silicon systems

Data Book

Analog/Digital Bipolar/CMOS Integrated Circuits

Table of Contents

Section 1 TELECOMMUNICATION PRODUCTS

TELECOMMUNICATION PRODUCTS

Section 3 CUSTOM/ SEMICUSTO

Advanced and Preliminary Information

In this data book the following conventions are used in designating a data sheet "Advanced" or "Preliminary."

- Advanced— indicates a product still in the design cycle, and any specifications are based on design goals only. Sample availability is indicated in the text.
- Preliminary— indicates a product not completely released to production. The specifications are based on preliminary past evaluations and are not guaranteed. Small quantities are available, and SSI should be consulted for current information.

Section 4 STANDARD CELLS

STANDARD CELLS

CUSTOM/ SEMICUSTOM

Product Index

	Page
Customer Heply Cards Table of Contents	1
Product Index	11
Numerical Index	IV
Section 1. TELECOMMUNICATION PRODUCTS	1
SSI 201, DTMF Receiver (12v)	. 1-4
SSI 202/203, DTMF Receiver (5v)	. 1-8
SSI 204, DTMF Receiver (5v subscriber)	. 1-12
DTMF Receivers Application Guide	. 1-16
SSI 20C89, DTMF Transceiver	. 1-22
SSI 20C90, DTMF Transceiver (Call Progress)	. 1-28
SSI 223, 1200 Baud FSK Modem	. 1-34
SSI 263A Phonome Speech Synthesizer	1-30
SSI 263A. Sneech Synthesizer User Guide	1-50
SCA 6/SCA 12. Switch Capacitor Arrays	. 1-56
Advanced Telecom Dreduct Information	
	1 50
SSI 80C60, Single Chip TI Iransmitter	1-50
SSI K212 Single Chip Rell 212 Modem	1-62
SSI 291/213, 1200 BPS Full Duplex Modern Device Set	. 1-66
PCA Second Sourced Products	
RCA Second-Sourced Products	1 60
SSI 22100, GMOS 4x4 Crosspoint Switch with Control Memory	. 1-00
SSI 22106, 8x8x1 Crosspoint with Control Memory	1-72
SSI 22301, PCM Line Repeater	. 1-74
Section 2 MICDODEDIDHEDAL DDODLICTS	0
SSI 101A Differential Amplifier	. 2.2
SSI 101A, Differential Amplinet	. 2-4
SSI 188. 4 Channel Read/Write Circuit	. 2-8
SSI 115, 2, 4, 5 Channel Winchester Read/Write Circuits	. 2-14
SSI 117, 2, 4, 6 Channel Read/Write Circuits	. 2-20
SSI 501/502, 8 Channel Read/Write Circuit	. 2-26
SSI 114, 4 Channel Thin Film Read/Write Circuit	. 2-32
SSI 116, Differential Amplifier	. 2-36
SSI 540, Read Data Processor	. 2-38
SSI 545, Winchester Disk Drive Support Logic	2-40
SSI 570, 2 Onalinei Floppy Disk Read/Write Offcuit	2-56
SSI 580. Port Expander Floppy Disk Dead/White Oncurs	2-60
SSI 590, 5¼ " Motor Speed Control	. 2-66
SSI 591, 5½ "Winchester Motor Speed Control	. 2-70
SSI 550, Mag Tape Read Circuit	. 2-74
SSI 67C401/402, FIFO 64x4 64x5 Memory	. 2-80
Advanced Microperipheral Products	
SSI 440. Disk Controller	. 2-82
SSI 511/511R, 2, 4, 6 Channel Bipolar Read/Write Circuits	. 2-86
SSI 521, 6 Channel Thin Film Read/Write Circuit	. 2-88
SSI 531, Write Precompensation Data Separator for	
MFM Data Recording	. 2-92
SSI 541, Read Data Processor	· 2-94

Product Index (Contd.)

	Page
Section 3. CUSTOM/SEMICUSTOM INTEGRATED CIRCUITS	3
CMOS and Bipolar Process Charts	3-2
Integrated Design Methodology	3-3
Custom/Semicustom Options	3-3
Custom Design Flow Chart	3-4
CMOS/Bipolar Capabilities	3-5
SSI 82C100/101, Mask Programmable Logic Array	3-6
Section 4. ANALOG/DIGITAL STANDARD CELLS	4
Standard Cell Library	4-1
Advanced Standard Cell Information—Basic Standard Cell List	4-2
Section 5 GENERAL INFORMATION	~
Section 5. GENERAL IN TORMANON	5
Si Froduct Selector Guide (Telecont/Alvi)	5-2
Cross Hererence Chart (Competitive)	5-4
Packaging	5-6
Packaging Matrix Chart	5-7
Ordering Information	5-8
Plastic Dip 8 Pins and 14 Pins	5-9
Plastic Dip 16 Pins and 18 Pins	5-10
Plastic Dip 22 Pins and 24 Pins	5-11
Plastic Dip 28 Pins and 40 Pins	5-12
Cerdip 8 Pins and 16 Pins	5-13
Cerdip 18 Pins and 22 Pins	5-14
Cerdip 24 Pins and 28 Pins	5-15
Surface Mounted Device 28 Pins and 44 Pins	5-16
Flat Package Dimensional Diagrams and Dimensional Chart	
10, 24, 28, and 32 Pins	5-17
Manufacturing and Quality Assurance	5-18
Process Monitoring Techniques Chart	5-19
Quality Assurance Flow Chart	5-20

Numerical Index

SCA 6	1-56
SCA 12	1-56
SSI 20C89	1-22
SSI 20C90	1-28
SSI 67C401/402	2-80
SSI 80C50	1-58
SSI 80C60	1-60
SSI 82C100/101	3-6
SSI 101A	2-2
SSI 104	2-4
SSI 104L	2-4
SSI 108	2-4
SSI 114	2-32
SSI 115	2-14
SSI 116	2-36
SSI 117	2-20
SSI 122	2-4
SSI 188	2-8
SSI 201	1-4
SSI 202	1-8
SSI 203	1-8
SSI 204	1-12
SSI K212	1-62
SSI 223	1-34
SSI 263A	1-42
SSI 291/213	1-66
SSI 440	2-84
SSI 501/502	2-26
SSI 511/511R	2-86
SSI 521	2-88
SSI 531	2-92
SSI 540	2-38
SSI 541	2-94
SSI 545	2-46
SSI 550	2-74
SSI 570	2-50
SSI 575	2-56
SSI 580	2-60
SSI 590	2-66

SSI	591														 	2-70
SSI	3522	: 													 	1-38
SSI	2210	0													 	1-68
SSI	2210	1/22	210	2											 	1-70
SSI	2210	6													 	1-72
SSI	2230	1													 	1-74

Page

Section 1 TELECOMMUNICATION PRODUCTS

SSI Product Selector Guide

TELECOMMUNICATIONS CIRCUITS

Part No.	Circuit Type	Page No.				
SSI 201	12V, DTMF Receiver	1-4				
SSI 202	5V, DTMF Receiver	1-8				
SSI 203	5V, DTMF Receiver w/early detect	1-8				
SSI 204	Subscriber DTMF Receiver	1-12				
SSI 20C89	5V, DTMF Transceiver	1-22				
SSI 20C90	5V, DTMF Transceiver w/Call Progress Detector	1-28				
Modem Products						
SSI K212	Single Chip 212 Modem	1-62				
SSI 223	1200 Baud FSK Modem	1-34				
SSI 291/213	1200 BPS Full Duplex Modem Chip Set	1-66				
SSI 3522	Bell 212A/V.22 Modem Filter	1-38				
Speech Synthesizer						
SSI 263A	VOTRAX SC-02 Compatible	1-42				
Switched Capacite	or Filter Array					
SCA-6	CMOS Semicustom SCF Array (6 filter sections)	1-56				
SCA-12	CMOS Semicustom SCF Array (12 filter sections)	1-56				
Transmission Proc	ducts					
SSI 80C50	T1 Transmitter	1-58				
SSI 80C60	T1 Receiver	1-60				
SSI 22100	4x4x1 Cross Point Switch w/Control Memory	1-68				
SSI 22101/22102	4x4x2 Cross Point Switch w/Control Memory	1-70				
SSI 22106	8x8x1 Cross Point Switch w/Control Memory	1-72				
SSI 22301	PCM Line Repeater	1-74				

SSI Telecommunications Capabilities

Silicon Systems offers a broad line of standard telecommunications circuits aimed at providing cost-effective solutions for common customer application problems. At the heart of SSi's efforts in the communications market is its pioneering work with CMOS switched capacitor filters. Our early success with the DTMF receiver has enabled us to develop a family of chips utilizing the switched capacitor filter technology. As a trendsetter in the field, Silicon Systems is leading the way towards a whole new era of VLSI circuits for telecommunications. Our broad selection of DTMF receivers demonstrates not only technological leadership in our own semiconductor field but also our capability to anticipate the growing needs of the fastpaced telecommunications marketplace.

Here are a few completed circuits that demonstrate our broad telecommunications IC capability:

BIPOLAR

Integrated Circuit Function	Application
Audio System Receiver	Telephone Answering Machine
VHF/UHF Gain Mixer	Radio Receiver
Pulse Width Modulator	Switching Power Supply
Controller	Home Appliance
Digital Receiver	Remote Control
PCM Encoder/Decoder	Telecom System
Digital Correlator/ Integrator	Radio Telescope

PROCESSES

Silicon Systems offers circuits in junction-isolated, bipolar, single and double-layer metal. Plus, SSi has a CMOS capability that includes not only a metal-gate process but also a silicon-gate process that produces circuits packed with more functions in a smaller size for high-speed, low-power performance. These are the most popular and reliable processes in the two basic technologies, and SSI's advanced ultra-clean wafer fab produces higher yields than ordinary facilities.

PRODUCT QUALITY

Silicon Systems has made a major investment in product test and in-line quality control equipment. For example, a state-of-the-art LTX CP80 is used for functional and parametric testing of sophisticated analog, digital, and combination A/D circuits. In this way, SSi is dedicated to the delivery of complex VLSI circuits to meet the incoming quality level you require.

MOS

Integrated Circuit Function	Application
DTMF Receiver	*Decodes Touch-Tone® Telephone Signals
300 Baud Modem	Data Transmission
1200/2400 Baud Receiver	FSK/PSK Modem
Error Corrector	Military Radio
Remote Transmitter	Telephone Answering Machine
Phoneme Based Speech Synthesizer	Text-to-Speech
Display Timing Generator	TV Sets
Video Processor	Infrared Video System
16 Channel Switching Matrix	Bank Communications System
Digital Loop Detector	Traffic Signal Control
Programmable Digital Receiver	Home Appliance Remote Control
Vocal Tract System	Speech Synthesis

CUSTOMER SERVICE

Silicon Systems provides individualized service for every customer. Our Customer Service Department is dedicated to responsive service and is staffed with personnel trained to consider our customers' needs as their most urgent requirement. Product quality and service are both viewed as cornerstones for SSi's continued growth.

No responsibility is assumed by SSi for use of these products nor for any infringements of patents and trademarks or other rights of third parties resulting from its use. No license is granted under any patents, patent rights or trademarks of SSi. SSi reserves the right to make changes in specifications at any time and without notice.

1-3

Integrated DTMF Receiver SSI 201

Data Sheet

FEATURES

- Central office quality
- NO front-end band-splitting filters required
- Single, low-tolerance, 12-volt supply
- Detects either 12 or 16 standard DTMF digits
- Uses inexpensive 3.579545 -MHz crystal for reference
- Excellent speech immunity
- 22-pin DIP package for high system density
- Output in either 4-bit hexadecimal code or binary coded 2 of 8
- Synchronous or handshake interface
- Three-state outputs

DESCRIPTION

The SSI 201 is a complete Dual Tone Multiple Frequency (DTMF) receiver detecting a selectable group of 12 or 16 standard digits. No front-end pre-filtering is needed. The only externally required components are an inexpensive 3.58-MHz television "colorburst" crystal (for frequency reference) and two low-tolerance bypass capacitors. Extremely high system density is made possible by using the clock output of a crystal connected SSI 201 receiver to drive the time bases of additional receivers. The SSI 201 is a monolithic integrated circuit fabricated with lowpower, complementary symmetry MOS (CMOS) processing. It requires only a single low tolerance voltage supply and is packaged in a standard 22 pin DIP. The SSI 201 employs state-of-the-art circuit technology to combine digital and analog functions on the same CMOS chip using a standard digital semiconductor process. The analog input is pre-processed by 60-Hz reject and band splitting filters and then hard-limited to provide AGC. Eight bandpass filters detect the individual tones. The digital post-processor times the tone durations and provides the correctly coded digital outputs. Outputs interface directly to standard CMOS circuitry, and are three-state enabled to facilitate bus-oriented architectures.

Integrated DTMF Receiver SSI 201

ANALOG IN (pin 12)

This pin accepts the analog input. It is internally biased so that the input signal may be AC coupled. The input may be DC coupled as long as it does not exceed the positive supply. Proper input coupling is illustrated below.

CRYSTAL OSCILLATOR

The SSI 201 contains an onboard inverter with sufficient gain to provide oscillation when connected to a low-cost television "color-burst" crystal. The crystal oscillator is enabled by tying XEN (pin 16) high. The crystal is connected between XIN (pin 15) and XOUT (pin 14). A 1 MEG Ω 10% resistor is also connected between these pins. In this mode, ATB (pin 17) is a clock frequency output. Other SSI 201's may use the same frequency reference by tying their ATB pins to the ATB of a crystal connected device. XIN and XEN of the auxiliary devices must then be tied high and low respectively. Twenty-five devices may run off a single crystal-connected SSI 201 as shown below.

H/B28 (pin 2)

This pin selects the format of the digital output code. When H/B28 is tied high, the output is hexadecimal When tied low, the output is binary coded 2 of 8. The table below describes the two output codes.

		Hexad	lecima	nl	Bina	ry Co	ded 2	of 8
Digit	D8	D4	D2	D1	D8	D4	D2	D1
1	0	0	0	1	0	0	0	0
2	.0	0	1	0	0	0	0	1
3	0	0	1	1	0	0	1	0
4	0	1	0	0	0	1	0	0
5	0	1	0	1	0	1	0	1
6	0	1	1	0	0	1	1	0
7	0	1	1	1	1	0	0	0
8	1	. 0	0	0	1	0	0	1
9	1	0	0	1	1	0	1	0
0	1	0	1	0	1	1	0	1
*	1	0	1	1	1	1	0	0
#	1	1	0	0	1	1	1	0
A.	1	1	0	1	0	0	1	1
В	1	1	1	0	0	1	1	1
С	1	1	1	1	1	0	1	1
D	0	0	0	0	1	1	1_	1

IN1633 (pin 5)

When tied high, this pin inhibits detection of tone pairs containing the 1633-Hz component. For detection of all 16 standard digits, IN1633 must be tied low.

OUTPUTS D1, D2, D4, D8 (pins 1, 22, 21, 20) and EN (pin 3)

Outputs D1, D2, D4, D8 are CMOS push-pull when enabled (EN high) and open circuited (high impedence) when disabled by pulling EN low. These digital outputs provide the code corresponding to the detected digit in the format programmed by the H/B28 pin. The digital outputs become valid after a tone pair has been detected and they are then cleared when a valid pause is timed.

DV (pin 18) and CLRDV (pin 19)

DV signals a detection by going high after a valid tone pair is sensed and decoded at the output pins D1, D2, D4, D8. DV remains high until a valid pause occurs or the CLRDV is raised high, whichever is earlier.

INTERNAL BYPASS PINS S1, S2 (pins 9, 10)

In order for the SSI 201 DTMF Receiver to function properly, these pins must be bypassed to V_{NA} with 0.01 μ F ± 20% capacitors.

POWER SUPPLY PINS V_{p} (pin 6) V_{NA} (pin 13) V_{ND} (pin 4)

The analog (V_{_{NA}}) and digital (V_{_{ND}}) supplies are brought out separately to enhance analog noise immunity on the chip. V_{_{NA}} and V_{_{ND}} should be connected externally as shown below.

12V SYSTEM

N/C PINS (pins 7, 8, 11)

These pins have no internal connection and may be left floating.

DTMF DIALING MATRIX

Note: Column 3 is for special applications and is not normally used in telephone dialing.

DETECTION FREQUENCY

Low Group f _o	High Group f₀
Row 0 = 697 Hz	Column 0 = 1209 Hz
Row 1 = 770 Hz	Column 1 = 1336 Hz
Row 2 = 852 Hz	Column 2 = 1477 Hz
Row 3 = 941 Hz	Column 3 = 1633 Hz

n sustems

14351 Myford Road, Tustin, California 92680 (714) 731-7110, TWX 910-595-2809

ABSOLUTE MAXIMUM RATINGS*

DC Supply Voltage V_p+16 Volts (Referenced to V_{NA}, V_{ND}) Operating Temperature......0°C to 70°C Ambient Storage Temperature......65°C to 150°C Power Dissipation (25°C).....1 Watt (Derate above $T_A = 25°C$ @ 10mW/°C)

5V)
2V)
mΑ
°C

*Operation above absolute maximum ratings may damage the device Note: All SSI 201 unused inputs must be connected to V_p or V_{ND} , as appropriate.

$\textbf{ELECTRICAL CHARACTERISTICS} \quad (0^{\circ}C \leqslant T_{A} \leqslant 70^{\circ}C, \ \dot{V}_{p} - V_{ND} = V_{p} - V_{NA} = 12V \pm 10\%)$

Parameter	Conditions	Min	Тур	Max	Units
Frequency Detect Bandwidth		±(1.5 + 2 Hz)	±2.3	± 3.0	% of f_{o}
Amplitude for Detection	each tone	-24		+6	dBm referenced to 600 Ω
Minimum Acceptable Twist	twist = $\frac{\text{high tone}}{\text{low tone}}$	-8		+4	dB
Detection Time		20	25	40	mSec
Pause Time		25	32	40	mSec
60-Hz Tolerance				2	Vrms
Dial Tone Tolerance	"precise" dial tone			0 dB	dB referenced to lower amplitude tone
Talk Off	MITEL tape #CM 7290		2		hits
Digital Outputs (except XOUT)	"0" level, 750 μ A load "1" level, 750 μ A load	V _{ND} V _p - 0.5		V _{ND} + 0.5 V _p	Volts Volts
Digital Inputs (except H/B28, XEN)	"0" level "1" level	V _{ND} V _p 3(V _p - V _{ND})		$\frac{V_{ND} + .3(V_p - V_{ND})}{V_p}$	Volts Volts
Digital Inputs H/B28, XEN	"0" level "1" level	V _{ND} V _p -1		V _{ND} +1 V _p	Volts Volts
Power Supply Noise	wide band			25	mV p-p
Supply Current	$T_{A} = 25^{\circ}C$ $V_{p}-V_{NA}=V_{p}-V_{ND}=12V\pm10\%$		29	50	mA
Noise Tolerance	MITEL tape #CM 7290			-12	dB referenced to lowest amplitude tone
Input Impedence	$V_p \geqslant V_{in} \geqslant V_p$ -22	100K Ω// 15pF			

No responsibility is assumed by SSi for use of this product nor for any infringements of patents and trademarks or other rights of third parties resulting from its use. No license is granted under any patents, patent rights or trademarks of SSi. SSi reserves the right to make changes in specifications at any time and without notice.

5V Low-Power DTMF Receiver SSI 202/203

Data Sheet D1 18 - D2 HEX/B28 2 17 - D4 16 - D8 EN 3 BANDRASS EILTERS - CLRDV AMPLITUDE IN1633 -15 697 SSI 202 5 14 – DV ٧p ZERO CROSSING DETECTORS BAND ANALOG PREPROCESSOR 770 SPLIT N/C 6 13 - ATB (203 (00) (9 BS1 852 TIMING GND -— XIN 7 12 94 CLRDV - xout XEN-11 8 (15) 1209 ANALOG IN q - GND 10 ́сі в ATB (13) D٧ 1477 (14) DV F F XEN B DV STROBE 1633 DATA STROBE HEX '828 CLOCK GENERATOR CHIP CLOCKS D1-18 - D2 (1)01 HEX/B28-2 17 - D4 OUTPUT OUTPUT DECODE REGISTER EN-3 16 - D8 (18) D2 POWER REGULATOR OLTAGE REF 15 - CLRDV IN1633 4 17) 04 SSI 203 - DV 5 14 ٧p 16) DE ED -13 - ATB 6 DATA CLEAR GND -12 - XIN 7 (4) IN 1633 6 6 – xout XEN 8 11 ANALOG IN a 10 - GND SSI 202/203 Block Diagram SSI 202/203 Pin Out (Top View)

FEATURES

- · Central office quality
- NO front-end band-splitting filters required
- Single, low-tolerance, 5-volt supply
- Detects either 12 or 16 standard DTMF digits
- Uses inexpensive 3.579545 -MHz crystal for reference
- Excellent speech immunity
- Output in either 4-bit hexadecimal code or binary coded 2 of 8

DESCRIPTION

The SSI 202 and 203 are complete Dual Tone Multiple Frequency (DTMF) receivers detecting a selectable group of 12 or 16 standard digits. No front-end pre-filtering is needed. The only externally required components are an inexpensive 3.58-MHz television "colorburst" crystal (for frequency reference) and a bias resistor. Extremely high system density is made possible by using the clock output of a crystal connected SSI 202 or 203 receiver to drive the time bases of additional receivers. Both are monolithic integrated circuits fabricated with low-power, complementary symmetry MOS (CMOS) processing. They require only a single low tolerance voltage supply and are packaged in a standard 18 pin plastic DIP.

- 18-pin DIP package for high system density
- · Synchronous or handshake interface
- Three-state outputs
- Early detect output (SSI 203 only)

SPECIAL OPTIONS

 Industrial temperature range available, -40°C to +85°C

The SSI 202 and 203 employ state-of-the-art circuit technology to combine digital and analog functions on the same CMOS chip using a standard digital semiconductor process. The analog input is pre-processed by 60-Hz reject and band splitting filters and then hard-limited to provide AGC. Eight bandpass filters detect the individual tones. The digital post-processor times the tone durations and provides the correctly coded digital outputs. Outputs interface directly to standard CMOS circuitry, and are three-state enabled to facilitate bus-oriented architectures.

ANALOG IN

This pin accepts the analog input. It is internally biased so that the input signal may be AC coupled. The input may be DC coupled as long as it does not exceed the positive supply. Proper input coupling is illustrated below.

The SSI 202 is designed to accept sinusoidal input wave forms but will operate satisfactorily with any input that has the correct fundamental frequency with harmonics greater than 20 dB below the fundamental.

CRYSTAL OSCILLATOR

The SSI 202 and 203 contain an onboard inverter with sufficient gain to provide oscillation when connected to a low-cost television "color-burst" crystal. The crystal oscillator is enabled by tying XEN high. The crystal is connected between XIN and XOUT. A 1 M Ω 10% resistor is also connected between these pins. In this mode, ATB is a clock frequency output. Other SSI 202's (or 203's) may use the same frequency reference by tying their ATB pins to the ATB of a crystal connected device. XIN and XEN of the auxiliary devices must then be tied high and low respectively. Ten devices may run off a single crystal-connected SSI 202 or 203 as shown below.

HEX/B28

This pin selects the format of the digital output code. When HEX/B28 is tied high, the output is hexadecimal. When tied low, the output is binary coded 2 of 8. The table below describes the two output codes.

		Hexad	lecima	ul .	Bina	ry Co	ded 2	of 8
Digit	D8	D4	D2	D1	D8	D4	D2	D1
1	0	0	0	1	0	0	0	0
2	0	0	1	0	0	0	0	1
3	0	0	1	1	0	0	1	0
4	0	1	0	0	0	1	0	0
5	0	1	0	1	0	1	0	1
6	0	1	1	0	0	1	1	0
7	0	1	1	1	1	0	0	0
8	1	0	0	0	1	0	0	1
9	1	0	0	1	1	0	1	0
0	1	0	1	0	1	1	0	1
*	1	0	1	1	1	1	0	0
#	1	1	0	0	1	1	1	0
А	1	1	0	1	0	0	1	1
В	1	1	1	0	0	1	1	1
С	1	1	1	1	1	0	1	1
D	0	0	0	0	1	1	1	1

IN1633

When tied high, this pin inhibits detection of tone pairs containing the 1633-Hz component. For detection of all 16 standard digits, IN1633 must be tied low.

OUTPUTS D1, D2, D4, D8 and EN

Outputs D1, D2, D4, D8 are CMOS push-pull when enabled (EN high) and open circuited (high impedence) when disabled by pulling EN low. These digital outputs provide the code corresponding to the detected digit in the format programmed by the HEX/B28 pin. The digital outputs become valid after a tone pair has been detected and they are then cleared when a valid pause is timed.

DV and CLRDV

DV signals a detection by going high after a valid tone pair is sensed and decoded at the output pins D1, D2, D4, D8. DV remains high until a valid pause occurs or the CLRDV is raised high, whichever is earlier.

ED (SSI 203 only)

The ED output goes high as soon as the SSI 203 begins to detect a DTMF tone pair and falls when the 203 begins to detect a pause. The D1, D2, D4, and D8 outputs are guaranteed to be valid when DV is high, but are not necessarily valid when ED is high.

N/C PINS

DTMF DIALING MATRIX

These pins have no internal connection and may be left floating.

SSI 202/203 TIMING

	Col 0	Col 1	Col 2	Col 3
Row 0	1	2	3	Α
Row 1	4	5	6	В
Row 2	7	8	9	С
Row 3	*	0	#	D

Note: Column 3 is for special applications and is not normally used in telephone dialing.

DETECTION FREQUENCY

Low Group f _o	High Group f₀
Row 0 = 697 Hz	Column 0 = 1209 Hz
Row 1 = 770 Hz	Column 1 = 1336 Hz
Row 2 = 852 Hz	Column 2 = 1477 Hz
Row 3 = 941 Hz	Column 3 = 1633 Hz

PARAMETER	SYMBOL	MIN.	TYP.	MAX.	UNITS
TONE TIME: for detection	ton	40	_	-	mS
for rejection	ton	-	-	20	mS
PAUSE TIME: for detection	tOFF	40	-	-	mS
for rejection	tOFF	-	-	20	mS
DETECT TIME	tD	25	_	46	mS
RELEASE TIME	tR	35	-	50	mS
DATA SETUP TIME	tsu	7	-	-	μS
DATA HOLD TIME	tH	4.2	-	5.0	mS
DV CLEAR TIME	tCL	_	160	250	nS
CLRDV pulse width	tpw	200	-	_	nS
ED Detect Time	tED	7	-	22	mS
ED Release Time	tER	2	_	18	mS
OUTPUT ENABLE TIME	-	_	200	300	nS
$C_L = 50 pF R_L = 1K \Omega$					
OUTPUT DISABLE TIME	-	-	1 50	200	nS
$C_L = 35pF R_L = 500 \Omega$			ļ		
OUTPUT RISE TIME	_	_	200	300	nS
$C_L = 50 pF$					
OUTPUT FALL TIME	_	_	160	250	nS
$C_L = 50 pF$					
1					

n systems

14351 Myford Road, Tustin, CA 92680

(714) 731-7110, TWX 910-595-2809

ABSOLUTE MAXIMUM RATINGS*

DC Supply Voltage V_p+7 Volts Operating Temperature......0°C to 70°C Ambient Storage Temperature.....65°C to 150°C Power Dissipation (25°C)65 mW (Derate above $T_A = 25°C$ @ 6.25 mW/°C)

Input Voltage	\dots (V _p + .5V) to5V
(All inputs except ANALO	G IN)
ANALOG IN Voltage	\dots (V _p + .5V) to (V _p - 10V)
DC Current into any Input	±1.0mA
Lead Temperature	300°C
(soldering, 10 sec.)	

*Operation above absolute maximum ratings may damage the device Note: All SSI 202/203 unused inputs must be connected to V_p or Gnd, as appropriate.

Parameter	Conditions	Min	Тур	Max	Units
Frequency Detect Bandwidth		±(1.5 + 2 Hz)	±2.3	± 3.5	% of t _o
Amplitude for Detection	each tone	-32		-2	dBm referenced to 600Ω
Minimum Acceptable Twist	twist = $\frac{\text{high tone}}{\text{low tone}}$	-10		+10	dB
60-Hz Tolerance				0.8	Vrms
Dial Tone Tolerance	"precise" dial tone			0dB	dB referenced to lower amplitude tone
Talk Off	MITEL tape #CM 7290		2		hits
Digital Outputs (except XOUT)	"0" level, 400 µA load "1" level, 200µA load	0 V _p - 0.5		0.5 Vp	Volts Volts
Digital Inputs	"0" level "1" level	0 0.7Vp		0.3Vp V;	Volts Volts
Power Supply Noise	wide band			10	mV p-p
Supply Current	T _A = 25°C		10	16	mA
Noise Tolerance	MITEL tape #CM 7290			-12	dB referenced to lowest amplitude tone
Input Impedence	$V_p \ge V_n \ge V_p - 10$	100 k Ω∥ 15pF			

ELECTRICAL CHARACTERISTICS (0°C \leq T_A \leq 70°C, V_p = 5V \pm 10%)

No responsibility is assumed by SSi for use of these products nor for any infringements of patents and trademarks or other rights of third parties resulting from its use. No license is granted under any patents, patent rights or trademarks of SSi. SSi reserves the right to make changes in specifications at any time and without notice.

SSI 204 5V Low Power Subscriber DTMF Receiver

Data Sheet

DESCRIPTION

The SSI 204 is a complete Dual Tone Multiple Frequency (DTMF) receiver that detects all 16 standard digits. No front-end pre-filtering is needed. The only externally required components are an inexpensive 3.58-MHz television "color-burst" crystal for frequency reference and a bias resistor. An Alternate Time Base (ATB) is provided to permit operation of up to 10 SSI 204's from a single crystal. The SSI 204 employs state-of-theart "switched-capacitor" filter technology, resulting in approximately 40 poles of filtering, and digital circuitry on the same CMOS chip. The analog input signal is pre-processed by 60-Hz reject and band split filters and then zero-cross detected to provide AGC. Eight bandpass filters detect the individual tones. Digital processing is used to measure the tone and pause durations and to provide output timing and decoding. The outputs interface directly to standard CMOS circuitry and are three-state enabled to facilitate bus-oriented architectures.

FEATURES

- Intended for applications with less requirements than the SSI 202.
- 14-Pin plastic DIP for high system density.
- NO front-end band splitting filters required.
- Single low-tolerance 5-volt supply.
- Detects all 16 standard DTMF digits.
- Uses inexpensive 3.579545-MHz crystal.
- Excellent speech immunity.
- Output in 4-bit hexadecimal code.
- Three-state outputs for microprocessor based systems.

Block Diagram

CAUTION: Use handling procedures necessary for a static sensitive component

SSI 204 5V Low Power Subscriber DTMF Receiver

ANALOG IN

This pin accepts the analog input. It is internally biased so that the input signal may be AC coupled. The input may be DC coupled as long as it does not exceed the positive supply. Proper input coupling is illustrated below.

The SSI 204 is designed to accept sinusoidal input wave forms but will operate satisfactorily with any input that has the correct fundamental frequency with harmonics greater than 20 dB below the fundamental.

CRYSTAL OSCILLATOR

The SSI 204 contains an onboard inverter with sufficient gain to provide oscillation when connected to a low-cost television "color-burst" crystal. The crystal oscillator is enabled by tying XEN high. The crystal is connected between XIN and XOUT. A 1 M Ω 10% resistor is also connected between these pins. In this mode, ATB is a clock frequency output. Other SSI 204's (or 202's) may use the same frequency reference by tying their ATB pins to the ATB of a crystal connected device. XIN and XEN of the auxiliary devices must then be tied high and low respectively. Ten devices may run off a single crystal-connected SSI 204 (or 202) as shown below.

OUTPUTS D1, D2, D4, D8, and EN

Outputs D1, D2, D4, D8 are CMOS push-pull when enabled (EN high) and open circuited (high impedance) when disabled by pulling EN low. These digital outputs provide the hexadecimal code corresponding to the detected digit. The digital outputs become valid after a tone pair has been detected and they are then cleared when a valid pause is timed. The table below describes the hexadecimal codes.

OUTPUT CODE					
Digit	D8	D4	D2	D1	
1	0	0	0	1	
2	0	0	1	0	
3	0	0	1	1	
4	0	1	0	0	
5	0	1	0	1	
6	0	1	1	0	
7	0	1	1	1	
8	1	0	0	0	
9	1	0	0	1	
0	1	0	1	0	
*	1	0	1	1	
#	1	1	0	0	
A	1	1	0	1	
В	1	1	1	0	
С	1	1	1	1	
D	0	0	0	0	

DV

DV signals a detection by going high after a valid tone pair is sensed and decoded at the output pins D1, D2, D4, D8. DV remains high until a valid pause occurs.

N/C PIN

This pin has no internal connection and may be left floating.

DTMF DIALING MATRIX

Note: Column 3 is for special applications and is not normally used in telephone dialing.

Low Group f _o	High Group f _o			
Row 0 = 697 Hz	Column 0 = 1209 Hz			
Row 1 = 770 Hz	Column 1 = 1336 Hz			
Row 2 = 852 Hz	Column 2 = 1477 Hz			
Row 3 = 941 Hz	Column 3 = 1633 Hz			

APPLICATION NOTES

The SSI 204 will tolerate total input rms noise up to 12dB below the lowest amplitude tone. For most telephone applications, the combination of the high frequency attenuation of the telephone line and internal band-limiting make special circuitry at the input to the SSI 204 unnecessary. However, noise near the 56kHz internal sampling frequency will be aliased (folded back) into the audio spectrum, so if excessive noise is present above 28kHz, the simple RC filter as shown below may be employed to band limit the incoming signal.

Filter for use in extreme high frequency input noise environment.

Noise will also be reduced by placing a grounded trace around XIN and XOUT pins on the circuit board layout when using a crystal. It is important to note that XOUT is not intended to drive an additional device. XIN may be driven externally; in this case leave XOUT floating.

PARAMETER	SYMBOL	MIN.	TYP.	MAX.	UNITS
TONE TIME: for detection	ton	40	_	-	mS
for rejection	ton	-	_	20	mS
PAUSE TIME: for detection	tOFF	40	_	_	mS
for rejection	tOFF	-	_	20	mS
DETECT TIME	tD	25	-	46	mS
RELEASE TIME	tR	35	_	50	mS
DATA SETUP TIME	tsu	7		-	μS
DATA HOLD TIME	tH	4.2	-	5.0	mS
OUTPUT ENABLE TIME	-	-	200	300	nS
$C_L = 50 pF R_L = 1K \Omega$					
OUTPUT DISABLE TIME	-	-	150	200	nS
$C_L = 35 pF R_L = 500 \Omega$					
OUTPUT RISE TIME	-		200	300	nS
$C_L = 50 pF$					
OUTPUT FALL TIME	-	_	160	250	nS
$C_L = 50 pF$					
1					

ABSOLUTE MAXIMUM RATINGS*

DC Supply Voltage Vp+7 Volts	
Operating Temperature0°C to 70°C Ambient	
Storage Temperature	
Power Dissipation (25°C)	
Input Voltage (Vp + 0.5V) to - 0.5V (all inputs except ANALOG IN)	

ANALOG IN Voltage $(V_p + 0.5V)$ to $(V_p - 10V)$
DC Current into any Input ±1.0mA
Lead Temperature
*Operation above absolute maximum ratings may damage the

Note: All SSI 204 unused inputs must be connected to V_p or Gnd. as appropriate.

device.

n systems

14351 Myford Road, Tustin, CA 92680 (714) 731-7110, TWX 910-595-2809

Parameter	Conditions	Min	Тур	Max	Units
Frequency Detect Bandwidth		±(1.5 + 2 Hz)	±2.3	± 3.5	% of t _o
Amplitude for Detection	each tone	-32		-2	.dBm referenced to 600Ω
Minimum Acceptable Twist	twist = $\frac{\text{high tone}}{\text{low tone}}$	-8		+4	dB
60-Hz Tolerance				0.8	Vrms
Dial Tone Tolerance	"precise" dial tone			0dB	dB referenced to lower amplitude tone
Talk Off	MITEL tape #CM 7290		2		hits
Digital Outputs (except XOUT)	"0" level, 400 <i>µ</i> A load "1" level, 200 <i>µ</i> A load	0 V _n - 0.5	· · ·	0.5 Vp	Volts Volts
Digital Inputs	"0" level "1" level	0 0.7Vp		0.3 Vp Vp	Volts Volts
Power Supply Noise	wide band			10	mV p-p
Supply Current	T _A = 25°C		10	16	mA
Noise Tolerance	MITEL tape #CM 7290			-12	dB referenced to lowest amplitude tone
Input Impedence	$V_{p} \geqslant V_{m} \geqslant V_{p}$ -10	100K Ω// 15pF			

ELECTRICAL CHARACTERISTICS $(0^{\circ}C \le T_{A} \le 70^{\circ}C, V_{p} = 5V \pm 10\%)$

No responsibility is assumed by SSi for use of this product nor for any infringements of patents and trademarks or other rights of third parties resulting from its use. No license is granted under any patents, patent rights or trademarks of SSi. SSi reserves the right to make changes in specifications at any time and without notice.

14351 Myford Road, Tustin, California 92680 🚪 (714) 731-7110, TWX 910-595-2809

Application Guide for SSi Monolithic Dual-Tone Multi-Frequency (DTMF) Receivers

The SSi integrated DTMF Receivers are complete Touch-Tone detection systems. Each can operate in a stand-alone mode for the majority of telecommunications applications, thereby providing the most economical implementation of DTMF signaling systems possible. Each combines precision active filters and analog circuits with digital control logic on a mono-lithic CMOS integrated circuit. SSi DTMF Receiver use is straightforward and the external component requirements are minimal. This application guide describes device operation, performance, system requirements, and typical application circuits for the SSi DTMF Receiver circuits.

How the SSi DTMF Circuits Work

General Description of Operation

The task of a DTMF Receiver is to detect the presence of a valid tone pair on a telephone line or other transmission medium. The presence of a valid tone pair indicates a single dialed digit; to generate a valid digit sequence, each tone pair must be separated by a valid pause.

The following table gives the established Bell system standards for a valid tone pair and a valid pause:

One Low-Group Tone — and —	697 or 770 or 852 or 941 Hz
One High-Group Tone	1209 or 1336 or 1477 or 1633 Hz
Frequency Tolerance Amplitude Range	
Relative Amplitude (Twist)	$-8 \text{ dB} \le \frac{\text{High-Group Tone}}{\text{Low-Group Tone}} \le +4 \text{ dB}$
Duration Inter-tone Pauses	40ms or longer 40ms or longer

The SSi DTMF Receivers meet or exceed these standards.

Similar device architecture is used in all the SSi DTMF Receivers. Figure 1 shows the SSI 202 Block Diagram. In general terms, the detection scheme is as follows: The input signal is pre-filtered and then split into two bands, each of which contains only one DTMF tone group. The output of each band-split filter is amplified and limited by a zero-crossing detector. The limited signals, in the form of square waves, are passed through tone frequency band pass filters. Digital logic is then used to provide detector sampling and determine detection validity, to present the digital output data in the correct format, and to provide device timing and control.

Detailed Description of Operation

Noise and Speech Immunity

The two largest problems confronting a DTMF Receiver are:

- Distinguishing between valid tone pairs (or pauses) and other stray signals (or speech) that contain valid tone pair frequencies.
- Detecting valid tone pairs in the presence of noise, which is typically found in the telephone (or other transmission medium) environment.

Figure 1. SSi 202 Block Diagram

The SSi DTMF Receivers use several techniques to distinguish between valid tone pairs and other stray signals. These techniques are explained in later sections. Briefly, the techniques are:

- Pre-filtering of audio signal. Removes supply noise and dial tone from input audio signal and emphasizes the voice frequency domain.
- Zero-cross detection. Limits the acceptable level of noise during detection of a tone pair. Important for speech rejection.
- Valid tone pair/pause sampling. Samples the detection filters and checks for consistency before determining that a received tone pair or pause is valid.

Audio Preprocessor

The Audio Preprocessor is an analog filter that band limits the input analog signal between 500 Hz and 6 KHz. In addition, it emphasizes the 2 KHz to 6 KHz voice region.

Band limiting suppresses power supply and dial tone frequencies, and high frequency noise. The emphasized voice region helps to equalize the audio response since many phone lines tend to roll off at about 1 KHz. The upper voice frequencies are important in providing speech immunity.

Tone Band Splitting

After the analog signal is preprocessed, it is then split into two bands, each of which contains only one DTMF tone group. The band-split filters are actually band-stop filters to maintain all frequencies except the *other* tone group; this is done to maintain all analog information to enhance speech immunity but not allow the other tone group to act as interfering noise for the band being detected. These band-stop filters have "floors" that limit the amount of tone pair twist which further enhances speech immunity. See device data sheets for acceptable twist limits.

Zero-Crossing Detectors

The output of each band-split filter is amplified and limited by a zero-crossing detector (limiter). The function of the zerocrossing detector is to produce a square wave at the prime frequency emanating from the band-split filter. If a pure tone is not present, as in the case of voice or other interfering noise, a rectangular wave with a variable period will result. Proportional to the interference, the limiter output power is spread over a broad frequency range as the zero crossings "dither". When a high level of noise (or speech) occurs, no single bandpass filter pair will contain significant power long enough to result in a tone detection. The zero-crossing detector also acts as AGC (Automatic Gain Control) in that the output amplitude is independent of input amplitude; this additionally establishes an acceptable signal-to-noise ratio not dependent on tone amplitude.

Bandpass Filters and Amplitude Detectors

The bandpass filters perform tone frequency discrimination. Their responses are tailored so that if the frequency of the limited square wave from the zero-crossing detector is within the tone frequency tolerance, the filter output will exceed the amplitude detector threshold. The amplitude detectors are interrogated periodically by the digital control circuity to ascertain the presence of one and only one tone in each band for the required duration. In a similar fashion, valid pauses are measured by the absence of valid tone pairs for the specified time.

Timing and Logic

The only precision external element needed for the SSi DTMF Receivers is a 3.58 MHz crystal (color-burst frequency) for the on-board oscillator. This generates the precise clock for the filters and for the logic timing and control of the receive.

Circuit Implementation

Standard CMOS technology is used for the entire circuit. Logic functions use standard low-power circuitry while the analog circuits use precision switched-capacitor-filter technology.

How to Use the SSi DTMF Receivers

Precautions

Although static protection devices are provided on the highimpedance inputs, normal handling precautions observed for CMOS devices should be used.

A destructive high current latch-up mode will occur if pin voltages are not constrained to the range between VN - .5 Volt and VP + .5 Volt (except AIN as described below). In applications where voltage spikes may occur, protection must be provided to ensure that the maximum voltage ratings are not exceeded. This may require the use of clamping diodes on the Analog Input to protect against ringer voltage, for example, or on the power supply to protect against supply spikes.

Power Supply

Excessive power supply noise should be avoided and to aid the user in this regard, power supply hook-up options are provided on some devices.

Since the digital circuitry of the devices possess the high noise immunity characteristics of CMOS logic, limited power supply noise is required only for the analog section. On those SSi DTMF receivers that have separate Analog Negative and Digital Negative supply connections (grounds), namely VNA and VND, an unfiltered supply may be used at VND. It is necessary that VND and VNA differ no more than 0.5 Volts.

The analog circuitry of the devices require low power supply noise levels as specified on the device Data Sheet. Power supply noise effects will be slightly less if the analog input is referenced to VP. This is normally accomplished by connecting VP to ground and utilizing a negative power supply. The effects of excessive power supply noise will cause decreased tone amplitude sensitivity and less tone detection frequency bandwidth.

Digital Inputs

The digital inputs are directly compatible with standard CMOS logic devices powered by VP and VN (or VND). The input logic levels should swing within 30% of VP or VN to insure detection. Any unused input must be tied to VN or VP. Figure 2 shows methods for interfacing TTL outputs to 12 Volt SSi DTMF Receivers.

Analog Input

The Analog Input is the signal input pin for the devices, and is specially biased to facilitate its connection to external circuitry, as shown in Figure 3. The signal level at the Analog Input pin must not exceed or fall more than a few volts below the positive supply as stated on the device Data Sheets. If this condition cannot be guaranteed by the external circuitry, the signal must be AC coupled into the chip with a $.01\mu F \pm 20\%$ capacitor.

Figure 2. Interface circuits for conversion from TTL output levels to 12 volt SSi DTMF input levels

Figure 3. Direct and AC coupled configurations

Analog Input Noise

The SSi DTMF Receivers will tolerate wide-band input noise of up to 12dB below the lowest amplitude tone fundamental during detection of a valid tone pair. Any single interference frequency (including tone harmonics) between 1 KHz and 6 KHz should be at least 20 dB below the lowest amplitude tone fundamental. Adherence to these conditions will ensure reliable detection and full tone detection frequency bandwidth. Because of the internal band limiting, noise with frequencies above 8 KHz can remain unfiltered. However, noise near the 56 KHz internal switched-capacitor-filter sampling frequency will be aliased (folded back) into the audio spectrum; noise above 28 KHz therefore should be low-pass filtered with a circuit as shown in Figure 4 using a cut-off frequency (Fc) of 6.6 KHz. A 1 KHz cut-off frequency filter can be used on "normal" phone lines for special applications. When a phone line is particularly noisy, tone pair detection may be unreliable. A 1 KHz low pass filter will remove much of the noise energy but maintain the tone groups; however, a decreased speech immunity will result. This usage should only be considered for applications where speech immunity is not important, such as control paths that carry no speech.

Some DTMF tone pair generators output distorted tones which the SSi DTMF Receivers may not detect reliably (inexpensive extension telephones are an example). Most of the interfering harmonics of these tones may be removed by the use of a 3 KHz fow-pass filter as in Figure 4. Some speech immunity degradation will result, but not as bad as using the 1 KHz filter mentioned above.

Figure 4. Filter for use in noisy environments

Telephone Line Interface

In applications that use an SSi DTMF Receiver to decode DTMF signals from a phone line, a DAA (Direct Access Arrangement) must be implemented. Equipment intended for connection to the public telephone network must comply with and be registered in accordance to FCC Part 68. For PBX applications refer to EIA Standard RS-464.

Some of the basic guidelines are:

1) Maximum voltage and current ratings of the SSi DTMF Receivers must not be exceeded; this calls for protection from ringing voltage, if applicable, which ranges from 80 to 120 Volts RMS over a 20 to 80 Hz frequency range.

2) The interface equipment must not breakdown with highvoltage transient tests (including a 2500 Volt peak surge) as defined in the applicable document.

3) Phone line termination must be less than 200 Ohms DC and approximately 600 Ohms AC (200-3200 Hz).

4) Termination must be capable of sustaining phone line loop current (off-hook condition) which is typically 18 to 120 mA DC.

5) The phone line termination must be electrically balanced in respect to ground.

6) Public phone line termination equipment must be registered in accordance to FCC Part 68 or connected through registered protection circuitry. Registration typically takes about six months.

Ready made DAA devices are also available. One source is Cermetek Microelectronics, Sunnyvale, California.

Figure 5 shows a simplified phone line interface using a 600 Ohm 1:1 line transformer. Transformers specially designed for phone line coupling are available from many transformer manufacturers.

Figure 5. Simplified Phone Line Interface

Figure 6 shows a more featured version of Figure 5. These added options include:

1) A 150 Volt surge protector to eliminate high voltage spikes.

2) A Texas Instruments TCM1520A ring detector, optically isolated from the supervisory circuitry.

4) Back-to-back Zener diodes to protect the DTMF (and optional multiplexer Op-Amp) from ringer voltage.

5) Audio multiplexer which allows voice or other audio to be placed on the line (a recorded message, for example) and not interfere with incoming DTMF tone detection.

Figure 6. Full Featured Phone Line Interface

An integrated voice circuit may also be implemented for line coupling, such as the Texas Instruments TCM1705A, however, this approach is typically more expensive than using a transformer as shown above.

Outputs

The digital outputs of the SSi DTMF Receivers (except XOUT) swing between VP and VN (or VND) and are fully compatible with standard CMOS logic devices powered from VP and VN. The 5 Volt DTMF devices will also interface directly to LSTTL. The 12 Volt DTMF devices can interface to TTL or low voltage MOS with the circuit in Figure 7.

Figure 7. SSi 12 Volt DTMF to TTL Level Interface

Data Outputs D8, D4, D2, and D1 are three-state enabled to facilitate interface to a three-state bus. Figure 8 shows the equivalent circuit for the data outputs in the high impedance state. Care must be taken to prevent either substrate diode in Figure 8 from becoming forward biased or damage may result.

Figure 8. Equivalent Circuit of SSi DTMF Receiver Data Output in High Impedance State

Timing

Within 40 ms of a valid tone pair appearing at the DTMF Receiver Analog Input, the Data Outputs D8, D4, D2 and D1 will become valid. SSI 201 timing is shown in Figure 9 (refer to the device Data Sheet for other timing diagrams). Seven microseconds after the data outputs have become valid DV will be raised. DV will remain high and the outputs valid while the valid tone pair remains present. Within 40 ms after the tone pair stops, the DTMF will recognize a valid pause. DV is lowered approximately 45 ms following the end of the tone pair, and the data outputs all set to zero 4.56 ms following DV going low. DV will strobe at least for the same duration as the received tone pair.

System Interface

Provision has been made on the SSi DTMF Receivers for handshake interface with an outside monitoring system. In this mode, the DV strobe is polled by the monitoring system at least once every 40 ms to determine whether a new valid tone pair has been detected. If DV is high, the coded data is stored in the monitoring system and then CLRDV is pulsed high. With some systems operating in the handshake mode, it may be desirable to know when a valid pause has occurred. Ordinarily this would be indicated by the falling edge of DV. However, in the handshake mode, DV is cleared by the monitoring system each time a new valid tone pair is detected and, therefore, cannot be used to determine when a valid pause is detected. The detection of a valid pause in this case may be observed by detecting the clearing of the Data Outputs. Since, in hexidecimal format (the mode normally used with a handshake interface), the all zero state represents a commonly unused tone pair (D), the detection of a valid pause may be detected by connecting a four-input NOR gate to the device outputs and sensing the all zero state.

Time Base

The SSi DTMF Receivers contain an on-chip oscillator for a 3.5795 MHz parallel resonant quartz crystal or ceramic resonator. The crystal (or resonator) is placed between XIN and XOUT in parallel with a 1 Mohm resistor, while XEN is tied high. Since the switched-capacitor-filter time base is derived from the oscillator, the tone detect band frequency tolerance is proportional to the time base tolerance. The SSi DTMF Receiver frequency response and timing is guaranteed with a time base accuracy of at least \pm .01%. To obtain this accuracy the CTS Part No. MP036 or Workman Part No. CY1-C or equivalent quartz crystal is recommended. In less critical applications a suitable ceramic resonator may be implemented.

Figure 9. SSI 201 Timing Diagram and Specifications

For the SSi 201, a muRata Part No. FX-5135 is recommended which will provide an accuracy of approximately $\pm 0.3\%$. The use of a ceramic resonator requires the addition of two 30F $\pm 10\%$ capacitors; one between XIN and VN (or VND) and the other between XOUT and VN (or VND). Extra caution should be used to avoid stray capacitance on the resonant circuit when using a ceramic resonator instead of a quartz crystal.

