this pin is ignored.
RTS	#	O	Request To Send. This signal shows that a DCE (modem) is ready to send the data. It is controlled by the RTS bit (bit 1 of 16550A MCR or bit 1, Port-A WR8). Setting the RTS bit results in a low level on this pin. Clearing the RTS bit would result in this pin going high immediately when the Auto, Enable feature is not active. When the Auto Enable feature is active (bit 5, WR3 set), this pin goes high only after RTS bit is cleared and transmitter register is empty.

PIN DESCRIPTION (Continued)

Channel A and Channel B in Single-Processor Configuration: (Continued)

Pins marked by * are not available in 28-pin version (73M1650).

Pins marked by # have a different function in the **Dual-Processor** configuration.

NAME	TYPE	DESCRIPTION
CTS #	I	Clear To Send. This signal is used in DCE (modem) handshaking to show that the DCE has established the communication and data may be trans- ferred to DCE. This input is Schmitt triggered and inverted and its status is reflected in the CTS bit (bit 4 of 16550A MSR and bit 5, Channel A RR0). If the Auto Enable feature is active (bit 5, WR3 set), data is automatically transmitted when this pin is low. If the Auto Enable is not selected this pin can be used as a general purpose input. The DCTS bit (bit 0 of 16550A MSR) is set when a change in the CTS logic level is detected, and it can generate an interrupt.
DTR #	0	Data Terminal Ready. This signal is used in DCE (modem) handshaking to signify that the SPC is ready to communicate. This pin is a complement of DTR bit (bit 0 of 16550A MCR and bit 7, Channel A WR5). This pin can be used as a general purpose output pin.
DSR *#	I	Data Set Ready. This signal is used in the DCE (modem) handshaking to indicate that the DCE is ready to communicate. This input is Schmitt triggered and inverted and its status is reflected in the DSR bit (bit 5 of 16550A MSR or bit 5, of Channel A RR10). This pin can be used as a general purpose input pin. Bit DDSR (bit 1 of 16550A MSR) is set when a change in DSR logic level is detected, and it can generate an interrupt.
DCD *	Ι	Data Carrier Detect. A DCE (modem) status input indicates that the DCE has detected the carrier signal on the medium (telephone line). This input is Schmitt triggered and inverted and its status is reflected in the DCD bit (bit 7 of 16550A MSR and bit 3, Channel A RR0). If the Auto Enable feature is active (bit 5, Channel A WR3 set), a low level on DCD automatically activates the receiver circuity. When the Auto Enable is not selected this pin can be used as a general purpose input pin. Bit DDCD (bit 3 of 16550A MSR) is set when a change in DCD level is detected, and it can generate an interrupt.
RI #	I	Ring Indicator. A DCE (modem) status input indicating the presence of ringing voltage on the telephone line. This input is Schmitt triggered and inverted and its status is reflected in the RI bit (bit 6 of 16550A MSR and bit 0, Channel A RR10). This input can be used as a general purpose input pin.The TERI bit (bit 2 of 16550A MSR) is set when a high-to-low transition is detected on this pin, and it can generate an interrupt to the main processor.

						DATA BIT NUM	IBER			
REGIST	ER	ADDRESS A2-A0	D7	D6	D5	D4	D3	D2	D1	DO
Receiver Buffer Register (Read only)	RBR	0 DLAB = 0	Bit 7 (MSB)	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0 (LSB)
Transmit Holding Register (Write only)	THR	0 DLAB = 0	Bit 7 (MSB)	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0 (LSB)
interrupt Enable Register	IER	1 DLAB = 0	Register Select 1 (Single CS)	Register Select 0 (Single CS)	SSi Enable (Single CS)	o	Enable Modem Status	Enable Receiver Status	Enable THRE	Enable RDA
Interrupt ID Register (Read only)	IIR	2	FIFOs Enabled	FIFOs Enabled	RxRDY (SSI Enable)	TxRDY (SSi Enable)	Interrupt ID 2	Interrupt ID 1	Interrupt ID 0	Interrupt Pending
FIFO Control Register (Write only)	FCR	2	RCVR Trigger 1	RCVR Trigger 0	XMIT Trigger 1 (SSi Enable)	XMIT Trigger 0 (SSi Enable)	DMA Mode Select	XMIT FIFO Reset	RCVR FIFO Reset	FIFO Enable
Line Control Register	LCR	3	Divisor Latch Access (DLAB)	Set Break	Stick Parity	Even Parity	Parity Enable	Number Stop	Word Length Select 1	Word Length Select 0
Modem Control Register	MCR	4 REGSEL=0	0	0	0	Loop	Enable Interrupt	μPRST	RTS	DTR
Line Status Register	LSR	5 REGSEL=0	Error in Receive FIFO	Transmit Empty	Transmit Holding Empty	Break Interrupt (BI)	Framing Error (FE)	Parity Èrror (PE)	Overrrun Error (OE)	Data Ready (DR)
Modem Status Register	MSR	6 REGSEL=0	DCD	RI	DSR	CTS	Delta DCD (DDCD)	Trailing Edge RI (TERI)	Delta DSR (DDSR)	Delta CTS (DCTS)
Scratch Register	SCR	7 REGSEL=0	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Divisor Latch (LS)	DLL	0 DLAB = 1	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Divisor Latch (MS)	DLM	1 DLAB ≃ 1	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8

FIGURE 4: Main Port 16550A UART Registers

						DATA	BIT NUMBER			
REGISTE	R	ADDRESS UCR (3:0)	D7	D6	D5	D4	D3	D2	D1	D0
UART Command Register (Write only)	UCR	D/Č=0 A/B=0 ONECS =1: D/Č=0 A3=1 RGSEL0=1	0	0	0	0	Register Select 3	Register Select 2	Register Select 1	Register Select 0
Receiver Buffer Register (Read only)	RBR	8 or D/C=1 A/B=0	Bit 7 (MSB)	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0 (LSB)
Transmit Holding Register (Write only)	THR	8 or D/C=1 A/B=0	Bit 7 (MSB)	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0 (LSB)
Interrupt Enable Register	IER	1	0	0	0	Enable External INT (SP=1)	Enable MCR/SCR Status	Enable Divisor LCR Status	Enable THRE	Enable RDA/OE
Interrupt ID Register (Read only)	IIR	2	0	0	0	0	0	Interrupt ID 2	Interrupt ID 1	interrupt ID 0
Line Control Register (Read only)	LCR	3	0	Set Break	Stick Parity	Even Parity	Parity Enable	Number Stop	Word Length Select 1	Word Length Select 0
Modem Control Register (Read only)	MCR	4	0	0	0	Loop	0	0	RTS	DTR
Line Status Register	LSR	5	0	0	Transmit Holding Ready (Read only)	Channel B Tx Transmit Break	Channel B Tx Framing Error	Channel B Tx Parity Error	Channel B Rx Overrun Error (Read only)	Channel B Rx Data Ready (Read only)
Modern Status Register (Read/Write)	MSR	6	DCD	RI	DSR	CTS	0	0	0	0
Scratch Register	SCR	7	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Divisor Latch (LS) (Read only)	DLL	9	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Divisor Latch (MS) (Read only)	DLM	A	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8
Configure Control Register	CCR	В	16550A Parallei Enable (SP=1)	0	0	OSC OFF	Divisor Prescale 3	Divisor Prescale 2	Divisor Prescale 1	Divisor Prescale 0

FIGURE 5: Channel B Registers

						DATA BIT	UMBER			
REGIST	TER	ADDRESS WR0 (3:0)	D7	D6	D5	D4	D3	D2	D1	DO
Command Register	WR0	o	CRC Reset 1	CRC Reset 1	Command Code 2	Command Code 1	Command Code 0	Register Select 2	Register Select 1	Register Select 0
Tx/Rx interrupt Data Transfer	WR1	1 (WR only)	0	0	0	Receive Interrupt Mode 1	Receive Interrupt Mode 0	Parity Special	Tx Int Enable	External Interrupt Enable
Interrupt Vector Register	WR2 RR2	2 (RD/WR)	Bit 7 (MSB)	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0 (LSB)
Receive Control	WR3	3 (WR only)	Rx Bits /Char 1	Rx Bits /Char 0	Auto Enable	Enter Hunt Mode	Rx CRC Enable	Address Search Mode (SDLC)	SYNC Char Load Inhibit	Receiver Enable
Tx/Rx Misc. Modes	WR4 RR4	4 (RD/WR)	Clock Rate 1	Clock Rate 0	SYNC Mode 1	SYNC Mode 0	Stop Bits 1	Stop Bits 0	Even Parity	Parity Enable
Transmit Control	WR5 RR5	5 (RD/WR)	DTR	Tx Bits /Char 1	Tx Blts /Char 0	Send Break	Transmit Enable	SDLC/ CRC-16	RTS	Tx CRC Enable
SYNC Char or SDLC Address	WR6 RR6	6 (RD/WR)	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
SYNC Char or SDLC Flag	WR7 RR7	7 (RD/WR)	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Transmit Buffer Register	WR8	8 D/C=1 A/B=1 (WR only)	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Master Interrupt Control	WR9 RR9	9 (RD/WR)	Reset Command 1	Reset Command 0	0	Status High	Master Interrupt Enable (MIE)	0	o	Vector Includes Status
Tx/Rx Misc. Control	WR10	10 (WR only)	CRC Preset	Data Encoding 1	Data Encoding 0	Go Active on Poll	Mark Idle	Abort on Overrun	Loop	6 Bit Sync
Clock Mode Control	WR11 RR11	11 (RD/WR)	Manchester Encode Transmit	Receive Clock Source 1	Receive Clock Source 1	Transmit Clock Source 1	Transmit Clock Source 0	TRxC Pin Output	TRxC Output Source 1	TRxC Output Source 0
Lower Byte Baud Generator	WR12 RR12	12 (RD/WR)	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Upper Byte Baud Generator	WR13 RR13	13 (AD/WR)	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8
Misc. Control	WR14 RR14	14 (RD/WR)	PLL Command 2	PLL Command 1	PLL Command 0	Local Loopback	Auto Echo	TX CRC-32	Baud Generator Source	Baud Generator Enable
External /Status Interrupt Control	WR15 RR15	15 (RD/WR)	Break/ Abort Interrupt Control	Tx Underrun /EOM Int. En.	CTS Interrupt Enable	Sync/ Hunt Interrupt Enable	DCD Interrupt Enable	DSR Interrupt Enable	Zero Count Interrupt Enable	RI Interrupt Enable

FIGURE 6: SCC Channel A Write Registers

						DATA	BIT NUMBER			
REGIST	ER	ADDRESS WR0 (3:0)	D7	D6	D5	D4	D3	D2	D1	DO
Tx/Rx Buffer/ External Status	RR0	0	Break/ Abort Detect	Transmit Underrun /EOM	стѕ	Hunt	DCD	Transmit Buffer Empty	Zero Count	Receive Char. Available
Special Receive Condition Status	RR1	1	End of Frame (SDLC)	CRC/ Framing Error	Receive Overrun Error	Parity/ CAC-32 Error	Bit Remainder 2	Bit Remainder 1	Bit Remainder 0	All Sent
Interrupt Vector Register	RR2	2	Bit 7 (MSB)	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0 (LSB)
Interrupt Pending Register	RR3	3	0	0	Channel A Receive Interrupt Pending	Channel A Transmit Interrupt Pending	Channel A Ext/Station Interrupt Pending	Channel B Interrupt ID 2	Channel B Interrupt ID 1	Channel B Interrupt ID 0
Receive Data Register	RR8	8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Misc. Status	RR10	10	One Clock Missing	Two Clocks Missing	DSR	Loop Sending	CRC16	CRC32	On Loop	RI

FIGURE 7: SCC Channel A Read Registers

ADDRESS MAPPING: Single Processor Register Maps in Single-Chip-Select Mode

REGSEL1	REGSEL0	A2	A1	A0	A/B	D/C	Addressed Register
0	0	0	00 - 1	11	X	х	550 Registers as normal
0	1	0	00	- 11	X	Х	550 Registers as normal
0	1	1	Х	Х	0	0	Channel B Control
0	1	1	Х	Х	0	1	Channel B Data
0	1	1	Х	Х	1	0	Channel A Control
0	1	1	Х	Х	1	1	Channel A Data
1	1	Х	Х	Х	X	Х	External Device

FIGURE 8: 40 and 44 Pin Versions

REGSEL1	REGSEL0	A2	A1	A0	A∕B	D/C	Addressed Register
0	0	0	00 - 1	11	-	-	550 Registers as normal
0	1	0	00	- 11	-	-	550 Registers as normal
0	1	1	0	0	-	-	Channel A Data
0	1	1	0	1	-	-	Channel A Control
0	1	1	1	0	-	-	Channel B Data
0	1	1	1	1	-	-	Channel B Control

FIGURE 9: 28 Pin Version (73M1650)

ELECTRICAL CHARACTERISTICS

DC CHARACTERISTICS

(TA = -40°C to +85°C, VCC = 5V \pm 10%, unless otherwise noted.)

PARAN	IETER	CONDITION	MIN	NOM	MAX	UNITS			
VILX	Clock Input Low Voltage		-0.5		0.8	V			
VIHX	Clock Input High Voltage		2.0		VCC	v			
VIL	Input Low Voltage		-0.5		0.8	v			
VIH	Input High Voltage		2.0		VCC+.5	v			
VOL	Output Low Voltage	IOL = -5 mA (except XOUT)			0.4	v			
VOH	Output High Voltage	IOH = 5 mA (except XOUT)	2.4			V			
ICC1	Supply Current	See Note 1		5	10	mA			
ICC2	Power Down Current	See Note 2			50	μA			
IIL	Input Leakage				±10	μA			
IOZ	High-Impedance Leakage				±20	μA			
	Note 1: Outputs unloaded, CMOS level inputs, Xtal = Data Rate = 10 MHz. Note 2: Outputs unloaded, CMOS level input, Oscillator disabled or XIN = VCC.								

ELECTRICAL CHARACTERISTICS (Continued)

AC CHARACTERISTICS

(TA = -40°C to +85°C, VCC = 5V \pm 10%, unless otherwise noted.)

PARAME	ETER	NOTES	MIN	NOM	MAX	UNITS
tASC	Address Setup before Control	1, 2, 3, 4	30			ns
tCAH	Address Hold after Control	1, 2, 3, 4	30			ns
tRD	Read strobe width	3	80			ns
tAD	Address to Read Data	1,5	150			ns
tCC	Control end to Control start	2	100			ns
tWR	Write strobe width	4	.80			ns
tDSW	Data Setup before Write	4, 5	30			ns
tDHW	Data Hold after Write	4, 5	30			ns
tWE	WR to External write delay	6 SP = 1	40			ns
tRME	RD to External read delay	SP = 1	40			ns
tCD	TRXC or RTXC to TXD delay	1 x mode			40	ns
fOSC	Crystal/external clock frequency				20	MHz
fDPLL	Input clock for DPLL				20	MHz
fDATA	Data bit rate				10	MHz
fDLOOP	Data bit rate in SDLC Loop				5	MHZ
Note 1: A	ddress includes A0-A2, CS2, A/B	, D/ \overline{C} and \overline{MCS} .		•	•	
Note 2: C	control includes RD, WR, MRD an	d MWR.				
Note 3: R	Read Strobe includes RD and MR	.				

Note 4: Write strobe includes \overline{WR} and \overline{MWR} .

Note 5: Data includes D0-D7 and MD0-MD7.

Note 6: External device write pins are MALE and $\overline{\text{MWR}}$ which are derived from $\overline{\text{WR}}$.

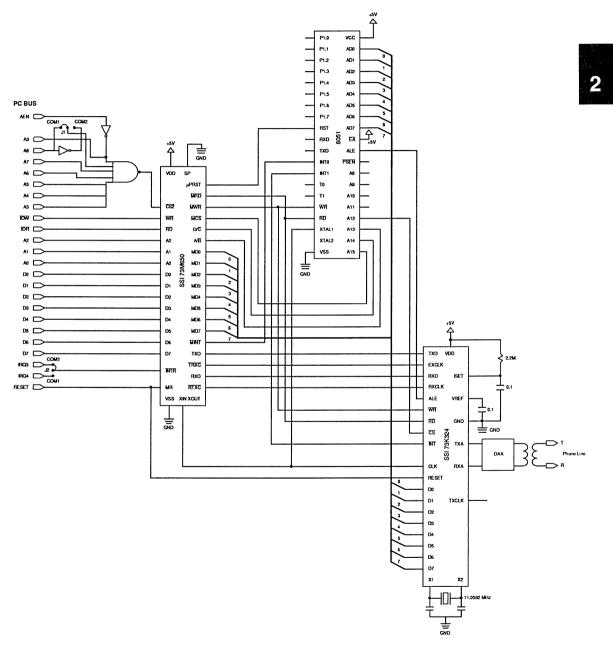


FIGURE 10: Dual-Processor Application Example

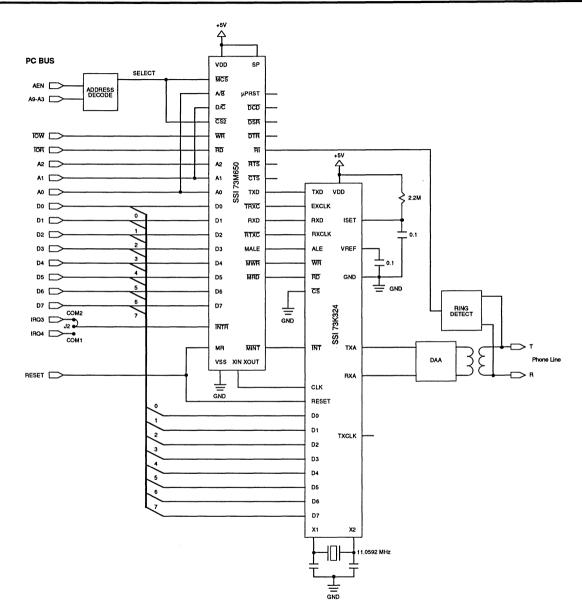


FIGURE 11: Single-Processor Mailbox Mode Application Example

2

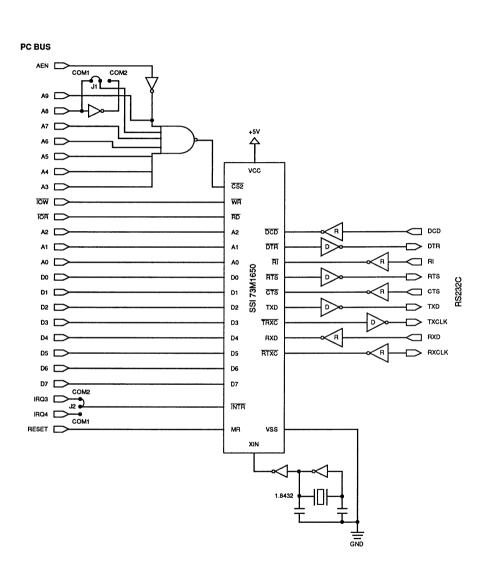
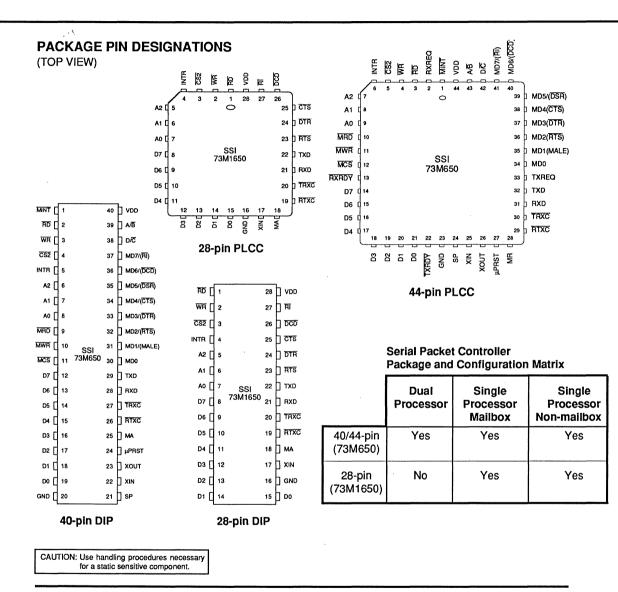



FIGURE 12: Single-Processor Non-Mailbox Mode Application Example

SSI 73M650/1650 Serial Packet Controller

Advance Information: Indicates a product still in the design cycle, and any specifications are based on design goals only.

No responsibility is assumed by Silicon Systems for use of this product nor for any infringements of patents and trademarks or other rights of third parties resulting from its use. No license is granted under any patents, patent rights or trademarks of Silicon Systems. Silicon Systems reserves the right to make changes in specifications at any time without notice. Accordingly, the reader is cautioned to verify that the data sheet is current before placing orders.

Silicon Systems, Inc., 14351 Myford Road, Tustin, CA 92680, (714) 731-7110, FAX: (714) 731-5457

Section

SPECIAL MODEM PRODUCTS

3-0

_

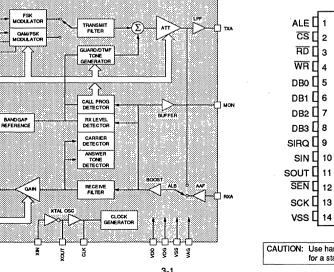
silicon systems*

June, 1990

DESCRIPTION

The SSI 73M214 is a complete analog front end IC for digital signal processor based V.22bis, V.22, Bell 212A. V.21, and Bell 103 compatible modems.

The 73M214 provides bandsplit filters, compromise equalization, and digitally controlled receive gain and transmit attenuation. An 8-bit A/D convertor is available for receive signal processing, and on-chip modulators provide the QAM. PSK. and FSK transmit signals. making it unnecessary for the DSP to perform the transmit functions. A tone generator is used to produce DTMF, answer, and quard tones while an analog loopback mode allows system testing. Carrier, answer, and call progress tone detection is provided.


The SSI 73M214 uses two busses to transfer data and control information. A 4-bit address/data multiplexed bus is used for connection to a control microprocessor (8031 typical) which performs the scrambler/ descrambler, buffer/debuffer, system control, data, and user interface functions. A serial data bus transfers received digitized data as well as receiver status information to a standard DSP (7720 typical). The DSP also sends the 73M214 receive timing and gain control information over the serial bus. (Continued)

BLOCK DIAGRAM

FEATURES

- Analog front end for DSP-based V.22bis modems
- Complete modulators for QAM/DPSK (V.22bis, V.22, Bell 212) and FSK (Bell 103 and V.21)
- Programmable receive gain/transmit attenuation
- 8-bit ADC with reference, sample and hold
- Band split filters with compromise equalization
- Analog loopback test mode
- Serial interface for receive processing
- Parallel interface for transmitter and control
- 0 Timer for transmit synchronization
- Programmable timer for receiver data clock ۰ recovery
- Carrier, call progress, and answer tone detectors •
- Audio monitor for audible call status
- ۰ DTMF, guard tone, and answer tone generation
- Crystal oscillator with output buffer
- Low power CMOS (± 5V at < 250 mW)
- 28-pin plastic DIP or PLCC surface mount package
- Controllable audio monitor

PIN DIAGRAM

ALE	1	28	Jvdd
<u>cs</u> [2	27	
RD [3	26	VAG
WR	4	25	Лиои
ово [5	24	RXCLKO
db1 [6	23	
db2 [7	22	
DB3 [8	21	TXINT
sirq [9	20	Птха
SIN [10	19	EXADCC
оит [11	18	אוא
SEN [12	17] хоит
scĸ [13	16	
vss [14	15	DGND

CAUTION: Use handling procedures necessary for a static sensitive component

TXCLKI тхсько

TXINT

ALE

<u>cs</u>

WA

RO

D80-3 [

SEN

SOUT

RVCKO

EXADCC

scк [

SIRQ

SN

REGISTER ATA/STATUS

SERIAL OUT REGISTER

A TO D

AND TIMER

SERIAL IN

DESCRIPTION (Continued)

The SSI 73M214 is ideal for use in self-contained or integral intelligent modem products requiring the benefits of 2400 bit/s full duplex operation while maintaining compatibility with existing standards at speeds down to 300 bit/s. By integrating the majority of the analog functions needed on a single CMOS IC, system complexity and cost is reduced without compromising performance or features.

OPERATION

The SSI 73M214 provides the analog front end processing for a V.22bis/224 2400 bit/s modem. The SSI 73M214 includes band-split filters, fixed U.S. compromise line equalizer, programmable gain/attenuator for receive and transmit functions, FSK/QAM modulators, differential encoder, and an analog to digital converter. The 73M214 interfaces to an external digital signal processor and inexpensive control microprocessor to complete the modem function.

FUNCTIONAL DESCRIPTION

The 73M214 allows selection of 300 bit/s, 600 bit/s, 1200 bit/s, or 2400 bit/s transmission modes. The 73M214 generates the bit rate clocks RVCKO (receive) and TXCKO (transmit) and a baud rate clock TXINT. In the synchronous modes, there is a fixed phase relationship between TXCKO and TXINT (refer to figure of Transmit Timing). Each case here assumes that the receive timer is in internal timing mode, otherwise RVCKO is high. Register CR0 selects a mode (there are three synchronous modes and one asynchronous mode). In internal synchronous mode, the SSI 73M214 generates an accurate bit rate clock, TXCKO. This may be used for data transfers from the DTE to the microprocessor. The microprocessor sends the latest quadbit (or dibit), which is latched into the modulator on the falling edge of TXINT. Pin TXCKI is ignored in internal synchronous mode. RVCKO is the receiver bit rate clock.

In external synchronous mode the data rate clock from the DTE should be connected to the TXCKI pin. TXCKI is used to generate phase locked clocks TXCKO and TXINT (TXCKI's falling edge synchronously resets an internal counter). RVCKO is the receiver bit rate clock.

RECEIVE PROCESSING

The received signal from the line passes through an anti-alias filter with adjustable gain, then through a band-split filter with selectable compromise line equalization, after which it is amplified by a programmable gain stage. The analog signal is converted to an 8-bit, 2's complement number for the digital signal processor. The ADC output and AGC gain word are transferred serially between the DSP and SSI 73M214. A programmable timer is included for use in the data clock recovery loop. Answer tone, carrier, and imprecise call progress detectors are included for modem smart dialing capability.

TRANSMIT PROCESSING

In QAM (DPSK) mode, the quadbit (dibit) is transfered to the SSI 73M214 where it is differentially encoded and then passed through a baseband filter. The baseband information is modulated up to 1200 Hz or 2400 Hz. A band-split filter shapes the modulator output and provides compromise line equalization. The transmitted spectrum has the recommended square root of 75% raised cosine shaping. Guard tone is added to the signal after the filter, and the programmable attenuator sets the transmit amplitude. Finally, a smoothing filter eliminates out-of-band energy generated by the switched-capacitor filters.

In FSK mode, a programmable tone generator acts as the modulator. The modulator output passes through the band-split and smoothing filters as in the QAM mode.

MICROPROCESSOR INTERFACE

The SSI 73M214 acts as a peripheral to the microprocessor (e.g., Intel 8051, Zilog Z8601, Motorola 6801) on a 4-bit multiplexed address/data bus. Control and status information are stored in registers on the 73M214. Transmit data is also sent from the microprocessor over the bus in 4-bit nibbles.

RECEIVE DSP INTERFACE

The SSI 73M214 interfaces to a digital signal processor over two serial ports. The serial interface is directly compatible with the NEC/OKI 7720 or 77C20. The 73M214 can also be interfaced with parallel bus signal processors using standard LSTTL 7400 series shift registers. The digital sample from the A/D convertor is sent to the DSP on the serial output port, and the AGC gain value is sent from the DSP to the SSI 73M214 on the serial input port. Both serial ports transfer 16 bits simultaneously under timing control generated by the 73M214.

In slave mode TXCKO and TXINT are phase locked internally to RVCKO (RVCKO's falling edge synchronously resets an internal counter). Pin TXCKI is ignored in slave mode. If the internal receive timer is not being used, slave mode can be implemented by putting the SSI 73M214 in external synchronous mode and externally connecting the recovered receiver bit rate clock to TXCKI.

Asynchronous mode operation is the same as internal synchronous mode, except TXCKO and RVCKO are high.

SERIAL DSP INTERFACE

Serial DSP Interface provides for communication between the DSP and the 73M214. A programmable receive timer block which provides for adjustment of the ADC sampling rate is included on the 73M214. It may be used as part of the data clock recovery loop. The receive timer control bits RvT1 and RvT0 (TR0) select one of four possible ADC modes; off, external timing, internal timing 7200 Hz, or internal timing 9600 Hz. The DSP through serial port SIN (bits 8-9) provides for adjustment to the internal sampling clock rates either 7200 Hz \pm 1 μ s or 9600 Hz \pm 1 μ s. The falling edge of SEN corresponds to the following events:

- 1) The signal on RXA is sampled and an 8-bit analogto-digital conversion begins.
- 2) The previous 8-bit ADC sample and the status bits are loaded into a register for serial shifting out of port SOUT to the DSP.
- 3) The previous gain & timer bits from the DSP are latched into the 214 register and the current DSP serial word is shifted into port SIN.

Serial Output- 16-bit word - bit 0 (LSB) is shifted out first.

BIT #	15 - 12	11	10	9	8	7 - 0
Output Data		Slow C.D.	А.Т.	CPD		ADC Output

Serial input - 10 bits - bit 0 (LSB) is shifted first.

Bit #	15 - 10	9 - 8	7	6 - 0
Input Data	x	RCV Timer Control	х	Gain Word (Log) MSB-LSB

SERIAL DSP TIMING

The timing diagram for the serial receive processor interface is shown in Figure 3. Signal SIRQ is generated by the NEC/OKI 77C20 and must be high to send SIN data. If it is low during a serial transmission, SOUT remains active but SIN becomes inactive and the 73M214 will continue to use the last gain/timer value. SCK from the 73M214 is the serial shift clock.

QAM/DPSK ENCODER/MODULATOR

The quadbits sent to the 73M214 are differentially encoded according to the CCITT V.22bis specification. The encoded quadbits are then passed through an FIR baseband filter. The baseband signal thus generated is modulated by the carrier at either 1.2 kHz or 2.4 kHz.

FSK MODULATOR

The FSK modulator frequency modulates the data in a continuous phase manner. FSK operation is asynchronous and is determined by the control bits shown:

REGISTER	D3	D2	D1	DCR
CR0	1	1	x	x
CR1	0/1	х	x	1
CR3	0	0	х	0/1
TR0	х	х	1	0
TR1	1/0	1/0	1/0	1/0

TONE GENERATOR

The tone generator will output a dual-tone (DTMF) or a single tone (FSK, answer tone, or guard tone) on the TXA line if the appropriate control bits are enabled. The control bits are found in register TR0 and TR1. The tone is specified by register TR1 - 16 dual-tone combinations and 7 single tones are possible. DTMF has priority over single tones. The tone generator consists of 4 blocks: tone selection and control, two programmable down counters, two three-level six-step square wave generators, and a 3-pole ladder filter with programmable gain and pole setting.

BAND SPLIT FILTERS

The band-split filters provide attenuation for out-ofband noise components and near-end cross talk. The filters also provide some of the root 75% raised cosine shaping for minimum intersymbol interference. Transmit and Receive delay equalization can be bypassed by using the TxEQ and RvF1 bits. The receive filter can be bypassed for direct access to the ADC with the RvF0 bit.

PROGRAMMABLE GAIN STAGE

The programmable gain stage is part of an AGC loop which is controlled by the receive digital signal processor. The gain increased monotonically with increasing gain word. The 7-bit gain setting covers a 48 dB range with 0.375 dB steps. Minimum gain of 0 dB corresponds to 0000000, maximum gain of 48 dB is 1111111.

ADC

The 8-bit analog to digital converter provides a 2's complement representation of the sampled analog voltage. The sample and hold function is incorporated in this switched-capacitor ADC.

TRANSMIT ATTENUATOR

The programmable transmit attenuator allows the control processor to set the transmit power level. If the attenuator control bits are set to 0000, the attenuator acts as a unity gain stage. The attenuation increments by 1 dB per bit.

In addition to the user programmable attenuator, there is an internally controlled attenuator for the QAM/ DPSK modulated signal. The attenuation value is determined by the guard tone selected and assures that modulated data plus guardtone gives 0 dBm prior to the transmit attenuator regardless of the guard tone setting.

DETECTORS

The special detect circuitry checks the received analog signal for special conditions. The conditions checked for are the presence of a carrier (i.e., energy in the receive band), the presence of an answer tone (2100 or 2225 Hz), and the presence of a call progress signal.

IMPRECISE CALL PROGRESS DETECTOR

The call progress detector monitors activity on the line. This detector is an imprecise call progress detectorthe on/off envelope of the signal is replicated as a 1/0 in the CPD bit of the SR register. The detector consists of a bandpass filter followed by a peak detector. The 3 dB points of the bandpass filter are 350 Hz and 620 Hz. Dial-tone, busy-signal, ringback and reorder are composed of at least one tone in this band.

PRECISE ANSWER TONE DETECTOR

The receive filter output is fed to a highly selective frequency discriminator controlled by the ABT1 and ABT0 bits of the DCR register to detect 2100 and 2225 Hz answer back tones. The frequency discriminator is gated by the output of the carrier detector to provide amplitude discrimination.

CARRIER DETECTOR

The carrier detector detects the presence of a signal in the receive band. When energy is detected the CAR bit of the SR register is set to "1." The detector uses a peak-to-peak amplitude detecting scheme which requires knowledge of the Peak/Rms ratio of the waveform to be detected. This information is obtained from the data rate control register (CR0) bits DR1 and DR0.

DR1	DR0	Carrier Type	Peak/Rms
0	0	None	1.414
0	1	FSK	1.414
1	0	DPSK	2.0
1	1	QAM	2.5

The fast carrier detect is an imprecise carrier detector that is derived from the short term peak-to-peak amplitude in the carrier detector. The detector output will be erratic for small signals with high peak-to-rms values. The fast carrier is output on the FCAR bit of the serial output port.

RECEIVE LEVEL DETECTOR

The receive level detector indicates whether the signal present at RXA is too large to permit the use of the receive gain (RvGE) of 12 dB prior to the band-split filters. When the RvL bit of the SR register - "1," the signal is too large to use the gain.

A fixed, switchable 12 dB gain is provided ahead of the band-split filters to be used when the total received signal (received signal + near-end signal) is more than 12 dB below the maximum allowed input voltage.

OUTPUT SMOOTHING FILTER

The output smoothing filter attenuates out-of-band frequency components that are generated by the switched capacitor filters on the chip.

INPUT ANTI-ALIAS LOW PASS FILTER

The anti-alias low pass filter prevents aliasing of incoming frequency components into the passband of interest.

PIN DESCRIPTION

TOWER			
NAME	PIN NO.	I/O	DESCRIPTION
VDD	28	I	Positive voltage supply (+5V)
VSS	14	1	Negative voltage supply (-5V)
VAG	26	I	Analog Ground
VDG	15	I	Digital Ground

ANALOG INTERFACE

NAME	PIN NO.	I/O	DESCRIPTION			
RXA	27	1	Receive analog input from line.			
ТХА	20	0	Transmit analog output to line. Modulator output as well as DTMF output uses this pin.			
XIN	18	1	Crystal connection, 7.3728 MHz crystal, or externally generated 7.3728 MHz oscillator input.			
XOUT	17	0	Crystal connection, 7.3728 MHz crystal.			
CLKOUT	16	0	Crystal oscillator output echoed for system use.			
MONITOR	25	0	Analog output for call progress tone monitoring. Can be muted (see Control Bits).			

MICROPROCESSOR INTERFACE

NAME	PIN NO.	I/O	DESCRIPTION
DB0-DB3	5,6,7,8	I/O	(Bi-directional, 3 state) Address/Data Bus.
CS	2	1	Chip Select. A low allows a read or write cycle to occur. DB0-DB3 can not be written to or read from if \overline{CS} (latched) is not low. \overline{CS} is latched on the falling edge of ALE.
RD	3	I	Read. A low requests a read of the 73M214 registers. Data cannot be ouput on DB0-DB3 unless both $\overline{\text{RD}}$ and the latched $\overline{\text{CS}}$ are low.
WR	4	ł	Write. A low informs the 73M214 that data is available on DB0-DB3 for writing into an internal register. Data is latched on the rising edge of \overline{WR} - no data is written unless both \overline{WR} and \overline{CS} are low.
ALE	1	Ι	Address strobe line for multiplexed addressed/data bus. The falling edge of ALE latches the address on DB0-DB3 and the chip select \overline{CS} .

TRANSMIT INTERFACE

NAME	PIN NO.	1/0	DESCRIPTION
ТХСКІ	22	1	Transmit clock input, used for the external synchronous mode. In external synchronous mode, all clocks for the modulator are synchronized to this bit rate clock.
ТХСКО	23	0	Bit rate transmit clock output, provided when the modulator is in a synchronous mode. In FSK, or modulator off modes, this pin is pulled high.
TXINT	21	0	Transmit interrupt, active low. Baud rate clock which requests a new quadbit for the modulator. Active in the 1200 or 2400 bit/s modes only. Forced high otherwise.

RECEIVE INTERFACE

NAME	PIN NO.	I/O	DESCRIPTION
RVCKO	24	0	Bit rate receive clock output from receive timer. Output is active in 2400 or 1200 bit/s transmission when the internal timer is used and the modulator is operating in a synchronous mode. Otherwise the output is forced high.
SOUT	11	0	Output serial port - sends ADC/status bits to DSP.
SIN	10	1	Input serial port receive gain and timer bits from DSP.
SIRQ	9	I	Serial input request. SIRQ high signifies that data is available to shift into SIN port - SIRQ low causes SIN port to retain past data and not shift. SIRQ is latched by SEN falling edge. SIRQ does not affect the shifting of the SOUT port.
SEN	12	0	Serial enable pin. Enables serial shifting on SOUT and SIN ports. Signal is low for 16 cycles of SCK.
SCK	13	0	Shift clock generated on 73M214 for serial ports SIN and SOUT. Clock rate is 184 kHz and is resychronized to receive timer every SEN falling edge.
EXADCC	19	Ι	External ADC convert clock input which is required if the internal receive timer is not being used. The rising edge of EXADCC is aligned to an internal 922 kHz clock; it starts an ADC conversion and serial shifting over the SIN and SOUT ports.

REGISTER ADDRESSES

The signals A0, A1, A2, and A3 (DB0-DB3 latched by ALE) are used to address the on chip registers.

FUNCTION	REGISTER	D3	D2	D1	D0	A3-A0
Transmit Control Register	CR0	DR1	DR0	TxM1	TxM0	0000
Interface Control Register	CR1	FBK	RvF1	RvF0	TxSQ	0001
Attentuation Control Register	CR2	ATT3	ATT2	ATT1	ATT0	0010
Set-up Control Register	CR3	TST	ALB	RvGE	ORIG	0011
Detect Control Register	DCR	ABT1	ABT0	MONEN	RST	0100
Status Register	SR	CAR	ATD	CPD	RvL	0101
Transmit Tone Control Reg. 0	TR0	RvT1	RvT0	ST	DTMF	0110
Transmit Tone Control Reg. 1	TR1	TRB3	TRB2	TRB1	TRB0	0111
Quadbit Register-QAM/DPSK	QBR	QB3	QB2	QB1	QB0	1000

REGISTER BIT DESCRIPTION

TRANSMIT CONTROL REGISTER						
	D3	D2	D1	D0		
CR0	DR1	DR0	TXM1	ТХМО		

BIT NO.	NAME	CONDITION	DESCRIPTION
D0, D1	Transmit Modes (TXM0, TXM1)	D1 D0 0 0	Asynchronous mode: Modulator clocks are derived from crystal. The 73K214 operates in the internal synchronous mode as described below. TXCKO and RVCKO are high in asynchronous mode.
		0 1	Internal synchronous mode: Modulator clocks are derived from crystal. The SSI 73M214 generates an accurate bit rate clock, TXCKO. This may be used for data transfers from the DTE to the microprocessor. The micro- processor scrambles the data and sends the latest quadbit or (dibit) to the modulator as requested by the baud rate clock TXINT. The TXCKI pin is ignored in the internal synchronous mode. If the receive timer is enabled, RVCKO is a bit rate clock. If the receive timer is disabled, RVCKO is high.
		1 0	External synchronous mode: Modulator clocks are synchronized to signal on TXCKI pin. The data rate clock from the DTE should be connected to the TXCKI pin. This clock is internally synchronized to a high speed clock. The synchronized signal is echoed on pin TXCKO and used to generate the quadbit interrupt signal TXINT. RVCKO is as described above.
		1 1	Slave mode: Modulator clocks are synchron- ized to RVCKO signal. In slave mode with the receive timer enable, RVCKO signal is internally routed to TXCKI. If the receive timer is not being used, slave mode can be implemented by putting the SSI 73K214 in external mode and connecting the recovered bit rate clock to TXCKI.

REGISTER BIT DESCRIPTION (continued)

BIT NO.	NAME	CONDITION	DESCRIPTION
D2, D3	Data Rates	D3 D2 0 0	Modulator off: With the modulator off, carrier detect defaults to FSK settings, and the modular output is effectively shortened to ground.
		0 1	Select FSK operating mode. The FSK modulation is performed by programming the tone generator output frequency. Operation is asynchronous, and the transmission mode control bits (CR0 - TXM1, TXM0) are ignored in FSK mode. TXCKO and RVCKO are high.
		1 0	Select DPSK operating mode at 1200 bit/s.
		1 1	Select QAM operating mode at 2400 bit/s.

INTERFACE CONTROL REGISTER							
	D3	D2	D1	D0			
CR1	FBK	RvF1	RvF0	TxSQ			

BIT NO.	NAME	CONDITION	DESCRIPTION
D0	Tx squelch (TxSQ)	0	Disables transmit output at TXA. Forces TXA output to ground.
		1	Enables transmit output at TXA.
D1	Receive Filter	0	Select normal mode.
	(RvF0)	1	Bypass receive filter to allow direct access to ADC.
D2	Receive Filter Equalizer	0	Select normal mode.
	(RvF1)	1	Bypass Receive filter delay equalizer.
D3 (FBK)	Fallback		Selects low speed options. (See Table 1.)

REGISTER BIT DESCRIPTION (continued)

Table 1: Rate/Mode Selections

Register bits CR0 - DR1, DR0, TXM1, TXM0 and CR1 - FBK control the data clocks and modular mode. To enable DPSK/QAM modulation, FSK and Answer tones must be disabled. This table assumes the receive timer to be in internal timer mode (if not RVCKO is high) - see register TR0 - RVT1, RVT0.

CR1			MODULATOR MODE	DA	TA CLOCK	S		
FBK	DR1	DR0	TXM1	TXM0		ТХСКО	TXINT	RVCKO ¹
x	0	0	0	0	off	1	1	1
х	0	0	0	1	off	1200 Hz	1	1200 Hz
х	0	0	1	0	off	TsCKI	1	1200 Hz
x	0	0	1	1	off	RVCKO	1	1200 Hz
0	0	1	х	х	FSK(103)	1	1	1
1	0	1	х	х	FSK(V.21)	1	1	1
0	1	0	0	0	DPSK	1	600 Hz	1
0	1	0	0	1	DPSK	1200 Hz	600 Hz	1200 Hz
0	1	Ō	1	0	DPSK	RXCKI	600 Hz	1200 Hz
0	1	0	1	1	DPSK	RVCKO	600 Hz	1200 Hz
1	1	0	0	0	DPSK	1	600 Hz	1
1	1	Ō	Ō	1	DPSK	600 Hz	600 Hz	600 Hz
1	1	0	1	0	DPSK	ТХСКІ	600 Hz	600 Hz
1	1	0	1	1	DPSK	RVCKO	600 Hz	600 Hz
x	1	1	0	0	QAM	1	600 Hz	1
x	1	1	Ō	1	QAM	2400 Hz	600 Hz	2400 Hz
x	1	1	1	0	QAM	ТХСКІ	600 Hz	2400 Hz
x	1	1	1	1	QAM	RVCKO	600 Hz	2400 Hz

¹RVCKO pin is high if receive timer is not in internal mode-register bits TR0; D3, D2.

ATTENUATION CONTROL REGISTER						
	D3	D2	D1	D0		
CR2	ATT3	ATT2	ATT1	ATT0		

BIT NO.	NAME	CONDITION	DESCRIPTION
D0, D1, D2, D3	Transmit Attenuator	D3, D2, D1, D0 0000 to 1111	Sets transmit attenuator which scales modulated data (and guard tone if enabled). Attenuation increments by 1 dB per LSB ATT = 0000 is unity gain, ATT = 1111 is 15 dB of Attenuation.

SET-UP CON	SET-UP CONTROL REGISTER							
		D3	D2	D1	D0			
CR3	CR3 TST		ALB	RvGE	ORIG			
			T					
BIT NO.	NA	ME	CONDITION	DESCRIPTION				
DO	Or	ginate/Answer	0	path for high band	e. Answer mode set transmit modulation and filtering and band filter on the receive			
			1	the transmit path for	node. Originate mode sets or low band modulation and the high band filter on the			
D1		ceive filter gain /GE)	0	Receive path gain	= 0 dB			
			1	the band-split filter Care must be take RXA does not exce enabled. The statu- level at the receive	n in the receive path prior to to enhance dynamic range. n to ensure that the level at sed - 12 dBm when RvGE is s bit RvL indicates the signal band-split filter input. If RvL re filter gain can be safely			
D2		alog Loopback LB)	0	Select normal mode. Select analog loopback mode. A'1' causes modulated data to pass through the trans band-split filter (magnitude & delay section through the attenuator, through trans smoothing filter, into the receive anti-alias fill bypassing the receive band-split fi (magnitude and delay), through the gain state into the ADC. The RXA input is floated, and TXA is grounded. Detectors are active.				
		, ,	1					
D3	Te	st (TST)	0	Select normal mod	de.			
			1	Silicon Systems test	mode. Not for customer use.			

DETECT CONTROL REGISTER						
	D3	D2	D1	D0		
DCR	ABT1	ABT0	MONEN	RST		

The Detect Control Register holds the control for the Special Detect circuits and some miscellaneous functions.

BIT NO.	NAME	CONDITION	DESCRIPTION
D0	Reset (RST)	0	Normal mode.
		1	Resets all Registers to the 0 state.
D1	Monitor Enable (MONEN)	0	Monitor output disabled.
		1	Enables echoing of the RXA signal on the MON pin.
D2, D3	Answer Back Select (ABT0, ABT1)	D3, D2	Selects which answer back tone or combination of tones will cause the Answer Tone status bit (ATD) to go high, as shown
		00/11 01 10	Detect broadband from 2100 to 2225 Hz Detect only 2225 Hz Detect only 2100 Hz

STATUS REGISTER						
	D3	D2	D1	D0		
SR	CAR	ATD	CPD	RvL		

The Status Register holds the special detect circuit outputs and are read-only. These status bits and a "fast" carrier detect bit are sent out on the serial interface.

BIT NO.	NAME	CONDITION	DESCRIPTION
D0	Receive level indicator (RvL)	0	Signal peak amplitude is small enough to safely allow 12 dB pre-filter gain to be switched in.
		1	Signal amplitude is too large to allow the 12dB gain.
D1	Call progress detect (CPD)	0	No call progress detected.
		1	Energy in call progress band present.
D2	Answer tone	0	No answer tone detected.
	detect (ATD)	1	Valid answer back tone present.
D3	Carrier Detect (CAR)	0	No energy in receive band detected.
		1	Valid carrier present.

TRANSMIT TONE CONTROL REGISTER 0									
D3 D2 D1 D0									
TR0	RvT1	RvT0	ST	DTMF					

BIT NO.	NAME	CONDITION	DESCRIPTION
D0	DTMF enable (DTMF)	0	Disables DTMF.
		1	Activates DTMF. Selects dual tones. Output level is to be 0 dBm when attenuator setting is 0000. All detectors will be operating and should be ignored during DTMF. The tone pairs are determined by TR1 contents.
D1	Single tone enable (ST)	0	Disables single tone transmit.
		1	Selects single tones (FSK, Guard, or Answer). The tone frequency is determined by the bits in register TR1.
D2, D3	Receiver Timer (RvT0, RvT1)	D3, D2	The receive timer (RvT1, RvT0) selects one of four possible sampling rates: off, external timing, internal 7200 Hz, or internal 9600 Hz. The rising edge of an internal sampling clock initiates an analog-to-digital conversion and data transfer to the DSP. In the two internal modes, the sampling clock is generated by an on chip counter which can be controlled by bits 8 and 9 of the serial input word.
		00	SEN is forced high. This state can be used for initializing the serial interface to the NEC 7720. ADC is stopped.
		01	External timer EXADCC (synchronized internally) is the sampling clock.
		10	Internal timer, 7200 Hz sampling rate
		11	Internal timer, 9600 Hz sampling rate

TRANSMIT	TONE	CONTROL REG	SISTER 1								
		D3	D2			D1			D0		
TR1		TRB3	TRB2		TRB						
BIT NO.	NAN	1E	CONDITION	DE	SCRIPTI	ON					
D0 to D3		F Mode) - DTMF = 1)	0000 to 1111	mitt is s	grams 1 d ed when hown bel	DTMF					
					board ivalent	F D3	Regist D2	er TR1 D1	DO		es (Hz) High
					1 2	0	0 0	0	1		1209 1336
					3	0	Ō	1	1		1477
					4	0	1	0	0	770	1209
					5	0	1	0	1	770	1209
					6	0	1	1	0	770	1477
					7	0	1	1	1		1336
					8	1	0	0	0		1336
					9	1	0	0	1		1477
					0 *	1	0	1	0	941	1336
						1	0	1	1		1209
					#	1	1	0	0	941	1477
					A	1	1	0	1		1633
					B		1	1	0	770	
					C D	1	1 0	1 0	1	852	1633
						L			0	941	1633
D0 to D3		le Tone Mode - ST = 1)	0000 to 1111		grams1c en ST (TF ow.						
				То	ne-Type	F D3	Regist D2	er TR1 D1	D0	Tone	s (Hz)
				FS	K 103	0	0	0	0	20)25
					K 103	o	õ	Ő	1		225
					K 103	0	Ō	1	0		070
					K 103	0	0	1	1		270
				FS	K V.21	1	1	0	0	18	350
		ļ		FS	K V.21	1	1	0	1	16	550
				FS	K V.21	1	1	1	0	11	80
				FS	K V.21	1	1	1	1	98	30
I 1				Gu	ard	0	1	0	0	18	300
I				Gu	ard	0	1	0	0	55	50
				An	swer	1	0	0	0	22	225
				An	swer	1	0	0	1	21	00

QUADBIT REGISTER									
	D3	D2	D1	D0					
QBR	QB3	QB2	QB1	QB0					

The new quadbit for the QAM modulator is written to this register by the transmit microprocessor for every baud. Quadbits are latched into the modulator on the falling edge of TXINT. In 1200 bit/s mode, QB1 is internally forced to 0 and QB0 is forced to 1 so that only a dibit need be written in QB3, QB2. In 600 bit/s mode, QB1, QB0 are forced to 01, and QB3 is duplicated in QB2 so that only one bit need be written in QB3.

BIT NO.	NAME	CONDITION	DESCRIPTION
D0, D1	Quadbits (QB0, QB1)	D1, D0	The last two quadbits which determine the point within the quadrant in QAM. Forced to 01 in DPSK. Point in quadrant (I)
		0 0	(1,1)
		0 1	(3,1) [DPSK points]
		1 0	(1,3)
		1 1	(3,3)
D2, D3	Quadbits (QB2, QB3)	D3, D2	The first two quadbits as described in the V.22bis spec. (these bits determine the differential quadrant shift). Used as Dibit in DPSK Quadrant shift (I)
		0 0	+90°
		0 1	0°
l		1 0	+180°
		1 1	+270°

SERIAL INTERFACE DESCRIPTION

BIT NO.	0 1 2 3 4 5 6	7	89	10	11	12	13	14	15
INPUT DATA	$LSB \leftarrow GAIN \ WORD \rightarrow MSB$	x	RCV TIMER CONTROL	x	х	х	x	x	х

BITS	NAME	CONDITION	DESCRIPTION
0-6	gain word	0000000-1111111	Receive Gain from DSP for programmable Receive Gain stage. Step size is approximately 0.375 dB/bit with 48 dB of range. Transmitted LSB first.

SERIAL INTERFACE DESCRIPTION (continued)

BITS	NAME	CONDITION	DESCRIPTION
7	NONE	X	Not used
8,9	REC. TIMER CONTROL (internal modes only)	8,9	Used for timer control & correction of timing errors in the time base, SEN, for start of ADC conversion. Sample rate is selected by TR0- RVT1, RVT0. Used only with internal modes.
		0,0	7200 Hz (or 9600 Hz)
		1,1	7200 Hz (or 9600 Hz)
		1,0	7200 Hz - 1 μs (or 9600 Hz - 1 μs)
		0,1	7200 Hz + 1 μs (or 9600 Hz + 1 μs)
10 - 15	NONE	XXXXXX	Not used

BIT NO.	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
OUTPUT DATA				ADC plem					RVL	CPD	AT	Slow CD		Fast CI	D	

BITS	NAME	CONDITIONS	DESCRIPTIONS
0-7	ADC OUTPUT	00000000- 11111111	2's Complement coded output from 8-bit ADC ±3.75V F.S.
8	RVL (same as SR-RVL)	0	Receive level amplitude is small enough to allow 12 dB pre-filter gain to be used.
		1	Receive level too large for 12 dB gain to be used.
9	CPD (same as Sr-CPD)	0	No call progress energy detected
	, , ,	1	Call progress energy detected
10	AT (same as SR-ATD)	0	No answer tone detected
		1	Answer tone detected
11	SLOW CD (same as SR-CAR)	0	No carrier detected
		1	Time qualified carrier detected
12 - 15	Fast CD	0	No carrier detected
		1	Carrier detected

ABSOLUTE MAXIMUM RATINGS - Operation above maximum ratings may damage the device

PARAMETER	RATING	UNITS
Supply Voltage VDD	+7.5	V
VSS	-7.5	V
Storage Temperature	-65 to 150	°C
Lead Temperature (10 sec.)	260	°C
Inputs	VSS -0.3 to VDD +0.3	V
TTL Compatible Outputs	-0.3 to VDD +0.3	V
TTL Compatible Outputs	±3	mA
Analog Outputs	VSS -0.3 to VDD +0.3	V
Analog Outputs	±3	mA

Notes: 1. All inputs and outputs are protected from static charge using built-in industry standard protection devices.

- 2. All outputs are short-circuit protected.
- 3. All voltages are referenced to GND.