When the oscillator connected as above and XEN tied high, the ATB (alternate time base) pin delivers a square wave output at one-eighth the oscillator frequency (447.443 KHz nominal). The ATB pin can be converted to a time base input by tying XEN low; ATB can then be externally driven from another device such as the ATB output of another DTMF. No crystal is required for the ATB input device; XIN must be tied high if unused. Several SSI DTMF Receivers can be driven with a single crystal (refer to device data sheet for fan-out limit).

XOUT is designed to drive a resonant circuit only and is not intended to drive additional devices. If a 3.58 MHz clock is needed for more than one device and it is desirable to use only one resonant device, an outside inverter should be used for the time base, buffered by a second inverter or buffer. The buffer output would then drive XIN of the SSi DTMF Receiver as well as the other device(s); XOUT must be left floating and XEN tied high.

Dial Tone Rejection

The SSi DTMF Receivers incorporate enough dial tone rejection circuitry to provide dial tone tolerance of up to 0 dB. Dial tone tolerance is defined as the total power of precise dial tone (350 Hz and 440 Hz as equal amplitudes) relative to the lowest amplitude tone in a valid tone pair. The filter of Figure 10 may be used for further dial tone rejection. This filter exhibits an elliptic highpass response that provides a minimum of 18 dB rejection at 350 Hz and 24 dB rejection at 440 Hz so long as the component tolerances indicated are observed. The DTMF on-chip filter rejects 350 Hz at least 6 dB more than 440 Hz. Therefore, employing the filter of Figure 10 yields a dial tone tolerance of + 24 dB.

Figure 10. Dial Tone Reject Filter

Printed Circuit Board Implementation

The SSi DTMF Receivers are analog in nature and should be treated as such; circuit noise should be kept to a minimum. To be certain of this, all input and output lines should be kept away from noise sources (high frequency data or clock lines); this is especially true for the Analog Input. Noise in the ground or power supply lines can be avoided by running separate traces to supportive logic circuits or by running thicker (lower resistance) busses. Capacitance power supply bypassing should be performed at the device. Refer to the Power Supply section above.

Performance Data

A portion of the final SSi DTMF Receiver device characterization uses the Mitel CM7290 tone receiver test tape. The evaluation circuit shown in Figure 11 was used to characterize the SSI 201. The speed and output level of the tape deck must be adjusted so that the calibration tone at the beginning of the tape is at exactly 1000 Hz and 2V rms.

The Mitel tape tests yield similar results on all of the SSi DTMF Receivers. Test results for the SSI 201 are summarized in Table 1. In short, the measured performance data demonstrates that the SSi DTMF Receivers are monolithic realizations of a full "central office quality" DTMF Receiver.

TEST #	RESULTS
2a,b	B.W 5.0% of fo
2c,d	B.W. = 5.0% of fo
2e,f	B.W. ~ 5.3% of fo
2g,h	B.W. = 4.9% of fo
2i.j	B.W. ~ 5.0% of fo
2k,I	B.W 5.3% of fo
2m,n	B.W. 5.3% of fo
20.p	B.W. = 4.8% of fo
3	160 decodes
4	Acceptable Amplitude Ratio (Twist) = -19.1dB to +15.2dB
5	Dynamic Range 32.5dB
6	Guard Time 23.3 ms
7	100% Successful decodes at N/S Ratio of - 12dBV
8	2-3 Hits Typical on Talk-Off Test

Table I. Mitel #CM7290 Tape Test Results for SSI 201 (Averaged for 10 parts)

Applications

Creating Hexadecimal "0" Output upon Digit "0" Detection

To be consistent with pulse-dialing systems, the SSi DTMF Receivers provide a hexadecimal "10" output upon the detection of a digit 0 tone pair when in the hexadecimal code format. However, some applications may instead require a hexadecimal "0" with a digit "0" detection. The circuit of

Figure 13. 16 Channel Remote Control

Figure 12 shows an easy method to recode the hexadecimal outputs to do this using only 4 NOR gates.

Figure 12. Hex "0" Out with Digit "0" Detect Conversion Circuit

Note that this circuit will not give proper code for the "*", "B", or "C" digits and will cause both digits "D" and "0" to output hexadecimal "0". This circuit should therefore be considered for numeric digits only. The output code format is shown in Table II.

	HEXADECIMAL HEXADECIM				AL RCUIT			
Digit	D8	D4	D2	D1	D8	D4	D2	D1
1	0	0	0	1	0	0	0	1
2	0	0	1	0	0	0	1	0
3	0	0	1	1	0	0	1	1
4	0	1	0	0	0	1	0	0
5	0	1	0	1	0	1	0	1
6	0	1	1	0	0	1	1	0
7	0	1	1	1	0	1	1	1
8	1	0	0	0	1	0	0	0
9	1	0	0	1	1	0	0	1
0	1	0	1	0	0	0	0	0
·	1	0	1	1	C	0	0	1
#	1	1	0	0	1	1	0	0
Α	1	1	0	1	1	1	0	1
в	1	1	1	0	0	1	0	0
С	1	1	1	1	0	1	0	1
D	0	0	0	0	0	0	0	0

Table II. Output Code of Figure 12

This circuit is useful for applications that require a display of dialed digits; the digit display usually requires a hexadecimal "0" input for a "0" to be displayed.

16-Channel Remote Control

DTMF signaling provides a simple, reliable means of transmitting information over a 2-wire twisted pair. The complete schematic of a 16-channel remote control is shown in Figure 13. When one of the key pad buttons is depressed, a tone pair is sent over the transmission medium to the SSi DTMF Receiver.

The 4514 raises one of its 16 outputs in response to the 4-bit output code from the DTMF. The output at the 4514 will remain high until the next button is depressed.

2-of-8 Output Decode

The circuit shown in Figure 14 can be used to convert the binary coded 2-of-8 to the actual 2 of 8 code (or 2 of 7 if detection of 1633 Hz tone is inhibited). The output data will be valid while DV is high. If it is desired to force the eight outputs to zero when a valid tone is not present, DV should be inverted and connected to both E-NOT inputs of the 4555.

Figure 14. Touch Tone to 2-of-8 Output Converter

DTMF to Rotary Dial Pulse Converter

The 2-of-8 output of Figure 14 can be modified to interface with a pulse dialer as shown in Figure 15. If a 12 Volt DTMF is used the 4049 will translate the 12 Volt outputs to the 5 Volt swings required for the MK5099 pulse dialer.

Figure 16 shows the interface for adding pulse detection and counting to a SSi DTMF Receiver.

The loop detector provides a digital output representing the telephone loop circuit "make" and "break" condition associated with rotary pulse dialing. For the circuit of Figure 16, Ground represents a "make" and $V_{\rm o}$ a "break".

The loop detector feeds dial pulses to IC-1, a binary counter, and to IC-2A, a re-triggerable "one-shot". When a dial pulse appears the Q1-NOT output of IC-2A immediately goes low, resetting IC-1. The clock input to IC-1 is delayed by R1-C1 so that reset and count input do not overlap. The binary outputs of IC-1 will reflect the pulse count and 0.2 seconds after the last pulse the Q1-NOT output will go high. C3-R3 differentiate this pulse and clock the output latch, IC-3, holding the output pulse until the next digit.

The 0.2 second timeout of IC-2A indicates the end of dial pulsing since even a slow (8 pps) dial would input another pulse every 0.125 seconds. The binary outputs of IC-1 are paralleled with those of the SSi DTMF Receiver circuit through diodes to the inputs of IC-3. A pulldown resistor is necessary on each

IC-3 input pin. IC-1 must be a binary, not BCD, counter.

xou

H/B26

XEN

With a 4175 for IC-3 the output data is latched until the next valid input, whether from a rotary dial or dual tone instrument. A unique situation exists, however, when going on-hook. The loop detector will output a continuous level of VP which would trigger IC-2A and put a single count into IC-1. A high level from the loop detector also turns on Q1, pulling the clock input of IC-3 to ground. Since the loop detector output will be low at the completion of dialing, all outputs are valid even when the telephone is placed on-hook, an important consideration if output data is recorded.

NOT NEEDED IF A 5 VOLT SSI DTMF RECEIVER IS USED. THE 4556 MUST THEN BE REWIRED TO COMPENSATE FOR THE MISSING INVERSION.

SSI 20C89 DTMF Transceiver

Preliminary Data Sheet

GENERAL DESCRIPTION

Silicon Systems' new SSI 20C89 is a complete Dual Tone Multiple Frequency (DTMF) Transceiver that can both generate and detect all 16 standard Touch-Tone digits. The SSI 20C89 circuit integrates the performance proven SSI 202 DTMF Receiver with a new DTMF generator circuit.

The DTMF Receiver electrical characteristics are identical to the standard SSI 202 device characteristics. The DTMF generator provides performance similar to the Mostek MK5380, but with an improved (tighter) output amplitude range specification and with the addition of independent latch and reset controls.

The only external components necessary for the SSI 20C89 are a single 3.58 MHz "colorburst" crystal with a parallel 1 MegOhm resistor. This provides the time base for digital functions and switched capacitor filters in the device. No external filtering is required.

FEATURES

- DTMF Generator and Receiver on one chip
- 300 mil, 22-Pin plastic DIP for high system density
- Low-Power 5 Volt CMOS
- DTMF Receiver exhibits excellent speech immunity
- Three-state outputs (4-bit hexadecimal) from DTMF
 Receiver
- AC coupled, internally biased Analog Input
- Latched DTMF Generator inputs
- Analog Input range from -32 to -2 dBm (ref 600 Ω)
- DTMF Output typ. 8 dBm (Low Band) and 5.5 dBm (High Band)
- Uses inexpensive 3.579545 MHz crystal for reference
- · Easily interfaced for microprocessor dialing

Block Diagram

SSI 20C89 DTMF Transceiver

CIRCUIT OPERATION

Receiver

The DTMF Receiver in the SSI 20C89 detects the presence of a valid tone pair (indicating a single dialed digit) on a telephone line or other transmission medium. The analog input is pre-processed by 60 Hz reject and band splitting filters, then hard-limited to provide Automatic Gain Control. Eight bandpass filters detect the individual tones. The digital post-processor times the tone durations and provides the correctly coded digital outputs. The outputs will drive standard CMOS circuitry, and are three-state enabled to facilitate bus-oriented architectures.

DIN

This pin accepts the analog input. It is internally biased so that the input signal may be AC coupled. The input may be DC coupled as long as it does not exceed the positive supply. Proper input coupling is illustrated below.

The SSI 20C89 is designed to accept sinusoidal input wave forms but will operate satisfactorily with any input that has the correct fundamental frequency with harmonics greater than 20 dB below the fundamental.

Crystal Oscillator

The SSI 20C89 contains an onboard inverter with sufficient gain to provide oscillation when connected to a low-cost television "color-burst" crystal. The crystal is placed between XIN and XOUT in parallel with a 1 Mohm resistor, while XEN is tied high. Since the switchedcapacitor-filter time base is derived from the crystal oscillator, the frequency accuracy of all portions of the 20C89 depends on the time base tolerance. The SSI DTMF Receiver frequency response and timing is specified for a time base accuracy of at least $\pm 0.005\%$. ATB is a clock frequency output. Other devices may use the same frequency reference by tying their ATB pins to the ATB of a crystal connected device. XIN and XEN of the auxiliary devices must then be tied high and low respectively, XOUT is left floating. XOUT is designed to drive a resonant circuit only and is not intended to drive additional devices. Ten devices may run off a single crystal-connected SSI 20C89 as shown below.

Receiver Outputs and the DE Pin

Outputs D0,D1,D2,D3 are CMOS push-pull when enabled $(\overline{\text{DE}} \text{ low})$ and open-circuited (high impedance) when disabled ($\overline{\text{DE}}$ high). These digital outputs provide the hexadecimal code corresponding to the detected digit. The table below shows that code.

Digit	Input: Output:	H D7 D3	exadec D6 D2	imal co D5 D1	ode D4 D0
1 2 3 4 5 6 7 8 9	· .	0 0 0 0 0 0 0 1 1	0 0 1 1 1 0 0	0 1 1 0 1 1 0 0	1 0 1 0 1 0 1 0
★ # A B C D		1 1 1 1 1 0	0 1 1 1 1 0	1 0 1 1 0	1 0 1 0 1 0

Table 1

The digital outputs become valid and DV signals a detection after a valid tone pair has been sensed. The outputs and DV are cleared when a valid pause has been timed.

Generator

The DTMF generator on the SSI 20C89 responds to a hexadecimal code input with a valid tone pair. Pins D4-D7 are the data inputs for the generator. A high to low transition on LATCH causes the hexadecimal code to be latched internally and generation of the appropriate DTMF tone pair to begin. The DTMF output is disabled by a high on RESET and will not resume until new data is latched in.

Digital Inputs

The D4,D5,D6,D7, LATCH, RESET inputs to the DTMF generator may be interfaced to open-collector TTL with a pull-up resistor or standard CMOS. These inputs follow the same hexadecimal code format as the DTMF receiver output. Table 1 shows the code for each digit. The dialing matrix and detection frequency table below list the frequencies of the digits.

Note: Column 3 is for special applications and is not normally used in telephone dialing.

DETECTION FREQUENCY

Low Group f _o	High Group f。
Row 0 = 697 Hz	Column 0 = 1209 Hz
Row 1 = 770 Hz	Column 1 = 1336 Hz
Row 2 = 852 Hz	Column 2 = 1477 Hz
Row 3 = 941 Hz	Column 3 = 1633 Hz

DTMF OUT

The output amplitude characteristics listed in the specifications are given for a supply voltage of 5.0 V. However, the output level is directly proportional to the supply, so variations in it will affect the DTMF output. A recommended line interface for this output is shown below.

Absolute Maximum Ratings*

DC Supply Voltage (Vp-Vn)	+7V
Voltage at any Pin $(Vn = 0)$. – 0.3 to Vp + 0.3 V
DIN Voltage	Vp + 0.5 to Vp-10 V
Current through any Protection Device	± 1.0 mA
Storage Temperature	– 40 to + 150 °C
*Operation above absolute maximum ratings may damage	the device.

Recommended Operating Conditions

Parameter	Min.	Max.	Unit
Supply Voltage	4.5	5.5	V
Power Supply Noise (wide band)		10	mV pp
Ambient Temperature	0	70	°C
Crystal Frequency (F Nominal = 3.579545 MHz)	005	+ .005	%
Crystal Shunt Resistor	0.8	1.2	MΩ
DTMF OUT Load Resistance	100	_	Ω

Digital and DC Requirements

The following electrical specifications apply to the digital input and output signals over the recommended operating range unless otherwise noted. The specifica-

tions do not apply to the following pins: DIN, XIN, XOUT, and DTMF OUT. Positive current is defined as entering the circuit. Vn = 0 unless otherwise stated.

Parameter	Test Conditions	Min.	Max.	Unit
Supply Current*	— · · · · · · · · · · · · · · · · · · ·	—	30	mA
Power Dissipation	-	—	225	mW
Input Voltage High	—	0.7Vp		V
Input Voltage Low		—	0.3Vp	V
Input Current High	_	_	10	μΑ
Input Current Low	—	⁻ – 10 ⁻	_	μΑ
Output Voltage High	loh = -0.2mA	Vp-0.5	_	V
Output Voltage Low	lol = +0.4mA	_	Vn + 0.5	V

*with DTMF output disabled

DTMF Receiver

Electrical Characteristics

Parameter	Test Conditions	Min.	Тур	Max.	Unit
Frequency Detect Bandwidth	_	±(1.5+2Hz)	±2.3	± 3.5	%Fo
Amplitude for Detection	Each Tone	- 32		-2	dBm/tone
Twist Tolerance		- 10		+ 10	dB
60Hz Tolerance		_		0.8	Vrms
Dial Tone Tolerance	Precise Dial Tone		_	0	dB*
Speech Immunity	MITEL Tape #CM7290	_	2	—	hits
Noise Tolerance	MITEL Tape #CM7290	_	—	- 12	dB*
Input Impedance	_	100	_	_	kΩ

*Referenced to lowest amplitude tone

Timing Characteristics

Parameter	Symbol	Min.	Max.	Unit
Tone Time for Detect	ton	40		ms
Tone Time for No Detect	ton		20	ms
Pause Time for Redetection	toff	40	_	ms
Pause Time for Bridging	toff		20	ms
Detect Time	td1	25	46	ms
Release Time	tr1	35	50	ms
Data Set Up Time	tsu1	7		μs
Data Hold Time	thd1	4.2	5.0	ms
Output Enable Time		_	300	ns
Output Disable Time			200	ns

DTMF Generator

Electrical Characteristics

Parameter	Test Conditions	Min.	Max.	Unit
Frequency Accuracy	_	- 1.0	+ 1.0	%Fo
Output Amplitude	$R1 = 100\Omega$ to Vn, Vp - Vn = 5.0 V			—
Low Band	_	- 9.2	- 7.2	dBm
High Band	_	- 6.6	- 4.6	dBm
Output Distortion	DC to 50kHz		- 20	dB

Timing Characteristics

Parameter	Symbol	Min.	Max.	Unit
Start-Up Time	tstart	_	4.5	ms
Data Set-Up Time	tsu2	400	—	ns
Data Hold Time	thd2	300	_	ns
RESET Pulse Width	trp	450	_	ns
LATCH Pulse Width	tpw	450	_	ns

on systems 14351 Myford Road, Tustin, CA 92680 (714) 731-7110, TWX 910-595-2809

Timing Diagrams

Note 1: The indicated time may be as small as 0 sec meaning that the LATCH and RESET lines may be tied together.

The "PRELIMINARY" designation on an SSi data sheet indicates that the product is not yet released for production. The specifications are subject to change, are based on design goals or preliminary part evaluation, and are not guaranteed. SSi should be consulted for current information before using this product. No responsibility is assumed by SSi for its use; nor for any

infringements of patents and trademarks or other rights of third parties resulting from its use. No license is granted under any patents, patent rights or trademarks of SSi. SSi reserves the right to make changes in specifications at any time and without notice.

licon systems INNOVATORS IN INTEGRATION

SSI 20C90 DTMF Transceiver with Call Progress Detection

Preliminary Data Sheet

GENERAL DESCRIPTION

Silicon Systems' new SSI 20C90 is a complete Dual Tone Multiple Frequency (DTMF) Transceiver that can both generate and detect all 16 standard Touch-Tone digits. The SSI 20C90 circuit integrates the performance proven SSI 202 DTMF Receiver with a new DTMF generator circuit.

The DTMF Receiver electrical characteristics are identical to the standard SSI 202 device characteristics. The DTMF generator provides performance similar to the Mostek MK5380, but with an improved (tighter) output amplitude range specification and with the addition of independent latch and reset controls.

An additional feature of the 20C90 is "imprecise" call progress detector. The detector detects the presence of signals in the 305-640 Hz band.

The only external components necessary for the SSI 20C90 are a single 3.58 MHz "colorburst" crystal with a parallel 1 MegOhm resistor. This provides the time base for digital functions and switched capacitor filters in the device. No external filtering is required.

FEATURES

- DTMF Generator and Receiver on one chip
- 300 mil, 22-Pin plastic DIP for high system density
- Low-Power 5 Volt CMOS
- DTMF Receiver exhibits excellent speech immunity
- Three-state outputs (4-bit hexadecimal) from DTMF
 Receiver
- AC coupled, internally biased Analog Input
- Latched DTMF Generator inputs
- Analog Input range from -32 to -2 dBm (ref 600 Ω)
- DTMF Output typ. 8 dBm (Low Band) and 5.5 dBm (High Band)
- Uses inexpensive 3.579545 MHz crystal for reference
- Easily interfaced for microprocessor dialing
- Call progress detection

1-28
SSI 20C90 DTMF Transceiver with Call Progress Detection

CIRCUIT OPERATION

Receiver

The DTMF Receiver in the SSI 20C90 detects the presence of a valid tone pair (indicating a single dialed digit) on a telephone line or other transmission medium. The analog input is pre-processed by 60 Hz reject and band splitting filters, then hard-limited to provide Automatic Gain Control. Eight bandpass filters detect the individual tones. The digital post-processor times the tone durations and provides the correctly coded digital outputs. The outputs will drive standard CMOS circuitry, and are three-state enabled to facilitate bus-oriented architectures.

DIN

This pin accepts the analog input. It is internally biased so that the input signal may be AC coupled. The input may be DC coupled as long as it does not exceed the positive supply. Proper input coupling is illustrated below.

The SSI 20C90 is designed to accept sinusoidal input wave forms but will operate satisfactorily with any input that has the correct fundamental frequency with harmonics greater than 20 dB below the fundamental.

Crystal Oscillator

The SSI 20C90 contains an onboard inverter with sufficient gain to provide oscillation when connected to a low-cost television "color-burst" crystal. The crystal is placed between XIN and XOUT in parallel with a 1 Mohm resistor, while XEN is tied high. Since the switchedcapacitor-filter time base is derived from the crystal oscillator, the frequency accuracy of all portions of the 20C90 depends on the time base tolerance. The SSI DTMF Receiver frequency response and timing is specified for a time base accuracy of at least ± 0.005 %. ATB is a clock frequency output. Other devices may use the same frequency reference by tying their ATB pins to the ATB of a crystal connected device. XIN and XEN of the auxiliary devices must then be tied high and low respectively, XOUT is left floating. XOUT is designed to drive a resonant circuit only and is not intended to drive additional devices. Ten devices may run off a single crystal-connected SSI 20C90 as shown below.

Receiver Outputs and the DE Pin

Outputs D0,D1,D2,D3 are CMOS push-pull when enabled $(\overline{\text{DE}} \text{ low})$ and open-circuited (high impedance) when disabled ($\overline{\text{DE}}$ high). These digital outputs provide the hexadecimal code corresponding to the detected digit. The table below shows that code.

Digit	Input: Output:	Hi D7 D3	exadec D6 D2	imal co D5 D1	ode D4 D0
1 2 3		0 0	0	0 1	1 0 1
4 5		0	1	0	0 1
6 7		0 0	1	1	0
8 9		1	0 0	0	0
0 ★ #		1	0 0	1	0 1 0
А В		1 1	1 1	0 1	1 0
C D		1 0	1 0	1 0	1 0

The digital outputs become valid and DV signals a detection after a valid tone pair has been sensed. The outputs and DV are cleared when a valid pause has been timed.

Generator

The DTMF generator on the SSI 20C90 responds to a hexadecimal code input with a valid tone pair. Pins D4-D7 are the data inputs for the generator. A high to low transition on LATCH causes the hexadecimal code to be latched internally and generation of the appropriate DTMF tone pair to begin. The DTMF output is disabled by a high on RESET and will not resume until new data is latched in.

Digital Inputs

The D4,D5,D6,D7, LATCH, RESET inputs to the DTMF generator may be interfaced to open-collector TTL with a pull-up resistor or standard CMOS. These inputs follow the same hexadecimal code format as the DTMF receiver output. Table 1 shows the code for each digit. The dialing matrix and detection frequency table below list the frequencies of the digits.

DTMF DIALING MATRIX

Note: Column 3 is for special applications and is not normally used in telephone dialing.

DETECTION FREQUENCY

Low Group f _o	High Group f。
Row 0 = 697 Hz	Column 0 = 1209 Hz
Row 1 = 770 Hz	Column 1 = 1336 Hz
Row 2 = 852 Hz	Column 2 = 1477 Hz
Row 3 = 941 Hz	Column 3 = 1633 Hz

DTMF OUT

The output amplitude characteristics listed in the specifications are given for a supply voltage of 5.0 V. However, the output level is directly proportional to the supply, so variations in it will affect the DTMF output. A recommended line interface for this output is shown below.

Call Progress Detection

The Call Progress Detector consists of a bandpass filter and an energy detector for turning the on/off cadences into a microprocessor compatible signal.

LIN Input

This analog input accepts the call progress signal and should be used in the same manner as the receiver input DIN.

DET Output

This output is TTL compatible and will be of a frequency corresponding to the various cadences of Call Progress signals such as, on 0.5 sec/off 0.5 sec for a busy tone, on 0.25 sec/off 0.25 sec for a reorder tone and on 0.8-1.2 sec/off 2.7-3.3 sec for an audible ring tone.

Absolute Maximum Ratings*

DC Supply Voltage (Vp-Vn)	+ 7V
Voltage at any Pin (Vn = 0)	0.3 to Vp + 0.3 V
DIN Voltage	Vp + 0.5 to Vp-10 V
Current through any Protection Device	± 1.0 mA
Storage Temperature	– 40 to + 150 °C

*Operation above absolute maximum ratings may damage the device.

Recommended Operating Conditions

Parameter	Min.	Max.	Unit
Supply Voltage	4.5	5.5	V
Power Supply Noise (wide band)	·	10	mV pp
Ambient Temperature	0	70	°C
Crystal Frequency (F Nominal = 3.579545 MHz)	005	+ .005	%
Crystal Shunt Resistor	0.8	1.2	MΩ
DTMF OUT Load Resistance	100	·	Ω

Digital and DC Requirements

The following electrical specifications apply to the digital input and output signals over the recommended operating range unless otherwise noted. The specifica-

tions do not apply to the following pins: LIN, DIN, XIN, XOUT, and DTMF OUT. Positive current is defined as entering the circuit. Vn = 0 unless otherwise stated.

Parameter	Test Conditions	Min.	Max.	Unit
Supply Current*	— — — — — — — — — — — — — — — — — — —	· <u> </u>	30	mA
Power Dissipation	-		225	mW
Input Voltage High		0.7Vp	_	V
Input Voltage Low	·		0.3Vp	V
Input Current High	<u> </u>		10	μΑ
Input Current Low		- 10	—	μΑ
Output Voltage High	loh = -0.2mA	Vp-0.5	_	V
Output Voltage Low	lol = +0.4mA		Vn + 0.5	٧

*with DTMF output disabled

DTMF Receiver

Electrical Characteristics

Parameter	Test Conditions	Min.	Тур	Max.	Unit
Frequency Detect Bandwidth	<u> </u>	±(1.5 + 2Hz)	±2.3	± 3.5	%Fo
Amplitude for Detection	Each Tone	- 32		-2	dBm/tone
Twist Tolerance		- 10		+ 10	dB
60Hz Tolerance				0.8	Vrms
Dial Tone Tolerance	Precise Dial Tone	—		0	dB*
Speech Immunity	MITEL Tape #CM7290	_	2		hits
Noise Tolerance	MITEL Tape #CM7290	·		- 12	dB*
Input Impedance		100	· ·		kΩ

*Referenced to lowest amplitude tone

Timing Characteristics

Parameter	Symbol	Min.	Max.	Unit
Tone Time for Detect	ton	40	_	ms
Tone Time for No Detect	ton	_	20	ms
Pause Time for Redetection	toff	40	-	ms
Pause Time for Bridging	toff	_	20	ms
Detect Time	td1	25	46	ms
Release Time	tr1	35	50	ms
Data Set Up Time	tsu1	7	—	μs
Data Hold Time	thd1	4.2	5.0	ms
Output Enable Time		_	300	ns
Output Disable Time		_	200	ns

DTMF Generator

Electrical Characteristics

Parameter	Test Conditions	Min.	Max.	Unit
Frequency Accuracy	—	- 1.0	+ 1.0	%Fo
Output Amplitude	$R1 = 100 \Omega$ to Vn, Vp - Vn = 5.0 V	_	_	
Low Band	—	- 9.2	- 7.2	dBm
High Band		- 6.6	4.6	dBm
Output Distortion	DC to 50kHz	—	- 20	dB

Timing Characteristics

Parameter	Symbol	Min.	Max.	Unit
Start-Up Time	tstart	-	4.5	ms
Data Set-Up Time	tsu2	400	_	ns
Data Hold Time	thd2	300		ns
RESET Pulse Width	trp	450		ns
LATCH Pulse Width	tpw	450		ns

Call Progress Detector Electrical Characteristics

Parameter	Conditions	Min.	Max.	Unit
Amplitude for Detection	305 Hz – 640 Hz	- 40	0	dBm
Amplitude for No Detection	305 Hz 640 Hz	—	- 50	dBm
Input Impedance	_	100		kΩ

Timing Characteristics

Parameter	Symbol	Min.	Max.	Unit
Signal Time for Detect	ton	40		ms
Signal Time for No Detect	ton	_	10	ms
Interval Time for Detect	toff	40		ms
Interval Time for No Detect	toff		20	ms
Detect Time	td2	_	40	ms
Release Time	tr2		40	ms

n sustem 14351 Myford Road, Tustin, CA 92680 (714) 731-7110, TWX 910-595-2809

Timing Diagrams

Note 1: The indicated time may be as small as 0 sec meaning that the LATCH and RESET lines may be tied together.

The "PRELIMINARY" designation on an SSi data sheet indicates that the product is not yet released for production. The specifications are subject to change, are based on design goals or preliminary part evaluation, and are not guaranteed. SSi should be consulted for current information before using this product. No responsibility is assumed by SSi for its use; nor for any

infringements of patents and trademarks or other rights of third parties resulting from its use. No license is granted under any patents, patent rights or trademarks of SSi. SSi reserves the right to make changes in specifications at any time and without notice.

licon systems INNOVATORS IN INTEGRATION

SSI 223 1200 Baud FSK Modem

Preliminary Data Sheet

DESCRIPTION

The SSI 223 modem device receives and transmits, serial, binary data over existing telephone networks using Frequency Shift Keying (FSK). It provides the filtering, modulation, and demodulation to implement a serial, asynchronous data communication channel. The SSI 223 employs CCITT V.23 signaling frequencies and operates at 1200 baud, and is intended for half duplex operation over a single line system or full duplex operation over a two line system.

The SSI 223 provides a cost effective alternative to existing modem solutions. It is ideally suited for interactive terminals, videotex, personal computers, credit verification systems, point-of-sale terminals, and remote process control.

CMOS Technology ensures small size, low power consumption and enhanced reliability.

FEATURES

- Low cost FSK Modem
- 1200 Baud operation
- CMOS switched capacitor technology
- · Simultaneous transmit and receive
- Built-in self-test feature
- On-chip filtering, Mod/Demod.
- Uses CCITT V.23 Frequencies
- · On chip crystal oscillator
- Pin/function compatible with SSI 180
- Low power/High reliability
- 16-pin plastic package

Circuit Operation

The SSI 223 has four main functional sections: timing, transmit, receive, and test. Each section of the chip will be individually described below.

TIMING

The timing section contains the oscillator (OSC) and random logic which generates digital timing signals used throughout the chip. The time base can be derived from 3.18MHz crystal or an external digital input. The modem will operate with clock inputs from 330KHz to 3.3MHz. Back channel is supplied by selecting the lower frequency clock rate. The digital timing logic divides the oscillator frequency to give a 1200HZ output that can be used for system timing.

TRANSMITTER

The SSI 223 transmitter consists of a programmable divider that drives a programmable coherent phase frequency synthesizer. The programmable divider is digitally controlled via the Data Input pin (TXD). The output of the divider clocks a 16 segment phase coherent frequency synthesizer. A sine wave is constructed by eight weighted capacitors which are the inputs to a high pass filter. Proper matching of the capacitors is important in order to suppress the second thru fourteenth harmonics. The synthesized signal is output directly to the transmit pin TXA. The transmit signal can be disabled by using the digital control pin TX.

RECEIVER

The SSI 223's receiver is comprised of three sections: the input bandpass filter, the synchronization loop, and the demodulator.

The input bandpass filter is a four pole Butterworth filter, implemented using switched capacitor technology. This filter reduces wideband noise which significantly improves data error rates. the SSI 223 can be configured with the bandpass filter in series with the receiver by setting FIL = 1 and inserting the received signal at RXF, or the bandpass filter can be deleted from the system by setting FIL = 0 and inputting the received signal thru RXA.

The demodulator is used to detect a received mark or space.

The synchronization for sampling the digital output at RXD derived from a digital phase locked loop. The phase locked loop is clocked at 16 times the bit rate with a maximum lock period of 8 clocks and locks on the data output signal.

SELF TEST MODE

The SSI 223 features an autotest mode which provides easy field test capability of the chip's funtionality. The modem is placed in the test mode by taking the test pin high. In the test mode the Data Input pin is disconnected and the programmable divider is driven by a pseudo random PN sequence generator and the transmitter's output is connected to the receiver's input. The input data to the programmable divider is delayed by the system delay time and compared to the digital output on sync transitions. If the detected data matches the delayed input data from the PN sequence counter, the SSI 223 is properly functioning as indicated by RXD low. A high on the RXD pin indicates a functional problem on the SSI 223.

ABSOLUTE MAX RATINGS

Power Supply Voltage (VDD-VSS)	
Analog Input Voltage at RXA	$\dots \dots - 0.3$ to VDD V
Analog Input Voltage at RXF	– 3 to VDD V
Digital Input Voltage	V_{SS} = 0.3 to V_{DD} + 0.3 V
Storage Temperature Range	– 65 to + 150 °C
Operating Temperature Range	25 to + 70 °C
Lead Temperature (10 sec soldering	ng)260 °C

PIN DESCRIPTIONS

Pin No.	Symbol	Description
1	VDD	Positive Supply Voltage
2	RXA	Receive Analog Input — Analog input from the telephone network.
3	CAP	Capacitor — Connect a 0.1µf capacitor between Pin 3 and ground (VSS).
4	RXF	Filtered Receive Analog Input
5	FIL	Analog Input Control — A logical 1 selects the filtered input. A logical 0 selects the non-filtered input.
6	TEST	Self-Test Mode Control — Normal operation when a logical 0. A logical 1 places the device into the self-test mode. A Low appears at RXD, to indicate a property functioning device.
7	ТХ	Transmitter Control — A logical 0 selects transmit mode. A logical 1 selects a stand-by condition forcing TXA to $\frac{VDD}{2}$ VDC.
8	VSS	Ground
9	SYNC	Synchronized Output — Digital output synchronized with the received signal and used to sample the received eye pattern.

PIN DESCRIPTIONS

Pin No.	Symbol	Description	
10	SYN	Sync Disable — A logical 0 input disables the phase locked signal from the received data and locks it to the 1200Hz reference.	
11	RXD	Receiver Digital Output	
12	TXD	Transmitter Digital Input	
13	OSC1	Crystal Input (3.1872 MHz) or External Clock Input	
14	OSC2	Crystal Return	
15	CLK	1200Hz Squarewave Output — Can drive up to 10 CMOS loads.	
16	ТХА	Transmitter Analog Output	

ELECTRICAL CHARACTERISTICS Unless otherwise specified, 4.5 < V_{DD} <13 V_{DC}, V_{SS} = 0 V_{DC}, -25 °C < TA <70 °C.

Parameter	Test Conditions	Min.	Тур.	Max.	Units
VDD Voltage Supply Range		4.5		13	V
Supply Current	V _{DD} = 5V 25 °C V _{DD} = 12V 25 °C		2.0 5.0	_	mA mA
Digital Inputs Input Low Voltage VIL Input High Voltage VIH Input Low Current IIL Input High Current IIH		V _{SS} – 0.3 V _{DD} – 1.5 – 1 –		VSS + 1.5 VDD + 0.3 1	ν ν μΑ μΑ
Digital Outputs Output Low Voltage VOL Output High Voltage VOH Output Low Current IOL Output High Current IOH		 4.95 0.5 0.2		0.05 	V V mA mA
Analog Input Level @ RXA	Centered at VDD/2 + 0.5V	0.2		V _{DD} /4	Vpp
Analog Input Level @ RXF	*DC Level between VDD & VSS	0.2		V _{DD} /2	VDC
Error Rate	S/N = 8dB Input @ RXF	—	—	5 × 10 -3	—
Analog Output Level @ TXA Analog Output Level @ TXA	$RL \ge 10K \qquad \frac{TX}{TX} = 0 TX = 1$		V _{DD} /4 V _{DD} /2	_	Vpp VDC
Output Frequency @ TXA	XTAL = 3.1872MHz TXD = 1 TXD = 0		1302 2097	_	Hz Hz
Output Harmonics	2nd to 14th Harmonics 15th Harmonic		- 60 	- 50 - 20	dB dB
Input Filter (RXF) Lower 3dB Corner Upper 3dB Corner	*Input = 200 m/Vpp to VDD/2 Vpp		760 2625	_	Hz Hz

*Note: The SSI 223 RXF input is AC coupled internally, but the DC value of the input must be between the two supplies VDD & VSS

con systems

14351 Myford Road, Tustin, CA 92680 (714) 731-7110, TWX 910-595-2809

Note: A simple low speed back channel can be configured using a DTMF Encoder and Decoder (SSI202)

The "PRELIMINARY" designation on an SSi data sheet indicates that the product is not yet released for production. The specifications are subject to change, are based on design goals or preliminary part evaluation, and are not guaranteed. SSi should be consulted for current information before using this product. No responsibility is assumed by SSi for its use; nor for any

infringements of patents and trademarks or other rights of third parties resulting from its use. No license is granted under any patents, patent rights or trademarks of SSi. SSi reserves the right to make changes in specifications at any time and without notice.

SSI 3522 Bell 212A/V.22 Modem Filter

Preliminary Data Sheet

GENERAL DESCRIPTION

The SSI 3522 is a 16 pin CMOS integrated circuit that provides the channel filtering and equalization functions required for Bell 212A and C.C.I.T.T. V.22 modem applications. Employing switched capacitor filter techniques, the 3522 includes channel separation filters optimized for 1200 and 2400 Hz operation, while maintaining the bandshape necessary to reject 550 and 1800 Hz guard tones typical for V.22 standard modems. Fixed compromise equalization and group delay correction is distributed between the two channels as prescribed by V.22 recommendations. Dual multiplexers provide channel steering action for answer/orginate control using a single pin.

The 3522 is designed to provide the front end for a Bell 212A or V.22 modulator/demodulator I C such as the SSI 291. Optimized for PSTN lines, the 3522 offers an economical solution to the filter requirements of medium speed modem designs.

FEATURES

- · Performs Bell 212A/V.22 channel filter functions
- High performance/low cost filter for medium speed modems
- · Compromise equalization
- · Single pin originate/answer steering logic
- Selectable clock divider—2.304 MHz or 3.5795 MHz color burst frequency
- +- 5V operation at 50 mW typical power consumption
- · CMOS technology and I/O compatibility
- 16 pin DIP configuration
- · CMOS latch-up protected

CAUTION: Use handling procedures necessary for a static sensitive component

SSI 3522 Block Diagram

TX IN RX IN 16 1 VDD 2 15 - ANALOG GND HBF OUT 14 - NC 3 DIG GND 13 MÓDE 4 3522 - LBF OUT OSC IN · 5 12 CLK. OUT -6 11 - vss RX OUT -7 10 - CLK. SEL TX OUT 8 NC 9

SSI 3522 Bell 212A/V.22 Modem Filter

CIRCUIT OPERATION

GENERAL:

The SSI 3522 is designed to act as a low cost filter for use in conjunction with Bell 212A or V.22 modern I C 's such as the SSI 291. The device consists of a high and low band filter, split compromise equalizers for the two channels, and dual multiplexer logic for originate/answer channel steering. The unbuffered filter outputs are brought out to pins LBF and HBF before the signals have been processed by the equalizer section, and may be used for test purposes or in applications where the equalizer must be bypassed. Output impedance of these pins is 100 Kohm, requiring buffering if significant loads are to be driven. A clock generator provides the switched capacitor clock sampling frequency of 52.36 KHz from a 2.304 MHz buffered input signal. Tving pins 10 and 11 together changes the internal scaling rate to allow use of a 3.5795 MHz input, which can be generated from a standard color burst crystal. Filter response is essentially flat for a passband centered around the 1200 and 2400 Hz center frequencies, while notch filters located at 550 and 1800 Hz insure excellent rejection of C.C.I.T.T. guard tones.

DESIGN CONSIDERATIONS

The SSI 3522 uses SCF sampled data techniques. To avoid signal aliasing problems the input signal should not contain significant energy within 3 KHz of any multiple of the 52.36 KHz sampling clock. An anti-aliasing filter may be needed to meet this requirement.

When the alternate clock input is selected, a rate multiplier is inserted in the normal clock divider circuit. This shifts the SCF clock frequency to 52.30 KHz and the CLK out pin output to 104.6 KHz. In addition, a low level modulation tone at approximately 23 KHz will be generated with a typical amplitude of less than 600 μ V RMS. Normal applications will not be affected by these changes.

TABLE 1: PIN DESCRIPTIONS

PIN NO. I/O NA

ИE	NAME—DESCRIPTION

15	1	Analog Gnd	Analog ground pin-separate from digital ground	
6	0	CLK out	104.5 Khz SCF clock output, CMOS compatible	
4	1	Digital Gnd	Digital ground pin-separate from analog ground	
3	0	HBF out	High band filter output before equalization. Limited to 100 Kohm drive capability	
12	0	LBF out	Low band filter output before equalizer. Limited to 100Kohm drive capability.	
13	I	Mode	Channel steering control. Logic 1 selects the answer mode, with high-band transmit and low-band receive signal routing. A logic 0 selects the originate mode with the opposite channel orientation.	
5	1	Osc in	Accepts a CMOS level frequency reference at 2.304 or 3.5795 MHz as selected to generate the SCF 52.36 KHz clock used internally	

PIN NO. I/O NAME

NAME-DESCRIPTION

16	1	Rx in	Receive signal filter input
7	0	Rx out	Receive signal output from equalizer
1	1	Tx in	Transmit signal filter input
8	0	Tx out	Transmit signal output from equalizer
2	1	VDD	+5V -5%, +25% power input
11	1	VSS	-5V +5%, -25% power input
10	I	Clk Sel	Clock select pin. Connecting pins 10 and 11 changes the internal divider ratio to allow use of a standard 3.5795 Mhz color burst crystal reference to generate the 52.36 KHz SCF clock The 2.304 MHz clock input is selected when pin 10 is left open. (has internal pull-up)

ELECTRICAL: SPECIFICATIONS

Digital signals: pins 5,6,13,9,10

High level input voltage VIH	
High level input currentIIH	10 µ A Maximum
Low level input voltage VIL	
Low level input currentIIL	–10 <i>u</i> A Maximum

Clock input: pin 5

Input clock frequency 2.304 or 3.5795 MHz + -.01% Input clock duty cycle 20% minimum, 80% maximum

Analog signals: pins 1,2,3,4,7,8,11,12,15,16

Supply voltage, VDD 4.75V minimum 6.25V maximum
Supply voltage, VSS4.75V minimum -6.25V maximum
Supply current, IDD(VDD = 5.0V) 10 mA maximum
Supply current, ISS(VSS = $-5.0V$) -10 mA maximum
Input impedance, Zin 10 Kohms minimum
Output impedance, Zout (pins 3, 12) 100 Kohms typical
Output impedance, Zout (pins 7, 8) 1 Kohm maximum
Output noise, C-message
Channel separation
Input signal level
Supply imbalance, VDD + VSS 0.5V maximum
Operating temperature range 0 to 70 degrees celsius
Storage temperature range55 to 125 degrees celsius

TYPICAL FREQUENCY RESPONSE

ilicon systems 14351 Myford Road, Tustin, CA 92680 (714) 731-7110, TWX 910-595-2809

TYPICAL PERFORMANCE

The "PRELIMINARY" designation on an SSi data sheet indicates that the product is not yet released for production. The specifications are subject to change, are based on design goals or preliminary part evaluation, and are not guaranteed. SSi should be consulted for current information before using this product. No responsibility is assumed by SSi for its use; nor for any

infringements of patents and trademarks or other rights of third parties resulting from its use. No license is granted under any patents, patent rights or trademarks of SSi. SSi reserves the right to make changes in specifications at any time and without notice.

SSI 263A Phoneme Speech Synthesizer

Data Sheet

DESCRIPTION

The SSI 263A is a versatile, high-quality, phonemebased speech synthesizer circuit contained in a single monolithic CMOS integrated circuit. It is designed to produce an audio output of unlimited vocabulary, music and sound effects at an extremely low data input rate.

Speech is synthesized by combining phonemes, the building blocks of speech, in an appropriate sequence. The SSI 263A contains five eight-bit registers that allow software control of speech rate, pitch, pitch movement rate, amplitude, articulation rate, vocal tract filter response, and phoneme selection and duration.

FEATURES

- Single low-power CMOS integrated circuit
- 5 Volt supply
- · Extremely low data rate
- 8-bit bus compatible with selectable handshaking modes
- Non-dedicated speech, ideal for text-to-speech programming
- · Programmable and hard powerdown/reset mode
- Switched-capacitor-filter technology

SSI 263A Operation Description

This short description is intended to provide SSI 263A feature and capability information only. Refer to the SSI 263A USERS GUIDE for complete information on application and phonetic programming.

The Production of Speech

To produce different speech phonemes (sounds) the SSI 263A uses a model of the human vocal tract. Within the device this analog tract is modeled with five cascaded programmable low pass filter sections. The filter sections are programmed internally by a digital controller. Either a glottal (pitch) or a pseudo-random noise source is used to excite the vocal tract, depending on whether a voiced or non-voiced phoneme is selected. During speech production the phonemes will typically last between 25 and 100 mS.

The Speech Attribute Registers

Speech is produced by programming speech attribute (characteristic) data into five eight-bit registers. These internal registers allow selection of phonemes and speech characteristics. Refer to the Register Input Formats for the functional allocations.

Device Response to Attribute Register Data

The SSI 263A has two general classes of attribute data: "control" data (speech rate, filter frequency, phoneme articulation rate, phoneme duration, immediate inflection setting, and inflection movement rate) and "target" data (phoneme selection, audio amplitude, and transitioned inflection). The SSI 263A responds immediately upon loading "control" data; upon loading "target" data the device will begin to move towards that target at the prescribed transition rates. This fully internal linear transitioning between target values, done in a manner as is found in normal speech, is a key factor in reducing control data rate without sacrificing speech quality.

Attribute Register Writing

The eight bit data bus D^{7} -D0 loads the particular attribute register selected by the three bit address bus RS2-RS0. To write the data, R/\overline{W} (Read/Write), CS0 (Chip Select 0), and $\overline{CS1}$ pins must first be in the 0,1,0 state, respectively. The data is then written when at least one of these pins changes state. Refer to the Write Timing Diagram. Writing is accomplished by changing preferably CS0 or $\overline{CS1}$. Following device power up, nominal values should be loaded into the attribute registers as described below.

Approximate Data Transfer Rate

For speech production using the SSI 263A, the actual data rate depends on the amount of speech attribute manipulation. For example, the production of monotonic speech, where phoneme and duration are the only attribute manipulations, requires a data rate less than 100 bits-per-second. A higher data rate of

about 500 bits-per-second is required for high quality speech due to the associated full attribute manipulation.

Selectable Operation Modes

The state of the Duration/Phoeme Register bits DR1 and DR0 determine the operating mode of the device when the Control bit (CTL) is changed from a logic one to a logic zero. The four modes of operation include choice of timing response between "frame" or "phoneme" timing (as explained below), transitioned or immediate inflection response, and setting the A/\overline{R} (Acknowledge/Request Not) pin active or disabled. Refer to the Mode Selection Chart.

Phoneme Selection

The SSI 263A can produce the 64 phonemes listed on the Phoneme Chart. Bits P5-P0 are used for phoneme selection. The relative phoneme duration is set by bits DR1 and DR0.

Phoneme Articulation Adjustment

A particular phoneme is produced by the combination of vocal-tract low-pass filter settings, excitation source type, and source amplitude. When a new phoneme is selected, the device performs a linear transition to the new set of characteristics. The rate of this transition is controlled by the articulation setting, bits TR2-TR0. This rate is relative in that articulation is not affected by speech rate bits R3-R0. A typical articulation register setting is "5".

Programming Inflection (Pitch)

When the SSI 263A is in the mode of immediate inflection, bits 111-10 provide immediate adjustment with seven octaves of pitch on an even tempered scale. With the device in the transitioned inflection mode, bits 110-16 select the target pitch and bits 15-13 determine the inflection rate of change. Bits 111, 12, 11, and 10 always provide immediate adjustment. A typical value used for speech production is 90Hz where:

Infloction Frequency	_	XCK frequency
innection Frequency	-	8 X (4096-I)

I = decimal equivalent of Inflection Register setting

Filter Frequency Setting

Data bits FF7-FF0 set the clock frequency for the switched-capacitor vocal tract filters. This determines overall filter frequency response. Inflection pitch is not affected by these bits. Typically this is set to give a clock frequency of about 20KHz (see formula below), but may be manipulated to fine-tune speech quality or to change "voice type"; bass, baritone, etc.

XCK frequency 2 (256 - FF)

FF = decimal equivalent to the Filter Frequency Register setting.

Speech Rate

Rate of speech is controlled by bits R3-R0, the Speech 1-43

Rate Register. In Frame Timing Mode new attribute data is requested at the end of a "frame" where:

_

Frame Duration

XCK frequency

4096 X (16-R)

R = decimal equivalent of Rate Register setting In the Phoneme Timing Mode the frame duration is modified by the phoneme duration bits DR1 and DR0 where:

Phoneme Duration = (Frame Duration) X (4-D)

D = decimal equivalent of Duration Register setting All internal attribute transitioning is performed relative to the Speech Rate Register setting. Speech rate does not effect inflection or filter frequency. A typical rate setting is hexadecimal "A".

Amplitude Adjustment

The overall Audio Output level is set with register bits A3-A0. Since each phoneme has a preset amplitude relative to other phonemes, it is not necessary to program the amplitude of each phoneme; however, amplitude changes may be used to enhance the speech quality and add emphasis. Amplitude is transitioned linearly at rate dependent on the phoneme duration setting. A typical amplitude setting is hexadecimal "C".

Control Bit and Power Down Mode

Setting the Control bit (CTL) to a logic one puts the device into Power Down mode, a sort of "standby". This bit is also set high when the PD/RST pin is brought low and also upon power up. The Power Down mode turns off the excitation sources and analog circuits to reduce power consumption, but maintains the present register settings. Upon a Control bit logic one-to-zero transition, the present settings of DR1 and DR0 determine the operation mode as described above.

Register Reading

Device pin D7 becomes an output, as the inverted state of A/\overline{R} , when the device is put into Read (R/\overline{W} is a logic 1 and the chip is selected, $\overline{CS1} = 0$, CS0 = 1). Refer to the Read Timing Diagram. The register address bits are ignored.

Time Base

Many different time bases may be utilized (see external clock input specifications). It is desirable to establish a stable crystal controlled time base from 800 to 1000KHz when DIV2 is set low, or twice the frequency when DIV2 is set high. A good time base can be easily accomplished with an inexpensive colorburst 3.5795 MHz crystal in conjunction with a divide-by-two circuit. The actual device timing and output frequencies are directly related to the time base frequency used.

Microprocessor Interfacing

Either the A/R line, or D7 as an output, are used as an interrupt to indicate when the duration of a frame or phoneme has been exceeded. No detectable degradation to speech quality results when several milliseconds occur between data request and load.

ex Code*	Phoneme Symbol	Example Word (or Usage)
00	PA	(pause)
01	E	MEET
02	E1	BENT
03	Y	BEFORE
04	ΥI	YEAR
05	AY	PL <u>EA</u> SE
06	IE	ANY
07		SIX
08	A	MADE
09	Al	CARE
0A	FH	NEST
0B	EH1	BELT
00	ΔF	
00		AFTER
05		COT
0E		
		FATHER
10	AW	OFFICE
11	0	SIGRE
12	00	BOAT
13	00	LOOK
14	ເບ	Y <u>OU</u>
15	101	COULD
16	U	TUNE
17	U1	CARTOON
18	UH	WONDER
19	UH1	LOVE
1A	UH2	WHAT
18	UH3	NUT
10	FR	BIRD
10		BOOF
15	P1	PUG
10	 	MUTTER (Cormon)
16	H2	MOTIER (German)
20	L	
21	L1	
22		FALL (final)
23	VV	WATER
24	В	BAG
25	D	PAID
26	KV	TAG (glottal stop)
27	Р	PEN
28	T	TART
29	К	KIT
2A	HV	(hold vocal)
2B	HVC	(hold vocal closure)
2C	HF	HEART
20	HEC	(hold fricative closure)
25	HN	(hold nasal)
20	7	
26	2	
30	5	
31	J	MEASURE
32	SCH	SHIP
33	V	VERY
34	F	EOUR
35	THV	THERE
36	TH	WITH
37	M	MORE
38	N	NINE
30	NG	RANG
24		MADCHENI (Correct
3A	:A	MARCHEN (Germa
38	:OH	LOWE (French)
3C	:U	FUNF (German)
3D	:UH	MENU (French)
25	E0	PITTE (Gormon)

DUONENE OUADT

3F

*Note - Hex codes shown with DR0, DR1 = 0 (longest Duration)

LUBE

LB

Pin No.	Symbol	Active Level	Description
1	AO		Analog Audio Output biased @ VDD/2 requires an external audio amp for speaker drive
2	AGND		Analog Ground
3	TP1		Do not use
4	A/Ŕ		Acknowledge/Request Not — open collector output a low requests new data (see also pin 17)
5	TP2		Do not use
6	RS2		Register Select Input – used to select one of five internal registers in conjunction with RS1 and RS0
7	RS1		Register Select (See pin 6)
8	RS0		Register Select (See pin 6)
9	D0		LSB of 8-bit data bus — input only
10	D1		Data Input (only)
11	D2		Data Input (only)
12	DGND		Digital Ground
13	D3		Data Input (only)

PIN ASSIGNMENT DESCRIPTIONS

Pin No.	Symbol	Active Level	Description
14	D4		Data Input (only)
15	D5		Data Input (only)
16	D6		Data Input (only)
17	D7		MSB of 8-bit data bus. Bi- directional, inverse of pin 4 when read is high
18	PD/RST	Low	Power Down Control Input – Silences audio output and retains DC bias without disturbing register contents. Disables A/R output.
19	CS0	High	Chip Select Input
20	CS1	Low	Chip Select Input
21	R/W		Read/Write Control Input — Write is active low for load- ing internal registers. Read is active high but enables D7 only.
22	хск		Clock Input (~1 or 2 MHz)
23	DIV2	High	Clock Divide by Two — used when external clock is \simeq 2 MHz
24	VDD		Positive Voltage Supply

REGISTER INPUT FORMATS

Regis	ster Ad	dress	Register Name	Bus Input Bit Position							
RS2	RS1	RS0		D7	D6	D5	D4	D3	D2	D1	D0
LO	LO	LO	Duration/Phoneme (DR/P)	DR1	DR0	P5	P4	P3	P2	P1	P0
LO	LO	н	Inflection (I)	110	19	18	17	16	15	14	13
LO	HI	LO	Rate/Inflection (R/I)	R3	R2	R1	R0	111	12	11	10
LO	н	н	Control/Articulation/Amplitude (C/A/A)	CTL	T2	T1	Т0	A3	A2	A1	A0
HI	Х	Х	Filter Frequency (F)	F7	F6	F5	F4	F3	F2	F1	F0

DR1, DR0 ... Define the phoneme duration.

 $P5 \rightarrow P0$... Address the phoneme required.

- 111-- 10 Define inflection target frequencies
- and rate of change. R3-+R0 Define the rate or speed of speech.
- CTL..... Define the mode of A/\overline{R} response in

conjunction with DR1 and DR0.

Also directly set by PD/RST.

 $T2 - T0 \dots$ Define the rate of movement of the formant position for articulation purposes.

 $A3 - A0 \dots Define the amplitude of the output audio.$

F7—F0 ... Define the frequency of all vocal tract filters.

*Valid data latched on first rise or fall of R/W, CS0 or CS1 into inactive.

Timing Characteristics $(V_{DD} = 4.5 \text{ to } 5.5 \text{ Volts}, \text{TA} = -40 \text{ to } + 85 \text{ deg. C})$

Item	Symbol	Lim	nits	Units.
		Min.	Max.	
Data Setup Time	TS	120**		nsec
Data Hold Time	тн	10**		nsec
Strobe Width	TWS	200		nsec
Read/Write Cycle Time	TRW	2.25*		μsec
Rise/Fall Time	TE		100	nsec
D7 Output Access Time	TACC		180	nsec
D7 Output Hold Time	THR		180	nsec

Notes: * Based on color burst frequency.

** Timing relative to deselect by either CS0, CS1, or R/W changing.

MODE SELECTION CHART

DR1	DR0	'CTL' BIT	Function
HI	н	HI-LO	A/R active; phoneme timing response; transitioned inflection (most commonly used mode)
HI	LO	HI LO	A/R acitve; phoneme timing response; immediate inflection
LO	ні	HI ~ LO	A/R active; frame timing response; immediate inflection
LO	LO	HI-LO	Disables A/R output only; does not change previous A/R response

ABSOLUTE MAXIMUM RATINGS

Item	Symbol	Limit	Units
Supply Voltage	V _{DD} V _{SS}	7.0	v
Input Voltage	VIN	-0.5 to V _{DD} + 0.5	V
D.C. Current at Inputs	INM	± 1.0	mA
Storage Temperature	TS	-55 to + 125	°C
Operating Temperature	Тд	-40 to +85	°C
Power Dissipation	Pd	500	mW

Electrical Characteristics

Unless otherwise specified, $4.5 \le V_{DD} \le 5.5$; --40 deg. C \le TA ≤ 85 deg. C; 1.50MHz \le XCK frequency ≤ 2.0 MHz, when XCK/2 = logic 1 or 0.75MHz \le XCK frequency ≤ 1.0 MHz, when XCK/2 = logic 0

Description	Conditions	Min.	Тур.	Max.	Units
POWER SUPPLY					
Supply Current	$\overline{PD}/\overline{RST} = 1, CTL = 0$		8	20	mA
Supply Current	$\overline{PD}/\overline{RST} = 0, CTL = 1$		7	18	mA
AUDIO OUTPUT					
Output Level	AW phoneme RL = 50Kohm to GND through 1μ F cap.	0.28VDD	0.37VDD	0.50VDD	Vpp
DC Output Offset		0.5VDD	0.6VDD	0.7VDD	V
Resistive Loading	AC coupled to AO to GND	10			Kohm
Capacitive Loading	To GND to ensure Stable A			100	pF

Description	Conditions	Symbol	Min	Тур	Max	Units
BUS CONTROL INPUTS, DA	TA INPUTS (RS0, RS1, RS2, (CS0, CS1, D0	D7 PD/RST)	· · · · · · · · · · · · · · · · · · ·	
Input High Voltage		VIH	V _{SS} + 2.4		V _{DD} + 0.3	VDC
Input Low Voltage	1	VIL	-0.3		+ 0.8	VDC
Input Leakage Current	$V_{IN} = 0$ to V_{DD}	lin			5	μΑ
Input Capacitance	$V_{IN} = 0 T_A = 25 °C$ measured at f = 1.0MHz	CIN			10	pF
Input Capacitance, D7 Input		CIN(D7)			20	рF
Input Current, D7 in TRI-State "OFF" State	$V_{IN} = 0.4 \text{ to } 2.4 \text{ V}$	I _{IN} (TS)		2.0	5.0	μΑ
D7 OUTPUT					1	
D7 Output Low Voltage	ILoad = 0.4 mA into D7	V _{OL} (D7)			0.4	VDC
D7 Output High Voltage	$I_{Load} = 205 \mu A$ out of D7	VOH(D7)		V _{DD} -2.0		VDC

Output Low Voltage	$I_L = 3.2 \text{ mA into A/R}$	IOL(A/R)		0.4	VDC
Output High Leakage Current	V _{Out} = 0.0 to V _{DD}	IL(A/R)		10	μΑ
Output Capacitance	V _{Out} = 0 VDC T _{AMB} = 25 °C f = 1.0 MHz	C _{Out} (A/R)	15	рF	

DIV2 INPUT

Input Low Voltage		VIL(DIV2)	-0.3	.2 V _{DD}	V
Input High Voltage		VIH(DIV2)	.8VDD	V _{DD} + 0.3	V
Input Leakage	VIN = 0 to VDD			5	μΑ

Description	Conditions	Symbol	Min.	Тур.	Max.	Units.
XCLK		<u> </u>				
Input Low Voltage		VIH(IC)	-0.3		+ 0.8	V
Input High Voltage		VIH(IC)	2.4		V _{DD} + 0.3	V
Input Current	$V_{IN} = 0.0$ to V_{DD}	I _{IN} (C)			5	μΑ
Input Capacitance		CIN(C)			10	pF
Duty Cycle		D(XCLK)	0.4		0.6	

TYPICAL MICROPROCESSOR IMPLEMENTATION

14351 Myford Road, Tustin, California 92680 (714) 731-7110, TWX 910-595-2809

User's Guide for Phonetic Programming Using the SSI 263A

Phonetics

Every speech sound (phoneme) in any language may be represented by a special symbol (phonetic symbol). These symbols are used in WRITING precisely the sound sequence (phonetic transcription) of a word according to the way it is pronounced. There are many different phonetic symbol sets (phonetic alphabets). Each would contain a minimum number of symbols to represent the basic sounds (phonemes) required to pronounce any word in the language. Additional symbols are usually included which represent sounds with slight to great variations in the basic sounds (allophones). These symbols are used to assist in the transcription of words that reflect a regional, dialectic, or foreign pronunciation.

The process of transcribing a spoken word into its phonetic components begins with identifying the number of sounds in the word, then tagging each with a label to specify its type. Consonants and vowels are the most familiar labels but these may be broken down into subtypes (e.g., stop consonants, back vowels, etc.) as the need for more specificity arises. Once the sounds have been identified, their symbols are selected, then written in sequence. The resulting transcription should allow another person to identify the pronunciation without having heard the word spoken.

Note that when using a phonetic alphabet to transcribe words into their sound sequences, there is not a one-to-one correspondence between the alphabet characters (orthographics) used to spell words and the phonetic symbols (phonetics) used to represent their pronunciations. For example, in the word "phones" there are 6 letters but only 4 sounds. Conversely, the word "I" has 1 letter but 2 sounds. It may be of some assistance to keep a dictionary handy for reference. Dictionaries use their own phonetic system to describe the pronunciations of every word entry. It will be necessary to learn at least one phonetic alphabet in order to engage in phonetic transcription. The SSI 263A Phonetic Alphabet is the referent used in this manual. However, if another system is already known, it is easily translated into the referent.

When transcribing vocabulary from orthography (standard alphabet spelling) to phonetics, it is common to place the phonetic sequence between right slash marks when the transcription appears in running text. The word "phones," for example, would be transcribed as /F O N Z/ when using SSI 263A phonetic symbols. This allows the reader easier identification of phonetic sequents.

SSI 263A Phonetic Alphabet

The phonetic alphabet used to represent the SSI 263A phonemes is the SSI 263A PHONETIC ALPHABET. Refer to the Phoneme Chart for a complete listing of the phoneme symbols.

Of the 64 alphanumeric symbols in the SSI 263A Phonetic Alphabet, 34 represent sound BASIC to the pronunciation of American English. The remaining 30 symbols fall into 2 groups: the ALLOPHONE group and the NO-SOUND group. The BASIC sound symbols are:

A, AE, AH, AW, B, D, E, EH, ER, F, HF, I, J, K, KV, L, M, N, NG, O, OO, P, R, S, SCH, T, TH, THV, U, UH, V, W, Y, Z.

Symbols in the ALLOPHONE group represent speech sounds that vary in pronunciation from one of the basic sounds. They may be used in transcribing words or word segments (syllables or morphemes) whose pronunciations are not satisfied by the basic phonemes alone (words rooted in a foreign language, words adapted by a regional dialect, etc.). The ALLOPHONE symbols are:

A1, AE1, AH1, AY, E1, E2, EH1, HN, HV, IE, IU, IU1, L1, LB, LF, OU, R1, R2, U1, UH1, UH2, UH3, YI,:A, :OH, :U, :UH.

The NO-SOUND symbols represent silent states. One of these symbols represents a "pause" state. It is used to separate phoneme sequences into phrase-like segments which assist in more closely imitating the natural pausing in human speech for breathing or for delayed emphasis. The "pause" is treated as a phoneme when it is selected for a transcription and will be subject to phoneme parameter programming. It has the ability to maintain the parametric levels of duration, inflection, amplitude, etc., during its silence, thus audibly affecting the movement of the preceding and following phonemes. Other NO-SOUND symbols represent "hold" states. They are used in combination with BASIC phonemes or ALLOPHONEs to generate articulation variations on their pronunciations. The NO-SOUND symbols are:

HFC, HVC, PA.

Now that there is a tool to use for writing the sounds that are heard, the next stage is to identify the sounds that are produced by the SSI 263A speech synthesizer.

SSI 263A Phoneme Review

Thus far in this program, it has been established that: (1) spoken words are made up of a series of sounds; (2) each speech sound in a language may be represented by an identifying symbol; and (3) the spoken word may be written according to its sound sequence using these special symbols. Before a word may be written phonetically, however, users may wish to study further the SSI 263A speech sounds. What makes one sound different from another and how these differences may be helpful to phonetic programming will be essential information for phonetic programmers.

The sound that is represented by each phonetic symbol in the SSI 263A Phonetic Alphabet must be audibly learned. The easiest way to approach this task is to start with the sounds already known and associate a symbol with them. For example, from spelling we have already learned that vowels may be "long" or "short" and are often differentiated by their particular spelling formats. Every time a word with a "short a" sound is heard (sat, fat, cat, bat, happy, plaster, ankle, Saturday, amplify, contaminate, etc.) the symbol /AE/ should come to mind. A "long a" sound (fate, state, bait, lace, maybe, stable, arrangement, etc.) is actually a diphthong (two sounds combined into a single unit) and may be

In standard orthography, there are only 5 vowel letters to represent 17 vowel sounds. In phonetics, each vowel sound will be represented by its own symbol or symbol combination.

Again, from spelling, we have learned that the letter "c" may have a hard sound as in "cat" or a soft sound as in "city." The hard sound is actually a /K/ as in "kite" and the soft sound is an /S/ as in "sing." Users must identify which sound (/K/ or /S/) is used in the transcription of a "c." You will not find a symbol C in a phonetic alphabet. Like "C," the letters "Q" and "X" will not be found in phonetic alphabets. They are transcribed into the sound sequences /K W/ and /K PA S/. Refer to the Phoneme Chart during this learning period. It provides example words to describe the pronunciations corresponding to each symbol.

Users may add more words to the examples above to continue identifying the symbol-sound relationship for /AE/ and /A AY/. Follow this technique for each symbol in the alphabet. For auditory verification, enter the sound that is being reviewed into the device. Speak aloud your example word for the SSI 263A sound in an attempt to match that which the synthesizer is emitting.

- Example: /E/ = "long e" vowel sound = meat, read, need, repair, before, phoneme, erase, brief, people, timeliness, seniority, receive, catastrophe.
- Example: /F/ = "voiceless fricative" consonant = farm, false, aft, feet, finger, phrase, phone, Africa, alphabet, cough.

Once you have reviewed auditorily the sounds you already have a familiarity with from spelling, proceed to the BASIC sound list in the above text and continue the review. Be aware that several consonant sounds will not provide output unless they have another sound following. This is the case with |B|, |D|, |P|, |T|, and |K|. When one of these sounds is entered into the SSI 263A, follow it by a vowel and listen to both in sequence.

Users who already have a familiarity with phonetics and SSI 263A synthetic sounds, may wish to follow the sound review procedures in order to auditorily determine the difference between two sounds or identify new ones. For example, enter the /UH/ phoneme into the device. Then enter /UH1/, /UH2/, and /UH3/. Listen to each sound noting the pronunciation variations. Be aware that there are no duplicate sounds resident on the SSI 263A chip.

Whenever a SSI 263A sound is audited that cannot be readily identified as to its appropriate usage, do not be concerned. The review is designed only to provide a method for establishing an auditory memory for each sound and a visual memory for its symbol. Phonetic programming may begin anytime after the initial review. Return to the review later as your familiarity with the BASIC sounds increases and as your need for sound alternatives to those BASIC sounds becomes more apparent.

If there is a question as to which symbols should be chosen to transcribe a word into its sound sequence, make a written note of the word by circling the letter(s) that present the problem. Later, when phonetic programming has begun, a phoneme sequence may be created for the word and users may verify auditorily which phonetic selection produces the most appropriate translation.

SSI 263A Phoneme Discussion

The SSI 263A Phonetic Alphabet is divided into 3 groups for the purpose of differentiating between phonemes and allophones. Another way of dividing the Alphabet is according to usage. The most familiar division is a two sections split: CONSONANT sounds and VOWEL sounds. Within each of these sections, sounds may be further subdivided according to the distinctive features that best describe the sounds phonetically or acoustically. The more that is known about a sound, the easier it is to determine how it may be used in transcribing and phonetically programming a word.

Consonant Sounds

There are 22 Consonant Phonemes, subdivided according to their manner of production in the human speech mechanism. Some are characterized by the noise emitted when the articulators obstruct the air flow (Fricatives like /S/). Vowel-like consonants have the least amount of obstruction and may occasionally be used as a vowel substitute. Stop consonants are obstructed completely, release of air flow occuring at the onset of the next sound. Notice that Affricates are a sequence of 2 sounds (a Stop followed by a Fricative) spoken as a single unit. Unlike vowels, which always have a vocal source during production, consonants may be voiced (V) or unvoiced (U) (no vocal source during air flow). When listening to the manner in which a consonant is produced during speech, note its special characteristics that distinguish it from all other consonants. The figure below displays all of the consonant sources within their production groups.

	Stops	Fricatives	Affricates
Voiced	B, D, KV	Z, V, J, THV	(D, J)
Voiceless	P, T, K	S, F, SCH, TH, HF	(T, SCH)

5 N	Semi-vowels	Glides	Nasals
Voiced	R, L	W, Y	M, N, NG
Voiceless			

Consonant Chart

Voiced and voiceless consonants are subdivided into 6 categories according to the manner in which they are produced in the human vocal tract: i.e., how the air flow is obstructed by the articulators to make each sound different.

Consonant sounds are selected for a sequence in much the same manner as an alphabet character would be selected for the spelling of a word. Users must be alert, however, to identify the exceptions. Occasionally, a consonant appears in the spelling of a word but not in its sound sequence: the "b" in "comb" is not pronounced and the sound sequence reflects the absence of the "b": /K OU M/. Some exceptions have grammatical rules that may be used in determining the appropriate sound. For example, a consonant may have 2 pronunciations according to its sound environment. The "s" used to pluralize the two words that follow are pronounced differently based on whether the sound that precedes it is voiced or unvoiced. An "s" pronunciation will match the voicing characteristics of the sound it follows.

Examples: tips = /T I P S/ tabs = /T AE B Z/

There are other types of consonantal exceptions. For example, the "t' in a word like "nation" is pronounced /SH/ and the program might look like this: nation = /N A AY SH UH3 N/. Users must listen to each word's pronunciation to determine the appropriate phoneme selection.

There are 7 Consonant Allophones, each noted in the table below. The /L/ consonant is used in the initial position of a sequence for words beginning with "t", while the /LF/ allophone will occupy a medial or final position in a sequence: e.g., lull = /L UH LF/. The /LB/ and the /LI/ allophones would be used when a most constricted pronunciation of an "t" was required, as would occur for some words of foreign languages.

Consonant Phoneme	Consonant Allophones	Consonant Phoneme	Vowel Allophone ER		
L	L1, LB, LF	R			
R	R1, R2	Y	YI		

Allophone Listing for /L/, /R/, & /Y/

The /R/ is an initial position phoneme. Both /R1/ and /R2/ have more constricted pronunciations than /R/ and may be used in sequence with soundless interrupts to create a trilled /R/. Often when the /R/ is required in a medial or final position, it is vowelized and the /ER/ is used. Listening to the production of all four of these sounds will auditorily show that they may, occasionally, be used interchangeably.

Examples: red = /R EH D/ bird = /B ER D/ motor = /M OU T ER/

The /Y/ consonant, used as the final sound in words ending with "y," has a vowel allophone that may be used as the initial sound of words starting with "y." Note that both /Y/ and /YI/ are auditorily very close to the /E/ and the /IE/ vowels and may be considered interchangeable.

Vowel Sounds

There are 12 BASIC Vowel Phonemes. Vowels are subdivided according to the manner in which they are produced. All vowels are voiced sounds but each has a different output based on the degree of obstruction created by the opening of the mouth and the tongue position. Lip positions, another obstructing articulator, may range from spread flat to round. While the lips are in any of these positions, the jaw may be simultaneously dropped from a closed to an open position.

	Front Vowels	Medial Vowels	Back Vowels
	Spread		Rounded
Closed	E		U
	I		00
1	A	UH	0
1 1	EH	(ER)	AW
Open	AE		AH

Vowel Quadrilateral

Vowels begin their production with the same voiced energy. Changes in the position of the tongue (front or back), the shape of the lips (from spread flat to rounded), and the position of the lower jaw (from closed to open) determine the final characteristics that allow listeners to distinguish between vowel sounds.

Refer to the SSI 263A Phoneme Chart for the pronunciation reference on each BASIC vowel sound. Utilize the sound review techniques on the previous pages to practice identifying the vowel sounds in words and associating them with their phonetic symbols.

The allophonic variations of vowels, 20 in number, are used in a phonetic program to enhance the pronunciation of a word. There are some cases where the allophone is required for articulate pronunciations. This is true for /AY/, /YI/ and /IU/, which are integral components in the phonetic sequences for the "long a" and the varied "long u."

Examples: same = /S A AY M/ you = /YI IU U/

The table below places each allophone into the vowel quadrilateral to demonstrate approximately how they might relate to the BASIC vowels. Users are in no way restricted to traditional phonetic transcriptions that use only the BASIC vowel phonemes. Be encouraged to experiment with allophones. Place them in different positions in a sequence to auditorily check how they effect the overall pronunciation of a word.

	Front Vowels	Medial Vowels	Back Vowels
	Spread		- Rounded
Closed	YI E1 IE		U1
	AY	E2	IU IU1
	A1	UH1	OU
•	EH1	UH2	
Open	AE1	UH3	AH1

Allophone Placement in Vowel Quadrilateral

Vowel allophones are placed in the vowel quadrilateral according to their production features. The sounds they emit vary slightly from the BASIC vowels that occupy the same positions.

Four vowel allophones—/:A/, /:OH/, /:U/, and /:UH/ — are adapted pronunciations of four of the BASIC vowels. These sounds are most commonly used for phonetically programming a foreign word. They may also be used as transitory sounds to link phonemes with opposite production features such as a round, open vowel with a very constricted, narrow consonant.

There are five vowels that require two or more vowel sounds in sequence in order to achieve their pronunciations. These are generally referred to as diphthongs. Refer to the Diphthong Conversion Chart.

The vowel quadrilateral is a handy tool to use for selecting vowel phonemes for diphthongs and other multi-phoneme-units. For example, the diphthong in the word "I" starts with an /AH/ and ends with an /E/. In order to move smoothly from the first sound to the second (transition), another vowel may be inserted between these two sounds in sequence. The most likely choice would be a vowel that falls somewhere between /AH/ and /E/ in the quadrilateral: e.g., /UH/, /EH/, /I/, etc. The sequence may look like

this: /AH EH E/ or /AH1 UH3 IE/ or /AH1 EH3 AY/. In their fullest durations, a three-sound sequence would over articulate the diphthong. Shortening the first and last sounds by 1 duration and the medial sound by 2 durations will produce a more acceptable pronunciation (see SSI 263A Phoneme Parameters).

SS1 263A Phoneme Parameters (Attributes)

To achieve an accurate pronunciation of a word produced by the SSI 263A synthesizer requires more than a selection of the appropriate phonemes. Like human speech sounds, synthesized sounds are further defined by the rate at which they are emitted (duration), the level of pitch at which they are emitted (inflection or frequency), and the intensity with which they are produced (amplitude). These are considered the three major speech parameters which give the overall production of a word its linguistic character, transforming simple speech into more complex language. Inflection, amplitude, and duration are only three of the parameters that users have control of during the programming process. The rate at which one sound moves into another (articulation) is also a controllable parameter. Other parameters are: the slope of the inflection (slope), the rate of each selected duration (rate), and the extended inflection frequencies (extension). Users may also select the base frequency at which speech may be produced (filter frequency). Refer to SSI 263A Phoneme Parameters, for the range of each and typical default values selected.

Every phoneme selected for a sequence must be accompanied by assignments for each of the eight parameters. As users become more aware of their need to create different language effects with their synthesized speech output, they will require the flexibility and choice that comes with programmable parameters. For example, with 4 selectable durations per phoneme, each actual pronunciation of each sound may be changed. Thus, every sound has four possible outputs increasing the users' choice from 64 phonemes and allophones to 256. Each of the 256 may be effected differently by each of the 32 possible inflection assignments. Add to these possibilities 16 variations in amplitude and 16 variations in rate. The possible combinations are not limitless, of course, but they are very great and users are encouraged to experiment with as many as possible.

Several of the parameters effect synthetic speech output as a whole. These are articulation, pitch extension, and filter frequency. Users may select a single level at which to set the filter frequency, for example, and maintain that level throughout the programming process.

Phonetic Programming Methodology

Due to the great variety of phonemes and parameter choices, as well as the different effects the parameter selections have on the speech sounds, a systematic approach to selecting the variables is advised. The approach described below is only one of several that might be used. It may be adjusted to accommodate the user's special programming style or to accommodate later implementation of automatic control techniques.

The first step is to transcribe the target word, phrase, etc., into its basic phonetic components. Next, enter these sounds into the SSI 263A and auditorily check the output. Use the default values suggested in the Nominal Phoneme Parameter Table. The results should be a bit stilted if not misarticulated for the first trial program. Phoneme adjustment is next. Continue to make changes in the phoneme sequence, auditorily monitoring the changes, until an adequate pronunciation of the target is established.

Begin parameter adjustments. First, maintain articulation, pitch extension and filter frequency at nominal values. The device should be kept in the transitioned inflection mode. Make adjustments in the levels of only one of the remaining 4 parameters at a time, beginning with the duration and moving on to the inflection, rate, and amplitude (in that order) once the specific effect that the parameter can make has been made. Return to a previously adjusted parameter at any time based on need.

PHONEME CHART

Hex Code*	Phoneme Symbol	Example Word (or Usage)
00	PA	(pause)
01	Е	MEET
02	E1	BENT
03	Y	BEFORE
04	YI	YEAR
05	AY	PLEASE
06	IE	ANY
07		SIX
08	Δ	MADE
0	Δ	CARE
0		NEST
08		BELI
	AE	
00	AE1	AFIER
0E	AH	GOI
OF	AH1	FATHER
10	AW	OFFICE
11	-0	STORE
12	OU	B <u>OA</u> T
13	00	LOOK
14	IU	Y <u>OU</u>
15	IU1	C <u>OU</u> LD
16	U	TUNE
17	U1	CARTOON
18	UH	WONDER
19	UH1	LOVE
1A	UH2	WHAT
1B	UH3	NUT
10	FR	BIBD
10	D	POOF
10 1	D1	BUG
10		MUTTER (Cormon)
	<u>n</u> 2	MOTIER (German)
	L	
21	L1	
22		FALL (final)
23	W	WATER
24	B	BAG
25	D	PAID
26	KV	TA <u>G</u> (glottal stop)
27	Р	PEN
28	Т	TART
29	К	<u>K</u> IT
2A	HV	(hold vocal)
2B	HVC	(hold vocal closure)
2C	HF	HEART
2D	HFC	(hold fricative closure)
2F	HN	(hold nasal)
2F	7	ZEBO
30	5	
31	<u>ی</u>	MEASURE
	с С Ц	
<u> </u>	30H	
	V	
34	F	LOUK
35	IHV	IHERE
36	TH	WI <u>TH</u>
37	M	MORE
38	N	NINE
39	NG	RA <u>NG</u>
ЗA	:A	MARCHEN (German)
3B	:OH	LOWE (French)
3C	:U	FUNF (German)
3D	:UH	MENU (French)
3E	E2	BITTE (German)
3F	LB	LUBE

SSI 263A Diphthong Conversion Chart

Phoneme Sequence	Example Words
 A AY Y	rain, became, stay
 A IE EH1 UH3 LF	mail, hale, avail
AH1 AE1 EH1 Y	time, rhyme, sky
AH1 EH1 IE AW UH3 LF	smile, style, while
AH1 EH1 IE UH3 ER	fire, liar, inspire
UH3 AH1 Y	mice, right, sniper
0 U	road, stone, lower
00 0 0	tore, four, floor
AH1 AW O U	loud, flower, hour
UH3 AH1 O U	house, about, ouch
O UH1 AH1 I IE	boy, noise, annoy
O UH3 EH1 I OO LF	boil, spoil, doily
	tune, spoon, do
YIUUU	you, few, music

SSI 263A Multi-Unit Conversion Chart

Phoneme Sequence	Example Words
T HFC SCH	church, latch
KV HVC HF	good, lag, angry
DJ	just, ledge, wage
KV HF HFC	lake, corn, check
PHF	pipe, pay, poor
K HF W	quest, quick, aqua
THF	top, trip, strain
HFC K HF HVC S	six, exit, taxi

Nominal Phoneme Parameter Table (Suggested Default Values for Speech Development)

Amplitude (A3 \rightarrow A0) Range-0 to F (softest to loudest, 0 = silent) Default-C Exceptions—KV = 0, B = D = 6Duration (DR1, DR0) Range-3 to 0 (shortest to longest) Default-0 Filter Frequency Range (F7 \rightarrow F0) Range-00 to FF (lowest to highest) Default-E9 Inflection (Pitch) (I10 \rightarrow I6, Transitioned Inflection Mode Only) Range-0 to 1F (lowest to highest, 0 = silent) Default-04 Extension and Range of Pitch (I11, 12 \rightarrow I0) Range-0 to 7 (low); 8 to F (high) Default Value-8 Rate of Speech (R3 \rightarrow R0) Range-0 to F (slowest to fastest) Default-A Slope of Inflection (I6 ightarrow I3, Transitioned Inflection Mode Only) Range-0 to 7 Default-0 Articulation (Rate of) (A3 \rightarrow A0) Range-0 to 7 (slow to fast) Default - 5

*Note - Hex codes shown with DR0, DR1 = 0 (longest Duration)

1-53

Example of Using Phonetic Programming Methodology:

Developing "Hello"

Ph	oneme Parameters	SSI 263 Register Data				
Pho.I	D TIn—S A R E FF	DP IS RE TA FF				
KEY:	$\begin{array}{l} Pho = Phoneme \\ D = Duration \\ T = Articulation \\ In = Inflection \\ S = Slope \ of \ Inflection \\ A = Amplitude \\ R = Rate \\ E = Extension \ and \ Rang \\ FF = Filter \ Frequency \end{array}$	ge of Pitch				
	DP = Duration/Phoneme	Register	Address 000			
	IS = Inflection/Slope Reg	gister	001			
	RE = Rate/Extension Reg	gister	010			
	TA = Articulation/Amplitu	de Register	011			
	FF = Filter Frequency Re	gister	1XX			

1. Original Phoneme Entry:

				-						
Pho.D T	ln-S	Α	R	Ε	FF	DP	IS	RE	TA	FF
PA .0 5	0A-0	С	Α	8	E9	00	50	A8	5C	E9
PA .0 5	0A-0	С	Α	8	E9	00	50	A8	5C	E9
HF .0 5	0A-0	С	Α	8	E9	2C	50	A8	5C	E9
EH .0 5	0A-0	С	Α	8	E9	0A	50	A8	5C	E9
L .05	0A-0	С	Α	8	E9	20	50	A8	5C	E9
O .05	0A-0	С	Α	8	E9	11	50	A8	5C	E9
PA .0 5	0A-0	С	Α	8	E9	00	50	A8	5C	E9
PA .0 5	0A-0	С	Α	8	E9	00	50	A8	5C	E9

2. Phoneme Selection Refinement

Pho.D T	In-S	Α	R	Е	FF	DP	IS	RE	TA	FF
PA .0 5	0A-0	С	Α	8	E9	00	50	A8	5C	E9
PA .0 5	0A-0	С	Α	8	E9	00	50	A8	5C	E9
HF .0 5	0A-0	С	Α	8	E9	2C	50	A8	5C	E9
EH .0 5	0A-0	С	А	8	E9	0A	50	A8	5C	E9
UH3.0 5	0A-0	С	Α	8	E9	1B	50	A8	5C	E9
LF .0 5	0A-0	С	Α	8	E9	22	50	A8	5C	E9
UH3 .0 5	0A-0	С	Α	8	E9	1B	50	A8	5C	E9
O .05	0A-0	С	А	8	E9	11	50	A8	5C	E9
OU .0 5	0A-0	С	Α	8	E9	12	50	A8	5C	E9
U .05	0A-0	С	Α	8	E9	16	50	A8	5C	E9
PA .0 5	0A-0	С	Α	8	E9	00	50	A8	5C	E9
PA .0 5	0A-0	С	Α	8	E9	00	50	A8	5C	E9

3. Duration Adjustment

Pho.D T	In-S	Α	R	Е	FF	DP	IS	RE	TA	FF
PA .0 5	0A-0	С	Α	8	E9	 00	50	A8	5C	E9
PA .0 5	0A-0	С	Α	8	E9	00	50	A8	5C	E9
HF .1 5	0A-0	С	Α	8	E9	6C	50	A8	5C	E9
EH .0 5	0A-0	С	Α	8	E9	0A	50	A8	5C	E9
UH3 .2 5	0A-0	С	Α	8	E9	9B	50	A8	5C	E9
LF .0 5	0A-0	С	Α	8	E9	22	50	A8	5C	E9
UH3 .2 5	0A-0	С	Α	8	E9	9B	50	A8	5C	E9
O .25	0A-0	С	Α	8	E9	91	50	A8	5C	E9
OU .0 5	0A-0	С	Α	8	E9	12	50	A8	5C	E9
U .35	0A-0	С	Α	8	E9	D6	50	A8	5C	E9
PA .0 5	0A-0	С	Α	8	E9	00	50	A8	5C	E9
PA .0 5	0A-0	С	A	8	E9	00	50	A8	5C	E9

4. Phoneme and Duration Adjustment

Pho.D T	In–S	Α	R	Ε	FF	DP	IS	RE	TA	FF
PA .0 5	0A-0	С	Α	8	E9	00	50	A8	5C	E9
PA .0 5	0A-0	С	Α	8	E9	00	50	A8	5C	E9
HF .1 5	0A-0	С	Α	8	E9	6C	50	A8	5C	E9
EH1 .1 5	0A-0	С	Α	8	E9	4B	50	A8	5C	E9
UH3 .2 5	0A-0	С	Α	8	E9	9B	50	A8	5C	E9
LF .0 5	0A-0	С	Α	8	E9	22	50	A8	5C	E9
UH3 .2 5	0A-0	С	Α	8	E9	9B	50	A8	5C	E9
0.25	0A-0	С	Α	8	E9	91	50	A8	5C	E9

OU	.0 5	0A-0	С	А	8	E9	12	50	A8	5C	E9
υ	.2 5	0A-0	С	Α	8	E9	96	50	A8	5C	E9
PA	.0 5	0A-0	С	Α	8	E9	00	50	A8	5C	E9
PA	.0 5	0A-0	С	Α	8	E9	00	50	A8	5C	E9

5. Inflection Adjustment

•••••••												
Pho	o.D	Т	In-S	Α	R	Е	FF	DP	IS	RE	TA	FF
PA	.0	5	0B-0	С	Α	8	E9	00	58	A8	5C	E9
PA	.0	5	0B-0	С	Α	8	E9	00	58	A8	5C	E9
HF	.1	5	0A-0	С	Α	8	E9	6C	50	A8	5C	E9
EH1	1.1	5	08-0	С	Α	8	E9	4B	40	A8	5C	E9
UH	3.2	5	09-0	С	Α	8	E9	9B	48	A8	5C	E9
LF	.0	5	08-0	С	Α	8	E9	22	40	A8	5C	E9
UHS	3.2	5	05-0	С	Α	8	E9	 9B	28	A8	5C	E9
0	.2	5	05-0	С	Α	8	E9	91	28	A8	5C	E9
OU	.0	5	06-0	С	Α	8	E9	12	30	A8	5C	E9
U	.2	5	07-0	С	Α	8	E9	96	38	A8	5C	E9
PA	.0	5	0A-0	С	Α	8	E9	00	50	A8	5C	E9
PA	.0	5	0B-0	С	Α	8	E9	00	58	A8	5C	E9

6. Phoneme, Duration, Inflection, and Rate Adjustment

Phe	o.D 1	「 In−S	6 A	R	Ε	FF	D	P IS	RE	TA	FF
PA	.0 5	5 0B-0) C	A	8	E9	00) 58	A8	5C	E9
PA	.0 5	5 0B-0) C	Α	8	E9	00) 58	A8	5C	E9
HF	.1 {	5 0A-0) C	7	8	E9	60	50	78	5C	E9
EH	1.1 8	5 08-0) C	D	8	E9	4	3 40	D8	5C	E9
UH	3.2 5	5 09-0	C	С	8	E9	98	3 48	C8	5C	E9
LF	.0 క	5 08-0	C	С	8	E9	22	2 40	C8	5C	E9
UH	3.2 5	5 05-0) C	9	8	E9	98	3 28	98	5C	E9
0	.2 క	5 05-0) C	9	8	E9	9	1 28	98	5C	E9
OU	.0 5	5 06-0) C	Α	8	E9	12	2 30	A8	5C	E9
U	.2 5	5 07-0	C	С	8	E9	96	38	C8	5C	E9
U	.3 5	5 0A-C) C	7	8	E9	D	5 50	78	5C	E9
PA	.0 :	5 0B-C) C	Α	8	E9	0) 58	A8	5C	E9
PA	.0 5	5 0A-C) C	Α	8	E9	0) 50	A8	5C	E9

7. Phoneme, Duration, Inflection, Rate, and Amplitude Adjustment

	Pho.D	Т	In-S	Α	R	Е	FF	DP	IS	RE	TA	FF
	PA .	05	0B-0	С	Α	8	E9	00	58	A8	5C	E9
Ì	PA .	05	0B-0	С	Α	8	E9	00	58	A8	5C	E9
	EH .	05	07-0	0	D	8	E9	0A	38	D8	50	E9
	HF .	15	0A-0	4	7	8	E9	6C	50	78	54	E9
	EH1 .	15	08-0	С	D	8	E9	4B	40	D8	5C	E9
	UH3 .	25	09-0	Α	С	8	E9	9B	48	C8	5A	E9
	LF .	05	08-0	Α	С	8	E9	22	40	C8	5A	E9
	UH3 .	25	05-0	С	9	8	E9	9B	28	98	5C	E9
	0.	25	05-0	С	9	8	E9	91	28	98	5C	E9
	OU .	05	06-0	С	А	8	E9	12	30	A8	5C	E9
	υ.	25	07-0	Α	С	8	E9	96	38	C8	5A	E9
	υ.	35	0A-0	0	7	8	E9	 D6	50	78	50	E9
	PA.	05	0B-0	С	A	8	E9	00	58	A8	5C	E9
	PA.	05	0A-0	С	Α	8	E9	00	50	A8	5C	E9

8. Further Adjustment (depending on personal preference)

					• • • •			 				-,
Pho	D.D	Т	In-S	Α	R	Е	FF	DP	IS	RE	TA	FF
PA	.0	5	0D-0	С	Α	8	E9	00	68	A8	5C	E9
PA	.0	5	0D-0	С	Α	8	E9	00	68	A8	5C	E9
EH	.0	5	0D-0	0	D	8	E9	0A	68	D8	50	E9
HF	.1	5	07-0	2	8	8	E9	6C	38	88	52	E9
EH1	.1	5	09-2	С	D	8	E9	4B	4A	D8	5C	E9
UH3	3.2	5	09-4	Α	С	8	E9	9B	4C	C8	5A	E9
LF	.0	5	09-0	Α	С	8	E9	22	48	C8	5A	E9
UH3	3.2	5	07-7	С	9	8	E9	9B	ЗF	98	5C	E9
0	.2	5	06-4	С	9	8	E9	91	34	98	5C	E9
ΟU	.1	5	05-2	С	Α	8	E9	52	2A	A8	5C	E9
U	.2	5	06-3	3	5	8	E9	96	33	58	53	E9
U	.3	5	07-4	0	С	8	E9	D6	3C	C8	50	E9
PA	.0	5	05-4	С	С	8	E9	00	2C	C8	5C	E9
PA	.0	5	01-4	С	С	8	E9	00	0C	C8	5C	E9

SCA-6 / SCA-12 Switched Capacitor Arrays

Data Sheet

SCA-6 CONTENTS

- A) Biquad Section (6 ea.)
 2 Op Amps
 - 7 CMOS Switches
 - 28 PMOS Switches
 - 66 Programmable
- Capacitor Units B) Buffer Amplifier (4 ea.)
- C) Digital Level Shifters (8 ea.) (Translate 0/Vp signals to Vn/Vp)
- D) Resistor Dividers
- E) Crystal Oscillator (1 ea.)
- F) Toggle Flip Flops (8 ea.)
- G) Non-Overlapping Clock Generators

SCA-12 CONTENTS

- A) Biquad Section (12 ea.)
 - 2 Op Amps
 - 6 CMOS Switches
- 32 PMOS Switches
- 60 Programmable Capacitor Units
- B) Buffer Amplifier (6 ea.)
- C) Digital level Shifters (16 ea.) (Translate 0/Vp signals to Vn/Vp)
- **D)** Resistor Dividers

FEATURES

USER BENEFITS

DESCRIPTION

The SCA-6/SCA-12 are metal gate CMOS Switched-Capacitor Arrays which may be configured to implement up to six or twelve biquadratic filter sections, other switched capacitor filter (SCF) architectures and general analog functions. Intended primarily for analog signal processing applications, the SCA-6 and SCA-12 are efficient replacements for many Active RC and discrete implementations, providing precision high-order filtering on a single chip.

Logical control of analog switches allows the user to design in pin-programmable characteristics. The

available building blocks facilitate quality filters: Capacitor ratio accuracies better than 0.5%, amplifier open loop gains in excess of 1000, parasitic insensitive layout.

Individual filter, filter bank, and unique analog requirements may all be satisfied with these devices.

Customers versed in SCF design may submit completed schematics to SSi; others may provide continuous-time designs, transfer functions or specs, and SSi will adapt the circuit to the SCA-6 or SCA-12.

n systems

14351 Myford Road, Tustin, CA 92680

(714) 731-7110, TWX 910-595-2809

ELECTRICAL CHARACTERISTICS ($0 \le T_A \le 70 \circ C$, 9.5V $\le V_P - V_N \le 15V$) Inquire at factory about 5 volt operation.

Parameter	Conditions	Min	Тур	Max	Units
Biquad Amplifier Open Loop Gain Bandwidth Offset Voltage Supply Current	C _{LOAD} ≤ 30pF	58 0.8 - 100 -	66 1.0 0 0.4	- - + 100 1.5	dB MHz mV mA
Buffer Amplifier Open Loop Gain Bandwidth Supply Current	Load: 1000 pF 10kΩ	55 0.5 -	60 0.8 1.4	- - 5	dB MHz mA
Analog Switches On Resistance: P-Channel N-Channel			40 20	80 40	kΩ kΩ
SCF Clock Frequency		10	-	100	kHz
Digital Level Shifter ViL ViH	$V_p = V_N $		-	0.15 -	Volt Volt
Clock Generator (SCA-6 only) Xtal Oscillator Frequency		· 1	-	5	MHz

PACKAGE INFORMATION

The SCA-6 has 28 Input/Output Pads and may be packaged in 8- to 28-pin plastic or ceramic DIP's. The SCA-12 has 54 Input/Output Pads and may be packaged in 24- to 40-pin plastic or ceramic DIP's.

VS.

Discrete, Active RC Implementation

B. 3rd Order Elliptic Filter

Integrated SCA Implementation

No responsibility is assumed by SSi for use of these products nor for any infringements of patents and trademarks or other rights of third parties resulting from its use. No license is granted under any patents, patent rights or trademarks of SSI. SSi reserves the right to make changes in specifications at any time and without notice.

SSI 80C50 Single-Chip T1 Transmitter

(Availability: Spring, 1985)

Advanced Information

GENERAL DESCRIPTION

The SSI 80C50 is a 28 pin monolithic Silicon-gate CMOS device that provides the T1 link digital transmit function using Bell D2, D3, or D4 (mode 3) data formatting standards. The 80C50 converts 8-bit parallel data representing PCM encoded samples from 24 input voice band channels into a time division multiplexed serial bit stream which is output synchronously at the 1.544 Mhz T1 rate. The 80C50 inserts framing and signalling bits into the data flow as required by the D2 and D3 formats and in response to external logic inputs. A and B channel signalling and alarm reporting is generated by applying appropriate logic levels to separate serial control pins. A selectable zero code suppression technique is used to insure that the output bit stream does not contain continuous zeros when the input channel sample data consists of all zeros. The output buffer provides data as either a serial binary signal or as a unipolar pair which simplifies generation of a bipolar output signal.

The SSI 80C50 is intended to be an integral component in leased line or internal usage T1 link systems. Its high level of functional integration simplifies system design, and the CMOS architecture used insures optimum performance while reducing power supply requirements.

FEATURES

- Provides full T1 link digital transmit framing functions
- Converts 24 PCM input channels to 1.544 Mhz synchronous serial bit stream
- Compatible with Bell D2, D3, and D4 (mode 3) data formatting
- Common-Channel Interoffice Signalling (CCIS)
 capability selectable
- A and B channel highway signalling control
- · Remote alarm (Yellow alarm) reporting capability
- Dual outputs—binary and dual unipolar
- Space efficient 28 pin DIP chip
- CMOS technology for low power consumption
- Single + 5 volt supply
- LSTTL and CMOS compatible inputs and outputs

SSI 80C50 Block Diagram

CAUTION: Use handling procedures necessary for a static sensitive component

SSI 80C60 Single-Chip T1Receiver

(Availability: Spring, 1985)

Advanced Information

GENERAL DESCRIPTION

The SSI 80C60 is a 28 pin monolithic Silicon-gate CMOS device that provides the T1 link digital receive function using Bell D2 or D3 data formatting standards. The 80C60 operates on a 1.544 Mhz unipolar serial data stream representing PCM encoded samples from 24 voice band channels to perform the demultiplexing operation, and outputs the originally encoded 8-bit parallel sample words. Using the extracted 1.544 Mhz clock as a reference, the 80C60 provides frame synchronization, identifies the signalling frames and routes the signalling bit to a separate serial output pin. A remote alarm monitor checks for the repetitive second data bit zero condition that indicates a remote alarm (vellow alarm) has been transmitted. On-chip error detectors indicate loss of carrier, synchronization loss, and signalling errors. Additional synchronization signals are output by the 80C60 to assist external circuitry in processing the derived PCM data samples and signalling information.

The 80C60 is designed for integration into leased line or internal usage T1 link subsystems. Incorporation of multiple functions on a single chip reduces system component count and increases reliability, while the CMOS technology employed minimizes power supply requirements.

FEATURES

- Provides T1 link digital receive framing functions
- Converts 1.544 Mhz synchronous serial bit stream back to 8-bit words
- Compatible with Bell D2 and D3 data formatting
- Inputs serial unipolar data
- A and B channel highway signal extraction
- Remote alarm (Yellow alarm) detection capability
- Indicates signalling, loss of frame synch, and carrier loss errors
- Space efficient 28 pin DIP chip
- CMOS technology for low power consumption
 Single +5 volt supply
- LSTTL and CMOS compatible inputs and outputs

SSI 80C60 Block Diagram

CAUTION: Use handling procedures necessary for a static sensitive component

silicon systems INNOVATORS IN INTEGRATION

SSI K212 Single Chip Bell 212 Modem (Availability: Fall 1985)

Advanced Information

INTRODUCTION

The SSI K212 is a true single-chip modem device that provides the functions needed to construct a typical Bell 212A standard full-duplex modem. Using an advanced CMOS process that integrates analog, digital, and switched-capacitor array functions on a single substrate, the SSI K212 offers excellent performance and a high level of functional integration in a single 28 pin DIP configuration. The K212 provides the basic PSK and FSK modulator/demodulator functions, call progress and handshake tone monitors, test modes, and a DTMF dialer. This device supports all Bell 212A modes of operation, allowing both synchronous and asynchronous communication. The K212 is designed to appear to the systems designer as a microprocessor peripheral, and will easily interface with popular one-chip microprocessors (80C51 typical) for control of modem functions through its 8-bit multiplexed address/data bus or via an optional serial command bus. An ALE control line simplifies address demultiplexing. Data communication occurs through a separate serial port only.

The K212 is ideal for use in either freestanding or integral system modem products where full-duplex 1200 BPS data communications over the 2-wire switched telephone network is desired. Its high functionality, low power consumption, and efficient packaging simplify design requirements and increase system reliability. A complete modem requires only the addition of the phone line interface, a control microprocessor, and RS-232 level converters for a typical system. The use of coherent demodulation techniques also assures the user of optimum performance when communicating over degraded lines.

FEATURES

- One-chip fully Bell 103/212A compatible modem
- Full duplex operation at 0-300 and 1200 BPS
- FSK (300 BPS) or PSK (1200 BPS) encoding
- Compatible with standard microprocessors (8048, 80C51 typical)
- Serial (22 Pin DIP) or parallel microprocessor bus interface (28 Pin DIP)
- Maskable interrupts
- Serial port for data transfer
- Selectable asynch/synch and scrambler/descrambler functions
- Coherent demodulation technique provides optimal performance
- Call progress, carrier, and long loop detect monitor
- DTMF tone generator
- Test modes available ALB, DL, RDL, Mark, Space, Alternating bit patterns
- Space efficient 22 and 28 pin DIP packages
- CMOS technology for low power consumption (120 MW)
- Single +12 volt supply
- TTL and CMOS compatible inputs and outputs

OPERATION

General

The SSI K212 was designed to be a complete Bell 212A compatible modem on a chip. As many functions as deemed economically feasible were included in order to simplify implementation into typical modem designs. In addition to the basic 1200 BPS PSK and 300 BPS FSK modulator/demodulator sections, the device also includes synch/asynch converters, scrambler/descrambler, call progress tone detect, and DTMF tone generator capabilities. All Bell 212A modes are supported (synchronous and asynchronous) and test modes are provided for diagnostics. Most functions are selectable as options and logical defaults are provided when override modes are selected. The device can be directly interfaced to a microprocessor via its 8-bit multiplexed address/data bus for control and status monitoring. Data communication takes place through a serial port.

PSK Modulator/Demodulator

The K212 modulates a serial bit stream into dibit pairs that are represented by four possible phase shifts as prescribed by the Bell 212A standard. The baseband signal is then filtered to reduce intersymbol interference on the bandlimited 2-wire PSTN line. Transmission occurs on either a 1200 Hz (Originate mode) or 2400 Hz carrier (Answer mode). Demodulation is the reverse of the modulation process, with the incoming analog signal eventually decoded into dibits and converted back to a serial bit stream. The demodulator also recovers the clock which was encoded into the analog signal during modulation. Demodulation occurs using either a 1200 Hz carrier (Answer mode or ALB Originate mode) or a 2400 Hz carrier (Originate mode or ALB Answer mode). The K212 uses a phase locked loop coherent demodulation technique that offers inherently better performance than typical DPSK demodulators used by other manufacturers.