RECOMMENDED OPERATING CONDITIONS

PARAMETER	MIN	NOM	МАХ	UNITS
Positive Supply (VDD)	4.75		5.25	V
Negative Supply (VSS)	-4.75		-5.25	V
Ambient Temperature (TA)	0		70	°C
External Components				
VDD, VSS Bypass Capacitors (External to ground (VAG))	0.1			μF
External Loads				
Load Capacitance XIN, XOUT	10		50	pF
Load Capacitance CLKOUT			25	pF
Digital Input Capacitance			10	pF
Digital Output Loading			50	pF
Analog Input Capacitance RXA			26	pF
Analog Input Resistance RXA	100			kΩ
Analog Loading, TXA Output (Vout = ±3Vpk)			10k, 50 pF	
Analog Loading, MON Output (Vout = ±3Vpk)			10k, 50 pF	
On-chip pull up/down Resistor pull down: CS, pull up: TXC KI, EXADCC	20			kΩ
Input Clock variation (7.3728 MHz Input XTAL)	-0.01		+0.01	%

DC ELECTRICAL CHARACTERISTICS

(TA = 0 to 70°C, VDD = 5V, VSS = -5V Unless otherwise noted)

PARAMETER	CONDITIONS	MIN	NOM	MAX	UNITS
Supply Current (IDD)				25	mA
(ISS)				25	mA
Input Low voltage (VIL)				0.8	V
Input High Voltage (VIH)		2.0			V
Input High Current (IIH)	Input voltage = VDD			10	μA
Input Low Current (IIL)	Input Voltage = 0V			-20	μΑ
High Output Voltage (VOH)	lout = -0.4 mA	2.4			V
Low Output Voltage (VOL)	lout = 1.6 mA			0.4	V

DYNAMIC CHARACTERISTICS AND TIMING¹

(TA = 0 to 70°C. VDD = 5V, VSS = -5V Unless otherwise noted)

PARAMETER	CONDITIONS	MIN	NOM	MAX	UNITS
Receive Signal Path					
Receive Gain	RvGE = 0 Gain word 0000000 Measured at input of ADC		0.0		dB
Receive Noise	RXA = 0 Boost 0dB Gain word 0000000 0.3 to 3400 kHz bandwidth			775	μVms
Receive Boost	RvGE = 0	-0.2		0.2	dB
Receive Boost	RvGE = 1	11.8		12.2	dB
Programmable Gain Stage					
Gain Range		0.0		48.0	dB ·
Step Size		0.275	0.375	0.475	dB
Gain Error				0.2	dB
ADC					
Integral non-linearity				1/2	LSB
Differential non-linearity				1/2	LSB
Total input referred offset		-4		+4	LSB
Input voltage range		-3.75		+3.75	V
Input Anti-alias Low Pass Filter					
Receive Attenuation					
@ 4.0 kHz			-35		dB
@ 10.0 kHz			-60		dB
@ 12.0 kHz			-70		dB
@ 153.6 kHz			-55		dB
@ 921.6 kHz			-40		dB

1) All dBm numbers refer to the signal power on the 2-wire telephone line as may be realized thru an external 2W/4W converter (hybrid). The hybrid gain from the line to the RXA pin should be 0 dB.

DYNAMIC CHARACTERISTICS AND TIMING¹ (continued)

PARAMETERS	CONDITIONS	MIN	NOM	MÁX	UNITS
Precise Answer Tone Detector Must Detect Level				-43	dBm
Must Reject Level		-48			dBm
Delay Time		40		200	ms
Hold Time		40		100	ms
Answer Tone Detect Frequency Range Must Accept	2100 Hz to 2225 Hz	2078		2247	Hz
Must Reject Low	Mode Selected			2000	Hz
Must Reject High	(ABT1, ABT0 = 00 or 11)	2350			Hz
Must Accept	2100 Hz only	2078		2122	Hz
Must Reject Low	Mode Selected	1		2000	Hz
Must Reject High	(ABT1, ABT0 = 01)	2200			Hz
Must Accept	2225 Hz only	2203		2247	Hz
Must Reject Low	Mode Selected	2350			Hz
Must Reject High	(ABT1, ABT0 = 01)			2125	Hz
Fast Carrier Detector	The following detect levels as present in the receive band.	sume a w	aveform o	of the type	e shown is
Must Detect	See Condition Table Below			-43	dBm
Must Reject Level		-48			dBm
Delay Time		0		20	ms
Hold Time	-	0		20	ms
Slow Carrier Detector	The following detect levels as present in the receive band.	sume a w	aveform o	of the type	e shown is
Must Detect Level	See Condition Table Below			-43	dBm
Must Reject Level		-48			dBm
Hysteresis		2			dB
Delay Time	1	40		205	ms
Hold Time	1.	40		65	ms

CONDITION TABLE

DR1	DR0	CARRIER TYPE	PEAK/RMS
·· 0	0	None ²	1.414
0	1	FSK	1.414
1 .	0	DPSK	2.0
1	1 .	QAM	2.5

2) When the modulator is off, the carrier detector responds to sinusoids as might be found in answer back type tones.

PARAMETERS	CONDITIONS	MIN	NOM	MAX	UNITS
Receive Signal Path					
Imprecise Call Progress Detector					
Must Detect Level	460 Hz Input frequency			-35	dBm
Must Reject Level	460 Hz Input frequency	-45			dBm
Hysteresis	460 Hz Input frequency	2			dB
Delay Time	460 Hz Input frequency	40		200	ms
Hold Time		10		40	ms
Receive Level Indicator (SR-RVL)					
Must Detect Level				1.00	Vpk
Must Reject Level		0.50			Vpk
Hysteresis		2			dB
Delay Time		40		205	ms
Hold Time		40		65	ms
Transmit Signal Path					
Transmit Output	Measured at TXA	-0.8		0.8	dBV
	Attenuator word 0000				
	Guard tones Off				
	V.52 511 bit data patterr	n l			
QAM/DPSK Encoder/Modulator					
Carrier Suppression	Measured at TXA	50			dB
Modulation Frequency	1200 or 2400 Hz	-0.1		+0.1	%
Transfer Gain Variation	Measured at TXA				
	ATT = 0000	-0.8		+0.8	dB
Transmit Attenuator					
Attenuation Range		0		15	dB
Attenuation Error	Any setting	-0.2		0.2	dB
Modulator output attenuation					
Guard Tones Off		-0.05		0.05	dB
1800 Hz guard tone on		0.9		1.1	dB
550 Hz guard tone on		1.65		1.85	dB
Tone Level	Specified for an attenua	ator settin	g of -9 dE	3 (ATT = 1	001)
Guard Tone 550 Hz		-14.8		-12.8	dBm
Guard Tone 1800 Hz	0.4922	-17		-15	dBm
Answer Tone	0.3182	-10		-8	dBm
FSK (103, V.21)	Nom (VPP) 0.777	-10		-8	dBm
DTMF (columns)	0.777	-7		-5	dBm
DTMF (rows)	1.098	-9		-7	dBm
DTMF (twist)	0.872	-3		-1	dB

PARAMETER	CONDITIONS	MIN	NOM	МАХ	UNITS	
Harmonic Distortion	Distortion is specified below in dB relative to the fundamental free generated.					
DTMF				-29	dB	
FSK, V.21	(0 - 10 kHz bandwidth)			-45	dB	
Guard Tone				-31	dB	
Answer Tone				-40	dB	
Output Smoothing Filter Transmitted energy						
4.0 kHz				-35	dBm	
10.0 kHz				-60	dBm	
12.0 kHz	Guard tones disabled			-70	dBm	
917.6 kHz				-70	dBm	
921.6 kHz				-40	dBm	
Register Reset	Register Bit DCR - RST resets al μ P read/write's should wait until					
RST on	Time from reset bit written (rising edge WR) until registers reset to '0'		4	10	μs	
RST off	Time from reset bit written (rising edge \overline{WR}) until next permissible μP register read/write		8	20	μs	
Clock Off Reset	The 73K214 will reset all control registers and status bits whenever the 7.3728 MHz clock is not present. This provides a "power on reset" capability which forces all control register bits to '0'.					
Trst	Time from last clock transition to registers reset	2		100	μs	
Tact	Time from start of clock to activate state	25		40	clocks	

DYNAMIC CHARACTERISTICS AND TIMING¹ (continued)

DYNAMIC CHARACTERISTICS	AND TIMING ¹	(continued)
-------------------------	-------------------------	-------------

PARAMETER		CONDITIONS	MIN	NOM	MAX	UNITS
Microprocessor Bus Interface	9	The timing necessary a address.	for the C	S signal	is the sa	me as for
Intel 8051 µP						
Address Before Latch	TAL		20			ns
Address hold after Latch	TLA		10			ns
Latch to RD/WR control	TLC	CL = 100 pF	30			ns
RD/WR to Latch	TCL		30			ns
Data out from RD	TRD		120			ns
ALE Width	TLL		40			ns
Data float after Read	TRDF		0		80	ns
Read Width	TRW		150		5000	ns
Write Width	TWW		100		5000	ns
Data setup before write	TDW		100			ns
Data hold after write	TWD		25			ns

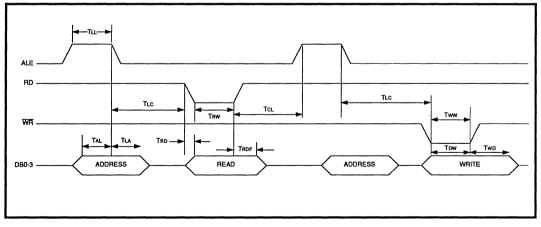
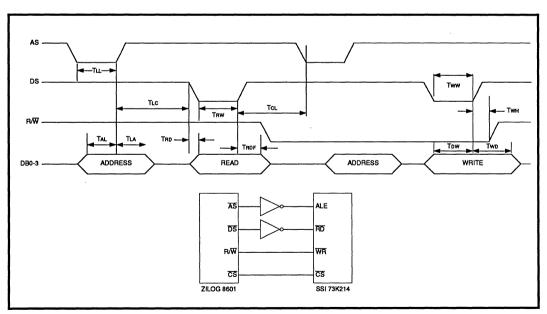
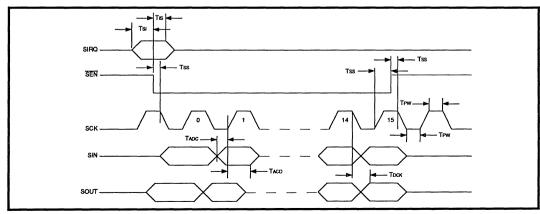


Figure 1: Intel 8051 Bus Timing

DYNAMIC CHARACTERISTICS AND TIMING¹ (continued)

PARAMETERS	CONDITIONS	MIN	NOM	МАХ	UNITS	
Zilog 8601		Zilog interface requires externally inverting ALE and RD, the pins then assume the functionality of Zilog pins AS and respectively.				
Address before latch	TAL		20			ns
Address hold after latch	TLA		10			ns
Latch to DS control	TLC		30			ns
Data out for DS	TRD		120			ns
AS width	TLL	CL = 100 pF	40			ns
Data float after read	TRDF		0		80	ns
Read width	TRW		150		5000	ns
Write width	TWW		100		5000	ns
Data setup before write	TDW		100			ns
Data hold after write	TWD		25			ns
R/W hold after \overline{DS}	тwн		20			ns




Figure 2: Zilog 8601 Bus Timing

PARAMETERS		CONDITIONS	MIN	NOM	MAX	UNITS
Serial DSP Interface						
SCKK falling to SOUT valid	TDCK				100	ns
SEN edge to SCK edge	TSS		400			ns
SIN setup before SCK	TADC		100			ns
SIN hold after SCK	TACD	CL = 50 pF	25			ns
SIRQ setup before SEN	TSL		100			ns
SIRQ hold after SEN	TLS		100			ns
SCK width	TPW		800			ns
SCK frequency	FSCK			184		kHz
Receiver Clocking						
RVCKO rising to SEN falling	TRS			1.3		μs
EXADCC rising to SEN falling	TES		.5	1.1	1.7	μs
SEN low pulse width	TS			86		μs
EXADCC frequency FE	XADCC				10.5	kHz
Transmit Timing						
TXCKO rising to TXINT falling	тов		0		500	ns
TXCKI falling to TXCKO rising	TEO ¹		-3	+1	+3	μs
RVCKO falling to TXCKO rising	g TRO ²		-3	+1	+3	μs

DYNAMIC CHARACTERISTICS AND TIMING¹ (continued)

1) All dBm numbers refer to the signal power on the 2-wire telephone line as may be realized thru an external 2W/4W converter (hybrid). The hybrid gain from the line to the RXA pin should be 0dB.

2) When the modulator is off, the carrier detector responds to sinusoids as might be found in answer back type tones.

Figure 3: Serial DSP Interface Timing

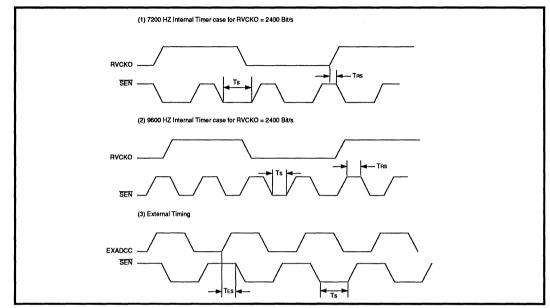


Figure 4: Receive Clocking

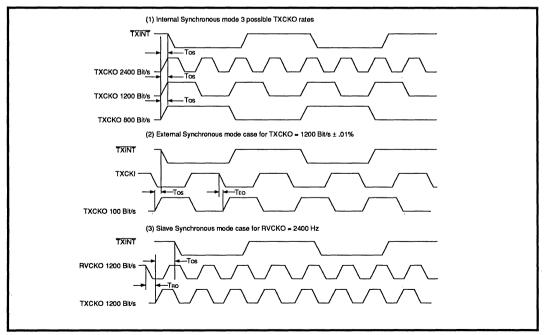


Figure 5: Transmit Timing

The SSI 73M214 tone generator includes the V.21 tones (980/1180 Hz, 1650/1850 Hz). These tones can be accessed by setting ST-1 in TR0 and writing the appropriate bits in TR1 which select 1070/1270 Hz and 2025/2225 Hz. A difficulty arises because the high band V.21 tones will not pass through the high BPF required for V.22bis. Therefore, when V.21 FSK mode is selected (i.e., DR1, DR0 = 01, FBK = 1 in registers CR0, CR1), the BPFs center frequency and bandwidth are shifted to allow the V.21 signals to pass. Care must be taken in using this feature. Some settling time will be required when the filters shift to (from) FSK. Also, the answer tone detector will not function properly when the filters have been shifted. We recommend shifting the filters after answer tone has been detected.

APPENDIX B: Using the RvT bits to synchronize the NEC 7720

To properly synchronize the serial interface to the 7720, the following procedure may be used after power up: 1. RESET the SSI 73M214 (write XXX 1 in Detect Register),

this resets all control bits to 0, and therefore sets RvT1 = 0, RvT0 = 0.

2. WAIT 100 ms before changing RvT1, RvT0. This allows all serial clocks to cycle to an idle state. During this 100 ms, SEN will be high, and the 7720 should be reset during that time. (Other control registers may be written during this time.)

PACKAGE PIN DESIGNA (TOP VIEW)	ATIONS			28] VDD 27] RXA
· · ·		ר	RD [] 3 WR [] 4	26 VAG 28-Pin DIP 25 MON
	U	25] MON 24] RXCLKO	DB0 🛛 5 DB1 🗋 6	24] RXCLKO 23] TXCLKO
		23] ТХСЬКО 28] ТХСЬКІ	DB2 🛛 7	
28-Pin PLCC			DB3 [] 8 SIRQ [] 9	21 TXINT 20 TXA
		20] TXA 19] EXADCC	SIN [] 10 SOUT [] 11	19 EXADCC 18 XIN
		J	SEN [12	
	SEN SCK VSS VSS DGND CLKOUT XOUT XIN		SCK [] 13 VSS [] 14	16 U CLKOUT 15 U DGND

ORDERING INFORMATION

PART DESCRIPTION	ORDERING NUMBER	PACKAGE MARK
SSI 73M214		
Plastic Dual-In-Line	SSI 73M214-IP	73M214-IP
Plastic Leaded Chip Carrier	SSI 73M214-IH	73M214-IH

No responsibility is assumed by Silicon Systems for use of this product nor for any infringements of patents and trademarks or other rights of third parties resulting from its use. No license is granted under any patents, patent rights or trademarks of Silicon Systems. Silicon Systems reserves the right to make changes in specifications at any time without notice. Accordingly, the reader is cautioned to verify that the data sheet is current before placing orders.

Silicon Systems, Inc., 14351 Myford Road, Tustin, CA 92680, (714) 731-7110, FAX: (714) 731-5457

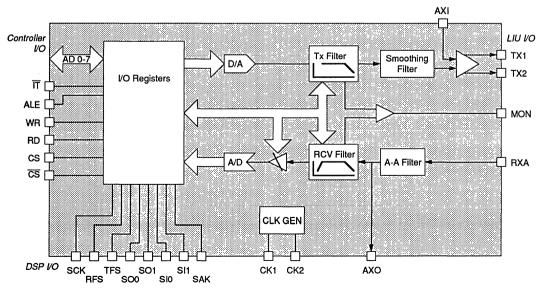
Notes:

silicon systems*

SSI 73M235 High Speed Multi-mode **Modem Analog Front End**

Advance Information

July, 1990


DESCRIPTION

The SSI 73M235 is a high performance analog front end for high-speed, multi-mode modem and FAX designs. This device includes programmable filter capability, special tone detectors, and high-resolution A/D and D/A convertors to provide the analog signal conversion required for modem modulation and demodulation functions. The 73M235 also provides programmable clock recovery modes needed to support its defined operating standards. Used in conjunction with a digital signal processor, the 73M235 allows design of full and half-duplex modem products capable of operation at speeds up to 14.4 kbit/s over the conventional telephone network, on either 2- or 4wire lines.

The SSI 73M235 uses advanced switched-capacitor filtering circuitry to achieve a wide dynamic range with low on-chip noise. To simplify modem designs, it provides a digital bus interface compatible with Silicon Systems' existing modem family, and which allows direct interface with industry standard micro-

FEATURES

- High performance modem analog front end for use at speeds up to 14.4 kbit/s, full or half-duplex
- Supports V.33, V.29, V.27ter, V.26, Bell 201/ 208, and fallback modes required in FAX/ Data applications
- On-chip detectors for fast carrier detect, call progress, and answer tone detection
- High accuracy 8-bit A/D and D/A conversion with programmable sample rate
- Standard microprocessor and DSP bus interfaces allow direct connection without external hardware
- Less than 150 mW power from a single +5V supply with power down capability
- Available in 48-pin DIP or 44-pin PLCC packages

BLOCK DIAGRAM

(Continued)

SSI 73M235 High Speed Multi-mode Modem Analog Front End

DESCRIPTION (Continued)

processors and serial-bus oriented digital signal processors typically used in modem applications. The digital interface permits data transfer in both serial and parallel modes.

The SSI 73M235 is a low power CMOS integrated circuit which operates from a single +5V power supply, allowing typical power dissipation of less than 150 mW. Packages available are 48-pin DIP or 44-pin PLCC for surface mount applications.

Advance Information: Indicates a product still in the design cycle, and any specifications are based on design goals only. Do not use for final design.

No responsibility is assumed by Silicon Systems for use of this product nor for any infringements of patents and trademarks or other rights of third parties resulting from its use. No license is granted under any patents, patent rights or trademarks of Silicon Systems. Silicon Systems reserves the right to make changes in specifications at any time without notice. Accordingly, the reader is cautioned to verify that the data sheet is current before placing orders.

Silicon Systems, Inc., 14351 Myford Road, Tustin, CA 92680 (714) 731-7110, FAX (714) 731-5457

silicon systems*

SSI 73M670 V.32 Multi-mode modem Analog Front End

Advance Information

July, 1990

DESCRIPTION

The SSI 73M670 is a high performance analog front end for multi-mode V.32 high speed modem designs. This device provides programmable band-split and band-limiting filter capability, special tone detectors, and high resolution A/D and D/A convertors needed for analog signal conversion in full-duplex mode systems. Used in conjunction with one or more digital signal processors, the 73M670 allows design of half and fullduplex modem products capable of operation at speeds up to 14.4 kbit/s. On-chip interpolation and decimation filters reduce external circuitry and make it possible to design a full duplex V.32 modem with echo cancellation using the SSI 73M670, one or more DSPs, and a controlling microprocessor.

The SSI 73M670 employs a DSP to implement oversampled Sigma-Delta A/D conversion. This provides high resolution conversion with relatively low on-chip noise, resulting in an effective dynamic range of 80 dB, and high conversion accuracy.

The SSI 73M670 is a low power CMOS integrated circuit which operates from a single +5V power supply, allowing typical power dissipation of less than 150 mW. Packages available are 64-pin miniDIP, 64-pin QFP, or 68-pin PLCC for surface mount applications.

FEATURES

- High performance modem analog front end for use at speeds up to 14.4 kbit/s, full or half-duplex
- Programmable filter configurations for 8 operating modes
- On-chip tone detectors for carrier detect, call progress, and answer tone detection
- High accuracy A/D and D/A conversion using Sigma-Delta architecture
- Standard microprocessor and DSP bus interfaces
- Less than 150 mW power from a single +5V supply
- Available in 64-pin miniDIP, 64-pin QFP, or 68-pin PLCC pacakages

Advance Information: Indicates a product still in the design cycle, and any specifications are based on design goals only. Do not use for final design.

No responsibility is assumed by Silicon Systems for use of this product nor for any infringements of patents and trademarks or other rights of third parties resulting from its use. No license is granted under any patents, patent rights or trademarks of Silicon Systems. Silicon Systems reserves the right to make changes in specifications at any time without notice. Accordingly, the reader is cautioned to verify that the data sheet is current before placing orders.

Silicon Systems, Inc., 14351 Myford Road, Tustin, CA 92680, (714) 731-7110, FAX: (714) 731-5457

Notes:

Section

TONE SIGNALLING PRODUCTS

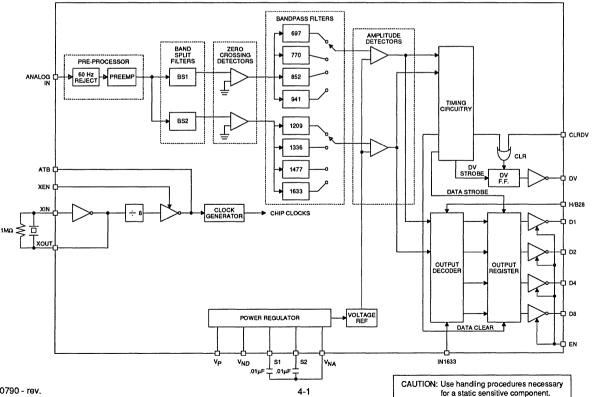
4

4-0

silicon systems*

SSI 75T201 Integrated **DTMF Receiver**

July, 1990


Δ

DESCRIPTION

The SSI 75T201 is a complete Dual-Tone Multifrequency (DTMF) receiver detecting a selectable group of 12 or 16 standard digits. No front-end prefiltering is needed. The only external components required are an inexpensive 3.58 MHz television "colorburst" crystal (for frequency reference) and two low-tolerance bypass capacitors. Extremely high system density is made possible by using the clock output of a crystal connected SSI 75T201 receiver to drive the time bases of additional receivers. The SSI 75T201 is a monolithic integrated circuit fabricated with low-power, complementary symmetry MOS (CMOS) processing. It reguires only a single low tolerance voltage supply and is packaged in a standard 22-pin DIP. (Continued)

FEATURES

- **Central office quality**
- NO front-end band-splitting filters required
- Single, low-tolerance, 12-volt supply
- Detects either 12 or 16 standard DTMF digits
- Uses inexpensive 3.579545 MHz crystal for • reference
- **Excellent speech immunity** ۰
- 0 Output in either 4-bit hexadecimal code or binary coded 2-of-8
- 22-pin DIP package for high system density
- Synchronous or handshake interface
- Three-state outputs

BLOCK DIAGRAM

SSI 75T201 Integrated DTMF Receiver

DESCRIPTION (Continued)

The SSI 75T201 employs state-of-the-art circuit technology to combine digital and analog functions on the same CMOS chip using a standard digital semicondutor process. The analog input is preprocessed by 60 Hz reject and band splitting filters and then hardlimited to provide AGC. Eight bandpass filters detect the individual tones. The digital post-processor times the tone durations and provides the correctly coded digital outputs. Outputs interface directly to standard CMOS circuitry, and are three-state enabled to facilitate bus-oriented architectures.

ANALOG IN

This pin accepts the analog input. It is internally biased so that the input signal may be AC coupled. The input may be DC coupled as long as it does not exceed the positive supply. Proper input coupling is illustrated in Figure 1.

The SSI 75T201 contains an onboard inverter with sufficient gain to provide oscillation when connected to a low-cost television "colorburst" crystal. The crystal oscillator is enabled by tying XEN high. The crystal is connected between XIN and XOUT. A 1 M Ω 10% resistor is also connected between these pins. In this mode, ATB is a clock frequency output. Other SSI 75T201's may use the same frequency reference by tying their ATB pins to the ATB of a crystal connected device. XIN and XEN of the auxiliary devices must then be tied high and low respectively. Twenty-five devices may run off a single crystal-connected SSI 75T201 as shown in Figure 2.

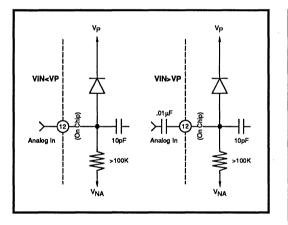
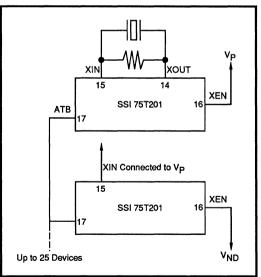



FIGURE 1: Input Coupling

FIGURE 2: Crystal Connections

H/B28

	Hexadecimal				Binary Coded 2-of-8				
Digit	D8	D4	D2	D1	Digit	D8	D4	D2	D1
1	0	0	0	1	1	0	0	0	0
2	0	0	1	0	2	0	0	0	1
3	0	0	1	1	3	0	0	1	0
4	0	1	0	0	4	0	1	0	0
5	0	1	0	1	5	0	1	0	1
6	0	1	1	0	6	0	1	1	0
7	0	1	1	1	7	1	0	0	0
8	1	0	0	0	8	1	0	0	1
9	1	0	0	1	9	1	0	1	0
0	1	0	1	0	0	1.	1	0	1
*	1	0	1	1	*	1	1	0	0
#	1	1	0	0	#	1	1	1	0
А	1	1	0	1	А	0	0	1	1
В	1	1	1	0	В	0	1	1	1
С	1	1	1	1	С	1	0	1	1
D	0	0	0	0	D	1	1	1	1

This pin selects the format of the digital output code. When H/B28 is tied high, the output is hexadecimal. When tied low, the output is binary coded 2-of-8. The table below describes the two output codes.

TABLE 1: Output Codes

IN1633

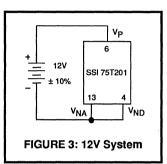
When tied high, this pin inhibits detection of tone pairs containing the 1633 Hz component. For detection of all 16 standard digits, IN1633 must be tied low.

OUTPUTS D1, D2, D4, D8 and EN

Outputs D1, D2, D4, and D8 are CMOS push-pull when enabled (EN high) and open circuited (high impedance) when disabled by pulling EN low. These digital outputs provide the code corresponding to the detected digit in the format programmed by the H/B28 pin. The digital outputs become valid after a tone pair has been detected and they are then cleared when a valid pause is timed.

DV and CLRDV

DV signals a detection by going high after a valid tone pair is sensed and decoded at the output pins D1, D2, D4, and D8. DV remains high until a valid pause occurs or the CLRDV is raised high, whichever comes first.


INTERNAL BYPASS PINS, S1, S2

In order for the SSI 75T201 DTMF Receiver to function properly, these pins must be bypassed to VNA with 0.01 μF $\pm 20\%$ capacitors.

SSI 75T201 Integrated DTMF Receiver

POWER SUPPLY PINS, VP, VNA, VND

The analog (VNA) and digital (VND) supplies are brought out separately to enhance analog noise immunity on the chip. VNA and VND should be connected externally as shown in Figure 3.

N/C PINS

These pins have no internal connection and may be left floating.

Row 0			Col 2	Col 3		
Row 1	4	5	6	В		
Row 2	7	8	9	С		
Row 3	$\overline{}$	٥	•	D		
NOTE: Column 3 is for special applications and is not normally used in telephone dialing.						
FIGURE 4: DTMF Dialing Matrix						

DETECTION FREQUENCY

Low Group f_0	High Group <i>f</i> ₀
Row 0 = 697 Hz	Column 0 = 1209 Hz
Row 1 = 770 Hz	Column 1 = 1336 Hz
Row 2 = 852 Hz	Column 2 = 1477 Hz
Row 3 = 941 Hz	Column 3 = 1633 Hz

ELECTRICAL CHARACTERISTICS

ABSOLUTE MAXIMUM RATINGS

Operation above absolute maximum ratings may damage the device. All SSI 75T201 unused inputs must be connected to VP or VND, as appropriate.

PARAMETER	RATING	UNIT
DC Supply Voltage - VP	Referenced to VNA, VND	+16V
Operating Temperature		-40 to +85°C Ambient
Storage Temperature		-65 to +150°C
Power Dissipation (25°C)		1W
Input Voltage	All inputs except ANALOG IN	(VP+ 0.5V) to (VND -0.5V)
ANALOG IN Voltage		(VP + 0.5V) to (VP - 22V)
DC Current into any Input		±1.0 mA
Lead Temperature	Soldering, 10 sec.	300°C

SSI 75T201 Integrated DTMF Receiver

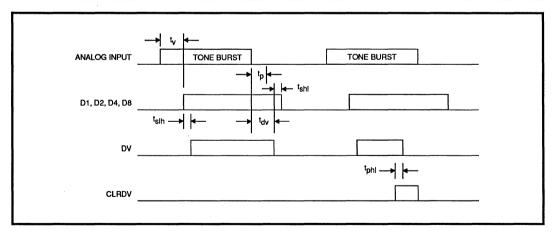
ELECTRICAL CHARACTERISTICS

(-40°C \leq Ta \leq +85°C, VP - VND = VP - VNA = 12V \pm 10%)

PARAMETER	CONDITIONS	MIN	ТҮР	MAX	UNITS
Frequency Detect Bandwidth		± (1.5+2 Hz)	±2.3	±3.0	% of fo
Amplitude for Detection	each tone	-24		+6	dBm ref to 600Ω
Minimum Acceptable Twist	Twist = High Tone Low Tone	-8		+4	dB
60 Hz Tolerance				2	Vrms
Dial Tone Tolerance	"precise" dial tone			0	dB*
Talk Off	MITEL tape #CM 7290		2		hits
Digital Outputs	"0" level, 750 μA load	VND		VND+0.5	v
(except XOUT)	"1" level, 750 μA load	VP-0.5		VP	v
Digital Inputs	"0" level	VND		**	v
(except H/B28, XEN)	"1" level	***		VP	v
Digital Inputs	"0" level	VND		VND+1	v
H/B28, XEN	"1" level	VP-1		VP	v
Power Supply Noise	wide band			25	mVp-p
Supply Current	Ta = 25°C Vp - VNA = Vp - VND = 12V±10%		29	50	mA
Noise Tolerance	MITEL tape #CM 7290			-12	dB*
Input Impedance	$V_P \ge V_{IN} \ge V_P - 22$	100 kΩ 5 pF			

** VND + 0.3(VP - VND)

*** VP - 0.3(VP - VND)


TIMING CHARACTERISTICS

 $(-40^{\circ}C \le Ta \le +85^{\circ}C, VP - VND = VP - VNA = 12V \pm 10\%)$

PAF	AMETER	CONDITIONS	MIN	ТҮР	МАХ	UNITS
tv	Tone Detection Time		20	25	40	ms
tslh	Data Overlap of DV Rising Edge	CLRDV = VND, EN = VP	7			μs
tp	Pause Detection Time		25	32	40	ms
tdv	Time between end of Tone and Fall of DV		40	45	50	ms

TIMING CHARACTERISTICS (Continued)

PAR	AMETER	CONDITIONS	MIN	ТҮР	МАХ	UNITS
tshl	Data overlap of DV Falling Edge		4	4.56	4.8	ms
tphl	Prop. Delay: Rise of CLRDV to fall of DV	CI = 300 pF Measured at 50% points			1	μs
	Output Enable Time	CI = 300 pF, RI = 10K Measured from 50% point of Rising Edge of EN to the 50% point of the data output with RI to opposite rail.			1	μs
	Output Disable Time	CI = 300 pF, RI = 1K, $\Delta V = 1V$ Measured from 50% point of Falling Edge of EN to time at which output has changed 1V with RI to opposite rail.			1	μs
	Output 10-90% Transition Time	CI = 300 pF			1	μs

SSI 75T201 Integrated DTMF Receiver

4

APPLICATION INFORMATION

TELEPHONE LINE INTERFACE

In applications that use the SSI 75T201 to decode DTMF signals from a phone line, a DAA (Direct Access Arrangement) must be implemented. Equipment intended for connection to the public telephone network must comply with and be registered in accordance with FCC Part 68. For PBX applications refer to EIA Standard RS-464.

Some of the basic guidelines are:

1) Maximum voltage and current ratings of the SSI 75T201 must not be exceeded; this calls for protection from ringing voltage, if applicable, which ranges from 80 to 120 volts RMS over a 20 to 80Hz frequency range.

2) The interface equipment must not breakdown with high-voltage transient tests (including a 2500 volt peak surge) as defined in the applicable document.

3) Phone line termination must be less than 200Ω DC and approximately 600Ω AC (200-3200 Hz).

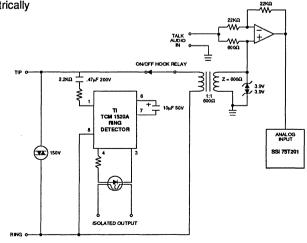
4) Termination must be capable of sustaining phone line loop current (off-hook condition) which is typically 18 to 120 mA DC.

5) The phone line termination must be electrically balanced with respect to ground.

6) Public phone line termination equipment must be registered in accordance to FCC Part 68 or connected through registered protection circuitry. Registration typically takes about six months.

Figure 6 shows a simplified phone line interface using a 600Ω 1:1 line transformer. Transformers specially designed for phone line coupling are available from many transformer manufacturers.

Figure 7 shows a more featured version of Figure 6. These added options include:


1) A 150-volt surge protector to eliminate high voltage spikes.

2) A Texas Instruments TCM1520A ring detector, optically isolated from the supervisory circuitry.

3) Back-to-back Zener diodes to protect the DTMF (and optional multiplexer Op-Amp) from ringer voltage.

4) Audio multiplexer which allows voice or other audio to be placed on the line (a recorded message, for example) and not interfere with incoming DTMF tone detection.

An integrated voice circuit may also be implemented for line coupling, such as the Texas Instruments TCM1705A, however, this approach is typically more expensive than using a transformer as shown above.

FIGURE 7: Full Featured Interface

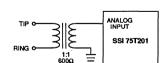
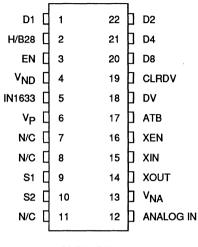



FIGURE 6: Simplified Interface

(TOP VIEW)

22-Pin DIP

ORDERING INFORMATION

PART DESCRIPTION	ORDER NO.	PKG. MARK
SSI 75T201 22-Pin Plastic DIP	SSI 75T201 - IP	75T201 - IP

No responsibility is assumed by Silicon Systems for use of this product nor for any infringements of patents and trademarks or other rights of third parties resulting from its use. No license is granted under any patents, patent rights or trademarks of Silicon Systems. Silicon Systems reserves the right to make changes in specifications at any time without notice. Accordingly, the reader is cautioned to verify that the data sheet is current before placing orders

Silicon Systems, Inc., 14351 Myford Road, Tustin, CA 92680, (714) 731-7110, FAX: (714) 731-5457

silicon systems*

The SSI 75T202 and 75T203 are complete Dual-Tone

Multifrequency (DTMF) receivers detecting a se-

lectable group of 12 or 16 standard digits. No front-end

pre-filtering is needed. The only externally required

components are an inexpensive 3.58-MHz television

"colorburst" crystal (for frequency reference) and a bias resistor. Extremely high system density is made

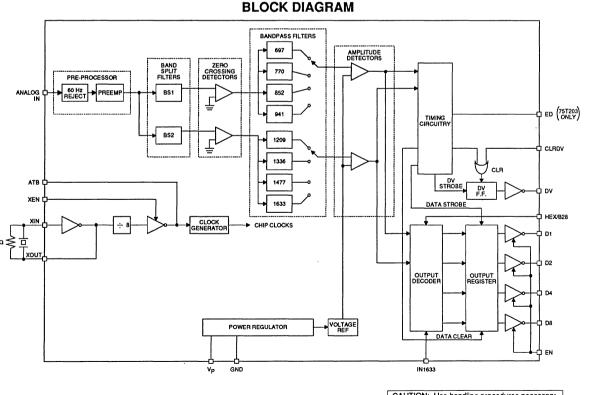
possible by using the clock output of a crystal-con-

nected SSI 75T202 or 75T203 receiver to drive the time

bases of additional receivers. Both are monolithic

integrated circuits fabricated with low-power, comple-

mentary symmetry MOS (CMOS) processing. They


require only a single low tolerance voltage supply and are packaged in a standard 18-pin plastic DIP.

SSI 75T202/203 5V Low-Power **DTMF Receiver**

DESCRIPTION

FEATURES

- July, 1990
- Central office quality
- NO front-end band-splitting filters required
- Single, low-tolerance, 5-volt supply
- Detects either 12 or 16 standard DTMF digits
- Uses inexpensive 3.579545-MHz crystal for reference
- ٠ **Excellent speech immunity**
- Output in either 4-bit hexadecimal code or binary coded 2-of-8
- 18-pin DIP package for high system density
- Synchronous or handshake interface
- Three-state outputs
- Early detect output (SSI 75T203 only)

(Continued)

CAUTION: Use handling procedures necessary for a static sensitive component.

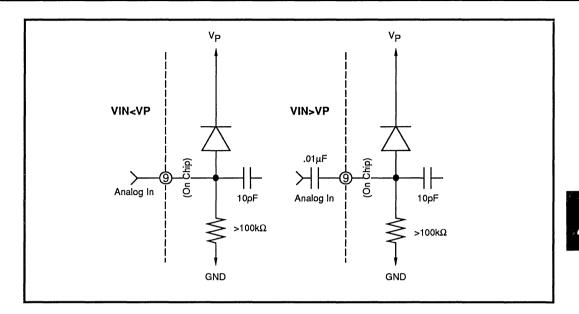
DESCRIPTION (Continued)

The SSI 75T202 and 75T203 employ state-of-the-art circuit technology to combine digital and analog functions on the same CMOS chip using a standard digital semicondutor process. The analog input is pre-processed by 60-Hz reject and band splitting filters and then hard-limited to provide AGC. Eight bandpass filters detect the individual tones. The digital post-processor times the tone durations and provides the correctly coded digital outputs. Outputs interface directly to standard CMOS circuitry, and are three-state enabled to facilitate bus-oriented architectures.

ANALOG IN

This pin accepts the analog input. It is internally biased so that the input signal may be AC coupled. The input may be DC coupled as long as it does not exceed the positive supply. Proper input coupling is illustrated in Figure 1. The SSI 75T202 is designed to accept sinusoidal input wave forms but will operate satisfactorily with any input that has the correct fundamental frequency with harmonics less then -20 dB below the fundamental.

CRYSTAL OSCILLATOR


The SSI 75T202 and 75T203 contain an onboard inverter with sufficient gain to provide oscillation when connected to a low-cost television "colorburst" crystal. The crystal oscillator is enabled by tying XEN high. The crystal is connected between XIN and XOUT. A 1 M Ω 10% resistor is also connected between these pins. In this mode, ATB is a clock frequency output. Other SSI 75T202's (or 75T203's) may use the same frequency reference by tying their ATB pins to the ATB of a crystal connected device. XIN and XEN of the auxiliary devices must then be tied high and low respectively. Ten devices may run off a single crystal-connected SSI 75T202 or 75T203 as shown in Figure 2.

HEX/B28

	Hexadecimal					Binary	Coded 2	-of-8	
Digit	D8	D4	D2	D1	Digit	D8	D4	D2	D1
1	0	0	0	1	1	0	0	0	0
2	0	0	1	0	2	0	0	0	1
3	0	0	1	1	3	0	0	1	0
4	0	1	0	0	4	0	1	0	0
5	0	1	0	1	5	0	1	0	1
6	0	1	1	0	6	0	1	1	0
7	0	1	1	1	7	1	0	0	0
8	1	0	0	0	8	1	0	0	1
9	1 .	0	0	1	9	1	0	1	0
0	1	0	1	0	0	1	1	0	1
*	1	0	1	1	*	1	1	0	0
#	1	1	0	0	#	1	1	1	0
Α	1	1	0	1	A	0	0	1	1
В	1	1	1	0	В	0	1	1	1
С	1	1	1	1	С	1	0	1	1
D	0	0	0	0	D	1	1	1	1

This pin selects the format of the digital output code. When HEX/B28 is tied high, the output is hexadecimal. When tied low, the output is binary coded 2-of-8. The table below describes the two output codes.

TABLE 1: Output Codes

FIGURE 2: Crystal Connections

IN1633

When tied high, this pin inhibits detection of tone pairs containing the 1633Hz component. For detection of all 16 standard digits, IN1633 must be tied low.

OUTPUTS D1, D2, D4, D8 and EN

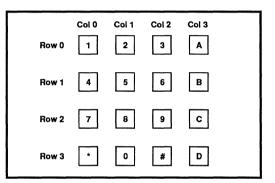
Outputs D1, D2, D4, D8 are CMOS push-pull when enabled (EN high) and open circuited (high impedance) when disabled by pulling EN low. These digital outputs provide the code corresponding to the detected digit in the format programmed by the HEX/B28 pin. The digital outputs become valid after a tone pair has been detected and they are then cleared when a valid pause is timed.

DV and CLRDV

DV signals a detection by going high after a valid tone pair is sensed and decoded at the output pins D1, D2, D4, and D8. DV remains high until a valid pause occurs or the CLRDV is raised high, whichever is earlier.

ED (SSI 75T203 only)

The ED output goes high as soon as the SSI 75T203 begins to detect a DTMF tone pair and falls when the 75T203 begins to detect a pause. The D1, D2, D4, and


D8 outputs are guaranteed to be valid when DV is high, but are not necessarily valid when ED is high.

N/C PINS

These pins have no internal connection and may be left floating.

DTMF DIALING MATRIX

See Figure 3. Please make note that column 3 is for special applications and is not normally used in telephone dialing.

FIGURE 3: DTMF Dialing Matrix

Low Group f	High Group f _e
Row 0 = 697 Hz	Column 0 = 1209 Hz
Row 1 = 770 Hz	Column 1 = 1336 Hz
Row 2 = 852 Hz	Column 2 = 1477 Hz
Row 3 = 941 Hz	Column 3 = 1633 Hz

DETECTION FREQUENCY

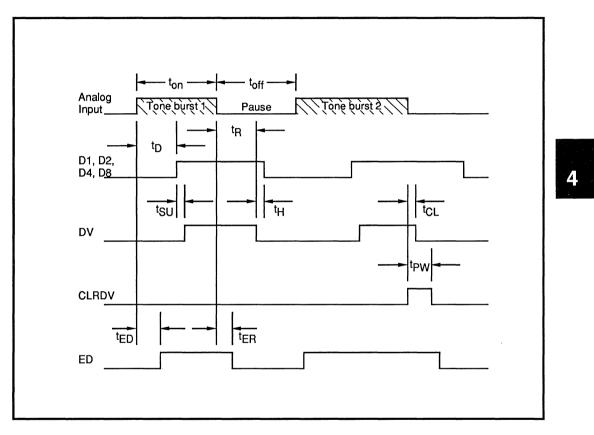
ABSOLUTE MAXIMUM RATINGS

(Operation above absolute maximum ratings may damage the device. All SSI 75T202/203 unused inputs must be connected to VP or GND, as appropriate.)

PARAMETER	CONDITIONS	RATING
DC Supply Voltage - VP		+7V
Operating Temperature		-40°C to +85°C Ambient
Storage Temperature		-65°C to +150°C
Power Dissipation (25°C)		65mW
Input Voltage	All inputs except ANALOG IN	(VP + .5V) to5V
ANALOG IN Voltage		(VP + .5V) to (VP - 10V)
DC Current into any Input		±1.0mA
Lead Temperature	Soldering, 10 sec.	300°C

ELECTRICAL CHARACTERISTICS

(-40°C \leq Ta \leq +85°C, Vp = 5V \pm 10%)

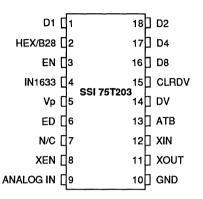

PARAMETER	CONDITIONS	MIN	ТҮР	MAX	UNITS						
Frequency Detect Bandwidth		±(1.5+2Hz)	±2.3	±3.5	% of fo						
Amplitude for Detection	each tone	-32		-2	dBm ref. to 600Ω						
Minimum Acceptable Twist	Twist = High Tone Low Tone	-10		+10	dB						
60-Hz Tolerance				0.8	Vrms						
Dial Tone Tolerance	"precise" dial tone			0dB	dB*						
Talk Off	MITEL tape #CM 7290		2		hits						
Digital Outputs	"0" level, 400µA load	0		0.5	V						
(except XOUT)	"1" level, 200µA load	VP-0.5		VP	V						
Digital Inputs	"0" level	0		0.3Vp	v						
	"1" level	0.7Vp		VP	V						
Power Supply Noise	wide band			10	mV p-p						
Supply Current	Ta = 25°C		10	16	mA						
Noise Tolerance	MITEL tape #CM 7290			-12	dB*						
Input Impedance	Vp≥Vin≥Vp-10	100kΩ 15pF									
* dB referenced to lowest amp	itude tone	L		* dB referenced to lowest amplitude tone							

4

SSI 75T202/203 TIMING

PAR	AMETER	CONDITIONS	MIN	NOM	МАХ	UNITS
ton	Tone Time	for detection	40	-	-	ms
		for rejection	-	-	20	ms
toff	Pause Time	for detection	40	-	-	ms
		for rejection	-	-	20	ms
to	Detect Time		25	-	46	ms
tR	Release Time		35	-	50	ms
tsu	Data Setup Time		7	-	-	μs
tн	Data Hold Time		4.2	-	5.0	ms
tcL	DV Clear Time		-	160	250	ns
tpw	CLRDV Pulse Width		200	-	-	ns
ted	ED Detect Time		7	-	22	ms
ter	ED Release Time		2	-	18	ms
	Output Enable Time	$C_L = 50 pF, R_L = 1 k\Omega$	-	-	200	ns
	Output Disable Time	$C_L = 35 pF, R_L = 500 \Omega$	-	-	200	ns
	Output Rise Time	C _L = 50pF	-	-	200	ns
	Output Fall Time	C _L = 50pF	-	160	200	ns

SSI 75T202/203 TIMING (Continued)



0790 - rev.

PACKAGE PIN DESIGNATIONS (TOP VIEW)

D1	1	18	þ	D2
HEX/B28	2	17	þ	D4
EN	Ľз	16	þ	D8
IN1633	4	15 SSI 75T202	þ	CLRDV
Vp	5	14	þ	DV
N/C	6	13	þ	ATB
N/C	7	12	þ	XIN
XEN [8	11	þ	XOUT
ANALOG IN	9	10	þ	GND

18 - Pin DIP SSI 75T202 18 - Pin DIP SSI 75T203

ORDERING INFORMATION

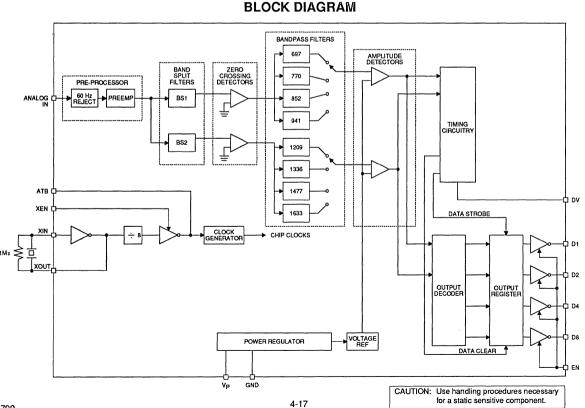
PART DESCRIPTION	ORDER NO.	PKG. MARK
SSI 75T202 18-pin Plastic DIP	SSI 75T202-IP	75T202-IP
SSI 75T203 18-pin Plastic DIP	SSI 75T203-IP	75T203-IP

No responsibility is assumed by Silicon Systems for use of this product nor for any infringements of patents and trademarks or other rights of third parties resulting from its use. No license is granted under any patents, patent rights or trademarks of Silicon Systems. Silicon Systems reserves the right to make changes in specifications at any time without notice. Accordingly, the reader is cautioned to verify that the data sheet is current before placing orders.

Silicon Systems, Inc., 14351 Myford Road, Tustin, CA 92680, (714) 731-7110, FAX: (714) 731-5457

silicon systems*

July, 1990


DESCRIPTION ~

The SSI 75T204 is a complete Dual-Tone Multifrequency (DTMF) receiver that detects 16 standard digits. No front-end pre-filtering is needed. The only external components required are an inexpensive 3.58-MHz television "colorburst" crystal for frequency reference and a bias resistor. An Alternate Time Base (ATB) is provided to permit operation of up to 10 SSI 75T204's from a single crystal. The SSI 75T204 employs state-of-the-art "switched-capacitor" filter technology, resulting in approximately 40 poles of filtering, and digital circuitry on the same CMOS chip. The analog input signal is pre-processed by 60-Hz reject and band split filters and then zero-cross detected to provide AGC. Eight bandpass filters detect the individual tones. Digital processing is used to

(Continued)

FEATURES

- Intended for applications with less requirements than the SSI 75T202
- 14-pin plastic DIP or 16-pin SO package for high system density
- NO front-end band-splitting filters required
- Single low-tolerance 5-volt supply
- Detects all 16 standard DTMF digits.
- Uses an inexpensive 3.579545-MHz crystal
- Excellent speech immunity
- Output in 4-bit hexadecimal code
- Three-state outputs for microprocessor interface

DESCRIPTION (Continued)

measure the tone and pause durations and to provide output timing and decoding. The outputs interface directly to standard CMOS circuitry and are three-state enabled to facilitate bus-oriented architectures.

ANALOG IN

This pin accepts the analog input. It is internally biased so that the input signal may be AC coupled. The input may be DC coupled as long as it does not exceed the positive supply. Proper input coupling is illustrated in Figure 1.

The SSI 75T204 is designed to accept sinusoidal input wave forms but will operate satisfactorily with any input that has the correct fundamental frequency with harmonics less then -20 dB below the fundamental.

CRYSTAL OSCILLATOR

The SSI 75T204 contains an onboard inverter with sufficient gain to provide oscillation when connected to a low-cost television "colorburst" crystal. The crystal oscillator is enabled by tying XEN high. The crystal is connected between XIN and XOUT. A 1 M Ω 10% resistor is also connected between these pins. In this mode, ATB is a clock frequency output. Other SSI 75T204's (or 75T202's) may use the same frequency reference by tying their ATB pins to the ATB of a crystal connected device. XIN and XEN of the auxiliary devices must then be tied high and low respectively. Ten devices may run off a single crystal-connected SSI 75T204 (or 75T202) as shown in Figure 2.

OUTPUTS D1, D2, D4, D8 and EN

Outputs D1, D2, D4, D8 are CMOS push-pull when enabled (EN high) and open circuited (high impedance) when disabled by pulling EN low. These digital outputs provide the hexadecimal code corresponding to the detected digit. The digital outputs become valid after a tone pair has been detected and they are then cleared when a valid pause is timed. The hexadecimal codes are described in Table 1.

DV

DV signals a detection by going high after a valid tone pair is sensed and decoded at the output pins D1, D2, D4, and D8. DV remains high until a valid pause occurs.

N/C PINS

These pins have no internal connection and may be left floating.

	Output Code							
Digit	D8	D4	D2	D1				
1	0 [°]	0	0	1				
2	0	0	1	0				
3	0	0	1	1				
4	0	1	0	0				
5	0	1	0	1				
6	0	1	1	0				
7	0	1	1	1				
8	1	0	0	0				
9	1	0	0	1				
0	1	0	1	0				
*	1	0	1	1				
#	1	1	0	0				
A	1	1	0	1				
В	1	1	1	0				
С	1	1	1	1				
D	0	0	0	0				

TABLE 1: Output Codes

4

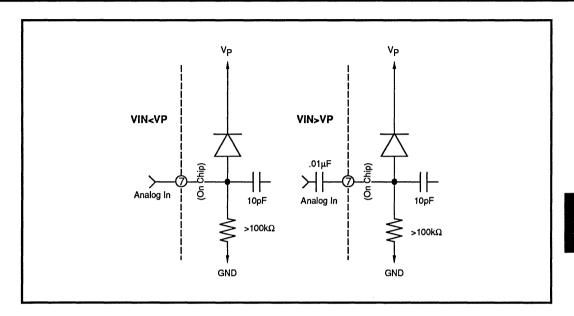
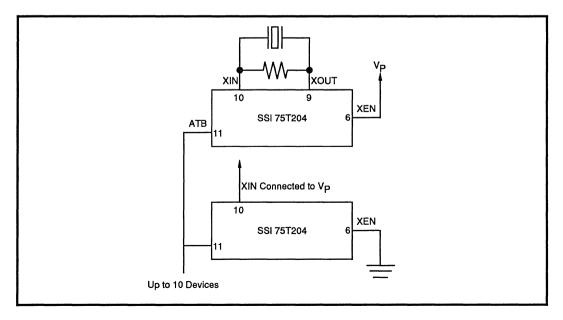



FIGURE 1: Input Coupling

FIGURE 2: Crystal Connections

DTMF DIALING MATRIX

See Figure 3. Please note that column 3 is for special applications and is not normally used in telephone dialing.

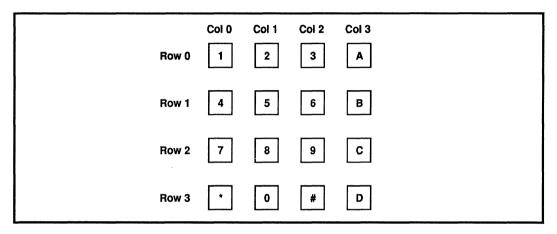
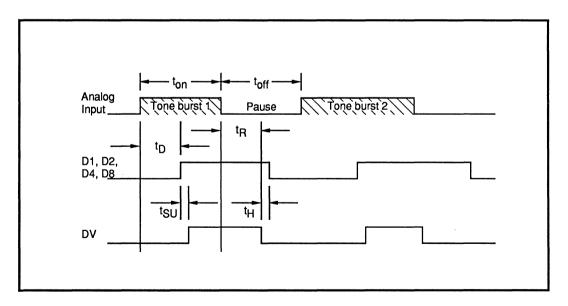



FIGURE 3: DTMF Dialing Matrix

DETECTION FREQUENCY

Low Group f _o	High Group f _o
Row 0 = 697 Hz	Column 0 = 1209 Hz
Row 1 = 770 Hz	Column 1 = 1336 Hz
Row 2 = 852 Hz	Column 2 = 1477 Hz
Row 3 = 941 Hz	Column 3 = 1633 Hz

SSI 75T204 TIMING (Refer to Figure 4.)