FSK Modulator/Demodulator

The FSK modulator frequency modulates the analog output signal using two discrete frequencies to represent the binary data. The Bell 103 standard frequencies of 1270 Hz and 1070 Hz (originate mark and space) and 2225 and 2025 (answer mark and space) are used. Demodulation involves detecting the received frequencies and decoding them into the appropriate binary value. The rate converter and scrambler/descrambler are bypassed in the 103 mode.

Passband Filters and Equalizers

A high and low band filter is included to shape the amplitude and phase response of the transmit signal and provide compromise delay equalization and rejection of out of band signals in the receive channel. Amplitude and phase equalization is necessary to compensate for distortion of the transmission line and to reduce intersymbol interference in the bandlimited receive signal. The transmit signal filtering corresponds to a 75% square root of raised Cosine frequency response characteristic.

Asynchronous Mode

The asynchronous mode is used for communication with asynchronous terminals which may communicate at 1200 BPS +1%, -2.5% even though the modem's output is limited to 1200 BPS +-.01% When transmitting

in this mode the serial data on the TXD input is passed through a rate converter which inserts or deletes stop bits in the serial bit stream in order to output a signal that is exactly 1200 BPS +--.01% This signal is then routed to a data scrambler (following the CCITT V.22 algorithm) and into the analog PSK modulator where dibit encoding results in a Bell 212A standard PSK output signal. Both the rate converter and scrambler can be bypassed for handshaking, FSK, and synchronous operation. The device recognizes a break signal and handles it in accordance with Bell 212A specifications. Received data is processed in a similar fashion except that the rate converter now acts to reinsert any deleted stop bits and output data to the terminal at no greater than 1219 BPS. An incoming break signal will be passed through without incorrectly inserting a stop bit.

Synchronous Mode

The Bell 212A standard defines synchronous operation only at 1200 BPS. Operation is similar to that of the asynchronous mode except that data must be synchronized to a provided clock and no variation in data transfer rate is allowable. Serial input data appearing at TxD must be valid on the falling edge of TxCLK. Receive data at the RxD pin is clocked out on the rising edge of RxCLK. The asynch/synch converter is bypassed when synchronous mode is selected and data is transmitted out at essentially the same rate as it is input.

Parallel Bus Interface

Four 8-bit registers are provided for control, option select, and status monitoring. These registers are addressed with the A0 and A1 multiplexed address lines (latched by ALE) and appear to a control microprocessor as four consecutive memory locations. Two control registers and the DTMF register are read or write memory. The status detect register is read only and cannot be modified except by modem response to monitored parameters.

Serial Command Interface

The serial command mode allows access to the K212 control and status registers via a serial command port (22 pin version only). In this mode the A0 and A1 lines provide register addresses for data passed through the data pin under control of the RD and WR lines. A read operation is initiated when the RD line is taken low. The next eight cycles of ExCLK will then transfer out eight bits of the selected address location LSB first. A write takes place by shifting in eight bits of data LSB first for eight consecutive cycles of ExCLK. WR is then pulsed low and data transfer into the selected register occurs on the rising edge of WR.

Special Detect Circuitry

The special detect circuit monitors carrier, call progress tones, answer tone, long loop, (weak received signal) and remote digital loopback request bit pattern. The appropriate status bit is set when one of these conditions changes and an interrupt is generated.

DTMF Generator

The DTMF generator will output one of 16 standard dualtones determined by the 4-bit binary value previously loaded into the DTMF register. Dialing is initiated when the DTMF mode is selected and the transmit enable bit is changed from A1 to A0.

HARDWARE INTERFACE

Pin No.	1/0	Signal Label	22 Pin	28 Pin	Description
POWER	L		L	L	
14	1	GND	X	X	System ground.
28	1	Vdd	X	X	Power supply input, +12 volt +10%, -20%
	0	Vref	X	X	An internally generated reference voltage for test use.
	1	ISET	Х	Х	Chip current reference. Sets bias current for op-amps. Programmed by connecting to Vcc through 1 Meg resistor. Power dissipation/ performance tradeoff results from varying this value.
MICROF	ROC	ESSOR INTER	FACE		
	1	ALE	X	-	Address latch enable. The falling edge of ALE latches the address on AD0-AD2.
	1/0	AD0-AD7	X	-	Address/data bus. This is a bidirectional, tri-state, multiplexed address and data bus.
	1	ĈŜ	X	-	Chip select. Allows access to device data and address bus. AD0-AD7 will be in a high impedance state unless \overline{CS} is low. \overline{CS} is latched on the falling edge of ALE.
	0	CLK	X	X	Clock output. This pin outputs either the crystal frequency (for use as a processor clock) or a 16x1200 Hz signal for use as a baud clock.
	0	ĪNT	X	X	Interrupt flag to processor. When low, indicates that a detect condi- tion has occurred. Reset when the detect register is read or a reset is performed.
	1	RD	X	-	Read control. When low puts addressed register into a read condition. $\overline{\text{CS}}$ must also be low.
	1	Reset	×	X	Resets device when in high state, setting all register bits to zero and CLK to Xtal frequency. An internal pulldown resistor allows power on reset by connecting a 1μ f capacitor between reset and Vcc.
	I	WR	X	-	Write control. A low indicates that data is available. Data is latched on the rising edge of WR. $\overline{\text{CS}}$ must be active.
RS-232	INTE	RFACE			
	I	ExCLK	X	X	External clock input. Used in synchronous modes when external timing is selected. ExCLK becomes the phase-lock reference for TxCLK.
	0	RxCLK	X	X	Receive clock output. Carrier derived synch clock. Rising edge coincides with received data output transitions. Falling edge can be used to latch valid output data. Active when carrier present.
	0	RxD	Х	X	Received digital data output. In synchronous mode, data is valid on falling edge of RxCLK.
	0	TxCLK	X	X	Transmit clock output. Used in synchronous mode to latch input data on the TxD pin. Data must be valid on the falling edge of TxCLK. TxCLK is an internally generated 1200 Hz reference in internal mode, phase locked to ExCLK in external mode, and derived from RxCLK in slave mode. TxCLK is always active.
	1	TxD	×	×	Transmit digital data input. In synch modes the data must be valid on the falling edge of TxCLK. In Asynch modes no clocking is necessary. High speed data must be $1200 + 1\%$, -2.5% .
14351 Myford Road, Tustin, CA 92680 (714) 731-7110, TWX 910-595-2809

HARDWARE INTERFACE

Pin No.	1/0	Signal Label	28 Pin	22 Pin	Description			
ANALO	G INT	ERFACE						
	Ι	RxA	Х	Х	Received modulated analog signal input.			
	0	TxA	Х	X	Transmit analog output.			
	I	Xtal1	Х	Х	Connection for external 11.0592 Mhz crystal or CMOS level clock signal.			
	1	Xtal2	Х	Х	Connection for external 11.0592 Mhz crystal or CMOS level clock signal.			
SERIAL	SERIAL INTERFACE							
	I	A0-A1	-	Х	Register address selection. These lines should be valid during any read or write operation.			
	I/O	Data	_	Х	Serial control data. Data for a read/write operation is clocked in or out on the falling edge of the ExCLK pin. The direction of data flow is controlled by the RD pin. RD low outputs data. RD high inputs data.			
	I	RD	_	X	Read data control. A low enables a read operation from the addressed register. Data is clocked out on transitions of the ExCLK (LSB first) while the RD line is low. Eight cycles of ExCLK are needed to transfer the full 8 bits of data contained in one register.			
	I	WR	_	Х	Write data control. A low to high transition on this line causes 8 bits of data previously shifted in (LSB first) to be transferred to the addressed register.			

BUS INTERFACE

Four 8-bit internal registers are accessible for control and status monitoring. The registers are accessed in read or write operations by addressing the A0 and A1 address lines (latched by ALE in parallel mode). Control and status bits are identified to the right :

A 0	A 1	Register	Function
0	0	CR0	Control register 1
0	. 1	CR1	Control register 2
1	0	DR	Detect register (read only)
1	1	DTMF	DTMF transmit tones

ADDRESS	D7	D6	D5	D4	D3	D2	D1	DO
00	SSI TEST	0	LOW SPEED	TX MODE BIT 2	TX MODE BIT 1	TX MODE BIT 0	TX ENABLE	ORG/ ANS
01	TX TEST BIT 1	TX TEST BIT 0	EN INT DETECT	BYPASS SCR	CLK SELECT	RESET	TEST MODE BIT 1	TEST MODE BIT 0
10	0	0	0	RDL	CD	ANS TONE	CALL PROG	LONG LOOP
11	0	0	TX ANS TONE	TX DTMF	DTMF BIT 3	DTMF BIT 2	DTMF BIT 1	DTMF BIT 0

CONTROL REGISTER 0-CR0 D7 D6 D5

SSI TEST	0	LOW SPEED	TX MODE BIT 2	TX MODE BIT 1	TX MODE BIT 0	TX ENABLE	ORG/ANS
0 = NORMAL 1 = INVALID		1 = 300 BPS 0 = 1200 BPS	000 = PWR D 001 = INT. SYR 010 = EXT SYR 100 = SLAVE 000 = ASYCH 101 = ASYCH 110 = ASYCH 111 = ASYCH	OWN NCH SYNCH 8 BITS/CHAR 9 BITS/CHAR 10 BITS/CHAR 11 BITS/CHAR		1 = TX 0 = TX OFF	1 = ORG 0 = ANS

D3

D2

D1

DO

D4

D7	D6	D5	D4	D3	D2	D1	DO
TX TEST BIT 1	TX TEST BIT 0	INT EN	SCR EN	CLK CONTROL	RESET	TEST MODE BIT 1	TEST MODE BIT 0
00 = TX 0 01 = TX 4 10 = TX 4 11 = TX 5	IATA LTERNATE IARK PACE	ENABLE INTERRUPT 1 = ON 0 = OFF	0 = ON 1 = OFF	0 = XTAL 1 = 16X1200	RESET	00 = N 01 = A 10 = R 11 = S	DRMAL _B DL BI TEST

DETECT REGISTER - DR

CONTROL REGISTER - CRI

D7	D6	D5	D4	D3	D2	D1	DO
0	0	0	RDL	CD	ANS TONE	CALL PROG.	LONG LOOP

TONE REGISTER

0 0 TX TX DTMF DTMF DTMF DTMF ANS DTMF 3 2 1 TONE	D7	D6	D5	D4	D3	D2	D1	DO
	0	0	TX ANS TONE	TX DTMF	DTMF 3	DTMF 2	DTMF 1	DTMI 0
1 = ON 1 = TX DTMF - 4-BIT CODE FOR 1 OF 16			1 = ON	1 = TX DTMF	- 4-BIT CO	DE FOR 1 OF 16		

SSI 291/213 Modem 1200 BPS Full Duplex Modem Device Set

(Availability: Spring, 1985)

Advanced Information

GENERAL DESCRIPTION

The SSI 291/213 device set consists of 40 pin and 16 pin CMOS monolithic I C's that together form the basis for a 1200 BPS Bell 212A compatible modem. The SSI 213 is a modem filter that provides the channel separation, equalization, and answer/orginate steering logic needed for Bell 212A operation. The 291 contains the Bell 212 modulator and demodulator, AGC, scrambler/descrambler, and carrier detect monitor. Clock generator and undedicated low pass filter functions are also included to minimize the requirement for external components. Using TTL and CMOS compatible I/O, the device set is designed to provide a low-cost modem when integrated with a one-chip control microprocessor.

The 291/213 device set is ideal for use in either free standing or integral system modem products where full-duplex 1200 BPS data communications over the 2-wire switched telephone network is desired. It's high functionality, reduced power consumption, and low cost simplify design requirements and increase system reliability. A complete modem can be implemented by adding a phone line interface, control microprocessor, and RS-232 level converters for a typical system. The use of coherent demodulation techniques also assures the user of optimum peformance when communicating over degraded lines.

FEATURES

- Two-chip device set compatible with 2-wire PSTN
 phone lines
- Full duplex operation at 1200 BPS
- PSK encoding in Bell 212A format
- Will interface with standard microprocessors
- through serial control lines
- Serial port for data transfer
- Selectable scrambler/descrambler, answer/originate,
 Clock frequency
- Support functions on-chip: clock generator, low-pass filter, receive clock flag
- Coherent demodulation technique provides optimal
 performance
- CMOS technology for low power consumption
 (120 MW)
- +-5 volt supplies
- TTL and CMOS compatible inputs and outputs

SSI 291/213 Block Diagram

CAUTION: Use handling procedures necessary for a static sensitive component

SSI 291/213 Modem 1200 BPS Full Duplex Modem Device Set

CIRCUIT OPERATION

GENERAL:

The SSI 291/213 was designed to serve as a low-cost 1200 BPS full-duplex modem that offers Bell 212A 1200 BPS compatibility when used with a control microprocessor. The modulator/demodulator as well as various support functions needed to integrate with a microprocessor in a minimum cost system were included on the device set. In addition to the basic 1200 BPS PSK modulator/demodulator the product also includes a carrier detect monitor, scrambler/ descrambler, clock generator, and a DTMF low pass filter for eliminating distortion from microprocessor generated dual-tones. The 1200 BPS Bell 212A mode is supported (synchronous operation) and test modes are provided for chip diagnostics. The device set can be directly interfaced to a microprocessor using serial lines for data transfer, control, and status monitoring.

PSK MODULATOR/DEMODULATOR:

The 291/213 modulates a serial bit stream into dibit pairs that are represented by four possible phase shifts as prescribed by the Bell 312A standard. The baseband signal is then filtered to reduce intersymbol interference on the bandlimited 2-wire PSTN line. Transmission occurs on either a 1200 Hz (Originate mode) or 2400 Hz carrier (Answer mode). Demodulation is the reverse of the modulation process, with the incoming analog signal eventually decoded into dibits and converted back to a serial bit stream. Demodulation occurs using either a 1200 Hz carrier (Answer mode) or a 2400 Hz carrier (Originate mode). The 291/213 uses a phase locked loop coherent demodulation technique that offers inherently better performance than typical DPSK demodulators used by other manufacturers.

PASSBAND FILTERS AND EQUALIZERS:

A high and low band filter is included in the 213 to shape the amplitude and phase response of the transmit signal and provide compromise delay equalization and rejection of out of band signals in the receive channel. Amplitude and phase equalization is necessary to compensate for distortion of the transmission line and to reduce intersymbol interference in the bandlimited receive signal.

SYNCHRONOUS OPERATION:

The 291/213 is designed to provide synchronous operation at the 1200 BPS rate. In this mode data is synchronized to a provided clock and no variation in data transfer rate is allowable. Proper transmit action requires that serial input data appearing at TxD be valid on the falling edge of SCT. Receive data at the RxD pin may then be read out after the RXFLG goes low. After reading the receive data bit, microprocessor handshaking should reset the receive flag latch by setting CLRFLG.

licon systems INNOVATORS IN INTEGRATION

SSI 22100 CMOS 4x4 Crosspoint Switch with Control Memory

Advanced Information

SSI 22100 Block Diagram

GENERAL DESCRIPTION

The SSI 22100 combines a 4×4 array of crosspoints (transmission gates) with a 4-line-to-16 decoder and 16 latch circuits. Any one of the sixteen transmission gates (crosspoints) can be selected by applying the appropriate four line address. The selected transmission gate can be turned on or off by applying a logical one or zero respectively to the data input and strobing the strobe input to a logical one. Any number of the transmission gates can be ON simultaneously. When the device is "powered up", the states of the 16 switches are indeterminate. Therefore, all switches must be turned off by setting the strobe high and date-in low, then addressing all switches in succession.

The SSI 22100 is supplied in 16-lead hermetic dual-in-line ceramic packages and 16-lead dual-in-line plastic packages.

FEATURES

- Low ON resistance—75 Ω typ. at V_{DD} = 12V
- "Built-In" control latches
- Large analog signal capability—±VDD/2
- 10-MHz switch bandwidth
- Matched switch characteristics— Δ R_{ON} = 18 Ω typ. at V_{DD} = 12V
- High linearity—0.5% distortion (typ.) at f = 1kHz, V_{IN} = 5 V_{p-p} , V_{DD} = 10V, and R_L = 1k Ω
- Standard CMOS noise immunity
- 100% tested for maximum quiescent current at 20V
- Second source for RCA CD22100
- Available Q285

PIN CONFIGURATION

(Top View)

CAUTION: Use handling procedures necessary for a static sensitive component

n sustei **INNOVATORS IN** INTEGRATION

SSI 22101/22102 CMOS 4x4x2 Crosspoint Switches with Control Memory

Advanced Information

GENERAL DESCRIPTION

The SSI 22101 and 22102 crosspoint switches consist of $4 \times 4 \times 2$ arrays of crosspoints (transmission gates), 4-line to 16-line decoders, and 16 latch circuits. Any one of the sixteen crosspoint pairs can be selected by applying the appropriate four-line address, and any number of crosspoints can be ON simultaneously. Corresponding crosspoints in each array are turned on and off simultaneously, ly, also.

In the SSI 22101, the selected crosspoint pair can be turned on or off by applying a logical ONE or ZERO, respectively, to the data input, and applying a ONE to the strobe input. When the device is "powered up", the states of the 16 switches are indeterminate. Therefore, all switches must be turned off by putting the strobe high, date-in low, and then addressing all switches in succession.

The selected pair of crosspoints in the SSI 22102 is turned on by applying a logical ONE to the K_a (set) input while a logical ZERO is on the K_b input, and turned off by applying a logical ONE to the K_b (reset) input while a logical ZERO is on the K_a input. In this respect, the control latches of the SSI 22102 are similar to SET/RESET

flip-flops. They differ, however, in that the simultaneous application of ONEs to the K_a and K_b inputs turns off (resets) all crosspoints. All crosspoints in both devices must be turned off as V_{DD} is applied.

The SSI 22101 and SSI 22102 are supplied in 24-lead hermetic dual-in-line ceramic packages and 24-lead dualin-line plastic packages.

FEATURES

- Low ON resistance—75 Ω typ. at V_{DD} = 12V
- "Built-In" latched inputs
- Large analog signal capability—±VDD/2
- 10-MHz switch bandwidth
- Matched switch characteristics— $\Delta R_{ON} = 8\Omega$ typ. at V_{DD} = 12V
- High linearity—0.25% distortion (typ.) at f = 1kHz, VIN = 5V_{D-D}, V_{DD} - V_{SS} = 10V, and R_I = 1k Ω
- Standard CMOS noise immunity
- Second source for RCA CD22101 & CD22102
- Available Q285

в —	1• 24	- v _{DD}	в —	1•	24	
c —	2 23	- A	c —	2	23	- A
X2'	3 22	— X2	x2′ —	3	22	- x2
Y1'	4 21	Y1	Y1'	4	21	- Y1
Y2'	5 20	— Y2	Y2'	5	20	- Y2
X4'	6 19	X4	X4'	6	19	X4
X3'	7 18	— хз	x3'	7	18	— x3
Y4'	8 17	¥4	Y4'	8	17	- Y4
Y3'	9 16	Y3	Y3'	9	16	- Y3
X1′	10 15	X1	X1'	10	15	- X1
D	11 14	- DATA	D-	11	14	— ка
v _{ss} —	12 13	- STROBE	v _{ss} —	12	13	- кь
L			i			

Pin Out (Top View)

CAUTION: Use handling procedures necessary for a static sensitive component

Block Diagram SSI 22101/22102

SSI 22106 8x8x1 Crosspoint with Control Memory

Advanced Information

GENERAL DESCRIPTION

The SSI 22106 is an 8x8x1 analog switch array of CMOS transmission gates designed using high-speed CMOS technology. It offers high noise immunity and has very low static power consumption.

At power up all switches are automatically reset. A "low" on the Master Reset turns OFF all switches and clears the control latches. A 6-bit address through a 6-line-to-64-line decoder selects the transmission gate which can be turned ON by applying a logical ONE to the DATA INPUT and STROBE. Similarly, any transmission gate can be turned OFF by applying a logical ZERO to the DATA INPUT while strobing the STROBE with a logical ZERO.

A CE allows the crosspoint array to be cascaded for matrix expansion in both the X and Y direction. The SSI 22106 is supplied in a 28-pin dual-in-line package.

FEATURES

- · 64 crosspoint switches in an 8x8 array
- µP compatible control inputs
- · On chip line decoder and control latches
- Ron resistance 95 Ω max @ 5V
- $\Delta Ron 15 \Omega$ typical @ 5V
- Operation voltage 2 6V
- Analog signal capability Vdd/2
- · Automatic power up reset
- · Parallel data input
- Power up reset by using C at MR pin
- Address latches on-chip
- Second source for RCA CD 22106
- Available Q 285

CAUTION: Use handling procedures necessary for a static sensitive component

SSI 22106 Block Diagram

SSI 223O1 PCM Line Repeater

Advanced Information

GENERAL DESCRIPTION

The SSI 22301 monolithic PCM repeater circuit is designed for T1 carrier systems operating with a bipolar pulse train of 1.544 Mbits/s. It can also be used in the T148 carrier system operating with a ternary pulse train of 2.37 Mbits/s. The circuit operates from a $5.1V \pm 5\%$ externally regulated supply.

The SSI 22301 provides active circuitry to perform all functions of signal equalization and amplification, automatic line buildout (ALBO), threshold detection, clock extraction, pulse timing, and buffered output formation.

The SSI 22301 is supplied in an 18-lead dual-in-line plastic package (E suffix).

FEATURES

- Automatic line buildout
- 5.IV supply voltage
- Buffered output
- Second source for RCA CD22301
- Available Q285

CAUTION: Use handling procedures necessary for a static sensitive component

Section 2 MICROPERIPHERAL PRODUCTS

Silicon Systems INNOVATORS IN INTEGRATION

SSI Product Selector Guide

2-60

MICROPERIPHERAL PRODUCTS

Part No.	Curcuit Function	No. of Channels	Power Supplies	Data Write/Read	Write Current Source	Read Gain	Page No.
Ferrite Heads				I			
SSI 101	Servo Preamp	1	8.3V/10V	<u> </u>	_	77 to 110	2-2
SSI 104	Read/Write Amp	4	+ 6V, - 4V	Bi-Directional Differential	External	22 to 46	2-4
SSI 104L	Read/Write Amp	4	+ 6V, - 4V	Bi-Directional Differential	External	22 to 46	2-4
SSI 108	Read/Write Amp	4	+6V, -4V	Bi-Directional Differential	External	22 to 46	2-4
SSI 115	Read/Write Amp	2,4,5	+ 5V	Bi-Directional Differential	External	26 to 52	2-14
SSI 117	Read/Write Amp	2,4.6	+ 5V, + 12V	TTL Write Diff. Read	On-Chip	80 to 120	2-20
SSI 122	Read/Write Amp	4	+ 6V, - 4V	Bi-Directional Differential	External	28 to 43	2-4
SSI 501	Read/Write Amp	8	+ 5V, + 12V	TTL Write Diff. Read	On-Chip	80 to 120	2-26
*SSI 511/511R	Read/Write Amp	2,4,6	+ 5V, + 12V	TTL Write Diff. Read	On-Chip	80 to 120	2-86
Thin-Film Head	S					•	
SSI 114	Read/Write Amp	4	+ 5V	Diff. Write Diff. Read	On-Chip	75 to 170	2-32
SSI 116	Servo Preamp	1	8.3V/10V		_	200 to 310	2-36
*SSI 521	Read/Write Amp	6	+ 5V, + 12V	TTL Write Diff. Read	On-Chip	75 to 125	2-88
Data Path/Supp	ort Logic/Motor Contro	yl .					
*SSI 531	Write Precomp/ Disk Separator	—		. —	_	_	2-92
SSI 540	Read Data Path		+ 5V, + 12V	Diff. Write Diff. Read			2-38
SSI 545	Support Logic	-	+ 5V	_	—	—	2-46
SSI 590	2 Motor Speed Control	_	12V		-	_	2-66
SSI 591	3 Motor Speed Control		12V	-			2-70
Tape Drive							
SSI 550	Mag Tape Read Circuit	4	—		—		2-74
Memory Produc	its of			· · · · · · · · · · · · · · · · · · ·		· · · · ·	
SSI 67C401/402	64x4, 64x5 FIFO		_	_	_	_	2-80
Semicustom Ci	rcuits						
SSI 82C100/101	Mask Programmable Logic Array		5V	_	—	-	3-6
Floppy Disk Cir	cuits						
SSI 570	Read/Write System	2	+ 5V, + 12V	_	On-Chip	1000 Adjustable	2-50
SSI 575	Read/Write	2,4	+ 5V, + 12V	TTL Write Diff. Read	External	80 to 120	2-56

*Advanced Information

Support Circuit

SSI 580

+ 5V

Differential Amplifier SSI 101A

Data Sheet

Note 1 - Pin 8 can NOT be connected to any etch or any part of any circuit. It connects to circuitry internal to the IC and is used as a test point during manufacture.

General Description

The SSI 101A is a two stage differential amplifier applicable for use as a preamplifier for the magnetic servo head circuit of Winchester technology disk drives.

Features

- Very narrow gain range
- 30MHz bandwidth
- Electrically characterized at two power supply voltages: IBM Model 3340 compatible (8.3V) and standard OEM industry compatible (10V)
- Mechanically compatible with Model 3348 type head arm assembly
- Packaged in an 8 pin DIP

Absolute Maximum Ratings

Power Supply Voltage (Vcc-VEE) Differential Input Voltage Storage Temperature Range Operating Temperature Range 12V ±1V -65°C to 150°C 0°C to 70°C

ELECTRICAL CHARACTER	ISTICS TA	$T_A = 25^{\circ}C$, (V _{CC} -V _{EE}) = 8.3V ±10%				
Characteristics	Test Conditions	Min.	Тур.	Max.	Units	
Gain (differential)	$Rp = 130\Omega$	77	93	110		
Bandwidth (3 dB)	$V_i = 2mV (pp)$	10	30		MHz	
Input Resistance		800	1000	1250	Ω	
Input Capacitance			3		pF	
Input Dynamic Range (Differential)	$R_L = 130\Omega$, (V _{CC} -V _{EE}) = 8.3V	3			mV (p-p)	
Power Supply Current	$(V_{CC}-V_{EE}) = 9.15V$		26	35	mA	
Output Offset (Differential)	$R_S = 0, R_L = 130\Omega$			600	mV	
Equivalent Input Noise	$R_S = 0$, $R_L = 130\Omega$, $BW = 4MHz$		8	14	$\mu \vee$	
PSRR, Input Referred	$R_s = 0$, f $\leq 5MHz$	50	65		dB	
Gain Sensitivity (Supply)	$\triangle(V_{CC}-V_{EE}) = \pm 10\%, R_L = 130\Omega$		±1.3		%	
Gain Sensitivity (Temp.)	$T_A = 25^{\circ}C$ to 70°C, $R_L = 130\Omega$		-0.2		%/°C	
CMRR, Input Referred	f≤5MHz	55	70		dB	

on systems*

14351 Myford Road, Tustin, CA 92680 🖌 (714) 731-7110, TWX 910-595-2809

ELECTRICAL CHARACTERI	STICS TA	= 25°C, (Vo	с-Vее) = 10	/ ±10%	
Characteristics	Test Conditions	Min.	Тур.	Max.	Units
Gain (differential)	$Rp = 130\Omega$	77	93	110	
Bandwidth (3 dB)	$V_i = 2mV (pp)$	10	30		MHz
Input Resistance		800	1000	1250	Ω
Input Capacitance			3		pF
Input Dynamic Range (Differential)	$R_L = 130\Omega$, (V _{CC} -V _{EE}) = 10V	3		Ŷ	mV (p-p)
Power Supply Current	$(V_{CC}-V_{EE}) = 11V$		30	40	mA
Output Offset (Differential)	$R_S = 0, R_L = 130\Omega$			600	mV
Equivalent Input Noise	$R_S = 0$, $R_L = 130\Omega$, $BW = 4MHz$		8	14	$\mu \lor$
PSRR, Input Referred	$R_s = 0$, f \leq 5MHz	50	65		dB
Gain Sensitivity (Supply)	Δ (V _{CC} -V _{EE}) = ±10%, R _L = 130 Ω		±1.3		%
Gain Sensitivity (Temp.)	$T_A=25^\circ C$ to 70°C, $R_L=130 \Omega$		-0.2		%/°C
CMRR, Input Referred	f <u></u> 5MHz	55	70		dB

Recommended Operating Conditions	Min.	Тур.	Max.	Units
Supply Voltage (Vcc-VEE)	7.45 9.0	8.3 10.0	9.15 11.0	v V V
Input Signal V _i		2		mV (pp)
Ambient Temp. T _A	0		70	°C

- 1. Input must be AC coupled
- 2. C_c 's are AC coupling capacitors
- 3. R_L 's are DC bias and termination resistors (recommended 130 Ω)
- 4. R_{EQ} represents equivalent load resistance

5. For gain calculations $R_P = \frac{R_L \cdot R_{EQ}}{R_L + R_{EQ}}$

- 6. Differential gain = 0.72 $R_P (\pm 18\%) (R_P \text{ in ohms})$
- Ceramic capacitors (0.1µf) are recommended for good power supply noise filtering

Package Outline

4-Channel Read/Write Circuit SSI 104, 104L, 108, 122

Data Sheet

Block Diagram

SSI 104/108 Pin Out

FEATURES

- IBM 3350 compatible performance.
- IBM compatible power supply voltages and logic levels.
- · Four read/write channels.
- · Safety circuits

DESCRIPTION

The SSI 104 is a monolithic bipolar integrated circuit for use in high performance disk drive systems where it is desirable to locate the control circuitry directly on the data arm. Each circuit controls four heads and has three modes of operation: Read, Write and Idle.

The 104L is a low-noise version of the 104 with all

other parameters identical. Both are packaged in a 24 pin flat pack.

The SSI 108 and 122 are identical in performance to the 104. The 108 is packaged in a 24 pin dip package while the 122 is packaged in a 22 pin dip.

4-Channel Read/Write Circuit SSI 104, 104L, 108, 122

WRITE MODE

In the write mode, the circuit functions as a current gate. Externally supplied write current is gated by the state of the head select and data inputs to one side of one head. Head voltage swings are monitored by the head transition detect circuit. Absence of proper head voltage swings, indicating an open or short on either side of the head or absence of write current, will cause a fault current to flow into the unsafe pin.

READ MODE

In the read mode, the circuit functions as a low noise differential amplifier. The state of the head select inputs determines which amplifer is active. Data is differentially read from one of four heads and an open collector differential signal is put across the Data X and Data Y pins. If a fault condition exists such that write current is applied to the chip when the chip is in read mode, the write current will be drawn from the unsafe pin and the fault will be detected.

ABSOLUTE MAXIMUM RATINGS

Positive Supply Voltage V _{CC}
Storage Temperature
Input Voltages Head Select (HS)V _{EE} - 0.3V to + 0.3V Unsafe (US)0.3V to V _{CC} + 0.5V Write Current (WC)V _{EE} - 2 to 0.3V
$\begin{array}{llllllllllllllllllllllllllllllllllll$

$\label{eq:electrical characteristics} \text{ Unless otherwise specified, } 5.7 \leq \text{V}_{\text{CC}} \leq 6.7, -4.2 \leq \text{V}_{\text{EE}} < -3.8, 0\,^\circ \leq \text{T}, \leq 110\,^\circ \text{C}.$

CIRCUIT OPERATION

			-	
Parameter	Test Conditions	Min.	Max.	Units
Positive Supply Current (ICC)	Read/Write	11.5	23	mA
Positive Supply Current (ICC)	ldle		75 + ICE	mA
Negative Supply Current (IEE)	Read/Write		70	mA
Negative Supply Current (IEE)	ldle		52	mA

LOGIC SIGNALS

POWER SUPPLY

Parameter	Test Conditions	Min.	Max.	Units
Chip Enable Low Voltage (VLCE)	Read/Write	0.0	0.7	V
Chip Enable High Voltage (VHCE)	Idle	VCC - 1.0	VCC+0.3	V
Chip Enable Low Current (ILCE)	VCE = 0.0V	- 1.45	- 0.47	mA
Chip Enable High Current (IHCE1)	VCE = VCC - 1.0	- 350	- 100	μA
Chip Enable High Current (IHCE2)	VCE = VCC + .3V		+ 100	μA
Write Select High Voltage (VHWS)	Write/Idle	3.2	3.8	V
Write Select Low Voltage (VLWS)	Read/Idle	- 0.1	0.1	V
Write Select High Current (IHWS)	Write/Idle, VWS = 3.8V Transition unsafe current off Transition unsafe on	0.6 0.6	3.2 4.2	mA mA
Write Select Low Current (ILWS)	Read/Idle, VWS = 3.8V		0.1	mA
Head Select High Voltage (VHHS)		- 1.12	- 0.72	V
Head Select Low Voltage (VLHS)		- 2.38	- 1.51	V
Head Select High Current (IHHS)			240	μA
Head Select Low Current (ILHS)			60	μA
Total Head Input Current	Sum of all head input currents with IWC = 0 Write, VCT = 3.5V Read, VCT = 0.0V Idle		3.7 0.16 1.25	mA mA mA

READ MODE

Parameter	Test Conditions	Min.	Max.	Units
Differential Gain	Vin = ImV p-p, 0VDC, f = 300kHz			
	Tj = 22 °C	28	43	V/V
	Tj = 0 °C	28	46	V/V
	Tj = 110°C	22.2	43	V/V
Common Mode Rejection Ratio	Vin = 100mVpp, 0VDC, f \leq 5MHz	45		dB
Power Supply Rejection Ratio	Vin = 0V, f \leq 5MHz \triangle VCC or \triangle VEE = 100mVpp	45		dB
Bandwidth	$Zin = 0\Omega$, $Vin = 1mVPP$, fmidband = 300KHz	30		MHZ
Input Noise	Vin = 0V, Zin = 0(), Power Bandwidth = $15MHz$		9.3	<i>μ</i> VRMS
Input Noise (104L)	Vin = 0V, Zin = 0 Ω , Power Bandwidth = 15MHz		6.6	μVRMS
Input Current	Vin = 0V		26	μA
Differential Input Capacitance	Vin = 0V		23.5	pF
Differential Input Resistance	Vin = 0V			
	$Tj = 22^{\circ}C$	585	915	Ω
	Tj = 0°C	565	915	Ω
	Tj = 110°C	585	1070	Ω
Output Offset Voltage	Zin = 0		120	mV
Common Mode Output Voltage	Vin = 0	- 0.78	- 0.32	V
Unsafe Current	Write Current = 0mA		0.1	mA
	Write Current = $-45mA$	40	45	mA
Dynamic Range	DC input voltage where AC gain falls to 90% of 0VDC input value. (Measured with 0.5mVpp, AC input Ti = 30°C	2.0		mVp
		10		
Channel Separation	3 channels driven	40		аВ

WRITE MODE

Parameter	Test Conditions	Min.	Max.	Units
Differential Input Voltage		0.175		V
Single Ended Input Voltage		- 0.68	- 0.45	V
Write Current		- 45		mA
Current Gain	IWC = -45mA	0.95	1.0	
Write Current Voltage	IWC = -45mA	VEE+025	VEE + 1.0V	V
Unsafe Voltage	IUS = +45mA	4	VCC+.3	V
Head Center Tap Voltage		3.2	3.8	V
Differential Head Voltage	$IWC = -45 \text{mA}, \text{Lh} = 10 \mu \text{H}$	5.7	7.2	Vp
Single Ended Head Voltage	IWC = -45mA, Unselected heads at 3.5V Selected Side of Selected			
	Head Current = 0mA	0.0	0.9	V
	= 90mA	1.4 + VCC	3.7 + VCC	V
Unsafe Current	$IWC = -30mA$, f = 2MHz; $Lh = 9\mu H$		1.0	mA
	VUS = 5.0V - 6.3V, Lh = 0	15	45	mA
	IWC = 45 mA, Rh = ∞ one side of head only	15	45	mA
Unselected Head Current	$IWC = -45mA, f = 2MHz, Lh = 9.5\mu H$		2.0	mAp
DX DY Input Current		- 2.0	2.0	mA

n systems

14351 Myford Road, Tustin, CA 92680 (714) 731-7110, TWX 910-595-2809

SWITCHING CHARACTERISTICS

Parameter	Test Conditions	Min.	Max.	Units
Idle to Read/Write Transition Time		—	0.5	μS
Read/Write to Idle Transition Time			0.5	μS
Read to Write Transition Time		—	0.5	μS
Write to Read Transition Time			0.5	μS
Head Select Switching Delay		_	50.0	nS
Head Current Transition Time	IWC = -45mA, $Lh = 0$, $f = 5MHz$		15	nS
Head Current Switching Delay Time	IWC = -45mA, $Lh = 0$, $f = 5MHz$	—	15	nS
Head Current Switching Hysterisis	IWC = -45 mA, Lh = 0, f = 5MHz Data rise and fall time ≤ 1 nSec	_	2	nS
Unsafe Switching	IWC = -30 mA, f = 2MHz; Lh = 9μ H	_	1	μS
Delay Time	$Lh = 0\mu H$	0.8	5.1	μS

HEAD SELECT TABLE

Head Selected	HS1	HS2
0	1	1
1	0	1
2	1	0
3	0	0

No responsibility is assumed by SSi for use of this product nor for any infringements of patents and trademarks or other rights of third parties resulting from its use. No license is granted under any patents, patent rights or trademarks of SSi. SSi reserves the right to make changes in specifications at any time and without notice.

SSI 188 4-Channel Read/Write Circuit

Preliminary Data Sheet

GENERAL DESCRIPTION

The SSI 188 is a high-performance, bipolar integrated read/write circuit for use with center tapped, ferrite heads. It provides a low noise read path, write control circuitry and data protection circuitry for 4 channels. The SSI 188 requires + 6.5 V and - 5.2 V power supplies. It is available in a 24 pin flat pack.

FEATURES

- · Fast switching characteristics
- TTL compatible control signals
- · Four head capacity
- · Designed for center-tapped ferrite heads
- · Includes write unsafe detection
- · Easily multiplexed

2-8

SSI 188 4-Channel Read/Write Circuit

Circuit Operation

The SSI 188 has 3 selectable modes of operation as illustrated in Table 2. The R/W and \overline{CS} inputs which determine these modes have internal resistor pullups to prevent an accidental write condition. Depending on the mode selected, the chip performs as a write gate or read amplifier for the selected head. Table 3 shows proper head addressing. In the Idle mode all inputs and outputs are in a high-impedance state, except the WC pin which is diverted to GND.

Write Mode

In this mode, externally supplied write current is gated to the "X" side of the chosen head when the DX input is low and to the "Y" side when DY is low. The write unsafe detector is activated when the SSI 188 is in the write mode. A low on the WUS pin indicates one of the following unsafe conditions:

- · Head open or shorted
- No write current
- · No write data transitions

During a normal write cycle the pin is initially low and then goes high after the differential input makes two transitions. Two transitions are also needed to clear WUS after a fault condition.

Read Mode

The SSI 188 amplifies the differential signal on the addressed head when in the read mode. The amplified signal is output on the open-collector DX and DY pins, with a gain dependent on external resistors tied from each pin to ground. The nominal values listed in this data sheet were obtained with 50 ohm resistors and can be doubled by using 100 ohm resistors. Polarity is such that the DX output is more positive when the "X" side of the head is more positive. External gating of the write current source is not necessary because an on-chip diverter circuit prevents the write current from flowing in the head circuits during the read and idle modes.

Table 1: Pin Descriptions

Symbol	Name — Description
HSO - HS1	Head Select: selects up to four heads
<u>CS</u>	Chip Select: a low level enables device
R/W	Read/Write: a high level selects Read mode
WUS	Write Unsafe: open collector output, low indicates unsafe condition

Table 1: Pin Descriptions

Symbol	Name — Description
НОХ-НЗХ НОҮ-НЗҮ	X, Y head connections
DX, DY	X, Y Read/Write Data: differential read data in/write data out signal
WC	Write Current: External write current generator connected to this pin
VCT	Voltage Center Tap: voltage source for head center tap
VCC	+ 6.5V.
VEE	- 5.2V.
GND	Ground

Table	e 2: Mode S	Select
ĈŜ	R/W	MODE
· 0	0	Write
0	1	Read
1	Х	ldle

Table 3: Head Select			
HS1	HS0	HEAD	
0	0	0	
0	1	1	
1	0	2	
1	1	3	

Temperature Monitoring

Two sets of series diodes are included on the chip for junction temperature monitoring. Between both the HS0 and HS1 pads to GND, two diodes are connected in series as shown in the figure below.

To calibrate the diodes remove power from the SSI 188, pull down on the HS0 or HS1 pin with a constant current and measure the diode forward bias voltage as the temperature is varied. To monitor temperature measure the diode forward bias voltage in either read or write mode and compare to the previously determined calibration curve.

Applications

These circuits are suggested for interfacing the differential DX and DY lines and either ECL or TTL data.

Absolute Maximum Ratings*

(All voltages referenced to GND)

DC Supply Voltages (VCC)	7.5 V DC
(VEE)	
Digital Input Voltage Range	- 0.3 to VCC + 0.3 V DC
Head Input (Read Mode)	– 0.6 to 0.4 V DC
Head Select (HS0, HS1)	0.4 V (or - 2mA)
	to VCC + 0.3 V DC
WUS Port Voltage Range	- 0.4 to VCC + 0.3 V DC
Write Current (Iw)	

Output Currents (VCT) - 80 mA
(WUS)
DX, DY Voltage 0.1 to + 0.3 V DC
Differential Voltage $ V_{R}/W - V\overline{CS} \dots 6.5 V DC$
Storage Temperature Range (Tstg) 65 to + 150 °C
Junction Temperature Range (Tj) + 25 to + 125 °C
Lead Temperature (10 sec soldering)260 °C
*Operation above these ratings may cause permanent damage to the device.

Recommended Operating Conditions

DC Supply Voltage	VCC VEE	$6.5 \pm 5\%$ -5.2 ± 5%	VDC
Head Inductance	Lh	1.5 to 15	H
Write Current	1w	35 to 70,	mA

DC Characteristics Unless otherwise specified: VCC = $6.5 \pm 5\%$, VEE = $-5.2 \pm 5\%$, +25 °C <Tj < + 125 °C.

Parameter	Test Conditions	Min.	Max.	Units
VCC Supply Current	Read Mode	_	80	
	Idle Mode	—	35	mA
	Write Mode		40 + Iw	
VEE Supply Current	Idle Mode	- 20		
	Read Mode	- 75	_	mA
	Write Mode	- 30	-	
Digital Inputs (HS0, HS1, R/W, CS)				
Input Low Voltage (VIL)	_		0.8	VDC
Input High Voltage (VIH)	_	2.0	-	VDC
Head Select:				
Input Low Current	$V_{IL} = 0.8V$	- 0.1	0.2	mA
Input High Current	$V_{IH} = 2.0V$	- 0.1	0.2	mA
Chip Select and Read/Write:				
Input Low Current	$V_{IL} = 0.8V$	- 1.6	- 0.1	mA
Input High Current	$V_{IH} = 2.0V$	- 1.4	- 0.1	mA
WUS Output VOL	$I_{OL} = 8mA$	-	0.5	VDC
ЮН	$V_{OH} = 5.0V$	- 100	100	μ A
Center Tap Voltage (VCT)	Read Mode	0.0 (ty	pical)	VDC
	Write Mode	4.2 (ty	pical)	

Write Characteristics

Unless otherwise specified: VCC = 6.5 \pm 5%, VEE = -5.2V \pm 5%, Iw = 70mA, Lh = 1.8 \muH, Rd = 230 ohms

Parameter	Test Conditions	Min.	Max.	Units
Write Current Range	—	35	70	mA
Current Gain	Head Current/Iwc	0.95	1.01	
Differential Head Voltage Swing	_	10.5	-	V(pk)
Unselected Diff. Head Current	—		3	mA (pk)
Data Input Capacitance	per side to GND	_	10	pF
Data Input Resistance		5	-	kΩ.
WC Voltage	_	- 4.5	- 0.5	V
Differential Data Input Voltage	-	300		mV
Data Input Voltage Range	_	- 0.8	+ 0.1	v
Data Input Current	per side	_	100	μΑ

Read Characteristics

Unless otherwise specified: VCC = $6.5 \pm 5\%$, VEE = $-5.2V \pm 5\%$, Lh = 1.8μ H, Rd = 230Ω , f(Data) = 5MHz, RL (DX,DY) = 50Ω to GND (Vin is referenced to VCT)

Parameter	Test Conditions	Min.	Max.	Units
Differential Voltage Gain	Vin = 1mVpp @ 300 kHz	25	60	V/V
Dynamic Range	DC Input Voltage, Vi, Where Gain Falls by 10%. Vin = Vi + $0.5mVpp @ 300kHz$	- 2	2	mV
Bandwidth (– 3db)	$I Zs I < 5\Omega$, Vin = 1mVpp	48		MHz
Input Noise Voltage	Bw = 15 MHz, Vin = 0.0 VDC, Lh = 0, Rh = 0 $Lh = 0, \text{ Rh} = 115 \Omega \text{ per side}$		2.4 3.3	nV/√Hz nV/√Hz
Differential Input Capacitance	Vin = 0.0 VDC		18	pF
Differential Input Resistance	V = 0.0 VDC	1.5		kΩ
Input Bias Current (per side)	Vin = 0.0 VDC		100	μΑ
Common Mode Rejection Ratio	Vcm = 100mVpp @ 12MHz	45	—	dB
Power Supply Rejection Ratio	100mVpp on VCC or VEE	45	—	dB
Channel Separation	Unselected Channels: Vin = 100mVpp @ 12MHz and Selected Channel: Vin = 0mVpp	34		dB
Input Offset Voltage		- 10	+ 10	mV
Common Mode Output Voltage	—	- 1.3	- 0.2	V
Single Ended Output Resistance	_	5		kΩ
Single Ended Output Capacitance		—	10	pF
WC Voltage	IWC = 70mA	- 3.2	- 0.4	VDC
Total Head Input Current (IVCT)	IWC = 0	- 500	+ 500	μΑ

Switching Characteristics

Unless otherwise specified; VCC = $6.5 \pm 5\%$, VEE = $-5.2V \pm 5\%$, Tj = 25 °C, IW = 70mA, Lh = 1.8μ H, Rd = 230Ω , f (Data) = 5MHz.

Parameter	Test Conditions	Min.	Max.	Units
R/\overline{W} : R/\overline{W} to Write R/\overline{W} to Read	Delay to 90% of Write Current Delay to 90% of 100mV 10MHz Read Signal Envelope or to 90% Decay of Write Current		0.6 0.6	μS μS
CS: CS to Select CS to Unselect	Delay to 90% of Write Current or to 90% of 100mV 10MHz Read Signal Envelope Delay to 90% Decay of Write Current	_	0.6 0.6	μs μs
HS0 HS1 to any Head HS2	Delay to 90% of 100mV 10MHz Read Signal Envelope	_	0.25	μs
WUS: Safe to Unsafe — TD1 Unsafe to Safe — TD2	Iw = 70mA Iw = 35mA	0.4	4.0 1.0	μS
Head Current: Prop Delay — TD3 Asymmetry Rise/Fall Time	Lh = 0 H, Rh = 25 ohms per side From 50% Points 2 nS Max Input Switching 10% — 90% Points		19 2 15	nS nS nS

con systems

14351 Myford Road, Tustin, CA 92680 (714) 731-7110, TWX 910-595-2809

Timing Diagrams

The "PRELIMINARY" designation on an SSi data sheet indicates that the product is not yet released for production. The specifications are subject to change, are based on design goals or preliminary part evaluation, and are not guaranteed. SSi should be consulted for current information before using this product. No responsibility is assumed by SSi for its use; nor for any infringements of patents and trademarks or other rights of third parties resulting from its use. No license is granted under any patents, patent rights or trademarks of SSi. SSi reserves the right to make changes in specifications at any time and without notice.

SSI 115 Winchester Read/Write Circuit

FEATURES

- Electrically compatible with 8 inch and 5-1/4 inch Winchester disk drive magnetic recording heads.
- · Supports up to five recording heads per circuit.
- Detects and indicates unsafe write conditions.
- · On-chip current diverter eliminates the need for

external write current switching.

- · Control signals are TTL compatible.
- Operates on standard + 5 volt and 5 volt (or - 5.2 volt) power sources.

DESCRIPTION

The SSI 115 is a monolithic bipolar integrated circuit designed for use with 8 inch and 5-1/4 inch Winchester disk drive magnetic recording heads. The circuit interfaces with up to five magnetic recording heads providing the required read/write electronic functions as well as various control and data protect functions. The

circuit operates on +5 volt and -5 volt (or -5.2 volt) power and is available in a variety of packages. The 115/24 is a 5 channel circuit available in both flatpack and dip packages. The 115/22 is a 4 channel circuit packaged in a 22 pin dip and the 115/18 is a 2 channel circuit offered in a 18 pin dip package.

SSI 115 Winchester **Read/Write Circuit**

CIRCUIT OPERATION

WRITE MODE

With both the chip enable and write select signals activated, the SSI 115 is switched to the write mode and the circuit operates as a differential current switch. The center tap head voltage (VCT) is turned on, the unsafe circuit detector is activated, and the current diverter is disabled. The head select signals (HS1, HS2, HS3) select one of five differential current switches. The selected current switch senses the polarity of the data input signal (Dx - Dy) and gates write current to the corresponding side of the head (HN1 or HN2). Head overshoot voltages that occur during normal write operation are sensed to determine safe or unsafe head circuit conditions. The detector senses the following unsafe conditions - no data transitions, head open, or no write current.

READ MODE

With chip enable active and write select disabled, the SSI 115 is switched to the read mode and the circuit operates as a differential amplifier. The center tap head voltage is turned off, the unsafe circuit detector is deactivated, and the write current diverter is enabled. The differential head input signal (HN1-HN2), selected by the head select signals, is amplified by a differential read amplifier and appears as a differential output signal on the data lines (Dx, Dy).

During the read and idle modes, the on-chip current diverter circuit prevents write current from flowing in the head circuits. Therefore, external gating of the write current source is not required.

ABSOLUTE MAXIMUM RATINGS

Positive Supply Voltage, VCC	. 6V
Negative Supply Voltage, VEE	-6V
Write Current (IWC) 70	mA 🛛
Operating Junction Temperature 25°C to 13	35°C
Storage Temperature65°C to 15	50°C
Lead Temperature (Soldering, 10 SEC) 26	30°C

Input Voltages

Head Select (HS)0.4V to VCC +0.3V
Unsafe (US) (IHUS \leq 15mA)0.3V to VCC +0.3V
Write Current (WC) Voltage in
read idle modes. (Write mode must
be current limited to -70mA) VEE -0.3V to 0.3V
Data (Dx, Dy) VEE to 0.3V
Chip Enable (\overline{CE}) $-0.4V$ to VCC $+0.3V$
Write Select (\overline{WS})0.4V to VCC +0.3V

RECOMMENDED OPERATING CONDITIONS

VCC	5V	IWC	-45mA
VEE	2)V	LH	10 <i>µ</i> h

POWER SUPPLY

ELECTRICAL CHARACTERISTICS Unless otherwise specified, 4.75 < VCC < 5.25V, -5.5V < VEE < -4.75V $25^{\circ}C < T$ (Junction) $< 135^{\circ}C$.

Parameter	Test Conditions	Min.	Max.	Units
Total Power Dissipation (PD)	Write Mode, IWC≤45mA, TJ≥125°C		700	mW
Positive Supply Current (ICC)	Read/Write Mode		35 + IWC	mA
Positive Supply Current (ICC)	Idle Mode		10	mA
Negative Supply Current (IEE)	Read/Write Mode	-65		mA
Negative Supply Current (IEE)	Idle Mode	-10		mA

LOGIC SIGNALS

Parameter	Test Conditions	Min.	Max.	Units
Chip Enable Low Voltage (VLCE)	Read or Write Mode	-0.3	0.8	V
Chip Enable Low Current (ILCE)	VLCE = 0V	-2.4		mA
Chip Enable High Current (IHCE)	Idle Mode	-250		μΑ
Write Select Low Voltage (VLWS)	Write or Idle Mode	-0.3	0.8	V
Write Select Low Current (ILWS)	VLWS = 0V	-3.2		mA

LOGIC SIGNALS (Cont.)

Parameter	Test Conditions	Min.	Max.	Units
Write Select High Current (IHWS)	Read or Idle Mode	-250		μΑ
Head Select High Level Voltage (VHHS)		2.0	VCC	V
Head Select High Level Current (IHHS)	VHHS = VCC		100	μA
Head Select Low Level Voltage (VLHS)		-0.3	0.8	V
Head Select Low Level Current (ILHS)	VLHS = 0V	-0.6		mA
Unsafe Low Level Voltage (VLUS)*	ILUS = 8mA (Denotes Unsafe Condition)		0.5	V
Unsafe High Level Current (IHUS) *	VHUS = 5.0V (Denotes Safe Condition)		100	μΑ

*Note: Unsafe is an open collector output.

READ	MODE:	Tests	performed	with	50 lo	ad resi	stors f	from	Dx	and	Dy to	ground.
			p								- ,	9.00.000

Parameter	Test Conditions	Min.	Max.	Units
Input Common Mode Range		-0.6	0.1	V
Total Input Bias Current	$-0.6V \leq Vin \leq 0.1V$		60	μA
Differential Voltage Gain	Vin = 1mVpp, f = 300kHz	26	52	V/V
Voltage Bandwidth (-3dB)	$Zs \leq 10\Omega$, Vin = 1mVpp, fmidband = 300kHz	30		MHz
Input Noise Voltage	Zs = 0, $Vin = 0V$, Power Bandwidth = 15MHz		7	µ∨rms
Differential Input Capacitance	Vin = 0, f = 5MHz		20	pF
Differential Input Resistance (Internal Damping Resistor)	Vin = 0, f = 300kHz	560	1070	Ω
Output Offset Voltage			120	mV
Differential Head Current	IWC = 45mA, LH = 10μ H, f = 2MHz		2	mAp
Output Common Mode Voltage		-0.4	125	V
Single Ended Output Resistance	f = 300kHz	10		kΩ
Single Ended Output Capacitance			10	pF
Dynamic Range	DC input voltage where the AC gain falls to 90% of its 0VDC input value (Measured with 0.5mVpp AC input voltage)	2		mVp
Common Mode Rejection Ratio	Vin = 100mVpp, 0VDC, f = 5MHz	50		dB
Power Supply Rejection Ratio	△VCC or △VEE, 100 mVpp, f=5MHz	45		dB
Channel Separation	The 4 unselected channels are driven with $Vin = 100mVpp$, $f = 5MHz$	45		dB
Write Current Voltage	IWC = 45mA	-2.7	-0.5	V
Total Head Input Current	IWC = 0		200	μΑ

WRITE MODE

Parameter	Test Conditions	Min.	Max.	Units
Current Gain (IH/IWC)	IWC = 45mA, IH ≙ Head Current	0.95	1.0	
Write Current Pin Voltage	IWC = 45mA	-3.7	-1.5	V
Center Tap Head Voltage (VCT)	IWC – 45mA	3.0	VCC-0.5	V
Differential Head Voltage Swing	$3.0 \le VCT \le VCC - 0.5V$ IWC = 45mA, LH = 10 μ H	5.7	7.7	V
Differential Data Voltage (Dx-Dy)		.175		V
Single Ended Data Input Voltage (Dx, Dy)		-0.9	0.1	V
Data Input Current	$-0.9 \leq VDx, VDy \leq 0.1$	-10	50	μA
Data Input Differential Resistance	f = 300kHz	5		kΩ
Data Input Capacitance			10	рF
Unselected Diff. Head Current	IWC = 45mA, LH = 10μ H, f = 2MHz		2	mAp
Write Current Range		30	50	mA
Total Head Input Current	IWC = 0		500	μA

IDLE MODE

Parameter	Test Conditions	Min.	Max.	Units
Write Current Pin Voltage	IWC = 45mA	VEE		V
Differential Head Current	$IWC = 45mA$, $LH = 10\mu H$, $f = 2MHz$		2	mAp
Total Head Input Current	IWC = 0		500	μA

SWITCHING CHARACTERISTICS

Parameter	Test Conditions	Min.	Max.	Units
Idle to Read/Write Transition Time			0.6	μS
Read/Write to Idle Transition Time			0.6	μS
Read to Write Transition Time	$0 \leq VLCE \leq 0.8V$ (Circuit Enabled)		0.6	μS
Write to Read Transition Time	$0 \leq VLCE \leq 0.8V$ (Circuit Enabled)		0.6	μS
Head Select Switching Delay Time			0.25	μS
Head Current Transition Time	(10% to 90% points) IWC = 45mA, LH = 0H, RH = 0 Ω		15	nS
Head Current Switching Delay Time (TD ₁ , TD ₂)	IWC = 45mA, LH = 0H, RH = 0 Ω f = 5MHz (see figure 1)		19	nS
Head Current Switching Hysteresis TH = (TD ₁ -TD ₂)	IWC = 45mA, LH = 0H, RH = 0 Ω f = 5MHz (VDx-VDy) Rise Time = 2nS (see figure 1)		3	nS
Unsafe to Safe Delay After Write Data Begins (TD ₃)	IWC = 30mA, LH = 10μ H f = 2MHz (see figure 2A)		1.0	μS
Safe to Unsafe Delay (TD ₄)	$LH = 10\mu H, f = 2MHz$ IWC = 45mA (see figure 2B)	1.6	8.0	μS

HEAD SELECT TABLE

Head Selected	HS1	HS2	HS3
0	0	0	0
1	1	0	0
2	0	1	0
3	1	1	0
4	0	0	1

Note: Invalid Head Select input codes (5, 6 and 7) have the effect of not selecting any heads.

silicon systems INNOVATORS IN INTEGRATION

SSI 117 – Series 2, 4, or 6-Channel Read/Write Circuits

Data Sheet

GENERAL DESCRIPTION

The SSI 117 devices are bipolar monolithic integrated circuits designed for use with center-tapped ferrite recording heads. They provide a low noise read path, write current control, and data protection circuitry for as many as six channels. The SSI 117 requires + 5V and + 12V power supplies and is available in 2, 4, or 6 channel versions with a variety of packages.

FEATURES

- + 5V, + 12V power supplies
- · Single- or multi-platter Winchester drives
- · Designed for center-tapped ferrite heads
- Programmable write current source
- Available in 2, 4, or 6 channels
- · Easily multiplexed for larger systems
- Includes write unsafe detection
- TTL compatible control signals

SSI 117 Block Diagram

Circuit Operation

The SSI 117 functions as a write driver or as a read amplifier for the selected head. Head selection and mode control are described in Tables 2 & 3. Both $R\overline{W}$ and \overline{CS} have internal pull up resistors to prevent an accidental write condition.

WRITE MODE

The Write mode configures the SSI 117 as a current switch and activates the Write Unsafe Detector. Head current is toggled between the X- and Y-side of the recording head on the falling edges of WDI, Write Data Input. Note that a preceding read operation initializes the Write Data Flip Flop, WDFF, to pass current through the X-side of the head. The magnitude of the write current, given by

Iw = K/Rwc, where K = Write Current Constant

is set by the external resistor, Rwc, connected from pin WC to GND.

Any of the following conditions will be indicated as a high level on the Write Unsafe, WUS, open collector output.

- Head open
- · Head center tap open
- WDI frequency too low
- Device in Read mode
- Device not selected
- No write current

After the fault condition is removed, two negative transitions on WDI are required to clear WUS.

READ MODE

In the Read mode the SSI 117 is configured as a low noise differential amplifier, the write current source and the write unsafe detector are deactivated, and the write data flip flop is set. The RDX and RDY outputs are driven by emitter followers and are in phase with the "X" and "Y" head ports.

Note that the internal write current source is deactivated for both the Read and the chip deselect mode. This eliminates the need for external gating of the write current source.

Symbol	Name — Description
HS0 - HS2	Head Select: selects up to six heads
CS	Chip Select: a low level enables device
R/W	Read/Write: a high level selects Read mode
WUS	Write Unsafe: a high level indicates an unsafe writing condition
WDI	Write Data In: a negative transition toggles the direction of the head current
H0X – H5X H0Y – H5Y	X, Y head connections
RDX, RDY	X, Y Read Data: differential read signal out
WC	Write Current: used to set the magnitude of the write current
VCT	Voltage Center Tap: voltage source for head center tap
VCC	+ 5V
VDD1	+ 12V
VDD2	Positive power supply for the Center Tap voltage source
GND	Ground

TABLE 1: PIN DESCRIPTIONS

TA	BL	E	2:	М	O	DE	: S	E	LE	C1	-

CS	R/W	MODE
0	0	Write
0	1	Read
1	X	ldle

TABLE 3: HEAD SELECT

HS2	HS1	HS0	HEAD
0	0	0	0
0	0	1	1
0	1	0	2
0	1	1	3
1	0	0	4
1	0	1	5
1	1	Х	none

0 = Low level

1 = High level

X = Don't care

SSI 117 - Series

ABSOLUTE MAXIMUM RATINGS

(All voltages referenced to GND)

Parameter	Symbol	Value	Units
DC Supply Voltage	VDD1 VDD2	-0.3 to +14 -0.3 to +14	VDC VDC
	VCC	-0.3 to $+6$	VDC
Digital Input Voltage Range	Vin	-0.3 to VCC + 0.3	VDC
Head Port Voltage Range	VH	- 0.3 to VDD + 0.3	VDC
WUS Port Voltage Range	Vwus	– 0.3 to + 14	VDC
Write Current	IW	60	mA
Output Current: RDX, RDY VCT WUS	ю	- 10 - 60 + 12	mA mA mA
Storage Temperature Range Junction Temperature Range Lead Temperature (10 sec Soldering)	Tstg Tj	- 65 to + 150 + 25 to + 125 260	0° 0° 0°

RECOMMENDED OPERATING CONDITIONS

Parameter	Symbol	Value	Units
DC Supply Voltage	VDD1	12 ± 10%	VDC
	VDD2	6.5 to VDD1	VDC
	VCC	5 ± 10%	VDC
Head Inductance	Lh	5 to 15	μН
Damping Resistor	RD	500 to 2000	ohms
RCT Resistor	RCT	130 ± 5% (1/2 watt)	ohms
Write Current	IW	25 to 50	mA
RDX, RDY Output Current	lo	0 to 100	μΑ

DC CHARACTERISTICS

Unless otherwise specified VDD1 = 12V \pm 10%, VCC = 5V \pm 10%, + 25 $^{\circ}C < Tj <$ + 125 $^{\circ}C.$

Parameter	Test Conditions	Min.	Max.	Units
VCC Supply Current	Read/Idle Mode		25	mA
	Write Mode	-	30	mA
VDD Supply Current	Idle Mode	_	25	mA
	Read Mode		50	mA
	Write Mode	—	30 + IW	mA
Power Dissipation	$Tj = +125 ^{\circ}C$			
	Idle Mode	-	400	mW
	Read Mode	-	600	mW
	Write Mode, IW = 50mA, RCT = 130Ω	-	700	mW
	Write Mode, IW = 50mA, RCT = 0Ω	—	1050	mW
Digital Inputs:				
Input Low Voltage (VIL)		- 0.3	0.8	VDC
Input High Voltage (VIH)		2.0	VCC + 0.3	VDC
Input Low Current	$V_{IL} = 0.8V$	- 0.4		mA
Input High Current	$V_{IH} = 2.0V$		100	μ^{A}
WUS Output VOL	IOL = 8mA		0.5	VDC
ЮН	$V_{OH} = 5.0V$		100	μ A
Center Tap Voltage (VCT)	Read Mode	4.0	(typ)	VDC
	Write Mode	6.0	(typ)	VDC

SSI 117 - Series

WRITE CHARACTERISTICS

Unless otherwise specified: VDD1 = $12V \pm 10\%$, VCC = $5V \pm 10\%$, IW = 45mA, Lh = 10μ H, Rd = 750Ω , f (Data) = 5MHz, CL (RDX, RDY) ≤ 20 pF.

Parameter	Test Conditions	Min.	Max.	Units
Write Current Range		10	50	mA
Write Current Constant "K"	· · · · · · · · · · · · · · · · · · ·	133	147	V
Differential Head Voltage Swing		5.7	_	V (pk)
Unselected Diff. Head Current			2	mA (pk)
Differential Output Capacitance		·	15	pF
Differential Qutput Resistance		10k		Ω
WDI Transition Frequency	WUS = low	125	_	KHz
Iwc to Head Current Gain		20 (typ)	-

READ CHARACTERISTICS

Unless otherwise specified: VDD1 = $12V \pm 10\%$, VCC = $5V \pm 10\%$, IW = 45mA, Lh = 10μ H, Rd = 750Ω , f (Data) = 5MHz, CL (RDX, RDY) ≤ 20 pF. (Vin is referenced to VCT)

Parameter	lest Conditions	Min.	Max.	Units	
Differential Voltage Gain	Vin = 1mVpp @ 300kHz RL (RDX), RL (RDY) = 1kohm	80	120	V/V	
Dynamic Range	DC Input Voltage, Vi, Where Gain Falls by 10%. Vin = Vi + $0.5mVpp @ 300kHz$	- 2	2	mV	
Bandwidth (– 3db)	$ Zs < 5\Omega$, Vin = 1mVpp	30	-	MHz	
Input Noise Voltage	BW = 15MHz, Lh = 0, Rh = 0	—	2.1	nV/ √ Hz	
Differential Input Capacitance	f = 5MHz	—	23	pF	
Differential Input Resistance	f = 5 MHz	2 k		Ω	
Input Bias Current			45	μΑ	
Common Mode Rejection Ratio	Vcm = VCT + 100mVpp @ 5MHz	50	—	db	
Power Supply Rejection Ratio	100mVpp @ 5MHz on VDD1, VDD2, or VCC	45	_	db	
Channel Separation	Unselected Channels: Vin = 100mVpp @ 5MHz and Selected Channel: Vin = 0mVpp	45		db	
Output Offset Voltage		- 480	+ 480	mV	
Common Mode Output Voltage		5	7	V	
Single Ended Output Resistance	f = 5MHz	-	30	Ω	

SWITCHING CHARACTERISTICS

Unless otherwise specified: VDD1 = $12V \pm 10\%$, VCC = $5V \pm 10\%$, Tj = 25 °C, IW = 45mA, Lh = 10μ H, Rd = 750Ω , f (Data) = 5MHz.

	Parameter	Test Conditions	Min.	Max.	Units
R/W:	R/W to Write	Delay to 90% of Write Current	_	1.0	μS
	R/W to Read	Delay to 90% of 100mV 10MHz Read Signal Envelope or to 90% Decay of Write Current	_	1.0	μS
CS :	CS to Select	Delay to 90% of Write Current or to 90% of 100mV 10MHz Read Signal Envelope	—	1.0	μS
	CS to Unselect	Delay to 90% Decay of Write Current	-	1.0	μS
HS0 HS1 HS2	to any Head	Delay to 90% of 100mV 10MHz Read Signal Envelope	—	1.0	μS
WUS:	Safe to Unsafe – TD1 Unsafe to Safe – TD2	Iw = 50mA Iw = 20mA	1.6	8.0 1.0	μS μS

SWITCHING CHARACTERISTICS (cont'd)

Parameter	Test Conditions	Min.	Max.	Units
Head Current: Prop. Delay – TD3	Lh = 0μ H, Rh = 0Ω From 50% Points	_	25	nS
Asymmetry	WDI has 50% Duty Cycle and 1ns Rise/Fall Time	_	2	nS
Rise/Fall Time	10% — 90% Points	-	20	nS

WRITE MODE TIMING DIAGRAM

Note 1: An external 1/2 watt resistor, RCT, given by:

RCT = 130 (55/lw) ohms, where lw is in mA

can be used to limit internal power dissipation. Otherwise connect VDD2 to VDD1.

Note 2: A ferrite bead (Ferroxcube 5659065/4A6) can be used to suppress write current overshoot and ringing induced by flex cable parasitics. Note 3: Limit current from RDX and RDY to 100uA and load capacitance to 20pF.
on systems 14351 Myford Road, Tustin, CA 92680 (714) 731-7110, TWX 910-595-2809

SSI 117 Pin Assignments

28-LEAD	
CDIP	52°C/W
PDIP	80°C/W
FLAT PACK	TBD
QUAD	77°C/W
24-LEAD	
FLAT PACK	144°C/W
22-LEAD	
CDIP	58°C/W
PDIP	100°C/W
18-LEAD	
CDIP	60°C/W
PDIP	115°C/W

No responsibility is assumed by SSi for use of this product nor for any infringements of patents and trademarks or other rights of third parties resulting from its use. No license is granted under any patents, patent rights or trademarks of SSi. SSi reserves the right to make changes in specifications at any time and without notice.

.

licon systems INNOVATORS IN INTEGRATION

SSI 501/502 8 Channel Read/Write Circuit

Data Sheet

GENERAL DESCRIPTION

The SSI 501/502 devices are bipolar monolithic integrated circuits designed for use with center-tapped ferrite recording heads. They provide a low noise read path, write current control, and data protection circuitry for eight channels. The SSI 501/502 requires + 5V and + 12V power supplies and is available in a variety of packages. The SSI 502 differs from the SSI 501 by having internal damping resistors.

FEATURES

- + 5V, + 12V power supplies
- Single- or multi-platter Winchester drives
- Designed for center-tapped ferrite heads
- Programmable write current source
- · Easily multiplexed for larger systems
- · Includes write unsafe detection
- TTL compatible control signals

SSI 501/502 Block Diagram

Circuit Operation

The SSI 501/502 functions as a write driver or as a read amplifier for the selected head. Head selection and mode control are described in Tables 2 & 3. Both R/W and \overline{CS} have internal pull up resistors to prevent an accidental write condition.

WRITE MODE

The Write mode configures the SSI 501/502 as a current switch and activates the Write Unsafe Detector. Head current is toggled between the X- and Y-side of the recording head on the falling edges of WDI, Write Data Input. Note that a preceding read operation initializes the Write Data Flip Flop, WDFF, to pass current through the X-side of the head. The magnitude of the write current, given by

Iw = K/Rwc, where K = Write Current Constant

is set by the external resistor, Rwc, connected from pin WC to GND.

Any of the following conditions will be indicated as a high level on the Write Unsafe, WUS, open collector output.

- · Head open
- Head center tap open
- WDI frequency too low
- · Device in Read mode
- Device not selected
- No write current

After the fault condition is removed, two negative transitions on WDI are required to clear WUS.

READ MODE

In the Read mode the SSI 501/502 is configured as a low noise differential amplifier, the write current source and the write unsafe detector are deactivated, and the write data flip flop is set. The RDX and RDY outputs are driven by emitter followers and are in phase with the "X" and "Y" head ports.

Note that the internal write current source is deactivated for both the Read and the chip deselect mode. This eliminates the need for external gating of the write current source.

TABLE 1: PIN DESCRIPTIONS

Symbol	Name — Description
HS0 - HS2	Head Select
CS	Chip Select: a low level enables device
R/W	Read/Write: a high level selects Read mode
WUS	Write Unsafe: a high level indicates an unsafe writing condition
WDI	Write Data In: a negative transition toggles the direction of the head current
H0X - H7X H0Y - H7X	X, Y head connections
RDX, RDY	X, Y Read Data: differential read signal out
WC	Write Current: used to set the magnitude of the write current
VCT	Voltage Center Tap: voltage source for head center tap
VCC	+ 5V
VDD1	+ 12V
VDD2	Positive power supply for the Center Tap voltage source
GND	Ground

TABLE 2: MODE SELECT

CS	R/W	MODE
0	0	Write
0	<u>`</u> 1	Read
1	Х	Idle

TABLE 3: HEAD SELECT

HS2	HS1	HS0	HEAD
0	0	0	0
0	0	1	1
0	1	0	2
0	1	1	3
1	0	0	4
1	0	1	5
1	1	0	6
1	1	1	7

0 = Low level

1 = High level

ABSOLUTE MAXIMUM RATINGS

(All voltages referenced to GND)

Parameter	Symbol	Value	Units
DC Supply Voltage	VDD1 VDD2 VCC	$ \begin{array}{r} -0.3 \text{ to } +14 \\ -0.3 \text{ to } +14 \\ -0.3 \text{ to } +6 \end{array} $	VDC VDC VDC
Digital Input Voltage Range	Vin	-0.3 to VCC +0.3	VDC
Head Port Voltage Range	VH	-0.3 to VDD +0.3	VDC
WUS Port Voltage Range	Vwus	- 0.3 to + 14	VDC
Write Current	IW	60	mA
Output Current: RDX, RDY VCT WUS	ю	- 10 - 60 + 12	mA mA mA
Storage Temperature Range Junction Temperature Range Lead Temperature (10 sec Soldering)	Tstg Tj	- 65 to + 150 + 25 to + 135 260	ວ° ວິ

RECOMMENDED OPERATING CONDITIONS

Parameter	Symbol	Value	Units	
DC Supply Voltage	VDD1	12 ± 10%	VDC	
	VDD2	6.5 to VDD1	VDC	
	VCC	$5 \pm 10\%$	VDC	
Head Inductance	Lh	5 to 15	μ H	
External Damping Resistor	RD (501 Only)	500 to 2000	ohms	
RCT Resistor	RCT	120 ± 5% (1/2 watt)	ohms	
Write Current	IW	22 to 50	mA	
RDX, RDY Output Current	lo	0 to 100	μΑ	

DC CHARACTERISTICS

Unless otherwise specified VDD1 = 12V \pm 10%, VCC = 5V \pm 10%, + 25 °C <Tj< + 135 °C.

Parameter	Test Conditions	Min.	Max.	Units
VCC Supply Current	Read/Idle Mode		25	mA
	Write Mode		25	mA
VDD Supply Current	Idle Mode	_	20	mA
	Read Mode	—	35	mA
	Write Mode	—	20 + IW	mA
Power Dissipation	Tj = +135℃			
	Idle Mode		400	mW
	Read Mode	- 1	600	mW
	Write Mode, IW = 50mA, RCT = 120Ω		760	mW
	Write Mode, IW = 50mA, RCT = 0Ω	—	1060	mW
Digital Inputs:				
Input Low Voltage (VIL)		- 0.3	0.8	VDC
Input High Voltage (VIH)		2.0	VCC + 0.3	VDC
Input Low Current	$V_{IL} = 0.8V$	- 0.4		mA
Input High Current	$V_{IH} = 2.0V$		100	μ^{A}
WUS Output VOL	IOL= 8mA	_	0.5	VDC
ЮН	$V_{OH} = 5.0V$	_	100	μ A
Center Tap Voltage (VCT)	Read Mode	4.0	(typ)	VDC
	Write Mode	6.0	(typ)	VDC

WRITE CHARACTERISTICS

Unless otherwise specified: VDD1 = $12V \pm 10\%$, VCC = $5V \pm 10\%$, IW = 45mA, Lh = 10μ H, Rd = 750Ω (SSI 501 only), f (Data) = 5MHz, CL (RDX, RDY) ≤ 20 pF.

Parameter	Test Conditions	Min.	Max.	Units
Write Current Range		10	50	mA
Write Current Constant "K"		129	151	V
Differential Head Voltage Swing		5.7	_	V (pk)
Unselected Diff. Head Current	$5,\mu$ H \leq Lh \leq 9.5 μ H	_	2	mA (pk
Differential Output Capacitance		_	15	pF
Differential Output Resistance		10k		Ω
WDI Transition Frequency	WUS = low	125	_	KHz
lwc to Head Current Gain		20	(typ)	

READ CHARACTERISTICS

Unless otherwise specified: VDD1 = $12V \pm 10\%$, VCC = $5V \pm 10\%$, IW = 45mA. Lh = 10μ H, Rd = 750Ω , f (Data) = 5MHz, CL (RDX, RDY) ≤ 20 pF. (Vin is referenced to VCT)

Parameter	Test Conditions		Min.	Max.	Units
Differential Voltage Gain	Vin = 1mVpp @ 300kHz RL (RDX), RL (RDY) = 1kohm (A	C Coupled)	80	120	V/V
Dynamic Range	DC Input Voltage, Vi, Where Gair 10%. Vin = Vi + 0.5mVpp @ 30	n Falls by 0kHz	- 3	3	mV
Bandwidth (– 3db)	$ Zs < 5\Omega$, Vin = 1mVpp		30	_	MHz
Input Noise Voltage	BW = 15MHz, Lh = 0, Rh = 0			8	μVrms
Differential Input Capacitance	f = 5MHz	- 10. M - 10		23	рF
Differential Input Resistance	f = 5 MHz Vin ≤6mVpp	SSI 501	2k		Ω
<u></u>	SSI 502		460	860	
Input Bias Current				45	μA
Common Mode Rejection Ratio	Vcm = VCT + 100mVpp @ 5MHz		50	_	db
Power Supply Rejection Ratio	100mVpp @ 5MHz on VDD1, VDD2, or VCC		45		db
Channel Separation	Unselected Channels: Vin = 100mVpp @ 5MHz and Selected Channel: Vin = 0mVpp		45		db
Output Offset Voltage			- 600	+ 600	mV
Common Mode Output Voltage			5	7	V
Single Ended Output Resistance	f = 5MHz			30	Ω
External Resistive Load (AC Coupled to Output)	Per Side to GND		100		Ω
Output Current Per Side	1.0 < RDX, RDY < 8.0V Write or Ic	le Mode	-50	50	μΑ
Center Tap Output Impedance	0≤f≤5 MHz			150	Ω

SWITCHING CHARACTERISTICS

Unless otherwise specified: VDD1 = $12V \pm 10\%$, VCC = $5V \pm 10\%$, Tj = 25 °C, IW = 45mA, Lh = 10μ H, Rd = 750Ω , f (Data) = 5MHz.

	Parameter	Test Conditions	Min.	Max.	Units
R/W:	R/W to Write	Delay to 90% of Write Current		1.0	μS
	R/W to Read	Delay to 90% of 100mV 10MHz Read Signal Envelope or to 90% Decay of Write Current	-	1.0	μS
CS :	CS to Select	Delay to 90% of Write Current or to 90% of 100mV 10MHz Read Signal Envelope		1.0	μS
	CS to Unselect	Delay to 90% Decay of Write Current	_	1.0	μS
HS0 HS1 HS2	to any Head	Delay to 90% of 100mV 10MHz Read Signal Envelope	_	1.0	μS
WUS:	Safe to Unsafe – TD1 Unsafe to Safe – TD2	Iw = 50mA Iw = 20mA	1.6	8.0 1.0	μS μS

SWITCHING CHARACTERISTICS (cont'd)

Parameter	Test Conditions	Min.	Max.	Units
Head Current: Prop. Delay – TD3	Lh = 0μ H, Rh = 0Ω From 50% Points		25	nS
Asymmetry	WDI has 50% Duty Cycle and 1ns Rise/Fall Time	_	2	nS
Rise/Fall Time	10% — 90% Points	_	20	nS

WRITE MODE TIMING DIAGRAM

can be used to limit internal power dissipation. Otherwise connect VDD2 to VDD1.

Note 2: A ferrite bead (Ferroxcube 5659065/4A6) can be used to suppress write current overshoot and ringing induced by flex cable parasitics. Note 3: Limit current from RDX and RDY to 100uA and load capacitance to 20pF.

Note 4: Damping resistors required on SSI 501 only.

on systems

14351 Myford Road, Tustin, CA 92680 (714) 731-7110, TWX 910-595-2809

SSI 501/502 Pin Assignments

No responsibility is assumed by SSi for use of this product nor for any infringements of patents and trademarks or other rights of third parties resulting from its use. No license is granted under any patents, patent rights or trademarks of SSi. SSi reserves the right to make changes in specifications at any time and without notice.

licon systems INNOVATORS IN INTEGRATION

Thin Film - 4-Channel Read/Write Circuit SSI 114

Preliminary Data Sheet

SSI 114 Block Diagram

SSI 114 Pin Out

FEATURES

- Thin film head compatible performance
- Four Read/Write Channels
- TTL compatible logic levels

 Operates on standard +5 volt and -5 volt power supplies

DESCRIPTION

The SSI 114 is an integrated read/write circuit designed for use with non-center tapped thin film heads in disk drive systems. Each chip controls four heads and has three modes of operation: read, write, and idle. The circuit contains four channels of read amplifiers and write drivers and also has an internal write current source.

A current monitor (IMF) output is provided that

allows a multichip enable fault to be detected. An enabled chip's output will produce one unit of current. An open collector output, write select verify (WSV), will go low if the write current source transistor is forward biased. The circuit operates on +5 volt, and -5 volt power and is available in a 24 pin flatpack.

CIRCUIT DESCRIPTION

WRITE MODE

In the write mode ($R\overline{W}$ and CE low) the circuit functions as a differential current switch. The Head Select inputs (HS1 and HS2) determine the selected head. The Write Data Inputs (WD, \overline{WD}) determine the polarity of the head current. The write current magnitude is adjustable by an external 1% resistor, R_X , where

$$I_{W} = \frac{K_{W}}{R_{X} (1 + \frac{R_{h}}{R_{d}} + \frac{R_{h}}{1k})} - 0.7 \text{mA}$$

Where K_W = Current Gain Factor = 130 Amp-Ohms

 R_h = Head plus External Wire Resistance

Rd = Damping Resistance

READ MODE

POWER SUPPLY

In the Read Mode, (R/\overline{W} high and CD low), the circuit functions as a differential amplifier. The amplifier input terminals are determined by the Head Select inputs.

ABSOLUTE MAXIMUM RATINGS

Positive Supply Voltage, V _{CC} 6V
Negative Supply Voltage, VFF 6V
Operating Junction Temperature
Storage Temperature – 65 °C to 150 °C
Lead Temperature (Soldering, 10 sec)
Input Voltages
Head Select (HS) $\ldots \ldots - 0.4V$ to V _{CC} + 0.3V
Chip Enable $\overline{(CE)}$
Read Select (R/\overline{W}) 0.4V or - 2mA to V _{CC} + 0.3V
Write Data (WD, WD)VEE to 0.3V
Head Inputs (Read Mode) 0.6V to + 0.4V
Outputs
Read Data (RD, \overline{RD})
Write Unsafe (WUS), $\dots \dots \dots \dots - 0.4V$ to V _{CC} + 0.3V
and 20mA
Write Select Verify (WSV) $\ldots - 0.4V$ to V _{CC} + 0.3V
and 20mA
Current Monitor (IMF) $\dots \dots \dots$
Current Reference (VWC)VEE to VCC + 0.3V
and 8mA
Head Outputs (Write Mode) Iw max = 150 mA
Thermal Characteristics
Flatpack Package $\dots \dots \oplus JA = 144 ^{\circ}C/W(\text{still air})$
$\Theta JA = 30 \circ C/W$

ELECTRICAL CHARACTERISTICS

Unless otherwise specified, 4.75 \leq VCC \leq 5.25, -5.5 \leq VEE \leq -4.95V, 25° \leq T (junction) < 125°C.

Parameter	Test Conditions	Min.	Max.	Units
Power Dissipation	All modes, $25 \leq T_j \leq 100$ $100^\circ \leq T_j \leq 125^\circ C$		612 + 6.7 lw 563 + 6.7 lw	mW mW
Positive Supply Current (ICC)	Idle Mode		10 + lw/19	mA
Positive Supply Current (ICC)	Read Mode	—	40 + Iw/19	mA
Positive Supply Current (ICC)	Write Mode		38 + lw/19	mA
Negative Supply Current (IEE)	Idle Mode	- 12 - lw/19	—	mA
Negative Supply Current (IEE)	Read Mode	- 66 - Iw/19		mA
Negative Supply Current (IEE)	Write Mode	-75-1.16lw		mA

LOGIC SIGNALS

Parameter	Test Conditions	Min.	Max.	Units
Chip Enable Low Voltage (VLCE)	Read or Write Mode		0.8	V
Chip Enable High Voltage (VHCE)	Idle Mode	2.0		V
Chip Enable Low Current (ILCE)	VLCE = 0V	- 1.60		mA
Chip Enable High Current (IHCE)	VHCE = 2.0V	-	- 0.3	mA
Read Select High Voltage (VHR/W)	Read or Idle Mode	2.0		V
Read Select Low Voltage (VLR/W)	Write or Idle Mode	_	0.8	V
Read Select High Current (IHR/W)	VHR/W = 2.0V	_	0.015	mA
Read Select Low Current (ILR/W)	VLR/W = 0V	- 0.15	-	mA
Head Select High Voltage (VHHS)		2.0		۷.
Head Select Low Voltage (VLHS)		_	0.8	V

HEAD SELECT TABLE

Head Selected	HS1	HS2
0	0	0
1	1	0
2	0	1
3	1	1

LOGIC SIGNALS

Parameter	Test Conditions	Min.	Max.	Units
Head Select High Current (IHHS)	VHHS = VCC	_	0.25	mA
Head Select Low Current (ILHS)	VLHS = 0V	- 0.1	0.25	mA
WUS, WSV Low Level Voltage	ILUS = 8mA (denotes safe condition)		0.5	V
WUS, WSV High Level Current	VHUS = $5.0V$ (denotes unsafe condition)		100	μ A
IMF on Current		2.20	3.70	mA
IMF on Current			0.02	mA
IMF Voltage Range		0	VCC + 0.3	V

READ MODE Tests performed with 100 Ω load resistors from RD and $\overline{\text{RD}}$ through series isolation diodes to VCC.

Parameter	Test Conditions	Min.	Max.	Units
Differential Voltage Gain	Vin = 1mVpp, f = 300kHz	75	170	V/V
Voltage Bandwidth (– 3dB)	$Zs < 5\Omega$, Vin = 1mVpp f midband = 300kHz	45	_	MHz
Input Noise Voltage	Zs = 0Ω , Vin = 0V, Power Bandwidth = 15MHz	—	1.1	nV/√Hz
Differential Input Capacitance	Vin = 0V, f = 5MHz		65	pF
Differential Input Resistance	Vin = 0V, f = 5MHz	45	96	Ω
Input Bias Current (per side)	Vin = 0V	—	0.17	mA
Dynamic Range	DC input voltage where AC gain falls to 90% of the gain with .5mVpp input signal	- 3.0	3.0	mV
CMRR	$ \begin{array}{l} \text{Vin} = 100 \text{mVpp, 0V DC} \\ 1 \text{MHz} \leq \text{f} \leq 10 \text{MHz} \\ 10 \text{MHz} \leq \text{f} \leq 20 \text{MHz} \end{array} $	54 48		dB dB
Power Supply Rejection Ratio	VCC or VEE = 100mVpp 1MHz \leq f \leq 10MHz 10MHz \leq f \leq 20MHz	54 36	—	dB dB
Channel Separation	The 3 unselected channels are driven with Vin = 100mVpp 1MHz \leq f \leq 10MHz 10MHz \leq f \leq 20MHz	43 37		dB dB
Output Offset Voltage		- 360	360	mV
Output Leakage Current	Idle Mode	_	0.01	mA
Output Common Mode Voltage		VCC - 1.1	VCC - 0.3	V
Single Ended Output Resistance		10		KΩ
Single Ended Output Capacitance		—	10	pF

WRITE MODE

Parameter	Test Conditions	Min.	Max.	Units
Current Range (Iw)		55	1.10	mA
Current Tolerance	Current set to nominal value by Rx, Rh = $7\Omega \pm 10\%$, Tj = 50 °C, Rd = 59Ω	- 8	+ 8	%
(Iw) (Rh) Product		0.24	1.30	V
Differential Head Voltage Swing	Iw = 100mA, Lh = 0.2 μ H, Rh = 10 Ω	3.8	—	Vpp

Silicon Systems 14351 Myford Road, Tustin, CA 92680 (714) 731-7110, TWX 910-595-2809

WRITE MODE

Parameter	Test Conditions	Min.	Max.	Units
Unselected Head Transient Current	Iw = 100mA, Lh = 0.2 μ H, Rh = 10 Ω , Non adjacent heads tested to minimize external coupling effects	_	2	mAp
Head Differential Load Resistance, Rd		48	97	Ω
Head Differential Load Capacitance		-	30	pF
Differential Data Voltage, (WD—WD)		0.20	—	v
Data Input Voltage Range		- 1.87	+ 0.1	V
Data Input Current (per side)	Chip Enabled		150	μA
Data Input Capacitance	per side to GND		10	pF

SWITCHING CHARACTERISTICS

Parameter	Test Conditions	Min.	Max.	Units
Idle to Read/Write Transition Time			1.0	μS
Read/Write to Idle Transition Time			1.0	μS
Read to Write Transition Time	VLCE = 0.8V, Delay to 90% of Iw		0.6	μS
Write to Read Transition Time	VLCE = 0.8V, Delay to 90% of 20MHz Read Signal envelope, Iw decay to 10%	. —	1.0	μS
Head Select Switching Delay	Read or Write Mode	—	0.40	μS
Shorted Head Current Transition Time	Iw = 100mA, Lh $<$ 0.05 μ H, Rh = 0		13	nS
Shorted Head Current Switching Delay Time	Iw = 100mA, Lh $<$ 0.05 $\mu H,$ Rh = 0, measured from 50% of input to 50% of current change	_	18	nS
Head Current Switching Time Symmetry	Iw = 100mA, Lh = 0.2 μ H, Rh = 10 Ω , WD & WD transitions 2nS, switching time symmetry 0.2nS	—	1.5	nS
WSV Transition Time	Delay from 50% of write select swing to 90% of final WSV voltage, Load = $2K\Omega \parallel 20pF$		1.0	μS
Unsafe to Safe Delay After Write Data Begins (WUS)	f(data) = 10MHz	 	1.0	μS
Safe to Unsafe Delay, (WUS)	Non-switching write data, no write current, or shorted head close to chip	0.6	3.6	μS
Safe to Unsafe Delay, (WUS)	Head open or head select input open		0.6	μS
IMF Switching Time	Delay from 50% of CE to 90% of final IMF current		1.0	μS

The "PRELIMINARY" designation on an SSi data sheet indicates that the product is not yet released for production. The specifications are subject to change, are based on design goals or preliminary part evaluation, and are not guaranteed. SSI should be consulted for current information before us-ing this product. No responsibility is assumed by SSI for its use; nor for any infringements of patents and trademarks or other rights of third parties resulting from its use. No license is granted under any patents, patent rights or trademarks of SSi. SSi reserves the right to make changes in specifications at any time and without notice.

Differential Amplifier SSI 116

Preliminary Data Sheet

FEATURES

- · Narrow gain range
- 50MHz bandwidth
- IBM 3370/3380-compatible performance
- Operates on either IBM-compatible voltages (8.3V) or OEM-compatible (10V)

Junction to Ambient (Oja): 160 °C/W

• Packages include 8-pin CERDIP or Plastic DIP and custom 10-pin flatpack.

GENERAL DESCRIPTION

The SSI 116 is a high performance differential amplifier applicable for use as a preamplifier for the magnetic servo thin film head in Winchester disk drives.

con systems

14351 Myford Road, Tustin, CA 92680 (714) 731-7110, TWX 910-595-2809

ABSOLUTE MAXIMUM RATINGS

Power Supply Voltage (VCC-VEE)	12V
Operating Power Supply Range	7.9V to 10.5V
Differential Input Range	$\ldots \ldots \pm 1V$
Storage Temperature	5°C to 150°C

Operating Ambient Temperature (TA) 15 °C to 60 °C Operating Junction Temperature (TJ) 15 °C to 125 °C Output Voltage.....VCC - 2.0V to VCC + 0.4V

ELECTRICAL CHARACTERISTICS $T_J = 15 \degree C$ to $125 \degree C$, $V_{CC} - V_{EE} = 7.9V$ to 10.5V

Parameter	Test Conditions	Min.	Тур.	Max.	Units
Gain (Differential)	Vin = 1mVpp, $T_A = 25 \degree C$, $F = 1MHz$	200	250	310	mV/mV
Bandwidth (3dB)	$Vin = 1mVpp, C_L = 15 pF$	20	50		MHz
Gain Sensitivity (Supply)	$V_{CC} - V_{EE} = 7.88$ to 10.5V			1.0	%/V
Gain Sensitivity (Temp.)	15°C < T _A < 55°C		- 0.16		%/°C
Input Noise Voltage	Input Referred, $R_S = 0$		0.7	0.94	nV/\sqrt{Hz}
Input Capacitance (Differential)	Vin = 0, f = 5MHz		40	60	pF
Input Resistance (Differential)			200		ohms
Common Mode Rejection Ratio Input Referred	Vin = 100mVpp, f = 1MHz	60	70		dB
Input Signal Level	Common Mode			300	mVpp
Power Supply Rejection Ratio Input Referred	VEE + 100mVpp, f = 1MHz	46	52		dB
Input Dynamic Range (Differential)	DC input voltage where AC gain is 90% of gain with 0.2mVpp input signal			± 0.75	mV
Output Offset Voltage (Differential)	Vin = 0	- 600		600	mV
Output Voltage (Common Mode)	Inputs shorted together and Outputs shorted together	Vcc-0.45	Vcc – 0.6	Vcc – 1.0	V
Single Ended Output Resistance		10			K ohms
Single Ended Output Capacitance				10	рF
Power Supply Current	$V_{CC} - V_{EE} = 9.15V$ $V_{CC} - V_{EE} = 11V$		28 29	40 42	mA
Input DC Voltage	Common Mode		VEE + 2.6		V
Input Resistance	Common Mode		80		ohms

Recommended Operating Conditions	Min.	Тур.	Max.	Units
Supply Voltage (V _{CC} – V _{EE})	7.45 9.0	8.3 10.0	9.15 11.0	V V
Input Signal Vin		1		mVpp
Ambient Temperature T _A	15		65	°C

The "PRELIMINARY" designation on an SSi data sheet indicates that the product is not yet released for production. The specifications are subject to change, are based on design goals or preliminary part evaluation, and are not guaranteed. SSi should be consulted for current information before using this product. No responsibility is assumed by SSi for its use; nor for any infringements of patents and trademarks or other rights of third parties resulting from its use. No license is granted under any patents, patent rights or trademarks of SSi. SSi reserves the right to make changes in specifications at any time and without notice.

icon systems INNOVATORS IN INTEGRATION

SSI 54O Series Read Data Processor

Preliminary Data Sheet

GENERAL DESCRIPTION

The SSI 540 is a bipolar integrated circuit that provides all data processing necessary for detection and qualification of MFM read signals from rigid media. ST506 compatible interfacing is provided for write data signals, head select lines and recovered read data as applicable.

In read mode the SSI 540 provides amplification, differentiation and time domain qualification of head preamplifier outputs. The recovered data is available at the output of a differential line driver that conforms to the ST506 interface specification. In write mode the SSI 540 provides a differential line receiver conforming with ST506 requirements. Schmitt Trigger inputs on head select lines and an open collector output for voltage fault indication are provided for interface compatibility. All other logic inputs and outputs are TTL compatible.

The SSI 540-2 is a dual ground version for use in noisier environments. In order to provide this feature the number of head select lines is reduced to 2.

Two other versions of the SSI 540 are available that offer subsets of the above configurations. The SSI 540-3 has dual grounds and an open-collector RD output instead

of a differential line-driver output. The SSI 540-4 has the same features as the SSI 540-3 but also deletes the head select buffers. The SSI 540-4 is available in a 22-Pin dip.

When used with a read/write preamplifier (i.e. SSI 117 or SSI 501), the SSI 540 or SSI 540-2 and required external passive components perform all read/write signal processing necessary between the heads and the interface connector of an ST506 compatible Winchester disk drive. With the SSI 540-3 and SSI 540-4 a line driver is required.

FEATURES

- Differential Read and Write Ports
- Schmitt Trigger Head Select Inputs for Higher Noise
 Immunity
- Programmable Gain
- Time Domain Pulse Qualification Supports MFM Encoded Data Retrieval
- Supply Voltage Fault Detection
- + 12 Volt and + 5 Volt Power Supplies
- I/O Meets ST506 Requirements
- Dual-In-Line and Surface Mount Packages Available
- Adjustible Time Domain Filter and Output Pulse Width Settings

SS1 540-1, -2, -3 Block Diagram

CAUTION: Use handling procedures necessary for a static sensitive component

Circuit Operation

In both read and write modes, Schmitt Trigger inputs are used to buffer the three head select lines providing the increased noise immunity required of a ST506 interface. A power supply monitoring function, VFLTB, is provided to flag a low voltage fault condition if either supply is low. A low voltage fault condition results in a low level output on the VFLTB pin.

READ MODE

In the read mode (MODE input high) the read signal is detected, time domain qualified and made available at RD + and RD – as differential MFM encoded data, or at the RD + open collector output. This is accomplished by the on-board Amplifier, Differentiator, Zero Crossing Detector, Time Domain Filter, Output One Shot and Line Driver circuits.

The amplified and filtered read back signal, which contains pulses corresponding to magnetic transitions in the media is AC coupled into the input amplifier. A resistor, Rg, connected between pins G + and G - is used to adjust the 1st stage amplifier gain according to the following expression.

$$Av_1 = \frac{680}{17 + Rx}$$
 Where $Rx = \frac{94 \times (Rg + 42)}{230 + Rg}$

First stage gain can be monitored at the DIF + and DIF - pins.

The amplifier is followed by an active differentiator whose external network serves to transform peaks in the input signal into zero-crossings while maintaining the time relationship of the original input peaks. Differentiator response is set by an external capacitor or more complex series LRC network between the DIF + and DIF - pins. The transfer function with such a network is:

$$Av_2 = \frac{-1420 \text{ Cex s}}{\text{LexCex s}^2 + (\text{Rex} + 46) \text{ Cex s} + 1}$$

where: Cex = external capacitor (50 pf to 250 pf) Rex = external resistor Lex = external inductor $s = jw = j2\pi f$

Total gain from IN + and IN - to OUT + and OUT - is: $Av = Av_1 \times Av_2$

To reduce pulse pairing (bit shift), it is essential that the input to the zero-crossing detector be maximized to reduce the effect of any comparator offset. This means that the above gains should be chosen such that the differential voltage at OUT + and OUT - approaches 5 Vpp at max input and frequency.

The Differentiator output is AC coupled into a zerocrossing detector that provides an output level change at each positive or negative zero transition on its input. The zero-crossing detector output is coupled to a Time Domain Filter that eliminates false triggering of the output one-shot by spurious zero-crossings. The validity decision is based on a minimum duration between zero crossings that can be set externally by an RC network on the TD pin.

The output of the Time Domain Filter triggers a one-shot that defines the output pulsewidth based on an external RC network on the PW pin. These output pulses are fed into a line driver that provides a high-current differential output at RD + and RD -, or are made available as an open-collector output at RD +.

Write Mode

In the write mode (MODE input low) the differential line receiver is enabled. This receiver accepts the differential data from the ST506 interface and outputs a TTL signal for the write data input of an external R/W amplifier. A low on the MODE input also puts the read outputs in a high impedance state, allowing several 540's to be multiplexed on a bus.

Layout Considerations

The SSI 540 is a high gain wide bandwidth device thatrequires care in layout. The designer should keep analog signal lines as short as possible and balanced. Analog test points should be provided with a probe ground in the immediate vicinity. Do not run digital signals under the chip or next to analog inputs. Use of a ground plane is recommended along with supply bypassing and separation of the SSI 540 ground from other circuits on the disk drive PCB.

Absolute Maximum Ratings*

5 V Supply Voltage, Vcc
12 V Supply Voltage, Vdd14 V
Storage Temperature
Operating Temperature, Tj + 25 to + 135 °C
Lead Temperature (soldering 10 sec)
Pin Voltages
IN + ,IN – ,G + ,G – ,DIF + ,DIF – ,
OUT + ,OUT – ,DIN + DIN – 0.3V to Vdd + 0.3V
RD + ,RD – ,WRTOUT,HSO,
HS1,HS2,VFLTB – 0.3V to Vcc + 0.3V or 1 mA
TD,PW,MODE,WRT + ,WRT – ,
HS0B,HS1B,HS2B – 0.3V to Vcc + 0.3V

*Operation above absolute maximum ratings may damage the device.

ELECTRICAL CHARACTERISTICS

Unless otherwise specified, 4.5V < Vcc < 5.5V, 10.8V < Vdd < 13.2V, 25 °C < T(junction) < 135 °C.

Power Supply

Parameter	Test Conditions	Min.	Тур.	Max.	Units
Icc—Vcc Supply Current	Read mode, no TTL or RD ± loads	-	35.0	46	mA
	Write/Disable mode, no TTL loads		36.5	43	mA
Idd—Vdd Supply Current	Read mode	-	33.5	43	mA
	Write/Disable mode	_	34.5	50	mA
Pd—Power Dissipation	Tj = 125 °C Read/Write modes	_	_	820	mW

Logic Signals — Mode

Input Low Voltage (VIL)		- 0.3	-	+ 0.8	V
Input Low Current (IIL)	$V_{IL} = 0.4V$	-		- 0.8	mA
Input High Voltage (VIH)		2.0		Vcc + 0.3	V
Input High Current (IIH)	$V_{IH} = 2.4V$		_	100	μΑ

Logic Signals — HSnB

Parameter	Test Conditions	Min.	Max.	Units
Threshold Voltage, V _T + Positive-Going	Vcc = 5.0V	1.4	2.0	V
Threshold Voltage, V _T – Negative-Going	Vcc = 5.0V	0.6	1.15	V
Input Low Current (IIL)	$V_{IL} = 0.4V$	-	- 0.4	mA
Input High Current (IIH)	$V_{IH} = 2.4V$	—	100	μA

Logic Signals — WRTOUT, HSn

Output Low Voltage (VOL)	$I_{OL} = 1.6 mA$	_	0.4	V
Output High Voltage (VOH)	$I_{OH} = -500 u A$	2.4	_	V

Logic Signals — VFLTB & RD Open Collector Output

Output Low Voltage (VOL)	IOL = 1.6mA 4.5 <vcc<5.5< th=""><th></th><th></th><th></th></vcc<5.5<>			
	$I_{OL} = 0.5 \text{mA}, 1.0 < \text{Vcc} < 4.5 \text{V}$ (VFLTB Only)	-	0.4	V
Output High Current (IOH)		_	25	μΑ

Mode Control

Read to Write Transition Time		1.0	μs
Write to Read Transition Time	_	1.0	μs

Supply Voltage Fault Detect

Vdd Fault Threshold	VFLTB transition from high to low	9.5	10.8	v
Vcc Fault Threshold	VFLTB transition from high to low	4.3	4.6	v

SSI 540 Series Read Data Processor

Parameter	Test Conditions	Min.	Max.	Units
Write Mode				•
Differential Input Voltage		±0.4		v
Input Hysteresis		± 4	0 typ	m۷
Single Ended Input Resistance		4.0	_	kΩ
Input Common Mode Voltage Range		0.0	5.0	v
Input Pulse Width		20	_	ns
Propagation Delay (WRT + & WRT – TO WRTOUT)	V(WRT + - WRT -) = 0 to WRTOUT = 1.3V ¹ see Fig. 1 TPD	_	40	ns
Output Rise and Fall times	WRTOUT transition from 0.7 to 1.9V ¹ , see Fig 1	_	15	ns

1. WRTOUT load is 30pf to GND and 2.5 $k\Omega\,$ to Vcc

Read Mode Unless otherwise specified RD + and RD – are loaded with 100 Ω differentially and 30pf per side to GND, IN + and IN – are AC coupled, G + and G – are open. An 800 Ω resistor is tied between the DIF + and DIF – pins with each pin loaded to GND with <3pf. The OUT + and OUT – pins are loaded with <3pf in parallel with $>5k\Omega$ AC coupled (i.e. no DC current).