PARA	METER	CONDITIONS	MIN	NOM	МАХ	UNITS
ton	Tone Time	for detection	40	-	-	ms
		for rejection	-	-	20	ms
toff	Pause Time	for detection	40	-	-	ms
		for rejection	-	-	20	ms
tD	Detect Time		25	-	46	ms
tR	Release Time		35	-	50	ms
tsu	Data Setup Time		7	-	-	μs
tн	Data Hold Time		4.2	-	5.0	ms
	Output Enable Time	$C_L = 50 pF, R_L = 1 k\Omega$	-	-	200	ns
	Output Disable Time	$C_L = 35 pF, R_L = 500 \Omega$	-	-	200	ns
	Output Rise Time	C _L = 50pF	-	-	200	ns
	Output Fall Time	C _L = 50pF	·-	-	200	ns

APPLICATION INFORMATION

The SSI 75T204 will tolerate total input RMS noise up to 12dB below the lowest amplitude tone. For most telephone applications, the combination of the high frequency attenuation of the telephone line and internal band-limiting make special circuitry at the input to the SSI 75T204 unnecessary. However, noise near the 56kHz internal sampling frequency will be aliased (folded back) into the audio spectrum, so if excessive noise is present above 28kHz, the simple RC filter shown in Figure 5 may be employed to band limit the incoming signal.

Noise will also be reduced by placing a grounded trace around the XIN and XOUT pins on the circuit board layout when using a crystal. It is important to note that XOUT is not intended to drive an additional device. XIN may be driven externally; in this case leave XOUT floating.

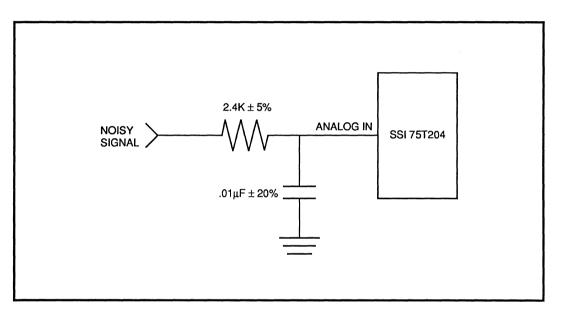
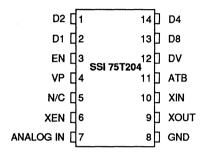


FIGURE 5: RC Filter

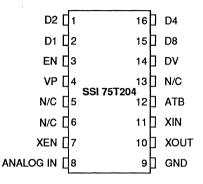
ABSOLUTE MAXIMUM RATINGS

(Operation above absolute maximum ratings may damage the device. All SSI 75T204 unused inputs must be connected to VP or GND, as appropriate.)

PARAMETER	CONDITIONS	RATING
DC Supply Voltage - VP		+7V
Operating Temperature		-40°C to +85°C Ambient
Storage Temperature		-65°C to +150°C
Power Dissipation (25°C)		65mW
Input Voltage	All inputs except ANALOG IN	(VP + 0.5V) to -0.5V
ANALOG IN Voltage		(VP + .5V) to (VP - 10V)
DC Current into any Input		±1.0mA
Lead Temperature	Soldering, 10 sec.	300°C


ELECTRICAL CHARACTERISTICS

 $(-40^{\circ}C \le T_A \le +85^{\circ}C, V_P = 5V \pm 10\%)$


PARAMETER	CONDITIONS	MIN	ТҮР	МАХ	UNITS
Frequency Detect Bandwidth		±(1.5+2Hz)	±2.3	±3.5	% of fo
Amplitude for Detection	each tone	-32		-2	dBm ref. to 600Ω
Minimum Acceptable Twist	Twist = High Tone Low Tone	-10		+10	dB
60-Hz Tolerance				0.8	Vrms
Dial Tone Tolerance	"precise" dial tone			0dB	dB*
Talk Off	MITEL tape #CM 7290		2		hits
Digital Outputs	"0" level, 400µA load	0		0.5	v
(except XOUT)	"1" level, 200µA load	VP-0.5		VP	V
Digital Inputs	"O" level	0		0.3Vp	v
	"1" level	0.7Vp		VP	V
Power Supply Noise	wide band			10	mV p-p
Supply Current	Ta = 25°C		10	16	mA
Noise Tolerance	MITEL tape #CM 7290			-12	dB*
Input Impedance	Vp≥Vin≥Vp-10	100KΩ 15pF			
* dB referenced to lowest amp	litude tone				

4

PACKAGE PIN DESIGNATIONS (TOP VIEW)

16 - Pin SOL

ORDERING INFORMATION

PART DESCRIPTION	ORDER NO.	PKG. MARK
SSI 75T204 14-pin PDIP	SSI 75T204-IP	75T204-IP
SSI 75T204 16-pin SOL	SSI 75T204-IL	75T204-IL

No responsibility is assumed by Silicon Systems for use of this product nor for any infringements of patents and trademarks or other rights of third parties resulting from its use. No license is granted under any patents, patent rights or trademarks of Silicon Systems. Silicon Systems reserves the right to make changes in specifications at any time without notice. Accordingly, the reader is cautioned to verify that the data sheet is current before placing orders.

Silicon Systems, Inc., 14351 Myford Road, Tustin, CA 92680, (714) 731-7110, FAX: (714) 731-5457

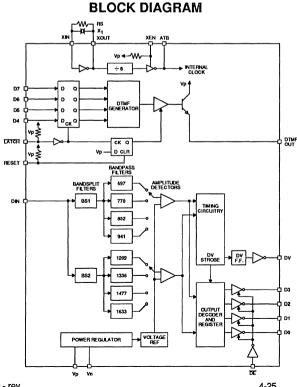
silicon systems*

SSI 75T2089 **DTMF** Transceiver

July, 1990

DESCRIPTION

Silicon Systems' SSI 75T2089 is a complete Dual-Tone Multifrequency (DTMF) Transceiver that can both generate and detect all 16 DTMF tone pairs. The SSI 75T2089 circuit integrates the performance proven SSI 75T202 DTMF receiver with a new DTMF generator circuit.


The DTMF receiver electrical characteristics are identical to the standard SSI 75T202 device characteristics. The DTMF generator provides performance similar to the Mostek MK5380, but with an improved (tighter) output amplitude range specification and with the addition of independent latch and reset controls.

The only external components necessary for the SSI 75T2089 are a 3.58 MHz "colorburst" crystal with a parallel 1M Ω resistor. This provides the time base for digital functions and switched-capacitor filters in the device. No external filtering is required.

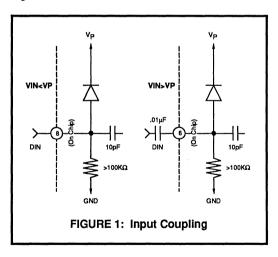
FEATURES

DTMF Generator and Receiver on one-chip

- 22-pin, 400 mil plastic DIP
- Low-power 5 volt CMOS
- DTMF Receiver exhibits excellent speech immunity
- Three-state outputs (4-bit hexadecimal) from DTMF Receiver
- AC coupled, internally biased analog input
- Latched DTMF Generator inputs
- Analog input range from -32 to -2 dBm (ref 600 Ω)
- DTMF output typ. -8 dBm (Low Band) and -5.5 dBm (High Band)
- Uses inexpensive 3.579545 MHz crystal for reference
- Easy interface for microprocessor dialing

PIN DIAGRAM

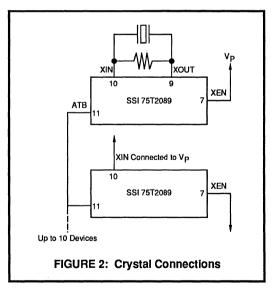
D3	þ	1	22	þ	DV
D2	þ	2	21		D7
D1	þ	3	20	þ	D6
DO	þ	4	19	þ	D5
DE	þ	5	18		D4
VP	þ	6	17	þ	LATCH
XEN	þ	7	16		RST
DIN	þ	8	15	þ	N/C
XOUT	þ	9	14	þ	N/C
XIN	q	10	13	2	DTMF OUT
ATB	þ	11	12		VN
	_ L				


CIRCUIT OPERATION

RECEIVER

The DTMF Receiver in the SSI 75T2089 detects the presence of a valid tone pair (indicating a single dialed digit) on a telephone line or other transmission medium. The analog input is pre-processed by 60 Hz reject and band-splitting filters, then hard-limited to provide Automatic Gain Control. Eight bandpass filters detect the individual tones. The digital post-processor times the tone durations and provides the correctly coded digital outputs. The outputs will drive standard CMOS circuitry, and are three-state enabled to facilitate bus-oriented architectures.

DIN


This pin accepts the analog input. It is internally biased so that the input signal may be AC coupled. The input may be DC coupled as long as it does not exceed the positive supply. Proper input coupling is illustrated in Figure 1.

The SSI 75T2089 is designed to accept sinusoidal input waveforms but will operate satisfactorily with any input that has the correct fundamental frequency with harmonics greater than -20 dB below the fundamental.

CRYSTAL OSCILLATOR

The SSI 75T2089 contains an onboard inverter with sufficient gain to provide oscillation when connected to a low-cost television "color-burst" crystal. The crystal is placed between XIN and XOUT in parallel with a 1M Ω resistor, while XEN is tied high. Since the switched-capacitor-filter time base is derived from the crystal oscillator, the frequency accuracy of all portions of the SSI 75T2089 depends on the time base tolerance. The SSI DTMF Receiver frequency response and timing is specified for a time base accuracy of at least ±0.005%. ATB is a clock frequency output. Other devices may use the same frequency reference by tying their ATB pins to the ATB of a crystal connected device. XIN and XEN of the auxiliary devices must then be tied high and low respectively, XOUT is left floating. XOUT is designed to drive a resonant circuit only and is not intended to drive additional devices. Ten devices may run off a single crystal-connected SSI 75T2089 as shown in Figure 2.

RECEIVER OUTPUTS AND THE DE PIN

Outputs D0, D1, D2, D3 are CMOS push-pull when enabled (\overline{DE} low) and open-circuited (high impedance) when disabled (\overline{DE} high). These digital outputs provide the hexadecimal code corresponding to the detected digit. Figure 3 shows that code.

SSI 75T2089 DTMF Transceiver

The digital outputs become valid and DV signals a detection after a valid tone pair has been sensed. The outputs and DV are cleared when a valid pause has been timed.

Hexadecimal Code							
Digit In	D7	D6	D5	D4			
Out	D3	D2	D1	D0			
1	0	0	0	1			
2	0	0	1	0			
3	0	0	1	1			
4	0	1	0	0			
5	0	1	0	1			
6	0	1	1	0			
7	0	1	1	1			
8	1	0	0	0			
9	1	0	0	1			
0	1	0	1	0			
*	1	0	1	1			
#	1	1	0	0			
Α	1	1	0	1			
В	1	1	1	0			
С	1	1	1	1			
D	0	0	0	0			
FIGURE 3							

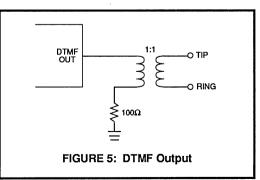
GENERATOR

The DTMF generator on the SSI 75T2089 responds to a hexadecimal code input with a valid tone pair. Pins D4-D7 are the data inputs for the generator. A high to low transition on LATCH causes the hexadecimal code to be latched internally and generation of the appropriate DTMF tone pair to begin. The DTMF output is disabled by a high on RESET and will not resume until new data is latched in.

DIGITAL INPUTS

The D4, D5, D6, D7, LATCH, RESET inputs to the DTMF generator may be interfaced to open-collector TTL with a pull-up resistor or standard CMOS. These inputs follow the same hexadecimal code format as the DTMF receiver output. Figure 4 shows the code for each digit. The dialing matrix and detection frequency table below list the frequencies of the digits

Row 0	Col 0	Col 1	Col 2 3	Col 3
Row 1	4	5	6	В
Row 2	7	8	9	С
Row 3	·	0	#	D
				oplications ne dialing.



DETECTION FREQUENCY

Low Group f _o	High Group f _o
Row 0 = 697Hz	Column 0 = 1209Hz
Row 1 = 770Hz	Column 1 = 1336Hz
Row 2 = 852Hz	Column 2 = 1477Hz
Row 3 = 941Hz	Column 3 = 1633Hz

DTMF OUT

The output amplitude characteristics listed in the specifications are given for a supply voltage of 5.0V. However, the output level is directly proportional to the supply, so variations in it will affect the DTMF output. A recommended line interface for this output is shown in Figure 5.

ELECTRICAL SPECIFICATIONS

ABSOLUTE MAXIMUM RATINGS

Operating above absolute maximum ratings may damage the device.

PARAMETER	RATING	UNIT
DC Supply Voltage (Vp - Vn)	+7	V
Voltage at any Pin (Vn = 0)	-0.3 to Vp + 0.3	V
DIN Voltage	Vp + 0.5 to Vp - 10	V
Current through any Protection Device	±20	mA
Operating Temperature Range	-40 to + 85	°C
Storage Temperature	-65 to 150	°C

RECOMMENDED OPERATING CONDITIONS

PARAMETER	CONDITIONS	MIN	NOM	МАХ	UNITS
Supply Voltage		4.5		5.5	v
Power Supply Noise (wide band)				10	mV pp
Ambient Temperature		-40		+85	°C
Crystal Frequency (F Nominal = 3.579545MHz)		-0.01		+0.01	%
Crystal Shunt Resistor		0.8		1.2	MΩ
DTMF OUT Load Resistance		100			Ω

DIGITAL AND DC REQUIREMENTS

The following electrical specifications apply to the digital input and output signals over the recommended operating range unless otherwise noted. The specifications do not apply to the following pins: DIN, XIN, XOUT, and DTMF OUT. Positive current is defined as entering the circuit. Vn = 0 unless otherwise stated.

PARAMETER	CONDITIONS	MIN	NOM	МАХ	UNITS
Supply Current*			15	30	mA
Power Dissipation				225	mW
Input Voltage High		0.7Vp			v
Input Voltage Low				0.3Vp	V
Input Current High				10	μA
Input Current Low		-10			μA
Output Voltage High	loh = -0.2mA	Vp-0.5			V
Output Voltage Low	lol = +0.4mA			Vn+0.5	v
* with DTMF output disable	b				

SSI 75T2089 DTMF Transceiver

DTMF RECEIVER: Electrical Characteristics

PARAMETER	CONDITIONS	MIN	NOM	МАХ	UNIT
Frequency Detect Bandwidth		±(1.5+2Hz)	±2.3	±3.5	%Fo
Amplitude for Detection		-32		-2	dBm
Twist Tolerance		-10		+10	dB
60Hz Tolerance				0.8	Vrms
Dial Tone Tolerance	Precise Dial Tone			0	dB*
Speech Immunity	MITEL Tape #CM7290		2		hits
Noise Tolerance	MITEL Tape #CM7290			-12	dB*
Input Impedance		100			kΩ
* Referenced to lowest amplitude	tone			•	•

DTMF RECEIVER: Timing Characteristics

PARA	METER	CONDITIONS	MIN	NOM	МАХ	UNIT
TON	Tone Time for Detect		40			ms
TON	Tone Time for No Detect				20	ms
TOFF	Pause Time for Redetection		40			ms
TOFF	Pause Time for Bridging				20	ms
TD1	Detect Time		25		46	ms
TR1	Release Time		35		50	ms
TSU1	Data Set Up Time		7			μs
THD1	Data Hold Time		4.2		5.0	ms
	Output Enable Time				200	ns
	Output Disable Time				200	ns

DTMF GENERATOR: Electrical Characteristics

PARAMETER	CONDITIONS	MIN	NOM	МАХ	UNIT
Frequency Accuracy		-1.0		+1.0	%Fo
Output Amplitude	$R1 = 100\Omega$ to Vn, Vp - Vn = 5.0V				
Low Band		-9.2		-7.2	dBm
High Band		-6.6		-4.6	dBm
Output Distortion	DC to 50kHz			-20	dB

DTMF GENERATOR: Timing Characteristics

PARAMETER		CONDITIONS	MIN	NOM	МАХ	UNIT
TSTART	Start-Up Time				2.5	μs
TSU2	Data Set-Up Time		100			ns
THD2	Data Hold Time		50			ns
TRP	RESET Pulse Width		100			ns
TPW	LATCH Pulse Width		100			ns

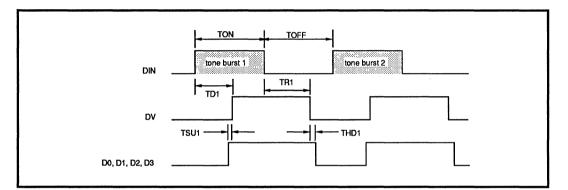
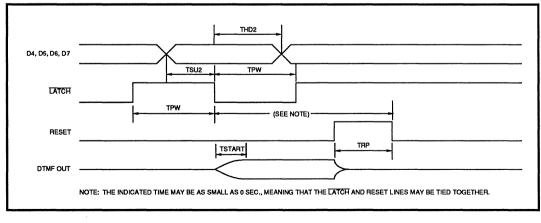



FIGURE 6: DTMF DECODER

SSI 75T2089 DTMF Transceiver

PACKAGE PIN DESIGNATIONS

(TOP VIEW)

	ſ		 	1	
D3	Ц	1	22	þ	DV
D2	Ц	2	21	þ	D7
D1	Ц	3	20	þ	D6
D0	Ц	4	19	þ	D5
DE	Ц	5	18	þ	D4
VP	d	6	17	þ	LATCH
XEN	Ц	7	16	þ	RST
DIN	Ц	8	15	þ	N/C
XOUT	C	9	14	þ	N/C
XIN	Ц	10	13	þ	DTMF OUT
ATB	þ	11	12	þ	VN
	L		 	J	

22-Pin DIP

ORDERING INFORMATION

PART DESCRIPTION	ORDER NO.	PKG. MARK
SSI 75T2089 22-Pin Plastic DIP	SSI 75T2089 - IP	75T2089 - IP

No responsibility is assumed by Silicon Systems for use of this product nor for any infringements of patents and trademarks or other rights of third parties resulting from its use. No license is granted under any patents, patent rights or trademarks of Silicon Systems. Silicon Systems reserves the right to make changes in specifications at any time without notice. Accordingly, the reader is cautioned to verify that the data sheet is current before placing orders.

Silicon Systems, Inc., 14351 Myford Road, Tustin, CA 92680, (714) 731-7110, FAX: (714) 731-5457

4

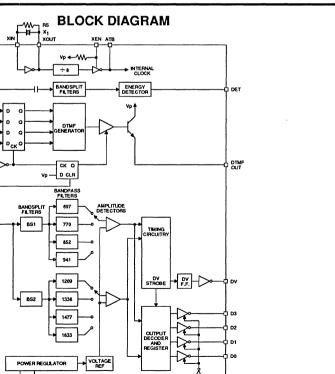
Notes:

silicon systems*

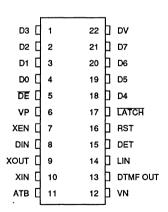
SSI 75T2090 DTMF Transceiver and Call Progress Detection

DESCRIPTION

Silicon Systems' SSI 75T2090 is a complete Dual-Tone Multifrequency (DTMF) Transceiver that can both generate and detect all 16 standard Touch-Tone digits. The SSI 75T2090 circuit integrates the performance proven SSI 75T202 DTMF Receiver with a new DTMF generator circuit.


The DTMF Receiver electrical characteristics are identical to the standard SSI 75T202 device characteristics. The DTMF generator provides performance similar to the Mostek MK5380, but with an improved (tighter) output amplitude range specification and with the addition of independent latch and reset controls.

An additional features of the 75T2090 is "imprecise" call progress detector. The detector detects the presence of signals in the 305-640 Hz band. (Continued)


FEATURES

July, 1990

- DTMF Generator and Receiver on one-chip
- 22-pin, 400 mil plastic DIP
 - Low-power 5 volt CMOS
- DTMF Receiver exhibits excellent speech immunity
- Three-state outputs (4-bit hexadecimal) from DTMF Receiver
- AC coupled, internally biased analog input
- Latched DTMF Generator inputs
- Analog input range from –32 to –2 dBm (ref 600Ω)
- DTMF output typ. –8 dBm (Low Band) and 5.5 dBm (High Band)
- Uses inexpensive 3.579545 MHz crystal for reference
- Easy interface for microprocessor dialing
- Call progress detection

PIN DIAGRAM

LIN

D7

D6

D5

LATCH

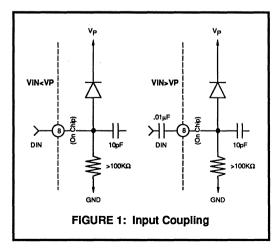
RESE1

Dir

SSI 75T2090 DTMF Transceiver with Call Progress Detection

DESCRIPTION (Continued)

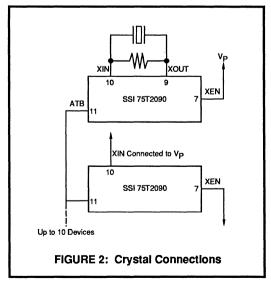
The only external components necessary for the SSI 75T2090 are a 3.58 MHz "colorburst" crystal with a parallel 1M Ω resistor. This provides the time base for digital functions and switched-capacitor filters in the device. No external filtering is required.


CIRCUIT OPERATION

RECEIVER

The DTMF Receiver in the SSI 75T2090 detects the presence of a valid tone pair (indicating a single dialed digit) on a telephone line or other transmission medium. The analog input is pre-processed by 60Hz reject and band-splitting filters, then hard-limited to provide Automatic Gain Control. Eight bandpass filters detect the individual tones. The digital post-processor times the tone durations and provides the correctly coded digital outputs. The outputs will drive standard CMOS circuitry, and are three-state enabled to facilitate bus-oriented architectures.

DIN


This pin accepts the analog input. It is internally biased so that the input signal may be AC coupled. The input may be DC coupled as long as it does not exceed the positive supply. Proper input coupling is illustrated in Figure 1.

The SSI 75T2090 is designed to accept sinusoidal input waveforms but will operate satisfactorily with any input that has the correct fundamental frequency with harmonics greater than -20 dB below the fundamental.

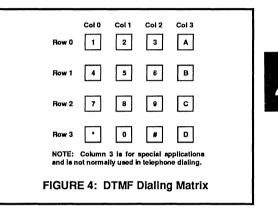
CRYSTAL OSCILLATOR

The SSI 75T2090 contains an onboard inverter with sufficient gain to provide oscillation when connected to a low-cost television "color-burst" crystal. The crystal is placed between XIN and XOUT in parallel with a $1M\Omega$ resistor, while XEN is tied high. Since the switched-capacitor-filter time base is derived from the crystal oscillator, the frequency accuracy of all portions of the SSI 75T2090 depends on the time base tolerance. The SSI DTMF Receiver frequency response and timing is specified for a time base accuracy of at least ±0.005%. ATB is a clock frequency output. Other devices may use the same frequency reference by tying their ATB pins to the ATB of a crystal connected device. XIN and XEN of the auxiliary devices must then be tied high and low respectively, XOUT is left floating. XOUT is designed to drive a resonant circuit only and is not intended to drive additional devices. Ten devices may run off a single crystal-connected SSI 75T2090 as shown in Figure 2.

RECEIVER OUTPUTS AND THE DE PIN

Outputs D0, D1, D2, D3 are CMOS push-pull when enabled (\overline{DE} low) and open-circuited (high impedance) when disabled (\overline{DE} high). These digital outputs provide the hexadecimal code corresponding to the detected digit. Figure 3 shows that code.

The digital outputs become valid and DV signals a detection after a valid tone pair has been sensed. The outputs and DV are cleared when a valid pause has been timed.


	Hexadecimal Code						
Digit In	D7						
Out	D3	D2	D1	D0			
1	0	0	0	1			
2	0	0	1	0			
3	0	0	1	1			
4	0	1	0	0			
5	0	1	0	1			
6	0	1	1	0			
7	0	1	1	1			
8	1	0	0	0			
9	1	0	0	1			
0	1	0	1	0			
*	1	0	1	1			
#	1	1	0	0			
Α	1	1	0	1			
В	1	1	1	0			
С	1	1	1	1			
D	0	0	0	0			
	FIGURE 3						

GENERATOR

The DTMF generator on the SSI 75T2090 responds to a hexadecimal code input with a valid tone pair. Pins D4-D7 are the data inputs for the generator. A high to low transition on LATCH causes the hexadecimal code to be latched internally and generation of the appropriate DTMF tone pair to begin. The DTMF output is disabled by a high on RESET and will not resume until new data is latched in.

DIGITAL INPUTS

The D4, D5, D6, D7, LATCH, RESET inputs to the DTMF generator may be interfaced to open-collector TTL with a pull-up resistor or standard CMOS. These inputs follow the same hexadecimal code format as the DTMF receiver output. Figure 4 shows the code for each digit. The dialing matrix and detection frequency table below list the frequencies of the digits.

DETECTION FREQUENCY

Low Group f _o	High Group f _o
Row 0 = 697Hz	Column 0 = 1209Hz
Row 1 = 770Hz	Column 1 = 1336Hz
Row 2 = 852Hz	Column 2 = 1477Hz
Row 3 = 941Hz	Column 3 = 1633Hz

SSI 75T2090 DTMF Transceiver with Call Progress Detection

DTMF OUT

The output amplitude characteristics listed in the specifications are given for a supply voltage of 5.0V. However, the output level is directly proportional to the supply, so variations in it will affect the DTMF output. A recommended line interface for this output is shown in Figure 5.

CALL PROGRESS DETECTION

The Call Progress Detector consists of a bandpass filter and an energy detector for turning the on/off cadences into a microprocessor compatible signal.

LIN INPUT

This analog input accepts the call progress signal and should be used in the same manner as the receiver input DIN.

ELECTRICAL SPECIFICATIONS

ABSOLUTE MAXIMUM RATINGS

Operating above absolute maximum ratings may damage the device.

PARAMETER	RATING	UNIT
DC Supply Voltage (Vp - Vn)	+7	V
Voltage at any Pin (Vn = 0)	-0.3 to Vp + 0.3	V
DIN Voltage	Vp + 0.5 to Vp - 10	V
Current through any Protection Device	±20	mA
Operating Temperature Range	-40 to + 85	°C
Storage Temperature	-65 to 150	°C

RECOMMENDED OPERATING CONDITIONS

PARAMETER	CONDITIONS	MIN	NOM	МАХ	UNITS
Supply Voltage		4.5		5.5	v
Power Supply Noise (wide band)				10	mV pp
Ambient Temperature		-40		+85	°C
Crystal Frequency (F Nominal = 3.579545MHz)		-0.01		+0.01	%
Crystal Shunt Resistor		0.8		1.2	MΩ
DTMF OUT Load Resistance		100			Ω

DET OUTPUT

This output is TTL compatible and will be of a frequency corresponding to the various cadences of Call Progress signals such as, on 0.5 sec/off 0.5 sec for a busy tone, on 0.25 sec/off 0.25 sec for a reorder tone and on 0.8-1.2 sec/off 2.7-3.3 sec for an audible ring tone.

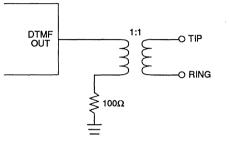


FIGURE 5: DTMF Output

SSI 75T2090 DTMF Transceiver with Call Progress Detection

DIGITAL AND DC REQUIREMENTS

The following electrical specifications apply to the digital input and output signals over the recommended operating range unless otherwise noted. The specifications do not apply to the following pins: LIN, DIN, XIN, XOUT, and DTMF OUT. Positive current is defined as entering the circuit. Vn = 0 unless otherwise stated.

PARAMETER	CONDITIONS	MIN	NOM	МАХ	UNITS
Supply Current*			15	30	mA
Power Dissipation				225	mW
Input Voltage High		0.7Vp			V
Input Voltage Low				0.3Vp	V
Input Current High				10	μA
Input Current Low		-10			μA
Output Voltage High	loh = -0.2mA	Vp-0.5			V
Output Voltage Low	lol = +0.4mA			Vn+0.5	v
* with DTMF output disabled	1				

DTMF RECEIVER: Electrical Characteristics

PARAMETER	CONDITIONS	MIN	NOM	МАХ	UNIT
Frequency Detect Bandwidth		±(1.5+2Hz)	±2.3	±3.5	%Fo
Amplitude for Detection		-32		-2	dBm
Twist Tolerance		-10		+10	dB
60Hz Tolerance				0.8	Vrms
Dial Tone Tolerance	Precise Dial Tone			0	dB*
Speech Immunity	MITEL Tape #CM7290		2		hits
Noise Tolerance	MITEL Tape #CM7290			-12	dB*
Input Impedance		100			kΩ
* Referenced to lowest amplitude tone					

DTMF RECEIVER: Timing Characteristics

PARA	METER	CONDITIONS	MIN	NOM	МАХ	UNIT
TON	Tone Time for Detect		40			ms
TON	Tone Time for No Detect				20	ms
TOFF	Pause Time for Redetection		40			ms
TOFF	Pause Time for Bridging				20	ms
TD1	Detect Time		25		46	ms
TR1	Release Time		35		50	ms

DTMF RECEIVER: Timing Characteristics (continued)

PARAMETER	CONDITIONS	MIN	NOM	МАХ	UNIT
TSU1 Data Set Up Time		7			μs
THD1 Data Hold Time		4.2		5.0	ms
Output Enable Time				200	ns
Output Disable Time				200	ns

DTMF GENERATOR: Electrical Characteristics

PARAMETER	CONDITIONS	MIN	NOM	МАХ	UNIT
Frequency Accuracy		-1.0		+1.0	%Fo
Output Amplitude	R1 = 100Ω to Vn, Vp - Vn = 5.0V				
Low Band		-9.2		-7.2	dBm
High Band		-6.6		-4.6	dBm
Output Distortion	DC to 50kHz			-20	dB

DTMF GENERATOR: Timing Characteristics

PARAM	ETER	CONDITIONS	MIN	NOM	МАХ	UNIT
TSTART	Start-Up Time				2.5	μs
TSU2	Data Set-Up Time		100			ns
THD2	Data Hold Time		50			ns
TRP	RESET Pulse Width		100			ns
TPW	LATCH Pulse Width		100			ns

CALL PROGRESS DETECTOR: Electrical Characteristics

PARAMETER	CONDITIONS	MIN	NOM	МАХ	UNIT
Amplitude for Detection	305Hz-640Hz	-40		0	dBm
Amplitude for No Detecion	305Hz-640Hz			-50	dBm
	f>2200Hz, <160Hz			-25	dBm
Detect Output	Logic 0			.5	V
	Logic 1	4.5			v
"LIN" Input	Max. Voltage	VDD-10		VDD	V
Input Impedance	500Hz	100			kΩ

SSI 75T2090 DTMF Transceiver with Call Progress Detection

CALL PROGRESS DETECTOR: Timing Characteristics

PARAMETER	CONDITIONS	MIN	NOM	МАХ	UNIT
TON Signal Time for Detect		40			ms
TON Dignal Time for No Detect				10	ms
TOFF Interval Time for Detect		40			ms
TOFF Interval Time fo No Detect				20	ms
TD2 Detect Time				40	ms
TR2 Release Time				40	ms

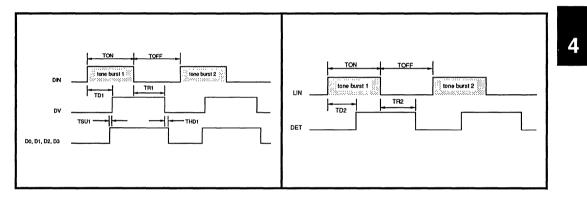


FIGURE 6: DTMF Decoder

FIGURE 7: Call Progress Detector

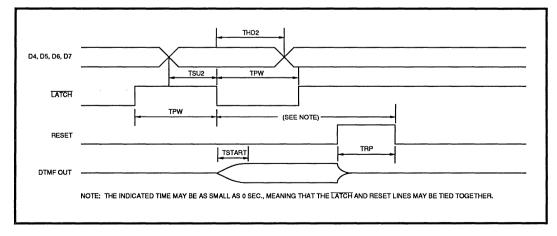
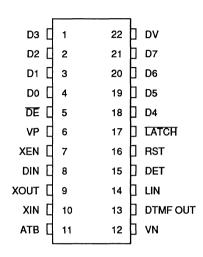



FIGURE 8: DTMF Generator

SSI 75T2090 DTMF Transceiver with Call Progress Detection

PACKAGE PIN DESIGNATIONS

(TOP VIEW)

22-Pin DIP

ORDERING INFORMATION

PART DESCRIPTION	ORDER NO.	PKG. MARK
SSI 75T2090 22-Pin DIP	SSI 75T2090 - IP	75T2090 - IP

No responsibility is assumed by Silicon Systems for use of this product nor for any infringements of patents and trademarks or other rights of third parties resulting from its use. No license is granted under any patents, patent rights or trademarks of Silicon Systems. Silicon Systems reserves the right to make changes in specifications at any time without notice. Accordingly, the reader is cautioned to verify that the data sheet is current before placing orders.

Silicon Systems, Inc., 14351 Myford Road, Tustin, CA 92680, (714) 731-7110, FAX: (714) 731-5457

silicon systems*

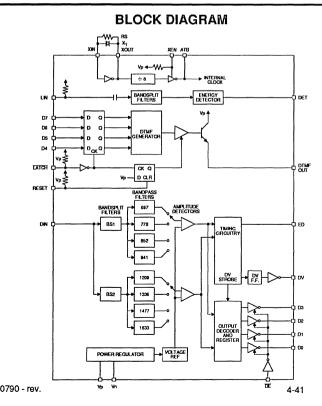
SSI 75T2091 **DTMF Transceiver with Early Detect & Call Progress Detection**

DESCRIPTION

Silicon Systems' SSI 75T2091 is a complete Dual-Tone Multifrequency (DTMF) Transceiver that can both generate and detect all 16 DTMF tone-pairs. The SSI 75T2091 circuit integrates the performance proven SSI 75T203 DTMF receiver with a new DTMF generator circuit.

The DTMF receiver electrical characteristics are identical to the standard SSI 75T203 device characteristics. The DTMF generator provides performance similar to the Mostek MK5380, but with an improved (tighter) output amplitude range specification and with the addition of independent latch and reset controls.

An additional feature of the SSI 75T2091 is "imprecise" call progress detector. The detector detects the presence of signals in the 305-640 Hz band.


(Continued)

July, 1990

- DTMF Generator and Receiver on one-chip
- Call progress detection
- Early detect output

FEATURES

- DTMF Receiver exhibits excellent speech immunity
- Analog input range from -32 to -2 dBm (ref 600 Ω)
- Three-state outputs (4-bit hexadecimal) from DTMF Receiver
- AC coupled, internally biased analog input
- Latched DTMF Generator inputs
- DTMF output typ. -8 dBm (Low Band) and -5.5 dBm (High Band)
- Easy interface for microprocessor dialing •
- ٠ Uses inexpensive 3.579545 MHz crystal for reference
- Low-power 5 volt CMOS •
- 28-pin DIP or PLCC

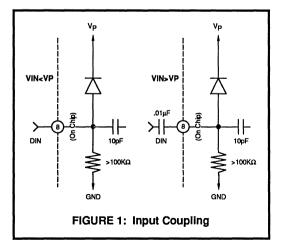
PIN DIAGRAM

D2 [1	28] D3
D1 [2	27	οv
D0 [3	26	07
	4	25] D6
ᄩ	5	24] D5
VP [6	23	D4
ED [7	22	
XEN [8	21] RST
	9	20	Лис
ис [10	19	NC
DIN [11	18	DET
хоит [12	17	
XIN [13	16	
атв [14	15] vN

CAUTION: Use handling procedures necessary for a static sensitive component.

DESCRIPTION (Continued)

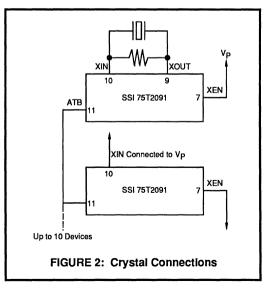
The only external components necessary for the SSI 75T2091 are a 3.58 MHz "colorburst" crystal with a parallel 1M Ω resistor. This provides the time base for digital functions and switched-capacitor filters in the device. No external filtering is required.


CIRCUIT OPERATION

RECEIVER

The DTMF Receiver in the SSI 75T2091 detects the presence of a valid tone pair (indicating a single dialed digit) on a telephone line or other transmission medium. The analog input is pre-processed by 60 Hz reject and band-splitting filters, then hard-limited to provide Automatic Gain Control. Eight bandpass filters detect the individual tones. The digital post-processor times the tone durations and provides the correctly coded digital outputs. The outputs will drive standard CMOS circuitry, and are three-state enabled to facilitate bus-oriented architectures.

DIN


This pin accepts the analog input. It is internally biased so that the input signal may be AC coupled. The input may be DC coupled as long as it does not exceed the positive supply. Proper input coupling is illustrated in Figure 1.

The SSI 75T2091 is designed to accept sinusoidal input waveforms but will operate satisfactorily with any input that has the correct fundamental frequency with harmonics greater than -20 dB below the fundamental.

CRYSTAL OSCILLATOR

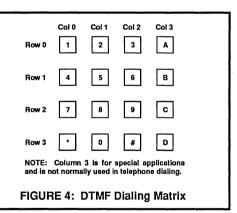
The SSI 75T2091 contains an onboard inverter with sufficient gain to provide oscillation when connected to a low-cost television "color-burst" crystal. The crystal is placed between XIN and XOUT in parallel with a 1MQ resistor, while XEN is tied high. Since the switched-capacitor-filter time base is derived from the crystal oscillator, the frequency accuracy of all portions of the SSI 75T2091 depends on the time base tolerance. The SSI DTMF Receiver frequency response and timing is specified for a time base accuracy of at least ±0.005%. ATB is a clock frequency output. Other devices may use the same frequency reference by tying their ATB pins to the ATB of a crystal connected device. XIN and XEN of the auxiliary devices must then be tied high and low respectively, XOUT is left floating. XOUT is designed to drive a resonant circuit only and is not intended to drive additional devices. Ten devices may run off a single crystal-connected SSI 75T2091 as shown in Figure 2.

Outputs D0, D1, D2, D3 are CMOS push-pull when enabled (\overline{DE} low) and open-circuited (high impedance) when disabled (\overline{DE} high). These digital outputs provide the hexadecimal code corresponding to the detected digit. Figure 3 shows that code.

The digital outputs become valid and DV signals a detection after a valid tone pair has been sensed. The outputs and DV are cleared when a valid pause has been timed.

	Hexadecimal Code					
Digit In	D7	D6	D5	D4		
Out	D3	D2	D1	D0		
1	0	0	0	1		
2	0	0	1	0		
3	0	0	1	1		
4	0	1	0	0		
5	0	1	0	1		
6	0	1	1	0		
7	0	1	1	1		
8	1	0	0	0		
9	1	0	0	1		
0	1	0	1	0 ·		
*	1	0	1	1		
#	1	1	0	0		
А	1	1	0	1		
В	1	1	1	0		
C	1	1	1	1		
D	0	0	0	0		
	FIGURE 3					

ED OUTPUT


The ED output goes high as soon as the SSI 75T2091 begins to detect a DTMF tone pair and falls when the SSI 75T2091 begins to detect a pause. The D1, D2, D4, and D8 outputs are guaranteed to be valid when DV is high, but are not necessarily valid when ED is high.

GENERATOR

The DTMF generator on the SSI 75T2091 responds to a hexadecimal code input with a valid tone pair. Pins D4-D7 are the data inputs for the generator. A high to low transition on LATCH causes the hexadecimal code to be latched internally and generation of the appropriate DTMF tone pair to begin. The DTMF output is disabled by a high on RESET and will not resume until new data is latched in.

DIGITAL INPUTS

The D4, D5, D6, D7, LATCH, RESET inputs to the DTMF generator may be interfaced to open-collector TTL with a pull-up resistor or standard CMOS. These inputs follow the same hexadecimal code format as the DTMF receiver output. Figure 4 shows the code for each digit. The dialing matrix and detection frequency table below list the frequencies of the digits.

DETECTION FREQUENCY

Low Group f _o	High Group f _o
Row 0 = 697Hz	Column 0 = 1209Hz
Row 1 = 770Hz	Column 1 = 1336Hz
Row 2 = 852Hz	Column 2 = 1477Hz
Row 3 = 941Hz	Column 3 = 1633Hz

DTMF OUT

The output amplitude characteristics listed in the specifications are given for a supply voltage of 5.0V. However, the output level is directly proportional to the supply, so variations in it will affect the DTMF output. A recommended line interface for this output is shown in Figure 5.

CALL PROGRESS DETECTION

The Call Progress Detector consists of a bandpass filter and an energy detector for turning the on/off cadences into a microprocessor compatible signal.

LIN INPUT

This analog input accepts the call progress signal and should be used in the same manner as the receiver input DIN.

ELECTRICAL SPECIFICATIONS

ABSOLUTE MAXIMUM RATINGS

Operating above absolute maximum ratings may damage the device.

PARAMETER	RATING	UNIT
DC Supply Voltage (Vp - Vn)	+7	v
Voltage at any Pin (Vn = 0)	-0.3 to Vp + 0.3	V
DIN Voltage	Vp + 0.5 to Vp - 10	V
Current through any Protection Device	±20	mA
Operating Temperature Range	-40 to + 85	°C
Storage Temperature	-65 to 150	℃

RECOMMENDED OPERATING CONDITIONS

PARAMETER	CONDITIONS	MIN	NOM	МАХ	UNIT
Supply Voltage		4.5		5.5	v
Power Supply Noise (wide band)				10	mV pp
Ambient Temperature		-40		+85	°C
Crystal Frequency (F Nominal = 3.579545MHz)		-0.01	-	+0.01	%
Crystal Shunt Resistor		0.8		1.2	MΩ
DTMF OUT Load Resistance		100			Ω

DET OUTPUT

The output is TTL compatible and will be of a frequency corresponding to the various candences of Call Progress signals such as: on 0.5 sec/off 0.5 sec for a busy tone, on 0.25 sec/off 0.25 sec for a reorder tone and on 0.8-1.2 sec/off 2.7-3.3 sec for an audible ring tone.

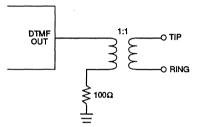


FIGURE 5: DTMF Output

DIGITAL AND DC REQUIREMENTS

The following electrical specifications apply to the digital input and output signals over the recommended operating range unless otherwise noted. The specifications do not apply to the following pins: LIN, DIN, XIN, XOUT, and DTMF OUT. Positive current is defined as entering the circuit. Vn = 0 unless otherwise stated.

PARAMETER	CONDITIONS	MIN	NOM	МАХ	UNITS
Supply Current*			15	30	mA
Power Dissipation				225	mW
Input Voltage High		0.7Vp			v
Input Voltage Low				0.3Vp	v
Input Current High				10	μA
Input Current Low		-10			μA
Output Voltage High	loh = -0.2mA	Vp-0.5			v
Output Voltage Low	lol = +0.4mA			Vn+0.5	V.
* with DTMF output disabled					

DTMF RECEIVER: Electrical Characteristics

PARAMETER	CONDITIONS	MIN	NOM	мах	UNIT
Frequency Detect Bandwidth		±(1.5+2Hz)	±2.3	±3.5	%Fo
Amplitude for Detection	Each Tone	-32		-2	dBm/tone
Twist Tolerance		-10		+10	dB
60Hz Tolerance				0.8	Vrms
Dial Tone Tolerance	Precise Dial Tone			0	dB*
Speech Immunity	MITEL Tape #CM7290		2		hits
Noise Tolerance	MITEL Tape #CM7290			-12	dB*
Input Impedance		100			ΚΩ
* Referenced to lowest amplitude	e tone			•	•

DTMF RECEIVER: Timing Characteristics

PARAMETER		CONDITIONS	MIN	NOM	МАХ	UNIT
TON	Tone Time for Detect		40			ms
TON	Tone Time for No Detect				20	ms
TOFF	Pause Time for Redetection		40			ms
TOFF	Pause Time for Bridging				20	ms
TD1	Detect Time		25		46	ms
TR1	Release Time		35		50	ms

DTMF RECEIVER: Timing Characteristics (Continued)

PARAMETER		CONDITIONS	MIN	NOM	МАХ	UNIT
TSU1	Data Set Up Time		7			μs
THD1	Data Hold Time		4.2		5.0	ms
TED	ED Detect Time		7		22	ms
BER	ED Release Time		2		18	ms
	Output Enable Time				200	ns
	Output Disable Time				200	ns

DTMF GENERATOR: Electrical Characteristics

PARAMETER	CONDITIONS	MIN	NOM	МАХ	UNIT
Frequency Accuracy		-1.0		+1.0	%Fo
Output Amplitude	R1 = 100Ω to Vn, Vp - Vn = 5.0V				
Low Band		-9.2		-7.2	dBm
High Band		-6.6		-4.6	dBm
Output Distortion	DC to 50kHz			-20	dB

DTMF GENERATOR: Timing Characteristics

PARAMETER		CONDITIONS	MIN	NOM	МАХ	UNIT
TSTART	Start-Up Time				2.5	μs
TSU2	Data Set-Up Time		100			ns
THD2	Data Hold Time		50			ns
TRP	RESET Pulse Width		100			ns
TPW	LATCH Pulse Width		100			ns

CALL PROGRESS DETECTOR: Electrical Characteristics

PARAMETER	CONDITIONS	MIN	NOM	МАХ	UNIT
Amplitude for Detection	Amplitude for Detection 305 Hz-640 Hz			0	dBm
Amplitude for No Detection	305 Hz-640 Hz			-50	dBm
`	f>2200 Hz, <160 Hz			-25	dBm
Detect Output	Logic 0			.5	V
	Logic 1	4.5			V
"LIN" Input	Max. Voltage			VDD	V
Input Impedance	500 Hz	100			kΩ

SSI 75T2091 DTMF Transceiver with Early Detect & Call Progress Detection

CALL PROGRESS DETECTOR: Electrical Characteristics (Continued)

PARAMETER		CONDITIONS	MIN	NOM	МАХ	UNIT
TON	Signal Time for Detect		40			ms
TON	Signal Time for No Detect				10	ms
TOFF	Interval Time for Detect		40			ms
TOFF	Interval Time for No Detect				20	ms
TD2	Detect Time				40	ms
TR2	Release Time				40	ms

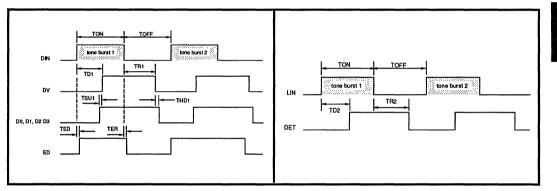
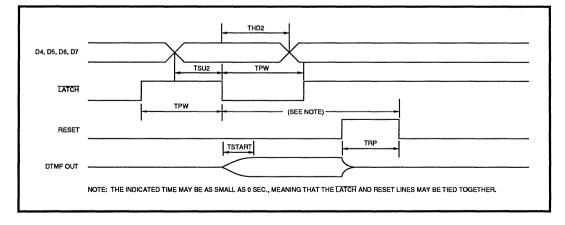
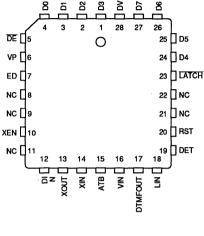



FIGURE 6: DTMF Decoder

FIGURE 7: Call Progress Detector


FIGURE 8: DTMF Generator

4

PACKAGE PIN DESIGNATIONS

(TOP VIEW)

			_
D2 [1	28	D 3
D1 [2	27	Dv
D0 [3	26	07
NC [4	25] D6
	5	24	D5
VP [6	23	□□₄
ED [7	22	
	8	21] RST
	9	20] NC
NC [10	19	D NC
	11	18	DET
XOUT [12	17	
	13	16	
АТВ [14	15] VN
	h		

28-Pin DIP

28-Pin PLCC

ORDERING INFORMATION

PART DESCRIPTION	ORDER NO.	PKG. MARK
SSI 75T2091		
28-Pin Plastic DIP	SSI 75T2091 - IP	75T2091 - IP
28-Pin PLCC	SSI 75T2091 - IH	75T2091 - IH

No responsibility is assumed by Silicon Systems for use of this product nor for any infringements of patents and trademarks or other rights of third parties resulting from its use. No license is granted under any patents, patent rights or trademarks of Silicon Systems. Silicon Systems reserves the right to make changes in specifications at any time without notice. Accordingly, the reader is cautioned to verify that the data sheet is current before placing orders.

Silicon Systems, Inc., 14351 Myford Road, Tustin, CA 92680, (714) 731-7110, FAX: (714) 731-5457

silicon systems*

The SSI 75T957/957A combines switched-capacitor

and digital frequency measuring techniques to decode

Dual-Tone Multifrequency (DTMF) signals to four bit binary data. Dial tone rejection and 60 Hz noise

rejection filters are built in. Fabricated as a monolithic

integrated circuit using low power CMOS processing,

the SSI 75T957/957A is packaged in a 22-pin DIP or 24-pin SO. The SSI 75T957A will operate with a supply

range of 5 to 12 volts: the 75T957 is for 5V-only

operation. An inexpensive 3.58 MHz television crystal

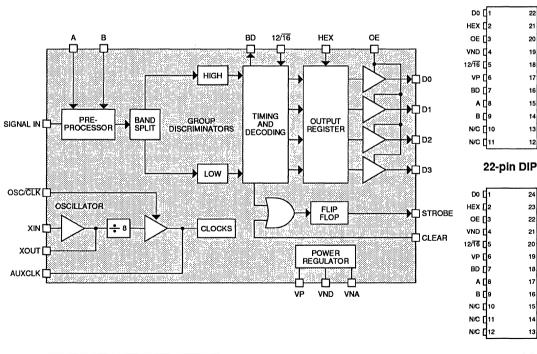
and a resistor are the only external components required. High system density may be achieved by using

the clock output of one crystal-connected receiver to

drive the time bases of additional receivers.

SSI 75T957/957A **DTMF Receiver** with Dial Tone **Reject Filter**

Julv. 1990


DESCRIPTION

FEATURES

- Complete DTMF receiver in 22-pin DIP or 24-pin SO
- Decodes all 16 DTMF digits
- Excellent dial tone and speech immunity
- Meets telephone impulse noise immunity standards
- Digitally selectable sensitivity to -38 dBm
- Selectable 4-bit hexadecimal or binary-coded 2-of-8 output
- Fabricated using low-power CMOS technology
- Operates at 5V (75T957) or 12V (75T957A)
- Second source of Teltone M-957

(Continued)

BLOCK DIAGRAM

PIN DIAGRAMS

221 01

21 02

20h D3

19 CLEAR

18h STROBE

17h AUXCLK

16 OSC/CLK 15h XIN

14h xout

131 VNA

241 D1

23 D D2

22h

21 N/C

16 XIN

D3

20 CLEAR

19 STROBE

18 AUXCLK

17 OSC/CLK

13 SIGNAL IN

15 XOUT 140 VNA

12 SIGNAL IN

24-pin SO

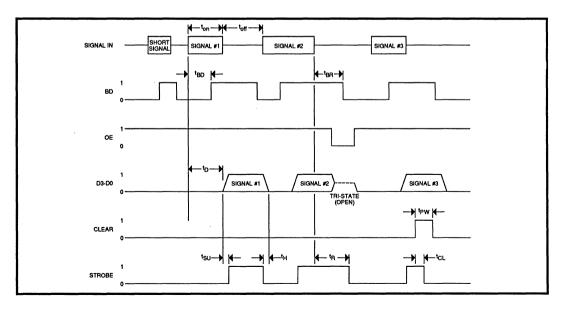
CAUTION: Use handling procedures necessary for a static sensitive component.

DESCRIPTION (Continued)

The SIGNAL IN input to the SSI 75T957/957A interfaces readily to telephone lines, radio receivers, tape players and other DTMF signal sources. Inputs A and B control sensitivity to a maximum of -38 dBm, while the 12/16 input determines the signals to be detected. The pre-processing stages of the SSI 75T957/957A filter out dial tone and noise, split the signal into its high frequency group and low frequency group components, and hard limit each component to provide automatic gain control. Four discriminators in each group then detect the individual tones. Post-processing stages of the SSI 75T957/957A time the tone durations and store binary data for outputting as determined by the HEX input. The STROBE output is activated by the presence of valid data in the output register and cleared by the detection of a valid end-of-signal pause or by the CLEAR input. An early signal presence indicator, BD, facilitates applications requiring tone blocking. The data outputs operate with simple logic circuits or microprocessors and are three-state enabled to facilitate bus-oriented architectures.

PIN DESCRIPTION

NAME	22-pin DIP	24-pin SO	TYPE	DESCRIPTION		
SIGNAL IN	12	13	I	DTMF input. Timings are shown in Figure 1. Internally biased so that the input signal may be AC coupled. SIGNAL IN also permits DC coupling as long as the input voltage does not exceed the positive supply. Proper coupling is shown in Figure 3. See Table 1 for the frequency pairs associated with each DTMF signal.		
12/ 16	5	5	1	DTMF signal detection control. When 12/16 is at logic "1, the SSI 75T957 detects the 12 most commonly used DTMF signals (1 through #). When 12/16 is at logic "0," the SS 75T957 detects all 16 DTMF signals (1 through D).		
А, В	8, 9	8, 9	I	Binary DTMF signal sensitivity control inputs. A and B select the sensitivity of the SIGNAL IN input to a maximum of -38 dBm.		
D3, D2 D1, D0	20, 21 22, 1	22, 23 24, 1	0	Data outputs. When enabled by the OE input, the data outputs provide the code corresponding to the detected digit in the format programmed by the HEX pin. See Table 1. The data outputs become valid after a tone pair has been detected and are cleared when a valid pause is timed. Timings are shown in Figure 1.		
OE	3	3	I	Output enable. When OE is at logic "1," the data outputs are in the CMOS push/pull state and represent the contents of the output register. When OE is driven to logic "0," the data outputs are forced to the high-impedance or "third" state. Timings are shown in Figure 1.		


PIN DESCRIPTION (Continued)

NAME	22-pin DIP	24-pin SO	ТҮРЕ	DESCRIPTION
HEX	2	2	I	Binary output format control. When HEX is at logic "1" the output of SSI 75T957 is full, 4-bit binary. When HEX is at logic "0," the output is binary coded 2-of-8. Table 1 shows the output codes.
STROBE	18	19	Ο	Valid data indication. STROBE goes to logic "1" after a valid tone pair is sensed and decoded at the data outputs. STROBE remains at logic "1" until a valid pause occurs or the CLEAR input is driven to logic "1," whichever is earlier. Once cleared, STROBE will not rise to a logic "1" until a new valid tone (preceded by a valid pause) is detected. Timings are shown in Figure 1.
CLEAR	19	20	I	STROBE control. Driving CLEAR to logic "1" forces the STROBE output to logic "0." When CLEAR is at logic "0," STROBE is forced to logic "0" only when a valid pause is detected. Tie to VNA or VND when not used.
BD	7	7	0	Button down. A logic "1" BD indicates a signal has been detected and is being validated. BD precedes STROBE and data outputs.
XIN, XOUT	15, 14	16, 15	Ι	Crystal connections. When an auxiliary clock is used, XIN should be tied to logic "1." See Figure 4.
OSC/CLK	16	17	I	Time base control. When OSC/CLK is at logic "1," the output of the SSI 75T957's internal oscillator is selected as the time base. When OSC/CLK is at logic "0" and XIN is at logic "1," the AUXCLK input is selected as the time base.
AUXCLK	17	18	0	Auxiliary clock input. When OSC/CLK is at logic "0" and XIN is at logic "1," the AUXCLK input is selected as the SSI 75T957's time base. The auxiliary input must be 3.58 MHz divided by 8 for the SSI 75T957 to operate to specifications. If unused, AUXCLK should be left open.
VNA, VND	13, 4	14, 4	-	Negative analog and digital power supply connections. Separated on the chip for greater system flexibility, VNA and VND should be at equal potential.
VP	6	6	-	Positive power supply connection.
N/C	10, 11	10-12, 21	-	Not connected. These pins have no internal connection and may be left floating.

SSI 75T957/957A TIMING (-40°C \leq TA \leq +85°C; 4.5V \leq VP \leq 13.2V. Refer to Figure 1.)

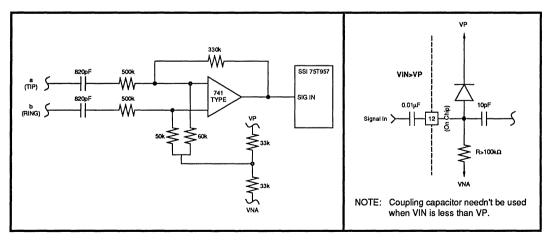

PARAMETER		CONDITIONS	MIN	NOM	ΜΑΧ	UNITS
ton	Tone Time	for detection	40	-	-	ms
		for rejection	-	-	20	ms
toff	Pause Time	for detection	40	-	-	ms
		for rejection	-	-	20	ms
tD	Detect Time		25	-	46	ms
tR	Release Time		35	-	50	ms
tsu	Data Setup Time		7	-	-	μs
tн	Data Hold Time		4.2	-	5.0	ms
tcl	Strobe Clear Time		-	160	250	ns
tpw	Clear Pulse Width		200	-	-	ns
tBD	BD Detect Time		7	-	22	ms
tBR	BD Release Time		2	-	18	ms
	Output Enable Time	$C_{L} = 50 pF, R_{L} = 1 k\Omega$	-	200	300	ns
	Output Disable Time	$C_{L} = 35 pF, R_{L} = 500 \Omega$	-	150	200	ns
	Output Rise Time	C _L = 50pF	-	200	300	ns
	Output Fall Time	C _L = 50pF	-	160	250	ns

TABLE 1: DTMF TO BINARY DECODING

DIGIT	LOW- FREQUENCY COMPONENT (Hz)	HIGH- FREQUENCY COMPONENT (Hz)	HEX OUTPUT D3 D2 D1 D0	BINARY CODED 2-OF-8 OUTPUT D3 D2 D1 D0
1	697	1209	0001	0000
2	697	1336	0010	0001
3	697	1477	0011	0010
4	770	1209	0100	0100
5	770	1336	0101	0101
6	770	1477	0110	0110
7	852	1209	0111	1000
8	852	1336	1000	1001
9	852	1477	1001	1010
0	941	1336	1010	1101
*	941	1209	1011	1100
#	941	1477	1100	1110
Α	697	1633	1101	0011
В	770	1633	1110	0111
C	852	1633	1111	1011
D	941	1633	0000	1111
Note: The SSI 7	75T957 detects signals	A through D when the	12/16 input is at logic	"0."

FIGURE 2: Telephone Line Differential Input Interface

FIGURE 3: Input Signal Configuration

ABSOLUTE MAXIMUM RATINGS

(Operation above absolute maximum ratings may permanently damage the device.)

PARAMETER	CONDITIONS	RATING
DC Supply Voltage - VP	VND=VNA=0V	16.0V
Input Voltage	All inputs except SIGNAL IN	(VP + 0.5V) to (VND - 0.5V)
SIGNAL IN Voltage		(VP + 0.5V) to (VP - 22V)
Storage Temperature		-65° to 150°C
Operating Temperature		-40° to 85°C
Lead Temperature	Soldering, 5 sec.	260°C
Power Dissipation		1W

ELECTRICAL CHARACTERISTICS

 $(-40^{\circ}C \le T_A \le +85^{\circ}C)$

PARAMETER	CONDITIONS		MIN	NOM	MAX	UNITS
SIGNAL IN Input Requirements	•					
Signal Level (per tone)	VP=12V	A=0, B=0	-24	-	+6	dBm
(See Note 1)		A=1, B=0	-27	-	+3	dBm
		A=0, B=1	-30	-	0	dBm
		A=1, B=1	-	-32	-	dBm
	VP=5V	A=0, B=0	-32	-	-2	dBm
		A=1, B=0	-35	-	-5	dBm
		A=0, B=1	-38	-	-8	dBm
		A=1, B=1	-	-40	-	dBm
Signal Frequency Deviation with Detection			±(1.5% +2)	±2.5%		Hz
Signal Frequency Deviation without Detection			±3.5%	±3.0%	-	Hz
Twist	See Note	2 -	-	±10	dB	
Gaussian Noise	See Note	3 -	12	A-7	dB	
Dial Tone Level (per tone)	F ≤ 480 H	z; see Note 4	-	-	A+22	dB
Digital Input Requirements (See Not	e 5)					
Logic 0 Voltage	VP=12V	0	-	3.6	v	
-	VP=5V	0	-	1.5	v	
Logic 1 Voltage	VP=12V	8.4	-	12.0	v	
	VP=5V	3.5	-	5.0	v	

ELECTRICAL CHARACTERISTICS (Continued)

PARAMETER	CONDITIONS	MIN	NOM	MAX	UNITS
Digital Output Characteristics (Se	e Note 5)	. h	-		
Logic 0 Voltage	VP=12V, Io = 1.0mA	0	-	1.2	v
	VP=5V, lo = 0.4mA	0	-	0.5	v
Logic 1 Voltage	Vp=12V, lo = -0.5mA	10.8	-	12.0	v
	VP=5V, Io = -0.2mA	4.5	-	5.0	v
Three-State Leakage		-	-	10.0	μΑ
Miscellaneous Characteristics					
CMOS Latch-up Voltage	See Note 7	20	-	-	v
SIGNAL IN Input Impedance	F=1kHz 15pF	100k	-	-	Ω
Power Requirements					
Supply Current	VP=12V	-	20	40	mA
	Vp=5V	-	9	18	mA
Power Dissipation	VP=12V, see Note 6	-	204	480	mW
(outputs open)	VP=5V, see Note 6	-	30	90	mW
Power Supply Wide Band Noise	A=0, B=0				
	Vp=12V	-	-	25	mVpp
	Vp=5V	-	-	10	mVpp

Notes:

1. With an ambient temperature of 25°C, the signal duration and signal interval are at minimum, and the signal frequency deviation and twist are at maximum. The unit "dBm" refers to decibels above or below a reference power of one milliwatt into a 600-ohm load. (For example, -24dBm equals 49mVrms.)

2. Twist is defined as the ratio of the level of the high-frequency DTMF component to the level of the lowfrequency DTMF component.

3. With an ambient temperature of 25°C, the signal level is at A+5, the signal frequency deviation and twist are at 0, and the signal applied is 50ms off and 50ms on. The A level is the minimum detect level selected.

4. The signal duration and signal interval are at minimum, and the signal frequency deviation and twist are at maximum. The A level is the minimum detect level selected.

5. Logic levels shown are referenced to VND.

6. For an ambient temperature of 25°C.

7. Power supply excursions above this value can cause device damage.

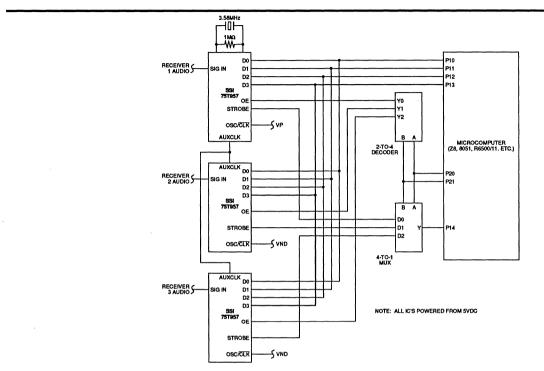
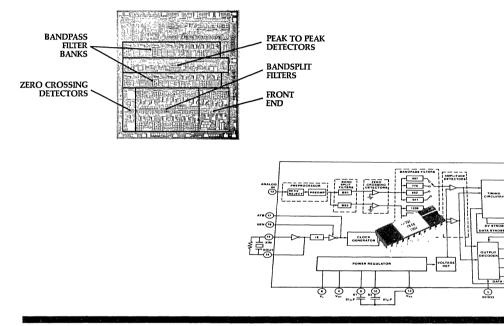


FIGURE 4: Multiple Receiver/Microprocessor Interface

ORDERING INFORMATION


PART DESCRIPTION	ORDER NO.	PKG. MARK
SSI 75T957 22-pin Plastic DIP, 5V-only	SSI 75T957-IP	75T957-IP
SSI 75T957 24-pin SOL, 5V-only	SSI 75T957-IL	75T957-IL
SSI 75T957A 22-pin Plastic DIP, 5-12V operation	SSI 75T957A-IP	75T957A-IP
SSI 75T957A 24-pin SOL, 5-12V operation	SSI 75T957A-IL	75T957A-IL

No responsibility is assumed by Silicon Systems for use of this product nor for any infringements of patents and trademarks or other rights of third parties resulting from its use. No license is granted under any patents, patent rights or trademarks of Silicon Systems. Silicon Systems reserves the right to make changes in specifications at any time without notice. Accordingly, the reader is cautioned to verify that the data sheet is current before placing orders.

Silicon Systems, Inc., 14351 Myford Road, Tustin, CA 92680, (714) 731-7110, FAX: (714) 731-5457

Application Guide

Monolithic Dual-Tone Multi-Frequency (DTMF) Receivers

INTRODUCTION

The Silicon Systems integrated DTMF Receivers and Transceivers are complete Touch-Tone[™] detection and generation systems. Each can operate in a stand-alone mode for the majority of telecommunications applications, thereby providing the most economical implementation of DTMF signaling systems possible. Each combines precision active filters and analog circuits with digital control logic on a monolithic CMOS integrated circuit. SSI DTMF chip use is straightforward and the external component requirements are minimal. This application guide describes device operation, performance, system requirements and typical application circuits for the SSI DTMF chips.

silicon systems*

HOW THE SILICON SYSTEMS DTMF CIRCUITS WORK

GENERAL DESCRIPTION OF OPERATION

The task of a DTMF Receiver is to detect the presence of a valid DTMF signal on a telephone line or other transmission medium. The presence of a valid DTMF signal indicates a single dialed digit; to generate a valid digit sequence, each DTMF signal must be separated by a valid pause.

Table 1 gives the established Bell system standards for a valid DTMF signal and a valid pause. The SSI DTMF Receivers meet or exceed these standards.

ä

PARAMETER	VALUE
One Low-Group Tone, and	697, 770, 852 or 941 Hz
One High-Group Tone	1209, 1336, 1477 or 1633 Hz
Frequency Tolerance	fo ± (1.5% + 2 Hz)
Amplitude Range	-24 dB \leq A \leq 6 dBm @ 600 Ω (Dynamic Range 30 dB)
Relative Amplitude (Twist)	$-8 dB \le \frac{\text{High Group Tone}}{\text{Low Group Tone}} \le +4 dB$
Duration	40 ms or longer
Inter-tone Pauses	40 ms or longer

Table 1: Bell System Standards

GENERAL DESCRIPTION (Continued)

Similar device architecture is used in all SSI DTMF Receivers. Figure 1 shows the SSI 75T202 Block Diagram. This architecture is implemented in all Silicon Systems single chip receivers, as well as SSi Transceivers. In general terms, the detection scheme is as follows: The input signal is pre-filtered and then split into two bands, each of which contains only one DTMF tone group. The output of each band-split filter is amplified and limited by a zero-crossing detector. The limited signals, in the form of square waves, are passed through tone frequency bandpass filters. Digital logic is then used to provide detector sampling and determine detection validity, to present the digital output data in the correct format, and to provide device timing and control.

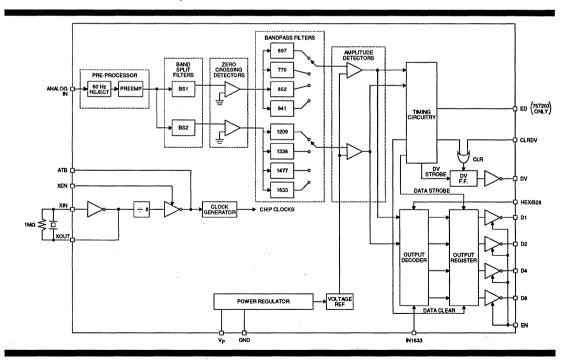


Figure 1: SSI 75T202 Block Diagram

PERFORMANCE CONSTRAINTS

SPEECH IMMUNITY AND NOISE TOLERANCE

The two largest problems confronting a DTMF Receiver are:

- 1) Distinguishing between valid DTMF tone pairs and other speech or stray signals that contain DTMF tone pair frequencies. This is referred to as Speech Immunity.
- Detecting valid tone pairs in the presence of noise, which is typically found in the telephone (or other transmission medium) environment. This is referred to as Noise Tolerance.

The SSI DTMF Receivers use several techniques to distinguish between valid tone pairs and other stray signals. These techniques are explained in later sections. Briefly, the techniques are:

- 1) Pre-filtering of audio signal. Removes supply noise and dial tone from input audio signal and emphasizes the voice frequency domain.
- 2) Zero-cross detection. Limits the acceptable level of noise during detection of a tone pair. Important for speech rejection.
- 3) Valid tone pair/pause sampling. Samples the detection filters and checks for consistency before

DETAILED DESCRIPTION OF OPERATION

AUDIO PREPROCESSOR

The Audio Preprocessor is an analog filter that band limits the input analog signal between 500 Hz and 6 kHz. In addition, it emphasizes the 2 kHz to 6 kHz voice region.

Band limiting suppresses power supply and dial tone frequencies, and high frequency noise. The emphasized voice region helps to equalize the audio response since many phone lines tend to roll off at about 1 kHz. In addition, preservation of the upper voice frequencies is important in providing speech immunity.

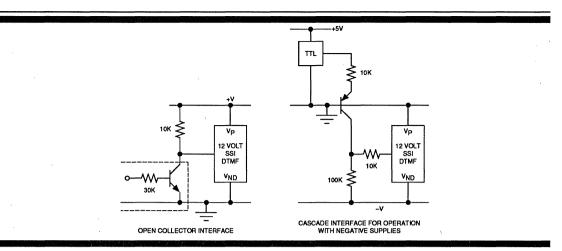
TONE BAND SPLITTING

After the analog signal is preprocessed, it is then split into two bands, each of which contains only one DTMF tone group. The band-split filters are actually band-stop filters to maintain all frequencies except the *other* tone group; this is done to maintain all analog information to enhance speech immunity but not allow the other tone group to act as interfering noise for the band being detected. These band-stop filters have "floors" that limit the amount of tone pair twist which further enhances speech immunity. See device data sheets for acceptable twist limits.

ZERO-CROSSING DETECTORS

The output of each band-split filter is amplified and limited by a zero-crossing detector (limiter). The function of the zero-crossing detector is to produce a square wave at the prime frequency emanating from the band-split filter. If a pure tone is not present, as in the case of voice or other interfering noise, a rectangular wave with a variable period will result. Proportional to the interference, the limiter output power is spread over a broad frequency range as the zero crossings "dither." When a high level of noise or speech occurs, no single bandpass filter pair will contain significant power long enough to result in a tone detection. On the other hand, when a pure DTMF tone exists with acceptable noise levles, the output of the limiter will not have any significant dither and tone detection will occur. The zero-crossing detector also acts as AGC (Automatic Gain Control) in that the output amplitude is independent of input amplitude; this additionally establishes an acceptable signal-to-noise ratio not dependent on tone amplitude.

BANDPASS FILTERS & AMPLITUDE DETECTORS


The bandpass filters perform tone frequency discrimination. Their responses are tailored so that if the frequency of the limited square wave from the zero-crossing detector is within the tone frequency tolerance, the fitler output will exceed the amplitude detector threshold. The amplitude detectors are interrogated periodically by the digital control circuitry to acertain the presence of only one tone in each band for the required duration. In a similar fashion, valid pauses are measured by the absence of valid tone pairs for the specified time.

TIMING AND LOGIC

During the qualification process, the output decoder gererates the proper digital code for the received DTMF tone pair. After the fidelity and duration of this signal have been verified, the timing circuitry latches this code into the output register and raises the data valid (DV) flag.

The only precision external element needed for the SSI DTMF Receivers is a 3.58 MHz parallel resonant crystal (color-burst frequency) with a .01% tolerance for the onboard oscillator. A 1 M Ω 10% resistor should be connected in parallel with the crystal. This generates the precise clock for the filters and for the logic timing and control of the chip.

CIRCUIT IMPLEMENTATION

Standard CMOS technology is used for the entire circuit. Logic functions use standard low-power circuitry while the analog circuits use precision switched-capacitorfilter technology.

HOW TO USE THE SSI DTMF RECEIVERS

PRECAUTIONS

Although static protection devices are provided on the high-impedance inputs, normal handling precautions observed for CMOS devices should be used.

All CMOS parts are prone to a destructive latch-up mode. This behavior is inherent to these parts due to their physical structure. The latch-up mode can best be described as a low impedance, high current state existing between the power supply connections on a CMOS chip. This is also referred to as triggering of parasitic SCR behavior.

The most common cause of a latch-up mode is operating a CMOS part outside its rated power supply voltage. This over-voltage need not be applied at power supply pins only to cause latch-up. Latch-up can occur when over-voltage is applied at any input or output. For the SSI DTMF Receivers & Transceivers, the pin voltages should be constrained to the range between VN – 0.5V and VP + 0.5V (except the analog input pin whose conditions are discussed below). Clamping diodes should be utilized wherever necessary to ensure that voltage ratings are not exceeded.

Another cause for latch-up is fast dv/dt transients affecting the chip. These transients are encountered in applications that require the connection/disconnection of "live" boards. While these applications are very rare and their implementation is best avoided, it must be mentioned that whenever they are necessary, they present a severe environment for CMOS parts. Care must be taken in such instances to ensure that ground planes and rails are connected first and disconected last. This will go a long way in eliminating voltage transients.

Voltage transients that exist on power lines must also be eliminated. High voltage transients caused by switching of high current devices can trigger latch-up. High frequency decoupling is a requirement for the proper operation of the SSI DTMF devices. A 0.01μ F to a 0.1μ F ceramic decoupling capacitor should be connected to the power supply pin at the chip.

POWER SUPPLY

Excessive power supply noise should be avoided, and to aid the user in this regard, power supply hook-up options are provided on some devices.

Since the digital circuitry of the devices possess the high noise immunity characteristics of CMOS logic, it is the analog section that is affected most by power supply noise. On those SSI DTMF Receivers that have separate Analog Negative and Digital Negative supply connections (grounds), namely VNA and VND, an unfiltered supply may be used at VND. It is necessary that VND and VNA differ no more than 0.5V.

The analog circuitry of the devices require low power supply noise levels as specified on the device data sheet. The effects of excessive power supply noise are decreased tone amplitude sensitivity and less tone detection frequency bandwidth. Power supply noise can be significantly reduced by decoupling the chip with a $0.1\mu F$

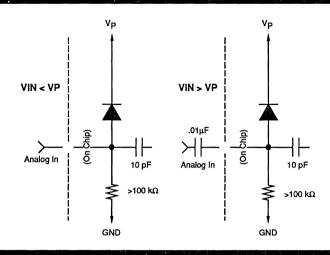


Figure 3: Direct and AC Coupled Configurations

ceramic capacitor. Power supply noise effects will be slightly less if the analog input is referenced to VP. This is normally accomplished by connecting VP to ground and utilizing a negative power supply.

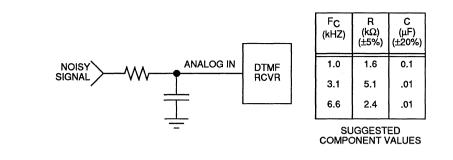
DIGITAL INPUTS

The digital inputs are directly compatible with standard CMOS logic devices powered by VP and VN (or VND). The input logic levels should swing within 30% of VP or VN to insure detection. Any unused input must be tied to VN or VP. Figure 2 shows methods for interfacing TTL outputs to 12V SSI DTMF Receivers.

ANALOG INPUT

The analog input is the signal input pin for the devices, and is specially biased to facilitate its connection to external circuitry, as shown in Figure 3. The signal level at the analog input pin must not exceed the positive supply as stated on the device data sheets. If this condition cannot be guaranteed by the external circuitry, the signal must be AC coupled into the chip with a $.01\mu$ F \pm 20% capacitor.

ANALOG INPUT NOISE


The SSI DTMF Receivers will tolerate wide-band input noise of up to 12 dB below the lowest amplitude tone component during detection of a valid tone pair. Any single interference frequency (including tone harmonics) between 1 kHz and 6 kHz should be at least 20 dB below the lowest amplitude tone component. Adherence to these conditions will ensure reliable detection and full tone detection frequency bandwidth. Because of the internal band limiting, noise with frequencies above 8 kHz can remain unfiltered. However, noise near the 56 kHz internal switched-capacitor-filter sampling frequency will be aliased (folded back) into the audio spectrum; noise above 28 kHz therefore should be low-pass filtered with a circuit as shown in Figure 4 using a cut-off frequency (*fc*) of 6.6 kHz.

A 1 kHz cut-off frequency filter can be used on "normal" phone lines for special applications. When a phone line is particularly noisy, tone pair detection may be unreliable. A 1 kHz low pass filter will remove much of the noise energy but maintain the tone groups; however, a decreased speech immunity will result. This usage should only be considered for applications where speech immunity is not important, such as control paths that carry no speech.

Some DTMF tone pair generators output distorted tones which the SSI DTMF Receivers may not detect reliably (inexpensive extension telephones are an example). Most of the interfering harmonics of these may be removed by the use of a 3 kHz low-pass filter as in Figure 4. Some speech immunity degradation will result. It should be mentioned that when using low-pass filters, a higher cut-off frequency will preserve more of the speech immunity advantages.

The SSI DTMF Receivers provide superior speech immunity and noise rejection. The analog signals are subjected to stringent criteria and rigorous qualification in order to assure that only true DTMF tone pairs are detected and decoded properly. Stray signal and noise with sufficient amplitude will cause a DTMF receiver to disqualify a DTMF tone pair.

Figure 4: Filter for Use in Noisy Environments

ANALOG INPUT NOISE (Continued)

Such a condition can be occasionally encountered when using DTMF "beepers." Beepers are normally used to transmit DTMF signals from dial-pulse phones. It has been observed that the non-linearity in the response of carbon microphones in telephone handsets introduces intermodulation products, which actually produce new frequency components. These components happen to fall direcity into the useful bandwidths of some of the basic tones that the receiver must detect. Because of the presence of these components (normally referred to as third-tone) with a valid DTMF tone, detection is disabled. To inhibit the more common higher frequency third tones from arriving to the receiver, the circuit shown in Figure 5 is suggested.

TELEPHONE LINE INTERFACE

In applications that use an SSI DTMF Receiver to decode DTMF signals from a phone line, a DAA (Direct Access

Arrangement) must be implemented. Equipment intended for connection to the public telephone network must comply with and be registered in accordance to FCC Part 68. For PBX applications refer to EIA Standard RS-464.

Some of the basic guidelines are:

- Maximum voltage and current ratings of the SSI DTMF Receivers must not be exceeded; this calls for protection from ringing voltage, if applicable, which ranges from 80 to 120V RMS over a 20 to 80 Hz frequency range.
- The interface equipment must not breakdown with high-voltage transient tests (including a 2500V peak surge) as defined in the applicable document.
- 3) Phone line termination must be less than 200Ω DC and approximately 600Ω AC (200-3200 Hz).

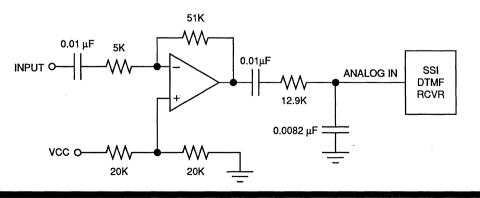


Figure 5: Filter for Use in Environments where a Third Tone Exists

- Termination must be capable of sustaining phone line lop current (off-hook condition) which is typically 18 to 120 mA DC.
- 5) The phone line termination must be electrically balanced with respect to ground.
- 6) Public phone line termination equipment must be registered in accordance to FCC Part 68 or connected through registered protection circuitry. Registration typically takes about six months.

Ready made DAA devices are also available. One source is Cermetek Microelectronics, Sunnyvale, California.

Figure 6 shows a simplified phone line interface using a 600Ω 1:1 line transformer. Transformers specially designed for phone line coupling are available from many transformer manufacturers.

Figure 7 shows a more enhanced version of Figure 6. These added features include:

- 1) A 150V surge protector to eliminate high voltage spikes.
- A Texas Instruments TCM 1520A ring detector, optically isolated from the supervisory circuitry.
- Back-to-back Zener diodes to protect the DTMF (and optional multiplexer Op-Amp) from ringer voltage.

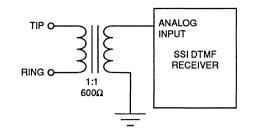


Figure 6: Simplified Phone Line Interface

 Audio multiplexer which allows voice or other audio to be placed on the line (a recorded message, for example) and not interfere with incoming DTMF tone detection.

An integrated voice circuit may also be implemented for line coupling, such as the Texas Instruments TCM 1705A, however, this approach is typically more expensive than using a transformer as shown below.

OUTPUTS

The digital outputs of the SSI DTMF Receivers (except XOUT) swing between VP and VN (or VND) and are fully compatible with standard CMOS logic devices powered



Figure 7: Full Featured Phone Line Interface

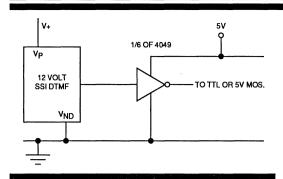
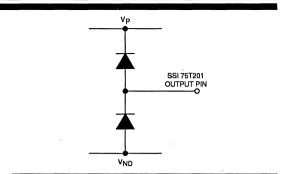
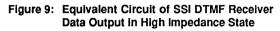


Figure 8: SSI 12V DTMF to TTL Level Interface

from VP and VN. The 5V DTMF devices will also interface directly to LSTTL. The 12V DTMF devices can interface to TTL or low voltage MOS with the circuit in Figure 8.

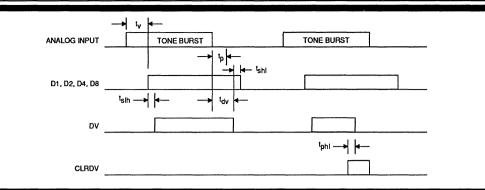

Data Outputs D8, D4, D2 and D1 are three-state enabled to facilitate interface to a three-state bus. Figure 9 shows the equivalent circuit for the data outputs in the high impedance state. Care must be taken to prevent either substrate diode in Figure 9 from becoming forward biased or damage may result.


TIMING

Within 40 ms of a valid tone pair appearing at the DTMF Receiver Analog Input, the Data Outputs D8, D4, D2 and D1 will become valid. SSI 75T201 timing and specifications are shown in Figure 10 and Table 2 respectively (refer to the device data sheet for other timing diagrams). Seven microseconds after the data outputs have become valid DV will be raised. DV will remain high and the outputs valid while the valid tone pair remains present. Within 40 ms after the tone pair stops, the DTMF will recognize a valid pause. DV is lowered approximately 45 ms following the end of the tone pair, and the data outputs all set to zero 4.56 ms following Dv going low. DV will strobe at least for the same duration as the received tone pair.

SYSTEM INTERFACE

Provision has been made on the SSI DTMF Receivers for handshake interface with an outside monitoring system. In this mode, the DV strobe is polled by the monitoring system at least once every 40 ms to determine whether a new valid tone pair has been detected. If DV is high, the coded data is stored in the monitoring system and the CLRDV is pulsed high. With some systems operating in the handshake mode, it may be desirable to know when a valid pause has occurred. Ordinarily this would be indicated by the falling edge of DV. However, in the handshake mode, DV is cleared by the monitoring sys-


tem each time a new valid tone pair is detected and, therefore, cannot be used to determine when a valid pause is detected. The detection of a valid pause in this case may be observed by detecting the clearing of the Data Outputs. Since, in hexadecimal format (the mode normally used with a handshake interface), the all zero state represents a commonly unused tone pair (D), the detection of a valid pause may be detected by connecting a four-input NOR gate to the device outputs and sensing the all zero state.

TIME BASE

The SSI DTMF Receivers contain an on-chip oscillator for a 3.5795 MHz parallel resonant quartz crystal or ceramic resonator. The crystal (or resonator) is placed between XIN and XOUT in parallel with a 1 M Ω resistor, while XEN is tied high. Since the switched-capacitor-filter time base is derived from the oscillator, the tone detect band frequency tolerance is proportional to the time base tolerance. The SSI DTMF Receiver frequency response and timing is guaranteed with a time base accuracy of at least \pm 0.01%. To obtain this accuracy the CTS Part No. MP036 or Workman Part No. CY1-C or equivalent quartz crystal is recommended. In less critical applications a suitable ceramic resonator may be implemented.

The use of a ceramic resonator requires the addition of two $30 \text{ pF} \pm 10\%$ capacitors; one between XIN and VN (or VND) and the other between XOUT and VN (or VND). Extra caution should be used to avoid stray capacitance on the resonant circuit when using a ceramic resonator instead of a quartz crystal.

When the oscillator is connected as above and XEN is tied high, the ATB (Alternate Time Base) pin delivers a square wave output at one-eighth the oscillator frequency (447.443 kHz nominal). The ATB pin can be converted to a time base input by tying XEN low; ATB can

Figure 10: SSI 75T201 Timing Diagram

AMETER	CONDITIONS	MIN	NOM	МАХ	UNITS
Tone Detection Time		20	25	40	ms
Data Overlap of DV Rising Edge	CLRDV = VND, EN = VP	7			μs
Pause Detection Time		25	32	40	ms
Time between end of Tone and Fall of DV		40	45	50	ms
Data overlap of DV Falling Edge		4	4.56	4.8	ms
Prop. Delay: Rise of CLRDV to fall of DV	CI = 300 pF Measured at 50% points			1	μs
Output Enable Time	CI = 300 pF, RI = 10K See Note 1			1	μs
Output Disable Time	CI = 300 pF, RI = 1K ΔV = 1V, See Note 2			1	μs
Output 10-90% Transition Time	CI = 300 pF			1	μs
	Tone Detection TimeData Overlap of DVRising EdgePause Detection TimeTime between end of Tone and Fall of DVData overlap of DV Falling EdgeProp. Delay: Rise of CLRDV to fall of DVOutput Enable TimeOutput Disable TimeOutput 10-90%	Tone Detection TimeData Overlap of DV Rising EdgeCLRDV = VND, EN = VPPause Detection TimeTime between end of Tone and Fall of DVData overlap of DV Falling EdgeCI = 300 pF Measured at 50% pointsProp. Delay: Rise of CLRDV to fall of DVCI = 300 pF, Measured at 50% pointsOutput Enable TimeCI = 300 pF, RI = 10K See Note 1Output Disable TimeCI = 300 pF, RI = 1K AV = 1V, See Note 2Output 10-90%CI = 300 pF	Tone Detection Time20Data Overlap of DV Rising EdgeCLRDV = VND, EN = VP7Pause Detection Time25Time between end of Tone and Fall of DV40Data overlap of DV Falling Edge4Prop. Delay: Rise of CLRDV to fall of DVCI = 300 pF Measured at 50% pointsOutput Enable TimeCI = 300 pF, RI = 10K See Note 1Output Disable TimeCI = 300 pF, RI = 1K ΔV = 1V, See Note 2Output 10-90%CI = 300 pF	Tone Detection Time2025Data Overlap of DV Rising EdgeCLRDV = VND, EN = VP7Pause Detection Time2532Time between end of Tone and Fall of DV4045Data overlap of DV Falling Edge44.56Prop. Delay: Rise of CLRDV to fall of DVCI = 300 pF Measured at 50% points2Output Enable TimeCI = 300 pF, RI = 10K See Note 12Output Disable TimeCI = 300 pF, RI = 1K ΔV = 1V, See Note 22	Tone Detection Time202540Data Overlap of DV Rising Edge $CLRDV = VND, EN = VP$ 77Pause Detection Time253240Time between end of Tone and Fall of DV404550Data overlap of DV Falling Edge44.564.8Prop. Delay: Rise of CLRDV to fall of DVCI = 300 pF Measured at 50% points1Output Enable TimeCI = 300 pF, RI = 10K See Note 11Output Disable TimeCI = 300 pF, RI = 1K $\Delta V = 1V, See Note 2$ 1Output 10-90%CI = 300 pF1

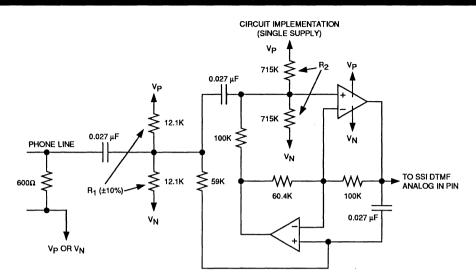

Note 2: Measured from 50% point of Falling Edge of EN to time at which output has changed 1V with RI to opposite rail.

Table 2: SSI 75T201 Timing Specifications ($-40^{\circ}C \le TA \le +85^{\circ}C$, VP - VND = VP - VNA = 12V ± 10%)

then be externally driven from another device such as the ATB output of another DTMF. No crystal is required for the ATB input device; XIN must be tied high if unused. Several SSI DTMF Receivers can be driven with a single crystal (refer to device data sheet for fan-out limit).

clock is needed for more than one device and it is desirable to use only one resonant device, an outside inverter should be used for the time base, buffered by a second inverter or buffer. The buffer output would then drive XIN of the SSI DTMF Receiver as well as the other device(s); XOUT must be left floating and XEN tied high.

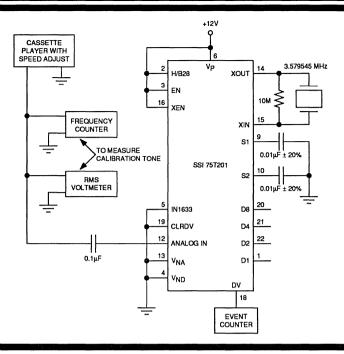
XOUT is designed to drive a resonant circuit only and is not intended to drive additional devices. If a 3.58 MHz

Note: All resistors 1%, all caps 5%, unless noted, op-amps: 1/2 LM1458 or equivalent

Figure 11: Dial Tone Reject Filter

DIAL TONE REJECTION

The SSI DTMF Receivers incorporate enough dial tone rejection circuitry to provide dial tone tolerance of up to 0 dB. The SSI 75T957 Receiver has on-board circuitry that provides 22 dB dial tone tolerance. Dial tone tolerance is defined as the total power of precise dial tone (350 Hz and 440 Hz as equal amplitudes) relative to the lowest amplitude tone in a valid tone pair. The filter of Figure 11 may be used for further dial tone rejection. This filter exhibits an elliptic highpass response that provides a minimum of 18 dB rejection at 350 Hz, and 24 dB rejection at 440 Hz so long as the component tolerances indicated are observed. The DTMF on-chip filter rejects 350 Hz at least 6 dB more than 440 Hz. Therefore, employing the filter of Figure 11 yields a dial tone tolerance of +24 dB.


PRINTED CIRCUIT BOARD IMPLEMENTATION

The SSI DTMF Receivers are analog in nature and should be treated as such; circuit noise should be kept to a minimum. To be certain of this, all input and output lines should be kept away from noise sources (high frequency data or clock lines); this is especially true for the Analog Input. Noise in the ground or power supply lines can be avoided by running separate traces to supportive logic circuits or by running thicker (lower resistance) busses. Capacitance power supply bypassing should be performed at the device. Refer to the Power Supply section above.

PERFORMANCE DATA

A portion of the final SSI DTMF Receiver device characterization uses the Mitel CM7290 tone receiver test tape. The evaluation circuit shown in Figure 12 was used to characterize the SSI 75T201. The speed and output level of the tape deck must be adjusted so that the calibration tone at the beginning of the tape is at exactly 1000 Hz and 2V rms.

The Mitel tape tests yield similar results on all of the SSI DTMF Receivers. Test results for the SSI 75T201 are summarized in Table 3. In short, the measured performance data demonstrates that the SSI DTMF Receivers are monolithic realizations of a full "central office quality" DTMF Receiver.

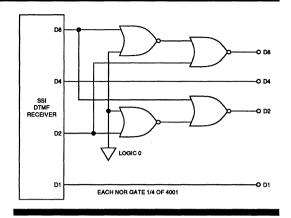
Figure 12: Circuit for Receiver Evaluation

TEST #	RESULTS
2a, b	B.W. = 5.0% of fo
2c, d	B.W. = 5.0% of fo
2e, f	B.W. = 5.3% of fo
2g, h	B.W. = 4.9% of fo
2i, j	B.W. = 5.0% of fo
2k, l	B.W. = 5.3% of fo
2m, n	B.W. = 5.3% of fo
20, p	B.W. = 4.8% of fo
3	160 decodes
4	Acceptable Amplitude Ratio (Twist) = -19.1 dB to +15.2 dB
5	Dynamic Range = 32.5 dB
6	Guard Time = 23.3 ms
7	100% Successful Decodes at N/S Ratio of -12 dBV
8	2-3 Hits Typical on Talk-Off Test

Table 3: Mitel #CM7290 Tape Test Results for SSI 75T201 (Averaged for 10 parts)

APPLICATIONS

CREATING HEXADECIMAL "0" OUTPUT UPON DIGIT "0" DETECTION


To be consistent with pulse-dialing systems, the SSI DTMF Receivers provide a hexadecimal "10" output upon the detection of a digit "0" tone pair when in the hexadecimal code format. However, some applications may instead require a hexadecimal "0" with a digit "0" detection. The circuit of Figure 13 shows an easy method to recode the hexadecimal outputs to do this using only 4 NOR gates.

Note that this circuit will not give proper code for the "*", "B", or "C" digits and will cause both digits "D" and "0" to output hexadecimal "0." This circuit should therefore be considered for numeric digits only. The output code format is shown in Table 4.

This circuit is useful for applications that require a display of dialed digits; the digit display usually requires a hexadecimal "0" input for a "0" to be displayed.

16-CHANNEL REMOTE CONTROL

DTMF signaling provides a simple, reliable means of transmitting information over a 2-wire twisted pair. The complete schematic of a 16-channel remote control is shown in Figure 14. When one of the key pad buttons is

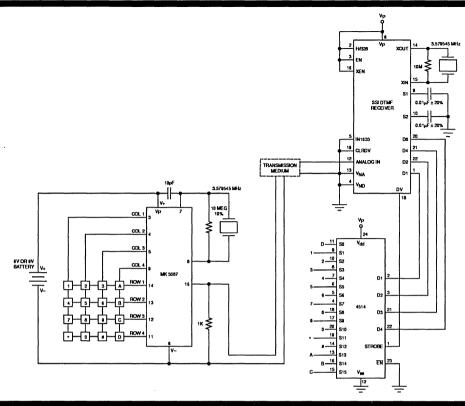
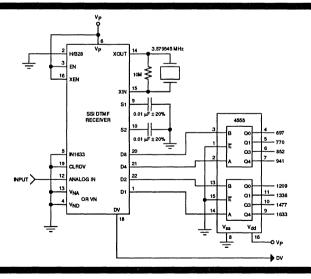
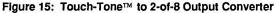
Figure 13: Hex "0" Out with Digit "0" Detect Conversion Circuit

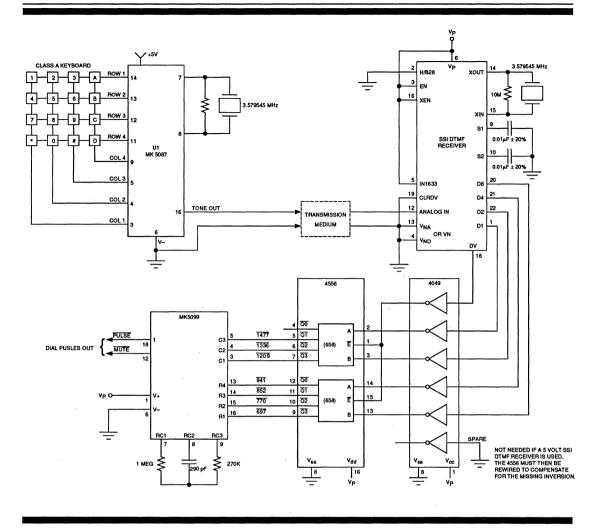
depressed, a tone pair is sent over the transmission medium to the SSI DTMF Receiver.

The 4514 raises one of its 16 outputs in response to the 4-bit output code from the DTMF. The output at the 4514 will remain high until the next button is depressed.

He	Hexadecimal & Fig. 12 Circuit				uit Hexadecimal				
Digit	D8	D4	D2	D1	Digit	D8	D4	D2	D1
1	0	0	0	1	1	0	0	0	1
2	0	0	1	0	2	0	0	1	0
3	0	0	1	1	3	0	0	1	1
4	0	1	0	0	4	0	1	0	0
5	0	1	0	1	5	0	1	0	1
6	0	1	1	0	6	0	1	1	0
7	0	1	1	1	7	0	1	1	1
8	1	0	0	0	8	1	0 .	0	0
9	1	0	0	1	9	1	0	0	1
0	1	0	1	0	0	0	0	0	0
*	1	0	1	1	*	0	0	0	1
#	1	1	0	0	#	1	1	0	0
Α	1	1	0	1	A	1	1	0	1
В	1	1	1	0	В	0	1	0	0
С	1	1	1	1	C	0	1	0	1
D	0	0	0	0	D	0	0	0	0

Table 4: Output Code of Figure 13


Figure 14: 16-Channel Remote Control

2-0F-8 OUTPUT DECODE

The circuit shown in Figure 15 can be used to convert the binary coded 2-of-8 to the actual 2-of-8 code (or 2of-7 if detection of 1633 Hz tone is inhibited). The output data will be valid while DV is high. If it is desired to force the eight outputs to zero when a valid tone is not present, DV should be inverted and connected to both E–NOT inputs of the 4555.

DTMF TO ROTARY DIAL PULSE CONVERTER

The 2-of-8 output of Figure 15 can be modified to interface with a pulse dialer as shown in Figure 16. If a 12V DTMF is used the 4049 will translate the 12V outputs to the 5V swings required for the MK5099 pulse dialer.

Figure 17 shows the interface for adding pulse detection and counting to a SSI DTMF Receiver.

The loop detector provides a digital output representing the telephone loop circuit "make" and "break" condition associated with rotary pulse dialing. For the circuit of Figure 17, ground represents a "make" and VP a "break." The loop detector feeds dial pulses to IC-1, a binary counter, and to IC-2A, a re-triggerable "one-shot." When a dial pulse appears the Q1-NOT output of IC-2A immediately goes low, resetting IC-1. The clock input to IC-1 is delayed by R1-C1 so that reset and count input do not overlap. The binary outputs of IC-1 will reflect the pulse count and 0.2 seconds after the last pulse the Q1-NOT output will go high. C3-R3 differentiate this pulse and clock the output latch, IC-3, holding the output pulse until the next digit.

The 0.2 second timeout of IC-2A indicates the end of dial pulsing since even a slow (8 pps) dial would input another pulse every 0.125 seconds. The binary outputs of IC-1 are paralleled with those of the SSI DTMF Receiver



Figure 17: Adding Pulse Detection and Counting to the SSI DTMF Receiver

circuit through diodes to the inputs of IC-3. A pulldown resistor is necessary on each IC-3 input pin. IC-1 must be a binary, not BCD, counter.

With a 4175 for IC-3 the output data is latched until the next valid input, whether from a rotary dial or dual tone instrument. A unique situation exists, however, when going on-hook. The loop detector will output a continu-

ous level of VP which would trigger IC-2A and put a single count into IC-1. A high level from the loop detector also turns on Q1, pulling the clock input of IC-3 to ground. Since the loop detector output will be low at the completion of dialing, all outputs are valid even when the telephone is placed on-hook, an important consideration if output data is recorded. 4

No responsibility is assumed by Silicon Systems for use of this product nor for any infringements of patents and trademarks or other rights of third parties resulting from its use. No license is granted under any patents, patent rights or trademarks of Silicon Systems. Silicon Systems reserves the right to make changes in specifications at any time without notice. Accordingly, the reader is cautioned to verify that the data sheet is current before placing orders.

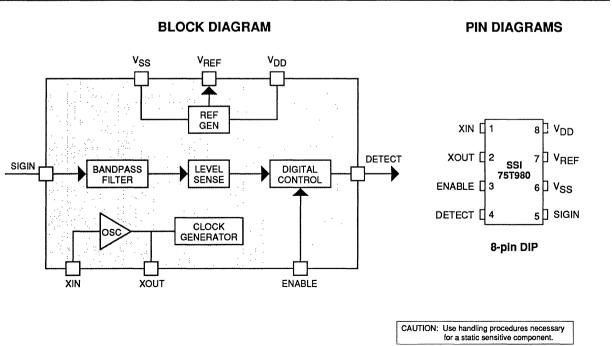
Silicon Systems, Inc., 14351 Myford Road, Tustin, CA 92680, (714) 731-7110, FAX: (714) 731-5457

Notes:

silicon systems*

SSI 75T980 Call Progress Tone Detector

July, 1990

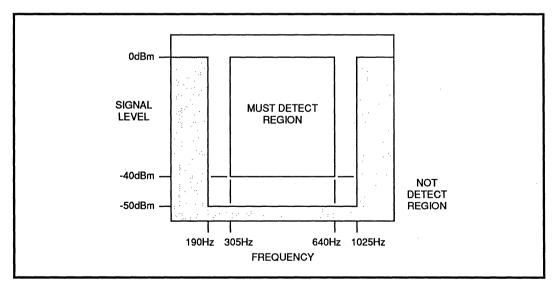

DESCRIPTION

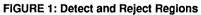
The SSI 75T980 Call Progress Tone Detector circuit allows automatic equipment to monitor tones in dial telephone systems that relate to the routing of calls. Such tones commonly include dial tones, circuits-busy tones, station-busy tones, audible ringing tones and others. By sensing signals in the range of 305 to 640 Hz, the SSI 75T980 does not require the use of precision tones to function. This means that tones which vary with location or call destination can be detected regardless of their exact frequency. The SSI 75T980 is sensitive to signals from 0 dBm to -40 dBm.

The low power CMOS switched capacitor filters used in the SSI 75T980 derive their accuracy from a 3.58 MHz clock, which in turn may be derived from other devices in the system being designed. The SSI 75T980 is available in a plastic 8-pin DIP and 16-pin SO packages.

FEATURES

- Detects tones throughout the telephone progress supervision band (305 to 640 Hz)
- Sensitivity to -40 dBm
- Dynamic range over 40 dB
- 40 ms minimum detect (50 ms to output)
- Single supply CMOS (low power)
- Supply range 4.5 to 5.5 VDC
- Uses 3.58 MHz crystal or external clock
- 8-pin DIP and 16-pin SO packages
- Second source of Teltone M-980


0790 - rev.



SSI 75T980 Call Progress Tone Detector

PIN DESCRIPTION

NAME	TYPE	DESCRIPTION
SIGIN	I	Accepts analog input signal. See "Electrical Characteristics" for voltage levels, and "Timing Characteristics" for timing.
DETECT	0	Call progress detect output. Goes to logic "1" when signal in 305-460 Hz band is sensed. See "Timing Characteristics."
ENABLE	1	Application of logic "1" on this pin enables the output; logic "0" disables output.
VREF	0	Supplies voltage at half VDD for voltage reference of on-chip op amps.
XIN, XOUT	I	Crystal connections to on-chip oscillator circuit.
VDD	-	Positive power supply connection
Vss	-	Negative power supply connection

SSI 75T980 Call Progress Tone Detector

ABSOLUTE MAXIMUM RATINGS

(Operation above absolute maximum ratings may permanently damage the device.)

PARAMETER	CONDITIONS	RATING
DC Supply Voltage	VDDVss	16.0V
Input Voltage	All inputs except SIGNAL IN	(VDD + 0.5V) to (Vss – 0.5V)
SIGNAL IN Voltage		(VDD + 0.5V) to (Vss – 22V)
Storage Temperature		–65°C to 150°C
Operating Temperature		0°C to 70°C
Lead Temperature	Soldering, 5 sec.	260°C

ELECTRICAL CHARACTERISTICS

(Ta = 25°C, VDD – Vss = 4.5V to 5.5V, dBm is referenced to 600Ω)

PARAMETER	CONDITIONS	MIN	NOM	МАХ	UNITS
Supply Current	VDD – Vss = 5V	-	4	10	mA
Signal level for detection	305-640 Hz	-40	-	0	dBm
Signal level for rejection	305-640 Hz	-	-	-50	dBm
	<i>f</i> >1025 Hz, <i>f</i> <190 Hz	-	-	0	dBm
DETECT output (lout = +1mA)	Logic 0	-	-	0.5	v
	Logic 1	4.5	-	-	v
ENABLE, XIN input (lin=10µA)	Logic 0	Vss	-	Vss+0.2	v
	Logic 1	VDD0.2	-	Vdd	v
XIN duty cycle		40	-	60	%
XIN, XOUT loading		-	-	10	pF
VREF output	Deviation	-2	(VDD+Vss)/2	+2	%
	Resistance	3.25	-	6.75	kΩ
SIGIN input	Maximum voltage	VDD-10	-	VDD	v
	Impedance (500 Hz)	80	-	-	kΩ

TIMING CHARACTERISTICS

 $(Ta = 25^{\circ}C, VDD - Vss = 4.5V \text{ to } 5.5V)$

PARAMETER		CONDITIONS	MIN	МАХ	UNITS
t _{mD}	Signal duration for detection	305-640 Hz	40	· -	ms
t _{ND}	Signal duration for rejection	305-640 Hz	-	20	ms
	Interval duration for detection	Signal dropping from -40 dBm to -50 dBm (t ₂)	40	-	ms
		Signal dropping from 0 dBm to –50 dBm (t ₁)	90	-	ms
t _D	Detect time		-	50	ms
t _B	Tone dropout bridging		-	20	ms

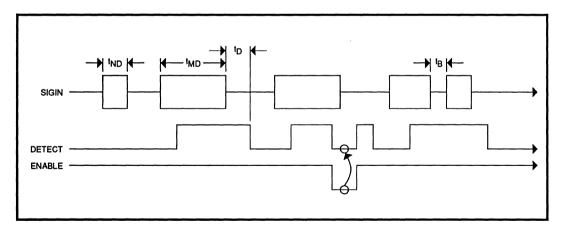


FIGURE 2: Basic Timing

SSI 75T980 Call Progress Tone Detector

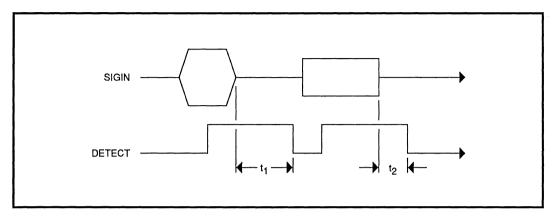
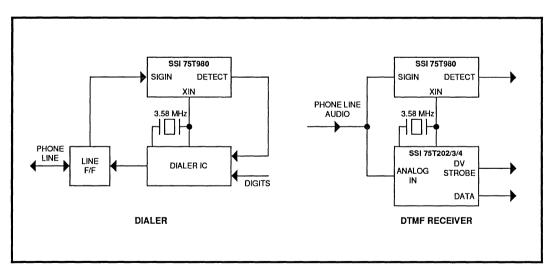



FIGURE 3: Effect of Amplitude on Timing

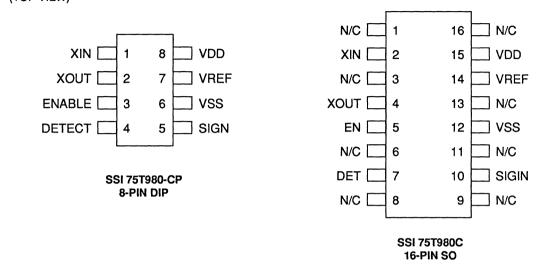


FIGURE 4: Applications Circuits

4

SSI 75T980 Call Progress Tone Detector

PACKAGE PIN DESIGNATIONS (TOP VIEW)

ORDERING INFORMATION

PART DESCRIPTION	ORDER NO.	PKG. MARK
SSI 75T980 8-pin Plastic DIP	SSI 75T980-CP	75T980-CP
SSI 75T980 16-pin SO Package	SSI 75T980-CL	75T980C

No responsibility is assumed by Silicon Systems for use of this product nor for any infringements of patents and trademarks or other rights of third parties resulting from its use. No license is granted under any patents, patent rights or trademarks of Silicon Systems. Silicon Systems reserves the right to make changes in specifications at any time without notice. Accordingly, the reader is cautioned to verify that the data sheet is current before placing orders

Silicon Systems, Inc., 14351 Myford Road, Tustin, CA 92680, (714) 731-7110, FAX: (714) 731-5457

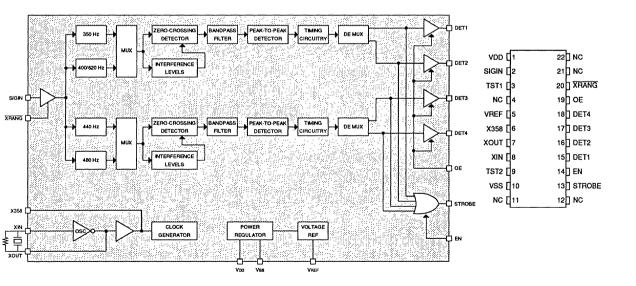
silicon systems*

July, 1990

DESCRIPTION

The SSI 75T981 and SSI 75T982 Precise Call Progress Tone Detector circuits enable automatic monitoring of tones in dial telephone systems for the purpose of routing calls. Built using CMOS switched capacitor technology, each has four independent channels for detecting precise tones in the 305 to 640 Hz range. The outputs of the channels have a response related to the respective tone durations.

The SSI 75T981 and SSI 75T982 are identical except for the tones detected. The SSI 75T981 will decode 350Hz, 400Hz, 440Hz and 480Hz. The SSI 75T982 will decode 350Hz, 440Hz, 480Hz and 620Hz tones.


FEATURES

- Detects & decodes precise tones throughout 305-640 Hz telephone progress band
- 35 dB dynamic range
- Single supply CMOS (low power)
- Adjustable gain sensitivity
- Supply range 4.75 to 5.5 VDC
- Uses 3.58 MHz crystal
- Three-state outputs
- Standard 22-pin DIP
- Second source to Teltone M981 and M982

BLOCK DIAGRAM

PIN DIAGRAM

Δ

CAUTION: Use handling procedures necessary for a static sensitive component.