Parameter	Test Conditions	Min.	Max.	Units
Amplifier & Active Differentiator				
Differential	$Rg = \infty$, $Rex = 800 \Omega$	7.2	12.6	V/V
Voltage Gain (IN \pm to OUT \pm)	$Rg = 0\Omega$, $Rex = 200\Omega$	72	155	V/V
Bandwidth	– 3dB point	30	<u> </u>	MHz
Common Mode Input Impedance (IN ±)		3.5	typ	kΩ
Differential Input Resistance (IN ±)	V(IN + - IN -) = 100mVpp, 2.5 MHz, AC coupled	6.0) typ	kΩ
Differential Input Capacitance (IN ±)	V(IN + - IN -) = 100mVpp, 2.5 Mhz, AC coupled	—	8	pf
Input Noise (IN ±)	Inputs shorted together $Rg = 0\Omega$, $Rex = 200\Omega$	-	10	nV∕√Hz
V(DIF + DIF -) Output Swing	Set by Rg	_	3.2	Vpp
V(OUT + – OUT –) Output Swing	Set by Rex, Lex, Cex Impedance	-	5	Vpp
Dynamic Range	Common mode DC input where gain falls to 90% of 0.0V DC common mode input. 10mVpp AC input, $Rg = \infty$, $Rex = 1200 \Omega$	- 240	- 240	mV
DIF + to DIF - pin Current		± 1.9	—	mA
OUT + to OUT - pin Current		± 3.8	·	mA
CMRR (input referred)	V(IN +) = V(IN -) = 100mVpp, 5MHz, Rg = 0 Ω , Rex = 200 Ω	40	—	dB
PSRR (input referred)	Vdd or Vcc = 100mVpp, 5Mhz, Rg = 0Ω , Rex = 200 Ω	40	—	dB

Parameter	Test Conditions	Min.	Max.	Units
Zero Crossing Detector				
Input Offset Voltage		_	5.0	mV
Input Signal Range			5.0	Vpp
Differential Input Impedance (DIN ±)		4.4	4.4 typ	

Line Driver (SSI 540 & 540-2 only)

Output Sink Current	$V_{OL} = 0.5V, V(MODE) = 2.0V$	20		mA
Output Source Current	$V_{OH} = 2.5V, V(MODE) = 2.0V$	- 2	—	mA
Output Current	Vo = 0V to Vcc, V(MODE) = 0V	- 50	50	μΑ
Output Rise Time	Vo = 0.7V to 1.9V 100 Ω between RD + and RD - , 30pf to GND	2	30	ns
Output Fall Time	Vo = 1.9V to 0.7V 100 Ω between RD + and RD - , 30pf to GND	2	30	ns

Time Domain Filter

Delay Range	$\begin{array}{l} T_{TD1}=0.184xR_{TD} \times C_{TD},\\ R_{TD}=1.5k\Omega \ \text{to} \ 3.1k\Omega \ , C_{TD}=50\text{pf to} \ 200\text{pf},\\ V(\text{DIN}+\ -\ \text{DIN}-)=100\text{mVpp}, 5\text{MHz}, \text{AC coupled}\\ \text{square wave} \ \ \text{See Fig 2} \end{array}$	13.8	114	ns
Delay Range Accuracy	Vcc = 5.0V, Tj = 60 °C		± 15	ns
	Variation with supply and temperature		12	ns
Propagation Delay	$Delay = T_{D2} - T_{D1} See Fig 2$	_	80	ns

Data Pulse

Pulse Width	$T_{PW} = 0.184 \times R_{PW} \times C_{PW}$ R_{PW} = 2k_{\Omega}, C_{PW} = 150 pf See Fig 2	30	80	ns
Skew	V(DIN + - DIN -) = 100mVpp, 5MHz, AC coupled square wave w/2nsec rise & fall times.	—	5	ns

SSI 540 Series Read Data Processor

Design Example

As a design example a system using a 4-channel SSI 117 Read/Write preamplifier will be used.

Assumptions-coding scheme is MFM

- -data rate is 5 Mbits/second
- -Ferrite head output is 1 mVpp min. and 2 mVpp max.

The output from the SSI 117 is 80 mVpp to 240 mVpp. Assuming a 6 dB loss through the external low pass filter the input to the SSI 540 at IN +, IN - is:

40mVpp to 120 mVpp differential voltage. For this analysis the $\pm 37\%$ tolerance on gain from IN +, IN - to OUT +, OUT - will be equally divided between the gain stage and the differentiator, so each will contribute a $\pm 17\%$ variance from nominal values. The objective is to get a 5 Vpp signal at OUT +,OUT - at max input and max frequency. For MFM the 2f frequency in a 5 Mbit/sec data rate is 2.5 MHz, 1f is 1.25 MHz.

Gain Setting

Maximum gain from the amplifier occurs when Rg = 0. So calculating for nominal gain:

$$Rx = \frac{94 \times 42}{230} = 17.17$$

$$Av_{1} = \frac{680}{17 + 17.17} = 19.9 \text{ nominal or } 16.52 \text{ min to}$$

$$23.28 \text{ max}$$

The voltage swing at the DIF +, DIF - pins is: 120 mVpp x 22.25 = 2.79 Vpp max 40 mVpp x 17.55 = 0.661 Vpp min This is within the 3.2 Vpp max guaranteed by this specification, so max gain will be used.

Differentiator Design

The differentiator can be as simple as a capacitor or as complex as a series RLC network. In order not to violate

the 5 Vpp max spec at OUT + OUT - the maximum differential voltage gain is:

$$\frac{5}{2.79}$$
 = 1.79 max gain

which is nominally a gain of 1.53

For Cex only:

$$Cex = \frac{1.53}{2\pi f \sqrt{(1420)^2 - (1.53 \times 46)^2}} = 68 pf$$

4 6 0

check for current saturation:

Ic = Cex x Vp x $2\pi f$ must be less than 1.9 mA

For Cex, Rex network:

The following two formulas are used:

$$1420 \text{ Cex } 2\pi \text{f}$$

$$i.53 = i(\text{Rex} + 46) \text{Cex} 2\pi f + 1$$

Rex + 46 = $\frac{1}{1}$

Cex A 2π f max where A is chosen for position of corner frequency to reduce high frequency noise gain from the single capacitor network. Graphically the method is as follows:

Check for current saturation using the following formula.

$$Ip = \frac{JVp2\pi fCex}{1 + j \ 2\pi fCex \ (R+46)}$$

For $R_{\text{ex}},\,C_{\text{ex}},\,L_{\text{ex}}$ networks, the following formulae are used:

Gain G =
$$\frac{-j \ 1420 \ C_{ex} \ 2\pi f}{1 - L_{ex}C_{ex} \ (2\pi f)^2 + j \ (R_{ex} + 46) \ C_{ex} \ 2\pi f}$$
$$= \frac{1420 \ C_{ex} \ 2\pi f}{\sqrt{[1 - L_{ex}C_{ex} \ (2\pi f)^2]^2 + [(R_{ex} + 46) \ C_{ex} \ 2\pi f]^2}} \left[-\frac{\pi}{2} - \tan^{-1} \left[\frac{(R_{ex} + 46) \ (C_{ex} \ 2\pi f)}{1 - L_{ex}C_{ex} \ (2\pi f)^2} \right] \right]$$
Center Freq f_n =
$$\frac{1}{2\pi\sqrt{L_{ex}C_{ex}}}$$
Damping Factor $\zeta = -\frac{(R_{ex} + 46) \ C_{ex}}{2 \ \sqrt{L_{ex}C_{ex}}}$

Group Delay $\frac{dQ}{df} = \frac{2\zeta}{2\pi f_n} \left[\frac{1 + \langle f_n \rangle}{1 + (4\zeta^2 - 2) \left(\frac{f}{f_n}\right)^2 + \left(\frac{f}{f_n}\right)^4} \right]$

This technique adds another pole to the differentiator response to attenuate high frequency noise. The center frequency damping ratio and group delay are chosen to meet system requirements. Values for the center frequency are usually from 2 to 10fmax and the damping factor may be from 0.3 to 1.

Graphically the method is as follows:

As with the previous Rex, Cex example, care must be taken to insure a 90° phase shift at the frequencies of interest (1f and 2f or 1.25 MHz and 2.5 MHz). This requirement is modified by any need to compensate for phase distortion caused by preceeding signal processing.

Effect of Gain Tolerance

At minimum gain the $1_{m}V_{PP}$ input at 1.25 MHz frequency has the following effects:

Using the capacitor only results with $C_{ex} = 68 pf$

Diff gain =
$$\frac{1420 \text{ C}_{\text{ex}} 2\pi \text{f}}{\sqrt{1 + (46 \text{ C}_{\text{ex}} 2\pi \text{f})^2}} = 0.758 \text{ nominal}$$

Using $\pm 17\%$ tolerance, min gain = 0.629

so with a 661 mVpp input the min voltage @ OUT + /OUT - is 416 mVpp.

Thus, with all tolerances considered, a 1_m Vpp to 2_m Vpp input to the SSI 117 will result in a 5 Vpp to 416 mVpp input to the zero-crossing detector.

ONE-SHOT CONSIDERATIONS

The timing for both one shots conform to the same equation: t = 0.184 x C x R

Setting of the time domain one-shot reflects the expected base line shouldering effect at the 1f frequecy and is set accordingly. In this example the output pulse width has been set at approximately 30 nsec and the time domain filter at approximately 80 nsec.

EXTERNAL FILTER

The filter on the output of the read/write amplifier, limits the bandwidth of the input to the SSI 540. This reduces the noise input to the differentiator which can produce spurious zero-crossings. The design of this filter is not discussed here, but general aspects of its transfer function will be discussed.

On the outer tracks of an ST506 compatible drive using a MFM coding technique, the output pulses return to baseline or exhibit shouldering.

This waveform has a high third harmonic content. In order to preserve this waveform the filter must not add any distortion to this harmonic. For this reason, the most common filter type used is a Bessel Filter which has a constant group delay ($\frac{d\Phi}{df}$) or linear phase shift. Thus for a 5 Mbit/sec MFM waveform a Bessel Filter with constant group delay and a -3 dB point of 3.75 MHz is required. This is the type of filter used in the design example.

Effect of comparator offset of output a

Bit Shift or Pulse Pairing

Theoretical consideration of this aspect of pulse replication relative solely to the SSI 540 indicates that comparator offset is the major contributing parameter. For sinusoidal inputs the offset produces a nonsymetric waveform as shown.

The RD + ,RD – output pulses have been offset from true position (zero-crossing) by an amount Δt , that is dependent on Voffset and OUT + ,OUT – amplitude.

This relationship is

when OUT +, OUT - = 416 mVpp @ 1.25 MHz $\Delta t = 3.1$ nsec

As can be seen above the center pulse has been shifted from its true position by 2 $\triangle t$. So for this example the Bit

Shift contributed by the SSI 540 is:

0.26 nsec at maximum input and frequency 6.2 nsec at minimum input and frequency In some literature this effect is called Pulse Pairing. If the RD + ,RD – waveform is displayed on an oscilloscope with the trigger holdoff adjusted to fire on succeeding pulses the following waveform is observed:

where $t_2 - t_1$, = 4 $\triangle t$ or 2 x (Bit Shift)

Using this technique and a sinusoidal input to $D_{IN}\,\pm$ of varying amplitude at 1.25 MHz and 2.5 MHz, the following results were obtained.

D _{IN} ± Input	RD ± Pulse Ji	tter (4دt) nsec
*p-p	1.25 MHz	2.5 MHz
5	0.6	1.0
3	0.6	0.8
1	0.6	0.0
.7	1.4	0.0
.3	1.6	0.5
.1	3.8	1.2
.07	5.6	2.4
.06	6.2	3.2
.05	7.0	3.5
.04	9.6	4.5
.03	11.8	6.0

The "PRELIMINARY" designation on an SSi data sheet indicates that the product is not yet released for production. The specifications are subject to change, are based on design goals or preliminary part evaluation, and are not guaranteed. SSi should be consulted for current information before using this product. No responsibility is assumed by SSi for its use; nor for any infringements of patents and trademarks or other rights of third parties resulting from its use. No license is granted under any patents, patent rights or trademarks of SSi. SSi reserves the right to make changes in specifications at any time and without notice.

SSI 545 Winchester Disk Drive Support Logic

Preliminary Data Sheet

DESCRIPTION

The SSi 545 is an integrated circuit which consolidates functions in a Winchester Disk Drive normally performed by a variety of LSTTL SSI and MSI devices. Various gates, comparators and flip-flops are used to format signals compatible with the ST 506 interface requirements. All ST 506 connections have the necessary output drive or input hysteresis consistent with bus signal needs. The SSi 545 uses a single +5 volt supply and is available in 40 pin DIP and 44 pin QUAD packages.

FEATURES

- Reduces package count in 51/4" and smaller Winchester Disk Drives.
- Replaces bus interface and combinatorial logic devices between the ST 506 bus and on board processor and mechanical interfaces.
- Surface mount package available for further real estate reduction.

SSI 545 LOGIC DIAGRAM

CAUTION: Use handling procedures necessary for a static sensitive component

ABSOLUTE MAXIMUM RATINGS

Characteristic	. Rating
VCC supply voltage	.7 volts
Storage temperature65 °C to -	+150°C

ELECTRICAL CHARACTERISTIC	S Unless other	rwise specified: 4.5 $<$ Vcc $<$ 5.5	V; 0 deg C $<$	Ta < 70 de	g C
Parameter		Test Condition	Min.	Max.	Units
LOGIC OUTPUTS Refer to ta	ble 1 for output ty	pe, pin number cross reference			
TYPE 01 (OPEN COLLECTOR)	OUTPUTS				
Output High Current		$V_{OH} = 5.5V$	-	250	μ A
Output Low Voltage		$I_{OL} = 16 m A$	-	0.5	V
TYPE 02 (TOTEM POLE) OUTPU	JTS				
Output High Voltage		$I_{OH} = -400 \mu A$	2.5	-	V
Output Low Voltage		$I_{OL} = 8mA$	-	0.5	V
Short Circuit Current			· _	-100	mA
TYPE 03 (OPEN COLLECTOR)	OUTPUTS				
Output High Current		V _{OH} = VCC	-	50	μA
Output Low Voltage		IOL = 30mA	-	0.8	V
TYPE 04 (OPEN COLLECTOR)	OUTPUTS				
Output High Current		$V_{OH} = 5.5V$	-	250	μA
Output Low Voltage		$I_{OL} = 48 \text{mA}$	-	0.5	V
LOGIC INPUTS					
TYPE 11 INPUTS					
Input High Voltage			2.0	-	V
Input Low Voltage			-	0.8	V
Input Low Current		$V_{IL} = 0.5V$	_	-0.8	mA
Input High Current		$V_{IH} = 2.4V$	-	400	μA
TYPE 12 (SCHMIDT TRIGGER)	NPUTS				
Threshold Voltage		Positive going, $VCC = 5V$	1.3	2.0	V
		Negative going, $VCC = 5V$	0.6	1.1	V
Hysteresis		VCC = 5V	0.4	-	V
Input High Current		$V_{IH} = 2.4V$. —	40	μA
Input Low Current		$V_{IL} = 0.5V$	-	-0.8	mA
TYPE 13 (INTERNAL PULLUP) I	NPUTS				
Input High Voltage			2.0	—	V
Input Low Voltage			_	0.8	V
Input Low Current		$V_{IL} = 0.5V$	_	-1.2	V

2-47

Parameter	Test Condition	Min.	Max.	Units
COMPARATOR INPUTS	F			.
Threshold Voltage	Index Ref Positive going	-	580	mV
	Negative going	370	_	mV
	Photo 0 Positive going	-	280	mV
	Negative going	120	_	mV
Hysteresis		30 typ	-	mV
Input Resistance	VCC = 5.0V, 0 <vin<vcc< td=""><td>10</td><td>_</td><td>kΩ</td></vin<vcc<>	10	_	kΩ
TIMING CHARACTERISTICS $Ta = 25^{\circ}C, CL$	= 25 pF			
Propogation Delay Time, Input to Output	P22 to WC/CAR0	-	40	nS
	P23 to CAR0	_	40	nS
	DB5 to ACTIVITY LAMP	_	40	nS
	DB4 to TRCK0 -	-	40	nS
	DB7 to FAULT	-	40	nS
	DRSEL-to DRSEL	-	55	nS
	DRSEL-to ACTIVITY LAMP	—	55	nS
	WUS to WUS-	—	55	nS
	DB6 to READY-	-	55	nS
	WRGATE-to R/W-	-	60	nS
	STEP-to SC, DIR IN, to T1	-	100	nS
	P21 to SC		100	nS
	P21 to R/W-	-	120	nS
Data Setup Time	DIRIN-reference to STEP	-	50	nS
Data Hold Time	DIRIN-to STEP	-	5	nS
Delay Time	INDEX REF HEAD to INDEX, with 500 mV input step	_	250	nS
	PHOTO0 to TRK0 with 500mV input step	_	250	nS

TΔ	RI	F	1

Pin N	umber	I/O Type	Pin Name		
40 PIN DIP	44 PIN QUAD*				
1	1	13	R3JUMPER		
2	2	03	ACTIVITYLAMP		
3	3	01	OUT1		
4	4	11	IN1		
5	5	11	P22		
6	7	11	P23		
7	8	02	DRSEL		
8	9	13	WUS		
9	10	1	P21		
10	11		GROUND		
11	12	02	INDEX		
12	13	02	T1		
13	14	02	DIRIN		
14	15	11	DB5		
15	16	12	DRSEL		
16	18	11	DB7		
17	19	11	DB4		
18	20	11	DB6		
19	21	02	TRK 0		
20	22	11	BESET		

Pin Number		I/O Type	Pin Name
40 PIN DIP	44 PIN QUAD*		
21	23	COMPARATOR	INDEXREFHEAD
22	24	COMPARATOR	PHOTO0
23	25	02	SC
24	26	02	WUS
25	27		MODE
26	29	12	DIRIN
27	30	12	STEP
28	31	04	DR SLTD
29	32	04	READY
30	33	04	INDEX
31	34		GROUND
32	35	04	FAULT
33	36	04	TRKO
34	37	04	SEEKCOMPLETE
35	38	12	WRGATE
36	40	01	R/W
37	41	01	CAR1
38	42	01	WC/CAR0
39	43	13	R6JUMPER
40	44		+VCC

*PINS 6, 17, 28, and 39 are not connected in the 44 Pin QUAD package.

14351 Myford Road, Tustin, CA 92680 (714) 731-7110, TWX 910-595-2809

ST506 INTERFACE

PIN CONFIGURATION

The "PRELIMINARY" designation on an SSi data sheet indicates that the product is not yet released for production. The specifications are subject to change, are based on design goals or preliminary part evaluation, and are not guaranteed. SSi should be consulted for current information before using this product. No responsibility is assumed by SSi for its use; nor for any infringements of patents and trademarks or other rights of third parties resulting from its use. No license is granted under any patents, patent rights or trademarks of SSi. SSi reserves the right to make changes in specifications at any time and without notice.

SSI 570 2-Channel Floppy Disk Read/Write Circuit

Preliminary Data Sheet

GENERAL DESCRIPTION

The SSI 570 is an integrated circuit which performs the functions of generating write signals and amplifying and processing read signals required for a double sided floppy disk drive. The write data circuitry includes switching differential current drivers and erase head drive with programmable delay and hold times. The read data circuitry includes low noise amplifiers for each channel as well as a programmable gain stage and necessary equalization and filtering capability using external passive components. All logic inputs and outputs are TTL compatible and all timing is externally programmable for maximum design flexibility. The circuit operates on + 12 volt and +5 volt power supplies and is available in 28 pin plastic DIP and QUAD packages.

FEATURES

- Single chip read/write amplifier and read data processing function.
- Compatible with 8", 51/4 ", and 31/2 " drives.
- Internal write and erase current sources, externally set.
- Internal center tap voltage source.
- · Control signals are TTL compatible.
- Schmitt trigger inputs for higher noise immunity on bussed control signals.
- TTL selectable write current boost.
- Operates on +12 volt and +5 volt power supplies.
- High gain, low noise, low peak shift (0.3% Typ) read processing circuits.

SSI 570 2-Channel Floppy Disk Read/Write Circuit

Circuit Operation

WRITE MODE CIRCUITRY

In Write Mode (R/\overline{W} low), the circuit provides controlled write and erase currents to either of two magnetic heads. The Write-Erase circuitry consists of two differential Write Current Drivers, a Center Tap Voltage Reference, two Erase Current Switches and control circuits for head selection and erase timing.

Write current is toggled between opposing sides of the head on each negative transition of the Write Data Input (WDI) and is set externally by a single resistor, R_W , connected between the R_W terminal and ground. Since driver output impedance is large, proper damping resistors must be provided across each head. A signal at the CB terminal provides write current boost.

Erase current is also set externally through resistors R_{EC} connected in series with each erase coil. Erase can be activated by, but delayed from, selection of the write mode, and is held active after mode deselection. The turn-on delay is determined by the charging of C_E through R_{ED}, while the hold time is determined by the discharge of C_E through the series combination of R_{ED} and REH (see connection diagram). The R_EC_E node may be driven directly by a logic gate, with external resistors per fig. 4, if the erase period is to be controlled separately from the write mode selection. For applications where no delays are required, C_E is omitted.

The Center Tap Voltage Reference supplies both write and erase currents. A Power Turn-On protection circuit prevents undesired writing or erasure by holding the voltage reference off until the supply voltages are within their operating ranges.

READ MODE CIRCUITRY

In the Read Mode ($R\overline{W}$ high), the circuit performs the functions of amplifying and detecting the selected head output pulses which correspond to magnetic transitions in the media. The Read circuitry consists of two differential Preamplifiers, a Summing Amplifier, a

Postamplifier, an Active Differentiator, a Zero-Crossing Detector, a Time Domain Filter, and an Output One-Shot.

The selected Preamplifier drives the Summing Amplifier whose outputs are AC coupled to the Postamplifier through an external filter network. The Postamplifier adjusts signal amplitudes prior to application of signals to the Active Differentiator. Postamplifier gain is set as required by connecting a resistor across the gain terminals, G1 and G2. If desired, an additional frequency/phase compensation network may also be connected across these gain terminals.

The Differentiator, driven by the Postamplifier, provides zero-crossing output voltages in response to input signal peaks. Differentiator response characteristics are set by an external capacitor or more complex series network connected between the D1 and D2 terminals.

The Zero-Crossing Detector provides a unipolar output for each positive or negative zero-crossing of the Differentiator output. To enhance signal peak detection, the Time Domain Filter inhibits the detection of zerocrossings if they are not sufficiently separated in time. The filter period is set by an external RC network connected to the TD pin.

The Time Domain Filter drives the output One-Shot which generates uniform output data pulses. The pulse width is set by an external RC network connected to the PW pin. The Output One-Shot is inhibited while in the Write Mode.

ABSOLUTE MAXIMUM RATINGS

5V Supply Voltage, V _{CC}	
12V Supply Voltage, VDD	14V
Storage Temperature	-65°Cto+130°C
Ambient Operating Temperature	0°Cto + 70°C
Junction Operating Temperature	0°Cto + 130°C
Logic Input Voltage	-0.5V _{dc} to 7.0V _{dc}
Lead Temperature (soldering, 10 sec).	
Power Dissipation	

ELECTRICAL CHARACTERISTICS

 $\begin{array}{l} \mbox{Unless otherwise specified, } 4.75V \le V_{CC} \le 5.25V; \ 11.4V \le V_{DD} \le 12.6V; \ 0 \ ^\circ C \le T_A \\ \le 70 \ ^\circ C; \ R_W = \ 430\Omega \ ; \ R_{ED} = \ 62k\Omega \ ; \ C_E = \ 0.012 \ \mu F; \ \ R_{EH} = \ 62k\Omega \ ; \ R_{EC} = \ 220\Omega \\ \end{array}$

POWER SUPPLY

Characteristic	Test Conditions	Min.	Мах.	Units
POWER SUPPLY CURRENTS				
ICC — 5V Supply Current	Read Mode		35	mA
	Write Mode		38	mA
I _{DD} — 12V Supply Current	Read Mode	·	26	mA
	Write Mode (excluding Write & Erase currents)		24	mA

Characteristic	Test Conditions	Min.	Max.	Units
LOGIC SIGNALS — READ/W	RITE (R/W), CURRENT BOOST (CB)			
Input Low Voltage (VIL)		—	0.8	V
Input Low Current (IIL)	$V_{IL} = 0.4V$		- 0.4	mA
Input High Voltage (VIH)		2.0	_	V
Input High Current (IIH)	VIH = 2.4V		20	μΑ

LOGIC SIGNALS - WRITE DATA INPUT (WDI), HEAD SELECT (HS0/HS1)

Threshold Voltage, V _T + Positive — going		1.4	1.9	V
Threshold Voltage, V _T – Negative — going		0.6	1.1	V
Hysteresis, VT + to VT -		0.4	—	V
Input High Current, IIH	$V_{IH} = 2.4V$	—	20	μA
Input Low Current, IIL	$V_{IL} = 0.4V$		- 0.4	mA

CENTER TAP VOLTAGE REFERENCE

Output Voltage (V _{CT})	$I_{WC} + I_E = 3mA \text{ to } 60mA$	V _{DD} – 1.5	V _{DD} – .5	V
V _{CC} Turn-Off Threshold	(See Note 1)	4.0	—	v
VDD Turn-Off Threshold	(See Note 1)	9.6	—	V
VCT Disabled Voltage			1.0	V

ERASE OUTPUTS (E1, E0)

Unselected Head Leakage	$V_{E0}, V_{E1} = 12.6V$	 100	μΑ
Output on Voltage (VE1, VE0)	$I_E = 50 m A$	 0.5	V

WRITE CURRENT

Unselected Head Leakage	$V_{E1}, V_{E0} = 12.6V$ - 22		25	μΑ
Write Current Range	$R_W = 820\Omega$ to 180Ω		10	mA
Current Reference Accuracy	I _{WC} = 2.3/R _W V _{CB} (current boost) = 0.5V		+ 5	%
Write Current Unbalance	IWC = 3mA to 10mA	—	1.0	%
Differential Head Voltage Swing	∆IWC ≤5%	12.8		Vpk
Current Boost	$V_{CB} = 2.4V$	1.25 IWC	1.35 IWC	

Characteristic	Test Conditions	Min.	Max.	Units
ERASE TIMING				
Erase Delay Range	$R_{ED} = 39k\Omega \text{ to } 82k\Omega \text{ ;}$ $C_E = 0.0015 \mu\text{F} \text{ to } 0.043 \mu\text{F}$	0.1	1.0	msec
Erase Delay Accuracy ΔT <u>ED</u> TED × 100%	$\begin{array}{rcl} {\sf T}_{{\sf ED}} &= \ 0.69 \ {\sf R}_{{\sf ED}} \ {\sf C}_{{\sf E}} \\ {\sf R}_{{\sf ED}} &= \ 39 {\sf k} \Omega & \mbox{to} \ 82 {\sf k} \Omega \ ; \\ {\sf C}_{{\sf E}} &= \ 0.0015 \mu {\sf F} \ \mbox{to} \ 0.043 \mu {\sf F} \end{array}$	– 15	+ 15	%
Erase Hold Range	R _{EH} + R _{ED} = 78kΩ to 164kΩ; C _E = 0.0015 μF to 0.043 μF	0.2	2.0	msec
Erase Hold Accuracy Δ <u>TEH</u> TEH × 100%	T _{EH} = 0.69 (R _{EH} + R _{ED}) C _E R _{EH} + R _{ED} = 78kΩ to 164kΩ ; C _E = 0.0015 μF to 0.043 μF	– 15	+ 15	%

ELECTRICAL CHARACTERISTICS

Unless otherwise specified: V_{IN} (Preamplifier) = 10mVp-p sine wave, dc coupled to center tap. (See Figure 1). Summing Amplifier Load = $2k\Omega$ line-line, ac coupled V_{IN} (Postamplifier) = 0.2Vp-p sine wave, ac coupled; R_G = open; Data Pulse Load = $1k\Omega$ to Vcc; $C_D = 240pF$; $C_{TD} = 100pF$; $R_{TD} = 7.5k\Omega$; $C_{PW} =$ $47 \text{ pF}; \text{RPW} = 7.5 \text{k}\Omega$.

READ MODE

Г

Characteristic	Test Conditions		Max.	Units	
PREAMPLIFIER — SUMMING AMPLIFIER					
Differential Voltage Gain	Freq. = 250kHz	85	115	V/V	
Bandwidth (– 3 dB)		3		MHz	
Gain Flatness	Freq. = dc to 1.5MHz	—	± 1.0	dB	
Differential Input Impedance	Freq. = 250kHz	20		kΩ	
Max.Differential Output Voltage Swing	VIN = 250kHz sine wave, THD≤5%	2.5	-	Vp-р	
Small Signal Differential Output Resistance	IO ≤ 1.0mAp-p	—	75	Ω	
Common Mode Rejection Ratio	VIN = 300mVp-p @ 500kHz. Inputs shorted.	50		dB	
Power Supply Rejection Ratio	$\Delta V_{DD} = 300 \text{mVp-p} @ 500 \text{kHz}$ Inputs shorted to V _{CT.}	50	-	dB	
Channel Isolation	Unselected Channel V _{IN} = 100mVp-p @ 500kHz. Selected channel input connected to V _{CT}	40	_	dB	
Equivalent Input Noise	Power BW = 10 kHz to 1MHz Inputs shorted to V _{CT} .		10	μVrms	
Center Tap Voltage, V _{CT}		1	.5 (typ)	v	

POSTAMPLIFIER — ACTIVE DIFFERENTIATOR

Ao, Differential Voltage Gain + IN , – IN to D1, D2	Freq. = 250kHz (See Figure 2)	8.5	11.5	V/V
Bandwidth (– 3 dB) + IN , – IN to D1, D2	$C_{D} = 0.1 \mu\text{F}, R_{D} = 2.5 \text{k}\Omega$	3	_	MHz
Gain Flatness +IN , – IN to D1, D2	Freq. = dc to 1.5 MHz $C_D = 0.1 \mu F, R_D = 2.5 k\Omega$	_	± 1.0	dB

Characteristic	Characteristic Test Conditions		Max.	Units	
POSTAMPLIFIER - ACTIVE DI	POSTAMPLIFIER — ACTIVE DIFFERENTIATOR (cont'd)				
Max.Differential Output Voltage Swing	$V_{IN} = 250$ kHz sine wave, ac coupled. $\leq 5\%$ THD in voltage across C _D . (See Figure 2)		_	Vp-р	
Max.Differential Input Voltage	V_{IN} = 250kHz sine wave, ac coupled. \leq 5% THD in voltage across C _D . R _G = 1.5k Ω	2.5		Vp-р	
Differential Input Impedance		10		kΩ	
Gain Control Accuracy $\frac{\Delta A_R}{A_R} \times 100\%$	$A_{R} = A_{O}R_{G}/(8 \times 10^{3} + R_{G})$ $R_{G} = 2k\Omega$	- 25	+ 25	%	
Threshold Differential Input Voltage. (See Note 2)	Min. differential input voltage at post amp that results in a change of state at RDP.		3.7	mVp-p	
	$V_{IN} = 250 \text{ kHz}$ square wave, $C_D = 0.1 \mu\text{F}$, $R_D = 500\Omega$, T_R , $T_F \leq 0.2 \mu\text{sec.}$ No overshoot; Data Pulse from each V_{IN} transition. (See Figure 3)				
Peak Differentiator Network Current		1.0		mA	

TIME DOMAIN FILTER

Delay Accuracy ΔT <u>TD</u> TTD × 100%	$\begin{array}{l} T_{TD} = 0.58 \; \text{R}_{TD} \times (\text{C}_{TD} + 10^{\cdot11}) + \; \text{50nsec}, \\ \text{R}_{TD} = \; 5 \text{k}\Omega \; \text{to} \; 10 \text{k}\Omega, \; \text{C}_{TD} \geq \; 56 \text{pF} \\ \text{V}_{IN} = \; 50 \text{m} \; \text{Vpp} \; @ \; 250 \text{kHz} \; \text{square wave}, \\ \text{T}_{R}, \; \text{T}_{F} \leq 20 \; \text{nsec}, \; \text{ac coupled. Delay measured} \\ \text{from 50\% input amplitude to} \; 1.5 \text{V} \; \text{Data Pulse.} \end{array}$	- 15	+ 15	%
Delay Range	$T_{TD} = 0.58 R_{TD} \times (C_{TD} + 10^{-11}) + 50 nsec$ $R_{TD} = 5k\Omega$ to 10kΩ $C_{TD} = 56pF$ to 240pF	240	2370	ns

DATA PULSE

Width Accuracy <u>ΔTPW</u> TPW × 100%	$\begin{array}{l} T_{PW} = 0.58 \; \text{Rp}_W \times (C_{PW} + 8 \times 10^{-12}) \; +20 \; \text{nsec} \\ \text{Rp}_W = 5 k \Omega \; \text{to} \; 10 k \Omega \\ \text{Cp}_W = \geq 36 \text{pF} \\ \text{width measured at} \; 1.5 \text{V} \; \text{amplitudes} \end{array}$	-20	+ 20	%
Active Level Output Voltage	loh = 400μA	2.7		V
Inactive Level Output Leakage	$I_{OL} = 4mA$		0.5	V
Pulse Width	TPW = 0.58 RPW × (CPW + 8 × 10 ⁻¹²) + 20 nsec RPW = 5kΩ to 10kΩ CPW = 36pF to 200 pF	145	1225	nS

NOTES:

Voltage below which center tap voltage reference is disabled.
 Threshold Differential Input Voltage can be related to peak shift by the following formula:

Peak Shift =
$$\frac{3.7 \text{mV}}{\pi \text{Vin}} \times 100\%$$

where Vin = peak to peak input voltage at post amplifier. Note that this formula demonstrates an inverse relationship between the input amplitude and the Peak Shift.

icon systems 14351 Myford Road, Tustin, CA 92680 (714) 731-7110, TWX 910-595-2809

TEST SCHEMATICS:

Output HI = Erase Coil Active

SSI FLOPPY DISK CIRCUITS					
SSI 570	2-Channel	Floppy Read/Write Circuit			
SSI 575	4-Channel	Floppy Read/Write Circuit			
SSI 580	-	Floppy Support Circuit			

The "PRELIMINARY" designation on an SSi data sheet indicates that the product is not yet released for production. The specifications are subject to change, are based on design goals or preliminary part evaluation, and are not guaranteed. SSi should be consulted for current information before using this product. No responsibility is assumed by SSi for its use; nor for any infringements of patents and trademarks or other rights of third parties resulting from its use. No license is granted under any patents, patent rights or trademarks of SSi. SSi reserves the right to make changes in specifications at any time and without notice.

Silicon Systems

SSI 575 2 or 4-Channel Floppy Disk Read/Write Circuit

Preliminary Data Sheet

GENERAL

The SSI 575 device is a bipolar monolithic integrated circuit used in floppy disk systems for head control and write, erase, and read select functions. The device has either two or four discrete read, write, and erase channels. Channel select inputs are TTL compatible. The SSI 575 device requires +5V and + 12 V power supplies and is available in 18-pin (2-channel version) or 24-pin (4-channel version) dual inline packages.

FEATURES

- Operates on + 5V, + 12V power supplies
- · Two or four channel capability
- TTL compatible control inputs
- Read/Write functions on one chip
- · Internal center tap voltage source
- · Supports all disk sizes
- · Applicable to tape systems

CAUTION: Use handling procedures necessary for a static sensitive component

CIRCUIT OPERATION

The SSI 575 functions as a write and erase driver or as a read amplifier for the selected head. Two TTL compatible inputs are decoded to select the desired read/write and erase heads. Head select logic is indicated in Table 2. Both the erase gate (\overline{EG}) and write gate (\overline{WG}) lines have internal pull up resistors to prevent an accidental write or erase condition.

MODE SELECTION

The read or write mode is determined by the write gate (WG) line. The input is open collector TTL compatible. With the input low, the circuit is in the write mode. With the input high (open), the circuit is in the read mode. In the read mode, or with the +5V supply off the circuit will not pass write current.

ERASE

The erase operation is controlled by an open collector TTL compatible input. With erase gate (\overline{EG}) input high (open) or the +5V supply off, the circuit will not pass erase current. With \overline{EG} low, the selected open collector erase output will be low and current will be pulled through the erase heads.

READ MODE

With the $\overline{\text{WG}}$ line high, the read mode is enabled. In the read mode the circuit functions as a differential amplifier. The state of the head select input determines which amplifier is active. When the mode or head is switched, the read output will have a voltage level shift. External reactive elements must be allowed to recover before proper reading can commence. A current diverting circuit prevents any possible write current from appearing on a head line.

WRITE MODE

With the $\overline{\text{WG}}$ line low, externally generated write current is mirrored to the selected head and is switched between head windings by the state of the write data (WD) signal.

TABLE 1: PIN DESCRIPTION

Pin Name	Description
Vcc	+ 5V.
V _{DD}	+ 12V
H0X-H3X H0Y-H3X	X, Y head connections
DX, DY	X, Y Read Data: Differential read signal out
WG	Write gate: sets write mode of operation
WC	Write current: current mirror used to drive floppy disk heads
WD	Write data line
EG	Erase gate: allows erasure by selected head
E0-E3	Erase head driver connections
HS0-HS1	Head select inputs
GND	Ground
VCT	Center Tap Voltage Source

TABLE 2: HEAD SELECT LOGIC 4 CHANNELS

HS1	HS0	HEAD
0	0	0
0	1	1
1	0	2
1	1	3

2 CHANNELS

HS1	HEAD
0	0
1	1

ABSOLUTE MAXIMUM RATINGS*

DC Supply Voltage: Vcc6.0 V
Vdd
Write Current
Head Port Voltage
Digital Input Voltages:
DX, DY, HS0, HS1, WD 0.3 to + 10 V
EG, WG – 0.3 to Vcc + 0.3 V
DX, DY Output Current
VCT Output Current – 10 mA
Storage Temperature Range 65 to + 150 °C
Junction Temperature
Lead Temperature (10 sec solder)
*Operation above these ratings may cause permanent damage to the device.

RECOMMENDED OPERATING CONDITIONS 0°C<Ta<50°C, 4.7V<Vcc<5.3V, 11V<Vdd<13V

Parameter	Conditions	Min.	Тур.	Max.	Unit
Vcc Supply Current: Read mode Write mode	Vcc MAX			— 15 35	— mA mA
Vdd Supply Current: Read mode Write mode	Vdd MAX			 25 15	— mA mA
Write Current			5.5	—	mA

ERASE OUTPUT

Parameter	Test Conditions	Min.	Тур.	Max.	Units
Erase on Voltage	IE = 80mA	0.7		1.3	VDC
Erase off Leakage			—	100	μΑ

LOGIC SIGNALS - HEAD SELECT (HS0, HS1) AND WRITE DATA (WD)

Low Level Voltage	—	- 0.3		0.8	VDC
High Level Voltage		2.0		6.0	VDC
Low Level Current	$V_{IN} = 0$ volts	- 1.6	—	—	mA
High Level Current	$V_{IN} = 2.7 \text{ volts}$	—		40	μΑ

$\textbf{LOGIC SIGNALS} - \overline{\textbf{WRITE GATE}} \ (\overline{\textbf{WG}}) \ \textbf{AND } \overline{\textbf{ERASE GATE}} \ (\overline{\textbf{EG}})$

Low Level Voltage	—	- 0.3	—	0.81	VDC
High Level Input Current	-	- 300	—	—	μA
Low Level Current	$V_{IN} = 0$ volts	- 2.0			mA

READ MODE

Parameter	Test Conditions	Min.	Тур.	Max.	Units
Differential Gain	f = 100kHz, Vin = 5 mV Rms RL = 10 k Ω	80	100	120	V/V
Bandwidth	Vin = 5 m V Rms RL = 10 K CL = 15PF	9	_		MHz
Input Voltage Range for 95% Linearity	f = 100 kHz, RL = 10 k	25		_	mVpp
Differential Input Resistance	f = 1 MHz	100			kΩ
Differential Input Capacitance	f = 1 MHz	—	—	10	pF
Input Bias Current	_	—	—	25	μA
Input Offset Voltage	_	—	—	12	mV
Output Voltage, Common Mode	—		8	—	VDC
Output Resistance		_	—	35	Ω
Output Current Sink	—	2	—	_	mA
Output Current Source	_	3	—	—	mA
Common Mode Rejection Ratio	f = 1 MHz (input referred)	50	—	—	dB
Power Supply Rejection Ratio	f = 1 MHz (input referred)	50			dB
Channel Separation	f = 1 MHz (input referred)	50	—	_	dB
Input Noise	BW = 100 Hz to 1 MHz, Z Source = 0	—	7	—	μV RMS

icon systems

14351 Myford Road, Tustin, CA 92680 (714) 731-7110, TWX 910-595-2809

WRITE MODE

Parameter	Test Conditions	Min.	Тур.	Max.	Units
Write Current Gain	IW = 5.5mA	.97	_	1.05	A/A
Write Current Voltage Level	IW = 5.5mA	1.2		2.1	VDC
Differential Head Voltage	IW = 5.5mA	12.5	_		VDC
Unselected Head Current	IW = 5.5mA DC Condition	_	_	0.1	mA
Write Current Unbalance	IW = 5.5mA			1	%
Write Current Time Symmetry	IW = 5.5mA	-	_	± 10	nS
Read Amplifier Output Level	_		10.5		VDC
Center Tap Voltage (Read and Write Modes)	-	_	8.5	-	VDC

SWITCHING CHARACTERISTICS

Parameter	Test Conditions	Min.	Тур.	Max.	Units
Write and Erase Gate Switching Delay	Delay to 90% of Write Current			1	μsec
Head Select Switching Delay		—	_	1	μsec
Head Current Switching Delay	T1 in Fig. 1	-	10	—	nsec
Head Current Switching Time	IW = 5.5mA Shorted Head	_	10	30	nsec
Write to Read Recovery Time			_	2	μ sec

PIN CONFIGURATIONS

The "PRELIMINARY" designation on an SSi data sheet indicates that the product is not yet released for production. The specifications are subject to change, are based on design goals or preliminary part evaluation, and are not guaranteed. SSi should be consulted for current information before using this product. No responsibility is assumed by SSi for its use; nor for any infringements of patents and trademarks or other rights of third parties resulting from its use. No license is granted under any patents, patent rights or trademarks of SSi. SSi reserves the right to make changes in specifications at any time and without notice.

ilicon systems INNOVATORS IN INTEGRATION

SSI 580 Port Expander Floppy Disk Drive

Preliminary Data Sheet

DESCRIPTION

The SSi 580 device is a bipolar integrated circuit that serves as an input/output port expander for an 8048 type microprocessor based floppy disk drive system. The device consolidates functions normally performed by a variety of LSTTL, SSI, and MSI devices. The combination of an SSI 570 (read, write, and erase device), an 8048 type microprocessor, and the SSI 580 provides the majority of electronics required for a SA400 type floppy disk drive system, including host interface bus driver and receiver. In addition to its port expansion function, the SSI 580 processes system data and provides both pulse width and delay control (adjustable by external elements) for the INDEX SENSOR input. The device requires a single + 5 V power supply and is available in a 28-pin package.

FEATURES

- Reduces package count in flexible disk drive systems
- Replaces bus interface and combinational logic devices between the SSI 570, on board microprocessor and mechanical interfaces.
- Surface mount available for further real estate reduction.
- Provides drive capability for mechanical and system interfaces

SSI 580 Block Diagram

CAUTION: Use handling procedures necessary for a static sensitive component
PIN ASSIGNMENT DESCRIPTIONS

Pin Name	Description
P20-P23	4-bit bidirectional port, referred to as Port 2.
WGATE IN	This input command to write is asserted by the host interface bus.
MOTOR ON	This input command to turn on the spindle motor comes from the host interface bus.
DIR	Input from the host interface bus selecting the direction in which the stepper motor should move the head.
DS	Drive select
INDEX SENSOR	Input from the photodiode that indicates the index marker in the diskette.
WR PROT SENSOR	Input from the photodiode that indicates if the diskette is write protected.
TRACK 0 SENSOR	Input from the photodiode that detects when the head is positioned over track 0.
STEP	Input from the host interface bus indicating that the head should be moved.
T1	This pin changes state when a STEP command is received from the host interface bus.
RD DATA IN and RD DATA OUT	Read data path
WGATE	Output to the disk drive's read/write circuitry.
INDEX	Output to the host interface bus indicating index sensor status.
TRACK 0	Output to the host interface bus indicating track 0 sensor status.
READY	Output to the host interface bus indicating track 0 sensor status.
WR PROT	Output to the host interface bus indicating write protect sensor status.
PROG	Input from the 8048 microprocessor for I/O control of the 580.
INTR	Output to the interrupt pin of the 8048 microprocessor.
R/C D and R/C W	The external resistor and capacitor networks tied to these pins determines the delay and width of the output pulse to the INDEX pin.
Vcc	+ 5 V supply
GND	Ground

CIRCUIT OPERATION

PORTS

The SSI 580 has two 4-bit input ports, Port A and Port B. Port a receives data from the host interface bus for conveyance to the drive's read/write circuitry and to the microprocessor. Three sensors report the status of the drive to the 580 via Port B. Common to both ports is a drive select (\overline{DS}) signal from the host interface bus. This allows the host to address separate disk drives. There is also a 4-bit bidirectional port on the SSI 580. This is port 2 and it can be used by the microprocessor to write to or read from the 580.

READ MODE

Ports A and B can be read by a microprocessor via Port 2. This allows the microprocessor to obtain data from the host interface bus and the status sensors. The PROG signal from the microprocessor provides the timing for the operation. First an OP code and a port address must be placed on Port 2 (see Table 2), then latched in on the falling edge of PROG. When the OP code and addresses have been decoded, the desired input port is selected and output on Port 2. The operation is terminated by the rising edge PROG, which returns Port 2 to the input mode.

WRITE MODE

In the write mode the microprocessor passes system parameters to the SSI 580 for logic processing and outputting. Table 3 shows how each bit of Port 2 affects the 580. A logic one on the zero bit of Port 2 will reset the index latch. P21, qualified by the $\overline{\text{DS}}$ signal, sends a "this drive ready" signal from the microprocessor to the host interface bus. Similarly P22 is $\overline{\text{DS}}$ qualified and sent to the host as a signal that the head is positioned over track 0. P23 is used in the logic that sends a R/ $\overline{\text{W}}$ signal to the drive's read/write circuitry. The write mode occurs when the proper OP code and address is placed on Port 2 and latched in on the falling edge of PROG (see Table 3). The microprocessor writes in the data on PROG's rising edge.

INDEX PULSE

An optical sensor connected to the INDEX SENSOR pin detects the diskette's index marker. The state of the index sensor is latched into the 580 and is available to be read by the microprocessor on P22. The latch may be reset by writing a one to P20 from the microprocessor. The pulse received from the sensor also drives the host interface signal INDEX, the width and delay of which can be controlled by external R/C circuits. The time constant attached to the R/C D pin determines the delay from the INDEX SENSOR input to the INDEX signal on the host interface bus. The equation for the delay is Td = 0.59Rd x Cd (seconds). The width of the INDEX signal is determined by the circuit attached to the R/C W pin and the equation Tw = 0.59Rw x Cw (seconds).

INTERRUPT

The INTR signal is asserted every time a step command is issued to the drive on the host interface bus. Thus when INTR is tied to the interrupt pin of 8048 type

Table 1

microprocessor, an interrupt service routine will be executed on each step command. This routine typically obtains information on the direction the heads should move and the status of the track 0 sensor to use for generating the stepper motor control signals. The interrupt signal is cleared (set high) by first placing the proper OP code and address on Port 2 (see Table 3). This is latched in on the falling edge of PROG, then on its rising edge logic ones on P20 and P21 will be latched in to set INTR back to a high state. Note that an indeterminate operation will result from holding the INDEX SENSOR latch reset (holding P20 high).

T1 PIN

This signal changes state with the STEP command of the host interface bus when the drive is selected. It drives the T1 pin on an 8048 type microprocessor which is an input to a counter. The 8048 can use this count and the DIR signal read from Port 2 of the SSI 580 to monitor the head position and issue a CB (current boost) command to the SSI 570 when a specific track is reached.

TABLE 2. READ MODE

Input to	o Port 2	Read From Port 2			4-Bit	
OP Code P22	Addr. P20	P23	P22	P21	P20	Input Port
0	0	DS	Index Sensor Latch	WR Sensor	Track 0 Sensor	В
0	1	DS	WGATE IN	MOTOR ON	DIR	Α

TABLE 3. WRITE MODE

Input te	o Port 2	Data processed from Port 2				2
OP Code P22	Addr. P20	WGATE	TRACK0	READY	INTR	Index Latch Reset
1	0	Z	(P22*DS)	(P21*DS)		P20
1	1	-	-	_	See Text	_

Where $Z = (P23 * WR PROT SENSOR) + (\overline{DS * WGATE IN})$

Absolute Maximum Ratings (All voltages referred to GND)

Parameter	Symbol	Value	Units
DC Supply	Vcc	+ 7	VDC
Voltage Range (any pin to GND)	۷m	- 0.4 to + 7	VDC
Power Dissipation	Pmax	700	mW
Storage Temperature	Tstg	- 40 to + 125	°C
Lead Temperature (10 sec soldering)		260	°C

ELECTRICAL CHARACTERISTICS Unless otherwise specified, $4.75 \le Vcc \le 5.25 VDC$; $0^{\circ}C < Ta < 70^{\circ}C$.

Parameter	Test Conditions	Min.	Max.	Units		
Totem pole outputs (P20 – P23, INT	Totem pole outputs (P20 – P23, INTR, T1)					
Output High Voltage	104 = -400 A	2.5	_	V		
Output Low Voltage	IoL = 2mA	-	0.5	V		
Open collector outputs (RD DATA C	UT, INDEX, WGATE, TRACK 0, READY, WR PROT)					
Output High Current	VOH = 5.25 V.	—	250	μΑ		
Output Low Voltage	IoL = 48 mA		0.5 V	v		
Inputs (P20 – P23, PROG, RD DATA IN)						
Input High Voltage		2.0	-	V		
Input Low Voltage	-		0.8	V		
Input Low Current	VIL = 0.5 V	_	- 0.8	mA		
Input High Current	VIL = 2.4 V	_	40	μΑ		
Input Current	Vin = 7.0 V	_	0.1	mA		
Schmitt - Trigger Inputs (WGATE IN, MOTOR ON, DIR, DS, STEP)						
Threshold Voltage	Positive Going, Vcc = 5.0 V	1.3	2.0	V		
	Negative Going, Vcc = 5.0 V	0.6	1.1	v		

ELECTRICAL CHARACTERISTICS (cont.)

Parameter	Test Conditions	Min.	Max.	Units	
Hysteresis	Vcc = 5.0 V	0.4		V	
Input High Current	VIH = 2.4 V	_	40	μA	
Input Low Current	VIL = 0.5 V	_	- 0.4	mA	
Input Current	VIN = 7.0 V	<u> </u>	0.1	mA	
High Impedance Inputs with Hysteresis (WR PROT SENSOR, TRACK 0 SENSOR, INDEX SENSOR)					
Input High Voltage	_		2.0	V	
Input Low Voltage		0.8		V	
Hysteresis	_	0.2		V	
Input Current	Vin = 0 to Vcc	,	- 0.25	mA	

TIMING CHARACTERISTICS

Unless otherwise specified; Ta = $25 \,^{\circ}$ C; 4.75 V \leq Vcc \leq 5.25 V; CL = 15 pf.

PARAMETER	CONDITION	MIN.	MAX.	UNITS
Propagation Delay Time	RD DATA IN to RD DATA OUT	_	35	nS
	DS to WGATE, TRACK 0, READY, WR PROT, RD DATA, INDEX	—	80	nS
	PROG to INTR, WGATE, TRACK 0 (Rising edge) READY, WR PROT	—	100	nS
	WR PROT to WGATE, WR PROT SENSOR		250	nS
	WGATE IN to WGATE	_	80	nS
	STEP to T1, P20		80	nS
	TRACK 0 SENSOR WR PROT SENSOR to Port 2 INDEX SENSOR		250	nS
	MOTOR ON WGATE IN DS	_	80	nS
Data Setup Time	DIR to STEP	50	_	nS
Data Hold Time	DIR to STEP	0	—	nS
Delay Accuracy (Pin 13)	TD = 0.59 RD x CD RD = 3.9k to 10k CD = 75pf to 300pf	0.8Td	1.2Td	sec
Pulse Width Accuracy (Pin 14)	Tw = 0.59 Rw x Cw Rw = 3.9k to 10k Cw = 75pf to 300pf	0.8Tw	1.2Tw	sec

PORT 2 (P20 - P23) TIMING (Timing Referenced to PROG signal, Figure 2.)

Symbol	Name-Description	Min	Мах	Units
TSA	Addr. setup time	100		nS
THA	Addr. hold time	80	—	nS
TSD	Data in setup time	100		nS
THD	Data-in hold time	80	_	nS
TACC	Data-out access time		700	nS
TDR	Data-out release time		200	nS
TPW	PROG pulse width	1500		nS

on systems 14351 Myford Road, Tustin, CA 92680 (714) 731-7110, TWX 910-595-2809

PIN CONFIGURATION

The "PRELIMINARY" designation on an SSi data sheet indicates that the product is not yet released for production. The specifications are subject to change, are based on design goals or preliminary part evaluation, and are not guaranteed. SSi should be consulted for current information before using this product. No responsibility is assumed by SSi for its use; nor for any

infringements of patents and trademarks or other rights of third parties resulting from its use. No license is granted under any patents, patent rights or trademarks of SSi. SSi reserves the right to make changes in specifications at any time and without notice.

silicon systems INNOVATORS IN INTEGRATION

SSI 590 5-1/4 Inch Motor Speed Control

Preliminary Data Sheet

GENERAL DESCRIPTION:

The SSI 590 is a motor controller IC designed to provide all timing and control functions necessary to start, drive and brake a two-phase, four-pole, brushless DC spindle motor. The IC requires two external power transistors (such as Darlington power transistors), three external resistors, and an external frequency reference. The motor Hall sensor is directly driven and decoded by the device. The controller is optimized for a 3600 rpm disc drive motor using a 2 Mega-Hertz clock. Motor protection features include stuck rotor shutdown, coil over-current detection and control, and sup-ply fault detection. The device's linear control loop controls the power drivers using Pulse Amplitude Modulation.

FEATURES:

- Available in 8 pin DIP (SSI 590-1) or 14 pin DIP (SSI 590-2).
- CMOS with single + 12 volt power supply.
- All motor START, DRIVE, AND STOP timing and control.
- Includes Hall-Effect sensor drive and input pins.
- Highly accurate speed regulation of +/- .035%.
- Active braking function (590-2 only).
- On-chip digital filtering requires no external compensation or adjustments.
- Provides protection against stuck rotor, coil over-current, and supply fault.
- · Regenerative braking with shutdown.

CAUTION: Use handling procedures necessary for a static sensitive component.

CONTROL LOOP DESCRIPTION:

The device incorporates both analog and digital circuit techniques to utilize the advantages of each. The analog portion of the loop uses switched capacitor filter technology to eliminate external components. The control loop uses a Pulse Amplitude Modulation (PAM) control scheme to avoid the switching transients and torque ripple inherent in Pulse Width Modulation (PWM) schemes.

A binary counter is preset once per motor revolution by an index signal generated by the hall position sensor. On the next index pulse, the remaining least significant bits are loaded into the proportional D/A and accumulated by a saturating accumulator. The most significant bits are loaded into the integral D/A. The size of the accumulator and the bit locations determine the major scaling (within a factor of two) for the gain and zero location of the filter. To prevent overflow in the proportional D/A the counter is decoded to detect overflow, and the proportional D/A is saturated as needed. The overflow also generates a boost signal used in the summer. The range of the accumulator is larger than the linear range of the proportional channel to help filter small load disturbances that tend to saturate the proportional channel. The entire counter is also used to provide a time-out feature to protect the motor and external circuitry.

INPUT/OUTPUT PIN DESCRIPTION:

* FREF (frequency reference input)

A TTL compatible input used by the device to set and maintain the desired motor speed and operate circuit blocks.

* HALLOUT

Provides a regulated bias voltage for the Hall effect sensor inside the motor.

* HALLIN (Hall sensor input)

The TTL open-collector type output of the motor's Hall switch feeds this input which has a resistor pullup to the HALLOUT bias voltage. Refer to figure 1 for input timing.

OUTA, OUTB (driver outputs)

These two driver outputs drive the external power transistors, such as TIP120 NPN darlington power transistors as shown in the typical application. The power transistors control the motor current through the current setting resistor Re. The motor current is V(sense)/Re. During normal operation, the drive voltages are adjusted as necessary to maintain the proper motor speed and drive current. Regenerative braking is accomplished with self biasing of the power transistors thru resistors Rb with power shutdown. Refer to figure 1 for output timing.

SENSE (coil current sense line)

Senses the coil current and limits the sense voltage to the threshold by limiting the drive to the external power transistors.

* START (active brake control, only available on 14 pin package)

The active brake is enabled by applying a logic "o" to the START pin. During active braking the output phasing is reversed to apply a reverse torque to the motor until the motor period drops below the reverse shutdown speed at which time the drivers turn off the external power transistors to deny power to the motor. Active braking is shown in figure 1.

* N/C (no connection, 14 pin package only) These pins must remain unconnected and floating.

PROTECTION FEATURES:

* LOW VOLTAGE DETECTION

If the supply drops below the detect threshold the device will turn off all of the external power transistors to prevent damage to the motor and the power devices.

* STUCK ROTOR SHUTDOWN

If the delay from power onset to a positive Index transition or the time interval between successive Index transitions is greater than the prescribed time, the device interprets this delay as a stuck rotor and reduces the motor current to zero until such time as one positive HALLIN transition is detected or until power is removed and reapplied.

MOTOR COIL OVER-CURRENT

Refer to SENSE input description. Sense voltage is generated by current through Re shown in the typical application. The SENSE input threshold limits the maximum coil current.

ABSOLUTE MAXIMUM RATINGS:

Positive Supply Voltage, V _{DD}	14V
Storage Temperature	eg. C to +125 deg. C
Ambient Operating Temperature0 d	leg. C to +70 deg. C
HALLIN, FREF, START, and SENSE in	out voltages
· · · · · · · · · · · · · · · · · · ·	-0.3V to VDD+0.3V
HALLOUT Current	10mA
Lead Temperature (soldering, 10 sec.)	
Power Dissipation	400mW

ELECTRICAL CHARACTERISTICS Unless otherwise specified, $10.8V \le V12 \le 13.2V$; 0 deg. C \le TA ≤ 70 deg. C; FREF = 2.00MHz; Re = 0.4 Ohms $\pm 10\%$ (2 watt); Rb = 4.7 Kohm $\pm 10\%$ (1/4 WATT); $0.8 \le \text{Darlington Vbe} < 1.8$

Motor Parameters: (1 to 3 platters)

- KΤ Torque constant = 0.015 Nt-m/amp $\pm 10\%$ Motor frequency(s) КT == J Inertia = 0.000489 Nt-m/s/s ±33% where: $\overline{\mathsf{J}\times\mathsf{s}+\mathsf{K}\mathsf{D}}$ Motor Current(s) =
- KD Damping factor = 0.0000318 Nt-m/rad/sec $\pm 33\%$

			1	
Characteristic	Test Condition	Min.	Max.	Unit
POWER SUPPLY CURRENT				
ICC (Includes Drive Outputs)		(17 typ)	30	mA
FREF AND START INPUTS				
Input Low Voltage	$III = 500 \mu A$		0.8	v
Input High Voltage	$lih = 100 \mu A$	2.0	_	V
HALL SENSOR INTERFACE				
HALLOUT Bias Voltage	I = 5mA	5.0	6.8	V
HALLOUT Pullup Resistance	To HALLOUT Pin	5	20	Kohms
Input Low Voltage			1.0	v
Input High Voltage		4.0		V
DRIVER OUTPUTS				
Sink Capability	VOUTA or VOUTB = 0.5 Volts	5.0	_	mA
Source Capability	VOUTA or VOUTB = 3.0 Volts	-5.0	_	mA
Capacity Load Drive Capability			50.0	pF
SENSE INPUT				
Threshold Voltage		0.9	1.1	V
Input Current		-100	100	μΑ
Input Capacitance			25.0	pF
STUCK ROTOR DETECTION				
Shutdown Time	Power on To Driver	0.815	0.935	sec
LOW VOLTAGE DETECTION			······································	
Detect Threshold		6.0	9.0	V
CONTROL LOOP-DESCRIPTION	*			-
Divider Ratio	FREF/Avg. Motor Frequency	16664	16672	_
Index to Index Jitter	Total Jitter		8.0	μsec
Loop Gain H (2 $\times \pi \times$ f)	f = 2Hz	0 Ту	pical	dB
Loop Zero	Kp/Ki	0.97	1.03	Hz

icon systems

14351 Myford Road, Tustin, CA 92680 (714) 731-7110, TWX 910-595-2809

Characteristic	Test Condition	Min.	Max.	Unit	
CONTROL LOOP Vs SUPPLY VARIATION					
$\frac{Kp(V12 = 13.2V)}{Kp(V12 = 10.8V)}$		0.96	1.04	_	
$\frac{\text{Ki}(\text{V12} = 13.2\text{V})}{\text{Ki}(\text{V12} = 10.8\text{V})}$		0.96	1.04	· .	
Characteristic	Test Condition	Тур.	Max.	Unit	
START/STOP VELOCITY PROFILES					
Power on Delay to FHALL Greater than FREF/16668	1 Platter 2 Platters 3 Platters	7.0 9.0 11.0	11.0 13.0 15.0	sec sec sec	
Speed Overshoot FHALL—(FREF/16668) (FREF/16668)	1 Platter 2 Platters 3 Platters	0.5 0.5 0.5	2.0 2.0 2.0	% % %	
Settling Time: Motor Frequency Settles to 0.05%	1 Platter 2 Platters 3 Platters	9.0 11.0 13.0	13.0 15.0 17.0	sec sec sec	
Stop Time (Regenerative): Motor Frequency Slows to 30% after Power is Removed	1 Platter 2 Platters 3 Platters	7.0 8.0 9.0	13.0 15.0 17.0	sec sec sec	
Stop Time (Active):		4.0		Sec	

*The continuous Time Transfer Function of the On Chip Control can be modeled as follows: $H(s) = \frac{Vc(s)}{F(s)}$

 $= Ki \times \frac{(1 + s/(2 \times \pi \times (Kp/Ki)))}{s}$

Ki = Integral gain Kp = Proportional gain

*NOTE: DIODE REQUIRED FOR REGENERATIVE BRAKING. (THREE AMP MINIMUM RATING)

The "PRELIMINARY" designation on an SSi data sheet indicates that the product is not yet released for production. The specifications are subject to change, are based on design goals or preliminary part evaluation, and are not guaranteed. SSi should be consulted for current information before using this product. No responsibility is assumed by SSi for its use; nor for any infringements of patents and trademarks or other rights of third parties resulting from its use. No license is granted under any patents, patent rights or trademarks of SSI. SSI reserves the right to make changes in specifications at any time and without notice.

licon systems™ INNOVATORS IN INTEGRATION

SSI 591 Three-Phase 5¼ Inch Winchester Motor Speed Control

Preliminary Data Sheet

General Description

The SSI 591 is a motor controller IC designed to provide all timing and control functions necessary to start, drive and brake a three-phase brushless DC spindle motor. The IC requires three external power transistors (such as Darlington power transistors), one external power resistor, and an external frequency reference. The three motor Hall sensors are directly driven and decoded by the device. The controller is optimized for a 3600 rpm disc drive motor using a 2 Mega-Hertz clock. Motor protection features include stuck rotor shutdown, supply and clock fault detection, all of which are indicated by a FAULT signal, and coil over-current detection and control. A LOCK signal is provided to indicate that the motor is at speed. The device's linear control loop controls the power drivers using Pulse Amplitude Modulation.

FEATURES:

- CMOS with TTL/LSTTL compatible control functions
- Single + 12 volt power supply
- All motor START, DRIVE, AND STOP timing and control.
- Includes Hall-Effect sensor drive and input pins.
- Highly accurate speed regulation of +/— .05%.
- Active braking function.
- On-chip digital filtering requires no external compensation of adjustments.
- Provides protection against stuck rotor, motor coil over-current, supply fault, or clock fault.
- At speed indication provided.

SSI 591 Block Diagram

SSI 591 Pin Out (Top View)

TYPICAL APPLICATION

CAUTION: Use handling procedures necessary for a static sensitive component.

SSI 591

CONTROL LOOP DESCRIPTION

The device incorporates both analog and digital circuit techniques to utilize the advantages of each. The analog portion of the loop uses switched capacitor filter technology to eliminate external components. The control loop uses a Pulse Amplitude Modulation (PAM) control scheme to avoid the switching transients and torque ripple inherent in Pulse Width Modulation (PWM) schemes.

A binary counter is preset once per motor revolution by an index signal generated by Hall position sensor 1. On the next index pulse, the remaining least significant bits are loaded into the proportional D/A and accumulated by a saturating accumulator. The most significant bits are loaded into the integral D/A. The size of the accumulator and the bit locations determine the major scaling (within a factor of two) for the gain and zero location of the filter. To prevent overflow in the proportional D/A, the counter is decoded to detect overflow and the proportional D/A is saturated as needed. The overflow also generates a boost signal used in the summer. The range of the accumulator is larger than the linear range of the proportional channel to help filter small load disturbances that tend to saturate the proportional channel. The entire counter is also used to provide a time-out feature to protect the motor and external circuitry.

INPUT/OUTPUT PIN DESCRIPTION

- FREF (frequency reference input)
 A TTL compatible input used by the device to set and maintain the desired motor speed and operate circuit blocks.
- HALLOUT (Hall sensor bias output)
 Provides a regulated bias voltage for the Hall effect sensors inside the motor.
- * HALL1, HALL2, HALL3 (Hall sensor inputs) The TTL open-collector type outputs of the motor's Hall switches feed these inputs which have a resistor pullup to the HALLOUT bias voltage. The HALL1 input is used to index the control loop counter. Refer to figure 1 for input timing.
 - **OUTA, OUTB, OUTC (driver outputs)** These three driver outputs drive the external power transistors, such as TIP120 NPN darlington power transistors shown in typical application. The power transistors control the motor current through the current setting resistor Re. The motor current is V(sense)/Re. During normal operation, the drive voltages are adjusted as necessary to maintain the proper motor speed and drive current. Refer to figure 1 for output timing.

- * SENSE (coil current sense input) Senses the coil current and limits the sense voltage to the threshold by limiting the drive to the external power transistors.
- * LOCK (at speed indicator output) An open drain LSTTL compatible output that indicates with an active low that the period of the motor is within the controllers linear range. Because of the accuracy of the loop, the LOCK pin is a good "at speed" indicator.
- * START (active brake control input)

The active brake is enabled by appling a logic "0" to the START pin. During active braking the Hall sensor's phasing is changed to apply a reverse torque to the motor until the motor period drops below the reverse shutdown speed at which time the drivers turn off the external power transistors to deny power to the motor. Active braking is shown in figure 1.

- FAULT (fault indicator output) Goes high when the motor is determined to be stalled, V_{DD} is low, or FREF clock is too slow.
- * N/C (no connection) These pins must be left unconnected and floating.

PROTECTION FEATURES:

* LOW VOLTAGE DETECTION

If the supply drops below the detect threshold, the device will turn off all of the external power transistors to prevent damage to the motor and the power devices. The FAULT pin goes high in this condition.

* STALLED ROTOR SHUTDOWN

If the delay from power onset to a positive Index transition or the time interval between successive Index transitions is greater than the prescribed time, the device interprets this delay as a stalled rotor and reduces the motor current to zero until such time as one positive Index transition is detected or until power is removed and reapplied. The FAULT output goes high when the motor is determined to be stalled.

* MOTOR COIL OVER-CURRENT Refer to SENSE input description. Senses voltage generated by current through Re shown in the typical application. The SENSE input threshold limits the maximum coil current.	ABSOLUTE MAXIMUM RATINGS: is Positive Supply Voltage, V _{DD}
 FREF CLOCK FAULT If the FREF frequency drops below the specified minimum frequency, the driver will shut down and the FAULT pin will go high. 	VDD + 0.3V FAULT and LOCK Pin Voltage0.3V to VDD + 5.0V HALLOUT Current
ELECTRICAL CHARACTERISTICS Unless otherwis	se specified, 10.8V \leq V _{DD} \leq 13.2V; 0°C \leq TA \leq 70°C; MHz: Re = 0.4 Obms: Motor Configuration is 4-pole 3-phase

FREF = 2.000MHz; Re = 0.4 Ohms; Motor Configuration is 4-pole 3-phase center-tap "Y";

Motor parameters:			Motor Frequency (s)	=-	KT
Torque constant (KT)	0.015 Nt-m/Amp		Motor Current (s)	=	J*s + KD
Inertia (J)	0.000489 Nt-m-sec**2	where: [1]	Winding resistance [2]		2.0 Ohms
Damping Factor (KD)	0.0000318 Nt-m/rad/sec		Winding inductance		2.0 mhz
			Back EMF [2]		0.0159 V/rad/sec

Characteristic	Test Condition	Min.	Max.	Unit			
POWER SUPPLY CURRENT							
ICC	Clock Active I(HALLOUT) = 15mA 1 Driver loaded to = 5 mA 2 Drivers unloaded	_	30	mA			
INPUT LOGIC SIGNALS — 'FREF'	and 'START' INPUTS						
Vil, Input Low Voltage		_	0.8	V			
lil, Input Low Current	Vin = 0	—500		μΑ			
Vih, Input High Voltage		2.0	-	V			
liH, Input High Current	Vin = 5		100	μΑ			
Input Capacitance			25	pF			
OUTPUT LOGIC SIGNALS - 'LOC	K' and 'FAULT' PINS						
Vol	lsink = 2mA	_	0.4	V			
loh	Vout = V _{DD}		10	μΑ			
HALL SENSOR INTERFACE							
HALLOUT Bias Voltage	I = 0 to -15 mA	5.0	6.8	У			
HALL1, 2, 3 Pullup Resistance	to Hallout pin	5	20	KΩ			
Input Low Voltage		—	1.0	V			
Input High Voltage		4.0	_	V			
Input Capacitance			25	pF			

Notes: [1] The motor parameters given are for a typical motor. The device will work for a range of motors near this nominal motor.

[2] The motor must have a back EMF less than 10 volts peak (measured from center tap to drive transistor collector/drain) at speed to insure linear operation of drive transistors and a coil resistance small enough to insure adequate start current.

on systems

14351 Myford Road, Tustin, CA 92680 (714) 731-7110, TWX 910-595-2809

·				
Parameter	Test Conditions	Min.	Max.	Units
DRIVER OUTPUTS				
Sink Capability	Vol = 0.5V	1.0		mA
Source Capability	Voh = 3.0V	5.0		mA
Capacitive Load Drive Capability		_	50.0	pF
SENSE INPUT AND OVER-CURREN	NT CONTROL			
Threshold Voltage		0.9	1.1	V
Input Current		—100	100	μΑ
Input Capacitance		—	25.0	pF
FAULT DETECTION				
Stalled Rotor Shutdown Time	Power On to driver	0.850	0.900	sec
Low Voltage Detect Threshold		6.8	9.0	V
Low FREF Shutdown Threshold	· · · · · · · · · · · · · · · · · · ·		100	Hz
LOCK INDICATION		-, , l. <u>-</u>		•
Lock Range	Motor Speed	3585	3615	Hz

CONTROL LOOP PARAMETERS*

Parameter	Test Condition	Min.	Тур.	Max.	Units
Divider Ratio	FREF/Fmotor	_	33336		_
Instantaneous Speed Error	Referenced to 60Hz	-0.035	0.01	0.015	%
Index to Index Jitter [16/FREF]	Total jitter	·	_	8	μsec.
Loop Bandwidth	Nominal motor $Re = 0.40\Omega$		2	-	Hz
Loop Zero	Ki/Kp		1.0	_	Hz
Maximum Running Current	$Re = 0.40\Omega$	1.50		_	Amps
Minimum Running Current	$Re = 0.40\Omega$		_	0	Amps
Start Current	$Re = 0.40\Omega$	2.25	_	2.75	Amps

*CONTROL LOOP NOTES:

Running current limits refer to capabilities during speed correction.

The motor control loop consists of counters, logic, and digital-to-analog converters that provide loop time constants. The continuous time transfer function of the on chip control can be modeled as follows:

$$H(s) = \frac{Vc(s)}{Fm(s)} = \frac{Ki}{s} + Kp$$

Vc(s) is the voltage applied to the external current setting resistor (RE) by the modulator. By adjusting the value of Re the gain the motor sees can be adjusted, as can the starting current.

The "PRELIMINARY" designation on an SSi data sheet indicates that the product is not yet released for production. The specifications are subject to change, are based on design goals or preliminary part evaluation, and are not guaranteed. SSi should be consulted for current information before using this product. No responsibility is assumed by SSi for its use; nor for any

infringements of patents and trademarks or other rights of third parties resulting from its use. No license is granted under any patents, patent rights or trademarks of SSi. SSi reserves the right to make changes in specifications at any time and without notice.

licon systems INNOVATORS IN INTEGRATION

SSI 550 4-Channel Magnetic Tape Read Circuit

Preliminary Data Sheet

GENERAL DESCRIPTION

Silicon Systems' SSI 550 combines magnetic tape head read signal amplification and processing onto a single integrated circuit. The device accepts up to 4 centertapped magnetic read heads connected directly to the head inputs; head center tap voltage is provided by an on-chip reference. The device architecture permits system design flexibility by providing the external connections between the Preamplifier/Multiplexer, Postamplifier, Signal Level Detector, and Data Detector; this allows the implementation of many suitable filtering combinations. Low noise amplifiers are used throughout the device. The SSI 550 operates on +5 and + 12 Volt supplies and has TTL compatible control signals.

FEATURES

- 4-Channel Multiplexer with differential-input
 Preamplifiers
- Postamplifier has component-adjustable and programmable gain
- On-chip Signal Level Detector with programmable threshold and adjustable delay
- Data Detection Circuit includes spurious signal rejection (adjustable time domain filter) and provides an adjustable uniform Data Pulse output
- Available in 40 pin DIP or 44 pin Quad plastic packages

(shown with typical external circuitry)

CAUTION: Use handling procedures necessary for a Static Sensitive Component.

DEVICE DESCRIPTION AND OPERATION

4-Channel Preamplifier and Multiplexer

The device contains four low level differential-input Preamplifiers. The differential output of a single Preamplifier is selectively connected to the Preamplifier output terminals by means of two logical CHANNEL SELECT signals, S0 and S1. The selected Preamplifier number is the binary value of the logical SELECT signals for active high voltage levels.

The Preamplifier inputs are intended for connection to center-tapped magnetic read heads. An appropriate Preamplifier input bias voltage level is obtained by connecting the head center taps to the circuit C.T. VOLT terminal.

The C.T.VOLT terminal is the output of a voltage reference which has a value to center the Preamplifier inputs within their operating range.

Postamplifier

The Postamplifier is a differential-input, differentialoutput circuit which has two means of gain adjustment. A continuously-variable gain adjustment is obtained by use of an external resistor or potentiometer. Discrete values of gain setting are additionally obtained by applying combinations of logical signal levels to the three GAIN SELECT terminals, G0, G1, and G2.

The Postamplifier receives the output signals of the Preamplifier after frequency selection by an external filter network. The input characteristics of the Postamplifier are such that the inputs may have DC coupling to the Preamplifier output, or may be AC coupled without requiring input bias connections.

A suitable coupling capacitor must be connected between the GAIN1, GAIN2 terminals independent of the use of a gain setting resistor.

Signal Level Detect Circuits

The Signal Level Detect circuits consist of detector circuits which compare the amplitude of the signal envelope of the Postamplifier output with a selectable threshold and provide a logical output level which indicates the presence of Postamplifier signal greater than the threshold. AC coupling is required between the Postamplifier output and the Signal Level Detect circuits input. The Signal Level Detect input has internal bias connections so that no external bias network is required.

The threshold to which the Postamplifier signals are compared is selected by means of two THRESHOLD SELECT logical inputs T0 and T1. The result of the comparison is delayed from appearing at the circuit SIGNAL DETECT output terminal by means of a delay circuit which is adjustable by means of external components.

The delay associated with signal detection is set by combinations of capacitor CDS and resistor RDS1. The delay associated with signal loss is set by combinations of CDS and resistors RDS1 plus RDS2.

Data Detection Circuits

The Data Detection circuits are AC coupled to the Postamplifier outputs through an (optional) external filter network and provide logical output pulse signals in response to positive and negative input signal amplitude peaks. This function is performed by differentiating input signals to obtain zero-crossing voltages at points of inflection and detecting these crossings to provide output signals.

To enhance the signal peak detection, spurious inflection points which occur inpairs between true signal peaks are suppressed by means of the Time Domain Filter. The filter inhibits the propagation of detected zero-crossings if they are not sufficiently separated in time. This time period is set by external capacitor CTD and resistor RTD.

Uniform DATA PULSE output signals are provided by the One-Shot Multivibrator which is triggered by outputs of the Time Domain Filter. The time duration of the DATA PULSE signals is set by external capacitor CDP and RDP.

DC paths through the external filter network to the Signal Level Detect circuits inputs are required to properly bias the Data Detection circuits. The resistance of each path is not critical and may be as large as 10 Kohm.

Pin N	lumber		T
DIP	QUAD	Pin Name	Pin Description
1	1	INO -	Channel 0 (-) input
2	2	IN0 +	(+) input
3	3	IN1 -	Channel 1 (-) input
4	4	IN1 +	(+) input
5	5	IN2 -	Channel 2 (-) input
-	6	N/C	No internal connection
6	7	IN2 +	Channel 2 (+) input
7	8	IN3	Channel 3 (–) input
8	9	IN3 +	(+) input
9	10	CT VOLT	Center tap voltage
10	11	VCC2	+ 12 Volt supply connection
11	12	AGND	Analog signal ground
12	13	DEL IN	Input to delay comparator
13	14	SIGNAL DETECT	Output of delay comparator
14	15	DPN	External RC for output pulse width
15	16	TDF	External RC for time-domain delay
_	17	N/C	No internal connection
16	18	DATA PULSE	Output of time-domain filter
17	19	DGND	Ground
18	20	VCC1	+ 5 Volt supply
19	21	TO	Threshold select signal (1 of 2)
20	22	T1	Threshold select signal (1 of 2)
21	23	CAP1	External differentiating capacitor
22	24	CAP2	connection
23	25	DIF -	Inputs to active differentiator
24	26	DIF +	-
25	27	LEV OUT	Output to level detector
-	28	N/C	No internal connection
26	29	LEV -	Inputs to level detector
27	30	LEV +	
28	31	G0	Postamp gain select (1 of 3)
29	32	PSTOUT -	Outputs of Postamplifier
30	33	PSTOUT +	
31	34	G1	Postamp gain select (1 of 3)
32	35	GAIN 1	External Postamplifier gain
33	36	GAIN 2	adjusting RC terminals
34	37	PSTIN +	Inputs to Postamplifier
35	38	PSTIN -	
-	39	N/C	No internal connection
36	40	G2	Postamp gain select (1 of 3)
37	41	PREOUT +	(+) Output of Preamplifier
38	42	PREOUT -	(-) Output of Preamplifier
39	43	SO	Input channel select (1 of 2)
40	44	S1	Input channel select (1 of 2)

ABSOLUTE MAXIMUM RATINGS

Characteristic	Rating
Storage Temperature 65 °C. to +	150 °C.
Ambient Operating Temperature, Ta0°C. to	+ 70°C.
Junction Operating Temperature, Tj 0 °C. to +	130°C.
Supply Voltage, Vcc1 0.5 Vdc to +	6.0 Vdc
Supply Voltage, Vcc2 0.5 Vdc to + 1	4.0 Vdc

Voltage Applied to Logic

ELECTRICAL CHARACTERISTICS

Unless otherwise specified: Vcc1 = 4.75V to 5.25V, Vcc2 = 11.4V to 12.6V, Ta = 0 to + 70 $^\circ\text{C}.$

Overall Characteristics

Characteristics	Test Conditions	Min.	Max.	Units
Input Current Logical Inputs HIGH	Vih = Vcc1	_	100	uA
Input Current Logical Inputs LOW	Vil = 0V	_	- 400	uA
Output Voltage Delay Comparator OFF	loh = -400uA	2.4	-	V
Output Voltage Delay Comparator ON	lol = 2.0mA	—	0.5	V
Data Pulse Inactive Level Output Voltage	loh = -400uA	2.4	—	V
Data Pulse Active Level Output Voltage	lol = 2.0mA		0.5	V
Vcc1 Power Supply Current	Necessary external components and connections No Head Inputs.		30	mA
Vcc2 Power Supply Current	Necessary external components and connections No Head Inputs.		62	mA

* Characteristic applies to Inputs S0, S1, G0, G1, G2, T0, T1

PREAMPLIFIER AND MULTIPLEXER CHARACTERISTICS

Output Load = $2K\Omega$ line-line, Channel Select Signals (S0, S1): VON = 2V Min., VOFF = 0.8V Max.

Characteristics	Test Conditions	Min.	Max.	Units
Differential Voltage Gain	Vin = 4mV p-p @ 100kHz ref. to C.T. Volt	80	120	V/V
Gain Flatness	Vin = 4mV p-p DC to 0.5MHz ref. to C.T. Volt	± 0.5	—	dB
Bandwidth, – 1dB	Vin = 4mV p-p	1.5	—	MHz
Bandwidth, – 3dB	Vin = 4mV p-p	3.0	—	MHz
Differential Input Impedance	Vin = 4mV p-p @ 100kHz ref. to C.T.Volt	10	—	KΩ
Common-Mode Rejection Ratio	Vin = 300mV p-p @ 500kHz Inputs Shorted to C.T. Volt	50	—	dB
Power Supply Rejection Ratio	Δ Vcc = 300mV p-p @ 500kHz Inputs shorted to C.T. Volt	50	—	dB
Channel Isolation	Interfering Vin = 100mV p-p @ 2MHz. Selected Channel inputs connected to C.T. Volt	60	_	dB
Total Harmonic Distortion	Vin = 0.5 to 6.0mV p-p @ 500kHz		2	%
Equivalent Input Noise	Power BW = 10kHz to 1MHz Inputs shorted to C.T. Volt		10	μVrms
Small Sig Single-Ended Output Res.	lo = 1mA p-p @ 100kHz		35	Ω
Maximum Diff. Output Voltage	Freq = 100kHz THD<5%	3	-	Vp-p
Output Offset Voltage	Inputs shorted to C.T. Volt Load = Open Circuit		± 1.0	V
Common-Mode Output Voltage	Inputs shorted to C.T. Volt Load = Open Circuit	2.68	3.5	V
Center Tap Voltage, C.T. Volt			3.0 Тур	

DATA DETECTION CIRCUIT CHARACTERISTICS

Vin = 1.0V p-p diff. square wave, Tr, Tf< 20nsec, dc-coupled (for biasing). RD = $2.5K\Omega$; CD = 0.1μ F; RTD = 7.8 K Ω ; CTD = 200 pF; RDP = 3.9 K Ω ; CDP = 100 pF. Data Pulse load = $2.5K\Omega$ to Vcc1 plus 20pF or less to PWR GND.

Characteristics	Test Conditions	Min.	Max.	Units
Differentiator Maximum Differential Input Voltage	Vin = 100kHz sine wave, dc-coupled. $<5\%$ THD in voltage across CD. CD = 620pF RD = 0	5.0	—	Vp-р
Differentiator Input Impedance	Vin = 4V p-p diff., 100kHz sine wave. CD = $620pF$ RD = 0	10		КΩ
Differentiator Threshold Differential Input Voltage	Vin = 100kHz square wave, Tr, Tf< 0.4 usec, no overshoot. Data Pulse from each Vin transition.	. — .	300	mVp-p
Data Pulse Width Accuracy	TDP = .59 RDP \times CDP, RDP = 3.9 K Ω to 10 K Ω , CDP = 75 pF to 300 pF Width measured at 1.5V amplitude	.85TDP	1.15TDP	sec
Time Domain Filter Delay Accuracy	$\begin{array}{l} \text{TTD}=0.59 \; \text{RTD}\times\text{CTD}\ +\ 50 \; \text{nsec}, \; \text{RTD}\ =\ 3.9 \text{K}\Omega \\ \text{to} \; 10 \; \text{K}\Omega \;, \; \text{CTD}\ =\ 100 \text{pF} \; \text{to} \; 750 \text{pF} \\ \text{Delay measured from} \; 50\% \; \text{input amplitude to} \; 1.5 \text{V} \\ \text{Data} \; \text{Pulse amplitude} \end{array}$.85TTD	1.15TTD	sec
Data Pulse Width Drift from +25°C. value	Width measured from 1.5V amplitude	—	± 5.0	%
Time Domain Filter Delay Drift from + 25 °C. value	Delay measured from 50% Input amplitude to 1.5V Data Pulse amplitude		± 5.0	%

Note: Differentiating network impedance should be chosen such that 1mA peak current flows at maximum signal level and frequency.

SIGNAL LEVEL DETECT CIRCUITS	Level Comparator Inputs connected in parallel with Differentiator Inputs.
CHARACTERISTICS	Vin (Level Comp) = 100kHz sine wave, ac-coupled. RDS1 = $5k\Omega$; RDS2, CDS = open

Characteristics	Test Conditions	Min.	Max.	Units
Level Comparator Input Thresholds, Single-Ended, Each Input	T0 VT0 = 0.8V VT1 = 0.8V Vo pulse value <0.5V at MAX LIMIT, >Vcc1 - 0.5V at MIN LIMIT	30	70	mV pk
	T1 VT0 = 2.0V VT1 = 0.8V Vo pulse value <0.5V at MAX LIMIT, >Vcc1 - 0.5V at MIN LIMIT	97	153	mV pk
	T2 VT0 = 0.8V VT1 = 2.0V Vo pulse value <0.5V at MAX LIMIT, >Vcc1 - 0.5V at MIN LIMIT	138	202	mV pk
	T3 VT0 = 2.0V VT1 = 2.0V Vo pulse value <0.5V at MAX LIMIT, >Vcc1 - 0.5V at MIN LIMIT	210	290	mV pk
Level Comparator Diff. Input Resistance	Vin = 5V p-p @ 100kHz	5	—	KΩ
Level Comparator OFF Output Leakage	Vo = Vcc1	-	25	μΑ
Level Comparator ON Output Voltage	$VT0 = 0.8V VT1 = 0.8V Vin = \pm 140mV$ diff. dc lo = 2.0mA	_	0.25	v
Delay Comparator Upper Threshold Voltage	Vo > 2.4V	.65Vcc1	.75Vcc1	V
Delay Comparator Lower Threshold Voltage	Vo< 0.5V	.25Vcc1	.35Vcc1	V
Delay Comparator Input Current	0V< Vin< Vcc1		25	μΑ

POSTAMPLIFIER	Output Load = 2.5
CHARACTERISTICS	dc-coupled (to prov

Output Load = $2.5K\Omega + 0.1\mu$ F line-line, Vin = 100mV p-p, 100kHz sine wave, dc-coupled (to provide proper biasing). CG = 0.1μ F RG = 0.

Characteristics	Test Conditions	Min.	Max.	Units
Differential Voltage Gain	A0 VG0 = 0.8V VG1 = 0.8V VG2 = 0.8V	A7-14.75	A7-13.25	dB
	A1 VG0 = 2.0V VG1 = 0.8V VG2 = 0.8V	A7-12.75	A7-11.25	dB
	A2 $VG0 = 0.8V$ $VG1 = 2.0V$ $VG2 = 0.8V$	A7-10.75	A7-9.25	dB
	A3 $VG0 = 2.0V$ $VG1 = 2.0V$ $VG2 = 0.8V$	A7-8.75	A7-7.25	dB
	A4 $VG0 = 0.8V$ $VG1 = 0.8V$ $VG2 = 2.0V$	A7-6.75	A7-5.25	dB
	A5 $VG0 = 2.0V$ $VG1 = 0.8V$ $VG2 = 2.0V$	A7-4.75	A7-3.25	dB
	A6 $VG0 = 0.8V$ $VG1 = 2.0V$ $VG2 = 2.0V$	A7-2.75	A7-1.25	dB
	A7 $VG0 = 2.0V$ $VG1 = 2.0V$ $VG2 = 2.0V$	32	-	dB
	ARG VG0 = 2.0V VG1 = 2.0V VG2 = 2.0V	A7-7.5	A7-4.5	dB
	when RG = $2.5K\Omega$			
Differential Input Impedance	VG0 = 2.0V VG1 = 2.0V VG2 = 2.0V	10	—	KΩ
Bandwidth, 1dB	VG0 = 2.0V VG1 = 2.0V VG2 = 2.0V	1.5	—	MHz
Bandwidth, 3dB	VG0 = 2.0V VG1 = 2.0V VG2 = 2.0V	3.0		MHz
Maximum Diff. Output Voltage	VG0 = 0.8V VG1 = 0.8V VG2 = 0.8V	5		Vp-p
	Vin = 100kHz sine wave THD $<5\%$			
Small Signal Single-Ended	VG0 = 2.0V VG1 = 2.0V VG2 = 2.0V		35	Ω
Output Res.	Vin = 0V Io = 1mA p-p, 100kHz			
Input Bias Offset Voltage	VG0 = 0.8V VG1 = 0.8V VG2 = 0.8V	_	± 1.0	V
Range	THD < 2.0%			
Input Bias Common-Mode	VG0 = 0.8V VG1 = 0.8V VG2 = 0.8V	2.68	3.5	V
Voltage Range	THD < 2.0%			

icon systems 14351 Myford Road, Tustin, CA 92680 (714) 731-7110, TWX 910-595-2809

THERMAL CHARACTERISTICS: 0 JA

40-PIN	PDIP	70°C/W
40-PIN	CDIP	45 °C/W
44 -PIN	QUAD	68°C/W

The "PRELIMINARY" designation on an SSi data sheet indicates that the product is not yet released for production. The specifications are subject to change, are based on design goals or preliminary part evaluation, and are not guaranteed. SSi should be consulted for current information before using this product. No responsibility is assumed by SSi for its use; nor for any infringements of patents and trademarks or other rights of third parties resulting from its use. No license is granted under any patents, patent rights or trademarks of SSi. SSI reserves the right to make changes in specifications at any time and without notice.

SSI 67C 4O1/4O2 First-In First-Out (FIFO) 64x4 or 64x5 Memory

Preliminary Data Sheet

GENERAL DESCRIPTION

The SSI 67C401/402 devices are high speed, expandable memories operating as a First-In, First-Out, (FIFO) asynchronous register of either 64 words by 4-bit (SSI 67C 401) or 64 words by 5-bit (SSI 67C 402). The SSI 67C401/402 are CMOS devices. A 10 MHz shift rate provides the fast transfer of data necessary for applications in high speed tape or disc controllers and communication buffers. A single +5V power supply is required.

FEATURES

- · 10 MHz shift in, shift out rates
- Choice of 4-bit or 5-bit width
- · TTL compatible inputs and outputs
- · Readily expandable in word and bit dimensions
- Output pins directly opposite corresponding input pins
- · Asynchronous operation
- Pin compatible with MMI 67401 Series
- Low power consumption
- · HCT input and output characteristics

Block Diagrams

SSI 67C401 64x4

Pin Assignments

(Top View)

SSI 67C402 64x5

CAUTION: Use handling procedures necessary for a static sensitive component

SSI 67C4O1/4O2 First-In First-Out (FIFO) 64x4 or 64x5 Memory

CIRCUIT DESCRIPTION Data Input

When the FIFO is reset, the Master Reset is pulsed low to prepare the device for data input. Data is entered at the D_X inputs as controlled by the Input Ready (IR) and Shift In (SI) logic. With IR high, data can be accepted. Data present at the data inputs is entered into the first position on the rising edge of SI. As SI is taken high, IR goes low indicating the FIFO is busy. When SI is set low, IR goes high if the memory is not full. In the FIFO, data is shifted towards the output progressively until a full memory position is encountered. Thus, the memory is filled with the first data word at the output position and subsequent data words in order behind it. If the memory is full, that is all 64 word positions contain valid data, IR remains low after SI is set low.

Data Transfer

After data input, transfer of a data word from a memory position to an adjacent empty memory position is automatic, activated by on-chip control. Thus, data stacks up at the output end of the FIFO while memory positions that are emptied as data is unloaded are moved to the input end. The time for data (or emptied positions) to move the entire length of the memory is defined as the throughput, or fall through, time (tpr).

Data Output

Data outputs at the Q_X pins are controlled by the Output Ready (OR) and Shift Out (SO). When valid data is shifted to the outputs, OR goes high. With OR high, data may be shifted out by bringing SO high. The rise of SO causes OR to go low. Valid data is maintained while SO is high. When SO is brought low, the upstream data (pro-viding the next stage contains valid data) is shifted to the output stage and OR goes high. If the FIFO is emptied, OR stays low and the Q_X data remains as before.

Application Notes

The Input Ready (IR) and Output Ready (OR) may be used as status signals indicating that the FIFO is completely full (IR stays low for at least fall through time t_{pt}) or that the FIFO is completely empty (OR stays low for at least t_{pt}).

Since the high speed FIFO is particularly sensitive to small glitches as might be caused by long reflective lines, high capacitances, or poor supply decoupling and grounding, circuit design should account for these potential problems ensuring that adequate ground planes and decoupling measures are taken. For example, it is recommended that a 0.1 μ f ceramic capacitor be connected directly between V_{CC} and ground with a very short lead length.

Absolute Maximum Ratings* (All voltages referenced to GND)

Parameter	Symbol	Value	Units
Supply Voltage	V _{cc}	7	VDC
Input Voltage	V _{in}	7	VDC
Output Voltage	V _{out}	5.5	VDC
Storage Temperature Range	T _{stg}	-65 to +125	°C

* Operation above absolute maximum ratings may permanently damage the device.

Electrical Characteristics	(4.75 ≤ V _{CC}	≤5.25 V, 0°C ∘	≪T _A ≪75°C	unless	otherwise	specified)
----------------------------	-------------------------	----------------	-----------------------	--------	-----------	------------

Symbol	Parameter	Test Conditions	Min	Max	Unit
VIL	Low-Level Input Voltage	—	_	0.8	v
VIH	High-Level Input Voltage	—	2	_	V
VIC	Input Clamp Voltage	$V_{CC} = MIN I_I = -18mA$	_	- 1.5	V
١L	Low-Level Input Current	$V_{CC} = MAX V_{in} = 0.4V$	-	- 0.4	mA
Ιн	High-Level Input Current	$V_{CC} = MAX V_{in} = 2.4V$		50	μA
імн	Maximum Input Current, High	$V_{CC} = MAX V_{in} = 5.5V$	-	1	mA
IML	Maximum Input Current, Low	$V_{CC} = MAX V_{in} = 0.5V$	-	15	mA
VOL	Low-Level Output Voltage	V _{CC} = MIN I _{OL} = 8mA	-	0.4	V
Voн	High-Level Output Voltage	$V_{CC} = MIN I_{OH} = -4.0mA$	4.35		V
los	Output Short-Circuit Current [†]	V _{CC} = 5V V _{out} = 0.5V	_	- 80	m۸
		V _{out = 4.5V}	-	- 80	
ICC	Supply Current	V _{CC} = MAX V _{in} = V _{CC} or GND Outputs Open Ckt	-	100	μΑ

 \dagger Not more than one output should be shorted at a time and duration of the short-circuit should not exceed one second.

Symbol	Parameter	Min	Max	Unit
tin	Shift In Rate (Period between data loading)	100	-	ns
tSIH	Shift In HIGH Time	35		ns
tSIL	Shift In LOW Time	35		ns
^t IRL	Shift In to Input Ready LOW		45	ns
^t IRH	Shift In to Input Ready HIGH	-	45	ns
tIDS	Input Data Set Up	5	_	ns
^t IDH	Input Data Hold Time	45	-	ns
tout	Shift Out Rate (Period between data unloading)	100	_	ns
tsoн	Shift Out HIGH Time	35		ns
tSOL	Shift Out LOW Time	35	—	ns
tORL	Shift Out to Output Ready LOW		55	ns
^t ORH	Shift Out to Output Ready HIGH		55	ns
tod	Output Data Delay	10	55	ns
^t PT	Data Throughout (fall through) time		3	μs
^t MRW	Master Reset Pulse ²	35	<u> </u>	ns
^t MRORL	Master Reset to OR LOW		60	ns
^t MRIRH	Master Reset to IR HIGH	_	60	ns
tMRS	Master Reset to SI	35		ns
tIPH	Input Ready Pulse HIGH	5	-	ns
toph	Output Ready Pulse HIGH	5	_	ns

Switching Characteristics Over Operating Conditions

² Master reset puts the register logic to "all cells empty", and sets IR high,

Figure 3. Timing Waveforms
The diagram assumes, that at this time, words 63, 62, 61 are loaded with A, B, C Data, respectively

FIFOs can be easily cascaded to any desired depth. The handshaking and associated timing between the FIFOs are handled by the FIFOs themselves.

Figure 6. 192x12 FIFO.

FIFOs are expandable in depth and width. However, in forming wider words two external gates are required to generate composite Input and Output Ready flags. This need is due to the different fall through times of the FIFOs.

The "PRELIMINARY" designation on an SSi data sheet indicates that the product is not yet released for production. The specifications are subject to change, are based on design goals or preliminary part evaluation, and are not guaranteed. SSi should be consulted for current information before using this product. No responsibility is assumed by SSi for its use; nor for any

infringements of patents and trademarks or other rights of third parties resulting from its use. No license is granted under any patents, patent rights or trademarks of SSi. SSi reserves the right to make changes in specifications at any time and without notice.

SSI 440 Advanced Floppy Disk Controller

Advanced Information

GENERAL DESCRIPTION

The SSI 440 is a highly integrated CMOS Advanced Floppy Disk Controller (AFDC). It performs virtually all the functions necessary to interface a CPU with up to 4 double-sided floppy disk drives. It is command compatible with the NEC μ PD765 and performs all of its functions in addition to many new ones. These enhancements include high performance write precompensation and analog data, separation circuitry, additional error detection methods, and an increased data rate handling capability in addition to the benefits of CMOS technology.

FEATURES

- Supports IBM and Sony (ECMA) compatible formats for double density recording
- Programmable sector sizes 128, 256, 512, 1024, 2048, 4096 bytes/sector
- Programmable head load and unload timing, and track stepping rate
- Multi-sector, multi-track transfer capability

- · Controls up to four double-sided diskette drives
- Parallel seek operation for up to four diskette drives
- Data transfers in DMA or non-DMA mode
- Data scan capability to compare, on a byte by byte basis, diskette read data with processor memory
- Selectable write precompensation timing 0, 62.5,
- 125, 187.5, 250 nanoseconds
- Programmable error detection methods CRC 16, or CCITT
- Integrated analog data separation circuitry
- On chip clock oscillator plus an 8MHz clock output
- Supports disk data rates of up to 1MHz
- Compatible with popular microprocessors
- FDD interface input signals have 7414 type input buffers with hysteresis and output signals can drive 24 mA. open drain, eliminating the need for I/O buffering to the Floppy Disk Drive in some cases
- Operates with a 5 volt supply (± 5%)
- CMOS technology, high performance & low power requirements
- Available in dual-in-line or Quad Surface Mount packaging
- Available 3Q85

CAUTION: Use handling procedures necessary for a static sensitive component

SSI 511/511R – Series 2, 4, or 6-Channel Read/Write Circuits

(Availability: Fall, 1985)

Advanced Information

GENERAL DESCRIPTION

The SSI 511 devices are monolithic integrated circuits designed for use with center-tapped ferrite recording heads. They utilize an advanced bipolar process and input structure to provide a low noise read path, write current control, and data protection circuitry for as many as six channels. The SSI 511 requires + 5V and + 12V power supplies and is available in 2, 4, or 6 channel versions with a variety of packages.

FEATURES

- · Low noise read amplifier
- + 5V, + 12V power supplies
- · Designed for center-tapped ferrite heads
- · Programmable write current source
- Available in 2, 4, or 6 channels
- · Easily multiplexed for larger systems
- Includes write unsafe detection
- TTL compatible control signals
- · Damping resistors provided on 511R models

SSI 521 Thin Film - 6-Channel Read/Write Circuit

Advanced Information

DESCRIPTION

The SSI 521 is a bipolar monolithic integrated circuit designed for use with non-center tapped thin film recording heads. It provides a low noise read path, write current control, and data protection circuitry for up to six channels. The SSI 521 requires +5v and +12v power supplies and is available in a variety of packages.

FEATURES

- · Designed for thin film heads
- + 5v, + 12v power supplies
- Ideal for multi-platter Winchester applications
- Programmable write current source
- Easily multiplexed for larger systems
- Includes write unsafe detection
- LSTTL compatible control signals

Circuit Operation

The SSI 521 functions as a write driver or as a read amplifier for the selected head. Head selection and mode control are described in Tables 2 & 3. The inputs R/\overline{W} , \overline{CS} and WP have internal pull up resistors to prevent an accidental write condition.