CIRCUIT OPERATION

The functional block diagram is shown on page 1. Channels 1 and 2, and 3 and 4 are multiplexed, respectively as shown. Each channel starts with a 4pole band-pass filter that reduces the amplitude of the out-of-band signals. The output of the front-end filter is fed into two circuits, one being a zero-crossing detector which functions as a limiter-AGC, and the other being a circuit that controls the level of the interference floor based on the level of the incoming signal. The output of the ZCD, and energy-limited signal, is fed into a peak-to-peak detector that determines if the precise frequency is present by checking the amplitude of the signal from the back-end filter. Pulses from the peakto-peak detector, which indicate the presence of the precise tone, are counted to time the duration of the input pulsed-tone. If the criteria of the specifications are met, the appropriate detect output goes to the high state. As shown in the block diagram, all circuitry after the front-end filters is multiplexed. A digital demultiplexer follows the P-P detector to provide the four distinct outputs.

SIGIN

The input signal is applied to the SIGIN pin and is ACcoupled into the front-end filters. The SSI 75T981 and SSI 75T982 can amplify a low level signal by 10 dB when the XRANG pin is held low.

DET OUTPUTS & OE

Outputs DET1-4 are CMOS push-pull when enabled (OE="1") and high impedance when disabled

(OE="0"). A "1" on a DET pin indicates that the appropriate valid tone pulse was detected (see Table 1). Detect timing is shown in Figure 1.

STROBE & EN

The STROBE pin is the logical OR of the DETn outputs and will indicate when any one of the four call progress tones has been detected. STROBE is unaffected by OE but goes to a high impedance state when EN="0".

XIN, XOUT & X358

Internal timing and clocks are derived form the 3.58 MHz clock. The SSI 75T981 and SSI 75T982 contain an on-board inverter with sufficient gain to provide oscillation when connected to a low cost "colorburst" crystal. The crystal is connected between XIN and XOUT. A 1M Ω 10% resistor is also connected between these pins. In this mode, X358 is a clock frequency output available to drive other parts requiring the same frequency.

The part will also operate with an external digital clock (duty cycle 40% to 60%).

VREF

Internal analog signal reference voltage. Noise or interference coupled onto this pin may degrade chip functionality.

TST1 & TST2

Manufacturer's special test pins. These pins should be left floating, not grounded.

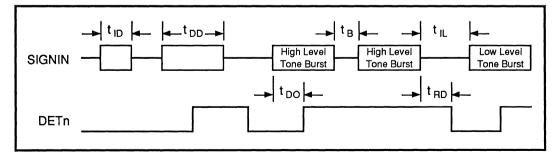


FIGURE 1: Timing Diagram

TIMING CHARACTERISTICS

(Ta = 25°C, VDD-Vss = 4.75V to 5.5V)

PAF	AMETER	CONDITIONS	MIN	MAX	UNITS
t _{DD}	Signal Duration for Detection	In band, see Electrical Char.	200	-	ms
t _{DO}	Time to Output	In band, see Electrical Char.	-	200	ms
t _B	Bridge Time	In band, see Electrical Char.	-	30	ms
t _{iD}	Signal Duration for Rejection	Noise at SIGIN: –50 dBm, 0.2-3.4 kHz	-	160	ms
t _{RD}	Time to Release	Noise at SIGIN: –50 dBm, 0.2-3.4 kHz	-	200	ms
t _{iL}	Interval Duration for Detection of Both Signals	High to Low; High = 0 dBm, Low = -25 dBm	1	-	sec
t _{en}	DETn Pin Enable Time, Z to Low or High	CL = 50 pF, RL = 100 kΩ	-	450	ns
t _{DS}	DETn pin Disable Time, Low or High to Z	CL = 50 pF, RL = 100 kΩ	-	450	ns

TABLE 1: Frequency Detection

SIGNAL PR	ESENT (fo)	DET1	DET2	DET3	DET4	OE	STROBE	EN
75T981	75T982							
350 Hz	350 Hz	1	x	х	x	1	1	1
400 Hz	620 Hz	x	1	х	х	1	1	1
440 Hz	440 Hz	x	x	1	х	1	1	1
480 Hz	480 Hz	x	x	х	1	1	1	1
Other I	n-Band	0	0	0	0	1	0	1
Ar	ıy		High Im	oedance		0	0	0

Note: Out-of-band tones may cause short detect pulses if at sufficient amplitude and pulsed duration.

ELECTRICAL CHARACTERISTICS

(0°C ≤ Ta ≤ 70°C)

PARAMETER	CONDITIONS	MIN	МАХ	UNITS
VDD		4.75	5.5	v
Oscillator Frequency Deviation	At XOUT from 3.57959 MHz	-0.01	+0.01	%
Power Supply Noise	0.1 - 5 kHz	-	20	mVpp
Current Drain	VDD=5.5V, Ta = 0°C	-	30	mA
Must Detect Signal		.		
Frequency Range		-1.0	+1.0	% of fo
Level (see Note 2)	XRANG=0; In-Band, see Table 1	-35	-10	dBm
	XRANG=1; In-Band, see Table 1	-25	0	dBm
Must Reject Signal Level	XRANG=0; Noise at SIGIN: -50dBm, 0.2 - 3.4 kHz	-	-60	dBm
	XRANG=1; Noise at SIGIN: -50dBm, 0.2 - 3.4 kHz	-	50	dBm
Level Skew Between Adjacent In-Band Signals for Detection of both	see Note 4	-	6	dB
Steady State Response Must Reject Level	f < fo - 5% or $f > fo + 5%see Timing Characteristics & Note 3$	-	0	dBm
SIGIN Pin				
Voltage Range		VDD - 10	VDD	v
Input Impedance	Resistance; f = 500 Hz	80	-	kΩ
	Capacitance		15	pF
Gain	XRANG=0	9.9	. 10.1	dB
XRANG Pin				
VIL		-	0.5	v
VIH		VDD - 2.0	-	v
Pullup Current	XRANG=VSS	-	-10	μΑ
Detect Pins, DETn	n da	-		·
VOL	ISINK = -1mA	-	0.5	v
VOH	ISOURCE = 1mA	VDD - 0.5	-	v
IOZ	VO = VDD, VSS	-	1	μΑ

	·····			
PARAMETER	CONDITIONS	MIN	MAX	UNITS
STROBE Pin				
VOL	ISINK = -1 mA	-	0.5	v
VOH	ISOURCE = 1 mA	VDD - 0.5	-	v
OE, EN Pins				
VIL			0.5	v
VIH		VDD - 2.0	-	v
Pullup Current	OE, EN = VSS	-	-10	μΑ
External Clock				
VIL	XOUT Open	-	0.2	v
VIH	XOUT Open	VDD - 0.2	-	v
Duty Cycle	XOUT Open	40	60	%
XIN, XOUT Loading				
Capacitance	Crystal oscillator active	-	10	pF
Resistance	Crystal oscillator active	20	-	MΩ
X358 Pin (CL = 20 pF)				
VOL	ISINK = –10 μA	-	0.2	v
VOH	ISOURCE = 10 μA	VDD - 0.2	-	V
Duty Cycle		40	60	%

Notes:

ELECTRICAL CHARACTERISTICS (Continued)

- All parameters are specified at VDD = 5 volts and XRANG at a logical "high" state, which implies unity frontend gain. Power levels in dBm are referenced to 600Ω.
- 2. A post-filter AGC is employed to enhance end-of-tone detection for high-level signals. A drop in amplitude of the input tone may cause an end-of-tone (interval) indication.
- 3. Large input voltage transients may cause excessive ringing in the highly selective filter, causing spurious detection. The detects are not considered as incorrect circuit operation.
- 4. Any tone 40 Hz 1% from fo must adhere to this specification, where fo is defined in Table 1.

ABSOLUTE MAXIMUM RATINGS

(Operation above absolute maximum ratings may damage the device.)

PARAMETER	CONDITIONS	RATING
DC Supply Voltage	Vdd – Vss	+7V
Input Voltage	All inputs except SIGIN	Vss - 0.3V to Vpp + 0.3V
SIGIN Voltage		VDD - 18V to VDD + 0.3V
Storage Temperature		-65°C to 150°C
Operating Temperature		0°C to 70°C
Lead Temperature	Soldering, 10 sec.	260°C

NORMAL CALL PROGRESS TONES AND SEQUENCE (Refer to Figure 2.)

TONE	FREQUENCY (Hz)	CADENCE
Precision Dial Tone	350 + 440	Continuous
Old Dial Tones	600 + 120 or 133 and other combinations	Continuous
Precision Busy	480 +620	0.5 s on 0.5 s off
Old Busy	600 +120	0.5 s on 0.5 s off
Precision Reorder	480 +620	0.3 s on local 0.2 s off reorder
Old Reorder	600 +120	0.2 s on toll 0.3 s off reorder 0.25 s on toll 0.25 s off local
Precision Audible Ringback	440 +480	2 s on 4 s off
Old Audible Ringback	420 +40 and other combinations	2 s on 4 s off

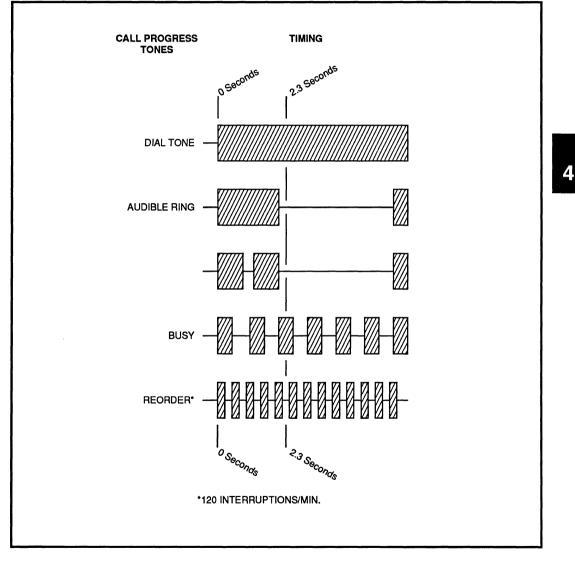
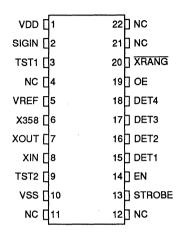



FIGURE 2: Normal Call Progress Tones and Sequence

PACKAGE PIN DESIGNATIONS

(TOP VIEW)

22 - PIN DIP

ORDERING INFORMATION

PART DESCRIPTION	ORDER NO.	PKG. MARK
SSI 75T981 22-Pin Plastic DIP	SSI 75T981-CP	75T981-CP
SSI 75T982 22-Pin Plastic DIP	SSI 75T982-CP	75T982-CP

No responsibility is assumed by Silicon Systems for use of this product nor for any infringements of patents and trademarks or other rights of third parties resulting from its use. No license is granted under any patents, patent rights or trademarks of Silicon Systems. Silicon Systems reserves the right to make changes in specifications at any time without notice. Accordingly, the reader is cautioned to verify that the data sheet is current before placing orders.

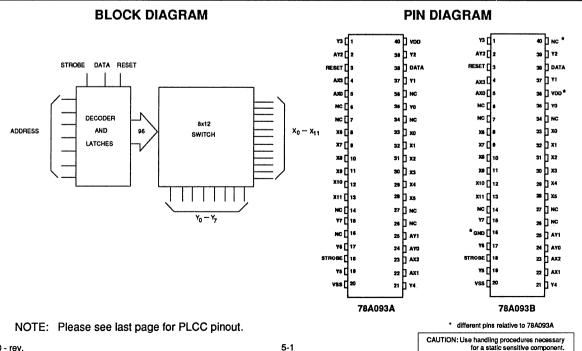
Silicon Systems, Inc., 14351 Myford Road, Tustin, CA 92680 (714) 731-7110, FAX (714) 731-5457

Section

TELEPHONY/ DIGITAL TELECOM

silicon systems*

July, 1990


5

DESCRIPTION

The SSI 78A093 is a 12x8 matrix-array crosspointswitching IC for telecom-switching and industrial control-routing applications. Standard integrated features include microprocessor-control inputs, line decoder, address latches, and 6 Vp-p analog-signal capability. The product is available with two different power supply configurations: The SSI 78A093A accepts power through the VSS and VDD pins: the SSI 78A093B has an altered pin-out and offers a separate logic ground pin. Both versions offer excellent crosstalk immunity, low feedthrough (-95dB at 1KHz), extra-high isolation between any two switches connected to X0 channel, and less than 1% total distortion at 0 dBm. The X0 channel is optimized for "ON HOLD" use by providing high isolation between switches connected to X0. The SSI 78A093 employs CMOS design technology for low-power operation. Power requirement for both the A and B versions of the SSI 78A093 is 5 to 16 volts. Both versions are packaged in a standard 40-pin plastic DIP or 44-pin PLCC.

FEATURES

- 96 crosspoint switches in a 12x8 array
- µP-compatible control inputs
- On-chip line demultiplexer
- Low ON resistance: 28 ohms at VDD = 12V typical
- 5 to 16-volt supply operating range
- 6 Vp-p analog signal capability
- Address latches on-chip
- Optimized performance on X0 channel
- Less than 1% total distortion at 0 dBm
- -95 dB feedthrough at 1kHz
- Extra-low crosstalk between any two switches connected to X0
- 78A093B version offers separate logic ground for flexible system design
- Low-power CMOS design
- TTL or CMOS-compatible inputs
- 40-pin plastic DIP or 44-pin PLCC

FUNCTIONAL DESCRIPTION

A functional block diagram of the device is presented in Figure 1. The IC contains a 12x8 matrix of analog switches, each with a latch to maintain its on (closed) or off (open) state. Seven ADDRESS lines, AX0-AX3 and AY0-AY2, are provided to address any one of the 96 switches. The DATA line may be held high to turn the switch on, or low to turn it off. The state of the ADDRESS and DATA lines can be set concurrently or separately. Finally, a positive pulse to the STROBE line initiates the action determined by the ADDRESS and DATA lines. All 96 switches may be turned off by forcing the RESET line high. All control lines (AD-DRESS, DATA, STROBE, and RESET) are level sensitive. The IC has two power supply configurations: the Aversion has VDD and VSS power supply pins; the Bversion has VDD, VSS and a GND pin. The GND pin is provided as a reference voltage for digital inputs. For proper operation, the positive supply must be at least 4.5 volts above GND.

The switches are designed to provide low resistance connections when turned on. Any Y switches connecting to the X0 channel are optimized to provide lower ON resistance. Furthermore, the X0 channel switches, when turned on, provide maximized isolation between the Y channels when X0 is grounded or connected to a low impedance source.

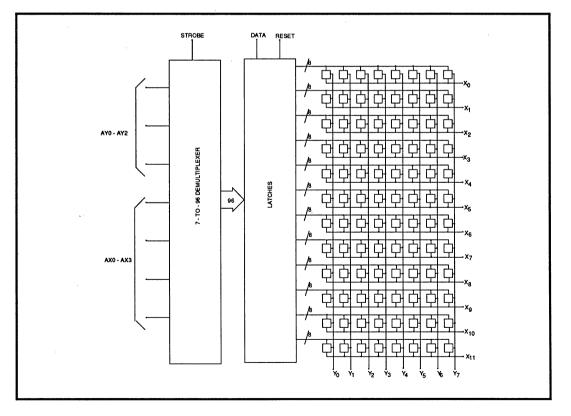


FIGURE: 1

PIN DESCRIPTION

NAME	A-PIN # (DIP)	B-PIN # (DIP)	TYPE	E DESCRIPTION		
POWER						
VDD	40	36	1	Positive power supply.		
VSS	20	20	I	Negative power supply.		
GND	-	16	I	Digital signal ground.		
ADDRESS						
AX0-AX3	AX0-AX3 4, 5, 22, 23		1	X address lines. These 4 pins are used to select one of the 12 rows of switches. Refer to the truth table in figure 2, for legal addresses.		
AY0-AY2	2, 24, 25		1	Y address lines. These 3 pins are used to select one of the 8 columns of switches. Refer to the truth table in figure 2, for legal addresses.		
CONTROL	· · · · · · · · · · · · · · · · · · ·					
DATA	3	8	ł	This input determines if the selected switch will be turned on (closed) or off (opened). If the pin is held high, the selected switch will be closed. If the pin is held low, the switch will be opened.		
STROBE	STROBE 18 I		J	This pin enables whatever action is selected by the address and DATA pins. When the STROBE pin is held low, no switch openings or closing take place. When the STROBE pin is held high, the switch addressed by the select lines will be opened or closed (depending upon the state of the DATA pin).		
RESET	3	3		Master Reset. This pin turns off (opens) all 96 switches. The states of the above control lines are irrelevant. This pin is active high.		

DATA

X0-X11	8-13, 28-33	I/O	Analog Input/Outputs. These pins are connected to the rows of the switch matrix.
Y0-Y7	1, 15, 17, 19, 21, 35, 37, 39	I/O	Analog Input/Outputs. These pins are connected to the columns of the switch matrix.

ELECTRICAL SPECIFICATIONS

ABSOLUTE MAXIMUM RATINGS

Exposure to absolute maximum rating conditions for extended periods may cause permanent damage to the device or affect device reliability.

PARAMETER	RATING	UNIT
VDD with respect to VSS	-0.5 to 17.6	v
GND (B-Version only)	VSS -0.5 to VDD +0.5	v
Storage Temperature	-65 to 150	°C
Control Signals	GND -0.5 to VDD +0.5	V
Analog Signals	7	Vpp
Lead Temperature (soldering, 10 seconds)	300	C°

Connections		Address					
	AY2	AY1	AY0	АХЗ	AX2	AX1	AX0
X0 - Y0	0	0	0	0	0	0	0
X1 - Y0	0	0	0	0	0	0	1
X2 - Y0	0	0	0	0	0	1	0
X3 - Y0	0	0	0	0	0	1	1
X4 - Y0	0	0	0	0	1	0	0
X5 - Y0	0	0	0	0	1	0	1
no connection	0	0	0	0	1	1	-10
no connection	0	0	0	0	1	1	81
X6 - Y0	0	0	0	1	0	0	<u>8</u> 0
X7 - Y0	0	0	0	1	0	0	a 1
X8 - Y0	0	0	0	1	0	1	p 0
X9 - Y0	0	0	0	1	0	1	5
X10 - Y0	0	0	0	1	1	0	Se o
X11 - Y0	0	0	0	1	1	0	address not allowed
no connection no connection	0	0	0	1	1	1	⁶⁰ 10
	0	0	0	1	1	1	
X0 - Y1	ያ	9	1	Ŷ ♥	0	0	0
★ ★ X11- Y1		.	1	1	•		
	0	0			0	0	1
X0 - Y2	ያ	1	9	2	¥	ĭ	9
X11- Y2	ŏ	1	ŏ	1	1	ŏ	1
X0 - Y3		1	1		0		
₩	2	1	1	9	ĭ	0	2
X11- Y3	ŏ	1	i	1	1	ŏ	1
X0 - Y4	1	Q	ò	9	q	ŏ	Ŷ
		¥.	Ť	Ť	- ¥	ů,	¥ I
X11- Y4	1	ŏ	ŏ	i	11	ŏ	1
X0 - Y5	1	0	1	Ŷ	Ŷ	ō	ģ
i ¥ ¥	↓	Ŭ.	¥	Ť	- ¥	↓	
X11- Y5	i	ŏ	i	i	1	ŏ	i
X0 - Y6	1	1	Q	Ŷ	Ŷ	Ō	9
	↓	•	+	+	- + I	+	. ↓
X11- Y6	i	li	ò	i	1	ŏ	i 1
X0 - Y7	1	1	1	Q	Q	Q	9
. ♦ ♦	•	♦	•	° ♥	- ↓	•	+ ↓
X11- Y7	1	1	1	1	1	Ó	1

FIGURE 2: Truth Table

RECOMMENDED OPERATING CONDITIONS

The recommended operating conditions for the device are indicated in the table below. Performance specifications do not apply when the device is operated outside these limits.

PARAMETERS	CONDITIONS	MIN	NOM	MAX	UNIT
VDD with respect to VSS		4.5		16.0	v
VDD with respect to GND		4.5		16.0	V
GND with respect to VSS		0		5.5	v
Analog Input Voltages VIN				6	Vpp
Analog Currents				10	mA
Ambient Temperature		0		85	°C

D.C. CHARACTERISTICS

 $TA = 25^{\circ}C$, VSS = 0V, GND = 0, VDD = 13.2V, RL = 1K, CL = 50pF, UNLESS OTHERWISE NOTED. Positive current is defined as flowing into the device.

PARAMETERS		CONDITIONS	MIN	NOM	МАХ	UNIT
Supply Current IDD				14	20	mA
CROSSPOINT						
ON resistance	X0 channel (X0-Yj)	VIN ≤ 6V		20		Ω
RON ch	other annels (Xi-Yj)	VIN ≤ 6V		28	45	Ω
ON resistance var.	X0 channel (X0-Yj)			5		Ω
∆ RON ch	other annels (Xi-Yj)			15	25	Ω
X capacitance	сх	(Switch off)			20	pF
Y capacitance	CY	(Switch off)			30	pF
CONTROL						
Input HIGH voltage	e VIH	A-Version B-Version	2.0 GND +2.0			v v
Input LOW voltage	VIL	A-Version B-Version			0.8 GND +0.8	V V
Input leakage	IL		-0.1		0.1	μΑ

DYNAMIC CHARACTERISTICS AND TIMING

TA = 25°C, VDD = 13.2V, VSS = 0V, GND = 0V, RL = 1K, CL = 50 pF, UNLESS OTHERWISE NOTED. Digital input rise and fall times are 5nS. Output times are defined as the time to rise or fall from 0% to 10% of the full swing (see figure 3).

PARAMETERS		CONDITIONS	MIN	NOM	МАХ	UNIT
CROSSPOINT						
Propagation Delay		1 Vpp sine wave @ 10 kHz		18	30	ns
Distortion		1 Vpp sine wave		0.2	1.0	%
Feedthrough		10 kHz, any switch off		-90	-80	dB
Yi to Yj isolation on X0) channel	Any two Y channels: Yi, Yj, X0-Yi, X0-Yj are on Xo grounded, Rin = 1K		-90	-60	dB
Crosstalk		1 kHz 1Vp-p sine wave 10 kHz		-97 -92		dB
CONTROL						
Delay: strobe to out	TSZ			60	160	ns
Delay: address to out	TAZ				200	ns
Delay: data to out	TDZ				180	ns
Delay: reset to out	TRZ			100	180	ns
Data setup time	TSU			30		ns
Address setup time	TAS			30		ns
Data hold time	ТН			30		ns
Address hold time	ТАН			30		ns
Strobe Pulse Width	TST			50		ns
Reset Pulse Width T	TRST			50		ns

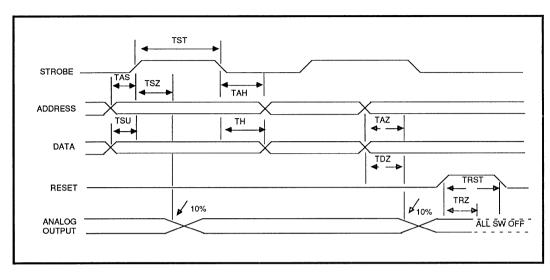
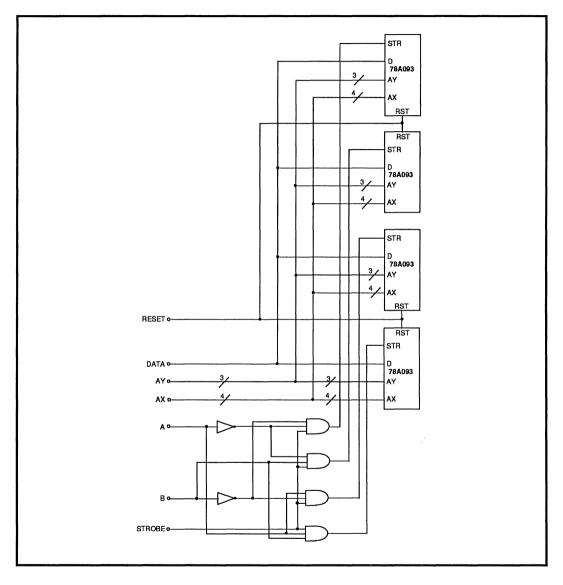


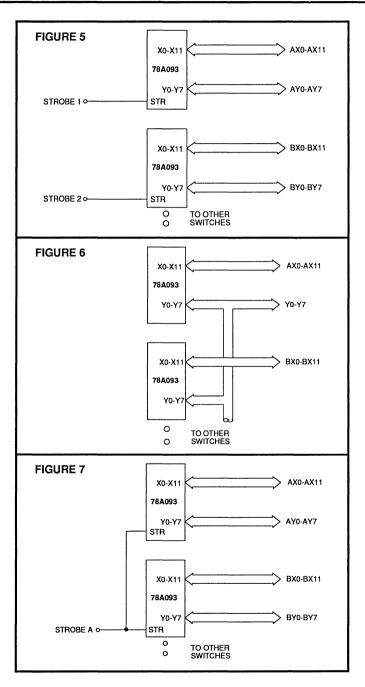
FIGURE 3: Timing Diagram

APPLICATIONS INFORMATION

Although the SSI 78A093 allows switching 96 possible signal paths, it is not limited to applications of only an 8x12x1 configuration. Figure 4 shows a method of addressing 4 separate 78A093's. In this example, the RESET, DATA, and ADDRESS lines are connected in parallel for the four devices. The logic for lines A, B and STROBE go to a 2-line to 4-line decoder with the STROBE used to both enable and clock the data. This decode (or a wider one) could be easily implemented with a single programmable logic device.


Figure 5 shows a case where both the X and Y lines have been expanded. This may be useful for applications where several different source/destination paths need to be controlled by a single controller. The A and B lines are decoded to select the desired device.

In Figure 6, the Y-lines of all devices are connected in parallel to allow an 8x48x1 switch configuration. The A and B inputs become in effect an extension of the Xaddress line. This could also be used to make a 32x12x1 matrix by tying the X-lines in parallel with the A and B inputs used as Y-address lines.


Figure 7 shows an application where switches in 2 devices are connected at the same time in a 12x8x2 matrix. This would be useful in applications requiring the switching of differential signals.

0790 - rev.

5

FIGURE 4

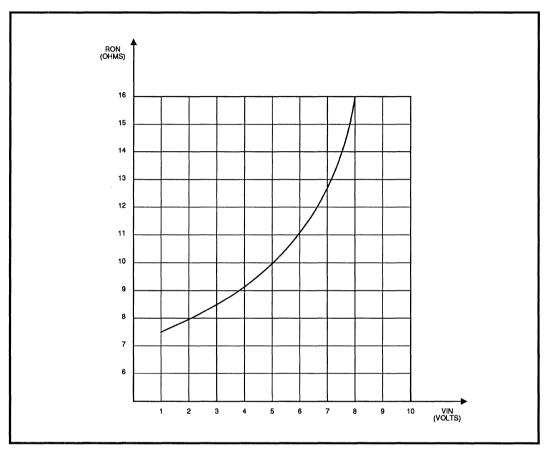


FIGURE 8: X0 - Channel: RON vs. VIN

Figure 8 is valid for all switches connected to the X0 channel only. The graph describes the behavior of the switch resistance RON as a function of the analog signal voltage VIN.

TEST CONDITIONS: VSS = 0V VDD = 13.2V RL = 1k Ω (Load Resistance)

5

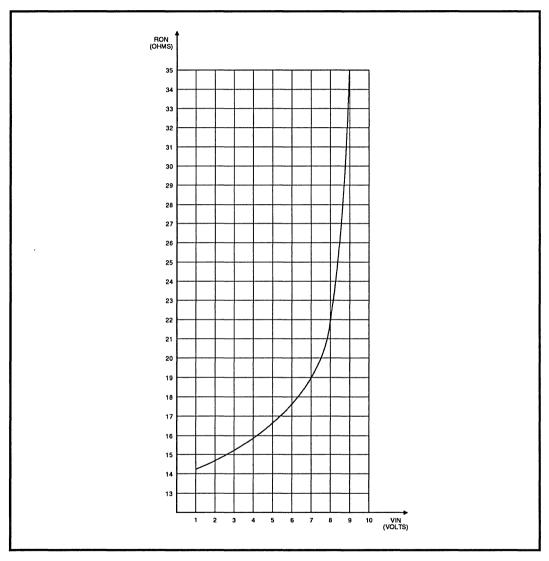
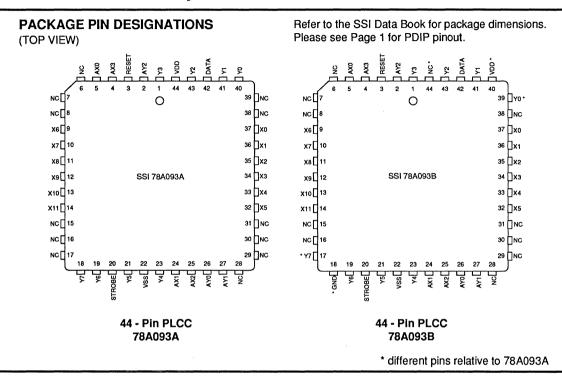



FIGURE 9: X1 - X11 Channel: RON vs. VIN

Figure 9 is valid for all switches connected to X1 thru X11 channels. The graph describes the behavior of the switch resistance RON as a function of the analog signal voltage VIN.

TEST CONDITIONS: VSS = 0VVDD = 13.2V $RL = 1k\Omega$ (Load Resistance)

ORDERING INFORMATION

PART DESCRIPTION	ORDER NO.	PKG. MARK
SSI 78A093, Version A		
Plastic Dual-In-Line	SSI 78A093A-CP	78A093A-CP
PLCC	SSI 78A093A-CH	78A093A-CH
SSI 78A093, Version B		
Plastic Dual-In-Line	SSI 78A093B-CP	78A093B-CP
PLCC	SSI 78A093B-CH	78A093B-CH

No responsibility is assumed by Silicon Systems for use of this product nor for any infringements of patents and trademarks or other rights of third parties resulting from its use. No license is granted under any patents, patent rights or trademarks of Silicon Systems. Silicon Systems reserves the right to make changes in specifications at any time without notice. Accordingly, the reader is cautioned to verify that the data sheet is current before placing orders.

Silicon Systems, Inc. 14351 Myford Road, Tustin, CA 92680, (714) 731-7110, FAX (714) 731-5457

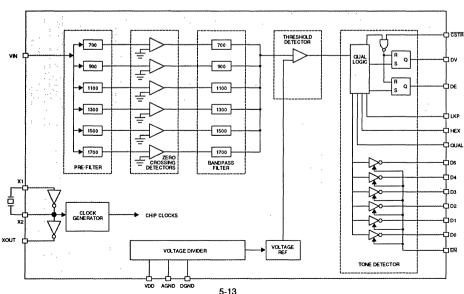
silicon systems*

July, 1990

5

DESCRIPTION

The SSI 78A207 is a single-chip, Multi-Frequency (MF) receiver that can detect all 15 tone-pairs, including ST and KP framing tones. This receiver is intended for use in equal access applications and thus meets both Bell and CCITT R1 central office register signalling specifications.


The SSI 78A207 employs state-of-the-art switched capacitor filters in CMOS technology. The receiver consists of a bank of channel-separation bandpass filters followed by zero-crossing detectors and frequency-measurement bandpass filters, an amplitude check circuit, a timer and decoder circuit, and a clock generator. The device does not attempt to identify strings of digits by the KP (key pulse) and ST (stop) tone pairs.

No anti-alias filtering is needed if the input signal is band-limited to 26 KHz. The only external component required is an inexpensive television "color burst" 3.58 MHz crystal.

The outputs interface directly with standard CMOS or TTL circuitry and are three-state enabled to facilitate bus-oriented architecture.

FEATURES

- Meets Bell and CCITT R1 specifications
- 20-pin plastic DIP
- Single low-tolerance 5V supply
- Detects all 15 tone-pairs including ST and KP
- Long KP capability
- Built-in amplitude discrimination
- Excellent noise tolerance
- Outputs in either "n of 6" or hexadecimal code
- Three-state outputs, CMOS-compatible and TTL-compatible

BLOCK DIAGRAM

FUNCTIONAL DESCRIPTION

VIN

This pin accepts the analog input. It is internally biased to half the supply and is capacitively coupled to the channel separation filters. The input may be DC coupled as long as it does not exceed VDD or drop below GND. Equivalent input circuit is shown below in Figure 1.

CRYSTAL OSCILLATOR

The SSI 78A207 contains an on-board inverter with sufficient gain to provide oscillation when connected to a low cost television "color-burst" crystal. The on-chip clock signals are generated from the oscillator. The crystal is connected between X1 and X2.

XOUT is a 3.58 MHz square wave capable of driving other circuits as long as the capacitive load does not exceed 50 pF. Other devices driven by XOUT should use X1 as the input pin, while X2 should be left floating.

LKP

The KP timer control: When high, the KP detect time is increased. When low, the KP detect time is the same as for other tones.

QUAL

Enables tone pair qualification. When low, the threshold detector outputs are passed to the data outputs (D0-D5) without validation in the format selected by the HEX pin. These outputs, plus strobes DV and DE, are updated once per 2.3 ms frame. Note that the strobes will cycle once per frame (even when the inputs are stable.) As always, data changes only when both strobes are low.

CSTR

This input clears both the DV and DE strobes, and is active low. After $\overrightarrow{\text{CSTR}}$ is released, the strobes will remain low until a new detect (or error) occurs. The output data is latched by $\overrightarrow{\text{CSTR}}$ and will not change while $\overrightarrow{\text{CSTR}}$ is low, even in the event that a new detect is qualified internally. (Note that improper use of $\overrightarrow{\text{CSTR}}$ may result in missed detects.)

ΕN

The three-state enable control: When low, the D0-D5 outputs are in the low impedance state. In an interrupt oriented microprocessor interface, \overline{EN} and \overline{CSTR} will often be tied together to provide automatic reset of the strobes when the output data is enabled.

STROBE PINS - DV AND DE

Valid data is indicated on the DV strobe pin, and data errors are indicated on the DE strobe pin. Whenever a valid 2 of 6 code has been detected, the DV strobe rises. It remains high until the code goes away, or the CSTR line is activated. When an invalid code is detected, e.g., 1 of 6, 3 of 6, etc., the DE strobe remains high until all errors stop, a valid tone pair is detected, or the CSTR line is activated. Once cleared by CSTR, DE will not reactivate until a new invalid condition is detected. The DE and DV strobes will never be high simultaneously.

DATA OUTPUT MODES

The digital output format may be either "n of 6" or 4-bit hexadecimal.

For "hex" mode, the HEX pin is pulled high. Outputs D0 to D3 provide a 4-bit code identifying one of the 15 valid tone combinations according to Table1.

The outputs will be cleared to zero when no valid tone pair is present.

For the "n of 6" mode, the HEX pin is pulled low, and each output represents one of the six frequencies as shown below:

FREQUENCY	OUTPUT PIN
700	D0
900	D1
1100	D2
1300	D3
1500	D4
1700	D5

The outputs will be cleared to zero when no valid tone is present.

TABLE 1:

Channels	Tone Pair Freq.	Name	D3	D2	D1	D0
0-1	700, 900	1	0	0	0	1
0-2	700, 1100	2	0	0	1	0
1-2	900, 1100	3	0	0	1	1
0-3	700, 1300	4	0	1	0	0
1-3	900, 1300	5	0	1	0	1
2-3	1100, 1300	6	0	1	1	0
0-4	700, 1500	7	0	1	1	1
1-4	900, 1500	8	1	0	0	0
2-4	1100, 1500	9	1	0	0	1
3-4	1300, 1500	0	1	0	1	0
2-5	1100, 1700	КР	1	0	1	1
4-5	1500, 1700	ST	1	1	0	0
1-5	900, 1700	ST1	1	1	0	1
3-5	1300, 1700	ST2	1	1	1	0
0-5	700, 1700	ST3	1	1	1	1
	any other signal		0	0	0	0

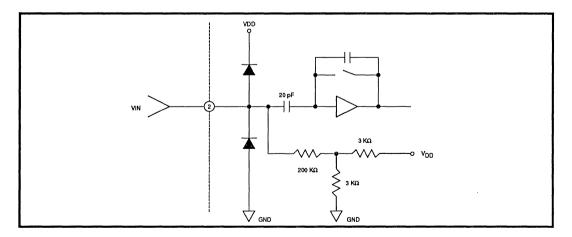
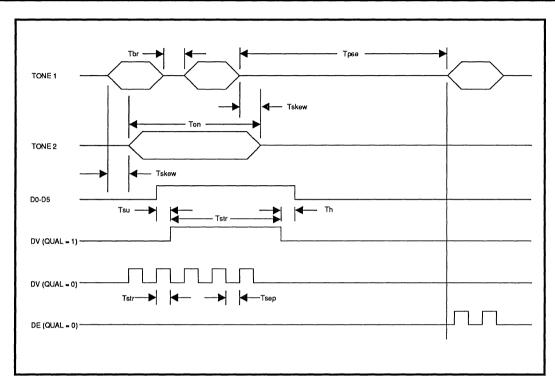



FIGURE 1: VIN Equivalent Input Circuit

TIMING SPECIFICATIONS

	PARAMETER	CONDITIONS	MIN	NOM	МАХ	UNIT
Ton	Tone Time, KP (LKP = VDD)	detect	55			ms
Ton		reject			30	ms
Ton	Tone Time, KP (LKP = DGND)	detect	30			ms
Ton		reject			10	ms
Ton	Tone Time, All Others	detect	30			ms
Ton		reject			10	ms
Tpse	Pause Time	detect	20			ms
Tbr		reject			10	ms
Tsu	Data Setup Time		6			μs
Th	Data Hold Time		7			μs
Tskew	Tone Skew Tolerance				4	ms
Tstr	Minimum Strobe Pulse Width					
	QUAL High		20			ms
	QUAL Low		2			ms
Tsep	Minimum Strobe Separation					
	QUAL High		20			ms
	QUAL Low		2			ms
Tr	Rise Time DV, DE, D0-D5 10-90%	CL = 20 pF			100	ns
Tf	Fall Time DV, DE, D0-D5 10-90%	CL = 20 pF			100	ns
Tw	CSTR Width		50			ns
Ten	Data Enable Time	CL = 20 pF			100	ns
Tdis	Data Disable Time				100	ns
Trst	Strobe Reset Time	CL = 20 pF			100	ns

5

FIGURE 2: SSI 78A207 Timing Diagram

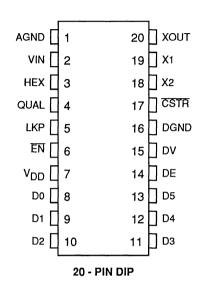
ELECTRICAL CHARACTERISTICS

ABSOLUTE MAXIMUM RATINGS

(Operating above absolute maximum ratings may damage the device.)

PARAMETER	RATING	UNIT
DC Supply Voltage V _{pp}	+ 7	v
Operating Temperature	0 to 70 (Ambient)	°C
Storage Temperature	65 to 150	°C
Power Dissipation (25°C) (Derate above TA=25°C @ 6.25 mW/°C)	650	mW
Input Voltage	(VDD + 0.3V) to -0.3	V
DC Current into any input	±10	mA
Lead Temperature (Soldering, 10 sec.)	300	°C

DC ELECTRICAL CHARACTERISTICS ($0^{\circ}C \le TA \ge 70^{\circ}C$, VDD = 5V ± 10%)


PARAMETER		CONDITIONS	MIN	NOM	МАХ	UNIT
ldd	Supply Current				20	mA
Vol	Output Logic 0					
	lol = 8 mA				0.5	V
	lol = 1 mA				0.4	V
Voh	Output Logic 1					
	loh = -4 mA		VDD-1.0			V
	loh = -1 mA		VDD-0.5			V
Vih	Input Logic 1		2.0			V
Voh	Input logic 0				0.8	V
Zin	Analog Input Impedance (Input between VDD and AGND)		<u>100K</u> 30 pF			Ω
lin	Digital Input Current (Input between VDD and DGND)		-50		50	μA

AC CHARACTERISTICS (0°C \leq TA \geq 70°, VDD = 5V \pm 10%)

PARAMETER		CONDITIONS	MIN	NOM	МАХ	UNIT
F	Frequency for Detect Tolerance		±(0.015 xFo + 5)			Hz
А	Amplitude for Detect	each tone	-25		0	dBm
			0.123		2.191	Vpp
AN	Amplitude for no Detect				-35	dB
					0.039	Vpp
τw	Twist Tolerance	$TW = \frac{\text{high tone}}{\text{low tone}}$	-6		+6	dB
тз	Third MF Tone Reject Amp	relative to highest amplitude tone	-15			dB
N60	60 HZ Tolerance	not more than one error	81			dBrn
		in 2500 10-digit calls	0.777			Vpp
N180	180 HZ Tolerance	same as above	68			dBrn
			0.174			Vpp
Nn	Noise Tolerance ¹	same as above			-20	dB
NI	Impulse Noise Tolerance ²	same as above			+12	dB
NOTES: 1. C-message weighted. Measured with respect to highest amplitude tone. 2. With noise tape 201 per PUB 56201. Measured with respect to highest amplitude tone.						

PACKAGE PIN DESIGNATIONS

(TOP VIEW)

ORDERING INFORMATION

PART DESCRIPTION	ORDER NO.	PKG. MARK		
SSI 78A207 20-Pin Plastic DIP	SSI 78A207-CP	78A207-CP		

Silicon Systems, Inc., 14351 Myford Road, Tustin, CA 92680, (714) 731-7110, FAX: (714) 731-5457

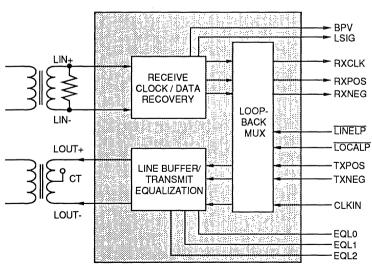
No responsibility is assumed by Silicon Systems for use of this product nor for any infringements of patents and trademarks or other rights of third parties resulting from its use. No license is granted under any patents, patent rights or trademarks of Silicon Systems. Silicon Systems reserves the right to make changes in specifications at any time without notice. Accordingly, the reader is cautioned to verify that the data sheet is current before placing orders.

Notes:

silicon systems*

SSI 78P233 DS-1 Line Interface

July, 1990


DESCRIPTION

The SSI 78P233 DS-1 Line Interface is a bipolar integrated circuit that provides the interface functions necessary to convert DS-1-level signals to TTL-level and conversely. The receiver section accepts alternate-mark-inversion (AMI) encoded line data and provides separated and synchronized data and clock outputs. The transmitter section accepts data and clock and produces AMI pulses of appropriate shape for transmission. A loopback multiplexer is also provided that permits interchange of the signals between the sections.

The 78P233 requires a single 5V supply. It is available in three different packages: standard, 600-mil DIP; narrow, 300-mil DIP; small outline (SOIC).

FEATURES

- Single-chip transmit and receive DS-1 Line
 Interface
- Unique clock recovery circuit, requires no crystals or tuned components
- Variable jitter tolerance, adjustable with external components
- Pulse-shape transmission conformant with AT&T Compatibility Bulletin 119 specifications
- Six different line equalization settings for pulse-shaping at the DSX-1 level
- Two alternate transmit settings for 6V-peak
 pulses
- Standard unipolar TTL-level clock & data ports for easy equipment interface
- Line-loopback and local-loopback control
- Loss-of-signal indication
- Bipolar violation detection

BLOCK DIAGRAM

PIN DIAGRAM

RFO	Ц	1	24	þ	v _{cc}
LSIG	q	2	23	þ	LF1
RCPK	þ	3	22	þ	LF2
LIN +	Ц	4	21	þ	LOUT -
LIN -	þ	5	20	þ	TXGND
RXGND	þ	6	19	þ	LOUT +
LOCALP	þ	7	18	þ	EQL2
RXPOS	Ц	8	17	þ	EQL0
RXNEG	Ц	9	16	þ	EQL1
RXCLK	d	10	15	þ	TXNEG
BPV	d	11	14	þ	LINELP
TXPOS	þ	12	13	þ	CLKIN

CAUTION: Use handling procedures necessary for a static sensitive component.

FUNCTIONAL DESCRIPTION

The device consists of receiver and transmitter sections together with a "loopback" means which permits interchange of signals between the sections (See Figure 1).

RECEIVER

The receiver input is normally transformer-coupled to the source of encoded alternate polarity pulses. To provide a tracking threshold for amplitude-detecting these pulses, the signal is peak detected and a fixed percentage of the peak value is applied to the comparators which detect individual positive and negative pulses. An external R-C network is required to provide the proper storage of the peak reference value. Should the detected peak value fall below an acceptable level, the Loss of Signal (LSIG) output becomes active. This output may be used as a logical control signal or is able to drive a fault indicator LED directly.

Outputs of the data comparators are connected to the clock recovery circuits. The clock recovery system employs a unique phase-locked-oscillator loop which has an auxiliary frequency-sensitive acquisition loop which is active only when cycle-slipping occurs between the received signal rate and the internal oscillator. This system permits the loop to independently lock to the frequency and phase of the incoming data stream without the need for high-precision and/or adjustable oscillators or tuned circuits. Non-precision external components are required, however, to establish the oscillator center frequency and loop bandwidth.

The phase-locked reference oscillator is employed to strobe the detected data into output latches and is also available as an output for externally synchronizing the data.

Additional circuits are provided to detect received bipolar violations. These deviations from the alternate mark inversion format are detected when two or more successive pulses of the same polarity are received. A resultant violation output is in time coincidence with the violating received signal output.

TRANSMITTER

The transmitter combines unipolar logical inputs with an input clock to provide positive and negative output pulses onto a transformer-coupled line.

Internal equalizer networks are selected by combinations of the three Equalizer Select inputs so that the waveform at the terminal end of various lengths of cable is as required. Note that the transmitter output pulse widths are determined by the input clock width, so that it must be carefully controlled to provide acceptable outputs.

The transmitter pulse selection logical function is arranged so that the simultaneous occurrence of both positive and negative transmit data inputs inhibits the output driver. Moreover, the driver has a currentlimiting feature which protects the circuit in the event of a shorted load or inadvertent shorting of an output to the supply voltage.

LOOPBACK CONTROL SECTION

The loopback control section is essentially a multiplexer which is capable of directing received data and clock to the transmitter section, or directing transmit input data and clock to the receiver outputs. This "looping" is controlled by two active low logic signals, LINELP and LOCALP, respectively.

The bipolar violation output is held inactive when the circuits are in the Local Loopback mode.

SSI 78P233 DS-1 Line Interface

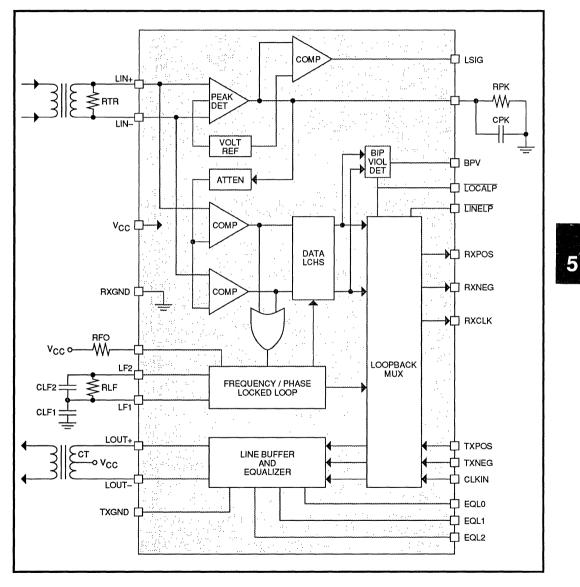


FIGURE 1: Functional Diagram

PIN DESCRIPTION

RECEIVER

1/0	LABEL	PIN NO.	DESCRIPTION
1	LIN+, LIN-	4, 5	Differential inputs, transformer-coupled from line.
0	RXPOS	8	Unipolar receiver output, active as result of positive pulse at inputs.
0	RXNEG	9	Unipolar receiver output, active as result of negative pulse at inputs.
0	RXCLK	10	Clock pulses recovered from line data.
0	LSIG	2	Loss-of-signal output indicating that input signal is less than threshold value.
0	BPV	11	Bipolar violation output, active as a result of successive pulses at inputs of same polarity.

TRANSMITTER

1	TXPOS	12	Unipolar transmitter data input, active high.
1	TXNEG	15	Unipolar transmitter data input, active high.
Ι	CLKIN	13	Transmitter clock input. Controls transmit pulse width. Transmit is active when low.
0	LOUT+	19	Output to transformer for positive data pulses.
0	LOUT-	21	Output to transformer for negative data pulses.
1	EQL0 EQL1 EQL2	17 16 18	Line equalizer control signals. Selected according to Table 1 for various cable lengths.

LOOPBACK CONTROL

I	LINELP	14	Low level causes receiver recovered data and clock to be connected to the transmitter. Data and clock continue to be present at receiver outputs.
I	LOCALP	7	Low level causes transmitter input data and clock to be connected to the receiver outputs. Input data continues to be transmitted.

PIN DESCRIPTION (continued)

EXTERNAL COMPONENT CONNECTION

I/O	LABEL	PIN NO.	DESCRIPTION
I	RFO	1	Resistor connected to Vcc to provide basic center fre- quency of receiver phase locked loop oscillator.
-	LF1 LF2	23 22	Resistor-capacitor loop filter network to RXGND to establish bandwidth of phase locked loop.
-	RCPK	3	Parallel resistor-capacitor network connected to RXGND to determine charge/discharge characteristics of peak detector.

POWER

-	Vcc 24 1		Positive supply terminal for receiver circuits.	
-	RXGND	6	Ground terminal for receiver circuits.	5
-	TXGND	20	Ground terminal for transmitter driver circuits.	

ABSOLUTE MAXIMUM RATINGS

(Ta = 0°C to 70°C, Vcc = 5V \pm 5%, unless otherwise noted. Operation above absolute maximum ratings may permanently damage the device.)

PARAMETER	RATING	UNIT
Vcc, Supply Voltage	-0.5 to +7.0	V
Storage Temperature	-65 to 130	°C
Soldering Temperature (10 sec.)	260	°C
Voltage Applied to Logic Inputs	-0.5 to +7.0	V
Maximum Power Dissipation	800	mW
Junction Operating Temperature	0 to +130	°C
NOTE: All inputs and outputs are protected from devices and all outputs are short-circuit		y standard protection

SSI 78P233 DS-1 Line Interface

RECOMMENDED OPERATING CONDITIONS

PARA	METER	CONDITIONS	MIN	NOM	МАХ	UNIT
Та	Ambient temperature		0		70	°C
Vcc	Power supply voltage		4.75		5.25	v
VIH	High-level input voltage		2.0			v
VIL	Low-level input voltage				0.8	v
ЮН	High-level output current	LSIG pin only; VO = 1.5V	-7		-13	mA

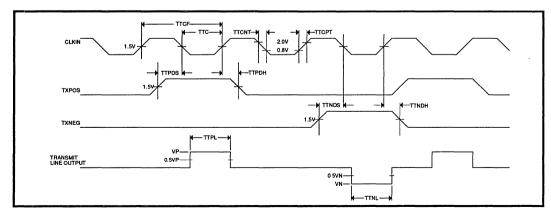
EXTERNAL COMPONENTS (Refer to Figure 1 for location of components.)

RFO	Loop center frequency resistor	1% tolerance		6.04		ΚΩ
RLF	Loop filter resistor			12.0		ΚΩ
CLF1	Loop filter capacitor			0.022		μF
CLF2	Loop filter capacitor			430.0		pF
RPK	Peak-detector resistor			36.0		ΚΩ
СРК	Peak-detector capacitor		0.0015	0.015	0.15	μF
	Transmit line transformer	Refer to Table 3				

D. C. ELECTRICAL CHARACTERISTICS

(TA = 0°C to 70°C, Vcc = 5V \pm 5%, unless otherwise specified.)

PARA	METER	CONDITIONS	MIN	NOM	МАХ	UNIT
ICC	Supply current	All outputs open		75	100	mA
ШH	High-level input current	VIH = 2.7V			20	μA
IIL	Low-level input current	VIL = 0.4V			-0.36	mA
VOH	High-level output voltage	IOH = -400 μA	2.7			v
VOL	Low-level output voltage	IOL = 4.0 mA; IOL = 2.0 mA, LSIG pin			0.4	v
RIN	Receiver input resistance		800	1000	1250	Ω


DYNAMIC CHARACTERISTICS AND TIMING, TRANSMITTER

(TA = 0°C to 70°C, Vcc = 5V \pm 5%, unless otherwise specified. Transmit pulse characteristics are obtained using a line transformer which has the characteristics shown in Table 3. Refer to Figure 2.)

PARAM	ETER	CONDITIONS	MIN	NOM	МАХ	UNIT
TTCF	Transmit clock repetition period			648		nsec
ттс	Transmit clock pulse width			324		nsec
TTCNT	Transmit clock negative transition time				10	nsec
ттсрт	Transmit clock positive transition time				10	nsec
TTPDS TTNDS	Transmit data set-up time		15			nsec
TTPDH TTNDH	Transmit data hold time		0			nsec
TTPL	Transmit positive line pulse width	See Note 1	TTC-5		TTC+5	nsec
TTNL	Transmit negative line pulse width	See Note 1	TTPL-5		TTPL+5	nsec
POL	Transmit line pulses power level	See Note 2				
	Transmit line pulses waveshape	See Notes 2 & 3				
Note 1:	Measured at transformer with mini	mum line equalization				
Note 2:	Characteristics are in accordance			-		Table 2 or

Table 3, for line lengths and equalizer settings as shown in Table 1 of this document.

Note 3: Characteristics are in accordance with Table 2 for equalizer settings shown therein.

FIGURE 2: Transmit Waveforms

5

DYNAMIC CHARACTERISTICS AND TIMING, RECEIVER

 $(T_A = 0^{\circ}C \text{ to } 70^{\circ}C, V_{CC} = 5V \pm 5\%)$, unless otherwise specified. External component values as specified in Recommended Operating Conditions; see Note 1. Refer to Figure 3.)

PARAM	ETER	CONDITIONS	MIN	NOM	МАХ	UNIT
VIN	Input signal voltage		±1.5		±3.7	Vpk
VLOS	Loss-of-signal indicating voltage		±0.5		±1.0	Vpk
TLOS	Loss-of-signal delay time	Timed from removal of input signal; See Note 2	0.7TPK		1.3TPK	Sec
VDTH	Receive data detection threshold	Relative to peak amplitude	65		75	%
TSTAB	Receiver stabilization time	After application of input signal			5	msec
TRCF	Receive clock period			648		nsec
TRC	Receive clock pulse width			324		nsec
TRCPT	Receive clock positive transition time	CL = 15 pF			15	nsec
TRCNT	Receive clock negative transition time	CL = 15 pF			10	nsec
TRDP TRDN	Positive or negative receive data pulse width			648		nsec
TRDPS TRDNS	Receive data set-up time		290			nsec
TRDPH TRDNH	Receive data hold time		290			nsec
TRBV	Receive bipolar violation pulse width			648		nsec
TRBVS	Receive bipolar violation set-up time		290			nsec
TRBVH	Receive bipolar violation hold time		290			nsec
	Receive input jitter tolerance high frequency	sine, 10 KHz to 100 KHz	±100			nsec
	Receive input jitter tolerance low frequency	sine, 300 Hz or less	±4			µsec

DYNAMIC CHARACTERISTICS AND TIMING, RECEIVER (Continued)

PARAN	ETER	CONDITIONS	MIN	NOM	МАХ	UNIT	
KD	Clock Recovery Phase Detector Gain	(All 1's Data Pattern)	66		79	μA/Rad	
ко	Clock Recovery Phase Locked Oscillator Control Gain		0.15		0.20	Megrad/ sec. Volt	
Note 1:	lote 1: Input signal is transformer coupled, and in accordance with AT&T Compatibility Bulletin 119, Table 1, and Table 2 or Table 3; also, as attenuated by 0 to 655 feet of ABAM* cable.						
Note 2:	Note 2: $TPK = RPK \times CPK \times ln((VIN + 1.2V)/(VLOS + 1.2V))$						
* ABAM	* ABAM is the trade name for 22-gauge twisted-pair cable manufactured by AT&T.						

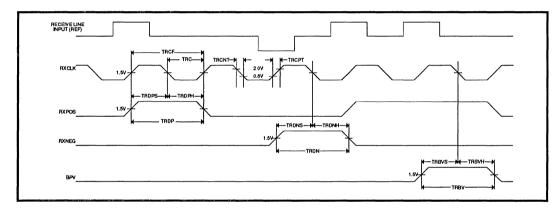


FIGURE 3: Receive Waveforms

TABLE 1: Equalizer Settings for Standard DSX-Level (3V-Peak Nominal) Pulses Versus ABAM Cable Length

EQL0	EQL1	EQL2
	1	
0	0	0
1	0	0
0	1	0
1	1	0
0	0	1
1	0	1
	1 0 1 0 1 t line lengths.	1 0 0 1 1 1 0 0 1 0 0 0 1 0

SSI 78P233 DS-1 Line Interface

TABLE 2: Equalizer Settings for Non-DSX-Level (6V-Peak Nominal) Pulses

PULSE CHARACTERISTICS	EQUALIZER SETTING		
	EQL0	EQL1	EQL2
Rectangular 6.0 \pm 0.6V pulse, 10% to 40% trailing edge overshoot	0	1	1
Rectangular 6.0 \pm 0.6V pulse, less than 10% trailing edge overshoot	1	1	1

TABLE 3: Transmit Line Transformer Characteristics

CHARACTERISTIC	SYMBOL	MIN	NOM	МАХ	UNIT
Turns ratio	N		1CT:1		
Primary open circuit inductance	Lp	1.25			mH
Primary leakage inductance	L1			2.0	μH
Primary volt-time product	ET	10			V-µsec
Primary DC resistance	Rp			1.0	Ω
Secondary DC resistance	Rs			1.0	Ω
Effective primary distributed capacitance	C'			15	pF

TABLE 4: Recommended Transmit Line Transformers

MANUFACTURER	PART NO.
AIE Magnetics	318-0765
AT&T	2745 AG
Pan-Mag (Tamura Corporation of America)	PHT-019
Pulse Engineering	PE 64936

SSI 78P233 DS-1 Line Interface

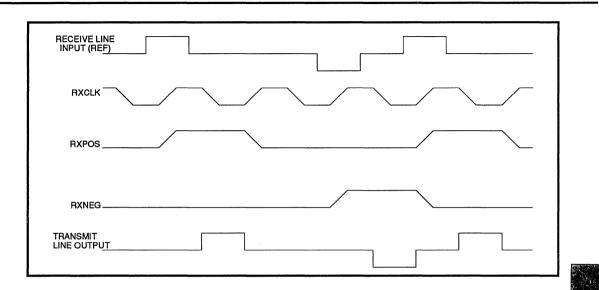
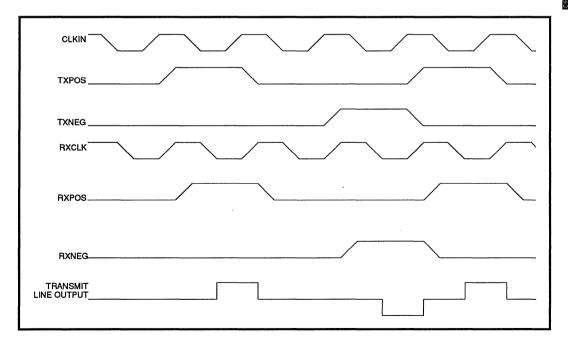



FIGURE 4: Line Loopback Waveforms

PACKAGE PIN DESIGNATIONS

(TOP VIEW)

RFO	þ	1	24	þ	v _{cc}
LSIG	Ц	2	23	þ	LF1
RCPK	þ	3	22	þ	LF2
LIN +	þ	4	21	þ	LOUT -
LIN -	Ц	5	20	þ	TXGND
RXGND	þ	6	19	þ	LOUT +
LOCALP	q	7	18	þ	EQL2
RXPOS	þ	8	17	þ	EQL0
RXNEG	d	9	16	þ	EQL1
RXCLK	۵	10	15	þ	TXNEG
BPV	D	11	14	þ	LINELP
TXPOS	d	12	13	þ	CLKIN

PIN DIAGRAM FOR ALL PACKAGES

ORDERING INFORMATION

PART DESCRIPTION	ORDER NO.	PKG. MARK
SSI 78P233, DS-1 Line Interface - 24-Pin		
Standard Width Plastic DIP (600 mil)	SSI 78P233-CP	78P233-CP
Narrow Width Plastic DIP (300 mil)	SSI 78P233-CS	78P233-CS
Small Outline	SSI 78P233-CL	78P233-CL

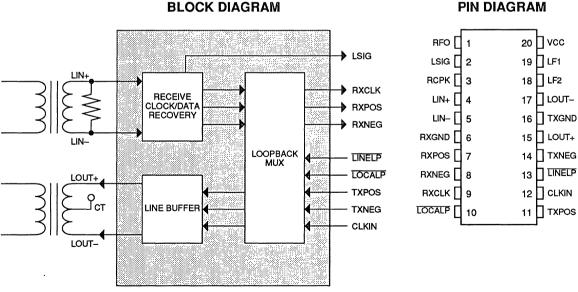
No responsibility is assumed by Silicon Systems for use of this product nor for any infringements of patents and trademarks or other rights of third parties resulting from its use. No license is granted under any patents, patent rights or trademarks of Silicon Systems. Silicon Systems reserves the right to make changes in specifications at any time without notice. Accordingly, the reader is cautioned to verify that the data sheet is current before placing orders.

Silicon Systems, Inc. 14351 Myford Road, Tustin, CA 92680, (714) 731-7110, FAX (714) 731-5457

silicon systems*

SSI 78P234 2048 KBit/s **PCM Interface Unit**

July, 1990


5

DESCRIPTION

The SSI 78P234 PCM Interface Unit is a bipolar integrated circuit which performs the functions of receiving and transmitting PCM signals in an Alternate-Mark-Inversion (AMI) format. The receiver accepts AMIformat line data and provides separated and synchronized TTL-level data and clock outputs. High-density bipolar three-encoded (HDB3) signals are passed through the chip transparently. The transmitter accepts TTL-level data and clock, typically HDB3encoded, and produces AMI-format pulses of the appropriate shape for transmission. A loopback multiplexer is also provided that permits interchange of the signals between the sections. The SSI 78P234 requires a single 5V supply, and is available in both 20-pin DIP and small outline (SO) packages.

FEATURES

- High-performance, low-cost solution for 2048 KBit/s PCM interface applications
- Both transmit and receive circuitry in a compact, 20-pin package
- Compliant with CCITT recommendations G.703 and G.823
- Unique clock-recovery circuit, requires no crystals or tuned components
- Standard unipolar TTL-level clock and data ports for easy equipment interface
- Line-loopback and local-loopback control
- Loss-of-signal indication
- Available in SO or dual-in-line packages

PIN DIAGRAM

CAUTION: Use handling procedures necessary for a static sensitive component.

FUNCTIONAL DESCRIPTION

The device consists of receiver and transmitter sections together with a "loopback" means which permits interchange of signals between the sections (see Figure 1).

RECEIVER

The receiver input is normally transformer-coupled to the source of encoded alternate polarity pulses. To provide a tracking threshold for amplitude-detecting these pulses, the signal is peak detected and a fixed percentage of the peak value is applied to the comparators which detect individual positive and negative pulses. An external R-C network is required to provide the proper storage of the peak reference value. Should the detected peak value fall below an acceptable level, the Loss of Signal (LSIG) output becomes active. This output may be used as a logical control signal or is able to drive a fault indicator LED directly.

Outputs of the data comparators are connected to the clock recovery circuits. The clock recovery system employs a unique phase-locked-oscillator loop which has an auxiliary frequency-sensitive acquisition loop which is active only when cycle-slipping occurs between the received signal rate and the internal oscillator. This system permits the loop to independently lock to the frequency and phase of the incoming data stream without the need for high-precision and/or adjustable oscillators or tuned circuits. Non-precision external components are required, however, to establish the oscillator center frequency and loop bandwidth.

The phase-locked reference oscillator is employed to strobe the detected data into output latches and is also available as an output for externally synchronizing the data.

TRANSMITTER

The transmitter combines unipolar logical inputs with an input clock to provide positive and negative output pulses onto a transformer-coupled line. Note that the transmitter output pulse widths are determined by the input clock width, so that it must be carefully controlled to provide acceptable outputs.

The transmitter pulse selection logical function is arranged so that the simultaneous occurrence of both positive and negative transmit data inputs inhibits the output driver. Moreover, the driver has a currentlimiting feature which protects the circuit in the event of a shorted load or inadvertent shorting of an output to the supply voltage.

LOOPBACK CONTROL SECTION

The loopback control section is essentially a multiplexer which is capable of directing received data and clock to the transmitter section, or directing transmit input data and clock to the receiver outputs. This "looping" is controlled by two active low logic signals, LINELP and LOCALP, respectively.

SSI 78P234 2048 KBit/s PCM Interface Unit

5

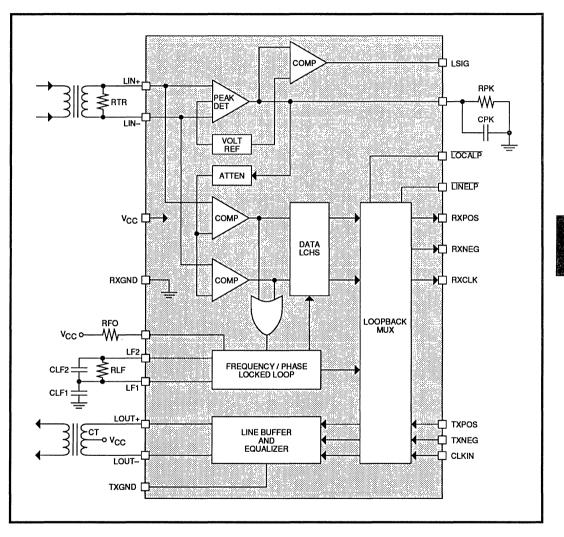


FIGURE 1: SSI 78P234 Functional Diagram

PIN DESCRIPTION

RECEIVER

I/O	LABEL	PIN NO.	DESCRIPTION
1	LIN+, LIN-	4, 5	Differential inputs, transformer-coupled from line.
0	RXPOS	7	Unipolar receiver output, active as result of positive pulse at inputs.
0	RXNEG	8	Unipolar receiver output, active as result of negative pulse at inputs.
0	RXCLK	9	Clock pulses recovered from line data.
0	LSIG	2	Loss-of-signal output indicating that input signal is less than threshold value.

TRANSMITTER

I	TXPOS	11	Unipolar transmitter data input, active high.
l	TXNEG	14	Unipolar transmitter data input, active high.
I	CLKIN	12	Transmitter clock input. Controls transmit pulse width. Transmit is active when low.
0	LOUT+	15	Output to transformer for positive data pulses.
0	LOUT-	17	Output to transformer for negative data pulses.

LOOPBACK CONTROL

I .	LINELP	13	Low level causes receiver recovered data and clock to be connected to the transmitter. Data and clock continue to be present at receiver outputs.
I	LOCALP	10	Low level causes transmitter input data and clock to be connected to the receiver outputs. Input data continues to be transmitted.

PIN DESCRIPTION (Continued)

EXTERNAL COMPONENT CONNECTION

I/O	LABEL	PIN NO.	DESCRIPTION
I	RFO	1	Resistor connected to V_{∞} to provide basic center frequency of receiver phase locked loop oscillator.
-	LF1 LF2	19 18	Resistor-capacitor loop filter network to RXGND to establish bandwidth of phase locked loop.
-	RCPK	3	Parallel resistor-capacitor network connected to RXGND to determine charge/discharge characteristics of peak detector.

POWER

-	Vcc	20	Positive supply terminal for receiver circuits.	
-	RXGND	6	Ground terminal for receiver circuits.	5
-	TXGND	16	Ground terminal for transmitter driver circuits.	

ABSOLUTE MAXIMUM RATINGS

(T_A = 0°C to 70°C, V_{CC} = 5V \pm 5%, unless otherwise noted. Operation above absolute maximum ratings may permanently damage the device.)

PARAMETER	RATING	UNIT
Vcc, Supply Voltage	-0.5 to +7.0	V
Storage Temperature	-65 to 130	°C
Soldering Temperature (10 sec.)	260	°C
Voltage Applied to Logic Inputs	-0.5 to +7.0	V
Maximum Power Dissipation	600	mW
Junction Operating Temperature	0 to +130	°C
NOTE: All inputs and outputs are protected from st. devices and all outputs are short-circuit pro		y standard protection

RECOMMENDED OPERATING CONDITIONS

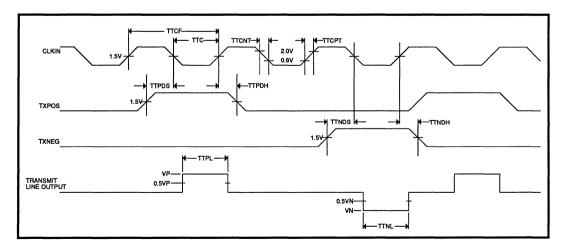
PARA	METER	CONDITIONS	MIN	NOM	ΜΑΧ	UNIT
Та	Ambient temperature		0		70	°C
Vcc	Power supply voltage		4.75		5.25	v
VIH	High-level input voltage		2.0			v
VIL	Low-level input voltage				0.8	v
ЮН	High-level output current	LSIG pin only; VO = 1.5V	-7		-13	mA

EXTERNAL COMPONENTS (Refer to Figure 1 for location of components.)

RFO	Loop center frequency resistor			6.04		ΚΩ
RLF	Loop filter resistor			10		KΩ
CLF1	Loop filter capacitor			0.015		μF
CLF2	Loop filter capacitor			200		pF
RPK	Peak-detector resistor			36		ΚΩ
СРК	Peak-detector capacitor		0.0015	0.015	0.15	μF
	Transmit line transformer	Refer to Table 1				

D. C. ELECTRICAL CHARACTERISTICS

(T_A = 0°C to 70°C, V_{cc} = 5V \pm 5%, unless otherwise specified.)


PARA	METER	CONDITIONS	MIN	NOM	МАХ	UNIT
ICC	Supply current	All outputs open			100	mA
IIH	High-level input current	VIH = 2.7V			20	μA
IIL	Low-level input current	VIL = 0.4V			-0.36	mA
νон	High-level output voltage	IOH = -400μA	2.7			v
VOL	Low-level output voltage	IOL = 4.0mA; IOL = 2.0 mA, LSIG pin			0.4	v
RIN	Receiver input resistance		800		1250	Ω

DYNAMIC CHARACTERISTICS AND TIMING, TRANSMITTER

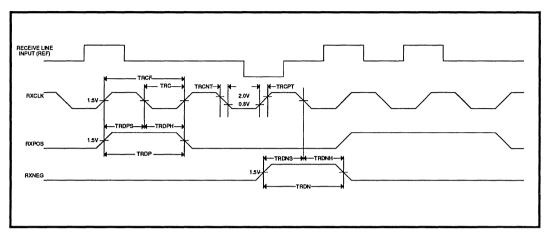
 $(T_A = 0^{\circ}C \text{ to } 70^{\circ}C, V_{CC} = 5V \pm 5\%$, unless otherwise specified. Transmit pulse characteristics are obtained using a line transformer which has the characteristics shown in Table 1, and with the appropriate resistive load. Refer to Figure 2.)

PARAM	ETER	CONDITIONS	MIN	NOM	МАХ	UNIT
TTCF	Transmit clock repetition period			488		nsec
ттс	Transmit clock pulse width			244		nsec
TTCNT	Transmit clock negative transition time				10	nsec
ттсрт	Transmit clock positive transition time				10	nsec
TTPDS TTNDS	Transmit data set-up time		15			nsec
TTPDH TTNDH	Transmit data hold time		0			nsec
TTPL	Transmit positive line pulse width	Measured at trans- former	TTC-5		TTC+5	nsec
TTNL	Transmit negative line pulse width		TTPL-5		TTPL+5	nsec
	Transmit line pulses waveshape	See Note				

Note: Characteristics are in accordance with Table 6 and Figure 15 of Rec. G.703.

FIGURE 2: Transmit Waveforms

DYNAMIC CHARACTERISTICS AND TIMING, RECEIVER


 $(T_A = 0^{\circ}C \text{ to } 70^{\circ}C, V_{CC} = 5V \pm 5\%$, unless otherwise specified. External component values as specified in Recommended Operating Conditions; see Note 1. Refer to Figure 3.)

PARAM	ETER	CONDITIONS	MIN	NOM	МАХ	UNIT
VIN	Input signal voltage		±1.2		±3.9	Vpk
VLOS	Loss-of-signal indicating voltage		±0.5		±1.0	Vpk
TLOS	Loss-of-signal delay time	Timed from removal of input signal; See Note 2	0.7TPK		1.3TPK	sec
VDTH	Receive data detection threshold	Relative to peak amplitude	35		45	%
TSTAB	Receiver stabilization time	After application of input signal		×	5	msec
TRCF	Receive clock period			488		nsec
TRC	Receive clock pulse width			244		nsec
TRCPT	Receive clock positive transition time	C∟ = 15pF			15	nsec
TRCNT	Receive clock negative transition time	C∟ = 15pF			10	nsec
TRDP TRDN	Positive or negative receive data pulse width			488		nsec
TRDPS TRDNS	Receive data set-up time		210			nsec
TRDPH TRDNH	Receive data hold time		210			nsec
	Receive input jitter tolerance high frequency	sine, 18KHz to 100KHz	±100			nsec
	Receive input jitter tolerance low frequency	sine, 2.4 KHz	±750			nsec
KD	Clock Recovery Phase Detector Gain	(All 1's Data Pattern)	66		79	µA/Rad
ко	Clock Recovery Phase Locked Oscillator Control Gain		0.40		0.55	Megrad/ sec. Volt

Note 1: Input signal is transformer coupled. In accordance with Paragraph 6.3 of Rec. G.703 and Table 2 of Rec. G.823.

Note 2: TPK = RPK x CPK x ln((VIN + 1.2v)/(VLOS + 1.2v))

SSI 78P234 2048 KBit/s PCM Interface Unit

FIGURE 3: Receive Waveforms

LINE TRANSFORMERS

The SSI 78P234 is designed to connect to 75Ω coaxial or 120Ω symmetrical pair cabling. The transmitter must meet output pulse characteristics as specified by the CCITT (Table 6 of Rec. G.703) for each of these transmission media. It is important to choose a transformer that meets the specifications shown in Table 1 (below) to assure compliance with these requirements.

CHARACTERISTIC		SYMBOL	MIN	NOM	МАХ	UNIT
Turns ratio	$75\Omega \cos x$	N		2.53CT:1		
	120 Ω twisted pair	-		2CT:1		
Primary open circuit inductance		Lp	3			mH
Primary leakage inductance		L1			4.0	μH
Primary volt-time product		ET	5			V-µsec
Primary DC resistance		Rp			2.5	Ω
Interwinding Capacitance		C _w			25	pF

TABLE 1: Transmit Line Transformer Characteristics

LINE TRANSFORMERS (Continued)

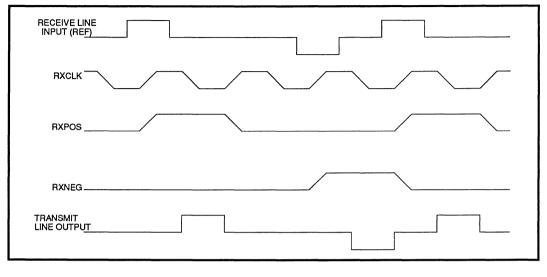
75Ω Coax Connection

Approximate turns ratios for connection to 75Ω coax are: 2.53 CT:1 for the transmitter and 1:1.26 (no CT) for the receiver. Some recommended transformers are listed in Table 2.

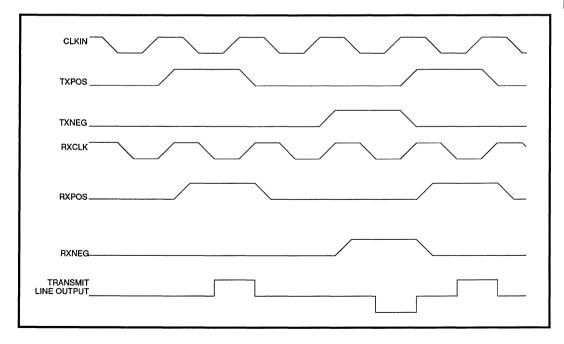
RCV/XMIT	TURNS RATIO	PART NUMBER	MANUFACTURER
XMIT	2.53CT:1	PE 64945	Pulse Engineering
ХМІТ	2.66CT:1	11816	Schott Corporation
RCV	1:1.26	PE 64938	Pulse Engineering

TABLE 2: Recommended Line Transformers for 75 Ω Coax Connection

120Ω Symmetrical Pair Connection


Connection to 120Ω symmetrical pair requires a 2CT:1 ratio for the transmitter and 1:1 (no CT) on the receiver. Some recommendations are listed below.

RCV/XMIT	TURNS RATIO	PART NUMBER	MANUFACTURER
XMIT	2CT:1	1323	BH
ХМІТ	2CT:1	G52J12C	Pan-Mag
ХМІТ	2CT:1	11815	Schott Corporation
XMIT	1:1:1	PE 64931	Pulse Engineering
RCV	1:1	PE 64935	Pulse Engineering
RCV	1:1:1	G52J111P	Pan-Mag


TABLE 3: Recommended Line Transformers for 120Ω Symmetrical Pair Connection

SSI 78P234 2048 KBit/s PCM Interface Unit

5

FIGURE 4: Line Loopback Waveforms

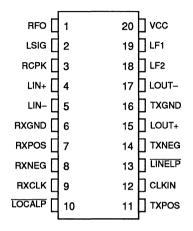


FIGURE 5: Local Loopback Waveforms

SSI 78P234 2048 KBit/s PCM Interface Unit

PACKAGE PIN DESIGNATIONS

(TOP VIEW)

20-Pin DIP, SO

ORDERING INFORMATION

PART DESCRIPTION	ORDER NO.	PACKAGE MARK
SSI 78P234		
20-Pin Plastic DIP	SSI 78P234-CP	78P234-CP
20-Pin SO	SSI 78P234-CL	78P234-CL

No responsibility is assumed by Silicon Systems for use of this product nor for any infringements of patents and trademarks or other rights of third parties resulting from its use. No license is granted under any patents, patent rights or trademarks of Silicon Systems. Silicon Systems reserves the right to make changes in specifications at any time without notice. Accordingly, the reader is cautioned to verify that the data sheet is current before placing orders.

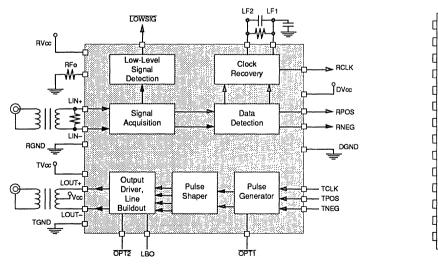
Silicon Systems, Inc. 14351 Myford Road, Tustin, CA 92680, (714) 731-7110, FAX (714) 731-5457

silicon systems*

SSI 78P236 DS-3 Line Interface

Preliminary Data

July, 1990


DESCRIPTION

The SSI 78P236 is a line interface transceiver IC intended for DS-3 (44.736 Mbit/s) applications. The receiver has a very wide dynamic range and is designed to accept B3ZS-encoded Alternate-Mark Inversion (AMI) inputs; it provides clock, data, and low-level signal detector logical outputs. The transmitter converts clock and data input signals into AMI pulses of the appropriate shape for transmission. A line buildout (LBO) filter may be selected to attenuate the outgoing pulses for shorter line lengths. The SSI 78P236 requires a 5-volt supply and is available in DIP and surface mount packages.

FEATURES

- Single chip transmit and receive interface for DS-3 (44.736 Mbit/s) applications
- Unique clock recovery circuit, requires no crystals or tuned components
- Selectable transmit line buildout to accommodate shorter line lengths
- Standard unipolar POS and NEG data and CLK ports
- Compliant with AT&T Compatibility Bulletin 119
- · Low-level input signal indication
- Available in DIP or surface mount packages
- Pin-compatible with SSI 78P2361 and 78P2362

BLOCK DIAGRAM

PIN DIAGRAM

28-Pin DIP

CAUTION: Use handling procedures necessary for a static sensitive component.

FUNCTIONAL DESCRIPTION

The SSI 78P236 is intended to be used as a DS-3 Line Interface to perform the functions of receiving and transmitting pulse code modulated signals in an alternate mark inversion format. The receiver section accepts encoded line data and provides separated and synchronized data and clock outputs. The transmitter section accepts data and clock and produces alternate mark inversion pulses of the appropriate shape for transmission.

RECEIVER

The receiver input is normally transformer-coupled to the source of encoded alternate polarity pulses. The Variable Gain Amplifier is used to adjust the signals applied to the Voltage Comparators to a relatively constant peak amplitude over the range of expected input levels. This is accomplished by means of the Peak Detector and AGC Amplifier wherein the amplified signal peaks are compared with a fixed reference voltage, and the filtered difference applied to the variable gain stage which cause the signal peaks to nearly equal the reference value.

The amplified positive and negative input data pulses are detected by high speed Voltage Comparators. The detection threshold is a fixed percentage of the peak value which is applied as the comparator reference. In this way, even though the input signal amplitude may fall below the minimum value which can be regulated by the variable gain circuits, the proper detection threshold is maintained.

Should the input signal fall below the minimum value which can be regulated, this condition is detected and indicated at the LOWSIG output. A time delay is provided before this output is active so that transient interruptions do not needlessly cause the indication.

Outputs of the data comparators are connected to the clock recovery circuits. The clock recovery system employs a unique phase locked oscillator loop which has an auxiliary frequency-sensitive acquisition loop which is active only when cycle-slipping occurs between the received signal rate and the internal oscillator.

This system permits the loop to independently lock to the frequency and phase of the incoming data stream without the need for high-precision and/or adjustable oscillators or tuned circuits.

A single external resistor is used to establish the oscillator center frequency as well as other timing functions. The response characteristics for the phase locked loop is established by internal means with the provision to added external filter components in parallel.

The phase locked reference oscillator is employed to strobe the detected data into output latches and is also available as an output for externally synchronizing the data.

TRANSMITTER

The transmitter combines unipolar logical inputs with an input clock to provide positive and negative output pulses onto a transformer-coupled line.

An internal pulse shaper is selected with the LBO logic input so that the waveform at the terminal end of cable lengths less than 225 ft. is as required.

Note that the transmitter output pulse widths are not determined by the input clock width but is set internally.

G

SSI 78P236 DS-3 Line Interface

PIN DESCRIPTION

RECEIVER

NAME	TYPE	DESCRIPTION
LIN+, LIN-	1	Differential inputs, transformer-coupled from line.
RPOS	0	Unipolar receiver output, active as result of positive pulse at inputs.
RNEG	0	Unipolar receiver output, active as result of negative pulse at inputs.
RCLK	0	Clock pulses recovered from line data.
LOWSIG	0	Low signal logic output indicating that input signal is less than threshold value.

TRANSMITTER

TPOS	I	Unipolar transmitter data input, active high.
TNEG	I	Unipolar transmitter data input, active high.
TCLK	I .,	Transmitter clock input, active high.
LOUT+	0	Output to transformer for positive data pulses.
LOUT-	0	Output to transformer for negative data pulses.
LBO	I	Line buildout control. Selected for shorter cable lengths.
OPT1	I	Transmit option 1. Selects faster output pulse transition time and higher amplitude when low.
OPT2	I	Transmit option 2. Disables output driver and reduces output bias current when low.

EXTERNAL COMPONENT CONNECTION

RFO	I	Resistor connected to RGND to provide basic center frequency of receiver phase locked loop oscillator.
LF1, LF2	-	Resistor-capacitor loop filter network to RGND to establish bandwidth of phase locked loop.

POWER

TVcc	-	5V power supply for transmit circuits.
RVcc	-	5V power supply for receive circuits.
DVcc	Vcc - 5V power supply for receive logic circuits.	
TGND	-	Ground return for transmit circuits.
RGND	-	Ground return for receive circuits.
DGND	-	Ground return for receive logic circuits.
NC	-	No connect. These pins are not connected to the chip. They should be tied to the appropriate ground pin (see figure 1) to minimize pin-to-pin coupling capacitance.

ELECTRICAL CHARACTERISTICS

 $(TA = 0^{\circ}C \text{ to } 85^{\circ}C, Vcc = 5V \pm 5\%, unless otherwise noted.)$ Currents flowing into the chip are positive. Current maximums are currents with the largest absolute value. Operation above absolute maximum ratings may permanently damage the device.

ABSOULUTE MAXIMUM RATINGS

PARAMETER	RATING	UNIT
Positive 5.0V supply: TVcc, RVcc, DVcc	6.0	V
Storage Temperature	-65 to 150	°C
Soldering Temperature (10 sec.)	260	°C
Ambient Operating Temperature, TA	0 to +85	°C
Pin Ratings:		
LIN+, LIN-, TPOS, TNEG, TCLK, LOUT+, LOUT-, LBO, RFO, LF2, LF1, OPT1, OPT2 Pins	-0.3 to Vcc +0.3	v
Pin Ratings:		
RPOS, RNEG, RCLK, LOWSIG Pins	-0.3 to Vcc +0.3	V
	+12	mA

SUPPLY CURRENTS AND POWER

PARA	METER	CONDITIONS	MIN	NOM	МАХ	UNIT
ICC	Supply Current	Outputs Unloaded, normal operation, transmit and receive all 1's pattern	111	142	174	mA
Р	Power Dissipation	Outputs unloaded, TA = 85°C			0.93	w

EXTERNAL COMPONENTS (Refer to Figure 1 for location of components.)

RFO	Loop center frequency resistor	1% tolerance	5.25	kΩ
RLF	Loop filter resistor		TBD	kΩ
CLF1	Loop filter capacitor		TBD	μF
CLF2	Loop filter capacitor		TBD	pF
	Transmit line transformer		TBD	

ELECTRICAL CHARACTERISTICS (Continued)

DIGITAL INPUTS AND OUTPUTS

(CMOS-compatible pins: LOWSIG, RPOS, RNEG, RCLK, TPOS, TNEG, TCLK, LBO, OPT1.) Currents flowing into the chip are positive. Current maximums are currents with the largest absolute value.

PARAM	NETER	CONDITIONS	MIN	NOM	MAX	UNIT
VIL	Input low voltage		-0.3		1.5	v
VIH	Input high voltage		3.5		Vcc +0.3	v
IIL	Input low current	VIL = 1.5V	-5.0		5.0	μA
лн	Input high current	VIH = 3.5V	-5.0		5.0	μA
VOL	Output low voltage	IOL = 0.1 mA			1.0	V
VOH	Output high voltage	IOH = -0.1 mA	4.0			V

OPT2 CHARACTERISTICS

VIL	Input low voltage	IIL = 0.4 mA		0.5	V
VIH	Input high voltage		2.0		V

RECEIVER

All of the measurements for the receiver are made with the following conditions unless otherwise stated:

1. The input signal is transformer coupled in accordance with Table 8 of AT&T Compatibility Bulletin 119.

- 2. RFO = 5.25 k Ω
- 3. The circuit is connected as in Figure 1.

VIN	Input signal voltage	Input AC-Coupled	±0.045		±1.20	Vpk
RIN	Input Resistance	Input at chip's common mode voltage	15	20	30	kΩ
VDTH	Receive data detection threshold	Relative to peak amplitude for 22.37 MHz sinusoidal input		50		%
VLOW	Receive data low signal threshold	Relative to peak amplitude for 22.37 MHz sinusoidal input	60		85	mV
VLOWT	Receive data low signal delay	Relative to peak amplitude for 22.37 MHz sinusoidal input		500		ns
TSTAB	Receiver stabilization time	After application of input signal			300	μs
TRCF	Receive clock period			22.35		ns
TRC	Receive clock pulse width			11.18		ns
TRCPT	Receive clock positive transition time	CL = 15 pF		4.5	6	ns
TRCNT	Receive clock negative transition time	C∟ = 15 pF		4.5	6	ns

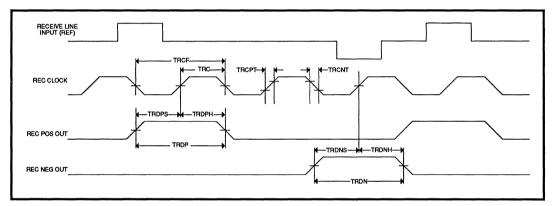
RECEIVER (continued)

PARAME	ETER	CONDITIONS	MIN	NOM	MAX	UNIT
TRDP TRDN	Positive or negative receive data pulse width			22.35		ns
TRDPS TRDNS	Receive data set-up time		8.7	11.18	13.7	ns
TRDPH TRDNH	Receive data hold time		8.7	11.18	13.7	ns
	Receive input jitter tolerance	sine, 60 kHz	±3.35			ns
	high frequency	to 300 kHz	0.3			UI
	Receive input jitter tolerance	sine, 10 Hz to 2.3 kHz	±55.88			ns
	low frequency		5.0			UI
KD	Clock Recovery Phase Detector Gain	All [°] 1's data pattern KD = .418/RFO	74	80	86	μA/Rad
ко	Clock Recovery Phase Locked Oscillator		16	17	18	Mrad/ secVolt

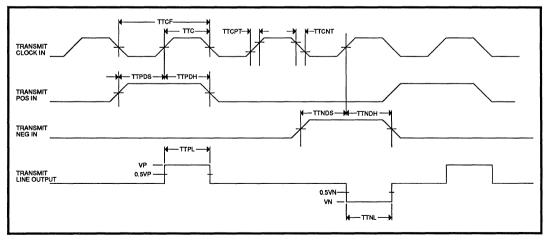
TRANSMITTER

All of the measurements for the transmitter are made with the following conditions unless otherwise stated:

- 1. Transmit pulse characteristics are obtained using a line transformer which has the characteristics TBD.
- 2. The circuit is connected as in Figure 1.


PARAM	ETER	CONDITIONS	MIN	NOM	МАХ	UNIT
TTCF	Transmit clock repetition period			22.35		ns
ттс	Transmit clock pulse width			11.18		ns
TTCNT	Transmit clock negative transition time			4.5	6	ns
TTCPT	Transmit clock positive transition time			4.5	6	ns
TTPDS TTNDS	Transmit data set-up time		2.5	11.18		ns
TTPDH TTNDH	Transmit data hold time		2.5	11.18		ns
TTPL	Transmit positive line pulse width	Measured at transformer, LBO = Low	10.62	11.18	12.0	ns

SSI 78P236 DS-3 Line Interface


TRANSMITTER (continued)

PARAN	IETER	CONDITIONS	MIN	NOM	MAX	UNIT
TTNL	Transmit negative line pulse width	Measured at transformer, LBO = Low	10.62	11.18	12.0	ns
TTEQ	Equalized transmit pulse shape	Measured at transformer, LBO = High		TBD		
	Transmit line pulse waveshape	See Note				

Note: Characteristics are in accordance with paragraph 5.2.2 of AT&T Compatibility Bulletin 119.

FIGURE 2: Receive Waveforms

FIGURE 3: Transmit Waveforms

SSI 78P236 DS-3 Line Interface

PACKAGE PIN DESIGNATIONS

(TOP VIEW)

1			1
TBD [1	28] твр
TBD [2	27	твр
TBD [3	26	твр
TBD [4	25	твр
TBD [5	24	ј тво
TBD [6	23	твр
TBD [7	22	ј тво
TBD [8	21	ј тво
TBD [9	20	ј тво
TBD [10	19	ј тво
TBD [11	18	ј твр
TBD [12	17	ј тво
TBD [13	16	ј тво
твр [14	15	ј тво

28-Pin DIP

ORDERING INFORMATION

PART DESCRIPTION	ORDER NO.	PKG. MARK					
SSI 78P236, DS-3 Line Interface - 28-pin							
Standard Width Plastic DIP (600 mil)	SSI 78P236-CP	78P236-CP					
Surface Mount - TBD							

Preliminary Data: Indicates a product not completely released to production. The specifications are based on preliminary evaluations and are not guaranteed. Small quantities are available, and Silicon Systems should be consulted for current information.

No responsibility is assumed by Silicon Systems for use of this product nor for any infringements of patents and trademarks or other rights of third parties resulting from its use. No license is granted under any patents, patent rights or trademarks of Silicon Systems. Silicon Systems reserves the right to make changes in specifications at any time without notice. Accordingly, the reader is cautioned to verify that the data sheet is current before placing orders.

Silicon Systems, Inc. 14351 Myford Road, Tustin, CA 92680, (714) 731-7110, FAX (714) 731-5457

5

Notes:

.

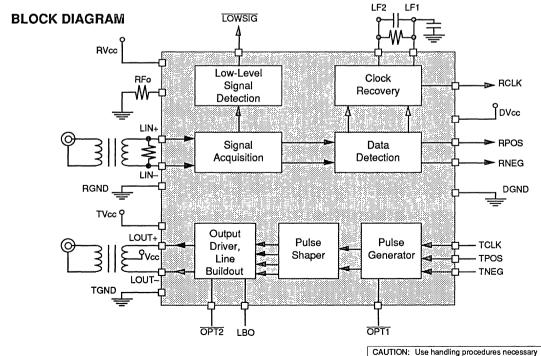
silicon systems*

SSI 78P2361 STS-1 Line Interface

Advance Information

July, 1990

DESCRIPTION


The SSI 78P2361 is a line interface transceiver IC intended for STS-1 (51.84 Mbit/s) applications. The receiver has a very wide dynamic range and is designed to accept B3ZS-encoded Alternate-Mark Inversion (AMI) inputs; it provides clock, data, and low-level signal detector logical outputs. The transmitter converts clock and data input signals into AMI pulses of the appropriate shape for transmission. A line buildout (LBO) filter may be selected to attenuate the outgoing pulses for shorter line lengths. The SSI 78P2361 requires a 5-volt supply and is available in DIP and surface mount packages.

FEATURES

- Single chip transmit and receive interface for STS-1 (51.84 Mbit/s) applications
- Unique clock recovery circuit, requires no crystals or tuned components
- Selectable transmit line buildout to accommodate shorter line lengths
- Standard unipolar POS and NEG data and CLK ports
- Low-level input signal indication
- Available in DIP or surface mount packages
- Pin-compatible with SSI 78P236 and 78P2362

for a static sensitive component.

SSI 78P2361 STS-1 Line Interface

PIN DESCRIPTION

RECEIVER

NAME	TYPE	DESCRIPTION			
LIN+, LIN-	1	Differential inputs, transformer-coupled from line.			
RPOS	0	Unipolar receiver output, active as result of positive pulse at inputs.			
RNEG	0	Unipolar receiver output, active as result of negative pulse at inputs.			
RCLK	0	Clock pulses recovered from line data.			
LOWSIG	0	Low signal logic output indicating that input signal is less than threshold value.			

TRANSMITTER

IRANSMITT	=R					
TPOS	I	Unipolar transmitter data input, active high.				
TNEG	I	Unipolar transmitter data input, active high.				
TCLK	1	Transmitter clock input, active high.				
LOUT+	0	Output to transformer for positive data pulses.				
LOUT-	0	Output to transformer for negative data pulses.				
LBO	1	Line buildout control. Selected for shorter cable lengths.				
OPT1	I	Transmit option 1. Selects faster output pulse transition time and higher amplitude when low.				
OPT2	I	Transmit option 2. Disables output driver and reduces output bias current when low.				

EXTERNAL COMPONENT CONNECTION

RFO	I	Resistor connected to RGND to provide basic center frequency of receiver phase locked loop oscillator.
LF1, LF2	-	Resistor-capacitor loop filter network to RGND to establish bandwidth of phase locked loop.

POWER

1 OWEN		
TVcc	-	5V power supply for transmit circuits.
RVcc	-	5V power supply for receive circuits.
DVcc	-	5V power supply for receive logic circuits.
TGND	-	Ground return for transmit circuits.
RGND	-	Ground return for receive circuits.
DGND	-	Ground return for receive logic circuits.
NC	-	No connect. These pins are not connected to the chip. They should be tied to the appropriate ground pin to minimize pin-to-pin coupling capacitance.

ELECTRICAL CHARACTERISTICS

(TA = 0° C to 85°C, Vcc = 5V ±5%, unless otherwise noted.) Currents flowing into the chip are positive. Current maximums are currents with the largest absolute value. Operation above absolute maximum ratings may permanently damage the device.

RECEIVER

- -

Input signal is transformer coupled.

PARAM	ETER	CONDITIONS	MIN	NOM	MAX	UNIT
VIN	Input signal voltage	Input AC-Coupled	±0.045		±1.20	Vpk
RIN	Input Resistance	Input at chip's common mode voltage	15	20	30	kΩ
VDTH	Receive data detection threshold	Relative to peak amplitude for 22.37 MHz sinusoidal input		50		%
TSTAB	Receiver stabilization time	After application of input signal			300	μs
TRCF	Receive clock period			19.3		ns
TRC	Receive clock pulse width			9.65		ns
TRCPT	Receive clock positive transition time	C∟ = 15 pF		4.5	6	ns
TRCNT	Receive clock negative transition time	C∟ = 15 pF		4.5	6	ns
TRDP TRDN	Positive or negative receive data pulse width			19.3		ns
TRDPS TRDNS	Receive data set-up time			9.65		ns
TRDPH TRDNH	Receive data hold time			9.65		ns
	Receive input jitter tolerance high frequency	TBD	TBD			ns
	Receive input jitter tolerance low frequency	TBD	TBD			ns

ELECTRICAL CHARACTERISTICS (Continued)

TRANSMITTER

Transmit pulse characteristics are obtained using 0-450 feet of 728A coaxial cable with the appropriate line transformer (to be specified.)

PARAM	ETER	CONDITIONS	MIN	NOM	МАХ	UNIT
TTCF	Transmit clock repetition period			19.3		ns
ттс	Transmit clock pulse width			9.65		ns
TTCNT	Transmit clock negative transition time			4.5		ns
ТТСРТ	Transmit clock positive transition time			4.5		ns
TTPDS TTNDS	Transmit data set-up time			9.65		ns
TTPDH TTNDH	Transmit data hold time			9.65		ns
TTPL	Transmit positive line pulse width	Measured at transformer		9.65		ns
TTNL	Transmit negative line pulse width	Measured at transformer		9.65		ns
	Transmit line pulse waveshape			TBD		

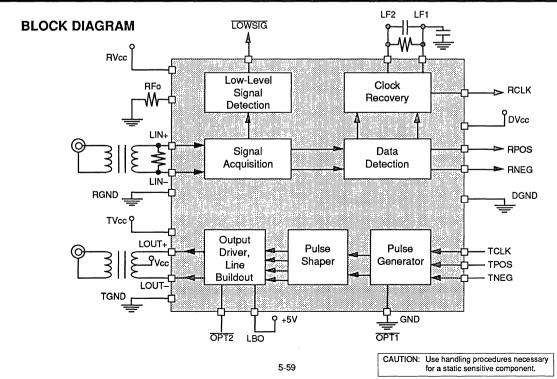
Advance Information: Indicates a product still in the design cycle, and any specifications are based on design goals only. Do not use for final design.

No responsibility is assumed by Silicon Systems for use of this product nor for any infringements of patents and trademarks or other rights of third parties resulting from its use. No license is granted under any patents, patent rights or trademarks of Silicon Systems. Silicon Systems reserves the right to make changes in specifications at any time without notice. Accordingly, the reader is cautioned to verify that the data sheet is current before placing orders.

Silicon Systems, Inc., 14351 Myford Road, Tustin, CA 92680, (714) 731-7110, FAX: (714) 731-5457

silicon systems*

SSI 78P2362 34.368 Mbit/s Line Interface


Advance Information

July, 1990

5

FEATURES

- Single chip transmit and receive interface for 34.368 Mbit/s applications
- Unique clock recovery circuit, requires no crystals or tuned components
- Standard unipolar POS and NEG data and CLK ports
- Compliant with CCITT recommendations G.703 and G.823
- Low-level input signal indication
- Available in DIP or surface mount packages
- Pin-compatible with SSI 78P236 and 78P2361

DESCRIPTION

The SSI 78P2362 is a line interface transceiver IC intended for 34.368 Mbit/s applications. The receiver has a very wide dynamic range and is designed to accept HDB3-encoded Alternate-Mark Inversion (AMI) inputs; it provides clock, data, and low-level signal detector logical outputs. The transmitter converts clock and data input signals into AMI pulses of the appropriate shape for transmission. The SSI 78P2362 requires a 5-volt supply and is available in DIP and surface mount packages.

SSI 78P2362 34.368 Mbit/s Line Interface

PIN DESCRIPTION

RECEIVER

NAME	ТҮРЕ	DESCRIPTION
LIN+, LIN-	I	Differential inputs, transformer-coupled from line.
RPOS	0	Unipolar receiver output, active as result of positive pulse at inputs.
RNEG	0	Unipolar receiver output, active as result of negative pulse at inputs.
RCLK	0	Clock pulses recovered from line data.
LOWSIG	0	Low signal logic output indicating that input signal is less than threshold value.

TRANSMITTER

TPOS	1	Unipolar transmitter data input, active high.				
TNEG	I	Unipolar transmitter data input, active high.				
TCLK	I	Transmitter clock input, active high.				
LOUT+	0	Output to transformer for positive data pulses.				
LOUT-	0	Output to transformer for negative data pulses.				
LBO	1	Line buildout control. Attenuates output pulses. Should be tied high for normal CEPT E3 applications				
OPT1	I	Transmit option 1. Selects faster output pulse transition time and higher amplitude. Should be tied low for normal CEPT E3 applications.				
OPT2	I	Transmit option 2. Disables output driver and reduces output bias current when low.				

EXTERNAL COMPONENT CONNECTION

RFO	I	Resistor connected to RGND to provide basic center frequency of receiver phase locked loop oscillator.
LF1, LF2	-	Resistor-capacitor loop filter network to RGND to establish bandwidth of phase locked loop.

POWER

TVcc	-	5V power supply for transmit circuits.
RVcc	-	5V power supply for receive circuits.
DVcc	-	5V power supply for receive logic circuits.
TGND	-	Ground return for transmit circuits.
RGND	-	Ground return for receive circuits.
DGND	-	Ground return for receive logic circuits.
NC	-	No connect. These pins are not connected to the chip. They should be tied to the appropriate ground pin to minimize pin-to-pin coupling capacitance.

ELECTRICAL CHARACTERISTICS

(TA = 0° C to 85° C, Vcc = $5V \pm 5\%$, unless otherwise noted.) Currents flowing into the chip are positive. Current maximums are currents with the largest absolute value. Operation above absolute maximum ratings may permanently damage the device.

RECEIVER

Input signal is transformer coupled.

PARAM	ETER	CONDITIONS	MIN	NOM	МАХ	UNIT
VIN	Input signal voltage	Input AC-Coupled	±0.045		±1.20	Vpk
RIN	Input Resistance	Input at chip's common mode voltage	15	20	30	kΩ
VDTH	Receive data detection threshold	Relative to peak amplitude for 22.37 MHz sinusoidal input		50		%
TSTAB	Receiver stabilization time	After application of input signal			300	μs
TRCF	Receive clock period			29.1		ns
TRC	Receive clock pulse width			14.55		ns
TRCPT	Receive clock positive transition time	C∟ = 15 pF		4.5	6	ns
TRCNT	Receive clock negative transition time	C∟ = 15 pF		4.5	6	ns
TRDP TRDN	Positive or negative receive data pulse width			29.1		ns
TRDPS TRDNS	Receive data set-up time			14.55		ns
TRDPH TRDNH	Receive data hold time			14.55		ns
	Receive input jitter tolerance high frequency	sine, 10 kHz to 800 kHz	±2.18			ns
	Receive input jitter tolerance low frequency	sine, 100 Hz to 1.0 kHz	±21.83			ns

ELECTRICAL CHARACTERISTICS (Continued)

TRANSMITTER

Transmit pulse characteristics are obtained using a test load of 75Ω with the appropriate line transformer (to be specified.)

PARAM	ETER	CONDITIONS	MIN	ΝΟΜ	МАХ	UNIT
TTCF	Transmit clock repetition period			29.1		ns
ттс	Transmit clock pulse width			14.55		ns
TTCNT	Transmit clock negative transition time			4.5		ns
TTCPT	Transmit clock positive transition time			4.5		ns
TTPDS TTNDS	Transmit data set-up time			14.55		ns
TTPDH TTNDH	Transmit data hold time			14.55		ns
TTPL	Transmit positive line pulse width	Measured at transformer		14.55		ns
TTNL	Transmit negative line pulse width	Measured at transformer		14.55		ns
	Transmit line pulse waveshape	See Note		TBD		

Note: Characteristics are in accordance with CCITT recommendation G.703, Figure 17 and Table 8.

Advance Information: Indicates a product still in the design cycle, and any specifications are based on design goals only. Do not use for final design.

No responsibility is assumed by Silicon Systems for use of this product nor for any infringements of patents and trademarks or other rights of third parties resulting from its use. No license is granted under any patents, patent rights or trademarks of Silicon Systems. Silicon Systems reserves the right to make changes in specifications at any time without notice. Accordingly, the reader is cautioned to verify that the data sheet is current before placing orders.

Silicon Systems, Inc., 14351 Myford Road, Tustin, CA 92680, (714) 731-7110, FAX: (714) 731-5457

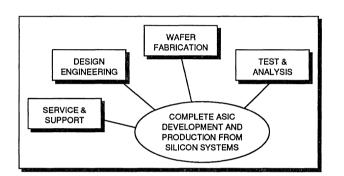
Section

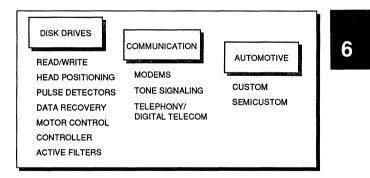
6

CUSTOM/ SEMICUSTOM CAPABILITIES

6-0

silicon systems*


Custom/Semicustom Capabilities


SILICON SYSTEMS LEADS THE WAY DEVELOPING MIXED-SIGNAL CUSTOM/SEMICUSTOM PRODUCTS

Silicon Systems is committed to leadership in the development of high-performance, applicationspecific, custom/semicustom Mixed-Signal Integrated Circuits (MSICs™).

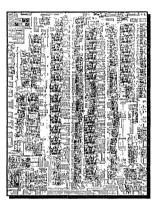
Silicon Systems offers innovative designs for digital, analog, and mixed analog/digital ICs; a versatile range of CMOS and bipolar processes; quick-turn design methodologies supported by advanced and integrated design automation tools; specialized manufacturing facilities; comprehensive test, quality assurance, and prototype assembly programs; and nearly 20 years of IC design experience. Silicon Systems' efforts pay off by dramatically reducing the time (and cost) it takes to deliver the most optimized custom/semicustom ICs available.

Whether a customer's application falls in Silicon Systems' specialty areas of communications, storage products, automotive, or other areas, Silicon Systems' technical capabilities turn designs around faster and minimize a product's time to market for the competitive advantage.

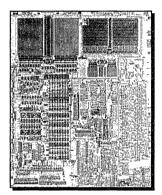
BROAD RANGE OF ANALOG AND DIGITAL DESIGN EXPERIENCE

With a broad base of experience, systems knowledge, and applications expertise, Silicon Systems' designers provide creative IC solutions in both CMOS and bipolar process technologies for analog, digital, and mixedsignal applications. In bipolar, Silicon Systems' design expertise focuses on applications requiring high-speed ECL logic combined with high-performance analog circuitry. Bipolar products range from low-noise amps to very sophisticated data separators that employ patented phase locked loops.

In CMOS, Silicon Systems has designed digital products ranging from FIFOs to complex hard-disk drive controllers. Combined analog/digital products range from crosspoint switches to complete, one-chip 2400 bit/s modems.


Technique	Application	Silicon Systems Designed Examples
CMOS Signal Processing	For analog continuous time and sampled data (switched-capacitor implementation) and Digital Signal Processing (DSP) applications. Low- power capability also allows inclusion of ROMs, RAMs, and other analog/ digital subsystems.	 73K224 complete single-chip 2400 bit/s modem C301 single-chip telephone headset amplifier 14.4 kbit modem Direct-broadcast satellite descrambler Motor controllers Hi-resolution analog data acquisition
Bipolar Signal Processing	For high-performance, low noise, wideband signal acquisition and processing applications. Offers TTL and/or ECL logic interfaces with high current drive.	 Sub 1 nV/sHz HDD R/W amplifiers AGC, pulse detection amplifiers High-speed data separators Wideband transceivers PLLs (Phase Locked Loops) Optical signal processing
Digital CMOS	ForASIC controllers, sequencers and data path applications with on-board ROM, RAM, and PLA sub-systems. Offers standard TTL and/or CMOS logic interfaces.	 Hard disk drive controllers SCSI interface controllers UARTs Protocol controllers Digital signal processors
Digital Bipolar	High-speed logic and interface circuitry. Offers standard logic or custom interfaces.	Encoders and decodersHigh-speed digital transceivers

FULL ANALOG AND DIGITAL INTEGRATION ON THE SAME CHIP


Silicon Systems leads its competition in the design of complete systems on a chip which combine complex analog and digital functions. The total system solution approach allows designers to satisfy their application, cost, and performance objectives.

Custom mixed-signal Bipolar low-noise read/write IC

Standard Bipolar mixedsignal, high-performance data separator

Standard product singlechip 2400 bit/s modem with switched capacitor filters and RISC DSP

6

"DESIGN-FOR-TESTABILITY" AND TEST SUPPORT

Silicon Systems employs design-for-testability methodologies, such as built-in test modes that allow direct testing of internal subsystems. Silicon Systems uses highly specialized equipment, test programs and test procedures for combined analog/digital designs to ensure delivery of high-quality product. To determine product reliability under extreme conditions, products are tested in-house by a wide variety of advanced analog or digital testers including:

- LTX (TS88/DX90) testers
- Trillium Micromaster Plus
- Teradyne A520

These testers are supported by:

- Automatic handlers (Trigon PLCC, Symtek & Tesec SOIC, and MCT DIP and Delta QFP)
- Burn-in sockets, temperature chambers, Aehr burn-in ovens, and Highly Accelerated Stress Test (HAST)

CMOS PROCESS TECHNOLOGIES

Silicon Systems' mixed signal CMOS processes are used to implement low-power, highly integrated systems solutions.