WRITE MODE

The Write mode configures the SSI 521 as a current switch and activates the Write Unsafe Detector. Head current is toggled between the X- and Y-direction of the recording head on the falling edges of WDI, Write Data Input. Note that a preceding read operation initializes the Write Data flip-flop to pass current in the X-direction of the head. The magnitude of the write current, given by

$$I_{W} = \frac{K}{R_{WC} \left(1 + \frac{RH}{RD}\right)} - 1 \text{ mA}$$
Where K = Write Current Constant
$$R_{W} = H_{WC} R_{WC} R_{WC}$$

 $R_{H} =$ Head Resistance

R_D = Damping Resistance

is controlled by an external resistor, Rwc, connected from pin WC to GND.

Any of the following conditions will be indicated as a high level of the Write Unsafe, WUS, open collector output.

- WDI frequency too low
 Chip disabled
- Device in Read mode
 No write current

After fault condition is removed, two negative transitions on WDI are required to clear WUS. The current monitor output (IMF) sinks one unit of current when the device is selected. This allows a multichip enable fault to be detected.

READ MODE

In the Read mode, the SSI 521 is configured as a low noise differential amplifier, the write current source

TABLE 2: MODE SELECT			
CS	R/W	MODE	
0	0	Write	
0	1	Read	
1	0	Idle	
1	1	Idle	

ABSOLUTE MAXIMUM RATINGS

and the write unsafe detector are deactivated, and the write data flip-flop is set. The RDX and RDY outputs are driven by emitter followers.

Note that the internal write current source is deactivated for both the Read and the chip deselect modes.

TABLE 1: PIN DESCRIPTION

Symbol	Name · Description
HS0 - HS2	Head Select: selects one of six heads
<u>CS</u>	Chip Select: a high inhibits chip
R/₩	Read/Write: a high selects Read mode
WP	Write Protect: a low enables the write current source
WUS	Write Unsafe: a high indicates an unsafe writing condition
IMF	Current Monitor Function: allows multichip enable fault detection
WDI	Write Data In: changes the direction of the current in the recording head
HOX - H5X HOY - H5Y	X,Y head connections: Current in the X-direction flows into the X-port
RDX, RDY	X,Y Read Data: differential read data out
WC	Write Current: used to set the magnitude of the write current
VCC1	+ 5V
VCC2	+ 5V
VDD	+ 12V
GND	Ground

TABLE 3: HEAD SELECT

HS2	HS1	HS0	HEAD
0	0	0	0
0	0	1	1
0	1	0	2
0	1	1	3
1	0	0	4
1	0	1	5
1	1	0	none
1	1	1	none

Parameter	Symbol	Value	Units
DC Supply Voltage	VDD	-0.3 to +14	VDC
	VCC	-0.3 to +7	VDC
Write Current	IW	100	mA
Digital Input Voltage	Vin	-0.3 to VCC +0.3	VDC
Head Port Voltage	VH	-0.3 to VDD+0.3	VDC
Output Current: RDX, RDY	lo	- 10	mA
WUS		+ 12	mA
Storage Temperature	Tstg	-65 to +150	С
Operating Temperature	Tj	+ 25 to + 125	С

RECOMMENDED OPERATING CONDITIONS

Parameter	Symbol	Value	Units
DC Supply Voltage	VDD	12 ±5%	VDC
	VCC1	5 ±5%	VDC
	VCC2	5 ±5%	VDC
RDX, RDY Output Current (DC)	lo	0 to 100	μΑ

DC CHARACTERISTICS Unless otherwise specified: $VDD = 12V \pm 5\%$ VCC1, $2 = 5V \pm 5\%$, +25 °C <Tj < +125 °C.

Parameter	Test Conditions	Min.	Max.	Units
Input Low Voltage (VIL)		- 0.3	0.8	VDC
Input High Voltage (VIH)		2.0	VCC + 0.3	VDC
Input Low Current	VIL = 0.8v	-0.4	_	mA
Input High Current	VIH = 2.0v	_	100	μΑ
RDX, RDY Common Mode Output Voltage		5	7	VDC
WUS Output VOL	lol = 8mA	_	0.5	VDC
IMF Output on		2.2	3.7	mA
off			0.02	mA

WRITE CHARACTERISTICS Unless otherwise specified: VDD = $12v \pm 5\%$, VCC1, $2 = 5v \pm 5\%$, IW = 40 ma, Lh = 200nH, Rh = 16Ω , f (Data) = 5MHz, CL (RDX, RDY) <20pF, RL (RDX, RDY) = $1K\Omega$.

Parameter	Test Conditions	Min.	Max.	Units
Write Current Constant "K"	Rh≤1Ω	1.12	1.26	V
Differential Head Voltage Swing		3.4	_	V(pp)
Unselected Head Current		—	2	mA (pk)
Differential Output Capacitance			30	pF
Differential Output Resistance		200	200 Typ	
WDI Transition Frequency	WUS = low	TBD		MHz
lwc to Head Current Gain			TBD	A/A
Write Current Range		20	70	mAp

READ CHARACTERISTICS

Parameter	Test Conditions	Min.	Max.	Units
Differential Voltage Gain	Vin = $1mVpp @ 300 KHz$ RL(RDX), RL(RDY) = $1k\Omega$	75	125	V/V
Bandwidth – 1db	$IZsI < 5\Omega$, Vin = 1mVpp	25		MHz
- 3db		45		MHz
Input Noise Voltage	BW = 15MHz, Lh = 0, Rh = 0	—	0.9	nV/√Hz
Differential Input Capacitance	f = 5MHz	— 65		pF
Differential Input Resistance	f = 5MHz	200 Тур		Ω
Input Bias Current			170	μΑ
Dynamic Range	DC input voltage where gain falls to 90% of its OVDC value. Vin $=$ VDC +0.5mVpp, f = 5MHz	- 3	3	mV
Common Mode Rejection Ratio	Vin = 0VDC + 100mVpp @ 5MHz	54	_	db
Power Supply Rejection Ratio	100mVpp @ 5MHz on VDD or VCC	54		db
Channel Separation	Unselected channels driven with 100mVpp @ 5MHz, Vin = 0mVpp	45		db
Output Offset Voltage		- 360	360	mV
Single Ended Output Resistance	f = 5MHz	_	30	Ω
Current Output	AC coupled TBD load		TBD	mA

on systems

14351 Myford Road, Tustin, CA 92680 (714) 731-7110, TWX 910-595-2809

$IW = 40mA$, $Lh = 200nH$, $Rh = 16\Omega$, f(Data) = 5MHz.				
Parameter	Test Conditions	Min.	Max.	Units
R/W: R/W to Write	to 90% of write current	_	0.6	μS
R/W to Read	to 90% of 100mV 10MHz Read signal envelope	_	0.6	μS
\overline{CS} : \overline{CS} to select	to 90% of write current or to 90% of 100mV 10MHz Read signal envelope		1	μS
CS to unselect		_	1	μS
HS0, 1, 2 to any head	to 90% of 100mV 10MHz Read signal envelope	_	0.4	μS
WUS: safe to unsafe TD1		0.6	3.6	μS
unsafe to safe TD2		_	1	μs
IMF: transition time	delay from 50% point of CS to 90% of IMF current	·	0.6	μS
Head Current: WDI to Io (x, y) TD3	Lh = 0, $Rh = 0$ from 50% points	_	32	nS
Assymetry	WDI has 50% duty cycle and 1ns rise/fall time	. —	1.0	nS
Rise/Fall time	10% - 90% points	_	13	nS

Unless otherwise specified: VDD = $12V \pm 5\%$, VCC1, 2 = $5V \pm 5\%$, TA = 25 °C,

WRITE MODE TIMING DIAGRAM

wc —	1		28	- HOY
VDD	2	6 Channels	27	нох
GND	3		26	- н1Ү
WDI	4		25	- H1X
WP	5		24	— Н2Ү
R/W	6		23	— н2Х
cs —	7		22	нзү
HS0	8		21	— нзх
HS1	9		20	- H4Y
HS2	10		19	- H4X
wus	11		18	— н5Ү
IMF	12		17	- н5Х
RDX	13		16	-vcc2
RDY	14		15	- vcc
28-LEAD DIP FLAT PACK				

licon systems INNOVATORS IN INTEGRATION

SSI 531 Write Precompensation/ Data Separator For MFM Data Recording

Advanced Information

GENERAL DESCRIPTION

The SSI 531 device is a bipolar integrated circuit that performs read data synchronization and MFM write precompensation functions for Winchester disc drive systems. A high performance phase locked loop ensures accurate detection of data bits and clock pulses within a playback MFM code pattern. The loop requires external passive filter elements (but no varactor diode or delay line). In the write mode, the SSI 531 circuit provides precise synchronization of data pulses to a crystal-controlled waveform. Optionally, a TTL gate input can be used in place of crystal control. High performance bipolar processing ensures low jitter for both the read and write paths. The SSI 531 device interfaces with controllers, such as the WD1010, which perform the MFM encoding and decoding functions. Eliminated by the SSI 531 are the need for complex analog/digital circuitry and expensive delay lines required by a controller for playback data pulse detection and for time position compensation of write data pulses. The SSI 531 requires a single +5V power supply and is available as a 24-pin dual inline package.

FEATURES

- 10 Mbit/Sec data rate
- MFM data synchronization
- Fast acquisition with precision VCO phase reset
- Write synchronization and precompensation
- Crystal controlled reference oscillator
- No active trimming elements or delay lines required
- + 5V power supply
- Compatable with WD1010 type controller circuits
- Available 3Q85

SSI 531 Block Diagram

SSI 541 Read Data Processor

Advanced Information

GENERAL DESCRIPTION

The SSI 541 Read Data Processor is a bipolar integrated circuit that utilizes a high performance AGC amplifier and two data qualification channels, amplitude and time, to defect and preserve the time relationship of the peaks in the read back signal of a Winchester disk drive.

This data qualification technique eliminates shouldering induced errors and makes it ideally suited for use with resolution signals.

The SSI 541 is operated from the +5, +12 volt power supplies and is available in a variety of packages.

FEATURES

- Time and Amplitude Pulse Qualifications
- High Performance AGC Amplifier
- AGC Hold Feature for Embedded Servo Applications
- Separate MFM or RLL, CODIN, Techniques
- Data Rates up to 15M bits/sec
- +5 > +12, volt Standard Power Supplies

Section 3 CUSTOM/ SEMICUSTOM

SILICON SYSTEMS-LEADING THE WAY IN CUSTOM/SEMICUSTOM IC'S

At SSi, we've been in a leadership role in custom circuits, first with superior IC design capabilities, and then with one of industry's finest wafer fabrication facilities. Today we're still pacing the field in the burgeoning market for "application specific" custom/semicustom IC's. We've maintained our position by carefully monitoring evolving market requirements and providing cost-effective, quality solutions for even the most specialized applications.

In both engineering and technology, we offer versatility: with design capabilities for digital, analog, and combined digital/analog ICs along with a wafer fabrication capability that includes both Bipolar and CMOS technologies.

	Specification Approval
EUL	Design & Layout
CUSTOM	Mask Fabrication
SEMICUSTOM ARRAYS	Wafer Fabrication
STANDARD	Wafer Testing
CELLS	Production Assembly
	Final Test

Custom/Semicustom Approach to Integrated Circuits

Custom IC's are not just a side line at SSi; they've always been our primary business. We provide the full range of custom IC design with such practical semicustom options as pre-built standard cells and switched capacitor filter arrays. With a top engineering staff supported by our unique Integrated Design Methodology (IDM), and with a fully automated wafer

fabrication facility designed especially for custom and "Application-Specific" IC's, we can cut custom design time down to readily acceptable limits.

Integrated Solution for You

So whether your requirements fall in our specialty areas of telecommunications and rotating memories, or other application areas appropriate for custom/semicustom IC's, we offer the advantages of a complete IC development and production operation; single-point accountability, smooth-progress through all phases of a project, and a high level of quality assurance. The result: reduced time and cost to produce the best custom/semicustom IC's available.

VERSATILITY-THE OPTIMUM APPROACH FOR EACH CUSTOMER

Silicon Systems has focused on the ASIC (Application Specific Integrated Circuit) market for over 10 years and has developed a versatile offering of customized components that covers the design spectrum.

The digital market can be satisfied by our Mask Programmed Logic Arrays (MPLA) for implementation of complex logic functions and by our full custom or standard cell library for large scale system designs.

Table 1

The analog market is served by our Bipolar analog array for moderate complexity needs, by switch capacitor arrays for filter needs and by full custom or standard cell library for higher levels of sophistication. All four design technologies also accommodate full analog and digital integration on the same chip for total system solutions.

Design engineering, semiconductor processing and testing are all housed in the same facility at Silicon Systems which allows quick turnaround from design concept to working silicon. The ultra-clean wafer fab supports both Bipolar and CMOS technologies with high and low voltage options as well as single or double layer metal interconnections. These variations permit us to select the optimum process when fabricating a new circuit.

Our standard cell library is implemented on the CC process (3μ m silicon gate CMOS) allowing high density, low power digital and analog functions to be integrated, while operating with standard 5-volt levels. The proprietary "CD" process extends operation from 3.5V to 14V for higher performance analog or analog/digital functions while our proprietary Bipolar "BJ" process offers extremely high density and performance combined with very low noise.

Silicon Systems also offers full capability for supporting Customer Owned Tooling (COT) with any of our industry standard processes.

	CMOS PROCESS CHART												
Process Designation	Channel	V _{TPO} (volts)	V _{TO} (volts)	BV _{DSS} (volts)	ĸ	N or P (Q/=)	Poly (Q/9)	Channel Length (microns)	Poly Pitch (microns)	M1 Pitch (microns)	M2 Pitch (microns)	Options/ Comments	
112/14	р	-20	-0.9	-20	11	80	141	9.0	111-11	12.5	51414 191 9	High Voltage	
СВ	N	20	0.9	20	17	16		72		12.5		Al Gate	
	р	-12	-0.9	-12	15	55	20	3.0	6.4	8.8	12	Double Metal, Single	
UC .	N	12	0.7	12	45	25	20	3.0	6.4	8.8	12	Si Gate	
	Р	-18	-0.9	-18	16	55	20	4.0	6.4	8.8	1. 11 <u>4</u> 98 1.	Single Metal.	
CD	N	18	0.7	18	50	25	20	4.0	6.4	8.8		Double Poly	

						BIPC	LAR	PR	OCE	SS CHAR	t		
Process		BVCEO	BVCBO	Ba	se	ej	ol 🛛	n-4	BL	Min.	M1 Dittole	M2	Options/
Designation	HEE	(volts)) (volts)	ρs	×j	pt	t	p _s	×i	(microns)	(microns)	(microns)	Comments
BC	60	12	25	200	1.2	0.75	4,4	25	5.5	5	14	24	Double Metal Al Schottky Typical f ₁ 1000 MHz
BJ	60	9	20	350	1.0	0.5	3.9	20	5.5	3	9	14	Double Metal Al Schottk Poly Emitter Typical fr 2000 MHz

Table 24

Table 2B

INTEGRATED DESIGN METHODOLOGY - THE IDM MADVANTAGE

When deciding to convert a system or subsystem design to silicon the user can choose either a fully customized approach or a semi-customized approach, each with its own benefits. For these designs SSi offers the alternatives of fully "handcrafted" custom design in CMOS and Bipolar or standard cell design in CMOS. As seen in Table 3, the fully individualized custom gives the advantages of chip size (lower production cost) and highest With Computer Aided Design (CAD) playing a major role in our product development cycle, SSi has developed an Integrated Design system that accommodates an interlocking set of design methods all supported by a single CAD system. This Integrated Design Methodology (IDM[™]) allows the user to design at the transistor level (either composite or symbolic), at a procedural macro level (silicon compiler), with

DESIGN TIME

DEGREE OF

AUTOMATION

INTEGRATED DESIGN METHODOLOGY

Figure 2

performance (speed, input offset, etc.) while semicustom, using a pre-characterized standard cell library, offers the advantages of lower NRE, faster turnaround and somewhat higher first article success rate. SSi adds to the flexibility of the standard cell concept by its willingness to develop special cells as needed to satisfy design requirements that lie between the two custom design technologies.

Parameterized Building Blocks (PBB), or with conventional standard cells. Each of these design levels has a unique set of attributes, as shown in Figure 2, accessible in a "mix or match" manner under IDM. This enables an efficient performance/design-time tradeoff.

"CUSTOMIZED SERVICE" - TOTAL SUPPORT FROM CONCEPT THROUGH FINAL TEST

Silicon Systems offers experienced staffing throughout its organization along with stateof-the-art CAD and processing facilities to efficiently develop customized products.

We start with a large, expert staff of design engineers to help define the product from both the system and silicon aspects. The design is then developed using our advanced CAD tools and programs including ALICE (Automated Layout for Integrated Circuit Engineering), which accurately handles chip design from schematic input to pattern generator output, all within one system. SSi engineers utilize an advanced version of "SPICE" to simulate DC, transient, noise, distortion, and AC response for CMOS and Bipolar. It accurately models such second order effects as weak-inversion, high-level injection, temperature dependent mobility, etc.

SSi has adapted a special program called "SWITCAP" for switched-capacitor filter frequency domain analysis which accurately predicts the frequency response of switchedcapacitor filters. Our Automatic Network Intertrace Algorithm (ANITA") compares the network description generated from the captured circuit to the layout as it proceeds. This guarantees that no interconnection errors exist and that all component sizes and tolerances match those used in the design analysis. The completed design goes through a masking procedure and the wafers are run in our ultramodern class 10 (10ppm particulate count) wafer fabrication facility. It is a "paperless"

environment accomplished by downloading process information to in-place terminals and processing equipment. The PROMIS (Process Management Information Systems) program that accomplishes this control provides workin-process tracking, engineering data collection,

and continuous facility monitoring.

After the wafer prototype is fabricated, SSi packages a few representative chips using in-house assembly for design verification. The units are tested in-house by one of our advanced analog or digital tester. We can test your circuit with your existing test program or help you create a test program from your specification.

After approval of prototypes or characterization lots (if needed) the final step is off-shore assembly for volume production.

We can also perform hi-rel screening and burn-in, if desired.

CUSTOM-THE "TAILORED" APPROACH

СМ	os
Integrated Circuit	
Function Dual Tone Multi	*Decodes Touch-Tone®
Frequency Receiver	Telephone Signals
1200/2400 Baud Receiver	Phase Shift Keying (PSK) Modem
Phoneme-Based Speech Synthesizer	"Talking" Machines
Error Corrector	Military Radio
Variable Counter	Jam-Resistant Radio
Touch Activated Switch	Home Lamps
Video Processor	Infrared Video System
16 Channel Switching Matrix	Bank Communications System
Custom Microprocessor	Computer Terminal
Digital Loop Detector	Traffic Signal Control
Programmable Digital Receiver	Home Appliance Remote Control
*Tauch	Tone is a trademark of AT&T

Table 8

Table 9

Table 10

The above tables show some of our demonstrated high performance design capabilities in Bipolar and CMOS. These analog/ digital chips cover a wide range of challenging circuit functions that were designed for a diversity of system applications.

As part of a total capability SSi offers commercial, industrial, and hi-rel product flows, as well as packaging options that include Dual-in-Line, Flatpacks, and plastic Quads. For further detailed information on product flow and packaging call SSi or refer to our Quality and Reliability Brochure.

Table 11

SSI 82C100/101 Programmable Logic Array

Preliminary Data Sheet

GENERAL DESCRIPTION

The SSI 82C100/101 are CMOS mask Programmable Logic Arrays (PLA). The AND-OR-Invert architecture gives the user the ability to implement custom sum-ofproduct logic equations. Sixteen inputs and eight outputs yield a total of 48 available product terms. A product term is the logical AND of up to 16 of the inputs in true or compliment form. As many as all of these product terms can be ORed together to create a desired output function. The output can then be programmed as active high or low. A mask option gives the designer a choice of outputs, either three-state with the SSI 82C100 or active pull down (open-drain) with the SSI 82C101. A chip enable (CE) pin controls the outputs. The SSI 82C100/101 is fully TTL compatible.

FEATURES

- Mask programmable
- 16 input variables
- 8 output variables
- 48 product terms
- Chip enable (CE) pin
- Three-state outputs
- 70 nsec Address access time
- Functional replacement for Signetics 82S100/101

LOGIC DIAGRAM

CAUTION: Use handling procedures necessary for a static sensitive component

SSI 82C100/101 Programmable Logic Array

Programming

Either boolean equations, our logic diagram with the connections shown or a completed program table are sufficient for indicating a customer's programming needs. A blank diagram and table are included in this data sheet for the designer's use.

Inputs and the "AND" Array

Each input to the SSI 82C100/101 is available to the AND array in either true or complement form. Either form of these 16 inputs may be connected to any of the AND gates. However if both forms are inputs to any one gate, that gate is inactive regardless of its other inputs. The four ways to program an AND gate are shown below.

"OR" Array

Any of the product terms (output of the AND array) can be connected to any of the OR gates.

Outputs

An output can be programmed active high or low by either grounding or leaving open the unused input of the EXOR gate.

Chip Enable

For the SSI 82C100 a high on the \overline{CE} pin will cause the outputs to go to a high-impedance state. With the SSI 82C101, the \overline{CE} pin going high forces all the outputs high, provided an external pull-up resistor is connected. In either device, a low on the \overline{CE} pin gives the chip control of the outputs.

Power Down Mode

The PD pin on the SSI 82C100/101 is a control for the power down mode. A high on the pin reduces chip power and speed by a factor of 100 but retains the device's logical functions. During normal operation PD can be grounded or left floating.

Absolute Maximum Ratings*

Parameter	Min	Max	Unit
Supply Voltage (V _{CC})		+ 7	Vdc
Input Voltage	- 0.3	VCC + 0.3	Vdc
Output Voltage	- 0.3	VCC + 0.3	Vdc
Input Currents	-1	+1	mA
Output Currents		+ 20	mA
Storage Temperature	- 65	+ 150	°C

*Exceeding the absolute maximum ratings may cause permanent damage to the device.

DC Electrical Characteristics

(0 °C \leq Ta \leq + 75 °C, 4.75V \leq Vcc \leq 5.25V All voltages are with respect to ground.)

Parameter	Test Conditions	Min.	Max.	Units
Input Voltage High	Vcc = Max	2.0	—	V
Input Voltage Low	Vcc = Min	_	0.85	V
Output Voltage High ¹	IOH = -2mA	2.4		V
Ouput Voltage Low ²	IOL=9.6mA Vcc=Min	-	0.45	V
Input Current High ³	Vin = Vcc		25	μΑ
Input Current Low ³	Vin = 0.45V	- 100		μΑ
PD Input Current High	Vin=Vcc	—	100	μA
PD Input Current Low	Vin = 0.45V	- 25	_	
Output Current Hi-Z	\overline{CE} = High, Vcc = Max Vout = Vcc	- 40	40	μΑ
	Vout = 0.45V	- 40	40	μΑ
Output Current Short Circuit ^{4, 5}	CE = Low, Vout = OV Pullup Active	- 14	- 100	mA
Supply Current ⁶	PD Low	_	50	mA
Supply Current	PD High	-	500	μΑ
Input Capacitance	Vin = 2.0V	—	8	pF
Output Capacitance	Vout = 2.0V \overline{CE} = High, Vcc = 5.0V	—	17	pF

Notes:

Measured with CE low (chip enabled) and a logic high output.
 Measured with CE low (chip enabled) and a logic low output. Output sink current is applied through a resistor to Vcc.
 Except PD
 Only one output should be tested at a time.
 Do not exceed 1 second with short circuit current.
 Measure supply current with CE low, 10-115 high, outputs open and PD as specified.

Timing Characteristics

Parameter	Symbol	Test Conditions	Min	Max	Unit
Propagation Delay	TIA	See Fig 1	-	50	ns
Chip Enable Delay ⁷	TCE	See Fig 2		30	ns
Chip Disable Delay ⁸	TCD	See Fig 3	-	30	ns

Notes:

7. TCE is the delay from \overline{CE} low to data valid. 8. TCD is the delay from \overline{CE} high to high-Z or high output state. The chip disable state is reached when the output moves 0.5V from its initial value.

Test Circuits for Timing Measurements

Example

This example illustrates all three means of providing programming data to SSI. Any one of the three is sufficient. The diagram below and the table on the next page indicate the programming necessary to implement these equations:

Boolean Equations

 $\begin{array}{l} \mathsf{L} = \mathsf{A} + \bar{\mathsf{B}}\mathsf{E} + \mathsf{G}\mathsf{J}\bar{\mathsf{K}} + \bar{\mathsf{C}}\mathsf{D}\bar{\mathsf{E}}\mathsf{H} \\ \overline{\mathsf{M}} = \mathsf{D}\mathsf{E}\mathsf{F} + \mathsf{A}\bar{\mathsf{B}}\mathsf{E} + \mathsf{A}\mathsf{B}\bar{\mathsf{J}} + \bar{\mathsf{A}}\mathsf{D}\mathsf{F}\mathsf{K} + \mathsf{A}\mathsf{C}\bar{\mathsf{E}}\mathsf{F} \\ \mathsf{N} = \mathsf{G}\mathsf{J}\bar{\mathsf{K}} + \mathsf{A}\bar{\mathsf{D}}\mathsf{E}\bar{\mathsf{G}} + \bar{\mathsf{J}}\mathsf{K} \end{array}$

PLA Logic Diagram

 Stillcon Systems

 14351 Myford Road, Tustin, CA 92680
 (714) 731-7110, TWX 910-595-2809

PLA Logic Program Table

	니						_		_				00	<u> </u>	1 21 11	VI.									′	ACI	IVE	LEV	CL'		
- 0					ts ≦			,				NPL	JT V	ARI	ABL	E'								[]	_				H	-	н
	2	ve	3		e on	NO	1	1	1	1	1	1													οu	TPL	JT F	ŪN	CTIC	יאכ	-1
	۳	Act	2	-	ouc		5	4	3	2	1	0	9	8	7	6	5	4	3	2	1	0		57	6	5	4	ГзТ	21	5	-01
	≥				pen	0																			_						-
	5		_		am I n	1																									
	2				for a	2	1	-																						_	
	S	é	_		Ê≦	3	+												·												
	Ę	Ē	Ē	Ι	TES olari nter	4	+								-													-		-	
	õ	4			Q d ū N − N	6	†				-				-						-										
						7																							- 1		
		đ			ŝ	8			1																						
S		ž	ŭ,	F	ter	9																									
HE I	z	E	Ē	õ	e P	10	+																							_	
Ę	<u>ō</u>	Ĕ	en la	pe	pola	12	+		-				-																		
Ē	5	B	res	•	put ts of	13	+									-												+			
3	3	ď	۹ ا		out	14															-					-		\vdash			
Ξ	Ē		-		d ou	15										-															
Σ	5	F	۹.		nder	16																	1								
A	ξl	eru	Ē		r un	17																									
0	ଟ		Ę	٩) fo	18																									
Ř		20	ese		ES er (A	19]						
u		۵.	ā		E E O	20	-																								
			_		Z - N	21	+						-					_	-	-						-			-		
						22							-													-		\square		-	
		are	a	£	σ	24	+ -		-																						
	ų	. ÷	2	das	nse	25	t t								-															-	
	B	Ē	5	-	sof	26							-	-																	
	Ē	2	ן כ		but	27																									
	₹¦				E	28																									
	5	8	ε		asnu	29																									
	٩ļ	•	-		L L	30																			_					_	
	≤	-	-		1) fo	31																						-			
		ε	εİ	т	IOT Inter Inter	32	-		-	-	-	-	н	L	-	-		-	-									-	A	•	
		-	-		2 11 1	34	-	-	-	-	-	-	-	_	_	-		н	-			н								-	
						35	-	-	-	-	-	-	_		-	_	н	-		н	_	н			-			-	•	A	•
	1	1	1	1	1 1	36		-				-	н	-	-	-	н	-	н		-	L							•	A	•
1						37	-		-	-		-		L	-		-	-			н	н							•	Α	•
						38	-	-			-	-	-	-	-		-	н			L	н							•	Α	•
	1				Ë	39	-	-	-		-					-	н	н	н			-							•	Α	•
1					M	40	N.,									2													•	•	·
۵ ا						41																				-			•	•	
1 ដ						42																								-	÷
١ž						43					•																			-	
Ιö		9	g		E E	44	1	-	-	-			-	-	H-	-	-	1	-	L	-	-								÷	Ā
٦		. 6		*		45			-	-		_	-	-			-	H-		-	-	_				1-			.		A
∣≥		18		Å		40	+	H			H	_	-	_	H	-	-			-	-	н				+		-			A
၂ ခို		10	ω	9	S	H#'			_	-		-	-	-	-	-	-	-	-	-	-	-							<u> </u>		-
1				IZED.	PAR	PIN NO.	2 0	2 1	2 2	2 3	2 4	2 5	2 6	2 7	2	3	4	5	6	7	8	9		1 0	1 1	1 2	1 3	1 5	1 6	1 7	1 8
		PURCHASE ORDER #	SSI DEVICE #	CUSTOMER SYMBOL	TOTAL NUMBER OF PROGRAM TABLE # _	VARIABLE NAME							ĸ	J	н	G	F	E	D	с	в	A							N	м	L

The "PRELIMINARY" designation on an SSi data sheet indicates that the product is not yet released for production. The specifications are subject to change, are based on design goals or preliminary part evaluation, and are not guaranteed. SSi should be consulted for current information before using this product. No responsibility is assumed by SSI for its use; nor for any infringements of patents and trademarks or other rights of third parties resulting from its use. No license is granted under any patents, patent rights or trademarks of SSi. SSi reserves the right to make changes in specifications at any time and without notice.

Section 4 STANDARD CELLS

STANDARD CELL LIBRARY - ANALOG AND DIGITAL

SSI ST	FANDARD CELL FAMILY (PARTI	AL LIST)
ANALOG CELLS	DIGITAL CELLS	DIGITAL CELLS
Analog Switch Array	Two Input NOR	Three Input AND
Switched Capacitor Amplifier	Three Input NOR	Four Input AND
OP Amp, External Use	Four Input NOR	Two Input OR
OP Amp, Internal Use	Two Input NAND	Three Input OR
Gain Block	Three Input NAND	Four Input OR
Capacitor Array	Four Input NAND	3x2 AND-OR-Invert
Bias Generator	Inv/Non-Inverting Buffer	2x2 AND-OR-Invert
RC Oscillator	Buffer Inverter	2x1 AND-OR-Invert
Multiplying Differential D/A Converter	Transmission Gate	D Flip Flop (2 Versions)
High Accuracy Sample and Hold	Single Clock/Dual Transmission Gate	D Flip Flop with Set (Overrides) and Rese
Power On Reset	Inverting Tri-State	D Flip Flop with Set and Reset (Overrides
OP Amp, Buffer	Non-Inverting Tri-State	Transparent D Latch
Supply Divider	RS NAND Latch	Exclusive OR (2 Versions)
Voltage Comparator	RS NOR Latch	Input Inverting I/O Cell
8 Bit A/D Converter	Low Impedance Inverter	Input Inverting I/O Cell
Low Impedance Driver	High Impedance Inverter	Output Inverting Driver I/O Cell
	Double Buffer Inverter	Bi-Directional Tri-State I/O Cell
	Tri-State Driver	Output Non-Inverting Driver I/O Cell
	Two Input Decoder	Input Transmission I/O Cell
	Two Input AND	Input Pad with Protection
	8 Bit Magnitude Comparator	Input Schmitt Trigger (4 Versions)

Table 5

The standard cells shown in Table 5 represent the basic building blocks or "primitives" of our present library. In addition to these cells, macros are already scheduled for functions such as RAM, ROM, PLA etc. Others can be generated and added to the library on an "as needed" basis. As part of the SSi flexibility in custom we will design new cells to accommodate any feasible "special" requirements.

$4.5V \le VDD \le 5.5$	ν.	-40°C <	< Temp <	< 125°C
		Nom	Max	Units
Propagation Dela	ys			
2 Input NAND	TPLH	2.5	8.0	nsec
	TPHL	1.7	3.8	nsec
RS Flip-Flop	TPLH	5.0	10.7	nsec
	TPHL	1.5	3.3	nsec
D Flip-Flop	TPLH	4.0	8.8	nsec
(clk to QB)	TPHL	3.2	7.6	nsec
Buffer/Driver	TPLH	1.0	3.1	nsec
(Inverting)	TPHL	0.8	2.5	nsec

Table 6

Table 7

The characteristics shown in Table 6 are indicative of our cell library in 5 Volt 3μ m Si gate CMOS (CC process). An additional library of higher performance analog cells will be made available on our CD process.

Silicon Systems INNOVATORS IN INTEGRATION

BASIC STANDARD CELL LIST

CELL NUMBER	DESCRIPTION	CELL NU	MBER	DESCRIPTION
	_			
BASIC LOGIC FUNCTION	S	i/O CELLS (10MIL PADS)	
C1120	2 IN NOR GATE	C5001	8540	INPUT INVERTER (1X)
C1130	3 IN NOR GATE	C5002	8620	INPUT SCHMITZ TRIG. NON-INVERT
C1140	4 IN NOR GATE	C5003	8530	INPUT INVERTER (3X)
C1220	2 IN NAND GATE	C5004	8550	OUTPUT INVERTER
C1230	3 IN NAND GATE	C5005	8630	INPUT SCHMITZ TRIG. INVERT
C1240	4 IN NAND GATE	C5006	8580	INPUT NON-INVERT/TRI-STATE OUTPUT
C1300	INVERT/NON-INVERT PAIR			NON-INVERT
C1310	INVERTER (1X)	C5007	8960	INPUT PAD WITH PROTECTION
C1320	TRANS. GATE (ENABLE*)	C5008	8600	OUTPUT NON-INVERT BUFFER
C1330	DUAL TRANS. GATE (COMP ENABLES)	C5009	20160	POSITIVE SUPPLY
C1360	INVERTER TRI STATE (ENABLE*)	C5010	8980	TRANSMISSION GATE INPUT
C1380	BUFFER TRI STATE (ENABLE*)			
C1410	LATCH R*/S*			
C1420	LATCH R/S	10 CELLS (ZUMIL PADS)	
C1430	LATCH R R/S (CROSS COUPLED NORS)	C8530		INPUT INVERTER (3X)
C1440	LATCH R* R*/S* (CROSS COUPLED NANDS)	08540		
C1500	INVERTER (3X)	00500		
C1520	INVERTER (2X)	C8580		NON INVERT
C1540	INVERTER	C9600		
C1580	NAND NOR/INVERT	C8600		
C1590	11 NOR 12 11 NOR 12*	00020		
C1610	11 NOR 12*	00030		
C1620	NAND/AND (2 INPUT)	08720		
C1630	NAND/AND (3 INPUT)	C0730		
C1640	NAND/AND (4 INPUT)	C8960		
C1720	NOR/OR (2 INPUT)	00900		TRANSIVISSION GATE INFOT
01730	NOH/OR (3 INPUT)	10.0511.0		
C1040		1/0 CELLS		
01840		C20110		
018/0	AND-NOR (4 INFUT)	020120		NOUTOT OPEN DRAIN INVERTER
		C20130		
D FLIP FLOPS		C20140		
C2120	DFF (C*)	C20180		
C2130	DFF (C)	C20010		
C2140	DFF (C*, R, S)	C20010		
C2150	DFF (C, R, S*)	C20020		INPUT BUFFER INVERTER SCHMITZ TRIG
C2160	DFF (C*, R, S*)	C20040		CRYSTAL OSCILLATOR
C2170	DFF (C, R, S*)	C20060	C21060	INPUT NEGATIVE SUPPLY
C2820	DFF (C)		021000	
C2830	DFF (C*)			
C2920	DFF (C*)			15
C2930	DFF (C)			
C20050	D FLIP FLOP (HIGH SPEED)	SCMP		SWITCHED CAPACITOR AMPLIFIER
		GB -6DF	a	GAIN BLOCK (-6DB)
SPECIAL LOGIC		GB -3DE	3	GAIN BLOCK (-3DB)
C4000	8 BIT MAG COMP WITH ENABLE	GB ODE	2	GAIN BLOCK (0DB)
C4080	D LATCH (C, R)	GB 3DE	3	GAIN BLOCK (3DB)
C4090	D LATCH (C*, R)	GB 6DE	2	GAIN BLOCK (6DB)
C4110	PRESET FLIP FLOP	GB 12DE	3	GAIN BLOCK (12DB)
C4120	PRESET FLIP FLOP	CBAY	5	CAPACITOR ABBAY (UNIQUE PER DESIGN)
C4310	XOR	MDAC		MULTIPLYING DIFFERENTIAL D/A CONVERTER
C2310	XOR	HASH		SAMPLE AND HOLD
		VCMP		VOLTAGE COMPARATOR
FEED THRU CELLS				
COA10		CI ASSICAL	STD CELLS	
C9450	POLY FEED THRU	OATY	SID CELES	OR AND EXTERNAL LICE
03-00	, GETTED THRU	OALA		OF AWP, EXTERNAL USE
		DOEN		OF AMP, INTERNALUSE
		BGEN		DIAS GENERATOR FOR USE WITH OF AMPS
		HCU POD		
		PUK		
		SDIV		
		5017		SUFFLY DIVIDEN
		1		

Section 5 GENERAL INFORMATION

SSI Product Selector Guide

1-56

TELECOMMUNICATIONS CIRCUITS

Part No.	Circuit Type	Page No.
SSI 201	12V, DTMF Receiver	1-4
SSI 202	5V, DTMF Receiver	1-8
SSI 203	5V, DTMF Receiver w/early detect	1-8
SSI 204	Subscriber DTMF Receiver	1-12
SSI 20C89	5V, DTMF Transceiver	1-22
SSI 20C90	5V, DTMF Transceiver w/Call Progress Detector	1-28
Modem Product	S	
SSI K212	Single Chip 212 Modem	1-62
SSI 223	1200 Baud FSK Modem	1-34
SSI 291/213	1200 BPS Full Duplex Modem Chip Set	1-66
SSI 3522	Bell 212A/V.22 Modem Filter	1-38
Speech Synthes	izer	
SSI 263A	VOTRAX SC-02 Compatible	1-42
Switched Capac	itor Filter Array	
SCA-6	CMOS Semicustom SCF Array (6 filter sections)	1-56

Transmission Products

SCA-12

SSI 80C50	T1 Transmitter	1-58
SSI 80C60	T1 Receiver	1-60
SSI 22100	4x4x1 Cross Point Switch w/Control Memory	1-68
SSI 22101/22102	4x4x2 Cross Point Switch w/Control Memory	1-70
SSI 22106	8x8x1 Cross Point Switch w/Control Memory	1-72
SSI 22301	PCM Line Repeater	1-74

CMOS Semicustom SCF Array (12 filter sections)

Silicon Systems INNOVATORS IN INTEGRATION

SSI Product **Selector Guide**

MICROPERIPHERAL PRODUCTS

Part No.	Curcuit Function	No. of Channels	Power Supplies	Data Write/Read	Write Current Source	Read Gain	Page No.	
Ferrite Heads								
SSI 101	Servo Preamp	1	8.3V/10V			77 to 110	2-2	
SSI 104	Read/Write Amp	4	+6V, -4V	Bi-Directional Differential	External	22 to 46	2-4	
SSI 104L	Read/Write Amp	4	+ 6V, - 4V	Bi-Directional Differential	External	22 to 46	2-4	
SSI 108	Read/Write Amp	4	+6V, -4V	Bi-Directional Differential	External	22 to 46	2-4	
SSI 115	Read/Write Amp	2,4,5	+ 5V	Bi-Directional Differential	External	26 to 52	2-14	
SSI 117	Read/Write Amp	2,4.6	+ 5V, + 12V	TTL Write Diff. Read	On-Chip	80 to 120	2-20	
SSI 122	Read/Write Amp	4	+ 6V, - 4V	Bi-Directional Differential	External	28 to 43	2-4	
SSI 501	Read/Write Amp	8	+ 5V, + 12V	TTL Write Diff. Read	On-Chip	80 to 120	2-26	
*SSI 511/511R	Read/Write Amp	2,4,6	+5V, +12V	TTL Write Diff. Read	On-Chip	80 to 120	2-86	
Thin-Film Head	S							
SSI 114	Read/Write Amp	4	+ 5V	Diff. Write Diff. Read	On-Chip	75 to 170	2-32	
SSI 116	Servo Preamp	1	8.3V/10V	·		200 to 310	2-36	
*SSI 521	Read/Write Amp	6	+ 5V, + 12V	TTL Write Diff. Read	On-Chip	75 to 125	2-88	
Data Path/Supp	ort Logic/Motor Contro	bl						
*SSI 531	Write Precomp/ Disk Separator		—	_	—	—	2-92	
SSI 540	Read Data Path	—	+5V, +12V	Diff. Write Diff. Read			2-38	
SSI 545	Support Logic		+ 5V				2-46	
SSI 590	2 Motor Speed Control	—	12V		-	—	2-66	
SSI 591	3 Motor Speed Control		12V		_		2-70	
Tape Drive			·					
SSI 550	Mag Tape Read Circuit	4	—	-	—	-	2-74	
Memory Produc	ts							
SSI 67C401/402	64x4, 64x5 FIFO	—	_		-		2-80	
Semicustom Ci	Semicustom Circuits							
SSI 82C100/101	Mask Programmable Logic Array	—	'5V	_	_		3-6	
Floppy Disk Cir	cuits							
SSI 570	Read/Write System	2	+ 5V, + 12V	_	On-Chip	1000 Adjustable	2-50	
SSI 575	Read/Write	2,4	+5V, +12V	TTL Write Diff. Read	External	80 to 120	2-56	
SSI 580	Support Circuit	_	+ 5V	_			2-60	

*Advanced Information

Support Circuit

Silicon Systems INNOVATORS IN INTEGRATION

SSI Competitive Cross Reference Chart

Competive Manufacturer's Part Number	Silicon System's Pin-For-Pin Replacement	Silicon System's Closest Replacement		
AMI	<u> </u>			
S 3522	SSI 3522			
APTEK				
4101	SSI 201			
CDC				
M 101	SSI 101			
M 104	SSI 104			
M 114	SSI 114			
M 116	SSI 116			
FUJITSU				
MB 4111	SSI 104			
MB 4112	SSI 105			
MITEL				
8870		SSI 202		
MMI				
67401	SSI 67C401			
67402	SSI 67C402			
NEC				
μPD751	SSI 104			
μPD754	SSI 101			
RCA				
CD 22301	SSI 22301			
CD 22100	SSI 22100			
CD 22101/2	SSI 22101/2			
CD 22106	SSI 22106			
SIGNETICS	••••••••••••••••••••••••••••••••••••••	L _{enge} n an an _n ay an		
82S100		SSI 82C100		

SSI Packaging

Package	Pins	Page No.
PLASTIC DIP	8 and 14 Pins	5-9
PLASTIC DIP	16 and 18 Pins	5-10
PLASTIC DIP	22 and 24 Pins	5-11
PLASTIC DIP	28 and 40 Pins	5-12
CERDIP	8 and 16 Pins	5-13
CERDIP	18 and 22 Pins	5-14
CERDIP	24 and 28 Pins	5-15
SURFACE MOUNTED	22 and 44 Leads	5-16
FLAT PACK	10, 24, 28 and 32 Leads	5-17

Silicon Systems INNOVATORS IN INTEGRATION

SSI Package Matrix

Package Type	Р	D	F	Н	М
Part Number	Plastic	Cerdip	Flatpack	Quad	Cerpack
101A	8				
104			24		24
108	24	24			
122	22				
114			24		
115-5	24	24	24		
115-2	18				
115-4	22	22			
116	8		10		
117-4	22	22	24		*
117-6	28	28	28	28	
117-2	18				
158 (8520)	24	24			
SC01	22				
223	16				
188			24		
201	22	22			
202	18	18			
204	14				
263A	24				
67C401	16				
67C402	18				
501/502	40		32	44	
540	28			28	
570	28			28	
580	28			28	
591	16				
590-1	8				
590-2	14				5
540-2	28			28	
540-3	28			28	
540-4	22				

*Check with factory for availability.

SSI Ordering Information

Silicon Systems SSI Packaging Diagrams PLASTIC DIP 8 Pins .255 PIN NO.1 IDENT. ł .400 .310 .290 .060 .020 .155 .125 + .150 .015 .008 .045 .025 .032 REF .400 .290 110 .090 .065 .045 .023

PLASTIC DIP 14 Pins

.015

.008

PLASTIC DIP 16 Pins

SILICON SYSTEMS SSI Packaging Diagrams PLASTIC DIP 22 Pins PIN NO. 1 IDENT. + .410 (10.414) - .380 (9.652) -1.200 (30.48) MAX .360 (9.144) .330 (8.382) .175 (4.445) MAX .015 (0.381) .470 (11.938) .060 (1.524) .110 (2.794) ,090 (2.286) .023 (.5842) .160 (4.064) .090 (2.286) .075 (1.905) .015 (.3810) .100 (2.540)

PLASTIC DIP 28 Pins

Silicon Systems

8 Pins

SSI Packaging Diagrams

CERDIP 18 Pins

CERDIP 22 Pins

SILICON SUSTEMS

CERDIP 24 Pins

CERDIP 28 Pins

SURFACE MOUNTED 28 Leads

SURFACE MOUNTED 44 Leads

*Available second half '85.

SUICON SUSTEMS

SSI Flat Packages

Pkg. Type	Lead Cnt.	А	В	С	D	E	F	L	Q	w
F	10	.900	<u>.015</u> .019	<u>.045</u> .055	.090 max	.200 typ	<u>.004</u> .007	. <u>250</u> .260	.074 typ	<u>.250</u> .260
F	24	.900	<u>.015</u> .019	.050 typ	.087 max	.567 typ	<u>.002</u> .004	<u>.391</u> .405	.075 typ	<u>.264</u> .276
м	23	<u>.747</u> 1.013	<u>.019</u> .019	.050 typ	.087 max	.550 typ	<u>.003</u> .006	.399 max	<u>.062</u> .052	.273 max
F	28	1.150	<u>.015</u> .019	<u>.045</u> .055	.092 max	<u>.645</u> .655	<u>.004</u> .007	<u>.712</u> .728	<u>.085</u> .078	<u>.492</u> .508
F	32	1.150	<u>.015</u> .019	<u>.045</u> .055	.092 max	.745 .755	<u>.004</u> .007	<u>.812</u> .828	<u>.085</u> .078	<u>.492</u> .508

Manufacturing and Quality Assurance Capabilities

Manufacturing - A Commitment to Quality

BIPOLAR & CMOS CUSTOM/SEMICUSTOM CAPABILITY

Silicon Systems manufactures full custom, semi custom, and standard "applications specific" integrated circuits using both Bipolar and CMOS technologies. Standard and custom products address customer needs in specific market areas. In the computer peripheral market, the company's products are used in Winchester disk drives and other mass storage equipment. The telecommunications market is served by products incorporated in Modems and Touch-Tone® signaling equipment. The company has the capability to design digital, analog, and combination analog/digital circuits using in-house developed third generation CAD tools. This capability coupled with our modern in-house fabrication facility allows Silicon Systems to be a full-service supplier of both Bipolar and CMOS solutions to our customers' needs.

CLASS 10 FACILITY

Silicon Systems has one of the newest and most efficient wafer fabrication facilities in the industry for processing both Bipolar and CMOS wafers. To maintain this efficiency and to obtain the highest possible yields, a class 10 clean-room environment has been created to contain the manufacturing process. To maintain the integrity of this environment, a totally "paperless" product flow is accomplished by down-loading process information to in-place terminals and processing equipment. The PROMIS system that accomplishes this control also provides statistical information on all aspects of the manufacturing operation.

IN-HOUSE TESTING & ANALYSIS

100% Final Electrical test is performed in-house using automated test systems. These systems include in-house developed equipment and state-of-the-art commercially available testers such as LTX and Eagle. With this equipment complex analog, digital, and combinations of analog and digital circuitry can be efficiently tested. To further support design and manufacturing efforts, Silicon Systems has in-house Physical Analysis and SEM labs. These are used to perform detailed process, product, and supplier qualifications and, as well as rapid and accurate analysis of device failures. This inhouse testing and analysis allows Silicon Systems to monitor all aspects of manufacturing to insure that a product of highest quality is shipped to our customers.

Quality Assurance

SHIPPING	Paper Work			
TEST	100% Electrical Environmental M (See flows)	Ionitors	AQL Electrical AQL Visual C of C (as applicable	
Physical Analysis)	Die Attach	Soldera	bility	
DPA (Destructive	SEM Wire Bond	Die Visu Mark Pe	ual ermanency	
ASSEMBLY MONITORS	Visual Die Die Attach Wire Dress Final	Die Attach Monitor Solderability Monitor Mark Permanency Monitor S		
PROBE	Visual Yield			
WAFER FABRICATION	Wafer Resistivity Flatness Visual Structural Chemicals Purity	Process Monitors Oxide Thickness, Sheet Rho (resistivity) Equipment Monitors Environment Monitors Process Monitors Parameter Monitors PROMIS Facilities Monitors		

Process Monitoring Techniques

Notes: *PROMIS - a computerized statistical process control and manufacturing monitor.

QUALITY CONTROL

The QA function at Silicon Systems involves constant monitoring of all aspects of IC fabrication, from the purchase of new materials through all steps in the production cycle. Two major areas of Quality Control are Incoming Materials Inspection, and Process Monitoring Control.

Incoming Materials Inspection and Controls

At Silicon Systems all materials purchased for use in production are subjected to a careful inspection. Sampling tests employed are based on such factors as intended application, the supplier's own ability to control his quality, and the individual quality requirement for each item. Incoming inspections are performed to specifications agreed to between Silicon Systems and each vendor.

Process Monitoring Control

Quality Control monitors are placed along the manufacturing flow, where data is analyzed, to test the results of intermediate manufacturing steps. This data is used to determine quality trends or long term changes in the quality of specific operations. QC monitors are not used to sample every product lot. Instead, samples are taken on a periodic basis.

The SEM (Scanning Electron Microscope) examination of metal step coverage is one example of a QC monitor. This monitor can be used to check metallization coverage over oxide steps. To do this products are sampled periodically and checked with a SEM to insure that the aluminum thickness over oxide step is adequate. A general description of the product flow and QC inspection points at SSi is shown in the following outline.

Although full compliance with MIL-STD-883 is not implied, all processes are in accordance with or derived from the methods indicated.

LOT ACCEPTANCE TESTING

At Silicon Systems, all sampling for Lot Acceptance Testing is based upon MIL-STD-105D.

Commercial Testing includes resistance to solvents, Solution A, plus external Visual Inspection to strict SSi standards.

Industrial Testing includes hermetic-only Destructive Physical Analysis (DPA), as well as Resistance to Solvents, Solutions A and B, plus Solderability, Electrical @ 25°C, and external Visual Inspection to SSi standards. **Extended Reliability** covers hermetic-only DPA and Burn-in, as well as Resistance to Solvents, Solutions A, B, and C, plus Solderability, Fine and Gross Leak Hermeticity, Electrical @ max/min and 25°C, and external Visual Inspection to SSi standards.

High Reliability includes Destructive Physical Analysis and Burn-in, as well as Resistance to Solvents, Solutions A, B, C, and D, plus Solderability, Fine and Gross Leak Hermeticity, Electrical @ max/min and 25°C, and external Visual Inspection to SSi standards.

14351 Myford Road, Tustin, California 92680 (714) 731-7110, TWX 910-595-2809