The two main processes used for new designs are CH (for 12V applications) and CG (for 5V applications). These processes are summarized in the table below. Other production process technologies (such as metal gate) are not utilized for new designs.

CH CMOS PROCESS TRANSISTOR

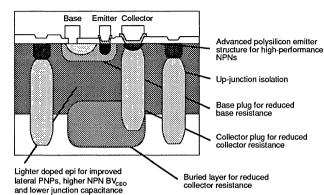
Process	Туре	Application Voltage	BVDSS	Drawn Gate Length		onnect P Metal 1		Features
СН	Si-Gate, single metal, dual poly, P Well	12V	18 V	3.6µ	5.8µ	6.4µ	n/a	 DDD S/D structure Poly-poly capacitors Low-voltage coefficient High Ω /□ poly resistors Epi substrate option Buried Well-ring
CG	Si-Gate, dual metal, dual poly, P Well	5V	7V	1.5µ	3.0µ	4.5µ	6.0µ	 DDD S/D structure Poly-poly capacitors Shrinkable to 1.2μ

CMOS PROCESS CHART

The CH process is used for applications requiring a higher (12V) voltage operation. This higher voltage operation is achieved through the use of a DDD (double diffused drain) source/drain structure. This increases the S/D junction grading and thus increases the breakdown voltage and lowers the associated junction capacitance. The CH process also provides low-voltage coefficient, precision poly-poly capacitors. These high quality capacitors support high performance switched-capacitor filtering and data conversion (A/D and D/A) circuits. "Digital" CMOS processes which have been modified to provide poly-diffusion capacitors do not support high performance analog applications such as those possible with poly-poly capacitors. Poly-poly capacitors have much lower voltage coefficients and do not have a large parasitic bottom place capacitor.

Another important feature for analog applications is found on the Silicon Systems CH process, high Ω/\Box poly resistors. These resistors have a low voltage coefficient which is very important for low distortion, continuous time

filters such as in anti-aliasing applications. Typical CMOS processes provide only high value well resistors, which are unacceptable in these applications.


To improve the reliability of your system, Silicon Systems has incorporated a well ring into the CH process. This improves the well tie-down and increases the latchup immunity. In applications with harsh 'environments' (inductive motor drivers, automotive applications...) an epi substrate option is utilized for CH to increase latchup immunity to well over 200 mA.

The CG process is designed to support 5V mixed-signal systems. As the feature size (1.5μ) is significantly reduced over the CH process, much higher levels of system integration are possible. In addition to the much higher level of digital complexity possible, high performance analog circuitry is supported. Just as with the CH process, excellent poly-poly capacitors are available. The CG process is shrinkable to 1.2μ . Both the CH and CG process are proven production processes, thus minimizing your unknowns and risks.

BIPOLAR PROCESS TECHNOLOGIES

Silicon Systems uses its bipolar processes to implement high performance mixed-signal integrated circuits.

The two bipolar processes utilized for new designs are BK (12V) and BN (5V). These processes are summarized in the table below. Other production bipolar processes are not used for new designs.

BK BIPOLAR PROCESS NPN TRANSISTOR

Process	Туре	BV _{CEO}	NPN Ft	Emitter Size	M1 Pitch	M2 Pitch	Features
ВК	Junction-isolated	12V	2 GHz	2.5µ	9.0µ	14.0µ	 Polysilicon emitters A1 Schottky diodes Nitride capacitors Ion implanted resistors Up/down junction isolation Collector/base plugs
BN	Oxide-isolated	6V	8 GHz	2.0µ	4.5μ	8.0μ	 High performance NPNs PtSi Schotty diodes Nitride capacitors Ion implanted resistors Sidewall oxide isolation Collector/base plugs

BIPOLAR PROCESS CHART

The BK process is an analog/digital process technology used for applications requiring a higher voltage (12V) operation. Higher voltage operation is achieved through the use of lighter-doped epi, which also improves the performance (current gain and speed) of the lateral PNP transistors. Deep N+ and P+ enhancement layers are provided to reduce the collector series resistance and base resistance, respectively. Up-junction isolation is used to allow a significant reduction in device area as compared to conventional junction isolation methods. Metal-Poly capacitors with a nitride dielectric are provided in BK.

The BN process is a sidewall oxide-isolated bipolar process targeted at applications using 5V power supply. The use of oxide isolation greatly reduces the sidewall

parasitic capacitances and allows the fabrication of very small transistors. A minimum size BN transistor consumes 1/5th the area of a minimum size BK transistor. The NPN transistors are available in walled and nonwalled configurations with the additional option of recessed collectors to further reduce the base-collector capacitance. Excellent PtSi Schottky diodes are provided as well as nitride/oxide capacitors, dual layer metal, and 100-200 MHz lateral and substrate PNP transistors. The high performance NPN transistors can be used to make sub-nanosecond ECL and CML logic gates as well as high-precision, high-speed analog circuitry. The fine metal pitches and small device sizes produce very dense circuit designs. The intrinsic speed and packing density of this process allow the designer to implement high performance analog/digital systems.

MIXED-SIGNAL ARRAYS

The Mixed-Signal Array (MSA) series has been designed for those applications requiring both analog and digital circuits on a single chip.

Silicon Systems' Mixed-Signal Array program is a hardware and software system for automating integrated circuit design. The arrays are developed with Silicon Systems' Integrated Design Methodology (IDM^{TM}), a semicustom design technique for designing high density, high performance mixed-signal (analog and digital) arrays in both Bipolar and CMOS devices.

General Description

The MSA Series is a family of semiconductor arrays designed for efficient implementation of mixed analog/ digital circuits. The series consists of seven base arrays ranging in complexity from 24 to 1608 digital gates, 8 to 40 analog cells, and 28 to 66 I/O pads.

Silicon Systems' Mixed-Signal Arrays are prefabricated integrated circuits consisting of tiles surrounded by a periphery of input/output tiles capable of a wide range of system interfaces. The Mixed-Signal Arrays employ a tile architecture which provides a systems designer with an open array of tiles containing unconnected active and passive semiconductor components. The components and tiles are interconnected to build specific electronic functions in combined analog and digital technology through the use of single tiles or tile/component combinations. In Silicon Systems' integrated CAD/CAE environment, the designer has the option of using the predefined macros provided in the library, or he can use these macros as models for creating macros specific to his own needs. The designer also has the option of storing newly generated or modified macros in a library and reusing them in other designs at a later time.

ADVANTAGES OF MIXED-SIGNAL ARRAYS

The benefits of using arrays are:

- An array can be designed from concept to prototypes in ten to fifteen weeks.
- Manufacturing time is greatly reduced due to the prefabrication of base arrays.
- Arrays are economic. System size and cost are reduced. Power consumption is reduced but performance is generally enhanced.
- Arrays can be reconfigured to fit your unique design requirements.

FEATURES

- CMOS and Bipolar families
- Combines high performance analog and digital circuits on a single chip
- System speeds up to 2 GHz (bipolar)
- · Twelve versatile arrays for a variety of applications
- · High voltage capability
- · ESD protection at each I/O pad
- Full CAE support on Mentor Graphics workstations
- Analog and digital macro library

MIXED-SIGNAL ARRAY	TECHNOLOGY	EQUIVALENT GATES	EQUIVALENT OP AMPS	BONDING PADS
6701	CMOS	1608	40	66
6702	CMOS	280	12	36
6703	CMOS	604	12	42
6704	CMOS	604	12	44
6901	Bipolar	96	24	48
6902	Bipolar	0	8	28
6903	Bipolar	24	26	52
6951		144	52	64
6952	High	24	16	40
6953	Performance	72	34	56
6954	Bipolar	144	16	56
6955		288	22	72

Silicon Systems Mixed-Signal Array Series

INTEGRATED DESIGN METHODOLOGY—THE IDM™ ADVANTAGE

Silicon Systems has spent almost 10 years developing its Integrated Design Methodology (IDM[™]). IDM[™] consists of an interlocking set of design methods supported by a single Computer-Aided Engineering (CAE) and Computer-Aided Design (CAD) system. As IDM™ supports analog and digital designs in any of Silicon Systems' CMOS and bipolar technologies, it offers the tremendous advantage of flexibility.

COMPARE FULL-CUSTOM TO SEMICUSTOM DESIGN

IDM™ is based on two major design approaches: fullcustom and semicustom.

Full-custom design is a "handcrafted" approach used to produce the most compact, high-performance design possible. Two approaches for full-custom physical design are possible: either composite or symbolic. In composite design, every process mask layer is drawn down to the process minimums. This yields the densest, highest-performance designs but is the most time-consuming approach. Symbolic design utilizes correct-by-construction, stick-like, process symbols, such as resistors, capacitors, and wires. Symbolic design is significantly more productive than composite and supports a higher level of circuit verification for greater design accuracy.

Semicustom design is an "automated" approach used to produce the most timely and cost-efficient designs possible. Two approaches are possible: either automatically placed-and-routed library components, including standard cells, or prefabricated array components.

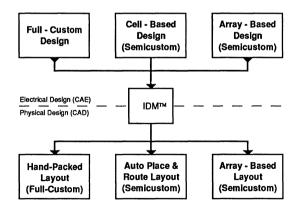
Silicon Systems' analog and digital standard cells are pre-characterized, library-maintained circuits that are automatically placed and routed to generate a layout. The automatic place-and-route software also utilizes macro cell assemblers to route full-custom circuitry. The standard cell approach requires minimal layout effort, leading to lower development cost and a higher first article success rate.

Silicon Systems' mixed-signal arrays are bipolar and CMOS families of integrated circuits which are ninety percent prefabricated. The base arrays utilize a three-tile type core structure each of which is targeted for a specific design application, i.e., analog, digital, and reference. The three tile types forming the array core are separated by interconnect "highways" capable of handling both analog and digital signal busses. The core, in turn, is enclosed by a periphery of predefined I/O functions.

Array customization is achieved by the definition and interconnection of metal and poly-Si or double metal layers. Silicon Systems mixed-signal arrays provide a systems designer with fast prototype cycle times, lower integration costs, and the ability to migrate to either standard cell or custom integration with a minimum perturbation in design production.

CHOOSE THE OPTIMUM DESIGN APPROACH BASED ON TRADE-OFFS

Each IDM™ design approach offers unique cost, time, and performance trade-offs.

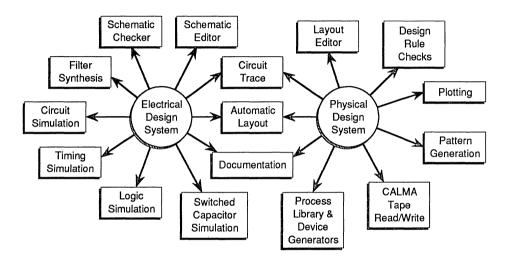

	Full - C	Custom	Semicustom			
	Composite Design	Symbolic Design	Cell-Based Design	Array-based Design		
Design Parameters						
Cost (non-recurring expense)	1.0	0.5 - 0.8	0.4 - 0.7	0.2 - 0.4		
Time (schedule)	1.0	0.5 - 0.7	0.4 - 0.6	0.2 - 0.4		
Production Parameters						
Piece Price (production cost)	1.0	1.2 - 1.4	1.5 - 2.0	2.0 - 2.5		
Die Size (silicon area)	1.0	1.1 - 1.2	1.3 - 1.6	1.6 - 2.0		

CUSTOM / SEMICUSTOM TRADE-OFFS

Note: All comparisons are normalized to a composite-level design.

MIX FULL-CUSTOM AND SEMICUSTOM DESIGN ON A SINGLE CHIP

Due to the interlocking nature of Silicon Systems' design approaches, full-custom and semicustom design can be mixed on the electrical and/or physical design of any given IC.



CONVERT SEMICUSTOM DESIGN INTO FULL-CUSTOM DESIGN

With its unique integrated design automation system, Silicon Systems can easily convert a semicustom design into full-custom circuitry. This capability allows Silicon Systems' customers to reduce production costs by converting an area-inefficient semicustom design into a high-performance full-custom design.

SOPHISTICATED DESIGN AUTOMATION TOOLS

The Pegasys[™] design automation system, with proprietary and Silicon Systems-enhanced vendor software, addresses both the electrical and physical phases of design.

ELECTRICAL DESIGN

Electrical design is done on Mentor Graphics/Apollo engineering workstations with Silicon Systems-enhanced software that provides schematic capture, simulation, synthesis, and documentation tools. This software is supported by libraries of pre-designed cells and components. Due to our integrated CAE environment, there is no distinction between any schematic capture, simulation, or synthesis capabilities for full- or semicustom design approaches.

ANALOG & DIGITAL SIMULATION

Simulation ensures that we meet the customer's performance specification before converting the design into silicon. Circuit simulation, an important key to Silicon Systems' design methodology, allows us to accurately simulate the performance numbers of our technologies. For circuit simulation, we use Meta-Software's HSPICE[™] with a proprietary analog CMOS model that accurately predicts output impedance and other analog parameters over a wide range of operating conditions and device sizes. The HSPICE environment includes a fully hierarchical netlister, a preprocessor called PHSPICE, and a Meta-Software graphic plotter called HSPLOT[™]. For the analog simulation of switched capacitors, we use Columbia University's SWITCAP[™].

For digital simulation, we use a proprietary version of SimuCad's SILOSTM that performs gate and switch-level, zero-delay, functional logic and fault simulation. To analyze delays with a timing-based logic simulation, we use a combination of TSIMTM (developed on Meta-Software's Circuit Path FinderTM) and SILOS.

DEVICE MODELING AND CHARACTERIZATION LABORATORY

Highly-accurate circuit simulation models and parameters are developed in Silicon Systems' state-of-the-art Device Modeling and Characterization (DMC) laboratory. With capabilities including precision AC measurement, RS1 statistical analysis, and worst-case modeling, the DMC lab provides complete device model data for our processes.

PHYSICAL DESIGN

Silicon Systems is in the process of converting its physical design system from a proprietary VAX-based system (ALICE) to an enhanced Mentor Graphics/Apollo-based system (ICgraph[™]). Both systems support a full range of capabilities, including graphical editing, design rule checking (DRC), circuit trace, and pattern generation (PG) in an integrated environment.

With the ALICE system, Silicon Systems pioneered a correct-by-construction device-level design methodology which has proven highly effective in the production of mixed analog/digital chips. Silicon Systems will embody this methodology within the Mentor Graphics-based system.

AUTOMATIC PLACE AND ROUTE SOFTWARE

Silicon Systems' cell-based automatic place-and-route capability, which is based on Cadence's TANCELL[™] software, performs physical design far more rapidly than can be done by hand. Extensive proprietary software, developed to complement TANCELL, supports hierarchical routing, parameter passing, library creation and maintenance, and CMOS switched-capacitor analog macro generation directly from full-custom design. A random-logic digital macro assembler is in development. This flexible place-and-route environment supports floor planning, automatic chip construction, and the mix and match of custom cells, standard cells, and compiled cells—all of which are used to reduce design development time.

AUTOMATIC CIRCUIT TRACE AND VERIFICATION SOFTWARE

Using a proprietary circuit-trace program called ANITA[™], we compare the completed IC layout database automatically to the Mentor schematic database to ensure that the layout implementation matches the schematic design exactly. When this trace program is applied to CMOS and bipolar mixed analog/digital designs, it performs a more detailed trace than is available through commercial layout-versus-schematic (LVS) packages. ANITA allows Silicon Systems to dramatically reduce design errors and minimize the time to product introduction.

DESIGN AUTOMATION BENEFITS

The proprietary Pegasys[™] Design Automation system gives Silicon Systems the flexibility to create increasingly complex ASIC designs for our customers while dramatically reducing design schedules, costs, and errors.

MANUFACTURING SUPPORTS CMOS AND BIPOLAR TECHNOLOGIES

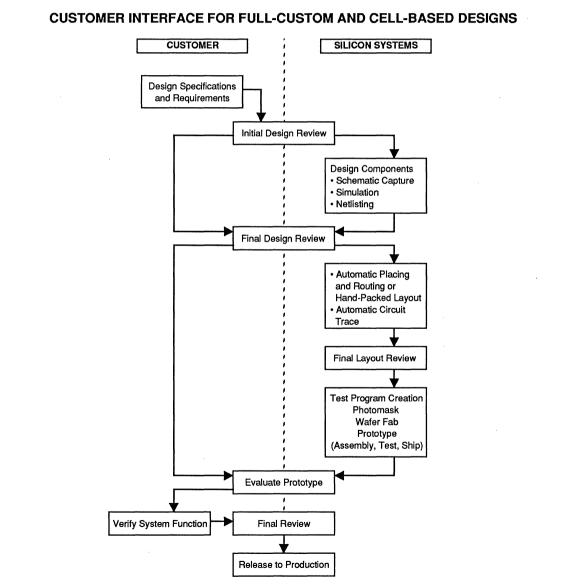
Silicon Systems continually invests in quality and capacity improvements to ensure that the company's wafer fabrication, test, and assembly capabilities meet the latest manufacturing requirements.

Two manufacturing facilities offer specialized capabilities depending on fabrication needs. Both facilities offer high resolution stepper photolithography technology, positive resist, dry plasma etch systems, high current implantation and automatic sputtering.

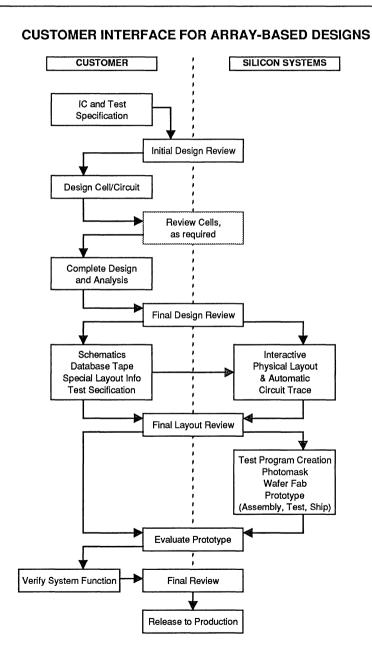
Fab 1 in Tustin employs bipolar processes including the high-speed BN process. Four-inch wafers are produced, targeted primarily toward the storage products marketplace. Fab 2 in Santa Cruz runs both bipolar and CMOS processes on both four- and six-inch wafers targeted primarily toward the communications and automotive products sector. The newest of the two manufacturing facilities, Fab 2, offers 5x stepper technology, robotics, and a migration towards sub-micron capability.

COMPUTER-AIDED MANUFACTURING WITH PROMIS TM FOR RAPID DELIVERY OF RELIABLE ICs

Committed to Computer-Aided Manufacturing (CAM), Silicon Systems has invested in extensive computer resources. To handle the vast amounts of data required for manufacturing, monitoring, and statistical process control, Silicon Systems uses the Process and Management Information System (PROMIS[™]). The PROMIS system:


- manages inventory information,
- tracks wafers in process,
- monitors the clean room environment
- performs statistical process control.

PROMIS[™] provides computer-controlled (i.e., paperless) facilities, which reduces sources of contamination in the wafer fab clean rooms. Silicon Systems' wafer fab is a class "50" environment with class "10" work surfaces. Cleanliness is maintained through the service chase approach, which channels a minimum of 5 air exchanges per minute. PROMIS allows Silicon Systems to deliver reliable ICs rapidly, thus allowing customers to introduce products to the marketplace on schedule and within budget.



SILICON SYSTEMS WORKS WITH CUSTOMERS TO CREATE THE BEST IC SOLUTION

Silicon Systems has five IC design centers located in Tustin, Grass Valley, and Santa Clara, California as well as Tokyo and Singapore. Any of these design centers can accept a functional specification and complete the entire design task using either a full-custom or a cell-based approach.

Or, a customer can complete most of the design, using array technology, and take advantage of Silicon Systems' expertise for physical layout.

Notes:

Section

QUALITY ASSURANCE AND RELIABILITY

7

7-0

silicon systems®

Reliability and Quality Assurance

SECTION 1

1.1 INTRODUCTION

Silicon Systems is committed to the goal of customer satisfaction through the on-time delivery of defect free products that meet the customer's expectations and requirements. This statement serves as the corporate quality policy and reflects key elements that are instrumental in attaining true customer satisfaction. This section outlines Silicon Systems' ongoing activities for the control and continual improvement of quality in every aspect of our organization.

Silicon Systems is diligently working to maintain and improve its position as a world-class provider of mixed-signal integrated circuits (MSICs™). Our Corporate Quality Mission describes that commitment: "Achieve Total Customer Satisfaction Through Quality Excellence and Exceed the Goal of 1 ppm by Continuous Improvement."

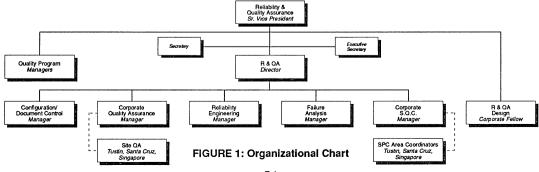
We realize and practice the concept that quality must be designed and built into our products. In addition, Silicon Systems utilizes rigid inspections and data analysis to evaluate the acceptability and variation existing in incoming materials and performs stringent outgoing quality verification. The manufacturing process flow is encompassed by an effective system of test/inspection checks and in-line monitors which focus on the control and reduction of process variation. These gates and monitors ensure precise adherence to prescribed standards and procedures.

Silicon Systems also incorporates the use of statistical process control techniques into company operations. The control and reduction of the process variation by the use of statistical problem solving techniques, analytical controls and other quantitative methods ensures that Silicon Systems' products maintain the highest levels of quality and reliability. Our Reliability and Quality Assurance organization is committed to working closely with the customer to provide assistance and a continually improving level of product quality.

1.2 RELIABILITY AND QUALITY ASSURANCE

It is the objective of the Reliability and Quality Assurance organization to ensure that proactive quality systems are in place to ensure that Silicon Systems' products will meet or exceed customer requirements and expectations. In addition, the Reliability and Quality Assurance organization works to facilitate the timely implementation of solutions and monitors the effectiveness of corrective actions. These organizational strategies support the continuing enhancement of quality consciousness throughout Silicon Systems, a necessary element in supporting our objective of world-class quality.

To facilitate the close coordination required of the Reliability and Quality function, a combined Reliability and Quality Assurance organization has been established. The R&QA organization structure is pictured in Figure 1. For maximum effectiveness, this organization is headed by a Senior Vice President reporting directly to the President/CEO.


SECTION 2: QUALITY ASSURANCE

2.1 QUALITY OBJECTIVES

While all Silicon Systems employees have direct responsibility for quality in their functions, Quality Assurance has the ultimate responsibility for the reliable performance of our products. This is accomplished through the administration of formal systems which assure Silicon Systems' management, as well as our customers, that products will meet the requirements of customer purchase orders and all other specifications related to design, raw material and thorough completion of the finished product.

Quality Assurance supports and directs the formal qualification of suppliers, material, processes, and products, and the administration of quality systems and production monitors to assure that our products meet Silicon Systems quality standards. Quality Assurance also provides the liaison between

Reliability and Quality Assurance

Silicon Systems and the customer for all product quality related concerns.

It is the practice of Silicon Systems to have the corporate quality and reliability objectives encompass all of its activities. This starts with a strong commitment of support from the corporate level and continues with exceptional customer support long after the product has been shipped.

Silicon Systems emphasizes the belief that quality must be built into all of its products by ensuring that all employees are educated in the quality philosophy of the company. Some of the features built into Silicon Systems Quality Culture include:

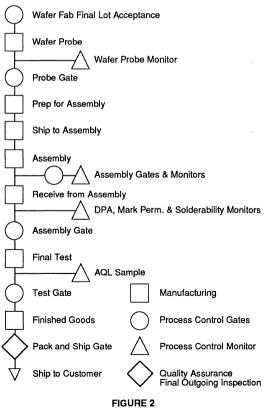
- 1. Structured training programs directed at Wafer Fabrication, Test, and Process Control personnel.
- 2. Stringent in-process inspection, gates, and monitors.
- 3. Rigorous evaluation of designs, materials, and processing procedures.
- 4. Stringent electrical testing (100% and QA AQL/Sample testing).
- 5. Ongoing reliability monitors and process verifications.
- Real-time use of statistical process control methodology.
- 7. Corporate level audits of manufacturing, subcontractors, and suppliers.
- 8. Timely corrective action system.
- 9. Control of non-conforming material.

These focused quality methods result in products which deliver superior performance and reliability in the field.

2.2.1 INCOMING INSPECTIONS

Incoming inspection plays a key role in Silicon Systems' quality efforts. Small variations in incoming material can traverse the entire production cycle before being detected much later in the process. By paying strict attention to the monitoring of materials at the earliest possible stage, variation can be reduced, resulting in a stable uniform process.

2.2.2 IN-PROCESS INSPECTIONS


Silicon Systems has established key inspection monitors in such strategic areas as Wafer Fabrication, Wafer Probe, Assembly, and Final Test. These quality monitoring tests are performed in addition to the intermediate and final inspections found in the manufacturing process.

Quality control monitors have been integrated throughout the manufacturing flow, so that data may be collected and analyzed to verify the results of intermediary manufacturing steps. This data is used to document quality trends or long term improvements in the quality of specific operations.

A generic description of the product flow and QC inspection points is shown in Figure 2.

2.3 DESIGN FOR QUALITY

Since the foundation of a reliable product is in the design process, the Reliability and Quality Assurance organization utilizes comprehensive reviews of design stages prior to the product's transition to production status. These review stages assure a predictable and effective development cycle. Other important design-related functions include ensuring that process specification revisions are translated into updated design parameters and the translation of manufacturing process capability into design guidelines. This is accomplished through the identification and monitoring of critical process and device parameters. These elements, included in Silicon Systems design for quality effort, support the development of robust design rules which are as insensitive as possible to manufacturing variation. The result is a product that delivers predictable and reliable long term performance.

Process Control Gates and Monitors

2.4 PPM REDUCTION PROGRAM

The primary purpose of a PPM reduction program is to provide a formalized feedback system in which data from nonconforming products can be used to improve product consistency and reliability. The action portion of this program is accomplished in three stages:

- 1. Identification of defects by failure mode.
- 2. Identification of defect causes and initiation of corrective action.
- 3. Measurement of results and setting of improved goals.

The data summarized from the established PPM program is compiled as a ratio of units rejected/tested. This ratio is then expressed in terms of defective parts per million (PPM). Founded on a statistically valid database of PPM data and an established five-year strategic plan identifying PPM improvement goals, Silicon Systems has progressively achieved excellent quality standards and will continue to improve on PPM standards as set by the industry.

2.5. COMPUTER AIDED MANUFACTURING CONTROL

Computer Aided Manufacturing (CAM) is used throughout Silicon Systems for the identification, control, collection and dissemination of timely data for logistics control. Silicon Systems also uses this type of computerized system for statistical process control and manufacturing monitoring. PROMIS, the Process Management and Information System, displays approved/controlled recipes, processes, and procedures; tracks work-in-process; reports accurate inventory information; allows continuous recording of facilities data; contains statistical analysis capabilities; and much more. PROMIS allows for a paperless facility, which assists in minimizing contamination of clean room areas.

The PROMIS system has been configured to meet the specific requirements of Silicon Systems.

SECTION 3: RELIABILITY

3.1 RELIABILITY PROGRAM

Silicon Systems has defined various programs that will characterize product reliability levels on a continuous basis. These programs can be categorically described by:

- 1. Qualifications
- 2. Production Monitors
- 3. Evaluations
- 4. Failure Analysis
- 5. Data collection and presentation for improvement projects

3.2 QUALIFICATIONS

The application of this program ensures that all new product designs, processes, and packaging configurations meet the absolute maximum ratings of design and the worst case criteria for end use. A large database generated by means of accelerated stress testing results in a high degree of confidence in determining final use performance.

3.3 PRODUCTION MONITORS

This program has been established to randomly select a statistically significant sample of production products for subjection to maximum stress test levels in order to evaluate the useful life of the product in a field use environment.

Table 1 lists reliability methods that are in use at Silicon Systems. This analysis of production monitor at Silicon Systems provides valuable information on possible design/ process changes which assure continued improved reliability.

3.4 EVALUATIONS

The evaluation program at Silicon Systems is an ongoing effort that will continue defining standards which address the reliability assessment of the circuit design, process parameters, and package of a new product. This program continuously analyzes updated performance characteristics of product as they undergo improvement projects at Silicon Systems.

3.5 FAILURE ANALYSIS

The failure analysis function is an integral part of the Reliability department at Silicon Systems. Silicon Systems has assembled a high technical and sophisticated failure analysis laboratory and staff. This laboratory provides visual analysis, electrical reject mode analysis, and both destructive and nondestructive data to aid the engineers in developing corrective action for improvement. These test analyses may include metallurgic, optical, chemical, electrical, and SEM with X-ray dispersive analysis as needed.

These conclusive in-house testing and analysis techniques allow Silicon Systems to monitor all aspects of product manufacturing to ensure that the product of highest quality is shipped to our customers.

3.6 DATA COLLECTION AND PRESENTATION FOR IMPROVEMENT PROJECTS

Data collected from each element of the Reliability program is summarized for scope and impact and distributed among all engineering disciplines in the company. This data facilitates improvement and provides our customers an opportunity to review the performance of our product.

Reliability and Quality Assurance

TEST	CONDITIONS	PURPOSE OF EVALUATION			
Biased temperature/humidity	85°C/85° %RH	Resistance to high humidity with bias			
High temperature operating life (HTOL)	Mil 883C, Method 1005	Resistance to electrical and thermal stress			
Highly accelerated stress test (HAST)	SSi Method	Evaluates package integrity			
Steam pressure	121°C/15PSI	Resistance to high humidity			
Temperature cycling	Mil 883C, Method 1010	Resistance to thermal excursion (air)			
Thermal shock	Mil 883C, Method 1011	Resistance to thermal excursion (liquid)			
Salt atmosphere	Mil 883C, Method 1009	Resistance to corrosive environment			
Constant acceleration	Mil 883C, Method 2001	Resistance to constant acceleration			
Mechanical shock	Mil 883C, Method 2002	Resistance to mechanical shocks			
Solderability	Mil 883C, Method 2003	Evaluates solderability of leads			
Lead integrity	Mil 883C, Method 2004	Evaluates lead integrity before board assembly			
Vibration, variable frequency	Mil 883C, Method 2007	Resistance to vibration			
Thermal resistance	SSi Method	Evaluates thermal dissipation			
Electrostatic damage	Method 3015	Evaluates ESD susceptability			
Latch-up	SSi Method	Evaluates latch-up susceptibility			
Seal fine and gross leak	Mil Std 883C, Method 1014	Evaluates hermeticity of sealed packages			

TABLE 1: Reliability Stress Tests

3.7 RELIABILITY METHODS

The Reliability Program utilizes a number of stress tests that are presently being used to define performance levels of our products. Many of these stress tests are per MIL-STD-883C as shown in Table 3.

3.8 RELIABILITY PREDICTION METHODOLOGY

At Silicon Systems, the Arrhenius model is used to relate a failure rate at an accelerated temperature test condition to a normal use temperature condition.

The model basically states FR = A exp(-Ea/KT)

Where:

- FR = Failure rate
- A = Constant

Ea= Activation Energy (eV)

- K = Boltzmann's constant 8.62 x 10⁻⁵ eV/ degree K
- T = Absolute temperature (degree K)

SECTION 4: ELECTROSTATIC DISCHARGE PROGRAM

4.1 ESD PREVENTION

Silicon Systems recognizes that procedures for the protection of Electrostatic Discharge (ESD) sensitive devices from damage by electrical transients and static electricity are vital. ESD safe procedures are incorporated throughout all operations which come in contact with these devices. Continuous improvement in the ESD protection levels is being accomplished through the incorporation of increasingly robust protection devices during the circuit design process.

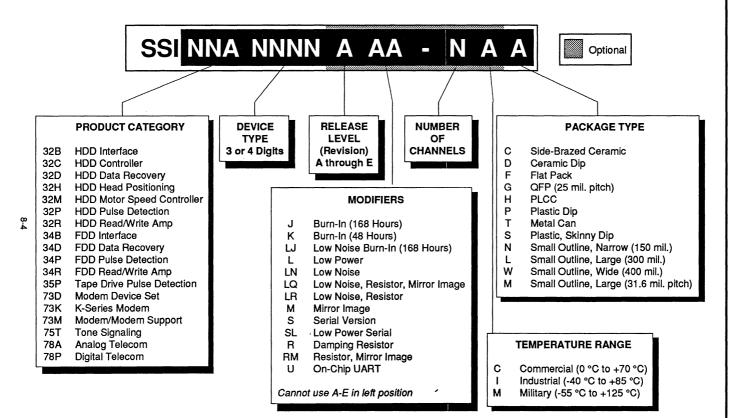
Silicon Systems' quality activity incorporates several protection measures for the control of ESD. Some of the preventive measures include handling of parts at static safe-guarded workstations, the wearing of wrist straps during all handling operation, the use of conductive lab coats in all test areas and areas which handle parts and the packaging of components in conductive or anti-static containers.

PACKAGING/ ORDERING INFORMATION

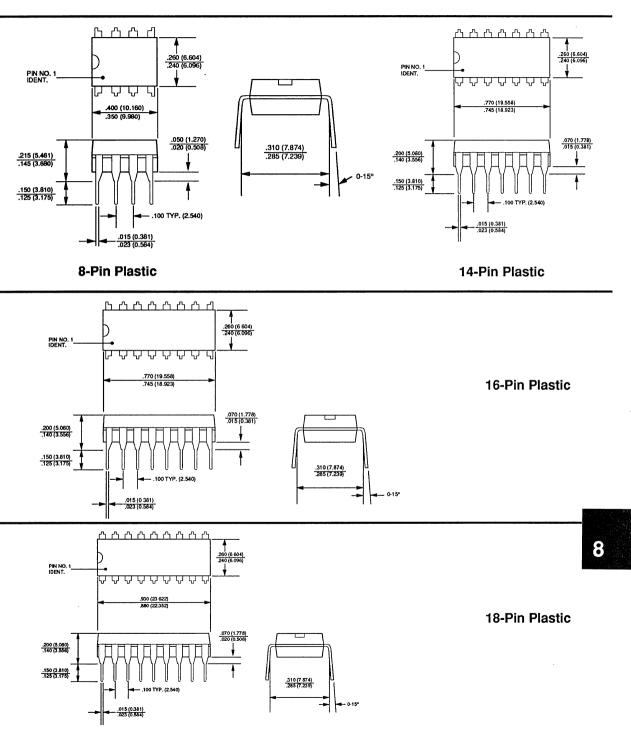
DUAL-IN-LINE PACKAGE (DIP)	PINS	PAGE NO.
Plastic	8, 14, 16 & 18	8-5
	20, 22, 24 & 24S	8-6
	28, 32 & 40	8-7
Ceramic	8, 14, 16 & 18	8-8
	22, 24 & 28	8-9
SURFACE MOUNTED DEVICES (SMD)		
PLCC (Quad)	28, 32 & 44	8-10
	52 & 68	8-11
Quad (Fine Pitch)	52 & 100	8-12
Small Outline (SOIC)	8, 14 & 16 SON*	8-13
	16, 18, 20, 24 & 28 SOL**	8-14
	34 & 36 SOL**	8-15
	32 SOW***	8-15
	36 SOM****	8-15
	44 SOM****	8-16
Flatpack	10, 24, 28 & 32	8-16
*SON is a 150 mil width package.		
**SOL is a 300 mil width package.		
***SOW is a 400 mil width package.		
****SOM is a 300 mil width package, fine pitch.		

Silicon Systems Packaging Matrix Ordering Information

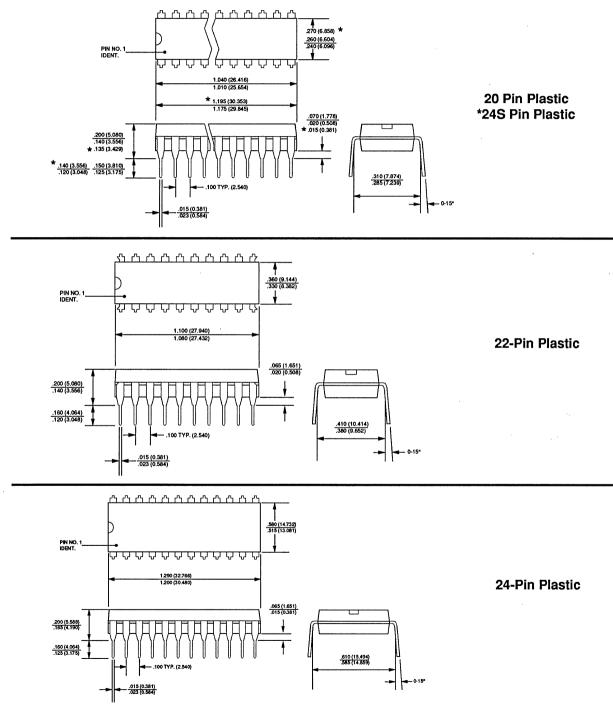
Package Type	8	10	14	16	18	20	22	24	28	32	34	36	40	44	52	68	100
Plastic DIP																	
300 mil	X		x	X	X	x		S									
400 mil							x										
600 mil								X	x	x			x				
Cerdip																	
300 mil	X		x	X	х	x											
400 mil							x										
600 mil								X	X				X				
Side Braze																	
300 mil	X		x	Х	X	x		S									
400 mil							X										
600 mil								X	X				X				
Small Outline																	
150 mil	x		x	Х													
300 mil				х		X		х	X		X	X		X			
400 mil										x							
Flatpack		X	x					Х	X	x							
Chip Carrier				X		X			X								
Plastic Quad									X	X				Х	X	X	
Ceramic Quad									X					Х		X	
QFP															x		X

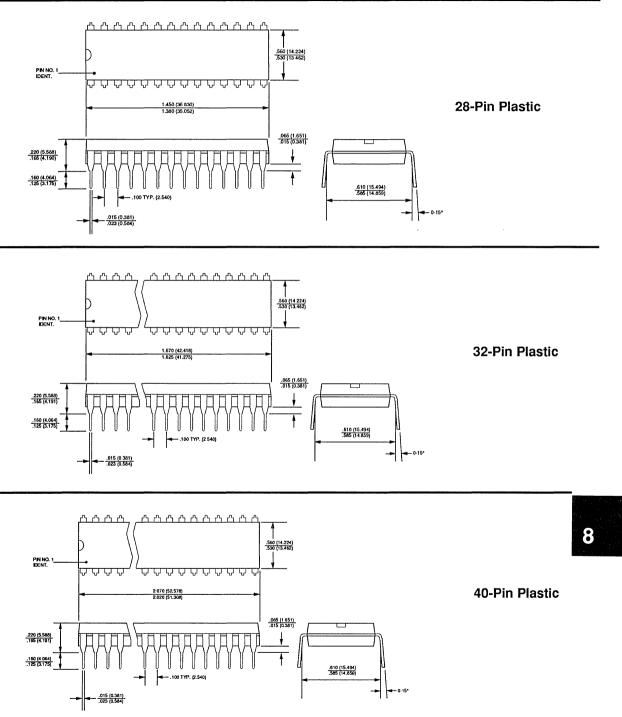

Silicon Systems Communication Products Package Types

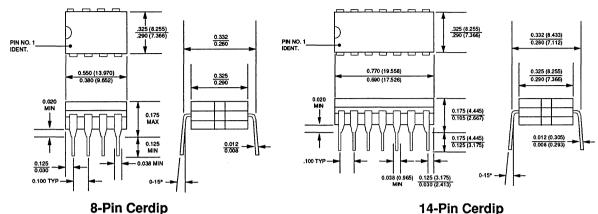
	ſ	PACKAGE TYPE							
DEVICE TYPE	F	P S*	н	NLW	QFP				
					Quad				
				Small	Fine				
		Plastic	PLCC	Outline	Pitch				
SSI 73D2180									
	3K222U	40	44						
	3D620	40	44						
SSI 73D2291/229									
	3M235		44						
7	3D640		44						
7	3D631		44						
SSI 73D2404									
7	3M214	28	28						
7	3D215	28	44						
7	3D216	40	44						
SSI 73D2407									
7	3M214	28	28						
7	3D215	28	44						
7	3D218	40	44						
7	3D221	32	32		· · · · · · · · · · · · · · · · · · ·				
SSI 73D2417									
7	3M214	28	28						
7	3M215	28	44						
7	3D219	40	44						
7	3D225	32	32						
SSI 73D2240									
7	3K224L	28	32		_				
7	3D600	40	44						
SSI 73D2420/242	21								
7	3D680				100				
7	3D681		44						
7	3D682		32						
SSI 73K212/212L		22, 28	28						
SSI 73K221/221L		22, 28		28					
*Narrow			• • • • • • • • • • • • • • • • • • •						

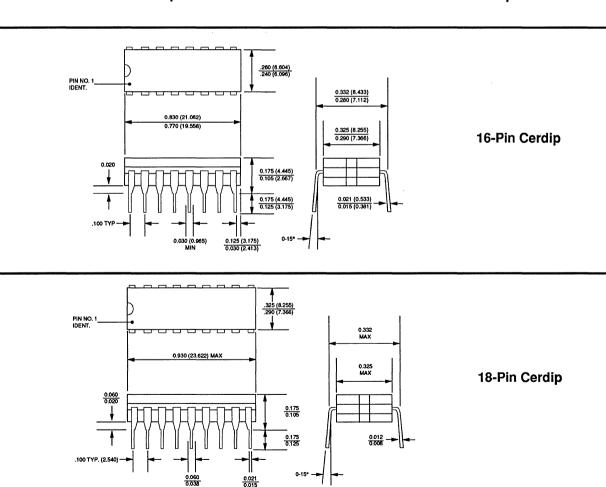

Silicon Systems Communication Products Package Types

	PACKAGE TYPE						
DEVICE TYPE	P S*	н	NLW	QFP			
				Quad			
			Small	Fine			
	Plastic	PLCC	Outline	Pitch			
SSI 73K222/222L	22, 28	28					
SSI 73K222U	40	44					
SSI 73K224L	28	32, 44	-				
SSI 73K302L	22, 28	28					
SSI 73K322L	22, 28	28					
SSI 73K324L	28						
SSI 73M214	28	28					
SSI 73M223	16						
SSI 73M235	48	44					
SSI 73M376		28					
SSI 73M450/450F	40	44					
SSI 73M450L/450LF	40	44					
SSI 73M550	40	44					
SSI 73M650/1650	28, 40	28, 44					
SSI 73M1450/2450	28	28					
SSI 73M1550/2550	28	28					
SSI 75T201	22						
SSI 75T202/203	18						
SSI 75T204	14		16L				
SSI 75T2089/2090	22						
SSI 75T2091	28	28					
SSI 75T957	22		24L				
SSI 75T980	8		16L				
SSI 75T981/982	22						
SSI 78A093A/093B	40	44					
SSI 78A207	20						
SSI 78P233	24, 24S		24L				
SSI 78P234	20		20L				
SSI 78P236	28						
SSI 78P2361	28						
SSI 78P2362	28						
*Narrow							

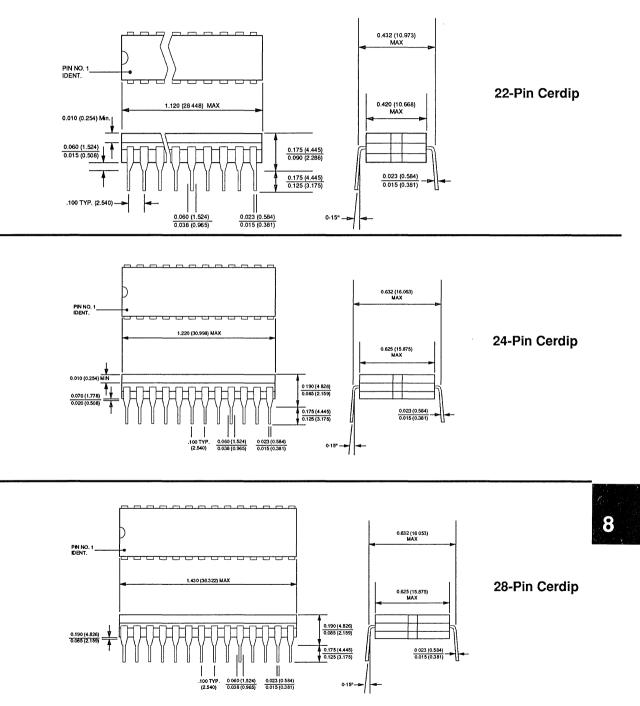

8


Package Information

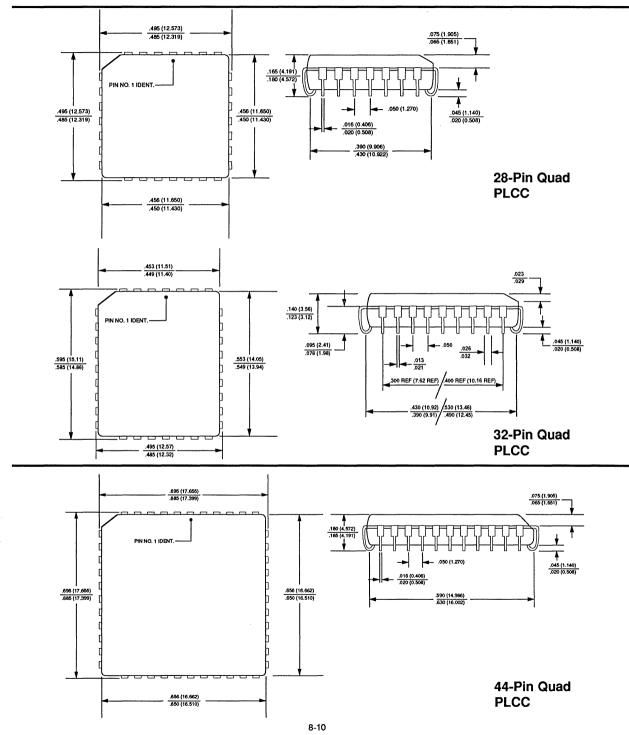

Package Information (Plastic DIP)

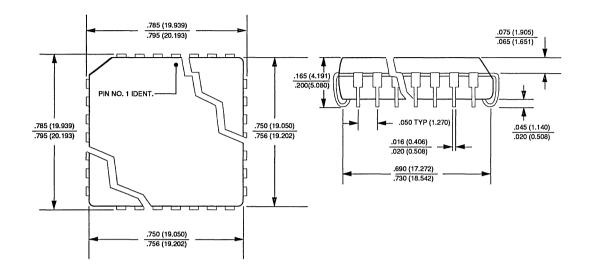

Package Information

Package Information (Cerdip)



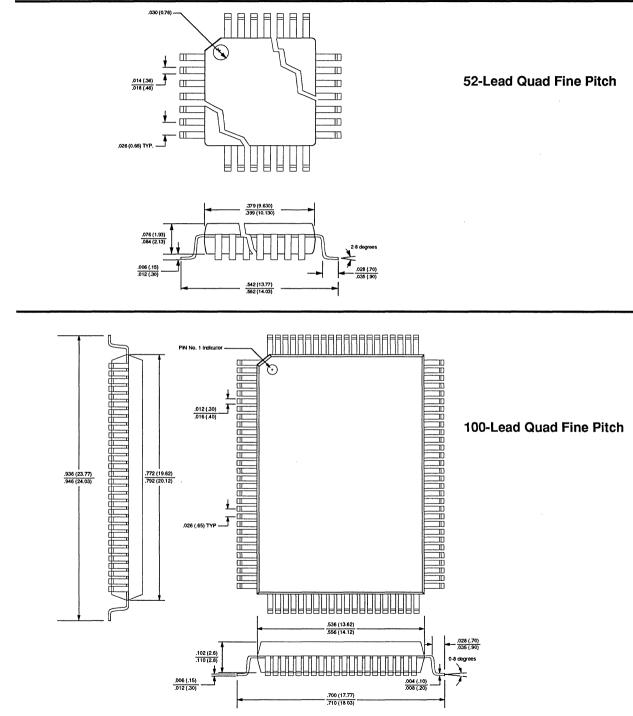
14-Pin Cerdip



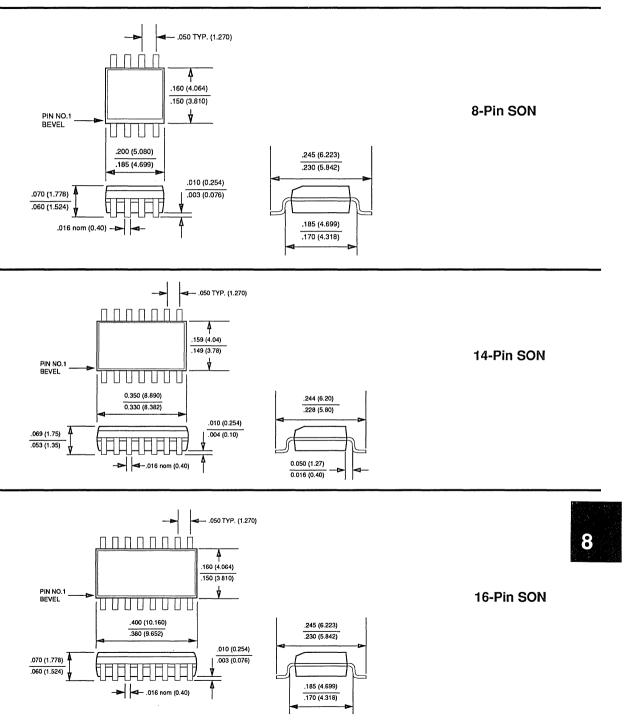

0.021

Package Information

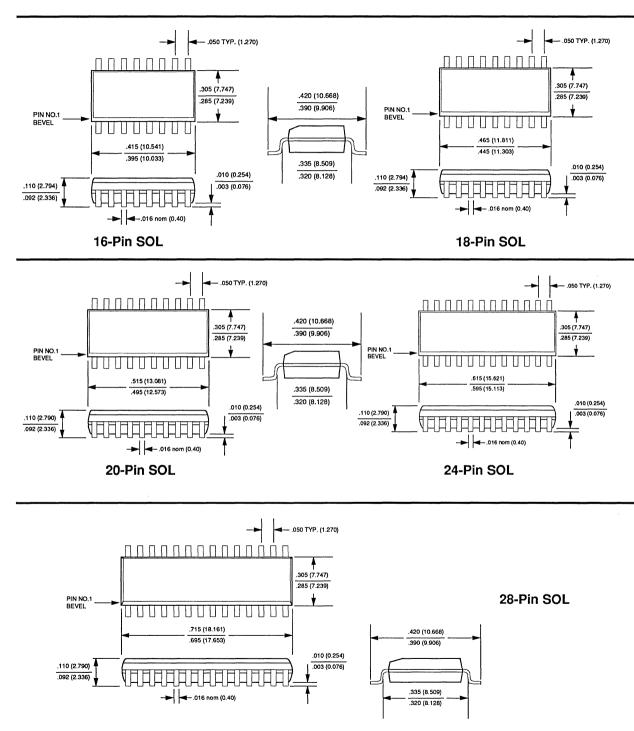
Package Information PLCC (Quad)

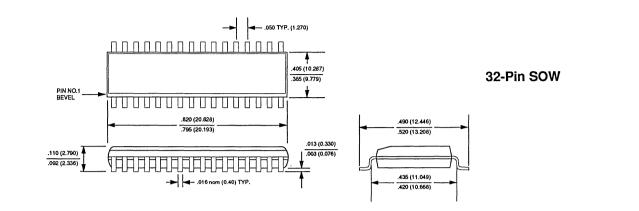


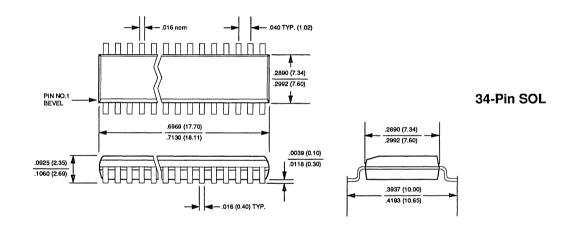
52-Pin Quad PLCC

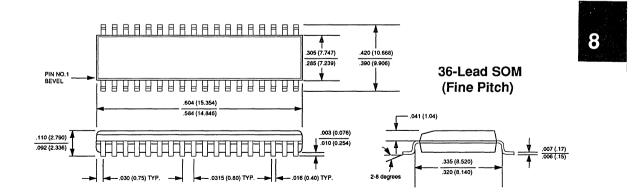


68-Pin Quad PLCC

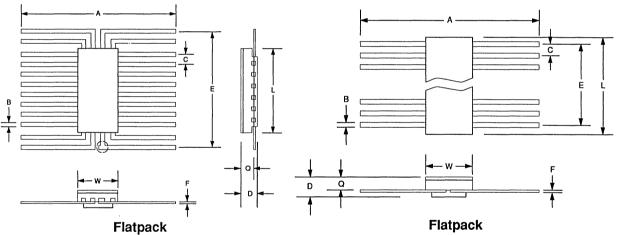

Package Information Quad (Fine Pitch)


Package Information (SON)




Package Information (SOL)

Package Information (SOL/SOM/SOW)



44-Lead SOM (Fine Pitch)

Package Information (Flatpack)

24-Leads

Flatpack 10, 28, 32-Leads

Pkg. Type	Lead Cnt.	A	В	с	D	E	F	L	Q	w
F	10	.900	<u>.015</u> .019	<u>.045</u> .055	.090 max	.200 typ	<u>.004</u> .007	<u>.250</u> .260	.074 typ	<u>.250</u> .260
F	24	.900	<u>.015</u> .019	.050 typ	.087 max	.567 typ	<u>.004</u> .007	<u>.391</u> .405	.075 typ	<u>.264</u> .276
F	28	1.150	<u>.015</u> .019	<u>.045</u> .055	.092 max	<u>.645</u> .655	<u>.004</u> .007	<u>.712</u> .728	<u>.085</u> .078	<u>.492</u> .508
F	32	1.150	<u>.015</u> .019	<u>.045</u> .055	.092 max	<u>.745</u> .755	<u>.004</u> .007	<u>.812</u> .828	<u>.085</u> .078	<u>.492</u> .508

9

GLOSSARY

9-0

Glossary

ACK- "Acknowledge" character. A transmission control character transmitted by a station as an affirmative response to the station with which a connection has been set up. An acknowledge character may also be used as an accuracy control character.

ACOUSTIC COUPLER - A type of low-speed modem interface frequently used with portable terminals. It sends and receives data using a conventional telephone handset and does not require an electrical connection to the line.

ADAPTIVE DIFFERENTIAL PULSE CODE MODU-LATION (ADPCM) - An encoding technique, standardized by the CCITT, that allows an analog voice conversation to be carried within a 32K bps digital channel. Three or four bits are used to describe each sample, which represents the difference between two adjacent samples. Sampling is done 8,000 times per second.

ALGORITHM - A prescribed set of well-defined rules for the solution of a problem in a finite number of steps, e.g., A full statement of an arithmetic procedure for evaluating sine x to a stated precision.

AMPLITUDE - Magnitude or size. In waveforms or signals occurring in a data transmission, a complete definition of the waveform can be made if the voltage level is known at all times. In this case, the voltage level is called the amplitude.

AMPLITUDE MODULATION - Method of modifying the amplitude of a sine wave signal in order to encode information.

ANALOG LOOPBACK - A technique used for testing transmission equipment that isolates faults to the analog signal receiving or transmitting circuitry. Basically, where a device, such as a modem, echoes back a received (test) signal that is then compared with the original signal.

ANALOG SIGNAL - Signal in the form of a continuously varying physical quantity such as voltage, which reflects variations in some quantity.

ANSI - American National Standards Institute. A highly active group affiliated with the International Standards Organization (ISO) that prepares and establishes standards for transmission codes (e.g., ASCII), protocols (e.g., ADCCP), media (tape and diskette), and high

level languages (e.g., Fortran and Cobol), among other things.

ANSWERBACK - A reply message from a terminal that verifies that the correct terminal has been reached and that it is operational.

APPLICATION LAYER - The top of the seven-layer OSI model, generally regarded as offering an interface to, and largely defined by, the network user; in IBM's SNA, the end-user layer.

ASCII - American Standard Code for Information Interchange. A 7-bit binary code that defines 128 standard characters for use in data communications.

ASYNCHRONOUS - Occurring without a regular or predictable time relationship to a specified event, e.g., The transmission of characters one at a time as they are keyed. Contrast with synchronous.

ASYNCHRONOUS TRANSMISSION - Transmission in which each information character, or sometimes each word or small block, is individually synchronized, usually by the use of start and stop elements. Also called start-stop or character asynchronous transmission.

ATTENUATION - A decrease in the power of a current, voltage, or power of a received signal in transmission between points because of loss through lines, equipment or other transmission devices. Usually measured in decibels.

AUTO-ANSWER - Automatic answering; the capability of a terminal, modem, computer, or a similar device to respond to an incoming call on a dial-up telephone line, and to establish a data connection with a remote device without operator intervention.

AUTOBAUD - The generally used term for automatically detecting the bit rate of a start/stop (character asynchronous) communication format by measuring the length of the start bit of the first character transmitted. Some modems extend this to additionally determine the parity in use by stipulating that the first two characters from the DTE should be "AT". The word autobaud comes from a popular misuse of baud rate to mean the same as bit rate.

AUTODIAL - Automatic dialing; the capability of a terminal, modem, computer, or a similar device to place a call over the switched telephone network, and establish a connection without operator intervention.

9

AUTOMATIC DIALER, OR AUTODIALER - Device which allows the user to dial preprogrammed numbers simply by pushing a single button.

BANDPASS FILTER - A circuit designed to allow a single band of frequencies to pass; neither of the cut-off frequencies can be zero or infinite.

BANDWIDTH - 1) The range of frequencies that can pass over a given circuit. The bandwidth determines the rate at which information can be transmitted through the circuit. The greater the bandwidth, the more information that can be sent through the circuit in a given amount of time. 2) Difference, expressed in hertz (Hz), between the highest and lowest frequencies of a transmission channel.

BASEBAND - Pertaining or referring to a signal in its original form and not changed by modulation. A baseband signal can be analog or digital.

BASEBAND SIGNALING - Transmission of a digital or analog signal at its original frequencies, i.e., a signal in its original form, not changed by modulation; can be an analog or digital signal.

BAUD - A measure of data rate, often misused to denote bits per second. A baud is equal to the number of discrete conditions or signal events per second. There is disagreement over the appropriate use of this word, since at speeds above 2400 bit/s, the baud rate does not always equal the data rate in bits per second.

BELLCORE - Bell Communications Research; organization established by the AT&T divestiture, representing and funded by the BOCs and RBOCs, for the purposes of establishing telephone network standards and interfaces; includes much of former Bell Labs.

BERT - Bit Error Rate Test. A test conducted by transmitting a known, pattern of bits (commonly 63, 511, or 2047 bits in length), comparing the pattern received with the pattern transmitted, and counting the number of bits received in error. Also see bit error rate. Contrast with BLERT.

BINARY CODE - Representation of quantities expressed in the base-2 number system.

BINARY SYNCHRONOUS COMMUNICATIONS - A half-duplex, character-oriented data communications protocol originated by IBM in 1964. It includes control characters and procedures for controlling the establishment of a valid connection and the transfer of data. Also called bisync and BSC. Although still enjoying wide-

spread usage, it is being replaced by IBM's more efficient protocol, SDLC.

BIPOLAR - 1) The predominant signaling method used for digital transmission services, such as DDS and T1, in which the signal carrying the binary value successfully alternates between positive and negative polarities. Zero and one values are represented by the signal amplitude at either polarity, while no-value "spaces" are at zero amplitude. 2) A type of integrated circuit (IC or semiconductor) that uses NPN, PNP, and junction FET's as the primary active devices, as opposed to CMOS, which uses MOS FET's. See Alternate Mark Inversion.

BIT - The smallest unit of information used in data processing. It is a contraction of the words "binary digit."

BIT ERROR RATE (BER) - In data communications testing, the ratio between the total number of bits transmitted in a given message and the number of bits in that message received in error; a measure of the quality of a data transmission.

BITS PER SECOND (BIT/S) - Basic unit of measure for serial data transmission capacity; Kbit/s, or kilobits, for thousands of bits per second; Mbit/s, or megabit/s, for millions of bits per second, etc.

BOC - Bell Operating Company. One of 22 local telephone companies spun off from AT&T as a result of divestiture. The 22 operating companies are divided into seven regions and are held by seven RBHCs (Regional Bell Holding Company).

BROADBAND - Referring or pertaining to an analog circuit that provides more bandwidth than a voice grade telephone line, i.e., a circuit that operates at a frequency of 20 kHz or greater. Broadband channels are used for high-speed voice and data communications, radio and television broadcasting, some local area data networks, and many other services. Also called wideband.

BUFFER - A storage medium or device used for holding one or more blocks of data to compensate for a difference in rate of data flow, or time of occurrence of events, when transmitting data from one device to another.

BUS - 1) Physical transmission path or channel. Typically an electrical connection, with one or more conductors, wherein all attached devices receive all transmissions at the same time. Local network topology, such as used in Ethernet and the token bus, where all network nodes listen to all transmissions, selecting certain ones based on address identification. Involves some type of contention-control mechanism for accessing the bus transmission medium. In data communications, a net-

work topology in which stations are arranged along a linear medium (e.g., a length of cable). 2) In computer architecture, a path over which information travels internally among various components of a system.

BYTE - Group of bits handled as a logical unit; usually 8.

CABLE - Assembly of one or more conductors within a protective sheath; constructed to allow the use of conductors separately or in groups.

CALL PROGRESS DETECTION (CPD) - A technique for monitoring the connection status during initiation of a telephone call by detecting presence and/or duty cycle of call progress signaling tones such as dial-tone or busy signals commonly used in the telephone network.

CALL PROGRESS TONES - Audible signals returned to the station user by the switching equipment to indicate the status of a call; dial tones and busy signals are common examples.

CCITT - Comite Consultatif International de Telephonie et de Telegraphie. Telegraph and Telephone Consultive Committee. An advisory committee to the International Telecommunications Union (ITU) whose recommendations covering telephony and telegraphy have international influence among telecommunications engineers, manufacturers, and administrators.

CENTRAL OFFICE (CO) - See Exchange

CHANNEL BANK - Equipment typically used in a telephone central office that performs multiplexing of lower speed, digital channels into a higher speed composite channel. The channel bank also detects and transmits signaling information for each channel, and transmits framing information so that time slots allocated to each channel can be identified by the receiver.

CHANNEL SERVICE UNIT (CSU) - A component of customer premises equipment (CPE) used to terminate a digital circuit, such as DDS or T1 at the customer site; performs certain line-conditioning functions, ensures network compliance per FCC rules and responds to loopback commands from central office; also, ensures proper ones density in transmitted bit stream and performs bipolar violation correction.

CHANNEL, VOICE GRADE - Channel suitable for transmission of speech, analog data, or facsimile, generally with a frequency range of about 300 to 3000 Hz.

CHARACTER - Letter, figure, number, punctuation, or other symbol contained in the message. In data communication, common characters are defined by 7- or 8bit binary codes, such as ASCII.

 $\ensuremath{\textbf{CHIP}}$ - A commonly used term which refers to an integrated ciruit.

CIRCUIT, TWO-WIRE - A circuit formed by two conductors insulated from each other that can be used as either a one-way or two-way transmission path.

CLOCK - In logic or transmission, repetitive, precisely timed signal used to control a synchronous process.

CMOS - Complementary Metal-Oxide Semiconductor. A type of transistor, typically used in low-power integrated circuits.

COAXIAL CABLE - Cable consisting of an outer conductor surrounding an inner conductor, with a layer of insulating material in between. Such cable can carry a much higher bandwidth than a wire pair.

CPE - Customer Premises Equipment

CROSSPOINT - 1) Switching array element in an exchange that can be mechanical or electronic. 2) Twostate semiconductor switching device having a low transmission system impedance in one state and a very high one in the other.

CROSSTALK - Interference or an unwanted signal from one transmission circuit detected on another, usually an adjacent circuit.

CYCLIC REDUNDANCY CHECK (CRC) - A powerful error detection technique. Using a polynomial, a series of two 8-bit block check characters are generated that represent the entire block of data. The block check characters are incorporated into the transmission frame, then checked at the receiving end.

DATA COMMUNICATIONS EQUIPMENT (DCE) -Equipment that performs the functions required to connect data terminal equipment (DTE) to the data circuit. In a communications link, equipment that is either part of the network, an access-point to the network, a network node, or equipment at which a network circuit terminates; in the case of an RS-232C connection, the modem is usually regarded as DCE, while the user device is DTE, or data terminal equipment; in a CCITT X.25 connection, the network access and packetswitching node is viewed as the DCE.

DATA LINK - Any serial data communications transmission path, generally between two adjacent nodes or devices and without any intermediate switching nodes.

DATA SET - A synonym for modem used by AT&T and a few other vendors.

DATA SERVICE UNIT (DSU) - A device that replaces a modem on a Digital Data Service (DDS) line. The data service unit regenerates the digital signals for transmission over digital facilities.

DATA TERMINAL EQUIPMENT (DTE) - Equipment which is attached to a network to send or receive data, generally end-user devices, such as terminals and computers, that connect to DCE, which either generate or receive the data carried by the network; in RS-232C connections, designation as either DTE or DCE determines signaling role in handshaking; in a CCITT X.25 interface, the device or equipment that manages the interface at the user premises; see DCE.

dB - Decibel; unit for measuring relative strength of a signal parameter such as power, voltage, etc. The number of decibels is twenty times the logarithm (base 10) of the ratio of the power of two signals, or ratio of the power of one signal to a reference level.

dBm - Decibels relative to one milliwatt.

DDS - 1) Digital Data Service. A digital transmission service supporting speeds up to 56 Kbit/s. 2) Dataphone Digital Service. An AT&T leased line service offering digital transmission at speeds ranging from 2400 to 56 Kbit/s.

DELAY DISTORTION - The change in a signal from the transmitting end to the receiving end resulting from the tendency of some frequency components within a channel to take longer to be propagated than others.

DIAL-UP - The process of, or the equipment or facilities involved in, establishing a temporary connection via the switched telephone network.

DIAL TONE (DT) - Signal sent to an operator or subscriber indicating that the switch is ready to receive dial pulses.

DIGITAL - Referring to communications procedures, techniques, and equipment whereby information is encoded as either binary "1" or "0"; the representation of information in discrete binary form, discontinuous in time, as opposed to the analog representation of information in variable, but continuous, waveforms.

DIGITAL LOOPBACK - A technique for testing the digital processing circuitry of a communications device.

It may be initiated locally, or remotely via a telecommunications circuit. The device being tested will echo back a received test message, after first decoding and then re-encoding it, the results of which are compared with the original message.

DIGITAL SIGNAL - Discrete or discontinuous signal; one whose various states are discrete intervals apart.

DIP - Dual-In-Line Package. Method of packaging electronic components for mounting on printed circuit boards.

DISTORTION - The modification of the waveform or shape of a signal caused by outside interference or by imperfections of the transmission system. Most forms of distortion are the result of the characteristics of the transmission system to the different frequency components.

DOTTING, DOUBLE DOTTING, PATTERN - The term "dotting" was coined by Bell to describe a data pattern consisting of alternate marks and spaces. The CCITT uses the full description of "alternating binary ones and zeros" on first needing this idea in a recommendation, but then abbreviate this to "reversals." By extrapolation, "double dotting" has come into use to refer to the data pattern termed "S1" which is used in V.22bis to indicate 2400 bit/s capability. The full description is "unscrambled double dibit 00 and 11 at 1200 bit/s for 100 + 3 ms."

DS-1 - Digital Signal level 1; telephony term describing a digital transmission format in which 24 voice channels are multiplexed into one 1.544 Mbit/s (U.S.) T1 digital channel.

DS-3 - Digital Signal level 3; telephony term describing the 44.736 Mbit/s digital signal carried on a T3 facility.

DTMF - Dualtone Multifrequency (DTMF) - Basis for operation of most push button telephone sets. An inband signalling technique in which a matrix combination of two frequencies, each from a group of four, are used to transmit numerical address information; it encodes 16 possible combinations of tone pairs using two groups of four tones each. The two groups of four frequencies are 697 Hz, 770 Hz, 852 Hz, and 941 Hz, and 1209 Hz, 1336 Hz, 1477 Hz, and 1633 Hz. DTMF is used primary for call initiation in GSTN telephone applications.

ECHO - The distortion created when a transmitted signal is reflected back to the originating station.

ECHO CANCELLER - A devise used to reduce or eliminate echo. It operates by placing a signal that is equal and opposite to the echo signal on the return transmission path.

ECHO SUPPRESSOR - A mechanism used to suppress echoes on long-distance analog connections. The device suppresses the transmission path opposite in direction to the one being used. This feature, although necessary for voice transmission, often interferes with data transmission.

EIA - Electronic Industries Association

EIA INTERFACE, EIA232D, RS 232C - The logical, electrical and physical characteristics of the connection between a DTE and a modem is set out in EIA specification 232D. Previously this has been known as RS232C. The logical characteristics are essentially similar to those specified in CCITT recommendation V.24 and the electrical characteristics to those in V.28.

ELECTROMAGNETIC INTERFERENCE (EMI) -Radiation leakage outside a transmission medium that results mainly from the use of high-frequency wave energy and signal modulation. EMI can be reduced by appropriate shielding.

EMI - See Electromagnetic Interference.

ENVELOPE DELAY - An analog line impairment involving a variation of signal delay with frequency across the data channel bandwidth.

EQUALIZATION - The introduction of components to an analog circuit by a modem to compensate for the attenuation (signal loss) variation and delay distortion with frequency (attenuation equalization) and propagation time variations with frequency (delay equalization). Generally, the higher the transmission rate, the greater the need for equalization.

ERROR - In data communications, any unwanted change in the original contents of a transmission.

ERROR BURST - A concentration of errors within a short period of time as compared with the average incidence of errors. Retransmission is the normal correction procedure in the event of an error burst.

ERROR CONTROL - A process of handling errors, which includes the detection and in some cases, the correction of errors.

EXCHANGE - Assembly of equipment in a communications system that controls the connection of incoming and outgoing lines, and includes the necessary signaling and supervisory functions. Different exchanges, or switches, can be costed to perform different functions, e.g., Local exchange, trunk exchange, etc. See Class of Exchange. Also known as Central Office (U.S. Term).

EXCHANGE, PRIVATE AUTOMATIC BRANCH (PABX) - Private automatic telephone exchange that provides for the switching of calls internally and to and from the public telephone network.

EXCHANGE, PRIVATE BRANCH (PBX) - Private, manually operated telephone exchange that provides private telephone service to an organization and that allows calls to be transmitted to or from the public telephone network.

EXCHANGE AREA - Area containing subscribers served by a local exchange.

FILTER - Circuit designed to transmit signals of frequencies within one or more frequency bands and to attenuate signals of other frequencies.

FIRMWARE - Permanent or semi-permanent control coding implemented at a micro-instruction level for an application program, instruction set, operating routine, or similar user-oriented function.

FLOW CONTROL - The use of buffering and other mechanisms, such as controls that turn a device on and off, to prevent data loss during transmission.

FOUR-WIRE CIRCUIT OR CHANNEL - A circuit containing two pairs of wire (or their logical equivalent) for simultaneous (i.e., full-duplex) two-way transmission. Contrast with two-wire channel.

FRAME - 1) A group of bits sent serially over a communications channel; generally a logical transmission unit sent between data-link-layer entities that contain its own control information for addressing and error checking. 2) A piece of equipment in a common carrier office where physical cross connections are made between circuits.

FRAMING - Control procedure used with multiplexed digital channels such as T1 carriers, whereby bits are inserted so the receiver can identify the time slots allocated to each subchannel. Framing bits can also carry alarm signals indicating specific alarm conditions.

FREQUENCY - Rate at which an event occurs, measured in hertz, kilohertz, megahertz, etc.

.

FREQUENCY BANDS - Frequency bands are defined arbitrarily as follows:

Range (MHz)	Name
0.03-0.3	Low frequency (LF)
0.3-3.0	Medium frequency (MF)
3-30	High frequency (HF)
30-300	Very High frequency (VHF)
300-3000	Ultra high frequency (UHF)
3000-30,000	Super high frequency (SHF) (micro wave)
30,000-300,000	Extremely high frequency (EHF)(millimeterwave)

FSK - Frequency Shift Keying. A method of modulation that uses two different frequencies, usually phase continous, to distinguish between a mark (digital 1) and a space (digital 0) when transmitting on an analog line. Used in modems operating at 1200 bit/s or slower.

FULL-DUPLEX - Pertaining to the capability to send and receive simultaneously.

G

GAIN - Denotes an increase in signal power in transmission from one point to another, usually expressed in dB.

GUARD TONE - In CCITT recommendations V.22 and V.22bis, guard tones may optionally be transmitted along with the data signal from the answering modem. A single frequency of either 1800 or 550 Hz is used and the data signal power must be reduced to keep the overall energy level the same as for transmission without guard tone. The purpose of the guard tone is to prevent the high-band data signal from interfering with the operation of billing apparatus in certain countries.

GSTN - General Switched Telephone Network

HALF-DUPLEX - Pertaining to the capability to send and receive but not simultaneously.

HANDSHAKE - An exchange of control sequences between two locations to set up the correct parameters for transmission.

HDLC - High-level Data Link Control. Bit-oriented communication protocol developed by the ISO (International Standards Organization).

HARMONIC DISTORTION - A waveform distortion, usually caused by the nonlinear frequency response of a transmission.

HERTZ (Hz) - A measure of electromagnetic frequency; one hertz is equal to one cycle per second.

HF - High Frequency.

HIGH FREQUENCY (HF) - Portion of the electromagnetic spectrum, typically used in short-wave radio applications. Frequencies in the 3 to 30 MHz range.

Hz - See Hertz.

IEEE - Institute of Electrical and Electronics Engineers.

INITIALIZE - To set counters, switches, addresses, or contents of storage to zero or other starting values at the beginning of, or at prescribed points in, the operation of a computer routine.

INTERFACE - A hardware and/or software link between two devices. The interface defines all signal characteristics and other specifications for physical interconnection of the devices.

INTEROFFICE TRUNK - Direct trunk between local central offices (Class 5 offices), or between Class 2, 3, or 4 offices; also called intertoll trunk.

ISO - International Organization for Standardization.

ITU - International Telecommunications Union. The parent organization of the CCITT.

JITTER - Slight movement of a transmission signal in time or phase that can introduce errors and loss of synchronization for high-speed synchronous communications. See Phase jitter.

KEY PULSING (KP) - Manual method of sending numerical and other signals by the operation of nonlocking pushkeys. Also called Key Sending.

KEY SERVICE UNIT (KSU) - Main operating unit of a key telephone system.

KEY TELEPHONE SYSTEM (KTS) - When more than one telephone line per set is required, pushbutton or key telephone systems offer flexibility and a wide variety of uses, e.g., pickup of several exchange lines, PABX station lines, private lines, and intercommunicating lines. Features of the system include pickup and holding intercommunications, visual and audible signals, cutoff, exclusion, and signaling.

KP - Key Pulse (signaling unlocking signal). See Key Pulsing.

kHz - Kilohertz, kilocycles per second.

KTU - Key Telephone Unit. See Key Service Unit.

LEASED LINE - A line rented exclusively to one customer for voice or data communications; dedicated circuit, typically supplied by the telephone company or transmission authority, that permanently connects two or more user locations and is for the sole use of the subscriber. Such circuits are generally voice grade in capacity and in range of frequencies supported, are typically analog, are used for voice or data, can be pointto-point, or multipoint, and can be enhanced with line conditioning. Also called private line, tie line, or dedicated facility.

LED - Light-Emitting Diode.

LIGHT-EMITTING DIODE (LED) - Semiconductor junction diode that emits radiant energy and is used as a light source for fiber optic communications, particularly for short-haul links.

LIMITED-DISTANCE MODEM - A short-haul modem or line driver that operates over a limited distance. Some limited-distance modems operate at higher speeds than modems that are designed for use over analog telephone facilities, since line conditions can be better controlled.

LINE HIT - A transient disturbance causing a detectable error on a communications line.

LINE-LOADING - The process of installing loading coils in series with each conductor on a transmission line. Usually 88 milliHenry coils installed at 6,000 foot intervals.

LINK - 1) A physical circuit between two points. 2) A logical circuit between two users of a packet switched (or other) network permitting them to communicate (although different physical paths may be used).

LINK LAYER - The logical entity in the OSI model concerned with transmission of data between adjacent network nodes. It is the second layer processing in the OSI model, between the physical and the network layers.

LOADING COILS - An inductance coil installed at regular intervals along a transmission line. Used to improve the quality of voice grade circuits.

LOCAL EXCHANGE - Exchange in which subscribers' lines terminate. The exchange has access to other exchanges and to national trunk networks. Also called local central office, end office.

LOCAL LOOP - The part of a communications circuit between the subscriber's equipment and the equipment in the local exchange.

LOCAL TRUNK - Trunks between local exchanges.

LOSS (TRANSMISSION) - Decrease in energy of signal power in transmission along a circuit due to the resistance or impedance of the circuit or equipment.

MARK - The signal (communications channel state) corresponding to a binary one. The marking condition exists when current flows (current-loop channel) or when the voltage is more negative than -3 volts (EIA RS-232 channel).

MATRIX - In switch technology, that portion of the switch architecture where input leads and output leads meet, any pair of which may be connected to establish a through circuit. Also called switching matrix.

Mbit/s - Megabits per second.

MEGAHERTZ (MHz) - A unit of frequency equal to one million cycles per second.

MF - 1) Medium Frequency. 2) Multifrequency. See Dualtone Multifrequency Signaling (DTMF).

MODEM - A contraction of modulate and demodulate; a conversion device installed in pairs at each end of an analog communications line. The modem at the transmitting end modulates digital signals received locally from a computer or terminal; the modem at the receiving end demodulates the incoming signal, converting it back to its original (i.e., digital) format, and passes it to the destination business machine.

MODULATION - The application of information onto a carrier signal by varying one or more of the signal's basic characteristics (frequency, amplitude, or phase); the conversion of a signal from its original (e.g., digital) format to analog format.

MODULATION, PULSE CODE (PCM) - Digital transmission technique that involves sampling of an analog information signal at regular time intervals and coding the measured amplitude value into a series of binary values, which are transmitted by modulation of a pulsed, or intermittent, carrier. A common method of speech digitizing using 8-bit code words, or samples, and a sampling rate of 8 kHz.

Ms - Millisecond. One-thousandth of a second.

MULTIPLEXER - Device that enables more than one signal to be sent simultaneously over one physical channel.

MULTIPLEXING - Division of a transmission facility into two or more channels either by splitting the frequency band transmitted by the channel into narrower bands, each of which is used to constitute a distinct channel (frequency-division multiplex), or by allotting this common channel to several different information channels, one at a time (time-division multiplexing).

MUX - See Multiplexer.

NAK - "Negative acknowledge" character. A transmission control character that indicates a block of data was received incorrectly.

NOISE - Undesirable energy in a communications path, which interferes with the reception or processing of a signal.

Ns - Nanosecond; also nsec. One-billionth of a second.

OFF HOOK - By analogy with the normal household telephone, a modem is off-hook when it is using the telephone line to make a call. This is similar to raising the telephone handset, or taking it off the hook. Going off-hook is also known as "seizing the line."

ON-HOOK - By analogy with the normal household telephone, a modem is on-hook when it is not using the telephone line. As with a telephone where the handset is on the hook, the line may be used by other equipment to make a call. Going on-hook is also known as "dropping the line."

OSI - Open Systems Interconnection. Referring to the reference model, OSI is a logical structure for network operations standardized within the ISO; a seven-layer network architecture being used for the definition of

network protocol standards to enable any OSI-compatible computer or device to communicate with any other OSI-compliant computer or device for a meaningful exchange of information.

OVERFLOW - Excess traffic on a particular route, which is offered to another (alternate) route.

PABX - Private Automatic Branch Exchange. See Exchange, Private Automatic Branch (PABX).

PACKET - A group of binary digits including data and call control signals that is switched as a composite whole. The data, call control signals, and error control information are arranged in a specified format.

PBX - Private Branch Exchange. See Exchange, Private Branch.

PHASE JITTER - In telephony, the measurement, in degrees out of phase, that an analog signal deviates from the referenced phase of the main data-carrying signal. Often caused by alternating current components in a telecommunications network; or: a random distortion of signal lengths caused by the rapid fluctuation of the frequency of the transmitted signal. Phase jitter interferes with interpretation of information by changing the timing.

PHASE MODULATION - One of three ways of modifying a sine wave signal to make it carry information. The sine wave or "carrier" has its phase changed in accordance with the information to be transmitted.

PROPAGATION DELAY - The period between the time when a signal is placed on a circuit and when it is recognized and acknowledged at the other end. Propagation delay is of great importance in satellite channels because of the great distances involved.

PROTOCOL - A set of procedures for establishing and controlling communications. Examples include BSC, SDLC, X.25, V.42, V.42bis, MNP, V.22bis handshake, etc.

PSK - Phase Shift Keying. A method of modulation that uses the differences in phase angle between two symbols to encode information. A reference oscillator determines the phase angle change of the incoming signal, which in turn determines which bit or dibit is being transmitted. DPSK (Differential Phase Shift Keying) is a variation of PSK which changes the phase relative to the previous phase. PULSE CODE MODULATION (PCM) - A method of transmitting information by varying the characteristics of a sequence of pulses, in terms of amplitude, duration, phase, or number. Used to convert an analog signal into a digital bit stream for transmission.

REGENERATIVE REPEATER - 1) Repeater utilized in telegraph applications to retime and retransmit the received signal impulses and restore them to their original strength. These repeaters are speed- and codesensitive and are intended for use with standard telegraph speeds and codes. 2) Repeater used in PCM or digital circuits which detects, retimes, and reconstructs the bits transmitted.

REGENERATOR - Equipment that takes a digital signal that has been distorted by transmission and produces from it a new signal in which the shape, timing, and amplitude of the pulses are that same as those of the original before distortion.

REPEATER - 1) In analog transmission, equipment that receives a pulse train, amplifies it and retimes it for retransmission. 2) In digital transmission, equipment that receives a pulse train, reconstructs it, retimes it, and often then amplifies the signal for retransmission. 3) In fiber optics, a device that decodes a low-power light signal, converts it to electrical energy, and then retransmits it via an LED or laser-generating light source. See also Regenerative Repeater.

REVERSE CHANNEL - A simultaneous low speed data path in the reverse direction over a half-duplex facility. Normally, it is used for positive/negative acknowledgements of previously received data blocks.

RINGER EQUIVALENCE NUMBER - This is a number that the FCC assigns to approved telecom equipment that measures how much load it places on the network during ringing. In the U.S.A., you can connect telephones, modems, FAX machines etc. In parallel to the same telephone line only as long as the sum of their ringer equivalence numbers is less than five. Most countries have a similar regulating system in force, although the methods used to arrive at the number vary widely.

RINGING SIGNAL - Any AC or DC signal transmitted over a line or trunk for the purpose of alerting a party at the distant end of an incoming call. The signal can operate a visual or sound-producing device.

RINGING TONE - Tone received by the calling telephone indicating that the called telephone is being rung. Also called Ringback.

SCRAMBLER/DESCRAMBLER - A scrambler function uses a defined method for modifying a data stream, in order to make the altered data stream appear random. A descrambler reverses the effect of the scrambler using the previously defined method to recover the original data stream. Most often used for data encryption, or to avoid transmitting repetitive data patters that can adversely affect data recovery in modems and other data transmission equipment.

SDLC - Synchronous Data Link Control. IBM bit oriented protocol providing for half-duplex transmission; associated with IBM's System Network Architecture (SNA).

SHIELDED PAIR - Two insulated wires in a cable wrapped with metallic braid or foil to prevent interference and provide noise-free transmission.

SIGNAL-TO-NOISE RATIO - The relative power of a signal as compared to the power of noise on a line. As the ratio decreases, it becomes more difficult to distinguish between information and interference.

SIMPLEX - Pertaining to the capability to move in one direction only. Contrast with half-duplex and full-duplex.

SIGNALING - Process by which a caller or equipment on the transmitting end of a line informs a particular party or equipment at the receiving end that a message is to be communicated.

SPACE - Opposite signal condition to a "mark." The signal (communications channnel state) corresponding to a binary zero. In an EIA RS-232 channel, the spacing condition exists when no current flows (current loop channel) or when the voltage is more positive than ± 3 volts.

ST - Start (signal to indicate end of outpulsing).

START-STOP (SIGNALING) - Signaling in which each group of code elements corresponding to a character is preceded by a start signal that serves to prepare the receiving mechanism for the reception and registration of character, and is followed by a stop signal that serves to bring the receiving mechanism to rest in preparation for the reception of the next character. Also known as asynchronous transmission.

9

STOP-BIT - In asynchronous transmission, the quiescent state following the transmission of a character; usually 1-, or 2-bit times long.

0690

STOP ELEMENT - Last bit of a character in asynchronous serial transmission, used to ensure recognition of the next start element.

SUBSCRIBER LINE - Telephone line connecting the exchange to the subscriber's station. Also called (U.S.term) access line and subscriber loop.

SYNCHRONOUS - Having a constant time interval between successive bits, characters, or events. Synchronous transmission doesn't use non-information bits (such as the start and stop bits in asynchronous transmission) to identify the beginning and end or characters, and thus is faster and more efficient than asynchronous transmission. The timing is achieved by transmitting sync characters prior to data or by extracting timing information from the carrier or reference.

SYNCHRONOUS NETWORK - Network in which all the communications links are synchronized to a common clock.

SYNCHRONOUS TRANSMISSION - Transmission process where the information and control characters are sent at regular, clocked intervals so that the sending and receiving terminals are operating continuously in step with each other.

T-CARRIER - A time-division multiplexed, digital transmission facility, operating at an aggregate data rate of 1.544 Mbit/s and above. T-carrier is a PCM system using 64 Kbit/s for a voice channel.

T1 - A digital facility used to transmit a DS-1 formatted digital signal at 1.544 Mbit/s; the equivalent of 24 voice channels.

T1C/T2/T3/T4 - Digital carrier facilities used to transmit signals at 3.152M, 6.312M, 44.736M, 274.176 Mbit/s, respectively.

T3 - A digital carrier facility used to transmit a DS-3 formatted digital carrier signal at 44.736 Mbit/s; the equivalent of 672 voice channels.

TOUCH-TONE - An AT&T trademark for dualtone multifrequency signaling equipment. Use of tones simplifies the switching system design and greatly expands the potential for adding features to telephone systems. It also speeds up the dialing operation for a person making a call.

TRANSCEIVER - Device that can transmit and receive traffic.

TRUNK - Transmission paths that are used to interconnect exchanges in the main telephone network, two switching centers, or a switching center and a distribution point, such as a telephone exchange line that terminates in a PABX network.

TTL - Transistor-Transistor Logic. Digital logic family having common electrical characteristics.

TURNAROUND TIME - The time required to reverse the direction of transmission, e.g; to change from receive mode to transmit mode in order to acknowledge on a half-duplex line. When individual blocks are acknowledged, as is required in certain protocols (e.g., IBM BSC) the turnaround time has a major effect on throughput, particularly if the propagation delay is lengthy, such as on a satellite channel.

TWO-WIRE CIRCUIT - Circuit formed of two conductors insulated from each other, providing a send and return path. Signals may pass in one or both directions.

VIDEOTEX - An interactive data communications application designed to allow unsophisticated users to converse with remote databases, enter data for transactions, and retrieve textual and graphics information for display on subscriber television sets or low-cost terminals.

VSLI - Very Large Scale Integration.

V SERIES RECOMMENDATIONS -(CCITT V.xx Standards)

Also see Voiceband Modem Standards chart on page 9-12.

V.1 - Definitions of key terms for binary symbol notation, such as binary 0 = space, binary 1 = mark.

V.2 (1) - Specification of power levels for data transmission over telephone line.

V.4 - Definition of the order of bit transmission, the use of a parity bit, and the use of start/stop bits for asynchronous transmission.

V.5 - Specification of data-signaling rates (bit/s) for synchronous transmission in the switched telephone network.

V.6 - Specification of data signaling rates (bit/s) for synchronous transmission on leased telephone circuits.

V.7 - Definitions of other key terms used in the V-series recommendations.

V.10 - Description of an unbalanced physical level interchange circuit (unbalanced means one active wire between transmitter and receiver with ground providing the return).

V.11 - Description of a balanced physical level interchange circuit (balanced means two wires between the transmitter and receiver with both wires' signals constant with respect to Earth).

V.15 - Description of use of acoustic couplers for data transmission.

V.16 - Description of the transmission of ECG (electrocardiogram) signals on the telephone channel.

V.19 - Description of one-way parallel transmission modems using push-button telephone sets.

V.20 - Description of one-way parallel transmission modems, excluding push-button telephone sets.

V.22bis - Operating at 1.2 Kbit/s, encodes two consecutive bit (dibits); the dibits are encoded as a change relative to the previous signal element.

V.22bis - Operating at 2.4 Kbit/s, encodes four consecutive bits (quadbits); the first two bits are encoded relative to the quadrant of the previous signal element, the last two bits are associated with the new quadrant.

V.24 - Definition of the interchange circuit pins between DTEs (data terminal equipment) and DCEs (data circuit-terminating equipment).

V.25 - (2) - Specifications for automatic-answering equipment.

V.25bis - (2) - Specifications for automatic-answering equipment.

V.28 - Description of unbalanced interchange circuits operating below 20 Kbit/s.

V.29 - Operating at 9.6 Kbit/s, encodes four consecutive bits (quadbits); the first bit determines the amplitude, the last three bits use the encoding scheme of V.27.

V.29 - Operating at 4.8 Kbit/s, encodes two consecutive bits (dibits); amplitude is constant and phase changes are the same as V.26.

V.31 - Description of low-speed interchange circuits (up to 75 Bit/s).

V.31bis - Description of low-speed interchange circuits (up to 1.2 Kbit/s).

V.32 - Operating at 9.6 Kbit/s, encodes four consecutive bits (quadbits); the bits are mapped to a QAM signal.

V.32 - Operating at 9.6 Kbit/s with Trellis-coded modulation (TCM), encodes four consecutive bits, two of which are used to generate a fifth bit; the bits are mapped to a QAM signal.

V.32 - Operating at 4.8 Kbit/s, encodes two consecutive bits (dibits), which are mapped to a QAM signal.

V.42 - Defines a method of error control.

V.42bis - Defines a method of data compression.

Note: In the United States, EIA RS-496 specifies these measurements and RS-366 specifies these procedures.

VOICE-GRADE CHANNEL - a channel with a frequency range from 300 to 3000 Hz and suitable for the transmission of speech, data, or facsimile.

WORD - A group of bits handled as a logical unit; usually 16.

Voiceband Modem Standards

CCITT Standard	Data Rate (Bit/s)	Full- or Half- Duplex	Channel Separation	Carrier Frequency (Hz)	Modulation Method	Modulation Rate (Baud)	Bits Encoded	Synchronous or Asynchronous	Back Channel	GSTN	Leased Lines	Equalization	Scrambler			
V.21	· 300	Fulf	Frequency Division	1080, & 1750	Frequency Shift	300	1:1	Either	ND	Yes	No	ND	ND			
V.22	1200	Full	Frequency Division	1200, & 2400	Phase Shift	600	2:1	Either	ND	Yes	Point-to-Point 2-Wire	Fixed	Yes			
V.22	600	Full	Frequency Division	1200, & 2400	Phase Shift	. 600	1:1	Either	ND	Yes	Point-to-Point 2-Wire	Fixed	Yes			
V.22bis	2400	Full	Frequency Division	1200, & 2400	Quadrature- Amplitude Modulation	600	4:1	Either	ND	Yes	Point-to-Point 2-Wire	Fixed/ Adaptive	Yes			
V.22bis	1200	Full	Frequency Division	1200, & 2400	Quadrature- Amplitude Modulation	600	2:1	Either	ND	Yes	Point-to-Point 2-Wire	Fixed/ Adaptive	Yes			
V.23	600 (1)	Half	N/A	1300, & 1700	Frequency Modulation	600	N/A	Either	Yes	Yes	No	ND	ND			
V.23	1200 (1)	Half	N/A	1300, & 2100	Frequency Modulation	1200	N/A	Either	Yes	Yes	No	ND	ND .			
V.25	2400	Full	4-Wire	1800	Phase Shift	1200	2:1	Synchronous	Yes	No	Point-to-Point Multipoint 4-Wire	ND	ND			
V,26bis	2400	Half	N/A	1800 -	Phase Shift	1200	2:1	Synchronous	Yes	Yes	No	Fixed	ND			
V.26bis	1200	Half	N/A	1800	Phase Shift	1200	1:1	Synchronous	Yes	Yes	No	Fixed	ND			
V.26ter	2400	Either	Echo Cancellation	1800	Phase Shift	1200	2:1	Either	ND	Yes	Point-to-Point 2-Wire	Either	Yes			
V.26ter	1200	Either	Echo Cancellation	1800	Phase Shift	1200	1:1	Either	ND	Yes	Point-to-Point 2-Wire	Either	Yes			
V.27	4800	Either	ND (3)	1800	Phase Shift	1600	- 3:1	Synchronous	Yes	No	Yes (3)	Manual	Yes			
V.27bis	4800	Either	4-Wire (4)	1800	Phase Shift	1600	3:1	Synchronous	Yes	No	2-Wire, 4-Wire	Adaptive	Yes			
V.27bis	2400	Either	4-Wire (4)	1800	Phase Shift	1200	2:1	Synchronous	Yes	No	2-Wire, 4-Wire	Adaptive	Yes			
V.27ter	4800	Half	None	1800	Phase Shift	1800	3:1	Synchronous	Yes	Yes	No	Adaptive	Yes			
V.27ter	2400	Half	None	1800	Phase Shift	1200	2;1	Synchronoùs	Yes	Yes	. No	Adaptive	Yes			
V.29	9600	Either	4-Wire	1700	Quadrature- Amplitude Modulation	2400	4:1	Synchronous	No	No	Point-to-Point 4-Wire	Adaptive	Yes			
V.29	7200	Either	4-Wire	1700	Phase Shift (5)	2400	3;1	Synchronous	ND	No	Point-to-Point 4-Wire	Adaptive	Yes			
V.29	4800	Either	4-Wire	1700	Phase Shift (5)	2400	2:1	Synchronous	ND	No	Point-to-Point 4-Wire	Adaptive	Yes			
V.32	9600	Full	Echo Cancellation	1800	Quadrature- Amplitude Modulation	2400	4:1	Synchronous	ND	Yes	Point-to-Point 2-Wire	Adaptive	Yes			
V.32bis	14400	Full (proposed)	Echo Cancellation	1800	Quadrature- Amplitude Modulation	2400	4:1	Synchronous	ND	Yes	Point-to-Point 2-Wire	Adaptive	Yes			
V.32	9600	Full	Echo Cancellation	1800	Trellis- Coded Modulation	2400	· 5:1	Synchronous	ND	Yes	Point-to-Point 2-Wire	Adaptive	Yes			
V.32	4800	Full	Echo Cancellation	1800	Quadrature- Amplitude Modulation	2400	2:1	Synchronous	ND	Yes	Point-to-Point 2-Wire	Adaptive	Yes			
V.33 Bell (U.S.) 1	14400 Standard	Half		· .	1.			Synchronous	ND	Yes		Adaptive	Yes			
	Januaru			2225 &	[× .								
103	300	Full	Frequency Division	1270(m) 2025 & 1070(s)	Frequency Shift	300	1:1	Either	No	Yes	No	Fixed	No			
201	2400	Half	None	1800	Phase Shift	1200	2:1	Synchronous	No	Yes	Point-to-Point 2-Wire	Adaptive	Yes			
202	1200	Half	None	1200 & 2200	FSK	1200	1:1	Either	Yes	Yes	Point-to-Point 2-Wire	Fixed	No			
208	4800	Half	None	1800	Quadrature- Amplitude Modulation	1600	3:1	Synchronous	No	Yes	Point-to-Point 2-Wire	Adaptive	Yes			
212	1200	Fult	Frequency Division	1200 & 2400	Phase Shift	600	2:1	Either	No	Yes	No	Fixed	Yes			
1. Bit/s not used in specification; rate stated in baud							4. For half-duplex, 2-wire used									
· ·		use a backwa						le is constant on a								
3. Makes no	mention o	3. Makes no mention of 4-wire (must be assumed)							ND - Not defined (i.e., not specified in the recommendation)							

SALES OFFICES/ DISTRIBUTORS

North American Regional Offices & Sales Representatives

EAST

HEADQUARTERS Wayne Taylor, Manager Silicon Systems, Inc. 53 Stiles Road Salem, NH 03079 Ph: (603) 898-1444 FAX: (603) 898-9538

ALABAMA Technology Marketing Assoc. (TMA) Huntsville Ph: (205) 883-7893 FAX: (205) 882-6162

CONNECTICUT

NRG, Ltd. Fairfield Ph: (203) 384-1112 FAX: (203) 335-2127

FLORIDA

Technology Marketing Assoc. (TMA) Orlando Ph: (407) 857-3760 FAX: (407) 857-6412

Deerfield Beach Ph: (305) 427-1090 FAX: (305) 427-1626

Largo Ph: (813) 541-1591 FAX: (813) 545-8617

GEORGIA Technology Marketing Assoc. (TMA) Atlanta Ph: (404) 446-3565 FAX: (404) 446-0569

MARYLAND Burgin-Kreh Associates Baltimore Ph: (301) 265-8500 FAX: (301) 265-8536

MASSACHUSETTS Mill-Bern Associates Woburn Ph: (617) 932-3311 FAX: (617) 932-0511

NEW JERSEY Technical Marketing Group West Caldwell Ph: (201) 226-3300 FAX: (201) 226-9518

NEW YORK Electra Sales Rochester Ph: (716) 427-7860 FAX: (716) 427-0614

East Syracuse Ph: (315) 463-1248 FAX: (315) 463-1717

Technical Marketing Group Melville Ph: (516) 351-8833 FAX: (516) 351-8667

NO. CAROLINA

Refer calls to TMA Atlanta, Georgia

PENNSYLVANIA Omni Sales Erdenheim Ph: (215) 233-4600 FAX: (215) 233-4702

VIRGINIA Burgin-Kreh Associates Lynchburg Ph: (804) 239-2626 FAX: (804) 239-1333

CENTRAL

HEADQUARTERS Mike Traviolia, Manager Silicon Systems, Inc. 340 W. Butterfield Rd., Suite 4B Elmhurst, IL 60126 Ph: (708) 832-3111 FAX: (708) 832-3172

Administrative Office: Silicon Systems, Inc. 2201 N. Central Exp., Suite 132 Richardson, TX 75080 Ph: (214) 669-3381 FAX: (214) 669-3495

Automotive Sales Office: Detroit (F.A.E.) Ph: (313) 462-2133 FAX: (313) 462-2405

ILLINOIS Phase II Marketing

Rolling Meadows Ph: (708) 806-1330 FAX: (708) 806-1349

INDIANA STB Associates Indianapolis Ph: (317) 844-9227

FAX: (317) 844-1904 IOWA Cahill, Schmitz & Howe Cedar Rapids Ph: (319) 377-8219 FAX: (319) 377-0958

KANSAS B.C. Electronics Kansas City Ph: (913) 342-1211 FAX: (913) 342-0207

KENTUCKY

Technology Marketing Corp. (TMC) Louisville Ph: (502) 893-1377 FAX: (502) 896-6679

MICHIGAN A.P. Associates Brighton

Ph: (313) 229-6550 FAX: (313) 229-9356

MINNESOTA

OHMS Technology, Inc. Minneapolis Ph: (612) 932-2920 FAX: (612) 932-2918

MISSOURI B. C. Electronics Bridgeton Ph: (314) 739-6683

FAX: (314) 344-3180 OHIO Makin Associates Cincinnati Ph: (513) 871-2424 FAX: (513) 871-2524

Dublin Ph: (614) 793-9545 FAX: (614) 793-0256

Solon Ph: (216) 248-7370 FAX: (216) 248-7372

TEXAS OM Associates, Inc. Austin Ph: (512) 794-9971 FAX: (512) 794-9987

Richardson Ph: (214) 690-6746 FAX: (214) 690-8721

Houston Ph: (713) 789-4426 FAX: (713) 789-4825

WISCONSIN Phase II Marketing Rolling Meadows, IL Ph: (414) 771-9986 FAX: (414) 771-9935

SOUTHWEST

HEADQUARTERS Mel Marchbanks, Manager Silicon Systems, Inc. 454 Carson Plaza Drive, Suite 209 Carson, CA 90745 Ph: (213) 532-1524, 3499 FAX: (213) 532-4571

ARIZONA

Western High Tech Marketing, Inc. Scottsdale Ph: (602) 860-2702 FAX: (602) 860-2712

CALIFORNIA

Hadden Associates San Diego Ph: (619) 565-9444 FAX: (619) 565-1802

SC Cubed Thousand Oaks Ph: (805) 496-7307 FAX: (805) 495-3601

Tustin Ph: (714) 731-9206 FAX: (714) 731-7801

COLORADO

Lange Sales Littleton Ph: (303) 795-3600 FAX: (303) 795-0373

NEW MEXICO

Western High Tech Marketing, Inc. Albuquerque Ph: (505) 884-2256 FAX: (505) 884-2258

UTAH

Lange Sales Salt Lake City Ph: (801) 487-0843 FAX: (801) 484-5408

NORTHWEST

HEADQUARTERS Jon Tammel, Manager Silicon Systems, Inc. 2840 San Thomas Exp., Suite 140A Santa Clara, CA 95051 Ph: (408) 980-9771 FAX: (408) 748-9488 TLX: 171-200

CALIFORNIA

Magna Sales Santa Clara Ph: (408) 727-8753 FAX: (408) 727-8573

OREGON

Western Technical Sales Beaverton Ph: (503) 644-8860 FAX: (503) 644-8200

WASHINGTON

Western Technical Sales Bellevue Ph: (206) 641-3900 FAX: (206) 641-5829

Spokane Ph: (509) 922-7600 FAX: (509) 922-7603

CANADA

BRITISH COLUMBIA Enerlec Richmond Ph: (604) 273-0882 FAX: (604) 273-0884

ONTARIO

Har-Tech Downsview Ph: (416) 665-7773 FAX: (416) 665-7290

Nepean Ph: (613) 726-9410 FAX: (613) 726-8834

QUEBEC Har-Tech

Pointe Claire Ph: (514) 694-6110 FAX: (514) 694-8501

EUROPE

HEADOUARTERS

R. Sharman, District Sales Mgr. Silicon Systems, Int'l Woodpeckers, The Common West Chiltington West Sussex RH20 2PL, UK Ph: (44) 79-881-2331 FAX: (44) 79-881-2117 TLX: 878411 SILSYS G

AUSTRIA

Allmos GmbH Wien Ph: (43) 1-627-1953 FAX: (43) 1-627-102112

BELGIUM Alcom Electronics BVBA Wilrijk Ph: (32) 3-828-3880 FAX: (32) 3-830-5186

DENMARK C-88 Kokkedal Ph: (45) 4224-4888 FAX: (45) 4224-4889

ENGLAND

Pronto Electronic Systems, Ltd. Ilford, Essex Ph: (44) 81-554-6222 FAX: (44) 81-518-3222 TLX: 895-4213 PRONTO G

FINLAND

Komdel Oy Espoo Ph: (358) 0-885011 FAX: (358) 0-885-327 TLX: 121926 KOMDL SF

FRANCE

Datadis, S.A. Massy Cedex Ph: (33) 1-69-20-41-41 FAX: (33) 1-69-20-49-00 TLX: 603167 F

GERMANY

Atlantik Elektronik GmbH Martinsried Ph: (49) 89-857-0000 FAX: (49) 89-857-3702 TWX: 5 215 111 ALEC D

GREECE

Peter Caritato & Associates, Ltd. Athens Ph: (30) 1-902-0115 FAX: (30) 1-901-7024 TLX: 216-723 CARI GR

ISRAEL

Rapac Tel Aviv Ph: (972) 3-477115 FAX: (972) 3-493272 TLX: 342173 RAPAC IL

ITALY Cefra S.p.A.

Milano Ph: (39) 223-5264 FAX (39) 2236-0249 TLX: 314543 CEFRA I

THE NETHERLANDS Alcom Electronics BV 2908 LJ Capelle A/D IJSSEL Ph: (31) 10-451-9533 FAX: (31) 10-458-6482 TLX: 26160 ALCOM NL

NORWAY Hans H. Schive Asker

Ph: (47) 2-900900 FAX: (47) 2-904484 TLX: 19124 SKIVE N

PORTUGAL Diode Lisbon Ph: (351) 1-571390 FAX: (351) 1-534987

SO. AFRICA South Continental Devices Pinegowrie Ph: (27) 11-789-2400 FAX: (27) 11-886-2929 TLX: 4-24849 SA

SPAIN Diode Madrid Ph: (34) 1-555-3686 FAX: (34) 1-556-7159 TLX: 42148 DIODE E

SWEDEN Bexab Technology AB Täby Ph: (46) 8-732-8980 FAX: (46) 8-732-7058 TLX: 136888 BEXTE S

SWITZERLAND

Ellyptic AG Zurich Ph: (41) 1-493-1000 FAX: (41) 1-492-2255 TWX: 822-542 ELYP CH

YUGOSLAVIA Ellyptic AG

Maribor Ph: (38) 62-24561

International Distributors & Sales Representatives

FAR EAST

HEADQUARTERS K. S. Ong, District Sales Mgr. Silicon Systems, Singapore 3015A UBI Road 1 #03-01 Singapore 1440 Ph: (65) 380-9157 FAX: (65) 281-3423

AUSTRALIA R & D Electronics Victoria Ph: (61) 3-808-8911 FAX: (61) 3-808-9168 TLX: 790-33288

HONG KONG CET, Ltd. Wanchai Ph: (852) 520-0922 FAX: (852) 865-0639

INDIA Malhar Corp. Bangalore Ph: (812) 56-4998 FAX: (812) 57-5009

U.S.A. Headquarters Rosemont, PA Ph: (215) 527-5020 FAX: (215) 525-7805

JAPAN

Internix Tokyo Ph: (81) 3-369-1105 FAX: (81) 3-363-8486 TLX: 781-26733

KOREA Hanaro Corporation Seoul Ph: (82) 2-558-1144 FAX: (82) 2-558-0157

MALAYSIA

Dynamar Computer Products Penang Ph: (60) 4-637292 FAX: (60) 4-637319 TLX: MA40750 DYNAMA

Petaling Jaya Ph: (60) 3-7767199 FAX: (60) 3-7767201

Dynamar Computer Products Ph: (65) 281-3388 FAX: (65) 281-3308 TLX: RS26283 DYNAMA

TAIWAN

New Dynamar International Taipei Ph: (886) 2-777-5670 thru 5674 FAX: (886) 2-777-5867 TLX: 785-11064 DYNAMAR

THAILAND

Dynamar Computer Products Bangkok Ph: (662) 278-3690 (662) 278-5722 FAX: (662) 271-3815

SOUTH AMERICA

ARGENTINA Yel S.R.L. Buenos Aires Ph: (54) 1-46-211 FAX: (54) 1-45-2551 TLX: 390-18605

BRAZIL

Hitech Sao Paulo Ph: (55) 11-531-9355 FAX: (55) 11-240-2650 TLX: 391-11-53288 HTHB BR

CHILE

Victronics, Ltd. Santiago Centro Ph: (56-2) 2237698 (56-2) 330237 FAX: (56-2) 334432 TLX: 340168 VICTOR CK

MEXICO

Panamtek Guadalajara, Jalisco Ph: (52) 36-303029 FAX: (52) 36-30-3115

North American Authorized Distributor Offices

All locations are "Hall-Mark Electronics" except as noted.

ALABAMA Huntsville Ph: (205) 837-8700

ARIZONA Phoenix Ph: (602) 437-1200

Aved, Inc. Phoenix Ph: (602) 951-9788

CALIFORNIA Citrus Heights Ph: (916) 722-8600

Aved, Inc. San Diego Ph: (619) 792-0257

San Diego Ph: (619) 268-1201

San Jose Ph: (408) 432-4000

Torrance Ph: (213) 217-8400

Aved, Inc. Tustin Ph: (714) 259-8258

Tustin Ph: (714) 669-4100

COLORADO Englewood Ph: (303) 790-1662

CONNECTICUT Wallingford Ph: (203) 271-2844 FLORIDA Clearwater Ph: (813) 530-4543

Orlando Ph: (305) 855-4020

Pompano Beach Ph: (305) 971-9280

GEORGIA Norcross Ph: (404) 447-8000

ILLINOIS Wooddale Ph: (312) 860-3800

INDIANA Indianapolis Ph: (317) 291-5350

KANSAS Lenexa Ph: (913) 888-4747

MARYLAND Columbia Ph: (301) 988-9800

MASSACHUSETTS Billerica Ph: (617) 935-9777

MICHIGAN Detroit Ph: (313) 462-1205

MINNESOTA Bloomington Ph: (612) 941-2600

MISSOURI St. Louis Ph: (314) 291-5350 **NEW JERSEY** Mt. Laurel Ph: (609) 235-1900

Fairfield Ph: (201) 575-4415

NEW YORK Ronkonkoma Ph: (516) 737-0600

Rochester Ph: (716) 244-9290

NORTH CAROLINA Raleigh Ph: (919) 872-0712

OHIO Solon Ph: (216) 349-5632

Worthington Ph: (614) 888-3313

OKLAHOMA Tulsa Ph: (918) 665-3200

TEXAS Austin Ph: (512) 258-8848

Dallas Ph: (214) 553-4300

Houston Ph: (713) 781-6100

UTAH Murray Ph: (801) 268-3779

WISCONSIN New Berlin Ph: (414) 797-7844

CANADÁ

ONTARIO Har-Tech Electronics Downsview Ph: (416) 665-7773

BRITISH COLUMBIA Enerlec Surrey Ph: (604) 888-1667

Silicon Systems, Inc. 14351 Myford Road, Tustin, CA 92680 Ph (714) 731-7110, Fax (714) 669-8814